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Předmluva

Milí mladí přátelé,

ve školním roce 1974/75 proběhl XXIV. ročník česko-
slovenské celostátní matematické olympiády a v Bulharsku
byla uspořádána XVII. mezinárodní matematická olym-
piáda. Československo se zúčastnilo všech až dosud koná-
ných mezinárodních matematických olympiád, avšak s umí-
stěním československého družstva v žebříčku účastnických
zemí nejsme spokojeni. Tento žebříček je sice neoficiální,
neboť mezinárodní matematické olympiády jsou podle svého
statutu soutěžemi jednotlivců, ale přesto pořadí jednotlivých
států ukazuje ne sice úroveň vyučování matematice, ale
spíše péči o matematické talenty v příslušném státě. Naše
družstvo se umísťovalo zpravidla kolem středu žebříčku,
v posledních letech klesá do dolní poloviny.

Uvažovalo se mnoho o této neradostné situaci a hledaly se

cesty к nápravě. Vznikly různé pomocné akce částečně podle
zahraničních vzorů: krátká přípravná soustředění reprezen-
tačních družstev, semináře pro zvláště schopné žáky, které
probíhají v Praze po větší část školního roku, individuální
péče o matematické talenty v mimopražských střediscích,
v poslední době byly zřízeny matematické třídy při několika
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gymnáziích s internáty a byl zorganizován tzv. korespon-
denční seminář, který je jakýmsi rozšířením pražského
semináře na mimopražské studenty a má zmenšit diskrimi-
naci v jejich přípravě.

Ale to vše se ukázalo prozatím slabé, i když o výsledcích
posledních opatření se dosud nemůžeme vyjádřit. Pocho-
pitelně, že při otvírání nových akcí se vždy znovu uvažovalo
o příčinách našich malých úspěchů. Nikdy jsme se nedomní-
váli, že máme méně schopnou mladou generaci než jiné
státy; mluvilo se však často obecně o méně kvalitní přípravě
našich žáků a v souvislosti s tím i o jejich menší nervové
stabilitě. Otevřeně řečeno jde o tzv. trému, zmatkaření,
dokonce panikaření, neschopnost umět překonávat částečný
neúspěch; zkrátka jde o komplex zaviněný často nedostateč-
nou sebejistotou, vědomím vlastních nedostatků. Před ně-
kolika lety při hodnocení výsledků v mezinárodní mate-
matické olympiádě padla slova „o nerovném boji amatérů
s profesionály44. Něco na tom je: amatér, který chce úspěšně
zápolit s profesionálem, musí mít při řádově stejných schop-
nostech stejně mnoho zkušeností; musí mít tedy také
podmínky, zejména časové, aby tyto zkušenosti nashromáž-
dil. Nechceme tu rozvíjet paralelu mezi soutěžením v mate-
matice a soutěžením v tělovýchově a sportu, ale alespoň
jedné obdoby bychom si měli všimnout: péče o špičkové
talenty musí vyrůstat z dobré masové základny. To znamená,
že bez pozvednutí obecné úrovně vyučování matematice
bude asi všechna péče o matematické talenty málo účinná,
neboť bude velmi obtížné objevovat a vyhledávat nadané
žáky. To je první styčný bod mezinárodních matematických
olympiád a masové výuky matematice.
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Druhá věc, která se týká jak špičkových talentů, tak
i všech žáků, jsou už zmíněné matematické zkušenosti.
Samozřejmě, že u talentovaných žáků hrají zkušenosti
mnohem větší, ne-li vůbec rozhodující roli. O jaké matema-
tické zkušenosti jde? Asi v menší míře jde o znalosti pojmů
a vět a o zkušenosti s jejich používáním; převážně půjde
o zkušenosti s pracovními metodami v oblasti školské
matematiky. Metody, kterých se užívá při dokazování, při
určování matematického objektu daných vlastností, obecněji
při řešení problémů, musí být dobře roztříděny a jejich uži-
vatel, např. řešitel úloh matematické olympiády, musí mít
dostatek zkušeností s jejich používáním, tzn. musí znát
dostatek situací, v nichž se dá ta která metoda s úspěchem
aplikovat. I zde bychom mohli velmi dobře sledovat obdobu
s myšlenkově náročnou prací některých dělnických profesí.
Čím dále tím více se ukazuje, že pracovní metody jsou ve
školské matematice a možná v matematice vůbec hybnou
pákou a klíčem к tvořivé práci.

Nashromáždění zkušeností na určité úrovni (např. na
úrovni talentovaného žáka střední školy) je podmíněno
vytrvalou prací, dostatkem času a soustředěním. Soustředit
se na určitou práci, např. na studium matematiky, vyžaduje,
aby byly к dispozici jisté delší souvislé časové úseky, v nichž
by studující mladý člověk nebyl rozptylován jinými povin-
nostmi. Možná, že úprava pracovního režimu v tomto směru
by rozřešila i dříve zmíněnou otázku nervové lability našich
reprezentantů na mezinárodní olympiádě.

Už také bylo řečeno, že nadaní a schopní mladí lidé jsou
bohatstvím národa, na nich bude v budoucnu záležet, v jaké
šíři a jak rychle se rozvine naše společnost. Jsme povinni
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věnovat dostatek péče všem, ale zvláštní péči nadaným
mladým lidem.

Na konci této trochu akademicky stylizované předmluvy
jsme v pokušení dát vám konkrétní úkol:

Zkuste vyhledat v oblasti středoškolské matematiky (bez
ohledu na její tradiční složky algebru, geometrii atd.) pro
každou z několika obecných pracovních metod aspoň tři
zcela rozličné příklady jejího použití. Pošlete-li nám svoje
práce, bude to jakási „volná soutěž“ mimo olympiádu. Výběr
situačních příkladů vám usnadní „ročníkové brožury MO“
popř. svazečky knižnice Škola mladých matematiků.

Navrhujeme vám tyto obecné metody: metoda souřadnic,
matematická indukce, zbytkové třídy, míra, rozklad zo-
brazení.

Mnoho úspěchů při studiu matematiky i při řešení
soutěžních úloh vám přeje

ÚV MO
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I. O průběhu XXIV. ročníku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadatelem soutěže XXIV. ročníku matematické olym-
piády byla opět ministerstva školství ČSR a SSR s Matema-
tichým ústavem ČSAV v Praze (MÚ ČSAV), s Jednotou
čs. matematiků a fyziků (JČSMF) a Jednotou slovenských
matematiků a fyziků (JSMF) za spolupráce s orgány Socia-
listického svazu mládeže (SSM). Protože připravovaný nový
statut MO nebyl dosud schválen, řídila se soutěž XXIV. roč-
niku MO opět podle statutu, který byl uveřejněn ve Věstníku
MŠK, roč. XIX, str. 126,127, směrnice 37 ze dne 30. IV. 1963.

Žáci soutěžili celkem ve čtyřech kategoriích: kategorie A
je určena pro žáky III. а IV. ročníků škol II. cyklu, kategorie
В pro žáky II. ročníků a kategorie C pro žáky I. ročníků
těchto škol. V kategorii Z soutěží žáci základních devíti-
letých škol, především žáci 9. ročníků. Bylo ovšem možné,
aby žák soutěžil i ve vyšší kategorii, než do které patřil.
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2. SLOŽENÍ ÚSTŘEDNÍHO VÝBORU
MA ТЕМА TICKÉ OL YMPIÁD Y

V červnu r. 1974 byl jmenován ministerstvy školství ČSR
a SSR nový ÚV MO s platností od 1. ledna 1974 ve složení:

Předseda: doc. Jan Výšin, CSc., MÚ ČSAV, Praha

1. místopředseda: doc. dr. Jozef Moravčík, CSc., VŠD,
Žilina

2. místopředseda: prof. dr. Miroslav Fiedler, DrSc.,
MÚ ČSAV, Praha

1. jednatel: Petr Fabinger, pedagogická fakulta KU, Praha
2. jednatel: dr. Jiří Mída, pedagogická fakulta KU, Praha
zástupce MŠ ČSR: Václav Šůla
zástupce MŠ SSR: Michal Žoldy
zástupce ÚV SSM: Jana Pomazalová, gymnázium, tř. kpt.

Jaroše, Brno

Ostatní členové:

Anton Auxt, KPÚ, Banská Bystrica
dr. František Běloun, KPÚ, Praha
doc. dr. Lev Bukovský, CSc., přírodovědecká fakulta UPJŠ,

Košice
František Hradecký, Praha
dr. Ivan Korec, CSc., přírodovědecká fakulta UK, Bratislava
doc. dr. Alois Kufner, CSc., MÚ ČSAV, Praha
dr. Vlastimil Macháček, pedagogická fakulta KU, Praha
Olga Maříková, gymnázium, Nad štolou 1, Praha 7
akademik Josef Novák, MÚ ČSAV, Praha
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Víťa-oslav Repáš, gymnázium, Novohradská ul., Bratislava
Stanislav Rypáček, gymnázium, Litoměřická, Praha 9
dr. Jiří Sedláček, CSc., MÚ ČSAV, Praha
Ing. Oldřich Skopal, gymnázium, tř. kpt. Jaroše, Brno
Jiří Šídlo, gymnázium, Nad štolou 1, Praha 7
Miloslav Šmerda, ZDŠ, Bílovice n. Svitavou
František Veselý, Praha
dr. František Zítek, CSc., MÚ ČSAV, Praha

Dalšími členy ÚV MO byli předsedové krajských výborů
matematické olympiády:

Praha: prof. dr. Václav Pleskot, ČVUT, Praha
Středočeský kraj: Ludmila Tréglová, gymnázium, Říčany
Jihočeský kraj: dr. ing. Lada Vaňatová, pedagogická fakulta,

České Budějovice
Západočeský kraj: Věra Rádiová, gymnázium, nám. Odbo-

rářů, Plzeň
Severočeský kraj: Vladimír Blažek, pedagogická fakulta,

Ústí nad L.

Východočeský kraj: Josef Kubát, VŠCHT, Pardubice
Jihomoravský kraj: dr. Petr Benda, VUT, Brno
Severomoravský kraj: prof. dr. Miloslav Zedek, přírodo-

vědecká fakulta UP
Bratislava: Katarina Hajtášová, přírodovědecká fakulta UK
Západoslovenský kraj: doc. dr. Ondřej Šedivý, pedagogická

fakulta, Nitra
Středoslovenský kraj: dr. Ladislav Berger, VŠD, Žilina
Východoslovenský kraj: dr. Martin Gavalec, přírodovědecká

fakulta VPJŠ, Košice
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Pracovní předsednictvo ÚV MO (PÚV MO) tvořili (v abe-
cedním pořadí):
Anton Auxt, Petr Fabinger, prof. dr. Miroslav Fiedler, DrSc.,
dr. Jiří Mída, doc. dr. Jozef Moravčík, CSc., dr. J. Sedlá-
ček, CSc., Václav Šůla, doc. Jan Výšin, CSc., dr. František
Zítek, CSc., Michal Žoldy.

3. SCHŮZE ÚV MO

Během 24. ročníku MO se konala dvě zasedání ÚV MO:
v Praze ve dnech 5. a 6. prosince 1974 a v Ústí n. L. ve dnech
25. a 26. dubna 1975 u příležitosti konání celostátního kola
MO kategorie A.

Na zimním zasedání bylo při honocení uplynulého
XXIII. roč. MO konstatováno, že se dále zvyšuje počet
řešitelů MO, zvláště v kategorii Z a C. KV MO pokračovaly
v organizování kursů a týdenních soustředění účastníků
MO kategorie В a C. Bohužel po uveřejnění směrnice
MŠ ČSR č. 4 Instrukce pro organizování a hospodářské
zajištění soutěží žáků a učňů škol, výchovných zařízení
a odborných učilišť spravovaných národními výbory ve
Věstníku MŠ ČSR, roč. XXX., seš. 2, ze dne 20. února 1974,
některé KNV odmítají financovat tato soustředění.

Celostátní soustředění řešitelů MO a FO se konala v Za-

dově, obec Stachy, okres Prachatice od 17. června do 6. čer-
vence 1974.

Dále bylo pořádáno přípravné soustředění pro MMO
od 17. do 22. června 1974 v Praze.

ÚV MO se rozhodl ustavit odborné komise pro výběr
úloh (vedoucími určeni: prof. Fiedler, doc. Moravčík,
10



- ilr. Macháček a A. Auxt), pro ediční činnost a pro ŠMM.
К nadcházejícímu jubileu MO jmenoval komici propagační
a komisi pro odměny pracovníkům МО к 25. výročí
soutěže.

Na tomto zasedání informoval ředitel MÚ ČSAV akade-
mik Josef Novák, že se Matematický ústav ČSAV rozhodl
odměňovat vtipné a originální řešení úlohy III. kola kate-
gorie A peněžní částkou až do výše 1000 Kčs. ÚV MO
toto rozhodnutí přivítal, neboť účastníky III. kola jistě
zaktivizuje.

Na jarním zasedání byl hodnocen dosavadní průběh sou-
těže a její další vyhlídky. Přitom bylo rozhodnuto: 1. při-
způsobit úroveň kat. Z a C tak, aby byly přístupné absol-
ventům 7. resp. 8. tříd, 2. kategorie Z určit nejen žákům
devátých, ale i osmých tříd ZDŠ, 3. pracovní komise pro

úlohy rozšířit o další profesory středních škol.
V souvislosti s nadcházejícím jubileem olympiády byly

projednány akce propagující MO a odměny pracovníkům
MO.

Spolupráce se SSM se rozvíjí velmi slibně. ÚV SSM
věnuje nový putovní pohár pro vítěze MO, absolutnímu
vítězi MO poskytne ÚV SSM zájezd do SSSR a další
úspěšní řešitelé III. kola kategorie A se zúčastní týdenního
rekreačního pobytu v ČSSR (společně s účastníky FO).
ÚV SSM přislíbil hmotnou podporu i při samotné orga-
nizaci soutěže. Je třeba, aby se rozšířila i spolupráce mezi
krajskými orgány MO a SSM.

Doc. Moravčík podal zprávu o nové pomocné akci, tzv.
korespondenčním semináři. Informaci o něm najde čtenář
v samostatném odstavci.
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4. PRŮBĚH JEDNOTLIVÝCH KOL SOUTĚŽE

Organizace jednotlivých kol soutěže nebyla v XXIV. roč-
niku MO nijak podstatně změněna; byly upraveny jen dílčí
termíny odevzdání úloh žáky, resp. posunuty termíny
II. kola.

I. kolo, tzv. studijní, proběhlo opět ve dvou etapách.
Čtyři přípravné úlohy odevzdávali soutěžící všech kategorií
svým učitelům (referentům MO) do 15. listopadu 1974.
Úlohy byly opraveny, ale neklasifikovány, takže každý žák
měl možnost se zúčastnit soutěžní části prvního kola. V této
části soutěže, končící pro kategorii A 15. ledna 1975 a pro
kategorii В a C 15. února 1975, museli žáci podle vlastního
výběru vyřešit ze 6 úloh aspoň 3 na známku aspoň „dobrou“,
aby mohli být navrženi do II. kola. V kategorii Z bylo pod-
mínkou pro navržení do II. kola vyřešení aspoň tří úloh ze

čtyř na známku aspoň „dobrou“.

II. kolo se konalo v těchto termínech:

kategorie A — sobota 1. března 1975
kategorie В a C — sobota 12. dubna 1975
kategorie Z — pondělí 3. března 1975

Podrobné výsledky jsou uvedeny v tabulkách 1 —4. V ta-
bulce 5 uvádíme přehledná čísla za 1. až 24. ročník MO.
Seznamy úspěšných řešitelů z těchto kol jsou uvedeny v pří-
loze A na str. 30 — 37.

Třetí (krajské) kolo kategorie Z pořádaly téměř všechny
kraje, v SSR bylo toto kolo uspořádáno jednotně pro celou
12



republiku. Úlohy zadané v tomto kole najde čtenář ve
zvláštní kapitole na str. 154.

Třetí (celostátní) kolo kat. A se konalo v Ústí n. L. od
24. do 26. dubna 1975. Stává se již tradicí, že setkáni u pří-
ležitosti tohoto kola má velmi dobrou společenskou úroveň.
Také letos byl díky péči krajských orgánů a obětavé práce
KV MO v čele se s. Vladimírem Blažkem připraven výborný
kulturní i rekreační program.

Celostátního kola se zúčastnilo 79 žáků, úspěšných bylo
37, z toho vítězů 18 (viz příloha В na str. 38 a 39). Absolutním
vítězem, a tedy držitelem poháru do příštího ročníku, se
stal již podruhé Jiří Navrátil, žák 2. roč. gymnázia v Olo-
mouci-Hejčíně. Odměnu ML7 ČSAV za originální řešení
úlohy dostal Jiří Peňáz, student 3. roč. gymnázia na tř.
kpt. Jaroše v Brně. Úlohy zadané v tomto kole a jejich
řešení najde čtenář na str. 133 a dalších.

5. POMOCNÉ AKCE

Příprava našich olympioniků probíhala v již zmíněném
korespondenčním semináři a pak v již tradičním semináři,
konaném na gymnáziu v Praze 2, ul. W. Piecka. Na tomto
školení přednášeli prof. dr. M. Fiedler, DrSc., doc. Jan Vy-
šín, CSc., dr. J. Sedláček, CSc., dr. J. Hojdar, dr. A. Vrba, CSc.,
všichni z MÚ ČSAV v Praze, a doc. dr. Zbyněk Náde-
nik, DrSc., ze stavební fakulty ČVUT.

Od 15. do 21. června 1975 se konalo přípravné soustředění
13 nejúspěšnějších vítězů III. kola kategorie A. Z nich bylo
vybráno osmičlenné reprezentační družstvo pro XVII. me-
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zinárodní olympiádu v Burgasu. Na soustředění byla pro-
bírána tato témata:

Úlohy z geometrie
Úlohy z kombinatoriky (dr. M. Koman, CSc.)
Rovnice a nerovnice

Posloupnosti a funkce
Číselná teorie

(idoc. Jan Výšin, CSc.)

(idr. J. Hojdar)
(dr. Fr. Zítek, CSc.)
(doc. dr. J. Moravčík, CSc.)

Soustředění úspěšných řešitelů MO a FO druhých a tře-
tich ročníků středních škol se konalo od 15. června do5.července na SPŠ dřevařské ve Zvolenu. Matematický
obsah školení tvořily přednášky:

1. Vybrané úlohy z časopisu Kvant, algoritmy a počítače,
nekonečné množiny (RNDr. Ivan Korec, CSc.)

2. Stereometria, projektívna geometria
(RNDr. Valent Zaťko, CSc.)

3. Stereometria (doc. RNDr. Ján Čižmár, CSc.)
4. Matematika a hudba (doc. RNDr. Beloslav Riečan)
5. Pravděpodobnost’ (RNDr. Jozef Kalas)
6. Teória čísel (RNDr. Štefan Porubský)
7. Nerovnosti pre štvorsten a priestorový štvoruholník

(doc. RNDr. Zbyněk Nádeník, DrSc.)
8. Principy kombinatorických úloh MO, neriešiterné úlohy

(RNDr. Antonín Vrba, CSc.)
9. Matematická analýza (RNDr. Jiří Jarník, CSc.)

Na soustředění byly vytvořeny tak jako doposud tři třídy:
matematická, matematicko-fyzikální a fyzikální. Pro bu-
doucnost bude vhodné zařazovat do soustředění řešitele
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kategorie A z nejvýše třetího ročníku, aby se mohla zvýšit
úroveň soustředění. Ukazuje se, že bude vhodné pro žáky
speciálních matematických tříd zřídit oddělené soustředění.

6. STUDIJNÍ LITERATURA

Základní informační literaturou pro účastníky MO jsou
letáky pro kategorie А, В, C a kategorii Z, které vydává
SPN. Úlohy XXIV. roč. otiskly též Rozhledy matematicko-
-fyzikální.

ÚV MO vydává v MF edici Škola mladých matematiků.
Uvádíme přehled svazků od č. 30:

30: Milan Koman - Jan Výšin: Malý výlet do moderní
matematiky

31: Oldřich Odvárko: Booleova algebra
32: Jan Výšin - Jitka Kučerová: Druhý výlet do moderní

matematiky
33: Jaroslav Morávek: O dynamickém programování
34: Ladislav Rieger: O grupách — na obálce omylem

uvedeno č. 33
35: Alois Kufner: Co asi nevíte o vzdálenosti
36: Ján Černý: O aplikáciách v matematice
37: Beloslav Riečan: O pravděpodobnosti
38: Juraj Bosák: Latinské štvorce
39: Alois Kufner: Nerovnosti a odhady
40: Antonín Vrba: Matematická indukce (v tisku)
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7. KOREŠPONDENČNÝ SEMINÁŘ МО

V ŠKOLSKOM ROKU 1974/75

Z rozhodnutia předsednictva ÚV MO sa v školskom
roku 1974/75 po prvý raz konal tzv. korešpondenčný seminář
pre vybraných riešitek>v MO, ktorí prichádzali do úvahy pre
zaradenie do družstva pre MMO. Jeho аеГот bolo posky-
tovať úlohový materiál predovšetkým tým účastníkom MO,
ktorí nemohli navštěvovat’ pražský seminář pre vybraných
riešitelov MO a úspěšnou účasťou v XXIII. ročníku MO
v kategorii A preukázali svoje matematické schopnosti.
Výběr účastníkov tohto seminára urobilo PÚV MO jednak
na základe výsledkov XXIII. ročníka MO, a jednak z návr-
hov KV MO. Účastníci korešpondenčného seminára dostá-
váli písomne na riešenie po 6 — 10 úloh postupné z 5 terna-
tických okruhov: číselná teória, stereometria, rovnice a sy-
stémy rovnic, kombinatorika a kombinatorická geometria,
funkcie a mnohočleny. Riešenia úloh každého tematického
celku posielali do stanoveného termínu na adresu zostavo-
vatela, ktorý riešenia opravil a s případným komentárom
vrátil riešiteíovi.

Celkom sa korešpondenčného seminára zúčastnilo 25 rie-
šiteíov, a to 6 z Prahy, po 2 zo Středočeského, Juhočeského
a Východočeského kraja, 6 z Juhomoravského, po 3 zo
Severomoravského a Stredoslovenského kraja a 1 z Brati-
slávy. Žiadneho zástupců nemali v semináři Západočeský,
Severočeský, Západoslovenský a Východoslovenský kraj.

Najlepšie výsledky v semináři dosiahol Jiří Navrátil z Olo-
mouca, ktorý zo 43 úloh úspěšně vyriešil 41. Velmi dobré
výsledky dosiahli dálej Jiří Pemz z Brna (37 úsp. riešení),
16



Lubomír Balanda z Těrlicka, okr. Karviná (32 riešení),
Josef Voldřich z Vimperka, okr. Prachatice (30 riešení),
Peter Takáč z Rim. Soboty (29 riešení), Ján Borsík z Lipt.
Hrádku (24 riešení) a Vlastimil Klíma z Benešova, Pavel
Makovický zo Žiliny a Michael Valášek z Prahy (po 21 rie-
šení). Ostatní účastníci seminára vyriešili úspěšně 18 úloh
a menej. Z vyššie měnováných úspěšných účastníkov semi-
nára sa štyria (Navrátil, Voldřich, Klíma a Valášek) zúčastnili
XVII. MMO ako členovia čs. družstva a z nich 2 (Valášek,
Navrátil) získali na MMO 3. cenu. Je pravděpodobné, že
svoj podiel na ich úspěchu mala tiež účasť v korešponden-
čnom semináři, ktorý PÚV MO hodnotilo ako úspěšný
a rozhodlo sa v jeho organizovaní pokračovat’ aj v nasledu-
júcom školskom roku.

* * *

Pre informáciu čitatelov uvádzame texty úloh, ktoré boli
předložené účastníkom korešpondenčného seminára:

Číselná teória (zostavil doc. dr. J. Moraxčík, CSc.).

1. Určte posledně dve cifry čísla 7^ .

2. Vyšetříte, pre ktoré cifry a (0 S a ^ 9, celé číslo)
n(n + 1) 10 (n prir. číslo) zapísaťmožno nějaké číslo

v desiatkovej sústave len ciframi a.

3. Nájdite všetky prirodzené čísla x, pre ktoré platí

[УТ] + [V2] +... + K/^3T] = 400.

>
2
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4.Dokážte, že pre každé prvočíslo p je číslo

11... 122...233... 3...99...9 - 123456789

dělitelné číslom p.

5. Nech a, b, m, n sú prirodzené čísla, d(a,b) = 1, a > 1.
Dokážte, že ak am + bm je dělitelné číslom a" + b", potom
m je dělitelné číslom n.

6. Nech a, b sú prirodzené čísla, pre ktoré platí: 0^b<a.
Nech dálej zn = an + b, n = 0,1,2,..., je daná postupnost'
prirodzených čísel taká, že pre nějaké m je d(zm, a) = d.
Presvedčte sa, či potom pre všetky n platí d(z„, a) = d.

7. Nech P(x) je mnohočlen s celočíselnými koefícientami.
Dokážte, že ak číslo d je deliteíom každého z čísel
a„ = 3" + P(n), n = 0,1,2,..., potom d je mocnina čísla 2
s celočíselným exponentom.

"и - Гn
8. Dokážte, že súčet £

k = O

je pre každé prirodzené n dělitelný číslom 2"~l.
" Í2n + 1

9. Dokážte, že číslo У (^ ' 2k + 1

prirodzené číslo n dělitelné číslom 5.
10. Nech = (p + уДу - [(p + ^/q)n] pre n = 1,2,....

Dokážte, že ak p,q sú prirodzené čísla vyhovujúce nerov-
nosti p — 1 < yfq < p, potom limx„ = 1.

n-*cc

(1973)\ s =2/í + 1 2

23fc nie je pre žiadne
k=i

Poznámka: Symbol [a] v úlohách 3, 8 a 10 znamená
celú časť čísla a, tj. celé číslo c také, že с ^ a < c + 1.
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Stereometria (zostavili prof. dr. M. Fiedler, DrSc. a J. Ze-
mánek).

1. Ak je odchýlka každých dvoch stien štvorstena ostrý
uhol, potom všetky steny štvorstena sú ostrouhlé troj-
uholníky. Dokažte.

2. Dokážte, že zo šiestich vnútorných uhlov, ktoré zvie-
rajú steny štvorstena, sú vždy aspoň tri ostré.

3. Body Au A2,An sú všetky vrcholy konvexného
mnohostena, d = max AtAj (i,j = 1,2,..., n). Dokážte, že
vzdialenosť každých dvoch bodov tohto telesa je menšia
alebo rovná d.

4. V priestore je daný bod P a množina bodov M taká,
že jej prienik s každou rovinou prechádzajúcou bodom P
je kruh. Dokážte, že M je gula.

5. V priestore je daná konečná množina bodov taká, že
každá priamka prechádzajúca dvorná jej bodmi obsahuje
ešte aspoň jeden další bod tejto množiny. Dokážte, že všetky
body danej množiny ležia v jednej priamke.

6. Nech M je množina bodov v priestore taká, že ku
každému bodu priestoru možno v množině M nájsť právě
jeden najvzdialenejší bod. Dokážte, že množina M je jedno-
bodová.

Rovnice a sústavy rovnic (zostavil dr. J. Hojdar).

1. Riešte rovnicu a(x2 — a2) = b(x2 — b2), kde a, b sú
dané reálne čísla. Má táto rovnica vždy reálne riešenie?

2. Určte všetky reálne riešenia sústavy rovnic
x — \y + l| = 1, x2 + у = 10.
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1
= 9 tg у,3. Riešte sústavu rovnic cos x +

cosx

1
= i cotg у,sin X +

sin X

kde x, у sú neznáme.
4. V rovnici (m + 2)2 x2 — 2(m3 — 4) x + n = 0 s ne-

známou x sú m, n dané reálne čísla.
a) Určte všetky čísla m,n, pre ktoré má daná rovnica

jediný kořeň.
b) Stanovte všetky čísla m, n, pre ktoré sú kořene danej

rovnice navzájom prevrátené čísla.
5. Určte všetky reálne čísla p, pre ktoré rovnica

x2 — 2(p + 4) x + p2 + 6p = 0
s neznámou x má:

a) oba kořene rožne a záporné;
b) jeden kořeň záporný, druhý nezáporný.6.Riešte sústavu rovnic

x + у + z = a,

x2 + y2 + z2 = b2 ,

xy = z2,
kde a, b sú dané čísla.

Udajte podmienky, ktorým musia vyhovovat’ čísla a, b,
aby čísla x, y, z vyhovujúce danej sústave boli kladné a na-
vzájom rožne.7.Je daná rovnica x2 + 2px + 2p2 — 1 = 0 s neznámou
x, kde p je reálne číslo. Nájdite všetky čísla p, pre ktoré
má daná rovnica reálne kořene, z ktorých žiadny nemá
absolútnu hodnotu váčšiu než jedna.
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Kombinatorika a kombinatorická geometria (zostavil
dr. M. Koman, CSc.).

1. (úloha o deviatkách) Určte nutnú a postačujúcu pod-
mienku pře to, aby к danému prirodzenému číslu existoval
násobok, ktorý možno v desiatkovej sústave napísať len
pomocou deviatok, tj. má tvar 999... 99.

2. (úloha o prirodzených číslach) Zistite, či je medzi
TubovoTnými za sebou nasledujúcimi desiatimi prirodzený-
mi číslami vždy aspoň jedno nesúdeliteTné so zostávajúcimi
číslami.

3. (úloha o letiskách) Na každom z 12 letísk startuje
lietadlo a odlietava na najbližšie susedné letisko. Vzdiale-
nosti medzi letiskami sú navzájom rožne čísla. Určte maxi-
málny počet lietadiel, ktoré móžu pristáť na jednom letisku.

4. (úloha o lodiach) Na voínom moři plávajú rozptýlené
tri lode Lx, L2, L3, ktoré majú rovnakú maximálnu rýchlosť.
Na admirálov rozkaz sa majú čo najskór stretnúť na jednom
mieste. Určte najvýhodnejšiu polohu miesta stretnutia S.

Poznámka: Pokúste sa úlohu riešiť tiež pre případ
váčšieho počtu lodí alebo pre případ róznych maximálnych
rýchlostí.

5. (úloha o červenej ceste) Štvorec C je rozdělený na 4n2
zhodných štvorcových polí, ktoré sú biele a čierne, pričom
každé dve polia súmerne položené podlá středu S štvorca C
sú róznej farby. Strany polí zafarbíme červene právě vtedy,
keď patria rožne zafarbeným poliam. Dokážte, že existuje
červená cesta spájajúca niektoré dva body ležiace na proti-
lahlých stranách štvorca C.
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6. (i. úloha o šachovnici) Všetky polia lubovohnej ša-
chovnice n x n sú očíslované nezápornými reálnými číslami
tak, že číslo lubovolného poía sa rovná aritmetickému
priemeru čísel napísaných na všetkých susedných poliach.
Charakterizujte všetky přípustné očíslovania. (Pojem su-
sedného роГа možno chápať dvorná róznymi spósobmi.)

7. (2. úloha o šachovnici) Všetky polia šachovnice so
100 x 100 poliami sú očíslované prirodzenými číslami tak,
že čísla na každých dvoch susedných poliach sa líšia najviac
o 50. Zistite, či móžu byť všetky polia šachovnice očíslované
navzájom róznymi číslami.

8. (úloha o koíajniciach vláčika) Dráhu pre elektrický
vláčik možno zostaviť z úsekov, ktoré majú tvar štvrť-
kružnice. Bola postavená okružná rovinná dráha (bez kri-
žovatiek a nadjazdov). Pri zvolenom zmysle obiehania
tvoří dielcov íavotočivú zákrutu a n2 dielcov pravotočivú
zákrutu. Dokážte, že čísla nx a n2 sú párne a číslo nx + n2

je násobkom čísla 4.
9. (úloha o n bodoch) V rovině je daných n (n > 4)

bodov, z ktorých žiadne tri neležia v priamke. Dokážte, že

existuje aspoň

rých vrcholmi sú niektoré z daných bodov.
10. (úloha o n-uholníku) Konvexný n-uholník P„ ne-

obsahuje žiadne tri uhlopriečky, ktoré by prechádzali jedi-
ným spoločným vnútorným bodom. КоГко trojuholníkov
ohraničujú jeho uhlopriečky?

Poznámka: Pokúste sa túto úlohu riešiť pre štvor-
uholníky; stačí odhad.

(n - 3\I I konvexných štvoruholníkov, kto-
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Funkcie a mnohočleny
(zostavil doc. dr. J. Moravčík, CSc.).

1. Nech / je funkcia definovaná pre všetky reálne x
1 -x2
X6 + 4

najváčšiu a najmenšiu hodnotu a v kladnom případe ich
nájdite.

2. Kvadratický trojčlen /(x) = ax2 + bx + c je taký, že
rovnica f(x) = x nemá reálne kořene. Dokážte, že rovnica
/(/(x)) = x tiež nemá reálne kořene.

3. Nájdite prirodzené čísla p, q také, aby koreňmi mnoho-
členov P(x) = x2 — qx + p a Q(x) = x2 — px + q boli len
prirodzené čísla.

4. Dokážte, že mnohočlen P(x) s celočíselnými koeficien-
tami, ktorého absolútna hodnota v troch róznych celých
číslach sa rovná 1, nemá celočíselné kořene.

5. Nájdite najmenšie reálne číslo A také, že pre každý
kvadratický trojčlen /(x), pre ktorý platí |/(x)| ^ 1, ak
0 ^ x ^ 1, je splněná nerovnost’ /'(0) ^ A.

6. Určte reálne čísla a, b, c také, že |/(x)| = |ax2 + bx + c| ^
^ 1 pre |x| ^ 1 a súčet fa2 4- 2b2 je maximálny.

7. Nech / je reálna funkcia reálnej premennej x taká, že
nie je identicky rovná nule a pre každé reálne čísla x, у

platí: f(x).f(y) = f(x — y). Nájdite všetky také funkcie f.
8. Nájdite všetky usporiadané dvojice f g funkcií reálnej

premennej x, ktoré sú definované pre všetky reálne čísla x
okrem — 1; 0; 1 a pre ktoré v každom bode x ich definičného

/ (T\ = x2 g(x).

predpisom /(x) = . Zistite, či funkcia / nadobúda

1 1 1
oboru platí: x f(x) g ( -

X \x
= 1, x2
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9. Nech /(x) = sinx + ^ sin 2.x + ^sin3x. Dokážte, že
pre každé хе(0;л:) platí: f(x) > 0.

10. Nech / a g sú reálne funkcie definované v intervale
(-oo, oo), pre ktoré platí f(x + y) + f(x - y) = 2f(x).g(y)
pri každom reálnom xay. Dokážte, že ak / nie je identicky
rovná 0 a \f(x)\ ^ 1 pre každé x, potom tiež |<7(y)| ^ 1
pre každé y.

8. KONKURS JČSMF A JSMF NA NÁVRHY
ÚLOH PRO MO

Během XXIV. ročníku MO pokračoval konkurs na úlohy
pro MO, jehož vyhlašovateli jsou společně Jednota čs.
matematiků a fyziků a Jednota slovenských matematiků
a fyziků. Podmínky tohoto konkursu byly též otištěny
v letáku s přípravnými a soutěžními úlohami I. kola.

Od vyhlášení konkursu v roce 1966 do 30. 6. 1975 došlo
celkem 1 108 úloh od 99 autorů. Z nich bylo 644 přijato
a odměněno.

Při sestavování úloh pro jednotlivá kola XXIV. ročníku
MO se použilo 54 úloh získaných konkursem.
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TABULKA 1

Výsledky kategorie A

Kolo

II.! KRAJ I.

ÚÚs s

Praha

Středočeský

Jihočeský
Západočeský
Severočeský
Východočeský
Severomoravský
Jihomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

120 109 54117

103 73 1591

1260 54 4S

955 50 47

33121 100 89

2869 67 65

25100 79 77

203 119 23157

63 4273 66

139 5760 5

120 96 19111

63 29 29 7

Celkem 1 226 981 872 272

S počet všech soutěžících
počet úspěšných řešitelůÚ

25



TABULKA 2

Výsledky kategorie В

Kolo

KRAJ II.I.

Ú ÚS s

Praha

Středočeský
Jihočeský

Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

54 36 544

64 56 52 7

856 46 40

2629 23 1

57 46 577

866 55 46

112 85 1169

65 58 57 5

46 44 44 6

92 365 65

87 81 75 5

251 18 i 1

Celkem 635 564 66709
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TABULKA 3

Výsledky kategorie C

Kolo

KRAJ I. II.

Ú ÚS s

Praha

Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravksý
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

88 3260 60

360 54 48

41 558 53

34 123650

68118 80 7

67 - 1780 78

162 138 113 23

74 68 1491

5272 53 14

7991 85 4

88 76 67 6

105 31 435

Celkem 1063 822 728 141
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TABULKA 4

Výsledky kategorie Z

Kolo

KRAJ 1. II.

Ú ÚS s

Praha

i Středočeský
Jihočeský

' Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský
Bratislava

Západoslovenský
Středoslovenský
Východoslovenský

1 068 596 496 296

328 190556 356

730 345 314 173

296499 207 81

313 186625 35S

436 277622 4XS

1 796 79'> 648 241

250912 569 506

357 329 150697

1 354 1 012 2741 041

635 620 2061 078

1 426 781 764 413

Celkem 5 973 2 73711 363 6618
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PŘÍLOHA A

PŘEHLED ÚSPĚŠNÝCH ŘEŠITELŮ II. KOLA
V KATEGORIÍCH А, В A C

Praha — město

A. Michael Valášek, 4.d, W. Piecka, Praha 2; Václav
Kotěšovec, 3.d, W. Piecka, Praha 2; Petr Pěnička, 3.d,
W. Piecka, Praha 2; Ludvík Reichert, 4.a, Nad štolou,
Praha 7; Martin Šedivý, 4.d, W. Piecka, Praha 2; Martin
Baumann, S2e OU ČKD, Praha; Jiří Štěrba, 4.d, W. Piecka,
Praha 2; Jaroslav Zápotocký, 3.c, Štěpánská, Praha 1; Jan
Hugo, 4.c, Sladkovského, Praha 3; Karel Suchomel, 3.c,
Štěpánská, Praha 1

B. Jiří Kolafa, 2.d, W. Piecka, Praha 2; Jana Sedláčková,
2.d, W. Piecka, Praha 2; Jiří Kejř, 2.d, Sladkovského,
Praha 3; Martin Holena, 2.d, Sladkovského, Praha 3; Jiří
Peterka, 2.b, Nad Turbovou, Praha 5

C. Zdeněk Vavřín, l.c, Štěpánská, Praha 1; Mirko Navařa,
l.d, W. Piecka, Praha 2; Pavel Trska, l.a, Leninova, Praha 6;
Petr Beránek, l.a, Litoměřická, Praha 9; Jiří Koch, l.d,
W. Piecka, Praha 2; Jan Vilhelm, l.d, W. Piecka, Praha 2;
Jiří Mareš, l.d, W. Piecka, Praha 2; Petr Čeřovský, l.a,
Voděradská, Praha 10; Jan Matějka, l.d, W. Piecka, Praha 2
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Středočeský kraj

A. Vlastimil Klíma, 3.b, Benešov; Jan Bázler, 2.b, Mladá
Boleslav; Jiří Sloup, 4.b, Brandýs nad L.; Karel Karlík,
4.b, Čáslav; Pavel Tvrdík, 4.b, Kolín; Vojtěch Zadražil, 3.b,
Český Brod; Jan Procházka, 4.b, Mladá Boleslav; Hana
Janoušková, 3.a, Sedlčany; Josef Čvančara, 3.b, Mladá
Boleslav; Libuše Urbanová, 4.a, Nové Strašecí

B. Jan Bázler, 2.b, Mladá Boleslav; Karel Jenčík, 2.a,
SPŠ, Kutná Hora; Josef Blažek, 2.a, Mnichovo Hradiště;
Miroslav Havlena, 2.c, Kladno; Milena Fliegelová, 2.b,
Říčany; Iva Šolarová, 2.a, Benešov; Jiří Švec, 2.c, Kladno

C. Stanislav Kadlec, l.a, Hořovice; Tomáš Gergelits, l.c,
SPŠ, Mladá Boleslav; Robert Černý, l.b, Rakovník

Jihočeský kraj
A. Josef Voldřich, 4.r., Vimperk; Vladimír Drápalík, 4.a,

Strakonice; Zbyněk Brtna, 3.b, Tábor; Věra Černá, 3. r.,
Pacov; Jan Kozelka, E4.a, SPŠ, Písek; Miloš Řezníček, 4.a,
Soběslav; Marie Divišová, 3.b, Pelhřimov; Josef Metlika,
3.c, Strakonice; Vít Remta, 4.a, g. K. Šatala, Č. Budějovice;
Michal Šimek, 3.a, Strakonice

B. Jindřich Trnka, 2.c, Tábor; Helena Jílková, 2.a,
g. K. Šatala, Č. Budějovice; J. Glaser, 2.a, g. K. Šatala,
Č. Budějovice; Vlastimil Křivan, 2.b, Strakonice; Miloslav
Lacina, 2.c, Tábor; Zd. Panec, 2.b, SPŠS, Strakonice; Jan
Vácha, 2.c, Tábor; Dalibor Zikmund, 2.b, Milevsko

C. Karel Štěpán, l.a, g. K. Šatala, Č. Budějovice; Zdeněk
Tůma, l.b, Tábor; Petr Lett, l.c, Tábor; Jan Cvejn, sl.
SPŠ Písek; Jaroslav Marek, l.c, SPŠ, Strakonice
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Západočeský kraj

A. Jiří Koukol, 2.a, Sušice; Pave! Odvárka, 4.a, g. J. Fučíka,
Plzeň; Jaroslav Krčmář, 4.a, Sušice; Luboš Pruner, 4.a,
g. J. Fučíka, Plzeň; Vladislav Krásný, 4.a, g. J. Fučíka, Plzeň;
Pavel Rádi, 4.a, g. J. Fučíka, Plzeň; Milan Studený, 3.a,
g. J. Fučíka, Plzeň; František Staněk, 3.a, g. J. Fučíka, Plzeň;
Čestmír Suda, 4.a, Sušice

B. Jiří Koukol, 2.a, Sušice
C. Věra Hrubešová, l.b, Karlovy Vary; Pavel Pyrih, l.a,

Sušice; Vladimír Šverák, l.a, Karlovy Vary; Libor Fiala, l.a,
g. J. Fučíka, Plzeň; Miroslav Veselý, l.b, Domažlice; Zuzana
Princová, l.a, g. J. Fučíka, Plzeň; Pavel Mach, l.c, ul. Pionýrů,
Plzeň; Blanka Zymáková, l.a, g. J. Fučíka, Plzeň; Jiří Pátek,
l.a, g. J. Fučíka, Plzeň; Vladimír Šrámek, l.d, ul. Pionýrů,
Plzeň

Severočeský kraj

A. Jan Malý, 4.a, Litoměřice; Václav Soukup, 4.c, Liberec;
Jiří Maryška, 4.a, Jablonec n. N.; Pavel Vondrák, 3.a, Ústí
n. L.; Jiří Škuthan, 4.a, Litvínov; Jaroslav Kotas, 4.b, Česká
Lípa; Pavel Esentier, 3.r., Tanvald; Jan Červinek, 3.a, Teplice;
Josef Kalát, 4.b, Teplice; Vlasta Novotná, 2.a, Teplice

B. Milan Sopr, SPŠSE, Liberec; Vlasta Novotná, Teplice;
Danuše Svobodová, Jablonec n. N.; Vladimír Havlena, Rum-
burk; Eva Formánková, Liberec

C. Zdeněk Kalousek, Jablonec n. N.; Dana Kratochvílová,
Louny; Jiří Tschiesche, Teplice; Ondřej Macoun, Liberec;
Erik Majer, Teplice; Arnošt Hlaváček, Ústí nad Labem;
Pavel Němec, Ústí nad Labem
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Východočeský kraj

A. Jan Blažek, 4.a, Chrudim; Pavel Štovíček, 3.a, Pardu-
biče; Tomáš Blažek, 4.a, Pardubice; Petr Holan, 4.a, Nový
Bydžov; Petr Novák, 3.a, Pardubice; Jiří Somer, 4., Jevíčko;
Jiří Hůlka, 4., Hradec Králové; Radoslava Hrubá, 4.a,
Trutnov; Jan Kratochvíl, l.a, Pardubice; Josef Pavel, 2.a,
Rychnov nad Kněžnou

B. Jan Kratochvíl, l.a, Pardubice; Josef Dobeš, 2.a,
Rychnov nad Kněžnou; Jan Kábrt, 2.a, Vysoké Mýto;
Zdeněk Rozlívka, 2., Hradec Králové; Vladimír Hulec, 2.a,
Pardubice; Josef Roušek, 2.a, Pardubice; Pavel Hochmann,
2.a, Nový Bydžov; Richard Liská, 2.a, Pardubice

C. Ilja Turek, 1., Hradec Králové; Miroslav Tůma, l.a,
Nová Рака; Petr Bahník, l.a, Pardubice; Vladimír Pekárek,
l.a, Pardubice; Jaromír Matena, 1., Hradec Králové; Jan
Barták, l.a, Chrudim; Zbyněk Červenka, 1., Hradec Králové;
Jan Kováč, l.a, Ústí nad Orlicí; Miloš Holman, l.a, Vrchlabí;
Tomáš Vlasák, 9.a, ZDŠ Makarenkovo n., Pardubice

Jihomoravský kraj

A. Dana Kučeříková, 3.b, Holešov; Jiří Peňáz, 3.b, tř. kpt.
Jaroše, Brno; Miroslava Kouřilová, 4.c, Kyjov; Dalibor
Musil, 4.a, SPŠS, Sokolská, Brno; Martin Čadek, 2.a,
tř. kpt. Jaroše, Brno; Milan Kliment, 3.b, tř. kpt. Jaroše,
Brno; Jaromír Trubelík, 4.a, Kroměříž; Petr Zapletal, 3.b,
Jihlava; Zuzana Tesařová, 3.b, Jihlava

B. Martin Čadek, 2.a, tř. kpt. Jaroše, Brno; Luděk Klimeš,
2.a, Blansko; Jiří Martišek, 2.a, Kroměříž; Miroslav Hrubý,
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2.a, Kroměříž; Jiří Chrněla, 2.a, Kroměříž; Jiří Zlatuška, 2.c,
tř. kpt. Jaroše, Brno; Jana Dvořáková, 2.c, Třebíč; Jiří
Pavlas, 2.c, Třebíč; Libor Pivnička, 2.b, Znojmo; Jiří Svoboda,
2.a, tř. kpt. Jaroše, Brno

C. Jaroslav Šmerda, l.c, Třebíč; Jiří Kadourek, l.b, Koně-
vova, Brno; Petr Kučírek, l.b, Koněvova, Brno; Aleš
Juránek, l.a, tř. kpt. Jaroše, Brno; Tomáš Bílina, l.a, Křenová,
Brno; Radim Burda, l.b, Koněvova, Brno; Ivo Žáček, l.a,
Křenová, Brno; Josef Laštovička, l.a, Žďár nad Sázavou;
Tomáš Lukeš, l.a, tř. kpt. Jaroše, Brno; Ludmila Fortelná,
l.c, SPŠ kož., Třebíč

Severomoravský kraj

A. Miroslav Šedivý, 3.b, Přerov; Lubomír Balanda, 4.b,
Český Těšín, Frýdecká ul.; Jiří Kožusznik, 4.c, ul. Komen-
ského, Třinec; Jiří Navrátil, 2.a, Olomouc-Hejčín; Karel
Lichý, 4.b, Komenského ul., Opava; Vladimír Hruška, 4.a,
Husova ul., Valašské Meziříčí; Andrzej Kozikowski, 4.d,
Havlíčkova ul., Český Těšín; Oskar Linkesch, 3.e, SPŠ,
Ostrava-Vítkovice; Miroslav Lýčka, 4.b, Vsetín; Leszek
Gajdzica, 4.b, Havlíčkova ul., Český Těšín

B. Radomír Lukáš, 2.a, J. G. Tajovského, Havířov; Via-
dimír Pastrňák, 2.b, Šmeralova ul., Ostrava 1; Petr Janča,
2.c, Komenského 5, Opava; Martin Petrák, 2.a, Ostrava-
-Hrabůvka; Helena Svozilová, 2.b, Tomkova 45, Olomouc-
-Hejčín

C. Pavel Kolařík, l.c, Gottwaldova ul., Bílovec; Vladimír
Hanák, l.c, Gottwaldova ul., Bílovec; Karel Štěpka, l.c,
Gottwaldova ul., Bílovec; Ivo Wandrol, l.c, Gottwaldova ul.,
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Bílovec; Ota Posel, l.d, Rudé armády, Karviná 8; Helena
Šnapková, l.c, Šmeralova ul., Ostrava 1; Petr Tas, l.c, Gott-
waldova ul., Bílovec; Petr Gurka, l.c, Gottwaldova ul.,
Bílovec; Petr Hiltavský, l.d, Rudé armády, Karviná 8;
Lumír Witoszek, l.d, Rudé armády, Karviná 8

Bratislava

A. Ján Slodička, 4.b, Novohradská ul., Bratislava; Igor
Kossaczký, 3.c, Novohradská ul., Bratislava; Ján Krajčík,
4.b, Novohradská ul., Bratislava; Miroslav Poliak, 4.m2,
SPŠ elektro, Zochova ul., Bratislava; Miroslav Drkoš, 3.b,
Novohradská ul., Bratislava; Viktor Birnstein, 3.c, Novo-
hradská ul., Bratislava; Pavol Kossey, 3.b, Novohradská ul.,
Bratislava; Dušan Miklánek, 4.b, Novohradská ul., Brati-
slava; Juraj Wallner, 3.b, Novohradská ul., Bratislava;
Marián Slodička, 3.b, Novohradská ul., Bratislava

B. Robert Handlovič, Novohradská ul., Bratislava; Igor
Remža, Novohradská ul., Bratislava; Martin Bárto, Novo-
hradská ul., Bratislava; Ján Polák, ul. Červenej armády,
Bratislava; Tibor Gerécz, Dunajská ul., Bratislava; Eva
Toldyová, Novohradská ul., Bratislava

C. Ivan Mizera, Novohradská ul., Bratislava; Milan Veš-
čičík, ul. Červenej armády, Bratislava; Július Ertl, ul. Čer-
venej armády, Bratislava; Štefan Varga, Novohradská ul.,
Bratislava; Ján Prokop, Novohradská ul., Bratislava; Ján
Lakota, Novohradská ul., Bratislava; Erich Banhégyi, Torna-
sikova ul., Bratislava; Pavol Vnučko, ul. Červenej armády,
Bratislava; Ivan Priecel, ul. Červenej armády, Bratislava;
Katarina Šachová, Tomašíkova ul., Bratislava
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Zápodoslovenský kraj

A. Milan Potočár, 4.b, Senec; Svetozár Malinarič, 3.a,
Párovská, Nitra; Pavol Bánský, 4.b, Komárno; Vladimír
Makýš, 4.f, Trnava; Vladimír Dzurák, 4.a, Nové Město nad
Váhom

B. Ladislav Miklós, 2.c, Komárno; Juraj Kouřil, 2.a, Nové
Město nad Váhom; Peter Kovács, 2.c, Nové Zámky

C. Peter Filakovszky, l.c, Nové Zámky; Eugen Šimko, l.b,
Komárno; Máňa Marcsaová, l.b, Štúrovo; Jozef Bartek,
l.a, Piešťany

Středoslovenský kraj

A. Jozef Kordík, Prievidza; Peter Maličký, B. Štiavnica;
Ján Borsík, Lipt. Hrádok; Peter Takáč, R. Sobota; Vladimír
Technovský, Zvolen; Pavol Makovický, Žilina-Horný Val;
Dušan Martina, Prievidza; Martin Valovič, Vrátky; Karol
Pekár, Ružomberok; Jaroslav Mikuláš, Prievidza; Emil
Borák, Prievidza; Pavol Mravík, Žiar n. Hr.; Jozef Dano,
Dubnica n. V.; Vladimír Jelluš, SPŠ el., Tvrdošín; Ján Bodá,
Turč. Teplice; Štefan Bračok, Ružomberok; Martin Papcún,
Žilina-Hliny; K. Kačalová, Žiar n. Hronom; Vladimír Pod-
hořec, Žilina-Horný Val

B. Peter Takáč, R. Sobota; Igor Bohm, SPŠ strojní,
Zvolen; Pavol Quittner, Prievidza; Ivan Pavlíček, Žilina-
-Hliny; Pavla Olbřímková, Martin

C. Ján Detko, Prievidza; Vladimír Hudec, Vrátky; Jozef
Krajčovič, SPŠ stavební, Žilina; Ludmila Dudková, B. Byst-
rica; Eva Uhríková, Martin; Milan Beleš, V. Křtíš
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Východoslovenský kraj

A. Branislav Jacko, l.a, Šmeralova ul., Košice; Ondřej
Сако, 3.e, Kováčska, Košice; Imrich Harbula, 4.b, Sečovice;
Marián Okál, 3.b, Šmeralova ul., Bratislava; Miroslav Švéda,
3.b, Konštantinova, Prešov; Ladislav Pivka, 3.a, Šmeralova,
Košice; Vladimír Matěj, 4.b, Kováčska, Košice

B. Peter Jaroš, SPŠ hutnická, Košice; Igor Bobák, SPŠ
elektrotechn., Košice

C. Zlatica Slavíková, l.a, Šmeralova, Košice; Branislav
Jacko, l.a, Šmeralova, Košice; Ján Nižňanský, l.a, Šmera-
lova, Košice; Michal Pudlák, l.a, Šmeralova ul., Košice

Poznámka: 1. V tomto seznamu uvádíme nejvýše deset
nej úspěšnějších řešitelů v každé kategorii z každého kraje.

2. Pokud není uveden druh školy, jde o gymnázium.
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PŘÍLOHA В

VÝSLEDKY III. KOLA KA TEGORIE A

XXIV. ROČNÍK MO

Vítězové

1. Jiří Navrátil, 2.a, g., Tomkova ul., Olomouc-
-Hejčín

2. Vlastimil Klíma, 3.b, g., Benešov u Prahy
3. Martin Baumann, S2e, OU ČKD, Praha 9
4. Michael Valášek, 4.d, g., W. Piecka, Praha 2
5. Jan Malý, 4.a, g., Litoměřice

6.— 8. Jan Kratochvíl, l.a, g., Pardubice
Pavel Odvárka, 4.a, g., nám. Odborářů, Plzeň
Josef Voldřich, 4., g., Vimperk

9. —10. Jiří Peňáz, 3.b, g., tř. kpt. Jaroše, Brno
Ján Slodička, 4.b, g., Novohradská, Bratislava

11. —12. Stanislav Červinka, 3.c, g., Štěpánská, Praha 1
Leszek Gajdzica, 4.d, g., Havlíčkova ul., Český
Těšín

13. —15. Lubomír Balanda, 4.b, g., Frýdecká, Český Těšín
Karel Lichý, 4.b, g., Komenského, Opava
Miroslav Lýčka, 4.b, g., Vsetín
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16. —18. Ján Krajčík, 4.b, g., Novohradská, Bratislava
Peter Maličký, 4.d, g., Banská Bystrica
Magda Volkeová, 3.a, g., Leninova, Praha 6

Ostatní úspěšní řešitelé

19. —21. Jiří Hůlka, 4.g, g., Hradec Králové
Tomáš Roubíček, 3.d, g., U libeňského zámku,
Praha 8

Miroslav Šedivý, 3.b, g., Komenského, Přerov
22.-24. Petr Holan, 4.a, g., Nový Bydžov

Jiří Koukolík, 4.d, g., W. Piecka, Praha 2
Andrzej Kozikowski, 4.d, g., Havlíčkova ul., Český
Těšín

25. — 30. Jan Bázler, 2.b, g., Mladá Boleslav
Tomáš Kotrba, 3.c, g., Štěpánská ul., Praha 1
Oskar Linkesch, 3.e, SPŠ, Ostrava-Vítkovice
Dalibor Musil, 4.a, SPŠS, Sokolská ul., Brno
Petr Novák, 3.a, g., Pardubice
Peter Takáč, 2.a, g., Rimavská Sobota

31. —34. Ján Borsík, 4.a, g., Liptovský Hrádok
Jiří Koukol, 2.a, g., Sušice
Ludvík Rejchrt, 4.a, g., Nad štolou, Praha 7
Vladimír Technovský, 3.c, g., Zvolen
Karel Karlík, 4.b, g., Čáslav
Josef Pavel, 2.a, g., Rychnov nad Kněžnou
Pavel Štovíček, 3.a, g., Pardubice
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II. Přípravné úlohy I. kola

ÚV МО se rozhodl zařazovat do přípravného kola myš-
lenkově cenné a zajímavé úlohy v MO již použité. Toto
rozhodnutí se začalo uplatňovat poprvé ve 24. roč. MO.
Proto u úloh již známých z minulých ročníků uvádíme jen
text úlohy a odkaz na příslušnou literaturu, kde najde čtenář
komentář či řešení úlohy (viz str. 48).

KATEGORIE A

A — P — 1

Je dáno přirozené číslo a; vypočtěte součet

1975 ПЛ

Poznámka: Pro každé reálné x značí [x] jeho celou
část, tj. celé číslo, pro které platí [x] ^ x < [x] + 1.

Řešení: viz [22], str. 135.
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A —P—2

Je dána sústava rovnic s troma neznámými x, y, z a s para-
metrami a,b:

x + ay = b,

У - a2z — 1,
az + x = b + 1.

Určte všetky také hodnoty parametrov a, b, pre ktoré má
daná sústava nekonečne mnoho riešení.

Řešení: viz [16], str. 63.

A-P-3

Dokážte, že pre všetky reálne čísla x rožne od nuly platí:

1 11 1 n1 + x sin cos - > 0.
x 2 x

Komentář. Doporučujeme řešitelům, aby si nejprve pro-
studovali 3. kapitolu knížky Šmakal - Budinský: Gonio-
metrické funkce (20. svazek ŠMM). Funkce

, , .11 1f: x —> 1 -l-x.sin cos -
x 2 x

je zřejmě sudá. Toto zjištění je velmi cenné, neboť umožňuje
omezit důkaz dané nerovnosti jen na kladná reálná čísla x.

Načrtnou-li si řešitelé grafy funkcí cos-, sin
1

x. sin
XX X
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zjistí, že bude vhodné danou nerovnost dokázat nejprve pro
1 /1 \ / 1\

x = - a pak pro x e ( -, + oo 1 a x e ( 0, - V případě

x e I 0, - I je třeba uvážit, že - < -
V я/ я 2

я яя

1

А —P—4

V rovině je dán kruh K. Určete množinu vrcholů A všech
konvexních čtyřúhelníků ABCD, o nichž platí, že AC ^ BD
a že celá úhlopříčka BD leží v kruhu K.

Řešení: viz [21], str. 128.

KATEGORIE В

B-P-1

Mějme posloupnost celých čísel v níž
pro všechna n ^ 1 platí

an+1 T u„-i axan.

a) Může být taková posloupnost posloupností aritme-
tickou?

b) Určete nutné a postačující podmínky pro to, aby
v takové posloupnosti platilo:

^n + k "b ^n-k

pro všechna n,k, n ^ к, к ^ 0.
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c) Jestliže а0 = 2, рак existuje komplexní číslo z takové,
že pro všechna n ^ 0 je

a„ = z" + z ";

dokažte.

Řešení: viz [20], str. 102.

B-P-2

Dokážte, že pre každé prirodzené číslo n a pre všetky
reálne čísla x, xl5 x2,..., x„ platí nerovnost’:

n(n + l)x2^2.£ ixf(2x — xť).
í=i

Komentář. Důkazové úlohy tohoto typu se v MO vysky-
tují poměrně často. Je možno užít matematické indukce
nebo přímo vzorce

1 + 2 + 3 + ... + n = 2n{n í) 9

který platí pro každé přirozené číslo n.

B-P-3

Trojúhelník ABC má tu vlastnost, že kružnice procházející
středy jeho stran se dotýká kružnice opsané.

Dokažte, že bod dotyku je jedním vrcholem trojúhelníku
ABC a že vnitřní úhel při tomto vrcholu je pravý.

Řešení: viz [17], str. 73.
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В —P—4

Nájdite všetky hodnoty parametra a, pre ktoré je v kar-
tézskej súradnicovej sústave so súradnicami x, у graf rovnice

|x + y\ + a\y\ = 1
obvodom pravoúholníka.

Řešení: viz [19], str. 111.

KATEGORIE C

C-P-1

Určte všetky riešenia sústavy rovnic

x(x + y) + z(x — y) =

y(y + z) + x(y - z) = -2,
z(z + x) + y(z — x) =

6,

3.

Řešení: viz [16], str. 34.

C-P-2

Nechť p, q jsou prvočísla větší než 3. Potom číslo

p2 + Iq2 - 23

není prvočíslem. Dokažte.

Řešení: viz [20], str. 109.
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C-P-3

Je dána kružnice к — (S; r), bod A z vnútra kruhu
ohraničeného kružnicou к a kladné číslo d. Bodom A je
vedená tětiva kružnice к tak, že tento bod ju rozděluje na
dve úsečky, ktorých dlžky majú rozdiel d.

a) Vyjádříte dížku t tejto tětivy a jej vzdialenosť od
středu S pomocou parametrov r,d, v = SA.

b) Zostrojte pomocou výsledku z úlohy a) všetky tětivy
danej vlastnosti.

Řešení: viz [16], str. 39.

C-P-4

Nechť M je množina všech vrcholů čtverců dané šachov-
nice o 16 polích. Pro každý bod označme p(X)
počet všech čtverců, jejichž všechny vrcholy patří do mno-

žiny M, přičemž jedním z nich je bod X. Určete výčtem
množinu všech čísel p(X).

Komentář. Doporučujeme řešitelům, aby si nejprve pro-
studovali 6. úlohu I. kola XXI. roč. MO kategorie C. Pro
řešení naší úlohy je důležité si uvědomit, že existují čtyři
osy souměrnosti množiny M. Stačí pak najít číslo p(X)
jen pro jistých 6 bodů množiny M.
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KATEGORIE Z

Z-P-1

Součinem dvou kvadratických trojčlenů x2 + ax + b,
x2 + cx + d je dvojčlen x4 + 4. Určete koeficienty troj-
členů.

Řešení: viz [16], str. 102.

Z —P—2

Kolikrát v době od 14.00 h. do 14.05 h. je centrální vte-
řinová ručička hodinek osou dutého úhlu sevřeného hodi-
novou a minutovou ručičkou? Udejte příslušné okamžiky
s přesností na vteřiny.

Komentář. Při řešení vycházíme ze základního vztahu
mezi velikostmi úhlů a, /1, у sevřenými po řadě minutovou,
hodinovou a vteřinovou ručičkou s polopřímkou SO, kde
S je střed číselníku a bod O označuje na číselníku 12 h.
V hledané okamžiky je velikost úhlu у aritmetickým průmě-
rem velikostí úhlů a a p. Snadno se určí úhlové rychlosti
ručiček ve stupních za sekundu. Lze užít i obloukové míry.

Pro velikosti úhlů а, Д, у opsané za čas t (s) dostaneme
ř

oc — —

10’

t
č = —+ 60,

120

у — 6t — к . 360,
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kde к je celé nezáporné číslo udávající, kolikrát vteřinová
ručička oběhla číselník za dobu f sekund po 14 h. Na základě
uvedených fakt získáme po úpravách rovnici

(i)1 427ř = 7200 + 86 400k.

Z ní lehko určíme t.

Podle textu úlohy splňuje t nerovnici

0 ^ t ^ 300.

Tuto podmínku však splňuje pouze pět kořenů rovnice (1),
totiž: 6; 66; 126; 186; 247 (s přesností na celé sekundy).
O správnosti počtu řešení se ostatně můžeme přesvědčit
jednoduchým úsudkem.

Z-P-3

Trojúhelník ABC má velikosti vnitřních úhlů a = 45°,
P = 60°.

a) Vyjádřete délky stran b, c pomocí strany a.
b) Vyjádřete poměr délek všech tří výšek trojúhelníku

ABC.

Řešení: viz [17], str. 57.

Z-P-4

Je dán čtverec ABCD, jehož strana má délku а; К je
střed strany AD, L je bod polopřímky BA, pro který platí
BL = |a. Označme o takovou přímku procházející bodem D,
že úsečka X У souměrně sdružená s KL podle osy o leží celá
ve čtverci ABCD.
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Jaký útvar vyplní všechny takto vytvořené úsečky XY1
Narýsujte obrázek, vyšrafujte tento útvar a popište jeho

konstrukci.

Řešení: viz [18], str. 55.

Literatura

[16] Výšin - Macháček: Šestnáctý ročník MO, SPN 1968
[17] Výšin a kol. : Sedmnáctý ročník MO, SPN 1969
[18] Výšin a kol.: Osmnáctý ročník MO, SPN 1970
[19] Výšin a kol: Devatenáctý ročník MO, SPN 1971
[20] Výšin a kol.: Dvacátý ročník MO, SPN 1972
[21] Výšin a kol.: Dvacátý první ročník MO, SPN 1973
[22] Výšin a kol.: Dvacátý druhý ročník MO, SPN 1974
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III. Súťažné úlohy I. kola

KATEGÓRIA A

A — I — 1

Riešte sústavu s neznámými x1?x2,x„ (n ^ 2) a para-
metrami c,d:

2xx — x2

—xx + 2x2 —

— x2 + 2x3 —

= c,

— 0,
= 0,

*3

x4

xn = 0,
- xn_! + 2x„ = d.

Komentár. Počet rovnic je n. Druhá až predposledná
rovnica sa dajú prepísať do tvaru

x„ -2 + 2x„_

Xl - x2 = x2 - x3; x2 - x3 = x3 - x4; ""

O)
Xn _ 2 ^n-1 -*n-l Xn •

Prvá rovnicu danej sústavy možno napísať v tvare

= c - (Xj - x2). (2)Xl
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Rovnice (1) a (2) tvoria sústavu n — 1 rovnic s n neznámými
xx,x2,..., x„. Všetky neznáme v nich možno však vyjadriť
pomocou neznámej

Š = Xt - x2 = x2 - x3 = ... = - x„,

v čom je „eliminačný trik“. Z (2), (3) dostaneme
= c - x2 = c-2£, x3 = c - 3^...,x„ = c - n£.

(3)

(4)
Poslednú rovnicu danej sústavy upravíme na tvar

(5)xn = d + Z.

Posledná rovnica (4) a rovnica (5) tvoria sústavu dvoch
rovnic s dvorná neznámými xn, z ktorej vypočítáme £:

1
(6)(c-d).Z =

n + 1

Rovnice (4) a (6) dávajú jediné možné riešenie danej sústavy

—г (c - d), (7)к = 1,2,n.xk = c -
n + 1

Skúškou sa přesvědčíme, že (7) je skutočne riešením danej
sústavy. Domnievame sa, že účastníci kategorie A by mohli
na uvedený trik prísť bez akejkolvek pomoci.

А— I —2

Nech sú a,b,c,d komplexně čísla. Majme kvadratické
rovnicu

(8)x2 — px + q2 = 0,
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kde p = \a\2 4- \d\2 + 2Re(bč), q = \ad — bc\. Dokážte: Ak
má rovnica (8) záporný kořeň, potom je to kořeň dvoj-
násobný. (Poznámka: Zápis Re z znamená reálnu časť kom-
plexného čísla z; č je číslo komplexně združené s číslom c.)

Komentár. Třeba dokázat’, že diskriminant rovnice, tj.
číslo ^p2 — q2, sa rovná nule. V tejto úlohe sa hodí dokázat’
rovnost’ diskriminantu nule trochu neobvyklým spósobom,
a to dókazom správnosti dvoch nerovností

P2 p2
(9)q2 < 0.

Pravdivost’ prvej z nerovností (9) vyplývá z předpokladu
o rovnici (8). Táto rovnica s reálnými koeflcientami má
záporný kořeň a teda oba kořene reálne, z čoho vyplývá
nezápornost' diskriminantu.

Pretože súčin oboch koreňov rovnice (8) je číslo q2 ^ 0,
je druhý kořeň rovnice (8) taktiež nekladný a súčet oboch
koreňov — číslo p — je záporný. Druhá nerovnost’ (9) je
teda ekvivalentná s nerovnostem

p + 2q ^ 0.

Správnost’ nerovnosti (10) dokážeme pomocou určenia čísel
p, q. Použijeme přitom nerovnosti

(10)

|ad — bc\ ^ |bc| — \ad\, Re(bc) + bc = Re (bc) + \bc\ ^ 0.
Za „kIučový“ krok dókazu pokládáme dokazovanie oboch

nerovností (9). Tým sa totiž vyhneme priamemu zdóvod-
ňovaniu rovnosti \p2 — q2 — 0, resp. + q = 0 [\p — q
je totiž záporné), ktoré je formálně zložitejšie.
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A — I — 3

Vyšetříte priebeh funkcie
[k/x]£ X-V=I кk= 1 LK.

na intervale (0, oo).
Komentár. Symbol [2] znamená ako obvykle celú časť

čísla 2. Doporučujeme, aby riešitelia postupovali takto:
Najskór sa vyšetří priebeh funkcie /: a t—► [a]11/01 v inter-
vale (0, 00).

Výsledok je
f(a) = 0

/М = 1
X

Dalej položíme a — - a odvodíme
к

OO v

у -& Lк

Grafom tejto funkcie sú známe „schody“. Úloha je teda len
hranie sa s funkciou 21—► [2]. Pri riešení je třeba správné
interpretovat’ symbol súčtu a uvědomit’ si, že v podstatě
nejde o súčet nekonečného radu.

pre a e (0; 1),
pre a g <1;00).

[k/x]

-и-

А — I —4

Nech a, b, c sú velkosti stráň trojuholníka ABC
a r je poloměr jemu opísanej kružnice. Označme V =
= a2 + b2 + c2 — 8r2. Trojuholník ABC je ostrouhlý právě
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vtedy, keď V > O, pravoúhlý právě vtedy, keď V = 0 a tupo-
uhlý právě vtedy, keď V < 0. Dokážte.

Komentár. Pri riešení tejto úlohy nejde o nič iného ako
o vyjadrenie výrazu V pomocou súčinu kosínov velkostí
uhlov trojuholníka ABC. Riešitel móže vyjsť napr. zo
vzorcov

a2 = 4r2 sin2 a = 2r2(l — cos 2a),
b2 = 4r2 sin2 p — 2r2(\ — cos 2p),
c2 = 4r2 sin2 у = 2r2(2 — 2 cos2 y).

Dalej použije vzorce

cos 2a + cos 2/? = — 2 cos у cos (a — /?),
a - p 4- у a- p -у

cos (a — P) — cos у = — 2 sin sin
2 2

a dostane potrebnú formulu

V = 8r2 cos a cos P cos у .

А— I —5

Ak sú al5a2,a„ velkosti lubovoíných n uhlov, platí
nerovnost’

|sin ax sin a2 ... sin a„ — cos yl cos a2 ... cos “„I ^
(и)П

й Z lsin ak - afcl •cos
fc= 1

Dokážte. Kedy platí rovnost’?
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Komentár. А. К dókazu nerovnosti možno poradit’ rie-
šitelom napr. tento trik autora úlohy: Vyjde sa z rovnosti

sin ax sin cc2 ... sin a„ — cos ax cos a2 ... cos a„ =
П

= Yj sin olx... sin afc_ ^sin ctk — cos ak) cos afc+1 ... cos a„,
k = 1

kde vždy prvý člen /с-tého sčítanca s druhým členom
(k 4- l)-tého sčítanca dává nulu. Zostane teda len druhý
člen prvého sčítanca a prvý člen n-tého sčítanca. Ak ozna-
číme súčet L, platí

L = sin ocl sin a2 ... sin a„ — cos ax cos a2 ... cos oc„ .

Další postup bude už potom jednoduchý. Platí zrejme

\L\ ^ Y |sinai| |sin a2|... |sin afe_!| |sinafc — cosak| x

x |cosak+1|... |cosa„|
k= 1

odkiaf priamo vyplývá

|L| ^ Y lsin ak — cos
k= 1

B. Pre riešenie druhej časti úlohy A — I — 5 radíme rie-
šitelom, aby preskúmali najskór případy n = 1 a n = 2
a až potom přešli к případu n ^ 3.

Pre n — 1 dostaneme rovnost’ |sin clx — cos
= |sin — cos

ai| =

at|, ktorá platí pre všetky ax. Pre n = 2
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nastane v (11) rovnost’ právě vtedy, keď nastane rovnost’
v týchto troch nerovnostiach:

[sin (xl — cos ax| . |cos a2| ^ |sin ^ — cos

|sin ax|. |sin a2 — cos a2| ^ |sin a2 — cos

|(sin at — cos aj) cos a2 + sin ал (sin a2 — cos

^ Ksinaj — cosa1)cosa2| + [sina, (sina2 — cos

Rovnost’ v (12a, b) vedie к týmto podmienkam:

a) siná! = cos ал д sin а2 = cosa2;
b) sinaj = созал д sin a2 ф cosa2 д |sin ax| = 1;
c) sinaj Ф cosai д |cosa2| = 1 д sin a2 = cosa2;
d) sin aj Ф cos at д |cos a2| = 1 д

д sina2 ф cosa2 д |sin ax| = 1.

Případy b), c) nemóžu nastat’, pretože pre žiadne <p neplatí
sin2 (p = cos2 (p — 1. Případ d) je ve spore s (12c), pretože
(12c) nadobúda v tomto případe tvar

|sin at cos a2 — sin аг cos a2| ^
^ |sin ал cos a2| + | — sin ax cos a2|.

Pravá strana sa rovná 2, lává 0, takže rovnost’ nenastává.
Zostáva len případ a). V tomto případe

«i|, (12a)
a2|, (12b)

a2)| ^
a2)|. (12c)

(13)к = 1,2,а* =
4 + Wfc7r ’

kde ml,m2 sú celé čísla. Skúškou sa lahko přesvědčíme, že
vzorce (13) dávajú skutočne riešenie úlohy В v případe
n = 2.
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V případe n ^ 3 postupujeme analogicky ako pri n = 2.
Dostaneme výsledok: rovnost’ v (11) nastane právě vtedy,
keď

к
k — 1,2,.n,=

4 + ,

kde mk sú celé čísla.

A — I —6

Je daná gula G. Určte množinu M všetkých bodov A,
pre ktoré možno zostrojiť taký rovnoběžník ABCD, že celá
jeho uhlopriečka BD sa nachádza v guft G a o velkostiach
uhlopriečok AC, BD platí AC ^ BD.

Komentár. Riešenie sa skládá z troch častí:
1. Odvodí sa, že každý vrchol A leží v guli G' sústrednej

s G, ktorej poloměr je r (r je poloměr gule G).
2. Vysloví sa hypotéza, že hladaná množina M je gula G'.
3. Dokáže sa inklúzia G' <= M. Pretože v časti 1. bola

dokázaná inklúzia M c G', bude tak dokázaná rovnost’
M = G

Ad 1. Ak označíme S střed rovnoběžníka ABCD, je podlá
předpokladu SA ^ SB = SD, tj. bod A leží v kruhu zostro-
jenom nad priemerom BD. Preto je ■%. BAD ^ 90°. Rovina
ABD přetne gulu G v kruhu, ktorý z bodu A vidno pod
uhlom co ^ £BAD ^ 90° alebo ktorý bod A obsahuje.

Ad 2. Z predchádzajúcej úvahy vyplývá hypotéza, že
M = G

Ad 3. Pri dókaze inklúzie G' o M zvolíme bod A e G',
ktorý leží mimo gule G. Stredom gule G a bodom A pre-
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ložíme rovinu q, ktorá přetne G v kružnici x. Z bodu A
vedieme ku x dotýčnice s bodmi dotyku B, D. Potom je bod
A vrcholem rovnoběžníka ABCD, ktorý vyhovuje požia-
dávkám úlohy.

Ako je zřejmé z vyššie uvedených komentárov, sú úlohy
A—1 — 1, 2, 5 náročnejšie, ich riešenie vyžaduje isté triky.
Úlohy A —1 — 3, 4, 6 patria zasa к úlohám, ktorých rie-
šenie nevyžaduje od riešitefa takmer žiadnu vynaliezavosť.

KATEGORIE В

В — I — 1

Pro číslo 3 025 platí: 3 025 = (30 + 25)2. Najděte všechna
dvojciferná a čtyřciferná čísla této vlastnosti:

Komentář. Text úlohy je poněkud nejasný. Snad by se
měl interpretovat tak, že jde jednak o čísla tvaru lOx + y,
kde x,y jsou čísla jednociferná, a jednak o čísla tvaru
lOOx + v, kde x, у jsou čísla dvojciferná. Přitom číslo x
nesmí začínat cifrou 0, číslo у může začínat cifrou 0.

Při řešení by se měla vyžadovat podrobná analýza. V první
úloze se vychází z rovnice

10x + у = (x + y)\ x = 1,2,3,4,5,6,7,8,9. (14)
Úlohu lze řešit experimentálně přezkoušením všech devíti
možných případů. Malým trikem odvodíme z (14) ekviva-
lentní rovnici

(15)9x = (x + у) (x + у — 1).
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Tato úprava umožňuje podstatně zúžit obor řešení. Oba
činitelé na pravé straně (15) jsou totiž nesoudělná čísla,
proto jeden z nich je násobkem devíti, tj. roven 9к (к ^ 1).
Druhý činitel je 9k ± 1 ^ 9 ± 1 ^ 8. Z (15) pak plyne
9x ^ 9k . 8, neboli x ^ 8. Protože je x < 10, zužuje se obor
řešení na dvě čísla x = 8 nebo 9. Zkouška ukáže, že jediné
řešení je 81 = (8 + l)2.

Y druhé úloze se ukáže, že předchozí postup řešení je
schopný přenesení. Výchozí rovnice v tomto případě zní

(i6)99x = (x + у) (x + у — 1).

Nesoudělnost obou činitelů na pravé straně (16) vede к zá-
věru, že a) buď jeden z nich je násobkem čísla 99, nebo b)
jeden je násobkem čísla 9, druhý násobkem čísla 11.

V případě a) jsou činitelé na pravé straně (16), 99к, к ^ 1,
99k +1^99+1^98; z (16) pak plyne 99x ^ 99к. 98,
tj. x ^ 98k. Odtud dále к = 1, x = 98 nebo 99. Zkouška
ukáže, že jediné řešení v případě a) je 9 801 = (98 4- l)2.
Poněvadž rozdíl obou činitelů na pravé straně (16) je roven 1,
platí v případě b) rovnice

(17)9z + llí = 1 ,

kde z, t jsou shodná čísla celá. Diofantickou rovnici (17)
rozřeší žáci známým způsobem (9z = 1 — Ш, 9м = 1 — 2í,
2í = 1 — 9u, 2v = 1 — и, и = 1 - 2v, odtud z = 5 — lit;,
t = 9v- 4).

Pro řešení rovnice (17) pořídíme výpis z tabulky:
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-2 2 3-11

-17 -2827 16 -6

23-22 -13 -4 5 14t

jl

-252-1539z 243 144 45 -54

253llí -242 -143 -44 55 154

Řešení dává jen tlustě orámovaná část tabulky, tj. dvojice
44, 45 a 54, 55. Příslušné hodnoty x jsou podle (16) x = 20
nebo 30; řešení jsou

2 025 = (20 + 45)2,

Primitivněji lze к řešením rovnice (16) dospět tak, že
vzhledem к (16) sestavíme tabulku násobků čísla 11 až do
18.11 (neboť x + у < 200) a zkoumáme dělitelnost devíti
těchto násobků a čísel sousedních.

3 025 = (30 + 25)2 .

2 12 13 14 16 17 18к 1 3 4 5 6 7 8 9 10 11 15!

4
Uk ill 33 121 132 143 154 165 176 187 19822 44 55 66 77 88 99 110

11/í-l 21 32 43 65 87 98 109 120 131 142 153 164 175 186 19710 54 76

Ш + l j j 12 23 133 166 188 19945 56 67 78 89 100 111 122 144 155 17734

Odtud vyjde např. x + у = 45, 99x = 44.45, x = 20,
ale x + у = 154, 99x = 154.153, x = 238 > 100. Vyjdou
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tedy opět jen tři řešení z levé části tabulky. Úloha dobře
ukazuje, jak závisí obsáhlost zkoušky na „úplnosti“ analýzy
úlohy.

В — I — 2

Dokážte platnost’ nerovnosti

*<V Y
ť=i V*

^ n(n + l)(2n + 1),
X

kde n je prirodzené číslo a x, xb i = 1,2,n, reálne čísla.
Kedy nastane rovnost’?

Komentář. Úloha je velmi jednoduchá a nepotřebuje
takřka komentáře; poměrně komplikovaný koeficient při
i2 má za úkol jen trochu zmást řešitele. Označíme-li ho

x\2YY i = 1,2,..., n,2 -У; =
XX

pak stačí dokázat, že platí

(18)У/i2 ^ i2 ■

To je evidentní, pokud je yt < 0. Je-li yť ^ 0, pak nerovnost
уi ^ 1 vyplývá ze studia průběhu funkce t h-> ř(2 — ř).
Sečteme-li nerovnosti (18) pro i = 1 až i = n, vyjde dokazo-
váná nerovnost ze vzorce l2 + ... + n2 = £n(n + 1)(2n + 1).
Pokud řešitel tento vzorec nezná, odvodí dokazovanou ne-

rovnost přímo matematickou indukcí.
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Rovnost nastane, právě když ve všech nerovnostech (18)
nastane rovnost, tj. když

(Ví) у i = 1 neboli 1,

neboli (Ví) |xř| = |x|.

B-l-3

Nechť pro a ^ 0 je

pro x > a,x

= ^-0Ф) pro |x| ^ a,\
x pro x < — a .

Řešte rovnici s reálým parametrem к

СЮ

X í*í(x) = kx .
« = o

Komentář. Klíčem к řešení této jednoduché úlohy je
podrobná analýza průběhu funkce

00

4x) = IФ) •
i = 0

Ukáže se, že pro x e < — n\ — n + 1) u (n — 1; n) (n při-
rozené), je R(x) = nx. Přesný důkaz je třeba provést indukcí,
řešitelé by si měli načrtnout graf funkce R(x).
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Diskuse se provede podle parametru к a za pomoci
náčrtků. Řešenim jsou tyto množiny kořenů:

к < 1 к = 1 1 < к < 2 n < к < n + 1k = n

{0} {0} {0}<-i; O к

kde К = < — n; — n + 1) u (n — 1; n>.
Úloha В — I — 3 rozšiřuje opět zásobu elementárních

nespojitých funkcí, s kterými se pracuje na střední škole.

В — I —4

Jsou dány čtyři různé body А, В, C, D ležící v téže přímce.
Určete množinu všech bodů X v prostoru, pro něž platí:

(19)ZAXB= *BXC= -fcCXD.

Komentář. Dvě úvodní poznámky: 1. Je vidět, že prosto-
rová varianta úlohy je jen formální; je-li totiž M x množina
všech bodů X, které leží v rovině svazku (AB) a splňují
podmínky (19), vznikne hledaná množina M2 rotací mno-
žiny M! kolem osy AB.

2. Pokud má být M2 Ф 0, pak pro uspořádání bodů
А, В, C, D plyne z (6), že В leží mezi J,C a C mezi В, D;
je tedy pořádek bodů А, В, C, D.

Řešení rovinné varianty úlohy В — I — 4 se opírá o Apollo-
niovu kružnici, resp. o vlastnost osy úhlu trojúhelníku; tyto
poznatky by si měli řešitelé připomenout. Na obrázku la
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je XB osa úhlu ЦАХС, úhel %ХВС je ostrý. (Případy,
v nichž je -fcXBC pravý nebo tupý, přenecháváme čtenáři.)
Na polopřímce XB je sestrojen bod Уфб tak, že je
AY = AB. Z podobnosti ДАХУ ~ ДСХВ plyne

АХ _AX _ CX
AY~AB= ČB’

АХ AB
neboli = —; bod X leží tedy na Apolloniově kružnici

CX CB

X

Á В c\
\

Obr. la

Y

kx, sestrojené nad průměrem BB'; přitom B' je bod ležící
vně úsečky AC na polopřímce BC, pro který platí
AB': CB' = AB : CB.

Obdobně: není-li BC = CD, leží bod X na Apolloniově
kružnici k2 sestrojené nad průměrem CC, přičemž
BC: DC = BC : DC. Bod C leží vždy vně úsečky BB1
(protože úhly -YBXB', -YCXC jsou pravé a bod C leží
mezi В а В'), a proto se obě Apolloniovy kružnice /с1?/с2
protínají ve dvou různých bodech M, N souměrně sdruže-
ných podle osy AB (obr. lb). Jejich rotací vznikne kružnice.
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Také úloha В —1 — 4 nevyžaduje žádný vtip; jediným
impulsem by snad mohlo být upozornění na souvislost
osy úhlu s Apolloniovou kružnicí. Pozornost je třeba vě-

Obr. lb

novat diskusi; zvláště se nesmí zapomenout na případy,
kdy body X neleží na Apolloniově kružnici, nýbrž na jisté
přímce.

B-l-5

V rovině je dán trojúhelník. Najděte aspoň jeden licho-
běžník, jehož všechny čtyři vrcholy leží na hranici daného
trojúhelníku tak, že dělí jeho obvod na čtyři stejně dlouhé
části.
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Komentář. Je to v podstatě úloha na manipulaci s nerov-
nostmi, zejména s nerovností trojúhelníkovou. Postup řešení
žáci najdou pravděpodobně snadno, náročnější je detailní
provedení. Důležité je připomenutí, že úloha žádá jen určení
(sestrojení) aspoň jednoho lichoběžníku žádané vlastnosti.
Postup řešení lze rozčlenit do těchto bodů:

1. Hledaný lichoběžník má jednu stranu z ve straně
trojúhelníku. Pokusíme se o to, aby tato strana z byla
základna lichoběžníku a aby ležela v nejdelší straně c

trojúhelníku.
2. Výpočtem určíme krajní body druhé základny z'.
3. Pokusíme se umístit stranu z v úsečce c tak, aby dvě

další části hranice trojúhelníku měly délky rovnající se
čtvrtině jeho obvodu.

4. Dokážeme, že výsledný čtyřúhelník není rovnoběžník.

Toto členění by mohlo být instrukcí pro řešení úlohy.
Ad 1. Označíme vrcholy a strany trojúhelníku obvyklým

způsobem, jeho obvod označíme 2s; KLMN bude hledaný
lichoběžník (obr. 2). Je-li AB nejdelší strana daného trojúhel-
niku ABC, je Зс ^ a + b + c = 2s, tj. c ^ fs > |s, a do
strany AB lze umístit úsečku délky ^s.

a
Ad 2. Označíme CN = x; pak je CM = -x, jak plyne

b
z podobnosti AABC ~ ДШС. Na druhé straně je
CM = — x. Porovnáním dostaneme

bs
(20)X = r .

2(a + b)
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Bod N padne mezi body A, C, neboť není x ^ b; jinak by

^ b, tj. s ^ 2(a + b), 2s ^ 4(a + b),
bs

totiž platilo
2(a + b)

с ^ 3a + 3b > a + b, a to je spor.

Obr. 2

Ad 3. Víme už, že x < b. Jde ještě o ostřejší omezení
čísla x shora; jeho účelem je ukázat, že naneseme-li na

polopřímku NA úsečku délky |s, překročíme bod A. Toto
odůvodnění je asi nejobtížnější část důkazu; provedeme
důkaz sporem.

Nechť je x + ^ b; dosadíme-li sem x ze (20), dostaneme
s 2 + Я

2-m=í>’ (21)

Z (21) plyne dálekde Я =

2s
^ 4 + 4Я _

~b ~ 2 + Я ’
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2s a + b + с
tuto nerovnost spojíme s nerovností — =

= 1 4- Я + ~ ^ 2 + Я (je totiž c ^ b); vyjdeb

b

4 + 4Я
2 + Я ^

odtud Я2 ^ 0. Protože platí Я2 ^ 0, je Я = 7 = 0, což je
b

spor.

Ad 4. Dokážeme nepřímo, že je MN Ф KL = js. Z po-
dobnosti AABC ~ AiVMC plyne podle (20)

2 + Я ’

bs esx
MN = c.~

b 2b(a + b) 2(a + b)

Kdyby bylo
cs s

2(a + b) 2’

platilo by c = a 4- b, což je nemožné.

B-l-6

V pravoúhlé soustavě souřadnic v rovině jsou dány body
A = [2; 0], В = [0; 3], C = [0; 0]. Určete výraz V{x,ý)
tak, aby grafem rovnice

K(x,y) = 0
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byla hranice /\АВС. Přitom v této úloze definujeme výraz
takto:

[1] 1, x, у jsou výrazy.
[2] Jsou-li K^x y), V2(x, у) výrazy, jsou výrazy také

Fi(x,y) + V2(x,y), Vx(x, y) - V2(x, y), ú(x,y). V2(x,y).
[3] Je-li K(x;y) výraz, je |K(x, y)| výraz.

Komentář. Úloha je jakási kuriózní hříčka; pomocí abso-
lutních hodnot se tu snažíme „odstranit nerovnosti", ačkoli
běžný postup bývá právě opačný.

Impulsem — snad jediným — by řešitelům mohly být
být tyto věty platné pro reálná čísla i „výrazy" (kvantifiká-
tory vynecháváme):

I. a = 0 л /i = 0 <=> a2 + /i2 = 0.II.а = 0л/? = 0лу = 0оа2 + /?2 + у2 = 0.
III. a = 0v /? = 0 o a/? = 0.
IV. a = 0vj8 = 0vy = 0o a/fy = 0.V.a ^ 0 o a — |a| = 0.

Na základě těchto vět odvodí řešitelé snadno analytické
vyjádření úseček АС, ВС, AB:

AC: V1 = (x — |x|)2 + (2 — x — |2 — x|)2 + y2 = 0,
BC :V2 = (y- |y|)2 + (3 - у - |3 - y\)2 +x2 = 0,
AB: V3 = (3x + 2y - 6)2 + (x - |x|)2 + (y - |y|)2 = 0.

Analytické vyjádření hranice trojúhelníku ABC je
KV2V3 = 0.
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KATEGORIE С

С — I — 1

Nech ax, a2,an (n ^ 1) sú prvočísla všetky váčšie než 3.
Potom číslo a\a\ ...а2 — 1 je dělitelné číslom 24. Dokážte.

Komentár. Předpoklad, že každé z prvočísel ал,а2, ...,an
je váčšie než 3, upozorňuje na jednu vlastnost' týchto prvo-
čísel: Každé prvočíslo p > 3 sa dá vyjadriť v tvare p = 6k± 1,
kde к je prirodzené číslo (vetu však nie je možné obrátit’!).
Pretože p je prvočíslo, musí byť jeho zvyšok pri delení
šiestimi buď 1 alebo 5.

Prirodzené je overiť si pravdivost’ dokazovanej vety naj-
skór pre n — 1:

p2 - 1 = (6/c ± l)2 - 1 = 36/c2 ± 12к = 12/c(3/c ± 1).

Ak je к párne, je 12/c násobkom čísla 24. Ak je к nepárne, je
3/c + 1 párne a 12/c(3/c + 1) je tiež násobkom čísla 24.
V každom případe je teda

p2 = 24b + 1.

Pomocou (22) sa potom lahko vypočítá, že

a2a22 ...a2 = (24bx + l)(24b2 + l)...(24b„ + 1) = 24M + 1,

(22)

(23)
kde N je vhodné prirodzené číslo. Tým je veta dokázaná.

Ako je z uvedeného vidieť, kfúčom к riešeniu úlohy je
vyjadrenie prvočísla p > 3 v tvare p = 6к ± 1. Z rovnosti

69



(23) však možno vyčítat' ešte tento výsledok: Druhá mocnina
každého nepárného čísla, ktoré nie je násobkom troch, dává
pri delení číslom 24 zvyšok 1.

С — I — 2

Určte množinu všetkých bodov v rovině, pre ktorých
pravoúhlé súradnice x, v platí

x + s(x) + у + s(y) < 1 ,

kde

1 1,pre x >

s(x) = 0 pre |x| ^ 1,
-1 pre x < — 1.

Komentár. Riešiteíom radíme, aby rovinu rozdělili na
3.3 = 9 oblastí vzhfadom na definíciu funkcie s(x) a zapí-
sáli příslušné množiny:

Mi = {I*;)7]:
M 2 =

M3 =

M4 = {[x;y]: |x| ^

X > 1 л у > 1} ,

1 Л \y\ й 1},
X> 1 Л у < — 1} ,

1 А У > 1} ,

X >

M 5 = {[*; y]- |x| ^ 1 Л |y| ^ 1},
M6 = {[x;y]: |x|g 1лу<-1},
M7 = {[x;y]: x < — 1 л у > 1},
M8 = {[x;y]: x <
M9 = {[x;y]: x < —1 л у < — 1} .

-1 Л |y| g 1},
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М,м7
У-1

М8 М6 м2

/ = -1

М6 мзм9
X • 1х=-1

Obr. з

Příslušný náčrtok oblastí je na obr. 3. Ďalšou úlohou bude
prepísať danú nerovnost’ pre jednotlivé oblasti tak, že sa
nahradia s(x) a s(y) příslušnými hodnotami. Výsledok možno
výhodné zapísať do tabulky:

M5M2 M3 M4M

x + у < 1x + у < О x + у < 1 х + у < Ох+у<-1

М9М(1 М7

х + у < 3х + у < 2 х + у < 1

Tieto nerovnosti vyjadrujú polroviny, ktorých hranicami
sú v uvedenom poradí priamky a, b, c, b, c, d, c, d, e a na
obr. 4 sú vyznačené šipkami. Hladanú množinu M dosta-
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Obr. 5
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neme, ak určíme prieniky týchto polrovín v uvedenom
poradí s množinami Ml5 M2,M9 a výsledky zjednotíme.
Túto časť vyšetrovania možno prehíadne zapísať v tabuíke.
Výsledná množina M bodov je na obr. 5, kde plné vytiahnuté
časti hranice patria к M, čiarkované nie a z vrcholov lome-
nej čiary patria do M len body vyznačené krúžkami.

C-l-3

Riešte v reálnom obore sústavu rovnic s neznámými
xl9 x2, x3, x4 as parametrom p:

*i(*2 + *з) = P,

X3(x4 + Xi) = P,

X2(x3 + x4) = p ,

x4.(x1 + x2) = P .

Komentár. Táto úloha je cvičením na zložitejšie diskusie.
Na prvý pohlad sa núka vetviť riešenie sústavy pre případy
p = 0 a p ф 0.

A. Ak je p = 0, rozlíšia sa dva případy:
— žiadne z čísel xt sa nerovná nule; A2 — aspoň jedno

z čísel xt je rovné nule.
V případe A4 vyplývá z (24)

x2 + x3 = 0, x3+x4 = 0, x4 + x!=0, x1+x2=0,

(24)

čiže

x2 = —X!, x4 = —Xj , x3 = x, ;

přitom za xx možno zvolit’ Tubovolné číslo rožne od nuly.
Pri skúmaní případu A2, keď z čísel xť je aspoň jedno

rovné nule, je potřebné upozornit’ na to, že sústava (24)
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má cyklická štruktúru, čo znamená, že stačí nájsť riešenie
sústavy (24) pre případ = 0, čím už bude případ p — 0
v podstatě vybavený.

Ak teda xt = 0, potom tretia a štvrtá rovnica (24) dávajú

x2x4 = 0.

Je teda buď x4 = 0 a z druhej rovnice (24) vyplývá
x2 = 0 v x3 = 0 alebo je x4 ф 0 a z rovnic (25) dostáváme

x2 = x3 = 0.

Ak je p = 0, sú teda v každom případe aspoň tri z čísel xř
rovné nule. Obrátene: ak zvolíme štvoricu čísel xt = 0.
x2 = 0, x3 = 0, x4 Iubovoíné, bude sústava (24) splněná.

В. V tomto případe (p ф 0) sú všetky xť čísla rožne od
nuly. (Logická struktura riešenia je obvyklá: predpokla-
dáme, že sústava (24) má riešenie, a híadáme preň nutné
podmienky.) Z prvej a tretej a z druhej a zo štvrtej rovnice
sústavy (24) dostaneme

*1*2 = *3*4,

(25)x3x4 = 0,

(26)X2X3 = XjX4 .

Z rovnic (26) po vydělení a jednoduchej úpravě dostaneme

Vi2
= 1»

*2.

tj. buď
(27)x4 = x2, x3 = xx,

alebo

(28)X3 = -Xj .*4 = “*2 i
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V případe (27) prvé dve rovnice (24) majú tvar

XlX2 + x\ = p, *1*2 + x\ = p

a rovnaký tvar má druhá dvojica rovnic (24). Odčítáním
rovnic (29) dostaneme x\ = x2, tj. xt = x2, pretože případ
x2 = —xí je vzhladom na p Ф 0 nemožný (pozři štvrtú
rovnicu (24)). Vzhladom na (27) móžu vyhovovat’ len štvo-
rice, pre ktoré platí xx = x2 = x3 = x4, tj.

(29)

(30)i = 1,2, 3,4.**

Skúška ukáže, že pre p > 0 sú obe možné štvorice čísel (30)
riešeniami sústavy (24).

Zostáva preskúmať případ (28). Rovnice (24) sa v tomto
případe redukujú na dve rovnice

*1*2 - *f = P, -x^2 - x\ = p.

Odčítáním rovnic (31) a delením číslom xf dostaneme
x2 x2
— +2— -1=0, tj.

(31)

— = -1 ± y/2.
*1

Pomocou (28) vyjádříme x2, x3,x4 v závislosti na x1:

*2 = (-1 ± >/2)*i;
Dosadením do prvej rovnice (24) dostaneme

*i( —2 ± y/2) = p

a stadia! *i,*2, *3, x4 v dost’ zložitom tvare. Pre xx vyjdu

= (1Tn/2)*i-(32)*3 = — *1Í *4

(33)
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z rovnice (33) pri p < 0 štyri možnosti. Ak určujeme x2, x3, x4
z (32), musíme preskúšať volbu znamienok skúškou —
dosadením vypočítaných čísel do rovnic (24). Aj toto počí-
tanie pre účastníka kategorie C je dosť náročné.

С — I —4

V rovině je daná úsečka AB a jej vnútorný bod C. Zostroj-
me pravoúhlý trojuholník BCY s pravým uhlom pri vr-
chole У. Označme X taký bod na úsečke AY, že CX || BY.
Dokážte, že všetky také body X ležia na kružnici. Vyjádříte
jej poloměr pomocou vzdialeností АС, BC.

Obr. 6

Komentár. Formulácia úlohy nie je úplná. Je třeba do-
plniť, že zostrojíme všetky pravoúhlé trojuholníky s pre-
ponou BC. Takto určené body У vyplnia kružnicu к zo-
strojenú nad priemerom BC, z ktorej sme vylúčili body
В, C (obr. 6). Je zřejmé, že bod X je obrazom bodu У v rov-
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noiahlosti, ktorá má střed A a prevádza bod В do bodu C,
• , v AC

ti. má konstantu — =J
AB АС + BC

AC
. Táto rovnolahlosť pře-

vádza bod C do bodu D polpriamky AB a kružnicu к do
kružnice к' zostrojenej nad priemerom CD. Poloměr kruž-

АС ВС АС. BC

AC + BC~2 ~ 2(AC + BC)‘
Úloha je triviálna, nezaujímavá. Jediný zisk z riešenia je,

že si riešiteí uvědomí užitočnosť zobrazenia (rovnolahlosť).

nice k' je

C-l-5

Je daný ostrý uhol < MVN. Na ramene VM sú dané body
А, В a C, pre ktoré platí

AV > BV > CV.

Zostrojte na ramene VN také body X, Y, aby prienikom
trojuholníkov AXB a CYB bol štvoruholník osové súmerný
podlá osi predchádzajúcej bodom B. Nájdite podmienku
riešiternosti.

Komentár. Prvým impulzom к riešeniu by mohol byť
náčrt pre vykonanie rozboru úlohy. Načrtneme štvor-
uholník (deltoid) ВZUT súmerný podlá osi o = BU a zo-
strojíme priesečníky {X} = BZ n TU, {У} = ВТr\ZU
(obr. 7). Pretože symetria podía osi o vymieňa priamky
UZ, UT i priamky BZ,BT, vymieňa aj body X, Y, tj.
olXY = VN. Aby prienikom trojuholníkov ABX, BCY
bol štvoruholník, musí priamka o oddělovat’ dvojice AX
a C Y. Načrtneme teda priamku VN a zvolíme priamku VM
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tak, aby prechádzala bodom В a aby priesečník V priamok
VN, VM ležal v polrovine oX. Nakoniec označme body А, C.

Pomocou popísaného náčrtku riešitelia 1’ahko urobia
rozbor úlohy aj konštrukciu. Priamka o je daná bodom В
a smerom (o i. VN). Vrcholy Z, U, T zostrojíme pomocou
priamok AC, A'C, kde A', C sú body súmerne združené
s bodmi A, C podlá priamky o.

Obr. 7

Obťažnejšia je diskusia. Nech si riešitelia uvedomia, že
úloha je riešiteíná právě vtedy, keď priamka o odděluje
dvojice AX a CY (ide o prienik trojuholníkov ABX, BCY).
Ak chceme podmienku riešitelnosti vyjadriť analyticky, zvo-
Hrne parametre takto: a = j:MVN, VA = a, VB = b, VC = c.

Pretože ide o záležitost’ usporiadania, je vhodné použit’
sústavu ortonormálnych súradnic, napr. VN = os x, o = os v.
Súradnice bodov A,C,C sú potom A = [(a — b) cos a; a sin a],
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С = [(с — b) cos а; с sin а], С = [(Ь — с) cos ос; с sin а].
Pře súradnicu xt bodu X (priesečníka priamok VN,AC)
odvodíme rovnicu

x^a — c)
— ab + bc — 2ac.

cos а

Podmienkou Řešitelnosti je potom xt < 0 a pretože
a — o 0, cos а > 0, možno ju vyjadriť v tvare

b(a + c) < 2ac.

C-l-6

Je daná rovina a v nej jednotková štvorcová sieť. Vy-
šetříte postupnosti bodov

(34)•^0’ ^ 1» ^2’ •••) • • •

s týmito vlastnosťami: Všetky body postupnosti (34) ležia
vo vrcholoch danej štvorcovej siete, a to tak, že úsečky

к = 0,1,2,... sú striedavo vždy buď stranou alebo
uhlopriečkou niektorého jednotkového štvorca siete. Ak pre
niektoré к = 1,2, 3,... je AkAk+l uhlopriečkou niektorého
jednotkového štvorca danej siete, sú Ak_1Ak a Ak + íAk + 2

stranami toho istého štvorca.

a) Pre ktoré prirodzené n móže byť A„ = A0?
b) Pre n = 1,2, 3,... určte maximálnu a minimálnu možnú

vzdialenosť bodu A„ od A0.

Komentár. Úloha C —1 — 6 je poměrně náročná. Jej rie-
šenie nevyžaduje sice takmer žiadne matematické znalosti,

^k^k+ 1»

79



л = 2n=1 л=3

1

К
О .2

Ж
1

1

/ V

То

л = 3 п=А л=4

1 4

Ж
О 3 2

1 3

Щ
1 3

0 4 2

П = 4п=4

Ш
1 Ol

0 2 4

Obr. 8

ale spósob riešenia je pře váčšinu účastníkov MO ne-
obvyklý.

Otázku a) by bolo třeba asi vysvětlit’: majú sa nájsť
všetky prirodzené čísla n, pre ktoré móže platit’ (pri vhodnej
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Obr. 9

volbě bodov Ak) An = A0. Odporúčame riešitelom, aby si
zaobstarali štvorčekový papier a experimentovali pre n —

— 1,2, 3,4. Všetky typy příslušných postupností bodov sú
zakreslené na obr. 8 (v jeho popise je všade к namiesto Лк),
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a to najskór pre případ I, že A0AÍ je strana štvorca siete.
Analogický experiment urobíme pre případ II, tj. pre

postupnosti, kde A0AX je uhlopriečkou štvorca základnej
siete (pozři obr. 9). Přitom sú v obr. 8 a 9 typy postupností
n — 3 obe možnosti nadvázujúce na typ n — 2, typy postup-
ností n = 4 sú všetky možnosti nadvázujúce na oba typy
n = 3.

4- IA

i

[A

t tt
Obr. 10 Obr. 11

Pre riešenie úlohy a) pri postupnostiach I i II odporúčame
riešitelom, aby si načrtli všetky vrcholy siete dosiahnutelné
z jedného z nich pre n — 4. Vzhfadom na obr. 8, 9 vyjde
situácia načrtnutá na obr. 10, kde východzím bodom je
bod A. Z tohto obrázku je zřejmé, že pre n = 4r (r prirodzené)
sú vzájomne „dosiahnutelné41 ktorékoívek dva body siete £
z obr. 11. Vzhladom na druhé náčrty z obr. 8 i 9 je zřejmé,
že pre n — Ar + 2 (r celé nezáporné) nemóže platit’ A„ = A0
pre žiadny bod A0 . An je podlá obr. 11 vždy susedným bodom
к niektorému bodu siete L.

Pre n = 4r + 1 (r celé nezáporné) analogicky zistíme, že
rovnost' An = A0 móže nastat’ len pre postupnosti skupiny II,
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ale nie I. Pre n = 4r + 3 (r celé nezáporné) zistíme, že
rovnost’ An = Aq móže nastat’ len pre postupnosti skupiny /,
ale nie II.

Tieto výsledky si je třeba demonstrovat’ pre určité n,

napr. n = 5, 6, 7, 8, a to postupnosti skupiny I aj II. Postup-
nosti budeme konstruovat’ s tendenciou dosiahnuť rovnost’

An Aq.
b) Je evidentně, že minimum ó vzdialeností bodov An, A0

je pre n > 1 buď 0 alebo 1. Pre n — 1 pre skupinu II je
» = y/Í

Pre maximálnu vzdialenosť A dostaneme pri párnom n
v skupině / i II podlá siedmich náčrtkov na obr. 8 a A = \n.
Pre nepárne n dostaneme

n - IV
+ 1 v skupině /;A =

2

n + 1\2
+ 1 v skupině II.A =

2

Tieto výsledky si budeme demonstrovat’ asi len na nu-

merických príkladoch. Úloha C —1—6 je myšlienkove naj-
hodnotnejšou úlohou I. kola.

KATEGORIE Z

Z-l-1

Určete všecky takové dvojice čísel a, b, pro něž je mnoho-
člen x4 + ax2 + b možno vyjádřit jako součin mnohočlenů
2. stupně, z nichž jeden je x2 + ax + b.
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Komentář. Úloha Z —1 — 1 navazuje bezprostředně na
úlohu Z —P —1 a opírá se o určení koeficientů polynomu
(polynomické funkce), který vyplývá z rovnosti dvou tako-
vých funkcí platící pro všecky hodnoty proměnné. V našem
případě jde o rovnost

x4 + ax2 + b = (x2 + ax + b) (x2 + cx + d);
neboli

x4 + ax2 + b -

= x4 4- (a + c) x3 4- (b + d + ac) x2 + (ad + bc)x + bd.
(35)

Z (35) plyne

a + c = 0, b + d + ac = a, ad + bc = 0, bd = b.

(36)
Čtvrtá rovnice (36) vede к tomu, abychom začali rozlišením
případů b =t= 0 a b = 0. Radíme, aby si řešitelé pro koefi-
cienty a,b,c,d sestavili tabulku, kterou budou postupně
doplňovat. V případě b Ф 0 dostaneme z čtvrté rovnice (36)
d = 1, takže začátek tabulky je

h cl

i

К tomu přistupují rovnice

b + \ — a2 = a, a(l — b) = 0. (37)c = —a,
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Třetí rovnice (37) vede к rozlišení й = 0,йФ0. Rovnice (37)
nám dávají toto doplnění tabulky

b clLI c

00 -1 1

1- i1 1

2 i-2 1

Pro b = 1 dává totiž druhá rovnice (37) dvě možnosti:

a2 4- a — 2 = 0,

(a + i)2= i,
a + j = +§,

(38)
(39)

tj. a = 1 nebo —2. Jinak: (38) můžeme napsat ve tvaru
(a2 — 1) + (a — 1) = 0, neboli (a — l)(a 4- 1) + (a — 1) = 0,
neboli (a — 1) (a + 2) = 0
a odtud opět a = 1 nebo a = —2. Jak patrno, „obcházíme“
tu řešení kvadratické rovnice, ale „doplnění" na druhou
mocninu dvojčlenu (39) by měl být pro účastníky olympiády
kategorie Z běžný obrat.

V doplňování tabulky pokračujeme pro b = 0. Soustava
(36) má pak tvar

(40)d = a( 1 + a),
Poslední rovnice (40) nás vede к rozlišení případů афО

ad = 0.c = —a,
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a a = 0. Je-li a =t= 0, je d = 0, z druhé rovnice (40) je a = — 1,
z první с = 1. Další řádek tabulky je tedy

clc

1 O

Je-li a = O, plyne z (40) c = d = O a dostaneme tedy celkem
5 možných řešení:

h dcl c

o -1 o

1 I

1 I

o 1 o

o o oo

Zkouškou se přesvědčíme, že uvedené čtveřice čísel a, b, c, d
jsou skutečně řešeními; např. je pro všechna x

x4 — 2x2 + 1 = (x2 — 2x + 1) (x2 + 2x + 1).
Jak je patrné, jádro úlohy je v rozboru a diskusi soustavy (36).
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Z — I —2

Na výstavě hraček jezdí dvě elektrické lokomotivy po

kolejích položených na dvou soustředných kružnicích
kí(S;rí) a k2(S\r2), r2 > rl5 ve stejném smyslu stálou
rychlostí v. Vyjely z polohy, v níž byly sobě nejblíže. V kterých
okamžicích po startu budou od sebe a) poprvé nejdále;
b) poprvé nejblíže? Řešte nejprve obecně, pak pro:
rx = 60 cm, r2 = 70 cm, v = 20 cm/s, я = Ц-.

Komentář. Doporučujeme řešit nejprve úlohu:
Na kruhové dráze o poloměru r společně trénovali dva

běžci. Spolu vyběhli z téhož místa ve stejném smyslu se
stálými rychlostmi’ a v2 (vx > v2) a běželi tak dlouho,
dokud rychlejší z nich nezískal před druhým náskok tří
okruhů. V kterých okamžicích po startu byli od sebe
a) poprvé nejdále; b) poprvé nejblíže?

Vzdušná vzdálenost mezi oběma běžci byla vždy největší,
právě když byli v krajních bodech téhož průměru dráhy.
Poprvé se tak stalo, když rychlejší běžec měl náskok polo-
viny okruhu. Pro tento okamžik t tedy platí

vxt — v2t = nr,

tj-
nr

(41)t =

Vl - V2

Po startu si běžci byli vždy nejblíže, když rychlejší pomalej-
šího předbíhal. Poprvé se tak stalo, když rychlejší měl ná-
skok jednoho okruhu. Pro tento okamžik T platí:

vxT — v2T = 2nr,

87



tj.
nr

(42)T= 2. = 21.
Ví ~ v2

Tuto úlohu je možno řešit např. pro r = 50 m, vx = 10 km/h,
v2 = 13,6 km/h.

Přejdeme к řešení úlohy Z —1 — 2. Nechť body L, al2
na obr. (12) znázorňují obě lokomotivy v jistém časovém

okamžiku. Označme К průsečík polopřímky SL2 s kruž-
ničí kv Pohybuje-li se bod L2 po kružnici k2 rychlostí v,

pak se bod К pohybuje po kružnici k{ rychlostí

r 1
v. —

r2

Body L[ aL2 jsou si zřejmě nejblíže (nejdále), právě když
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jsou si nejblíže (nejdále) body Lj а К. V okamžiku startu
lokomotivy body Lx а К splývaly. Položíme-li

**i
V\ — v , V2 = v .— r = r! ,

>*2

lze pro řešení úlohy Z —1—2 užít výše uvedených vzorců
(41) a (42). Z těchto vzorců pak plyne pro případ a)

™\r2

v(r2 - rty
t =

tj. pro dané údaje t = 66 s;

pro případ b) je
T=2t,

tj. pro dané údaje T = 132 s.

Z-l-3

Je dán rovnostranný trojúhelník ABC, jehož strana má
velikost a. Sestrojte bod O, jenž je průsečíkem jeho výšek,
a bod P, jenž je s bodem O souměrně sdružen podle přímky
BC. Dokažte, že čtyřúhelníku ABPC lze vepsat i opsat
kružnici. Vypočítejte poloměry obou těchto kružnic.

Komentář. Úloha Z —1 — 3 navazuje volně na úlohu
Z —P —3. Situace je načrtnuta na obr. 13. Impuls, který
lze dát řešitelům, je tento: Kružnice, která se dotýká polo-
přímek XY, XZ, má střed na ose úhlu < YXZ.*)

*) Kružnice, která prochází body A", Y, má střed na ose úsečky X, У.
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Existuje-li tedy kružnice vepsaná čtyřúhelníku ABPC, má
svůj střed na osách úhlů Š.CAB, jcABP, <BPC, £PCA,
tj. na polopřímkách AP, PA, CR, BR (osy obou úhlů £ ABP,
3:ACP se protínají vzhledem к symetrii podle přímky AP
v témž bodě R přímky AP). R je tedy střed kružnice vepsané.

Protože ДОБР je rovnostranný (všechny jeho úhly mají
velikost 60°), procházejí všechny čtyři osy úseček AB, AC,
BP, CP bodem O, který je středem kružnice opsané čtyř-
úhelníku ABPC.

C

\\
! \ p/

\■

!.Au\

/

к \

Obr. 13
A В

Pro poloměr r kružnice opsané platí r = OA = OB =

= OC = OP = ^л/3 (dvě třetiny výšky trojúhelníku ABC).
Poloměr q kružnice vepsané lze vypočítat buď z ДРСР
podle úlohy Z —P —3 nebo z ДАСР (viz obr. 14). Zde je

CQ = Q, AQ = в >/3» AQ + CQ = a, tj. q =
a

yjb + 1
= ^(^/3 — 1). Stačí v ДЛСР zakreslit úsečku QR = в

a zajistit velikosti úhlů obou trojúhelníků AQR, CQR.
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Z — I —4

V rovině je dána kružnice к o poloměru 6 cm a čtverec
A0B0C0D0, jehož strana má délku 3,5 cm. Označme ABCD
čtverec těchto vlastností:

1. Vznikne rovnoběžným posunutím čtverce A0B0C0D0;
2. náleží kruhu s hranicí к;
3. aspoň jeden jeho vrchol náleží kružnici k.

D0

D3

Во40

Cd2 A3

s*

'1
a4

к

Ai B1Obr. 15

Narýsujte čáru, kterou vyplní vrcholy A všech takových
čtverců.
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Komentář. Úloha Z —1 — 4 je úloha na určení množiny
bodů v rovině, vytvořené pohybem; hlavní roli tu hraje
pochopení textu a znázornění situace. Deduktivně pak má
řešitel odůvodnit, že hledaná množina bodů M se skládá
ze čtyř navzájem shodných oblouků kružnice A1A2, A2A3,
A3A4, A4Ax, z nichž první je částí kružnice k, druhý vznikne
posunutím (D2 -> A2) z oblouku D2D3, třetí vznikne po-
sunutím (C3 -> A3) z oblouku C3C4 a čtvrtý vznikne po-
sunutím (B4 -> Л4) z oblouku В4BÍ. S tímto výkladem a jeho
odůvodněním se asi spokojíme. Situace je nakreslena na
obr. 15; к výkladu patří i popis konstrukce čtverců Л,.В;Сг£);.
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IV. Soutěžní úlohy II. kola

KATEGORIE A

A —II — 1a

Je dán pravidelný čtyřstěn MNPQ o hraně délky 1.
Dokažte, že každá krychle, jejíž čtyři vrcholy leží ve stěně
MNP a zbývající čtyři v dalších stěnách čtyřstěnu, má
hranu menší než j.

Obr. 16
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Řešení. Nechť krychle ABCDA'B'C'D' splňuje v textu
uvedené podmínky; ve stěně MNP nechť leží její stěna
ABCD. Pak rovina A'B'C je rovnoběžná s rovinou MNP,
takže daný čtyřstěn protíná v rovnostranném trojúhelníku;
jeho vrcholy označme M', N', P' (obr. 16). Čtverec A'B'C'D'
je zřejmě trojúhelníku M'N'P' vepsán. To je možné jedině

P'

x
a

x
a

Obr. 17
tf A B' N

tak, že jedna ze stran čtverce A'B'C'D' je částí jedné ze
stran ДМ'ЛГР'. Nechť např. А'В' c M'N' (obr. 17). Označme
a velikost úsečky M'N' a x velikost hrany vepsané krychle.
Pak z AB'N'C' plyne

x

tg 60° =
0,5(a — x) ’

4/3(a — x) = 2x ,

tj-

odkud plyne
x = (2 — у/з) a y/b .

Snadno lze spočítat, že pravidelný čtyřstěn o hraně délky

(i)
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d má tělesovou výšku к = d. ^/f; výška čtyřstěnu MNPQ
je tedy

(2)

Čtyřstěn M'N'P'Q je zřejmě také pravidelný, a proto je jeho
výška

v’ = a J|.
Z rovností (2) a (3) vyplývá, že

(3)

* = (1 - я)\/|-
Z (1) a (4) dostáváme rovnici pro a:

(4)

(2 “ >/3) а у/3 = (! - а) ,

z níž plyne
V5

6 + v/2 — 3 v/3 '
Podle (1) pak dostáváme

.. (2-73)76
б + ^-з^/з’ (5)

Zřejmě x > 0. Z našich úvah plyne, že způsobem popsaným
v textu úlohy lze danému čtyřstěnu vepsat právě tři různé
navzájem shodné krychle, jejichž hrany mají délku (5).

Máme dokázat, že platí x < ^. Podle (5) je

\ = + У2 - 3 Уз) 76(2 + Уз) =
= МЗл/б + 4ч/3 + 6)>3.

Tedy x <
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A —II —1b

Riešte sústavu rovnic s neznámými xl5 x2, x3, x4 a s para-
metrami c1? c2, c3, c4:

2xx — x2
— Xj + 2x2 — x3

— x2 + 2x3 —

= Ci>
= C2 5

X4 = C3,
— x3 + 2x4 = c4.

Řešení. Z první rovnice je

*1 — x2 = cx - xx,

ze součtu prvních dvou rovnic

*2 ~ *3 = Cl + C2 - Xj ,

ze součtu prvních tří rovnic

x3 - x4 = Cj + c2 + c3 - xt,

ze součtu všech čtyř rovnic

x4 = cx -I- c2 + c3 + c4 - xt.

Sečtením posledních dvou rovnic

x3 = 2cx + 2c2 + 2c3 + c4 — 2xx,
dále

x2 = 3ct + 3c2 + 2c3 + c4 — 3xt,
a konečně

Xi = 4cу + Зс2 -I- 2c3 + c4 — 4xy.
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Proto je
Xl = 5Cl + 5C2 + 5C3 + 5C

X2 = 5C1 + 5C2 + 5C3 + fC
*3 = 5C1 + JC2 + fc3 + |c4 ,

*4 = 5C1 + 5C2 + 5C3 + 5C4 •

Snadno se přesvědčíme, že toto řešení soustavě skutečně
vyhovuje.

Diskuse: Řešení je jediné, na hodnotách parametrů
cu c2, c3, c4 přitom nezáleží, mohou to být libovolná čtyři
reálná čísla.

4 9

4 9

A —II —2a

Je dána množina funkcí /(x) = x2 + b\x\ + c, kde b, c
jsou reálné parametry. Najděte všechny funkce z této mno-

žiny, které mají v intervalu <— 1) největší hodnotu 2
a nejmenší hodnotu 1.

Řešení. Graf Г každé funkce / lze složit z částí grafů
Ц, Г2 funkcí

/х(х) = x2 + bx + c,

f2(x) = x2 — bx + c.

Funkce fx má minimum pro x = —jb, funkce f2 pro
x = ^b; v obou případech je minimum c — £b2. Pro b = 0
je /i = /2, Г = rj = Г2. Pro b > 0 je graf Г složen pro
x^Oz části grafu Ij, pro x ^ Oz části grafu Г2, a to z těch
částí, které neobsahují vrcholy parabol Г15Г2. Také pro
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b < O je graf Г složen pro x^Oz části grafu Ц, pro x ^ 0
z části grafu Г2, ale z těch částí, které obsahují vrcholy
parabol Г1? Г2.

a) Je-li b ^ 0, nastane minimum pro x = 0 (je tedy
c = 1) a maximum pro x = 1. To naznačují obr. 18,19 a lze
to snadno prokázat výpočtem. Dostáváme pro b = 0 funkci

/\ \ьЩ I
I\
I/7\ 4
I\ /n-r2-r \ /

\ /
\ J/\ \ /

4 \ у

C ! c-í
|

\b lo lb

Obr. 19

/

“1“

c-ťL
4 I

I
C

■

*

0_± 1
~22

Obr. 18

x i—> x2 + 1, která skutečně splňuje podmínky úlohy, pro
b > 0 nedává rovnice 1 + b + 1 = 2 řešení.

b) Je-li b < 0 (viz obr. 20), je třeba rozlišit dva případy:
a) -\b <, 1 а P) > 1.

V případě a) nastane minimum pro x = —jb, a pla-í
tedy c — 4b2 = 1. Buď nastane maximum pro x = 0; pak
jec = 2, b — — 2a dostaneme jako možné řešení funkci
x 1—► x2 — 2|x| + 2, která skutečně vyhovuje. Nebo nastane
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maximum pro x = 1, což vede к rovnici 1 + b + с = 2;
spojením s rovnicí с — \Ъ2 = 1 dostaneme b = — 4, což je
ve sporu s předpokladem a).

/i

\ /
\ /
\ /

č><0 I\
I\
I1 \
/\ /

iŽ" T ~
о I 62

C-1c- c

6
2 2

Obr. 20

V případě /?) nastane minimum pro x = 1 a maximum
pro x = 0. Z toho plynou rovnice l+b + c= lac = 2,
z nichž dostaneme b = —2, což je spor s předpokladem /?).

Úloha má tedy dvě řešení xi—>x2 + 1 ахих2- 2|x| + 2.

А — II —2b

Určte všetky reálné čísla x, pre ktoré platí

3[x]2 + 6x — 4 = 0.

[x] znamená také celé číslo y, pre ktoré platí у ^ x < у + 1.

(*)
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Řešení. 1. způsob: Označme z = x — y; pak je

0 ^ z < 1.

Do dané rovnice dosadíme x = у + z. S použitím rovnosti
[x] = у dostaneme

и

6z = 4 — 3y2 — by. (?)
Vzhledem к (6) dostaneme z (7)

0 ^ 4 - 3y2 - 6y < 6. (8)
Z (8) plyne

0 < 3y2 -f 6y + 2 ^ 6.

Grafem funkce t = 3y2 + 6y + 2 v souřadném systému
(O, y, t) je „konvexní” parabola, jejíž osa o je rovnoběžná

(9)

Obr. 21

s osou t a jejíž vrchol je v bodě [ —1; 1] (obr. 21). Je-li
у ^ — 3 nebo у ^ 1, je t ^ 11, což je spor s pravou ne-
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rovností soustavy (9). Řešení soustavy (9) mohou být jedině
ta celá čísla y, pro něž platí

-2^y ^0.
Příslušná tabulka je

-2 -1 0У

-1 2t

Vidíme, že у = —1 nevyhovuje vztahu (9). Pro у — — 2;0
dostaneme podle (7) z = +§ a dále x = —f; f. Daná úloha
má skutečně dvě řešení, jak se ověří zkouškou.

Poznámka. Soustavu (9) lze vyřešit ještě tímto způso-
bem: Určíme obor pravdivosti A výrokové formy A(y) =
= 3y2 + 6y + 2 > 0 a obor pravdivosti В výrokové formy
B(y) = 3y2 + 6y + 2 ^ 6.
Platí

A-*-íM
s/21.

A = ; + oo I,

В = -1 - -1 +
3 ’

V průniku A n В leží dvě celá čísla: — 2 a 0. Další postup
je stejný jako v prvním případě.

2. způsob: Má-li platit (R), musí být 6x celé číslo. Je tedy x
nutně tvaru

x = q + &,
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kde q je celé a r = 0,1,2, 3,4, 5. Potom ovšem [x] = q,
takže (R) lze psát ve tvaru

3q2 + 6q + r — 4 = 0.

Odtud je vidět, že r — 4 musí být dělitelno 3. To je možné
jenom tehdy, je-li buď r = 1, nebo r = 4. Tyto případy
vyšetříme postupně.

a) r = 1. Potom z (10) dostáváme

(10)

3q(q + 2) = 3,
tzn.

q(q + 2) = i,

ale takové celé q neexistuje,

b) r = 4. Z (10) vychází

3q(q + 2) = 0,

takže je buď q = 0, anebo q = —2. Y prvém případě je

Y — —л — 3 >

ve druhém
_4 .X = 3 ’

dosazením do (R) se přesvědčíme, že to jsou skutečně řešení.

A — 11 — 3a

V rovině je dána kružnice k o poloměru 1 a jí vepsaný
rovnoběžník AlBlB2A2, pro který platí AXBx = 1. Dále
je dáno n — 1 rovnoběžníků Л1Б15,-Л,-, i = 3, 4, n + 1,
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n > 1 tak, že všechny vrcholy A3, B3, Aa, BA,An+ i,Bn+1
leží uvnitř kružnice k. Označme s součet obsahů všech
rovnoběžníků, které lze zapsat ve tvaru А(В(ВкАк, i, к =
= 1,2,n + 1, i < k. Dokažte, že platí

n J3 ^ s < %n2 - n + 2) y/l.
Řešení. Rovnoběžník AlBlB2A2 má obsah y/l, neboť

to je vzdálenost dvou navzájem rovnoběžných tětiv АгВи
A2B2 kružnice k, které mají délku 1. Všechny ostatní úsečky
АД, i = 3,4,...,n + 1, leží uvnitř pásu roviny s hranicemi
AlB1 a A2B2. Leží-li všechny body At, Bh i = 3,4,..., n + 1,
v přímce, vznikne mimo rovnoběžník AÍB1B2A2 ještě
2(n — 1) rovnoběžníků AjB^B^i a A2B2BiAiy i = 3,4,n + 1,
z nichž vždy dva odpovídající AlB1BiAi а А2В2В{А{ mají
obsahy se součtem >/3. Pro číslo s máme v tomto případě
rovnost

= JI + (n - l)x/3 = njb. (и)«0

V jiných případech přistoupí к uvedeným 2n — 1 rovno-
běžníkům nejvýše r rovnoběžníků, které lze zapsat ve tvaru
AiBiBkAk, i, к = 3,4,..., n + 1, i < k. Zřejmě je

n — 1

2 j = i(n-l)("-2).г й

Každý z těchto rovnoběžníků má obsah menší než
pro součet s' jejich obsahů tedy platí

s' < r Jb ^ (n2 - 3n + 2).
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S použitím (11) dostaneme
/3

s — s0 + s' < n y/з + (n2 — 3n + 2),

s < %n2 - n + 2) у/З ;

Пу/3 < %n2 -n + 2)y/b.

tj-

úhrnem

А —II —3b

Je dáno kladné číslo s a konvexní čtyřúhelník ABVM,
v němž je úhel -KAVB pravý. Určete takové body X, У
ramen VA, VB, aby přímka XY procházela bodem M a aby
platilo VX + VY — s.

a) Vyjádřete VX pomocí délek s, d = VM a velikosti
úhlu co =•£ A VM.

b) Stanovte podmínku řešitelnosti úlohy.
Řešení. Na obr. 22 je označeno VX = x, VY = y. Zřejmě

ie co < hz.

A

Obr. 22 Obr. 23



Pro obsahy trojúhelníků platí

AVXY + AVXM = AMVY,
neboli

jxy + ^dx sin co = jdy cos co,

tj-
dx sin co

(12)У =
d cos co — x

Protože VX + VY = s, plyne z (12)
dx sin co

x + = S,
d cos co — x

tj-
x2 — (d cos co 4- d sin co + s) x + ds cos co = 0. (13)

Podle obr. 23 je úloha řešitelná právě tehdy, má-li rovnice (13)
kladný kořen, pro který platí x < VMX (Mx je pravoúhlý
průmět bodu M do polopřímky VA), neboli

x < d cos co. (14)
Diskriminant rovnice (13) je

D = (d cos co + d sin co + s)2 — 4ds cos co,

po úpravě

D = d2 sin2 co + 2d sin co (d cos co + s) + (d cos co — s)2.
(15)

Protože d > 0, cos co > 0, s > 0, sin co > 0, je D > 0, tj.
rovnice (13) má dva reálné kořeny хих2. Protože jejich
součet i součin jsou kladná čísla (viz (13)), jsou oba kořeny
xx,x2 kladné.
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Nutná a postačující podmínka řešitelnosti úlohy je, aby
menší z obou kořenů xx,x2 rovnice (13) byl menší než
d cos co. Menší kořen Xj je dán vzorcem

d cos co + cí sin co + s — yjb
Xi =

2

Podmínka řešitelnosti je po úpravě

d sin co + s — d cos co < у/Б. (i6)
Je-li d sin co + s — dcos co ^ 0, plyne z (16) po úpravě
vzhledem к (15)

0 < 4d2 sin co cos co.

Protože postup lze obrátit (v případě d sin co + s — d cos co ^ 0),
je xt <d cos co a úloha je řešitelná.

Vyšetřme tedy ještě případ d sin co + s — d cos co < 0.
V tomto případě platí (16) bez dalších podmínek. Po při-
čtení 2d cos co na obou stranách (16) zjistíme, že opět platí
xx < d cos co, a úloha je tedy opět řešitelná.

Úloha má tedy v každém případě aspoň jedno řešení.

(17)

KATEGORIE В

В—II —1a

Zostrojte ДАВС, v ktorom pre velkost tc ťažnice z vr-
cholu C na stranu AB a pre velkost a strany BC platí

fc = fa,

ak sú dané velkosti b, c stráň АС a AB.
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Riešenie. Rozbor. Označme D střed strany AB. Potom
platí

BC: DC = a : tc = 2: 3 .

Ďalej bod C leží na kružnici к = (A; b).

i
i \i

I
i

Obr. 24

Konštrukcia: (obr. 24). Najskór zostrojíme stranu AB
s velkostem c, jej střed D a kružnicu к = (A; b). Potom
zostrojíme bod E ležiaci vo vnútri úsečky BD, pre ktorý
platí BE: DE = 2: 3, a taký bod F na predížení úsečky DB
za bod B, že BF = 2. BD, tj. BF : DF = 2:3. Potom opíšeme
kružnici / nad priemerom EF. Určíme к n /. ZvoTme bod
С e к n l. V případe, že C neleží na priamke je ДАВС
hladaným trojuholníkom.

Skúška. Z konštrukcie vyplývá, že strany AB а ЛС majú
skutočne v uvedenom poradí velkosti c a b. Kružnica l je
zrejme Apolloniovou kružnicou pre body B,D a poměr
BX : DX = 2:3, takže a: tc = 2: 3, tj. tc = fa.

107



Diskusia. Úloha bude mať riešenie právě vtedy, keď sa
budu kružnice к a / přetínat’ čiže právě vtedy, keď kružnica к
bude mať spoločný bod s vnútrom úsečky EF, tj. právě
vtedy keď

(18)ЛЕ < b < AF .

Platí AE = AB - ЕВ = c - f .\c = fc, AF = AB + BF = 2c.
Podmienka (18) teda znie

fc < b < 2c.

Kružnice к a / majú sice v případe (19) dva priesečníky, ale
úloha je nepolohová, takže sa uvažuje len o jednom z nich.
Teda, ak platí (19), má úloha jediné riešenie. Ak neplatí (19),
potom úloha nemá riešenie.

(19)

B — II — 1b

Je daný ostrouhlý trojuholník ABC, v ktorom uhol BAC
má verkosť a. Obsah trojuholníka je P. Označme Вг patu
výšky z vrcholu В na stranu АС a patu výšky z vrcholu C
na stranu AB. Vyjádříte obsah štvoruholníka BCB1Cl po-
mocou P act.

Riešenie. Z pravoúhlých trojuholníkov ACCX a ABB±
dostáváme (obr. 25)

ACX = AC cos a,

ABX = AB cos a.

Pódia vety sus pre podobnost’ trojuholníkov je teda

AABC ~ AAB1C1
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s pomerom podobnosti ABt: AB = cos a. Pre obsah
trojuholníka ABlCí teda platí

P{ = P cos2 a.

Obr. 25
A ВCl

Pre obsah P' štvoruholníka ВСВхСх potom dostáváme

P' = P — P cos2 a = P(1 — cos2 a) — P sin2 a.

В — II —2a

Nech a je nezáporné reálne číslo. Definujme funkciu
sa(x) takto:

1 pre x > a,

pre |x| й a,Ф) = 0
-1 pre x < —a .

00

Riešte rovnicu £ sť(x) = kx, kde к je reálny parameter.
i = 0
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00

Riešenie. Označme S(x) = ]T s,(x) a skúmajme podrob-
i = 0

nejšie vlastnosti funkcie S(x). Predovšetkým je vidieť, že
ide o funkciu nepárnu, pretože pre každé reálne x platí
S( — x) = — S(x). Vzhladom na to, že pravá strana danej

2 3 41

Obr. 26

rovnice je tiež nepárna funkcia (platí: k( — x) = —kx),
stačí sa obmedziť len na interval <0; oo). Ak bude koreňom
nasej rovnice nějaké číslo x ^ 0, potom jej bude vyhovovat’
aj číslo — x.

110



Vráťme sa к funkcii S(x). Pře x = O je S(x) = 0. Pře
x e (m — 1; m), kde m je prirodzené číslo, je

m- 1 oo

SW = Z Ф) + Z Ф) •
i = O i = m

Pre každé i ^ m — 1 je pre x z uvedeného intervalu s(x) = 1
a prvý sčítanec tohto súčtu je teda rovný m. Druhý sčítanec
je rovný nule, pretože tu |x| ^ i pre všetky i. S(x) je teda
stupňovitá funkcia, ktorá na intervale (m — 1; m) nadobúda
hodnotu m. Jej graf je na obr. 26.

Pre к = 1 je riešením danej rovnice v intervale <0; oo)
každé prirodzené číslo a nula a v obore všetkých reálných
čísel je teda jej riešením každé celé číslo. Pre к < 1 nemá
okrem riešenia x = 0 daná rovnica žiadne ďalšie riešenie.

1 1
I, kde m = 2, 3, 4,..., je rie-Pre ke{ 1 H—; 1 +

m — 1m

i
šením každé číslo x = -, kde i = — m, — w + 1,..., —1,0,1,...,

к
1 1

0; ř..., m. Pre /с ^ 2 má rovnica kořene

В — 11 — 2b

Je daná množina funkcii

x i—► 2x — |x| + a|x — a\,
kde a je reálny parameter. Určte všetky hodnoty a, pre
ktoré graf príslušnej funkcie má s osou x spoločný aspoň
jeden bod.
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Riešenie. Budeme rozlišovat’ případy a = 0, a > 0, a < 0.
Pre a = 0 ide o funkciu x i—» 2x — |x|, ktorej graf má s osou x
spoločný jedine bod [0;0].

I. Ak a > 0, uvažujme o danej funkcii na intervaloch
= ( — oo,0), J2 = <0;a>, J3 = <a, oo). V týchto inter-

valoch sú funkčné rovnice funkcii danej množiny určené
takto:

Jl: x i—► (3 — a) x + a2 ,

J2 : XI—>(1 — a)x + a2,
J3: x i—► (l + a)x — a2 .

V intervale J2 nemá graf funkcie spoločný bod s osou x,

pretože je to úsečka s krajnými bodmi [0;a2], [a; a].
Grafom uvažovanej funkcie v intervale J3 je polpriamka
vychádzajúca z bodu [a; a] a prechádzajúca bodom
[2a; 2а -I- a2], ktorá nemá taktiež spoločný bod s osou x.
Iba graf funkcie v intervale Jt móže mať s osou x spoločný
bod, a to právě vtedy, keď 3 — a > 0 čiže ak

(20)0 < a < 3 .

II. Ak je a < 0, budeme uvažovat’ o danej funkcii na
intervaloch J4 = ( —oo; a), J5 = <a; 0), J6 = <0; oo),
v ktorých sú funkčné rovnice:

J4: хи(3-а)х + а2,
J5: x i—> (3 -I- a) x — a2 ,

J6: XI—>(1 + a) x — a2 .

Analogicky ako v případe I sa ukáže, že v intervale J4, J5
nemá graf danej funkcie spoločný bod s osou x. Spoločný
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bod s osou x móže mať len v intervale J6, a to právě vtedy,
keď 1 + a > 0 čiže a > — 1. Keďže je zároveň a < 0, do-
stáváme

(21)— 1 < a < 0.

Ak к podmienkam (20), (21) připojíme ešte případ a = 0,
dostaneme nutná a postačujúcu podmienku riešitelnosti
úlohy:

— 1 < a < 3 .

В — II— 3a

Je daný štvorec ABCD, ktorého strana má dížku а. Vo
vnútri tohto štvorca nájdite množinu vrcholov Z všetkých
pravoúhlých rovnoramenných trojuholníkov XYZ s pre-
ponou XY = a, ktorých vrcholy X, Y ležia na obvode
daného štvorca.

Riešenie. 1. Najskór vyšetřujeme případ, keď vrcholy
X а У ležia vo dvoch protifahlých stranách daného štvorca
(obr. 27). Potom sa lahko zistí, že v tomto případe množinou

Y

X ВA

Obr. 28Obr. 27



všetkých vrcholov Z ležiacich vo vnútri štvorca ABCD je
množina Mx všetkých vnútorných bodov středných priečok
štvorca ABCD.

2. Zaoberajme sa prípadom, keď vrcholy X a Y ležia
vo vnútri oboch susedných stran daného štvorca. Pre tento
případ označme M2 množinu všetkých vrcholov Z ležiacich
vo vnútri daného štvorca. Bod X je zrejme obrazom bodu Y
pri otočení okolo bodu Z o uhol 90° v kladnom alebo zá-
pornom zmysle (obr. 28). Bod Z je vnútorným bodom štvorca
ABCD a každé dve susedné strany štvorca sú navzájom
kolmé. Preto množina M2 je častou množiny všetkých
vnútorných bodov uhlopriečok daného štvorca.

Y"'2 Y"Yl C S3a D cD

/ *2
к

S2

T
X

A ВA R В S1
Obr. 29 Obr. 30

Označme S priesečník uhlopriečok daného štvorca
(obr. 29). Uvažujme o úsečke AS. Nech Zx je taký bod tejto
úsečky, ktorý má od stráň ВС a CD vzdialenosť \a *J2.
Zrejme Z^e M2. Ak zvolíme lubovolný bod Z' ležiaci vo
vnútri úsečky AZl5 potom příslušné body X' а У móžu
ležať buď na stranách DC a BD, alebo А В a AD. Na stranách
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DC a ВС také body neexistuj ú, pretože vzdialenosť bodu Z'
od týchto stráň je váčšia než \a Jl. Dokážme, že ani na
stranách AB a AD nemóžu ležať také body. Označme RaT
v uvedenom poradí pravoúhlé priemety bodu Z' na strany
AB a AD. Ďalej je AZ' < AS = Jl, takže pokiaí by
existovali na stranách AB a AD body X' a Y', patřili by
úsečkám RB a TD, tj. -fcX'Z'Y' by bol váčší než 90°. Teda
Z'# M2.

Nech bod Z" je lubovolným vnútorným bodom (obr. 30)
úsečky SZV Označme P,Q\ uvedenom poradí paty kolmic
z bodu Z" na strany ВС a CD. Zrejme Z”P = Z"Q < \a Jl.
Zostrojme kružnicu к = (Z"; ja Jl). Táto kružnica má
s priamkou BC dva spoločné body X'[ a X2 a s priamkou
CD spoločné body Y/' a Y2". Všetky tieto body ležia na
obvode štvorca a nesplývajú s jeho vrcholmi, pretože P a Q
sú vnútorné body úsečiek BC a CD, Z”C > SC = ja Jl
a Z"В = Z"D > SD = \a Jl (vyplývá z AZ"SD). Zo zhod-
nosti trojuholníkov Z"PX'[ a Z"QY'Í a z toho, že £ PZ"Q =
= 90° vyplývá, že trojuholník X'[Z” Y/' je pravoúhlý a rovno-
ramenný s přeponou X'í Y/'. Teda Z" g M.

Závěr. Hradanou množinou je množina Mx и M2, ktorá
je na obr. 30 hrubo vytiahnutá (Sl5 S2, S3, Mx u M2,

Z2,Z3,Z4eMj u M2).

B-11-ЗЬ

V jednotkovej štvorcovej sieti je zakreslená sústava súrad-
nic, ktorej osi ležia v priamkách siete. Nech (p, q) je bod
siete, kde p a q sú prirodzené čísla, p ^ q. Dokážte mate-
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matickou indukciou podia čísla n — p + q, že po priamkach
siete sa možno dostať zo začiatku súradnicovej sústavy do
bodu (p; q) cestou dížky p + q právě

(p + q)(p + q - l) — (í + 2)(q + 1)
p(p — 1)... 2.1

spósobmi.

Riešenie. Yšimnime si najskór, že cesta dížky p + q
z bodu (0; 0) do bodu (p;q) má vlastnost’, že je najkratšia,
a preto z každého svojho bodu (u;v) pokračuje buď do
bodu (u 4- 1; u), alebo do bodu (и; v + 1).

Dokaž úplnou indukciou urobíme teraz takto: Pretože
p, q sú prirodzené čísla, je n = p + q ^ 2. Ak je n = 2,
je p = 1, q = 1. Sú zrejme dve cesty z (0; 0) do (1; 1) dížky 2.
Vzorec dává taktiež 2, takže pre tento případ tvrdenie platí.
Nech n > 2 a predpokladajme, že vzorec platí pre n — 1.
Do bodu (p;q) sa podlá predchádzajúcej úvahy dostaneme
z dvoch bodov: (p — 1; q) a (p; q — 1).

Rozlišujeme nasledujúce případy:
a) p — q; pretože počet ciest z (0;0) do (p; p — 1) je

rovnaký ako počet ciest z (0;0) do (p — 1; p), je potom
podlá indukčného předpokladu počet ciest z bodu (0;0)
do (p; p) rovný

2(2p ~ l)(2p - 2)...(p + 1) = 2p(2p - l)...(p + 1)
(p — 1)(p — 2)... 2.1 p(p — 1)... 2.1

čo je právě číslo dané vzorcom.

b) 1 = p < <gr. Do bodu (1; g) sa opáť dostaneme z bodu
(0 ;q) alebo z bodu (1; q — 1). Pretože do bodu (0;g) vedie
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z bodu (0;0) jediná cesta (dížky p + q — 1) a podia in-
dukčného předpokladu je počet ciest do (1; q — 1) rovný q,
je počet ciest do (1 ;q) rovný q 4-1, ako udává aj vzorec.

с) 1 < p < q. Počet ciest do (p-,q) je opáť súčtom ciest
do (p — 1; q) a (p; q — l), ktoré sú podra indukčného
předpokladu rovné

(p + q - l){p + q - 2)...(q + 1)
(p — l)(p — 2) ...2.1

a

(p + q - i)(p + q - 2)...q
p(p — 1)... 2.1

leh súčet je
(p + q)(p + q - !)•••(<? + i)

p(p — i)... 2. i
ako zodpovedá vzorců. Tým je tvrdenie dokázané.

KATEGORIE C

С — II —ta

V rovině q je daný rovnoběžník ABCD. Z vonkajšej strany
rovnoběžníka sú zostrojené dva navzájom podobné rovno-
ramenné trojuholníky BAB' a BCC, pre ktoré platí:
AB' = AB, CC = CBa uhol BAB' sa rovná uhlu BCC.

Dokážte, že trojuholník BCD je podobný s trojuhol-
níkmi BAB' a BCC.

Riešenie (viď obr. 31). 1. Dokážeme, že trojuholník BCD
je rovnoramenný.
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a) platí: -fcDAB = -fcBCD a £BAB' = £C'CB, teda aj
ZDAB' = C'CD.

b) AB' = CD, DA = BC = CC.
Podia vety sus platí, že ADAB' = CCD, teda aj B'D =

= CD. Trojuholnik B'C'D je rovnoramenný.

D

C'
/

/
/

/

A \
\

В
/

/\
\ /
\ /
\ A\

A\
L

L

Obr. 31
Б'

2. Dokážeme, že A: В'CD = a, kde a = AiCC'B.
a) Dokážeme, že AC'BB' ~ ДВЛВ' - ДС'С£>.
Platí: *CBC = £СС'£ = <МВ'В = = а,

potom -fcB'AD = -fcBAD + $.В'АВ = (2R — -fcABC) +
+ (2R - 2а) = 41? - (2а + *АВС) = <С'ВВ'.

Ďalej platí: AB' : AD = AB : BC = B'B : BC, teda
ACBB' ~ ADAB' ~ ACCD.

b) Z 2. a) vyplývá, že *В'С'В = *Л£>В' = *DC'C,
teda aj B'C'D = ^ В'С'В + £BCT> = a.

Závěr. AD'CD je rovnoramenný a < B'C'D = a, teda
ДВ'С'В - ДВ'ВЛ ~ ДВС'С.
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C — II — 1b

Je dán ostroúhlý trojúhelník ABC, v němž úhel BAC má
velikost a. Obsah trojúhelníku je P. Označme B{ patu
výšky z vrcholu В na stranu АС a Cí patu výšky z vrcholu C
na stranu AB. Dokažte, že čtyřúhelník ВСВгСх má obsah
P sin2 a.

Řešení. Viz úlohu В — II — lb na str. 108.

С — II —2a

Najděte všechny dvojice (x, y) přirozených čísel x,y,
které splňují rovnici

|x — 2| + \y — 3| = 3 — у.

Řešení. Je vždy
|x — 2| ^ 0,

\y - 3| = |3 - y\ 2 3 - 3-.

Odtud sečtením

|x - 2| + \y - 3| ^ 3 - y;

přitom rovnost nastane, právě když

\y 3| = 3 у

|x - 2| = 0,
a zároveň

tj. platí-li
у й 3 а x = 2.

Danému vztahu vyhovují tři dvojice (2,1), (2,2) a (2, 3),
jak ověříme zkouškou.
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С — 11 — 2b

Při obvyklém označení dokažte, že v ДЛБС platí

IO < ta + tb + tc < o.

Řešení úlohy vychází z použití trojúhelníkové nerovnosti,
vlastností těžiště a stejnolehlosti. Označme А', В', C po
řadě středy stran a, b, c trojúhelníku ABC (viz obr. 32).

A C В

Obr. 32

Zřejmě platí
A’B'=ic,
B'C = {a,
CA' = \b.

Pravou nerovnost odvodíme z trojúhelníků АА'С, BB'A'
a CCB' pomocí trojúhelníkové nerovnosti.
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Platí:

ta <& + 2b,
h < Iй + 2C »

řc < 2b + .

Sečtením těchto nerovností máme:

ta “I" “h L "I" Ь + C ,

a tedy
řa + řb + fc < 0 >

což jsme měli dokázat.
Levou nerovnost odvodíme analogicky z trojúhelníků

ATB, BTC а СТА.
Platí

C < íta + jtb ,

a < Ьь + 3řc »

b < ^řa + fíc.

Sečtením dostaneme

fl + b + c < f(íe'+ ř„ + íc)
a konečně

to < ře + h + tc.

Tím je dvojice nerovností dokázána.
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С — 11 — За

Riešte sústavu rovnic

x(y + z) y(z + x) z(x + y)
4 9 10

(22)
xy + yz + zx = ffxyz.

Riešenie. Jednoduchou úpravou sústavy (22) dostaneme

9x(y + z) = 4y(z + x),
10y(z + x) = 9z(x + y),

xy + yz + zx = ffxyz,
z čoho

4yz — 9xz — 5xy = 0,
— yz 4- 9xz — lOxy = 0,

ХУ = Г5 ■

(23)
yz + XZ +

Nech (x, y, z) je nějaké riešenie sústavy (23). Uvažujme
o týchto 2 pripadoch: 1. xyz ф 0, 2. xyz = 0.

1. Ak xyz Ф 0, potom delenim každej rovnice týmto
číslom dostaneme:

1 1 1
4 9 5 - = 0,

x У

1 1 1
+ 9- - 10- = 0, (24)

X У z

1 1
_ 23

Ž"15’
1

- + - +
x У
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1 1 1
označme: - = и, - = v, - .= w. Sústava (24) přejde do tvaru

4u — 9v — 5w = 0,
— u + 9v— lOw = 0,

и + v +

Sčítáním prvých dvoch rovnic sústavy (25) dostaneme
3u = 15w číže и = 5w

a po dosadení z (26) do niektorej z týchto rovnic máme

9v = 15w číže v = fw.

Z tretej rovnice (25) po dosadení z (26) a (27) máme
5w + fw + w = ff,

Z (26), (27) dostáváme

(25)
_ 23W — 15 •

(26)

(27)

z čoho w = 4 (28)5 •

(29)V = \и = 1 , 3 •

Zo (28) a (29) vyplývá

x = 1,

Dosadením sa Tahko přesvědčíme, že (30) vyhovuje danej
sústave.

2. Ak xyz = 0, potom móže nastaťjeden z týchto prípadov:
a) x = 0, b) у = 0, c) z = 0.

a) Ak x = 0, zo sústavy (23) máme: уz = 0, z čoho vy-
plýva, že buď у = 0, z Tubovolné alebo z = 0, у lubovoíné.

(30)У = 3, z = 5.
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V tomto případe teda vyhovujú danej sústave všetky
usporiadané trojice reálných čísel tvaru (0,0, a), resp. (0, a, 0),
kde a je Tubovolné reálne číslo.

V prípadoch b), c) analogicky dostaneme, že danej sústave
vyhovujú všetky usporiadané trojice reálných čísel tvaru
(0, 0, a) a (a, 0, 0), resp. (0, a, 0) a (a, 0, 0), kde a je fubovorné
reálne číslo.

Závěr. Sústave (22) vyhovuje usporiadaná trojica (1, 3, 5)
a všetky usporiadané trojice tvaru (a, 0, 0), (0, a, 0), (0, 0, a),
kde a je Tubovolné reálne číslo.

C-11-ЗЬ

Je daná sústava rovnic

x + у = P2,
10x + у = p3 ,

(31)

kde x, у sú neznáme, p je prirodzené číslo.
a) Nájdite všetky čísla p, pre ktoré má sústava (31) celo-

číselné riešenie (tj. čísla x,y, ktoré vyhovujú sústave (31),
sú celé).

b) Pre ktoré hodnoty p sú čísla x, у vyhovujúce sústave
prirodzené?

Riešenie. a) Nech usporiadaná dvojica čísel (x, y) vyho-
vuje sústave (31). Potom odčítáním prvej rovnice od druhej
dostaneme

9x = p2(p - 1).
Číslo x vyhovujúce rovnici (32) bude celé len vtedy, keď

(32)
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nastane jeden z týchto prípadov: I. p — 1 = 9/c, II. p — 3k,
kde к je Tubovolné prirodzené číslo.

I. Ak p = 9k + 1, potom z (32) máme

{9k + l)2 к (33)X =

a z prvej rovnice sústavy (31)

у = (9k + l)2 (1 — k).
Vzťahmi (33), (34) je určené celočíselné riešenie sústavy (31),
ale у zo (34) nemóže byť pre žiadne prirodzené к prirodzeným
číslom.

II. Ak p = 3/c, kde к je Tubovolné prirodzené číslo, potom
z (32) a prvej rovnice (31) máme

x = /c2(3/c — 1),
Čísla x,y z (35) vyhovujú sústave (31) a pre každé prirodzené
к sú celé.

Závěr. Sústava (31) má celočíselné riešenie právě vtedy,
keď buď p = 9к + 1, alebo p = 3/c, kde к je Tubovolné
prirodzené číslo.

b) V případe I nemóžu byť čísla (x, y) vyhovujúce sústave
(31) obe prirodzené.

V případe II budú x, у prirodzenými číslami právě vtedy,
keď súčasne platí

(34)

у = /с2(10 — 3/c). (35)

(36)10 - 3/c > 0.3/c - 1 > 0,

Prvá z nerovností (36) je splněná pre každé prirodzené číslo k,
zatial čo druhá platí pre к < ^ číže pre к = 1, 2, 3.
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Závěr. Sústava (31) má riešenie v prirodzených číslach
len pre p = 3, 6,9, a to:

p = 3 => x = 2, у = 7;

p = 6 => x = 20, у — 16;

p — 9 => x = 72, у = 9.

KATEGORIE Z

Z — II — 1

Vyjádřete mnohočlen x8 + x4 + 1 aspoň jedním způ-
sobem jako součin

a) dvou mnohočlenů čtvrtého stupně,
b) čtyř mnohočlenů druhého stupně.
Řešení. Daný mnohočlen rozložíme podle známých

vzorců z algebry takto:

x8 + x4 4- 1 = (x8 + 2x4 + 1) — x4 = (x4 + l)2 — (x2)2 =

= (x4 + x2 + l)(x4 - X2 + 1) =

= (x4 + 2x2 + 1 — x2)(x4 + 2x2 + 1 — 3x2) =

= [(х2 + 1)2-х2][(х2 + 1)2-(хУЗ)2] =

= (x2 + x + l)(x2 — x + l)(x2 + Ху/3 + l)(x2 — Ху/З + 1).

Odpověď, a) x8 + x4 + 1 = (x4 + x2 + 1) (x4 — x2 + 1),
b) x8 + x4 + 1 =

= (x2 + x + l)(x2 — x + 1) (x2 + Xy/З + l)(x2 — Xy/З + 1).
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Z — 11 —2

Je dán obdélník ABCD, v němž je AB > BC. Zvolte
AB, BC a sestrojte geometrická místa středů všech kružnic,
které leží v obdélníku ABCD a dotýkají se dvou jeho sou-
sedních stran nebo dvou jeho protějších stran. Odůvodněte
konstrukci.

Řešení (viz obr. 33). Označme a velikost strany AB a b
velikost strany BC.

/
í/

Xs
/

У

\°1
Obr. 33

a) Hledejme množinu Mx středů všech kružnic, které
se dotýkají stran AD a BC a leží uvnitř obdélníku ABCD.
Každá kružnice, jež se dotýká zároveň přímek AD a BC,
má poloměr ja a leží na ose stran AB a CD. Každá taková
kružnice tedy vytíná na přímce Oj tětivu délky a. Avšak
a > b, a proto je M ^ prázdná množina.

b) Hledejme množinu M2 středů všech kružnic, které se
dotýkají stran AB a CD a leží uvnitř obdélníku ABCD.
Každá kružnice, která se dotýká přímek AB a CD, má
poloměr \b a její střed leží na ose o2 stran AD a BC.
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Označme U vnitřní bod obdélníku ABCD, jenž leží na

přímce o2 a jehož vzdálenost od AD je rovna \b. Obdobně
V je bod, který leží uvnitř obdélníku ABCD na přímce o2
a jehož vzdálenost od BC je %b. Zřejmě každý bod úsečky
UV je středem kružnice o poloměru %b, která se dotýká
stran AB a CD a leží v obdélníku ABCD. Vnější body
úsečky U V na přímce o2 tuto vlastnost nemají, neboť každá
kružnice se středem v takovém bodu a mající poloměr jb
obsahuje aspoň jeden bod ležící vně rovnoběžkového pásu
přímek AD a BC. Tedy množinou M2 je úsečka UV.

c) Hledejme množinu M3 středů všech kružnic, které
leží v obdélníku ABCD a dotýkají se jeho stran AB a AD.
Úhel < UAB = 45°, a proto střed každé kružnice, jež se

dotýká strany AB a strany AD, leží na polopřímce AU.
Zřejmě АфМ3 a Ue M3.

Nechť S je libovolný bod ležící mezi body AaU. Protože
je AS < AU, je vzdálenost bodu S od strany AB menší
než \b, takže kružnice o středu S, jež se dotýká AB a AD,
leží v daném obdélníku, tj. S e M3.

Nechť S' je libovolný bod ležící na prodloužení úsečky
AU za bod U. Pak AS' > AU, a proto vzdálenost bodu S'
od přímky AB je větší než \b a vzdálenost od přímky CD
menší než \b, takže kružnice se středem S', jež se dotýká
přímek AB a AD, neleží v daném obdélníku, tj. S'^M3.

Množina M3 je tedy množinou všech bodů úsečky AU
s výjimkou bodu A.

Z odstavců a), b) a c) plyne následující závěr:
Hledané geometrické místo bodů se skládá z úsečky UV

a ze všech vnitřních bodů úseček AU, DU, В V, CV.
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Z-ll-3

Po kružnici k(S, r) se pohybují dva body X a Y rovno-
měrným pohybem v navzájem opačných smyslech, rych-
lostmi v a qv, kde q > 1. Označme A,BaC body jejich tří
bezprostředně po sobě jdoucích setkání.

a) Vypočtěte velikosti vnitřních úhlů ДАВС pro q — 4.
b) Určete q tak, aby AABC byl a) rovnostranný, fi) právo-

úhlý.

Řešení, a) Kratší z oblouků AB je čtyřikrát menší než
delší oblouk AB, má tedy délku jnr. Tutéž délku má i kratší
z oblouků CD, neboť body X а У se pohybují rovnoměrně.
Body А, В, C jsou tedy vrcholy pravidelného pětiúhelníku
vepsaného kružnici к a -fcABC je jeho vnitřním úhlem
(viz obr. 34). Platí: <ABC = 2. *ABS = 180° - -X.ASB =
= 180° — 72° = 108°. Velikost ostatních vnitřních úhlů
rovnoramenného ДABC určíme již takto:

ZBAC = <BCA = К180° - 108°) = 36°.

Obr. 34 Obr. 35
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b) a) (viz obr. 35) AABC je rovnostranný, právě když
XASB = %-BSC = 120°. Mezi dvěma sousedními setká-
nimi opíše bod X tedy třetinu kružnice, bod У dvě třetiny
kružnice. To nastane, právě když q — 2.

Obr. 36

b) P) (viz obr. 36). Jestliže /\ABC je pravoúhlý, pak
úsečka AC je průměrem kružnice k. Od prvního do třetího
setkání opíše tedy bod X půlkružnici. Protože jeho rychlost
je konstantní, opíše bod X mezi dvěma sousedními setká-
nimi čtvrtkružnici. Z toho plyne, že bod У opíše v této
době tři čtvrtiny kružnice. Proto je nutně q — 3. Tím jsme
našli číslo, které je „podezřelé" z toho, že vyhovuje naší
úloze. Že tomu tak skutečně je, musíme dokázat.

Uvažujme tedy obráceně: Nechť q = 3. To znamená, že
bod У má třikrát větší rychlost než bod X. Mezi dvěma
sousedními setkáními opíše tedy bod X čtvrtkružnici.
Oblouk AC je pak půlkružnice, což znamená, že AABC
je pravoúhlý.
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Z — II —4

Je dán lichoběžník ABCD se základnami AB = 14 cm,
CD = 10 cm. Jeho úhlopříčky AC, BD protínají střední
příčku po řadě v bodech E,F. Vypočtěte podíl obsahů
lichoběžníků ABCD, ABEF. Zobecněte pro AB = a, CD = c.

D

/

v

jv = v'

A В
Obr. 37

Řešení (viz obr. 37). Označme a velikost strany AB, c velí-
kost strany CD a v výšku daného lichoběžníku. Pak obsah
lichoběžníku ABCD je

Pi = Ща + c).
Z toho, že AB || EF a že průsečík S úhlopříček AC a BD

leží uvnitř poloroviny EFC, plyne, že ABFE je lichoběžník
se základnami AB = a a EF. Jeho výška je

v' = jv.

Označme Ax střed ramena AD a Bx střed ramena BC.
Pak AXE je střední příčka v /\DCA, a tedy AXE = jc.
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Obdobně zjistíme, že BXF — jc. Tudíž

c' = EF = AÍBÍ — 2. \c — j(a + c) — c = %{a — c).
Pro obsah lichoběžníku ABFE tedy dostáváme:

P2 — 2v\a + c) — iy[i(a — c) + a] = jv(3a — c).
Nyní už můžeme určit, kolikrát je obsah Px větší než
obsah P2. Platí:

Pi
_ 4(a + c)

За — cP2

tj. v našem případě, kdy a: c = 7: 5, je

Px 4{а + Щ 4.(14+10)
~

За-

Závěr, a) Obsah lichoběžníku ABCD je třikrát větší než
obsah čtyřúhelníku ABFE.

b) Obecně: Jsou-li základny lichoběžníku a > c, pak

p p + +c)rX — r2 •
За — c

3.14-10P2
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V. Soutěžní úlohy III. kola kategorie A

A —III —1

Je-li T ostroúhlý trojúhelník o obsahu 1, pak existuje
pravoúhlý trojúhelník, jehož obsah nepřevyšuje ^/3 a který
trojúhelník T obsahuje. Dokažte.

Řešení. Nechť ABC je daný trojúhelník T s obsahem
P = 1 a BC je jeho největší strana. Označme Q patu výšky
příslušné vrcholu A, v její délku. Tato výška je zřejmě
nejmenší z výšek.

A
Л

/a 4\/
\
\
\

7/
//

Obr. 38
61 C CoВо В

Rozlišujeme tyto případy:
a) <BAQ ^ 45°, Š.CAQ ^ 45° (obr. 38). Pak pravoúhlý

rovnoramenný trojúhelník AB0C0 s nejmenší výškou v = AQ
obsahuje trojúhelník T a o jeho obsahu Pt platí

= v2.
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Strana ВС je největší stranou ДЛВС, a proto výška v není
větší než výška rovnostranného trojúhelníku Л'ВС, tj.

všiBCfí,

P, = í>2 š (iBC . v) ^/3,

в, á sft-

tedy

tj. skutečně

Obr. 39
CB0 в a

b) Jeden z úhlů -fcBAQ, A:CAQ je větší než 45°, např.
(obr. 39)

<CAQ > 45°.
Pak je

*BAQ < 45°.

Označme B0 průsečík kolmice к АС v bodě A s přímkou
BC. Trojúhelník B0AC je pravoúhlý, obsahuje T a o jeho
obsahu Pi platí

P,
_ B0C B0C _ 1

P BC ~ AC cosy
šV5<y3,Pl=-^

neboť -$:B0CA = у < 45°.
Tím je úloha rozřešena.
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Jiné řešení (podle Stanislava Červinky, studenta 3.c Aka-
demického gymnázia v Praze 1). Označme (obr. 40) vrcholy
daného trojúhelníka А, В, C tak, aby platilo

a ^ c a b c. (i)

~c2 bX A S lc2C
В Y

Obr. 40

Dále označme S střed strany AB, CS = t, -YCSB = co.

Trojúhelník ABC je ostroúhlý, takže

21> AB.

Na polopřímkách SA a SB vně úsečky AB tedy existují po
řadě takové body Ха У, že

SX = SY=t.

Trojúhelník XYC obsahuje daný ДАВС. Dokážeme, že
obsah ДХ УС nepřevyšuje ■v/3.

Trojúhelník ABC má obsah 1, takže

1 = j. |cř(sin co + sin (я — co)) = ycí sin co. (2)



Pro obsah trojúhelníku XYC platí

P = if2(sin CD + sin (я — co) = t2 sin OJ ,

tedy po přihlédnutí к rovnostem (2) máme
t

(3)P = 2.-.
c

Podle známého vzorce pro velikost těžnice v trojúhelníku je

t = \.^2{а2 + b2) - c2,
takže z rovnosti (3) dostáváme

ci b
Podle (1) je - ^ 1 a - ^ 1, a proto

c c

P š v2(1 + 1) - 1,

Pžv/3.
Tím je tvrzení obsažené v textu dané úlohy zcela dokázáno.

P = - 1.

tj-

A —III—2

Dokažte, že soustava rovnic

[x]2+ [}>]= 0, (4)Зх + у — 2

má nekonečně mnoho řešení a že pro všechna její řešení
platí -9SySl.0 < x < 4,
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Přitom symbol [a] (celá část z a) značí celé číslo, pro které
platí

a ~ 1 < Ы = a •

Řešení. Z obou rovnic (4) vyloučíme у a dostaneme
rovnici

(5)[x]2 + [2 — 3x] = 0.
Pro celou část (funkci [a]) použijeme vzorců:
Pro všechny reálná a a pro všechny celá к platí

[/с + a] = к + [a] . (6)
Pro všechna reálná /? platí

[3jS] = 3[fl + £,, (7)
kde £j = 0 nebo 1 nebo 2.

Pro všechna reálná у platí

[-У] = “Ы + £2, (8)
kde e2 = — 1 nebo 0.

S použitím (6), (7), (8) vypočteme

[2 — 3x] = 2 + [ —3x] = 2 + 3[ —x] + £j =

= 2 + 3( —[x] + £2) + £j ,

[2 — 3x] = — 3[x] + 2 + £t + 3fi2.

Proměnná 2 + £j + 3fi2 může nabýt hodnot

£3 = -U0,1,2,3,4.

tj-
(9)

(10)
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Spojením (5) a (9) dostaneme rovnici

[x]2 - 3[x] + 83 = 0. (и)

Diskriminant rovnice (11) může nabýt vzhledem к (10)
hodnot

A = 13,9,5,1,-3,-7.

Protože kořen [x] rovnice (11) musí být celé číslo, přicházejí
v úvahu jen hodnoty A — 9; 1, tj. e3 = 0;2. Odpovídající
kořeny [x] obou rovnic (11) jsou (v odpovídajícím pořadí)

[x] =0,3,1,2.

Z rovnice (9) vypočteme a zkouškou se přesvědčíme, že
soustava (4) má tato řešení:

3 < * = I,

příslušná у se vypočtou z rovnice Зх + у = 2.

Jiné řešení (podle Jana Kratochvíla, studenta třídy l.a
gymnázia v Pardubicích).

a) Řešením rovnice (5) je zřejmě každé číslo x, pro které

[x] = 0 a zároveň [2 — 3x] = 0,

Ар<х^;x = 2,x = 1 ,

platí

tj-
0 5S x < 1 a zároveň 0 ^ 2 — Зх < 1,

odkud plyne
*e(i,3> •
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Příslušné у se vypočte z druhé rovnice soustavy (4); dostá-
váme tak, že

у = 2 — 3x.

Řešením soustavy (4) je tedy každá dvojice čísel x, y, kde

xeft,f>. а у = 2 — 3x.

Tím jsme dokázali, že soustava (4) má nekonečně mnoho
řešení.

b) Dále je třeba dokázat, že žádná dvojice čísel x, y,
která nesplňuje zároveň nerovnosti

x > (12)0,

(13)4,x <

У ^ -9,

У й 1,

není řešením soustavy (4). Důkaz provedeme nepřímo.
a) Předpokládejme, že soustava (4) má řešení x, y, kde

x ^ 0. Potom z druhé rovnice soustavy (4) plyne, že у ^ 2,
tj. [y] ^ 2. Platí tedy

(14)
(15)

[x]2 + [y] ^ 2,

což je spor s první rovnicí soustavy (4), tj. platí nerovnost (12).
jS) Předpokládejme, že existuje takové řešení x, у sou-

stavy (4), že x ^ 4. Položme

x = [x] + q>, У = [у] + Ф,
kde

(i6)o^«A< i.0 ^ (p < i,
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Ze soustavy (4) pak dostáváme

Ы--М1.
3[x] + 3<p + [y] + ^ = 2,

odkud plyne

3<t> + Ф = 2 + [*]([>] - 3).
Z předpokladu x ^ 4 plyne, že [x] ^ 4, takže

(17)

M(M-3)Ž4.
Pak z rovnice (17) dostáváme

3(p + ф ;> 6,

což je ve sporu s nerovnostmi (16). Platí tedy (13).
y) Předpokládejme, že soustava (4) má takové řešení x, y,

že у < — 9. Potom [y] ^ —10. Podle první rovnice sou-
stavy (4) je tedy [x]2 ^ 10, tj.

x ^ 4 nebo x < — 3 .

Tyto nerovnosti jsou však ve sporu s dokázanými nerov-
nostmi (12) a (13), takže platí (14).

<5) Předpokládejme, že existuje takové řešení x, у sou-
stavy (4), pro které platí у > 1. Pak ovšem [y] ^ 1. Samo-
zřejmě [x]2 ^ 0, takže

M2 + Mi i,

což je spor s první rovnicí soustavy (4). Platí tedy nerovnost
(15).
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Poznámka. Při řešení úlohy A—III —2 lze s výhodou
užít grafického znázornění. Sestrojíme graf první rovnice (4);
je to sjednocení polouzavřených čtverců, к nimž náleží vždy
levý dolní vrchol a polouzavřené strany levá a dolní (viz
obr. 41). Tlustě vytažené části přímky Зх + у = 2 jsou
grafickým znázorněním všech řešení dané soustavy (4).
Intuitivně zjištěný výsledek je ovšem nutno zkontrolovat
výpočtem.

У\
\

2-;
\

1

Al 2 3 4-3 -2 -1 0 X

-1 \
\-2-
\
\

-3 - \
-4--

\
\-5
\\~-3x+y =2

-6 - \
\
\-7
\
\

-в -

-9

\
Obr. 41
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A — III — 3

Nájdite všetky riešenia sústavy rovnic

*l(*6 + x2) = x3 + x5,

x2(xl + x3) = x4 + x6,

x3(x2 + x4) = *5 + *1 >

x4(x3 + x5) = x6 + x2,

x5(x4 + x6) = xt + x3,

x6(x5 + Xi) = X2 + X4

s neznámými xl5 x2, x3, x4, x5, x6.

Riešenie. Nech usporiadaná šestica čísel (xls x2, x3, x4,
x5,x6) je riešením sústavy (18)—(23). Potom zrejme tiež
každá cyklická permutácia čísel tejto šestice danej sústave
vyhovuje.

Sčítáním všetkých rovnic danej sústavy dostaneme

(18)
(19)
(20)
(21)

(22)
(23)

XxX2 + X2x3 + x3x4 + x4x5 + x5x6 + x6Xj =

= Xx + x2 + x3 + x4 + x5 4- x6

čiže

x2(xi + x3) + x4(x3 + x5) + X6(x5 + xj =
= Xj + x2 + x3 + x4 + x5 + x6. (24)

Ak do (24) dosadíme z (19), (21), (23), dostaneme

(25)Xi + x3 + x5 = x2 + x4 + x6.
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Z rovností (18) a (21), (19) a (22), resp. (20) a (23), dostáváme,
že platí:

x2 “I- Xf, Ф 0 <=> x3 Ф ф 0, x4 + x6 ф 0 <=> Xj + x3 Ф 0,

x2 Ф x4 Ф 0 <=> xx + x5 Ф 0 (26)
a taktiež

*3 + X5 Ф 0 => XjX4 — 1 , Xj + x3 Ф 0 => x2x5 = 1,

(27)Xi + x5 Ф 0 => x3x6 = 1.

Z čoho vyplývá, že stačí uvažovat’ o následujúcich 4 prí-
padoch:

1. Všetky 3 súčty xx + x3, x3 + x5, x5 + x3 sú rožne
od nuly. Potom podfa (27) platí

(28)x3x4 = 1, X2X5 = 1, *3*6 — ^ ’

z čoho vyplývá, že x, Ф 0 pre všetky i = 1,2,3,4, 5,6.
Ak z (28) dosadíme do (18) —(20) za x2, x4, x6, máme

/1 1\
Xi — + — = x3 + x5,

\*з *5/

1‘
x 1 1

— (Xi + X3) = — + —,
x5 X *31

x,i + i
\x5 xb

= x5 + Xi ,

z čoho vyplývá:

(29)Xi = x3x5, x5 = XiX3 , x3 = XjX5.
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Keďže XjXjXj ф O, dostaneme vynásobením rovností (29)
ххх3х5 = 1, (30)

z čoho vzhladom na (29) máme

A = 1, *3 = 1, x\ = 1
číže

|xi| — 1» Ы = 1 > Ы = 1 ■

Z nášho předpokladu o súčtoch xx + x3, x3 + x5, xs + Xj
vyplývá, že čísla xx, x3, x5 musia byť rovnakých znamienok,
z čoho vzhladom na (30) máme

X i — X3 — X5 = 1 (31)
a z (28) hned dostáváme

(32)x2 — X4 = x6 = 1 .

Dosadením sa íahko přesvědčíme, že (31), (32) dává riěšenie
danej sústavy.

2. Právě jeden zo súčtov xx + x3, x3 + x5, x5 + xí sa
rovná nule. Nech platí napr.

Xj + x3 = 0,

Potom z (26) a (27) máme

*4 + X6 = 0,

х5 + Х|Ф0.x3 + x5 Ф 0,

x3x6 — 1,

z čoho x3 = — x1? x6 = —x4, a teda x3x4 = — 1. Z (25)
máme x5 = x2. V uvažovanom případe teda platí

XjX4 = 1,

11
*6 = , (33)x5 = x2,x4 = —,

Xi
*3 = -*11

Xi
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pričom z (18), (20), resp. (21), (23) pre xx,x2 po dosadení
zo (33) dostaneme

— 1 + xLx2 = — xx + x2 ,

— XjX2 1 == x2 + xx

a sčítáním oboch rovností dostáváme x2 = — 1 při lubo-
volnom xx = p Ф 0. Skúškou sa Tahko přesvědčíme, že
v tomto případe sústave (18) —(23) vyhovuje šestica čísel

1 1
*1=P, X2=-l, X3=-p, *4=-, x5=-l, x6 — >

P P

pričom p je TubovoFné číslo rožne od 0, — 1,1. Posledně
dve čísla musíme vylúčiť preto, lebo podlá předpokladu
*3 + *5 = ~P - 1+0, x5 + xx = -1 + p ф 0.

3. Právě dva zo súčtov xx + x3, x3 + x5, x5 + xx sú
rovné nule. Nech teda

xx + x3 = 0,

Podra (26) a (27) potom platí

x4 + x6 = 0,

a vzhladom na (25) dostáváme

x3 + x5 = 0, x5 + Xi Ф 0.

x2 + x6 = 0, x3x6 = 1

1
x6 = . (34)X2=Xi, x3 = Xj, x4 = x19 X5=Xj,

x,
1

ale tiež x2 = — x6 = —, z čoho hněď máme x\ = 1.

Pre xx sú teda dve možnosti: xt = — 1, xx = 1, z ktorej
145



každej zodpovedá — vzMadom na (34) — jedno riešenie
danej sústavy:

*i = l, *2 = 1, *з = -1,

*4 = 1 , *5 = 1 j *6 = — li

*1 = “I , *2 = -1, *3=1,

*4 = 1 , *5 = 1 , *6 = 1 j

o čom sa fahko přesvědčíme dosadením. Druhé riešenie sa
dostane z riešenia v případe 2 pre p — — 1, resp. pre p = 1.

4. Všetky tri súčty xt + x3, x3 + x5, x5 + xt sú rovné
nule. Potom podlá (26) tiež *2 + *4 = *4 + *6 = *6 + x2 = 0
a vzhladom na (25) v tomto případe dostáváme

Xl = x2 = x3 = x4 = x5 = x6 = 0,

čo zrejme danej sústave vyhovuje.

Závěr. Všetky riešenia danej sústavy možno zhrnuť v ná-
sledujúcej tabufke (p ф 0):

i i
i -i -i l -l l o*i p -p

p p



1 1
-1 о-1 1 11 -1*5 -Р Р

Р Р

1 1
1 1 О-1 -1 -11*6 -р р

р р

A —III—4

Najděte všechny takové hodnoty parametru p, aby rovnice

I* - 2| + \y ~ 3| + У = P

byla rovnicí nějaké polopřímky v rovině x, y.

Řešení. Všimněme si nejprve, že |z| ^ 0 pro všechna z
a rovnost nastává, právě když z = 0, a dále že

(35)

|z| + z ^ 0

pro všechna (reálná) z a rovnost nastává, právě když z ^ 0.
Upravíme-li tedy rovnost (35) na tvar

|x-2| + |y-3| + y- 3 = p- 3,

je levá strana vždy nezáporná a je rovna nule, právě když

x — 2 = 0 а у — 3^0,
tj. pro

x = 2 а у ^ 3.

Proto dané rovnosti nevyhovuje žádný bod, je-li p < 3,
a pro p = 3 je množina všech bodů vyhovujících rovnosti
(35) zřejmě polopřímka.
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Je-li p > 3, dostáváme již v polorovině у ^ 3 množinu
řešení tvaru |x — 2\ = p — 3, tj. dvě různé polopřímky
x - 2 = ±(p - 3).

Vyhovuje proto jen
P = 3.

Jiné řešení. Útvar, pro jehož body je splněna daná rov-
nice, je symetrický podle přímky x = 2, což plyne z toho,
že v rovnici (35) je x obsaženo jenom ve výrazu \x — 2|.

Rovnice (35) má být rovnicí nějaké polopřímky. Avšak
jestliže polopřímka je souměrná podle nějaké osy, pak musí
být podmnožinou této osy. Hledaná polopřímka je tedy
podmnožinou přímky x = 2.

Dosadíme-li x = 2 do rovnice (35), dostaneme:

\y ~ 3| + У = p.

Rozlišme tyto možnosti:

I. Nechť у ^ 3. Pak у = ^ (p + 3).
II. Nechť >' ^ 3. Pak 3 — у + у = p, tj. 0. у = p — 3.

Vyšetřme sjednocení množin nalezených v případech I а II:
A. Je-li p > 3, pak je rovnicí (35) za předpokladu x = 2

určena množina

{[2,i(p + 3)]H
B. Je-li p = 3, pak je rovnicí (35) za předpokladu x = 2

určena množina

{[2,3]}u{[x,y];x = 2 л у ^ 3} = {[x,y];x = 2 л y^3}.
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C. Je-li р < 3, рак je rovnicí (35) za předpokladu x = 2
určena množina

0 и 0 = 0.

Polopřímku jsme obdrželi jenom v případě B, takže jsme
dospěli к závěru, že množinou bodů vyhovujících rovnici (35)
je polopřímka, právě když je p = 3.
Řešil Leszek Gajdzica, 4.d, gymnázium s polským jaz. vyučo-
vacím, Český Těšín

A —III—5

Najděte množinu vrcholů A všech rovnoramenných troj-
úhelníků ABC s hlavním vrcholem B, jejichž strana BC je
obsažena v daném čtverci PjP2P3P4.

Řešení. Vyšetřováním speciálních poloh trojúhelníků
ABC lze očekávat, že hledaná množina M je sjednocení S
čtyř (uzavřených) kruhů К(Př; a y/l), kde a je délka strany
daného čtverce, s výjimkou čtyř bodů hranice S, které leží
na úhlopříčkách čtverce (obr. 42).

Dokážeme nejprve, že každý bod A vyhovující úloze
leží v S. Je-li ДЛБС trojúhelník vyhovující úloze, je

AB = BC g BPk,

kde Pk je takový vrchol čtverce, který je od В nejvzdálenější
(obr. 42). Proto bod В leží v téže polorovině vyťaté osou o
úsečky APk jako bod A. Tedy přímka o má neprázdný
průnik s daným čtvercem. Proto existuje vrchol čtverce Pj
v té polorovině podle o, která obsahuje A, a tedy

APjgPjPkáa Jí.
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Nechť А E К(Р{; а у/2) а А ф (),. Uvažujme nejprve, že
АфР&.

Obr. 44Obr. 43

Kružnice k(Pi,PiA má pak ve čtverci (obr. 43) společný
bod C s přímkou PřQf. Zvolíme-li В = Ph pak body А, В, C
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tvoří vrcholy trojúhelníku vyhovujícího úloze. Leží-li bod A
(obr. 44) na přímce Рг(2; а А 4= Pj, j = 1,2,3,4, pak kruž-
nice k(Ph Р(А) má se čtvercem společný bod C ležící mimo
přímku PíQí. Pak opět В = Pt vede к řešení úlohy. Je-li
A = Pj, j = 1,2, 3,4, pak za В zvolíme střed čtverce.

A — III —6

Nech M je množina usporiadaných dvojíc (x, y) reálných
čísel s týmito vlastnosťami:

1. Existuje dvojica (a, b)e M taká, že ab(a — b) =1=0.
2. Ak (х,, y^e M, (x2, y2)e M a c je reálne číslo, potom

tiež (xt + x2, yv + y2) e M, (cx1? cy^ e M, (xtx2, yjy2) e M.
Dokážte, že M obsahuje všetky usporiadané dvojice

reálných čísel.

Řešení.*) Považujme dvojice (x, y) za vektory v dvoj-
rozměrném bodovém prostoru R2. Podle zadání M obsahuje
alespoň jeden vektor (a,b) a dále, obsahuje-li vektory
(x^yj, (x2, y2), pak obsahuje také všechny jejich lineární
kombinace.

Kromě vektoru (a, b) obsahuje M např. též vektor (a2, b2).
Přitom podle podmínky 1. je «4=0, b 4= 0, a 4= b, takže
vektory («, b), (a2, b2) jsou lineárně nezávislé.

Vektorový prostor R2 je dvojrozměrný, proto každá
dvojice jeho lineárně nezávislých vektorů tvoří jeho bázi.
Protože M obsahuje oba vektory báze {(«, b), (a2,b2)},

*) Toto řešení odměnil MÚ ČSAV v Praze za originalitu finanční
částkou 500 Kčs.
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obsahuje všechny jejich lineární kombinace, tj. M je mno-
žinou všech vektorů v R2.

To však znamená, že M obsahuje všechny uspořádané
dvojice reálných čísel.
Řešil Jiří Pemz, 3.b, gymnázium, tř. kpt. Jaroše, Brno

Jiné řešení. Nechť (a, b) e M je taková uspořádaná dvojice,
že ab(a — b) ф 0. Taková dvojice podle vlastnosti 1 existuje.

Pak užijeme vlastnosti 2 pro xt — a, y1 = b, x2 = a,

у2 = b. Dostáváme, že (a2, b2) e M.
Nechť (x, y) je libovolná uspořádaná dvojice reálných

čísel. Soustava rovnic

a2cy + ac2 = x,

b2c1 + bc2 = у

o neznámých c1? c2 má pak vždy právě jedno řešení*),
neboť determinant soustavy

a2, a

b2, b

(36)

= a2b — ab2 = ab(a — b) Ф 0.

Nechť (cl5 c2) je řešení soustavy (36). Pak podle vlastnosti
2 platí (a2cl5 b2Ci)e M,

(ac2, bc2)e M,
a tedy

(a2c1 + ac2, b2Ci + bc2)e M,
tj-

(x, у) € M .

*) К tomuto závěru se snadno dospěje i bez znalosti determinantů.
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Platí tedy: Jestliže (x, y) je libovolná uspořádaná dvojice
reálných čísel, pak (x, y)eM, což se mělo dokázat.
Řešil Jiří Navrátil, 2.a, gymnázium, Olomouc-Hejčín
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VI. Texty soutěžních úloh krajských kol
kategorie Z

Praha a Západočeský kraj

1. Určete, pro které koeficienty a, b, c, d, e je mnohočlen
x5 + ахъ + bx— 1 roven součinu mnohočlenů x2 + bx — 1
a x3 + cx2 + dx + e.

2. a) Určete s přesností na sekundy, kdy hodinové ru-
čičky mezi 0 h až 3 h stojí přesně proti sobě (svírají úhel
180°).

b) Kdy nastane nejdříve tento okamžik po odbití n-té
hodiny (0 ^ n < 6).

3. Je dán kruh o středu S a poloměru r = 6 (cm) omezený
kružnicí k. Sestrojte rovnostranný trojúhelník ABC, který
leží v tomto kruhu a jehož strana AB má délku 4 (cm) a je
tětivou kružnice k. Přímku AB označme p. Trojúhelník
ABC se pohybuje tak, že splňuje tyto podmínky:

a) pohybující se trojúhelník ABC leží celý v kruhu;
b) aspoň jeden vrchol trojúhelníku leží na kružnici k;
c) strana AB je stále rovnoběžná s přímkou p.

Narýsujte, přesně určete a odůvodněte dráhu, kterou
vykoná bod A, než se opět pohybující trojúhelník dostane
do své původní polohy. Totéž proveďte pro body В a C.
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4. Rotační kužel, jehož podstava má poloměr r = 6 (cm)
a jehož výskaje v = 8 (cm), protněte rovinou g rovnoběžnou
s podstavou kužele v kruhu (o poloměru x), který je zároveň
podstavou seříznutého kužele a horní podstavou vepsaného
válce. Určete poloměr x a vzdálenost roviny q od roviny
podstavy, je-li obsah pláště rotačního válce roven obsahu
pláště seříznutého kužele.

Středočeský kraj

1. Vědecké porady o využití ropy se zúčastní šest expertů
ze socialistických zemí. Vědce označíme písmeny А, В, C, D,
E, F. Tři z nich se mohou zúčastnit exkurze do přečerpávací
stanice ropovodu Družba. Rozhodněte, která trojice může
jet, jestliže:

a) D nepojede s A, ale pojede jen, pojede-li také F.
b) A pojede jen, pojede-li E.
c) C pojede jen, pojede-li D zároveň s B.
d) F pojede jen v přítomnosti В nebo C.
2. V bytě jsou dvoje hodiny. Jedny se předbíhají o jednu

minutu za tři hodiny a druhé se zpožďují o jednu minutu
za šest hodin. Oboje hodiny byly nařízeny na správný čas
v sobotu přesně v poledne. Kdy se poprvé budou tyto hodiny
rozcházet právě o 20 minut 45 sekund? (Udejte, v kolik
hodin a který den to bude a kolik budou ukazovat prvé
a kolik druhé hodiny.)

3. Buďte a,b,c tři libovolná čísla. Potom číslo

x = 4(a2 + b2 + c2) - [(a + b)2 + (b 4- c)2 + (c + a)2]
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je číslo nezáporné; dokažte. Dále udejte všechny trojice
čísel a, b, c, pro které je číslo x rovno nule.

4. Je dán obdélník ABCD, M je střed strany AB. Uvnitř
úseček BC,AD sestrojte body E,F tak, aby pětiúhelníku
MECDF bylo možno opsat kružnici. Vyjádřete poloměr
této kružnice i obsah pětiúhelníku pomocí délek stran
obdélníku ABCD. Určete podmínku řešitelnosti úlohy.

5. Je dán trojúhelník MNP, ve kterém PM = 5,5 cm,
PN = 4 cm, MN = 5 cm. Sestrojte trojúhelník ABC, je-li
M střed strany AC, N střed strany BC a bod P

a) pata výšky vc,
b) pata výšky va.

Jihočeský kraj

1. Je-li n libovolné přirozené liché číslo, je číslo
(n2 — l)(n + 3) dělitelné číslem 24. Dokažte.

2. Je dán výraz:

2b2a + b 4ba — b
V =

2a — 2b 2a A 2b a2 — b2) (a2 + b2)(a — b)

a) V zjednodušte a udejte, pro která a, b nemá smysl.
b) Vypočtěte všechny dvojice celých a, b, pro které V = 10.3.Při omezování odběru elektrického proudu v době

špiček se 35 závodů zavázalo snížit spotřebu. Celkem byly
tři skupiny těchto závodů. V první skupině dosáhl každý
závod snížení o 50 % pravidelného odběru, v druhé skupině
snížil každý závod spotřebu o ^ a ve třetí skupině o \ pravi-
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dělného odběru. Tím se dosáhlo úspory 40% pravidelné
celkové spotřeby. Přitom v první skupině byl počet závodů
dvojnásobný než ve druhé. Kolik závodů bylo ve třetí
skupině, jestliže každý z těchto 35 závodů měl původně
stejnou pravidelnou spotřebu proudu?

4. Dílna v prvním týdnu splnila plán, tj. vyrobila n kusů
výrobků. V druhém týdnu poklesl výkon proti prvnímu
týdnu o p% O kolik procent musela dílna zvýšit svůj
výkon z druhého týdne ve třetím týdnu, aby ke konci
třetího týdne byl splněn třítýdenní plán? Na závěr proveďte
výpočet pro p = 10.

Obr. 45
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5. Osový řez rotačního kužele je pravoúhlý rovnoramenný
trojúhelník VAB o přeponě AB délky d. Přímkou A V je
vedena rovina, která protne kužel v rovnostranném trojúhel-
niku VAC. Vyjádřete pomocí proměnné d objem a povrch
jehlanu ABCV.

6. Krychle je sestavena ze 729 krychliček o hraně 1 cm.
Určete objem tělesa, které vznikne odebíráním krychliček,
a tím vytvořením tunelů procházejících celou krychlí tak,
že každá ze stěn původní krychle je znázorněna připojeným
náčrtkem (šrafováním jsou vyznačeny tunely; viz obr. 45).

7. Je dán trojúhelník ABC. Sestrojte body X, Y tak, aby
bod X ležel na straně AC a bod Y na straně BC trojúhelníku
ABC a aby platilo XY || AB, AX + BY = XY.

8. Body A,B,C,D dělí kružnici к = (S;r) na čtyři ob-
louky, jejichž délky jsou v poměru

AB:BC:CD:DA = 1:2:4: 5.

Přímky AD,BC se protnou v bodě Q. Vypočtěte vzdá-
lenosti QB a QD.

Severočeský kraj

1. Výraz 3x4 — 4x2 + 1 rozložte a) na součin dvojčlenů
2. stupně, b) na součin dvojčlenů 1. stupně.

2. Ze dvou měst А, В vyšli současně proti sobě dva chodci.
První došel z A do В za 5 hodin 24 minuty, druhý z В do A za
6 hodin 45 minut. Po kolika hodinách chůze se potkali,
šel-li každý stále stejnou rychlostí?
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3. Osový řez rotačního kužele je pravoúhlý rovnoramenný
trojúhelník VAB o přeponě AB délky d. Přímkou A V je
vedena rovina, která protne kužel v rovnostranném trojúhel-
niku VAC. Pomocí proměnné d vyjádřete:

a) objem jehlanu ABC V,
b) povrch jehlanu ЛВСК
4. Je dána přímka p a na ní body А а В. V bodech А а В

sestrojte po řadě kolmice ku k2, které jsou geometrickým
místem (množinou) středů všech kružnic dotýkajících se
přímky p v bodech A nebo B. Co je geometrickým místem
(množinou) všech vnějších bodů dotyku všech takových
kružnic? Své tvrzení dokažte.

Východočeský kraj1.Daný součet převeďte na součin tří činitelů:

x5 + 3jc4 + x3 + 3x2 + x + 3.

2. Kolik hodin ukazují ručičky mezi 3. a 4. hodinou,
když:

a) se ručičky kryjí,
b) stojí proti sobě.

Počítejte na desetiny vteřiny.
3. Je dán kruh o středu S a r = 6 cm omezený kružnicí k.
Sestrojte rovnostranný trojúhelník ABC, který leží celý

v kruhu a jehož strana AB má délku a = 4 cm a je tětivou
kružnice k. Přímku AB označme p. Trojúhelník ABC se

pohybuje tak, že splňuje tyto podmínky:
a) Pohybující se trojúhelník ABC leží celý v kruhu.
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b) Aspoň jeden vrchol trojúhelníku ABC leží na kruž-
ničí k.

c) Strana AB je stále rovnoběžná s přímkou p.
Narýsujte, přesně určete a odůvodněte dráhu, kterou vy-

koná bod A, než se opět pohybující se trojúhelník dostane
do své původní polohy. Totéž proveďte pro body В a C.

4.a) V rovnoramenném lichoběžníku jsou základny
a = 17 cm, c = 7 cm, rameno b — 13 cm. Rozdělte licho-
běžník úsečkou x rovnoběžnou se základnami na dvě části,
které mají stejný obsah. Vypočtěte délku úsečky x a její
vzdálenost od delší základny. O správnosti výpočtu se

přesvědčte zkouškou.

4.b) Trojúhelník o stranách a = 8,5 cm, b = 12,5 cm,
c = 14 cm rozdělte úsečkou rovnoběžnou s nejdelší stranou
na dvě části, které mají stejný obsah. Určete velikost hledané
úsečky a zjistěte, v jaké vzdálenosti od bodu C protne
kratší stranu. O správnosti výpočtu se přesvědčte zkouškou.

Jihomoravský kraj

1. Dokažte, že výraz

_ 2b(a — 1) a + b
(a — 2) (b2 — 1) ab + a — 2b — 2

kde а Ф 2, b ф ± 1, je pro každá dvě čísla a, b roven nule.

2. Je dán čtverec ABCD o straně a. Středy jeho stran
označte takto : E — střed AB, F — střed BC, G — střed CD,
H — střed DA. Sestrojte trojúhelníky EFD a HGB.

Určete obsah šestiúhelníku OPQRST (vrchol O je prů-

a — b

ab — a — 2b + 2’
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sečík přímek EF a BH, vrchol P je průsečík přímek EF
a BG), který je společnou částí (průnikem) obou těchto
trojúhelníků. (Správnost výpočtu zdůvodněte.)

3. Na kruhové dráze vyjedou z téhož místa a současně
dva cyklisté

a) v témže směru;
b) proti sobě.

První objede dráhu za 1 min 52 s, druhý za 2 min 24 s. Po
jaké době se a) dohoní; b) potkají?

4. V rovině jsou dány dvě kružnice kx (Sx; 25 mm),
k2 (S2; 25 mm). Vzdálenost S1S2 = 120 mm.

Narýsujte všechny kružnice, které mají s každou z daných
kružnic kt,k2 vnější dotyk a zároveň se dotýkají přímky
SXS2. Vypočtěte poloměry sestrojených kružnic. Proveďte
konstrukci též bez předběžného výpočtu.

Slovenská socialistická republika

1. Do kružnice к se stredom S a polomerom 5 cm je
vpísaný pravidelný 6-uholník AxA3A3A7AgAxx. Označme
A2,A4 priesečníky priamky AXA5 s priamkami A3Axl,
A3A7; A6,A8 priesečníky priamky A5Ag s priamkami
A3A7, A7Axx a Al0, Al2 priesečníky priamky AgAx s priam-
kami A7AXX, AxxA3.

a) Nakreslíte množinu P stredov všetkých kružnic s polo-
merom 1 cm, ktoré ležia v šesťcípej hviezde

H = A1A2A3A4A5A6A7A8AgA10A11A12.

b) Určte obvod útvaru P.
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2. Nájdite všetky dvojice prirodzených čísel, ktorých
súčin sa rovná štvorcifernému číslu s rovnakými číslicami.

3. Rýchlik dížky 200 m ide rýchlosťou 16 m/s. Po druhej
korají tej istej tratě prichádza opačným smerom nákladný
vlak. Strojvedúci rýchlika zistil, že celý nákladný vlak minul
lokomotivu rýchlika za 12 sekund. Ďalej zistil, že od oka-
mihu, keď sa střetli lokomotivy oboch vlakov, až do chvíle,
kedy sa minuli ich posledně vozne, uplynulo 20 sekúnd.
Vypočítajte rýchlosť a dížku nákladného vlaku.

4. Je daný rovnostranný trojuholník ABC, ktorého
strany majú dížku 2 cm. Bod К leží na priamke AB za
bodom B.

a) Vypočítajte vzdialenosti bodu К od priamky АС a BC,
ak BK = 0,5 cm.

b) Vypočítajte vzdialenosti bodu К od priamky АС a BC,
ak BK = d cm.

c) Dokážte, že rozdiel vzdialenosti každého bodu pol-
priamky BK od priamok АС a BC v absolútnej hodnotě je
konštantný.
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VII. Zpráva о XVII. mezinárodní
matematické olympiádě

V pořadí již sedmnáctá mezinárodní matematická olympiáda
(MMO) se konala ve dnech 3. —16. července 1975 v Bulhar-
sku, v Burgasu a v Sofii. Zúčastnilo se jí celkem 17 zemí:
Rakousko (A), Bulharsko (BG), Československo (CS), NDR
(DDR), Francie (F), Velká Británie (GB), Řecko (GR),
Maďarsko (H), Mongolsko (M), Holandsko (NL), Polsko
(PL), Rumunsko (R), Švédsko (S), Sovětský svaz (SU),
Spojené státy (USA), Vietnam (VN) a Jugoslávie (YU).
Z tradičních účastníků tedy tentokráte chyběla Kuba;
Řecko přijelo na MMO poprvé.

Každá země byla na XVII. MMO zastoupena delegací
složenou z vedoucího a jeho zástupce a z osmičlenného
žákovského družstva. Československé družstvo tvořili tito
žáci: Martin Baumann z Prahy, Vlastimil Klíma z Benešova
u Prahy, Jan Kratochvíl z Pardubic, Jan Malý z Litoměřic,
Jiří Navrátil z Olomouce, Ján Slodička z Bratislavy, Michael
Valášek z Prahy a Josef Voldřich z Vimperka. Vedoucím
delegace byl dr. František Zítek, CSc., z Matematického
ústavu ČSAV v Praze a doc. dr. Jozef Moravčík, CSc.,
z Vysoké školy dopravní v Žilině.

Průběh XVII. MMO odpovídal vcelku ustáleným zvyk-
lostem. Nejprve se 3. července sjeli do Burgasu vedoucí
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jednotlivých delegací a vytvořili zde mezinárodní jury, která
pak pod předsednictvím prof. I. R. Prodanova ze Sofie
řídila vlastní soutěž MMO. Prvním úkolem jury bylo vybrat
šest soutěžních úloh. Z návrhů, které do Bulharska zaslalo
11 ze 17 zúčastněných zemí, připravili bulharští organizátoři
předběžný návrh 15 úloh; jedna z nich byla také česko-
slovenského původu.

Práce jury postupovala poměrně rychle a výsledný výběr
reprezentoval patrně skutečně optimum za daných možností:
mezi zaslanými návrhy byl zjevný nedostatek vhodných
úloh s geometrickou tematikou, chyběla zejména stereo-
metrie. Pro soutěž byla vybrána tato šestice úloh (jejich
řešení uvádíme na str. 170—183).

1. Nechť xt, уi (i = 1,2,..., n) jsou reálná čísla

*1 ^ *2 ^ ... ^ X„,

У1^У2^ ••• ^ Ун-

Dokažte, že pro libovolnou permutaci zí,z2,...,zn čísel
УиУ2,--;Уп platí

Z (xí - уi)2 zi)2 ■
i= 1 i= 1

2. Nechť
a 1, a2i •••» an’ •••

je nekonečná posloupnost přirozených čísel taková, že

0 < ak < ak + i pro к = 1,2,3,....
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Dokažte, že nekonečně mnoho členů am této posloupnosti
lze vyjádřit ve tvaru

P Ф9.am = *ap + yaq,

kde x, у jsou celá kladná čísla.3.Je dán trojúhelník ABC. Vně tohoto trojúhelníku se-

strojíme (v téže rovině) trojúhelníky ABR, BPC, CQA
takové, že

ZPBC = <CAQ = 45°,
*BCP = <QCA = 30°,
* ABR = -Ž.BAR = 15°.

Dokažte, že

1. ZPRQ = 90°,
2. PR = QR.

4. Nechť A je součet cifer čísla 44444444; nechť В je
součet cifer čísla A. Určete součet cifer čísla B. (Všechna
čísla jsou zapsána v desítkové soustavě.)

5. Zjistěte, zda na kružnici s poloměrem 1 existuje 1975
bodů takových, že délky všech jimi určených tětiv jsou racio-
nální čísla.

6. Najděte všechny mnohočleny P dvou proměnných
s těmito vlastnostmi:

1. P je homogenní mnohočlen stupně n (n je přirozené
číslo), tzn. že pro všechna reálná čísla ř, с, у platí

P(tx, ty) = tnP(x, y);
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2. pro všechna reálná čísla a, b, c platí

P(a + b,c) + P(a + c,b) + P(b 4- c, a) = 0 ;

P(1,0) = 1.3.

Vybrané úlohy pocházely z návrhů Československa (č. 1),
Velké Británie (č. 2 a č. 6), Holandska (č. 3) a Sovětského
svazu (č. 4 a č. 5); text úlohy č. 4 byl při jednáních jury po-
změněn proti původnímu návrhu, který byl snazší a při-
pouštěl mechanické řešení přímým numerickým výpočtem.

Jury rovněž posoudila obtížnost vybraných úloh a určila
maximální počty bodů, které bylo možno získat za úplné
řešení úlohy. Úlohy č. 1, 4 a 5 ohodnotila šesti body, úlohy
č. 2 a 3 sedmi body a úlohu č. 6 osmi body. Celkem tedy
mohl každý žák získat nejvýše 40 bodů.

Za nejtěžší úlohu byla — zřejmě právem — považována
úloha č. 6, jednak proto, že se v ní operuje pojmem homo-
genní mnohočlen, s nímž žáci středních škol nemají obvykle
velké zkušenosti, jednak proto, že její řešení vyžadovalo
jistou dávku tvořivosti. Za nejlehčí považovala jury před
soutěží úlohu č. 4.

Výběrem úloh a překladem jejich textů do jazyků žáků
skončila přípravná etapa práce jury. Mezitím se již do
Burgasu dostavila všechna zúčastněná družstva a s nimi
i zástupci vedoucích delegací, kteří se připojili к jury a po-
máhali s překlady. Žáci byli ihned po příjezdu přísně izo-
lováni od jury, aby byla zachována regulérnost soutěže;
tato izolace trvala až do konce vyhodnocení výsledků sou-
těže. Žáci byli ubytováni v internátě na okraji Burgasu;
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jejich program byl s výjimkou dvou půldnů, kdy se konala
soutěž, věnován hlavně exkurzím, koupání a rekreaci.

Vlastní soutěž se konala ve střední škole P. Berona
v Burgasu. Dopoledne dne 7. a 8. července 1975 řešili žáci
vždy po třech úlohách; na každé tři úlohy měli čtyři hodiny
čistého času.

Ve dnech 9. —11. července probíhaly opravy, klasifikace
a koordinace klasifikace žákovských řešení. Bulharští orga-
nizátoři připravili podrobný harmonogram koordinace,
který se vcelku podařilo dodržet, takže práce probíhala
poměrně rychle a hladce. Z mezí normálu vybočil jen případ
úlohy č. 2 u holandské delegace; holandští vedoucí přeložili
text úlohy nepřesně, takže žáci řešili jinou, poněkud snazší
úlohu. Z rozhodnutí bulharských koordinátorů, které na-
konec vedení holandské delegace akceptovalo, nezískali
žáci za řešení této snazší úlohy žádné body. (Výjimku tvoří
jeden holandský žák, který podal řešení úlohy ve správném
znění.)

Závěrečné zasedání jury dne 11. července jednalo pak už
jen o hranicích jednotlivých cen. Bylo rozhodnuto udělit
první ceny žákům, kteří získali 40 nebo 39 bodů; к získání
druhé ceny bylo potřeba mít alespoň 32 bodů, na třetí cenu
stačilo 23 bodů. Celkem tak bylo uděleno 8 prvních, 25 dru-
hých a 36 třetích cen.

Vedle těchto hlavních cen byly uděleny ještě tři zvláštní
ceny za elegantní a originální řešení jednotlivých úloh.
Získali je dva žáci z Rumunska a jeden z USA.

Celkové výsledky jednotlivých delegací na XVII. MMO
jsou patrny z následující tabulky:
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Součet bodů

celého

družstva

Počet získaných cen
Zorné

2. 3. zvláštních1.

A 192 21 1

BG 186 1 4

CS 162 2

DDR 249 4 4

F 176 1 11

239 2GB 2 3

GR 95 1

258 3H 5

M 75 1

67*)NL 1

PL 124 1 1

2180 1 3R

160**) 2S

246 1 3 4su

USA 247 3 3 11

175***) 1 3VN

163 1YU 1

*) Celkový výsledek holandského družstva byl ovlivněn chybným
překladem jedné úlohy.

**) Jeden švédský žák se pro nemoc neúčastnil druhého dne soutěže.
***) Vietnamské družstvo soutěžilo v sedmi; osmý žák byl nemocen.

Po skončení této pracovní části XVII. MMO podnikli
všichni účastníci ve dnech 12. a 13. července autokarový
výlet z Burgasu do Sofie přes Starou Zagoru, Kazanlak,
Šipku, Gabrovo, Veliko Trnovo a Pleven. Ve všech městech,
kde se autokary s účastníky MMO zastavily, bylo připraveno
slavnostní uvítání. Návštěva místních pamětihodností
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(thrácká hrobka v Kazanlaku, památník na Šipce, Dům
humoru a satiry v Gabrovu, citadela ve Velikom Trnovu,
muzeum v Plevnu) spolu s velice přátelským a srdečným
přijetím všude zanechala nutně nesmazatelné dojmy ve všech
účastnících.

V Sofii, kam výprava dorazila 13. července večer, byla pak
XVII. MMO zakončena. Dne 14. července si účastníci pro-
hlédli město; 15. července odpoledne bylo v sále Dom>’
sovětské vědy a kultury slavnostní rozdílení cen. Na závěr
byla téhož dne večer uspořádána slavnostní večeře ve zná-
mém restaurantu Kopito v horách nad Sofií.

Československá delegace se vrátila do Prahy letadlem
dne 16. července krátce po 14. h. Přivážela si s sebou dvě třetí
ceny, které získali žáci M. Valášek a J. Navrátil. Podrobné
výsledky československého družstvajsou obsaženy v tabulce:

Počet bodů získaných za úlohu č.
CelkemJméno

3 4 5 61 2

0 7 4 0 1 18M. Baumann

V. Klíma

J. Kratochvíl

J. Malý
J. Navrátil

J. Slodička
M. Valášek
J. Voldřich

6

132 3 0 10 7

26 7 1 0 0 16

7 0 3 o 2 186

0 276 7 0 6 8

0 6 206 7 0 1

6 306 5 7 0 6

2 206 7 1 2 2

družstvo

celkem 23 12 20 23 16244 40
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Vcelku lze konstatovat, že ani tentokráte nepřekročily
výsledky čs. družstva hranici průměrnosti. Zkušenosti ně-
kolika posledních let nasvědčují tomu, že jde o jev trvalý.
Zdá se, že chybějí především vynikající jednotlivci schopní
podat špičkový výkon, a to zcela spolehlivě bez náhodných
výkyvů. Tato situace si vyžádá hlubší analýzu a přijetí
účinných opatření ke zlepšení přípravy našich reprezentantů.

ŘEŠENÍ ÚLOH XVII. MMO

1. Dokazovanou nerovnost

nn

(1)Z (*.• - yi)2 ^ Z (*< - zi)2
i — 1i= 1

přepíšeme na tvar
П nnn nn

Zxf + Z^2 -2Z^ Zx? + Zz? - 2Zxízí-
i — 1i=l i=li= 1 i — 1i= 1

Poněvadž zřejmě
n n

Zy? = Yzt,
i= 1i — 1

je nerovnost (1) ekvivalentní nerovnosti

Z xízí ^ Ž хм ■ (2)
i= 1 i= 1

Označme

— Z уi ’ Ti — z zi
i=l i= 1
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pro к = 1,2,n a položme S0 = T0 = 0. Bude pak

Ук = ~ $к - 1 » Zk — Тк — Tfc-i

pro každé к = 1,2,..., п. Můžeme tedy psát
n-i

Y ХкУк — Y xk{$k — Sfc-l) ~ Y xk$k X ^k+l^fc —
ít=l

n — 1

= x„s« + Y (xk - xk+1) sk - xiS0 •

k = Ok= 1 k=l

(3)
k= 1

Obdobně je také
n n— 1

Y xkzk = xJn + Y (xk - ^k+1) Tk - *i Ti. (4)
k= 1 fc= 1

Poněvadž však čísla zlf z2,...»zn tvoří jen permutaci čísel
y1} у2,..., y„, je nutně S„ = Tn. Pro к — 1,2,...»n — 1 pak
platí Sfc ^ Tk, neboť je yx ^ y2 ^ ... ^ y„. Dále je též
xk ^ xk+i> a tedy — Xjc+i ^ 0 pro к = 1,2,и — 1,
takže

n — 1 Л- 1

X (^k ~ Xk+ l) $k = Y (xfc — Xk+ l) ^k •
k=l fc = 1

Odtud a z rovností (3) a (4) již vyplývá dokazovaná nerovnost
(2), a tedy i (1).

Jiné řešení této úlohy je založeno na přímém důkazu
nerovností (1), tj. bez redukce na (2), a to indukcí podle n.
Místo indukčního kroku je ostatně možné odvolat se na
známou skutečnost, že každou permutaci lze složit z trans-
pozic.
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2. Členy posloupnosti

(i)^1» ^2’ • • ■> ^n’ • • •

s výjimkou ax rozdělíme do ax tříd podle zbytků při dělení
číselm av V každé neprázdné třídě vezmeme nejmenší
číslo aq; všechny další členy am posloupnosti (1) patřící do
téže třídy jako aq se od aq liší o násobek čísla ax, takže je
lze psát ve tvaru

am = aq + yax,

kde у je celé kladné číslo. Poněvadž všech tříd je au tzn.
konečný počet, vidíme, že nejen nekonečně mnoho členů
posloupnosti (1), ale dokonce všechny členy až na nejvýše
ax 4- 1 výjimku lze vyjádřit v požadovaném tvaru, přičemž
se navíc (aspoň) jedno z čísel x,y rovná 1.

3. Označme

KABC = p,

AB = с, ВС = a, AC = b, AR = BR = y, AQ = x, QC = ř,
BP = 2, PC = v. Podle sinové věty je

■КВАС = a, KACB = у,

x.b = sin 30°: sin 105°,
takže

b
x =

2 cos 15°
a obdobně

a
z —

2 cos 15°
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Dále je c

У =
2 cos 15°

a

v/2= Ьsin 45°
t — x = X

ф cos 15°’sin 30°

aa
у = ř- = —7= .^ д/2 cos 15°

К vyjádření délek stran trojúhelníku PQR užijeme kosinové
věty:

QR2 = x2 + y2 — 2xycos(a + 60°),
PR2 = y2 + z2 — 2yz cos (/? + 60°),
PQ2 = t2 + v2 — 2tv cos (y + 60°).

Tyto rovnosti platí, i když některý z úhlů a, /?, у je větší
nebo roven 120°.

Podle sinové věty je ovšem

a:b = sin a: sin fi,
a tedy

a sin fi — b sin a = 0,

ф. c(a sin P — b sin a) = 0 =
= ${b2 - c2 + a2 — 2a2 + a2 + c2 — b2).

Odtud plyne dále rovnost

b2 — Щ2 + c2 — a2) + bc ф. sin a =
= a2 — a2 + c2 — b2) + ас ф. sin Д,

takže

173



neboli

b2 — Ц2bc cos a) + bc y/з. sin a =
= a2 — j(2ac cos jS) + ас yfb . sin /1,

b2 — 2bc(j cos a — j. y/3 . sin a) =

— a2 — 2ас(% cos j? — \. yfb . sin jS),
což lze psát též jako

b2 — 2bc cos (a + 60°) = a2 — 2ac cos (/? 4- 60°).

Nyní celou rovnost dělíme číslem 4 cos215° a dostaneme

b2 a2bc cos (a + 60°) ac cos (/? + 60°)
4 cos215° 2 cos2 15° 2 cos2 15°4 cos2 15°

neboli

x2 — 2xy cos (a + 60°) = z2 — 2yz cos (/? + 60°).
To však znamená, že PR2 = QR2, čili PR = QR. Dokázali
jsme tak druhou část úlohy: trojúhelník PQR je rovno-

ramenný.
První část, tj. rovnost £ PRQ — 90°, dokážeme z Pytha-

gorovy věty. Platí totiž

PR2 + QR2 = PQ2.

Poněvadž už víme, že
PR = QR,

je
PR2 + QR2 = 2.x2 + 2y2 — 4xycos(a + 60°).
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Zároveň je
PQ2 = í2 + v2 — 2tv cos (7 + 60°).

Podle sinové věty je však

a sin у — c sin a = 0 ;

odtud stejným postupem jako v předchozím dostaneme
rovnost

c2 — 2bc cos (a + 60°) — a2 — 2ab cos (y + 60°). (1)
Dosadíme-li do výrazů pro PR2 + QR2 a pro PQ2 za
x,y,t,v, dostaneme

c2 bc cos (a + 60°)b2
PR2 + QR2=

2 cos2 15° 2 cos2 15° cos2 15°

b2 a2 ab cos (y + 60°)PQ2 = cos2 15°2 cos2 15° 2 cos2 15°

Porovnáním s (1) dostáváme pak požadovanou rovnost:

PR2 + QR2 = PQ2 ;

trojúhelník PRQ je tedy pravoúhlý: -£PRQ = 90°.

Jiné řešení. Vně trojúhelníku ABC sestrojme tři rovno-
ramenné pravoúhlé trojúhelníky AQ'C, BP'C, ABR' tak,
aby

<Q'AC = *P'BC = * AR'В = 90°.

Tyto tři trojúhelníky jsou ovšem podobné, přičemž si body
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P, Q, R vzájemně odpovídají. Nyní sestrojíme body
K, L, M, N tak, aby

PK 1BC,

QL 1AC,
KM || AC,
LN || BC.

К eBC,
L eAC ,

MeAB,
N eAB,

Z podobností plyne
KM

_ BK _ AL _ QL
АС ~ ВС ~ ЛС ~ AC ’

takže
QL = MK.

Obdobně dojdeme к rovnostem

LN = KP, NR = RM.

Navíc je
QL 1 MK , LN 1 KP, NR IRM.

Je tedy také (sčítání vektorů je asociativní a komutativní)
QR = PR a <QRP = 90°, c. b. d.

Další řešení, podstatně jednodušší, je založeno na zna-
losti pojmu podobnosti jakožto zobrazení roviny. Vezměme
dvě taková zobrazení nx a n2, definovaná takto: se
skládá z otočení o 45° okolo bodu A a z homotetie se středem

sin 105°

sin 30° ’
takže n^{Q) = C. Zo-v A a s koeficientem к =

brazení n2 se skládá z otočení o 45° okolo bodu В a z homo-
sin 30°

tetie se středem x В as koeficientem к 1 = , takže
sin 105°
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n2(C) = P. Složením obou zobrazení n1 a n2 dostaneme
zřejmě pouhé otočení o 90° a zbývá dokázat, že R je právě
střed tohoto otočení. Snadno se však vidí, že n^R) = S,
kde S je vrchol rovnostranného trojúhelníku ABS (ležícího
v polorovině ABR), a že pak n2(S) = R. Tím je úloha řešena.

4. Řešení úlohy se skládá ze dvou částí. Nejprve odhad-
neme shora součet cifer čísla B\ označme ho C. Zřejmě je

4444 < 10000 = 10\

takže číslo 44444444 má nanejvýš 4.4444 = 17 776 cifer.
Každá z nich je nanejvýš rovna 9; pro jejich součet A tak
dostáváme odhad

A ^ 9.17 776 = 159 984.

Číslo В je tedy nejvýše rovno číslu

9 + 9 + 9 + 9 + 9 = 45.

Z přirozených čísel menších nebo rovných 45 má největší
součet cifer číslo 39, totiž 12. Je tedy celkem

C ^ 12.

Druhá část řešení spočívá ve využití známé skutečnosti,
že každé číslo dává při dělení devíti týž zbytek, jaký dává
jeho ciferný součet. Platí tedy

44444444 _ A mod 9 ?

A = В mod 9,
В = C mod 9 .
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Avšak
4444 = 7 mod 9,

a tedy také
4444 = 1 mod 3 .

Snadno si ověříme, že pro každé přirozené к je

?3fc+i _ 7 mod9;
je tedy

44444444 = 7 mod 9 .

To však znamená, že také

C = 7 mod 9 .

Poněvadž platí C ^ 12, vidíme, že nutně C — 1. Hledaný
součet cifer čísla В je tedy právě 7.

5. V kružnici s poloměrem 1 má tětiva odpovídající
a

středovému úhlu a délku 2sin-. Nyní dokážeme dvě po-
mocná tvrzení:

1. Je-li b úhel takový, že sinů, cosů jsou racionální
čísla, pak také sin kb, cos kb jsou racionální čísla pro všechna
přirozená k.

2. Existuje libovolně malý úhel b takový, že sin b a cos b
jsou racionální čísla.

První tvrzení dokážeme snadno indukcí podle k: pro
к = 1 je triviální a pro indukční krok využijeme známých
vzorců

sin (k + 1) b = sin kb cos b + cos kb sin b,
cos (k + 1)<5 = cos kb cos b — sin kb sin b .
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К důkazu druhého tvrzení stačí např. vzít úhel ó takový,
že je

í2- 12t
sin <5 = cos <5 =

t2 + Гí2 + Г

kde t je dostatečně velké přirozené číslo.
Budiž nyní d úhel takový, že sin 3 i cos 3 jsou racionální

čísla a že 1975.3 <jn. Na dané kružnici nyní umístíme
1975 bodů Al,A2,...,A
povídající tětivám AkA

tak, aby středové úhly od-
(k = 1,2,..., 1974) byly všechny

1975

fc^k+l

právě 23. Libovolné dvojici bodů AjAk (j < к) bude od-
povídat středový úhel 2(/c — j) 3, příslušná tětiva bude mít
délku 2 sin (к — j) 3, což je vždy racionální číslo.

Nad kružnici s poloměrem 1 je tedy možné umístit 1975
(a snadno se vidí, že i libovolný jiný konečný počet) bodů
tak, aby všechny jimi určené tětivy měly racionální délky.

6. Nejprve probereme případ n — 1, tj. hledáme lineární
homogenní mnohočlen

P(x, y) = Ax + Bx

vyhovující podmínkám 2 a 3. Položíme-li a = 1, b = c = 0,
dostaneme z podmínky 2

P(0,1)= —2P(1,0),

podle podmínky 3 je tedy P(0,1) = —2. Odtud a z pod-
minky 3 vyplývá >1 = 1, В = — 2, tzn.

P(x, y) = x - 2y.
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Snadno ověříme, že tento lineární mnohočlen opravdu vy-

hovuje všem třem podmínkám úlohy; při n = 1 je to jediné
řešení.

Nechť nyní n > 1. Platí opět P(l, 0) = 1, P(0,1) = —2;
položíme-li a = 2, b = c = —1, dostaneme z podmínky 2
rovnost

P( — 2,2) = —2P(1,-1).

Z podmínky 1 však zároveň vyplývá, že platí

P( —2,2) = ( —2)"P(1, -1).

Jelikož je n > 1, je ovšem ( —2)" ф —2, a tedy nutně

P(1,-1) = 0.

Vzhledem к homogenitě mnohočlenu P je pak také

P(x, — x) = 0

pro všechna reálná x. Odtud však již vyplývá, že polynom P
lze psát ve tvaru

P(x, y) = (x + y) Q(x, y),
kde Q je polynom.

Ukážeme nyní, že také polynom Q vyhovuje podmínkám 1,
2 a 3. Skutečně, při x + у Ф 0 je

P{tx, ty)
_ ťP(x, y)

tx + ty í(x + y)
= í”-‘Q(x,y),Q(tx, ty) =
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takže Q je nutně homogenní polynom stupně n — 1. Po-
dobně je — při a + b 4 c + 0 — také

Q(ci 4 b, c) 4 Q(ci 4 c, b) 4 Q(b 4 c, a) —

[P(a + b,c) + P(a + c,b) + P(b 4 c, a)] = 0.
1

a 4 b 4 c

Rovněž

/>(1,0)Q(i.o) = = 1.
1

Poněvadž při n = 1 už řešení známe, vidíme, že řešením
mohou být jen polynomy tvaru

P{x,y) = {x + yf-'{x-2y);
snadno se ověří, že tyto polynomy skutečně vyhovují všem
třem podmínkám úlohy (při každém přirozeném n).

Jiné řešení. Nejprve dokážeme pomocné tvrzení:
Je-li polynom P řešením úlohy, potom

P(x, 1 — x) = 3x — 2

pro všechna reálná x.
Tvrzení dokážeme nejdříve jen pro celé hodnoty argu-

mentu x, a to indukcí.
I. Tvrzení zřejmě platí pro x = 1; podle podmínky 3

je totiž
P(1,0) = 1 = 3.1 - 2.

II. Předpokládejme, že tvrzení platí pro všechna celá
čísla v mezích 1 — к až 1 4 к (včetně), kde к je celé ne-
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záporné číslo. Podle podmínky 2, kde položíme a = —k,
b — 0, c = 1 + k, bude

P(-k, 1 +k)= -P(1,0) - P(1 + k, -k).
Podle indukčního předpokladu se však pravá strana

rovná
-1 - [3(1 + k)-2] = 3(-/c) - 2,

takže dokazovaná rovnost platí i pro x = —k = 1—(k +l).
Nyní položme a = к + 1, b = 1, c = -(k + 1); podle

podmínky 2 bude

P(k + 2, -к - 1) = -P(0,1) - P(-k, 1 + k).

Podle první části důkazu je však pravá strana rovna

-(3.0 - 2) - [3( — k) - 2] = 3k + 4 = 3(k + 2) - 2 ;

dokazované tvrzení tedy platí i pro x = /c + 2= l+(/c+l).
Tvrzení tedy platí pro všechny celé hodnoty x; poněvadž

však P je polynom, plyne odtud platnost tvrzení pro všechna
reálná x vůbec.

Dále využijeme podmínky 1, tj. homogenity polynomu P,
a napíšeme (pro x + у ф 0)

P(x,y) = (x + yfp(^—, ——\x + у X + yj
У

Avšak

У x
= 1 -

X + у ’x + у
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takže podle pomocné věty je

x — 2уx У x
= 3 - 2 =P ,

\x + у X + у

Celkem je tedy

x 4- у x + у

P(x, у) = (x + у)" 1 (x - 2y),
a to pro každé přirozené n. Ježto P je polynom, platí vý-
sledek i při x + у = 0.

Snadno se ověří, že výsledný polynom skutečně vyhovuje
všem třem podmínkám úlohy.

Poznámky к úlohám a jejich řešením

1. Uvedené řešení úlohy č. 1 je v podstatě shodné s řeše-
ním, které na XVII. MMO podal J. Voldřich.

2. Úlohu č. 2 lze řešit několika způsoby; nejkratší a nej-
ekonomičtější se zdá být řešení, které zde uvádíme; až na
drobné úpravy se shoduje s řešením, které při soutěži
předložil J. Kratochvíl.

3. Úloha č. 3 byla na MMO jediná skutečně geometrická
úloha. Řešení, které zde uvádíme jako první, se shoduje
v podstatě s řešením, které na MMO podal V. Klíma.
Druhé řešení je autorské. Třetí způsob řešení předložil na
schůzi jury vedoucí francouzské delegace; odpovídá způ-
sobu, jímž je geometrie roviny vykládána na francouzských
školách.

4. Úloha č. 4 vznikla v této podobě až v průběhu jednání
jury; v původním sovětském návrhu šlo o určení součtu cifer
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čísla 1616. Je smutnou skutečností, že tuto nejlehčí úlohu
nedokázal žádný z našich žáků vyřešit úplně.

5. Obtížnost úlohy č. 5 tkvěla spíše v logické struktuře
tvrzení užívaných při řešení.

6. První z uvedených řešení úlohy č. 6 sleduje základní
ideu, jíž užil na XVII. MMO J. Navrátil, který jako jediný
z čs. družstva podal úplné řešení. Podobně ji ovšem řešila
i většina ostatních úspěšných řešitelů. Druhé uvedené řešení,
založené na pomocném tvrzení o hodnotách mnohočlenu P
na přímce x + у = 1, podal na XVII. MMO jeden ze žáků
z USA; dostal za ně zvláštní cenu.
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