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Předmluva

Milí mladí přátelé, účastníci matematické olympiády,

v předmluvě к brožuře každého ročníku matematické
olympiády se к Vám obracíme s některou otázkou, která
vás může zajímat. Letos chceme stručně pohovořit о ко-
mentářích к řešení soutěžních úloh.

Každá ze čtyř kategorií, v nichž je matematická olym-
piáda organizována, začíná prvním, studijním kolem.
Účastnici tu dostanou jednak texty tzv. přípravných úloh,
jednak text soutěžních úloh; řešení soutěžních úloh má
mimo studijní cíle usnadnit i výběr účastníků pro postup
do druhého kola. O poslání a významu prvního kola jsme
už několikrát psali; sleduje se tu převážně velmi vážný cíl,
aby se mladí zájemci přiučili v matematice něčemu no-
vému, co jim bude užitečné nejen v další soutěži, ale
i při dalším studiu a vzdělání. Řešení olympiádních úloh
většinou není jen reprodukování naučených postupů, ale
je to tvořivá práce, která potřebuje čas a někdy i pomoc.
Času pro řešení úloh prvního kola máte poměrně dost;
pomoc můžete žádat od svých učitelů matematiky. Aby
oni mohli pomáhat vám, snažíme se pomoci my jim.
Pomoc vám — účastníkům olympiády — nezáleží v tom,
že se vám předvede úplné řešení úlohy, ale v tom, že jste
uvedeni do metod řešení zadaných úloh, a to vhodnými
podněty-impulsy. Pomoc ústředního výboru MO vašim
učitelům spočívá v tom, že vydáváme už několik let ko-
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mentáře, ve kterých je nejen naznačeno řešení (autorská
řešení úloh se vydávala už od prvního ročníku MO), ale
kde je i rozbor metod řešení, kde jsou zobecnění i varianty
úloh apod. S vydáváním komentářů
kategorii Z — se začalo v XIX. ročníku; pak přistoupila
kategorie C, a protože se tato akce osvědčila, vydávají se
od XXII. ročníku MO komentáře ke všem úlohám první-
ho kola všech čtyř kategorií.

Zdálo se nám však, že by bylo škoda, aby po proběhnutí
ročníku se komentáře odložily jako věc nepotřebná; mohou
totiž i dále sloužit nejen učitelům, ale i účastníkům MO
jako jakási „škola metod řešení matematických úloh“.
Proto je po jistých úpravách textů zařazujeme do brožur
jednotlivých ročníků MO. Najdete v nich ovšem i věci,
které převyšují matematickou úroveň účastníka té které
kategorie. Ale snad to nevadí: přečte-li si např. účastník
kategorie В komentáře к úloze kategorie C nebo do-
konce Z, vnikne hlouběji do elementární úlohy, uvědomí
si možnosti jejího zobecněni či obměnění, které jsou už
třeba na úrovni jeho kategorie nebo ji dokonce přesahují.
Uvědomte si totiž, že úlohy nižších kategorií vznikají
často jako speciální nebo zjednodušené případy úloh
obecnějších. A obrácený postup — generalizace (zobec-
ňování) — je opravdu podstatnou složkou práce mate-
matika. Konečně si ještě řekněme, že jistým stupněm
tvořivého matematického vzdělání je nejen umět řešit
předložené problémy, ale umět také zajímavé problémy
tvořit; i tomu by se měli účastníci MO přiučovat.

Uveďme několik konkrétních případů z XXII. roč-
niku MO.

Úloha Z —I —1 se týká tříčlenných aritmetických po-
sloupností, jejichž členy jsou vesměs prvočísla. Je to
v podstatě zvláštní případ problémové situace: vyšetřovat
aritmetické posloupnosti prvočísel. Na toto téma můžete
sami vymyslit mnoho úloh; řešení některých bude zcela

nejprve jen pro
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jednoduché, jiné budou obtížné. Obdobně najdete
v XXII. ročníku problémovou situaci „schodové funkce”.
Jsou to úlohy C—P— 1, С—I — 3, A—P—2, A—1 — 2,
které se všechny týkají funkce „celá část z reálného číslau,
jež náleží mezi schodové funkce. Tyto čtyři úlohy snad sta-
čí jako ukázky toho, jaké úlohy můžete na toto téma vy-
mýšlet. Konečně v kategorii В se vyskytují dvě úlohy
na téma početnost konečných množin, jejich průniků
a sjednocení. Obě zadané úlohy se týkají nejvýše tří
množin; ihned je zřejmé, jaké další problémy (podstatně
složitější) by se daly vytvářet, kdybychom vyšli z většího
počtu množin (obecně z n množin). Také úloha Z—I—1
je rozběhem do rozsáhlé, pro školu vhodné problémové
situace: určenost funkce dané rodiny
kce lomené několika uspořádanými dvojicemi hodnot pro-
měnných. V komentářích, které byly v podstatě převzaty
do této brožury, najdete podrobnější vysvětlení.

Doufáme, že vám, našim čtenářům a řešitelům, bude
tato koncepce brožury vítaná. Podaří-li se vám sestavit
nějakou nevšední a zajímavou úlohu, pošlete ji do kon-
kursu JČSMF na soutěžní úlohy MO; můžete tak získat
i peněžitou odměnu.

Mnoho úspěchů v práci vám přeje

zde lineární fun-

Ústřední výbor matematické
olympiády
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I. Průběh XXII. ročníku matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže XXII. ročníku matematické olym-
piády byla opět ministerstva školství ČSR a SSR s Mate-
matickým ústavem ČSAV v Praze (MlJ ČSAV)
a s Jednotou čs. matematiků a fyziků (JČSMF) za spolu-
práce s orgány Socialistického svazu mládeže (SSM).
Protože připravovaný nový Statut MO nebyl dosud
schválen, řídila se soutěž XXII. ročníku MO opět podle
statutu, který byl uveřejněn ve Věstníku MŠK, roč. XIX,
str._126, 127, směrnice 37 ze dne 30. IV. 1963.

Žáci soutěžili celkem ve čtyřech kategoriích: kategorie A
je určena pro žáky III. a IV. ročníků skol II. cyklu,
kategorie В pro žáky II. ročníků a kategorie C pro žáky
I. ročníků těchto škol. V kategorii Z soutěží žáci základ-
nich devítiletých škol, především žáci 9. ročníků. Bylo
ovšem možné, aby žák soutěžil i ve vyšší kategorii, než do
které patřil.

2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MATEMATICKÉ OLYMPIÁDY

Ve složení ÚV MO, schváleném MŠ ČSR dne 18. led-
na 1971 a MŠ SSR dne 3. prosince 1970, nedošlo к pod-
statným změnám; změnil se jen zástupce MĚ ČSR a
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Západoslovenský kraj se rozdělil na dvě části: Bratislava -
město a zbývající část Západoslovenského kraje.

Předseda: doc. Jan Výšin, CSc., vědecký pracovník
MÚ ČSAV, Praha

I. místopředseda: dr. Jozef Moravčík, CSc., docent
VŠD, Zilina

II. místopředseda: prof. dr. Miroslav Fiedler, DrSc.,
vedoucí vědecký pracovník MÚ ČSAV, Praha

I. jednatel: Vlastimil Macháček, odborný asistent peda-
gogické fakulty KU, Praha

II. jednatel: Jiří Mída, odborný asistent pedagogické
w fakulty KU, Praha
Členové:
Zástupce MS ČSR: Václav Šůla, ústřední škol. inspek-

tor MŠ ČSR, Praha
Zástupce MŠ SSR: Michal Žoldy, ústřední škol.

inspektor MŠ SSR, Bratislava
Zástupce ÚV SSM: Jana Pomazalová, profesorka

gymnasia, Brno
dr. František Běloun, vedoucí matematického kabinetu

KPÚ, Praha
Miloš Franěk, profesor gymnasia, Prievidza
dr. Jozef Gruska, Matematický ústav SAV, Bratislava
dr. Milan Hejný, CSc., docent PF UK, Bratislava
František Hradecký, odborný asistent MFF KU v. v.,

Praha
prof. dr. Milan Kolibiar, DrSc., profesor PF UK, Bra-

tislava
dr. Ivan Korec, odborný asistent PF UK, Bratislava
akademik Josef Novák, ředitel MÚ ČSAV, Praha
Víťazoslav Repáš, ředitel gymnasia, Bratislava __

dr. Jiří Sedláček, CSc., vědecký pracovník MÚ ČSAV,
Praha

Jiří Sídlo, zástupce ředitele gymnasia, Praha
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Miroslav Šmerda, učitel ZDŠ, Bílovice n. Svitavou
František Veselý, odborný asistent v. v., Praha
dr. František Zítek, CSc., vědecký pracovník MIJ ČSAV,

Praha

Dalšími členy ÚF MO byli předsedové krajských
výborů matematické olympiády:
prof. dr. Václav Pleskot, profesor ČVUT, Praha
Ludmila Tréglová, profesorka gymnasia, Říčany
dr. Ing. Lada Vaňatová, profesorka gymnasia, Strakonice
Um* Rádiová, profesorka gymnasia, Plzeň
/Саге/ Hnyk, odborný asistent pedagogické fakulty,

Ústí n. L.
Jan Lašťovka, vedoucí kabinetu matematiky KPÚ, Hradec

Králové
dr. Petr Benda, odborný asistent VUT, Brno
Josef Andrys, docent pedagogické fakulty, Ostrava
Katarina Hajtášová, odborná asistentka PF UK, Brati-

slava
dr. Oliver Ralík, odborný asistent pedagogické fakulty,

Nitra
dr. Ladislav Berger, odborný asistent VŠD, Žilina
Kveta Hončarivová, odborná asistentka PF UPJŠ, Košice

Pracovní předsednictvo ÚV MO (PÚV MO)
tvořili (v abecedním pořadí): prof. dr. Miroslav Fiedler,
DrSc.; VI. Macháček; Jiří Mída; dr. J. Moravčík,CSc.;
dr. J. Sedláček, CSc.; doc. Jan Výšin, CSc.; dr. Fr. Zítek,
CSc., a zástupci MS ČSR a SSR.

3. SCHŮZE ÚV MO

V uplynulém soutěžním roce se konala opět dvě plenár-
ní zasedání ústředního výboru MO. Na první schůzi dne
7. a 8. prosince 1972 v Praze byl hodnocen průběh XXI.
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ročníku MO, prodiskutována příprava prázdninového
soustředění kategorie В a upřesněny termíny II. а III. kol
soutěže XXII. ročníku. Všichni přítomní uvítali znovu-
zřízení kategorie C a velmi kladný vliv, který na jakost
soutěže mají komentáře к úlohám. Tyto komentáře zna-
menají pro učitele při řízení soutěže velikou pomoc. Je to
důležitá akce, která do jisté míry vyrovnává nepříznivou
situaci, způsobenou tím, že většina poboček JČSMF ne-
čerpá plně částky určené na přednáškovou činnost v rámci
MO.

Dalšími body, projednávanými na plenární schůzi
v prosinci 1972, bylo zhodnocení soustředění v Trenčíně,
zpráva о XIV. MMO v Polsku a příprava na XV. MMO.
Diskutovalo se rovněž o spolupráci s SSM a o doplňcích
к novému statutu MO a FO, který připravil s. Žoldy
z MŠ SSR. Návrh bude rozeslán všem KV МО к vy-
jádření. Byla podána též přehledná zpráva o situaci ve
vydáváni edice Škola mladých matematiků a o stavu kon-
kursu JČSMF na úlohy pro MO. Doc. Výšin podal infor-
mači o návrhu osnov pro matematická gymnasia, která
mají být zřízena na 3 až 4 místech v ČSSR. Komise slo-
žená z dr. Bělouna, s. Šmerdy a s. ředitele gymnasia
Repáše připravila tento návrh témat, která by měla být
probírána ve cvičení z matematiky v 7. a 8. ročníku ZDS:
1. Prvky logiky, 2. Úvod do množinového pojetí mate-
matiky, 3. Nerovnosti a nerovnice, 4.^ Geometrie hrana-
tých těles, 5.^ Kombinatorika na ZDŠ, 6. Logaritmické
pravítko, 7. Řešení konstrukčních úloh, 8. Úlohy typu
„zebra“, 9. Číselné soustavy. Je třeba najít autory pro
sepsání vhodných brožur, které by byly jistě vzhledem
к současnému nedostatku literatury tohoto druhu na
ZDŠ ihned rozebrány.

Druhá plenární schůze ÚV МО XXII. ročníku se ко-
nak u příležitosti celostátního III. kola MO, kategorie A,
v Žilině ve dnech 13. a 14. dubna 1973. Mimo obvyklé
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body jednáni, jako jsou připomínky к průběhu soutěže,
ediční 'záležitosti (letáky, brožura se zprávou o uplynulém
ročníku, edice Škola mladých matematiků), konkurs na
úlohy MOa příprava soustředění kategorie В i družstva
pro XV. MMO, se opět diskutovalo o náplni matematic-
kých gymnasií a o návrhu na nový statut MO a FO.
Ústřední výbor matematické olympiády upozornil zá-
stupce MŠ ČSR a SSR, že v prosinci 1973 uplyne jeho
tříleté funkční období a že je tedy nutné začít přemýšlet
o složení nového ÚV MO.

Při diskusi o spolupráci s SSM se rovněž hovořilo
o putovním poháru, který věnovala Mladá fronta vítězům
III. kola kategorie А. К 25. výročí MO by měla být vě-
nována obdobná cena, např. plastika, apod. Mladá fronta
bude o to požádána a současně bude požádána i o to, aby
v edici ŠMM vydala jubilejní publikaci.

4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

Organizace jednotlivých kol soutěže nebyla v XXII.
ročníku MO nijak podstatně změněna; byly upraveny jen
dílčí termíny odevzdání úloh žáky, resp. posunuty ter-
miny II. kola.

w I. kolo, tzv. studijní, proběhlo opět ve dvou etapách.
Čtyři přípravné úlohy odevzdávali soutěžící všech kate-
gorií svým učitelům (referentům MO) do 15. listopadu
1972. Úlohy byly opraveny, ale neklasifikovány, takže
každý žák měl možnost se zúčastnit soutěžní části prvního
kola. V této části soutěže, končící pro kategorii A 15. ledna
1973 a pro kategorii В a C 15. února 1973, museli žáci
dle vlastního výběru vyřešit ze 6 úloh aspoň 3 na známku
aspoň „dobrou“, aby mohli být navrženi do II. kola.
V kategorii Z bylo podmínkou pro navržení do II. kola
vyřešení aspoň tří úloh ze čtyř na známku aspoň „dohrou“.
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Podrobné výsledky I. kola ve všech kategoriích jsou
uvedeny v tabulkách 1 a 2. Z nich je opět patrno, že sou-
těže MO se zúčastňují v kategoriích А, В a C velkou
většinou sami vážní zájemci o matematiku, neboť počet
úspěšných řešitelů činí více než 80 % všech účastníků.
Toto procento úspěšných řešitelů v kategorii Z je přiro-
ženě nižší, neboť mnoho účastníků ze ZDŠ bývá získáno
„náborem”; to však nijak nesnižuje velký význam MO
pro kvalitu vyučování matematice na ZDŠ.

Na přehledné tabulce P za poslední čtyři ročníky MO
potěší neobyčejně vysoký vzrůst účasti v kategoriích
А а В. V kategorii A lze tento jev přičíst tomu, že do ní
přísluší III. а IV. ročníky škol II. cyklu, avšak v kate-
gorii В účast, před lety tradičně nízká, dosáhla již téměř
počtu spojených kategorií В a C v XIX. а XX. ročníku
MO.

V obnovené kategorii C ustálil se počet účastníků na
výši odpovídající průměru dřívějších ročníků.

II. kolo kategorie A se konalo 3. března 1973 za po-
měrně vysoké účasti (tabulka P a 3); v hlavní klauzurní
práci však uspělo jen asi 20 % účastníků. Po obvyklé
přísné koordinaci klasifikace těchto vítězů II. kola vybralo
PÚV MO ve smyslu ustanovení statutu o MO a FO
celkem 75 účastníků celostátního III. kola kategorie A.

V kategorii В a C proběhla klauzurní II. kola v krajích
dne 7. dubna 1973 (sobota). V kategorii В (viz tabulka P
a 3) je patrný též potěšitelný vzrůst, a to jak účastníků,
tak i úspěšných řešitelů, ovlivněný bezpochyby vysokou
účastí v obnovené kategorii C v předcházejícím ročníku.
I v kategorii C je účast poměrně vysoká a odpovídá nej-
vyššímu počtu dosaženému v ní před jejím zrušením.

Klauzurní II. kolo kategorie Z pořádaly О V MO
v okresích ve středu dne 7. března 1973. Počet účastníků
i úspěšných řešitelů poněkud poklesl oproti maximu do-
saženému ve XXI. ročníku AÍO. Vzrostl však počet
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KV MO, které ve své kompetenci uspořádaly celokrajská
III. kola kategorie Z. Byly to kraje Praha (35), Západo-
český (13), Středočeský (36), Východočeský (44), Jihomo-
ravský (47), Západoslovenský (42) a Východoslovenský (36).
( V závorkách je uveden počet účastníků — vyhlášení
vítězové a úspěšní řešitelé tvoří jednu až dvě třetiny.)
V některých krajích, jako např. v kraji Středoslovenském,
byla soutěž III. kola kategorie Z vlastně přípravným
soustředěním nejlepších zástupců okresů před jejich po-
stupem do vyšší kategorie soutěže MO. Tak KV MO
začíná pečovat o projevené talenty, eviduje je a upozor-
ňuje na ně školy II. cyklu, kam tito žáci postoupí.

Celostátní III. kolo kategorie A se pořádalo 13. a 14.
dubna 1973 z technických příčin na dvou místech —
v Žilinč a v Bratislavě. Obou soutěžních dnů se zúčastnilo
všech vybraných 75 žáků. Vyhlášeno bylo 20 vítězů
a 17 dalších úspěšných řešitelů (viz příloha B).

Na přípravné soustředění před XV. MMO v Malešicích
od 25. do 30. června 1973 bylo povoláno 10 vítězů III.
kola, kteří i vzhledem к výsledkům dosaženým ve II. kole
měli nej lepší předpoklady pro úspěšnou reprezentaci;
soustředění se zúčastnili ještě další 3 náhradníci. Na sou-
středění přednášeli: prof. dr. M. Fiedler, DrSc., L. Herr-
mann, dr. J. Hojdar, dr. J. Moravčík, CSc., dr. A. Vrba,
CSc., doc. J. Výšin, CSc., a dr. Fr. Zítek, CSc. Na závěr
soustředění vybralo PÚV MO osmičlenné družstvo pro
XV. MMO v Moskvě (podrobnosti ve zprávě v kápi-
tole VI).

5. POMOCNÉ AKCE

Centrum přípravy vybraných úspěšných řešitelů MO
jako možných reprezentantů na XV. MMO bylo opět
v semináři, konaném na gymnasiu v Praze 2, ul. W. Piecka.
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Na tomto školeni přednášel prof. dr. M. Fiedler, DrSc.,
doc. J. Výšin, CScdr. J. Sedláček, CSc., dr. J. Hojdar
a úřr. Л. FVfoz, CŠc., všichni z Matematického ústavu
ČSA V v Praze. К přednáškám byly vypracovány sylaby
s texty úloh, které byly dávány к dispozici i ostatním
KV MO pro školení v jejich střediscích.

Od 25. do 30. června 1973 se konalo přípravné soustře-
dění celkem 12 nej úspěšnějších vítězů III. kola kategorie A
Z nich bylo dne 29. června na schůzi PÚV MO vybráno
osmičlenné reprezentační družstvo pro XV. Mezinárodní
matematickou olympiádu v Moskvě. Na soustředění byla
probírána tato témata: Úlohy z geometrie (prof. dr. M.
Fiedler, DrSc., doc. J. Výšin, CSc.,), Rovnice a nerov-
nosti (dr. J. Hojdar), Kombinatorika, trigonometrické
funkce (dr. A. Vrba, CSc.), Posloupnosti a matematická in-
dukce (dr. Fr. Zítek, CSc.,), Dělitelnost celých čísel a dio-
fantické rovnice (dr. J. Moravčík, CSc.,) a Funkce (L. Herr-
mann).

Soustředění úspěšných řešitelů MO a FO kategorie В a C
se konalo od 18. června 1973 do 7. července 1973 ve Ždáru
n. Sázavou. Byly opět vytvořeny tři třídy
tická, fyzikální a matematicko-fyzikální. Matematický
obsah školení byl zajištěn těmito přednáškami:

a) Dr. Antonín Vrba, CSc.: Vybrané úlohy z kombina-
toriky ^

b) Jozef Šramo: Geometrické konštrukcie
c) Doc. dr. A. Kufner, CSc.: Nerovnosti a odhady
d) Dr. Rudolf Fiby: Geometrické konštrukcie
e) Dr. Jiří Jarník, CSc.: O funkcích
f) Dr. J. Hojdar: Řešení rovnic a soustav rovnic

matema-

6. STUDIJNÍ LITERATURA

SPN v Praze vydalo celkem včas potřebné letáky jak
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pro kategorie A, В, C, tak i pro kategorii Z, takže bylo
možno vypomoci v kategorii Z i slovenským КV MO,
které dostaly letáky opožděně. Rozhledy matematicko-
fyzikální otiskly rovněž včas texty úloh MO.

V Mladé frontě pokračovalo vydávání edice Škola
mladých matematiků; vyšly tyto další svazky:

č. 30: M. Koman — J. Výšin: Malý výlet do moderní
matematiky

č. 31: Oldřich Odvárko: Booleova algebra
č. 32: J. Výšin — J. Kučerová: Druhý výlet do moderní

matematiky
Byly recenzovány a do výroby předány další svazky

této edice.

7. KONKURS JČSMF NA NÁVRHY ÚLOH
PRO MO

Tento konkurs je téměř výhradním zdrojem úloh pro
MO. Ve XXII. roč. MO bylo zadáno celkem 66 úloh,
z nichž jich jen 5 nebylo získáno konkursem. Také česko-
slovenská úloha na XV. MMOv Moskvě byla z konkursu.

Od vyhlášení tohoto nepřetržitě probíhajícího kon-
kursu v roce 1966 došlo do 1. XI. 1973 celkem 905 úloh
od 86 autorů. Recenze byla к témuž datu ukončena
u 810 úloh, z nichž přijato a odměněno bylo 525.

Podmínky konkursu jsou od XXIII. ročníku MO uve-
řejňovány v letácích s úlohami.

Zájemce o konkurs upozorňujeme, že se začíná měnit
tematika úloh AÍO. Objevují se úlohy z modernizované
školské matematiky. Těchto úloh bude jistě v MO stále
přibývat. Původní úlohy z moderní matematiky mají
v konkursu značnou naději, že budou přijaty a odměněny.
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Přehledná tabulka P

Počet soutěžících v 19., 20., 21. a 22. ročníku MO

Katego- A В C Z Školnírie
rok

Ú Ú Ú Úkolo PP P Proč.

*)*)19. 565 842 612 8230 5550 69-70

70-71

71-72

72-73

447

*) *)20. 352 843 656 10366

11090

10965

7376399
I.

21. 554 445 476 354 1115 926 7870

22. 979 858 808 667 1194 975 6989

*) *)381 88 556 129 179019. 4863 69-70

*)*)20. 341 58 613 162 6770 3807 70-71
II.

342 122 844 727521. 429 170 180 3063 71-72

72-73637 897 622622. 802 152 225 418 2423

2419. 44 69-70

70-71

71-72

72-73

20. 42 20
Nekonají se celostátněIII.

21. 74 33

22. 3775

P ... počet všech účastníků

Ú ... počet úspěšných řešitelů

*) ... kategorie C byla zrušena, žáci I. а II. ročníku škol II. cyklu
soutěžili ve společné kategorii В
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Tabulka 2
Přehled účastníků I. kola podle krajů v kategorii Z

Kategorie Z
KRAJ Z toho

dívek
Z toho
dívek

ÚP

Praha - město 1064 537 666 316

663Středočeský 367 409 219

556Jihočeský 291 352 165

Západočeský 408 236 286 156

661Severočeský 297 342 142

633 315Východočeský 465 219

1287Jihomoravský 647 769 388

1027 507Severomoravský 602 292

Bratislava - město 652 287 390 160

Západoslovenský 1501 875 1073 600

Středoslovenský 1189 552 826 391

Východoslovenský 1324 641 809 412

Celkem 10965 5543 6989 3465

P = celkový počet účastníků; Ú — počet úspěšných řešitelů
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Tabulka 4
Přehled počtu účastníků II. kola podle krajů v kategorii 7.

Kategorie Z
KRAJ Z toho

dívek
Z toho
dívek

ÚP

Praha-město 589 342278 155

Středočeský 346 203181 102

Jihočeský 321 113149 50

Západočeský 35190 96 17

Severočeský 294 134119 51

Východočeský 426 193 286 134

Jihomoravský 692 153345 63

Severomoravský 541 183 80255

Bratislava-město 373 135 49150

Západoslovenský 336965 475 161

Středoslovenský 144 75687 325

Východoslovenský 359 185802 407

Celkem 2423 11226226 2973

P = celkový počet účastníků; Ú — počet úspěšných řešitelů
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Příloha A

SEZNAM ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA MO
VE XXII. ROČNÍKU

(pokud není uveden typ školy, jde o gymnasium, resp.
SVVŠ)

PRAHA - MĚSTO

Kategorie A

Jan Trlifaj, 3.d, Praha 3, Sladkovského nám.; Aleš Drá-
pal, 3.e, Praha 8, U libeňského zámku; Jan Frynta, 4.f,
Tomáš Chrz, 4.f, oba Praha 2, ul. W. Piecka; Milena
Šídlová, 3.a, Praha 7, Nad štolou; Pavel Ferst, 3.d,
Praha 3, Sladkovského nám.; Alexander Fuchs, З.а,
Praha 10, Přípotoční; Petr Jarolím, 4.f, František Draš-
nar, 4.f a Petr Slačálek, 3. f, všichni Praha 2, ul. W. Piecka.

Kategorie В

Richard Giirtler a Jiří Obenberger, oba 2.d, Praha 2,
ul. W. Piecka; Ludvík Reichert, 2.a, Praha 4, Ohradní;
Vladimír Kopp, 2.b, SPŠ strojní, Praha 5, Preslova;
Jiří Štěrba, Jaroslav Fiala, Dana Límová, Martin Bau-
mann, Nina Karpinská a Michael Valášek, všichni 2.d,
Praha 2, ul. W. Piecka.
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Kategorie С
Karel Suchomel, l.d, Praha 1, Štěpánská; Václav Ко-

těšovec, l.d, Praha 2, ul. W. Piecka; Jaroslav Dostál, l.a,
Praha 4, Modřany; Zuzana Bartáková, l.a a Jana Dud-
ková, l.b, obě Praha 7, Nad štolou; Mojmír Churavý, l.d,
Praha 2, ul. W. Piecka; Vlastisjav Maixner, l.d, Praha 3,
Sladkovského nám.; Čestmír Štuka, l.g, Praha 8, U li-
beňského zámku; Erik Štěrba a Jaroslav Zápotocký, oba
l.d, Praha 1, Štěpánská.

STŘEDOČESKÝ KRAJ

Kategorie A
Tomáš Fiala, 4. roč., Příbram; Jaromír Kukal, 4. roč.,

Benešov; Ivo Šafařík, 4. roč., Slaný; Hana Krbušková,
4. roč., Mnichovo Hradiště; Ivo Marek, 4. roč., Radotín;
Miloslav Joukl, 4. roč., Kutná Hora; Jan Větrovský,
4. roč., Poděbrady; Vladimír Meier, 3. roč., Mladá Во-
leslav; Zdeněk Kříž, 4. roč., Sedlčany.

Kategorie В
Karel Breiter, 2. roč., Mnichovo Hradiště; Jiří Som-

mer, 2. roč., Nymburk; Ivan Řehoř, 2. roč., Radotín;
Dagmar Štuksová, 2. roč., Říčany; Jan Procházka,
2. roč., Mladá Boleslav; Karel Karlík, 2. roč., Čáslav;
Vlastimil Klíma, 1. roč., Benešov; Jaromír Stránský,
2. roč., Brandýs n. L.; Jaroslav Hrášek, 2. roč., Beroun.

Kategorie C
Hana Janoušková, 1. roč., Sedlčany; Jaroslav Vožeh,

1. roč., Hořovice; Vojtěch Zadražil, 1. roč., Český Brod;
Zdeněk Tópfer, 1. roč., Mladá Boleslav; Ivan Vinš,
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1. roč., Radotín; Miroslav Krob, 1. roč., Beroun; Miro-
slav Krejčí, 1. roč., Mnichovo Hradiště; Miroslav Šmej-
kal, 1. roč., Sedlčany; Petr Kučera, 1. roč., Kutná Hora;
Ivo Drahorád, 1. roč., Brandýs n. L.

JIHOČESKÝ KRAJ

Kategorie A

Karely Horák, 4.b, Strakonice; Pavel Kindlmann,3.a,
K. Š., České Budějovice; Josef Voldřich, 2. roč., Vim-
perk; Jiří Hanzálek, 4.a, _K. Š., České Budějovice;*Jan
Teska, 3.b, Milevsko; J. Čanda, 4.a, Písek.

Kategorie В

Josef Voldřich, 2. roč., Vimperk; Zdeňka Bervidová,
2.c, Tábor; Jana Chaloupková, 2.a, Prachatice; Jan Va-
ňata, 2.b, Strakonice; Miroslav Vácha, 2.b, Tábor;
Miroslava Kochová, 2.a, K. Šatala, České Budějovice;
Karel Markvart, 2.b, Tábor; Jan Kozelka,'SPŠ strojní,
Písek; Alena Rubešová, 2.a, K. Šatala,[České Budějovice;
Vladimír Drápalík, 2.a, Strakonice.

Kategorie C

Jiří Hofman, 1. roč., K. Šatala, České Budějovice;
Eva Snížková, 1. roč., SPŠ stavební, České Budějovice;
J. Vyhnal, 1. roč., K. Šatala, České Budějovice; Vladimír
Hůna, 1. roč., Prachatice; Věra Černá, 1. roč., Prachatice;
Zbyněk Brtna, 1. roč., Prachatice; Martin Bartoš a Pavel
Žampach, oba 1. roč., Třeboň; Ladislav Soukup, 1. roč.,
Vimperk; Emil Pitter, 1. roč., K. Šatala, České Budějo-
vice; Ladislav Slípka, 1. roč., Jindřichův Hradec.
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ZÁPADOČESKÝ KRAJ

Kategorie A
Magda Fořtová, 4.d, J. Fučíka, Plzeň; Jan Klaschka,

3.a, Mariánské Lázně.

Kategorie В
František Pillmann, 2. a, J. Fučíka, Plzeň; Josef Pru-

ner, Václav Šmrha, Luboš Odvárka, Vladimír Krásný
a Petr Matas, všichni 2.a, J. Fučíka, Plzeň; Jaroslav Krč-
mář, 2.a, Sušice; Michal Svrček, 2.b, Karlovy Vary.

Kategorie C
Milan Studený, l.a, Mariánské Lázně; František Sta-

něk, l.a, J. Fučíka, Plzeň; Zuzana Martínková, l.b, So-
kolov; Karel Kubát a Pavel Sedlák, oba l.a, J. Fučíka,
Plzeň; Rudolf Ottis, Jiří Smejkal a Josef Biirger, všichni
l.e, Plzeň, ul. Pionýrů; Vladimír Sedlák, Jaroslav Šťastný
a Daniela Řezníčková, l.a, J. Fučíka, Plzeň.

SEVEROČESKÝ KRAJ

Kategorie A
Václav Špaček, 4.c, ul. Čs. dobrovolců, Teplice; Ivo

Mrázek, 2.b, SPŠ chem., Ústí n. L.-Střekov; Jan Palacký,
4.c, Jeronýmova, Liberec; Jan Holub, 4.c, ul. Čs. dobro-
volců, Teplice; Jiří Svoboda, 4.c, ul. Čs. dobrovolců,
Teplice; Vítězslav Švejdar, 4.b, Komenského nám.,
Děčín; Jiří Hora, 4.a, Žatec.

Kategorie В
Ivo Mrázek, 2.b, SPŠ chemická, Ústí n. L.; Václav
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Soukup, 2.c, Liberec; Pavel Koberle, 2.a, Lovosice;
Martin Múller, 2.a, Litvínov; René Hladík, 2.b, SPŠ che-
mická, Ústí n. L.; Jiří Maryška,^. roč., Jablonec n. N.;
Jan Malý, 2.a, Litoměřice; Jiří Škutchan, 2.a, Litvínov;
Jiří Svoboda, 2.c, Liberec; Martin Kapoun, 2.a, Ústí n. L.

Kategorie C

Jiří Sluka, l.b, Jablonec n. N.; Pavel Vondrák, l.a,
Ústí n. L., Leoš Tomíček, 1. c, Liberec; Milan Ďurana,
Miroslav Oktábec, Jiří Dlouhý a Jiří Cipín, všichni l.c,
Teplice; Věra Švarcbachová, l.b, Litoměřice; Jaroslav
Holomek, l.c, Liberec; Ivan Chudomel, l.a, Litvínov.

VÝCHODOČESKÝ KRAJ

Kategorie A
Vladimír Bergl, 4.a, Pardubice-Spořilov; Jan Mandel,

4.b, Náchod; Jiří Limpouch, 4.g, J. K. Tyla, Hradec Krá-
lové; Jiří Svoboda, 3.a,Pardubice-Spořilov; Jaroslav Šulc,
4 .a, Turnov; Josef Ježek, 3.a, Pardubice-Spořilov; Zde-
něk Drábek, 3. roč., Lanškroun; Miroslav Šik.al, 4.a,
Přelouč; Pavel Kouba, 3.a, Vysoké Mýto.

Kategorie В

Jiří Hůlka, 2.g, Hradec Králové; Vladimír Fedr, 2.a,
PoličkaTomáš Blažek, 2.a, Pardubice; Josef Pavel,
9.a, ZDŠ Rychnov n. Kn., Komenského; Pavel Kubát,
2.a, Havlíčkův Brod; Stanislav Nožička, 2. g, Nová Рака;
Petr Holan, 2.a, Nový Bydžov; Rastislav Jakubíček, 2. roč.,
Polička; Luděk Němec, 2.a, Pardubice; František Starý,
2.c, SPŠ elektrotechnická, Pardubice; Ivan Šup, 2.a,
Přelouč.
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Kategorie С
Miloslav Kalous, l.a, Rychnov n. Kn.; Petr Novák,

l.a, Pardubice; Milos Ferjenčík, Jiří Dvořák a Radim
Ptáčník, všichni l.a, Pardubice; Zdeněk Rudolf, l.a,
Trutnov; Miroslav Pátek, l.a, Trutnov; Jan Šugl, l.a,
Rychnov n. Kn.; Jiří Salač, l.a, Pardubice; Josef Nosek,
l.roč., Semily; František Rozkot, l.a, Rychnov n. Kn.;
Pavel Šťovíček, l.a, Pardubice.

JIHOMORAVSKÝ KRAJ A BRNO-MĚSTO

Kategorie A
Miroslav Kmošek, 4. roč., Brno, tř. kpt. Jaroše;

Aleš Moravec, 4. roč., Brno, tř. kpt. Jaroše; Jiří Pavel,
3. roč., Jihlava; Pavel Šandera, 4. roč., Brno, Křenová;
Jiří Brabec, 3. roč., Ždár n. S.; Karel Kozmík, 4. roč.,
Kroměříž; Petr Pištěk, 4. roč., Brno, Křenová; Aleš
Chramosta, 3. roč., Brno, tř. kpt. Jaroše; Karel Meduna,
3. roč., Brno, Lerchova; Vít Ticháček, 4. roč., Kroměříž.

Kategorie В
Jan Hollan, 2. roč., Brno, tř. kpt. Jaroše; Josef Geb-

rich, 2. roč., Brno, tř. kpt. Jaroše; Zora Vlčková 2. roč.,
Brno, Lerchova; Zdeňka Prokešová, 2. roč., Brno, Ко-
něvova; Zdeněk Ptáček, 2. roč., Kroměříž; Jiří Havel,
2. roč., Jihlava; Vladimír Pisk, 2. roč., Třebíč; Jaroslav
Červenka, 2. roč., Uherský Brod; Alena Malá, 2. roč.,
Brno, Koněvova; Jaromír Trubelík, 2. roč., Kroměříž.

Kategorie C
Zdeněk Ondrák, 1. roč., Třebíč; Jindřich Petruška,

1. roč., Brno, Elgartova; Milan Trnka, 1. roč. Brno,
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Křenová; Jan Jirků, 1. roč., Zdar n. S.; Eva Pivničková,
1. roč., Znojmo; Jana Hladká, 1. roč., Brno, Křenová;
Luděk Tomek, 1. roč., Brno, Lerchova; Zuzana Bráz-
dová, 1. roč., Brno, tř. kpt. Jaroše; Zdeněk Marczy-
niszin, 1. roč. Břeclav; Pavel Knébl, 1. roč., Gottwaldov;
Josef Zielinski, 1. roč., Znojmo.

SEVEROMORAVSKÝ KRAJ

Kategorie A
Jaromír Šimša, 3. roč., Ostrava I, Šmeralova; Antonín

Otáhal, 3. roč., Ostrava-Zábřeh, Volgogradská; Vladislav
Máčejovský, 3. roč , Ostrava I, Šmeralova; Rostislav
Mezihorák, 4. roč., Rýmařov, Jelínkova.

Kategorie В
Leszek Gajdzica, 2. roč., polský vyuč. jazyk, Český

Těšín, Havlíčkova; Miroslav Lýčka, 2. roč., Vsetín;
Marie Kuzníková, 2. roč., Havířov, Tojovského; Danes
Červinka, 2. roč., Opava, Komenského; Michal Novotný,
2. roč., Olomouc-Hejčín, Tomkova; Karel Lichý, 2. roč.,
Opava, Komenského; Vladimír Hruška, 2. roč., Valašské
Meziříčí; Lumír Gatnar, 2. roč., Opava; Jiří Kožusznik,
2. roč., Třinec; Miroslav Prchal, 2. roč., Ostrava I,
Šmeralova; Lubomír Balanda, 2. roč., Český Těšín.

Kategorie C
Václav Keral, 1. roč., Uničov; Jiří Navrátil, 9. roč.,

ZDŠ, Olomouc-Řepčín; Ladislav Šenkyřík, 1. roč., Olo-
mouč, Jiřího z Poděbrad; Jan Vopatecký, 1. roč., Opava;
Tomáš Hudec, 1. roč., Ostrava-Zábřeh, Volgogradská;
Kristián Walach, 1. roč., Ostrava-Zábřeh, Volgogradská;
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Zdeněk Krchák, 1. roč., Vsetín; Hana Míinzová, 1. roč.,
Valašské Meziříčí; Josef Krmela, 1. roč., Ostrava-Zábřeh,
Volgogradská; Josef Přeček, 1. roč., Olomouc-Hejčín.

BRATISLAVA - MĚSTO

Kategória A

Ján Krajčík, 2. roč., Pavol Zlatoš, 3. roč., Lubor Kol-
lár, 3. roč., Milan Kolibiar, 4. roč., Pavol Meravý, 3. roč.,
Jozef Širáň, 3. roč., Ján Krč, 3. roč., Pavol Poliak, 3. roč.
a Vladimír Rajčák, 4. roč., všetci Bratislava, Novohradská;
Martin Breza, 3. roč., Bratislava, Červenej armády.

Kategória В

Ján Krajčík a Ján Slodička, oba 2. roč., Bratislava,
Novohradská; Tibor Bednárik, 2. roč., Bratislava, Čer-
venej armády; Ján Kučera a Peter Kraj čí, oba 2. roč o

Bratislava, Novohradská; Miroslav Poliak, 2. roč. SPŠ
elektrotechnická, Bratislava, Zochova; Ivan Janetka a Mi-
lan Kiaček, oba 2. roč., Bratislava, Novohradská; Lubo-
mír Šesták, 2. roč., Bratislava, Červenej armády.

Kategória C

Michal Jančina, 1. roč., Bratislava, Metodova; Ondřej
Náther, 1. roč., Bratislava, Novohradská; Eva Gon-
dová, 1. roč., Bratislava, Červenej armády; Michal Zika,
Igor Kossaczký, Pavol Krchňák, Juraj Waller, Pavol
Kossey, Jozef Kiss a Miroslav Drkoš, všetci 1. roč.,
Bratislava, Novohradská.
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ZÁPADOSLOVENSKÝ KRAJ

Kategória A

Kamil Hanuliak, 4. roč., Trnava; František Šindler,
4. roč., Zlaté Moravce; Peter Hroššo, 4. roč., Topolčany;
Štefan Knutelský, 3. roč., Nitra, Párovská; Tibor Kántor,
4. roč., maď., Komárno; Ján Helbich a Karol Palacka,
oba 4. roč., Peter Peťovský, 3. roč., všetci slov., Ко-
márno.

Kategória В

Peter Štarke, 2. roč., Trenčín; Jozef Kočan, 2. roč.,
Trnava; Ivan Ošťádal, 2. roč., Nové Město nad Váhom;
Viera Zajacová, 2. roč., Bánovce n. Bebravou; Vladimír
Dzurák, 2. roč., Nové Město n. V.; Roman Ormandy,
2. roč., Trnava; František Palkovič, 2. roč., Holič;
Pavol Kristi a Ivan Kubík, oba 2. roč., Nové Město n. V.;
Karol Ďurenec a Miloš Mikula, oba 2. roč., Trenčín;
Milan Potočár, 2. roč., Senec; Zoltán Téglás, 2. roč.,
maď., Komárno.

Kategória C

Milan Svetozár, 1. roč., SPŠ elektrotechnická, Piešťany;
Daniel Madleňák, 1. roč., E. Gudernu, Nitra; Janka Ho-
záková, 1. roč., Nitra, Párovská; Jiří Král, 1. roč., Třen-
čin; Hana Stachová, 1. roč., Nové Město n. V.; Ján Bre-
zovický, 1. roč., E. Gudernu, Nitra; Lubomír Škriečka,
1. roč., Trenčín; Ildikó Holocsyová, 1. roč., maď., Šamo-
rín; Edita Horváthová, 1. roč., maď., Šamorín; Miroslav
Bebjak, 1. roč., Partizánske; Ján Sudek, 1. roč., Senec;
Jana Tokárová, 1. roč., Trnava; Dušan Uhrín, 1. roč.,
E. Gudernu, Nitra.
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STREDOSLOVENSKÝ KRAJ

Kategória A
Imrich Vrťo, 4. roč., Rimavská Sobota; Marian Mikláš,

3. roč., Prievidza; Marian Kanianský, 3. roč., Handlová;
Valter Petrů, 3. roč., Žilina, Horný Val; Ivan Mečiar,
3. roč., Prievidza; Jozef Dalžuífo, 3. roč., SVŠ, Lučenec.

Kategória В
Peter Maličký, 2. roč., Prievidza; Martin Valovič,

2. roč., Vrútky; G. Gyorgyová, 2. roč., Velký Krtíšj
J. Kordík, 2. roč., Prievidza; Vilo Mlích, 2. roč., SPŠ
elektrotechnická, Lipt. Hrádok; Zoltán Rafa, 2. roč.,
SPŠ strojná, Kys. Nové Město; V. Technovský, 1. roč.,
Zvolen.

Kategória C
V. Technovský, 1. roč., Zvolen; Karol Pekár, 1. roč.,

Ružomberok; Anna Rojková, 1. roč., Povážska Bystrica;
Pavol Hmíra, 1. roč., Kysucké Nové Město; Jozef Kobza,
1. roč., Ilava; VI. Hládek, 1. roč., Martin; Lub. Sotulář,
1. roč., Martin; P. Makovický, 1. roč., Žilina, Horný Val;
Milan Čermák, 1. roč., Zvolen; Štefan Bračok, 1. roč.,
Ružomberok.

VÝCHODOSLOVENSKÝ KRAJ

Kategória A
Karol Pelikán, 4. roč., Tibor Lefkovič, 3. roč., Peter

Vyšnyi, 4. roč., všetci Košice, Šrobárova 46; Ján Šom-
vársky, 3. roč., Košice, Šmeralova 9; Ján Smrek, 3. roč.,
Humenné; Ján Krivoš, 3. roč., Košice, Šmeralova 9.
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Kategória В
Peter Kopčanský, 2. roč., Humenné; Vladimír Matěj,

2. roč., Košice, Kováčska 28; Imrich Harbula, 2. roč.,
Sečovce; Tibor Kollár, 2. roč., T. Ševčenka, Prešov.

Kategória C
Ondřej Сако, 1. roč., Košice, Šmeralova 9; Vojtech

Bardiovský, 1. roč., SPŠ elektrotechnická, Košice; Valéria
Bariličová, 1. roč., Vranov; Viera Kačúrová, T. Ševčenka,
Prešov; Dušan Malenčík, 1. roč., Košice, Šmeralova 9;
Stanislav Adzima, 1. roč., Košice, Šrobárova 46; Marián
Pilát a Tibor Tejgiszer, oba 1. roč., SPŠ elektrotechnická,
Košice; Svetlana Krajňáková, 1. roč., T. Ševčenka, Pre-
šov; Marta Mlynarčíková, 1. roč., Poprad.
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Příloha В

SEZNAM VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
III. KOLA KATEGORIE A VE XXII. ROČNÍKU

МО V ROCE 1973

Vítězové

Jaromír Šimša, 3. b, Šmeralova, Ostrava 1
Karel Horák, 4.b, Strakonice
Miroslav Kmošek, 4.a, tř. kpt. Jaroše, Brno

4.-5. Pavel Ferst, 3.d, Sladkovského, Praha 3
4.-5. Petr Slačálek, 3.f, ul. W. Piecka, Praha 2
6.-8. Tomáš Chrz, 4.f, ul. W. Piecka, Praha 2
6.-8. Pavel Kindlmann, 3. a, České Budějovice
6.-8. Imrich Vrťo, 4. roč., Rimavská Sobota
9. — 11. Lubor Kollár, 3. roč., Novohradská ul., Bratislava
9.—11. Moravec, 4.d, tř. kpt. Jaroše, Brno
9, —11. František Šindler, 4. roč., Zlaté Moravce

12.—13. Pavol Meravý, 3. roč., Novohradská ul., Brati-
slava

12. —13. Pavol Zlatoš, 3. roč., Novohradská ul., Bratislava
14.—17. František Drašnar, 4. f, ul. W. Piecka, Praha 2
14.—17. Jan Frynta, 4. f, ul. W. Piecka, Praha 2
14.—17. Tibor Lefkoviěy 3. roč., Šrobárova ul., Košice
14.—17. Peter Višnyi, 3. roč., Šrobárova ul., Košice
18.—20. Magda Fořtová, 4.d, nám. Odborářů, Plzeň

1.
2.
3.
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18.—20. Josef Širáň, 3. roč., Novohradská, Bratislava
18,—20. Ondřej Štejfl, 4. f, ul. W, Piecka, Praha 2

Další úspěšní řešitelé
21. —24. Tomáš Fiala, 4. roč., Příbram
21.—24. Jan Mandel, 4.b, Řezníčkova ul., Náchod
21.—24. Ivo Mrázek, 2.b, SPŠ chem., Ústí n. L.-Střekov
21.—24. Karol Pelikán, 4. roč., Šrobárova ul., Košice

JW/ Voldřich, 2. roč., Vimperk
26. —30. Petr Jarolím, 4.f, ul. W. Piecka, Praha 2
26.—30. Ján Krajčík, 3. roč., Novohradská ul., Bratislava
26.—30. Jiří Měska, 3.d, Sladkovského, Praha 3
26.—30. Pčír Paukner, 4.f, ul. W. Piecka, Praha 2
26, —30. Dalibor Volný, 4.f, ul. W. Piecka, Praha 2
31.—35. Jaroslav Fiala, 2A, ul. W. Piecka, Praha 2
31.—35. Peřr Hejl, 4.c, Štěpánská ul., Praha 1
31.—35. Tomáš Šimáček, 4.f, ul. W. Piecka, Praha 2
31.—35. Vítězslav Švejdar, 4.b, Komenského nám.,

Děčín
31.—35. JanTrlifaj, 3.d, Sladkovského nám., Praha 3
36. —37. Tomáš Burian, 4.a, Nad štolou, Praha 7
36. —37. Milan Kolibiar, 4. roč., Novohradská ul., Brati-

slava
Poznámka. Pokud v adrese není uveden druh školy, jedná

se o gymnasium, popř. na Slovensku o SIVŠ.

25.
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II. Přípravné úlohy I. kola
(Komentář a řešení)

1. KATEGÓRIA A

| A-P-l
Určité všetky prirodzené čísla x3 pre ktoré je výraz

jc4 — 23x2 + 42 dělitelný číslom 83.

Tato úloha má tematiku na první pohled běžnou, ale
je tu přece něco nového, totiž tzv. kvadratické zbytky.
Daný trojčlen

(1)- 23jc2 + 42

rozložíme v součin
(x2 - 21) (x2 - 2);

protože 83 je prvočíslo, je číslo (1) násobkem 83, právě
když je aspoň jedno z čísel л;2 — 21, r2 — 2 násobkem 83.
Zřejmě stačí vyšetřovat čísla x = 0 až x = 82, tj. hledat,
jaké zbytky dává číslo x2 při dělení číslem 83. Mohli
bychom pomocí tabulky druhých mocnin přezkoušet
všech 83 případů. To je však příliš pracné, proto se sna-
žíme počet vyšetřovaných případů snížit; tím zároveň
vnikneme trochu do teorie tzv. kvadratických zbytků.

Předně dokážeme pomocnou větu (lemma Lx):
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(Lx) Jsou-li x13x2 dvě různá celá čísla z intervalu <0; 82)
taková, že x\ — 21, x\ — 21 jsou násobky prvočísla
83, pak je ^ + x2
Obráceně: Je-li л; celé číslo z intervalu <0; 82), pro

které je я2 — 21 násobkem 83, pak je také (83 — x)2 — 21
násobkem 83.

DŮKAZ: a) Nechť je x\ - 21 = Ш13 x2 - 21 - 83&2,
kde 0 ^ x2 < x1 ^ 82. Pak je

(x\ - 21) - Ol - 21) = 830, - W ,

83.

tj.
(*i — x2) (xx + x2) = 83 (kx — k2) .

Protože je 0 < xx — x2 tĚ 82, je 83 dělitelem čísla xx + x2\
protože je xx + x2 < 2.82 — 164, je xx + x2 = 83.

b) Nechť je я2 — 21 = 83&, kde 0 ^ x ^ 82. Pak platí
(83 - xf - 21 = 832 - 2.83 . jc + r2 - 21 =
= 83(83 - 2x) + S3k = 83m,
tj. (83 — jc)2 — 21 je násobkem čísla 83.

Je zřejmé, že v lemmatu (Lx) můžeme nahradit číslo 21
libovolným přirozeným číslem, např. číslem 2; také
prvočíslo 83 můžeme nahradit jiným prvočíslem.

Druhé lemma zní:

(L2) Platí-li pro přirozená čísla x, %, x2 vztah я = xxx2
a dávají-li při dělení číslem 83 čísla x2, x\3 x\ po
řadě zbytky z3 z13 z23 je číslo z — zxz2 násobkem
čísla 83*).

DŮKAZ: Nechť je x2 = 83&x + z19 x\ = 83&2 + z2,
x2 = 83k + z; pak je x2 = x\ . x\ = 83{83kxk2 + kxz2 +
+ £2*1) + zizv t)-

*) Obě lemmata se vysloví mnohem přehledněji, užijeme-li pojmu
„kongruence“.
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83£ + z = 83m + zxz2 >

tj.
83(m k) = z — zxz2.

Z lemmatu (Lx) vyplývá, že stačí vyšetřovat kvadratické
zbytky čísel 0 až 41. Další možné zjednodušení dostaneme
tak, že vypočteme kvadratické zbytky prvočísel menších
než 42 při dělení číslem 83. Jsou uvedeny v tabulce:

№)
19 23 29 31 37l 4132 5 7 11 13 17x

294 9 25 49 38 3 40 31 11 48 41 21z

{z je zbytek při dělení čísla x2 číslem 83). Pak můžeme
(s použitím tabulky Тг) počítat zbytky zbývajících slože-
ných čísel od 1 do 20, takže dostaneme tabulku (T2):

(T2)
l 2 3 4 5 6 14 15 16 17 18 207 8 9 10 11 12 13 19x

381 4 16 36 61 3 30 59 40 75 29 689 25 49 64 81 17 7z

A dále s pomocí tabulky (T2) určíme ostatní kvadratické
zbytky. Např. 36 = 2.18, tj. 362 = 22.182; zbytek z je týž
jako pro 4.75 = 300, tj. 51. Anebo 26 = 2 . 13, 262
= 22. 132; zbytek z je týž jako pro 4.3 = 12. Nebo
39 = 3 . 13, 392 = 32. 132; zbytek je týž jako pro 9.3 =
= 27 atd.

ZÁVĚR: Kvadratický zbytek 2 nedostaneme pro žádné
číslo x z intervalu <0, 82) a kvadratický zbytek 21 dosta-
neme jen pro čísla jc = 41, 42.

Úloha má tedy dvě třídy řešení:
xx = 41 + 83и ,

x2 — 42 + 83w ,
(2)
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kde n probíhá všecka nezáporná celá čísla. Je třeba ještě
provést ZKOUŠKU, že všechna čísla (2) skutečně mají
tu vlastnost, že číslo (1) je násobkem čísla 83.

Pro předvedení postupu by bylo asi vhodné zvolit
místo prvočísla 83 menší prvočíslo, např. 41. Pak by se
ovšem měl změnit i daný trojčlen; ÚLOHA by mohla
znít např. takto:

Určete všecka přirozená čísla x, pro která je výraz
л;4 — 35л:2 + 66 dělitelný číslem 41.

A-P-2

Určete všechna reálná čísla л:, která splňují rovnici
Г2л; — 1] Г4л; +1] 5л: — 4
г з J + L—J - з

přičemž symbol [a] znamená celou část reálného čísla a,
to je celé číslo, pro které platí

[a] ^ a < [a] + 1 .

Tato úloha patří do skupiny úloh o funkci „celá část
z čísla...“. Úloha téže tematiky je také mezi přípravný-
mi úlohami kategorie С (C-P-l). Při řešení úlohy A-P-2

5# — 4

2— je celé; řešení л; lze tedy hledat jenuvažte, že číslo
mezi racionálními čísly. Použijeme substituce

V-" ^ceié^

„ _ 3y + 4
X~

5 *

(3)

z (3) dostaneme

(4)
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Vyjádříme
2x — 1 2y + 1 4x + 1 4y + 7

10 '5 63

Místo dané rovnice pro я máme pak řešit rovnici

mm - (5)У >

a to v množině C všech celých čísel. Při řešení můžeme
kombinovat (tak jako při C-P-l) pokusy s deduktivní
úvahou. Pokusy nám dají tuto tabulku:

3 4 5 6-2 -1 0 1 2-4 -3У

m i i i 2 2-2 -1 -1 -1 0 0

i i 3-1 -1 -1 o o 1 2 2

Tabulka nám dá pět řešení rovnice (5), která jsou tlustě
zarámována. Rovnice (4) dá pět řešení dané rovnice
(o správnosti výpočtu se přesvědčíme zkouškou)

xr — —0,4; x2 — 0,2; x3 — 0,8; x4 = 1,4; x5 — 2 .

Zbývá dokázat to, co naznačuje horní tabulka, že totiž
daná rovnice, resp. rovnice (5), nemá jiné řešení. Tabulku
doplníme úvahou: Pro у ^ 5 je

< 2y + 1 _ 4y + 2 - m < 4у ±2
105 10

a dále
4 9
5 y + 10

Sy + 9
<

10
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4
, 1

<jy + JУ=У-

Rovnice (5) tedy skutečně nemá žádné řešení у ^ 5.
Obdobný důkaz provedeme pro у

Doporučujeme, abyste řešili rovnici (5) graficky. К tomu
účelu je výhodné odvodit POMOCNOU VĚTU:

(L) Pro každé с e C a t e R\ C (tj. pro každé celé
číslo c a reálné nikoli celé číslo ť) platí vzorec:

c — [ř] — [c + 1 — ť\.
DŮKAZ: Vyjdeme z definice „celé části z A“. Lze to

zapsat dvojím způsobem; buď [A] ^ A < [A] + 1, nebo
A — 1 < [A] ^ A. Z této definice plyne

c — t <C [c ~|- 1 — í] ^ c — t -j- 1 .

Na druhé straně však platí

-5.

(6)

-M - 1 < - t ^ - [ř],
tj*

(7)c—tt^c — [t]<c
Vzhledem к předpokladu o čísle t nemůže nastat rovnost
ani v (6) ani (7); obě tyto podmínky jsou tedy totožné.
Protože však v otevřeném intervalu (c — ř, c — ř + 1)
leží právě jedno celé číslo, je lemma (L) dokázáno.

Při řešení rovnice (5) rozlišíme nyní dva případy:

b) 2^±Лфс.

ř + 1 .

2y+la) 5 6 C,
V případě a) zjistíme, že musí být у = 5n + 2 (n e C).

4y + 7Vypočteme ^ - 2n +T •
- 2n + lj 10
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Rovnici (5) pak přepíšeme do tvaru

[*+4]-[2n + 1] + 5^2 -(- 2

Odtud dostaneme n = 0, což dává jedno řešení у — 2.
V případě b) užijeme pomocné věty (L) a dostaneme
místo (5)

řr] - i>+ Ь+}\
5 J’1 -

čili

(8)

odtud dostaneme zbývající řešení^ = —2, —1, 0, 1.
Rovnici (8) si snadno rozřešíte sami.

A-P-3

Ak platí v trojúholníku ABC vztah a = 2(1, potom
platí a2 = b2 + bc. Dokážte a zistite, či platí aj obrátená
veta.

Úloha A-P-3 je v pravém slova smyslu „cvičná“;
nevyžaduje v podstatě žádný nápad. Z podmínky a = 2(1
odvodíme ihned у — n — 3(1 a podle známých vět

J = 2co^> 7 =
Odtud dostaneme eliminací

sin 3 (3
sin |8

3 — 4sin2/5 — 4cos2/i — 1 .

a2
(9)¥ b5
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neboli
(10)a2 — 62 + be .

Obráceně z podmínky (10) plyne (9) a odtud podle si-
nové věty

sin (a + /5) sin/5 = (siná -f- sin/5) (siná — sin/5)
neboli

sin (a + /5) sin/5 =

a + /5 a — /5 a —
= 2sm —cos —2~^~ * 2sm —2

/5 T /5
-cos -

2

neboli

sin (a + /5) , sin/5 = sin (a + /5) . sin (a — /5) .

Protože sin (a + /5) = siny ф 0, je
sin/5 = sin (a — /5) .

Odtud plyne buď /5 — a — /5, nebo 7t — /5 — a — /5.
Druhá rovnost vede ke sporu a = тс; je tedy /5 = a — /5,
tj. a = 2/5.

Tuto úlohu můžete řešit bez pomoci. Bylo by vhodné
doplnit ji otázkou: Které trojúhelníky s celočíselnými dél-
kami stran mají vlastnost „a = 2/5“ ?

Ze vztahu a2 = 62 + bc neboli a2 = 6(6 + c) snadno
dokážeme, že číslo 6 je druhá mocnina celého čísla, pokud
ovšem předpokládáme, že čísla a, 6, c nemají společného
dělitele většího než 1. (Je-li p prvočinitel čísla а, рак д/6 V
V p/(b + c); kdyby bylo д/6 Д д/(6 + c)*), bylo by p
dělitelem všech tří čísel a, 6, c. Je tedy

и2, 6 + c = z;2,6
tj-

(И)a = uv, b = M2, c ~ v2 — ú2 .

*) Symbol p/č> se čte „p dělí tj. číslo p je dělitelem čísla b.
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Obráceně zvolíme-li dvě nesoudělná čísla u, v, pro
která platí

1 ^ и < v < 2u ,

dají vzorce (11) řešení úlohy. Podmínka v < 2u vyplývá
z trojúhelníkové nerovnosti a + b > c. Podrobné řešení
doplňkové úlohy je velmi poučné.

A-P-4

Na průměru MN kružnice k = (S;r) jsou dány body
А Ф S, В Ф S, které leží na opačných polopřímkách vy-
ťatých na MN bodem 5. Na kružnic’ k určete všechny
body X takové, aby osa úhlu AXB procházela bodem 5.

Také tato úloha je velmi jednoduchá a má jediné po-
slání: připomenout řešitelům tzv. Apolloniovu kružnici
(Apolloniovo vytvoření kružnice) spolu s jistou vlastností
osy úhlu trojúhelníka. Tato vlastnost je vyslovena větou:

(Lx) Je-li U takovým bodem strany AB trojúhelníka
AU

_ AC
BU~~ BC'ABC, že <£ ACU — <£ BCU, pak platí

Věta o Apolloniově kružnici zní:
(L2). Jsou-li P, Q dva různé body roviny q а Я Ф 1

kladné číslo, pak množina všech bodů X e q, pro které
PX

platí = A, je kružnice, jejíž střed leží na přímce PQ.Q.X

Věta (Lx) se dokáže snadno sinovou větou nebo z po-
dobných trojúhelníků. Na obr. 1 je CU osa úhlu <X ACB;

42



V je takový bod, že <£ CA V=
= <£CBU, pak je
<£ Cč/S = < ЛС/F =
= AVU = <p.
Z podobnosti trojúhelníků
i\ACV ~ &BCU plyne

AC BC_m
AV ~ BU5

protože AV=AU,je
Jinak je vě

AU
BU'

evidentním důsledkem pou-
žití sinové věty na f\AUC, &BUC.

Lemna (L2) se dokáže metodou souřadnic nebo použi-
tím věty (Lj). Důkaz obou vět (Ьг), (L2) i doplnění (L2)
otázkou o případě X — \ přenecháváme čtenářům.

Při řešení úlohy A-P^4 rozlišíme dva případy; bod 5 je
středem úsečky AB; bod 5 není středem úsečky AB.
V druhém případě užijeme věty (L2), hledané body jsou
průsečíky dané kružnice s Apolloniovou kružnicí. V prv-
ním případě je Apolloniova kružnice nahražena přímkou.
Musíme ovšem v obou případech dokázat, že vzniknou
dva průsečíky.

Přehlédneme-li tedy soubor přípravných úloh pro ka-
tegorii A, vidíme, že se tu klade důraz na číselnou teorii
(úlohy A-P-l, A-P-2 a doplněk к úloze A-P-3); geo-
metrické úlohy jsou zcela jednoduché.
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2. KATEGORIE В

B-P-l

Tři konečné množiny M13 M2, M3 mají po řadě nv n2i n3
prvků; množina M3 и M2 и M3 má 5 prvků.
Dokažte: a) Je-li nx + n2 + nz ^ 2s + 1, má průnik
všech tří množin alespoň jeden prvek.

b) Má-li průnik všech tří množin alespoň jeden prvek,
je nx + пг + и3 ^ 5 + 2.

Dokažte dále, že podmínka b) není postačující pro to,
aby tři množiny měly neprázdný průnik.

ф
Tato úloha zahajuje sérii úloh, jejichž tematika je čer-

pána z nového obsahu učiva. Již několik let se učí na
gymnasiích podle komentářů к učebnicím matematiky,
a tím proniká nové učivo ze strukturální matematiky do
vyučování. Začínáme proto zařazovat úlohy s tematikou
z naivní teorie množin, která poskytuje mnoho příleži-
tosti к manipulacím s Vennovými diagramy. Pokud jde
o konečné množiny, narážíme velmi často na vzorce
o počtu prvků konečných množin, jež jsou speciálními
případy vzorců z teorie míry. Zvyknete-li si s nimi pra-
covat, absolvujete tak propedeutiku pro výpočet obsahů
a objemů geometrických útvarů i pro základy pravděpo-
dobnosti. Máme na mysli zejména tyto tři vzorce: Nechť
jsou Ml3 M2, M3 tři konečné množiny, které mají po řadě
w13 и,, no prvků. Označíme s12, s2o, s41, s123 počty prvků
množin M; и M2, M2 и M3, M3 и M15 M, и M2 и M3 a dá-
le p12, p23, p3l, p12Z počty prvků množin Mx n M2, M2 n

П M3, M3 n M13 Mj n M2 n M3. Pak platí
n\ + W2 — 512 + Pl2 5

5123 = 512 + S23 + % — (nl + n2 + Щ) + px
^123 — П1 + n2 + П3 — (p12 + p23 + _p31) + _p123 .

(1)23 5
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Příslušný Vennův diagram, pomocí kterého si můžeme
ověřit vzorce (1), je znázorněn na obr. 2; počty prvků
s12, $23? *m nejsou к příslušným množinám připsány.

Při řešení úloh B-P-l a) i b) potřebujeme ještě nerov-
nosti

(2)*1233 *23 = *1233 *31 = *123 •*12

Je-li Mx n M2 n M;5 Ф 0,
je p123 ^ 1 a obráceně.
V úloze a) tedy vyjádříme
p123, např. z druhé formule
(1), a pokusíme se dokázat, že
p123 ^ 1. Skutečně je
/>123 — (*123 *12) (*
— *2з) + (*123 — *3l) + П\ +
+ w2 -j- щ — 2s123 .

Podle (2) je tedy

123

/>123 ^ Щ + П2 + Щ -
- 2s > 1.123

V úloze b) vycházíme z před-
pokladu p123 ^ 1 a užijeme třetího vzorce (1) a vzorců

/>12 = />1233 />23 = />1233 />31 = Pl23 • (3)
Dostaneme

n\ + «2 + n3 + (/>123 — />12) + (/>123 ~ />23) +
~Ь (/>123 />3l) 2pi23 .

*123

Podle (3) vyjde
*123 = nl + n2 + n3

a tedy za předpokladu, že p123 ^ 1, platí
2 ^ 2p123 Т2Х -j- w2 -f- w3 *i23 •

Protipříklad v úloze b) najdete sami, poradíme-li vám,
abyste se snažili použít takové trojice množin, u kterých
mají průniky co nejmenší počet prvků; všecky tři mno-

2/> 123 3
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žiny mohou mít dokonce stejný počet prvků. Ale i na to
vše můžete přijít sami. Příslušný Vennův diagram pak je
znázorněn na obr. 3. Zde je nx — n2 — n3

Pl2Z — Oj 5123 — 3, tj.
nx + nz + n3 — Зп > 3n — 1 = s123 + 2 .

Doplňkem к úloze B-P-l může být zjištění, zda pod-
minka

П1 + n2 + n3 — 2^123 1
je nutná pro to, aby bylo p ^ 1. Protipříklad zde vyža-
duje situaci, za které mají průniky co největší počet prvků,
např. (obr. 4): pak je nx = n2 = n3 — 2k + 2, pX23 = 1,
S123 = 3k + 4, a tedy

yix yi2 -j- Щ == bk -f- 6 < 6k -f- 9 = 2^j23 ~i~ 1 •

B-P-2

Je dána funkcia

ад _ (p + 4)x2 + 4x ~h 1
x2 — 4x + 2p

reálnej premennej x. Nájděte všetky celé čísla p, pre ktoré
funkcia Vv{x) nadobúda každú z hodnot —2, —1 a 0.
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Úloha B-P-2 je dost obtížná; týká se množiny funkcí
o jedné proměnné x s parametrem p nebo funkce o dvou
proměnných x3p. V textu úlohy nejsou explicitně uvedeny
kvantifikátory, na nichž vsak velmi záleží. Bylo by asi uži-
tečné formulovat úlohu množinově s příslušnými kvanti-
fikátory. Označme M0 množinu všech celých čísel p,

pro které funkce Yv(x) —
(p + 4)x2 + 4x + 1 nabýváx2 — 4x + 2p

hodnoty 0, tj. pro které existuje aspoň jedno reálné
číslo x tak, že Vp(x) = 0 .

Symbolicky:
Mo = {P 6 c; e R; Vp(x) = 0} .

Obdobně zavedeme množiny M_19 M-2. Řešením úlohy
je množina

M0 П M_x n M_2.
Hledejme nejprve množinu M0. Číslo p e C náleží do M0,
právě když existuje aspoň jedno číslo x e R tak, že platí

(p + 4)x2 + 4x + 1 = 0 (4)
a zároveň neplatí

(5)x2 — 4x + 2p = 0 .

Snadno se lze přesvědčit, že — 4 e M0. Pledpokládej-
me, že p Ф —4. Pak (4) je kvadratická rovnice a má
aspoň jedno reálné řešeni x, právě když je jejím diskrimi-
nantem nezáporné číslo, tj. když

16 - 4(p + 4) ^ 0 ,

neboli když
p^ 0.

Je-li p < 0 a. p Ф — 4, má rovnice (4) vždy dva různé ко-
řeny, z nichž aspoň jeden není kořenem rovnice (5); jinak
by totiž bylo p + 4 = — 1 Д 1 = — 2p, což je nemožné.

1
Je-li p = 0, má rovnice (4) jediný kořen x = —^ a ten
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není kořenem rovnice (5). Z toho vyplývá, že všecka ne-
kladná celá čísla tvoří množinu M0;

M0 = {p e C; p ^ 0} .

Vyšetříme množinu M_t. Číslo p e C náleží do ML13
právě když existuje aspoň jedno číslo x e R tak, že platí

(j) + 4)x2 + 4x + 1 = —x2 + 4x — 2p (6)
a zároveň neplatí (5). Z (6) dostaneme

O + 5)x2 + 2p + 1 = 0 . (6')
Rovnice (6') má aspoň jeden reálný kořen, právě když
(p + 5) (2p -f 1) ^0 a zároveň p + 5 Ф 0, neboli když

2p2 + Up + 5 ^0,
neboli když

1
(7)5 <p^~~2 '

Je-li p z intervalu (7), má rovnice (5) vždy dva různé ко-
řeny *), z nichž aspoň jeden není kořenem rovnice (6')
neboli (6). Z toho vyplývá, že všecka celá čísla z intervalu
(7) tvoří množinu M

M -!= {-1,-2,
Nakonec vyšetříme množinu M 2. Číslo p e C náleží do
M-2, právě když existuje aspoň jedno číslo xeR tak, že
platí

3,-4}.

(p + 4)x2 + 4jc + 1 = — 2x2 + 8* — 4p (8)
a zároveň neplatí (5). Z (8) dostaneme

(p + 6)x2 — 4x + 4p + 1 = 0 .

Rovnice (8') má aspoň jeden reálný kořen, právě když
16 — 4 (p + 6) (4p +1)^0, neboli když

if + 25p + 2 á 0 ,

(8')

*) Kořeny splynou jedině pro p = 2.
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neboli když

-6,2 = ~25 ~ l'5»1 25 + 1593 .

= -0,08.^P^ 88
(9)

Je-li p z intervalu (9) a je-li p + 6 Ф O, má rovnice (5)
vždy dva různé kořeny*), z nichž aspoň jeden není koře-
nem rovnice (8'), neboli (8). Je-li p — —6, má rovnice

23
(8') jediný kořen x = -r-, který není kořenem rovnice4

(5). Z toho vyplývá, že všecka celá čísla z intervalu (9)
tvoří množinu M_2;

M_2 f 4,-5,-6} .1, 2,-3,
Je tedy

M„ n M j n M_2 = {-1, -2, -3, -4}
Postup, kterého jsme použili, dává vlastně řešení obec-
nější úlohy. Jestliže v textu úlohy nahradíme slova „celá
čísla p“ slovy „reálná čísla p“ a označíme-li příslušné
množiny K0, K_15 K_ 2 místo M0, M^15 M_2, zůstane
postup řešení beze změny jen s tím rozdílem, že místo
množin M0, M_l3 ML2 dostaneme intervaly K0, К 15

K_2;
1

K0 = ÍP 6 Rj P = 0), К

-25 - 1/593

= \p e R; — 5 <P ^
-25

K_2 = \p e R; 8

Zřejmě je
K0 П К LnK^K i — (—5; - 0,5)

a to je řešení zobecněné úlohy.
Domníváme se, že vhodným uvedením do řešení úlohy

by bylo např. řešení této varianty:

*) Kořeny splynou jedině pro p — 2.
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Je dána funkce
(p + A)x2 4x + 1

x2 — 4x +
reálné proměnné x. Najděte všecka reálná čísla p, pro
která funkce Fp(jt) nabývá každé z hodnot 0 a 1.

ад =

B-P-3

Najdlhšou a najkratšou stranou dotýčnicového licho-
bežníka sú jeho základné. Dokážte.

Úloha B-P-3 je svým výsledkem málo zajímavá; po
sestrojení několika náčrtků lze nejen z názoru zjistit, že
tvrzení věty je pravdivé, ale lze objevit i princip důkazu,
který se opírá o následující pomocnou větou:

Nechť vidíme kružnici k se středem 5 z bodu X jejího
vnějšku pod úhlem cp a z bodu Y jejího vnějšku pod
úhlem ip (obr. 5). Pak platí

SX > SY o <p < у .*)

ИD. ■

8 7
W

U
a

к

Pa

A ВT

Obr. 6

*) Při označení podle obr. 5.
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Domníváme se, že toto lemma je postačujícím impulsem
pro řešení úlohy. Důkaz lemmatu lze provést trigono-
metricky nebo s použitím pravoúhlých trojúhelníků SXX',
SYY' se shodnými odvěsnami SX' — SY'. Při vlastním
odůvodnění (označení podle obr. 6) volíme označení úhlů
při větší základně AB tak, aby platilo

(10)oc^p.
Mimo to je (protože АВ > CD)

а + ^<7С, у = и — P, <5 = 7r — a .

Z (10) а (11) plyne dále
a < Ti — p — у3 /? <C тс — a = <5 .

Podle lemmatu dostaneme z (10) a (12)
AT = AW ^ ВТ = BU,
AT = AW >CU = CV,
ВГ = ££/ > DV — DW.

(11)

(12)

(13)

Z nerovností (13) plyne
AB = AT + ВТ >AW + DW= AD,
AB = AT + ВТ > CU + BU = BC,
CD = CV + DV < CU + BU = £C,
CD= CV + DV <DW + AW = AD.

Z (14) dostaneme
CD <BC <AB3 CD < AD < AB .

Nerovnosti (15) vyjadřují tvrzení úlohy B-P-3.

(14)

(15)

B-P-4

Je dán čtyřstěn ABCD. Body £', C' jsou po řadě středy
hran BD} CD. Označme R bod polopřímky opačné
к polopřímce AB, pro který platí AR = n . AB, kde n je
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přirozené číslo. Dále označme A' průsečík hrany AD
s rovinou B'C'R. Vyjádřete objem čtyřstěnu A'B'C'D
pomocí objemu čtyřstěnu ABCD a pomocí čísla n.

Úlohu B-P-4 lze řešit
na základě Menelaovy vě-
ty. Snad by bylo vhodné,
abyste se s touto větou
seznámili, neboť má vel-
mi široké uplatnění
v mnoha geometrických
úlohách. VĚTA zní

(obr. 7):
Je dán trojúhelník

ABC, v jeho rovině
přímka p, která protíná
přímky AB, BC, CA po
řadě v bodech C, A', i?',

z nichž žádný nesplyne s žádným z vrcholů А, В, C. Pak
pro dělicí poměry platí:

Obr. 7

(ABC). (BCA'). (CAB') = 1 .

(Stojí za upozornění, že dělicí poměry jsou „tvořeny
cyklicky".)

Nejelegantnější DŮKAZ Menelaovy věty se opírá
o Mongeovu větu o skládání stejnolehlostí. Je třeba si
ovšem uvědomit, že konstantu homotetie se středem S,
která převádí bod X Ф S do bodu X' Ф S, je dělicí
poměr (X'XS) (v tomto uspořádání bodů). Jak je vidět,
předpokládá tato partie geometrie pevné zakotvení pojmu
dělicího poměru a jeho vlastností.

Sestrojíme tedy dvě stejnolehlosti Hl5 H2 dané středy
a dvojicemi:

(16)
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H,(C' -> С', В -> А), Н2(В'~+ В', А -> С);
jejich konstanty jsou хх — (ABC'), х2 = (CAB'). Sloze-
ním těchto dvou homotetií vznikne podle Mongeovy věty
zobrazení Hx H2, které je stejnolehlostí, neboť platí

HXH2(A'->A', B->C).
(HjHa nemůže být ani identitou ani posunutím.)

Stejnolehlost l-^Ha má konstantu x3 — (CBA'), pro
kterou podle Mongeovy věty platí

»i. «2 = «3 •

Je tedy
(ABC'). (CAB') - (CBA').

Protože však

1
(CBA') - (BCA') J

platí (16).

Důkaz Mongeovy věty lze provést snadno metodou
souřadnic (nejlépe s komplexními čísly); méně vhodné
jsou jiné důkazy, při kterých je třeba rozlišovat různé
případy podle vzájemné polohy bodů (např. všechny tři
body A', B', C mohou ležet vně trojúhelníka ABC).

V dané stereometrické úloze vyjdeme při řešení z roz-
boru; viz obr. 8. Vyjdeme z takové stěny čtyřstěnu
A'B'C'D, aby na ni kolmá výška byla v jednoduchém
vztahu к některé z výšek daného čtyřstěnu ABCD. Je
snadné přijít na to, že taková stěna je A'B'D. Označíme-li
totiž v' velikost na ni kolmé výšky čtyřstěnu A'B'C'D
a označíme-li v velikost výšky čtyřstěnu ABCD spuštěné
z vrcholu C na stěnu ABD, platí

1
(17)0 = 2®’
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neboť C' je střed úsečky CD. Vzorec (17) si dokážete
snadno z podobných trojúhelníků.

Označíme-li po řadě V3 V objemy čtyřstěnů ABCD,
A'B'C'D, platí

1 1
i- AABD .v, V' = ~ AA'B'D . v'}3 3

V =

tj. podle (17)
V AA’B’D

ш

V ~ 2AABD;

přitom AABD3 AA'B'D značí obsahy příslušných troj-
úhelníků. Použijeme věty Menelaovy (obr. 9), a to na
ARBB' a přímku AD. Pak platí pro dělicí poměry:

{RBA). (BB’D). (B’RA’) = 1 ,

(18)

tj-
(-Я). 2 . (B'RA') = 1 ,
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tj. podle vlastností dělicího poměru postupně
1

(RB'A') = -2n ,(В'ДЛ') = -2я’

(ДЛ'Я') = 1 + 2n ,

RB' = (2n + 1) . A'B'. (19)
Dále je podle (19)

AA'B'D A'B' 1

RB' 2n + 1 5\RB'D

11
ARBD =r . AflS'D -AA'B'D =

2(2n + 1)2n + 1

я + 1
AABD,

2(2n + 1)
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neboli

AA'B'D n + 1
КАЕВ “ 2(2n + 1)'

Přitom užíváme stále VĚTY: Mají-li dva trojúhelníky
strany délek s13 s2 ležící v téže přímce a mají-li společný
vrchol proti těmto stranám, pak jejich obsahy jsou v po-
měru : s2.

Spojením vzorců (18), (20) dostaneme výsledek.
Chceme-li se vyhnout Menelaově větě, odvodíme vzo-

rec (19) způsobem obdobným odvození vlastností těžnic
trojúhelníka; je užitečné provést ještě další zobecnění.

V naší situaci je postup následující (obr. 10) *): Protože
je AD II BE, BB' = DB', je také A'B' = B'E. Na druhé

(20)

*) Bod В nemusí být středem strany BD; středovou symetrii pak
vystřídá homotetie.
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straně plyne z předpokladu a z podobnosti trojúhelníků
ДRAA', /\RBE vztah

RA' RA
A'E ~ AB

= n ,

RA’ = n. A'E = 2n . A’B\
RB' = RA' + А'В' = (2я + 1). Л'Я',

což je vzorec (19).
Způsobem, který je naznačen na obr. 10, můžeme od-

vodit Menelaovu větu.

3. KATEGORIE C

C-P-l

a) Sestrojte graf funkce
v У = [x + 2] + [2x — 1J .

b) Určete všechna řešení rovnice
[я + 2] + [2л; — 1] = [л:] .

Přitom symbol [a] značí „celou část z čísla a“, tj. takové
celé číslo b, pro které platí b ^ a < b + 1.

Tato úloha otvírá tematiku funkce „celá část z reálného
čísla“. Je to tematika, která je na hranici funkční a čí-
selné teorie.

Promyslete si definici funkce x \-> [л;]; [л;] je celé číslo,
pro které platí [x] ^ л; < [л;] + 1. Tímto předpisem je
každému reálnému číslu x přiřaděno jediné číslo [x]. Jde
tedy o relaci, která je funkcí (zobrazením). Její definiční
obor je R (tj. množina všech reálných čísel), obor jejích
funkčních hodnot je množina všech celých čísel. Kartéz-
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ský graf funkce x |-* [x]
jsou známé „schody“
(obr. 11).

Levý krajní bod každé
úsečky náleží grafu fun-
kce x |-> [лг], pravý nikoli.
Ještě si uvědomíme, že

- moderní výklad matema-
tické analýzy na střední
škole by měl vycházet
z topologických pojmů a
zejména ze dvou důleži-
tých typů funkcí: schodo-
vých funkcí (fonctions en
escalier), které jsou zo-
becněním funkce x \-+ [x],

a z nich odvozených etážových funkcí (fonctions étagées).
Představa budoucího vyučování matematice nás nutí,
abychom — aspoň v matematické olympiádě — věnovali
pozornost funkci я |-> [x].

Úlohy a), b) z C-P-l na sebe navazují. V úloze a) ne-
předpokládáme, že byste uměli napsat formuli pro funkci
x |-> [x + 2] + [2x — 1] v intervalu

ovšem patrné, že „schody“ budou mít délku ~

v uvedených intervalech bude funkce konstantní. První
úkol bude formulován asi takto: určete funkční hodnoty
vyšetřované funkce v intervalech

-i

Obr. 11

У

1-7

0 i

1
a že

)2 5

1 i o),/-i; 2 Г
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>^2;1К,;1КИ )
Snad bychom ještě mohli určit, kdy je „skok“ funkčních
hodnot 1, kdy 2.

Pro řešení úlohy b) sestrojíme ještě do téhož obrázku
graf funkce x |-> [x] a zjistíme průnik obou grafů. Dosta-
neme všecky body [x;— 1] příslušící k intervalu —у ^
^ x < 0 .

Pak bychom měli dokázat, že mimo uvedený interval
není žádné řešení rovnice z úlohy b). Výpočet vychází
z definice funkce x [x] a je asi následující:

Ф = [x + 2] + [2x — 1] — [x] >
>x+l + 2x — 2 — x = 2x — 1,
— Ф = [x] — [x + 2] — [2x — 1] >

>x - 1 - (x + 2) - (2x - 1) = — 2x - 2. (2)

Podle (1) pro všechna x > je 2x — 1 > 0, tj. Ф > 0 .

Podle (2) pro všechna x < — 1 je —2x — 2 > 0, tj.
— Ф >0 .

Řešení můžeme tedy hledat jen v intervalu <^— 1; y'N.
Grafické provedení je na obr. 12.

(1)

C-P-2

Určité všetky také kvadratické funkcie /(x), ktoré pre
všetky reálne čísla x splňujú podmienku

/(2x + 1) = 4/(—x) .
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Obr. 12

Úloha С-Р-2 se týká další důležité kategorie funkcí —
funkcí polynomických. Máme nalézt všechny kvadratické
funkce f(x), vyhovující funkcionální rovnici

f(2x + 1) = 4f(—x) . (3)
Impulsem к řešení je zopakování věty o rovnosti dvou
polynomických funkcí. Rovnost

anxn + an-xx
— bpxp bp_1xp~1 ... -f~ bxx -f- b0

n-1 + ... + axx + a0 =
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platí pro všecka x, právě když
n = p, a o = b0, a1 = b1,...> an = bp ,

Budiž /(л:) = ax2 bx с, а Ф 0 .

Podmínka (3) zní pak po úpravě (nahradíme x postup-
ně výrazy 2x + 1, —x)

(4a + 6b)x + (a + b — 3c) = 0 .

Řešením je množina funkcí я |-> с . (9л;2 — 6л; + 1),
с Ф 0 .

Nezapomeňte na ZKOUŠKU! Bylo by užitečné řešit
i variantu funkcionální rovnice (3), např. /(2x + 1) =
= /(* — 1) +

C-P-3 I
a) Zjistěte, kolikrát připadl, resp. připadne, v letech

1601 až 2000 Nový rok na jednotlivé dny týdne.
b) Najděte stejné údaje pro léta 1801—2200. (Před-

pokládáme, že nedojde к reformě kalendáře.)

Tato úloha je v podstatě hrou s kalendářem — matema-
ticky se zbytkovými třídami modulo 7. Označme x den
v týdnu, na který připadl 1. leden 1601 (rok 1601 je už po
zavedení gregoriánského kalendáře, tj. 15. 10. 1582).
Další dny v týdnu budeme označovat x + 1,..., x + 6.
Např. je-li x pondělí (a tak tomu skutečně bylo), platí
tabulka:

x T 1 I % T 2 x -j- 3 x + 4 л; + 5 x T 6x

Ú ČPo St Pá So N
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Počet dní v nepřestupném roce je 365 = 7 . 52 + 1
v přestupném roce 366 = 7.52 + 2. Proto „umístění
Nového roku v letech 1601 až 1628 bylo následující:

та
1617 x + 6 x + 41605 x + 5 x+3 1613 x+1 1621 1625 x + 21601 1609*

1618 x + 5 16261602 x + 1 1606 x + 6 x + 4 1614 x + 2 1622 x + 31610 X

x+l x + 61607 x + 5 1615 1619 1623 16271603 1611 x + 3 x + 4x + 2 X

1624 x+5x+3 1608 1612 x+6 1616 x + 4 1620 x + 2 16281604 x+l X

Doporučujeme vypsat tuto tabulku. Pro další skupiny
po 28 letech 17. století se „umístění" Nového roku opa-
kuje. Protože 100 = 3.28 + 16, dostali bychom při ro-
zepsání pro celé 17. století tři shodné tabulky (Tj) a ještě
první čtyři sloupce — ovšem s upravenými zápisy léto-
počtů. (Poslední čtyři sloupce by zahrnovaly roky 1685
až 1700.)

V každé tabulce (Tj) se vyskytuje každý z dní x až
x + 6 právě čtyřikrát; připojíme-li ještě první čtyři sloup-
ce tabulky (TJ, tj. léta 1685 až 1700 — je výskyt dní x,
x -f- I,..., x + 6 jako Nových roků v 17. století dán ta-
bulkou (T2).

та
x + 2 x + 3 x + 4 x + 5 x+6X + 1X

1212 12 121601-1684 12 12 12

22 21685-1700 2 3 2 3

141415 14 15 141601-1700 14
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Začíná-li rok 1601 dnem x, začíná rok 1701 dnem
x + 5, rok 1801 dnem x + 3, rok 1901 dnem x + 1; to
vyčteme z tabulky (Tj). Je tedy umístění Nového roku
v letech 1601 až 2000 toto (x je Nový rok 1601):

(T8)
Nový rok

x + 3 x + 4 x + 6x -f- 1 x 2 x + 5x

Století

17. 14 15 14 15 14 14 14

14 15 14 1518. 14 14 14

19. 14 14 14 14 15 14 15

20. 14 14 15 1415 14 14

Celkem 56 58 57 57 56 5858

Zbývá zjistit, který den v týdnu je x. Určíme 1.1. 1901;
je to den x + 1. Proto také 1. 1. 1957 je x + 1. Podle
tabulky (Tx) jsou Novými roky 1957 až 72 postupně dny:
x+1, x + 2, x + 3, x + 4 | x + 6, x, x + 1, x + 2 |
x + 4, x + 5, x + 6, x | x -j- 2, x -j- 3, x + 4, x -j~ 5.
Protože podle kalendáře pro rok 1972 je x + 5 sobota, je
x pondělí.

ODPOVĚĎ podle tabulky (T3): V letech 1601 až 2000
je Nový rok 56krát v pondělí a v sobotu, 57krát ve středu
a ve čtvrtek a 58krát v úterý, pátek a v neděli.

Domníváme se, že úloha, která se řeší spojením pokusů
a dedukce je velmi vhodná pro kategorii C. Impulsy
bylo třeba dát pro tabelování částečných výsledků (viz
tabulky T1} T2, T3). Snad by bylo i užitečné seznámit se
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s mechanismem, pomocí něhož můžeme určit den v týd-
nu, na který padne libovolné datum v minulosti i budouc-

nosti (platí dokonce i pro
data juliánského kalendá-
ře). V každém případě je
úloha C-P-3 vhodnou
příležitostí к zopakování
nej důležitějších znalostí o
kalendáři (např. přechod
od juliánského kalendáře
ke kalendáři gregoriánské-
mu 15. října 1582 a důvo-
dy к tomu).

CObr. 13

./i
b

i
D A

A ВE
— C

C-P-4

Ak pre dížky stráň a úhlopriečok konvexného štvor-
úholníka ABCD platí

AC2 + BD2 = AB2 + BC2 + CD2 + DA23

potom je tento štvorúholník rovnobežníkom. Dokážte.

Průpravou pro řešení této úlohy by asi mělo být uve-
dění formule pro délku těžnice trojúhelníka, což je zvláštní
případ věty Stuartovy. Na obr. 13 je a < b, úsečkami CD,
CE jsou znázorněny těžnice a výška trojúhelníka ABC.
Platí

c

J + X, BE (4)AE = - - x
2
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Vztahy (4) platí, í když je <£ ÁBC ^ 90°. Podle Pythago-
rovy věty je

(W-, b2 = г>2 -|-í2 = г>2 + я2> я2 — +

(5)
Sečtením druhé a třetí rovnosti (5) dostaneme

a2 + b2 = 2í>2 + - + 2*2.

Spojením první rovnosti (5) а (6) vyjde

(6)

c2
a2 + b2 = 2ř2 + ^

a odtud hledaná formule

11
002" O2 + b2) - j c2 •

t2 =

Ověříme ještě, že (7) platí i pro a >b3a — b (výměna a, b,
resp. výška rovnoramenného trojúhelníka).

Pomocí formule (7)
můžeme např. vyšetřo-
vat množinu všech bo-
dů v rovině, které mají
od dvou pevných bodů
(А, В) stálý součet
druhých mocnin vzdá-
leností.

Formule (7) a obr.
14 mohou být dosta- A
tečným podnětem pro

řešení úlohy C-P-4. Na obr. 14 je AM = CM — ^ ,

Obr. 14
D.

cw
\
\ v

VbV2\
\

X b
'n \

2

8a
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BM — v13 DM = z»2, BD = v. Podle (7) dostaneme

{ (<*s + b-) - i «», ®! = J (c‘ + d») - i и»;
sečtením

1 1
=

j (л2 + 62 + c2 + d2) — u2 . (8)

Podle předpokladu je
и2 + v2 — а2 -f- Ь2 с2 + d2; (9)

spojením (8) а (9)
1

v\ + ^2 = ~2 v% '

Podle neostré trojúhelníkové nerovnosti je v1 + v2 ^ v,

vf + v\ + 2^2 v2.
Spojením (10), (11) dostaneme

Oi — vi)2 ^ 0 ,

tj. vt — z>2 = 0, a dále podle (10)
v

vl — — ~2 '

Dokázali jsme, že úhlopříčky konvexního čtyřúhelníka
ABCD se navzájem půlí; ABCD je tedy rovnoběžník.
Měli byste sami zjistit, kterou charakteristickou vlastnost
rovnoběžníka je třeba zvolit, abyste dokázali, že konvex-
ním čtyřúhelníkem splňujícím podmínku (9) je rovno-
běžník. Zjednodušení důkazu se dosáhne kosinovou větou,
která však nepřichází v úvahu pro kategorii C.

Dejme si ještě otázku, zda platí věta obrácená, tj. zda
každý rovnoběžník splňuje podmínku (9). Možná, že by
bylo vhodné, začít touto otázkou.

(10)

tj.
(11)
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4. KATEGORIE Z

Z-P-l

Nejmenší přirozené číslo л;, pro které je 1260л: třetí
mocninou přirozeného čísla, je

a) 1470, b) 12602, c) 7350.
Rozhodněte, která z odpovědí a), b), c) je správná.

Úloha Z-P-l má připomenout význam rozkladu přiro-
zeného čísla v součin provočinitelů pro řešení některých
jednoduchých úloh z číselné teorie. Vyjdeme z VĚTY:

Přirozené číslo p\' pfr .. .pnn je &-tou mocninou přiro-
zeného čísla (k přirozené), kdepj, p23..., pn jsou navzá-
jem různá prvočísla, právě když všecky exponenty ?.v
Á2,..., An jsou násobky čísla k.

V jednom směru je věta evidentní; její obrácení se do-
káže následujícím způsobem: Je-li

Pil Р\г- • •Pnn = (Qi Чг* • ‘Чт)к>
kde prvočísla p13 p2i..., pn i prvočísla q13q2,..., qm jsou
navzájem různá, upravíme (1) na tvar

P\l P* • • • PÍin = 4Yl 4Ílli • • • Чтт •

Z věty (V) o jednoznačném vyjádření přirozeného čísla
jako součinu mocnin prvočinitelů vyplývá

n — my Pi~ ql3 p2 — q23..., pn = qm

(při vhodném označení)
A\ A2 kp23..., Án k^i,m .

Tím je dokázána obrácená věta.
Při této příležitosti věnujte trochu pozornosti větě (F),

(1)
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kterou znáte a které běžně užíváte např. při vyhledávání
největšího společného dělitele a nejmenšího společného
násobku několika čísel.

Celkem snadno můžeme předvést obdobnou situaci,
za které jednoznačnost vyjádření neplatí; tak se ukáže,
že věta (V) není tak samozřejmá, jak se na první pohled
zdá.

Množina S všech kladných sudých čísel obsahuje pod-
množinu Z všech čísel tvaru 2k, kde k je kladné liché
číslo;

Z = {2,6, 10, 14, 18,22, .

Prvky množiny Z nazveme základními čísly (je to obdoba
prvočísel). Každé číslo xeS\Z je složené, tj. dá se
vyjádřit jako součin aspoň dvou základních čísel. Toto
vyjádřeni však není vždy jediné, jak ukazuje příklad:

60 e S 4 Z; 60 = 2.30 = 10.6 .

Můžeme ještě rozřešit obdobnou úlohu jako Z-P-l,
např.: Máme určit nejmenší přirozené číslo x, pro které
je 720 . x3 čtvrtou mocninou přirozeného čísla.

Platí 720 = 24.32.5; má-li být číslo x co nejmenším
číslem požadované vlastnosti, bude mít jen prvočinitele
2, 3 a 5. Nechť je x = 2a3b3c\ pak je x3 — 23a33b53c a dále

720jc3 = 24+3a . 32+3í>. 51+3C.

Přitom a, b, c jsou nezápornými celými čísly, z nichž
aspoň jedno je kladné. Na pravé straně (2) je čtvrtá moc-
nina přirozeného čísla, právě když každý z exponentů
4 + 3a, 2 + 3ž>, 1 + 3c je co nejmenším násobkem čtyř.
Odtud dostaneme třeba experimentálně a = 0, b = 2,
c — 1 a odtud x = 45. Skutečně je

720.453 - 24.32.5. (32.5)3 - 24.38.54 =

= (2.32.5)4 = 904.

(2)

68



Úlohy tohoto druhu jsou i vhodnou příležitostí к procvi-
čování výpočtů s mocninami.

Formulace úlohy Z-P-l je dost obvyklá v zahraničí:
z několika odpovědí se má vybrat správná, popřípadě
odůvodnit nesprávnost ostatních. Někdy bývají mezi uve-
děnými odpověďmi dvě správné, někdy jsou všecky ne-
správné. Některá odpověď svádí řešitele, aby ji chápal (ne-
oprávněně) jako správnou, např. v úloze Z-P-l odpověď
b); číslo 12602 není nejmenší číslo požadované vlastnosti.
Celkem rychle lze také zjistit nesprávnost odpovědi
a): dekadické vyjádření součinu 1260. 1470 končí troj-
číslím 200; takové číslo však nemůže být třetí mocninou
čísla, jehož dekadické vyjádření končí nulou.

Úloha Z-P-l je podnětem к formulování úlohy obec-
nější a ke zjištění, zda je řešitelná. Jsou dána přirozená
čísla N, r, s; máme zjistit, zda existují přirozená čísla x,y
tak, že platí

N . xr = ys.

Z-P-2

Zdeněk a Jirka bydlí v domech А, В ve dvou navzájem
kolmých ulicích; domy A, В jsou od křižovatky К obou
ulic po řadě vzdáleny 500 m a 400 m. V témže okamžiku
vyjedou oba chlapci na kolech od svého bydliště po
ulicích AK, ВК směrem ke křižovatce, kterou projedou.

Zdeněk jede průměrnou rychlostí 4 m/s, Jirka prů-
měrnou rychlostí 3 m/s.

Za kolik vteřin od startu bude jejich vzdušná vzdále-
nost nejmenší a kolik metrů to bude?

Tato úloha je jednou z variant známé úlohy. Po dvou
různoběžných přímkách se pohybují (zpravidla rovno-
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měrným pohybem) dva body; máme určit jejich vzdá-
lenost v daném okamžiku. Na obr. 15 je znázorněna situ-

В

ш X<a-x]л-ш

P /1cu

У<ь-У]
Obr. 15

асе; v čase t = 0 jsou oba pohybující se body X, Y
v polohách А, В, jejichž vzdálenosti od průsečíku P da-
ných přímek jsou АР — a, BP = b (a > 0,b > 0). V čase
t vykonal bod X dráhu x > 0, bod Y dráhu у > 0. Dané
přímky pokládáme za osy souřadnic s počátkem P; pak je
poloha bodu X, resp. Y, v čase t určena souřadnicemi
a — x, resp. b — y. Označíme-li co velikost úhlu <£ APB3
je co = 90° a podle Pythagorovy věty platí

s2 = (a - x)2 + (b - y)2 .

Vzorec (3) platí i v případě, kdy je jedno z čísel a — x,
b — у nekladné nebo kdy jsou obě nekladná; to si snadno
ověříte, uvážíte-li, že úhel <£ APB pak nahradíme úhlem
vedlejším nebo vrcholovým.

Pohyb bodu X i pohyb bodu Y je rovnoměrný s rych-
lostí 4 m/s, popř. 3 m/s; proto platí x = 4r, у = 3t (ř je

(3)
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čas v sekundách) a po dosazení do (3) za a = 500 a b —
= 400 vyjde z2 = (500 — 4r)2 + (400 — 3ř)2 neboli z2 —
— (51 — 640)2 + 400. Funkce z2 i z nabude nejmenší
hodnoty pro 5r — 640 = 0, tj. t = 128 vteřin. Nejmenší
vzdálenost bodů X, Y je pak z = ]/400 = 20 (metrů).

Pro vyspělejší čtenáře rozřešíme úlohu ještě v případě,
kdy je со Ф 90° (obr. 15). Pak platí podle kosinové věty
z2 = (a — x)2 + (b — у)2 — 2(a — x) (b — jy) cos to. (3')

Je-li pohyb bodu X i pohyb bodu Y rovnoměrný
s rychlostí v13 resp. v2i je x — vxt, у = v2t a po dosazení
do (3') dostaneme

(4)z2 = kxt2 + k2t + k

kx — v\ + v\ — 2vxv2 cos co,
k2 = 2(av2 cos co + bvx cos co — avx — j

= a2 -\- b2 — 2ab cos co .

3 i

kde

Protože
kx — (yx — í;2)2 + 2^2(1 — cos co) =

= (®1 — ^2)2 + 4^2 sin2 у ,

je kx = 0, právě když = v2 a sin ^ = 0, což pro
0 < co < тс nikdy nenastane. Je tedy funkce (4) vždy
kvadratická (to je důležitý teoretický výsledek).

Můžeme rozřešit ještě jednodušší úlohu: dráhy bodů
budou opět kolmé přímky, AP — 500(m), В = P, vx —
= 4(m/s), v2 = 3 (m/s). Vyjde

^ = 250 000 - 4 OOOř + 25ř2
neboli

= 25[(ř - 80)2 + 3600] .

Minimum nastane pro t = 80 vteřin a je to z —

= 1/25.3600 - 5.60 = 300 (metrů).
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Z-P-3

Jsou dány dvě soustředné kružnice &i = (P;ti)a
К = (P;r2), kde < r2. Na kružnici zvolíme dva
různé body A, P a sestrojíme přímku kolmou к ЛР pro-
cházející bodem P. Průsečíky téže přímky s kružnicí k2
označme P, C.

Vyjádřete

pomocí rx a r2.

PA2 + PB2 + PC2

Úloha Z-P-3 přímo vybízí к podrobnějšímu vyšetřo-
vání tětiv dvou soustředných kružnic. Jsou-li dány dvě
soustředné kružnice k13k2 o poloměrech r13 r2 (rx < r2),
je-li BC tětiva kružnice k2i která obsahuje bod P kružnice
k13 pak platí

(6)PB . PC — y\ — r'( .

Vzorec (6) plyne z určení
mocnosti bodu P vzhledem
ke kružnici k2, ale lze ho od-
vodit primitivněji.

Platí při označení z obr. 16:

В

PB = PP — PP, PC =
= CR + PR = BR + PR ,

PB .PC = PP2
k1 s

PR2 =

^2 01 —

C — »SP2) = r2 — r\ .

Vzorec (6) platí i v případě,
kdy tětiva BC obsahuje střed
S. Při řešení úlohy Z-P-3

= ri - PP2

Obr. 16
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byste měli zkoumat zvláštní případ, kdy S e AP. Zde vyj-
de bezprostředně

AP2 + BP2 + CP2 - 2(r? + r|).
Nemůže však být S’ e PC, neboť by nemohly vzniknout

dva různé body A, P na kružnici k13 jak žádá text úlohy.
Kdybychom však připustili A = P a přímku AP nahra-
dili tečnou kružnice kx v bodě P, bylo by AP = 0, BP =
= r2 — r15 CP — r2 + rl5 platil by tedy opět vzorec (7).
К tomuto případu bychom se měli na konci vrátit
z hlediska spojitosti (obr. 17a).

(7)

V případě naznačeném na obr. 17b vznikne podle obrá-
cení Thaletovy věty pravoúhlý trojúhelník APQ
s přeponou AQ délky 2rx. Platí
AP2 + BP2 + CP2 = AP2 + (CP - BP)2 + 2BP. CP =

= AP2 + (CP - CQf + 2BP . CP =

AP2 + PQ2 + 2BP . CP .

Podle Pythagorovy věty je AP2 + PQ2 = AQ2 — 4r‘(;
(8)
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podle vzorce (6) je BP . CP = r\ — rl; dosadíme-li do
(8), dostaneme
AP2 + BP2 + CP2
což je opět vzorec (7).

Tím je dokázáno, že při libovolné poloze sečny AP
kružnice kx platí (7); platí však (v důsledku spojitosti)
i tehdy, když sečna AP přejde v tečnu kružnice kv

Tento způsob odvození vzorce (7) se zdá dosti umělý;
při něm však získáme zajímavý vzorec (6) a přiučíme se
často používanému obratu ve výpočtu (8). Máme-li po-
stupovat takto, musíme vyčlenit lemma (6), uvědomit si
trik (8) a vyšetřit speciální případy.

Primitivnějším způsobem je prostý výpočet pomocí sou-
řadnic (to ovšem účastníci kategorie Z většinou neumějí)
nebo je možno obejít tento postup prostým planimetric-
kým výpočtem.

Označíme R patu kolmice spuštěné z bodu S na přímku
BC (R je střed úsečky PQ, viz obr. 17b). Označíme-li
ještě AP = x, je podle vlastnosti střední příčky trojúhel-
nika SR — y. Dále je

PB = RB- PR, PC = RC
Pak je podle Pythagorovy věty

RB2 — r\ — SR2, PR2 = r\- SR2.
Spojíme-li (9) a (10), dostaneme

PA2 + PB2 + PC2 = x2 + 2RB2 + 2PR2 -

4r\ + 2r* — 2ri = 2(rl + rl),

PR = RB + PR . (9)

(10)

x2 x2
= X2 + 2r\ — — + 2r\ — ~,

tj-
PA2 + PB2 + PC2 - 2(r2 + r%) .
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Nepoužijeme-li metody souřadnic, musíme ovšem zvlášť
vyšetřit případ S e BC, t]. S = R.

Z-P-4

Je dán pravoúhlý trojúhelník ABC s přeponou AB.
Ke každému bodu D kružnice opsané trojúhelníku ABC
(D Ф Ay D Ф B) sestrojíme bod E souměrně sdružený
s bodem C podle přímky AB a bod F souměrně sdružený
s bodem C podle přímky AD.

Vyšetřte geometrické místo a) bodů E; b) bodů F.

Tuto snadnou úlohu můžete řešit v podstatě bez po-
moci. Uvědomíte si, že přímka AB je pevná, a tudíž i bod
E je pevný; naproti tomu přímka AD probíhá svazek se

75



středem A s výjimkou přímky AB a tečny t vedené
v bodě A ke kružnici k opsané trojúhelníku ABC. Bod F
proběhne tedy kružnici x se středem A a poloměrem AC
s vyloučením dvou bodů: bodu E a bodu G souměrně
sdruženého s bodem C podle přímky t (obr. 18).

Lze rozřešit i obdobnou úlohu: za stejné situace vy-
šetřit množiny všech bodů a) E', b) F', kde E', resp. F',
jsou paty kolmic spuštěných z bodu C na přímku AB,
resp. AD.

Ještě lepší by bylo ukázat si vyšetření takovéto úpatnice
na úloze hodně zobecněné, např.: Je dán trojúhelník
ABC, ve vnitřku poloroviny opačné к BCA je dána
kružnice k0. Vyšetřte množinu M všech pat kolmic X',
spuštěných z vrcholu C na přímky AX, když bod X pro-
bíhá kružnici k0.

Množina M je v tomto případě průnikem kružnice se-
strojené nad průměrem AC s úhlem <£ TXAT2, kde
T13 T2 jsou body dotyku tečen vedených z vrcholu A ke
kružnici k0. Místo pat kolmic můžeme zvolit jako v úloze
Z-P-4 body souměrně sdružené s vrcholem C podle
přímek AX. Úloha připouští velké množství různých
snadných variant.
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Ifl. Soutěžní úloh/ I. kola
(Komentář a řešení)

1. KATEGORIE A

A-I-l

Je dána posloupnost {aw}, kde an = ln — 3”+4.
a) Rozhodněte, zdali je tato posloupnost rostoucí nebo

klesající.
b) Určete mezi členy an nejmenší a největší (pokud

existují).
c) Určete, pro která n platí an ^ 0.
d) Dokažte, že pro každé přirozené číslo n platí: are je

dělitelno čtyřmi.

Tato úloha se dá řešit pomocí rekurentního vzorce pro
členy posloupnosti, který vyjadřuje porovnání členů roz-
dílem. Mimoto užijeme ještě porovnání podílem. Vy-
počteme

an+1 — an= On+1 — 3n +5) — (7n — 3n+4),
tj-

6(7И - 3”+3) . (1)an+i an
Pro rozhodnutí v otázce a) je třeba zjistit, pro která n je
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an+1 -an^Oa pro která je an+1 — an tĚ 0, Porovnání
čísel ln а Зя+3 podílem dává

yw
27 \3) ' 27

1
(2)> — . 2й.

Зи+3

1
Pro všecka и ^ 5 je . 2ra > 1, tj. 7n — 3W+3 > O .

Pro n = 4 je 74 — 37 = 2401 — 2187 >0. Platí tedy
w+i — an > O pro všecka n ^ 4. Zbývá vy-
1,2,3. Sestavíme tabulku pro n

nerovnost a

šetřit n =

kterou budeme potřebovat pro otázku c).
1,2,3,4,5,

4 52 31w

(3)
an = 7" - 3n+4 -236 -680 -1844 -4160 -2876

Z tabulky (3) je vidět, že posloupnost {an} je klesající pro
«^4a rostoucí pro n ^ 4.

Kladné a záporné členy najdeme z tabulky (3) tímto
výpočtem:

yw 1
■ Й” > 8T • 2’3" > 84'2’3" •

1 1
(4)3«+4 81

Protože pro n 6 je 2,3W > 140, dostaneme ze (4) pro
n ^ 6

7n 140
>

3n +4 84

tj. pro n ^ 6 je
= 7й - 3м 14 >0 .

Nejmenší člen je a4, největší člen neexistuje.
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Otázka d). Protože ln— 3” +3 je sudé pro všecka n, plyne
z (1)

[bn celé).— an -f 4ban+1

Je-li tedy an násobkem čtyř, platí to i pro an+1. Podle
tabulky (3) je ax násobkem čtyř, proto je každé an ná-
sobkem čtyř (indukce).

Řešitelé mohou rozhodovat o znamení čísla ln — 3íl+3
(viz (1)) pomocí logaritmů: je totiž

// Э

3 log 3
log 7 - log 3 '*(?7n 3W+3 < 0 < 33 o n <

A-I-2

V rovině ortonormálních souřadnic x,jy zobrazte mno-
žinu všech bodů, o jejichž souřadnicích x,y platí:

И + Ы ^ 4
a zároveň

[]/8 — x2] ^y ^ [x],
kde symbol [a] značí celou část reálného čísla а. V této
množině určete všechny body, jejichž souřadnicemi jsou
celá čísla vyhovující vztahu

у = | [x] - | x || .

Úloha A-I-2 pokračuje v tematice schodových funkcí
a funkcí z nich odvozených. Nejdříve byste mohli sestro-
jit po řadě grafy funkcí л; |-> [x], x |-> ]/S — x2, x |->

[]/8 — x2], x |—^ I [x] — |x|| .

Tyto grafy jsou na obr. 19, 20, 21, 22. Pak už zbývá jen
sestrojit průnik grafů relací |x| -f- Ы ^ 4 (obr. 23) a
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У

-i-

Obr. 19 Obr. 20

У

\
У

[íě^ž] |м-м|\X >—*• X >—*•

N[0-2]
ÍM X

[-20,0] MJ [20,0] [0,0]

Obr. 21 Obr. 22

[1/8 - X2] S [x] (obr. 24). Poznámka: čárkované
úsečky a body vyznačené bílými kroužky nepatří pří-
slušným grafům.

Konečným výsledkem je dvoubodová množina

v

{[0; 0] j [—l; 2]} .

Úloha A-I-2 je spíše časově náročná než myšlenkově ob-
tížná.
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\x\+\y\ = 4
s И

Obr. 24

1-3

Nech je daný pravidelný w-úholník АгА2.. ,An vpísaný
jednotkovej kružnici. Vypočítajte

2 AtA).
UjTl
l<]

Tato úloha se řeší asi nejvhodněji komplexními čísly.
Řešitel si jen potřebuje uvědomit vzorec pro vzdálenost
bodů A = [а], В — [/5], kde a, /3 jsou komplexní čísla.
Platí

АВ= I * - (t\,A&= I a - p |> = (« - P) (« - J), (5)
kde a, /3 jsou čísla komplexně konjugovaná к a, /3. Na
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první pohled je vidět, proč saháme po komplexních
číslech: kdybychom použili ortonormálních reálných sou-
řadnic, měli bychom místo jednoduchého vzorce (5) slo-
žitější vzorec

ЛВ» = («!-&)* + («»-«*>
kde ať, /3, jsou (reálné) souřadnice bodů A3 B.

Na obr. 25 označuje z komplexní číslo, jehož obrazem

4-И
Ai=[z]

VH
A

[0,0] 1\Щ

A6=И
V И

Obr. 25

je ten vrchol Ax pravidelného и-úhelníka АгА2...Ап,
který leží v prvním nebo druhém kvadrantě a je nejbližší
vrcholu An= [1; 0] (na obr. 25 je n = 7). Zřejmě je
A* = [.zk] a dále platí z11 — 1 = 0, z Ф 1, tj.

zn-l + 2»-2 +...+2+1=0.
Je vhodné uvědomit si, jak si můžeme pomoci geo-

metrickou úvahou: uvážíme, že hledaný součet 5 je souč-
tem druhých mocnin délek všech stran a všech úhlopříček

(6)
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и-úhelníka A1A2...An (každá je vzata jen jednou, což
vyplývá z podmínky i < j). Proto platí

~2 ÍAiA\ + A2A„ + .. • + Ап-гА%).
Použijeme-li vzorce (5), vyjde

5 =

• • • + (г”'1

- 1)+ ...

l)^”-1- 1 )]•
n — 1), je

— 1 — 2 (я + #2 + ... + Zn~k) + n —

Protože zk = zn~k (k = 1, .. • J

s-f(-
neboli podle (6)

5 = n(n — 1) — n {z -f z2 -f- • • • + 2й-1) =
= n(n — 1) -j- n — n2 .

Řešitelé úlohy A-I-3 by se měli seznámit se souvislostí
teorie pravidelných mnohoúhelníků s kořeny binomické
rovnice xn = 1 (Kreisteilung). Je to sice klasická partie,
ale přitom je to estetické a užitečné použití aritmetiky
komplexních čísel. Možná, že by takové stručné poučení
bylo nej lepším uvedením do problematiky úlohy A-I-3.

A-I-4

Dokažte:

а) V tětivovém pětiúhelníku s vnitřními úhly a15 oc2,...,
a5 (v tomto pořadí) platí

<*l + <*2 + a3 + a4 + a5 — ЗтГ ,

ai + аз > 7t, a2 + a4 > 7Г , a3 -j- аб > тс,
a4 + > 7Г , a6 4- a2 > 71 .
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b) Jsou-li al3 a2, . . ., <x5 duté úhly (tj. 0 < oct < тс)
splňující všechny uvedené vztahy, pak existuje tětivový
pětiúhelník s těmito vnitřními úhly (v tomto pořadí).

Úloha A-I-4 je pro řešitele kategorie A velmi snadná.
Pro rozřešení její první části stačí uvědomit si dvě skuteč-
nosti:

(a) Každý tětivový pětiúhelník je konvexní a součet
velikostí jeho vnitřních úhlů je 3-n:;

(b) s pomocí vztahu ocx + a2 + a3 + a4 + a5 = Зтс
lze vypočítat velikosti všech úhlů na obr. 26.

A

aA

а^ + а5-лA5
A3a1+aA-n

X
X
v

a4

\ а2+а4~л
A1 A2

Obr. 26

Obr. 26 zároveň také vede к rozřešení druhé části úlohy.
Sestrojí se Д A1A2A5) jehož úhly mají velikosti uvedené
na obr. 26; tento trojúhelník se dá sestrojit, neboť je
a2 -j- a4 > тс, a3 + a5 > 7c, oc1 + a2 + a3 + a4 + a5 =
= З7С. Dále se sestrojí v polorovině opačné к A2A5AX
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trojúhelník A2A3A5, jehož úhly mají velikosti uvedené
na obr. 26 (úhly a15 a4 jsou duté). Protože je

< ^5A3A
leží podle známé věty V bod A:} na kružnici k opsané
trojúhelníku A4A2A5) tj. všecky čtyři body Av A2, A3, A5
leží na kružnici k. V polorovině opačné к A3A5A2 se dále
sestrojí trojúhelník A3A4Ab tak, aby jeho úhly měly veli-
kosti uvedené na obr. 26. Podle věty V leží bod A4 na
kružnici opsané trojúhelníku A2A3A5, což je kružnice k.
Leží tedy všech pět vrcholů A1} A2, A3, A4, Ab na kruž-
nici k.

Klíčem к řešení je věta V, kterou si můžeme zopakovat
např. v souvislosti s Ptolemaiovou větou nebo některou
konstrukční úlohou o tětivovém čtyřúhelníku. Tuto větu
lze použít i při řešení úlohy A-I-6.

AbAxA2 71 — 2 3

A-I-5

V množině všech reálných čísel je dána binární operace

ХУгу = Х+ у-\-ХУ'
Zjistěte, pro které trojice reálných čísel x, y, z platí

(x ^ у) "X" z = (x tK- z) (y -%r z)
(distributivnost operace * vzhledem к operaci ->f).

Úloha je z oblasti strukturální matematiky. Nezvyklé je
snad to, že jde o distributivitu operace к ní samé. Přepí-
šeme-li danou operaci podle její definice, dostaneme na-
konec rovnici

z (1 + z) (1 + x) (1 + y) = 0 ,

která ovšem neplatí pro všechna x, y, z. Operace -X- není
tedy distributivní sama к sobě.
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Do tematiky úlohy vnikneme tak, že řešíme úlohu:
Určit konstanty a, b tak, aby operace

x V У — ax + by
byla distributivní sama к sobě. Rovnici

(x V у) V z = O v z) v Су V z)
přepíšeme postupně takto:

(ax + by) V z — (ax + bz) V (ay + bz),
a (ax + by) + bz — a (ax + bz) + b (ay + bz) ,

tj.
b(a + b — l)z = 0 .

Vztah (7) platí pro všechna x,y,z, právě když je b = 0
nebo a -j- b = 1. Příkladem operace, která je distribu-
tivní sama к sobě, je tedy třeba

x V у = их + (1 — а) у ,

(7)

kde а Ф 0.

| A-I-6

Je dán konvexní čtyřúhelník ABCD, jehož prodloužené
protější strany se protínají v bodech E, F. Dokažte:

a) Kružnice k1:)k2,k3,kAi které jsou opsány po řadě troj-
úhelníkům AED, ВЕС, ABF a DCF, procházejí týmž
bodem G.

b) Středy 01,02,03,04 těchto kružnic leží na kružnici
procházející bodem G.

c) Paty kolmic z bodu G na všechny strany čtyřúhel-
nika ABCD leží na téže přímce.

Je to úloha tradiční, ale přitom záludná. Rozhodně je
třeba o ní podrobněji hovořit. Jde totiž o vyhledání vhod-
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ného aparátu. Poněvadž je to úloha polohová, zdá se při-
rozené užít metody souřadnic. Když to však zkusíme,
poznáme, že i když se použijí komplexní souřadnice
v rovině, vyjdou složité výrazy; proto tak raději postupo-
vat nebudeme. Složité je, že v úloze je směs prvků pro-
jektivních (čtyřroh) a prvků metrických (kružnice). To
vede zcela přirozeně к myšlence projektivizovat úlohu, tj.
nahradit kružnice kuželosečkami a pak užít prostředků
projektivní geometrie. Tato cesta je však skoro všem
středoškolákům nedostupná. Nezbývá tedy než se vrátit
к aparátu elementární geometrie, ale snažit se cestu trochu
usnadnit. Ti, kdo znají základy buhové geometrie, si jistě
uvědomí, že v úloze jde o konfiguraci kruhových křivek
v Mobiově rovině. Přibereme-li к sedmi bodům A,B,C,D,
E,F,G (G je společný bod všech čtyř kružnic kx,k2,k3,k^)
ještě nevlastní bod №° Móbiovy roviny *), dostaneme
konfiguraci osmi bodů a osmi kruhových křivek (jsou to
přímky АВ, ВС, CD, DA a kružnice k13 k2, k3, &4).
Každým bodem konfigurace

Г = {А, В, С, D, Е, F, G, №° ,

АВ, ВС, CD, DA, kx,k2, k3, k4}
procházejí právě čtyři její kruhové křivky (což je společný
název pro přímku a kružnici) a na každé její kruhové
křivce leží právě čtyři její body. Část a) úlohy A-I-6 žádá
vlastně důkaz existence konfigurace Г.

Pro elementární důkaz této existence máme к dispozici
jen větu o obvodových úhlech, resp. větu V o tětivovém
čtyřúhelníku; je však známo, že účinným prostředkem
v kruhové geometrii je zobrazení, zvané kruhová inverze.

*) Jak známo, má Móbiova rovina jediný nevlastní bod, kterým
procházejí všecky přímky, ale kterým neprochází žádná kružnice.
Nejnázornějším modelem Móbiovy roviny je kulová plocha, jejíž jeden
význačný bod je obrazem nevlastního bodu.
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Doporučujeme vám, abyste se při této příležitosti s jeho
základními vlastnostmi seznámili.

Místo abychom dokazovali, že existuje bod G, kterým
prochází každá z kružnic kXJ k2i k3, &4, změníme kruhovou
inverzí situaci tak, že
budeme dokazovat ob-
dobnou vlastnost pro
dvě kružnice a dvě
přímky.

Zvolíme bod A za

střed inverze; její moc-
nost zvolíme libovolně
(třeba tak, aby všecky
body J5, C, D, E, F le-
žely vně základní kruž-
nice).

Označíme-li p =
= AB, q = AD a ^
označíme-li čárková-
ním obrazy bodů v inverzi, dostaneme situaci naznačenou
na obr. 27. Pomocí tohoto obrázku provedeme výpočet:

<£ C'G'D' = <£ C'F'D' = ти

Obr. 27

< C'F'A =

= те — (тс — <^C С В'А) С'В'А = ^ С'В'Е' =

- <$. ССЕ'.= тс

První rovnost vyplývá z věty o obvodových úhlech, třetí
a šestá z vlastnosti tětivového čtyřúhelníka (věta V).
Z rovnosti

(8)CCD' = tu - CGE'

plyne, že body D\ G', E' jsou kolineární, tj. že přímka k[
prochází bodem G\ К úplnému důkazu je třeba ovšem
ještě doplnit úvahu o uspořádání bodů na kružnicích,

88



Výměnou označení (/?' <-> k'v p' q', E' <-> F', B' <-> D')
dostaneme z (8) rovnost

<£ C'G'B' =

z ní vyplývá, že také
přímka &3 prochází bo-
dem G'. Přejdeme-li
inverzí zpět к nečárko-
váným bodům, je část
a) úlohy A-I-6 rozře-
sena.

Principem důkazu
části b) je odůvodnění,
že čtyřúhelník
0X02G03 je tětivový
(změnou označení pak ^
dostaneme, že i čtvř- A

<£ C'G'F;71

Obr. 28aF

G

D
\2

ЛЗ

c;

Eв

úhelník 030fi0x je
tětivový a tím bude
část b) rozřešena). Po-
něvadž obě kružnice kx,
k2 procházejí body E,
G, je 0Х02 ±_ GE; na
základě toho vyjádříme
<£ O^G (obr. 28a).
Poněvadž kružnice k3
prochází body A, B,

vypočtemeG, F,
E <£ Oj^ÓgG (středový

úhel) pomocí <£ AFG
(obvodový úhel).

Pomocí obr. 28ab
jsme tedy získali:
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1
<£ 0X02G = 71 - ~ < G02E = tu - < GB£ =

- 3 GC£ = GCD ,

<£ O^G = i <£ A03G = <£ AFG = <£ DFG.

Protože čtyřúhelník DFGC je tětivový, je <£ GCD +
+ DFG = tu , tj. <£ 0X02G + <£ OiOgG = tu, tj. také
čtyřúhelník 0102G03 je tětivový, což jsme měli dokázat.

Jako impuls pro řešení části c) úlohy A-I-6 by snad
mělo stačit upozornění, že každá kružnice sestrojená nad
některým průměrem GF, GD, GC, GE obsahuje právě
dvě paty kolmic spuštěných z bodu G na přímky AB,
BC, CD, DA. Pokud zná řešitel Simsonovu větu, je část
c) triviální. Neboť bod G leží např. na kružnici kx opsané
trojúhelníku ADE, a proto paty kolmic spuštěných z bodu
G na přímky AD, DE, EA leží na Simsonově přímce.
Snad by bylo nejvhodnější, kdyby si řešitel tuto větu
předem odvodil*), např. výpočtem pomocí komplexních
čísel (střed opsané kružnice se zvolí za počátek souřadnic;
vrcholy trojúhelníka pak jsou obrazy komplexních jed-
notek ex, e2, e3, bod, z něhož spouštíme kolmice, je obra-
zem komplexní jednotky e0).

Úloha A-I-6 je dosti rafinovaná a náročná; můžete se
však na ní naučit hodně věcí z tradiční geometrie.

TU —

*) Viz též Příklad 14 na str. 69 v 15. svazku ŠMM — M.Koman:
Jak vyšetřujeme geometrická místa metodou souřadnic.
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2. KATEGORIE В

B-I-l

Dokážte, že pre každé dve reálne čísla a, b platí
I a + b\ \b\< H

1 + I# + b\ 1 + |я| 1 + |^|
Zistite všetky případy, v ktorých nastane rovnost’.

Tuto úlohu můžeme řešit velmi primitivně, jediným
použitím známé nerovnosti |a + b\ ^ \a\ + \b\, která
platí pro všecka reálná čísla a, b. Předpokládáme, že daná
nerovnost platí pro jistou dvojici a, b\ vynásobíme ji
kladným číslem (1 + |a|) . (1 + |ž>|) . (1 + \a + b\); do-
staneme

\a + b\ (1 + |a|) (1 + J6|) ^
= \a\ (1 + \a + ^|) (1 + 1^1) +

+ l^| (1 + |я + ^|) (1 + |я|) (1)
a dále po úpravě

(|a| + |6| — \a -j- &|) + 2\ab\ + \a + b\ . \ab\ ^ 0 . (2)
Tento výpočet (rozbor úlohy) je vlastně hledáním všech
možných řešení nerovnice

1# ~f~ b\
_

Г + \a + b\ = 1 + \a\ 1 1 + |b\ ’
Ukázalo se však, že nerovnice (2), odvozená z (3), má za
řešení všecky dvojice reálných čísel a, b. Dá se tedy oče-
kávat, že totéž bude platit pro nerovnici (3). To se dokáže

\a\ \b\ O)
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obrácením postupu: pro libovolnou dvojici reálných čísel
a, b platí (2); z (2) lze odvodit (1); dělíme-li (1) kladným
číslem (1 + |a|) . (1 + |&|).(1 + \a + b |), dostaneme z (2)
nerovnost (3).

Tento postup, i když trochu těžkopádnější, je přiroze-
nější než takové triky, jako je např. sečtení vztahů

! a + b\
\a T b\ (|a| -f- |&|) = \a T 6|(|a| T |6|)

\a\ -f- \b\ ,

a další umělé úpravy, tj. použití nerovností
<

1 + l^j + \b\
\b\ \b\

1 + \b\ •1 + \a\ + \b\
Také na další otázku úlohy snadno odpovíme. Rovnost
v (3) nastane, právě když platí rovnost v (2). Rovnost
v (2) nastane, právě když je

\a\ + |6| I íí —i— i — o
a zároveň

\ab\ = 0 ,

tj. právě když sspoň jedno z čísel a, b je rovno nule.
Domníváme se, že by se měla převést daná důkazová

úloha na úlohu určovací a měla by se řešit úpravami (1),
(2), tj. řešení nerovnice (3) by se mělo převést na řešení
nerovnice (2) a měla by se prokázat jejich ekvivalence.

Připojujeme ještě tuto poznámku: Úloha B-I-l svádí
к tomu, abychom se zmínili o funkcích konkávních a kon-
vexních.

Funkce f{x) jedné reálné proměnné x se nazývá kon-
vexnf resp. konkávní v otevřeném intervalu I, právě když
pro každá dvě čísla xI5 r2 e I platí

/ \ (/(X.)+/ы),
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resp.

/ (ЩЦ ž ± (/(A) + /(A)) ■
Typický graf konvexní a konkávní funkce ukazují obr. 29
a 30.

У

x

0 *1*2 X2 \
2

*1

J J

Obr. 30Obr. 29

Má-li funkce / v každém bodě intervalu I první a dru-
hou derivaci, je konvexní (konkávní), právě když f"(x)

0) pro všecka x eí. Podle tohoto kritéria
snadno poznáme, že např. funkce x |-> x2 je konvexní

— je kon-
x

0 (/"(*)

v každém otevřeném intervalu, funkce л; i-> 1

kávní v intervalu (0; + oo).
Studujeme funkci /: jc |

л:
neboli

i + N
i

i -x |- 1 + \x\
Pro každé dvě reálná čísla a, b platí

1 a T b\ \a + b\
| a + b\’ (4)1 + \a + b\

2
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kdyby se tedy podařilo dokázat konvexitu funkce / v in-
tervalů (—00; + 00), tj, platnost formule

a + b

)( 1*11 \a\2
I

2 V 1 + \a\ 1 + \b\Ja + b1 +
2

neboli

1*1\a\I a + *1 (5)1 + 1*15! a + b\ 1 + \a\1 I
2

vyplynula by z (4), (5) dokazovaná nerovnost. Bohužel
však funkce / není konvexní pro všecka я. To ukazuje
její graf na obr. 31.

У
[1

I 2 I 3

\i \T13
X

-3 -2 -1 O 2 31

Obr. 31

Studujeme-li konkávní a konvexní funkce, můžeme si
dokázat i Jensenovu formuli jako zajímavé cvičení na práci
s nerovnostmi a na velmi zajímavý a neobvyklý způsob
užití matematické indukce. (Viz např. Meschowski: Unge-
loste und unlosbare Probléme der Geometrie, Berlin,
Springer -Verlag.)
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B-I-2

Dokažte, že pro každé a platí

Ш
. У1 — cos2a ,

kde [x] je celé číslo vyhovující vztahům
[x] <: x < [x] + 1 .

Nalezněte obdobný vztah pro vyjádření cosa pomocí

sin a = (—1)



Úloha B-I-2 vyžaduje, abychom dokázali upřesnění
formule z goniometrie. Vzorce

siná = d: ]/1 — cos2a nebo |sina| = ]/l — cos2a
se mají nahradit určitější formulí

H • |/l — cos2 a.

Jinými slovy: pomocí funkce x |-> [x] (celá část z x) se
má vyjádřit, v kterých intervalech je funkce a
záporná, a v kterých je nekladná.

Doporučujeme, abyste sestrojili graf podle obr. 32, na
kterém je patrno, kterými částmi roviny probíhá sinuso-
ida. Jsou to vyšrafované části roviny. Hranice к nim ne-
musíme počítat, neboť pro všecka celá čísla k je sin kiz = 0.
Na obr. 32 je dále zakreslen grafschodové funkce x |->

Zřejmě je

siná = (— 1)

siná ne-

I-
HL [;] =1 pro sudé a ( 1 pro —I 7Г

liché;(-1) 1)

Шto platí, i když je číslo záporné.

Analogicky se odvodí vzorec pro kosinus:

№. ]/1 — sin2a-
Toto odvození je nepatrně složitější; v obou případech se
doporučuje sestrojit graf schodové funkce; ovšem v prv-

cosa — (—1)

[i]dána’ v druhém případěním případě je funkce a |

[Ť + í]musíme funkci a | nejdříve najít.
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Obdobně lze upravit další skupinu dvou goniometric-
kých vzorců

H. 1 — cosasin^
2 = (-l)

a
f 14cos - - (-1)

(6a)2

\-±~][2 X2nJ ]/l + cosa
• ]/ 2 (6b)

Mimoto je možné odvodit ze vzorců (6a), (6b) příslušný
vzorec pro tangentu.

B-I-3

Ze 100 osob koupilo na předvánočním trhu 80 lidí
textilní zboží, 70 lidí knihy a 55 lidí elektrotechnické vý-
robky. Kolik osob nejméně koupilo výrobky všech tří
druhů? Jestliže každá z uvedených 100 osob si koupila
aspoň jeden z uvedených výrobků, kolik osob nejvýše
koupilo výrobky všech tří druhů?

Tato úloha náleží do oblasti úloh z naivní teorie mno-

žin. Klíčem к jejímu řešení jsou Vennovy diagramy a jeden
ze vzorců o počtu prvků tří konečných množin, jejich prů-
niků a sjednocení. Označíme-li n13 n2, щ počty prvků
množin M15 M2, M3, />12, />23, p31 počty prvků průniků
Mx n M2, M2 n M3, M3 n M19 s12, í23, % počty prvků sjed-
nocení MjU M2, M2U M3, M3u a konečně />123, s123
počty prvků průniku п M2 n M3 a sjednocení Mxu
U M2u M3, platí vzorce:

5i23 = nL + и2 "T Щ P\2 p23 ^31 ~t~ P\23 5 (?a)
5123 + nl + n2 + W3 — %2 + + % + Pl23 • (7Ь)
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Použijeme vzorce (7b), Dostaneme
/>123 ~ ^1 "f -j" W3 2$i23 К ,

kde

$2з) + ($123 $3l) ^ 0 •К — ($123 $12) ~Ь ($123
Proto

(8)/>123 = П1 + П2 + Щ 2í123 .

V našem případě je s123 = 100, nL = 80; w2 = 70, nz =
= 55. Z (8) pak plyne

(9)/>123 = 5 .

Odhadujeme p123 (počet zákazníků, kteří koupili vý-
robky všech tří druhů), a to zdola pro první otázku, shora
pro druhou otázku.

Omezení shora dostaneme z upravené formule (7a). Je
Srn = Щ + w2 + n3 — 2/>12o + Z,

kde

Z — (/>123 P12) ~b (/>123 />2з) “Ь (/>123 Pil) = ^ •

Je tedy
Щ + w2 + w3 — 2/>123 ^ s123

neboli

1
(10)/>123 = "/^ (W1 + W2 + W3 $12з)•

V našem případě dá (10)

Pm á j (80 + 70 + 55 - 100) =
105
2 5

tj.
(И)/>i23 = 52 .

Hlavní myšlenka řešení je asi tato: Je třeba znát for-
mule (7a), (7b) a upravit je tak, aby obsahovaly jednak
výraz К ^ 0, jednak výraz Z ^ 0; tak dostaneme odhady
pro />123 shora (11) a zdola (9).
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Zbývá otázka, zda obou hranic (9), (11) pro р12г může
být. dosaženo; také tuto otázku bychom měli studovat.

Má-li být рш = 5, musí být К = 0, tj. musí platit
5i2 = s23 — % — h23 = 100. Pak je podle známého vzorce
P12 — ni + n2 — s12 = 80 + 70 — 100 = 50; obdobně
p23 = 25, p31 — 35. Vennův diagram s počty prvků je
na obr. 33.
Obdobně se postupuje při zkoumání situace p123 — 52;
vyjde např. diagram jako na obr. 34.
Nakonec otázka: Proč nemůže mít diagram na obr. 34
některý z těchto tvarů jako na obr. 35 ?

Obr.



B-I-4

V rovině je dána kružnice k a na ní bod A. Najděte
množinu vrcholů В všech trojúhelníků ABC, u nichž
bod C leží na kružnici ho nichž platí ВС ^ AB ^ AC.

Úloha B-I-4 vyžaduje určit složitější množinu bodů
v rovině, a to jednak intuitivně, jednak provedením pří-

slušných důkazů. Před-
ností úlohy je, že není na
první pohled patrné, co je
hledanou množinou M
vrcholů Výsledná
množina M je ohraničena
vesměs kruhovými oblou-
ky; na obr. 36 je vyšrafo-

n vána. Hranice к ní patří —0
výjimku činí body A,C0,
které omezují průměr da-
né kružnice k se středem
S. Hranice množiny M se

B.

skládá z oblouků A T13 Á T2
kružnic k13k2 se středy
S13S23 které vzniknou
otočením kružnice k o 60°
kolem bodu A, a to

v kladném i záporném smyslu. Další částí hranice mno-

žiny M je oblouk TXCQT2 kružnice Я se středem A.
(Body T13T2 jsou body dotyku kružnic k13 Я, resp. k23 Я.)

Množinu M vyšetříte intuitivně. Můžete postupovat
např. takto: Zvolíte-li libovolný bod Cek3 С Ф A3 je

Obr. 36
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množina všech příslušných vrcholů В uzavřená kruhová
úseč Uc kruhu se středem A a poloměrem AC, omezeného
osou o úsečky AC; z
ní jsou vypuštěny bo-
dy úsečky AC (obr.
37). Neboť pro všecky
body úseče Uť a jen
pro ně platí

AB^AC.
Poloha Uco úseče Uc
je úseč TlST2C0Tl.
Když bod C probíhá
některou polokružnici
C0A, probíhá C1 polokružnici 7\A a C2 polokružnici
T2A. Odtud lze odůvodnit, že úsečka CXC2 náleží vždy
vyšrafovanému obrazci. Protože podle obrácení Thaleto-
vy věty každá z přímek CXC2 prochází bodem S, lze
snadno dokázat, že každý bod X, který leží v průniku
vyšrafovaného obrazce a poloroviny TXŤ2A, náleží mno-
žině M, s výjimkou bodu A. Pro body X bílé ,,čočky“ to
dokázat nelze (proč?).

Ze skutečnosti, že všecky body C, Q, C2 náleží vyšra-
fovánému obrazci a že <£ CXAC2 = 120°, plyne, že každá
z úsečí Uc náleží vyšrafovanému obrazci. Odděleně je
třeba prozkoumat hraniční body. Zřejmě je А ф M;
kdyby bylo C0 g M, tj. C0 — В, bylo by AB — AC0 ^
^ AC, tj. В = C, což je nemožné.

V předchozím je ovšem jen nástin řešení. Je možné, že
někdo z řešitelů zvolí metodu souřadnic. Je-li polopřímka
AS kladná poloosa x3 AS — 1, vede vyšetřování mno-
žiny M к analytickému vyjádření

BC

Obr. 37

x + ty ^ 1,(1 + ř2) (X2 + У2) ^ 4 ,
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kde t je reálný parametr. Zkoumání těchto nerovnic však
asi přesahuje možnosti většiny středoškoláků.

I B-I-5 I

V množině všech reálných čísel je dána binární operace
* *3; = x + у + xy .

a) Zjistěte, zda je tato operace komutativní a asocia-
tivní a zda má neutrální prvek.

b) Určete všechna reálná čísla x, pro která platí
а -К- (я -X- x) — b ->f x;

proveďte diskusi vzhledem к reálným parametrům a, b.

Také tato úloha vnáší do XXII. ročníku MO jisté prvky
strukturální matematiky, tj. studium vlastností binárních
operací. Zjištění komutativity a asociativity je věcí jedno-
duchého výpočtu; je třeba zdůraznit kvantifikaci: pro
všecka x, y, z musí platit

X у — У -X: X, (x -X- у) ->f Z — X -X- (jv * z) .

Při důkazu asociativity vypočteme
(x -X- y) * z — (x + у + xy) * z =

= X + у + xy + z + (* + у + xy) z

x -X {y -¥r z) = X + (y * z) 4 x(y -X- z) =

= X + у + 2- -f уz + x(y + * + уz).
Operace X- je tedy komutativní a asociativní.
Neutrálním prvkem může být jen takový prvek e, že pro

a
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všecka л: platí e^x = x^e — x, neboli vzhledem
к tomu, že operace je komutativní, platí

л; -f e + xe — x,

tj. e(i li) - O, tj. e — 0. Číslo O je skutečně neutrálním
prvkem.

Rovnice а -X- (x -X-- x) — b -X- x je „kvadratická“, neboť
obsahuje výraz x -X- x. Klíčem je opět převedení operace
-X- na operace +? • ; vyjde

a + x + x + x1 + а (я + x + x2) = b + x + bx
neboli

(1 + я)*2 + (2a — b + 1) x + (a — b) = 0 .

Výsledek diskuse můžeme shrnout do tabulky:

b ф -1b = -1

všecka x x = —1a — —1

b — a

a |- í
-1а Ф — 1 x = — 1,x

B-I-6

Ak možno lichoběžníku vpísať kružnicu, potom geo-
metrický priemer dížok oboch jeho ramien je váčší ako
geometrický priemer dížok oboch jeho základní. Dokážte.

Nepoužijeme-li při jejím řešení trigonometrie, odvo-
dime pomocnou větu o tečnovém lichoběžníku; ta je
klíčem к řešení úlohy.
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LEMMA. Budiž
ABCD tečnový licho-
běžník se základnami
AB = a, CD — с а га-
měny ВС — 6, AD —
= d. Buďte я, jy, ř
délky tečen vedených
po řadě z vrcholů /
5, C, Z) ke kružnici /
vepsané lichoběžníku л
ABCD. Pak platí
(obr. 38).

Obr. 38
D ř z c

f

i

У

(12)xt — yz .

DŮKAZ. Protože je AB // CD, je spojnice dotykových
bodů obou základen s kružnicí vepsanou průměrem této
kružnice. Vyjádříme dvojím způsobem výšku lichoběžníka
ABCD:

Су + zY — Су — z)2 — (x + O2 — (я — O2 •

Odtud plyne (12).
Nyní vypočteme rozdíl druhých mocnin geometrických
průměrů ]]ac, ]/bd; je tedy

bd — ac — (x + f) Cy + z) — (x + y) (z + ť) —

= xy + zt — уz — xt,
tj.

bd — ac = (x — z) Cy — t) .

Zřejmě je x Ф z, у Ф t; je-li totiž např. у = t, plyne
z (12) x — z 3. ABCD je rovnoběžník. Zvolme označení
tak, aby bylo x > z; pak je у > t. Neboť kdyby bylo
t > y, platilo by tx >yz, což je ve sporu s (12). Je-li však
x > z, у > t, je podle (13) bd > ac.

TRIGONOMETRICKÉ ŘEŠENÍ. Na obr. 39 je opět
tečnový čtyřúhelník ABCD a jemu vepsaná kružnice se

(13)
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Obr. 39

středem 5 a poloměrem q. Protože je <£ ZL4D -f

+ CDA = 7Г, je <£ + <£ ADS = ,

3iASD = ^. Obdobně je <£BSC = ^. Je-li tedy
<£ CSD = y, je <£ = tu — cp. Platí tedy pro dvoj-
násobné obsahy trojúhelníků ABS, BCS, CDS, DAS:

AS . DS = dp, BS . CS = bo, AS . BS . simp
CS . DS . sin<p = cq .

aq,

Odtud

(bd - ac) q2 = AS . BS . CS . DS (1 - sin'V) > 0 ,

neboť je 0 < у < n. Protože je (bd — ac) q2 > 0, q2 > 0,

bd — ac > 0 .

Druhé řešení je trikové: klíčem к němu je vyjádření
obsahů trojúhelníků ABS, BCS, CDS, DAS dvojím

je i
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způsobem. První řešení je přirozenější; klíčem je uvedené
lemma.

3. KATEGORIE C

C-I-l

Množiny M4, M2, M;i, M4, M4u M2u M3u M4 mají
po řadě n1} w2, w3, w4, s prvků; přitom platí M4 n M3 =
= M2 n M4 = 0. Dokažte, že platí

2s ^ nx 4" n2 + «3 + ^4 •

Může nastat rovnost a v kterém případě ?

Úloha C-I-l uvádí i do kategorie C tematiku množí-
nové algebry a Vennových diagramů, kterou uvedla do

kategorie В úloha B-P-l.
Úloha C-I-l je lehčí, by-

,M3 lo by vhodné doplnit ji
] úlohou, která je uvedena
) dále. Ostatně ani úloha

B-P-l není pro účastníky
kategorie C nedostupná.
Aspoň úvod к řešení úlo-
hy B-P-l by si měli pře-
číst i účastníci soutěže
v kategorii C.

Pro řešení úlohy C-I-l
si zopakujeme tytéž tři

formule jako při řešení úlohy B-P-l a nakreslíme dia-
gram (obr. 40), kde uplatníme předpoklady M, n M;} =

M

Obr. 40
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= M2 n M4 = 0. Označíme s13, s24 počty prvků množin
M4u M3, M2u M4, evidentně platí

S — S = ^24 5

$13 — t1x -f- W35 s24 = W2 -•] w4 . (1)

Sečtením prvních dvou
a druhých dvou vztahů од
dostaneme dokazovanou %
nerovnost. I

M3
0 0Rovnost 2s = nx + V

+ w2 + w3 + w4 nastane
jen v případě, když nasta-
ne rovnost v prvních /
vztazích (1). Z rovnosti (
s = s13 plyne, že obě bílé \
části diagramů množin
M2, M4 značí množiny
prázdné; obdobně je to-
mu s rovností s — s24. Diagram pak je na obr. 41.

Doplňková úloha, o které jsme se zmínili, se týká ome-
zení čísla 5 shora. Označíme p' počet prvků průniku
(MjU M3) n(M2U M4). Podle prvního vzorce z řešení
úlohy B-P-l je

0 0

M2

Obr. 41

(2)s + p' — $13 + s24

(vzorec jsme aplikovali na množiny М4и M3 a M2U M4).
Z (2) plyne

(3)s ^ ^13 + % •

Z posledních dvou vzorců (1) a z (3) dostaneme
S '4 Пх + W2 4" 4" n\ • (4)

1
Úhrnem — {nx 4- w2 4- щ + я4) ^ 5 ^ nx 4- n2 4- nz + w4.

Rovnost v (4) nastane, právě když každé dvě z množin
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M13 М2, М3, М4 jsou disjunktní (z rovnosti se odvodí po-
mocí (3), (2) p' — 0) .

C-I-2

Vypočítajte súčet všetkých šestciferných čísel, z ktorých
každé má dekadický zápis obsahuj úci všetky číslice 1, 2, 3,
4, 5, 6.

Tato úloha je vlastně jistým předběhnutím kombina-
toriky. Elementy kombinatoriky jsou však tak přístupné
a zajímavé, že se mohou probírat na základní škole.
Domníváme se, že by se řešitelé měli seznámit při příle-
žitosti řešení úlohy C-I-2 s názvem „permutace“ jako
zkratkou pro „uspořádanou n-tici prvků'c (v našem pří-
pádě šestici).

Postup:
a) Uvědomíme si, jak vypsat všecky permutace 3,4 prvků.
b) Na základě tohoto systému odvodíme vzorec pro vý-

počet počtu všech permutací n prvků (n = 2, 3, 4, 5,
6); názvu „faktoriál“ a příslušného znaku (6!) němu-
símě užívat.

c) Uvážíme, jak zjistit, kolikrát se vyskytuje jistá cifra
na jistém místě ve všech permutacích cifer 1, 2, 3, 4, 5,
6 (je to 1 . 2.3.4.5krát), tj. 120krát.

Počet všech vyšetřovaných čísel je 1. 2. 3. 4. 5. 6 = 720.
Na prvním místě se objeví každá z cifer 1, 2, 3, 4, 5, 6
právě 120krát. Tyto cifry vzhledem ke své místní hod-
notě přispějí do celkového součtu sčítancem

120 . 1 . 105 + 120.2 . 105 + 120.3 . 105 +
+ 120.4 . 106 + 120.5 . 105 + 120.6 . 105,
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tj.
120 . 105 (1 + 2 + 3 + 4 + 5
Obdobně tomu je na 2., 3., 4., 5. a 6. místě; příslušné
příspěvky jsou

6) 120 . 10* . 21 .

120.104.21, 120.103.21, 120.102.21,
120.10.21, 120.21.

Žádaný součet je tedy
í = 120.21(105 + 104 + 103 + 102 + 10 + 1) -

- 120.21 . Ill 111 .

Součet s je úctyhodné číslo 279 999 720.
Zde máme dobrou příležitost ocenit výhodu spekulace

a dedukce oproti bezduchému mechanickému počítání.
Připustíme, že by počtář byl velmi rychlý a absolutně
spolehlivý. Napsání 720 šesticiferných čísel „pod sebe“
by mu trvalo asi 36 minut (předpokládáme napsání
20 čísel za minutu). Sečtení jednoho sloupce by mu trvalo
asi 24 minut (předpokládáme sečtení 30 jednociferných
čísel za minutu). Celkový výpočet by tedy trval

6.24 + 36 = 180 (minut),
tj. nejméně tři hodiny.
Jak by vypadal výpočet pomocí kalkulačky ?

C-I-3

Řešte graficky a početně v oboru reálných čísel rovnici
[Зя -f- 2] = [л; + 1];

přitom [a] značí celou část čísla a.
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Úloha С-1-3 náleží do tématu „schodových funkcí",
které jsou jedním z hlavních témat XXII. ročníku MO.
Úloha C-I-3 navazuje na úlohu C-P-l. Při jejím řešení
můžeme použít VĚTY: Je-li c číslo celé, pak platí pro
všecka t:

(5)[c + í] — c + [í] .

Tato formule se dokáže snadno přímo z definice „celé
části11. Platí totiž

(6){c -j- t) — 1 < [с T í] ^ c -f- t j

t — 1 < [t] ^ t,
a tedy

(7)t T" c — 1 < [f] -f c ^ í f f •

У
3 -

2

1 -- (jrm
"I -J
—l 1-

x
o + +

0-2 -1 31 2

Ф=*- -1

-3

-- -4

Obr. 42
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1< x ^ t + c vyhovujePoněvadž podmínkám t + c
jediné celé číslo x, platí vzhledem к (6) a (7) vzorec (5),
Danou rovnici upravíme na tvar

[3#] + 2 — [я] + 1
neboli

(8)[Зх] = [x] - 1;
rovnice (8) má podle (5) táž řešení jako daná rovnice.

Text úlohy žádá, abychom ji řešili nejdříve graficky
a pak teprve početně. Grafy funkcí x \-> \3x], x
jsou dvoje schody; „výška stupně44 je vždy 1, ,,délka
stupně44 je u první funkce u druhé 1. Obě „schodiště443

stoupají zleva doprava, a to první strměji, druhé porna-
leji. Grafy (obr. 42) ukáží také „setkání44 obou „schodišť44.
To si ověříme výpočtem podle následující tabulky (T).

[x]~ 1

(T)
22 1 1-3 -1 2 3-2 10x

“3 ~T T ~3

[3*] -9 -6 -3 -2 -1 0 1 2 3 6 9

M -1 -4 -3 -2 -2-2 -1 -1 -1 0 1 2

Podle grafu i podle tabulky (T) jsou řešení dané rovnice
všecka čísla x, pro něž platí

2
.

3 -л:<
1

3 •

Snadno dokážeme, že rovnice jiná řešení nemá: radíme
vám, abyste odůvodnili to, co vidíte na obr. 42, např., že
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1
pro všecka x > — у je [Зх] > [л-] — 1. Skutečně, je-li
—

у ^ х < 0, je — 1 <: Ъх < О, tj. [Зх] = — 1,
[лг] — 1 = — 1 — 1 = —2; je-li jc ^ О, je [Зл:] >Зл: — 1 ^
^ х — 1 ^ [л] — 1 .

2
Obdobně dokážeme, že pro všecka л < — — je [Зл] <

< [х] — 1 .

С-1-4

а, ВС — b, CD = с, DA — d sú dížky
stráň dotýčnicového štvoruholníka ABCD.

Ak platí a2 + b2 = ab -j- cd -f- bc + ad — ac — bd, je
ABCD deltoid. Ak okrem toho platí

b“ -J- c2 = bc -j- ad -f- cd -(- ab — bd — ac ,

je ABCD kosočtverec. Dokážte.

Nech AB

Klíče к řešení této úlohy jsou dva:
(a) Znalost věty: součty délek protějších stran tečnového

čtyřúhelníka jsou si rovny; vzorec a + c = b -j- d.
(b) Charakteristika deltoidu a kosočtverce: vypuklý čtyř-
úhelník je deltoidem, právě když některá dvojice soused-
nich stran jsou shodné úsečky a zbývající dvojice soused-
nich stran jsou také shodné úsečky; (vypuklý) čtyřúhelník
je kosočtvercem, právě když jsou všecky jeho strany
navzájem shodné.

Řešení úlohy záleží v tom, že využijeme první dané
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rovnosti a rovnosti a + с = b + d, Danou rovnost upra-
víme na tvar

a{a -j- c) + b (b + ď) — (a -f c) {b + d) •

Dosadíme b + d — a + c; vyjde

(a + c) (a + b) = (a + c)2 . (9)

Protože je a + c > 0, plyne z (9) a + b
b = c, a — d. Podle věty (b) je tedy čtyřúhelník deltoid.

Druhá z daných rovností vznikne z první cyklickou zá-
měnou: a->b->c->d->a. Proto můžeme obměnit
cyklicky i výsledek: mimo vztahy b = c, a — d budou
platit ještě vztahy c = d, b — a . Podle věty (b) (druhá
část) je tedy v tomto případě čtyřúhelník kosočtverec.

a -(- c, tj.

C-I-5

V rovině je dána
Čtvercová síť složená z

jednotkových čtverců.
Zvolme libovolný pra-
voúhlý trojúhelník T,
jehož vrcholy leží ve
vrcholech sítě a odvěs-
ny v přímkách sítě.
Označme p obsah troj-
úhelníka T, h, resp. v,
počet vrcholů sítě, kte-
ré jsou na hranici, resp. ve vnitřku trojúhelníka T. Do-
kažte, že platí

a

Obr. 43

2p ~ h — 2v -j~ 2 — 0 .
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Úloha C-I-5 podobně jako C-I-6 vnáší do soutěže
téma z kombinatorické geometrie.

Při řešení úlohy C-I-5 začneme experimentovat např.
s pravoúhlým trojúhelníkem o odvěsnách a — 6, b = 4
(obr. 43); a, b jsou obecně čísla celá, jejich největšího spo-
léčného dělitele označíme <5. Na čísle d zřejmě záleží;
jsou-li a3 b nesoudělná, neleží na přeponě mimo vrcholy
žádný mřížový bod. První impuls к řešení úlohy bude te-
dy odvození vzorce

h = (a — 1) + (b — 1) + (а - 1) + 3,
tj.

(10)h = a + b + 6 .

Další poznámka se týká odvození vzorce pro 2v3 pod-
nětem je doplnit trojúhelník na pravoúhelník (obr. 43).
Uvnitř pravoúhelníka je {a — 1) (b — 1) mřížových bodů;
zřejmě však platí

(a - 1) (b - 1) = 2v + Ó - 1 ,

neboli

(И)ab — a — b — ó + 2 .2v

■ primky šitě

přímky site
Obr. 44
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Protože 2p = ab, dostaneme z (10) a (11)
2p — 2v — h =

= ab — ab-ýaý-b-ýb — 2 — a — b — ó — — 2 .

Pokusíme se rozšířit odvozený vzorec pro libovolný
mřížový trojúhelník, tj. trojúhelník, jehož všecky tři
vrcholy jsou mřížové body. Dostatečný podnět dává
obr. 44.

C-I-6

V rovině je dán vypuklý pětiúhelník AxA2A3AáA5 a
uvnitř něho bod A3, který neleží na žádné úhlopříčce.
Kolika různými způsoby lze sestrojit dva trojúhelníky
s vrcholy v bodech A{ tak, aby trojúhelníky neměly žádný
společný bod? (Diskuse.)

A4Tato úloha se může
vyřešit v podstatě expe-
rimentálně. Načrtneme
konvexní pětiúhelník
AXA2A3A4A5 a sestro- A
jíme všechny jeho
úhlopříčky (v počtu 5).
Tím se rozdělí pěti-
úhelník celkem na 11
částí obr. (45) tří typů; £1]
tyto typy označíme Í215
í22, Q3. Na obr. 45 jsou
oblasti typu Qx vyšra-
fovány, oblasti typu Q2
jsou vytečkovány, ob-
last typu Q3 je bílá a

Щ
5 Vít

4?-0-3

ШШ №ň
i .v;

A1 A2л2
Obr. 45
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ohraničená tlustou čarou. Oblasti jsou otevřené (bez hra-
nic) a bod Ae náleží jedné z nich.

Leží-li bod Ae v oblasti Qí3 jsou žádané dvojice troj-
úhelníků 3, např. (A4A5Ae3 A2A3A4)3 (АгАвА2з A3A4A5)3
(A4A5Ae, A4A2A3). Polointuitivně ověříme, že tyto
dvojice vyhovují. Měli bychom si uvědomit, že všech
dvojic trojúhelníků je 10 (stačí zvolit tři vrcholy tak, aby
mezi nimi byl A6). Snadno ověříme, že zbývajících sedm
dvojic trojúhelníků, mezi nimiž jsou trojúhelníky A3ASA6,
A3A4A6} A2A5Aq, A2A4Ae, A4A3A6, A2A3Ae, A4A4A6,
nevyhovuje.

Leží-li bod Ae v oblasti D23 jsou žádané dvojice troj-
úhelníků 4, např. (ЛЛЛ, Л3А4А5), {АХАЬА33 A2A3A4),
(AgA2A3, A4A4A$)3 (A6A4A5, A4A2A3).

Leží-li bod /46 v oblasti £?3, je žádaných dvojic troj-
úhelníku 5, a to (A6A4A2, A3A4A§)3 (A6A2A3, A4A4A3)3
(A0A3A4, A4A2A5)3 (AqA4A53 A4A2A3)3 (A6A5A13 A2A3A4).

Tím je zároveň provedena diskuse řešení.

4. KATEGORIE Z

Z-I-l

Dokažte, že existuje jediné prvočíslo p takové, že p3
p + 2, p -f- 4 jsou prvočísla.

Vyšetřování aritmetických posloupností, jejichž všecky
členy jsou prvočísla (nazveme je p-posloupnosti), je pro-
blémová situace, ze které lze vytěžit řadu pěkných úloh.
f-’-posloupnost s diferencí 2 může obsahovat nejvýše tři
členy. Jsou-li totiž x3 x + 2, x T 4, x + 6 čtyři členy
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p-posloupnosti, jsou pro zbytky při dělení třemi tři mož-
nosti uvedené v následující tabulce ve třech řádcích:

Protože je x ^ 2, je x + 2 ^ 4, x -f 4 ^ 6, x + 6 ^ 8.
V každém řádku tabulky je tedy aspoň jeden násobek tří
větší než 3 a to je číslo složené.

Omezíme-li se jen na posloupnosti tříčlenné, přichází
v úvahu jen první řádek tabulky a první člen musí být
násobek tří, který je prvočíslo, tj. x — 3; dále je x + 2 =
= 5, Jt + 4 — 7, což je řešení naší úlohy.

Omezíme-li se jen na posloupnosti dvojčlenné s dife-
rencí 2 — tj. na tzv. prvočíselná dvojčata, přichází v úva-
hu jen ^-posloupnost 3, 5 a pak p-posloupnosti podle 3.
řádku tabulky, např. 17, 19 nebo 29, 31 nebo 41, 43 atd.
První člen л; dvojice nemůže končit v dekadickém vyjá-
dření trojkou, pokud je л; >3; neboť pak by druhý člen
končil pětkou a přitom by platilo x + 2 > 5, tj. druhý
člen x + 2 by bylo číslo složené. Jak je známo, není do-
sud rozřešena otázka, zda množina prvočíselných dvojčat
je nekonečná.

Do série úloh z této problémové situace patří např.
úloha nalézt všecky ^-posloupnosti aspoň tříčlenné s di-
ferencí 4. (Diference ^-posloupnosti, která má aspoň tři
členy, nemůže být číslo liché — proč? Jak je tomuu dvoj-
členných posloupností ?)

Sestavme tabulku pro čtyřčlennou ^-posloupnost s di-
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ferencí 4; do tabulky zapisujme zbytky při dělení třemi
(jsou tři možnosti, uvedené ve třech řádcích tabulky).

x + 12x + 4 x -j” 8

21 00

01 2 1

1 22 0

2, je x -)~ 4 ^ 6, x -f- 8 ^ 10, я -j- 12 -5*Protože je я
^ 14. V každém řádku je tedy aspoň jeden násobek tří
větší než 3, tj. číslo složené. Závěr: neexistuje čtyřčlenná
p-posloupnost s diferencí 4.

Omezíme-li se na tříčlenné p-posloupnosti s diferencí
4, přichází v úvahu jen první řádek a první člen je x — 3;
další členy jsou я -j- 4 = 7, я + 8 — 11.

Omezíme-li se na dvojčlenné p-posloupnosti s diferencí
4 a vyloučíme-li posloupnost 3, 7, přichází v úvahu jen
druhý řádek tabulky. Sem patří „dvojčata" 7, 11; 13, 17;
19, 23; 97, 101 a další. Snad i těchto dvojčat je nekonečně
mnoho.

Úloha o p-posloupnostech s diferencí 4 by mohla být
úvodem к úloze Z-I-l. Bylo by možné vyšetřovat ob-
dobným způsobem i p-posloupnosti s diferencí 6; zde
bychom vypsali do tabulky zbytky při dělení pěti. Všecky
tyto úlohy jsou vhodnou příležitostí к procvičování dal-
šího pojmu elementární číselné teorie — к pojmu zbytku,
resp. zbytkové třídy.
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Z-I-2

V písemné práci se vyskytl lomený výraz
ax -f b
x + c 5

a, b, c byla určitá čísla. Luděk si pamatuje, že při dosazení
x — l dostal výsledek 1, při dosazení x — —l dostal — 1,
když dosadil x — 2, zjistil, že se nedá hodnota daného
výrazu vypočítat. Pomozte mu najít čísla a, b, c.

Z textu úlohy dostaneme
a + b
Г+1

—a + b
= 1,

— 1 + c

Hodnotu výrazu nebylo možno vypočítat pro x = 2, pro-
tože jmenovatel byl roven nule, tj. c + 2 — 0. Z uvede-
ných rovnic dostaneme

a — —2, b = 1, c = —2 .

Lomený výraz, s kterým se Luděk potýkal, byl tedy
1 - 2x

x — 2

A nyní připojíme к úloze Z-I-2 komentář, který je
určen pro vyspělejší účastníky MO.

Úloha Z-I-2 je úloha na určenost lineární lomené
funkce. Jde o funkci tvaru

ax + b
(1)У -

cx -j- d
kde a, b, c, d jsou konstanty. Zpravidla ještě předpoklá-
dáme, že je ad — bc Ф 0.

Z teorie víme, že třemi dvojicemi xx
j»3, kde Xi jsou navzájem různá čísla a yt jsou na-

vzájem různá čísla, je určena funkce (1) jednoznačně; tj.

Ум *2 Угь
xz
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jednoznačně jsou určeny poměry a : b : c : d. Pomocí této
věty lze vytvořit libovolně mnoho úloh takového typu,
jako je úloha Z-I-2.

Např. je-li xx — 0, x2 = 1, x3 = — 1, dostaneme pro
koeficienty a, b, c, d rovnice

a + b
c + d

b —a + b
(2)-j=y» = У2>

= Уз •d —c + d

Protože je = yx, je d Ф 0 a můžeme volit d = 1 .

(Proč ?) Z (2) pak dostaneme
b = Уг, a + yx суз + У* (3)0>2 + J>2> — а + уг =

Sečtením posledních dvou rovnic (3) vyjde

2^i = c(y2 - y3) + j>2 + Уз
a odtud

tyl - J>2 - .Уз (4a)c —

У2 — J>3

Z druhé rovnice (3) pak vypočteme
У1У2 2у2Уз d~ У1У3 (4b)a —

Уч У'з

Podle (4a), (4b) je

- 9 С-Ут - Уг) (у2 - 3ú)
^2 - .Уз

Jedna ze tří podmínek může být nahrazena jako v úloze
Z-I-2 tím, že к určitému x nelze vypočítat příslušné y.
Nechť je např. opět xx = 0, x2 = 1, x3 = —1, j>3 však

ad — bc Ф 0.« — Oů
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nelze vypočítat, tj. — c + d — 0. Podmínky pro koefi-
cienty tedy jsou

a + b
c + d

Můžeme opět zvolit d — 1; pak je
d= 1, b = y13 c= 1, a — 2y2 — yx.

Opět je ad — bc — 2(y%

b
—c + d — 0.-г =У» = У25

jyj) 9^ 0. Funkce
(2y2 - ^i) л + 3^!

У
x + 1

skutečně splňují dané podmínky.
Úloha obdobného typu, která může být uvedením do

této tematiky, zní:
ax + b

Koeficienty funkce у — jsou takové, že se nedá
cx -j- d

vypočítatу pro x = 1 a že pro žádné x nevyjde у — 1.
ax + bPrvní podmínka vede při d = 1 к vyjádření^ =

Uplatníme druhou podmínku: položíme у
se snažit vypočítat x. Dostaneme rovnici — x + 1 —
= ax + b neboli

x ~f 1'
1 a budeme

(5)jc(1 + á) — 1 — b .

Rovnice (5) je neřešitelná, právě když a = — 1, b Ф 1.
Daným podmínkám tedy vyhovuje nekonečně mnoho
funkcí

—x + b
—x + 1 , b Ф 1.У =

Určenost lineární lomené funkce (1) třemi dvojicemi
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[x;jy] je v souhlase se skutečností, že při с Ф 0 je grafem
funkce (1) rovnoosá hyperbola, jejíž asymptoty jsou rovno-
běžné s osami souřadnic (ortonormálních). Směry asymp-
tot určují oba nevlastní body hyperboly a je tedy třeba
ještě tří dalších bodů. Zvolíme-li tyto tři body tak, že
leží v přímce, např.

(6)[3; 0], [0; 3], [2; 1],
dá nám známý postup tyto koeficienty: a = — 1, b — 3,
c = 0, d — 1; lineární lomená funkce přejde ve funkci
polynomickou

x + 3 ,У =

jejímž grafem je přímka obsahující všecky tři body (6).
Lineární lomená funkce má však ještě jiný geometrický
význam. Zvolme soustavu ortonormálních souřadnic;
mimo osy souřadnic zvolme bod 5. Promítneme-li pro-
měnný bod X — [x; 0] osy x z bodu 5 do (proměnného)
bodu Y — [0; j;] osy j;, pak platí

ax + b
(Ibis)

cx -f- d

kde a, b, c, d jsou
vhodné reálné kons-
tanty, ad — bc Ф 0
(obr. 46). Obráceně
však neplatí, že každá
lineární lomená funkce
(Ibis) vyjadřuje pro-
mítnutí osy jc do osy y.

ČÍSELNÝ PŘÍ-
KLAD. Budiž 5 =

[3; 0] se promítá do bodu В =

МО'А

Х=[х,0]
= [2; 1]; pak bod A
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= 0; 3] a bod P = [0; 0] se promítá sám do sebe. Platí tedy
Ъа -f b
3c -\- d

Poslední podmínka (7) vyjadřuje, že bod [2;0] nemá žádný
průmět na osej>. Zvolíme-li d = —2 (a to můžeme), dají
nám rovnice (7)

(7), 2c + d = 0 .0 = -7.

a — 1, b — 0, c = 1, d = —2
a vyjádření funkce (1 bis) je

Jak je vidět, poskytuje úloha Z-I-2 mnoho možností
к důvěrnému seznámení s lineární lomenou funkcí,
s jejím užitím v geometrii, к procvičování soustav tří
lineárních rovnic v souvislosti s větou o určenosti lineární
lomené funkce třemi dvojicemi Velmi doporučujeme
interpretovat lineární lomenou funkci jako analytické vy-
jádření zobrazení (projektivního) — viz poslední řešený
příklad; věta o určenosti lineární lomené funkce se pak
jeví jako analytický protějšek Staudtovy věty o určenosti
projektivity. V zadané úloze Z-I-2 je lomený výraz de-
homogenizován, koeficient při x v jmenovateli je totiž
roven 1.

Z-I-3

Je-li bod O libovolný vnitřní bod trojúhelníka ABC
a jsou-li AX,BX,CX po řadě průsečíky přímek АО, ВО, СО
s protějšími stranami, pak platí

OAx OB1 OCx
AAX + BBX + CCXa) = l;
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á°+i°+ C° =2AA1' ВВг ^ CCXb)

Dokažte.

1. V této úloze jde o poměry délek, což napovídá, že
jde o úlohu z afinní geometrie. Pro starší čtenáře bude
užitečné, uvedeme-li řešení, které se opírá o vlastnosti
dělicího poměru; znalost základních vlastností dělicího po-
měru totiž umožňuje sestrojit si mnohé varianty úlohy.
Řešitelé kategorie Z najdou jednoduché řešení na str. 127
odst. 5, 6.

2. Jsou-li X, Y, Z tři různé body v přímce, definujeme
dělicí poměr (XYZ) tak, že

XZ
(XYZ) = ± y2 ;

volíme znaménko +, leží-li bod Z vně úsečky XY, a zna-
ménko —, leží-li bod Z uvnitř úsečky XY.

Utvoříme-li z daných kolineárních bodů X, У, Z všech
šest permutací, dostaneme šest hodnot dělicího poměru:

{XYZ) - Á,(YXZ)
1

j, (XZY) = 1 — Я,
1 Á - 11

(.ZXY) = Д, (re*) - я я1 -

я1
(1)(ZYX)= 1 1-Я я-г

3. Další důležité vlastnosti dělicích poměrů vyjadřují
věty Menelaova a Cevova.

VĚTA MENELAOVA. Je dán trojúhelník ABC
a přímka p jeho roviny, která neprochází žádným z vrcholů
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Л, Б, C a protíná přímky АВ, ВС, СЛ po řadě v bodech
Си Л15 Bx. Pak platí

(ЛВСО. (БСЛХ) • (СЛБО 1 .

VĚTA CEVOVA. Je dán trojúhelník ABC a bod 5
jeho roviny, který neleží na žádné z přímek AB, BC, CA;
přímky AS, BS, CA nechť protínají přímky ВС, СЛ, ЛВ
po řadě v bodech Л2,В2, C2. Pak platí

CABC2). (ВСЛ2). (СЛЯ2) - -1 .

Obě situace ukazuje obr. 47. Připomínáme ještě, že
dělicí poměry jsou tvořeny „cyklicky“ a že obě věty lze
obrátit.

4. Protože v úloze Z-I-3 leží bod O uvnitř ABC, platí
(obr. 48)
OAl
AA,

= (OCC,). (2)
OBli (obbo,(ОЛЛ,), CCj
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Obr. 48 Aplikujeme Menelaovu větu
na AABA, a přímku OC;
vyjde

(ABC,). (BA,C). (A,A O) = 1

a dále podle (1)

(AA,0) = (ABC,). (BA,C),

(AA,0) = (ABC,) [1 -

- (BCA,)].

C

Bi

Ci В

(3)
Podle (1) je

1 1
(4)(OAA,) = (АОA,) 1 - (AA,0)'

Označíme-li

(ABC,) = Я3, (BCA,) = Я15 (CAB,) = Я

přepíšeme (3) а (4) ve tvaru

(AA,O) = Я3(1 ЯА = Я3 - ЯХЯ3,

2 3

1
(OAA,) = (5а)1 — Я3 + ЯХЯ3

Cyklickou záměnou dostaneme
1

(5b)1 — Л, Я2Я^5
1

(ОСС,) = 1 — Я2 -f- Я3Я2
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—v Л А

Podle (2), (5а), (5b) vypočteme součet у (zápis
/ (AAX

znamená součet tří příslušných členů)
OAx
AAX 1 — A3 + АгА3 1 1 — Ax + X]X2

11

2
1

1 — A2 T- A2A3
Protože je podle Cévovy věty AXA2A3 = —1, rozšíříme-li
první zlomek číslem A2, dostaneme

OAx
AAX A2 — A2A3 — 1 1 — A2 -j- A2A3

A2 1
>

1
+

Ax + AjA2 51

ОЛх 1 - A2 1

2 Л/1Х 1 — A2 T~ A2A3 1 — Ax + AjA2 ^ ^
První zlomek na pravé straně (6) rozšíříme číslem Ax;
vyjde
v^., 1

Z, ^1 h - V2
Tím je dokázána první rovnost.

5. Protože je АО — AAX — OAX) je
OAx
aa; ’

1 - A2 1
= 1 .

1 — Ax T AXA,1

АО
AA

a tedy
X' АО
Z AAi

OA3-У = 2 .

AA
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АО
Tím Je dokázána druhá rovnost, Přitom zápis >

Zw AA\
znamená součet příslušných
tří členů.

6. Poněvadž obě dokazo-
vaně rovnosti vyjadřují vlast-
nosti, které se zachovávají
podobným zobrazením, dají
se dokazovat jednak použi-
tím podobnosti, jednak po-
mocí obsahů. Všimneme si
dvou podobných trojúhelní-
ků AXAQ, AxOP (které se
mohou redukovat na úsečky
AAX, OA13 je-li AAX J_
_L BC) - viz obr. 49. Při *
označení z tohoto obrázku
dostaneme

Obr. 49C

Z
/ A/

/
/ p

/
o, к

a

Va X
\

В

OA ABCO
ABCA '

Uи СШц

Va ava

i

AA i

OBJ ocx _ v ,
. Sečtením dosta-

neme první rovnost; druhou rovnost dokážeme jako dříve
(viz odst. 5).
Tento způsob je na první pohled jednodušší, ale první
způsob (odst. 4) ukazuje obecnější metodu, které se dá
použít i v případě, že např. bod O leží vně trojúhelníka
ABC; pak ovšem podíly

Cyklickou záměnou určíme

OA, OBi OCi
AA,5 BB,5 CC,

se musí nahradit příslušnými dělicími poměry.
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I Z-И

Je dán kvádr ABCDEFGH se středem S, jehož hrany
mají délky AB — a, AD = b, AE — c. Uvnitř kvádru je
dán bod X.

a) Vyjádřete součet druhých mocnin vzdáleností bodu
X od všech vrcholů kvádru pomocí a3 b, c3 SX.

b) Platí výsledek odstavce a) i pro body ležící vně
kvádru nebo na jeho povrchu?

Tato úloha nevyžaduje vůbec vynalézavost — je to
drilová úloha na algebraické výpočty. Kvádr ABCDEFGH
rozdělíme na osm kvádrů, které mají vždy jeden vrchol X
a za protější vrchol jeden z vrcholů daného kvádru.
Vzdálenosti AX, BX3 CX, DXEX, FX3 GX3 HX jsou
délky tělesových úhlopříček těchto osmi kvádrů; tyto
vzdálenosti vypočteme pomocí délek hran těchto kvádrů.
Označíme-li vzdálenosti bodu X od stěn ADHE, ABFE,
ABCD po řadě x3y3 z, jsou tyto délky hran

x3 у3 z, a — xs b — у, c — z . (7)
Pak se vyjádří

AX2 = x2 + y1 + z23 BX2 = (x — a)2 + y2 + z2,
CX2 = (x- a)2 + (y- b)2 + z23..., HX2 =

= X2 + O — b)2 + (z — cf3

SX* = 0 - íy + (у - |)2 + (г - у? .

(8)

(9)

Přitom užíváme rovností (x — a)2 — (a — x)2, (y — b)2 —
— (b — y)23 (z — c)2 = (c — z)2.
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Hledaný součet je podle (8)
a — 8 (x2 + У2 + z1 — ax — by — cz) + 4 (a2 -f- b2 -f c2).

Z (9) plyne

x2 + y2 + z2 — ax — by — cz — SX2 — (a2 + + c2).4

(10)

1

(11)
Spojením (10), (11) dostaneme řešení úlohy a)

o = 8 SX2 + 2{a2 + b2 + c2).
Leží-li bod X na povrchu nebo vně kvádru, nahradíme

v (7) rozdíly a — x,b — y,c — z absolutními hodnotami
\a — x\ = \x — a|, — y\ = \y — b|, \c — z\ = \z — c\;
další výpočet i výsledek (12) zůstávají nezměněny. Tím
je rozřešena úloha b).

Je patrno, že celý postup, zejména při řešení úlohy b),
je v podstatě obcházením metody souřadnic. Domníváme
se, že olympionici by se měli s tímto principem seznámit;
jde zejména o vzorec pro vzdálenost bodů [x19 ylt sj,
[*2, J>2, *2]

(12)

d2 = (xx - x2)2 + {yx - y2)2 -[- (zx - z2)2.
Musíme ovšem zdůraznit, že platí — obdobně jako

vzorec pro délku tělesové úhlopříčky kvádru, z něhož
vlastně vznikl — jen v soustavě ortonormálních souřadnic.
Dále musíme zdůraznit, že vzorec platí, ať jsou čísla xbyb
zi jakákoli — nezáporná či záporná; to je jeho hlavní
přednost.

Protože mezi přípravnými úlohami není obdobná úloha
stereometrická, bylo by vhodné rozřešit si nejprve tuto
ÚLOHU:

Jsou dány dva různé body A3 В; máme vyšetřit mno-
žinu všech bodů X v prostoru, pro které platí AX2 +
+ BX2 — k, kde k je kladná konstanta.
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Označíme M střed úsečky AB a dokážeme, že MX je
konstantní; je třeba diskutovat řešení vzhledem к para-
metrům k, AB. Za určitých předpokladů je hledanou
množinou kulová plocha.

Složitější je úloha, kde jsou dány tři nekolineární body
A3 В, C a vyšetřuje se množina všech bodů X v prostoru,
pro něž platí АХ2 + BX2 + CX2 = k, kde k je kladná
konstanta. Výsledkem je za určitých předpokladů opět
kulová plocha, jejímž středem je těžiště trojúhelníka ABC.

Kdežto při řešení první úlohy se vystačí „s planimetric-
kými výpočty“, při druhé úloze se neobejdeme bez sou-
řadnic.
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IV. Soutěžní úlohy II. kolo

1.KATEGORIE A

A-II-la

V množině všech celých kladných čísel jsou zavedeny
dvě operace: xny je největší společný dělitel čísel x,y;
x u у je nejmenší společný násobek čísel x, y.

1. Dokažte, že každá z operací n, u je komutativní
a asociativní.

2. Dokažte, že každá z operací n, u je distributivní
vzhledem к operaci zbývající.

3. Najděte všecka celá kladná čísla x, pro která platí
x n (a u x) = b u (b n x);

přitom a, b jsou daná celá kladná čísla.
(6 bodů)

ŘEŠENÍ. 1. Budiž x = p*11.. .p*nn3y =/>J\ . ./£,* =
= pv'..kde />1?.. .,pn jsou všecka prvočísla, která se
vyskytují v rozkladu aspoň jednoho z čísel я, у, z (expo-
nenty x.h vi jsou nezáporná čísla celá).

V rozkladu čísel xr\y а у n x jsou í-tí součinitelé
pmin (*i ) , pmin (Ař x; ) . je tecJy x у —у n % a komu-
tativita operace n je prokázána. Obdobně tomu je u ope-
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race u; zde je г-tý součinitel rozkladu čísel x u у i у u л;
číslo pfax ("i•Ai> .

Asociativita obou operací se prokáže tak, že г-tý souči-
nitel v rozkladu x п (у п я) i (x n jy) n 2: je p1}""(**» A »» ” Ь,
г-tý součinitel v rozkladu x u (y u z) i (x u y) u z je

шах (к;, vt)
Pi

2. Důkaz distributivity: г-tý součinitel v rozkladu čísla
(x n y) u z je

(1)pimax ((min*;, A,), v;)
v rozkladu čísla (x u z) n {y u z) je

min (max (*;, v; ), max (A;, v; ))_
Rovnost exponentů (1), (2) dokážeme např. pomocí

číselné osy; je celkem 6 možností (obr. 50).

(2)

*7 £ A, ъе, <\j
V; 4

Ki X,
?i Vi+ + ■

X/ *i Xi X/
и V,

+ ■

:

X, X, X, X/

Obr. 50

Obdobně se dokáže distributivita operace n vzhledem
k u.

3. Řešení rovnice

(3)x n {a u x) = b u (6 n x) .

133



Operace n je distributivní vzhledem к operaci u, a proto
хп(аих) = (л:пй)и(хпх).

Protože je x n x — x a číslo x n a dělí x, je
jc n (a u x) — x .

Dále je podle (4) při nahrazení x\-+b3a\^>x
b u (b n x) = (b u b) n (b u x) = b n (x u b) = b . (5)

Spojením (4), (5) dostaneme jediný možný kořen (3)
x = b.

ZKOUŠKA potvrdí, že b je opravdu kořenem rovnice (3).

(4)

A-H-lbj

Je dán pravidelný čtyřstěn o hraně délky h a přímka p.
Označme А, В, C, D pravoúhlé průměty vrcholů daného
čtyřstěnu na přímku p. Dokažte, že platí

AB2 + AC2 + AD2 + BC2 + BD2 + CD2 = 2h2.
(6 bodů)

ŘEŠENÍ (podle PAVLA FERSTA ze třídy 3. d gym-
nasia na Sladkovského nám. v Praze 3).

Zvolíme ortonormální souřadný systém tak, aby
vrcholy daného čtyřstěnu A', B\ C', D' měly souřadnice

A' = [0, 0, 0], В' = [а, a, 0], C — [a, 0, a],
D' — [0, a, a] ,

kde a = ^ h ]/ 2. Na přímce p pak zvolíme jednotkový
vektor v

Obecně platí, že velikost pravoúhlého průmětu libo-
volné úsečky XF na přímku p je rovna absolutní hodnotě
skalárního součinu vektoru XY s vektorem v.

(a, /5, y) , a2 + p2 + у2 = 1 .
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V našem případě tedy máme
AB2 + AC2 + AD2 + BC2 + BD2 + CD2 =

= (А'В'. rf + (A'C . v)2 + ... + {C'D'. v)2 =
= a2[(<x + Pf + (oe + y)2 + {P + y)2 + (y - Pf +

+ (У - *)2 + 05 - a)2] =
= a2[a2 + 2a/? + fi2 + a2 + 2ay + y2 + p2 + 20y -f
+ У2 + y2 — 2/Sy + /?2 + y2 — 2ay -j- a2 + /^2 — 2a/? +

4. h2. 2
= 2Й2,+ a2] = 4a2 (a2 + /?2 + y2) - 4a2 =

což jsme měli dokázat.

4

| А—II—2a |

Je dáno přirozené číslo a; vypočtěte součet
1973

2Ш
k = i

Poznámka. Pro každé reálné a značí [a] jeho celou část,
tj. celé číslo, pro které platí [a] ^ x < [a] + 1.

(6 bodů)
ŘEŠENÍ. Platí

a — 1 2a — 1

•• 2 [i]-
k = l k — a

За - 1

2И
k = 2q

2a,
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*н-
2 [í]-([5]-)-

‘-и-

Ž н-и-
[5]А-=а

kde m je počet přirozených čísel ne větších než n, která
mají přidělení číslem a celou část rovnou a-; platí m =

•0 + 1.= n —

Dostáváme tedy:

2ЙЧ (H -■)}+-[í]1 +2+...+
&=i

-H •+i-í(PH
Pro n = 1973 odtud dostáváme součet žádaný úlohou.

[А—-II—2b I

Buďte A0, A13 A2, A3 čtyři po sobě bezprostředně ná-
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sledující vrcholy pravidelného sedmiúhelníka. Pak platí
1 11

A0A3’A0AX A0A2
(6 bodů)dokažte.

Obr. 51

ŘEŠENÍ. Označme
e komplexní jednotku
s argumentem ~ . Pak /

Ať
lze zvolit soustavu or- ýp-

A2
a

An i
X

X

b \
v л\а '
Шtonormálních souřad-

nic tak, že vrcholy A0,
Av A23 A3 jsou po řadě
obrazy komplexních čí-
sel 1, e2, e4, e6
(XAqSAí =
— <£A1SA2 —

c "-/• л

XifXZ ..N

s Aq

A*

A6271
= X A2SA3 — — -

přitom 5 je střed kruž-
nice opsané danému sedmiúhelníku). Situace je znázor-
něna na obr. 51. Protože podle věty o obvodových úhlech
je X AxA0A2 = X A2A0A3 = у , převede otočení ко-

jr —> —>■
lem středu A0 o úhel ý polopřímky A0A13 A0A2 po řadě

—>■ >

v polopřímky Л0Л2, Л0Ла. Je tedy při označení z obr. 51

fl,7 ’

£4 — 1 == — £ (fi2 — 1) ,
a

— £2 (£2
a

(1)
£6 - 1 = !)•
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Tyto rovnice vyplývají z posunutí soustavy souřadnic,
které převede souřadnice bodů Л0, A1} A2, A3 po řadě
v čísla 0, £2 — 1, e4 — 1, £6 — 1. Číslo £ je (primitivním)
kořenem rovnice s7 = — 1 neboli e7 + 1 = 0; platí tedy

£6 — £6 + £4 — £3 + £2 — £+1=0.
Z rovnic (1) plyne (je totiž £2 + 1)

£2 + 1 = — £3
a

£4 + £2 + 1 = — £2.

(2)

(3)
a

Rovnici (2) upravíme na tvar
£6 + (1 — fi) (fi4 + £2 + 1) = 0 ,

kam dosadíme z druhé rovnice (3). Po úpravě vyjde
£4 + (l -fi)-=0.

a
(4)

Vyloučíme-li £4 z druhé rovnice (3) a z (4), dostaneme
po úpravě

£ + 1 — 0.
c — a

Vyloučíme dále £2 z rovnice (5) a z první rovnice (3);
vyjde

(5)£2 —

u—*)£=o\c — a a)
a odtud ac + ab = bc, což je dokazovaná rovnost.

JINÉ ŘEŠENÍ (podle MILENY ŠÍDLOVÉ ze třídy
3.a gymnasia v ulici Nad štolou v Praze 7). Rovnost

1 11
(i)AqAx AqA2 A()A3
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platí, právě když
AoA i A0AX
A0A2 a0a3 (2)- 1 .

Zřejmě je
AqA2 — A3A5 a A0A1 — AXA

takže (2), a tedy také (1), platí, právě když
•^0^1 i ЛХА2
^3-^5 -^0-^3

2 3

(3)- 1.

Vektory A0AX a A5A3 jsou souhlasně orientovány, neboť
A0AX || A5A3 a body Ax a A3 leží v téže polorovině určené
přímkou A0A5. Tudíž

AqAx
■ ASAS. (4)^3-^5

Podobně zjistíme, že
AjA2

• A0A3 • (5)AxA2 Л0А3
Jak známo, v rovině daného sedmiúhelníka lze zvolit
ortonormální soustavu souřadnic tak, že existuje taková
komplexní jednotka z, že vrcholy A0, Ax, A2, A3, Ax, A5,
A6 jsou po řadě obrazy komplexních jednotek z° =
= 1, z, z2, z3, z4, z5, z6. Potom z rovností (4) a (5) vyplývá

AqAx (6)(*3 - z5),Z~\ =

ЛзА5
AxA2 (7)(*3 - 1) •s2 - * =

Л0А3
Z rovností (6) a (7) dostáváme

A0AX AxA2 z1 — z
+ ^=T“

z - 1

Лз^5 ^0^3 Я3 — Я5
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О - i) оа 1) + (.z2 — я) (я3 — Я5)
(*3 - 2б) . (*3~ 1)

^4 лЗ <у zb — zx — z1 -|- ZG
- Z:i + -S'5

1

28

neboť z1
rovnost (1), kterou jsme měli dokázat.

1 а я8 — z. Platí tedy rovnost (3), a tedy také

ĎALŠIE RIEŠENIE. Nech pravidelný sedemuholník
je vpísaný do kružnice s polomerom r (pozři obr. 51). Pre
dížky úsečiek A0Alt A0A2, A0A3 zrejme platí:

A0A1 = 2r sin у j A „A 2 = 2r sin y,

A0A3 = 2rsiny.

(1)

Zo základných vlastností funkcic sinus vyplývá
. 4n . 3rr

sin = sin — . (2)7 ’7

2tz
Z rovnosti (2) po vynásobení číslom sin у Ф 0 a použití
vzorca pre sinus dvojnásobného uhla dostaneme:

. 2tz .

sin sin
TC . Зтг

cos у sin — ,
2 sin ^7 7

z čoho podlá vzorca pre súčet hodnot funkcie sinus ďalej
máme

. 2тг . 4tt . n /. 2ti . 4tc\
Sin у sin — = sin — I Sin y- + Sin у I . (3)
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Z (3) po využití (2) dostáváme
. 2тс . Зтс . тс . 2tc

, . и . Зтс
у sin — = srn у sin у + sin у sm — ,

sm

z čoho po vynásobení číslom ^2?' sin у sin у sin yj 7^

Ф 0 vzhladom na (1) dostaneme

1 1 1

AqAi A 0Á2 A0A3

čo bolo třeba dokázat’.

Riešil JOZEF ŠIRÁŇ, 3.b tr.
Gymn. Bratislava, Novohradská ul.

A-II-3a

Nech N0 znamená množinu všetkých nezáporných
celých čísel. Označme A = {x; x = x\ + xl, x1} x2e N 0},
Ař = {tx‘, л: e A}, kde t e N(), В = {r; At <= A}. Do-
kážte, že A = В .

RIEŠENIE. Dokážeme najskór, že A <= B. Nech t e A,

(7 bodov)

tj.
t — t\ + ř|, t13 t2e N0. Potom pre každé x e A je
tx = (řf + řf) (*! + x\) = + í2x2)2 + (ř^a — f2*i)2 =
— .sf + kde я19 я2 e N0. Teda řx e A, čo znamená, že

Af <= A čiže ř e В .

Nech teraz t e B, tj. Aa <= A. Kedze 1 == O2 f l2 e A,
vyplývá z toho, že tiež t. 1 = t e Ař. Platí preto aj inklú-
zia В c Aatým je rovnost’ A — В dokázaná.
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A-II-3b

V kruhu o poloměru 1 leží konvexní mnohoúhelník.
Dokažte, že v tomto mnohoúhelníku existuje takový bod,
který má od všech jeho ostatních bodů vzdálenost menší
nebo rovnu jedné.

(7 bodů)
ŘEŠENÍ. Jestliže střed kružnice 5 leží v mnohoúhel-

niku M, je S hledaný bod a důkaz je hotov. Nechť tedy 5
neleží v M. Pak existuje v M takový bod Г, který má
od S mezi všemi body M nejmenší vzdálenost. Dokážeme,
že T má požadovanou vlastnost. Budiž A libovolný bod M,
nejprve takový, že neleží na přímce ST. TrojúhelníkST/í
má úhel u T pravý nebo tupý. Kdyby totiž byl ostrý, byly
by některé body strany TA, která celá leží v M, blíže к S
než bod Г, což odporuje definici T. Je proto TA < SA ^
^ 1. Budiž nyní В Ф T bod z M, ležící na přímce ST.
В neleží mezi S a T, protože by byl blíže к S než Г. 5 ne-
leží mezi В а Г, protože podle konvexity by bylo 5 v M
proti předpokladu. Je tedy T mezi S а В, а В je blíže к T
než к S,TB< SB ^ 1.

2. KATEGORIE В

B-II-la

V oboru všech přirozených čísel zaveďme operaci ^
takto:

a) Уя:я-Х-1 = 1*л;=1;
b) je-li л: > 1 ajy>la jsou-li x — px.. .px,

У = <7i • • • I/t vyjádření čísel x,y jako součinů prvo-
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činitelů, pak definujeme л; 3f у jako součin všech
součtů pi + qk (i = 1, ..Д, k = 1, ..//,).

Dokažte, že operace * je distributivní vzhledem к ná-
sobení a uveďte číselné příklady.

(5 bodů)
ŘEŠENÍ. Budiž z = rx ... rv vyjádření čísla я jako

součinu prvočinitelů; pak je (xy) * z součin všech součtů
Pi + rj a qk + rj(i = 1, ..., Я, k = 1, ..., = 1, .. .,v),
neboť xy — рг.. .p„. qv.. .qp je vyjádření čísla xy jako
součinu prvočinitelů. Tentýž výsledek dá (л: * z).
. (y ->f я), neboť první činitel je součin všech součtů
pi + druhý je součin všech součtů qk -j- г,}. Snadno se
přesvědčíme, že podle a) je

(xy) * z = (x -X- z) . (y -Xr z) (1)
i v tom případě, když některé z čísel x,y, z je rovno 1.
ČÍSELNÉ PŘÍKLADY:

I. x = 12,3; = 15, z = 8; x = 22.3,y = 3.5, я = 23.
Je xy = 22.32.5 = 180; (xy) * z = (2 + 2)3 .

. (2 + 2)3 . (3 + 2)3 . (3 + 2)3 . (5 + 2)3 = 46.5fi .

. 73 = 212.5fi. 73; dále je x * г = (2 + 2)3. (2 + 2)3 .

. (3 + 2)3 = 46 . 53 = 212 . 53, у ^ = (3 + 2)3 .

. (5 -f 2)3 — 53.73. Platí tedy skutečně (1).
II. x = 18, у = 1, z — 25; x = 2.32, z = 52.

Je (xy) * я = (2.32) * 52 = (2 + 5)2. (3 + 5)4 =
= 72.84 = 72.212; dále je x * ar = (2.32) * 52 =
= (2 + 5)2 . (3 + 5)4, у -* s = 1 -* 52 = 1. Platí
tedy skutečně (1).

B-II-lb

Do kružnice o středu S je vepsán konvexní čtyřúhelník
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A BCD tak, že .5 neleží uvnitř něho. Potom čtyřúhelník
ABCD má jedinou stranu maximální délky; dokažte.

(5 bodů)
ŘEŠENÍ. Jestliže S’ leží na některé straně čtyřúhelníka

ABCD, je tato strana průměrem kružnice, všechny ostatní
strany jsou pak nutně kratší.

Jestliže S leží vně čtyřúhelníka ABCD, pak mezi
čtyřmi přímkami AB, BC, CD, DA existuje jedna, která
odděluje 5 od ostatních dvou vrcholů čtyřúhelníka;
zvolme označení tak, aby přímka AB měla tuto vlastnost.
Ukážeme, že je pak nutně АВ > ВС, АВ > CD, АВ >
> DA. Skutečně, body С, D leží oba na kratším z obou
oblouků AB a úsečka AB je nej delší možnou tětivou
s koncovými body na tomto oblouku. Tětivy AD, CD,
BC jsou nutně kratší, neboť body А, В, C, D jsou vesměs
různé (jsou to vrcholy konvexního čtyřúhelníka).

B-II-2a

Nájdite všetky dvojice celých čísel x,y, ktoré spíňajú
nerovnost’:

3(*3-2) + (^l)!ž6.
Výsledok riešenia znázorníte v pravouhlom súradnicovom
systéme.

(6 bodov)
RIEŠENIE. Danů nerovnost’ 3{x2 — 2) + (у — l)2 ^

^ 6 upravme na tvar Зх2 + (у — l)2 ^ 12 a odtial je:

\y - 1| á 1/3(4 - Xs) .

Definičným oborom danej nerovnosti sú zrejme x, pre
ktoré je 4 — x2 ^ 0. Tu vyhovujú tie x, pre ktoré je
\x\^2.
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Rozlišujme tieto případy:
а) |я| = 23 b) |л*| = 1, с) |зс| =
- 0.

Ак \х\ = 2, potom \у — 1| ^
5^ 0. Tu platí len znamienko
rovnosti. V obore celých čísel je
x: 2, —2 ay: 1. Tak dostáváme
tieto dvojice čísel, ktoré vyho-
vujú danej nerovnosti: (2, 1), 9 9

(—2,1).
Ak |x| = 1, potom \y — 11 ^ (.

^ 3. Tejto nerovnosti výhovu- -2
jú у, pre ktoré platí: —2 ^
^ у ^ 4. V obore celých čísel
je x: 1, —1 ay: —2, —1, 0, 1,
2, 3, 4. Danej nerovnosti vyho-
vujú tieto dvojice: (1,
-1), (1,0), (1, 1), (1, 2), (1, 3), (1, 4), (-1, -2), (-1,
-1), (-1, 0), (-1, 1), (-1, 2), (-1,_3), (-1,4).

Ak |л;| = 0, potom \y — 1| ^ 2]/з. V obore celých
čísel móžeme poslednú nerovnost’ nahradit’ nerovnosťou
\y — 1| ^ 3, pretože 2|/3 = 3,5. Potom v obore celých
čísel je x: 0 a y: —2, —1, 0, 1, 2, 3, 4. Danej ne-
rovnici vyhovujú tieto dvojice: (0, —2), (0, —1), (0,0),
(0, 1), (0, 2), (0, 3), (0, 4).

Spolu teda nerovnosť daná v úlohe je splněná pre
23 celočíselných dvojíc x,y. Grafické znázornenie riešenia
je na obr. 52.

Obr. 52

ny
49

02

1

X

0 1 2-1

0-1 •

n-2 •

2), 1,

B-II-2b

V prostoru je dána přímka p a úsečka AB taková, že
přímky p a AB jsou různé, nejsou mimoběžné a nejsou
na sebe kolmé. Zvolme na úsečce AB libovolný bod Q
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a dále zvolme libovolnou rovinu тс , v níž leží přímka p,
a označme X patu kolmice vedené bodem Q к rovině n.

Nalezněte množinu všech bodů X, když bod Q pro-
bíhá úsečku А В a když zároveň rovina n probíhá svazkem
rovin, jehož osou je přímka p. Diskuse.

(6 bodů)
ŘEŠENÍ. A. Zvolíme na úsečce AB libovolný bod Q.

Pak mohou nastat dva případy:
(a) Nechť Q фр. Zvolme rovinu q patřící do svazku

rovin o ose p (obr. 53). Veďme bodem Q kolmici n к ro-

vině é>; patu této kolmice označme R. Nechť R ф p,
R Ф Q. Přímka p leží v rovině o, a proto n J_ p. Tedy
kolmice n leží v rovině cr, která prochází bodem Q a je
kolmá к přímce p. Označme P průsečík roviny a a přím-
ky p. Pak <£ PRQ = 90°. Odtud podle Thaletovy věty
vyplývá, že každá pata R kolmice n vedené bodem Q
к některé z rovin svazku rovin o ose p leží na kružnici k,
která leží v rovině a a jejímž průměrem je úsečka PQ.
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Obráceně, je-li R libovolný bod kružnice k3 pak mohou
nastat tři případy:

1. Je-li R — P, pak příslušnou rovinou svazku s osoup,
na níž je přímka RQ — PQ kolmá, je ta rovina tohoto
svazku, jejíž průsečnice s rovinou a je tečnou kružnice k
v bodě P.

2. Je-li R — <2, pak příslušnou rovinou svazku s osou p
je rovina pQ3 a kolmicí к ní, která má patu R = Q, je
tečna ke kružnici k v bodě Q.

3. Je-li R Ф P a R Ф Q, pak příslušnou rovinou
svazku s osou p je rovina pR3 a QR je zřejmě kolmicí na
tuto rovinu, neboť p J n a QRP — 90°.

V případě, že Q ф p3 je tedy množinou všech pat všech
kolmic к rovinám svazku rovin o ose p, které procházejí
bodem Q, výše popsaná kružnice k.

(b) Je-li Qe p3 tj. jestliže Q je průsečíkem přímek AB
a p, pak množinou všech pat X všech kolmic к rovinám
svazku rovin o ose p, které procházejí bodem Q, je
zřejmě množina {Q}.

B. Na základě části A. můžeme vyřešit naši úlohu.
Přímka А В není kolmá к přímce p, a proto body А а В
neleží v téže rovině kolmé к přímce p. V případě, že
A $ p (В ф p)3 označme kA (kB) množinu všech pat všech
kolmic na roviny svazku o ose p3 jež přísluší к bodu A(B).
Při řešení naší úlohy může nastat právě osm případů.
Na obr. 54 až 57 jsou základní čtyři případy, další dva
obdržíme záměnou bodů А а В na obr. 55 a 56, dále
situace na obr. 57 může být tří typů podle toho, zda
kružnice kA a kB mají tentýž poloměr nebo zda poloměr
kružnice kA je větší (menší) než poloměr kružnice kB.
Hledanou množinou je vždy plášť P těles na těchto obráz-
cích. Vyplývá to z následujících dvou vlastností pláště P
každého z těles na obr. 54, 55, 56 a 57.

1. Každá rovina a kolmá к přímce p a procházející
bodem Q ležícím na úsečce А В protíná plášť P v kružnici
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p

/1
/

■

/ iA

/t

k, resp. v bodě Q, když Qe p. Je-li P průsečíkem přímkyp
a roviny cr, pak úsečka PQ je průměrem kružnice k.

2. Každý bod Re P buď leží na p, nebo leží aspoň na
jedné kružnici k, která leží v rovině a, jež je kolmá к p,
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přičemž pro k platí: Označíme-li P průsečík přímky p
a roviny a a Q průsečík úsečky AB a roviny <7, pak PQ
je průměrem kružnice k.

Tyto vlastnosti vyplývají v případě válce na obr. 54 z
vlastností rovnoběžného posunutí kružnice kA ve směru
přímky p, v případě těles na obr. 55 až 57 se к důkazu
těchto vlastností užije stejnolehlosti o středu V, kde V je
průsečík přímek p a AB.

B-II-3a

Pro každé reálné číslo у označme R(y) počet řešení
rovnice

(1)[x] = xy — 1973 .

Dokažte tato tvrzení:

(i) je-li j >2, je 1 SS(j)S2;
(ii) je-li 0 < 19743; < 1, je R(y) = 0;
(iii) existuje y, pro které je R(y) 1973.

(7 bodů)
ŘEŠENÍ. Při daném reálném у hledejme řešení rov-

nice (1). Podle definice celé části [.] je rovnice (1) ekviva-
lentní nerovnostem (současně platným)

xy — 1973 ^ x < xy — 1972 .

Přitom je z (1) vidět, že xy musí být celé číslo.
Je-li 3; > 1, tj. 3; — 1>0, dostaneme ze (2) přímým

výpočtem nerovnosti

(2)

1972 1973
< v —

y- 1У - 1
tj.

У
< xy ^ 1973 .

У ~ 1 (3)1972
У — 1
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У
> 1, takže v mezích daných nerov-Při у > 1 je -

У- 1
nostmi (3) leží vždy alespoň jedno celé číslo xy; pro j; > 1
je tedy R(y) ^ 1 .

УJe-li у > 2, je < 2, takže v mezích daných
У - 1

nerovnostmi (3) leží vždy nejvýše dvě celá čísla; pro
у >2 platí tedy R(y) ^ 2 .

Tím je dokázáno tvrzení (i).
Je-li 0 < 1974з; < 13 je ovšem také 0 < у < 1, tedy
у — 1 < 0. Z nerovností (2) dostaneme obdobně ne-
rovnosti

УУ (4)1972 т —— < - xy < 19731 -у J -

Jestliže je 0 < 1974j; < 1, potom

1 —y

1У0< < 197351 —y

podle (4) má být

0< 1972 У У
< -xy £ 1973 - C 1.

1 1 УУ

Je zřejmé, že žádné takové celé číslo xy neexistuje, tj.
R(y) = 0 — platí tvrzení (ii).

Poněvadž xv má být celé číslo, jsou nerovnosti (3)
ekvivalentní nerovnostem

1] + 1 Й Ž [1973 .
У (5)1972

v —

Přij; > 1 je tedy

<-R(y) = [ УУ (6)1973 1972
1 ГУ — У -
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1973
Položíme speciálně у = > 1. Je pak1972

—= 1973
У - 1

a podle (6) je
R(y) = [1973.1973] - [1973 . 1972] -

= 1973 (1973 - 1972) = 1973;
platí tedy tvrzení (iii).

B-II-3b

V rovině sú dané dva
rožne body A a D.
Nech ABC je ostro-
uhlý trojuholník tej /
vlastnosti, že úsečka /
BC obsahuje bod D. A^-
Nájdite geometrické
mie' co stredov stráň
BC všetkých takých
trojuholníkov ABC.

(7 bodov).

10Bá

x S ^A'
\D /

/
/

x
c

Obr. 58a

ŘEŠENÍ. Je-li v takovém trojúhelníku ABC bod 5
středem strany BC (obr. 58a), pak

SB - SC < SA , (1)
jak plyne z rovnoběžníku ACA'B, v němž úhel <£ CAB
je ostrý.

Je proto také
(2)SD < SA}

neboť SD ^ SB .
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Dále je zřejmé, že bod S může ležet na přímce AD jen
tehdy, je-li 5 =D.

Tím jsme dokázali, že bod S leží v té otevřené poloro-
vině vyťaté osou úsečky AD, která obsahuje bod D, a
přitom na přímce AD leží jen v případě S = D .

Ukažme, že tím je popsána hledaná množina. Je-li
S = D, existuje zřejmě ostroúhlý trojúhelník ABC, pro
který je bod D středem strany BC (např. rovnostranný).
Nechť S je nyní bod uvedené poloroviny, neležící na

přímce AD. Pak přím-
ka SD neprochází bo-
dem A, a přitom SD
< SA. Kružnice k —

= (S’; SA) tedy obsa-
huje bod D uvnitř a

./ protíná přímku SD
’

v bodech, které ozna-
číme В' a O (obr.
58b).
AB'C je pravoúhlý, s
pravým úhlem u vr-
cholu A, bod D leží
uvnitř strany B'C a S’
je středem B'C. Zvo-
líme-li tedy na straně

CC je dostatečně malé

B'
кВ

A\s
/D

/
Trojúhelník/

I
C

C

Obr. 58b

B'C body В a C tak, že BB'
(aby trojúhelník ABC byl ostroúhlý , a aby úsečka BC
obsahovala bod D) dostaneme trojúhelník vyhovující
úloze.

ZÁVĚR. Hledaná množina se skládá z poloroviny vy-
ťaté osou úsečky AD, z níž jsou vyňaty body na přímce
AD, s výjimkou bodu D, který je ponechán.
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3. КA TEGÓRIA С

C-II-la

V školskej kvízovej súťaži obsadili prvé štyri miesta
Dušan, Milan, Tomáš a Václav. Pri hádke ich priatelov
o poradí, v akom skončili, odzneli tvrdenie:

Cyril: Prvý bol Dušan, druhý Milan, třetí Tomáš,
štvrtý Václav.

Emil: Vyhrál Václav, Tomáš bol druhý, Dušan třetí,
Milan štvrtý.

Ivan: Milan bol prvý, Tomáš druhý, Václav třetí,
Dušan štvrtý.

Je pravda, že Tomáš nezvíťazil. Z výrokov Emila a Ivana
je pravdivý právě jeden, z Cyrilových výrokov ani jeden.
Aké bolo teda skutočné poradic?

(5 bodov)

RIEŠENIE. Z uvedených údajov vyplývá hned, že
zvíťazil Václav alebo Milan a Tomáš obsadil buď druhé
alebo štvrté miesto.

Predpokladajme, že zvíťazil Václav. Potom z toho, čo
vieme o Emilových výrokoch, vyplývá, že Tomáš nebol
druhý. Musel preto obsadit’ štvrté miesto. Druhé a tretie
miesto zostáva pre Dušana a Milana. Z nepravdivosti
Cyrilových tvrdení vychádza, že Dušan bol druhý a Milan
třetí. Takto zistené poradie však nesúhlasí s tým, že právě
jeden z Ivanových výrokov je pravdivý.
Z toho vyplývá, že prvý bol Milan. Keďže posledně tri
výroky Ivana sú nepravdivé, musel byť Tomáš štvrtý.
Pre Dušana a Václava nám zostáva druhé a tretie miesto.
Václav však na základe nepravdivosti Ivanovho tretieho
výroku nemohol byť třetí, čo znamená, že bol druhý
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a tretie miesto Dušana potvrdzuje aj jediný Emilov prav-
divý výrok.

Skutočné poradie teda bolo: Milan, Václav, Dušan,
Tomáš.

C-II-lb

Jsou dány dvě kružnice kx — (5X; rx) a k2 — (S2; r2),
pro něž platí SXS2 > rx -f r2 .

Narýsujte obrázek pro rx
— 9 cm .

3,5 cm,r2 = 2cma SXS2 —

Označme A, B,C,D body, z nichž každý je průsečíkem
jedné vnitřní a jedné vnější tečny daných kružnic.

Dokažte, že body A, В, C, D, а 52 leží na téže
kružnici. (5 bodů)

ŘEŠENÍ. Jestliže existuje kružnice k procházející body
Л, В, C, Z), S), é>2, pak z osové souměrnosti dvojic bodů
А, В a C, D podle přímky é>ltS2 plyne, že její střed leží na
přímce SXS2. Kružnice k, pokud existuje, je tedy kružnicí
opsanou nad průměrem *SltS2. Tvrzení obsažené v úloze
tudíž bude dokázáno, jestliže dokážeme, že pro každý
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průsečík X jedné vnější a jedné vnitřní tečny kružnic kx, k2
platí

SxXS2 = 90°.
Poslední tvrzení dokážeme např. pro průsečík В tečen r4

a t2 (obr. 59). Body £aF jsou po řadě body dotyku tečen
t2 a r4 s kružnicí kx. Úhly EBF a FBC jsou vedlejší.
Přímky SXB a S2B jsou zřejmě osy těchto dvou úhlů,
a proto

SXBS2 = 90°.

C-II-2a

Podlá gregoriánského kalendára je priestupný každý
• rok, ktorého pořadové číslo je dělitelné štyrmi s výnim-

kou posledného roku tých storočí, ktorých pořadové čísla
nie sú štyrmi dělitelné. 29. február 1972 pripadol na
útorok.

a) Určte, na ktorý deň týždňa pripadol 29. február
najzriedkavejšie od reformy kalendára roku 1582 do roku
1973.

b) Ako sa podelia o 29. február jednotlivé dni týždňa
v rokoch 1973 až 2400, ak nedojde к reforme kalendára.

(6 bodov)

RIESENIE. Kvůli zjednodušeniu zápisu riešenia na-
zvime 29. február dňom V a jednotlivé dni týždňa označ-
me číslami takto: pondelok — 1, utorok — 2, středa — 3,
štvrtok

a) V priebehu storočia přejde od jedného dňa V po
druhý 4.365 + 1 dní, tj. 208 tyždňov a 5 dní. Deň V
připadá preto v priebehu storočia na jednotlivé dni týždňa
v tomto poradí (zapíšeme si poradie posledných 8 prie-
stupných rokov):

4, piatok — 5, sobota — 6, nedela — 7.

2, 7, 5, 3, 1, 6, 4, 2 .
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Pri přechode zo storočia, ktorého pořadové číslo nie je
štýrmi dělitelné, do nasledujúceho storočia přejde od
posledného dňa V jedného storočia do prvého dňa V
nasledujúceho storočia 8.365 + 1 dní, tj. 417 týždňov
a 2 dni.

V storočí, ktorého pořadové číslo je dělitelné štyrmi je
celkom 25 dní V, v ostatných storočiach je o jeden deň V
menej.

Z vyššie uvedenej úvahy vyplývá, že poradie doteraj-
ších 18 dní V 20. storočia začíná pondelkom, tj. číslom 1
a deň V pripadol na 1, 6, 4, 2 po trikrát, na 7, 5, 3 po
dvakrát.

Postupnosť 24 dní V 19. storočia končila sobotou, tj.
číslom 6 a začínala číslom 3 (středa), pričom sa v nej
vyskytli 3, 1, 6 po štyri rázy a 4, 2, 7, 5 po tri rázy.

Postupnosť 24 dní V 18. storočia končila číslom 1,
začínala číslom 5 a vyskytovali sa v nej štyri rázy 5, 3, 1,
po tri rázy 6, 4, 2, 7.

V 17. storočí sa postupnosť 24 dní V končila číslom 3
a začínala zrejme číslom 7, pričom sa v nej vyskytuje
7, 5, 3 po štyri rázy, 1, 6, 4, 2 po tri rázy.

Zostává nám ešte zistiť, na ktoré dni týždňa pripadol
deň V od reformy kalendára roku 1582 do roku 1600.
Bolo to celkom 5 dní V, ktoré za sebou následovali
v tomto poradí: 3, 1, 6, 4, 2.

Zistené výsledky zapíšeme do tabulky, ktorá udává,
kolko ráz pripadol deň V na jednotlivé dni týždňa od roku
1582 do roku 1973 (viz tabulka str. 157).

Ako priamo z tabulky vyplývá, najzríedkavejšie za
uvedené obdobie pripadol 29. február na nedelu.

b) Od roku 1973 do konca 20. storočia zostáva ešte
7 dní V, ktoré budú nasledovať v poradí: 7, 5, 3, 1, 6,
4, 2. Postupnosť dní V v 21. storočí začne teda opáť čís-
lom 7 (nedela), ako tomu bolo v 17. storočí a za predpo-
kladu, že nedojde к reforme kalendára, sa v rokoch 2001 —
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Deň týždňa Spolu19,16, 17, 18, 20.
stor. stor.stor. stor, stor.

1-pondelok 1 3 4 4 3 15

2-utorok 3 3 3 131 3

21 4 153-streda 4 4

134-štvrtok 31 3 3 3

25-piatok 1334 4

3 146-sobota 41 3 3

127-nedel’a 4 3 23

2400 bude presne opakovat situácia z rokov 1601 — 2000.
Pri rozdělení dní V na jednotlivé dni týždňa dostaneme
preto po odčítaní prvého stípca (16. stor.) a po pripo-
čítaní jednotky v každom riadku (dni V do konca 20.
storočia) tento výsledok:

štvrtok piatok nedelapondelok; utorok středa sobota

1315 14 1413 15 13
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I C-II-2b I
(St;- (5X; 70 mm) a K2

85 mm. Dále je dán bod M
Jsou dáný kruhy Kx

15 mm), přičemž =
takový, že MS) = 35 mm, MS2 = 50 mm.

Bodem M veďme přímku o tak, aby kruh souměrně
sdružený s K2 podle o ležel v kruhu Kx.

a) Jakou část roviny vyplní všechny tyto přímky o?
b) Jakou část roviny vyplní všechny tyto kruhy?

(6 bodů)
ŘEŠENÍ. Sestrojme jednu přímku o bodem M jako na

obr. 60 a podle ní к S9t souměrně sdružený bod S2. Pak



platí MS2 = M«S2. Proto všechny body souměrně sdru-
ženě к «S'2 podle přímek svazku M leží na kružnici m —
— (M, MS2). Kruh K2 souměrně sdružený s K2 podle
přímky svazku M se bude v krajním případě dotýkat
kružnice kx uvnitř; jeho střed pak leží na kružnici / =
— (^ii ri ~ r2 — 55 mm). Vzhledem к vzájemné poloze
kružnic та/ jsou takové body dva: P a Q na obr. 60.
Osy úhlů <£ S2MP a <£ S2MQ jsou krajní případy os
souměrnosti vedených bodem M, podle nichž přejde
kruh K2 v kruh ležící ještě v kruhu Kx; nazveme je po
řadě p, q.

a) Přímky p, q jsou v našem případě různoběžné a vy-
tvoří dvě dvojice vrcholových úhlů. Každá přímka svazku
Mj která patří úhlům a, /3 neobsahujícím kruh K2, je
osou souměrnosti podle podmínek úlohy.

b) Kruhy souměrně sdružené s K2 podle přímek leží-
cích ve vrcholových úhlech a, /3 vyplní útvar, který je na
obr. 60 vyšrafován; sestává z výseče mezikruží a dvou
půlkruhů.

C-II-3a

Dokažte, že pro každé reálné c > 2 má rovnice
1973 + x'

(1) x =

alespoň jedno a nejvýše dvě řešení.
(7 bodů)

ŘEŠENÍ. Má-li rovnice (1) řešení, musí být x celé
číslo. Podle definice celé části musí pak platit nerovnosti

1973 + x(2) x ^ <C x -(- 1 ,

159



tj. zároveň
(c - l)x ^ 1973

a

(c - 1> > 1973 - c .

Celé číslo x musí tedy splňovat nerovnosti
c
— < x ^

1973 - 1973
(3)

c - 1

Obráceně nechť x je celé číslo, které při daném c > 2
vyhovuje nerovnostem (3). Potom vyhovuje také nerov-
nostem (2), takže skutečně platí (1): toto číslo x je řešením
rovnice (1).

Zbývá tedy jen zjistit, kolik celých čísel vyhovuje ne-
rovnostem (3). Poněvadž c > 2 > 1, je

J.973^ 1973 - c
c — 1 c — 1

takže nutně aspoň jedno celé číslo leží v mezích udaných
nerovnostmi (3). Na druhé straně je však při c >2

~i "'2 ’

takže v těchto mezích leží nanejvýš dvě celá čísla. Rovnice
(1) má tedy skutečně při libovolném c >2 alespoň jedno
a nejvýše dvě řešení.

C-II-3b

V rovině je dáno pět bodů Als A3, Л4, A5, z nichž
žádné tři neleží v jedné přímce. Kolika způsoby je možno
vybrat čtyři z nich tak, aby tvořily vrcholy konvexního
čtyřúhelníka? Diskuse.

(7 bodů)
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ŘEŠENÍ. Rozlišujeme tři případy. První je ten, že dané
hody jsou vrcholy konvexního pětiúhelníka. Pak vy-
puštěním kteréhokoli z nich dostáváme čtveřici, jež má
požadovanou vlastnost. V tomto případě má úloha
5 řešení.

V druhém případě probereme situaci, v níž čtyři z da-
ných bodů (řekněme Als A2, A3, A4) jsou vrcholy kon-
vexního čtyřúhelníka a zbývající (bod А$) leží uvnitř
čtyřúhelníka. Bod A5 nemůže ležet ani na úhlopříčce AXA3
ani na A2A4. Bez újmy na obecnosti lze předpokládat, že
Ab je uvnitř trojúhelníka A1A2B, kde В je průsečík AXA3
a A2A4. Pak vypuštěním jednoho z bodů Ax, A2 nebo Ab
vznikne požadovaná čtveřice. V tomto případě má úloha
tři řešení.

Poslední případ vede к diskusi, že tři body (řekněme
A19 A2j A3) jsou vrcholy trojúhelníka, zbývající dva (body
A4J Ab) jsou uvnitř. Přímky AXA4, A2A4, A3A4 rozdělí
trojúhelník AXA2A3 na šest trojúhelníků. Bez újmy na
obecnosti lze předpokládat, že Ab leží uvnitř trojúhelníka
AXCA4, kde C je průsečíkem přímek AXA2 a A3A4. Pak
vypuštěním bodu A2 ze základní pětice vznikne požado-
váný konvexní čtyřúhelník. Zde existuje jen jediné řešení.

SHRNUTÍ. Úloha má buď 5, nebo 3, anebo 1 řešení
podle toho, jak jsou dané body v rovině umístěny.

4. KATEGORIE Z

Z-II-1

Nalezněte nejmenší přirozené číslo x takové, aby každé
z čísel x3 616, 700, 924 bylo dělitelem součinu ostatních
tří.

161



ŘEŠENÍ. Nechť x je takové přirozené číslo, že každé
z čísel x, 616, 700, 924 dělí součin zbývajících tří. Platí

616 = 23.7. 11,
700 = 22.52.7 ,

22.3.7 . 11 .

Z (1) plyne, že číslo 924 dělí součin 616.700 . x, právě
když existuje přirozené číslo a takové, že

x — 3a .

(1)
924

(2)
Dále podle (1) platí, že číslo 700 dělí součin 616.924 . v,
právě když

(3)л; = 52. b ,

kde b je přirozené číslo.
Číslo 616 dělí součin 700.924 . x, jak vyplývá z (1) pro
každé přirozené číslo x.

Nejmenší přirozené číslo x vyhovující zároveň pod-
mínkám (2) a (3) a dělící přitom součin 616.700.924 je
zřejmě číslo

3.52 = 75 .

Z-II-2

Je dána úsečka AB a kružnice m opsaná kolem středu M
úsečky AB poloměrem větším než je polovina úsečky AB.
Nechť 5 je střed kružnice opsané trojúhelníku ABC.

a) Vyšetřete geometrické místo bodů S, když bod C
probíhá kružnici m.

b) Jaké bude toto geometrické místo, když poloměr
kružnice m bude rovný polovině délky úsečky AB ?

ŘEŠENÍ, a) Středy kružnic, opsaných trojúhelníkům
ABC musí ležet na ose o úsečky AB, která je společnou
stranou všech uvažovaných trojúhelníků (obr. 61).
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Je otázka, zda obrá-
ceně každý bod přímky
o patří hledanému geo-

* metrickému místu, kte-
ré nazveme G. Do G

>v
/

/
/ X

ШC C patří body Sx, S2, které
\ jsou středy kružme\ opsaných rovnoramen-

ným trojúhelníkům
m ABCX a ABC2 (kde C19

/ C2 jsou průsečíky o
s ní).

/ ,s1

в

\s2
Každý bod X vni-

třku úsečky SXCX
(popř. S2C2) je stře-
dem kružnice x = (X;
AX), která protne
kružnici m ve dvou bo-
dech (vzniknou tak do-

konce dva uvažované trojúhelníky). Z trojúhelníku ASxX
plyne AX > ASX. Protože ASX = SXCX a SXCX > XC13
je AX > XCKružnice (X; AX) tedy protíná kruž-
nici m.

Proto bod X patří do G. Také každý bod Y prodloužení
úsečky SjQ za bod Cx (popř. S2C2 za bod C2) patří do G,
neboť kružnice у = (Y; AY) protne vždy kružnici m.

Naproti tomu bod M do G nepatří, neboť kružnice
(Aí; MA) a m se neprotnou.

Je-li Z bod vnitřku úsečky MSX (popř. MS2), pak
z trojúhelníka AZSX plyne AZ < Dále platí ASX =
= SXCX a < ZCX. Proto je AZ < ZC15 takže kruž-
nice m a z = (Z; AZ) se neprotnou. Bod Z do G tedy
nepatří.

b) Je-li poloměr kružnice m roven \ AB, splyne m

o

Obr. 61
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s kružnici opsanou každému
trojúhelníku ABC. Pak G
obsahuje jediný bod — střed
M kružnice m.

ZÁVĚR. V případě a) tvo-
ří G dvě polopřímky a
S2C2 (víz obr. 61), v případě
b) jediný bod M (viz obr. 62).

Z-II-3

Bod M leží uvnitř Д ABC a je PQ || AB, RS || BC,
TU |[ CA (viz obr. 63). Dokažte, že

PQ , KS TU
AB ' BC ' CA

= 2 .

C

Tst

QP,
'ti

ВA RU

Obr. 63

ŘEŠENÍ. Z podobnosti trojúhelníků Д ARS ~
~ Д ABC plyne

RS Ш
BC ~~ AB * (i)
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Z podobnosti trojúhelníků Д UBT ~ Д ZU3C plyne
í/Г UB

(2)ЛС ЛБ *

Podle (1) a (2) platí
PQ RS TU PQ + AR + ř/B
/íí5 BC ' CA

Čtyřúhelníky A UMP a RBQM jsou rovnoběžníky, a proto
AU = PM a RB = MQ,

(3)

tj.
(4)PQ = PM + Mg = AU + RB .

Dosadíme-li podle (4) do (3), dostáváme
PQ RS TU {AU + RB) + AR+ UB
AB + BC + CA~ AB

= (AU+_ UB) + (AR'_+ RB) AB + AB -"фГ -ЩГ tj
= 2, c.b.d.
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JINÉ ŘEŠENÍ. Označme po řadě А', В', C průsečíky
přímek AM3 BM, CM (obr. 64) s protějšími stranami.
Podle řešení úlohy Z-I-3 b) pak platí

AM BM CM
AA' + BB' + CC ~ 2 *

Z podobnosti Д ^ Д а Д ^#5“ ~ Д ABC
dostáváme

(*)

AB ~ BC3
ЛМ AR
AA' ~ AB3

takže

AM RS
AA' ~ BC '

Podobně dokážeme, že
BM TU CM PQ
BB' ~ CA 3 CC ~ AB '

Platí tedy

AB ~ BC r CA
TU CM AM BM

CC + AA' + BB f Э

tj. podle rovnosti (-X-)
i9, + + IR
AB BC CA

= 2.

Z-II-4

Je dán rotační válec V s výškou v a poloměrem pod-
stavy r. Vyšetřujme všechny rotační válce V, jejichž po-
loměr podstavy je r + m a výška je v — m, kde 0 < m <
< v. Určete číslo m tak, aby povrch válce V byl dvojná-
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sobkem povrchu válce V. Jaká je podmínka řešitelnosti?
ŘEŠENÍ, a) Válec V má povrch

5 = 2 л r2 -f- 2л ra .

Válec V má poloměr r' — r -f- m a výšku v' — v
Povrch válce V je tedy

S' — 2iг (r + tw)2 + 2л (r -f- m) . (v — m) .

Podle textu úlohy platí

— m.

S' = 2.5 ,

tj.
2л (r + m)2 + 2л (r + w) (v — m) =

= 2 . (2tzr2 + 2n rv) .

Po úpravě dostáváme
2tí (r + rrí). [(r + ní) + (v — m)] = 4лr (r + v),

odkud vyplývá
(r + m). (r + = 2r (r + v).

7^ 0, a protoZřejmě r
r + m = 2r ,

tj-
m — r .

= r platí r' — 2r a v' = v — r.

5' = 2л (2r)2 + 2л . 2r (í; — r) =
= 8л r2 + 4л: га — 4л г2 =

= 2 . (2л г2 + 2л га) = 2.5.
b) Je-li dán libovolný válec V o poloměru podstavy r

a výšce v, pak podle odstavce a) má válec V splňující
podmínky uvedené v textu úlohy r' = 2r a výšku v' =
— v — r. Velikost výšky musí být kladné číslo, a proto
válec V existuje, právě když

v > r .

ZKOUŠKA. Pro m

Potom je
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V. Řešení soutěžních úloh Ш, kola

KATEGORIE A

A-III-1

Platí-li pro velikosti vnitřních úhlů trojúhelníka
sin2 a + sin2 /5 + sin2 у — 2 ,

je tento trojúhelník pravoúhlý. Dokažte.
(1)

(5 hodu)
ŘEŠENÍ. Podle vzorce 2 sin2a — 1 — cos 2a plyne

z dané rovnosti

cos 2y + 1 = 0 .

Podle vzorce pro cos 2a + cos 2/5 a podle vzorce 2cos2y =
— 1 + cos 2у dostaneme

2 cos (a + /5) cos (a

cos 2a + cos 2/5

/5) + 2 cos2)' = 0 .

Protože je a -f- /5 = тс — y, dostaneme dále
cosy (cosy — cos (a — /1)) — 0 ,

neboli
cosy (cos (a + /5) + cos (a — /5)) — 0 .

Použijeme znovu vzorce pro cos (a -f /5) + cos (a — /1);
vyjde

(2)cos a . cos/5 . cosy — 0 .
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тс

Je tedy buď a — —, nebo (1
TU

t TU

y> nebo у = у2 '

POZNÁMKA. Uvedené řešení 1. úlohy je řešení
autorské. Soutěžící, kteří tuto úlohu úspěšně vyřešili,
většinou užívali v podstatě stejného postupu, tj. dokázali,
že z rovnosti (1) plyne rovnost (2). Jejich důkazy však
byly složitější.

A-III-2

Je dán čtyřstěn. Označme vt (i — 1, 2, 3, 4) jeho výšky
a Qi (i = 1, 2, 3, 4) poloměry kulových ploch vně vepsa-
ných tomuto čtyřstěnu. Pak platí

2 (— + — ' 1 ' 1\®1 ^2

1) = —+ Д/ 0\ a2

i

Q;i Qiv-j v.i

Dokažte.
(6 bodů)

ŘEŠENÍ. Označme vrcholy čtyřstěnu (i = 1, 2,
3, 4). Budiž Sx střed а qx poloměr vně vepsané kulové
plochy podle schematického obr. 65. Označme Px, P2,
P3,P4 po řadě obsahy trojúhelníků Д A2A3A4} Д AXA3A43
Д AXA2A4, Д AXA2A3. Potom pro objemy Vu, V12, F13,
F14 čtyřstěnů A2A3A4SX) AxA3A4Sx, AxA2A4Sx, AxA2A3Sx
platí

(1)-Fn+ F12 + F13 + F14= F,
kde F je objem čtyřstěnu AXA2A3A4. Platí však

VU = ^Y («' = 1,2, 3,4);
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po dosazení do (1) dostáváme

-§- (-P, + p2 + p3 + Pt) = v,
z čehož

1 Pi + Pj + Pa + Pj
3VQi

Cyklickou záměnou dostaneme:
Pi-P* + P3 + l\1

53VQz

1 P\ 4~ P -2 — Ps + P,
3VQz
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1 P\ 4- P2 + P3 ~ P4
3Ví?4

Je tedy

JL + Jl + Í. + Jl=2_> Л + p8 + p8 + Л
í?l ^2 ^3 ^4 3

Dále platí

• (2)V

Pí . Ví (i = 1, 2, 3, 4) ,V =
3

z čehož

Pí1

3f/ (*=1,2, 3,4),
a tedy

2 + P2 P3 ~Ь P4
W ®3 ®4/

2
3 ’ F

(3)
Z rovností (2) a (3) vyplývá

vx v2 v3 vá

1 1 1)=—+—+—+/ Qx2( Q2 Q3 £4

Řešil Petr Slačálek,
3. f, gymnasium, ul. W. Piecka, Praha 2

JINÉ ŘEŠENÍ. Poloměr kulové plochy x vepsané
dovnitř daného čtyřstěnu ABCD (schematický obr. 66)
označme o a obsahy jednotlivých stěn SXJ S2, S3, Sá.
Pro objem V daného čtyřstěnu platí

c. b. d.

Si • у + *^2 • у + ^з • у + ^ 1-= v,4 • 3
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/:

z čehož po úpravě máme

*Ji 4~ S2 + S31
(1)3Ve

Dále víme, že pro objem V platí

o ^2 o ^3
^ • T - 03 * У

= S4. S.3 5

takže

3F 3V
— ,S

3V 3V
S1 = э *$2 —

5 ^4 = —3 —
®1 ^2 ®3 ^4
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Po dosazení za Si3 S2, a S4 do (1) dostáváme rovnost

1
, 11 1

(2)
^2e V4

Vyšetřujme kulovou plochu xx o poloměru qx vepsanou
do trojhranu A{BCD) tak, že se dotýká roviny BCD a leží
v opačném poloprostoru určeném rovinou BCD než
bod A. Tato kulová plocha xx je stejnolehlá s kulovou
plochou к vepsanou dovnitř čtyřstěnu ABCD. Středem
stejnolehlosti je bod A. Veďme rovinu a || BCD (а Ф BCD)
tak, aby se dotýkala plochy xx. Ze vzdálenosti rovin a
a BCD určíme koeficient stejnolehlosti, který se musí
rovnat poměru poloměrů:

ř?i
_ 2 Й + vx

ViQ

Odtud dostáváme

1 1 2.i-. (3)
QQi

Obdobný vztah jako (3) platí zřejmě i pro v2; q3, z>3;
g4, v4. Z těchto vztahů tedy plyne

Qi Q 2 Q3 (?4

Po dosazení z rovnosti (2) dostáváme rovnost

i. + i + 1 + 1
(?1 (?2 í?3 ÍU

která se měla dokázat.

4 . ——2.
1111

h í-
Q Vx V2 Щ ®4.

11 1 1

)2. — +
V* ’^2 Щ

Řešil JAN FRYNTA,
4.f, gymnasium, ul. W. Piecka, Praha 2
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A-III-3

Je daná postupnost’ reálných čísel aí3 a2)..akJ...

taká, že pre každé k > 1 platí ak-x + ak+\ ^ 2ak.
Pre n = 1, 2, 3, ... označme

1
An — (ax + a2 + ... + an) .

Potom pre každé n > 1 platí tiež
Ац—i d~ An+i ^ 2An\ (1)

dokážte. (8 bodov)

RIEŠENIE. Vypočítajme rozdiel Rn = Л
— 2ЛЯ. Eahko sa vidí, že

2(#i d~ ^2 ~b ~b #w) — n(n ~Ь 1)дга + n (n — 1 )a
n (n — 1) (n + 1) .

Je zřejmé, že (1) platí pre každé prirodzené číslo n > 1
vtedy a len vtedy, keď pre každé n >1 je Rn ^ 0, čo je
ekvivalentně s nerovnosťou

2 (at + a2

I- A ra+in~1

»+lRn

... + an) + n (n — 1) an fl ^
^ n{n + 1) an .

Pravdivosť nerovnosti (2) dokážeme úplnou indukciou:
1. Pre n — 2 má nerovnost’ (2) tvar

2 (ak + a2) + 2a3 ^ 6a2 číže ax + az ^ 2a2 ,

čo je splněné podlá předpokladu.
2. Predpokladajme, že pre nějaké prirodzené číslo

n > 1 platí (2). Podlá podmienok úlohy platí pre každé
prirodzené číslo n > 1 tiež

an + <zw+2 ^ 2aw+15 z čoho hned’ dostaneme
n (n + 1) an + n (n + 1) an+2 ^2я (« + 1) аи+1. (3)

(2)
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Sčítáním (2) a (3) po jednoduchéj úpravě dostaneme
2 {ах -f- a2 + ... -\- cin an+1) + n(n + 1) an+2 =

^ (и + 1) (w + 2) ,

čo je nerovnost’, ktorú dostaneme z (2), ak v nej nahradíme
n číslom n + 1.

Tým sme dokázali správnost’ nerovnosti (2) pre každé
prirodzené číslo n > 1 a vzhl’adom na ekvivalenciu ne-
rovnosti (2) s nerovnosťou (1) tiež správnost’ tejto ne-
rovnosti.

Riešil PAVOL ZLATOŠ, 3.b tr.
Gymn. Bratislava, Novohradská ul.

JINÉ ŘEŠENÍ. Utvořme nejprve posloupnost koefi-
cientů definovanou rekurentně takto:

b± — 1, — 3, bfc — 2b Ьк~2 [ 1 •

Matematickou indukcí snadno dokážeme, že pro každé
přirozené číslo k platí

(k + 1). k (1)b/c = 2

I. Pro k = 1 a k — 2 rovnost (1) skutečně platí. Nechť
k — 3. Podle definice je

Ь$ ~ 6 — 1 -J— 1 = 6
a podle (1) je také

A 4’3Ьз 2~
II. Nechť (1) platí pro nějaké přirozené číslo k ^ 3.

= 6 .

Pak
k. (k - 1)(k -f- 1). k

2

(k -f- 2) (k T 1)

bjc+j — 26^ +1 — -j-l =2

, c. b. d.2
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Podle předpokladu pro každé k > 1 platí
&k—l + +1 + 2сИд- .

Sečteme и — 1 nerovností (n je libovolně zvolené přiro-
zené číslo, w > 1),

(2)

h . («! — 2a<, + a3) ^ 0 ,

bo. (a2 — 2a3 + a4) ^ 0 ,

bk (#& — 2ak+1 + ak+2) ^ 0,

b-n-i (,an-1 2an + an+1) = 0 ,

které platí podle (2) a proto, že podle (1) je bk >0 pro
každé k ^ 1. Součet je
аф1 + a2 . (—2bx + 62) + a3 . (bx — 2b2 + 63) + a4 t

• (62 ~~ 263 + 64) + ... + a*. (bk-2 — 2bk_x + 6A) +
+ • • • + an-1 • (6«-3 — 26ra_2 + 6„_j) +

+ an . (6ra_2 26,й _j) -J- <2,й+1.Ьп_х
Z rekurentní definice posloupnosti {6^} plyne"

к-1 + bk = 6fc_2 — 26^! + 26fc„! — 6&_2 +
+ 1 = 1.

(3)

bk-2 26

Tedy nerovnost (3) nabývá tvaru
axbx + a2 ( 26x + 62) + a3 + a4 + ... + dk + ... +

+ ^n-1 + (6Й_2 2bn__x) + . 6n_j ^ 0 .

Dosadíme za koeficienty bk z definice a z (lj; dostáváme
— n2 — n

,aí + a2 + • • • + an 1

П2 —

+ a и 11
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tj.
2 . (o,i -f- &2 T • • • “l- «я-l) ~b 2«я 2пиип -I- (ti2 n)an -f-

+ (и2 — n) an+1 ^ O ,

čili
(n2 — и) . an T (n2 — n) . a

^ —2 . («i + «2 T* • • • + «я) H~ 2тг2аи .

К oběma stranám poslední nerovnosti přičteme 2тг2 0% +
+ л2 + . •. + an-i)> na levé přičteme i odečteme n (ax +
+ a2 + ... + ап_г). Po úpravě dostáváme
(и2 + ri) . (ax + <z2 + •. • + an-i) + (n* n) •

• («1 + «2 + * • • «я-l) + (^2 — n) • («я + «я+l) =

^ 2 (и2 — 1) . (ax a2 ... + ci-n) .

Tuto nerovnost znásobíme kladným výrazem

Я+1

1
n (n — 1) (n + 1)

a docházíme к nerovnosti
1 1

(«i -j- a2 + ... + an-1) "b
n + 1

• («1 + «2 + • • • + «я+l) = 2 . “(«1 + «2 “b ... + ««)

72—1

1

což je nerovnost

Ли_1 + ^я+i ^ 2 . А П 3

kterou jsme měli dokázat.

Řešila MAGDA FOŘTOVA
4.d, gymnasium J. Fučíka, Plzeň
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I A-III-4

Je-li n^> 2 přirozené číslo, určete
n2-l

2 tl k}.
k= 1

(6 bodů)
ŘEŠENÍ. Pro každé přirozené číslo n ^ 2 platí

[j/w2'-T] = n- 1],
neboť

n — 1 ^ ]n2 — 1 < (n — 1) + 1 .

Množinu
M = íl/1,1/2, ..„у*

tedy můžeme rozložit na n — 1 disjunktních podmnožin
A i definovaných takto:

Аг = {x g M; [x] = i) , i e {1, 2, . .

1}

n — 1}.* 3

Nyní zjistíme počet prvků ||A,|| množiny A?: pro každé
ie (1, 2, ..n — 1}. Nejmenším prvkem množiny Až
je zřejmě prvek

= У?";
největším jejím prvkem je prvek

A = ýpTí)r^rr.
Zřejmě je A, = {oci3 cct + 1, . .., &}, a proto

i i А.г| [ — (* -f- l)2 — P = 2/ + 1.
Z předcházejících úvah plyne (я 2):

n-l n-l n-lП2 — 1 n-l

2 tra = 2 • iiAiii = 2 (2(2+o = 2.2 *2 + 2 »'•
ť=i »=ií=i í=iAs= 1
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Pro každé přirozené číslo n platí

i = -i n (n + 1) a i2 = -i я(и + 1) (2и + 1) ,

i = i i —1

a proto
м‘-1

[]/.&] = (и — 1) . и . (2w — 1) + — (n — 1) . n .

*=i

Po úpravě dostáváme
tt2—1

2[^] i
>-w (и — lj (4и + 1) j

*=i

což je hledaný vztah.
Řešil JAN TRLIFAJj

3.d, gymnasium. Sladkovského nám., Praha 3

A-III-5

Je dána rovina q. Jsou-li P, <2 dva body z označme
P + Q střed dvojice P, Q a P . Q bod roviny q, který
dostaneme otočením bodu Q okolo bodu P o 90° v klad-
ném smyslu.

a) Jsou tyto operace komutativní?
b) Jsou dány dva pevné navzájem různé body A, В

roviny q. Rovnice
(1)Y . X = (A . X) + В

určuje zobrazení X i-> Y.
Určete o jaké zobrazení jde.c)Sestrojte všechny samodružné body tohoto zobra-

(8 bodů)zení.
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ŘEŠENÍ, a) Operace je zřejmě komutativní.
Operace komutativní v množině g není. Zvolíme-li
si totiž v rovině g dva různé body A, B, pak vždy platí

А.ВфВ.А.

b) Zvolme v rovině g libovolný bod X. Bod Y, pro
který platí rovnost (1), pak získáme následujícím postu-
pem. Nejprve sestrojíme bod U = A . X a potom bod
T — {A . X) + B. Nyní je třeba rozlišit dva případy:

a) Nechť X — T. Potom Y = X. (Problémem, zda
tento případ nastává,
se budeme zabývat při
řešení části c) dané
úlohy.)

[i) Nechť X ф T -
(obr. 67). Potom je
bod Y vrcholem pra-
voúhlého rovnoramen- '
ného trojúhelníka s
přeponou XT, v němž
bod X přejde do bodu
T otočením okolo bodu Y o 90° v kladném smyslu.

Z popsané konstrukce bodu У vyplývá, že rovnicí (1)
je ke každému bodu X e g přiřaděn jediný bod Fee.

Druh zobrazení určíme třeba pomocí komplexních
čísel. Umístíme soustavu ortonormálních souřadnic v ro-

vině o tak, aby body А, В byly po řadě obrazy čísel 0,1
(stručně budeme psát A = [0], В = [1]). Dále označíme
X — [я]; pak je A . X — [is],

T = (A . X) + В

(A.X)i-B - Г

В

Obr. 67

1-
- (2)2 Z + 2 '

Na druhé straně je T = Y . X%, označíme-li У = [я'], je
(3)T = [z' + i (z — z')] - [(1 - i) я' + iz] .
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Porovnáním (2) a (3) vyjde
1

(1 — i) z' + iz = j z + j ,

tj.
1

z' — — Z +
2(1 - i) 2 (1 - i)

a po úpravě
, 1 -i , 1+i

z — —.— z H — .4 4

Rovnicí (4) je určena přímá podobnost. To zjistíme,
1 •

vyjádříme-li např. —^— = k . e, kde k =

(4)

1 -i 1

1/8’
P
Г (1 -e —

Zobrazení [я] |-> [ez je otočení kolem bodu [0], zobrazení
[ez] l-> Гksz + ~ Í je stejnolehlost s konstantou k.

A c) Budiž X = Y sa-
modružný bod podob-
nosti (4); pak je X .

. X = X, a tedy bod
X je řešením rovnice
X = (A . X) + В .

Situace pro samodruž-
ný bod X je naznačena

na obr. 68; zde je Д XAU ^ Д XVВ, AU = AX =
— VX = В V, UX = BX. Pro pomocný bod V tedy platí

2 BV3 <žAVB = j, V.X =

\ л=Г/ \
\
\ N

\
s

V U = A.X
Obr. 68

AV = В;
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těmito podmínkami je bod V jednoznačně určen; bod X
sestrojíme z údaje X = A + V •

POZNÁMKA. U 5. úlohy je uvedeno autorské řešení.
I když několik účastníků 3. kola získalo za tuto úlohu
plný počet bodů, žádné z těchto řešení se nehodilo
к otištění.

A-III-6

Ve čtverci, jehož strana má délku 50, je dána lomená
čára L tak, že každý bod čtverce má od některého bodu
čáry L vzdálenost nejvýše 1. Dokažte, že délka čáry L
je větší než 1248.

(7 bodů)
ŘEŠENÍ. Nechť AB je libovolná úsečka čáry L. Uva-

žujme množinu všech bodů roviny daného čtverce, které
mají od této úsečky vzdálenost menší nebo rovnou 1.
Touto množinou je zřejmě sjednocení všech kruhů ohra-
ničených kružnicemi kx — (X; 1), kde X probíhá úsečku
AB, tedy útvar složený z pravoúhelníka, jehož dvě strany
jsou rovnoběžné s úsečkou AB, mají od ní vzdálenost 1
a druhé dvě strany obsahují body А, В, a z dvou půlkruhů
se středy А, В ohraničených stranami pravoúhelníka kol-
mými na AB (obr. 69). Je-li délka úsečky AB rovna d, pak
obsah nalezeného útvaru
(dále jej budeme nazývat
oválem) je 1

2d + 7Г.

Uvažujme všecky ovály
nad všemi úsečkami tvo-
řícími čáru L. Tyto ovály
musí podle zadání úlohy
pokrýt celý daný čtverec. Kdyby totiž nějaký bod uvažo-

A d

Obr. 69

182



váného čtverce ležel vně každého z těchto oválů, měl by
od každého bodu čáry L vzdálenost větší než 1.

Obsah průniku oválů nad dvěma sousedními úsečkami
čáry L se společným koncovým bodem К je zřejmě větší
nebo roven obsahu kruhu ohraničeného kružnicí kk =
= (7č; 1), který je oběma oválům společný (obr. 70).

\

ií \ L4
\ i
\ z- l

J

Obr. 70

Pro obsah P útvaru vzniklého sjednocením oválů sestro-
jených nad všemi úsečkami čáry L pak platí:

P ^ + ^0
i=1 i—1

kde di} i — 1, 2, ..., n, jsou délky všech úseček tvořících
čáru L.

Předpokládejme, že existuje čára L, která vyhovuje
podmínkám úlohy a je kratší nebo rovna 1248. Pak

2У* ^ 1248 .
í=i

Z nerovnosti (1) tedy vyplývá
P ^ тс + 2496 < 2500 - 502 .

n

— 7Г + 2 *2 (1)(n 1) . TZ
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Avšak výše bylo dokázáno, že útvar vzniklý sjednocením
všech oválů nad úsečkami čáry L pokrývá celý daný čtve-
rec, takže P ^ 502, což je spor. Délka čáry L je tedy větší
než 1248.

Řešil PAVEL KINDELMANN,
3.a, gymnasium, Šrámkova ul.,

České Budějovice
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VI. Správa о XV. medzinárodnej matematickej
olympiádě

1. ORGANIZÁCIA A PRIEBEH SÚŤAŽE

Pri odchode z Varšavy po skončení XIV. MMO určíte
ani jeden z jej účastníkov netušil, že o rok povedú cesty
matematických nádejí do hlavného města ZSSR —

Moskvy, ktorá bola dejiskom MMO už v rokoch 1964
a 1968. Sovietski súdruhovia sa totiž podujali na nelahkú
úlohu usporiadania XV. MMO až na sklonku roku 1972,
keď sa ukázalo, že ani jedna z krajin prichádzajúcich do
úvahy organizáciu MMO pre rok 1973 nepřipravuje. O to
viac překvapuje, že XV. MMO, ktorá sa konala 5. —16. 7.
1973 sa zúčastnil rekordný počet družstiev — 16: Rakúsko
(A), Bulharsko (BG), Kuba (C), ČSSR (CS), NDR (D),
Francúzsko (F), Velká Británia (GB), Madarsko (H),
Mongolsko (M), Holandsko (NL), Polsko (PL), Rumunsko
(R), Švédsko (S), Finsko (SF), ZSSR (SU) a Juhoslávia
(YU). S výnimkou Kuby, ktorú reprezentovalo 5 žiakov,
boli všetky družstvá osemčlenné.

Ministerstvo školstva ZSSR pověřilo organizováním
súťaže Akadémiu pedagogických vied ZSSR, ktorej vice-
prezident prof. A. I. Markuševič bol predsedom organi-
začného výboru olympiády a jej vedecký pracovník prof.
I. Ja. Verčenko bol predsedom medzinárodnej jury, kto-
rá riadila XV. MMO. Jeho zástupcom a pravou rukou
bol I. S. Petrakov, inšpektor — metodik ministerstva
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školstva ZSSR, ktorý nechýbal na žiadnej z MAÍO
od r. 1962.

Vedúci delegácií, ktorí tvořili medzinárodnú jury, sa
schádzali do Moskvy vo štvrtok 5. 7. Svoju prácu začali
v piatok 6. 7. v 68. speciálněj strednej škole na Slavian-
skom bulvári v moskovskej štvrti Kuncevo. Táto škola bola
nielen miestom práce jury, ale aj dejiskom vlastnej súťaže.
Na prvom zasadnutí jury sa vedúci delegácií po stručnom
zoznámení sa s programom XV. MMO dozvěděli texty
14 úloh, ktoré příslušná komisia orgamzačného výboru
vybrala z návrhov došlých z 11 krajin. Štyri z týchto úloh
boli v diskusii zamietnuté s tým, že niektorí delegáti
poznali úlohy s blízkým námetom, ktoré boli publiko-
váné. Zostávajúcich 10 úloh mali si členovia jury mož-
nosť premyslieť do nasledujúceho dňa. Na rozdiel od
predchádzajúcich rokov nemali přitom к dispozícii autor-
ské riešenia úloh, čo im umožňovalo naplno využit’
vlastný dovtip a tvořivost’. К diskusii o úlohách vy-
užili aj malú popoludňajšiu autobusovú exkurziu po Mo-
skvě.

Na svojom sobotnajšom zasadnutí jury poměrně rýchle
vybrala 5 úloh pre súťaž. Ťažkosti nastali až pri výbere
šiestej úlohy. Rozsiahlu diskusiu o tomto probléme ne-
dokázalo urýchliť ani silné hromobitie a prietrž mračien,
ktorá zúrila nad Moskvou počas popoludňajšieho zasad-
nutia jury. Keď nezískala potrebnú váčšinu (aspoň 10 hla-
sov) ani bulharská ani francúzska úloha na geometrické
miesto bodov v priestore, prešiel napokon návrh polského
delegáta na preformulovanie polskej úlohy o grupě afin-
ných transformácií priamky, ktorá sa v povodnom výbere
14 úloh nevyskytovala právě preto, že používala pojem
grupy, ktorý sa do obsahu školskej matematiky váčšiny
zúčastněných krajin zatial’ nedostal. Tým sa stalo, že
v tématike úloh XV. MMO chýbala stereometrie a keďže
sa nenaskytla ani vhodná úloha zo školskej teorie čísel,

186



ktorá snáď na žiadnej z doterajších MMO n chýbala,
zrodil sa tento netradičný výběr:

~ 7\1. Bod O leží na priámke OPx, OP2, ..., OPn sú jed- r .

notkové vektory také, že body 1, 2, ...,n, ležia 41
všetky v rovině obsahujúeej priamku / ajnachádzajú sa
všetky po tej istcj straně tejto priamky. ^j.^

/ЛГЧЪIpPi + OP2 + • • \+ OPJ ^ 1,
у/ V- >

tdé |OM| znamená dížku vektora OAÍ. (ČSSR, 6 bodov)
r”*" ^ ' ~ —76*-2.Rozhodnite, či existuje v trojrozmernom priestore
konečná množina M ^©aostávajúea z bodov neležiacich
v jednej rovině, ktorá má nasledujúcu vlastnost’:

Ku každým dvom bodom А, В 6 M existujú body C,
D e M tak, že priamky AB a CD sú rovnoběžné a nesplý-
vajú. {Polsko, 6 bodov)

-41.3.Nájdite minimálnu hodnotu súčtu a2 + 62, ;ak a, 6
sú reálne čísla pre ktoré má rovnica

I ЛлЛ.'Гл:4 + ах3 4- bx2 4- ал: + 1 = О

(Švédsko, -8 bodov)4.Ženista má preveriť, či_sa_vyskytujú miny na po-
zemku, -ktorý má tvar'rovnostranného trojúholníka/(vrá-
tane jeho hranice). К dispozícii má detektor,’ poloměr
účinnosti ktorého sa rovná polovičnej výške trojúholníka.
Na prieskum vychádza z niektorého vrcholu trojúholníka.
Akú cestu si má zvolit’, aby prešiel najmenšiu možnú
vzdialenosť a preskúmal přitom celý pozemok?

{Juhoslávia, 6 bodov)

aspoň jeden reálny kořeň.
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5. Neprázdná množina G nekonštantných funkcií /
leálnej premennej x tvaru f(x) — ax + b, kde а Ф 0,
b sú reálne čísla, má nasledujúce vlastnosti:

a) ak/, g g G, potom g of e G, kde (g of) (x) = g(f(x));
b) ak / e G, kde f(x) = ax + b, potom tiež inverzná

funkcia /_1 e G, kde f~\x) =

c) ku každej funkcii/ e G existuje xf tak, že f{xf) = xf.

Dokážte, že existuje ( k 4aké^ že f(Jk)
feG.

v -U'
T

= k pre všetky
(Polsko, 6 bodov)

6. Je daných n kladných reálných čísel at, <z2, ..., an
a reálne číslo ^-také, ze 0 < q < 1. ——

Nájdite n reálných čísel Ьг, b2y ..., bn s týmito vlast-
nosťami:

a) ak < bk pre všetky k

b)q<
bk

c) by + b2 + ... + bn <

1,2, ..., w,
1fc+i

— pre všetky k — 1, 2, .. ., n 1,<

1 + Я
• • • + tfw).(<h ci2

q

(Švédsko, 8 bodov)
1

V zátvorke za textom úlohy je uvedená krajina, ktorá ju
navrhla a počet bodov, ktorým jury rozhodla hodnotit’
jej úplné riešenie. Tu uvedená formulácia úloh je přesným
prekladom oficiálnej formulácie v ruskom a anglickom
jazyku. Formulovanie textov úloh je už tradičné jednou
z časové najnáročnějších povinností jury. I tentoraz si — aj
napriek tomu, že sa oficiálna formulácia textov schvalo-
vala len v spomínaných dvoch jazykoch — vyžiadala celé
nedelné predpoludnie (8.7.). Kedze ešte v nedelu do ve-
čera bolo třeba rozmnožit’ texty úloh v potrebnom počte
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exemplárov v jazykoch jednotlivých krajin a na túto prácu
boli vedúci delegácií tentoraz sami, neuskutočnila sa ani
plánovaná návštěva Kremla.

Jednotlivé druzstvá na čele s pedagogickými vedúcimi
prichádzali do Moskvy v sobotu 7. 7. Ubytovaní boli
v hoteli Universitetskaja, pričom na rozdiel od posledných
troch MMO boli pedagogickí vedúci ubytovaní spolu
s družstvami, kým vedúci delegácií bývali v hoteli Ukra-
jiná na kutuzovskom prospekte.

V nedelu predpoludním sa žiaci a pedagogickí vedúci
zúčastnili na autobusovej exkurzii po Moskvě a popoludní
oddychovali.

Slavnostně otvorenie súťaže sa konalo v pondelok 9. 7.
o 09,30 hod. v aule 68. špeciálnej strednej školy. Po krát-
kom neformálnom prejave předsedu XV. MMO prof. A. I.
Markuševiča sa žiaci rozišli do 8 tried, aby riešili prvé tri
úlohy počas štyroch hodin čistého času. Ako je to na MMO
obvyklé, nedozvěděli sa bodové hodnotenie za úplné rieše-
nie jednotlivých úloh a na rozdiel od XIV. MMO mali
možnosť po prečítaní textov vyjsť na chodbu a požiadať
vedúcich delegácií, ktorí tam čakali, o vysvetlenie prí-
pádných nejasností v texte.

Po otvorení súťaže sa uskutočnilo prvé spoločné zasad-
nutie jury so sovietskymi koordinátormi, na ktorom sa
predbežne prediskutovali riešenia prvých troch úloh a ich
hodnotenia. Na tomto zasadnutí sa zúčastnili tiež peda-
gogickí vedúci jednotlivých družstiev, ktorí potom spolu-
pracovali s vedúcimi delegácií pri hodnotení žiackych
riešení. Tým došlo к porušeniu tradicie posledných rokov
i pokial’ ide o izoláciu vedúcich delegácií od tých, ktorí
prichádzali do styku so žiakmi, až do druhého dňa súťaže.

S hodnotením riešení prvých troch úloh sa začalo hned’
v pondelok popoludní, zatial čo žiaci absolvovali výlet
lodou po rieke Moskvě.

Druhů trojicu úloh riešili žiaci v utorok 10. 7. а к dispo-
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zícii mali opáť štyri hodiny čistého času s možnosťou
dostat’ vysvetlenie к případným nejasnostiam v texte
krátko po obdržaní textov. Po otvorení druhého dňa sú-
ťaže sa opáť konala diskusia členov jury a pedagogických
vedúcich s koordinátormi o riešeniach druhej trojice úloh
a po nej pokračovalo hodnotenie riešení a koordinácia
hodnotení. Tejto práci boli věnované i nasledujúce dva
dni (11. a 12. 7.). Trojčlenné skupiny koordinátorov pre
jednotlivé úlohy viedli: 1 — Andrej Leontovič, 2 — Andrej
Toom, 3 — Viktor Gutenmacher, 4 — Andrej Jegorov,
5 — Leonid Mitjušin, 6 — Georgij Dorofejev. Vedúcim
celej skupiny koordinátorov bol Nikolaj Vasiljev a nie-
kolkí z koordinátorov boli bývalí účastníci MMO. Svojej
úlohy sa zhostili velmi úspěšně a nedošlo prakticky к žiad-
nym váčším nedorozumeniam medzi nimi a vedúcimi
delegácií.

Závěrečné zasadnutie jury sa konalo v piatok 13. 7.
predpoludním. Po schválení bodových hodnotení jed-
notlivých účastníkov rozhodlo o stanovení hraníc pre
jednotlivé ceny takto: I. cena 40 — 35 bodov, II. cena:
33 — 27 bodov (34 bodov nezískal nikto), III. cena:
26—17 bodov. Pri stanovení hranice pre tretie ceny
zohrala váznu úlohu skutočnosť, že najlepší kubánsky
účastník získal 17 bodov. Celkom bolo udělených 5 prvých,
15 druhých a 48 třetích cien, tj. spolu 68 cien, čo je cca
o 6 viac ako polovica z celkového počtu účastníkov
XV. MMO, ktorých bolo 125. V ďalšej časti zasadnutia sa
diskutovalo o jednotlivých úlohách z hladiska udelenia
špeciálnych cien autorom originálnych a zvlášť elegant-
ných riešení. V tomto smere bola jury tohto roku skúpa,
pretože z niekolkých návrhov na špeciálne ceny předlo-
zených vedúcimi delegácií, resp. koordinátormi, ani jeden
neprešiel.

Na závěr zasadnutia sa přihlásil o slovo vedúci dele-
gácie NDR prof. dr. Helmut Bausch, ktorý pozval všetky
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zúčastněné krajiny na XVI. MMO, ktorú hodlá uspo-
riadať NDR v Erfurte od 4. do 17.7. 1974, pričom záve-
řečný ceremoniál sa bude konať v Berlíne. Všetkým dele-
gáciám rozdal návrh štatútu XVI. MMO a rámcový pro-
gram súťaže. Jeho pozvanie sa střetlo so súhlasom vset-
kých členov jury.

V piatok 13. 7. vo večerných hodinách přijal vedúcich
delegácií vo svojej pracovni viceprezident Akadémie peda-
gogických vied ZSSR a předseda organizačného výboru
XV. MMO Alexej Ivanovic Markuševič. V srdečnej be-
sede sa hovořilo o výsledkoch XV. MMO i o niektorých
otázkách organizácie budúcich MMO. Vedúci francúz-
skej delegácie předložil návrh, aby sa stanovili tieto zásady:
a) žiaden žiak sa nemóže zúčastnit’ MMO viac než dva-
krát, b) ten žiak, ktorý na MMO získá I. cenu, sa viacej
nemóže na MMO zúčastnit’, c) na MMO sa nepovoluje
účast’ žiakov starších ako 19 rokov. Stánoviská vedúcich
delegácií к týmto návrhom sa značné rozchádzali a ako
z besedy vyplynulo, pri prípadnom hlasovaní by bol získal
váčšinu iba třetí návrh. Před svojím odchodom obdržali
vedúci delegácií od zástupců hlavného redaktora soviet-
skeho populárno-vedeckého časopisu „Kvanť1 M. L.
Smoljanského kolekciu čísel tohto časopisu s věnováním
členov red. rady prof. Kolmogorova a prof. Markuševiča.

Kým vedúci delegácií so svojimi zástupcami (ped. ve-
dúcimi družstiev) hodnotili liešenia a koordinovali hod-
notenia, mali žiaci možnost’ návštěvy múzea A. S. Puškina
s bohatou kolekciou obrazov a iných uměleckých diel
(10. 7. popoludní), navštívili dědinu Archangel’skoje
(11.7.), boli v mauzoleu V. I. Lenina (12.7.) a prehliadli si
Výstavu úspechov národného hospodárstva ZSSR ako aj
nádvoria a paláca Kremla (13. 7.).

V sobotu 14. 7. bola spoločná exkurzia všetkých účast-
nikov XV. MMO do Zagorska. (Pravoslávna cirkevná
architektúra, historický kláštor Troicko-sergijský.)
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Slávnostné zakončeme olympiády sa uskutočnilo v ne-
dělu 15. 7. o 11.00 hod. vo velkej sále Paláca pionierov.
Okrem súťažiacich žiakov, členov jury a členov organizač-
ného výboru XV. MMO sa na ňom zúčastnila tiež sekre-
tárka moskovského výboru Komsomolu a niekolko dalších
hostí. Závěrečný ceremoniál riadil předseda organizač-
ného výboru XV. MMO prof. A. I. Markuševič, ktorý
v úvode predniesol krátký neformálny přejav. Po ňom
prehovoril zástupca hlavného redaktora časopisu „Kvanť
pre matematiku M. L. Smoljanskij, ktorý vyzval přitom-
ných študentov к spolupráci s týmto populárno-vedeckým
časopisom. Za zahraničných účastníkov XV. MMO pre-
hovořil vedúci delegácie NDR prof. dr. H. Bausch, ktorý
poďakoval sovietskym hostitelom za velmi dobrú organi-
záciu i napriek krátkému času, ktorý mali na přípravu,
připomenul blížiaci sa X. světový festival mládeže a štu-
denstva v Berlíne a na závěr opátovne pozval všetky zú-
častnené delegácie na XVI. MMO do NDR. Ako posledný
sa ujal slova předseda jury prof. Ivan Jakovlevič Verčenko,
ktorý blahoželal účastníkom olympiády к dosiahnutým
výsledkom a spolu s akad. А. I. Markuševičom a podpred-
sedom jury I. S. Petrakovom odovzdal najlepším 68 účast-
nikom XV. MMO diplomy a knižné odměny. Ostatným
žiakom odovzdali potom účastnické diplomy a knižné
darčeky od organizátorov vedúci jednotlivých delegácií.

V nedelu večer o 19,00 hod. sa konala v reštaurácii
hotela Universitetskaja závěrečná spoločná večera, počas
ktorej vládlo v sále srdečné a radostné ovzdušie. Přípitky
predniesla za hostitelov členka organizačného výboru
XV. MMO s. Maslovova a v mene zahraničných účastní-
kov poďakoval členom organizačného výboru za vydarenú
organizáciu olympiády, ktorej sa zúčastnil rekordný počet
krajin, vedúci švédskej delegácie prof. dr. Ake Samuelson.

Už před zahájením večere opustili však dejisko
XV. MMO delegácie Juhoslávie a Mongolská a v priebehu
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pondělka 16. 7. sa rozchádzali do svojich domovov
iw ostatné zahraničně delegácie. Desatclennú výpravu
ČSSR odvázalo lietadlo ČSA zo šeremetevského letiska
do Prahy v pondelok o 14,15 hod.

Ako to neraz konstatovali zúčastnění delegáti, mala
moskovská olympiáda predovšetkým pracovný charakter.
I napriek kratšej době, ktorú mali organizátoři к dispozí-
cii, bola po odbornej stránke připravená dobré. Spoločen-
skej stránke bola tentoraz věnovaná menšia pozornost’ než
před rokom v Polsku, či před dvorná v ČSSR. Je to
pochopitelné, ak si uvědomíme, že v oboch zmienených
prípadoch sa MMO konala mimo hlavného města, zatial
čo vo viac než šesťmiliónovej Moskvě bola jedným z mno-
hých medzinárodných podujatí, ktorým svojím význa-
mom ani publicitou nemohla konkurovat’. Za všetky stačí
spomenúť aspoň dve: súčasne prebiehajúci VIII. moskov-
ský filmový festival a pripravovanú VII. letnú univer-
ziádu.

2. VÝSLEDKY SOTÁŽE A NIEKOEKO SLOV
К NIM

Pri výbere úloh nemáva obvykle jury MMO šťastnú
ruku. Výnimkou sa, žiaí, nestala ani XV. MMO. Za
velmi vhodné vo vyššie uvedenom výbere súťažných úloh
možno označiť prvú, štvrtú a snáď i tretiu a po dlhých
diskusiách zaradenú značné preformulovanú piatu úlohu.
Medzi ne sa však vlúdili pre žiakov značné nezvyklá druhá
a siesta úloha vyžadujúce konštrukciu příkladu. Hlavně
pri šiestej úlohe išlo o konštrukciu z hladiska stredoškolá-
kov umelú a převážná váčšina účastníkov sa s ňou nedo-
kázala vyporiadať. Výběru úloh nepomohlo teda ani to,
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že členovia jury sa nemohli spoliehať na riešenia autorské,
ale hladali vlastně, Na ich ospravedlnenie nech slúži to,
že nemalí prakticky z čoho vyberať.

Ako sa s jednotlivými úlohami vyporiadali súťažiaci,
ukazuje tabulka, ktorá udává, kolko z nich dosiahlo prí-
slušný počet bodov za riešenie jednotlivých úloh:

Úloha Úloha Úloha Úloha
č. 3 č. 4

Úloha Úloha
Počet bodov č. 5č. 1 č. 2 č. 6

42 108

7 4 2

37 48 8 38 62 26

4 225 6 6 3 3

4 20 2 34 3 4

3 5 6 1 10 14

22 14 0 9 9 2

11 15 2 15 8 17

0 14 38 10145 65 33

Následujúca tabulka nám ukáže, aký bodový zisk za-
znamenali za riešenia jednotlivých úloh zúčastněné druž-
stvá. V jej poslednom štipci je uvedené neoficiálně poradie
družstiev podlá súčtu získaných bodov.
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Súčet bodov,ktoré družstvo získalo za:

IPŽ&t> o

oo л

Krajina úl. úl. | úl.
č. 5 I č. 6

úl. úl. úl.
č. 1 č. 2 č.3 č. 4

A — Rakúsko 2315 48 43 15 144 8.0

BG — Bulhar- 12.-
25 96 13.sko 16 19 06 30

C — Kuba 139 0 16.426 3 11

CS - ČSSR 2716 7 149 7.11 57 31

D - NDR 39 40 14 3.18818 31 46

F — Francúzsko 18 42 16 6.2813 36 153

GB - Vel. Bri-
tánia 5.17 24 2530 38 16430

H — Maďarsko 11 2.34 50 4531 44 215

M — Mongol-
sko 10 21 12 12 0 65 15.10

NL - Holand- 12.-
sko 2 279 17 8 96 13.33

PL - Polsko 35 37 42 8 174 4.1636

R — Rumun-
sko 29 14130 43 13 8 9.18

S — Švédsko 28 11.14 14 21 9912 10

SF — Finsko 5 16 17 17 86 14.31 0

SU - ZSSR 35 47 48 25441 53 30 1.

YU — Juhoslá-
via 20 6 50 20 4 137 10.37
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К ešte lepšiemu posúdeniu výsledkov dosiahnutých
jednotlivými družstvami určité poslúži tabulka rozdelenia
jednotlivých cien:

а
Ph pí

o CQ PC/3 №Cena a
C/3

o XQ< W i и >*и pq сл C/3(Z)

I. 3 51 1

2 15II. 1 3 3 2 1 1 2

III. 1 4 1 486 1 4 4 1 5 5 1 2 3 2 3 5

Spolu 66 1 1 5 4 6 8 1 2 4 2 2 8 5 687

O prvé tri miesta sa teda opáť podělili, tak ako na před-
chádzajúcich siedmich MMO, družstvá ZSSR, Maďarska
a NDR. Bodový rozdiel medzi ZSSR a Madarskom sa
však v porovnaní s minulým rokom značné zvýšil, čím
sovietske družstvo suverénnym sposobom obhájilo svoje
vlaňajšie prvenstvo. Jeho suverenitu potvrdzujú nielen tri
prvé ceny z piatich získané sovietskymi žiakmi, ale aj
výsledky v jednotlivých úlohách, keď ho iba o málo před-
stihlo v prvej úlohe družstvo NDR a v tretej úlohe
družstvo ČSSR. Družstvá Velkej Británie a Polska po-
tvrdili svoj Standard z posledných rokov. Za velmi prí-
jemné prekvapenie možno označit’ družstvo Francúzska,
ktoré po ročnej prestávke vyslalo na MMO výběr z ví-

/ ťazov Concours généralfa. Mierne sa zlepšilo naše druž-
stvo, čím sa mu podařilo zaujat’ popredné miesto medzi
už tradičné vyrovnanými družstvami středu. Menej
príjemne překvapilo Rumunsko, ktoré dosiahlo snáď svoj
najhorší výsledok v celej historii MMO. Družstvo Finska
po debute na VII. MMO sa zúčastnilo súťaže po druhý
raz a hned’ poměrně úspěšně. Za úspěch možno považo-
vať aj výsledok nekompletného družstva Kuby, ktorého
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Krajina Vedúci delegácie Pedagogický vedúci

A - Rakúsko prof. Thomas Múhlgass- prof. Wolfgang Ratzin-
ner ger

BG - Bulharsko prof. IvanProdanov Dimo Serafimov Ange-
lov

C - Kuba prof. Luis Davidson F. Recio

CS - ČSSR RNDr. Jozef Moravák,
CSc.

Jiří Mída

D-NDR prof. dr. Helmut Bausch prof. dr. Gustav Burosch

F - Francúzsko prof. dr. G. Glaeser prof. dr. Deschamps

GB - Velká
Brit. prof. Frank Budden

H - Maďarsko prof. Endre Hódi dr. József Pelikán

M - Mongolsko prof. U. Sanžimjatav G. Dagva

NL - Holandsko J. van der Graatsprof. Ary van Tooren

PL - Polsko dr. Maciej BryňskiMgr. Andrzej Mqkowski

R - Rumunsko prof. Constantin Ottescudr. Ioán Cuculescu

S - Švédsko Stig Westlundprof. dr. Ake H. Samu-
elsson

SF - Finsko Jarkko Leino Jarmo Nystróm

SU-ZSSR doc. Valentin A. Skvorcov Lilija Paskova

Djordje DugošijaYU - Juhoslávia dr. Vladimír Mičic
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pricmerný výslcdok na žiaka (8,4 b.) jc lepší než prie-
měrný výsledok mongolského družstva (8,125 b.). Tretia
cena, ktorú získal naj lepší kubánsky žiak, bude určité
povzbudením pre dalších reprezentantov prvého socia-
listického státu na americkom kontinente.

V zložení vedúcich delegácií došlo v porovnaní s před-
chádzajúcim rokom len к niekolkým změnám. Skúsenosti
z práce jury a dobré vzájomné poznanie váčšiny členov
jury přispěli к jej úspešnej práci i к tomu, že sa v jej
rokován1' nevyskytli žiadne rušivé momenty.

3. К ČESKOSLOVENSKEJ ÚČASTI NA XV. MMO

^ Družstvo ČSSR pre XV. MMO vybralo předsednictvo
ÚVMO ma závěr sústredenia, ktoré sa konalo 25,—30. 6.
1973 v Prahe-Malešiciach. Vychádzalo přitom z výsled-
kov, ktoré dosiahli jednotliví žiaci v III. kole a v II. kole
XXII. ročníka MO, v priebehu sústredenia a pri svojej
prípadnej predchádzajúcej účasti na MMO. Zoznam čle-
nov družstva spolu s dosiahnutými výsledkami viz tabul’-
ka (str. 199).

Výsledky, ktoré družstvo dosiahlo — ako už bolo vyššie
spomenuté — sú relativné dobré. Od X. MMO, ktorá
bola zhodou okolností taktiež v Moskvě, nezískal žiaden
čs. účastník na MMO lepšiu ako 3. cenu. Vo svetle tohto
faktu je tedy Ferstova druhá cena nesporným úspechom.
Na druhéj straně si však třeba uvědomit’, že traja členovia
družstva (Horák, Kmošek, Vrťo) sa zúčastnili na MMO
už třetí raz a pre dalších troch (Ferst, Slačálek, Šimša)
bola moskovská olympiáda ich druhou MMO. Až na
Fersta (ktorý bol mimochodom vláni v Toruni najhorší
z našich a získal len 5 bodov) a Kmoška sa skúsení repre-
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Počet bodov za rieš. ul. 3%Škola a triedaPor. Měno žiaka Cena&■§
1 2 3 4č. 5 6 OO ,C

1. Ferst Pavel 3d, gymn.
Praha 3,
Sladkovského
nám. 61 8 1 6 7 II.29

2. Horák Karel 4b, gymn.
Strakonice 0 6 40 1 0 11

3. Chrz Tomáš 4f, gymn.
Praha 2,
ul. W. Piecka 5 4 III.3 8 1 0 21

4. Kindlmann
Pavel

3a, gymn.
České
Budějovice 2 0 6 III.7 6 0 21

5. Kmošek
Miroslav

4a, gymn.
Brno,
tř. kpt. Jaroše 6 0 3 0 III.8 6 23

6. SlačálekPetr 3f, gymn.
Praha 2
ul. W. Piecka 52 0 4 1 0 12

7. Šimša Jaro-
mír

3b, gymn.
Ostrava,
Šmeralova 1 0 8 4 III.0 6 0 18

8. Vrťo Imrich 4. tr. gymn.
Rimav. So-
bota 02 0 8 4 0 14

Družstvo
celkom 57 31 27 7 14916 11
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zentanti neprcsadili. Příjemným překvapením je výsledok
oboch nováčkov družstva, ktorí získali svorné po 21 bodov
a tretiu cenu. Najlepšie si naši žiaci poradili s trefou úlo-
hou, kde viedlo к ciel’u rutinně riešenie rovnic a nerov-
ností. Poměrně dobrý je výsledok v štvrtej úlohe, kde však
viedli к zbytočným bodovým stratám nedóslednosti pri
dokáže minimálnosti cesty, resp. pokrytia. S trochu ne-
zvyklou piatou úlohou si poradili len štyria, ale ešte horší
je výsledok v prvej úlohe — československej. Tu sa uká-
žala pre našich žiakov handicapom znalost’ komplexných
čísel. Niekolkí totiž upravili dokazovanú nerovnost’ na
ekvivalentnú nerovnost’ pre súčet kosínov, s ktorou si už
nevedeli rady. Nevyhovujúci výsledok v šiestej úlohe ne-
překvapuje, ale zaráža to, že pri druhej úlohe sa až štyria
z našich snažili dokázat’ sporom neexistenciu množiny
požadovaných vlastností, pričom traja boli dokonca pre-
svědčení, že sa im to podařilo. V riešeniach našich žiakov
sa až příliš často objavujú nepřesnosti vo vyjadřovaní,
rožne okřídlené formulácie (1’ahko sa dokáže; z obrázku je
zřejmé; apod.), nedoslednosť a nedostatok vytrvalosti.
Na odstránenie týchto neduhov sa bude třeba zamerať
pri práci s matematickými talentami, ak chceme, aby toho
v budúcnosti dokázali viac

Za úspěch ČSSR možno považovat’ aj to, že do širšieho
výběru 14 úloh přípravná komisia zařadila dokonca dve
československé úlohy, z ktorých velmi pěkná úloha prof.
Fiedlera bola nakoniec přijatá. К úspěchu práce jury
přispěla československá delegácia viacerými konštruk-
tívnymi návrhmi a neocitla sa ani raz v konfliktnej
situácii, akých bolo na XV. MMO celkove velmi má-

Po spoločenskej stránke reprezentovalo družstvo ČSSR
velmi dobré. Tvořilo jednoliaty kolektiv so zmyslom pre
poriadok a disciplinovanosť. Všetci jeho členovia si odná-
šali z hlavného města ZSSR tie najlepšie dojmy.

a nielen na MMO.

lo.
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4. RIEŠENIA SÚŤAŽNÝCH ÚLOH

RIEŠENIE 1. ÚLOHY

Nech n je nepárne číslo. Tvrdenie dokážeme matema-

tickou indukciou. Pre n — 1 zrejme platí \OPx\ = 1.
Nech pre nějaké n platí \OPx + OP2 + ... + OPn| ^

^ 1. Uvažujme o n + 2 jednotkových vektoroch OP0,

OP\-> • • • 5 OPn, OPn+1)
= 0,1, + 1, ležia v uvedenom poradí zlava do-
prava na polkružnici k so stredom v bode O a polomerom 1

ktorých koncové body Pb i =

(pozři obr. 71). Nech OR = OPx + OP2 + ... + OPn.

S

/
к

P2 Y- Pn-1
fnPo Pn+1 l

o

Obr. 71

Vektor OR leží zrejme vo vnútri uhla <£ PxOPn a podlá
předpokladu platí \OR\ ^ 1. Označme ОТ = OP0 +

+ OPn+v Potom OS = 2 OPl= OR + ОТ. Nech
i—0

a = <£ TOR. Zrejme platí 0 ^ a ^ <£ TOPn+x —
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= -j^P0OPn+1 < Ak a = O, potom \OS\ = \OR\ +
+ |ОГ|^1.АкО< a < ~, je 1051 >\OR\ ^ 1, pretože
uhlopriečka rovnoběžníka vychádzajúca z vrchola, pri kto-
rom je ostrý uhol, je dlhšia ako Iubovolná z jeho stráň.

Tým je tvrdenie dokázané.

RIEŠENIE 2. ÚLOHY

Odpověď na položenu otázku je pozitivna, ako ukazuje
nasledujúca konštrukcia: Nech A1B1C1D1A2B2C2D2 je
jednotková коска. Označme střed steny А{В{СгВ{,
i = 1, 2, a na priamke ТгТ2 zvolme body Sl3 S2 (pozři
obr. 72) tak, aby platilo T1S1 — T2S2 = -y. Potom mno-
žina

M — {A13 Bl3 C13 D13
SX3 A2j B2, C2, D2, č>2}

má požadované vlastnosti,
ako sa 1’ahko přesvědčíme.
Tak napr. pre priamky ur-
čené bodom Ax a 1’ubovol’-
ným iným bodom mno- A2
žiny M platí: AXBX \ \ A2B2i
AiCi 11 A2C2) АЛ 11A2D2,
AxA2 11 SxS23 AxB2 i i dxc2,
ЛХС2 i IA2S2, axd2 i i bxc2,
^1^1 11 Č>2C2, ^1^2 11 C2SX.
Pre 1’ubovol’ný iný vrchol
коску je situácia analogi-
cká. Pre priamky určené
bodom S& resp. Š2al’ubo-
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volným iným bodom množiny M okrem už uvedených
vyššie platí || S2D2i SjQ || S2A2, SjA || S2B2,
^1^2 II 52Q, S1B2 И S2D13 ‘S’j-Dji || S2B1.

INÉ RIEŠENIE (T. CHRZ - upravené): Nech Qi o
sú na seba kolmé roviny a p priamka, v ktorej sa pretínajú.
Nech je pravidelný šesťuholník ležiaci
v rovině q tak, že Ax e p, Aá e p а Л1Б2БзЛ4Б5Б6 s ním
zhodný pravidelný šesťuholník ležiaci v rovině a (obr. 73).

í3

\

N/
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Potom množina M = {A13 A2, A3, A43 A5, A6, B2, B3,
B5, B6j má požadované vlastnosti. Je zřejmé, že vrcholy
každého zo šesťuholníkov majú žiadané vlastnosti. Sta-
čí sa preto presvedčiť s prihliadnutím na symetriu, či
existuje rovnoběžka určená bodmi množiny M ku každej
priamke určenej niektorým z bodov B2, B3, B5, B6 a 1’ubo-
volným z bodov A2, A3, Л5, A6. Zrejme platí: B2A2 ||
II B5A5) B2A3 II B5A6} B2A5 И B5A2) B2A6 II B5A3; pre
body B3, B6 je situácia analogická.

RIEŠENIE 3. ÚLOHY

Nech x0 je reálny kořeň rovnice
x4 + ax3 + bx2 + ах + 1 = 0 .

Potom zrejme x0^Oa platí
(1)

xl + ax0 + b + a —
*0

čiže

(Л:° я*-)(2) + b — 2 = 0.

1
Z (2) je zřejmé, že spolu s л;0 tiež —

rovnice (1). Číslo 3>o = *o + — 5 Pre ktoré platí |jy0| ^ 2
je však v takom případe reálným koreňom rovnice

y2 ay b — 2 = 0.
Rovnica (3) má reálne kořene vtedy a len vtedy, ked platí
a2 - 46 + 8 ^ 0
čiže

je reálným koreňom

(3)

1
(4) ‘Sl^ + 2.
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Nech platí (4). Rovnica (1) bude mať reálny kořeň vtedy
a len vtedy, keď pre aspoň jeden z reálných koreňov

a +1/a2 — 46 + 8a - ]/a2 - 46 + 8 < = +ŽУ1 = 2 2

rovnice (3) platí \yt\ ^ 2. Zistime, kedy bude táto pod-
mienka splněná. Móže tak byť buď pre

]/a2 — 46 + 8—a —
— 2 číže

2

4 — a ^ ]/a2 — 46 + 8, z čoho pre a ^ 4 máme
b^2a-2(5)

alebo pre

-a + 1/a2 - 46 ~+ 8 + 2 číže ]/a2 — 46 + 8 ^ a + 4,2

z čoho pre a ^ — 4 dostaneme
6 + —2a — 2 .(6)

Znázorníme si množinu bodov (a, 6) vyhovujúcich pre
ae<-4;4) nerovnostiam (4), (5), resp. (4), (6) v rovině
s použitím kartézských súradníc (pozři obr. 74).

К tomu, aby sme našli minimum súčtu a2 + 62 tých
koeficientov a, 6, pri ktorých má rovnica (1) aspoň jeden
reálny kořeň, stačí vypočítat’ vzdialenosť OTx = 07+
kde T13 T2 sú dotykové body kružnice so stredom v bode
(O, 0) s priamkami pv p2 (obr. 74).

Zrejme platí 5 . OT\ = 4 čiže ОТ\ — ^= min (a2 + 62).
Pre a = 4, 6 = —% je a2 + 62 = ~ a rovnica (1) má5 5 5

4 ,

j’b
2

dvojnásobný kořeň x= — 1; pre a = — 5
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4
je tiež a2 + b2 = у a rovnici (1) vyhovuje ako dvojná-
sobný kořeň x = 1.

RIEŠENIE 4. ÚLOHY

Označme A, B3 C vrcholy skúmaného rovnostranného
trojuholnika, pričom východiskový bpd prieskumnej
cesty ženistu označíme A. Nech a je dížka strany troj-
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.Ь
= k (В; a), kc = Л(С;

a) (obr. 75). Je zřejmé, že к tomu, aby ženista preskúmal4

uholníka ЛВС. Označme k

W

кв

body В, resp. С, musí sa na svojej ceste z vrcholu^ dostat’
do niektorého bodu na kružnici kBi resp. kc. Ďalej je
zřejmé, že ak ženista dosiahne nějaký bod X kružnice kB,
potom najkratšou cestou na kružnicu kc bude příslušná
časť úsečky XC. Označme Sx, S2, S3 v uvedenom poradí
středy stráň AB, BC, CA trojuholníka ABC a T prieseč-
nik výšky BS3 s kružnicou kB. Bod T je zrejme zároveň do-
týkovým bodom priamky SXS2 a kružnice kB. Nech U je
priesečník úsečky TC s kružnicou kc. Ukážeme, že lomená
čiara ATU je híadanou najkratšou cestou, po ktorej že-
nista splní svoju úlohu.
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Nech A' je symetrický obraz bodu A vzhladom na os
S1S2. Kedze trojuholníky ATSX a CTS2 sú zrejme zhodné,
platí ATSX = <£ CTS2 — A'TS1 a priamky A'T,
TC sú totožné. Ak X je 1’ubovol’ný bod na kružnici kB,
potom zrejme platí: AX + XC ^ ZTX + XC ^ A'T f
-f- TC — AT + ГС, pričom rovnost’ nastane právě
vtedy, keď X — T. Z toho vyplývá, že lomená čiara Л ГС/
je najkratšou cestou z vrcholu Л na kružnicu kc cez bod
na kružnici kB.

Zostáva nám ešte dokázat’, že přej děním tejto cesty pre-
verí ženista celý trojuholník ABC. Označme P, resp. R
patu výšky z vrcholu S33 resp. 513 v trojuholníku AS3T,

1
resp. AS±T. Zrejme je S3P < S3T, SLR < S±T — -r-a <4

A3P. Z toho vyplývá, že po ceste ATpreverí
ženista vnútro i hranicu štvoruholníka AS1TS3 a kedze

TS, = TS2 = \a< ТВ
trojuholníka SXBS2. Označme V, resp. W, patu kolmice
spustenej z bodu U na priamku BC, resp. CA. Zrejme
platí UV < TS2 a UW < TS3. Po ceste TU preverí
preto ženista vnútro i hranicu štvoruholníkov TUVS2
i TUWS3i pričom body V, resp. W, ležia zrejme vo vnútri
úsečky KC, resp. LC, kde К, resp. L, je priesečník kruž-

1/3nice kc s úsečkou BC, resp. CA. Nech kv = k^Uí^-r-a)4

a M, N sú priesečníky kružnic kc, kv (pozři obr. 75). Kedze
oblúk MN kružnice prislúcha středovému uhlu 120°
a oblúk KL tejto kružnice, vo vnútri ktorého leží bod U,
prislúcha středovému uhlu 60°, je výseč CKL časťou vý-
seče CMN, z čoho vyplývá, že z bodu U preverí ženista
tiež vnútro i hranicu celej výseče CKL. Tým sme sa

<a
4

TS3, tiež vnútro i hranicu
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přesvědčili, že z lomenej čiary ATU preverí ženista celý
pozemok.

Riešením úlohy je tiež lomená čiara z vrcholu A na
kružnicu kB cez kružnicu kc, ktorá je súmerná s lomenou
čiarou ATU podlá osi AS2.

RIEŠENIE 5. ÚLOHY

Nech /, g e G, f(x) — ax + 6, g(x) = ax + c. Potom
podlá vlastností a), b) tiež g o/-1 eG,pričom g\f~\x)]=

X-- ^ c = x — b + c. Podlá c) však musí byť
potom — b + c — 0 čiže c = b. To znamená, že pre
/ e G, f(x) = ax + b je b jednoznačné určené číslom a,
označme b = 99(a). Pre/ : f(x) — ax + 99(a) existuje podlá
c) xf tak, že xf = axf + 99(a). Z toho dostaneme
(1 — a) xf — 99(a) čiže platí buď a — 1, 99(a) = 0 а лу je
Libovolné reálne číslo alebo а Ф l a xf je jednoznačné
určené: xf

— a

99(a)
1 — a ’

Nech / : f(x) = ax + 99(a) а £ : g(x) — bx + 99(6) sú
Libovolné dve funkcie z G, pričom b Ф 1. Potom / o
o^eG :/[£(*)] = a(6x + 99(6)) + 99(a) = afot + a99(6) +
+ 99(a), ale tiež g o f e C : g[f(x)] = ú(az + 99(a)) +
+ тФ) — ^ax + b(p(a) + 9o(b). Na základe vyššie uvede-
ného však musí platit’: acp(b) + 99(a) = 699(a) + 99(6) čiže

99(a)(1 — ú)99(a) = (1 — a)99(6) а ak a ^ 1, potom 1 — a

1-6*

Tým je tvrdenie úlohy dokázané.
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RIEŠENIE 6. ÚLOHY

Čísla bk> к — 1, 2, .. .j и možno zvolit’ napr. takto:
bk = l 4" a2Qk i 4* • • • 4" ак~\Я 4~ #A; 4~ Як+гЯ 4- • • •

=
n-k•••+ anq

i=i

a) Zrejme platí > ak pre všetky k— 1, 2, ..n;
П

qbk =
i=1 1=1

w n—k

= 2^(^"+1_íl “ ?!*~ii+i) = 2a*+^_1 — í2) > °»
i = 1

z čoho vyplývá
°̂k

n

qbk+i — bk= q^atq

П

IA+1—í! _ I к i | _b) bk+1

i=1

> q pre k — 1, 2, ... j и — 1 .

П

i*-<i —i*+i-ťi

i = li = l

= * (?2 — 1) < 0, z čoho pre k = 1, 2, ..

hned’ dostaneme: bk+1/bk < 1/q .

n— 1• 5

í=i

n n n n

c) 2^ = 2(2а*?1^')<2а*(1+2?+2Я2+- .4-20n_1) =
fc=i ř=i ř = lA: = 1

n—1n—1 ?г

i

=2e‘(29'+29*)< t -j—?—+
l-g- q

i=11 = 1 i =0 fc = l

тг

1 + <? v
1 -?Zw

> .

i = l
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