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Abstract: This paper deals with the basic preconditioning and deflation vari-
ants of the FETI-1 and TFETI-1 methods, with (T)FETI-1 with deflation
being called (T)FETI-2. It also presents the results of numerical experiments
performed on a simple benchmark 2D problem of linear elasticity to compare
the computational efficiency of FETI-1 and TFETI-1 and each variant of their
preconditioning or deflation in terms of number of executed CG iterations.
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1. Introduction

The Finite element tearing and interconnecting (FETI) methods are probably
the most commonly used domain decomposition methods for a parallel numerical
solution of PDEs. In Section 2, the mathematical formulations of basic FETI meth-
ods: FETI-1 and TFETI-1 are presented. The basic ways of their preconditioning
are introduced in Section 3. In Section 4, the principle of the deflated conjugate
gradient method is presented. In Section 5, mathematical formulations of applied
methods of deflation are introduced. In Section 6, the results of numerical exper-
iments performed on the simple benchmark 2D FEM-discretized problem of linear
elasticity are presented.

2. FETI-1 and TFETI-1 methods

In all methods of the FETI-type, the global problem of linear elasticity discretized
by FEM, defined on discretized linear elastic domain, is decomposed into several
local problems defined on non-overlapping subdomains which are then glued via
conditions of displacements continuity across their mutual interfaces, which leads to
the constrained minimization problem of quadratic programming [1]:
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min (1/2)uTKu− uTf s.t. Bu = o (1)

K = diag
(
K1 · · · Ki · · · KNs

)
, K ∈ Rn×n (2)

u =
[
uT
1 · · · uT

i · · · uT
Ns

]T
; f =

[
fT
1 · · · fT

i · · · fT
Ns

]T
; u ∈ Rn×1; f ∈ Rn×1 (3)

where blocks Ki, ui, fi are blocks associated with ith subdomain denoting its stiffness
matrix, vector of deformation parameters of nodes of the subdomain, and vector of
external loading concentrated into the subdomains nodes.

Equality conditions: Bu = o, B ∈ Rm×n ensure the continuity of node dis-
placements by gluing its subdomains on their interfaces. The Dirichlet boundary
conditions (BCs) are prescribed by modifying K and f in corresponding columns
and rows (FETI-1), or by adding Dirichlet BCs to the problem constraints expressed
by Bu = o (TFETI-1). The constraints Bu = o are then enforced by the vector of
Lagrange multipliers λ, where λ ∈ Rm×1.

Problem (1) can be expressed as the following saddle-point problem:[
K BT

B O

] [
u
λ

]
=

[
f
o

]
. (4)

The vector of solution u can be expressed from the first equation in (4)

u = uImK + uKerK = K+(f −BTλ) +Rα,R ∈ Rn×r, α ∈ R r×1 (5)

where K+ is some form of a generalized inverse of K, and R is the matrix whose
columns are the basis of KerK, so it should also hold: RT (f −BTλ) = o.

Dualizing this problem and using the standard FETI notation [2]:

F = BK+BT ; d = BK+f ;G = −RTBT ; e = −RTf, (6)

the following problem is obtained:[
F GT

G O

] [
λ
α

]
=

[
d
e

]
. (7)

After homogenizing: Gλ = e using λ0 = GT (GGT )
−1
e, λ0 ∈ ImGT , the remaining

part of λ is µ in KerG, and the following minimization problem is obtained [2]:

min (1/2)µTFµ− µT (d− Fλ0) s.t. Gµ = o. (8)

The equality constraint can be enforced by dual penalty or more efficiently by the
orthogonal projector P onto KerG, P ∈ Rm×m [2]:

P = I −GT (GGT )−1G, (9)

so that the minimization problem is equivalent to the problem of finding the solution
x̄ of the system of linear equations

Ax = b;A = PFP ;x = µ; b = P (d− Fλ0), (10)

which is solved iteratively, typically by the conjugate gradients (CG).
The primal solution ū can be reconstructed as follows: [2]

α = (GGT )
−1
G (d− F (λ0 + x)); u = K+(f −BT (λ0 + x)) +Rα. (11)
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3. Preconditiong and preconditioned conjugate gradients (PCG) method

There exist two basic FETI preconditioners for FETI-1 and TFETI-1, both ap-
proximating the inverse of the matrix F . To assemble these preconditioners, the
stiffness matrix K has to be divided into 4 blocks [3]:

K =

[
Kii Kib

KT
ib Kbb

]
, (12)

where Kii, and Kbb are composed of elements of K associated with subdomains’
internal, respectively boundary nodes, etc. Likewise, the gluing matrix B should be
divided into blocks Bi and Bb: B =

[
Bi Bb

]
. The block Bi, associated with internal

nodes of subdomains, is always a zero matrix, since the conditions of equality of the
deformation parameters, respectively Dirichlet BCs of the problem, are expressed
only between or for boundary nodes of the subdomains.

3.1. Dirichlet preconditioner (DP)

The Dirichlet preconditioner is expressed as follows [3]:

FD−1

I =
[
Bi Bb

] [O O
O Sbb

] [
BT

i

BT
b

]
= BbSbbB

T
b , Sbb = Kbb −KT

ibK
−1
ii Kib, (13)

where Sbb is the Schur complement of the block Kii.

3.2. Lumped preconditioner (LP)

The matrix of the lumped preconditioner is an approximation of the Dirichlet
one with only the first term in the relation for computation of Sbb used [3]:

FL−1

I =
[
Bi Bb

] [O O
O Kbb

] [
BT

i

BT
b

]
=

[
Bi Bb

] [Kii Kib

KT
ib Kbb

] [
BT

i

BT
b

]
= BKBT . (14)

The lumped preconditioner is less accurate and less optimal approximation of the
inverse of F , so its effect as a preconditioner on improving the spectral properties of
the system matrix and reducing the number of PCG iterations is smaller than with
the Dirichlet preconditioner, but its computation is significantly cheaper [3].

4. Deflation and deflated conjugate gradient (DCG) method

When solving the system of equations Ax = b using the CG method, the kth ap-

proximation xk of the solution vector is found as the minimizer of quadratic function

f(x) = 1
2
xTAx− xT b over the kth Krylov subspace Kk(A, r0).

The basic idea of the DCG method is to enrich the Krylov subspace Kk by some
subspace W , the so-called deflation subspace. If W is defined conveniently, a faster
convergence of the CG method, solving the system, can be anticipated [4], [5].

Let the subspace W be spanned by column vectors wj forming the matrix W :

W =
[
w1 . . . wj . . . wm

]
(15)

then the projector PD on A-conjugate complement of the deflation subspace W can
be formulated as follows [4], [5]:
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PD = I −QA = I −W (W TAW )−1W TA. (16)

In the DCG method, the process of a solution can be split into 2 parts: solution on
the deflation subspace W and solution on its A-conjugate complement. It is achieved
using the fact that in a classical CG method it holds that the vector rk of the residual
in the kth iteration is orthogonal to kth Krylov subspace Kk(A, r0), over which the
quadratic functional f(x) is minimized in the kth iteration [4], [5].

If some arbitrary initial guess x−1 is given, then the corresponding vector of
residual is r−1 = b−Ax−1, and the correction x0 of the initial guess in the deflation
subspace W is then computed as follows [4], [5]:

x0 = x−1 +Qr−1 = x−1 +W (W TAW )−1W T r−1. (17)

If the last equation is multiplied by W TA from the left, then

W TAx0 = W TAx−1 +W TAW (W TAW )−1W T (b− Ax−1) (18)

W T b−W TAx0 = W T ro = o, (19)

so that the vector r0 corresponding to x0 satisfies the condition of its orthogonality
to W , i.e., it has no components in W , and thus x0 is the exact solution in W .

If columns of the deflation matrix W are exact eigenvectors of the system matrix
A computed in exact arithmetics, it holds: W TA = ΛW T , where Λ is a diagonal
matrix with eigenvalues of A, with the kth entry corresponding to the kth column
of W , i.e., to the kth of the chosen eigenvectors. Thus, in such case also the kth
Krylov subspace Kk(A, r0) is orthogonal to W since W TAk−1 = Λk−1W T .

Since the residual rk in the kth iteration of the CGmethod belongs toKk+1(A, r0),
k = 0, 1, . . . , then rk is orthogonal to and thus has no components in W .

However, since the computations in reality cannot be performed in exact arith-
metic and W generally does not consist of exact eigenvectors of A, the residual rk
is not A-conjugate to W , in general. Thus, conjugate directions pk are generally
not A-conjugate to W since in standard CG it holds: pk+1 = rk+1 + βk+1pk, which
is a problem since the approximations xk of a solution are searched only on the A-
conjugate complement of W . Thus, some sort of correction has to be performed in
the iteration process to make the vectors pk A-conjugate to W , so that the approxi-
mations xk are searched only in the A-conjugate complement of W .

The correction is performed in a way that in relation used to compute the vector
pk in the standard CG method, the vector of residual rk is projected onto the A-
conjugate complement of W , by multiplying it by the projector PD defined in (16),
so the relations for computing p0 and pk+1, k = 0, 1, . . . get the following form:

p0 = PD r0; pk+1 = PD rk+1 + βk+1pk. (20)

By ensuring that the approximations xk of the solution during the iterative process
of DCG are searched only on the A-conjugate complement of the deflation sub-
space W , the required splitting of the solution into components on W (in the form
of correction of the initial guess) and on its A-conjugate complement is achieved.
The CG, PCG, and DCG algorithms are presented in Table 1.
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CG PCG DCG

Input : A, b, x0, k = 0 Input : A, b, x0,M
−1, k = 0 Input : A, b, x−1,W, k = 0

Q = W (WTAW )−1WT

PD = I −QA

r−1 = b−Ax−1

x0 = x−1 +Qr−1

r0 = b−Ax0 r0 = b−Ax0 r0 = b−Ax0

z0 = M−1r0

p0 = r0 p0 = z0 p0 = PD r0

while (some ending criterium) while (some ending criterium) while (some ending criterium)

s = Apk s = Apk s = Apk

αk = (rTk rk)/(s
T pk) αk = (rTk zk)/(s

T pk) αk = (rTk rk)/(s
T pk)

xk+1 = xk + αkpk xk+1 = xk + αkpk xk+1 = xk + αkpk

rk+1 = rk − αks rk+1 = rk − αks rk+1 = rk − αks

zk+1 = M−1rk+1

βk+1 = (rTk+1rk+1)/(r
T
k rk) βk+1 = (rTk+1zk+1)/(r

T
k zk) βk+1 = (rTk+1rk+1)/(r

T
k rk)

pk+1 = rk+1 + βk+1pk pk+1 = zk+1 + βk+1pk pk+1 = PD rk+1 + βk+1pk

Output : xk Output : xk Output : xk

Table 1: CG, PCG and DCG algorithms

5. (T)FETI-2 – deflated variant of (T)FETI-1

In this section, it is considered that deflation is applied on the CG method solv-
ing the final system of equations obtained by decomposition of the FEM-discretized
problem of 2D linear elasticity by (T)FETI-1. It is also presumed that both the dis-
cretization and decomposition of the analyzed linear elastic domain are conforming.

5.1. Deflation by equality of displacements in corner nodes (CE)

Equation BCu = o expresses the equality conditions of the corresponding dis-
placement components of mutually corresponding corner nodes on the interfaces of
neighbouring subdomains in two perpendicular directions x and y.

Since conditions BCu = o are already included in conditions Bu = o using the
matrix B, the matrix BC can be obtained by splitting B into two parts as follows

B =
[
BT

C BT
R

]T
, with BR expressing the equality conditions of displacements of the

remaining nodes by BRu = o, which are not in corners of subdomains.

The deflation matrix W is: W = BBT
C =

[
BT

C BT
R

]T
BT

C =
[
BCB

T
C BCB

T
R

]T
=[

BCB
T
C OT

]T
, where in case of orthonormal rows of B it holds: W =

[
I OT

]T
.

5.2. Deflation by equality of the displacement averages and by moment
equilibrium of gluing forces on subdomains’ interfaces

In this method of defining the deflation subspace W , at first the matrix BA has
to be defined. This matrix will be divided into two vertical blocks BA A and BA M ,

i.e. BA =
[
BT

A A BT
A M

]T
for purposes of following formulations.
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The block BA A in the relation BA Au = o expresses the conditions enforcing the
equality of the averages of values of displacement components of each node along
opposite sides of each corresponding interface of 2 subdomains.

The block BA M is used to express the conditions of moment equilibrium of the
force system of solitary forces of contributions of the notional total gluing force,
acting on the interfaces of two subdomains, distributed continuously and uniformly
along their length, as contributions concentrated in each corresponding node on
either side of the interface, with the total force distributed uniformly (averaged)
among the contributions, in terms of their magnitude and direction. The moments
of the forces of contributions concentrated in corresponding nodes are all related to
the same reference point, here always the point with the global coordinates [0,0].

The moment of the corresponding component, in direction of axis x, or y, of the
solitary force of corresponding contribution of the total gluing force, concentrated
into the node on interface, denoted as 12, of two subdomains: 1 and 2, related to
the point [0,0] is equal to the corresponding element of the vector of the product of
transpose of the corresponding row of matrix BA M , with the corresponding element,
denoted e.g. as λA M12 of the vector λA M , where sum of all the elements of the
product equals zero, i.e., the moment equilibrium of the force system is ensured.

The deflation matrix W is computed as W = BBT
A.

5.2.1. Conditions of averages equality (AE)

The formulation of the conditions of equality of averages of displacement compo-
nents in two directions x and y, of nodes lying along opposite sides of the interface,
denoted as 12, of two subdomains: 1 and 2, of decomposed domain, is following:

x :
1

n

n∑
k=1

u1k x
− u2k x

= 0, y :
1

n

n∑
k=1

u1k y
− u2k y

= 0, (21)

where n is the number of nodes on side of the interface and u1(2)k x(y)
is the displace-

ment component of the k-th node in the x(y) direction. The structure of the two
corresponding rows of the BA A matrix expressing these two conditions is then:

1

n

 11 x 11 y · · · 1k x 1k y · · · 1n x 1n y 21 x 21 y · · · 2k x 2k y · · · 2n x 2n y

O 1 0 · · · 1 0 · · · 1 0 O −1 0 · · · −1 0 · · · −1 0 O
O 0 1 · · · 0 1 · · · 0 1 O 0 −1 · · · 0 −1 · · · 0 −1 O

 (22)

The conditions of equality of displacement averages on the interface are implicitly
also the conditions of equilibrium of the force system of solitary forces of discrete
contributions of the total gluing force into corresponding nodes on that interface.

5.2.2. Conditions of moment equilibrium (ME)

The condition of moment equilibrium of the discrete contributions of the total
gluing force acting along entire length of the interface 12 of two subdomains: 1 and 2,
concentrated and uniformly distributed in each node on either corresponding side of
the interface, with moments all related to the reference point [0,0], is enforced using
the corresponding row of BA M of the following structure:
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[
11 x 11 y · · · 1k x 1k y · · · 1n x 1n y 21 x 21 y · · · 2k x 2k y · · · 2n x 2n y

O −y1 x1 · · · −yk xk · · · −yn xn O y1 −x1 · · · yk −xk · · · yn −xn O

]
, (23)

where, x(y)1(k, n) is the x(y)-coordinate, in the global coordinate system, belonging
to the first (k-th, last) node on each side of the interface.

5.3. Deflation by the eigenvectors of the system matrix (EIG)

As it was mentioned in Section 4 concerning the DCG method, the deflation
matrix W should be in an ideal case composed of the (exact) eigenvectors of the
system matrix A. If the columns W are exact eigenvectors of the system matrix A
computed in exact arithmetic, then W TA = ΛMW T , where ΛM is a diagonal matrix
with eigenvalues of A, where the kth diagonal entry (kth eigenvalue) corresponds to
the kth column of W .

To achieve the desired effect of deflation in significantly improving the spectral
properties of the spectral operator PDA in the iterative process of the DCG method,
and thus speeding up convergence of the iterative process, the eigenvectors of the
matrix A that slow down convergence the most should be deflated, which are usually
those corresponding to the extremal, usually the lowest, eigenvalues of A. If the
eigenvectors of A, which form W , are favourably selected, then the desired effect of
deflation can be reached for a relatively small number of eigenvectors of A, which
leads to a small matrix W TAW of the coarse problem (CP) in the DCG method and
thus to a computationally cheap solution of CP [4], [5].

However, the process of obtaining the eigenvalues and eigenvectors is generally
very costly, and thus the solution of the system of linear algebraic equations Ax = b
by the CG method with a good preconditioner is often faster, in terms of the total
time needed for the assembly of the preconditioner, or the deflation matrix, and the
subsequent solution of the system using the PCG, or DCG method.

5.4. Deflation by discrete wavelet transform (DWT)

In the following text, it is considered that the discrete Haar wavelet, as the
structurally simplest, is applied during the DWT. The Haar wavelet has two filters,
the “low-frequency” and “high-frequency”, which are used to obtain the components
of some signal corresponding to the low/high frequencies.

The process of splitting 1D signal, represented by vector x, into its low- and high-
frequency components, is in kth level of forward DWT represented by decomposition
of the vector ak−1, with a0 = x, lying in so-called (k − 1)th discretized scaling sub-
space Vk−1, on its so-called approximation coefficients ak (corresponding to the lower
frequencies), lying in kth discretized scaling subspace Vk, and detailed coefficients dk
(higher frequencies), in so-called kth discretized wavelet subspace Wk as orthogonal
complement of Vk in Vk−1, is carried out by the gradual application of corresponding
orthogonal projectors Hk (from Vk−1 onto Vk) and Gk (from Vk−1 onto Wk).

This means that in the k-th level, where k = 1, . . . ,M , with M being the given
chosen total number of levels of DWT performed, it holds:
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ak = Hkak−1, dk = G1ak−1,

[
ak
dk

]
=

[
Hk

Gk

]
ak−1. (24)

Thus the vector aM obtained after M compressions (M levels of forward DWT)
applied on the vector x, of length equal to N/2M , or to its closest higher or lower
integer to N/2M , of original signal x (of length N) can be expressed using the matrix
H of the total projector from the space V0 = l2(N) to the VM in the following way:

aM = HMHM−1 . . . Hk . . . H2H1x = Hx. (25)

The inverse DWT of aM is then given by multiplication of aM by transpose of H,
i.e. by HT , where the vector obtained by applying M levels of inverse DWT using
HT on the vector obtained by M levels of DWT on x using matrix H, only the trend
part of the signal represented by x is preserved.

If DWT is applied to square matrices A in order to obtain only its components
corresponding to its lower eigenvalues, the projector H is applied to the columns and
its transpose HT on transformed rows, so that the matrix obtained by 2D FDWT of
A is a matrix AT = HAHT . The deflation matrix W is obtained as W = HT .

The matrix Hk of the orthogonal projector from Vk−1 onto Vk has structure:

Hk =
1√
2

[
. . . 1 1 0 0

0 0 1 1
. . .

]
. (26)

The vector (matrix) on which the projector Hk, without modification, is applied
at the kth level of DWT must have the length (dimensions) divisible by 2. If it does
not hold, then some adjustment of the structure of Hk has to be performed; see [6].

In numerical experiments, the case where the structure of matrix of orthogonal
projector Hk was adjusted with regard to the fact that 2D decomposed discretized
problem of linear elasticity is solved in a following way (27), was also tested:

Hk,2D =
1√
2

[
. . . 1 0 1 0

0 1 0 1
. . .

]
, (27)

so that H2D = HM,2DHM−1,2D . . . H1,2D and W2D = HT
2D.

5.5. Deflation by discrete Fourier transform (DFT)

DFT of some vector x ∈ l2(N) is in fact the computation of its coordinate vector
c in complex orthonormal discrete Fourier basis of the vector space l2(N). The kth
component ck, of the vector c as the DFT of the vector x can be computed as the
complex inner product of x, with the kth Fourier basis vector having the structure:

Fk =
1√
N

[
1 (e2πi/N)k · · · (e2πi/N)nk · · · (e2πi/N)(N−1)k

]T
. (28)

The deflation matrix W is then composed of the first M vectors Fk, of a discrete
Fourier basis, where k = 0, 1, . . . ,M − 1 as follows:

W =
[
F0 F1 · · · Fk · · · FM−1

]
. (29)
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The deflation matrix W can again have its structure adjusted with regard to
solution of 2D elasticity problem, where the block Fk,2D of the deflation matrix W ,
replacing the kth discrete Fourier basis vector, is constructed using kth discrete
Fourier basis vector of the vector space l2(N/2), and it has the following structure:

Fk,2D =
2√
N

 1 0 · · · e
2πi(nk)

N/2 0 · · · e
2πi(N/2−1)k

N/2 0

0 1 · · · 0 e
2πi(nk)

N/2 · · · 0 e
2πi(N/2−1)k

N/2

T

. (30)

The deflation matrix, with structure adjusted with regard to solving the 2D decom-
posed discretized problem of linear elasticity, denoted as W2D, is defined as follows:

W2D =
[
F0,2D F1,2D · · · Fk,2D · · · FM−1,2D

]
. (31)

5.6. Deflation by discrete cosine transform (DCT)

DCT works on similar principle as DFT, only the complex discrete Fourier basis
is replaced by real discrete cosine basis, whose kth vector has following structure:

Ck =

√
2− δk,0

N

[
cos

(1/2)kπ

N
· · · cos

(n+ 1/2)kπ

N
· · · cos

(N − 1 + 1/2)kπ

N

]T
, (32)

and the deflation matrix W is then composed of the first M vectors of this discrete
cosine basis Ck, k = 0, 1, ...,M − 1 :

W =
[
C0 C1 · · · Ck · · · CM−1

]
. (33)

The structure of the deflation matrixW , respectively of the vectors Ck as the columns
of W can be again adjusted with regard to solving 2D problem of elasticity

Ck,2D =

√
2− δk,0
N/2

 · · · cos
(n+ 1/2)kπ

N/2
0 · · ·

· · · 0 cos
(n+ 1/2)kπ

N/2
· · ·


T

, n = 0, 1, . . . ,
N

2
− 1, (34)

resulting in W2D with the structure:

W2D =
[
C0,2D C1,2D · · · Ck,2D · · · CM−1,2D

]
. (35)

6. Numerical experiments

As the benchmark problem used in numerical experiments, model 2D linear
elasticity problem, see Fig. 1, defined on 2D linear elastic domain, decomposed
into (1/H)2 identical square non-overlapping subdomains with edge lengths H =
1/2, 1/4, 1/8, 1/16, was chosen. The subdomains were discretized by 2D identical
finite elements of shape of isoscleses right-angled triangle with length h. There are
presented the results of numerical experiments only for value of the ratio H/h = 8.

All algorithms were implemented and numerical experiments were performed in
Matlab, as the stopping criteria was used: ||rk|| ≤ ϵ||b||, where always: ϵ = 10−6,
and the initial guess x0 was always zero vector.

Table 2 presents the corresponding dimensions of the problems for given H using
FETI-1/TFETI-1. The dimensions of the deflation subspace W for each tested
variant of deflation are presented in Table 3 .
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(a) Definition of the problem (b) Solution of the problem

Figure 1: The benchmark: 2D problem of linear elasticity

H 1/2 1/4 1/8 1/16

Primal dimension 648 2592 10368 41472

Dual dimension (dim(A)) 70/104 414/480 1918/2048 8190/8448

dim(KerK) = (dim(KerA) 6/12 36/48 168/192 720/768

rank(A) = dim(A)− dim(KerA) 64/92 378/432 1750/1856 7470/7680

Table 2: Problems dimensions (A = PFP , H/h = 8)

H 1/2 1/4 1/8 1/16

F
E
T
I-
2

CE1/CE2 6/14 54/78 294/350 1350/1470

AE/AE+ME 8/12 48/72 224/336 960/1440

EIG 1/2/4/. . . /32/64 1/2/. . . /256/378 1/2/. . . /1024/1750 1/2/. . . /2048/4096

DWT1 36/18/10/6 208/104/52/26 960/480/240/120 4096/2048/1024/512

DWT2 35/18/9/5 207/104/52/26 959/480/240/120 4095/2048/1024

DFT1 2/4/8/. . . /32/64 2/4/. . . /256/378 2/4/. . . /1024/1734 2/4/. . . /2048/4096

DFT2 1/2/4/. . . /32/64 1/2/. . . /256/376 1/2/. . . /1024/1728 1/2/. . . /2048/4096

DCT1 2/4/8/. . . /32/64 2/4/. . . /256/378 2/4/. . . /1024/1738 2/4/. . . /2048/4096

DCT2 1/2/4/. . . /32/64 1/2/. . . /256/376 1/2/. . . /1024/1730 1/2/. . . /2048/4096

T
F
E
T
I-
2

CE1/CE2/CE3 6/14/16 54/78/84 294/350/364 1350/1470/1500

AE/AE+ME 8/12 48/72 224/336 960/1440

EIG 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1856 1/2/. . . /2048/4096

DWT1 52/26/14/8 240/120/60/30 1024/512/256/128 4224/2112/1056/528

DWT2 52/26/13/7 240/120/60/30 1024/512/256/128 4224/2112/1056/528

DFT1 2/4/8/. . . /64/92 2/4/. . . /256/432 2/4/. . . /1024/1854 2/4/. . . /2048/4096

DFT2 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1854 1/2/. . . /2048/4096

DCT1 2/4/8/. . . /64/92 2/4/. . . /256/432 2/4/. . . /1024/1854 2/4/. . . /2048/4096

DCT2 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1855 1/2/. . . /2048/4096

Table 3: Dimensions of the deflation subspaces

The numbers of performed iterations of (P)CG method with no, lumped and
Dirichlet preconditioners, and of the DCGmethod for each tested variant of deflation,
solving the system of equations obtained by (T)FETI-1, are depicted in Table 4.
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H 1/2 1/4 1/8 1/16

FETI-1 (NO/LP/DP) 23/14/8 37/20/13 45/24/17 56/29/25

TFETI-1 (NO/LP/DP) 25/14/8 34/16/8 34/16/11 33/16/11

F
E
T
I-
2

CE1/CE2 18/15 22/20 25/24 26/26

AE/AE+ME 16/14 24/20 25/21 26/22

EIG 28/23/19/
16/12/7/0

46/46/47/32/27/
22/15/9/6/0

56/56/56/58/44/29/
27/22/15/10/6/0

72/70/70/70/62/52/
29/28/27/22/16/11/7

DWT1 25/21/13/9 53/36/19/11 67/49/27/15 89/61/34/16

DWT2 22/18/15/– 38/29/26/– 49/36/32/– 62/48/35/–

DFT1 27/26/19/
15/13/0

62/5954/2262/1079
/215/49/23/16/0

74/7186/–/8522/9267
/–/2285/148/46/23/5

95/–/–/–/–/–/–/
–/–/231/61/33

DFT2 28/1029/640
/57/24/17/0

58/5183/–/6069/5471
/3946/335/54/14/2

67/7443/7904/8719/9251/
9190/8404/–/1193/134/25/7

84/7788/9757/7437/9456/
9979/–/–/–/–/2799/308/33

DCT1 29/23/19/
13/8/0

59/80/102/66/
44/29/16/8/0

74/98/213/221/236/
238/116/50/25/13/4

93/140/231/242/238/280
/289/336/343/70/33/15

DCT2 27/34/32/
23/19/15/0

57/67/114/103/110
/75/49/30/19/2

66/85/148/148/156/155
/165/191/102/47/24/7

87/108/155/165/165/182/
198/211/231/261/169/69/30

T
F
E
T
I-
2

CE1/CE2/CE3 23/19/18 26/22/20 28/24/20 28/25/20

AE/AE+ME 22/21 30/27 31/28 31/29

EIG 25/24/22/19
/16/11/7/0

33/33/32/31/29/
24/17/12/8/0

34/34/33/33/33/32/
30/25/17/12/8/0

33/33/33/33/33/33/
33/32/30/25/18/13/8

DWT1 22/19/15/10 31/25/17/11 32/26/18/11 32/28/18/11

DWT2 22/19/17/– 29/26/25/– 31/28/27/– 31/29/27/–

DFT1 25/25/21/
19/16/13/0

33/34/33/33/
31/23/21/19/0

34/34/34/34/34/
34/33/24/22/20/2

34/34/34/34/34/34/
34/34/33/28/23/22

DFT2 25/24/23/22
/21/18/10/0

33/33/33/33/32/
29/29/27/16/0

34/34/34/34/34/34/
33/30/30/30/20/2

33/33/33/33/33/33/
33/33/33/30/30/30/25

DCT1 25/23/21/
18/12/7/0

33/33/33/32/
30/22/14/9/0

34/34/34/33/33/
33/32/25/15/10/2

34/33/34/34/34/34/
33/33/33/29/18/10

DCT2 25/24/23/21
/18/17/12/0

33/33/33/33/31/
28/25/24/18/0

34/34/34/34/33/33/
33/30/27/25/22/1

33/33/33/33/33/33/
33/33/33/31/29/26/22

Table 4: Number of performed iterations of the (P)CG and DCG methods

In numerical experiments the following variants of deflation were tested:

• CE1 (CE with displacement equality conditions between corner nodes on the bound-
ary of the domain not included in W ), CE2 (CE with conditions between corner
nodes on the domain boundary included), CE3 (only TFETI-2 – CE2 + Dirichlet
BCs assigned in corner nodes on the domain boundary),

• AE (with displacement components of no corner nodes on the interface included
into the computation of averages on the interface), AE+ME ((T)FETI-2 – with no
corner nodes of interface included into averages, solitary forces of contributions of
total gluing force concentrated into the corner nodes on the domain boundary in case
of FETI-2, inside the domain in case of TFETI-2, not included)

• EIG1 (deflation by a given number of eigenvectors of the system matrix A),

• DWT1 and DWT2 (4/3/2/1 levels of 2D DWT applied on A with and without the
modification of W with regard to solving 2D problem of elastictity),
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• DFT1, DFT2 (deflation by first M vectors of discrete Fourier basis with and with-
out the modification of W with regard to solving 2D problem of elastictity),

• DCT1, DCT2 (deflation by first M vectors of discrete cosine basis with and without
the modification of W with regard to solving 2D problem of elastictity),

7. Conclusion

This paper provides experimental evidence of an effect of standard FETI-1 and
TFETI-1 preconditioners and various types of deflation resulting in FETI-2 and
TFETI-2 variants for a model 2D linear elasticity problem. This effect consider-
ing the numbers of iterations should always be taken into account with its costs.
A detailed analysis in parallel environment is work in progress.

It should be mentioned that the benchmark 2D plane strain linear elasticity
problem discretized by FEM on which the numerical experiments were performed
was well-conditioned and thus the effect of the deflation was not that significant.
If deflation were applied, for example, to a decomposed problem of linear elasticity
with plates or shells, or to a decomposed problem without dualization, the effect of
the deflation would be even more considerable. A more significant effect of deflation
could also appear in the case of nonconforming and irregular subdomains’ meshes
resulting in a worse conditioned system matrix.
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