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Abstract: The complex (bio)chemical reaction systems, frequently possess
fast/slow phenomena, represent both difficulties and challenges for numerical
simulation. We develop and test an enhancement of the classical QSSA (quasi-
steady-state approximation) model reduction method applied to a system of
chemical reactions. The novel model reduction method, the so-called delayed
quasi-steady-state approximation method, proposed by Vejchodský (2014) and
further developed by Papáček (2021) and Matonoha (2022), is extensively pre-
sented on a case study based on Michaelis–Menten enzymatic reaction com-
pleted with the substrate transport. Eventually, an innovative approach called
the Bohl–Marek method is shown on the same numerical example.
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1. Introduction

Since Briggs and Haldane’s application of the quasi-steady-state (QSS) assump-
tion, e.g., [11], the idea of reducing complex chemical networks persists in the field of
large-scale (bio)chemical systems modeling, see [12] and references therein. On the
other side of control theory (cooperative biochemical systems), there are inspiring
works of Bohl and Marek [1, 2, 8].

This study presents the development and application of one special model or-
der reduction technique further called the delayed quasi-steady-state approximation
method (D-QSSA), first proposed by Vejchodský in 2014 [13, 14] and further de-
veloped by our group in [9, 10]. We continue in the direction of papers devoted
to the analysis of fast/slow phenomena arising in biology and chemistry, and more
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precisely to the problem of parameter estimation for mathematical models describ-
ing the drug-induced enzyme production networks [3] aiming to develop biologically
meaningful models, which can be used for drug delivery analysis and optimization.
Although our ultimate goal is to develop a reliable method for fitting the model
parameters of large biochemical networks to given experimental data, here we study
certain numerical issues within the framework of efficient computations of inverse
problems involving numerical optimization.

The paper is organized as follows. In Section 2, different numerical methods
are presented. Then, in Section 3, we employ an illustrative case study to compre-
hensively account the pros and cons of each of the analyzed techniques. Section 4
concludes the work and outlines the future work. Finally, Appendix A presents
a straightforward method for setting up the governing ODE system, while Ap-
pendix B provides the reformulation of nonlinear ODEs to the quasi-linear form.

2. Model and methods

This section further introduces the necessary theoretical background and nota-
tions used throughout this study, concerning mainly the fast/slow dynamical sys-
tems [15] and singular perturbation methods (SPM) with delays [6]. Let us consider
the following system of ordinary differential equations (ODE) representing a general
class of mathematical models describing (bio)chemical systems

ẋ(t) = Ax(t) + b(t, x(t)), (1)

for t ∈ [0, T ] with T > 0, where x(t) ∈ Rn, constant matrix A ∈ Rn×n represents
a linear part of the system, and b(t, x(t)) ∈ Rn contains nonlinear, time-varying and
constant parts of the system. The ODE system (1) is further completed by suitable
initial conditions, such that x(0) = x0, defining the initial value problem (IVP). In
the following subsections, we introduce the so-called optimal delayed quasi-steady-
state approximation method (OD-QSSA) and an innovative approach here called the
Bohl–Marek (BM) method.

2.1. Order reduction methods for the fast/slow dynamical systems

Suppose the existence of the fast and slow variables xF ∈ RnF and xS ∈ RnS and

let x(t) =
(
xTF (t) xTS (t)

)T
be the partitioning of x(t), where nF + nS = n. Then

for a general fast/slow ODE system it holds

ε ẋF = fF (xS, xF ; ε),
ẋS = fS(xS, xF ; ε),

(2)

when 0 < ε� 1, and suitable initial conditions are set. Then, the ODE system (2)
can be approximated by a simpler algebro-differential system (an associated slow
subsystem)

0 = fF (xS, xF ; 0),
ẋS = fS(xS, xF ; 0).

(3)
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Equations (3) are called singularly perturbed in the singular perturbation the-
ory, whereas, in the chemical literature, such a model reduction is called a (stan-
dard) quasi-steady-state approximation (QSSA) when the underlying assumption
(0 < ε � 1) assuring small approximation error, i.e., the validity of the standard
QSSA is often referred to as the reactant-stationary assumption [4]. Several mathe-
matical studies are dedicated to quantifying the accuracy of different QSSA methods
applied to enzyme kinetics. Identification of a presumably small parameter ε, see (2),
is common to these efforts, which quantifies the timescale separation. This explicit
identification of a suitable ε for every system and operating condition requires non-
trivial mathematical operations. Consequently, when one tries to omit such analysis,
the non-justified use of the QSSA method frequently occurs, which in fact represents
the QSSA method’s abuse [5].

Our solution to the difficulties mentioned above dwells in the relatively novel
extension of the D-QSSA method, being the delayed QSSA with the optimal constant
delay introduced by Matonoha et al. [9] for a class of chemical networks with the
mass conservation property and a wide timescale separation.

For completeness, we provide the main theorem concerning the existence of an
optimal constant delay. The proof and detailed description can be found in [9].

Theorem 1. Let x̄(t) be a solution of the (full) system (2). Choose arbitrary
numbers 0 < τ ≤ τ < T and a fixed constant delay τ ∈ [τ , τ ]. Let xcdqssF (t, τ)
be a constant delay QSS approximation of xF (t) with this τ . Let xcdqssS (t, τ) be a
solution of the reduced delayed ODE system, continuous for t ∈ [0, T ]. Denote

xcdqss(t, τ) =
(
xcdqssF

T
(t, τ) xcdqssS

T
(t, τ)

)T
. Then there exists at least one value

τ ∗ ∈ [τ , τ ] minimizing the error between x̄(t) and xcdqss(t, τ), i.e.,

τ ∗ = arg min
τ
‖x̄(t)− xcdqss(t, τ)‖2, (4)

subject to 0 < τ ≤ τ ≤ τ < T, where ‖.‖ denotes the vector L2[0, T ]-norm.

2.2. Bohl–Marek method (and a quasi-linear M-matrix formulation)

QSSA may increase the nonlinearity of the model, see, e.g., the Michaelis–Menten
equation for enzyme kinetics [11]. While the ODEs describing enzyme kinetics are
mildly nonlinear (only quadratic through terms containing products of two reac-
tants), the Michaelis–Menten equation represents a rational function in an involved
reactant. Conversely, the Bohl–Marek (BM) method, makes the model quasi-linear
because the ODE system (1) with conservation properties containing the original
mass action kinetics terms can be described using the quasi-linear formulation (5).
As far as we know, the first appearance of this approach can be found in the works
of Erich Bohl and Ivo Marek, see, e.g., [1, 2, 8], where the principle of total mass
conservation was employed to prove the existence of positive solutions and station-
ary states. The details about the BM method applied to our case study problem are
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described in Appendix B, here we state that (under some assumptions) the ODE sys-
tem (1) for a modified state variable vector x̃(t) can be formulated as a quasi-linear
system

dx̃(t)

dt
= M(x)x̃(t), (5)

with the block diagonal system matrix M(x) of a special form of a negative M-matrix
with some elements containing components of a system variable x. The advantages
of this formulation reside in the computational speedup and precision and shall be
highlighted in the next Section 3.

3. Case study

As a case study, we take the paradigmatic example consisting of the Michaelis–
Menten kinetics with a simple transport process described in Tab. 1.

Description of the related process Chem. notation
Substrate Xext dosing ∅ → Xext

R1: Substrate transport through Xext ⇀↽ Xint

a membrane, k0 = 10−1

R2: Enzyme E binds to substrate, Xint + E ⇀↽ C
complex C formation, k1 = 106

R3: Reverse reaction to R2, k−1 = 10−4

R4: Complex breaks down into E plus C → E + P
a product P , k2 = 10−1

Table 1: Transport and reaction processes defining the network, parameter values
taken from [7].

Introducing a new notation for state variables, i.e., an n-size (here n = 5) vector x
according to

x(t) =
(
x1 x2 x3 x4 x5

)T ≡ ( Xext Xin E C P
)T
,

the ODE system describing the process under study can be written either in the
usual form (1), i.e., ẋ(t) = Ax(t) + b(t, x(t)), see Appendix A or in the quasi-linear
Bohl–Marek formulation, see, e.g., [2] and Appendix B, for this special case study.

Equipped by the initial conditions

x(0) =
(
u0 0 e0 0 0

)T
=
(

5 · 10−7 0 2 · 10−7 0 0
)T
, (6)

we compare the numerical results obtained from the full (non-reduced) prob-
lem (1), (6) with those obtained using different models corresponding to different
reduction methods. The state variables x1 and x4 can be considered as fast vari-
ables xF , since they satisfy all assumptions for fast variables mentioned in [13].
Thus we use the notations QSSA1, QSSA4, QSSA14, etc. Besides, we compare the
results with those obtained from the quasi-linear BM formulation (5), (6).
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It is well known that the QSS approximation is derived for larger times (to en-
able the fast variable to reach its steady state) and hence it may not satisfy the
original initial condition. This happens if x1 is considered as a fast variable yielding
xqss1 (t) = x2(t). This conflicts initial conditions x1(0) = u0 > 0 and x2(0) = 0 (it can-
not hold xqss1 (0) = x2(0)). Therefore, we introduce a parameter tQ, 0 < tQ < T , and
derive the QSS approximation for t > tQ, only.

For our numerical experiments, we used parameters given in Tab. 1, T = 120,
and the time step ∆t = 10−3 for solving the respective ODEs by the backward
Euler method. The value m = T

∆t
denotes the total number of steps. To compare

the quality of approximate solutions xA(t) with a solution x̄(t) of the original non-
reduced model (full system) (1),(6), for each of the five state variables we used the
error metrics δi and the total error δ as follows

δ =
1

n

n∑
i=1

δi, δi =

√√√√ 4

m

m∑
j=0

[
x̄i(tj)− xAi (tj)

x̄i(tj) + xAi (tj)

]2

, i = 1, . . . , n. (7)

In (7), the exact solution x̄i(tj), j = 0, 1, . . . ,m, is supposed to be the solution
computed using the non-reduced model (full system) (1),(6). The values xAi (tj),
j = 0, 1, . . . ,m, i = 1, . . . , n, are approximate solutions computed from the mod-
els QSSAk (i.e., xqss(tj)), D-QSSAk (i.e., xdqss(tj) with the delay τ(t) = 1/g(t)),
OD-QSSAk (i.e., xodqss(tj) with an optimal constant delay τ ∗ in the sense of opti-
mization problem (4), see Theorem 1), k = 1, 4, 14, and from the BM formulation.
The nonconstant delays in models D-QSSAk are τ1(t) = 1/g1(t) = 1/k0 = 10 and
τ4(t) = 1/g4(t) = 1/(k−1 + k2 + k1x1(t)), respectively. Note that τ1 is constant
because the function g(t) = k0 is constant.

A schematic description of the studied models with obtained optimal values tQ
and optimal constant delays τ ∗1 , τ ∗4 are given in Tab. 2. Other columns give the total
error metric δ, see (7), and the computational time obtained for 1000 simulations
with exactly the same parameter values. The last column shows the speedup ob-
tained as the ratio of computational times between individual models and the full
non-reduced model.

Fig. 1 shows the behaviour of state variables x1 and x4 for different models
QSSAk, D-QSSAk, OD-QSSAk, k =1,4, and BM. The left picture shows the value
tQ = 10.77, from which the quasi-steady-state solutions are considered. Different ap-
proaches (xqss(t), xdqss(t), xodqss(t)) give different solutions. The right picture shows
the optimal constant delay τ ∗4 = 4.897 which gives zero quasi-steady-state solution
x4(t) = 0, t ∈ [0, τ ∗4 ]. Note that the nonconstant delay τ4(t) = 1/g(t) for a D-QSS ap-
proximation is for small t nearly the same as the optimal constant value τ ∗4 = 4.897.
Besides, notice that the BM quasi-linear solution is almost the same as the solution
of non-reduced model (1), (6).

Resuming: It can be seen that although it is possible to find optimal values of
constant delays τ ∗ that can significantly speed up the computation when x1 and x4

are fast (we are solving small ODE systems), it is more efficient to convert the
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model description tQ delay τ total δ time speedup
non-reduced system (1),(6) - - - 21.94 1.00
QSSA1 x1 fast opt. - 1.0408 18.18 0.83
QSSA4 x4 fast - - 0.2736 18.28 0.83
QSSA14 x1, x4 fast opt. - 1.1524 5.78 0.26
D-QSSA1 x1 fast opt. τ1 = 1/g1(t) 0.2960 21.58 0.98
D-QSSA4 x4 fast - τ4 = 1/g4(t) 0.1896 20.34 0.93
D-QSSA14 x1, x4 fast opt. τi = 1/gi(t) 0.3237 9.27 0.42
OD-QSSA1 x1 fast 10.77 τ ∗1 = 12.753 0.1634 21.58 0.98
OD-QSSA4 x4 fast - τ ∗4 = 4.897 0.1952 17.44 0.79
OD-QSSA14 x1, x4 fast 12.54 τ ∗1 = 12.417 0.1563 6.03 0.28

τ ∗4 = 11.426
BM system (5),(6) - - 0.0006 5.30 0.24

Table 2: Comparison of the studied models: (i) Schematic description, (ii) Com-
puted and used optimal values tQ and delay τ ∗, (iii) Computed total error δ, (iv)
Computational times and the speedup.
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Figure 1: Comparison of x1(t) and x4(t) obtained using different models.

problem to the BM quasi-linear form, obviously, if and only if all the corresponding
requirements are met (especially the conservation properties).

4. Contribution and Outline

We presented one relatively unknown model reduction technique for a class of
(bio)chemical reaction networks proposed first by Vejchodský in [13]. The assump-
tions for this, the so-called D-QSSA approximation are not too restrictive and
D-QSSA applies to the majority of (bio)chemical systems based on the law of mass
action. While the standard QSSA ignores the time-fast variables needed to reach
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their steady states, the advantage of D-QSSA (and its variant OD-QSSA) is the pos-
sibility of a time delay introduction to improve the accuracy. This general conclusion
was supported by the example presented in Section 3, where we used the case study
of enzyme-catalyzed reactions with a substrate transport chain, see [9] for further
details. Moreover, we performed a preliminary comparison of numerical computa-
tions for two equivalent formulations of governing (non-reduced) ODEs, i.e., for the
classical formulation (1) and the quasi-linear Bohl–Marek formulation (5), show-
ing the considerable speedup for the latter. It is due to eliminating the nonlinear
part b(t, x(t)) from the system which causes a numerical burden when solving ODEs.
Rigorous analysis of numerical issues related to both approaches is the subject of
our ongoing work.
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ter estimation in an in vitro compartmental model for drug-induced enzyme pro-
duction in pharmacotherapy. Applications of Mathematics 64 (2019), 253–277.

[4] Eilertsen, J. and Schnell, S.: The quasi-steady-state approximations revisited:
Timescales, small parameters, singularities, and normal forms in enzyme
kinetics. Mathematical Biosciences 325 (2020). Cited by: 15; All Open Access,
Green Open Access.

[5] Flach, E. H. and Schnell, S.: Use and abuse of the quasi-steady-state
approximation. Syst. Biol. 4 (2006), 187–91.

[6] Glizer, V. Y.: Controllability of Singularly Perturbed Linear Time Delay
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Appendix A

Matrix A of constant coefficients and vector of nonlinear terms b(t, x(t))

The system of differential equations (1) describing the processes under study
can be systematically derived using the vector of reaction rates and the so-called
stoichiometric matrix S ∈ Rn×q, where q is the number of reactions (including the
transport of species). Generally, for chemical reaction networks, the governing ODE
system, i.e., the vector of changes in species concentrations x ∈ Rn, is described as
a linear transformation (imposed by the matrix S) of the reaction rate vector ν ∈ Rq

(depending on corresponding states x and a model parameter vector p). For our case
study x ∈ R5, q = 4 (see Tab. 1 in Section 3), and it holds:

ẋ(t) = S ν(x, p), where p = (k0, k1, k−1, k2)T , (8)

S =

R1 R2 R3 R4
−1 0 0 0

1 −1 1 0
0 −1 1 1
0 1 −1 −1
0 0 0 1

 , ν =


k0 (x1 − x2)
k1 x2 x3

k−1 x4

k2 x4

 . (9)
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Thus, the ODE system in the usual form (1), i.e., ẋ(t) = Ax(t) + b(t, x(t)), has
the constant matrix (the linear part of the system)

A =


−k0 k0 0 0 0
k0 −k0 0 k−1 0
0 0 0 k−1 + k2 0
0 0 0 −(k−1 + k2) 0
0 0 0 k2 0

 (10)

and the vector representing the nonlinear part

b(t, x(t)) =


0

−k1 · x2(t) · x3(t)
−k1 · x2(t) · x3(t)
k1 · x2(t) · x3(t)

0

 . (11)

Remark 2. Reaction networks frequently possess subsets of reactants that remain
constant at all times, i.e., they are referred to as conserved species. Generally, there
exists a conservation matrix Γ (of dimension h × n), where the rows represent the
linear combination of species (reactants) that are constant in time. It can be solved
explicitly for large systems (0 = Γ S). For our case of S in form (9), the conservation
property reads

x3 + x4 = e0, x1 + x2 + x4 + x5 = u0. (12)

Consequently, here

Γ =

(
0 0 1 1 0
1 1 0 1 1

)
. (13)

The existence of two relations (12) signifies not only the possibility to reduce
the number of state variables, but also induces the reformulation of the governing
equations for species concentration using negative M-matrices, see Appendix B.

Appendix B

Matrix M and Bohl–Marek formulation

Based on the mass conservation properties, the non-linear ODEs (1) can be rep-
resented as a linear system with the system matrix of a special form, a negative
M-matrix. To the best of our knowledge, this approach was first proposed by Erich
Bohl and Ivo Marek [1, 2] and further extended into the framework of control theory
in [8].

For the case study defined by Tab. 1, the state variables can be listed in two
subsets {x3, x4}, {x1, x2, x4, x5} and the non-linear ODEs (1) can be represented as
a linear system with the system matrix of a special form, a negative M-matrix whose
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column sums are zero.1 These two subsets of state variables can be assembled and
merged as follows:

x̃(t) =
(
x(1)T (t), x(2)T (t)

)T
,

where

x(1)(t) =

(
x3(t)
x4(t)

)
, x(2)(t) =


x1(t)
x2(t)
x4(t)
x5(t)

 . (14)

Then the ODE system for a modified state variable vector x̃(t) gets the form which
was already announced in (5):

dx̃(t)

dt
= Mx̃(t). (15)

For our case study problem, the block diagonal system matrix M = M(x(t)) is of
a special form

M =

(
M1 0
0 M2

)
, (16)

where

M1 =

(
−k1 · x2 k−1 + k2

k1 · x2 −(k−1 + k2)

)
, (17)

M2 =


−k0 k0 0 0
k0 −k0 − k1 · x3 k−1 0
0 k1 · x3 −(k−1 + k2) 0
0 0 k2 0

 . (18)

1This property in fact assures the conservation of the sum of all components of the (new) state
variable vector x̃.
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