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I. К průběhu XI. ročníku Matematické
olympiády

\

1. Jedenáctý ročník naší celostátní matematické sou-
těže, pořádané pro žáky středních a základních devíti-
letýcn škol, probíhal ve šk. roce 1961/62. Žáci střed-
nich škol všeobecně vzdělávacích a odborných byli
zařazeni do tří kategorií: A (3., popř. 4. ročník),
В (2.ročník) a C (1. ročník); žáci 9; ročníků základních
devíthetých škol soutěžní v kategorii D. Výjimky
v těchto zařazeních povolovaly výbory matematické
olympiády.

2. Soutěž pořádalo ministerstvo školství a kultury
(MŠK) ve spolupráci s Matematickým ústavem ČSAV
(MÚ ČSAV), Jednotou čs. matematiků, a fyziků (JČMF)
a ústředním výborem Československého svazu mládeže
(ÚVČSM). Soutěž se řídila organizačním řádem,
který vyšel ve Věstníku MŠK, roč. XV, str. 289,
instrukce č. 70 ze dne 31. 10. 1959.

Soutěž řídil ústřední výbor Matematické olympiády
(TJVMO) ve spolupráci s krajskými a okresními vý-
bory MO (KV MO a OV MO); práce ve výborech se
účastnili učitelé matematiky základních devíti-
letých škol, škol středních i vysokých, vědečtí pracov-
níci, členové ČSM aj.

Ústřední výbor Matematické olympiády (Praha 1-
Nové Město, Žitná 25, tel. 24 11 93) měl toto složení:
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Předseda: Akademik Josef Novák, vedoucí vědecký
pracovník Matematického ústavu ČSAV v Praze.

Místopředseda: Jan Výšin, docent matematicko-
fyzikální fakulty Karlovy university v Praze.

Jednatel: Rudolf Zelinka, vědecký pracovník Mate-
matického ústavu ČSAV v Praze.

Členové:

Dr. Fr. Běloun, vedoucí matematického kabinetu
Krajského ústavu pro další vzdělávání učitelů a vý-
chovných pracovníků v Praze.

Karel Hnyk, odb. asistent Pedagogického institutu
v Liberci.

Doc. Josef Holubář, vědecký pracovník Matematického
ústavu ČSAV v Praze.

Fr. Hradecký, odb. asistent matematicko-fyzikální
fakulty Karlovy university v Praze.

Dr. Karel Hruša, docent Ústavu dálkového studia
učitelů Karlovy university v Praze.

Miloš Jelínek, ústřední inspektor ministerstva školství
a kultury v Praze.

Dr. Milan Kolibiar, docent přírodovědecké fakulty
Komenského university v Bratislavě.

Dr. Josef Pírek, ředitel základní devítileté školy v Brně.
Fr. Veselý, odb. asistent Vysoké Školy strojní a elek-

trotechnické v Plzni.
Dr. Miloslav Zedek, docent Palackého university

v Olomouci.
Dr. Miroslav Fiedler DrSc., vědecký pracovník Mate-

matického ústavu ČSAV v Praze.
Náhradník: Miroslav Šisler CSc., vědecký pracovník
Matematického ústavu ČSAV v Praze.
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členové-předsedové KV MO:
Stanislav Horák, odb. asistent katedry ^matematiky a

deskriptivní geometrie strojní fakulty ČVUT v Praze.
Dr. Václav Pleskot, profesor ČVUT v Praze.
František Vejsada, učitel střední všeobecně vzdělávací

školy v Českých Budějovicích.
Věra Rádiová, učitelka střední všeobecně vzdělávací

školy v Plzni.
Josef Porcal, učitel zdravotnické školy v Teplicích.
Jan Laštovka, vedoucí kabinetu matematiky Ústavu

pro další vzdělávání učitelů a výchovných pracov-
níků v Pardubicích.

Petr Benda, odb. asistent Vysoké školy pedagogické
v Brně.

Josef Andrys, odb. asistent Pedagogického institutu
v Ostravě.

Dr. Cyril Palaj, docent Vysoké školy lesní a dřevařské
ve Zvoleni.

Dr. Milan Kolibiar, docent přírodovědecké fakulty
University J. Á. Komenského v Bratislavě.

Anna Kotuliaková, odborná asistentka katedry mate-
matiky Vysoké školy technické v Košicích.
3. Soutěž měla dvě, popř. tři kola. V prvním

kole, které proběhlo od začátku školního roku 1961/62
do konce února 1962, řešili žáci doma v každé soutěžní
kategorii 6 přípravných a 6 soutěžních úloh. Musili
svému učiteli matematiky předložit řešení všech šesti
přípravných úloh (4 musela být správná) a nejméně
4 správná řešení soutěžních úloh. Úlohy opravoval a
klasifikoval žákův učitel matematiky; koordinaci klasi-
fikace prováděli členové KV MO, popř. OV MO. Stup-
nice klasifikace byla: výborné nebo vyhovující řešení,
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nevyhovující řešení. Školní referent MO — jeden
z učitelů matematiky na škole — organizoval olym-
piádu v rámci své školy. „

O přijetí žáka do druhého kola soutěže na návrh
ředitele školy a referenta MO rozhodovaly KVMO,
popř. OVMO; II. kolo, které má povahu klauzurní
zkoušky, se pro kategorie А, В, C konalo v neděli
8. dubna 1962 dopoledne v krajských městech, pro
kategorii D se konalo v neděli 15. dubna 1962 dopo-
ledne v okresních městech (výjimečně i v městech
dalších). Žáci během čtyř hodin měli rozřešit ze 4 úloh
alespoň dvě správně.

Soutěží II. kola skončila olympiáda pro kategorie
В, C, D. V rámci soutěže II. kola se konaly se žáky
tradiční besedy. Rozbíraly se tu např. typické ne-
dostatky vyskytující se v žákovských řešeních olym-
pijských úloh. Žáci se při té příležitosti seznámili
s pamětihodnostmi svého krajského nebo okresního
města, navštívili průmyslové závody, shlédli divadelní
představení apod. Po provedené klasifikaci žákovských
řešení úloh II. kola obdrželi nejlepší řešitelé různé
hodnotné věcné ceny, studijní literaturu a pochvalná
uznání. Některé výbory uspořádaly slavnostní rozdě-
lení cen za účasti rodičů a přátel; tak např. v Praze
nabývá toto setkání již tradičního rázu. Jinde uspořá-
daly týdenní rekreaci spojenou s instruktáží. 60 nej-
lepších úspěšných řešitelů II. kola kategorie A se
účastnilo třetího kola, které je celostátní; konalo se
v sobotu 26. května 1962 dopoledne v Liberci pod
záštitou tamější pobočky Jednoty čs. matematiků a
fyziků. Odpoledne téhož dne byla pro účastníky uspo-
řádána beseda pod vedením předsedy ÚV MO aka-
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demika Josefa Nováka. Na ní vedle členů ÚV MO byli
přítomni školští a kulturní pracovníci Liberecka,
učitelé Pedagogického institutu v Liberci a zástupci
Vysoké školy strojní a textilní v čele s rektorem do-
centem inž. dr. Vojtěchem Drdbem, který na besedě pro-
mluvil; poukázal zvláště na důležitost spolupráce mezi
matematiky, fyziky a techniky pro další rozvoj našeho
hospodářství. Dále к účastníkům soutěže hovořil
doc. František Dušek z Pedagogického institutu v Li-
bérci; vyzval je к diskusi o nesnázích, které se jim
v průběhu středoškolského studia při studiu matema-
tiky stavěly v cestu. Téhož dne večer navštívili účast-
níci soutěže představení v Divadle F. X. Saldy v Li-
bérci. Druhého dne, v neděli 27. května 1962, zajeli
účastníci soutěže na Ještěd a po závěrečném obědě se
rozjeli do svých domovů. U příležitosti III. kola se
konala pracovní schůze ÚV MO, jehož členové se
účastnili sobotní besedy se žáky a přispěli svými při-
pomínkami к řešení problému, jak lépe zajistit úspě-
chy ve vyučování matematice.

Z 60 účastníků III. kola (z toho byly 2 dívky) bylo
jen 23 úspěšných (z toho žádná dívka).

Na závěr uvádíme statistická data, která svědčí
o opětně rostoucím počtu účastníků soutěže; avšak
pokud jde o kvalitu řešení a celkovou úroveň, nejsme
zcela spokojeni. Není však pochyby o tom, že žáci mají
v mnohém směru obsáhlé a hlubší znalosti, než tomu
bývalo dříve (např. znalost řešení nerovností); na druhé
straně jim chybí znalosti z teorie čísel, z konstruktivní
geometrie a zběhlost a obratnost v provádění úprav
algebraických a jiných výrazů. К této problematice se
vrátíme jinde. t,
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4. Tabulky č. 1 a 2 podávají přehled o účasti a
výsledcích I. kola, kde se zvláště v kategorii D jeví
značný přírůstek. To svědčí i o tom, že znalost školské
matematiky se stává záležitostí společenského zájmu a
je jedním z předpokladů pro další žákovo studium.
Proto se stále více o olympiádu, její působení i výsledky
zajímají nejen političtí a školští pracovníci, ale i širší
veřejnost, zvláště pak rodiče. To jsou velmi kladné
momenty. Olympiáda si klade za cíl v tomto směru
co nejvíce připravovat půdu pro získávání hlubšího
zájmu o matematiku.

Tabulky č. 3 a 4 informují o výsledcích II. kola;
doplňkem к tomu je pořadí nejlepších (deseti) řešitelů
II. kola v kategoriích В a C, z nichž nám vyrůstají
příští řešitelé kategorie A.

Pořadí úspěšných řešitelů II. kola v kategoriích В, C:

Pokud není jinak uvedeno, jedná se o žáka střední všeobecně
vzdělávací školy.
P = průmyslová škola
D = základní devítiletá škola

Praha-mesto

B. Souček Vladimír, Na Zatlance, Praha 5; Fried
Viktor, Na příkopě 16, Praha 1; Vít Zdeněk,
W. Piecka 2, Praha 2; Marinec Ondřej, nám. Lidových
milicí 19, Praha 9; Havlová Alena, W.m Piecka 2,
Praha 2; Raška Ivan, W. Piecka 2, Praha 2; Švejda Jan,
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Tabulka č. 1

Přehled účastníků I. kola podle krajů v kategoriích А, В, C*)

KategorieKategorie Kategorie Celkem
CA ВKraj

P U P P P UU U

Praha-město 20972 29 71 35 66 36 100

Středočeský 5418 18 17 17 19 5520

Jihočeský 3261 25 61 39 15448 112

33Západočeský 19 28 44 31 98 7821

50Severočeský 38 11371 23 74 52 195

Východo-
český 6429 96 82 16733 56 193

Jiho-
moravský 9687 9 74 120 97 303 240

Severo-
moravský 53 3144 29 77 45 105174

Západo-
slovenský 9143 6183 79 30 253 134

Středo-
slovenský 52 117 133109 62 65 3'9 179

Východo-
slovenský 24 12 32 4614 14 102 40

Celkem 623 386 656 426 510 2095 1322816

*) P = celkový počet účastníků, U = počet úspěšných řešitelů.
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Tabulka č. 2

Přehled počtu účastníků I. kola podle krajů v kategorii D*)
Kategorie D

Kraj
P U

Praha-město 1388 847

Středočeský 429731

Jihočeský 6951135

Západočeský 462719

Severočeský 434760

Východočeský 7581009\

Jihomoravský 7961457

Severomoravský 7311397

Západoslovenský 548805

Středoslovenský 8301515

Východošlovenský 551786

Celkem 708111702

*) P = celkový počet účastníků, U = počet úspěšných řešitelů.
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Tabulka č. 3

Přehled počtu účastníků II. kola podle krajů v kategoriích А, В, C*)

KategorieKategorie Kategorie CelkemCA ВKraj

P | U P 1 uP и P и

Praha-město 28 93 509 31 21 34 20

Středočeský 1418 2 9 51 154 19

Jihočeský 23 16 1063 37 2446 5

Západočeský 27 31 7618 4 141 9

Severočeský 23 45 10638 12 8 21 41

Východo-
český 54 80 49 16228 10 7718

Jiho-
moravský 64 205 10678 6663 17 23

Severn-
moravský 31 95 326 37 2127 5

Západo-
slovenský 61 13141 6 29 3 2011

Středo-
slovenský 63 33 14650 11 20 13 44

Východo-
slovenský 13 3811 14 2 2

Celkem 368 405 124 436 224 1209 ^2577

*) P = celkový počet účastníků, U = počet úspěšných řešitelů.
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Tabulka č. 4

Přehled počtu účastníků II. kola podle krajů у kategorii D*)

Kategorie D
Kraj

P U

Praha-město 507680

Středočeský 375 263

Jihočeský 359608

Západočeský 221402

263Severočeský 373

Východočeský 468596

471Jihomoravský 297

Severomoravský 370628

Západoslovenský 494 314

Středoslovenský 418705

Východoslovenský 509 414

Celkem 5841 3894

*) P = počet všech účastníků, U = počet úspěšných řešitelů.

✓
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1

W. Piecka 2, Praha 2; Vodičková Ludmila, W. Piecka 2,
Praha 2; Vorlíček Jiří, W. Piecka 2, Praha 2; Čtyřoký
Jiří, Žukovova 33, Praha 6.

C. Kaše Jaroslav, Budějovická 680, Praha 4;
Kroha Petr, P, Ječná 30, Praha 2; Kutil Rudolf, Budě-
jovická 680, Praha 4; Benda Václav, JDimitrovovo
nám. 34, Praha 7; Neubauerová Kamila, Štěpánská 23,
Praha 1; Kabele Jiří, Žukovova tř., Praha 6; Velímská
Hana, Pražačka 1700, Praha 3; Gračko Pavel, Na
Zatlance, Praha 5; Šmilauer Bohdan, Pionýrů 118,
Praha 5; Friš Martin, Dimitrovovo nám 34, Praha 7.

Středočeský kraj
B. Gregora Ivan, Slaný; Procházka Jindřich, Čela-

kovice; Eysseltová Jitka, Slaný; Šimerka Ivan, Mladá
Boleslav.

C. Václavek Josef, Radotín; Skočdopolová Hana,
Yotice; Nešetřil Jaroslav, Rakovník; Bednařík Karel,
Český Brod; Kolín Jaroslav, Rakovník; Tourková Eva,
Český Brod; Krob Emil, Nové Strašecí; Pich Josef,
Mladá Boleslav.

Jihočeský kraj
B. Hájek Karel, Strakonice; Hora Jan, Tábor;

Turek Zdeněk, P, Písek; Štědrý Stanislav, Kaplice;
Fiala Karel, Kaplice.

C. Komrska Pavel, Týn nad Vltavou; Chyšková
Helena, Strakonice; Macek Bohuslav, Strakonice;
Karel Ludvík, Č. Budějovice; Proutkovský Petr,
P, Písek; Chromý František, Strakonice; Vobr Jan,
Č. Budějovice; Vazač Karel, Písek; Šohajová Vlasta,
Pacov; Řehoušek Petr, Č. Budějovice.
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Západočeský kraj
B. Šuk Václav, Přeštice; Opatrný Jaroslav, Ne-

pomuk; Pajdar Václav, P, Klatovy; Střihavková An-
děla, Piasy; Mottl Josef, Piasy; Zemandl Milan, P,
Klatovy; Mertl Petr, Plzeň; Karafiát Josef, P, Loket
nad Onří; Kašpárková Zdeňka, Cheb.

C. Chvátal Václav, P, Plzeň; Verner Břetislav,
Rokycany; Lobovský Rudolf, P, Plzeň; Hutar Václav,
Karlovy Vary-Drahovice.

Severočeský kraj
B. Rodling Pavel, Chomutov; Karásek Josef, Česká

Lípa; Krejčí Pavel, Litvínov; Gorlich Petr, P, Ústí
n. Labem; Petráň, Teplice; Bárta Zdeněk, P, Varns-
dorf; Bartoš Liberec; Kužel Karel, Ústí nad Labem-
Na skřivánku; Kněžourková, Česká Lípa; Žďárský
Rostislav, Ústí nad Labem-Na skřivánku.

C. Jirsa Miroslav, Ústí nad Labem, Jateční ul.;
Vížková Zuzana, Liberec; Novák Václav, Varnsdorf;
Kořínek Tomislav, P, Chomutov; Šváb Jiří, Chomu-
tov; Měšťanová Eva, Liberec; Hromada Alexandr, P,
Chomutov; Karous J., Teplice; Jára Vladimír, Lovo-
sice; Kořínek, Liberec.

Východočeský kraj
B. Zima Miloslav, Trutnov; Semerád Václav, Pře-

louč; Kapička Aleš, Slov. povstání, Pardubice; Sou-
kup Jan, Semily; Broul Miroslav, Turnov; Vaněk
Vladimír, Turnov; Strnádek Josef, Semily; Vlk Petr, P,
Rychnov nad Kněžnou; Franclová Jana, Ledeč nad
Sázavou; Sandler Karel, Česká Třebová.

14



C. Laštovka Jan, Slov. povstání, Pardubice; Václa-
vík Ivan, Tylovo nábř., Hradec Králové; Moudrá Mi-
léna, Slov. poustání, Pardubice; Rykrová Jaroslava,
Tylovo nábř., Hradec Králové; Jón Jan, Vrchlabí;
Novák Antonín, Hořice v Podkrkonoší; Čermáková
Regina, Tylovo nábř., Hradec Králové; Pelikán Ema-
nuel, Kostelec nad Orlicí; Čihal Robert, Tylovo nábř.,
Hradec Králové; Vojtíšek Otakar, Slov. povstání,
Pardubice.

Jihomoravský kraj
B. Šimková Drahomíra, Znojmo;wHanzálek Petr,

Znojmo; Kostelecký František, P, Ždár; Traupová
Jana, Znojmo; Košinárová Božena, Zdar n. Šáz.;
Juřík Jaroslav, Velké Meziříčí; Zábrž Pavel, P,
Ždár n. S.

C. Čech Antonín, Třebíč; Peřina Václav, P, Ždár
n. S.; Šonková Marie, Ždár n. Sáz.; Horáková Ladí-
slava, Třebíč; Dvořáková Miluše, Třebíč; Pokorný
Jan, Třebíč; Wasserbauerová Ivana, Třebíč; Bouška
Dušan, Telč; Kotačka Petr, Třebíč; Bartek Zdeněk,
P, Ždár nad Sázavou.

Severomoravský kraj
B. Severa Richard, P, Rožnov p. R.; Blaťák Jan,

Přerov; Dobeš Ferdinand, Český Těšín; Porubá Fran-
tišek, P, Valašské Meziříčí; Roch Jiří, P, Valašské
Meziříčí.

C. Durčák Miloslav, Ostráva-Hladnov; Mamula
Lubomír, P, Val. Meziříčí; Urbánek Milan, Ostrava-
Hladnov; Ženčáková Libuše, Olomouc; Slaměník Jan,
Havířov; Jánoš Petr, Ostrava; Charvát Josef, P,
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Vsetín; Kubečka Jaromír, Nový Bohumín; Vrben-
ský Karel, Ostrava; Tkáč Vladimír, Opava.

Západoslovenský kraj
B. Pohanka Vladimír, Novohradská 2, Bratislava;

Randák Miloš, Novohradská 2, Bratislava; Božek Peter,
Novohradská 2, Bratislava; Žgrlík Marián, Hollého 2,
Trnava; Lachová Eubica, Trenčín; Tóth Štefan,
Trnava; Žideková Viera, Trnava; Jamnická Tatiana,
Pezinok; Kedro Martin, Trenčín; Sokolík Marián, P,
Bánovce n. Bebr.

C. Klimo Pavol, Vazovova 6, Bratislava; Lupták
Ján, Vazovova 6, Bratislava; Kocsis Karol, Komárno.

Středoslovenský kraj
B. Fiby Rudolf, P, Banská Bystrica; Čunderlík

František, P, Tisovec; Barančok Drahoslav, Březno;
Heissová Zdena, Zvolen; Szénasyová Helena, Zvolen;
Koleczányová Livia, Banská Sdavnica; Holá Ida,
Nová Baňa; Kmeť Julius, Banská Bystrica; Králová
Eubica, Banská Štiavnica; Černák Ondřej, Březno.

C. Králik Jaroslav, Zvolen; Roller Ján, Lučenec;
Obrcián Jaroslav, P, Banská Bystrica; Paulík Ján,
Zvolen.

Východoslovenský kraj
C. Grich Vladimír, P, Prešov; Marton Dezider, P,

Spišská Nová Ves.
Na závěr uvádíme pořadí nejlepších sedmnácti

řešitelů III. kola kategorie A, kteří se stali vítězi
XI. ročníku Matematické olympiády; prvních osm
z nich se účastnilo za ČSSR IV. mezinárodní mate-
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matické olympiády, kterou jsme tentokrát uspořádali
v naší zemi (viz kapitolu IV na str. 125). Vítězové III.
kola byli odměněni velmi hodnotnými věcnými cenami
a poukázkami na odbornou studijní literaturu (obojí
podle osobního přání); každý z nich dostal na památku
umělecky provedený čestný diplom, který podepsal
ministr školství a kultury a předseda ÚV MO.

POŘADÍ VÍTĚZŮ XI. ROČNÍKU MO
(Společná místa uvádíme v abecedním pořádku)

1. Jaroslav Ježek, Křesomyslova 2, Praha 4.
2. Josef Danes, nám. Lidových milicí 19, Praha 9

(2. tř. SVVŠ).
3. Pavol Voda, Palisády 20/b, Bratislava.
4. až 6:

Svatopluk Fučík, Tylovo nábř., Hradec Králové.
Peter Hatala, Novohradská 2, Bratislava.
Jan Novotný, Olomouc-Staré Hodolany.

7. Marián Mešina, Prievidza.
8. Karel Veselý, Žukovova 33, Praha 6.
9. Jiří Čmelík, Liberec.10.až 12:

Jiří Durdil, U libeňského gymnasia 3, Praha 8.
Jaromír Kolouch, SPSS, Gottwaldov.
Lubor Košťály Křenová 36, Brno.

13. až 14:
Ivan Bartůněky Pražačka 1700, Praha 3.
Josef Podbrdskýy Koněvova 47, Brno.

15. až 17.:
Václav Černýу Moravské Budějovice.
Ivan Netuka, Tylovo nábř,, Hradec Králové.
Petr Starý, Ústí nad Labem.
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5. Pořadatelé soutěže v čele s ÚV MO se snažili
zvyšovat úroveň žáků a pomáhat jim v jejich růstu
dalšími formami působení. Pobočky JČMF spolu
s krajskými výbory MO pořádaly pro žáky (především
pro kategorie A a B) přípravné přednášky za-
měřené na určité tématické celky, především na tyto
partie v rámci školské matematiky: teorie čísel, vy-
šetřování funkcí a jejich grafů, konstruktivní a početní
úlohy z planimetrie a stereometrie. Přednášky byly
přes různé nesnáze (jako je např. značná vzdálenost
žákova bydliště od místa přednášky, pozdní odpolední
doba konání přednášky aj.) hojně navštěvovány. Zku-
šenost ukazuje, že je bude třeba zaměřit především
na žáky z kategorií A a B. Některé pobočky uspořádaly
až 8 těchto přednášek (dvou až tříhodinových) v prů-
běhu roku, přičemž se přednášející zaměřovali na
aktivní řešení matematických úloh samými posluchači.

Koncem roku 1961 začala vycházet knihovnička
„Škola mladých matematiků^, kterou pro olympioniky
vydává nakladatelství Mladá Fronta v Praze. Edici
řídí redakční komise, jejímiž členy jsou tito pra-
covníci ÚV MO: akademik Josef Novák jako předseda,
dr. M. Fiedler, doc. Jan Výšin a Rud. Zelinka. Počítá
se s tím, že tu ročně vyjdou asi 3 brožurky kapesního
formátu, každá do rozsahu 64 stran (cena 2—3 Kčs).
Distribuci zatím provádějí jednatelé poboček JČMF.
Napříště bude část nákladu brožurek zakup ovát mi-
nisterstvo školství a kultury a v několika exemplářích
je přidělí žákovské knihovně každé střední školy; zby-
tek nákladu půjde na volný trh.

V únoru 1962 uspořádal ústřední výbor MO za
podpory ministerstva školství a kultury a Jednoty
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čs. matematiků a fyziků pro 28 nejlepších žáků kate-
gorie A týdenní instruktáž v Klánovicích, na níž
přednášeli pražští pracovníci. Předpokládáme, že po-
dobné instruktáže spojené s rekreací budeme pořádat
vždy koncem každého školního roku a na počátku
hlavních prázdnin. Instruktáže by trvaly asi 3 týdny
a byla by tu zpracována školská matematika a fyzika.
Počítá se s účastí asi 30 žáků v každém soustředění;
přitom by ÚVMO uspořádal ročně dvě taková sou-
středění a KVMO podle svých možností soustředění
další; žáci by byli vybíráni především z úspěšných
řešitelů II. kola kategorie B. Podobné instruktáže už
po dva roky konají některé slovenské pobočky JČMF
a KVMO; v Severomoravském kraji namísto věcných
cen byla žákům odměnou takováto odborně a tělový-
chovně zaměřená rekreace.

Ústřední výbor Matematické olympiády hledá další
cesty, jak vzbuzovat u naší mládeže lásku к matematice.
Uvítá na tomto poli všechny vhodné podněty. Nada-
ným žákům musíme poskytovat soustavné, spíše indi-
viduální než hromadné konzultace; ty by se konaly
pravidelně na základě pevně vypracovaného indivi-
duálního studijního plánu zaměřeného na hlubší stu-
dium školské matematiky a na řešení úloh. Sama po-
vaha matematiky si vyžaduje samostatné a individu-
ální studium, к němuž žáka třeba soustavně vést a na-
bádat. Účelem konzultační péče o žáka je vedle sesta-
vení jeho studijního plánu a poskytnutí odborné po-
moci především záměrná výchova к tomu, aby si žák
vypěstoval schopnosti a návyky pro samostatné stu-
dium, jež je základem pro úspěšnou práci v matema-
tice vůbec. S tím souvisí i opatřování studijní litera-
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tury pro žáky. Bude třeba nejen při pobočkách JČMF,
ale i na každé střední škole zřídit matematicko-fyzi-
kální oddělení učebnic (i starších typů), příruček a
jiných pomůcek, které by byly к dispozici žákům zají-
majícím se o matematiku a fyziku. Tato opatření
budou pojata do organizačního rámce ministerstva
školství a kultury a jeho orgánů. Všichni organizátoři
Matematické olympiády a učitelé matematiky jistě
pomohou při hledání dalších forem, jak v budoucnu
zlepšit výchovu našich mladých matematiků. V tomto
smyslu je třeba tyto zásady uplatňovat a prosazovat
i na školských odborech národních výborů.
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II. Texty přípravných úloh I. kola1.Kategorie A
1. Sestrojte trojúhelník ABC, jsou-li dány: velí-

kost c strany AB, velikost tc těžnice příslušné к vrcholu
C a velikost a úhlu <£ CAB.

Vyjádřete podmínku řešitelnosti pomocí daných
čísel c, rc, a a rozhodněte o počtu řešení.

2. Zistite počet prirodzených čísel menších než
1000, ktoré sú nesúdelitelné s číslom 1000.

3. Jsou dány rovnice
x2 + px + 1 = 0 ,

x2 -j- x + p = 0 ,

kde p je dané reálné číslo. Určete všechna čísla p
taková, aby obě rovnice měly společný reálný kořen.4.Daná je funkcia

у = ax2 + Ьх + c,

pričom a, b, c sú dané reálne čísla a platí а Ф 0.
Dokážte:
a) Ak je a > 0, b2 — \ac < 0, potom pre všetky

reálne čísla л; je у > 0.
b) Ak pre všetky reálne čísla x je v > 0, potom je

b2 — 4ас < 0, a > 0.5.Řešte rovnici

sin2* + sin22* = sin2 3x.6.Je dána koule к o středu S a poloměru R.
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Uvnitř koule v bodech hlavní kružnice se této koule
dotýká 8 shodných menších koulí tak, že každá z nich
se dotýká dvou sousedních. Dále uvnitř koule x leží
koule xx o středu Sl3 která se dotýká koule x i osmi
menších koulí.

Určete poloměr koule xv2.Kategorie В
1. V rovině je daná úsečka AB. Uvažujme o men-

livom pravouhlom trojuholníku ABC s přeponou AB
a o kružnici k jemu zvonku vpísanej к odvěsně BC.
Zistite, čo tvoří množina stredov všetkých kružnic k.

2. Dokažte, že nerovnosti
x2 + y2 + z2 + xy + уz + zx ^ 0 ,

x2 + У2 + z2 — xy — уz — zx

jsou splněny pro každou trojici reálných čísel x, y, z.
Potom vyšetřete všechny trojice reálných čísel x, у,

z, pro něž v prvním nebo ve druhém vztahu platí
rovnost.

3. Řešte soustavu rovnic

0

I* — У\ + 2 \y\ = 2,
px + 2y = 2p ,

kde p je dané reálné číslo.4.Druhá mocnina párneho čísla zapísaná v de-
siatkovej sústave končí vždy jednou z cifier 0, 4, 6;
dokážte to.

Na základe toho potom zistite, ktorou cifrou končí
štvrtá mocnina párneho čísla.*)

*) Slovenské „párnycc je česky „sudý“.
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5. Je dána kružnice k = (é>, r) a na ní bod A; ve
vzdálenosti d od bodu A je vedena sečna p kružnice k,
přičemž je p J_ SA.

Sestrojte čtverec ABCD, jehož vrchol В leží na
přímce p a vrchol D na kružnici k.

Proveďte diskusi úlohy vzhledem к číslům r, d.
(Pokyn: Použijte otočení o středu A.)

6. Do rotačního kužele je vepsána krychle, jejíž
jedna stěna leží v rovině podstavy kužele a zbývající
4 vrcholy leží na jeho plášti. Délka hrany krychle je
rovna třetině výšky kužele.

Vypočtěte velikost úhlu, který svírá osa kužele se
stranou kužele.

3. Kategorie C
1. Do kruhové úseče o poloměru r a středovém úhlu

120° jsme vepsali kružnici tak, že se tětivy omezující
úseč dotýká právě v jejím středu.

Dokažte, že délka této kružnice je rovna f délky
oblouku, který omezuje danou úseč.

2. Narýsujte trojuholník SMN, keď S7VÍ = 9 cm,
SN = 4 cm, MN = 10 cm.

Zostrojte kosoštvorec ABCD so stredom 5 tak, aby
platilo:

(1) Uhol <£ DAB kosoštvorca má velkost’ 671°.
(2) Priamka AB prechádza bodom M.
(3) Priamka CD prechádza bodom N.
Dokážte, že úloha má dva vyhovujúce výsledky.
(Pokyn: Užijte souměrnosti o středu S.)
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3.Řešte soustavu rovnic

b- z
__ b

X c 5
c — X

_ c
У a5

a — у a

z

kde я, у, z jsou neznámé a a,b,c jsou daná čísla.
Rozhodněte o řešitelnosti soustavy.4.Sestrojte graf funkce

У = i(l* + li — I* — !!) •

(Pokyn: Rozeznávejte možnosti: x^ — 1; — 1^*^

5. Keď p je celé číslo, potom je číslo p4 — p2 — 24
dělitelné číslom 12; dokážte.

6. Je dána kružnice k a na ní dva různé body A, B.
Uvažujme trojúhelník ABX, kde X je bod kružnice k.
Na prodloužení úsečky AX za bod X sestrojme bod Y
tak, aby platilo XY — BX.

Vyšetřte geometrické místo bodů У, když bod X
probíhá kružnici k (s výjimkou bodů A, B).

4. Kategorie D
1. Národní podnik měl zvýšit výrobu o 40 %.

Vhodnou organizací práce se mu podařilo zvýšit vý-
robu o 50 %.

Na kolik procent tím splnil plán?
2. Zistite všetky delitele (prirodzené čísla) čísla

270. Uveďte postup, ako ste úlohu riešili.
3. Narýsujte dvě různoběžky p, q o průsečíku M tak,

aby svíraly úhel 60°. Na přímce p zvolte bod P tak,
aby MP — 7,4 cm.

Kolem bodu P opište kružnici k takovou, aby na
přímce q vytínala tětivu délky 7,2 cm. -
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Rozhodněte, zda bod M padne na kružnici k nebo
leží vně nebo uvnitř kružnice k. Odůvodněte.

4. Je dán výraz
a + b a-b

,

2a + 2b ^
2b2

- )■V
2a — 2b a2 - b2

4b

*02-j-62) (a -b)'
a) Výraz V zjednodušte a udejte, pro která čísla a, b

nemá smysl.
b) Vypočtěte všechny dvojice přirozených čísel a, b3

pro která je V = 10.
5. Zostrojte rovnoramenný lichoběžník ABCD s váč-

šou základňou AB = 8,3 cm, výškou v = 3,5 cm, a to
taký, že z obidvoch bodov C, Z) úsečku ЛБ vidno pod
pravými uhlami.

6. Sestrojte trojúhelník ABC tak, aby platilo:
AB — 4,9 cm, AC = 7 cm, výška příslušná ke straně
AB je vc — 5 cm.

Výpočtem rozhodněte, zda pata P výšky vc vedené
ke straně AB leží uvnitř této strany či nikoli. (Třeba
rozlišovat dvě možnosti: úhel CAB je ostrý nebo
tupý.)
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III. Texty a řešení úloh ze soutěže

1. ÚLOHY I. KOLA KATEGORIE A

1. Jsou dány dvě kolmé robiny qXí g2 o průsečnici
0X02. V rovině gx je sestrojena polokružnice kx se
středem Ox a krajním bodem 02. V robině q2 je se-
strojena polokružnice k2 se středem 02 a krajním
bodem Ox.

Po polokružnici kx se pohvbuje bod Xx a po polo-
kružnici k2 se pohybuje bod X2 tak, že pro vzdálenosti
platí vztah 02Xx — OxX2.

Vyšetřte geometrické místo středů úseček XxX2.
Řešení. Je zcela přirozené zkoumat nejdříve jedno-

dušší případ vzájemné polohy polokružnic kx,k2,než je
uvedeno v textu úlohy, a z něho pak odvodit řešení
dané úlohy. Takový jednodušší případ je situace, kdy
obě polokružnice náleží téže kulové ploše nebo kdy
mají společný krajní bod. Vyšetřujme např. druhou
situaci (viz obr. 1).

a) Posuneme polokružnici k2 o vektor 0X02 do po-
lohy polokružnice kx, k2 mají pak společný krajní
bod 02, jejich zbývající krajní body označíme A13 A2
podle obr. 1. Při posunutí 0X02 přejde proměnný
bod X2 polokružnice k2 v bod X'2 polokružnice k2 a
podle podmínkv z textu úlohy je 02Xx — 02X2. Ozna-
číme dále YXi Y2 pravoúhlé průměty bodů Xx, Х'г na
přímku OxOgí názor ukazuje, že je 02YX = 02Y'2.
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Skutečně z věty S su ply-
ne vztah A02X1Y1£±ž
£2 A02X2Y2 a z něho
02У! = 02У'.

Označme M' střed
úsečky XxX2 (která
může být též nulová,
je-li X, = x; = 02),
M'x jeho pravoúhlý prů-
mět do roviny g1} M2
jeho pravoúhlý průmět
do roviny é>2. Bod M'x
je zřejmě středem úseč-
ky^y^jetedy (pokud
je M\ =£02) M[02 J_
о1о2,лг;оа = 1-у1у1.
Všechny body M[ ná-
leží tedy jisté úsečce
02B[, která leží v ro-
vině q1} je kolmá к
přímce 0X02 a má dél-
ku \r (r = 0X02 je
společný poloměr obou
polokružnic kXi k2).
Snadno se dokáže, že
každý bod úsečky 02B'X
je jedním z bodů М'г.

Geometrické místo
bodů M2 je obdobně
jistá úsečka 02B2, která

X

Obr. 1



leží v rovině q2, je kolmá к přímce 0X02 a má délku
£r. Geometrické místo bodů M' je jistá úsečka 02B',
která leží v jedné rovině souměrnosti rovin q13 q2, je
kolmá к přímce 0X02 a má délku \r]j2.

b) Nyní snadno odvodíme geometrické místo
středů M úseček X1X2. V trojúhelníku XxX2X'2 (který
vznikne vždy, když je Xx ^Ax, 02) je úsečka MM'
střední příčkou. Proto platí pro posunutí (vektory)

—> —^ ^

M'M = \X2X2 = \020x. Geometrickým místem
bodů M je tedy úsečka SB, v niž převede posunutí
^020х úsečku 02B'; ú.ečka SB leží v jedné rovině
souměrnosti rovin g19 q2, obsahuje střed 5 úsečky
0i025 je kolmá к přímce 0X02 a má délku \r]2.

2. Dané sú velkosti a, b súsedných stráň rovno-
bežníka a velkost’ co uhla zovretého jeho uhlopriečkami.

Zostrojte tento rovnoběžník a zistite podmienky
riešitelnosti vzhladom na dané čísla a, b, co.

Řešení (obr. 2). Buď ABCD hledaný rovnoběžník
o středu S, ve kterém je a ^ b, kde a — AB, b = AD.

[1] Pro a = b je AS J_ BS, tj. nutně co — 90°
(jinak úloha nemá řešení); rovnoběžník je tedy v tomto
případě rovnostranný (tj. kosočtverec anebo čtverec).
Úloha pak má nekonečně mnoho řešení; při konstrukci
zvolíme polohu úsečky AB délky a, nad ní jako prů-
měrem sestrojíme Thaletovu polokružnici k, na ní
zvolíme bod S (je В ^S A) a určíme po řadě
obrazy C, D bodů А, В v souměrnosti o středu S.
Potom ABCD je hledaný rovnoběžník.

[2] V dalším nechť je а > b. Trojúhelníky SAD,
SAB se shodují ve dvou dvojicích stran (SA je jim
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společná, dále je SD — SB); protože však AD < AB
(neboli b < a), vyplývá z toho <£ ASD < <£ ASB
(známá poučka). Z této nerovnosti vyplývá <^ASD <
<180° — ASD, neboli

<£ ASD < 90°.
Zvolme označení tak, aby bylo <£ ASD — co; pak je

<£ ASD = co < 90°.
Sestrojíme tedy trojúhelník ASD z těchto prvků:

z délky strany AD = b, z délky těžnice MS =
kde Af je střed strany AD, a z velikosti ostrého úhlu
<£ yíS-D = co; potom snadno trojúhelník do-
plníme s jediným výsledkem na rovnoběžník ABCD,
čímž bude úloha rozřešena.

(1)

Konstrukce (obr. 2). Zvolme polohu úsečky AD
velikosti b; dále zvolme polorovinu o vyťatou přímkou
AD (v ní bude ležet střed S hledaného rovnoběž-
nika ABCD a tím i tento rovnoběžník). Provedeme
v o známou konstrukci geometrického místa bodů,
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z nichž je úsečku AD vidět pod daným úhlem co.

Je to větší oblouk k = AD kružnice o středu O,
přičemž bod O leží uvnitř poloroviny cr, neboť je
ío < 90° (pomocný úhel <£ DA V = о)г = co leží v a'
a je А V J_ АО); přitom MO je osa úsečky AD a M
střed této úsečky. Body A3 D к tomuto geometrickému
místu nepatří.

Dále sestrojíme v polorovině o oblouk m = MXM2
kružnice o středu M a o poloměru \a (neboť má být
2 . MS — AB).

Je-li S společný bod oblouků k, m (nutně leží uvnitř
poloro iny or), je úloha rozřešena.

Důkaz správnosti konstrukce vyplývá z předcho¬
zího.

Diskuse. Úloha je řešitelná právě tehdy, když polo-
kružnice m má s obloukem k společný aspoň jeden bod
ležící mimo přímku AD. Je-li a > b, nemají obě
Iři ky žádný společný bod na přímce AD; v tomto
případě stačí hledat podmínku, aby obě příslušné
kružnice měly společný aspoň jeden bod. Nechť pro
takový společný bod 5 platí 90° = <£ MXSM2 >
> <£ ASD; úhel <£ ASD je tedy ostrý, tj. bod 5 ná-
leží většímu oblouku nad tětivou AD a tím je oblouk k.

Středy O, M obou kružnic mají vzdálenost OM =

= — cotg co (plyne z ДАМО) a jejich poloměry jsou
ba

Podmínka pro existenci aspoň jednoho2 3 2sinco
společného bodu zní

b2sL ž COtg “ = 1
a
— +
2 ^ 2sinw 5

30



po úpravě
asinco + b ^ bcosco ^ | asinco — b | .

Protože je b ^ bcosco, je levá nerovnost splněna vždy.
Pravá nerovnost se dá nahradit dvěma nerovnostmi

bcosco + b ^ <2-into ,

asinco ^ b — 6cos co
neboli

_ . O) co
2asin — cos —

| ^ 26sin2 ,

*> 26cos2

2a in cos —

2 5

po úpravě
1 co . co . ,

bcotg — ^ a, acotg — ^ 6.
_ v . co . R co . , co.Protože je ^ — "2 5 Iе cot§ - lj t}- a cotg ~2 —

^ a > b; druhá nerovnost (*) je tedy splněna vždy
a zbývá jen podmínka

(*)

7 0)
čcotg — ^ a .

Závěr. V případě a — b, со Ф 90° je úloha neřeší-
telná; v případě a = b, co = 90° má nekonečně mnoho
řešení. V případě a > b, co ^ 90° je úloha neřešitelná;
v případě a > b, co < 90° má konečný počet řešení,
a to jediné nebo dvě.

3. Je dána funkce
px (1)У x2 + p2 + 1 3
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kde p je reálný parametr. Dokažte, že tato funkce na-
bývá jen takových hodnot y, pro něž platí \y\ <

Zvolte parametr p tak, aby funkce měla největší
hodnotu^; v tomto případě vyšetřte její průběh a na-
črtněte její graf.

Řešení. Pro všechna reálná x a p je x2 + p2 + 1 >0,
takže pro každé p ke zvolenému x obdržíme jisté reálné
číslo у pomocí (1). Při dalším vyšetřování se omezíme
na případ, že je p Ф 0. V případě p 0 totiž je
funkce у = 0, jejímž grafem je reálná osa x právo-
úhlých souřadnic; druhá otázka pro tento případ ne-
má smysl.

Graf dané funkce (1) je souměrný podle počátku
O = [0, 0] pravoúhlých souřadnic, jak ihned doká-
žeme: Nechť je bod A = [x ^ 0, y] bodem, který ná-
leží grafu funkce (1); potom bod A' — [x' = — x,
y' = —y\ je též bodem tohoto grafu, neboť к danému
x ^ 0 dostaneme z (1) hodnotu у, к danému x' — —x

dostaneme z (1) hodnotu y' =
— px

= -y-x2 + p2 + 1
Přitom body A, A' jsou souměrně sdružené podle
bodu O.

Danou funkci (1) tedy stačí vyšetřovat jen pro
x^0, kdy pro p > 0 je pak stále у ^ 0, pro p < 0
je stále у ^ 0; budeme tedy předpokládat, že je
x ^ 0.

[1] Nyní dokážeme, že je \y\ < Důkaz: Máme
dokázat, že platí

px
< ix2 -f- p2 -f* 1
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neboli
2 \p\ x

< 1 ,x2 + p2 + 1
kde x2 + p2 + 1 >0. Tento vztah je proto ekviva-
lentní se vztahem

2 \p\ x < x2 + p2 + 1
neboli

o < (* - w + 1 •

Avšak na pravé straně této nerovnosti je součet nezá-
porného a kladného čísla, takže nerovnost platí pro
všechna p a všechna x; obrácením postupu dojdeme
к (1). Tím je důkaz proveden.

[2] Máme zvolit p tak, aby pro všechna x platilo
у ^ l neboli

px (2)^ bx2 + p2 + 1
Protože je jmenovatel kladný, dostaneme ekvivalent-
nimi úpravami postupně

4px ^ x2 + p2 + 1 ,

0 ^ (л; - 2p)2 + 1 - 3p2.
Tato nerovnost je splněna při libovolném x právě

(3)

Ptehdy, jestliže platí 1 — 3p2 ^ 0 neboli \p\ = ^ •
Přitom ve (3) nastane rovnost právě tehdy, je-li

x — 2p — 0, 1 - 3p2 = 0

~±f,
kde současně platí znaménka plus nebo minus.

neboli
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Уз ± ]/Зх
Зх2 + 4

Pro р = i ”• rovnice (1) zní jy

Vyšetřme jen průběh a graf první funkce. Graf funkce
— 1/Зх

У = 3v2 + 4
dostaneme jako obraz grafu funkce

]/3x (4)ď = 3x2 + 4
v souměrnosti podle osy x.

Nyní dokážeme, že pro

(4')1/3
je funkce (4) rostoucí a že pro

2
(4")v ^ x]/3

je funkce (4) klesající.
Důkaz. Označme yx, y2 hodnoty funkce (4), které

přísluší po řadě к hodnotám x1}x2, pro něž platí

(5)W
Pak je

_ х^З лгх]/3
3x\ + 4 3xl + 4

У2—У1

(x2 — *0 У 3
(Зх* + 4) (3x| + 4) ' (4 — 3xxx2) . (6)
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První činitel (zlomek) výrazu (6) je kladný. Z (5) plyne
2 2 4

xx < -щ , x2 ^ y= a tedy xxx2 < — neboli 4 — 3xxx2 >
> 0; je tedy i druhý činitel výrazu (6) kladný a tím

У2 ~~ У1 > 0 neboli у2 > yx. Stejně se dokáže, že pro
ta x, která splňují nerovnost (4"), je funkce (4) kle-
sající. Tím je důkaz proveden. Graf funkce (4) se-
strojíme užitím této tabulky:

2
0,5я 0 1 2

3

2j/3 .^0,182^= 0,247 íУ 0 = 0,25 0,216
19 8

Dále užijeme středové souměrnosti grafu vzhledem
к bodu O = [0; 0]; viz obr. 3.

xÍ3/

I

x1,15
2
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Výsledek. Existují právě dvě funkce:
j/Зл;У3jc

У = y = —3x2 + 4 ’
které splňují druhý požadavek úlohy. První z funkcí

2 2
nabývá maxima J pro я = j-^=, druhá pro ж = — y=;
ostatní hodnoty těchto funkcí jsou menší než £.

3x2 + 4 5

Jiné myšlenky při řešení této úlohy užil jeden
^ i upravil na

px
z žáků: Nerovnost

x2 + p2 + 1
tvar

(*)X2 — 4px + (p2 + 1) ^ 0
a rozložil troj člen na levé straně v součin kořenových
činitelů:

[x - (2p + Уз^П)] [x - (2p - УЗ^П)] Й 0 .

(**)
Z nerovnosti (**) vyplývá, že buď oba činitelé jsou
nezáporní, nebo oba nekladní. Pro každé x musí pak
platit aspoň jeden ze vztahů

x ^ 2p + {/V - 1 , x^2p- IV - f.
Pro x — 2p plyne z prvního nebo druhého vztahu

IV —1 = 0 neboli p = i .

Tento částečný výsledek je však nesprávně odvozen,
neboť např. pro p = \ je splněna nerovnost (*) pro
všechna jc; platí totiž

x2 — 2x + i + 1 = (x — l)2 + l > 0 .
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Čím je tato chyba způsobena? Řešitel neoprávněně
předpokládal, že trojčlen na levé straně vztahu (*)
lze rozložit v reálné kořenové činitele, jak ukazuje
vztah (**); to však není pravda např. pro p = £,
kdy je 3p2 — 1 = — l < 0. Proto také pro (2) ne-
mohlo vyjít číslo p — ačkoli pro p — \ je také spi-
něna nerovnost (*) pro všecka x.

4. Ak sú a, /?, у velkosti vnútorných uhlov troj-
uholníka, potom platí

cos2a + cos2/? + cos2y f; (1)
dokážte.

Nájdite všetky trojuholníky, pre ktoré v predchád-
zajúcom vzťihu platí rovnost’.

Riešenie. O uvažovaných uhloch platí
У = 2R — (a + P)>

a teda
cosy = — cos(a + /?) =

= — (cosa cos/? — siná sin/9) . (2)
Pretcí je ďalej

cos2y = cos2a cos2/9 + sin2a sin2/9 —
— 2sina sin/9 cos a cos/9 . (3)

Zo známého vzorca vyplývajú vztahy
sin2a = 1 — cos2a, sin2/9 = 1 — cos2/?.

Po dosadení do (3) dostaneme
cos2y = 1 + 2cos2a cos2/? — cos2a — cos2/? —

— 2cosa cos/? siná sin/9,
čiže

cos2a + cos2/9 + cos2y =
*в-1 -f 2cos2a cos2/? — 2cosa cos/9 siná sin/9 . (4)
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Posledně dva členy právej strany vzťahu (4) možno
však upravit’ takto:

2cos2a cos2/? — 2cosa cos/? siná sin/3 =
= 2cosa cos/3 (cosa cos/? — siná sin/3) —

= 2cosa cos/? cos ( a+ /3) =
= — 2cosa cos/3 cos [2R — (a -f- /3)] =

— —2cosa cos/3 cosy.
Po dosadení tohto výsledku do vzťahu (4) dostáváme
cos2a + cos2/3 + cos2y = 1 — 2 cosa cos/? cosy, (5)
čo platí pre každý trojuholník.

Pre tupouhlý alebo pravoúhlý trojuholník sú dve
z čísel cosa, cos/3, cosy kladné a tretie je nekladné.
Potom je však aj výraz 2 cosa cos/3 cosy číslo ne-
kladné, a preto platí

(50cos2a -f cos2/? + čos2y 1 .

Uvažujme dálej len o ostrouhlom trojuholníku.
Označenie trojuholníka možno zvolit’ tak, aby platilo

/? ^ У > 0° .

V tomto případe je každé z čísel cosa, cos/?, cosy
kladné, ale menšie než jedna; špeciálne je

0 < cosy < 1 .

. (6)90° > a

(60
Všimnime si vzťahu

cos (a — /3) + cos (a + /?) — 2cosa cos/?.
Přitom je cos (a + /3) = —cosy [viď (2)], 90° >
> a — /? ^ 0°, a teda je 0 < cos (a — /3) ^ 1 (kde
rovnost’ platí právě pre a — /?). Platí teda

2cosa cos/3 1 — cosy ,

pričom rovnost’ platí právé pre /3. Vynásobmea =
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ofcidve strany posledněj nerovnosti číslom — cosy,
kde — 1 < —cos у < 0 [podl’a (6')]. Dostaneme

—2cosa cos/? cosy ^ cos2y — cosy .

Použitím tohto výsledku vo vztahu (5) dostaneme
cos2a -f- cos2/? + cos2y ^ 1 + cos2y — cosy

čiže
cos2a + cos2/? + cos2y ^ (cosy — i)2 + f .

Pre ostrouhlý trojuholník je teda číslo у = cos2a +
+ cos2/? + cos2y váčšie než f; iba vtedy, keď platí
cos у — \ — 0, je у — f. To však nastane jedine
pre у = 60°.

Eahko sa zistí, že vztah (5) pre у = 60° platí jedine
pre a = /? = y.

Tým je platnost’ vztahu (1) dokázaná. Rovnost’ v ňom
nastane jedine pre rovnostranný trojuholník.

(7)

5. Dvě místa А, В leží na témž zeměpisném po-
ledníku p; místo A má severní zeměpisnou šířku cpi
a místo В má jižní zeměpisnou šířku <p2. Kosmická
loď při přeletu nad poledníkem p byla z místa A
pozorována na jižní straně ve výšce a stupňů nad ob-
zorem; v témže okamžiku byla z místa В pozorována
na severní straně ve výšce (i stupňů nad obzorem. Jak
daleko byla loď od povrchu země ?

Řešení (obr. 4). Buďte Pl3 P2 severní a jižní pól,
O střed země, p == PXP2 uvažovaný zemský poledník
míst A, Б, ř15 t2 po řadě jeho tečny v bodech А, В
a = <£ AOR, (p2 == <£ BOR zeměpisné šířky míst
A, J5, přičemž R je společný bod zemského rovníku a
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poledníku p\ platí tedy pro dutý úhel <£АОВ vztah
<P = AOB = 9?i + <p2. (1)

V rovině poledníku p leží výškové úhly a = <£ M'AAÍ,
/3 = <£ N'BN, pod nimiž je po řadě z bodů Л, J5 vidět
kosmickou loď iC ve chvíli, kdy se nachází nad po-
ledníkem p. Platí

<£ ОЛ2С = 90° + a, ^ OBK = 90° + /3,
<P = <Pl + <P2

(kde a, /3, 9^, 9?2 jsou vesměs ostré úhly), takže jsou
všechny tři uvedené úhly duté. Dále je

<£ ОЛЯ = OBA = 90° -

(2)

(3)
proto je [viz (2), (3)]:

<3C ВАК — <)C OAK — <£ OAB = oc \(p 3 ^
«£ Л&К = <£ OBiC - <£ ОЯЛ + £<? •
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Má-li nastat popsaná situace, musí existovat průsečíků
polopřímek AM, BN v polorovině opačné к poloro-
vině ABO; podle Euklidova axiómu to nutně vyža-
duje, aby součet obou úhlů (4) byl menší než 180°
neboli

(5)0< a + /3 + < 180° .

Pak nutně čtyřúhelník BOAK je konvexní, neboť jeho
úhel <£ К — 180° — (a + /3 + y) je dutý a zbývající
jeho tři úhly jsou úhly (2). Dále v něm známe strany
OA = OB = r (zemský poloměr).

Hledáme výšku lodi (nad povrchem zemským —
viz obr. 4). Označíme

<£ AOK — coly BOK = eo2,
přičemž

(6)0)x + C02 = <p .

Platí
OK OK
OA ~ OB

r + v

r

pomocí sinové věty dostaneme postupně
r + v sin (90° + a)

_ sin (90° + /3)
cos (a + cdi) cos (/3 + co2)r

neboli

cos/3r Z) r + vcos a

cos (a + coj) 5 cos (jS + co2)r r

neboli
r cosa

r + v 5
r cos/3
X -J- i)

(7)cosa coscoj — siná sin coj =

cos/3 cos co2 — sin/3 sinco2 = (8)
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Z rovnosti (6) plyne co2 - ? - ®i a P° dosazení do
levé strany (8) máme

cos/9 coscp coscoj + cos/? sincp sincox —
— sin/? sir\cp cosco1 + sin/? coscp sinco1

neboli (8) lze uvést na tvar
cos co1 cos (/? + <p) + sin oo1 sin (/? + Ф) —

r cos /3
r + v

Rovnice (7), (9) tvoří soustavu lineárních rovnic pro
neznámé cosco^ sincox. Řešení této soustavy je

(9)

Ar 1
C0Sf°i

r + v sin (a -f /? + 9?) 5 (10)
By 1

sin cox =
r + v sin (a + /3 + (p) 5

kde
(И)A = cos asin (/? + cp) + siná cos/?,

R = cosa cos/3 — cosa cos(/3 + cp) . (12)
Přitom je

sin (a + /3 + cp) =
— sin [4R — (R + a) — (R + /3) — 99] = sin*: ,

kde
и = <£ АКБ =

= 4R — (R + a) — (R + /3) — 99.
Z rovnic (10) vyloučíme co1 tím, že rovnice umocníme
na druhou a sečteme; vyjde

(r + v)2. sin2 к = (A2 + B2) r2.

(13)

(14)
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Z (11), (12) dostaneme
A2 + B2 = cos2/3 (sin2a -f- cos2a) +

+ cos2a [sin2 (/3 + 99) + cos2 (/? + 9?)] +
+ 2sina cosa cos(3 sin {[3 + 99) —

— 2cos2a cos/i cos (/3 + 9?) = cos2a + cos2/? —
— 2cosa coscos (a + /3 + 99) .

Dosaďme z (15) do (14); po úpravě dostaneme
(15)

(r + v)2 =
cos2 a + cos2/9 — 2cos a cos/i cos (a + /3 + 9?)

= r2.
sin2 (a + (3 + 99)

(16)
Vzhledem к (5) je

sin (a + /3 + 99) > 0 .

Čitatel zlomku na pravé straně v (16) lze psát ve tvaru
(cos a — cos ft)2 + 2cos a cos /3 [1 — cos (a + /3 -f 99)];
to je kladné číslo, neboť výraz v lomené závorce je
kladný [viz (5)]. Ze (16) dostaneme tedy

v —

4— 2cosa cos/i cos(a -f- /3 + 99)
—r

sin (<* + /3 + 99)
Tím je úloha rozřešena.
Poznámka. Pro oc — (3 obdržíme pro výšku výraz

cos a
- 1 .v — r

cos (a + \cp)

6. Náčrtek znázorňuje dvě trati pouliční dráhy
APQB a CPQD, které mají společný úsek PQ (viz
obr. 5), ... . ,, ... -
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Kterýkoli vůz projede (nehledě na směr) každý
z úseků AP, BQ, DQ, P<2 za 20 minut, ale úsek
CP za 40 minut; přitom nebereme zřetel na dobu

strávenou čekt ním na zastáv-
kách a konečných stanicích.

Určité dva vozy vyjedou
z konečných stanic A, C
v 8 hodin.

a) V kohk hodin se tyto
vozy potkají poprvé mezi

C místy P, Q?
b) V ko'ik hodin se tyto

vozy potkají mezi místy P,
Q v době od 12 do 14 hocin ?

Řešení. Pro stručnost zvolme dobu 20 minut za

časovou jednotku. V ní jsou vyjádřeny všechny další
časové údaje; přitom čas začínáme v těchto jednotkách
počítat od 8 hodin. Vůz M první trati projede úsek
z A do В a zpět za dobu 6, vůz N druhé trati projede
úsek z C do D a zpět za dobu 8. Situace tedy bude
vždy za dobu 24 (nejmenší společný násobek čísel
6, 8) táž jako při počátečním stavu. Přitom vůz M se
do místa P dostane v. lichých časových údajích (1;
5; 7; 11; 13; 17; 19; 23), takže v místě Q je v sudých
časových údajích (dráhu PQ urazí za jednotku); vůz N
je v místě P v sudých časových údajích (2; 6; 10; 14;
18; 22) a tím v místě Q v lichých časových údajích.
Setkání je proto možné jedině ve středu S úsečky PQ •

(za předpokladu rovnoměrného pohybu), přičemž se
vozy pohybují proti sobě.

Vůz M projíždí místem 5 v těchto časových údajích:

ВD
Q

S

PA

Obr. 4
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_ + 6m (při jízdě z P do <2); f + 6w( při jízdě z <2 do
P); vůz N je v místě S v těchto časových údajích:
f + 8n (při jízdě z P do Q); + 8n (při jízdě z Q
do P).

Přitom jsou m, и celá nezáporná čísla.
Rovnosti f + 6m = f + 8я, f + 6m = +1 + Sn

nelze splnit žádnou dvojicí čísel m, и, což ostatně
plyne z dřívější úvahy (vozy by se nepotkaly). Zbý-
vají právě dvě možnosti:

Případ [1]. Nechť je f + 6m — f + 8n neboli
m = n -\- \(n — 1).

Nejmenší vyhovující n je n = 1 a pak m = n = 1.
Setkání tedy nastává v časovém údaji f + 6 . 1 =
= 1 + 8.1 = 10+ tedy za 210 minut neboli za

_Ъ\ hodiny po osmé hodině,tj. o 11 £ hodině. Přitom
vůz M jede z Q do P.

Případ [2]. Nechť je f + 6m = + 8n neboli
m = n + i {n + 2).

Nejmenší n, které vyhovuje požadavkům, je n = 1 a
к němu přísluší m = 2; setkání tedy nastává v časovém
údaji f + 6.2 = + 8.1 = 13+ tj. za 270 minut
neboli h po osmé hodině, tedy o 12 £ hodině.
Přitom vůz M jede z P do Q.

Tím je zodpověděna otázka a),
b) Doba mezi 12. a 14. hodinou je vyjádřena inter-

válem (12, 18) v smluvené časové jednotce, přičemž
časový údaj t = 0 je v 8 hodin. Abychom zodpověděli
otázku b), musíme řešit nerovnosti

12 < f + 6m < 18, 12 < f + 6m < 18
celými nezápornými čísly m. První nerovnost (3)

3

(1)

(2)

(3)
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dává vztah
1,7 < m < 2,8 ,

který má jediné celočíselné řešení m — 2. Ze vztahu
(2) dostaneme n = 1; příslušná doba f + 6.2 = 13|-,
tj. 270 minut = 4 hodiny 30 minut. Doba setkání je
tedy 12 hodin 30 minut.

Druhá nerovnost (3) dává vztah
1,2 < m < 2,3 ,

který má jediné celočíselné řešení m — 2. Ze vztahu
(1) dostaneme n — f, což není celé číslo; nedostaneme
tedy žádné další řešení.

Při řešení této úlohy užívali někteří účastníci
tabulky (což je vlastně řešení experimentální) nebo
grafického jízdního řádu, jako např. Leopold Vrána,
žák třídy Ill.b SVVŠ v Novém Jičíně.

2. ÚLOHY II. KOLA KATEGORIE A

1. Číslo 1719 + 1917 je dělitelné číslem 17 + 19.
Dokažte.

Řešení. Je znám vzorec
an + bn = (a + V) [a71-1 - an~2b +
který platí pro lichá n > 1, jehož v dalším použijeme.

O čísle x = 1719 + 1917 nyní platí
x = (1719 - 1717) + (1917 + 1717) =

= 1717(172 - 1) + (19 + 17) (1916 - 1915 . 17 + ...

... + 1716) = 1717 . 16. 18 + 36. В = 36 (A + B)3
kde A = 1717.8, В = 1916 - 1915. 17 + ... + 1716
jsou přirozená čísla. ^

+ i"-1],
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Z výsledku x = 36(A + В) vyplývá, že číslo л: je
dělitelné třicetišesti.

Jiné řešení. Platí
x — (18 — l)19 + (18 + l)17 =

=[1819-(T) 1818 + ... + +

+(V) (16)18+1]=1816 + ... ++

= 181^1818 - ^9jl817 + ... + mi +

[i8“+(V) CO] -1817 + ... ++ 18

= 18^1818 - 1817 + ... + n + 1816 +

(V)l-(V) 1817 + ... ++

/19\
Členy obsažené v lomené závorce jsou až na I | ,

n čísla věsměs dělitelná osmnácti a tudíž sudá;

z toho plyne, že výraz v lomené závorce je číslo sudé,
takže platí

x = 18.2k ,

kde k je celé číslo. Je tedy číslo x dělitelné číslem 36.
2. V rovině je dána soustava pravoúhlých souřadnic.

Vyšetřte množinu všech bodů, jejichž souřadnice x, у
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v této soustavě splňují nerovnosti
0 5^ X 7C, 0 ^ 3; ^ Ti .1

1 + |cos x| ^ 2sin2 j. / (1)

Řešení. Máme najít všechna řešení, jejichž obrazy
náleží čtverci OMNP (viz obr. 6):

О ^ X ^ 7Г ,

(2)0 ^ J ^ n .

Je-li x0, řešení sou-
4. stavy (1), je takéP

+n--

; d ^ *0з Уo

řešení soustavy (1), a také
к —y0

je řešení soustavy (1).
To znamená, že mno-

žíná obrazů řešení, které
-j+— leží ve čtverci (2), je sou-

měrná podle přímek o rov-
nicích

A
iC

í*
i*"" I

В
řf

of i*
Obr. 6

TCTC

*“2’ У = ~2 '

Stačí tedy najít řešení ve čtverci skládajícím se z bodů
[x, j], pro něž platí

Potom však platí, že s třetí nerovností (1) je ekvivalent-

(3)
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/
ní nerovnost

2sin2y — 1 ^ |cos x\ .

cos* ^ 0,

—cos2у ^ cos*

cos(7r — 2y) ^ cos* .

2y, tak i číslo x leží v intervalu/ 0, ^ >,

Poněvadž je

dostaneme dále
(4)

vm •

Clil

Jak číslo тс —

v němž je funkce kosinus klesající. Proto je nerovnost
(4) ekvivalentní s nerovností

тс — 2y ^ x,

x + 2y ^ 7c.
Avšak rovnice л: + 2у — 7c vyjadřuje v rovině přímku,
která prochází body

tj.

NHfí]-
Body společné polorovině x + 2y ^ 7r a čtverci (3)
tvoří trojúhelník ABS (viz obr. 6) s vrcholy

-ИИ-И] _ Г 7t 71]=

[2J 2j*
A , 5

V důsledku zmíněných souměrností je hledaná mno-
žíná bodů kosočtverec ABCD; viz obr. 6.

3. Daná je rovnica
x2 + 2px + 2p2 —1=0 (1)

s neznámou x, kde p je reálne číslo. Nájdite všetky
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čísla />, pre ktoré má daná rovnica reálne kořene,
z ktorých žiaden nemá absolútnu hcdaotu váčšiu než
jxlna.

Riešenie. Ak má daná rovnica (1) reálne kořene,
potom je jej diskriminant nutné nezáporné číslo. Teda
nutné platí

{-pf - (2p2 - 1) = 1 - p* ^ 0
čiže

(2)-1 1 .

Kořene x13 x2 danej rovnice (1) sú
*ť,2 =—p± l/l - Рг •

Podia požiadaviek vyslovených v texte úlohy platí
o nich

p - i/i - p2 á - p + yi - p2 á i.
Z toho vyplývá (středná nerovnost’ zrejme platí), že
súčasne musia byť splněné nerovnosti

-1

l/i-í2ái+ř; (3)
pričom sú na základe vztahu (2) čísla 1 — p, 1 + P
nezáporné. Po umocnění obidvoch stráň nerovností
(3) a ďalšej úpravě dostaneme, že číslo p musí súčasne
vyhovovat’ vzťahom

(4)o ^ p{p - i), o ^ xp + i).
Je teda nutné buď

(5)P = 0,
alebo platí súčasne [pozři (4)]

p > 0 , p^ 1,
alebo platí súčasne [pozři (4)]

p < 0, p ^ -1 .

(6)

(7)
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Kombináčiou vzťahov (6), (2) dostáváme, že je nutné
p = i;

kombináčiou vzťahov (7), (2) dostáváme, že je nutné

P= -1.

(3)

(9)
Výsledky (5), (8), (9) vedú к tomu, že daná rovnica

(1) musí byť jednou z rovnic
x2 - 1 - 0 ,

x2 + 2x + 1 = 0,
x2 — 2x 4- 1 — 0 .

Tieto rovnice skutočne všetky vyhovujú požiadavkám
úlohy. O tom sa 1’ahko přesvědčíme vypočítáním ich
koreňov. Tým je úloha vyriešená.

4. Je dána krychle ABCDA'B'C'D' o hraně délky 1
a číslo d, pro něž platí 1 ^ d ^ j/2. Úsečka A’ Y délky d
je umístěna tak, že bod X leží ve stěně ABCD a bod У
ve stěně A'B'C'D'; mimoto obsahuje úsečka XY
pevný bod M tělesové úhlopříčky AC'3 pro který platí
CM — 2AM. Vyšetříe geometrické místo bodů X;
jaký útvar vznikne pro různé hodnoty d7

Řešení (viz obr. 7). Bodem M vedeme kolmici na
rovnoběžné roviny ABC, A'B'C a její průsečíky
s těmito rovinami po řadě označíme P, Q; je PQ =
— AA' — 1. Ze stejnolehlosti trojúhelníků AMP,
ACC podle bodu A vyplývá MP = .^PQ — takže
MQ = f. Ze stejnolehlosti trojúhelníků MPX, MQY
podle bodu M vyplývají vztahy (je XY = d)

MX \d, MY = \d .

Proto z pravoúhlého trojúhelníka MXP plyne podle
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I

Pythagorovy věty
PX2 = MX2 - MP2 = l{d2 - 1) ^ I,

tudíž PX = i|Id2 - 1 a dále
PX^l.

D'y
i

//

шA1 B'
. i
у i

v

{.
l\ i

D
,-VC/ /

/ ^.p^&bX/-r-A В

Obr. 7.

Pro dané d je PX konstanta, a proto všechny body X
leží na kružnici k = (P; \\Jd2 — 1), popř. dostaneme
pro d — 1 jediný bod X = P. Tato kružnice k leží
celá ve čtverci ABCD, neboť vzdálenost bodu P od
přímek ЛР, ЛР je od přímek PC, CD je f.

Avšak celá kružnice k není hledaným geometrickým
místem bodů X, neboť ne ke každému bodu X kruž-
nice k lze sestrojit bod У, aby náležel čtverci A'B'C'D
této otázky si ihned blíže všimneme.
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Z pravoúhlého trojúhelníka MYQ podle Pythago-
rovy věty dostaneme

QY2 = MY2 - MQ2 = ${d2 - 1),

QY= S 5;
body Y pro dané číslo d leží na kružnici k' ==

=(<2; §V<*2 — 1), popř. pro d — 1 je У == Q. Kruž-
nice k! vsak pro dané číslo d nemusí náležet celá
čtverci A'B'C'D'. Rozlišme 5 případů, které snadno
pomocí náčrtků vyšetříme; nechť je

[1] 1 = d (obr. 3); pak platí У = Q а X = P;
[21 1 < d ^ |l/5 (obr. 9); potom celá kružnice k'

leží ve čtverci A'B'C'D

tj.

C'

ď
/Q*Y

A
Obr. 8



[3] |]/5 < d < ||/б (obr. 10). Kružnice k' pro-
tíná stranu A'B' ve dvojici bodů L, L' ležících mezi
A', 5'; podobně je tomu i se stranou A'D'.

[4] </ = i|/6(obr.ll).Kruž-
nice k' prochází bodem A' a
vedle toho protíná stranu A'B'
v dalším bodu L ležícím mezi
А', B'; podobně je tomu se
stranou A'D'.

\ ]/ó < d ^ j/2 (obr.
12). Kružnice se rozpadá ve
dva oblouky, z nichž jeden leží
vně čtverce A'B'C'D', druhý
náleží tomuto čtverci.

[5]

Bod Q má od stran A'B', A'D' vzdálenosti od
stran B'C', CD' vzdálenosti f; protože pak je QY ^ §,
leží ten oblouk KL kružnice k' v obr. 10 až 12, který
protíná úsečku QC, celý ve čtverci A'B'CD'; o polo-
měru q = QY této kružnice v jednotlivých obrázcích
9 až 12 po řadě platí:
eái i < e < iH e = 1 Ф < в á !.
Z těchto podmínek a ze vzorce MY2 — MQ2 + QY2
neboli

m2 = (i)2 +
dostaneme vztahy uvedené v případech [2] až [5].

Nyní snadno vyšetříme hledané geometrické místo
bodů X. Jestliže bod Y leží na kružnici k' a zároveň
ve čtverci A'B'CD' (popř. je-li Y = Q), pak příslušný
bod X úsečky XY — d náleží hledanému geometrie-
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kému místu bodů. Hledané geometrické místo bodů
pro dané d je tedy v případě:

[1] jediný bod P;
[2] kružnice &;
[3] dva oblouky kružnice k, které jsou bez společ-

ného bodu;
[4] jeden oblouk kruž- q

nice k a izolovaný další
bod (průsečík kružnice k
s úsečkou PC);

[5] jeden oblouk kruž-
nice k.

Graficky tyto oblouky
nejrychleji sestrojíme tak-
to: V pravoúhlém promí-
tání na rovinu ABC se-

strojíme průmět k" kruž-
nice k! a průmět XY"
úsečky XY 0 iz obr. 13,
pro případ [3] porovnej
sobr. 10). Průměty У "bodů na kružnici k" a hledané
geometrické místo bodů X na kružnici k jsou stej-
nolehlé podle bodu P = M" při konstantě stejnoleh-
losti — \ (viz silně narýsované části kružnice k" a
kružnice k v obr. 13) .

A

к'

В

3. TEXTY ÚLOH III. KOLA KATEGORIE A

1. Je dán trojčlen
2x2 — x — 36 .

Určete všechna celá čísla x, pro která se hodnota
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daného trojčlenu rovná druhé mocnině prvočísla.2.V rovině je dána soustava pravoúhlých souřadnic
X,y.

Vyšetřte množinu všech bodů, jejichž souřadnice
v této soustavě splňují nerovnost

• 0 ^X ^ ^7C ,

]/1 — sin 2л: — У1 + sin 2x у ^ ]/1 — cos 2x —

—У1 + cos 2x .

Načrtněte obraz této množiny.3.Jsou dány dvě navzájem kolmé mimoběžky PM}
QN, kde přímka PQ je kolmá ke každé z obou mimo-
běžek. V rovině a kolmé к úsečce PQ a procházející
jejím středem S je dána kružnice k = (S, r).

Dokažte, že každá úsečka XF, jejíž krajní body X, Y
leží po řadě na mimoběžkách PM, QN a která obsa-
huje bod kružnice k, má touž délku; vyjádřete tuto
délku pomocí poloměru r a délky v — PQ.

Jaký útvar vyplní krajní body X všech takových
úseček XY?4.V rovině je dána kružnice k = (S,r). Kromě
toho je dán bod A ^S, který leží uvnitř kružnice k.
Světelný paprsek vycházející z daného bodu A se od-
ráží od kružnice k v jistém bodě В, pak se odráží od
kružnice k v jistém bodě C a odtud se vrací nazpět
do bodu A.

Vypočítejte sinus dutého úhlu <£ SAB pomocí
čísel r, d = SA a rozhodněte o řešitelnosti úlohy.

Poznámka. Řešení těchto úloh najdete v této bro-
žuře na str. 111 v článku „Něco o metodách řešení
úloh.tc
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4. ÚLOHY I. KOLA KATEGORIE В

1. Jsou dány dvě různé rovnoběžky q a bod A ležící
na p\ dále je dán bod M ležící uvnitř pásu s hranicemi
P, T

Sestrojte takový rovnoramenný trojúhelník ABC
se základnou AB, aby vrcholy В, C ležely po řadě na
přímkách q, p a bod M na ramenu BC.

Proveďte diskusi vzhledem к vzdálenosti v rovno-

běžek p, q a vzdálenosti bodů A, M.

Obr. 14

Řešení (obr. 14). Pokusíme se určit směr přímkyAB.
Souměrnost podle této přímky převede hledaný troj-
úhelník ABC v rovnoramenný trojúhelník ABC',
jehož rameno BC' leží v přímce q. Táž souměrnost
převede bod M v jistý bod M', který leží jednak na
přímce q, jednak na kružnici k = (A; AM). Sestro-
jíme-li bod M' j^ko společný bod čar q, k a vedeme-li
osu o úsečky MMprotne osa o přímku q v bodě Б;
přímka BM protne přímku p v jistém bodě C; bod
s ním souměrně sdružený podle přímky o (který leží
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na q) označíme C. Obrazec ACBC je rovnoběžník,
neboť AC || BC, BC\\AC'; jeho úhlopříčky leží
v přímkách o, CG navzájem kolmých, a je to tedy
kosočtverec. Proto je trojúhelník ABC skutečně rovno-
ramenný se základnou AB.

Úloha má dvě různá řešení, je-li AM > v\ jediné
řešení, je-li AM — v\ je neřešitelná, je-li AM < v.

2. Druhá mocnina prirodzeného čísla n má v deka-
dickom zápise posledně dvojčíslie 56. Aké je posledně
dvojčíslie čísla n? (Sú 4 možnosti.)

Řešení. Protože poslední cifra n% je 6, je poslední
cifra čísla n buď 4, nebo 6. Číslo n lze tedy napsat
v jednom z tvarů

(1)n = Юл; + 4 ,

n — Юл; + 6 . (2)
V případě (1) je

я2 — ЮОх2 + 80л; + 16 =
= 100x2 + 10 . (Sx + 1) + 6.

Na předposlední číslici má vliv jedině člen 10(8л; + 1).
Podle podmínky úlohy musí číslo 8л; + 1 končit
číslicí 5, tj. 8л; musí být číslo končící čtyřkou. Mezi
násobky osmi jsou to čísla 24, 64, 104, 144, . .

tj. číslo 8л; pro x'= 3, 13, 23, 33,... a x — 8, 18, 28,
38,... . První dvě řešení úlohy jsou tedy čísla, jejichž
poslední dvojčíslí je 34 nebo 84.

V případě (2) je

•• 3

w2 = 100л;2 + 120л; + 36 ==

= ЮОх2 + 10(12л; + 3) + 6.
Jako v případě (1) zjistíme, že číslo 12л; musí končit
dvojkou. Takové násobky dvanácti dostaneme jen
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pro x = 1, 11, 21, 31,... a * = 6, 16, 26, 36,... .

Tak dostáváme další dvě řešení úlohy: poslední
dvojčíslí hledaných čísel je 16 nebo 66.

3. Je dáno kladné číslo p. Množina všech bodů
v rovině, jejichž pravoúhlé souřadnice x, у vyhovují
rovnici

p |*| + I* +y\ = 4,
je obvod jistého rovnoběžníka; dokažte.

Potom zjistěte, pro které číslo p je tento rovnoběžník
obdélníkem.

(1)

Řešení. Rozlišíme čtyři případy:
a) * ^ 0, * + у ^ 0, b) * ^ 0, * + у ^ 0,
c) * ^ 0, * + у 0, d) * <: 0, * + у ^ 0.

V případě a) platí |*| = *, \x y\ = x у; proto
přepíšeme rovnici (1) do tvaru

(P + 1) x +y = 4 .

Grafem rovnice (la) je přímka m13 která protíná osuj;
v bodě A = [0,4] a přímku p o rovnici * + у = 0
v bodě В =

tem z (la). Graf rovnice (1) však neobsahuje celou
přímku ml3 nýbrž jen její část, pro kterou platí sou-
časně * ^ 0, * -f- у ^ 0. Všecky body [x,y], pro něž
platí x ^ 0, vyplní polorovinu yB, tj. pravou poloro-
vinu s hranicí v osej;; všecky body [*, y], pro něž platí
* + у ^ 0, vyplní polorovinu pA. Společná část obou
těchto polorovin je úhel <£ APB (.P je počátek sou-
řadnic). V tomto úhlu leží jen část přímky m13 a to
úsečka AB.

(la)

-4 41
— I, jak zjistíme snadným výpoč-P’
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V případě b) postupujeme obdobně jako v případě a).
Zde platí |*| = *, I* + y\ — —x — y; proto přepíše-
me rovnici (1) do tvaru

(p — \)x — у = 4. (lb)
Grafem rovnice (lb) je přímka m2, která protíná osujy
v bodě C = [0, —4] a přímku p v bolě B. Všecky
body [*, у], pro něž platí současně * ^ 0, * + у ^ 0,
vyplní společnou část polorovin уВ, pC, což je úhel
<ŠC ВPC. Část přímky m2 ležící v tomto úhlu je
úsečka BC.

Případy c) a d) vyšetříme snadno na základě středové
souměrnosti. Z rovnice (1) je
patrné: Jestliže této rovnici vy-
hovuje dvojice čísel *, y, vy-
hovuje jí též dvojice —*, —y;
to znamená, že graf rovnice (1)
je útvar souměrný podle středu
P (viz obr. 15).

Mimo nalezené úsečky AB,
BC náleží tomuto grafu tedy
také úsečky AD, CD, kde D
je bod souměrně sdružený s bo-
dem В podle středu^ P a ležící
ovšem na přímce p. Čtyřúhelník
ABCD je rovnoběžník, neboť
je souměrný podle středu P.
Graf rovnice (1) je obvod tohoto
rovnoběžníka.

Odpověď na druhou otázku úlohy. Rovno-
běžník ABCD je obdélníkem jen tehdy, když platí
AC — BD, neboli АР = BP. Z předchozího víme, že

60



АР = 4; snadno vypočteme podle Pythagorovy věty, že

-ш+ем iBP 2.

Dostaneme tedy pro p podmínku

4 = — V2
P

a odtud p — У2.
4. Nech sú a, b, c dížky stráň trojuholníka a P

jeho obsah. Potom platí
a2 + b2 + c2 ^ 4P]/3; (1)

dokážte.

Zistite, kedy nastáva rovnost’.
Riešenie I. Vzhladom na geometrický význam sú

čísla a, by c všetký kladné. Podlá Heronovho vzorca
P2 = 5(5 — a) (s — b) (5 — c)y kde s = \ {a + b + c)}
platí
16 P2 = (a + b + c) (—a + b + c) {a — b + c).
. (a + b — c) = [—a2 + (6 + c)2] [a2 — (b — c)2] =
= -a4 + a2[{b - c)2 + (b + c)2] - (b2 - c2)2 =
= -a4 - M - c4 + 2a2b2 + 2b2c2 + 2c2a2 .

Teda je
16 P2 = -a4 - ž>4 - c4 + 2a2b2 + 2b2c2 + 2с2я2. (2)

Nech teraz platí nerovnost’ (1), ktorej obidve strany
sú kladné čísla. Potom platí tiež nerovnost’

(a2 + b2 + с2)2 ^ (4Р]/3)2
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V • V

cize

a4 + 64 + c4 + 2a2b2 + 262c2 + 2c2a2
Do právej strany poslednej nerovnosti dosaďme zo
vztahu (2). Po úpravě dostaneme

4(a4 + № + c4 - a2b2 - ž>2c2 - c2a2) ^ 0

16.3P2.

čiže
(a2 - č>2)2 + (62 - c2)2 + (c2 - a2)2 ^ 0 . (3)

Tento vztah platí pre všetky čísla a,6,c. Pretože úpravy,
ktoré sme previedli, sú za daných predpokladov
o číslach <2, b, c ekvivalentně, vyplývá z nerovnosti (3)
nerovnost’ (1). Vzhladom na vzťah (3) nastane v (1)
rovnost’ právě pre a2 = b2 = c2, čiže pre a — b = c,
tj. pre rovnostranný trojuholník. Tým je úloha vy-
riešená.

Riešenie II. Do vztahu (1) dosaďme z kosinusovej
vety

c2 — a2 + b2 — 2ab cos у,
kde у — <£ ВСA. Dostaneme

2(a2 + b2 — ab cos y) ^ 4 . \ ab sin у . j/3 ,

pričom sme použili P — \ ab sin y.
Převeďme ekvivalentně úpravy:

2^ a2 + b2 — 2ab[^cosу . \ + siny . Jy ^o,

(4)2 \a2 + b2 — 2ab cos (y — 60°)] ^ 0 .

Bez ujmy na všeobecnosti možeme predpokladať, že
je a ^ b ^ c > 0 čiže

180° >a^č^y>0°.
Přitom je nutné у ^ 60°. Ak by totiž bolo у > 60°,
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potom a + /5 + У > 3.60° = 180°, čo je v spore
s tým, že ide o uhly a, /3, у trojuholníka.

Je teda —2ab cos(y — 60°) ^ 0 pre všetky у a preto
pre každý trojuholník platí i vzťah (4), ktorý je so
vzťahom (1) ekvivalentný. Tým je dokaž převedený.

5. Je dána soustava rovnic
x +y + z = 1 ,

x2 + J>2 + z2 = c
(1)
(2)
(3)xy

kde c je dané kladné číslo.
a) Udejte podmínky pro číslo c3 aby soustava měla

reálné řešení x, y3 z.

b) Udejte všechna čísla c, pro něž alespoň jedna
trojice čísel x, у, z (řešících soustavu) je složena
z kladných a navzájem různých čísel.

Řešení. Umocněme obě strany rovnice (1) na
druhou a do výsledku, který tak dostaneme, dosaďme
ze (2) a (3); obdržíme postupně

c + 2(xy + уz + xz) = 1 ,

c + 2z(x + у + z) == 1 .

Nyní sem dosaďme z (1), čímž dostáváme
* = \ (1 — c) . (1')

Tento výsledek dosaďme do (1) a (3); dostaneme pro
neznámé x, у soustavu

(2')X + у = К1 + с),
xy = i(l - c)2 .

Podle známé věty o koeficientech kvadratické rovnice
jsou čísla x, у splňující rovnice (2') a (3') kořeny ná-

(3')

63



sledující rovnice s neznámou t:
t2 - i(l 4- c)t + Ml - c)2 = 0,

neboli
4í2 - 2(1 + c)ř + (1 - c)2 = 0 .

Diskriminant D této rovnice je
D = 4[(1 + c)2 - 4(1 - c)2] = 4 (3c- 1) (3 - c).

(4)

Rovnice (4) má tedy reálné řešení právě tehdy, platí-li
D ^ 0 neboli

(5)iácS3;
kořeny t13 t2 rovnice (4) pak jsou

ti = i(l + C + V(3c - 1) (3 - e)).
h = 1(1 + c - V(3e - 1) (3 - e)).\ (5')

Jsou-li splněny podmínky (5), a jen v tomto případě,
jsou čísla t1} t2 reálná; pak je buď x = tl3 у — t2i nebo
x — t2i у — řx; číslo z je podle (Г) vždy reálné. Ře-
šením úlohy a) jsou tedy nerovnosti (5).

Aby byly splněny podmínky z úlohy b), musí
platit
tx Ф t2, t1 Ф z, t2 Ф z, z > 0, ř2 > 0 (pak je i tx > 0).
Nerovnost t1 Ф t2 dává podmínku D Ф 0, tj.

c Ф1 3 3 с Ф 3 .

Rovnice tx = z i rovnice ř2 = z dává po snadné úpravě
řešení c — c — — 1. Číslo c = £ skutečně vede
к rovnostem z = tx = ř2, číslo c — — 1 nevyhovuje
ani rovnici z = ř15 ani z —12 (pro c — — 1 je D < 0).
Nerovnosti tx Ф z, t2 Ф z nevedou tedy к další pod-
mince. Nerovnost z > 0 vede к vztahu 1 — c > 0,

(5a)
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neboli

(5b)c < 1 .

Konečně nerovnost r2 > 0 vede к podmínce с + 1 >
> У(3c — 1) (3 — cj, neboli 4(c — l)2 > 0, neboli
с Ф 1, která je zahrnuta v podmínce (5b).

Spojením (5), (5a), (5b) dostaneme tedy odpověď
na otázku z druhé úlohy: hledané hodnoty para-
metru c jsou dány nerovnostmi | < c < 1.

6. Z коску ABCDA'B'C'D' s hranou dížky d je
vyřezaný pravidelný štvorboký hranol XZYTX'Z'Y' T'
(pozři obr.16a). Tým vznikne duté teleso K, ktorého
povrch sa skládá z desiatich rovinných obrazcov.
Označme postupné P, Q středy úsečiek AA'3 CG.

Vypočítajte dlžku lomenej čiary PXYQ a nájdite
kratšiu lomenú čiaru spájajúcu body P,Q a idúcu po
povrchu telesa K.

Riešenie (pozři obr. 16a). Zvolme hranu коску za

D‘
iК B‘

Y•

Pó^

A В

Obr. 16a
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jednotkovú úsečku. Potom je XX' = YY' — x =

Ďalej je PX = QY = PX’ = ]/?, XY = X'T=
= У(3л:)2 + x2 = л:|/10. Teda

PXYQ = PX'Y'Q = 2 .j ]/5 + x]/lO =
= I (1/5 + У10) • (i)

A1

X1

P

PA T

'"'•-Як у

SK..4 Z

Obr. 16b.

Zostrojme teraz časť siete vyřezaného telesa (pozři
obr. 16b): Body P, Q v sieti spojíme úsečkou, ktorána
povrchu telesa К je vlastně lomenoučiaiouPUVRWQ.
Jej dížku vypočítáme z pravoúhlého trojúholníka
PMQ. DÍžky jeho odvesien sú: PM = 2x, MQ = 5л:.
Je teda

PQ =|/4л;2 + 25л:2 = x 1/29 - J ]/29 . (2)
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Vzhl’adom na vztahy (1) a (2) porovnajme čísla ]/5 +
+ У10 а У29. Je
(ys + yiO)2 =15 + 10 ]/2 = 29,14 > 29 = (У29)2.
Preto je druhá spojnica kratšia než prvá.

5. ÚLOHY II. KOLA KATEGORIE В

1. V rovině je dána soustava pravoúhlých souřad-
nic. Vyšetřte množinu všech bodů, jejichž souřadnice
x, у v této soustavě splňují rovnici

I* - 1| + 1.У - 2| = I* - 5| + |j> - 6|. (1)
Řešení. Rozlišíme případy

x^lj 1 + v + 5 , x + 5 j

у 2 , 2 ^ + 6 , У = 6 j

které kombinujeme všemi devíti možnými způsoby;
dostáváme 9 případů:

Případ [1]. Je-li x ^ \,y ^ 2, pak platí
I* — 1| = 1 — *» + - 5| = 5 - x5

Ly — 2| = 2 — y, \y 6| = 6 у .

Případ [2]. Je-li x + 1, 2 у ^ 6, pak platí
|x — 1| = 1 — X, |x — 5| = 5 — X,

IjV — 2| =y — 2 3 \y — 6\ = 6—y.
Případ [3]. Je-li x ^ 1 , у ^ 6 , pak platí

|x_ 1| = 1_*, |л: — 5i = 5 — д:,

\y-2\=y-2, \y 6| — у 6.
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Případ [4]. Je-li 1 ^ x ^5 3 у ^2 3 pak platí
\x — 1\ = X — l, \x — 5\ = 5 — X,

\y — 2\ = 2—y, \y — 6\ = 6-y.
Případ [5]. Je-li 1 ^ я ^ 5 , 2 ^y ^ 6, pak platí

\x - l\ = x - 1, \x — 5\=5 — x3

\y-2\=y — 2, \y 6j = 6 у.

Případ [6]. Je-li 1 ^ x ^ 5, у ^ 6, pak platí
\x — 1| = X — 1, \x — 5\ = 5 — X,

\y - 6| =y — 6.
Případ [7]. Je-li x ^ 5, ^ 23 pak platí

I* — 1| = x — 1, I* — 5| = x — 5,
b~ 2|=2-^, b 61 = 6 у .

Případ [8]. Je-li л; ^ 5,2 < у ^2 6, pak platí
\x — 1| = X — 1, \x — 5| = X — 5,
b — 2\=y — 2, |jy 61 = 6 jy .

Případ [9]. Je-li x ^ 5, jy ^ 6, pak platí
I* — 1| = x — 1, \x — 5| = x — 5,
l:v — 2|=jy — 2, b - 6| =y — 6.

Dosaďme po řadě výsledky z jednotlivých případů do
dané rovnice (1); obdržíme tyto rovnice pro hledané
geometrické místo bodů (viz obr. 17):
(1) 0.x + 0.<y + 8 = 0 (prázdná množina)
(2) у = 6
(3) О.я + О.^-1-0 = 0 (pravýúhel <£ XAY)
(4) x = 5
(5) x+y = 7

\У — 2\‘— у — 2,

(polopřímka AX)

(polopřímka BY')
(úsečka AB)
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(6) * = 1
(7) О . х + О . у = О
(8) у = 2

(polopřímka А У)
(pravý úhel Х'ВТ)
(polopřímka ВХ')

(9) 0.лг + 0.^у + 8 = 0 (prázdná množina)
Přitom je Л = [1;6], В = [5;2], X = [-6;6],
X' = [10;2], У=[1;9], Г = [5;—2].

Hledaná množina bodů tedy vyplní dva pravé
úhly <£ XAY, Х'ВТ a úsečku AB. Tím je řešení
úlohy provedeno.

4

-2

-d -4 -2 0 f 2

-2- \x-1

Obr. 17

2. Jsou dány tři lineární rovnice s neznámými x,y

px + (p — 1)з? = 7 ,

(P - 5) x + py = 4 ,

(4p + 5) x - py = 2p - 4 .

Zjistěte, zda lze zvolit číslo p tak, aby všecky tři
rovnice měly společné řešení.

(1)
(2)
(3)
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Řešení. Jestliže je p Ф O, plyne ze (2)
4 — (p — 5) л:

V =

P

a po dosazení do (1) máme
(4)(6p — 5)x — Ър + 4 .

Dále z (1) plyne

ж==7-(р- 1)3>
P

a po dosazení do (2) obdržíme
(6p - 5)3; = 35-3p .

Je-li 6p — 5 = 0 neboli p — f, pak rovnice (4),
(5) jsou podle x, 3; neřešitelné, neboť pak je Ър + 4 Ф
Ф 0, 35 — Ър Ф 0; soustava (1) až (3) je pro p — f
zřejmě neřešitelná.

Je-li však 6p — 5 ^ 0, neboli p Ф f, p Ф 0, pak
ze (4) a (5) dosaďme za x,jy do(3); po úpravě dostá-
váme

(ip + 5) (3? + 4) - p{35 - 3í) = (2p - 4) (6? - 5),
neboli

(5)

p{p + 10) = 0 .

Protože jep Ф 0, plyne odtud, že musí býtp + 10 = 0,
neboli

p = -10.
Daná soustava (1) až (3) pak zní

— lOx — lly = 7 ,
— 15x — 10j; = 4 ,

—35x + 10jy = —24
a má vzhledem ke (4), (5) zřejmě řešení x = f, у = — 1.
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Jestliže je p O, má soustava (1) až (3) tvar
—y = 7, —5x = 4, 5x = —4;

její řešení pak je x = у = —7.
Závěr. Daná soustava tří rovnic má řešení jen ve

dvou případech, a to je-li p = 0 anebo p — —10;
v obou případech má jediné řešení. Pro všechna
ostatní reálná p nemá soustava řešení.

3. Je dán pravoúhlý rovnoramenný trojúhelník ABC
s přeponou AB délky 1 a kladné číslo d. Světelný
paprsek vyslaný z bodu X ležícího mezi A, В se
zrcadlově odrazí na odvěsně BC v bodě Y a dopadne
do středu M odvěsny AC. Určete bod X tak, aby
dráha XY + YM paprsku měla délku d. Proveďte
diskusi vzhledem к číslu d.

Obr. 18

Řešení (obr. 18). Rozbor. Jestliže bod X ležící
mezi A3 В je řešením úlohy a odraz paprsku se děje
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v bodě Y mezi body В, C, potom platí
d — XY + YM, «£ XYB = <£ MYC.

Označme A' obraz bodu A v souměrnosti o ose BC,
takže A'BC je v této souměrnosti obrazem trojúhel-
nika ABC a bod X' uvnitř úsečky A'B je obrazem
bodu X. Tu ze souměrnosti plyne

d = X'Y + YM, <£ X'YB = <£ XYB ,

tj. <£ X'YB — MYC; oba tyto úhly jsou vrcho-
lové, takže body M, Y, X' leží v téže přímce a d =
= X'Y + YM = X'M. Je tedy

MX' = d.

Odtud konstrukce (obr. 18): V souměrnosti o ose BC
sestrojíme obraz A' bodu A a opíšeme kružnici
k e= (M, í/). Je-li X' společný bod kružnice k a vnitřku
úsečky A'B, potom určíme průsečík Y přímek MX'
a BC; dále označíme X obraz bodu X' v souměrnosti
o ose BC. Pak XY je hledaný paprsek, který se odráží
v bodě Y od BC a míří do bodu M. Důkaz je patrný
z rozboru.

Diskuse. Z požadavku, že bod X má ležet mezi
body A, B, vyplývá, že bod X' nutně musí padnout
mezi body А', В (všimněme si též, že body přímky A'B
s výjimkou vnitřku úsečky A'B nevedou к fyzikálnímu
řešení úlohy).

Podle textu je AB =1, <£Л = <)с2? = 45°. Proto
po řadě platí

1.
CB = CA = CA' =

w
1

CM = AM = \ AC = l AA' =
2|/2 5
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МЛ' = |СЛ= i 1/2= i 1/18 .

Podle Pythagorovy věty pro trojúhelník BMC
(<£ C = 90°) je
MB = \CB2 + СЛ12 = 1/F+l = Щ= i уTo, (2)
takže je MB < MA' [viz (2) a (1)].
Je-li X0 pata kolmice vedené bodem M к přímce BA',
je MX01| BA, neboť je <£ ABA' = 90°; je tedy

BXo AM
BA' ~ AA'

(i)

= h

tj.
BX0 = b

Dále je
MX0 = |AB = f .

Na základě toho provedeme diskusi řešitelnosti
úlohy. Jestliže je:

(3)

d = MX0 — |,
má úloha jediné řešení [viz (3)];

MXo < d< MB

[1]

[2]
neboli

- l<d< i]/l0,
má úloha dvě řešení [viz (3) a (2)];

MA'MB <d[3]
neboli

il/lOgJS f 1/2,
má úloha jediné řešení [viz (2) a (1)]; přitom pro
d — l]j2 X ^ A a jedná se o kolmý odraz paprsku
XC od přímky BC.
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Neplatí-li pro číslo d žádný ze vztahů [1] až [3],
nemá úloha řešení.

4. Daný je kváder ABCDA'B'C'Dktorého pod-
stavou je štvorec so stranou dížky 1 a jeho výška je v.
Bod X prebieha hranu CC'. Vyšetříte geometrické
miesto bodoVj ktoré sú patami kolmic spuštěných
z bodu В na priamky AX. Možno zvoliť výšku v tak,
aby toto geometrické miesto obsahovalo aspoň jeden
bod, ktorého vzdialenosť od podstavy kvádra je £?

Riešenie. Všetky trojuholníky ABX sú pravoúhlé
s přeponou AX (obr. 19). Přepony všetkých týchto
trojuholníkov ležia v rovině ACC. Označme Y patu
kolmice spustenej z bodu В na priamku AX. Pretože
je uhol <£ A YB pravý, ležia podlá Thaletovej vety všetky
body Y na gulovej ploché К zostrojenej nad prieme-
rom AB. Okrem toho ležia všetky body Y v rovině
ACC'. Musia teda ležať na prieseku roviny ACC'
s gulovou plochou K. Týmto priesekom je kružnica k
s priemerom AS, kde bod S je stredom podstavy
ABCD a je jedným z bodov Y (dostaneme ho pre
X = C). Střed M kružnice k je přitom pata kolmice
spustenej zo středu plochy К na rovinu ACC'. Preto
bod M leží na priamke ^4Ca je teda stredom úsečky AS.

Na obr. 20 je znázorněná situácia v rovině ACC'.
Bod Y neprebieha celú kružnicu k, ale len jej oblúk
ohraničený bodom S a priesečníkom H kružnice k
s polpnamkou AC. Poloha bodu H na k teda závisí
od velkosti úsečky CC'( v obr. 20 je vzhíadom na
ďalšie zvolené HM J_ AC). Přitom ku každému bodu Y
oblúku HS dokážeme nájsť na úsečke CC' příslušný
bod X, pri ktorom je Y pátou kolmice vedenej bo-
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dom В к priamke АХ. Oblúk HS je teda hladaným
geometrickým miestom bodov.

C'D' C

Иi
A B'i

/ t
/ / /

r
/ //i

/i //
i / / /1 У X

Ad
.'V-Ac

M

A

Zvolme teraz bod C' tak, aby H bol tým bodom
kružnice k3 ktorý je najďalej vzdialený od priamky AC

(od roviny ABC). Potom je MH

AC = j/2). Zvolme ďalej výšku v kvádra tak, aby
tělesová uhlopriečka AC' prechádzala bodom H.
Potom z podobnosti Д ACC ~ Д АМН vyplývá
vztah CC = 4 MH = 1/2. Pretože je Щ > 1-^ =
== 0,353 . . . > Д móžeme teda vyhovieť druhej časti
úlohy, napr. vtedy, ak zvolíme za výšku kvádra dížku
uhlopriečky jeho podstavy.

JI-L- (pretože je
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6. ÚLOHY I. KOLA KATEGORIE C

1. Je-li x celé číslo, potom číslo x3 -j- 2x je dělitelné
třemi; dokažte.

Řešení. Máme-li zkoumat dělitelnost čísla třemi,
užijeme té skutečnosti, že každé celé číslo děleno třemi
dává zbytek buď 0, nebo 1, nebo 2. Lze tedy psát číslo x
v jednom z těchto tří tvarů

x = 3y,
x = 3y + 1,
x = 3y + 2 ,

kde у značí celé číslo. V každém z těchto případů nyní
vypočteme x3 + 2x.

V případě (1) je
x3 + 2x = 27y3 + 6у = 3(9у2 -f 2у),

což je číslo dělitelné třemi.
V případě (2) je

x3+ 2x = 27y3 + 27у2 + 9y + 1 -f 6y + 2 = 3a,
kde a je číslo celé; číslo x3 + 2x je tedy opět dělitelné
třemi.

V případě (3) je
x3 -f 2x = 27y3 -f 54y2 + 36y + 8 + 6y -f 4 = 36,

kde b je číslo celé; číslo x3 + 2x je tedy i v tomto pří-
pádě dělitelné třemi.

Tím je věta dokázána.
2. Je dána úsečka MN a uvnitř této úsečky je dán

bod A; dále je dán ostrý úhel co.
Sestrojte obdélník ABCD těchto vlastností:

(1)
(2)
(3)
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(1) Přímky CB, CD po řadě procházejí body M, N;
(2) je AB > AD;
(3) úhel úhlopříček obdélníka je shodný s daným

úhlem co.

Řešení (obr. 21). Je třeba sestrojit tři neznámé
vrcholy obdélníka, a to body В, C, D; zřejmě postačí
sestrojit bod C; oba zbývající vrcholy B, D pak snadno
doplníme jako paty kolmic spuštěných z bodu A na
přímky CM, CN. Z této konstrukce vyplývá, že bod В
leží mezi body С, M a bod D mezi body C, N.

Pro bod C určíme dvě geometrická místa bodů.
Předně protože <£ MCN je pravý, leží bod C na
Thaletově kružnici k sestrojené nad průměrem MN.
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Za druhé vypočteme velikost úhlu <£ ACM. Je-li S
středem hledaného obdélníka ABCD, je <£ ASB >
> <£ASD = <£ BSC, neboť podle předpokladu je
AB > AD. Z rovnoramenného trojúhelníka BCS
zjistíme, že

SCB = 90° - j.
Protože body B, D, S leží po řadě uvnitř úseček
CM, CN, CA, platí

<£ ACM = <£ 5СЯ = 90° - (1)2 '

Geometrickým místem bodů X, pro něž platí

<£ AXM = 90° - ^,Z

jsou dva oblouky o15 o2 sestrojené nad tětivou ЛМ;
oblouky Oj, o2 jsou souměrně sdruženy podle přímky
AM.

Každý z obou oblouků o13 o2 protne kružnici k mimo
bod M ještě v jednom bodě. Skutečně kružnice h,
jíž náleží oblouk ox, se nedotýká v bodě M kružnice k\
jinak by totiž měly kružnice k, h v bodě M společnou
tečnu, která by byla kolmá к přímce AM, a oblouk ox
by byl polokružnice. To však není možné, neboť ob-
vodový úhel <£ AXM je podle (1) ostrý.

Sestrojíme tedy dva průsečíky Cx ^M, C2 ^áM
kružnice k s oblouky o1} o2. Protože přímka AC1 není
kolmá к CXM ani к CXN (A leží mezi M, N a CXM _[_
_[_ CXN), lze sestrojit obdélník AB^CJ)^ Obdobně
se sestrojí obdélník AB2C2D2.

Úloha má tedy vždy dvě řešení.
!
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3. V pravouhlom trojuholníku ABC s přeponou AB
označme D střed přepony a E priesečník osi uhla
<£ ACB s přeponou AB. Zostrojte tento trojuholník,
ak je daná dížka úsečky CE a velkost’ uhla <£ DCE.
Zistite podmienky riešitelhosti.

Řešení. Podaří-li se sestrojit trojúhelník CDE, do-
plníme snadno trojúhelník ABC, neboť podle známé
vlastnosti pravoúhlého trojúhelníka je DA = DB =
= DC (obr. 22).

В

P
E

D

451'Ф
A a

Obr. 22

Z prvků trojúhelníka CDE je dána délka strany CE
a velikost úhlu <£ DCE = co. Vypočteme velikost
vnitřního úhlu CED. Zvolme označení vrcholů A, В
tak, aby bod E ležel mezi body В, D, a označme
P — ^ CBA. Úhel <£ CED určíme jako vnější úhel
trojúhelníka ВСЕ

(1)<£ CED = 45° + p .

Protože trojúhelník BCD je rovnoramenný, je
P = <£ CBD - BCD = 45° + co. (2)
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Spojením (1) a (2) dostaneme
<£ CED = 90° + .

Trojúhelník CDE sestrojíme ze strany CE a z obou
přilehlých úhlů <£ DCE =wa< CED = 90° + co.
Obě ramena těchto úhlů, která neleží v přímce CE,
se protnou podle Euklidova axiómu (v bodě Z)) právě
tehdy, je-li co + 90° + co < 180° neboli

co < 45°.

Když máme doplnit trojúhelník CDE na trojúhelník
ABC, je třeba, aby bylo DA = DB = DC > DE.
Porovnáme tedy délky stran CD, DE trojúhelníka CDE
pomocí protějších úhlů. Nerovnost DE < CD sku-
tečně platí, neboť je

co = <£ DCE < <£ CED = 90° + co.

Vztah (3) je tedy podmínkou řešitelnosti úlohy.

(3)

4. Nájdite všetky prirodzené čísla, ktoré nie je
možné vyjadriť ako súčet dvoch zložených čísel
(prirodzených).

Riešenie. V dalšom budeme rozumieť pod číslom
prirodzené číslo. Párne číslo móžeme napísať ako súčet
dvoch párnych čísel. Nepárne číslo možno zapísať ako
súčet nepárneho a párneho čísla. Najmenšie párne
zložené číslo sú 4, kým najmenšie nepárne zložené
číslo je 9.

Najskór nájdeme všetky prirodzené čísla, ktoré
možno vyjadriť ako súčet dvoch zložených čísel. Ro-
zoznávajme v dalšom dva případy:

Případ [1]. Nech N je párne číslo. Potom možno
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nájsť jediné číslo p tak, že platí N = 2p číže N = 4 +
+ 2(ř - 2).

Ak je p — 2 2> 2 číže p ^ 4, potom číslo iV možno
zrejme rozložit’ na súčet dvoch zložených čísel. To
znamená, že žiadne párne číslo N ^ 8 nevyhovuje po-
žiadavke úlohy, zatial’ čo čísla

4,6
zrejme túto požiadavku spíňajú.

Případ [2]. Nech N je nepárne číslo. Potom existuje
jediné číslo p tak, že platí N — 2p + 1 číže N —
= 9 + 2(p - 4).
Ak je p — 4 ^ 2 číže p ^ 6, potom číslo N možno
zrejme rozložit’ na súčet dvoch zložených čísel. To
znamená, že žiadne nepárne Číslo N ^ 13 nevyhovuje
požiadavke úlohy, zatial’ čo čísla

3, 5, 7, 9, 11

(1)

(2)
požiadavky úlohy spíňajú.

Záver% Čísla (1) a (2) sú všetky prirodzené čísla,
ktoré spíňajú požiadavky danej úlohy.

5. Daná je železná коска s hranou dížky h. Z nej
bolí vyřezané rovnaké otvory tvaru pravidelného
štvorbokého hranola s podstavnou hranou dížky x.
Bočné hrany všetkých otvorov sú rovnoběžné s urči-
tou hranou коску. Tak vzniklo teleso s dutinami,
ktorého povrch je přibližné rovný dvojnásobku po-
vrchu póvodnej коску a jeho váha sa přibližné rovná
| váhy póvodnej коску.

Určité počet otvorov a dížku x.
Riešenie. Označme V = h3, P — 6h2 objem a po-

vrch коску. Objem jednej dutiny je Vx = x2h a po-
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vrch P jednou dutinou vzrastie о Px — 4л;A — 2л:2.
Nech n je prirodzené číslo, ktoré znamená počet dutin.
Ďalej nech je V'3P' objem a povrch telesa, ktoré z danej
коску vzniklo tak, že sme v nej vytvořili n dutin. Podlá
textu úlohy má platiť: '

(1)P’ = 2P,
V'=i V.

Povrch P vzrastie o nPx na P' == 2P, tj. nPx = P
(2)

v • v

cize

n(Axh — 2x2) = 6h2.
Teda

ЗА2
(3)П

. x(2h — л:) ’
O objeme vzniklého telesa platí podlá vztahu (2)

A3 — nxzh == f A3
v • v

cize

A2
(4)n = —9.4л:2

Porovnáním vzťahov (3) a (4) dostaneme
ЗА2 A2

2hx — л;2 4л:2 ’

Postupnými úpravami stadia! dostaneme (je А Ф 0,
л: 0):

13

2A — x 4л:5
12л: = 2A — x ,

13л; = 2А,
х — Тз h • (5)
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Po dosadení do (4) máme pre n približnú rovnost’:
n = W:{4 .£±5**) = ^.

Je teda
10 < n < 11 .

Skúška. Pre n = 11 je:
a) P' = 6/г2 + 4xhn — 2wjc2 = 6/z2 + 2nx(2h — x) =

2.11 .2h
= 6/z2 + 13

6/z288 12/z2
= ”y2 . (169 + 176) =

= 6Л +13- 13

6/z2

(2 + i4)(2 . 169 + 7) = 6/z2. > 2P.
169*

Teda P' > 2P, pričom P' je len o málo váčšie než 2P.
b) Má byť F' = A3 — n . x2. h = | /z3 .

Po dosadení z (5) pri n — 11 je
44 \ 125

= A i1 - Těš) =
= 1.5oo

4 507 П

3 125.4
/z3 =/z3 = 4-.F'

169 4 169.3

Teda V je o málo menšie ako f V.
Záverom třeba konstatovat’, že do коску s hranou h

možno skutočne umiestniť 11 otvorov tvaru kvádra
s rozmermi ^h, -^h, h tak, ako to text úlohy vyža-
duje.

6. Na šachovnici se 64 poli byly sestrojeny všechny
kružnice, jejichž průměr není menší než délka jednoho
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pole a které neprocházejí vnitřkem žádného černého
pole. Určete počet těchto kružnic.

Řešení. Užijeme označení z obr. 23. Čtvercová pole
šachovnice budeme krátce nazývat poli; vrcholy polí

tvoří čtvercovou síť, délku
strany pole označme 2d. Po-
dle textu úlohy platí o prů-
měru x hledaných kružnic
vztah x

dostaneme zřejmě 32 kruž-
nic vepsaných do bílých polí.
V dalším předpokládáme, že
je x > 2d.

Buď АВCD černé pole a
ABCXDX, AB'C'D, A2B2CD,
A "BCD" bílá bezprostředně
s ním sousedící pole. Mějme
kružnici k, která splňuje po-
žadavky úlohy. Tato kruž-

nice nemůže zřejmě ležet v jediném poli, takže
prochází několika poli. Z jednoho pole do druhého
(jde vesměs o bílá pole) může přejít jedině ve vrcholu
pole (v bodu sítě). Nechť tedy k jde vrcholemA3
takže prochází polem ABCXDx; potom musí procházet
ještě buď vrcholem В, anebo vrcholem Cx (vrchol Dx
při této úvaze můžeme vynechat; situace, kdy kružnice
jde body A, D13 se dostane ze situace, kdy kružnice jde
body A, В, a to pomocí osové souměrnosti podle
přímky ACX).

Uvažujme nejprve případ, kdy kružnice k prochází
body A, B. Nyní v poli AB'C'D kružnice k prochází

2d. Pro x = 2d
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buď bodem Д anebo bodem C (bodem B' neprochází,
neboť body В, A, B' leží v téže přímce).

Případ [1]. Nechť kružnice k prochází bodem D,
neboli je opsána černému čtverci ABCD; označme ji
k0=(S0J r0), kde r0=d]/2. Těchto kružnic je tolik jako
černých polí, které nepatří к okrajovým řadám polí
šachovnice; je jich tedy £(8 — 2) (8 — 2) = \ . 36 = 18
(viz v obr. 24 čtverec MXNXP\QX o délce strany 6.2d).

Případ [2]. Nechť kružnice k prochází bodem C,
neboli je opsána trojúhelníku ABC'; označme ji kx =
= (5*!, rj). Přitom Sx je průsečíkem přímek ox, o2i kde
ox je osa úsečky AB a o2 = DB'; bod Sx je tedy stře-
dem bílého čtverce A2B2CD. Z trojúhelníka ASxO
(tj. <£ O = 90°) pro její poloměr rx = SXA dostaneme
pomocí Pythagorovy věty AS x — OA2 + OSf, ne-
boli rx — d У10, kde 3d < rx< Ad.

Střed Sx kružnice kx je středem bílého pole; kruž-
nice kx probíhá těmi bí-
lými poli, jejichž nej- Q(
vzdálenější strany mají
od Sx vzdálenost nej-
výše 5d (např. vzdá-
lenost bodu Sx od přím-
ky CXDX). Počet kruž-
nic typu kx je roven
počtu bílých polí, která
dostaneme, když vyne-
cháme z dané šachov-
nice MNPQ nejprve
všechny okrajové řady ^
šachovnice a ve vzniklé
šachovnici MXN1P1QX

P

az

Pí

I
i

ж у
Obr. 24
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о 6.6 = 36 polích opět vynecháme všechny okrajové
řady; zbude nám čtverec M2N2P2Q2, který má
4.4 = 16 polí, z něhož 8 je bílých. Kružnic typu kx
je tedy 8. Tím je případ [2] vyřízen.

Nyní budeme uvažovat případ, že kružnice k pro-
chází body A, Cx (bodem C neprochází, neboť body
C15 A, C leží v téže přímce); potom ze čtverce
AB'C'D tato kružnice vychází buď ve vrcholu D,
anebo ve vrcholu B'. Platí však

Л DAC1 & Д ABC Ой Д B'AC
takže jde o kružnici typu kí3 která je opsána trojúhel-
niku ABC, a kterou jsme právě vyšetřovali.

Tím jsou všechny možnosti vyčerpány.
Závěr. Jsou tři typy kružnic vyhovujících úloze.

První typ jsou kružnice opsané těm černým polím,
které nejsou v okrajových řadách šachovnice (pole
čtverce MyNiP^Q^)', těchto kružnic je 18. Druhý typ
jsou kružnice opsané ze středů osmi bílých polí čtver-
ce M2N2P2Q2 na obr. 24 poloměrem d]/10, kde 2d je
délka strany pole; těchto kružnic je 8. Třetím typem
jsou kružnice vepsané bílým polím, kterých je 32. Hle-
daný počet kružnic je tedy 18 + 8 + 32 = 58.

1 3

7. ÚLOHY II. KOLA KATEGORIE C

1. Přirozené číslo x je dělitelné šestnácti, jeho ci-
ferný součet v desítkové soustavě je 7, součin jeho
číslic je 6. Určete všecka taková čísla x.

Řešení. Vzhledem к tomu, že ci ferný součet hle-
daného čísla x je 7, kdežto součin cifer je 6, jsou
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jedině možné tyto dva rozklady čísla 6 v součin:
6 = 6.1,
6 = 3.2. 1.1.

První rozklad vede к dvojcifernému, druhý ke čtyřci-
fernému číslu. Přitom musí být hledaná čísla děli-
telná šestnácti a tedy i čtyřmi; vyhledáme proto nej-
prve čísla dělitelná čtyřmi; ta mají nutně poslední
dvojčíslí dělitelné čtyřmi.

Případ [1]. Rozklad (1) vede jedině к číslu 16, které
splňuje požadavky úlohy.

Případ [2]. Poslední dvojčíslí hledaného čísla musí
mít na konci cifru 2, a může tedy to být buď 12, anebo

(1)
(2)

32.
a) Před dvojčíslí 12 musíme vzhledem к rozkladu

(2) napsat cifry 1 a 3, což lze učinit dvěma způsoby,
a to:

1312,3112.
Z obou čísel je jedině číslo 1312 dělitelné šestnácti.
b) Před dvojčíslí 32 musíme vzhledem к rozkladu

(2) napsat dvě cifry 1, což vede к jedinému číslu 1132,
které zřejmě není dělitelné šestnácti (dokonce ani
osmi).

Závěr. Úloze vyhovují právě dvě přirozená čísla, a
to 16 a 1312.

2. Daná je priamka AB. Kružnice kl3 k2 sa dotýkajú
priamky AB po radě v bodoch А, В a majú navzájorn
vonkajší dotyk v bode X. Vyšetrite, aký útvar vypliiia
všetky body dotyku X pre všetky možné také dvojice
kružnic hi, k2.
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Riešenie (obr. 25). Zostrojme spoločnú dotýčnicu t
kružnic k13 k2 v bode X. Priamka t nie je rovnoběžná
s priamkou AB, lebo je t SXS2 (SX,S2 sú středy
kružnic kx, k2) a SXS2 nie je kolmicou к АВ (je totiž

SXA J_ AB, S2B _L AB, SXA S2B). Priamka t
přetne teda priamku AB v nejakom bode M. Dotýč-
nice vedené z bodu M ku kružnici kx sú priamky
AM = AB a t. Body dotyku sú A a X, preto je

AM — MX.
Z podobného dovodu je

BM = MX.
Z toho vyplývá AM = BM = \AB. Bod M je

preto stredom úsečky AB, takže bod X leží na kruž-
nici m zostrojenej nad priemerom AB v danej polro-
vine s hranicou AB.

. Obrátene, každým bodom X (róznym od bodov
A, B). kružnice.m prechádza jediná kružnica kx, ktorá
sa dotýká priamky AB v bode A a jediná kružnica k2,
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ktorá sa dotýká priamky АВ v bode B. Pretože je
MA — MX, je X bodom dotyku dotýčnice vedenej
z bodu M ku kružnici kx a z podobného dóvodu je
X tiež bodom dotyku dotýčnice vedenej z bodu M
ku kružnici k2. Priamka MX sa teda dotýká oboch
kružnic kx, k2 v bode X. Dotyk oboch kružnic je von-
kajší, pretože kružnica k2 obsahuje bod В ležiaci mimo
kružnice kx (na jej dotýčnici) a kružnica kx obsahuje
bod A ležiaci mimo k2 (na jej dotýčnici).

Zdver. Hladané geometrické miesto bodov je kruž-
nica m bez bodov A, B. Úsečka AB je jej priemerom.

3. Řešte podle neznámých x, у, z soustavu rovnic
s reálným parametrem p:

x — py + p2z = 1 j

—p*x + у — pz = 1 ,

p2x — p3y + z — 1 .

Proveďte diskusi vzhledem к parametru p.
Řešení. Obě strany rovnice (2) znásobme číslem p

a přičtěme ji к rovnici (1); dostaneme
x (1 — p4) = 1 + p .

Nyní znásobíme obě strany rovnice (3) číslem p a
přičtěme ji к rovnici (2); obdržíme

У (1 ~ P4) — 1 + P -

Konečně znásobme rovnici (1) číslem —p2 a přičtěme
ji к rovnici (3); dostaneme

z (1 — />4) = 1 — p2.
Protože platí 1 — px = (1 — p) (1 + p) (1 -f ^2), je
1 _ pt = 0 jedině pro p — 1 a p — —1. Je-li p Ф ±1,
potom ze (4) až (6) dostáváme jediné řešení, a-to

(1)
(2)
(3)

(4)

(5)

(6)
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1 1
(7)x = y JI-p)(l+p*yz i+^-Tato čísla x, y, z skutečně jsou řešením rovnic (1)

až (3), jak se zjistí dosazením.
Pro p = 1 soustava (1) až (3) zní

x — у + * = 1 ,

—x+y — z = 1 ,

x — у Z — 1
a nemá řešení; sečtením prvních dvou rovnic dosta-
neme spor 0 = 2.

Prop = — 1 soustava (1) až (3) zní
X у + z = l ,

X + У + Z = 1 ,

x + у + z = l ,

takže každé řešení rovnice л; + У + z — 1 je řešením
soustavy. Můžeme např. volit čísla y, z; pak je л; =
= 1 — у — z. Soustava má nekonečně mnoho (růz-
ných) řešení.

Závěr. Daná soustava má pro každé reálné Číslo p
různé od 1 nebo —1 řešení dané vztahy (7). Pro
p = 1 nemá žádné řešení a pro p = — 1 má neko-
nečně mnoho řešení [x = 1 — у — z3 у, я], při čemž
уу z jsou libovolná čísla.

4. Je daný ústrižok plechu v tvare rovnoramenného
trojuholníka s podstavou dížky 22 cm a ramenom dížky
35 cm. Zistite, či možno z tohto plechu vystrihnúť sieť
коску s hranou dížky 6 cm tak, aby táto sieť mala
tvar písmena T.

Výsledok odůvodníte výpočtom.
Riešenie. (DÍžky úsečiek sú v cm.) Sieť danej коску

volme v tvare nevypuklého osemuholníka ABCDEFGH
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ako na obr. 26 (přitom P je střed úsečky EF), takže
má tvar „obrátenéhocc T. Os úsečky AB je tiež
osou úsečky A'B' „dolného strednéhocc štvorca.
Opišme sieti rovnoramenný
trojuholník MKL, kde M =
= CE. HF, К = AB . HF,
L = AB . CE. Jeho osou sú-
mernosti je priamka MN,
ktorá je tiež osou siete коску.

Strany štvorcov siete majú
dlzku d = 6. Teraz sa bude-
me zaoberať pravoúhlými
trojuholníkmi CLB, ECD,
EMP (kde po radě <£ В —
= <£D = <£P = 90°a <£L=
= <£ C = <jc J5). z podob-
nosti týchto troch trojuhol-
níkov, ktoré sa okrem pravých
uhlov zhodujú tiež v ostrých
uhloch <£Z,, <£C, vyplý-

ti

E

i 6

i 6

16 D \CH! G

fWA
к A A! ; В' В L

Obr. 26

DE 18
va (pretože podlá daných údajov je = 3)

PM PM
PE ~~ 3

BC
3 = ~

BL BL

Je teda
(1)MP = 9,

MAT = MP + PW = MP + 24 = 33.
BL = 2,

O přeponách uvažovaných pravoúhlých trojuholníkov
dostáváme po radě z Pythagorovej vety [pozři (1)]:
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CL = ]/BC2 + BL2 = ]/62 + 22 = ]/40 = 2]/TÓ,
£C = ýž)£MI^C2 = |/182 + 62 = 6]/9TT =

= 6l/Io,
ME = УМР2 + РЕ2 У9Т+З2 = ЗУ9+1 =

= зую.
Sčítáním týchto troch úsečiek dostaneme

jWL = liyiO,
kde У10 < 3,17, a teda

ML < 35.
Přitom podia (1) je
KL — KA + AB + BL =

= 2 . BL + ЛР =
= 2.2 + 18 = 22.

(2)

Teda

(3)KL = 22 .

Pomocný rovnoramenný
trojuholník MKL so základ-
ňou KL = 22 a s ramenom

ML < 35, do ktorého sa celá
sieť коску vojde, má s da-
ným trojuholníkom KLO

(tvaru ústřižku) zhodnú základňu, ale rameno
ML je menšie ako rameno daného trojuholníka
KLO. Celý trojuholník MLK sa teda vojde do troj-
uholníka KLO ako na obr. 27. Preto sa tam vojde aj
námi póvodne narýsovaná sieť коску, t.j. sieť коску sa
dá skutočne vystrihnúť z daného ústřižku plechu. Tým
je riešenie úlohy převedené.
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8. ÚLOHY I. KOLA KATEGORIE D

1. Dielňa v 1. týždni splnila plán, t.j. vyrobila и ku-
sov výrobkov. V 2. týždni poklesla výroba oproti 1.
týždňu o p %.

O kol’ko percent musela dielňa zvýšit’ svoj výkon
z druhého týždňa v treťom týždni, aby na konci
týždňa bol splněný trojtýždenný plán?

Na závěr převeďte výpočet pre p — 10.
Riešenie. V prvom týždni vyrobila dielňa n vý-

robkov. V druhom týždni vyrobila dielňa
np «(100 — p)

v — n — (1)100 100

výrobkov. V treťom týždni musí zvýšit’ výrobu z dru-
hého týždňa o x percent, takže musí vyrobit’

vx

(2)” + íoo

výrobkov. Toto číslo sa rovná súčtu jednak tých n
výrobkov, ktoré bolí povodně plánované na třetí týž-

np
deň, jednak tých výrobkov, ktoré neboli vyro-

bené v druhom týždni, t.j. číslu
np (3)n + Too

výrobkov.
Porovnáním (2) a (3) dostáváme lineárnu rovnicu

pre neznámu x:

, vx , np
v h — = n +^ 100 ^ 100 *
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100
Po vynásobení tejto rovnice číslom a po úpravě
dostaneme:

x = ^(100 + p)
v

Po dosadení za v z (1) do (4) postupné dostaneme:

(4)- 100.

100
x — w(100 + p) - 100,*

/2(100 - p)
- 100 =

100(100 + p)
x ~

100 - p
100 + p - (100 - p) 200p

= 100 .

100 -p 100 - p
Dielna musí teda svoj výkon z druhého týždňa zvýšit’ o

200p
W~~p percent-

Příklad. V případe, keď je p = 10 (to znamená, že
v druhom týždni podala dielna 90-percentný výkon),
dostáváme

x =

2“
= 222

9 9

2000
90 -

Ak chce teda dielňa dohnat’ svoje oneskorenie z dru-
hého týždňa, musí svoj výkon z tohto týždňa v treťom
týždni zvýšit’ asi o 22,3 %.

2. Daný je rovnoběžník ABCD, v ktorom AB > BC
a uhol <£ DAB je ostrý. Na priamke AB zostrojte ten
bod X, z ktorého vidno úsečky AD, CD pod zhodnými
uhlami.

Vyšetříte polohu bodu X vzhladom na úsečku AB.

< 22,3 .
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Řešení (obr. 28). Podle podmínky úlohy je
<£ AXD = DXC. Podle věty o střídavých úhlech
je <£ ЛХО = XDC. Trojúhelník Z)XC je tedy
rovnoramenný se základnou DX. Odtud vyplývá kon-
strukce bodu X: je to společný bod přímky AB a kruž-
nice k = (C; CD).

Kružnice k má s přímkou AB společný aspoň jeden
bod náležející polopřímce BA právě tehdy, je-li
CD ^ CB neboli AB ^ BC‘, tato podmínka je však
splněna podle znění textu úlohy. Tento bod náleží
úsečce AB, neboť podle předpokladu je <£ DAB
ostrý, tj. úhel <£ ADC je tupý a z trojúhelníka ACD
pak vyplývá AC > CD. Přitom kružnice k protne
úsečku AB v jediném bodě X, neboť <£ ABC je tupý;
proto bod X' souměrně sdružený s X podle kolmice
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p _[_ AB vedené bodem C padne na prodloužení
úsečky AB za bod B, přičemž X' leží též na k. Oba
body X, X' tedy zřejmě vyhovují požadavkům úlohy,
která má dvě řešení.

3. Určete všechny dvojice přirozených čísel x, у,
které vyhovují rovnici

5x + 7y2 = 1600 . (1)

Řešení. Jestliže dvojice přirozených čísel я, у
splňuje rovnici (1), potom platí

x = 320 — у2 2jy2 (2)5 '

Číslo 2y2 musí být dělitelné pěti; to znamená, že
i číslo y2 musí být dělitelné pěti (tj. musí končit nulou
nebo pětkou). To znamená dále, že i číslo у musí být
dělitelné pěti (snadno se přesvědčíme, že druhé moc-
niny těch přirozených čísel, která nekončí nulou nebo
pětkou, nikdy nekončí nulou nebo pětkou). Číslo у je
tedy násobkem pěti, tj. má tvar

У = 5z, (3)
kde z je přirozené číslo. Po dosazení do (2) dostaneme

x = 320 - 35*2
neboli

(4)x — 5 (64 — 7z2) .

Číslo 64 — 7z2 je celé a kladné (jinak by nebylo
číslo x přirozené); sestavme tabulku tak, že budeme
volit číslo z — 1, 2, 3 (pro z ^ 4 je 64 — lz23 a tedy
i číslo я záporné). Určíme ze (3) a (4) čísla x, y:
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1 32z

64 - 7z'2 57 36 1

285 5180x

5 1510У

Proveďme nyní zkoušku; skutečně platí:
a) 5.285 + 7.52 = 1425 + 175 = 1600;
b) 5 . 180 + 7 . 102 - 900 + 700 = 1600;
c) 5.5 + 7 . 152 = 25 + 1575 - 1600 .

Jsou právě tři dvojice přirozených čísel, které splňují
rovnici (1); jsou to dvojice: л: = 285, у — 5; x — 180,
У = 10; x = 5, у = 15.

Jiné řešení. Rovnici (1) postupně upravujeme takto
1600 - 7y2

x —
5

7(228 -y-) -- 4 (5)x =
5

Nyní 228 — y2 musí být přirozené číslo, tj. nejvýše
může být y2 — 225 = 152. Vyzkoušejme čísla od
у — 1 dojy = 15 dosazením do (5); snadno zjistíme,
že jedině čísla у = 5, у — 10, у — 15 vedou к vyho-
vujícím dvojicím [jc = 285,у — 5], [x = 180,у = 10],
[x = 5, у = 15].
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4. Úsečka AB aížky d je rozdělená na n zhodných
úsečiek;z koncových bodov týchto úsečiek sú opísané
kružnice polomerom —. Vypočítajte čížku čiary, ktorá
sa skládá z hrubo vytiahnutých pblúkov kružnic, a do-
kážte, že pre každé číslo n je dížka tejto čiary váčšia
ako d (pozři obr. 29).

Řešení (obr. 29). Zaveďme označení podle obrázku;
přitom je AP = kde n je libovolné přirozené číslo.
Označme x délku silně narýsované čáry. ^

Poloměry shodných kružnic mají velikost r = —.

Oblouky, s výjimkou prvního a posledního oblouku
čáry, příslušejí ke středovým úhlům velikosti 60°;
např. je <£ NPQ = 60°, neboť trojúhelníky APN,
PRQ a tím i NPQ jsou rovnostranné. Délka у každého
z těchto oblouků, jichž je celkem n — 1, je

d izd
3n '

11
V = — . 2 7ГГ — — . 71 . —^ 6 3 n

První a poslední oblouk naší čáry příslušejí ke stře-
dovým úhlům 120° (je <$; MAN — 120°), tj. každý
má délku 2y.
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Je tedy
x — (n — 1) у + 2.2y — (n + 3) у

Чи + З)neboli
(1)3n

Ještě dokážeme, že je x > d pro každé přirozené
číslo n.

Vzorec (1) napíšeme ve tvaru

H1+*)•“*•
Víme, že je ~ > 1,1 + -^> 1, proto je -^1 + -^j>l,

7Z П + 3 J
— • •

. d =
3 n

x =

x > d.

5. Je dán čtverec ABCD o délce strany a a čtverec
MNPQ o délce strany b, přičemž je a > b-, vrcholy
M, N, P, Q leží na úhlopříčkách ЛС, BD (viz obr. 30).

Sestrojte čtverec XYZT tak, aby jeho vrcholy le-
žely na obvodu čtverce ABCD a aby body M, N,
P, 2 ležely na obvodu čtverce XYZT.

Stanovte počet řešení úlohy vzhledem к daným
číslům a, b.

Řešení. Rozbor (viz obr. 30). Označme společný
střed čtverců ABCD, MNPQ a p\\BC, q\\ AB
rovnoběžky vedené bodem S ke stranám obou
čtverců.

Předpokládejme, že jsme sestrojili hledaný čtverec
XYZT. Potom je trojúhelník MNX pravoúhlý s pře-
ponou MN o středu O; Thaletova kružnice k =
= (O, \b) nutně obsahuje vrchol X pravého úhlu
<£ MXN.

Odtud plyne konstrukce: Sestrojme kružnici k ^
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a

= (О, г — \b) nad úsečkou MN jako průměrem a
označme X jeden z jejích společných bodů s přím-
kou AB.

Opišme kružnici m = (S; SX); na ní leží další
vrcholy Y, Z, T hledaného čtverce XYZT, přičemž je
např. BY = AX atd.
Důkaz. Otočme celý útvar okolo bodu 5 o pravý úhel

tak, že bod A přejde v B, bod AřviVabod5v Catd.
(víme, že je to možné, neboť SA = SB, SM — SN).
Přitom úsečka AB přejde v úsečku BC a bod X

_ v bod Y; je tedy SX — SY. Pravoúhlý rovnoramenný
trojúhelník XYS snadno doplníme na čtverec XYZT
pomocí souměrnosti o středu S, podle něhož oba dané
čtverce jsou souměrné.

•Ještě musíme dokázat, že bod N leží na přímce XY.
Označme a, /3 ostré úhly <£ M, N v pravoúhlém
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trojúhelníku MNX; víme, že je
a + p = 90°. (i)

Víme dále, že je
Л MNX ^ A NPY,

neboť při otáčení, které jsme při konstrukci bodu Y
prováděli, přešel první trojúhelník ve druhý. Je tedy

YNP = a. A nyní vzhledem к (1) platí
<£ XNM + MNP + < УЛТ = /5 + 90° + a =

= 180°;

proto polopřímky NX, NY tvoří přímý úhel, tj. body
X, N, Y leží v přímce. Tím je důkaz proveden.

Diskuse. Počet řešení závisí na vzájemné poloze
přímky AB a kružnice k. Vzdálenost v jejího středu O
od AB je v — \{a — b), její poloměr je r — \b. Podle
známé věty o vzájemné poloze přímky a kružnice
dospějeme к tomuto výsledku:

Je-li v < r neboli a — b < b, tj.
b < a < 2b ,

jsou dvě různá řešení XYZT, X'Y'Z'T', souměrně
sdružená podle středních příček čtverců ABCD,
MNPQ.

Je-li v — r neboli
a — 2b,

je jediné řešení XYZT, kde X je střed úsečky AB.
Je-li v > r neboli

a > 2b,
nemá úloha řešení.
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6. Je daný kruh К so stredom S a polomerom r.
Bodom S vedieme dva kolmé priemery AC, BD
tohto kruhu. Nad úsečkami SA, SB, SC, SD ako

priemermi zostrojímekru-
hy K13 K2, K3, K, (pozři
obr. 31). Vypočítajte ob-
sah P štvorlístka, ktorého
každý lístok je spoločnou
častou niektorých dvoch

C kruhov.
Ďalej vypočítajte obsah

Q vyšrafovanej črsti ro-
viny, ktorá vznikne odde-
lením kruhov K1} K23 I<3,
К4 od kruhu K.

Riešenie. Označme (po-
zri obr. 31) po radě S13

S2, 53, S4 středy kruhov Kl3 K2, K3, ktorých polo-
mery sú £r. Kružnice kx
majú okrem bodu 5 spoločný bod M, pričom je
\r = SXS = S2S = SXM = S2M, <£ SXSS2 = 90°.
SSXMS2 je tedy štvorec a platí

(Si, h = (S23 \r)

<£ SSXM = <£ SS2M = 90°.
Označme V obsah spoločnej časti kruhov K13 K2. Úseč
kruhu Kx prislúchajúca pravému středovému uhlu
SS1M má obsah \V. Obsah x tejto úseče však vieme
vypočítat’. Číslo x je rozdiel štvrtiny obsahu kruhu Kx
a obsahu trojuholníka SMSX, v ktorom je SXM =
— SXS — \r3 <): = 90°. Platí teda

1 1
x — —

164 2
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Pre obsah V dostáváme teda

V = r2,8

a preto, že P = 4V, je

P = - 2~-^ r2 = 0,571 r2,
čo sme mali vypočítat’.

Obsah <2 dostaneme z obsahu nr2 kruhu .řč, keď
od něho odčítáme obsah £тгr2 každého z kruhov Kí3
K2, iCg, -řč4 číže číslo nr2 a připočítáme obsah P. Je
teda

p = 2-
Závěr. Vyšrafovaná časť obrazca má ten istý obsah

ako štvorlístok.

9. ÚLOHY II. KOLA KATEGORIE D

1. Narýsujte obdížnik ABCD s rozmermi AB =
= 12 cm a BC — 6 cm. V tomto obdížniku narýsujte
štvrťkružnice k13 k2 so stredmi А, В as polomermi
6 cm.

Vypočítajte poloměr kružnice k3 ktorá sa dotýká
priamky CD i oboch štvrťkružníc k13 k2 a potom kruž-
nicu k zostrojte.

Riešenie (obr. 32). Označme jc poloměr hladanej
kružnice k. Dotyk kružnice k s kx i s k2 je nutné von-
kajší, pričom kružnica k musí ležať v polrovine CDA,
kde ležia aj obe kružnice, ktorých časťami sú štvrť-
kružnice kí3 k2 (kružnica leží vždy celá na jednej
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straně svojej dotýčnice). Střed G kružnice k leží nutné
na strednej priečke EF obdížnika ABCD. To preto, že
je GA — 6 + л: = GB, takže bod G padne nutné na
os úsečky AB.

Z pravoúhlého trojuholníka AGE s přeponou AG —
— 6 + x dostaneme

čiže

a po dosadení

AG2 - AE2 = GE\
AG2 - {EF - FG)2 - AE2

(6 + я)2 — (6 — л;)2 = 62.
Po úpravách dostaneme

x — f.
Zostrojíme teda os EF úsečky AB (pozři obr. 32) a

na polpriamku FE nanesieme úsečku FG = f (je to
\AD), opíšeme kružnicu k == (G, |) a na úsečkách
AG3 BG a štvrťkružniciach k13 k2 zostrojíme dotykové
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body H, К. Správnost’ konštrukcie vyplývá z toho, že
AE2 + EG2 = 62 + (6 - f)2 = 62 + (|)2 =

144 + 81 225
_ /15\2

4 -\2)4

a dhlej je AG = 6 + f = ^ ako má byť podlá
Pythagorovej vety použitej na trojuholník ЛСгЯ. Tým
je úloha vyriešená.

2. Dílna plnila plán na 100%. Když několik děl-
níků onemocnělo chřipkou, zvýšili ostatní dělníci pra-
covní výkon o 20 %; avšak i potom plnila dílna denní
plán jen na 90 %. Po onemocnění dalších čtyř dělníků
se podařilo zbývajícím dělníkům dosáhnout původního
výkonu dílny, když svůj pracovní výkon zvýšili o 25 %
jednou již zlepšeného výkonu.

Vypočtěte,- kolik bylo původně v dílně dělníků a
kolik jich celkem onemocnělo.

Řešení. Označme л: původní počet dělníků v dílně
а у počet dělníků, kteří prvně onemocněli; mysleme si,
že jeden dělník původně v dílně vyrobil např. v kusů
výrobků. Pak platí v prvním období chřipky:

v(x — y). 1,2 = 0,9 xv ,

neboť za 1 den každý z dělníků plnil denní plán na
120% a vyrobil v.
celkem jen 90% denního výkonu původních x děl-
níků, tj. vx. 0,9.

V druhém období zbylo x — у — 4 dělníků; každý
z nich vyráběl 125% denního výkonu z prvního ob-
dobí chřipky, tj. v. 1,2 . 1,25, tedy x — у — 4 dělníků

(1)

-1-2+100 výrobků; vyráběli však
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vyrobilo
®(x — у — 4). 1,2 . 1,25 ,

což je původní denní výkon celé dílny, tj. vx. Platí
tedy

®(x — у — 4) . 1,2 . 1,25 = vx .

Obě strany rovnic (1), (2) znásobme číslem
dostaneme po snadné úpravě soustavu

0,3x = l,2y,
0,5x — 1,5у — 6 .

Soustavu upravíme na tvar
x — 4y,

x — 3y = 12 .

Odtud snadno dostaneme

(2)
1

У =12, x = 48;
všech dělníků bylo 48, nejdříve jich onemocnělo 12,
později se počet nemocných zvýšil na 16.

Zkouška. 48 dělníků denně vyrábělo 48® výrobků.
Denní výroba po prvním onemocnění byla

120
v . 36 .

- 36 . 1,2® = 43,2®;100

přitom 90 %ní denní výkon dá ®. 48.0,9 výrobků, což
je vskutku 43,2®.

Po druhém onemocnění zbylo 32 dělníků, kteří
vyráběli

120 125.8
100 ' 100

což je původní denní výkon dílny.

120 125
®.32. — ®. 4.12=48®,„ = ® . *4 .

100 100
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3. Je dán úhel <£ KMN = 60°, přičemž je MN —
= 6 cm. Bodem N sestrojíme přímku NL || MK a
na úsečce MN sestrojíme body P, Q tak, aby platilo
MP = NQ — 1 cm.

Sestrojte tři různé kosočtverce, z nichž každý má
tyto vlastnosti:

(1) Dvě protější strany kosočtverce leží po řadě na
přímkách MK, NL.

(2) Každý z bodů P, Q leží na některé z úhlopříček
hledaného kosočtverce.

Řešení (obr. 33). Narýsujeme úhel KMN — 60°,
přičemž je MN = 6 cm; sestrojíme přímku NL || MK
a uvnitř úsečky MN sestrojíme body P, Q, o nichž
platí MP = NQ =1 cm.

Dj D, D1 NbC3 C2L

&
КA1 ff-Aj o2

Obr. 33 ,

Jsou dvě možnosti: Oba body P, Q padnou na touž
úhlopříčku hledaného kosočtverce anebo každý padne
na jinou z úhlopříček hledaného kosočtverce. Podle
známé věty má hledaný kosočtverec úhlopříčky na-
vzájem kolmé.
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Případ [1]. Označme 5 společný střed úseček MN,
PQ a považujme MN za úhlopříčku hledaného rovno-
běžníka A3B3C3D3, kde A3 = M, C3 = N a body
B3, D3 jsou po řadě průsečíky přímky p J_ MN, ve-
děné bodem S, s danými rovnoběžkami MK, NL.

Případ [2]. Je-li Sx střed rovnostranného rovno-
běžníka AXBXCXDX druhého typu, potom bod S1 nutně
leží na ose q pásu rovnoběžek MK, NL, a to spolu
s bodem 5; bodem S tedy vedeme přímku q 11 MK.
Nechť bod P leží na úhlopříčce SXAX a bod Q na úhlo-
příčce SlD1 (body P, Q jsou zřejmě přímkou q oddě-
lény), přičemž je úhel <£ PSXQ — 90°. Bod Sx proto
nutně leží na Thaletově kružnici k = (S, SP). Odtud
konstrukce:

Středem 5 úsečky PO sestrojíme rovnoběžku
q || MK a nad úsečkou PQ jako průměrem opíšeme
Thaletovu kružnici k\ protože přímka q prochází
středem této kružnice, má s ní dva různé společné
body S„ S2, takže PSXQS2 při vhodné volbě označení
bodů Slt S2 je obdélník.

Kolmice SXQ vytínají na přímce MK body
Ax, Bx a na přímce NL body Cx, Dx; čtyřúhelník
AXBXCXDX splňuje požadavky úlohy (je to rovnoběžník,
neboť se jeho úhlopříčky vzájemně půlí, a je rovno-
stranný, což vyplývá z kolmosti jeho úhlopříček).

Bod S2 vede к druhému rovnoběžníku A2B2C2D2,
o němž se snadno usoudí, že vznikne posunutím rovno-
běžníka AXBXCXDX o úsečku SXS2, takže oba sestrojené
rovnostranné rovnoběžníky AXBXCXDX, A2B2C2D2 jsou
shodné.

Tím je úloha rozřešena.

108



4. Žák měl řešit rovnici
v + 2

lx + 23 - 7(vTT) *
Opsal ji však s chybami: v čitateli na levé straně

rovnice napsal chybně druhý člen a ve jmenovateli na
pravé straně místo znaménka plus napsal znaménko
minus. Přesto při správném řešení chybně opsané
rovnice obdržel kořen dané rovnice.

Jak zněla chybně opsaná rovnice ?
Řešení. Nejprve najdeme řešení dané rovnice; zná-

sobme obě strany dané rovnice číslem
7(x + 1) (7x + 23); dostaneme postupně

70 + 1) O + 2) = (7x + 23) (.x - 2),
7O2 + 3x + 2) = 7v2 + 9x — 46 ,

2lv — 9x = —46 — 14 ,

12v = —60 j

v = -ff = -5 .

Proveďme hned zkoušku správnosti. Označme L,
P výsledek dosazení v = — 5 do levé a do pravé
strany dané rovnice. Dostáváme

-5 + 2
_ -3 _ 1

-35 + 23 ~ -12 “ 4 5
-5-2

x — 2

L =

1-7
P =

7 . (-4) 4 57 (—5 + 1)
takže je L = P.

Špatně napsaná rovnice vypadala takto:
v — 2v + p

7v + 23 70 - 1) 5
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kde p je nějaké známé číslo. Tato rovnice však má
rovněž řešení x — — 5; dosaďme do ní toto číslo.
Dostaneme

—5 + p
-35 + 23 7 (-5 - 1)

-5-2

neboli
— 5 + p

_

-12 7 . (—6)5
po zkrácení zlomku na pravé straně dostaneme

-5 +p_ 1

-7

6 '-12

Je to rovnice pro neznámé číslo p; řešme ji. Zná-
sobme obě strany rovnice číslem —12; dostaneme
postupně

5 + p — — 2 ,

P — —2 + 5 j

p = 3 .

Žák tedy chybně napsal místo dané rovnice tuto rov-
ničí:

x + 3
7x + 23 “ 7+ - 1) •

x ■—-2

Ta má řešení je — — 5, neboť dosazení do levé a do
pravé strany jsou:

L =

— 5 + 3 -2
_ 1

-12 ~ 6 5-35 + 23
-5-2

7(—5 - 1) ~ 7 . (-6) “ 6 5
takže vskutku je L = P.

Tím jsme úlohu rozřešili.

-7 1
P =
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10. NĚCO O METODÁCH ŘEŠENÍ ÚLOH

V brožurách matematické olympiády najdete každý
rok tzv. vzorová řešení soutěžních úloh. Jsou to buď
řešení autorská, která vypracovali autoři úloh, nebo
některá pěkná řešení účastníků soutěže. Otištěná ře-
šení však mají zpravidla jeden nedostatek: předvádějí
sice pěkné, přesné — někdy i elegantní a vtipné způ-
soby řešení úloh, ale obvykle neříkají, jak se na takový
způsob řešení přijde. Domníváme se, že čtete naše bro-
žury proto, abyste se naučili řešit matematické úlohy;
a to půjde ztěžka, budete-li jen studovat hotová, třebas
vybroušená řešení úloh. Proto vám chceme v této
brožuře ukázat aspoň na několika příkladech, jak je
možné hledat metodu řešení. Metody, které uvádíme, *
nejsou ovšem jediné možné; jistě sami objevíte jiné.
Ale snad si při našich ukázkách aspoň uvědomíte, že
metodu řešení se vždy pokoušíme vyhledat tím, že
úlohu zařaďujeme do skupiny úloh, které se řeší jis-
tými nám známými způsoby.

Jako první ukázku uvedeme úlohu B-I-l, tj.
úlohu č. 1, I. kolo, kategorie B); text úlohy nebudeme
opakovat (viz str. 55), začneme přímo s úvahami.

Abychom sestrojili hledaný trojúhelník ABC, mu-
símě sestrojit neznámé vrcholy В, C. Pro každý z nich
máme jedno geometrické místo bodů (přímky q, p);
mimoto víme, že úsečka BC prochází bodem M a je
jím dělena v známém poměru: Platí totiž MB : MC =
= MX: MY, kde X, Y jsou průsečíky přímek q, p
s libovolnou přímkou procházející bodem M.

Konstruktivní úloha tohoto typu se obvykle řeší
stejnolehlostí: najde se obraz q' přímky q v stejno-
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lehlosti se středem M a koeficientem —MY: MX
a určí se společné body čar p, q ; mezi nimi musí být
bod C. Bohužel v našem případě je q' = p, a proto
tato metoda nevede к cíli.

Jiný nápad: pokusíme se pro bod В určit další
geometrické místo bodů, a to přímku AB. Pro tuto
přímku je třeba určit jen směr, protože bod A je dán.
Úsečka AB je úhlopříčkou kosočtverce, který vznikne,
překiopíme-li trojúhelník ABC kolem přímky AB do
polohy ABC. Přímka AB je pak osou úsečky CC a
také osou úsečky MM', kde M' je bod vzniklý pře-
klopením bodu M kolem přímky AB. Protože je
zřejmě BC = q, leží bod M na přímce q a dovedeme
jej sestrojit, neboť je AM' = AM. Přenecháváme čte-
nářům, aby si řešení dokončhi sami.

Jiný nápad: místo rovnoramenného trojúhelníka
ABC budeme sestrojovat rovnoramenný lichoběžník
ABMN se základnami AB, MN; neznámé jsou vrcholy
В, N. Pro každý z nich máme jedno geometrické místo
bodů: pro bod В přímku q, pro bod N přímku p. Obě
úhlopříčky AM, BN se protínají v bodě Q a platí
BO : NQ — AQ : MQ. Tento poměr je však znám,
neboť podle jisté vlastnosti lichoběžníka je AQ : MQ =
— ВС : MC = XY : XM (viz první způsob řešení).
Dovedeme tedy sestrojit bod Q a pak i body B, N, C.
Při tomto způsobu řešení jsme použili vlastně pro
lichoběžník ABMN metody, která selhala v prvním
případě pro trojúhelník ABC.

Druhá ukázka se týká úlohy C-I-l (vizstr. 76).
Nebudeme vycházet z formulace důkazové úlohy,
ale zadáme úlohu raději takto: máme nalézt všechna
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přirozená čísla x, pro něž je číslo y? -f 2x dělitelné
třemi.

Je zřejmé: je-li x dělitelné třemi, je také číslo
x? -J- 2x dělitelné třemi. Není-li x dělitelné třemi,
dává po dělení třemi zbytek buď 1, nebo 2; lze je tedy
napsat v jednom z tvarů

я = 3n + 1} x = 3n + 2,
kde n je celé číslo nezáporné. Takovéto vyjádření čísla x
vzhledem к děliteli 3 se zpravidla vždy osvědčí při
zkoumání dělitelnosti třemi u složitějších výrazů
závislých na x.

Vypočteme pro obě vyjádření (1) výraz я3 + 2x a
úloha bude rozřešena; vyjde totiž
*3 + 2x = (3n + l)3 + 2(3n + 1) = 27ю3 + 27n2 +

+9n + 1 + 6n + 2 = 3k,
Xs 2x = (3n + 2)3 + 2{Ъп + 2) = 27«3 + 54я2 +

+ 36n + 8 + 6w + 4 = 3/ .

Tento postup je možná méně elegantní než řešení
autorské, ale zato je přirozenější a ukazuje obecnou
metodu pro řešení úloh tohoto druhu.

Jako další ukázky uvádíme úlohy III. kola.

Úloha A-III-1. Je dán trojčlen
2x2 — x — 36 .

Určete všechna celá čísla x, pro něž je hodnota daného
trojčlenu rovna druhé mocnině prvočísla.

Řešení. První pokus směřuje к zjištění, zda lze
daný trojčlen rozložit v součin lineárních dvojčlenů,
které nabývají pro celočíselná x celočíselných hod-

(i)
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not. V tom případě bude řešení jednoduché. Každý
z těchto dvojčlenů musí totiž nabývat pro hledané
x hodnoty buď ±1, nebo ±p, nebo ±p2 (kde p je
prvočíslo) a hledané x se určí řešením lineární rovnice.
Je ovšem třeba hned uvážit toto: nezdaří-li se rozložit
trojčlen uvedeným způsobem, nemusí být úloha ne-
řešitelná. Tak např. trojčlen 2л:2 — x + 21 nelze roz-
ložit v součin lineárních činitelů s reálnými koeficienty,
a přesto pro x = 4 nabývá hodnoty 49 = 72.Trojčlen
2л;2 — л: — 17 lze sice rozložit v lineární činitele, ale
s koeficienty iracionálními
2л;2 — x — 17 = 2 |x —

1 1 -

přesto pro x = 6 nabývá tento trojčlen hodnoty
49 = 72. V těchto případech vede naše úloha na ne-
určitou rovnici druhého stupně, např. 2x2 — x — 17 =
= у2, kterou upravíme na tvar (4x — l)2 — 8y2 =137;
tuto rovnici máme řešit celými čísly x, у a vybrat
navíc ta řešení, kde у je prvočíslo. To je ovšem úloha
značné slozitejsi.

Tímto způsobem řešil danou úlohu Peter Hatala,
žák třídy III.a SVVŠ v Bratislavě v Novohradské
ulici. Označil si 4x — 1 — A a po úpravě dospěl
к rovnici A2 — 289 = 8p2, neboli

8p2 = (A + 17) (A - 17) .

Dále uvažoval takto: Je-li p sudé, je p — 2, vyjde
A2 = 321, což je nemožné, neboť A je číslo celé.
Je-li p liché, je také A liché a čísla A 17, A — 17
jsou sudá. Je tedy třeba rozložit číslo 8p2 v součin dvou
sudých činitelů; protože je p liché, je to možné jen
šesti způsoby 8p2 = (±2p). (±4p) = (±2p2). (±4) =

(*)
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= (±4p2) . (±2). Nyní zkoumá jednotlivé případy
(např. A + 17 — 2p, A — 17 = 4p atd.) a po vy-
loučení neznámé A dostane p (p = —17). Po vyne-
cháni nevyhovujících čísel p dostane všecka řešení
úlohy: nejprve p a pak x. Výhodnější by ovšem bylo
vyloučit p, určit A, pak x a provést zkoušku, zda p,
které vyjde z rovnice (*), je skutečně prvočíslo.

V úloze A-III-1 však je trojčlen rozložitelný žádá-
ným způsobem. Kvadratická rovnice 2x2 — x — 36 —
— 0 má kořeny f, — 4 a rozklad zní

2x% — x — 36 = (2x — 9) (x + 4).
Nyní musí být buď

[1] 2x — 9 = ± 1, ^ + 4 = ±p2,
nebo

[2] x + 4 = ±1, 2x — 9 — ±p2,
nebo

[3] x + 4 = ±p, 2x — 9 = ±p .

V případě [1] dostaneme z první rovnice buď
x = 5, nebo x — 4; druhá rovnice dá buď x + 4 = 9,
nebo x + 4 = 8. Dostáváme tedy jedno řešení

xx = 5 .

V případě [2] dostaneme z první rovnice buď
x — — 3, nebo x — — 5; druhá rovnice dá buď
2x — 9 = —15, nebo 2x — 9 — —19. Nevychází tedy
žádné další řešení, neboť čísla 15 ani 19 nejsou druhé
mocniny prvočísel.

V případě [3] musí být x + 4 = 2x — 9; odtud
vychází x = 13, (x + 4) (2x — 9) = 172; máme tedy
druhé řešení úlohy

x2 = 13 .

Tím je úloha A-III-1 úplně rozřešena.
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Úloha A-III-2 zní: V rovině je dána soustava
pravoúhlých souřadnic x, y. Vyšetřte množinu všech
bodů, jejichž souřadnice v této soustavě splňují ne-
rovnosti:

(la)0^*^
У1 — sin2x — У1 + sin2x ^ у ^ У1 — cos2x —

— У1 + cos2jc . (lb)
Načrtněte obraz této množiny.
К řešení této úlohy není třeba mnoho důvtipu.

Jde zřejmě jen o úpravu druhé dvojice nerovností,
aby vztahy mezi x, у byly jednodušší, tj. aby na pravé
i levé straně byl pokud možno jen jeden člen. Pokud
jde o pravou nerovnost (lb), nabízejí se přirozeně
vzorce z goniometrie
У2 |cos *| = yi + 2x, ]/2 |sin x\ — У1 — cos 2x .cos

(2)
Protože platí (la), je cos x ^ 0, sin * ^ 0 a absolutní
hodnoty ve vzorcích (2) lze vynechat. Dále upravíme

(i-)]-У2 (sin x — cos x) = У2 £ ■in x — sin

= V2.2.^[-sin(|-*)] = (i - ')•—2sin

(3)
Dále upravíme levou nerovnost (lb) podle vzorců

У1 — sin 2x — *|/l — cos ^ — 2xj =
= У2 j sin 1> (4a)
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У1 + sin 2х = *|/l + cos ^ — 2xJ =
= У2 I cos — x j I. (4b)

Také ve vzorcích (4a) a (4b) chceme odstranit abso-
lutní hodnoty. Protože platí (la), je

ТС ^ 7T . 71
—i ^ i— x <•4 — 4 — 4 5

bude tedy nutné rozlišit dva případy:

[1] Je-li O^x^j, je
0 < — X < , sin—

4 — 4 3 a-) ^0,

(i-) ^03cos

tj.
У1 — sin 2x — У1 4- sin 2x =

= V2 [sin (i - *) - cos (j - *)] =
= V2 [ in (f - *) -sin (f+ *)] =

1
= У2 . 2 . --= (—sin x) = —2sin x 3

У*
neboli

У1 — sin 2x — yi + sin 2x = —2sin x . (5)
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[2] Je-li je

— < -— x < O ,4 — 4

CH(Msin 0, cos

tj.
]/l — sin 2л: — ]/l + sin 2x —

= — 1/2 sin — *) + cos — *) =
= - V2 sin(-j - *) + sin + x) =

1
— — ]/2.2 . -гт= cos x — — 2cosx ,

P
neboli

]/l — sin 2л: — ]/1 + sin 2x = —2 cos* .

Pro interval 0 ^ л: ^ dostáváme tedy podle (3),
(5) nerovnosti

—2sin л;

(6)

4

(í-4—2sin (7)

pro interval tĚ x
TC
— dostáváme podle (3), (6)

nerovnosti

(í-4 (8)у — 2sin— 2cos л:
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Nerovnosti (7) přepíšeme do tvaru

OH < sinx,
2 ~~ 5 (7')sin < -

nerovnosti (8) přepíšeme do tvaru

OH
V

(8')sin — ^ cosx.

Zobrazíme funkce

= sin(^-*);у = sin X, у = COS Xj у

b 3 vyplní vyšrafovaný obra-

zec; hledaný obrazec bodů [x,j;] dostaneme překlo-
pěním kolem osy x a dvojnásobným zvětšením všech
souřadnic y.

viz obr. 34. Body

У
у - cosx y-sinx

X
я o n

, JL
8 4

ЭлZ
2 4

y=sin(~~x)

Obr. 34
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Podstatné kroky našeho postupu byly tyto: použití
vzorců pro „funkce polovičního úhlucc к odstranění
odmocnin v (lb); použití vzorců pro „součet sinůc£
к získání jediného členu na pravé i levé straně ne- '
rovností (lb); v obou případech bylo nutno nahradit
někde funkci sinus funkcí kosinus a naopak. Další
podstatné kroky byly: rozdělení intervalu (0, —) na

dva intervaly, abychom se zbavili absolutních hod-
not, a konečně úprava nerovností na tvar (7') a (8'),
abychom získali jednodušší funkce, jejichž průběh
lze snadno zakreslit.

Většina správných řešení užívala v podstatě tohoto
postupu.

Úloha A-III-3 má tento text: Jsou dány dvě na-
vzájem kolmé mimoběžky PAf, QN, kde přímka PQ
je kolmá ke každé z obou mimoběžek. V rovině a kolmé
к úsečce PQ a procházející jejím středem O je dána
kružnice k = (O, r).

Dokažte, že každá úsečka XY, jejíž krajní body X, Y
leží po řadě na mimoběžkách PM, QN a která obsa-
huje bod kružnice k, má touž délku; vvjádřete tuto
délku pomocí poloměru r a délky v — PQ.

Jaký útvar vyplní krajní body X všech takových
úseček XY?

Řešení. První část úlohy bude rozřešen^, vypočte-
me-li délku úsečky XY. Každou úsečku XY lze no-
kládat za přeponu pravoúhlého trojúhelníka Y’XY,
který zkonstruujeme takto: přímkou p vedeme roviiiu
q || a a označíme Y' pravoúhlý průmět bodu Y do
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roviny q. Zřejmě je YY' — PQ = v; zbývá vypočítat
délku odvěsny XY'. К tomu je třeba uplatnit ještě
podmínku, že střed S úsečky XY leží na kružnici k.
Proto promítneme pravoúhle také kružnici k do ro-
viny q; tak dostaneme kružnici k! = (P, r). Střed 5

9'

к'
9

P-=QéYÍ X ti
tO—+-

-O'

N'

Obr. 35

úsečky ХУ se promítne pravoúhle do roviny q do
středu S' úsečky ХУ"; bod S' leží na kružnici k!.
Situace v rovině q je naznačena na obr. 35; přitom q'
značí pravoúhlý průmět přímky q do roviny o. Na
obr. 35 je zakreslena tzv. „obecná poloha“ úsečky XY\
kdy žádný z bodů X, Y' nesplyne s bodem P; proto
vznikne pravoúhlý trojúhelník XY'P s přeponou XY'.
Protože její střed S' leží na kružnici kje PS' = r.
Střed S' je však středem kružnice opsané trojúhelníku
XY'P, proto je S'X = S'Y'= S'P = r a XY'=
= XS' + S'Y' = 2r. Zbývá dokázat, že úsečka XY'
má délku 2r také v případě, když jde o „zvláštní po-
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lohucc, kdy je buď X = P, nebo Y' = P; to je však
zřejmé, jak ukazuje na obr. 35 příklad úsečky XxY'v
Je tedy

XY2 = YY'2 + XY'2 = v2 + 4r2.
Tím je úplně rozřešena první část úlohy. Odpověď

na druhou otázku dáme zcela snadno. Předchozí úvahy
vám jistě připomněly jedno známé geometrické místo
bodů v rovině: geometrické místo středů S' úseček
XY', které mají stálou délku 2r a jejichž krajní body
X, Y' leží na kolmicích p, q', je kružnice k' = (P, r).
Každý z bodů X, Y' vyplní tedy úsečku délky 4r, která
leží v přímce p{q') a má střed v bodě P. Tím je vy-
šetřeno geometrické místo bodů X-, protože lze v textu
úlohy zaměnit přímky p, q (body X, Y), je tím vy-
šetřeno i geometrické místo bodů Y.

Řada řešitelů úlohy A-III-3 užila částečně metody
souřadnic, ovšem jen kartézských souřadnic v rovině.
Tak např. Jiří Durdil, žák třídy III.b SVVŠ v Praze 8-
Libni, zvolil za osy souřadnic přímky p, q' a užil rov-
nice kružnice k' к tomu, aby dokázal vztah XY' = 2r.
Pro výpočet délky úsečky XY však už užil opět Pytha-
gorovy věty a doplňující úvahy pro ,,zvláštníu polohy
této úsečky vynechal. Zde se ukazuje, jak bylo výhodné
užít důsledně metody souřadnic (analytické geometrie)
pro řešení celé úlohy [i otázky b)]. Tu by ovšem bylo
třeba zavést soustavu prostorových souřadnic, která
se na střední škole neprobírá. Zároveň si uvědomíme
při této příležitosti, jak účinným prostředkem pro vy-
šetřování geometrických míst bodů je právě metoda
analytické geometrie.

Úloha A-III-4 zní: V rovině je dána kružnice
k = (é>; r). Kromě toho je dán bod A ^ÉS, který leží
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uvnitř kružnice k. Světelný paprsek vycházející z da-
něho bodu A se odráží od kružnice k v jistém bodě В,
dále se odráží od kružnice k v jistém bodě C a pak se
vrací nazpět do bodu A.

Vypočítejte sinus dutého úhlu <£ SAB pomocí
čísel r, d = SA a rozhodněte o řešitelnosti úlohy.

Při řešení stačí uplatnit známý fyzikální zákon
o úhlu dopadu a odrazu světelného paprsku; přitom
je třeba uvážit, že kolmice ke křivce odrazu v daném
bodě je kolmice к tečně čili tzv. normála křivky. U kruž-
nice prochází normála každého jejího bodu středem
kružnice. Dráha světelného paprsku je zakreslena na
obr. 36. Dráha je obvod trojúhelníka ABC; bod S je
podle podmínek úlohy průsečíkem os úhlů <£ Б, <£ C
tohoto trojúhelníka a polopřímka AS je osou úhlu <£А.

Hledaný siná vyjádří-
me z trojúhelníka SAB
pomocí sinové věty

d siná = r sin/1 . (1)
Abychom z rovnice (1)
určili sin a pomocí r, d,
je třeba vyjádřit (3 pomocí
a. Protože polopřímka AS
je osou úhlu <£ CAB, je
d = a (označení úhlů
podle obr. 36); protože
trojúhelník BCS je rovno-
ramenný, je {3 = y. Pro
velikost vnitřních úhlů <£ABC platí tedy 2a + 4/1 =
= 180° neboli a = 90° — 2(3. Dosadíme za a do rov-
nice (1), vyjádříme nejprve sin (3 a pak dosadíme zpět
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do (1); dostaneme
d sin (90° — 2/5) = r sin/3 ,

neboli
d cos2/3 = r sin/3 ,

neboli

d{ 1 — 2 sin2/3) = r sin/3 ,

neboli
2d sin2/S + r sin/3 — d — 0 .

Odtud vychází 0 podle předpokladu)
г ± ]/r2 + 8ti2sin/3 = (2)4d

Diskriminant je zřejmě číslo kladné; protože úhel /3
je dutý, je sin /3 > 0 a ve vzorci (2) přichází v úvahu
jen znamení plus. Je tedy

= ]/r2 + 8d2 - r (20sin/3

Můžeme se ještě přesvědčit, že zlomek na pravé straně
je číslo kladné a menší než 1. Skutečně je ]/r2 + 8d2 >

>]/r2 = r; kdyby platilo
by ]/r2 + 8d2 ^ 4d + r, tj. po úpravě 8d(d + r) ^ 0,
což je nemožné.

Nyní dosadíme z (20 do (1) a dostaneme

siná

Tím je úloha úplně rozřešena.

4d

1Ir2 + 8d2 -
- ^ 1, bylo4d

_ ]/r2 + 8d2 -r
M2
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IV. Čtvrtá Mezinárodní matematická
olympiáda

1. O PRŮBĚHU SOUTĚŽE

Mezinárodní matematická soutěž pro žáky
středních všeobecně vzdělávacích a středních od-
borných škol vznikla v r. 1959 na popud ru-
munských matematiků. Již tehdy čs. zástupce
v mezinárodní komisi I. mezinárodní matematické
olympiády měl zmocnění ministerstva školství a kul-
tury i Jednoty čs. matematiků a fyziků к předběžnému
příslibu, že by tato každoročně proponovaná soutěž
mohla být uspořádána v r. 1962 v Československu, a
to v rámci oslav 100. výročí založení Jed-
noty čs. matematiků a fyziků. A tak skutečně
v první polovině července 1962 byla v ČSSR uspo-
řádána Jednotou čs. matematiků a fyziků (JČMF)
a pod záštitou ministerstva školství a kultury (MŠK)
IV. mezinárodní matematická olympiáda (MMO).

Soutěž připravoval od podzimu 1961 organizační
komitét MMO (zkratkou OK). Jeho předsedou byl
akademik Josef Novák, místopředsedy doc. Jan Výšin
a Rud. Zelinka a sekretářem dr. Miroslav Fiedler DrSc.;
dalšími členy byli Miloš Jelínek, ústřední inspektor
MŠK jako zástupce ministerstva školství a kultury a
František Vejsada jako zástupce pobočky JČMF
v Českých Budějovicích a jako jednatel Organizačního
výboru MMO, který se pro potřeby soutěže ustavil
v Českých Budějovicích.
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Vedle organizačního zajištění a řízení celé akce při-
pravil OK návrh statutu, kterým by se mezinárodní
soutěž měla řídit. Ve statutu jsou shrnuty dosavadní
zkušenosti ze soutěží. Statut vstoupí v platnost po
projednání v ministerstvech školství (osvěty) jed-
notlivých zúčastněných zemí; IV. MMO se v pod-
statě jeho zásadami již řídila.

Vlastním řídícím orgánem soutěže byla meziná-
rodní komise (MK), ve které byla každá zúčastněná
země zastoupena svým vedoucím delegace; komisi
předsedal akademik Josef Novák.

Každá zúčastněná země vyslala na soutěž osmi-
členné družstvo (viz přílohu 2), dále vedoucího de-
legace a pedagogického průvodce družstva;
oba tito delegáti byli povinni opravovat žákovská ře-
šení a pracovat v organizačních intencích mezinárodní
komise. IV. mezinárodní matematické olympiády se
účastnilo 7 zemí socialistického tábora, jek je patrno
z příloh 1 a 2 (jmenný seznam delegátů a jmenný
seznam zúčastněných žáků).

Vedoucí delegací se sjeli do Prahy ještě před pří-
jezdem žáků, aby ve dnech 5.-6. července 1962 za-
jistili nejzávažnější záležitosti soutěže, především
volbu soutěžních úloh. Podle předběžné dohody
zaslala do května 1962 každá zúčastněná země orga-
nizačnímu komitétu několik návrhů soutěžních úloh,
včetně náčrtu řešení. Trojčlenná komise při OK
(oba místopředsedové a sekretář) provedla analýzu
došlých úloh, navrhla úpravy některých z došlých
úloh, připravila výběr z těchto úloh a dala je přeložit
do světových jazyků a rozmnožit tak, aby je mohli
členové MK předem řádně prostudovat; tato práce
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byla přísně důvěrná, takže jen 4 čs. pracovníci byli
seznámeni před zahájením soutěže s texty úloh. Tuto
práci velmi uvážlivě řídil doc. Jan Výšin. Překládá-
telské a další práce obětavě konali pracovníci Mate-
matického ústavu ČSAV. Z takto připraveného mate-
riálu byl po dvoudenním detailním jednání proveden
výběr úloh pro dvě soutěžní písemné práce žáků
(texty úloh a jejich řešení jsou na str. 138); pro 1. den
soutěže byly zvoleny 3 úlohy na 4 hodiny čistého
času, na 2. den 4 úlohy na 5 hodin čistého času. Pře-
klad textů úloh do mateřských jazyků zúčastněných
zemí provedli vedoucí delegací v rámci prací MK;
texty byly rozmnoženy, takže každý žák obdržel od
předsedy MK vlastní text v zapečetěné obálce na po-
čátku každého soutěžního dne.

Dále byly v MK stanoveny některé zásady pro po-
sužování žákovských prací, i když krátký čas, který byl
к dispozici, nedovolil stanovit přesnější požadavky;
ty pak byly určovány až v průběhu provádění oprav
a hodnocení soutěžních prací. Jmenovitě všakMK sta-
noiila předem maximální počet bodů za dokonalá
řešení jednotlivých úloh.

Žákovské delegace se svými pedagogickými
průvodci se sjely do Prahy v sobotu 7. července 1962
a po krátké prohlídce Prahy odjely příštího dne v ne-
děli odpoledne do Českých Budějovic, kde byly slav-
nostně uvítány budějovickými pracovníky v čele
s Josefem Vodákem, předsedou školské a kulturní
komise Jihočeského krajského národního výboru (JK
NV); při uvítání byli přítomni zvláště zástupci KSČ,
ČSM a pobočky JČMF v Českých Budějovicích. Po
dobu pobytu hostí v Jihočeském kraji pečoval o ně
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tamější organizační výbor MMO. Tento výbor se ústa-
vil již v lednu 1962 na základě dohody organizačního
komitétu MMO s pracovníky Jihočeského kraje, re-
prezentovanými odborem školství a kultury JKNV,
stranickými pracovníky, ČSM a pobočkou JČMF
v Českých Budějovicích. Žáci byli ubytováni v pěkném
žákovském internátě v Holečkově ulici a delegáti v ho-
telích.

V pondělí 9. července 1962 navštívili hosté tužkárnu
Koh-i-noor,n.p.,v Českých Budějovicích a odpoledne
si prohlédli památky zámku Hluboká i umělecké po-
klady tamější Alšovy galerie, aby se tu předem sezná-
mili s prostředím, ve kterém budou po oba soutěžní
dny žáci pracovat.

V úterý 10. července 1962 předseda MK akademik
Josef Novák v sále Alšovy galerie na Hluboké slav-
nostně zahájil soutěž; první písemná práce trvala od
8.30 hod. do 12.30 hod. Ve středu 11. července 1962
byla na témže místě v době od 8 do 13 hodin provedena
druhá písemná práce.

Jinak všechen volný čas žáků byl věnován rekreaci
a prohlídkám historických, kulturních a přírodních pa-
mátek Jihočeského kraje, exkurzím do závodů atd.

Po celou dobu od 10. do 14. července 1962 zajišťo-
vala mezinárodní komise se štábem spolupracovníků
opravy a hodnocení žákovských řešení. Žákovo řešení
opravovali oba příslušní delegáti za spolupráce
sčs. koordinátorem; byl to vysokoškolský pracovník
v matematice a jeho úkolem bylo zajistit jednotné oce-
ňování vždy jedné ze sedmi zadaných úloh. Pro hodno-
cení řešení čs. žáků určila mezinárodní komise pro
každou úlohu oba členy jedné z delegací jako kontro-
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lory správného hodnocení; byli to právě ti dva členové,
jejichž země úlohu zaslala (pro čs. úlohu pak to byli
oba delegáti NDR). Instituce koordinátorů měla za-
jistit mezinárodní úroveň hodnocení žákovských ře-
šení a celkem úspěšně splnila své poslání, i když v ко-
nečné fázi měla MK řadu svízelných jednání; přitom
zvláště sekretář OK jako vedoucí skupiny koordinátorů
vždy delikátně, ale důsledně se snažil plně zajistit mezi-
národní úroveň hodnocení, což se celkem podařilo
provést.

V úterý 14. července 1962 odpoledne přijal členy
MK předseda JKNV s. Jindřich Kouba. Pohovořil
s nimi o jejich úkolech, seznámil je s některými otáz-
kami, které se snaží v kraji řešit, a přál jim hodně pra-
covních úspěchů; vyslovil potěšení, že se jim v jižních
Čechách skutečně líbí.

Ve středu 15. července 1962 uspořádal ministr
školství a kultury dr. František Kahuda v Českých
Budějovicích pro účastníky soutěže slavnostní ve-
čeři, na níž к nim promluvil. Ocenil důležitost
matematiky pro rozvoj socialistické společnosti a vy-
slovil radost z tohoto setkání mládeže zemí socialistic-
kého tábora, přičemž zvláště uvítal, že může mezi
zahraničními hosty uvítat také naše milé sovětské
přátele.

Po provedeném hodnocení žákovských řešení roz-
hodlá dne 13. července 1962 MK o udělení cen nej-
úspěšnějším řešitelům. Na návrh předsedy MK udě-
lila 4 první, 12 druhých a 15 třetích cen, a to vzhledem
к počtu bodů, které žák získal celkem svými řešeními
sedmi soutěžních úloh; celkem bylo uděleno 31 cen.

Absolutním vítězem soutěže se stal Josif Bernštejn,
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žák střední školy v Moskvě, který jediný získal
maximální počet bodů (46). Mezi těmi, kteří získali
jednu ze čtyř prvních cen, je tentokráte i dívka Lidija
Gončarovová, žákyně střední školy v Moskvě.
I když jde o soutěž jednotlivců, musíme konstatovat,
že největšího úspěchu dosáhli žáci maďarští a těsně
za nimi žáci sovětští, avšak i žáci rumunští mají
pěkné umístění. Z našich žáků byl nejlepším Peter Ha-
tala, žák střední všeobecně vzdělávací školy
v Bratislavě; získal druhou cenu. Přehled o výsled-
cích jednotlivých žáků a zvláště pak našich je v pří-
lohách č. 3a,b, 4 a 5. Není pochyb o tom, že se pracov-
níci školští i vědečtí budou nad těmito výsledky za-
mýšlet a že budou hledány cesty, jak nynější naši situaci
v této otázce uvést na příznivější stupeň. To bude
v nejbližších letech úkolem organizátorů nejen našeho
školství, ale i naší celostátní Matematické olympiády.

Slavnostní rozdílení cen provedl předseda
MK akademik Josef Novák opět v sále Alšovy galerie
na Hluboké v sobotu 14. července 1962 o 10. hod. do-
poledne. Přítomni byli náměstek ministra škol-
ství a kultury Václav Hendrych se svými spolu-
pracovníky, straničtí a školští pracovníci Jihočeského
kraje, předseda školské a kulturní komise JKNV
Josef Vodák a řada veřejných a kulturních pracov-
níků. Slavnostní projev předsedy MK tlumočili ve-
doučí delegací do svých mateřských jazyků. Jménem
ministerstva školství a kultury promluvil Václav Hen-
drych, náměstek ministra školství a kultury. Za od-
měněné žáky, kteří vedle uměleckých a památkových
předmětů dostali diplom podepsaný ministrem škol-
ství a kultury a předsedou OK, poděkovala sovětská
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žákyně Lidija Gončarovová. Jménem zahraničních de-
legátů pořadatelům soutěže vřele poděkoval jeden
z jejích zakladatelů, prof. Gh. D. Simionescu z Buku-
rešti. Slavnostní oběd na ukončení olympiády se konal
v internátu v Holečkově ulici v Českých Budějovicích
za přítomnosti náměstka Václava Hendrycha a pra-
covníků Jihočeského kraje.

Účastníci soutěže a mezinárodní hosté mimo jiné
navštívili Krumlov, Lipno, Rožmberk a jiná paměti-
hodná místa jižních Čech.

V neděli 15. července 1962 dopoledne se celá vý-
prava vrátila autobusy přes Tábor do Prahy a večer
zhlédla v Národním divadle Smetanovu Libuši.

V pondělí 16. července si zahraniční hosté prohlédli
Prahu a odpoledne a večer se rozjížděli do svých vlastí;
zdržela se jedině rumunská delegace, která odcestovala
ve čtvrtek 19. července.

Organizátoři věnovali hladkému průběhu všech akcí
velkou pozornost. To platí zvláště o pracovnících OV
v Českých Budějovicích, který se svých úkolů zhostil
к mimořádné spokojenosti všech zahraničních hostí,
kteří odjížděli s radostnou náladou; tu dlužno ocenit
obětavou činnost jak předsedy OV Josefa Vodáka, tak
jednatele OV i pobočky JČMF v Českých Budějo-
vících; za zmínku stojí i nevšední ochota, s níž nám
všichni zaměstnanci různých podniků Jihočeského
kraje vycházeli vstříc. Rovněž ústředí JČMF a pra-
covníci Matematického ústavu ČSAV vykonali pro
zdar akce vše, co mohli. Ministerstvo školství a kul-
tury se zasloužilo o realizaci a soustavné sledování prů-
běhu přípravných prací i vlastní soutěže a o to, že se
akci podařilo tak úspěšně dovést až do konce. Nejlepším
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vyjádřením této péče je přijetí členů MK minis-
třem školství a kultury a jeho návštěva v Českých
Budějovicích v průběhu soutěže, jakož i účast náměst-
к a ministra školství a kultury na slavnostním rozdílení
cen. Tato fakta všichni zahraniční delegáti také vysoce
ocenili a netajili se tím, že je budou ve svých vlastech
s patřičnou váhou konstatovat.

Pokud jde o politický dosah mezi mládeží,
lze říci, že se všichni žáci záhy velmi sblížili, a to tím
spíše, že jim budějovičtí svazáci připravili na taměj-
ších závodech družbu, která v} vrcholila ve veselicích,
konaných v sobotu 14. července odpoledne a večer na
několika místech.

Po stránce odborné nám umožnila IV. MMO
porovnávat výkony nejlepších žáků jednotlivých zemí
i konstatovat, že se dnes všude těmto žákům a výuce
matematice věnuje nejen pozornost, ale přímo mimo-
řádná a trvalá péče. Rovněž jsme měli příležitost po-
rovnávat zaměření vyučování matematice v těchto
zemích a důraz, který se klade na určité partie nebo
na některé matematické metody. Rok od roku lze
pozorovat i ve vlastní soutěži zvyšování nároků,
zvláště pokud jde o přesnost a úplnost řešení; je za-
jímavé, že názory, které se při hodnocení žákovských
řešení při I. MMO v této otázce jen těžko probojová-
vály, jsou dnes již samozřejmým požadavkem.

Pro informaci čtenářů uvádíme i texty a stručná
řešení všech sedmi soutěžních úloh (viz článek 2
na str. 138).
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Příloha č. 1
Jmenný seznam vedoucích delegátů

Země
(zkratka)

Vedoucí delegace
(členové mezinárodní 1 Pedagogický vedoucí

komise)

Bulharsko
(BLR)

Alipi Mateev, profesor j Stojan Budurov, in-
j spektor ministerstva
| osvěty BLR, Sofie

j university v Sofii

ČSSR Rudolf Zelinka, pra- I Jan Výšin, docent ma-
covnik MÚ ČSAV,

i Praha
tematicko-fyzikální fa-
kulty KU, Praha

Endré Hódi, vědecký j Ferenc Késedi, ústřed-
pracovník Ústavu op- ní inspektor minister-
tiky, Budapešť štva kultury MLR, Bu-

dapešť

Maďarsko
(MLR)

Doc. Herbert Titze, Johannes Gronitz, uči-
vědecký pracovník pe- tel střední školy, Karl-
dagogického ústavu, Marx-Stadt
Berlín

Německá de-
mokratická
republika
(NDR)

Polsko
(PLR)

Dr. Edward Otto, pro- | Andrzej Mqkowski,
odborný asistent, Var-
šava

fesor polytechniky,
Varšava

Rumunsko
(RLR)

Gheorghe D. Simio- Petrisor Mihailescu,
nescu, profesor póly- inspektor matematiky
techniky v Bukurešti | ministerstva osvěty

RLR, Bukurešť

SSSR Jelena Aleksandrovna | Ivan Semjonovič Petr-
Morozovová CSc., jakov, učitel střední
docentka Lomonoso- J školy v Moskvě
vovy státní university j

I v Moskvě
■
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Příloha č. 2

Jmenný seznam zúčastněných žáků

Bulharská lidově demokratická republika
Танушев Мирослав Светлославов; Бонов Бонн

Маринов; Кацаров Божидар Димитров; Велелев
Никола Иванов; Иванова Миленка Младенова;
Минасян Гарабел Ардашец; Касабов Димитьр
Захариев; Димитров Димо Беляев.

Československá socialistická republika
Danes Josef, Dolní Počernice; Fučík Svatopluk,

Hradec Králové; Hatala Peter, Bratislava; Ježek Ja-
roslav, Praha; Mešina Marián, Nováky; Novotný Jan,
Olomouc; Veselý Karel, Praha; Voda Pavol, Bratislava.

Madarská lidově demokratická republika
* Kéry Gerzson, Sopron; Kóta Jószef, Tatabánya;

Gálfi László, Budapest; Siminovits Miklós, Budapest;
Benczur András, Budapest; Gyárfás András, Buda-
pěst; Sebestyén Zoltán, Gelldómólk; Szidarovszky
Ferenc, Budapest.

Německá demokratická republika
Gorké Katharina, Berlin; Bólling Reinhard, Berlin;

Goize Friedrich, Klettwitz/Niederlausitz; Gorgens
Walter, Schónebeck/Elbe; Lehman Wolfgang, Leipzig;
Michel Claus, Bautzen; Tetsch Karl-Heinz, Sonne-
berg; Weller Stefan, Berlin.
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Polska lidově demokratická republika
Gabryjanczyk Pawel, Lodž; Hensz Ewa, Lodž;

Kuczma Marcin, Katowice; Rempala Jan, Warszawa;
Sztachelski J?rzy, Warszawa; Urbanski Pawel,
Lublin; Wolejszo Jacek, Toruň; Žytkow Jan, War-
szawa.

Rumunská lidově demokratická republika
Badescu Lucian; Buimovici Alexandru; Eckstein

Gheorghe; Giergea Viorel; Hantila Florea; Lustig
Gheorghe; Puha Radu; Zsido László.

Svaz sovětských socialistických republik
Бернштейн Иосиф, Москва; Гончарова Лидия,

Москва; Куранов Геннадий, Москва; Маргулис
Григорий, Москва; Муштари Дания, Казань;
IlaHKpáuibeB Евгений, Н. Тура, Свердловская
область; Потеиуи Алексей, Лениниград; Перме-
нев Александр, Москва.

Příloha č. За

Celkový počet bodů, které získali žáci jednotlivých zemí

ČSSR i MLR | NDRBLR PLR SSSRRLR

33 30 45 32 4614 20
37 19 39 21 30 38 42

35 39 18 39 3132 39
28 3626 33 32 18 32

32 32 30'25 20 21 11
23 3513 23 21 19 22

15 29 41 34 33 30 37
15 23 38 28 23 196
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Příloh ač. 3b

Klasifikace řešení jednotlivých úloh čs. žáků

Žák získal
celkem J
bodů

Úloha číslo 52 3 4 6 71

i

6 306 8 ; 4 06 0
5 3 4 0 196 1 0

; V řádku je
| klasifikace
I jednotlivého

žáka

358 ; 4 4 06 6 7
336 4 4 06 5

4 204 6 5 01 0
7 I 234 4 0 06

5 ! 1 292 6 7 ; 6 2
235 8 5 05 0 0

| Maximální
počet bodů 6 6

I za řešení
468 5 1 7 6 8

Příloha č. 4

Počet cen, které získali žáci jednotlivých zemí

& * ! 3 i n 3 3 j И
cJ ; 3 i s § i s! : á ! 8

Cena Celkem

0 0 2 0 0 0první
druhá
třetí

2 4
31 3 1 1 2 121

32 3 2 0 3 2 15

Počet cen

družstva 3 4 7 1 4 6 6 ■ 31
I
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Příloha č. 5

Jmenný seznam žáků odměněných cenami na
IV. Mezinárodní matematické olympiádě

I.cena

Josif Bernstejn (SSSR); Kéry Gerzson (MLR);
Lidija Gončarovová(SSSR); Sebestyén Zoltán (MLR).

II.cena

Kota József (MLR); Gdlfi Ldszlo (MLR); Marcin
Kuczma (PLR); Gheorghe Eckstein (RLR); Szida-
rovszky Ferenc (MLR); Alexandru Buimovici (RLR);
Bojan Marinov Bonev (BLR); Alexej Potěpun (SSSR);
Grigorij Margulis (SSSR); Peter Hatala (ČSSR);
Gheorghe Lustig (RLR); Karl-Heinz-Tetsch (NDR).

III.cena

Miroslav Světloslavov Tanušev (BLR); Jaroslav
Ježek (ČSSR); Jacek Wolejszo (PLR); Božidar Di-
mitrov Kacarov (BLR); Benczur Andrds (MLR);
Siminovits Miklós (MLR); Jan Rampala (PLR);
Lucian Badescu (RLR); Florea Hantila (RLR);
Gennadij Kuranov (SSSR); Josef Danes (CSSR);
Eva Hensz (PLR); Radu Puha (RLR); Danijar •
Muštari (SSSR); Karel Veselý (ČSSR).

137



2. SOUTĚŽNÍ ÚLOHY IV. MMO

Клал!*. (Texty a nástin řešení0
1. Vypočtěte nejmenší přirozené číslo n, které má

tyto vlastnosti:
(1) jeho vyjádření v desítkové soustavě končí cif-

tou 6; čbLícž
(2) jestliže před číslo n napíšeme cifru 6 a poslední

eJLUuCCs. cifru 6 škrtneme, dostaneme čtyřnásobek hle-
daného čísla n.

(Úlohu navrhlo Polsko a správné řešení bylo hod-
noceno 6 body.)

Řešení. Položme n — lOx + 6 (x celé nezáporné);
označme у počet cifer čísla n. Pak platí

4(1 Ox + 6) = 6 . К)*"1 + x,

tj. po úpravě
13* = 2 . (KF"1 - 4) .

Je tedy třeba vyšetřovat celá čísla 6, 96,996,9 996,. .

která mají tvar ÍO2'-1 — 4, a najít mezi nimi první
číslo dělitelné třinácti. Zkusmo určíme, že je to číslo

99 996 = 13.7 692.

(1)
• 5

Je tedy у — 1 = 5, jy = 6;ze vztahu (1) dostaneme
x — 15384. Hledané číslo je n= 153 846; zkouška sku-
tečně dává 4.153 846 = 615 384.

Jiné řešení. Končí-li hledané číslo n cifrou 6, končí
číslo k — An cifrou 4 (je 6.4 = 24), končí tedy n dvoj-
číslím 46. Avšak 46.4 = 184, proto končí k dvojčíslím
84 a číslo n trojčíslím 846; takto postupujme dále,
přehled posledních cifer dekadického zápisu zachy-
cuje tabulka:
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Číslo nČíslo k = An

64
4684

846384
5 384

15 384
.... 615 384

3 846
53 846

.... 153846

Dokažme, že číslo 153 846 splňuje požadavky úlohy:
Především platí 153 846.4 = 615 384. Z tabulky a
z naznačeného postupu je patrné, že číslo 153846 je
nejmenší číslo toho druhu. Tím je řešení provedeno.

12. Určete všecka reálná čísla x, která splňují ne-
rovnost

1/3 — x — ]/* + 1 > £.
(Úlohu navrhlo Maďarsko; její správné řešení bylo

hodnoceno 6 body.)
Řešení. Budiž x kořenem nerovnosti (2); nerovnost

upravíme na tvar

.№

—'*'*7

1/3 — x > \ + ]/x + 1 •

Protože na obou stranách této nerovnosti jsou kladná
čísla, dostaneme po umocnění a úpravě

i — 2x > ]/x + 1 .

Nové umocnění a úprava dá nerovnost
64x2 - 128x + 33 > 0 . (3)
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Rovnice 64л;2 — 128л: + 33 = 0 má reálné kořeny
_ 8 ± 1/31.

o Э*1,2

proto můžeme rozložit trojčlen na levé straně (3)
v součin kořenových činitelů a dostaneme

(8x — 8 + 1/31) (8x - 8 - ]/3Í) > 0 .

Součin obou činitelů je kladný jedině v tom případě,
je-li menší z obou činitelů, tj. 8л: — 8 — 1/31, kladný
nebo je-li větší z obou činitelů, tj. 8л; — 8 +УЗЬ
záporný.

Odtud dostaneme dvě skupiny možných řešení:

8

(4)

Ж < 1 - ipu
x > 1 + 11/31 .

Nyní provedeme zkoušku, a) Z (5) dostaneme
3 - x > 2 + \ Щ > 0, x + 1 < 2 - ll/зТ. (7)
Aby odmocnina ]/x + í měla smysl, musí být x + 1 ^
^ 0; proto musí platit x ^ —1, tedy celkem musí být

-láKl -ipr.
Umocněním na druhou si ověříme snadno rovnost

1/2+lpT— У2 - ll/ff= i;
vzhledem к (7), (9) je tedy

Уз — x — Ух -f- 1 > \,

(5)
(6)

(8)

(9)

což je nerovnost (2).
Z (6) dostaneme

1/3 - ж > 1/2 - ij/31 ,

У* + 1 + 2 > 2 + У2 + 1У31 .
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Protože je zřejmě

У2 - 11/31 < 1 + 1/2 + |]/31,
nedává vztah (6) žádné řešení úlohy.

Všecka řešení nerovnosti (2) jsou tedy dána ne-
rovnostmi (8).

Poznámka. Uvedené řešení neužívá metody ekviva-
lence, zkouška se vykonala bez obrácení postupu z roz-
boru. Většina účastníků však řešila nerovnost (2) po-
mocí ekvivalentních úprav.

3. Je dána krychle ABCDA'B'C'D' (protější stěny
jsou ABCD, A'B'C’D' a platí AA'\\ BB' || CC ||

napsaném poradk
II DD'). Proměnný bod X
obvod čtverce ABCD
měnný bod Y probíhá tohž rychlostí obvod čtverce
В'С'СВ (v -íiapšáhem pořádku). Oba body X, Y se
počnou pohybovat v-témž^ okamžiku, přičemž výchozí ' '
polohy jsou A a B'. ~

Vyšetřte geometrické místo středů Z úseček XY a
sestrojte náčrtek.

rychlostí
u), pro-

.strojte náčrtek. Lyizcte-
(Úiohu navrhlo Československo á její správné řešení

bylo hodnoceno 8 body.)
Řešení (obr. 37). Označme a rovinu souměrnosti

hrany AA'; rovina a je rovnoběžná s rovinou ABC
a protne danou krychli ve čtverci A0B0C0D0 (A0 je
střed úsečky AA' atd.). Označme po řadě Zl3 Ž2
středy úseček A0B0, B0C0.

a) Když bod X probíhá úsečku AB, probíhá bod Y
touž rychlostí úsečku Б'С'; střed Z úsečky XY leží
podle známé věty v rovině a. Bod Z je tedy také stře-
dem úsečky X'Ykterá je pravoúhlým průmětem
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úsečky XY do roviny a. Geometrickým místem středů
Z je v tomto případě zřejmě úsečka ZXZ^

b) Když bod X probíhá úsečku BC a bod Y úsečku
C'C, jsou přímky XY rovnoběžné s úhlopříčkou BC'.
Geometrickým místem bodů Z je v tomto případě
zřejmě úsečka Z2C.

c) Když bod X probíhá úsečku CD a současně
bod У úsečku CB, jsou přímky XY rovnoběžné
s úhlopříčkou BD a body Z vyplní úsečku CZ3, kde Z3
je střed čtverce ABCD (úhlopříčky BD).

d) Když se konečně bod X vrací do bodu A po
úsečce DA a současně bod У se vrací do bodu B' po
úsečce B'B, je situace obdobná jako v případě a): bod
Z pak probíhá úsečku Z3Z13 jak snadno dokážeme
vhodnou výměnou hran krychle.
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Patrně je ZXZ2 = Z2C = CZ3 (každá z těchto úse-
ček je shodná s polovinou stěnové úhlopříčky dané
krychle); mimo to je ZLZ2 || CZ3. Čtyřúhelník Z1Z2CZ3
je tedy rovnoběžník, a to kosočtverec.

Tím je úloha rozřešena.

4. Řešte rovnici

(10)cos2* + соз22л: + соз2Зя = 1 .

(Úloha byla navržena Rumunskem; správné řešení
bylo hodnoceno 5 body.)

Řešení. Užijeme známých vzorců
2 cos2* = 1 + соз2х, 2 cos22jc = 1 + соз4я

a dosadíme do prvních dvou členů rovnice (10);
po úpravě vyjde

(11)cos2x + cos4x + 2 cos23x = 0 .

Na první dva členy rovnice (11) užijeme vzorce pro
součet cos a + cos/?; dostaneme

2 cos3x cos* + 2 cos23x = 0,
neboli

2 cos3x (cos x + cos3x) = 0 .

Na dvoj člen v závorkách užijeme znovu vzorce pro
cos a + cos/?; vyjde

(12)4 cos* cos2x cos3x = 0 .

Všecka řešení rovnice (12) jsou
2x = 90° + k . 360°,x = 90° + k . 360°,

3x = 90° + k . 360°,
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neboli

x = 90° + /е. 360°, x — 45° -f- h . 180°,
x = 30° + k . 120°,

kde k je libovolné celé číslo.
Zkouškou snadno zjistíme, že tyto tři soustavy čísel

skutečně vyhovují rovnici (10).

5. Je dána kružnice bna ní tři různé body A,B, C.
Sestrojte (pravítkem a kružítkem) na kružnici k další
bod D tak, aby vznikl čtyřúhelník ABCD, jemuž lze
vepsat kružnici.

(Úlohu navrhlo Bulharsko; nejvyšší možný počet
bodů za správné řešení byl 7.)

Řešení. Pro hledaný tečnový čtyřúhelník platí podle
známé věty

AD + ВС — AB + CD .

Zvolme označení bodů А, В, C tak, aby platilo BC
^ AB (je-li BC < AB, vyměníme označení bodů
A, C). Vztah (13) upravíme na tvar

(13)

BC - AB = CD - AD . (14)
Hledaný vrchol D náleží tedy jednak kružnici k,
jednak hyperbole, která má ohniska A, C a jejíž hlavní
osa má délku BC — AB. Jde tedy o sestrojení spo-
léčných bodů obou křivek euklidovskou konstrukcí.

a) Je-li AB = BC, musí podle (14) být AD = CD',
bod D leží na ose úsečky AC, která protne kružnici k
mimo bod В v jediném dalším bodě. Vznikne kon-
vexní čtyřúhelník ABCD, který je deltoidem a jemuž
lze tedy skutečně vepsat kružnici (obr. 38).
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b) Je-li AB < BC, tu podle (14) je AD < CD
(obr. 39). Na úsečce CD sestrojíme v tomto případě
pomocný bod E, pro který platí DE — AD. Pro vzdá-
lenost CE platí podle (14)

CE — CD — DE = CD — AD = BC — AB. (15)

Mimo to je
<£ AEC = 180° - AED =

= 180° - (90° - J <£ ADC) - 90° + i < ADC =
= 90° + i (180° - <£ ABC) = 180° - \ <£ ABC.

(16)
Je totiž <£ /1БС + <£ Л2)С — 180°, neboť čtyř-
úhelník ABCD je tětivový.

Pro pomocný bod E máme tedy dvě geometrická
místa bodů: předně podle (15) je to kružnice kx —
= (C; BC — AB)} za druhé podle (16) je to oblouk oly
který leží v polorovině opačné к АСВ o. z jehož bodů
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je vidět úsečku AC pod úhlem velikosti 180° —

-I ABC.
Když oblouk ox protne kružnici kx v bodě E, který

leží uvnitř kružnice k, pak poiopřímka CE protne
oblouk A Ckružnice k, který neobsahuje bod В, v bodech
D A, C. Pro čtyřúhelník ABCD platí podle jeho
sestrojení <£ DEA = £ <£ ABC a dále EDA =.
- 180°
- <£ DEA - EDA = * <£ ABC. Trojúhelník
AED je tedy rovnoramenný se základnou AE, tj. platí
AD = DE. Je tedy
CD — AD = DE + CE — AD = СЕ — ВС — AB ,

neboli pro čtyřúhelník ABCD platí vztahy (14), (13);
protože je tento čtyřúhelník konvexní, je tečnový.
Tím je provedena zkouška řešení.

Diskuse. Protože platí 180° — \ <£ ABC > 180° —
— ABC, leží oblouk uvnitř kružnice k (s vý-
jímkou bodů Л, C). Průsečík Я křivek &15 ox vznikne
jen v případě, je-li CE < ЛС, tj. když platí

ВС - AB < AC .

Tato nerovnost (trojúhelníková) je splněna pro každou
trojici bodů A3 B3 C kružnice k, úloha má tedy vždy
jediné řešení.

<£ ABC, tudíž DAE = 180°

6. Je dán rovnoramenný trojúhelník. Kružnice jemu
opsaná má poloměr r, kružnice vepsaná má poloměr q.
Dokažte, že vzdálenost d středů obou těchto kružnic je

d = |/r [r — 2q) .

(Úloha byla navržena Německou demokratickou
republikou a správné řešení hodnoceno 6 body.)
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Řešení. Budiž ЛВС daný rovnoramenný trojúhel-
nik se základnou BC. Střed O kružnice jemu vepsané
leží v polorovině BCA a jeho vzdálenost od přímky
BC je q (obr. 40 až 42).

Je-li úhel a = BAC ostrý, leží střed S opsané
kružnice také v polorovině BCA a jeho vzdálenost od
přímky BC je r cosa; je
tedy v tomto případě
d — SO == | q — r cosa|.
Je-li a .= 90°, splyne bod
S se středem M úsečky
ВС a platí

d = SO — q —

— |g — r cosa| .

Je-li úhel a tupý, leží střed 5 v polorovině opačné
к BCA; jeho vzdálenost od přímky BC je — r cosa а
platí opět

d = SO = q. —r cosa = | q — r cosa| ,
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Ve všech případech je tedy
d — | q — r cosa| (17)/

Zbývá vypočítat cos a pomocí r, g; označme M
střed úsečky ВС a vyjádřeme délku úsečky BM dvo-
jím způsobem. Předně platí

BM = r siná ,

ať je úhel a ostrý, pravý nebo tupý. Za druhé vyplývá
z trojúhelníka BMO vztah

(18)

(«•+í).BM = g tg (19)

i(90°+l) =
neboť <£ BOM = | <£ BOC

= 45° + T •4

Porovnáním (18) a (19) dostaneme
, , a‘ + '84

a
, . a

— +' sin —cos
4 ,4

r siná = g
<x . <x

cos — sin -r

4 4

Rozšíříme-li poslední zlomek číslem cos + sin —■,

vyjde

1 - tg--4

1 + sin
r sin a" = g

a
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neboli

2r sin ^ COS2 у = Q 11 + sin .
Nahradíme-li cos2 ^
ným číslem 1 + sin , dostaneme

2r sin2 ^ — 2r sin + £» = 0.

Ježto cos a = 1 — 2 sin2 je podle (20)

q — r cosa = q — r .+ 2r sin2 =

= r ^2 sin ~

. o a
- sin2

2
a dělíme-li klad-= 1

(20)

)— r + 2r sin

a dále podle (17), (20)

- 1= Q — 6

= r2 ^4 sin2 — — 4 sin -j + lj = ;í/2

2p . . a
— — 4 sin —

г ч 2
= r2 ^4 sin y + 1) = r2 — 2г@,

což jsme měli dokázat.

7. Je dán čtyřstěn SABC. К tomuto čtyřstěnu
existuje pět kůlových ploch, z nichž každá se dotýká
šesti přímek SA, 57?, SC, ЛБ, 5C, CA. Tento čtyř-
stěn je pravidelný. Obráceně ke každému pravidel-
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nému čtyřstěnu lze sestrojit pět takových kulových
ploch.

Dokažte obě tyto věty a sestrojte náčrtek.
'(Úloha byla navržena z SSSR a správné řešení bylo

hodnoceno nejvýše 8 body.)
Řešení. I. Předně je třeba zjistit, v kterých bodech

se dotýkají kulové plochy prodloužených hran čtyř-
stěnu SABC. Každá z 5 kulových ploch protne rovinu
ABC v kružnici, která je trojúhelníku ABC buď ve-
psaná, nebo vně vepsaná.

Z-
В

a) Předpokládejme nejprve, že kulová plocha К
protne rovinu ABC v kružnici k vepsané trojúhelníku
ABC (obr. 43). Táž plocha К protne rovinu SAB buď
v kružnici k3 vepsané trojúhelníku SAB, nebo v kruž-
nici ki která je trojúhelníku SAB vně vepsaná ke
straně AB (obr. 44). V prvním případě protne plocha К
rovinu SBC у kružnici, která se dotýká dvou stran
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trojúhelníka SBC ve vnitřních bodech (totiž stran
SB, ВС)', proto je tato kružnice vepsána trojúhelníku
SBC a dotýká se i strany SC v jejím vnitřním bodě.
Kulová plocha К se tedy dotýká všech hran čtyřstěnu
ve vnitřních bodech; označíme ji K0 a nazveme ji
vepsanou kulovou plochou.

V druhém případě plocha К protíná rovinu SBC
v kružnici, která se dotýká strany BC ve vnitřním
bodě a prodloužené strany SB ve vnějším bodě; tato
kružnice je tedy vně vepsána trojúhelníku SBC ke
straně BC a dotýká se prodloužené strany SC v jejím
vnějším bodě. Tuto kulovou plochu označíme Ks
a nazveme ji vně vepsanou.

b) Protíná-li kulová plocha К rovinu ABC v kruž-
ničí kx vně vepsané trojúhelníku ABC např. ke straně
BC, protíná SAB v kružnici vně vepsané trojúhel-
niku SAB, a to zřejmě ke straně SB. Rovinu SBC
protíná plocha К v kružnici, která se dotýká stran SB
a BC ve vnitřních bodech; je to tedy kružnice ve-
psaná trojúhelníku SBC. Tím je tento případ převe-
den na případ a), přičemž jsou vrcholy S, А, В, C
nahrazeny postupně vrcholy А, В, C, S.

II. Kulová plocha K0 se dotýká přímek SA, SB, SC
po řadě v bodech Ax, Bx, Cx, kulová plocha Ks se
dotýká týchž přímek po řadě v bodech A2, B2, C2.
Obě plochy protínají rovinu ABC v téže kružnici k
vepsané trojúhelníku ABC; proto se obě dotýkají
přímek (hran) AB, BC, CA po řadě v týchž bodech
Z, X, Y. Podle vlastností tečen kulové plochy platí
AAX = AA2 = AZ=-AY', BBx = BB2 = BZ = BX',

CC^CC, = CX~CY. (21)
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Mimoto platí (opět podle vlastností tečen kulové
plochy)

SAX - SBX = SCX; SA2 = SB2 = SC2. (22)
Protože je SA2 — SAX + AAX + AA2 a obdobně
SB2 = + ЯВХ + ЯВ2, SC2 = 5CX + CCj +
+ CC2, platí podle (21), (22)

= jBBí = CCX;
protože je SA = SAX + AAX, SB = SBX + BB1S
SC = SCX + CCX, je podle (22), (23)

SA = SB = SC.

(23)

(24)
Výměnou vrcholů zjistíme z (24), že všecky tři hrany
vycházející z kteréhokoli vrcholu daného čtyřstěnu
mají touž délku; proto mají všechny hrany čtyřstěnu
SABC touž délku a čtyřstěn je pravidelný.

Tím je dokázána první věta z úlohy 7.

III. Budiž SABC pravidelný čtyřstěn, M střed
kružnice opsané i vepsané trojúhelníku ABC (obr. 45).
Otočení o 120° kolem přímky o = SM převedou ro-
vinu SAB v roviny SBC a SAC. Označme opět kz
kružnici vepsanou trojúhelníku SAB, S3 její střed,
dále označme k'3 kružnici vně vepsanou trojúhelníku
SAB, a to ke straně AB; její střed označme S3. Pro-
tože rovina SAB obsahuje přímku AB kolmou к CM
i SM, je SAB J_ SCM-, proto kolmice vztyčená
v bodě S3 к rovině SAB protne přímku o v jistém
bodě O0. Obdobně protne kolmice vztyčená к rovině
SAB v bodě S3 přímku o v jistém bodě Os. Kulová
plocha K0, která má střed v bodě O0 a obsahuje kruž-
nice k3, obsahuje i kružnice vepsané -trojúhelníkům
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SBC, SCA, jak zjistíme otáčením roviny SAB kolem,
osy o o 120°. Kulová plocha K0 je tedy jednou z uve-
děných pěti kulových ploch.
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Obr. 45

Obdobně kulová plocha Ks se středem 0S3 která
obsahuje kružnici k'3, protíná roviny SBC, SCA
v kružnicích vně vepsaných trojúhelníkům SBC, SCA,
jak zjistíme opět otočením kolem osy o. Plocha Ks je
tedy druhá z uvedených pěti ploch. Nahradíme-íi
bod S postupně body А, В, C, dostaneme další tři
plochy.

Tím bude dokázána i druhá věta z úlohy 7.
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• Závěrečná poznámka k řešení úloh IV. MMO. Před-
cházející řešení soutěžních úloh nejsou všude prove-
děna do podrobností; také neukazují všude, jak se
přijde na metodu řešení úlohy; o tom nechť uvažuje
čtenář sám.

Připomínáme jen, že účastníci MMO, zejména
z některých států, řešili mnohé soutěžní úlohy ně-
kolika způsoby, že si úlohy sami zobecňovali (např.
úlohu 6 řeši.i pro libovolný trojúhelník) a řešid tyto
zobecněné úlohy.

Tyto zkušenosti jsou pro nás velmi poučné. Uká-
žalo se totiž, že účastníci z některých států byli více
vedeni к řešení tzv. otevřených problémů, které jsou
první etapou v samostatné tvořivé práci v matematice.
V tomto směru máme ještě mnoho co dohánět v našich
domácích soutěžích. Proto jsme zařadili ve XII. roč-
niku čs. celostátní matematické olympiády zatím po-
kušně mimo rámec soutěže několik takových problé-
mů; chceme věnovat takovýmto úlohám více pozor-
nosti i v seminářích pro účastníky МО a v soustředě-
nich olympioniků. Je třeba vynaložit všecko úsilí, aby
se zvýšili úroveň žáků nadaných pro matematiku a
aby si naši žáci vybojovali v příštích mezinárodních
matematických olympiádách lepší umístění, než tomu
bylo dosud; tento i politicky závažný úkol jistě porno-
hou řešit učitelé matematiky všech typů našich škol.
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