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Abstract: This study addresses the problem of the flow around circular cylin-
ders with mixed convection. The focus is on suppressing the vortex-induced
vibration (VIV) of the cylinder through heating. The problem is mathemat-
ically described using the arbitrary Lagrangian-Eulerian (ALE) method and
Boussinesq approximation for simulating fluid flow and heat transfer. The
fluid flow is modeled via incompressible Navier-Stokes equations in the ALE
formulation with source term, which represent the density variation due to the
change of temperature. The temperature is driven by the additional governing
transport equation. The equations are numerically discretized by the finite
element (FEM) method, where for the velocity-pressure couple the Taylor-
Hood (TH) finite element is used and the temperature is approximated by the
quadratic elements. The proposed solver is tested on benchmark problems.
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1. Introduction

The problem of flow around circular cylinders with mixed convection is of con-
siderable importance in various engineering applications, such as flow in tubes, heat
exchangers, nuclear reactor fuel rods, chimney stacks, cooling towers, etc. These
applications involve critical engineering design parameters related to fluid flow, heat
transfer, and vibration, which must be carefully considered, see [4].

This paper focuses on the suppression of vortex-induced vibration (VIV) of the
cylinder by its heating. Over the years, numerous numerical and experimental stud-
ies have focused on investigating homogeneous or uniform flow around a circular
cylinder that is movable in a vertical direction (see, e.g., [1,3]). In these studies, flow

DOI: 10.21136/panm.2024.15

159

http://dx.doi.org/10.21136/panm.2024.15


behavior is primarily characterized by the Reynolds number (Re), and structure mo-
tion is always non-dimensional, where its stiffness is characterized by the reduced
velocity Ur. The response of the system and its resonance is dependent only on
these two variables, see [1]. However, if one considers the buoyancy forces, there is
another non-dimensional parameter, called the Grashof number (Gr), which can be
used for controlling the fluid flow and the structural response. For example, in [10]
it is shown that for Re = 100 and for the Gr ≥ 1500 the vortex shedding is stopped
and the flow becomes steady state. An increase in the Gr number also leads to an
increase in the drag coefficient. Similar results were found in [11] where for Re = 200
the critical value Gr = 12000 was determined. The results of the heated movable
cylinder can be found, e.g., in [14], where the critical Gr number was defined to be
dependent also on the reduced velocity.

This paper focuses on a numerical simulation of the VIV problems of the cylin-
der leading to suppression of the vibrations, a description of such strategies can
be found in [4]. A simplified model of incompressible fluid with buoyancy forces
is considered, however, for such a model still several numerical challenges, such as
managing the incompressibility constraint, nonlinear convective terms and coupling
between the additional transport equation of the temperature with the momentum
equations need to be addressed (see, e.g., [10]). The model needs to treat the time-
dependent computational fluid domain, which is usually handled using the arbitrary
Lagrangian-Eulerian (ALE) method, see e.g., [13]. To describe the fluid flow influ-
enced by the heat transfer, the Boussinesq approximation is used. The mathematical
model consists of the incompressible Navier-Stokes equations with a right-hand side
term depending on the temperature. The temperature is described by an additional
transport equation. For the approximation of the system of incompressible Navier-
Stokes equations in the ALE formulation, the Taylor-Hood (TH) finite element is
used. This choice of the velocity-pressure pair satisfies the Babuška-Brezzi (BB) inf-
sup condition, which guarantees the stability of the numerical scheme, see [8]. The
temperature is approximated by continuous piecewise quadratic functions.

The proposed method is tested on two benchmark problems. The first involves
the flow around a fixed heated cylinder, where the critical Grashof number and mean
drag coefficient are compared with the data from [10]. In the second test case, the
suppression of vibration of a moving cylinder is addressed by its heating, the response
is compared with the findings of [14].

2. Governing equations

In this section, the mathematical model of the fluid flow around the heated mov-
ing cylinder is given, where the density changes due to the temperature described
by the Boussinesq approximation. The model consists of the incompressible Navier-
Stokes equations in the ALE formulation coupled with the convection-diffusion equa-
tion for the temperature.

Let Ωt ⊂ R2 be a bounded computational time-dependent fluid domain with
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a continuous Lipschitz boundary, which is composed of three disjoint segments:
∂Ω = ΓD ∪ ΓO ∪ ΓWt . The domain Ωt is assumed to be polygonal, and completely
filled with fluid at any time t ∈ (0, T∞). The movability of the domain is treated
via the Arbitrary Lagrangian-Eulerian (ALE) formulation. The ALE method uses
a mapping At that transforms the reference domain Ω0 on the current domain Ωt, i.e.,

At : Ωref → Ωt, X 7→ x(X, t) = At(X), x ∈ Ωref, t ∈ (0, T∞]),

moreover transforms the reference interface ΓW0 on the current interface ΓWt based
on the movement of the cylinder, while the other boundaries remain stationary. For
further details, see [13].

For computation, the non-dimensional Navier-Stokes (NS) equations for incom-
pressible flow and the thermal equation in the ALE formulation are used. Firstly, all
lengths are characterized by the cylinder diameter D, the flow velocities u = (u1, u2)
are scaled by the free stream velocity Uref, the time is scaled by the factor D/Uref, and
the kinematic pressure is scaled by ρU2

ref, where ρ is the fluid density. In addition, the
non-dimensional temperature is given by θ = (T−Tref)/(Ts−Tref), where T represents
fluid temperature, Tref is the temperature of the free stream, and Ts is the temper-
ature of the cylinder. For simplicity, in the rest of the paper, all of the quantities
are dimensionless. The nondimensional form of the NS equations with the trans-
port temperature equation read: Find the velocity u(x, t) : Ωt → R2, the pressure
p(x, t) : Ωt → R, and the temperature θ(x, t) : Ωt → R which satisfy

DA

Dt
u + [(u−w) ·∇]u− 1

Re
∆u + ∇p =

Gr

Re2
θ in Ωt, t ∈ (0, T∞],

∇ · u = 0 in Ωt, t ∈ (0, T∞],

DA

Dt
θ + [(u−w) ·∇]θ − 1

RePr
∆θ = 0 in Ωt, t ∈ (0, T∞],

(1)

where DA

Dt
denotes the ALE derivative, and w = ∂At/∂t represents the domain veloc-

ity, see [2,13]. The Re, Pr, and Gr are the Reynolds, Prandtl and Grashof numbers
respectively, given as Re = UrefD/ν, Pr = ν/κ, and Gr = gβ∆TD3/ν2, where ν is
the kinematic viscosity, κ is the thermal diffusivity, ∆T is the temperature difference
(∆T = Ts − Tref), β means the thermal expansion coefficient and g is the gravita-
tional acceleration (in this paper acting in the horizontal direction), see [14]. This
approximation of the flow problem around the heated cylinder is valid for approxi-
mately β∆T ≤ 0.01, see [10].

To close problem (1), the following conditions are added: initial condition

u(x, 0) = u0, θ(x, 0) = θ0 in Ω0, (2)
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and the boundary conditions

u(x, t) = g(x, t), θ(x, t) = q(x, t) on ΓD × (0, T∞], (3a)

u(x, t) = w(x, t), θ(x, t) = q(x, t) on ΓWt , t ∈ (0, T∞], (3b)

∂θ

∂n
= 0 on ΓO × (0, T∞], (3c)

−(p− pref)n +
1

Re

∂u

∂n
= 0 on ΓO × (0, T∞], (3d)

where n represents the unit outward normal vector to ∂Ωt and pref represents a refer-
ence pressure value at the outlet. Here, Eq. (3a) is the no-slip condition, (3b) reflects
the assumption that the fluid remains attached to the cylinder, (3c) is the Neumann
condition, and (3d) is the so-called do-nothing condition, see [6].

2.1. Motion of the cylinder

In this paper, a simplified model can be used as the cylinder is movable only in
the vertical direction. Therefore, the ordinary differential equation (ODE) for the
displacement Y , its velocity Ẏ and acceleration Ÿ in non-dimensional form are

Ÿ +

(
4πξ

Ur

)
Ẏ +

(
4π2

U2
r

)
Y =

Cl
2M∗ , (4)

where ξ symbolizes the structural damping ratio, Ur = U∞
fnD

is the reduced velocity

of the cylinder (with fn representing the natural frequency of the cylinder), M∗

indicates for the reduced mass of the rigid cylinder (M∗ = m
ρD2 ), and Cl = L

1/2ρU2
∞A

is the lift coefficient (here L represents the lift force), see [1, 14].

3. Discretization of the fluid flow problem

In order to discretize problem (1) by the finite element method (FEM), the weak
formulation has to be introduced. First, a constant time step ∆t > 0 is taken, and
the time interval (0, T∞) is equidistantly divided into time intervals (tn, tn+1) with
tn = n∆t. Further, the velocity, pressure and the temperature are approximated at
time step tn ∈ (0, T∞] by un(x) ≈ u(x, tn) for x ∈ Ωtn , p

n(x) ≈ p(x, tn) for x ∈ Ωtn ,
and θn(x) ≈ θ(x, tn) for x ∈ Ωtn . The velocity of the domain at the instant tn+1

is approximated by wn+1(x) ≈ w(x, tn+1) for x ∈ Ωtn+1 and the ALE derivative
is approximated at fixed time instance tn+1 by the second-order two-step backward
difference formula (BDF2). Hence, the implicit scheme is given

3un+1 − 4ũn + ũn−1

2∆t
+ ((un+1 −wn+1) ·∇)un+1 − 1

Re
∆un+1 + ∇pn+1 =

Gr

Re2
θ,

∇ · un+1 = 0,

3θn+1 − 4θ̃n + θ̃n−1

2∆t
+ ((un+1 −wn+1) ·∇)θn+1 − 1

RePr
∆θn+1 = 0,

where ũi and θ̃i denotes the transformation of ui and θi from Ωi onto Ωn+1, i.e.,
ũi = ui ◦ Ati ◦ A−1

tn+1
.
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3.1. Spatial discretization by the FEM

In this section, the FEM discretization of the semi-discrete problem (5) is intro-
duced in the standard way. Firstly, a weak formulation is provided. Let us assume
the fixed time instance tn+1, and present a simplified notation: u = un+1, w = wn+1,
p = pn+1, and Ω = Ωtn+1 .

Furthermore, the velocity test space V , the pressure test space Q and the tem-
perature test space T are defined as

V =
{
ϕ ∈H1(Ω) ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
, Q = L2(Ω),

T =
{
ϕ ∈ H1(Ω) ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
,

where H1(Ω) = [H1(Ω)]2 is the vector Sobolev space and L2(Ω) is the Lebesgue
space, see [9].

Using some mathematical operation and proposing the notation of the scalar
product (u,v)Ω =

∫
Ω
u · v dx in L2(Ω) and of the trilinear form c(u,v,w) =∫

Ω
[(u · ∇)v] ·w dx, the weak formulation reads: Find U = (u, p.θ) ∈ V ×Q × T

such that the equation

a (u, U, V ) + aθ (u, U, V ) = F (V ) + Fθ(V ), (5)

holds for any test function V = (v, q, ζ) ∈ V ×Q ×T , where

a (U, V ) =
3

2∆t
(u,v)Ω +

1

Re
(∇u,∇v)Ω + c(u−w,u,v)− (p,∇ · v)Ω − (∇ · u, q)Ω,

F (V ) =
1

2∆t
(4ũn − ũn−1,v)Ω +

Gr

Re2
(θ,v)Ω, (6)

and

aθ (u, θ, ζ) =
3

2∆t
(θ, ζ)Ω +

1

RePr
(∇θ,∇ζ)Ω + ((u · ∇)θ, ζ)Ω,

Fθ(ζ) =
1

2∆t
(4θ̃n − θ̃n−1, ζ)Ω.

(7)

For a more detailed description see [8].
In addition, the admissible triangulation τh of the domain Ω is considered (see [5])

and in this triangulation, the following finite element (FE) subspaces are used:
Vh ⊂ V as the velocity subspace, Qh ⊂ Q as the pressure subspace, and Th ⊂ T as
the temperature subspace. Generally, finite element subspaces consist of piecewise
polynomial functions. In this paper, the velocity and the pressure are discretized by
the so-called Taylor-Hood element which leads to the following function spaces

Vh =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P2(K),∀K ∈ τh)

}
∩ V , (8)

Qh =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P1(K),∀K ∈ τh)

}
. (9)

163



The temperature is discretized by the piecewise quadratic functions

Th =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P2(K),∀K ∈ τh)

}
∩T . (10)

Then, the discrete problem reads: Find Uh = (uh, ph, θh) ∈ Vh ×Qh ×Th such that
the equations

ah (Uh, Vh) + aθ (uh, θh, ζh) = F (Vh, θh) + Fθh(ζh) (11)

hold for any test function Vh = (vh, qh, ζh) ∈ Vh×Qh×Th and satisfies the boundary
conditions (3a)–(3c).

4. Numerical simulations

In this section, the results of numerical simulations are discussed, such as the
problem of flow around the fixed heated cylinder and flow around the heated cylin-
der with one degree of freedom in the cross direction. The domain of the problem
is shown in Figure 1. The fluid flow around the heated cylinder is modeled us-
ing Eqs. (1), which are incompressible Navier-Stokes equations, incorporating the
Boussinesq approximation to account for temperature variations. For the fixed case
the ΓWt remains stationary while in the problem with vibrations, it can move in the
vertical direction.

Γ
D

Γ
40D

D

Γ

80D

O
W

t

Figure 1: Domain of the flow around the cylinder.

4.1. Flow around the heated cylinder

The first test case is the flow around the fixed cylinder. The boundary conditions
include the Dirichlet boundary conditions on ΓD. The ΓWt incorporates the movable
surface (for a simple case without moving, the surface is fixed). At the outlet ΓO,
the so-called do-nothing condition is used for the velocity and pressure (see [12]).
The temperature is subject to Dirichlet boundary conditions in the free stream ΓD,1
and at the ΓWt , while a Neumann boundary condition is applied at the outlet ΓO.
The domain size was selected based on [11], and the size of the mesh was limited
by the solver, which the UMFPACK library provides, and it performs efficiently up
to 200000 DoFs.

Calculations were performed for various scenarios involving different Grashof
numbers, with Reynolds numbers Re = 100 and Re = 200. The critical Gr number
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Figure 2: Magnitude of the veloc-
ity (||u||∞) for the Gr = 1000.

Figure 3: Temperature field θ for
the Gr = 1000.

Figure 4: Magnitude of the veloc-
ity (||u||∞) for the Gr = 1500.

Figure 5: Temperature field θ for
the Gr = 1500.

(the lowest number where the flow becomes steady) is compared with [10] and the
drag coefficients for various scenarios are also compared. Figures 2–5 show the results
for four cases with Re = 100. As the Grashof number increases, the flow gradually
stabilizes until it reaches a critical Grashof number (Gr = 1500), after which the
flow is nearly steady. This corresponds to [10]. Similar trends were observed for
Re = 200, although the critical Grashof number is higher (Gr = 15000), probably
due to the insufficient quality of the mesh. Despite this, the mean drag coefficient
for both cases is aligned well with the reference data [10,11], see Figure 6.

4.2. Flow around the movable heated cylinder

The initial state of the domain, denoted as Ωt, is in Figure 1 with heated cylin-
der. The boundary conditions are similar to the previous problem, and due to the
movement of the cylinder, the Dirichlet boundary condition is u = w. Its position
is obtained by solving the problem (4) using the 4-th order Runge-Kutta method.
The coupling procedure between the cylinder and the fluid flow is performed using
a strong coupling algorithm, which is well described in [7]. The mesh movement is
realized by the pseudo-elastic approach, which is described, e.g., in [7].

The flow problem around the cylinder is characterized by the Reynolds number
Re = 150, aligned with the reference data from [14]. The model of a movable cylinder
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Figure 6: Drag coefficient for different Gr numbers for Re = 100 a), and for Re = 200
b), compared to the reference data from [10,11].

Figure 7: Displacement Y/D in dependent of time for the case Ur = 8 and Re = 150.

without heating is well described in [1]. A vortex street forms in the wake of the cylin-
der, leading to oscillations in aerodynamic forces, which in turn induce the vibration
of the cylinder. The interval in which the resonance occurs is Ur ∈ [4, 8]. The highest
amplitude is for Ur = 4 and then the amplitude decreases with increasing Ur, see [1].

Our goal is to suppress the vibration by heating and stabilizing the flow. In Fig-
ure 7, the displacement Y is given for Ur = 8, with zero damping ξ = 0, and M∗ = 2.

It can be observed, that as the Gr is increased (we add more and more heating),
the vortex shedding is stabilized until we reach the Gr = 6750 and we reach an
almost steady state. This result corresponds to [14].

5. Conclusion

In this paper, the problem of the interaction between incompressible flow and
a heated cylinder with one degree of freedom is analyzed using numerical simulations.
The main goal was to suppress the flow-induced vibrations (VIV) by its heating.
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The problem was mathematically described as the incompressible fluid which is
approximated by the incompressible Navier-Stokes (NS) equations, where to take into
account the density dependence on the temperature, the Boussinesq approximation
was used. As a result, a source term depending on the temperature is included in the
NS equations, where the temperature is modeled by an additional transport equation.
For time discretization the backward-difference formula of second order (BDF2) is
used, whereas for space discretization the finite element method (FEM) is utilized.
The velocity and pressure are discretized by the Taylor-Hood (TH) element, while
the temperature is discretized by the piecewise quadratic functions. The numeri-
cal results of the developed in-house solver are presented and compared with the
reference data of [10,14].

For the first case of the flow around the fixed cylinder, it was confirmed that
the stability of the flow is dependent in addition to the Reynolds number (Re) also
on the Grashof number (Gr). It was observed that for Re = 100 the critical Gr
number is Gr = 1500, which is in agreement with [10]. For the case, Re = 200, the
obtained critical Gr number (Gr = 15000) is larger than the value Gr = 12000 found
in [11]. This is probably due to the use of a not sufficiently refined mesh, where the
applied solver is limited by the number of unknowns from the UMFPACK library. In
addition, the dependence of the drag coefficient on the Grashof number was compared
with the reference data from [10, 11]. It was shown that with an increase in the Gr
number, the drag coefficient also increases. Our simulations slightly overestimated
the drag for Re = 200, it might again be attributed to insufficient quality of the mesh.

The second case was the flow around a vibrating cylinder, whose vibrations are
described using one degree of freedom (vertical displacement). The structural move-
ment is characterized by the reduced velocity Ur. It is shown that for one case of
reduced velocity (i.e., Ur = 8) the amplitude of the response is lowered with an
increase of the Gr number. Such a decrease of vibrations continues with further
increase up to the critical Gr number Gr = 6750, for which an almost steady state
is obtained. This is also in agreement with the findings in [14].

It was shown that the presented results of the developed in-house numerical solver
agree with the reference data. Further, the numerical results showed that the heating
of the cylinder can lead to the suppression of the VIV of the cylinder. The main
limitation of the presented solver is that it can solve only small systems due to the
UMFPACK library used as a solver. This problem can be addressed, e.g., by domain
decomposition.
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