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Predhovor

Milí mladí pria telia a spolupracovníci
v matematickéj olympiádě!

Uzatvárame opáť další ročník nasej súťaže, ktorý sa konal
počas školského roka 1982/83. Tradičná ročenka, ktorú
vám týmto předkládáme, obsahuje ako zvyčajne prehlad
o organizácii a výsledkoch 32. ročníka MO i všetky súťažné
úlohy s riešeniami. Podrobnejšie ako obvykle sa zaoberáme
prehladom podujatí a pomocných akcií organizovaných na

pomoc riešitelom MO v jednotlivých krajoch. Dozviete sa
okrem iného, že takmer vo všetkých krajoch sa už ujala
myšlienka poriadania krajského korešpondenčného seminára
uskutočňováného podl’a vzoru celoštátneho korešpondenčného
seminára, ktorý sa konal po prvý raz v školskom roku 1974/75
pre vybraných úspěšných riešitelov MO z celej ČSSR.
Nemóžu tu preto chýbať ani texty úloh 9. ročníka koreš-
pondenčného seminára ÚV MO ako zdroj cenného úloho-
vého materiálu pre krajské sústredenia, semináře i krúžky
MO na školách. Medzi jeho úspěšných riešitelov patřili tiež
členovia družstva, ktoré našu vlast’ reprezentovalo na
24. medzinárodnej MO v Paříži, kde úspěšně nadviazalo na

výsledky dosiahnuté našimi žiakmi na niekolkých před-
chádzajúcich MMO. Nevrátilo sa bez prvej ceny a v neofi-
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ciálnom hodnotení 32 krajin zastúpených na ušlachtilom
zápolení vo Francúzsku obsadilo velmi pěkné 8. miesto.
O priebehu, úlohách i výsledkoch 24. MMO sa taktiež
podrobnejšie dočítáte na dalších stránkách.

V tejto súvislosti stojí určíte za zmienku, že dálšia kápi-
tola medzinárodných súťaží v riešení náročných matematic-
kých úloh sa bude písať u nás. Je to o to významnéjšie, že to
bude kapitola jubilejná, pretože v júli 1984 sa bude konat’
v Prahe, hlavnom meste socialistického Československa, už
25. MMO. Sme přesvědčení, že prinesie úspěch nielen spo-

ločenský a organizačný, ale potvrdí tiež správnost’ cesty
nastúpenej u nás v posledných rokoch v cieíavedomej starost-
livosti o matematické talenty a získá dalších priaznivcov pre
matematickú olympiádu medzi žiakmi, ich rodičmi, učitelmi
i ostatnými školskými pracovníkmi ako aj medzi širokou
verejnosťou u nás doma i v zahraničí.

Prichádza nám však súčasne vyslovit’ velké polutovanie
nad tým, že tohto sviatku školskej matematiky a matematickej
olympiády sa nedožil bývalý dlhoročný předseda ÚV MO,
niekolkonásobný účastník MMO vo funkcii vedúceho česko-
slovenskej delegácie, hlavný autor celého radu ročeniek MO
doc. Jan Výšin, CSc., ktorý nás navždy opustil 24. júna 1983
vo veku 75 rokov. Celý svoj život zasvátil výchove mladých
1'udí a odbornej práci v oblasti teorie vyučovania matema-

tiky. Do historie matematickej olympiády u nás i vo svete
sa zapísal nezmazatelným písmom. Bol autorom mnohých
súťažných úloh, s jeho menom je spojený vznik metodic-
kých materiálov pre učitelov pracujúcich v MO, tzv. ко-
mentárov, ktoré rad rokov sám tvořil. Napísal desiatky
pútavých článkov pre riešitelov MO i učitelov, je autorom
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viacerých knih, učebnic i odborných statí o modernizácii
výučby matematiky. Bol jedným z iniciátorov zriadenia
tried so zameraním na matematiku na gymnáziách. Jeho
myšlienky, výsledky jeho práce a žiarivý příklad jeho húžev-
natosti, pracovitosti a cielavedomého úsilia budú nás inšpi-
rovať к dalšiemu rozvojů starostlivosti o matematické talenty.

V listopadu 1983

Ústředny výbor matematickej olympiády
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O průběhu 32. ročníku
matematické olympiády

Matematickou olympiádu pořádají ministerstva školství
ČSR a SSR ve spolupráci s Jednotou československých ma-
tematiku a fyziků. Jednotou slovenských matematiků a fy-
ziků, Matematickým ústavem ČSAV a Socialistickým
svazem mládeže. Soutěž řídí ústřední výbor matematické
olympiády (ÚV MO) prostřednictvím krajských a okresních
výborů matematické olympiády (KV MO, OV MO). Členy
ÚV MO jmenují ministerstva školství, členy KV MO a OV
MO jmenují příslušné odbory školství KNV a ONV. V prů-
běhu 32. ročníku MO byl předsedou ÚV MO prof. dr.
Jozef Moravčík, CSc., prorektor Vysoké školy dopravy
a spojů v Žilině, který tuto funkci zastával již mnoho let.
Místopředsedy byli dr. František Zítek, CSc., z MÚ ČSAV
a doc. Jan Výšin z téhož ústavu. Funkci jednatele zastával
dr. Leo Boček, CSc., z matematicko-fyzikální fakulty
UK v Praze; část jeho povinností převzal v průběhu roku
dr. Karel Horák z MÚ ČSAV. Zástupcem ÚV SSM
v ÚV MO byl s. Pavel Krsička, který tuto funkci převzal
až na začátku školního roku 1982/83. Novým členem ÚV MO
se stal také s. Pavel Klenovčan z Pedagogické fakulty v Ban-
ské Bystrici, který vystřídal doc. dr. P. Kršňáka, CSc., ve
funkci předsedy KV MO Středoslovenského kraje. Jinak
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bylo složení ÚV MO stejné jako v minulém, 31. ročníku MO.
Žáci soutěží ve čtyřech kategoriích, v kategorii A žáci

třetích a čtvrtých ročníků středních škol, v kategorii В žáci
druhých ročníků a v kategorii C žáci prvních ročníků. Pro
žáky osmých tříd základních škol je určena kategorie Z, ve
které soutěžili i žáci dobíhajících devátých tříd ZDŠ. V této
kategorii se soutěží ve třech kolech, úlohy I. kola řeší žáci
doma nebo v kroužcích MO a mohou se přitom radit se

svými učiteli a vedoucími. Nejlepší řešitelé úloh I. kola
postupují do II. kola, které je organizováno v každém okrese
a má formu písemné práce, při které řeší žáci čtyři úlohy.
Konalo se 2. února 1983. Z iniciativy krajských výborů MO
probíhá obdobně v každém kraji III. kolo; v krajích ČSR
to bylo 16. dubna, v SSR 21. května 1983. V kategoriích A,
В, C má I. kolo dvě části, nejdříve řeší žáci šest úloh doma
nebo v matematických kroužcích, druhá část má již formu
písemné práce a organizuje se na jednotlivých školách.
Obdobně probíhá i II. kolo, které organizují ve všech kra-
jích krajské výbory МО. V kategorii A se koná i kolo IIL,
celostátní. Jeho účastníci řeší ve dvou dnech šest úloh a nej-
lepší z nich jsou vyhlášeni vítězi příslušného ročníku MO.
V kategoriích В, C se druhá část I. kola konala 9. února,
II. kolo 16. dubna 1983; v kategorii A to bylo 15. prosince
1982 a 12. února 1983.

Úlohy vybírá pro všechny kategorie a všechna kola před-
sednictvo ÚV MO, pouze úlohy III. kola kategorie Z při-
pravují některé krajské výbory MO. Všechny úlohy
32. ročníku MO jsou v dalších částech této ročenky uvedeny
i s řešením. Každá úloha je označena písmenem kategorie,
římská číslice značí příslušné kolo soutěže a pak je uvedeno
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pořadové číslo úlohy. U úloh označených За a 3b má sou-
těžící možnost volby, řeší buď úlohu 3a, nebo úlohu 3b.
Úlohy I. kola druhé části (týká se kategorií А, В, C) jsou
označeny písmenem S.

Celostátní kolo 32. ročníku MO se konalo ve dnech 5. až

8. května 1983 v Pardubicích. Slavnostního zahájení se
zúčastnili doc. Miloslav Boháč, vedoucí odboru školství
KNV Východočeského kraje, tajemník KV SSM v Hradci
Králové dr. Karel Procházka, zástupce ОV KSČ s. Milan
Slavíček a další představitelé stranických a státních orgánů
kraje, okresu a města Pardubice. Doc. M. Boháč vyzdvihl
ve svém projevu práci učitelů při přípravě nové generace
a nejlepším učitelům i školám Východočeského kraje předal
čestná uznání za dlouholetou úspěšnou práci v matematické
olympiádě a další prospěšnou činnost při práci s talenty.
Soutěžící pozdravil také s. Jan Kratochvíl, bývalý žák pardu-
bického gymnázia a úspěšný účastník i mezinárodních
matematických olympiád. Prof. Moravčík připomněl v zá-
věrečném slově význam zákona o jednotné škole, od jehož
schválení uplynulo již 35 let. Během pobytu v Pardubicích
navštívili soutěžící s členy ÚV MO památník »Zámeček«,
aby uctili památku umučených vlastenců v době druhé světové
války. Členové ÚV MO byli přijati na generálním ředí-
telství sdružení UNICHEM jeho ekonomickým ředitelem
s. ing. K. Kašparem, CSc., kde proběhla beseda nejen
o uplatnění matematiků v chemickém průmyslu, ale též
o ochraně životního prostředí při současném rozvoji chemie.
Další beseda se uskutečnila na gymnáziu v Pardubicích
s ředitelem gymnázia dr. Z. Martincem. Pro soutěžící při-
pravil КV MO bohatý společensko-kulturní program: návště-
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vu památné obce Ležáky, besedu s účastníky mistrovství
světa v ledním hokeji a koncert folkové skupiny Kantoři.
Jako v předcházejících dvou ročnících mohly být již posled-
ního dne vyhlášeny výsledky; vítězové i další úspěšní řešitelé
obdrželi spolu s diplomy i knižní odměny. Kromě doc. M. Во-
háče měl hlavní zásluhu na úspěšném průběhu vlastní sou-
těže a dalšího programu především dr. J. Kubát, profesor
gymnázia v Pardubicích a předseda KV МО, a jeho kolegové
L. Dvořák, V. Kubátová, P. Pochobradský a další pracov-
níci.

Během roku se konala dvě zasedání ÚV MO. Na pro-
sincovém se hodnotil především průběh minulého ročníku
MO a bylo dohodnuto vyhlásit v celostátním kole vždy
také pořadí žáků z tříd, které nejsou zaměřeny na matema-
tiku. Druhé zasedání se konalo spolu s celostátním kolem
MO v Pardubicích; hlavními body jednání byla příprava
dalšího ročníku MO, ediční činnost a otázka zavedení mate-
matické olympiády i do nižších tříd základní školy. Protože
končilo funkční období ÚV MO, poděkoval jeho předseda
prof. Moravčík všem členům za vykonanou práci v mate-
matické olympiádě. Předsednictvo ÚV MO se scházelo
jednou měsíčně, hlavní jeho činností byl výběr úloh i pro
další ročníky MO, projednání spolupráce se SSM, organi-
začni otázky, náplň seminářů a soustředění apod.

Ve všech krajích se konají různé akce, které mají nejen
pomáhat řešitelům úloh matematické olympiády, nýbrž
i dalšími formami vyhledávat matematické talenty, dát jim
možnost uplatnit své matematické vlohy a získat je pro
studium technických oborů.

KV MO Praha pořádal pracovní přednášky pro řešitele
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kategorií В, C a ve spolupráci s fakultní organizací SSM
na matematicko-fyzikální fakultě UK připravil korespon-
denční seminář. Výsledky v tomto semináři byly hlavním
kritériem pro účast na podzimním a lednovém soustředění,
účastníci červnového soustředění byli vybíráni podle výsled-
ků ve II. kole MO.

Středočeský kraj pořádal přípravné přednášky a konzul-
táce vždy současně pro žáky několika škol. Krajského kores-
pondenčního semináře se zúčastnilo 11 žáků. Pro 29 nej-
lepších řešitelů úloh matematické a fyzikální olympiády
z žáků základních škol bylo uspořádáno krajské soustředění
v Janově n. N., pro 40 žáků středních škol se podobné
soustředění konalo v září.

V Jihočeském kraji byly ve všech okresech na pomoc
učitelům základních škol ve spolupráci s OPS organizovány
instruktáže к vedení zájmových kroužků MO. Tyto kroužky
vedli i posluchači Pedagogické fakulty v Českých Budějovi-
cích v rámci společenskopolitické praxe. Průměrná účast
v kroužcích byla 12 žáků. Spolu s pobočkou JČSMF se
uskutečnilo 43 přednášek pro řešitele kategorií А, В, C
a tříkolový korespondenční seminář, jehož se zúčastnilo 72
žáků z celého kraje. Nejlepší jeho účastníci byli pozváni na
letní školu, která se konala v červnu v Zádově.

KV MO v Plzni zorganizoval dvě přednášky к soutěžním
úlohám každé kategorie, přednášky proběhly vždy ve třech
střediscích. Přednášeli pracovníci katedry matematiky na
VŠSE v Plzni. Pro učitele základních škol proběhly před-
nášky к soutěžním úlohám v pěti střediscích; přednášeli
pracovníci katedry matematiky na Pedagogické fakultě
v Plzni. V kraji se konal třetím rokem korespondenční semi-
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nář ve dvou kategoriích; zúčastnilo se ho 57 studentů vyš-
ších ročníků středních škol a 42 studentů prvních a druhých
ročníků. Pro úspěšné řešitele MO, FO a v korespondenčním
semináři se konalo v červnu soustředění, na které mohlo být
pozváno 40 studentů. Korespondenční seminář a soustředění
vedli pracovníci VŠSE v Plzni.

V Severočeském kraji se již tradičně koná týdenní soustře-
dění řešitelů úloh MO a FO v červenci v Teplicích. Ve
čtyřech třídách se ho zúčastnilo 88 žáků, program zajistila
pobočka JČSMF v Ústí n. L. Oblastní semináře pro řešitele
MO se konaly v sedmi městech kraje, celkem se konalo 34
seminářů při průměrné účasti 13 žáků. Korespondenční
seminář proběhl ve dvou kolech pro kategorii В za účasti
10 žáků. Seminář organizuje Pedagogická fakulta v Ústí n. L.
Již druhým rokem pořádá KV MO soutěž v matematice pro

žáky tříletých učebních oborů středních odborných učilišť.
Korespondenční seminář pro řešitele úloh MO kate-

gorie A a druhý pro kategorii В pořádal KV MO Východo-
českého kraje. Pro každou z těchto kategorií se konala dvě
soustředění, která proběhla vždy ve dvou dnech, a to v pá-
tek a v sobotu. Nezapomnělo se ani na kategorii C, nejlepší
řešitelé MO byli pozváni na desetidenní soustředění do
Vysokého Mýta v červnu.

Krajské soustředění úspěšných řešitelů MO a FO v kraji
Jihomoravském se konalo v červnu na SPŠ strojní v Jedov-
nicích. Trvalo týden a zúčastnilo se ho 28 studentů prvních
ročníků a 28 studentů druhých ročníků středních škol.
Součástí soustředění byla exkurze к počítači, besedy o tco-
retické kybernetice a o studiu na VUT a na přírodovědecké
fakultě v Brně.
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Severomoravský kraj je sídlem gymnázia M. Koperníka
v Bílovci, na němž jsou třídy se zaměřením na matematiku.
Toto gymnázium pořádalo setkání řešitelů MO z tříd za-

měřených na matematiku a také korespondenční seminář.
KV MO organizoval sobotní besedy pro kategorie А, В, C,
jež se konaly v Olomouci a v Ostravě a zároveň se na nich
setkávali řešitelé MO s vysokoškolskými učiteli. Jako v ostat-
nich krajích pořádal i KV MO Severomoravského kraje
instruktáže předsedů OV МО к úlohám kategorie Z a in-
struktáže referentů MO ze středních škol.

Stejné instruktáže byly pořádány i v Bratislavě, kde se
dále konaly korespondenční semináře pro žáky středních škol
s dvěma týdenními soustředěními a přednášky pro vybrané
řešitele MO kategorie A. Soustředění bylo uspořádáno též
pro úspěšné řešitele kategorií В, C, Z. Kroužky MO na
základních i středních školách vedli učitelé a studenti MFF
UK v Bratislavě.

Západoslovenský kraj pořádal instruktáže pro učitele,
kteří měli na starosti matematickou olympiádu na jednotli-
vých středních školách. Instruktáže vedl dr. O. Ralík z Pe-
dagogické fakulty v Nitře. Doc. dr. K. Križalkovič, CSc.,
z téže fakulty vedl obdobné instruktáže pro učitele základních
škol. Kromě matematických kroužků se konalo pro žáky ZŠ,
účastníky III. kola kategorie Z, pětidenní soustředění s před-
náškami. Korespondenční seminář probíhal po celý školní
rok, žáci řešili úlohy z pěti témat, například »Mřížové body«,
«Geometrické nerovnosti« apod. Seminář vedl dr. P. Vrá-
bel, CSc., z Pedagogické fakulty v Nitře. Vybraní řešitelé
úloh korespondenčního semináře se sešli na soustředění
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v Mlýnkách. Konalo se v červnu a zúčastnili se ho i žáci
z Bratislavy a ze Středoslovenského kraje.

Středoslovenský kraj uspořádal pro 38 žáků středních
škol v měsíci září 1982 soustředění v Kuneradě, v říjnu pak
v sedmi okresech instruktáže pro učitele základních škol.
Úspěšní řešitelé I. kola kategorie A se sešli na semináři
v Žilině a 30 nej lepších řešitelů krajského korespondenčního
semináře na pětidenním soustředění v Námestově.

Jako v každém roce se ve Východoslovenském kraji konaly
instruktáže pro učitele podle jednotlivých kategorií a již
tradiční krajský korespondenční seminář. Matematické
kroužky na školách vedli především učitelé matematických
kateder přírodovědecké fakulty UPJŠ v Košicích.

O celostátním korespondenčním semináři, který organi-
zoval ÚV MO, píšeme v této ročence podrobně v samostatné
kapitole. Pro přípravu na mezinárodní matematickou olym-
piádu uspořádal ÚV MO dvě soustředění, jedno bylo týdenní,
druhé trvalo 14 dní. Obě se konala v Kladně, objekty za-

jistilo MŠ ČSR. Přípravu na MMO vedli pracovníci MÚ
ČSAV dr. K. Horák, P. Liebl, dr. J. Morávek, dr. J. Straš-
kraba, dr. A. Vrba a dr. A. Vencovská, z MFF UK Praha
se podíleli dr. J. Daneš a dr. R. Švarc a bývalí úspěšní účast-
níci MMO, nyní studenti MFF Jan Kratochvíl a Jan Neko-
vář, jedno zaměstnání vedl dr. Kaukič z VŠDS v Žilině.
Jaký výsledek tato dvě soustředění přinesla, se dočtete v části
této ročenky, která je věnována mezinárodní matematické
olympiádě.

ÚV MO vydává v nakladatelství Mladá fronta edici Škola
mladých matematiků, ve které vycházejí matematické bro-
žurky pro středoškoláky, některé brožurky jsou určeny
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i pro žáky základních škol. V průběhu 32. ročníku vyšlo
šest svazků této edice:

A. Plocki: O náhodě a pravděpodobnosti
A. Kufner: Symetrické funkce
P. Vít: Řetězové zlomky
N. B. Vasiljev, V. L. Gutenmacher: Přímky a křivky
J. Gatial, T. Hecht, M. Hejny: Hry takmer matematické

a druhé vydání brožurky
F. Veselý: O nerovnostech a nerovnicích
Velkou roli při organizaci matematické olympiády hraje

výběr úloh pro jednotlivé kategorie a jednotlivá kola soutěže.
Každý rok je třeba vybrat asi 60 vhodných úloh. Proto vyhlá-
sily JČSMF a JSMF již v roce 1966 konkurs na úlohy M03
který stále probíhá. Každý má možnost poslat na adresu
ÚV MO návrh úloh pro MO; návrh každé úlohy musí být
vypracován ve dvou exemplářích a musí obsahovat i řešení
úlohy. Přijetím úlohy získává autor finanční odměnu a ÚV
MO právo úlohu upravit a použít.
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SEZNAM VÍTĚZŮ A ÚSPĚŠNÝCH ŘEŠITELŮ
CELOSTÁTNÍHO KOLA 32. ROČNÍKU MO

Vítězové

Pořadí, jméno a příjmení, ročník, zaměření třídy, škola.

1.-2. Igor Kříž, 4., M, G W. Piecka, Praha 2
Jiří Sgall, 4., M, G W. Piecka, Praha 2

3.—4. Vladimír Dančík, 4., M, Košice, Šmeralova
Marián Neamtu, 4., M, G A. Markuša, Bratislava
Xaver Gubáš, 4., M, G A. Markuša, Bratislava

6.-7. Jaroslav Smejkal, 4., P, Velké Meziříčí
Martin Štěpánek, 4., P, Jaroměř

8. —9. Juraj Balázs, 3., MF, Košice, Kuzmányho
František Venci, 4., P, Česká Třebová
Ludmila Moravčíková, 4., H, Žilina, Wolkerova

11. —12. Petr Maršálek, 3., P, Praha 4, Ohradní
Jiří Witzany, 3., M, G W. Piecka, Praha 2

13. —14. Milan Kuchta, 4., M, G A. Markuša, Bratislava
Dušan Pospíšil, 3., P, Povážská Bystrica

15.—17. Martin Černý, 3., M, G W. Piecka, Praha 2
Viktor Martišovitš, 4., MF, G J. Hronca, Bratislava
Ján Šefčík, 2., M, G A. Markuša, Bratislava

18.—20. Marek Hatala, 4., M, Košice, Šmeralova

5.

10.
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Vládán Pecha, 4., M, G M. Koperníka, Bílovec
Pavel Valtr, 3., M, G W. Piecka, Praha 2

Další úspěšní řešitelé

21.—22. Roman Bačík, 4., M, G A. Markuša, Bratislava
Ignác Tereščák, 3., P, Michalovce
Peter Karailiev, 4., P, Michalovce

24.-26. Martin Foltin, 2., M, G A. Markuša, Bratislava
Martin Klazar, 3., P, Louny
Jiří Sušický, 4., M, G W. Piecka, Praha 2

27.-28. Stanislav Jelen, 4., MF, Karlovy Vary
Martin Kolář, 4., P, Brno, Křenová

29.—33. Peter Borovanský, 4., MF, G J. Hronca, Bratislava
Fatima Cvrčková, 4., P, Strakonice
Petr Daniel, 4., P, G J. K. Tyla, Hradec Králové
Jiří Soudný, 4., M, G W. Piecka, Praha 2
Zuzana Trangošová, 4., M, G A. Markuša, Bratislava

34.—36. Rudolf Blaško, 4., MF, Žilina, Wolkerova
Petr Loucký, 2., M, G W. Piecka, Praha 2
Miroslav Ryška, 3., P, Frýdek-Místek
Jan Daněk, 4., MF, Žilina, Wolkerova

38.—40. Ladislav Németh, 4., M, G A. Markuša, Bratislava
Bronislav Suchý, 4., M, G M. Koperníka, Bílovec
Jiří Votinský, 4., MF, Pardubice

Všichni byli žáky gymnázia (G),
zaměření třídy: M — na matematiku

MF — na matematiku a fyziku
P — zaměření přírodovědné
H — zaměření humanitní

23.

37.
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Pořadí žáků z tříd, které nejsou zaměřeny na matematiku:
Vítězové celostátního kola

L—2. Jaroslav Smejkal, Velké Meziříčí
Martin Štěpánek, Jaroměř

3.—4. Juraj Bálázs, Košice, Kuzmányho
František Vend, Česká Třebová

5. Ludmila Moravdková, Žilina, Wolkerova
6. Petr Maršálek, Praha 4, Ohradní

Dušan Pospíšil, Považská Bystrica
Viktor Martišovitš, G J. Hronca, Bratislava

7.

8.

Další úspěšní řešitelé

Ignác Tereščák, Míchalovce
Peter Karailiev, Michalovce
Martin Klazar, Louny

12. —13. Stanislav Jelen, Karlovy Vary
Martin Kolář, Brno, Křenová

14. —16. Peter Borovanský, G J. Hronca, Bratislava
Fatima Cvrčková, Strakonice
Petr Daniel, Hradec Králové

17. —18. Rudolf Blaško, Žilina, Wolkerova
Miroslav Ryška, Frýdek-Místek
Jan Daněk, Žilina, Wolkerova
Jiří Votinský, Pardubice

9.

10.
11.

19.

20.
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SEZNAMY NEJÚSPĚŠNĚJŠÍCH ŘEŠITELŮ
II. KOLA KATEGORIÍ A3 В, C

Z každého kraje a každé kategorie je uvedeno nejvýše
prvních deset nejúspěšnějších řešitelů. Zaměření tříd je ozna-
ceno stejně jako u úspěšných řešitelů celostátního kola, třídy
gymnázia s odbornými předměty jsou označeny také P. Sou-
těžící kategorie C jsou žáky 1. ročníku, soutěžící v kategorii В
jsou žáky 2. ročníku, pokud není uveden 1. ročník. Pokud
není uvedena škola, jde o gymnázium.

Praha

Kategorie A

Igor Křížу 4., M, G W. Piecka, Praha 2
2.—3. Richard Pleva, 3., MF, Praha 3, Sladkovského

Jiří Sušický, 4., M, G W. Piecka, Praha 2
Petr Maršálek, 3., P, Praha 4, Ohradní
Petr Valtr, 3., M, G W. Piecka, Praha 2
Petr Loučky, 2., M, G W. Piecka, Praha 2

7.-9. Petr Alexa, 4., M, G W. Piecka, Praha 2
Zdeněk Culík, 3., M, G W. Piecka, Praha 2
Jiří Soudný, 4., M, G W. Piecka, Praha 2

1.

4.

5.

6.
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Kategorie В

L—2. Jan Hučín, M, G W. Piecka, Praha 2
Jan Sigh M, G W. Piecka, Praha 2

3.—4. Adam Obdržálek, 1., M, G W. Piecka, Praha 2
Roman Tůma, M, G W. Piecka, Praha 2

5. —8. Leoš Mevart, P, Praha 10, Voděradská
Petr Paleta, M, G W. Piecka, Praha 2
Boris Perušič, M, G W. Piecka, Praha 2
Patrik Španěl, M, G W. Piecka, Praha 2
Vladimír Cmela, P, Praha 10, Voděradská9.

Kategorie C

Adam Obdržálek, M, G W. Piecka, Praha 2
Petr Hájek, M, G W. Piecka, Praha 2
Ivan Libicher, P, Praha 4, Budějovická
Petr Pavlíček, M, G W. Piecka, Praha 2

5.-6. Martin Mašát, P, Praha 8, Náhorní
Ivo Petrous, M, G W. Piecka, Praha 2
Martin Heisler, M, G W. Piecka, Praha 2
Karel Rott, M, G. W Piecka, Praha 2

1.

2.

3.

4.

7.

8.

Středočeský kraj

Kategorie A

1. Petr Kolář, 3., P, Mladá Boleslav
Martin Dvořák, 4., P, Čáslav
Petr Havelka, 4., P, Sedlčany
Petr Zavadil, 4., P, Říčany

2.

3.

4.
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5. Hana Blažícková 4., P, Kolín
Petr Kuboň, 4., P, Mladá Boleslav

7.-9. Antonín Králík, 4., P, Benešov
Jaroslav Lain, 4., P, Kralupy nad Vltavou
Pavel Novotný, 4., P. Beroun

6.

Kategorie В

1. Ondřej Zágora, P, Benešov
2. Petr Šil, P, Mladá Boleslav
3. Zdeněk Petrás, SPŠ Mladá Boleslav
4. Tomáš Lorenc, P, Kolín

Kategorie C

1. Jitka Rennerová, P, Slaný
2. Karel Valter, P, Dobříš
3. Jan Ornst, P, Brandýs n. L.
4. Ladislav Jelínek, P, Kladno

Jihočeský kraj

Kategorie A

Roman Bláha, 4., P, České Budějovice, Jírovcova
2.-5. Petr Bílek, 4., P, Tábor

Fatima Cvrčková, 4., P, Strakonice
Bohumír Sládek, 3., SPŠE Písek
Petr Tiller, 4., P, Tábor

6.-7. Tomáš Drtina, 3., P, České Budějovice, Jírovcova
Ludmila Dvořáková, 4., P, Milevsko

1.
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Kategorie В

Žádný úspěšný řešitel

Kategorie C

Milan Štěch, MF, G K. Šatala, České Budějovice
Petr Jaroš, P, Pelhřimov
Jiří Bozik, SPŠE Písek
Martina Vovesná, P, Písek
Aleš Beránek, P, Tábor
Stanislav Benda, MF, G K. Šatala, České Budějovice
Josef Fictum, SPŠ Volyně

8.-9. Stanislav Hora, SPŠ Volyně
Milan Theier, P, Kaplice
Jaroslav Kostra, SPŠ stav., České Budějovice

1.

2.

3.

4.

5.

6.

7.

10.

Západočeský kraj

Kategorie A

Jaromír Vajgert, 4., P, Klatovy
Stanislav Jelen, 4., MF, Karlovy Vary
Michaela Křižanovská, 3., MF, G J. Fučíka, Plzeň
Miroslav Plevný, 3., P, Cheb
Radek Machačka, 3., MF, G J. Fučíka, Plzeň

6.-7. Josef Běláč, 3., MF, G J. Fučíka, Plzeň
Štěpán Trojan, 4., P, Cheb
František Adamec, 3., P, Ostrov n. O.
Tomáš Martínek, 3., P, Ostrov n. O.

1.

2.

3.

4.

5.

8.

9.
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Kategorie В
Ladislav Hanyk, MF, Karlovy Vary

2. —3. Šárka Nová, MF, Karlovy Vary
Ivan Vrzal, MF, Karlovy Vary
Jaromír Matas, P, Sušice
Dominika Janíková, MF, Karlovy Vary
Libor Martinek, MF, G J. Fučíka, Plzeň

1.

4.

5.

6.

Kategorie C
1.—2. Radovan Osoba, MF, Plzeň, ul. Pionýrů

Jiří Pittner, MF, G J. Fučíka, Plzeň
Pavel Samek, MF, G J. Fučíka, Plzeň

4.-5. Felix Wintr, P, Cheb
Michal Winner, MF, Karlovy Vary
Tomáš Mecl, MF, Plzeň, ul. Pionýrů
Jakub Yaghob, MF, G J. Fučíka, Plzeň
Lubomír Perk, MF, G J. Fučíka, Plzeň
Hynek Valenta, MF, Plzeň, ul. Pionýrů
Kamil Meisl, MF, G J. Fučíka, Plzeň

3.

6.

7.

8.

9.

10.

Severočeský kraj

Kategorie A
Pavel Vítovec, 4., P, Litvínov
Martin Klazar, 3., P, Louny

3.—4. Pavel Krtouš, 2., MF, Liberec
Radek Mojdl, 4., P, Most

5.-8. Jaromír Drábek, 4., P, Jablonec n. N.
Petr Jaklin, 3., P, Ústí n. L.

1.

2.
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Jiří Kunc, A., P, Ústí n. L.
Pavel Satrapa, A., P, Kadaň

9.—10. Michal Krejčík, A., P, Jablonec n. N.
Jaroslav Novák, 4., P, Liberec

Kategorie В

1.—2. Pavel Krtouš, MF, Liberec
Herbert Salov, P, Rumburk
David Veverka, P, Litoměřice3.

Kategorie C

Petr Šleich, P, Děčín
2.—3. Pavel Beniček, P, Žatec

Michal Janus, P, Tanvald
Michal Kukla, P, Tanvald
Ondřej Pavlata, P, Jablonec n. N.

6.-8. Ivan Perntan, P, Liberec
Daniel Svoboda, P, Roudnice n. L.
Milan Vodička, P, Litoměřice

9. —10. Marek Špika, SPŠ stroj, a el., Liberec
Renata Flajšmanová, P, Tanvald

1.

4.

5.

Východočeský kraj

Kategorie A

1.—3. Martin Štěpánek, A., P, Jaroměř
František Venci, A., P, Česká Třebová
Jiří Votinský, A., MF. Pardubice
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Aleš Kratochvíl, 4., P, Hořice
Petr Daniel, 4., MF, G J. K. Tyla, Hradec Králové
Magda Pražanová, 4., P, Polička

7.-8. Jiří Hofman, 4., P, Hořice
Zbyněk Linhart, 3. MF, Pardubice

4.

5.

6.

Kategorie В
\

1. Luděk Brukner, MF, Pardubice
2. Petra Sekyrová, MF, Hradec Králové, Šimkova
3. Radka Joudalová, MF, Hradec Králové, Šimkova
4. Jiří Kristek, SPŠ el., Pardubice
5. Aleš Hýbner, MF, G J. K. Tyla, Hradec Králové
6. Hana Par týková, P, Havlíčkův Brod
7. Ivan Pícek, MF, Hradec Králové, Šimkova
8. Veronika Majerechová, MF, Pardubice
9. Jaroslav Tachovský, MF, G J. K. Tyla, Hradec Králové10.Jan Tnnys, P, Semily

Kategorie C

1. Michal Blažej, P, Trutnov
2. Luboš Dvořák, MF, Pardubice
3. Nataša Formanová, P, Rychnov n. K.
4. Jiří Nováček, P, Jaroměř
5. Jan Vávra, P, Lanškroun
6. Michal Fiala, P, Litomyšl
7. Zbyněk Novotný, MF, Hradec Králové, Šimkova
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Jihomoravský kraj

Kategorie A

Jaroslav Smejkal, 4., P, Velké Meziříčí
Jaroslav Štefánek, 4., P, Strážnice

3.—4. Tomáš Nekvapil, 3., P, Brno, Elgartova
Petr Slavik, 4., MF, Brno, Koněvova
Martin Kolář, 4., P, Brno, Křenová
Ivo Panáček, 4., P, Jihlava
Zdeněk Kovář, 3., P, Brno, Slovanské nám.

8. —9. Dušan Vaškovic, 4., MF, Uherský Brod
Tomáš Werner, 4., MF, Brno, kpt. Jaroše
Radek Páleník, 4., P, Prostějov

1.

2.

5.

6.

7.

10.

Kategorie В

1. Martin Kovář, MF, Brno, kpt. Jaroše
2. —3. Olga Pekárková, P, Gottwaldov

Zuzana Manová, SPŠ Brno, Kotlářská
4. Karel Skoupý, P, Blansko
5. Jiří Čírtek, P, Znojmo6.-7. Vít Kratochvíl, P, Třebíč

Miroslav Skoupý, P, Blansko

Kategorie C

1. Michal Krupka, MF, Brno, kpt. Jaroše
2. Petr Brada, P, Třebíč
3. Richard Seda, P, Blansko
4. Libor Skřička, MF, Brno, kpt. Jaroše
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5. Petr Bartl, MF, Brno, kpt. Jaroše
6. Marek Průša, P, Brno, Koněvova

Severomoravský kraj

Kategorie A

Martin Grajcar, 3., M, G M. Koperníka, Bílovec
Ladislav švec, 4., P, Šternberk
Vládán Pecha, 4., M, G M. Koperníka, Bílovec
Petr Adámek, 2., M, G M. Koperníka, Bílovec
Miroslav Ryška, 3., P, Frýdek-Místek
Bronislav Suchý, 4., M, G M. Koperníka, Bílovec
Miloslav Vašíček, 4., P, Ostrava, Šmeralova
Pavel Kráčmar, 3., M, G M. Koperníka, Bílovec
Aleš Cieplý, 4., P, Ostrava, Šmeralova
Ivo Čermák, 3., M, G M. Koperníka, Bílovec

1.

2.

3.

4.-5.

6.-7.

8.

9.-10.

Kategorie В

Petr Adámek, M, G M. Koperníka, Bílovec
Jarmila Ranošová, M, G M. Koperníka, Bílovec

3.—4. Jiří Kopecký, SPŠE Olomouc, Božetěchova
Petr Pánek, P, Rožnov p. R.
Přemysl Dědic, M, G M. Koperníka, Bílovec
Ivo Staněk, M, G M. Koperníka, Bílovec
Miroslav Hošek, P, Bruntál

8. —9. Vladimír Jašek, SPŠE Olomouc, Božetěchova
Rotnan Kantor, M, G M. Koperníka, Bílovec

1.

2.

5.

6.

7.
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Kategorie С
Vladimír Kordula, M, G M. Koperníka, Bílovec
Martin Blatný, M, G M. Koperníka, Bílovec
Aleš Pořízka, M, G M. Koperníka, Bílovec

4.-5. Antonín Franěk, M, G M. Koperníka, Bílovec
Tomáš Skalický, P, Olomouc, Jiřího z Poděbrad
Michal Hrabák, M, G M. Koperníka, Bílovec
Roman Staněk, M, G M. Koperníka, Bílovec

8.-9. Otto Jtinger, M, G M. Koperníka, Bílovec
Radim Novák, P, Ostrava-Poruba
Jana Holušová, M, G M. Koperníka, Bílovec

1.

2.

3.

6.

7.

10.

Bratislava

Kategorie A
Hana Riečanová, 4., MF, G J. Hronca, Bratislava

2.-6. Marián Blecha, 4., M, G A. Markuša, Bratislava
Peter Borovanský, 4., MF, G J. Hronca, Bratislava
Juro Dúbrava, 4., M, G A. Markuša, Bratislava
Viktor Martišovitš, 4., MF, G J. Hronca, Bratislava
Martin Zeman, 4., P, Bratislava, Tomášikova

7.-8. Roman Bačík, 4., M, G A. Markuša, Bratislava
Ján Šefčík, 2., M, G A. Markuša, Bratislava
Milan Kuchta, 4., M, G A. Markuša, Bratislava
Xaver Gubáš, 4., M, G A. Markuša, Bratislava

1.

9.

10.

Kategorie В
1. Ján Šefčík, M, G A. Markuša, Bratislava
2. Eva Kopecká, MF, G J. Hronca, Bratislava
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3. Peter Volek, P, Bratislava, Metodova
4. Martin Knor, M, G A. Markuša, Bratislava
5. Martin Foltin, M, G A. Markuša, Bratislava
6. Peter Fedor, P, Bratislava, Metodova
7. Marián Šwnšala, M, G A, Markuša, Bratislava

Kategorie С

L—2. Juraj Griač, MF, G J. Hronca, Bratislava
Ivan Polách, MF, G J. Hronca, Bratislava

3.—4. Stanislav Meduna, MF, G J. Hronca, Bratislava
Robert Trávník, MF, G J. Hronca, Bratislava

5.-6. Katarina Petrovičová, MF, G J. Hronca, Bratislava
/.Inna Vojtková, MF, G J. Hronca, Bratislava
Zuzana Šemmerová, MF, G J. Hronca, Bratislava

8.-9. Mária Orgonášová, MF, G J. Hronca, Bratislava
Martin Uher, MF, G J. Hronca, Bratislava
Vladimír Potisk, MF, G J. Hronca, Bratislava •.

\

7.

10.

Západoslovenský kraj

Kategorie A

Roman Šášik, 4., P, Nitra-Párovce
2.—3. Vladimir Beňuš, 4., P, Zlaté Moravce

Anna Valkóová, 3., P, Levice
4.-5. Danka Rapúková, 3., P, Trenčín

Jozef Roháč, 4., P, G E. Gudernu, Nitra
6.—10. Juraj Baranovič, 4., P, Trnava

Igor Kravár, 4., P, Nitra-Párovce
Tibor Lovász, 4., P, maďarské G, Komárno

1.
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Hyacint Mircz, 4., P, maďarské G, Galanta
Norbert Oriskó, 4., P, maďarské G, Galanta

Kategorie В
1. Dušan Kusenda, SPŠE Piešťany
2. Juraj Bátora, P, Bánovce n. B.
3. Pavol Kučerák, P, Myjava
4. Viktor Csiba, SPŠCh Šala
5. Štefan Hajdin, P, Malacky
6. Ján Mrázik, SPŠE Piešťany

Kategorie C
1. Peter Eliáš, SPŠE Stará Turá
2. Štefan Juríček, P> Skalica
3. Robert Jakubik, P, Levice
4. Peter Klein, 8. třída 7. ZŠ Piešťany
5. Katarina Rekošová, P} Nitra-Párovce
6. Zsuzsa Ivanicsová, P, maďarské G, Komárno
7. Ivan Kovář, P, Myjava
8. Ernest Meňhart, P, Levice
9. Ladislav Oreško, P, G E. Gudernu, Nitra10.Rudolf Bocán, P, Levice

Středoslovenský kraj

Kategorie A
Dušan Pospíšil, 3., Рг Považská Bystrica

2. —3. Martin Gašo, 4., P, Martin
Ludmila Moravčíková, 4., H, Žilina, Wolkerova

1.
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4. Peter Dubec, 4., P, Rimavská Sobota5.-6. Luboš Aláč, 3., MF, Zvolen
Ján Daněk, 4., MF, Žilina, Wolkerova

7. Roman Gajdošech, 3., M, Žilina, Velká Okružná

Kategorie В

Igor Odrobina, MF, Žilina, Velká Okružná
Miroslav Menšík, P, Banská Bystrica, Tajovského3.—4. Richard Nemec, P, Banská Bystrica, Tajovského
Alexander Vengrin, P, Rimavská Sobota

1.

2.

Kategorie C

1. Jozef Čierny, MF, Žilina, Velká Okružná
2. Milan Kubala, MF, Žilina, Velká Okružná
3. Gabriela Leštáková, P, Banská Bystrica, Tajovského
4. Katarina Gemelová, P, Prievidza
5. Juraj Buchta, P, Čadca
6. Katarina Styková, P, Banská Bystrica, Tajovského
7. Peter Uher, P, Prievidza
8. Roman Ježo, P, Dubnica n. V.
9. Robert Germič, MF, Žilina, Velká Okružná

Východoslovenský kraj

Kategorie A

Vladimír Dančík, 4., M, Košice, Šmeralova
Marek Hatala, 4., M, Košice, Šmeralova
Peter Karailiev, 4., P, Michalovce

1.

2.

3,
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Ignác Tereščák, 3., P, Michalovce
František Bobenič, 3., M, Košice, Šmeralova

6.-7. Peter Belčák, 4., M, Košice, Šmeralova
Dušan Čapka, 3., P, Poprad

4.

5.

Kategorie В

Jana Goceliaková, P, Kežmarok
Peter Trembecký, M, Košice, Šmeralova

3.—4. Peter Čajka, P, Košice, Šrobárova
Ján Lúžny, SPŠE Prešov

1.

2.

Kategorie C

1.—2. Mária Čurneková, M, Košice, Šmeralova
Jana Ištvániková, M, Košice, Šmeralova

3. —5. Peter Čirip, P, Prešov, Konštantínova
Daniela Gavalcová, M, Košice, Šmeralova
Vladimír Hašík, SPŠE Košice
Anton Gromoczki, SPŠE Košice
Roman Maslenka, M, Košice, Šmeralova
Beáta Vavrinčíková, M, Košice, Šmeralova

9.—10. Igor Bilák, P, Prešov, Konštantínova
Mária Medvidová, P, Košice, Šrobárova

6.

7.

8.
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Kategorie Z

ÚLOHY I. KOLA

Z - I - f

Každý ze šesti kamarádů má dřevěnou kostku, jejíž každá
stěna je obarvena jednou z barev bílá, žlutá, červená, zelená,
modrá, černá. Na žádné kostce nejsou dvě různé stěny obarve-
ny stejně a proti bílé stěně je vždy stěna černá. Kostky se liší
pouze umístěním dalších barev, například Alšova kostka má
proti zelené stěně stěnu modrou, kdežto u Honzovy kostky
jsou zelená a modrá stěna sousedními stěnami. Mohou být
kostky všech šesti kamarádů obarveny tak, aby se každé dvě
Ušily?

Řešení. Každou z kostek můžeme jediným způsobem po-
ložit před sebe na stůl tak, že horní stěna je bílá (dolní stěna
je tudíž černá) a přední stěna červená. Jednotlivé kostky se
pak liší podle toho, jakou barvu mají zadní, levá a pravá stěna
kostky. Je-li například zadní stěna modrá, může být levá
stěna zelená a pravá žlutá nebo levá stěna žlutá a pravá zelená.
Další dvě možnosti dostaneme, když je zadní stěna zelená,
levá strana může být žlutá a pravá modrá, nebo obráceně.
Konečně může být zadní stěna žlutá, dostaneme tak ještě dvě

40



možnosti - buď je levá stěna modrá a pravá zelená, nebo obrá-
ceně. Celkem mámě šest možností, jak obarvit zadní a obě
boční stěny krychle. Kostky všech šesti kamarádů mohou být
tedy obarveny tak, aby se každé dvě kostky lišily.

Z - I - 2

Mezi místy А а В tvoří ulice čtvercovou síť, strana každého
čtverce měří 100 m (obr. 1). Jakou nejmenší vzdálenost musí
ujít chodec, aby se dostal z místa A po ulicích do místa B?
Kolika možnými způsoby to může provést? Přitom považuje-
me dvě cesty za různé, jakmile se liší aspoň jedním úsekem.

t В

A

Obr. 1

Řešení. Nejkratší cesta z místa A do místa В bude taková,
při které jde chodec vždy jen »doprava« nebo »nahoru«, ne-
vrací se zpět »dolů« nebo »doleva«. Přitom musí ujít čtyři
úseky doprava a tři úseky nahoru, nejkratší vzdálenost je tedy
700 m. Chodec nemůže ovšem nejdřív ujít všechny čtyři úseky
doprava, nejvýše po třech úsecích doprava musí jít aspoň
jeden úsek nahoru. Připišme si na plánku města ke každé kři-
žovatce číslo, které udává, kolika možnými způsoby lze к této
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křižovatce dojít nejkratším způsobem z bodu A. Začneme
u křižovatek, které leží nejblíže к bodu A, a postupujeme až
к bodu B. Každé připsané číslo je součtem těch čísel, která
stojí od něho nalevo a pod ním. Jdeme-li totiž nejkratším
způsobem, můžeme ke každé křižovatce přijít jen zleva nebo
zdola. Výsledek je znázorněn na obr. 2. Celkem je 24 možností,
jak dojít nejkratší cestou z místa A do místa B.

10 74

14101 3 6

43 42

1 1 1

Obr. 2

Z- 1 -3

Sedminásobný součet dvou dvojciferných čísel je desetkrát
větší než jejich rozdíl. Určete všechny takové dvojice.

Řešení. Hledaná čísla označíme x, y, jejich sedminásobný
součet je 7(x + y) a ten má být desetkrát větší než jejich
rozdíl x — y. Má tedy platit 7(x + y) = 10(x —y). Tuto
rovnici upravíme na tvar 17у — 3x. Je tedy číslo 3x dělitelné
číslem 17, a protože jsou čísla 3 a 17 nesoudělná, musí být
číslo x dělitelné číslem 17. Zároveň víme, že je to číslo dvoj-
ciferné, může se proto rovnat pouze některému z čísel 17, 34,
51, 68, 85. Ke každé z těchto hodnot x vypočteme z rovnice
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17y = Ъх číslo у. Dostaneme tak dvojice (17, 3), (34, 6),
(51, 9), (68, 12) a (85, 15). Jelikož číslo у má být také dvoj-
ciferné, má naše úloha pouze dvě řešení: x — 68, у — 12
a x = 85, jy = 15.

Z- I -4

Z krychlí o hraně 1 cm jsme slepili krychli o hraně 4 cm.
Potom jsme stěnám velké krychle přiřadili čísla 1, 2, 3, 4, 5
a 6 stejným způsobem jako na hrací kostce, tj. na protějších
stěnách jsou čísla 1 a 6, 2 a 5, 3 a 4. Každé z těchto čísel jsme
napsali na příslušné stěně do každého pole čtvercové sítě
vytvořené hranami malých krychlí. Velkou krychli jsme pak
opět rozdělili na původní malé krychle a pro každou malou
krychli jsme vypočetli součet všech čísel, která na ní byla na-

psána.
Zjistěte:

a) Kolik je celkem malých krychlí se součtem rovným číslu 2 ?
b) Kolik je celkem malých krychlí se součtem rovným číslu 6 ?
c) Jaký je největší možný součet a kolik existuje malých

krychlí s tímto největším součtem ?
Řešení. Na některých malých krychlích nebude napsáno

žádné číslo; je jich 8 a jsou to ty, které ležely uvnitř velké
krychle. Potom můžeme ke každému z čísel 1, 2, ..., 6 najít
čtyři malé krychle, které mají toto číslo napsáno na jedné své
stěně а к dalším stěnám nemají připsáno žádné číslo. Jsou to
ty malé krychle, které leží při stěnách velké krychle, avšak ne

při jejích hranách. Vynecháme-li ty malé krychle, které leží
v rozích velké krychle, leží při každé hraně velké krychle dvě
malé krychle, které mají na svých stěnách připsána právě dvě
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různá čísla. Nejsou to však taková dvě čísla, jejichž součet je 7.
Konečně je v každém rohu velké krychle jedna malá rohová
krychle, která bude mít připsána tři čísla; žádná dvě z nich
nemají součet rovný číslu 7.

Součet 2 mají pouze ty čtyři malé krychle, které mají při-
psáno číslo 2 na jedné své stěně a ostatní stěny prázdné.
Součet 6 mají ty čtyři krychle, které mají popsánu jen jednu
stěnu, a to číslem 6, dále ty malé krychle, které mají připsána
právě jen dvě čísla, a to čísla 1 a 5 nebo 2 a 4, celkem tedy
opět čtyři krychle, a konečně ta jedna rohová krychle s při-
psanými čísly 1, 2, 3. Celkem je tudíž devět malých krychlí
se součtem 6. Největší součet může být jen 6 + 5 + 4 = 15
a patří к němu jediná malá krychle v rohu velké krychle.

4 ' Z - I - 5

Sestrojte pětiúhelník ABCDE, jestliže platí \AB\ — 1,
\BC\ = 2, i CD] = 3, \DE\ = 4, \AE\ = 5 a úhly ABC
a CDE jsou pravé.

Řešení. Předpokládejme, že pětiúhelník požadovaných
vlastností existuje. Protože je úhel CDE pravý, |CD| = 3,
\DE\ — 4, musí být podle Pythagorovy věty \CE\ = 5. Odtud
již plyne konstrukce hledaného pětiúhelníku: Sestrojíme
pravoúhlý trojúhelník ABC s odvěsnami \ AB\ — 1, ]BC| = 2.
Dále sestrojíme rovnoramenný trojúhelník АСЕ se základnou
AC3 jehož ramena AE, CE mají délku 5. To lze, protože
1 1 _

—\AC\ = — ]/5 < 5. Nad přeponou CE pak sestrojíme právo-

úhlý trojúhelník CDE s odvěsnami |CD] =3, |DE\ =4.
Úloha má sice více řešení, protože při konstrukci bodu E
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i bodu D máme vždy dvě možnosti, avšak jen jeden pětiúhel-
nik požadovaných vlastností je konvexní (obr. 3).

Z - I - 6

Je dána krychle ABCDA'B’C'D' o hraně délky 10. Kulová
plocha protíná stěnu BCC v kružnici vepsané čtverci BCCB'
a prochází středem 6" protější stěny ADD'A'. Určete střed
a poloměr této kulové plochy.

Řešení. Označme O střed uvažované kulové plochy a r její
poloměr. Protože protíná stěnu BCC' v kružnici vepsané
čtverci BCCB', leží její střed O na přímce, která prochází
středem T tohoto čtverce a je к jeho rovině kolmá. Tato
přímka protíná stěnu ADD' ve středu 5 čtverce ADD'A'
(obr. 4). V něm se kulová plocha stěny ADD'A' dotýká.
Označme ještě К střed úsečky BC-, uvažovaná kulová plocha
jím prochází, proto je \OK\ = r. Bod O leží na polopřímce
ST, |50| = r, proto je \OT\ — 10 — r nebo |ОГ| — r — 10,
podle toho, zda je r větší nebo menší než 10. Užitím Pythago-
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Obr. 4

rovy věty na pravoúhlý trojúhelník ОТК dostáváme pro r
rovnost

r2 - (10 - r)2 = 25,

odkud plyne r — 6,25. Střed O naší kulové plochy leží na

polopřímce ST ve vzdálenosti 6,25 od bodu 5.

ÚLOHY II. KOLA

Z-ll-1

Třináctinásobný rozdíl dvou dvojciferných čísel je devět-
krát větší než jejich součet. Najděte všechny takové dvojice.

Řešení. Označíme-li hledaná čísla x> у, má platit
13 (л: — у) — 9(x + jy),tedy 4x = 22jy. Na rozdíl od podobné
úlohy v I. kole nemůžeme nyní z poslední rovnice tvrdit,
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že číslo x je dělitelné číslem 22. Rovnici musíme nejdříve
dělit dvěma, dostaneme 2x — 11y. Čísla 2 a 11 jsou nesou-

dělná, a proto musí být číslo x dělitelné číslem 11. Protože
je dvojciferné, přicházejí v úvahu čísla 11, 22, 33, 44, 55, 66,
77, 88, 99, a žádná jiná. Vynásobíme-li každé z těchto čísel
dvěma a dělíme číslem 11, dostaneme příslušnou hodnotu y:

2, 4, 6, 8, 10, 12, 14, 16, 18. První čtyři nejsou dvojciferná,
řešením úlohy jsou tyto čtyři dvojice: (55, 10), (66, 12),
(77, 14), (88, 16) a (99, 18).

Z-II-2

Sestrojte lichoběžník ABCD, pro který platí \AB\ = 8,
|BC| =6, [<£ ABC\ =30° a úhel při vrcholu A je pravý.
Vypočtěte délky stran AD, CD.

Řešení. Sestrojíme úsečku AB délky 8, dále polopřímku
BM tak, aby J<£ ABM\ = 30° (obr. 5), na ní bod C tak, aby
|J9C| = 6. Bodem C vedeme rovnoběžku s přímkou AB,
její průsečík s kolmicí к přímce AB vedenou bodem A je

D

ВA

Obr. 5
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vrchol D. Označme P patu kolmice vedené bodem С к přímce
AB a E bod souměrně sdružený к bodu C podle přímky AB.
Trojúhelník CBE rovnostranný, protože \CB\ — \CE\
a [<t CBE\ = 60°. Podle Pythagorovy věty nebo podle vzorce
pro velikost výšky v rovnostranném trojúhelníku je \PB\ =

= 3 |/3, a tudíž |C£>| = \AB\ - \PB\ = 8 - 3 j/3, \AD\ =
= \PC\ = 3.

Z-11-3

Dřevěnou krychli o hraně délky 7 cm natřeme červeně
a pak rozřízneme rovinnými řezy na 73 krychliček, z nichž
každá bude mít hranu dlouhou 1 cm. Kolik krychliček bude
mít jednu červenou stěnu, kolik bude mít dvě červené stěny
a kolik tři ?

Řešení. Ty krychličky, které vzniknou z rohů velké krychle,
budou mít každá tři červené stěny. Takových krychliček
je 8. Ty krychličky, které jsou umístěny při hranách velké
krychle, avšak nikoli v rozích, mají obarvené dvě stěny.
Krychle má 12 hran, při každé hraně je 5 krychliček uvažo-
váného typu, celkem tedy 60. Jednu červenou stěnu budou
mít ty krychličky, které leží při stěnách původní krychle,
nikoli však při hranách. Při každé stěně je jich 25, celkem
6.25 = 150. Výsledek je tudíž 150, 60, 8.

Z- li -4

Na kružnici k o poloměru r = 10 cm jsou zvoleny body As
B3 C, D tak, že AB a CD jsou kolmé průměry kružnice k.
Vypočtěte obsah průniků kruhů, které jsou ohraničeny
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kružnicemi procházejícími body C, D, když jedna z nich
má střed v bodě A, druhá v bodě B.

Řešení. Úhel CAD je pravý (obr. 6), protože ABCD je
čtverec. Vypočítáme obsah čtvrtkruhu ohraničeného poloměry

AC, AD, odečteme obsah trojúhelníku ACD. Tím dostaneme
obsah jedné ze dvou shodných kruhových úsečí, ze kterých
se skládá průnik kruhů ze zadání úlohy. Hledaný obsah je
proto

= 2(x7ra2- 1
— a2 j, kde je a = \AC\ = r |/2 = 10 }j2,P

tedy

P = 100 (тс -2)== 114.
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ÚLOHY III. KOLA V ČSR

Úlohy připravil KV MO Středočeského kraje

Z-lll-1

Mnohoúhelník na obr. 7, který se skládá z 36 čtverců
o straně 7 mm, rozdělte přímkou procházející bodem X na
dva obrazce o stejném obsahu.

■Y

MX

Obr. 7

Řešení. Spojíme-li bod X přímkou s bodem K, skládá se
ta část mnohoúhelníku, která leží pod přímkou XK, z troj-
úhelníku XMK a šesti čtverců o straně 7 mm; celkový obsah

1
je у 7.7.3.7 + 6.72 = 16,5.72 (mm2), což je méně než
polovina obsahu celého mnohoúhelníku. Vedeme-li přímku
bodem X a bodem Ls skládá se část mnohoúhelníku pod
přímkou XL opět z šesti čtverců o straně 7 mm a z troj-

1
úhelníku XML; celkový obsah této části je у 7.7.4.7 +
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+ 6.72 = 20.72 (mm2). To je více než polovina obsahu
celého mnohoúhelníku. Hledaná přímka bude proto pro-
cházet některým bodem Y na úsečce KL. Označme v vzdá-
lenost bodu Y od bodu K. Obsah části mnohoúhelníku pod

1
přímkou XY se pak rovná — 7.7.(3.7 + v) + 6.72 a to má

být polovina obsahu celého mnohoúhelníku, tedy 18.72,
odkud plyne v = 3 mm. Tím je bod Y určen, a tím též
hledaná přímka.

Z-lll-2

Součet tří celých kladných čísel, z nichž jedno se rovná
součinu zbývajících dvou, je 47. Která jsou to čísla ? Najděte
všechna řešení úlohy.

Řešeni. Hledaná čísla označíme x3 y3 z. Nechť se číslo z
rovná součinu zbývajících, tedy z — xy. Podle podmínky
úlohy má platit x + у + xy = 47, což můžeme psát ve
tvaru (x + 1) (y + 1) = 48. Protože x3 у jsou kladná celá
čísla, jsou čísla x + 1, у + 1 celá a větší než 1. Rozložme
číslo 48 v součin dvou celých čísel větších než 1, dostaneme
tyto možnosti (nepřihlížíme к pořadí činitelů): 48 =2.24,
48 = 3.16, 48 = 4.12 a 48 =6.8. Čísla x3 у jsou pak vždy
o 1 menší než vypsané činitele, číslo z je součinem čísel x, y.
Dostaneme tak čtyři trojice čísel, které jsou řešením úlohy:
(1, 23, 23), (2, 15, 30), (3, 11, 33) a (5, 7, 35).

Z - III - 3

Na číselnou osu umístíme do obrazu čísla O figurku.
Figurkou pohybujeme tak, že ji při každém tahu přemístíme
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do obrazu sousedního celého čísla, doprava nebo doleva.
Figurka se může vracet, obrazem některého čísla může
projít několikrát. Z obrazu čísla O se máme dostat do obrazu
čísla 5 právě devíti tahy. Kolika různými cestami může
figurka jít ?

Řešení. Je zřejmé, že z devíti tahů musíme sedmkrát
táhnout doprava (k většímu číslu) a dvakrát doleva. Záleží
teď na tom, při kterých dvou tazích táhneme doleva. Mož-
ností je tolik, kolika způsoby je možno vybrat dvě čísla
z čísel 1, 2, ..., 9. To je možno 36 způsoby.

Z - III - 4

Je dána přímka p a na ní bod P. Narýsujte úsečku AB,
která obsahuje bod P, jestliže je vzdálenost bodu A od
přímky p 3 cm, vzdálenost bodu В od přímky p se rovná
1,5 cm а |ЛР1 = 5 cm. Na přímce p sestrojte body X3 Y
tak, aby byl trojúhelník AXY rovnoramenný s rameny XA3
XY a aby přímka BX půlila úhel AXY. Vypočítejte velikost
základny rovnoramenného trojúhelníku AXY.

Řešení. Ve vzdálenosti 3 cm od přímky p sestrojíme přím-
ku rovnoběžnou s přímkou p a zvolíme na ní bod A tak,
aby \AP\ = 5 cm. Bod В leží na polopřímce opačné к polo-
přímce PA a na přímce q rovnoběžné s přímkou p ve vzdá-
lenosti 1,5 cm. Je-li trojúhelník AXY rovnoramenný se
základnou AY a je-li přímka BX osou úhlu AXY, je tato
přímka i osou základny AY. Proto je \BA\ = |BF|. Bod Y
tedy sestrojíme jako průsečík přímky p a kružnice o středu B3
procházející bodem A. Takové průsečíky jsou dva. Zvolí-
me-li libovolný z nich za bod F, sestrojíme к němu bod X
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jako průsečík přímky p s osou úsečky AY. Úloha má dvč
řešení (obr. 8). Označme A' a Y' paty kolmic vedených
body A, Y na přímku q. Z pravoúhlých trojúhelníků BAA'
a BYY' plyne (všechny vzdálenosti udáváme v cm):

\BA'\ = 1/7,52 - 4,52 = 6,
\BY'\ = 1/7,52 - 1,52 = 1/54 = 3 УбГ

Při jednom řešení je \A'Y'\ = \BY'\ — \BA'\ =3 1/6 — 6,
pro druhé řešení platí \A’Y'\ — |ВУ'| + \BA'\ — 3J/6 + 6.
Dále je \AY\2 = \A'Y’\2 + 32, takže \AУ|2 = 9 (11 - 4 j/6)
při prvním řešení а |у4У|2 = 9(11 +41/6) při druhém
řešení.

ÚLOHY III. KOLA V SSR

Z-ill-1

К dvojcifernému prirodzenému číslu pripočítajte pri-
rodzené číslo к němu obrátené, tj. číslo, ktoré dostanete
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záměnou číslic daného dvojciferného čísla. Nájdite všetky
dvojciferné prirodzené čísla, o ktorých platí, že súčet daného
čísla a čísla к němu obráteného je druhou mocninou pri-
rodzeného čísla.

Řešení. Je-li dané číslo 10a + b, je obrácené číslo 10b + a,

jejich součet je 11 (a + b). Má-li být toto číslo druhou moc-
ninou přirozeného čísla, musí být a + b vhodným násobkem
čísla 11, a protože nemůže být větší než 18, musí být a + b =
= 11. Řešením úlohy jsou dvojciferná čísla 29, 38, 47, 56,
65, 74, 83 a 92.

Z- III -2

Pomocou kruhovej formy s polomerom 10 cm vykrojila
Anička nasledujúci koláčik (obr. 9). Určte velkost’ plošného
obsahu koláčika. (Vrcholy koláčika sú vrcholmi pravidel-
ného šesťuholníka.)

Řešení. (3 y3 — tz) 102 == 205 cm2, stačí od obsahu šesti-
úhelníku odečíst rozdíl obsahů kruhu a šestiúhelníku.
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Z - III - 3

Dřevený kváder s rozmermi 3 cm x 3 cm x 1 cm celý
zafarbíme na červeno, potom ho 4 rovinami rozřežeme na
9 kociek s rozmermi 1 cm x 1 cm x 1 cm. Vrchné steny
kociek označíme 1 až 9 (obr. 10) а коску pomiešame. Kolký-
mi róznymi spósobmi sa dá z kociek opáť zložiť červený kvá-
der, v ktorom sú všetky čísla na hornej stene ?

/TZXZyA /5/6/ )

Obr. 10

Řešení. Kostka číslo 5 musí být vždy uprostřed a kostky
1, 3, 7 a 9 v rozích. Celkem máme 4.3.2.1 =24 možností
jejich umístění. Rovněž tak máme 24 možností pro umístění
kostek s čísly 2, 4, 6 a 8 na místa zbývající. Celkem máme
24.24 = 576 různých možností, jak složit červený kvádr. To
považujeme však za různé i takové dva kvádry, z nichž jeden
dostaneme pouhým otočením z druhého. Jinak jich bude jen
576 : 4 = 144.

Z- lil -4

Je daný zrezaný 3-boký hranol ABCDEF, velkost’ hrany
AB je 10 cm, velkost’ hrany AD je 13 cm, velkosť BE je
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tiež 13 cm a velkosť hrany CF je 16 cm (obr. 11). Obsah
homej podstavy je 25 cm2. Zistite obsah dolnej podstavy.

0

D

P E

C

A

В

Obr. 11

Řešeni. Velikost výšky na stranu DE v trojúhelníku DEF
je 5 cm. Označme P patu této výšky a Q bod na úsečce CF, pro
který je |C<2| = 13 cm. Podle Pythagorovy věty vypočteme
z pravoúhlého trojúhelníku PQF velikost úsečky \PQ\ —
— 4 cm. To je zároveň velikost výšky v trojúhelníku DEQ
a také velikost výšky na stranu AB v trojúhelníku ABC.
Jeho obsah je proto 20 cm2.
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Kategorie С

ÚLOHY I. KOLA - DOMÁCÍ ČÁST

C-l-1

Je dán ostroúhlý trojúhelník ABC. Kružnice, která je mu

opsána, má střed 5 a poloměr r. Zvolme soustřednou kružnici
o poloměru r' < r, která však také protíná všechny strany
trojúhelníku ve dvou bodech. Označme u, v, w velikosti
tětiv, které tato kružnice vytíná na stranách trojúhelníku
ABC. Dokažte, že

u2 + v2 + io2 = a2 + b2 + c2 — 12 (r2 — r'2),

kde a, b, c značí velikosti stran trojúhelníku ABC (\AB\ = c,

|BC| = a, \AC\ = b).
Řešení. Protože trojúhelník ABC je ostroúhlý, leží střed

5 uvnitř trojúhelníku. Označme (obr. 12) Ao střed strany BC
a Ai jeden z průsečíků kružnice k! se stranou BC. Z Pytha-
gorovy věty pro pravoúhlé trojúhelníky BAoS a AiAoS
plyne

a2 u2
\SA0\2 = r2 - —4

_ y’2 __

4 5
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takže

и2 — а2 — 4 (г2 — г'2).

Obdobně pro ostatní úseky dostaneme

v* = b2 -4 (r2 - r'2),

эд2 = c2 — 4 (r2 — r'2^

a sečtením

M2 + v2 + w2 = a2 + b2 + c2 - 12 (r2 - r'2),

což je rovnost, kterou jsme měli dokázat.
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С- I -2

Jsou dány dvě kružnice k\ = (A; n), Ы — (В; Г2), při-
čemž n < 2r3, Л e k<z. Na kružnici &i zvolme libovolný
bod T tak, aby tečna v něm sestrojená ke kružnici k\ proťala
k<i v různých bodech K, L. Dokažte, že \AK\.\AL\ = konst.

Řešeni. Označme C druhý průsečík přímky AB s kruž-
ničí &2j průsečíky tečny s kružnicí Ы označme K, L tak,
aby v případě, že oba leží na témže oblouku AC3 bylo jejich
pořadí A, K} L3 C (obr. 13). Pak bude podle věty o obvodo-
vých úhlech

[<£ ACKI = |<£ ALK\.

Protože [<£ ATL\ — |<)C AKCj = 90°, jsou trojúhelníky ATL
a AKC podobné, takže musí platit

\AT\ : \AK\ = \AL\ :\AC\.
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Dosadírae-li \AT\ = n, \AC\ = 2r2, dostaneme

i /2L|.! = 2ri?*2 = konst.

Jiné řešení. Nechť KL je tětiva kružnice k — (S:; r),
pak pro libovolný bod X na kružnici k, který je různý od
bodů К a L3 platí

\KL\
йп\з:кхц = 2r '

Pro obsah trojúhelníku AKL z úlohy pak dostáváme

1 \KL\1
P = — \AK\.\AL\ sin Hc KAL\ = — \AK\.\AL\ ‘

2r2

a zároveň

1

Y \KL\.n,p —

takže opět

\AK\.\AL\ — 2пгъ = konst.

C- I -3

Je dán rovnostranný trojúhelník KLM a uvnitř jeho
strany KL bod O. Sestrojte pravoúhlý trojúhelník ABC,
jehož odvěsna AC leží na přímce KM, bod O je středem
odvěsny AB a střed přepony BC leží na přímce LM.
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Řešení. Označme P střed strany BC hledaného právo-
úhlého trojúhelníku ABC (obr. 14); pak je OP střední
příčkou trojúhelníku ABC. Odtud plyne konstrukce. Nej-
dříve sestrojíme odvěsnu AB, která je kolmá к přímce KM
a jejímž středem je bod O. Bodem O vedeme rovnoběžku
s přímkou KM a její průsečík s přímkou LM bude bod P.
Přímka BP pak protne přímku KM v bodě C.

С - I - 4

Najděte všechna přirozená čísla, jejichž třetí mocnina
končí skupinou cifer 56 789.

Řešení. Má-li třetí mocnina čísla n končit skupinou cifer
56 789, musí být především

n — 10a + 9,
pak

n3 = (10a + 9)3 = 100a + 30.81a + 729 =
= 100a + 10.3a + 29,
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takže musí být a = 10a' + 2, tj. n — 1006 + 29, pak

и3 = 103/? + 300.2926 + 293 = 103/5' + 100.36 + 389,

takže musí být 6 = 106' + 8, tj. n = ÍO3^ + 829, pak

я3 = 104y + 3.103c. 8292 + 8293 = юу + 103.3c + 2789,

takže musí být c = 10c' + 8, tj. n — 104d + 8 829, pak

n3 = 105<5 + 3.10^.8 8292 + 8 8293 =

- 105ó' + 104.3í/ + 6 789,

takže musí být d — \0ď + 5, tj. n = 105c + 58 829. Dostá-
váme tak celkový výsledek. Uvedenou podmínku splňují
všechna přirozená čísla, která končí pětičíslím 58 829.

C - í - 5

605 koulí stejného průměru je srovnáno do dvou pyramid,
z nichž jedna má ve spodní vrstvě koule uspořádané do
čtverce, druhá do rovnostranného trojúhelníku. Obě pyra-

midy mají stejný počet vrstev. Určete, v kolika vrstvách
byly koule srovnány v každé z pyramid a kolik koulí bylo
v jednotlivých pyramidách.

Řešení. V úloze se použijí obrazcová čísla trojúhelníková
a čtvercová. Čísla (počty koulí) uspořádáme do tabulky:
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12345 6 7 8 9 10vrstva

čtvercová
pyramida

1 4 9 16 25 36 49 64 81 100

trojúhelníková
pyramida

1 3 6 10 15 21 28 36 45 55

součet koulí
v n vrstvách

2 9 24 50 90 147 224 324 450 605

Koule byly srovnány v 10 vrstvách. V pyramidě s trojúhel-
níkovou podstavou bylo 220 koulí a v pyramidě se čtvercovou
podstavou 385 koulí. Pokud již známe nebo dovedeme
odvodit vzorec pro počet koulí v n-té vrstvě trojúhelníkové
pyramidy (počítáno od vrcholu)

n (n 4- 1)
1 + 2 + ... + n =

2

a pro součet koulí v n vrstvách čtvercové pyramidy

1
cn = l2 + 22 + ... + n2 = — n (n + 1) (2n + 1),

o

pak pro součet koulí v n vrstvách trojúhelníkové pyramidy
dostaneme
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n (n + 1)
tn — 1 + 3 + ... +

2

1
= — (1 + 22 + ... +n°- + 1 + ... + n) =

1 í 1
=

T + 1) (2n + 1) + 2

1 1
= —

. —n(n + 1) (2n + 1 + 3) = —n (n + 1) (n + 2).
o 2 6

n (n + 1)

1

Pro součet koulí obou pyramid má platit (n je počet vrstev)

1
Tn = cn + tn — ~T n (n + l)2 == 605.

Protože n je přirozené a má být

n{n + l)2 = 1210 = 10. II2,

dostáváme n = 10, tn — 220, cn — 385.

C- I -6

Pro každé dva trojúhelníky se stranami a, b, c a p, q, r
platí

(a + l)2 + {b — l)2 + (с + l)2 — 2{ap + bq + cr) >
> 6 - (p + l)2 - (g - l)2 - (r + l)2.

Dokažte.
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Řešení. Nejprve danou nerovnost upravíme pomocí
ekvivalentních úprav

a2 + б2 + c2 + 3 + 2(a — 6 + c) — 2(a/> + bq + cr) >
>6 ~(p2+ q2 + r2) — 2(p — q + r) — 3,

máme tedy dokázat nerovnost

a2 + b2 + c2 + p2 + q2 + r2 — 2(ap + bq + cr) +
+ 2{a — b + c) + 2{p — q + r) > 0.

Levou stranu poslední nerovnosti můžeme ale psát jako

(a — p)2 + (b — q)2 + (c — r)2 + 2(a — b + c) +
+ 2(p — q + r),

což je vždy kladné vzhledem к trojúhelníkovým nerovnostem

a — b + c > 0, p — q + r > 0.

ÚLOHY I. KOLA - ŠKOLNÍ ČÁST

C-S-l

Na kružnici k sú dané body A, B3 C, D tak, že AB je
priemer kružnice k a tětiva CD je kolmá na AB. Na úsečke
CD je daný bod L. Nech Aí je priesečník priamky ALs kruž-
nicou k, M ф A. Dokážte, že súčin \AL\.\AM\ je nezávislý
na polohe bodu L.
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Řešení. Označme К průsečík přímek AB a CD. Buď
nyní L libovolný bod na přímce CD, M průsečík přímky AL
a kružnice k (takový vždy existuje právě jeden) (obr. 15).
Trojúhelník ABM je podle Thaletovy věty pravoúhlý.

Trojúhelníky ABM a AKL jsou podobné, protože jsou oba
pravoúhlé a mají společný úhel |<)C LAK\ — |<£ MAB\. Je
tedy

|AL\ : |AK\ = \AB\ : \AM\3

tj-

\AL\.\AM\ = \AB\.\AK\3

a hodnota vpravo na poloze bodu L nezávisí.
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C-S-2

Dokážte, že pře reálne čísla a, b, p, q platí

a2p2 + a2q2 + b2p2 + b2q2 + a2 + 62 + p2 4- <72 ^
^ (ap + bq)2 + 2ap + 2bq.

Zistite, kedy platí rovnost’.
Řešení. Umocněním dvojčlenu vpravo a ekvivalentní

úpravou nerovnosti dostaneme

á2q2 + b2p2 + a2 + br + q2 + p2 — 2ap — 2bq —
— 2apbq ^ 0,

což lze upravit na nerovnost

(aq — bp)2 + (a — p)2 + {b — q)2 ^ 0,

která platí vždy. Přitom je zřejmé, že rovnost v poslední
nerovnosti, a tedy i v nerovnosti původní, nastane právě
tehdy, když a = p, b = q (pak je i aq = bp).

C - S - 3a

Je dán rovnostranný trojúhelník KLM. Uvnitř jeho stran
KL a ML jsou po řadě dány body В а Г, přitom platí 3| TL\ 5^
^ |ML\. Sestrojte trojúhelník ABC, jehož vrcholy zí, C
leží po řadě na přímkách KM, JCL a jehož těžištěm je bod T.

Řešení. Z rozboru (obr. 16) je zřejmé, že známe střed Bi
strany АС a že vrcholy A a C jsou středově souměrné podle
středu Bi. Odtud plyne konstrukce: Na polopřímce ВТ
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najdeme bod Вi tak, aby \BBv — —\BT\. Sestrojíme nyní

přímku p středově souměrnou s přímkou KL podle středu Bi,
její průsečík s přímkou KM bude vrchol A, vrchol C dosta-
neme např. z bodu A středovou souměrností podle středu B±.
ABC je pak trojúhelník požadovaných vlastností. Podmínka
3\TL\ ^ \ML\ nám navíc zaručuje, že bod A bude ležet
uvnitř strany KM.

C - S - 3b

Nájdite všetky prirodzené čísla n také, že číslo n2 — n

je dělitelné číslom 50.
Řešeni. Protože číslo n2 — n — n (n — 1) je vždy děli-

telné dvěma (ze dvou po sobě jdoucích čísel je aspoň jedno
sudé), stačí zjistit, kdy je dělitelné 25 (čísla 2 a 25 jsou navzá-
jem nesoudělná). Ale 25 dělí součin n (n — 1), právě když
25 dělí n nebo 25 dělí n — 1, tedy hledaná přirozená čísla n

jsou tvaru
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n — 25k nebo n = 25k + 1,

kde k je libovolné přirozené číslo. Řešením jsou tedy všechna
přirozená čísla zakončená dvojčíslím

00, 25, 50, 75 nebo 01, 26, 51, 76.

ÚLOHY II. KOLA

C - II - 1

Určete všechna trojciferná přirozená čísla и, pro která
se poslední trojčíslí dekadického zápisu čísla w2 neliší od
posledního trojčíslí dekadického zápisu čísla (n + 32)2.

Řešení. Úlohu je možno řešit postupným zjišťováním,
čemu se musí rovnat poslední cifra čísla я, jeho předposlední
cifra atd. Označíme-li např. poslední cifru čísla n jako c3
musí být číslo (c + 2)2 — c2 = 4c + 4 dělitelné 10, takže
5 dělí 2 (c + 1) a může být jen c — 4 nebo c = 9. Dále
rozlišujeme dva případy. Označíme-li další cifru jako bs musí
pak např. pro c — 4 být číslo (106 + 36)2 — (106 + 4)2 =
— 6406 + 1280 dělitelné 100, tedy 5 dělí 6 + 2, tak-
že je buď 6=3, nebo 6 = 8. Jak je vidět, je tento postup
značně zdlouhavý. Uvědomíme si rovnou, že poslední troj-
čísli dekadického zápisu čísla a se neliší od posledního troj-
čísli dekadického zápisu čísla 6, právě když 1000 dělí a — 6.
Pro číslo n z naší úlohy musí tedy platit (100^ 999),
že 1000 dělí

(n + 32)2 - n2 = 64n + 1024 = 64 (n + 16),
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což je právě tehdy, když 125 dělí n + 16. Číslo n je tedy
tvaru

n = 125* - 16.

Vzhledem к podmínce 100 ^ n ^ 999 může být jen 1 ^
^ k ^ 8, takže úloze vyhovují čísla 109, 234, 359, 484,
609, 734, 859 a 984.

С - II -2

Je dán rovnostranný trojúhelník KLM a uvnitř jeho
1

strany KL takový bod O, že \KO\ < — \KL\. Sestrojte

pravoúhlý trojúhelník ABC, jehož přepona BC leží na přímce
KM, bod O je středem odvěsny АС a přímka АВ prochází
bodem L.

Řešení. Protože O má být středem strany АС a vrchol C
leží na přímce KM, bude A ležet na přímce p středově
souměrné podle středu O s přímkou KM, p || KM (obr. 17).

L

\
:4 \ p

o

/V 8 К c

Obr. 17
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Dále si uvědomíme, že úhel OAL je pravý, takže
vrchol A bude ležet na Thaletově kružnici k nad průměrem
OL. Odtud již plyne konstrukce: Sestrojíme bod A jako
průsečík přímky p a kružnice k3 vrcholy В a C dostaneme
jako průsečíky přímky KM s přímkami AL а АО. Z pod-

1
minky |iCO| < — \KL\ plyne, že přímka p obsahuje právě

jeden vnitřní bod úsečky OL, takže vždy najdeme dva různé
průsečíky přímky p s kružnicí k. Úloha tedy bude mít vždy
dvě různá řešení.

С - II - 3a

Úhlopříčky daného čtyřúhelníku jsou osami jeho vnitřních
úhlů. Určete jeho obsah, jestliže jedna strana a jedna z jeho
úhlopříček mají shodně délku 2 cm.

Řešeni. Nechť ABCD je daný čtyřúhelník a a, /?, у, d
příslušné vnitřní úhly. Označme O průsečík úhlopříček. Pro- .

tože úhlopříčky jsou zároveň osami úhlů, musí být

a + /5 у + d
2 ~ 2 3

neboť úhly AOB a COD jsou shodné. Protože součet
1

úhlů ve čtyřúhelníku je 360°, musí být — (a + /5) = 90°,
takže úhlopříčky jsou na sebe kolmé. Úhlopříčky jsou však
zároveň osami úhlů, jsou tedy trojúhelníky ABC, BCD,
CDA a DAB rovnoramenné, \ AB\ — |BC| = |CD| = \DA\ —

= 2, čtyřúhelník ABCD je kosočtverec a jeho obsah je
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roven 4 РаоВз kde AOB je pravoúhlý trojúhelník s přepo-
nou délky 2 cm a jednou odvěsnou délky 1 cm. Jeho obsah

1/3 —
tedy je ----- a obsah kosočtverce ABCD pak bude 2]/3 cm2.

C-ll-3b

Nájdite všetky trojice reálných čísel x} y3 zs pre ktoré
platí x2 4- y2 + z2 = 4 a súčasne x4 + y4 + z4 = 16.

Řešení. Z uvedených rovnic plyne

O2 + y2 + z2)2 = x4 + y4 + z4,

takže

x2y2 + x2z2 + y2z2 = 0.

Je tedy

xy = xz — yz — 0.

Tento vztah je splněn5 právě když aspoň dvě z čísel x, y3 z

jsou rovna nule. Pro třetí číslo pak dostáváme z první rovnice
hodnotu i 2. Řešením soustavy jsou tedy právě trojice

(0, 0, 2), (0, 0, -2), (0, 2, 0), (0, -2, 0), (2, 0,0),
(-2,0,0).
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Kategorie В

ÚLOHY I. KOLA - DOMÁCÍ ČÁST

В - I - 1

Dokažte, že žádné z čísel 31982 + 21981 а 31982 — 21981
není prvočíslo.

Řešení. Dokážeme, že první číslo je dělitelné jedenácti
a druhé sedmi. Je totiž 31982 + 21981 = (32)991 + 21981 =
= (11 — 2)991 + 21981 = 11 T — 2991 + 21981 = 11 T +
+ 2991 (2"° — 1). Nyní stačí dokázat, že číslo 2"° — 1 je
dělitelné číslem 11. Je 2990 - 1 = (210)99 - 1 = 1024" —
— 1 = (1024 — 1) Q, kde Q je stejně jako T číslo přirozené.
A protože je 1023 dělitelné jedenácti, je první část
úlohy dokázána. Vezmeme druhé ze zadaných čísel. Je
31982 21981 = (7 + 2)991 — 21981 = 7 R + 2991 — 21981 =
= 7 R - 2"1 [(23)330 _ i] a 8330 _ ! _ (8 _ i) S, čísla i?,
5 jsou přirozená. První číslo je tedy dělitelné jedenácti, druhé
sedmi a přitom se těmto číslům nerovnají, jsou mnohem větší.
Proto to nejsou prvočísla.

В - I - 2

Určete množinu všech bodů v rovině, která je grafem
relace
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j[.v, у] £ R x R : (jc — w)2 + (y — n)2 ^
2 (2]/2 - I)2

G =

1

'H
11

16л y~Y~qX — —
162

pro některá celá čísla m, n, p, qj .
Řešení. Pro reálná čísla m, n je množinou všech bodů

1
splňující podmínku (jc — m)2 + (y — rif ^ ——, kruh16

1
se středem v bodě [m, n] o poloměru —. Podobně je mno-

žinou všech bodů, jejichž souřadnice x, у splňují nerovnici

(21/2 - l)2p) + ■)'«
1 1

x — —
2 2 16

2J/2 - 11 1 1
kruh se středem p + —, q + — o poloměru

[x, у] patří tedy do grafu relace G právě tehdy, leží-li v ně-

. Bod
4

1
kterém kruhu o poloměru —, jehož střed má celočíselné

souřadnice, a současně patří bod [л:, jy] do některého kruhu

2У2 - 1
přičemž souřadnice středu tohotoo poloměru

1
kruhu se liší od celého čísla o ^r. Můžeme také říci, že střed

tohoto kruhu splývá se středem jednotkového čtverce, jehož
vrcholy mají celočíselné souřadnice. Budeme stručně mluvit
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o kruzích první soustavy a kruzích druhé soustavy. Bod
patří do grafu relace G právě tehdy, patří-li do některého
kruhu první soustavy a zároveň do některého kruhu soustavy
druhé. Každý kruh jedné soustavy se dotýká čtyř kruhů
druhé soustavy (obr. 18). Hledaná množina se skládá ze
všech takto obdržených bodů dotyku, tedy ze všech bodů

1/2
—, n — —
8 ’ 8

—, n +m
8

kde m, n jsou celá čísla.

B- 1 -3

Lineárním mnohočlenem tří proměnných x, y, z rozumíme
funkci tvaru (x, y, z) i-> ax + by + cz + d} kde a, b} c, d
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jsou reálná čísla, (a, b, с) ф (0, 0, 0). Čísla a, b, c, d se nazý-
vají koeficienty mnohočlenu. Zjistěte, zda existují takové
lineární mnohočleny Li, L2, L3, L4 tří proměnných x, y3z
s reálnými koeficienty, aby pro všechny (x, 3?, z) e R3 platilo
Li (x, я) . L2 (л, з>, гг) + L3 (x, :y, г) . L4- O, z) =
= x2 + y2 + z2.

Řešení. Nulovým bodem mnohočlenu R(x, y3 г) tří pro-

měnných nazýváme takovou uspořádanou trojici (xo, У(ъ zo)
reálných čísel, pro kterou platí R (xo, yo3 ^o) — 0. Předpo-
kládejme, že mnohočleny Li, L2, L3, L4 s vlastností popsa-
nou v textu úlohy existují. Protože mnohočlen P (x, y3 z) —
= Li (x, y3 z).Lz (x, у, г:) + L3 (x, 3;, #).L4 (x, 3;, гг) se má
pro každou trojici reálných čísel (x, y, z) rovnat mnohočlenu
Q (x> У» z) — x2 + у2 + гг2, musí mít oba mnohočleny
stejné nulové body. Mnohočlen Q má však jediný nulový
bod, je jím trojice (0, 0, 0). Je tedy také P (x, у, z) — 0
pouze pro x — у = z = 0. Má-li některý z mnohočlenů
Li, L2 společný nulový bod s některým z mnohočlenů L3, L4,
je to též nulový bod mnohočlenu P. Proto nemůže mít
žádná z dvojic mnohočlenů (Li, L3), (Li, L4), (L2, L3) nebo
(L2, L4) společný nulový bod různý od bodu (0, 0, 0). Je-li
Li(x, 3’, z) = ax + by + cz + d3 musí se L3 rovnat až na

nenulový násobek mnohočlenu ax + by + cz + dz3 kde je
dz ф d. V opačném případě by měly mnohočleny Li a L3
dokonce nekonečně mnoho společných nulových bodů. Je
tedy L3(x, y, z) = p (ax + by + cz + dz)3 podobně
L4 (*s У> z) = q (я* + by + cz + d4) a také L2 (x, 3;, г) =
= r (ax + by + cz + dz)3 kde pqr ф 0, dz ф d3 d4 ф d3
dz ф dz3 dz Ф d4. Protože je P (0, 0, 0) = 0, je drdz +
-I- dzd4pq = 0 a P (x, y, z) = (r -f- pq) (ax + by + cz)2 4-
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+ {dr 4- d-гг + pqdz + pqdi) {ax + by + cz). Mnohočlen
ax + by + cz má však nekonečně mnoho nulových bodů,
a tím jsme došli ke sporu. Lineární mnohočleny Li, L2, L3,
L4 požadované vlastnosti neexistují.

В - I - 4

Sestrojte trojúhelník ABC, je-li dána délka strany c,

výška v na stranu c a rozdíl <p úhlů při vrcholech А, В hledá-
ného trojúhelníku.

Řešení. Bez újmy na obecnosti můžeme předpokládat, že
je a > /?, tedy cp > 0. Předpokládejme, že trojúhelník ABC
má požadované vlastnosti. Bodem C veďme přímku p rovno-
běžnou s přímkou AB. Nechť je B' bod souměrně sdružený
к bodu В podle přímky p. Pak je úhel ABB' pravý a úhel
ACB' má velikost у + 2^ — 180° — у (obr. 19). Z popsa-
ného rozboru již vyplývá konstrukce. Sestrojíme pravoúhlý
trojúhelník ABB' s pravým úhlem při vrcholu В tak, že
\AB\ = c, \BB'\ — 2v. Nad úsečkou AB' sestrojíme v polo-
rovině opačné к polorovině AB'B kruhový oblouk k, který
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je množinou všech těch bodů X této poloroviny, pro něž
platí AXB'\ — 180° — (p. Vrchol C je pak průnikem
oblouku k a přímky p, která je osou úsečky BB'. Úloha
má vždy právě jedno řešení.

Jiné řešení využívá stejnolehlosti. Předpokládejme, že
trojúhelník ABC splňuje podmínky úlohy. Nechť je C bod
souměrně sdružený к bodu C podle osy o úsečky AB (obr. 20).

Sl C' D'D C

В

Obr. 20

Potom má úhel BAC' velikost /?, a tedy úhel CAC velikost <p.
Toho využijeme při konstrukci trojúhelníku ABC. Sestro-
jíme úsečku AB délky c a na její ose o zvolíme bod 5 tak,
aby měl od přímky АВ vzdálenost v. Dále zvolíme úsečku
DD' tak, aby byla rovnoběžná s přímkou AB a bod 5 byl
jejím středem. Na polopřímce SA zvolíme bod E tak, aby
|<£ DED' | = cp. Trojúhelník DED' je s hledaným trojúhel-
níkem CAC' stejnolehlý, středem stejnolehlosti je bod S.
Stačí tedy bodem A vést rovnoběžku s přímkou ED; její
průsečík s přímkou DD' je vrchol C hledaného trojúhelníku.
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В - I - 5

V kruhu К o poloměru 1 leží kruhový oblouk Cl o tomtéž
poloměru, jehož krajní body leží oba na hraniční kružnici
kruhu K. Oblouku Ol se dotýká další kruhový oblouk C2
o poloměru 1, který leží v kruhu К a jehož krajní body P, Q
leží na hraniční kružnici kruhu K. Najděte množinu středů
tětiv PQ všech možných oblouků C2 popsaných vlastností.

Řešení. Oblouk Ci leží na kružnici k\ se středem Si9
podobně oblouk C2 je částí kružnice, kterou označíme kz
a její střed S2. Označme ještě k hraniční kružnici kruhu К
a 5 její střed. Protože kružnice k, кг mají stejně velké polo-
měry a protínají se v bodech P, Q, splývá střed U úsečky
PQ se středem úsečky SS2. Obdobně splývá bod dotyku T
oblouků Ci, C2 se středem úsečky S1S2. Je tedy úsečka UT
střední příčkou v trojúhelníku S2SS1 (obr. 21). Proto je
bod U obrazem bodu T v posunutí, ve kterém se zobrazí
bod Si na střed úsečky SiS. Protože každý bod oblouku Ci
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je bodem dotyku oblouku Ci a některého oblouku Cz poža-
dováných vlastností, je množinou středů všech v textu
úlohy popsaných úseček PQ oblouk C', který dostaneme
z oblouku Ci zmíněným posunutím.

В - I - 6

Dvě protilehlé hrany ki, Ы čtyřstěnu jsou na sebe kolmé,
jejich vzdálenost označíme v. Zbývající hrany čtyřstěnu jsou
stejně dlouhé, jejich délku označíme d.

a) Ukažte, že výšky čtyřstěnu, které jsou vedeny krajními
body hrany h\3 jsou různoběžné. Jejich průsečík označíme
Xi. Podobně označíme X2 průsečík výšek čtyřstěnu, které
jsou vedeny krajními body hrany hz.

b) Dokažte, že vzdálenost bodů X\ а Xz závisí pouze na
hodnotách v, d a že nezávisí na velikostech hran hi3 hz.

Řešení. Označme vrcholy uvažovaného čtyřstěnu A3 B3
С, Да nechť AB3 CD jsou ty hrany čtyřstěnu, které jsou
na sebe kolmé, \AB\ = hi3 [GDj = hz. Trojúhelník ABC
je rovnoramenný, proto jsou přímky AB a CP na sebe kolmé,
když je P střed hrany AB (obr. 22). Stejně tak jsou kolmé
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přímky DP a AB, takže rovina CDP je kolmá na přímku AB.
V této rovině leží tudíž výšky čtyřstěnu vedené body D, C,
protože jsou též kolmé na přímku AB. Bod X2 je proto
průsečíkem výšek v trojúhelníku CDP3 a leží tedy na spojnici
PQy kde <2 je střed hrany CD. Z podobnosti trojúhelníků

w
PQD a DQX2 plyne \QX2\ = , protože \PQ\ = vAv

w
a |*A| =(obr. 23). Podobně odvodíme, že |P^Ti| =

= \v — |PJ*Ti| — \QX2\\. Z pravoúhlých trojúhelníků PCQ
a PBC pak plyne

Av

D Q C

*2

P

Obr. 23

|PC|2 = v2 +

tedy

d2 - v2 = +
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]2v2 - d2!
. Vidíme, že výsledek závisí

v
a proto \Х\Хг\ =

pouze na hodnotách vy d} což jsme měli dokázat.

ÚLOHY I. KOLA - ŠKOLNÍ ČÁST

B-S-1

Úsečky PQ a UV jsou dvě tětivy kružnice o středu S, kte-
ré nejsou spolu rovnoběžné. V bodech P a Q vedeme kolmi-
се к přímce PQ3 body U, V vedeme kolmice к přímce UV.
Obdržené Čtyři přímky tvoří rovnoběžník. Dokažte, že jeho
úhlopříčky procházejí bodem S.

Řešení. Osy úseček PQ a UV jsou středními příčkami uva-
žovaného rovnoběžníku a procházejí středem 5 kružnice,
protože to jsou osy tětiv kružnice o středu 5 (obr. 24). Je tedy

bod 5 středem uvažovaného rovnoběžníku, a proto jím pro-

cházejí též obě jeho úhlopříčky.
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В - S - 2

V rovině je dána kružnice k o středu S a v její vnější oblasti
bod A. Přímka t prochází bodem A a dotýká se kružnice k
v bodě T. Označme P, Q průsečíky přímky AS s kružnicí k3
tečny kružnice k v bodech P, Q označíme p, q. Průsečík pří-
mek p a QT označíme M, průsečík přímek q a PT označíme
N. Dokažte, že body M, N3 A leží na přímce.

Řešení. Označme К průsečík přímek p31 (obr. 25) a obdob-
ně L průsečík přímek q, t. Protože jsou přímky p3 q rovno-

Ný

LM
t

к

oA P

IQP

Obr. 25

běžné, prochází přímka MN právě tehdy bodem A3 když
platí \NQ\ : \MP\ = \LQ\ : \KP\. V pravoúhlém trojúhelníku
NTQ je | TL\ = \LQ\3 protože úseky na tečnách kružnice ve-

děných bodem L jsou stejně dlouhé. Je tedy bod L středem
přepony NQ. Stejně tak je bod К středem úsečky MP. Platí
tudíž \MP\ — 2\KP\ а |WQ| = 2\LQ\, a tím také výše uvede-
ná úměra. Proto také leží body N3 M3 A na přímce.
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В - S - За

Dokažte, že číslo

1 984.124 - 1 983 .123 + 1 982 .122 - 1 981 . 12

je dělitelné číslem 13.
Řešení. Protože máme dokázat dělitelnost daného čísla

číslem 13, napíšeme si číslo 12 jako 13 — 1. Dané číslo napí-
šeme tedy ve tvaru 12[1 984(13 — l)3 — 1 983(13 — l)2 +
+ 1 982(13 - 1) - 1 981] = 12[1 984(133 - 3.132 +
+ 3.13 - 1) - 1 983(132 - 2.13 + 1) + 1 982(13 - 1) -
- 1 981] = 12(13a - 1 984 - 1 983 - 1 982 - 1 981), kde
je a celé číslo. Stačí proto již jen dokázat, že je třinácti dělitelné
číslo 1 981 + 1 982 + 1 983 + 1 984, což je zřejmé, protože
se tento součet rovná číslu 2.3 965 = 2.13.305.

В - S - 3b

V rovině se zvolenou kartézskou soustavou souřadnic určete

množinu všech bodů [я, у], pro které platí: existují celá čísla
1

w, n tak, že (x — m)2 + (у — я)2 = —3 a zároveň existují

т~г) + (y
1 \2
J-s) -

1
celá čísla r, s tak, že

4 '
Řešení. První podmínka říká, že bod [x,jy] leží v některém

1
kruhu o poloměru —, jehož střed má celočíselné souřadnice.

Druhá podmínka úlohy říká, že bod [x,yj leží v některém kruhu
1 1 1

o poloměru —, jehož střed má souřadnice r + —, s + —,
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kde r, s jsou libovolná celá čísla. Hledaná množina se

tedy skládá ze všech průniků libovolného kruhu první sku-
piny s libovolným kruhem druhé skupiny (obr. 26).

ÚLOHY II. KOLA

В - II - 1

Je dán čtverec ABCD se středem 5 a kružnice k, která je
mu vepsána. Určete množinu všech bodů X s touto vlastností:
к bodu X existuje na kružnici k bod Y tak, že bod X leží na
úsečce SY a vzdálenost bodů X, Y se rovná vzdálenosti bodu
Y od obvodu čtverce ABCD.

Řešení. Podle textu úlohy máme ke každému bodu Y
kružnice k najít bod X tak, aby ležel na úsečce SY a aby se
vzdálenost bodů X, Y rovnala vzdálenosti bodu Y od obvodu
čtverce, a pak určit, co vyplní všechny takto obdržené body X.
Uvažujme nejdříve jen ty body Y kružnice k, které leží zá-
roven v trojúhelníku DSC (obr. 27). Pro každý takový bod Y
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se jeho vzdálenost od obvodu čtverce rovná jeho vzdálenosti
od přímky DC. Splývá-li bod Y se středem F úsečky DC, je
X = Y = F. Fro Y ф F označme ještě Z patu kolmice ve-
děné bodem Ук přímce DC. Trojúhelník YFS je rovnoramen-

ný, proto je |<£ SYF\ — j^SFyj. Z rovnoběžnosti přímek YZ
a SFplyne |<£ SFY\ = |<£ ZFF|3tedy |<£ XYF\ = |<£ ZYF\.
Podle věty sus jsou tedy trojúhelníky ZYF a XYF shodné,
proto jsou přímky FX a XS kolmé. Vidíme, že body X leží
podle Thaletovy věty na kružnici nad průměrem SF, a protože
leží též v trojúhelníku DSC, leží body X na polokružnici nad
průměrem KL, která obsahuje bod F, přičemž K, L jsou
středy úseček SD, SC. Nechť je obráceně X bod této polo-
kružnice, Y průsečík polopřímky SX s kružnicí k a Z pata
kolmice vedené bodem Y к přímce DC. Pak jsou trojúhelníky
ZYF a XYF pravoúhlé se společnou přeponou YF. Stejně
jako v předcházející části odvodíme shodnost úhlů ZYF
a XYF, jde tedy o shodné pravoúhlé trojúhelníky. Proto je
| YZ\ — \XY\, a bod X je tudíž bodem hledané množiny.
Probíhá-li tedy bod Y čtvrtkružnici, která je průnikem kruž-
nice k a trojúhelníku DSC, probíhá bod X celou polokružnici
nad průměrem KL, obsahující střed úsečky DC. Celá hledaná
množina se pak skládá ze čtyř polokružnic (obr. 28).
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В- II -2

Dokažte, že pro žádné prvočíslo p nemá jeho mocnina pk
s kladným sudým exponentem k tvar 2s — 1, kde je číslo s celé.

Řešení. Předpokládejme, že pk = 2s — 1, s celé. Je vidět,
že nemůže být 5 = 0, protože 2° — 1 = 0; s nemůže být také
záporné, neboť pro záporné s je i 2® — 1 záporné. Je-li p — 2,
je pk dělitelné dvěma, poněvadž se předpokládá k kladné,
zatímco 2® — 1 je číslo liché, a proto se čísla 2* a 2® — 1 ne-
mohou sobě rovnat. Je-li p jiné prvočíslo, je p liché. Položí-
me-li k — 2/, je pl = 2m + 1 také liché a pk = (2m + l)2 =
= 4m2 + 4m + 1. Toto číslo dává při dělení čtyřmi zbytek 1.
Avšak čísla tvaru 2® — 1 mají při dělení čtyřmi zbytek tři pro
každé celé 5, s ^ 2. V případě 5 = 1 by však muselo být
p = 1, což není prvočíslo. Tím je úloha dokázána.

В -II -За

Lineárním mnohočlenem tří proměnných x, y, z rozumíme
funkci tvaru (jc, y, z) и- ax + by + cz + d, kde a, b, c, d jsou
reálná čísla a aspoň jedno z čísel a, b, c je různé od nuly.
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Ukažte, že lineární mnohočleny L, Li, L2, L3, Z.4 tří proměn-
ných x3y3 z takové, že pro všechna reálná čísla x3y3 z a reálný
parametr k platí

л3 4- y3 + kz3 = L(x, у, z) .

• [Li(x3 Уt z) . L2O, y, *) + £з(*, уу z) . L4(x, у, z)]3
existují tehdy a jen tehdy, když je k = 0.

Řešení. Pro k — 0 máme
*3 + y3 _ (x + 3,) [*(* — у) + у .у],

stačí tedy položit L — x + y, Li = x3 Lz = x — y,
L3 — L4 = y. Předpokládejme, že pro k 7^ 0 a každé x3 y, z

je x3 + y3 + kz3 — L[LiLz + Z.3Z.4]. Položme L(x, y, z) =
= ax + by + cz + d. Protože je k Ф 0, musí být také с Ф 0.
V opačném případě by mnohočlen L[LiZ,2 + £3L4] neobsa-
hoval proměnnou z ve třetí mocnině. Pak se však tento mno-
hočlen rovná nule pro libovolné hodnoty x3 у z z —
= — (ax + by + d)jc. To ovšem znamená, že pro libovolná
x3 у je x3 + y3 — k(ax 4- by + d)3/c3 = 0. Dosadíme-li po-

stupně za x3 у uspořádané dvojice čísel (0, 0), (1, 0), (0, 1),
(1, 1), (1,-1), dostaneme spor.

B-n-3b

Uvnitř úsečky PQ jsou dány dva různé body A, B. Kružnice
k má střed v bodě Q a poloměr r. Zvolme si libovolný bod X
kružnice k3 který neleží na přímce PQ, a označme p přímku
rovnoběžnou s přímkou QX procházející bodem P. Dále
označme A\ průsečík přímky p s přímkou XA a B± průsečík
přímky p s přímkou XB. Jakou část roviny vyplní úsečky
A\B\3 když bod X probíhá celou kružnici k kromě bodů
přímky PQ ?
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Řešeni. Probíhá-li bod X kružnici k, probíhá bod Ai

r, z obou kružnic musíme
\PA\

kružnici o středu P a poloměru

ovšem vynechat body na přímce PQ. Bod A\ je totiž obra-
zem bodu X ve stejnolehlosti se středem A, ve které bodu Q
odpovídá bod P (obr. 29). Podobně probíhá bod B\ kružnici

\AQ\

\PB\ ,

r. Úsečky A\Bi jsou úsečky,se středem P a poloměrem

které jsou průnikem mezikruží ohraničeného uvedenými kruž-
nicemi a polopřímkami s počátečním bodem P. Ze stejno-
lehlosti vyplývá, že i obráceně patří každá taková úsečka
s výjimkou těch, které leží na přímce PQ, do hledané množiny.
Výsledkem je tedy mezikruží se středem v bodě P bez těch
bodů, které leží na přímce PQ.

\BQ I
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Kategória A

ÚLOHY I. KOLA - DOMÁCA ČASŤ

A - I - 1

Nech k, n sú prirodzené čísla, n ^ 2. Ak prirodzené čísla
x, у vyhovujú nerovnici

1X
— у£2 +1 < ,

у * yn
(1)

potom platí
x

+ k >yn~2 — 1 .

У

Dokážte.

Riešenie. Je zřejmé, že za daných predpokladov je číslo

x
— +Ш+\
у

kladné, a ak ním vynásobíme obe strany nerovnosti (1), do-
staneme
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7~(**+1) < ^ (7 + ^ + >)■ (2)

Po vynásobení nerovnosti (2) kladným číslom yn a po jedno-
duchej úpravě dostáváme ďalej

x

yn-2 |x2 _ jy2(£2 + 1)| < — + ]jk2 + 1. (3)

Teraz najskór ukážeme, že za daných predpokladov musí
platiť

x2 — y2(k2 + 1) Ф 0 . (4)

Ak by totiž neplatil vztah (4), muselo by byť x2 — y2(k2 + 1),
čo znamená, že číslo k2 + 1 by muselo byť štvorcom pri-
rodzeného čísla; to však nie je možné, pretože pre každé
prirodzené číslo k platí

k2 < k2 + 1 < {k + l)2.

Tým je platnost’ vztahu (4) dokázaná a vzhladom na to, že
číslo na jeho Tavej straně je celé, vyplývá z toho, že

I x2 — y2(k2 + 1)1 ^ 1 . (5)

Ďalej je zřejmé, že pre prirodzené číslo k platí k + 1 >

> ]jk2 + 1, z čoho vyplývá, že

x X
— + k + 1 > — + Vk2 4- 1. (6)
v V
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Vzhladom na (5) a (6) však z nerovnosti (3) vyplývá, že

x
n-2 < + k + 1 ,У

У

odkiaT už bezprostředné plynie správnost’ dokazovanej ne-
rovnosti.

A - I - 2

Nech aif a-z, ..., an sú kladné reálne čísla. Pre každú w-ticu
kladných reálných čísel xi9 x2, ..., xn platí nerovnosť

ШушуXI . x2 *1»

ai . a2 an

Dokážte. Kedy platí rovnost’ ?
Riešenie. Podlá známej Cauchyho nerovnosti platí

/ П

'
i— 1 i=l i— 1

(1)

a podlá nerovnosti medzi aritmetickým a geometrickým prie-
merom zasa

" /
1 V* ^ > “ i /
W Z_J (Ц

XnXI . *2
(2)

ai . a2
i=l
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1
Z nerovnosti (1) vynásobené j kladným číslom — a z nerovnosti

(2) však už vyplývá správnost’ dokazovanej nerovnosti. Rov-
nosť v danom vztahu nastane zrejme právě vtedy, keď nastáva
rovnost’ vo vztahu (1) a súčasne vo vztahu (2). Rovnost’ vo
vztahu (1) však nastáva právě vtedy, keď platí

(3)xiai = X2CI2 — ... = xnan ,

a rovnost’ vo vztahu (2) nastáva právě vtedy, keď

Xl X-2 Xn
(4)

Ul Д2 вп

Rovnosti (3) a (4) však súčasne platia právě vtedy, keď

xi = X2 — ... — xn a ai — аг — ... = an .

А- I -3

Množina cp bodov v rovině q má tieto dve vlastnosti:
Vi: Spolu s každými svojimi dvorná navzájom róznymi bodmi

A, В obsahuje celú úsečku AB.
V2: V každom kruhu s polomerom 1 leží aspoň jeden bod z cp.

Potom platí cp — q. Dokážte.
Riešenie. Ak nějaká množina bodov v rovině má vlastnost’

Vi, voláme ju konvexnou množinou. Množina cp je teda
konvexnou množinou so špeciálnou vlastnosťou V2. Vzhladom
na to, že každý nenulový uhol v rovině obsahuje nějaký kruh
s polomerom 1, vyplývá z V2, že každý nenulový uhol v ro-
vine q obsahuje aspoň jeden bod množiny cp.
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Nech X je lubovolný bod roviny o. Z vlastnosti V2 vy-

plýva, že množina cp je neprázdná. Nech A e cp. Ak je X = A,
potom zrejme X e cp. Nech X Ф A. Uvažujme o priamke
AX3 ktorá rozdělí rovinu g na dve polroviny. Vzhladom na

vyššie uvedené vyplývá, že v každej z oboch polrovín, ktoré
sú priamymi uhlami, leží bod z <p. Označme jeden z nich B.
Bod В neleží na priamke AX. Preto dutý uhol určený pol-
priamkami opačnými ku polpriamkam ХА a XB je nenulový
a nachádza sa v ňom aspoň jeden bod Cg cp (obr. 30). Označ-

A

X
c в

Obr. 30

me Y priesečník priamok СВ a XA. Bod Y leží zrejme na
úsečke ВС a vzhladom na to, že bod C leží v polrovine
opačnej к polrovine obsahujúcej bod A a určenej priamkou
BX, leží bod Y taktiež na polpriamke opačnej к polpriamke
XA. Z toho však podlá Vi vyplývá, že Y e (p ako bod úsečky
BC, a taktiež, že X e (p ako bod úsečky YA.

Tým sme dokázali, že každý bod roviny g patří do množiny
99, z čoho už vyplývá, že cp — g.

А- I -4

Je daná коска ABCDEFGH s hranou dížky a. Označme
O střed steny BCGF a r gulu so stredom O a priemerom a.
Bodom E veďte rovinu a a zostrojte bod X na hrané AE tak,
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aby guli s priemerom AX v súmernosti podlá roviny cr

odpovedala gula najvačšieho priemeru, ktorá leží celá v guli r.

Vypočítajte dížku tohto najvačšieho priemeru.
Riešenie (obr. 31). Pri lubovolnej polohe roviny a, ktorá

prechádza bodom E, leží obraz bodu A v súmernosti podlá

GH

E

°y C
/X

s
Lž

A В

Obr. 31

roviny a na gulovej ploché x(E; a). Gula so stredom S na
hrané AE s polomerom SA sa dotýká gulovej plochy x

(v bode A) a to isté platí i pre jej obraz v súmernosti podlá
roviny a. Gulová plocha у požadovaných vlastností bude mať
maximálny priemer právě vtedy, keď sa jej symetrický obraz y'
bude dotýkať oboch gulových ploch x a r a jej střed S' bude
ležať súčasne na úsečke EO ako strednej oboch gulových
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ploch. Označme P, O v uvedenom poradí body dotyku gufo-
vej plochy у s gurovými plochami ^ a r.

Hladaná rovina súmernosti a zrejme rozpoluje uhol AEO
a je kolmá na rovinu AEO. Verkosť iP<2j priemeru gule ý
vypočítáme teraz z pravoúhlého trojuholníka EFO. Zrejme
platí:

\EP\ + \OQ\ = \EO\ + \PQ\ , (1)

a z pravoúhlého trojuholníka EFO máme

\EO\* = 1 EF\2 + jFOí2,
čiže

a2
\eo\2 = <č +

odkial

a]jb
\EO\ - 2 '

Z (1) po dosadení dostaneme

a aló
a + — = —2- + «а •2

z čoho po jednoduchej úpravě vyplývá

a

\PQ\ = \лх\ = — (3 - 1'6).
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A- I - 5

V rovině je daný štvorec ABCD so stranou \AB\ = 1.
a) Určte v rovině množinu M, ktorú vyplnia tretie vrcholy

všetkých rovnostranných trojuholníkov, ktorých dva vrcholy
ležia vo vnútri alebo na hranici daného štvorca ABCD.

b) Vypočítajte obsah množiny M,
Riešenie úlohy nájde čitatel v ročenke 30. ročníka MO

na str. 133-136 (úloha A-III-1).

A - 1 - 6

Pre dané prirodzené číslo n riešte sústavu n rovnic o n ne-

známých xi, X2, ..., xn:

(2)= (í)*
(2) ^+ (2) ^ = (4)'

(а)'-('П

(10

(12)

cn—o •0»). X2 + ... +

Riešenie. Ak od rovnice (1*) odčítáme rovnicu (ljt-i)
postupné pre k = n, n — 1, ..., 2 a využijeme známe pravidlo
o súčte kombinačných čísel
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ktoré platí pře každú dvojicu nezáporných celých čísel r, í,
dostaneme sústavu rovnic

= 1,xi

2xi + X2 — 4,

-CV).(n — 1)xl + (n — 2)X2 + ... + 2хп-г + xn-i

nx1 + (n — 1)дГ2 + ... + 3*«,_2 + 2xn-i + Xn

ktorá je zrejme s danou sústavou ekvivalentná. Ak pre tuto
sústavu zopakujeme algoritmus odčítania (k — l)-tej rovnice
od Л-tej pre k =n,n — 1, ..., 2, dostaneme opáť ekvivalent-
nú sústavu

= 1,Xl

= 3,Xl + X2

-(;)•«1 + X2 + ... + Xn—2 + Xn-1

Xl "г X2 "b ... + Xn-2 + Xn-1 + Xn

Po dalšom zopakovaní použitého algoritmu dostáváme ко-
nečne sústavu

Xl = 1, X2 = 2, ..xn = n,

ktorá představuje jediné riešenie danej sústav}?.
Poznámka. Skutočnosť, že daná sústava má jediné riešenie,
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je zřejmá už z jej tvaru. Toto riešenie by bolo možné určiť
aj tak, že z prvej rovnice vypočítáme xi = 1 a dosadíme do
druhej rovnice, z ktorej jednoznačné určíme *2, atď.

ÚLOHY I. KOLA - ŠKOLSKÁ ČASŤ

A-S-t

Nech je n prirodzené číslo. Uvažujme o všetkých uspo-

nadaných w-ticiach reálných čísel Xi (i — 1, 2, ..., n) takých,
že pre žiadne i = 1, 2, ..., n nie je xi celočíselným násobkom

n

čísla — a platí 2 tg2 = 1. Nájdite najmenšiu možnú hodnotu2 í=i

súčtu

5=2 COtg2*i .
i=l

Riešenie. Je

^ 12 cotS J = »2= ( 2 COtg2JTi\*=i
2 cotg2^i
ť=l

podlá Cauchyho nerovnosti. Z toho je zřejmé, že pri lubovol-
nej volbě hodnot Xi vyhovujúcich podmienkam úlohy je
5 ^ я2. Ak však zvolíme všetky hodnoty xi rovnaké a tak, aby

1
platilo tg Xi = -=, je

1/»
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nn n n

У 'tg2*, = — = 1, ^ C0tg2X; = ^ n ~
ť=i i=l i—1i= l

Preto je n2 najmenšia možná hodnota súčtu s.

A - S - 2

Určte všetky prirodzené čísla n, pre ktoré možno rovno-

stranný trojuholník so stranou dížky n rozložit’ na navzájom
sa neprekrývajúce lichoběžníky so stranami dížky 1, 1, 1, 2.

Riešenie. Rovnostranný trojuholník so stranou n (n prirod -

zené) sa dá rozložit’ (obr. 32) na 1 + 3 + ... + (2n — 1) = n2

rovnostranných trojuholníkov so stranou 1. Lichoběžník so
stranami dížok 13 1, 1, 2 sa dá rozložit’ na 3 rovnostranné
troju holníky so stranou 1. Z toho vyplývá, že ak sa rovno-
stranný trojuholník so stranou n dá rozložit’ na lichoběžníky
uvažovaného tvaru, musí byť n2 dělitelné číslom 3, čo zna-

mená, že číslo n musí byť dělitelné číslom 3.
Nech obrátene platí: n = 3k, kde k je prirodzené číslo.
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Potom sa rovnostranný trojuholník so stranou n dá rozložiť
na rovnostranné trojuholníky so stranou 3 a každý rovnor

stranný trojuholník so stranou 3 sa dá rozložiť na 3 lichobež-
niky uvažovaného tvaru (obr. 33). Tým je dokázané, že tiež
trojuholník so stranou 3k sa dá rozložiť na lichoběžníky so
stranami 1, 1, 1, 2.

A - S - 3a

Vo vnútri kruhu К so stredom S a poloměrem r je daný
bod A. Nájdite množinu bodov v rovině, ktorú vyplnia
vrcholy D všetkých rovnobežníkov ABCD, ktorých vrchol В
i priesečník uhlopriečok leží vo vnútri alebo na hranici
kruhu K.

Riešenie. Ukážeme, že hladanou množinou И je kruh K\
so stredom 5 a polomerom 3r, z ktorého sú v případe S = A
vyňaté všetky hraničně body a v případe S Ф A dva body
X, Y, v ktorých hranicu kruhu K\ přetíná priamka SA.

Nech je totiž D e M a ABCD rovnoběžník vyhovujúci
úlohe. Označme T priesečník jeho uhlopriečok. Potom platí:

\SD| ^ \ST\ + |TD\ = |5T| + \TB\ ^
^ |5Г| + !Г5| + ISB\ ^ 3r.
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Bod D leží teda v K\. Je zřejmé, že v případe S = A nemože
D ležať na hranici K\ a v případe S Ф A nemože byť bod D
totožný s bodom X alebo Y.

Nech obrátene leží bod D v množině Ki(S; 3r) s výnimkou
uvedených bodov. Rozlišíme dva případy:

a) S Ф A. Ak neleží D na priamke SA, stačí za bod В
zvolit’ vzdialenejší priesečník priamky DS s hranicou К
a doplnit’ body A, B, D na rovnoběžník ABCD vyhovujúci
požiadavkám úlohy. Ak D leží na priamke SA, je X Ф D Ф Y
podlá předpokladu. Označme Kd kruh, ktorý vznikne z К
rovnolahlosťou so stredom D a koeficientom 2. Potom

existuje bod BeKc\Kd, ktorý neleží na priamke SA.
Stačí body B, D doplnit’ na rovnoběžník ABCD vyhovujúci
požiadavkám úlohy.

b) S = A. V tomto případe volíme bod В podra druhej
konštrukcie časti a).

A - S - 3b

V rovině je daný pravouholník ABCD so stranami \AB\ =
= a, |BCJ = b. Bodom В veďte priamku p tak, aby obsah
trojuholníka ohraničeného polpriamkami DC, DA a priam-
kou p bol minimálny.

Riešenie (obr. 34). Bodom В vedieme priamku rovno-
bežnú s priamkou AC. Jej priesečníky s polpriamkami DA,
DC v uvedenom poradí označme Q, R. Zrejme je |Ci?| = a,

1
\AQ\ =b a obsah trojuholníka DQR bude ab + — ab 4-

1
+ — ab — 2ab. Veďme bodom В inú priamku, ktorá přetíná
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А/ а
В

О
L

Mi
Obr. 34

polpriamku DA v bode AÍ a polpriamku DC v bode N.
Je zřejmé, že buď 2V leží vo vnútri úsečky CR, alebo AÍ
leží vo vnútri úsečky AQ. Nech nastane například prvá
možnost’. Označme L priesečník priamky MN s priamkou
vedenou bodom Q rovnoběžně s priamkou DC. Potom sú
trojuholníky QLB, RNB zhodné. Obsah lichoběžníka
QLND sa rovná obsahu trojuholníka QRD, kým obsah
trojúhelníka DMN je pře N ф R vačší než obsah trojuhol-
nika DQR. Hladanou priamkou p je teda rovnoběžka s priam-
kou AC vedená bodom B.

a ы.D
У

b
aA

Б
x

M,

Obr. 35
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Iné riešenie (obr. 35). Veďme bodom В priamku p,
ktorá přetíná polpriamku DA v bode M a polpriamku DC
v bode N. Označme \AM\ = x, \CN\ —у. Z podobnosti
trojuholníkov BNC, MBA, ktoré majú zrejme všetky uhly
zhodné, vyplývá, že x :b = a : у číže xy — ab. Pre obsah P
trojuholníka DMN platí:

1 1 / ab2 \
— (a* + by) = ab + ~ (a* + — J =P = ab +

a b2 + x2
= aí+ -

X

Použitím nerovnosti b2 + x2 ^ 2bx vyplývajúcej zo zná-
me) nerovnosti medzi aritmetickým a geometrickým prie-
merom dvoch nezáporných čísel dostáváme: P ^ 2ab, pri-
čom znamienko rovnosti platí len pře x — b3 kedy musí byť
tiež у = а. V tom případe však je zrejme priamka p rovno-
běžná s priamkou AC.

ÚLOHY II. KOLA

A- 11 - 1

Nech n je prirodzené číslo a nech pre reálne čísla o*,
i — 1, 2, ..., n platí

2 sin2 оц = 1.
%=i
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Potom

П

2 sin 2ai 5^ 2y« — 1.
i=i

Dokážte.

Riešenie. Podlá známej Cauchyho nerovnosti pre reálne
čísla Xi, уi, i = 1,2, ..., я platí

(,?,*■) *4 (1)

Ak v (1) položíme Xi = sin ai, уi — cos a*, i = 1, 2, ..я,
dostaneme

( i sin* *,) ( 2 cos*«i) Й ( i Sin ) • (2)эц cos ai

П

Pretože podía předpokladu 2 sin2 <*í = 1> postupné dostá-
i=i

vame

П П n n

2 COS2 0Ц = 2 (1 — sin2 Xi) — 2 1 — 2 SŮ*2 ai — n — 1>
*=1 i= 1 i= 1 » = 1

na základe čoho z (2) vyplývá

(l,sin f ^ n — 1, (3)aj cos af
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a pretože sin 2aj = 2 sin a* cos a*, i — 1, 2, я, po
jednoduchej úpravě z (3) dostaneme

2 sin 2ai ^ 2|/n — 1,
i= i

čo sme mali dokázat’.

A- II -2

Dětská skladačka pozostáva z kameňov (plochých dosti-
čiek) týchto troch typov:

a) rovnoběžník so stranami dížky 12 mm a 24 mm a ostrým
vnútorným uhlom velkosti 60°;

b) rovnostranný trojuholník so stranou dížky 24 mm;

c) pravidelný šesťuholník so stranou dížky 12 mm.

Rozhodnite, či je možné z kameňov uvedených typov zložiť
rovnostranný trojuholník so stranou dížky 180 mm tak, aby
každý z bodov trojuholníka bol pokrytý niektorým kameňom,
pričom by sa kamene vzájomne nepřekrývali, ak predpokla-
dáme, že kameňov každého typu je dostatočne velký počet.

Riešenie. Odpověď bude záporná, čo dokážeme nepriamo.
Připusťme, že naša snaha bola úspěšná, a kvóli zjednodušeniu
zvolme za jednotku dížky úsečku 12 mm dlhú. Potom náš
předpoklad znamená, že rovnostranný trojuholník so stranou
dížky 15 možno vyjadriť ako zjednotenie konečného počtu
navzájom sa neprekrývajúcich konvexných mnohouholní-
kov, z ktorých každý patří к niektorému z týchto troch
typov (obr. 36):

106



2
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Obr. 36a, b, c

a) rovnoběžník so stranami 1 a 2 a ostrým vnútorným
uhlom velkosti 60°;

b) rovnostranný trojuholník so stranou dížky 2;
c) pravidelný šesťuholník so stranou dížky 1.
Plošný obsah rovnostranného trojuholníka so stranou

dížky 1 označme p (hodnotu p možno zrejme íahko vyčíslit’,
ale nebudeme ju potřebovat’). Pomocou p možno íahko
vyjadriť plošné obsahy mnohouholníkov všetkých troch
typov z obr. 36, ako ukazuje obr. 37.

A
/

Obr. 37a, b, c

Dostáváme teda, že plošný obsah rovnoběžníka typu a)
je 4p, plošný obsah trojuholníka typu b) je taktiež 4p a plošný
obsah šesťuholníka typu c) je 6p. Z podobnosti rovnostran-
ného trojuholníka so stranou 15 s rovnostranným trojuhol-
nikom so stranou 1 (koeficient podobnosti je zrejme 15)
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dostáváme, že plošný obsah trojuholníka so stranou dížky 15
je 152p.

Ak použijeme na zloženie trojuholníka so stranou 15
x rovnobežníkov typu a)3y trojuholníkov typu b) a z šesťuhol-
níkov typu c), kde л:, у, z sú nezáporné celé čísla, potom
platí:

4px + 4py + 6pz = 152p čiže 4x + 4y + 6z — 152.
V poslednej rovnosti však na lávej straně máme číslo

párne a na právej číslo nepárne, čo znamená, že rovnosť
neplatí pre žiadne celé nezáporné x, y3 z. Tento spor po-

tvrdzuje správnost’ nášho tvrdenia, že sa uvedený trojuholník
z kameňov skládačky zložiť nedá.

A - II - 3a

Je daný kváder ABCDEFGH s rozmermi a, b, c. Jeho
vrcholom F veďte rovinu q tak, aby objem štvorstena ohra-
ničeného rovinami ADC, CDH3 HDA, q a obsahujúceho da-
ný kváder bol minimálny.

Riešenie (obr. 38). Označme M3 N3 P v uvedenom po-

P

\z
H

T
Pc

У
NM

Obr. 38
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radí priesečníky roviny q s polpriamkami DA, DC, DH.
Nech ďalej \AB\ = a, \BC\ = b, \BF\ — c. Predpokladajme,
že štvorsten DMNP už má požadovanú vlastnost’, a označme
\DM\ — x, |DiV| = jy, |DP| = z. Objem V štvorstena
DMNP sa zrejme rovná súčtu objemov štvorstenov FMDP,
FNDP, FMND, ktorých výšky v uvedenom poradí majú
velkosti a, b, c. Preto platí:

1 xz 1 yz 1 xy
CL + ~Z~ ~~~~ Ь + ~ —C.

3 2 3 2 (1)V =
3 2

Na druhej straně však zrejme platí:

1 xy
г = ТТг = ~бхуг-

1
(2)

Preto z rovností (1), (2) vyplývá

axz + byz + cxy — xyz. (3)

1
Ak rovnost’ (3) vynásobíme kladným číslom , dostaneme

ba c

(4)— + — + — = 1.
.У .v z

К tomu, aby sme zistili, pri ktorých hodnotách x, y, z bude
objem V minimálny, využijeme známu nerovnost’ medzi
aritmetickým a geometrickým priemerom
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и + v + w
^ 3|fuvw, (5)3

ktorá platí pre lubovolné kladné reálne čísla u, v, zv, pričom
rovnosť vo vztahu (5) nastáva právě vtedy, keď и = v — го.

a

Ak teraz vo vztahu (5) položíme и — —, v = —, го = —,do-

staneme vzhladom na (4)

b c

X

3b ca

1 = — + — +—^3
У x z

z čoho vyplývá, že xyz ^ 21abc. Vzhladom na (2) preto platí

27 9
V ^ — abc = — abc. (6)

Rovnosť vo vzťahu (6) však nastane zrejme právě vtedy, keď

b ca

5

У x z

z čoho vzhladom na (4) vyplývá

(7)x — 3b, у — 3u, z = 3c.

Pre hodnoty x} y3 z určené vzťahom (7) bude teda objem V
9

štvorstena DMNP minimálny, rovný — abc.
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Z toho už priamo vyplývá konštrukcia roviny q požadova-
ných vlastností.

A- II -3b

V rovině je daný štvorec ABCD so stranou \AB\ — 1.
Určte v rovině množinu M ťažísk všetkých takých rovno-

stranných trojuholníkov, ktorých všetky tri vrcholy ležia
na stranách daného štvorca ABCD.

Riešenie. Nech PQR je rovnostranný trojuholník, kto-
rého všetky tri vrcholy ležia na stranách štvorca ABCD
(obr. 39). Nech T je jeho ťažisko, V střed strany PQ, čiže

pata výšky z vrcholu R na stranu PQ a S střed štvorca
уз

ABCD. Pretože \RV\ = — \PQ\, je zřejmé, že žiadne dva

vrcholy tohto trojuholníka nemóžu ležať na tej istej
straně daného štvorca. Vzhladom na osovú symetriu rovno-
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stranného trojuholníka i osovú a stredovú symetriu štvorca
stačí preto uvažovať například o případe, keď P e AD,
Q g BC, R e CD. V ostatných prípadoch bude totiž situácia
analogická. Označme Ro střed strany CD a Po e AD, Qo e
e BC také body hranice štvorca ABCD, pre ktoré platí:
|РоДо| = |<2oPol = 1. Potom PoQoRo je rovnostranný troj-
uholník požadovaných vlastností. Nech Го je jeho ťažisko
a Vo střed strany Po<2o- Oba tieto body ležia zrejme na pol-

2 1/3 1/3
priamke RqS a platí: |РоГо| = — . — = —. VzhTadom na3 2 3

už spomenutú symetriu stačí dokonca uvažovať o případe,
ked! <2 e QoB, R e RoC, P e PqD. Označme K, resp. L,
patu kolmice z bodu Q, resp. T, na stranu AD, resp. CD
(pozři obr. 39). Potom zrejme [<£ LTR\ — |<£ KQP\ a pra-
vouhlé trojuholníky PKQ a RLT sú podobné. Vieme, že
platí:

2 1/3 1/3
\RT\ = Y2 lPQ] = 3 lPQl

Z toho však vyplývá, že

уз уз уз
\LT\ = Y \KQ\ = Y\AB\ = -y.

Znamená to teda, že ťažisko T každého rovnostranného
trojuholníka uvažovaných vlastností leží vo vzdialenosti
уз
— od strany CD do vnútra štvorca ABCD. Z vyššie uve-
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denej symetrie preto vyplývá, že ťažiská Г všetkých rovno-
stranných trojuholníkov s vrcholmi na stranách štvorca
ABCD ležia na stranách štvorca AiB\C\Di rovnořahlého
so štvorcom ABCD v rovnofahlosti (homotetii) so stredom 5

= (P_l\.±
\ 3 2 / ’ 2

a s koeficientom rovnolahlosti k

1
= (21/3-3) (obr. 40).

Zostáva nám ešte ukázat’, že každý bod Г hranice štvorca
AiBiCiDi má požadovanú vlastnosť, tj. existuje rovnostranný
trojuholník PQR s vrcholmi na stranách štvorca ABCD
a s ťažiskom v bode T. Vzhladom na symetriu zrejme stačí,
ak dókaz urobíme pre body úsečky TqB\. Z predchádzajúcej
časti riešenia vieme, že pre bod Го je takým trojuholníkom
trojuholník PoQqRo so stranou 1. Nech T ф Го je Tubo-
volný bod úsečky TqB\. Polpriamka VqT přetíná stranu CD
štvorca ABCD v bode R. Kolmica к priamke VqR v bode Vq
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přetíná stranu AD štvorca ABCD v bode P a stranu BC
v bode Q. Trojuholník PQR je už rovnostranným trojuhol-
nikom s ťažiskom v bode T.

Je totiž RoVoR\ = |<£ TV0To\ = |<£ LTR,| kde TLI/VoRo
(obr. 40), z čoho vyplývá, že pravoúhlé trojuholníky VoRoR,
VoToT, TLR sú podobné. Pretože \VqTq\ : \ ToRo\ = 1:2,
bude tiež |К0Г| : |ГД| = 1 : 2. Ďalej platí: |<£ PV0P0\ =
= |<C QoVoQ\ = |< PQK\3 kde QKI/AB. Preto sú podobné
tiež pravoúhlé trojuholníky PqVqP, QoVoQ a PQK. Kedže
)P0V0\ = |<2oFo|, bude tiež \PVq\—\VqQ\. Preto právo-
uhlé trojuholníky RVqP3 RVqQ sú zhodné. Z toho vyplývá,
že RVo je ťažnica trojuholníka PQR а Г je jeho ťažisko.
Kedže platí jPFo| : \PVq\ = |JRoFo|: |PoFo|, sú tiež právo-
uhlé trojuholníky RVqP a RoFoPo podobné, čo znamená, že
|<í PRV0j = К PoRoV0\ = 30° a [<£ RPV0\ = |<£ R0P0V0\ =
= 60°. Trojuholník PQR je teda rovnostranný, ako sme
chceli dokázať.

Závěr: Množinou M ťažísk všetkých rovnostranných
trojuholníkov, ktorých všetky tri vrcholy ležia na stranách
daného štvorca ABCD, je hranica štvorca A\B\C\D\ rovno-
Táhlého so štvorcom ABCD v rovnolahlosti so stredom S

1
a koeficientem rovnolahlosti — (2 j/3 — 3).
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ÚLOHY III. KOLA

A - III - f

Nech n ^ 1 je dané prirodzené číslo. Uvažujme o vset-
kých w-ticiach takých reálných čísel Xu i — 1, 2, ..n,

pre ktoré platí:

П

2 sin2x(- = k, (1)
i=l

kde 0 ^ k 5^ n je dané reálne číslo. Určte, akú najváčšiu
hodnotu nadobúda výraz

П

s — 2 sin 2Xi .

i = l

Riešenic. Podlá známej Cauchvho nerovnosti platí

( 2 Sin***) ( 2 COS2**) ^ ( 2 Si\i=l / \» = 1 / \i=1
Г. (2)n ** COS Xi

Ak platí (1), potom

П П n n

У COS2** =2(1— SÍn2Xj) =2 1 — 2 SÍn2JCi = n — k,
i= 1 i= 1 i=l i=1

z čoho po dosadení do lávej strany (2) a jednoduchej úpravě
máme
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^ 2sin 2xi^ 3
\k (n-k)^

odkiaí

2 sin 2Xi ^ 2]!k (n — k). (3)s =

i=l

k
Ak zvolíme Xi pře i = 1,2, .. .,n tak, že sin Xi = / — ^ 1,

n

n — k~

= 2 у^(я — &).О ^ , je cos Xi =

Vzhfadom na (3) je teda táto hodnota za daných podmienok
maximalna.

a s
n

A - III -2

V rovině je daný trojuholník ABC. Dokážte, že pre každý
bod F vnútra strany АВ tohto trojuholníka platí:

|РС|.|ЛЯ| < \PA\.\BC\ + \PB\.\AC\,

kde \XY\ znamená vzdialenosť bodov X a Y.
Riešenie. Nech bod P je lubovolný pevný bod vnútra

strany AB trojuholníka ABC (obr. 41). Vo vnútri strany AC
zostrojíme bod A' a vo vnútri strany BC bod B' tak, aby
platilo PA'1/BC, РВ'ЦАС. Z trojuholníkovej nerovnosti
vyplývá

|PC| < \PA'\ + \A'C\ = \PA'| + |PB'|. (1)
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Z podobnosti trojuholníkov APAABC, PBB' dostaneme

\PA\ \PB\
\PA'\ = \BCI, \PB'\ = \AC\,

\AB\ I AB\

z čoho po dosadení do (1) dostaneme

\PA\ \PB\
I BC\ + \AC\.\PC\ < (2)\AB\ \AB\

Vynásobením nerovnosti (2) kladným číslom \AB\ už dostá-
vame nerovnost’, ktorej správnost’ bolo třeba dokázať.

Iné riešenie. Zaveďme v rovině pravouhlú súradnicovú
sústavu a označme o, b, c, p v uvedenom poradí polohové
vektory bodov A, В, С, P. Označme ďalej |v] dížku vektora v.
Zrejme platí:

p = (1 — 0 a + t b,

kde reálne číslo 0 < t < 1 vyhovuje vzťahom

\Р-ь\
'~\b-a\- C3)
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Použitím trojuholníkovej nerovnosti vzhladom na (3) po-
stupně dostaneme:

\PC\ = |c — p\ = \ tc + (1 — t)c — tb — (1 — t)a\ =

= |(1 — t) (c — o) + t (c — b)| <

< (1 — ř) |c - a\ + t\c — b| =

IP - oI ,

!b — o| |c
-b|

1^1 \PB\
\BC\ + |i4C|,

1^1 \AB\

z čoho už priamo vyplývá dokazované tvrdenie. Ostrá ne-
rovnosť v trojuholníkovej nerovnosti platí preto, lebo vektory
c — a, c — b sú lineárně nezávislé.

A- 111 -3

Polia šachovnice 8x8 tvoria štvorce so stranou dížky
3 cm. Na šachovnicu položíme obdížnikový prúžok papiera
s rozmermi 6 cm a 3 cm. Budeme hovořit’, že prúžok sa

překrývá s polom šachovnice, ak má s ním spoločný aspoň
jeden vnútorný bod. Zistite, aký je najváčší počet čiernych
polí, s ktorými sa móže daný obdížnikový prúžok papiera
překrývat’.

Riešenie. Kvóli zjednodušeniu zvolíme úsečku velkosti
3 cm za novů jednotku dížky. Potom je každé pole šachovnice
štvorec so stranou 1 a na šachovnicu kladieme obdížnik so

stranami 2 a 1.

Najskor ukážeme, že nie je možné nájsť takú polohu
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obdížnika, aby sa překrýval so siedmimi poliami šachovnice.
Predovšetkým si uvědomíme, že obdížnik sa nemóže prekrý-
vať súčasne so štyrmi poliami označenými I na obr. 42.

ъ/

Г Z
/

z

Obr. 42

V opačnom případe by musel totiž obsahovať aspoň jeden
vnútorný bod každého z polí označených I, a teda aj celý
konvexný obal týchto bodov. Vo vnútri konvexného obalu
však leží zrejme celé pole označené II, čo je štvorec so stra-
nou 1. Tento by však mal ležať vo vnútri obdížnika rozme-
rov 2 x 1, čo je spor.

Obr. 43
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Najdlhšou úsečkou daného obdlžnika je zrejme jeho uhlo-
priečka, ktorej velkost’ je J/5 < 3. Z toho vyplývá, že daný
obdížnik móže mať neprázdný prienik najviac so štyraii
riadkami a najviac so štyrmi stípcami šachovnice. Bude
teda určité vždy ležař v nejakej časti šachovnice s rozmermi
4x4 polia (obr. 43). V tejto časti je právě 8 čiernych polí,
ktoré označíme symbolmi I a II. Zo štyroch polí označe-
ných I sa však podlá vyššie uvedeného obdížnik prekrýva
najviac s troma a analogicky sa dokáže, že i z polí označe-
ných II sa m6že překrývat’ najviac s troma. Z toho vyplývá,
že daný obdížnik sa móže prekrývať najviac so 6 čiernymi
poliami.

Teraz ukážeme, že skutočne existuje taká poloha obdížnika,
pri ktorej sa prekrýva so 6 čiernymi poliami šachovnice.
Stačí ho položiť tak, ako je to znázorněné na obr. 44: jeho

Obr. 44

střed 5 leží v bode dotyku polí Ь23 c3 a jeho strany zvierajú
so stranami šachovnice uhol 45°. Ak použijeme označenie
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1/2
ako na obr. 45, je \BS\ = 1 > |£5|, |BC| = \AB\ =

1
= \AS| - \BS\ = ]/2 - 1, \BD\ = у > jBC|. Preto obsa-

b c

Obr. 45

huje úsečka Ш) vnútorný bod роГа b4. Zo súmernosti ob-
dížnika podlá středu 5 i роаГа osi AS však vyplývá, že
obdížnik má spoločné vnútorné body tiež s poliami аЪь cl a d2
a samozřejmé aj s poliami b2 a c3.

Podlá riešenia J. Sgalla, 4. tr.
gymn. W. Piecka, Praha

A - III -4

Nech я ^ 2 je dané prirodzené číslo a ao, ai, ..., On sú
za sebou nasledujúce členy aritmetickej postupnosti. Potom
platí:
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!'-»■(:) (1)ак = 0.

Dokážte.

Riešenie. Pre každé k (0 ^ k ^ n) zrejme platí a* =
= ao + kd, kde d je diferencia danej aritmetickej postup-
nosti. Označme L lavú stranu rovnosti (1). Je teda

[ю-сю
r-(T)-Mí)—(í)

■C)-••• +(-l)L = ao +
***?& -mí

"ШЯШК2 ' Wi*
+ ... + (—1)” n O]+ d

Výraz v prvej hranatej zátvorke je však podlá binomickej
vety и-tou mocninou dvoj člena 1 — 1 a tak sa pre и ^ 2
zrejme rovná nule. V druhej hranatej zátvorke sú sčítance
tvaru

и!

Q =(-!)**(-1)* k (n-k)\k\
(и — 1)!

= (-1)» и (и —£)!(£ —1)!

k = \3 2, ..., и. Súčet v tejto zátvorke sa teda rovná
—n (1 — 1)M_1 = 0. Oba sčítance v L sú teda rovné nule,
čím je správnost’ rovnosti (1) dokázaná.
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A- lil -5

Určte všetky dvojice (*, y) prirodzených čísel, pre ktoré
platí

1я

P <7- (1)
У

Riešenie. Najskór dokážeme, že pre každé riešenie (л:, у)
danej nerovnice (x, у prirodzené) je у < 3. Ak totiž vyná-

sobíme danú nerovnost’ kladným číslom y2 + ]/2^,dos-
taneme

ý(f+ 4| jc2 — 2y2| < (2)

Vzhladom na iracionálnosť čísla ]/2 nie je x2 — 2y2 — 0.
Je teda | x2 — 2y2| ^ 1 a vzhladom na to z (2) vyplývá

(3)

1 x — 1

7<У2 +7>
x

Zo vztahu — — ]/2 < — však vyplývá, že
1

~s+
1

z čoho vzhladom na (3) máme 1 < —
У

у ^ 3 je však

Pre
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1 1 1 1

3 (27 2,84) <1,-Z + < —
— +

У U'3

čo je spor.
Stačí teda vyšetřovat’ případy у — 1 а у = 2, čo vedie

к riešeniu nerovnic

1
\x - p\ < 1 , \x-Í\2\<—.

Prvá z nich má právě dve riešenia: x = 1, x = 2, a druhá
jediné riešenie: x — 3.

Všetky riešenia v obore prirodzených čísel nerovnice (1)
teda sú: (1, 1), (2, 1) a (3, 2).

A- lil -6

Je daná kružnica k — (S; r). Nech M je množina všetkých
takých trojuholníkov s vpísanou kružnicou k, ktorých naj-
váčší uhol sa rovná dvojnásobku najmenšieho uhla. Nájdite
množinu všetkých bodov, ktorú vyplnia druhé od bodu 5
najvzdialenejšie vrcholy všetkých trojuholníkov z množiny M.

Riešenie. Nech T je Iubovolný trojuholník z množiny M
a a ^ (3 ^ у sú velkosti jeho vnútorných uhlov. Platí teda
a = 2y. Druhý od S’ najvzdialenejší vrchol trojuholníka T
je vrchol odpovedajúci uhlu /5 a jeho vzdialenosť od 5 bude

rj sin — (obr. 46). Zrejme je

y.+ j3 + y = p + 3y—7: а у ^ ^ 2y.
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a

T

Obr. 46

Z toho vyplývá, že musí platit’

2rTC

(1)

Nech teraz /3 je uhol vyhovujúci podmienke (1). Potom
2 1

— (тс — /3), у = —(тс — /3) vyhovujú rovnostiam a +

-f-/3 + y=TC,a — 2ya nerovnostiam a ^ /? ^ y. To zna-
mená, že trojuholník T s vnútornými uhlami a, /3, y, ktorý
patří do množiny M, existuje.

Hfadanou množinou bodov je preto uzavreté medzikružie

a =

= ^5, r/sin ~f)>k2 = (5j r/sin ~8 ) ‘
ohraničené kružnicami
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Korespondenční seminář ÚV MO

Cílem korespondenčního semináře je dále zvyšovat úroveň
špičkových řešitelů, kteří nejsou z Prahy ani z Bratislavy,
a nemají tak možnost pracovat v tamních seminářích pro

přípravu na mezinárodní МО. К účasti pozvalo předsednictvo
ÚV MO na základě výsledků v MO, návrhů KV MO a indi-
viduálního zájmu asi 50 žáků, z nichž se přihlásilo a zúčastnilo
29 žáků - 3 ze Středočeského kraje, 2 z Jihočeského, 1 ze

Západočeského, 5 ze Severočeského, 4 z Východočeského,
4 z Jihomoravského, 5 ze Severomoravského, 2 ze Středo-
slovenského a 3 z Východoslovenského kraje. Pravidelně jim
byly rozesílány série poměrně náročných úloh, které měli
během 4 až 5 týdnů vyřešit. Došlá řešení byla opravena,
ohodnocena a spolu s rozmnoženým komentářem vrácena
účastníkům. Nejlepšími v celkovém hodnocení byli Ignác
Tereščák (Michalovce), Martin Klazar (Louny), Milan Krátká
(Prievidza), František Venci (Česká Třebová), Darina Neuma-
nová (Brno) a Jiří Votinský (Pardubice). Uvádíme znění všech
úloh zadaných v korespondenčním semináři.
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1. Geometrie

1.1 V prostoru je dána rovina q a body А, В v opačných polo-
prostorech určených rovinou o. Najděte v rovině o všechny
body X, pro které je ] \XA\ — \XB\ | maximální.

1.2 Bod X se pohybuje po přímce p konstantní rychlostí da-
nou vektorem u, bod Y se pohybuje po přímce q konstant-
ní rychlostí danou vektorem v. Přímky p a q jsou mimo-
běžné a v jednom okamžiku je bod X v bodě A, Y v bodě
B. Najděte polohu bodů X, Y, při které je vzdálenost
jX7| minimální.

1.3 V rovině je dán trojúhelník ABC a bod P. Označme
К, L, M paty kolmic vedených bodem P ke stranám
trojúhelníku ABC. Udejte nutnou a postačující podmínku
pro to, aby
a) body К, L, M3 P ležely na kružnici,
b) body К, L3 M ležely na přímce.

1.4 V rovině je dán trojúhelník ABC. Kružnice кл prochází
bodem A a dotýká se strany BC v bodě B, kružnice ke
prochází bodem В a dotýká se strany CA v bodě C, kruž-
nice kc prochází bodem C a dotýká se strany AB v bodě
A. Dokažte, že se kružnice кл, кв, kc protínají v jednom
bodě Q. Co platí o úhlech QAB3 QBC3 QCA ?

1.5 V prostoru jsou dány přímky p3 q a rovina o, dále kladné
číslo d. Popište konstrukci úsečky délky d3 která je rovno-
běžná s rovinou q3 jeden její krajní bod leží na přímce p3
druhý na přímce q.
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2. Kombinatorika

2.1 Na rohovém poli šachovnice n X n (n ^ 4) stojí figura,
kterou střídavě přemísťují dva hráči. První z nich táhne
vždy dvakrát za sebou jako koněm (tj. dvě pole v jednom
směru a jedno pole v kolmém směru), zatímco druhý
táhne jednou jako koněm s prodlouženým skokem (tři pole
v jednom směru a jedno pole ve směru kolmém). První
hráč se snaží dostat do protějšího rohu, druhý se mu v tom
snaží zabránit. Může první hráč zvítězit při jakékoli hře
druhého hráče ?

2.2 Je dán rovnostranný trojúhelník ABC. První hráč vybere
bod X na straně AB, druhý hráč bod Y na straně BC
a nakonec první hráč bod Z na straně AC.
a) První hráč chce získat trojúhelník XYZ co možná nej-

většího, druhý co možná nejmenšího obsahu. Jaký
obsah si může první hráč zajistit ?

b) První hráč se snaží získat trojúhelník XYZ nejmenšího
možného obvodu, druhý co možná největšího. Jaký
nejmenší obvod si může první hráč zajistit ?

2.3 Dva hráči hrají následující hru: První si myslí dvě čísla
od 1 do 25, druhý je musí uhádnout. Řekne vždy dvě čísla
od 1 do 25 a první mu odpoví, kolik čísel (tj. 0, 1 nebo 2)
uhodl. Za jaký nejmenší počet otázek může druhý hráč
vždy určit myšlená čísla ?

2.4 Na desce je několik hromádek kamenů. Dva hráči se

střídají v tazích - při každém tahu se rozdělí každá hro-
mádka mající alespoň dva kameny na dvě menší hromádky
a to se děje tak dlouho, dokud na všech hromádkách není
po jednom kamenu. Kdo učinil poslední tah, vyhrál.
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Který z hráčů si může zajistit výhru, jestliže na začátku
bylo na každé hromádce méně než N kamenů ? (Proveďte
diskusi vzhledem к číslu N.)

2.5 Na čtverečkovaném papíře je vyznačen obdélník m x n
čtverečků. Dva hráči po řadě vyškrtávají všechny čtve-
rečky některé řady nebo sloupce, ve kterém byl ještě
alespoň jeden nevyškrtnutý čtvereček. Vyhrává ten, kdo
vyškrtne poslední čtverečky. Kdo si může zajistit výhru -

začínající hráč, anebo jeho partner ?
2.6 V řadě za sebou je N polí, na nejlevějším stojí bílá figurka,

na nejpravějším černá. Dva hráči se střídají v tazích, při
nichž vždy přemístí svou figurku o jedno pole doleva
nebo doprava (je-li obsazované pole volné), vynechat tah
není možno. Prohrává hráč, který nemůže táhnout. Kdo
si může zajistit výhru - první, nebo druhý hráč?

2.7 Na tabuli je napsán mnohočlen x10 + * v9 + ... +
+ + 1. Dva hráči postupně zaměňují hvězdičky
u členů x, x2, ..., x9 reálnými čísly (ne nutně v tomto
pořadí). Jestliže výsledný mnohočlen nebude mít reálné
kořeny, vyhrává první hráč; bude-li mít alespoň jeden
reálný kořen, vyhrává druhý hráč. Který z hráčů si může
zajistit vítězství ?

3. Geometrická zobrazení

3.1 Jsou dány dvě kružnice ki, kz a přímka q. Sestrojte přím-
ku p rovnoběžnou s q tak, aby vytínala na k\ a kz tětivy,
jejichž délky dávají součet a.

3.2 Je dána přímka p a dva body А, В ve stejné polorovině
určené přímkou p. Najděte na p takový bod X, že
\AX\ + \XB\ =a.
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3.3 Jsou dány čtyři soustředné kružnice k, /, m, n. Sestrojte
přímku p, která protíná kružnice po řadě v bodech A, By
C, D tak, že \AB\ — \CD\.

3.4 Společným bodem A kružnic k, l vedeme libovolnou
přímku, která protíná kružnice v dalších bodech M\ а М2.
Potom sestrojíme tečny ke kružnicím ky I s body dotyku
Mi a М2 a jejich průsečík označíme N‘, dále vedeme středy
kružnic Siy S2 přímky SiJ, S2J rovnoběžné s tečnami
AíiiV, M2N. Dokažte, že přímka JM prochází jedním
pevným bodem bez ohledu na volbu přímky M1M2
a úsečka JN má konstantní délku.

3.5 Sestrojte čtyřúhelník ABCDy který je tětivový (lze mu
opsat kružnici) a jehož strany znáte.

4. Rovnice

4.1 Nechť /je reálná funkce s definičním oborem (—00, 00)
taková, že pro jakákoli dvě reálná čísla x, у platí

f(x + у) =/(*) + /60,

fixy) — yf(x) + xf(y).

Nechť I je reálný kořen některého mnohočlenu s celo-
číselnými koeficienty. Potom platí/(£) — 0. Dokažte.

4.2 Dokažte, že polynom

p(x) — xn — aixn~l— a,2Xn~2—
П

kde ci) ^ 0, / = 1, ..., Пу a 2 aj > 0, má právě jeden

kladný kořen.

.. an~\x cíny

J-1
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4.3Dokažte, že polynom

x4 4- (—1 + i)*3 + (3 4- i)*2 — 2(1 + i)* + 5 + i

nemá reálný kořen.4.4Pro které konstanty a, b, c, d platí identita

X4 — ax3 + bx2 — cx + d —

— (x — a) (x —■ b) (x — c) (x — d) ?

4.5 Rozložte výraz (l + x+x3+...+ xM)2 — xn na sou-
čin dvou polynomů (n je celé, n > 1).

4.6 Rovnice
x3 — 5x2 + x — 1 = 0

má kořeny xi, хз, X3. Vypočtěte hodnoty výrazů

(1 - x2) (1 - x2) (1 - x‘D a (1 - x}) (1 - xj) (1 - x§.4.7Řešte rovnici

1 1 1
= 1.-I-

db 4- a + 1 bx 4- b 4- 1 ax + x + 1

5. Teorie čísel

5.1 Dokažte, že na kružnici, jejíž střed má aspoň jednu sou-
řadnici iracionální, leží nejvýše dva body s racionálními
souřadnicemi, tj. obě souřadnice jsou racionální čísla.
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5.2Ukažte, že polynom

x5 x3 7x

/(*)=T + T + l5

v celých číslech x nabývá celočíselných hodnot.5.3Dokažte, že

an + bn = cn3 a > b, n > b3

nemá řešení v celých kladných číslech.
5.4 Kvadratický polynom/(x) = ax2 + bx + c s celočíselný-

mi koeficienty nemá celočíselné kořeny, pokud/(3) a/(6)
jsou lichá čísla. Dokažte.

5.5 Dokažte, že pro největší společný dělitel a nejmenší spo-

léčný násobek platí rovnosti

(a, b, c) [ab, bc, ca] — (ab, bc, ca) [a, b, c] =

= (a, b, c) [a, b, c\ [(a, b), (b, c), (c, a)] = abc.

(a, 6) je největší společný dělitel čísel a, b, [a, 6] je nej-
menší společný násobek čísel a, b.5.6Nechť jsou posloupnosti (ai, Я2з ...), (6i, bz, .. .),
(ci, C2, ...) dány rekurentními vztahy

a>i+i — 2й",г— 2*

bn+1 — !j= 3,

Cw+l — 3Cn.ci — 3,
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a) Dokažte, že pro všechna přirozená čísla я platí

Qn ^ Ьп = Сц-

b) Najděte co největší číslo / a co nejmenší číslo g tak,
aby pro posloupnosti (/i,/2, ...),(gu g2> . • •) definova-
né

fn+i = ffn>/1 =/»

*n+l =

platilo
fn^bn^ gn pro я ^ 2.

(Přibližte se к nejlepším hodnotám / a g aspoň tak,
aby už nebylo možné / zvětšit a g zmenšit o 0,05.)
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Hodnotenie priebehu a výsledkov 32. ročníka MO

V tomto ročníku sa už po druhý raz vo všetkých kategóriách
uplatňovala nová organizácia školského kola súťaže. V kate-
góriach А, В, C to znamenalo, že toto kolo bolo zakončené
klauzúrnou súťažou na jednotlivých středných školách a v ka-
tegórii Z sa riešenia školského kola odovzdávali v dvoch
termínoch, ale ich počet sa zvýšil zo 4 na 6.

V kategorii A vo všetkých krajoch okrem Prahy a Západo-
slovenského kraja podstatné vzrástol počet riešitelov školského
kola. Celkove sa v porovnaní s predchádzajúcim ročníkom
zvýšil o 34,6 % a počet úspěšných riešitelov tohto kola vzrástol
dokonca o 38,6 %. Zo všetkých účastníkov školského kola
tejto kategorie bolo úspěšných 46,6 % (v 31. ročníku to bolo
45,2 % riešitelov a pre porovnáme uveďme, že v 30. ročníku
MO, keď ešte v školskom kole klauzúrna súťaž nebola, bola
úspěšnost’ riešitelov 82,9 %).

Nebývalé vysoký je tiež počet úspěšných riešitelov krajského
kola kategorie A: 288. To je viac než dvojnásobok počtu
úspěšných riešitelov krajského kola v predchádzajúcich 3 ro-
koch. Prejavilo sa to aj na úspěšnosti účastníkov krajského
kola, ktorá dosiahla 40,2 % (v 31. ročníku 24,1 %, kým
v 30. ročníku dokonca len 14 %).

Podobné v celoštátnom kole kategórie A sa prejavila dobrá
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úroveň riešitelov, keď viac než 50 % z nich dosiahlo aspoň
polovicu možných bodov. Celkom dosiahli účastníci celo-
štátneho kola 51,3 % možných bodov a úspěšnost’ pri riešení
jednotlivých úloh možno kvantitativné vyjádřit’ takto: prvá
75,7 %, druhá 44,3 %, tretia 34,5 %, štvrtá 71,6 % piata
35,4 % a siesta 63,1 %. Najlahšími sa podlá očakávania uká-
žali prvá a štvrtá úloha a najťažšími tretia a piata. Překvapuje
poměrně velmi nízká úspěšnost’ pri riešení druhej úlohy.

Podobné v kategóriach В a C, i keď v miere o niečo menšej,
pokračovala tendencia zvyšovania počtu riešitelov školského
kola.

V kategórii В sa celkový počet riešitelov v porovnaní
s predchádzajúcim ročníkom zvýšil o 21,3 % a počet úspeš-
ných riešitelov školského kola o 15,4 %, ale počet úspěšných
riešitelov krajského kola tejto kategorie bol vo všetkých
krajoch neúmerne nízký, na čom má zrejme podstatný podiel
skutočnosť, že předsednictvu ÚV MO sa nevydařil výběr
úloh krajského kola tejto kategorie. Úlohy sice tematicky nad-
važovali na úlohy kola školského, ale svojou náročnosťou ich
značné předstihovali. V klauzúrnej časti školského kola bola
úspěšnost’ 50,2 % (v 31. ročníku 52,8 % a v I. kole 30. roč-
nika - ešte bez klauzúrnej časti - 83,8 %), v krajskom kole
10 % (v 31. ročníku 33,4 % a v 30. ročníku 13,6 %).

V kategórii C překročil počet účastníkov školského kola
číslo 3 000 a v porovnaní s minulým ročníkom ďalej vzrástol
0 8,6 % (oproti 30. ročníku МО o 59,9 %), ale počet úspeš-
ných riešitelov klauzúrnej časti školského kola poklesol, čo však
v tomto případe nepřekvapuje, pretože v minulom ročníku
sme konštatovali až příliš nízku náročnost’ úloh tejto časti
súťaže v kategórii C. Počet úspěšných riešitelov krajského
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kola tejto kategorie sa zvýšil o 157 % proti vlaňajšku (oproti
30. ročníku MO dokonca o 217,4 %), čo svědčí o tom, že
výběr úloh tejto kategorie sa předsednictvu ÚV MO podstatné
viac vydařil než v minulom ročníku i ako v kategorii B.
Úspěšnost’ účastníkov klauzúrnej časti školského kola možno
vyjadriť číslom 54,5 % (v 31. ročníku 72,3 % a v školskom
kole 30. ročníku MO 78,7 %) a v krajskom kole tejto kate-
górie bolo úspěšných 25,4 % účastníkov (v 31. ročníku MO
7,9 % a v 30. ročníku 8,2 %).

Zvláštnu pozornost’ si zasluhuje skutočnosť, že počet
účastníkov školského kola kategorie Z dosiahol takmer 25 tisíc
a vzrástol oproti 31. ročníku o 28,7 % a oproti 30. ročníku
dokonca o 33,2 %. Počet úspěšných riešitelov tohto kola sa

oproti vlaňajšku zvýšil o 46,6 % a počet úspěšných riešitelov
okresného kola o 62,8 %. V školskom kole bolo úspěšných
55,2 % účastníkov (v 31. ročníku 48,5 % a v 30. ročníku
59 %) a v okresnom kole 54,2 % (v 31. ročníku 44,7 %,
v 30. ročníku 43,9 %). Tieto výsledky potvrdzujú správnost’
výběru úloh pre túto kategóriu, a to ako z hfadiska tématiky,
tak aj z hladiska nadváznosti jednotlivých kol.

I keď nechceme predbiehať, zdá sa, že nová organizácia
školského kola MO prináša vcelku pozitivně trendy, ktoré
však bude třeba podpořit’ starostlivějším výberom úloh
klauzúrnych súťaží, a to predovšetkým v kategóriách В a C.

Vyššie uvedený rozbor ukazuje, že 32. ročník MO i s pri-
hliadnutím na výsledky dosiahnuté našou reprezentáciou na
24. MMO možno považovat’ za jeden z najúspešnejších
v celej historii našej súťaže.
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24. MMO

Čtyřiadvacátou mezinárodní matematickou olympiádu
uspořádala Francie; konala se ve dnech l.až 12. července 1983
v Paříži za účasti delegací z 32 zemí: Alžírská, Austrálie,
Belgie, Brazílie, Bulharska, Československa, Finska, Francie,
Holandska, Itálie, Izraele, Jugoslávie, Kanady, Kolumbie,
Kuby, Kuvajtu, Lucemburska, Maďarska, Maroka, NDR,
NSR, Polska, Rakouska, Rumunska, Řecka, SSSR, Španělska,
Švédská, Tuniska, USA, Velké Británie a Vietnamu. Byl to
opět rekordní počet zúčastněných zemí; poprvé se na MMO
objevilo Španělsko a Maroko, naopak nepřijely delegace
z Mexika, Mongolská a Venezuely, které se v minulých letech
již MMO účastnily a také tentokrát byly pozvány. Protože
počet žáků v družstvu byl z dřívějších osmi snížen na šest,
soutěžilo na 24. MMO 186 žáků (družstva Lucemburska
a Španělska byla neúplná).

Vedoucí jednotlivých delegací, kteří tvoří mezinárodní po-
rotu MMO, přijeli do Paříže již 1. července a ve dnech 2. až
5. července vybírali úlohy a připravovali soutěžní texty. Tato
etapa práce poroty obvykle probíhá v přísné izolaci od soutě-
žících žáků, mnohdy v dosti vzdáleném místě. Francouzští
organizátoři však pro práci poroty vybrali Mezinárodní pe-
dagogické centrum v Sevres, což je prakticky předměstí Pa-
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říže, snadno dosažitelné městskou hromadnou dopravou. Ne-
bylo to však na závadu regulérnímu chodu soutěže, nedošlo
к žádnému úniku informací.

Z připravených 25 návrhů vybrala porota po diskusi těch-
to šest úloh pro soutěž:1.Určete všechny funkce /, které zobrazují množinu R+
všech kladných reálných čísel do R+ a které vyhovují podmiň-
kám:

(1) /(x . f(y)) = у ./(*) pro všechna kladná reálná čísla xs y;

(2) f{x) -» 0 pro x -> + oo.2.V rovině jsou dány dvě protínající se kružnice k\ a kz se

středy Oi, resp. O2, o různých poloměrech; označme A jeden
z jejich průsečíků. Jedna z obou společných tečen kružnic
ki, kz se dotýká kružnice k\ v bodě Pi a kružnice k% v bodě
druhá se dotýká kružnice k\ v bodě Qi a kružnice kz v bodě Q2.
Označme Mi střed úsečky P1Q1 a М2 střed úsečky P2Q2.
Dokažte, že platí

|<£ О1ЛО2! - |^C M^Mzj.3.Nechť л, b3 c jsou celá kladná čísla, po dvou nesoudělná.
Dokažte, že

2abc — ab — bc — ca

je největší celé číslo, které se nedá vyjádřit ve tvaru

xbc + уca + zab3

kde x, у, z jsou celá nezáporná čísla.4.Nechť E je množina všech bodů ležících na obvodu
rovnostranného trojúhelníku ABC. Rozhodněte, zda pro kaž-
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dý rozklad množiny E na dvě podmnožiny existuje pravoúhlý
trojúhelník, jehož všechny tři vrcholy leží v jedné z obou pod-
množin.

5. Rozhodněte, zda lze najít 1983 vesměs různých přiro-
zených čísel, ne větších než 105, tak, aby žádná tři z nich ne-

byla třemi po sobě jdoucími členy aritmetické posloupnosti.
6. Jsou-li a, b, c délky stran libovolného trojúhelníku, potom

platí
a2b(a — b) + b2c(b — c) + c2a(c — a) ^ 0;

dokažte. Kdy platí rovnost?
Návrhy těchto šesti úloh zaslaly: Velká Británie, SSSR,

NSR, Belgie, Polsko a USA.
Při jednáních o výběru úloh byla probírána také otázka je-

jich obtížnosti - porota se snažila, aby vybraná šestice nebyla
příliš lehká. Proto také byly do ní zařazeny úlohy 5 a 6,
které byly považovány za velmi obtížné. Naproti tomu úlohy 1
a 4 byly označeny za lehké. Přesto rozhodla porota o tom, že
- podobně jako v posledních dvou letech - všechny úlohy mají
být hodnoceny stejně, a to každá sedmi body.

Tato fáze práce poroty skončila překladem úloh do jazyků
soutěžících, rozmnožením textů a jejich kontrolou - vše bylo
hotovo v pondělí 4. července, takže následující den mohl být
věnován exkurzi spojené s prohlídkou tří zámků na Loiře:
Chambord, Chenonceaux a Amboise.

V pondělí 4. července se do Paříže sjeli soutěžící žáci
v doprovodu zástupců vedoucích. Byli ubytováni v internátě
lycea Ludvíka Velikého v pařížské Latinské čtvrti. Lyceum
bylo pak sídlem i celého dalšího průběhu 24. MMO.

Vlastní soutěž proběhla ve dnech 6. a 7. července. Slavnostní
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zahájení se konalo ve středu 6. července dopoledne ve velkém
amfiteátru pařížské Sorbonny za přítomnosti zástupců fran-
couzského ministerstva školství i univerzity; hned potom
následoval první soutěžní půlden (úlohy 1, 2 a 3). Soutěž
pokračovala ve čtvrtek 7. července dopoledne, kdy již do
lycea Ludvíka Velikého přesídlila také porota ze Sěvres.
Během pátku a soboty byla žákovská řešení úloh opravena
a zkoordinována, takže v sobotu večer mohla porota schválit
definitivní výsledky.

Po delší a dosti vzrušené debatě se většina poroty přiklo-
nila к názoru, že má být dodržena tradice MMO a že se tedy
má udělit tolik cen, aby je získala přibližně polovina všech
soutěžících. Vzhledem к tomu, že úlohy byly vcelku dost
obtížné a bodové zisky žáků relativně nízké, znamenalo toto
rozhodnutí velmi mírnou klasifikaci. К získání třetí ceny
stačilo pouhých 15 bodů ze 42 možných. Některé delegace
se к tomu rozhodnutí vyjadřovaly značně kriticky, neboť se
tím podle jejich názoru snížila hodnota získaných cen, a proto
požadovaly, aby alespoň prvních cen nebylo příliš mnoho,
aby se nepřihlíželo к tradičnímu dělení cen v poměru 1:2:3.
Nakonec bylo rozhodnuto udělit 9 prvních cen žákům, kteří
dosáhli alespoň 38 bodů, 27 druhých cen žákům s 26 až 34
body a 57 třetích cen žákům s 15 až 25 body. Vedle toho byly
uděleny tři zvláštní ceny za originální a elegantní řešení
jednotlivých úloh; získali je žáci z Velké Británie (za 3. úlohu),
z NDR (za 6. úlohu) a z NSR (za 6. úlohu).

V neděli 10. července byl pro všechny účastníky MMO
uspořádán výlet do Versailles spojený s prohlídkou zámku
a parku. V pondělí 11. července pak byla MMO zakončena.
Odpoledne proběhlo slavnostní rozdílení cen - opět ve velkém
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amfiteátru na Sorbonně - potom byli účastníci přijati na pa-
řížské radnici a vše zakončila závěrečná společná večeře,
která měla tentokrát zcela neformální ráz. V úterý 12. červen-
ce již zahraniční delegace opouštěly Paříž.

Jako obvykle byl odborný program MMO doplněn o spo-
lečenskou a kulturní část. Bohatství pařížských kulturních
památek poskytovalo dostatek příležitostí к prohlídkám, jež
delegace absolvovaly většinou jednotlivě. Společně byly pro

žáky organizovány projížďka lodí po Seině, prohlídka muzea
v Louvru a koncert klasické hudby v kostele sv. Severina. Pro
vedoucí delegací a jejich zástupce připravili pořadatelé návště-
vu baletního představení v pařížské Opeře.

Československo vyslalo na 24. MMO delegací v složení
vedoucí delegace — dr. František Zítek, CSc.

Matematický ústav ČSAV, Praha
zástupkyně vedoucího — dr. Julia Lukátšová

Ministerstvo školství SSR,
Bratislava

žáci

Vladimír Dančík — Košice, 4. r., G Šmeralova ul.
Xaver Gubáš

Igor Kříž
Marián Neamtu — Bratislava, 4. r., G A. Markuša
Jiří Sgall
Jiří Witzany

— Bratislava, 4. r., G A. Markuša
— Praha, 4. r., G W. Piecka

— Praha, 4. r., G W. Piecka
- Praha, 3. r., G W. Piecka

Kromě toho byl na MMO přítomen též dr. Václav Šůla
z ministerstva školství ČSR jako pozorovatel.

V soutěži si naši žáci vedli se střídavými úspěchy; detailní
výsledky obsahuje připojená tabulka:
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Jméno Body za úlohu číslo
1 2 3 4 5 6

Celkem Cena

Sgall I.7 6 7 7 7 4
7 7 7 7 7 1
7 7 4 7 0 0
3 0 7 7 0 0
3 2 4 0 7 0
1 2 0 7 0 0

38
Kříž II.36
Dančík
Witzany
Gubáš
Neamfu

III.25
III.17
III.16

10

Součet 14228 24 29 35 21 5

Jak je vidět, největší potíže dělala našim žákům poslední,
šestá úloha, s níž si žádný z nich nedokázal poradit. Tato
úloha byla všeobecně považována za nejtěžší. Určité potíže
měli také s úlohou pátou. Nezdá se však, že by našim žákům
chyběly konkrétní vědomosti v určitém směru, ale spíše vy-
rovnanost a spolehlivost výkonu.

Ve srovnání s ostatními zúčastněnými družstvy dopadlo
československé poměrně dobře: v neoficiálním pořadí podle
součtu bodů zaujalo osmé místo. Celkový přehled o udělených
cenách podává následující tabulka:
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Součet
bodů

Počet cen

I. II. III. Zvi.Země

60 0 0 0
0 12 0

0 0
0 0 3 0
0 14 0

Alžírsko
Austrálie
Belgie
Brazílie
Bulharsko
Československo
Finsko
Francie
Holandsko
Itálie
Izrael
Jugoslávie
Kanada
Kolumbie
Kuba
Kuvajt
Lucembursko
Maďarsko
Maroko
NDR
NSR
Polsko
Rakousko
Rumunsko
Řecko
SSSR
Španělsko
Švédsko
Tunisko
USA
Velká Británie
Vietnam

81
250 0
77

137
1423 011
1030 0 3 0

0 2 3 0
0 0

0 0 0
0 5 0
0 5 0
0 4 0
0 0 0

0 0 1
0 0 0 0
0 0
0 4 2 0
0 0 0 0

123
1431 3

20
960
890

1020
210
360
4

13*00
170
32

5 1 1170 0
2124 11 0
1013 0

0 0 0 0
12 3 0
0 0 3 0

2 0
0 0

0 0 0 0
0 0 0 0
13 2 0

0 0
38

161
96

1691 3
37**0 0
47
26

171
3 1 1 1210

0 3 3 0 148

* Z Lucemburska přijeli jen dva žáci
** Ze Španělska přijeli jen čtyři žáci
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Řešení úloh 24. MMO

1. Snadno se přesvědčíme, že funkce / definovaná v R+
vztahem

1
/М-- (3)

vyhovuje podmínkám (1) i (2); ukážeme, že jiné řešení úloha
nemá.

Označme S množinu těch x e R+, pro něž je

/(*) = x. (4)

Dosadíme-li у = x do (1), vidíme, že pro každé x e R+ je

/O ./(*)) = * ./(*), (5)

tj. x ./(*) e S; množina S je tedy neprázdná. Podle (1) pak
pro libovolné x e S platí

* =/(*) =/№)) =/(i ./(*)) = *-m

takže nutně

/(1) = 1, (6)

tj. 1 g S. Dále platí toto tvrzení:
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Jestliže x e S, potom také xc e S pro každé celé číslo c.
Tvrzení dokážeme nejprve pro c ^ 0, a to indukcí. Pro

í = 0 je 3t° = 1 e 5 podle (6), pro c = 1 se platnost x1 e S
předpokládá. Nechť xn e S pro některé n ^ 1, potom podle (1)

f(xn+1) — f(x. xn) = f(x-f{xn)) = xn.f(x) = xn+1.

Tvrzení tedy platí pro všechna c ^ 0. Z ťeS však také
plyne

1 =/(l) =f(x~c.Xc) = f(x~c .f(xc)) = xc.f(x~c)3

tj.

f{x~c) =

takže také x~c e S.

Jestliže x > 1, pak xc-> oo pro c-> co, jestliže x < I*
pak x~c-> oo pro oo; v obou případech tedy v S exis-
tuje neomezeně rostoucí (geometrická) posloupnost čísel
splňujících (4). To je však ve sporu s podmínkou (2), proto
jediným prvkem množiny S je číslo 1. To však znamená, že
pro každé x 6 R+ platí x.f(x) = 1, neboli (3), což jsme měli
dokázat.

2. Poněvadž kružnice k\ a mají různé poloměry, pro-

tínají se jejich společné tečny v jednom bodě; označme jej V.
Kružnice k-2 je pak obrazem kružnice k\ ve stejnolehlosti se
středem V a koeficientem daným poměrem obou poloměrů.
Označme A' bod kružnice k%3 který je obrazem bodu A e k\
v této stejnolehlosti. Dokážeme, že body A, A'} Ог, М2 leží
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na jedné kružnici, a to tak, že budeme počítat mocnost
bodu V к této kružnici.

Jelikož A e k2, A' e &2, je mocnost bodu V ke kružnici ki
rovna součinu \VA\.\VA'\; zároveň je však také rovna

IFP2I2. Podle Eukleidovy věty však v pravoúhlém trojúhel-
niku VO2P2 platí j FP2!2 = IFO2!. I VM‘>\, máme tak celkem

\VA\.\VA'\ = \VO2\.\VM2\y

tzn. že skutečně body A, A’, O2, М2 leží na jedné kružnici.
Podle věty o obvodových úhlech tedy platí

|< OoAM-2I = |«£ 02A'M2\.

Avšak trojúhelník ОоА'Мч je obrazem trojúhelníku O1AM1
ve zmíněné stejnolehlosti, takže |<£ OiA'M<z\ = |<£ OiAMi\.
Platí tedy |<£ OiAMoj = f<£ OiAMi\ a vzhledem к uspořá-
dání bodů Oi, O2, Mi, М2 na přímce О1О2 také

|<í CM02| = |<C MiAMzj,

což jsme měli dokázat.

3. Každé celé číslo N se dá vyjádřit ve tvaru

(1)N = xbc + yac + zdb,

kde x, y, z jsou celá čísla, a to dokonce různými způsoby.
Vyjádříme-li dále čísla л:, у, z ve tvaru
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x = C a + Со, у = r\ b + rjo, z = С c + Co, (2)

kde

0 Co < <z, 0 ^ rjo < b, 0 ^ Co < c, (3)

dostaneme dosazením do (1) pro číslo 2V vyjádření

(4)N = Co be + rjo ac + Co ab + (C + rj + C) abc.

Za podmínek (3) jsou koeficienty Со, Со а (С + + С)
ve vyjádření (4) jednoznačně určeny číslem ЛГ. Kdyby totiž
pro totéž číslo N existovalo jiné vyjádření

N = Co'bc + r]o 'ac + Co 'ob + b abc (4')

s čísly Со', Щ, Co rovněž splňujícími podmínky (3), dostali
bychom odečtením (4') od (4) rovnost

0 = (Co — Co') bc + (rjo — rjo') ac + (Co — Co') ob +
+ (C + rj + C — b) abc.

Z ní vyplývá, že rozdíl Co — Co' musí být dělitelný číslem a,
to však je při platnosti (3) možné jen když Co = Co'- Obdobně
odvodíme rovnosti rjo = rjo a Co = Co', a potom ovšem také
b — C + rj + C-

Různá vyjádření čísla N ve tvaru (1) se mohou mezi sebou
tedy lišit pouze tak, aby čísla Co, ?Jo, Co ve vyjádření (2) a sou-
čet С + r) + C zůstaly zachovány. Přitom je zřejmé, že bude
x ^ 0, resp. у ^ 0, resp. z ^ 0, právě když C ^0, resp.

rj^.0, resp. C^ 0.
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Vezměme nyní celé číslo

Nq — 2abc — bc — ac — ab.

Vyjádříme-li je ve tvaru (4), dostaneme

Nq = (a — 1) be + (b — 1) ac + (c — 1) ab — abc. (5)

Při každém jeho vyjádření ve tvaru (1) je tedy £ + rj + £ =
= — 1, což znamená, že čísla ry, C - a tedy ani čísla
-a, v (1) - nemohou být všechna nezáporná.

Vezměme nyní libovolné celé číslo N > No. Rozdíl
No — N je tedy záporný; odečteme-li (4) od (5), dostaneme

0 > No — N — (a — 1 — £o) be + {b — 1 — rjo) ac +
+ (c — 1 — Co) ab — (1 + I + 7] + £) abc.

Poněvadž v důsledku (3) jsou čísla a — 1 — lo? b — 1 — 7]o>
c — 1 — Co vesměs nezáporná, musí být číslo 1 + I + ?y + t
kladné. Je tedy I + rj + £ > —1, tj.

£ + rj + ; ^ 0.

Ve vyjádření čísla N ve tvaru (1) lze tedy volit x,y3 z všechna
nezáporná.

4. Dokážeme, že při libovolném rozkladu množiny E na
dvě podmnožiny F, G

F и G = E, F n G = 0,
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existují v alespoň jedné z obou podmnožin tři body, které
jsou vrcholy pravoúhlého trojúhelníku.

Na stranách AB, resp. AC, resp. CA daného rovnostran-
ného trojúhelníku ABC najdeme body A i, A%, resp. 2?i, £2,
resp. Ci, C2 tak, aby

\AAi\ =| AiAz\ — \AZB\ =

= №1 = \BiB2\ = |Д2С| =

= ICCil = IC1C2I - |С2Л| = — |ЛБ|.
1

Ze tří bodů Л1, £1, Ci patří alespoň dva do jedné (stejné)
z obou podmnožin F, G. Bez újmy na obecnosti můžeme
předpokládat, že je A1 e F, £1 e F.

Jestliže některý z bodů £2, C2, C náleží rovněž do F,
pak F obsahuje tři vrcholy pravoúhlého trojúhelníku AiBiBz,
resp. A1B1C2, resp. AiB±C. Jestliže však všechny tři tyto
body £2, C2, C náleží do G, pak G obsahuje tři vrcholy
pravoúhlého trojúhelníku B2C2C. Tím je tvrzení dokázáno.

5. Označme M množinu všech přirozených čísel, která lze
vyjádřit ve tvaru součtu

ao 4- 3ai + 32аг + ... + 310аю,

kde d}(j = 0, 1, ..., 10) jsou celá čísla, 0 ^ aj ^ 1. Mno-
žina M má 211 - 1 = 2 047 prvků, největším z nich je číslo

1 + 3 + 9 + ... + 310 = 88573 < 103.
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Vezměme tři prvky množiny M:

10 10 10

A =2 a,v, в = 2 b,v, C = 2 c,Vi
i-O j=0 j=- O

kdyby to byly tři po sobě jdoucí členy aritmetické posloup-
nosti, platilo by

A + C = 2B,

a tedy také

aj + Cj = 2b]

pro j = O, 1, 2j .. .j 10. To je však možné pouze, když

dj — Cj — bj (j — 0, 1, ..10),

tj. když A = В = C.
Lze tedy najít nejen 1983, ale i 2 047 (ba ještě více) přiro-

zených čísel menších než 105, z nichž žádná tři nejsou třemi
po sobě jdoucími členy aritmetické posloupnosti.

6. Položme

a + b — ca + c — bb + c — a

, z =2~y==x —
22

z trojúhelníkové nerovnosti vyplývá, že čísla x3 y3 z jsou
kladná, přitom platí
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(1)x+y = c,y + z = a3 x + z = 6.

Dosadírae-li do dané nerovnosti

(2)a2b(a — b) + b2c(b — c) + c2a(c — a) ^ 0

podle (1), přejde (2) po úpravách v nerovnost

уz2 + xý3 + x3£ ^ xyz(x + у + z).

Vezměme nyní vektory

(3)

и = (У*> }!x, }'y5y)
a

{y]jxy3 z]!yz3 x]jxz5y).v =

Jejich skalární součin

u.v = \fxyz (y + z + x)

je nanejvýš roven součinu jejich délek ju|.|v|. Avšak

|u|2 = Z + X + у

a

jvj2 = xy3 + yz3 + x?z.

Platí tedy

Ifxyz (x + у + z) 5^ ]/x + у + z.]/xy3 + yz3 + x?z,
resp.

xyz (x + у + z) ^ x^z + xy3 + yz3}

ale to je právě nerovnost (3), kterou jsme měli dokázat.
Rovnost platí právě pro rovnostranný trojúhelník.
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