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Abstract: The paper is concerned with spherical radial basis function (SRBF)
interpolation. We introduce particular SRBF interpolants employing several
different geodesic metrics and a single trend function. Interpolation on a sphere
is an important tool serving to processing data measured on the Earth’s sur-
face by satellites. Nevertheless, our model physical quantity is the magnetic
susceptibility of rock measured in different directions. We construct a general
SRBF formula and prove conditions sufficient for its existence. Particular for-
mulae with specified geodesic metrics, trend and SRBFs are then constructed
and tested on a series of magnetic susceptibility examples. The results show
that this interpolation is sufficiently robust in general.
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1. Introduction

In many geophysical applications there is a demand to compute an approximate
representation of data measured on the sphere. We introduce a radial basis func-
tion (RBF) or spherical radial basis function (SRBF) interpolant in a real Euclidean
space Rd for data measured at nodes on the (d− 1)-dimensional surface of the unit
sphere in Rd ([2], [10], [14]) in Section 2. Further we present sufficient conditions for
the existence of such an interpolation formula.

Physical quantities measured on a sphere have brought an increasing interest with
very advanced satellite technology of acquiring such data on the Earth surface. In
the paper, the model physical quantity, having extensive applications, is different.
It is concerned with the laboratory determined scalar physical data, the values of
magnetic susceptibility of rock measured in different directions.

We introduce the spherical data interpolation formula and give sufficient condi-
tions for its existence in Section 2. We describe the ways of approximating raw data
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starting from the primary statistical treatment, important for the choice of the trend
of the interpolation formula, in Section 3, see, e.g., [15]. We use a single trend in the
formula, the second order polynomial in three Cartesian variables, that follows from
these considerations and fits the data measured as well as possible.

Several geodesic metrics, functions necessary for the construction of spherical ra-
dial basis function interpolation, are considered in the paper, cf. [9], [10], [11]. We em-
ploy only one SRBF in the experiments presented, the multiquadric ψ(r) =

√
r2 + c2,

see Sections 4 and 5. Further RBFs often used can be found in [2], [10], [12] etc.
The choice of a grid for the measurements performed is an important part of

interpolation [1], [5], [6], [7]. An apparent drawback of the simplest grid equidistant
in the spherical coordinates ϕ and ϑ is considered in Section 7. In this section,
numerical experiments employ as input the exact data given by the formula for
trend, but perturbed randomly. The results given in Sections 6 and 7 show that the
interpolation considered is sufficiently reliable.

2. Spherical data interpolation

We start with the notation necessary for introducing spherical data interpolation.
Let d be the dimension of a real Euclidean space Rd. Then Sd−1 = {x∈Rd | ‖x‖= 1},
where the norm ‖·‖ is Euclidean, is the (d− 1)-dimensional surface of unit sphere in
the d-dimensional space Rd.

Further, a function σ(x, y) of two variables x, y ∈ Rd is called radial if there
exists a function τ(r), r ≥ 0, such that σ(x, y) = τ(r), where r ∈ R is usually the
Euclidean distance between x and y in case of non-spherical data.

Let N and M be integers, N > 0, M ≥ 0, N ≥ M , and X = {xj}Nj=1 be a set
of mutually distinct interpolation nodes xj = (xj1, xj2, . . . , xjd) on Sd−1. The real
spherical interpolant v for x ∈ Sd−1 is constructed as

v(x) =
N∑
j=1

ajψ(g(x, xj)) +
M∑
k=1

bkpk(x), (1)

where aj, j = 1, . . . , N, and bk, k = 1, . . . ,M, are real coefficients to be found. If
M = 0, the second sum is empty.

In the interpolant, g is a nonnegative function called the geodesic metric, usually
g : Sd−1 × Sd−1 → [0, 1] is based on the angle between the radius vectors corre-
sponding to the two arguments of g, see Section 3. Examples are given in Sec-
tion 4. Further, ψ : [0, 1] → R is a continuous real function, called the radial basis
function (RBF) or spherical radial basis function (SRBF), and pk is a polynomial
from Πt(Rd), where Πt(Rd) is the set of all polynomials (trends) p : Rd → R with
real coefficients and of total degree less than or equal to some nonnegative integer t.

Let us formulate the interpolation problem to be solved. Given a continuous
real target function f : Sd−1 → R, find the spherical interpolant, i.e., a continuous
function v : Sd−1 → R that satisfies the interpolation conditions

v(xi) = f(xi), i = 1, . . . , N, (2)
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where f(xi) is the value measured at the node xi. Multiple measurements in a sin-
gle direction xi with different results lead to a singular linear algebraic system for
coefficients of the interpolation formula.

We confine ourselves only to real-valued functions and real data to make the
exposition clearer. Substitute xi, i = 1, . . . , N , for x in the formula (1) for v to get

v(xi) =
N∑
j=1

ajψ(g(xi, xj)) +
M∑
k=1

bkpk(xi), i = 1, . . . , N,

and replace the left hand parts v(xi) of the interpolation conditions (2) with these
expressions.

In the matrix notation, introduce an N × N symmetric square matrix Ψ with
the entries ψij = ψ(g(xi, xj)), i, j = 1, . . . , N , and an N ×M matrix P with the
entries pjk = pk(xj), j = 1, . . . , N, k = 1, . . . ,M . Let a ∈ RN , b ∈ RM , and f ∈ RN

be the vectors of the unknowns and the vector of the right hand parts f(xi) of the
interpolation conditions (2).

Note that if M > 0 then we have only N interpolation conditions for N+M inter-
polation coefficients aj and bk of the interpolant. Thus we can impose M additional
linear constraints for the individual trends pk,

N∑
j=1

ajpk(xj) =
N∑
j=1

ajpjk = 0, k = 1, . . . ,M.

Now the system of linear algebraic equations to be solved for the unknown vec-
tors a and b reads

Q

[
a
b

]
=

[
f
0

]
, where Q =

[
Ψ P
PT 0

]
(3)

is a symmetric (N +M)× (N +M) matrix of the system.

Theorem 1. Let the N×N principal submatrix Ψ of the (N+M)×(N+M) matrix Q
be positive definite and let rank P = M . Then the matrix Q is nonsingular.

Proof. The proof follows from Theorem 1 of [13].

In Theorem 1, we use the hypothesis that the matrix Ψ is positive definite and
rank P = M . However, in Micchelli [12] and many other sources, the condition that
the spherical basis function ψ is conditionally (strictly) positive definite is employed
to prove that the matrix Q is nonsingular.

A problem similar to data interpolation is data smoothing (fitting) but we are not
concerned with that problem in this contribution.
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3. Model problem

For a model problem, we have chosen the laboratory determination of raw sus-
ceptibility data, see, e.g., [8], [15]. The 3D rock sample rotates in magnetic field and
the scalar data items si measured in a set of selected directions ui are of the form

si = uT
i Kui + ei, (4)

where ui is a unit vector in Cartesian coordinates in R3, whose initial point is at the
origin and whose end point is on the unit sphere at xi. K is a tensor, and ei are
deviations from the theoretical tensor model. Assuming the equation (4), we carry
out linear regression and find an estimation of the tensor K. Then an appropriate
rotation of the coordinate system can make the tensor K diagonal with the principal
susceptibilities K1, K2, K3 on the diagonal.

We call the graphical representation of the directional susceptibilities the lemnis-
cate surface, see Figure 1. Two-dimensional surfaces in R3 are depicted as endpoints
of the corresponding vectors siui, as usual.

Figure 1: Model problem. Lemniscate surface v obtained by the interpolation
formula (10) (with interpolation conditions (2)) employing the theoretical values
f(xi) = si given by (4) with principal susceptibilities K1 = 2.00, K2 = 1.00,
K3 = 0.10, and ei = 0.

The magnitude of directional susceptibility in the ith direction zi is given by
the distance between the origin and the surface measured along the vector zi. The
polynomial s(z) = zTKz determined by the tensor K is taken for the only trend in
our further considerations, see Section 5.

4. Geodesic metric

Employing a RBF in the interpolation formula, we are supposed to define the
distance between two nodes (i.e., between two unit vectors) x and y on the unit
sphere Sd−1. The angle α of these two vectors is given as

cosα = x · y,
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where x · y is the inner product of two vectors from Rd. Since cosα = cos(2π − α)
we can choose for computation either the angle α or its complement to 2π, i.e.
2π − α. Only few geodesic metrics g are used in practice. They usually satisfy
g : Sd−1 × Sd−1 → [0, 1].

The simplest geodesic metric is the angle α itself,

g0(x, y) = α/(2π) = cos−1(x · y)/(2π). (5)

Further two geodesic metrics, g1 and g2, are based on cosα, α ∈ [0, 2π]. We put

g1(x, y) =
√

1− cos2 α = | sinα|. (6)

Central symmetry of the data measured is expected when we apply the geodesic
metric g1. Every unit vector x is considered as a part of an axis coming through the
center of the sphere and from its two possible directions no direction is prescribed.
Our quantity measured (magnetic susceptibility of rock) is just of this kind. If the
angle α of two vectors x and y equals π (i.e., y = −x) then the values measured on
the sphere at x and y should be identical since the nodes x and −x of interpolation
are not distinguished.

Therefore, in what follows, when using g1, we assume that the elements xj of
the set X are mutually distinct and, moreover, that it is xi 6= −xj for every i, j =
1, . . . , N . The geodesic metric g1 is periodic in α with the period π, and it holds
g1(x, y) = 0 for α = 0, π, 2π.

The next geodesic metric considered is

g2(x, y) =
√

1
2
(1− cosα). (7)

No symmetry of data measured is supposed when we employ the geodesic metric g2.
Apparently, g2 is periodic in α with the period 2π, and it holds g2(x, y) = 0 for
α = 0, 2π.

5. A particular trend function

Let us turn back to our 3D problem introduced in Sec. 3. We take the second
degree polynomial corresponding to (4), i.e.

s(z) = K1z
2
1 +K2z

2
2 +K3z

2
3 , z = (z1, z2, z3) ∈ S2, (8)

where K1, K2, K3 are known positive constants, for the only trend, i.e. M = 1.
Notice that the single argument of the SRBF function ψ is from the interval [0, 1]

due to the geodesic metric, while the argument z of the trend s is from S2.
The advantage of the formula proposed is apparent in cases when we know that

the physical field measured does not principally differ from the ideal field whose values
can be computed from some explicit formula, in our case from (4). Description of
the ideal field is then fitted by the trend part of the formula and the corrections
resulting from the first, spherical part of the formula are only small.
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6. The SRBF formula employed

We put d = 3 in our model problem, then S2 is the usual two-dimensional unit
sphere surface in the three-dimensional Euclidean space R3. Choose a fixed positive
integer N and put M = 1.

We take the multiquadric

ψ(r) =
√
r2 + c2 (9)

for the spherical radial basis function, where r ∈ [0, 1] (the range of the geodesic
function) and c is a positive shape parameter.

Apparently, the trend s given by (8) belongs to Π2(R3), which is the set of all
polynomials p : R3 → R of three variables with real coefficients and of total degree
less then or equal to 2.

Consider the interpolation formula (1) in the form

v(x) =
N∑
j=1

ajψ(g(x, xj)) + bs(x), (10)

where x, xj ∈ S2, i.e., in the interpolation system (3), P is a single column N -vector
and b and 0 are scalars.

We add a single constraint

N∑
j=1

ajs(xj) = 0

to the interpolation conditions.

The following theorem is a particular case of Theorem 1 that covers our model
problem.

Theorem 2. Let the linear algebraic system (3) correspond to the interpolation for-
mula (10). Let the block P in the block matrix Q have rank 1. Then the interpolation
problem has the unique solution aj, j = 1, . . . , N , and b.

Proof. It is known that the principal submatrix Ψ of the block matrix Q of the
linear algebraic system (3) is positive definite when ψ is an inverse multiquadric
(Micchelli [12]). On the assumption that rank P = 1, the matrix Q is nonsingular
by Theorem 1 and the system has the unique solution aj, j = 1, . . . , N , and b.

Remark 1. P is a single column N -vector, PT = (s(x1), . . . , s(xN)). The assump-
tion of Theorem 2 that rank P = 1 is apparently fulfilled if at least one of the entries
pk = s(xk) is nonzero.
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Figure 2: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.9, 1.1]
resulting in the corresponding ei. The geodesic metric g0, N = 74, c2 = 0.25.

7. Computational experiments

We have accomplished several series of computational experiments with the SRBF
interpolation of the theoretical as well as perturbed theoretical lemniscate surfaces
in the model problem with d = 3, where S2 is the usual two-dimensional unit sphere
surface in the three-dimensional Euclidean space. We have employed the SRBF
interpolation formula (10) and different grids, geodesic metrics g0, g1, g2, and several
SRBF functions. See Figures 2, 3, 4.

The simplest grid used on a unit sphere is the grid equidistant in both the spher-
ical coordinates ϕ and ϑ. The drawback of this grid is the fact that its nodes are
dense in the vicinity of poles and sparse around the equator. For g1, the interpolation
nodes should satisfy the condition xj 6= ±xi mentioned above. The results presented
in this paper have been computed in such grids.

Grids on a unit sphere are often used also for numerical integration. For in-
terpolation, we have tried three such systems of grids: Bažant grids [1], Fibonacci
grids [4], [6], and triangular grids stemming from an icosahedron [7], but we have
found that they bring no significant advantage. A general treatment of data sampling
on a unit sphere is provided in [5].

In literature (see, e.g., [2], [10], [12]), one can find several SRBFs ψ known to pro-
vide a positive definite matrix Ψ of (3). For example, the (direct) multiquadric (9),
inverse multiquadric 1/

√
r2 + c2, Gaussian function exp(−cr2) or thin plate spline [3].

The results presented in this contribution have been computed with the direct mul-
tiquadric ψ with a positive parameter c. The results may strongly depend on the
constant c.

The resulting linear algebraic system (3) for the coefficients of the formula can
be easily solved by the LU decomposition method for N of order tens. For higher N ,
the system may be very ill-conditioned and special solution methods should be used.
We apply, e.g., the Gauss-Jordan method.
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Figure 3: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.9, 1.1]
resulting in the corresponding ei. The geodesic metric g1, symmetric grid and data,
N = 40, c2 = 0.25.

Figure 4: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.999, 1.001]
resulting in the corresponding ei. The geodesic metric g2, N = 74, c2 = 0.25.

8. Conclusions

We have carried out numerical tests with the interpolation formula (10), three
geodesic metrics (5), (6) and (7), and SRBF (9). The formula performs efficiently and
the results exhibit dependence on the parameter c. Further research shall provide
a comparison of results obtained using various other SRBFs, e.g. thin plate splines,
inverse multiquadrics, or the Gaussian function.
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