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Předmluva

Milí účastníci matematické olympiády,

věnujme předmluvu к brožuře XXI. ročníku matematické
olympiády jedné pro vás velmi důležité otázce, a to otázce pře-
chodu z nižšího stupně školy na vyšší. Podnětem к tomuto tématu
je znovuzřízení kategorie C pro žáky prvního ročníku gymnasií
a středních odborných škol. Kategorie C byla obnovena proto,
že podle mnoha kritických hlasů žáci prvního ročníku škol II.
cyklu nestačili na úlohy náročnější kategorie B, neměli šance na
úspěch a ztráceli o soutěž zájem. Naše celostátní matematická
olympiáda je přísně vázána na školský systém, neboť v podstatě
každý ročník má svou vlastní soutěž. Nechceme uvažovat o tom,
zda je toto pojetí správné; je však asi důsledkem naší tradice
výchovy, která nevede mladé lidi к přílišné samostatnosti.
Ostatně i nedostatek času pro zájmovou činnost, způsobovaný
naším chápáním pětidenního pracovního týdne a přehuštěným
učebním plánem našich škol, brzdí volnější pojetí olympiády.

Obnovení kategorie C samo o sobě nemůže způsobit zázraky.
Žáci, kteří přešli ze základní školy na školu II. cyklu, musí po-
stupně změnit svůj postoj ke studiu matematiky a snad ke studiu
vůbec. A právě toto je problém přechodu: nejméně se projevuje
při postupu z bývalé národní školy (5. ročník ZDŠ) do 6. ročníku
ZDŠ. Ale už tady vznikají jisté potíže tím, že žáky vyučuje místo
jediného třídního učitele několik učitelů odborných; však se
možná na některé nesnáze pamatujete z vlastních zkušeností.
Horší je to při přestupu z 9. ročníku nevýběrové ZDŠ na výbě-
rovou školu střední. Tady vzrůstá náročnost, třídy se musí
teprve konsolidovat, neboť se v jedné třídě sejdou žáci z různých
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ZDŠ3 často rozdílné úrovně. Také pracovní tempo je přirozeně
vyšší a žáci musí umět aspoň trochu samostatně studovat. Ti,
kdo si nenavykli na základní škole pracovat soustavně doma,
doplácejí na to velmi na gymnasiích a odborných školách.

Všecko to, o čem jsme se zmínili všeobecně, platí ve zvýšené
míře o matematice, a v tom je právě problém znovuzřízení ka-
tegorie C. Úlohy kategorie Z mají často charakter propagační,
řešení bývají poloexperimentální a mají žáky jen postupně pře-
svědčovat, že matematická dedukce (odvozování a dokazováni)
je účinný nástroj při řešení problémů. Úlohy kategorie C musí
být výběrovější a složitější. Tematikou by se neměly úlohy I.
kola kategorie C příliš lišit od úloh kategorie Z, ale myšlenkově
by měly být náročnější. Uvědomte si, že v takové soutěži, jako
je matematická olympiáda, nevystačíte asi jen s tím, čemu jste
se naučili ve škole, ale že se budete musit tu a tam něčemu no-
vému přiučit; to je ostatně i cílem soutěže. Víme také dobře, že
na úlohy I. kola, studijního, nestačíte někdy sami; nejlepší je,
když se včas (ne na poslední chvíli!) poradíte se svým učitelem
matematiky. Opisovat řešení bez pochopení je nejen nepoctivé,
ale hlavně nesmyslné; tak se totiž ničemu nepřiučíte, nezískáte
zběhlost v řešení úloh a v dalším kole nebudete mít úspěch.

Přechodem ze základní školy na střední nejsou však potíže
skončeny. Většinu žáků tzv. studijního typu čeká ještě přechod
na vysokou školu. A zde je situace ještě napjatější: tempo studia
je značně rychlé, předpokládá se, že studenti umějí samostatně
studovat Uteraturu (učební texty, knihy a časopisecké články)
a že mají skutečně jisté nadání pro zvolený obor. A právě v ma-
tematice se vyskytuje dosti politováníhodných případů, kdy
student — dříve než se přizpůsobil vysokoškolským metodám
studia — musí vysokou školu pro neúspěch opustit.

V zahraničí se pedagogové i matematikové zabývají soustavně
a intenzívně otázkami přechodu na vysokou školu. Mluví se
o nich téměř na každé konferenci, pořádají se zvláštní kongresy
na toto téma, píší se články a vydávají se sborníky. Také v našem
státě se nezahálí; tak např. v listopadu 1972 se konala v Brně
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pracovní porada na toto téma; uspořádala ji matematicko-
pedagogická sekce Jednoty čs. matematiků, a fyziků.

Matematická olympiáda a její akce se snaží po dlouhou řadu
let usnadnit našim abiturientům přechod do studia matematiky
na vysoké škole. Je to nejen sama soutěž, která podněcuje žáky
к samostatné práci, jsou to i prázdninová soustředění, je to i vy-
dávání sbírky Škola mladých matematiků, jsou to i přednášky
a semináře pro olympioniky a jiné menší akce.

Je na vás, abyste se snažili co nejvíc vytěžit z těchto příleži-
tostí. Zbavte se při olympiádě svých školských zlozvyků; jsme
přesvědčeni, že to jde, protože účast v matematické olympiádě
je dobrovolná, nikdo vás к ničemu nenutí. Co se naučíte, bude
vaším ziskem. Přesto však máte jisté dvě morální povinnosti:

Ministerstva školství obou našich republik vynakládají na
olympiády každoročně velké částky peněz. Kdo se dobrovolně
rozhodne pro účast v matematické olympiádě, měl by si tuto1
skutečnost uvědomit a měl by pracovat poctivě a soustavně.

V období nastupující technické civilizace roste a poroste stále
potřeba matematicky vzdělaných lidí.

Proto mladí lidé, kteří mají disposice pro studium matema-
tiky, by měli rozvíjet své nadání, neboť tím jsou povinni nejen
sobě, ale i celé naší společnosti.

ÚV MO
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I. O průběhu XXI. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže v XXL ročníku byla ministerstva školství
ČSR a SSR s Matematickým ústavem ČSAV v Praze (MÚ
ČSAV) aJednotou čs. matematiků, a fyziků (JČSMF) za spolu-
práce s orgány Socialistického svazu mládeže (SSM). Také
XXI. ročník se řídil statutem, uveřejněným ve Věstníku MŠK,
roč. XIX, str. 126, 127, směrnice 37 ze dne 30. IV. 1963.

Žáci soutěžili opět ve 4 kategoriích; kategorie A byla určena
pro žáky III. а IV. ročníků, kategorie В pro žáky II. ročníků
a kategorie C pro žáky I. ročníků škol II. cyklu. V kategorii Z
soutěžili žáci ZDŠ. Bylo možné, aby žák soutěžil i ve vyšší ka-
tegorii než do které studijně patřil; v příloze A je řada takových
příkladů uvedena.

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU MATEMATICKÉ
OLYMPIÁDY

Ústřední výbor MO byl ministerstvy školství ČSR a SSR
jmenován v lednu 1971 a prakticky beze změny působil i v celém
XXI. ročníku v tomto složení:
Předseda: Jan Vyšín3 CSc.3 docent matematicko-fyzikální

fakulty KU v Praze
I. místopředseda: dr. Jozef Moravčík3 CSc.3 docent VŠD

v Žilině
II. místopředseda: prof. dr. Miroslav Fiedler, DrSc.3 vedoucí

vědecký pracovník MÚ ČSAV v Praze
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I. jednatel: Vlastimil Macháček, odb. asistent pedagogické
fakulty KU v Praze

II. jednatel: Jiří Mída, odborný asistent pedagogické fakulty
KU v Praze

Členové:
Zástupce MŠ ČSR: Jaroslav Láník, ústřední školní inspek-

tor MŠ ČSR, Praha
Zástupce MŠ SSR: Michal Žoldy, ústřední školní inspektor

MŠ SSR, Bratislava
Zástupce ÚV SSM: Jana Pomazalová, piof. gymnasia,

Brno
Dr. František Běloun, vedoucí matematického kabinetu KPÚ

v Praze
Miloš Franěk, profesor gymnasia, Prievidza
dr. Jozef Gruska, Matematický ústav SA V, Bratislava
dr. Milan Hejny, CSc., docent PFUK, Bratislava
František Hradecký, odb. asistent MFFKU v. v., Praha
prof. dr. Milan Kolibiar, DrSc., profesor PFUK, Bratislava
dr. Ivan Korec, odb. asistent, PFUK, Bratislava
akademik Josef Novák, vedoucí vědecký pracovník MÚ

ČSA V v Praze
Víťazoslav Repáš, ředitel gymnasia, Bratislava
dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV

v Praze

Jiří Šídlo, zástupce ředitele gymnasia, Praha
Miroslav Šmerda, učitel ZDŠ, Bílovice nad Svitavou
František Veselý, odb. asistent v. v., Praha
dr. František Zítek, CSc., vědecký pracovník MÚ ČSAV

v Praze

Dalšími členy ÚVMO byli předsedové krajských vý-
borů matematické olympiády:

prof. dr. Václav Pleskot, profesor ČVUT v Praze
Ludmila Tréglová, profesorka gymnasia, Říčany
Ing. dr. Lada Vaňatová, profesorka gymnasia, Strakonice

8



Věra Rádiová, profesorka gymnasia J. Fučíka, Plzeň
Karel Hnyk, odb. asistent ped. fakulty. Ústí nad Labem
Jan Laštovka, vedoucí kabinetu matematiky KPÚ, Hradec

Králové
Petr Benda, odb. asistent VUT FE, Brno
Josef Andrys, docent ped. fakulty, Ostrava
Vladimír Jodas, odb. asistent PF UK, Bratislava
dr. Ladislav Berger, odb. asistent VŠD, Žilina
Kveta Hončarivová, odb. asistentka PF UPJŠ, Košice

Pracovní předsednictvo (PÚVMO) se scházelo v tomto
složení (uvedeno v abecedním pořadí):

prof. dr. Miroslav Fiedler, DrSc.', VI. Macháček, J. Mída;
dr J. Moravčík, CSc.', dr.J. Sedláček, CSc.‘,doc.J. Vysin, CSc.',
dr. Fr. Zítek, CSc.', zástupci MŠ ss. ústřední inspektoři J. Láník
a M. Žoldy.

3. SCHŮZE ÚVMO

Jako v každém ročníku, tak i ve XXI. ročníku MO se sešel
ústřední výbor dvakrát.

Na první plenární schůzi v Praze ve dnech 9. a 10. prosince
1971 bylo vzpomenuto nejprve prof. dr. Karla Hruši, člena
ÚVMO, který zemřel v listopadu 1971. Prof. dr. K. Hruša byl
prvním předsedou oblastního výboru MO v Praze, působil
neustále v ÚVMO, byl autorem úloh pro MO a jedné brožury
v edici Škola mladých matematiků.

Předmětem jednání této plenární schůze byly tyto okruhy
problémů: spolupráce s SSM, hodnocení dosavadního průběhu
XXI. ročníku MO a zajištění organizace i náplně II. a III. kol
soutěže, XIII. mezináiodní matematická olympiáda a závěreč-
né hodnocení jubilejního XX. ročníku MO, přičemž bylo kon-
statováno, že se podařilo připravit a vydat zajímavou brožuru
к této příležitosti.

Plénum ÚV MO schválilo i zprávu komise pro návrhy odměn
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zasloužilým pracovníkům v MO i návrh na udělení první tzv.
Zelinkovy ceny. Jako vždy se schůze zabývala vydáváním edice
„Škola mladých matematiků", konkursem JČSMF na úlohy pro
MO a FO, přípravným soustředěním pro MMO a celostátním
soustředěním úspěšných řešitelů MO a FO v Rajnochovicích.
Z kritiky délky, organizace a obsahového zaměření vyplynuly
závěry pro další akce.

Pod vedením dr. Bělouna byla ustanovena komise ÚV MO,
aby připravila na žádost matematické sekceJSMF návrhy témat
pro činnost matematických kroužků na ZDŠ.

Na druhé plenární schůzi ÚV MO, která se konala ve dnech
14. a 15. dubna 1972 na Kladně při příležitosti konání celostát-
ního III. kola kategorie A, byla vedle běžných pracovních
otázek řešena problematika péče o nadané žáky v matematice.
Dopis předsedy ÚV MO s. doc. J. Výšina zaslaný MŠ ČSR
a SSR vyvolal zájem tyto otázky řešit. Tak např. bylo MŠ ČSR
umožněno uspořádat jedno přípravné soustředění před MMO
již v březnu 1972 ve Štiříně, uvažuje se o zřízení několika mate-
maticky zaměřených gymnasií v ČSR a SSR již od 1. IX. 1973.
Dobrým podkladovým materiálem pro přípravu těchto škol mají
být i zprávy dr. L. Bergera a dr. E. Moravusové ze studijní cesty
do Maďarska, kde sledovali výuku na matematicky orientova-
ných školách. Obdobné zkušenosti se pokusíme získat i z ostat-
nich zemí socialistického tábora (např. SSSR a NDR).

Dalšími body programu byla příprava soustředění úspěšných
řešitelů kat. В a C v Trenčíně (viz bod 5 této kapitoly), zajišťo-
vání pomocné literatury a příprava XXII. ročníku MO. Bylo
konstatováno, že roste počet KV MO, které pořádají krajské
III. kolo v kategorii Z.
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4. PRŮBĚHJEDNOTLIVÝCH KOL SOUTĚŽE

a) Studijní část I. kola, při níž účastníci řeší tzv. přípravné
úlohy, proběhla na školách od září do konce listopadu 1971 pod
vedením učitelů matematiky, kteří žákovských řešení využili
jako podnětů к besedám.

Termíny odevzdání soutěžních úloh byly různé: v kategorii A
a Z 15. leden, v kategoriích В a C 29. únor 1972. V kategoriích
А, В a C měli žáci opět možnost volby úloh, a to čtyř ze šesti,
uspořádaných ve dvě trojice. Podmínkou pro postup do II. kola
bylo vyřešit na známku 1 nebo 2 aspoň 3 úlohy; přitom mezi
těmito úlohami musela být zastoupena každá z trojic aspoň
jednou úlohou.

Z přehledné tabulky P za I. kolo je patrný vzestup počtu jak
účastníků, tak i úspěšných řešitelů v kategoriích A, C a Z. Při-
tom účast v kategorii В je na přibližně stejné úrovni jako byla
v XVIII. ročníku, kdy naposled soutěžily kategorie В a C oddě-
leně. Potěšitelný je zvláště počet úspěšných řešitelů kategorie C,
na což měly bezesporu vliv i komentáře k úlohám, které dostaly
к dispozici školy. Několikaletý vzestupný trend účasti v kate-
gorii Z nadále trvá. Velká práce učitelů matematiky na ZDŠ
i účast žáků v soutěži MO bude mít jistě i kladný vliv na zlepšení
vyučovacích výsledků v matematice.

b) Klauzurní II. kolo proběhlo pod vedením KVMO v kate-
gorii A dne 4. března a v kategoriích В a C v sobotu 22. dubna
1972 (tento druhý termín se později ukázal příliš pozdní).
Soutěž II. kola kategorie Z v okresích se konala pod vedením
OVMO dne 1. března 1972.

Také srovnání výsledků MO v posledních čtyřech ročnících
(viz tabulka P) ukazuje, že XXI. ročník možno považovat za
úspěšný. Z tabulek 3 a 4 je však stále patrný velký rozdíl mezi
jednotlivými kraji; v kategorii Z jsou obdobné rozdíly i mezi
okresy jednotlivých krajů. Svědčí to nejen o rozdílné pozornosti,
věnované MO na školách, ale i o velmi rozdílných vnějších pod-
mínkách.
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c) Závěrečné celostátní III. kolo soutěže v kategorii A se ко-
nalo 14. a 15. dubna 1972 na Kladně. Protože počet úspěšných
řešitelů II. kola byl poměrně velký (viz tabulka 3), mohlo
PÚVMO provést výběr účastníků a pozvat jich celkem 74 do
Kladna.

Soutěž proběhla opět ve dvou dnech; každý den se řešily
3 úlohy 4 hodiny. Po opravě žákovských řešení komisí PÚVMO
(každou úlohu opravovaly dvě osoby) bylo vyhlášeno celkem
19 vítězů a dalších 14 úspěšných řešitelů (viz příloha В). Uve-
dění žáci byli odměněni MŠ CSR a MŠ SSR a jejich seznamy
byly poslány děkanstvím všech vysokých škol jako materiál pro
přijímací komise.

Reprezentační družstvo pro XIV. MMO v Polsku bylo vy-
bráno na zasedání PÚVMO ve Zlatovciach dne 24. června 1972
po soustředění vybraných deseti úspěšných řešitelů III. kola
kat. A. O MMO je zvláštní zpráva v kapitole VI.

V kompetenci KVMO se konala i III. kola soutěže MO v ka-
tegorii Z, a to v Praze-městě (36 účastníků), Jihomoravském (65),
Západoslovenském (38) a Středoslovenském kraji (36). Termíny
soutěže byly v rozmezí od 26. dubna do 16. května 1972. Podle
potřeby rozdělily KVMO soutěž i na několik míst (např. vJiho-
moravském kraji byly tři oblasti) nebo soustředily účastníky na
2—3 dny do vhodného objektu (např. Západoslovenský kraj do
rekreačního střediska ve Skalických horách, Středoslovenský
kraj do Kunerádu, přičemž třetí den byl využit pro rozbor žá-
kovských řešení).

Výběr úloh byl přibližně na úrovni úloh II. kola kategorie Z,
někdy byly úlohy i obtížnější. Ve třetím krajském kole soutěžili
zpravidla po koordinaci ze všech okresů vybraní nej lepší ře-
šitelé II. kola; jen výjimečně byl pozván soutěžící tak, aby byly
zastoupeny všechny okresy kraje.

Ze zpráv KVMO vyplývá, že přes finanční problémy věno-
vály se KVMO soutěži III. kola kategorie Z rády a že výsledky
pomohly porovnat stav péče o nadané žáky v jednotlivých okre-
šech. Jen z jednoho KVMO jsme dostali vyjádření proti pořá-

12



dání III. kola kategorie Z v krajích; je prý to „jednak finančně
nákladné a neúčelné a zbytečně by konáním III. krajského kola
poklesla prestiž OVMO“.

5. POMOCNĚ AKCE

Ve spolupráci KVMO a poboček JČSMF byly pořádány
četné přednášky s obsahem zeměřeným к МО jak pro učitele,
tak i pro žáky. Zvláště bohatá činnost se týkala kategorie Z.

V kategorii A se opět konalo přípravné školení před MMO.
V Praze mělo ráz školení v kroužku, na jiných místech bylo
individuální podle sylabů připravených v Praze. Pražský krou-
žek vedli:

a) dr.Jiří Sedláček, CSc.3 vědecký pracovník MÚ ČSAV
(Teorie čísel);

b) prof. dr. M. Fiedler, DrSc., vedoucí vědecký pracovník
MÚ ČSAV (Kombinatorická geometrie);

c) dr. Josef Hojdar, odborný pracovník MÚ ČSAV (Nerov-
nosti a rovnice);

d) dr. Antonín Vrba, odborný pracovník MÚ ČSAV (Ele-
mentárm a kombinatorická geometrie);

e) dr. Petr Liebl, odborný pracovník MÚ ČSAV (Kombina-
torika).

Hojně bylo využíváno sovětské sbírky doc. Morozovové-
Petrjakova Úlohy mezinárodních matematických olympiád.

Ve dnech 12.—18. března 1972 se konalo první přípravné
soustředění před MMO ve Štiříně, kam bylo povoláno celkem
20 nejlepších řešitelů I. kola kategorie A z krajů. Toto soustře-
dění mělo pomoci vybrat a připravit družstvo pro XIV. MMO
v Polsku.

Přednášející dr. Fr. Zítek, CSc.3 z MÚ ČSAV, Iva Rohlíčková
zJiří Mída3 z ped. f. UK v Praze, dr. Petr Liebl a dr.JosefHojdar
z MÚ ČSAV a doc. Jan Vysin, CSc.3 vedli soustředění seminární
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formou, zadávali a řešili s posluchači úlohy s úrovní meziná-
rodních matematických olympiád.

Další pomocné akce MO zajišťovali slovenští členové ÚV
MO, především dr. Ivan Korec, CSc. z MFF KU v Bratislavě.

Celostátně sústredenie účastnlkov MO a FO kategorie В (а A
z nematuritných ročníkov) sa v školskom roku 1971/72 konalo
v Trenčíně v čase od 19. 6. 1972 do 8. 7. 1972. Boli, už tradičné,
zriadené tri triedy, matematická, matematicko-fyzikálna a fy-
zikálna.

V matematickej triede sa konali následujúce přednášky a semi-
náre:

Anton Galan: Základy analytickej geometrie v priestore,
dr. Oldřich Odvárko: Kombinatorické úlohy a úvahy,
dr. Jaroslav Smítal, CSc.: Teória čísel,
doc. dr. Štefan Znám, CSc.: Teória grafov,
doc. dr. Beloslav RieČan, CSc.: Pravdepodobnosť,
dr. Ivan Korec, CSc.: Teória algoritmov.
V matematicko-fyzikálně] triede přednášeli: dr. O. Odvárko,

doc. Š. Znám, doc. B. Riečan a dr. I. Korec na rovnaké témy ako
v matematickej triede, niektoré přednášky však odzneli v skráte-
nom rozsahu.

Zvyšok programu v matematicko-fyzikálnej triede a celý pro-
gram vo fyzikálnej triede zabezpečoval ÚV FO.

Súčasne s prvým týždňom celoštátneho sústredenia účastní-
kov MO a FO kategorie В prebiehalo sústredenie před medziná-
rodnou mat. olympiádou, na ktorom sa konali nasledujúce semi-
náre:

Jana Galanová, dr. Jaroslav Smítal, CSc.: Teória čísel,
Anton Legéň: Komplexně čísla a trigonometrie,
Jozef Božek: Úlohy zo stereometrie,
Jozef Božek: Výpočtové a konštrukčné úlohy z planimetrie,
doc. dr.JozefMoravčík, CSc.: Nerovnosti, postupnosti, funkcie,
prof. dr. Miroslav Fiedler, DrSc.: Kombinatorika,
Jana Fetková: Trigonometrické rovnice a nerovnosti.
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Předsednictvo ÚV MO vybralo na svojej schódzi dňa 24. 6.
1972 v Trenčíně z desiatich účastníkov sústredenia 8členné
družstvo na MMO.

6. STUDIJNÍ LITERATURA

Letáky pro kategorii А, В a C celostátně zajišťovalo SPN
v Praze. Letáky pro kategorie Z vyšly česky, slovenský a ma-
ďarsky.

V nakladatelství Mladá fronta byly vydány další svazky edice
Škola mladých matematiků:

č. 28 Bruno Budinský-Stanislav Šmakal: Vektory v geometrii
č. 29 František Zítek: Vytvořující funkce
č. 30 Milan Koman-Jan Výšin: Malý výlet do moderní ma-

tematiky
Zvláště poslední svazek vyvolal značný kladný ohlas; škoda

jen, že náklady uvedených svazků nestačí pokrýt poptávku.
Další svazky jsou v tisku a v recenzním řízení.

7. KONKURS JČSMF NA NÁVRHY ÚLOH PRO MO

Od roku 1966 jsou úlohy pro MO mimo jiné získávány také
konkursem. Tento konkurs vyhlásila Jednota čs. matematiků a fy-
ziků. Od jeho zveřejnění na jaře roku 1966 do 30. září 1972 se
ho zúčastnilo svými úlohami 81 autorů. Zasláno bylo celkem
765 úloh, přičemž recenzní řízení bylo dosud skončeno u 708
úloh, z nichž bylo přijato a odměněno 465.

Význam konkursu pro MO je vidět z toho, že ve XXI. ročníku
z 66 zadaných úloh jich bylo 59 získaných v konkursu.

Podmínky konkursu byly již mnohokrát zveřejněny. Pro zá-
jemce je znovu připomínáme.

Text a řešení každé úlohy je třeba zaslat napsané na listu
formátu A4 (vždy originál a jeden opis) na adresu: Ústřední
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výbor matematické olympiády, Praha 1, Nové Město, Žitná 25.
Za každou přijatou úlohu je vyplácena odměna ve výši 50 Kčs
v kategoriích А, В a C a 30 Kčs v kategorii Z. Při recenzi se
přihlíží к původnosti úlohy a odměna může být popřípadě zvý-
sena, např. přijaté úlohy, s nimiž se počítá, že budou na některé
MMO předloženy jako čs. návrh, jsou odměňovány částkou
80 Kčs. Úlohy, které neprojdou úspěšně konkursním řízením,
se autorům vracejí. Přijaté úlohy jsou zařazeny do archívu ÚV
MO. Vyplácením odměny autorovi získává ÚV MO dispoziční
právo, zejména upravit text úlohy i autorské řešení a použít
úlohy pro účely MO podle vlastní volby. Autor samozřejmě
bere na sebe závazek, že přijatou úlohu utají, aby průběh olym-
piády nebyl narušen.

Návrhy úloh pro MO lze do konkursu zasílat neustále, neboť
není časově omezen a probíhá nepřetržitě.
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Přehledná tabulka P

Počet soutěžících v 18., 19., 20. a 21. ročníku MO

Kate-

gorie
CA В Z školní

rok
Ú P | Ú | P Ú úkolo Proč. p

68-69

69-70

70-71

71-72

18. 4264362 273 963 636 6 759

8 230

10 366

11090

506 370

*)19. *) 5550565 447 842 612
I.

20. *) *) 7376399 352 843 656

21. 554 445 354 926 7870476 1115

68-69

69-70

267 317 34 585 35 3 876

4 863

6 770

7 275

145518. 37

*) *)19. 381 88 556 129 1790
II.

*) *) 70-71

71-72

20. 341 613 162 380758

429 844 306321. 170 342 122 180

3518. 23 68-69

69-70

70-71

71-72

Nekonají se celostátně4419. 24
III.

4220. 20

7421. 33

Poznámky:

P — počet všech účastníků
O — počet úspěšných řešitelů
*) — kategorie C byla zrušena, žáci I. а II. ročníku škol II. cyklu

soutěžili ve společné kategorii B.
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Tabulka 2

Přehled účastníků I. kola podle krajů v kat. Z

Kategorie Z

KRAJ Z toho
dívek

Z toho
dívek

ÚP

Praha - město 3211 046 757502

4CU

Středočeský 231478312684

Jihočeský 177247 362476

162Západočeský 303469 275

169Severočeský 297 417826

Východočeský 279383767 580

Jihomoravský 569 3591 255 785

453 234Severomoravský 983 556

1 966 i 1011 1736 860Západoslovenský

641Středoslovenský 1 454 974 475

600Východoslovenský 1 209 922 453

Celkem 499011 090 7870 3720
I

P — celkový počet účastníků; Ú — počet úspěšných řešitelů
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Tabulka 4

Přehled počtu účastníků II. kola podle krajů v kategorii Z

Kategorie Z

KRAJ Z toho
dívek

Z toho
dívek

ÚP

f

Praha - město 166698 276 436

Středočeský 410 289 131190

Jihočeský 352 39174 92

Západočeský 280 150 99 49

Severočeský 305 133122 51

Východočeský 522 253 175369

Jihomoravský 707 317 76213

Severomoravský 534 222 96257

Západoslovenský 1713 851 209485

Středoslovenský 892 429 141358

Východoslovenský 862 416 146332

Celkem 7275 3400 3063 1279

P — celkový počet účastníků; Ú — počet úspěšných řešitelů
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Příloha A

POŘADÍ ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
VE XXI. ROČNÍKU MO

(pokud není uveden typ školy, jde o gymnasium; z každého
kraje je uvedeno nejvýše prvních deset úspěšných řešitelů)

PRAHA - MĚSTO

Kategorie A
Jan Brychta, 4.a, Pražačka, Praha 3; Pavel Ferst, 2.d, Slad-

kovského, Praha 3; Petr Hájek, 3. c, Štěpánská, Praha 1; Tomáš
Chrz a Petr Jarolím, 3.f, Petr Slačálek, 2.f, ul. W. Piecka,
Praha 2; Jiří Měska, 2.d, Sladkovského, Praha 3; Miron Tegze,
3.f, ul. W. Piecka, Praha 2; Alexandr Franěk, 3.f, Parléřova ul.,
Praha; Jan Frynta, 3.f, ul. W. Piecka, Praha 2.

Kategorie В
Petr Slačálek, 2.f, ul. W. Piecka, Praha 2; Jan Trlifaj, 2.d,

Sladkovského nám., Praha 3; Aleš Drápal a Petr Malý, 2.f,
U libeňského zámku, Praha 8; Jiří Měska, 2.d, Sladkovského
nám., Praha 3; Alena Vencovská, 2.b, Štěpánská ul., Praha 1;
Josef Stehno, 2.f, ul. W. Piecka, Praha 2; Václav Salač, 2.a,
Ohradní ul., Praha 4.

Kategorie C
Martin Bauman, Michal Valášek a Jaroslav Fiala, l.d, ul. W.

Piecka, Praha 2; Jan Hugo, l.c, Sladkovského nám., Praha 3;
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Martin Šedivý, Dagmar Hášová a Jan Přívora, l.d, ul. W.
Piecka, Praha 2; Vlastimil Horák, l.a, Pražačka, Praha 3; Via-
dimír Bureš, l.a, Nad Štolou, Praha 7.

STŘEDOČESKÝ KRAJ

Kategorie A
Jaromír Kukal, 3. roč., Benešov; Jiří Frýda, 4. roč., Kladno;

Zdeněk Kosek, 4. roč., Beroun; Tomáš Fiala, 3. roč., Příbram;
Jindřich Kareš, 3. roč., Říčany; Dag Jeger, 4. roč. Beroun; Mi-
loslav Joukl, 3. roč., Kutná Hora; Ladislav Horáček, 4. roč.,
Mladá Boleslav; Zdeněk Kříž, 3. roč., Sedlčany; František
Mastný, 4. roč., Beroun.

Kategorie В
František Pudil, 2. roč., Sedlčany; Vladimír Meier, 2. roč.,

Mladá Boleslav; Jitka Šimečková, 2. roč., Sedlčany.

Kategorie C
Jiří Sloup, 1. roč., Brandýs nad Labem; Ivan Řehoř, 1. roč.,

Radotín; Karel Breiter, 1. roč., Mnichovo Hradiště; Dagmar
Štuksová, 1. roč., Říčany; Miroslav Ludwig, 1. roč., Čáslav;
Jiří Uhendorfský, 1. roč., SPŠ, Kutná Hora; Jiří Bohuslavský,
1. roč., Kutná Hora; František Čížek, 1. roč., SPŠ, Kutná Hora;
Jiří Sommer, 1. roč., Nymburk.

JIHOČESKÝ KRAJ

Kategorie A
Karel Horák, 3. roč., Strakonice; Josef Voldřich, 1. roč.,

Vimperky Václav Kubart, 4. roč., Tábor; Pavel Kindelmann,
2. roč., České Budějovice; Jaroslav Krieg, Milan Rabiška a
Karel Zítek, 3. roč., Tábor; Jiří Mikula, 3. roč., Strakonice;
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Rudolf Bayer, 3. roč., Tábor; Jiří Hanzálek, Petr Špatenka
a Josef Urban, 4. roč., České Budějovice.

Kategorie В
Pavel Kindelmann, 2. roč., České Budějovice; Zdeněk Rázek,

Josef Kočí a Danuše Bervidová, 2. roč., Tábor; Petr Jovanovič,
2. roč., České Budějovice; Josef Louženský, 2. roč., Prachatice;
Pavel Novák, 2. roč., České Budějovice; Pavel Nový, 2. roč.,
Strakonice; Vladimír Říha, 2. roč., Tábor; Jan Teska, 2. roč.,
Milevsko.

Kategorie C
Jan Vaňata, 1. roč., Strakonice; Josef Voldřich, 1. roč., Vim-

perk; Vladimír Drápalík, 1. roč., Strakonice; Zelenda, 1. roč.,
České Budějovice; Jana Libá, 1. roč. SPŠ stavební, České Bu-
dějovice, Pavel Jovanovič, 1. roč., České Budějovice; Jiří Sý-
kora, 1. roč., Písek; Karel Honzl, 1. roč., Kamenice n. Lipou;
Jaroslav Kvíčala, 1. roč., České Budějovice.

ZÁPADOČESKÝ KRAJ

Kategorie A
Vladimír Pelikán, 4.a, Blovice; Magda Fořtová, Blanka Hni-

licová, Stanislav Hála, Svatopluk Machalka a Josef Juřek, 3.d,
Julia Fučíka, Plzeň; Miroslav Křížek, 3.a, Julia Fučíka, Plzeň;
Otta Popovský, 4.a, Cheb; Josef Žezule, 3.b, Klatovy; Václav
Kohout, 2.a, Blovice.

Kategorie В
Ladislav Peksa, Emil Pelikán a Jiří Zymák, 2.a, Julia Fučíka,

Plzeň; Karel Tesař a Jan Klaschka, 2.a, Mar. Lázně; Václav
Veselý, 2.b, Klatovy; Hubert Nasko, 2.a, Julia Fučíka, Plzeň.

Kategorie C
Pavel Rádi a František Pillmann, l.a, Julia Fučíka, Plzeň;

Michal Svrček, l.b, Karlovy Vary; Vladimír Charvát a Pavel
Odvárko, l.a, Julia Fučíka, Plzeň; Jaroslav Krčmář, l.a, Sušice.
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SEVEROČESKÝ KRAJ

Kategorie A
Jasna Lupomechová, 4. roč., Frýdlant v Č.; Karel Hájek, 4.d,

ul. Jeronýmova 27, Liberec; Michal Eben, 3.a, Ústí n. Labem;
Jan Holub a Jiří Svoboda, 3.c, Čs. dobrovolců, Teplice v Č.;
Vítězslav Švejdar, 3.b, Komenského nám., Děčín; Richard
Lukáš a František Balcar, 4.d, ul. Jeronýmova 27, Liberec; Ivo
Mrázek, l.b, SPŠ stroj., Ústí n. L.-Střekov.

Kategorie В
Ivo Mrázek, l.b, SPŠ stroj., Ústí n. L.; Richard Zimák, 2.b,

Teplice; Martin Pešek, 2.b, Teplice; Jan Jánský, 2.c, Liberec;
Milan Kalný, 2.a, Litoměřice; Jiří Březina, 2.a, Chomutov;
Libuše Šefrnová, 2.a, Teplice; Eva Nesměráková, Blanka
Vágnerová a Vladimíra Vorlíčková, 2.c, Liberec.

Kategorie C
Jan Malý, l.a, Litoměřice; Emil Vlasák, 1. roč., SPŠ stroj.,

Ústí n. L.; Martin Miiller, l.a, Litvínov; Tomáš Sehnoutka,
l.a, Jablonec n. N.; Vojtěch Švehla, l.c, Liberec; Alena Něm-
cová, l.a, Teplice; Jiří Maryška, l.a, Jablonec n. N.; Hana
Slámová a Libor Žanda, l.c, Liberec; Jan Haras., 1. roč. SPŠ
stroj., Liberec.

VÝCHODOČESKÝ KRAJ

Kategorie A
Jan Mandel, 3.b, Náchod; František Fendrych, 4.g, Hradec

Králové; Libor Slezák a Igor Koropecký, 4.a, Pardubice; Vládi-
mír Bergl, 3.a, Pardubice; František Rozsypal, 4.a, Litomyšl;
Jiří Limpouch, 3.g, Hradec Králové; Pavel Drábek, 4.a, Pardu-
biče; Josef Prouza, 3.a, Pardubice.
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Kategorie В
Zdeněk Drábek, 2. roč., Lanškroun; Jiří Svoboda, 2.a, Pardu-

biče; Jiří Honců, 2.a, Jilemnice; Sylvie Bukovská, 2.a, Přelouč;
Olga Smetanová, 2.a, Jaroměř; Josef Ježek, Dobroslav Kindl,
2.a, Pardubice.

Kategorie C
Jiří Hůlka, l.g, Hradec Králové; Josef Pavel, 7.a, ZDŠ Ко-

menského, Rychnov n. Kněžnou; Miroslav Seiner, l.a, Pardu-
biče; Ivan Šup, l.a, Přelouč; Petr Holan, l.a, Nový Bydžov;
Luděk Němec, l.a, Pardubice; Stanislav Nožička, l.a, Nová
Рака; Josef Šimon, l.a, SPŠ, Dobruška; Jan Blažek, l.a, Chru-
dim; Pavel Bříza, l.a, Žamberk; Rastislav Jakubík, l.a, Polička;
František Starý, l.c, SPŠ el., Pardubice.

JIHOMORAVSKÝ KRAJ
A BRNO - MĚSTO

Kategorie A
Miroslav Kmošek, 3.a, tř. kpt. Jaroše, Brno; Luboš Bauer,

3.b, Koněvova, Brno; Miloš Sobotka, 4.a, Ždár nad Sázavou;
Jiří Binder, 4.b, Moravské Budějovice; Jaroslav Kuběn a Josef
Sorbi, 4.b, Prostějov; Karel Sázel, 4.a, Kroměříž; Jiří Malec,
3.a, Křenová, Brno; Jiří Mužík, 4.b, Třebíč; Pavel Brada, 3.a,
Jihlava; Jiří Řezáč, 3.a, Lerchová, Brno.

Kategorie В
Zdeněk Burda, 2. roč., Křenová, Brno; Jaromír Novák, 2. roč.,

Koněvova, Brno; Irena Vavrysová, 2. roč., Hustopeče; Aleš
Chramosta a Vladimír Drášil, 2. roč., tř. kpt. Jaroše, Brno;
Michal Konečný, Milan Fikar, Stanislav Češka a Petr Dub,
2. roč., Křenová, Brno; Vladimír Žákovský, 2. roč., Koněvova,
Brno.
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Kategorie С

Josef Gebrich, 1. roč., tř. kpt. Jaroše, Brno; Darja Podrouš-
ková, 1. roč., Křenová, Brno; Hana Sládková, 1. roč., Třebíč;
Zdenka Prokešová, 1. roč., Koněvova, Brno; Zdeněk Práček,
1. roč., Kroměříž; Jaroslav Nahodil a Libor Obrdlík, 1. roč.,
Třebíč; Ivana Fukačová, Marta Košťálová a Zdeněk Lustig,
1. roč., Znojmo.

SEVEROMORAVSKÝ KRAJ

Kategorie A

Jaromír Šimša, 2. roč. a Milan Menšík, 4. roč., Šmeralova ul.,
Ostrava 1; Václav Haniš, 3. roč., Rožnov p. R.; Jaroslav Švrček,
4. roč., Přerov; Pavla Růžičková, 4. roč., Frýdek-Místek; Jan
Knytl, 4. roč., Nový Jičín; Bohumil Maceček, 4. roč., Rýmařov;
Jan Podloucký, 3. roč., Přerov; Tadeus Feruga, 3. roč., Havlíč-
ková ul., Český Těšín; Igor Mačejovský, 4. roč., Šmeralova ul.,
Ostrava 1.

Kategorie В
Antonín Otáhal, 2. roč., Volgogradská ul., Ostrava-Zábřeh;

Ivo Semrád, 2. roč., Opava; Radomír Kuchta, 2. roč., Tajov-
ského ul., Havířov; Miroslav Dosoudil, 2. roč., Jiřího z Podě-
brad, Olomouc; Jiří Konečný a Zdeněk Vaculík, 2. roč., Rožnov
p. Radhoštěm.

Kategorie C
Lubomír Balanda, Andrzej Kozikowski, 1. roč., Český Těšín;

Karel Lický, 1. roč., Opava; Miloslav Prchal, 1. roč., Ostrava 1;
Anna Tomová, 1. roč., Ostrava-Zábřeh; Lumír Gatnar, 1. roč.,
Opava; Jan Hula, 1. roč., Bílovec; Čestmír Ramík a Kateřina
Lvová, 1. roč., Ostrava 1; Lubomír Zaorelek, 1. roč., Ostrava-
Porubá.
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ZÁPADOSLOVENSKÝ KRAJ
A BRATISLAVA - MĚSTO

Kategória A
Marián Uherko, Jan Valášek, Peter Dobrota, Milan Kolibiar,

Lubor Kollár, Milan Lehotský a Jan Hanuš, 4. roč., J. Hronca,
Bratislava; Tibor Kántor, 4. roč. maď., Komárno; Peter Hroššo,
2. roč., Topolčany.

Kategória В
Pavol Meravý, Pavol Zlatoš a Ján Krajčik, 2. roč., J. Hronca,

Bratislava; Peter Hroššo, 2. roč. Topolčany; Teodor Kusý,
2. roč., Vazovova, 38, Bratislava; Ján Nížňanský, 2. roč., Třen-
čin; Ján Krč, Lubor Kollár a Miroslav Brunclík, 2. roč., J.
Hronca, Bratislava; Ján Kaňuk, 2. roč., Malacky.

Kategória C
Peter Štarke, 1. roč., Trenčín; Milan Potočár, 1. roč., Senec;

Dušan Miklávek, Ivan Janetka, Ján Kučera, Ján Slodička a
Martin Vojtko, 1. roč., J. Hronca, Bratislava; Peter Holub,
1. roč., Senec; Vladimír Chlebana, 1. roč., Trenčín; Katarina
Kresáková, 1. roč., Metodova ul., Bratislava; Olga Malíková
a Jozef Tóth, 1. roč., Vazovova 38, Bratislava.

STREDOSLOVENSKÝ KRAJ

Kategória A
Imrich Vrťo, 4. roč., Rimavská Sobota; Jozef Tvarožek,

3. roč., SVŠ Horný Val, Žilina; Ján Haluška, 4. roč., Liptovský
Mikuláš; Ivan Kulich, 3. roč., SVŠ Timravy, Lučenec; Marián
Sedláček, 4. roč., Prievidza.

Kategória В
Valter Petrů, 2.b, Horný Val, Žilina; Jozef Širáň, 2.a, Krém-

nica; Ivan Mečiar, 2.e, Prievidza; Vlastimil Vrťo, 2.a, Rimavská
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Sobota; Marián Mikláš, 2.f, Prievidza; Miroslav Kaniansky,
2.b, Handlová; Juraj Lanko, 2.e, Prievidza.

Kategória C
Peter Husár, 1. roč., Horný Val, Žilina; Pavol Makovický,

9. roč., ZDŠ Konevova, Žilina; Ján Chovanec a Martin Jarina,
1. roč., Povážska Bystrica; Peter Maličký, 1. roč., Prievidza;
Jana Skřivánková a Elena Šutá, 1. roč., Kysucké Nové Město;
Ján Krchnavý, 1. roč., SVŠ Hliny, Žilina; Eva Bajnoková,
1. roč., Krupina.

VÝCHODOSLOVENSKÝ KRAJ

Kategória A
Karol Pelikán, 3.a, Šiobáiova uL, Košice; Danica Jakubíková,

3.g, a Vladimír Lisý, 3.f, SVŠ, Šrobárova ul., Košice; Peter
Višnyi, 3.a, Šrobárova ul., Košice; Ján Šomvárský, 2.e, SVŠ,
Šmeralova ul., Košice.

Kategória В

Tibor Lefkovič, 2.h, SVŠ, Šrobárova 46, Košice; Ján Šom-
várský a Ján Krivoš, 2.e, SVŠ, Šmeralova 9, Košice; Jan Surek,
2.a, Humenné.

Kategória C
Imrich Harbula, l.b, Sečovce; Igor Valiga, l.c, Kežmarok;

Jozef Dunajský, l.c, Poprad; Judita Fiedlerová, l.a, maď., Ко-
šice; Dušan Kazar a Richard Veselý, l.a, Šrobárova, Košice;
Štefan Dopirák, l.s, SPŠ-maď., Košice; Jaroslav Jaroš, l.c,
Poprad; Ján Pavlík, l.b, Šrobárova ul., Košice.
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Příloha В

III. KOLO KATEGORIE A - XXL ROČNÍK МО

Vítězové

1. Miroslav Kmošek, 3.a, gymn., tř. kpt. Jaroše, Brno
2. Karel Horák, 3.b, gymn., Strakonice
3. Imrich Vrtby 3.a, gymn., Rimavská Sobota
4. Jan Frynta, 3.f, gymn., ul. W. Piecka, Praha 25.—8. Jiří Binder, 4.a, gymn., Moravské Budějovice
5.—8. Jaw Brychta, 4.a, gymn., Pražačka, Praha 3
5.—8. Jan Knytl, 4. roč., gymn., Palackého, Nový Jičín
5.—8. Petr Slačálek, 2.f, gymn., ul. W. Piecka, Praha 2
9.—10. František Drašnar, 3.f, gymn., ul. W. Piecka, Praha 2
9.—10. Pavel Ferst, 2.d, gymn., Sladkovského, Praha 3

11.—12 .Jaroslav Švrček, 4. roč., gymn., Komenského, Přerov
11.—12. Dalibor Volný, 3.f, gymn., ul. W. Piecka, Praha 2
13.—14. Milan Menšíky 4. roč., gymn., Šmeralova ul., Ostrava
13.—14. Miron Tegze, 3.f, gymn., ul. W. Piecka, Praha 2
15.—16 .Jaromír Šimša, 2. roč., gymn., Šmeralova ul., Ostrava
15.—16. Milan Kolibiar, 3. roč., gymn., Novohradská, Brati-

slava
17. Milan Lehotský, 3. roč., gymn., Novohradská ul., Bratislava18.—19. Petr Hejl, 3.c, gymn., Štěpánská ul., Praha 1
18.—19. Jozef Tvarožek3 3.f, SVŠ, Horný Val, Žilina

Úspěšní řešitelé
20.—21. Peter Hroššo, 2.d, SVŠ, Topolčany
20.—21. Pavel Kindelmann, 2.a, gymn., S. Šatala, České Budě-

jovice
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22.—24. Jaromír Kuběn, 4.b, gymn., Ždár nad Sázavou
22.—24. Vladimír Pelikán, 4.a, gymn., Blovice u Plzně
22.—24. Miloš Sobotka, 4.a, gymn., Ždár nad Sázavou
25. Jan Trlifaj, 2.d, gymn., Sladkovského, Praha 326.—27. Vladimír Bergl, 3.a, gymn., Kotkova ul., Pardubice
26.—27. Václav Janiš, 3. roč., gymn., Rožnov p. Radhoštěm
28. Jiří Frýda, 4.a, gymn., Kladno29.—31. Magda Fořtová, 3.d, gymn., J. Fučíka, Plzeň
29.—31. Karol Pelikán, 3.a, gymn., Šrobárova ul., Košice
29.—31. Jan Valášek, 3.b, SVŠ, Novohradská ul., Bratislava
32. Jiří Měska, 2.d, gymn., Sladkovského, Praha 3
33. Ivo Mrázek, l.b, SPŠ stroj., Ústí n. L. - Střekov

>
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II. Přípravné úlohy I. kola

1. KATEGÓRIA A

A-P-l

1. Pre všetky kladné čísla a, ba všetky prirodzené čísla n platí
n.a.bn~l й an + (n— 1 )bn.

Dokážte.

RIEŠENIE. Je známe, že geometrický priemer kladných
čísel nie je váčší ako ich priemer aritmetický. Špeciálne pre čísla

a”-1 b b

b«-1 * a9 a

b
5 • • ’ 9

a

(n — l)-krát
to znamená, že platí

b
< 1 Г an_1

" ’ 7 = 7lb í•j / a71-1 bV ~ь^' 7 *
ь b

+ - + ... +-
a

číže
an-\

1 <=
Я*»-1

- 1 6

И a

z čoho už máme

n.a.bn~1 íS an -f (n — 1)6”.
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A-P-2

2. Buďte a, /3, у velikosti vnitřních úhlů trojúhelníku ABC,
označme V = cos2a + cos2/3 + cos2y. Trojúhelník ABC je
ostroúhlý (pravoúhlý, tupoúhlý), právě když V < 1 (V = 1,
V> 1).
Dokažte.

ŘEŠENÍ. Podle kosinové věty v trojúhelníku platí
c2 = a2 + b2 — 2ab cosy.

Podle sinové věty je a — k siná, b — k sin/i, c = k siny (k je
konst.).
Dosazením (2) a (1) dostaneme po zjednodušení

sin2y = sin2 a + sin2/3 — 2sina sin/3 cosy,

sin2a + sin2/3 — sin2y = 2sina sin^ cosy

a cyklickou záměnou

sin2/3 + sin2y — sin2 a = 2sin/3 siny cos a,

sin2y + sin2a — sin2/3 = 2sina siny cos/3.
Sečtením těchto rovností dostaneme

sin2a + sin2^ + sin2y = 2[sina sin/3 cosy + sin/3 siny cos a +
+ siná siny cos/3].

(1)

(2)

tj.

(3)

Poněvadž . <

cos(a + /3 + y) — cos a cos/3 cosy — (siná sin/3 cosy +
+ sin/3 siny cos a -j- siná siny cos/3),

můžeme předcházející rovnost vzhledem к tomu, že

cos (a + /3 + y) = —1 \
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psát
sin2a + sin2/? + sin2y = 2 (1 -f cosa cos/3 cosy).

Nahradíme-li siny kosiny, dostaneme
cos2a + cos2/5 + cos2y = 1 — 2cosa cos/3 cosy = V. (4)
Odtud plyne:
Je-li trojúhelník ostroúhlý, je cosa.cos/3.cosy > Оа F< 1,
je-li trojúhelník pravoúhlý, je cosa. cos/3. cosy = 0 а V = 1,
je-li trojúhelník tupoúhlý, je cos a. cos/3, cosу < 0 а V > 1.

Obráceně:
Je-li V > 1, musí být —2cosa cos/3 cosy > 0, což nastane,
je-li jeden z úhlů a, /3, у tupý; je-li V — 1, pak musí být právě
jeden z úhlů a, /3, у pravý (vzhledem, že a + /3 -f у = тг)
a trojúhelník je pravoúhlý; je-li 0 < V < 1,
je cos a. cos/5, cosу > 0 a všechny úhly jsou ostré.

JINÉ ŘEŠENÍ (bez užití věty sinové a kosinové)
1 + cos 2/31 + cos 2a

cos2 a + cos2/3 + cos2y 2 2

1 4- cos 2y 3 1
= — 4- ~2 (cos 2a 4- cos 2/3 + cos 2y) =

3 1
= — -j- — (—1 —4 cosa cos/3 cosy) =

= 1 — 2cosa cos/3 cosy,

+
2

neboť

cos 2a 4- cos 2/3 4- cos 2y — 2cos(a 4- /3) cos(a — /3) 4-
4- cos2y — sin2y = —2cosy[cos(a — /3) — cosy] — 1 =

= —2cos y[cos(a — /3) 4- cos(a 4-/3)] — 1 =
= — 1 — 4cosacos/3 cosy

takže
cos2a 4- cos2/5 4- cos2y = 1 — 2cosa cos/5 cosy

a dále jako v prvém řešení.
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1 A-ť-3

3. Je dán kosočtverec ABCD o straně délky a s úhlem
£ ABC — 60°. Označme X libovolný bod polopřímky AB a Y
průsečík přímky AC s přímkou DX. Vyjádřete délku у úsečky
A Y pomocí délky x úsečky AX. Řešte aspoň dvěma různými
způsoby.

ŘEŠENÍ TRIGONOMETRICKÉ (obr. 1).

Obr. i

Polopřímka AC je osou úhlu £ DAX; podle známé věty je

XY — —. DY = —.
a a

Dále použijeme kosinové věty na Д ADY а Д AXY; vyjde

p2 = a2 + y2 — ay,
(1)

x2
__ p2 — x2 _j_ y2 _ Xy 'a2

X2
První rovnici (1) znásobíme číslem —a porovnáme s druhoua2
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rovnicí; dostaneme

***
a

x2 + (2)a2

a2
Rovnici (2) znásobíme číslem — :

хгу — ах2 — a2y — a2x .

A odtud za předpokladu у ф 0, x Ф a vyjde
ах

(3)У =
а + д:

Dodatečně ověříme, že vzorec (3) platí i pro x = 0, a.

ŘEŠENÍ METODOU SOUŘADNIC

Zvolíme polopřímku АВ za kladnou poloosu x soustavy orto-
normálních souřadnic; pak je A — [0; 0] , X = [x; 0],

- -ť-И , Y — [t; t ]j3 ] , у = 2t . Číslo t vypo-

čteme z podmínky, že body D, X, Y leží v přímce. Vyjde

D

ах
t =

2(<z -I- x)

a odtud pro jy opět vzorec (3).
Úloha A-P-3 je celkem nezajímavá; její řešení nevyžaduje

žádný zvláštní vtip.

A-P-4

4. V prostoru jsou dány body Aq3 A i, A2, ... , An = /ío.
Zvolme bod Во, к němuž sestrojme další body Bi, Вг» ... 3Bn
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tak, aby pro každé k = 1,2, ..., n střed dvojice Вк-1Вк splynul
se středem dvojice Ак-i Ak.
Určete nutné a postačující podmínky pro to, aby Bn = Bn.

ŘEŠENÍ. Nejlépe snad analyticky. Označme a*, resp. bk
radiusvektor bodu Ak, resp. Bk pro k — 0, 1, 2, ..., n. Podle
konstrukce bodů Вк je vždy

bk-1 bk — ak-1 + ak .

Tyto rovnosti napíšeme pro k = 1, 2, ..., n, opatříme střída-
vými znaménky a sečteme. Dostaneme

bn + b\ — an + a\

—b\— bz — —ai— az

\

n

liché
bn-i~b bn — an- i~b an.

bn + bn — an -(- an — 2ao

bn bi = an + ai

—b\— bz — —a\ — az n

sudé
bn-1 bn — an-1 an.

bn bn — an an ■— 0

Při n lichém je bn = bn právě tehdy, jestliže bn = an , tj.

(Bn = Bn) <=:=> (Bn = An).
Při n sudém je vždy bn = bn , tj. Bn — Bn .

POZNÁMKA. Slovem prostor rozumíme eukleidovský pros-
tor dimenze n ^ 1.
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2. KATEGÓRIA В

B-P-l I

1. Je daná kubická rovnica

x3 + a2x2 + aix .+ ao — 0 .

Určte vztah medzi koeficientami ao, a i, a2, ktorý je nutnou a po-
stačujúcou podmienkou pre to, aby dva kořene rovnice (1) boli
dve reálne opačné čísla, obidve rožne od nuly.

RIEŠENIE. Predpokladajme, že dva kořene danej rovnice sú
a, — a, a Ф 0. Potom platí

(1)

a3 + a2a2 -f- aia -}- ao = 0 ,

— a3 + ага2 — aia -j- ao = 0 .

Po sčítaní a odčítaní týchto rovnic dostaneme

2ага2 + 2ао = 0 , 2а3 -f 2a\a = 0 ,

z čoho po krátení oboch rovnic máme

ага2 + ao = 0, a2 + ai = 0 .

Vylúčením a2 z (2) dostaneme

аг(—ai) + ao = 0 čiže ao = aia2.

Nech je ao = ахаг. Potom rovnica (1) bude mať tvar

x3 + агх2 + aix + aia2 = 0,

(2)

z ktorého postupné dostaneme
x2(x + аг) + ai(x + a2) = 0,

(x + a2)(x2 -f ar) = 0 .

Z rozkladu (3) je zřejmé, že nutnou a postačujúcou podmienkou

(3)
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pre to, aby rovnica (1) mala dva nenulové navzájom opačné
reálne kořene je, aby platilo

ao = ai<a:2 a <2i < 0 .

B-P-2

2. Ak je prirodzené číslo m = 2n — 7 prvočíslo, kde n je pri-
rodzené číslo, potom je n > 3 a n dává pri delení štyrmi zvy-
šok 3. Obrátene, ak vyhovuje prirodzené číslo n uvedeným
podmienkam, nemusí byť m = 2n — 7 prvočíslo. Dokážte
obidve vety.

RIEŠENIE. Pre prirodzené čísla n = 1, 2, 3 nájdeme z rov-
nice m = 2n — 1 příslušné funkčně hodnoty m = —5, —3, 1,
z ktorých žiadna nie je kladné prvočíslo. К tomu, aby prirodzené
číslo m bolo kladným prvočíslom je teda nutné, aby platilo
n > 3 čiže n ^ 4. To však znamená, že m ^ 9.

Každé prirodzené číslo n, ktoré je váčšie než 3, možno zapísať
právě v jednom z tvarov 4k, 4k + 1, 4k + 2, 4k + 3, kde & je
číslo prirodzené. К tomu, aby sme dokázali vetu uvedenú
v úlohe, stačí dokázat’, že v prípadoch, keď n — 4k, n — 4k + 1
a n — 4k + 2, je m číslo zložené. To však 1’ahko dokážeme buď
priamym použitím vzorca pre rozklad dvoj člena an — bn alebo
použitím vety, ktorú pomocou tohto vzorca lahko odvodíme:

(V) Pre každé zložené číslo n — rs, kde r>las>lsú pri-
rodzené čísla, je an — 1, kde a je prirodzené číslo, dělitelné
jednak číslom ar — 1 a jednak číslom as — 1. Ak je a > 1, je
tiež ar — 1 > 1, as — 1 > 1.

a) Ak je n = 4k, potom m — 24fc — 1 = 22-2fc — 1 — 6.
Pretože číslo 22-2* — 1 je podlá vety (V) dělitelné číslom
22 — 1 = 3 a aj číslo 6 je dělitelné číslom 3, je číslom 3 dělitelný
aj ich rozdiel, t. j. číslo m. Ak však m > 3 je dělitelné číslom 3,
nemóže byť prvočíslom.
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b) Ak je n = 4k + lj potom m = 24í:+1 — 7 = 2(24*— 1) — 5.
Pretože podlá vety (F) je číslo 24* — 1 dělitelné číslom 24 — 1 =
= 15 = 3.5, je číslo 24fc — 1 vždy dělitelné číslom 5. Potom je
však číslom 5 dělitelný nielen jeho dvojnásobok, ale aj jeho
dvojnásobok zmenšený o 5 čiže číslo m. Vzhladom na to, že
m > 5 a je dělitelné číslom 5, nie je prvočíslom.

c) Ak je n = Ak + 2, potom m — 24fc+2 — 7 = 22(2*+1) — 1—
— 6. Pretože číslo 22(2/c+1) — 1 je dělitelné číslom 22 — 1 = 3,
rovnakou úvahou ako v a) dostaneme, že m je dělitelné číslom 3
a vzhladom na to, že je váčšie než 3, nemůže byť prvočíslom.

К tomu, aby prirodzené číslo m — 2n — 7 bolo prvočíslom,
nestačí, aby pre n boli splněné podmienky и>3аи = 4^ + 3,
kde k je prirodzené číslo. К dokážu tohto tvrdenia nám stačí
nájsť příklad čísla m uvedených vlastností, ktoré bude zložené.
Ak zvolíme n — 7, dostaneme m — 27 — 7 = 121 = ll2.
Podobné pre n = 11 dostaneme m = 211 — 7 = 2041 — 13.157,
čo je taktiež číslo zložené.

POZNÁMKA. Vzorce pre rozklad dvoj člena an — bn, resp.
an _j_ jyti sú žiakom škol druhého cyklu iste známe. Sú uvedené
tiež v zv. 14 Školy mladých matematikov (Fr. Veselý: O dělitel-
nosti čísel celých) na str. 16 a veta (F) na str. 93. Ďalšie vety
o dělitelnosti prirodzených čísel sú obsiahnuté v učivě aritme-
tiky pre 7. triedu ZDŠ.

| B-P-3 |
3. Do daného obdélníka ABCD, kde AB > BC3 je vepsán

osmiúhelník JKLMNOPQ, jak je naznačeno na obrázku 2;
osmiúhelník vznikl ze dvou obdélníků JKNO, JMNQ o spo-
léčné úhlopříčce JN, přičemž bod J je středem úsečky AD a N
středem úsečky BC.

Vypočtěte obsah osmiúhelníka pomocí rozměrů a — AB,
b = BC daného obdélníka.
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ŘEŠENÍ. Konstrukce osmiúhelníka je patrná z obr. 2. Při
označení z obr. 2 položme LT — x, LS — y3 KT = t. Obsah p
obdélníka JKNO je p = jfN.JD neboli

1

2 aK
Obsah r kosočtverce JLNP je

r = ay,

takže obsah s osmiúhelníka je s = 2p — r neboli
5 = a(6 — j>).

Vypočítáme jy. V trojúhelníku SKT je £ T = 90°, SK = ^
podle Pythagorovy věty dostaneme

t2 = SK2 - ST2

(1)
1

neboli

ř = I Уа2 - 62. (2)
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Ze stejnolehlosti o středu L trojúhelníků LNS3 LKT plyne
TL SL
TK ~ SN

neboli
Уx

1t

2“
Po dosazení ze (2) a snadné úpravě obdržíme

у j/a2 — b‘l2yt
x —

a a

neboli
y]ja2 — b2 (3)x =

a

1
Vedle toho platí TL + LS — — b neboli

b
X +У = 7Г2 ’

dosadíme-И sem ze vztahu (3), dostáváme postupně

]/a2 - b2 b

2 3a

a + Уд2 — b2 b
У • 2 ’

2(a + ]/a2 — b2)

a

a&

Po dosazení do (1) dostaneme
ab

s = a ^b )2(a + |/a2 - 62)
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neboli
ab(a + 2 }/a2 — b2)

2(a + ]/a2 — £2)
5 =

což lze popřípadě násobením a — j/a2 — b2 v čitateli i jmenova-
teli upravit na tvar

a(2b2 — a2 + a\ja2 — b2)
2b

Tím je řešení provedeno.

B-P-4

4. Je dán čtverec ABCD o straně délky 1. Na polopřímce

opačné к BA je zvolen bod M, pro který platí 0 < BM < -j- .

a) Na straně BC určete body E, F (BE < BF) tak, aby přímky
ME, MF rozdělily čtverec ABCD na tři obrazce: trojúhelník,
čtyřúhelník a pětiúhelník téhož obsahu. Vyjádřete délky BE,
CF jako funkce délky BM.

1
b) Zjistěte, zda podmínka BM < — není zbytečná a zda při

jejím splnění je úloha řešitelná. ^
ŘEŠENÍ, a) Má-li jedna z částí (a to prostřední) být pěti-

úhelník, musí protnout přímka MÉ ještě stranu AD v bodě
G Ф D a přímka MF ještě stranu CD v bodě H Ф D. Části
jsou pak lichoběžník BEGA, pětiúhelník EFHDG a trojúhelník
FCH (obr. 3). Označme podle obr. 3: BM = x, BE = t, CF =y,
AG = и, CH — z. Podle podmínky úlohy o obsazích je pak

2-0 + «) — J.
1 1

(1)— уz = —3 ‘2
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Mimoto plyne z podobnosti Д МВЕ ~ Д MAG а Д CHF ~
'—> Д BMF t и

(2)
x 1 + x

1 —ď
я x

Z první rovnice (1) a z první rovnice (2) dostaneme po vylou-
cení и 2 x

(3)3 ■ 1 + 2x *



Z druhé rovnice (1) a druhé rovnice (2) dostaneme po vyloučení z
kvadratickou rovnici pro у

Ъхуг -f- 2y — 2 = 0 ,

která má jediný kladný kořen (při daném x)

У = (l/l + 6x - 1) .

b) Podmínka x < ~ není zbytečná. Je-li totiž x = , pak

přímka M\D oddělí trojúhelník F\DC3 jehož obsah je (viz obr.4)
1 2 1

roven —, neboť CD = 1, CF\ = — 3 BF\ =— 3 BM\ =
3 3 3

(4)

(5)

1

1

2 '

V tomto případě však nevznikne pětiúhelník EFHDG. Přímka
MiF, kde BF > BF\, oddělí trojúhelník FCH o obsahu menším

než -. Tím spíše to platí o trojúhelníku F'CH, který oddělí3

přímka MF'3 kde BM > ~.

1 1
c) Je-li x < — , plyne z (3) t < — 3 neboť 2x < 1 + 2x,
2x 1x

< — . Z prvé rovnice (1) pak máme

и — ^ — t, takže platí и < 1. Dále dokážeme, že pro.y vypo-

3 * 1 + 2x1 + 2x

čtené podle vzorce (5) platí
2

(6)3-

platilo by
2

Kdyby totiž byloj» ^ — 3
\
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3*y» + 2y-2 š3*.4 + 4-2 = |-(2i - 1) < O, což
У Э Э

by bylo ve sporu se (4). Z (6) však plyne podle druhé rovnice

^<i.
(1)

z —

Ъу

Bod H tedy skutečně leží mezi C, D.

3. KATEGORIE C

| C-P-l

1. Z letiště odlétá letadlo na lince I každý třetí den, na lince II
každý pátý den a na lince III každou neděli a středu. Dne
4. ledna startovala letadla na všech třech linkách. Kolikrát ještě
do konce roku budou letadla na všech třech linkách odlétat
v týž den ?

KOMENTÁŘ A ŘEŠENÍ. Jde o tzv. „slovní úlohu“ —

prvním úkolem je sestavit matematickou formulaci úlohy.Vzhle-
dem к textu bude asi třeba rozlišit dva případy:

(a) 4. ledna je neděle;
(b) 4. ledna je středa.

Každý z případů budeme řešit jako samostatnou úlohu.
(a) Zavedeme jakousi „soustavu souřadnicPokládáme čtvr-

tého ledna za nultý den a označíme přirozeným číslem x den,
kdy nastane společný start letadel všech tří linek.

• bud je číslo л; násobkem čísel 3, 5, 7, tedy i čísla 105 (od-
lety v neděli);

• • nebo je číslo я násobkem čísel 3, 5, tedy i čísla 15, a záro-
veú je číslo x-3 násobkem sedmi (odlety ve středu).

Mimoto je x íS 361 (= 365 — 4) pro rok obyčejný, resp.
x й 362 (= 366 — 4) pro rok přestupný.
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Matematická formulace úlohy (a) zní:
Máme určit všecka přirozená čísla x ^ 361 (resp. 362), která
splňují jednu z podmínek: x je násobkem 105 nebo x je násob-
kem 15 a zároveň л: — 3 je násobkem 7.

Důrazně upozorňujeme, že je vždy třeba sestavit nejdříve
matematickou formulaci slovní úlohy, než tuto úlohu začneme
řešit. Tato formulace se může skládat z několika rovnic a ne-

rovnic, ale může znít také tak, jak jsme výše uvedli.
ŘEŠENÍ matematické úlohy: Hledané násobky čísla 105 jsou

tři: 105, 210, 315. Je-li x násobek 15 a x-3 násobkem 7, je
x = 15a, x — 3 — 76, kde a, 6 jsou nezáporná celá čísla. Čísla a,
b vyhovují rovnici:

(1)15a = 1b + 3 .

I když jste se naučili řešit takovéto rovnice, můžete se zde
snadno seznámit s principem jejich řešení (dáváme tomu před-
nost před experimentálním řešením, které bychom doporučo-
váli pro kategorii Z). Z (1) plyne

14a - 76 = 3 - a.

Číslo 3 — a musí tedy být násobkem sedmi, tj. a = 3, 10, 17,
24, 31, ... . Protože x — 15a, dostaneme x = 45, 150, 255,
360, 465, .... Naší úloze vyhovují jen první čtyři čísla. Úloha
(a) má tudíž sedm řešení x

105, 210, 315, 45, 150, 255, 360.
Obdobně formulujeme a řešíme úlohu (b). Dostaneme opět

řešení x = 105, 210, 315 a soustavu rovnic

x = 15a, x -4 = 1b ,

(2)

odtud
15a = 76 + 4

7(2a - b) = 4 - a

a dále a — 4, 11, 18, ..., л: = 60, 165, 270. Úloha (b) má tedy

čili

V
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jen šest řešení:
105, 210, 315, 60, 165, 270 .

POZNÁMKY. 1. Je třeba překontrolovat, že nalezená možná
řešení (2), (3) skutečně splňují podmínky úlohy. (2) a (3) jsme
získali rozborem, ke kterému musíme připojit zkoušku.

2. Ukázalo se, že počet řešení nezáležel na tom, zda rok byl
přestupný či obyčejný. Řešení (2) však ukazují, že kdybychom
o málo posunuli výchozí den (6. ledna místo 4. ledna) byla by
přestupnost roku rozhodující.

Můžete si snadno sestavit varianty úlohy C-P-l. Místo léta-
del můžete uvést vlaky (mezinárodní spoje), místo čísel 3, 5
u linek I, II zvolit čísla 2, 3, místo neděle a středy zvolit třeba
úterý a čtvrtek. Velmi doporučujeme:
• znázornit situaci na číselné ose pomocí milimetrového mě-

řítka,
• • zopakovat některé vlastnosti dělitelnosti, které se potřebují

při řešení rovnice (1).

(3)

| C-P-2 |
2. Jsou-li p, q prvočísla větší než 3, pak p2 — q2 je dělitelné

číslem 24. Dokažte.

KOMENTÁŘ A ŘEŠENÍ. Tematika této úlohy je z aritme-
tiky přirozených čísel. К tomu podotýkáme: je naprosto ne-
zbytné cvičit se v tzv. algebraických úpravách; bez rutiny
v tomto matematickém „řemesle" ani nejvtipnější a nejnápadi-
tější řešitel nedořeší řadu úloh. Je však nesympatické cvičit tako-
véto úpravy samoúčelně; číselná teorie je jeden z úseků mate-
matiky, který poskytuje dosti příležitostí к „algebraickému po-
čítání" a navíc dává dosti zajímavé výsledky.

Nyní к naší úloze: Obě prvočísla p3 q jsou větší než 3 a tedy
lichá. Nabízí se rozklad

p2 _ q2 = (p + q)(j, - q). (1)

48 \



Čísla p -f q i p — q jsou sudá, proto z (1) plyne

P2 - q2
_ P±J p-q

2 ' 2 (2)4

Číslo na levé straně (2) i oba činitelé na pravé straně jsou celá.
p2 — r v •

Dokážeme-li, že ——-— je násobek šesti, bude úloha rozřeše-

na. Je dobré uvědomit si větu, která se často v teorii čísel užívá:

Jsou-li p, q dvě nesoudělná lichá čísla, jsou i celá čísla ~ ^ ,

p — q
- nesoudělná. Věta se dokáže sporem: kdyby platilo

lp- = ka,^g2 2
+ b)} q — k (a — b), tj. čísla />, q by měla společného dělitele k.

p2 — л2Budeme-li se pokoušet dokázat dělitelnost čísla

šesti, musíme dokázat, že jedno z čísel ^ ^ je násobek

tří, druhé, třeba totéž, je násobkem dvou. Je však zřejmé, že obě

čísla
2

jejich součet a rozdíl, tj. čísla/), q, byla dvě sudá čísla. Obdobně
nahlédneme, že při dělení třemi nemohou tato čísla dávat zbytky
1; 1 nebo 1; 2 nebo 2; 2; v každém z těchto případů by totiž
jejich součet nebo rozdíl byl násobkem tří, a to je nemožné (/>, q
jsou prvočísla větší než 3). Z toho plyne, že aspoň jedno z čísel
^ P

2 ~ n^s°bkem tří. Je vidět, že při dokazování
jsme pomocnou větu vůbec nepotřebovali.

Naše úloha má však i jiná řešení. Víme, že každé prvočíslo
větší než 3 se dá vyjádřit ve tvaru Ьх ± 1, x je přirozené číslo.

= kb (k > 1 celé), bylo by p = k . (a +

P q P — q
, —-— nemohou být sudá nebo lichá, neboť by
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Důkaz je snadný; prvočíslo dává při dělení šesti některý ze
zbytků 1, 2, 3, 4, 5. Avšak
6x + 2 = 2(3x + l)36x + 3 = 3(2x + 1), 6x + 4 = (3x + 2).2
nejsou prvočísla. Zbývá tedy jen 6x + 1, 6x 4* 5 = 6(x + 1)—1.
Použijeme-li této pomocné věty, je

p2- (6a ± l)2— (6b ± 1)2= 36a2± 12a =f 12b — 36b2=
= 12[(3a2± a) - (3b2± b)] = 12[a(3a ± 1) - b(3b ± 1)] . (3)
Snadno nahlédneme, že pro libovolné celé číslo t je t.(3t ± 1)
sudé. Je tedy ■

a(3a ± 1) - b(3b ± 1)
sudé a podle (3) je p2 — q2 násobkem čísla 24.

Uvedeme ještě jedno řešení, v němž se užívá pojmu kon-
gruence. (Viz brožura č. 21 z edice Škola mladých matematiků od
AI. Apfelbecka.)

Připomeňme definici:
Celé číslo a je kongruentní s celým číslem b podle modulu m,

kde m je celé číslo, právě když m je dělitelem rozdílu a — b.
Tuto relaci zapisujeme

a = b (mod m).
Platí

p2 - q2 = (p _ q^p + qy

Je-li p = q (mod 3), pak 3Jp — q; není-li p = q (mod 3), je např.
p — 3k -f 1, q — 31 -[- 2 (nebo obráceně), takže 3Ip-ýq. Vždy
tedy platí 3lp2 — q2.

Obě čísla p — q, p 4- q jsou sudá. Kdyby žádné z nich nebylo
dělitelné čtyřmi, bylo byp — q = p q ^ 2 (mod 4), takže číslo
(P -\- q) — (p — q) = 2q bylo by dělitelné 4, což není možné.
Tedy vždy platí 8\p2 — q2.

Poněvadž čísla 3 a 8 jsou nesoudělná, je tím dokázáno, že pro
libovolná dvě prvočísla p, q větší než tři platí

24/p2 _ q2.

Přípravnou úlohou к úloze č. 2 je např. tato úloha: Dokažte,
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že rozdíl druhých mocnin libovolných dvou lichých čísel je ná-
sobkem čísla 8. (Zde nelze tvrdit, že je násobkem 24, neboť
např. 72 — 32 = 49 — 9 = 40.) Důkaz tvrzení této úlohy je
zcela elementární:

(2«i + l)2 — (2«2 + l)2 = 4«i2 + 4«i — 4«22 — 4«2 =
= 4[wi(«i + 1) — И2(«2 + 1)] •

Každé z čísel n\(ni + 1), no(ri2 + 1) je sudé.
Pravděpodobně by bylo vhodnější formulovat místo důkazové
úlohy raději úlohu určovací asi takto: určete největší násobek
čtyř, kterým je dělitelný rozdíl druhých mocnin dvou prvo-
čísel větších než 3.

I C-P-3

3. V rovině je daná úsečka AB. V jednej z polrovín vyťatých
priamkou AB uvažujme všetky pravoúhlé trojuholníky ABC
s přeponou AB. Označme X patu kolmice vedenej bodom В
к osi uhla £ BCA.

Dokážte, že všetky takčto osi uhlov BCA prechádzajú pevným
bodom a vyšetrite množinu všetkých bodov X.

KOMENTÁŘ. Tato úloha se skládá ze dvou částí, z nichž
druhá navazuje na první. První část je zvláštním případem obec-
nějši úlohy; ta se opírá o jednu vlastnost osy úhlu trojúhelníka
a dokazuje se pomocí obvodových úhlů. Domníváme se, že je
pro olympioniky užitečné přiučit se těmto poznatkům.

První část úlohy se dá řešit bez obvodových úhlů. Budiž
ABY nerovnpramenný pravoúhlý trojúhelník s přeponou AB
(obr. 5). Označme 5 střed úsečky AB, p osu přepony AB, o osu
úhlu £ A YB, Z průsečík přímky p s polopřímkou o (bod Z
leží v polorovině opačné к ABY) a označme konečně T průse-
čík úseček AB, YZ. Zvolíme označení bodů А, В tak, aby pla-
tilo £ BA Y — 99 < 45°. Pak se z příslušných trojúhelníků vý-
počte '
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* ABY = 90° - <p, * BTY = * = 45° + 9),
* SZ7 = 45° - <p,* AYS = <p, * AYT = 45°,
* SYT = 45° - cp.

Odtud odvodíme, že trojúhelník YZS je rovnoramenný.
Bod Z je tedy průsečík kružnice k se středem S a poloměrem
SA s přímkou p. Tak se dokáže tvrzení první části úlohy.

Druhá část je téměř evidentní. Body X vyplní podle obrácení
Thaletovy věty polokružnici nad průměrem BZ, která prochází
bodem S. Krajní body В, Z nepatří množině všech bodů X
(obr. 5).

Úlohu lze zobecnit tak, že se požaduje, aby £ A YB byl kon-
stantní, třeba ostrý nebo tupý. Přitom budeme užívat věty:
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Je-li k kružnice opsaná trojúhelníku ABY a je-li A Y Ф BYS
pak osa úhlu £ AYB protíná osu p úsečky АВ v tom průse-
číku C přímky p s kružnicí k, který náleží polorovině opačné
к ABY.

Odůvodnění pomocí obvodových úhlů: oblouky AC3BC ležící
v polorovině opačné к ABY jsou shodné, proto jsou shodné
i příslušné středové úhly £ ASC, £ BSC (S je střed kruž-
nice k) i příslušné obvodové úhly £ AYC, < CYB, tj. polo-
přímka YC je osa úhlu £ AYB.

Úlohu lze doplnit dodatečnou otázkou: Proběhne-li bod Y
oblouk Y1Y2, proběhne bod X oblouk XiXz3 jaký je podíl
délek obou těchto oblouků ?

Zřejmě stačí zabývat se obloukem BY\ a příslušným oblou-
kem BXProtože je £ BA Y± = £ BZYX = £ BZX1, je
i £ BSYi — £ BRXi, kde R je střed úsečky BZ. Z toho vy-
plývá, že podíl délek oblouků BYi, BX\ je týž, jako je podíl
poloměrů příslušných kružnic, tj. BS: BR = ]/2 .

C-P-4

4. V trojúhelníku ABC označíme D střed strany АС a E ten
bod strany AB, pro který platí AE = 2. BE. Průsečík příček BD
a CE označíme К (obr. 6).
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a) Vypočtěte, v jakém poměru dělí bod К úsečky BDi CE.
b) Vypočtěte, jaké části obsahu daného trojúhelníku jsou ob-

sáhy čtyř obrazců, na něž dělí úsečky BD, CE daný trojúhelník
ABC.

KOMENTÁŘ. Je to typová úloha, s jejímiž metodami řešení
by se měli řešitelé seznámit; její jednodušší verze je přípravná
úloha č. 3 kategorie Z XXI. ročníku МО. V komentáři к pří-
pravným úlohám kategorie Z je analyzována nejen úloha č. 3,
ale i její složitější verze, obdobná úloze č. 4 kategorie C.

Kdyby šlo jen o část a) (dělení úseček), mohla by se úloha
řešit pomocí příček trojúhelníků, což je v podstatě použití po-
dobnosti trojúhelníků. Protože však část b) se týká obsahů troj-
úhelníků a čtyřúhelníka, bude snad výhodnější řešit celou úlohu
C-P-4 pomocí obsahů. Ostatně víme, že téměř každá úloha,
která se dá řešit pomocí podobnosti, se dá řešit také pomocí
obsahů.

Při řešení naší úlohy a) označme obsahy trojúhelníků ABC,
BCK, CDK, BEK, DAK, EAK po řadě P, Pi, P2, P3, P4, P5.
Dále označme x,y podíly délek úseček:

(1)DK = x.BK, EK — у. CK.
Z (1) plyne

(2)P2 = xPi, Рз = yPis

neboť trojúhelníky BKC, DKC mají společnou výšku na strany
BK, DK-, obdobně §e dostane druhá rovnost (2).
Dále je

1 1
Pi + P2 = ~2 P 5 Pi + Рз = у P, (3)

tj.
2Pi + 2P2 = 3Pi + ЗР3,

tj. podle (2)
2xPi = Pi + ЪуР\
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a odtud
(4)2x = 1 + Зу .

Obdobně dostaneme

(5)Pí = Pii Pb = 2Рз ,

tj.
P4 = xPi, P5 = 2yPi,

1 1
Pi + P2 = ~2 P i Рз + Pa + P5 = ~2 P i

Pi + xPi = yPi + xPi + 2yPi,

1 + х= у + х + 2у,
a tedy

odtud
1

(6)У = -r3 '
Po dosazení z (6) do (4) vyjde

(7)x = 1 .

b) Nyní vypočteme Pi, P2} Рз, Pí + P5. Z (2), (5), (6), (7) do-
staneme \

Ар.1 1 1
Pl = P i ^ P , Рз = Y2' P 3 -^4+^5 = 12

Pokud jde jen o podíly délek úseček, je výhodné užít aparátu
trochu obecnějšího — věty Menelaovy. Pro ekonomické vyšlo-
vení Menelaovy věty ovšem potřebujeme pojem dělicího po-
měru, který je jedním ze základních pojmů afinní geometrie.
Označíme-li (XYZ) dělicí poměr tří různých kolineárních bodů

XZ
, když bod Z neleží mezi X, Y, (XYZ) =

když bod Z leží mezi X, У], pak můžeme vyslovit

[(XYZ) = Y2
XZ

YZ 3
Menelaovu větu takto:
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Budiž PQR trojúhelník, m přímka jeho roviny, která nepro-
chází žádným z vrcholů P, Q, R a piotíná přímky PQ, QR, RP
po řadě v bodech R', P', Q'. Pak pro dělicí poměry (cyklicky
tvořené) platí

{PQR').(QRP').(RPQ') = 1 .

V úloze č. 4 aplikujeme Menelaovu větu nejprve na trojúhelník
ABD a na přímku CE; dostaneme

(ABE). (BDK)(DAC) = 1,
neboli

1
(-2).(BDK).~ = 1,

odtud

(BDK) = — 1, ВК = DK.
Za druhé aplikujeme Menelaovu větu na trojúhelník AEC
a přímku BD; dostaneme

/
(AEB).(ECK).(CAD) = 1 ,

neboli
Ъ.(ЕСК).(-\) = 1 ,

odtud
1 1

3C/f-
Poměry obsahů je pak ovšem třeba počítat zvlášť.

(ECK) - - EK -

3 5

4. KATEGORIE Z

Z-P-l |
1. Ciferný součet kladného trojciferného prvočísla p\ je dvoj-

ciferné prvočíslo p2- Ciferný součet prvočísla рг je jednociferné
prvočíslo рз > 2. Najděte všecky takové trojice prvočísel pi, pí,
Ps-
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KOMENTÁŘ A ŘEŠENÍ. První úloha je typický příklad
úlohy, která se dá sice neobratně řešit experimentálně, ale která
zároveň ukazuje význam matematické dedukce. Řešitelé by se
měli seznámit s tabulkou prvočísel; v této tabulce najdou 143
trojciferných prvočísel. Vypočtou-li jejich ciferné součty, vybe-
rou-li mezi těmito součty všecka dvojciferná prvočísla a vypo-
čtou opět ciferné součty a mezi nimi zjistí ty, které jsou prvo-
čísla, je úloha řešena. Můžeme vypočítat, kolik času by asi na
tento postup potřebovali.

Ukáže se tak, že bude výhodné pomoci si několika jednodu-
chými úsudky:

(1) Ciferný součet trojciferného čísla je nejvýše 3.9 —-27.
Mezi přirozenými čísly do 27 je jen pět dvojciferných prvočísel;
jejich ciferné součty ukazuje tabulka:

Prvočíslo 13 17 19 2311

Jeho ciferný součet 54 8 : 102

Mezi nimi je jen jedno prvočíslo větší než 2; je to 5. Hledané
prvočíslo p2 je tedy 23.

(2) Nyní musí řešitel v určitém systému rozložit číslo 23
v součet tří celočíselných kladných sčítanců, z nichž žádný není
větší než 9 (23 je ciferný součet trojciferného čísla!). Rozklady
jsou čtyři:

9 + 9 + 5
9 + 8 + 6
9 + 7 + 7
8 + 8 + 7.

Zde je plno příležitostí к drobným dedukcím: Aspoň jeden ze
sčítanců je 8 nebo 9 (proč?); nejvýše dva sčítanci jsou 2; 8
(proč?); všecky tři sčítance si nejsou rovny (proč?). Zdůrazňu-
jeme, že v této fázi řešení nezáleží na pořádku sčítanců; teprve
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v další fázi, až z nich budeme tvořit trojciferná čísla, budeme
musit přihlížet к jejich uspořádání.

(3) Také při tvoření trojciferných čísel se učí řešitel systema-
tickému postupu. Systém zaručuje, že žádné číslo nevynechá-
váme a že žádné nebude uvedeno více než jednou.

Následující tabulka uvádí přehledně všecka možná řešení:

čísla 23 I
'■ ■ ■ ■ " ji

Rozklad Trojciferná čísla

9 + 9 + 5

9 + 8 + 6

9+7+7

8+8+7

386, 959,599
386,-966,-886, 869,689,-698"

977, 797, 779
887,876,286

Tato tabulka je opět sestavena podle zásad kombinatoriky (v prv-
ním, třetím a čtvrtém řádku jsou to tzv. permutace s opaková-
ním, v druhém řádku permutace bez opakování). Z uvedených
15 čísel odpadají všecka škrtnutá, která zřejmě nejsou prvočísly.
Ostatní přezkoumáme buď podle tabulky prvočísel, nebo vý-
počtem. Při výpočtu užíváme věty, kterou je vhodné si připo-
menout:

Je-li přirozené číslo n složené, pak existuje aspoň jedno prvo-
číslo p < |/я, které je dělitelem čísla n.

Této věty užijeme takto: Zjistíme-li např., že žádné prvočíslo
p ^ |/599 < 25 není dělitelem čísla 599, je 599 prvočíslo.
К tomu účelu stačí tedy jen přezkoumat dělitelnost čísla 599
prvočísly 2, 3, 5, 7, 11, 13, 17, 19, 23.

Jedním z uvedených způsobů zjistíme, že úloha má čtyři
řešení: 599, 977, 797, 887.

Obměna úlohy může být např. tato: Určete všechna trojči-
ferná prvočísla, jejichž ciferný součet je dělitelný číslem 21.
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Z-P-2 I
2. Dokažte, že výraz

V = a2 — ab b2 — a + 6 + 1

nabývá pro každá dvě čísla a, 6 kladné hodnoty.
KOMENTÁŘ A ŘEŠENÍ. Tato úloha je příkladem na

složitější úpravu algebraického výrazu, tj. celistvé racionální
funkce o dvou proměnných a, b. Bylo by třeba vysvětlit, že
obvykle se snažíme dokázat „nezápornost'' takového výrazu tím,

. že jej upravíme na součet, v němž každý sčítanec je buď druhá
(sudá) mocnina reálného čísla, nebo součin činitelů, který je
nezáporný, nebo určité kladné číslo. Jako příklad můžeme
uvést třeba tuto úlohu: Pro všecka reálná čísla a, b, c je
s — (a — b)(a — c) + (b — a)(b — c) + (c — a)(c — b) ^ 0. (x)
Protože levá strana dokazované nerovnosti je symetrická funkce
proměnných a, b, c, můžeme volit označení tak, že je

a Sí b ^ c.

Toto je pro mladé řešitele velmi obtížný myšlenkový proces,
usnadní se jim konkrétními numerickými příklady, z nichž de-
dukují, že „nezáleží na tom", které z čísel je označeno a, které b
a které c. Přes obtížnost úvahy bychom se jí neměli vyhýbat,
neboť jde o důležitý prvek matematické erudice. Rozhodně
volba označení proměnných a, b, c představuje vyšší nivo
myšlení než fráze: dokážeme větu za předpokladu (xx), obdobně
by se dokázala, kdyby platilo např. b ^ a ^ c apod.

Upravíme (x):
s = (a — ž>)[(a — c) — {b — c)] + (c — a){c — b) = {a — b)2 +

+ (c — a)(c — b).
Podle (xx) je však c — a ^ 0, c — b ^ 0, tj. (c — a)(c — b)^ (b
a tedy i s ^ 0 .

(xx)
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Přípravná úloha vyžaduje jistý trik: pokusíme se zahrnout do
jednoho nezáporného členu všecky členy obsahující např. pro-
měnnou a; zbývající členy — které obsahují jen proměnnou b —
se pokusíme také upravit v součet dvou nezáporných členů.
Konkrétně:

V = a2 b2 — ab — a -\- b \ ,

(“-ť-l) +4J2+26+4- (1)V =

1 1 \2
— b — — 1 je nezáporný a obsahuje skutečně členyČlen

a2, — ab, —a z výrazu V. Zbývající tři členy (1) upravíme
takto:

3 1 3 3 / 1 \2
— b2 + — b +— =' — ( b + — )
4 ^2 '4 4 \ T 3/

2

Spojíme-li (1), (2), vyjde

!>°v +

pro všecka a, b.
Doplníme-li tento trik ještě malým kouzlem, tj. budeme-li

zkoumat výraz 2V, dostaneme řešení, které šokuje svou krát-
kostí a elegancí, ale také svou smělostí. Takováto řešení nedo-
poručujeme.

2V = 2a2 -j- 2b2 — 2ab — 2a -j- 2b -j- 2,

2V = (a2 - 2ab + b2) + (a2 - 2a + 1) + (b2 + 2b + 1),
2V = (a - b)2 + (a - l)2 + (Ь + l)2.

Čtenáři, kteří znají aspoň trochu afinní geometrii kuželoseček,
mohou nahlédnout důkladněji do kuchyně, kde se úlohy připra-
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vují, a mohou si podle obecného receptu sestavit jiné obdobné
úlohy.

Pokládáme-li a, b za afinní souřadnice bodu v rovině, je rov-
nice

&na2 + 2&12ab + ^22^2 + 2^1за -f- 2^236 + £33 = 0 (3)
rovnicí kuželosečky, jejíž diskriminant je

&11 &12 &13
A — k\2 k.22 ^23 •

£13 ^23 £33

Přitom kij jsou pevná reálná čísla, z nichž aspoň jedno je různé
od nuly. Levá strana (3) je tzv. pozitivně definitní funkcí pro-
měnných a, b, tj. nabývá jen kladných hodnot, právě když
rovnice (3) vyjadřuje regulární imaginární elipsu a když je
&33 > 0. Algebraická geometrie nás učí, že rovnice (3) vyjadřuje
regulární imaginární elipsu, právě když platí

А Ф 0, A33 > 0, ^22^33 — ^232> 0,

kde A22} A23 а A33 jsou tzv. minory determinantu (4):
^22 = &11&33 — &132, ^23 = &11&23 — &12&13>

, ^33 = £п&22 — &122.
Determinant A se počítá podle vzorce

A = А11&22&ЗЗ + 2&12&13&23 — knk232 — &22&132 — ^33&122. (7)

Přezkoumejme tímto „vyšším aparátem" znovu součet
V = a2 — ab + b2 — a-\-b + 1,

(4)

(5)

(6)

1 1
kde je kn = k22 = k33 = 1, kí2 = k\3 = — — 3 ^23 = — , a te-

3 1 3
7’A23 = j,*33 = j ■

1
dy podle (6), (7): A =j,A22 = ^
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Jsou tedy splněny podmínky (5) a zároveň je A33 = 1 > 0. Tím
je dokázáno, že pro všecka a, b platí V > 0.

Jak můžeme sestrojit podle (5) jinou obdobnou úlohu, uka-
zuje tento příklad: Zvolíme k\\ = 2, A23 = 0, A22 = £12 =
= £13 = 1; podle (6), (7) vyjde

Д = &33 — lj ^22 = 2&33 — 1, A23 — — lj 4зз == lj
tj.

^22^33 —^232 = 2(^33 — 1) .

ZvoHme-li &33 > 1 (např. A33 = 3), jsou splněny podmínky (5)
i &33 > 0 a funkce

5' = 2a2 + 2ab + b* + 2a + 3

nabývá jen kladných hodnot. Skutečně je
í' = (a + 6)2 + a2 + 2a + 3 = (a + b)°- + (a + l)a + 2 > 0
pro všecka a, b.

Z-P-3

3. Nechť А, В, C, D jsou po řadě vrcholy vypuklého čtyřúhel-
nika a nechť X, Y, Z, U jsou po řadě středy stran AB, BC, CD,
DA. Nechť R je průsečík přímek AZ a UC, T průsečík přímek
AYaXC.

Vypočítejte poměr obsahů čtyřúhelníků ABCD a ATCR.
KOMENTÁŘ A ŘEŠENÍ. Tato úloha je téměř běžná

školská úloha, která nevyžaduje zvláštní vtip. Je nepodstatné,
že čtyřúhelník ABCD je konvexní, místo čtyřúhelníka ABCD
se můžeme zabývat odděleně trojúhelníky ABC a CDA. Úsečky
AY a CX jsou těžnice trojúhelníka ABC, jejich průsečík T je
jeho těžiště. Pokládáme-li za známou větu, že těžiště dělí každou
těžnici v poměru 2: 1, je Л Г = 2TF a pro obsahy trojúhelníků
platí tedy

А АТС = 2 A YTC, (1)
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neboť tyto dva trojúhelníky mají společný vrchol C. Protože
BY = CY, je

1
A BYA = A CYA =- P, (2)

kde P značí obsah А Л5С. (Také trojúhelníky В YA, CYA mají
společný vrchol A). Protože dále

A CYA = А АТС + A YTC,

dostaneme z (1), (2)

-i- P = Д АТС + J Д АТС = Д АТС,
neboli

1
(3)A ATC=-P.

Úvodem к této úloze by mohlo být opakování základní vlast-
nosti těžnic a těžiště, které jsme v předchozím použili. Také
tato vlastnost se dá odvodit pomocí obsahů. Nechť je TX =
= k.CT, TY — m.AT; čísla k, m udávají, v jakém poměru
dělí bod T úsečku CX a úsečku A Y. Prozatím nevíme, že

k = m = — ; to chceme dokázat. Pro obsahy platí

Д AXT = k A ACT, ACYT = m.AACT. (4)
Protože

1
A ACX = A ACY = — A ABC;

A ACX = A AXT + A ACT,
A ACY = A CYT + A ACT,

(5)

dostaneme z (4), (5)
(k + 1) ACT = (tn + 1) ACT,
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a odtud k — m. Dále je podle (4)
Д АХТ = Д ВХТ = Д CYT = A BYT = &.ЛСГ.

Platí

ААВС= ААХТ + АВХТ + ACYT + ABYT +

+ Д ACT = (4£ + 1) Д ЛСГ (6)
a mimo to

ААВС = 2 ААСХ = 2(ААХТ + ААСТ) =
= 2(k + 1) Д ACT. (7)

Spojením (6), (7) dostaneme
(4k + 1) Д ACT = 2(k + 1) Д ACT

1
a odtud 4k + 1 = 2k + 2, k = — . Tím je základní vlastnost
těžnice odvozena.

Úlohu Z-P-3 lze řešit také podobností trojúhelníků. Vede-
me-li body В, T (obr. 7) kolmice к přímce AC (tj. výšky na
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stranu АС v trojúhelnících A ABC, А АТС) a označíme-li Вo,

To jejich paty a M střed úsečky AC, zjistíme snadno, že
A BBqM •—' A TToM;

přitom užíváme té vlastnosti, že body В, T, M leží v přímce
(těžnici Л ACB). Z (8) plyne

BBq : TTq = BM: TM = 3:1

a odtud dostaneme vztah (3) pro obsahy trojúhelníků. Vztah (9)
platí i v případě, že neplatí (8), tj. když nevzniknou trojúhelníky
BBqM, TToM. To nastane právě když je BM _L AC. Pak je
Вo = To = M a (9) vyjadřuje známou vlastnost těžnice.

Oba způsoby řešení jsou docela přirozené: zpravidla vlast-
nost, která se dá odvodit pomocí obsahů obrazců, se dá odvodit
také pomocí podobnosti a obráceně. Tuto zkušenost by měli
získat postupně i čtenáři např. při odvozování věty Pythagorovy,
později i věty Eukleidovy a při jiných příležitostech.

Zajímavější je úloha obdobná к úloze č. 3. Jejím řešením
získají čtenáři klíč к řešení celé kategorie obdobných úloh, mezi
něž patří i známá úloha Steinhausova.

Úloha zní takto: Je dán trojúhelník ABC, na stranách AB,
BC jsou zvoleny body X, Y tak, že platí BX — 2AX, CY =
= 2В Y. Průsečík úseček A Y, CX je označen T. Máme určit,
v jakém poměru dělí bod T úsečky CX, AY a jaký je poměr
obsahů trojúhelníků ACT, ABC.

Uvedeme jen stručné řešení. Položíme TX = k.CT, TY ==
= m. AT. Pro obsahy trojúhelníků platí (vynecháváme znak A)

ATX = k.ACT, CTY = m.ACT,
ACT + CTY = 2{ACT + ATX),

ACT + m.ACT = 2ACT + 2k.ACT,
1 T m = 2 -J- 2k,

(8)

(9)

a tedy m — 2k TI, tj.
ATX = k.ACT, CTY = {2k + \).ACT. (10)

i
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Dále je ! cry>ABT = 3.ATX, CBT =

a tedy podle (10)
ABC = ABT + CBT + ACT = 3k.ACT -h

+ | (2k+ l)ACT + ACT, ,

-«*+!•
neboli

ЛВС
(И)

• ACT

Ale platí také
ABC = 3ACX = 3(ATX + ACT) = 3(k + 1) ACT

neboli ABC
= 3{k + 1). (12)ACT

Spojením (11), (12) vyjde lineární rovnice pro k, jejímž řešením

je k = — . Pomocí k pak vypočteme podle (11)
o

TX = 4 CT, TY = 4 AT6 3

ACT = у ABC.
Použijeme-li obrázku, je celé toto odvození snadné.

Z-P-4 |

4. Je dán rovnoběžník ABCD. Potom pro každý bod X roviny
rovnoběžníka platí

AX < BX + САГ -г DX;
dokažte.
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KOMENTÁŘ A ŘEŠENÍ. Řešení této úlohy záleží v jed-
noduchém a vtipném použití neostré trojúhelníkové nerovnosti.
Tato nerovnost, která je jednou ze základních geometrických
vět, zní:

Jsou-li U, V, T libovolné tři body v prostoru (v rovině), různé
nebo splývající, platí pro jejich vzdálenosti

UV й UT + VT.
Přitom rovnost nastane právě tehdy, když bod T náleží úsečce
(nenulové či nulové) UV.

Ostrá trojúhelníková nerovnost zní: Jsou-li U, V, T tři body,
které neleží v přímce (a samozřejmě jsou různé),'platí

UV < UT + VT.
Pomocí trojúhelníkové nerovnosti můžeme např. porovnat délky
dvou vhodných lomených čar, které mají společný počáteční
i koncový bod, nebo dokázat větu:

Jsou-li А, В dva různé body a pohybuje-li se bod X po přímce
p II AB, pak součet vzdáleností АХ + BX je nejmenší, právě
když leží bod X na ose úsečky AB.

Trojúhelníkovou nerovnost nebudeme dokazovat, neboť je to
vlastně axióm, který je mnohem závažnější a účinnější než věty,
pomocí nichž se obyčejně odvozuje.

Nyní к řešení úlohy č. 4. Klíčem je sestrojení bodu Y tak, že
buď BXYA nebo CXYD (nebo obě čtveřice) jsou vrcholy rov-
noběžníků. Leží-li bod X mimo přímky AB, CD, vzniknou dva
rovnoběžníky, leží-li X na přímce AB nebo CD, vznikne jen
jeden. Je užitečné sestrojit situaci pro různé polohy bodu X:
uvnitř i vně rovnoběžníka ABCD i na přímkách AB, BC, CD,
DA, dokonce i ztotožnit X s vrcholy rovnoběžníka (na obr. 8
leží bod X vně rovnoběžníka ABCD).

Neostré trojúhelníkové nerovnosti užijeme dvakrát:
ХА й XD + DA,
DA й DY + YA.

(1)
(2)
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• Dále použijeme vztahů DY — XC, YA = XB. Z (1) a (2) pak
plyne (bez znalosti operací s nerovnostmi)

ХА й XD + XC + XB.

Úloha by mohla být uvedena ne jako důkazová, ale jako impuls
к experimentování, tj. ve formulaci:

V rovině rovnoběžníka ABCD volte bod X různým způso-
bem a porovnávejte délky XA, XB + XC + XD.

Zajímavá je doplňková otázka: Pro které body X roviny ABC
nastane v (3) rovnost ? Je zřejmé, že to bude právě pro ty body X,
pro něž nastane rovnost v (1) a zároveň v (2). Rovnost v (1)
nastane, právě když D náleží úsečce AX3 tj. když X leží na
polopřímce opačné к DA. Rovnost (2) nastane, právě když Y
náleží úsečce AD, tj. právě když X náleží úsečce BC. Ale žádný
bod X nemůže splňovat zároveň obě podmínky, neboť nemůže
ležet zároveň na přímkách AD, BC. Zpřesníme tedy (3) takto:
pro všechny body X roviny rovnoběžníka ABC platí

(3)

XA < XB + XC + XD.

JINÉ ŘEŠENÍ. Pro každý bod X roviny rovnoběžníka
ABCD (obr. 8) podle trojúhelníkové nerovnosti platí

68



АХ й AD + DX,

ВС й BX + СХ.

Čtyřúhelník ABCD je rovnoběžník, a proto

AD = BC.

(1)

(2)

(3)
Podle (3) a (1) plyne

АХ й ВС +DX.

Podle nerovnosti (2) pak ze (4) dostáváme
AX ^ BX + CX + DX.

Rovnost v (5) nastává, právě když platí současně rovnost v (1)
a (2), tj. právě když bod X leží zároveň na polopřímce opačné
к pdlopř. DA a na úsečce BC. To však není možné, neboť
přímky AD a BC jsou různé rovnoběžky, a proto pto každý
bod X roviny rovnoběžníka ABCD platí

AX < BX + CX + DX.

(4)

(5)
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Ml. Soutěžní úlohy I. kola

1. KATEGORIE A

| A-I-l
1. Utvoříme všechny možné konečné posloupnosti

1 .ci) 2.62) .•.) пеП)

kde každé z čísel ei, č2> ..., en je buď 1, nebo —1. Součet všech
členů takovéto posloupnosti označme s(či, ..., tn). Dokažte
větu:

Ke každému přirozenému číslu k se dá nalézt takové přiro-
zené číslo P) že pro každé n > p je mezi součty $(ei, £2, ..., en)
aspoň k + 1 čísel, která jsou si rovna.

ŘEŠENÍ. Protože je
1 2 ... ti ^ • • •) &n) = 1 -f~ 2 -)- •. • “í- ti )

n(n -f 1)
je mezi součty s(či, ^2,..., en) nejvýše 2.

* + n + 1 různých čísel; přitom všech možných součtů

s(ei3 гг, ..., en) je 2n. Kdyby se každé z čísel

+ 1 = я2 +
2

n(n + 1)
5 • • • 3

2

n(n + 1)
vyskytlo mezi čísly s(či, в2) ..., en)

nejvýše &-krát (kde k je další přirozené číslo), platilo by
k.{rfi -Hn + 1) ^ 2n .

Abychom dokončili důkaz sporem, postačí dokázat, že pro každé
přirozené číslo k platí od určitého indexu n počínaje

- 1, 0, 1, .. •y
2
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2n
>k. (1)Q-n —

n2 + n -f 1

Vypočteme podíl
n2 — n + 1 n2 — n + 1

n2 + n + 1

2ndn

П2 + П + 1 ’ 2n_1Ля-1

a dále

= 2 / n2 + n + 1
\ w2 + w -f- 1

2« )-Ли

И2 -f- и + 1Ля-1

2
(2)= 2. 1

1
и -f 1 + —

п

Pro všecka я > 5 je
2 2

<
1 51

5 + 1 +
5

п+ 1+-
и

1 1
neboť 5+у<6<я+ — , když я > 5. Podle (2) je tedy

2Ли
> 2. 1 -

1Ли-1
5 + 1 + —

Je tedy
4

Ли > у Ля-1 j
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4
Qn-l > <ln-2 j

\4
«e > j <25 j

/44 Jí—5
> [ 3 J

3\54 \ n
. a$ = . Д5 j‘

43

tj. pro všecka n > 5 platí
4 \ и

(3)

/ /4\яkde 6 je pevné kladné číslo. Protože čísla b í — J tvoří rostoucí
4

geometrickou posloupnost s kvocientem — > 1, lze nalézt ke
každému přirozenému číslu k přirozené číslo q tak, že pro každé
n > q je av > k\ je-li p = max(5, q), pak pro všecka n > p
platí (1) a věta je dokázána.

I A-I-2 I

2. Komplexní číslo z není nezáporné, právě když existuje při-
rozené číslo n a kladná čísla ао> ai, ..., an tak, že platí

#0 ni# -}-••• -f- cinZn = 0 .

Dokažte.

ŘEŠENÍ. Především je jasné, že nezáporné číslo z nemůže
být kořenem polynomu, jehož všechny koeficienty jsou kladné.

Buď tedy z libovolné komplexní číslo, které není nezáporné.
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Je-li Re z < O, pak můžeme položit
úq = zz, a\ — — {z -f z), az — 1

a číslo z splňuje rovnici
z2 + a\z -f ao = 0,

v níž všechny koeficienty jsou kladné.
V případě Re a- ^ 0 můžeme předpokládat, že Im z > 0

(jinak bychom přešli к číslu z, které rovněž musí být kořenem
hledaného polynomu). Pak obraz čísla z leží v I. kvadrantu ro-
viny komplexních čísel, nikoli na reálné ose. Proto (vzhledem
к Moivrově větě) pro vhodné přirozené číslo n bude Re z11 < 0.
Podobně jako v předchozím odstavci najdeme kladná čísla ao?
ai taková, že platí

z2n + aizn + a0 = 0.

Číslo z splňuje samozřejmě i rovnici

(z2n + a\zn -f- ao)(z + 1)” = 0 .

Úpravou levé strany (postupným násobením trojčlenu
z2n + a\zn + ao výrazem z + 1) se dostane polynom (stupně 3n)}
jehož všechny koeficienty jsou kladné.

Tím je věta dokázána.

| A-1-3

3. Jsou-li čísla a, b, c délky stran trojúhelníka Ti, pak existuje
trojúhelník T2, jehož strany mají délky

ba c

(1)
a + 1 ’ b + 1 3 c+ 1 ‘

Dokažte.
Může být trojúhelník Ti podobný trojúhelníku T2?
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ŘEŠENÍ, a) Zvolíme označení tak, aby platilo а й b й c,
a dokážeme, že pak platí

ba c

(2)< < —:
a + 1 ~ Ъ + 1 “ с + 1 '

Podle předpokladu je b — a ^ 0; dále je
b — a

b + 1 a + 1 (a + Ш + 1)
b a

ž 0,

záměnou písmen dostaneme druhou nerovnost (2).

b) Protože a, b, c jsou délkami stran trojúhelníka, platí
c < a + b .

К tomu, aby čísla (1) byla délkami stran trojúhelníka, stačí,

aby největší z nich, tj.——— podle (2), bylo menší než součet
c + 1

obou ostatních, tj. aby platilo

(3)

bac

(4)<
c -f- 1 fl-f-1 b -\- \

Provedeme výpočet
b Mca

a -\- 1 b 1 с -f- 1 (a -f- 1)(6 + l)(c -}- 1)
kde

M — a(b -f- l)(c + 1) + b{a -j- l)(c + 1) — c(a + 1)(6 + 1);
vyšetříme, zda je M > 0 nebo M ^ 0.
Platí

M = c(2ab -\-a-\-b — ab—a—b — 1) -f 2ab + a -j- b,
ISA = c(u6 — 1) ~f* 2cz6 -j- o, -f- b. (5)
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Rozlišíme dva případy: I) ab — 1 2: О, II) ab — 1 < 0 .

V případě I) je
c(ab — 1) 2i b(ab — 1),

neboť podle volby označení je b ^ c. Je tedy podle (5)
M ^ b(ab — 1) + 2ab -f- a b = ab2 -\- 2ab + a > 0.
V případě II) je vzhledem к (3)

c(ab — 1) > (a + b)(ab — 1),
a tedy podle (5)

)
At "s* (o. b)(ab — 1) ~b 2ob -f* (o, b') —

= (a + b). ab + 2ab > 0 .

V každém případě je tedy M > 0 a platí (4).

c) Vzhledem к (2) je Ti ^ T2, právě když
b

a : b : c =

6-f-l C -b 1

——— :
, — plyne a = b, záměnou písmen

a+1 0+1
Z rovnice ~ =

b
dostaneme b = c. Je tedy Ti ~Тг, právě když oba trojúhelníky
jsou rovnostranné.

a

I A-I-4 I
4. Označme a, {$, у velkosti vnútorných uhlov trojuholníka,

s = sin a + sin /5 + sin y. Dokážte tieto vety:
a) Ak nie je trojuholník rovnoramenný, nemože byť příslušné

číslo s maximálně.
b) Medzi rovnoramennými trojuholníkmi má najváčší súčet s

trojuholník rovnostranný.
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RIEŠENIE. a) Nech je а Ф /9. Zvolme označenie tak, aby
bolo a > (3. Potom je

siná + sin/9 = 2 sin ■ ^ . cos
г л • a + В

< 2sin—5-í-2 2

Je totiž 0 < -g ■ ■■ - < л a teda — 1 < cos -a ^ ^ < 1. Z (1)
, • a + P ,f-SUl _ +

a — /9
• (1)

a + /9vyplývá s = sin a -j- sin /9 + sin 7 < sin —^

+ sin 7. Čísla a ^~-—, a —, 7 sú velkosti uhlov rovnora-^ Z

menného trojuholníka.

b) Nech je teda a = = л — (а + ^9)=тг — 2а. Potom
je

5 = 2 sin а + sin 2a .

Postupnými úpravami dostaneme:
За а

s = siná + (siná -f- sin2a) = siná + 2sin .cos — =

= 2 sin cos
2

а За

T + 2sm — cos = 2 cos (sin2 2 \ 2
, a . a a . a

= 4 cos — sm a cos — = 8 cos3 — sm — .

2 2 2 2

+

+sinf)
Ak označíme x — cos2 , potom z poslednej rovnosti dostaneme

s2 = 64x3(l — x).
Vzhladom na to, že x > 0, bude nadobúdať s maximálnu hod-
notu právě vtedy, keď s2 bude maximálně.

Budeme teda hladať maximum funkcie у = x3 — xA (bez

(2)
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použitia matematickej analýzy*) a to v intervale 0 < x < 1.
Pri hladaní maxima tejto funkcie možno použit’ tiež vetu 12

na str. 93, zv. 17 Školy mladých matematikov (Hroník: Úlohy
o maximech a minimech funkcí). Tu podáme dokaž, ktorý sa
opiera len o priebeh kvadratickej funkcie:

Rovnostranný trojuholník dostaneme pre a = 60°, ~ = 30°,
Áě

3
x = cos2 30° = — . Příslušné hodnoty s2 a s sú: s2 =

. — — ~, s — —. Dokážeme, že funkcie f(x) — 4r —4 4 2 ^ 64
= x3 — x4 nadobúda maximum pre x = —. Urobíme nasledu-
júci výpočet:

27
64.—

64 *
1

+

(!+•)■- 9
2 27 27 ✓_£2_£3 + _£+_.s2 +

. Teda

/(!)-/(!+«)--[(.+i].
Keďže pri každej volbě e Ф 0 je (e -f l)2 + > 0, je/ >

> / a čím je dokaž skončený.

27
+ í6e-

= e2 (^e2 +2e+ 3s3 + £4

*) S použitím matematickej analýzy dostaneme y' = 3x2 — 4x3. Pře

yf = 0, x Ф 0 vyjde x čiže cos2 4 = čoho cos ~4 2 4 2

čo dává = 30°, a = 60°. Eahko sa přesvědčíme, že příslušná hod-
nota í je skutočne maximálna.

J3
~2~ *
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A-I-5

5. M je množina všetkých mrežových bodov roviny, t. j. tých
bodov, ktorých kartézské súradnice sú celé čísla. Dokážte tieto
vety:

a) Ak obsahuje priamka p dva body množiny M, potom ich
obsahuje nekonečne mnoho.

b) Ak obsahuje priamka p dva body množiny M, potom všet-
ky body množiny M ležia na sústave rovnobežiek obsahujúcej
priamku p, pričom každé dve susedné rovnoběžky majú rovnakú
vzdialenosť.

RIEŠENIE. a) Nech priamka p obsahuje dva rožne body P,
<2 množiny M. Kartézsku sústavu súradníc zvolíme tak, aby
bod P bol jej počiatkom. Bod Q má potom celočíselné súradnice
[m, n] Ф [0, 0]. Priamka PQ = p má rovnicu

nx — my = 0 .

Ak je najváčší spoločný deliter D(m, n) čísel m, n rovný d, potom
m = kd, n = hd, kde D(k, h) = 1. Ak dosadíme za m, n do rov-
nice (1), dostaneme rovnicu

(1)

hx — ky = 0,

ktorej všetky celočíselné riešenia majú tvar x = kq, у = hq,
kde q je celé číslo. Na priamke p leží teda nekonečne mnoho
mrežových bodov [kq, hq].

b) Nech priamka p, ktorá obsahuje aspoň dva body množiny
M, je danárovnicou (1). Ak je [x,jy] lubovolný bod množiny M,
potom

nx — my = hdx — kdy = d(hx — ky) — ds3
kde s je celé číslo. Daný bod množiny M leží teda na priamke

nx — my — ds,
ktorá je rovnoběžná s priamkou p. Ak zvolíme, obrátene, Tubo-
volnú priamku tvaru (2), potom všetky celočíselné riešenia rov-

(2)
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nice (2) udávajú tie body množiny M, ktoré ležia na priamke (2).
Táto rovnica má celočíselné riešenie pre každé celé číslo s.

Všetky priamky (2) tvoria sústavu rovnobežiek, z ktorých
každé dve susedné dostaneme pre hodnotu parametrov s3 s + 1.
Vzdialenosť v priamky

nx — my — d(s + 1)
od priamky (2) je

| d(s -f 1) — ds | d
v

]/ n2 + m2У n2 -f- m2
a nezávisí teda na čísle s.

A-I-6

6. Trojboký hranol ABCA'B'C s podstavou ABC, jehož
hrany mají délky AB — 1, AC = x, je rozdělen rovinami A'BC
а А'В'С ve tři shodné čtyřstěny.

a) Vyjádřete délky všech
jeho hran pomocí x.

b) Ukažte, že existuje troj-
boký hranol této vlastnosti.

Poznámka. Dva čtyřstěny
jsou shodné, právě když exis-
tuje shodné zobrazení v pros-
toru, které převádí jeden
v druhý.

ŘEŠENÍ, a) Obr. 9. Za-
vedeme tato označení délek
AC = A’C = x, AA' =
= BB' = CG = y, BC =
= B’G = Zy A'B = ty

C'

x

A 1

У

\u

У t c

x.

í В Obr. 9
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АС = и, В'С = v. Tetraedry А'ВСА, А'ВСВ\ А'В'С'С,
které jsou po dvou navzájem shodné, mají tyto délky hran:

A'BCA : t,y, 1, x, я, и;
A'BCB': r, jy, 1, г>, г, и;
А'В'С'С: х, я, 1, j>, г;, и .

(1)

Z (1) plyne porovnáním:
(2)V — X, t = X .

Stěny uvedených tří tetraedrů jsou trojúhelníky s těmito dél-
kami stran:

АА'В x,y, 1;
AA'C x,y,u;
ABC x, z, u;
ABC 1, x, z;

Z (3) dostaneme porovnáním buď z = и nebo у — la dále
buď и = 1 nebo у — z. Kombinováním dostaneme tyto čtyři
případy

I) z = и — 1, II) jy = и = 1, III) у = z = w, IV) у = z — 1.
Případy I) а III) lze řešit společně, obdobně II) а IV). V pří-
pádě I) je situace v rovině ABA' tato (obr. 10a). Kosinová věta
pro Л ВВ'Со, Д А'В'Со (kde Co je pravoúhlý průmět bodu C
do roviny ABA') dá

А'В'С' l,x,z;
А'В'С 1, x, и; (3)
ACC
B'CC

ABC
ABB' 1,х,у;
A'CB' 1, x, и;
BCB'

x, z, и;

x, у, u\
X, jy, .S'.X,J, я;

x2X2
1 — ď2 + — + ďx. cos со.372 = -f- — dx. cos CO,

Sečtením
x2

у2 -Ь 1 = 2d2 -j ^.
Z Д B'CCo, Д A'CCq dostaneme

(4)

x2
*2 _ d2 = ! _

4 *
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в'А' 1
ÁL 1 г,В'

£ои
т /у

У/ 2 1 й/£ 1

сix
А ВВА 1

Obr. 10а Ofcr. 10b

odtud
5х2

Г"1- (5)
Dosadíme-li z (5) do (4), vyjde

У2 + 1 = jx2 — 2 + jx2,
tj.

у2 = 3(x2 — 1).

Délky hran jsou tedy x, ]/3(x2 — 1) , 1, x, 1, x.
V případě III) dostaneme obdobně

3y2 — 3x2 — 1,

dále je z — и = y3 v = t — x.

V případě II) dostaneme (viz obr. 10b) z Д А'ССо, A BCCo,
A ACCoí A A'AM:

x2
1 4=X’+ 1

tj. po úpravě
dx = 2x2 — 2 . (6)
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Dále je
z2 = d2 + 1 — (x — d)23

tj-
z2 — 1 — x2 + . (7)

Dosadíme-li ze (6) do (7), vyjde

z2 — 1 — x2 + 4л:2 — 4,
tj-

z2 — 3(x2 — 1).

Délky hran jsou tedy

x, 1, ]/3(л;2 — 1), л;, 1, л:.

V případě IV) se vymění и, z.

b) Existence hranolu. Zvolíme x ^*).Pakje]/3(x2- 1) =

2
= 1 a lze sestrojit trojúhelník o stranách délek 1,1,-77=-. Sestro-

1/3
jíme rovnoramenný trojúhelník ABC o stranách AB — ВС— 1,

2
AC =

~y=- a doplníme jej na hranol ABCA'B'C tak, aby bylo
AA' = BB' = CC = 1,A'C = A %x A" h C J* C"
= 1 a aby body A\ C ležely
v rovině kolmé к ABC prochá-
zející přímkou AC. Situace
v rovině ABC je na obr. 11;
přitom А", В", C" jsou právo-
úhlé průměty bodů А', В', C
do roviny ABC.

Уз

*) Obecnější volba by byla x z intervalu 1 < x < 2.

82



2
Body Л", C" padnou рак na přímku AC a je АС = А"С"= тт= ;

р
рак bod A" je středem úsečky АС (АА' = А'С = 1) a je tedy
АА"= А"С = j . Vypočteme А'В, В'С. Platí

А'А” А"В =
х2

a dále

2
А'В = х.

1/3
Dále je obdobně

_У2= 2В'С = * •

1/3
Na základě délek hran snadno ověříme shodnost každých dvou
ze čtyřstěnů А'ВАС, А'В'ВС, А'В'С'С.

2. KATEGORIE В

B-I-l

1. Najděte všechna přirozená čísla n, pro něž se ciferný součet
čísla 2n rovná číslu 5.

ŘEŠENÍ. Je-li n hledané číslo, pak 2n může končit buď
číslicí 2, nebo číslicí 4 (jinak by součet jeho cifer byl > 5).

Končí-li 2n číslicí 2, pak má 2n nejvýše ještě tři další nenulové
číslice. Má-li jen jedinou, je to číslice 3 a 2n má tedy tvar
3.10* + 2. Nemůže být k > 1, neboť pak by bylo též n > 1.
Číslo 2n by bylo dělitelné čtyřmi, ale číslo 3.10* + 2 nikoli. Je
tedy k = 1 a n = 5 vyhovuje úloze. Má-li 2n právě dvě další
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nenulové číslice, jsou to 1 a 2. Číslo 2n nemůže mít na místě
desítek číslici 2; jinak bychom zase odvodili spor s dělitelností
čtyřmi. Je nutně и ^ 3a číslo 2n může končit dvojčíslím buď 02
nebo 12; obě možnosti pak vedou ke sporu s dělitelností čtyřmi,
popř. osmi. Má-li 2n právě tři další nenulové číslice, jsou to 1,
1,1. Číslo 2n je tedy aspoň čtyřciferné, a proto je и ^ 10. Jeho
poslední možná trojčíslí jsou 002, 012, 102, 112. Prvé tři mož-
nosti opět vedou ke sporu s dělitelností osmi. Dále čísla 1 112,
10 112 nejsou celočíselné mocniny čísla 2, a proto naše číslo 2n
je ve tvaru 10fc + 112, kde k ^ 5. Z toho však plyne spor s dě-
litelností číslem 32, neboť 32 nedělí 112.

Končí-li číslo 2n číslicí 4, pak má právě jednu další nenulovou
číslici, a to 1. Protože čísla 14 ani 104 nejsou celočíselnou moc-
ninou čísla 2, stojí tato číslice 1 alespoň na místě tisícovek, což
zase vede ke sporu s dělitelností osmi.

ZÁVĚR. Daná úloha má jediné řešení n = 5.

I b-l-2 |
2. Určete všecky společné kořeny rovnic

2*5 - 13*4 + 24*3 - *2 - 28* + 12 = 0,
2*4 — 9*3 + *2 + 36* — 36 = 0.

ŘEŠENÍ. Stupeň rovnice (1) při zachování jejich společných
kořenů s rovnicí (2) lze snížit, odečteme-li od ní rovnici (2),
jejíž pravou i levou stranu vynásobíme *. Dostaneme tak rovnici

—4*4 + 23*3 - 37*2 + 8* + 12 = 0.

Stupeň rovnice (la) snížíme ještě dále přičtením rovnice (2)
znásobené 2. Obdržíme rovnici

5*3 - 35*2 + 80* - 60 = 0.

Rovnice (lb) a (2) mají zřejmě tytéž společné kořeny jako rov-

(1)
(2)

(la)

(lb)
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nice (1) a (2), pokud tyto společné kořeny existují. Dvojice
rovnic (lb) a (2) je zcela obdobná dvojici rovnic (1) a (2), a proto
budeme dále postupovat obdobně. Z rovnice (lb) vyplývá rovni-
ce (násobením \ л)5

2X4 _ 14*3 + 32x2 - 24л = 0,

kterou odečteme od rovnice (2). Dostáváme tak rovnici
5x3 - 31л2 + 60л - 36 = 0,

od níž odečteme rovnici (lb), abychom dále snížili její stupeň.
Touto úpravou plyne rovnice

л2 — 5л + 6 = 0 .

(2a)

(2b)
Rovnice (2b) má kořeny лх = 2, лг = 3, které přicházejí v úvahu
jako společné kořeny rovnic (1) a (2). Dosazením se přesvědčí-
me, že čísla 2 a 3 jsou skutečně společnými kořeny rovnic (1)
a (2).

Levou stranu rovnice (2) můžeme rozložit

(л — 2)(л — 3)(2л2 -f- л — 6) — 0 .

Zbývající kořeny rovnice (2) jsou kořeny rovnic

2л2 + л — 6 = 0,

3
tj- *3 = у5
Rovnice (1) a (2) mají společné kořeny 2 a 3 a žádné jiné.

Л4 = —2, které však rovnici (1) nevyhovují.

I B-I-3 I

3. Určete délky stran pravoúhelníka ABCD tak, aby to byla
přirozená čísla a aby se obsah pravoúhelníka rovnal p-násobku
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obvodu trojúhelníka ABC; přitom p je vhodné prvočíslo. Pro-
veďte diskusi počtu řešení vzhledem к číslu p.

ŘEŠENÍ. Označíme-li strany obdélníka ABCD a, b, má pro
tato čísla platit

•b — P(a + b -f- |/a2 + b2).
To je ekvivalentní s podmínkami

a.b — p(a + b) > 0
a2b2 — 2abp{a -f- b) + p2.2ab = 0 .

a

(1)

Má tedy platit (1) a

a.b — 2p(a + b) + 2p2 = 0 . (2)
Z (2) dosadíme do (1) za a.b a současně (2) upravíme. Dosta-
neme

a + b — 2p > 0, (a — 2p)(b — 2p) — 2p2.
Vzhledem к tomu, že je p prvočíslo a že nezáleží na pořadí stran
a, b, je splněna poslední rovnice pouze v těchto případech (před-
pokládáme a tk b):
1) a — 2p = \ b — 2p = 2p2 a tedy a+ 6 — 2p — 2p-\- 2/>2 + 1

2p+p2 + 2

(3)

p22) 2

5p3) 2PP
2p — 2p2 — 1
2p — P2 — 2

-2p24) -1

-P25) -2

6) -2p
Vzhledem к nerovnosti v (3) splňují úlohu jen dvojice

1) a — 2p 1
2) 2p + 2

-P-P

b — 2p + 2p2
2p+p2
4p3) 3^>

Kdyby se první dvě řešení sobě rovnala, muselo by být
2p + 1 = 2p + 2 a 2p -j- 2p2 = 2p -\- p2,
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což nemůže nastat. Podobně se zjistí, že také dvojice 1) a 3) jsou
různé pro každé prvočíslo p.

Řešení 2) a 3) jsou stejná právě tehdy, když je ,

2p 2 — 3p a 2p + p2 = 4p,
což nastane jen v případě p = 2.

Úloha má tedy pro p — 2 dvě různá řešení, jinak vždy tři
různá řešení.

V
Obr. 12ÍV/WВ-1-4 I

\! \ \4. Sestrojte lichoběžník ABCD
(kde ABUCD); jsou dány délky
jeho úhlopříček AC — e, BD — /
a velikost £ BAD = a, £ ЛБС =

/3. Proveďte diskusi.
ŘEŠENÍ. ROZBOR. Jestliže

a = /?, pak je lichoběžník ABCD
rovnoramenný a také e = f. Zřej-
mě i obráceně: Jestliže e — f, pak
a = /?.
Předpokládejme, žea^|5ae^/ažea + |ff<^ (obr. 12).
Z podobnosti trojúhelníků Д /ISS ~ Д C.SZ) plyne

SC
_ S£>

SZ ~ SS 5

/ \

DM \

v
Ť"7K“\

\/
e/ К/ S

\(a P
ВГ

takže
SC + SA SD + SB

(1)SA SB

z čehož vyplývá
SA e

sb “/'
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Protože je e Ф /, leží bod S na Apolloniově kružnici 1, jejíž body

mají od bodů А а В stálý poměr vzdáleností rovný číslu — .

Vedeme-li průsečíkem 5 úhlopříček příčku GH // AB, je
DC

_ AC _ BD __ DC
GS ~ AS ~ ~BC ~ SH

a odtud plyne
GS = SH.

Bod 5 tedy leží na těžnici VF trojúhelníka ABV, kde V je
průsečík přímek AD a BC a F je střed strany AB.

KONSTRUKCE. I. Nechť a + /5 < л. Rozlišme dva pří-
pady:

л

a) Je-li a — (3 a také e = /, pak a < —. Zvolíme úsečku
BD = f a sestrojíme kružnici k procházející body BD takovou,
že z každého bodu jejího menšího oblouku BD je vidět úsečku
BD pod úhlem л — a. Na tomto oblouku zvolíme bod C.
Bodem В pak vedeme rovnoběžku s CD a její průsečík s k ozna-
číme A.

Čtyřúhelník ABCD je potom hledaný lichoběžník.
b) Je-li а Ф P a tedy také e Ф f, pak použijeme následujícího
postupu (obr. 13, kde e = 6,/ = 9, a = 105°, /? = 45°):
1. Zvolíme úsečku AB'. V jedné z polorovin určených přímkou

AB' sestrojíme Д AB'V takový, že £ B'AV — a a
* AB'V = /5.

2. Sestrojíme těžnici VF', kde F' je střed strany AB'.
3. Sestrojíme Apolloniovu kružnici jakožto geom. místo bodů

majících od bodů A a B' poměr vzdáleností у .
4. Určíme průsečíky lS' kružnice Г s těžnici VF'.
5. Na polopřímce AlS' sestrojíme bod lC takový, že AlC = e.
6. Bodem ŽC vedeme rovnoběžku s AB' a její průsečík s AV

označíme lD.
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7. Bodem lC vedeme rovnoběžku s V'B' a její průsečík s AB'
označíme {B.

8. Čtyřúhelník A lB {C {D je hledaný lichoběžník.

II. Nechť a + /3 > л (a a < л, /5 < л). Označme A*= D,
B*= С, С*— B, D*= A. Pak na konstrukci lichoběžníka
A*B*C*D* lze použít buď postupu a), nebo b) z případu I.,
neboť a*-f /3*< л (a*= л — а, /3*= л — /?).

III. Je-li a + (3 = л, pak hledaný čtyřúhelník ABCD je
rovnoběžník. Ke konstrukci tohoto rovnoběžníka je třeba umět
sestrojit Д ABD. Jde však o známou úlohu — dána je strana

BD — f, £ BAD = a a tčžnice na stranu DB je AS = .

V případě a = (3 = bude řešením pravoúhelník.

ZKOUŠKA. Zabývat se budeme jen případem I.
a) Body A a C leží vždy v opačných polorovinách určených
přímkou BD, a proto ABCD je čtyřúhelník. Z konstrukce dále
plyne, že čtyřúhelník ABCD je osově souměrný podle osy
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úsečky DC, a proto je rovnoramenný a £ DAB = £ /1ВС = a
a DB — АС = e .

b) Podle 5. bodu je bod *C vnitřním bodem £ ‘ZM lB,
podle 6. bodu je AiB[liDiC, takže A'B'&D je lichoběžník.
Podle bodů 1., 7. je * = a, * AWC =/3. Z 5. bodu
vyplývá, že AlC = e. Dále lBlD — f, což plyne z toho, že podle
konstrukce je A ABriS' ~ Д А1В1Б, kde lS je průsečík úhlo-
příček lichoběžníka А1В1С10; totiž A'S : 1В1Б — A‘S' : BriS'=
— e :f a podle (1) z rozboru je AlS : = e : *£*£).

DISKUSE. Samozřejmě a < n a j3 < л, neboť v textu úlohy
se užívá symbolu £.I.a) Je-li a = /3 a e — /, má úloha nekonečně mnoho řešení.
Za bod C lze totiž zvolit libovolný vnitřní bod menšího oblouku
DB kružnice k.

b) Je-li а Ф P a také e Ф f, je počet řešení úlohy roven
počtu společných bodů vnitřku úsečky V'F’ a Apolloniovy kruž-
nice ze 3. bodu. Počet řešení je tedy 0,1 nebo 2.

V případech II а III je tomu obdobně jako v případě I.
(V případě III je ovšem třeba považovat rovnoběžník za zvláštní
případ lichoběžníka.)

ZÁVĚR DISKUSE:

1. Je-li a = p a e — f, pak má úloha nekonečně mnoho řešení.
2. Je-li а Ф ft ъ. e Ф f, pak má úloha 0,1 nebo 2 řešení.
3. Je-li а Ф (3 a e = / nebo a = /3 а e Ф /, pak úloha nemá

řešení.

| B-I-5 |
5. DÍžky stráň kvádra ABCDA'B’C'D’ označme a = AB =

= A'B' - CD = С7У, b - ЯС = В'С' = EM = £>'Л',
с = ЛЛ' = BR' = CC = DD'. Vypočítajte odchýlku priamky
B'D od roviny ACD' pomocou jej sínusu.
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RIEŠENIE. Zaveďme kartézsku súradnicovú sústavu tak ako
na obr. 14. Priamka DB' je rovnoběžná s vektorom

DB' = B' - D = (<2, -b3 c).

л-вод a

Ďalej určíme vektor kolmý к rovině ACD'. Nech (a, (33 y) je
taký vektor. Potom musí platit’

(a, P, y).(C — A) = 0 a (a, p, y).{D' — A) = 0

(a, /3, y).(a, 6, 0) = aa + = 0,

(a, P> y)-(0, c) = /56 + yc = 0.
Rovnosti (2) а (3) možno splnit’ napr. vtedy, ked položíme

čiže

(2)

(3)

1 1 1

7*a = y = 7’6 ’
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t. j. hladaný vektor kolmý к rovině ACD' je napr.

1
- -)
b 3 c ) ’

Ak je co odchýlka priamky DB' a kolmica к rovině ACD', potom
podlá definície skalárneho súčinu je vzhladom na (1) a (4)

1 I I
b 3 c

(4)3
а

(a, — b3 c). 5
а

cos co =

Vе8 + 42 + «*■ j/ a2 T- b2
1 11

c2

t.J.
3

cos co —

ya2 + i2 + C2. j/_L+^+_L
Pre odchýlku cp priamky DB' od roviny ACD' potom platí

sin cp = sin(90° — co) — cos co — 3(a2 + b2 + c2)-1/2 .

-1/2

U2 b2 ^ c2 )
POZNÁMKY. 1. Pri hradaní vektora kolmého к rovině ACD'

možno použit’ tiež vektorový súčin vektorov.
2. Základné poznatky o počítaní s vektormi a ich použití pri

riešení geometrických úloh čitatel nájde v zv. 28 Školy mladých
matematikov (Budinský, Šmakal: Vektory v geometrii).

INÉ RIEŠENIE. Nech a je lúadaná odchýlka, 5 střed
ABCD, P priesečník priamky B'D s rovinou ACD', К kolmý
priemet bodu D do roviny ACD'. Potom P je priesečníkom
priamok B'D a SD', čo sa 1’ahko zistí, ak přetneme rovinu ACD'
rovinou DBB', ktorá obidve spomínané priamky obsahuje
(obr. 15).
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Obr. 15

Z podobnosti trojuholníkov PDS, PB'D' vyplývá
PD : PB' = DS : B'D’ = 1:2, čiže PB' = 2 DP.

To však znamená, že platí

DP = jDB' = j l/a2 + &2 + c2.
Ak К Ф P, je podlá definície bodu К £ DKP — 90° a preto

sin a = DK : DP.

(1)

(2)

Keď K — P, je a = 90°, sin a = 1 = 2Ж : DP a teda aj v tomto
případe platí vztah (2). Stačí nám preto vypočítat’ dížku úsečky
DK, ktorá je výškou ihlana ACD'D. Pre objem V tohto ihlana
platí

jabc = jPACD'.DK,V =
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z čoho
abc

DK = — (3)2 Pacd 3
kde Pacd znamená plošný obsah trojuholníka ACD'.

Vypočítáme P = Pacd = У s(s — x) (s — y) (s — z), kde
í = — (# + У + -S')} x = ]/'b2 + c2,y = ]/a2 -j- c2, z — ]/a2 -f- b2 .

Zrejme platí:
1

P2 = — [0 + y) + z]. [(* -f y) — 2] • [z + (x - y)}.

1
•[* — (* -y)] = [(* + y)2 ~ z2]. [z2 - (x - yf] =

1
= — [2 xy + (.x2 + У2 — £2)] . [2 xy — (jc2 + y2 — z2)] =16

1
= — (2x2jy2 -f- 2j>2#2 -f 2z2x2 — x4 — y* — z4).

Po dosadení za x} y, z a úpravě dostaneme

P = — ]/a262 + 62c2 + c2a2.

Zo vzťahov (2), (3), (4), (1) vyplývá
ЪаЬс

У а2 + b2 + с2 . Уа262 + 62с2 + с2а2

(4)

sin а =

I В-1-6 I
6. a) Ak všetky štyri výšky štvorstena prechádzajú tým istým

bodom, potom aspoň jeden z jeho vrcholov má tú vlastnost’, že
pata výšky z něho spustenej leží vo vnútri protilahlej steny.
Dokážte.
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b) Zostrojte sieť takého štvorstena, ktorého každá výška má
patu mimo príslušnej steny.

RIEŠENIE. a) Nech ABC je stená, ktorej vnútro neobsahuje
patu E výšky spustenej z vrcholu D. Výška va (priamka) spus-
tená z vrcholu A na rovinu BCD je kolmá na priamku BC.
Preto priamkou va možno viesť rovinu a kolmú к BC. Rovina a
přetne rovinu ABC v priamke va' JL BC a prechádzajúcej
vrcholom A, t. j. vo výške trojuholníka ABC. Analogicky zo-
strojíme výšky Vb', vc' trojuholníka ABC ako pravoúhlé prie-
mety výšok vb, vc štvorstena ABCD.

Výšky Va , Vb , Vc sa pretínajú v bode, ktorý je podlá doka-
zovanej vety pátou E výšky va. Pretože bod E nepatří do vnútra
A ABC, je A ABC tupouhlý alebo pravoúhlý. Nech je napr.
£ ACB tupý (obr. 16). Situácia v rovině q _L AB a obsahujúcej
výšku va = DE na obr. 17. Přitom P označuje priesečník o, AB.
Pretože bod P leží medzi bodmi A, B, patří vnútro úsečky DP
do vnútra trojuholníka ABD. Pretože bod C patří do vnútra
odvěsny PE trojuholníka DEP, leží pata výšky vc, t. j. kolmice

t
E=vď

A D vd

У

X ¥
/ \

к
\P ВA

I

Obr. 16 Obr. 17
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spustenej z bodu C na přeponu DP vo vnútri úsečky DP,1. j.
vo vnútri trojuholníka ABD.

b) Zvolme za Д ABC rovnostranný trojuholník so stranou
dížky 1. Bod E (patu výšky va) zvolme na osi uhla £ BAC tak,
aby bolo AE = 1. Kladnú dížku výšky va označme DE = v
(obr. 18). Označme ešte M střed strany BC. Situácia v rovině
q JL BC a prechádzajúcej bodom D je znázorněná na obr. 19.

Pretože bod M leží medzi A a E a pretože £ AED je pravý, je
£ AMD tupý a pata F výšky va, t. j. kolmice spustenej z bodu A

na priamku DM, leží
mimo úsečky DM, t. j.
mimo Д BCD.

Zostáva ešte doká-
zať, že pata G výšky
Vb leží mimo Д ACD
a v dósledku symet-
rie štvorstena ABCD
podlá roviny o, že i
pata výšky vc leží mi-
то Д ABD. Právo-
uhlý priemet výšky Vb



do roviny ABC je výška Vb trojuholníka ABC prechádzajúca
stredom N strany AC. Situácia v rovině a 1 АС a prechádza-
júcej vrcholom В je znázorněná na obr. 18, 19 a 20. Přitom Q
je priesečník výšok AM, BN. Označme R bod roviny ACD,
ktorý leží na kolmici vztýčenej v bode Q na rovinu ABC. Bod G
leží na polkružnici k zostrojenej nad priemerom BN. Ak zvolí-
me bod R vo vnútri vyšrafovaného polkruhu (čo znamená volbu
výšky v), leží bod G mimo úsečky NR, t. j. mimo Д ACD.

Tým je žiadaný štvorsten zostrojený.

3. KATEGORIE C

C-I-l |
1. Je dán čtverec, jehož strana má velikost a. Přímky, spojů-

jící středy stran s vrcholy protějších stran, dělí čtverec na
25 obrazců, mezi nimiž je celkem 5 navzájem neshodných
druhů. Vypočtěte obsah každého z těchto pěti navzájem neshod-
ných obrazců.

KOMENTÁŘ A ŘEŠENÍ. Úloha je příkladem, který vy-
žaduje jistou dávku představivosti a kombinačního smyslu.
V podstatě jde při řešení úloh tohoto typu o uplatnění některé
z následujících složek nebo o jejich kombinaci:

a) určení velikosti určitých úseček a úhlů metodami ryze geo-
metrickými nebo trigonometricky nebo pomocí souřadnic;

b) použití vztahů mezi obsahy obrazců, z nichž jsou sestaveny
hledané obrazce.

Při postupu b) často užíváme věty (V): Jsou-li pi, P2 obsahy
dvou překrývajících se obrazců, q obsah jejich průniku, s obsah
jejich sjednocení, pak platí

pi + рг = s + q .
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V naší úloze budete postupovat asi polointuitivně; pravděpo-
dobně nedokážete exaktně shodnost určitých obrazců — rozum-
ný důkaz se opírá o užití shodných zobrazení (otočení) a ta
vám nejsou asi v potřebné míře běžná. Ovšem těžiště úlohy je
jinde; přesto bychom měli provést aspoň náznak důkazu shod-
nosti. Výsledek zkoumání je tento:

Čtverec ABCD je rozdělen v 25 nepřekrývajících se obrazců,
a to (viz obr. 21):

(1) v 4 shodné čtyřúhelníky, z nichž jeden je APQR; jeho
obsah je označen x;

(2) v 4 shodné čtyřúhelníky, z nichž jeden je KWTP; jeho
obsah je označen y;

(3) v 8 shodných trojúhelníků, z nichž jeden je PTQ; jeho
obsah je označen z\

(4) v 8 shodných trojúhelníků, z nichž jeden je ARN; jeho
obsah je označen u\

(5) v jeden osmiúhelník (na obr. 21 vyšrafovaný), jehož obsah
je označen v.



Prvním krokem může být např. určení obsahu u. Obr. 22
ukazuje, jak lze trojúhelník ABNrozdělit v 5 navzájem shodných
trojúhelníků, z nichž jeden je ARN; je proto

1 a2 a2
U '= 5 ' 4 = 20 ' (1)

Dále je např. možno rozdělit trojúhelník ABN ve dva troj-
úhelníky ABT, ANT, které mají obsahy sobě rovné (je totiž
ВТ — NT3 neboť úsečky AL3 BN se navzájem půlí). Je tedy

a2
(2)2и + у = 8 5

a2
(3)X + Л + U — -z-

8 '

Z (2) а (1) se vypočte y3 vyjde
аг

(4)^=40-

Pro x3 z máme pak jen jednu rovnici; potřebujeme ještě rovnici
další. Můžeme ji získat třeba dvojím vyjádřením obsahu čtyř-
úhelníka AKQN3 jehož úhlopříčky jsou navzájem kolmé; při-

tom je KN = —]/2, АО — -----, neboť body Q3 S dělí úhlo-2 3

příčku AC čtverce ABCD na tři shodné úsečky, jak plyne
z trojúhelníků CDQ a ABS.

1 a al/2 a2
Je tedy AKQN = x + 2u=-.^]j2.-J— = 6 5

tj.
a2

(5)x -f- 2u = ——
6 *
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Z (5) a (1) vypočteme
a2

(6)X =
15

a konečně z (3)
a2

(7)2- =
120 ’

Zbývá obsah v; z rozdělení čtverce ABCD dostaneme
4x + 4y + 8ar -f- 8u + v — a2

a odtud
a2

(8)e“T-
Vzorce (1), (4), (6), (7), (8) dávají řešení úlohy.
Jinak je možno zvolit polopřímky AB, AD za kladné poloosy
souřadnic a vypočítat souřadnice některých bodů, např. P, Q3
R, T, pomocí nichž pak určíme hledané obsahy. Zpravidla při-
tom potřebujeme vzorec pro vzdálenost dvou bodů; je to jedno-

duchá aplikace Pythagoro-
vy věty.

Řešení je dost trikové, jistý
systém se do něho vnese
použitím metody souřadnic.
Rozhodně byste se měli při
řešení úlohy C-I-l sezná-
mit s větou (F) a jejím po-
užitím. Zde je třeba zdůraz-
nit, že zpravidla známe čísla
Ръ Рг- V tomto případě vy-
počteme to číslo z čísel <?, s,
pro něž je výpočet jednoduš-
ší, a zbývající z čísel q3 s
určíme podle věty (V).



Ukázka související se situací úlohy C-I-l. Je dán čtverec
ABCD (obr. 23) a máme určit obsah sjednocení a průniku troj-

<z2
úhelníků ABM3 ADL. Zde je pi — pz = -y . Bude asi poho-
dlnčjší určit obsah q průniku vyšrafovaného čtyřúhelníka AFSE
než obsah s sjednocení A ABM U Д ADL.

Zvolíme-li polopřímky AB, AD za poloosy, určíme-li rovnice
Г 2 2

přímek AL, AM, DL, BM, vyjde 5 = —a; — a3 3
"4 2 I
-z-a', —a (všimněme si symetrie podle5 5

přímky АС a jejích důsledků!). Podle vzorce pro vzdálenost
dvou bodů vypočteme

>E =

Г 2 4
= \ja’ 5

AS = ja]/2, EF = ja]/2,

a]/2.^a]/2 = ^-a2.
V každém případě vyžaduje tato úloha dosti času.

a tedy
1 1 2

AESF = — AS.EF =
2 2 * 3

C-I-2

2. Dokážte, že každé prirodzené číslo n > 10 sa dá rozložit’
aspoň dvomi sposobmi na súčet dvoch prirodzených čísel tak,
že prvý sčítanec je prvočíslo a druhý sčítanec je číslo zložené.

KOMENTÁŘ A ŘEŠENÍ. Jde o jednoduchou úlohu z čí-
selné teorie. Snad by bylo vhodné uvést ji některou obměnou,
která by vám napověděla zejména to, že se doporučuje rozlišit
lichá a sudá n.

Varianta: Dokažte, že každé přirozené číslo n > 10 lze vy-
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jádřit aspoň jedním způsobem jako součet tří přirozených čísel,
z nichž dvě jsou prvočísla a třetí je číslo složené.

Pokusíme se zachovat prvočísla konstantní (pak ovšem musí
být malá).

a) Je-li n liché, zvolíme prvočísla 2, 3; protože je n > 10, je
ra — 2 — 3 — n — 5>5. Mimoto je n — 5 číslo sudé, a tudíž
složené.

b) Je-li n sudé, zvolíme prvočísla 3, 5; protože je n > 10, je
n ■— 3 — 5 = n ■— 8>2. Mimoto je n — 8 číslo sudé, a tudíž
složené.

Při řešení soutěžní úlohy je ovšem třeba hledat dva rozklady
čísla n; pro n liché je snadno dostaneme pomocí čísel n — 3,
n — 5, n — 7. Pro n sudé dostaneme jeden rozklad pomocí čísla
n — 2; druhý najdeme z faktu, že právě jedno z čísel n — 3,
и — 5, n — 7 je násobek tří; nápad dokázat tuto pomocnou větu
je jedním z klíčů к řešení úlohy.

I C-I-3 I
3. Stejně velké utěrky čtvercového tvaru pokrývají obdélník

ABCD, aniž se navzájem překrývají. Pověsí-li se jedna těsně
vedle druhé na šňůru, je potřebná délka šňůry rovna obvodu
trojúhelníka ABC. Kolík je utěrek?

KOMENTÁŘ A ŘEŠENÍ. Tato úloha náleží svou tematikou
do číselné teorie, i když má nátěr geometrický, popř. je to slovní
úloha, kterou lze formulovat geometricky.

Snad nejvhodnějším uvedením do úlohy C-I-3 by byla její
trochu složitější varianta:

Délky odvěsen pravoúhlého trojúhelníka jsou přirozená čísla
a, b; jeho obsah je roven jeho obvodu. Určete délky jeho stran.

Z textu úlohy plyne

— ob = a -j- b + ]/я2 + ;
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odtud
д2А2
— cfib — ab2 -j- 2ab + a2 + 62 — a2 + 62

4

a nadále
a6(a6 — 4a — 4b + 8) = 0.

Protože je а Ф О, b Ф 0, je ab — 4а — Ab + 8 = 0, tj.
(а - 4){b - 4) = 8 .

Upozorňujeme na způsob, jak se upravuje bilineární funkce
ab — 4a — 4b + 8 na součin dvou lineárních dvojčlenů dopl-
něný absolutním členem.

Protože a, b jsou čísla přirozená, jsou a — 4, b — 4 sdružení
dělitelé čísla 8 (ne nutně kladní). Přehled o všech možných
řešeních dává tabulka:

(1)

a—4 —8 —4 -2 1 4 8—1 2

b—4 —4—1 —2 —8 8 4 12

—4 0 2 3 5 6 128a

b 03 2 —4 12 8 6 5

Úloha má tedy dvě řešení: 6; 8; 10 a 5; 12; 13.
V soutěžní úloze č. 3, která je jednodušší, zní základní rovnice

ab = a + b + Уа2 + b2. Její řešení je a = 3, b = 4 nebo a — 4,
6 = 3; počet utěrek je tedy vždy аб = 12.

C-I-4

4. Je daný kruh К so stredom 5 a polomerom r; mimo
kruhu К je daný rovnostranný trojuholník ABC, ktorého strany
majú dížku a. Označme A'B'C trojuholník, ležiací v kruhu K,
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ktorý vznikol posunutím trojuholníka ABC. Určte a narýsujte
množinu M všetkých takto zostrojených bodov A'.

KOMENTÁŘ. Řešení úlohy vyžaduje nezbytně experimen-
tování. Doporučujeme narýsovat kruh К o poloměru r — 6 cm
a z tuhého papíru vystřihnout rovnostranné trojúhelníky A'B'C
o straně 4 cm a A"B"C" o straně 9 cm; trojúhelník A"B"C"
bude sloužit к opakování pokusu.

Posouváním trojúhelníka A'B'C' vyexperimentujeme „ex-
trémnícc polohy Ai'Bi'Ci, A3B3C3, Аз'Вз'Сз' takové, že body
Alt Bi, Вз, Сз, Сг i Аз leží na obvodu kruhu K, body C\,
Аз', Вз v jeho vnitřku a že úsečky Ai'Bi, B3C3 a C3A3
vzniknou postupně posunutím stran AB, BC, CA. Intuitivně
zjistíme, že proměnný bod A' vyplní trojúhelníkový obrazec P,

omezený shodnými kruhovými oblouky A1A3, A3 A3, A3A1

ck £3
вA

В'зA' Из2\

\ /\ 5 /
\ / /fxPM=P C'.4

к

в;4Obr. 24
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(obr. 24). Přitom oblouk Ах'Аз náleží obvodu kruhu K, oblouk
A2'A3' vznikne posunutím oblouku C2C3', které je dáno dvojicí
Сг -> Аз, oblouk A3A1 vznikne posunutím oblouku B3B1,
které je dáno dvojicí B3 -> A3'.

Snadno se i dokáže, že každý bod oblasti P, omezené tlustě
narýsovanými kruhovými oblouky, je vrcholem A' některého
z trojúhelníků А'В'С' a že žádný bod z K\P není vrcholem
A' takového trojúhelníka. Je tedy P = M.

I C-I-5

5. V rovině jsou dány body A, M, N, které neleží v přímce.
Sestrojte pravoúhelník ABCD tak, aby přímky BC, CD pro-
cházely po řadě body M, N a aby platilo AB : BC — 2:5.

KOMENTÁŘ. Jeden z principů řešení této úlohy (a snad
nej jednodušší) je použití obvodových úhlů. Úlohu lze uvést
obdobnou úlohou (U): Jsou dány tři body A, P, Q, které leží
v přímce, a to tak, že A odděluje body P, Q. Máme sestrojit
čtverec ABCD tak, aby přímky BC, CD procházely po řadě
body P, Q.

Princip řešení: Je zřejmé, že bod C náleží třem množinám
bodů: kružnici Mi sestrojené nad průměrem PQ, množině М2
složené ze dvou oblouků kružnic, definované takto:

M2 - {X-, X ф A, P A * AXP = 45°},
a množině M3 vytvořené obdobně nad úsečkou AQ.

Při řešení soutěžní úlohy C-I-5 hledáme opět dvě množiny
bodů, jimž náleží vrchol C. Jedna z nich je kružnice k sestrojená
nad průměrem MN. Druhá je množina M bodů X, z nichž je
vidět úsečku AM. pod daným úhlem co. Je-li cp = £ ACD, je
buď 00 — 90° + cp, nebo co = 90° — cp. Množina M se tedy
bude skládat ze dvou shodných kružnic k\, k% (bez bodů A, M)
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se společnou tětivou AM; každá z kružnic ki, k% má mimo
bod M s kružnicí k ještě jeden další společný bod. Diskusi úlohy
nebudou asi řešitelé provádět exaktně, spokojíme se s názna-
kem. Musí si ovšem uvědomit obě možnosti co = 90° -f y,
co = 90° — у; jsou načrtnuty na obr. 25 ab.

--Í1

(o
C N C N

/7

/ / В

Obr. 25a Obr. 25b

Jde ještě o určení úhlu y. Ten zjistíme, narýsujeme kdekoli
pravoúhlý trojúhelník KLP s přeponou KP, pro který platí
KL : LP = AB : BC.

Impulsy, které vedou к řešení úlohy C-I-5, budou asi tyto:
a) pomocná úloha (U);
b) vyšetření situací: bod M náleží polopřímce CB nebo polo-

přímce opačné;
c) určení úhlu y.
Nezapomeňme na kontrolu: jako v úloze (U) máme i zde

třetí množinu bodů pro vrchol C; jsou to dvě kružnice se spo-
léčnou tětivou AN.

Uvedeme nyní ještě podrobné ŘEŠENÍ ÚLOHY č. 5:
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ROZBOR. Předpokládejme, že úloha je vyřešena ažeC =£ M3
С Ф N (obr. 26). V komentáři к úloze je uvedeno, že vrchol C
pak náleží dvěma množinám bodů. Jedna z nich je kružnice k
(bez bodů M, N) sestrojená nad průměrem MN. Druhá je mno-
žina M bodů X3 z nichž je vidět úsečku AM pod úhlem co =
— 90° — cp nebo co — 90° + <P> kde cp — £ ACD. Množina M
se skládá ze dvou shodných kružnic k\, kz (bez bodů A3 M) se
společnou tětivou AM.

Je-li C — M, pak podle obr. 27 je £ AMN buď cp, nebo
180° - cp.

Je-li C = N, pak podle obr. 28 je £ ANM buď 90° — <p3
nebo 90° -f <p.
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Obr. 27 Obr. 28

KONSTRUKCE. Úhel 9o se sestrojí v pomocném právo-
2

úhlém trojúhelníku, neboť z textu úlohy víme, že cotgcp — — .

1. Vrchol C určíme jako bod průniku (^"\{М, N} П M. Na
přímce CN pak sestrojíme bod D tak, aby bylo AD // MC; na
přímce CM určíme bod В tak, aby bylo AB // CN. Čtyřúhel-
nik ABCD je hledaný pravoúhelník.

2. Pokud £ AMN je cp nebo 180° — cp a nebo £ ANM je
90° — cp nebo 90° + cp, dostaneme další řešení podle obr. 27
a obr. 28.

ZKOUŠKA. Ad bod 1. konstrukce. Čtyřúhelník ABCD je
pravoúhelník, neboť byl sestrojen jako rovnoběžník a £ DCB =
= * MCN = 90°, neboť C e k, С Ф M, С Ф N. Podle kon-
strukce též přímky БС, CD procházejí po řadě body M, N.
Pro £ ACM jsou dvě možnosti:

a) Je-li £ ACM = 90° + <p> pak £ ACM > 90°, a proto M
leží na polopřímce opačné к polopřímce CB, takže £ ACD = cp3
tj. AB : BC = 2:5.
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b) Je-li * ACM = 90° - <p, pak * ACM < 90°, tj. bod M
leží na polopřímce CB, takže £ ACD = cp, tj. /15 : BC = 2:5.

К bodu 2. konstrukce. Z obr. 27 a 28 je vidět, že v těch-
to případech mají sestrojené pravoúhelníky ABCD všechny
vlastnosti požadované úlohou.



DISKUSE.

I.Leží-li bod A na k, pak jsou dvě možnosti:
a) £ AMN = cp (tj. £ ANM = 90° — cp), pak jedna z kruž-

nic k\, &2 splyne s & (viz obr. 29). Pak má úloha neko-
nečně mnoho řešení. Za vrchol C lze zvolit každý bod
kružnice k různý od bodu A.

b) £ AMN Ф <p (tj. £ ANM Ф 90° — cp a také £ AMN Ф
Ф 180° — cp, £ ANM Ф 90° -)- 9?), pak úloha яе-
má řešení, protože kružnice k, k\, kz mají společné
jen body A, M (viz obr. 30).

II. Neleží-li bod A na k, pak má úloha vždy dvě řešení. Průnik
(A^ {M, N}) П M obsahuje nejvýše dva body. Počet bodů
tohoto průniku se zmenšuje ze dvou vždy o 1 bod právě
když:
a) Kružnice k má s jednou z kružnic k\, kz dotyk v bodě M.

Pak ovšem £ AMN je roven cp, nebo 180° — cp (obr. 31a,
31b) a lze najít další jedno řešení takové, že С = M.

b) Jedna z kružnic k\, kz prochází bodem N. Pak však
£ ANM je buď 90° — cp, nebo 90° + cp (obr. 32a, b),
tj. lze najit další jedno řešení takové, že C = N.



* $2

Obr. 32b

C-I-6 I
6. Je dána čtvercová šachovnice o 25 polích. Určete počet

všech čtverců, z nichž každý má všechny své vrcholy ve vrcho-
lech čtverců šachovnice.

KOMENTÁŘ. Úloha nevyžaduje nic jiného než určitý
systém sčítání čtverců. Tento systém můžeme s žáky probrat na
šachovnici s и2 poli pro n < 5, tedy n = 1, 2, 3, 4; příslušné
počty čtverců označíme sn. Je zřejmě я = 1, $2 = 6 (viz obr. 33).
Pro n = 3 dostaneme mimo devět malých čtverců a jeden zá-
kladní čtverec o straně 3, čtyři čtverce o straně ]/2, čtyři čtverce
o straně 2 (šrafovaný) a dva čtverce o straně j/5; celkem tedy je

53 = l+ 4 + 4 + 2 + 9 = 20.

Pro n — 4 už se začíná objevovat systém. Nejprve spočteme
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čtverce složené z polí šachovnice. Čtverce složené z k2 polí
[k = 1, 2, ..., n) leží v n — к + 1 různých pásech složených
z & sloupců a zároveň v n — k + 1 různých pásech složených
z k řad (zde můžeme uvažovat zcela obecně pro libovolné n
a k ^ n). Počet těchto čtverců je tedy

12 + 22 + 32 + . . . + Я2.
V případě и = 4 dostaneme

12 + 22 + 32 + 42 = 30. (1)
Ostatní čtverce nemá-

jí strany rovnoběžné se
stranami polí šachovnice.
Zvolíme-li stranu pole za
jednotku délky, pak del-
ky průmětu dvou soused-
nich stran čtverce jsou
přirozená čísla a, b, pro
která platí (viz obr. 34)

a + b й 4.

V úvahu tedy přicházejí
jen dvojice čísel 3; 1, dá-
le 2 у 2, 2; 1 a konečně

1

1 2

Obr. 34
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1; 1. Pokud je а Ф b, určíme dva čtverce této vlastnosti a po-
souváme je ve směru přímek šachovnice. Je-li a — b3 stačí je-
den výchozí čtverec. Celkem tak dostaneme další čtverce podle
tabulky:

(a, b) (3,1) (2,2) (2,1) (hl)

Počet
čtverců

2 1 8 9

Celkem dalších 20 čtverců. Spolu s (1) dostaneme

í4 — 20 -f- 30 = 50

čtverců. Podle tohoto návodu mohou řešitelé vypočítat samo-
statně s5.

Lze odvodit obecnou rekurentní formuli pio sn a z ní indukcí
dokázat explicitní vzorec pro sn.

Podrobné ŘEŠENÍ ÚLOHY č. 6:

Pro případy šachovnice s n2 poli, kde n = 1, 2, 3, 4, bylo
řešení provedeno v komentáři. Při řešení soutěžní úlohy budeme
postupovat obdobně.

Nejdříve určíme počet čtverců skládajících se z polí šachov-
nice. Těchto čtverců je celkem

1 + 22 + 32 + 42 + 52 = 55. (1)

Ostatní čtverce nemají strany rovnoběžné se stranami polí ša-
chovnice. Zvolíme-li stranu pole za jednotku délky, pak délky
průmětů dvou sousedních stran čtverce jsou přirozená čísla a, b,
pro která platí (viz obr. 35)

a + b й 5.
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Je-li а ФЬь рак čtverců to-
hoto druhu je dvojnásobek
počtu čtverců skládajících
se z (a + b)2 polí šachovni-
ce (viz obr. 35). Je-li a = b,
pak čtverců tohoto druhu je
stejný počet jako čtveiců
skládajících se z (a -j- b)2 =
= (2d)2 polí šachovnice.
Počty všech těchto čtverců
zachycuje tabulka:

6

•a

ba

Obr. 35

(4,1)(«,&) (3,2) (3,1) (2,2) (2,1) (1,1)

Počet
čtverců

2.22= 8 22= 4 2.32= 18 42 = 162.1 = 2 2.1 = 2

Počet všech čtverců z tabulky je 50. Spolu s (1) je celkem všech
čtverců

55 = 55 + 50 = 105.

4. KATEGORIE Z

I Z-I-l |

1. Ve sklepě JZD jsou dva sudy vína; v jednom je 80 litrů
vína po 10,— Kčs, v druhém 12G( litrů vína po 8,— Kčs.

a) Jaké stejné množství vína je třeba vzít z každého sudu
a nalít do druhého sudu tak, aby v obou sudech vzniklo víno
téže ceny za jeden litr a jaká bude cena za jeden litr směsi při
zachování celkové ceny vína ?
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b) Řešte tuto úlohu obecně: V sudě A je a litrů vína po
m Kčs, v druhém sudě В je b litrů vína po n Kčs.

KOMENTÁŘ A ŘEŠENÍ. Úloha náleží do rozsáhlé a oblí-
bené kategorie tzv. slovních úloh o směsi. Často vám asi působí
potíže už pochopení samotné formulace textu (také text úlohy
Z-I-l není právě nej jasnější); nesnáze působí i matematická
formulace úlohy, která je klíčem к řešení; matematická formu-
láce se obvykle skládá z několika rovnic a dále z nerovnic, které
vyjadřují případné omezující podmínky. Domníváme se, že by
se při řešení měly více zdůraznit grafické metody; i když gra-
fické metody nedávají zpravidla numerické řešení s potřebnou
přesností, poskytnou řešiteli přehled o situaci — předvádějí mu
totiž grafický model reálné situace, podobně jako je tomu např.
u grafických jízdních řádů.

Konkrétně v úloze Z-I-l jde o toto: z množství a litrů vína
ceny ci Kčs za litr se ubere x litrů a přidá se stejné množství
jiného vína ceny c2 Kčs za litr. Tato situace se vyskytuje
v úloze b), kde je označení m, n místo a, c2. Základní úloha
formulovaná z této situace je asi tato: Jaká je cena у Kčs za litr
směsi?

Dvojice [x;jy] tvoří část lineární funkce

1
У = — (ci(tf — x) + C2x)

a

neboli

1 C2
У = ci -\

— Ci
(1)*;

a

říkáme „částcc proto, že x>y jsou vázány podmínkami 0 й x ^ a,
у ^ 0. Zde je vhodná příležitost zamyslit se nad definičním
oborem funkce a nad oborem funkčních hodnot. Jistě by bylo
užitečné sestrojit grafy funkcí (1) pro různé hodnoty „konstant -

parametrů a, ci, c2“ a zkoumat případy ci > C2 i ci < c2.
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Chceme-li řešit úlohu b), užijeme mimo funkci (1) ještě funkce
— c2

(2)

která vznikne z (1), vyměníme-li zároveň a, b a ci, c2. Z (1), (2)
vyjde podle textu úlohy b)

. c2 — Cl
ci H

. Cl — c2
= C2 + —j— X. X

a

neboli

(bi)-(Cl — c2) л: (4)— C2 .

Je-li a — c2, jsou řešením rovnice (4) všecka x z intervalu
0 ^ x ^ min(a3 b) (proč?). Je-li ci Ф с2з má rovnice (4) jediné
řešení

ab
(5)x =

a -r b

Spojením (5), (1) nebo (5), (2) dostaneme společnou cenu у
směsi vín

aci + bc2
(6)У =

ci -f- b

Vzorec (6) platí i v případě ci = c2.
Je pravděpodobné, že by bylo nejúčelnější studovat jako prů-

právu lineární funkci (1), pak rozřešit úlohu b) a teprve nakonec
úlohu a). Zdá se totiž, že v tomto případě numerické řešení
celý postup spíše zatemňuje než zjednodušuje. Zejména se při-
tom zcela ztrácí fakt, že množství x závisí jen na a, b a nikoli
na cenách ci, c2. Úlohu a) pak řešíme dosazením a = 80,
b = 120, ci = 10, c2 = 8. Podle (5), (6) vyjde x = 48,
У = 8,8.

Při grafickém řešení sestrojíme v soustavě pravoúhlých sou-
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řadnic grafy obou druhů vína podle obr. 36. Počáteční stavy
obou druhů vína a jejich ceny jsou znázorněny body B', C.
Ubereme-li v obou případech totéž množství vína x a doplní-
me-li je stejným množstvím druhého druhu, dostaneme stavy
znázorněné body В, C. Tak vzniknou dva trojúhelníky ABC,
A'B'C', pro něž platí AB // A'B', BC // B’C, CA // CA'
a mimoto jejich výšky na strany BC, B'C' mají tutéž délku x.
Trojúhelník A'B'C' vznikne tedy z ABC rovnoběžným posunu-
tím (A -> А’, В -> В', С -*■ C). Z toho plyne, že střed dvojice
BC a dvojice B'C je týž bod M, neboť BCCB' je rovnoběžník.
Má-li podle textu úlohy vzniknout v obou sudech směs téže
ceny za litr, musí ležet body P (počátek soustavy souřadnic), В,
C v přímce. Tato přímka se dá snadno sestrojit: je to přímka
PM. Přímkou PM jsou pak určeny body В, C.

Grafické řešení je tak jako i u jiných úloh o směsích zajíma-

•y=10x
x'/y~8x

cena vina
v Kčs у

1000 -

960-— Ъ’
C/'

fit/800 l

X
600

AS _—d
l

x
400

I
I

200

■

I !
XP 20 > 40 60 80 100; 120

množství vlna
v litrechObr. 36
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vou ukázkou použití konstrukce při řešení úloh z funkční teorie,
tj. při manipulaci s grafy funkcí, což je v tradiční výuce neob-
vyklé. Účastníci olympiády by si zasloužili, aby se s těmito
postupy blíže seznámili.

Z-1-2

2. Dokažte, že pro každá dvě čísla a, b nabývá výraz
V = a4 + 64 — 2ab(b2 — ab — a2)

nezáporné hodnoty.
V kterém případě je tento výraz roven nule?
KOMENTÁŘ A ŘEŠENÍ. Jde o typovou úlohu na úpravu

tzv. aJgebr. výrazů, kde se směřuje к tomu, aby se daný výraz
vyjádřil jako součet druhých mocnin polynomů; na rozdíl od
obdobné přípravné úlohy je daný výraz F čtvrtého stupně v pro-
měnných a, b3 ale je homogenní. Autorské řešení je toto (upra-
vujeme postupně):

V = a4 + M — 2až>3 + 2a2ž>2 + 2a?b,
V = (a4 + 2a?b + a262) + (a262 - 2až>3 + M),
F = a2(a2 + 2a& + 62) + ž>2(a2 - 2až> + b2),
F = a2(a + 6)2 + 62(a — bf.

Je tedy F ^ 0 pro všecka а, А V předcházejících úpravách je
jeden trochu umělý obrat - rozdělení členu 2a2b2 = a26^+ a2b2
a sdružení šesti členů do dvou trojčlenů.

Zjištění nutné a postačující podmínky pro to, aby bylo F = 0,
je stereotypní. Platí podle (2):

F = 0 právě když a\a + b)2 — 0 a zároveň b2(a — b)2 = 0.
Z obou součinů dostáváme tyto čtyři možné kombinace
I) a2 = 0, ž>2 = 0;

II) a2 = 0, (a - 6)2 = 0; IV) (a + bf = 0, (a - 6)2 = 0.

(1)

(2)

III) ( a + 6)2 = 0, 62 = 0
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Ve všech čtyřech případech vyjde a = b = 0; to je skutečně
jediná dvojice a, b, pro kterou je V = 0.

Bylo by však záhodno vrátit se ještě jednou ke vztahu (1),
který vznikl roznásobením daného výrazu. Při prvním pohledu
na (1) nás asi napadne spíše jiná úprava, než je ta, kterou jsme
uvedli jako autorské řešení; je to sdružení

V = (a4 + 2a2b2 + 64) + 2ab(a2 — b2)

V = (a2 + b2)2 + 2ab{a2 - b2).
neboli

(3)

První člen (3) je nezáporný, druhý může být záporný. Bude-li
však absolutní hodnota druhého členu menší nebo rovna abso-
huní hodnotě prvního členu, bude určitě V ^ 0. Místo porov-
návání absolutních hodnot můžeme vypočítat rozdíl

V = (+ Ь2У - 4a2b2(a2 - b2)2 =

= (a4 + 2a2b2 + bA)2 — 4a262(a4 — 2a2b2 + 64).
Po nedlouhém výpočtu dostaneme

V = a8 + 14a464 + b8.

Zřejmě je vždy V ^ 0, tedy iF^O. Je-li V = 0, je V = 0,
tj. (a4 -f 64)2 -f- 12a464 = 0 a odtud plyne a — b — 0. Dostá-
váme tedy opět jedinou možnou dvojici a = b = 0, pro kterou
je V = 0.

Uvedený způsob porovnání absolutních hodnot obou členů (3)
je v tomto případě trochu složitý, ale velmi často se ho používá.
Výpočet lze však zjednodušit: dokážeme-li, že je

|a2 + b2\ ^ \2ab\, \a2 -f- b2\ ^ |a2 — b2\ , (4)
bude platnost nerovnice V ^ 0 dokázána. Místo nerovnic (4)
můžeme psát

a2 + b2 ^ 2|aé| , a2 + 62 ^ |a2 — 62| . (5)
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První z nerovnic (5) je ekvivalentní s nerovnicemi (a + b)2 ^ 0,
(a — b)2 ^ 0, druhá je evidentní. Rovnost V = 0 nastane
podle (5), právě když bude platit buď a = 0, nebo b = 0 (z druhé
nerovnice (5)) a přitom zároveň a + b — 0 nebo a — b = 0
(z první nerovnice (5)).

Domníváme se, že byste se měli více zabývat různými mož-
nostmi algebraických úprav (a to ovšem v I. kole), abyste získali
větší počtářskou rutinu.

Z-I-3 |

3. Jsou dána čísla p, q (p > q > 0). Vypočtěte objem tělesa
ABCA'B'C ohraničeného trojúhelníkem ABC se stranami
BC = p2 + q2, СЛ = p2 — q2, AB = 2p<7, dále trojúhelníkem
A'B'C a lichoběžníkovými stěnami ABB'A',BCC'B'3 CAA'C',
které jsou kolmé na rovinu ABC a mají základny o délkách

AA' =.p — q, BB’ = p, CC' = p -f q.

KOMENTÁŘ A ŘEŠENÍ. Tato stereometrická úloha je
opět ukázkou toho, že se vyplatí často řešit úlohu obecnější,
neboť její řešení bývá jednodušší a mimoto odhaluje podstatu
situace. A zde jde skutečně o malou problémovou situaci: seříz-
nutí kolmého hranolu rovinou a výpočet objemu torza hranolu.
Doporučujeme tedy řešit tuto průpravnou úlohu:

Je dán trojboký hranol ABCA'B'C, jehož podstava ABC
má obsah P. Na jeho pobočných hranách AA', BB', CC jsou
zvoleny po řadě body А", В", C" tak, že AA",= a, BB" = b,
CC" = с, а й b й c. Máme vypočítat objem torza hranolu
ABCA"B"C", které oddělí od hranolu řez rovinou A"B"C"
(obr. 37). Budeme předpokládat, že je a < b < c; výsledný
vzorec pak snadno ověříme i pro zbývající případy.

Na hranách BB', CC sestrojíme body K, L tak, aby platilo
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вř
ВК = CL = a. Torzo hranolu
je sjednocením kolmého troj- C
bokého hranolu ABCA"KL a

čtyřbokého jehlanu B"KLC"A",
jehož podstavou je čtyřúhelník
(lichoběžník) B"KLC" a jehož
výška v vedená na podstavu má ^
tutéž délku jako výška trojúhel-
nika A"KL nebo ABC vedená
bodem Л", resp. A. Označme
ještě V objem torza, V\ objem
hranolu ABCA"KL, V2 objem q
jehlanu B"KLC"A\ h délku
BC = KL. Pak platí

Vi = a P,

B"“

C" A'
К

В

Obr. 37A(1)
1 B"K + C"L

(2). h . v .V2 = — •2
3

Protože je B”K = b — a, CL = c — a,hv — P, plyne z (2)

К«=у(4 + е-2в).

2

1

(3)

Spojíme-li (1), (3), dostaneme
P

Vi + Vz = (a + b + c),F = (4)

což je výsledný vzorec.
Rozřešená průpravná úloha je dosti těžká; předpokládá při-

pravený model, zopakování vzorců pro objem jehlanu, obsah
lichoběžníka, trojúhelníka a intuitivní ověření rovnosti výšek
trojúhelníků A"KL, ABC a výšky jehlanu B"KLC"A".

Úplné řešení průpravné úlohy předpokládá i ověření vzorce
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(4) v případech a = b< c3a<.b = c3 a — b = c. Vhodným
doplňkem je výpočet objemu torza čtyřbokého hranolu, jehož
podstava je rovnoběžník; při označení obdobném předchozímu
dostaneme vzorec

V =

který je možno dále zobecňovat pro libovolný kolmý hranol.
Po rozřešení průpravné úlohy je ROZŘEŠENÍ SOUTĚŽNÍ

ÚLOHY Z-1-3 hračkou. Bud může řešitel sledovat předchozí
postup, tj. odvodit znovu vzorec (4) ve speciálním případě, nebo
může prostě dosadit do vzorce (4). Podle textu úlohy je

a = p — q, b = p, c = p + q;

zde je skutečně a < b < c3 neboť p3 q jsou kladná čísla, pro něž
platí p > q. Protože platí

(5)

(.P2 — ?2)2 + 4p2q2 = (p2 + q2)2 ,

je podle obrácení Pythagorovy věty trojúhelník ABC pravoúhlý
s přeponou ВС a jeho obsah je P = AB . AC, neboli

P = pq O2 — q2). (6)

Spojením (4), (5), (6) vyjde
V = p2q (p2 — q2).

Úloha Z-1-3 je studijně vhodná nejen proto, že cvičí pro-
storovou představivost, ale také proto, že dává } ř ležitost к al-
gebraickým výpočtům, které mají geometrický význam.

| Z-1-4
4. V rovině je dána kružnice k = (5; r = 6 cm) a bod M, pro

který platí Л45 = d = 2 cm.
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Sestrojte trojúhelník ABC s vrcholy na kružnici k tak, aby
bod M byl středem strany AB a přímka BS byla těžnicí troj-
úhelníka ABC. Kolik má úloha řešení?

KOMENTÁŘ A ŘEŠENÍ. Úloha je v zadané podobě tzv.
úJoha záchytná, kterou mohou rozřešit i slabší řešitelé bez po-
moci. Sestrojí nejprve tětivu AB kružnice k, jejímž středem je
bod M(AB ± SM). Třetí vrchol C trojúhelníka ABC leží na
přímce m // BS, jejíž vzdálenost od přímky BS je táž jako vzdá-
lenost bodu A od přímky BS. Pro daná čísla d, r protne přímka
m kružnici k ve dvou různých bodech Ci, C2 a tak dostaneme
dvě řešení úlohy: rovnoramenný trojúhelník ABCi se základ-
nou AC1 (AB = BCi) a pravoúhlý trojúhelník ABC2 s pře-
ponou АСг (£ ABCz je pravý). Oba tyto trojúhelníky jsou na-
vzájem různé a tvoří I. skupinu řešení. Vymčníme-li označení
vrcholů Л, В, dostaneme další dvě řešení úlohy, která tvoří
II. skupinu; v daném numerickém případě má tedy úloha čtyři
různá řešení (obr. 38).



Úloha je zajímavá teprve tehdy, když určitá čísla r = 6,
d = 2, nahradíme parametry. Pak se ukáže, že je vždy řešitelná,

r
že pro d = --r=r splynou obě řešení I. skupiny v pravoúhlý

|/2
rovnoramenný trojúhelník ABC s přeponou AC; právě tak
splynou obě řešení II. skupiny; úloha má tedy dvě řešení. Je-li

jsou obě řešení I. skupiny i obě řešení II. skupiny
r

d Ф
1/2’

navzájem různá. Zbývá otázka, zda může splynout některé ře-
šení I. skupiny s některým řešením II. skupiny; to může nastat
jen tehdy, je-li Д ABC rovnoramenný se základnou AC i BC,

r

tj. je-li rovnostranný; pak je ovšem d = — . V tomto případě
má úloha tři řešení: trojúhelník rovnostranný a dva trojúhelníky
pravoúhlé s úhly 30°, 60°.

Doporučujeme provést diskusi jako doplněk řešení soutěžní
~a d=L.úlohy nebo aspoň vyšetřit případy d —

P 2
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IV. Súťažné úlohy II. kola

1. KATEGÓRIA A

A-II-la |
la. Dokážte, že pre všetky prirodzené čísla n > 1 platí

1

27

—4~1)a • bodov)
1 _L_ i

W2 И3'( 1
n

1+i_ J__±'

£ £2 £3
RIEŠENIE. Označme = П (

k-2 \ )•
Zrejme platí:

1 1 11 1
1 +J~ = 1 +

л
1 - —

k2 k* k2

11

■( 1 +T 1 - —

k k

П

Pieto je pn — П
k-2

= [Л(1+1)Г-Л( 1
1 --T-

k ■

125



Á(I+i)’ At1-!)-Označme rn = $n —

n+ 1

П k
k-3

П (k + 1)
k - 2

” k + 1
Platí: rn— П

k -2 £
П £

k - 2
П £

k-2

TI -f- 1
2

1
Analogickým výpočtom dostaneme sn = — . Z toho konečne

n

máme

(П + l)2
/’и — TTrČ-Sn —

An

čo sme mali dokázať.

| A-II-lb 1
lb. Úhlopříčky konvexního čtyřúhelníka АВCD se protínají

v bodě M. Jsou dány velikosti úhlů £ DAM = 30°, £ ADM =
= 90°, * ABM = 30°, * fíCAí = 45°. Vypočtěte velikosti

(6 bodů)všech vnitřních úhlů čtyřúhelníka ABCD.
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ŘEŠENÍ (obr. 39). Označíme délky úseček AM = a, BM —

= b, CM = c, DM = d. Dále označíme £ CDM = cp a vy-
počteme * DCM = 60° - <p, * GBAf - 75°, * БЛАГ = 30°.
Z Л ADM, A Л2Ш plyne

а — 2d, b = а. (1)

Sinová věta pro Д CDM dá
d sin (60° — ф) (2)sin 9oc

Sinová věta pro Д BCM dá
c sin 75°
b sin 45° (3)

Znásobením (2), (3) dostaneme vzhledem к (1)
d sin (60° — cp) sin 75°

sin cp ' sin 45°a

a dále vzhledem к (1)
sin 75°1

— = (sin 60°. cotg cp — cos 60°) ■o'sin 45

čili

cotg 4> ~ (sin 30° cos 45° -f- cos 30° sin 45°)1

21/2"
čili

1 1
= (]/3 . cotg cp - 1)(1 + j/3) ’

4 ]/221/2
čili

]/з (1 + Уз) cotg cp = 1 + Уз + 2
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čili
(3 .+ 1/3) cotg cp = 3 + ]/3 .

Protože je 0 < cp < 180° a cotg cp = 1, je 9? = 45°. Velikosti
vnitřních úhlů jsou a — 60°, /5 = 105°, у = 60°, <5 = 135°.

А-II-2a

2a. V rovině je dán kruh K. Určete množinu vrcholů A všech
vypuklých čtyřúhelníků ABCD, o nichž platí, že AC ^ BD
a že celá úhlopříčka BD leží v kruhu K.

ŘEŠENÍ. Nejprve dokážeme pomocnou větu:
Nechť ABCD je vypuklý čtyřúhelník takový, že АС й BD.

Nechť X je nejbližší bod úsečky BD к vrcholu A [podrobněji:
je-li pata Y kolmice spuštěné z bodu A na přímku BD na úsečce
BD, je X — Y; padnc-li Y na prodloužení úsečky BD za bod В
(popř. D), je X = В (popř. X = £)).] Potom je AX < BD.

Důkaz. Je-li P průsečík úhlopříček АС a BD, pak je AX ^
й АР < АС й BD.

Je-li nyní ABCD čtyřúhelník splňující podmínky úlohy, je
BD ^ 2r, kde r je poloměr kruhu K. Protože celá úhlopříčka
BD leží v K, je bod X z pomocné věty v kruhu K. Má proto
podle této věty bod A od obvodu kruhu К vzdálenost menší
než 2r, tedy od středu 5 kruhu К vzdálenost menší než 3r.

Je-li obráceně A takový bod, že AS < 3r, pak sestrojíme •
čtyřúhelník ABCD splňující podmínky úlohy např. takto: Pro
A = S stačí zvolit čtverec o straně — r s vrcholem v A. Nechť

nyní А Ф S. Kruh K' se středem A a poloměrem 2r má s К
společný nějaký bod P, který je vnitřní i pro К i pro К' a který
neleží na přímce AS. Přímka SP protne hranici kruhu К ve
dvou protějších bodech В a D, polopřímka AP protne hranici
kruhu K' v bodě C. Je pak ABCD vypuklý čtyřúhelník s průse-
číkem úhlopříček P, zřejmě splňující podmínky úlohy.

(5 bodů)
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ZÁVĚR. Hledaná množina je vnitřek kruhu, který je sou-
středný s К a má trojnásobný poloměr.

A-II-2b

2b. Je dána krychle ABCDA'B'C'D'. Určete množinu M
všech bodů na povrchu krychle, které jsou souměrně sdružené
s( vrcholem C podle některé přímky, která prochází středem
úsečky AB a je kolmá к AB. (5 bodů)

ŘEŠENÍ (obr. 40). Označme M střed hrany AB, x přímku
procházející bodem M a kolmou к AB. Bod X sestrojíme tak,
aby střed X' úsečky (dvojice) CX ležel na přímce x, a aby bylo
x J_ CX-, pak MC = MX. Body X leží tedy na kulové ploše x

se středem M a poloměrem CM = ^ ]/5, kde a značí délku
hrany dané krychle. Přímky
x vyplňují rovinu soumčr-
nosti úsečky AB. Body X
proto leží v rovině ADA',
tedy na kružnici se středem A'
A a poloměrem a v rovině
ADA'. Protože X má ležet
na povrchu krychle, je AT na
čtvrtkružnici DA' této kruž-
nice.

DL

X 7
\! /ř B'\

1, / "v

c
-r—/

/ //Ukažme, že obráceně kaž-
dý bod X této čtvrtkružnice A
vyhovuje úloze.

iП
/ Obr. 40

Je totiž skutečně MX = ]/5 = MC, takže trojúhelník MXC
je rovnoramenný. O středu X' úsečky CX tedy platí, že MX' je
kolmé к XC a je tedy MX' osa souměrnosti úsečky CX.
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1
Protože X leží v rovině ADA' a CX' —

- CX, leží střed X'

v rovině souměrnosti úsečky AB. Proto MX'(X' Ф M, protože
X leží ve stěně ADD'A') je kolmá к AB. Bod X tedy leží v hle-
dané množině M.

ZÁVĚR. Množina M je čtvrtkružnice s krajními body A' a D
kružnice o středu A as poloměrem AD ve stěně ADD'A’.

A-II-3a |
3a. Dokážte, že neexistuje trojica reálných čísel a, b, c taká,

aby rovnica
ax2 -f- bx -f c = 0

mala právě dva rožne kořene xi, X2 a súčasne rovnica
bx2 + cx + a = 0

mala právě dva rožne kořene хг, хз a rovnica
cx2 + ax -f- b — 0

(1)

(2)

(3)
(7 bodov)právě dva rožne kořene хз, x\.

RIEŠENIE. Předpokládejme, že existuje trojica reálných
čísel a, b, c taká, že (1) má kořene jci, xo, *i Ф *2 5 (2) má kořene
*2, *з; *2 Ф хз а (3) má kořene хз, xi; *з Ф x\. Z toho vyplývá,
že musí byť а Ф 0, b Ф 0, с Ф 0. Ďalej stadia! vyplývá, že čísla
*i, *2, хз musia byť reálne. Ak by napr. xi bolo nereálne kom-
plexné číslo, potom musí byť xz = xi (x znamená číslo kom-
plexne združené к číslu x), pretože sú kořeňmi rovnice s reálny-
mi koeficientami. Potom však tiež хз = X2 = xi = xi, čo je
v spore s tým, že хз ф хь

Zo známých vzťahov medzi koreňmi a koeficientami kvadra-
tickej rovnice pre reálne čísla xi, хг, хз dostaneme:

c = —b(x2 + x3),
a = — с(хз -f- xi), b — CX3X1.

b — — a(xi -f- хг), с — а X1X2,

a — 6x2X3, (4)
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Vylúčením čísel a, 6, c vždy z dvoch rovnic, ktoré sú v (4) napí-
sáné pod sebou, dostaneme

»

*1X2*3 + *22*3 +1=0,
*1*2*3 + *12*2 +1=0,
*1*2*3 + *32*1 + 1=0.

Vynásobením druhej, štvrtej a šiestej rovnice zo (4) dostaneme
*i2*22*32 = 1 číže buď X1X2X3 = 1, alebo X1X2X3 = — 1 .

Ak do (5) dosadíme *1*2*3 = 1, dostaneme, že musí byť
*3 < 0, X2 < 0, *1 < 0, z čoho *1*2*3 < 0, ale to je spor.

Ak do (5) dosadíme *1x2*3 = — 1, dostaneme, že aspoň jed-
no z čísel xi, X2, X3 sa rovná nule, čo opáť vedie к sporu.

Tým sme dokázali, že trojica reálných čísel a, b, c uvedených
vlastností nemůže existovat’.

(5)

\

1 A-11-зь

3b. Určete všechny nekonečné aritmetické posloupnosti ce-
lých čísel

^2э • • • 5 &Jly • • •

takové, aby posloupnost
«О, в1, U2) вз, ..., ( 1)и Яи, •..

obsahovala právě 1972 dvojic stejných členů (čísel). (7 bodů)
ŘEŠENÍ. Poněvadž {an} je aritmetická posloupnost, platí

o-n = во + nd, kde d je diference.
Budiž p, q, (p Ф q) dvojice indexů taková, že

(—l)*a„ = ( —1 )gaq,
tj-

(-l)í> [ao + pd] = (-iy [во + qd) .

Kdyby bylo p + q sudé, plynulo by z (1)
pd = qd,

(1)
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což je možné, jen když d = O (neboť p Ф q). Potom však jsou
všechna an sobě rovna a tedy v posloupnosti čísel (—1)nan
existuje nekonečně mnoho dvojic stejných čísel.

Nechť tedy p + q = s je liché. Z (1) pak plyne
a0 -f- pd = —clq — qd,

tj.
2ao = — (p + q) d = —sd.

Poněvadž s je liché, musí ao — rs, kde r je celé, takže

d — — 2r.

Přitom nutně ao Ф 0, a tedy i г Ф 0, jinak by bylo d — 0; viz
předchozí případ.

Budiž (/, k) jiná dvojice indexů taková, že

(—1 )J'aj = (—1 )как.

Stejně jako výše dostaneme
2ao = — (j + k) d,

a tedy
j + k = s.

s -)- i
Dvojic přirozených číselp, q s daným součtem s je —-— , to

má být 1972 — tedy
s + 1 = 3944 ,

s = 3943.

ao = 3943 r, d — —2r.Máme tak

Všechny posloupnosti {an} s požadovanými vlastnostmi mají
tedy tvar

an = 3943r — 2rn ,

kde r je libovolné celé číslo.
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2. KATEGORIE В

B-II-la

la. Do jednotkové kružnice je vepsán vypuklý pětiúhelník,
pro jehož délky stran platí

a^b^c^d^e

a zároveň a = 1, d — ]/2. Vypočtěte b,c,e a zjistěte, zda takový
pětiúhelník existuje.

ŘEŠENÍ. Označme a, /?, y, (5, e velikosti středových úhlů
příslušných po řadě к tětivám a, b, c, <i, e. Podle textu úlohy je

ай/Зйуйдйе,
neboť všecky tyto úhly jsou duté. Zároveň platí

a = 60°, 6 = 90°.

(1)

(2)

Je tedy podle (1), (2)
60° й P й у й 90° й е < 180°, (3)

а mimoto

Р + У + е = 360° - 60° - 90° = 210°.
Kdyby aspoň jeden z úhlů /9, у měl velikost > 60°, bylo by
P + у > 120°, tj. podle (3)

P + у + e > 120° + 90° = 210°,
což je ve sporu s (4). Je tedy

(4)

p = y = 60°.
Z (4) pak plyne e = 90°. Délky stran jsou b = c — 1, e = |/2.

Existenci pětiúhelníka prokážeme konstrukcí. Sestrojíme rov-
noramenný lichoběžník ABCD s délkami stran AB = BC =

133



= CD = 1, AD = 2 (průměr kružnice) a v polorovině opačné
к ADB к němu připojíme rovnoramenný trojúhelník ADE
s pravým úhlem AED.

B-II-lb 1

lb. Je daný trojuholník ABC a nad jeho stranami АС, BC
v polrovinách opačných к polrovinám ACB, BCA sú zostrojené
rovnostranné trojuholníky ACD, ВСЕ. Nad stranou AB v pol-
rovině ABC je zostrojený rovnostranný trojuholník ABF.

Ak je M střed trojuholníka ABF, je trojuholník DME rovno-
ramenný a £ DME — 120°. Dokážte. (6 bodov)

RIEŠENIE (obr. 41). Označme obvyklým spósobom dlžky
stráň a veíkosti uhlov: a — BC, b = CA, c = AB, a = -£ CAB,
P = £ ABC, у = £ BCA. Nech V je ťažisko (střed) trojuhol-
nika ACD a U ťažisko trojuholníka ВСЕ. Otočenie okolo bodu A
o uhol velkosti a prevedie polpriamku А V do polpriamky AM.
Otočenie okolo bodu В o uhol velkosti /3 prevedie polpriamku
BM do polpriamky BU. Preto je

* VAM = a, Z MBU = 0 . (1)
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Ďalej platí

%r , AM = BM = ~^=.

BU = EU =

P
s s

Podlá vety — и — o podobnosti trojuholníkov vyplývá z (1), (2)
s s

Д ABC ~ Д AMV ~ Д MBU.

DV = AV =

P’P
(2)

(3)
Z (3) dostaneme

VM = ^L = EU, MU = A- = /Ж (4)
УзУз

Ďalej je *ЛРТ> = 120°, *AVM = у, *EUB = 120°,
£ BUM = у (pozři (3)). Sú tri možnosti:

I. у — 60°. Potom leží V medzi D, M, U medzi E,M a platí
podlá (4)

DM = DV + VM = EU -f MU — EM.

Okrem toho je
ZEMD = 360° - £ AMV - *BMU - žAMB =

= 360° - a - /3 - 120° - 240° - (a + 0) =
= 240° - 18Э0 + у = 120°.

II. у < 60° (pozři obr. 41). Potom je
ZDVM = 120° + y< 180°, * EUM = 120° + у < 180°. (5)
Zo (4) а (5) vyplývá podlá vety sus

A DVM £2 Д ЛШ£

a z toho = DM. Trojuholník DME je teda rovnoramenný,
ako sme mali dokázat’. Ďalej je
%EMD = 360° - Z.AMV - ZBMU - *AMB +

+ (žDMV + * EMU) = 360° - a - - 120° +
+ (180° - 120° -y) = 120°.

(6)
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III. у > 60°. Postupujeme ako v případe II s tým rozdielom,
že je žDVM = £ EUM = 360° - (120° + y) = 240° - у <
< 180°. Dokážeme opať, že platí (6), z čoho hned’ máme EM =
= DM. Ďalej počítáme 4 EMD. Přitom však odčítáme
$.DMV + * EMU = 180° - (240° - y) = -60° + y, t. j.
připočítáme 60° — y, ako v případe II. Výsledok je preto rov-
naký ako v případe II.

B-II-2a

2a. Nalezněte všechna taková reálná čísla a, která mají tu
vlastnost, že pro každé reálné číslo x platí

2.v2 4- x — 1
(1)< a.

x2 — x + 1
(7 bodů)

ŘEŠENÍ. Z definice absolutní hodnoty plyne, že (1) lze pře-
psát jako dvě nerovnosti:

2x2 4- x — 1
(2)< a .

— a <
je2 — x -f 1

Pro každé x je x2 — x 4- 1 > 0, a proto (2) je ekvivalentní
současné platnosti nerovností:

x2(a — 2) —x(a + 1) 4- (a 4- 1) > 0,

x2(a 4- 2) — x(a — 1) -f- (u — 1) > 0.

Nyní rozlišme tři případy:

a) Nechť a — 2 = 0, tj. a = 2. Pak (3) má tvar

-3x + 3 > 0,

což neplatí pro každé jc. Tedy hledané а Ф 2.

(3)

(4)
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b) Nechť a + 2 = O, tj. a = — 2. Pak (4) má tvar

3x — 3 > O ,

což neplatí pro každé x. Tedy hledané а Ф —2. (Podíváme-li
se na (1), vidíme, že а Ф —2 je samozřejmé, neboť je zřejmě
a > 0.)

c) Ne:hť а Ф 2 а а Ф —2. Pak na levých stranách nerovností
(3) a (4) jsou kvadratické trojčleny proměnné x. Nerovnosti (3)
a (4) jsou splněny pro každé reálné číslo x, právě když

a - 2 > 0 a (a + l)2 - 4(a - 2)(a + 1) < 0 (5a, b)
a zároveň

a + 2 > 0 a (a - l)2 - 4(a + 2)(a - 1) < 0 . (6a, b)

Z (5a) a (6a) plyne, že \

(7)a > 2 .

Pak z (5b) plyne

(a + 1) - 4(a - 2) < 0,
tj.

(8)a > 3.

Dále z (6b) dostáváme

(a — 1) — 4(a + 2) < 0 j

a > — 3 .

Z podmínek (7), (8), (9) plyne, že nerovnost (1) platí pro
každé x právě když a > 3 .

tj-
(9)
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B-II-2b I

2b. Najdčte řešení soustavy lineárních rovnic
X _ a3y _j_ a2z — 1 }

a3jc — у + az = —1 ,

a2x — ay + z = 1
s neznámými x, y, z a reálným parametrem a. Proveďte diskusi
řešitelnosti soustavy vzhledem к parametru a.

ŘEŠENÍ. Eliminujeme z rovnic (1), (2), (3); z (3) plyne
z — 1 — a2x + ay. Po dosazení do (1), (2) dostaneme

(1 — a4)x — 1 — a2,

(1 — a2)y — 1 + a .

Platí 1 — a4 = (1 + a2)( 1 — a2); protože je 1 + a2 > 0 pro
všechna reálná a, rozlišíme dva případy

!

(1)

(2)

(3)

(7 bodů) -

(!')

(2')

I) 1 - а2 ф 0,

V případě I) vypočteme z (Г), (2')

II) 1 - a2 = 0 <=> a = ± 1 .

1
(4)x =

1 + a2 5

1
(5)У = 1 — a

a dále z (3)
a3 + 1

(6)z =

(1 - o)(l + a2) •
ZKOUŠKA ukáže, že (4), (5), (6) dává řešení soustavy (1), (2),
(3) pro každé reálné a, pro které je 1 — а2 Ф 0 .
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V případě II) dostaneme soustavy pro

a = 1: * — у + z = 1,
x — у + z = —1 ,

x — у + z = 1 ;

Z nich první je neřešitelná, druhá má nekonečně mnoho řešení.

a = —1: x + у + z = 1 3

X + у + z = 1 ,

x +y+ 2 = 1 .

B-II-3a |

3a. Jsou-li a, b, c tři taková přirozená čísla, že a3 + b3 + c3
je násobek sedmi, je aspoň jedno z nich násobkem sedmi. Do-
kažte. (6 bodů)

ŘEŠENÍ. Dělíme-li přirozené číslo x sedmi, je zbytek ně-
které z čísel 0,1, 2,3,4, 5,6. Dělíme-li číslo x3 sedmi, je zbytek
týž jako při dělení čísel O3, l3, 23, 33, 43, 53 63, tj. některé z čísel
0, 1, 6.

Dělíme-li součet a3 + b3 + c3 sedmi, jsou pro zbytky jed-
notlivých členů tyto možnosti

05 Os 1 5
i; i; i;

Poslední čtyři případy jsou nemožné, neboť pak by zbytek při
dělení sedmi byl týž jako u součtu

1 + 1 + 1 , tj. 3,

1+1+6, tj. 1,
1 + 6 + 6, tj. 6,
6 + 6 + 6, tj. 4 .

Nastane tedy některý z prvních šesti případů, tj. aspoň jedno
z čísel a, by c je násobkem sedmi.

/

0; 0; 0 ;
05 1; 6;

0; 0; 6 ;
151; 6 5

0; 1; 1 ;
1; 6; 6 5

0; 6; 6 ;
6; 6; 6 .
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в-п-зь I

3b. a) Nechť а, /9, у jsou velikosti vnitřních úhlů daného
trojúhelníka. Dokažte, že platí

cos /9cos a cos у
= 2. (1)sin (3. sin у sin a . sin /9sin a . sin у

b) Nechť a, /9, у jsou velikosti dutých úhlů a nechť platí (1).
Existuje trojúhelník, jehož vnitřní úhly mají velikosti a, /9, y?

(6 bodů)
ŘEŠENÍ. Jestliže žádné z čísel a, /9, у není násobkem n, pak

vždy platí:
cos /9 cos уcos a

sin a sin /9sin (3 sin у sin a . sin у
1

[(sin 2a + sin 2/9) + sin 2y] =2sin a sin /9 sin у
1

.[sin(a + /9).cos(a—(3) + siny. cos у]. (2)sin a sin /9 sin у

a) Jestliže a, /9, у jsou velikosti vnitřních úhlů daného troj-
úhelníka, pak

у = л — (a + /9),
takže z (2) plyne

F(a, /9, y) =
1

(cos(a — /9) — cos(a + /9)) =sin a. sin /9 '
2 . sin a . sin /9

= 2,sin a . sin /9
tj. (1) platí.

b) Nechť a, /9, у jsou velikosti dutých úhlů a nechť platí (1).
Podle (2) pak
sin(a -f /9).cos(a — /9) + sin y.cos у = 2sin a sin /9.sin y,
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tj.
sin(a + /?).cos(a — /?) -f- sin 7.cos у —

= [cos(a — /?) — cos(a -f- /?)]. sin у .

Po úpravě odtud plyne

cos(a — /3). [sin(a + /?) — sin y] + sin у [cos у +

+ cos(a + j3)] = 0,
tj.

а +ft + y « - У ,

2 +. cos (a — /3) . sincos
2

a + ft — y~+ sin у. cos 0.
2

Tato rovnost zřejmě platí v případě, že a + /3 + у = я. Ovšem
tato rovnost platí také pro čísla a, /3, y, která jsou řešením sou-
stavy rovnic

(3)2 ’

Soustava (3) má např. řešení

1 д _I
^ 7Г, p — 3 71 '

1
(4)у=-я.

Úhly mající tyto velikosti jsou zřejmě duté. Snadno se lze pře-
svědčit, že (1) pro ně skutečně platí. Součet čísel (4) je však
větší než 71. Lze tedy vyslovit závěr:

Platí-li pro velikosti a, /3, у dutých úhlů rovnost (1), pak ne-
musí existovat trojúhelník, jehož vnitřní úhly by měly velikosti
a3 A 7-

a —
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3. KATEGÓRIA С

C-II-la

la. Je daný rovnostranný trojuholník PQR. Určte množinu
všetkých vrcholov A takých trojuholníkov ABC, ktorých strany
AB, BC, CA obsahujú v uvedenom poradí vrcholy P, Q, R
a pre dížky ich stráň platí AB ^ AC ^ BC.

RIEŠENIE. Priamky stráň trojuholníka PQR rozdehijú ro-
vinu (okrem týchto priamok) na sedem častí (obr. 42). Ak by
bod A ležal v časti I, ležal by В v VI, C v III a bod A v IV,
čo je spor. Analogicky sa zistí, že v I nemóže ležať ani bod B,
ani bod C.

Ak by bod A ležal v časti II, ležal by В v IV, C v VII a A
v IV (I je podlá předchádzajúcej úvahy vylúčená), čo je spor.
Napišme výsledok tejto úvahy do tabulky a analogicky přeberme
případy, keď A leží v časti III, IV, V, VI, VII. Dostaneme:

(5 bodov)

(

C ] AA В

II IV VII IV

III VI III IV

IIIV III IV

v IIIII IV

VI IIIII V

VII VII IVIV

Z tabulky vyplývá, že je možný len případ, že A leží v časti IV.
Analogicky sa zistí, že ak leží bod A na niektorej z priamok —
stráň trojuholníka PQR, ale nie vo vrchole, potom A leží buď
na opačnej polpriamke к PQ alebo na opačnej polpriamke
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к RQ. Ак je konečne A niektorým z vrcholov Д PQR, potom
móže byť buď A = P alebo A = R} ale nemóže byť A = Q.

Z tejto úvahy vyplývá, že bod A móže ležať len v oblasti IV
a jej dvoch hraničných polpriamkach (včítane začiatočných
bodov).

Ak vyhovuje Д ABC dalším požiadavkám úlohy, potom
z AB ^ АС ^ BC vyplývá, že у ^ ^ a. Teda

3a ^ a + /?-f-y = 180°, t. j. a ^ 60°.
Leží teda bod A v oblasti IV mimo kružnice k prechádzajúcej
bodmi Pai?a dotýkajúcej sa priamok QR a PQ alebo na vačšom
oblúku tejto kružnice (obr. 43).

Označme M množinu tých bodov časti IV so započítanými
oboma hraničnými polpriamkami, ktoré ležia mimo kružnice k
alebo na oblúku PR. Ako sme vyššie ukázali, leží bod A vždy
v množině M.

Ukážme obrátene, že každý bod množiny M je vrcholom A
nějakého trojuholníka ABC vyhovujúceho podmienkam úlohy.

Ak je A = P, zvolíme В — Q, C = R аД ABC vyhovuje.
Ak je A = R, zvolíme В — P аС — O. Ak je А Ф P i А Ф R,
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ale A leží v M, obsahuje dutý uhol £ PAR bod O a jeho velkosť
а й 60°. Priamka vedená bodom Q kolmo к osi tohto uhla
přetne polpriamku AP v bode, ktorý označíme В a polpiiamku
AR v bode, ktorý označíme C. Trojuholník ABC opáť splňuje
požiadavky úlohy.

ZÁVĚR. Hladaná množina je množina M vyšrafovaná
v obr. 43.

C-II-lb |
lb. Je dán pravoúhlý Д ABC, bod D je středem jeho pře-

pony AB a bod S je středem jemu vepsané kružnice.
Dokažte: Jestliže CS — DS, pak jeden vnitřní úhel Д ABC

má velikost 30°.

ŘEŠENÍ. Označme M, N, P po řadě body dotyku vepsané
kružnice a stran ВС, АС a AB. Pak

SM = SN= SP.

Z pravoúhlého Д CNS plyne, že CS > NS, a proto též
DS > PS, takže P Ф D. Bod 5 je vnitřním bodem Д ABC,
a proto body S, D, P jsou vrcholy trojúhelníka. Podle předpo-
kladu CS = DS, podle (1) je NS = PS, dále * CNS =
= £ DPS — 90°, takže trojúhelníky CNS a DPS jsou shodné
(Ssu). Přímka CS je osa £ ACB — 90°, a proto £ SCN = 45°,
tj. také * SDP = 45°.

Bod P je vnitřním bodem úsečky AB a přitom P Ф D. Pro
bod P tedy mohou nastat dvě možnosti: bod P leží buď mezi
body B, D, nebo mezi body A, D.

Nechť P je vnitřním bodem úsečky BD (viz obr. 44). Pak
* BDS = 45° = * BCS, dále * CBS = * DBS = ^, neboť
BS je osa £ ABC. Podle předpokladu CS — DS, takže

Д CSB £S2 Д DSB,

(1)
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tj.
1

2ЛВ-
Pak sin a =ý, takže £ BAC — a — 30°.

Leží-li bod P mezi body D a A, pak se zcela obdobně dokáže,

Л CSA & Л DSA ,

BC = BD =

1

že

odtud plyne
1

AC = AD = 2AB’
takže

* ABC = 30°.

1 C-II-2a |

2a. Je dán mnohočlen f(x) = л:3 + а^г + bx + c s celočí-
solnými koeficienty. Nechť existuje celé číslo m tak, že čísla

f(m + 1)j f(m + 2) jsou násobky tří. Dokažte, že pro
každé celé číslo x je pak f(x) násobek tří.

ŘEŠENÍ. Buď m takové celé číslo, že/(m),/(m -f 1 ),f(m -f 2)

(6 bodů)
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jsou násobky tří. Budiž л: libovolné celé číslo různé od m, m + 1,
m + 2. Pro každé číslo г platí
x2 — z2 — (x — z)(x + z), x3 — z3 = (x — z)(X2 + xz + z2) ,

takže čísla

/0) - f(m), f(x) -f(m + 1), /0) —f(m + 2) O)
jsou po řadě násobky čísel

x — m, x — (m + 1), x — (m -\- 2).
Protože (2) jsou tři po sobě bezprostředně následující čísla, je
právě jedno z nich násobkem tří а к němu příslušné číslo (1) je
tedy násobkem tří. Protože však také čísla f(m), f(m + 1),
/(m + 2) jsou podle předpokladu násobky tří, je i f(x) násobkem

(2)

tří.
Tím je věta dokázána.

j~~C-lI-2b |
2b. Určete všecky dvojice reálných čísel x, y, pro které platí

1* + 1| + 1з> + 1| = 1*+:у + 1|-
Řešte úlohu graficky i výpočtem.
ŘEŠENÍ. Umocněním rovnice dostaneme:

O + 1)2 + (y + 1)2 + 2 | (* + 1)0 + 1) | =
= x2 + у2 + 1 + 2xy + 2x + 2уi

(6 bodů)

po úpravě
(1)2 | {x + l)(jy + 1) | = 2xy — 1 .

a) Pro x + l^Oajy + lSiO nebo х + 1^0а.у + 1^0
dostaneme | (x + l)(jy + 1) | = (x -f- l)(jy -f 1), tj. (1) nabude
tvaru

20 + 1)(3> + 1) = 2xy — 1,
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po úpravě
2x + 2y+ 3 = 0. (2)

К této rovnici ještě patří nerovnice

x + lSíOjjy-j-liíO nebo x + 1 й 0, у + 1 ^ 0 .

Z obráceného postupu vyplývá, že (2), (2') udávají skutečně
řešení dané rovnice.

(2')

b) Pro x + 1^0ay+1^0 nebo x+l^Oajy+l^O
dostaneme | (x + l)(jy + 1) | — — (x + 1) (y + 1), tj. (l)nabu-
de tvaru

-20 + 1)0 + 1) = 2xy - 1,
tj-

4xy -j- 2x -f 2j; + 1 = O
neboli

(2* + 1)(2у + 1)=0. (3)

у\2x + 1=0
i

x+1=0\
\
\

m\ x.
\
\

2y+ 1=0

[b-1] у + 1=0\
\
\ 2x+2y+3 «0
\
\Obr. 45
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Rovnice (3) však ve spojení s první i druhou soustavou nerovnic
ж + l ^ 0 aj + l ^ 0 nebo x-j-l^Oa^ + l^O (3')
dává řešení

—

у j У й —1, resp. # = 1 ) У = —
c) Graficky (viz obr. 45). Řešení jsou znázorněna všemi body

tlustě vytažené čáry.

1
x =

C-II-3a

3a. Národný podnik má vyrobit’ určitý tovar v troch róznych
typoch v celkovom množstve 10 000 kusov. Celkové výrobně
náklady majú byť 4 300 000 Kčs. Z každého typu sa má vyrobiť
aspoň 2400 kusov. Výrobné náklady jedného kusá typu A sú
450,— Kčs, typu В 420,— Kčs a typu C 400,— Kčs. Ceny vý-
robkov sú stanovené tak, že zisk podniku činí pri type A 16 %,
pri type В 17 % a pri type C 18 % výrobných nákladov. Kolko
kusov tovaru z jednotlivých typov má podnik vyrobiť, aby do-
siahol maximálny zisk ?

RIEŠENIE. Označme x, y3 z v uvedenom poradí počet vý-
robkov typu A, В, C. Potom platí

x -j- у + z = 10 000,

(7 bodov)

(1)
45x + 42у + 402- = 430 000.

Čísla x, y3 z sú čísla prirodzené a platí o nich
2 400 ^ x < 10 000,
2 400 ^ jy < 10 000,
2 400 ^ г < 10 000.

Vylúčením neznámej z zo sústavy (1) dostaneme
5x + 2y = 30 000.

(2)
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Druhý člen na lávej straně a pravá strana sú dělitelné dvorná,
a preto aj číslo x musí byť nutné párne, t. j.

x — 21,
kde t je zatiaí bližšie neurčené prirodzené číslo. Prejy a z potom
dostaneme

у = 15 000 — 5r, z = 3ř — 5 000.
Po dosadení do (2) a jednoduchých úpravách dostaneme

1 200 ^ t < 5 000,
1 000 < t й 2 520,
2 466 < t < 5 000.

Všetkým trom vyššie uvedeným nerovnostiam vyhovujú len tie
čísla t, pre ktoré platí

2 466 < t й 2 520.

Počítájme teraz zisk Z podniku:
450.16 420.17

(15 000 - 5ť) +Z 21 -j-
100 100

400.18
(3í - 5 000) = 3f + 711 000.100

Je zřejmé, že zisk bude maximálny pri t = 2 520 a činí vtedy
718 560 Kčs. V takom případe třeba vyrobit’ 5 040 kusov vý-
robkov typu A, 2 400 kusov výrobkov typu В a 2 560 kusov vý-
robkov typu C.

| C-II-3b 1
3b. Je dán trojúhelník A1A2A3 o stranách délek a1, a2, аз.

Sestrojte množinu všech takových bodů M trojúhelníka А1A2A3.,
že pro obsahy platí

Д A1A2M rg Д A2A3M й Д A3A1M. (7 bodů)
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ŘEŠENÍ. Hledanou množinu označme M. Zřejmě M obsa-
huje jen vnitřní body Д A1A2A3, neboť jinak by aspoň jeden
z trojúhelníků A1A2M, A2A3M, A3A1M neexistoval.

Řešme nejdříve dílčí úlohu: Určete množinu N všech vnitřních
bodů M trojúhehúka A1A2A3 takových, že pro obsahy platí

Д A1A2M ^ Д A2A3M.

Trojúhelníky A1A2M a A0A3M mají společnou stranu A2M

(1)

Obr. 46

(viz obr. 46). Označme £1, B3 paty kolmic spuštěných z vrcholů
Ai, A3 na A2M. Nerovnost (1) zřejmě platí, právě když

A1B1 ^ A3B3.

Označme C průsečík A2M a strany A1A3. Zřejmě je C vnitřní
bod úsečky A1A3. Nechť £1 Ф £3. Pak vznikne Д A1CB1 a
Д A3CB3. Podle věty uu je Д A1CB1 ~ Д A3CB3, takže

AiBi
A3B3

Nerovnost (2) tedy platí, právě když
A\C čk A3C.

Ke stejnému závěru dojdeme i v případě, že £1 = £3.
Výše formulovaná dílčí úloha je tak převedena na úlohu:

(2)

AiC
A3C

(3)

150



Určete množinu N všech vnitřních bodů M trojúhelníka
A1A2A3 takových, že polopřímka A2M protíná úsečku A1A3
v takovém bodč C, že platí (3). Množinou N je zřejmě vnitřek
Л A1A2D a vnitřek úsečky A2D, kde D je střed strany A1A3.

Na základě řešení dílčí úlohy se snadno zjistí, že hledaná
množina M je množina všech bodů trojúhelníka A2TE s výjim-
kou bodů jeho strany A2E, kde E je střed strany A1A2 а Г je
těžiště А АхАгАз, tj. M — Д A2TE\ ús. A2E (obr. 47).

Z-II-1

1. a) Vyšetřete, kterou číslicí končí zápis druhé mocniny prvo-
čísla v desítkové soustavě.

b) Je-li p prvočíslo větší než 3, pak čísla p2 + 14 a p2 — 14
nejsou obě zároveň prvočísla. Dokažte.

ŘEŠENÍ, a) Pro prvočíslo 2 máme 22 = 4, a tedy poslední
číslice je 4. Zvláštní postavení v našem vyšetřování má též prvo-
číslo 5. Platí 52 = 25 a poslední číslice je tedy 5. Každé jiné
prvočíslo končí bud číslicí 1, 3, 7, nebo 9. Končí-li číslicí 1, pak
druhá mocnina též končí číslicí 1. Končí-li číslicí 3, je poslední
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číslice druhé mocniny 9. Končí-li číslicí 7, poslední číslice je
též 9. Konečně končí-li číslicí 9, druhá mocnina má na konci 1.

Můžeme shrnout: ve dvou případech končí druhá mocnina
číslicí 4, resp. 5, jinak druhá mocnina prvočísla končí bud
číslicí 1, nebo 9.

b) Nyní ke druhé otázce. Je-li p — 5, pakp2 + 14 = 39, což
není prvočíslo. Zvolíme-li libovolné prvočíslo p větší než 5, pak
p2 končí bud číslicí 1, nebo 9. Končí-li číslicí 1, pak p2 + 14
končí číslicí 5 a je to číslo větší než 5. Tedy je p2 + 14 složené.
Končí-li p2 číslicí 9, pak p2 — 14 končí číslicí 5 a je větší než 5.
Proto p2 — 14 je číslo složené. Tím je důkaz podán.

Z-II-2

2. Je dán čtverec ABCD. Uvnitř stran AB, BC, CD, DA
sestrojte po řadě body E3 F, G, H tak, aby platilo

1 1 1
AE = BF = ~CG=- DH

2 3 4

Q a aby čtyřúhelník EFGH byl
lichoběžník.

ŘEŠENÍ. Pro jednodu-
chost označme AB = a,
AE = x, kde

G

aF 0 < x < — (obr. 48).

a) Předpokládejme nej-
prve, že EH // FG. Potom

*AEH= *FGC3

H

A x E
Obr. 48
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takže z podobnosti Д AEH а Д CGF je (x Ф 0)

a — 4x a — 2x

3xx

To vede к řešení

a
x — —

5 '

b) Předpokládáme nyní, že EF // GH. Potom je

Z BEF = ZHGD,
což vede к rovnici

2x 4x

a — 3xa — x

Tato rovnice má jediné nenulové řešení

x = —a,

které ovšem nevyhovuje.
ZÁVĚR. Jediné řešení je AE = — AB. Konstrukce je pak5

snadná.

Z-II-3 I
3. Dokážte, že pre každú trojicu čísel a, b, c je výraz

V — a2b2 + a2c2 + b2c2 — abc(a + b + c)

nezáporný. Pre ktoré hodnoty čísel a, b3 c sa tento výraz rovná
nule?
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RIEŠENIE. Zrejme platí

V = a2b2 -f- a2c2 + b2c2 — a2bc — ab2c — abc2 =

= (2a2b2 -f- 2a2c2 + 2&2c2 — 2a2ta — 2ab2c — 2abc2) =

= — [(a2b2 — 2a2bc + a2c2) + (a2b2 — 2ab2c + b2c2) +

+ (a2c2 — 2abc2 + b2c2)\ =

1
—

^ ta2(^ — c)2 + 62(c — a)2 + c2(a — 62)] J

čo je zrejme nezáporné pre každú trojicu čísel a, b, c.
Rovnost’ V — 0 nastane vtedy a len vtedy, keď súčasne platí:

a(b — c) — 0, 6(c — a) = 0, c(a — b) — 0.

Kombináciou podmienok, ktoré vyplývajú z týchto troch rov-
ností, dostaneme celkom osem prípadov, z ktorých vyplývá, že

V = 0 platí vtedy a len vte-
dy, keď je splněná niektorá
z týchto podmienok:

a) a = b = c,
b) a = b = 0, c Iubovolné,
c) b = c — 0, a Iubovolné,
d) c = a = 0, b Iubovolné.

В

\ / ^ D
/

! \
.

A

I Z-II-4 |
4. Je daný pravoúhlý troj-

uholník ABC. Bod D je
stredom jeho přepony АВ
a bod S' je stredom vpísanej
kružnice.В Obr. 49
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Dokážte: Ak £ BAC — 30°, potom platí CS = DS.
RIEŠENIE. Strana AB je přepona, a preto £ ZICB = 90°

a uhly £ BAC a £ .ЛВС sú ostré. Podlá předpokladu
£ £MC = 30° (obr. 49). Ak zostrojíme na polpriamke opačnej
к polpriamke CB bod B' tak, že СВ' — CB, potom A BB'A
je rovnostranný a tedy

1 1
— BB' =-- AB =
2 2 0)BC = BD.

Ak vezmeme ďalej do úvahy, že priamka BS je osou uhla
£ ABC, potom dostaneme

(2)%CBS = %DBS.

Trojuholníky CBS a DBS majú spoločnú stranu BS, a preto
podlá vety sus z (1) a (2) vyplývá

A CBS &2 A DBS,
takže

CS = DS,
čo sme malí dokázat’.

1
POZNÁMKA. Rovnost’ BC = — AB dostaneme aj bez po-

mocného trojuholníka BB'A, ak použijeme to, že
1

sin * BAC = sin 30° = —
2 *
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V. Soutěžní úlohy III. kola kategorie A

A-III-1

1. Dokažte, že pro všechna přirozená čísla n > 1 platí

)-'■(-i)1 1
(1)1 - — >

2 *27

(5 bodů)
ŘEŠENÍ. Pro všechna přirozená čísla n > 1 je

и3 > n2,
odkud vyplývá

1 1
1

w3 > n2

Proto také platí
1

1 - -r^

27

” (í+l)(i-l) (я +1)! .(w-1)! и + 1
2 * n

= П
í2 2. (n!)2»- 2

/2 —(— 1
protože n > 1, je —-— > , a tudíž
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1 И + 11
2 * я > 2 *

Tím je dokázáno, že pro každé přirozené číslo n > 1 platí (1).
Řešil JAN KNYTL

žák 4.a gymnasia v Novém Jičínč

A-III-2

2. Je dána krychle ABCDA'B'C'D'. Budiž X obraz bodu C
v některém otočení kolem osy, které převede vrchol A ve
vrchol B. Určete množinu všech takových bodů X, které leží
na povrchu dané krychle.

ŘEŠENÍ. Použijeme věty, že každé otočení kolem osy o
v prostoru lze složit ze dvou rovinových souměrností, jejichž

(8 bodů)

C

A'

i ■Á
C П/

/
/ /

i/ /
/ /
i

A ВN
$

Obr. 50
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roviny jsou různoběžné a protínají se v přímce o; za rovinu
souměrnosti jedné z nich lze zvolit libovolnou rovinu svazku o.
Otočení, které převádí vrchol A ve vrchol В (obr. 50), má osu o
(prostorově) kolmou к přímce AB. Proto přímka o leži v rovině
souměrnosti qo úsečky AB. Souměrnost 990 podle roviny po
převede bod C v bod D. Všechna otočení převádějící A v В
dostaneme, složíme-li cpo se souměrností (proměnnou) cp podle
roviny o; q je libovolná rovina trsu (В), pro niž platí q % po. Je
tedy vyloučena rovina BCB'. Paty všech kolmic spuštěných
z bodu D na roviny trsu (В) vyplní (podle obrácení Thaletovy
věty) kulovou plochu Г sestrojenou nad průměrem BD.
Z plochy Г je třeba vyloučit bod C. Obrazy bodu C ve všech
uvedených otočeních vyplní kulovou plochu Г', která je obra-
zem plochy Г v stejnolehlosti se středem D a koeficientem 2.
Je tedy Г' kulová plocha se středem В a poloměrem BD. Z této
plochy Г je vyloučen bod M Ф D přímky CD, pro který platí
DC = MC.

Kulová plocha Г', která má střed В a poloměr BD, protne
povrch krychle ve třech čtvrtkružnicích: čtvrtkružnici k\ ležící
v rovině А'В'С a omezené body A', C', čtvrtkružnici k<i v ro-
vině ADA' omezené body A', D a čtvrtkružnici кз v rovině
CDC omezené body C', D. Je M = k\ U kz U кз.

A-III-3 I

3. Nech pre postupnost’ mnohočlenov

ад, Pi(x), p2(*),..pB(x),...
platí

P0(x) = 2, Pi(x) = x

a pre všetky n ^ 1 vztah

Pn+i(*) + Pn-i(x) = xPn(x). (1)

158



a) Nájdite mnohočlen
Qn(x) = РДх) — xPn(x)Pn-l(x) + Pn2- l(x), (2)

pre n = 1972.

b) Vyjádříte mnohočlen [Pn+i(x) — Pji-i(x)]2 pomocou mno-
hočlenov Pn{x) a Qn(x).

RIEŠENIE*).
a) Použitím vztahu (1), ktorý platí pre všetky n ^ 1, dostane-

me

Рз — х3 — Зх.P2 = x2 - 2,

Ďalej vypočítajme priamo z definície mnohočlena Qn a zo vzťa-
hov (3) mnohočleny Qi, Qz, Q3. Dostaneme

(3)

Qi = x2 — x.x.2 + 4 — 4 — x2,
<2-2 = (x2 — 2)2 — x(x2 — 2).x + x2 = 4 — x2,
<2з = (л:3 — Зх)2 — x(x3 — Зх)(х2 — 2) + (x2 — 2)2 = 4 — x2.
Tieto výsledky nás vedú к domnienke, že platí

Qn = 4 — x2
pre každé n 1. Pravdivost’ tejto domnienky potvrdíme použi-
tím matematickej indukcie:

1° Pre n = 1 zrejme platí Q\ — 4 — x2.
2° Nech pre nějaké n = k 2: 1 platí Qjc = 4 — x2. Doká-

žeme, že potom platí Qk+1 — Qk = 0, t. j. <2*;+i = Qk.
Dokaž. Podlá vztahu, ktorým bol mnohočlen Qn definovaný,

platí pre každé k ^ 1

Qk+1 — Qk — Pk+12 — ^ Pk+lPk + Pk2 — Pk2 +
+ xPkPk-i — pk-12,

*) Argument x v označení mnohočlenov budeme kvóli zjednodu-
šeniu zásadné vynechávat. Riešitel’ ho však písal.
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z čoho dostaneme po úpravách

<2&+l — Qk = (Pk+l — Pk-l)'(Pk+1 + -P*-l — xPfc).
Použitím (1) pre n — k (čo možeme urobit’, pretože & 2: 1)
Tahko dostaneme Qk+i — Qk — 0, čo sme mali dokázat’.

Z predchádzajúceho je zřejmé, že platí

<2и = 4 — x2

pre každé n ^ 1. Je teda

Ql972 — 4 — x2.
b) Označme

Pn P»+l P*-l.

Podlá (1) je pre každé и 2: 1

Pra — X Pra 2 Pn-l.
Teda

Д«2 = *2 P„2 _ 4x рпря_1 + 4 pn_l2 . (4)

Zo vztahu (2) je zrejme

Qn Pra2 — —X PnPn-1 ~b Pra-12 •

Dosadením posledného vztahu do (4) dostaneme

Rn2 = *2P»2 + 4(Q„ - P„2) = (*2 — 4)P„2 + 4 2я.
Pretože pre každé n ^ 1 platí Qra = 4 — л:2, ako sme zistili v a),
bude

Rn2 = (p»h i - p»-i)2 = e»(4 - p„2)

pre každé n ^ 1.

Riešil MILAN KOLIBIAR,
žiak 3. tr. gymnázia Jura Hronca

v Bratislavě
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I A-III-4 ~|
4. Dokážte, že existuje nekonečné mnoho prirodzených čísel я,

ktoré majú túto vlastnost’:
Pre každé prirodzené číslo n je w4 + я číslo zložené.
Udajte pať čísel я, ktoré majú uvedenú vlastnost’. (6 bodov)
RIEŠENIE. Nech je я kladné číslo. Potom platí

x — я4 + a = n4 + 2n2 Уa + я — 2n2 Уa —

(П

_ 4
= (ň2 +Уя)2 — (и}/2 Уя)2

číže
4 4_

x = (и2 —)—Уя + п У2 |/я)(п2 + Уя — п У2 |/я).
4

Označme У2 Уя =

(1)

2Ъ. Potom je
я = 4Ь\

Rozklad (1) potom nadobudne tvar

x = (и2 -j- 262 + 2bn)(n2 -(- 2b2 — 2bri).
Oboch činitelův súčinu (3) upravíme

xi = n2 + 2b2 + 2bn = (и + ^)2 + &2,
л: 2 = и2 + 2b2 — 2bn — (n — b)2 b2.

Ak zvolíme prirodzené číslo b > 1, sú podlá (2), (4) čísla я, xi>
xo prirodzené a platí x± ^ 13, л'2 ^ 4 a teda číslo x = X1X2 je
pre každé prirodzené číslo n zložené. Dokázali sme tak, že pri-
rodzených čísel я, ktoré majú vlastnost’ (V) je nekonečne mnoho.

Ak dosadíme do (2) b — 2, 3, 4, 5, 6, dostaneme páť čísel
я = 64, 324, 1 024, 2 500, 5 184,

ktoré všetky majú uvedenú vlastnost’ (V).

(2)

(3)

(4)
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A—III—5 ]
5. Kolik dvojic navzájem disjunktních podmnožin má mno-

žina o и prvcích ?
ŘEŠENÍ. Nejprve je třeba určit počet všech uspořádaných

dvojic navzájem disjunktních podmnožin dané množiny, která
má n prvků. Účastníci soutěže řešili tento problém celkem
třemi způsoby.

1. způsob (takto postupovali téměř všichni řešitelé).
Z dané množiny Мои prvcích máme vybrat dvě disjunktní

podmnožiny A a B. Nejprve vybereme první z nich, A. Ta
může mít 0, 1, 2, ..., n prvků; označme k jejich počet. Při
daném k pak druhá množina В může mít 0, 1, ..., n—k prvků;
jejich počet označme/.

Množinu A o k prvcích lze z dané množiny Мои prvcích

(7 bodů)

vybrat í ^ ^ způsoby. Množinu Во / prvcích lze ze zbývajících
n—k prvků sestavit ^ ^ způsoby. Celkem tedy bude

n k
n—k

•22 J
j=ok=0

způsobů, jak vybrat nejprve množinu A a pak množinu B.
Podle známého vzorce

m

2(7У=о \ J
= 2m

je však
П—k

2 ("7y=o V J
= 2n~k.
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Potom podle binomického vzorce je

■22 : 2n~k lk2n~k = (1 -f 2)n — 3re,
k=o k=0

tj. uspořádaných dvojic navzájem disjunktních podmnožin mno-
žiny M je 3n.

2. způsob. (Použil ho PAVEL FERST, žák 2. d gymnasia na
Sladkovského náměstí v Praze 3 - Žižkov.)

Představme si, že vytváříme uspořádané dvojice disjunktních
podmnožin množiny M. Vezmeme-li libovolný prvek množi-
ny M, pak pro něj máme právě tři možnosti. Buď se stane prv-
kem první podmnožiny, nebo prvkem druhé podmnožiny, nebo
nebude patřit ani do jedné z těchto podmnožin. Má-li mno-
žina M n prvků, pak tedy uspořádaných dvojic navzájem dis-
junktních podmnožin množiny M je

3».

3. způsob. (Použil jej MIROSLAV KMOŠEK, žák 3. a gym-
nasia, tř. kpt. Jaroše v Brně.)

Množina Мои prvcích má právě ^ ^ Д-prvkových podmno-
žin. Vezměme jednu z nich a uvažujme množinu všech jejích
podmnožin. Libovolná podmnožina a její doplněk v oné k-
-prvkové množině tvoří uspořádanou dvojici disjunktních pod-
množin množiny M. Pro danou ^-prvkovou podmnožinu exi-
stuje 2k jejích podmnožin, tedy i 2k uspořádaných dvojic jejích
disjunktních podmnožin, sjednocením jejichž prvků dostaneme
tuto ^-prvkovou množinu. Je tedy hledaný počet uspořádaných
dvojic disjunktních podmnožin roven
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ZÁVĚR ŘEŠENÍ. Každá neuspořádaná dvojice navzájem
disjunktních podmnožin А, В množiny M je v počtu 3n zapo-
čtena dvakrát — jednou jako [А, В] a podruhé jako [B, AJ.
Výjimku tvoří případ A = 0, В = 0, kdy jedině je A = B.
Tedy 3n + 1 je právě dvojnásobek počtu všech dvojic dis-
junktních podmnožin množiny M. Hledaný počet je tedy

3n + 1
2

I A-III-6

6. V 1 ovine q sú dané dva rózne body A, 5. Ďalej sú dané
kladné čísla d, co; co < 180°. Zostrojte všetky body X roviny g,
ktoré majú túto vlastnost:

Pri otočení v rovině g okolo středu 5 v kladnom zmysle o uhol
velkosti co0 přejde bod X do takého bodu X', že XX' = d
a bod A leží na úsečke XX'. Akú podmienku musia splňovať
čísla d, co, aby taký bod X existoval ? (7 bodů)

ŘEŠENÍ. ROZBOR. Podle obr. 51 předpokládejme, že
bod X je řešením úlohy. Pak platí XX' — d. Je-li S' střed
úsečky XX', je

d
S'X = —

d
* XSS' = SX = SX' = r =

2 5 2 ’ 2sin-^-2
dco co

SS' = r' = r. cos — = 2'COtgy2

Bod X tedy leží na kružnici k = (5; r) a zároveň leží na tečně t
vedené bodem A ke kružnici l — (5, r').

Odtud plyne KONSTRUKCE. Sestrojíme pomocný rovno-
ramenný trojúhelník KLM se základnou LM — d a úhlem
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£ LKM = co. Pak je zřejmě KL = КAI = r a výška z vrcholu
К na základnu má velikost r' (obr. 52). V rovině q sestrojíme
kružnice k — (S; r) a / = (5; r'). Bodem A vedeme tečnu t ke
kružnici l. Průsečíky tečny t s kružnicí k označíme X, X' tak,

aby bylo XSX' = co. Potom pokud bod A leží na úsečce XX
je bod X hledaný bod.

d

ZKOUŠKA. Z rozboru plyne, že XX' = d a že £ XSX' =

= co. Podle posledního bodu konstrukce platí XSX' — co. Je
tedy bod X' obrazem bodu X v otočení okolo středu S v klad-
něm smyslu o úhel velikosti co0. Podle konstrukce je též splněna
podmínka, že bod A leží na úsečce XX'.
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DISKUSE. Kružnice k a / lze sestrojit vždy a platí r' < r,

— a 0 < — < 90°. К tomu, aby bod A ležel
na tětivě XX' kružnice k a aby bylo možno jím vést tečnu ke
kružnici /, je nutné a stačí, aby platilo

r' SA 5í r,

á co
. „ . . d

2'C°tgTS SA S
2sinT

2.5Л . sin у S d á 2 . SA . tg у.

Tedy (F), resp. (F'), je podmínka řešitelnosti úlohy. Pro d =

= 2SA tg existuje jedno řešení, neboť A e / a tedy existuje

právě jedna tečna ř ke kružnici l; pro

2SA sin ^ й d < 2. SA.tg^-

neboť r' — r. cos

tj-

OP)

odkud plyne

(П

existují dvě řešení, neboť bodem A lze vést dvě různé tečny ke
kružnici /.

Řešil KAREL HORÁK,
žák 3. b gymnasia ve Strakonicích
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VI. Zpráva о XIV. mezinárodní matematické
olympiádě

XIV. mezinárodní matematická olympiáda (MMO) se ко-
nala ve dnech 5.—18. VII. 1972 v Polsku, ve Varšavě a v Toruni.
Jejím pořadatelem bylo polské ministerstvo osvěty a výchovy.

Průběh XIV. MMO odpovídal v podstatných rysech tradič-
nímu programu MMO, jak se v minulých letech již ustálil.
Nejprve se 5. VII. sjela do Varšavy mezinárodní jury složená
z vedoucích delegací zúčastněných zemí, aby pod vedením
svého předsedy, jímž byl prof. S. Balcerzyk z toruňské univer-
šity, vybrala úlohy, připravila soutěž a řídila pak její další
průběh. Přípravné práce skončily 8. VII. Mezitím přijeli do
Varšavy také zástupci vedoucích a osmičlenná družstva soutě-
žících žáků. Žáci však byli ihned od svých vedoucích odděleni
a přísně izolováni; péči o ně převzali polští průvodci — tlu-
močníci. Již 8. VII. odjeli žáci do Toruně. Tam je později —
oklikami a ve stálé izolaci — následovala také jury.

Vlastní soutěž se konala v Toruni ve dnech 10. a 11. VII.
Po ní měli žáci již volno a mohli se na velkém autobusovém
výletě do severních částí Polska (Olštýn, Frombork, Malbork)
seznamovat s přírodními krásami a historickými památkami
tohoto kraje. Jury mezitím hodnotila žákovská řešení soutěžních
úloh; hodnocení vedoucích delegací sjednocovali jako obvykle
koordinátoři z řad mladých polských matematiků, většinou bý-
valých olympioniků. Na závěrečném zasedání jury dne 14. VII.
bylo pak dohodnuto konečné rozdělení cen.

Po návratu žáků z výletu odjeli všichni účastníci MMO na
druhý, společný výlet do Poznaně. Cestou navštívili též praslo-
vanskou osadu v Biskupíně a město Hnězdno. Z Poznaně se pak
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16. VII. všichni vrátili znovu do Varšavy, kde se 17. VII. ко-
nalo slavnostní zakončení XIV. MMO spojené s rozdílením
cen.

V průběhu let vyrostla MMO postupně v rozsáhlou meziná-
rodní akci, jejíž význam daleko přesahuje rámec samotné mate-
matiky. Svědčila o tom též kulturní a společenská část programu
XIV. MMO. Velkou pozornost věnovaly MMO polské orgány
školské správy. Ministr osvěty a výchovy J. Kuberski přijal
6. VII. vedoucí delegací a na zakončení uspořádal 17. VII.
v paláci v Lazieňkách druhé přijetí pro vedoucí i jejich zástupce.
Na zahájení soutěže v Toruni dne 10. VII. byl přítomen ná-
městek ministra J. Wolczyk. Také představitelé města Toruně
plně oceňovali význam MMO; setkali se s celou jury na přijetí
uspořádaném 11. VII. v prostorách historické toruňské radnice.

MMO se dostalo také patřičné publicity v polském tisku.
Toruňský denník Nozvošci věnoval MMO při zahájení značnou
část své titulní strany dne 11. VII; varšavské deníky přinesly
18. VII. po zakončení MMO zprávu o jejích výsledcích.

XIV. MMO se zúčastnily delegace ze 14 zemí, a to:
Rakouska (A), Bulharska (BG), Kuby (C), Československa
(CS), NDR (D), Velké Británie (GB), Maďarska (H),Mon-
golska (M), Holandska (NL), Polska (PL), Rumunska (R),
Švédská (S), Sovětského svazu (SU) a Jugoslávie (YU).
Kromě toho byla od 14. VII. přítomna též pozorovatelka
z NSR.

Zúčastněné země vyslaly к soutěži vesměs osmičlenná žá-
kovská družstva, pouze z Kuby přijeli jen tři žáci; celkem bylo
107 soutěžících. Československo vyslalo družstvo osmi žáků
gymnasií, byli to:

1. Jan Brychta, Praha (Pražačka),
2. Pavel Ferst, Praha (Sladkovského),
3. Jan Frynta, Praha (W. Piecka),
4. Karel Horák, Strakonice,
5. Miroslav Kmošek, Brno (kpt. Jaroše),
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6. Petr Slačálek, Praha (W. Piecka),
7. Jaromír Šimša, Ostrava (Šmeralova),
8. Imrich Vrťo3 Rimavská Sobota.

Vedoucím čs. delegace byl dr. František Zítek, CSc.3 vědecký
pracovník Matematického ústavu ČSAV v Praze, zástupcem
vedoucího byl dr. Jozef Moravčík, CSc., docent Vysoké školy
dopravní v Žilině.

Vlastní soutěž XIV. MMO spočívala jako obvykle v řešení
šesti matematických úloh, které mezinárodní jury vybrala z ma-
teriálů připravených polskými pořadateli na základě návrhů
došlých ze zúčastněných zemí. Na rozdíl od některých minulých
let jury tentokráte výslovně opustila zásadu, že z jedné země
rtiůže být přijata nejvýše jedna úloha, a dala přednost kvalitě
úloh. To se nesporně příznivě odrazilo v konečném výběru.
I když dobrých návrhů, zvláště ze stereometrie, nebylo mnoho,
podařilo se poměrně brzy sestavit soubor šesti úloh dosti vyvá-
žený, přiměřeně obtížný a odpovídající vcelku tradicím MMO.

Přijaté úlohy byly rozděleny do dvou skupin; první tři úlohy
řešili žáci dne 10. VII., druhé tři úlohy 11. VII. První den měli
na řešení úloh к dispozici 4 hodiny čistého času, druhý den o půl
hodiny více, neboť poslední, šestá úloha byla považována za
zvlášť obtížnou.

Návrhy těchto úloh došly ze Sovětského svazu (úloha 1),
Holandska (úlohy 2 a 4), Velké Británie (úlohy 3 a 6) a Bulharska
(úloha 5); původní znění šesté úlohy však bylo v průběhu pří-
pravných prací jury dosti pozměněno (zjednodušeno).

Obtížnost úloh ohodnotila jury body: za řešení první úlohy
mohli soutěžící získat 5 bodů, za druhou úlohu 6 bodů, za úlohy
3, 4 a 5 po 7 bodech a za šestou úlohu 8 bodů; celkem tedy
40 bodů.

O kvalitě soutěžících svědčí, že osm žáků získalo maximální
počet 40 bodů; ti byli ovšem odměněni prvními cenami. Ostatní
ceny rozdělila jury takto: 16 druhých cen žákům, kteří získali
30—39 bodů a 30 třetích cen žákům, kteří získali 19—29 bodů.
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Kromě toho byly uděleny 3 zvláštní ceny (za elegantní, resp.
originální řešení některých úloh).

Čtyři českoslovenští žáci získali třetí ceny; byli to Jan Brychta
(26 bodů), Imrich Vrťo (21 bodů), Jaromír Šimša (20 bodů)
a Miroslav Kmošek (19 bodů). Celkem získalo celé českoslo-
venské družstvo 130 bodů, což v neoficiální klasifikaci družstev
podle počtu bodů znamenalo deváté místo.

Celkové výsledky dosažené zúčastněnými družstvy jsou shr-
nuty v tabulce na str. 171.

>

ÚLOHY XIV. MMO

V této části zprávy přinášíme české texty úloh XIV. MMO
a jejich řešení. V některých případech jde o upravená řešení
autorská, jindy zase o upravené verze řešení, jak je podali sou-
těžící. Na rozdíl od minulých let tedy nereprodukujeme řešení
předložená československými účastníky MMO, a to z důvodů
technických a věcných.

O našem družstvu jako celku lze říci, že (poměrně) uspělo
v úloze 1, 2 a 4, bylo slabší v úloze 3 a 6 a vůbec si nevědělo
rady s úlohou 5. Při přípravě účastníků olympiády v příštím roce
1972/73 bude nutno vyvodit z této situace některé závěry, jako
např. to, že bude třeba věnovat více času přípravě elementů
analýzy. Stálým problémem je i — jak se letos znovu projevilo —

psychická kondice a taktická příprava.

MMO-1

1. Dokažte, že v libovolné množině deseti různých dvojcifer-
ných přirozených čísel existují dvě neprázdné disjunktní pod-
množiny takové, že součty jejich prvků jsou stejné.

ŘEŠENÍ. Libovolná množina o deseti prvcích má 1023 ne-
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Tabulka

Počet cen
Celkem

Družstva
bodů

zvi.IIII II

A 5 136

BG 2 120

C*) 14

4CS 130

31 4D 2391

2 4GB 179

33Я 2 263

M 49

iVL 51

1PL 1 1601 1

3В 1 1 2061

25**) 60

SU 2 4 2 270

3YU 136

*) V družstvu Kuby byli jen tři žáci.
**) Jeden švédský žák se nezúčastnil druhého dne soutěže a nebyl

klasifikován.
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prázdných podmnožin. Součet nejvýše deseti dvojciferných
čísel je nejvýše roven 990. Podle Dirichletova principu existují
tedy vždy dvě neprázdné podmnožiny dané množiny deseti
čísel, takové, že součty jejich prvků jsou stejné. Vynecháním
eventuálních společných prvků z obou množin dostaneme dvě
disjunktní neprázdné množiny s požadovanou vlastností.

POZNÁMKA. Bývá zvykem na MMO, že první úloha je
poměrně lehká; žáci také většinou tuto úlohu vyřešili s maxi-
málním ziskem bodů. Ztroskotali (zato úplně) jen ti, kterým
nenapadlo použít Dirichletova principu (nebo jej neznali).

1 MMO-2 |

2. Dokažte, že pro každé přirozené
"Každý tětivový čtyřúhelník lze rozdělit na n tětivových čtyř-

úhelníků. /b-cLt л\ > ^ júU

n ^ 4 platí:

' Ofčo t

ŘEŠENÍ. Rozlišíme několik případů jednak podle tvaru da-
ného tětivového čtyřúhelníka, jednak podle čísla n.

I. Nechť daným čtyřúhelníkem je rovnoramenný lichoběž-
nik. Ten lze snadno — pomocí (n — 1) rovnoběžek se základ-
námi — rozdělit na n rovnoramenných lichoběžníků, a to do-
konce pro každé přirozené n. Poněvadž každý rovnoramenný
lichoběžník je tětivový, je tím v tomto případě úloha rozřešena.

II. Nechť n ^ 5; daný tětivový čtyřúhelník může být libo-
volný. Jeho vrcholy označme po řadě А, В, C, D, a to tak, aby
bylo *DAB й * ABC.

Na straně AD najdeme bod E a na straně BC bod F (А ф E Ф
Ф D, В Ф F Ф C) tak, aby EF // AB. Potom čtyřúhelník
EFCD je opět tětivový, neboť má stejné úhly jako čtyřúhelník
ABCD.

Jestliže
■%. DAB = -fcABC,
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je ABFE rovnostranný lichoběžník; ten rozdělíme podle I na
n—1 tětivových čtyřúhelníků. Spolu s EFCD budeme tedy
mít n tětivových čtyřúhelníků.

Jestliže však
■%. DAB <C. ■%. ABC,

pak na straně АВ existuje bod G(A Ф G # B) takový, že
DGB = £ GBC.

Je zřejmé, že GBFE je rovnoramenný lichoběžník.
Budiž nyní S střed kružnice vepsané trojúhelníku AGD.

Spustíme z 5 kolmice na strany trojúhelníka AGD, který tak
rozdělíme na tři čtyřúhelníky, z nichž každý má dva protější
úhly pravé, takže je tětivový.

Nyní už stačí jen rozdělit rovnoramenný lichoběžník GBFE
na n —4 tětivových čtyřúhelníků (způsobem popsaným v I), aby-
chom dostali rozdělení čtyřúhelníka ABCD na

1+3 +(я — 4) = n

tětivových čtyřúhelníků.
III. Nechť n = 4. Nechť 5 je střed kružnice opsané danému

tětivovému čtyřúhelníku a nechť 5 leží uvnitř tohoto čtyřúhel-
nika. Spustíme-li z 5 kolmice na všechny čtyři strany čtyřúhel-
nika, rozdělí jej na čtyři čtyřúhelníky, z nichž každý má dva
protější úhly pravé a je tedy tětivový.

IV. Nechť n — 4 a nechť střed 5 kružnice opsané danému
čtyřúhelníku neleží uvnitř něho. Vrcholy čtyřúhelníka označme
po řadě A, В, C, D tak, aby AB byla nejdelší strana čtyřúhel-
nika ABCD. Poněvadž 5 neleží uvnitř ABCD, jsou oba úhly
£ BCD, £ CDA tupé. Lze tedy najít uvnit^ ABCD dva body
E, F s těmito vlastnostmi:

(i) ЕС 1 ВС, FD 1 AD;(ii)EF/I AB;
(iii) ECDF je konvexní čtyřúhelník.
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Z bodů E, F spustíme kolmice na AB, jejich paty označme
G, H tak, aby EFGH byl obdélník.

Tím máme daný čtyřúhelník ABCD rozdělen na čtyři čtyř-
úhelníky

AGFD, EFGH, ВНЕС, CEFD.
Avšak:

1) EFGH je obdélník, je tedy tětivový.
2) Je EH J_ BH, ЕС А. ВС, takže čtyřúhelník BCEH má

dva protější úhly pravé — je tedy tětivový.
3) Obdobně z FG JL AG, FD _L AD plyne, že čtyřúhelník

AGFD je tětivový.
4) Daný čtyřúhelník ABCD je tětivový, takže

■fcABC ADC — тс.

Ale
EFII AB, ЕС 1 ВС, takže

CEF — ABC -f- — ti
£

a zároveň
1

£ FDC = £ ADC — — ti.

Odtud vyplývá rovnost

CEF -J- ^ FDC = ABC -f- ADC — ti

čtyřúhelník EFDC je tedy také tětivový.
Tím je úloha řešena ve všech případech.
POZNÁMKA. Na první pohled se tato úloha jeví jako ča-

sově velmi náročná. Je tomu skutečně tak; to je ovšem osud
téměř všech úloh z geometrie, kdy se mají slovně popisovat
konstrukce a podrobně vypisovat geometrické úvahy. To se
však týká hlavně čistopisu — vlastní řešení hledají a odvozují
žáci přirozeně na narýsovaném obrázku, což jde rychleji. Kromě
toho byla úloha zařazena na první den soutěže spolu se snadnou
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úlohou první, na jejíž řešení se naopak spotřebovalo méně času.
Z našich žáků jen dva podali úplné řešení druhé úlohy.

Většinou zapomínali na to, že konstrukce uvedené v III. nelze
použít v případě IV.

Uvedené řešení není ovšem jediné. Ve skutečnosti se v soutěži
objevilo téměř tolik variant a úprav, kolik bylo řešitelů. Proto
také tato úloha kladla největší nároky na koordinátory. Výsledné
bodové ohodnocení žákovských řešení bylo spravedlivé ve
smyslu rovnosti všech soutěžících, méně už ve smyslu ocenění
objektivní obtížnosti rozřešených či nerozřešených případů.
Přispěla к tomu i zásada nedělitelnosti bodů při bodování.

1 MMO-3 |
3. Pro každá dvě celá nezáporná čísla m, n je

(2ni) ! (2n)\
m\n\(m и)!

celé číslo; dokažte.

ŘEŠENÍ. Důkaz provedeme indukcí. Tvrzení platí pro n = 0,
neboť

(2m)!0! (2m)! (?)m!0!(m -f- 0)! m\m\

je binomický koeficient, a tedy celé číslo (pro každé m 2; 0).
Předpokládejme, že jsme tvrzení dokázali již pro všechna

n < k3 kde k je přirozené číslo a všechna m 2; 0. Označme
(2т)!(2я)!

= /(w, n).m\n\(m + n)\

Přímým výpočtem snadno ověříme, že pro každé m2; 0 platí
m + k

2(2k - 1) 3/(m, k - 1) = /(m, k)
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2m -f- 1
2k - 1 9f(m + 1, k — 1) = /(m, k)

takže

/(m, &) = 4f(m, k — 1) — f(m + 1, k — 1).
Avšak čísla/(m, k — 1) af(m -j- 1, & — 1) jsou podle indukčního
předpokladu celá, tedy také f(m3 k) je celé číslo.

JINÉ ŘEŠENÍ je založeno na použití vzorce známého z ele-
mentální teorie čísel. Je-li n přirozené číslo a p prvočíslo, pak
p* dělí n\ právě když

30

;* •(x)
& = i

Pomocí tohoto vzorce se pak dokáže pro každé prvočíslo p, že
maximální a takové, žep“ dělí číslo {2m)\(2n)\ není nikdy menší
nežli maximální /3 takové, že p& dělí číslo m\n\{m + w)!

POZNÁMKA. Zdá se, že i tato úloha byla pro naše žáky
obtížná. Rozřešili ji jen dva, a to druhým způsobem, neboť
znali vzorec (x).

Idea prvního způsobu řešení založeného na odvození pomoc-
ného rekurentního vzorce našim žákům zřejmě nebyla dost
blízká. Někteří se sice tímto směrem vydali, ale zapletli se do
složitých výpočtů různých numerických hodnot a neuvědomili
si včas, že se žádá jen důkaz toho, že jde o celá čísla. Stálo by
snad za pokus posílit přípravu olympioniků v problematice tzv.
metody neurčitých součinitelů.

MMO-4

4. Najděte všecka řešení (jci, X2, *з, хь хь)> kde
Xi(i = 1, 2, 3, 4, 5) jsou kladná reálná čísla, soustavy nerov-
ností /

Ití-vrO !< /Г21C y\X
fcX.čbjch*.*J(JL í'í\ <Xlt(

J / *
f. v

i. (л X i 'ě* у ? у. уt f i/^J V176
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(1) (*12 — X3X5)(X22 — x3x5) ^ O ,

(2) (*22 — X4Xl)(X32 — X4X1) ^ O ,

(3) (x32 — x5x2)(x42 — x5x2) ^ o ,

(4) (x42 — xix3)(x52 — X1X3) ^ O,
(5) (X52 — x2x4)(xi2 — X2X4) ^ o .

ŘEŠENÍ. Levé strany nerovností (1) — (5) roznásobíme
a pak všechny nerovnosti sečteme. Dostaneme tak jedinou ne-
rovnost

Xl2*22 + X22X32 + *32JC42 + X42*52 + X52Xl2 +

+ *32X52 + *42Xl2 + Xs2X22 + Xi2X32 + X22X42 —

— Xi2X3X5 — X22X4Xi — X32XsX2 — X42X]X3 ~ *52*2*4 —

— X22X3X5 — Хз2Х4Х1 — X42XsX2 — X52XiX3 — Xi2X2X4 ^ 0 ,

které ovšem musí každé řešení soustavy (1)—(5) také výhovo-
vat. Novou nerovnost vynásobíme dvěma a upravíme na tvar

(*1*2 — X1X4)2 + (X1X2 — X2X4)2 + (x2X3 — X2X5)2 +
+ (x2X3 — X3X5)2 -j- (X3X4 — XlX3)2 + (X3X4 — X1X4)2 +
+ (X4X5 — X2X4)2 + (X4X5 — X2X5)2 + (X1X5 — XlX3)2 +
+ (xix5 — X3X5)2 й o .

Avšak součet čtverců může být nekladný jen v tom případě,
jsou-li všechny sčítance rovny 0. Platí tedy současně všechny
rovnosti

X1X2 = X1X4 = X2X4,

X2X3 = X2X5 = X3X5,

X3X4 = xix3 = X1X4,

X4X5 = X2X4 = X2X5 ,

X1X5 = xix3 = X3X5 .
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Poněvadž však hledáme jen taková řešení, v nichž jsou všechna
Xi(i = 1, 2, 3, 4, 5) kladná, vidíme, že musí být

#1 = X2 = #3 = *4 = #5 .

Obráceně je však ihned vidět, že každá pětice (xi, *2, *з5 X4> *5)
kladných čísel splňující (x) je řešením soustavy (1) — (5).

JINÉ ŘEŠENÍ, které se rovněž v soutěži objevilo, spočívá
v postupném systematickém vyšetřování všech možných uspo-
řádání podle velikosti kladných čísel x\, X2, *3, *4, *5 vyhovují-
cích nerovnostem (1) — (5). Lze přitom využít toho, že daná
soustava je zjevně invariantní vůči cyklickým permutacím ne-
známých, tzn. že platí

Je-li (a, b, c, d, e) řešením soustavy (1) — (5), je také
(6, c, d, e} a) jejím řešením.

Můžeme tedy bez újmy obecnosti předpokládat, že platí
Xk й *i,

Potom ovšem v důsledku (1) bude
X22 < X3X5

(x)

(6)£ = 2, 3, 4, 5.

(7)
a obdobně podle (5) bude

(8)Я52 й X2X4.

Dále rozlišíme dva případy.
I. Nechť *4 ^ X5. Potom ze (4) a (8) plyne nerovnost

X42 ^ X1X3 й X52 й X2X4,

takže nutně ха й X2. To však spolu s (8) dává
X52 й X2XA й X22 ,

takže také *5 й X2. Ze (7) potom snadno plyne
X22 й X3X5 й X3X2 ,
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a tedy X2 й *з- Celkem tedy máme

X4 й X5 й X2 й Хз й Xl.

Z nerovnosti (4) potom dostáváme

*42 ^ X1X3 ^ x52 й x32,
takže x\ й X3, což spolu s (6) dává xi = X3. Dosazením zpět
do (10) vyplyne xi2 ^ X52, čili xi ^ X5, a tedy podle (6) znovu
xi — X5. Kombinací (9) a (6) dostaneme rovnosti

Xl — X2 = *3 = *5.

(9)

(10)

Nerovnost (2) má pak tvar

(■xi2 — xix4)2 ^ 0 ,

což je při (6) možné jen když xi = *4. Musí tedy opět platit
\
00Xl = X2 = *3 = *4 = *5.

II. Nechť X5 < X4. Potom (4) a (6) dává
X52 й X1X3 = X42 й X1X4,

a tedy а*з ^ X4. Ze (7) plyne pak
*22 ^ X3X5 < X3X4 й X42 ,

takže X2 < xj, tzn.
X22 < *2X4 й X1X4.

Avšak odtud a z (2) dostaneme
X32 ^ X1X4 ^ X42 j

tzn. X3 ^ X4, takže je nutně *3 = *4. Dosazením do (3) dosta-
neme nerovnost

(*32 — *2*5)2 ^ 0,

je tedy
X32 — X2X5.
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Poněvadž však, jak již víme, je X2 < *4 —- хз, musí být
*5 = x3 = X4, ale to je spor s předpokladem *4 > X5. Případ II
není tedy možný a podle I nutně platí (x). (Postačitelnost (x)
je opět zřejmá.)

POZNÁMKA. Při řešení této čtvrté úlohy byli českoslo-
venští žáci poměrně velmi úspěšní; z 56 možných bodů získali
celkem 44 body, přitom šest z nich podalo úplné a správné
řešení. Je vidět, že jim tato tematika není cizí a že dovedou
najít cesty к řešení.

Relativně častou chybou, která se objevovala v žákovských
řešeních, byl (nesprávný) předpoklad, že soustava (1) — (5) je
invariantní vůči všem permutacím neznámých, nejenom vůči
permutacím cyklickým. Konečný výsledek je sice stejný, avšak
mezera v úvaze je podstatná a bodové ocenění na MMO tomu
odpovídalo.

MMO-5 I
5. Nechť / a g jsou dvě reálné funkce definované v intervalu

(—00, +00) tak, že pro všechna x а у platí
/(* +y) + /(x —y)= 2f(x)g(y). (*)

Dokažte: Jestliže / není identicky rovna nule a jestliže
I /(x) ! й 1 pro všechna reálná x, potom také | g(y) | й 1 pro
všechna reálná y.

ŘEŠENÍ. Označme A — sup ! /(x) |; podle předpokladů je
Ай 1 (stačilo by ovšem A < 00). Nechť pro některé reálného
je I g(yo) I = 1 + h > 1. Potom však pro každé reálné x platí

1
/(*) -g(yo) = ~2 № + Уо) + fix - ;yo)],

a tedy
l/(* +^o) I + |/(x —yo) I A

l/W I ^ -

1 + Л 52\g(yo)\
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což je v rozporu s definicí A. Není tedy možné, aby takového
existovalo, je tedy | g(y) \ й 1 pro všechna reálná y.

JINÉ ŘEŠENÍ. Označme opět A — sup | f(x) |. Poněvadž
pro každé reálné x, у je

2 I/O) 1-1*0) I ^ I/O +y) I + I/O -у) I ^ 2Л,
je také

A
I *0) I ^ I/O) I

pro každé x, pro které je /0) ¥- O (a taková x podle předpo-
kladu existují) a pro všechna reálná y. Podle definice suprema
lze ke každému e > O najít xe tak, aby

l/Oe) I > A — e ;

pro takové xe tedy platí
A

I *0) I ^ A — £

pro všechna reálná y. Poněvadž e lze zvolit libovolně malé,
musí být | g{y) | íS 1 pro všechna у, c. b. d.

Ještě JINÉ ŘEŠENÍ je založeno na této pomocné úvaze:
Nechťy je libovolné reálné číslo. Pak ke každému reálnému x

lze najít x' tak, že platí

I/O') I ^ I/O) I • Ig(y) I •

Skutečně z rovnosti (x) plyne nerovnost

2 I/O) I• Ig(y) I ^ I/O +y)\ + I/O-y) I >

to však znamená, že platí aspoň jedna z nerovností

I/O +у) I = I/O) M*(y) I >

I/O —y)\ž I/O) М*0) I •
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V prvém případě stačí položit x' = x + y, ve druhém případě
pak x' — x — y.

Budiž nyní xq takové, že /(xo) Ф 0 — takové xo existuje podle
předpokladu — a budiž у libovolné reálné číslo. Postupem od-
voženým v pomocné úvaze sestrojíme nyní posloupnost reál-
ných čísel xo, xi, X2, ..tak, aby pro k = 1, 2, 3, ... platilo

|/(xfc) I £ i/(xfc-l) I. I g(y) I .

Bude pak zřejmě (důkaz indukcí)

!/(**) I ^ \f(xo)\.\g(y) Iк

pro všechna přirozená k. Poněvadž však/(xo) ф 0 a | f(xt) | й 1
pro k — 1, 2, 3, ... j platí pro všechna k ^ 1 nerovnost

1/Ы1 < 1
l/Ы | i/(xo) | '1^Сз^) I* =

To je ovšem možné jenom když je

I gb) 1^1»
což jsme měli dokázat.

POZNÁMKA. I když tato úloha není v podstatě nijak zvlášť
těžká, je její tematika v matematických olympiádách zatím ne
právě obvyklá. Žáci středních škol (např. našich) většinou ještě
neovládají tak dokonale základní pojmy matematické analýzy.
Neznají, popř. neuvědomují si např. podstatu rozdílu mezi
supremem a maximem funkce. Krátké řešení (za obecnějších
předpokladů) uvedené zde jako první podal pouze jeden polský
žák; bylo odměněno zvláštní cenou. Původní autorské řešení je
tu uvedeno jako třetí.
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{л* *vу> J I
6. Jsou dány čtyři Vesměs různé rovnoběžné roviny. Dokažte,

že existuje pravidelný čtyřstěn, který má v každé z daných
rovin jeden vrchol.

ŘEŠENÍ. Dané čtyři roviny označme л, g, cr, r tak, aby g
ležela mezi ласа aby a ležela mezi оат. Dále označme a vzdá-
lenost n od g, b vzdálenost g od o a c vzdálenost a od r.

Vezměme si nyní pravidelný čtyřstěn A'B'C'D' s hranou
délky 1. Na hraně A'C' nalezneme bod E' ve vzdálenosti

a
A'E' =

a + b
a na hraně A'D' bod F' ve vzdálenosti

a
A'F'

a + i+ c

Body B', £', i7' neleží na přímce a určují tedy rovinu, označme
ji q'. Body A', C', D' veďme po řadě roviny n'3 a'3 r' rovno-
běžné s rovinou q'.

Označme a' vzdálenost rovin n' a £>', b' vzdálenost rovin q'
a a' a c' vzdálenost rovin cr' a r'. Platí ovšem zřejmě

a': b': c' = a: b: c.

Na čtyřstěn A'B'C'D' a roviny л', р', cr', r' aplikujeme nyní
dvě zobrazení. První z nich bude homotetie (se středem např.A’),
která ze čtyřstěnu A'B'C'D' vytvoří pravidelný čtyřstěn
A"B"C"D" (A" = A') s hranou délky . Roviny л', o', cr', т'

а

přejdou přitom ve čtyři rovnoběžné roviny л\ q"3 cr", t"; jejich
vzdálenosti jsou zřejmě а {л" a o'), 6 (o" a o"), c (cr" a r").

Druhým zobrazením bude translace a otečení (přímé shodné)
takové, aby л" přešla v я, g" v g, a" v a a r" v r. Čtyřstěn
ABCD, který tímto zobrazením dostaneme z A"B"C"D"3 bude
již vyhovovat podmínkám úlohy.
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POZNÁMKA. Toto jednoduché řešení není ovšem jediné
možné. Někteří soutěžící řešili úlohu poměrně složitými úva-
hami o spojitých pohybech v prostoru, při nichž postupně
umísťovali jednotlivé vrcholy pravidelného čtyřstěnu (s proměn-
livou délkou hrany) do daných rovin. Jiní se zase pokoušeli
řešit úlohu analyticky.

Není přitom bez zajímavosti skutečnost, že z osmi našich
účastníků XIV. MMO připadl na prosté řešení na základě po-
dobnosti právě ten nejmladší — žák 2. ročníku, který se ještě
se stereometrií ve škole nesetkal.

Jinak byl slabší výkon čs. družstva u této úlohy překvapením,
neboť stereometrie a speciálně pak geometrie čtyřstěnu patří
již tradičně к oborům, z nichž se zadávají úlohy v našich mate-
matických olympiádách. Také při přípravě olympioniků se ste-

, reometrii věnuje vždy plná pozornost.

MEZINÁRODNÍJURY XIV. MMO

Předseda: Stanislav Balcerzyk, Toruň
Členové (vedoucí delegací):

Thomas Mtihlgassner, Eisenstadt
I. R. Prodanov, Sofie
Luis J. Davidson, Havana
František Zítek, Praha
Helmuth Bausch, Berlín
R. C. Lyness, Blackpool
Endre Hódi, Budapešť
U. Sanžmjatav, Ulánbátar
A. van Tooren, Leusden
Dimitrie Dragicescu, Bukurešť
K. Halistéová Anierová, Umeá
Valentin A. Skvorcov, Moskva
Vladimír Mičic3 Bělehrad

A.
BG
C
CS
D
GB
H
M
NL
R
S
su
YU
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ZÁSTUPCI VEDOUCÍCH

Wolfgang Ratzinger, Linec
Z. D. Karagjosov, Burgas
Felix Redo, Havana
Jozef Moravčík, Žilina
G. Burosch, Roztoky
M. Brownová, Londýn
István Reiman, Budapešť
Gombyn Zagdragčaa, Ulánbátar
A. A. Hoogendoorn, Nijmegen
Constantin Ottescu, Bukurešť
T. Claesson, Lund
Ivan S. Petrjakov, Reuto
Torno Pisanski3 Lublaň
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C
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D
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H
M
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S
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