
PANM 22

Jan Lamač; Miloslav Vlasák
Finding a Hamiltonian cycle using the Chebyshev polynomials

In: Jan Chleboun and Jan Papež and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs and
Algorithms of Numerical Mathematics, Proceedings of Seminar. Hejnice, June 23-28, 2024. , Prague, 2025.
pp. 95–104.

Persistent URL: http://dml.cz/dmlcz/703217

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703217
http://dml.cz


Programs and Algorithms of Numerical Mathematics 22
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Abstract: We present an algorithm of finding the Hamiltonian cycle
in a general undirected graph by minimization of an appropriately chosen
functional. This functional depends on the characteristic polynomial of
the graph Laplacian matrix and attains its minimum at the characteristic
polynomial of the Laplacian matrix of the Hamiltonian cycle.
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1. Introduction

The problem of finding a Hamiltonian cycle in a general undirected graph is
one of the basic optimization tasks and has a wide application not only in lo-
gistics, but also in some modern fields, such as computer graphics or microchip
construction [3]. However, it belongs to the so-called NP-complete problems [2]
and finding an algorithm that could solve NP-complete problems in polynomial
time is one of the seven Millennium Prize Problems [1]. In graph theory, there
exists a number of sufficient conditions guaranteeing that a given graph is Hamilto-
nian (i.e. contains a Hamiltonian cycle). These conditions are most often based on
some properties of the graph, such as the sum of degrees of non-adjacent vertices
or the minimum degree of the graph [4]. In this contribution we apply a different
(numerical) approach: The characteristic polynomial of the Laplacian matrix (one
may also choose the adjacency matrix) of an undirected graph formed by a sin-
gle Hamiltonian cycle is related to some Chebyshev polynomial of the first kind.
Whereas linearly constrained minimization problem have already been employed
for finding a Hamiltonian cycle (e.g. [5]) we use the properties of Chebyshev poly-
nomials and present the algorithm consisting in finding a Hamiltonian cycle by
minimization of an appropriately chosen nonlinear functional.

DOI: 10.21136/panm.2024.09

95

http://dx.doi.org/10.21136/panm.2024.09


2. Graph, its representation and basic properties

By graph G we consider an ordered pair G = (V,E), where

V = V (G) = {v1, v2, . . . , vn}
is a set of vertices of graph G and

E = E(G) = {e1, e2, . . . , em} ⊆
(
V

2

)
, ej = {vk, vl}, k 6= l,

is a set of edges of the graph G.

We denote by B ∈ {0, 1}n×m the incidence matrix of G satisfying Bij = 1 if vi ∈ ej
and Bij = 0 if vi 6∈ ej. Arbitrary set of edges can be represented by the vector
~w ∈ {0, 1}m×1, which is a characteristic vector of the set W ⊆ E satisfying wi = 1
if ei ∈ X and wi = 0 otherwise.

Using this notation we may define the vertex-disjoint cycle cover ~w of the
graph G being any set of edges satisfying

~w ∈ {0, 1}m×1, (1)

1Tm ~w = n, (2)

B~w = 2 · 1n, (3)

where 1n = (1, 1, . . . , 1)T ∈ Rn. While the second condition ensures the cycle cover
contains n edges, the third one guarantees that each vertex coincides with exactly
2 edges.

Further, let W ⊆ E be any set of edges and let ~w ∈ {0, 1}m×1 be its represen-
tation. If we denote by diag(~w) ∈ {0, 1}m×m a diagonal matrix with the vector ~w
on its main diagonal, then

L(~w) = 4I −B diag(~w)BT (4)

is the Laplacian matrix of the graph induced by the set W . Consequently, if
diag(~w) = I, then L = 4I −BBT is the Laplacian matrix of the graph G.

The least-squares solution of the system B~w = 2 · 1n is defined using the
Moore–Penrose pseudo-inverse of the matrix B (see e.g. [8]) as follows

~wLS = B†(2 · 1n) = 2 ·B†1n. (5)

The following lemma provides a characterization of the distribution of all
vertex-disjoint cycle covers: they all lie on the same sphere with the center at ~wLS
and radius equal to

√
n− ‖~wLS‖2.

Lemma 1. Let ~w ∈ {0, 1}m be a vertex-disjoint cycle cover, then

‖~w − ~wLS‖2 = n− ‖~wLS‖2. (6)

Proof. One can find the proof in [6].
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3. Definition of the solution space

In this chapter we describe how we chose the solution space in which the min-
imum of the functional will be searched. At first let us consider any undirected
graph containing two different Hamiltonian cycles (cf. Figure 1).

Figure 1: Graph with two Hamiltonian cycles

Consequently, the Laplacian matrices of the subgraphs induced by these Hamil-
tonian cycles have the following form

LA =


2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

 , LB =


2 −1 0 0 0 −1
−1 2 0 0 −1 0

0 0 2 −1 0 −1
0 0 −1 2 −1 0
0 −1 0 −1 2 0
−1 0 −1 0 0 2

 .

We observe that we can obtain one matrix from the other one simply by simul-
taneous permutation of columns and rows, i.e. LA = PLBP

T for some permutation
matrix P . Hence, both matrices share a common characteristic polynomial. In
this case it has a form

pA(x) = pB(x) = x6 − 12x5 + 54x4 − 112x3 + 105x2 − 36x. (7)

If the Laplacian matrix of the n-cycle is tridiagonal with another two −1 in
the corners, we call it in the standard form (cf. matrix LA).

Lemma 2. Let Ln be the Laplacian matrix of the n-cycle in the standard form
and j = n/2 for n even or j = (n + 1)/2 for n odd. Then the eigenvectors and
eigenvalues of the matrix Ln have the following form:

~uk,1 =

[
cos

(
1
kπ

n

)
, cos

(
3
kπ

n

)
, . . . , cos

(
(2n− 1)

kπ

n

)]T
, k = 0, 1, . . . , j − 1,

~uk,2 =

[
sin

(
1
kπ

n

)
, sin

(
3
kπ

n

)
, . . . , sin

(
(2n− 1)

kπ

n

)]T
, k = 1, 2, . . . , n− j,
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λk = 4 sin2

(
kπ

n

)
, k = 0, 1, . . . , n− j.

In this notation vectors ~uk,1 and ~uk,2 are two linearly independent eigenvectors that
correspond to the eigenvalue λk, for all suitable k.

Proof. The proof results immediately from the identities

− cos

(
(i− 2)

kπ

n

)
+ 2 cos

(
i
kπ

n

)
− cos

(
(i+ 2)

kπ

n

)
= 4 sin2

(
kπ

n

)
· cos

(
i
kπ

n

)
, (8)

− sin

(
(i− 2)

kπ

n

)
+ 2 sin

(
i
kπ

n

)
− sin

(
(i+ 2)

kπ

n

)
= 4 sin2

(
kπ

n

)
· sin

(
i
kπ

n

)
. (9)

Remark 3. In Lemma 2 for λ0 = 0 we obtain a single eigenvector ~u0,1 = 1n.
When n is even and j = n/2 then since ~uj,1 = [0, 0, . . . , 0]T for eigenvalue λj = 4
only a single eigenvector ~uj,2 = [1,−1, 1, . . . ,−1]T is obtained as well. If we want
to consider all eigenvalues λk with their multiplicities then instead of the upper
bound k = n− j we simply take k = n− 1 and use the fact that λk = λn−k.

For given n ≥ 3 the following lemma provides an expression for the character-
istic polynomial of the Laplacian matrix of n-cycle (c.f. Table 1).

Lemma 4. Let n ∈ N, n ≥ 3 be given, then the characteristic polynomial of the
Laplacian matrix of n-cycle has a form

Sn(x) = 2 ·
(
Tn

(x
2
− 1
)
− (−1)n

)
, (10)

where Tn(x) is the Chebyshev polynomial of the first kind.

Proof. We show that λk, k = 0, 1, . . . , n−1, from Lemma 2 (with their multiplicity)
are roots of Sn. Hence, let us evaluate Sn(λk) for k = 0, 1, . . . , n− 1:

Sn(λk) = 2

(
Tn

(
λk
2
− 1

)
− (−1)n

)
= 2

(
Tn

(
2 sin2

(
kπ

n

)
− 1

)
− (−1)n

)
= 2

(
Tn

(
− cos

(
2
kπ

n

))
− (−1)n

)
= 2(−1)n

(
Tn

(
cos

(
2
kπ

n

))
− 1

)
= 2(−1)n

(
cos(2kπ)− 1

)
= 2(−1)n

(
1− 1

)
= 0, (11)

where we used the property Tn(cosα) = cos(nα) and the parity of the Chebyshev
polynomials (cf. [7]).
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We shall also evaluate S ′n(λk) for k = 0, 1, . . . , n− 1:

S ′n(λk) = 2T ′n

(
λk
2
− 1

)
= 2nUn−1

(
λk
2
− 1

)
= 2nUn−1

(
− cos

(
2
kπ

n

))
= 2n(−1)n−1Un−1

(
cos

(
2
kπ

n

))
= 2n(−1)n−1 sin(2kπ)

sin 2kπ
n

= 0, (12)

for all considered k except k = 0 and k = n/2. For λ0 = 0 and λn/2 = 4 (for n even)
we obtain S ′n(0) = 2nUn−1(−1) = 2n2(−1)n−1 and S ′n(4) = 2nUn−1(1) = 2n2.
This corresponds to Lemma 2, since the multiplicity of the root λ0 = 0 and
λn/2 = 4 (for n even) is always equal to one. Here we have also employed the
properties of the Chebyshev polynomials of the second kind: T ′n(x) = nUn−1(x)

and Un(cosα) = sin(n+1)α
sinα

(cf. [7]).

n Tn(x) Sn(x)

3 4x3 − 3x x3 − 6x2 + 9x

4 8x4 − 8x2 + 1 x4 − 8x3 + 20x2 − 16x

5 16x5 − 20x3 + 5x x5 − 10x4 + 35x3 − 50x2 + 25x

6 32x6 − 48x4 + 18x2 − 1 x6 − 12x5 + 54x4 − 112x3 + 105x2 − 36x

7 64x7 − 112x5 + 56x3 − 7x x7 − 14x6 + 77x5 − 210x4 + 294x3 − 196x2 + 49x
...

...
...

Table 1: Comparison of polynomials Tn(x) and Sn(x).

Since the equation (3) has in general infinitely many solutions (e.g. 2-factors)
we denote by H ⊂ Rm×1 the set of all its solutions. Each vector ~z ∈ H can then
be expressed in a form

~z = ~z0 +
m−n∑
j=1

βj · ~zj, (13)

where ~z0 is any solution of equation (3) and span({~zj}m−nj=1 ) is the nullspace of B.

Remark 5. We consider ~z0 = xLS being the least-square solution of the equa-
tion (3) and {~zj}m−nj=1 form the orthonormal basis.

Let ~z ∈ H be any vector, then in virtue of (4) we define the matrices:

L(~z ) = 4 · I −B · diag(~z ) ·BT . (14)
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The set of matrices L = {L(~z ), ~z ∈ H} then has the same dimension as H
and any matrix L ∈ L can be expressed in a form L = L0 +

∑m−n
i=1 βi · Li with

Li = −B · diag(~zi) ·BT and L0 = 4 · I −B · diag(~z0) ·BT .

For each L ∈ L we shall compute its characteristic polynomial

pL(x) = det(x · I − L) (15)

and obtain the set of (admissible) polynomials P = {pL(x), L ∈ L}. Consequently,
if the graph G contains the Hamiltonian cycle, then Sn(x) ∈ P . Hence, we shall
try to find a functional F : P → R so that there holds:

Sn = arg min
p∈P

F (p). (16)

Thus, the whole problem is reduced to finding the minimum of the functional F .
Moreover, since

min
p∈P

F (p) = min
L∈L

F (pL(x)) = min
L∈L

F (det(x · I − L)), (17)

it suffices to find a proper matrix L = L0+
∑m−n

i=1 βi ·Li, i.e. a proper coefficients βi,
i = 1, 2, . . . ,m− n.

4. Definition of functionals and their derivatives

4.1. Coordinate functional

One possible choice of the functional consists in expressing any polynomial
p ∈ P in the basis formed by polynomials Si, 1 ≤ i ≤ n, i.e. p =

∑n
i=1 αi · Si.

Since the minimum of the desired functional should be reached at p = Sn, i.e.
αi = 0 for i = 1, 2, . . . , n− 1, we choose

Fc(p) =
n−1∑
i=1

α2
i =

n−1∑
i=1

α2
i (p). (18)

In what follows, we would like to find out, how the coefficients αi depend on the
polynomial p. We apply the discrete orthogonality of the Chebyshev polynomials
(cf. [7]):

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j,

n if i = j = 0,

n/2 if i = j 6= 0,

(19)
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where 0 ≤ i, j < n and xk are Chebyshev’s nodes of Tn(x). Then there holds

n−1∑
k=0

p(yk)Tj(xk) =
n−1∑
k=0

(
n∑
i=1

αiSi(yk)

)
Tj(xk)

= 2
n−1∑
k=0

n∑
i=1

αi

(
Ti

(yk
2
− 1
)
− (−1)i

)
Tj(xk)

= 2
n∑
i=1

αi

n−1∑
k=0

Ti(xk)Tj(xk)− 2
n∑
i=1

αi(−1)i
n−1∑
k=0

Tj(xk)

= 2
n∑
i=1

αi

(n
2
δij

)
− 2

n∑
i=1

αi(−1)i · 0 = n · αj, (20)

where yk = 2(xk + 1). Hence αj = 1
n

∑n−1
k=0 p(yk)Tj(xk).

Since all polynomials p depend on the choice of the vector (β1, β2, . . . , βm−n),
we need to compute the derivative of F with respect to βi:

∂Fc
∂βi

=
∂

∂βi

n−1∑
j=1

α2
j = 2

n−1∑
j=1

αj ·
∂αj
∂βi

, (21)

∂αj
∂βi

=
1

n

n−1∑
k=0

Tj(xk)
∂

∂βi
p(yk), (22)

∂p(yk)

∂βi
=

∂

∂βi
det
(
ykI − L0 −

m−n∑
j=1

βj · Lj
)
. (23)

If we now denote Rk = ykI − L0 −
∑m−n

j=1 βj · Lj, we may apply Jacobi’s formula(
detA(x)

)′
= tr

(
adjA(x) · A′(x)

)
and obtain:

∂p(yk)

∂βi
= tr

(
adjRk · (−Li)

)
= − detRk · tr

(
R−1
k · Li

)
, (24)

for nonsingular matrix Rk.

4.2. Integral functional

Since the polynomials Sn are defined using Chebyshev’s polynomials, they solve
the following (Chebyshev’s) differential equation (cf. [7]):

x(4− x)y′′ + (2− x)y′ + n2y = −2n2(−1)n, (25)

y(0) = 0, y(4) = 2(1− (−1)n). (26)
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If we transfer the boundary condition and transform the equation into the
divergent form we obtain the following quadratic functional:

Fin(p) =

∫ 4

0

√
x(4− x) (p′)2 − n2√

x(4− x)
p2 + 2 fn(x) p dx, (27)

where fn(x) = (2−x)(n2−1)√
x(4−x)

for n odd and fn(x) = −2n2√
x(4−x)

for n even.

Remark 6. To evaluate integrals containing
√

1− x2 on the interval (−1, 1) one
can apply the Chebyshev-Gauss quadrature rules:∫ 1

−1

f(x)√
1− x2

dx ≈
n∑
k=1

wk f(xk),

∫ 1

−1

g(x)
√

1− x2 dx ≈
n∑
k=1

ŵk g(x̂k),

where xk are roots of Tn(x) and wk = π
n

, while x̂k are roots of T ′n+1(x) and ŵk =
π
n+1

sin2
(
π k
n+1

)
. These formulas are exact for polynomials up to order 2n − 1 and

when we transform them on the interval [0, 4], we obtain the following expressions:∫ 4

0

p2(y)√
y(4− y)

dy = 2π

 n∑
i=1

α2
i + 2

(
n∑
i=1

αi(−1)i

)2
 , (28)

∫ 4

0

√
y(4− y)(p′(y))2 dy = 2π

n∑
i=1

i2α2
i , (29)

∫ 4

0

fn(y)p(y) dy = 4πn2

n∑
i=1

(−1)iαi, for n even, (30)∫ 4

0

fn(y)p(y) dy = −2π(n2 − 1)α1, for n odd, (31)

providing p(y) =
∑n

i=1 αiSi(y). Consequently, for the functional Fin there holds:

Fin(p)
n even

= −2π

[
n∑
i=1

(n2 − i2)α2
i − 2n2

(
1−

n∑
i=1

αi(−1)i

)
n∑
i=1

αi(−1)i

]
, (32)

Fin(p)
n odd

= −2π

 n∑
i=1

(n2 − i2)α2
i + 2n2

(
n∑
i=1

αi(−1)i

)2

+ (n2 − 1)α1

 . (33)

Unfortunately, these functionals failed to be positive and, hence, they do not at-
tain their minimum in p = Sn. Therefore, together with the functional Fc (cf. (18))
we consider only functional (28) (functional Fin,1) and (29) (functional Fin,2) with
the sums ending at i = n− 1.
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5. Numerical experiments

For the minimization we employ the gradient descent method with the back-
tracking line search driven by the Armijo condition (cf. Figure 2). We consider
random graphs with 16 vertices and 18–32 edges containing Hamiltonian cycle.
For each kind of graph and for each functional we generate 100 random graphs.
The results in Table 2 show numbers of graphs for which the algorithm success-
fully ended and found the Hamiltonian cycle. If the algorithm failed, it was due
to finding a local extremum or exceeding the maximum number of iterations.

functional 16/18 16/20 16/22 16/24 16/26 16/28 16/30 16/32

Fc 93 80 82 70 58 55 54 50

Fin,1 77 61 63 54 48 35 37 31

Fin,2 96 88 80 66 63 71 63 62

Table 2: Numerical results for all considered functionals.

Figure 2: An example of minimization algorithm for the functional Fc and a graph
with 7 vertices and 9 edges. The minimum lies on the circle with the center in xLS.
The other point on the circle corresponds to the 2-factor of the graph considered.

6. Conclusion

Numerical experiments show that all three functionals contain unwanted local
extrema which cause problems during minimization process. It also results from
the Table 2 that the more edges a graph has, the more complicated it is to reach
the global minimum. Of these three algorithms, algorithm Fin,1 provided the worst

results, probably due to the presence of the oscillation term
(∑n−1

i=1 αi(−1)i
)2

.
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The construction of another (hopefully convex) functional, as well as improve-
ments to the minimization process and different choice of the null space basis of
the incidence matrix B will be the subject of the future research.
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