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Predhovor

Milí mladí priatelia a spolupracovníci matematickej olympiády,

dostáváte do rúk ročenku jubilejného 30. ročníka matema-
tickej olympiády, ktorý sa uskutočnil v školskom roku 1980/81.
Význam nasej súťaže v riešení matematických úloh pre žiakov
středných a základných škol každoročně vyhlašované) minister-
stvami školstva ČSR a SSR dokumentovala o. i. skutočnosť,
že závěr súťaže - celoštátne kolo kategorie A - sa pri příležitosti
jubilea konal po dvadsiatich rokoch opáť v hlavnom meste
nášho štátu a mal mimoriadne slávnostný ráz. Miesto mate-
matickej olympiády v systéme československej výchovnovzde-
lávacej sústavy zhodnotil na slávnostnom otvorení celoštátneho
kola minister školstva ČSR s. doc. dr. Milan Vondruška,
ktorého přejav v plnom znění uveřejňujeme. Krátký pohlad
do historie jubilujúcej МО a na podujatia, ktoré ju sprevádzajú,
nájdete vo vystúpení, ktoré v aule Karolína predniesol předseda
ÚV MO. Spomína v ňom tiež na niektorých zaslúžilých pra-
covníkov v MO, ktorí sa jubilejného ročníka už nedožili. Pri
tejto slávnostnej příležitosti sa dostalo významného ocenenia
záslužnej práce pri vyhledávaní a vedení matematických talen-
tov desiatkam žijúcich dlhoročných pracovníkov v matematickej
olympiádě tým, že převzali dákovné listy ministrov školstva.
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Ako to však už pri takýchto príležitostiach bývá, nebolo možné
ocenit’ všetkých, ktorí by si to zasluhovali. Využíváme preto aj
túto možnost’, aby sme poďakovali za obetavú prácu stovkám
nemenovaných učitel’ov a organizačných pracovníkov, ktorí
po desiatky rokov nel’utovali vynakladať svoje duševné a fyzic-
ké sily i volný čas na prospěch rozvoja mladých talentov a tým
napomáhat’ rozmnožovanie duchovného i hmotného bohatstva
nasej socialistickej vlasti.

Ako obvykle nájdete v ročenke prehl’ad o organizácii a výsled-
koch jubilejného ročníka, úlohy všetkých kol a kategorií súťaže
s riešeniami a po jednoročnej prestávke tiež výstižnú informáciu
o 22. medzinárodnej matematickej olympiádě v USA, na ktorej
v súťaži rekordného počtu 185 žiakov z 27 krajin všetkých
kontinentov nadviazalo nekompletně družstvo reprezentujúce
našu vlast’ za oceánom na úspěch spřed dvoch rokov, ked opáť
priviezlo jednu prvú cenu za plný počet bodov a ani jeden
z pátice našich žiakov sa nevrátil domov bez ocenenia.

Nechýba ani úplný prehlad úloh, ktoré v školskom roku
1980/81 riešili účastníci celoštátneho korešpondenčného semi-
nára. Pre obmedzený rozsah ročenky sa ich riešenia už nevošli
na jej stránky, ale pevne veríme, že riešitelia budúcich ročníkov
MO ich využijú na vyskúšanie svojich schopností a tým na

lepšiu přípravu pre súťaž, ktorá od svojho budúceho - 31. roč-
nika zvyšuje svoju náročnosť v školskom kole, ako sme o tom
podrobnejšie informovali v predhovore к ročenke predchádza-
júceho ročníka.

Záverom nám dovolte vyslovit’ presvedčenie, že jubilujúca
MO aj vo svojom zrelom veku alebo právě vďaka skúsenostiam
tomuto veku prislúchajúcim bude nachádzať stále váčšiu priazeň

6



mladých, ktorým je určená a ktorým chce pomáhat’ objavovať
krásy matematiky a prinášať neopakovatelnú radost’ z tvořívej
práce.

Ústředny výbor tnatématickej olympiády
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PROJEV MINISTRA ŠKOLSTVÍ ČSR
DOC. DR. M. VONDRUŠKY

К ZAHÁJENÍ CELOSTÁTNÍHO KOLA
30. ROČNÍKU MA ТЕМА TICKÉ OL YMPIÁD Y

Vážené soudružky, vážení soudruzi,
milí soutěžící,

srdečně vás všechny zdravím, zde, na historické půdě staro-
slavného Karolina, kde se scházíme к slavnostnímu zahájení
celostátního kola jubilejního 30. ročníku matematické olym-
piády. Je symbolicky příhodné, že к vyvrcholení této už tradiční
soutěže žáků a studentů základních a středních škol dochází

právě nyní, v májových dnech v hlavním městě naší socialistické
vlasti, ve stověžaté zlaté Praze. Finále letošní matematické olym-
piády se tak dostává do mimořádně tvůrčího dění přítomné doby
к němuž na prvním místě patří XVI. sjezd KSČ, oslavy ví-
tězství nad fašismem a osvobození Československa Sovětskou

armádou, slavné šedesátileté jubileum naší komunistické strany
a pak volby do zastupitelských sborů, к nimž se s veškerou
svědomitostí připravujeme. Tyto vpravdě nosné pilíře poli-
tického a společenského života vytvářejí naši socialistickou pří-
tomnost a přes ně směřujeme do budoucnosti. A právě pro tuto
budoucnost svou dnešní prací připravujeme ve školách čino-
rodou, vzdělanou, morálně uvědomělou mladou generaci,
která bude schopna vybudovat materiálně technickou základnu
komunistické společnosti.
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Náš úkol v tomto směru je vskutku obrovský а к jeho splnění
musíme efektivně využívat všech prostředků, které máme.
Nesporné přitom je, že к nejúčinnějším z nich - pokud jde
o formování vzdělanostního profilu člověka již třetího tisíciletí -

náleží matematika. Jsme si všichni plně vědomi, že matematika
tvoří základ technických věd. A tuto skutečnost nebývalou
měrou umocňuje hlavní požadavek dneška: urychlovat, zkva-
litňovat proces vědeckotechnické revoluce a organicky spojovat
její výsledky s přednostmi socialistického zřízení.

Zcela zákonitě proto XVI. sjezd položil důraz na rozvoj vědy,
na bezprostřední aplikaci jejích výsledků v praxi, na vědecký
a technický pokrok, jenž je základem úspěšného rozvoje všech
úseků národního hospodářství, ekonomiky a kultury. Vědecky
myslící, tvořící lidé jsou dnes nositeli klíčových požadavků
racionalizace výroby a zvyšování její efektivnosti, využívání
vědeckotechnického pokroku, integrace vědy a výroby jako
jednoho z nejdůležitějších požadavků současnosti.

V této spojitosti také XVI. ^jezd KSČ ocenil výsledky,
kterých dosahují přírodní, technické i společenské vědy, vy-
zdvihl obětavou práci vědců a úspěchy docílené prostřednictvím
mezinárodní spolupráce ve vědě, zvláště se sovětskými vědci.
Zároveň však bylo na sjezdu konstatováno, že přes nesporné
úspěchy tempo rozvoje a využívání vědy neodpovídá potřebám
i možnostem, jež máme. Z těchto sjezdových závěrů, soudružky
a soudruzi, musíme odvodit vše potřebné i pro naši práci ve

školách, tam, kde se formují příští nositelé vědeckotechnického
rozvoje. A svou pozornost přitom zaměřit především na - jak
říkáme - královnu věd - matematiku. Zejména v uplynulých
pěti letech, v souvislosti s postupnou realizací dokumentu
o dalším rozvoji československé výchovně vzdělávací soustavy,
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krátce řečeno s Projektem, byl pro výuku matematiky učiněn
nebývalý kus práce. Obsahová přestavba, spočívající v základní
škole do značné míry právě na novém pojetí vyučování matema-
tice, dospěla již letos do pátého ročníku základní školy. Přitom
analýza výsledků v 1.—4. ročníku ukázala potěšitelnou věc:
matematika se stává u žáků předmětem velmi oblíbeným, za-
tímco dosud tomu bylo spíše naopak. To je cenná zkušenost,
ale hlavně cenná skutečnost, kterou nesmíme promarnit. Půjde
o to, abychom z existující obliby matematiky u dětí mladšího
školního věku vytěžili maximum pro výuku matematiky, pro

zájem žáků a studentů ve vyšších ročnících a na vyšších stupních
školské soustavy. Prostě musíme nyní učinit vše, aby se mate-
matika ve vědomí žáků a studentů stala nejenom potřebnou, ale
také zajímavou, přitažlivou disciplínou a tím výsledky jejímu
vyučování odpovídaly požadavkům a potřebám rozvoje so-
cialistické společnosti.

Zmiňuji se o tom právě zde, neboť jak se průkazně ukázalo,
matematická olympiáda se stala výrazným prostředkem zvy-
šování zájmu o matematiku včetně objevování matematických
talentů. Jsme vděčni všem, kteří stáli u kolébky této soutěže.
Dovolte, abych za všechny vzpomněl především vynikající
osobnosti, vědce a pedagoga, akademika Eduarda Čecha.
Zároveň abych vyzdvihl prospěšnost těsné spolupráce mezi
školskými vědeckými i společenskými řídícími orgány a institu-
cemi. Původně to byly někdejší ministerstvo školství, věd
a umění, Československý svaz mládeže a Ústřední ústav ma-

tematický. V duchu této tradice vyhlašují a organizují dnes ma-
tematickou olympiádu ministerstva školství České a Slovenské
socialistické republiky, Jednota československých matematiků
a fyziků, Jednota slovenských matematiků a fyziků, Matema-
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tický ústav ČSAV a Socialistický svaz mládeže. Vysoce oceňu-
jeme práci všech těchto organizátorů, lidí, kteří věnovali
matematické olympiádě mnoho svých sil i volného času a svým
nadšením, obětavostí založili tradici a úspěšnou přítomnost
této soutěže.

Zvláště bych pak rád poděkoval také učitelům základních
a středních škol, neboť na nich bezesporu spočívá hlavní peda-
gogická a přípravná práce mezi soutěžícími, jejich působení
zakládá úspěch celé soutěže, její výsledný efekt. Uvažme, že
každoročně se matematické olympiády účastní přibližně 15 tisíc
žáků základních a 4 tisíce žáků středních škol. Vypracovaná
řešení musí učitelé opravit, zhodnotit, probrat s řešiteli, ukázat
na úspěchy a zamyslet se nad případným nezdarem. Velice si
vážíme této záslužné práce učitelů, bez nichž by se matema-
tická olympiáda nikdy neobešla; práce, kterou navíc všichni ко-
nají s vnitřním zaujetím, nadšením pro věc.

Třicet let existence matematické olympiády - to je doba
zahrnující už více než jednu generaci. Někdejší první řešitelé
a vítězové jsou již dnes úspěšní učitelé matematiky nebo i před-
ní vědečtí pracovníci a pedagogové, mnozí z nich se vynikají-
cím způsobem uplatňují ve výrobním procesu. A je nemálo
těch, kteří zůstali věrni přímo matematické olympiádě. Samo-
zřejmě ne již jako soutěžící, ale jako nadšení organizátoři, pra-
covníci okresních, krajských výborů soutěže nebo v ústředním
výboru matematické olympiády. Máme z toho radost, neboť to
vše dokumentuje prospěšnost jejího zrodu a trvání.

A jestliže к tomu ještě připočteme velmi dobré výsledky
našich chlapců a děvčat na mezinárodních matematických
olympiádách, pak můžeme být právem hrdi na dobře započaté
a konané dílo. Jeho těžištěm je tolik potřebný rozvoj logického
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myšlení prostřednictvím matematických úloh. Avšak také -

a to bych rád ještě zvlášť zdůraznil - skutečnost matematické
olympiády, především ve vyšších kolech, obohacuje poznání
soutěžících mladých lidí o nová místa, vede к navázání nových
přátelství, znamená tedy i významnou společenskou událost
s kulturně politickým a výchovným vlivem. I tento aspekt
soutěže mějme trvale na zřeteli. Jsem přesvědčen, že naše
socialistická metropole Praha se zhostí své úlohy na výbornou
a vytvoří pro vás, účastníky a organizátory jubilejního 30. roční-
ku matematické olympiády, takové prostředí, na něž budete
vždy velmi rádi vzpomínat.

Vážené soudružky, vážení soudruzi, v následujících třech
dnech zasednou soutěžící ke svým finálovým úlohám a členové
ústředního výboru matematické olympiády se ujmou náročného
úkolu hodnocení prací. Třicátý ročník olympiády v matematice,
v této náročné, ale také nesmírně zajímavé a nanejvýš potřebné
vědní disciplíně, bude slavnostně a věřím, že úspěšně završen.
Děkuji vám všem, kteří jste se na jeho přípravě a průběhu podí-
leli. Vám, kteří svou prací pro matematickou olympiádu po-
máháte orientovat žactvo základních a středních škol ke spo-

lečensky mimořádně žádoucím oborům studia a formujete
mladou směnu pro povolání, která z hlediska dalšího rozvoje
socialistické společnosti náleží к nejpotřebnějším.

A vám, děvčata a chlapci, mladí přátelé, kteří jste se svými
znalostmi, schopnostmi, svou pílí a svým umem probojovali
až do tohoto celostátního kola, vám všem přeji mnoho úspěchů
v nastávajícím ušlechtilém zápolení. Připravujete se na život
prostřednictvím činorodé tvůrčí práce. A to je ta pravá cesta,
po níž dospějete к celospolečenské prospěšnosti i osobnímu
uspokojení. Cesta, kterou vám otevírá - v duchu jednání
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XVI. sjezdu KSČ - naše socialistické školství. Neboť jak
výstižně uvedl ze sjezdové tribuny generální tajemník ÚV KSČ
soudruh Gustáv Husák: »Úsilí školy musí směřovat к tomu,
aby se v každém mladém člověku úměrně jeho věku a fyzickým
schopnostem postupně vytvářel a rozvíjel kladný vztah к práci,
touha po vlastní tvořivé činnosti.«

Vyjadřuji určitě názor vás všech, když prohlásím, že jednou
z podstatných složek tohoto úsilí je vzdělávání v matematice
a jeho moderní účinná forma - matematická olympiáda. Přeji
celostátnímu kolu třicátého ročníku této soutěže mnoho zdaru,
všem účastníkům co nejlepší výsledky v řešení soutěžních úloh
a budiž čest práci všech organizátorů a pedagogů, kteří se na
matematické olympiádě podílejí.

14



PŘEJAV PŘEDSEDU ÚV MO
PROF. DR. J. MORAVČÍKA, CSc.
NA SLÁVNOSTNOM OTVORENÍ

CELOŠTÁTNEHO KOLA

JUBILEJNÉHO 30. ROČNÍKA MO

Vážený súdruh minister, vážení hostia, súdružky, súdruhovia,
milí mladí priatelia!

Je viac než symbolické, že sa pri otvorení celoštátneho kola
jubilejného 30. ročníka matematické) olympiády (MO) střetá-
vame v ovzduší doznievajúcich osláv 36. výročia oslobodenia
nasej vlasti hrdinskou sovietskou armádou, v dňoch, keď si
připomínáme 60. výročie založenia KSČ. Nepochybné bez
oboch spomínaných významných událostí by nebolo ani mate-
matickej olympiády, teda ani jej tohtoročného jubilea. Keď si
v tejto slávnostnej chvíli připomínáme v historických priesto-
roch staroslávneho Karolína jej tridsaťročnú existenciu, do-
volte mi podotknut’, že tradícia matematických súťaží pre
žiakov středných škol na území nášho štátu, z ktorej MO vy-

rástla, je ovela staršia a súvisí s činnosťou Jednoty českosloven-
ských matematikov a fyzikov, ktorá vznikla roku 1862 a od roku
1870 začala vo svojich časopisoch uveřejňovat’ matematické
a fyzikálně úlohy pre stredoškolákov, za riešenie ktorých sa
udělovali odměny. Čitatelská súťaž v riešení úloh na stránkách
časopisov Jednoty pomohla získat’ pre matematiku celý rad
neskorších vynikájúcich matematikov, fyzikov a popredných
odborníkov v iných oblastiach 1'udskej činnosti. I medzi dneš-
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nými akademikmi ČSAV sa nájdu takí, ktorí s hrdosťou sporní-
najú na vavříny získané v súťažiach Rozhledov matematicko-
fyzikálních, ktoré i dnes uverejňujú úlohy na riešenie pre

svojich středoškolských čitatelov.
Potřeby budovania socialistickej spoločnosti po historickom

víťazstve, ktoré dosiahol náš l’ud pod vedením KSČ vo Februári
1948, obrovský pokrok vo všetkých odboroch vědeckého pozná-

nia, ktorý signalizoval nastupujúcu vedeckotechnickú revolúciu,
vyžadovali váčšie množstvo pracovníkov s kvalitným matema-
tickým vzděláním. Bolo třeba rýchle vyškolit’ nové matematické
kádre, přebudovat’ zastaralé technické vzdelanie a vybudovat’
vedecké pracoviská a ústavy. Z toho vyplynula potřeba získat’
predovšetkým študentov středných škol pre hlbšie štúdium
matematiky а к tomu už čitatelská súťaž určená relativné
úzkému okruhu čitatelov nepostačovala. Bolo preto viac-menej
zákonité, že už v školskom roku 1949/50 sa organizovala mate-
matická súťaž pre žiakov středných škol vo vtedajšom Olo-
mouckom a Ostravskom kraji. O rok neskór připravovali po-
dobnú súťaž niektoré slovenské kraje. Tieto podujatia a najma
dobré skúsenosti s podobnými súťažami v niektorých oblastiach
ZSSR, v Polsku a v Bulharsku, kde sa tieto súťaže nazývali
matematickými olympiádami, boli bezprostředným popudom
pre návrh akademika Eduarda Čecha, aby sa aj v Českosloven-
sku poriadala celoštátna matematická súťaž pre žiakov středných
škól pod názvom matematická olympiáda. Pod jeho vedením
vznikol 12. 9. 1951 přípravný výbor MO, ktorý připravil
návrh organizačného poriadku súťaže a předložil ho vtedaj-
šiemu ministerstvu školstva, vied a umění. Toto ho s pochope-
ním akceptovalo a pre školský rok 1951/52 vyhlásilo prvý ročník
súťaže.
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Jej prvý organizačný poriadok poukazuje predovšetkým na

praktický a výchovný význam matematiky pre našu mládež
a oceňuje súťaž z hladiska sústavného zvyšovania úrovně
vyučovania matematiky, fyziky a technických vied. MO sa
kládlo za úlohu slúžiť vyhladávaniu a včasnému podchytávaniu
mladých talentovaných študentov a zabezpečovaniu sústavnej
starostlivosti o přípravu budúcich vedúcich technických kádrov
nášho hospodářského života.

Po pravdě třeba konstatovat’, že začiatky MO boli skromné.
V prvom ročníku sa jej v dvoch kategóriách zúčastnilo celkom
1013 riešitelov zo 139 středných škol, z ktorých bolo v prvom
kole len 166 úspěšných. Počty účastníkov súťaže i úspěšných
riešitelov však poměrně rýchle rástli. Postupné sa měnila
organizácia súťaže, vzrástol počet kategorií, upravovali sa sú-
tažné podmienky. Povodně bola súťaž určená len pre žiakov
středných škol, ale od 3. ročníka v roku 1953 pribudla kategória
určená pre žiakov s povinnou školskou dochádzkou, v ktorej
súťažia žiaci najvyšších ročníkov základných škol. Cielom sú-
ťaže v tejto kategorii má byť predovšetkým vzbudzovanie
a rozvíjanie záujmu žiakov o matematiku a vhodný spósob ich
vedenia к samostatnej práci. S tým súvisí skutočnosť, že táto
kategória súťaže má predovšetkým propagačný charakter a po-
merne velký počet riešitelov. Za doterajších 28 rokov jej trvania
sa jej zúčastnilo v školskom kole viac než 220 tisíc žiakov.
V posledných rokoch je to každoročně okolo 15 tisíc účastníkov.

V kategóriách určených pre žiakov středných škol rátá súťaž
s hlbším záujmom a nadaním pre matematiku a zúčastňuje sa

jej menší počet žiakov. Pre porovnanie mi dovolte spomenúť, že
v predchádzajúcom ročníku sa školského kola zúčastnilo
4245 stredoškolákov, z ktorých 3456 splnilo podmienky pre
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postup do krajského kola. V krajskom kole bolo úspěšných
574 riešitelov zo středných škol. Toto malé porovnanie ná-
zorné ukazuje, že za 30 rokov svojej existencie MO zmohutnela
nielen kvantitativné, ale najma kvalitativně. Inspirovala vznik
nových foriem a metod, ktoré sa v práci s talentami osvědčili.
Spočiatku to boli pracovně přednášky či semináře v rámci
krúžkov riešitelov MO na školách, ku ktorým čoskoro pribudli
krajské a neskór tiež celoštátne sústredenia riešitelov MO
organizované pod odborným dohladom JČSMF. Počas prvých
10 ročníkov súťaže boli jedinou študijnou literatúrou pre rieši-
tel’ov MO ročenky jednotlivých ročníkov súťaže vydávané
ÚV MO v SPN, ktoré obsahujú všetky úlohy příslušného roč-
nika s riešeniami. Od roku 1961 začal ÚV MO vydávať v mlá-
dežníckom nakladatelstve Mladá fronta edíciu Škola mladých
matematikov, v ktorej doteraz vyšlo 47 zvázkov, viaceré z nich
v niekofkých vydaniach. Okrem toho v SPN vyšli 3 zbierky
vybraných riešených úloh z jednotlivých kategorií našej súťaže.

Za 30 rokov svojho trvania podnietila MO rozhodnutie
tisícok mladých 1’udí к štúdiu matematiky, fyziky a technických
odborov. Z nich mnohí sú už dnes poprednými odborníkmi,
vědeckými pracovníkmi, vysokoškolskými učitelmi a nechý-
bajú medzi nimi ani doktoři fyzikálno-matematických či
technických vied. Zastávajú významné miesta v róznych
oblastiach nášho národného hospodárstva či ako učitelia zá-
kladných a středných škol připravujú svojich nasledovníkov.
Možeme preto oprávněně konštatovať, že MO úspěšně plní
úlohy, ktoré dostala do vienka pri svojom vzniku, že zaujala
pevné miesto v našom výchovnovzdelávacom systéme. Mohlo
sa tak stať však len vďaka obetavej a nezištnej práci desiatok
a stoviek učitelov matematiky zo základných a středných

18



škol, dobrovolných pracovníkov z vysokých škol a výskům-
ných pracovísk, ktorí nehladiac na volný čas věnovali svoje
sily a schopnosti práci s talentami. Nie je tu možné vyměňovat’
všetkých nielen pre krátkost’ času, ale najma pre anonymitu
mnohých z nich, pretože sú bezmennými hrdinami obětavěj
pedagogickej práce. Všetci bez výnimky si však zaslúžia našu
úctu a poďakovanie. Viacerým z nich sa ho dostane z rúk
najpovolanejších, ked prevezmú ďakovný list súdruha mi-
nistra. Dovolte mi však spomenúť aspoň niekol’kých z tých,
ktorým už takýmto spósobom poďakovať nemožno, pretože
ich niet medzi námi. Je to na prvom mieste s. Rudolf Zelinka,
ktorý od vzniku MO po 14 rokov až do svojej náhlej smrti
v máji 1965 vykonával náročnú funkciu tajomníka ÚV MG
a bol doslova dušou olympiády. Ďalej spomeňme na prof. dr.
Františka Vyčichla, prvého předsedu ÚV MO, akademika Jura
Hronca, ktorý od prvého ročníka až do svojej smrti v decembri
1959 zastával funkciu podpredsedu ÚV MOaktorého 100. vý-
ročie narodenia si pripomenieme 17. mája t.r., dlhoročných
členov ÚV MO prof. dr. Karla Hrušu, Františka Hradeckého,
Františka Veselého, Františka Vejsadu i Petra Fabingera,
ktorý 4 roky pracoval ako tajomník ÚV MO.

Stovky, ba tisícky známých i menej známých učitelův sa
za 30 rokov existencie MO zanietene věnovali a věnujú popři
svojich základných povinnostiach vyhladávaniu a cielavedo-
mému odbornému vedeniu talentov. Často možno doslovné
hovořit’ o odovzdávaní štafety, ked’ bývalí olympionici s rovna-

kým zápalom ako ich niekdajší učitelia sa zapájajú do práce
s talentami - so svojimi nasledovníkmi. Ked’ už v súvislosti
s xMO hovoříme o učitelůch, nemožno nespomenúť, že inštruk-
táže a školenia učitelův matematiky základných a středných
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škol, ktorí vedú MO na školách, mali a majú pozitivny vplyv
na ich metodickú a odbornú úroveň a tým nepriamo vplývajú
na kvalitnějšie plnenie výchovnovzdelávacích úloh školy vo

vyučovaní matematiky. Nemalou mierou к tomu prispievajú
tiež metodické materiály, tzv. komentáre к úlohám I. kola,
ktoré začal ÚV MO spracovávať z iniciativy svojho dlhoroč-
ného předsedu doc. Jana Výšina, CSc., ktorý bol tiež po
niekolko rokov sám ich jediným autorom.

Jedným z podujatí, ktoré sa osvědčili pri práci s talentami, je
tzv. korešpondenčný seminář. Zúčastňuje sa ho ročně 30—40
vybraných úspěšných riešitelov MO z celej ČSSR. Koná sa
každoročně od škol. roku 1974/75 a zvlášť v posledných ro-
koch zaznamenal výrazný kvalitatívny rozmach. Je potěšitelné,
že táto forma práce s talentami našla značný ohlas tiež v kra-
joch a v kombinácii so zaujímavo organizovanými sústrede-
niami priniesla najma vo Východoslovenskom kraji v posled-
ných 2—3 rokoch výrazné úspěchy v MO. Ťažisko práce
s celoštátnym korešpondenčným seminárom spočívá na

pracovníkoch MÚ ČSAV, ktorý od vzniku MO vytvára pre
súťaž nenahraditelné odborné i technické předpoklady.

Na našu MO, ako aj na starostlivost’ o matematické talenty
v ČSSR, má nesporné vplyv aj medzinárodná matematická
olympiáda, ktorá vznikla před 22 rokmi z iniciativy rumun-

ských matematikov. ČSSR patřila к jej zakladatelům a na-
še družstvo nechýbalo na žiadnej z doteraz uskutečněných
21 MMO. Poslednej z nich před 2 rokmi v Londýne sa zúčast-
nilo 166 žiakov z 23 krajin. Významný úspěch na nej dosiahol
najmladší člen nášho družstva Jan Nekovář, keď sa zařadil
do štvorice riešitelov, ktorí absolvovali súťaž bez straty bodu,
čím získal po 11 rokoch pre ČSSR opáť prvú cenu. Celkom
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na doterajších MMO získali naši žiaci 6 prvých, 18 druhých
a 49 třetích cien a 4 špeciálne ceny za originalitu riešení sú-
tažných úloh. I keď výsledky dosiahnuté na MMO nemožno
přeceňovat’, dávajú do určitej miery možnost’ porovnávat’
úroveň vyučovania matematiky a starostlivosti, ktorá sa

venuje matematickým talentom v jednotlivých krajinách.
Poznatky z MMO přispěli o.i. к vzniku internátnych mate-

matických tried zriadených před 7 rokmi na 4 gymnáziách
v ČSSR, ku ktorým v tomto školskom roku pribudlo dálšie.
Tým sa vytvořili nebývalé podmienky pre rozvoj matematic-
kých talentov pod odborným vedením.

Jubilejný 30. ročník súťaže, ktorý týmto celoštátnym kolom
kategorie A vlastně uzatvárame, sa stal príležitosťou na za-

myslenie nielen nad úspechmi, ktoré MO zaznamenala, ale
aj nad cestami к ešte lepším výsledkom. Na odporúčanie
ÚV MO dochádza od budúceho - 31. ročníka - к niektorým
změnám v koncepcii organizovania školského kola súťaže. Vo
všetkých kategóriách boli zrušené tzv. přípravné úlohy, kto-
rých riešenie nebolo povinné, v dósledku čoho im učitelia ani
riešitelia nevěnovali potrebnú pozornost’. Namiesto toho sa
zavádza vo všetkých 3 středoškolských kategóriách na závěr
školského kola klauzúrna súťaž, ktorá bude v rovnaký deň
vo všetkých středných školách v ČSSR pre príslušnú kategóriu
a do krajského kola budú mócť postúpiť len ti, ktorí ju úspěšně
absolvujú. Očakávame, že táto změna prispeje к zlepšeniu
přípravy riešitelov na súťaž а к tomu, že ňou budú podstatné
viac žiť středné školy a ich metodické komisie matematiky,
než tomu bolo doteraz. Ďalším prínosom nepochybné bude
vyššia úroveň účastníkov krajských kol súťaže, hoci bude prav-

depodobne třeba aspoň spočiatku rátat’ s poklesom ich počtu.
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V kategorii Z na základných školách sa zatial so zavedením
klauzúrnej súťaže na úrovni školy nepočítá, ale odovzdávanie
riešení školského kola sa rozděluje na dve časti, aby sa učitelia
i žiaci práci v MO věnovali rovnomernejšie a systematickejšie.

Zásadnú změnu by málo priniesť uskutočnenie odporúčania,
aby sa postupné zaviedla matematická olympiáda pre žiakov
škol od 5. ročníka v nadváznosti na realizáciu novej koncepcie
vyučovania matematiky. ÚV MO pri předkládání tohto
návrhu ministerstvám školstva sledoval ciel včaššieho obja-
venia žiakov matematicky nadaných, aby ich talent bolo
možné už na základnej škole podchytiť a cielavedome rozvíjať.

Vědeckotechnický pokrok, ktorý je neodmyslitelnou pod-
mienkou ďalšieho upevňovania rozvinutej socialistickej spo-
ločnosti potřebuje stále viac žiakov a študentov s dobrým
vzťahom к matematike, s vysokou úrovňou vědomostí a schop-
nosťou tvorivo ich využívat’. Tomu chce stále účinnejšie
napomáhat’ aj MO a vyššie spomenuté změny v jej koncepcii
by mohli prispieť к dosiahnutiu tohto ciela. ÚV MO očakáva,
že v tomto svojom úsilí nájde na středných i základných
školách ako aj v orgánoch školskej správy dostatok pochopenia
a ochoty к spolupráci.

Vážené súdružky, súdruhovia!

Pokúsil som sa v tejto slávnostnej chvíli aspoň na niekol-
kých faktoch ukázať, že jubilujúca MO si vydobyla svojimi
výsledkami v oblasti práce s matematicky nadanými žiakmi
pevné miesto v našej výchovnuovzdelávacej sústave a nemá-
lou mierou prispieva v oblasti vyučovania matematiky к reali-
zácii Projektu jej ďalšieho rozvoja ako aj naznačit’ niektoré
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aktuálně otázky, ktoré úzko súvisia s dalším kvalitatívnym
rozvojom MO.

Zišli sme sa tu z příležitosti otvorenia celoštátneho kola jej
jubilejného ročníka, ktoré sa právě vďaka tomuto jubileu
koná po dvadsiatich rokoch opáť v hlavnom meste nášho
státu. Žiada sa připomenut’, že v prvých 10 ročníkoch súťaže
bola Praha každoročně dejiskom jej celoštátneho kola. V nasle-
dujúcich rokoch sa však v organizácii tohto celoštátneho
podujatia postupné vystriedali už všetky kraje republiky,
viaceré z nich niekolkokrát. Starostlivá příprava, program

podujatia i všetko, s čím sme sa až doteraz po příchode do
Prahy střetli, svedčia o tom, že vďaka vzácnému pochopeniu
představitelův stranických i štátnych orgánov sa podařilo
organizačnému výboru celoštátneho kola vytvořit’ optimálně
podmienky pre súťaž 80 žiakov vybraných zo 136 úspěšných
riešitelov krajského kola kategorie A i pre dvojdenné roko-
vanie ÚV MO, ktorý sa bude zaoberať zhodnotením jubilej-
ného ročníka súťaže i aktuálnymi otázkami jej ďalšieho roz-

voja.
Záverom mi dovolte podakovať menom ÚV MO organizá-

torom celoštátneho kola za jeho starostlivú přípravu a před-
stavitelům stranických a štátnych orgánov, ktoré im vychádzali
v ústrety za poskytnutú pomoc. Vel’mi rád využívám túto
vzácnu příležitost’ taktiež к tomu, aby som menom ÚV MO
poďakoval osobitne s. ministrovi doc. Vondruškovi za pozor-
nosť, ktorú vénu je matematike i MO. Ďakujem pracovníkom
oboch ministerstiev školstva za pochopenie pre potřeby
súťaže. Naše podakovanie za cennú spoluprácu pri organizo-
vání doterajších ročníkov MO patří tiež JČSMF a JSMF,
MÚ ČSAV v Prahe i ÚV SZM. Neobávám sa vyslovit’ pre-
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svedčenie, že táto spolupráca sa bude ďalej prehlbovať a roz-

víjať na prospěch starostlivosti o rozvoj matematických talen-
tov, pre další rozkvet našej drahej socialistickej vlasti.
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O průběhu XXX. ročnsku
matematické olympiády

1. ORGANIZACE SOUTĚŽE

Pořadateli 30. ročníku matematické olympiády byla stejně
jako v minulých letech ministerstva školství ČSR a SSR,
Matematický ústav ČSAV v Praze (MÚ ČSAV), Jednota
československých matematiků a fyziků (JČSMF), Jednota
slovenských matematiků a fyziků (JSMF) a Socialistický svaz
mládeže (SSM). Soutěž je řízena ústředním výborem mate-
matické olympiády (ÚV МО) a dále krajskými a okresními
výbory matematické olympiády (KV МО, ОV MO).

Žáci soutěží ve čtyřech kategoriích: v kategorii A žáci III.
а IV. ročníků středních škol, v kategorii В žáci II. ročníků
středních škol a v kategorii C žáci I. ročníků. V kategorii Z
soutěží žáci 8. a 9. tříd základních devítiletých škol. Se sou-
hlasem KV MO může žák soutěžit i v kategorii určené pro

žáky vyšších ročníků.
Na závěr školního roku 1979/80 jmenovala ministerstva

školství ČSR a SSR členy ÚV MO na další tři roky. Od 1. září
1980 pracoval tedy ÚV MO ve složení:
předseda: prof. dr. Jozef Moravčík, CSc., VŠDS Žilina
místopředsedové: doc. Jan Výšin, CSc., MÚ ČSAV Praha

dr. František Zítek, CSc., MÚ ČSAV Praha
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jednatelé: dr. Leo Boček, CSc., MFF UK Praha
dr. Antonín Vrba, CSc., MÚ ČSAV Praha

zástupce MS ČSR: dr. Václav Šůla, Praha
zástupce MS SSR: dr. Julia Lukátšová, Bratislava
zástupce ÚV SSM: Jana Pomazalová, gymnázium Brno,

tř. kpt. Jaroše
ostatní členové:
dr. František Běloun, Praha
dr. Ladislav Berger, Žilina
doc. dr. Lev Bukovský, CSc., přírodovědecká fakulta UPJS

Košice

dr. Milan Cirjak, KPÚ Prešov
prof. dr. Miroslav Fiedler, člen-koresponden: ČSA V, MU ČSAV

Praha

dr. Karol Križalkovič, CSc., Pedagogická fakulta Nitra
doc. dr. Alois Kufner, DrSc., MÚ ČSAV Praha
Olga Maříková, gymnázium Praha 10, Voděradská
dr. Milan Maxian, gymnázium A. Markuša, Bratislava
dr. Peter Mederly, CSc., MFF UK Bratislava
dr. Jiří Mída, CSc., Pedagogická fakulta UK Praha
dr. Jana Miillerová, CSc., VÚP Praha
akademik Josef Novák, MÚ ČSAV Praha
doc. dr. Aleš Pultr, CSc., MFF UK Praha
Víiazoslav Repáš, gymnázium J. Hronca, Bratislava
Stanislav Rypáček, gymnázium Praha 9 - Prosek
dr. Jiří Sedláček, CSc., MÚ ČSAV Praha
ing. Oldřich Skopal, gymnázium Brno, tř. kpt. Jaroše
dr. Jiří Šídlo, gymnázium Praha 3, Sladkovského nám.
Miloslav Šmerda, Brno

Dále jsou členy ÚV MO předsedové krajských výborů MO:
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Praha: prof. dr. Karel Drbohlav, DrSc., MFF UK Praha
Středočeský kraj: Ludmila Tréglová, gymnázium Říčany
Jihočeský kraj: doc. dr. ing. Lada Vaňatová, Pedagogická fa-

kulta České Budějovice
Západočeský kraj: dr. Josef Polák, CSc., VŠSE Plzeň
Severočeský kraj: Jiří Slavík, gymnázium Teplice
Východočeský kraj: dr. Josef Kubát, gymnázium Pardubice
Jihomoravský kraj: doc. dr. Jaroslav Bayer, CSc., FE VUT

Brno

Severomoravský kraj: dr. Vladimír Vlček, přírodovědecká
fakulta UP Olomouc

Bratislava: dr. Ludovít Niepel, CSc., MFF UK Bratislava
Západoslovenský kraj: prof. dr. Ondřej Šedivý, CSc., Pedago-

gická fakulta Nitra
Středoslovenský kraj: doc. dr. Pavel Krsňák, CSc., Pedago-

gická fakulta Banská Bystrica
Východoslovenský kraj: dr. Martin Gavalec, CSc., přírodo-

vědecká fakulta UPJŠ Košice
Pracovní předsednictvo ÚV MO (PÚV MO) tvořili (v abe-

cedním pořadí): dr. Leo Boček, CSc., doc. dr. Lev Bukov-
ský, CSc., prof. dr. Miroslav Fiedler, DrSc., dr. Júlia Lukátšo-
vá, prof. dr. Jozef Moravčík, CSc., Jana Pomazalová, Víta-
zoslav Repáš, dr. Jiří Sedláček, CSc., dr. Václav Šůla, dr.
Antonín Vrba, CSc., doc. Jan Výšin, CSc., dr. František
Zítek, CSc.

2. SCHŮZE ÚV MO

V průběhu 30. ročníku MO se konala dvě zasedání ÚV
MO, první ve dnech 8.-9. prosince 1980 a druhé ve dnech
15. —16. května 1981. Obě se konala v Praze, druhé zároveň
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s celostátním kolem 30. ročníku MO. Hlavními body programu

bylo zhodnocení průběhu 29. ročníku MO, příprava 31. roč-
niku, především v souvislosti s novou organizací MO (zavedení
klauzurní části školního kola), spolupráce se SSM a ediční
činnost, spojená s matematickou olympiádou. Předsednictvo
ÚV MO se scházelo pravidelně jednou měsíčně a kromě orga-
nizačního zajištění MO projednávalo hlavně výběr úloh
30. a 31. ročníku MO.

3. PRŮBĚH SOUTĚŽE

Organizace jednotlivých kol soutěže byla stejná jako v před-
cházejících letech. Velmi slavnostní ráz mělo celostátní kolo
kategorie A, jehož zahájení 14. května 1981 ve velké aule
Univerzity Karlovy se zúčastnili ministr školství ČSR doc. dr.
Milan Vondruška, zástupce ÚV KSČ s. J. Březina a další
zástupci stranických a státních orgánů. Za Univerzitu Karlovu
se shromáždění zúčastnili prorektor prof. dr. V. Prosser, CSc.,
a proděkan fakulty matematicko-fyzikální doc. dr. B. No-
vak, CSc. Hlavní projev přednesl ministr školství doc. dr.
M. Vondruška.

Zásluhou KV MO v Praze, především prof. dr. K. Drbohla-
va, DrSc., inspektora Jaroslava Novotného, Olgy Maříkové,
dr. Jiřího Sídla, Stanislava Rypáčka, dr. Ivana Buska, dr. Květy
Sovíkové, dr. Františka Bělouna a dalších byl pro účastníky
celostátního kola MO i členy ÚV MO připraven velmi bohatý
společenský program (prohlídka Prahy, návštěva Laterny
magiky, výlet parníkem). Fakulta matematicko-fyzikální UK
Praha připravila pro soutěžící zajímavé odpoledne věnované
teorii her, na kterém měl pěknou přednášku doc. dr. M. Vlach,
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CSc. Organizace vlastní soutěže i dalšího programu byla
dokonalá. Na rozdíl od minulých let byly na závěr celostátního
kola jubilejního ročníku matematické olympiády hned vyhlá-
šeny výsledky a úspěšní účastníci převzali od ředitelky odboru
MŠ ČSR s. O. Špétové diplomy. Mnozí pracovníci MO
převzali současně děkovné dopisy ministra školství SSR
a náměstka ministra školství ČSR za svou dlouholetou spole-
čensky významnou práci při výchově a vzdělání naší mládeže.

4. POMOCNÉ AKCE

Ve všech krajích se konaly pro účastníky MO přednášky,
rozdělené podle jednotlivých kategorií. V některých krajích
se konala i soustředění a letní školy nejlepších účastníků minu-
lých ročníků MO. Velmi se osvědčily i korespondenční semi-
náře, které po vzoru Východoslovenského kraje pořádají
i v kraji Jihočeském, Západoslovenském, v Bratislavě a jinde.

Téměř ve všech krajích se konaly též semináře pro referenty
matematické olympiády. ÚV MO pořádal celostátní kores-
pondenční seminář, o kterém píšeme podrobněji dále. V prů-
běhu 30. ročníku MO se konala i tři soustředění celostátní.
Dvě byla věnována přípravě československého družstva na
mezinárodní matematickou olympiádu, první se konalo
v Kladně, druhé v Bratislavě. Celostátní soustředění mate-
matické a fyzikální olympiády se konalo na Zemplínské Šíravě.
U příležitosti 30. ročníku MO vydala JČSxMF brožurku Mate-
matická olympiáda 1951 — 1981.
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5. STUDIJNÍ LITERATURA

Úlohy matematické olympiády jsou obsaženy v letácích,
které vydávají Státní pedagogické nakladatelství v Praze
a Slovenské pedagogické nakladatelstvo v Bratislavě. Úlohy
MO otiskují též Rozhledy matematicko-fyzikální a Matema-
tiká a fyzika ve škole. O každém ročníku MO vychází v SPN
Praha ročenka, třicátou právě čtete. V edici Škola mladých
matematiků (ŠMM) vydává ÚV MO v nakladatelství Mladá
fronta knížky, určené hlavně našim olympionikům. Z posled-
nich vydaných svazků uvádíme:
svazek 44 — Bohdan Zelinka: Matematika hrou i vážně

45 — Antonín Vrba: Kombinatorika

Jaroslav Šedivý: Shodnost a podobnost v kon-
strukčních úlohách

47 — Arnošt Niederle: Zajímavé dvojice trojúhelníků
Brožurka B. Zelinky obdržela čestné uznání nakladatelství

Mladá fronta při udílení výročních cen.

46

6. KONKURS ÚLOH
MA ТЕМА TICKÉ OL YMPIÁD Y

JČSMF a JSMF vyhlásily v roce 1966 konkurs na úlohy
MO, který stále probíhá. Návrhy úloh se zasílají na adresu
ÚV MO ve dvou exemplářích. Přijetím úlohy získává ÚV
MO právo úlohu upravit a autor bere na sebe závazek, že
úlohu utají.
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TABULKA 6
Počet středních škol zapojených v 30. ročníku MO

Gymnázia
Z toho zapojenoCelkový

počet
v kraji

Kraj
v kategorii

A В C

Praha
Středočeský
Jihočeský
Západočeský
Severočeský
Východočeský
Jihomoravský
Severomoravský

20 13 14 16
1723 17 16

18 10 1412
14 11 128
21 16 1818
35 18 15 18

2338 26 32
43 14 19 30

7 6Bratislava
Západoslovenský
Středoslovenský
Východoslovenský

8 6
2438 27 31

37 21 2719
3363 24 24

ČSR celkem
SSR celkem

156122 129212
76 97146 76

ČSSR celkem 198 205 253358
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Ostatní střední školy

zapojeno v kategorii alespoň
v jedné kategoriialespoň v jedné

kategorii ВA C

4 218 1 6
2 4 721 10

14 4 2 4 4
12 1 2 6 6

112 3 1219
28 2 3 4 6

232 2 5 5
39 3 3 7 10

7 1 1
434 6 10 11

29 1 2 11 11
34 3 11 24 29

21183 20 45 59
8 19 46104 52

287 4028 91 111
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VÝSLEDKY III. KOLA KATEGORIE A

30. ROČNÍKU MO

Uvádíme jméno a příjmení, ročník a zaměření gymnázia.

Vítězové

Jiří Sgall, 2., M, Praha 2, W. Piecka
Petr Couf, 3., M, Praha 2, W. Piecka
Igor Kříž, 2., M, Praha 2, W. Piecka
Jan Nekovář, 4., M, Praha 2, W. Piecka
Miroslav Engliš, 3., M, Praha 2, W. Piecka
Jiří Matoušek, 4., MF, Praha 10, Voděradská
Jozef Bednáňk, 4., M, Bratislava, Červenej armády
Bořivoj Tydlitát, 4., M, Praha 2, W. Piecka
Pavel Jůza, 3., M, Praha 2, W. Piecka
Ladislav Pecen, 4., P, Havlíčkův Brod

11. —12. Vladimír Lieberzeit, 3., M, Praha 2, W. Piecka
Ondřej Virdzek, 4., P, Žilina, Velká Okružná

13. —15. Peřér Spišiak, 3., Košice, Šmeralova
Vladimír Hudec, 4., Košice, Šmeralova
Martina Šimůnková, 4., Praha 2, W. Piecka

1.

2.-3.

4.

5.

6.

7.-8.

9.

10.

Ostatní úspěšní řešitelé

16. —17. Vladimír Dančík, 2., Košice, Šmeralova
František Marko, 4., M, Bratislava, Červenej armády
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18.—21. Galina Kumičáková, 3., Košice, Kováčská
Jan Němec, 4., P, Praha 7, Nad štolou
Martin Štěpánek, 2., P, Jaroměř
Peter Tarina, 3., P, Topolčany

22.-24. Bohumil Čider, 4., MF, Bratislava, Novohradská
Libor Forst, 4., P, České Budějovice, Jírovcova
Lubomír Šoltés, 3., Michalovce

25.—31. Martin Dubrovský, 4., MF, G J. K. Tyla, Hradec
Králové

Robert Krajěa, 3., M, Bílovec
Jozej Kunca, 4., Bardejov
Petr Laciga, 4., MF, G J. Fučíka, Plzeň
Milan Schurger, 4., Košice, Šmeralova
Anton Sedlák, 3., Prešov4, Konštantinova
Martin Trusina, 3., M, Praha 2, W. Piecka
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SEZNAMY NEJÚSPĚŠNĚJŠÍCH ŘEŠITELŮ
II. KOLA KATEGORIÍ А, В, C

Uvádíme jméno a příjmení, ročník a zaměření (jen u gymnázií),
školu a místo. Není-li uvedena škola, rozumí se gymnázium.
Z každého kraje a každé kategorie je uvedeno nejvýše deset
řešitelů v pořadí, v jakém se umístili.
M matematické zaměření
MF matematicko-fyzikální zaměření
P přírodovědné zaměření

Praha

Kategorie A

Igor Kříž, 2., Jan Nekovář, 4., Jiří Sgall, 2., Miroslav Engliš,
3., Roman Kamarýt, 4., Martin Trusina, 3., Petr Couf, 3.,
všichni M, G W. Piecka, Praha 2; Jan Němec, 4., P, Praha 7,
Nad štolou; Jiří Matoušek, 4., MF, Praha 10, Voděradská

Kategorie В

Igor Kříž, Jiří Sgall, Michal Vojtek, Jitka Veselá, všichni
2., M, G W. Piecka, Praha 2; Martin Reysser, 2., MF, Praha
10, Voděradská; Jiří Sušický, Petr Nováček, oba 2., M, G W.
Piecka, Praha 2; Jan Tatoušek, 2., MF, Praha 10, Voděradská
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Kategorie С

Blanka Marková, Tomáš Vaniček, oba 1., M, G W. Piecka,
Praha 2; Jiří Witzany, 1., P, Praha 6, Arabská; Pavel Šimá-
ček, 1., M, G W. Piecka, Praha 2; Petr Pokorný, 1., P, Praha 6,
Parléřova; Michal Brajer, L, P, Praha 4, Budějovická; Martin
Janoušek, 1., MF, Praha 10, Voděradská; Jiří Janů, 1., P,
Praha 1, Štěpánská; Petr Marusič, 1., P, Praha 3, Sladkov-
ského nám., Daniel Konopáč, 1., P, Praha 4, Budějovická

Středočeský kraj

Kategorie A

Bohumil Bednář, 3., SPŠ Mladá Boleslav

Kategorie В

Petr Zavadil, 2., P, Říčany; Vladimír Ladma, 2., SPSS Mělník;
Jan Gregor, 2., P, Vlašim

Kategorie C

Tomáš Vaněk, 1., SPŠ stroj. Čáslav; Zdenka Němcová, 1.,
SPŠ stroj. Kladno; Petr Kolář, 1., P, Mladá Boleslav; Josef
Hanzal, 1., P, Kutná Hora; Oldřich Nedvěd, 1., P, Mladá
Boleslav; Josef Novák, 1., SPŠ Kutná Hora
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Jihočeský kraj

Kategorie A

Libor Forst, 4., P, Č. Budějovice, Jírovcova

Kategor i? В

Ivana Sabatová, 2., P, G K. Šatala, České Budějovice; Sta-
nislav Waldauf, 2., MF, G K. Šatala, České Budějovice;
Petr Demal, 2., P, Týn nad Vltavou; Šárka Hořejšová, 2.,
P, Tábor; Fatima Cvrčková, 2., P, Strakonice

Kategorie C

Tomáš Drtina, 1., P, České Budějovice, Jírovcova

Západočeský kraj

Kategorie A

Petr Laciga a Vít Novák, oba 4., MF, G J. Fučíka, Plzeň;
Jan Burle, 4., P, Karlovy Vary; Ivan Pyšek, 4., P, Plzeň,
ul. Pionýrů; Jan Jůza, 3., MF, G J. Fučíka, Plzeň; Marek
Vančata, 3., MF, Karlovy Vary; Božena Smrková, 3., MF,
G J. Fučíka, Plzeň; Pavel Pešek, 4., SPŠE Plzeň; Jaromír
Vetengl, 4., MF, a Petr Mýtina, 3., MF, oba G J. Fučíka,
Plzeň
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Kategorie В

Stanislav Jelen, 2., MF, Karlovy Vary; Tomáš Holeček, 2.,
MF, G J. Fučíka, Plzeň

Kategorie C

Eugen Scheinherr, 1., P, Sušice; Marek Uhlíř, 1., P, Plzeň,
ul. Pionýrů; Petr Bejlek, 1., MF, G J. Fučíka, Plzeň; Mikuláš
Gangur, 1., P, Cheb; Petr Stupka, 1., P, Rokycany; Pavel
Hajn a Radek Machačka, oba 1., MF, G J. Fučíka, Plzeň

Severočeský kraj

Kategorie A

Jaroslav Šindelář, 3., P, Teplice; Eduard Rindt, 4., P, Liberec;
Petr Opočenský, 4., P, Frýdlant v Č.; Milan Kolář, 3., SPŠ
Liberec

Kategorie В

Jaroslav Novák, 2., P, Liberec; Ivan Kyselý, 2., Chomutov;
Radek Mojdl, 2., P, Most; Luboš Talácko, 2., Louny; Pavel
Vítovec, 2., P, Litvínov

Kategorie C

Petr Jaklin, 1., Ústí nad Labem; Vladimír Smutný, 1., MF,
Liberec; Petr Rychlý, 1., SPŠE Chomutov; Michal Holý,
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1.,Jablonec; Michal Holoubek, 1., Děčín; Dalibor Lošták
a Pavel Kuba, oba 1., MF, Teplice

Východočeský kraj

Kategorie A

Ladislav Pecen, A., P, Havlíčkův Brod; Martin Štěpánek,
2., P, Jaroměř; Vit Trnka, 4., P, Pardubice; Radek Burda, 3.,
Martin Dubrovský, A., Karel Majer, 3., Jaroslav Vodička,
A., všichni MF, G J. K. Tyla, Hradec Králové; Petr Eisler,
3., P Havlíčkův Brod; Richard Havlík, A., P, Hořice

Kategorie В

Martin Štěpánek, 2., P, Jaroměř; Jiří Votínský, 2., MF Pardu-
biče; Jiří Hofman, 2., P, Hořice; Milan Kašpar, 2., SPŠ
stroj., Chrudim; Aleš Kratochvíl, 2., P. Hořice; Jaroslav
Rubín, 2., P, Jičín; František Venci, 2., P, Česká Třebová;
Ivo Kořeň, 2., MF, G J. K. Tyla, Hradec Králové; Jaromír
Krys, 2., P, Chrudim; Magda Pražanová, 2., P, Polička

Kategorie C

Tomáš Pecina, 1., P, Turnov; Oto Stefan, 1., P, G J. K. Tyla,
Hradec Králové; Zbyněk Linhart, Petr Prachař, oba 1., P,
Pardubice; Josef Hynek, 1., SPŠ elektr. Pardubice; Vlastimil
Ježek a Miloslav Koudelka, oba 1., P, Jilemnice
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Jihomoravský kraj

Kategorie A

Libor Škavrada, 4., Brno, Koněvova; Jan Paseka, 4., Brno,
Slovanské nám.; Jiří Skřivánek, 4., Jihlava; Petr Sojka, 4.,
Brno, Koněvova

Kategorie В

Tomáš Werner, 2., Brno, kpt. Jaroše; Jaroslav Smejkal, 2.,
Velké Meziříčí; Darina Neumannová, 2., Brno, Slovanské
nám.; Jaroslav Štefánek, 2., Strážnice; Ivana Hofmannová,
2., Ždár n. S.;Jan Chrastina, 2., Brno, Koněvova

Kategorie C

Tomáš Drtílek, 1., Brno, Koněvova; Pavel Zemčík, 1., SPS el.
Brno, Leninova; Olga Ženíšková, 1., Brno, Koněvova; Michal
Beneš, L, Jihlava; Svatopluk Švarc, 1., Brno, kpt. Jaroše;
Jan Tomčík, 1., Brno, Koněvova; Zdeněk Kovář, 1., Brno,
Slovanské nám.; Miriam Fendrychová, 1., Brno, Koněvova;
Dan Moltaš, 1., Blansko; Ivana Visingrová, 1., SPŠ st. Brno,
Kudelova

Severomoravský kraj

Kategorie A

Miroslav Havelka, 3., Nový Jičín, Libor Pleva, 3., Bílovec;
Miroslav Czernik, 4., SPŠE Frenštát pod Radh.; Miroslav
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Chmelař, 4. a Robert Krajča, 3., oba Bílovec; Miroslav Beneš,
3., Ostrava-Poruba; Pavel Hruška, 4., Bílovec; Radek Zichá-
ček, 3.j Valašské Meziříčí

Kategorie В

Vládán Pecha, Bronislav Suchý a Petr Střelec, všichni 2.,
Bílovec; Karel Minařík, 2., Hranice na Moravě; Cyril Chrds-
tecký, 2., Vsetín; Rostislav Škrabana, 2., Bílovec

Kategorie C

Ivo Čermák, Martin Grajcar, Pavel Kráčmar a Miroslav
Polášek, všichni 1., Bílovec; Jiří Teichmann, 1., Olomouc-
Hcjčín; Zita Močkořová, 1., Třinec; Miroslav Ryška, 1.,
Frýdek-Místek; Eliška Florianová, 1., Karviná

Bratislava

Kategorie A

Jozef Bednárik, 4., M, Červenej armády; Tomáš Blažek, 4.,
P, Tomašíkova; Bohumil Čider, 4., MF, Novohradská; Fran-
tišek Marko, 4., M, Červenej armády; Tatiana Murínová, 4.,
P, Vazovova; Daniela Balážová a Pavol Krakovský, oba 4.,
Červenej armády; Richard Hlubina, 3., P, Vazovova; Roman
Lietava, 4., P, Tomašíkova

Kategorie В

Juraj Dúbrava, 2., M, Červenej armády; Richard Pulman, 2.,
MF, Novohradská; Marián Blecha, Xaver Gubáš a Roman
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Bačík, všichni 2., M, Červenej armády; Peter Borovanský
a Viktor Martišovitš, oba 2,, MF, Novohradská; Marcela
Foltínová a Monika Bomová, obě 2., M, Červenej armády

Kategorie C

Matěj Lexa a Ivan Ježík, oba 1., M, Červenej armády; Monika
Khandlová, Martin Hanula, Michal Hejny a Anna Lávová,
všichni L, MF, Novohradská; Jaromír Kudeláš, Andrej Hoos
a Ondřej Pastva, všichni 1., M, Červenej armády; Martina
Barnášová, 1., MF, Novohradská

Západoslovenský kraj

Kategorie A

Aba Teleki, 3., P, G E. Gudernu, Nitra; Yveta Danešová, 4.,
SPŠE Piešťany; Ladislav Zsilinszký, 4., P, Nové Zámky;
Vojtech Liszkay, 4., SPSS Komárno; Arpád Bartalos, 4.,
P, G maď. Čalovo; Peter Tarina, 3., P, Topolcany; Dušan
Jurčák, 4., P, Trenčín; Juraj Pápay, 3., P, G maď. Galanta;
Jozef Bukor a Alexander Tomášek, oba 3., SPŠS Komárno

Kategorie В

Marián Bartek, 2., P, Sereď; Dušan Močko, 2., P, Nové Město
nad Váhom; Daniel Ševčovič a Peter Ridzoň, oba 2., P, Třen-
čin; Jozef Roháč, 2., P, G E. Gudernu, Nitra; Mircz Hyacint,
2., P, G maď. Galanta; Roman Kotiers, 2., P, G maď. Šamorín;
Tibor Lovász a Alžběta Szalayová, oba 2., P, G maď. Ко-
mámo; Robert Jursa, 2., P, Topolcany
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Kategorie С

Tibor Lacza, 1., P, Nové Zámky; Anna Valkóová, 1., P,
Levice; Brigita Kónigsteinová a Marian Mráz, oba 1., P,
Malacky; Jaw Dugáček, 1., SPŠ el. Stará Turá

Středoslovenský kraj

Kategorie A

Pavol Hronský, 4., P, Žilina, Wolkerova; Anton Lacko, 4.,
P, Handlová; Ondřej Virdzek, 4., P, Žilina, Velká Okružná;
Florián Petényi, 4., P, Banská Štiavnica; Eduard Grešák,
4., P, Kysucké Nové Město; Roman Martoňák, 3., MF, Žilina;
Wolkerova; Milan Rusko, 3., P, Banská Bystrica, SPN

Kategorie В

Ludmila Moravčíková, 2., MF, Žilina, Wolkerova; Milan
Krátká, 2., P, Prievidza; Rudolf Blaško, 2., P, Žilina, Wolke-
rova; Sinjar Al-Hadi a Tibor Beláň3 oba 2., P, Prievidza;
Martin Gažo, 2., MF, Martin; Miroslav Haviar, 2., MF,
Banská Bystrica, Tajovského ul.; Štefan Klein, 2., MF, Zvolen;
Jozef Mihál, 2., P, Žilina, Wolkerova

Kategorie C

Luboš Knapec, Roman Kučera, Stanislav Švorčík a Roman
Gajdošech, všichni 1., M, Žilina, Velká Okružná; Igor Molčák,
1., P, Žiar n. H.; Dušan Pospíšil, 1., P, Považská Bystrica;
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Maria Móricová, 1., P, Vrútky; Tatiana Cimráková, 1., M,
Žilina, Velká Okružná

Východoslovenský kraj

Kategorie A

Vladimír Hudec, 4., Košice, Šmeralova; Jozef Pala, 4., Barde-
jov; Lubomír Šoltés, 3., Michalovce; Vladimír Dančík, 2.,
Košice, Šmeralova; Milan Polaczyk, 3., Kežmarok; Anton
Sedlák, 3., Prešov, Konštantínova; Peter Spišiak, 3., Košice,
Šmeralova; Jozef Kunca, 4., Bardejov; Ján Hric, 3., Prešov,
Konštantínova; Galina Kumičáková, 3., Košice, Kováčská

Kategorie В

Vladimír Dančík a Marek Hatala, oba 2., Košice; Šmeralova;
Oto Smolárik, 2., Košice, Kováčská; Marián Ferenc, 2., Pre-
šov, Konštantínova; Jaroslav Vernarský, 2., Prešov, T. Šev-
čeňka; Peter Karailiev, 2., Michalovce; Peter Rudnay, 2.,
SPŠE Michalovce

Kategorie C

Dušan Čupka, 1., Poprad; František Bobenič, 1., Košice,
Šmeralova; Ignác Tereščák, 1., Michalovce; Luboš Brejčák,
1., Poprad; Ondřej Ploščica, 1., Stará Eubovňa; Miroslav
Krotký, 1., Spišská Nová Ves; Máňa Petrášková, 1., Kež-
marok; Karol Kováč, 1., Košice, Šmeralova; Luboš Křupa,
1., Humenné; Lubica Rusnáková, 1., Košice, Opatovská
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Kategorie Z

PŘÍPRAVNÉ ÚLOHY I. KOLA

Z - P - 1

Určete nejmenší přirozené číslo, jehož 1979násobek končí
čtyřčíslím 1980.

Řešení: Představme si, že jsme hledané číslo písemně vyná-
sobili číslem 1979. Celý zápis by vypadal takto

.. .dcba

X 1979

... srqp

. . .WVll

. . .yx

. . .z

...1980,

kde jsme tečkami a písmeny označili zatím neznámé číslice
(neznáme vlastně ani počet číslic hledaného čísla). Postupně
vidíme, že p — 0, a tedy a = 0. Pak je však též и — x = z = 0
a tudíž q — 8. To však platí pouze v případě b = 2 a důsledkem
toho je v = 4, у = 8. Musí proto být r = 5, a tedy číslo 9c
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musí končit číslicí 4, je proto c — 6. Pak je w = 3 a číslo 9d
musí končit číslicí 5, tedy d = 5. Obráceně se snadno přesvěd-
číme, že vynásobením každého čísla končícího čtyřčíslím 5620
dostaneme číslo končící čtyřčíslím 1980. Hledané číslo je proto
5620.

Z - P - 2

Ke každé hraně krychle je připsáno přirozené číslo tak, že
součet tří čísel připsaných hranám vycházejícím z jednoho
vrcholu krychle je pro všechny vrcholy stejný, rovná se 61.
a) Jaký vztah platí mezi 5 a součtem všech dvanácti čísel, při-
psaných к hranám krychle ?
b) Je možno hrany krychle očíslovat čísly 1, 2, ..., 12 tak, že
součet tří čísel, kterými jsou očíslovány hrany krychle vycháze-
jící z téhož vrcholu, je pro všechny vrcholy stejný?

Řešení: Krychle má 12 hran, 8 vrcholů, na každé hraně leží
právě dva vrcholy, z každého vrcholu vycházejí tři hrany.
Sečteme-li čísla připsaná třem hranám vycházejícím z téhož
vrcholu krychle, dostaneme osm čísel, jejichž součet dává
dvojnásobek součtu T všech dvanácti čísel připsaných к hra-
nám krychle. Podle podmínky úlohy je tedy 8Č>
tj. 4S = 7\ tím je vyřešena část a). Protože 1 + 2 + ... + 12 =
= 78 a toto číslo není dělitelné čtyřmi, nemůže se rovnat číslu
4Č> pro žádné přirozené číslo S, a proto je odpověď na otázku b)
záporná. Hrany krychle nelze očíslovat čísly 1, 2, ..., 12 tak,
aby součet tří čísel, kterými jsou očíslovány hrany krychle
vycházející z téhož vrcholu, byl pro všech osm vrcholů krychle
stejný.

2 T,
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Z - P - 3

Dvě dvojmístná přirozená čísla, která mají na místě desítek
stejné cifry a na místě jednotek cifry doplňující se do deseti
(například 87, 83), se mohou násobit tak, že číslo na místě
desítek znásobíme číslem zvětšeným o jednu а к tomuto sou-
činu připíšeme dvojciferný součin jednotek (8(8 + 1) = 72,
7.3 = 21, 87.83 = 7221). Odůvodněte tento postup.

Řešení: Nechť jedno z čísel má tvar 10a + b, druhé 10a +
+ c, kde a je společná číslice na místě desítek, b, c jsou číslice
na místě jednotek, přičemž b + c = 10. Pak je

(10a + b) (10a + c) — 100a2 + 10a(6 + c) + bc —

= 100(a2 + a) + bc = 100a(a + 1) + bc.

Tento výsledek již ukazuje, že čísla můžeme vynásobit způso-
bem popsaným v úloze.

Z - P - 4

Je dán pravidelný šestiúhelník ABCDEF. Sestrojte právo-
úhelník KLMN tak,že úsečka AB je částí úsečky KL,úsečka ED
je částí úsečky MN a body C, F leží po řadě uvnitř úseček LM
a KN. Vypočtěte poměr obsahů pravoúhelníku KLMN a da-
něho šestiúhelníku.

Řešení: Pravoúhelník KLMN se sestrojí snadno, stačí vést
body C, F kolmice ke straně AB. Tyto kolmice spolu s přím-
kami AB, ED určují obdélník KLMN (obr. 1). Označme ještě
O patu kolmice vedené bodem D na přímku FC. Šestiúhelník
ABCDEF se skládá z dvanácti nepřekrývajících se trojúhelníků
shodných s trojúhelníkem DOC, obdélník KLMN se skládá
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z 16 nepřekrývajících se trojúhelníků shodných s trojúhelní-
kem DOC. Hledaný poměr je proto 16 : 12 = 4 : 3.

DE
N M

F C

К
ВА

Obr. 1

SOUTĚŽNÍ ÚLOHY I. KOLA

Z - I - 1

Určete všechna trojciferná čísla, jejichž 576násobek končí
trojčíslím 576.

Řešení: Dekadický zápis hledaného čísla označíme pqr
(p je číslice na místě stovek, q na místě desítek a r počet jed-
notek). Má tedy platit

pqr
X 576

. xyz

.uv

.w

.576
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6, a tudíž г = 1 nebo г 6. Je-li г — 1,Musí proto být 2

je z; = 7, jy = 0, a tudíž q — 0 nebo 5. Je-li q = 0, musí být
p — 5. V případě # = 5 je^> = 2 nebo 7. Podobně postupujeme
pro r = 6. Zkouškou se přesvědčíme, že obdržená čísla 501,
251, 751, 126, 626, 376, 876 vyhovují podmínce úlohy.

Z- I -2

Dokažte, že hrany pravidelného trojbokého jehlanu se ne-

dají očíslovat čísly 1, 2, 3, 4, 5, a 6 tak, aby součet tří čísel,
kterými jsou očíslovány hrany jedné stěny, byl pro všechny
čtyři stěny stejný (mezi stěny počítáme též podstavu).

Řešení: Předpokládejme, že by bylo možno hrany pravidel-
něho trojbokého jehlanu očíslovat čísly 1, 2, ..., 6 tak, aby
součet tří čísel, kterými jsou očíslovány hrany jedné stěny
byl pro všechny čtyři stěny stejný. Protože každá hrana leží
právě ve dvou stěnách a stěny jsou čtyři, platilo by 45 =
= 2(1 + 2 + ... + 6) = 42. Protože číslo 42 není dělitelné
čtyřmi, dospěli jsme ke sporu a náš předpoklad proto nebyl
správný.

Z - I - 3

Mějme dvojciferné číslo X. Číslo У vznikne z čísla X přeho-
zením cifer. Najděte všechna čísla X, pro která je X
druhou mocninou přirozeného čísla.

Řešení: Položme X — 10a + b, kde a je číslice na místě
desítek, b číslice na místě jednotek dvojciferného čísla X. Pak
je У - m + а, X — Y = 10{a - b) + b - a = 9(a - b).
Toto číslo bude druhou mocninou přirozeného čísla právě

У
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atehdy, bude-li mít tuto vlastnost číslo a — b. Protože 1
5^ 9, může to nastat pouze v případě a — 6 = 1, a — b = 4
nebo a

43, 54, 65, 76, 87, 98, 40, 51, 62, 73, 84, 95, 90.
b — 9. Jsou tedy jedinými řešeními čísla 10, 21, 32,

Z - I -4

Je dán pravidelný šestiúhelník ABCDEF. Trojúhelníky АСЕ
a BDF se protínají opět v pravidelném šestiúhelníku. Dokažte,
že jeho obsah se rovná třetině obsahu šestiúhelníku ABCDEF.

Řešení: Průnikem trojúhelníků АСЕ, BDF je pravidelný
šestiúhelník, jehož vrcholy označíme G, H, I, J, К, L (obr. 2).

D
К

L Ji

7<r< C

7G i

H
A

Obr. 2

Společný střed obou šestiúhelníků označme č>. Označme
| SA | = a, | SH | = b. Z kosodélníku SGAH vidíme, že a je
dvojnásobek výšky v rovnostranném trojúhelníku SGH o stra-

ně b3 tedy a = b|/3, a proto je obsah šestiúhelníku ABCDEF
třikrát větší než obsah šestiúhelníku GHIJKL. Jiný důkaz
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spočívá v tom, že obsahy trojúhelníků EKD, KJD, JfCD jsou
stejné (mají stejně velké základny | EK |, | Kjf | a | JfC | а к nim
společnou výšku). Šestiúhelník ABCDEF se tak rozloží na 18
a šestiúhelník GHIJKL na 6 nepřekrývajících se trojúhelníků,
jejichž obsah je shodný s obsahem trojúhelníku KJD.

SOUTĚŽNÍ ÚLOHY II. KOLA

Z - II - 1

Určete všechna trojciferná čísla, která po vynásobení číslem
36 končí trojčíslím 324.

Řešení: Označme pqr dekadický zápis hledaného čísla, má
tedy platit

pqr
X 36

..324

Vidíme, že nutně platí r = 4 nebo r = 9. Je-li r = 4, je
q — 3 nebo q — 8. V žádném z těchto případů však nedostane-
me vhodné číslo p. Pro r — 9 je q = 0 nebo q = 5. Je-li
r = 9, q = 0, dostaneme p — 5, v případě r = 9, q — 5 do-
staneme dvě řešení: p — 2, p = 7. Zkouškou se přesvědčíme,
že čísla 259, 509, 759 jsou řešením.
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Z - И - 2

Rozhodněte, zda lze stěny krychle očíslovat čísly 1, 2, ..6
tak, aby součet tří čísel, kterými jsou očíslovány stěny se

společným vrcholem, byl pro všechny vrcholy stejný. Odůvod-
něte svou odpověď.

Řešení: Předpokládejme, že jsme krychli požadovaným
způsobem očíslovali. Součet tří čísel, kterými jsou očíslovány
stěny se společným vrcholem, označíme (je pro všechny
vrcholy týž). Každá stěna obsahuje 4 vrcholy, proto 8S =
= 4(1 + 2 + ... + 6)
litelné osmi, dospěli jsme ke sporu.

84. Protože však číslo 84 není dě-

Z - II - 3

X je dvojciferné číslo a číslo Y z něho vznikne změnou
pořadí číslic. Najděte všechna X, pro která je X + Y druhou
mocninou přirozeného čísla.

Řešení: Podobně jako v úloze Z-I-3 položme X = 10a + b,
Y = 10Ů + a, X -f Y = ll(a + b). Aby bylo toto číslo dru-
hou mocninou přirozeného čísla, musí být nutně a + b ná-
sobkem čísla 11. Protože je a + b ^ 18, může to nastat pouze
v případě a + b — 11, kdy je X + Y — ll2. Řešením úlohy
jsou tudíž čísla 29, 38, 47, 56, 65, 74, 83, 92.

Z - II -4

Je dán pravidelný šestiúhelník ABCDEF. Na jeho straně
AB leží bod Ai, na straně BC bod B±, ..., na straně FA bod
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1
Fi tak, že | AA\ \ = | BB\ | = ... = | FFi -j\AB\.Vy-
počtěte poměr obsahů šestiúhelníků AiBiCiDiEiFi, ABCDEF.

Řešení: Je-li 5 společný střed obou šestiúhelníků a P střed
strany AB, je | AS | = | AB |, | HiS A\B\ | =

= У I AxP |2 + I PS |2 = ]/
ГТ

/ — . Hledaný poměr je tudíž 7 : 9.

\AB\* AB I2
+ \AB |2 -36 4

= | AB

SOUTĚŽNÍ ÚLOHY III. KOLA - ČSR
(ÚLOHY PŘIPRAVIL

KV MO KRAJE ZÁPADOČESKÉHO)

Z - III - 1

Kterým přirozeným číslem m (m ^ 1) musíme násobit číslo
16 200, abychom dostali nejmenší číslo n, které je zároveň dru-
hou a třetí mocninou přirozeného čísla? Určete číslo n a pro-
veďte zkoušku.

Řešení: Protože 16 200 = 23.34.52, je m = 23.32.54 =
= 45 000, n = 26.36.56 729 000 000.

Z - III - 2

Označme X čtyřciferné číslo a Y čtyřciferné číslo, které
vznikne z čísla X obrácením pořadí číslic. (Je-li například

4265, je Y = 5624). Najděte všechna taková přirozenáX
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čísla X, pro která jsou součin X.Y a součet X + Y dělitelné
číslem 5 a rozdíl X — Y je přirozené číslo dělitelné číslem 360.

Výsledek: 5405, 5515, 5625, 5735, 5845, 5955, 5805, 5915.

Z - Ni - 3

Pravidelný šestiúhelník ABCDEF má stranu dané velikosti a.
Průsečík přímek AB, CD je bod K. Vypočtěte délku úsečky EK.

Výsledek: | EK \ = a|/7.
Z - lil -4

Určete velikosti vnitřních úhlů rovnoramenného trojúhelníku
ABC se základnou AB, který je rozdělen přímkou procházející
bodem A na dva trojúhelníky, z nichž každý je rovnoramenný.

Výsledek: Úloha má dvě řešení: a = = 72°, у = 36°
aa=^= 77°8', у = 25°43\

SOUTĚŽNÍ ÚLOHY III. KOLA - SSR

(ÚLOHY PŘIPRAVIL KV MO
KRAJE STŘEDOSLOVENSKÉHO)

Z - III - 1

Od trojciferného čísla odčítáme číslo, ktoré dostaneme
záměnou poradia cifier povodného čísla na opačné.
a) Nájdite všetky trojciferné čísla, ktoré vyhovujú podmienke:
získaný rozdiel sa rovná jednej šestine povodného čísla.
b) Ukážte, že neexistuje trojciferné číslo, pre ktoré sa tento
rozdiel rovná polovici povodného čísla.

Výsledek: 594.
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Z- Mi -2

Zistite, či existuje prirodzené číslo a z intervalu <1, 6)
tak, že hrany pravidelného štvorstena sa dajú označit’ číslami a,

2, 3, 4, 5, 6, pričom súčet označení hrán, ktoré ležia na tej
istej stene, je pre všetky steny rovnaký.

Výsledek: Neexistuje.

Z - lil - 3

Zistite, či existuje štvorciferné číslo, ktoré je druhou moc-
ninou prirodzeného čísla a přitom číslo zapísané jeho prvými
dvomi ciframi v danom poradí je polovicou čísla zapísaného
jeho poslednými dvomi ciframi v danom poradí.

Výsledek: Neexistuje.

Z - II) -4

Je daný pravidelný šesťuholník ABCDEF. Na straně AB
leží bod A\, na straně 2?Cbod B\,..., na straně FA leží bod F\

1
|RBi| = ... = |FFi| = - |AB\. Uhlopriečky

AD, BE, CF pretínajú strany šesťuholníka A1B1C1D1E1F1
v bodoch Az, Bz, Cz, Dz, Ez, Fz, ktoré sú vrcholmi pravidel-
ného šesťuholníka. Označme P plošný obsah šesťuholníka
ABCDEF, Pi plošný obsah šesťuholníka AiB\CiDiE\Fi a Pz
plošný obsah šesťuholníka AzBzCzDzEzFz- Ukážte, že P\ =
= P.P2.

tak, že \AAi\

60



Kategorie С

PŘÍPRAVNÉ ÚLOHY I. KOLA

C - P - 1

Veslářovi trvá přejdeme istého úseku rieky na loďke proti
prúdu s veslováním a po prúde bez veslovania rovnaký čas.
O kolkej sa musí otočit’, ak vystartuje o 15. hodině, o 18. ho-
dine má byť naspat’, a rozhodol sa veslovat’ aj na spiatočnej
ceste? (Předpokládáme, že rýchlosť prúdu rieky aj vlastná
rychlost’ veslára je konštantná.)

Řešení: Označme v rychlost loďky vzhledem к vodě při
veslování a r rychlost tekoucí vody vzhledem ke břehům.
Vůči břehům se loďka tedy pohybuje při veslování proti
proudu rychlostí v — r, při veslování po proudu rychlostí
v + r a je-li unášena proudem bez veslování, rychlostí r. Trvá-
li projetí určitého úseku proti proudu s veslováním stejnou
dobu jako po proudu bez veslování, jsou i příslušné rychlosti
stejné, tj.

v — r = r.

Odtud dostaneme

v + r = 3r — 3(v — r).
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Rychlost (vůči břehům) při veslování po proudu je tedy
trojnásobná ve srovnání s rychlostí plavby proti proudu.
Vesluje-li veslař proti proudu po dobu t, návrat s veslováním

t
mu trvá —. V našem případě

t
t -f- — 3,

3

takže

1

2t-t =

Veslař se musí obrátit nejpozději v 17.15 hod.

C - P - 2

Každá strana a každá úhlopříčka konvexního pětiúhelníku
je obarvena jednou ze dvou barev tak, že žádný trojúhelník
(tvořený stranami nebo celými úhlopříčkami pětiúhelníku)
není jednobarevný. Dokažte, že z každého vrcholu pětiúhel-
niku vycházejí právě dvě úsečky každé barvy.

Řešení: Předpokládejme, že z některého vrcholu A vychá-
zejí aspoň tři úsečky jedné barvy AB, AC, AD. Není-li žádný
z trojúhelníků ABC, ABD, ACD jednobarevný, jsou úsečky
BC, BD, CD obarveny druhou barvou, a tedy trojúhelník
BCD je jednobarevný. Z žádného vrcholu tedy nevycházejí
tři úsečky nebo více úseček jedné barvy. Vzhledem к tomu,
že z každého vrcholu vycházejí právě čtyři úsečky, jsou dvě
z nich jedné barvy a dvě druhé barvy.
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C-P-3

V ostroúhlém trojúhelníku ABC je dán bod P uvnitř strany
AB. Sestrojte bod M uvnitř strany AC a bod N uvnitř strany
BC tak, aby obvod trojúhelníku PMN byl minimální.

Řešení: Uvažujme libovolný bod M uvnitř strany AC
a libovolný bod N uvnitř strany BC. Je-li P\ bod souměrně
sdružený к bodu P podle přímky АС а P2 bod souměrně
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sdružený к bodu P podle přímky BC, je obvod trojúhelníku
MNP roven délce lomené čáry PiMNPo (obr. 3). Tato délka
je nejmenší v případě, kdy body M, N jsou společné body
úsečky P1P2 se stranami АС, BC (obr. 4) - pokud však tyto
společné body existují a leží uvnitř stran. To je splněno,
protože

<PPiCP2 = <j:PiCP + <PCP2 = 2<íACP + 2pPCB =

= 2 pACB< 180°

(trojúhelník ABC je ostroúhlý).

C - P -4

Je dán čtverec, jehož strana má velikost a. Z každého vrcholu
jsou dovnitř čtverce opsány čtvrtkružnice s poloměrem a.
Tak se čtverec rozdělí na devět částí. Vypočtěte obsahy těchto
částí.
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Řešení: Částí, na něž se čtverec rozpadne, budou tři druhy;
jejich obsahy označíme А, В, C (obr. 5). Bude platit

A + AB + 4C = a2 (čtverec)

я

A + 3B + 2C = ~ a2
4 (čtvrtina kruhu)

Узя

A + 2В + C = — a2 — a2 (sjednocení dvou kruhových

výsečí se středovým úhlem 60°, jejichž průnil em je rovnost-
ranný trojúhelník).

Odtud plyne

-M)В + 2C

Уз\
4 / 5-'(i

Я
В + C

3

a tedy
i я У 3 \

c =

Узя
B = a* + 1

a3(l + j- УЗ ) .
/1

Jiné řešení je v ročence XIX. ročník MO, str. 118.
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SOUTĚŽNÍ ÚLOHY I. KOLA

C-I-1

Коска o hrané dížky 5 je zložená zo 125 jednotkových
kociek. Určte najmenší a najváčší možný povrch telesa, ktoré
z nej dostaneme odstránením troch hranolov pozostávajúcich
z piatich jednotkových kociek, keď žiadne dva z odstránených
hranolov nemajú spoločný bod ani rovnaký směr.

Řešení: Pro odstranění jednoho hranolu 5x1x1 z krychle
5x5x5 máme tři možnosti:

(1) Odstraněním hranolu, který obsahuje hranu krychle,
zmenšíme povrch o 2.

(2) Odstraněním hranolu, jehož delší stěna je obsažena
ve stěně krychle a přitom neobsahuje hranu krychle, zvětšíme
povrch o 8.

(3) Odstraněním hranolu, který má s povrchem krychle
společné jen dvě protější čtvercové podstavy, zvětšíme povrch
o 18.

Těleso vzniklé z krychle 5x5x5 odstraněním tří hranolů
5x1x1, z nichž žádné dva nemají společný bod, bude mít
minimální povrch v případě tří hranolů typu (1), viz obr. 6,
povrch bude

6.5.5 - 3.2 144,

maximální v případě tří hranolů typu (3), a to

6.5.5 + 3.18 = 204.
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Obr. 7 ukazuje, že hranoly lze volit tak, aby žádné dva neměly
společný bod ani stejný směr.
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_x + I
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xT |1 xH II 4 I
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Obr.7

С- I -2

Nájdite všetky prirodzené čísla, ktoré sa začínajú cifrou 7
a po jej odstránení sa zmenšia 36 ráz.

Řešení: Hledané číslo můžeme rozepsat jako 7.10й + p
a podmínku vyjádřit rovnicí
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7.10й + р — 36 р,

odkud dostaneme р = 2.10й ~1. Hledané číslo má tedy
tvar

7.10й + 2.10й -1.

Snadno se přesvědčíme, že všechna čísla 72, 720, 7200,...
splňují podmínku úlohy.

C - I - 3

Dvaja vesláři na dvoch člnkoch vystartovali o 14.55 z prísta-
višťa a veslovali proti prúdu rieky. К lesu došli spolu, pak
jeden vesloval spáť a vrátil sao 17.55, druhý sa nechal doviezť
spáť prúdom a vrátil sa o 19.07. Kol’ko im trvala plavba z prí-
stavišťa к lesu? (Předpokládáme, že po celý čas rýchlosť toku
rieky aj vlastná rýchlosť veslovania boli konštantné.)

Řešení: Označme v rychlost loďky vzhledem к vodě při
veslování a r rychlost tekoucí vody vzhledem к břehům. Proti
proudu jeli tedy oba veslaři rychlostí v — r, po proudu první
rychlostí v + r, druhý rychlostí r (vzhledem ke břehům).
Označme t dobu společné plavby od přístaviště к lesu a 5
vzdálenost lesa od přístaviště. Pak platí, měříme-li čas v mi-
nutách

s = (v — r) t (společná cesta tam)

(zpáteční cesta 1. veslaře)s = (v + r) (180 — t)

(zpáteční cesta 2. veslaře).s = r (252 — í)
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Z těchto vztahů určíme ř. Dosadíme-li 5 z první rovnice do
druhé a třetí rovnice, dostaneme

2vt = 180 (v + r)

vt = 252 r.

Vyloučíme z těchto rovnic r a máme

180
2vt = 180 z;r,

neboli, protože c^O,
180

2í = I80“ 252'
a odtud

t = 140.

Cesta od přístaviště к lesu tedy trvala 140 min.

С- I -4

Do ostroúhlého trojúhelníku ABC je vepsán trojúhelník
MNP tak, že M e AC, Ne ВС, P e AB. Určete polohu
bodů M, N, P tak, aby obvod trojúhelníku MNP byl mini-
mální.

Řešení: Zvolme libovolný bod P uvnitř strany AB a označ-
me Pi, P2 body souměrně sdružené к bodu P podle přímek
АС, BC. Uvědomme si (obr. 8), že
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Obr. 8

ICPil - |CP2| = \CP\a

<£PiCP2 = ^PiCP + <^PCP2 = 2<£ACP + 2<£BCP =
= 2^CABC.

Při řešení úlohy C-P-3 jsme zjistili, že ze všech trojúhelníků
MNP, kde M e AC, Ne BC, má minimální obvod trojúhel-
nik, jehož vrcholy M, N leží na úsečce PiP2, a minimální
obvod je roven |PiP2|. Zbývá tedy najít polohu bodu P e AB
tak, aby rovnoramenný trojúhelník PiCP2 měl minimální
základnu. Vzhledem к tomu, že úhel při jeho hlavním vrcho-
lu C má velikost 2<£ACB a nezávisí tedy na poloze bodu P,
bude základna minimální, právě když bude minimální rameno.
Rameno má velikost |CP| a bude minimální, právě když
úsečka PC bude výškou trojúhelníku ABC.

C-l-5

Je dán pravidelný osmiúhelník ABCDEFGH. Čtverce
ACEG a BDFH se protínají také v pravidelném osmiúhelníku.
Vypočtěte poměr obsahů obou osmiúhelníků.
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Řešeni: (obr. 9). Využijeme podobnosti rovnoramenných
trojúhelníků ABC, ARB (mají společný úhel BAR), odkud
plyne, že

\AB\ : \AC| - \AR\ : ]AB\,
tj-

\AB\* = \AC\.\AR\.

Z pravoúhlého rovnoramenného trojúhelníku RBS máme

RS| = \AR\ }/ 2 ,

a tedy
У 2 \\ABp = (1 2 + 2) \AR\* = I — + 1 I |Jí5|í

Odtud vidíme, že poměr obsahů pravidelných osmiúhelníků
1/2

o stranách AB,RS je + 1.

71



С - i - 6

V rovnostranném trojúhelníku ABC o straně délky 1 se na
straně AC pohybuje bod X a na straně BC bod Y tak, že
obsah trojúhelníku XYC se stále rovná polovině obsahu
trojúhelníku ABC. Najděte, jakou funkcí vzdálenosti я = \CX\
je vzdálenost у = jCY], a určete definiční obor a obor hodnot
této funkce.

Řešení: Ze vzorce pro obsah trojúhelníku daného dvěma
stranami a úhlem jimi sevřeným je hned vidět, že obsahy
trojúhelníků XYC, ABC jsou v poměru

Pxyc : Pabc = xy : 1.
P

(Jiným způsobem to můžeme odvodit také takto: Trojúhel-
niky XYC, XBC mají tutéž výšku na stranu YC, resp. BC,
takže

Pxyc : Рхвс = y '■ 1

a analogicky

Рхвс : Pabc = x : 1,

odkud dostaneme

Pxyc • Pabc = xy : 1.)

Podle zadání je tento poměr 1 : 2, takže pro každou dvojici
1

ж, у platí xy = — .
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Pro každé x tedy platí

1
■y = ^-

Definiční obor i obor hodnot této funkce je zřejmě obsažen
1

v intervalu (0, 1). Aby bylo у ^ 1, musí být x ^ . Pro

1 1 1
každé л: e<—, 1> je у e , 1). Ke každému у e (—, 1) je

1 1
příslušné x —- —- g <—,1). Definiční obor i obor hodnot je

2y 2
1

tedy interval , 1>.

SOUTĚŽNÍ ÚLOHY II. KOLA

C - II - 1

Voda v řece teče rychlostí 2 m/s. Cesta od přístavu к mostu
a zpět trvá malému člunu 33 min a velkému člunu, který
má (ve stojaté vodě) dvojnásobnou rychlost, 16 min. Jak daleko
je od přístavu к mostu?

Řešení: Rychlost malého člunu označme c (m/s) a hledanou
vzdálenost d(m).

Malému člunu cesta trvá
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d d
г + - 33.60

с — 2 (1)
с + 2

a velkému člunu
d d

-

= 16.60.
22c + 2 2c

Je tedy
2cd

c2 — 4 33

4c<i 16

4c2 -4

neboli

4c2 - 4 33

2 (c2 - 4) = 16 '

Odtud c = 10 m/s a z (1) dostaneme

33.60 (c2 - 4)
d = 9904 (m).2c

C- li -2

Na kružnici je dáno 6 bodů a každé dva jsou spojeny úseč-
kou - buď modrou, nebo červenou. Tyto úsečky přitom tvoří
právě jeden červený a právě jeden modrý trojúhelník. Dokažte,
že červených úseček je buď 7, nebo 8.

Řešení: Vrcholy červeného trojúhelníku označme 1, 2, 3.
Trojúhelník s vrcholy ve zbývajících bodech 4, 5, 6 není
červený a má tedy alespoň jednu modrou stranu. Z každého
bodu 4, 5, 6 vedou alespoň dvě modré úsečky do bodů 1,
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2, 3 - jinak by vznikl další červený trojúhelník. Celkem je
tedy alespoň 7 modrých úseček. Analogicky zjistíme, že je
aspoň 7 červených úseček. Tím jsme hotovi, protože úseček
je celkem 15.

C - li - 3a

Nájdite všetky prirodzené čísla, tretia mocnina ktorých sa
končí na 1981.

Řešení: Hledané číslo můžeme rozepsat

.v = 10a + b,
potom

x3 = 1000a3 + 300a2ů + 30aů2 + b3.

Má-li být poslední číslice 1, musí být b = 1. Je tedy

x3 = 1000a3 + 300a2 + 30a + 1.

Na předposlední číslici čísla x3 má vliv jen předposlední
sčítanec. Aby se tato číslice rovnala 8, musí poslední číslice
čísla a být 6. Hledané číslo rozepíšeme

x = 100c + 61,
takže

x3 = ... + 3.612.100c + 613.

Číslici na místě stovek ovlivňují jen poslední dva členy a aby
se rovnala 9, musí poslední číslice čísla c být 0. Můžeme tedy
psát
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x = lOOOd + 61,
takže

x3 = ... + 3.6R1000J + 613.

Aby číslice na místě tisíců byla 1, musí poslední číslice čísla d
být 5.
Splňuje-li nějaké číslo požadovanou podmínku, musí končit
na 5061. Všechna přirozená čísla končící tímto čtyřčíslím
vyhovují.

C - 11 - 3b

Je dán pravidelný šestiúhelník ABCDEF o straně s. Na jeho
stranách AB, BC,...,FA leží po řadě body A i, Bi,...,Fi
tak, že je AA\ — BB± — ... — FF± = t. Jsou to vrcholy
pravidelného šestiúhelníku AiBiCiD\EiFi o straně si.

a) Dokažte, že = s2 — st + í2.
b) Zjistěte, pro které t je si nejmenší.

Řešení: (obr. 10) a) Označme P patu kolmice z bodu F±
na přímku AB.

F< i

F1 i

xS1:

is-ř
ГЛ \ \
P A i Ai В

Obr. 10
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s — t
—. Z pravoúhlého troj-Protože <£F\AP = 60°, je \AP\ =

úhelníku APF± dostáváme

sj = \AiP\* + |FiP|2 = \AiP\2 + \AFtf - \AP\* =

s — í\2 s — í \2
+ (s — ř)2 — = í2 + J2 — St.= \t + 2 2

b) Upravíme-li
2 3s

s2 = t2 + s2 — st —
c2

4 5 *
+

2

vidíme, že s2 a tedy i si je minimální pro t = —2 '
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Kategória В

PŘÍPRAVNÉ ÚLOHY I. KOLA

В - P - 1

Určte počet všetkých róznych usporiadaných trojíc pri-
rodzených čísel x, у, z, ktoré vyhovujú rovnici

xl .y^.z9 = 19791.979 (1)

Riešenie: Nech prirodzené čísla x,y, z vyhovujú rovnici (1).
Pretožc čísla 19 a 97 sú prvočísla, ako sa 1'ahko přesvědčíme,
musi* byť čísla x,y, z súčinmi mocnin čísel 19 a 97 s nezápor-
nými celočíselnými exponentami. Číslo у však nemóže obsaho-
vať ako súčinitel’ kladnú mocninu čísla 97, lebo na právej
straně rovnice (1) je mocnina 979. Musia preto existovat’ ne-

záporné celé čísla a, b, k, r, s také, že platí

У = 19‘,x «= 19a.97,;, z = 19' .97*.

Po dosadení do (1) dostaneme

19# 97& 1997*: j99r 979s — I9"9i 979
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К tomu, aby platila táto rovnost’, musia byť súčasne splněné
tieto dve rovnice:

(2a)a + 91k + 9r = 791,

b -f 9s = 9. (2b)

Je zřejmé, že každému nezápornému celočíselnému riešeniu
sústavy rovnic (2a) a (2b) odpovedá jedno riešenie rovnice (1).
Stačí nám teda zistiť počet nezáporných celočíselných rie-
šení sústavy rovnic (2a), (2b).

Eahko sa vidí, že rovnica (2b) má dve rožne riešenia v obore
celých nezáporných čísel: b = 0, s = l a b — 9, s = 0.

Pretože 8.97 = 776 < 791 < 9.97 = 873, móže číslo k na-

dobúdať len hodnoty 0, l, 2, 3, 4, 5, 6, 7, 8. Postupné tieto
hodnoty dosadíme do rovnice (2a). Dostaneme:

a) Ak k — 0, potom a + 9r = 791 číže a = 9(87 — r) + 8.
Číslo r móže teda nadobúdať hodnoty 0, 1, ..., 87. Pre každú
z týchto hodnot existuje právě jedno celé nezáporné číslo
a vyhovujúce rovnici (2a). Dostáváme tak 88 riešení tejto
rovnice.

b) Ak k = 1, potom a + 9r = 694, z čoho a = 9(77
+ 1. Analogickou úvahou ako v predchádzajúcom případe
dostáváme 78 riešení.

c) Pre k = 2 bude a + 9r = 597, z čoho a = 9(66 — r) + 3.
Rovnica (2a) má v tomto případe 67 nezáporných celočíselných
riešení.

d) Pre k = 3 je a 4- 9r = 500, z čoho a — 9(55 — r) + 5.
Máme 56 riešení.

e) Ak k — 4, je a + 9r = 403, z čoho a — 9(44
a dostáváme 45 riešení.

r)

r) + 7
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f) Pre k = 5 je a + 9r — 306, z čoho a = 9(34 — r). Máme
35 riešení.

g) Ak k = 6, je a + 9r = 209, z čoho a = 9(23 — r) + 2.
Dostáváme teda 24 riešení.

h) Pre k = 7 je a + 9r = 112, z čoho je a = 9(12 — r) + 4.
To znamená dalších 13 celočíselných nezáporných riešení rov-
nice (2a).

i) Konečne v případe k = 8 dostaneme a + 9r = 15 čiže
a — 9(1 — r) + 6. Dostáváme teda dve rožne riešenia.

Celkový počet nezáporných celočíselných riešení sústavy
(2a), (2b), a teda počet prirodzených riešení rovnice (1) je
2.(88 + 78 + 67 + 56 + 45 + 35 + 24 + 13 + 2) = 816.

В - P - 2

Pre každé prirodzené číslo n existujú navzájem rožne pri-
rodzené čísla r, s tak, že číslo

3r — 3S

je dělitelné číslom n. Dokážte.
Riešenie: Pri riešení úlohy využijeme známy Dirichletov

priehradkový princip. Uvažujme o týchto prirodzených číslach

31 ^2 33 -xn xn+1^ 3 ^ 3 • • • 3 ~-y 3 5

ktorých je právě n + 1. Pri delení číslom n musia mať aspoň
dve z nich rovnaký zvyšok, pretože možných zvyškov je právě n\

0,1,2, ..., n — 1. Nech sú to čísla 3r, 3S. Platí teda 3r = k.n +
+ z} 3S = m.n + z, kde k, m sú celé nezáporné čísla, z je
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niektorý z možných zvyškov. Potom 3r — 3S = (k — m) n je
číslo dělitelné číslom n. Tým je tvrdenie úlohy dokázané.

В - P - 3

Nech ABCD je deltoid (vypuklý štvoruholník súmerný
právě podlá jednej zo svojich uhlopriečok) s osou súmernosti
AC. Nech S je priesečník priamok AC, BD a M, N, P, Q
v uvedenom poradí sú jeho kolmé priemety na priamky AB,
BC, CD, DA.

a) V štvoruholníku MNPQ platí MQ\\NP. Dokážte.
b) Nech <^BAD = 2a, <£JBCD — 2у. Vyjádříte velkosti

uhlov štvoruholníka MNPQ pomocou uhlov a, y.

c) Rozhodnite, kedy je štvoruholník MNPQ lichobežníkom
a kedy rovnoběžníkom.

Riešenie: a) Deltoid ABCD je osové súmerný podlá osi AC.
V tejto symetrii odpovedá bodu В bod D, úsečke AB úsečka
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AD, úsečke SM kolmej к AB úsečka SQ kolmá к AD (pozři
obr. 11). Bodu M odpovedá teda bod Q, z čoho vyplývá, že
MQ\\BD. Analogickou úvahou sa dokáže, že NP\\BD. Z tran-
zitívnosti relácie rovnobežnosti preto priamo vyplývá, že
MQ\\NP, ako sme mali dokázat’.

b) Trojuholníky SMB a SNB sú pravoúhlé so spoločnou
přeponou SB. Štvoruholníku SMBN móžeme preto opísať
thaletovskú kružnicu s priemerom SB. Uhly <£ SBM = 90° —

— a a <^.SNM sú obvodovými uhlami tejto kružnice prislúcha-
júcimi tomu istému oblúku SM. Preto ticž <)CSNM — 90° — a.
Z analogického dóvodu platí tiež <$iNBS = 90° — у = <$.NMS.
Preto platí

<yMNP = <£NPQ = <<MNS + <ySNP -

<yPQM = <$QMN = <$SMN + <£QMS
90° ЭС + y,

90° — у + a.

c) Štvoruholník MNPQ je súměrný podia osi AC. Rovno-
bežníkom móže byť preto len vtedy, keď platí AfiV||/íC||P<2.
V takom případe však bude priamka MNkolmá ku priamke MQ,
čiže <^QMN = 90°. Z časti b) však vieme, že <£QMN =
= 90° + a — y. Štvoruholník MNPQ bude rovnobežníkom
teda právě vtedy, keď platí oc = y, čiže vtedy, keď daný deltoid
ABCD bude kosoštvorec. Vo všetkých ostatných prípadoch
bude štvoruholník MNPQ lichobežníkom.

В - P - 4

Nech К je daný kruh s polomerom 1. Určte množinu
vrcholov C všetkých rovnostranných trojuholníkov ABC,
ktorých vrcholy А, В ležia vo vnútri alebo na hranici kruhu K.
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Riešenie (obr. 12): Označme S střed daného kruhu K.
Nech M je hladaná množina vrcholov C všetkých rovnostran-

ných trojuholníkov daných vlastností. Vzhladom na symetriu
kruhu a rovnostranného trojuholníka možno očakávať, že body
množiny M vyplnia kruh G so stredom S a polomerom r > 1.

Poloměr r kruhu G sústredného s daným kruhom К určíme
tak, keď budeme uvažovat’ o takej polohe rovnostranného troj-
uholníka ABC pri pevne zvolenej dížke AB, kedy má vrchol C
najváčšiu vzdialenosť od bodu 5 (pozři obr. 12). V takom
případe platí:

\sc\ = |SP| + \CP\ = |SP| + Уз \ bp\ =

Уз1
+ Уз sin а = 2 I — cos а +
= 2(sin 30° cos а + cos 30° sin a).

= cos a

Je teda [SCI = 2 sin(30° + a) ^ 2, pričom rovnost’ nastane
pre а — 60°. Je teda r — 2 čiže množina M je častou kruhu
G(S;2).
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Nech je obrátene C 1’ubovol’ný bod kruhu G rózny od jeho
středu S. Potom možno zostrojiť uhol A'CB' velkosti 60° tak,
aby obsahoval bod A a aby priamka CS bola jeho osou. Nech A,
resp. В je v uvedenom poradí priesečník polpriamky CA',
resp. CB' s hranicou kruhu K. Pri vhodnom označení bodov
A', B' na ramenách zostrojeného uhla tvoria potom body
А, В, C vrcholy rovnostranného trojuholníka s vrcholom C
z množiny M (obr. 13). Ak C=S, potom možno uvažovat’ o lu-

bovolnom uhle velkosti 60° s vrcholom v bode C a prieseč-
niky jeho ramien s hranicou kruhu К pri vhodnom označení
tvoria vrcholy А, В rovnostranného trojuholníka požadova-
ných vlastností. Tým sme dokázali, že kruh G(£;2) je častou
množiny M, pretože existenciu bodov А, В v oboch uvažo-
váných prípadoch zaručuje skutočnosť, že vzdialenosť d bodu
S od polpriamok CA', CB' je

d - |CS| sin 30° ^ 2 sin 30° = 1.
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Z oboch vyššie dokázaných inklúzií: M <= G a G <= M
dostáváme M — G, čo znamená, že množinou bodov daných
vlastností je kruh so stredom S a polomerom r = 2.

SÚŤAŽNÉ ÚLOHY I. KOLA

3-1-1

Pre každé prirodzené číslo n ^ 150 existujú dva rožne děli-
tele di, d% čísla 9 000 000 také, že n dělí rozdiel di — dz. Do-
kážte.

Riešenie: Pretože prvočíselný rozklad čísla 9 000 000 je

9 000 000 = 9.106 = 32.26.56,

bude počet všetkých jeho deliteíov v určený vzťahom:

v =(2 + 1)(6 + 1)(6 + 1) =49.3 147.

a) V případe, keď n < 147, móžeme použit’ opat’ Dirichletov
priehradkový princip ako pri riešení úlohy B-P-2. Pri delení
číslom n majú totiž aspoň dva z deliteíov čísla 9 000 000 rovna-

ký zvyšok. Potom však ich rozdiel bude zrejme číslo dělitelné
číslom n.

b) Zostáva ešte dokázat’ tvrdenie úlohy v prípadoch, keď
n = 147, 148, 149, 150. V týchto prípadoch však nebude
ťažké deliteíov čísla 9 000 000 požadovaných vlastností sku-
točné nájsť:
Pre n = 147 možno vziať di = 150 = 3.2.52, d-i = 3, pretože
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di — di — 147. Pre n — 148 stačí vziať opáť di = 1503 d% = 2,
lebo di — dz = 148. Při n = 149 je opáť di — 150, d% — 1
a di — dz = 149. Pri n = 150 vezmime di = 300 = 3.22.52
a dz — 150. Potom di — í/2 = 150.

В- I -2

Nech a je prirodzené číslo tvaru 2p + 1, kde p je prvočíslo.
Nájdite množinu všetkých prirodzených čísel x, pre ktoré platí,

x ш mm
že ak z nich vynecháme prvú číslicu, dostaneme —.

a

Riešenie: Z textu úlohy je zřejmé, že číslo x musí byť aspoň
dvojciferné. Predpokladajme, že má m cifier, kde m > 1. Potom
ho možno zapísať v tvare

x = y. 10w_1 + z,

kde у je niektoré z jednociferných prirodzených čísel: 1, 2, 3,
4, 5, 6, 7, 8, 9 a z je nějaké (m — 1) -ciferné číslo. Po vynechaní
prvej číslice у z dekadického zápisu čísla x dostaneme zápis

x

čísla z. Podlá textu úlohy však má platiť z = —. Z toho wplý-
a

va, že platí x = a.z, číže у. 10m-1 + £ = (2p + 1) я, odkial
dostaneme

y. 10w_1 = 2p . z

a po delení číslom 2 bude

5y IQWí-2 = p .z. (1)
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Rovnica (1) nemože byť splněná pre p > 10 pri žiadnom z,
pretože prvočíslo p > 10 nedelí 5y.lOOT-2. Stačí teda nájsť
riešenie rovnice (1) pre jednotlivé prvočísla p < 10.

a) Necn p = 2. Potom a = 5 a preskúmame postupné rieše-
nia rovnice (1) pri jednotlivých možných hodnotách čísla у:
Pre у — 1 dostaneme z (1) 5.1077i_2 = 2z, z čoho pre т^Ъ
vyplývá £ = 25.ÍO777-3, čiže x = 1.10m_1 + 25. ÍO777-3 =
= 125- 10m-3.

Pre у = 2 máme z (1) 5.10m_2 — z, z čoho x = 25.10w~2.
Prey; = 3 bude z (1) 5.3.10w~2 = 2zs odkial’ z — 5.15.10777-3,
ak m ^ 3, tj. x = ЗЛО771-1 + 75.10777~3 = 375.ÍO777-3.
Ak bude у ^ 4, potom z (1) máme 2z = 5y;.10m_2, z čoho
л = 25.j;.10777~3 ^ 100.10777-3 = 10w_1. To však nemóže na-

stať, pretože číslo z je podlá předpokladu len {m — l)-ciferné.
V tomto případe do hfadanej množiny patria čísla:
{25, 250, 2500, ... } U {125, 1250, 12 500, ... } и {375,
3750, 37 500, ... }.

b) Nech/> = 3. Potom a — 7 a z rovnosti prirodzených čísel
5y. 10777-2 = 3z vyplývá, že číslo у musí byť násobkom čísla 3.
Preto nám třeba postupné preskúmať případy у = 3, 6, 9.

Ak у = 3, potom z (1) máme 5.3. 10777-2 = 3#, z čoho
z = 5.10™-2, čiže x = 3.IO777-1 + 5.10»-2 = 35 ЛО777-2.

Prejy ^ 6 dostaneme 3z — 5y. IO777-2 ^ 30.IO777-2 = 3 • 10m_1,
z čoho v spore s predpokladom vyplývá z ^ IO777-1.

V tomto případe do hladanej množiny patria čísla {35, 350,
3500, ... }.

c) Ak p — 5, potom a = 11 a z (1) dostaneme 5jy. 10m—2 =
= 5ar, z čoho 2 = y;.10777-2, čiže x = jy.l0m-1 + у. 10777-2 =
= lly. 10777-2. Z toho vyplývá, že pre každú možnú hodno-
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tu у dostaneme nekonečnú množinu riešení, takže hladanú
množinu čísel tvoří zjednotenie množin:
{11, 110, 1100, ...} U (22, 220, 2200, ... } U ... и (99,
990, 9900, ... }.

d) Ak p = 7, bude a = 15 a po dosadení do (1) dostaneme
5y. 10w~2 = Iz, z čoho vyplývá, že rovnici (1) móže vyhovovat’
len y — 7. Pri tejto hodnotě však platí z = 5.10m~2 čiže
x = l. ÍO™-1 + 5.10m~2 - 75.\0m~2.

V tomto případe úlohe vyhovujú čísla (75, 750, 7500, ... }.
Zistili sme teda, že úloha má riešenie len pre a — 5, 7, 11, 15

a v každom z týchto prípadov sme našli nekonečnú množinu
prirodzených čísel, ktoré vyhovujú podmienkam úlohy, ako
sa o tom 1’ahko možno přesvědčit’.

3-1-3

Určte všetky hodnoty reálného parametra tn, pre ktoré má
sústava rovnic

x2 + y2 = 4, (1)

(x 4- tri)2 + (y — tri)2 = 1 (2)

s neznámými x,y právě jedno riešenie.

Riešenie: Ak od rovnice (2) odčítáme rovnicu (1), dostaneme

(3)2m(x —y) = —2m2 3.

Z (3) vyplývá, že pre m = 0 nemá daná sústava žiadne riešenie.
Ak т Ф 0, potom z (3) dostaneme
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2m2 + 3
(4)* - + 2m

Ak za jc zo (4) dosadíme do (1), dostaneme postupné

3 \2
y‘+ b - “ - Ы

= 4,

(5)

2y2-[
9i

2w + — I у + m- + -1=0.
4m2m

Pre diskriminant D kvadratické) rovnice (5) platí

3 \2 99
D — 12m + — — 8 lm2 + - - — 1

\ 4/n-
4m2 — —- + 20.

mzm

Rovnica (5) má mať právě jedno riešenie. Preto jej diskriminant
musí byť rovný nule, čiže

4m4 — 20m2 + 9 = 0. (6)

Ak v rovnici (6) použijeme substituciu z = m2, dostaneme
1

kvadratickú rovnicu 4a2 — 20z + 9 = 0 s koreňrni z\ = —
2 5

9
—. Pre každý z týchto koreňov dostaneme dve hodnoty

parametra m, pre ktoré má sústava (1), (2) právě jedno riešenie.
Danej úlohe teda vyhovujú právě štyri hodnoty parametra m:

3]'2

z-г —

V 2 F 2 31/2
mi = —, m2 = — m3 = M4. =

2 5 2 5 2 '
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В- l -4

Nech ABCD je vypuklý štvoruholník taký, že kolmé prieme-
ty priesečníka jeho uhlopriečok na jednotlivé strany ležia vo
vnútri týchto stráň.

Nutnou a postačujúcou podmienkou pre to, aby tieto priemety
ležali na kružnici je, aby uhlopriečky štvoruholníka ABCD boli
na seba kolmé. Dokážte.

Riešenie: Označme priesečník uhl )priečok štvoruholníka
ABCD a M, N, P, Q v uvedenom poradí jeho kolmé priemety
na strany AB, BC, CD, DA (pozři obr. 14). Štvoruholníkom

D
P

i ГУ /

у L5 8,
N

a S
Pa

rP

A
M

Obr. 14

AMSQ, BNSM, CPSN, DQSP možno opísať kružnicu
(thaletovskú) s priemermi v uvedenom poradí AS, BS, CS, DS.
Sú to teda tzv. tětivové štvoruholníky. Podlá vety o rovnosti
obvodových uhlov prislúchajúcich tomu istému oblúku kružni-
ce preto platí: <£ASM = <yAQM = a, <£MSB = <£MNB =
= p, <yPSD = <£PQD = y, <£PSC = <£PNC = <3. Ďalej
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zrejme platí: a + /? = у + д a taktiež <£PQM = 180° —
— (a + y), <$iPNM = 180° — (/? + d). Nutnou a postačujú-
cou podmienkou pre to, aby štvoruholník bol tětivový, tj. aby
jeho vrcholy ležali na kružnici je, aby súčet jeho vnútorných
protilehlých uhlov bol 180°. To znamená, že body P, Q, M, N
budú ležať na kružnici vtedy a len vtedy, keď <£PQM +
+ <£PNM = 180°. Pretože <£PQM + <£PNM = 360° -

—(a + P + у + (3) = 180° vtedy a len vtedy, keď platí
a + /3 + у + d = 180°, ležia body M, N, P, Q na kružnici
vtedy a len vtedy, keď a + /3 = у + ó = 90°, čiže vtedy, keď
uhol ASB uhlopriečok štvoruholníka ABCD je pravý. Tým je
tvrdenie úlohy dokázané.

В - I - 5

Pravouholník P nazveme opísaným pravidelnému šesťuhol-
niku, ak každá z jeho stráň obsahuje aspoň jeden vrchol šest’-
uholníka a žiaden bod šesťuholníka neleží mimo pravouholníka.

Je daný pravidelný šesťuholník so stranou dížky 1. Zostrojte
aspoň jeden jemu opísaný pravouholník, ktorý:

a) má čo najváčší obsah;
b) má čo najmenší obsah.

V oboch prípadoch určte podiel obsahov šesťuholníka a právo-
uholníka.

Riešenie: Z definície opísaného pravouholníka je zřejmé, že
aspoň dva susedné vrcholy šesťuholníka ležia na susedných
stranách pravouholníka. Označme ich А, В a ostatné vrcholy
šesťuholníka označme podlá obr. 15. Označme ďalej K, L, M, N
vrcholy opísaného pravouholníka. Tieto vrcholy v uvedenom
poradí ležia na oblúkoch thaletovských kružnic s priemermi
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AB, BD, DE, EA, pretože uhly <£AKB, <^BLD} <^DME,
<£ENA sú pravé. Ak označíme <%.KAB = a, <£NAE — (i,
potom zrejme platí /5 = 90° — a. Z toho, že vnútorný

x

/

uhol pravidelného šesťuholníka má velkost’ 120° vyplývá, že
a G <30°j 60°).

Obsah O pravouholníka KLMN dostaneme ako súčet kon-
štantného obsahu obdížnika ABDE a obsahov trojuholníkov
AKB, BLD, DME, ENA. Velkost’ obsahov týchto trojuholní-
kov je priamo úměrná vzdialenosti vrcholov K, L, M, N v uve-
denom poradí od stráň AB, BD, DE, EA obdížnika ABDE.

a) Z vyššie uvedenej úvahy vyplývá, že obsah O opísaného
pravouholníka bude rnaximálny, keď trojuholníky AKB, BLD,
DME, ENA budú rovnoramenné, čiže ak a = = 45°. V ta-
kom případe však budú uhlopriečky KM, LN opísaného pra-
vouholníka na seba kolmé, čo znamená, že KLMN bude
štvorec.

Z pravoúhlého trojuholníka ADE s přeponou \AD\ = 2 sa

1’ahko vypočítá, že \AE\ = j 3. Vzdialenosť bodu К od úsečky
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AB, resp. bodu M od úsečky DE je v uvažovanom případe
1

zrejme — a tak pre uhlopriečku KM štvorca KLMN zrejme

platí \KM\ — 1 + 1/3. Preto

1
CW = — IJCMP = 2 + уз.

Pretože pre obsah 5 pravidelného šesťuholníka so stranou 1

= d-l/3:(2+ yš) =
3

platí 5 = —]/ 3, dostaneme 5 : Omax

3
=

~2 (2]/ 3 — 3).
b) Obsah O opísaného pravouholníka KLMN bude zrejme

minimálny vtedy, ked budú minimálně vzdialenosti bodov K>
L3 M, N v uvedenom poradí od úsečiek AB} BD, DEZLd. Ten-
to případ nastane vtedy, ked' buď a = 30°, /3 = 60° alebo
a = 60°, = 30° (pozři obr. 16). V takom případe však

E
MN

/
/

DF
/

/

P'/
"7

Obr. 16
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Omin = \KL\ . \LM\ = \BE\ . \AC\ = 2]/3. Preto 5 : Omin =

=

уУ3 : 2]/3 =
3

4 '

В - 1 - 6

Je daná gula G s polomerom 1. Určte množinu vrcholov V
všetkých pravidelných štvorstenov ABCV, ktorých vrcholy
А, В, C ležia vo vnútri alebo na hranici gule G.

Riešenie: Ide zrejme o stereometrickú analógiu úlohy
B-P-4. Označme M hladanú množinu vrcholov V pravidelných
štvorstenov požadovaných vlastností. Nech ABCV je niektorý
z týchto štvorstenov. Ak ho budeme otáčať okolo středu A
gule G, zostane celý trojuholník ABC, ktorý je podstavou tohto
štvorstena v guli G. Z toho vyplývá, že množina M musí byť
podmnožinou gule К so stredom A a polomerom r > 1. Jej
poloměr určíme tak, keď zistíme maximálnu možnú vzdialenosť
)SF| pre vrchol pravidelného štvorstena požadovaných vlast-

94



ností. Nech V je vrchol, pre ktorý je |SK| maximálna. Potom
zrejme vrcholy А, В, C podstavy štvorstena ležia na hranici
gule G. Nech T je ťažisko podstavy. Ak bude štvorsten ABCV
rotovat’ okolo osi TV, potom vrcholy А, В, C opíšu na hranici
gule G kružnicu so stredom T a polomerom \AT\. Označme a

2al3 «уз
3 2

Ak vyjdeme zo situácie v rovině AS V (pozři obr. 17) a označí-
me \AT\ — x, |5Г| = у, potom vzhíadom na vyššie uvedené
platí a — xj/3. Z Pythagorovej vety vyplývá x2 + y2 = 1,
\TV\ = xp. Preto

hranu štvorstena. Potom zrejme platí \AT\ = 3 ‘

\SV\ = |5T| + \TV\ =y + Xp,

z čoho priamo vyplývá

;AF|2 =y2 + 21, 2xy + 2x2 x2 + 2 ] ' 2xy +1

+ 2(1 -У) = 3 - (x - \2y)\
čiže

|5F| = уЗ-(*-угз’)2,

= ]/ 3, pričom táto situácia nastane pre

x = ] 2y a vzhíadom na podmienku x2 + у2 — 1 pre x =

у = | 3. Z uskutočnenej úvahy vyplývá teda, že M je častou gule К
so stredom 51 a polomerom r — |/3. Připomeňme si ešte, že
pri uvažovanej rotácii okolo osi VT vytvoří štvorsten ABCV

čo znamená, že |SFi max

и
3 5
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kuželovú plochu, ktorej podstavou je kružnica so stredom v bo-

Уз
de T a polomerom a — a jej vrchol V je totožný s vrcholom V

uvažovaného štvorstena. Pre vrcholový uhol SVD velkosti 2a.

уз
zrejme platí: sin a =

Nech teraz obrátene bod V je lubovolný z bodov gule

/<(S;]/3). Zostrojme rotačnú kuželovú plochu s vrcholom V

3 '

У'з
a vrcholovým uhlom 2a, pričom sin a = — a s osou SV, ak3

V Ф S (v případe V = S volíme za os kužeíovej plochy 1’u-
bovolnú priamku prechádzajúcu bodom V). Pretože pre vzdiale-
nosť d středu 5 od kužeíovej plochy (obr. 17) platí

1/3
Уз.-d = |5F| sin a 1,

přetíná táto kuželová plocha hranicu gule G aspoň v jednej
kružnici k. Ak do kružnice k vpíšeme rovnostranný trojuholník
ABC, potom jeho vrcholy spolu s bodom V určujú pravidelný
štvorsten požadovaných vlastností. Tým sme dokázali, že
К c M.

Z platnosti oboch dokázaných inklúzií vyplývá preto, že
hladanou množinou M je gula iC(S;]/3).

96



SOUTĚŽNÍ ÚLOHY II. KOLA

Nájdite všetky prirodzené čísla n > 5, pře ktoré je číslo

1.2.3 (n - 4)

dělitelné číslom n.

Riešenie: Predovšetkým je zřejmé, že tvrdenie úlohy ne-

platí pre žiadne prvočíslo. Predpokladajme preto, že n je číslo
zložené, tj. že platí n — a.b, kde a ^ 2, b ^ 2 sú prirodzené
čísla.

n 71

—. Z toho však vy-

plýva, že v tomto případe vyhovuje úlohe každé zložené číslo,

n — 4 číže n ^ 8. Zostáva preskúmať číslo

a) Nech а Ф b. Zrejme platí a rb

pre ktoré platí —

n = 6=2.3, ktoré však úlohe nevyhovuje.
b) Ďalej je zřejmé, že zloženými číslami, pre ktoré nie je

splněná vyššie uvedená podmienka, sú len čísla tvaru n = p2,
kde p je prvočíslo. V takom případe však budú úlohe vyhovovat’
všetky také čísla, pre ktoré sú v súčine 1.2.3 (p2 — 4)
aspoň dva faktory dělitelné číslom p. Túto vlastnost’ splňujú
všetky také prvočísla p, pre ktoré platí 2p ^ p% — 4 číže p ^ 4.
Zostáva ešte preskúmať číslo n — 32 = 9, ktoré je tohto tvaru,
ale 1’ahko sa vidí, že úlohe nevyhovuje.

Závěr: Danej úlohe vyhovujú všetky zložené prirodzené
čísla n 10 a číslo 8.
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В- N -2

Nech kolmé priemety priesečníka uhlopriečok konvexného
štvoruholníka na jednotlivé strany ležia vo vnútri týchto stráň.
Nutnou a postačujúcou podmienkou pre to, aby týmito štyrmi
priemetmi bolo možné přeložit’ kružnicu je, aby bolo možné
přeložit’ kružnicu stredmi jeho stráň.
Dokážte.

Riešenie: Označme А, В, C, D vrcholy uvažovaného
konvexného štvoruholníka a K, L, M, N středy jeho stráň
(pozři obr. 18). Z vlastností strednej priečky trojuholníka vy-

Obr. 18

plýva, že platí: KL\\AC\\MN a tiež KN \\ BD ||LM.
Štvoruholník KLMN je teda rovnobežníkom. Rovnoběžníku
však možno opísať kružnicu vtedy a len vtedy, keď je právo-
uholníkom. Štvoruholník KLMN je však pravouholníkom
vtedy a len vtedy, keď sú uhlopriečky štvoruholníka ABCD na
seba kolmé. Podl'a tvrdenia, ktoré sme dokázali v úlohe B-I-4,
je kolmost’ uhlopriečok štvoruholníka ABCD nutnou a postaču-
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júcou podmienkou pre to, aby kolmé priemety priesečníka
uhlopriečok štvoruholníka na jeho jednotlivé strany ležali na
kružnici. Tým je tvrdenie úlohy dokázané.

В - 11 - 3a

V priestore je daná gufová plocha so stredom S a polomerom r
a vo vzdialenosti d od bodu S priamka p. Určte na priamke p
vrchol pravidelného štvorstena, ktorého všetky hrany sa dotý-
kajú danej gulbvej plochy.

Urobte diskusiu nečitelnosti.
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Riešenie: Označme G danú gulovú plochu. Je zřejmé, že
množinou vrcholov všetkých pravidelných štvorstenov, ktorých
všetky hrany sa dotýkajú gulovej plochy G(S;r) bude opáť
gulbvá plocha so stredom S. Označme jej poloměr R a vypo-
čítajme jeho hodnotu. Nech ABCD je pravidelný štvorsten,
ktorého všetky hrany sa dotýkajú danej gulovej plochy a nech a

je velkost’ jeho hrany. Nech M3 N sú v uvedenom poradí středy
hrán AB, CD (pozři obr. 19). V rovnoramennom trojuholníku

a]j 3
CMD (obr. 20) zrejme platí: \CM\ — \DM\ — Bod č>

leží vovnútri trojuholníka C.MD, pričom platí: |67W| = \SN\ =
= r, [Č>C| = \SD\ = R. Podlá Pythagorovej vety z pravouh-
lých trojuholníkov CNS a CNM vyplývá

a2 3 a2
R2 = r + T’ ~T a2 = 4r2 + —,4 4

z čoho dostaneme a2 = 8r2, R2 = 3r2. Teda R = rj/3.
Hladaný vrchol pravidelného štvorstena dostaneme zrejme

ako spoločný bod priamky p a gulovej plochy /C(.Syy3)-
Vzhl’adom na to, že priamka móže mať s gulovou plochou
najviac dva spoločné body, dostaneme v případe d < r]/3 dve
riešenia úlohy, v případe d = r]/3 má úloha právě jedno rieše-
nie a v případe d > rj/3 riešenie nejestvuje.

в -II -3b

Nájdite všetky hodnoty reálného parametra p3 pre ktoré
sústave rovnic
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x2 + 8'у2 + 2х = 1р2, (1)

(ж + I)2 + (2у + р)2 = 1 (2)

vyhovujú právě dve usporiadané dvojice x, у reálných čísel.

Riešenie: Rovnicu (1) možeme prepísať do tvaru

(ж + l)2 + 8y2 - lp2 + 1. (!')

Z (Г), (2) je zřejmé, že ak danej sústave vyhovuje usporiadaná
dvojica x,y potom je riešením tiež dvojica —x — 2,y.

Ak od rovnice (2) odčítáme rovnicu (Г), dostaneme

83,2 _ (2у + p)2 = 7p2,

z čoho po jednoduchéj úpravě vyplývá

y2 — py — 2p2 = 0. (3)

Pre p = 0 má (3) zrejme jediné riešenie у — 0 a danej sústave
vyhovujú právě dve dvojice: ж = 0, jy = 0 a x = —2, у = 0.

V případe p Ф 0 má (3) dva rožne reálne kořene: y± = —p3
У2 = 2p.

V případe у = —p majú obe rovnice danej sústavy tvar

X2 + 2X + P2 — Oj (4)

prejy = 2p dostaneme z každej z rovnic (1), (2)
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x2 + 2x + 25p2 = 0. (5)

Z toho vyplývá, že sústava (1), (2) má právě dve riešenia vtedy
a len vtedy, keď z rovnic (4), (5) jedna má dva reálne kořene,
druhá nemá reálne kořene. To však nastane vtedy a len vtedy,
keď platí

1
— <P2< 1.
25 F

Sústava (1), (2) má teda právě dve rožne riešenia vtedy a len

vtedy, keď nastane niektorý z týchto prípadov: p e (-•4
1
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Kategória A

PŘÍPRAVNÉ ÚLOHY I. KOLA

A - P - í

V rovině je dána síť rovnostranných trojúhelníků o straně a,

vytvořena třemi soustavami rovnoběžných přímek. Dokažte, že
uvnitř každého čtverce, který leží v rovině sítě a má stranu
větší než a, leží alespoň jeden vrchol sítě.

Riešenie: Najprv si uvědomíme dve jednoduché vlastnosti
siete. Ich jednoduché důkazy neuvádzame.

Ak X, Y sú dva rožne vrcholy siete a ich vzdialenosť \XY\
je váčšia ako a, tak už platí

^YY| > ap.

Druhá vlastnost’ je takáto. Nech Q je štvorec ležiaci v rovině
siete. Ak na jednej jeho straně ležia dva rožne vrcholy siete,
potom aj v jeho vnútri leží nějaký vrchol siete. Teraz dokážeme
pomocné tvrdenie: každý kruh v rovině siete o poloměre
afb
—— obsahuje vrchol siete.
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Nech S’ je střed takého kruhu. Ak vytvoříme systém kruhov
a]/ 3

o poloměre —— so stredmi v každom vrchole siete, tak systém3

pokryje celú rovinu siete. Speciálně, existuje vrchol siete X
taký, že kruh nášho systému so stredom X obsahuje bod .S.
Vrchol X je hladaný vrchol siete, ktorý leží v kruhu so stredom

'

a] 3
61 a polomerom——.

Ukážeme, že ak štvorec o straně b neobsahuje vo svojom
vnútri ani jeden vrchol siete, tak b 5^ a.

Nech ABCD je štvorec o straně b, ktorý neobsahuje ani
jeden vrchol siete vo svojom vnútri. Zváčšíme ho tak, aby obsa-
hoval aspoň dva vrcholy siete na svojich stranách. Nech A je
střed štvorca ABCD. Ak X je vrchol siete, označíme Rx
priesečník polpriamky SX so stranou štvorca ABCD. Zrejme
existuje taký vrchol siete X, že číslo k = |5X| : \SRx\ je naj-
menšie zo všetkých takýchto čísiel. Kedze X neleží vnútri
štvorca ABCD, tak k ^ 1. Zváčšíme štvorec ABCD rovno-

Tahlosťou so stredom 5 a koeficientom k na štvorce AiB\CiD\.

Zrejme strana bi štvorca AiBiCiDi je bi — k.b ^ b, AiBiCiDi
neobsahuje vo svojom vnútri vrchol siete, ale vrchol X leží
na jeho straně. Teraz rovnolahlosťou so stredom X zváčšíme
štvorec AiBiCiDi na štvorec A2B2C2D2 taký, že vo svojom
vnútri neobsahuje ani jeden vrchol siete, ale na jeho straně
leží vrchol siete Y rózny od X. Zrejme stačí uvažovat’ vrchol
siete F, pre ktorý je číslo ki = \ YX\ : \XQy\ najmenšie
(Qy je priesečník polpriamky XY so stranou štvorca) a k±
vziať za koeficient rovnolahlosti. Strana bi štvorca A2B2C2D2.
je bi = k±bi bi C: b.
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Ak vrcholy siete X, Y ležia na susedných stranách štvorca
A2B2C2D2, napr. na stranách A2B2, A2D2, tak vhodnou rovno-
lahlosťou so stredom A2 zváčšíme štvorec na štvorec A3B3C3D3,
ktorý obsahuje vrchol siete aj na jednej zo stráň B2C2, C2D2.

Máme teda štvorec A'BCD' so stranou b' ^ b, ktorý bud
obsahuje dva vrcholy siete na tej istej straně alebo na nesused-
ných stranách a vo svojom vnútri neobsahuje vrchol siete.

Ak dva vrcholy siete ležia na tej istej straně štvorca A'B'C'D',
tak zrejme b' ^ a a teda aj b ^ a. Ak dva vrcholy siete ležia
na protilahlých stranách a ich vzdialenosť je a, tak tiež platí
b' Sí a a teda b ^ a.

Zostáva nám případ, že dva vrcholy siete X, Y ležia na

protilahlých stranách štvorca A'B'C'D' a \XY\ ^ aj/3. Potom
uhlopriečka štvorca A'B'C'D' nie je menšia ako \XY\, t.j.

b'}/2 > aj3.

ajb ^ b
3 2 ]/ 2 — 2 '

Teda

Z toho vyplývá, že kruh so stredom identickým so stredom
aj 3

štvorca A'B'C'D' a polomerom —^— leží vnútri štvorca A'B'C'D'
a podlá pomocného tvrdenia obsahuje vrchol siete.

Takže posledný případ nie je možný a v predchádzajúcich
prípadoch sme ukázali, že b ^ a.
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A- P-2

Nájdite všetky reálne kořene rovnice

]jx2 — p + 2 |Лх2 (1)1 = x,

kde p je reálny parameter.

Riešenie: Rovnicu (1) umocníme na druhů

1) + 4j/(x2 — p)(x2 — 1) = x2x2 — p + 4(*2

a upravíme

4]/(x2 — p)(x2 — 1)*= 4 4- p 4x2. (2)

Túto rovnicu umocníme na druhů

16(л:4 — px2 — x2 4- p) — 16 + p2 + 16л:4 +8p — 8px2 — Ъ2х2

a upravíme
л;2(16 — 8p) = p2 -f 16 8p

teda

л;2(4 - 2p)A = (p- 4)2. (3)

Každé riešenie rovnice (1) je aj riešením rovnice (2) a každé
riešenie rovnice (2) je aj riešením rovnice (3). Rovnica (3) má
riešenia
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4 — p
x\ = ——

2|/4 - 2p
(4)

4P
X2 =

2 ]/4 - 2p

za předpokladu 4 — 2p > 0 a jediné riešenie x = 0 za predpo-
kladu p = 4.

Zistíme, kedy riešenia rovnice (3) sú aj riešeniami rovnice
(1). Každé riešenie x rovnice (2) je riešením rovnice (1) za

0. Teda rovnice0, x2 - p ^ 0, x2 - 1předpokladu x

(1) a (2) sú ekvivalentně za předpokladu

x ^ 1, x2 ^ p. (5)

Eahko vidieť, že za předpokladu p = 4 kořeň x = 0 nie je
kořeň rovnice (1). Ak p < 2, tak skúsime, či kořene (4) rovnice
(3) vyhovujú podmienkám (5). Zrejme X2 je vtedy záporný,
teda nie je riešením rovnice (1). Pre kořeň xi dostaneme

(4 — p)24 — p
(6)1, P-

4(4 - 2p)2]/4 - 2p

Prvá z nerovnic (6) platí pre každé p < 2 a druhá dokonca pre
každé p. Teda za předpokladu p <2 každé riešenie rovnice (2)
je aj riešením rovnice (1). Este musíme zistiť, kedy kořeň xi

je riešením rovnice (2). Zrejme je to vtedy, ak platí

xf^p, xi ^ 1, 4x“ ^ 0.4 + p
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Prvé dve podmienky sú vlastně nerovnice (6) a platia pre každé
p < 2. Z tretej podmienky dostáváme:

(P ~ 4)2
4 + p

(4 - 2p)

a po úpravě (vieme, že p < 2)

3p2 + 4p ^ 0,
t.j.

X4 - 3p) ^ 0.

4
Posledná nerovnica je ekvivalentná 0 ^ p ^ —.

4
Závěr: Ak 0 ^ p ^ rovnica (1) má jediný kořeň x =3

4 — p 4
л1, —• Ak p < 0 alebo p > —,2]/4 —2p 3

ny kořeň.

rovnica (1) nemá reál-

A - P - 3

Jsou-li všechny výšky čtyřstěnu stejně velké, jsou všechny
jeho stěny shodné trojúhelníky. Dokažte.

Riešenie je uvedené v brožúre Vybrané úlohy МО - A +
MMO, úloha 87.
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A - P - 4

Je dán ostroúhlý trojúhelník T s obsahem P. Sestrojte
pravoúhlý trojúhelník, který je obsažen v trojúhelníku T a má

1
obsah větší nebo rovný — P]/ 3.

Riešenie je uvedené v brožúrke 25. ročník MO, úloha
A-II-3b.

SÚŤAŽNÉ ÚLOHY I. KOLA

A - I - 1

Je daný štvorec ABCD o dížke strany 6. Nájdite najmenšie
také prirodzené číslo w, že vo vnútri štvorca ABCD možno
zvoliť n bodov tak, že vo vnútri každého štvorca o straně" 1,
ktorý celý leží v štvorci ABCD, sa nachádza aspoň jeden z uva-

žovaných bodov.

U

7

\

-f

/
вA g

O

Obr. 21
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Riešenie: Štvorec ABCD možno rozdělit’ na 36 štvorcov
o straně 1, ktoré nemajú spoločné vnútorné body. Teda po-

trebujeme aspoň 36 bodov, aby sme vyhověli požiadavke úlohy,
t.j. n

Ukážeme, že možno zvolit’ 36 bodov s danou vlastnosťou.
Vytvořme sieť rovnostranných trojuholníkov o straně 0,99 vy-
tvorenú troma sústavami rovnoběžných priamok. Umiestnime
štvorec ABCD do tejto siete podlá obr. 21. Pak 36 vrcholov
siete, ležiacich vnútri štvorca ABCD, podlá úlohy A-P-l
vyhovuje požiadavke úlohy.

Závěr: najmenšie prirodzené číslo požadovanej vlastnosti je
číslo 36.

36.

A - I - 2

Nájdite všetky reálne čísla x, pre ktoré platí

]/2p + 1 — x2 + ]]Ъх + p + 4 = ]jx2 + 9x + 3p + 9, (1)

kde p je reálny parameter.
Riešenie: Ak umocníme rovnicu (1) na druhů, dostaneme

po úpravě

2j/(2p + 1 — x2)(3x + p + 4) = 2x2 + 6x + 4.

Túto rovnicu delíme číslom 2 a umocníme na druhů, dostaneme
rovnicu

px2 + 8p + 43x3 + 2p2 + p
— x4 + 9x2 + 4 + 6x3 + 4x2 + 12x

4x2 =6px + 3x
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a po úpravě

г4 + 9л:3 + (17 4- p)x2 4- (9 — 6p)x — (2p2 4- 9p) — 0. (2)

Zrejme každé riešenie rovnice (1) je aj riešením rovnice (2).
Rovnicu (2) však bezprostredne nevieme riešiť. Ak sa díváme na
lavú stranu rovnice (2) ako na kvadratický polynom premen-

nej p:

PK-2) + &- 9 6л: + x2) 4- (л;4 + 9л:3 + 17л:2 + 9л:) = 0,
(3)

tak jeho diskriminant je

6л: + x2)2 - 4.(—2)(л:4 + 9л:3 + 17л:2 + 9х) -D = (—9
= 9л:4 + 60л:3 + 154л:2 + 180* + 81 = (Зл:2 + Юл: + 9)2.

Teda rovnica (3) má kořene

9 т 6x - л2 ± (Зл;2 + Юл: + 9)
Pí,2 = -4

po úpravě

pi = — \ (х2 + 8х + 9), p-i = х2 + л:.

Z uvedeného vyplývá, že rovnicu (2) móžeme ekvivalentně vy-
jadriť v tvare

[p + y (x2 4- 8л: + 9)] (p — x2 — x) — 0 ,

a po úpravě
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(x2 + 8x + 9 + 2p)(x2 x — p) = 0. (4)

Rovnica (4) má kořene
*i,2 — — 4 ± ]/7 — 2p, *3j4 — \ (— 1 db У1 + 4p).

Zistíme, kedy tieto kořene sú reálne kořene rovnice (1).
Aby kořene xi, *2 boli reálne, musí byť 2p ^ 7. Keby číslo

x = *1 alebo л: = хз vyhovovalo rovnici (1), tak musí byť

x2 4- 9x + 3p + 9 ^ 0
2p + 1 - x2 ^ 0.

Uvedené čísla však vyhovujú rovnici

x2 + 8x + 9 + 2p = 0.

Ak od prvej nerovnice odčítáme rovnicu, dostaneme

* + p ^ 0.

Z rovnice potom vyplývá

(x + 3)2 = —2x — 2p 0,

teda x — —3. Z druhej nerovnice potom dostáváme 2p ^"8.
Teda xi, xL> nie sú reálne kořene rovnice (1).

Vyšetříme kořene X3, X4. Aby boli reálne, musí byť p ^ — y.
Pre x = хз, X4 platí p = x2 + x, takže po dosadení máme

(5)|x + 1| + I x + 2[ = |2x + 3|.
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— tak zrejme лгз vyhovuje rovnici a teda ajKeďže лгз s

rovnici (1).
Aby kořeň X4 vyhovoval rovnici (5), musí byť buď X4 + 1^0,

X4 ~b 2
X4 ^ — 1 alebo X4 í) —2. To platí právě vtedy, keď p 5^ 0

0 alebo X4 + 1 ^ 0, X4 + 2 ^ 0. Teda, buď

1
platí хз = X4.

tak rovnica (1) nemá reálne
alebo p ^ 2. Este si všimnime, že pre p =

Móžeme zhrnúť. Ak p <
kořene. Ak p — — ~ alebo p g (0, 2), tak rovnica (1) má jediný
reálny kořeň -j (—1 + ] 1 + 4p). Pre p g (— j-3 0) и <2, co)
má rovnica (1) dva rožne reálne kořene (—1 ± ]/l + 4p).

—

T
1

A - \ - 3

Je dáno přirozené číslo n > 1. Množina M uzavřených
intervalů má tyto vlastnosti:

1. Pro každý intervaly v) G M platí, že и, v jsou přirozená
čísla, 1 ^ и < v 5^ n.

2. Pro každé dva různé intervaly I e M, Г g Af je / <= /'
nebo /' c / nebo I n Г = 0.

Určete největší možný počet prvků množiny Af.
Poznámka: Uzavřený interval <z/, z;) je množina všech reál-

ných čísel r, pro které platí и ^ r ^ v.
Riešenie: Pre dané prirodzené číslo n > 1 označíme f(n)

najváčší možný počet prvkov množiny Af.
Ak zvolíme Af = {<1, 2), <1, 3), ..., <1, n;>}, tak Aí vyho-

n — 1. Ukážeme, ževuje podmienkám 1. a 2. Teda f(n)
platí rovnost’ f(n) = n

Pre n

1.

2 je Af ^ {<1,2)) a teda /(и) = 1. Budeme pc-
kračovať matematickou indukciou. Nech n > 2 a predpokla-
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dáme, že pre každé prirodzené číslo k < n, k ^ 2 platí f(k) =
= k — 1. Nech M je množina s vlastnosťami 1. a 2., ktorá má
maximálny počet prvkov. Množina M musí obsahovat’ interval
<1, n), totiž keby ho neobsahovala, tak by nemala maximálny
počet prvkov, lebo M и {{1, я)} tiež spíňa podmienky 1. a 2.
Označíme M' — M — «1, и)}. Rozlišíme tri případy.

a) Žiadny z intervalov / g M' neobsahuje číslo n. Potom pre
M' platí podmienka 1) pre n — 1 a podlá indukčného před-
pokladu počet prvkov M' je nie váčší ako n — 2. Teda počet
prvkov M je nie váčší ako n — 2 + 1 = n — 1.

b) Žiadny z intervalov I e M' neobsahuje číslo 1. Nech
M" — {<и — l,v — 1}; (u, v} e M'}. Potom M" má podlá
indukčného předpokladu najviac n — 2 prvkov. Teda M má
najviac n — 1 prvkov.

c) Niektorý interval z M’ obsahuje číslo n a niektorý interval
z M' obsahuje číslo 1. Nech p je najváčšie prirodzené číslo také,
že <1, py e M'. Nech q je zase najmenšie prirodzené číslo také,
že iq, n> G M'. Označíme

{/e Af;/£ .<!,/>>
M"' = \I G M'; I ^ iq,n}}.

tM"

Zrejme je p < q. Počet prvkov M' je rovný súčtu počtu prvkov
M" a M"'. Teda

M - ЛГ + 1 = \M"\ \M"’ I + 1.

Podlá indukčného předpokladu však

\M"\^ f(p)=p-l.
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Argumentom rovnakým ako v časti b) z indukčného predpo-
kladu vyplývá

\M"'\£f(n-q+ l)=n-q.

Teda

\M\ ^ (p — 1) + (n — q) + 1 ^ n — 1.

A- I -4

Zostrojte štvoruholník ABCD, ktorého všetky vrcholy ležia
na kružnici o poloměre 1 a pre ktorý platí

\AB\* + |BC|2 + |CZ)|2 + \DA\2 > 8,999.

Riešenie: Nech ABC je rovnostranný trojuholník, ktorého
vrcholy ležia na kružnici o poloměre 1. Jeho strany sú potom
dlhé |/3 a teda

\AB\* + \BC\2 + \CA\2 = 3.3 = 9.

Nech X je bod na kratšom oblúku kružnice určenom bodmi
A, C. Uhol ó = <£AXC nezávisí od polohy bodu X na tomto
oblúku a je rovný <3 = 120°. Podl’a kosínusovej vety platí

\CA\* = \AX|2 + \XC\2 - 2\AX\ • \XC\. cos 120° =
= |AX12 + |AC|2 + \AX\.\XC\.

Ak zvolíme bod D = X tak, aby bolo

Уз
|CD|<-y .0,001,
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tak pře štvoruholník ABCD platí

\AB\2 + \BC\2 + \CD\2 + \DA\* = 9 - \AD\ . \CD\.

Ale |AD\ ^ |AC\ = 1/3, teda

V3
|AD\ . \CD\ < у 3 . -у . 03001 = 0,001.

Potom

|AB|2 + |5C|2 + |CD|2 + \DA\2 > 9 - 0,001 = 8,999.

А- I -5

Nech К je kruh s priemerom 1. Nájdite v rovině kruhu К
množinu všetkých bodov patriacich pravoúhlým rovnoramen-

ným trojuholníkom, ktorých aspoň dva vrcholy ležia v K.
Riešenie: Eahko vidieť, že hladaná množina M je kruh so

stredom v střede kruhu K. Je potřebné určit’ poloměr kruhu M.
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Poloměr kruhu M bude maximum čísiel r, kde r je vzdialenosť
vrcholu C pravoúhlého trojuholníka ABC takého, že vrcholy
A, В ležia v kruhu K. Zrejme stačí uvažovat’ případ, keď body
A, В ležia na obvode kruhu K. Z obr. 22 zase vyplývá, že stačí
uvažovat’ případ, keď AB je odvěsna pravoúhlého trojuholníka.
Kvóli jednoduchosti, nech AC je přepona a teda \AB\ = |БС|.

Nech X je vrchol pri pravom uhle pravoúhlého trojuholníka
SCX, Y je střed úsečky AB a a = <£ASY. Zrejme platí

\SY\ = \XB\ cos a ,

\SX\ = \AY\ sin a ,

|£C| = \AB\ = sin a.

Potom podlá Pythagorovej vety dostáváme

r2 = |XC|2 + \SX\* - ({ cos a + sin a)2 +
- | (3 - 2 cos 2a + 2 sin 2a) = | [3 + 2]/2 sin (2a - -)].
Maximálna hodnota r bude pre a = J-tz a to

sin2 a —

1 + 121
—(3 + 2 y2) =—rr =

i + Y2
Teda poloměr kruhu M je —-—.

А- I -6

Je dané prirodzené číslo n a štvorsten s vlastnosťami:
a) Velkosti jeho stráň sú prirodzené čísla rovné najviac n.

b) Obvody stien štvorstenu majú konštantnú velkost’.

117



Dokážte, že pre n ^ 5 steny štvorstenu tvoria rovnoramenné
trojuholníky.
Platí rovnaké tvrdenie pre n ^ 6 ?

Riešenie: Nech ABCD je štvorsten s vlastnosťami a), b).
Označíme dížky jeho hrán takto: a\ — \AB\, аз — \BC\,
аз = |AC\, a4 = \BD\, a$ — \AD\, ae — \CD\. Z podmienky
b) vyplývajú rovnosti

a\ + аз + аз = с

аз + а^ + а§ — с

а± + а\ + а^ = с

<зз ~Ь tfs + <36 = с.

Ак tieto rovnice sčítáme, dostaneme

ai 4- аз + as + Яб + ai + a\ = 2c.

Postupným odčítáním dostaneme odtial

аз = <35, a\ — ae. аз — а4.

Z týchto rovnic vyplývá, že všetky strany štvorstenu sú zhodné
trojuholníky. Teda stačí vyšetřovat’ jeden z nich, napr. ABC.
Čísla ai, аз, аз sú prirodzené, nie vačšie ako 5 a musia splňovat’
trojuholníkoví nerovnosti. Máme pre ne 22 možností:

1,1,15 1,2,2; 1,3,3; 1,4,4; 1,5,5;
2,2,2; 2,2,3; 2,3,3; 2,3,4; 2,4,4; 2,4,5; 2,5,5;
3,3,3; 3,3,4; 3,3,5; 3,4,4; 3,4,5; 3,5,5;
4,4,4; 4,4,5; 4,5,5;
5,5,5.
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Všetky z nich, okrem 2,3,4; 2,4,5; 3,4,5, sú rovnoramenné tro-
juholníky. Ukážeme, že tieto případy nenastanu, tj. že ne-

existuje štvorsten so stranami 2,3,4 (alebo 2,4,5; 3,4,5) a ste-
námi zhodnými trojuholníkmi.

Stačí si uvědomit’, že vo všetkých troch prípadoch by bol
uhol <£ABC = <}:ADC ^ 90°. Ak označíme E střed strany

<23
Kedže

2
AC, tak lahko vidieť, že \BE| = \DE\ ^ \AE\

DEB je trojuholník, musí platit \BE\ + \DE\ > \DB\ = аз.
To však neplatí.

Tým sme dokázali, že pre n ^ 5 každý štvorsten s vlastnos-
ťami a) a b) má za steny rovnoramenné trojuholníky.

Ukážeme teraz, že existuje štvorsten, pre ktorý platí a\ —

4, Я2 = <26 = 5, аз = aA = 6. Nech ABC je troj-= <25

uholník o stranách \AB\ — 4, \BC\ = 5 a \AC\ = 6. Nech
bod D je spoločný bod gulových ploch o stredoch А, В, C
a polomeroch 5, 6, 4. Eahko vidieť, že body ABCD tvoria
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štvorsten, pre ktorý platí \ AD\ = \BC\ = 5, \BD\ — \AC\ = 6,
\CD\ —\AB\ = 4, teda vyhovuje podmienkám a), b) pre
n = 6 a jeho steny nie sú rovnoramenné trojuholníky.

Nedokázali sme, že taký bod D existuje. Prienik gulových
ploch (A, 5) a (B, 6) je kružnica k. Stačí ukázat’, že táto kruž-
nica přetíná gulovú plochu (D, 4). Priemet tejto kružnice do
roviny ABC je úsečka D'D", kde \BD'\ = \BD"\ - 6,\AD'\ =
= \AD"\ = 5 (pozři obr. 23). Stačí ukázat’, že \CD"\ < 4 <
< |CD'|. To sa však zistí jednoduchým výpočtom.

SOUTĚŽNÍ ÚLOHY II. KOLA

A - II - 1

Každý trojúhelník je obsažen v rovnoramenném trojúhel-
niku, jehož obsah je menší než tři poloviny obsahu původního
trojúhelníku. Dokažte.

Riešenie: Uvažujme trojuholník ABC s obsahom P.
Označíme a, b, c dížky jeho stráň ВС, АС, AB. Bez újmy na

В Co

Obr. 24
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všeobecnosti móžeme předpokládat’ a > b > c. Nech A\ je
bod na polpriamke CA, pre ktorý platí |zíiC| = а а A2 je
bod na polpriamke BA, pre ktorý platí \A2B\ — \A2C\ (pozři
obr. 24).

Označíme postupné va, vď, va" výšky trojuholníkov ABC,
A\BC, A2.BC na stranu BC. Z viet o podobnosti trojuholní-
kov vyplývá

bVa

(1)
Va a

cVa

(2)Va" \A2B\ '

Obsah P\ rovnoramenného trojuholníka A\BC je podlá (1)
teda rovný

1 a 1
a. va = —a.va =

b z

a

(3)tp■

3a

V případe — < —, trojuholník A\BC je hladaný trojuholník.

cl 3
Predpokladajme teraz — ^ —. Pre obsah P2 rovnoramenné-

ho trojuholníka A2BC podlá (2) platí

\A2B\
P-2 — —a.Va" = —a. ~.Va =

I Z C

\A-ZB\1 1
.P.

c
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Ak /? je velkost’ uhlu pri vrchole B, tak platí

a

cos /9 = 2|A2B\
a teda

a

(4)P2 =
2c cos

Podlá předpokladu je 6 J- a, teda

c>a — a.

Potom použitím kosínusovej vety dostáváme

a2a2a2a

<
a2 + ~ a2 — j a22c cos P 2ac cos /5 a2 + c2 — b2

1
3

6 2 ‘
~9

Podlá vztahu (4) v tomto případe obsah trojuholníka A2BC
je menší ako tri polovice póvodného trojuholníka.

Obr. 25
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Iné riešenie: Použijeme označenie z predchádzajúceho
riešenia. Uvažujme trojuholník B\AC, kde B\ je taký bod na

polpriamke GB, pre ktorý platí \B\A\ = b. Označíme P3
obsah rovnoramenného trojuholníka B\AC. Eahko vidieť, že
platí (pozři obr. 25)

\BiC\ = 2b cos у
a teda

2b cos у2b cos у
Рз — у ;PlC| . Va

1 P. (5). 27 a.Va —■
a a

Dokážeme, že platí

Pí < М2.P
alebo

Рз< 1/2.P.

To je silnejšie tvrdenie ako tvrdenie úlohy, lebo j/2 <
Dokážeme to sporom. Predpokladajme, že P\ ^ 1/2.P,

P3 ^ ]/2.P. Potom podlá (3) a (5) je

2b

T-l/2’ T Г ^ 1/2cos

a teda

a 2b
y^ 1/2.J/2 =2,— cos

6 a

tj-
1.cos у

To však nie je možné, lebo у je uhol trojuholníka ABC.
Tým je tvrdenie dokázané.

123



A- II -2

Nájdite všetky riešenia sústavy rovnic

1980^1 + 1979X2 + . • . + 2xi979 + X198O — Oj (1)

*1 — *1980 = X2 — X1979 = . . . = X990 — X991 = 1981, (2)

(3)X\ X2 X2 X3 • • • ^989 *^990

Riešenie: Z rovnic (3) dostáváme

Xk + i = x/c + 1 pre k = 1, 2, ..989
a teda

x/c = xi + (k — 1) pre k — 1, 2, ..990. (4)

Podlá rovnic (2) platí

Xk = «1981 -k — 1981 pre k 991, ..., 1980.

Použitím (4) dostaneme

Xk = xi — & —- 1 pre k = 991, ..., 1980. (5)

Ak takto získané výrazy dosadíme do rovnice (1), dostaneme

1980xi + 1979 (xi + 1) + ... + 991 (xi + 989)
+ 990 (xi - 992) + ... + 1 .(xi - 1981) = 0.

Výraz na 1’avej straně móžeme upravit’ postupné takto:
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XI (1980 + 1979 + ... + 1) +
+ 1.1979 + 2.1978 + ... + 989.991 -

- 990.992
= {xi. 1980.1981 + 1 .(1979 - 1981) +
+ 2 (1978 - 1980) + ... + 989 (991 - 993) -
- 990.992 = xi.990.1981 -

.2.989.990
= (xí - 1) 990.1981.

989.993 - ... - 1.1981 =

i 990.992 -

1, lebo pravá strana rovnice (1) jeOddal’ vyplývá, že x\
nula.

Zistili sme teda,že ak čísla x±, .. .,^i98o vyhovujúrovniciam
(1), (2), (3), tak musí platit’

Xk = k pre k = 1, 2, ..., 990
a

k pre k = 991, ..., 1980.Xk =

Skúškou 1’ahko zistíme, že je to skutočne jediné riešenie tejto
sústavy rovnic.

A - II - 3a

Jsou dána přirozená čísla n > 1, k. Konečná posloupnost
7i, /2, ..., I?n uzavřených intervalů má tyto vlastnosti:

a) Pro každý její člen Ij = < щ, vj ) platí, že uj> Vj jsou
přirozená čísla, 1 ^ itj < vj ^ n.

b) Každé reálné číslo leží nejvýše v k jejích členech. Jaké
hodnoty může nanejvýš nabývat číslo m ?
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Riešenie: Označíme st- počet tých intervalov, ktoré majú
lavý koncový bod i. Teda

ТП — Sl + ... + Sn—!•

Ak interval I má 1’avý koncový bod i, tak i + 1 patří do 7.
Teda číslo i + 1 patří aj do intervalov s 1’avým koncovým
bodom i aj do intervalov s pravým koncovým bodom i + 1.
Podlá podmienky b) z toho vyplývá

(1)S( + íť+l ^5= k-

Ak n je nepárne, n — 2p + 1, tak dostáváme

ГП — (Sl + Sz) + ($3 + S-i) + ••• + (S'2p—1 + S‘2p) ^ pk.

Podobné pre n párne, n = 2q z vztahu (1) vyplývá

— (-Si + S-z) + . . . + {szq-2 + ^2e-l) + s2q ^
^ (q — \)k + k = qk.

Teda

(2)k.m

Eahko vidieť, že (2) je najlepšie ohraničenie čísla m, tj.
existuje postupnost’ intervalov h, ..Im s vlastnosťami a)

— k. Stačí totiž položit’:
/7

a b) taká, že m =
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/i= .... =h <1, 2>,

A-41 = • • • = hk = <3, 4>,

nи

>•^[y] ^ 2 -1’2 ~2

Iné riešenie: Každý z intervalov A, ..., Im obsahuje
párne číslo nie váčšie ako n. Párnych čísiel nie vačších ako n

I n ]I — I. Keďže každé smie byť najviac v k intervaloch, takje

m <: k

Podlá riešenia Igora Kříže, žiaka II.D triedy gymnázia W.
Piecka v Prahe 2.

A - II - 3b

Určete množinu, kterou vyplní body všech krychlí, jejichž
tělesová úhlopříčka je obsažena v dané kouli s jednotkovým
poloměrem.

Riešenie: Nech S je střed gule G s polomerom 1. Označí-
me M hladanú množinu.

Nech M' je množina bodov všetkých kociek K, ktorých
tělesová uhlopriečka t je tětivou gule G a štyri vrcholy коску

127



К ležia v rovině určenej tětivou t a bodom 5. Určíme mno-
žinu M' a ukážeme, že M = M'.

Uvažujme kočku ABCDA'B'C D' takú, že AC je tětiva

gule G a body А, А', С, C, S ležia v jednej rovině. Označíme
r = \SC\, a = <£SC'A, p = <£AC C (pozři obr. 26).

Jednoduchým výpočtom zistíme, že

2 cos a

]ЛС'| =2 cos a, |C'C| =
Уз

(lebo poměr |C'C| : \CA\ : \CA\ je 1 : |/2 : ]/3).

Podlá kosínusovej vety dostáváme

г2 = |£С'|2 + |C'C|2 — 2|SC'|.|C'Cj.cos (a + P) =
4 cos2 a 4 cos a

cos (a + p).= 1 +
3 Уз
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1/2C'C I 1
sin /3 =Zrejme platí cos /3

!ЛС' Уз1/3

Potom jednoduchou úpravou máme

У 2
—= cos a — —= sin а I =

4 cos2 a 4 cos a 1
r2 — 1 +

1/3 '}/ 3 1 33

, 2 у 2
-— sin 2 a.
3

= 1

V- * Ф . Ukáže-Najváčšia hodnota r bude pre a = — a to

21/2
me, že M' je gula so stredom S a polomerom 1 •+ — -1

3 '
Ak bed X patří co ЛР, tak X patří do nejakej коску

/ 2 V2
\SC\£ . TedaABCDA B'C'D\ a teda \SX\ 1+

3

2 У 2
1+

3 •
Nech naopak X je bod tejto gule. Ak X patří do gule G,

tak sa 1’ahko zostrojí коска, ktorej tělesová uhlopriečka je
priemer gule G a obsahuje bod X. Teda X patří do M'. Ak
X nepatří do G, tak stačí zvolit’ kočku ABCDA'B'C'D' takú,

1 / 2 V2že SC = I/ 1 + —— a bod X leží na polpriamke SC. Potom

X patří do tejto коску a teda X patří do množiny M'.
Teraz ukážeme, že M' = M. Zrejme M' £ M - priamo

VX patří do gule so stredom 5 a polomerom
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podia definícií. Nech bod X patří do M. Ак X patří do gule G,
tak argumentom rovnakým ako vyššie možno ukázat’, že bod X
patří do M'. Nech bod X nepatří do gule G, ale patří do коску
ABCDA'B'C'D' a tělesová uhlopriečka АС patří do gule.
Rovnolahlosťou s vhodným koeficientem a stredom na úsečke
AC zváčšíme kočku ABCDA'B'C'D' tak, aby uhlopriečka
AC přešla do tětivy gule G. Dostaneme tak коски K', ktorá
obsahuje bod X. Pootočením okolo telesovej uhlopriečky,
ktorá je tětivou gule G a potom okolo středu S gule G dosta-
neme коски К", ktorá obsahuje bod X a štyri vrcholy má
v rovině určenej stredom č> a uhlopriečkou - tětivou. Oddal
vyplývá, že X e M'.

Teda hladaná množina je gula so stredom 5 a polomerom

У
SOUTĚŽNÍ ÚLOHY III. KOLA

A - lil - 1

Najděte všechny reálné hodnoty parametru a, pro které
platí:
nerovnice

(1)x4 + jc3 — 2(a + l)x2 — ax + a2 < 0

má alespoň jedno řešení v oboru reálných čísel.

Riešenie: Lává strana nerovnice je kvadratický trojčlen
v premennej a. Jeho diskriminant je
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D — (—x — 2jí2)2 — 4(jí4 + jí3 — 2jí2) =
= x2 + 4jí4 + 4jí3 — 4jí4 — 4JÍ3 + 8x2 = 9x2.

Kořene trojčlenu sú a\ = я2 + 2 jí, аг = x2 — x. Teda ne-
rovnicu (1) móžeme napísať v tvare

(jí2 + 2jí — a). (jí2 — x — a) < 0. (2)

Všimnime si diskriminanty Di, D? trojčlenov x2 + 2x — a,
x2 — x — a (v premennej x):

Di = 4 + 4a, D2 = 1+ 4a.

( Ak a ^ —1, tak D\ ^ 0, D2 < 0 a pre každé v je x2 + 2x —
— a ^ 0, x2 — x — a > 0. Teda nerovnica (2) nemá reálne
riešenie.

Ak a > 0, stačí zvoliť jí = ]ja. Našli sme aspoň jedno rie-
šenie nerovnice (2).

Ak a > —1, a ^ 0, tak x2 + 2x — a je záporné pre jí

z intervalu (—1 — j/l + a, —1 + j/l + a). Speciálně, pre
x — —1 je jí2 — 2jí — a < 0. Lahko vidieť, že x2 — x —• a

je kladné pre jí = —1 a a > — 1. Teda v tomto případe
nerovnica (2) má reálne riešenie jí = — 1.

Zistili sme, že nerovnica (1) má reálne riešenie pre a > — 1.
Pre a ^ — 1 reálne riešenie nemá.

A- III -2

Nech n^. 1 je prirodzené číslo. Na priamke je daných
n2 + 1 uzavretých úsečiek. Potom platí aspoň jedno z nasle-
dujúcich tvrdení:
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a) Existuje medzi nimi n + 1 úsečiek, ktoré majú neprázdný
prienik.

b) Existuje medzi nimi n + 1 úsečiek tak, že každé dve
z nich majú prázdny prienik.
Dokážte.

Riešenie: Označíme dané úsečky I±} /2, +1. Nech
Ai je 1’avý a Bi pravý koncový bod úsečky li. Bez újmy na
všeobecnosti móžeme předpokládat’, že bod Ai neleží vpravo
od bodu Ai + i, tj. bod Ai buď splývá s bodom Ai +1 alebo
leží od něho vlavo.

Předpokládájme, že neplatí tvrdenie a). Teda každých
n + 1 úsečiek má prázdny prienik. Speciálně, prienik n + 1
úsečiek I(k-i)
Z toho vyplývá, že lavý koncový bod Akn+i úsečky hn+i
nepatří do niektorej z úsečiek /(*-u п+ъ • • -3 hn• Ozna-
číme ju Uk (k = 1, 2, ..., n). Označíme Un+1 = In*+1-

Ukážeme, že každé dve z úsečiek Ui, U%3 ..., Un+i majú
prázdny prienik. Skúmajme dve také úsečky Ui3 Uj3 kde
1 ^ i </ ^ n + 1. Z definície úsečky Uí vyplývá, že bod
Ain+i nepatří do úsečky Ut. Teda pravý koncový bod úseč-
ky Ui je vlavo od Ain+i. Z definície Uj však vyplývá, že
1’avý koncový bod úsečky Uj je niektorýz bodová(;_i)W+i, ...

..., Ajn alebo An*+i3 ak j = n. Kedže i <j3 tak i^j — 1
a teda pravý koncový bod úsečky Ui je vlavo od 1’avého kon-
cového bodu úsečky Uj. Z toho už vyplývá, že Ui n Uj — 0.

1) n+2} • • •) Ikn3 I/cn+1 je prázdny.n+1з

A- Mi -3

V rovině je daný štvorec ABCD so stranou \AB\ = 1.
a) Určte v rovině množinu M, ktorú vyplnia tretie vrcholy
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všetkých rovnostranných trojuholníkov, ktorých dva vrcholy
ležia vo vnútri alebo na hranici daného štvorca ABCD.

b) Vypočítajte obsah množiny M.
Riešenie: Daný štvorec ABCD označíme Q. Nech cpx

označuje otočenie roviny okolo středu X o 60° v kladnom
smere (proti směru hodinových ručičiek) a tpx označuje
otočenie roviny okolo středu X o 60° v zápornom smere.
Kvóli jednoduchosti, označíme Qx = 9ox{Q) obraz štvorca Q
v otočení 9ox.

Ak XYZ je rovnostranný trojuholník (pozři obr. 27),

body X, Y ležia v štvorci Q, tak bod Z je obraz bodu Y pri
otočení cpx a teda Z e Qx. Z toho vyplývá, že hladaná mno-
žina M je podmnožina zjednotení všetkých štvorcov Qx
pre X E Q.

Lahko vidieť, že štvorec Qx vznikol zo štvorca Qa posu-
nutím o vektor AA', kde A' — <pX(A). Trojuholník AA’X
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je rovnostranný, lebo \AX\ = \A'X\ a <^A'XA = 60°. Teda
bod A' je obraz bodu X v otočení Щ. Označíme Q' obraz
štvorca Q v otočení грл- Potom bod A' e Q'.

Z uvedeného vyplývá, že každý bod Z množiny M dosta-
neme z bodu A posunutím o vektor AE + AF, kde E e Qa
a F e Q'. Označíme W množinu všetkých bodov Z, ktoré sú

posunutím bodu A o vektor AE + AF, Е е Qa, F e Q'.
Teda M^W.

Nech Pi, Р‘2з Рз, Pa sú tretie vrcholy rovnostranných troj-
uholníkov ABPi, BCP2, CDP3, DAPa, ktoré ležia mimo
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štvorca Q. Označíme ďalej Ri, Ro, R3, R4 vrcholy rovnostran-
ných trojuholníkov, ktorých jedna strana je uhlopriečka
štvorca O. Nech S je střed štvorca Q (pozři obr. 28).

Ukážeme, že W je podmnožina osemuholníka
P1R1P2R2P3R3P4R4 a tento osemuholník je podmnožina hla-
danej množiny M. Odtial’ a z inklúzie M £ W vyplývá,
že hladaná množina M je uvedený osemuholník.

Uahko vidieť, že Pi = у>л(В), Ri = yu(C), P4 = уа(Р),
R3 = <рл(С)- Štvorec Qa leží v polrovine určenej priamkou
R3(pA(B) obsahujúcou bod S. Ak túto polrovinu posunieme
o vektor AF, F e Q', tak bude podmnožinou polroviny urče-
nej priamkou P3R2 obsahujúcou bod S. Teda množina W je
podmnožina tejto polroviny. Štvorec Q' leží v polrovine urče-
nej priamkou ipa{D)R\ obsahujúcou bod S. Ak štvorec Q'

posunieme o vektor AE, E = Qa, tak bude ležať v polrovine
určenej priamkou R2P2 obsahujúcou bod S. Teda množina W
je podmnožina tejto polroviny. Podobné by sme postupovali
pre dalšie polroviny. Odtial vyplývá, že množina W je pod-
množina osemuholníka PiRiP2R>PsR3PiR4-

Qi, Q3, Q5, Qi budú štvorce, ktoré získáme zo štvorca Q'

posunutím o vektory AA, A<pa(B)> AR3, AP4. Q>, Q4, Qe, Qs
budú štvorce, ktoré získáme zo štvorca Qa posunutím o vek-

tory ARi, Aipa(D), AA, AP\. Zrejme zjednotenie Q\ u
U Q2 U ... U Qs je osemuholník P1R1P2R2P3R3P4R4.

Ukážeme, že každé Q\, i = 1, 2, ..., 8 je podmnožina
množiny M. Nech napr. bod Z patří do množiny Q3. Potom
existuje bod F e Q' taký, že Z je posunutie bodu F o vektor

A<pa(B). Nech X e Q je taký bod, že уа(Х) — F. Eahko
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vidieť, že trojuholník XBZ je rovnostranný. Teda Z e M.
Pre ostatně Qi postupujeme analogicky.

Zistili sme, že množina M je osemuholník
PiRiPoRzPsRsPíRí-

b) Obsah množiny M je zrejme osemnásobok obsahu
trojuholníka PiR±S. Uhol <£P1SR1 je 45°, pre dížky stráň

í 3 21
platí \SPi\ == — + —, \SRi\ = — j/ 3. Teda obsah M je

Уз\ У2
2 j *2 13-sin 45 = 3 + ]/3.»-Ť(

1

2

Spracované podlá riešenia Aí. Englisa, žiaka III.D triedy
gymnázia W. Piecka v Prahe 2.

A- MI -4

Je dáno přirozené číslo n. Dokažte, že existuje prvočíslo p
a posloupnost a\, a?,... přirozených čísel tak, že všechny
členy posloupnosti p + nai, p + na-г,... jsou navzájem
různá prvočísla.

Riešenie: Nech P je množina všetkých prvočísiel. Ozna-
číme Pí, i — 0, 1, ..., n — 1 množinu tých prvočísiel, ktoré
pri delení číslom n dávajú zvyšok i. Potom

P = Po U Pí и ... и Рп-ъ

Množina P je nekonečná, teda existuje i také, že množina
Pi je nekonečná, 0 ^ / < «. Nech p je najmenší prvok
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množiny Pí. Potom každý prvok x e Pí je tvaru x = p + na

pre vhodné a. Nech xi, xz, ..., xn, ... je očíslovanie mno-

X( — p
žmy podlá velkosti, tj. xn < xn+i. Stačí položit at = .

n

A- III -5

Je dané přirozené číslo n. Určte maximálnu hodnotu vý-
rázu xi + X2 + ... + xn za předpokladu, že xi, x-z, ..., xn
sú celé nezáporné čísla vyhovujúce podmienke

x\ + + • •. + хъп In.

Riešenie: Pre n = 1 je maximálna hodnota výrazu xi = 1.
Nech n 2 a předpokládejme, že platí

X^ + ... + X" In.

Najprv si všimneme, že niektoré z čísiel xi, ..., xn musí
byť menšie ako 2. Keby totiž x\ ^ 2, ..., xn ^ 2, tak

x\ + ... + xl ^ 8n > In.

Ak niektoré z čísiel xi, ..., xn je váčšie ako 2, napr. x; > 2,
tak vytvoříme novů n-ticu. Niektoré z čísiel xi, ..., xn musí
byť menšie ako 2, napr. Xj < 2. Položíme

1,Ук = Xk pre k Ф i,j.Уi = Xi + l,yj xj
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Potom

У1 + • • • + Уп — #1 + ... + Xn

a

у] + У] = X1 + x] + 3(xi(xi + 1) — xj(xj — 1)) <
< X? + Xj.

Teda

y\ + • • • +Уп< ln■

Z uvedeného vyplývá, že móžeme předpokládat’ toto: ak
*1 + ... + xn je maximálny, tak všetky čísla xi, ..., xn sú
menšie alebo rovné 2.

Keby všetky xi bolí ostro menšie ako 2, tak (xi + l)3 +
+ X2+...+x^^23+ 1+ ... +1=8 + (n
< ln. Teda výraz x\ + ... + xn nie je maximálny. Z toho
vyplývá, že aspoň jedno z čísiel x\, ..., xn je rovné 2.

Keby niektoré z čísiel xi, ..., xn bolo rovné 0, napr. Xj = 0,
niektoré rovné 2, napr. x; = 2, tak

1)<

l3 + (Xj — l)3 < xf + Xj.(Xi + l)3 + (Xj — l)3

Možeme zhrnúť: ak xi, ..., x» sú také čísla, že výraz
Xi + ... + Xn je maximálny, tak móžeme předpokládat’
1 Xj ^ 2, i = 1, 2, ..., n.

Je potřebné určit’, kol’ko čísiel z w-tice xi, ..., xn móže byť
rovné 2. Nech xi = ... = x* = 2, x*+i = ... = xn = 1.
Potom
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k. З3 + (n — k). 1 ^ In.
Teda

6n

k
7 '

Maximálna hodnota výrazu x± + ... + xn za uvedených
podmienok je

bn
2. = n +n

7

A- III -6

Vo vnútri gule s objemom V je daných 11 róznych bodov.
Potom existujú roviny q, a, ktoré obe obsahujú střed gule
a určujú výseč s objemom V, ktorá neobsahuje vo svojom
vnútri žiadny z daných 11 bodov. Dokážte.

Riešenie: Nech oi je rovina obsahujúca střed gule a aspoň
dva body danej množiny. Rozdělí gulu na dve pologule.
Vnútri jednej z nich sú najviac 4 body. Nech rovina Q2 obsa-
huje střed gule, je kolmá na rovinu qi a obsahuje aspoň jeden
z týchto štyroch bodov. Roviny qi, Q2 vytnú štvrť gule, ktorá
obsahuje vnútri najviac jeden bod. Nech rovina £>3 je kolmá
na 01, 02 a obsahuje střed gule. Rovina £>3 rozdělí uvedenú
štvrť gule na dve rovnaké časti o objeme у V. Jedna z týchto
častí neobsahuje žiaden z daných bodov vnútri.

Iné riešenie: Zrejme stačí nájsť výseč gule o objeme aspoň
у V, ktorá v svojom vnútri neobsahuje žiadny z daných bodov.

Nech rn je rovina obsahujúca střed gule a aspoň dva z da-
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ných bodov. Rozdělí gulu na dve pologule, z ktorých jedna
obsahuje najviac 4 body. Dvoma z nich veďme rovinu m

obsahujúcu střed gule. Nech лз, л^ sú roviny, ktoré obsahujú
zostávajúce dva body a priesečnicu rovin n\ а пг. Roviny
7i2} лз, Л4 rozdelia pologulu na štyri výseče, ktoré neobsa-
hujú vo svojom vnútri žiadny z daných bodov. Podlá Di-
richletovho principu aspoň jedna z týchto výsečí má objem
váčší alebo rovný j V.
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Korespondenční seminář ÚV MO

Cílem korespondenčního semináře je dále zvyšovat úroveň
špičkových řešitelů, kteří nejsou z Prahy ani z Bratislavy
a nemají tak možnost pracovat v tamních seminářích pro

přípravu na mezinárodní МО. К účasti pozvalo předsednictvo
ÚV MO na základě výsledků v MO, návrhů KV MO a indi-
viduálního zájmu asi 50 žáků, z nichž se přihlásilo a zúčastnilo
přes 30. Pravidelně jim byly rozesílány série poměrně nároč-
ných úloh, které měli během 4—5 týdnů vyřešit. Došlá ře-
šení byla pak opravena, ohodnocena a spolu s rozmnoženým
komentářem vrácena účastníkům. Uvádíme znění všech úloh

zadaných v korespondenčním semináři:

1. Teorie čísel

1.1 Posloupnost {<an } je definována předpisem

an = 3(n2 + n) + 7.

Dokažte, že má následující vlastnosti:
(1) Mezi každými pěti po sobě následujícími členy je právě

jeden dělitelný pěti.
(2) Žádný člen není třetí mocninou celého čísla.
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1.2 Dokažte: Pro každé přirozené číslo n je číslo
(w3 — 1) w3(n3 +1) dělitelné číslem 504.

1.3 Najděte všechna prvočísla p taková, že 4p2 4- 1, 6p2 + 1
jsou také prvočísla.

1.4 Platí-li pro celá čísla a, b

2a2 + a = 3b2 + b,

jsou čísla a — b, 2a + 2b + 1 druhé mocniny celých čísel.
Dokažte.1.5Dokažte: Jsou-li xi, X2 kořeny rovnice

x2 + px — 1 = 0,

kde p je liché číslo, pak čísla x}7 + x^7, x{8 + x^8 jsou
celá a nesoudělná.1.6Najděte všechna celá čísla x,y z, pro která platí

x2 + y2 + z2 — 2xyz.1.7Najděte všechna celá čísla x,y, z, t, pro která platí

X+jy + £+ t = xyzt.

2. Geometrické nerovnosti

2.1 Na kruhovém stole s poloměrem 25 leží 143 mincí s polo-
měrem 1. Dokažte, že se na stůl vejde ještě jedna mince
tak, aby se s žádnou mincí nepřekrývala.

2.2 Ve čtvercovém poli o straně 12 je studna a od ní vede síť
zavlažovačích kanálů. Kanály jsou složeny z úseček a každý
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bod pole je od některého vzdálen nanejvýš 1. Dokažte, že
celková délka kanálů je větší než 70.2.3Střed kruhového lesa o poloměru 50 je v počátku a stromy
rostou v bodech s celočíselnými souřadnicemi (kromě po-

1

čátku). Budou-li poloměry stromů menší než , bude
]/2501

ze středu vidět z lesa ven, budou-li poloměry stromů
i

5Q, vidět nebude. Dokažte.
2.4 Ve středu čtvercového pole je vlk a ve vrcholech čtyři psi.

Vlk může běhat po celém poli, psi jen po obvodu. Vlk
přemůže jednoho psa, dva psi přemohou vlka. Psi umějí
běhat víc než l,5krát rychleji než vlk. Dokažte, že psi
mohou udržet vlka v poli.

2.5 Křižník pluje rovnoměrně přímočaře rychlostí v. V oka-
mžiku, kdy ho zpozoruje ponorka, je spojnice obou lodí
kolmá na dráhu křižníku a lodi mají vzdálenost d. Na jakou
nejmenší vzdálenost se může ponorka přiblížit ke křižníku,
má-li maximální rychlost и ?

2.6 Světlomet majáku ozařuje úsečku dlouhou 1 km a otáčí se

jednou za minutu. Jakou rychlostí musí plout loď, aby se
dostala к majáku a nebyla osvětlena ?

2.7 Na okraji kruhového bazénu stojí Petr a uprostřed plave
Pavel. Petr neumí plavat, ale běhá &-krát rychleji než
plave Pavel, ale pomaleji, než běhá Pavel. Uteče Pavel
Petrovi ?

3. Funkcionální rovnice

3.1 Je dáno reálné číslo a funkce /taková, že pro všechna reálná
čísla x platí
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/О + а) = \ + ]//(*) - [/(л:)]2-

Dokažte, že funkce / je periodická. Uveďte aspoň dva pří-
klady funkce /, která splňuje podmínku.3.2Najděte všechny mnohočleny /takové, že pro každé reálné
číslo x platí:

xf(x — 1) = (x — 26)/(x).3.3Najděte všechny spojité funkce g, к nimž existuje spojitá
funkce / dvou proměnných tak, že pro každá dvě reálná
čísla x, platí

g(xy) =f(x,g(y)).3.4Najděte všechny funkce / takové, že pro každá dvě reálná
čísla x, у platí

xf(y) + yf(x) = (x + y)f{x)f(y).3.5Najděte všechny funkce / takové, že pro každá dvě reálná
čísla x, у platí

f(x)f(y) =/(x —y).3.6Najděte všechny funkce / takové, že pro každá dvě reálná
čísla x, у platí

/(x + у) = f{x) + /Су),
/foO =Кх)Ку)-
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3.7 Najděte všechny rostoucí funkce / takové, že pro všechna
kladná reálná čísla x, у platí

f(xy) =/(*) + f(y).

4. Kombinatorická geometrie

4.1 V mnohoúhelníku je sestrojena soustava úhlopříček, které
se neprotínají. Dokažte, že aspoň ze dvou vrcholů nevychá-
zí žádná z těchto úhlopříček.

4.2 V rovině je dána konečná množina bodů, z nichž žádné tři
neleží v přímce. Body postupně spojujeme úsečkami tak,
aby se úsečky neprotínaly; pokračujeme tak dlouho, dokud
to jde. Dokažte, že počet úseček, které se podaří sestrojit,
nezávisí na postupu. V jakých mezích se při daném počtu
bodů pohybuje počet úseček v závislosti na rozložení bodů?

4.3 Konečná množina bodů v rovině má tu vlastnost, že osa

souměrnosti libovolných jejích dvou bodů je osou souměr-
nosti celé množiny.. Dokažte, že množina leží na kružnici.
Platí to i pro nekonečné množiny?

4.4 Najděte všechny takové и-prvkové množiny bodů v rovině,
že vzdálenosti bodů v množině nabývají jen dvou hodnot
a, b. Pro jaká čísla n a jaký poměr a : b taková množina
existuje ?

4.5 Existuje sedmiprvková množina bodů v rovině tak, aby
každé tři její body byly vrcholy rovnoramenného troj-
úhelníka ? Popište všechny šestibodové množiny s touto
vlastností.

4.6 Uvažujme množinu bodů v rovině, z jejíchž libovolných
pěti bodů lze vybrat čtyři tak, aby ležely na kružnici.
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Dokažte: Má-li množina n > 6 bodů, leží aspoň n — 1
z nich na kružnici. Platí to také pro n < 7 ?

4.7 Konečná množina bodů v rovině má tu vlastnost, že na
každé přímce procházející dvěma body množiny leží aspoň
jeden další bod množiny. Dokažte, že množina leží v přím-
ce. Platí to i pro nekonečnou množinu ?

5. Stereometria

5.1 Sú dané priamky a, b, c, z ktorých každé dve sú navzájom
mimobežné a každá z nich je rovnoběžná s danou rovinou q.
Nech M je množina všetkých priečok priamok a, b, c

(tj. množina všetkých takých priamok, z ktorých každá
přetíná každú z priamok a, b, c). Nech me M je 1’ubovol’ná
priečka a nech Mi = m n a, М2 = m n b, Мз — m (Л c.

a) Akú hodnotu má podielový poměr и = (M1M2M3) =

_ IMiMsI
|М2Мз|

orientovanéj úsečky MjM;, tj. kladné alebo záporné
reálne číslo) pre fubovolmi priamku me M ?

b) Majů všetky priamky weM nejakú význačnú vlast-
nosť týkajúcu sa polohy ?

5.2 Nech je daný trojhran Sabc (S - vrchol trojhranu, pol-
priamky a, b, c - hrany trojhranu). Uhly dvojíc hrán troj-
hranu označme a = <£(b, c), — <X(c, a), у = <£(a, 6);
uhol susedný s uhlom a, resp. /3, resp. у označme a', resp.
/3', resp. y\
1. Dokážte:

a) Tri osi uhlov a', /S', у' ležia v jednej rovině q.

(v tejto úlohe |М$М/| znamená dížku
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b) Tri osi uhlov a, /?, ý (resp. a, /?', y, resp. a', /?, y)
ležia v jednej rovině q'.

c) Rovina q (resp. q) zviera s hranami a, b, c zhodné uhly.
2. Dokážte: Tri roviny a, z, £, prechádzajúce postupné
osami uhlov a, /?, y, pričom a _[_ (6, c), z J_ (c, a), i X (a, b),
sa pretínajú v jednej priamke p, ktorá je kolmá na rovinu q
z časti 1.

5.3 Nech z n bodov Ai, A23 ... , An (n ^ 3) priestoru žiadne
štyri neležia v jednej rovině. Nech q je rovina róznobežná
s každou z priamok AíAí+i (i = 1, ... , n\ An+i — A{).
Označme AíAí+i n q = Kí,í+1.

a) Dokážte: П (AíAí+iKíj+i) = 1.
»=1

b) Preverte platnost’ obráteného výroku:
Ak Ki'i+i (i = I, ..., n) sú body priamok AiAi+1 (An+1 =
= A{), pre ktoré platí

П (AiAi+iKij+i) — 1,
i= 1

ležia všetky body Kiti+i v jednej rovině.
Sformulujte prípadnú závislost’ platnosti tohto výroku

od čísla n.

5.4 V rovině alebo priestore třeba najsť n bodov A1, A2, ..., An
(n g N) tak, aby ani jeden z uhlov <yAiAjA/c (i, j, k =
= 1, 2, ..., n; i Ф j ф k Ф i) nebol tupý.

Zistite všetky prirodzené čísla n, pre ktoré je úloha rieši-
telhá.

a) v rovině;
b) v priestore.

(Tvrdenie odóvodnite).
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5.5 Nech sú dané úsečky AB, CD. Nech M je množina všetkých
priamok m, obsahujúcich spoločnú hranu EF každých
dvoch štvorstenov ABEF, CDEE, pre ktoré sa poměr ich
objemov rovná danému (kladnému) reálnému číslu k.
Nájdite množinu M! všetkých takých priamok m e M, kto-
ré prechádzajú daným bodom S.

5.6 a) Ako třeba umiestniť na gulovej ploché n bodov
A i, An (n = 2, 3, 4, 5, 6), ak najmenšia zo vzdia-
leností \AiAj\ (i, j = 1, n; i Ф j) má mať maxi-
málnu možnú hodnotu ?

b) Ako třeba umiestniť na gulovej ploché s jednotkovým
polomerom najvyšší možný počet bodov Ai(i —

= 1, 2, ...), ak pre každú vzdialenosť dij = \А%А^\
(i ф ]) platí:

1. dij ^ j/ 2,
2. dij > ý2.5.7V priestore je dané otáčanie q s osou otáčania r.

1. Vyjádříte otáčanie q ako kompozíciu dvoch otáčaní
a, a' s osami s, s' za predpokladov, že
a) uhly (orientované) otáčaní cr, a' sú navzájom zhod-

né, a

b) osou otáčania a je daná priamka, ktorá je roznobežná
s priamkou r.

2. Nájdite množinu všetkých osí s' otáčania a' za pod-
mienky, že os s otáčania a prebieha pevnou rovinou £.
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22. MMO

Dvaadvacátá mezinárodní matematická olympiáda (MMO)
se konala ve dnech 8.—20. července 1981 v USA - poprvé
mimo evropský kontinent. Jejím hlavním pořadatelem byla
americká vědecká společnost The Mathematical Association
of America, hlavním dějištěm pak Georgetown University ve

Washingtonu.
Olympiády se zúčastnily delegace z 27 zemí všech pěti konti-

nentů - z Austrálie, Belgie, Brazílie, Bulharska, Českosloven-
ska, Finska, Francie, Holandska, Izraele, Jugoslávie, Kanady,
Kolumbie, Kuby, Lucemburska, Maďarska, Mexika, NSR,
Polska, Rakouska, Rumunska, Řecka, SSSR, Švédská, Tunisu,
USA, Velké Británie a Venezuely. Z obvyklých účastníků tedy
chyběly tentokrát NDR a Vietnam, poprvé se zúčastnily
Austrálie, Kanada, Kolumbie, Mexiko, Tunis a Venezuela.

Přes jednoroční přestávku - v roce 1980 se MMO nekonala -

se podařilo navázat na dlouholetou tradici těchto mezinárodních
soutěží mladých matematiků a opět MMO uspořádat v obvyklé
podobě; nedošlo к žádným podstatným změnám ani v organi-
zaci, ani v náplni soutěže. Počet soutěžících byl opět rekordní -

185 žáků středních škol tu změřilo své síly a schopnosti.
Jako obvykle byla MMO rozdělena na přípravnou fázi

(9. —12. července), vlastní soutěž (13. a 14. července) a hodnoce-
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ní výsledků a závěr (14.—19. července). Jednotlivé delegace
přicestovaly do New Yorku většinou už ve středu 8. července.
Vedoucí delegací, kteří tvoří mezinárodní porotu MMO, se

spolu s předsedou poroty 22. MMO prof. S. L. Greitzerem
z Rutgers University přesunuli 9. července do města Frede-
ricksburg ve státě Virginia, aby tam - přísně izolováni od sou-
těžících žáků - vybrali a připravili soutěžní úlohy. Zástupci
vedoucích a žáci byli mezitím ubytováni v areálu Rutgers
University ve městě New Brunswick ve státě New Jersey, kde
měli volno na odpočinek po cestě zpestřené výletem a prohlíd-
kou New Yorku.

Mezinárodní porota ubytovaná v Mary Washington College
ve Fredericksburgu zatím pilně pracovala. Z materiálu při-
praveného organizátory a obsahujícího 19 úloh navržených
zúčastněnými zeměmi postupně vybrala tuto šestici soutěžních
úloh:

1. Je-li P vnitřní bod daného trojúhelníku ABC, označme
po řadě D, E, F paty kolmic spuštěných z P na přímky BC,
CA, AB. Najděte všechny body P, pro které je součet

\BC | \CA\ \AB\
]PĎ\ + \PĚ\ + jPF|

minimální.
2. Nechť n, r jsou celá čísla, 1 ^ r ^ n. Utvořme všechny

r-prvkové podmnožiny množiny {1, 2, ..., я}; z každé z nich
vezmeme její nejmenší prvek a označíme F(n, r) aritmetický
průměr všech takto získaných čísel. Dokažte, že

n + 1
F(n, r) =

r + 1’
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3.Určete největší hodnotu výrazu m2 + n2, kde man jsou
celá čísla, 1 ^ m ^ 1981, 1 ^ w ^ 1981, taková, že

(и2 — mn — w2)2 = 1.

4. a) Pro které hodnoty w, n > 2, existuje и po sobě jdou-
cích kladných celých čísel tak, že největší z nich je dělitelem
nejmenšího společného násobku ostatních n-Л čísel?

b) Pro které n existuje právě jedna taková w-členná po-

sloupnost ?
5. Tři shodné kružnice mají společný bod O a leží uvnitř

daného trojúhelníku ABC. Každá kružnice se dotýká dvou
stran tohoto trojúhelníku. Dokažte, že střed kružnice vepsané
trojúhelníku ABC, střed kružnice opsané trojúhelníku ABC
a bod O leží na jedné přímce.

6. Funkce f(x,y) splňuje

(1)/(0,jO =y + i
/O + o) =/(*, i),

J\X + l,y + 1) =/(*,/(* + 1,3>))
pro všechra celá nezáporná x,y. Určete/(4,1981).

Vybrané úlchy pocházely z návrhů, které předložily Velká
Británie, NSR, Holandsko, Belgie, SSSR a Finsko.

Výběr soutěžních úlch na МАЮ není lehkou záležitostí
a může velmi podstatně ovlivnit další průběh soutěže. Porota
je při výběiu cmezera na předložené návrhy a konečný výsle-
dek bývá určen řadou kompromisů. Cílím je ovšem nalézt
vyvážený soubor šesti úlch, který by přesvědčivě prověřil
znalosti a schopnosti soutěžících, aniž by zároveň předem zne-

výhcdňoval kteroukoliv skupinu účastníků.

(2)
(3)
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O šestici soutěžních úloh vybraných pro 22. MMO lze říci,
že každá z úloh sama o sobě je dobrá a pro MMO vhodná,
avšak v celém souboru zjevně chybí alespoň jedna opravdu
obtížná úloha, jejíž vyřešení vyžaduje podat skutečně špičkový
výkon. Porota si byla této skutečnosti vědoma, což vyjádřila
mj. i tím, že na rozdíl od dosavadní praxe ohodnotila všechny
úlohy stejným počtem sedmi bodů; celkem tedy mohl každý
soutěžící získat maximálně 42 body.

Jak ukázaly výsledky soutěže, byly úlohy pro 22. MMO
skutečně příliš snadné. I když soutěžícím z některých zemí
s menšími zkušenostmi z MMO dělaly i tyto snadné úlohy
potíže, žáci ze zemí, kde matematické olympiády již mají tradici
a kde se s mladými talenty soustavně a cílevědomě pracuje,
dokázali většinou rozřešit v stanoveném čase (4 ~ hodiny na
každou trojici úloh) všechno nebo takřka všechno.

Porota na MMO rozhoduje hlasováním, к přijetí návrhu
stačí prostá většina. Na 22. MMO přijelo mnoho delegací vůbec
poprvé a tito »nováčci« měli ovšem tendenci udržet obtížnost
soutěže v »přijatelnýcn« mezích. To spolu se skutečností, že
porota měla к dispozici jen texty úloh bez jejich podrobného
rozboru, snad může vysvětlit, proč byla soutěž tak snadná.

Výběr úloh byl skončen již 10. července, zbývající čas pří-
prav zabraly detailní formulace, překlad textů do národních
jazyků soutěžících žáků a rozmnožení potřebného počtu exem-

plářů. Všechny tyto přípravy byly ukončeny v neděli 12. červen-
ce. Týž den se již také soutěžící a zástupci vedoucích přestěho-
váli z Rutgers University do areálu Georgetown University
ve Washingtonu D. С. V úterý 14. července sem přesídlila
i porota z Fredericksburgu.

Slavnostní zahájení 22. MMO proběhlo v pondělí 13. červen-
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ce dopoledne ve velké aule univerzity za účasti federálního
ministra pro výchovu T. H. Bella a zástupců pořádajících
institucí a georgetownské university. Hned poté následovala
prvá část soutěže (řešení první trojice úloh); druhá část pro-
běhla dopoledne 14. července.

Tím skončila pro soutěžící žáky pracovní část jejich pobytu -

ve zbývajících dnech se mohli věnovat prohlídkám města
Washingtonu a jeho pamětihodností i návštěvě kulturních pod-
niků, které pro ně pořadatelé připravili. Dvou z nich - před-
stavení hry Camelot v divadle Harlequin a vystoupení ho-
landské baletní skupiny v amfiteátru Wolf Trap - se mohli
zúčastnit také členové poroty, kteří jinak měli v těchto dnech
plné ruce práce s opravou žákovských řešení, s jejich hodnoce-
ním a s koordinací.

Koordinaci hodnocení úloh prováděla skupina dvaceti koor-
dinátorů vybraných z řad amerických vysokoškolských odbor-
níků. Byli vesměs na vysoké odborné úrovni a uplatňovali ná-
ročná hlediska nejen co do věcné správnosti řešení, ale také při
posuzování formální stránky, tj. přesnosti a úplnosti formulací
všech tvrzení a jejich důkazů. Tato zvýšená přísnost byla ovšem
jen zákonitým důsledkem snadnosti úloh a zároveň i relativně
účinným prostředkem, jak zabránit přílišné kumulaci úspěš-
ných řešitelů na předních místech výsledného pořadí. I tak
se celkem 26 žákům podařilo projít soutěží beze ztráty bodu.

V pátek 17. července byly práce s koordinací dokončeny a po

vyřešení některých sporných otázek mohla porota schválit de-
finitivní výsledky soutěže. Na sobotním zasedání pak jednala
porota o cenách. Rozhodla, že na 22. MMO nebudou uděleny
žádné zvláštní ceny za originální a elegantní řešení, ačkoli
koordinátoři předložili řadu návrhů. Při dalším rozhodování -
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o hranicích pro udělení prvních, druhých a třetích cen - sehrály
určitou roli i otázky prestižní. Ačkoliv byly úlohy snadné, po-
rota cenami nijak nešetřila. Hned v úvodu jednání rozhodla, že
první cenu dostane nejen 26 žáků s plným počtem 42 bodů, ale
také dalších 10 žáků s 41 body - celkem tedy 36 prvních cen.
V porovnání s malým počtem prvních cen udělených na 20.
a 21. MMO je to zjevný odklon od dosavadních zvyklostí.
Také obvyklý poměr 1:2:3 počtu prvních, druhých a třetích
cen nebyl tentokrát dodržen: druhých cen udělila porota 37
(za výkony ohodnocené 34—40 body), třetích cen pak 30 (za
26—33 bodů). Celkem 103 soutěžící (tj. 55,7 % z celkového
počtu) získali na 22. MMO některou z cen.

Vzhledem к tomu, že mnoho zemí vyslalo na 22. MMO de-
legaci s méně než osmi žáky, nelze tentokrát dost dobře porot7-
návat družstva podle celkového počtu bodů. Výsledky i počty
získaných cen jsou patrny z připojené tabulky.

Na svém posledním zasedání v neděli 19. července dopo-
ledne jednala porota o budoucnosti MMO. Byla informována
o návrhu ICMI na zřízení komise pro MMO. Většina členů
komise navržených ICMI byla ostatně na 22. MMO osobně
přítomna, komise se tedy ihned sešla - za účasti některých
dalších členů poroty. Bylo dohodnuto, že komise má zatím
fungovat jako informační centrum a poradní orgán a nemá
samozřejmě pravomoc rozhodovat o organizaci MMO. Její
vztah к ICMI nebyl zatím plně specifikován. Bude záležet
na organizátorech příštích MMO, jak dalece budou přihlížet
к doporučením komise. Zatím byla přednesena dvě podstatná
doporučení: udržet tradici pořádat MMO každý rok a snížit
počet žáků v družstvu z osmi na šest; toto snížení bylo motivo-
váno stále rostoucím počtem delegací. Zda se tato doporučení
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Výsledky 22. МАЮ

Země Součet bodů žáka č. Celkem Počet
cen

1 2 3 4 5 6 7 8 I.II. III

Austrálie

Belgie
Brazílie

Bulharsko
Československo 38 38 40 42 32 — — —

27 41 17 10 31 9 38 33

29 15 42 26 8 29 42 18

25 25 37 36 27 16 17 36

42 32 25 31 16 29 - -

26 31 42 32 23 37 35 20

42 25 23 16 35 42 37 29

14 13 13 11 1 13 14 14

25 34 22 12 19 9 14 6

22 13 12 10 17 12 8 28

37 24 25 38 6 3 3 3

42 23 21 14 17 13 21 21

122 0 0 1

139 0 2 0

172 1 0 0

287 2 3 3

190 1 3 1

206 1 1 3

209 2 0 3

219 0 3 1

175 1 0 3

246 1 2 3

249 2 2 1

93 0 0 0

141 0 1 0

42 1 0 0

164 3 1 0

12 0 0 0

312 5 2 1

259 2 3 1

290 4 2 1

136 0 2 2

104 0 0 0

230 3 2 1

207 0 1 3

32 0 0 0

314 4 3 1

301 3 4 1

64 0 0 0

32 42 40 34 28 37 33 41

Finsko
Francie

Holandsko
Izrael

Jugoslávie
Kanada
Kolumbie

Kuba

Lucembursko
Maďarsko
Mexiko ’
NSR

Polsko 1
Rakousko

Rumunsko
Řecko
SSSR
Švédsko
Tunis

USA

Velká Británie

Venezuela

42

41 42 41 40 - - - -

3 4 2 2 1 - - -

41 39 37 42 42 41 28 42

35 18 41 36 24 28 35 42

42 41 41 36 37 42 21 30

36 35 33 32 - - - -

f 24 11 13 13 15 2 12 14
42 33 36 35 42 42 - -

22 '20 17 32 32 28 38 18

14 18 ----- -

42 42 42 39 42 35 39 33

42 38 41 36 27 37 38 42

6 3 9 4 14 4 23 1
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uplatní v praxi, uvidíme na příští MMO, která se bude konat
v Maďarsku.

Slavnostní zakončení 22. MMO a s ním spojené rozdílení
cen se konalo v neděli 19. července odpoledne ve velkém sále
budovy National Academy of Science ve Washingtonu. Žáci,
kteří získali některou z cen, zde dostali diplomy a věcné dary
(mj. kapesní kalkulačky firmy Hewlett-Packard, digitální ho-
dinky). Program byl zpestřen kulturní vložkou (dvě klavírní
sóla přednesená dvěma soutěžícími z USA) a občerstvením.

Následující společná večeře všech účastníků MMO byla již
ve znamení loučení. Některé delegace odjížděly na newyorské
letiště už během noci, ostatní opustily Washington v pondělí
20. července dopoledne.

Československá účast na 22. MMO byla zpočátku poznáme-

nána nejistotou - dlouho se rozhodovalo o tom, zda a v jakém
složení československá delegace na 22. MMO pojede, а ко-
nečné rozhodnutí padlo až relativně nedlouho před odjezdem.
Proto také Československo tentokráte neposlalo návrhy úloh
pro soutěž.

Delegace ve složení
vedoucí delegace:
dr. František Zítek, CSc., místopředseda ÚV MO,
členové delegace:
Jozef Bednárik,
Petr Couf,
Igor Kříž,
Jan Nekovář,
Jiří Sgall,

4. r. GAM, Bratislava,
3. r. GWP, Praha 2,
2. r. GWP, Praha 2,
4. r. GWP, Praha 2,
2. r. GWP, Praha 2,

odletěla z technicko-ekonomických důvodů až ve čtvrtek 9. čer-
vence, tedy o den později, než předpokládal program 22. MMO.
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Žáci si sice stačili po cestě trochu odpočinout, ale vedoucí do-
razil do Fredericksburgu na zasedání poroty právě v okamžiku.*
kdy zde končilo jednání o výběru úloh, takže už nemohl vý-
běr nijak ovlivnit.

V dalších dnech už byla účast čs. delegace plně ve shodě
s plánovaným programem. Poněvadž tentokráte nebyl v delegaci
žádný zástupce vedoucího, byli žáci po celou dobu izolace po-

roty, tj. až do 14. července, zcela odkázáni na péči přidělené
průvodkyně, jíž byla slečna Mary T. Barrettová, studující
mikrobiologie na Rutgers University. Ta se o ně starala velmi
pečlivě po celou dobu jejich pobytu v USA a po této stránce
nedošlo к žádným komplikacím.

Výsledky, jichž čs. žáci dosáhli v soutěži, jsou obsaženy
v následující tabulce:

Body získané
za úlohu č.

1 2 3 4 5 6
Jméno žáka celkem cena

J. Bednárik
P. Couf

J. Kříž
J. Nekovář
P. Sgall

II.7 7 7 7 3 7

7 7 3 7 7 7

7 7 7 6 6 7

7 7 7 7 7 7

0 7 7 7 5 6

38

38 II.

40 II.
42 I.

III.32

Zcela bezchybný byl - podobně jako už na 21. MMO v Londý-
ně v r. 1979 - výkon Jana Nekováře, který získal první cenu
za plný počet bodů. Další tři žáci získali druhé' ceny, když
rovněž vyřešili - jen s menšími závadami - všech šest úloh
soutěže. Pátý žák, který ztratil body především proto, že nevy-
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řešil první úlohu, získal alespoň třetí cenu. Nikdo z nich se tedy
nevracel bez získané ceny, což lze nepochybně hodnotit jako
úspěch. Je jen škoda, že se nemohlo 22. MMO zúčastnit osm
žáků - výsledky třetího kola naší MO nasvědčovaly, že bylo
z čeho vybírat.
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Řešení úloh 22. MMO

1. Dokážeme, že jediným bodem minimalizujícím součet

| BC\
s = ——

\CA\ \AB\
\PE\ ~ \PF\

+
PD

je střed kružnice vepsané trojúhelníku ABC. К tomu cíli vyná-
sobíme výrazem

\BC\ . IPD + ICAl . \PE\ + \AB\ . \PF\,

který je roven dvojnásobnému obsahu trojúhelníku ABC a ne-
závisí tedy na volbě bodu P. Dostaneme tak výraz

\PD\ IРЩ
\PE\ + \PD\

m |PF|\
\PF\ + \PD\ / *

+ *v= \BC\2 + \CAr + \AB\2 + \BC\.\CA\

) + \AB\.\BC\[
PE PF\
\PF + \PĚj,+ \CA\.\AB\

Pro každé kladné reálné číslo x platí

1
^2,x +

x
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přičemž rovnost nastává právě tehdy, jestliže x = 1; toto
tvrzení snadno vyplývá ze zřejmé nerovnosti (я — l)2 ^ 0.

Odtud již vidíme, že výraz V - a tedy také součet S, který je
jeho konstantním násobkem - je minimální právě tehdy, jest-
liže \PD\.= \PE\ = \PF\, tj. jestliže bod P je stejně vzdálen
od všech tří stran trojúhelníku ABC, tj. je-li P středem kružni-
ce vepsané trojúhelníku ABC.

2. Počet všech r-prvkových podmnožin množiny {1,2,... ,n}

je ovšem (:) . Pro k = l, 2, ..., n — r + 1 určíme počet těch

r-prvkových podmnožin, jejichž minimální prvek je právě
číslo k. Tento počet je roven počtu způsobů, jimiž lze к mini-
málnímu prvku k vybrat zbývajících r — 1 prvků z množiny

{k + 1, k + 2, ..., n), a je tedy dán číslem

F(n, r) odtud dostáváme vyjádření
(::!) . Pro

1 n—r+1

F(n, r)
n k=l

r

Dále použijeme vytvořující funkce, resp. binomickou větu.
Platí

OO

( *)(-!)* =x)~r = Xr_1 . 2
k = 0

JCr-1(l

IX-,)
00

r + k 1
= x*--1 2 xk = ХШ^

irk = 0
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со

(—\У'х1' =я(1 — л:)-2 = х 2
л=о

v ík= х 2
ос

+ 1
Хк = 2 WJt™ ,

m = l1Л = О

хг(1 — х)~г~2 = хг У | Г^ ^ (—1)кхк =

.1= 2 (
*=о V

г + Л + 1
г + 1

ЯА' =

Poněvadž рак яг_1(1 — я)~г х (1 — х)-2 = xr (1 — x)~r~2} do-
stáváme porovnáním koeficientů při stejných mocninách xm
podle vzorce pro násobení řad rovnost

n-r+1
tn

2 k
-k

r — 1k = i

a tedy

n + 1
r + 1 n + 1

=

r + Г^(и3г) -
n

r

což jsme měli dokázat.

3. Označme M množinu všech uspořádaných dvojic (n, m)
přirozených čísel vyhovujících vztahu

(1)(n2 — мг — m2)2 = 1.
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Nejprve si dokážeme čtyři pomocná tvrzení A - D:A.Pro (я, m) e M platí n^m.
Skutečně, kdyby bylo я < m, bylo by

я2 — nm — m2 < n2 — m2 < 0,
tj. n2 — nm — m2 ^ —2,

a tedy (и2 — nm — m2)2 > 4

ve sporu s (1).B.Pro (ш, m) e M platí m = 1.
Z (1) totiž plyne

1 = (m2 — m2 — m2)2 = rrů ,

ale m je přirozené číslo, a proto m — 1.
C. Jestliže (я, ni) e Ař, pak také (я + яг, я) e Af.

Skutečně platí
[(я + яг)2 — я(я + гя) — я2]2 = (я2 + 2яяг + яг2 —

— я2 — яяг — я2)2 = (—я2 + яяг + яг2)2 =
- (я2 — яяг — яг2)2 = 1.

D. Jestliže (я, яг) е AÍ, я > 1, potom také (яг, п — т) е М.
Skutečně, z nerovnosti я > 1 vyplývá podle В a A nerovnost
я > яг, takže я — яг je přirozené číslo. Avšak [яг2 — яг(я — яг) —
— (я — яг)2]2 = (яг2 — яяг + яг2 — я2 + 2яяг — яг2)2 =
= (—я2 + яяг + яг2)2 = (я2 — яяг — яг2)2 = 1, a tedy
(яг, п — т) е М.

Budiž nyní posloupnost tzv. Fibonacciových čísel,
definovaná vztahy

(2)Fi = F2 = 1,

(3)Fjc+2 = F/c+1 + Fjc,

Dokážeme nyní toto tvrzení:

Л = 1, 2, 3, ...
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Jestliže (n, ni) e M, potom existuje přirozené k takové,
že m = Fk a n = Fk+i.

Důkaz provedeme indukcí. Tvrzení zřejmě platí pro n = 1.
Podle A je totiž také m = 1, a tedy podle (2) m = F\, n = F2,
tzn. k = 1.

Předpokládejme nyní, že tvrzení platí pro všechna N,
kde iV je přirozené číslo; dokážeme, že platí i pro všechna
rr^L N + 1. Stačí ovšem vyšetřit případ n = N + 1 > 1.
Podle А а В je pak n > m, tj. m ^ 2V; zároveň podle D je
(m, n — ni) e M. Podle indukčního předpokladu existuje
přirozené k takové, že n — m — F/c, m = Fk+i. Podle (3)
však potom

m = F/c + F/c+i = Fk+2.n = m + n

Abychom maximalizovali součet m2 + n2, musíme vzít
maximální k takové, že platí m = F* 5S 1981, n = Ffc+i ^
^ 1981. Přímým výpočtem členů posloupnosti {Fk} zjistíme,
že Fie = 987, F17 = 1597, Fis = 2584, takže musíme zvolit
m - 987, n — 1597 a hledané maximum bude 9872 + 15972 =

= 3 524 578.

4. Nechť posloupnost přirozených čísel

(1)a — n + 1, a — n + 2, ..., a — l, a

vyhovuje podmínkám úlohy, tj. číslo a je dělitelem největšího
společného násobku čísel a — n + 1, a — n + 2, ..., a — 1.
Vyjádříme-li číslo a ve tvaru
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kde pj (j = 1, ..r) jsou navzájem různá prvočísla pi<.
<p-2< ■ • • < pr a y.j > 0 (/ = 1, 2, ..., r), znamená daná
podmínka, že pro každé j (/= 1, 2, ...,r) musí existovat
m (rn = 1, 2, ..и — 1) takové, že pf dělí číslo a — m.
Poněvadž p*1 dělí číslo a, znamená to, že je nutně pf ^ n — 1
pro všechna j (j = 1, 2, ..., r).

Kdyby bylo r — 1, tj. л = muselo by být a —

= pí1 ^ n — 1, což je spor, je tedy r ^ 2. Musí tedy existo-
vat alespoň dvě různá prvočísla menší než и, tj. musí být
n ^ 4.

Nyní dokážeme, že pro každé n ^ 4 existuje posloupnost (1)
vyhovující podmínkám úlohy a že pro n ^ 5 existují vždy
alespoň dvě takové posloupnosti.

Je-li n — 4, musí být p*1 ^ 3, = 3, tedy nutně r = 2,
pi = 2, pz = 3, ai = аз = 1, takže jedinou posloupností
daných vlastností je čtyřčlenná posloupnost

(2)3, 4, 5, 6,

která skutečně všem podmínkám úlohy vyhovuje.
Existují dvě pětičlenné posloupnosti

(3)2, 3, 4, 5, 6
a

(4)8, 9, 10, 11, 12

vyhovující podmínkám úlohy.
Je-li n ^ 6, označme r, s, t přirozená čísla splňující nerov-

nosti

2» ^ n — 1 < 2r + l,
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3 s <: n — 1 < 3 s + !,

5ť ^ и — 1 < 5l +x.

V posloupnosti (1) lze pak volit buď a — 2r.3s, anebo a =
= 2r.5f. Skutečně je pak

n — 1 < 2r + 1 < 2' .3 ^ 2r.3s = a,

resp.

и - 1 < 2r + i< 2r.5 ^ 2r.5ř = a,

takže и-členné posloupnosti (1) obsahují vesměs přirozená
čísla a vyhovují podmínkám úlohy.

5. Každá z daných tří kružnic (navzájem různých) se dotýká
jiné dvojice stran trojúhelníku ABC. Označme Sa, Sb, Sc
středy těchto kružnic, a to tak, aby Sb ležel na ose úhlu ABC,
Sc na ose úhlu BCA a Sa na ose úhlu BAC. Potom 5jj5c||
||Z?C, SúScII-^C, SaSb\\AB. Osy úhlů trojúhelníku ABC
jsou zároveň osami úhlů trojúhelníku SaSbSc a oba troj-
úhelníky, ABC a SaSbSc, mají týž střed kružnice vepsané,
označme ho S. Trojúhelník ABC je obrazem trojúhelníku

\SA\
SaSbSc při homotetii o středu S a koeficientu x =

\SSA\
\SB\ |SC|

\SSb\ |55c(
Bod O je stejně vzdálen od všech tří bodů SU, Sb, Sc, je

to tedy střed kružnice opsané trojúhelníku SaSbSc. Jeho
obrazem při homotetii (S, x) je ovšem střed kružnice opsané
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trojúhelníku ABC a je jen přirozené, že střed homotetie S,
bod O a jeho obraz leží na jedné přímce.

6. Pro x = 0 plyne z (3) a (1) rovnost

Khy + i) =/(o,/(i,jO) =/(1,д0 + i (4)

pro každé у ^ 0. Avšak podle (2) a (1) je

/(1, 0) =/(0, 1) = 2. (5)

Z (5) a (4) pak plyne

Ю-,У) =У + 2 (6)

pro všechna у ^ 0.
Pro x = 1 plyne z (3) a (6) rovnost

f(2,y + 1) =f(2,y) +2. (7)

Podle (2) a (6) je pak

/(2,0)=/(l, 1) = 3. (8)

Ze (7) a (8) dostáváme tak

(9)f(2,y) = 2_y + 3

pro všechna 3; ^ 0.
Pro л: = 2 plyne z (3) a (9) rovnost
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/(3, У + 1) =f(2,f(3,y)) = 2/(3, jy) + 3, (10)

kdežto (2) a (9) dává

/(3, 0) =/(2, 1) — 5 — 8 — 3. (И)

Z (10) a (11) pak plyne

К\у)=2» + *-Ъ (12)

pro všechna у ^ 0.
Položme nyní g(y) = /(4, jy) + 3 pro jy = 0, 1, 2,... Platí

*(0) = 3+ /(4,0)=3+/(3, 1) = 16. (13)

Pro * = 3 pak (3) a (12) dává

g(y + 1) =f(4,y + 1) + 3 = /(3, /(4, jy)) + 3 =
= 2/<4-v)+3 _ 3 + 3 = 2^(v),

takže v důsledku (13) bude

.2

g(y) = V (celkem у + 3 dvojek),
a tedy

/(4, 1981) - 22 ' - 3 (1984 dvojek).
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