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A HON-ZEBO DIMENSIONAL ATOM 

J. Reiterman, V. Rodl

It is shown that, Wlder the CH, there exists a non-zero 
dimensional uniformity which is anatom in the lattice 
of uniformities on a countable set. 

All uniformitiee on a given set f'orm a complete lattice with

order "C\C,, .c 'Ir itt 'I.C, is :finer than 'lr'� The zero of' 

e lattice is the wiif'ormly discrete uni:formity and a uniformity 41-

·s an atom in this lattice i:f:f there is no V wi th O f 1ri 4L. Papere

!], ('t] present varioue constructione of' atome leaving open the pro­

em o:f the e*stence o:f anatom which is not zero dimensional, i.e. 

basis consisting o:f partitions. In the current paper, 

the CH, we present a constr11ction o:f a wů:formity on a count­

such that each atom re:fining it is non-zero dimensional. 

e following three results show that a non-zero dimensional atom 

be very complicated. 

a/ Each proximally non-discrete atom is zero di-

b/ For each proximally discrete atom there is an ultrafilter F

atom re:fines the uni:formi ty �
,. 

where '- consists o:f 

l covers 8 wi th e1a $- � (J.

r----=-.:.r::�o�s=i�t=i�on=• Each non-zerodimensional atom on a countable set 

uniform cover which is a partition into finite sets . 

..-----�::.c::.:�s�i�t�i�o�n. A non-zerodimensi8nal atom is non�istal; in par­

cuJ.ar, it is in:finite dimensional / a uniformity is distal if' it 

s a basis consisting of covers of finite order/.

For 1.1. seeC3], 1.2. is due to Pelant C't].and 1.3. can be pro­

d easily by using 1.1. 



2. Embeddings of' cubee

The construction of' the non-zerodimensional atom is based 

on cúbes and their embeddings. By a� we shall mean a set o:f thel 
form � = i\,ť�,c. ···"� (m-times1 llhere ,a ={l,2,3, ••• ,n}. 

Zlements of 1P will be identified with functions froa 'i to 1t. 
3ach cube will be regarded as a metrie space with the metrie 

defined by 

f(i', g) = �l d(f (x), g(x))

where d is the 0-1 metrie on 48. In other words, f (f, g) :: 

I {i:e �; f'(x) # g(x)}(. 

Let n � N and k<l:. Then we say that a mapping C/1 : �-, f
is an embedding ir there are a

1
, ••• ,8i{ with L",.K :: f 

}'-al,••• ,8K 
such that 'IJ(f)(ax) = q,(g)(ax) iff ei ther x> k or x� k and

:f (x)= g{x) for every f, gfi�. It ia clear that an embedding of 

cubes is always an isometry. 

The f'ollowing is an ,easy consequence of Theorem 12, 2 [2J •

2.1. Lemma. Let m, j be positive integers. Then there exists 

a pos4ti ve integer 8t- = eej Cm) such thet for every subset F c ij 

with 1Fl�3'j /2 there exists an embedding 

ltJ : Sj ➔ 'lj whose image is contained in F • 

Further, we shall need three lemmas on matrices. 

2.2. Lemma. Let p be a pos.itive integer and let A = {a .. }
k 1J 

be a kxt matrix where l � (p-l'f + 1. Then there exist 

jl, j2,···,jp�.e such that f.or every i� k, either

(1) a .. = a . . = • • ·= a .. or l.Jl l.J2 J.Jp 
(2) a . . ! s .. for X :/. Y., x, y�p.J.J l.Jy X 
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Proof. For k= 1-, the proof' is trivial. Let ue suppose that 

1e.mma: , ia proved for k-1. Let A {a. .l. be a l:x .e, matriz. 
1.jJ 

[Acco� to the induction aesumption (applied to p' = (P-'ťf + 1

and A = {a
ij

} where i� k-1, j ,E t) there etist j1, _j2, ••• , J
P

, �

� i!, such tbat, -ror every i , k-1, · ei ther 

The proof is finished. 

••• = akj, or
p 

for x I- y, x, Y� P• 

2.3. Lemma. Let A = {aij) be a kxp matrix with the following 

properties: 

(i) p� ((#1-1) s + �)m where 8 = [�],
(ii) a . .  I a.�. ií'f i I i' for every j .:CP ·,

l.J l. J 

(iii) for every i.$ k, either

8i1
= 

8i2 =· · · = aip 
, or

- = (3) a . .
j:, l.xJl 

a. . 

1.xJ2 
••• = a. . 1:xJm 

for every -xEs, or

{4) 

Proof. 

(5) 

(6) 

a. .1xJu 
I a. . l.

yJv 
iff <x,u)

ObYiously, there exist 

= 

I 6,v). 

�, . . . ' i
8

·euch that either

a. l l.x 
aix2 = .• • •  = a. ixp

for every .x�s, or 

a. .
1.XJ 

I a. . ,
l.XJ if'.f j I 

. , . , for ever:, x,s.J t v, _J-' p 



If {5) is true then the proo:f is finished. Let ue suppose that (6) 
holde. Let B = {aij) where i {½., i2, ••• , i

5
j and j .s p. 

Let G be a grapb the vertices of which are columms of B and 

and two columms J and j' are joined by an edge if tbe seta 

{aitj•··•, ai
8

j} end {ai'lj",••• ai
8
j,} have non-empty intersection,

It is not difficult to see from (6) that the degree of evecy verte1 

of triis graph is at most s(s-1). As the num.ber of verticee ie at 

least (s (e-1.) + 1.) m , there is an independent set in this graph 

/no two vertices are joined by an edge/ of eize P,;- ----,.,..-.- - m' 
s(e-1.)'+ 1. 

see[1], p. 284. In other words, there are �, ••• , jm such that 

(4} is true. 

2.4. Lemma. Let A = {aij) be a k xl matrix with the following

properties: 

( i) .l > {(s(s-1)+ 1)m - 1) 2
11: 

+ 1, where e =t-:1
] , 

(ii) a . .  # a.,.
1J lJ 

iff i# i' for every i� k. 

Then there exist j
'l

, ••• ,� and ½_, ••• ;i
8 

such that (3) or (4) 

holde. 

Proof. See 2.2. and 2.3. 

The following theorem and its corollacy provide main results 

of this section. 

2.5·. Theerem. Let n, m be positive integers. Then there eriets 

a positive integer N = tfl(m) such that for every .mapping 

({) : tI1 --:, R /where R is an infini te set/ there is a. parti ti 

� = A u B and an embedding 'fl : � --, � such that 

Cf Cf' · (f') = _ fť 'f} (g) it'f. f/A = g/A • 
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Proof.�e sluůl prove the theorem by induction on n. It ia

88y to see that N1(m) = (m-1) 2 + 1.. For n >1., denote 

� = max(�, �(m), ••• ,atn-1. Cm))/see 2.1./,

/J &11 :twr?-1 at n-1 

t 
= \[� -r ] - 1.) + 1. )m - 1 ).2 

+ 'l,

-.n-1 I r = � -- -v 

and define N
0 

,�, ••• , Nr by 

N = & ,r N q-1. = a°-1. ( N q) , q = 1. , 2 , ••• , r •

put N°{m) = N0
•

Let us consider a mapping 'f : i1'1 ---> R. Identifying the set 

1 = {t€fřl ; f(n) = 1.) with f-i. and using the induction 
. .bn-1· .

ssumption we get an embea.ding 'f4 : · .Ni � F 1 
and a corresponding partition �lJ �. Redefine all functions 

4: cp -!(ii'
1 

n-1.) by f (n) = 2 /instead of f( n) = 1. / to obtain a set 

2 which can be identified wi th "N"
1 

n-1. •. Let us repeate the procedure

o obtain an embedding lf' 2 : · �2 
n-1. --, F 2 and a corresponding

rtition A2vs2• After r-fold repeating we get an embedding

r : 'Nr n-.!._., Fr·· and a parti tion Ar U Br.

Consider the embeddings lf'
1

, ... , 'fr restricted to the set 

n-1 (A n �, 
r • Then fo• every i .1S r and for every f, g E 4' i Nr 

- J ,

<p�. (r) 
i 

= = g/A. • 
l. 

s r = 2n-i ,f,, there exi st. numbers ol
-1

, ••• , -' l and a part i tion

such that A ol. . = A and B cl . = B for i , l. ·
i l. 

consider the equiva.Leice rv on the set � n-l de:fined by 
. r 

ftoJ g if'f' f'/A = g/A • 

t us denote the equi valence classes of r--, by C
1.

, ••• , Ck , wbere 

; Nr l.t.l • Then for every j G:l,
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(8) 'P'I' o(. (f) = 'f 'ť ,.(g) i:ff' r, g eci for some i$ k. 
J J 

Let us consider a kJf.l matri:x A = {ai) where a . . =
'f't'•j 1J 

for fECi' i�k, j�./,. By (a), the matri:x eatisfies the condition

(ii)of 2.4. Thue., it followe from the definition of l that there

eriet ,½_, ••• , jm and ½_, ... , i
8 

where s = � + - 1.] such 

thet (3) or (4) is true. From 2.1. applied to the set F = uci 1 

x"3x 

we obtain an embeddi.ng \I.I : 'Ihn -, 'N'1 with re�ired properties. The 

proof is finished. 

2 • 6. If 6' = {Pi) is a part i tion of a set X and AC X , then A 

is said to be f-eelective ( (1 -fine) i:f' (A f'lPi I� 1. .. for every 

( if A C Pi for aome i, respecti vely). 

Theorem 2.5. has the following 

Corollar,. Let n be a positive integer. Then there eriste 

a positive integer N such that for eacr.i. part i tion I of �N

there is an embedding o/ : 11°
---=t 1fN whose image ie ei ther 

� -selective or q -fine. 

__ -b2n-l(n), t:) Proof. Put N N see tne preceding theorem. If u-

is a partition of 'R2n-1., de:fine a mapping 'f : F-L., R such 

that (j = {lf1r ; r € R} and apply the preceding theorem; we obtain 

an e:nbedding tp : 1i'2°-1-.:, 'N2n-l and a parti tion �l = AU B, 

Choose an arbi trary embedding 'f) 1 : �n � -a20� such that the

t:lements �, ••• , an from the defini tion of an embed•:.iing are in A 

or in B according as JA.� n or lB\�n • In the ťormer case, the . 

emoed-ing \I) 41' : 1r° � �2n-1. is (P -selecti ve and i t is f -fine 

in the latter one. As 1204 can be embedded into �N , the corollS· 

ry follows. 



l:. The construction. 

3,1. Denote Y the disjoint union n�l 'xř1.
cubee by putting f(f, g) = oO if f, g 

Let us extend the metrie 

belongs to distinet 

bes ( for the sake of conveni ence, 

efinition of a metrie). This makes 

we ad.mi t the value oO in the 

y a metrie spaee. 

.2. Convention. 

e capital Y 

Writing y', Y or any ether symbol eontaininen 
we shall always mean a subset of Y which (equip-

d with the indueed metrie) is an isometrie copy of Y. 

A partition (1 = {PiJ of a metrie space is said to be_bounded 

there is K such that diam P-< K 
l. 

for every i. 

6' 

Lemma. Let@ be a partition of Y wnieh is bounded (rinite). 

there is y'c Y whieh is CP-selective (@ -fine, respectively). 

Proof. Let·� = {Pi) be a bounded pa.rti tion of y ' let 

for every i. Let n > K. Let N = N(n) be from 2.6. 

trace of <1' on � • As diam �n 
= n)K, no member

can eontain a copy of �n. Thus, 2.6. gives an embedding 

n =� ➔� such thet yJ n( 1\0) is O' -sel�etive. "Ne may at.sume

at N(n};l N(m) for n I m. Then A = U 4'n(�) is (j -selective.
n)K 

the latter space is an isometrie copy of J,'K 1\n 
and y can 

isometrically embedded into U 1ť1, there is n)K y'c A which is 

�-aelective isometrie copy of Y. 

If (j is a finite partition of Y, we proceed 1.uite analogously: 

ine only K to be the cardinali ty of (I to _obtain that the 

of the ebove embeddings f n are fP -fine. 

• Lemma. Let y = 11� Y2-=>Y3:, •••• Then there

h that for y'c Y
00 

there are 
, 

Y2, eaeh yl' Y3' • • • 
: Yí ::>Y2 :>Yj :> •••• and. y: C. y. f'or every i. 

.1. l. 

exists y C. y 
00 

such that 
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Pr.Jof. Choose an isometrie copy � of iť1 in each Yn

such that the Kn'e are pairwise disjoint. 

y'c y': u � 
, 

Now, if y and , each � 
00 n=l 

copy of ,en, then -f"or each n there exists 

.u , . U K- C 
, 

Then K· C �- Put 11. =
i).n l. l."J,n i 

Put yoo = u Kn
n=1 

being an isometrie 
-

with K� C K '•n 
n 

-
y • Let 

, 
Yn be 

def ined such that yn' C Yn n U Ki 
, 

• Then choose Yn+l C

• 

i-.n 
Y ' " U K' • It follows that Y' =n ''. i l."J-n-+'1 

Y.i� Y2 ::>Y3:)) •. • and that 

Y� C . U Ki C yn • i-.n 

3. 6. Lemma. Let { � ; cl.. < Lu1} be e collection of part i tions of Y,

each <t being either bounded or finite. Then there exists a family 

{ YK) where K runa over all fini te subsets of w1 such thet 

( i) L C K � YL :, YK,

(ii) For evecy J Y{.c'} is Ó� -selective if f. is bounded

and � -fine if <t is fini te. 

Prco:f. ',,e sha.ll proceed by induction on max K. If max K = O 

then K = {o} and we chaose YK to be (J:-aelective or t-:rine, 

see 3.4.

Let the YK • s be def'ined for max K <oi • .First, we shall deť 

Y {.,J.) • Let {ni} ::
1 

be a sequence such that {ni; i<. 41o} is the set

of all oruinals <ot • Put Ki = { �, ••• , ni} and Yi = YK. •
l. 

By (i} we have Y1 "> Y2 :> Y
3 

') •••• and we can apply 3 .5. to

o btain Y
00 

• Put Y {.t) = Y" where Y ' is from 3. 4. applied

to the trace of ú'� on Y
00 

• 3y 3.5., we have also obtained a 

sequence Y' = YÍ ::> Y� ::> Yj ::> • .. • such that Yi C Yi for every 

?inal.ly, if K C G..1 1 is a finite set with max K = o( , K #'1t}

consider tn� sma�lest l. wi th K - {ol} C K. 
l. 

'l'hen (i) and (i.') riol.ds for max K, :nax L �o! , too. 

= y:. 
l
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• Let Z be a disjoint union V Zn where Zn = Y f\or 

n=l 

ry n. Defin-e e metrie tf on z by

Er(x,y) = .I!xa:f} if x, yEZ
0 

for some n,n 

s(x,y) = oO otherwiee.

• Assume the CH. Then we can assume thet the collection

3.6. containe all. bounded partitions and all finite pa.rtit.1.or�s

y. Then the :fami.ly {YK} is a basis

an ultra:filter on Y which will �e denoted by g:- .  Fw·ther,

filter tj. on Z by G Efá #. G nzn € 3 for every n.

lly, let at be an arbitrary ultra:f.ilter on the set of positive

egers; put i = al. T · , i. e. j is an ul trefil ter on Z a bas i s

·hich consists of sete of the :form

1 Gn € T :for every n�H.

U C where • H E �
neH n 

In contrary to Y, the metrie space Z is not uni:formly dis­

e. Observe also tn.at a part i tion of Z is bounded iff i ts

is bóunded for every n. Thus, by J.6. we have the

metrie 
Proposi tion. ( CH ) (i) The 1.lIŮ:formi ty o:f Z is not unif ormly

The filter j on Z posses a basis consisting of isometrie

z. 

The ul tra:f il ter· ) on Z posses a basis consisting of

orm.ly homeomorpnic copies of z.

(iv) The filter {¾ · is selective with respeci. to bounded part­

i.e. fo"l! every bounded partitiond' o:f Z there is

which is ď-selective � An&logously ťor '} · •

Theorem. (CH) There ie anatom in thé lattice of uniformities

countable set which ie non-zerodimensional. In fact, all

refining CIL :ť''(wner"'ii, the metrie uniformity ar Z)

non-zerodimensiona1; analoe;ously :for 4L2 "'� •
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Proof. Recall that c4f is the uniformity consisting o:f all

covers t with f;n l} i fiJ.Further observe thet ((.z I\ 4(.
4' 

is

generated by the f'amily 111 { 6' G ; G € � )' where

0G (x,y) = 6(x,y) i:f x,ye G, 

� (x,y) = oo for x # y ot:herwise. 

By J .s. (i), Ú.i) , no G � q. is 4-tz-uni:f�rmly discrete and so

'\r = 'lLz A «iL§ is not unif'ormly discrete as well. LetfL be an atom

refining V' (recal1 from(3]that eacb unif'o�ml.y non-diecrete uni:foni 

ty can be re:fined by an. atom). Then tbe cover e consisting o:f b 

wi th r = 1 wi th respect to � bel.0D8S to L . However, eny perti• 

tion O, refining e, is bounded and so O'ffL. according to ).8.(iv),

Thus� Q.is ron-zerodimensional.. The proo.f' for 'f.l.
1, 

is quite analo
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