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1. Přejav ministra školstva a osvěty
s. E. SÝKORU

na b-esede s účastníkmi III. kola matematickej
olympiády, ktorá sa konala 8. mája 1953.

)

Vážení priatelia, súdružky a súdruhovia!

Dnešná beseda, na ktorej sú přítomní účastníci III. kola matema-
tickej olympiády, má mimoriádny význam.

Před niekolkými dňami schválilo Národně shromaždenie zákon
o novej školskej sústave. Přitom bolo zdůrazněné, že smyslom nového
zákona je postaviť školu do naprostého súladu s potřebami socialis-
tickej výstavby. Naša doterajsia škola má predovšetkým jednu sla-
binu. Nevychovává dobré pre súčasnú úroveň prudko sa rozv.jajúcej
techniky, ktorá je každým dňom složitéjšia. Naša vyspělá technika
vyžaduje, aby mladí ludia už pri vstupe do zamestnania z povinnej
strednej školy boli dobré a všestranné připravení, aby ovládali zá-
klady vied, aby poznali základné procesy výroby a osvojili si určité
pracovně návyky.

Okrem toho prudký rozvoj našej techniky vyžaduje si vdké mtiožstvo
stredne a vysoko kvalifikovaných technických kádrov. Jednou z prí-
čin, prečo žiaci neprichádzajú do povolania dobré připravení a prečo
máme nedostatočný počet technických kádrov, resp. prečo im ne-
můžeme dať na odborných a vysokých školách důHadnejšie a hlbšie
znalosti, je slabá úroveň vyučovania matematiky na jiašich všeobecne
vzdelávaťch školách. Ešte stále sme svedkami takého zjavu, že napr.
na -gymnáziách v jednotlivých triedach len niekolko žiakov ovládá
matematiku. Znalosti z matematiky sú však slabé aj u žiakov, ktorí
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odchádzajú z osemročnej školy a tento nedostatok sa nepriaznivo
odráža na každom pracovisku.

Je bezpodmienečne potřebné energicky skoncovať s takýmto sta-
vom. Význam matematiky v súčasnom našom hospodárskom živote
je mimoriadne velký. Dalo by sa povedať, že matematika nadobudla
štátneho významu. Niet jediného výrobného odvetvia, ktoré dnes
vo zvýšenej miere by nepoužívalo služieb matematiky. Bez matema-
tiky nie je možné zabezpečit úspěšné štúdium tak prírodných ako
i spoločenskýeh vied. Ohromný je význam matematiky pre rozvoj
dialektického myslenia žiaka, pre jeho myslenie a vyjadrovanie vóbec.

Preto v nových učebných plánoch bude o vela viac hodin mate-
matiky vo všetkých triedach, ako bolo doteraz. Skoro v každej trie-
de denne sa žiaci budú učiť matematiku. No váčší počet hodin
matematiky eště nám nemóže’ sám o sebe zaistiť úspěch. Na to je
třeba sústredené úsilie riaditela školy, všetkých učitelov, Svazu mlá-
deže i školskej správy.

To najdóležitejšie však je: vyvolat iniciativu, záujem samých
žiakov. Úroveň vyučovania matematiky na našich školách pozdvihne-
me len vtedy, keď sami žiaci hlboko pochopia, aký velký význam má
matematika v celom našom kultúmom a technickom rozvoji štátu.
Aký je to nepostradatelný nástroj pre napredovanie tak řečeno vo
všetkých oblastiach nášho života.

A preto vysoko třeba vyzdvihnúť iniciativu organizátorov mate-
matickej olympiády a želat im dalších úspechov pri jej organizovaní
a rczširoVaní. A preto tiež zo srdca třeba blahožalať žiakom našich
škol, ktorých áfiiysel pre přesnost, dobrý poměr к práci, podnetnosť
a vynaliezavosť, húževnatosť a nepoddajnosť pri překonávaní ťažkostí,
priviedly až do III. kola matematickéj olympiády.

Súdružky a súdruhovia, vy ste opravdivými priekopníkmi nového
poměru nášho žiaka к matematike а к vede vóbec. S úspechom do-
býváte jednu najpevnejšiu baštu védy, jednu z hlavných pevností,
ktorá má krúčové postavenie pre dobytie ostatných pevností. Je len
třeba, aby ste súčasne s matematikou si osvojili tiež marxizmus-le-
ninizmus, vedu všetkých vied, ktorá vás naučí neustupovať a vyzbrojí
vás neporazitelnými zbraňami. Želám vám v tomto smere vela vlaste-
neckého zápalu.
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No súčasne je třeba, aby ste sa so svojou matematikou neuzavierali,
ale aby ste sa stali prvými propagátormi matematiky na válej škole.
Nech je otázkou vašej osobnej cti, aby vo vašej triede, na vašej škole
nebolo jediného žiaka, ktorý by neovládal základy matematiky. Patříte
к najtalentovanějším žiakom, máte všetky předpoklady к tomu, aby
sa z vás stali vynikajúci vědci, technici.

A tu je potřebné, aby okrem zápalu o vec, okrem nadlenia, dobré
ste si uvědomovali svoje velké povinnosti voči svojej socialistickej
vlasti a aby ste sa připravovali stať sa predstavitermi — ako hovoří
Stalin — onej „védy, ktorá sa neuzatvára před Iudom, ktorá sa ne-
straní Iudu, ale je ochotná Pudu slúžiť, ochotná dať Pudu к dispozícii
všetky svoje vymoženosti, ktorá slúži Pudu nie z donútenia, ale dob-
rovolne, rada“.

Opakujem, súdružky a súdruhovia, máte všetky předpoklady к tomu,

aby z vás vyrástli vědci, technici nového socialistického typu. A takí
z vás vyrastú, ak už dnes svoju přípravu na vedeckú prácu budete
zameriavať na tie úlohy, ktoré pracujúci lud predovšetkým potřebuje
riešiť, ak budete starostlivo sledovať a snažiť sa uskutočňovať směrnice
vodkyne robotníckej triedy a celého pracujúceho Pudu — Komunistic-
kej strany Československa.

Vždy \i klaďte otázku, či vaša příprava na vedeckú prácu je naozaj
strann cka, to znamená, či naozaj je zameraná ha budovanie socializmu,
či naozaj do všetkých dósledkov ňou budete Pudu slúžiť.

Vaším šťastím je, že máte dobrých učitePov. A tu dovorte tiež im
blahoželať a vysoko vyzdvihnúť ich prácu. Nemožno ani dosť očeniť,
čo vykonali. No domnievam sa, že predovšetkým třeba zdóraznit
příklad, ktorý dávajú nielen učitePom matematiky v celej nasej re-

publike, ale aj všetkým ostatným učitePom.
Prečo majú úspěch? Predovšetkým preto, že poznávajú hlboko

predmet a pretože přemysleli všetky jeho stránky, učebný proces,
že věděli vynájsť a použiť pósobivé metódy vyučovania. No, ani by
to nebolo stačilo, keby neboli věděli vo vás vzbudiť iniciativu, hlboké
uvažovanie a tvořivý vzťah к práci. Lebo vynikajúce výsledky, ktoré
žiaci v škole dosiahli, sú aj výsledkom ich verkej a samostatnej vlast-
nej práce.

A v tom spočívá najváčšia zásluha vašich učitePov. Nielen to je
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dóležitéj aby si žiak odniesol zo školy základné vědomosti. D61ežité
je predovšetkým to, aby ich vedel použit', aby sa vedel postaviť před
novů úlohu a samostatné ju vyriešiť.

Este jednu vec třeba pri dnešnej příležitosti zdórazniť. Význam
druhého ročníku matematickej olympiády spočívá najma v tom, že
zasiahol váčší počet študentov. Našou ctižiadosťou musí byť, aby
v najbližších rokoch mohli sme sa v 3. kole stretnúť nie s desiatkami
a stovkami, ale s tisícmi výborných matematikov. Třeba, aby sme si
v tomto smere v plnej miere osvojili sovietsky vzor, aby sme sa ešte
viac učili od sovietskych učitelov, ktorí úspěšně plnia úlohu: do-
siahnuť, aby všetci žiaci ovládli základy matematiky.

Ďakujem ešte raz organizátorom MO, celému Ústrednému vý-
boru, hlavně předsedovi MO, prof. akad. Novákovi a tajemníkovi
MO, prof. Zelinkovi, Matematickému ústavu- Československej aka-
demie vied, dalej pracovníkom katedier na všetkých vysokých ško-
lách a všetkým učitelom matematikom, ktorých žiaci sa uplatnili
v MO.

Želán konečne vela úspechov všetkým našim učitelům matematiky
v celej republike, aby čo najskór aj oni dosiahli váčších úspechov
ako doteraz. A účastníkom 3. kola matematickej olympiády želám
vela nadšenia do ďalšej práce a vela — skromnosti.
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2. Průběh druhého ročníku MO.

1. Stejně jako loňského roku proběhla na našich výběrových ško-
lách 3. stupně i letos soutěž — matematická olympiáda. Žáci 3.
a 4. tříd soutěžili v kategorii A ve třech kolech; žáci 1. a 2. tříd sou-
tížili v kategorii В ve dvou kolech.

2. Soutěž pořádalo za přispění Matematického ústavu Českoslo-
venské akademie věd (MÚČSAV) a Československého svazu mládeže
ministerstvo školství a osvěty. Soutěž řídil ústřední výbor matematické
olympiády (ÚVMO) spolu s oblastními výbory (OVMO). ÚVMO
byl ustaven takto:

Předseda: Akademik Josef Novák, náměstek ředitele MÚČSAV.
Místopředsedové: Náměstek ministra Adolf Zajíc; Dr Otakar Borůvka,

profesor university v Brně; Dr Juraj Hronec, profesor Slovenské
university v Bratislavě.

Jednatel: Rudolf Zelinka, pracovník MÚČSAV.
Členové: Josef Čejna, referent školského oddělení ÚVČSM v Praze;

Doc. Josef Holubář, pracovník MÚČSAV; František Hradecký,
profesor Nerudova gymnasia v Praze; Miloš Jelínek, ústřední
inspektor MŠO v Praze; Milan Kolibiar, asistent přírodovědecké
fakulty SU v Bratislavě; Vitazoslav Repáš, přednosta oddělení
PŠÚ v Bratislavě; Karol Rovan, profesor gymnasia v Piešťanech;
Rudolf Tarnica, profesor gymnasia v Brně-Králově Poli.
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Předsedy oblastních výborů byli tito soudruzi:
Akademik Stefan Schwarz, profesor Slovenského vysokého učení
technického v Bratislavě; Dr Boh. Vlach, kraiský školní inspektor
v Brně; Dr Fr. Jurga, profesor techniky v Košicích; Dr Jos.
Metelka, docent pedagogické fakulty v Olomouci; Dr Alfons
Hyška, asistent vysoké školy báňské v Ostravě; Josef Zieris,
profesor pedagogického gymnasia v Pardubicích; Jan Taišl,
asistent pedagogické fakulty v Plzni; Dr Karel Hruša, odborný
asistent pedagogické fakulty KU v Praze.

3. Stejně jako loni se za, úspěšného řešitele I. kola považuje žák,
který zašle ze 16 úloh nejméně 9 řešení, která jsou oceněna alespoň
„dobře“. Úspěšným řešitelem II. kola nebo III. kola je žák, který
během čtyř hodin ze čtyř úloh rozřeší nejméně dvě úlohy, oceněné
alespoň „dobře“. '

4. Soutěž I. kola proběhla od počátku října 1952 do konce ledna
1953 a měla studijní ráz. O propagaci soutěže na školách pečovali
obětavě referenti matematické olympiády z řad učitelů matematiky,
kteří se soutěžícími také konsultovali.

Soutěž II. kola se konala dne 12. dubna 1953 v nťstech oblastních

výborů (jedině Hradecký kraj z oblasti pardubické konal soutěž
v Hradci Králové). Při té:o příležitosti uspořádaly oblastní výbory
za účasti širší školské veřejnosti se soutěžícími besedy, které měly
odborný ráz; při besedách byli soutěžící také informováni o studiu
přírodních věd a technických oborů na vysokých školách. Příslušné
školské referáty a krajské výbory ČSM se vzorně postaraly o to, aby
soutěžící mohli hromadně navštívit některé kulturní podniky.

Soutěž III. kola se kpnala dne 8. května 1953 dopoledne v mate-
matickém ústavě matematicko-fysikální fakulty Karlovy university
v.Praze II, Ke Karlovu 3. Po soutěži o 15. hod. se ve velké posluchárně
konala beseda se soutěžícími za účasti široké veřejnosti vědecké,
školské a vysokoškolské. Slavnostní ráz besedě, kterou vedl předseda
ÚVMO akad. Josef Novák, dala přítomnost ministra školství a osvěty
s. E. Sýkory, ministra vysokých škol s. Lad. Štolla a zástupců I. sekce
Československé akademie věd. Projevy pronesli s. E. Sýkora, Josef
Čejna, referent školského oddělení ÚVČSM, s. akademik E. Čech
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za I. sekci ČSAV a MÚČSAV a s. Lad. Štoll. Projev s. E. Sýkory
přinášíme v úvodní části v plném znění. Řečníci ve svých projevech
zdůraznili státní důležitost hlubokého studia matematiky a v této
souvislosti ocenili historický význam nového školského zákona.
Tento zásadní obrat ve školské politice znamená orientaci školy na
studium přírodních a technických věd podle sovětského vzoru. Pro
toto studium je důkladná znalost matematiky základním předpokla-
dem. S. Čejna zdůraznil, že propagace hlubokého studia matematiky
se musí stát jedn m ze základních úkolů školských skupin ČSM.
S. akademik Čech podtrhl historický význam školského zákona v sou-
vislosti se sovětskou školskou matematikou, při čemž vyzval přítomné
studenty, aby stejně jako sovětští žáci se důkladným študiem matema-
tiky vyzbrojili na odborné studium na vysoké škole, aby v budoucnosti
mohli svými odbornými vědomostmi pomoci uskutečnit naše budo-
vatelské plány. S, Lad. Štoll mimo jiné vyzvedl význam studia pří-
rodních a technických věd a vyzval přítomné, aby se stali propagátory
zásady, že je nezbytné zainteresovat naše studentstvo na studium
technických disciplin, protože dosud řada studentů jeví к tomuto
studiu nechuť.

Závažné projevy obou našich ministrů a obou dalších řečníků
přijali posluchači s nadšeným potleskem. Ústy významných předsta-
vitelů naší vlády tu byl oceněn nejen význam matematiky pro naše
budování, ale zároveň proklamována zásada, že naše škola musí
považovat za jeden ze svých základních úkolů naučit každého žáka
základům matematiky.

Na závěr besedy poděkoval akad. Josef Novák všem, kdož přispěli
ke zdaru soutěže, zvláště soudruhům z pedagogické fakulty KU,
všem soudruhům z jednotlivých oblastních výborů a jejich spolu-
pracovníkům za nezištnou a obětavou pomoc.

Po besedě navštívili soutěžící společně večerní představení di-
vadelní hry Stalingradci v divadle Čs. armády na Král. Vinohradech.

Hostitelské úkoly plnil vzorně školský referát ÚNV v Praze za
vedení s. Dr L. Městkové.
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3. Zpráva o průběhu a výsledcích
jednotlivých kol matematické olympiády.

A. soutěž i. KOLA

1. Soutěže I. kola se celkem účastnilo 1428 řešitelů, převážně
žáků gymnasií. V kategorii A bylo 489 soutěžících,tv kategorii В 939
soutěžících. Některé oblasti měly značnou účast. Zvláště obě hlavní
města Praha a Bratislava byla silně zastoupena. Také oblasti Ostrava
a Plzeň vzhledem к provedené propagaci měly značnou účast. Po-
měrně málo se účastnily kraje Karlovy Vary a Liberec.

Přehled výsledků I. kola je patrný z tabulky 1.

Tabulka č. 1. Přehled účastníků I. kola podle oblastí.

Kategorie A Kategorie В
Oblast celkem úspěšných celkem

účastníků řešitelů účastníků
úspěšných
řešitelů

25Bratislava
Brno ....

Košice ..

Olomouc
Ostrava ..

Pardubice
Plzeň ....

Praha ...

118 135 25

51 9 108 13

31 7 15 3
628 111 24

63 9520 15

63 22 122 35
/ 7534 8 3

101 2789 15

Celkem 489 106 939 133
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O obtížnosti úloh jakož i o průběhu soutěže informují tabulky
č. 2a, 2b. Z nich je patrno, že původní značný zájem o soutěž průběhem
čtyř měsíců tohoto studijního kola ochaboval. Příčiny byly různé.
Někde byla sice provedena náborová propagace, ale žákům nebyla
v průběhu soutěže věnována patřičná péče a pomoc. Také chřipkové
onemocnění koncem r. 1952 působilo nepříznivě. Dále závěr 1. po-
loletí, prodloužené vánoční a pololetní prázdniny odvedly značný
počet účastníků od intensivní práce a od pomoci, kterou jim mohli
poskytnout jejich učitelé.

Přesto je z tabulek patrno, že úlohy byly voleny přiměřeně, což je
značný pokrok proti loňskému ročníku. Nemalou úlohu zde sehrála
jistě i zkušenost učitelů s loňskou soutěží; objevují se řešení již mnohem
úplnější, lépe formulované matematické texty atd. O tom se ještě
zmíníme v odstavci pátém.

B. SOUTĚŽ II. KOLA

Do II. kola postoupilo celkem 239 řešitelů (106 v kategorii A,
133 v kategorii B). Soutěže se účastnilo 198 řešitelů (94 v kategorii
A, 104 v kategorii B). Úspěšných řešitelů je 93 (51 v kategorii A,
42 v kategorii B); úspěšným řešitelem II. а III. kola je ten soutěžící,
který průběhem čtyř hodin soutěže rozřešil ze čtyř úloh alespoň dvě
s oceněním nejméně dobrým. .

Přehled výsledků II. kola je patrný z tabulky č. 3.
V kategorii A bylo oceněno známkou výbornou 45 prací, známkou

chvalitebnou 43 prací, známkou dobrou 72 prací.
V kategorii В bylo oceněno známkou výbornou 41 prací, známkou

chvalitebnou 36 prací, známkou dobrou 63 prací.
V kategorii A obstálo úspěšně 54,3% účastníků, v kategorii В

40,4% účastníků.
v Protože pro kategorii В je II. kolo závěrečné, uvádíme jména ví-
tězů v této kategorii podle jednotlivých oblastí (G = gymnasium,
VPŠ = vyšší průmyslová škola).
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Tabulka č. 3. Přehled účastníků II. kola podle oblastí.
9

Kategorie ВKategorie A
Oblast

úspěšných
řešitelů

celkem
účastníků

úspěšných
řešitelů

celkem
účastníků

Bratislava
Brno ....

Košice ..

Olomouc

Ostrava ..

Pardubice
Plzeň ....

Praha ...

23 310 24

8 12 99

2 3 07

46 243

16 15 1120

13 612 1

4 3 38

69 7 10

Celkem 104 425194

Vítězové II. kola, kategorie B.
Bratislava: Jozef Brody, 2b, II.G, Bratislava; Juraj Baštýř,

2b, II.G, Bratislava; Milan Hejný, 2b, G, Martin Priekopa.
Brno: Oldřich Buchta, 2, G dr VI. Helferta, Brno; Ivan Kolář,

2, G Brno, Křenová 36; Frant. Neumann, 1, G Brno-Husovice;
Milan Lustig, 2, G Bučovice; Hana Konrádová, 2, G Boskovice.;
Jiří Grygar, 2, G Brno-Husovice; Prokop Nekovář, 2, G Telč; To-
máš Zemčík, 1, VPŠ chem. Brno-Husovice; Josef Chytka, 2, G Třebíč.

Olomouc: Jan Hrubeš, lb, Slovanské G Olomouc; Jiří Slaměník,
lb, Slovanské G Olomouc; Milan Mělká, la, Slovanské G Olomouc;
Pavel Chrněla, 2a, pedag. G Kroměříž.

Ostrava: Josef Dvorčuk, 2a, G Nový Jičín; Jiří Baránek, 2a, G
Ostrava I, Matiční; Ladislav Dubinský, 2b, G Opava; Ehrfried Lo-
sert, lb, G Opava; Ilja Votava, 2b, G Ostrava II; Lumír Bardon,
1, G Opava; Vlastá Hustá, 2a, G Český Těšín; Tadeusz Kornuta,
1, polské G, Český Těšín; Petr Popov, Ic, G Ostrava I, Matiční;
Bedřich Wenig, 2b, VPŠ, Opava; Václav Fiala, 2a, G Ostrava I, Matiční.

13
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Pařdubice: Jar. Šmíd, 2, G Hořice; Zdeněk Novotný, 2, G Ho-
řiče; Zdeněk Beneš, 1, VPŠ Dobruška; Teo Sturm, 2, G Dvůr Krá-
lově nad Labem; Josef Tošovský, 2, G Rychnov nad Kněžnou;
Josef Hepnar, 1, VPŠ Dobruška.

Plzeň: Vladimír Jezdinský, 2a, G Klatovy; Jiří Volejník, 2b,
G Rokycany; Marie Naděžda Magerová, 2a, Vrchlického G Klatovy.

Praha: Tomislav Šimeček, 2, jazykové G Praha XII; Jiří Vaniček,
1, G Praha XI, Kubelíkova; Josef Polák, 2, G Praha XI, Kubelíko-
va; Ladislav Šubrt, 2a, Vančurovo G Praha XVI; Jan Peřina, 2, G
Praha XII, Slovenská; Dagmar Mullerová, 2, Drtinovo G Praha XVI.

Vítězové obdrželi podle kvality prací od MŠO (na Slovensku PŠO)
čestné ceny, jednak peněžité (od Kčs 100 do Kčs 600), jednak knižní.
V českých krajích obdržel každý vítěz tyto knihy: H. Steinhaus: Ma-
tematický kaleidoskop; K. Hruša: 10 kapitol z diferenciálního
a integrálního počtu; A. G. Školník: Dělení kruhu.

C. SOUTĚŽ III. KOLA

Do III. kola postoupilo 51 soutěžících (kategorie A), z toho bylo
12 Slováků a 2 Poláci. Z nich se 20 zařadilo mezi vítěze; mezi nimi
je 7 Slováků a jeden Polák. Soudruzi ze Slovenska se umístili opět
velmi čestně ve velmi silné konkurenci; obsadili 6 míst. Zvláště se

vyznamenali žáci II. gymnasia v Bratislavě, o jejichž úspěch mají
velkou zásluhu jejich učitelé s. Anton Dubec a s. Peter Uhlík. Zvláštní
zmínky si zaslouží s. Juraj Virsík, žák 2b třídy II. gymnasia v Bra-
tislavě, který v I. kole řešil úlohy obou kategorií a byl připuštěn vý-
jimečně do III. kola, kde se velmi čestně umístil.

Z učitelů, kteří mají zásluhu na propagaci matematické olympiády
i o úspěchy svých žáků, dlužno jmenovat mimo jiné tyto soudruhy:
Boh. Štěpán (jazykové G, Praha XII), Frant. Veselý (G, Г Leň),
Frant. Hradecký (Nerudovo G, Praha III), Anna Hustá (G, Český
Těšín), Rud. Růžička a AI. Blažek (G, Klatovy), Frant. Vejsada (G,
České Budějovice). O velmi pěkné umístění soudruhů z polského
gymnasia v Českém Těšíně má zásluhu s. Ant. Zahraj.
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Přehled klasifikace úloh ve III. kole je patrný z tabulky č. 4.

Tabulka č. 4./Přehled klasifikace úloh III. kola.

Počet

nepodaných
řešení

Počet prací oceněných známkouČíslo
úlohy 4 N*)321

46 181 2 20 1

5 6 9 12 22 17

3 6 1 9 18 134

74 3 4 4 22 11

Součty 26 2728 16 37 70

Pořadí vítězů III. kola matematické olympiády.
1. Evžen Kindler, 3, G Praha XII, Londýnská; 2. Jan Hejcman,

3, G Praha IX, t. č. Praha X, Kollárova; 3. Otto Reimer 3, G Ivan-
čice; 4. Ján Černý, 3b, II. G Bratislava; 5. Jiří Lexa, 4d, II. G Bra-
tislava; 6. Juraj Virsik, 2b, II. G Bratislava; 7. Ivan Palla, 4, jazy-
kové G Praha XII, Slezská; 8. Břetislav Mičulka, 4, G Petra Bezruče
Místek; 9. Josef Gruska, 4b, G Prievidza; 10. Ivan Friš, 3b, Vanču-
rovo G Praha XVI; 11. Jaroslav Šedivý, 4b, G „Sokolovo** Praha
VIII; 12. Pavol Brunovský, 4d, II. G Bratislava; 13. František
Bakeš, 3a, G Bratislava; 14. Bronislav Grycz, 4, G Český Těšín;
15. Petr Liebl, 3a, G České Budějovice; 16. Július Betko, 3EX,
vyšší prům. škola elektrotechnická, Bratislava; 17. Vlastimil Hainzel,
3, G Broumov; 18. Karol Boček, 4, polské G Český Těšín; 19. Zdeněk
Kouba, 3, G Telč; 20. Karel Vlachovský, 3b, G Plzeň, nám. Odborářů.

Čestné peněžité odměny vítězům jsou odstupňovány od Kčs 100
do Kčs 1500. Dále obdrželi vítězové tyto knihy: E. Čech: Analytická
geometrie I. nebo II. díl (dar MÚČSAV); H. Steinhaus: Matematický
kaleidoskop; Josef Kaucký: Elementární metody řešení diferenciál-
nich rovnic; Volberg: Deskriptivní geometrie, po případě A. G.
Školník: Dělení kruhu.

*) N = neúspěšná řešení.

15



4. Ako som připravoval žiakov na MO.
ANTON DUBEC, Bratislava

Hněď na začiatku musím povedať, že podstatou přípravy mojich
žiakov na Matematickú olympiádu neboly práce v čase mimo riadneho
vyučovania a ani to neboly nijaké mimoriadno náročné práce. Mate-
matickému krúžku věnoval som priemerne asi po jednej hodině
týždenne. Přiznám sa, že som mal na túto prácu plánované viac času,
asi dvakrát tolko, ako som skutočne věnoval, ale pre mnohé iné a ne-
odkladné práce som sa viac do krúžku nedostal. A tak to bolo aj v pre-

došlých rokoch. Najváčšiu časť práce som teda vykonal v rámci pra-
videlného vyučovania a o tomto budem hovoriť v prvom radě. Ne-
budem sa přitom zmieňovať o samozrejmostiach, ale spomeniem .

len věci, o ktorých myslím, že nie sú běžné a že stoja za uvážeme
alebo povšimnutie.

1. Usiloval som sa vytvoriť pre vyučovanie matematiky „zdravého
ducha v triede“; to je taký názor žiakov na matematiku, že: a) každý
priemerný žiak móže sa ju naučiť aspoň na ,,dobrú“, b) stojí to za

to, aby sa ju učili, c) každý sa ju musí naučiť. Splnenie prvého bodu
som dosahoval věcným a srozumitelným výkladom; najma duch
nových uéebníc bol mi přitom nápomocny. Nové Čechove učebnice
mi ukazovaly, ako postaviť látku, aby bola prirodzená a samozřejmá,
a o to som sa usiloval v prvcm radě. Nelutoval som námahy vyložit
vec i viacrazy, keď ma o tó žiaci požiadali (žiakov mám tak vychová-
ných, že sa vo všeobecnosti neostýchajú priznať, keď výklad neporo-

zumejú). Druhý bod vyplývá vlastně z prvého, lebo ak žiak porozu-
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mie matematiku, to je získá názor na jej základy a jej použitelnost,
ozřejmí si aj jej vztah ku skutočnosti; poznat matematiku, to znamená
poznat z dóležitej stránky skutočnosť, přírodu, a poznat’ prírodu, to
je predpokladom toho, aby sme ju ovládli, aby sme ju donútili nám
slúžiť. Tento názor na matematiku ukazuje jej užitočnosť a získává
porozumenie žiakov a třeba ho příležitostné osobitne vyzdvihovat.
Okrem toho, že som vyučovanie matematiky kládol na prirodzený
základ, používal som aj každú vhodnú příležitost’ na priamu aplikáciu
matematiky na prax. A konečne, za tretie, ked som u niektorčho žiaka
nevedel nijako dosiahnuť primerané vědomosti, nechal som ho pre-

padnut, a to aj vtedy, ked to bolo pramálo populárně. Hoci je aj mo-

jím ideálom, aby mi prechádzali všetci žiaci, přepadá mi každoročně
asi 2% žiakov. Týmto a predošlými opatreniami som dosiahol toho,
že nemohlo sa stať módou v triede to, že sa niekto neučil matematiku,
ale naopak bolo samozrejmosťou učit’ sa ju a v triede imponoval
a vzácný bol ten, kto sa ju naučil a kto vedel připadne ešte aj iným
v učeni pomoct. Zároveň pevne postavené a presadzované požiadavky
nutily ku zvýšenému výkonu každého; zo skúsenosti viem, že vo

všetkych prípadoch, ked vyučuj úci bez ohradu na nevědomosti ne-
dával nikoho přepadat, viedol takýto postup ku všeobecnému sní-
ženiu úrovně vědomostí aj u nadaných a ináč dobrých žiakov.

2. Pri vyučovaní dbal som v prvom radě na pestovanie úsudku
tak, ako to žiadajú Čechove učebnice. Nie tak, učit sa nazpamáť
vzorce a ich mechanickú aplikáciu, ale naučit sa urobit solídnu ana-

. lýzu predpokladov a výsledku, náležitosti deduktívneho usudzovania
a matematickú indukciu. Nažiadal som, například, aby sa žiaci učili
nazpamáť vzorec dotyčnice ku kružnici, ale naučili sa ju vypočítat
na základe rozboru o možnej vzájomnej polohe priamky a kružnice
a na základe rozboru riešenia kvadratickej rovnice. Přednostou tohto
postupu je, že žiaci hlbšie vnikajú do podstaty riešenia a zároveň
osvoja si návod na riešenie dalších obdobných úloh, na riešenie kto-
rých museli by si památať ináč ďalšie vzorce. Este viac ako predpokla-
dajú učebnice pěstoval som induktivně myslenie žiakov a aj v niekto-
rých prípadoch, ked sa v učebnici uvádza hotová veta a jej deduktívny
dókaz, ja som nechal žiakov, aby analyzovali předpoklady riešenia
príslušnej úlohy a hladali sme cesty, ako by sme riešenie našli.

172 Čkm. DK118



3. Osobitnú pozornosť věnoval som jazyku, jeho logickej stavbě.
Cvičil som žiakov v rozoznávaní podmienok nútnych a dostačujú-
cich, cvičil som ich vo formulácii viet i definicií. Dbal som na to, aby
si žiaci osvojovali přesný význam výrazov a vázieb. V písomných
skúškach ukládám aj prevádzanie dókazov s úplným slovným dopro-
vodcm.

4. Žiakom som poskytoval čo možno najviac příležitostí к práci.
Čechove učebnice záměrně přesunuly verků časť učiva, ktorá sa před-
tým „len prednášala", do cvičení. Ja som zachádzal v tomto smere
ešte ďalej a nechal som žiakov riešiť aj časť učiva, ktorá sa podTa
učebnice mohla prednášať. Takto získával som od žiakov za obdobie
100 až 120 ústných odpovědí. Náš ústav mal družbu s gymnáziom
Z. Nejedlého v Brně; žiakom tohto ústavu, keď boli na mojich ho-
dinách na návštěvě, bilo do očí, ako často majú u mňa žiaci príleži-
tosť odpovedať. Týmito odpoveďami získavajú žiaci, okrem iného,
prax a istotu v riešení úloh.

5. Usilujem sa podchytit osobitný záujem nadaných žiakov o ma-
tematiku. Nerobím to tým, že by som im věnoval viac času při riad-
nom vyučovaní, naopak, slabších žiakov skúšam viac a častejšie.
Lepších žiakov vyzvem, aby sa zúčastnili práce v krúžku, aby pre-

počítali viac cvičení z učebnice, ako stihneme pri vyučovaní a ponú-
kam im na prečítanie vhodnú odbornú literátům z matematiky (po-
staral som sa, aby bola aj v žiackej knižnici priemerano zastúpená).
Podstatné pomáhala mi dvíhať záujem o matematiku matematická
olympiáda.

6. Na prehíbenie a rozšírenie záujmu o matematiku třeba zriadiť
na ústave krúžok, ktorého sa, pravda, vyučujúci osobné zúčastňuje.
V krúžku sme sa učili čítať odbornú literátům. Študovali sme „Ele-
mentárni funkce" od Čecha. Je to knížka ťažká, ale právě preto vhodná
na to, aby si žiaci zvykali všímať si každého slova a vazby. Ďaleko sme
sa v nej nedostali, ale stačilo to na zapracovanie. Eahšie knížky čítali
potom žiaci aj sami. Na krúžku riešili sme aj rožne zaujímavé úlohy,
najma tie, čo sa vyskytly vláni v MO a robili sme ich rozbor.

7. Na MO upozornil som žiakov ústavným rozhlasom a vypísanie.
pretekov sme aj vyvěsili v škole na frekventovanom mieste. Žiaci,
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ak niečo nerozuměli, přišli ku mne na poradu. Riešenia z prvého
kola MO zadávali žiaci čo najskó.*, ja som ich prezeral a chybné som
im vracal na prepracovanie. Žiakom som přitom neukázal na správné
riešenie priamo, ale som ich upozornil, podlá toho, v čom robili
chybu, čo si majú preštuiovať, alebo i sám som příslušná partiu
vyložil v triede alebo v krúžku. Než som nějaké vypracovanie defini-
tívne přijal, vracal som ho i viac rázy. Po definitívnom zadaní práč
robili sme v krúžku ich rozbor. Na našom ústave prejavoval velký
záujem o MO a tiež tým povzbudzoval záujem žiakov aj riaditel
školy, hoci nie je matematikom, a vel.cé porozumenie pre ňu málo
aj Sdruženie rodičov a priatdjv školy.

Podobné ako ja, postupuje i s. P. Uhlík, ktorý tiež učil so mnou
na jednom ústave a dosahoval u svojich žiakov tiež pozoruhodné
výsledky. Za tieto úspěchy dakuje, podlá jeho slov, tiež tomu, že sa

přeorientoval vo vyučovaní matematiky v duchu nových osnov a Če-
chových učebnic.
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5. Stručné zhodnocení druhého ročníku MO.

1. Stejně jako loni dlužno připomenout, že matematická olympiáda
má především vzbudit zájem o hlubší a intensivnější studium ma-

tematiky mezi žactvem našich škol a dále, že má objevovat matema-

tické talenty a starat se o jejich včasný růst.
Ukazuje se, že máme nadané studenty a řadu velmi dobrých a obě-

tavých učitelů. V letošním ročníku se proti loňsku značně uplatnili
žáci prvních a třetích tříd výběrových škol; poměrně málo se uplatnili
žáci čtvrtých tříd. Výsledky, které podali žáci, jsou velmi povzbudivé,
ale dosud se stále i u nadaných žáků vyskytují typické chyby, které
jsou zaviněny nedostatky vyučování matematice na našich školách.

2. Především žáci nedovedou dost samostatně studovat z učebnic;
tomuto problému musíme napříště věnovat zvýšenou pozornost v prů-
běhu celého vyučování již od národní školy. Odstraňováním tohoto
nedostatku se zajistí lepší výsledky vyučování matematice na našich
školách; kromě toho včasná příprava žáků к samostatnému studiu
je také nemalou příspěvkem к zajištění studijních úspěchů na vysoké
škole. Této otázce by měli referenti MO na školách věnovat zvýšenou
pozornost a sdělit učitelské veřejnosti methody své práce a dosa-
žené úspěchy.

3. Jinak se opakují v žákovských řešeních opět ty typické chyby,
o nichž bylo pojednáno již v brožuře o 1. ročníku MO; o některých
z nich pojednal s. Dr Milan Kolibiar ve svém článku „Niektoré skú-
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senosti z matematickej olympiády v r, 1951-52“, uveřejněném v ča-
sopise Matematika ve škole (roč. III, 1953, str. 39 a násl.)*). Dopo-
ručujeme, aby učitelé využili tohoto materiálu a ukázali svým žákům
(především v zájmových kroužcích) některé typické chyby, které
se nejčastěji vyskytují; zároveň by z nich pro své vyučování měli
vyvodit patřičné důsledky. Některé nedostatky jsou snad zaviněny
i tím, že v učebnicích není význam té či oné partie dosti zdůrazněn
a neinformovaný nebo nezkušený učitel nedovede důležitost některých
matematických pojmů a method svým žákům dosti zdůraznit.'

Jednou ze závažných chyb, která se často vyskytuje, je neznalost
nebo nepochopení nutné a postačující podmínky. Žáci neobracejí
postupy důkazů, ať už jde o algebru nebo o geometrii. Na př. v 2. úloze
II. kola kat. В dokázal řešitel, že každý bod, který vyhovuje úloze,
leží uvnitř určitého čtverce; nedokázal však, že každý vnitřní bod
tohoto čtverce úloze skutečně vyhovuje. Tó je typická chyba, která
svědčí o tem, že řešitel nemá ujasněný pojem geometrického místa
bodů. Žák by měl být poučen o tom, že i když každý bod, který úloze
vyhovuje, leží uvnitř určeného útvaru, že tento útvar ještě nemusí
být gecmetrickým místem bodů, které vyhovují dané úloze. Proto
ve většině textů úloh nebylo používáno termínu geometrické místo
a žák byl nucen, aby vyhověl plně formulaci úlohy (úloha na př. zněla
„určete všechny body, pro které platí . .

Učitel musí seznámit žáky s různými způsoby, kterými se nutná
a postačující podmínka v matematice vyjadřuje. Jsou to na př. výroky
„tehdy a jen tehdy“ nebo nově vytvořený výrok „právě tehdy“.

Mnozí žáci nechápou, že konstrukcí získaný útvar nemusí ještě
vyhovovat úloze. To souvisí s tím, že nedovedou provádět diskuse
úloh a jejich determinace. Mnohdy žák používá poučky, která je
obrácením nějaké známé poučky, ale obrácení, i když je snadné, ne-

provede. Tak ve 4. úloze II. kola kategorie В se měla obrátit poučka
„Kosočtverci lze vepsat kružnici", t. j, dokázat poučku „Rovnoběžník,
jemuž lze vepsat kružnici, je kosočtverec"; to však neprovedl žádný.

Dále žákům je většinou neznám pojem ekvivalence; daný vztah

*) S. dr. Kólibiar také přispěl svým podnětným materiálem při zpracování tohoto
článku. : - . . - . . .... .
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nahrazují jiným, ale vůbec si neuvědomují, že tím často daný vztah
zeslabili nebo zesílili.

Výpočty, které žáci prováději, svědčí často o tom, že jsou zvyklí
počítat mechanicky, ale přitom nekriticky. Proto na př. 1. úlohu I. kola
kategorie A chápali jako úkol řešit určité nerovnosti, ne však jako
úkol prokázat jejich platnost za daných předpokladů.

Při geometrických diskusích žáci neuvažují dosti zevrubně o vzá-
jemné poloze vyšetřovaných útvarů, na př. o vzájemné poloze dvou
přímek, zvláště zda se jedná o různé nebo splývající rovnoběžky. Nebo
ve 4. úloze III. kola kategorie A užívali někteří řešitelé pomocných
pravoúhlých průmětů vyšetřovaných útvarů do dvou různoběžných
rovin, které jsou kolmé к dané rovině g; při tom považovali za sa-
mozřejmé, že průměty daných mimoběžek do takové roviny jsou
vždycky různoběžné.

Stejně neopatrně si žáci počínají v algebře, kde na př. stále zapo-
mínají při dělení algebraickým výrazem vyloučit ten případ, kdy
tento výraz je roven nule.

To vše souvisí s nedokonalou znalostí matematických pojmů
a jejich definic a dále s methodami, jimiž se provádějí matematické
důkazy. Na př. při konstrukci vyjdou určité dva body; bez hlubšího
uvažování považují oba body za různé, takže je jimi určena jediná
přímka; skutečnost však může být zcela jiná.

Stejně jim není jasný pojem irracionálního čísla, které spojují
většinou jen s představou odmocniny, ale rozhodně ne s představou
nekonečného neperiodického desetinného rozvoje.

Z důkazů zvláště důkaz nepřímý a důkaz matematickou indukcí
nemají mnozí žáci dosti ujasněn a upevněn.

Naproti tomu je řada řešitelů prvních tříd, kteří ovládají zcela
bezpečně tento základní matematický materiál. To platí zvláště o po-

jmu geometrického místa bodů, i když tohoto termínu nebylo v textu
výslovně použito. Mnoho z těchto nedostatků způsobí učitel, který
nevěnuje základním matematickým pojmům dosti pozornosti. Sku-
tečně se ukázalo, že někteří učitelé zasílali oblastním výborům MO
zcela nevyhovující žákovská řešení úloh I. kola, ačkoli podle organi-
sačního řádu měli taková řešení ihned ze soutěže vyloučit.
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Je nesporné, že se v žákovských řešeních úloh druhého ročníku
MO projevil již pokrok jak po stránce odborné, tak i po stránce )a-

zykové proti řešením prvního ročníku. Je proto naděje, že až se soutěž
řádně vžije, přispěje nemálo ke zvýšení úrovně vyučování matematice
na našich školách a bude tak plnit úkoly, které od ní očekáváme.

V

У
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6. Řešení úloh ze soutěže.

A. ÚLOHY I. KOLA, KATEGORIE A.

1. Ak от, n sú celé kladné čisla, ukážte, že číslo |/ 2 leží medzi číslami
от + 2nm

i
m + nn

Riešsnie. Pretože nemóže platiť ŠŠL = у 2, platí bučí

0 < — < V2, alebo \~2 < —.
n 1 n

1. Nech 0 < ^ < ]J2. Potom platí < 2. Z tejto nerovnosti
dostáváme postupné

от2 < 2и2,
2m2 + 4mn + 2n2 < m2 + 4mn + 4л2,

2(от + n)2 < (от + 2«)2,
(от + 2rc)2

2 <
(от + n)z 5

от + 2и
У 2 <

ŽŠ- > у~2. Postupот ако v 1. dostaneme

J'2 >

ОТ + Й

2. Nech

от 4- 2я

от + и

Stačí všade nahradiť známienko „menšiecc znamienkom „váčšie".
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2. Obrazy komplexních čísel 0, Zx, Z2 tvoří v rovině komplexních
čísel trojúhelník, který stručně označíme OZxZ2. Určete komplexní
čísla, jejichž obrazy jsou vrcholy pravidelného šestiúhelníka sestro-
jeného nad stranou ZXZ2 a ležícího v polorovině Z1Z20.

Řešení. I. Obraz libovqlného komplexního čísla Z v rovině komplex-
nich čísel označíme týmž písmenem Z; zvláště O je obraz čísla nula.
Užijeme těchto pomocných vět: [1] Obrazem bodu X v posunutí
roviny komplexních čísel, při kterém bod M přechází v bod N, je
bod Xo čísle X' platí X' = X + (N — M). [2] Obrazem bodu X
při otočení roviny komplexních čísel kolem bodu O o úhel velikosti
a je bod X'. O komplexním čísle X' platí

X' — X (cosa + i siná).

Jestliže a = -Jtc, označíme cosrr + i sin^ir = 5 (komplexní jed-
notka). Otočení o úhel kcc, kde k je přirozené číslo, odpovídá komplexní
jednotka Sk. Tu platí S3 = — 1, S6 = 1, S4 = — S, S5 = — S2,
1 - 5 = - S2,1 + S2 = 5.

II. Označme X střed hledaného pravidelného šestiúhelníka. Ve-
likost poloměru kružnice šestiúhelníku opsané je | Zt — Z21, takže
bude platit XZL — XZ2 = Z2Z,. Dále označme A ten vrchol hledá-
ného šestiúhelníka, o kterém platí XA ff Z2Z,, XA = Z2Z1. Posuň-
me hledaný šestiúhelník do polohy AlBlC1D1E1Fl tak, aby bod X
splynul s bodem O, takže platí OAY f f XA, OA1 = XA neboli
ОАг II Z2Z15 OAl= Z2Žr To znamená posunutí úsečky Z2Zt do
polohy OAx (i co do smyslu), takže podle [1] platí Ax = Zx — Z2.
Další vrcholy pomocného šestiúhelníka AXBXCXDXEXFX dostaneme
jako obrazy komplexních čísel, které podle [2] obdržíme postup-
nými otočeními bodu Ax o úhly pro k = 1, 2, 3, 4, 5 kolem
bodu O. Je tedy:

Ax = Zx Z2,
Dx = AXS3 = - Ax, Ex = AxSl = - AXS, Fx = AXS5 = - AXS*.

Hledaný šestiúhelník dostaneme z pomocného šestiúhelníka
AXBXCXDXEXFX takovým posunutím, při kterém přejde i co do pořadí
krajních bodů buď úsečka BXCX v úsečku ZrZ2, nebo úsečka FXEX

Bx — AXS, Cx = AXS\
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v úsečku ZiZ2. Prvnímu posunutí podle [1] odpovídá přičtení kom-
plexního čísla V = Zx — Bv při čemž je bod V středem X hledaného
šestiúhelníka. Druhému posunutí odpovídá podle [1] přičtení kom-
plexního čísla W = Zx — Fv při čemž je bod W středem X hledaného
šestiúhelníka.

Body V, W jsou zřejmě souměrně sdružené к přímce Z1Z2, která
je tedy osou úsečky VW. Podle známé poučky z planímctrie je bod
O blíže к tomu z bodů V, W, se kterým leží v téže polorovině vyťaté
přímkou Z1Z2. Protože s bodem X leží v téže polorovině vyťaté přím-
kou ZXZ2 i celý hledaný šestiúhelník, bude ten z bodu V, W bodem
X, který má od bodu O menší vzdálenost, neboli ten bod, jemuž
odpovídající komplexní číslo má menší absolutní hodnotu. Tedy:

a) je-li | V\ < | W\, je X = V} b) je-li \V\> \ W\, je X=W.
(Případ rovnosti vzhledem к tomu, že přímka ZXZ2 neprochází bo-
dem O, nemůže nastat.)

Výpočtem zjistíme, že (viz [2])
V = Z1-B1 = S(Z2 - ZyS), I V\ = |Z2 - ZjSI,
W=Z1-F1 = 5(ZX - Z2S), | ИИ = IZx - Z25|.

Vrcholy hledaného šestiúhelníka ABCDEF jsou po řadě dány
těmito komplexními čísly:
A = X + A1 = X + (Zl-Z2), D= X+ D, = X+ (Z2- Z,),
B = X + B1 = X + (Zt — Z2)Sy E=X+Ex = X + (Z2 — ZX)S,
С = X + Cx = X + (Z, - Z2)S\ F = X + Fx = X + (Z2 - ZJS\
kde X je jedno z čísel V, W.

V případě a) vskutku jeB = Zls C = Z2 a v případě b) je F = Zx,
E = Z2, jak se snadným počtem přesvědčíme.

(Řešil s. Jan Hejcman, III. tř. G, Praha IX.)

3. Buďte А', В', C', D' paty kolmic spuštěných po řadě z vrcholů
А, В, C, D čtyřstěnu ABCD vždy na rovinu protější jeho stěny.

a) Jestliže bod A' leží na kolmici BH spuštěné v rovině BCD
z bodu В к přímce CD (při čemž H je příslušná pata), potom je AB J_
CD. Dokažte.

b) Dokažte, že předchozí poučku lze obrátit.
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c) Jestliže bod A' splývá s průsečíkem výšek trojúhelníka BCD,
potom i body В', C', D' splynou po řadě s průsečíky výšek trojúhelní-
ků CDA, DAB, ABC; dokažte. Co pak platí o přímkách AA', BB',
CC', DD'7

Řešení, a) Nechť tedy bod A' leží na kolmici BH spuštěné v ro-
vině BCD к přímce CD; budiž H průsečík kolmic BH, CD. Pak
přímka CD je kolmá к oběma různoběžkám AA', BH, a tím i к rovině
ABH (bod A jistě neleží na přímce BH); je tedy CD X AB, neboť
AB je přímka roviny ABH.

b) Máme dokázat: Jestliže ve čtyřstěnu ABCD je AB ]_ CD, potom
pata A' kolmice AA' spuštěné z bodu A na rovinu BCD padne na

přímku BH této roviny, při čemž je BH X CD, a bod H je průsečíkem
přímek BH, CD. Rozeznávejme dva případy:

1. Nechť AA'ф AB a tedy А' ф В. Obě různoběžky AA', AB
určují rovinu q = ABA', která obsahuje dvě různoběžky AA', AB
kolmé к přímce CD; je tedy CD X Q a tím i BA' X CD (BA' je
průsečnice rovin BCD, q). Ale bodem В prochází přímka BH X CD,
takže je BA' = BH, a bod A' je bodem přímky BH, což bylo dokázati.

2. Nechť AA' = AB a tedy В = A'; potom naše tvrzení je sa-

mozřejmé.
c) Máme dokázat, že body В’, C, D', jsou po řadě průsečíky

výšek v trojúhelnících CDA, DAB, ABC za předpokladu, že bod A'
je průsečík výšek trojúhelníka BCD; označme po řadě BH, CK, DL
jeho výšky. Podle výsledku a) této úlohy je AB X CD, ВС X DA,
BD X AC, neboť bod A' leží na všech třech výškách BH, CK, DL
trojúhelníka BCD; kterékoli dvě protilehlé hrany čtyřstěnu ABCD
stojí tedy navzájem kolmo. Dokážeme nyní, že na př. bod B', ležící
v rovině ACD, je bodem výšky AQ trojúhelníka ACD, spuštěné
z bodu А к přímce CD. Podle právě odvozeného výsledku je BA X CD
a podle výsledku b) této úlohy padne bod B' na výšku AQ. Podobně
se dokáže, že bod B' leží na zbývajících dvou výškách trojúhelníka
ACD. Stejně se dokáže podobné tvrzení o bodech O, D'.

Protože CD X AB, CD X BH, je přímka CD kolmá к rovině ABH
a tím i к přímce АН. Proto je АН = AQ. Odtud plyne, že přímky
AA', BB' mají společný bod. To lze dokázat o kterýchkoli dvou z pří-
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тек AA', BB', CC, DD' a protože všechny tyto přímky jsou různé
a všechny neleží v téže rovině, procházejí všechny týmž bodem (viz
Matematika pro II. tř. gymnasií, str. 89, př. 3).

4. Je dán rovnostranný trojúhelník ABC. Budiž A^BjC^ trojúhelník
stejnolehlý s trojúhelníkem ABC podle středu A (koeficient stejno-
lehlosti Я > 1) a dále A2B2C2 trojúhelník souměrný s trojúhelníkem
AXBXCX podle přímky BC. Určete a) konstruktivně, b) početně, který
bod trojúhelníka ABC přejde po obou operacích na své místo?

Řešení, a) Konstruktivní. Budiž X hledaný bod, Xx jeho obraz
ve stejnolehlosti se středem A a koeficientem A, X2 obraz bodu Xl
v souměrnosti podle přímky BC. Podle předpokladu je X = X2.
Je zřejmé, že Xx ф X2; jinak by totiž splynuly také body X, Xu
a to je nemožné, neboť A > 1. Přímka XXV totožná s přímkou X2XV
prochází jednak bodem A, jednak je kolmá к přímce BC. To jest,
hledaný bod X leží na kolmici k spuštěné z bodu A na přímku BC.
Z vlastnosti stejnolehlosti plyne, že XB || X1B1; ježto je zřejmě
Аф A, vznikne lichoběžník BXXxBx, jehož střední příčka prochází
jednak průsečíkem P přímek k, BC, jednak středem Q úsečky BBV
Odtud vyplývá konstruktivní řešení: Vedeme bodem В rovnoběžku
m s přímkou PQ; zřejmě je m ф AB; určíme průsečík X přímek k,
m; to je bod, který má skutečně žádanou vlastnost, jak vyplývá z obrá-
cení vyloženého postupu. Úloha má tudíž jediné řešení.

b) Početní řešení. Použijeme označení z odst. a) a navážeme na

poznatek, že hledaný bod X leží na přímce k. Zavedeme na této
přímce souřadnice s počátkem A; bod P nechť má souřadnici v > 0;
dále budiž X = (x), Xx = (xx), X2 = (x2). Pak platí xx = Ax,

2 = v> čili x — x2 = 2v — xx — 2v — Ax.
Odtud plyne x(l + A) = 2v, a ježto 1 + A > 0, je

2v
Фx =

1 + A ‘
Úloha má jediné řešeni.

5. Komplexní číslo z a číslo z s ním komplexně sdružené vyhovují
rovnici
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aZ +ЬХ + C = Ó,
kde a, 6, c jsou daná komplexní čísla. Co vyplňují obrazy všech ta-
kových čísel z v rovině komplexních čísel ?

Řešeni. (Budeme se odvolávat na poučky 116, 118a, str. 45 z učeb-
nice Matematika pro II. třídu gymnasií.)

Jestliže pro určité z platí
az + bz + c = 0, (1)

pak podle výše citovaných pouček platí též (přejdeme-li к číslům sdru-
ženým)

bz + az + c = 0. (2)

Rovnice (1), (2) znásobíme postupně čísly a, (— *) a obě sečteme,
takže dostaneme

(a a — bb)z + ca — c* *= 0,
čili

CM2- \b\*)z= cb- (3)ca.

I. Nechť nejprve | a |2 — | b |2 Ф 0. Potom rovnice (3) má jediné
řešení

cb — ca
z =

|a|2-M>|2’
jehož obrazem je jediný bod.

II. Budiž nyní
M2 - 1*12 = o. (4)

To nastane tehdy, když buď

b) M-|*| = o.a) M + |*| =0,

а) V prvním případě musí pak být a = b = 0. Jestliže při tom
с Ф 0, pak rovnici (1) nevyhovuje žádné komplexní číslo. Když
c = 0, pak rovnice (1) je splněna pro každé komplexní číslo. Obrazy
těchto čísel vyplňují celou rovinu.

nebo

b) Za druhé je | a \ = 161 Ф 0. Kdyby totiž bylo |a| = 0, bylo
. - by i I* | = 0, což je případ a). Budeme rozlišovat dvě možnosti:
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a) cb — ca Ф 0. Рак rovnice (3) nemá řešeni a tedy žádný bod
roviny nevyhovuje úloze.

/9) cb — ca = 0. Je-li с Ф 0, vyhovuje úloze zřejmě číslo z0 =
c c cc cc c

= - —, neboť z0 = -
2a 2a

Nalezený výsledek však platí i pro c — 0, takže vždy
2 cb 2b2c a

az0 + bza + c = 0.
Vyhovuje-li úloze ještě číslo z Ф z0, platí též

az + bz + c = 0,
a odtud pak odečtením

a(z — z0) + b(z — г0) = 0.
Poněvadž а Ф 0, b Ф 0, můžeme položit

h h
z - z0 = z - z0 = -

h

y, čili bh + ah =kde h je komplexní číslo volené tak, aby — = —

_ a
a tedy také bh + a h = 0. Odtud sečtením

(a + b)h + (a + b)h = 0.
1. Je-li a + b Ф O, vyhovíme tomu tak, že položíme

h = (a + b)qj h = — (a + b]q,

při čemž h = (a + b)q = — (a + b) q, čili q = — q, takže q je ryze
imaginární, t. j. q = ri, kde r =j= 0 je reálné číslo. Dané úloze tedy
vyhovuje nejvýše číslo tvaru

o,

(a + b) i
r,

a

kde r je reálně číslo. Dosazením se však přesvědčíme, že obráceně
každé číslo to'.oto tvaru úloze vyhovuje.

c

Obrazy všech těchto čísel dostaneme z čísla z0 = — — posunutím
(. + ««CL Ъ

• r ve směru udaném vektorem

směru opačném podle toho, je-li r > 0 nebo r < 0. Všecky tyto
obrazy vyplní přímku. \

nebo veo délku
aa
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• 2. Je-li a + b *= O, je b = — a, takže — ah + ~ah = 0; tomu
vyhovíme, bude-li h = sa, h = sa, neboť а Ф 0, při čemž musí
být sa = sa čili s = s, takže s je reálné. Dané úloze vyhovuje, jak
se opět přesvědčíme dosazením, každé číslo tvaru

kde 5 je reálné číslo. Obrazy všech těchto čísel vyplňují opět přím-
ku (rovnoběžnou s reálnou osou).

6. Ak je и irracionálne, a, b c, d racionálně, je
au + b
cu -f* d

(kde cu + d Ф 0) racionálně vtedy a len vtedy, keď ad — bc = 0;
dokážte.

(1)

Řešeni. I. Nejprve dokážeme, že zlomek (1) je racionální číslo,
jestliže je ad — bc = 0 neboli

(2)ad — bc.

Čísla c, d nemohou být současně rovna nule, jinak by bylo cu + d —

• = 0 a výraz (1) by nebyl definován.
Je-li c = 0, musí být vzhledem ke vztahu (2) také a — 0 a výraz

(1) je roven racionálnímu číslu
d

a b
Je-li с Ф 0, d Ф 0, pak ze vztahu (2) plyne, že — = —. Označme

k hodnotu —, takže je a = kc, b — kd. Dosaďme tyto hodnoty do
c

vztahu (1); obdržíme
au + b k(cu + d)
cu + d cu + d

takže (1) je racionální číslo.
m

II. Obráceně nechť je (1) rovno racionálnímu číslu —, kde n je

číslo přirozené a m číslo celé. Z rovnosti
au + b
cu + d n

— k,

J
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dostaneme po snadné úpravě

u(na — mc) — md — nb.
Protože md — nb je racionální číslo, je tento vztah možný jen tehdy,

je-li
na — mc — 0, md — nb = 0.

Je-li с Ф 0, d Ф O, pak z předchozích rovnic plyne
bb m a

= —, — = — neboli —
n d n

a m
t. j. ad — bc = 0.7 = Y’

Je-li c = 0, je i a = 0 (neboť n Ф 0) a proto platí ad — bc = 0.
Je-li d = 0, je i b = 0 (nebeť n =f= 0) a proto platí ad — bc — 0.
Tím je poučka dokázána.

(Řešil s. Jiří Vodička, 4. tř. G, Česká Lípa.)

c

7. Budiž dán trojúhelník ABC; dále buďtež M, N, P body, které
po řadě leží uvnitř stran BC, CA, AB, a to tak, že MN\\AB, MP\\AC.
Zvolte bod M tak, aby o velikostech úseček MN, MP platil vztah

MŇ-+ MP = k,
kde k > 0 je dané číslo. Proveďte diskusi za předpokladu, že AB
^ АС a stanovte, kterou podmínku musí splňovat číslo k, aby úloha
měla řešení.

Řešení. Označme BC — a, CA = b, AB = c; je b ^ c. Nechť
M je vnitřní bod úsečky BC. Veďme MN || BA, MP || CA, kde bod N
odděluje body C, A a bod P body B, A. Označme BM = x, takže

0 < x < a.

Potom MC = a — x > 0. Je /\PBM ~ /\NMC ~ ДЛВС a tedy

(1)

MNMP a — xx

l
b aa c

Aby bod M vyhovoval podmínce úlohy, musí platit MP + MN = k,
neboli

b a
— x 4- c —

— x
= k;

a a
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po úpravě dostaneme podmínku
(b — c)x = a(k — c). (2)

Rozlisujeme dva případy:
a) b — c = 0 neboli b = c. Pak rovnice (2) má vzhledem к tomu,

že а Ф 0, řešení x jen pro k — c — 0 neboli k = b — c.

Jestliže je však k = b — c, potom každý vnitřní bod M úsečky
BC vyhovuje úloze, jak se snadno dokáže.

b) b — с Ф 0, takže podle předpokladu je b > c (tedy Ь — c > 0);
potom řešení rovnice (2)

k — c
a ‘ 7b — c

musí vyhovovat nerovnostem (1). Z podmínky (1) x > 0 plyne vzhle-
dem к tomu, že je a > 0, b — c > 0, že musí být k — c > 0 nebcli

fe £
k > c. Z podmínky (1) x < a plyne vzhledem ke (3), že г < 1,

b — c

a protože je b — c > 0, dostaneme odtud k < b.

(3)x ==

Aby tedy existoval hledaný bod M, musí být splněna podmínka
c < k < b.

Jestliže je podmínka (4) splněna, má úloha jediné řešení, které
se najde takto:

(4)

Na polopřímce AB určíme bod R a na polopřímce AC bod Q tak,
aby platilo AR = AQ = k [bod R padne zřejmě na prodloužení
úsečky AB za bod B, bod Q je vnitřním bodem úsečky AC, jak plyne
ze vztahu (4'J. Užijeme-li na přímku RQ a trojúhelník ABC Paschovy
věty, dostaneme, že přímka RQ protne přímku BC v bodě M, který
odděluje body В, C. Dokážeme, že bod M vyhovuje úloze. Sestrojme
body N, P jako na počátku úvahy, takže platí MP = AN. Z podobnosti
trojúhelníků ARQ a NMQ, které se shodují ve všech úhlech, plyne
vzhledem к ternu, že AR =AQ, že také AÍN == ŇQ.

Je tedy
MN + MP = NQ + AN = AQ = k.

Jednoznačnost řešení plyne z jednoznačnosti řešení x rovnice (2).
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8. Nutná a postačující podmínka, aby bylo lze čtyřstěnu vepsati
kulovou plochu, která by se dotýkala všech jeho hran, je, aby součty
všech tří dvojic protějších hran byly si rovny. Dokažte.

Řešení, a) Předpokládejme, že čtyřstěnu AXA2A3A4 lze vepsat
kulovou plochu, která se dotýká hrany A,A* v bodě А,ь = Ay (i, k —

= 1, 2, 3, 4, i Ф k). Tato kulová plocha protne na př. rovinu A1A2A3
v kružnici vepsáni trojúhelníku A,A2A3. Podle vlastnosti tečen ve-
děných z bodu ke kružnici j? AXAV1 — AXAX3. Obdobně dostaneme
v rovinách AXA2A4 a AXA3A4 vztahy A,A~ — AXAU, A,AX3 = AxAxi.
Obecně: všecky tři úsečky AxA{k (k Ф i) jsou si rovny. Z toho plyne:

•^1^2 ^3^4 ^1-^12 ^2^12 4" ^3^34 ^4^54
^2^X3 ^1^42 -^1^13 ^3^X3

Ф A2A24 Ф AjA.,x AjA3 Ф A^Aj.
Tím je dokázána rovnost součtů dvou libovolných dvojic protějších

hran.

b) Předpokládejme, že platí vyslovená podmínka o rovnosti sou-
čtů protějších hran. Vepišme kružnice trojúhelníkům AXA2A3 a

AXA2A4 a označme jejich dotykové body A12, A13, A23 a A'lt,
Au. Z našeho předpokladu vyplývá vztah:

^\^X3 ^3^13 ^2^24 ^4^24 =

A2A23 Ф A3A23 Ф AxAl4 Ф A4AX4.
Podle vlastnosti tečen je však A3AX3 = А3Агз, A4A24 = AXAU,

^1^13 1-^ 12’ ^2^23 ^2^X2* ^1^X4 ^1^X2* ^2^24 ^2^12*
Rovnice (1) se zjednoduší na tvar:

^2^X2 = ^1^X2'
Mimo tuto rovnici plať též triviá1ní vztah

AXAX2 + A2AX2 — AxA'42 + AXAX2.
Odečtením rovnice (3) od (2) dostaneme

.^2^X2’
Vzhledem к tomu, že oba body Al2, Aía leží na polopřímce A2AX,

je Ai2 Axts. Obdobný výsledek platí pro kružnice vepsané kterýmkoli
dvěma stěnám čtyřstěnu.

■^14>

(1)

(2)

(3)
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Sestrojme nyní kulovou plochu k, která obsahuje kružnici k4 vepsanou
trojúhelníku АхАгА3 a mimo to bod A14. Tato kulová plocha je jedno-
značně určena a protne rovinu AXA2A4 v kružnici k3, která se dotýká
přímky AXA2 v bodě Al2 a obsahuje bod Au. Tato kružnice k3 a kruž-
nice vepsaná trojúhelníku AXA2A4, mají tedy společný bod Au
a obě se dotýkají přímky AXA2 v bodě AX2; proto je k3 = k'a. Tím je
dokázáno, že se kulová plocha k dotýká také hran AXA4J A2A4. Zá-
měnou indexů vyplývá, že se dotýká i hrany AbA4.

9. Nádržka má tvar rotačního kužele spočívajícího podstavou, na
vodorovné rovině; její objem je V0 litrů a výška и dm. Při plnění
nádržky nateče za vteřinu a litrů vody. Vyjádřete vzdálenost vodní
hladiny od vrcholu kužele po n vteřinách (n racionální číslo kladné).

Řešeni, a) Budiž n přirozené číslo. Označime un hledanou vzdá-
lenost, p obsah podstavy daného kužele (v dm2), p„ obsah podstavy
menšího kužele, který vznikne z daného, vedeme-li rovinu rovnoběžnou
s podstavou ve vzdálenosti u„ od vrcholu daného kužele. Pak je

u„aPn

p и2 5
1 1

—pu ^Pnun

л -Pn ~ Pu* >

= an,

to jest

čili
1 1 и„э
_ри__р_ = an.

Odtud postupně plyne

pu3 — pu„3 = 3aru2 ,

(1)
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V*Vzorce (1) má význam jen pro n £ —
CL

= — racionální (p, q jsou přirozená Čísla), zvolíme za
q a

časovou jednotku q-tý díl vteřiny, za který nateče b = — litrů vody.
Я

Podle vztahu (1) je

b) Je-li n

MjI an
(2)1 - —

VoOmezení n ^ zůstává i v tomto případě v platnosti.

10. Jsou dána dvě komplexní čísla A, B, při čemž \A\ «= 1. Jestliže
pro komplexní čísla Z, Z' platí vztah

Z' = AZ + B,

potom obraz čísla Z' vznikne z obrazu čísla Z otáčením, je-li А Ф 1,
a posunutím, je-li A = 1, ВФ0; dokažte. Určete střed otáčení,
resp. velikost posunutí.

(1)

Řešení. Jsou dvě možnosti: bud je А Ф 1 nebo A = 1.

a) Je-li А Ф 1, dokážeme, že existuje takové otáčení kolem jakéhosi
středu Z0, které převádí bod Z v bod Z'. Pro toto otáčení platí
Z' — Z0 = K(Z — Z0), kde К je komplexní číslo, pro něž |2C| = 1,
К Ф 1. Úpravou předchozí rovnice dostaneme

Z' - KZ + Z0( 1 - К).
Srovnáním rovnic (1), (2) vzhledem к předpokladu А Ф 1, |Л! «= 1

zjistíme, že stačí položit

(2)

A = K, В = Z0(l — K);
odtud lze vypočíst

ВВ
(3)1 - К = I — А'

Rovnice (1) pak značí otáčení kolem bodu Z0, daného vztahem (3).

b) Je-li A *= 1, dokážeme, že existuje takové posunutí, které pře-
vádí bod Z v bod Z'. Pro toto posunutí platí Z' «■ Z + U, kde U je
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komplexní Číslo různé od nuly. Jestliže je В Ф 0, lze položit U «* B,
kde U Ф 0 a rovnice (1) značí posunutí, jehož velikost je |Z?|.

Jiné řešeni úlohy. Daný vztah (1) představuje shodnost, neboť
jsou-li X, Y dva body а X', V jejich obrazy, platí

X' =» АХ + B, Y' = AY -f B;
odtud

X' - Y' - A(X - Y)
a také

IX'- Y'| = |X- Y|,
neboť 1Л1 =*= 1. Uvedené zobrazení tedy zachovává vzdálenosti a je
to tedy shodnost.

Hledejme samodružné body této shodnoti. Pro ně platí X' *=* X,
čili

X — АХ + B,

X(1 — A) — B. (4)
В

a) Je-li А Ф 1, plyne odtud X =

jediný samodružný bod a je to tedy otáčení.

b) Je-li A — 1, В =* 0, pak rovnice (4) němí řešení. Poněvadž
pro každý bod X a jeho obraz X' platí X' == X + B, čili — X — B,
všecky vektory XX' jsou souhlasně rovnoběžné a téže velikosti. Dané
zobrazení je tedy posunutí.

c) Je-li A *= 1, В *» 0, pak rovnice (4) má nekonečně mnoho řešení
a dané zobrazení je totožnost.

i dané zobrazení má1 A

11. Budiž dán trojúhelník ABC. Nechť jsou A', B', C' takové body
roviny, že platí *

AB! - АС BC - BA', CA' .= CB'.

Označme a', b', c' přímky roviny, které po řadě procházejí body A',>
В', C', při čemž platí

ď JL BC, b' _L CA, c' JL AB.

Dokažte, že přímky a', b', c' procházejí jedním bodem 1
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Řešeni. I. Pomocná poučka. [1] Buďte XYZ, XYZ' dvě trojice bodů
v prostoru, při čemž je X ф Y a dále

XZ = XZ, (1)YZ = YZ'.

Potom body Z, Z' leží v rovině £ J. XY. Obráceně platí:
[2] Jestliže body Z, Z' leží v rovině £ _L XY, při čemž platí

XZ = XZ, (2)
potom platí

(3)yz = YZ'.

Důkaz. [1] Jestliže Z je bodem přímky XY, je zřejmě Z' s= Z
a poučka platí i v případě, že je buď X = Z nebo У = Z.

Nechť body X, У, Zneleží v jedné přímce. Pak podle (1) je AXYZc^.
^ AATyZ'(sss) a pata P kolmice ZP ± XY je i patou kolmice
Z'P _L XY. Rovina £ J_ XY jdoucí bodem P podle známé stereome-
trické poučky obsahuje všechny kolmice vztyčené v bodě P к přímce
XY, tedy i přímky PZ, PZ' a tím i body Z, Z', což jsme měli dokázat.

[2] Označme P průsečík přímky XY s rovinou £, Je-li Z = P,
i Z' = P a poučka platí.
Budiž nadále Z ф P a tedy i Z' ф P. Pak je poučka vzhledem к (2)

zřejmě správná v případě, že rovina £ jde bodem X (podle poučky
sus) nebo У (podle poučky Ssu). Jestliže rovina £ neprochází žádným
z bodů X, Y, je vzhledem к (2) [\>XPZ ^ Д XPZ'(Ssu), neboť
<XPZ = <£ XPZ' = \tz, takže PZ = PZ’. Odtud plyne, že
Д YPZ ^ Д yPZ'(sus), neboť YPZ — YPZ' = £тг a tedy
yZ = yZ', což jsme měli dokázat.

II. Vlastni řešení úlohy spočívá v tom, že buď z trojúhelníků
ABC, ABC', BCA', CAB' jako stěn vytvoříme čtyřstěn ABCV
(pokud není ve speciálních případech tvrzení úlohy samozřejmé),
nebo že trojice bodů ABC', BCA', CAB', považujeme za pravoúhlé
průměty určitých trojúhelníků ABC", BCA", CAB" (do roviny
ABC)i takže lze z trojúhelníků ABC, ABC", BCA", CAB" zase

vytvořit čtyřstěn.
Určeme v rovině q trojúhelníka ABC průsečík O přímek a’, b',

o nichž se snadno dokáže, že jsou různoběžné. Rozeznávejme dva
případy:
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Případ [1].' Je-li CO ^ CA , určíme na kolmici k vztyčené v bodě
О к rovinš Q bod V tak, aby platilo,

- CV = CA = ČB'

(v případě, že CO = ČZ~, je V = O); v tom je zahrnut případ СэО
a případ С =з A s= Vzhledem к (1) podle pomocné poučky [2] je

BF = BA',
neboť body V, A' leží v rovině а X -BC; z téhož důvodu je

AV = AB',
neboť body V, B' leží v rovině P 1. AC. Podle předpokladu úlohy
vzhledem ke vztahům (2), (3) platí В V — ВС', А V = A C' a vzhledem
к pomocné poučce [1] leží body V, C v rovině у X AB, ve které leží
i bod O. PrůseČnicí rovin q, у je přímka jdoucí body C, O a kolmá
к přímee AB, t. j. přímka c', což jsme měli dokázat.

Případ [2]. Je-li ČO > CA (pak je ČO > 0 a proto Л'фСф В'),
vztyčíme v bodech А', В', O kolmice к rovině q а рэ řadě na nich
určíme body A", B"y C” tak, aby platilo A A ' = В В’ = С'С" =
= CO. Ze shodnosti pravoúhlých trojúhelníků СЛ'Л", СВ'В
a dvou dalších takových dvojic plyne
CA?’ = CiT' > ČC, AB77 = > OČ, BX' = БС" > OČ.
Tím je případ [2] převeden na případ [1] a lze tedy jako v případě [1]
určit bod V užitím úsečky CA" > OC. Rovina а X BC, jdoucí
bodem A", jde i body А', V a tím i bodem O; totéž platí o rovinách
P X CA, у X AB jdoucích po řadě trojicemi bodů В", V, В' a C",
V, C'.

Iné riešenie. Sostrojme kružnicu kx so stredom A a polomerom
AB’ — AC', kružnicu k2 so stredom В a polomerom BC = BA'
a kružnicu k3 so stredom C a polomerom CA' — CB'. Priamka a'
je chordálou kružnic k2, k3, pretože prechádza ich spoločným bodom
A' a je kolmá na spojnicu ich stredov BC. Podobné, priamka bJ je
chordálou kružnic kx a k3 a priamka c' je chordálou kružnic kv k3.
Tvrdenie úlohy je dósledkom vety, že chordály troch kružnic sa

pretínajú v jednom bode.
(Riešil s. Pavol Brunovský, 4. d, II.G, Bratislava.)

,d)

(2)

(3)

//
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12. Označme P počátek soustavy pravoúhlých souřadnic. Body
[nv, n], kde m, n jsou celá čísla, názvem; mřížové body. Budiž p > 2

•
, dané přirozené číslo. Ozmčme ty mřížové body [p; k], pro něž

je 0 ^ k ^ p a uvažujme trojúhelníky

PAXA2, PA2A31 PA3Aiy..., PAp _ 2Ap _ i.

Dokažte, že p je prvočíslo tehdy a jen tehdy, když počet mřížových
bodů uvnitř každého z uvažovaných trojúhelníků je \ (p — 1).

• Řešení. I. Zaveďme označení bodů A = [p, 0], /1* = [p, &], =э
= [0, &] pro k — 1, 2,..., p — 1. Budiž p > 2 dané prvočíslo. Uvnitř
úsečky РЛ* neleží žádný mřížový bod. Kdyby tam totiž ležel mřížový

bod M — [Jfj y]> pak by platilo 1 x < p, — = — (směrnice přímky
k P x

PA/J, což není možné, neboť zlomek — je vzhledem к předpokladu
P

úlohy v základním tvaru.
Určeme počet mřížových bodů uvnitř obdélníka РАА^Вк’, je

zřejmě roven (p — 1) (& — 1). Protože uvnitř úsečky PAk není žádný
mřížový bod, je počet mřížových bodů uvnitř trojúhelníka PAA*
roven

KP - 1) (k - 1), (1)

jak vyplývá z toho, že lyPAAk a t\AkBkP i síť mřížových bodů
jsou souměrné podle středu úsečky PAk.

Uvažujme nyní APAjAj+1 (pro j — 1, 2,.. .,p — 2); uvnitř
tohoto trojúhelníka je £(p — 1) (/ + 1 — 1) — £(p — 1) (J — 1) =
= i(P — 1) mřížových bodů, jak plyne ze vztahu (1) a z toho, že
vnitřek trojúhelníka PAjAj+1 dostaneme, jestliže od vnitřku troj-
úhelníka PAAJ + 1 ubereme vnitřek trojúhelníka PAAj a vnitřek
úsečky PAj. (Uvnitř ДPAAX a /\PAP~xAp není zřejmě žádný
mřížový bod.) Tím je první část úlohy dokázána.

II. Obráceně, budiž p > 2 liché číslo a budiž uvnitř každého z troj-
úhelníků PA1AŽ, РА2Азу . . ., PAp _ 2 Ap_ i právě J(p — 1) mřížo-
vých bodů, což je celkem £(p — 1) (p — 2) bodů. Protože každé dvě
po sobě následující přirozená čísla p — 1, p jsou nesoudělná, je zlomek
^

- v základním tvaru a proto uvnitř úsečky PAp~x neleží žádný
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mřížový bod. Uvnitř trojúhelníka PAAf^x je proto podle téhož
úsudku jako v první části právě £(p — 1) (j> — 2) mřížových bodů,
z nichž žádný neleží ani uvnitř úsečky PA1} neboť zlomek — je v zá-

P
kladnim tvaru. (Přitom uvnitř trojúhelníka PAAt rovněž není žádný
mřížový bod.) Je tedy počet mřížových bodů uvnitř trojúhelníka
PAA

РАгА2, PA2A
PA3,..., PAp^2 neleží žádný mřížový bod. Odtud plyne, že p je
prvočíslo, neboť kdyby existovala přirozená čísla a, b, kde 1 < a ^
<*b < p, taková, že p = ab, ležel by uvnitř úsečky PAa, při čemž
Aa = [py a], mřížový bod Q = [6, 1]. Tím je důkaz proveden.

roven celkovému počtu mřížových bodů uvnitř trojúhelníkůp-1

., PAp-2Ap_i} a proto uvnitř úseček PAlt PAt)3J • •

13. Buďte [x; y] body v rovině pravoúhlých souřadnic. Určete,
pro které z nich platí nerovnost

||* + a \ - |y - <zl| < a,
kde a je dané číslo. Vyčárkujte v rovině souřadnic ty její části, pro
jejichž body je splněna daná nerovnost.

Řešení. Je-li a ^ 0, není pro žádný bod roviny daná nerovnost
splněna. Budiž tedy dále a > 0. Proveďme transformaci souřadnic
x + a = х'у у — a — y'. To je posunutí, jímž přejde počátek
P S3 [0,0] do bodu P' = [— a, á\. Daný vztah v tomto případě zrJ

||x'| — |y'|| < a.
Poněvadž |— x'\ — |x'|, | — y'\ = |_y' |, je hledaná množina bodů sou-
měrná podle os x', у' a stačí tedy vyšetřovat pouze případ x' ^ 0,
У ^ 0, kdy ||x'| - |y|| = \x' — y|.

1. Je-li x' ^íy'y je |x' — y'\ — x' — у' a jde o body, jejichž sou-
řadnice splňují vztah x' — y' < a čili y' — x' > — a (a vedle toho
y' - x' £ 0).

2. Je-li x' < У, je \x' — y'\ = у' — x' a jde o body, pro něž platí
У — x' < a (a vedle toho y’ — x' > 0).

Spojením obou výsledků dostáváme
— a < У — x' < a
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x' — a < у" < x' + а.

Tyto body leži v I. kvadrantu (neboť x' ^ 0, y' 0) uvnitř pásu
vyťatého rovnoběžkami o rovnicích

y' = x' - a,

Ostatní dostáváme souměrností podle os x', y' (obrázek si lask. čte-
nář snadno načrtne). <

čili

y' = x' + a.

• 14. Dokažte s použitím komplexních čísel, že složením dvou otáčení
s různými středy vznikne otáčení nebo posunutí. Určete střed vý-
sledného otáčení nebo posunutí. Určete střed výsledného otáčení,
resp. velikost výsledného posunutí. Zjistěte podmínky, kdy vznikne
otáčení a kdy posunutí.

Řešení. První otáčení budiž z' — axz + bx, kde ax Ф 1, |ax! = 1,
druhé otáčení budiž z" = a2z + b2, kde a2 Ф 1, |a2| = 1. Složení
obou otáčení dostaneme dosazením; vyjde z" — a2(axz + bx) + b2
neboh

(1)z" = axa2z + (a2bx + b2).
Je vždy Iaxa21 = |aj • |a2| = 1. Rozeznávejme dva případy:

Případ [1]. Budiž
(2)1 •

Pak je a2bx -f b2 Ф 0, jak ihned dokážeme. Středem prvního otáčení

je bod [r^], středem druhého bod ^ J. Podlé znění úlohy
- Ф — Protože je 1 — a2 Ф 0, platí vzhledem ke (2)1 #2

je 1 “ ai

bx(l — a2)
_ а2Ъх{\ — a2)

a2 — 1
takže a2bx + b2 Ф 0. Rovnice (1) tedy vyjadřuje posunutí o nenulový
vektor o počátečním bodu [OJ a koncovém bodu [a2bx + b2] (viz
učebnici Matematika pro II. třídu gymnasií, str. 50 a násl.).

b2 Ф — o.2bXi
1 — ax

Případ [2]. Budiž axa2 Ф 1. Pak rovnice (1) značí otáčení, jehož
středem je bod

a2bx + b2 ]•Li
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15. Jestliže a > О а п je přirozené číslo, potom platí
„(a2« + i + 1) a + a2 + ... + a2»;

dokažte! Proveďte diskusi, pro která a nastane rovnost.

Řešeni. Důkaz provedeme užitím matematické indukce.
I. Pro n — 1 dokážeme platnost vztahu

a3 + 1 ^ a + a2.
Jestliže tento vztah je správný, jsou pro a + 1 > 0 správné vztahy

(a + 1) (a2 — a + 1) a(a + 1),
a2 — a + 1 ^ a,
a2 — 2a + 1 0,

(a -1)2^0.
Nerovnost v posledním vztahu platí zřejmě pro každé reálné,

kladné a různé od čísla 1. Pro a = 1 nastává rovnost. Zpětným postu-
pem odvodíme ze vztahu (3) vztah (2), a to pro а Ф 1 nerovnost,
pro a = 1 rovnost.

II. Nechť platí vztah (1) pro určité přirozené n\ dokážeme, že
potom platí i pro číslo n + 1, t. j. že platí
(n + 1) (a2 *+3 + 1) ;> a + a* + a3 + .. . + a*" + a2* + l + a2«+2 (4)
Uvažujme nejprve výraz

R = (я -f 1) (a2»+3 + 1) - n(a2* H + 1) - a2n + 1 - a2*+2 (5)
a dokažme o něm, že pro a > 0 je R ^ 0. Po vynásobení a snadné
úpravě dostaneme, že

R = иа2* + 1 (a2 - 1) + a2n + l (a2 - 1) -f- 1 - a2* + 2.
Zřejmě je správná identita

д2я + 2 - 1 = (д2 _ 1) (a2.i + a2«-2 + a2»-4 -f- . . . + a2 + 1),

pomocí níž lze výraz R uvést na tvar ,

R = (a2 - 1) [(и + 1) д2я + 1 _ (a2n + a2n—2 + a2«-4 + . . . +
+ a2 + 1)].

Proveďme nyní diskusi tohoto výrazu pro a > 0:
a) Je-li a > 1, potom zřejmě platí a2 > 1 neboli a2 — 1 > 0

CD

(2)

(3)

(6)
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a dále а2л+1 > а2п > а2"-2 > а2п~4 > ... > а2 > 1. Proto jsou
oba činitelé na pravé strané vztahu (6) kladná čísla a tedy R > 0.

b) Je-li 0 < a < I, je a2 < 1, а2 — 1 < 0 a dále
а2* + 1 < a2» < a2n~2 < a2.i — 4 < ... < cfl < 1,

takže

(n + 1) a2n +1 < a2* + a2n~2 + a2n~4 + .. . + a2 + 1.

Jsou tedy oba činitelé na pravé straně výrazu (6) záporná čísla a tu-
díž je R > 0.

c) Je-li a — 1, je R — 0.
Vzhledem к platnosti vztahu (1), kde rovnost nastává právě pro

a = 1, platí též vztah

w(a2* + l + 1) + а2п + 1 + а2*+2 ^ a + a2 + аЗ + ..

+ а2"+ а2" + 1 -j- a2n+2. (7)
Přičteme-li výraz R ve tvaru (6) ke vztahu (7), obdržíme vztah (4),
při čemž nerovnost platí pro každé a > 0, které je různé od čísla 1;
rovnost nastává právě pro a — 1.

III. Protože pro n — 1 podle odst. I. vztah (1) platí, pak vzhledem
к odst. II. platí i pro každé přirozené ti, což jsme měli dokázat.

(Řešil s. Bruno Adam, 4. tř. Nerudova G, Praha III.)

16. Je-li n celé nezáporné číslo, potom číslo
2i2« + 8 _ 36л+2

je dělitelné třinácti. Dokažte!

Řešení. Důkaz provedeme užitím matematické indukce. Zaveďme
označení

Vk = 212A+8 — Ъьк+2,
kde k je nezáporné celé číslo.

I. Dokážeme, že V0 je. dělitelné třinácti; platí

V0 - 2« - 32 «= 256 - 9 - 247 - 13 • 19,
čímž je důkaz proveden. é>

44



II. Určeme nejprve rozdíl Vk+\ — V^\ postupně obdržíme tyto
výrazy:

Vk+\ — Vk = 212(*+D+8 — 3^(*+D+2 _ (212* f8 _ 36Л+2),
Vk+ \ — Vk~ 212* + 20 — 212k+9 — Зб*+8 4. зб*+2}
Vk+X ~ Vk = 212*+8(212 - 1) - 3б*+2(3б - 1).

Ale 212 - 1 = 4095 - 1 = 13 • 315 а Зб - 1 = 728 = 13 • 56; proto
platí

Vk+i - Vk = 13 • 315 • 2i2* + 8 - 13 • 56 • 3^+2
a tedy

Vk+i - Vk = 13 (315 • 212^+8 -56 • 3<*+2).
Protože výraz v závorce na pravé straně poslední rovnosti je číslo
celé, je číslo F*+i — F* dělitelné třinácti. Předpokládejme, že F^
je dělitelné třinácti, pak je dělitelné třinácti i číslo F*+i, neboť ze
vztahu

'V

Vk+l- Vk + (Vk+l- Vk)
vyplývá, že je rovno součtu dvou čísel, která jsou dělitelná třinácti.

III. Tím jsme provedli oba kroky důkazu matematickou indukcí
a správnost závěru úlohy je dokázána.
(Řešil s. Jan Hejcman, 3. tř. G, Praha IX.)

Jiné řešení. К důkazu použijeme dvou pomocných pouček: Poučka
[1]. Buďte dána celá čísla a, b, c, d, p Ф 0 a předpokládejme, že čísla
a — c,b — d jsou dělitelná číslem p. Potom je číslem p dělitelný i dvoj-
člen ab — cd. ^

Důkaz. Platí ab — cd — b(a — č) -f c(b — d), takže uvažovaný
dvojčlen je součtem dvou čísel, z nichž každé je dělitelné číslem p;
tím je poučka dokázána.

Poučka [2]. Pro přirozené n platí známá identita
a» - bn = (a - b) (a"" 1 + a"~2 b + an~3 b2 + . .. +

+ a2bn~ 3 +abn~2 + bn~í).
I. Vzhledem к poučce [1] pro přirozené n položme a — 212я,

6 = 2», с = Зби, d = 32, takže je a - c ■= 2'2n - b - ď =

«= 2® — 32, ab — cd «=■ 212л+8 — 36n+2, což je právě číslo naší

и

\

(1)
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úlohy. Nyní musíme vzhledem к poučce Г1] dokázat, že čísla a — c *=
= 212* — 36n, b — d — 28 — 32 jsou dělitelná třinácti.

a) Platí 2® - 32 = (24 - 3) (24 + 3) = 13 • 19, takže číslo b - d
je dělitelné třinácti.

b) Podle poučky [2] (vzorec (1))
212* _ 36* = (212)* _ 36)* = (212 _ 36) . q}

kde Q je podle vztahu (1) číslo celé. Stačí tedy dokázat, že 212 — 3®
je dělitelné třinácti; skutečně platí

2i2 _ 3e = (2e _ 33) (2e + 33) = 37 • 91 = 37 • 7 • 13,
takže číslo a — c je dělitelné třinácti.

Tím je tvrzení úlohy dokázáno pro každé přirozené n.

II. Pro n = 0 tvrzení úlohy platí, jak plyne z odst. Ia).
Tím je tvrzení úlohy dokázáno pro každé celé nezáporné n.

(Řešil s. Jaroslav Šedivý, 4b tř. G Sokolovo, Praha 8.)

B. ÚLOHY I. KOLA, KATEGORIE B.

1. V dílně pracuje a dělníků, kteří mají dokončit určitou zakázku
za a dní, m dělníků utvoří úderku a zaváží se, že lepší organisací
práce zvýší svůj výkon o 10%. Stalo se tak po p dnech práce na za-
kázce. O kolik dní se zmenší původně plánovaná doba d dní, potřebná
к provedení zakázky?

Řešeni. Označme V velikost zakázky, tedy celkovou práci, kterou
je třeba vykonat (na př. počet předmětů, které je třeba vyrobit).
Předpokládáme-li, že všichni dělníci mají stejný výkcn, pak jeden'

V
dělník vykcná za den -—j- práce. Po výkonu zvýšeném o 10% musí

/ Vúderník vykenat za den I ^
původním výkonu všichni dělníci společně část zakázky o veli-

V ■

kosti —- ap. Po těchto p dnech bude zakázka při zvýšeném výkonuad • - .. ..

m dělníků skončena za x dní; při tom těchto m dělníků provede

1CV
práce. Za p dní vykonají při—г +

icO ad
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10V ) . mx zakázky a ostatních a — m dělníků zpracujelOOad
V

—— (a — m)x zakázky. Pro neznámé číslo x dostáváme rovnici
ad

10U/ V
~aďap + \~aď + )V V

mx 4 — (a — m)x — V.
adlOOad

lOOad
Znásobíme-li obě strany této rovnice číslem —у

dostaneme rovnici

V
lOOap + (100 + 10)mx -f- 100(a — m)x — 100ad,

z níž plyne
10a (d — p)

m + 10a
100a (d - p) neboli x —x —

10m + 100a

Původně plánovaná doba d se tedy zmenší o d — (p + x) dní,
t. j.o •'

m(d — p)
dní;d — p — x —

m + 10a
to lze uvést na tvar

d-pd - (p + x) =

1 -h 10 —
m

Zlomek na pravé straně je kladné číslo, neboť d> p, a je funkcí pro-

měnných p, m. Roste-li p tak, že stále platí d > p, zmenšuje se hod-
nota čísla d — (p + x). Roste-li m (kde m <1 a), roste i hodnota
d-(p + x).
(Řešil s. Jiří Havrda, 2 tř. G, Česká Lípa.)

2. a) Každé prvočíslo s výjimkou čísel 2, 3 lze psát ve tvaru 6n ± 1,
kde n je vhodné přirozené číslo; dokažte. Platí také obrácená poučka?

b) Užitím předchozího výsledku dokažte: Zmenšíme-li čtverec
kteréhokoliv prvočísla s výjimkou čísel 2, 3 o jednu, dostaneme číslo,
které je dělitelné číslem 24.

Řešení, a) Je-li prvočíslo p > 3, pak čísla p — 1, p + 1 jsou obě
sudá. Čísla p — 1, p, p+ 1 jdou po sobě v posloupnosti přirozených
čísel a je tedy právě jedno z nich dělitelné třemi. Číslo p to zřejmě
není, tedy bud p — 1 nebo p + 1 je dělitelné třemi. Máme tedy doká-
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záno, že buď p — \ nebo p -f 1 je dělitelné šesti, čili existuje při-
rozené číslo n takové, že platí buď p = 6n + 1 nebo p — 6n — 1.
(Viz cvič. 61, str. 25 v učebnici Matematika pro I. třídu gymnasií.)

Obrácená poučka by zněla: Je-li p přirozené číslo tvaru 6n + 1
nebo 6n — 1, pak p je prvočíslo větší nežli tři.

Tato poučka není správná, neboť číslo 25 je tvaru 6n + 1, ale není
prvočíslo a číslo 35 je tvaru 6и — 1 a také není prvočíslo.

b) Je-li p — 6n + 1, pak p2 — 1 = Зби2 + 12n = 12n (3n + 1) =
= 12n [2n + (и + 1)] = 24 и2 + 12и (и + 1) = 24 [и2 + in (п + 1)J.

Číslo \n (n -f 1) je přirozené, neboť součin n(n + 1) je sudý. Je
tedy p2 — 1 dělitelné číslem 24.

Je-li p = 6n — 1, pak p2 — 1 = 24 f«2 -f £(и — 1) и], a tedy
i v tomto případě je p2 — 1 násobkem čísla 24.

3. Je dána kružnice k a její tětiva AB, která není průměrem; budiž
p sečna kružnice k kolmá к přímce AB. Určete na přímce p takový
bod X, aby dutý úhel AXB byl co největší. Proveďte diskusi.

Řešení. Řešení úlohy budou souměrná podle přímky AB, neboť
p J. AB. Hledaný bod X, pokud existuje, neleží na přímce AB,
neboť pak by nevznikl dutý úhel AXB. Stačí se tedy omezit na
řešení v jedné polorovině g vyťaté přímkou AB. Označme P průsečík
přímky p s přímkou AB (P existuje, neboť p AB)-, budiž M ф P
bod přímky p, který leží v g. Rozlišujme tři případy:

[1] P je krajní bod úsečky AB, na př. P = B. Ukážeme, že v g
(a tedy vůbec) neexistuje bod X uvedené vlastnosti. Platí totiž, že
ke každému bodu Y polopřímky PM existuje bod Y' polopřímky
PM, na př. střed úsečky YP, o němž platí, že

<£ AY'B > <í AYB.

(Podle věty: Budiž В pata kolmice, spuštěné z bodu A na přímku
BY'Y; potom platí vztah (1) — viz Matematika pro I. třídu gymnasií,
str. 143.)

Tedy žádný bod poloroviny g (a tedy vůbec) nevyhovuje podmínce
pro bod X.

(1)
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[2] P je uvnitř úsečky AB. Opět ke každému bodu Y přímky />,
který leží у g, existuje bod V tak, že jako v odst. [1] je jednak

«£ AY'P > < AYP, jednak
<£ BYT > BYP, takže také

AY'B = AY'P + <£ AY'B > <£ AYP + <£ PYB = AYB.
Jako v [1] tedy opět neexistuje v g (a tedy vůbec) bod X, požadované
vlastnosti.

[3] Bod P leží vně úsečky AB, na př. na prodloužení úsečky AB
za bod В (jinak vyměníme označení bodů A, B). Ukážeme, že v tomto
případě existuje v g bod X požadované, vlastnosti, a to jediný. Existu-
je totiž kružnice k', která má střed v g, prochází body А а В a dotýká
se p: označíme-li Q střed úsečky AB, leží na os^ q úsečky AB v pólo-
rovině g právě jeden bod 5 tak, že SB = PO, neboť PQ >' EQ
a <2 je pata kolmice spuštěné z boduB rta přímku q. Kružnice opsaná
kolem bodu 5 poloměrem PQ má pak popsanou vlastnost, neboť
p* a q jsou rovnoběžky o vzdálenosti PQ1 Budiž X bod, v němž se
k’ dotýká přímky p. Poněvadž body P, Q, S, X tvoh obdélník, leží
X v polorovině g, neboť PQ = AB. Všechny body Y přímky p,
s výjimkou bodu X, leží vně kružnice k'. Podle cvičení 203, str. 202
v učebnici Matematika pro I. tř. gymnasií, platí pro všechny body X
poloroviny g, ležící vně kružnice k', že

AYB < AXB.

To tedy platí i pro všechny vnitřní body Y polopřímky PM s výjimkou
bodu X. Tím je dokázáno^ že X má pro tuto polopřímku hledanou
vlastnost.

V opačné polopřímce má bod X*, souměrně sdřužený к bodu X po-
dle přímky AB, touž vlastnost a je

AXB = $ AX*B.

Existují tedy v tomto případě na přímce p dva různé body požadované
vlastnosti.

4. Budiž dán čtyřstěn АА'ВС, jehcž hrana AA'/.stojí kolmo na
rovinu. A'BC. Označme •$. BAC = a, -£ BA’C — a\ Jestliže je
a )> 90°, je a' > 90°. Dokažte, ■v ,v
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Co lze tedy říci o velikosti pravoúhlého průmětu pravého nebo
upého úhlu do roviny, která protíná obě jeho ramena v bodech mimo

jeho vrchol?

Řešení. Budiž P pata kolmice spuštěné z bodu A na přímku BC;
protože <£ CAB 90°, jsou oba úhly <£ ABC, <£ BCA ostré a bod
P odděluje body В, C. Podle předpokladu stojí přímka AA' kolmo
к rovině A'BC, t. j. AA' J_ BC. Protože je též АР _|_ ВС а АР ф ВС,
je rovina AA'P kolmá к přímce BC, a tudíž A'P _L BC. Trojúhelník
APA' má při vrcholu A' pravý úhel, čili <£ AA'P = 90°; proto je

AP < AP.

Určeme v polorovině BCA' bod A0 tak, aby platilo ДЛ0ВС ^

^ ДЛВС. Bod A0 leží na polopřímce PA'; podle vztahu (1) leží
na ní body P, A', A0 v tomto pořádku. Protože bod P odděluje body
В, C, platí:

a) Polopřímka Л0Р dělí úhel <£ BA0C ve dva styčné úhly, t. j.

BA0C = <£ BAoP + PA0C.
b) Polopřímka A'P dělí úhel BA'C ve dva styčné úhly, t. j.

*£ BA'C = ВA'P + <£ PA'C.
Podle věty o vnějším úhlu trojúhelníka platí vztahy

< BA0P < <£ ВA'P,
CA0P < <£ СА Р. У

Spojením vztahů (3), (4), (5) dostaneme:

BA'C > «£ BA0P + *£ PA0C,

(1)

(2)

(3)

(4)
(5)

čili podle (2)
^ BA'C > 3. BA0C.

Avšak podle předpokladu je BA0C = BAC !> 90°, a tedy

«£ BA'C > 90°,
což jsme měli dokázat.

To znamená: Pravoúhlý průmět píavého nebo tupého úhlu do
roviny, která protíná obě jeho ramena v bodech mimo jeho vrchol, je
buď úhel tupý nebo úhel přímý. -i
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. Úhel přímý vznikne tehdy, leží-liprůmět A' vrcholu A pravého
úhlu <£ BAC na přímce BČ, t. j. uvnitř úsečky BC.

<

a .

5. Dokažte: a) Jestliže — je zlomek v základním tvaru, potom

jsou v základním tvaru.

b) Součet tří zlomků v základním tvaru nemůže být číslem celým,
jestliže není každý prvočinitel jednoho z daných jmenovatelů prvo-
činitelem alespoň jednoho ze zbývajících dvou jmenovatelů.

Řešení, a) Předpokládáme samozřejmě, že a, b jsou přirozená
čísla. Máme-li zůstat v oboru přirozených čísel, pak při diskusi o či-
tateli a jmenovateli zlomku -—r— je nutno připojit omezující

♦ ab

předpoklad, že a > 6; toto omezení neplatí ovšem o čitateli zlomku
a 4- b

ab
'

) Důkaz úlohy provedeme nepřímo.
I. Nejprve řešme případ zlomku . Předpokládejme tedy,

že existuje zlomek у v základním tvaru takový, že zlcmek
'

■' *• ^' -' - - ■ a -!• b

i zlomky ——
ab

a)ab

není v základním tvaru, t. j. že existuje přirozené číslo d > 1, které
dělí současně obě čísla a + b, ab. Budiž p jeden z prvočinitelů čísla
d. Takový prvočinitel jistě existuje (viz učebnici Matematika pro I. tř.

gymnasií, str. 24) a nedělí současně čísla a, b, nctoť zlcmek -- je
•

> b

podle předpokladu v základním tvaru. Podle základní vlastnosti prvo-
čísél (viz Matematika pro I. tř. gymnasia, str. 23) dělí tedy číslo p
jedno a jenom jedno z čísel a, b. Rozeznávejme dva případy:

[1] Nechť p dělí číslo a, t. j. existuje přirozené číslo kx takové, že
platí

a *= p • kv
Protože podle učiněného předpokladu p dělí i číslo a -f b, existuje
přirozené číslo k takové, že platí

v-- * š - ь v to4* -*'- ■s*'
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a b ** p 4 k. (?)

Protože b > 0, je a + b > a čili p • k > pkx čili p(k — > 0;
je tedy k — kx přirozené číslo, které označíme s. Ze vztahu (2) plyne
tedy, že N

b = pSy

t. j. číslo p dělí číslo b, což je proti předpokladu, že zlomek je
v základním tvaru.

[2] Nechť p dělí číslo b. Potom dospějeme rovněž ke sporu podle
úvahy z odstavce [1], ve kterém zaměníme všude čísla a a b.

Závěrem o zlomku (1) můžeme říci toto: Je-li zlomek v základ¬T
ním tvaru, pak zlomek (1) je též v základním tvaru.

II. Předpokládejme, že existuje zlomek ~ v základním tvaru

takový, že zlomek
a — b

(3)db

není v základním tvaru, při čemž a > b. Podobnou úvahou jako
v odst. I se dojde ke sporu.

b) Máme vlastně dokázat tuto poučku: Jestliže součet tří zlomků
a\ °2 q3

*1* V V
z nichž každý je v základním tvaru, je roven přirozenému číslu x
a jestliže prvočíslo p dělí bv potom toho prvočíslo p dělí také součin
b2b3. (Tím jsme jen jinak vyjádřili, že prvočíslo p dělí aspoň jedno
z čísel b2, b3i viz Matematiku pro I. tř. gymnasií, str. 23.)

Důkaz. Uvedeme-li součet všech tří zlomků na společného jme-
novatele, dostaneme

0\b3b3 -f- a2blb3 + a3b1bi
W3 “ *

čili /

^ib3b3 -j- a2b1b3 -j- лфф3 — хЬфф3.
Protože p dělí bXi dělí také členy a2bxb3, a3bxb3, xb1b2b3 rovnosti

(4) a tedy také výraz xbxb2b3 — a2bxb3 — а3ЬхЬг, který je podle (4)

(4)
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číslu axb2b3 Čili prvočíslo p dělí součin axb2b3. Číslo ax není Však
dělitelné číslem p; jinak by zlomek nebyl V základním tvaru. Podle
základní vlastnosti prvočísel tedy p dělí číslo b2b3, coŽ jsme měli
dokázat.

Je zřejmé, že celá tato úvaha není na újmu obecnosti. Jestliže totiž
určité prvočíslo p dělí na př. číslo b2, dokážeme podobně, že číslo p
dělí součin bxb3 (záměna indexů).

roven

6. Označme
ba c

z =
b + c* * c + a*

x —

a + by
kde a, b, c sú dané racionálně čísla. Zistite, za akých predpokladov
platí

(1).xy -f yz + zx + 2xyz = 1.

Riešertie. Aby bolo možné uvažovat o vztahu (1), musí platit
6 + с Ф 0, c + s Ф 0, o + i Ф 0,

Označme

xy + yz + zx + 2 xyz = A,
čiže

ab bc ca
A ■=

(b + с) (с + a) ' (c + a) (a + b) - (b + c) (a + b)
2abc

(b + č) (c + a) (a + b) ’
Po znásobení tejto rovnosti číslom (a -f- b) (6 + c) (c -f a) dosta-

neme

(a + b ) (b + c) (c + a) /1 = ab (a + b) + bc (b + c) +
+ ca(c + a) + 2abc.

Pravá strana P tohoto výrazu sa dá postupné upravovat takto:
P — ab (a + b + c) + bc (a + b + c) + ca (c + a) =*

= b(a + b + c) (c + a) + ca (c + a) =*
=* (c + a) [b(a + b + č) + ca] =
= (c + a) [ab + b (b + c) + ca] =*

(c + a) [a(b + c) + b(b + c>] =
** (c + a) (b 4* c) (a -+• b).
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Je teda
(a + b) (b + c) (c + a)A = (c.+ q) (b + c) (a + b).

Podlá předpokladu je číslo (a -f b) (b + c) (c + a), na lávej straně
tejto rovnosti rožne od nuly; ak ním delíme našu rovnosť, obdržíme

A — 1.

Je teda výraz A rovný 1 pre vŠetky x, y, z, pre ktoré sú čísla a + b,
b + c, c + a rózne od nuly.

7. Určete geometrické místo průsečíků V výšek v trojúhelnících
ABC, jestliže je dána poloha strany BC, velikost úhlu <£ CAB = a
a jestliže vrcholy A těchto trojúhelníků leží v jedné z obou opačných
polorovin vyťatých přímkou BC. Proveďte diskusi pro a 0 90°.

Řešení. I. Pomocná po .čka (známá z planimetrie): Budiž BC
(viz obr. 1, 2) úsečka daná v rovině; označme g', q" obě opačné po-

loroviny vyťaté přímkou BC. Dále budiž dán dutý úhel a svou ve-
likostí. Tu platí: Geometrické místo bodů X, ležících uvnitř g',
o kterých platí <£ BXC == a, je kruhový oblouk k, jehož krajními
body jsou В, C. Střed 5 kružnice, jejíž částí je oblouk k, je průsečíkem
přímek o, u, kde o je osa úsečky ВС а и je kolmice vztyčená v bodě В
к přímce BU, při čemž je <£ CBU = a, kde U je bod ležící uvnitř
g". Oblouk k je polohou úsečky BC, polorovinou g' a dutým úhlem
a jednoznačně určen. Bod 5 padne: —

[1] dovnitř g', je-li a < 90°,
[2] do středu úsečky BC, je-li a = 90°,
[3] dovnitř g", je-li a > 90°. (Tohoto označení budeme užívat

i v dalších úvahách.)
Podle pomocné poučky je kterýkoli vnitřní bod A oblouku k vrcho-

lem jednoho z trojúhelníků ABC, které vyhovují úloze. Výškou troj-
úhelníka ABC rozumíme kolmici spuštěnou z jeho vrcholu na pro-

tější stranu. Buďte po řadě Áv Bv Cx paty výšek trojúhelníka ABC
spuštěných z bodů А, В, C a a, (i, у po řadě jeho úhly při vrcholech
А, В, C. Z existence trojúhelníků ABC plyne i existence bodů V;
úhel a má konstantní hodnotu.
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-И. Obraťme se nyní к řešení úlohy. Rozeznávejme tři případy:
- [1] a > 90°; [2] a - 90°j [3] a < 90°.

Případ [1]. Protože je a > 90°, je (obr. 1)
P < 90°, у < 90°, (1)

takže platí

p' = 90° - у < 90°, у' =
= 90° - p < 90°. (2)

Proto paty Bv Cx pad-
nou dovnitř polopřímek CA,
BA (obr. 1) a tedy dovnitř
g'; proto polopřímky BBlt
CCL existují a jejich vnitřní
body leží uvnitř g'. Existují
tedy trojúhelníky BCB1S
CBC1, v nichž je BBÍC=
= <£ ССгВ = 90° a podle
vztahů (2) platí

< CBBl = p'}
< BCCÍ = y\ (3)

Tu vzhledem к (2) a (3) platí

/?' + / = 180° - (p + у) = a < 180°
a proto se podle Eukleidova axiomu polopřímky BBt, CCX protnou
v bodě V, který padne dovnitř g'. Proto existuje ABCV, jehož úhly
při vrcholech В, C jsou fi', у' a o jehož třetím úhlu a' = <£ CVB
vzhledem ke (3), (4) platí

a' = 180° - (/3' + y') = 180° - a < 90°.

Je tedy a' ostrý úhel a jeho velikost je pro všechny trojúhelníky ABC,
vyhovující úloze, konstantní. Podle pomocné poučky leží tedy všechny
body V na kruhovém oblouku k', jehož krajní body jsou В, C, jehož
body X leží až na В, C uvnitř g' a který přísluší к úhlu «' — 180° — a.
Střed 5 tohoto oblouku padne dovnitř g'.

Vzhledem ke vztahům (1) nelze každý bod X oblouku k' považovat
za průsečík V výšek určitého trojúhelníka ABC. Označme В', C
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průsečíky kolnilc vztyčených v bodech В, С к přímce BC s obloukem
k'; prorože bod 5 leží uvnitř Qfy leží body B'> C' royněž uvni:ř q'.
Vzhledem к (1) jen ty body X0 oblouku k', které leží zároveň uvnitř
pravých úhlů < B'BC, C'CB, jsou body V dané úlohy, jak se
snadno obrácením postupu dokáže; každý z bodů X0 vede právě
к jedinému bodu A, ležícímu uvnitř q' tak, že <% CAB = a.

Případ [2]. Protože je a = 90°, je V щ A. Podle pomocné věty
leží body V uvnitř polokružnice k', která leží v^'a která má úsečku
BC za průměr. *

Případ [3]. Je-li a < 90°, je třeba diskutovat tři případy: v troj-
úhelníku ABC a) jsou oba úhly /5, у ostré, b) je jeden z úhlů /3, у

pravý, c) je jeden z úhlů /?, у
tupý (viz obr. 2).

a) Je-li
/3 < 9Э°, у < 93°, (5)

je příslušná úvaha jen obráce-
ním postupu v případě [1], při
čemž je třeba označení А, V,
a, >3, y, a', /3', y' po řadě za-
měnit označením V, A, oc', /?',
у', a, /3, у a oblouky k, k' (po-

• / kud se ovšem body oblouku
kf v případě [1] uplatnily — viz

' \ vztahy (5)).
\ b) Nechť je na př. /? = 9Ó°,
\ takže у = 90° — a < 90% Pak

J je V = B. Je-li у = 90°, jei V = C.

Г c) Nechť je na př. /3 > 90%
/ takže у < 90°, a < 90°. Pak

bod By padne dovnitř úsečky
CA a tedy dovnitř q' (obr. 2).
Naproti tomu bod Сг padne na
prodloužení úsečky AB za
bod В a tedy dovnitř q".

:>v~;
к”.—-'''

u.‘ Obr. 2.
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Bildiž BB0 polopřímka opačná к pólopřimce BBlt takže B0 leží uvnitř
q”. Označme

< CBB0 « F, •£ BCCX - y.

Z trojúhelníka BCBY, kde BBVC — 90°, plyne

F = 90° + у > 90° (vnější úhel v ДБССХ).
Z trojúhelníka BCC1} kde <£ CCXB = 90°, plyne

/ = /3 - 90° < 90° (úhel /3 je vnější v ДВССХ).
Podle (6), (7) obdržíme

(6)

(7)

F + / =-P + V < 180°,
takže podle Eukleidova axiomu se polopřímky CCU BB0 protnou
v bodě V, který leží uvnitř o". Z Д VBC podle (8) dostaneme

a' = <£ CVB = 180° - (/3' + У) = a.

Podle pomocné poučky leží bod V uvnitř kruhového oblouku k"
(jehož krajní body jsou В, C), který leží v q" a který přísluší к úhlu
a' = a < 90°. Protože musí platit pro úhly /3', y' vztahy (6), (7),
nelze každý vnitřní bod X oblouku k" považovat za bod V. Uplatní
se jen ty body X0 oblouku k", které padnou dovnitř poloroviny
opačné к polorovině BB"C, kde В" ф В, je průsečík kolmice vzty-
čené v bodě В к přímce ВС s obloukem k". Bod B" padne dovnitř
q", neboť střed S" oblouku k" leží uvnitř q" (je a' < 90°).

Obráceným postupem snadno odvodíme, že každý zmíněný bod
X0 oblouku k" lze považovat za bod V, к němuž uvnitř q' přísluší
jediný bod A, o němž platí BAC = a.

Stejnou úvahu provedeme i v případě, že /3 < 90°, у > 90°. Ozna-
číme-li С" ф C průsečík oblouku k" s kolmicí vztyčenou v bodě
С к přímce BC, patří body X„ oblouku k", ležící uvnitř poloroviny
opačné к polorovině CC”B, к hledanému geometrickému místu.,

Geometrické místo bodu V v případě, že a < 90° se skládá z těch
bodů kruhového oblouku kružnice (5", S”B), které leží uvnitř po-

loroviny B"C"S" (tedy včetně bodů В, C). (Viz obr. 2.)
Snadno se dokáže, že geometrické místo bodů V obdržíme z geo-

metrického místa bodů A posunutím ve směru kolmém к přímce

(8)
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ВС о úsečku .SS' ve smyslu SS' (kde S je střed oblouku k příslušného
bodům A a S' střed oblouku k', po případě k", příslušných bodům V)*

>

8. Budiž V průsečík výšek trojúhelníka ABC. Jestliže platí CA <
< AB potom je:

, a) VC < VB,
b) vzdálenost bodu V od strany CA menší než od strany AB s vý-

jímkou případu, kdy <£ CAB = 93°; jak je tomu v tomto výjimečnsm
případě? (Proveďte diskusi pro trojúhelník ostroúhlý, pravoúhlý,
tupoúhlý.)

Řešení. Úloha a). Označme po řadě At, Bu Cx paty kolmic spustě-
ných s vrcholů А, В, C trojúhelníka ABC na protější strany. Víme,
že bod V leží v případě trojúhelníka ABC:

[1] ostroúhlého uvnitř trojúhelníka;
[2] pravoúhlého ve vrcholu pravého úhlu;
[3] tupoúhlého vně trojúhelníka.
Diskusi provedeme pro každý z těchto případů zvlášť.
Případ [I]. Bod AL zřejmí odděluje body В, C. Z předpokladu

AB > AČ plyne, že ALB > ALČ (podle obrácení známé poučky
o monotónním vzrůstání vzdálenosti AX bodu A od bodu X polo-

přímky AtB při vzrůstu velikosti
úsečky AtX; viz Geometrii pro II.
tř. středních škol, str. 37, poučka
Pg). Odtud plyne (podle téže pouč-
ky), že VB > VC (obr. 3).

Bod V je tedy blíže к tomu
vrcholu trojúhelníka, který leží
proti jeho větší straně (neboli který
je vrcholem většího úhlu trojúhel-

B1 nika). Jestliže je АВ — AC, jsou
zmíněné vzdálenosti zřejmě sobě
rovny. ....

Tento výsledek platí i v přípa-
dech. [2]у [3], jak ihned dokážeme.

A

c
N .4 i

N4

-

\

r! >
A,

Obr. 3.
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Případ [2]. Tu je bud F= Л nebo F ss C (obr. 4, 5).
a) Je-li Fm A, je VB = ЛВ, VC m Ad, t. j. VC < VB.

__

/3) Je-li V m C, je FČ » 0, VB = Č5 Ф 0 a tedy FC < VB.
Případ [3]. Bud je a)
BCA > 90° nebo je /3)
CAB > 90°. : •

a) Pořádek bodů na přímce
BC je nutně AXCB, takže
(podle citované poučky) je
VB >VČ (obr. 6).

/3) Pořádek bodů na přím- C
kách CA, BA je nutně

AsV

/.... >

В
Obr. 4.

A
CABX, BAC1 (obr. 7), při
čemž úhly < CBBX, < BCCX
jsou ostré a jejich součet je
proto menší než 180°. Proto
se podle Eukleidova axiomu
protnou polopřímky BBX, CCX
uvnitř poloroviny BCA. Polo-

C-V přímka BA prochází tedyВ
Obr. 5.

vnitřkem úhlu <£ CBBX, a
polopřímka CA vnitřkem
úhlu <£ BCCX, takže bod A
padne dovnitř trojúhelníka
VCB. Bod Ax odděluje bo-
dy В, C (úhly <£ ABC,
<£ BCA jsou ostré) a pořá-
dek bodů na polopřímce/1^
je AXAV. Podle předpokla-
du je CA < AB a podle
citované poučky je tedy též
CAt < AtB; podle téže

¥--4
\

в:
‘"-'V<.

Obr. 6.
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poučky je proto i VG < VB. Tím je mženi úlohy a) dokázáno.
Vloha b). Diskusi provedeme na základě výsledku úlohy a); přitom

Užijeme této pomocné pqučky: Buďte MNP, MlN1Pl dva trojúhel-
niky, o kterých platí (obr. 8):

< PMN = P^Ny,

\ <£ MPN = < MíP1Nl = 90°,
MN > M^N.. (1)

Potom platí
NP > N^.

Důkaz. Sestrojme ДМЛГР' ^
= Д MlNíP1 tak, aby bod P'
padl dovnitř polopřímky MP a
bod N' dovnitř polopřímky MN;
to lze vzhledem ke vztahům (1)

učinit jediným způsobem. Přitom tedy platí
N'P' = NtPv MN = MXNV

Vzhledem к druhému vztahu (2) leží bod N' uvnitř úsečky MN.
Veďme bodem N' přímku N'N0 || MP a označme N0 její průsečík
s přímkou NP. Užijme na AMNP a na přímky N'P', N'N0 dvakrát
věty Paschovy; odtud snad-
no usoudíme, že P' je vnitř-
ní bod úsečky MP a bod N0
vnitřní bod úsečky NP, tak-
že platí

(2)

<9

NP > N0P.
Rovnoběžník PN0N'P' zřej-
mě existuje a protože
<£ NPM = 90°, je to ob-
dělník, v němž je

Щ3 = NP'.
/

Ze vztahů (3), (4) a prvního vztahu (2) ihned plyne
ŇP > ítfjP ,

(4)

což jsme měli dokázat.
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Přejdeme k vlastnímu řešeni úlohy b). Stejně jako v úloze a) ro-
zeznávejme případy: Trojúhelník ABC je [1] osttoúhlý, [2] právo-
úhly, [3] tupoúhlý.

Případ [1]. V ДABBX a AACC1 je úhel CAB společný,
ABXB = < ACXC = 90°, takže <£ ABBX = 90й - < СЛВ =

== <£ ACCX. Trojúhelníky FBC,, FCBX existují a podle výsledku úlo-
hy a) je VB > VČ; přitom je <£ VBCl = < VCBг, < FCXB ==
= СВгК = 90°. Podle pomocné poučky je tedy VCt > VBr

Připadl2]. а)_К в Л (t. j. < BAC = 90°); tu je К в Bx ш Сх
a tím F'B1 = VC\ = 0. То je právě zmíněný výjimečný př pad.

(5) V == C; tu je V = Bls leží uvnitř úsečky AB, takže VCt Ф
Ф 0, VBX = 0 a tedy VCX > VBv

Případ [31. a) <£ BCA > 90°, takže trojúhelníky VBCX, VCBX
existují. Pořádek bodů na polopřímce CXC [podle diskuse úlohy a)
případ [3] P)] je CXCV, na přímce BV je pořádek bodů BBrV;
v Д VBCX je < Bcý= 90°, v ACVB\ je «£ CBXV = 90°. Je tedy
VC\ > VC, VC > VBl a tím VC\ > VBv

p) CAB > 90°; trojúhelníky VBCU VCB1 mají společný úhel
BVC: dále je BCXV = CBXV = 90°, takže < CjBF =

= <£ ВгСК < 90°. Podle úlohy a) je ГВ > FC a podle pomocné poučky
o trojúhelnících VBCX, VCBX platí VC\ > VBť

Tím je tvrzení úlohy b) dokázáno.
Závěr. Průsečík výšek V trojúhelníka je blíže к té ze dvou nerovných

stran, která je menší. Výjimku činí případ, kdy úhel těmito stranami
sevřený je pravý; v tomto případě jsou obě zmíněné vzdálenosti
nulové.

9. Buďte ABCD, A'B'C'D’ protilehlé stěny krychle, při čemž
AA\ BB', CC', DD' jsou hrany krychle. Jestliže bod X, ležící uvnitř
krychle, je blíže к vrcholu В než ke kterémukoli z ostatních vrcholů
krychle, potom je bod X od bodu D' dále než od kteréhokoli z ostatních
vrcholů krychle. (Poučku na str. 147, odst. 2 z učebnice Matematika
pro L tř. gymnasií rozšiřte pro prostor.)

Řešení. I. Pomocná poučka [1]. Označme co rovinu souměrnosti
úsečky HH' a wH, ooH' oba opačné poloprostory, které vytíná.
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Leži-li bod AT uvnitř poloprostoru (oH, potom platí HX < H'X
-a obráceně. ..r ~ j • - -

Tato poučka vyplývá bezprostředně ze známé podobné poučky
planimetrické

II. Poučka [2]. Rovina a souměrnosti tělesové úhlopříčky BD’
krychle ABCDA'B'C'D' prochází středem G krychle a protíná povrch
krychle v pravidelném šestiúhelníku KRUMPS (viz obr. 9).

To je známá stereo-
metrická poučka.

Důsledek.

O N

Krychle
LBQHETFG v obr. 9
má s rovinou cr z poučky
[2] společný pouze bod
G, takže celý vnitřek této
krychle je rovinou a od-
dělen od bodu D'. ,

III. V dalším budeme
označovat UVWM ten

z obou opačných polo-
prostorů vyťatých rovi-

UVW, jehož vnitř-
ním bodem je daný bod
M. Nyní přejdeme к ře-
šení dané úlohy. Označ-
me středy hran dané

krychle tak, jak je uvedeno v obr. 9; dále budiž G střed této
krychle.

\Efк
v\ и

- 9r
s

Hl
o

nou

A

Obr. 9.

Podle obrácené poučky [1] bod X> který je blíže к bodu В než
v к bodu: '"'V; ' , .

1. C musí ležet uvnitř poloprostoru А'В'СВ.
2. В' musí ležet uvnitř poloprostoru STUB.
3. A' musí ležet uvnitř poloprostoru AB'C'B. ')
4. D' musí ležet uvnitř poloprostoru oB, kde o je rovina sou-

měrnosti úsečky BD' (viz důsledek poučky [2]).
5. A musí ležet uvnitř poloprostoru KLA1B.

.
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6. C musí ležet uvnitř poloprostoru PQRB*
7. D musí ležet uvnitř poloprostoru ЛЛ'С'-В,
Proto bod X ležící uvnitř dané krychle a splňující ppdmínky před-

pokladu úlohy musí ležet uvnitř krychle LBQHETFG (viz důsledek
poučky [2]). Podle poučky [1] každý vnitřní bod X této krychle splňuje
podmínky předpokladu úlohy.

Jestliže však bod X leží uvnitř poloprostoru:
1. А'В'СВ, pak XA < XD\
2. STUB, pak XD < XD'.
3. AB'C'B, pak XČ < XD'.
4. a B,
5. KLMB, pak XC' < XD'.
6. PQRB, pak XA' < XD'.

■ ' 7. АА'С'В, pak XB' < XĎ'.
Tím je závěr dané úlohy dokázán.

(Řešil s. Jaromír Janko, 1. tř. Akademického G, Praha II.)

.i

pak XB < XD'.

10. К očíslování všech svazků určité knihovny bylo třeba na hřbety
knih natisknout třikrát tolik cifer, co je svazků. Kolik svazků měla
knihovna ?

Řešeni. Budiž x > 0 hledaný počet svazků. Dokážeme, že x je
čtyřciferné číslo (v desítkové soustavě). Nemůže být jednociferné,
neboť pro x > 0 je x Ф 3x, ani dvojciferné, neboť rovnice

9 + 2 (x — 9) = 3x
nemá za kořen dvojciferné číslo, ani trojciferné, neboť pro žádné troj-
ciferné číslo není

9 + 2 • 90 + 3(x - 99) = 3x. _

Předpokládejme, že л; je čtyřciferné číslo, pak jde o řešení rovnice
3x = 9 + 2 • 9Э + 3 • 90Э + 4(x - 999).

Odtud.л: = 1107, což je skutečně čtyřciferné.
Ukážeme konečně, že toto řešení je jediné.. Neboť kdyby počet

svazků byl 1107 +y (y přirozené číslo), pak je třeba použít cifer
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alespoň v počtu jV=* 3 • 1107 -f 4v. Avšk číslo N Je zřejmě větší
než 3(1107 +j;), t. j. než trojnásobek počtu s.azků.

Hledaný počet svazků je tedy 1107.

11. Stanovte geometrické místo bodů, pro něž rozdíl vzdáleností
od dvou daných různoběžek a, b je roven dané úsečce velikosti d.

Řekni. Označme P průsečík obou různoběžek a, b а ог, o2 jejich
osy; každá z obou navzájem kolmých os oí} o2 půlí jeden pár vrcho-
lových úhlů, ve které různob.ěžky a, b dělí rovinu. Smysl úlohy vy-

žaduje, aby d ^ 0. Jestliže bod Q roviny různoběžek a, b vyhovuje
úloze, označme po řadě xq ^ 0, yQ ^ 0 jeho vzdálenosti od přímek
a, b; podle textu úlohy pro bod Q platí

(1)I xq - yQ | = d.
Rozeznávejme dva případy: [1] d = 0; [2] d > 0.

Případ [1]. Je-li d — 0, pak ze vztahu (1) plyne xq — yQ. Je známo,
že geometrickým místem bodů Q, které vyhovují úloze a právě na-

psané podmínce, jsou dvě osy ox, o2 různoběžek a, b (viz učebnice
Matematika pro I. tř. gymnasií, str. 150).

Případ [2]. Sestrojme přímky а' ф a" rovnoběžné s přímkou a ve
vzdálenosti d od této přímky a přímky b’ ф b" rovnoběžné s přímkou
b ve vzdálenosti d od této přímky (obr. 10). Označme po řadě K, L,
M, N průsečíky těchto dvojic přímek (ab’), (a", b'), (a”, b"), (a', b")>
takže = KPM, o2 = LPN. Čtyřúhelník KLAIN je kosočtverec;
označme po řadě A, В, C, D středy jeho stran. Dále označme po řadě
AR, BS, CT, DU polopřímky opačné к polopřímkám AP, BP, CP,
DP.

Vyšetřujme tu část geometrického místa, která náleží úhlu APB
(vyšetřování částí, které náležejí úhlům BPC, CPD, DPA, je zcela
obdobné). . 4

Rozeznávejme nyní dva případy:
a) Je-li xq < yQ, jeyQ - xq ^ d; pak je^Q d, takže yQ - d =

= xq. Protože yQ ^ d, leží Q v polorovině KLR a číslo yQ — d
značí vzdálenost bodu Q od přímky b'. Každý bod V, který patří

64



zároveň polorovině KLR a úhlu APB, patří také úhlu RAL (a obrá-
ceně), takže jde o geometrické místo bodů Q, které mají stejné vzdá-
lenosti od přímek a, b' a leží v úhlu RAL. Tímto geometrickým místem
je polopřímka AL' \ \ PL.

b) Je-li xq > yQ, je xQ — yQ = d; pak je xQ ^ d, takže xQ - d =
= 3’q. Protože xq d, leží Q v polorovině MLS a xq — d značí

Obr. 10.

vzdálenost bodu Q od přímky a". Každý bod W, který patří zároveň
polorovině MLS a úhlu APB, patří také úhlu LBS (a obráceně),
takže jde o geometrické místo bodů Q, které mají stejné vzdálenosti
od přímek a", b a leží v úhlu LBS. Tímto geometrickým místem je
polopřímka BL" f \ PL.

Podobná tvrzení platí rovněž o ostatních úhlech BPC, CPD, DPAy
takže hledaným geometrickým místem jsou čtyři dvojice poJcpřímek:
AL'\\ BL", BM'\^CM”, CN' f f DN", DK" f f AK'\ tyto
dvoiice jsou pořadě souhlasně rovnoběžné s pelopřímkami PL, PM,
PN, PK.

S
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12. Jsou-li a, b, c kladná čísla, pak
a b c .

„
- + - + -^3.
bca

Dokažte! Proveďte diskusi, kdy nastane rovnost.

Řešeni. Výraz V = — + — se nezmění cyklickou permutacíb c a

písmen. (Cyklické permutace к permutaci abc jsou bca, cab. Při
permutaci bca nahradíme prvek a prvkem b, prvek b prvkem c a prvek
c prvkem a.) Vzhledem к tomu stačí uvažovat případy 0 < a ^ b <1

с, 0 < c <L b <L a.

V obou případech je - - C- ^ -—

T-l+fž..

7 + J-2
(viz učebnici Matematika pro I. tř. gymnasií, str. 53, cv. 160) a sečtením
vztahů (1), (2) dostaneme

- c
čili

(D

Mimo to je

(2)

T + - + £Ž3.b c a —
(3)

c
Má-li nastat rovnost ve vztahu (3), musí nastat rovnost i v obou

vztazích (1) a (2); z rovnice (2) pak vyplývá b = c, z rovnice (1) vy-

plývá a — b. Obráceně, je-li a = b = c, platí (3) se znaménkem rovnosti.

13. Je-li n přirozené číslo, potom platí
1 2 3 и

< 1.+ . . . +
1 • 2 1 *2 •.. • и(и + 1)1-2-3 1 -2-3-4

Řešeni. Je-li n libovolné přirozené číslo, potom zřejmě platí
1

0 < O)
1 -2-3-. .. • n(n 4- 1)’

a tedy také

66



1 11 1 1
< 1 + + • • •+... +

1 ' 1-2 1-2-3 -...-/г 1 - 21-2-3

1
(2)...+

1 - 2-3-. ..-п(л + 1)*
A-tý člen levé strany vztahu (2) (pro k = 1, 2,..., я) rozšíříme číslem
(& + 1); tím vztah (2) nabude tvaru

12 n 4- 13
< 1 ++ + ... +

1 • 2 • 3 •. .. - (я + 1) 1 -21 -2 1-2-3
11 1

+'...+
1-2-3 • .. .-и(я + 1)*

Nyní převeďme všechny členy pravé strany této nerovnosti až na člen
první na levou stranu a zlomky o stejném jmenovateli sečtěme; tím
dostaneme

1-2-3 l-2-З-...-я

21 3 n

; < 1,+ ... +
1 - 2 - 3 •... • n(n -к 1)1 -2 1-2-3-4

což je vztah, který jsme měli dokázat.
(Řešil s. Vladimír Jezdinský, Il.a tř., Vrchlického G, Klatovy.)

1-2-3

14. Buďte a, b, c racionální čísla. Dokažte, že potom platí

(a + i - c)2 + (6 + c - a)2 + (c + a - i)2 ^ ai + ic + ca. (1)
Proveďte diskusi, pro které případy nastane rovnost.

Řešeni. Levou stranu vztahu (1) označme L, pravou P.

Je L = 3(a2 + b2 + c2) — 2(ab + bc + ca), . takže
L - P =* 3[(aa + b2 + c2) - (ob + bc + ca)] - 3V.

Máme dokázat, že výraz V je nezáporný. Avšak
2V — 2(a2 + b2 -f c2 — ab — Ic — ca) =
= (a — b)2 + {b - c)2 + (c — a)2,

takže 2V ^ 0 neboli К ^ 0; rovnost nastane zřejmě právě tehdy,
je-li a — b = c. To platí i pro výraz (1).

15. Určete, co vyplňují středy rovnoběžníků, které jsou rovinnými
řezy daného čtyřstěnu.
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Při důkazu můžete vyjit od některé z těchto povlek: Pomocná
věta (1). Budiž 5 střed strany АВ v trojúhelníku ABC a A', B' po
řadě body ležící uvnitř stran CA, CB takové, že A'B' f| AB. Označme
S' průsečík přímek A'B', CS. Potom je A S — B'S'. Pomocná věta
(2). Buďtež a || a' dvě různé roviny. Budiž dále A libovolný bod ro-

viny a a A' libovolný bod roviny a'; označme S střed úsečky AA'.
Potom všechny body 5 takto určené vyplní určitou rovinu o || a.

Riešenie. Najprv určíme vlastnosti rovin, ktorých rezmi budú
rovnoběžníky (obr. 11). Napr. rovina q má preťať roviny ABD, ACD

v protilahlých stranách
rovnoběžníka. Avšak

rovina g, ktorá přetne
dve róznobežné roviny
v rovnoběžkách, musí
byť rovnoběžná s ich
priesečnicou AD. A
opačné, ak je q |j AD,
přetne rovina q roviny
ABD, ACD (pokiar je
od nich odlišná) v rov-
nobežkách. To isté

móžeme povedať o zo-

stávajúcich protilah-
lých stranách rovno-

bežníka, priesečniciach
roviny q so stěnami
ABC, DBC, totiž, že

rovina q musí byť rovnoběžná s priamkou BC. Tedy roviny q rovno-
běžné s dvoma protilahlými hranami AD, BC, pokial protínajú
všetkysteny štvorstena, pretínajú ho v rovnoběžníku.

Zistímc, čo vyplňujú středy N tých stráň týchto rovnobežníkov,
ktoré ležia v stene BCD a ktoré sú rovnoběžné s priamkou BC. Je
to ťažnica DA' trojuholníka BCD, kde A’ je střed hrany BC. Podobné
středy M tých stráň týchto rovnobežníkov, ktoré ležia v rovině ABC
a ktoré sú rovnoběžné s priamkou BC, vyplnia iažmcuAA' trcjuholníka
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ABC. Středné priečky MN týchto rovnobežníkov budú ležať v ro-
vine ADA' a sú navzájom rovnoběžné a ich středy ležia na ťažnici
A'B' trojuholníka A'AD, kde B' je střed hrany AD.

i

Třeba ešte dokázať, že každý vnútorný bod úsečky A'B' je stredom
nášho rovnoběžníka, ktorého rovina q je rovnoběžná s protirahlými
hranami AD, BC nášho štvorstena. Bodom X veďme rovnoběžku
s priamkou AD. Táto priamka zrejme leží v rovině A'AD a přetne
úsečky A'A, A'D v ich vnútorných bodoch M, N. Pretože bod X leží
na ťažnici trojuholníka A'AD, je stredom tejto úsečky MN. Ale
teraz napr. bodom M vedieme úsečku PQ || BC (kde P je vnútorným
bodom úsečky AB a Q vnútorným bodom úsečky AC), zas podlá
predošlej úvahy je bod M stredom úsečky PQ. Avšak rovina PQX
je rovnoběžná aj s priamkou BC a AD a podlá poučky najprv vyslove-
nej vieme, že priesek tejto roviny so štvorstenom je rovnoběžník;
přitom z našej konštrukcie je úsečka MN jeho střednou priečkou
a bod X stredom tohto rovnoběžníka. Teda móžeme povedať, že
úsečka A'B', spájajúca středy protilahlých hrán AD, BC štvorstenu,
je geometrickým miestom stredov rovnobežníkov, ktorých roviny
sú rovnoběžné s protilahlými hranami AD, BC daného štvorstena
ABCD.

To isté mažeme povedať aj o obidvoch zostávajúcich dvojiciach
AB, CD a AC, BD protilahlých hrán daného štvorstenu.

(Riešil s. Juraj Virsík, 2 tr. II.G, Bratislava.)

16. Budiž dán rovnostranný trojúhelník ABC o straně velikosti a.
Buďte M, N, P body zvolené po řadě uvnitř úseček BC, CA, AB.

Dokažte nejprve, že je možné zvolit body M, N, P (různé od středů
stran) tak, že MNP je rovnostranný trojúhelník. Potom sestrojte
všechny rovnosiranné trojúhelníky MNP takové, aby jejich strany

měly danou velikost m. Diskutujte, pro která m má úloha řešení.

Řešení. I. Označme středy stran BC, CA, AB po řadě M0, N0,
P0; ДMjN0P0 je rovnostranný, velikost jeho stran je \a.

Existuje-li /\MNP o vlastnostech požadovaných úlohou, potom je

•£ NPB = CAB + <£ ANP (1)
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(vnější úhel v Д APN je roven součtu vnitřních úhlů při ostatních
vrcholech). Dále je

‘

NPB = NPM + BPM.

Ale <£ CAB = ■$. NPM = $7r, takže z (1), (2) plyne

<£ y4VP = <); PPM.

(2)

(3)

Je A-ANP ^ ДВРМ (usu), neboť <£ С.ЛВ = «jC ЛВС, dále platí
(3) a NP = PM. Odtud plyne

y4P = PM, AN = PP. (4)
Z ДРРМ, /S.CMN stejně dokážeme, že

PM = CÍV, PP = ČM;
odtud vzhledem ke (4) platí

ZP = PM = СЛГ,

První rovnosti (5) již zaručují platnost druhých a obráceně; jsou to
podmínky nutné pro existenci AMNP. Obráceně, jsou-li podmínky
(5) splněny, je &ANP c^. ДВРМ ^ ACMN (sus), neboť úhly
při vrcholech A, P, C jsou vesměs £тг; proto platí MN = iVP =
= PM, při čemž body M, iV, P neleží v jedné přímce (viz Paschův
axiom) a AMNP je proto rovnostranný.

II. Vzhledem к požadavku úlohy M ф M0 lze předpokládat, že
platí- CM > MB. Z AMCN plyne, že CN 4- CM > MN neboli
MN < a. Budiž O střed v ДЛВС, takže je OA = OP = OO a dále
<£ СМР = <£ОЗМ = OCN= ~rc. Proto vzhledem к (5) je AOAP^
^ Д OBM ^ Д OCN(sus) a odtud ÓM = OiV = OP. Protože
však v rovině trojúhelníka existuje jediný bod, který mí od jeho vrcholů
vesměs stejné vzdálenosti (střed opsané kružnice), je bod O zároveň
střed rovnostranného trojúhelníka MNP.

AN = PP = CM. (5)

III. Odtud dostáváme konstrukci AMNP, jestliže je dána velikost
m jeho stran:

Sestrojíme pomocný rovnostranný trojúhelník o straně velikosti
m a vyšetříme poloměr r kružnice jemu opsané. Opišme kružnici
(O, r); ta protne úsečku PC v bodech M ф M' tehdy, jestliže platí
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Q < Г < OB,
kde q je vzdálenost bodu O od přímky BC (pro r — q dospíváme
к bodu M3); každý z bodů M, M' vede к jednomu trojúhelníku
požadované vlastnosti. Oba trojúhelníky jsou zřejmě shodné (splynou
po otočení jednoho z nich kolem bodu O o úhel | n:).

Vztah (6) lze psát vzhledem к tomu, že výška v rovnostranném
trojúhelníku je i těžnicí, ve tvaru

I ' ? aK3 < 1 * | K3 < | • \ ai
po úpravě dostáváme podmínku řešitelnosti naší úlohy ve tvaru

\ a < m < a

(s vyloučením případu ДМ0 N0 P0).

(6)

C. ÚLOHY II. KOLA, KATEGORIE A.

1. Číslo an = 2" + * + 5" nemůže být prvočíslem pro žádné při-
rozené číslo n. Dokažte!

Riešenie. I. Pomocná veta: Ak a, b, и sú prirodzené čísla a ak a,

a + b sú dělitelné číslom u, potom aj b je dělitelné číslom u.

II. Číslo an je pre každé prirodzené n váčšie ako číslo 3; dokážeme,
že číslo a„ je dělitelné troma pre každé prirodzené ti a že nie je teda
prvočíslom. Dokaž prevedieme matematickou indukciou.

a) Pre n = 1 je ax = 2a + 5 = 9, čo je dělitelné troma.
b) Teraz dokážeme, že ak an pre dané prirodzené n je dělitelné

troma, musí byť aj aA+l dělitelné troma. Je
+ an+x = 2»+l (2 + 1) + 5" (5 + 1) = 3 • 2(2" + 5"),

t. j. číslo и = an + 1 )e dělitelné troma. Keďže an, и sú děli-
telné troma, podTa pomocnej vety musí byť aj an+1 dělitelné troma.

Tým sme urobili oba kroky matematickej indukcie a veta je do-
kázaná.

(Riešil s. Pavol Brunovský, 4.d tr. II. G, Bratislava.)

2. Dané sú kladné čísla ax, a2,..,, a10, bl} b2,..., bb všetky menšie
než 7; žiadne z nich nie je celým číslom. Dokážte, že medzi páť-
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desiatimi bodmi [a,-, í>*] (kde i = 1, 2,..10, k = 1, 2,..5)
existujú азрол dva také, že ich vzdialenosť je menšia než )j 2.

Řešení. I. Bez újmy obecnosti můžeme předpokládat, že indexy
čísel a.k (pro k = 1, 2,..., 10) jsou zvoleny tak, že platí

Й1 = ^ aa = • • • ^ ^ aw

II. Pak existuje index k takový, že

ak+i - ak < I (kde k = 1, 2,..., 9).
Důkaz. Předpokládejme, že takový index k neexistuje, pak platí

nerovnosti (v celkovém počtu devět)
<22 Q>y ^ p j

~ a2 =

(1)

^10 — g*

Sečtením těchto nerovností dostaneme a10 — ^ | • 9 neboli
aio — a\ ^ 7.

Jelikož je > 0, plyne z poslední nerovnosti, že je a10 >7,
což odporuje předpokladu. Tím je tvrzení týkající se vztahu (1)
dokázáno.

III. Uvažujme body X = [a^, 6/], Y = [u*+ j, 6/], kde k je číslo
z odst. II. splňující vztah (1), takže platí

ak+1 ak <-

Vzdálenost d bodů X, У je d = / (ai+l — a.c,2 + (6/ - btJ2 =
= 1 - neboť je ak+1 — ak ^ 0; je tedy

d = aJfe+l — ak-

Ze vztahů (2), (3) plyne, že d < |, takže je d < \2, což jsme měli
dokázat.

(Řešil s. Otto Reimer, 2. tř. G, Ivančice.)

(2)

(3)

3. Zjistěte, který útvar je analyticky vyjádřen vztahem
\ax + by\ + |j> | <; c,

kde x, у jsou pravoúhlé souřadnice bodu v rovině a a, b, c daná kladná
čísla.
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Řešení. [1] Je-li ax + by O, v ^ O, je příslušná část útvaru
trojúhelník, který je průnikem polorovin

ax + (b -f- 1) у ^ c, ax + by ^ 0, у ^ 0.

Jeho vrcholy jsou body [0,0], |Jj-, oj, £
[2] Podobně pro ax + by ]> 0, у ^ 0 je příslušná část útvaru troj-

úhelník, který je průnikem polorovin
ax + (Jb — l)y <ŠI c,

bc i
—, c .
a J

+ by ;> o,

Jeho vrcholy jsou body [0,0], , oj, , -
[3] Je-li ax + by ^ 0, у ]> 0, dostaneme příslušnou část útvaru

jako útvar souměrný podle počátku souřadnic к trojúhelníku z odst.
[2]i vyjde tedy trojúhelník s vrcholy

У й °-ax

«]•

[0,0], [ ~, o], [ e,4
[1] Je-li konečně ax + by ^ 0, у ^ 0, je příslušná část útvaru

trojúhelník souměrný podle počátku souřadnic к trojúhelníku z odst.

[1]; jeho vrcholy jsou body [0,0], oj,
Celkem tedy dostáváme rovnoběžník s vrcholy

4
г bc

e —»L a
■ DH- kde e = ± 1,— £ C

soiuněrný podle počátku souřadnic, neboť žádné dva z trojúhelníků
se nepřekrývají, jak vyplývá z jejich analytického vyjádření. Rovno-
běžníkem přitom rozumíme všecky body jeho obvodu i vnitřku.

4. Je dán čtyřstěn VABC. Označme q rovinu jeho stěny ABC.
Uvnitř hran VA, VB, VC zvolme po řadě body X, Y, Z tak, aby
rovina a určená těmito body byla rovnoběžná s rovinou q. Označme
dále Xv Yls Z1 po řadě středy úseček YZ, ZX, XY.

a) Dokažte, že úsečky AXl3 BY1} CZV mají společný bod 5.
b) Co vyplní všechny body S, když bod X probíhá vnitřek úsečky

VA?
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Řešeni (obr. 12). I. Trojúhelníky VYZ, VBC jsou stejnolehlé
vzhledem ke středu V stejnolehlosti; konstanta stejnolehlosti je

VY VZ VX _

k = = = -=- > 0.
VB VC VA

(1)

Proto obrazem bodu Xx v této stejnolehlosti je střed Ax úsečky BC,
takže body V, Xv
Ax leží v téže
přímce. Úsečka
AAX prochází tě-
žištěm T troj úhel-
nika ABC a také
úsečka XXx pro-
chází těžištěm U

trojúhelníka XYZ.
Bod U zřejmě leží
uvnitř úsečky VT.
Úsečky XXx, AAl
jsou rovnoběžné a
leží v rovině VAAv

£ při čemž jsou stej-
nolehlé vzhledem ke
středu V stejno-

lehlosti. Konstanta

stejnolehlosti vzhle-
VX

dem к (1) je —- =
VA

— k. Obrazem bo-

du U v této stejnolehlosti je bod T, neboť oba rozdělují po
řadě úsečky XX1} AA1 v poměru 2:1; je tedy

AAy = k • XXx.
Polopřímky UXly TA jsou zřejmě' nesouhlasně rovnoběžné, takže
úsečky UT, AXx mají společný jediný bod S, který leží uvnitř každé
z nich. Úsečky UX1} TA jsou stejnolehlé ve stejnolehlosti o středu S.
Konstanta této stejnolehlosti vzhledem ke (2) je

(2)
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UXx
e _ \xxx __ XXx"

\aAx 2kXXx
Bod 5 dělí úsečku UT v úsečky SU, ST, které jsou v poměru 1 : 2k;
takový bod je uvnitř úsečky UT jediný.

Záměnou bodů A, Ax, Xx, Y, Z po řadě za body B, Bx, Yx, Z, X
a dále za body C, Cx, Zx, X, Y dospějeme к výsledku, že týmž bodem
S procházejí také úsečky BYX, CZX. Tím je část a) úlohy dokázána.

II. Obráceně, ke každému bodu S, ležícímu uvnitř úsečky VT
(kde T je těžištěm trojúhelníka ABC), dovedeme určit rovinu a || q tak,
že její řez s daným čtyřstěnem je podobně jako v textu úlohy trojúhelník
XYZ; středy Xx, Yx, Zx jeho stran určují úsečky AX1} BYX, CZX,
které se protínají právě ve zvoleném bodě 5.

Důkaz. Zvolme uvnitř úsečky VT bod 5 a určeme průsečík Xx
polopřímky AS se stranou VAX trojúhelníka VAAX. Bod Xx leží
uvnitř úsečky VAJf neboť bod 5 leží uvnitř trojúhelníka VAAX. Во-
dem Xx položme rovinu o || q a označme XYZ řez roviny a s daným
čtyřstěnem stejně jako v textu úlohy. Bod Xx je středem úsečky
YZ, jak plyne ze stejnolehlosti úseček YZ, BC při středu V stejno-
lehlosti a z toho, že Ax je střed úsečky BC. Užijeme-li na t\XYZ
postupu uvedeného v odst. I, při témž významu bodů Xv Yx, Zx
pro trojúhelník XYZ, pak dospějeme právě к danému bodu 5 jako
průsečíku úseček VT, AXx, BYX, CZX. Tím je konstrukce roviny a
a příslušného trojúhelníka XYZ ke zvolenému bodu 6' provedena.

1
k' - -

2/s *TA

D. ÚLOHY II. KOLA, KATEGORIE B.

1. Je dané n + 1 kladných čísel nie váčších než jedna. Dokážte,
že medzi nimi existuj ú aspoň dve také, že ich rozdiel má absolútnu

kde n je dané prirodzené číslo.
1

hodnotu menšiu než

Řešení. Uvažujme dvě možnosti:

a) Alespoň dvě z daných čísel jsou si rovna. Potom rozdíl těchto
dvou čísel je nula a závěr v úloze vyslovený je správný.
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b) Nechť žádná dvě z daných čísel av a2,..., an+1 nejsou sobě
rovna. Seřaďme je podle velikosti od nejmenšího к největšímu, takže
platí (nejvýše je třeba vhodně zaměnit označení těchto čísel)

^ #2 ^ a3 ^ ^ Qfl dfi 1*

Důkaz provedeme nepřímo. Předpokládejme, že platí
1

ak+1 — a& I> — pro & = 1, 2, . .

takže potom absolutní hodnota rozdílu kterýchkoli dvou z našich

čísel (s různými indexy) jistě nebude menší než Ukážeme, že před-

poklad (1) vede ke sporu.

(1)., n,

.

Sečtením všech n vztahů (1) obdržíme an+i — ax n —, neboli
n

Дц+1 ^1 £” lj )•
a.1+ 1^1 +*<2i.

Podle předpokladu je aL > 0, takže podle vztahu (2) je a„+i > 1.
To je spor, neboť podle předpokladu je an+ \ 1.

Tím je nepřímý důkaz proveden.
Z výsledku a), b) plyne, že závěr dané úlohy je správný.

(Řešil s. J. Kolář, 2. tř. G, Brno, Křenová ul.)

(2)

J
2. Buďte dány dvě sobě rovné a kolmé úsečky AB, AC. Označme

X bod ležící uvnitř úsečky AB a Y bod ležící uvnitř úsečky AC;
střed úsečky XY označme Z.

Probíhá-li bod X vnitřek úsečky AB, bod Y vnitřek úsečky AC,
patří bod Z určitému geometrickému útvaru, jehož každý bod je
střed některé z úseček XY; určete tento útvar.

Řešení. Dokážeme, že [1] všechny body Z (obr. 13) vyhovující
úloze leží uvnitř čtverce ARTS, kde R, T, S jsou po řadě středy úseček
AB, BC, CA a dále, že [2] každý vnitřní bod tohoto čtverce je stře-
dem nějaké úsečky XY, kde X je určitý vnitřní bod úsečky AB a Y
určitý vnitřní bod úsečky AC.

[1] Zvolíme-li body X, Y po řadě uvnitř úseček AB, AC, potom
platí AX < AB, AY < AC. Z toho plyne, že střed M strany AX
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trojúhelníka AXY leží uvnitř úsečky AR a že osa strany AX padne
celá dovnitř poloroviny RTA (je to střední příčka trojúhelníka AXY
příslušná ke straně AY, takže je rovnoběžná s přímkou AY a tím
i s přímkou RT). Podobně zjistíme, že osa strany AY leží uvnitř
poloroviny STA. Označhne-li Z střed úsečky XY, procházejí jím
zřejmě osy stran AX, AY trojúhelníka AXY. Proto bod Z padne
dovnitř obou polorovin RTA, STA a dovnitř pravého úhlu CAB
(neboť vnitřní body úsečky XY leží uvnitř tohoto úhlu) a tím do-
vnitř čtverce ARTS.

[2] Mějme libovolný vnitřní bod Z čtverce ARTS. Protože bod
Z má být středem přepony určitého trojúhelníka AXY (kde YAX —

'= 90°), budou bodem Z procházet osy odvěsen AX, AY tohoto
trojúhelníka. Veďme bodem Z po řadě kolmice ZM, ZN к přímkám
AB, АС a označme po řadě M, N jejich paty. Bod M zřejmě padne
dovnitř úsečky AR, neboť bod Z jako bod vnitřku čtverce ARTS
leží uvnitř přímého pásu určeného rovnoběžkami AN, RT. Stejně
se dokáže, že bod N leží uvnitř úsečky AS. Je tedy

AM < AŘ, AŇ < AS, kde AR = AŠ = \AB. (1)
Na polopřímce AB určeme bod X tak, aby bylo AX = 2AM, dále
na polopřímce AC bod Y tak, aby bylo AY = 2AN, při čemž vzhle-
dem к vztahům (1) platí :,

AX < AB, AY < AB.

Body X, Y vyhovují tedy podmínkám úlohy, a protože podle odst.
[1] osy odvěsen trojúhelníka AXY (kde <£ YAX = 90°) procházejí
po řadě body M, N a tím i bodem Z, je Z střed úsečky XY.

Tím je dokázáno, že libovolný vnitřní bod Z čtverce ARTS je
středem úsečky XY vyhovující podmínkám úlohy.
(Řešil s. Jiří Vaniček, l.a tř. G, Praha XI.)

3. Dokážte: Ak pre reálne čísla a, b, c, d platí
ac + bd > ad + bc,

potom je buď a > b, c > d alebo a < b, c < d. Možno túto vetu
obrátiť?
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Riešenie. Nerovnosť postupné upravíme:
ac + bd > ad + bc,
ac — ad + bd — bc > 0,
a{c — d) — b(c — d) > O,
(a — b) (c — d) > 0.

Výraz (2) má byť kladný. Vznikol ako súčin dvoch činitelov a — b,
c — d. Ak má byť súčin dvoch činitelov kladný, je potřebné, aby boly
obidva činitele buď kladné alebo obidva záporné. Musí teda platiť
naraz buď

(1)

(2)

a — b > 0, c — d > 0, t. j. a > b, c > d (3)
alebo

a — b < 0, c — d < 0, t. j. a < b, c < d,
čo sme mali dokázať.

Obrátená veta by zněla: Ak platí a > b, c > d alebo a < Ъ, c < d,
platí aj ac + bd > ad + bc.

Dokaž prevedieme len pre případ a > b, c > d, druhý případ sa
dokáže podobné. Zo vťahov a > b, c>d dostaneme a — b > 0,
c — d > 0, takže tiež (a — b) (c — d) > 0, čo je nerovnosť (2),
ktorou zpátným postupom к tomu, který je uvedený na začiatku rieíe-
nia, upravíme Iahko na tvar (1). Tým je obrátená veta dokázaná.

(Riešil Emil Kovalski, l.c tr. II.G, Bratislava.)

4. Jsou dány dvě různé rovnoběžky m, n; uvnitř přímého pásu
jimi určeného jsou dány dva různé body К, L.

Sestrojte kosočtverec ABCD mající tyto vlastnosti: Body А, В
leží na přímce m, body C, D na přímce n, bod К na přímce AD a bod
L na přímce BC. Proveďte diskusi.

Řešení. I. Pomocná poučka: Jestliže obě dvojice rovnoběžek AB ||
j| CD, BC || AD určených rovnoběžníkem ABCD mají rovné vzdále-
nosti (velikosti v > 0), potom ABCD je kosočtverec (do toho zahrnu-
jeme i čtverec).

II. Předpokládejme, že jsme určili kosočtverec ABCD, který
má vlastnosti požadované úlohou. Označme v vzdálenost přímek
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т, nj ze souměrnosti kosočtverce podle jedné z jeho úhlopříček je
i vzdálenost rovnoběžek AD, BC rovna v. Proto kružnice k opsaná
kolem bodu К poloměrem v se dotýká přímky BC. Přímka BC je
tedy tečnou vedenou bodem L ke kružnici k.

III. Obráceně, existuje-li tečna t vedená bodem L ke kružnici k,
opsané kolem bodu К poloměrem v (což je vzdálenost daných přímek
m, n), pak protíná přímka t přímky m, n po řadě v bodech В, C, které
jsou vrcholy hledaného kosočtverce ABCD.

Důkaz. Budiž t tečna vedená bodem L ke kružnici k. Nejprve
dokážeme, že neplatí t || m (a tím ani t || n). Nechť je t || m\ protože
bod L leží uvnitř přímého pásu určeného přímkami m, n, leží přímka
t uvnitř tohoto pásu. Pak však vzdálenost bodu К (který také leží
uvnitř zmíněného pásu) od přímky t je menší než v (vzdálenost rovno-
běžek m, n). To však odporuje předpokladu, že t je tečna kružnice k
opsané kolem bodu К poloměrem v. Proto případ t || m nenastane
a přímka t protíná obě rovnoběžky m, n po řadě v bodech В, C. Přímka
ť || t vedená bodem К protne přímky m, n po řadě v bodech A, D.
Je w Ф я, г ф i' (tečna t nemůže splynout s přímkou ť, která pro-
chází středem kružnice k), takže existuje rovnoběžník ABCD. Ale
přímky AB || CD, BC || AD mají rovné vzdálenosti velikosti v, a proto
podle pomocné poučky je ABCD kosočtverec.

Odtud plyne bezprostředně řešení úlohy.

Řešitelnost úlohy závisí na existenci tečny t. Řešení je jediné, když
bod L padne na kružnici k neboli když KL = v (vzdálenosti rovno-
běžek m, n); řešení jsou dvě různá, jestliže bod L leží vně kružnice
k neboli když KL > v. Úloha je neřešitelná, jestliže bod L padne
dovnitř kružnice k neboli když KL < v.

E. ÚLOHY III. KOLA, KATEGORIE A.

1. V rovině komplexních čísel určete útvar, který vyplní obrazy
čísel Z vyhovujících vztahu

Z+ Z *=a-\Z\, (1)
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kde Z je komplexní číslo sdružené s Číslem Z a kde a je dané reálné
číslo. Proveďte diskusi pro všechny hodnoty čísla a.

Řešeni. Obraz čísla Z označme [Z]. Položme |Z| = r, takže je
Z = r(cos 99 + i sin 99), Z = r(cos (p — i sin 99); přitom se omezíme
na 99 vyhovující vztahu — тс < 99 5^ tz. Vztah (1) lze potom uvést
na tvar 2r • cos 99 = ar neboli

r(2cos 99 — o) = 0.
Odtud plyne: Buď r = 0, t. j. Z = 0 při každém a. Obráceně pro
Z = 0 je vztah (1) splněn při každém a. Obrazem je bod [0].

Nebo je 2cos 99 — a — 0 neboli
cos 99 = %a.

Proveďme diskusi pro různé hodnoty a:

[1] Pro \a\> 2 nemá vztah (2) reálné řešení, takže vztah (1) je
splněn v tomto případě pouze pro Z = 0; obrazem tohoto řešení
je bod [0].

[2] Pro 1 а I = 2 je řešení vztahu (2) buď 99 = 0 (při a — 2) nebo
99 = tz (při a — — 2). Obrazy těchto řešení leží na poloose reálných
čísel (včetně bodu [0]), a to na kladné poloose pro a — 2, na záporné
poloose pro a = — 2. Obráceně se snadno zjistí, že každý bod kaž-
dé z těchto poloos včetně bodu [0] splňuje vztah (1).

[3] Pro 0 5S I a | < 2 dostáváme ze vztahu (2) dvě různá řešení
99, — 99, takže včetně bodu [0] má každé řešení vztahu (2) za obraz
bod na jedné z obou různých polopřímek 05,, OS2, kde O je bod
[0] a 5, = [I a, £ ]/4 — a2], S2 = [| a, — l\r4 — a2]; obě polopřímky
jsou souměrně sdružené vzhledem к ose reálných čísel.

Obráceně ke každému bodu jedné z těchto polopFmek přísluší
komplexní číslo tvaru Z = [hak, ± ik ]/4 — a2] pro k ^ 0 a zřejmě
splňuje nejen vztah (2), ale i (1).

Shrnutí. Obrazy [Z] komplexních čísel Z, které vyhovují vztahu
(1), vyplní v případě, když je

LI] M > 2 bod [0],
[2] \a\ — 2 celou poloosu reálných čísel, a to kladnou pro a — 2

a zápornou pro a = — 2.

(2)
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(31 0 ^ | a f < 2 dvě (celé) různé polcpřímky o počátku [0], sou-
měrné sdružené vzhledem к ose reálných čísel; kladná poloosa reálných
čísel tvoři s těmito polopřímkami úhly cp, — q>, kde cos (± <p) — \a.
Pro a = 0 jsou to obě opačné poloosy imaginárních čísel o společném
počátku [OJ. Г

,.''v

2. a, P, у sú uhly trojuholníka. Dva z nich sú vyjádřené pomocným
uhlom (fi takže

a = <p + i 7Г, P = тс — 3q>.
Dokážte, že potom platí a > y.

Riešenie. I. Je у = тт — (a + P) — 2q> — |тг.
Súčasne musí platiť 0 < a < те, 0 < P < тг, 0 < у < r, t. j.

0 < Ф + \r, < iz, 0 < г — 3<p < тс, 0 < 2cp — Íjt < тс číže
— \л < (p < |тг, 0 < cp < |л, jn < <p < t. j.

|тг < 93 < £тг.
Připusťme, že je a y, t. j. (p + ^л < 2?? — |л. Potom je gre ^ <p,

čo je ale spor so vzťahom (1).
(Riešil s. Jozef Gruska, 4.b tr. G, Prievidza.)

Riešenie II. Nech je a ^ y, t. j. + ^л 2<p — |л, čiže |rr <C <p.
— Potom je а ^ |л, у ^ a čiže у |a a teda a + у ^ |л, čo je ale

spor (súčet uhlov v trojuholníku je л).
(Riešil s. Jiří Lexa, 4. tr. II. G, Bratislava.)

(1)

3. Jsou-li čísla аи av ..., an kladná, platí

(ai + йг + ... + an) i— + — + — + —) и2- (1)\Ql O 2 Wn/
Dokažte.

Kdy nastane rovnost ?

Řešeni. Víme, že pro kladná čísla a,-, aj platí 2; rovnost
nastane tehdy a jen tehdy, když a,- = aj.

1. Pro и = 2 je (ax -f o2)
Rovnost nastane tehdy a jen tehdy, když ax — a2.

(— + —) = 1 + — + — + 1 ^ 4.\ й, a 2/ a2 ai
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2. Platí-li (1) pro nějaké přirozené я, při čemž rovnost nastane
tehdy a jen tehdy, když ax — at = ... = an, označme аг + +

4- ... + = s, — + —— =*t a vztah (1) tedy zni
a2 a„

st ^ я2. Pak

(S + Ore+l) |ř +
= st +

\
1

st H (- an+i ř + 1 =
an+i

) ) + ■
an +1 °n + 1+ .. +

ufH-l «1 a2

•f í— + + 1 ^ n2 + 2я + 1 = (я + l)2,
\an+l an I

neboť každý z výrazů v závorkách je bud větší nebo roven dvěma,
při čemž na všech místech nastanou rovnosti, je-li a, = an+l pro
t = 1} 2j • • Ti»

Vztah (1) tedy platí pro každé přirozené číslo я a rovnost nastane
tehdy a jen tehdy, když ax »= aa = ... = an.

Jiné řešení. Provedeme-li násobení na levé straně vztahu (1),

dostaneme jednak členy tvaru — = 1, jichž je я, jednak členy tvaru
a ai
— (kde i Ф /), jichž je я8 — я. Vzhledem к tomu, že sčítání se řídí
aj
zákonem komutativním a asociativním, můžeme psát

(аг + aa 4- ... + a„) (—H f • • • +\ai at

\at aj \a8 aj \ i)Яп—l Q>n
=» я -f ;

a„-an

každý z výrazů v závorkách, jichž je \(ria — я), není menší než 2,
při čemž rovnost na všech místech nastane tehdy a jen tehdy, je-U
0{ — aj pro každé i a každé j. Odtud plyne

(aj + a2+ .
\ai a2 a„l

1

^ я + i (я2 - я) • 2 - я2,
při čemž rovnost nastane tehdy a jen tehdy, když aY «= aa~«■=...-■=* a„.

Jiné řešení. Užitím nerovnosti
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(Wci.+ btct + ... + bncn)2 ^
^ (&i8 + ř8a + ... + bn2) (cj2 + ca2 + . . . + cn2)y

kterou nejprve dokázal, a potom položil Ь,- = Vol", с,- = , úlohu
\“i

řešil s. Karol Boček, IV. tř. Polského G, Český Těšín.

4. Sú dané mimobežky a, fc, z ktorých je každá róznobežná s da-
nou .rovinou g. Zvolme bod X na priamke a a bod У na priamke
b tak, aby bolo XY || g. Aký geometrický útvar vyplní střed 5 úsečky
XY, ak bod X prebieha priamku a?

Riešenie. Priesečíky priamok a, b s rovinou g označme radom
X0, Y0, střed úsečky X0Y0 označme S0. Bodom У0 veďme priamku
c || a a bodom X rovinu £ || g; priesečík roviny £ s priamkou c označ-
me Z. Ak je $ ф q, neležia body X, Y, Z na priamke; keby ležaly
na priamke, ležaly by body X, Y, Z v rovině rovnobežiek a, c,

priamky a, b ležaly by tiež v tejto rovině a neboly by mimobežné.
Označme v případe £ ф q středy úsečiek XZ, YZ radom Q, R a ďalej
označme m priesečnicu rovin q, сг h= bc. Obidve roviny majú spoločný
bod Y0, ale nesplynú; preto sú róznobežné. Podlá známej vlastnosti
trojuholnlka je QS || YZ, RS || XZ, podlá vety zo stereometrie je
XZ || X0Y0, YZ || m; preto platí QS || m, RS || X0Y0.

Všetky body Q ležia na priamke d || a, ktorá patří rovině rovnobe-
žiek a, c a dělí na dve polovice pás roviny nimi obmedzený. Všetky
body R patria podlá istej vety z planimetrie priamke e roviny o,
ktorá prechádza bodom У0. Bod 5 teda patří jednak rovině r, ktorá
obsahuje priamku d a je rovnoběžná s priamkou m, a jednak rovině
a), ktorá obsahuje priamku e a je rovnoběžná s priamkou Х0У0.
Roviny z, a) majú spoločný bod S0, ale nesplynú, pretože m ф X0Y0.
Pretnú sa teda v istej priamke s, ktorá prechádza bodom S0. Je s || e,

pretože t || er, a rovina co přetne teda т, a vo dvoch rovnoběžkách.
Všetky středy 5 ležia na priamke 5. Priamka s je róznobežná s rovinou
o, pretože má s ňou spoločný bod S0 a neleží v nej [m ф -ЛТ0У0].

Naopak, ak je S' ф S0 lubovolný bod priamky s, vedieme ním
rovinu £ || q. Zrejme je £ ф q a rovina g přetne priamky a, b radom
v bodoch X, Y a podlá odst. a) leží střed 5 úsečky XY na priamke
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s. Priamka s je roznobežná s rovinou o a teda s rovinou £; preto je
S = S', čiže každý bod S' ф priámky s je stredom niektorej
úsečky XY || q.

Máme výsledok: Hladaný geometrický útvar je priamka s rózno-
běžná s rovinou q a zrejme mimobežná s každou z priamok a, b.

Poznámka. Niektorí riešitelia zvolili rovinu q za prvú priemetňu
a volili vhodné druhů a tretiu priemetňu. Odtial potom lahko doká-
žali, že hladaný geometrický útvar je priamka.
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