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Abstract: The contribution deals with the description of two nonsmooth
equation methods for inequality constrained mathematical programming prob-
lems. Three algorithms are presented and their efficiency is demonstrated by
numerical experiments.
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1. Introduction

In this contribution, we are concerned with a nonlinear programming prob-
lem (NP): Find the minimum of a function F (x) on the set given by constraints
c(x) ≤ 0, where F : Rn → R, c : Rn → Rm are twice continuously differentiable
mappings (c(x) ≤ 0 is considered by elements).

Necessary conditions (the KKT conditions) for the solution of problem (NP) (if
the gradients of active constraints are linearly independent) have the following form

g(x, u) = 0, c(x) ≤ 0, u ≥ 0, UC(x)e = 0, (1)

where

g(x, u) = ∇F (x) +
m∑
k=1

uk∇ck(x) = ∇F (x) + A(x)u

and A(x) = [∇ck(x) : 1 ≤ k ≤ m]. Here u ∈ Rm are the vectors of Lagrange
multipliers, U = diag(uk : 1 ≤ k ≤ m), C(x) = diag(ck(x) : 1 ≤ k ≤ m) and e is the
vector with unit elements.

Nonlinear programming problems are frequently solved by three types of methods:
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• Sequential quadratic programming (SQP) methods: In this case, the quadratic
programming subproblem

Minimize Q(d) =
1

2
dTBd+ gTd, where ATd+ c ≤ 0,

is solved in every iteration.

• Interior points (IP) methods: In this case, we solve the sequence of equality
constrained problems

Minimize F (x)− µeT log(S)e, where c(x) + s = 0,

where S = diag(sk : 1 ≤ k ≤ m) > 0 and µ → 0. The constraints s ≥ 0 are
satisfied algorithmically using the bounds for stepsizes.

• Nonsmooth equation (NE) methods: In this case, we solve the equality con-
strained problem

Minimize F (x), where h(x, u) = 0,

in every iteration. The set of equations h(x, u) = 0 is usually nonsmooth.

SQP methods require an efficient solution of the quadratic programming subproblem.
In the large scale case it usually consumes a large computational time. IP and NE
methods, which transform inequality constrained problems to equality constrained
ones, are very efficient.

2. Nonsmooth equation methods

Inequalities in (1), so called complementarity conditions, can be transformed to
equations using the Fischer-Burmeister function [2]

ψ(a, b) =
√
a2 + b2 − (a+ b),

which is zero if and only if a ≥ 0, b ≥ 0 and ab = 0. The Fischer-Burmeister
function ψ(a, b) is continuously differentiable if |a| + |b| 6= 0 and semismooth if
|a| + |b| = 0. Moreover, function ψ2(a, b) is continuously differentiable everywhere.
The gradient and the Clarke subdifferential of the Fischer-Burmeister function are
given by the formulas

∇ψ(a, b) =

[
a√

a2+b2
− 1

b√
a2+b2

− 1

]
, |a|+ |b| 6= 0, (2)

∂ψ(0, 0) = conv
⋃

φ∈[0,2π]

[
cosφ− 1
sinφ− 1

]
. (3)
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Formula (3) implies that [−1,−1]T ∈ ∂ψ(0, 0). Therefore, setting r(a, b) =
√
a2 + b2

for |a|+ |b| 6= 0 and r(a, b) = 1 for |a|+ |b| = 0 we obtain[
a

r(a,b)
− 1

b
r(a,b)

− 1

]
∈ ∂ψ(a, b). (4)

Complementarity conditions in (1) are satisfied if and only if ψ(uk,−ck(x)) = 0,
1 ≤ k ≤ m, so (1) can be replaced by the system of nonlinear equations

f(z) = f(x, u) =

[
g(x, u)
h(x, u)

]
= 0, (5)

where h(x, u) = [ψ(uk,−ck(x)) : 1 ≤ k ≤ m]T . The mapping f(z) is semismooth at
every point z ∈ Rn+m. Therefore

f ′(z, d) = Jd+ o(‖d‖) if ‖d‖ → 0 and J ∈ ∂f(z + d)

and
f(z + d)− f(z) = f ′(z, d) + o(‖d‖) = Jd+ o(‖d‖). (6)

Linearizing system (5) by using (6), we obtain a step of the Newton method

x+ = x+ dx, u+ = u+ du,

where [
B A

(R + C)R−1AT −(R− U)R−1

] [
dx
du

]
= −

[
g(x, u)
h(x, u)

]
, (7)

and where

B ≈ G(x, u) = ∇2F (x) +
m∑
k=1

uk∇2ck(x),

A = A(x), C = C(x), U = U(x), R = diag(rk : 1 ≤ k ≤ m), rk =
√
ck(x)2 + u2

k.
The algorithm of a nonsmooth equation method can be roughly described in

the following way. For given vectors x ∈ Rn, u ∈ Rm we determine direction vec-
tors dx, du by solving a linear system equivalent to (7). Furthermore, we choose
new vectors xi+1, ui+1 by using a suitable merit function (Section 4) or by using
a combined filter (Section 5).

3. Determination of a direction vector

Linear system (7) is not suitable for iterative solvers in general since it is non-
symmetric and can have unsuitable diagonal elements. A symmetric linear system
can be obtained by multiplying the second row of (7) by the matrix (R + C)−1R.
Then [

B A
AT −M

] [
dx
du

]
= −

[
g(x, u)

(R + C)−1R h(x, u)

]
,
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where M = (R + C)−1(R − U) is a diagonal positive definite matrix. Diagonal
elements of M can be very large in general. Therefore, we eliminate direction vectors
corresponding to inactive constraints.

Definition 1. A constraint with index k is active if

−∂ψk
∂uk
≤ ε̂

∂ψk
∂ck

⇐⇒ rk − uk ≤ ε̂(rk + ck),

where ψk = ψ(uk,−ck) and ε̂ > 0 (usually 0.01 ≤ ε̂ ≤ 1). Active quantities are
denoted by ĉk, ûk, r̂k, M̂ and inactive quantities are denoted by čk, ǔk, řk, M̌ .

Eliminating inactive directions we obtain

ďu = M̌−1(ǍTdx + č)− ǔ, (8)

[
B̂ Â

ÂT −M̂

] [
dx
d̂u

]
+

[
ĝ(x, u)

(R̂ + Ĉ)−1R̂ĥ(x, u)

]
=

[
rx
r̂u

]
, (9)

where

B̂ = B + ǍM̌−1ǍT , ĝ(x, u) = g(x, u) + ǍM̌−1č.

To obtain direction vectors dx, d̂u, we solve linear equations (9) with sufficient pre-
cisions rx, r̂u and compute ďu by (8). Note that ‖M̂‖ ≤ ε̂, ‖M̌−1‖ < 1/ε̂ and

‖M̂‖ → 0, ‖M̌−1‖ → 0 if ĝ(x.u)→ 0, ĥ(x, u)→ 0.

Symmetric matrix B̂ has a bounded norm and is positive definite if B is positive
definite. For this reason we use a positive definite matrix B = G + E obtained by
using the Gill-Murray decomposition [3] of G = G(x, u) (B is positive definite if it
is obtained by the quasi-Newton method).

Nonsmooth equation methods for nonlinear programming problems are realized
by the following algorithm.

Algorithm 1. Line search method.

Data: Parameter for active constraint determination ε̂. Precisions 0 < ωx < 1,
0 < ωu < 1. Maximum stepsize ∆ > 0.

Input: Initial approximation of a KKT point x.

Step 1: Initiation. Choose initial Lagrange multipliers uk, 1 ≤ k ≤ m, such that
uk 6= 0. Compute value F (x) and vector c(x). If a filter is used, set nF = 1
and F = {F (x),Φ(x, u)}. Set i := 0.

Step 2: Termination. Compute matrix A := A(x) and vector g := g(x, u). If (8)
holds with a required precision, terminate computation, else set i := i+ 1.
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Step 3: Hessian matrix approximation. Determine positive definite matrix B as
an approximation of the Hessian matrix G(x, u).

Step 4: Determination of direction vectors. Divide constraints into active and
inactive parts using parameter ε̂ to obtain system (9). Determine vectors dx, d̂u
as approximate solutions of (9) with precisions rx, r̂u and compute vector ďu
by (8). If a merit function is used, determine value σ ≥ 0 by (12) and compute
derivative ϕ′(0) by (11).

Step 5: Stepsize selection. Determine stepsize t > 0 using Algorithm 2 or Algo-
rithm 3 and set x := x + tdx, u := u + tdu. Compute value F (x), vector c(x)
and go to Step 2.

4. Line search with a merit function

After obtaining direction vectors dx, du, we seek a stepsize t to decrease the value
of the merit function

ϕ(t) = Fj(x+ tdx) + σPj(x+ tdx, u+ tdu), σ ≥ 0, j = 1, 2,

where

F1(x+ tdx) = F (x+ tdx),

F2(x+ tdx) = F (x+ tdx) + (u+ du)
T c(x+ tdx),

P1(x+ tdx, u+ tdu) = ‖h(x+ tdx, u+ tdu)‖1,

P2(x+ tdx, u+ tdu) =
1

2
‖h(x+ tdx, u+ tdu)‖2.

It is necessary that ϕ′(0) < 0 holds and that the stepsize t satisfies the Armijo
condition

ϕ(t)− ϕ(0) ≤ ε1tϕ
′(0), where 0 < ε1 < 1/2. (10)

For subsequent investigations, we use the notation

F1 : χ(r) = dTx rx − (û+ d̂u)
T r̂u,

F1 : γ0 = (u+ du)
TM(u+ du)− (u+ du)

T c,

P1 : γ1 = ‖h‖1 − ‖(R̂ + Ĉ)R̂−1r̂u‖1,

F2 : χ(r) = dTx rx,

F2 : γ0 = 0,

P2 : γ1 = ‖h‖2 − ĥT (R̂ + Ĉ)R̂−1r̂u.

It is necessary that γ1 > 0 holds, which is satisfied if

P1 : ‖r̂u‖1 ≤
ωu
2
‖h‖1, P2 : ‖r̂u‖ ≤

ωu
2
‖h‖, where 0 ≤ ωu < 1.
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Theorem 1 ([4]). Let vectors dx, d̂u be obtained as an approximate solution of (9)
and vector ďu be obtained by (8). Then

ϕ′(0) = −dTxBdx − γ0 − γ1σ + χ(r). (11)

If γ1 > 0,

σ ≥ σ > −d
T
xBdx + γ0

γ1

, (12)

and if system (9) is solved with the precision

χ(r) < dTxBdx + γ0 + γ1σ, (13)

then ϕ′(0) < 0.

Algorithm 2. Line search with a merit function.

Data: Parameters 0 < β < 1, 0 < ε1 < 1/2, minimum stepsize 0 < t < 1.
Derivative ϕ′(0) obtained from (11)

Input: Pair (x, u), values F (x), c(x) and direction pair (dx, du) obtained as a so-
lution of equations (8)–(9).

Step 1: Choose initial stepsize t > 0 (usually t = 1). If ϕ′(0) ≥ 0 go to Step 5.

Step 2: If t < t, go to Step 5, else compute new values F (x+ tdx) and ck(x+ tdx),
1 ≤ k ≤ m.

Step 3: Minimization of the objective function. If the Armijo condition (7) is
satisfied, go to Step 6.

Step 4: Set t := βt and go to Step 2.

Step 5: Restart. Choose well positive diagonal matrix D (usually D = I). Solve
precisely equations (8)–(9) with B replaced by D. Set σ = 0 and compute deriva-
tive ϕ′(0) < 0 from (11). Find stepsize 0 < t < 1 such that F (x+ tdx) < F (x).

Step 6: Terminate stepsize selection (t > 0 is an obtained stepsize).

The line search methods with a merit function are very efficient, namely if we
use the Lagrangian function F2(x, u) and if the penalty parameter can decrease.
Unfortunately, in this case the global convergence cannot be proved.

5. Line search with a filter

Denote for simplicity z = (x, u), Φ(z) = (1/2)‖h(x, u)‖2 and g(z) = g(x, u). At
the same time, although F does not depend on u, let for consistency F (z) = F (x).

Definition 2. Let F (z1) ≤ F (z2) and Φ(z1) ≤ Φ(z2). Then we say that the pair
(F (z2),Φ(z2)) is dominated by the pair (F (z1),Φ(z1)). A filter F = {(Fj,Φj) : 1 ≤
j ≤ nF} is a set of pairs where no pair is dominated by another pair (nF is a number
of pairs in the filter).
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The line search with a filter procedure uses three strategies for obtaining new
trial points. If t < t, where t > 0 is a computed lower bound, we use a feasibility
restoration phase. In this case, we determine a new vector dz ∈ Rn+m and a suitable
stepsize t > 0 by minimizing Φ(z) to satisfy (17). If t ≥ t, we first check whether

F (z + tdz) < Fj or Φ(z + tdz) < Φj (14)

holds for 1 ≤ j ≤ nF (otherwise, the stepsize is shortened). If t ≥ t and

dTz∇F (z) < 0, −dTz∇F (z)t > δ3Φν(z), (15)

where δ3 > 0 a ν > 1, the stepsize selection is terminated if

F (z + tdz)− F (z) ≤ ε1td
T
z∇F (z), (16)

where 0 < ε1 < 1/2 (the Armijo condition). If t ≥ t and (15) does not hold, the
stepsize selection is terminated if

F (z + tdz) < F (z)− δ1Φ(z) or Φ(z + tdz) < Φ(z)− δ2Φ(z), (17)

where 0 < δ1 < 1 and 0 < δ2 < 1 (the filter condition).

Algorithm 3. Line search with a filter.

Data: Parameters 0 < β < 1, 0 < ε1 < 1/2, 0 < δ1 < 1, 0 < δ2 < 1, δ3 > 0,
0 < δ4 < 1, size of filter nF ≥ 1, maximum size of filter mF > 1, filter
F = {(Fj,Φj) : 1 ≤ j ≤ nF} (usually nF = 1 and F = {F (z),Φ(z)}).

Input: Pair z = (x, u), values F (z), Φ(z) and direction vector dz = (dx, du) ob-
tained as a solution of equations (8)–(9).

Step 1: Compute minimum stepsize t > 0 by (18). Choose initial stepsize t > 0
(usually t = 1).

Step 2: If t < t, go to Step 6. If t ≥ t, compute new values F := F (z + tdz) and
Φ := Φ(z + tdz). If (F,Φ) ∈ F (i.e., (14) does not hold), go to Step 5.

Step 3: Minimization of the objective function. If (15) holds and Armijo condi-
tion (16) is satisfied, go to Step 8. If (15) holds and Armijo condition (16) is
not satisfied, go to Step 5.

Step 4: Utilization of the filter. If (15) does not hold and condition (17) is satisfied,
go to Step 7. If (15) does not hold and condition (17) is not satisfied, go to
Step 5.

Step 5: Set t := βt and go to Step 2.

Step 6: Feasibility restoration. Find a new direction vector dz and a suitable step-
size t > 0 in such a way that the values F := F (z + tdz), Φ := Φ(z + tdz)
satisfy conditions (F,Φ) 6∈ F and Φ < Φ(z)− δ′2Φ(z), where δ′2 > 0.
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Step 7: Filter update. Compute values F = F (z) − δ1Φ(z), Φ = Φ(z) − δ2Φ(z).
Remove from the filter pairs (Fj,Φj) dominated by (F,Φ) and add (F,Φ) into
the filter.

Step 8: Terminate stepsize selection (t > 0 is an obtained stepsize).

The minimum stepsize is computed by the rule [8]

t = δ4 min

(
ε0,

δ1Φ(z)

|dTz∇F (z)|
,
δ3Φν(z)

|dTz∇F (z)|

)
, dTz∇F (z) < 0, (18)

t = δ4 ε0, dTz∇F (z) ≥ 0,

where 0 < δ4 < 1.
The line search method with a filter is globally convergent (i.e, the process, started

from an arbitrary point, converges to the KKT point) if the following standard
assumptions are satisfied:

• Functions F (x) and ck(x), 1 ≤ k ≤ m, are twice continuously differentiable.
Function values and derivatives are uniformly bounded.

• Matrices appearing in (9) are uniformly nonsingular.

• Matrices B in (7) are uniformly bounded and uniformly positive definite.

• Conditions |uk| + |ck(x)| ≥ ε (strict complementarity) and rk + ck(x) 6= 0 are
satisfied.

Theorem 2 ([8]). Consider a nonsmooth equation line search method realized by
Algorithm 1 and Algorithm 2. If standard assumptions for global convergence are
satisfied, then ‖h(z)‖ → 0.

Theorem 3 ([7]). Consider a nonsmooth equation method, where equations (8)–(9)
are solved with the precisions

dTx rx ≤ ωxd
T
x B̂dx, ‖r̂u‖ ≤ ωu‖ĉ(x)‖,

where 0 ≤ ωx < 1, 0 ≤ ωu < 1. Let the stepsizes be determined by Algorithm 3. If
standard assumptions for global convergence are satisfied, then the method is globally
convergent.

6. Computational experiments

The computational comparisons were preformed using the system for universal
functional optimization UFO [5] on the collection of test problems TEST21. This
collection contains 18 problems with 1000 variables and is a modification of the col-
lection TEST20 described in [6]. The comparisons were made using the performance
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Figure 1: Comparison of Newton’s methods.
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Figure 2: Comparison of variable metric methods.
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Figure 3: Comparison with the sequential quadratic programming method (SQP).
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profiles for the number of function evaluations (NFV) and for the total computa-
tional time (TIME). The details about performance profiles as well as the meaning
of τ and ρ(τ) used in Figures 1–3 can be found in [1]. The following notation is used:

NE – nonsmooth equation methods, IP – interior point methods,

P – merit function, F – filter,

MN – Newton methods, VM – variable metric methods.
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