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1. KE VZNIKU A ORGANI SACÍ

MATEMATICKÉ OLYMPIÁDY

U nás se stalo pěknou tradicí, že Jednota čs. matematiků
a fysiků již od počátku svého založení pečovala o zvyšování
úrovně vyučování matematice tím, že ve svých časopisech
uveřejňovala matematické úlohy, určené к řešení pro studenty
škol 3. stupně. Avšak okruh těchto řešitelů byl přec stále
jenom velmi úzký. Snaha, aby se úroveň vyučování mate-
matice na naší socialistické škole soustavně zvyšovala, vedla
naše učitele matematiky a představitele naší matematické
vědy к myšlence, pořádat každoročně pro žáky našich Škol
zvláštní matematickou soutěž; jen tímto způsobem lze pro-
pagačně a organisačně zajistit zvýšení zájmu o studium mate-
matiky a technických věd vůbec. Vzorem к tomu byly v SSSR
již tradiční matematické olympiády a dále soutěže toho druhu,
pořádané i v jiných zemích lidově demokratických, zvláště
v Polsku.

Učitelé Olomouckého a Ostravského kraje uspořádali v mi-
nulých dvou letech v krajském měřítku podobné matematické
soutěže pro žáky škol 3. stupně a také soudruzi na Slovensku
se chystali v létě r. 1951 uskutečnit ve školním roce 1951/1952
podobnou soutěž. Bezprostředním popudem к uspořádání celo-
státní matematické soutěže pro žáky našich škol byl návrh
prof. Dr. E. Čecha, aby byl ustaven přípravný výbor mate-
matické olympiády, který by celou věc projednal jednak
s ministerstvem školství, věd a umění (MŠVU), jednak s Česko-
slovenským svazem mládeže (ČSM). Polské zkušenosti totiž
ukázaly, že je nezbytné, aby se vedení soutěže ujal nejvyšší
školský orgán, který by soutěž nejen hmotně zajistil, ale který
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by také svou autoritou mobilisoval příslušné školské orgány,
především pak učitele matematiky. Vedle M&VU bylo třeba
ke spolupráci získat i ČSM, neboť matematická olympiáda
zapadá vhodně do rámce jeho činnosti.

V září r. 1951 se ustavil přípravný výbor matematické olym-
piady, který vypracoval návrh organisačního řádu soutěže
a předložil jej ministerstvu školství, věd a umění, aby se spolu
s ČSM a s Ústředním ústavem matematickým (ÚÚM) ujalo
uspořádání takové soutěže; pro nej bližší léta má být tato
soutěž jako celostátní zatím zaměřena na žáky výběrových
škol 3. stupně. MŠVU s velkým porozuměním návrh přijalo,
a tak v prosinci r. 1951 vychází ve Věstníku MŠVU oběžník
č. 190 (č. j. 24 743/51-II/3 ze dne 13. XII. 1951), jímž se zři-
zuje matematická soutěž pro žáky, která po sovětském vzoru
dostala název matematická olympiáda. Oběžník především
poukazuje na praktický i výchovný význam matematiky pro
naši mládež a dále oceňuje soutěž s hlediska soustavného zvy-
šování úrovně vyučování matematice, fysice a vědám těch-
nickým; pomocí soutěže mají být vyhledáni a včas podchy-
ceni mladí talentovaní studenti a soustavně se má pečovat
o přípravu budoucích vedoucích technických kádrů našeho
hospodářského života. V dalším oběžník načrtává organisační
řád soutěže, soutěž plně hmotně vybavuje a zajišťuje.

Soutěž má proběhnout ve třech etapách, zvaných kola.
První kolo má úkol přípravný, studijní; soutěžící řeší doma
předepsané úlohy, při čemž má být za vedení svého učitele
matematiky nabádán к samostatnému studiu matematických
textů, především Školských učebnic matematiky.

Druhé kolo má již ostrý ráz eliminační a koná se v t. zv.
oblastech; v každé oblasti je zpravidla sdruženo několik krajů.
V sídlech oblastí jsou zřízeny oblastní výbory matematické
olympiády (OVMO). Oblasti jsou zřízeny v městech s vysokou
školou; jsou to tedy tato města: Bratislava, Brno, Košice,
Olomouc, Ostrava, Pardubice, Plzeň, Praha. Členy ОУМО
jmenuje ústřední výbor matematické olympiády (ÚVMO).

Soutěž prvního a druhého kola se koná za vedení oblast-
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ního výboru ve dvou kategoriích. Do kategorie A jsou zařa-
zeni žáci 3. a 4. tříd výběrových škol 3. stupně, do kategorie В
žáci 1. a 2. tříd těchto škol. Závěreěné třetí kolo matematické

olympiády, které je celostátní, je určeno jen pro soutěžící
v kategorii A.

Celou soutěž řídí ústřední výbor matematické olympiády;
jeho členy jmenuje MŠVU, které v něm má také své zástupce.
Y oblastních výborech i v ústředním výboru jsou zastoupeni
učitelé matematiky na vysokých školách, učitelé matematiky
na školách 3. stupně, zástupci školských orgánů (Školských
referátů KNY) a zástupci ČSM.

ÚVMO byl ustaven takto:
Dr František Vyčichlo, náměstek ředitele ÚÚM a profesor

techniky jako předseda, místopředsedové Dr Jindřich Šmída,
náměstek ministra školství, věd a umění, Dr J. Hronec, pro-
fesor slovenské university; jednatelem výboru byl jmenován
Rudolf Zelinka, vědecký pracovník ÚÚM, členy výboru tito
soudruzi:

Dr O. Borůvka, profesor Masarykovy university v Brně,
Jan Hlaváček, referent Školského oddělení ÚVCSM v Praze,
Josef Holubář, vědecký pracovník pedagogické fakulty

v Praze,
František Hradecký, profesor Nerudova gymnasia v Praze,
Miloš Jelínek, ústřední inspektor MŠVU v Praze,
Víťazoslav Repáš, přednosta oddělení PŠVU v Bratislavě,
Karol Rovan, profesor gymnasia v Piešťanech,
Rudolf Tomica, profesor gymnasia v Brně-Králově Poli.

Předsedy oblastních výborů byli jmenováni tito soudruzi:
Dr Štefan Schwarz, profesor techniky v Bratislavě,
Dr Boh. Vlach, krajský Školní inspektor v Brně,
Dr Fr. Jurga, profesor techniky v Košicích,
doc. Dr Josef Metelka, děkan peda gogické fakulty v Olomouci,
Dr Alfons HyŠka, asistent vysoké školy báňské v Ostravě,
Josef Zieris, profesor gymnasia v Pardubicích,
Jan TaiŠl, asistent pedagogické fakulty v Plzni,
Dr Karel Hruša, asistent pedagogické fakulty v Praze.
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Ještě než vyšel oběžník MŠVU 6. 190, uveřejnil přípravný
výbor v časopise „Matematika ve škole££ organisační pokyny
к soutěži a od prosince r. 1951 do března r. 1952 publikoval
každý měsíc v tomto časopise po čtyřech úlohách pro každou
z obou kategorií A a B. Každá úloha byla oblastním výborem
samostatně klasifikována podle těchto zásad:

,,Výborné££ řešení je takové, které je po všech stránkách
bezvadné. Ve „chvalitebném" řešení se mohou vyskytnout
menší formální nedostatky. Ěešení „dobré" má buď závaž-
nější formální nebo méně závažné odborné nedostatky; řešení
„dostatečné" je sice zhruba úplné, ale jsou v něm závažné
odborné nedostatky. Jinak je řešení „nedostatečné". Stáno-
vená klasifikace je tedy mnohem přísnější než obvyklá klasi-
fikace Školská, což samozřejmě vyplývá z povahy výběrovosti
soutěže. Podle těchto zásad byla provedena také klasifikace
ve druhém a třetím kole.

Úspěšný soutěžící prvního kola musil ze 16 zadaných úloh
rozřešit alespoň 9 s oceněním ne horším než dobrým. Úspěšný
řešitel druhého nebo třetího kola musil ze 4 předložených
úloh, к jichž řešení mu byly vyměřeny 4 hodiny čistého času,
rozřešit nejméně dvě s oceněním ne horším než dobrým.

Soutěž prvního kola byla vzhledem к tomu, že oběžník
MŠVU č. 190 vyšel opožděně, uzavřena až koncem dubna 1952.
Soutěž druhého kola se konala pod vedením oblastních výborů
v místech jejich sídla (mimo to též v Hradci Králové a v Kro-
měříži) v neděli 18. května 1952 za účasti školských orgánů.

Soutěž třetího kola konala se v neděli dne 15. června 1952
v budově matematického ústavu Karlovy university v Pra-
ze II, Ke Karlovu 3. Účastníci soutěže sjeli se do Prahy již
v sobotu dne 14. června 1952 a společně se zástupci ÚVMO
a školských úřadů navštívili večerní představení divadelní hry
„Otec" od Aloise Jiráska v Komorním divadle. Soutěž třetího
kola byla zahájena dne 15. června 1952 o 9. hod. proslovy,
jež pronesli Dr Jindřich Šmída, náměstek ministra školství,
věd a umění, Josef Čejna, referent školského oddělení ÚVČSM
a univ. prof. Dr E. Čech, ředitel Ústředního ústavu matema-
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tického, který při této příležitosti věnoval každému účastníku
soutěže první díl své „Analytické geometrie".

Ve svém projevu prof. Čech zdůraznil, že matematická olym-
piada vhodně navazuje na tradici, kterou u nás založila naše
Jednota ěs. matematiků a fysiků, která je vedle moskevského
„Matěmatičeskogo obščesťva" nejstarší společností toho druhu
vůbec. Dále naznačil cíle, kterých chceme pomocí matematické
olympiády dosáhnout, a vyzval přítomnou mládež, aby pilně
studovala tak, aby jednou mohla s úspěchem plnit úkoly,
které od ní naše lidově demokratická republika bude poža-
dovát. Vyslovil pevné přesvědčení, že naši svazáci všechny
tyto úkoly skutečně splní.

Po skončení vlastní soutěže třetího kola účastnili se soutě-
žící spolu s čestnými hosty, mezi nimiž byl mimo jiné školský
referent ÍJNV v Praze Václav Jaroš a prof, slovenské techniky
Dr Štefan Schwarz, společného oběda v Národním domě na
Královských Vinohradech. Nedělní odpoledne věnovali účast-
níci soutěže prohlídce Prahy. Hostitelské úkoly vzorně plnil
školský referát ÍJNV v Praze za vedení soudružky Dr L. Měst-
kové.

Bližší zprávy o průběhu a výsledcích jednotlivých kol
matematické olympiády jsou uvedeny v odstavci 2.
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2. ZPRÁVA O PRŮBĚHU A VÝSLEDCÍCH
JEDNOTLIVÝCH KOL MATEMATICKÉ

OLYMPIÁDY

A. SOUTĚŽ PRVNÍHO KOLA

Soutěže prvního kola účastnili se podle zpráv z oblastí
celkem 1003 řešitelé, převážně žáci gymnasií. Některé oblasti
měly dosti velkou účast (Praha, Brno). V některých krajích,
kde nebyla provedena žádná propagace soutěže, byla účast
velmi slabá. Poměrně slabá byla účast žáků 3. tříd (asi 25%
celkového počtu v kategorii A) a tříd prvních (asi 40% celko-
vého počtu v kategorii B). Mezi řešiteli bylo asi 150 žákyň
(t. j. asi 15%). Tito účastníci zastupovali asi 140 Škol, pře-
vážně gymnasií; účast žáků Škol průmyslových byla velmi
slabá a jen dva z nich se dostali do třetího kola.

Přehled výsledků prvního kola je patrný z tabulky 1.
Tab. 8.1.

Přehled účastníků prvního kola podle oblastí

Kategorie ВKategorie A Zastupo-
váli celkem

škol
Oblast celkem

účastníků
úspěšných

řešitelů
celkem

účastníků
úspěšných
řešitelů

Bratislava
Brno
Košice
Olomouc
Ostrava
Pardubice
Plzeň
Praha

62 9 81 15 14
3165 3 135 10

37 24 35 4
64 99 26 1417
51 12 25 3 11
30 37 1314 11
22 8 42 14 11

103 8 126 8 41

76 | 569celkem 434 90 139

8



Přehled o počtu a kvalitě řešení 16 úloh z prvního
kola podle jednotlivých kategorií je patrný z tabulek č. 2a
a 2b.

Z tabulek je patrno, které z daných úloh byly příliš obtížné,
a dále, že účastníci soutěže v druhém pololetí ochabovali,
patrně proto, že si definitivní vypracování řešení nechali až
na konec termínu odevzdání.

Tab. č. 2a.

Přehled o řešení 16 vloh prvního kola, kategorie A
Celkový počet účastníků 434.

Úloha č. 2 3 6 7 8 9 15 161 4 5 10 11 12 13 14

.Řešení 1
oceně-

28 12 21 36 68 1632 130 42 43 89 51 58 2 9 7

23 24 162 13 42 50 34 68 53 7 35 1 15 639 52no

znám-
kou 3 1723 130 68 24 33 20 33 741 36 21 15 4 1455

1631 23 71 65 19 70 52 7 13 144 50 26 0 59 19

136 68 1368 93 89 35 46 46 772 28 18 19 14 45

Celkový
počet
podá-
ných
řešení

267 286 365 263238 248 290 81 174 173 168 33 81155 14 111

z toho
řešení

uspěš-
ných

195 222100 145 136 39152 122 78 111 141 108 7 38 20 51
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Tab. 6.2b.

Přehled o řešení 16 úloh prvního kola, kategorie В
Celkový počet účastníků 569.

Úloha č. 1 8 9 112 5 6 7 10 12 133 4 14 1615

Řešení 1
oceně-

147 11 1319 16 28 11 79 15 10 32 14 5 23 1145

2 5725 57 13 99 48 40 27 19 23 13 3165 17 54 79no

znám-
kou 3 4782 100 36 69 75 21 55 42 44 1641 33 23 184

65 8692 140 65 22 54 57 284 8 14 32 2597 36 11

70 133 365 82 82 178 108 117 68 67 59 42 15 20 51 17

Celkový
počet
podá-
ných
řešení

288 201446 321 392 424 283 263 220 178 164 106 66 103 183 253

z toho
řešení

úspěš-
ných

126 225 92 95 76173 174 128 219 77 53 43 69 100 21154
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В. SOUTĚŽ DRUHÉHO KOLA

Do druhého kola postoupilo v kategorii A 76, v kategorii В
90 soutěžících; v kategorii В se dostavilo к soutěži druhého
kola 84 soutěžících.

Přehled výsledků druhého kola je patrný z tabulky č. 3.

Tab. č. 3.

Přehled účastníků druhého kola podle oblastí

Kategorie ВKategorie A
Oblast úspěšných

řešitelů
úspěšných

řešitelů
celkem

účastníků
celkem

účastníků

Bratislava
Brno
Košice
Olomouc
Ostrava
Pardubice
Plzeň
Praha

49 6 15
10 63 3

32 05
20 3917

112 9 3
31114 9
83 148

G 8 58

celkem 308476 47

V kategorii A bylo 62 úloh oceněno známkou výbornou,
41 úloh známkou chvalitebnou, 29 úloh známkou dobrou,
takže celkem bylo řešeno úspěšně 132 úloh. 30 úloh bylo
oceněno známkou dostatečnou a zbývající byly bud’ nedo-
statečné nebo nebylo podáno řešení.

У kategorii В bylo 12 úloh oceněno známkou výbornou,
37 úloh známkou chvalitebnou a 43 úloh známkou dobrou;
celkem bylo řešeno úspěšně 92 úloh. 45 úloh bylo oceněno
známkou dostatečnou a zbývající úlohy byly buď nedosta-
tečné nebo nebylo podáno řešení.

Obstálo tedy v kategorii A zhruba 62% účastníků a v ka-
tegorii В zhruba 36% účastníků.

Protože pro kategorii В bylo druhé kolo závěrečné, uvá-
dime jména vítězů v této kategorii podle jednotlivých oblastí
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(jde vesměs o žáky gymnasií; G = gymnasium; číslo za jmé-
nem značí třídu):

(1) Bratislava: Juraj Virsík lb, Bratislava; Marian Steller
2a, Trnava; Yiera Paulíny-Tothová 2, IIG Bratislava; Jozef
Brody 1, IIG Bratislava.

(2) Brno: *Petr Yopěnka 2, Ledeč n. S.; Ivan Kolář 1,
Brno-Židenice; Otto Reimer 2, Ivančice; Oldřich Buchta 1,
Brno-Žabovřesky; Miroslav Svoboda 2, Telč; Zdeněk Kouba 2,
Telč.

(3) Olomouc: *Milan Dvořák 2b, Prostějov; Petr Urban 2b,
Prostějov; Stanislav Trávníček 2b, Kroměříž.

(4) Ostrava: Eduard Walach 2, Český Těšín.
(5) Pardubice: *Ivan Saxl 1, Chrudim; Vlastimil Heinzel 2,

Broumov; Miloš Němec 1, Pardubice.
(6) Plzeň: Karel Vlachovský 2b, Plzeň (Nám. odborářů);

Vladimír Jezdinský la, Klatovy; Petr Liebl 2a, Č. Budějovice;
Vlastimil Tomášek 2a, Č. Budějovice; Marie Magerová la,
Klatovy; Jiří Voleník lb, Rokycany; Otakar Vavroch lb,
Plzeň (Nám. odborářů); František Hesoun 2b, Č. Budějo-
vice.(7)Praha: *Evžen Kindler2, Praha XII, Londýnská; Ivan
Friš 2b, Praha XVI, Vančurovo G.; Tomislav Šimeček 1,
jaz. G, Praha XII, Slezská; Josef Jelen 2, Hořovice; Vladimíra
Sourková 2, Bílina.

I. cena v kategorii В byla přiřčena 4 účastníkům, kteří
jsou v seznamu označeni hvězdičkou. Byli odměněni pěně-
žitým darem po 2500 Kčs a výběrem z odborné literatury.

Pěti dalším účastníkům bylo věnováno po 1500 Kčs a knižní
dary. 3 účastníci získali III. cenu po 500 Kčs a knižní dary.

C. SOUTĚŽ TŘETÍHO KOLA

Do třetího kola postoupilo 47 soutěžících (kategorie A);
к soutěži se dostavilo 46 účastníků; z nich obstálo 22 účast-
níků, t. j. zhruba 48%. Mezi vítězi je 5 Slováků, kteří obsadili
první dvě místa.
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Přehled klasifikace ve třetím kole je patrný z tabulky č. 4.
Pořadí vítězů je uvedeno dále.

Tab. č. 4.

Počet

nepodaných
řešení

Počet prací oceněných známkou

2 31 4 5

Číslo úlohy 1
číslo úlohy 2
Číslo úlohy 3
číslo úlohy 4

3 311 5 19 5
6 9 2 4 619

5 4 105 11 11
2 0 15 3 20 G

Součty 24 17 31 16 2769

PORADÍ VÍTĚZŮ TŘETÍHO kola

MATEMATICKÉ OLYMPIÁDY

(Jde vesměs o žáky gymnasií; G = gymnasium; za jménem jednotlivých vítězů je
uvedeno jméno učitele, který žáka vyučoval.)

1. Juraj Bosák 4b, IIG Bratislava (Uhlík).
2. Jozef Gruska 3b, Prievidza (Vašek).
3. Jiří Janta 4b, Ostrava I, Tř. čs. legií (Pomykal).
4. Jaroslav Kautský 4c, Nerudovo G, Praha III (Hradecký).
5. až 9. Pavol Brunovský 3d, IIG Bratislava (Dubec); Bohu-

mil Cenkl 3b, Olomouc (Švarcová, Losenický); Bedřich
Formánek 4c, IIG Bratislava (Dubec, Furta); Jiří Jelínek
4a, Plzeň, Nám. odborářů (Fišerová); Břetislav Mičulka
3b, Místek (Vítek).

10. Jan Vaněk 4b, Teplice (Slavík).
11. Ivan Kertész 4b, IIG Košice (Rečičár).
12. až 18. Pavel Čihák 4a, Jičín (Bíma); Vladimír Doležal 4e,

Praha XIII (Dr Procházka); Jindřich Klimeš 4c, Pardu-
biče (Kapička, Matějka); Ivo Zvára 4a, Pardubice (Kapič-
ka); Josef Cyprián 4c, Ostrava I, Matiční (Andrýs); Josef
Čermák 3a, Chrudim (Langpaul); Jan Otčenášek 4d, Brno-
Husovice (Maňák).
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19. Vlastimil Krejsa 4, Ostrava I, Matiční (Andrýs).
20. až 22. Dagmar Čejková 4a, Chotěboř (Příhodová); Jaro-

slav Hofmann 3, Zábřeh (Eosek); Jaromír Vosmanský 4b,
Gottwaldov (Berka).

Prvních 11 účastníků obdrželo vedle knižních cen od MŠVU
peněžité odměny. První cena 6000 Kčs, druhá cena 5000 Kčs,
třetí cena 4500 Kčs atd. až jedenáctá cena 2000 Kčs. Zbývá-
jící dostali knižní ceny.
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3. ZHODNOCENI i. roCnIku
MATEMATICKÉ OLYMPIÁDY

1.1 když je hlavním úkolem matematické olympiády vzbu-
dit zájem o hlubší a intensivnější studium matematiky v co
nej širším okruhu studentů a objévovati mezi nimi matema-
tické talenty, je jedním z jejích vedlejších úkolů získat z prů-
běhu soutěže určité poznatky o současném stavu vyučování
matematice na výběrových školách 3. st. Tyto poznatky
mohou dát našim učitelům matematiky velmi cenné direk-
tivy pro jejich další učitelskou práci. To však platí nejen
o učitelích Škol 3. st., ale do značné míry i o učitelích škol
2. st.; vždyť v budoucnu bude třeba soutěž přenést i na vše-
obecně povinné školy. Některé okresy uspořádaly (již ve
Školním roce 1951/52) podobnou soutěž pro žactvo škol
2. stupně.

Soutěž ukázala, že máme na školách řadu nadaných stu-
dentů; na druhé straně bylo shledáno, že mnozí účastníci
soutěže, tedy většinou žáci nadprůměrní, ne-li vynikající,
projevili závažné nedostatky nejen v některých základních
vědomostech, ale i v usuzovacím procesu, v metodě řešení
matematických úloh, ve slovní formulaci myšlenkového po-
stupu řešení a pod. Tím spíše lze očekávat, že ještě hlubší
nedostatky se projeví u žáků průměrných. Na základě zku-
šeností nabytých z I. ročníku matematické olympiády bude
třeba hledat cesty, kterými lze tyto nedostatky soustavně
odstraňovat. Po této stránce musí přispět к soustavnému
zvyšování úrovně vyučování matematice zvláště matematické
kroužky při KPS a OPS a s nimi všichni učitelé matematiky;
také touto cestou mohou naši učitelé matematiky nemálo
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přispět našemu socialistickému budování a boji za mír v celém
světě. Politicky vyspělé a odborně dokonale připravené kádry
mladých techniků jsou zárukou, že cíle, jež si naše společnost
ukládá, skutečně splníme.

Při hodnocení prvního ročníku matematické olympiády
se soustředíme hlavně na úlohy I. kola, jednak proto, že nám
poskytují nejvíce materiálu jak počtem úloh a jejich proble-
matikou, tak i počtem účastníků; obě další, časově úzce ome-
zená kola nepřinesla v podstatě nic nového.

Bylo jistě nesprávné, že účastníci I. kola nemohli být už
během něho postupně informováni o správném řešení ode-
vzdaných úloh a o nej závaznějších chybách, které se v jejich
řešení vyskytovaly. Soustavné informace byly tím žádouc-
nějŠí už proto, že I. kolo mělo úkol studijní, tedy přípravný,
a bylo vlastně z celé soutěže nej důležitější a nej výchovnější.
Tím, že žákům takové informace nemohly být poskytnuty,
se stalo, že typické chyby se opakovaly znovu ve II. a III. kole.
Důvod, proč bylo nutno prodloužit termín odevzdávání řešení
úloh I. kola, je znám. Především se celá soutěž o měsíc opoz-
dila, mnohé školy prováděly propagaci soutěže až po vydání
ministerského oběžníku a konečně na mnohé školy docházel
časopis „Matematika ve škole” se značným opožděním a ne-
pravidelně. Také se v průběhu soutěže ukázalo, že nejen žáci
nedovedli ve svých školních učebnicích matematiky vyhledat
a nastudovat materiál, jehož znalost byla podmínkou úspěš-
něho řešení, ale že i mnozí učitelé, kteří se dosud s novými
učebnicemi dobře neseznámili, nedovedli svým svěřencům po
této stránce poradit. Nabádat žáka к samostatnému studiu
Školních učebnic matematiky, jak to konečně vyžaduje i usne-
sení předsednictva KSČ o učebnicích pro národní a střední
školy, je nejen úkolem školy, ale i jedním z cílů matematické
olympiády.

Nevýhodou při našem hodnocení je, že jsme namnoze zcela
odkázáni na stručné a kusé zprávy jednotlivých oblastních
výborů. Je tu dále i otázka, do jaké míry mohou být řešení
jednotlivých úloh soutěže podkladem pro objektivní posu-
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zování stavu vyučování matematice; jde tu totiž o otázku
vhodnosti a přiměřenosti jednotlivých zadaných úloh. V této
věci se mínění jednotlivých oblastních výborů značně rozchá-
zejí. Je jisté, že některé z úloh (na př. A 8, A 13*)) byly nad-
měrně složité a obtížné; naopak jiné úlohy (na př. A 12) byly
příliš jednoduché; ale přece jen většina úloh byla celkem při-
měřená, a právě o výsledky jejich řešení se opíráme při svém
hodnocení.

2. Nejzávažnější nedostatek je v tom, že žáci neobracejí
postup při dokazování, t. j., že odůvodní správnost tvrzení
A=>-B a pak jako samozřejmě správné přijmou tvrzení
В =►- A. Tato chyba se vyskytuje i v řešení úloh aritmetic-
kých, ale ještě častěji v úlohách geometrických. Tak na př.
důkaz vztahu z úlohy A 6 se prováděl většinou podle tohoto
chybného schématu: Plyne-li z dané nerovnosti (rovnice) ne-
rovnost (rovnice), která platí pro každé reálné x, y, z, pak
platí daná nerovnost (rovnice) pro každé reálné x, y, z. Nebo
v úloze В 5 se užívalo tohoto chybného závěru: Střed otáčení
(existuje-li) leží na jistých dvou přímkách; tedy každý spo-
léčný bod těchto dvou přímek je středem takového otáčení.
Podobné chyby se vyskytovaly hromadně v úlohách A 3,
A 4, A 7, A 8, A 16, В 7, В 15. To svědčí o tom, že na mno-

hých Školách se nevěnuje dosud dostatek pozornosti logické
správnosti výkladu matematiky. Rada učitelů se při výkladu
omezuje na to, že odvodí jakýmsi ne dosti přesným způsobem
vzorec nebo poučku, kterých má žák stejně nekritickým způ-
sobem užít к řešení určitého cvičení, při čemž se žáci málo
vedou к tomu, aby důkaz nejen plně pochopili a snad pomocí
svých poznámek jej i reprodukovali, ale aby také pociťovali
nutnost, že každé matematické tvrzení má být, pokud je to
na tomto stupni možné, řádně odůvodňováno.

Rozhodně je třeba vymýtit takové učitelovy výklady, které
budí dojem, že se poučka odůvodňuje, ale ve skutečnosti celá

*) A 8 značí úlohu 8 kategorie A v I. kole; ВЗ/П značí úlohu čís. 3
ve druhém kole a pod.

2 Matem, olympiáda 17



úvaha je povrchní, opírá se na př. nekriticky o jakýsi speciální
náčrt, je plna logických skoků a dohadů. Takto bychom naše
žáky nenaučili matematicky myslit, tím méně aspoň trochu
samostatně pracovat a studovat z učebnice.

3. Druhý závažný nedostatek jsou chybějící, neúplné nebo
chybné diskuse; jde o probrání jednotlivých možných případů
při důkazu nebo o diskusi nalezeného řešení, t. j. též o zkou-
mání podmínek řešitelnosti. Tento nedostatek je patrný zej mé-
na při synthetických úlohách v geometrii. Tak na př. v úloze
В 2 se neuvažovalo v řadě řešení o případech, kdy osa úsečky
AB protíná přímku OS v bodě O nebo S a kdy je úloha neře-
Šitelná. Takovýto nedostatek v diskusi vyplynul ovšem z toho,
že nalezené konstruktivní řešení úlohy nebylo vůbec dokazo-
váno. Nebo v úloze В 10 byly sice určeny strany obou ne-
shodných trojúhelníků takto: a, ha, h2a\ ha, h2a, hza, avšak
vůbec se nezkoumalo, pro která čísla h jsou takové troj úhel-
niky možné. Nedostatky v diskusích se vyskytovaly ve značné
míře také v úlohách A 3, A 4, A 7, A 9, A 15, В 1, В 4, В 9,
В 14, В 15.

4. V souvislosti s úlohou В 2, о níž byla výše zmínka,
je třeba se zmínit o konstruktivních úlohách vůbec. У soutěži
byla řada takových úloh, avšak značné procento účastníků
řešilo tyto úlohy bezplánovitě; je zřejmé, že jim není znám
postup při řešení konstruktivní úlohy. Mnozí neprováděli
rozbor, téměř nikdo se ani nezmínil o důkazu konstrukce,
což ovšem*souvisí s nedostatkem, který jsme uvedli na prvním
místě. Při konstruktivních úlohách se také nejvíce projevila
neschopnost žáků popsat srozumitelně postup; zdá se, že jim
leckde chybí nejen matematická terminologie a fraseologie,
ale také nejnutnější výcvik ve vyjadřování matematických
myšlenek. Proto bylo nesnadné některá řešení vůbec posu-
zovát.

5. Čtvrtý nedostatek je, že mnohým účastníkům není vůbec
jasné, co je matematický důkaz. Tak na př. v úloze A 12
zjistili někteří řešitelé počet obdélníků v několika konkrét-
nich případech a z těchto výsledků získali neúplnou indukcí
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obecný výsledek, ale nepokusili se jej vůbec dokázat. Jinde
(na př. v úloze В 15) uhodli výsledek z názoru anebo diskusi
prováděli z názoru, a nikoli rozborem výsledného vzorce
(A 10). V úloze A 3/III zase vůbec nezkoumali, zda úhly
(duté) ^:BAU, $lCDV skutečně existují, při důkazu pak
vycházeli jen od vlastního náčrtu. Zejména v analytické geo-
metrii (úloha A 7) nebylo mnoha účastníkům jasné, jak má
vypadat řešení úlohy. Přenášeli bez jakýchkoli dalších úvah
výsledky odvozené za pomoci obrázku z prvního kvadrantu
do ostatních a generalisovali je; tito žáci zřejmě nepochopili
podstatu analytické geometrie, ač jde téměř výhradně o žáky
4. třídy.

6. Z věcných nedostatků se nejvíce projevila nedostatečná
znalost práce s nerovnostmi a absolutními hodnotami (úlohy
A 2, A 6, В 5), špatné osvojení rozkladů shodností v osové
souměrnosti, resp. málo cviku při užívání těchto rozkladů
(úlohy A 15, В 3). a konečně nedostatečná znalost vlastností
dělicího poměru (úloha A 7).

7. Soutěžící v kategorii В ukázali, že dosud nejsou na mate-
matické zkoumání problémů dosti navyklí, což lze vysvětlit
do značné míry tím, že na střední škole se dosud žáci mnohde
učí provádět automaticky jakési operace nebo jakési kon-
strukce, jichž hlubší odůvodnění neznají nebo plně nechá-
pou, a že teprve během studia na škole 3. st. jim pozvolna
přivykají;proto značná část soutěžících v kategorii В v II. kole
neobstála. Ale i v kategorii A ve III. kole obstála sotva polo-
vina soutěžících, při čemž si musíme uvědomit, že úspěšným
řešitelem II. nebo III. kola byl soutěžící, který vypracoval
nejméně 2 úlohy (ze čtyř) alespoň dobře, takže po této stránce
byly požadavky poměrně malé.

8. Na druhé straně je třeba konstatovat, že přes všechny
nesnáze, s nimiž provedení soutěže muselo zápasit, proběhla
soutěž celkem hladce a nemálo přispěla na řadě škol к zvý-
Šení zájmu o studium matematiky a technických oborů vůbec.
Někteří učitelé věnovali propagaci soutěže velkou pozornost
a při různých besedách s řešiteli značně přispěli к tomu,
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že soutěžící v II. uebo i v III. kole podali velmi pěkné
výkony.

Na tomto místě je třeba poděkovat jak soudruhům v oblast-
nich výborech matematické olympiády, tak i soudruhům v ma-
tematických kabinetech při KPS. Zvláště tyto kroužky za
spolupráce s krajskými inspektory a orgány MŠVU a PŠVU
podstatně přispěly к rychlému proniknutí soutěže; také pra-
covníci skupin ČSM mají svou zásluhu o získání řady soutě-
žících.

Návštěva soutěžících II. kola v oblastních městech a ná-
vštěva účastníků III. kola v Praze znamenala pro mnohé
studenty mimořádnou událost, na kterou budou rádi vzpo-
mínat.

Potěšující je, že se olympiáda stala celostátním podnikem,
jehož se slovenští pracovníci účastnili velmi pěkným způso-
bem, o čemž svědčí zvláště to, že první dva z vítězů jsou
Slováci. Přitom je třeba konstatovat, že slovenští žáci dosud
většinou neměli nové učebnice matematiky к disposici.

Za velmi kladný přínos matematické olympiády musíme
považovat konstatování mnohých soutěžících, s nimiž jsme
rozmlouvali, že totiž začali studovat školské učebnice mate-
matiky. Je zajímavé, že velmi bedlivě srovnávali staré uěeb-
nice a rozsáhlost jejich látky s učebnicemi novými, při čemž
pak sami konstatovali pokrok, který nové učebnice známe-
nají po stránce přesnosti a zevrubnosti. Můžeme proto oěeká-
vat, že příští ročník matematické olympiády splní své úkoly
lépe než ročník letošní a že s pomocí našich politicky uvědo-
mělých, mládež milujících učitelů matematiky přispěje pod-
statně ke zvýšení kvality vědomostí našich studentů nejen
v matematice, ale i v příbuzných disciplinách.
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4. ĚEŠENl ÚLOH ZE SOUTĚŽE

A. ÚLOHY I. KOLA, KATEGORIE A

1. Jaký vztah platí mezi úhly a, j3, y, platí-li

a) sin a + sin /3 + sin у — 4 cos — a cos — /3 cos —Л Л Л

b) tg2a + tg2/5 + tg2^ = tg2a.tg2/Ltg2y?

7’

Řešení, a) Daný vztah lze postupně upravovati takto:

2 sin -i- (a + P) cos y (a - /3) + 2 sin -i- у cos -i- у =

i= 2 J^2 cos
7_.cos — cos
2 ’

]i !
sin i (a +/8)

= ícos y (a + /0 + c°s у (a - />)J
Y (a - /3) j^siny (a + jff) -

-(a -0) +sin — /cos — у -cos

1
cos — y;

1 1

COSyy | +cos

cosi (a + /3)j
у (a — /3) j^sin i-(a + /3) - sin у (ti -y)J +

y^cos-i(7T: - y)

H
1

sin — 7 -
= 0;+ c°s¥

cos

cos у (a +
1

= 0;+ 00S_2
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1 1 1
2 cos — (<x — /?)cos —(тс+a +/S — y)sin — (a + /5-j-y —тс) +

+ 2 cos — у sin (тс -f a -f- /? — У) sin (a + (3 + У — тс) = 0

sin -i (a + /? + у тс)
1 1

— (a -/5) cos — (тс-f a + /? - у) +

■iysin j(TC + a -f 0 -y)J
cos

= 0. •-f- cos

Tomu lze vyhovět, když:
(1) buď

sin -^-(a -f /? -f- У — тс) = 0, t. j. když a + /5 +у = (4& + 1) тс,
kde к je libovolné číslo celé (k = 0, ±1, ±2, .. .),
(2) nebo když

(a - /?) cos -i- (тс + a + 0 - y) +

+ cos -i- у sin (тс -f a -(- /? — y) = 0.
Z T

cos

Tento vztah lze upravit takto:

У 2 č) [C0ST^a+^ ~yS} ~sin j(a+^-y)j
i-y |cos-Í(a +/? - y) + sinj(a + /? - y)j

у (a -0) 4-cos-i-yJ -

1

_|c°3-(a- +

I _+ cos¥ 0,f

j(a+0-y)£
-sini (a + £ -y)£

cos

cosi-yj = 0,cos
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takže

■j (« + /5 - y) cos -i- (a - /? + y)
— sin -^-(a+/? — y)sin-^-(a — /?+y)sin-^-( —a-f/? + y) = 0.

1
— ( - a + 0 + y) -cos cos

Nalezený vztah nelze rozřešit prostředky školské matema-
tiky. Lze však udat některá částečná řešení. Vztahu vyho-
víme třeba tak, že položíme — a + /? ф у = te ; daný vztah
pak přejde ve tvar

1 1
— (a + /9 - y) cos —(a -p+y) -

X (a + 0 ~ У) ’ sinj (« - P + v) = 0,

cos

— sin

1
čili cos —a = 0. Odtud plyne a = (2к — 1)тс, kde к je celé,

Z

takže /9 ф У — 2ikn. Podobně bychom dostali částečné řešení
a ф У — 2kn, (3 = (2к — l)u nebo a ф /? = 2kn, у =

- (2к — 1) тс.

b) Daný vztah má význam, když
11 1

2a ф —n ф In, 2(3 ф —n + mn, 2 у ф —n + nu,

kde l, m, n jsou celá čísla. Je vždy tg 2atg 2(3 ф 1. Kdyby
totiž tg2atg2/?=l, pak by z daného vztahu plynulo
tg 2a + tg 2(3 ф tg 2у = tg 2y, čili tg2 2a = — 1, což není
možné. Lze tedy psát

(1)

tg 2a + tg 2(3
= — tg (2a + 2/?),tg 2у =

tg 2a tg 2/9 — 1
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čili

2a -f- 2/i + 2у = In, (2)
kde A: je celé číslo.

Protože postup lze obrátit, máme výsledek: danému vztahu
je vyhověno právě tehdy, je-li (za předpokladu (1)) vyho-
věno (2).

2. Jsou-li p1} p2, ft, ft reálná čísla a je-li P\Pz =
= 2(9! + ft), pak aspoň jedna z rovnic

ж2 + ргх + ft = 0,
x2 + p2x + q2 = 0

má reálné kořeny. Dokažte!

Řešení. Kdyby měly obě rovnice kořeny imaginární, bylo by

p\ - 4?1 <0, pl - 4§-2 < 0, čili p\ < 4ft, p\ < 4ft.

Pak by bylo p\ + p2 < 4(ft + д'з) a vzhledem к podmínce
dané v úloze by bylo také

Vl + Vl < %PiV2> čili {pi - Pz)2 < 0,
což je nemožné, neboť px, p2 jsou reálná čísla.

3. Sestrojte čtyřúhelník A BCD, jsou-li dány velikosti úse-
ček AB, AC, BD,CD a přímky p\\AC, q\\BD. Proveďte dis-
kuši.

Řešení. Předpokládejme, že jsme nalezli řešení. Pak posu-
nutí, které převede bod D v bod C, nechť převede bod В
v bod B'. Bod B' nesplyne s bodem C (jinak by bylo В = D)
a neleží na přímce AC mimo bod C (jinak by bylo AC =
= CB' || DB\ avšak úhlopříčky nejsou v žádném čtyřúhel-
niku vypuklém ani nevypuklém rovnoběžné). Body А, С, B'
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tvoří tedy trojúhelník, v němž jsou známy směry dvou
stran АС \\p, CB' 11 BD11 q a jejich velikosti АС, CB' = BĎ.

Konstrukce je tedy tato: zvolíme bod C, jím vedeme přímky
p' || p, q' || q. Bod C rozdělí přímku p' na dvě polopřímky:
vybereme jednu z nich a označíme ji CX. Bod C rozdělí
přímku q' na dvě polopřímky: vybereme jednu z nich a ozna-
číme ji CY. Na polopřímkách CX, CY sestrojíme body A,
B' tak, aby úsečka CA měla předepsanou velikost a aby
bylo CB' — BD. Sestrojíme dále bod В tak, aby úsečka AB
měla předepsanou velikost a aby bylo BB' — CD. Konečně
sestrojíme bod D tak, aby bylo B'C tt BD a B'C = BD.
Úloha je řešitelná, jsou-li splněny tyto předpoklady:

1. Lze sestrojit bod B, t. j. ) AB — CD | ^ AB' ^ AB +
+ ČĎ.

2. Trojice bodů A,B,C; B,C,D\ C,D,A\ D,A,B neleží
v přímce.

Úloha má nejvýše čtyři řešení, neboť vyjdeme-li z polo-
přímek CX, CY, dostaneme nejvýše dvě řešení (dva troj-
úhelníky AB'B souměrně sdružené podle přímky AB'),
vyjdeme-li z polopřímek CX' a CY' opačných к CX, CY,
dostaneme opět nejvýše dvě řešení. / v

'%ev'j ck
4. Jsou dány dvě různoběžky p, p' a na nich dva různé

body A, A' (A na p, A' na p'). Úrčete bod M na přímce p
a bod M' na přímce p' tak, aby bylo AM = A'M' a aby
úsečka MM' měla danou velikost d. Proveďte diskusi.

Řešení. Předpokládejme, že jsme nalezli řešení a že M =|s A.
Posunutí, které převádí bod M' v bod A', převede bod A
v bod, který označíme M", a bod M v bod, který označíme MQ.
Protože podle předpokladu je A'M" = AM a úsečky AM"
a MM0 jsou shodné a souhlasně rovnoběžné délky A'M',
je AMM0M" kosočtverec.
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Proto leží bod M0 na jedné z os přímek p, p" =AM".
tJsečky M'A' a MM0 jsou rovněž shodné a souhlasně rovno-
běžné, tedy MM1 — M0A' — d, takže bod M0 leží na kruž-
nici se středem v A' a poloměrem d.

Z tohoto rozboru plyne konstrukce:
Při daných různoběžkách p, p', bodech A, A' na p, p'

a délce d sestrojíme nejprve bodem A přímku p" rovnoběž-
nou s přímkou p. Sestrojíme dále osy o1} o2 přímek p a p"
a kružnici к = (A', d). Každému průsečíku M0 kružnice к
s jednou z os o1} o2 odpovídá právě jedno řešení úlohy, jak
vyplývá z obrácení postupu.

1. Je-li M0 ф A, sestrojíme bodem M0 rovnoběžku q
s přímkou p , která protne p v bodě, který označíme M. Je
M ф M0. Posunutí, které převede bod M0 v bod M, převede
bod A' v bod M' ф A', který leží na p' a pro který vskutku
platí A'M' = (Mjď =) AM, WM - A'M0 - d. Že ke kaž-
dému ze sestrojených bodů M0 existuje právě jeden bod M
a jeden bod M', vyplývá z úvodního rozboru.

2. Je-li M0 s= A, je jedno řešení M = A, M'=A'. Další
řešení dostaneme jako v případě 1.

Existují tedy nejvýše čtyři řešení podle toho, kolik je prů-
sečíků kružnice к s dvojicí os olf o2.

5. Buď n přirozené číslo a xlt x2, ... xn čísla reálná. Do-
kažte, že když platí

n{x\ -f x\ + ... + x%) = {xx -f x2 -f ... + xny,

pak je nutně xx = x2 = ... = xn.

Řešení. Daný vztah lze přepsat ve tvaru

nx\ + nx\ + .. . + пхгп = x\ + x\ + ... + x\ + 2xxxt +
+ 2xtxs -f- ... -f- 2хп_гхп,
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při čemž každé číslo xv se vyskytuje právě v n — 1 souči-
nech 2ж*Ж£. Lze tedy psát

(®i - »2)2 + (®x - ж3)2 + ... + {xn.x - x„)2 = 0,

a to lze splnit jen tehdy, jsou-li všecky rozdíly v závorkách
rovny nule, t. j. je-li

xx = ж2 = ... = жи.

6. Dokažte, že pro každé reálné x, y, z platí
x + у -f- z ^ У 3(ж2 -j- í/2 -f- z2).

Kdy nastává rovnost?

Řešení. Jsou-li x, y, z, reálná čísla, vždy platí

(x - yf -f {y - z)2 + (z - ж)2 ^ 0.
Odtud plyne

2ж2 — 2xy -j- 2y2 — 2yz — 2zcc + 2z2 ^ 0,
čili

(ж -f у + z)2 ^ 3(ж2 + Í/2 + z2),
a pak

I x 4- у + z I ^ У 3(ж2 4- у2 + z2)
a tedy tím spíše

x + у 4- z ^ У 3(ж2 4- Уг 4- z2).
Rovnost nastane, je-li x — у — z^ 0.

7. Úsečka 4R velikosti d se pohybuje tak, že její krajní
body zůstávají na dvou pevných navzájem kolmých přím-
kách. Co vyplní při tom bod X přímky AB, jehož dělicí
poměr (ABX) je roven danému číslu А Ф 0; 1? Může být
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křivka opsaná bodem X kružnice? Jsou mezi křivkami opsa-
nými bodem X dvě podobné nebo shodné?

Řešení. Dané dvě navzájem kolmé přímky zvolíme za osy
souřadnic; bod A nechť leží na ose ж, bod В na ose у a jejich
souřadnice buďte A = [хг; 0], В = [0; у2]. Z podmínek naší
úlohy vyplývá jednak:

*1 + У\ = d2, O)

jednak vztah pro bod X = [ж; y\.
-tytXi

(1')x — У =1 — Я ’ 1 — Я ‘

1
Odtud plyne хг = (1 — А)ж, y2 = (1 — l)y. Dosa-

Л

díme-li za x1} y2 do rovnice (1), vyjde po úpravě

(1 — A)! (1- Я)*
(2)x2 + y2 = \.d2l2d2

Každý bod X leží tedy na elipse o rovnici (2). Obráceně,
je-li [ж; у] libovolný bod této elipsy, určíme čísla xx —

= (1 — А)ж a y2 = ——(1 — Я)у. Použijeme-li rovnice (2), do-
Л

staneme, že mezi čísly жь y2 platí rovnice (1). To znamená,
že vzdálenost bodů [хг\ 0], [0; y2] je d; mimo to jsou splněny
rovnice (1'), t. j. bod [ж, у] má vzhledem к bodům [жх; 0],
[0; y2] dělicí poměr Я, a náleží tudíž mezi hledané body X.
Proto je elipsa (2) geometrickým místem všech bodů X.

Elipsa (2) je kružnicí tehdy a jen tehdy, je-li

(1 — Я)*
_ a - v

d2i2 ’d2

čili 1 = -i- , t. j. Я = — 1 (je totiž Я ф 1).
Л

Bod X je pak středem úsečky AB.
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Vyšetřeme, kterým A odpovídají elipsy podobné, resp.
shodné, předpokládáme-li d pevně zvolené. Pro dvě hodnoty
Xx = Я2 dostaneme dvě elipsy totožné, jak plyne z rovnice (2).
Nechť je tedy Xx ф A2.

Aby dvě elipsy, odpovídající hodnotám Ax, Я2 byly podobné,
musí být úměrné jejich poloosy a tedy také čtverce těchto
poloos, t. j. musí platit

. d2X\d2X\ d2d2
(3)

(1-Я.)* • (1-Я3)! ’(!-*,)• ' (1 - Лх);
nebo

d2X\ d2X\ d2d2
(30

а-я,)* ' (i—я,)3 (1-я2)г • (1 - Ла)а '
Za našeho předpokladu Ax ф 1, A2 ф 1 je rovnice (3) ekvi-

valentní s rovnicí

(4)J2 J2Л1 л2’

rovnice (30 s rovnicí
(W = 1.

1. Platí-li (4), musí být Хг = — X2 (neboť Хг =}= A2), a tedy
[Ai| ф 1. V tomto případě jde o podobnost, neboť koeficient

(40

1-Ai1 — Ajúměrnosti je Ф 1. Kdyby totiž bylo = 1,
1 +Ai1 Ф Ax

bylo by (1 — Ax)2 = (1 + Ax)2, t. j. Ax = 0, a to je spor, takže
shodnost je vyloučena.

2. Bude-li platit rovnice (40, mohou nastat dva případy:
a) AxA2 = 1, pak je nutně | Ax J ф 1 (Ax ф A2), A2 Ф 0

a můžeme psát Ax = — . Koeficient úměrnosti je
Л2

A2 — AxA2Я3(1 — Ях) a2-i
-1,

1-A2 i-a2 i-a2

takže jde o shodnost.
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1
b) AiA* = — 1 (jAx] 4= 1, А2ф0), pak je Ax = —

Koeficient úměrnosti je

Aa — AXA. A2 +1
Ф 1,

i-a2 1-A,
neboť A2 Ф 0.
Shodnost je tedy vyloučena a jde o podobnost.

Dostáváme tedy podobnost pro případy

|A,| Ф 0; 1,Ai — A2,
1

|Ai| Ф 0; 1,■ Ai =
A2 ’

a shodnost v případě
1

]Aj| 4= 0; 1.A2

8. Soustava čtverců má tuto vlastnost:
Jeden vrchol každého čtverce leží na přímce p, druhý na

přímce q a třetí na přímce r.
Dokažte, že čtvrté vrcholy čtverců soustavy leží také

na přímce.
Užitím předchozího výsledku sestrojte čtverec ABCD, jehož

vrchol A leží na dané přímce a, vrchol В na dané přímce b,
vrchol C na dané přímce c a vrchol D na dané přímce d.
Diskuse.

ĚeŠení. Prvou část úlohy budeme řešit v poněkud precis-
nějsí formulaci (viz dále Úloha 1). Nejprve však zavedeme
tyto úmluvy:

Všechny*vyšetřované geometrické útvary leží v pevné dané
rovině, v níž je určen kladný smysl otáčení. Tuto rovinu vez-
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meme za souřadnicovou rovinu o osách x, у (kladný směr
osy у vznikne z kladného směru osy x otočením o +90°).

Souřadnice bodu A budeme značit xA a yA a budeme psát
A = \xA, y^\. Smluvíme se dále na tomto označení:

1. Jsou-li А, В dva body а Я číslo reálné, budeme znakem
A -J- В značit bod [xA + xB, yA -j- уг] a znakem Я A bod
[ÁxA, ЯуА]. Místo ( —1) A budeme stručně psát —A.

2. Je-li A bod v naší rovině, budeme znakem A* značit
bod, který vznikne z bodu A otočením o +90° kolem počátku,
tedy A* = [ — yA, xA], Snadno nahlédneme, že

(ÁA + juB)* = лА* + juB*
(jsou-li А, В body а Я, ju reálná čísla).

3. Jestliže bod A leží na přímce a, budeme stručně psát
A s a.

Jsou-li p, q dvě přímky, bude úhel <£ pq značit úhel,
o který je nutno otočit přímku p, abychom dostali přímku
rovnoběžnou s přímkou q. Tento úhel je určen až na celistvý
násobek 180°. Jsou-li dány čtyři body А, В, C, D, budeme
říkat, že tvoří čtverec (A,B,C,D) (kladně orientovaný), když
А, В, C, D jsou vrcholy čtverce o stranách AB, BC,CD, DA
a když strana AD vznikne ze strany А В otočením o 90°
(kladně) kolem bodu A.*)

Věta 1. Čtyři body А, В, C, D tvoří čtverec tehdy a jen
tehdy, když

(1)С - В = (В - А)*,
В — А = С — D. (2)

Věta 2. Buďtež (А, В, С, D), (А', В', С', D') dva čtverce.
Nechť ze vztahů A = А', В — В', С = C', D = D' jsou
splněny alespoň dva. Pak jsou splněny i vztahy zbývající.

Věty 1 a 2 jsou zřejmé.

*) Za čtverec pokládáme i útvar vytvořený čtyřmi splývajícími body.
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Vloha 1. Jsou dány tři přímky a, b, c. VyŠetřte, co je
soubor d vrcholů D čtverců (A, B,C,D), kde Aea, Beb,
C e c. Proveďte diskusi.

Řešení. 1. Nechť ^.ab — 45°, <£bc = 45° a nechť přímky
a, b, c se neprotínají v jednom bodě. Potom neexistuje čtverec
(А, В, C, D) tak, aby Aea, Beb, C e c.

2. У každém jiném případě je d přímka.

Abychom mohli dokázat řešení úlohy 1, odvodíme si pět
pomocných vět číslovaných I až У.

I. Nechť přímky a, c nejsou kolmé. Pak pro každé Beb
existuje právě jeden čtverec (A, B,C,D) tak, že Aea, C e c.

Důkaz existence. Budiž у soubor bodů Y = В -f- (X — B)*,
kde X probíhá body přímky c (to znamená, že у je
přímka, která vznikne z přímky c otočením o 90° kolem
bodu B). Je tedy у přímka kolmá к c, tedy у není rovno-
běžná s a. Přímky у а, a protínají se tedy v jistém bodě A.
Určeme bod G vztahem*) A = В -(- (C — B)*. Je tedy C e c,
Aea.
Určeme ještě bod D vztahem (2) z věty 1. Tvoří tedy body
(A, B,C,D) podle této věty čtverce.

Důkaz unicity. Buďtež (A, B,C,D), (A', B',C',D') dva různé
čtverce takové, že А, А' e а; С, C' e c. Podle věty 2 je А Ф A',
С Ф C'.

Podle věty 1 je
С — В = (B — A)*,

С' - В = (В - А')*,

*) To tedy znamená x^ — xB Уa,

yA= yB+ xc~xp,
хо=хв-^в~УА)'
У0==Ув+^хв~хА)'

čili

takže C— В = (В — ^4)*.
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a tedy С — С' = (А' — A)*. Vznikne tedy vektor С'С z vek-
toru AA' otočením o 90°; ježto oba vektory jsou nenulové
a ježto první leží na přímce c a druhý na a, jsou přímky a a c
к sobě kolmé, což je spor.

II. Nechť a není kolmé к c. Buďtež (A1,B1,C1,D1) a (A2,
B2,C2,D2) dva čtverce takové, že A1,A2e а, Bx,B2eb,
Cx,C2ec, při čemž Bx 4= B2 (takové čtverce podle I existují).
Pak Dx =j= D

Důkaz. Předpokládejme, že Dí = D2. Pak je Ax 4= A2,
Cx 4= C2 (jinak by podle věty 2 bylo Bx = B2). Dle věty 1 je

с, - л,! В, - Л = - (C, - B,)* = - (Й, - At)*;
(čísla v závorkách nad rovnítky značí odkazy na vztahy (1) a (2)
z věty 1).

Tedy Cx — Dx = (Ai — Dx)* a podobně C2 — D2 = (A

2-

a

— D2)*. Ježto Dx = D2, dostaneme odečtením Cx — C2 =
— (Ax A2)*. Ježto Ci,C2 s c, Ax,A2 g а, Cx 41 C2, Ax 4^ A2,
jsou přímky с а а к sobě kolmé, což je spor.

III. Nechť a není kolmé к c. Budiž ď přímka spojující body
Di, D2 z věty II (je Di 4= D2). Pro libovolné reálné A budiž
A = A (A) = Ax + A (A2 - Ai), С = С (A) = Сг + A (C2 -Cx)t
B = B(k) = Bx + A (B2 — Bx), D = D (k) = Dx 4-A(D, - Dx).
Pak A e а, В еЪ, С e c, D e ď
čtverec.

Důkaz. Z věty 1 plyne

body (А, В, C, D) tvoří

Cl-в1= (Bi - Ax)*,
C2- B2 = (B2 - A2)*.

Znásobíme první rovnici číslem 1 — A, druhou číslem A
a sečteme je; dostaneme С — В = (В — A)*. Dále plyne
z věty 1

Bx - Ai = Cx - D
В2 — A2 — C2 — D2.

Znásobíme opět první rovnici číslem 1 — A, druhou číslem A
a sečteme je; dostaneme В — A = C — D.

i j
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Body (А, В, С, D) tvoří tedy čtverec. Ostatní je zřejmé.
IV. Předpoklady stejné jako v III. Pak ď = d.
Důkaz, cl) Budiž Ded. Pak existuje čtverec (A,B,C,D)

tak, že A e а, В еЪ, С e c. Zvolme reálné Я tak, aby В (Я) =
= В (to lze, ježto BX4=B2); podle III je (А (Я), В (Я), С (Я)
1)(Я)) čtverec, pro který А (Я) г а, В (Я) е Ь, С (Я) г с a přitom
В (Х) = В. Podle I je tedy D (Я) = D. Avšak podle III je D(Я) e ď.
Tedy D £ ď.

fi) Budiž D e ď. Zvolme reálné Я tak, aby D (Я) = D (to
lze, ježto Dx * D2). Podle III je (А (Я), В (Я), С (Я), D (Я)),
čtverec а А (Я) е а, В (Я) еЪ, С (Я) е с, tedy D (Я) е d. Avšak
D — D (Я), tedy Ded.

V. Nechť nyní přímky a, c jsou к sobě kolmé. Zvolme
přímku a za přímku x = y, přímku c za přímku x = — y.
Budiž p přímka x — 0 a q přímka у = 0 (je tedy úhel <£ ap =
= 45°, = 135°).

a) Je-li (A,B,C,D) čtverec, pro který A s a, C e c, je В e p,
D 8 q.

Důkaz. Vrchol B, resp. D dostaneme, otočíme-li vrchol A,

resp. C kolem středu S = A + C čtverce (A, B,C,D)
o +90°, tedy

В = S + (A — S)*, D = S + (0 - S)*,
a dále

хв = xs - yA -f ys = — xÁ -f — x0 -Уа + -^Уа +yVc =0,
neboť ха - УА, xc= - yc, Vd = Vs + *c - % = у Уa +
-j- yc + Xc — -i- Xj_ — j-xc — 0 z téhož důvodu. Je tedyA A A

D e q.
jí) Budiž Вер, De q. Potom zřejmě existuje čtverec

(A,B,C,D). Je pak Ae q, Cec.

1 11 1
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Důkaz. Podle věty Va), aplikujeme-li ji na čtverec (B, C,D, A),
leží (ježto p _L q) bod C, resp. A, na přímce, která vznikne
z p, resp. q otočením o 45° kolem společného průsečíku (tedy
kolem počátku); je tedy C s c, A g a.

Důkaz vlastního řehní. Bod 1. Je ale. Рак Ъ |] p (viz
větu V), Ъ Ф p. Množiny 6, p nemají žádný společný bod,
tedy podle Va) neexistuje čtverec (A, B,C,D) tak, aby Aga,
В sb, C sc.

Bod 2. Případ a), a J_ с. Pak d = q.
Důkaz. Nechť D e d. Existuje tedy čtverec (A,B,C,D)

tak, že Ага, В gb, C g c, tedy podle Va) je D g q.
Nechť D g q. Budiž В společný bod přímek раб. Рак pro

čtverec (A,B,C,D) dle V/?) platí Aga, C g c, tedy D g d.
Případ jS). a není kolmé к c. Pak podle IY je d = ď.
Poznámka. Z důkazu plyne ihned konstrukce přímky d,

pokud existuje. V případě, že a není kolmé к c, vypadá tato
konstrukce takto: Zvolme na přímce b dva různé body Bx,
Вг. Otočme přímku c kolem (i — 1,2) o 90°. Otočená
přímka protne přímku a v bodě A1} resp. A2. Sestrojme čtve-
rec (A^B^C^Dj) pro i — 1,2. Body Dx, D2 jsou různé
a jejich spojnice je přímka d.

V případě, že a c, je d přímka vzniklá z c otočením
o 45° kolem průsečíku přímek a, c.

Vloha 2. Buďtež dány čtyři přímky a, b, c, d. Sestrojit
čtverec (А, В, C, D) tak, aby Aga, В gb, C g c, D g d.

Řehní. I. Čtverec (A, B,C,D) kladně orientovaný.
Případ 1. Alespoň jedna z dvojic přímek a, c nebo b, d

představuje dvojici přímek navzájem kolmých. Bez újmy
obecnosti lze předpokládat (cyklickou záměnou označení a,
b, c, d lze toho dosáhnout), že a J_ c.

Definujme přímky p, q takto: Obě procházejí společným prů-
sečíkem přímek a, c a svírají s nimi úhly: ap = cq — 45°.

Budiž B, resp. D soubor společných bodů přímek b, p, resp.
d, q. Pak všechny hledané čtverce (A,B,C,D) najdeme
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takto: Zvolíme libovolně bod D v množině D a bod В v mno-

žině В (tím jsou body A, C jednoznačně určeny).
Důkaz vyplývá ihned z vět Уа) a V/5), uvedených v dů-

kazu řešení předcházející úlohy.
Případ 2. Není ani a i c ani b J_ d.
Podle předcházející úlohy 1 sestrojme přímku ď (viz po-

známku uvedenou za předcházející úlohou).
Případ a). Přímky ď a d nemají společný bod. Potom ne-

existuje řešení.
Případ/?). Přímky ď a d jsou totožné. Potom každý čtverec

(A,B,C,D), pro který А в a, Beb, C e c, je řešením.
Případy).Přímky ď a d mají právě jeden společný bod D.

Potom existuje právě jeden hledaný čtverec (A,B,C,D).
Přímku a otočíme o 90° kolem bodu D. Otočená přímka
protne přímku c v jediném bodě C (není totiž a_|_c); body
D, C je čtverec jednoznačně určen.

Vše^okamžitě plyne z řešení úlohy 1.
II. Čtverec (A, B,C,D) záporně orientovaný.
Označíme a = a',b — ď, c — c', d = b' a provedeme tutéž

konstrukci jako v I. pro přímky a',b',c',ď. Určíme tím
všechny čtverce (A',B',C',D') kladně orientované, pro něž
А' e а', В' в b', C' e c', D' в ď. Položíme-li dále A’ = A, B' =
— D, С' = C, D' — B, dostaneme z těchto čtverců právě
všechny záporně orientované čtverce (A, B,C,D), pro něž
je А в а, ВвЪ, С e c, D в d. (Uvedené řešení je autorské.
Y podstatě se opírá o komplexní čísla, bylo však formálně
upraveno. Názornější řešení synthetické lze podat na př. uži-
tím stereometrie.)

9. Pro které hodnoty nezávisle proměnné x nabývá lomená
lineární funkce

ax -f- b
cx -f- d

hodnoty x% Proveďte diskusi vzhledem к různým hodnotám
koeficientů a, b, c, d.

(1)У =
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Řešení. Funkce (1) má smysl jen tehdy, není-li současně
c = d = 0. Aby у = x, je nutné a stačí, aby nastal jeden
z těchto případů:

1. c
1

= 0 (d Ф 0), x = -j(a% + 6),a
(2)

nebo
ах -\-b
cx + ď (3)2. с Ф 0, ж Ф а ж =

r.

Případ 1. Jsou tyto možnosti:
а) а Ф d, pak existuje jediné x, které má hledanou vlast-

d — a.

ft) a — d, Ъ Ф 0, pak neexistuje žádné x, pro které by
x = x -f --, tedy ani x, vyhovující dané podmínce.

&

у) a = d, 6 = 0, pak (2) je splněna pro každé x, takže
každé x vyhovuje podmínce.

Případ 2. Z rovnice (3) a podmínky x ф —
d- plyne

(4)cx2 + (d — a) x — Ъ = 0.
Označme A diskriminant

A = (d — a)2 + 46c.
Rozlišujeme:
a) A > 0;

pak kořeny (4) jsou

xi = ;^(a ~ d +У^)’
ď

Aby asj, resp. ж2, vyhovovalo úloze, musí být ještě хг Ф ,

d d ^
resp. ж2 4= . To je splněno, není-li kořenem rovni-

c d2 d c
ce (4), t. j. platí-li (d — a) 6Ф 0, čili ad — Ъс =}= 0.

c c

Potom tedy existují dvě různá x1} x2, vyhovující úloze.

x2 =
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— Ъс = 0, ie pro х ф — —
с

Je-li ad

ad
ax -f- —

ax -f- Ъ с

сх -f- d сх -f- d
а . . а
—

, pokud — 4=
с с

takže jediné х, vyhovující úloze, je x =

Ф — —, čili a 4= — cú Je-li a =
— čZ, neexistuje žádné takové x.

p) A1=0;

pak * = a~Ťo
a — d

— je jediné x, vyhovující úloze, opět pokud

— čili pokud a + d =4= 0. Je-li a —
— d, neexis-+ _

2c

tuje řešení.
у) A <0;

pak neexistuje (reálné) řešení.

10. Buďte А,О, В tři různé body svislé roviny, která
protne vodorovnou rovinu jdoucí bodem O v přímce KOL.
Označme < AOL — a, «£ BOX = /? ostré úhly а ОЛ = a,
OB = & dvě úsečky.

Po polopřímkách АО, ВО se pohybují směrem к O body
vlivem tíže zemské bez tření; jeden je bod M, jehož výchozí
polohou je bod A, druhý je bod N s počáteční polohou
v bodě B.

Určete čas, v němž bude přímka MN vodorovná a pro-
veďte diskusi o existenci řešení. Body M, N se počnou pohy-
bovat ze svých výchozích poloh současně.

Řešení. Složky zrychlení v přímkách АО, resp. ВО jsou
g sin a, resp. g sin /?. Označme s1( resp. s2 dráhu, kterou vyko-

38



nal bod M, resp. N za t časových jednotek od počátku pohybu.
Pak je (jde o pohyby rovnoměrně zrychlené):

№ sin a, s2 = í2 sin p.Z z
S1 =

Výška bodu M, resp. V,nad vodorovnou rovinou v okamžiku t
je (a — íx) sin a, resp. (b — s2) sin /?. Podle podmínky úlohy
je nutně

(a — 5X) sin a = (b — s2) sin /3.

Po dosazení za sx a s2 a po úpravě vyjde

f2 (sin2 a — sin2 p) = a sin a — b sinp.Z

Ježto a, p jsou ostré úhly, je siná > 0, sin /?> 0, t. j.
sin2 a — sin2 P = 0 tehdy a jen tehdy, je-li sin a = sin p, čili
a — p.

Je-li a = p a a Ф 6, je úloha neřešitelná, neboť přímka
ilíif splývá stále s přímkou OAB. Je-li a = p а a — Ъ,
nemá úloha smysl, neboť M = N a přímka M N není defi-
nována.

Je-li а ф p, na př. a > /?, lze z rovnice (1) vypočíst pří-
slušný čas í0:

2 a sin a — Ъ sin PV = —
g sin2 a — sin2/?

Úloha bude mít v tomto případě řešení tehdy a jen tehdy,
jestliže tl vyjde kladné, t. j. je-li

a sin a — b sin p >0;
sin2 a — sin2 p

protože sin a > sin p, musí být

a sin a — b sin P > 0. (1)
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Je ovšem třeba, aby v čase se dostaly body M, N do
takových poloh, které jsou nad vodorovnou rovinou, t. j.
aby platilo

(a — Sj) sin a > 0 nebo (b — s2) sin /? > 0,

\gtl sin a, s2 = \gťl sin/?. Použijeme-li na př. prvníA A
kde Sx =

nerovnosti a dosadíme za í2, dostaneme

a sin a — Ъ sin /?
sin2 a — sin2/?

čili s použitím vztahů sin a > 0, sin /? > 0
a sin a <6 sin /?.

(„ sin2a)sin a > 0,

(2)
Úloha je tedy podle (1), (2) řešitelná tehdy, a jen tehdy,
platí-li

Ъ sin a a

-< < T
Ъ 'sin /?

11. Dokažte, že pro n~> 1 celé platí:
11 _

2i+3^+ +~z<1-
1

Řešení. Označme
1 1

*n_1 ~
г2 + 32 + " ' + ň2

pro celé n > 1. Pro celé m > 1 platí

1
(1)

I 1
— <

m(m — 1)n

Je tedy <s'—i, kde
1 1 1

sn — 1 — (2)+ ... +
(w — 1) n1 • 2 2 • 3
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pro celé 1. Ale
=2_-1

" 1
w

podle výsledku cvič. 67b z učebnice Matematika pro 3. tř.
gymnasií. Je tudíž

n — 1
sn—i

П

při čemž zlomek vpravo je pro celé n > 1 vždy pravý.

12. Buď ABCD čtverec. Uvnitř strany AB zvolte m růz-
ných bodů a veďte jimi rovnoběžky se stranou BC. Podobně
uvnitř strany BC zvolte n různých bodů a veďte jimi rovno-
běžky ke straně AB.

Kolik pravoúhlých rovnoběžníků vzniklo provedenou kon-
strukcí?

Řešení. Dostaneme dvě soustavy rovnoběžných příček,
z nichž první soustava obsahuje m + 2 příček (i se stranami
čtverce) a druhá n -f- 2 příček. Strany každého rovnoběžníka
leží ve dvou dvojicích příček; každá dvojice se skládá ze dvou
různých příček téže soustavy. Obráceně, vezmeme-li dvě dvo-
jice Pi\\p2 a qx\\q2 a dvě dvojicep[\\p'2a q\\\q'2 tak, aby aspoň
jedna z prvních čtyř příček рг, q1} q2 se nevyskytovala
mezi příčkami p\, p'2, q\, q'2, dostaneme dva různé rovno-
běžníky.

Y první soustavě lze utvořit |m dvojic různých příček,
v druhé soustavě (T . Všech pravoúhlých čtyřúhelníků

Im -f- 2\ In + 2\
\ 2 M 2 /’tedy je
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ft2 -f- 4n + 6
13. Pro která přirozená čísla n je možno zlomek

vyjádřit desetinným rozvojem a) ukončeným, b) ryze perio-
dickým, c) neryze periodickým?

n(n4 — 1)

Řešení. Daný zlomek má smysl pro přirozená čísla n > 1.
a) Čitatel není nikdy dělitelný pěti. Pro n = 2 je n2 +

-f- 4w -j- 6 = 18 a každé přirozené číslo n > 2 lze psát
ve tvaru n = 5k -f- z, kde z = 0, ±1, ±2 а к je přirozené,
takže n2 -j- 4w + 6 = 5(5k2 -f- 2b + 4&) -f- z2 + 4z -f- 6. Je-li
z = 0, vyjde při dělení pěti zbytek 1; je-li z = 1, vyjde
rovněž zbytek 1; je-li z = — 1 nebo z — 2, vyjde zbytek 3;
je-li z = — 2, vyjde zbytek 2. Naproti tomu jmenovatel je
vždy násobek pěti. Pro n = 2 je — 1) = 30 a pro w> 2 je

n{n4 — 1) = и(и2 — 1)(»2 -f- 1) =

(5A -f z)[5(5ib2 + 2b) + z2 - l][5(5fca + 2b) -f z2 + 1].

Je-li z = 0, je první činitel dělitelný pěti, je-li z — ± 1,
je druhý činitel dělitelný pěti, je-li z = ±2, je třetí činitel
dělitelný pěti. Proto daný zlomek vede bud’ к rozvoji úkon-
čenému (M III str. 43) nebo к rozvoji neryze periodickému
(M III cvič. 134).

b) Jmenovatel n(n4 — l) = (w — l)n(n 1 )(w2 -f- 1) je
vždy dělitelný třemi, neboť z činitelů n — 1, n, n -f- 1 je vždy
jeden dělitelný třemi. К rozvoji ukončenému může vést jen
tehdy, dá-li se krátit třemi. Každé přirozené číslo n^2 lze
napsat ve tvaru n = Sh + z, kde z = 0, ±1 a h je přirozené.
Pro z = 1 však číslo w2 + 4n -f- 6 = 3(3hz + 6Л + 3) -f- 2
není dělitelné třemi; zbývají tedy případy z = 0az = — 1.

3A2 + 4& + 2
w(n4 - 1) ~ (ЗА— 1)А(ЗА + 1)(9Л2 + 1)’

9
což pro h = 1 vede ke zlomku —- =0,1125. Je-li h tvaruoO
h — px, kde p je liché prvočíslo různé od 5 а ж přirozené
číslo, pak prvočíslem p nelze krátit.

. n2 -f- 4n + 6
a) Pro z = 0 je
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Je-li A tvaru A = 2ř • 5*, kde ras jsou přirozená čísla,
pak ЗА -j- 1 = 3 • 2r • 5* + 1 je liché číslo nedělitelné pěti,
které obsahuje aspoň jednoho lichého prvoěinitele p různého
od 5. Poněvadž ЗА* -f 4A + 2 = (ЗА + 1) (А + 1) -f 1, nelze
prvočinitelem p krátit.

Je-li dále A = 2r, kde r je přirozené číslo, pak n— 1 = 3A —
— 1 = 3 • 2r — 1, w + l=3A-fl=3-2r-|-l jsou dvě po
sobě jdoucí lichá čísla nedělitelná třemi a alespoň jedno
z nich není dělitelné pěti. Jestliže číslo n -j- 1 není dělitelné
pěti, je dělitelné nějakým prvočíslem q různým od 2, 3, 5
a protože je n2 -f- 4n -f- 6 = (n -f- \){n -f- 3) + 3, prvočís-
lem q nelze krátit. Jestliže číslo n + 1 je dělitelné 5, číslo
n — 1 není dělitelné 5 a je to tedy buď prvočíslo různé od 2,
3, 5, nebo je to součin takových prvočísel. Protože пг -f- 4n -f-
-j- 6 = (n — 1 )(n -f- 5) -f- 11, můžeme eventuálně krátit 11.
Jestliže je r > 2, je n — 1 = 3 • 2Г — 1 > 11, tedy i po pří-
pádném zkrácení 11 zbude ve jmenovateli prvočinitel různý
od 2, 3,5, kterým krátit nelze. Snadným výpočtem zjistíme, že
také případy r = 1, 2 (A = 2, 4) vedou к nekonečným rozvojům.

Je-li konečně A = 5*, kde s je přirozené číslo, je n = 3 • 5®.
Čísla n — 1, n + 1 jsou dvě po sobě jdoucí sudá ěísla, nedě-
litelná 3 a 5 a jedno z nich není dělitelné 4. Jestliže číslo
n -)- 1 není dělitelné 4, je dělitelné lichým prvočíslem q růz-
ným od 3 i 5 a protože je w2 + 4n + 6 = (n + l)(n + 3) -f-

3, nelze tímto prvočíslem krátit.
Jestliže číslo n — 1 není dělitelné 4, lze psát n — 1 =

= 2 • Q, kde číslo Q je buď liché prvočíslo různé od 3, 5 nebo
součin takových prvočísel. Y tomto případě lze event, krátit
11, neboť

w2 -f 4л + 6 = (n - l)(n + 5) + 11,
ale ve jmenovateli zbude vždy prvočíslo, kterým krátit nelze;
pro s = 1 je totiž

3-5-1
Q - = 7

2
a pro s > 1 je Q > 1.
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ЗА2 + 2А + 1
те(те4 — 1) (те — 1)теА(те2 + 1)

Q
což pro А = 1 vede ke zlomku— — 0,6. Je-li A tvaru h — px,

kde p je liché prvočíslo různé od 5 а ж přirozené číslo, pak
prvočíslem p nelze krátit.

Je-li A tvaru A = 2r. 5*, kde ras jsou přirozená čísla, pak
те = ЗА — 1 = 3 • 2r • 5® — 1 je liché číslo nedělitelné pěti,
které obsahuje aspoň jednoho lichého prvočinitele p různého
od 5. Poněvadž ЗА2 -f 2A -f- 1 = (ЗА — 1)(A + 1) + 2, proto
nelze prvočinitelem p krátit.

Je-li dále A = 2r, kde r je přirozené číslo, pak čísla те =
= ЗА — 1, те — 1 = ЗА — 2 nejsou dělitelná třemi a aspoň
jedno z nich není dělitelné pěti, při čemž те = 3 • 2r — 1
je liché а те — l=3*2r — 2 — 2(3* 2r~1 — 1) pro r > 1
obsahuje lichý faktor 3 • 2r 1 — 1; aspoň jedno z těchto čísel
tedy obsahuje lichého prvočinitele q různého od 3 a od 5.
Je-li to číslo те, pak prvočinitelem q nelze krátit, a je-li to
číslo те — 1, lze krátit nejvýš jedenácti, neboť те2 -f- 4те + 6 —
= (те — 1)(те -f- 5) -j- 11; poněvadž však pro r — 2, 3 nastane
první případ (čísla 3 • 22 — 1, 3 • 23 — 1 nejsou dělitelná
pěti), může to nastat pouze pro r> 3, ale pak i po tomto
zkrácení zbude ve jmenovateli aspoň jeden další lichý prvo-
činitel qx různý od 3 a od 5, kterým se nedá krátit, neboť
3 • 27~1 — 1 > 22. Pro r = 1 zlomek krátit nelze, neboť

те2 + 4те -f- 6
/#) Pro z = -1 je

17
je roven 4-5-2-26. '

Je-li konečně A = 5®, kde s je přirozené číslo, pak číslo
те — 1=3A — 2 = 3-5® — 2je liché a nedělitelné pěti ani
třemi. Poněvadž те2 + 4те + 6 = (те — 1)(те + 5) + 11, dá se
čitatel proti faktoru те — 1 ve jmenovateli zkrátit nejvýše
jedenácti; poněvadž dále те — 1 > 12, proto i po tomto zkrá-
cení zbude ve jmenovateli aspoň jeden další lichý prvočinitel p
různý od 3 a od 5, kterým se nedá krátit.

Daný zlomek vede к rozvoji neryze periodickému s jedinými
výjimkami те = 3 а те = 2, kdy vede к rozvoji ukončenému.
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14. Je dána posloupnost p-, .b i b2 b3
a« + i — 3«n -j- 46n, 6n + i = 2an -f- 36n; a1} 6X jsou kladná čísla.

. . , při čemž platí

a) Vyjádřete a2 — 262 pomocí ax, bx.

b) Dokažte, že lim ^ = /2*.

Řešení.
a) Ze vztahů an + 1 = 3«n-f-46n, 6n + 1 = 2«n + 36n plyne

К + j - 262 + x = 9aa 24an6n +1662 - 8«2 _ 24«Я6П — 186* =
= a2 — 262 , a odtud matematickou indukcí

a2 — 2b* — a* — 262 pro každé přirozené číslo n. (1)

b) Posloupnosti {an}, {би} jsou posloupnosti kladných čísel,
při čemž an_|_ j > 3a„, bn +1 > 36W; odtud matematickou in-
dukcí odvodíme, že pro n >1 jean^^”--1 • аг, 6n> 3W~1 • 6X.

a\ - 2b\Z rovnosti (1) plyne — /2"= a odtud
bn(an + bn /2)

I o2 - 26^г-*5- <
6n (an + 6n/lž) ' 32n-2 -б^ H- ЬхУ 2)

. í

32»—2’

«1-61/2 Ikde Л = 0. Volíme-li libovolné kladné číslo k, lze

stanovit přirozené číslo m tak, aby
A

ct
32»»—2 ^ ■

A
Je-li A > 0, vyhovíme tomu pro 32w~2 > —, a tedyк

A'
(2m — 2) log 3 > log —, m > 1 -f-

К

A
pak pro každé n ^ m je tím spise ——

log (A: k)
l°g 3

< k. Je-li A — 0,—2
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Posloupnost j ^ — /ŠT jnastane to pro každé přirozené n.

je tedy nulová, takže lim — = у2.К

15. V rovině q jsou dány dva body А, В a, dva duté úhly a,
ft. Bod X roviny q otočíme jednak kolem středu A o úhel a
v daném smyslu do polohy X', jednak kolem bodu В o úhel ft
v daném smyslu (stejném nebo opačném) do polohy X". Co
vyplní všecky ty body X, pro něž má úsečka X'XU danou
velikost 0?

Řešení. První otáčení rozložme v souměrnosti s osami ol5

oa, druhé v souměrnosti s osami ox, oa. To je vždy možné:
je-li А ф B, zvolíme ox = AB, je-li A = B, zvolíme za ox
libovolnou přímku vedenou bodem A. Složením otáčení (о2ох),
(°1°з) vznikne shodnost S, která převede bod X' v bod X".
Nyní je třeba rozeznávat dva případy:

a) o2||o3; to nastane tehdy a jen tehdy, je-li a = ft a jsou-li
smysly daných otáčení souhlasné (uvědoměme si, že přímka ox
přejde v o2 otočením o ostrý úhel -|a v daném smyslu otáčení).
Shodnost S je pak posunutí, ve zvláštním případě, je-li totiž
o2 = o3, identita. Avšak v posunutí mají bod a jeho obraz
konstantní vzdálenost, rovnou velikosti posunutí. Lze tedy
nalézt body X', X" žádané vlastnosti tehdy a jen tehdy,
je-li velikost posunutí rovna d. К tomu je předně nutné,
aby bylo А ф В (je-li A = B, je A samodružným bodem
posunutí, toto posunutí je identita a má tudíž velikost rovnou
nule). Dále, označíme-li C obraz bodu A ve shodnosti S, je
nutně AC = d, <£ ABC = a = ft. Naopak, jestliže rovno-
ramenný trojúhelník s rameny rovnými úsečce AB a a úhlem a
při temeni má základnu d, má posunutí S velikost d. Vyšlo-
vená vlastnost je tedy nutnou a postačující podmínkou, aby
bylo možno najít vůbec nějaký bod X žádané vlastnosti.
Je-li splněna, vyplní body X', a tudíž i body X, celou rovinu.
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b) o2, o9 jsou různobčžky; to nastane vždy, je-li а Ф /?,
ale i v případě, že a = /? a smysly obou daných otáčení jsou
opačné. Shodnost S = (o2o3) je pak otáčení, jehož středem
je průsečík D přímek o2, oa; úhel tohoto otáčení je jistý dutý
nebo přímý úhel у (libovolného smyslu). Body X', X", jejichž
vzdálenost je d, vyplní takovou kružnici se středem D, v níž
tětiva délky d přísluší středovému úhlu y. Ježto body X'
vyplní kružnici se středem D, vyplní i jejich obrazy ve shod-
nosti (oaOj), t. j. body X, kružnici; její střed je obraz bodu D
ve shodnosti (o2°i)-

16. Je dán pravoúhlý rovnoběžník. Z bodu M jeho roviny
spustíme kolmice na jeho strany (prodloužené) a označíme P,
Q, R,S průsečíky těchto kolmic s dvojicemi rovnoběžných
stran.

a) Určete geometrické místo průsečíků PR • QS a PS • QR.
b) Určete všecky body M v rovině, které vedou к jednomu

a témuž bodu nalezeného geometrického místa.

Řešení. Zvolme soustavu souřadnic tak, aby strany rovno-
běžníka byly rovnoběžné s osami souřadnic a jeho střed ležel
v počátku. Vrcholy rovnoběžníka nechť mají souřadnice C =
= [a; 6], В = [a; — 6], D = [— a; 6], A = [— a; — 6], kde
a > 0, b > 0. Průsečík přímek PR, QS, pokud tyto přímky
a průsečík existují, budiž bod V = [£, rj]. Označme x, у sou-
řadnice bodu M. Vyjádříme parametricky přímku PR (P =
= [x; -6], R=[-a) y]), tedy

| = x - t(a + x),
rj = — b + t(b + y),

a jedinou rovnicí přímku QS (Q = [ж; 6], S = [a; y]), tedy

(1)

(2)(| — a)(6 — y) = (x — a)(rj — y).
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lešením rovnic (1), (2) vyjde parametr t průsečíku TJ\

b(x — a)
(3)t =

bx — ay

Tento výsledek platí, jestliže je Ъх — ay Ф 0, t. j. jestliže
bod M neleží na přímce AO. Pro body této přímky vsak je

a nevznikne bod U. Dosadíme z rovnice (3) do (1);
po úpravě vyjde

ab — xy
bx — ay

1 = rj = ~
- ay

ab — xyOznačíme-li и — , dostaneme | = au, Y] — — bu,bx — ay
t. j. všecky body U leží na přímce BD. Obráceně ke každému
číslu и lze nalézt dvojici x, y, t. j. bod M tak, že platí и =

ab — xy
, čili

bx — ay

ab — xy = u(bx — ay). (4)

To znamená: každý bod rovnoosé hyperboly (4)*), pokud
neleží na přímce bx — ay = 0 (t. j. přímce AC), vede к témuž
bodu U. Hledané geometrické místo je tedy přímka BT)\
ke každému jejímu bodu vedou všechny body M, které leží
na hyperbole (4), s výjimkou bodů A, C, neboť tyto dva body
jsou průsečíky každé hyperboly (4) s přímkou АО.

Obdobně dostaneme geometrické místo bodů V; stačí vy-
měnit body P, Q, t. j. ve výsledku psát —b místo +6. Dosta-
neme přímku АО, hyperboly budou mít rovnici

(5)ab xy = v (bx + ay).

Vyloučené body budou body B, D.

1, t. j. pro M = В, а и = — 1, t. j.*) Hyperbola (4) se pro и =
M = D, rozpadá ve dvojici přímek.
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В. ÚLOHY I. KOLA, KATEGORIE В

1. Ěešte soustavu rovnic: xx -j- x2 — alf

*^2 ^3 === ^2?

X3 + Xi = a„

Xn—i Xfi — —1>

Xn + *1 = an.

Řešení. Násobíme-li dané rovnice postupně čísly +1, —1,
+1, —1, ... a sečteme-li je, dostaneme

x^l ± 1) = ax - a2 + a3 - ax + . .. ± an,

kde znaménko -j- platí, je-li n liché, a znaménko —, je-li n
sudé.

I. Pro n liché je
1 1 11 I

Ya* - Y «2 + Y«3 - + • • • +®i =

1 1 ! 1
хъ —

2 0,1 2*a* j«* + ja. - ■ ■ • 7Tani

1 I 1 1 1
—

Yai + ~2 a* + y°3 ~ Y • • • +ж3 =

1 1 j 1 1
x* — jai — y «2 + Ya* + 2-7Г«4 ~ • • ~^7ani2

i i i i i i

Y®1 + Y®2 “ Ya* + ~ •' • + Y^-1 + Ja* *
«П = -
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II. Pro n sudé má soustava řešení jen tehdy, je-li ax — aa +
-f- a, — a4 + ... — an = 0. Pak možno хг volit libovolně
a z daných rovnic plyne

X2 — Uj 2/l5
= - «1 + «2 + *1,

®4 = <*i “ «2 + «« — %i,

Xn = «1 - «2 + «3 - «4 + • • • + «П-1- ®1.

2. V rovině jsou dány čtyři různé body A, B, S, O. Sestrojte
kružnici Tcx procházející body А, В a, kružnici Tc2 se středem S
tak, aby bod O byl jejich středem stejnolehlosti. Proveďte
diskusi.

Řešení. Předpokládejme, že kružnice a Jc2, vyhovující
úloze, existují, a označme Sx střed kružnice Tc1. Pak platí:

(1) leží na ose o úsečky AB.
(2) Sx leží na přímce OS a je Sx e|= O (jinak by kružnice Jc2

stejnolehlá s podle středu O = Sx musela být s kx sou-
středná, což je ve sporu se vztahem О ф S).

Po této předběžné úvaze přistoupíme к řešení:
Jsou-li dány čtyři různé body A, B, S, O, je nutno rozli-

šovat 3 případy:
1. Přímky OS a o jsou různé rovnoběžky. Pak podle před-

chozího řešení neexistuje.
2. Přímky OS a o splývají. Zvolíme-li na OS libovolný bod X

různý od O, pak kružnice = (X, XA), k2 = (S, r), kde

AX-OS

OX
r —

vyhovují úloze. Existuje tedy nekonečně mnoho řešení.
3. Přímky OS a o jsou různoběžné. Označme jejich prů-

sečík Sx.
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a) 8X = О, рак podle úvodní konstrukce řešení neexi-
stuje.

b) Sx ф O. Potom kružnice hx = (8X, 8XA), Jc2 = (S, r), kde
AŠI- OŠ

Щ,
kružnice Jcx je středem Sx a bodem A jednoznačně určena.
Podle (3) určíme k2.

, vyhovují úloze. Je to jediné řešeni, neboťr =

3. Dokažte, že rovinný obrazec souměrný podle dvou růz-
ných středů není ohraničený (t. j. neleží v žádném kruhu).

Řešení. Nechť obrazec O je souměrný podle dvou různých
středů Sx, S2. Sestrojme přímku o3 = SXS2, veďme body Sx,
S2 к ní kolmice ox _]_ os, o2 J_ o3. Souměrnost podle středu Sx
lze (jakožto otáčení o 180°) rozložit v souměrnosti podle os ox,
oa, souměrnost podle středu S2 lze rozložit v souměrnosti
podle os os, o2. Sestrojíme tedy к obrazci O obrazec Ox sou-
měrně sdružený podle osy ox, к obrazci Ox obrazec Os sou-
měrně sdružený podle osy os; dále к obrazci 03 opět obrazec
souměrně sdružený podle osy o3, a to je obrazec Ox; konečně
к obrazci Ox obrazec 02 souměrně sdružený podle osy o2, a to je
podle našeho předpokladu O.

Obrazec 02 vznikl zřejmě z obrazce O užitím souměrností
podle os ox, o2; avšak tyto souměrnosti se skládají v posunutí
ve směru SXSZ a velikosti 2 • SXS2. Toto posunutí převádí
obrazec O v týž obrazec. Budiž A libovolný bod obrazce O.
Provedeme-li naše posunutí w-krát, přejde bod A v jistý
bod An obrazce O a bude platit

AA„ — 2 n • SXS2.

Pro vhodně zvolené n je úsečka AAn delší než průměr
libovolné kružnice, a tím je tvrzení dokázáno.
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4. Dokažte, že-^-^1 - 4" + T ~~ Г + •2 2 3 4

1

2л - 1
1

— — 1, kde л je přirozené číslo.

Řešení. Platí

1 +1+1+1
2 3 4

11
+ •••-+

2л — 1 2%

/1 1 1
= 2(t+t+t

1
+ ••• +ТГ- +

2л

1 11 1

2л - 1 ^ 2л’n + 1 л + 2

takže

J_ 1 __

2 + 1Г ~T + " ' 1 2л - 1 2л ~ n + 1

f ... +

1 1 1
1 -

1 1 1
+

2л — 1 ~r 2л"л + 2

Pro součet na levé straně platí
1 1 1
— b • • ■ +
2 3 4 (■-i)11

1 - +
2л — 1 2n

(i-i) (
1 1 1

+ ... + 2ní~ 2’+
2л - 1

při čemž rovnost nastane pro n = 1. Poněvadž
1 11 1

> > . >
2л — 1 ^ 2л ’л + 1 л -f- 2

platí pro součet na pravé straně
111

< 1.1 <
2л - 1 2л ~ л + 1n -J- 1 n -f- 2
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5. Je dána kružnice Jc, na ní bod A, dále kružnice Jc' téhož
poloměru a na ní bod A'. Udejte otáčení, které převádí kruž-
nici Jc v Jc' a, bod A v A'. Diskuse.

Řešení. Nejprve si dokážeme: otáčení a posunutí lze nahradit
jediným otáčením (otáčení složeno s posunutím dává otáčení).
Otáčení rozložíme ve dvě souměrnosti s osami ol3 o2 tak, aby
druhá osa o2 byla kolmá ke směru posunutí. Posunutí rozlo-
žíme ve dvě souměrnosti s osami o3, o4 tak, aby první osa o3
procházela středem otáčení. Výsledná shodnost, která vznikne
složením daného otáčení a posunutí, se dá zřejmě složit
ze souměrnosti podle os o1} o4. Tyto přímky jsou však různo-
běžné (není || o2, je o2 =°з> o3||o4), proto je výsledná shodnost
otáčení. (Otáčení o nulový úhel nepovažujeme v tomto pří-
kládě za otáčení.)

Jestliže středy S a S' kružnic Jc, Jc' splývají, úloha je tri-
viální. Budeme tedy předpokládat, že body S a S' jsou různé.
Předpokládejme, že úloha má řešení, t. j. že existuje otáčení R,
které převádí bod S v bod S' (následkem toho také kružnici Jc
v kružnici Jc') a bod A ležící na kružnici Jc v bod A' ležící
na kružnici Jc'.

Nechť posunutí P převádí bod S' v bod S (a tedy kruž-
nici Jc' v kružnici Jc). Proveďme postupně otáčení R a posu-
nutí P. Výsledná shodnost R' je podle toho, co jsme doká-
žali, zase otáčení. Toto otáčení R' převádí body kružnice Jc
v body téže kružnice, tedy střed otáčení R' je v bodě S.

Posunutí P převede bod A' v některý bod A" ležící na Jc.
Není možné, aby bod A splynul s bodem A", v tomto případě
by shodnost R' byla identita, ale my jsme dokázali, že R'
je (nenulové) otáčení.

Nechť tedy body A a A" jsou různé, P~1 budiž posunutí,
které převádí bod S v bod S'. Provedeme-li postupně otá-
čení R' a posunutí P^1, dostaneme (jak jsme dokázali) otáčení
převádějící kružnici Jc a bod A v kružnici Jc' a bod A'. Tedy
je-li А" ф A, úloha má řešení.

Nyní dokážeme, že toto řešení je jediné. Všimněme si,
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tedy také otáčení R' jsou stanoveny jedno-že bod A",
značně. Jestliže R je jakékoli otáčení vyhovující dané úloze,
potom postupným provedením tohoto otáčení R a posunutí P
dostáváme otáčení R' jednoznačně určené (až na smysl otá-
čení). Tedy otáčení R vznikne složením jednoznačně urče-
ných shodností: otáčení R' a posunutí P~l.

Tedy: Daná úloha má řešení tehdy a jen tehdy, převede-li
posunutí P bod A' v bod A" sjs A.

Konstrukci můžeme provést na př. takto (А Ц= A"): Sestro-
jíme bod A", v bodě S najdeme dvojici přímek olf oa tak,
aby složením souměrnosti s osou ox a souměrnosti s osou ot
vzniklo otáčení převádějící bod A v bod A" a aby osa o2
byla kolmá na spojnici SS'. Přímka ox protne osu s úsečky SS'
v bodě O, který je středem hledaného otáčení.

6. Buď n přirozené číslo. Kolik je mezi čísly n2, (n -f- 2)*
přirozených čísel, z nichž žádné není druhou mocninou přiro-
zeného čísla?

Řešení. Budiž x přirozené číslo, o němž platí

n2 << x2 << (n -f- 2)2,
kde n je dané přirozené číslo. Platí tedy také

n < X < n -f 2,
a tedy x — n + 1.

Číslo x2 je tedy jediným přirozeným číslem, ležícím mezi
přirozenými čísly n2, (n + 2)2, které má tu vlastnost, že je
čtvercem přirozeného čísla. Mezi čísly n2, (n -j- 2)2 je však

(n + 2)2 - n2 - 1 - 4n + 3

přirozených čísel, a tedy hledaných čísel je

(4n -j- 3) — 1 — 4n -j- 2 — 2(2w -f- 1).

54



7. Buďte а Ф О, 6 ф О, с Ф O čísla, о nichž platí

- + J + -
= О.

Potom pro libovolná čísla ж, у, z platí

(ay — 6ж)2 -f (az — cx)2 -f (bz — cy)2 = (az -f bx -f cy)2 -f
+ (ay + bz -f- сж)2.

Dokažte!

Řešení. Levou stranu vztahu, jehož platnost máme dokázat,
označíme L, pravou stranu P.

Potom

P — L — 2(ab -f- bc + ca) • (жу -(- yz xz) =

• (жу 4- уг + Ж2) = О(l + T+l)= 2а6с

neboli L = P, což bylo dokázat.

8. Kovové kusy každý o váze asi 170 kg a tvaru velmi
přibližně kvádru o rozměrech 20 cm, 30 cm, 35 cm byly
po čtyřech dávány do dřevěných beden o tloušťce 2 cm
a posílány autem na místa určení. Truhlárna, která vyrábí
bedny, chce zvýšit produktivitu a uspořit materiál. Jak září-
dítě uskladnění kusů do beden, aby spotřeba dříví na bedny
na kus klesla a počet balených kusů stoupl, když může
z dopravních důvodů jedna bedna vážit nejvýše 1200 kg?
Kterou abstraktní úlohu matematickou můžete položit a řešit
na základě uvedené konkrétní úlohy praktické?

Řešení. Kdyby se do bedny vkládalo 7 kovových kusů,
zbylo by na váhu bedny jen 10 kg, což při uvedených roz-
měrech kusu a při smrkovém dříví (s === 0,8) nestačí. Proto
bedna může obsahovat nejvýše 6 kusů.
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Případ 5 kusů v bedně tvaru kvádru není třeba uvažovat,
poněvadž by vznikl buď v bedně nevyužitý prostor, nebo
rozměry bedny uvnitř by byly 100 cm, 30 cm, 35 cm, nebo
20 cm, 150 cm, 35 cm, nebo 20 cm, 30 cm, 175 cm. Pro ně

spotřeba dřeva je větší než — spotřeby dřeva na bednu
se 4 kusy. Pro bednu se 4 kusy byly rozměry uvnitř buď 40,
35, 60, nebo 20, 70, 60, nebo 40, 70, 35 (cm).

Spotřeba dřeva v cm8 byla buď 25 824, nebo 29 664, nebo
29 048. Bedna se 6 kusy uvnitř bude mít objem vnitřku
6 • 20 • 30 • 35 cm8. Spotřeba dříví při dané tloušťce 2 cm
závisí na povrchu kvádru, do něhož kusy složíme. Jsou-li
rozměry vnitřku a, 6, c (měřeny v cm), je spotřeba dřeva
na bednu 4(ab -\- ас Ъс) + 16(a + b + c) + 64 (měřeno
v cm3).

Aby spotřeba byla co nejmenší, musí být povrch nejmenší
při daném objemu. 6 kusů udaných rozměrů lze srovnat
do kvádrů o rozměrech (v cm) 20, 30, 210, nebo 35, 30, 120,
nebo 20, 35, 180, nebo 60, 30, 70, nebo 40, 30, 105, nebo 90,
40, 35, nebo 60, 60, 35, nebo 20, 105, 60, nebo 20, 70, 90.

Výpočtem objemu dřeva potřebného na každou příslušnou
bednu zjistíme, že u kvádru o rozměrech 60 cm, 60 cm, 35 cm
je spotřeba nejmenší a činí 33 744 cm3. (Jak patrno, potvrzuje
se stará zkušenost, že z kvádrů téhož objemu má nejmenší
povrch ten, který se tvarem co nejvíc podobá krychli.)

Je patrno, že při 4 kusech bedna nej vhodnějších vnitřních
rozměrů, t. j. 40 cm, 35 cm, 60 cm, na níž se spotřebovalo
nejméně dřeva, t. j. 25 824 cm8, měla spotřebu dřeva větší,
než jsou dvě třetiny (objem vnitřku u bedny se 4 kusy je
roven

na novou bednu. (Tyto dvě třetiny činí 22 496 cm8.)
Truhláři tedy výrobou beden s rozměry vnitřku 60 cm,

60 cm, 35 cm ušetřili dříví a poněvadž do bedny vkládali
víc kusů, pomohli rychleji zboží odvážet a jestliže vyráběli

— objemu bedny s 6 kusy) objemu dřeva potřebného
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týž počet beden jako dříve, zvýšili produktivitu. Zpracovali
víc dříví (v cm8) a umožnili odvoz víc kusů v témž čase.

Abstraktních úloh odtud plynoucích je možno sestavit
mnoho. Na př.: Určit tři kladná čísla x, y, z, pro něž je dán
jejich součin a pro které výraz m(xy + xz + yz) -f- p(x +
+ У + z) -f- q je číslo nejmensí při daných m, p, q (kladných).

9. Na úsečkách AB, BC, CA tvořících trojúhelník ABC
zvolte celkem dva různé body M, N. Dokažte, že úsečka MN
není větší než největší ze stran trojúhelníka ABC.

Řešení. Předně dokážeme: Budiž dán trojúhelník ABC
a bod X jeho strany BC. Pak úsečka AX je menší nebo rovna
větší ze stran AB, AC. Je-li X = В nebo X = C, je tvrzení
zřejmě správné. Leží-li bod X mezi В, C, zvolíme označení
vrcholů tak, aby platilo AB ^ AC, t. j. též <£ ACB ^cABC.
Podle věty o vnějším úhlu trojúhelníka je ^AXB^>
^> •£ ACB ^ <$:ABC; v trojúhelníku ABX tedy platí 3lAXB>
> <ABX = ^ABC, t. j. AB>AX.

Zvolme nyní dva různé body M, N na úsečkách AB, BC,
CA. Pokud budou oba ležet na téže úsečce (buď oba uvnitř,
nebo jeden, po př. oba splývají s krajními body úsečky),
bude správnost tvrzení zřejmá.

Nechť tedy body M, N náležejí po řadě na př. stranám AB,
BC trojúhelníka ABC, ale nenáležejí oba téže straně, t. j.
N =|= B. Na trojúhelník ABN aplikujeme předchozí výsledek;
úsečka MN je tedy menší nebo rovna větší z úseček AN, BN.
Avšak podle téhož výsledku je úsečka AN menší nebo rovna
větší ze stran AB, AC; mimo to je úsečka BN menší nebo
rovna straně BC. Tím je tvrzení dokázáno.

10. Sestrojte dva trojúhelníky, které nejsou shodné, ale
u nichž pět základních prvků (t. j. stran a úhlů) jednoho
je rovno pěti základním prvkům druhého.

57



Řešení. Zvolíme označení stran tak, aby platilo v prvním
trojúhelníku a íS b sS c, v druhém a' sí 6' ^ c'. Oba trojúhel-
niky se shodují aspoň ve dvou úhlech, tudíž se shodují ve všech
třech úhlech a jsou podobné. Dvojice stran к sobě příslušných
jsou a, a'; b, b'; c, c', jak vyplývá z jejich uspořádání podle
velikosti. Je tedy

a' — ka, (1)b' = Jeb, c' — kc,
kde к 4= 1, neboť trojúhelníky nejsou shodné. Označme jako
čárkovaný ten z obou trojúhelníků, jehož strany jsou větší
než příslušné strany druhého trojúhelníka; pak je к > 1, a' >
> a, b' > b, c' >> c. Oba trojúhelníky se shodují ještě ve dvou
stranách. Avšak podle našich úmluv je a < a' í^b' sS c',
t. j. strana a se neshoduje se žádnou stranou trojúhelníka
čárkovaného. Dále je b < 6' ^ c'; musí tedy platit b = a'.
Nemůže být c = a'; neboť pak by bylo a <C b — c, t. j. podle
(1) též a' <ib' — c' a trojúhelníky by se neshodovaly ve dvou
dvojicích stran. Ježto víme, že c < c', je nutně c = b'. Strany
obou trojúhelníků tedy jsou a, ka, k2a; ka, k2a, k*a. Trojúhel-
niky s těmito stranami jsou skutečně podobné (t. j. shodují se
ve všech vnitřních úhlech) podle věty sss o podobnosti troj-

•úhelníků.
Nyní jde jen o to, zda pro některé číslo k> 1 skutečně

existuje trojúhelník o stranách a, ka, k2a. К tomu je nutné
a stačí, aby největší ze stran byla menší než součet obou
zbývajících. Ježto k> 1, je k2a > ka> a\ nutná a postačil-
jící podmínka tedy zní:

a -\- ka> k2a,
čili

1 -f к > к2,
neboli

к2 — Je — 1 <C 0.

Trojčlen к2 — к — 1 rozložíme na kořenové činitele

k2 -k -
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Má tedy být

[ i<> -Ц1
к - - к <0 (2)

za předpokladu к > 1.
Protože ylf > 1, je

(l -/5) <0

—-УЮ>о-

* - yí1 - yš) > °-

a

Je tedy

Z nerovnosti (2) plyne

* - -i-a +У5) <0,

* < |(i + íh
Úloha má tedy řešení tehdy a jen tehdy, jestliže pro к platí

1 <k<L(\ + ib).

čili

11. Pro která přirozená čísla n je výraz

n - 37

и -f- 43

roven druhé mocnině racionálního čísla?
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Řešení. Daný výraz je roven druhé mocnině racionálního
čísla, je-li

n — 37 = Jc2m,
n -j- 43 = Ji2m,

kde Jc, h, m jsou celá čísla, Ji-j= 0, mýO a |&], |Aj čísla ne-
soudělná. Odtud plyne (A2 — Jc2) m = 80 čili

(A + k) (A — Jc) m — 80.

(1)

(2)
Poněvadž n je přirozené číslo, je n -f- 43 také přirozené číslo,
takže m je kladné. Poněvadž se v rovnicích (1) čísla Jc, h
vyskytují pouze ve druhých mocninách, můžeme vzít v úvahu
jen ty případy, když &2s0, h > 0, takže h + Jc > 0. Pak vzhle-
dem к (2) také Ji — Jc> 0 a, Ji -\- JcJžtJi — Jc. Poněvadž dále
čísla A, Jc jsou celá a nesoudělná, jsou čísla Ji + Jc, A — Jc buď
obě lichá a nesoudělná nebo mají největšího společného děli-
tele 2. Proto je třeba vyloučit ještě ty dvojice A + Jc, Ji — Jc,
které jsou násobky některé jiné takové dvojice, takže zbývají
případy:

A -f- Jc Ji JcJi - Jc m n

1 80 1 371 0
474 10 3 12

5 16 3 2 1011
5 828 5 32

5510 4 2 7 3
3810 8 1 9 1

19911 920 2 2
19 3982140 2 1

12. Dokažte: Jsou-li а, Ъ, c kladná čísla, pak platí
3

~

2

Ъ ca

Ъ -f c a -f- bc + a
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Řešení. Položme Ъ c = x, c a = y} a +6 = z; pak a =

= j(~x + У + z), b = i-(® - у + г), с = у(® + у
Proto

-2).

6 са

6 + с

-* + У + z

а -f- &с + а

ж - у + г ж + у - z
2х 2 У 2z

I/1+4 +I(£+4 +1/1+4 2 - 2’

ж У п х z л v 21
— + — ^2, — +— ^2, — Н ^2.neboť
У i У

'

13. Je-li přirozené číslo N psáno v desítkové soustavě
ve tvaru a0 -f- аг • 10 -f- a2 • 102 -f- .., -j- an • 10”, kde a0, au
<г2, ..a„ jsou číslice, a utvoříme-li čísla Ъг — аг — 2а0, b3 =
= а2 — 26х, b3 = а3 — 2Ь2, ..., Ъп — ап — 26w_1} pak číslo
N je dělitelné sedmi tehdy a jen tehdy, je-li sedmi dělitelné
číslo bn.

Řešení. Platí: ax = bx + 2a0, a2 = b2 -f- 26X, a3 — 68 -f-
+ 252, ..., a„ = bn + 2Ьп_ъ takže

iV = a0 + ax • 10 + a2 • 102 + a3 • 10® + ... + an • 10” =

= a0 + lO&i + 20a„ + 102&2 + 2 • ÍO2^ + 10353 +
-f 2 • 10s62 + ... + 10”5„ + 2 • 10”6n_ г =

= 21a0 + 21 • 10&! + 21 • 102ž>2 + ... + 21 • 10”~16w_! +

+ 10”ž>„ =

- 7(3a0 + 3 • 106j + 3 • 102ď2 + . . . + 3 • 10”-15я_1) +

+ 10”&„
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a) Je-li číslo Ъп dělitelné sedmi, je sedmi dělitelné i číslo N.
b) Je-li N = П, je 10*6„ = 7[k - (3a0 + 3 • 10bx +

+ 3 • 10262 + ... + 3 • 10я i)]. Poněvadž čísla 7 a 10
jsou nesoudělná, proto musí být sedmi dělitelné číslo bn.

Poznámka. Z důkazu je vidno, že táž věta platí i pro děli-
telnost třemi.

14. U dvou hmotných koulí, které se nedotýkají a mají
pevnou vzájemnou polohu, byla měřením zjištěna jejich nej-
menší vzdálenost a, velikost vnější tečny t a velikost vnitřní
tečny u.

a) Vyjádřete vzdálenost středu koulí a jejich poloměry jako
funkce veličin a, t, u.

b) Jaká je podmínka pro to, aby se poloměry koulí lišily
nejvýše o úsečku d%

Řešení. Naměřené hodnoty nutně splňují nerovnost 0 < a <
< и < t. To dokážeme nakonec.

Označme r1} r2 poloměry obou koulí (označení zvolme tak,
aby bylo rx ^ r2) a c vzdálenost jejich středů. Pak platí:

a = c - {rx + r2),

t = -j/c2 - (rx - r2)2,

« = |/c2 - (rx + r%f,
čili

(1)= c - a,

(2)u2 = c* - (rx + r2)2,

(3)ť2 — u2 = ±rxr2
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o2 -f и2
. Polo-Dosadíme z rovnice (1) do (2); vyjde c =

měry fj, r2 json vzhledem к (1) a (3) kořeny kvadratické
rovnice (neznámá r):

2a

a2 — a2 t2 — w2
= o,r2 + r +

2a 4

t. j.
1u2 —a2

V (w2 + a2)2 — 4a2í2,4a

T“ У (w2 + a2)2 — 4a2ř2.4a

u2 — a2
r2 =

4a

a2 + w2
řeší úlohu a),Tyto rovnice spolu se vztahem c =

neboť za předpokladu м > a, w <č je ^ ra> 0; platí totiž
2a

I u2 — a2\2 1
[(w2 -f- a2)2 — 4a2í2],>

16a2

jak se snadno přesvědčíme provedením.
Úloha b) dává podmínku rx — r2 ^ d, čili

1
— У(^2 + a2)2 - 4a2í2 ^ d,Ad

t. j.
tt2 + a2 ^ 2a У d2 + t2;

á2 -f- u2
dostaneme с У d2 -f t2.

Nyní si všimneme nerovností 0 < a < и < t. Musí být 0 <
< a, protože se koule nedotýkají. У každém skutečném pří-
kládě poloměry rx, r2 jsou kladná čísla a tedy nerovnost и < t
plyne z rovnice (3). Nerovnost a < и odvodíme takto:

a = c - (rx -f r2) > 0,
e[e + fa + r2)] = c2 - (rx + r2)2 = u2;

s pomocí rovnice c =
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avšak
с + (гг + r2) > с - (гг + г2) = а,

t. j-
аг < w2,

čili
а < м.

15. Jsou dány body А, А', В ф A. Otáčení, které převede
bod A v bod A', převede bod В v jistý bod B'. Co vyplní
body B', které dostaneme všemi takovými otáčeními?

Řešení. Předpokládejme nejprve, že А ф A'. Každé otáčení,
které převádí bod A v bod A', lze rozložit ve dvě souměr-
nosti: první má za osu přímku o, která je osou úsečky AA',
druhá má za osu jistou přímku o' procházející bodem A'.
První z těchto souměrností převádí bod В v určitý pevný
bod B". Druhá souměrnost převede tento bod В" v bod B'.
Střed B0 úsečky B'B" je pata kolmice spuštěné z bodu B"
na přímku o'. Otáčí-li se přímka o' kolem bodu A', vyplní
bod B0 (podle Thaletovy věty) kružnici к sestrojenou nad
průměrem A'Bz této kružnice ovšem musíme vyloučit bod
ležící na přímce BB" (neboť příslušná přímka o'je rovnoběžná
s přímkou o a nevzniká otáčení). Bod B' vyplní kružnici k'
stejnolehlou ke kružnici к podle středu B" s poměrem stejno-
lehlosti l — 2. Kružnice k' bude procházet bodem В" a jejím
středem bude bod A'. Také z kružnice k' třeba vyloučit bod
ležící na přímce BB".

Jestliže je A' = А (А ф В), potom bod A jako samodružný
je středem otáčení a hledané geometrické místo je kružnice
se středem v A a procházející bodem B, s vyloučením bodu В.

Případ А ф A' s= В je zahrnut v naší úvaze.

16. Budiž D průsečík osy úhlu CAB trojúhelníka s jeho
stranou BC. Budiž dále DE rovnoběžka vedená bodem D
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к přímce CA a E její průsečík se stranou AB; budiž konečně
EF rovnoběžka vedená bodem E к přímce ВС a F její prů-
sečík se stranou CA. Dokažte, že platí:

AF = АС - AE.

Řešení. Máme zřejmě dokázat, že AE = FC. Polopřímky
DE, AC jsou nesouhlasně rovnoběžné a proto je -3íEDA =

= -šDAC = -^a, takže v д ADE je $.EAD - <£ EDA =

= — a a tím i AE = ED.
2

Z konstrukce plyne, že CDEF je rovnoběžník a tedy ED =
- FC, t. j. AE = FC.

C. ÚLOHY II. KOLA, KATEGORIE A

1. Jestliže číslo n je celé, potom i výraz
n5 пг n

V + —
120 24 ^ 30

je celé číslo. Dokažte!

Řešení. Je

- 5n3 -f 4n) = y^(n4 - 5w2 + 4) n =
V =

1
= j2q(w - 2)(n ~ 1MW + l)(w + 2). (1)

Máme tedy dokázat, že součin
К — k{k -f 1)(& + 2)(k + 3){k + 4)
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(kde к je celé číslo) pěti po sobě následujících celých čísel
je dělitelný číslem 120 = 3 • 5 • 8, neboli že číslo К je děli-
telné třemi nesoudělnými čísly 3; 5; 8. To znamená, že máme
dokázat tato tvrzení:

(1) Jednoho z pěti činitelů čísla К lze psát ve tvaru 3p;
(2) jednoho z pěti činitelů čísla К lze psát ve tvaru 5q\
(3) číslo К lze psát ve tvaru К = 8r, při čemž p, q, r jsou

čísla celá.
Důkaz každého z těchto tří tvrzení provedeme zvlášť.(1)Číslo к lze psát ve tvaru

к — Sk' + z,

kde k' je číslo celé a číslo z je rovno jednomu z čísel 0; 1;
2. Pro z = 0 je činitel к dělitelný třemi, pro z = 1 je čini-
tel к + 2 = 3 (Ať-f- 1) a pro z — 2 je činitel к + 1 = 3 (к' + 1)
dělitelný třemi, neboť к' + 1 je číslo celé.(2)Číslo к lze psát ve tvaru

к = 5к' -f- z,

kde k' je číslo celé a číslo z je rovno jednomu z čísel 0; 1;
2; 3; 4. Pro z = 0 je hledaným činitelem číslo k. Pro ostatní
hodnoty z jsou to po řadě činitelé к 4, A; -f; 3, A; -f- 2, A; + 1,
jejichž hodnota je vždy rovna 5(Ať + 1), kde к' -f- 1 je zřejmě
číslo celé.(3)Jestliže je činitel к sudé číslo, jsou sudí i činitelé к -f- 2,
к -j- 4 a tvrzení je dokázáno.

Jestliže je činitel к liché číslo, t. j. platí-li к = 2m -f- 1,
kde m je celé číslo, jsou činitelé

к -f- 3 — 2(m -р 2)к + 1 = 2(m + 1),

čísla sudá; tu zbývá dokázat, že jedno z čísel m -j- 1, m + 2 je
sudé. Je-li m + 1 sudé, je to dokázáno; je-li m -f- 1 liché, je
m -(-2 sudé a je to zase dokázáno.
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Jiné řešeni. Výraz (1) vpravo lze psát pro n> 3 ve tvaru

F= (nV)’
za této podmínky je V tedy jistě číslo celé. Ale V je zřejmě
celé číslo i pro n = 0; 1; 2.

Jestliže je n < 0, potom položíme-li ve výrazu (1)
n — — m,

kde m je celé kladné, nabude výraz V tvaru
1

—— • (m + 2) (m + 1) m (m — 1) (m — 2) — — V',
1ZU

v =

kde
1 .

V' =

120 ~ ^
Podle předchozího je V celé číslo pro 0 a tím i vý-

raz V pro n < 0.

1) m (m + 1) (w + 2).

2. Dokažte, že číslo 11100 — 1 končí skupinou číslic 6000.

Řešení. Podle binomické poučky obdržíme:
1 + 100 • 101 +100 • 99 - i • 102 +

A

i
+ 100 • 99 • 98 • - • 103 + z.

o

x - ll100 = (1 + 10)100

Při tom z je*součet zbývajících členů tvaru | ^j • 108 pro к Ss
^ 4; protože příslušné kombinační číslo je číslo přirozené,
je hodnota každého takového členu v dekadické soustavě
zapsána číslem končícím alespoň čtyřmi nulami. Ale ani
o čtvrtém členu v našem výrazu není třeba uvažovat, neboť
součin 99 • 98 • — je číslo přirozené a ten máme ještě zná-
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sobit číslem 10®, takže jde opět o číslo končící alespoň čtyřmi
nulami. Součet prvních tří členů je 1 -j- 1000 -j- 495 000 =
= 496 001. Číslo x má tedy v dekadické soustavě na posled-
nich čtyřech místech skupinu číslic 6001 a proto číslo x — 1
končí skupinou 6000.

3; Sestrojte čtyřúhelník ABGD, který lze vepsat do kruž-
nice, jestliže jsou dány velikosti a, b, c, d jeho stran.

Řešení. V rovině, v níž budeme provádět všechny úlohy,
zvolme kladný smysl otáčení. Jsou-li dány tři navzájem různé
body А, В, C, budeme úhlem A(BC) rozumět úhel, o který
je nutno otočit polopřímku AB, abychom dostali polopřímku
AC. Velikost tohoto iihlu je jednoznačně určena až na celistvý
násobek 2 л (v míře obloukové).

Vypuklý čtyřúhelník ABGD nazýváme kladně orientovaný,
když při obíhání jeho obvodu v kladném smyslu následují
za sebou vrcholy pořádku A,B,G,D.

Naše úloha se redukuje v podstatě na úlohu: sestrojte těti-
vový čtyřúhelník .4 БС7), jsou-li dány jeho vrcholy А, В (o vzdá-
lenosti a) a úsečky BG — b, GD = c, DA — d. O všech
číslech a, b, c, d předpokládáme, že jsou kladná.

Provedeme nejprve rozbor této úlohy a ukážeme, že takový
čtyřúhelník existuje nejvýše jeden. Dejme tomu, že takový
čtyřúhelník ABCD existuje. Sestrojme podobný čtyřúhelník
D'C'B'A' (při této podobnosti odpovídají bodům A, B, G, D
postupně body A', B', C', D') tak, že A' = G, B' = D.

Podle věty o obvodových úhlech víme, že A(BD) -f- G(DB) =
— л, a z podobnosti plyne (pozor na orientaci), že A'(D'B') —
= A(BD); tedy bod C leží na úsečce BD/. Podobně zjistíme,
že bod D leží na úsečce AC'.

Stejně A(BD) + G'(B'D') = A(BD) + G(DB) =-л, tedy
úsečky AB & C'D' jsou rovnoběžné. Z popsaných vlastností
okamžitě plyne, že body A, B, D', G' jsou navzájem různé
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a tvoří lichoběžník o základnách AB, С'I)' a ramenech AG',
ВТ)'. Z podobnosti dále plyne: a' = A'B' = la, b' = B'C' =

= Á.b, c' = G'D' — Ac, ď = D'A' - Ы, kde A = — (neboť
a

A'B' = CD). Náš kladně orientovaný lichoběžník ABD'C'
má tedy základny А В = a, D'C — — a ramena BD' =

ab -f- cd
= BC + A'D' = b + -d =

a

= d + - b =

AC - AD + B'C =
a

ad bc

a a

Takový lichoběžník o daných stranách, o dané orientaci
a daných dvou vrcholech na základně (v našem případě jsou
to vrcholy A, B) existuje nejvýše jeden v případě с ф a
a sestrojí se známým způsobem rozkladem na rovnoběžník
o sousedních stranách AC', C'D' a na trojúhelník o stra-

a2 — c2 ad -f- bcc1
nách |AB — C'D'\ = a

ab -f- cd

, AC =
aa a

BD’ =

a

Existuje tedy též nejvýše jeden hledaný čtyřúhelník, neboť
uvedeným lichoběžníkem a stranami BC = b, DA — d je náš
čtyřúhelník určen jednoznačně.

Současně z uvedeného postupu vyplývá konstrukce tohoto
čtyřúhelníku v případě с Ф a\ Sestrojíme úsečky velikosti ď ==
= Aa = c, b' = Áb, c' = Ac, ď = Ad, dále trojúhelník o stra-
nách |a — c'|, b + ď, d A~ Ь'. К němu připojíme rovnoběžník
o stranách d + b', c'. Tím obdržíme náš lichoběžník, na jehož
ramena naseme úsečky velikosti b resp. d\ pozor na okolnost,
že může být c > a.

Případ c = a, b Ф d převedeme na předcházející cyklickou
záměnou stran. Případ c — a, b = d je jasný. Dále z uvede-
ného postupu vyplývá, že nutná podmínka pro existenci hle-
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daného čtyřúhelníka je, aby existoval trojúhelník o stranách
a — c'\, b -j- ď, d -f- b'. Dokážeme si nyní, že tato podmínka
je též postačující. Jestliže tato podmínka je splněna a je-li
с Ф a, můžeme snadno sestrojit kladně orientovaný lichoběž-
nik ABD'C' o základnách AB = a, CD' — c', a ráme-

nech BD' = b + ď, AC' — d + b' (při tom a' = Xa, b' =

— Xb, c' — Ac, ď — Xd, kde X — — ). Na ramenech BD',

resp. AC' najdeme body D, resp. C tak, že BC = b a že AD =
= d. To je možné, neboť b < BD', d < AC'.

Předpokládejme nejprve, že c < a (tedy též c' < a) a pro-
dlužme strany AC' a BD', až se protnou v bodě E. Troj úhel-
niky EC'D' a EAB jsou podobné s poměrem podobnosti
c' : a = Xc : a = A2. Tedy ЕС' = X3EA, d + 6' = C'A =

d + b'
1 - A2 '

Jsou tedy též podobné troj úhel-

= EA — EG' = (1 — A2) EA, tedy EA =

b + ď
1 - A2'

niky EAB a ECD, neboť úhly u vrcholu E mají společné
a platí

Podobně EB —

Ъ + ď г Xd+X2b
Г^А2 “ 6 “ 1 - A2 ’

d -f b' Xb X4
— — d — r— ;

1 - A2

ЕС = EB - BC =

ED = EA - AD =

1 - A2

tedy ЯС : ED = {d + Aů) : (b + Aá) -
Úhly u vrcholů A a C ve čtyřúhelníku A BCD jsou tedy

výplňkové a proto bod C leží na kružnici procházející body
ABD (body C, A jsou přímkou BD odděleny).

Případ c > a převede se snadno na předcházející (stačí
sestrojit tětivový čtyřúhelník o stranách d — c, b — d,c — a,
d = b; předcházející podmínka pro existenci takového čtyř-
úhelníka je totiž splněna: z délek |a2 — c2|, db -f- cd, ad -f bc

70



jakožto stran, lze sestrojit trojúhelník; tyto délky rovnají se

postupně délkám |č2 — a2|, cd + db, be -j- ad a přitom je č <
< d. Tedy existuje tětivový čtyřúhelník o stranách (postupně
vzatých) d, b, č, d).

Je-li c = a, je řešením naší úlohy lichoběžník o základnách
b, d, o ramenech a — c v případě, že b Ф d, a obdélník, když
a — c, b — d.

Poznámka. Z trojúhelníkových nerovností pro trojúhelník
o stranách |a2 — c2|, ab + cd, ad + bc se snadno zjistí, že
tento trojúhelník existuje právě tehdy, platí-li současně

a < b -f- c + d,
b <i c -f- d -f- a,

c < d -f- a + b,
d < a + b -j- c.

To je tedy nutná a postačující podmínka pro existenci
hledaného čtyřúhelníka.

4; Rovina je pokryta sítí shodných rovnostranných troj-
líhelníků. Dokažte, že neexistuje čtverec, jehož všecky vrcholy
by ležely ve vrcholech sítě (t. j. ve vrcholech trojúhelníků
sítě).

Řešení. Zvolíme jeden mřížový bod za jjočátek O souřadnic
a osu x položíme do přímky obsahující strany trojúhelníků.

Je-li velikost strany rovnostranného trojúhelníka rovna
jedné, jsou souřadnice každého mřížového bodu sítě ve tvaru

kde nx, n2 jsou celá čísla téže parity. Obráceně\2,П1,'2П)’
! 1

každý bod kde %, n2 jsou celá čísla téže parity,2ni;2W
je mřížovým bodem sítě.
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Předpokládejme, že máme čtverec žádané vlastnosti, jehož
jeden vrchol je v počátku souřadnic (toho lze vždy dosáhnout
vhodnou volbou počátku). Jsou-li А, В dva vrcholy tohoto
čtverce sousední к bodu O, a má-li bod A souřadnice (ж; у),
má bod В souřadnice buď ( — y, x) nebo (у; —ж).*) Jsou-li

body А, В mřížovými body sítě, je x = \пг, у ==— ,2 2

—nt^3, kde n1} n2, n3, nt jsou celá čísla, ne

všechna rovna nule. To je však nemožné.
Jiné řešení úlohy. Zvolme vrchol jednoho trojúhelníka

sítě o straně 2a (kde а Ф 0) za počátek O roviny komplex-
nich čísel; budiž OA jedna ze stran tohoto trojiihelníka, potom
budiž OA kladná poloosa x roviny komplexních čísel. Pak
každý vrchol sítě je vyjádřen komplexním číslem tvaru

ha -f- lni Уз ,

1
У = x =2" S >

(1)

kde h, l jsou celá čísla.
Protože strany čtverce jsou si rovny, je možno jednu z nich

otočením převést v sousední stranu; středem otáčení je vrchol
společný oběma stranám, úhel otočení je 90°.

Zvolme vrchol předpokládaného čtverce v počátku O rovi-
ny komplexních čísel, což není na újmu obecnosti úlohy.
Druhý a sousední vrchol Q může být kterýkoli jiný bod sítě;
tento vrchol je určen komplexním číslem tvaru (1), kde čísla kíy
li nejsou současně rovna nule.

Otočení o 90° převede bod Q v bod Q' a jemu přísluší kom-
plexní číslo

± i (кга + 1га\ /З) = =F 1га^3 ± кга[, (2)
* ) Skutečně, je-li В y'~], platí z2-f- у2 = ж'г+ y'2,xx’-\-yy’ =

= 0. Aspoň jedno z čísel x, у je různé od nuly; budiž na př. у ф 0.

= ty 11. j. t = a dosaďme za x'do rovnice xx’ -f- уу —
Položme x'

tx. Z první rovnice pak dostaneme t2 = 1, t. j. t == 0; vyjde у =
= ± 1.

72



neboť násobení číslem ± i znamená rotaci kolem bodu O
o ± 90°. Aby bod Q' byl bodem sítě, musí být reálná část
čísla (2) celistvým násobkem čísla a. To je splněno jedině
pro lx = 0, t. j. bod Q leží na ose x a strana čtverce OQ = кга,
neboť kx Ф 0. Ale na ose у neleží žádný bod Q' takový, aby
bylo OQ' = kxa a aby to byl bod sítě. (Upravené řešení s. Boh.
Cenkla, 3b tř. Slovanského gymnasia v Olomouci.)

D. ÚLOHY I í. KOLA, К A TEGORIE В

1. Jsou dány dvě různé přímky p, q a bod A. Každé otáčení
které převádí přímku p v přímku q, převádí bod A v jistý
bod A'. Co vyplní všecky tyto body A'?

Řešení. Střed každého otáčení, které převádí přímku p
v přímku q, je stejně vzdálen od obou těchto přímek; leží
tedy na jedné z os souměrnosti přímek p, q, jsou-li různo-
běžné, nebo na ose souměrnosti přímek p, q, jsou-li rovno-
běžné. Obráceně každý bod osy souměrnosti přímek p, q je
zřejmě středem aspoň jednoho otáčení, které převádí p v q.

Budiž X střed otáčení, který leží na ose o přímek p, q.
Otáčení rozložme na dvě osové souměrnosti tak, aby první
měla osu v přímce o; tato souměrnost převádí přímku p v q,
proto musí druhá souměrnost převádět přímku q v samu sebe.
Nyní jsou možné dva případy:

a) leží-li bod X mimo přímku q, je osa o' druhé souměr-
nosti kolmá к přímce q\

b) leží-li bod X na přímce q (a to nastane jedině pro prů-
sečík přímek p, q, jsou-li různoběžné), je buď o' _L q, nebo
o' = q.

Označme A" obraz bodu A v osové souměrnosti (o).
Případ A. Je-li p \ \ q, vyplní body A' přímku r rovnoběž-

nou s přímkou q a procházející bodem A". Každá souměr-
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nost (o') totiž převede bod A" v nějaký bod přímky r a obrá-
ceně ke každému bodu P přímky r existuje souměrnost (o'),
která převádí A" v P. Přímka r může splynout s přím-
kou q (p), leží-li bod A" na q(p), t. j.leží-li bod A na p (q).

Případ B. Jsou-li p, q dvě různoběžky, označíme ox, oa
jejich osy, A", A\ obrazy bodu A v souměrnostech (ox), (o2).
Body A' vyplní dvě přímky rx, r2 rovnoběžné s q a prochá-
zející body A'', A". Pro o' = q leží rovněž obrazy bodů A",
resp. A" na přímkách r2, resp. rx, neboť body A", A" jsou
souměrně sdružené podle průsečíku přímek p, q. Přímky rx,
r2 splynou navzájem a tedy i s přímkou q tehdy a jen tehdy,
leží-li oba body A", A"
přímce p.

přímce q, t. j. leží-li bod A nana

2. Najděte všechna čtyřciferná čísla tvaru aabb (kde а Ф
=t= 0 a b jsou arabské cifry), která jsou čtverci celého čísla!

Řešení. Předpokládejme, že takové číslo*) c = n2 existuje.
Pak

c = 1100a + 116,
kde

0 ^ 6 ^ 9.0 < a ^ 9, (1)

Protože w2 = 11 (100a -(-&)> je n dělitelné jedenácti, t. j.

n = lim

lim2 = 100a -j- 6 = 99a -f- (a -f- 6). (2)

Je tedy i a + 6 dělitelno jedenácti. Avšak ze vztahů (1) vy-
plývá

0 < a + 6 ^ 18,

*) V celém řešení píšeme místo ,,celé číslo“ stručně „číslo“.
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takže

(3)a + 6 = 11.

Dosazením do (2) dostaneme po zkrácení jedenácti
w2 = 9a -f 1.

Z čísel 1,2, ..., 9 má právě a = 7 vlastnost, že 9a + 1
je čtverec, a to čísla 8. Z rovnice (3) je pak 6 = 4. Existuje-li
tedy řešení c, je c = 7744. Je však 7744 = (11 • 8)2, takže
číslo 7744 je skutečně řešení.

3. Dokažte, že pro všechna reálná čísla a, 6 platí

(a2 + 62) a6 5S a* + b*.

Rozhodněte, kdy platí rovnost!

Řešení. Abychom toto tvrzení dokázali, stačí ukázat, že
hodnota výrazu F = (a4 + 64) — ab(a2 + 62) je pro všechna
reálná a, b číslo nezáporné.

Upravujme postupně výraz

V = (a4 -f- 64) — ab(a2 + b2) = a3(a — b) — b3(a — b) =
= (a — b)(a3 — b3) — (a — 6)2(a2 + a6 + 62) =

= (a — 6)2 [(l“ +b)* + -§“*]-
1. Hodnota výrazu V je zřejmě číslo nezáporné, neboť první

činitel je čtverec reálného čísla (což je vždy číslo nezáporné),
druhý činitel je roven součtu dvou nezáporných čísel, tedy
také číslo nezáporné; protože ani jeden z činitelů není záporný,
je součin číslo nezáporné.

2. Aby bylo V = 0, je nutné a stačí, aby jeden z obou čini-
telů byl roven nule.
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a) Buď je (a — b)* = O, t. j. a — b;
b) nebo je druhý činitel, jímž je součet dvou nezáporných

čísel, roven nule; tu je nutné a stačí, aby platilo současně
a -f- ůj2 = 0, — a2 — 0. Z druhé podmínky plyne a

= 0

a po dosazení do první podmínky je b2 = 0, t. j. b — 0, neboli
musí tedy platit a = b = 0. Ale tento vztah je už zahrnut
v případě a).

Výraz V je tedy roven nule tehdy a jen tehdy, je-li a = b.

4. Čtyřstěn MNPQ nechť má nejdelší hranu délky d. Do-
kažte, že pro každé dva body А, В povrchu čtyřstěnu platí
nerovnost А В sS d, kde А В je vzdálenost bodů A, B.

Řešení. V důkazu použijeme věty (viz lílohu В 9 I. kola):
Trojúhelník TU V nechť má nejdelší stranu délky v. Pak pro
každé dva body X, Y obvodu trojúhelníka platí nerovnost XY sí
^ v, kde XY je vzdálenost bodů X, Y. Je-li A = B, je tvrzení
zřejmé. Předpokládejme tedy že A a|= B. Pak aspoň jeden
z vrcholů M, N, P, O neleží na přímce AB. Zvolme označení
tak, aby bod M neležel na přímce AB. Rovina ABM protne
čtyřstěn v trojúhelníku MKL, neboť průsečnice rovin, ABM,
NPQ musí protnout obvod trojúhelníka NPQ ve dvou růz-
ných bodech K, L, jinak by totiž ležely body А, В, M v přímce.

Podle citované věty je úsečka AB menší nebo rovna nej-
větší z úseček KL, LM, MK. Avšak podle téže věty je každá
z úseček KL, LM, MK menší nebo rovna největší straně
té stěny čtyřstěnu, v níž leží. Proto je KL íS d, LM ^ d,
MK < d, a tudíž i А В sS d.
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E. ÚLOHY III. KOLA, KATEGORIE A

1. Jsou-li а, b kladná racionální čísla, dokažte, že ze vztahu

У a + ~fb = c

kde c je racionální číslo, plyne, že rfh jsou rovněž racio-
nální čísla.

Řešení. Podle předpokladu je a > 0, b^> 0 a proto je
i racionální číslo c > 0, neboť odmocnina z kladného čísla
je kladná a součet dvou kladných čísel Уа, Уb je číslo opět
kladné.

Z daného vztahu plyne, že ^b — c
— 2cja,takže

У«, b — c2 -f- a

=

c2 — a -j- bc2 + a —Ya = 2c 2c

což jsou čísla racionální. Vedle toho je a + 2 yab -j- b = c2,
takže je

c2 > a -)- b\

odtud plyne, že c2 -f- a — b > 2a > 0, c2 — a -f- & > 26 > 0,
takže čísla Уa, У&" jsou kladná.

2. Tabulka čísel
ax bx cx

íí2 ^2 ^2 ^2 ^2

a, &3 c3 d3 c3 /3 f/3

je sestavena takto: První řádek obsahuje tři lichá čísla.
Každé číslo dalších řádků je rovno součtu tří sousedních
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čísel předcházejícího řádku, z nichž prostřední je nad uva-
žovaným číslem; schází-li v tabulce některé z těchto tří
čísel, doplní se nulou. Dokažte, že počínaje druhým řádkem
každý řádek obsahuje aspoň jedno sudé číslo.

Řešení. Pišme místo sudého čísla s, místo lichého /. Pak
počínajíc druhým řádkem lze první čtyři čísla v každém řádku
zapsat schematicky takto:

2. řádek .... Isis..

3. řádek ... 11 s l . . .

4. řádek .. I s s s . .. .

5. řádek .Ills

Z prvních tří čísel pátého řádku je patrno, že ve třech
dalších řádcích se budou první čtyři čísla opakovat co do
parity (sudost, lichost) jako v řádcích druhém, třetím a čtvr-
tém; toto schema se tedy po každém čtvrtém řádku opakuje.
Protože se v našem schématu mezi prvními čtyřmi čísly od
2. řádku počínajíc vyskytuje alespoň jedno sudé číslo, je
tvrzení úlohy dokázáno.

3. Budiž ABCD vypuklý různoběžník, v němž AB —
— CD a buďtež R, S středy stran AD, BC. Sestrojte polo-
přímky AU, DV souhlasně rovnoběžné s polopřímkou RS.
Dokažte, že platí vztah

< ВAU = * CDV.

Řešení. Označme AR, = RĎ = x. Veďme úsečku RM tak,
aby platilo RM ft AB, RM = AB, takže je M ф В (BM tt
1t AR, BM — x; čtyřúhelník ARMВ je rovnoběžník podle
poučky: Jestliže ve čtyřúhelníku UVXY je UV tt YX, UV =
= XY, je to rovnoběžník).
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Dále veďme úsečku RN tak, aby platilo RN ft DC, RN —

= DC, takže je N ф C a NC tt RD, ŇČ = RD = ж.
Je tedy BM = ŇČ = x, BM tt NC (je totiž AR tt RD).

Přímky BM, NC nesplývají, jinak by bylo AD || BC, což
je proti předpokladu. Také úsečky RM, RN nesplývají, neboť
není А В || CD, a tedy RMN je trojúhelník, v němž je RM —
= Ib = Ďč = M, t. j. Ш = m.

Úsečky BM, CN jsou podle naší úvahy nesouhlasně rovno-
běžné a proto si navzájem odpovídají ve středové souměrnosti
o středu S, v které je bod C obrazem bodu В. V téže souměr-
nosti si tedy odpovídají body M, N, takže bod S je středem
základny MN rovnoramenného trojúhelníka RMN. Tudíž je

< BAU = < MRS = <* NES = < CDV.

4; Rozměry obdélníka A BCD jsou přirozená čísla p, q:
obdélník je rozdělen na pq jednotkových čtverců. Určete
počet těch jednotkových čtverců, jejichž vnitřkem prochází
úhlopříčka АС, a to v případě, že čísla p, q jsou a) nesoudělná,
b) soudělná.

Řešení. (Výrokem „úhlopříčka protíná čtverec sítě“ rozu-
mime v dalším, že taková úhlopříčka obsahuje alespoň jeden
bod ležící uvnitř čtverce.)

a) Označení zvolme tak, aby bylo p > q. Uvažovaná lihlo-
příčka AC daného obdélníka A BCD neobsahuje mezi body
A, C žádný vrchol sítě. Neboť jinak by existovala přirozená
čísla pi <; p, qx < q tak, že by platilo — =

nost trojúhelníků), čili pxq — pqx. Ježto p, q jsou čísla ne-
soudělná, bylo by číslo p dělitelem čísla px, a to je ve sporu
se vztahem px < p.

Úhlopříčka AC protíná jeden čtverec v každém z p „sloup-
ců“, které jsou mezi A, B. Dva čtverce protíná jen v tom
sloupci, kde překračuje jednu z q — 1 přímek sítě, které jsou

(podob-
Vi
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rovnoběžné s AB. Více než dva čtverce v sloupci nemůže
q

protínat, neboť by pak platilo — > 1, a to je ve sporu s naším

předpokladem p > q.
Celkový počet čtverců, které protíná úhlopříčka AC, je tedy

(1)v + q -. i.

b) Buďte p, q čísla soudělná a d jejich největší společný
jsou nesoudělná. Pro obdélník čtver-ď d J

np qcové sítě o stranách velikosti --,— dostaneme podle (1), žed d

jeho úhlopříčka и prochází celkem

dělitel; pak čísla

V_ , _?
d d

I (2)x -

čtverci sítě.

Úhlopříčka AC daného obdélníka ABCD obsahuje celkem
d + 1 bodů čtvercové sítě (včetně bodů A, C) a rozpadá se
tedy na d úseček velikosti u, které nemají žádný společný
vnitřní bod. Každou z těchto úseček považujeme za úhlo-

příčku obdélníka o rozměrech-^, —d d

úhlopříček prochází podle (2) právě x čtverci sítě; jde tedy
lihlopříčka AC celkem x • d, neboli

Pak každá z těchto d

xd = p + q — d (3)

čtverci sítě. Výraz (1) je speciální případ výrazu (3) pro d — 1.
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