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A NON-ZERO DIMENSIONAL ATOM

J. Reiterman, V. Rodl

It is shown that, under the CH, there exists & non-zero
dimensional uniformity which is an atom in the lattice
of uniformities on a countable set.

All uniformities on a given set form a complete lattice with

‘ j;spect to the order "L < ¥V iff A is finer than V') The zero of

 e lattice is the uniformly discrete uniformity and a uniformity wU
R & aton in this lettice iff there is noV with O sVs 4L Papers
‘3], [4] present various constructions of atoms leaving open the pro-

' em of the existence of an atom which is not zero dimensional, i.e.
i'ch has no basis consisting of partitions. In the current paper,
;‘,suming the CH, we present a construction of a uniformity on a count-
!le set such that each atom refining it is non-zero dimensional.

ie following three results show that & non-zero dimensional atom

’st be very complicated.

pogition. a/ Tach proximally non-discrete atom is zero di-

b/ For each proximally discrete atom there is an ultrafilter F
bch that the atom refines the uniformity ‘u-?where 44?. coneists of
Il covers @ with €n ¥ # ¢.

2. Proposition. Each non-zerodimensional atom on a countable set

nits a uniform cover which is a partition into finite sets.

2l: Proposgition. A non-zerodimensional atom is non-distal; in par-
Hcular, it is infinite dimensional / a uniformity is distal if it

jS & basis consisting of covers of finite order/.

For 1.1. see[3], 1.2. is due to Pelant [‘f]and l.3. can be pro-
easily by using 1l.l.
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2. Fmbeddings of cubes

The construction of the non-zerodimensional atom is based
on cubes and their embeddings. By a cube we shall mean a set of tj
form A® = fxBx...xA (m-times) where A ={1,2,3,...,n}.
Zlements of ‘B® will be identified with functions from ® to 1.
zach cube will be regarded as & metric space with the metric
defined by

o, &) = &ya(z(x), &x)
where d is the O-l1l metric on 4. In other words, ?(f, g) =
| (ze®; £@ # gx)}.

Let n€N and k<K. Then we say that a mapping qj ﬁ'k—yﬁl
is an embedding if there are 815000,8p with € = {al,...,ax}
such that Qp(f)(ax\ = q/(g)(ax) iff either x>k or x<k and
f(x)= &(x) for every f, ge’hk. It is clear that an embedding of

cubes 1s always an 1sometry.
The following is an .easy consequence of Theorem 12,2[2].

2+1. Lemua. Llet m, J be positive integers. Then there exists

a positive integer 9 = &j(m) such that for every subset FC QJ
with |[Fi2 29 /2 there exists an embedding

p : ©J 5 ®J whose image is contained in F .
Further, we shall need three lemmas on matrices.

2+.2. Lemma. Let p be a positive integer and let A = {aij}
k

be a kx{ matrix where £ 3 (p--l}2 + 1. Then there exist

1 32,...,jps£ such that for every i € k, either

(1) al\)l = aiJ2 = see= ain or

(2) ai.jx £ aijy for x#y, x, y<Pp.
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Proof. For k = 41, the proof is trivial. lLet us suppose that

Lemma . i8 proved for k-l1. Let A = {aij} be a kx € matrix.
sccording to the induction assumption (applied to p’ = (p—l)z +1
nd A = {a;;} where i<k-1, jg&) there exist J;, Jpie-er Jp <
< ¢ such that, for every i £ k-1, either

. - = 2T Seee= . 3
%5 T %, 150
ai:};-x # ai‘fj'y for x # Y X, y‘p"

On the other hand, there exists {51, 52,..., Jé}(@ i jz,..., ,jp'}
such that either

P
#&kjy for x#Yy, X, Y$Po

1

a, .
ka

The proof is finished.

2.3 Lemma. Let A = {ai j} be a kxp matrix with the following

properties:

(i) p> (-1)s + 1)m where s = L2*3],

(ii) 855 # 834 iff i #i~ for every j<€p ,

(iii) for every i<k, eitner

ail = aiz Seee = aip ’ or

L #aiy.for x#y, X, Y4P-.

‘hen there exist jl’ 3'2,..., 'jm’ il, i2,..., is such that either

3 _a. . = 8; . = eee = & . for every x<&£s8, Or
() 7 1xdy 1xd2 1x9m ’

(4) a; . # a . iff W) #£ G,v.

1xdu yIv

Proof. Cbviously, there exist ii""" is-euch that either

(5) a; = 8: , = ees = 8. for every x<£s, or
1x1 1,2 , 1P g

(6) 8.3 % ®i " irf jA§, ., J&p for every xgs.
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Ifr (5) is true then the proof is finished. Let us suppose that (6)
holds. Let B = {aij where 1 {11, 12,..., is} and Jj&P.
Let GC be a graph the vertices of which are columms of B and
and two columme ) and j  are joined by an edge if the sets
{aiij""’ aisj} and {aiisv,... aisj } have non-empty intersection,
It is not difficult to see from (6) that the degree of every vertqy
of this graph is at most s(s-1) . As the number of vertices is at
least (s(s-1)+ 1) m , there is an independent set in this graph

/no two vertices are joined by an edge/ of size —!‘——r =m,
s(s-1)+ 1

seef‘]], P. 284. In other words, there are 'iﬂ."“’ :jm such that

(4) is true.

2.4. Lemma. Let A = {ai;j} be a kx{ matrix with the following

properties:
k +1
(i) 4& > ((8(8-1)4' 'l)m - 1)2 + 1, where s =F—- ,
2
(ii) 83 # ai’j iff i #1 for every igk.

Then there exist Jy,...,J; &and i,,...,ig such that (3)or (4)

8
holds.

Proof. See 2.2. and 2.3.

The following theorem and its corollary provide main results

of this section.

2.5. Theorem. Let n, m be positive integers. Then there exists

8 positive integer N = N%(m) such that for every mapping
(p S\ —> R /where R is an infinite set/ there is a partiti

£ = AUB and en embedding Y : A" —>RN" such that

ey (@) = @y (g) irf £/A = g/ .
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Proof.N¥e shall prove the theorem by induction on n. It is
Lasy to see that Ni(m) = (m-1)2 +1. For n >1, denote
. 3 max(zfm) a’?(m),...,l _,l(m))/aee 2.1./,

(FET -2) - 2)a- 22 L,
r = 2071 ¢

b d define NO’M’.-O’ Nr by

=
n

N, =%, N4 = (), a=1,2, .., r.

inally, put N'(m) = N,.

Let us consider a mapping  : |0 —» R. Identifying the set

= {feﬁn ; f(n) = 1.} with 2 ang using the induction

: ssumption we get an embeading ly‘ s ﬁ n-4 e Fl

#nd a corresponding partition A,lu By . Redefine all functions

:; € qll(ﬁin-a') by £ (n) = 2 /instead of f(n)z 1 / to obtain a set
T, which can be identified with /N\in-d.. Let us repeate the procedure
o obtain an embedding Y 5 ¢ ﬁzn._——‘, F, and a corresponding
partition A2U BZ‘ After r-fold repeating we get an_embedding

r An-l_’ F.. end a partition A UB..

Consider the embeddings Wi,..., qlr restricted to tne set

n-1 . <]
. Then for every i%r and for every f, g€ ‘Pi(ﬁrn ) ,
(p\Pi(f) = Yy, (g iff £/A; = g/Ag.
r = 2“':L £, there exist numbers di""”‘& and a partition
= AUB such that A,‘ = A and By, = 3 for ig<{.

€l us consider the equlvalcnce ~ on the set /ﬁ-n -1 defined by
fog iff f/A = g/A .
£t us denote the egquivalence classes of ~ by Cqse+ss Cyp » where

= Nr““ . Then for every Jj&4,
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(8) (de(f) = tp(y‘j(g) iff f, g€C; for some isk.

J
for feci, ik, j<f. By (8), the matrix satisfies the condition

Let us consider a kx¢ matrix A = {aij} where a&;. = W"‘d

(ii)of 2.4. Thus, it follows from the definition of £ that then

exist ;11,..., jm and iﬁ,..., :L8 where 8 = 7+1] such

that (3) or (4) is true. From 2.1. applied to the set F = |JC, ,
x

we obtain an embedding \'j : ﬁn__,’gn with reguired properties. The

proof is finished.

2.6. If @ = {P,yis a partition of a set X and ACX , then |
is said to be 0-eelgctive (_0’ -fine, ir (Anpils 1 for every
(if AC P; for some i, respectively).

Theorem 2.5. has the folliowing

Corollary. Let n be a positive integer. Then tnere exists
& positive integer N such tnat for each partition 4 of ﬂN
there is an embedding (P : 22— W whose image is either

G’ -selective or @ -fine.

rroof. Put N = ﬁzn'l(n), see tae preceding theorem. If ¢
—’ . . -
is 8 partition of ﬁZn *, define a mapping L( : ?2‘“ 1——7 R such

that ¢ ={q"1r ;y TE R} and apply the preceding theorem; we obtain

A2n-1 /RZn-l

AN
an embedding ) : N — and a partition 2n-1 = AU B.

ﬁZn-’l

Choose an arbitrary embedding lp' : At — such that the

elements &y,..., 8 from the definition of an embedding are in A
or in B according as |alZn or |Blzn . In the former case, the .
emoed.ing wq/ R o P 'N‘m'd 1s (@ -selective and it is @ -fine

As an'q /I\\«N

in the latter one. can be embedded into , the corolle

ry follows.
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The construction.

>0

9,1, Denote Y the disjoint union ngl A", Let us extend the metric
. cubes by putting f(f, g) =0 if f, g belongs to distinct
’: bes ( for the sake of convenience, we admit the value e© 1n the

finition of a metric). This makes Y a metric space.

1.2, Convention. Writing Y', Yn or any other symbol containing
the capital Y we shall always mean a subset of Y which (equip—

ed with the induced metric) is an isometric copy of Y.

,.3. A partition o - {Pi} of a metric space is said to be bounded

there is K wsuch that diam Pi< K for every i.

14, Lemma. Let (P be a partition of Y which is bounded (finite).

ben there is Y €Y which is (P-selective (6’ -fine, respectively).

Proof. Let @ = {P;} be a bounded partition of Y , let

ien P. < K for every i. Let n> K. Let N = N(n) ve from 2.6.
insider the trace of @ on A . is diem A® = n? K, no member

" ® cen contain a copy of AR. Thus, 2.6. gives an embedding

n :’z&“—)ﬂ" such that Wn(ﬁn) is { -selective. we may a:sume

st N(n)# N(m) for n # m. Then 4 = U Lyn(ﬁn) is ( -selective.
; n>K

f the latter space is an isometric copy of nLyjK A% and Y can
1sometrically embedded into nL>jK ’ﬁn, there is Y@ A which is
»U)-aelective isometric copy of Y.

it @ is a finite partition of Y, we proceed ,uite analogously:
fine only K to be the cardinality of ® to obtain that the

Bses of the above embeddings Y, are @ -tine.

lemma. let ¥ = Y;DY,DY;D .... Then there exists Y C¥

.

fh that for each Y & Y there are Y]'_, 15, Y3',... such that

YiDYZ'DYi D eees and. Y{C. Yi for every 1i.
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Proof. Choose an isometric copy I% of " in each Yn

such that the Kn'a are pairwise disjoint. Put Yo = U Kn

Now, if ¥Y'C 1_ and Y= U I% , each Kx; being an isometric
n=1
copy of ﬁn then for each n there exists n  with K C K ‘

Then . K € i%x.cxn.mt Y, =Y. Let Y be

defined such that Y, cY Nn () X; . Then choose Y vl &

) isn, > .
Y,N U K . It follows that Y = Y{JY;DY¥; P ... end that
1n#l X’
Y'c U K C Y.
idn

3.6. Lemma. Let {0:(; od< lu.,} be a collection of partitions of Y,

each @( being either bounded or finite. Then there exists a family
{YK} where K runs over all finite subsets of Q, such that

(i}LCK=7 L, 2 YK)

(ii) For every {.(} 1is 02‘ -selective if 0,’,( is bounded
and 0’ -fine if d’ is finite.

Proof. We shall proceed by induction on max K. If max K =0
then K = {O} and we choose Y, to be Q—selective or d’,—fine,
see 3.§.

Let the YK's be defined for max K<l . First, we shall defi
Y{d} . Let {n j=) De & sequence such that (n i< a;.} is the set

of all oruinels <ol . Put K, = {ni,..., ni} and Y; = YKi .
3y (1) we have ‘fl‘) Y, 2Y O .... and we can apply 3.5. to
obtain Y . Put Y{.‘} = é' where Y is from 3.4. applied
to the trace of (; on Yo ¢« 3y 3.5., we nave also obiained a
sequence Y = Y]: ] Ya' 2 YB’ 2 ... such that Y{C Yi for every
Finaliy, if K €&, 1is a finite set with max K = o , K #‘l}
consider the smsiiest 1 with K —-{a(}C K, and put Iy = Yl
Then (1) and (“) noilds for mex K, max Ll , too.
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2., Let Z be a disjoint union ¢ Z_ where Z_= Y for
‘ n=1 0 R

fry n. Define & metric @ on Z by

S(Xay) = M

n
g(x,y) = °®© otherwise.

if x, yeZn for some n,

§. hssume the CH. Then we can assume that the collection

3.6. contains all bounded partitions and all finite partit.ions
Y. Then the family {Yx} is & basis

len ultrafilter on Y which will be denoted by F . Further,

;‘ne a filter g on Z by G e(% & GNZ € ¥ for every n.
lly, let 3¢ be an arbitrary ultrafilter on the set of positive
egers; put } o ¥ . i.e.; is an ultrafilter on Z a basis

iwhich consigts of sets of the form o C, where- H € L
f n€H

GnE?' for every né&H.

In contrary to Y, the metric space Z 1s not uniformly dis-
e. Observe also that a partition of 2Z 1is bounded iff its

e on Zn is bounded for every n. Thus, by 3.6. we have the
llowing

| metric
Proposjtion. (CH) (1) The uniformity of Z is not uniformly

trete.

: (ii) The falter g on Z posses a basis consisting of isometric
'es of Z.

';(iii) The ultrafilter } on Z posses a basis consisting of
OMly homeomorpaic copies of 2.

(iv) The filter q, is selective with respect to bounded part-
ns of Z, i.e. for every bounded partition @ of Z there is

whicn is (f-selective. Analogously for } :

! Theorem. (CH) There is an atom in the lattice of uniformities
. countable set which is non-zerodimensional. In fact, all

'- refining QL A (wherteZis the metric uniformity of Z)
.non-zerodimensional; analogously for 4"2 44[7.
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Proof. Recall that &, is the uniformity consisting of ail

covers £ with enq, # @.Further observe that QLZ A QL% is
generated by the family =f {G’G ; GGQ} where
6’5 (x,y) 6(1,)') ir x,y€ G,

5; (x,y) ©© for x #y otherwise.

ay 3.8. (i),G1) , no Geq is ‘uz-unii’prmly discrete and so

) e QLZ/\QL is not uniformly discrete as well. Let@be an ata
refining V' (recall from[3jthat each uniformly non-discrete unifor
ty can be refined by an atom). Then the cover 8 consisting of b

with r = 1 with respect to & belongs to & . However, any parti
tion @ refining c is bounded and 8o 0‘#& according to 3.8.(iv).

¢

Thus, @ is ron-zerodimensional. The proof for 4L is quite analo
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