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SEMINAR UNIPOEM SPACES 1976~77

PRODUCTIVITY OF COREFLECTIVE SUBCATEGORIES OP
UNIFORM SPACES
M. HuSek and M.D. Rice

During the course of the seminar, the authors throughly investiga-
ted the conditions under which a full coreflective subcategory of uni-
form spaces is closed under the formation of finite and infinite pro-
ducts. This note summarizes the main results and consequences of the
inveastigation. The complete details and proofs will appear in [ﬁi] .

The most interesting new basic result to emerge from the work was
the following:
quotient mappings. Then the product mapping 11:1 H 1711-+1711 defi-
ned by (xi)—*(ri(xi)) is a uniform quotient mapping.

Corollary 1: Each product of proximal quotient mappings is a pro-

ximal quotient mapping.

Corollary 2: Each product of complete metric spaces (and hence
each injective uniform space) is a uniform quotient of a space of the
form D™ , where D is uniformly discrete.

" Corollary 2 follows from the fact that each complete metric space
is a uniform quotient of a Baire space, i.e. a space of the form DN°,
where D is uniformly discrete.

Theorem 2 (Finite Products): Let & be a full coreflective subca-
tegory of uniform spaces. Then & 1is finitely productive if and only
if XxDE & for each XE Y and uniformly discrete space D .
Furthermore, if &% = coreflective hull (2 ), then & is finitely
productive if and only if A*DE & for each A€ A and uniformly
diacrete space D . :

Theorem 3} (Infinite Products): Let  be a full coreflective sub-

category of uniform spaces and m = R, . Then &% is m-productive
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(each product of m members from { belongs to S ) if and omly if

{, is finitely productive and IDmE # for each uniformly discrete
space D .

productive if and only if it is finitely productive and contains all
powers of uniformly discrete spaces.

Theoren 2 also provides a uniform method for constructing the
smallest (respectively largest) finitely productive coreflective sub-
category &, (respectively 5k) containing (respectively contained
in) a given coreflective subcategory ¢ (the dual of the construction
used in [Rjz)z
(kernel) 5k w {X : X»DE Y for each uniformly discrete space ID} .
(bm11) & p = coreflective hull {X‘ID : XE Y% ,D uniformly discre-

te} .
In connection with these ideas, the following interesting results we-
re also obtained. Bach uniform space is the quotient of a space of the
forma X* D , where D is uniformly discrete and X may be chosen to
be either & fine or proximally discrete space. .

The classes of measurable spaces, metric-fine spaces, and spaces
whose family of uniformly continuous real-valued mappings form a ring
under pointwise operations, have the same kernel - the uniform spaces
that admit ¢, .

With regard to productive coreflective subcategories, we note that
Corollary 3 establishes the existence of a emallest non-trivial class
4 of this type - the coreflective hull of all powers of uniformly
discrete spaces. In [R:ll » the second author constructed the first
example (based on work in [Hu] 2) of a non-trivial productive coreflec-|
tive subcategory - the class £ of equi-proximally fine spaces (in
the present context { may be described as the kernel of the proxi-

mally fine spaces). Here we will outline the construction of a produc-

tive coreflective subcategory &£ , based on well-ordered adjacent
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nets, which lies strictly betweean & and £ . We say that two well-

-ordered nets (xp )/k“ and (3/3 )/3<a(.. (24 limit ordinal) in
a uniform space X are adjacent if for each uniform cover U there
exists X o<« such that {’/5 »7/5} lies in some member of U ,
for each /b 2K o 4 mapping f : X—Y is uniformly sequentially
continuous of type « if f preserves the adjacency of well-ordered
nets of type (-, for each <« . Define £, ( a infinite car-
dinal) = {1 : £ : X-»Y uniformly sequentially continuous of type o
=>f uniformly continuous} « Then bC%C Aem, C eee 1is an ascend-

ing class of distinct coreflective subcategories and one may establish
the following result.
lective hull (2"« N ).

(ii) Bach uniform space with a linearly ordered base
belongs to some X .

(iii) Bach &, is « =-productive.

Corollary 4: ¥ = “U ¥, is a productive coreflective subcategory
Z No

and &, is the smallest countably productive coreflective subcatego-
ry of uniform spaces.

We remark that the « -productivity of ¥, is based on the follow-
inf fact: the adjacency concept is suitable for the use of &n induc-
tion argument for it allows the factorization of uniformly sequential-
ly continuous mappings through & smaller number of co-ordinates.

We now have the following situation:

£,C9CYLCE
Since £ containe all compact spaces and £ contains non-discrete
spaces which admit ¥,, the following result shows that & ¥ £ and
E # £.
Theorem 5: (i) & ~ speces admitting N,= uniformly discrete spa-

{ii) If X is net pesudocompact, than X (the Cech-
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-Stone compactification of X) is not & member of &£ .

(iii) ¥ contains no infinite compact F-space.

We note hat £ contains all injective spaces (Corollary 2), and
@ll dyadic spaces, 80 that Theorem 5 generalizes well-known state-
ments about dyadic spaces. We have no description of the compact spa-
ces which belong to J or £ , but ¥, contains a compact first-
countable space that is not dyadic and the one-point compactification
of the space of countable ordinals is a member of ¥ which does not
belong to & . We also note that the family of compact members from
¥ has properties similar to the properties of De Groot’s class of
supercompact spaces, but we do not know if each supercompact space is
a member '%aro . ‘%w'o does contain all fine spaces having a sequen-
tial topology.

Notice also that the above comments do not distinguish é@w—o from
g ; in fact the authors have discovered that to distinguish the two
classes, one must assume the existence of a (first) uniformly sequen-
tial cardinal u . u 1is the first cardinal &« for which there exists
& real-valued uniformly sequentially continuous mapping of type %
on the Cantor space 2% . If s denotes the first sequential cardinal
in the sense of Mazur and mp denotes the first real-valued measu-
rable cardinal, one can show that a<uSmR ; hence by recent work of
Cudnovekii, Martin’s Axiom implies that s = u = mg .

(1) éﬁwo = 9 . (¥, is productive).

(ii) Each countably productive coreflective subcategory of
uniform spaces is productive.

(iii) There exists no uniformly sequential cardinal.

Thus under the set-theorsatic assumption (iii) stated above, one
can {in view of Thecrems 3 &2 4) =tablish that a coreflective sub-
category ié MoGuclive by 8 Bing that it ie finitely productive and

contains 2 %° . Henc eunder geauwption (iii) it follows from the work
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in [Hu] p that a coreflective subcategory must contain all uniform

spaces if it is closed-hereditary, finitely productive, and contains

the Cantoer aet.

Finally, we note that if u exists, then the Cantor space 29 is

a member of & that does not belong to ¥, .

I:Hu 1
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