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Děkuji všem, kteří v kolektivní spolupráci přispěli ke zlepšení této
brožury. Zvláště děkuji soudruhům dr M. Fiedlerovi a doc. J. Holu-
bářovi z MÚČSAV, doc. dr K. Hrušoví a doc. jf. Vyšínovi z Vysoké
školy pedagogické > v Praze. Stejně děkuji vědeckým aspirantům
MÚČSAV s. I. Šimáčkové, VI. Macháčkovi a J. Sedláčkovi. Dále dě-
kuji -s. dr M. Kolibiarovi z Bratislavy za poslovenštění části textu.

Rud. Zelinka.
\

Za přispění spolupracovníků zpracoval Rudolf Zelinka

Schváleno výnosem ministerstva školství ze dne 15. prosince 1954,
č. 94 813/54-AI/l v prvním vydání jako pomocná kniha pro školy

všeobecně vzdělávací



I. К PRŮBĚHU III. ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

1. Ve školním roce 1953/54 se konala na našich školách
všeobecně vzdělávacích i odborných již po třetí soutěž, mate-
matická olympiáda. Tentokrát byla na rozdíl od předcházejících
let organisována ve čtyřech kategoriích А, В, C, D. V kategorii
A soutěžili žáci 11. roč. všeobecně vzdělávacích škol a žáci
3. a 4. roč. výběrových odborných škol. V kategorii В soutěžili
žáci 10. roč. všeobecně vzdělávacích a 2. roč. odborných škol.
V kategorii C soutěžili žáci 9. roč. všeobecně vzdělávacích
a 1. roč. odborných škol. V kategorii D soutěžili žáci 8. roč.
a jednoletých učebních kursů všeobecně vzdělávacích škol.

Novinkou tohoto ročníku byla kategorie D, která se týká
žáků s povinnou školní docházkou. Ministerstvo školství má
mimořádný zájem na zvýšení úrovně vyučovacích výsledků
v matematice i na škole 2. st., a proto byla letos pokusně za-
vedena kategorie D. Výsledky pokusu svědčí o tom, že o soutěž
měli velký zájem jak žáci osmých ročníků (a JUK), tak i jejich
učitelé, a lze říci, že soutěž v této kategorii dobře zakotvila.
V kategorii D se soutěže účastnilo na 7 600 žáků, kteří vy-
pracovali na 90 000 řešení zadaných úloh.

2. Soutěž pořádalo ministerstvo školství ve spolupráci
s Matematickým ústavem Československé akademie věd
(MÚČSAV) a s Československým svazem mládeže (ČSM).
Soutěž řídil Ústřední výbor matematické olympiády (ÚVMO)
spolu s krajskými a okresními výbory matematické olympiády
(KVMO, OVMO).

ÚVMO (adresa: Praha II, Žitná 25, tel. 241193) byl se-
staven takto:

\
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Předseda: Akademik Josef Novák.
Místopředsedové: Akademik Juraj Hronec, profesor přírodo-

vědecké fakulty Slovenské university v Bratislavě.
Dr Karel Koutský, profesor přírodovědecké fakulty univer-
šity v Brně.

Jednatel: RudolfZelinka, vědecký pracovník MÚČSAV v Praze.
Členové: Josef Čejna, tajemník Ústředního výboru ČSM,

Anton Dubec, odb. asistent vysoké pedagogické školy
v Bratislavě,
doc. dr Karel Havlíček z matematicko-fysikální fakulty
Karlovy university v Praze,
doc. Josef Holubář, vědecký pracovník MÚČSAV v Praze,
František Hradecký, odborný asistent vysoké pedagogické
školy v Praze,
doc. dr Karel Hrusa z vysoké školy pedagogické v Praze,
Miloš Jelínek, ústřední inspektor ministerstva školství,
Josef Krchňavý, učitel jedenáctileté střední školy v Košicích,
dr Milan Kolibiar, odborný asistent přírodovědecké fakulty
Slovenské university v Bratislavě,
Karel Rakušan, odborný asistent vyšší pedagogické školy
v Praze,
Anna Rakušanová, učitelka fakultní školy v Praze,
Vítězoslav Repáš, referent poverenictva školstva v Bratislavě,
Rudolf Tomica, profesor jedenáctileté střední školy v Brně.

Předsedy krajských výborů matematické olympiády byli:
dr Milan Kolibiar, odborný asistent přírodovědecké fakulty
Slovenské university v Bratislavě (kraje Bratislavský a Ni-
transký),
JosefHolčík, ředitel pedagogické školy v Brně (kraj Brněnský),
František Vacka, krajský školní inspektor v Českých Budějo-
vících (kraj Budějovický),
Josef Mend, profesor pedagogické školy v Hradci Králové
(kraj Hradecký),
Josef Svoboda, profesor jedenáctileté střední školy v Jihlavě
(kraj Jihlavský),
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Otakar Černý, profesor jedenáctileté střední školy v Gott-
waldově XI-Otrokovicích (kraj Gottwaldovský),
František Jenšík, krajský školní inspektor v Karlových
Varech (kraj Karlovarský),
dr Ján Jakubík, odborný asistent strojní fakulty Vysoké školy
technické v Košicích (kraj Košický a Prešovský),
Zdeněk Kalousek, profesor pedagogické školy v Liberci
(kraj Liberecký),
dr Josef Široký, odborný asistent vysoké školy pedagogické
v Olomouci (kraj Olomoucký),
Josef Andrys, profesor jedenáctileté střední školy v Ostravě-
Vítkovicích (kraj Ostravský),
dr Josef Honzák, profesor jedenáctileté střední školy v Par-
dubicích (kraj Pardubický),
Stanislav Koppelent, profesor pedagogické školy v Plzni
(kraj Plzeňský),
dr Josef Korous, odborný asistent vysoké železniční školy
v Praze (kraj Praha-město),
Ema Kasková, profesorka jedenáctileté střední školy v Bran-
dýse nad Labem (kraj Praha-venkov),
Josef Porcal, profesor pedagogické školy v Teplicích Lázních
(kraj Ústecký),
dr Cyril Palaj, profesor vysoké lesní a dřevařské školy ve
Zvolenu (kraj Žilinský a Bánskobystrický).

3. Soutěž probíhala v kategoriích В, C, D ve dvou a v kate-
gorii A ve třech kolech.

Soutěž I. kola, která měla studijní ráz, probíhala od 15. října
1953 do konce února 1954. Úspěšný řešitel I. kola musil roz-
řešit dobře alespoň 9 ze šestnácti zadaných úloh. O propagaci
soutěže a o pomoc žákům na škole v průběhu I. kola pečovali
školní referenti matematické olympiády z řad učitelů mate-
matiky.

Úspěšní řešitelé I. kola postoupili do II. kola soutěže, které
bylo pro kategorie В, C, D závěrečné; úspěšní řešitelé II. kola
v kategorii A postoupili do III. kola soutěže. Úspěšným ře-
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šitelem II. nebo III. kola je žák, který během čtyř hodin roz-
řešil ze čtyř zadaných úloh nejméně dvě s klasifikací alespoň
„dobrou".

Soutěž II. kola se konala v neděli 11. dubna 1953, a to pro
kategorie А, В, C v sídlech příslušných KVMO a pro kategorii
D v sídlech příslušných OVMO. Při této příležitosti uspořádaly
výbory matematické olympiády za účasti školské veřejnosti
besedy s účastníky II. kola, které měly ráz odborný a informa-
tivní; zvláště byly podány informace o studiu na vysokých
školách a o vhodné literatuře pro studium matematiky. Školská
oddělení národních výborů spolu s příslušnými výbory ČSM
se staraly o pedagogický dozor a umožnily soutěžícím návštěvu
kulturních podniků.

4. Soutěž III. kola se konala dne 8. května 1954 dopoledne
v matematickém ústavu matematicko-fysikální fakulty Karlovy
university v Praze II, Ke Karlovu 3, za účasti 71 soutěžících.
Po soutěži o 15. hodině se ve velké posluchárně konala beseda
s účastníky soutěže za přítomnosti široké veřejnosti vědecké,
vysokoškolské a školské.

Slavnostní besedu řídil předseda ÚVMO, akademik Josef
Novák, který uvítal přítomné, zhodnotil letošní III. ročník
matematické olympiády, poděkoval všem spolupracovníkům,
zvláště referentům na školách a členům výborů v okresech
a krajích, jakož i účastníkům soutěže za jejich vytrvalou práci.

Potom promluvil к přítomným akademik Eduard Čech,
který ve svém obsáhlém projevu účastníkům soutěže vysvětlil
význam studia matematiky, seznámil je s úkoly matematiky
v socialistické společnosti a ukázal jakého mohutného rozmachu
dosáhla matematika v Sovětském svazu. Zvláště pak podtrhl,
jak velkou pozornost věnují sovětští vědečtí pracovníci mládeži
a informoval účastníky soutěže o sovětské matematické litera-
túře, určené žákům středních škol. Na závěr ocenil úsilí ministra
školství s. Lad. Štolla, který se snaží, aby vědečtí pracovníci
v matematice přispěli svým dílem při řešení otázek studia na
středních a vysokých školách, zvláště technických.

Poté pozdravil účastníky besedy jménem I. sekce Česko-
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slovenské akademie věd její předseda, akademik Vojtěch Jarník.
Poukázal na vzájemné souvislosti jednotlivých vědních oborů
a osvětlil, jak svým dílem matematika přispívá ke zvýšení
hmotné a kulturní úrovně pracujících. Připomenul, že zvláště
ti z účastníků soutěže, kteří budou studovat technické obory,
se musí stále к matematice vracet, aby se naše výroba ne-
změnila v pouhou rutinu, ale aby se vědeckým výzkumem
stále zlepšovala. Stejně pak zase ti z účastníků soutěže, kteří se
věnují studiu matematiky, nesmějí zapomínat na to, že mate-
matika je jedním z významných prostředků к přetváření světa.

Zástupce Ústředního výboru ČSM tajemník s. Vladimír
Meisner ve svém projevu zdůraznil, jaké je poslání uvědomě-
lého svazáka v našem průmyslu a zemědělství a jakým pří-
nosem je pro výchovu mladých kádrů účast mládeže v mate-
matické olympiádě.

Kolem 17. hodiny se na besedu dostavil ministr školství
s. Lad. Štoll a jeho I. náměstek dr Frant. Kahuda. Na popud
s. Štolla se rozvinula diskuse, které se vedle účastníků letošní
soutěže účastnili zvláště posluchači vysokých škol. Diskutovalo
se na př. o zavedení základů integrálního a diferenciálního
počtu na střední školu, dále o významu studia deskriptivní
geometrie na střední škole a pod. Do diskuse zasáhli vedle
s. L. Štolla a s. dr Fr. Kahudy zvláště akademici Čech а Ко-
řinek. Akademik Kořínek konstatoval, že otázka zavedení
diferenciálního a integrálního počtu na střední školu je roz-
řešena nynějšími osnovami; je to látka, která svým charakterem
patří na vysokou školu a střední školu jí nelze zatěžovat.

Akademik Čech podotkl, že zvláště vysoké školy technické
se musí zamyslit nad náplní přednášek, zvláště pokud jde
o počáteční studium matematiky a fysiky na těchto školách,
kde často chybí řádná koordinace; přitom upozornil, že naše
vysoké školy potřebují nezbytně vlastní učebnice. Při řešení
těchto otázek se můžeme značně opřít o zkušenosti sovětské.

V závěru besedy krátce promluvil s. Lad. Štoll, který blaho-
přál přítomným olympionikům a zdůraznil, že všechny pro-
blémy, o nichž se diskutovalo, ministerstvo školství bude
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pozorně sledovat a řešit. Při zhodnocení nového školského
zákona upozornil na to, že naše všeobecně vzdělávací škola
se v budoucnu stane povinnou pro všechnu mládež do 17 let.
Otázka polytechnisace vzdělání (a s tím souvisící vyučování
deskriptivní geometrii) bude zevrubně studována; při tom
má vyučování matematice své důležité poslání. Dále je třeba
zdůrazňovat, že matematika je věda, která je přístupná všem
lidem. Svůj projev zakončil s. L. Štoll těmito slovy: „Prosím,
abyste svými schopnostmi pomáhali rozvíjet a šířit techniku,
která je nutnou podmínkou při výstavbě socialismu, a abyste
udělali matematiku majetkem všeho pracujícího lidu a šířili
lásku к matematice. Přeji vám hodně úspěchu v další práci“.

Na závěr besedy poděkoval akademik Josef Novák s. Lad.
Štollovi za jeho účast na besedě i za jeho projev. Dále zhodnotil
práci všech složek, které umožnily příznivý průběh III. roč-
niku matematické olympiády. Poděkoval ministerstvu školství
za hmotné zajištění soutěže a Matematickému ústavu ČSAV
za odbornou pomoc a poznovu učitelům matematiky na našich
školách a členům výborů matematické olympiády. Zvláštní
dík adresoval také školským oddělením národních výborů,
zvláště Ústřednímu národnímu výboru v Praze, za který
s. dr Ludmila Městková vzorně plnila úkoly hostitelské a organi-
sační.

II. ZPRÁVA O VÝSLEDCÍCH JEDNOTLIVÝCH KOL
SOUTĚŽE

A. Soutěž I. kola.

Z tabulky č. 1 je patrné, že v letošním ročníku byly kategorie
А, В, C mnohem rovnoměrněji zastoupeny, než tomu bylo
v ročnících předchozích. Značnou účast měly kraje slovenské
a kraj Ostravský, který spolu s Brněnským vykázal pěkné
výsledky. Účast dívek se v jednotlivých kategoriích pohybovala
mezi 25 % až 35 % z celkového počtu účastníků. Poměrně
slabá je stále účast odborných škol; přesto však mezi úspěšnými
účastníky III. kola kategorie A je pět žáků průmyslových škol.
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Tabulka č. 1

Přehled účastníků I. kola podle krajů
v kategoriích А, В, C*)

Kat. C CelkemKat. A Kat. В
Kraj

UP U P P U P u

Bratislava - Nitra 70 7 12137 3 2284 14

39Brno 30 11 8 52 11 121 30

České Budějovice 726 15 90 2918 7 46

Gottwaldov 27 11 21 7 20 68 18

Hradec Králové 239 49 18 69 14527 50

Jihlava 25 11 84 13 12314 7 31

Karlovy Vary 28 2 3215 4 9 8

Košice-Prešov 47 1 164 2 26958 4 7

Liberec 1 13 1 4 2

Olomouc 52 14 8 1014 4 45 26 %

Ostrava 47 17 59 14 18276 8 39

Pardubice 12 2 2 235 3 6 7

Plzeň 42 38 1 29 3 109
/

10 14

Praha-město 175631 10 6 18699 33

Praha-venkov 24 5 23 4 26 1 73 10

Ústí n. L. 27 3 214 2 8039 7

Žilina-B. Bystrica 31 235 7 5 161 1495

464 119 551 126 980 1995 33994Součty

*) P = celkový počet účastníků, U = úspěšných řešitelů.
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Účast žáků v kategorii D podle údajů z krajů jsme postihli
jen přibližně. Celkový počet účastníků v I. kole kategorie D
je 7 543 žáků, z čehož je 3 078 dívek; úspěšných řešitelů je
2 499 žáků, z čehož je 1 118 dívek. To jsou velmi slibná čísla,
zvláště když si uvědomíme, že letošní kategorie D byla za-
vedena po prvé a pokusně.

B. Soutěž II. kola.

Tabulka čís. 2 o účasti a úspěšných řešitelích II. kola v kate-
goriích А, В, C svědčí o tom, že soutěž je přísně výběrová.
Řada krajů vykazuje pěkné výsledky. Výsledky zároveň ukazují
na to, že klasifikace v I. kole byla provedena sice přísně, ale
spravedlivě. Spravedlivost klasifikace provedené krajskými
výbory MO prokazuje i klasifikace III. kola v kategorii A
(viz dále).

V kategorii D ze 2 144 účastníků II. kola (z toho bylo 969
dívek) bylo 1 852 úspěšných (z toho 802 dívek).

Prvních deset vítězů II. kola kategorií А, В, C v každém kraji
bylo odměněno cenami jednak peněžitými a jednak knižními.
Peněžité ceny v kategorii В byly odstupňovány od 100 Kčs
do 500 Kčs a v kategorii C od 100 Kčs do 200 Kčs. Prvních
deset vítězů II. kola kategorie D v každém okrese bylo odmě-
něno cenami ponejvíce knižními a částečně věcnými.

Dále uvádíme jmenný seznam úspěšných řešitelů II. kola
v kategoriích В, C podle jednotlivých krajů podle pořadí.
První číslice značí postupný ročník, zpravidla jedenáctileté střední
školy. Značka 5. J značí pátou jedenáctiletku; značka VPŠ značí
vyšší průmyslovou školu.

Pořadí úspěšných řešitelů II. kola v kategoriích В, C
(podle krajů)

Bratislava.
B. Emil Kovalský, 10, 2.J, Nitra; Pavel Petrovič, 10, 2.J,

Bratislava.
C. Ján Pišút, 9, 5.J, Bratislava; Miroslav Dubec, 9, 2.J,

Bratislava.
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Tabulka č. 2

Přehled účastníků II. kola podle krajů

Kat. G CelkemKat. A Kat. В
Kraj

P U P UP U P u

Bratislava-Nitra 2 14 87 4 3 2 4

11 10 30 24Brno 11 8 8 6

České Budějovice 12 3 28 217 6 15 6

3Gottwaldov 3 12 89 5

Hradec Králové 43 329 5 17 15 17 12

26Jihlava 12 307 11 10 124

2 2 8 7Karlovy Vary 4 2 23

Košice-Prešov 7 14 11 2

2 2Liberec 1 1 11

26Olomouc 4 2 14 7 4 13
.8

\
Ostrava 13 38 3416 13 814 8

Pardubice 3 2 2 6 41 1 1

Plzeň 210 146 1 1 3 9

Praha-město 10 15 6 32 276 16 6

Praha-venkov 24 3 9 54 1

Ústí n. L. 2 2 3 2 1 7 63

Žilina-B. Bystrica 26 5 3 1 121 6

Součty 114 70 120 318 23399 84 64
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Brno.
B. Tomáš Zemčík, 2b, VPŠ chem., Brno-Husovice; Jaromír

Jakeš, 10b, Brno, tř. kpt. Jaroše; František Neumann, 10b,
J, Brno-Husovice; Josef Zouhar, 10, Blansko; Věra Mikschová,
10, Brno-Tábor; Jana Trnková, 10, Brno-Tábor.

C. Jiří Kadlec, 9, Bystřice p. Pernšt.; Karel Krásenský, 9,
Boskovice; Dagmar Košťálová, 9c, Brno, Antonínská 3;
•Lubomír Ohera, 9, Znojmo; Jan Dvořáček, 9a, Brno, tř.
kpt. Jaroše; Zdeněk Dvořáček, 9a, Brno, tř. kpt. Jaroše;
Miloslava Jakešová, 9c, Brno-Královo Pole; Pavel Břeň,
9a, Brno-Tábor; Jiří Suchomel, 9a, Břeclav; Danuše Krátká,
9a, Brno-Tábor.

České Budějovice.
B. František Hrdlička, 10a, České Budějovice, Česká ul.;

Pavel Kostohryz, 10b, České Budějovice, Česká ul.; Karel
Havlíček, 10b, České Budějovice, Česká ul.; Jiří Hájek, 10b,
Strakonice; Jiří Ochozka, 10b, České Budějovice, Česká ul.;
Jiří Šváb, 10a, Tábor; Zdeněk Mrkvička, 10b, Strakonice;
František Fučík, 10b, České Budějovice, Česká ul.; Eva
Divišová, 10a, Strakonice; František Sova, 10b, Strakonice;
Bohumil Polesný, 10b, České Budějovice, Česká ul.; Anna
Protivová, 10a, Strakonice.

C. Vladimír Zeman, 9b, Strakonice; Anna Vodáková, 9b,
Strakonice; Jaromír Menčík, 9a, Strakonice.
Gottwaldov.

B. Vladimír Kučera, 10a, Kyjov; Milan Ко tas, 10a, Kyjov;
Oldřich Vaněk, 10a, Kyjov.
Hradec Králové.

B. Josef Mencl, 10, Hradec Králové; Milan Mělká, 10,
Hradec Králové; Jiří Král, 10, Náchod; Josef Matouš, 10,
Nový Bydžov; Jindřich Gottesmann, 2, VPŠ strojní, Do-
bruška; Jiří Masák, 10, Nový Bydžov; Bohumil Semrád, 10,
Nový Bydžov; Jiří Pokorný, 10, Rychnov n. Kněžnou; Václav

12



Souček, 10, Rychnov n. Kněžnou; Jiří Šrogl, 10, Rychnov
n. Kněžnou; Josef Hepnar, 2, VPŠ strojní, Dobruška; Miroslav
Janatka, 10, Hradec Králové; Josef Snútka, 10, Jičín; Boris
Vošvrda, 10, Jičín; Hana Kolářová, 10, Dvůr Králové n. Lab.

C. Milena Pšeničková, 9, Jičín; Ivo Volf, 9, Dvůr Králové
n. Lab.; Miloslav Janák, 1, VPŠ elektrotechn., Jičín; Josef
Hepnar, 9, Náchod; Igor Holub, 9, Jičín; Jaroslav Šlesinger,
9, Rychnov n. Kněžnou; Juraj Konečný, 9, Dvůr Králové
n. Labem; Jaroslav Brandejs, 9, Rychnov n. Kněžnou; Jiří
Viedičan, 1, VPŠ elektrotechn., JičJn; Zbyněk Hůlek, 9,
Náchod; Naděžda Křížová, 9, Rychnov n. Kněžnou; Ludmila
Žabokrtská, 9, Rychnov n. Kněžnou.

Jihlava.
B. Miloslav Smrž, 10, Třebíč; Eva Svobodová, 10, Třebíč;

Marie Duffková, 10, Pelhřimov; Milan Šulista, 10, Telč;
Josef Heralecký, 10, Třebíč; Dušan Vančura, 10, Pelhřimov;
Marie Šerá, 10, Pelhřimov; Marie Kreutzerová, 10, Pelhřimov;
Věra Sládková, 10, Pelhřimov; Ludmila Stejskalová, 10,
Pelhřimov.

C. Jaroslav Nadrchal, 9, Telč; Vlastimil Čevela, 9, Třebíč;
Antonín Chytka, 9, Třebíč; Karel Liška, 9, Třebíč; Bohumil
Kadlec, 9, Telč; Zdeňka Dvořáčková, 9, Telč; Jana Išová, 9,
Třebíč; Jiřina Divišová, 9, Třebíč; Miroslav Chlumský, 9,
Třebíč; Petr Dvořák, 9, Třebíč; Eva Kozlová, 9, Třebíč;
Karel Navrátil, 9, Třebíč.

Karlovy Vary.
B. Imrich Kleinmann, 10, Karlovy Vary; Ivan Zůček, 10,

Karlovy Vary.
C. Jitka Žáčková, 9, Karlovy Vary; Jindřich Shejbal, 9,

Sokolovo.

Košice-Prešov.

B. Ján Bilička, 10, 3.J, Košice.
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Liberec.

В. Václav Veselý, 10, 2.J, Liberec-Horní Růžodol.
Olomouc.

B. Jan Hrubeš, 10, l.J, Olomouc; Radomír Geryk, 10,
Přerov; Jiří Slaměník, 10, l.J, Olomouc; Vladimír Poštulka,
10, l.J, Olomouc; Jindřich Vožda, 10, Prostějov; Jana Můro-
ňová, 10, l.J, Olomouc; Vlasta Rendová, 10, l.J, Olomouc;
Vladimír Igielski, 10, 1. J, Olomouc; Lubomír Hanečka, 10,
Prostějov; Emil Zavadil, 10, Přerov; František Ponížil, 10,
Prostějov; Luboš Toušek, 10, l.J, Olomouc; František
Klvaňa, 10, Přerov; Josef Hasa, 10, Prostějov.

C. Vladimír Igielski, 9, l.J, Olomouc; Boris Vystavěl,
9, Prostějov; Petr Vrublovský, 9, l.J, Olomouc; Jan Bohm,
9, l.J, Olomouc; Josef Krist, 9, l.J, Olomouc; Bohumil
Žondra, 9, Prostějov; Olga Melkesová, 9, l.J, Olomouc.
Ostrava.

B. Ehrfried Lasert, 10, Opava; Tadeusz Kornuta, 10,
Polská J, Český Těšín; Petr Popov, 10, Ostrava I, Matiční;
Radomír Vontor, 10, Ostrava I, Matiční; Mirko Novotný, 10,
Slezská Ostrava; Lumír Bardon, 10, Opava; Oldřich Cábel,
10, Opava; Hana Svobodová, 10, Slezská Ostrava; Adolf
Chodura, 10, Polská J, Český Těšín; Ivan Machač, 2, VPŠ
chem., Ostrava; Zdeněk Turzík, 10, Český Těšín; Alena
Hustá, 10, Český Těšín; Petr Chýlek, 10, Ostrava I, Matiční.

C. Pavel Michálek, 9, Opava; Josef Popelář, 9, Opava; Ivo
Petr, 9, Frenštát; Zdeněk Volný, 9, Opava; Jiljí Krejčí, 9,
Opava; Zdeněk Tomášek, 9, Opava; Květa Novotná 9, Slezská
Ostrava; Lumír Palička, 9, Opava.

Pardubice.

B. Karel Metzel, 2a, VPŠ elektrotechn., Pardubice; Bohu-
slav Sekerka, 10b, Pardubice.

C. Břetislav Novák, 9b, Chrudim.
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Plzeň.
B. Jiří Bystrický, 10, Stříbro.
C. Miroslava Praisová, 9b, Sušice; Marie Kroupová,

9b, Sušice.
Praha-město.

B. Zdeněk Eremiáš, 10, 2.J, Praha II, Štěpánská; Ladislav
Kryška, 10, 2.J, Praha II, Štěpánská; Jiří Vaniček, 10, 13.J,
Praha XI, Kubelíkova; Zdeněk Bažant, 10, 6.J, Praha 6,
Bílá 1; Václav Vaněček, 10, 17.J, Praha 14, Křesomyslova;
Jaromír Janko, 10, 2.J, Praha II, Štěpánská; Bedřich Hejda,
10, 15.J, Praha 12, Londýnská; Jiří Soukup, 10, 2.J. Praha II,
Štěpánská; Bedřich Velický, 10, 4.J, Praha 4, Košíře, Nad
Kavalírkou; Karel Budínský, M2b, VPŠ strojní, Praha 16,
Presslova; Jiří Štěpánek, 10, ll.J, Praha 10, Voděradská;
Hana Teplá, 10, 8.J, Praha 7, Dimitrovovo nám.; Petr Vogel,
10, 7.J, Praha 7, Strossmayerovo nám.; Michal Baťka, 10,
17.J, Praha 14, Křesomyslova; Jiří Dobrylovský, 10, 14.J,
Praha 12, Korunní.

C. Pavel Doktor, 9, 4.J, Praha 4, Nad Kavalírkou; Jan
Kadlec, 9, 4.J, Praha 4, Nad Kavalírkou; Jan Vraný, 9, 19. J,
Praha 15, Školní; Miloslav Šťastný, 9, 18.J, Praha 14, Ohradní;
Petr Friš, 9, 7.J, Praha 7, Strossmayerovo nám.; Miloš Dostál,
9, 20.J, Praha 16, Nikose Belojannise.
Praha-venkov.

B. Jiří Zágora, 10, Benešov; Vladimír Kohout, 10, Kralupy
n. Vit.; Milan Kočandrle, 10, Říčany.
Ústí nad Labem.

B. Vladimír Vaněk, 10a, Teplice; Leo Boček, 10, Lito-
měřice; Vladimír Fuchs, 2, VPŠ elektrotechn., Děčín.

C. Otakar Leminger, 9a, Ústí n. Labem.
Žilina-B. Bystrica.

B. Boris Rajek, 10, Čadca; Pavel Kňaze, 10, 1. J, Žilina;
Marta Paštéková, 10, Čadca.

C. Lubomír Jakuš, 1, VPŠ elektrotechn., Banská Bystrica.
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C. Soutěž III. kola kategorie A

Soutěže III. kola se účastnilo všech 71 úspěšných účastníků
z II. kola kategorie A; mezi nimi bylo 10 dívek. Z vyšších
průmyslových škol se dostalo do závěrečného kola 7 žáků;
z nich se 5 úspěšně umístilo. Podmínkám soutěže vyhovělo
45 účastníků; mezi nimi je všech 7 účastníků ze Slovenska.
Velmi pěkně se umis čili soudruzi z krajů Brněnského, Brati-
slavského a Ostravského.

Prvních dvacet úspěšných řešitelů III. kola se stalo podle
organisačního řádu matematické olympiády vítězi. Jejich
jmenný seznam uvádíme.

Pořadí vítězů III. kola kategorie A
matematické olympiády

1. Oldřich Buchta, 11, 3. J, Brno-Tábor.
2. Juraj Virsik, 11b, 1. J, Bratislava, Červenej armády 16.
3. Michal Bordováč, 3E, VPŠ elektrostrojní, Partizánske.
4. Hana Konrádová, 11 J, Boskovice.
5. Martin Černý, 11b, 2. J, Praha 2, Štěpánská 22.
6. Jaroslav Rygl, 11b, J, Ostrava I, Matiční.
7. Frant. Neumann, 10a, J, Brno, Elgartova 3.
S. Otakar Vavroch, 11b, 1. J, Plzeň, Odborářů.9.Jozef Brody, 11, 2.J, Bratislava, Kulíškova.

10. Jan Kolář, 11, 7.J, Brno, Táborská 185.
11. Jiří Prokop, 11, l.J, Brno, Antonínská 3.
12. Jiří Baránek, 1 lbj, Ostrava I, Matiční.
13. Jaroslav Helštýn, 1 lbj, Ostrava I, Matiční.
14. Jaromír Jakeš, 10b, 2. J, Brno, kpt. Jaroše.
15. Josef Dvorčuk, lla,J. Nový Jičín.
16. Ladislav Šubrt, 11, 4.J, Praha 4, Nad Kavalírkou.
17. Jaroslava Vlková, lij, Strakonice.
18. Jiří Voleník, llbj, Rokycany.
19. Jindřich Adam, 3d, VPŠ horní, Ostrava I, Kratochvílova 7.
20. Teo Sturm, 11, Hviezdoslavova, J, Dvůr Králové.
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Dále se v soutěži III. kola úspěšně podle pořadí
umístili:

Václav Vít, 11b, J, Č. Budějovice, Česká; Vlád. Jezdinský,
11a, J, Klatovy; Milan Hejný, 11b, J, Martin; Jiří Doležal,
11, J, Havlíčkův Brod; Jan Peřina, lib, 15.J, Praha 12,
Londýnská; Ilja Votava, 11b, J, Ostrava I, Matiční; Juraj
Baštýr, 11b, l.J, Bratislava, Červenej armády 16; Vojtěch
Kopský 11,J, Ústí n. Lab.; Josef Perlesák, 11b, J, Rokycany;
Ladislav Dubinský, 11b, J, Opava, Komenského; Slav.
Burýšek, 11, J, Gottwaldov-Otrokovice; Július Betko, 4b,
VPŠ energet. a elektrotechn., Bratislava, Zochova ul. 11/b;
Štefan Znám, 11a, J, Rimavská Sobota; Arnošt Nekvinda,
4b, VPŠ horní, Duchcov; Dagmar Mullerová, 11, 21.J,
Praha 16, U Santošky; Přemysl Šedivý, 11, J, Rychnov n. Kn.;
Jiří Grygar, 11, 9.J, Brno-Husovice, Elgartova 3; Tomáš
Jebavý, 11, J, Písek; Tomislav Šimeček, 11, 14. jazyková J,
Praha 12, Korunní 2; Marie N. Magerová, 11a, J, Klatovy;
Vlasta Hustá, 11a, J, Český Těšín; Bedřich Wenig, 3a, VPŠ
strojní, Opava; Ivan Saxl, 11, J, Chrudim; Jiří Kratochvíl,
llbj J, České Budějovice, Česká ul.; Vlád. Kout, 11, J, Cheb.

Všichni vítězové III. kola byli odměněni čestnými cenami
ministerstva školství. Peněžité ceny byly odstupňovány od
300 Kčs do 1 000 Kčs. Dále byly uděleny ceny knižní.

Všichni účastníci III. kola dostali od Matematického ústavu
ČSAV darem soubor brožur „Populární přednášky o mate-
matice” (vydalo Státní nakladatelství technické literatury,
Praha II, Spálená 55); jsou to přednášky, které pořádají
sovětští vědečtí pracovníci pro žáky středních škol.

Na závěr uvádíme seznam knižních darů MŠ úspěšným
řešitelům II. a III. kola kategorií А, В, C (každý účastník dostal
několik z těchto knih):

V. Jarník: Úvod do diferenciálního počtu; V. Jarník:
Diferenciální počet - pokračování Úvodu do diferenciálního
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počtu; V. V. Štěpánov: Kurs diferenciálních rovnic; E.
Kraemer: Analytická geometrie; K. Čupr: Numerické řešení
rovnic; K. Čupr: Matematické hry a zábavy; J. Výšin:
Elementární geometrie I; H. Steinhaus: Matematický kaleido-
skop; P. S. Alexandrov: Úvod do obecné theorie množin
a funkcí; Perelman: Zajímavá mechanika; St. Horák: Elipsa.

III. STRUČNÉ ZHODNOCENÍ IIL ROČNÍKU
MATEMATICKÉ OLYMPIÁDY

A. Kategorie А, В, C

Řešení, podaná v letošní soutěži v kategoriích А, В, C,
ukazují značný vzestup v kvalitě práce i ve znalostech žáků.
Řada prací svědčí o tom, že za vedení učitelů matematiky
se žáci dovedou vystříhat těch nejzávažnějších chyb, jichž se
dopouštěli v předchozích soutěžích. Žáci na př. již většinou
chápou význam obracení postupu, vědí, co je to nutná a po-
stačující podmínka, třebaže jí v této slovní formulaci neužívají,
a pod. Rovněž diskuse a vůbec kvalita řešení geometrických
úloh se v řadě případů podstatně zlepšily. Ukazuje se, že žáci
jsou s to všechny tyto problémy pochopit a zavedených pojmů
správně používat. Tím však všechny závažné nedostatky dosud
nezmizely a bude nutné, aby všichni učitelé matematiky,
zvláště pak školní referenti MO, dále upozorňovali žáky na
podobné nedostatky a jejich práci pozorně sledovali.

Musíme si dále uvědomit, že žáci, kteří se účastnili letošní
soutěže v jednotlivých kategoriích, byli (vzhledem к novému
školskému zákonu) o rok mladší než loni. Proto bylo nutné
zúžit nároky na obtížnost úloh soutěže. To se však projevilo
velmi kladně v kategoriích A, B, jednak v počtu řešitelů,
jednak v kvalitě a počtu podaných řešení (viz tabulku 1 na
str. 9). Ačkoli letošní soutěž podchytila tři ročníky žáků vý-
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bérových škol (proti čtyřem loni), přesto počet účastníků
v I. kole vzrostl asi o 39 % a počet úspěšných řešitelů asi
o 41 %. To je velmi potěšující fakt, zvláště když si uvědomíme,
že škola musila překonávat řadu nesnází, které vyplývaly ze
změn učebních osnov. Dále je pozoruhodné, že počet účastníků
v kategorii C je skoro dvojnásobný ve srovnám s kategoriemi
A, B. Nesmíme ovšem při tom opominout zajímavé pozorování,
že jen asi 10 % účastníků I. kola v kategorii C prošlo úspěšně
tímto kolem. To svědčí o tom, že mnohé z úloh byly pro
řešitele nesnadné, a dále o tom, jak velké obtíže musili v tomto
školním roce překonávat nejen žáci, ale i učitelé v 9. ročníku.

Rovněž klasifikace úloh se v jednotlivých krajských vý-
borech MO prováděla mnohem rovnoměrněji. O tom svědčí
především soutěž III. kola kategorie A, které se účastnilo
71 žáků a z nich 45 bylo úspěšných; počet účastníků III. kola
vzrostl proti loňsku o 41 % a dosáhl skoro maxima (t. j. čísla
80) přípustného podle organisačního řádu soutěže. Počet
účastníků vzrostl proti loňské soutěži o 24 %.

Řešení mnohých žáků přesvědčivě prokazují, že naši žáci
začínají podrobně studovat učebnice matematiky, žáci na
mnohých místech (i v řešeních ve III. kole) citují mate-
matické věty a poukazují na úvahy z učebnic. To je velmi
potěšující fakt a svědčí o tom, že většina žáků dovede mezery
ve svých vědomostech snadno doplňovat vlastním studiem;
je to zároveň vhodná příprava na samostatné studium z učeb-
nice na vysoké škole.

Přes klady, o nichž jsme se zmínili, jeví se v žákovských
řešeních stále řada nedostatků, na něž jsme upozorňovali
již dříve (na př. v brožurách a v letáku MO). Malou ukázkou
těchto nedostatků je na př. diskuse prováděná řešiteli při
řešení úlohy č. 1 ve III. kole kategorie A (viz str. 60); skoro
60 % řešitelů se dívalo na rovnici danou v této úloze jen
jako na rovnici kvadratickou a vůbec neuvažovalo o případu
a = 0, kdy daná rovnice je lineární. Ze zbývajících 40 %
řešitelů mnozí к této rovnici také nedospěli a případ a 0
předem vylučovali proto, že v tomto případě nemohli užít
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známého vzorce pro výpočet kořenů kvadratické rovnice
o jedné neznámé. Na tomto příkladě by měli učitelé poučit
své žáky o způsobu provádění diskusí; jiným instruktivním
příkladem je úloha č. 14 v I. kole kategorie C (str. 103).

V řešení geometrických úloh se sice jeví značný pokrok,
mnohdy však nejsou příslušné důkazy nebo diskuse, a zvláště
pak slovní výklad, ještě stále dosti uspokojující; bude třeba,
aby se žáci naučili přesnému, stručnému a jasnému myšlenkově
souvislému vyjadřování, aby ovládli geometrickou termino-
logii. Rozhodně jsou řešení geometrických úloh, zvláště
vzhledem к přesnému vyjadřování v mateřštině, značně
pozadu za řešením úloh aritmetických a algebraických. Je třeba,
aby si žáci při řešení konstruktivních úloh (zvláště stereo-
metrických) zvykli na obvyklý postup, jehož při řešení těchto
úloh užíváme. Především provádíme rozbor, při němž před-
pokládáme, že je úloha řešitelná; poté stanovíme nutné pod-
minky, které musí hledaný útvar splňovat. Pak provedeme
konstrukci a v diskusi zkoumáme, za kterých předpokladů jsou
nutné podmínky postačující, a pak dokazujeme, že útvar,
který jsme takto sestrojili, skutečně vyhovuje všem pod-
mínkám úlohy. Závažné je také, aby si při řešení stereometric-
kých úloh žák dovedl nakreslit nebo narýsovat vhodný pomocný
náčrt, který by mu usnadnil řešení úlohy.

Krajské výbory MO propagací soutěže, v otázce zlepšování
kvality práce žáků, při opravách řešení úloh a vůbec v celé
organisaČní práci vykonaly velké dílo. Někteří členové krajských
výborů prováděli obětavě instruktáže učitelů i žáků, po případě
za nimi i zajížděli; značnou péči věnovali soutěži zvláště výbory
ostravský, brněnský, českobudějovický a jihlavský. Tato práce
se většinou ukázala i ve výsledcích žákovských prací. Proto
uznání pracovníkům matematické olympiády za vykonanou
práci, jež vyslovili ministr školství s. Lad. Stoll a akademik
Josef Novák na besedě dne 8. května 1954, patří především
členům krajských a okresních výborů MO a jejich spolu-
pracovníkům. Věříme, že takto spojeným úsilím všech školských
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složek, především učitelů praktiků, se nám v budoucnu podaří
podstatně zlepšit vyučovací výsledky v matematice na našich
školách a zajistit pro naše hospodářství a vědu mladé a stále
kvalitnější odborné kádry.

B. Jak hodnotily soutěž okresní výbory
matematické olympiády

Zatím co první dva ročníky naší matematické olympiády
byly určeny žákům výběrových škol, rozšířil se v třetím
ročníku této soutěže okruh řešitelů i na osmé ročníky osmiletek
a jedenáctiletek. Kategorie D, určená pro žáky těchto tříd,
byla tedy jakýmsi pokusem, a to pokusem ve školním roce
ne právě vhodném, neboť všichni žáci i učitelé byli plně za-
městnáni spoustou jiných úkolů v souvislosti se školskou re-
formou z r. 1953. Přesto však matematická olympiáda splnila
většinou všude své průkopnické poslání i mezi těmito mladými
adepty matematické vědy.

V Ústředním výboru matematické olympiády se sešla celá
řada připomínek z jednotlivých krajů a okresů, které jsme
peclive prostudovali a pnnasime zde nektere zavaznejsi pn-
pomínky organisátorů soutěže v kategorii D. V dopisech je
obsaženo mnoho ostré kritiky, přesto však se nevyskytl ani
jediný hlas, který by mluvil proti organisovár.í soutěže v osmé
třídě v dalších ročnících matematické olympiády. Naopak
všichni tuto myšlenku schvalují jako prostředek pro pod-
chycení zájmu žáků o matematiku.

V I. kole řešili žáci 16 příkladů, v nichž byla zastoupena
aritmetika i geometrie. Příklady geometrické se ukázaly
úzkým profilem, což je obrazem té skutečnosti, že vyučování
geometrii na našich školách není dosud na takové výši, jak
bychom si přáli. Někteří řešitelé si nejsou vědomi nutnosti
dokazovat matematickou poučku a řešení geometrických úloh
redukují na pouhé rýsování. Není tedy divu, že za tohoto
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stavu si učitelé stěžují, že některé příklady (zvláště geo-
metrické) byly pro žáky velmi těžké. Tyto připomínky nelze
brát na lehkou váhu, je nutno se nad nimi zamyslit a hledat
prostředky к nápravě. Zapojíme-li do matematické olympiády
povinně příliš mnoho žáků (i průměrných) kvůli zdánlivé
masovosti, nebudeme jistě s výsledky soutěže spokojeni.
Slabším žákům se ovšem soutěžní úlohy jevily obtížné, neboť
jsou to úlohy jiného typu, než jaké dáváme za školní práci.
Některé okresní výbory matematické olympiády (na př. České
Budějovice, Tábor) se výslovně přimlouvají, aby úroveň
olympijských problémů nebyla snižována, nýbrž aby byla
zvyšována úroveň účastníků soutěže. Toho samozřejmě
docílíme individuální prací s jednotlivými řešiteli, které pří-
pádně zapojíme do zájmového kroužku, zdůrazníme jim partie
z učebnice, které by si měli zvláště prostudovat, případně jim
doporučíme ještě další odbornou literaturu. Tak jistě po-
stupovala řada dobrých učitelů, jak o tom svědčí korespondence
z okresů. Z Ústeckého kraje nám na př. píší, že v souvislosti
s matematickou olympiádou byla tam na knižním trhu všechna
doporučovaná literatura pro řešitele vyprodána. S obtížností
příkladů úzce souvisí otázka, zda by neměl být zmenšen
počet příkladů v prvním kole v kategorii D. V několika dopisech
se s tímto názorem setkáváme; tato restrikce by žákům umož-
nila, aby si lépe prostudovali látku к jednotlivým příkladům,
ale takovýto žákovský elaborát by zase nemohl být celkem mno-
hostranným obrazem řešitelových vědomostí. Autoři olympij-
ských příkladů si napříště musí vzít poučení z připomínky,
aby lépe časově koordinovali úlohy s látkou, která se právě
ve škole probírá.

Pro klasifikaci úloh matematické olympiády máme ovšem
jiné měřítko než to, jímž se klasifikují školní písemné práce,
a řídíme se klasifikačním řádem vydaným Ústředním výborem
matematické olympiády. Při namátkové kontrole žákovských
prací z různých okresů jsme zjistili, že známkování bylo
prováděno velmi různorodě; někde se opravovatelé úlohy
spokojovali s minimálním zápisem, tolerovali i závažnější
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chyby a klasifikovali velmi mírně, takže měli řadu „úspěšných
řešitelů". Takoví žáci jsou v neoprávněné výhodě proti těm,
kteří pracovali v těch okresech, kde se klasifikovalo přísně
a spravedlivě (na př. okresní výbor matematické olympiády
v Pardubicích). Dokud nebude záruka, že se v celé republice
klasifikuje stejně spravedlivě a dokud nezavládne názor, že
úspěch v matematické olympiádě v kategorii D je rovnocenný
se závěrečnou zkouškou z matematiky na osmiletce, nemůžeme
zatím připustit návrhy některých okresů, aby úspěšným
řešitelům byly prominuty přijímací zkoušky z matematiky
na školy vyšších stupňů. Ostatně II. kolo matematické olympi-
ady má trochu jiný charakter než školní písemná zkouška.
Četli jsme stížnosti na opisování při II. kole, což bylo vlastně
nepřímo podporováno dovolením, aby si řešitelé vzali s sebou
do soutěžní místnosti učebnice a sešity. Však také okresní
výbor matematické olympiády v Českých Budějovicích se nad
tím pozastavuje a připomíná, že takové povolení působí na
tomto stupni přímo nevýchovně. Po zkušenostech získaných
v tomto pokusném ročníku s kategorií D bude snad napříště
klasifikace rovnoměrnější.

O matematické olympiádě se ve školním roce mluvilo hodně
na žákovských shromážděních, na SRPŠ i na aktivech učitelů.
Tak na celookresním učitelském aktivu 13. IV. 1954 v Levicích
na Slovensku se diskutovalo o matematické olympiádě a o pro-
pagaci této soutěže v příštím roce. Ministerstvo školství a krajské
orgány se o soutěž celkem dobře propagačně starají; naproti
tomu v některých dopisech (na př. Bardějov, Pardubice)
čteme, že výbory ČSM nepomohly při propagaci a organisaci
soutěže, ačkoliv Ústřední výbor ČSM je jedním z pořadatelů
matematické olympiády. Ústřední výbor ČSM je si vědom
této situace a činí určitá opatření, kterými chce napříště
vzbudit zájem o matematickou olympiádu u svých podřízených
složek. Protože příklady III. ročníku matematické olympiády
vyšly na zvláštním letáku, ztratil časopis „Matematika ve
škole", který v minulých ročnících úzce spolupracoval s mate-
matickou olympiádou, kontakt s touto soutěží. Některé okresy
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(na př. okresní výbor matematické olympiády v Olomouci)
doporučují, aby se v „Matematice ve škole“ a zvláště v „Roz-
hledech matematicko-přírodovědeckých“ věnovala pozornost
problematice olympijských úloh. Zvláště „Rozhledy“ by zde
mohly vykonat mnoho užitečného, poněvadž se v dostatečném
množství mohou dostat mezi žáky. Po stránce propagační
stojí za zmínku připomínka okresního výboru matematické
olympiády v Sokolově, aby olympiádě v kategorii D věnoval
vhodné relace čs. rozhlas ve svých ranních pětiminutových
hlášeních pro školy.

Ve III. ročníku se kategorie D účastnilo skoro 8 000 řešitelů
z celé republiky a pravděpodobně s týmž počtem můžeme
počítat i do dalších ročníků. Přejeme si jistě všichni, aby
odborná úroveň všech těchto žáků stále stoupala, aby se na
školách dobře rozvíjela práce zájmových kroužků a indi-
viduální spolupráce učitele s řešiteli. V tom jistě hodně porno-
hou nové učebnice matematiky, které se ve školním roce
1954/55 dostávají do všech tříd osmiletek a jedenáctiletek.
Těšíme se, že s úspěšnými řešiteli kategorie D v III. ročníku
matematické olympiády, kteří přešli na školy vyššího stupně,
se ve IV. ročníku matematické olympiády opět setkáme jako
s úspěšnými řešiteli kategorie C.

VI. ŘEŠENÍ ÚLOH ZE SOUTĚŽE

1. Úlohy I. kola kategorie A
1. V posloupnosti čísel

«1 = ú я«+1 = (« + l)a„ + (- 1)
platí, že pro n > 1 je an dělitelné číslem n — 1; dokažte.

Řešení. Nechť je n > 1. Pro n — 2 je tvrzení samozřejmé.
Pro n > 2 je

an = nan_x + (- 1)” ,

Я + 1

on-1 =(n- l)a„_2 + (- 1)" x,
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takže

«. = («- l)«<V-2 + (-1)”-1* + (- 1)"
neboli

a„ = (n — 1)И„_2 + (- 1)" 4;
tím je věta dokázána.

2. Ak sú a, 6 kladné čísla, Л Ф 0 komplexně číslo, platí
vztah

|aA + ЬА\ £ (a + 6)|Л| ,

kde Л je komplexně číslo združené s číslom A. Dokážte tento
vztah a zistite, kedy nastane rovnost’. Vyložte geometrický
význam daného vztahu.

Riešenie. Uvedený vztah dokážeme, ak dokážeme vztah
|aA + bA\2 £(a + b)2 • \A\* .

Vztah (1) je ekvivalentný so vzťahom
(aA + bÁ)(aA + bA) ^ (a2 + 2ab + b2)AA , (2)

lebo pre každé komplexně číslo X platí |V|2 — X • X .

Zo vztahu (2) vyplývá
a2AA + abA2 + abA2 + b2AA £ (a2 + 2ab + b2)AA,

(O

alebo

ab(A2 - 2AA + A2) £ 0 ,

a teda

ab(A - A)2 £ 0;
tento vztah je za daných predpokladov správný.

Pretože obrátene z (3) vyplývá (2) a tým (1), je vztah (1)
a tým aj daný vztah dokázaný.

Rovnost’ v danom vztahu nastane zrejme vtedy a len vtedy,
ak nastane rovnost’ vo vztahu (3), t. j. ak je A — A, čiže ak
;e A reálne číslo.

(3)

)
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Napišme daný vztah v tvare

|aA + bA\ £ a\A\ + b\A\ .

V rovině komplexných čísel majú body P = [0], Q =
= [aA + bA\, R = [aA] tú vlastnosti, že

PQ = |aA + ЬА\, PR = a\A\, QR = b\A\ .

Daný vztah hovoří teda, že
PQ £ PR + QR (trojuholníková nerovnost’).

3. V prostoru je dán rovnoramenný trojúhelník ABS o zá-
kladně AB. Určete poloměr r plochy kulové o středu S tak,
aby vzdálenost dotykových bodů C, D tečných rovin přímkou
AB vedených к hledané ploše kulové byla rovna úsečce AB.

a) Zjistěte podmínky řešitelnosti a určete velikost polo-
měru r.

b) Naznačte grafické řešení a proveďte jeho diskusi.

Obr. 1.

Řešení (obr. 1). I. Předpokládejme, že existuje kulová
plocha která vyhovuje úloze. Potom přímka AB leží nutně
celá vně plochy к. Označme co rovinu ABS a a rovinu sou-
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měrnosti úsečky AB. Rovina o protne úsečku AB v jejím
středu O a vedle toho prochází bodem S', je tedy АО — ВО.
Dále označme AB = CD = 2v, SO = d; čísla v, d jsou úlohou
dána a jsou obě kladná.

Tečné roviny у, d sestrojené po řadě v bodech C, D к ploše x
se protínají v přímce AB. Kulová plocha x a dvojice rovin y, Ó
(jako celek) mají roviny souměrnosti co, a. Je tedy SC =
— SD = r, AC = AD = BC — BD.

Trojúhelník SOC má při vrcholu C pravý úhel, neboť přímka
CO je tečnou plochy x. Označme V patu kolmice vedené bodem
С к přímce SO a položme xx — SV, x2 = VO, CV — v.
Z trojúhelníka SOC podle Eukleidovy věty o výšce dostaneme

v2 = x±x2,
kde xx + x2 = d. Podle Eukleidovy věty o odvěsně platí

r2 — xid,
OC2 — x2d neboli d2 — r2 = x2d .

(1)

(2)
(3)

Ze (2), (3) dostaneme
r2 d2 — r2

4 = ^-xl- ď
a po dosazení do (1) je

r\ď2 - r2)
— v2 .

d2

Odtud dostaneme pro r rovnici
r4 - d2r2 + d2v2 = 0 .

Diskriminant této rovnice je nezáporný, neboť r2 je reálné
číslo, t. j. d2 — 4v2 0; protože je v > 0, d > 0, platí

d I> 2v.

Existuje-li tedy kulová plocha vyhovující úloze, platí (5).

II. Dokážeme teď obráceně, že platí-li (5), existují pro
d = 2v jedna a pro d > 2v dvě plochy kulové; jejich polo-
měry rx a r2 vyhovují vztahům

(4)

(5)
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i-ia = ~d(d ± ]/d* - 4^). (6)

V rovině a totiž existuje nad úsečkou OS jako průměrem v jedné
z polorovin vyťatých přímkou OS polokružnice k o poloměru ~

Vzhledem к (5) má tato polokružnice pro d = 2v jeden a pro
d> 2v dva různé společné body s přímkou p, vedenou rovno-
běžně s přímkou OS ve vzdálenosti v od OS v této polorovině
(viz stereometrický náčrtek). Označme C jeden z těchto bodů.
Podle Thaletovy věty je OC J_ CS. Poněvadž přímka AB
je kolmá к rovině o, je přímka q vedená bodem C rovnoběžně
s přímkou AB také kolmá к přímce CS. Je proto rovina ABC,
v níž leží obě přímky OC, q, tečnou rovinou v bodě C ke
kulové ploše x o středu a poloměru SC. Rovněž bod D,
souměrně sdružený к C vzhledem к rovině co, má vlastnost,
že rovina ABD je tečnou rovinou kulové plochy x v bodě D,
při čemž platí CD = 2v = AB. Je tedy x hledaná kulová
plocha. Jako v I. části řešení se zjistí, že SC2 = r2 vyhovuje
vztahu (4), t. j. platí (6).

4. Budiž dán čtyřstěn A4A2A3A4. Označme a4, a2, a3, a4
roviny jeho stěn po řadě protějších к vrcholům AXi Л2, A3, A4.
Jsou dány tři různé body J, K, L, ležící vně daného čtyřstěnu.

Dokažte, že pro každou polohu bodů J, К, L existuje alespoň
jeden bod X různý od bodů J, K, L, takový, že všechny body
úseček XJ, XK, XL leží vně daného čtyřstěnu.

Při diskusi uveďte příklady, jak к dané trojici bodů J, К,
L určíte bod X.

(Čtyřstěn A1A2A3A4 se skládá z bodů, které současně patří
poloprostorům ocj^A^ oc2A2, a3A3, aáA4; ostatní body prostoru
leží vně čtyřstěnu.)

Řešení. Označme (3P (32, (J3, (J4 poloprostory po řadě
opačné poloprostorům а4Л4, oc2Á2, oc3A3, oc4A4. Uvažujme tyto
případy:
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Případ [1]. Nechť všechny tři body J, K, L leží uvnitř
téhož z poloprostorů (34, (32, (33, (34. Potom každý bod X
ležící uvnitř tohoto poloprostoru zřejmě vyhovuje úloze;
takovým bodem X je na př. střed úsečky JK, když je X ф L.

Případ [2]. Nechť dva z bodů J, K, L leží uvnitř téhož
z poloprostorů (34, (32, рз, p4 a třetí z těchto bodů nechť leží
uvnitř jiného z těchto poloprostorů. Na př. nechť body K, L
leží uvnitř poloprostoru (32 a bod J uvnitř poloprostoru (34. Hra-
niční roviny av a2 poloprostorů (34, (32 se protínají v přímce
A3Aá. Položme bodem J rovinu q |j a4 a bodem К rovinu
cr || oc2. Roviny q, o jsou zřejmě různoběžné; označme X ф L
libovolný bod jejich průsečnice, která zřejmě leží celá uvnitř
obou poloprostorů pi3 (32. Proto úsečka XJ leží uvnitř polo-
prostoru p4 a obě úsečky XK, XL uvnitř poloprostoru (32.
Bod X tedy vyhovuje úloze.

Případ [3]. Nechť každý z bodů J, K, L leží uvnitř jiného
z poloprostorů pi5 p2, p3, p4, na př. bod J uvnitř bod К
uvnitř p2 a bod L uvnitř p3. Bodem J položme rovinu q jj al5
bodem К rovinu a j| a2 a bodem L rovinu r j| a3. Každé
dvě z rovin als a2, a3 jsou různoběžné a všechny tři mají
společný pouze bod A4; proto i roviny q, a, r mají společný
bod X, který leží uvnitř každého z poloprostorů (34, (32, (33.
Leží tedy úsečka XJ uvnitř poloprostoru f315 úsečka XK
uvnitř (32 a úsečka XL uvnitř (3S. Bod X tedy vyhovuje úloze.

Protože v každém z uvedených tří případů jsme určili bod X
vyhovující úloze a protože jsou tím všechny případy poloh
bodů J, K, L vyčerpány, je úloha rozřešena a konstrukce
bodů X naznačena.

Řešil s. Ilja Votava,
ll.b jedenáctileté střední školy

v Ostravě I, Matiční 5.

Jiné řešení. Označme an' (kde n — 1, 2, 3, 4) opačný polo-
prostor к poloprostoru anAn; dané body J, K, L leží po řadě
v poloprostorech a/, ak', a/ (kde j, k, l jsou rovné každé
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některému z čísel 1, 2, 3, 4). Přitom na př. bod J nepadne do
stěny (trojúhelníka) čtyřstěnu, která leží v rovině ocj.

a) Když j, k, l jsou vesměs různá čísla, zvolíme bod X uvnitř
průniku*) poloprostorů a/, ос/, a/; potom na př. všechny body
úsečky JX nejvýše až na bod J leží uvnitř poloprostoru ос/,
t. j. vně čtyřstěnu A1A2A3A4. Takový bod X dostaneme na
př. takto: Označme m to z čísel 1, 2, 3, 4, které není rovno
žádnému z čísel j, k, l. Uvnitř stěny čtyřstěnu protější к vrcholu
Am zvolme bod Y; bod Y leží uvnitř průniku poloprostorů
aj-Aj, akAk, щАг. Bod X určíme tak, aby bod Am byl stře-
dem úsečky XY.

b) Když j, k, l nejsou vesměs různá čísla, pak některé z polo-
prostorů ос/, a/, ос/ splynou; v tom případě přibereme v ná-
hradu za splývající poloprostory jeden nebo dva další z polo-
prostorů а/, oc2', a3', ос/, abychom dostali tři různé polo-
prostory, v nichž dané body J, K, L leží (každý z bodů J, K, L
leží v některém z nich); tím je úloha převedena na případ a).

5. Dokažte, že pro a > b > 0 a přirozené číslo n platí vztah
Jf-fl —

an — bn

Řešení. Pro každé přirozené n je
(an — bn): (a — b) — an"x + an~2b + . . . + abn~2 +

+ bn~x = x,

(a"+1 — bn+1): (a — b) = an + an~xb + abn~x +
+ bn — ax + bn = bx -j- an,

kde ovšem pro n — 1 je x = 1.
a) Je tedy podle (2), (3)

an+x _ £n+l

n + 1 ,b .

n + 1 ^ aa > - (1)>
n n

(2)

(3) '

ax + bn bn a
V a -j — a ^ .

an — bn x X ax

bn

*) Tento průnik je množina bodů společných těmto poloprostorům.
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Avšak podle (2) je
an an~1

+ ..+!>«,
neboť je-^- > 1, a tedy každý člen ~ (kde k je přirozené číslo)
je větší než jedna. Proto je

a
V < a -\ =

ax

b« bn + ^»-i

я + 1
a,

и

což jsme měli dokázat.

b) Obdobně

Г-М---4 + Л >4 + - =^*,
. n

an

neboť

én1 6
a" an ' an

+ • • • d <. n ,
a

b bk
a protože je — <1, je každý člen (kde k je přirozené číslo)

menší než jedna.
Tím je důkaz proveden.

6. Čísla Xv X2 sú kořene kvadratickej rovnice
x2 -f" -Аэс T -S = 0 j

kde А, В sú komplexně čísla.
A2

Ak platí vztah |Хх| = \X2\ Ф 0, je— reálne číslo. Dokážte.В

Je možné túto vetu obrátit’?
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Riešenie. a) Pretože Xx Ф О, X2 Ф 0, je В Ф 0. Potom je
A2

_ (X, + A2)2 *2
(1)x, + JT. + 2 ■В

Avšak pretože |АХ| = |A2|, je
A, X1XL

_ X2X2 _ X.2
хг X.,Xt Х2Хг Xi ’

preto
A2 Xo X2 „2

H + 2 ,В Ai Хг
čo je reálne číslo.

b) Vetu nemožno obrátit’, lebo na pr. pre rovnicu x2 —

, no \Xx\ = 1, |A2| = 2
A2 9

— 3x + 2 = 0 je — reálne číslo —
£> 2

a teda |Аг| Ф \X2\.
A2

Poznámka. Platí však veta: Ak je — reálne číslo, má
JD

daná kvadratická rovnica dva nenulové kořene, ktoré majú
buď rovnaké absolutné hodnoty, buď ich podiel je reálne číslo.

7. Trojuholník ABC je podstavou trojbokého kolmého
hranola. Na pobočných hranách sú zvolené radom body
А', В', C. Rovina А'В'С' oddělí časť hranola, ktorej objem
sa rovná súčinu z obsahu trojuholníka ABC a aritmetického
priemeru čísel AA', BB', CC.

a) Dokážte vyslovenú vetu pre případ A ~ A'.
b) Dokážte pre 1’ubovoíne zvolené body A'3 В’, C.

Riešenie. a) Ak je В ~ В', C ss C', má oddělená časť
objem rovný nule a veta je zrejme správná. Ak je В = В'
а С Ф С, je oddělená časť štvorsten s podstavou ABC a prí-
slušnou výškou CC' a tvrdenie je opáť správné. Ak je В Ф В’,
С Ф C (pozři obr. 2), je oddělená časť štvorboký ihlan s pod-
stavou BCCB'; výška spustená z bodu A na rovinu BCC
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leží v rovině ABC; je to zároveň výška trojuholníka ABC
příslušná к straně BC; označíme v jej velkost’. Objem štvor-
bokého ihlana je potom

у •»• ~y • (bb' + cc),
lebo podstava BCCB' je lichoběžník so základňami BB',
CC' a výškou BC. Výraz (1) upravíme na tvar

v ■ BC BB' + CC

(1)

32

prvý zlomok sa rovná obsahu trojuholníka ABC, druhý sa
rovná aritmetickému priemeru čísel AA' = 0, BB', CC
a tým sme tvrdenie dokázali.

C

A

0

Obr. 2.

b) Nech A' je ten z bodov A', B’, C, ktorý je najbližší
rovině ABC. Veďme ním rovinu rovnobežnú s rovinou ABC;
tá přetne priamky BB', CC po radě v bodoch В", C". Ak
je A' = A, ide o případ přebraný v odst. a). Ak je А' ф A,
zložíme časť oddelenú rovinou A'B"C"zhranola ABCA'B"C"
a z časti A'B"C"B'C', pre ktorú platí výsledok odst. a).
Pre objem celej oddelenej časti dostaneme — ak označíme p
obsah trojuholníka ABC výraz

3-55-17-03
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В"В' + сс
р- АА +р (2)3

lebo trojuholníky ABC, А'В"С" sú zhodné. Výraz (2) upra-
víme na tvar

[AA' + (AA' + B"B') + (AA' + C"C’)\ .

Pretože AA' = BB" = CC", je AA + B"B' = BB', AA +
+ C"C' = CC. Dosadením do (3) dostaneme žiadaný
výsledok.

8. Budiž ABCDA'B'C'D' krychle, při čemž platí AA ||
|| BB' || CC || DD' a ABCD je její jedna stěna.

(3)

0'

\
4/

Г \
1

К i
/ /\

\/
\

!/>•У

/
—N-/ / \ X

/ /
/V \

/5 В

Obr. 3.

a) Dokažte, že tělesová úhlopříčka B'D stojí kolmo к ro-
vinám ABC, ACD' a že je jimi rozdělena na tři rovné úsečky.

b) Vyšetřete polohu a velikost nejkratší příčky mimoběžek
AC, BC, jestliže je dána velikost a hrany krychle. (Zobrazte
ve volném rovnoběžném promítání.)

Řešení (obr. 3). a) Nejprve dokážeme, že je DB' J_ ABC'.
Přímka DB' leží v rovině BDD'B'; zřejmě platí AC J_ B'D',
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AC J_ DD'. Proto je A'C' _L BDD' a tím i A'C' J_ DB'.
Stejně se dokáže, že je na př. A'B J_ DB'. Z obou posledních
vztahů vzhledem к tomu, že A'C', A'B jsou různoběžky,
plyne

DB' ± A'BC. (1)
O rovinách ABC, ACD' zřejmě platí ABC || ACD';

proto je podle (1) též
DB' ± ACD'.

Označme po řadě <5, /3' roviny vedené body D, B' tak, že
<5 || F 1 ABCя

Dokážeme, že vzdálenosti obou dvojic rovin
ACD', ABC a ABC, fi'

jsou si rovny. Skutečně, první dvojice na přímce AA vytíná
úsečku AA, druhá dvojice na přímce BB’ || AA' vytíná
úsečku BB'; protože je AA — BB', soudíme z toho, že
vzdálenosti obou dvojic (2) jsou si rovny. Totéž se stejně
dokáže o dvojicích

(2)

<3, ACD' a ACD', ABC.
Odtud plyne, že roviny ABC', ACD' rozdělují úsečku DB'
ve tři sobě rovné úsečky.

b) Je známo, že velikost nejkratší příčky dvou mimoběžek
a, b je rovna vzdálenosti rovnoběžných rovin a, /3 takových,
že oc || b prochází přímkou a a /3 || a přímkou b. Označme
X, Y body nejkratší příčky mimoběžek, ve kterých tato příčka
protíná po řadě obě mimoběžky a, b. Je známo, že bod Y je
jediným bodem přímky b, který má tu vlastnost, že pata Y0
kolmice tímto bodem к rovině a vedené padne na přímku a;
při tom zároveň platí Y0 = X. Toho užijeme к řešení úlohy.

Přímka AC leží v rovině ACD', přímka BC v rovině ABC,
která je s rovinou ACD' rovnoběžná (viz úlohu a)). Velikost
nejkratší příčky obou mimoběžek АС, BC je tedy rovna
vzdálenosti obou rovnoběžných rovin ACD', ABC, což je
podle výsledku úlohy a) třetina velikosti tělesové úhlopříčky

3*4
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B’D neboli |аУ3 . Nyní vyšetříme polohu obou bodů X, Y
nejkratší příčky obou mimoběžek АС, BC, kde X je bodem
přímky AC a Y bodem přímky BC; patu kolmice vedené
bodem Y к rovině CD'A označíme Y0.

D*
Л

/ \
А_Д._

K~7 \ 7C°
, / \ /
X ASЛ
\/

/ A/хшъ
\ /
4

Obr. 4.

Platí Д CD’А ^ Д A’BC, při čemž oba tyto trojúhelníky
jsou rovnostranné a jejich příslušné strany jsou rovnoběžné.
Označme A0', B0, C0' paty kolmic vedených body А', В, O
к rovině CD'A (obr. 4). Označíme-li dále A střed trojúhelníka
CD'A, usoudíme snadno, že je též Д CD'А ^ Д A0'B0C0';
přitom jsou příslušné strany těchto trojúhelníků rovnoběžné
a úsečky A0'C, BQD', CýA jsou půleny bodem 5. Podle
hořejší úvahy je průsečík úseček AC, B0C0' hledaným bodem
X = Y0. Označíme-li ještě Z průsečík úseček АС, А0'В0,
zjistíme snadno, že platí AZ = ZX — XC. Bod X tedy leží
v jedné třetině úsečky CA (totiž AX — 2 • CX). Obdobně
se dokáže, že bod Y0 = X leží na úsečce tak, že C0' F0 =
='2 • B0Y(). Odtud plyne, že bod Y leží-v jedné třetině
úsečky BC' (totiž C'Y = 2 ■ BY).

9. Najděte všechna x, pro která platí
log100 x + log1000 x Д lo^o* x3 . (1)
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(Poznámka. Symbol loga m značí logaritmus čísla m při
základu a logaritmů; pro a = 10 píšeme log10 m = log m.)

Řešení. Buďte а Ф 1, b Ф 1 kladná čísla a * > 0 libovolné
číslo. Potom je x = alogax = b108^. Logaritmováním poslední
rovnosti při základu b dostaneme

(log* a) ■ loga x = log* x
neboli

log**
log* a '

Ve vztahu (1) je nutně x > 0; pro x = 1 zřejmě platí rovnost,
takže v dalším předpokládáme, že x Ф 1. Podle (2) je:

% loge * = (2)

log** 1 1
(3)log100* = logx 100 log* 100 2 • log* 10 ’

1
(4)logiooo * — 3 • log* 10 5

log* * 1
logic* * (5)log* Юх 1 -,L log* 10 5

při čemž musí být Юх Ф 1 neboli
x Ф 10-1.

Po dosazení ze (3), (4), (5) do (1) máme

(6)

1 1 3
< (7)2 • log* 10 1 3 • log* 10 — 1 + log* 10

Podle (2) je
log 10 1
log x log x

log* 10 =

neboli
1

= log X .

log* 10
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Po dosazení do (7) máme
1 3 • log л;

1 + log JC

1
— • log X + — ’ log ж <J (8)

Rozeznávejme dva případy:
[1] 1 + log x > 0,

Případ [1]. Je 1 + log л; > 0 neboli
log x > — 1 .

[2] 1 + log x < 0 .

(9)
Po úpravě vztahu (8) máme

5 • log jc • (1 + log x) <1 18 log jc ,

t. j.
log л: • (5 • log л: — 13) <( 0 .

a) Pro log x < 0 dostaneme odtud

log x )> у ,

(10)

což je spor.

b) Pro log л: > 0 máme z (10)

logx^y,
t. J.

13
0 < log x < — .5

Odtud plyne, že
i < x <: 107 •

Případ [2]. Je 1 + log x < 0, t. j.
log x < — 1 .

(П)

(12)
Po úpravě (8) dostaneme

log x • (5 • log x — 13) )> 0 .

Podle (12) je
log я < 0 ,
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takže
5 • log x — 13 <1 0 ,

t. j.
13

log x ^ ;

to je splněno již vzhledem к (12). V případě [2] je tedy
O < x < 10-1.

Pro všechna x v (11) a (13) je tedy skutečně x Ф ÍO-1.
* Protože postupy prováděné v řešení lze obrátit, vyhovují

vztahu (1) právě ta x, pro něž platí:

buď 1 ^ x 10"*“, ' nebo 0 < x < 10_1.
Přitom, jak je patrno z postupu, rovnost ve vztahu (1) nastane

právě pro x = 1 a pro x = 10”*“.

(13)

10. Ak platia pre dve komplexně čísla Z13 Z2 vztahy
\Zi\ = 1^1, \Zi-l\ =_|Z2'-1|,_

potom je alebo Z2 = Z15 alebo Z2 = Zl3 kde Zx, Zx sú združené
komplexně čísla.

Dokážte a vysvětlíte geometricky.
Riešenie. I. Dokaž bez rozkladu na zložky. Z daných

vzťahov vyplývá
Z2 — cZj, Z2 1 — ^(Zx 1), (1)

kde e, rj sú vhodné komplexně jednotky. Ak dosadíme z prvej
rovnice (1) za Z2 do druhej, dostaneme

eZi — 1 = ??(zi — 1),
čiže

Zi(e — rj)=z\-r). (2)
Rozlišíme dva případy:
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a) e = г]. Potom z rovnice (2) vyplývá r) — 1 a z oboch
rovnic (1) Z2 = Zv

b) e Ф r]. Potom z rovnice (2) dostaneme
Z3l

(3)
- Tj

Ďalej je podlá (1)
1—7]

- 7]
11

Vypočítajme Zx; pretože e =
— Je

1

1 1—7]7] 7] —
= e • ——-

1] — £
= Z2.= £ •

1 1 £ — 7]

7]

II. D6kaz rozložením na zložky (goniometricky). Je
Zx — r(cos ^ + i sin 9?x),
Z2 = r(cos (p2 + i sin <p2),

11 — Zx |2 = (1 — r cos (px)2 + r2 sin2 9?x =
= 1 — 2r cos 9?i + r2,

11 — Z2|2 = (1 — r cos 992)2 + r2 sin2 9?2 =
= 1 — 2r cos (p2 + r2.

Z danej podmienky teda vyplývá vztah
r(cos <p2 — cos 9?j) = 0 . (1)

Alebo je
(2)r = 0,

alebo je
(3)cos cp2 = cos .

Ak platí vztah (2), potom tvrdenie úlohy je správné; v tom
případe je Zí — Z2 = 0.
Ak platí vztah (3), potom 1’ahko vypočítáme, že je

sin cp2 = e • sin cpx ,
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kde e sa rovná jednému z čísel 1, — 1. Je teda
r(cos g?2 -{- i * sin ^2) = Kcos Vi + i • £ * sin <px),

t. j. alebo
Z2 = Zx (keď e = 1),

alebo

■^2 —

(keď je £ = — 1),
čo sme malí dokázat’.

III. Geometrický význam. (Nech [Z] značí obraz kom-
plexného čísla Z.) Ak body [Z,], [Z2] majú od bodu [0] rovnaké
vzdialenosti a od bodu [1] Ф [0] tiež rovnaké vzdialenosti,
je buď [ZJ = [Z2], buď sú body [ZJ, [Z2] súmerne sdru-
žené podlá priamky [0][1].

IV. Jiné řešení. Je-li Z = л: -f ry, kde *,3; jsou reálná čísla,
potom je

|Z| - |/*2 +У, |Z — 1| = V(jc - l)2 + / .

Řešme soustavu rovnic

|Zi| = |Z2|, |ZX — 1| = |^2 — 1|.
Umocněme obě strany každé z obou rovnic na druhou; do-
staneme rovnice

xx + Ух — 2xx + 1 = x22 + y2 — 2x2 + 1 ,

xx + Ух = x22 + У22 •

Odtud snadno obdržíme jednak
xi — x2i Ух = 3>2>

jednak
У$** — У2 5*i = *2>

je tedy buď
0)Z2 — Zj,

nebo

(2)^2 — ^x •
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Obráceně, když platí (1) nebo (2), snadno zjistíme, že platí
vztahy

IZ.I =|Z2|, \Z1 — 1| = |Z2 — 1| . (3)
Označme [А], [B] obrazy komplexních čísel A, B. Vztah

\A — B\ — \C — DI, jak známo, značí, že vzdálenost bodů
[А], [B] je rovna vzdálenosti bodů[C], [D]. Podle předpokladu
jsou vzdálenosti bodů [Z,], [Z2] od bodu O (počátku souřadnic)
sobě rovny, rovněž vzdálenosti bodů [ZJ, [Z2] od bodu [1,0]
jsou si rovny. Potom o číslech Z15 Z2 platí buď (1) nebo (2),
čili jsou to buď body totožné nebo souměrně sdružené podle
osy x souřadnic.

Upraveno podle řešení
s. Jiřího Voleníka, ll.b

jedenáctiletky v Rokycanech.

11. Buďte dány rozměry a, b, c kvádru. Dokažte, že velikost
nejkratší příčky dvou mimoběžných stěnových úhlopříček
kvádru je dána výrazem

1
v = -

1 + 1 + 2a2 ^ b* ^ c2

Řešení. Označme ABCDA'B'C'D' daný kvádr, kde
ABCD je jedna podstava a AA' || BB' || CC || DD' jsou
pobočné hrany. Označme a = AB, b — AD, c — AA'.
Hledejme nejkratší vzdálenost úhlopříček A'B, B'C, které leží
ve dvou sousedních stěnách kvádru. Dokážeme, že uvedené
tvrzení platí pro stěnové úhlopříčky, které leží v sousedních
stěnách kvádru.

Rovina A'BD je rovnoběžná s přímkou B'C, při čemž
obsahuje přímku А'В; velikost v příčky je tedy rovna vzdále-
nosti bodu B' od roviny A'BD. Stačí tedy v jehlanu o podstavě
A'BD a vrcholu B' najít jeho výšku v; budiž A obsah této
podstavy. Objem tohoto jehlanu lze také určit z podstavy
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A'BB' a výšky AD — b. Porovnáním obou možností dostaneme
A-v = \'\ac'b 3

t.j.
abc

(1)v
2A '

Podle Heronova vzorce lze pro obsah <5 trojúhelníka o stranách
velikostí x, y, z psát:
16 ó2 = (x + у + #)(— я + У + z)(pc — y + z)’(x —z) —

= — x4 — yx — z* + 2x2y2 + 2y2z2 + 2x2^2.
Označme strany trojúhelníka A'BD takto:

щ — A'D, u2 — A'B, u3 — BD.
Přitom je

ux2 = b2 + c2, u2 — c2 + a2, u2 — a2 + b2.
Tedy

16d2 = - (b2 4- C2)2 - (c2 + a2)2 - (a2 4- b2)2 4-
4- 2(b2 + c2\c2 4- a2) 4- 2(c2 4- a2)(a2 + b2) +

4- 2(a2 4- b2)(b2 4- c2).
Po úpravě máme

16d2 = 4(a262 4r b2c2 + c2a2) .

Tím
i

2Л = ]/a2b2 4- b2c2 + c2a2.
Dosazením do (1) máme

abc
V

]/a2b2 4- b2c2 4- c2a2 *
neboli

1
v — -

'I + I + Ia2 ^ b2 1 c2 '
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Výsledek nezávisí na výběru dvojice mimoběžných stěno-
vých úhlopříček ležících ve dvou sousedních stěnách daného
kvádru. Nejkratší příčky mimoběžných stěnových úhlopříček,
ležících v protějších stěnách kvádru, mají po řadě velikosti
a, b, c. Přitom je v vždy menší než kterékoli z čísel a, b, c;
na př. je

1v
< 1, t. j. v < a.

12. Je daný trojuholník ABC. Aký geometrický útvar vy-
plnia vrcholy všetkých takých štvorstenov ABCX, u ktorých sú:

a) hrany AX, BX navzájom kolmé,
b) hrany AX, BX a hrany BX, CX navzájom kolmé,
c) každé dve z hrán AX, BX, CX navzájom kolmé ? V tomto

případe vyšetříte podmienku riešitelnosti.

Riešenie. Úloha a). Priamkou AB položme rovinu g
a určme v nej všetky body X, pre ktoré je <£ AXB = R.
Podlá Thaletovej vety vyplnia body X kružnicu k, ktorá má
úsečku AB za priemer a ktorá leží v rovině g; oba body A, B,
musíme z kružnice k vylúčiť.

Ak sa otáča rovina g okolo priamky AB, vyplnia body X,
pre ktoré je <£ AXB — R, gulovú plochu xx, ktorá má úsečku
AB za priemer. Body А, В musíme z plochy xx vylúčiť.

Vzhladom na danú úlohu a) musíme z plochy xx vylúčiť
všetky body kružnice kx, v ktorej plocha xx přetíná rovinu
ABC, pretože bod X ako štvrtý vrchol štvorstena ABCX
v rovině ABC neleží.

Teda: Body X, ktoré vyhovujú úlohe, zrejme vyplnia dve
polsféry (polovice gulovej plochy xx), ktoré sú súmerne
združené podlá roviny ABC a ktoré sú časťami plochy xx;
přitom body kružnice kx plochy xx, ktoré sú spoločnou častou
roviny ABC a plochy xx, musíme vylúčiť.
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Tento výsledok a označenia použijeme při riešení úloh b),
c).

Úloha b). Označme Bx patu kolmice vedenej bodom В
к priamke АС; iste je Bx ф В. Ak je Bx = A, je <£ BAC — R;
ak je Bx = C, je <£ BCA — R. Konečne ak je А ф Bx ф C,
je <£ BBXA — < BBXC = R. V každom z týchto troch
uvažovaných prípadov prechádzajú gulové plochy xx, x2,
po radě opísané nad úsečkami AB,BC ako priemermi, bodom Bx
a bodom B. Eahko sa dokáže, že obe plochy xXi x2 majú spo-
ločné body, ktoré ležia na kružnici n, opísanej nad úsečkou BBX
ako priemerom: rovina v tejto kružnice stojí kolmo к rovině
ABC. Body X, ktoré vyhovujú úlohe b), vyplnia túto kružnicu
n, z ktorej podlá riešenia úlohy a) musíme vylúčiť oba body
В, Bx.

Úloha c). Podlá úlohy b) musí hladaný bod X ležať
všetkých troch kružniciach m, n, p, ktorých roviny /.i, v, n
stoja kolmo к rovině ABC (každá к jednej straně trojuholníka
ABC) a ktorých priemery sú úsečky AAX, BBX, CCX. Ale
priamky AAX, BBX, CCX majú spoločný bod V (priesečník
výšok trojuholníka ABC), a preto roviny /л, v, n majú spoločnú
priamku v ±_ ABC, ktorá prechádza bodom V. Ak teda
hladaný bod X existuje (t. j. taký, že každé dve hrany švor-
stená ABCX pri vrchole X tvoria pravý uhol), musí ležať
na všetkých troch kružniciach a tým aj na priamke v, pravda
mimo roviny ABC. Eahko sa usúdi, že bod V, ak má mať
úloha rešenie, musí ležať vnutri úsečiek AAX, BBX, CCX,
t. j. priesečník V výšok trojuholníka ABC musí padnúť do-
vnútra trojuholníka ABC. Je známe, že sa to stane vtedy
a len vtedy, ak jť ABC ostrouhlý trojuholník; v tomto
případe existujú dva body X, X' požadovanej vlastnosti
a rovina ABC je rovinou súmernosti úsečky XX'. Případ
trojuholníka pravoúhlého a tupouhlého, ako vyplývá z před-
chádzajúcej úvahy, nemá riešenie.

na

13. Určte geometrický útvar v rovině, ktorý vyplnia obrazy
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komplexných čísel Z daných vzťahom
AS + В

1 + S 3
z = (1)

kde А, В sú dané komplexně čísla a^^-1 prebieha všetky
komplexně jednotky.

Řešení. Daný vztah upravme takto:
Z + ZS = AS + В

neboli

-S{A-Z) = B-Z. (2)
Jestliže bod Z vyhovuje rovnici (1), pak jsou dvě možnosti.

Případ [1]. Nechť je A — Z = 0; pak je podle (2) též
В — Z — 0. A tedy Z = A, Z = B, neboli A — B.

Jestliže je obráceně A = B, pak je podle (1) vskutku Z — A
řešením úlohy a to zřejmě jediným.

Případ [2]. Nechť je
A — Z Ф 0 ;

protože je 5 Ф 0, proto je podle (2) též В — Z Ф 0. Vzhledem
к případu [1] je А Ф В (jinak by totiž bylo A — Z, což od-
póruje předpokladu (3)). Ze vztahu (2) plyne

\-S-(A-Z)\ = \B-Z\,

(3)

a protože je |— Sj = 1, platí
\A - Z| = \B - Z\ .

O úsečkách ZA, ZB tedy platí ZA — ZB, t. j. bod Z leží
na ose p úsečky AB.

Jestliže Z je obráceně libovolný bod osy p úsečky AB,
je geometricky zřejmé, že lze úsečku ZA převést rotací kolem
bodu Z o úhel AZB Ф 2krz (kde k je celé číslo) v úsečku ZB.
Uhlu AZB přísluší určitá komplexní jednotka — 5.

✓s

Protože je AZB Ф 2kiz, je
(4)-5# 1.
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Platí tedy (2) a ze vztahu (2) pak vzhledem ke vztahu (4)
plyne vztah (1).

Závěr. Jestliže tedy je A — B, pak příslušný geometrický
útvar je bod A. Jestliže je А Ф B3 potom příslušný geometrický
útvar je osa úsečky AB.

Řešil s. Josef Dvorčuk,
11.a jedenáctiletky,

Nový Jičín.

14. Budiž dána posloupnost {an}, kde an Ф 0 pro každé
přirozené n. Jestliže tato posloupnost {a„} má limitu různou

nuly, pak posloupnost 1 -1 má také limitu, při čemž
'an+J

od

lim — ~ - — 1. Dokažte.
an+1

Řešení. Je dána konvergentní posloupnost {an}. Vy-
necháme-li první člen této posloupnosti, dostaneme po-
sloupnost {a„+i}, která je také konvergentní posloupností
a má stejnou limitu jako posloupnost {a„} (podle definice
konvergentní posloupnosti). Podle věty, že limita podílu je
rovna podílu limit, a za předpokladu, že lim an ф 0, tudíž
i že lim an+1 Ф 0, je

lim an
lim an+1

Řešil s. Bedřich Wenig,
3.a vyšší průmyslové strojnické

školy, Opava.

lim-^-
an+l

= 1.

15. Nájdite všetky prirodzené čísla, rovné jedenásťnásobku
svojho ciferného súčtu v desiatkovej sústave.

Riešenie. Hladané číslo je nanajvýš trojciferné. Číslo
и-ciferné je váčšie alebo sa rovná číslu 10я-1 a jeho ciferný
súčet sa rovná najviac 9n. Jedenásťnásobok čísla 9n je 99n.

\
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Avšak pre n ^ 4 platí
10»-1 > 99n . (1)

Dokaž urobíme matematickou indukciou. Pre n — 4 je
naozaj 103 > 99-4. Nech vztah (1) platí pre určité prirodzené
číslo n; dokážeme, že potom platí:

10» > 990 + 1).
Vzhladom na (1) je

10» = 10 • IQ»-1 > 10.99я = 99n + 9.99w > 99n + 99 =

= 99(n + 1),
pretože je n 4 a preto je 9.99« > 99. Tým je vztah (1)
dokázaný.

Nech x > 0,y, z sú také nezáporné celé čísla menšie než 10,
je

100л; + Юу + z

číslo požadované textom úlohy. O ňom má platit’
100л; + lOjy -j- z — 11 * (л; + у + z)

číže

(2)89л: = 10я -j- у .

Na právej straně vo vztahu (2) je nanajvýš dvojciferné
číslo; preto aj vlavo musí byť nanajvýš dvojciferné číslo;
preto nutné je x — 1. Odtial hned vyplývá z — 8, у = 9
a hladané číslo móže byť jedine 198. Číslo 198 naozaj vyho-
vuje úlohe.

Jiné řešení. Předpokládejme, že takové přirozené číslo
existuje a označme si jeho cifry po řadě ani an_x,a0.
Má platit

10«a„ + 10n~1an_1 + . . . + ÍO1^ + 10°a0 =
= Щая + an-l + • • . + <%)

čili

(10w — 11 —|— ... —989a3 -)- 89i?2 — <xx 10a0 = 0.
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Hledaná čísla mohou být jedině trojciferná. Neboť pro dvoj-
ciferné číslo by muselo platit — ax — 10a0 = 0, což není
možné. Čtyřciferná a víceciferná čísla také nepřipadají v úvahu;
záporné členy jsou totiž jen dva poslední a minimální hodnota
jejich součtu je — 99.

Docházíme tedy к rovnici 89a2 — ax — 10a0 = 0, kterou
rozřešíme. Musí být a2 = 1, neboť při a2 ^ 2 by bylo

89a2 — ax — 10tf0 )> 178 — ax — 10ao 178 — 99 > 0.
Máme tedy

ax + 10a0 = 89,
odtud

a0 = 8, ax = 9.
Docházíme к jedinému výsledku: Číslo 198 vyhovuje úloze

(jak se přesvědčíme výpočtem).
Řešil s. Jiří Fiedler,

11. roč. jedenáctiletky
v Plzni, nám. Odborářů.

16. Budiž dána rovina p třemi body А, В, C a mimo ni
přímka p || q. Uvažujme čtyřstěny ABCX, kde bod X probíhá
přímku p. Označme V vrchol rotačního kužele s podstavou
v rovině q, na jehož plášti leží všechny čtyři body А, В, С, X.

Proveďte diskusi, kdy takový kužel existuje, a vyšetřte
útvar, který vyplní všechny body V. (Poznámka. Jestliže
V je vrchol rotačního kužele a k jeho podstavná kružnice,
potom plášť tohoto kužele se skládá ze všech bodů úseček VK,
kde bod К probíhá všechny body podstavné kružnice k.)

Řešení. Protože body А, В, C leží v dané rovině g, pak
existuje-li rotační kužel požadované vlastnosti, má kružnici
k = (O, r) opsanou trojúhelníku ABC za podstavnou hranu;
vrchol V kužele leží uvnitř toho poloprostoru p0 vyťatého ro-
vinou p, ve kterém leží přímka p. Odtud plyne, že každý bod
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V padne dovnitř jisté polopřímky OQ J_ Q, kde Q je vnitřní
bod poloprostoru p0.

Označme X libovolný bod přímky p а X' patu kolmice
vedené bodem X к rovině q ; všechny body X', když X probíhá
přímku p, vyplní v rovině q přímku p' || p, která je průsečnicí
roviny q s rovinou л _L Q, položenou přímkou p. Označme
d > 0 vzdálenost rovnoběžek p, p'.

I. Nechť к danému bodu X přímky p existuje rotační kužel
o vrcholu V a podstavné hraně k = (O, r), při čemž bod X leží
na plášti tohoto kužele. Potom je buď X = V a přímka pr
prochází bodem O, anebo je X Ф V. V druhém případě bod X
leží uvnitř úsečky VY, kde Y je průsečík polopřímky OXr
s kružnicí k\ je tedy X' vnitřní bod úsečky OY, takže platí
0 < OX' < r neboli X' leží uvnitř kružnice k. Odtud plyne,
že jen ty body X přímky p mohou vést к řešení, pro něž je
vzdálenost bodu O od paty X', příslušné к bodu X, menší
než r. Mějme nyní bod X přímky p, pro nějž je vzdálenost x
bodů О, X' menší než r, t. j. pro nějž platí

0 < x' < r . (1)

Uvažujme dvě možnosti:
[1] Je x' = 0, takže přímka p' prochází bodem O. Tu je

příslušný bod X vrcholem V0 rotačního kužele o podstavné
hraně k.

[2] Je x' > 0, takže přímka p' protíná kružnici k ve dvou
různých bodech. К danému bodu X sestrojíme jediný kužel
o vrcholu V; bod V obdržíme takto: Sestrojíme průsečík Y
polopřímky OX' s kružnicí k; přitom jistě existuje Д YXX’,
kde <£ YX'X — R. Ve stejnolehlosti o středu У a dvojici XO
příslušných bodů, přísluší trojúhelníku YXX' trojúhelník
YVO, kde V je hledaný vrchol kužele příslušného zvolenému
bodu X.

Z podobnosti trojúhelníků YXX', YVO plyne vztah
OV ' OY

~xx' ~ Yx
OV

d r — x' '
r

neboli
/ 5
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Odtud dostaneme

dr
(2)OV =

r -x'’

což platí i pro případ [1], kde x' = 0 a OV0 — d.
Úsečka OF má pro daná čísla r, d minimální velikost, když je

číslo x' (nezáporné) minimální; označme tuto minimální
hodnotu x0'. Číslo л;0' je zřejmě vzdálenost bodu O od přímky
ppříslušný bod X' označme X0', což je pata kolmice vedené
bodem О к přímce p'. Bod X0' přísluší bodu X0 přímky p3
pro nějž je XqXq J_p'. Tu jsou dvě možnosti:

a) Přímka p' prochází bodem O, takže je x0' = 0, XQ' = O;
podle odstavce [1] je X0 = V0. Každý bod X' Ф Xq (t. j.
x' > лс0') přímky p, pro nějž platí vztah (1), vede к vrcholu V
kužele, pro nějž podle (2) je OV > OV0, neboť je x' > x0\
Leží tedy hledané vrcholy kuželů na polopřímce V0Q, opačné
к polopřímce V0O, při čemž je F0O _L Q-

b) Přímka p' neprochází bodem O, takže je О Ф X0'
a vzhledem ke vztahu (1) platí 0 < x0' < r; tu je OX0' J_p,
XqXq J_ p a tedy OX0 p. Označme F0 vrchol kužele
příslušného к číslu x0'. Každý bod X' Ф X0' (t. j. x' > xQ'),
pro nějž platí vztah (1), vede к vrcholu V kužele, pro nějž
podle (2) je О V > OV0. Leží tedy hledané vrcholy kuželů
na polopřímce V0Q opačné к polopřímce V0O.

II. Obráceně, každý bod V polopřímky V0Q je vrcho-
lem alespoň jednoho rotačního kužele o podstavné hraně k,
který má tu vlastnost, že na jeho plášti leží jistý bod X přímky p.
O bodu F0 je toto tvrzení zřejmě správné. Mějme nyní bod
V Ф V0, ležící uvnitř polopřímky V0Q tak, že je О V >
> O V0 > 0. Pro případ, že přímka p' prochází bodem O, je
tvrzení zřejmé. Nechť tedy o vzdálenosti x<J bodu O od
přímky p' platí 4

0 < x0' < r .

Existuje číslo x' tak, že
dr

0 < r — x'31. j. x' < r ;OV
i*
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je
dr dr

г — x'
ov, rov

takže je
x0' < x' < r .

Proto existují na přímce p' právě dva body X^, X2 tak,
že OXy = OX2 = x'3 které leží uvnitř kružnice k. К nim
příslušejí body Xv X2 na přímce p tak, že X/, X2 jsou po
řadě paty kolmic vedených body X13 X2 к rovině q. Z první
části naší úvahy a z rovnice (1) plyne, že к bodům Xls X2
existuje jediný rotační kužel požadovaných vlastností a že jeho
vrcholem je právě uvažovaný bod V.

Snadno lze učinit tento závěr:
Označme co rotační válcovou plochu, jejíž řídicí kružnicí

je kružnice k, takže přímka OQ je osou plochy. Jestliže daná
přímka p nemá s plochou co společné dva různé body, potom
к žádnému bodu X přímky p neexistuje kužel požadovaný
úlohou. Má-li přímka p s plochou co společné dva různé
body P15 P2, pak к bodu X přímky p existuje kužel, požadovaný
úlohou tehdy, a jen tehdy, je-li X vnitřním bodem úsečky
PjP2- Příslušné vrcholy V kuželů vyplní polopřímku, která je
částí přímky OQ kolmé к rovině o.

2. Úlohy II. kola, kategorie A

1. Určete součet

= l2 - 22 + 32 - 42 + . . . + (- 1)»+1и2,
kde n je dané přirozené číslo.

Řešení. I. Pro přirozené sudé číslo n platí
= (l2 - 22) + (32 - 42) + (52 - 62) +
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+ ... + [(я - l)2 - я2] = - (1 + 2) — (3 + 4) —
— (5 + 6) — .. . — (п — 1 + п) =
= - [1+ 2 + 3 + 4 + ... + (п - 1) + п] =

= - \п{п +1).
II. Pro přirozené liché číslo n z předchozího výsledku

dostaneme

sn — [l2 — 22 -f . . . — (n — l)2] + n2 =

11
= —^(n — 1 )(n — 1 + 1) + Я2 = w2 ——n(n — 1) =
=

y (”2 + n) = + i).

2. Budte dána čísla a > b > 0; potom platí
(fl - b? .(a_i)2 ^a + b__y-b<<

8a

dokažte.

Řešení. Podle předpokladu je a > b > 0, a tudíž platí

]/a>]/b>0.
0 < -f- ]/é < 2]/o"j
o < (]/á+ y^)2 < 4a.

Podle známé poučky tedy platí

Proto je

a tím

1 1
(1)> —

0Ja+ ]/bf 4a '

Upravujme postupně výraz
x = ~(a -j- b) — ]/ab .
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Je

\ •(« - 2p + b) = ~Cja - 1!bf =

_ i (УГ-УГ^УГ+УГ)8
(F+ V*)2

X =

1 (д - fr)2
2 ’ (F+ ]/bf'2

Vzhledem ke vztahu (1) platí
J_ (g - bf
2 Oja + У^)2

J_ (a - ť>)2-
2 4g

neboli

(g - 6)*
x >

8g

Tím je dokázána levá část vztahu, jehož platnost podle
textu úlohy máme dokázat.

Stejně se dokáže i pravá část tohoto vztahu. Přitom užijeme
vztahu

Уа + \b> 2|/ŽT> 0 neboli (Уд + ]/b )2 > 4b > 0 .

Tím je důkaz proveden.

Jiné řešení. Podle textu úlohy je a > b > 0, a tím též

]/a>]/b> 0, ]/a + ]fb > 0 .

Proto je ]/a — ]fb > 0 a tím i (Уд — ]/&")2 > 0. Proto platí

(2)

též

8g
> 0. (3)

(M“ - ]/& )2
O vztahu, jehož platnost podle textu úlohy máme dokázat,

předpokládejme, že není platný. Nechť platí tedy jeden ze
vztahů:
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- ž j (a + b) - ]fab,
+ b) — ]/ab .

(a - b)
(4)8a

(a -.bf
(5)8b

Dokážeme, že vztah (4) nemůže platit.
Po snadné úpravě dostaneme první část v tomto tvaru

(Ifi-l/bY
8a

Znásobíme obě strany této nerovnosti výrazem z levé strany
vztahu (3);
dostaneme

(]/o" + )2 ^ 4a
neboli

(]/a + ]/b f S (2ja Y ■

Vzhledem ke vztahům (2) jsou čísla uvnitř závorek tohoto
vztahu kladná, a proto z něho plyne

Уа -|- ]/b 2\[a
neboli

]/b ^>Ya
to však je spor s první částí vztahu (2). Proto vztah (4) neplatí.
Stejně dokážeme, že neplatí ani vztah (5).

Tím je důkaz proveden.

3. Rozhodněte, pro která x má smysl rovnice
log x?

1 + log x }
a najděte všechna její řešení (log^ В značí logaritmus čísla В
při základu A logaritmů; pro A = 10 píšeme log B).

log* 10 + log* 100 -f log* 1000 =

55



Řešení. I. Pomocná poučka. Buďte А, В kladná čísla
různá od čísla l.
Potom platí

1
log^ B = (1)logB A '

Důkaz. Platí A1osab = B. Logaritmováním obou stran
této rovnosti při základu В logaritmů dostaneme

log^ В ■ logB A = 1 ,

čímž je vztah (1) dokázán.
II. Předpokládejme, že existuje číslo x, které vyhovuje

dané rovnici. Aby členy na obou stranách dané rovnice měly
smysl, musí o čísle x platit

x > 0, x Ф 1 (základ logaritmů), 1 + log x Ф 0
1

(2)neboli x Ф —
10 '

Pak platí
log* 100 = log*102 = 2 log* 10,

log* 1000 - log* 103 = 3 log* 10 .

Potom lze dané rovnici dát tvar

log x (3)2 log* 10 = 1 + log X ’
Podle (1) je

1
(4)log*10 = log x5

což má vzhledem ke (2) smysl. Rovněž podle (2) je 1 +
1

+ log x Ф 0 neboli x Ф — . Nyní vzhledem ke (4) lze rovnici

(3) uvést na tvar
log x2

(5)
log X 1 + log X
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neboli

log2 x — 2 log x — 2 = 0.
Položme log л* = у, takže у je reálné číslo různé od čísla

(6)

1
0 a - . Pak lze (6) psát

v2 - 2y - 2 = 0 .

Odtud dostaneme

y = l±W>
což je vskutku číslo vyhovující našim požadavkům. Je tedy

log x = 1 ± ]/з .

Jestliže tedy číslo x vyhovuje dané rovnici, může to být
některé z čísel

i+1/з i-Уз
(7)x = 10

obě tato čísla splňují požadavky (2). Protože pro čísla, která
vyhovují vztahům (2) lze náš celý postup obrátit, představují
čísla (7) všechna řešení dané rovnice. !

x = 10

4. Je dán základní kvádr ABCDA'B'C'D' (kde ABCD
je podstava a AA' |( BB' || CG || DD' jsou pobočné hrany
kvádru).

Vyšetřete příčku/) mimoběžek AC,BG (stěnových úhlopříček)
v sousedních stěnách kvádru) takovou, že p jj B'D (tělesová
úhlopříčka kvádru). Průsečík přímek AC, p označte X; prů-
sečík přímek BG, p označte Y. Dokažte, že bod X je uvnitř
úsečky AC, bod Y uvnitř úsečky BG, při čemž platí:

AX = 2-CX; GY = 2-BY; B'D = 3-XY.
(Pokyn: Užijte náčrtu ve volném rovnoběžném zobrazení
— nadhled zleva.)

Řešení (obr. 5). Předpokládejme, že úloha má řešení,
t. j. že existuje přímka p, která protíná přímky AC, BG
po řadě v bodech X Ф Y, při čemž platí p || B'D. Potom
různoběžky BG, p určují rovinu q || B'D. Rovina g prochází

57



body В, X, které jsou jistě různé. Je tedy přímka BX prů-
sečnicí rovin q, ABC. Jestliže tedy má úloha řešení, je bod X
společným bodem roviny q a přímky AC. Dokážeme, že za
dané situace (t. j. vzhledem к danému kvádru) takový bod X
je jediný a že pak existuje bod Y na přímce BC takový, že
platí XY || B'D.

\
v/
\
\

vA
\

J'X£o: *

\ \
\ /\ 4 X

\
\

^‘

D \v
\ \

\\ \
\
-•čO в

'A $

Obr. 5.

Proveďme tuto konstrukci: Bodem C sestrojme rovno-
běžku к přímce B’D a označme D0 její průsečík s rovinou
ABC; takový bod D0 existuje. Čtyřúhelník B'C'D0D je podle
konstrukce rovnoběžník; proto je DD0 = B'C — AD, DD0 |j
|| B'C', takže bod D0 nutně leží na prodloužení úsečky AD
za bod D a bod D je středem úsečky AD0. Rovina BC'D0
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je již dříve zmíněnou rovinou q || B'D, neboť obsahuje přímku
ВС a přímku C'D0 || B'D; protože je jistě В Ф D0. je přímka
BD0 průsečnicí rovin q, ABC. Přitom úsečka BD0 leží v ob-
dělníku ABC0D0, takže body A, C0 jsou přímkou BD0 od-
děleny; proto jsou též přímkou BD0 odděleny body A, C
(přitom je C zřejmě středem
úsečky BC0). Existuje proto
uvnitř úsečky AC bod X, který
je i bodem přímky BD0. Tento
bod X leží podle předchozího
nutně uvnitř úsečky BD0. Se-
strojme v rovině q bodem X
přímku/? || C'D0(neboli/) || B'D)
a označme Y její průsečík
s přímkou BC; bod Y exis-
tuje a leží uvnitř úsečky BC',
jak plyne ze stejnolehlosti pří-
mek C'D0, p vzhledem к bodu
В jako středu stejnolehlosti.
Je-li k > 0 koeficient stejno-
lehlosti, platí zřejmě

BD0 = k- BX, D0C' — k • XY, BC = k • BY . (1)
Koeficient k snadno určíme. Zřejmě je AC || DC0 (viz obr. 6)
a platí Д BXC ~ Д D0XA, neboť je <£ BXC = <£ D0XA
(úhly vrcholové) a <£ CBX — <C AD0X (polopřímky BC,
D0A jsou nesouhlasně rovnoběžné). Koeficient podobnosti je

D0

✓\

\ у
/

/\ ^

/
\/ \

D
\ /

/•

V
/

\/
\
\

Obr. 6.

CB 1

AD0 2 ’
Je tedy také AX = 2 • CX, XD0 = 2 • BX. Odtud pro koe-
ficient stejnolehlosti k dostáváme k = 3. Ze vztahů (1) snadno
odvodíme, že СТ = 2- ВУа D0C' = 3 • XY neboli B'D -
= 3 ■ XY, což jsme měli dokázat. Z postupu důkazů (existence
bodu X uvnitř úseček AC, BD0 a bodu Y uvnitř úsečky BC)
plyne, že úloha má vždy jediné řešení.
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3. Úlohy III. kola kategorie A

1. Nech a je reálne číslo. V obore reálných čísel riešte
rovnicu

ax2 + 2(a — 1)jc + a — 5=0.
Urobte diskusiu vzhladom na číslo a.

Řešení. I. Nechť je a = 0. Pak je daná rovnice
— 2x — 5 = 0

lineární a má kořen
5

jc = —

2 '

II. Nechť je а Ф 0. Pak je daná rovnice kvadratická a její
diskriminant je

D = 12a + 4 .

Rozeznávejme tyto případy:
Případ [1]. Nechť je D > 0 neboli 12a + 4 > 0. Pro číslo a

pak platí
1

a > — —

3 ’

V tomto případě má daná rovnice dva reálné různé kořeny
лг15 x2, kde

Xj = — (1 — a + ]/3a + 1), x2 — -i- (1 — а — |/За + 1 ) .

Případ [2]. Nechť je D = 0, takže je a = —Daná3

rovnice má dvojnásobný kořen
1 — a

- -4.x =
a

1
Případ [3]. Nechť je D < 0 neboli а < ——. Daná rovnice

nemá v oboru reálných čísel řešení. .
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1
Protože ze vztahu a I> ——, а Ф 0, plyne D ^ 0, pak se3

zřetelem к odst. I (případ a = 0) lze říci: Daná rovnice má
řešení reálné pro a ]> —^ .3

Řešil s. Martin Černý,
ll.b 2. jedenáctiletky v Praze 2.

2. Nechť a, b jsou komplexní čísla. Jestliže obrazy kořenů
rovnice Z2 + aZ + b = 0 v rovině komplexních čísel tvoří
spolu s obrazem čísla 0 pravoúhlý rovnoramenný trojúhelník
s pravým úhlem při počátku, potom platí a2 — 2b Ф 0.

Dokažte a zjistěte, zda lze větu obrátit.
Riešenie. I. Kořene rovnice sú

a2a

(1)Zl = -2 +
'a2a

(2)Zn = —2 2

Pretože trojuholník OZxZ2 je pravoúhlý rovnoramenný (kde
<£ Z1OZ2 = 90°), musí platit’

Zx = iZ2 alebo Zx = — iZ2 .

Případ [1]. Pre Zj = iZ2 je
a

■—2 +
stade vyplývá postupné

2

K.-HVR •(1+i),

'a2.a 1 + i
У = 1 -i

Щ
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Umocněním posledného vztahu na druhů dostaneme
a2 a2

r + b,4 4

t. j.
a2 — 2b .

Případ [2]. Pre Zx = — iZ2 dostaneme rovnakým spóso-
bom vztah

a2 = 2b .

Zo vzťahov (1), (2) vyplývá, že aspoň jedno z čísel a, b je rožne
od nuly, inač by sa kořene Z15 Z2 rovnice Z2 aZ b — 0
rovnali nule a útvar OZ1Z2 by nebol trojuholník. Platí teda
a2 = 2b Ф 0, čo sme mali dokázat’.

II. Obrátená veta znie: Ak je a2 = 2b Ф 0, tvoria oba obrazy
koreňov rovnice Z2 + aZ -f- b — 0 a počiatok súradníc troj-
uholník s pravým úhlom pri počiatku súradníc.

a2
Dokaž. Dosaďme do (1), (2) za b — —. Dostaneme

a

z--7 +
a2a

4

čiže

(1+i),

у (1+ i) = Zx, teda

^2 = - | (1 - Í) •

Platí iZ2 =

Zx — iZ2 i

pretože je а Ф 0, je aj Zx Ф 0, Z2 Ф 0 a vzhíadom na vztah
Zx — iZ2 má trojuholník OZxZ2 pri vrchole O pravý uhol.

Riešili s. Július Betko, 4.b, vyšší prie-
myslová škola energet. a elektrotechn.
v Bratislavě, a tiež s. Juraj Virsík, ll.b,

XI. jedenásťročnica v Bratislavě.
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3. Bez upotrebenia logaritmických tabuliek dokážte správnosť
vzťahu

5
log2 7C + log4 71 < — .

(Pri tom log^ В značí logaritmus čísla В pri základe logaritmov
A)

Řešení. Platí zřejmě 7c < 3,15 a dále
7c < 3,2, (1)

takže po řadě dostaneme

KW-9 + ítč + ll*<9 + í^ + 'í5i - 107C2 <

neboli

7Г2 < 10 .

Protože je тс3 — тс2 ■ тс, proto vzhledem ke vztahům (1), (2)
(2)

platí 7c3 < 10 • 3,2 neboli
тс3 < 32 . (3)

Protože logaritmus při základu větším než 1 je funkce rostoucí,
vyplývá ze vztahu (3)

log2 тс3 < log2 32 .

Protože log2 32 = log2 25 = 5, dostáváme ze vztahu (4)
(4)

(5)3 • log2 7C < 5 .

Položme log2 7c = x, log4 tí — y, t. j. 7C = Iх — Ay neboli
2* = 22y. Odtud snadno usoudíme, že musí platit jc = 2y.
Podle vztahu (5) je 3x < 5 neboli 2x + 2y < 5, a tedy x +

což je vztah, jehož platnost jsme měli dokázat., 5+ 3-cT,
Řešil s. Oldřich Buchta, 11. roč.
3. jedenáctiletky v Brně-Táboře.
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4. Je dána krychle ABCDA'B'C'D' (AA' || BB' || CC ||
(| DD'). Nechť bod X leží uvnitř úsečky AB, průsečík hrany AD
s rovinou B'D'X označme Y (obr. 7).

a) Jaký útvar vyplní průsečík úhlopříček čtyřúhelníka
B'D'YX, probíhá-li bod X vnitřek hrany AB ?

b) Určete mezi těmito čtyřúhelníky B'D'YX takový,že
jeho úhlopříčky se navzájem dělí v poměru 1 : 2.

D

Řešení, a) Všechny čtyřúhelníky B'D'YX jsou rovno-
ramenné lichoběžníky, neboť je B'D' \[XY (průsečnice roviny
B'D'X s oběma rovnoběžnými rovinami A'B'C'D', ABCD),
B'D' Ф XY (je XY < BD = B'D') a B'X = D'Y (neboť
je Д ВВ'Х ^ Д DD' F(sus) a XY || BD). Rovina ACC je
rovinou souměrnosti každého lichoběžníka B'D'YX (je
B'D' JL ACC, XY I B'D', t. j. XY J_ ACC, při čemž jsou
úsečky B'D', XY půleny rovinou ACC). Průsečík Z úhlo-
příček B' Y, D'X leží tedy v rovině ACC a současně náleží
vnitřku úsečky D'X, t. j. náleží vnitřku trojúhelníka D'AB.
Společné body roviny ACC a vnitřku trojúhelníka D'AB
vyplní vnitřek úsečky AS, kde 5 je střed krychle.
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Obráceně, každý bod Z vnitřku úsečky AS je průsečíkem
úhlopříček některého lichoběžníka B'D' YX, neboť přímka D’Z
protne úsečku AB v jejím vnitřním bodě X.

b) Je-li D'Z = 2 • XZ (obr. 8), pak z podobnosti trojúhel-
níků AXZ, CD'Z plyne, že C'Z = 2 • AZ. Průsečík Z úhlo-
příček hledaného čtyřúhelníka tedy dělí tělesovou úhlopříčku
AC v poměru 1: 2, t. j. C'Z = 2 • AZ.

C
у\

\ /
\

/\
/

\ /
/\

/\
/\ /\ /

\

\ / ь

/ \
\/

/
\/

/ \
/ \

\

A X В

a

Obr. 8.

Není dále možné, aby platilo XZ — 2 • D'Z, neboť platí
AX < CD' — AB, a tedy vzhledem к podobnosti troj-
úhelníků AXZ, CD'Z také XZ < D'Z.

Postup lze zřejmě obrátit.

4. Úlohy I. kola, kategorie В
1. Nech a, b, c sú nezáporné racionálně čísla, pričom je

b Ф 0. Ak o týchto číslach platí vztah

Ya + Yb = |/c,
5-55-17-03 65



a

potom číslo — je druhou mocninou racionálneho čísla. Do-
kážte.

Riešenie. Z daného vztahu umocněním na druhů dostaneme
a + b + 2 \ab = c alebo |/ďů = | (c — a — b).
Odtial znova umocněním na druhů máme

ab = [§ (c -a- b)f.
Ak delíme obe strany tejto rovnosti číslom b2 ф 0, dostaneme

i = [kic-a-b)]-
V hranatej zátvorke máme skutočne racionálně číslo a zlomok
a

— sa rovná jeho druhej mocnině, čo sme malí dokázat’.
b

2. Budiž a přirozené číslo napsané v desítkové soustavě
a budiž b číslo, které vznikne z čísla a, když obrátíme pořádek
jeho cifer. Označme

r — \a — b\ .

Dokažte: Jestliže počet cifer čísla a je sudý, je číslo s dělitelné
jedenácti, jestliže počet cifer čísla a je lichý, je číslo r dělitelné
jedenácti.

s — a b ,

Řešení. Nechť číslo a napsané v desítkové soustavě má
(n + 1) cifer, kde n 0 je číslo celé. Potom můžeme psát

a = a„10я + яя_110я"1 + ... + í^IO + a0,
kde každé z čísel a0, Oj,.. ., an Ф 0 je rovno některému z čísel
0, 1,. .., 9. Pro číslo b pak platí

b = ao10” + ajlO"-1 + . . . + 10 + .

Položme

Qe = a„(10" + £ • 10°) + íV-iCIO”-1 + e • 10) + .. .

... + a^(10fe + £ • 10”-*) + . .. + arflO + e • Ю”"1) +
+ a0(10° + £ • 10”) ,

kde £ = ± 1, a celé číslo k splňuje nerovnost 0 <Lk <Ln.
(1)
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a) Je-li počet cifer čísla a sudý, je číslo n liché. Číslo
s — a -f b je rovno číslu Qv Všimněme si členu

ak{10* + 10”-*) (2)
ve výrazu Q1 (viz vztah (1) pro e = 1). Jsou dvě možnosti:
[1] Číslo k je sudé, takže číslo n — k je liché.
[2] Číslo k je liché, takže číslo n — k je sudé.
Vytkněme z dvojčlenu 10* + 10”“* to z čísel 10*, 10”“*,
které má menšího mocnitele; potom v závorce dostaneme
dvojčlen tvaru

(3)10* + 1,
kde t > 0 je rozdílem čísel k, n — k nebo rozdílem čísel
n — k, k, t. j., t jest vždycky číslo liché. Je však známo z od-
vožení dělitelnosti číslem 11, že číslo (3) pro přirozené liché
číslo t je vždy dělitelné číslem 11. Proto je jedenácti dělitelné
i číslo (2) a tím i číslo s = Ql3 které je součtem čísel tvaru (2).
Tím je jedna část úlohy dokázána.

b) Je-li počet cifer čísla a lichý, je číslo n sudé. Uvažuj-
me číslo r = \a — b\3 které dostaneme z (1) pro s = — 1,
t. j. r — |<2-il* Všimněme si členu

ak{ 10* - 10”-*) (4)
ve výrazu r (viz vztah (1) pro s = — 1). Jsou dvě možnosti:

[1] Číslo k je sudé, takže i číslo n — k je sudé.
[2] Číslo k je liché, takže i číslo n — k je liché.
Vytkněme z dvojčlenu 10* — 10”-* to z čísel 10*, 10”“*,

které má menšího mocnitele, potom po vytknutí dostaneme
dvojčlen tvaru

kde 10 je podle [1], [2] vždy číslo sudé. Je však známo,
že číslo 10* — 1 pro sudé nezáporné číslo t je vždy dělitelné
jedenácti. Proto je číslem 11 dělitelné i číslo (4) a tudíž i číslo
| Q-i\ — r, které je součtem čísel tvaru (4). Tím je druhá
část úlohy dokázána.

3. Uvnitř trojúhelníka ABC o obsahu A je dán bod O.
Vedme bodem O rovnoběžky ke každé ze stran daného troj-
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úhelníka. Tím se trojúhelník rozdělí ve tři rovnoběžníky a ve
tři trojúhelníky; obsahy těchto trojúhelníků označme Av
A23 A3, a to tak, že jedna strana prvního trojúhelníka leží
na přímce BC, jedna strana druhého trojúhelníka leží na přímce
CA a jedna strana třetího leží na přímce AB. Dokažte, že platí
vztah

+ V^2 + ]/A3 = ]/A .

A Řešení (obr. 9). Nechť
noběžka vedená bodem О к přímce
AB protne stranu BC v bodě В',
takže OB' || AB; dále nechť rov-
noběžka vedená bodem О к přím-
се AC protne stranu BC v bodě
C', takže OC |( AC. Snadno se
dokáže, že pořádek bodů na straně

c BC je ВВ'СС. Označme B’C =
I = pv C'C — p2, BB' — p3, takže

Pi + P2 + Рз = BC = a• Troj-
úhelníky, jejichž obsahy jsme
označili Als A2, A3, jsou všechny

podobné s trojúhelníkem ABC, neboť se s ním shodují ve
všech úhlech. Ty jejich strany, které jsou rovnoběžné s přímkou
BC, mají po řadě velikosti pv p2, p3. Proto platí

__ Ři2 Aj _ Pj? £|з _ tpp
A a23 A a23 A a2'

rov-

\

/
\

A \ / A>
ňÁ~°Á

g'/A \C
~

X J.
Pj p-j P2

в

Obr. 9.

Odtud

1 /^i i 1 [A2 , 1 /^з Pi i P% t Рз Pi P2 Рл __

\А + \А^\А~а+а + a a
1 .

Ze vztahu

= 1+
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pak dostaneme hledané tvrzení

R + ]/^2 + R= У^ •

4. Nech sú dané rožne kružnice kx = (<S1} г-l), &2 = (*S2, гг)>
kde rj I> r2. Označme Xx lubovolný bod kružnice kx a X2
lubovolný bod kružnice k2. Nech У je střed úsečky XxX2
(ak je Xx = X2, je Y ^ Xx^ X2).

Čo vyplnia všetky body Y, keď body Xx, X2 menia svoju
polohu ?

Riešenie. Kvdli jednoduchosti vyjadrovaniasa dohovoříme,
že budeme nazývat’ stredom úsečky XxX2 bod Y, ktorý v prí-
páde Xx Ф X2 je stredom úsečky v obvyklom slova zmysle
a v případe Xx == X2 položíme У ^ Xx.

Budeme používat túto známu pomocnú poučku:
Nech je daná kružnica k .= (S, r) a (v jej rovině) lubovolný

bod P. Pre lubovolný bod X kružnice k označíme Z střed
úsečky XP. Ak bod X mění 1’ubovol’ne svoju polohu na kružnici

pričomш\т4k3 potom všetky body Z vyplnia kružnicu k0
T je střed úsečky PS.

Hl’adajme teraz množinu všetkých stredov úsečiek XxX2,
keď Xx je lubovolný pevný bod na kružnici kx a keď X2 mění
svoju polohu na kružnici k2. Z pomocnej poučky vyplývá pre
P = Xx a k = k2, že hladaná množina bodov У je kružnica
kx = (Sq, |r2), kde iS0 je střed úsečky XxS2. Teraz vyšetříme,
akú množinu vyplnia středy »S0, keď bod Xx mění svoju polohu
na kružnici kx. Ak si uvědomíme, že S0 je stredom úsečky
XxS23 móžeme znova použit’ pomocnú poučku pre P == S2
a k = kx a zistíme, že množina stredov £0 je kružnica k s polo-
merom \rx a stredom Г0, ktorý je stredom úsečky SXS2.
Vcelku sme teda ukázali, že každý střed У niektorej úsečky
XxX2, ktorej jeden krajný bod Xx leží na kx a druhý krajný
bod X2 na k2, je bodom nejakej kružnice s polomerom |r2,
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ktorej střed leží niekde na kružnici s polomerom %rx a stredom
T0. Inými slovami: Žiadny taký bod nemože padnúť inde než
do medzikružia so stredom T0 a polomermi \{rx + r2) a
Kri ~~ гг) (používáme kvóli stručnosti slovo medzikružie
aj keď pre rx — r2 dostaneme celý kruh).

Teraz naopak potřebujeme dokázat’, že ku každému bodu M
z medzikružia sa dá nájsť aspoň jedna dvojica bodov Xx, X2
(kde Xx leží na kx, X2 na k2) tak, že M je stredom úsečky
XxX2. Nech teda M je 1’ubovol’ný bod z nášho medzikružia.
Kiužnica opísaná okolo bodu M ako středu polomerom |r2
má s kružnicou, ktorú sme označili k, aspoň jeden bod S0
spoločný. Z pomocnej poučky pre P = S2, k = kx vyplývá,
že existuje bod Xx na kx tak, že S0 je stredom úsečky S2Xx.
Bod M leží na kružnici s polomerom \r2 a stredom S0. Z po-
mocnej poučky pre P = Xx, k = k2 vyplývá, že existuje taký
bod X2 na k2, že M je střed úsečky XxX2. Pretože M bol
lubovolný, dokázali sme: každý bod M nášho medzikružia
je stredom nejakej úsečky s krajnými bodmi na kx a k2.
Teda vcelku: body Y právě vyplnia popísané medzikružie.

5. Dokažte, že pro přirozené číslo n > 1 není číslo 2n — 1
druhou mocninou celého čísla.

Řešení. Důkaz provedeme nepřímo. Nechť přirozené číslo a
splňuje vztah

2я — 1 = a2. (1)
Protože číslo 2я — 1 je liché, musí i číslo a být liché, takže

má tvar a — 2k + 1, kde k je celé číslo. Vztah (1) pak nabude
tvaru

2" = 4^2 + 4^ + 2
a po dělení číslem 2 máme

2»-1 -2k2-2k = \.

To však je spor, neboť pro n > 1 jsou všecka tři čísla na
levé straně poslední rovnosti vesměs sudá, ale na pravé straně
je číslo liché. Tím je tvrzení úlohy dokázáno.
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6. Celistvá část m-té odmocniny kladného čísla a je rovna
celistvé části m-té odmocniny celistvé části čísla a. Dokažte.

(Při úvahách užijte pro označení celistvé části čísla a na př.
m m

symbolu [a]. Máte dokázat, že platí []/a] = []/[«]].)

Řešení. Označme

[W\=b, /

kde b je celé nezáporné číslo; proto platí
m

b <1 |Га < b + 1 .

Po umocnění těchto nerovností na m-tou dostaneme

bm a < (b + l)m.
Číslo bm je celé nezáporné číslo; to znamená, že pro celistvou
část [a] čísla a opět platí

bm <; [a] <(b+ l)w.
Protože jde vesměs o čísla nezáporná, platí o m-tých odmocni-
nách těchto tří čísel obdobné nerovnosti, t. j.

m

ь< Ум <ь + i.
Protože b, b -f- 1 jsou dvě celá nezáporná po sobě následující
čísla, je nutně

m

[Vm =*.
což jsme měli dokázat.

7. Z úsečiek o veíkostiach a, b, c možno zostrojiť trojuholník
vtedy a len vtedy, ak platí vztah

a2 - b2 - c2
< 1 .

2bc

Dokážte.
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Riešenie. I. Z úsečiek o velkostiach a, b3 c sa dá zostrojiť
trojuholník vtedy a len vtedy, keď platí

|b — c\ < a <b + c . (1)
Ak platí vztah (1), je

a2 < (6 + c)\ (la)
/

a2 - b2 - c2 < 2bc,
číže

a2 -b2 - c2
< 1 . (2a)2bc

Ak platí vztah (1), je aj
(b - c)2 < a2 , (lb)

t. j.
- 2fc < a2 -b2 -c2,

číže
a2 — b2 — c2

> - 1 . (2b)26c

Spojením nerovností (2a), (2b) dostáváme vztah
a2 — b2 — c2

(2)< 1 .

2bc

II. Obrátene, ak platí (2), platí (2a) a (2b). Zo vztahu (2a)
dostaneme obrátením uvedeného postupu vztah (la), zo vztahu
(2b) podobné vztah (lb). Odmocněním a spojením nerovností
(la), (lb) výjde vztah (1).

8. Sestrojte pravoúhlý trojúhelník ABC o přeponě AB,
jestliže jsou dána čísla p, q, o nichž platí p ^>q > 0 a jestliže
víme, že

b + c = p, c + a, = q,
kde a, b, c jsou strany hledaného trojúhelníka ABC. Proveďte
diskusi.
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Řešení. I. Předpokládejme, že jsme úlohu rozřešili, takže
ABC je hledaný trojúhelník, jehož velikosti stran označíme
a ^.b < c (neboť je q <1 p). Na prodloužení úsečky CA
za bod A sestrojíme bod A' tak, aby AA' — c, takže CA' = p
(obr. 10), na prodloužení úsečky CB za bod В sestrojíme
bod B' tak, aby BB' — c, takže CB' — q. Nyní sestrojíme
obdélníky A'CB'M a ACBS. Přímka BS protne úsečku

q

n

p

A ff

Obr. 10.

A'M v bodě P, přímka AS protne úsečku B'M v bodě Q,
takže SP = SQ — SC = c. Kružnice k = («S’, c) se tedy
dotýká přímek A'M, B’M po řadě v bodech P, Q a vedle
toho prochází bodem C. Odtud plyne řešení úlohy.

II. Sestrojíme obdélník A'CB'M tak, aby CA' = p, CB’ — q
a uvnitř tohoto obdélníka sestrojíme bod 5 tak, aby kružnice k
o středu 5 se dotýkala přímek MA', MB' a procházela bodem C.
Tuto kružnici sestrojíme podle známé konstrukce užitím
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stejnolehlosti se středem M stejnolehlosti (viz na př. Mate-
matika pro I. tř. bývalých gymnasií, str. 198, cvič. 193) takto:
Sestrojíme pomocnou kružnici k' = (S', \q), která se dotýká
ramen pravého úhlu <£ A'MB'. Bod S’ leží na ose MB0
tohoto úhlu, kde B0 je bod polopřímky A'C. Rozeznávejme
dva případy:

A" A' P

и
A a

у
/

в"

Obr. 11.

Případ [1]. Je p = q, takže B0 = C (obr. 11). Hledaná
kružnice k se dotýká stran trojúhelníka A"B"M, kde A", B"
jsou po řadě průsečíky polopřímek MA', MB' s kolmicí
vedenou bodem С к přímce CM. Pro řešení má význam jen
kružnice trojúhelníku fA"B"M vepsaná, protože její střed
padne dovnitř úsečky CM a tím i dovnitř daného obdélníka
А'СВ'М. Druhá kružnice dotýkající se přímek MA', MB',
A"B" má střed na prodloužení úsečky MC za bod C, takže S"
leží vně obdélníka А'СВ'М. Další konstrukce se provede
podle odst. I.
^ Jestliže tedy jt p = q, má úloha jediné řešení.

Případ [2]. Je-li p> q, leží bod B0 uvnitř úsečky CA'.
Na kružnici k' určíme body С, C", které leží na polopřímce
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MC; označení volme tak, abychom dostali pořádek MC"C'C.
Ke kružnici k! sestrojíme kružnici k příslušnou ve stejno-
lehlosti o středu M, a to tak, aby bodu C ve stejnolehlosti
příslušel bod C (případ, kdy bodu C" přísluší ve stejnolehlosti
o středu M bod C, nemá pro naši úlohu význam, neboť střed
příslušné kružnice k by padl na prodloužení úsečky MB0
za bod B0 a tedy vně obdélníka А'СВ'М). Stačí na polo-
přímce MjBq sestrojit bod S tak, aby platilo SC || S'C. Bod 5
padne dovnitř úsečky B0M jen tehdy, když úhel <£ B0S'C' <
< |R, t. j. když B0C < q (viz na obr. 10 průsečík polopřímky
MC0 s polopřímkou A'C, kde S'C0 f f A'C, S'C0 = £q);
odtud plyne, že musí platit A'C < 2q neboli

p<2q.
Z konstrukce snadno plyne, že platí-li tato podmínka, pak
existuje jediný bod S požadovaných vlastností a tím i Д ABC.

Závěr. Za daných podmínek má úloha jediné řešení pro
p < 2q. V případě piž.2q nemá úloha řešení.

9. Sú dané tri reálne čísla a, b, c, o ktorých platí
abc > 0, db + bc + ca > 0, a + b + c > 0 .

Dokážte, že všetky čísla a, b, c sú kladné.
(1)

Riešenie. Vzhl’adom na vztah abc > 0 sú čísla a, b, c od
nuly rožne a sú alebo všetky kladné, alebo dve záporné a tretie
kladné. Připusťme druhů možnosť a dokážme spor. Zrejme
stačí diskutovat’ len případ

a>0, b < 0, c<0.
Zo vztahu a + b + c > 0 vyplývá

a > — (b + c) . (2)
Z druhého vztahu (1) máme

a(b + c) + bc > 0
alebo

bc > — (b + c)a . (3)
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Pretože je
— (b + c) > 0,

vyplývá z (2)
_ (ъ + ф > _ (b + c) • [- (b + c)],

t. j.
— (b + c)a > b2 + c2 + 26c > bc, (4)

čo je spor so vzťahom (3).

10. Dokažte, že výraz
24я+1 — 22я — 1 ,

kde я je přirozené číslo, je dělitelný devíti.

Řešení. I. Pomocné poučky.

[1] Pro přirozené liché n platí
an + bn = (a + b)L ,

kde pro ra = ljeL = la pro n > 1 je
L = a”-1 — a”~26 + an“362 -f . . . —

— abn~2 + б”"1.

(1)

(!')
[2] Pro přirozené sudé n platí

an — bn = (a + b) • 5, (2)
kde

5 = a”-1 - an~2b + an~%2 - . .. +

+ a£”-2 - б”"1. (2')
II. Platí

x = г4”4"1 — 22я — 1 = 2 • 24я — 2 • 22я + 22я — 1 =

= 2 • 22я(22я — 1) + (22я — 1) =
= (22n+1 + 1)(22я — 1). (3)

Podle poučky [1] je
22«+i + i = у + 1)L = 3 • L', (4)
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kde L' je téhož tvaru jak udává vztah (Г), takže L' je celé
číslo. Podle poučky [2] je

22» _ l = (2 + 1)5' = 3 • 5',
kde 5' je téhož tvaru jak udává vztah (2'), takže S' je celé číslo.
Podle (3) vzhledem ke (4), (5) lze tedy psát

X = 3L' ■ 35' = 9US',
kde L'5' je celé číslo. Je tedy X dělitelné devíti, což jsme
měli dokázat.

(5)

11. Dokažte správnost tohoto postupně prováděného dělení
úsečky A0A1 na jednu polovinu, jednu třetinu,. .., jednu
w-tinu:

Označme Ak bod úsečky A0A13 pro nějž platí A0Ak =

= 4- • AqAi, kde k > 1 je přirozené číslo. Jestliže pro při-k
rozené číslo n > 1 známe polohu bodu An_1 na úsečce A0AV
sestrojíme bod An takto: Veďme body A0, Av An_1 po řadě
přímky a0 j| ax || an_ 13 různé od přímky A()AV
P0, Pv Pn-i průsečíky těchto přímek s přímkou p || A0AV
různou od přímky A0AV Budiž Xn průsečík přímek P0A13
Pn^1A0. Přímka an || a0, vedená bodem Xn, protíná přímku
A0AX v hledaném bodě An.

a označme

Řešení. Správnost postupu dokážeme užitím matematické
indukce. Pro n — 2 je konstrukce zřejmě správná.

Předpokládejme, že je n > 2 a že konstrukce pro bod An_x
je správná. Platí (obr. 12)

[1] Д A0AXPо ^ Д AnAxXn,
[2] дед,-А~ЛАА*n >

neboť se příslušné trojúhelníky shodují v úhlech.
Z [1] plyne

AA — 2 • ДА j

A„A, = X ■ XA (1)1 >
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kde Я > 0. Odečtením obou vztahů dostaneme

AqAx A„AX — Я(Р<А XnAx)
neboli

AqA„ — Я • P()Xn . (2)
Dělením vztahů (2), (1) máme

ApAn
_ PqXh

AnA\ XnAx (3)

A rtn-1 A/
/ //

Д4 V-~P/ \*/7 /
// >> //

4
>1 4

А /Л> /An-i
/ A / Z

Obr. 12.

Podle [2] pro pravou stranu vztahu (3) dostaneme
P()X„ PqP„-x

AqAxXnAx
neboli

PoXn A0An—1
(4)AqAx

Spojením (3), (4) dostaneme
A0A

AqAx

X„Ax
neboť je Р0РЯ_! = A0A

AqA„
n-v

n-1

AAi
Položme zde

AqAx = a, AnAx = a A0A„, A0An_x = ^

(podle předpokladu, že konstrukce platí pro bod An_x);
1
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obdržíme

лл а

а(п — 1) ‘а - А0Ап
Odtud plyne

а
АпА.

což jsme měli dokázat.

12. Obdélník, jehož rozměry jsou přirozená čísla a, b,
je rozdělen na ab shodných čtverců. Stočme tento obdélník
do pláště rotačního válce tak, aby strana obdélníka, která
má velikost a, se stala obvodem podstavy tohoto válce. Vrcholy
zmíněných shodných čtverců vytvoří na plášti válce t. zv.
mřížové body. Každé dva různé mřížové body spojíme přímkou,
kterou nazveme příčka.

a) Kolik je těch příček, které procházejí vnitřkem vytvoře-
ného válce ?

b) Dostaneme více takových příček, když stočíme větší
nebo když stočíme menší stranu obdélníka v podstavnou

.kružnici rotačního válce?

Řešení, a) Na plášti válce vznikne celkem a(b + 1) mřížo-
vých bodů. Z každého mřížového bodu vychází kromě pří-
slušné strany válce (kterou podle textu úlohy nepočítejme)
celkem

a(b + 1) - (b + 1) = (a - l)(b + 1)
příček. Úhrnem tedy dostaneme

Ia(b + 1 )(a — 1 )(b + 1) = |a(a — 1)(6 + l)2
příček. Z nich je však třeba vyloučit ty příčky, které leží
v obou podstavách: těch je v každé podstavě |a(a — 1),
v obou podstavách a(a — 1). Celkový počet příček je tedy

N = |a(a - 1 )(b + l)2 - a(a - 1).
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Po úpravě dostaneme
N = \a(a - 1)(62 + 2b - 1).

b) Předpokládejme, že a^>b. Stočíme-li obdélník podél
strany velikosti a, je počet příček dán formulí (1). Stočíme-li
týž obdélník podél strany velikosti b, je počet příček

N' = \b(b - 1 )(a2 + 2a - 1) .

Ze vztahů (1), (2) dostáváme po úpravě
N - N' = \{a - b)(bab - a - b + 1) .

Poněvadž vzhledem к významu čísel a, b platí a 2> 2, b 2, je
3ab — a — 6+lI> 6a — a — 6+1 > a — 6+1 >0;

mimo to je a — 61> 0. Proto je
N - N' ^ 0 ;

rovnost nastane tehdy a jen tehdy, je-li a — b — 0, čili a—b.
Obdélník o různých rozměrech a > b je tedy třeba stočit
podél větší strany, chceme-li dostat více příček.

(1)

(2)

(3)

13. Keď n je prirodzené číslo, určte súčet
í„ = l- 2 — 2-3 + 3- 4 — 4-5 + ...+

+ (— 1)”+1 • n(n + 1).

Riešenie. Rozoznávajme dva případy: [1] prirodzené
číslo n je párne; [2] prirodzené číslo n je nepárne.

Případ [1]. Nech je n párne. Platí
s, = 2(1 - 3) + 4(3 - 5) + ... + n[(ii - 1) - (n + 1)] =

= — 2(2 + 4 -j- ... -j- ri) — — 2 • — • — (w -j- 2) =

= -уя(й + 2). (1)

Případ [2]. Nech je n ^ 3 nepárne, takže je n — 1 > 0
párne. Pišme

?„ = sn-i + n(n + 1).\
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Súčet 5„_г určíme podl’a (1), kde namiesto n položíme (n — 1);
je teda

= — -

j (n — 1 )(n + 1) + n(n + 1) =

= (n + 1) [,
Tento vztah platí aj pre n = 1.

1)]=4(я+1)2-1

14. Buďte dána reálná čísla a, bv b2, b3, bx. Řešte soustavu
rovnic o neznámých xv x2, x3, %:

x1 + a(x2 + x3 + ^4) = bí >

x2 + a(x3 + x4 + xj = b2 ,

*3 + a(xx + xx + x2) — b3,
Xí “f" й(^1 + x2 + X3) — Ž>4 .

Stanovte podmínky řešitelnosti soustavy vzhledem к daným
číslům a, bv b2, b3, bx.

Řešení. Položme x± + x2 + x3 + xx = t, kde t je pomocná
neznámá. Danou soustavu nahraďme ekvivalentní soustavou:

(1 — a)xx — bx — at,
(1 — a)x2 — b2 — at,
(1 — a)x3 = b3 — at,
(1 — a)xx = bx — at,
xx -J- x2 -}- x3 -f- xx — t.

(1)
(2)
(3)
(4)
(5)

Sečteme rovnice (1) až (4) a dosaďme z (5); dostaneme
(1 — a)t = b4 bz ^4 — 4at

neboli

(1 + 3a)t — bx +■ b2 + b3 + bx . (6)
I. Pro 1 + За Ф 0 máme

b\ b2 b3 bx
t —

1 + 3a

6-55-17-03
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a) Je-li ještě 1 — а Ф О, рак z rovnic (1) až (4) dostaneme
jednoznačně určená čísla xx, x2, x3, xx.

b) Je-li 1 — a = 0, t. j. a — 1, pak daná soustava má
tvar xx + x2 -f- x3 -j- xx = b{ pro i = 1, 2, 3, 4. Řešení tedy
existuje tehdy a jen tehdy, je-li bx = b2 = b3 — bx. Je-li
tato podmínka splněna, vyhovuje soustavě každá čtveřice
čísel *4, x2, x3, xx, pro kterou platí xx + x2 + лг3 -f x4 = bx.

II. Budiž 1 + 3a = 0, t. j. a — —

a) Pro bx + b2 + b3 + bx Ф 0 je podle (6) soustava sporná.
b) Pro bx + b2 -f b3 + bx — 0 se pomocná soustava zredu-

kuje na rovnice (1) až (4). Z rovnic (1) až (4) máme
*i = f bx + | t, x2 = | b2 + | t,

— f 63 + \ t, xx — § bx + \ t,
kde t je libovolné číslo; v tomto případě má daná.soustava
nekonečně mnoho řešení.

15. Buďte dány tři přímky a, b, c, z nichž každé dvě jsou
navzájem mimoběžné. Kolik je na přímce c bodů, jimiž nelze
vést žádnou přímku protínající obě přímky a, b? Proveďte
diskusi.

Řešení. Budiž Cbod přímky c, který má hledanou vlastnost;
to znamená, že žádná z přímek CA, kde A je libovolný bod
přímky a, nemá s přímkou b společný bod. Všechny přímky CA
leží v rovině Ca, určené bodem C a přímkou a; to znamená,
že tato rovina je rovnoběžná s přímkou b (a neobsahuje ji).
Pak tato rovina je rovnoběžná к oběma přímkám a, b. Existuje-li
tedy bod C hledané vlastnosti, potom buď leží v rovině a jj b
proložené přímkou a nebo leží v rovině (3 || a a proložené
přímkou b. Především je a jj /5, při čemž to jsou různé roviny
(jinak by přímky a, b ležely v jedné rovině, což je proti před-
pokladu), a proto nemají žádný společný bod.

Odtud plyne řešení. Protne-li rovina a přímku c v bodě Cx,
potom bodem Cx neprochází příčka к mimoběžkám a, b, c.
Pak již rovina (3 protne přímku c v bodě C2 Ф Cx a jím rovněž

1

3 '
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neprochází žádná příčka mimoběžek a, b, c. Řešení jsou tedy
dvě různá, a to za předpokladu, že přímka c je různoběžná
s rovinou a, neboli když přímka c není rovnoběžná s a. Úloha
nemá řešení, když je c || a.

Závěr. Jestliže jsou přímky a, b, c rovnoběžné s touž
rovinou, potom lze každým bodem přímky c sestrojit přímku,
která protíná přímky a, b. Jestliže přímky a, b, c nejsou rovno-
běžné s touž rovinou, potom na přímce c existují právě dva
různé body Cls C2, jimiž nelze sestrojit přímku, která protíná
přímky a, b. Body Cv C2 jsou průsečíky přímky c s rovinami,
a, /5 položenými po řadě přímkami a, b tak, že je a || b, /5 |j a.

16. Označme M střed strany CD daného obdlžnika ABCD.
Čo musí platit’ o rozmeroch tohto obdlžnika, keď platí

BD J_ AM ?
Riešenie. Označme E priesečnik priamok AM, ВС.

Z vlastnosti strednej priečky trojuholníka ABE vyplývá,
že MC je jeho středná priečka, lebo MC\\AB a MC = \AB.
Pieto je aj

(1)AM = EM.

Označme AM — p, AQ — x, kde Q značí priesečnik priamok
AM, BD. Z danej vlastnosti vyplývá, že trojuholníky AMD,
AEB májů spoločnú patu výšky Q. Podlá Eukleidovej vety
a podl’a (1) je

Ь2 a2
(2)* >

P
x — —,

2P
kde a — AB, b = AD. Z rovnic (2) dostáváme

ů2
_ a2

7 ~Tp>
číže

a = b]/2 .a2 = 2b2,
Váčšia strana obdlžnika je uhlopriečka štvorca, zostrojeného
nad menšou stranou.

Táto podmienka je nielen nutná ale aj postačujúca, ako
to vyplývá z obrátenia postupu.

6*
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5. Úlohy II. kola, kategorie В
1. Druhá mocnina celého čísla má jeden z tvarů 5n — 1,

5n, 5n + 1j kde n je určité přirozené číslo nebo nula. Dokažte.
Lze větu obrátit ?

Řešení. Každé přirozené číslo můžeme napsat právě v jed-
nom ze tvarů

5k + 1, 5k + 2, 5k + 3, 5k + 4, 5k,
kde k je přirozené číslo nebo nula. Probereme tedy jednotlivé
případy:

[1] Platí (5k + l)2 = 25k2 + 10£ + 1 = 5(5k2 + 2k) + 1,
a stačí tedy položit n = 5k2 + 2k.

[2] Platí (5k + 2)2 = 25k2 + 20k + 4 = 5(5k2 + 4k + 1) -
— 1 a položíme tedy n = 5k2 + 4k + 1.

[3] Platí (5k + 3)2 = 25k2 + 30k + 9 = 5(5k2 + 6k + 2) -
— 1 a položíme n = 5k2 + 6^ + 2.

[4] Platí {5k + 4)2 = 25k2 + 40^ + 16 = 5{5k2 + 8^ + 3) +
+ 1, a položíme n = 5k2 + 8^ + 3.

[5] Konečně (5k)2 = 5 • 5k2, a klademe-li n — 5k2, dostáváme
tvar 5n.

Věta se nedá obrátit, neboť na př. číslo 10 je tvaru 5/í, ale
není čtvercem žádného přirozeného čísla.

2. Jsou-li m1s u2, v13 v2 libovolná reálná čísla, potom vždy
platí vztah

(«А + и2v2)2 ^ (u2 + u22)(v2 + v22), (1)
dokažte.

Určete všechny hodnoty čísel u13 u2, v13 v23 pro něž v tomto
vztahu platí rovnost.

Řešení. Předpokládejme, že pro určitou čtveřici čísel u13
w2j íe daná nerovnost správná. Po vynásobení na obou
stranách nerovnosti a po snadné úpravě dostaneme

2u1u2v1v2 u2v22 + u2v2
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neboli
0 ^ (uxv2 — u2vxf.

Avšak vztah (2) skutečně platí pro každou čtveřici reálných
čísel ux, u2, vv v2l odtud po umocnění dostaneme

0 <1 uxv2 + m2V ~ 2uxu2vxv2 .

Přičtením čísla 2uxu2vxv2 + uxvx + u22v22 к oběma stranám
nerovnosti obdržíme po snadné úpravě danou nerovnost.
Tím jsme dokázali, že daná nerovnost platí pro všechny
čtveřice reálných čísel ux, u2, vx, v2.

Vzhledem ke vztahu (2) nastane ve vztahu (1) rovnost,
když je uxv2 = u2vx. Obráceně, nastane-li ve vztahu (1) rovnost,
nastane rovnost i ve vztahu (2), t. j. uxv2 = u2vx.

(2)

3. Je dán trojúhelník ABC. Uvnitř strany BC zvolte dva
různé body J, J'. Na úsečce AB určete body К, K' tak, aby
platilo JK\ACy J'K'\AC', na úsečce AC určete body L, L
tak, aby platilo JL\\AB, J’L'\\AB.

Dokažte, že platí vztah
KK'

_ AB
LL ~ AC’

Řešení. Označení bodů J, J' volme tak, aby body přímky
BC byly v pořádku BJJ'C. Označme \S průsečík přímek JL,
J'K'. Je

A SJJ' ~ д ABC,
neboť A ABC = <£ SJf, <£ BCA = ^ jffS (úhly s rameny
souhlasně rovnoběžnými). Proto platí

SJ AB
Sf ~ AC '

Ale SJ = KK' (neboť SJKIC je rovnoběžník) a Sf = LL
(neboť SJ'L'L je rovnoběžník). Proto je

KK' AB

LL AC5
což jsme měli dokázat.
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4. Budiž dán rovnostranný trojúhelník ABC a uvnitř
tohoto trojúhelníka bod P. Dokažte, že každá ze tří úseček

PA, PB, PC
je menší než součet obou zbývajících.

Řešení. Dokážeme, že platí
(1)PA < PB + PC

(zbylé dvě nerovnosti se odvodí zcela analogicky).
V trojúhelníku РАС je

<C РАС < 60°, (2)<£ PCA < 60°;
proto je <£ APC = 180° - <£ РАС - <£ PCA > 180° -
- 60° - 60° = 60°, neboli

(3)< APC > 60°.
Je tedy podle (2) a (3)

PCA < APC ;

proto pro strany protější těmto úhlům v trojúhelníku CPA
platí

(4)PA <AC.

Avšak o stranách trojúhelníka PBC platí
BC <PB +PC.

Trojúhelník ABC je rovnostranný, proto je АС — BC;
proto podle (5) platí vztah

(5)

(6)AC<PB + PC.

Z nerovností (4) a (6) ihned plyne vztah (1). Tím je důkaz
proveden.

Jiné řešení. Podle předpokladu je
AB — ВС = AC.

Všechny body trojúhelníka ABC s výjimkou bodů А, В leží
(1)
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zřejmě uvnitř kružnice k = (C, CA); proto o bodu P platí
CP < A C, neboli

(2)CP < AB .

Z trojúhelníka ABP (podle trojúhelníkové nerovnosti) plyne
AB <AP+ PB. (3)

Sečtením nerovností (2), (3) dostáváme
AB+ CP<AB + AP+PB,

neboli
CP< AP+PB,

což jsme měli dokázat. Stejným způsobem lze dokázat i oba
zbývající vztahy.

Řešil s. Jiří Bystrický,
10. roč. jedenáctiletky

ve Stříbře.

6. Úlohy I. kola kategorie C

1. Je dáno n zlomků (kde n > 1)

V b2 3 ' ' ' b„ 5
kde ax, a2,.. ., an, bv b2,. . ., bn jsou přirozená čísla.

Dokažte: a) Jestliže tyto zlomky jsou sobě rovny, potom
i zlomek

an

_ al + a2 + ■>•• + an
b1 + b2 + ... + bn

je roven kterémukoli z nich.
b) Jestliže alespoň dva z daných zlomků jsou navzájem

různé, potom je zlomek z větší než nejmenší z daných zlomků,
ale je menší než největší z nich.
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Řešení. Nechť indexy jsou zvoleny tak, že platí

fh <T — < aJL"

= К
<. = q' > (Oq =

takže je q Ф 0, q' Ф 0, q <1 <7'.
a) Jestliže ve vztazích (1) platí vesměs rovnosti, je q = q'

a dále je ax = qbx, a2 = • • •> an = qbn- Proto ° zlomku z
platí:

_ q(bi + ь2 + ... + ьп)'
ьх + b2 + ... -t- bn

protože součet bx + b2 + . . . + bn přirozených čísel je od
nuly různý, má zlomek (2) význam a platí z = q. Tím je první
část úlohy dokázána.

b) Za daného předpokladu vzhledem ke vztahům (1) platí

(2)

«i T2 neboli q < q\
bn

T” <
bi

Ze vztahů (1), v nichž platí potom alespoň jednou nerovnost,
dostaneme

jednak
(3)<h < q'bv a2 ^ q'b2> - • ’> an~ q'bn 5

jednak
(4)ai = qbi, a2^qb2,. . .,an> qbn.

Tvrzení [1]. Podle (3) platí
+ ^2 + • • • + an < q (Pi + ^2 + • • • + bn)

neboli po dělení číslem bx + 62 + • • • + bn
ai 4~ ^2 • • » ~t~ an <q' >

bl + b2 + • • • + bn
takže vskutku z < q'.

Tvrzení [2]. Podle (4) platí
dX + #2 + • • • + an '> q(P1 + b2 + • • • + bn) »

odkud ihned dostaneme q < z, což jsme měli dokázat.
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2. n robotníkov s rovnakým pracovným výkonom málo
vykonat’ určitú prácu za d dní. Po odpracovaní a dní (kde
a < ď) sa robotníci zaviazali, že zvýšia svoj výkon o p %.
Kolko robotníkov potom stačí na to, aby práca bola vykonaná
v plánované) době za d dní? Zmenšený počet robotníkov
vyjádříte algebraickým vzorcom.

Riešenie. Póvodný výkon 1 robotníka za 1 deň, vyjádřený
zlomkom úkolu, bol — .Za a dní odpracovali všetci robotníci

časť úkolu vyjadrenú zlomkom
an

(1)nd d

Po zvýšení výkonu bol denný výkon 1 robotníka

I1 + щ •
1

nd

Zvyšujúcichd—a dní pracovalo x robotníkov, ktorí odpracovali
časť úkolu vyjadrenú zlomkom

x(d — a) ('-=)• (2)nd

Súčet zlomkov (1) a (2) dá zrejme číslo 1 (celý úkol), t. j.

a_ x(d — a)
d nd (1 + íw) = 1.

Odtial’ vyplývá
d — ax(d — a) 100 + P

dnd 100
7

po delení číslom —-— Ф 0 výjde

100и
x =

100+p ‘
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Výraz nezávisí ani od plánovanej doby (d) ani od doby,
kedy bol výkon zvýšený (a), ale len od počtu robotníkov a od
percenta zvýšeného výkonu.

3. Určte všetky trojice prirodzených čísel, z ktorých každé
dve čísla sú nesúdelitelné a ktoré majú tú vlastnost’, že súčet
ktorýchkolvek dvoch z nich je dělitelný třetím číslom.

Riešenie. Označme prvky trojice písmenami a, b, c.
Sú tri možnosti:
[1] a — b — c, [2] a = b [3] všetky čísla a, b, c sú na-
vzájom rózne.

Případ [1]. V tomto případe musí byť a = b = c = 1;
inak by čísla boli súdelitelné. Odtial’ máme riešenie a — b =
= c — 1.

Případ [2]. Tu musí byť a — b = 1, inak by tieto čísla
boli súdelitelné. Číslo c podlá úlohy musí byť delitelom čísla
a + b = 2, a pretože с Ф 1, je nutné c = 2. Odtial’ máme
riešenie a = b = 1, c — 2.

Případ [3]. Móžeme předpokládat’, že
a < b < c . (1)

Súčet a + b + c = (a + b) + c. Ale podlá předpokladu
je c delitelom čísla a + b, a preto c je delitelom súčtu a + b + c;
to isté platí o číslach a, b.

Pretože a, b, c sú nesúdelitelné čísla, vyplývá z predošlej
úvahy, že platí

(2)a + b + c = kabc ,

kde k je prirodzené číslo. Pretože platí (1), je a + b + c < 3c;
preto vzhladom ku vztahu (2) platí 3c > kabc. Pretože je
c > 0, platí aj

(3)3 > kab .

Pre k — l máme 3 > ab, t. j. a = 1, b = 2; pretože c je
delitelom čísla a + b = 3, je nevyhnutné c = 3. Odtial
riešenie: a = 1, b — 2, c — 3.
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Pre k > 1 vzhladom к vztahu a < b (pozři (1)) a a 1
je b > 1; preto platí

kab ^ kb ,

kde k 2, b 2. Preto je kb^>4, a. teda
kab > 4,

čo je spor so vzťahom (3). Případ & > 1 nemóže teda nastať.

4. Budiž dán vypuklý čtyřúhelník ABCD. Označme po
řadě S13 S2 středy jeho stran AB, CD.

a) Jestliže přímka SXS2 prochází průsečíkem přímek AD, BC,
potom je ABCD lichoběžník, dokažte.

b) Jestliže průsečík U úhlopříček AC, BD čtyřúhelníka
ABCD je bodem úsečky potom je ABCD lichoběžník
nebo rovnoběžník; dokažte.

Řešení, a) Předpokládejte naopak, že přímky AB, CD
jsou různoběžné; označme Q průsečík přímek AD, BC. Veďme
bodem S2 rovnoběžku s přímkou AB a označme po řadě C, D'
její průsečíky s úsečkami QB, QA. Podle známé poučky
z planimetrie je S2C' — S2D'. Podle předpokladu je S2C —
= S2D, takže ve čtyřúhelníku CC'DD' se úhlopříčky CD,
CD' navzájem půlí, a proto je to rovnoběžník. To je však ve
sporu s předpokladem, že QA, QB jsou různoběžky. Proto
byl předpoklad, že AB, CD jsou různoběžky, nesprávný;
je tedy AB\\CD, takže ABCD je lichoběžník, což jsme měli
dokázat.

b) Předpokládejme naopak, že přímky AB, CD jsou různo-
běžné. Přitom je: [1] buď AD\\BC, nebo [2] přímky AD, BC
mají společný bod Q.

V případě [1] je ABCD lichoběžník a SXS2 je jeho střední
příčka; protože bod U leží na příčce SXS2, je UA — UC
a UB = UD; to však je spor, neboť pak by ABCD byl rovno-
běžník. To však odporuje předpokladu, že přímky AB, CD
jsou různoběžné.
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V případě [2] veďme bodem S2 rovnoběžku s přímkou AB
a označme po řadě C', D' její průsečíky s polopřímkami UC,
UD. Podle známé poučky z planimetrie je S2C' — S2D',
neboť je C'D'\\AB a SXA = S^. Protože podle textu úlohy
je S2C = S2D, je CCDD' rovnoběžník, takže je СС'ЦДО'.
To je spor s předpokladem, že tyto přímky mají společný
bod U. Proto je i předpoklad, že přímky AB, CD jsou různo-
běžné, nesprávný. Tím je dokázáno tvrzení úlohy b).

5. Určete všechna přirozená čísla x, y, pro která je x2 — y2
třetí mocninou prvočísla.

Řešení. Budiž x2 — у2 = (я — j>)(x +jy) — pz, kde p je
prvočíslo. Čísla x — у, x + у jsou přirozená a jsou to dělitelé
čísla рг. T. j. nastane nutně jeden z případů:

* + У = PZ 3

x + у = p2,
x + У = P,
x+y = 1.

Poslední dva případy jsou však nemožné, neboť je vždy
x — у < x + y-^

V prvním případě dostáváme x=y-\- 1, 2y + 1 = p\
t. j. у = — 1), # = !(p3 + 1); p ovšem musí být liché
prvočíslo. Příklad: p = 3; л; = 14, у = 13.

V druhém případě dostáváme x = у + p, 2y -f p = p2,
t. j. у = \p(p — 1), x = lp(p + 1); p může být libovolné
prvočíslo. Příklad: p = 2‘, x — Ъ, у — \ nebo p = 3; x = 6,
У = 3.

[1] x—y = 1,
[2] x—y=p,
[3] x—у = p2,
[4] x —y = f,

6. Nechť a, b, c jsou přirozená čísla, při čemž je c > 1.
Dokažte, že platí

Kdy nastává rovnost ?
Řešení. Předpokládejme, že daný vztah (1) je správný.

a + b <1 abc . (1)
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1
Znásobíme-li jej číslem — > 0, dostaneme vztahab

I + j^. (2)a

Dokážeme-li správnost vztahu (2), je úloha řešena, neboť
znásobíme-li jej číslem ab > 0, dostaneme vztah (1). Dokažme
nyní správnost vztahu (2).

Protože je
1 1

0<-<l, °<T<n,a

je
- + j<2.

Podle předpokladu je c > 1 neboli 2 <1 c, odtud a ze vztahu (3)
dostáváme vztah (2). Tím je platnost vztahu (1) dokázána.

Nyní dokážeme: Rovnost ve vztahu (1) nastane v jediném
případě, jestliže totiž je a = b = 1, c = 2.

Důkaz. V uvedeném případě nastává vskutku rovnost.
Nechť je dále jedno z čísel a, b větší než 1; pro určitost

nechť na př. je a > 1, b 1. Potom je

(3)

1 1
0< — <1, 0< —< 1 ;

a b —

~ + T<2'

odtud plyne,

(4)

Podle předpokladu však je
2<;c; (5)

ze (4), (5) plyne
11

a b

Odtud je zřejmé, že jediný případ rovnosti nastane skutečně
pro a = b = 1, c = 2, což jsme měli dokázat.

< c.
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7. Je dána úsečka AAX a uvnitř této úsečky bod V. Sestrojte
rovnoramenný trojúhelník ABC tak, aby bod Ax byl patou
kolmice spuštěné z bodu A na stranu ВС a aby bod V byl
průsečíkem výšek trojúhelníka ABC.

Rozeznávejte dva případy, kdy strana AB je nebo není zá-
kladnou trojúhelníka ABC. Proveďte diskusi řešitelnosti.

Řešení. Budiž dán trojúhelník ABC; sestrojme přímky
AAX _L BC, BBX _[_ CA, CCX _]_ AB, kde Ax, Bx, Cx jsou po
řadě průsečíky dvojic těchto kolmic. Je známo, že přímky
AAX, BBX, CCX procházejí jedním bodem V (zvaným průsečík
výšek trojúhelníka ABC). Jestliže je <£ CAB = R, je V = A
a bod V je jedním krajním bodem úseček AAX, BBX, CCX.
Jestliže je jeden z úhlů trojúhelníka ABC tupý, potom bod V
leží vždy vně úseček AAX, BBX, CCX. Odtud plyne, že troj-
úhelník ABC, který máme podle požadavků sestrojit, je nutně
ostroúhlý a bod V. tudíž leží uvnitř tohoto trojúhelníka.

Předpokládejme, že jsme hledaný ostroúhlý rovnoramenný
trojúhelník ABC sestrojili; pak bod V leží uvnitř tohoto
trojúhelníka. Uvažujme dva případy: Úsečka BC je v rovno-
ramenném trojúhelníku ABC

Г1] ramenem a na př. úsečka AB jeho základnou; je tedy
CA = CB (obr. 13);

[2] základnou, takže je AB = AC (obr. 14).
Případ [1]. V rovnoramenném trojúhelníku ABC se zá-

kladnou AB je CCX osa souměrnosti, takže AV — VB. Přitom
trojúhelník VBAX má při vrcholu Ax pravý úhel, takže VA >
> VAx. Jestliže tato podmínka není splněna, nemá úloha řešení.
V následující konstrukci ukážeme, že je-li VA > VAx, má
úloha (až na řešení souměrné podle AAX) jediné řešení.

V jedné z obou opačných polorovin vyťatých přímkou AAX
sestrojíme pravoúhlý trojúhelník VBAX tak, aby bylo VB — VA.
Označme Cx střed úsečky AB, takže přímka VCX (je ovšem
V Ф Cx) je osa souměrnosti úsečky AB. Úhel <£ ABAX je
ostrý úhel v pravoúhlém trojúhelníku ABAX, úhel <C VCXB
je pravý; jejich součet je tedy menší než 2R, proto obě polo-
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přímky CXV, BAX, ležící v téže polorovině vyťaté přímkou BCX,
se protnou v bodě, který označíme C. Bod C neleží na přímce
AB; přitom je АС = BC, neboť C je na ose souměrnosti
úsečky AB, a dále je AAX J_ BC. Je tedy ABC rovnoramenný
trojúhelník s průsečíkem V výšek.

/ Z á v ě r. Je-li daný bod A vrcholem základny rovnoramenného
trojúhelníka ABC, potom má úloha právě jediné řešení tehdy,
jestliže platí VAX < VA; není-li tato nerovnost splněna,
nemá úloha řešení.

A

Is
ЛВ1

:

/
Ж1/
Ж\Ai .

A

Obr. 14.

Případ [2]. Opišme hledanému trojúhelníku ABC kružnici k
a označme A' druhý krajní bod jejího průměru jdoucího
bodem A. Bod Bx leží uvnitř úsečky AC, při čemž je VBX _L
_[_ AC; dále v trojúhelníku AA'C podle Thaletovy věty je
úhel <£ АСА' = R, t. j. A'C J_ AC. Proto je BBX\A’C;
stejně se dokáže, že CCX\\A’B. Proto je A'BVC rovnoběžník
a proto je bod Ax jeho středem; odtud plyne, že AXV = AXA'.
Podle toho provedeme konstrukci hledaného trojúhelníka ABC.

Na prodlouženi úsečky AAX za bod Ax určeme bod A' tak,
aby platilo AXA' — AXV. Nad úsečkou AA' jako průměrem
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sestrojme kružnici k a označme В, C její průsečíky s kolmicí
vedenou к přímce AAX bodem Av Trojúhelník ABC zřejmě
vyhovuje úloze.

Závěr. Jestliže je bod A -vrchol protější к základně hledá-
něho rovnoramenného trojúhelníka ABC, má úloha vždy
jediné řešení.

8. Je daný lichoběžník ABA'B' so základňami AB, A'B'
a dálej bod M, ktorý neleží na žiadnej z priamok AB, A'B'.
Bodom M veďte priamku q tak, aby přeťala polpriamky AB,
A'B' radom v bodoch X, X' tak, že platí AX = A'X'. Pre-
veďte diskusiu s ohl’adom na bod M,

fi7"
КIs

ч»

лrxв

1

Obr. 15.

Riešenie (obr. 15). Označme 5 střed úsečky AA'; nech
X, X' sú body vyhovujúce danej podmienke. Alebo je X = A
а X' = A'i to je možné jedine vtedy, ak leží bod M na priamke
AA'. Alebo je X Ф А, X' Ф- A’, potom je АХА'Х' rovnobež-
nik, AA' jedna jeho uhlopriečka, q druhá jeho uhlopriečka.

Z tohto rozboru vyplývá konštrukcia:
a) Ak je M = S, je priamka q 1’ubovolná priamka vedená

bodom S, ktorá přetíná polpriamky AB, A'B'.
b) Ak je M Ф S, je q ^ MS. Úloha je neriešitelnáj ak

priamka q nepretne polpriamku AB, a teda aj A'B'. Zvolme
bod К Ф S v polrovine AA'B' tak, aby bolo KS\\AB. Potom
úloha je neriešitelná vtedy a len vtedy, ak leží bod M Ф S
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vnútri uhla KSA alebo vnútri uhla vrcholového alebo
na priamke KS. Inak má jediné riešenie.

9. Letadlo koná službu mezi místy А, В tak, že létá z místa A
do místa В a hned se vrací zpět. Vane-li vítr od А к В určitou
rychlostí, vykoná letadlo obě cesty za 4 hod. 6 minut. Vane-li
vítr opačným směrem, ale rychlostí trojnásobnou než v prvém
případě, vykoná letadlo obě cesty za 5 hodin.

Za jakou dobu vykoná letadlo obě cesty při bezvětří ?
Řešení. Označme AB — s, x rychlost letadla za minutu

za bezvětří a v rychlost větru za minutu v prvém případě.
Potom pro první případ platí

у 5
= 246 .

x + v

Pro druhý případ máme

x — v

s s
300 .

x 3v

Existuje-li řešení, musí být x Ф v, x Ф 3v: potom dostaneme
2sx = 246 (x2 — v2),
2sx = 300 (jc2 — 9v2).

Abychom mohli odpovědět na otázku, musíme vypočítat

x — 3v

2s
у = —, což je doba, za kterou letadlo vykoná obě cesty při

x

bezvětří. Protože je x Ф 0, dělením obou rovnic číslem x2
dostáváme

3; = 246

(-?)у = 300

v2 ■v2
Odtud vypočítáme — a pak y; pro stručnost položme z —

7-55-17-03
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Odtud postupně dostaneme
41(1 - z) = 50(1 -9z), .

409z = 9 ,

9
z = —— .

409

Je tedy
400

v = 246 • — ,y 409’

což je doba v minutách. Doba ý v hodinách tedy je
■« 41 • 40 41 • 40

/ > = 4 .

410409

Za bezvětří vykoná letadlo obě cesty za 4 hodiny.

10. Určte všetky dvojice x3 у nezáporných celých čísel,
medzi ktorými platí vztah:

a) xy = x + y,

h) xy < x y,

c) xy > x + У-

Riešenie. Vztahy sú súmerné v číslach x, y\ stačí preto
urobit’ diskusiu vzhladom na číslo x ako prvé.

a) Čísla x, у musia byť obe párne.
[1] Ak je я = 0, je aj у — 0; máme teda riešenie x = у = 0.
[2] Nech je x Ф 0, potom musí byť aj у Ф 0. Delením

oboch stráň rovnice (1) číslom xy dostaneme
.1,1

(1)
(2)
(3)

(4)
x У

kde je x 2, у 2, lebo x = 1 vzhladom na у Ф 0 vedie
к sporu.

Pre x = 2 je aj у — 2; máme teda riešenie x — у — 2.
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Pre x > 2 stačí vzhladom na predchádzajúci výsledok
uvažovat’ len у > 2. Zo vzťahu (4) potom vyplývá

11 1,1<
x у 2 ^ 2

takže vzťah (1) nemá riešenie x > 2.
Riešenia vzťahu (1) sú teda x=y — 0, x=y=2.

b) Urobíme diskusiu roznych možností.
[1] Ak je x = 0, je у > 0 a 1’ubovolné.
[2] Ak je x > 0, у > 0, možno namiesto (2) písať

1 <1 + 1.
X у

a) Pre x = 1 je у > 0 lubovolné, teda aj x = 1, у = 1.
/5) Nech je teda dalej x > 1, у > 1.

Potom je

= 1 ,

1 !<!
У = 2 ’

1

x — 2
a teda

1 + 1<1 .

У —x

Vzťah (2) nemá teda riešenie л; > 1, у > 1.

c) Tu je л: > 0, у > 0 a teda namiesto (3) píšeme

! + !<i, (5)
х У

takže zrejme musí byť x > 13 у > 1.
[1] Pre x = 2jejy>2a 1’ubovolné.
[2] Pre x > 2 vzhladom na predchádzajúci výsledok móžpie

předpokládat’, že aj у > 2. Potom je vzťah (5) splněný pre
všetky dvojice x > 2, у > 2.

Závěr. Vzťah (1) platí právě pre x=y = 0, x = y = 2.
Vzťah (2) platí pre x = 0 а у > 0 1’ubovolné alebo pre

у = 0 a x > 0 l’ubovol’né; dálej pre ten případ, že sa jedno
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z čísel x, у rovná jednej, kdežto druhé je lubovolné celé kladné
číslo.

Vztah (3) platí, ak sa jedno z čísel x, у rovná dvom a druhé
je celé, váčšie než dve; dalej ak sú obe celé čísla x, у váčšie
než dve.

11. Je daný štvorec ABCD,
ktorého strana má velkost’ p.
Označme radom S3, S4, Sx, S2
středy úsečiek AB, BC, CD,
DA.

a) Dokážte, že priamky/1^,
BS2, CS3, DS4 určujú štvorec
AXBXCXDX.

b) Vyjádříte obsah štvorca
AXBXC^DX pomocou čísla p.

Riešenie. a) Je Л^С^з,
pretože je CSj, Л£3 =

= CSX, takže AS3CSX je rovnoběžník (obr. 16).
Ďalej je Д S2AXA = R. To dokážeme takto:

<£ DASX + ^ ASXD = R
(ostré uhly v pravouhlom trojuholníku ASXD),

< ASXD = AS2B,
lebo je Д ASXD ^ Д BS2A (poučka sus).
Dosadením z (2) do (1) máme <£ DASX + -^C AS2B = R;
to sú však uhly v trojuholníku AS2AX a preto jeho třetí uhol
<£ S2AxA = R. Preto je AXBXCXDX obdřžnik. Pretože AS3CSX,
BS4DS2 sú zhodné rovnoběžníky, vzdialenosť rovnobežiek
ASX, S3C sa rovná vzdialenosti rovnobežiek BS2, S4D; preto je
AXBX — BXCX a obdlzník AXBXCXDX je štvorec.

b) V trojuholníku ABAX je Д AAXB — R a úsečka S3BX je
střednou priečkou; je teda AAX — 2 • S3BX a BBX — BXAX.
Pretože je Д AS2AX ^ Д BS3BX (Ssu, usu), je AAX = BBX,
S2Ax — S3BX = \ • AAX — | • BBX. Je teda

(1)

(2)
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BBj = ВХАХ = 2 • S2Aj alebo
BBX — BXAX — § • BS2 j S2Ax — 3 * BS2.

Ale

p]/5BV = ř2 + íř2 = ÍP2> bs2 2 '

Obsah x štvorca je

x = BxA* = a- BS2? = [?Í \* -P2
5 '

12. Jsou dány dvě různé soustředné kružnice. Kružnici
s menším poloměrem nazveme vnitřní, kružnici s větším
poloměrem nazveme vnější. Na vnitřní kružnici zvolíme pevný
bod M; jím vedeme jednak libovolnou tětivu MA vnitřní
kružnice a jednak tětivu BC _|_ MA vnější kružnice. Co
vyplní středy jednotlivých stran všech trojúhelníků ABC,
když se mění poloha tětivy MA; co vyplní těžiště všech těchto
trojúhelníků ABC?

Řešení. Označme body Mv M2 podle obrázku 17. Pro
každou polohu přímky BC vznikne Д ABC; výjimku činí
případ, kdy tětiva BC leží v přímce MS, neboť pak neexis-
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tuje tětiva MA (je A = M). Střed A' úsečky BC je zároveň
středem úsečky ММХ; proto množinou všech bodů A' je
kružnice, která vznikne z vnitřní kružnice stejnolehlostí x
se středem M a koeficientem \ stejnolehlosti, a to s vyloučením
středu <S obou soustředných kružnic.

Střed B' strany AC je středem pravoúhlého rovnoběžníka
MCM3A; proto množinou všech bodů B' je kružnice, která
vznikne z vnější kružnice stejnolehlostí x, a to s vyloučením
bodu ležícího uvnitř polopřímky MS. Analogicky dostaneme,
že množina všech středů C úsečky AB je táž jako mno-
žina všech bodů B'.

Na základě vlastnosti střední příčky trojúhelníka podle obráz-
ku 18 dostaneme, že úhlopříčka MM2 obdélníka ММгМ2А dělí
úsečky AA', MXA" v části, pro které platí: A'T — \ • MXU,
A'T = A"U, A"U = i-AT, t. j. A'T = i-AT; dále
MT = TU = UM2, t. j. MT = § • MS. Ježto úsečka AA'
je těžnice trojúhelníka ABC, je bod T jeho těžištěm; toto
těžiště je patrně týž bod pro všecky trojúhelníky ABC, neboť
body S, M jsou pevné.

13. Určete všechna reálná čísla a, b, c, pro která je výraz
c a a — bb + c

(1)b c

roven nule.

Řešení. Čísla a, b, c musí být různá od nuly, takže je abc Ф
Ф 0. Výraz (1) lze upravit takto

1
— [bc(b + c) — ac(a -f c) — ab(a — b)].abc

Aby výraz byl roven nule, je nutné, aby výraz Z v lomené
závorce v tomto součinu byl roven nule. Platí

Z — bc(b + c) — a^c — ac2 — a2b + ab2 =
, = bc(b ф c) — a\b + c) + a(b2 — c2) —

— (b ф c)[bc — a2 + a(b — c)] =
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= (b + c)[bc — a2 ab — ас] =
= (b + c)[b(a + c) — a{a -f- c)] =
= (b + c)\c 4- á)(b — a).

Aby bylo Z — 0 a zároveň platilo abc Ф 0, je nutné a stačí,
aby platil jeden ze vztahů:

[1] b + c = 0, t. j. b — — с Ф 0, а Ф 0 libovolné.
[2] c + a = 0, t. j. a = — с Ф 0, b Ф 0 libovolné.
[3] b — a = 0, t. j. a = b Ф 0,

Celý postup lze obrátit, takže výsledky [1], [2], [3] jsou všechna
řešení.

с Ф 0 libovolné.

14. V oboru reálných čísel řešte rovnici
ах2 — a2 — a — 2 ,

kde a je dané reálné číslo. Proveďte diskusi vzhledem к číslu a.

(1)

Řešení. [1] Budiž a = 0. Rovnice (1) zní
0 • *2 = - 2

alnemá řešení.
[2] Budiž a > 0. Rovnici (1) lze upravit na tvar

ax2 — (a + 1) • (a — 2).a)Je-li a > 2, je pravá strana ve vztahu (2) kladné číslo.
Pak máme dvě řešení:

(2)

-V- -V a2 — a — 2a2 — a — 2
(3)*i > *2

aab)Je-li a — 2, pak rovnice (2) má tvar
2л:2 = 0

a dvojnásobný kořen л: = 0.c)Je-li 0 < a < 2, je levá strana ve vztahu (2) pro každé л;
číslo nezáporné, kdežto pravá strana je číslo záporné; rovnice (1)
pak nemá řešení.
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[3] Budiž a < 0.a)Je-li a > - 1,
je

a2 - a - 2

a

číslo kladné a máme řešení dané vztahy (3).
b) Je-li a = — 1, rovnice (2) má tvar

- x2 = 0 ,

takže rovnice (1) má dvojnásobný kořen x = 0.
c) Je-li a < — 1, je pravá strana vztahu (2) číslo kladné,

kdežto levá strana je pro každé x číslo nekladné; rovnice (1)
nemá řešení.

Výsledek zobrazíme na ose čísel a (obr. 19). Pro ta čísla a,
která mají obraz na silně vytažené čáře, máme dvě různá

řešení xx, x2 — — xx; ta a,
- pro něž máme dvojnásobný

kořen xx — x2i jsou vyzná-
čena tučným kroužkem. Ta
čísla a, pro něž rovnice (2)

nemá řešení, mají obraz na čárkované části osy čísel. Pro
a — 0 není řešení.

• 1 ■■■ O 1 <►
-10 12

Obr. 19.

15. Budiž dána kružnice k o středu S a poloměru r; zvolme
určitý její průměr AB. Označme X libovolný bod kružnice k,
který je různý od bodů A, B. Na polopřímce AX určeme
bod Y tak, aby platilo AY = BX. Co vyplní všechny body Y,
když bod X probíhá kružnici k ?

Řešení (obr. 20). Označme qx jednu z obou opačných polo-
rovin vyťatých přímkou AB; ze souměrnosti kružnice k podle
přímky AB snadno nahlédneme, že se při úvaze můžeme
omezit na polorovinu qv V polorovině ^ sestrojme úsečku ABX
tak, aby platilo ABX = 2r, ABX _]_ AB; označme Ox její
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střed. Kolem bodu Ox opišme polokružnici kx o poloměru r tak,
aby ležela v polorovině ABXB.

Uvnitř poloroviny zvolme na kružnici k libovolný bod X
a na polopřímce AXurčeme bod Ytak, aby platilo AY — BX.

Dokážeme, že bod Y leží na polokružnici kx mimo přímku ABX.
Poslední tvrzení je zřejmé, takže vzniká trojúhelník ABXY.
Platí

Д ABX Y ^ Д BAX (sus) ,

neboť je ABX = AB = 2r, AY — BX, BXAY = 90° -
- <£ XAB = <£ ABX. Je tedy *$AYBX= BXA - 90°
a podle Thaletovy věty leží bod Y na polokružnici kx.

Obráceně každému bodu Y polokružnice kx (kde Y Ф A,
Y Ф J5j) lze určit v polorovině px na polopřímce AY a na
kružnici k bod X tak, že platí BX = AY.

Je totiž <£ A YBX — 90° (podle Thaletovy věty). Polo-
přímka A Y leží až na bod A uvnitř pravého úhlu Д BABX>
a proto protne kružnici k uvnitř poloroviny v bodě X Ф A.
Vzniká Д ABX a platí

Д ABX Y ^ Д BAX (sus),
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neboť je AB1= AB = 2r, <£ YAB1 = 90° - <£ ХЛЯ =
== ХВЛ а YBX = <£ БХЛ = 90° (oba trojúhelníky
jsou pravoúhlé). Proto je A Y = BX, což jsme měli dokázat.

Když bod X probíhá kružnicí k s výjimkou bodů A, B,
vyplní příslušné body Y dvě polokružnice kv k2, které jsou
navzájem souměrně sdružené podle přímky AB; společné
body přímky ABX s těmito polokružnicemi přitom vylučujeme.
Polokružnice kx má poloměr r a její střed 01 leží na kolmici
sestrojené v bodě А к přímce AB tak, že AOx — r.

16. Nájdite všetky štvoruholníky (vypuklé), ktoré sú uhlo-
priečkou rozdělené na dva podobné trojuholníky.

Kedy je táto podobnost’ zhodnosťou?

✓

Riešenie. Daný štvoruholník označme ABDC a nech jeho
uhlopriečka BC dělí tento štvoruholník na dva podobné troj-
uholníky ABCi BCD. Označme (obr. 21) CAB — a,
<$ABC = p, <£ BCA = у, <£DBC = e, BCD =' <p,

CDB = <5. Platí:

Súčet ktorýchkolvek dvoch z uhlov a, [i, у je menší než 2R.
Každý z uhlov štvoruholníka ABCD je menší než 2R.
Sú dve možnosti:
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[1] Je a = <5, potom je
a) buď e = /3, a tým у = у (obr. 22),
b) bud £ = 7, a tým у = /3 (obr. 23).

[2] Je a Ф <5. Potom móžeme předpokládat’, že je Ó =
(keby bolo d = y, vyměnili by sme názvy /5, у, a tým aj £, <p).
Potom je

a) bud £ = a, a tým у = у (obr. 24),
b) bud у = ccy a tým e — у (obr. 25).

/

Případ [1] a). Štvoruholník ABDC (obr. 22) má zrejme
priamku BC za os súmernosti a štvoruholník je deltoid, uvažo-
váná podobnost’ je zrejme zhodnosťou, lebo je Д ABC ^
^ Д DBC (usu).

Případ [1] b). Pretože je e — у, у — /5 (dvojica striedavých
uhlov), je AC\BD, Л5||С1). Štvoruholník ABDC (obr. 23)
je teda rovnoběžník; uvažovaná podobnost’ je zrejme zhod-
nosťou, lebo je Д ABC ^ Д DCB (usu).

Případ [2] а). V tomto případe je polpriamka CB osou
uhla DCA (obr. 24). V tomto případe nemože byť podobnost’
zhodnosťou, lebo by bolo <x = d.
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Případ [2] b). Pretože je e = у (striedavé uhly), je AC\BD.
Ak je <x Ф /?, je štvoruholník ABDC lichoběžník (obr. 25),
lebo z rovnosti <£ ACB — <£ CBD = у vyplývá AC\\BD
a zo vztahu Д ABC ~ Д CDB vyplývá АС Ф BD; pre
AC = DB totiž z podobnosti dostaneme vztah BC — DB,
t. j. AC = BC, a tým a = f} — ó, čo je proti předpokladu, že
je а Ф d.

V tomto případe vzhladom к předpokladu а Ф b može ísť
iba o podobnost’, ktorá nie je zhodncsťou.

7. Úlohy II. kola kategorie C
1. Určete všechna reálná čísla a, b, c, pro která je výraz

a(b2 -f c2) + b(c2 + a2) — c(a + b)2
roven nule.

Řešení. Daný výraz lze upraviti takto:
ab2 + ac2 + bc2 + a2b — c{a + b)2 =

— ab(a 4- b) -f c\a + b) — c(a + b)2 =
= (a + b)[c2 — ac + ab — bc] -
— (a + b)[— c(a — c) + b(a
— (a + b){b — c)(a — c).

c)) =
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Je-li daný výraz roven nule, musí být alespoň jeden z činitelů
a + b, b — с, a — c

roven nule. Odtud máme tato řešení:

(1) buď je a = c, b libovolné,
(2) nebo je b = c, a libovolné,
(3) nebo je a = — b, c libovolné.

Tato řešení zřejmě splňují požadavek úlohy.
Tím jsme určili všechna řešení úlohy.

2. Je dáno číslo 5 a dále čísla a, b, c, různá od nuly. Řešte
soustavu rovnic

ь

s neznámými x, y, z, t.
Stanovte podmínky řešitelnosti.
Řešení. Předpokládejme, že existuje řešení x, y, z, t dané

soustavy. Potom je po dosazení za x, y, z do čtvrté rovnice
(a + b + c)t = s .

Případ [1]. Nechť je a -f b + с Ф 0. Potom z (1) je

!
X + y + Z = s^3 ^3

a

(1)

s
t =

ci -j- b -j- c

a dále

bs csas
X = ; ,

a -\~ b c

V tomto případě dostáváme jediné řešení.
Případ [2]. Nechť je a -f b + c = 0.
Je-li dále 0, potom neexistuje t, které by vyhovovalo

rovnici (1), a tedy ani řešení soustavy.
Je-li 5 = 0, potom rovnice (1) je splněna pro každé t a řešení

soustavy je nekonečně mnoho. Všechna jsou tvaru x = at,
у = bt, z = ct, kde t je libovolné číslo.

g z=z
a b c a -\- b c

У =
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3. Buďte dány dva body X, Y a přímka p, která je od-
děluje. Na přímce p sestrojte bod O tak, aby platilo

<£XOP = YOP,
kde P je libovolný bod přímky p různý od bodu O.

Stanovte podmínku řešitelnosti úlohy pro různé polohy
bodů X, Y.

Řešení. Předpokládejme, že jsme bod O sestrojili. Označme
Y' obraz bodu Y v souměrnosti o ose p. Potom je vzhledem
к předpokladu

<£ XOP = <£ Y'OP.
Ale body AT, Y' leží uvnitř téže poloroviny vyťaté přímkou p.
Polopřímky OX, OY' tedy zřejmě splývají. Odtud dostaneme
řešení. Rozeznávejme případy:

Případ [1]. Nechť je Y' Ф X. Jsou dvě možnosti:
(a) Přímky XY', p mají průsečík O. Potom O je zřejmě

jediné řešení úlohy.
(b) Přímky XY', p jsou rovnoběžné a úloha nemá řešení.

Případ [2]. Nechť je Y' = X neboli X, Y jsou souměrně
sdružené body. Potom každý bod přímky p lze považovat
za bod O. Úloha má nekonečně mnoho řešení.

4. Bud dán rovnoběžník ABCD. Označme po řadě M, N
středy stran AD, ВС a dále P, Q průsečíky úhlopříčky BD
s přímkami AN, MC.

Dokažte, že platí:
BP = PQ = QD,

Řešení. Protože je AM\\NC, AM = NC=\-AD, je
ANCM rovnoběžník, a tedy AN\\MC. Úsečka Aí<2 je střední
příčka v trojúhelníku APD, a tedy DQ = QP a

AP = 2-MQ.
Stejně z trojúhelníka BQC plyne, že QP — PB. Je tedy

DQ — QP = PB .

PN = MQ = | - AN.

(1)

(2)
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Dále je Д BNP ^ DMQ (sus), neboť je MD — BN = \ • AD,
DQ = PB (podle (2)) a <£ PBN = <£ QDM (jsou to úhly
střídavé). Je tedy

PN = MQ.
Odtud a ze vztahu (1) obdržíme AP = 2 • MQ = 2 • PN
neboli

AP = 2-PN.

Tím jsme tvrzení úlohy dokázali.

8. Úlohy I. kola kategorie D
1. Gumový míček pustíme volně z ruky z určité výšky

na podlahu, od níž se opět odrazí vzhůru. Po každém odrazu
dosáhne míček výšky rovné § té výšky, z níž právě dopadl.

a) Jestliže jsme pustili míček z výšky 12 m, určete, jaké
výšky dosáhne po třetím odrazu od podlahy?

b) Z jaké výšky jsme pustili míček, jestliže po třetím odrazu
od podlahy dosáhl výše 2\ m?

Ř e š e n í. a) Po třetím odrazu dosáhne míček výšky (v metrech)

= 2— .

125

b) Výšku (v metrech), ze které jsme míček pustili, do-

staneme, když dělíme číslo 2^ číslem
počteme součin

ЗГ 32427

12-5 = 12 •
125 125

neboli když vy-

1 /5\3 7 125 875

23' 3

65
— = 10—

81 '3 27 81

2. V obchodě měli ráno určitý počet bochníků chleba.
Z toho závodní kuchyně odebrala § zásoby a \ bochníku.
Potom | zbytku zásoby a \ bochníku koupilo sousední uzenář-
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ství, § zbytku této nové zásoby a \ bochníku koupila mateřská
škola na svačiny žákům, načež f zbytku poslední zásoby a
\ bochníku odebral kupující.

a) Vypočtěte, kolik bochníků chleba měli původně v ob-
chodě.

b) Vysvětlete, jak je to možné, že při žádném z uvedených
prodejů nemusil prodavač bochník rozkrajovat.

Řešení, a) Po prvním prodeji zbylo:

^ zásoby
Po druhém prodeji zbylo:

— zásoby — p bochníku — ~ bochníku.
Po třetím prodeji zbylo:

-p zásoby — p bochníku — p bochníku — bochníku.
Po čtvrtém prodeji zbylo:

zásoby — ~ bochníku — bochníku -—bochníku —

i
— bochníku.
4

1

43 4244

1
bochníku.

4

Jestliže tím byla celá zásoba vyprodána, je poslední zbytek
nula; to znamená, že

ii-zásoby )e rovna (ir + Jí + ^ + j)
Celou zásobu dostaneme, když toto číslo znásobíme číslem 44,
t. j. celá původní zásoba je (v bochnících)

bochníku.

44l^+ý+^+}) = l+4 + 4^ + 4» = 85.
112



V tomto případě skutečně nastal případ b), že totiž prodavač
nemusil žádný bochník rozkrajovat; tu

[1] jednotlivé odprodeje jsou:
85 • f + I = 63f + i = 64;
21-1+1 = 151+i = 16;

5 • f + I = 3f + | = 4;
1 • | + i = 1.

[2] zbytky po odprodeji jsou:
21; 5; 1; 0.

Z textu úlohy neplyne, zda po čtvrtém prodeji zbyl nebo
nezbyl nějaký chléb. Jestliže však nějaký chléb zbyl, potom
z otázky b) plyne, že to byl celý počet bochníků, označme jej n.

Potom z předchozího vyplývá, že
bochníků. Původní zásoba tedy byla (85 + 44 • n) bochníků.

(? + й
1

zásoby je rovna¥

A
/ V 7 7

3. Budiž dána krychle
o hraně velikosti 5 cm;
krychle je slepena z krych-
liček o hraně 1 cm. Zvol-
me na povrchu dané

/ / 7 7
77 X / // / AWfl! /

/8
/O Q.é /

/r /Ol /
/ // /
/

/

Obr. 26.

krychle tři čtverečky Qx, Q2, Q3 o stranách 1 cm tak, jak je
naznačeno v obr. 26. Nad čtverečkem Q1 ve směru hrany OA
(viz obr. 26) vyrazíme sloupec složený z pěti krychliček
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(vyňatá část je znázorněna v obr. 27); tím vznikne v dané krychli
otvor. Obdobným způsobem sestrojíme otvor nad čtverečkem

Q2 ve směru hrany OB a dále
a nad čtverečkem Q3 otvor ve smě-

ru hrany OC. (Celkem bylo vy-
. ňato 13 krychliček.)

Nyní provrtanou krychli ponc-
říme do červené barvy, aby se
povrch a dutiny obarvily. Po
uschnutí krychli rozbijeme na
krychličky o hranách 1 cm.

j Určete, kolik jsme dostali krych-
liček, které mají obarvenou 1) jed-
nu, 2) dvě, 3) tři, 4) čtyři, 5) pět,
6) šest, 7) žádnou stěnu ?

Řešení. Abychom snadněji
úlohu rozřešili, rozřežeme krychli
na desky tvaru kvádru, a to rc-
vinnými řezy rovnoběžnými s hor-
ní podstavou krychle. Tím do-
staneme pět desek tvaru kvádru
o rozměrech 5 cm, 5 cm, 1 cm;
tyto desky na dané krychli od
shora dolů očíslujeme číslicemi
I, II, III, IV, V. Desky si zob-
razíme čtverci o rozměrech 5 cm,
5 cm (viz obr. 28 až 32); mysle-
me si, že se na desky díváme se
shora, takže vidíme horní stěnu
čtvercové desky. Je-li horní stěna
krychličky v určité desce obarve-
na, pak do čtverečku, který krych-
ličku znázorňuje, napíšeme zna-
ménko +; je-li obarvena stěna
dolní, napíšeme znaménko—. Je-li

1
+ - ++ 4 4-

2 2 3 33

4 -4 444
222 1 1

4 4 - 44 4
2 3 211



obarvena pobočná stěna krychličky, potom stranu čtverečku
v obrázku vytáhneme tlustou úsečkou. Tak snadněji spočítáme,

' kolik stěn má krychlička obarvených; celkový počet obarvených
stěn krychličky napíšeme také dovnitř čtverečku. Ty krychličky,
které jsme z krychle vyňali, znázorníme v obrázcích vy-
šrafováným čtverečkem.

I-JV.

2 22 31 1 1 232

0 0 01 1 1 212 1

00 111 2 22 1 1

1 20 1 2 2 31

22 1 2 31 3223

Obr. 32.Obr. 31.

Výsledky, které získáme, napíšeme do tabulky. V tabulce
na př. v řádku označeném II (t. j. deska čís. II) čteme: 1 krych-
lička je neobarvená, 4 krychličky mají obarvenou 1 stěnu,
6 krychliček má obarvené dvě stěny, 4 krychličky 3 stěny,
I krychlička má obarvené 4 stěny; celkem má deska 16 krych-
liček.

V předposledním řádku, označeném S, čteme výsledek:
II krychliček je neobarvených, 36 krychliček má obarvenou
jednu stěnu, 42 dvě stěny, 20 tři stěny, 3 čtyři stěny.

Provedeme zkoušku: Snadno přímo zjistíme, že je obarveno
192 stěn (150 — 6+ 12-4): skutečně platí

36 • 1 + 42 • 2 + 20 • 3 + 3 • 4 = 192 .

Počet obarvených krychliček v jednotlivých deskách je patrný
z této tabulky:
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Počet krychliček, které mají obarveno
n stěn

Počet
krych-
liček

v desce

Deska
číslo

n = 2 n — 3 n = 4n — 0 n = 1

8 2 24I 0 4 10
II 4 I1 4 6 16

2III 4 10 8 0 24
12IV 0 o 246 6

V 0 o 246 12 6

11 36 42 20 3 112S*)

Obarv.
stěn

36 120 84 60 192

*) S = celkový počet krychliček.

4. Je dán trojúhelník ABC. Určete střed kružnice troj-
úhelníku ABC opsané a to tak, že při konstrukci budete
užívat jen trojúhelníkových pravítek (nikoli kružítka). Pomocí
pravítek rýsujte rovnoběžky a kolmice. Odůvodněte správnost
nalezené konstrukce.

Řešení (obr. 33). Veďme
každým vrcholem trojúhelníka
ABC pomocí dvou trojúhel-
níkových pravítek rovnoběžku
s protější stranou trojúhelníka.
Tím dostaneme trojúhelník
A'B'C; označení zvolíme tak,
aby bod Uležel na úsečce B'C\
bod В na úsečce C'A' a bod
C na úsečce A'B'.

Nyní sestrojíme středy stran
trojúhelníka ABC. Protože
na př. ABCB' je rovnoběžník,
proto se úsečky АС, BB'

navzájem půlí; označme B$ jejich průsečík. Bod B0 je tedy
středem strany AC. Stejně sestrojíme střed C0 strany AB
a střed A0 strany BC.
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Pomocí dvou trojúhelníkových pravítek sestrojíme v bodě A0
kolmici ot к přímce BC, dále v bodě B0 kolmici o2 к přímce CA
a konečně v bodě C0 kolmici o3 к přímce AB. Z geometrie
víte, že všechny tři přímky o13 o2, o3 procházejí jedním bodem,
středem 5 kružnice trojúhelníku ABC opsané. (Kolmice
o13 o2, ог rýsujeme všechny tři pro kontrolu přesnosti rýsování.)

Jiné řešení. Jestliže v trojúhelníku ABC je úhel <£ ABC
pravý, potom sestrojíme rovnoběžník ABCD. Protože jeho
úhel <£ ABC je pravý, je rovnoběžník ABCD obdélník a jeho
úhlopříčky AC, BD se protínají ve středu S obdélníka ABCD.
Kružnice o středu S a o poloměru SA — SB — SC prochází
všemi vrcholy tohoto obdélníka a tedy je to kružnice opsaná
trojúhelníku ABC. Proto je bod 5 hledaným bodem.

Nechť žádný úhel trojúhelníka ABC není pravý; nechť
pro určitost jsou na př. úhly <£ CAB, <£ BCA ostré a úhel
<£ ABC ostrý nebo tupý (obr. 34 a 35). Sestrojme v bodě A
přímku a J_ AB a v bodě C přímku c J_ BC. Podle známé
věty (viz Matematika pro 7. post. roč., věta 6, str. 289) se
přímky a, c protnou v bodě D. Bod D leží vně trojúhelníka
ABC, ale uvnitř úhlu ABC (to plyne snadno podle Eukleidova
postulátu). Odtud plyne, že je tedy ABCD vypuklý čtyřúhelník.
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Úsečky AC, BD mají společný bod Q, který leží uvnitř každé
z nich. Přímka BD rozděluje vypuklý čtyřúhelník ABCD
ve dva pravoúhlé trojúhelníky o společné přeponě BD. Podle
Thaletovy věty je střed 5 úsečky BD středem kružnice k
opsané trojúhelníkům ABD, BCD-, její poloměr je SA =
— SB — SC = SD. Rovnoběžník ABED má při vrcholu A
pravý úhel a proto je obdélníkem. Kružnice k je zřejmě kružnicí
tomuto obdélníku opsanou a proto je S průsečíkem úhlopříček
AE, BD.

Odtud plyne konstrukce bodu S: Sestrojíme přímky a, c
tak, že a 1 AB, c J_ BC, při čemž a prochází bodem A
a c prochází bodem C; jejich průsečík je D. Nyní sestrojíme
obdélník ABED, takže je DE\AB, BE\\AD. Střed 5 obdélníka
ABED je hledaný střed kružnice trojúhelníku ABC opsané.
Postup konstrukce vyhovuje podmínkám úlohy.

Konstrukci ve svém řešení
naznačila s. Věra Vajtaurová,

ч В kurs 3. osmiletky, Znojmo.

5. Z Číny došla zásielka troch druhov čajů. Všetkých troch
druhov bolo celkom menej ako 4 t; přitom čisté váhy všetkých
troch druhov sa navzájom sebe rovnali. Prvý druh bol do-
pravený v 76 jednakých debničkách, druhý v 57 jednakých
debničkách inej velkosti, třetí druh v 60 jednakých debničkách
ešte inej velkosti. V každej debničke bol celý počet kilogramov
čajů.

Kolko kg každého druhu čajů bolo a kolko kg čajů bolo
v jednotlivých debničkách?

Riešenie. Každá debnička prvého druhu obsahuje л; kg
čajů; číslo x je prirodzené. Podobné je prirodzené číslo y,
ktoré udává počet kilogramov čajů v debničke druhého druhu
a z počet kilogramov v debničke tretieho druhu.

Prvého čajů je celkom 16x kg, druhého 57у kg a tretieho
60z kg. Přitom platí

76x ----- 57у = 60a:.
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Označme N toto prirodzené číslo. Pretože celkom máme
menej než 4000 kg čajů, je

4000 • XT 1N < , t. j. N < 1333 — .

Číslo N musí byť dělitelné každým z čísel 76, 57, 60, takže N
je spoločným násobkom týchto čísel. Vieme, že každý spoločný
násobok niekolkých čísel sa rovná súčinu ich najmenšieho
spoločného násobku a libovolného prirodzeného čísla. Preto
vypočítáme najmenší spoločný násobok čísel 76, 57, 60;
označíme ho n. Je

76 = 2-2-19, 57 = 3-19, 60 = 2-2-3-5,
takže

и=2-2-3-5-19 = 1140 .

Pretože je 2n = 2280, hladané číslo N sa rovná právě
číslu n, t. j. N — 1140. Z rozkladu čísla n na prvočinitele
1’ahko vypočítáme, že x = 15, у = 20, z = 19.

Závěr. Každého druhu čajů bolo 1140 kg. V debničkách
prvého druhu bolo po 15 kg čajů, v debničkách druhého
druhu po 20 kg čajů a v debničkách tretieho druhu po 19 kg
čajů.

6. S. Novák je předsedou JZD v obci. Jezdívá občas z obce
do okresního města. Tam pro něho odpoledne přijíždí na
motocyklu z jejich obce vždy ve stejnou dobu jeho syn, který
jej hned po svém příjezdu odváží domů. Domů přijíždějí
vždy o 17. hodině po půlhodinové jízdě.

Jednoho dne skončil s. Novák v okresním městě svá jednání
dříve a vydal se o 15. hodině 45 min. obvyklou cestou pěšky
synovi vstříc. Jakmile se setkali, nasedl s. Novák na motocykl
a odjeli ihned domů, kam dojeli o 16. hod. 50 min. Před-
pokládáte-li, že motocykl jede oběma směry (t.j. z obce do města
a zpět) stejnou rychlostí, vypočítejte:

а) V kolik hodin se onoho dne oba setkali?
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b) Jaký díl vzdálenosti z města к obci ušel s. Novák pěšky?
c) Jaký je poměr rychlostí pěší chůze s. Nováka a motocyklu ?
Řešení, a) Toho dne, o němž se v úloze mluví, se otec

se synem vrátili o 10 minut dříve než obvykle. Protože syn
vyjel o 16. hodině, byl na cestě celkem jen 50 minut a setkal
se s otcem o 16 hod. 25 min.

b) Za jednu minutu ujel syn — délky cesty z obce do města,
neboť cesta do města mu trvala 30 minut. Protože se zrnině-

25
něho dne s otcem setkal o 16 hod. 25 min., projel — délky

. 5
cesty, t. ]. — cesty.

1
Ušel tedy otec — délky cesty z města do své obce.

c) Otec vyšel z města o 15 hod. 45 min. a syna potkal
o 16 hod. 25 min. Šel tedy 40 minut; za tu dobu ušel —délky

cesty. Jeho rychlost za minutu byla

— : 40
6

Syn ujel za jednu minutu ^ délky cesty; jeho rychlost za

1
délky cesty.240

1

1
minutu proto byla — délky cesty. Poměr rychlosti otce a syna30

tedy je
1 1

_ 30 _ 1
240 : 30 “ 240 ~~ 8 ’

t. j. 1: 8.
Podle řešení s. Jaromíra Prchlíka,

8.b jedenáctiletky
v Poděbradech.
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7. Je dán trojúhelník ABC. Kružnice k protíná úsečky
AB, BC, CA postupně ve dvojicích bodů (buď různých nebo
splývajících)

(Ci, C2), (A13 A2), (BX3 В2).
Určete, jak musí být zvolen střed a poloměr kružnice k3 aby
platilo

ACX = BC23 BAX = CA2, CBX = AB2.
Řešení (obr. 36). Označme S střed hledané kružnice k.

Ta prochází body Cx, C2. Jsou-li body CX3 C2 různé, pak buď
bod 5 leží na přímce AB a je středem úsečky CXC2 anebo bod S
na přímce AB neleží; pak je trojúhelník SCXC2 rovnoramenný,
neboť je SCX — SC2. V obou případech však bod S zřejmě
leží na ose p3 úsečky CXC2. Jestliže však body C13 Cz

C

/

Á. B'
/

/
ж /4

//
/

L
A ВD

Obr. 37.

splynou, je přímka AB tečnou kružnice k v bodě CX3 a proto je
SCX J_ AB; označme v tomto případě přímku SCX také p3.
Ve všech případech ze vztahu ACX = BC2 však plyne, že
nejen body CX3 C2 jsou souměrně sdružené podle přímky p33
ale i body A, B. Odtud plyne, že přímka p3 je osou úsečky AB.

Stejně se dokáže, že bod 5 musí ležet na ose px úsečky BC
a na ose p2 úsečky CA. Je tedy bod S středem kružnice troj-
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úhelníku ABC opsané. Přitom poloměr л; hledané kružnice k
je menší nebo roven SA (poloměru opsané kružnice troj-
úhelníku ABC), ale poloměr x je větší nebo roven největší ze
vzdáleností bodu S od přímek AB, BC, CA.

Obráceně, kružnice k opsaná kolem bodu 5 poloměrem x,
který vyhovuje předchozím podmínkám, protíná strany troj-
úhelníka ABC po řadě v bodech C\, C2, A1} A2, Bv B2, které
mají vlastnost vyslovenou v textu úlohy. Dokažme, že na př.
platí АСг = BC2. Kružnice k je souměrná podle osy ps
úsečky AB; proto jsou i body Cls C2 (ať různé nebo splývající)
souměrně sdružené podle přímky p3. Je tedy úsečka BC2
souměrně sdružená s úsečkou ACV a proto je AC1 — BC2.

8, V trojuholníku ABC platí АС — BC. Na stranách AC,
BC zvolte postupné body A', B’ tak, aby platilo

AA' = А'В' = BB'.

Nájdite konštrukciu bodov А', В' a dokážte, že je А'В’АВ.
Riešenie (obr. 37). Předpokládájme, že body A', B' vy-

hovujú daným podmienkam a zostrojme na polpriamke
AB bod D tak, aby platilo AD = A'B'. Os úsečky AB je
osou súmernosti, v ktorej sú zrejme body A', B' združené.
Je teda priamka A'B' kolmá na túto os, t. j. A'B'\\AB. Z toho
vyplývá, že štvoruholník ADB'A' je rovnoběžník, a to koso-
štvorec, lebo AD — A'B' — AA'. Preto jeho uhlopriečka AB'
rozpolúje uhol <£ A’AD (t. j. <£ CAB). Tým sme našli kon-
štrukciu bodu B’ (a pravda, aj A').

Ak zostrojíme bod B' pomocou osi uhla <£ CAB a vedieme
ním priamku p\AB, dostaneme bod A' = p • AC. Body A', B'
majú skutočne požadovanú vlastnost’. Lebo ak zostrojíme na
polpriamke AB bod D tak, aby platilo AD = A'B', je štvor-
uholník ADB'A' rovnoběžník. Pretože AB', je osou uhla
<£ A'AD, je <£A'AB' = 3:B'AD; pretože je A'B'\\AB,
je <£ B'AD — <£ A'B'A (uhly striedavé). Preto A'AB' —
— <t A'B'A, t. j. Д AB'A' je rovnoramenný a platí A'A =
= A'B' = BB', čo sme malí dokázat’.
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9. Rychlík délky 200 m jede rychlostí 16 m za vteřinu.
Na druhé koleji trati přejíždí opačným směrem nákladní vlak.
Strojvedoucí rychlíku zjistil, že nákladní vlak minul loko-
motivu za 12 vteřin; dále zjistil, že od okamžiku, kdy se
setkaly lokomotivy obou vlaků až do okamžiku, kdy se minuly
oba poslední vagony vlaků, uplynulo 20 vteřin. Jak dlouhý
byl nákladní vlak a jakou jel rychlostí?

do d

nákladní vlak

rychlík
Situace při setkáni lokomotiv

Obr. 38.

Řešení. Velikosti úseček měřme v metrech, dobu ve vteři-
nách. Zaveďme tato označení (obr. 38):

d0 = 200 je délka rychlíku (v metrech);
c0 = 16 je rychlost rychlíku (v metrech za vteřinu);
řj = 12 je doba (ve vteřinách), za kterou mine nákladní

vlak lokomotivu rychlíku (od chvíle setkání lokomotiv);
í2 = 20 je doba, za kterou se od okamžiku setkání obou

lokomotiv setkají poslední vagony obou vlaků;
d = délka nákladního vlaku;
c — rychlost nákladního vlaku.

Na vzájemné situaci obou vlaků se nic nezmění, jestliže
bude nákladní vlak stát, ale rychlík pojede rychlostí c0 + c.
Lokomotiva rychlíku projede podél nákladního vlaku za tx
vteřin dráhu d, takže platí

(1)(c0 + c)t± = d .

Stojí-li nákladní vlak, pak od chvíle setkání obou lokomotiv
musí poslední vagon rychlíku projet za í2 vteřin dráhu d0 -f d,
takže platí

(2)(c0 + c)t2 — d0 -f- d .
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Vztahy (1), (2) jsou dvě rovnice pro dvě neznámé c, d. Máme
řešit soustavu rovnic

(3)d Ct2 3

d ■ ct2 = Cqí2 dQ .

Odečtením druhé rovnice od první dostaneme
c(ř2 ?i) — d0 — c0(í2 řj),

a tedy
dQ

(4)c = c0 3
r2

neboť je
^2 7^ 0 .

Nyní za c dosaďme ze vztahu (4) do rovnice (3); obdržíme

d = (5)h h

Po dosazení za c0, d0, řl5 t2 do (4), (5) dostaneme
12 12

= 200 • = 300 ;d = 200 • - 200 • —

20 - 12 8

200 200
- 16 = — 16 = 25 - 16 = 9 .c =

20 - 12 8

Nákladní vlak jel rychlostí 9m za vteřinu, jeho délka
byla 300 m.

Jiné řešení. Rychlík jel rychlostí 16 m za vteřinu, nákladní
vlak rychlostí a metrů za vteřinu. Pozorovatel v rychlíku viděl
věc tak, jako by rychlík stál a nákladní vlak se pohyboval
rychlostí 16 + o, metrů za vteřinu, takže nákladní vlak míjel
pozorovatele v rychlíku právě rychlostí 16 + a metrů za
vteřinu.

Poslední vagon nákladního vlaku projel podél celého rychlíku
(t. j. 200 m) za 20—12 neboli 8 vteřin, takže se vzhledem к po-
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zorovateli v rychlíku pohyboval rychlostí 16 + a metrů
za vteřinu.

Proto je
8(16 + a) = 200 .

Odtud postupně dostáváme
16 + a = 25 , a — 9 .

Nákladní vlak jel rychlostí 9 metrů za vteřinu, pozorovatel
v rychlíku měl dojem, že nákladní vlak se pohybuje rych-
lostí 16 + 9, t. j. 25 m za vteřinu. Od okamžiku, kdy se set-
kaly lokomotivy obou vlaků, do okamžiku, kdy se míjely
poslední vagony, uplynulo 20 vteřin. Za tu dobu projel po-
slední vagon nákladního vlaku vzhledem к pozorovateli v rych-
líku celou délku x nákladního vlaku (představme si, že rychlík
před sebou ještě tlačí vagony v celkové délce jc) a potom
celou délku 200 m rychlíku, tedy celkem 200 + x. Proto je

20 • 25 = 200 + x,
a tedy

500 = 200 + x
a

x = 300 .

Nákladní vlak měl délku 300 m.

Zkouškou se snadno přesvědčíme o správnosti řešení.
Upraveno podle řešení

s. L. Kuklové, 8. rbč. osmiletky
v Žehuni, okres Poděbrady.

10. Ktorým najmenším prirodzeným číslom musíme ná-
sobiť číslo 56 010 528, aby sme dostali číslo, ktoré je druhou
mocninou určitého prirodzeného čísla a ktoré je súčasne treťou
mocninou iného prirodzeného čísla?

Riešenie. Rozložme dané číslo a v prvočinitele; platí
a = 56 010 528 = 25 • 36 • 74 .
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Dané číslo máme znásobit’ určitým prirodzeným číslom tak,
aby súčin s bol jednak druhou mocninou určitého prirodzeného
čísla, jednak trefou mocninou iného určitého prirodzeného
čísla. Preto musia byť exponenty prvočinitefov hladaného
súčinu s dělitelné jednak dvorná, jednak troma. Preto je

5 = 26 • 36 • 76 = (2 • 3 • 7)6 = [(2 • 3 • 7)3]2 - [(2 • 3 • 7)2]3.
Pretože je

s = 25 • 36 • 74 • (2 • 72)
alebo

s = a • (2 • 72),
číslo, ktorým třeba dané číslo a znásobit’, sa rovná 2 • 72 =

2 . Qg

11. Je daná úsečka velkosti m. Zvolme v rovině dva rožne

body A, B; představme si, že zostrojíme všetky rovnoběžníky
ABCD, pre ktoré je AD = m. Aký útvar vyplnia středy
všetkých rovnobežníkov ABCD ?

Riešenie (obr. 39). Označ-
me 5 střed jedneho z rovno-

/ bežníkov ABCD, ktoré vyho-
vujú úlohe, t. j. pre ktoré platí
AD — m. Označme O střed
úsečky AB. Potom úsečka OS
je střednou prieČkou trojuhol-
nika ABD; pre ňu platí OS AD,
OS = % • AD alebo OS — \m.
Preto všetky středy S rovno-
bežníkov ABCD ležia na kruž-
nici k so stredom O a polo-

merom \m. Přitom musíme vylúčiť z kružnice k jej priesečíky
s priamkou AB, lebo střed rovnoběžníka ABCD nikdy
nepadne na jeho stranu AB, ale leží vnútri rovnoběžníka.

Obrátene, zvolme na kružnici k = (O, \m) lubovolne bod S,
ktorý neleží na priamke AB. Potom 1’ahko zostrojíme body C, D
tak, že rovnoběžník ABCD má za střed právě zvolený bod S.
Konštrukciu bodov C, D urobíme takto:

D

126



Na predržení úsečky AS za bod S nanesieme úsečku AS,
čím dostaneme bod C. Na predlžení úsečky BS za bod S'
nanesieme úsečku BS, čím dostaneme bod D. Pretože sa
podlá konštrukcie uhlopriečky AC, BD štvoruholníka ABCD
navzájom rozpolujú, je ABCD podlá známej poučky z planí-
metrie rovnoběžník. Eahko dokážeme, že platí AD — 2 • OS =
= 2 • \m = m, takže ABCD je skutočne rovnoběžník výhovu-
júci našej úlohe. Teda:

Všetky středy rovnobežníkov ABCD, ktoré vyhovujú
úlohe, vyplnia kružnicu k, ktorá má střed O v střede úsečky AB
a ktorej poloměr je \m‘, z tejto kružnice musíme vylúčiť jej
priesečíky s priamkou AB.

12. Je dána kružnice k o středu S a poloměru r; dále je dán
bod A, který leží vně kružnice k. Proveďte tuto konstrukci:

Kolem bodu S opište kružnici m o poloměru SA a označte
A0 druhý krajní bod jejího průměru jdoucího bodem A.
Dále opište kolem bodu A0 kružnici n o poloměru 2r. Označte
Av A2 průsečíky kružnic m, n.

Dokažte, že přímky AAX, AA2 se dotýkají dané kružnice k.

Řešení (obr. 40). Podle Thaletovy věty je trojúhelník
Д AA0AX pravoúhlý (<£ AAXA0 = R), t. j. AAX _L A0AV
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Označme Tx střed úsečky AAX; bod 5 je středem úsečky AA0.
Proto je STX střední příčkou trojúhelníka AA0A1} takže
je STX\AQAX, STx — \ -A0AX, neboli STX — \ - 2r = r; proto
bod Tx je bodem dané kružnice k = (S, r).

Protože však je A0AX J_ AAX, AqAx\STXí je podle známé
poučky z planimetrie také

STX _L AAX .

Víme, že tečna kružnice k v jejím bodě Tx je kolmá
к poloměru STX; proto je AAX hledaná tečna. Stejným způ-
sobem se dokáže, že také přímka AA2 je tečnou dané kružnice k.

13. V nádobě máme 910 cm3 solného roztoku, který vznikl
rozpuštěním 80 g soli v čisté vodě. Odlejme 245 cm3 roztoku
a doplňme \)debrané množství čistou vodou na původních
910 cm3. Pak odlejme z nového roztoku opět 245 cm3 a ode-
brané množství doplňme zase čistou vodou na původních
910 cm3. Kolik gramů soli je v 910 cm3 posledního roztoku?

80
Řešení. 1 cm3 daného roztoku obsahuje gramů soli.

80
Odebrali jsme tedy • 245 gramů soli. V nádobě tedy zbude

80
po prvním odebrání • (910 — 245) gramů soli, t. j.
80.665

gramů soli.910
245

Je vidět, že při každém odlití ubíráme z roztoku roz-
910

665
puštěného v něm množství soli, takže v něm zbývá ——- tohoto910
množství. Po druhém odlití a doplnění vodou zbývá tedy
v roztoku

_л 665 665* = 80'910'910 gramU SOlL
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Je
665 19

910 ~~ 26 5
takže

20-361 722019 • 19
= 43 .x — 80 ■

169 1692-2-13-13

Ve zbylém roztoku je asi 43 g soli.

14. Nech x238v značí páťmiestne prirodzené číslo N v de-
siatkovej sústave (x je cifra na mieste desaťtisícoviek, у je
cifra na mieste jednotiek). Aké musia byť cifry x, y, aby
číslo N bolo dělitelné pátnástimi?

Riešenie. Aby číslo N bolo dělitelné pátnástimi, musí byť
dělitelné tromi aj piatimi. je známe, že číslo dělitelné piatimi
má na mieste jednotiek nulu alebo páťku, je teda

[i] bud\y = 0, [2] buď^ = 5 .

Případ [1]. Nech je у — 0. Ak má číslo N byť dělitelné
troma, musí byť jeho ciferný súčet násobkom čísla 3, t. j.
musí platiť

x+2+3+8+0 — 3k,
kde k je nějaké prirodzené číslo. Odtial vypočítáme

x+ 13
(1)x -f 13 = 3k alebo k =

3

Pretože x je cifra páťciferného čísla stojaca na mieste sto-
tisícok, je x niektorá z cifier 1, 2, 3,. . ., 9 (nie však nula).
Dosadzujme za x do (1) čísla 1, 2,. . ., 9; potom len tie z nich
móžu vyhovovat’ úlohe, pre ktoré je k tiež prirodzené číslo,
t. j., pre ktoré je číslo x 13 dělitelné troma. Je to:

a) x = 2, k — 5, b) x = 5, k = 6, c) x = 8, k — 7.
Čísla 22 380, 52 380, 82 380, ktoré sme tak dostali, skutočne

výhovujú úlohe.

9-55-17-03
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Případ [2]. Nech je у = 5. Rovnako ako v případe [1]
musí platit’

Я + 2 + 3 + 8 + 5 — 3& ,

kde & je prirodzené číslo. Odtial’ vypočítáme
x -j- 18

x + 18 = 3k alebo k —

3

kde opáť x móže sa rovnať niektorému z čísel 1, 2, 3,. . ., 9,
pričom však x j- 18 musí byť dělitelné troma. Rovnako ako
v případe [1] dojdeme к hodnotám (pozor, je x Ф 0):

a) x — 3, k — 7, b) x = 6, k — 8, c) x = 9, k — 9.
Příslušné čísla 32 385, 62 385, 92 385 skutočne vyhovujú úlohe.

/

15. Narýsujte pravidelný osmiúhelník AxA2A3A4A5AeA7A8
a označte O jeho střed. Uvnitř tohoto osmiúhelníka sestrojte
nad úsečkou AXA2 čtverec AXA2CD; jeho střed označte S.

Čtvercem, který jste sestrojili, budete pohybovat tak, že
stále zůstane v daném osmiúhelníku. Čtverec nejdříve otočíte
kolem bodu A2 tak, že vrchol C splyne s bodem A3; novou
polohu bodu D označte D'. Čtverec, který jste tak dostali,
pak otočíte opět, tentokrát kolem bodu A3, a to tak, že bod D'
po otočení splyne s bodem A4. Stejným způsobem postupně
provedete další otáčení čtverce kolem bodů Aá, As, A6, A7, A8,
Av Při posledním otočení se čtverec dostane do své původní
polohy.

Vyšetřte, jakou čáru při všech osmi otočeních opsal střed S
daného čtverce.

360°
Řešení (obr. 41). Platí <£ A4OA2

= 671°, 4- A8AxA2 = 135°. Protože je <£ SAXA2 = 45°,
je < SAxA2 < <£ OAxA2, a bod S’ tedy padne dovnitř troj-
úhelníka OAxA2; je tedy AXS < AxO. Při prvním pohybu
čtverce AxA2CD se bod S otáčí kolem bodu A2 po kruhovém
oblouku z polohy S do polohy S', kde <£ S'A2A3 — 45°.

—45°, <£OAxA2=8
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Je tedy < SÁ2S' = <£ АХА2А^ 2 • < AXA2S = 135° -
— 2 • 45° =45° (to plyne i z toho, že <£ CA2A3=<i; AXA2A3—
— <£ AXA2C). Protože je <£ 5^Í2C = 45°, padne bod S'
právě dovnitř úsečky A2C} neboť je A2S < A2C (odvěsna
pravoúhlého trojúhelníka A2CS je menší než jeho přepona
A2C).

Odtud výsledek: Dráha, kterou postupně bod?«S opíše,
se skládá z osmi shodných oblouků. První oblouk má střed A2
a poloměr A2S, t. j. polovina úhlopříčky čtverce АхА2СО;
přímka A20 je osou souměrnosti tohoto oblouku. Snadno se
zjistí, že celá dráha bodu 5 má osm os souměrnosti. Jsou to
jednak čtyři hlavní úhlopříčky AXAS, A2Ae, A3A7, A4A2
daného osmiúhelníka a dále čtyři osy stran osmiúhelníka (při
tom totiž osy protějších stran daného osmiúhelníka -- na př.
AxA2) A6Ae — navzájem splývají).

16. Je dána úsečka AB a uvnitř jedné poloroviny vyťaté
přímkou AB jsou dány takové body M, N, že součet úhlů
<£ MAB3 <£ NBA je roven 2R. Úhel <£ MAB je rozdělen
polopřímkami AM13 AM2 ve tři sobě rovné úhly tak, že
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<£ MAMX = § • <£ Л1ЛБ. Rovněž úhel <£ NBA je polo-
přímkami BNV BN2 rozdělen ve tři sobě rovné úhly tak,
že <£ NBNX — \ • <£ АШЛ. Označme C průsečík polopřímek
AMV BNX a U průsečík polopřímek AM2, BN2.

Co musí platit o daných úhlech <£ MAB, <£ NBA, aby
bylo UC\\AM7

Řešení (obr. 42). Označme
<x BAM2 = <£ M2AMx — < MXAM = a ,

<£ ЛБАГ2 = < N2BNx = < NXBN = /9 .

Obr. 42.

Podle předpokladu je
<£ БЛМ + ЛБАГ - 180°

a podle známé poučky z planimetrie proto platí
ЛЛГЦБАГ. (1)

Ze vztahu (1) plyne

a tedy
За + 30 - 180°,

a + 0 = 60°, (2)

132



a proto
2a + 20 = 120°.

Ze vztahu (3) podle Eukleidova axiomu plyne, že polo-
přímky AM13 ВЫг se protínají v určitém bodě C uvnitř polo-
roviny ABM (je ВАМ\ ABNr = 120° < 180°). Podle
vztahu (2) se stejně dokáže, že polopřímky AM2, BN2 se
protínají v určitém bodě U (je <£ BAM2 + <£ ABN2 =
= 60° < 180°) a bod U leží uvnitř trojúhelníka ABC. Protože
AM2, BN2 jsou po řadě osy úhlů <£ CAB, ABC v troj-
úhelníku ABC, je i polopřímka CU osou úhlu BCA (podle
poučky „osy úhlů trojúhelníka ABC procházejí týmž bodem U,
který se nazývá střed kružnice trojúhelníku vepsané"). Proto je

(3)

(4)<£ ACU = <£ BCU.

Podle textu úlohy máme úhly <£ MAB, <£ NBA určit
tak, aby platilo UC\\AM. Předpokládejme, že jsme takové
úhly a tím i přímky UC, AM našli. Potom platí

<£ MAC = <£ ACU = a

(střídavé úhly, při čemž je AM\\CU). Podle (1) je AM\\BN
a dále UC\\AM; proto je (viz Matematika pro 7. post. ročník,
příklad 6, str. 289) též UC\\BN. Odtud plyne, že

< BCU = <£ CBN = p

(5)

(6)

(střídavé úhly, při čemž je CC7||5iV). Dosaďme ze vztahů
(5), (6) do vztahu (4), pak dostaneme

(7)a = /9 .

Dosadíme-li odtud do vztahu (2), dostaneme 2a — 60°, t. j.
a = 30° a vzhledem ke vztahu (7) je také 0 = 30°. Proto je
<£ MAB = 3a = 90°, < NBA =30 = 90°. Jestliže má tedy
úloha řešení, jsou přímky AM, BN kolmé к přímce AB.

Obráceně, nechť přímky AM, BN jsou kolmé к přímce AB;
tu je

<£ MAB = 90°, NBA = 90°
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a tedy
< MAC = I • 90° = 30°,
< CAB = ! • 90° = 60°, <£ CBA = I • 90° = 60°.

Z posledních dvou vztahů plyne, že trojúhelník ABC je
rovnostranný a proto je <£ BCA — 60°. Označme CU osu
tohoto úhlu; pak je <£ ACU — 30°. Podle vztahu (8) tedy platí

< ACU = <£ MAC ;

to jsou však střídavé úhly a z jejich shodnosti plyne, že platí
CU\\AM, což jsme měli dokázat.

Přímky CU, AM jsou tedy rovnoběžné právě tehdy, když
jsou oba úhly MAB, <£ NBA pravé.
Je tedy < MAB = 3a = 90°, <£ NBA = ЗД = 90°. Tím:

Jestliže přímky -4AÍ, БА/Т stojí kolmo к přímce AB, potom
je přímka CU rovnoběžná s přímkou AM (a tím i s přímkou BN).

(8)

9. Úlohy II. kola kategorie D

1. Z konečné stanice městských pouličních autobusových
tratí vycházejí tři okružní autobusové tratě.

Tři určité vozy označené čísly 1, 2, 3 vyjely v 5 hodin ráno
na své tratě. Vůz č. 1 po svém návratu na konečnou stanici
vyjíždí opět v 5 hodin 40 minut. Vůz č. 2 vyjíždí znovu o 6 hod.
a vůz č. 3 vyjíždí znovu v 6 hodin 20 min. S těmito časovými
rozdíly projíždějí vozy své tratě po celý den.

V kolik hodin dopoledne budou tyto tři vozy opět vyjíždět
současně z konečné stanice.

Řešení. Vůz č. 1 opětovně vyjíždí po 40 minutách, vůz
č. 2 po 60 minutách a vůz č. 3 po 80 minutách. Od 5 hodin
do chvíle, kdy všechny tři vozy opět vyjedou současně, uplyne
určitý počet minut. Toto číslo musí být dělitelné čísly 40,
60, 80; je to tedy společný násobek těchto čísel. Situace nastane
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po prvé, když je tento společný násobek nejmenší. Určíme
jej rozkladem daných čísel v prvočinitele:

40 = 23 • 5, 60 = 22 • 3 • 5, 80 = 24 • 5,

и(40, 60, 80) = 24 • 3 • 5 = 240 .

Vozy vyjedou opět současně za 240 minut po páté hodině
neboli v 9 hod.

2. Zlomek T3 vyjádřete jako desetinný zlomek. Která cifra
stojí v tomto zlomku na 1000. místě za desetinnou čárkou?

Řešení. Platí = 0,076923. Protože se cifry na desetinných
místech našeho periodického čísla vždy po šesti opakují
a protože je

1000 = 6 • 166 + 4 ,

je na tisícím místě stejná cifra jako na čtvrtém. Je to tedy
cifra 9.

3. Narýsujte rovnoběžník ABCD, je-li dáno: AB = 7 cm,
<£ BAD — 60°, při čemž strana CD prochází průsečíkem M
os úhlů <£ BAD a <£ ABC.

Dokažte, že pro tento rovnoběžník platí
AB = 2-AD.

Řešení (obr. 43). Konstrukci rovnoběžníka ABCD pro-
vedeme takto: Narýsujeme úsečku AB — 7 cm a zvolíme
jednu z polorovin vyťatých přímkou AB. Ve zvolené polo-
rovině sestrojíme úhel BAP = 60° а к polopřímce AP
vedeme bodem В polopřímku BQ s ní souhlasně rovnoběžnou.
Sestrojíme osy AU, В V úhlů <£ BAP, <£ ABO a označíme M
průsečík těchto polopřímek. Bodem M sestrojíme rovnoběžku p
к přímce AB; její průsečíky s přímkami AP, BQ označíme
D, C. Čtyřúhelník ABCD je hledaný rovnoběžník.
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Nyní platí:
<£ ВАМ — <£ MAD, neboť AM je osa úhlu <£ BAD,
<£ DMA — <X ВАМ, neboť AB, MD jsou dvě rovno-

běžné přímky (úhly střídavé). Je tedy
DMA = <£ MAD ;

proto je trojúhelník DMA rovnoramenný se základnou AM.
Proto DM, AD jsou jeho ramena a platí DM = AD.

'P 'Q\y
4 .s'u

D.

vy
\

v \

Л \

\
\

■6Ó°
в

Obr. 43.

Stejně se dokáže o trojúhelníku CBM, že MC = BC,
což můžeme též psát MC = ^D. Je tedy CD — 2 • zlD,
což jsme měli dokázat.

4. Narýsujte (dosti veliký) trojúhelník ABC. Uvnitř strany
AC zvolte bod E; bodem E sestrojte rovnoběžku s přímkou AB
a označte F její průsečík se stranou BC. Bodem F sestrojte
rovnoběžku s přímkou АС a označte G její průsečík se stranou
AB.

Jak je třeba volit bod E, aby přímka EG byla rovnoběžná
s přímkou BC?

Co platí o bodech F a G?

}
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Řešení (obr. 44). Podle konstrukce je EF\\AB, FG\\AC,
takže čtyřúhelník AEFG je rovnoběžník. Proto platí

AE = GF.

Jestliže se nám podařilo zvolit bod E tak, že je EG\\BC,
potom také čtyřúhelník ECFG je rovnoběžník (neboť podle
konstrukce je EC\\FG). V tom případě platí

GF = ЕС.

Z obou výsledků (1) a (2) pak
dostaneme

(1)

(2)

/_
AE = ЕС. F

Jestliže tedy je EGlBG, je
bod E středem úsečky AC.
Zvolme nyní bod E ve středu
úsečky AC. Podle konstrukce je
v tomto případě úsečka EF
střední příčkou trojúhelníka
ABC a bod F středem úsečky
BC. Z téhož důvodu je pak úseč-
ka FG také střední příčkou a
bod G středem úsečky AB. Je proto úsečka EG střední přič-
kou trojúhelníka ABC a o ní víme, že platí EG\\BC.

Tím jsme dokázali, že jediný bod E, který vyhovuje úloze,
je střed úsečky AC; potom také body F, G jsou středy stran
ВС, AB.

Jiné řešení. Podle konstrukce je čtyřúhelník AEFG
rovnoběžník, a proto platí

/•
//1

Obr. 44.

(1)AE = GF.

Bodem G veďme rovnoběžku s přímkou BC a označme H
její průsečík s přímkou AC. Čtyřúhelník CFGH je podle
konstrukce také rovnoběžník. Proto platí

GF = CH.

Z obou výsledků (1), (2) plyne, že
AE — CH.

(2)

(3)
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Bodem G prochází к přímce BC jediná rovnoběžka a tou je
přímka GH. Předpokládejme, že je GE\BC', potom přímky
GH a GE splynou, t. j. splynou i body H a E. V tomto případě
podle výsledku (3) platí AE = CE a bod E je středem úsečky
AC.

Obráceně, jestliže bod E je středem úsečky AC, je úsečka EF
střední příčkou a bod F středem úsečky BC. Z téhož důvodu
je úsečka FG střední příčkou a bod G středem úsečky AB.
Proto je úsečka GE rovněž střední příčkou a o ní víme, že je
rovnoběžná s přímkou BC, t. j. GE\\BC.

Tím jsme dokázali, že jediný bod E, který vyhovuje úloze,
je střed úsečky AC.
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