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Abstract: This study investigates the generation of aeroacoustic sound
resulting from the interaction of flow with a square cylinder at a Reynolds
number of 150 and a Mach number of 0.2. The analysis combines the Finite
Volume Method (FVM) for fluid dynamics using the OpenFOAM framework
with the Finite Element Method (FEM) for acoustics implemented via the
FEniCS Python library.
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1. Introduction

For many years, Computational Fluid Dynamics (CFD) has been widely used
across various scientific and industrial fields. With recent advancements in compu-
tational resources, it has become feasible to study also flow-induced noise from bluff
bodies, such as the noise generated by aircraft landing gear or car side mirrors.

Aeroacoustics, the study of noise generated and propagated by fluid flows, poses
a unique challenge because the sound pressure is much smaller than the atmospheric
pressure. Moreover, as the Mach number decreases, the disparity between the fluid
length scale and the acoustic length scale (wavelength) increases. Consequently, the
mesh size required to resolve fluid length scales becomes significantly smaller than
that needed for acoustic length scales. To address this, a variety of Computational
Aeroacoustics (CAA) methodologies have been adopted, many of which separate
the flow field from the acoustic computation in a hybrid approach (see [7] for an
overview). The aim is to derive the equations that describe the generation of sound
waves propagating into the acoustic field, separately from those that define fluid
motion in the unsteady flow. The hybrid approach has been successfully applied in
cases like low Mach airframe noise in [4] and human phonation in [8].
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This study focuses on low Mach number laminar air flow over a square cylinder,
a classical problem in fluid mechanics with practical relevance to building design. The
interaction between the flow and the body leads to vortex shedding, forming a von
Kármán vortex street that generates acoustic waves. The investigation of acoustic
emissions is conducted using a combination of two open-source tools, OpenFOAM
and FEniCS. The integration of these tools is detailed in Chapter 5.

2. The mathematical model

We consider the conservation of mass equation and the conservation of momentum
equation given by

∂ρ

∂t
+∇ · (ρu) = 0 , (1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u− σσσ) = 0 , (2)

where u denotes the fluid velocity, ρ fluid density and t time. For fluid, the stress
tensor σσσ is defined as

σσσ = −p I + τττ , (3)

where p is static pressure, τττ denotes the viscous (shear) stress tensor and I is the unit
tensor. Since air is a Newtonian fluid, the constitutive relation between the viscous
stress tensor and the rate of strain tensor is expressed as

τττ = µ
(
∇u + (∇u)T

)
− 2

3
µ∇ · u , (4)

where µ is dynamic viscosity of the fluid. At low Mach numbers, the fluid is assumed
to be nearly incompressible, implying that the density remains constant and the
velocity field is divergence-free.

In order to obtain unique solution for eq. (1) and (2) we have to consider bounded
domain Ω1 ⊂ R2 with boundary conditions defined on Lipschitz boundary ∂Ω1. The
boundary ∂Ω1 is further subdivided as ∂Ω1 = Γb ∪ Γ1 and Γ1 = Γin ∪ Γout ∪ Γslip, as
illustrated in Fig. 1.

Figure 1: Fluid computational domain.
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The initial-boundary value problem for incompressible fluid is then formulated as:
for t ∈ (0, T ] find u(x, t) : Ω1 × (0, T ]→ R2 and p(x, t) : Ω1 × (0, T ]→ R such that

∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) +

1

ρ0

∇p = 0 in Ω1 × (0, T ] ,

∇ · u = 0 in Ω1 × (0, T ] ,

(5)

where ν is the kinematic viscosity (dynamic viscosity divided by density) of the fluid
and ρ0 is the freestream density. The boundary and initial conditions are prescribed
as follows

u = 0 on Γb × (0, T ] ,

u = (U∞, 0) on Γin × (0, T ] ,

−ν ∂u
∂n

+
p

ρ0

n = 0 on Γout × (0, T ] ,

u · n = 0 on Γslip × (0, T ] ,

∂p

∂n
= 0 on Γ1 \ Γout ∪ Γb × (0, T ] ,

u(x, 0) = (U∞, 0) for x ∈ Ω1 ,

(6)

where U∞ is the freestream velocity and n is the outward unit vector to Γb and Γ1.

Aeroacoustics

The most widely used CAA formulation is Lighthill’s aeroacoustic analogy, where
the governing equations (1) and (2) are reformulated into a wave-like equation, as
detailed in [5]. In this approach, acoustic noise is radiated from a localized region
of fluctuating flow embedded within an infinite homogeneous fluid, see Fig. 2. In
the surrounding fluid, the speed of sound c0, the density ρ0 and the pressure p0 are
constants and the density fluctuations ρ′ = ρ − ρ0 are governed by the standard
homogeneous acoustic wave equation. Within the fluctuating region, the Lighthill’s
aeroacoustic equation is derived by taking the time derivate of the continuity equa-
tion (1) and subtracting the divergence of the momentum equation (2), which yields

∂2 (ρ− ρ0)

∂t2
= ∇ · ∇ · [ρu⊗ u + (p− p0) I− τττ ] , (7)

where p′ = p − p0 are the pressure perturbations. Further substracting the term
c2

0∆ (ρ− ρ0) from both sides of eq. (7), we retrieve the desired inhomogeneous wave
equation (

∂2

∂t2
− c2

0∆

)
(ρ− ρ0) = ∇ · ∇ ·T , (8)

where the Lighthill’s tensor T is introduced as

T = ρu⊗ u +
[
(p− p0)− c2

0 (ρ− ρ0)
]
I− τττ . (9)
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Figure 2: Aeroacoustic computational domain.

The Lighthill’s tensor in eq. (9) consists of three terms. The viscous source term τττ
is significant only at low Reynolds numbers and over sufficiently long distances, so it
is often neglected. Additionally, for low Mach numbers flows and no heat effects, the
fluid can be considered isentropic, meaning the relation p′ = c2

0ρ
′ holds and density

can be approximated by the density of the resting media ρ0. Under these conditions,
the Lighthill’s tensor reduces to T ≈ ρ0 u ⊗ u and eq. (8) results in the following
inhomogeneous wave equation

1

c2
0

∂2p′

∂t2
−∆p′ = ∇ · ∇ · (ρ0 u⊗ u) . (10)

In order to solve eq. (10) we consider the homogeneous fluid region to be finite
and bounded. We denote the aeroacoustic computational domain as Ω0 ⊂ R2 with
Lipschitz boundary ∂Ω0, such that Ω1 ⊂ Ω0, see Fig. 2. The boundary ∂Ω0 is further
subdivided as ∂Ω0 = Γb ∪Γ0. The initial-boundary value problem then reads as: for
t ∈ (0, T ] find p′(x, t) : Ω0 × (0, T ]→ R such that

1

c2
0

∂2p′

∂t2
−∆p′ =

{
∇ · ∇ · (ρ0 u⊗ u) in Ω1 × (0, T ] ,

0 in Ω0 \ Ω1 × (0, T ] ,
(11)

and which satisfies the following boundary and initial conditions

∂p′

∂n
= 0 on Γb × (0, T ] ,

∂p′

∂n
= − 1

c0

∂p′

∂t
on Γ0 × (0, T ] ,

p′(x, 0) = 0 for x ∈ Ω0 ,

∂p′

∂t
(x, 0) = 0 for x ∈ Ω0 ,

(12)

where n is the outward unit vector to Γb and Γ0.
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The acoustic sources ∇ · ∇ · (ρ0 u⊗ u) within the near-field domain Ω1 are eval-
uated using the fluid velocity u obtained from the Navier-Stokes equations for in-
compressible fluid, see eq. (5). Non-reflective boundary condition is prescribed in
eq. (12) on the boundary Γ0 to mitigate acoustic reflections.

3. Finite volume discretization

The discretization of eq. (5) involves subdivision of the domain Ω1 into a finite
number of closed, non-overlapping polygonal cells Vk (with volume |Vk|), such that
Ω1 =

⋃
k∈J Vk, where J is an index set. Integrating eq. (5) over an arbitrary

polygon Vk yields∫
Vk

∂u

∂t
dV +

∫
Vk

∇ · (u⊗ u) dV −
∫
Vk

∇ · (ν∇u) dV +

∫
Vk

1

ρ0

∇p dV = 0 ,∫
Vk

∇ · u dV = 0 .

(13)

The solution of (13) is approximated by piecewise constant functions uk, pk given as

uk ≈
1

|Vk|

∫
Vk

u dV , pk ≈
1

|Vk|

∫
Vk

p dV .

Considering Vk remains constant over time, the time derivative of velocity in eq. (13)
can be cast in form

∫
Vk
∂u/∂t dV ≈ |Vk| duk/dt. For the time discretization, we

first divide the temporal interval (0, T ] into N subintervals, such that T = N∆t,
setting tn = n∆t, with n = 0, . . . , N , where ∆t denotes constant time step. The
Crank-Nicolson scheme is used for the temporal dicretization in the form

duk

dt
≈
[

1

1 + coc

(
un+1
k − un

k

∆t

)
− coc

1 + coc

(
un
k − un−1

k

∆t

)]
, (14)

where coc is an off-centering coefficient, see [6]. For coc = 0 the scheme results in
the implicit Euler scheme, whereas for coc = 1 the central scheme is obtained. In the
following work, coc = 0.9 is used.

For other terms in eq. (13), we employ Gauss’s theorem and approximate them
using the midpoint quadrature rule on the face f ∈ Sk, where Sk is the set of all
faces of the cell Vk and |Sf | denotes the surface of face f , as∫

Vk

∇ · (u⊗ u) dV =

∮
∂Vk

u (u · n) dS ≈
∑
f∈Sk

uf (uf · sf ) =
∑
f∈Sk

uf φf , (15)∫
Vk

ν∆u dV =

∮
∂Vk

ν (∇u) · n dS ≈ ν
∑
f∈Sk

(∇u)f · sf , (16)∫
Vk

1

ρ0

∇p dV =

∮
∂Vk

1

ρ0

(p I) · n dS ≈ 1

ρ0

∑
f∈Sk

(pf I) · sf , (17)
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where sf = n |Sf | and φf = uf · sf represents the volumetric flux at face f . The
continuity equation in (13) enforces the sum of fluxes across all faces to be zero,
i.e.

∑
f∈Sk

φf = 0 in order to satisfy the divergence-free condition. Concerning the
discretization of the fluxes in (15)–(17) and the gradient reconstruction of velocity
in eq. (16) we refer to [6].

For solving the discretized NSE for incompressible fluid, the PIMPLE algorithm
is used as a combination of SIMPLE (semi-implicit method for pressure-linked equa-
tions) and PISO (pressure-implicit algorithm with the splitting of the operator). We
begin by discretizing the momentum equation (13). Let auC and auN represent the
coefficients in the resulting algebraic equations, where C and N refer to the central
and neighboring cells, respectively. The discretized momentum equation then reads

auCuC +
∑
f∈Sk

auNuN = r− 1

ρ0

(∇p)C , (18)

where vector r represents contributions from previous time steps. Next we introduce
operator H(u) = r−

∑
f∈Sk

auNuN such that

uC = (auC)−1

[
H(u)− 1

ρ0

(∇p)C
]
. (19)

We substitute eq. (19) into the continuity equation to obtain a pressure equation

∇ ·
[
(auC)−1(∇p)C

]
= ρ0∇ ·

[
(auC)−1H(u)

]
. (20)

The PIMPLE algorithm is based on a predictor and corrector step. In the predictor
step, we solve eq. (18) using an intermediate pressure to obtain predicted velocity,
which does not yet satisfy the continuity equation. We follow with the corrector step,
in which we solve eq. (20) to obtain corrected pressure, and subsequently divergence-
free velocity is obtained from eq. (19). We repeat these inner and outer loops until
the pressure and velocity fields converge, see [6] for further reference. Additionally,
under-relaxation can be used in each time step to smooth convergence.

4. Finite element discretization

In order to approximate the inhomogeneous wave equation (11) using FEM,
the equation is multiplied by a test function w ∈ V ⊂ H1(Ω0) and integrated over the
entire acoustic domain Ω0. This yields

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

− (∆p′, w)Ω0
= (∇ · ∇ · (ρ0 u⊗ u) , w)Ω0

, (21)

where by (·, ·)D the dot product in L2(D) is denoted. After applying Green’s inte-
gration theorem to the second spatial derivate of p′ as well as to the acoustic source
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term on the right-hand side, the eq. (21) can be rearranged into

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

−
(
∂p′

∂n
, w

)
∂Ω0

+ (∇p′,∇w)Ω0

= (∇ · (ρ0 u⊗ u) · n, w)∂Ω1
− (∇ · (ρ0 u⊗ u) ,∇w)Ω1

.

(22)

Boundary conditions are applied to each boundary term. For the source term in
eq. (22), this leads to the condition (∇ · (ρ0 u⊗ u) · n, w)∂Ω1

= 0 since

(∇ · (ρ0 u⊗ u) · n, w)Γ1
= 0 ,

(∇ · (ρ0 u⊗ u) · n, w)Γb
= 0 ,

(23)

for details, see [2]. This leads to the variational (weak) formulation of Lighthill’s
aeroacoustic equation, which may be stated as: find p′ ∈ V such that

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

+
1

c0

(
∂p′

∂t
, w

)
Γ0

+

(
∂p′

∂xi
,
∂w

∂xi

)
Ω0

= − (∇ · (ρ0 u⊗ u) ,∇w)Ω1
, (24)

is fulfilled for all w ∈ V . The source term in eq. (24) can be further simplified for
incompressible fluid flows as follows

(∇ · (ρ0 u⊗ u) ,∇w)Ω1
= ρ0 (u · ∇u,∇w)Ω1

. (25)

The semi-discrete Galerkin formulation is obtained from the weak formulation (24)
after discretization of the domain and the introduction of finite element spaces.
A finite-dimensional finite element space Vh ⊂ V with dimension n is chosen and
the solution p′ ∈ V is approximated by ph ∈ Vh written as a time-dependant linear
combination of coefficients pj(t) and basis functions ϕj(x) ∈ Vh, i.e.

p′(x, t) ≈ ph(t, x) =
n∑

j=1

pj(t)ϕj(x) . (26)

Using relation (26) in eq. (24) with wh = ϕi for i = 1, . . . , n leads to the second-order
system of ODEs for an unknown vector p(t) = {pj}nj=1 in the matrix form

1

c2
0

Mp̈(t) +
1

c0

Dṗ(t) + Kp(t) = b(t) , (27)

where the matrices M = {mij}ni,j=1,D = {dij}ni,j=1 K = {kij}ni,j=1 and the vector
b = {bi}ni=1 are computed as follows

mij = (ϕj, ϕi)Ω0
, dij = (ϕj, ϕi)Γ0

, kij =

(
∂ϕj

∂xl
,
∂ϕi

∂xl

)
Ω0

,

bi = −ρ0

(
ul
∂uj
∂xl

,
∂ϕi

∂xj

)
Ω1

.
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The problem described in eq. (27) is discretized in time with the aid of the Newmark
method. This method is formally realized by using approximations

pn+1 = pn + ṗn ∆t+ ((1− 2β)p̈n + 2βp̈n+1)
∆t2

2
,

ṗn+1 = ṗn + ((1− γ)p̈n + γp̈n+1) ∆t ,
(28)

in eq. (27), which is solved for p̈n+1. Values β and γ are taken as β = 0.25, γ = 0.5.

5. Implementation

The finite volume approach available within the OpenFOAM library has been
adopted for space and time discretization of the NSE for incompressible fluid. Tab. 1
briefly describes the basic directory structure for OpenFOAM case that is required
to run the simulation. The exception is the acousticMesh and funcObjects folders,
which include the neccessary data for evaluation of the acoustic sources within the
fluid domain and their subsequent interpolation onto the acoustic domain.

{ 0 → Initial and boundary conditions for fields
x q U
x q p
{ constant
x q transportProperties → Physical properties of the fluid
x q turbulenceProperties → Type of fluid flow
x { polyMesh → Mesh data for the fluid domain
x { acousticMesh → Mesh data for the acoustic domain
{ system
x q controlDict → Simulation’s control parameters
x q fvSchemes → Numerical schemes used for discretizing
x q fvSolution → Solver settings and relaxation factors
x { funcObjects → Custom functions to be applied during

x < . . . simulation

Table 1: OpenFOAM folder structure.

Once the fluid simulation is finished and the acoustic sources have been inter-
polated for the desired time period, the Lighthill’s aeroacoustic equation is solved
using the FEM framework implemented in the FEniCS Python library (see [1]).

After importing the acoustic mesh in .msh format, a finite element function
space V is created. The trial function p and test function w are then defined, followed
by the initialization of fem.Function, which stores the coefficients for the solution.

from dolfinx import fem , import ufl

V = fem.functionspace(msh , ("Lagrange", 1))

p, w = ufl.TrialFunction(V), ufl.TestFunction(V)

p_h = fem.Function(V)
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Similarly, we initalize fem.Function for the divergence of Lighthill’s tensor.
V_divT = fem.functionspace(msh , ("Lagrange", 1, (msh.geometry.dim ,)))

divT = fem.Function(V_divT)

We also prepare data structures for the Newmark method.
p_0 , pdot_0 , pddot_0 = fem.Function(V), fem.Function(V), fem.Function(V)

pddot = p

pdot = pdot_0 + ((1-gamma)*pddot_0 + gamma*pddot) * dt

p_ = p_0 + pdot_0*dt + ((1-2* beta)*pddot_0 + 2*beta*pddot) * dt**2/2

The integration measures are defined to substitute for the different subdomain cells
and their boundary faces.

ds = ufl.Measure("ds", domain=msh , subdomain_data=boundary_tags)

dx = ufl.Measure("dx", domain=msh , subdomain_data=subdomain_tags)

With all the data structures in place, we define the variational formulation.
F = 1 / c_0**2 * ufl.inner(pddot , w) * dx(0) \

+ 1 / c_0 * ufl.inner(pdot , w) * ds(0) \

+ ufl.inner(ufl.grad(p_), ufl.grad(w)) * dx(0) \

+ ufl.inner(divT , ufl.grad(w)) * dx(1)

a, L = ufl.system(F)

Using the finite element variational problem formulation, the class
dolfinx.fem.petsc.LinearProblem is created for solution of the variational problem.
This class utilizes PETSc as the linear algebra backend and a direct solver (LU-
factorization) is employed to solve the linear system.

import dolfinx.fem.petsc

problem = dolfinx.fem.petsc.LinearProblem(a, L, u=p_h , bcs=[], petsc_options)

Finally, the problem is solved repeatedly in time in order to obtain the evolution of
the acoustic pressure field.

t = t_start

while t < t_end + dt:

divT = get_interpolated_OpenFOAM_field(divT , msh , t)

p_h = problem.solve ()

p_0 , pdot_0 , pddot_0 = evaluate_Newmark_fields(p_h , p_0 , pdot_0 , pddot_0)

write_results(p_0 , t)

t += dt

6. Numerical results

A laminar, two-dimensional simulation of an incompressible fluid flow over a
square cylinder is performed. When a rigid square cylinder is immersed in a uniform
flow, it generates strong vortex shedding. The resulting fluctuating forces on the
cylinder induce acoustic waves, which are the focus of this study.

By Lcyl = 3.28 · 10−5 m we denote the dimension of the cylinder. The dimen-
sions of the fluid computational domain Ω1 are then (-30Lcyl, 100Lcyl) × (−25Lcyl,
25Lcyl), with a blockage ratio1 of β = Lcyl/50Lcyl. The acoustic domain Ω0 is a
circle with a radius of 150Lcyl. The mesh within the fluid domain is roughly three
times finer than the mesh for the acoustic simulation, as can be seen in Fig. 3. The
flow properties and the setup of the simulation are listed in Tab 2. The fluid flow

1The ratio of the square cylinder’s frontal area to the domain’s cross-sectional area in the flow
direction.
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Figure 3: Acoustic (black) and
fluid (red) mesh near cylinder.

Setup of the simulation
U∞ = 68.7 m s−1

Lcyl = 3.28 · 10−5 m
ν = 1.5 · 10−5 m2s−1

c0 = 343 m s−1

ρ0 = 1.2 kg m−3

Re = 150
Ma = 0.2

Table 2: Setup of the simulation.

Figure 4: Lift and drag coefficients in time.

cD St
present study 1.42 0.153
Doolan [3] 1.44 0.156

Table 3: Comparison of the mean
drag coeffcient and Strouhal number
with reference values.

solution is sampled after the full vortex street developed from ta0 = 1 · 10−4 s every
10 fluid time steps, i.e. ∆ta = 10−8 s and ∆tf = 10−9 s, until the end of simulation
tend = 1.5 · 10−4 s. The whole time of acoustic simulation is 0.5 · 10−4 s. The lift
and drag coefficients are plotted in time in Fig. 4. The mean drag coefficient cD
and Strouhal number St based on vortex shedding frequency are evaluated and com-
pared to reference values with good agreement, see Tab. 3. The acoustic pressure
values are monitored at three different observer locations. The first two observers
are positioned downstream along the x-axis and along the fringe of the cylinder, re-
spectively. Significantly lower values are anticipated at the third observer location in
the far-field region, see Tab. 4. Fig. 5 presents the acoustic field (scaled by dynamic
pressure) at final time, in which dipole pattern can be seen. The acoustic pressure
values at three observer locations are shown in Fig. 6 in the time and frequency
domain. The main frequency component for observer 2 and 3 corresponds to the
vortex shedding frequency. On the other hand, the main frequency component for
observer 1, located along the x-axis is twice as high. This fact can be associated
with the combination of the upper and lower vortices.
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Figure 5: Acoustic pressure field.

Observers
1: (1 · 10−4, 0, 0) m
2: (1 · 10−4, 2 · 10−5, 0) m
3: (0.002, -0.003, 0) m

Table 4: Positions of the observers
with respect to the origin of the coor-
dinate system located in the center of
the square cylinder.

Figure 6: Acoustic pressure at three observer locations in: (a) the time domain and
(b) the frequency domain.

7. Conclusion

In this study we have adopted a hybrid method for CAA that establishes a foun-
dation for future aeroacoustic investigations. Our primary focus was on a 2D square
cylinder placed within a laminar flow with Reynolds number 150 and Mach num-
ber 0.2. The presence of the square cylinder resulted in the formation of strong
vortices in the downstream region, which induced acoustic waves. The resulting
acoustic pressure obtained by Lighthill’s aeroacoustic analogy was analyzed both in
the near-field and far-field acoutic region. The dominant frequencies for selected
observers correspond with expectations.

Acknowledgements

This work was supported by the Czech Technical University in Prague under the
grant No. SGS24/120/OHK2/3T/12 and grant No. SGS22/148/OHK2/3T/12. The
authors also gratefully acknowledge the Center of Advanced Aerospace Technology
(CZ.02.1.01/0.0/0.0/16 019/0000826) at the Czech Technical University in Prague
for awarding the access to computing facilities.

125



References

[1] Baratta, I. A. et al.: DOLFINx: The next generation FEniCS problem solving
environment, 2023.

[2] Caro, S., Ploumhans, P., and Gallez, X.: Implementation of lighthill’s acoustic
analogy in a finite/infinite elements framework. 10th AIAA/CEAS Aeroacoustics
Conference, (2004).

[3] Doolan, C. J.: Flat-plate interaction with the near wake of a square cylinder.
AIAA Journal 47 (2009), 475–479.
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