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O průběhu 37. ročníku
matematické olympiády

Matematická olympiáda je soutěž v matematice a v progra-
mování pro žáky základních a středních škol. Pořádají ji
ministerstvo školství, mládeže a tělovýchovy ČR, minister-
stvo školství, mládeže a tělesné výchovy SR, Jednota česko-
slovenských matematiků a fyziků a Jednota slovenských mate-
matiků a fyziků. Soutěž řídí ústřední výbor matematické
olympiády (ÚV MO), jehož předsedou byl ve školním roce
1987—88 RNDr. František Zítek, CSc., z Matematického
ústavu ČSAV v Praze, místopředsedy prof. RNDr. Míro-
slav Fiedler, člen korespondent ČSAV z téhož ústavu
a áoc. RNDr. Branislav Rovan, CSc., z matematicko-fyzi-
kální fakulty Univerzity Komenského v Bratislavě. Výše uve-
děná ministerstva zastupovali v ÚV MO RNDr. Václav Šůla
a RNDr. Júlia Lukátšová, funkci tajemníků ÚV MO zastávali
doc. RNDr. Leo Boček, CSc., z matematicko-fyzikální fakul-
ty Univerzity Karlovy v Praze a RNDr. Karel Horák, CSc.,
z Matematického ústavu ČSAV v Praze.

Tato brožurka je věnována pouze matematické olympiádě
na středních školách, o matematické olympiádě na základních
školách vychází jiná publikace. Žáci středních škol soutěží
v MO ve 4 kategoriích. Kategorie P je určena žákům všech
tříd středních škol a je zaměřena na úlohy z programování.
Ostatní kategorie jsou určeny žákům, kteří soutěží v mate-
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matice mimo programování, přičemž kategorie A je pro žáky
3. a 4. ročníků, kategorie В pro žáky 2. ročníků a kategorie C
pro žáky prvních ročníků. V I. kole řeší soutěžící všech ka-
tegorií úlohy doma nebo v matematických kroužcích, mohou
přitom použít různou literaturu a konzultovat například
s učitelem matematiky. V kategoriích А, В, C má I. kolo
ještě část klauzurní, při které řeší soutěžící ve škole 3 úlohy
formou písemné práce. Podobně jako klauzurní část probíhá
ve všech kategoriích II. kolo, krajské, jež obsahuje v každé
kategorii tři nebo čtyři úlohy. V kategoriích A a P se koná ještě
III. kolo, celostátní. V něm řeší soutěžící v kategorii A 6 úloh,
v kategorii P 4 úlohy ve dvou půldnech. Celostátní kola
37. ročníku MO se konala v Bratislavě, ve dnech 24.-27. dub-
na 1988 celostátní kolo kategorie A a hned navazovalo ve
dnech 27.—30. dubna celostátní kolo kategorie P, neboť hodně
žáků se probojovalo do nejvyššího kola v obou kategoriích.
Na slavnostním zahájení přednesl po krátkém kulturním
programu úvodní slovo prof. RNDr. Miroslav Fiedler, člen
korespondent ČSAV a místopředseda ústředního výboru MO.
Vyzval soutěžící, aby se zapojili do boje proti průměrnosti ve
studiu a aby v budoucnosti využili své matematické znalosti
všude, kde budou pracovat, i v nematematických oborech.
Ředitel odboru gymnázií a středních odborných škol minister-
štva školství, mládeže a tělesné výchovy SR PaedDr. Ondřej
Bartko konstatoval potěšující jev - Bratislava se stává líhní
mladých matematických talentů, mnozí z dřívějších slo-
venských úspěšných účastníků MO jsou dnes již významnými
vědeckými a pedagogickými pracovníky, například docenti
/. Korec, T. Marcisová, B. Sivák.

Všechny krajské a okresní výbory MO věnují ve spolu-
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práci s odbory školství příslušných národních výborů a s po-
bočkami JČSMF a JSMF talentovaným žákům v matematice
velkou péči a pořádají pro ně různá matematická soustředění,
korespondenční semináře, přednášky apod., pro učitele
instruktáže к úlohám MO i к dalším matematickým tématům.
Ve všech krajích se konala soustředění úspěšných řešitelů
úloh MO, někde společné soustředění řešitelů matematické
a fyzikální olympiády. Například v Jihočeském kraji uspořá-
dali i seminář pro řešitele úloh MO kategorie P. Pokud se
v některém kraji nepořádal korespondenční seminář, byla
žákům umožněna účast v korespondenčním semináři v jiném
kraji, například žáci Středočeského kraje se zapojili do praž-
ského korespondenčního semináře, který organizoval KV MO
Praha na matematicko-fyzikální fakultě Karlovy univerzity
v Praze. V Severomoravském kraji se již vžily sobotní besedy
MO, jež se konají pro řešitele MO kategorií A, B, CnaPalac-
kého univerzitě v Olomouci. V Slovenské republice se pořá-
dají akce pro nadané žáky ve spolupráci s domy pionýrů
a mládeže, například v Košicích se schází jednou týdně
v krajském domě pionýrů a mládeže Klub mladých matema-
tiků.

ÚV MO pořádal jako v předcházejících letech celostátní
korespondenční seminář, který byl též přípravou pro česko-
slovenskou účast na mezinárodní matematické olympiádě. Po-
drobněji se o korespondenčním semináři ÚV MO dočtete
dále, rovněž mezinárodní matematické olympiádě je v této
brožurce věnována samostatná část. Po obsahové stránce za-

jišťoval ÚV MO také dvě soustředění vybraných žáků, z nichž
pak byli vybráni českoslovenští účastníci MMO. První se
konalo u Bratislavy, druhé v Pardubicích. Spolu s ÚV fy-
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zikální olympiády zajišťoval ÚV MO celostátní soustředění
MO a FO, které se konalo v Jevíčku.

Velkou pomocí řešitelům úloh MO je edice Škola mladých
matematiků, kterou vydává ÚV MO v nakladatelství Mladá
fronta. V edici vyšlo již 59 svazků, posledním vydaným svaz-
kem je brožurka Moravek, Vlach: Oddělitelnost množin, která
vyšla již v druhém vydání. Ve Státním pedagogickém nakla-
datelství vydává ÚV MO sbírky vybraných úloh MO a v kaž-
dém roce dvě brožurky o uplynulém ročníku MO, jedna je
věnována MO na středních školách, druhá na základních
školách. Jednu z nich, popisující 37. ročník MO na středních
školách, máte právě v ruce. Obsahuje všechny úlohy včetně
jejich řešení. Úlohy jsou označeny kategorií, kolem a pořa-
dovým číslem úlohy, například B-I-5, P-III-2. Úlohy školní -

klauzurní - části I. kola kategorií А, В, C jsou označeny
písmenem S místo I za označením kategorie, např. A-S-2.
Dále najdete v brožurce úlohy celostátního korespondenčního
semináře ÚV MO (bez řešení) a úlohy mezinárodní matema-
tické olympiády.
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Počty zúčastněných žáků v III. kole 37. ročníku MO

Kategorie A Kategorie P

Kraj

S U V s u V

Praha

| Středočeský
i Jihočeský
| Západočeský
j Severočeský

Východočeský
Jihomoravský
Severomoravský

j Bratislava
! Západoslovenský

! Středoslovenský
Východoslovenský

8 6 12 79 5

2 1 2 2

31 2 1

26 2 1 1

2 1 1

5 2 1

37 3 5 210

4 2 15 5

29 12 9 13 6 2

3 23 1 1

5 2 3 3 1

3 3 1 1

ČSR 40 25 11

40 18 10

31 16

20 11

9

SSR 4

I

ČSSR 51 27 1380 43 21
i

S ... počet všech soutěžících
U . . . počet úspěšných řešitelů
V ... počet úspěšných, kteří byli prohlášeni za vítěze
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ÚSPĚŠNÍ ŘEŠITELÉ CELOSTÁTNÍHO KOLA MO

KAT. A

Uvádíme pořadí žáka, jeho jméno a příjmení, ročník, školu
a počet dosažených bodů ze 42 možných. U žáků z tříd se
zaměřením studijního oboru 01 Matematika, resp. 02 Mate-
matika a fyzika, je za označením ročníku uvedeno M, resp.
MF. Všichni byli žáky gymnázií - G.

Vítězové

Petr Hliněný, 2 M, G M. Koperníka, Bílovec 34
2.—3. Petr Čížek, 3 M, G W. Piecka, Praha

Pavol Gvozdjak, 4 M, G A. Markuša, Bratislava 29
4.-5. David Pancza, 4 M, G A. Markuša, Bratislava 28

Ondřej Pokluda, 4 M, Brno, tř. kpt. Jaroše
Stanislav Krajči, 4 M, Košice, Šmeralova

7. —12. Štěpán Kasal, 1 M, G W. Piecka, Praha
Martin Kraus, 2 M, G W. Piecka, Praha
Ilja Martišovitš, 3 MF, G J. Hronca, Bratislava 25
Pavol Ševera, 2 M, G A. Markuša, Bratislava
Marek Velešík, 3, Brno, Koněvova
Martin Žufan, 3 M, Brno, tř. kpt. Jaroše

13. —14. František Kuminiak, 3 M, G A. Markuša,
Bratislava,
Ondřej Šuch, 2 M, G A. Markuša, Bratislava 24

1.

29

28

6. 26

25

25

25

25

25

24
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15. —17. Petr Brož', 3 M, G W. Piecka, Praha
Martin Kučera, 3 M, G M, Koperníka, Bílovec 22
S. Januschke, 3 MF, G J. Hronca, Bratislava

18.—21. Tibor Bartoš, 4 M, G A. Markuša, Bratislava
Andrej Doboš, 3 M, G A. Markuša, Bratislava 21
Ondřej Kalenda, 2 M, G W. Piecka, Praha
Arnošt Kobylka, 3 M, G W. Piecka, Praha

22

22

21

21

21

Další úspěšní řešitelé

Daniel Elleder, 3 M, G W. Piecka, Praha
23.—24. Tomáš Brodský, 3 M, Brno, tř. kpt. Jaroše

Radomír Měch, 4 M, G M. Koperníka, Bílovec 18
25.—26. Dalibor Procházka, 4 MF, Karlovy Vary

Zbyněk Šír, 3 M, G J. K. Tyla, Hr. Králové
27.-28. Vladimír Ďuračka, 2 MF, G J. Hronca, Bratislava 16

Jiří Zatloukal, 4 M, G M. Koperníka, Bílovec 16
29.—31. Peter Eliáš, 4, Prešov, Konštantínova

Jaroslav Masár, 4 M, G A. Markuša, Bratislava 15
Jan Vomlel, 2 M, G J. K. Tyla, Hr. Králové

32.—36. Tomáš Dvořák, 4 M, Brno, tř. kpt. Jaroše
Jiří Ftirst, 3 M, G J. Fučíka, Plzeň
Dalibor Jakuš, 4 M, Žilina, V. Okružná
Vladimír Komár, 2 M, Košice, Šmeralova
Milan Sekanina, 4 M, Brno, tř. kpt. Jaroše

37.—43. Radovan Čížek, 4 MF, Mladá Boleslav
Karol Hrivnák, 4 M, G A. Aíarkuša, Bratislava 12
David Krásenský, 2 M, Brno, tř. kpt. Jaroše
Jozef Skokan, 2 M, Žilina, V. Okružná
Marta Sochorová, 4 M, G W. Piecka, Praha

22. 19

18

17

17

15

15

13

13

13

13

13

12

12

12

12
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Pavel Truhlář, 4 M, Liberec, Partyzánská
Gabriel Varga, 3, Šamorín, mad. G

12

12

Žáci z tříd jiného studijního zaměření než 01 Matematika
se umístili v tomto pořadí:

1.—2. Ilja Martišovitš, 3, G J. Hronca, Bratislava
Marek Velešík, 3, Brno, Koněvova
Stanislav Januschke, 3, G J. Hronca, Bratislava
Dalibor Procházka, 4, Karlovy Vary
Vladimír Ďuračka, 2, G J. Hronca, Bratislava
Peter Eliáš, 4, Prešov, Konstantinova

7.-8. Radovan Čížek, 4, Mladá Boleslav
Gabriel Varga, 3, Šamor in, mad. G

3.

4.

5.

6.
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ÚSPĚŠNÍ ŘEŠITELÉ CELOSTÁTNÍHO KOLA MO

KAT. P

Uvádíme pořadí žáka, jeho jméno a příjmení, ročník
a školu a počet dosažených bodů ze 40 možných. Všichni
byli žáky gymnázií (G).

Vítězové

Petr Brož, 3, G W. Piecka, Praha
Arnošt Kobylka, 3, G W. Piecka, Praha
Marek Velešik, 3, Brno, Koněvova
Václav Bohdanecký, 3, G W. Piecka, Praha
Petr Čížek, 3, G W. Piecka, Praha
Jaraj Šimko, 4, Nitra, Párovská
Ilja Martišovitš, 3, G J. Hronca, Bratislava
Jiří Ftirst, 3, G J. Fučíka, Plzeň
Jozef Saniga, 4, Žilina, V. Okružná
Štěpán Kasal, 1, G W. Piecka, Praha
Vladimír Chvátil, 2, Brno, Koněvova

12. —13. Martin Bujdák, 4, G A. Markuša, Bratislava
Pavel Kozlovský, 4, Jindřichův Hradec

401.

382.-3.

38

4.-5. 37

37

366.

347.

318.

299.

2810.

2711.

25

25
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Další úspěšní řešitelé

14. —16. Andrej Lúčny, 3, Piešťany
Zdeněk Pavlas, 3, Brno, tř. kpt. Jaroše
René Pázman, 3, G J. Hronca, Bratislava

17. —18. Martin Dindoš, 2, G J. Hronca, Bratislava
Gregor Rayman, 3, Žilina, Wolkerova

19.—21. Jan Macháček, 2, Pelhřimov
Marta Sochorová, 4, G W. Piecka, Praha
Vladimír Šolc, 2, Beroun

22.-24. Miroslav Šrol, 4, G J. Hronca, Bratislava
Petr Štěpán, 3, G W. Piecka, Praha
Petr Vyhňák, 4, Mladá Boleslav,
Štefan Dobrev, 3, G A. Markuša, Bratislava

26.-27. Jozef Gemela, 4, Prievidza
Radek Porazil, 4, G M. Koperníka, Bílovec

24

24

24

23

23

22

22

22

21

21

21

25. 20

19

19
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NEJÚSPĚŠNĚJŠÍ ŘEŠITELÉ II.,
KRAJSKÉHO KOLA MO

Z každého kraje a v každé kategorii je uvedeno nejvýše
prvních deset nej úspěšnějších řešitelů. Pokud není uvedeno
jinak, byli všichni uvedení žáci v kategorii В žáky 2. ročníku,
v kategorii C žáky 1. ročníku střední školy. V kategoriích A
a P je 2a jménem uveden ročník. Není-li uveden typ školy,
byl řešitel žákem gymnázia (G). Označení M, resp. MF,
v kategoriích А, В, C znamená zaměření studijního oboru
01 Matematika, resp. 02 Matematika a fyzika.

Praha

Kategorie A

Petr Čížek, 3 M, G W. Piecka
Tomáš Rylek, 3 M, G W. Piecka
Daniel Elleder, 3 M, G W. Piecka
Martin Kraus, 2 M, G W. Piecka
Marta Sochorová, 4 M, G W. Piecka
Petr Knobloch, 4 MF, Praha 10, Voděradská
Ondřej Kalenda, 2 M, G W. Piecka
Štěpán Kasal, 1 M, G W. Piecka
Arnošt Kobylka, 3 Л1, G W. Piecka

1.

2.

3.-5.

6.

7.-9.
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Kategorie В

Jakub Cvach, M, G W. Piecka
Petr Toman, M, G W. Piecka
Jan Žemlička, Praha 8, U libeňského zámku
Karel Hejtmánek, M, G W. Piecka
Petr Kolman, Praha 3, Sladkovského nám.
Jan Macháček, M, G W. Piecka
Richard Němeček, Praha 8, U libeňského zámku
Lubomír Rulíček, M, G W. Piecka
David Schreib, M, G W. Piecka

1.

2.-3.

4.-9.

Kategorie C

Štěpán Kasal, M, G W. Piecka
Michal Kubeček, 8. třída, základní škola,

Praha 4, Na planině
Jan Hannig, M, G W. Piecka
Jakub Těšínský, M, G W. Piecka
Karel Fridrich, M, G W. Piecka
Jan Kolář, M, G W. Piecka
Petr Mourek, M, G W. Piecka
Milan Šebesta, Praha 8, U libeňského zámku
Petr Novotný, 8. třída, základní škola,

Praha 7, F. Křižka

1.-2.

3.

4.

5.-8.

9.
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Kategorie P

Petr Čížek, 3
Arnošt Kobylka, 3
Marta Sochorová, 4
Jan Hannig, 1
Václav Bohdanecký, 3
Pavel Plachký, 4
David Obdržálek, 4
Petr Štěpán, 3
Ludvík Tesař, 3
Pčřr .Broi, 3, všichni G W. Piecka

1.-3.

4.

5.

6.

7.-9.

10.

Středočeský kraj

Kategorie A

Radovan Čížek, 4 MF, Mladá Boleslav
Vladimír Šolc, 2 MF, Beroun
Pavel Krejčíř, 4 MF, Mladá Boleslav
Richard Suchý, 4 MF, Benešov
Martin Šmíd, 4 MF, Beroun
Karel Špáda, 3 MF, Mladá Boleslav
Radek Tezaur, 4, Vlašim

1.

2.

4.

5.-7.

Kategorie В

Vladimír Šolc, MF, Beroun
Michal Gruncl, SPŠ Kutná Hora

1.

2.
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Bořivoj Strach, Mladá Boleslav
4.-5. Jan Brychta, Kolín

Jan Soubusta, Benešov
6.-9. Peřr Doňar, Kralupy n. V.

Zdeněk Kohout, Kladno
Hana Křížová, Beroun
Martin Vyšohlíd, Mladá Boleslav

3.

Kategorie C

Pavlína Kuthanová, Kralupy n. V.
2.-7. Oldřich Baroch, Kladno

Zdenka Beranová, Kolín
Jan Červenka, Kladno
Lenka Kurzweilová, Mladá Boleslav
Klára Městecká, Mladá Boleslav
Miroslav Vaic, Kladno

1.

Kategorie P

1. Petr Vyhňák, 4, Mladá Boleslav
Vladimír Šolc, 2, Beroun2.

Jihočeský kraj

Kategorie A

David Boukal, 3 M, České Budějovice, Jírovcova
Jaroslav Pavlíček, 3, SPŠ Písek

1.

2.
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Manin Hanuš, 3 MF, G K. Šatala, Č. Budějovice
Milan Předota, 2, České Budějovice, Jírovcova
Jan Balák, 2 M, České Budějovice, Jírovcova
Michael Humpál, 4 MF, G K. Šatala, Č. Budějovice
Pavel Kozlovský, 4, Jindřichův Hradec
Manin Kronika, 4 MF, G K. Šatala, Č. Budějovice
Martin Řehout, 2 M, České Budějovice, Jírovcova

3.-4.

5.-9.

Kategorie В

Jan Balák, M, České Budějovice, Jírovcova
Michal Koblížek, Jindřichův Hradec
Petr Mach, M, České Budějovice, Jírovcova
Milan Předota, M, České Budějovice, Jírovcova
Martin Řehout, M, České Budějovice, Jírovcova
Milena Beranová, Strakonice
Jakub Čermák, M, České Budějovice, Jírovcova

8. —10. JosefJestřáb, Písek
Jan Macháček, Pelhřimov
Radim Žáček, Humpolec

1.

2.-3.

4.

5.

6.-7.

Kategorie C

1. Jiří Sedlák, M, České Budějovice, Jírovcova2.—3. Jan Dvořák, M, České Budějovice, Jírovcova
Karel Netočný, M, České Budějovice, Jírovcova

4. Richard Váňa, Písek5.-8. Daniel Bican, Milevsko
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Lenka Krejzarová, Písek
Vít Pešek, Písek
Denisa Vránková, Tábor

Kategorie P

Pavel Kozlovský, 4, Jindřichův Hradec
Jakub Čermák, 2, České Budějovice, Jírovcova
Jan Macháček, 2, Pelhřimov

4.-6. Miroslav Nerad, 4, České Budějovice, Česká
Tomáš Parkos, 4, České Budějovice, Česká
Jiří Rataj, 3, Strakonice

1.

2.

3.

Západočeský kraj

Kategorie A

1.—2. Jiří Fiirst, 3 M, G J. Fučíka, Plzeň
Šimon Kos, 3 M, G J. Fučíka, Plzeň

3.—5. Dalibor Procházka, 4 MF, Karlovy Vary
Zdeněk Tryner, 4 M, G J. Fučíka, Plzeň
Pavel Vinter, 4, Plzeň, ul. Pionýrů
Miroslav Vicher, 3 MF, Karlovy Vary

7,-8. Pavel Kdss, 3 M, G J. Fučíka, Plzeň
Miroslav Lávička, 3 M, G J. Fučíka, Plzeň

9. —10. Martin Bareš, 2 xM, G J. Fučíka, Plzeň
Petr Hejda, 4 M, G J. Fučíka, Plzeň

6.
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Kategorie В

Jan Štrůne, M, G J. Fučíka, Plzeň
Jan Nepraš, M, G J. Fučíka, Plzeň
Martin Hanák, MF, Klatovy

4.-6. Jolana Černá, MF, Plzeň, Opavská
Petr Knap, MF, Plzeň, ul. Pionýrů
Tomáš Mika, MF, Plzeň, ul. Pionýrů
Miloš Brejcha, MF, G J. Fučíka, Plzeň
Petr Somol, Mariánské Lázně

9. —10. Michal Fried, MF, Plzeň, ul. Pionýrů
Martin Schaffer, MF, Karlovy Vary

1.

2.

3.

7.

8.

Kategorie C

Tomáš Kadlec, M, G J. Fučíka, Plzeň
Martin Sobotka, Klatovy

3.—8. Dana Benešová, M, G J. Fučíka, Plzeň
Martin Čihák, MF, Karlovy Vary
Aleš Hodina, M, G J. Fučíka, Plzeň
František Šteifl, MF, Karlovy Vary
Zdeňka Svobodová, MF, Cheb
Zdeněk Valečko, M, G J. Fučíka, Plzeň

1.

2.

Kategorie P

Jiří FUrst, 3 M, G J. Fučíka, Plzeň
Jiří Gogela, 4 MF, G J. Fučíka, Plzeň

1.

2.
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Vítězslav Babický, 3 M, G J. Fučíka, Plzeň
Petr Kodl 3 M, G J. Fučíka, Plzeň

3.

4.

Severočeský kraj

Kategorie A

1. — 2. Vladimír Richter, 4 M, Liberec, Partyzánská
Pavel Truhlář, 4 M, Liberec, Partyzánská
Jaroslav Trnka, 4 M, Liberec, Partyzánská
Petr Noháč, 3 M, Liberec, Partyzánská

5.-6. Jan Dvořák, 4 MF, Ústí n. L.
David Svoigoň, 4 M, Liberec, Partyzánská

7.-8. Štěpánka Lazarová, 3, Děčín,
Daniel Šuta, 4, Chomutov

3.

4.

Kategorie В

Tomáš Burger, MF, Teplice
2.-8. Pavel Hoza, MF, Ústí n. L.

Miroslav Johanovský, MF, Ústí n. L.
Marie Kovářová, M, Liberec, Partyzánská
Michal Řízek, MF, Ústí n. L.
Pavel Semerád, MF, Rumburk
Marta Slavíková, MF, Teplice
Ladislav Šimek, M, Liberec, Partyzánská

9. —10. Tomáš Horkel, Ústí n. L.
Josef Marx, M, Liberec, Partyzánská

1.
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Kategorie С

Radek Škoda, M, Liberec, Partyzánská
Štěpánka Zítková, M, Liberec, Partyzánská
Jiří Fiala, M, Liberec, Partyzánská
Aleš Hácha, M, Liberec, Partyzánská
Roman Hanzl, Jablonec
Jaroslav Švébiš, M, Liberec, Partyzánská
Stanislav Dunaj, MF, Ústí n. L.
Petr Jiřička, 8. třída, základní škola,
Liberec, Na bojišti
Vít Smékal, M, Liberec, Partyzánská

1.-2.

3.-4.

5:

6.

7.-9.

Kategorie P

Miroslav Hoblík, 3, Liberec, Partyzánská
Oldřich Vojtíšek, 3, Liberec, Partyzánská

1.

2 i

Východočeský kraj

Kategorie A

Jan Vomlel, 2 M, G J. K. Tyla, Hradec Králové
Tomáš Pospíchal, 2 M, G J. K. Tyla, Hradec Králové
Zbyněk Vašata, 3, G J. K. Tyla, Hradec Králové
Štěpán Holub, 3 MF, Trutnov
Zbyněk Šír, 3 M, G J. K. Tyla, Hradec Králové

1.

2.

3.

4.

5.
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Kategorie В

Jan Vomlel, M, G J. K. Tyla, Hradec Králové
Josef Otčenášek, Dvůr Králové
Aleš Dryák, Nový Bydžov
Martin Horký, MF, Pardubice
Tomáš Pospíchal, M, G J. K. Tyla, Hradec Králové
Ondřej Baudyš, Hlinsko v Č.
Roman Heřman, MF, Pardubice

1.

2.

3.-5.

6.-7.

Kategorie C

Daniela Loskotová, Havlíčkův Brod
Miroslav Hiršl, Náchod
Petr Křečil, M, G J. K. Tyla, Hradec Králové
Jiří Postupa, M, G J. K. Tyla, Hradec Králové
Jiří Cyrany, Havlíčkův Brod
Aleš Hlavsa, Náchod

1.

2.-4.

5.

6.

Kategorie P

Štěpán Holub, 3, Trutnov1.

Jihomoravský kraj

Kategorie A

Tomáš Dvořák, 4 M, Brno, tř. kpt. Jaroše
Marek Velešík, 3, Brno, Koněvova

1.

2.
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Tomáš Brodský, 3 M, Brno, tř. kpt. Jaroše
Radek Vystavěl, 4, Prostějov
Ondřej Pokluda, 4 M, Brno, tř. kpt. Jaroše
David Krásenský, 2 M, Brno, tř. kpt. Jaroše
Josef Pojsl, 2 M, Brno, tř. kpt. Jaroše
Milan Sekanina, 4 M, Brno, tř. kpt. Jaroše
Martin Vondráček, 4 M, Brno, tř. kpt. Jaroše

3.

4.

5.

6.

7.-9.

Kategorie В

Pavel Horák, MF, Gottwaldov
David Krásenský, M, Brno, tř. kpt. Jaroše
Vladimír Chvátil, MF, Brno, Koněvova

Jana Bendová, M, Brno, tř. kpt. Jaroše
Marek Brejl, M, Brno, tř. kpt. Jaroše
Eva Rohovská, M, Brno, tř. kpt. Jaroše
Tomáš Pitner, M, Brno, tř. kpt. Jaroše
Radoslav Rnsina, M, Brno, tř. kpt. Jaroše
Radek Vašín, M, Brno, tř. kpt. Jaroše
Tomáš Urbánek, M, Brno, tř. kpt. Jaroše

1.

2.

3.

4.

5.-6.

7.-9.

10.

Kategorie C

Michal Konečný, M, Brno, tř. kpt. Jaroše
2.—3. Michal Bulant, M, Brno, tř. kpt. Jaroše

Bohdan Farník, M, Brno, tř. kpt. Jaroše
Michal Stehlík, 8. třída, základní škola,

Brno, Křídlovická

1.

4.
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5.-7. Jiří Kalvoda, M, Brno, tř. kpt. Jaroše
Pavel Růžička, 8. třída, základní škola,

Brno, Křídlovická
Radek Svoboda, Boskovice
Jan Kasprzak, M, Brno, tř. kpt. Jaroše

9. —10. Petra Mášová, MF, Brno, Křenová
Vít Schorm, M, Brno, tř. kpt. Jaroše

8.

Kategorie P

Vladimír Chvátil, 2, Brno, Koněvova
Marek Velešík, 3, Brno, Koněvova
Miloslav Hledík, 4, Ivančice
Miloš Ondrák, 4, Ždár n. S.
Zdeněk Pavlas, 3, Brno, tř. kpt. Jaroše
Petr Kolenčík, 2, Brno, Koněvova
Martin Dlouhý, 4, SEŠ Třebíč
Radim Halíř, 4, Brno, tř. kpt. Jaroše

1.-2.

3.

4.

5.

6.

7.

8.

Severomoravský kraj

Kategorie A

Petr Hliněný, 2 M, G M. Koperníka, Bílovec
Martin Kučera, 3 M, G M. Koperníka, Bílovec
Jiří Zatloukal, 4 M, G M. Koperníka, Bílovec
Radomír Měch, 4 M, G M. Koperníka, Bílovec
Jan Slovák, 4, Uničov

1.

2.-3.

4.

5.-6.
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Zdenek Šarman, 4 M, G M. Koperníka, Bílovec
Ondřej Blaha, 4 M, G M. Koperníka, Bílovec
Radek Porazil, 4 M, G M. Koperníka, Bílovec

7.-8.

Kategorie В

Petr Hliněný, M, G M. Koperníka, Bílovec
Л/е? Kuběna, 1 M, G M. Koperníka, Bílovec
Jiří Běták, M, G M. Koperníka, Bílovec
Štěpán Čábelka, M, G M. Koperníka, Bílovec,
Zi&or Šindlar, Nový Jičín
Tomáš Duraj, SPŠE Frenštát p. R.
Martin Pavlica, M, G M. Koperníka, Bílovec
Tomáš Rosinský, SPŠE Frenštát p. R.
Luděk Vecsey, M, G M. Koperníka, Bílovec
Pčifr Lindovský, M, G M. Koperníka, Bílovec

1.-2.

3.-5.

6.-9.

10.

Kategorie C

Jiří Svoboda, M, G M. Koperníka, Bílovec
Oldřich Doseděl, M, G M. Koperníka, Bílovec
Adrian Horzyk, Český Těšín, polské G
Radim Kubacki, M, G M. Koperníka, Bílovec
Tomáš Němeček, Opava
Mario Boháč, M, G M. Koperníka, Bílovec
Radek Hořenský, Olomouc, tř. J. z Poděbrad

1.

2.-5.

6.-7.
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Kategorie P

Radek Porazil, 4, G M. Koperníka, Bílovec
Vladimir Stiller, 4, G M. Koperníka, Bílovec
Zdeněk Peštuka, 4, G M. Koperníka, Bílovec
Richard Vlach, 3, Rožnov p. R.
Petr Večerek, 4, Ostrava, Šmeralova

6.-7. Radmila Ryšková, 4, Frýdek-Místek
David Šindler, 3, G M. Koperníka, Bílovec
Michal Prokeš, 4, Ostrava-Hrabůvka

9. —10. Vladimír Solničky, 4, Opava
Pavel Špatný, 4, Rožnov p. R.

1.

2.

3.

4.

5.

8.

Bratislava

Kategorie A

Ilja Martišovitš, 3 MF, G J. Hronca
2.-4. Andrej Doboš, 3 M, G A. Markuša

Pavol Gvozdjak, 4 M, G A. Markuša
Ondřej Šuch, 2 M, G A. Markuša
František Komora, 4 M, G A. Markuša

6.-7. Tibor Bartoš, 4 M, G A. Markuša
Robert Bodi, 4 M, G A. Markuša

8. —10. Martin Dindoš, 2 MF, G J. Hronca
David Pancza, 4 M, G A. Markuša
Stanislav šimunek, 4 M, G A. Markuša

1.

5.
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Kategorie В

Ján Bajcsy, M, G A. Markuša
Martin Dindoš, MF, G J. Hronca
Pavol Ševera, M, G A. Markuša
Ondřej Šuch, M, G A. Markuša
Tomáš Szalay, M, G A. Markuša
Štefan Dobák, M, G A. Markuša
Martin Pavlík, M, G A. Markuša
Martin Kobetič, M, G A. Markuša
Rudolf Sedmina, MF, G J. Hronca

1.-4.

5.

6.-7.

8.-9.

Kategorie C

Pavol Mederly, 8. třída, základní škola, Košická ul.
Peter Kaboš, M, G A. Markuša
Matěj Kordoš, 8. třída, základní škola, Košická ul.
Miroslav Kočan, MF, G J. Hronca
Kristina Kostková, MF, G J. Hronca

1.

2.

3.

4.-5.

Kategorie P

Západoslovenský kraj

Kategorie A

Juraj Šimko, 4 MF, Nitra, Párovská
Ján Trojan, 4 MF, Nitra, Párovská

1.

2.
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Gabriel Varga, 3, Šamorín, mad. G
Katarina Kis Petiková, 4 MF, Komárno, mad G
Martin Nehéz, 2, Levice
Eva Fašangová 3, Želiezovce, mad G
Ondřej Šedivý, 2 MF, Nitra, Párovská
Ivo Kluvanec, 2 MF, Nitra, Párovská
Roman Gregaš, 4 MF, G E. Gudernu, Nitra
Štefan Bakalář, 4, Topolčany

3.

4.

5.

6.

7.

8.

9.

10.

Kategorie В

Ondřej Šedivý, MF, Nitra, Párovská
2.—3. Daniel Bršel, Hlohovec

jfozef Mičuch, SPŠE Piešťany
Vladimír Králík., Zlaté Moravce

5.-7. Henrich Harant, MF, Nitra, Párovská
Tomáš Hrno, MF, G E. Gudernu, Nitra
Martin Nehéz, Levice
Angela Nagyová, MF, Komárno, mad. G

9. —10. Radovan Dermíšek, Skalica
Gabriel Šabík, MF, Nitra, Párovská

1.

4.

8.

Kategorie C

Peter Šedík, MF, Trenčín
2.—4. Jela Abelová, MF, Trenčín

Marián Mrva, Šala
Mária Ondrušková, Trenčín

1.
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Pavol Čeckvala, Piešťany
Ignác Bugár, Galanta, mad. G
Jana Dolníková, Hlohovec
Tatiana Halabrinová, G E. Gudernu, Nitra
Vladimír Kulich, Trnava

5.

6.-9.

Ka tegorie P

Andrej Lúčny, 3, Piešťany
Jozef Sklenář, 2, Piešťany
Juraj Simko, 4, Nitra, Párovská
Viktor Bódi, 4, G E. Gudernu, Nitra
Jozef Gerhát, 3, Topolcany
Drahoslav Ondruška, 4, G E. Gudernu, Nitra
Silvia Černušková, 4, Trnava
Marián Jamriška, 4, G E. Gudernu, Nitra

1.

2.-3.

4.-5.

6.

7.-8.

Středoslovenský kraj

Kategorie A

Vladimír Šošovička, 4 M, Žilina, V. Okružná
Dalibor Jakuš, 4 M, Žilina, V. Okružná
Peřer Botek, 4 M, Žilina, V. Okružná
Peter Oravec, 4 M, Žilina, V. Okružná
Robert Mitka, 3 M, Žilina, V. Okružná
Jozef Skokan, 2 M, Žilina, V. Okružná
Jo.sre/ Saniga, 4 M, Žilina, V. Okružná

1.

2.

3.-4.

5.-6.

7.
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Kategorie В

Jozej Skokan, M, Žilina, V. Okružná
Eduard Omasta, Ružomberok
Stanislav Tažiar, MF, Prievidza
Martin Pavlenda, MF, Banská Bystrica, Tajovského
Juraj Kodýdek, MF, Banská Bystrica, Tajovského
Pavol Rafaj, MF, Banská Bystrica, Tajovského
Peter Vanoch, M, Žilina, V. Okružná
Peter Mičúch, Žilina, Wolkerova

1.

2.

3.

4.

5.-7.

8.

Kategorie C

Šimon Malý, Žiar n. H.
Juraj Lorinc, Banská Bystrica, Tajovského
Rušena Zimanová, MF, Prievidza
Roland Cagáň, M, Žilina, V. Okružná
Karol Dókuš, Banská Bystrica, Tajovského
Radoslav Harman, Liptovský Hrádok
Peter Malčovský, MF, Prievidza
Roman Tis ták, MF, Liptovský Mikuláš
Valerián Valášek, Banská Bystrica, Tajovského
Peter Višňovský, MF, Martin

1.

2.

3.

4.-10.

Kategorie P

Jozef Gemela, 4, Prievidza
Gregor Rayman, 3, Žilina, Wolkerova

1.

2.
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Jozef Saniga, 4, Žilina, V. Okružná
Dalibor JakuŠ, 4, Žilina, V. Okružná
Eduard Omasta, 4, Ružomberok
Martin Bubniak, 4, Banská Bystrica, Tajovského
Robert Hagara, 3, Prievidza
Marian Kollarik, 1, Banská Bystrica, Tajovského
Michal Hrabovec, 3, Žilina, Wolkerova

3.

4,.

5.

6.-7.

8.

9.

Východoslovenský kraj

Kategorie A

Stanislav Krajči, 4 M, Košice, Šmeralova
Vladimír Komár, 2 M, Košice, Šmeralova
Peter Eliáš, 4, Prešov, Konštantínova
Zdeno Kálnassy, 4, Prešov, Konštantínova
Vladimír Korba, 4, SPŠE Prešov
Maroš Rusňák, 3 M, Košice, Šmeralova
Roman Vávra, 4, Rožňava
Peter Eúsek, 3, Poprad, Leninovo nábr.
Rudolf Krejči, 4, Poprad, Leninovo nábr.
Slavomír Onderko, 4, Michalovce

1.

2.

3.

4.-6.

7.

8.-10.

Kategorie В

Vladimír Skalský, Prešov, T. Ševčenka
2.—3. Slavomír Gmitro, Prešov, Konštantínova

Vladimír Komár, M, Košice, Šmeralova

1.
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Martin Tomko, Kosice, Šrobárova
5.-6. Miroslav Bobovský, SPŠ Poprad

Peter Haluška, M, Košice, Šmeralova
7. —10. Rastislav Hagovský, Spišská Nová Ves

Radoslav Jenčuš, M, Košice, Šmeralova
Marek Kolesár, Košice, Šrobárova
Martin Mrva, Prešov, T. Ševčenka

4.

Kategorie C

Marián Raučina, Poprad, Zápotockého
Peter Varga, Košice, Šrobárova
Michaela Bodnárová, Košice, Šrobárova
Zuzana Horváthová, Prešov, T. Ševčenka
Slavomír Hrinko, Prešov, Konštantínova
Martin Kalovec, Poprad, Zápotockého
Vladimír Koťo, Snina
Lubomír Kušnír, Prešov, T. Ševčenka

1.

2.

3.-8.

Kategorie P

Robert Mráz, 4, Poprad
Marek Bednář, 2, Košice, Trebišovská
Alena Murová, 4, Košice, Opatovská
Slavomír Hrinko, 1, Prešov, Konštantínova

1.

2.

3.

4.

37



 



Hodnocení 37. ročníku matematické olympiády
na středních školách

Počtem účastníků se tento ročník jen málo lišil cd předchá-
zejících. Ve všech kategoriích se MO zúčastnilo 9 500 středo-
školáků, z toho přes 300 v kategorii P zaměřené na progra-
mování. Porovnávat úspěšnost v jednotlivých kategoriích
s odpovídajícími údaji předcházejících let je velmi problema-
tické, asi jako bychom porovnávali dosažené časy v různých
závodech přespolního běhu. Tak jak tady závisí čas hlavně na

výběru tratě, jsou výsledky v MO závislé na výběru úloh.
V každém případě však můžeme s potěšením konstatovat, že
úspěšnost v II. kole 37. ročníku MO kategorií А, В, С, P
byla přes 30 % proti 12 % roku předcházejícího. Podle hod-
nocení krajských výborů МО к tomu přispěl lepší výběr úloh
lépe odpovídající osnovám, a tedy znalostem žáků, a také nově
zavedený způsob bodování. Spočíval v tom, že všechny
4 úlohy II. kola byly rovnocenné a žáci si nevybírali 3. úlohu
ze dvou variant. Přitom úspěšným řešitelem se stal ten sou-

těžící, který získal více bodů než byla polovina plného počtu
bodů za tři úlohy. Tento systém se osvědčil, bude se používat
i v dalších ročnících MO.

V celostátním kole jsou úlohy náročnější, v kategorii A se

jevila nejtěžší úloha čtvrtá, ze sedmi možných bodů byl
průměrný výsledek pouze 0,44 bodu. Nejlehčí byla úloha
první s průměrným ziskem 4,94 bodu, přičemž každý z prv-
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nich 28 účastníků ji vyřešil na plný počet, tj. 7 bodů. Z celko-
vého počtu 80 účastníků bylo přes 70 % z tříd gymnázií se
studijním zaměřením 01 Matematika. Svědčí to o dobrém
výběru těch nejlepších žáků do těchto tříd, na druhé straně
je dobře, že i žáci ostatních tříd se dovedou prosadit a zařadit
se nejen do celostátního kola MO, ale i mezi jeho vítěze.

Domníváme se, že matematická olympiáda i v 37. ročníku
splnila cíl daný jí organizačním řádem - prohloubit a rozšířit
vědomosti a dovednosti žáků v matematice, pomáhat rozvíjet
schopnosti a nadání žáků, vést je к samostatné tvůrčí práci.
Zvláště se slibným rozvojem kategorie P vystupuje do po-

předí úloha MO při rozvoji algoritmického myšlení a orientace
středoškoláků na uplatnění matematiky v různých oborech,
především technických.
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TEXTY ÚLOH KATEGORIÍ А, В, C
A KORESPONDENČNÍHO SEMINÁŘE

Kategorie C

C - \

1. Označme A = {0, 1, 2). Najděte všechny trojice reálných
čísel a, b, с (с Ф 0), pro které platí

xe А ауеА=>ах + Ьу + cxy e A .

2. Pro která přirozená čísla n je číslo n2 + 5n -f 8 dělitelné
číslem 49 ?3.Jsou-li p, q, pq a p + q délky stran čtyřúhelníku, kde
рф-Ъ, <7^3 jsou přirozená čísla, pak jedna z jeho úhlo-
příček má délku menší než 11. Dokažte.4.Je dán pravidelný trojboký hranol ABCA'B'C' s pod-
stavnou hranou délky a a výškou v. Označme A střed stěny
ВСС'В' a K, L ty body na hranách BB', CCr, pro něž jsou
lomené čáry AKS a ALS nejkratší. Vypočítejte poměr
objemů jehlanu AKLS a daného hranolu.5.Ve volejbalovém turnaji se utkalo пф:Ъ družstev. Dokažte,
že existuje takové družstvo A, že ke každému jinému druž-
štvu В najdeme třetí družstvo C tak, že ve vzájemných zá-
pasech družstev А, В, C vyhrálo A aspoň jednou a druž-
stvo В nejvýše jednou.
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6. V pravidelném devítiúhelníku ABCDEFGHI označme K,
L, M průsečíky dvojic přímek AD a CG, BF a CG, AD
a BF. Najděte 18 různých trojúhelníků podobných s troj-
úhelníkem KLM, jejichž všechny vrcholy jsou vrcholy da-
ného devítiúhelníku.

C-S

1. Výpočtem ověřte, že délka strany pravidelného dvanácti-
úhelníku vepsaného kružnici o poloměru 2 je \'б — У2.

2. Najděte všechna čtyřciferná čísla končící číslicí 9, která
jsou dělitelná každou svou číslicí.

3. V tenisovém klubu se hrál turnaj tak, že hráč, který dva-
krát prohrál, byl vyřazen. Po 45. zápase zbyl jediný hráč -
- vítěz turnaje. Mohl vítěz projít turnajem bez porážky?
Kolik bylo účastníků turnaje?

C - П

1. Jarda napsal na tabuli čtyři přirozená čísla. Součet prvních
dvou byl 707, součet druhého a třetího byl 700, třetího
a čtvrtého 689. Určete

a) součet prvního a čtvrtého čísla,
b) nejmenší možnou hodnotu prvního čísla.

2. V daném lichoběžníku určete takový bod, jehož spojnice se

středy stran rozdělí lichoběžník na čtyři čtyřúhelníky stej-
ného obsahu.

3. Je dáno čtyřciferné číslo A. Zaměníme-li v čísle A první
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číslici s poslední, dostaneme čtyřciferné číslo B. Největším
společným dělitelem čísel А, В je číslo 63. Určete čísla
A, B.

4. Do kružnice k je vepsán pětiúhelník ABCDE tak, že
AB || DE a AE j( BC. Dokažte, že tečna kružnice k v bodě
A je rovnoběžná s přímkou CD.
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Kategorie В

В - i

1. Jaký největší počet figurek lze na šachovnici n X n roz-
místit tak, aby žádné dvě nesousedily ? (Za sousední pova-
žujeme ta políčka, která mají společný alespoň jeden
vrchol.)

2. Dokažte, že polynom
Pn(x) = — jd2”-1** 4- x<2n~2^ — *<2«-3>* + ...

. . . + Хл — X + 1
nemá reálný kořen pro žádné přirozené číslo n.

3. Rozhodněte, zda existuje nenulové zobrazení F množiny
mřížových bodů v rovině (tj. bodů s celočíselnými sou-

řadnicemi) do množiny reálných čísel takové, že pro každý
pravoúhlý trojúhelník ABC s vrcholy v mřížových bodech
a odvěsnami délky 1 platí

(1)F(A) + F(B) + F(C) = 0.

Existuje takové zobrazení F, požadujeme-li, aby rovnost (1)
platila pouze pro takové pravoúhlé trojúhelníky ABC, je-
jichž osa pravého úhlu je rovnoběžná s osou prvního kvad-
rantu ?

4. Vyjádřete součet čtverců délek tělesových úhlopříček rov-
noběžnostěnu pomocí délek jeho hran.

5. Uvažujme řez krychle ABCDA'B'C'D' o hraně délky a

rovinou, která je kolmá к úhlopříčce АО a prochází bo-
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dem К hrany А'В', přičemž \А'К\ = t. Spočtěte obvod o
a obsah P řezu a zjistěte, pro které hodnoty t e <0, a) na-

bývá funkce P maximum a minimum.

6. Posloupnost (xn) je definována rekurentně vztahy

1 XnXn+1
, Xi = X-2 = 0 .xn+2 —

2 Xn xn+1

Ukažte, že pro každé přirozené číslo n, n ^ 3 je
0 <C Xn <C 1 •

В - s

1. Na obrázku 1 je šachovnice 8 X 8 s jedním střelcem.
Rozmístěte na ni dalších sedm střelců tak, aby každé ne-
obsazené pole šachovnice bylo ohroženo některým ze
střelců. (Například střelec na obrázku ohrožuje všechna
pole označená X.)

Obr. 1
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2. Nechť a, h jsou reálná čísla. Jestliže pro každé celé kladné
číslo x je číslo a*1988 + b celé, jsou i čísla a, b celá. Do-
kažte.

3. Je dána krychle ABCDEFGH o hraně délky 2. Pro
t G <0, 1) označme Pt bod hrany EF takový, že \EPt\ = t.
Určete obsah řezu dané krychle rovinou procházející
bodem Pt a rovnoběžnou s rovinou BGP\.

B- II1.Krychle ABCDEFGH o hraně délky 3 je rozdělena na
27 krychliček o hraně 1 (obr. 2). Ukažte, že přímka KL je
kolmá na stěnové úhlopříčky AF a BG.

H G

у~У I

-z: ZL У /

77F
У/

К //
/
У;/

У
/

С/
j г /

А В

Obr. 2

2. Dokažte, že na šachovnici 8x8 nelze rozmístit 7 střelců
tak, aby všechna pole šachovnice byla ohrožena.

3. Dokažte, že pro každé přirozené číslo n (n ^ l) existuje
polynom/stupně n takový, že hodnoty/(l),/(2), .. .,/(и),
f(n + 2) jsou celá čísla a číslo/(w + 1) není celé.
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4. Na rovnoběžných hranách AA', BB', CO kolmého troj-
bokého hranolu ABCA'B'O jsou zvoleny po řadě body
K, L, M. Vyjádřete objem tělesa ABCKLM pomocí
obsahu trojúhelníku ABC a délek p. q, r úseček AK,
BL, CM.
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Kategorie A

A- \

1. Najděte mnohočlen nejmenšího stupně s racionálními koe-
ficienty, který má kořen 1987j/2.

2. Dokažte, že střed kulové plochy opsané pravidelnému
čtyřstěnu má ze všech bodů prostoru nejmenší součet
vzdáleností od jednotlivých vrcholů čtyřstěnu.

3. Předpokládejme, že každý bod roviny je obarven jednou
ze dvou barev. Dokažte, že v této rovině existuje rovno-

stranný trojúhelník, jehož vrcholy jsou obarveny stejnou
barvou.

4. Označme P, O středy stran BC, CA trojúhelníku ABC
a T jeho těžiště. Dokažte, že trojúhelník ABC je rovno-

ramenný se základnou AB, právě když je čtyřúhelník
TPCQ tečnový.5.Přiřadme každé dvojici přirozených čísel (x, y) reálné číslo

1. Pak pro libovolné přirozené číslo k existují
přirozená čísla m, n taková, že

k a f(m, n) < f(tn + 1, n) +f(m, n + 1).

/О, y)

m + n

Dokažte.6.Zjistěte, zda existuje přirozené číslo, jehož dekadický zápis
má 23 číslice a které není dělitelné 11, ani když změníme
libovolnou z jeho číslic.
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A-S

1. Určete nejmenší číslo r, pro které je možno čtverec o stra-
ně 10 pokrýt dvěma shodnými kruhy o poloměru r.

2. Určete všechna přirozená čísla n (n ^ 2), pro která má
rovnice
xn — 4xw-1 + an-2Xn~2 + ... + a-2X2 + a\x + 1=0

s reálnými koeficienty všechny kcřeny reálné a nezáporné.

3. V prostoru jsou dány body A, P, Q, které neleží na přímce.
Popište konstrukci krychle ABCDEFGH takové, že polo-
přímka AG prochází bcdem P a polopřímka BH prochází
bodem Q. Najděte podmínky řešitelnosti.

A- II1.Jestliže čtyři shodné kruhy o poloměru r pokrývají jednot-
V2

kový čtverec, je r ^ —. Dokažte.

Zjistěte, zda lze jednotkový čtverec pokrýt pěti shodnými
У2

kruhy o poloměru menším než —.2.Najděte všechna komplexní čísla a, b, pro která má rovnice

я4 + 4x3 + 6jc2 + ax + b = 0

v oboru komplexních čísel jen reálné kořeny.3.V prostoru jsou dány dva různé body P, O a rovina d.
Popište konstrukci pravidelného čtyřstěnu ABCD, jehož
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hrana АБ leží na úsečce PQ, vrchol D leží v rovině ú,
| £ APD\ = 30° a | £ BOD\ = 45°. Provedte diskusi.

4. Je dáno přirozené číslo n. Jaké největší hodnoty může nabýt
součet

1X1) - 1| + 1X2) -2\ + ... + |X») - n\,

je-li p prosté zobrazení množiny (1, 2, ..., n] na sebe?

А - Ш

1. Nechť / je zobrazení množiny M = {1, 2, ..., 1988}
do M. Pro libovolné přirozené n položme xi = /(1),
Xn+i — f(xn)• Zjistěte, zda existuje takové m, že xom — xm.

2. Jestliže pro koeficienty rovnice

Xs ax2 + bx + c = 0 ,

jejíž všechny kořeny jsou reálné, platí a2 = 2(b + 1),
potom |a — c\

3. Je dán čtyřstěn ABCD s hranami \AD\ = \BC\ = a,

\AC\ = |5Z)| = b, \AB\ = c, |CZ)| = d. Určete nejmenší
hodnotu součtu \AX| + |5A^| + \CX\ + \DX\, kde X je
libovolný bod prostoru.

4. Dokažte, že každé z čísel 1, 2, 3, ..., 2n lze zapsat jednou
ze dvou barev (červenou a modrou) tak, že žádná nekon-
stantní 2w-členná aritmetická posloupnost vybraná z těchto
čísel není jednobarevná.

5. Najděte všechna čísla a e (—2, 2), pro která je mnohočlen
*154 — ax77 + 1 násobkem mnohočlenu x14 — ax7 + 1.

2. Dokažte.
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6. V trojúhelníku A1A2A3 se stranami <21, <22, a3 jsou dány tři
body, které označíme P\, P2, P3 tak, aby součin jejich vzdá-
leností od odpovídajících stran a\, ci2, аз byl co největší.
Dokažte, že trojúhelníky P1A2A3, A1P2A3, A1A2P3 po-

krývají trojúhelník A1A0A3.

Korespondenční seminář ÚV MO1.Řešte rovnici

3 |/l — X -f 3 ]/1 + v

kdep je reálný parametr.2.a) Označme E,F,G body na stranách AB,BC, CA troj-
úhelníku ABC, pro něž platí

= P>

\AE\ JBF\ = |CG|
\EB\ ~ \FC\ ~ \GA\

0 < k < 1 .
= k,

Najděte poměr obsahu trojúhelníku KLM určeného přím-
kami AE, BG, CE a obsahu trojúhelníku ABC.
b) Rozdělte daný trojúhelník šesti přímkami na takové
části, z nichž by bylo možno složit sedm shodných troj-
úhelníků.3.je dán pravoúhlý trojúhelník ABC s pravým úhlem při
vrcholu A. Označme D patu výšky z vrcholu A a sestroj-
me kružnici k se středem L nad průměrem AD. Průsečíky
kružnice k s odvěsnami AB a AC označme К, M. Určete
úhly trojúhelníku ABC, víte-li, že délky úseček AK, AL,
AM tvoří geometrickou posloupnost.
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4. Uvažujme okraj čtvercové šachovnice n X n o šířce dvou
polí. Dokažte, že lze 8(n — 2) polí tohoto okraje obejít
šachovým koněm, právě když n — 1 je dělitelné čtyřmi.

5. Je možné 18 dominových kostek o rozměru 2X1 složit
do čtverce tak, aby nevznikl žádný šev spojující protější
strany čtverce a jdoucí po hranách kostek? (Např. uspo-
řádání na obr. 3 se nehodí, neboť obsahuje šev AB.)

Obr. 3

6. Devatenáctistěnu je vepsána koule o poloměru 10. Do-
kažte, že na jeho povrchu existují dva body, jejichž vzdá-
lenost je větší než 21.

7. Uvažujme nekonečný list čtverečkovaného papíru. V kaž-
dém čtverečku je napsáno číslo, přičemž součet čísel
v libovolném čtverci, jehož strany leží na přímkách čtver-
cové sítě, v absolutní hodnotě není větší než 1. Dokažte,
že existuje takové číslo c, že součet čísel v libovolném pra-
voúhelníku, jehož strany leží na přímkách dané sítě, je
nejvýše c.
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Dokažte, že uvedené tvrzení platí pro c = 4. Může být
c = 3 nebo c = 2?

8. V každé ze tří nádob je celočíselný počet litrů vody. Do
kterékoli nádoby je dovoleno přelít stejné množství vody,
které již v nádobě je, z jiné nádoby. Dokažte, že pomocí
takových přelévání můžete jednu z nádob vyprázdnit.
(Nádoby jsou dostatečně velké, do každé se vejde celé
množství použité vody.)

9. Obdélníková tabulka s m řádky a n sloupci je vyplněna
čísly. Srovnejme čísla v každém řádku podle velikosti.
Dokažte, že srovnáte-li pak i čísla v každém sloupci podle
velikosti, budou i čísla v jednotlivých řádcích srovnána
zas podle velikosti. Zjistěte, co se stane, budete-li rovnat
nejdříve sloupce a pak řádky: dostanete stejnou tabulku
jako v prvním případě, či ne ?

10. V tabulce m X n jsou zapsána čísla tak, že v libovolném
pravoúhelníku (tvořeném dvěma řádky a dvěma sloupci
tabulky) jsou součty čísel v protějších vrcholech stejné.
Část čísel byla smazána, přesto ale bylo možno tabulku
jednoznačně doplnit. Dokažte, že v tabulce zůstalo aspoň
n -f m — 1 čísel.

11. Dva hráči hrají »piškvorky« na neohraničeném listu čtve-
rečkovaného papíru podle následujících pravidel. První
udělá křížek do libovolného čtverečku. V každém dalším
tahu pak dělá křížek do libovolného volného políčka,
které sousedí s jedním z políček, na němž už je křížek
(sousední políčka jsou ta, která mají společný aspoň jeden
vrchol). Druhý hráč udělá v každém svém tahu tři ко-
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léčka do libovolných tří volných políček. Dokažte, že ať
hraje první hráč jakkoli, druhý ho může »zavřít«, tj.
může dosáhnout toho, že první hráč nebude mít kam dát
křížek.12.Na tabuli byl narýsován lichoběžník se střední příčkou
EF a kolmicí OK z průsečíku O úhlopříček na větší
základnu (obr. 4). Pak byl lichoběžník smazán. Jak lze
znovu sestrojit původní lichoběžník ze zachovaných úse-
ček EF, ОЮ

0,
\E L F

J>L

к

Obr. 413.Je dáno 2n + 1 kladných čísel takových, že rozdíl mezi
součtem libovolných n + 1 daných čísel a součtem zby-
lých n čísel je kladný. Dokažte, že pro součin В všech

a součin A všech 2n + 1 da-^ | j takových rozdílů
ných čísel platí

A(n-Ů ■Bn14.Je dán konvexní и-úhelník M. Pro mnohoúhelník s vrcho-
ly ve středech stran mnohoúhelníku M platí, že jeho
obvod není menší než polovina obvodu M (pro « ^ 3)
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a jeho obsah není menší než polovina obsahu M (pro
n ^ 4). Dokažte.

15. a) Vrcholu Ai pravidelného dvanáctiúhelníku A\A% ...

... A\z je připsáno znaménko —, v ostatních vrcholech
je +. Je dovoleno změnit znaménko na opačné v libo-
volných šesti po sobě jdoucích vrcholech daného mnoho-
úhelníku. Dokažte, že ani po několika takových operacích
nelze dojít к tomu, že by ve vrcholu A2 bylo minus
a v ostatních vrcholech plus.
b) Dokažte totéž tvrzení, je-li dovoleno měnit současně
znaménka ne v šesti, ale ve čtyřech po sobě jdoucích
vrcholech.

c) Dokažte totéž tvrzení, je-li dovoleno měnit současně
znaménka ve třech po sobě jdoucích vrcholech.

16. Jestliže ke každé stěně daného konvexního mnohostěnu
sestrojíme v některém jejím bodě vektor к ní kolmý, který
bude směřovat ven z tělesa a jehož velikost bude rovna
obsahu příslušné stěny, pak bude součet všech takovýchto
vektorů roven nule. Dokažte.

17. Dokažte, že pro libovolných n reálných čísel ai, <22, ..

an existuje takové přirozené číslo k ^ n, že každé z k čísel
• Э

1 11

2 (ак-1 + ak\ 2 Cak~2 + ak-l + ak)-> • • •? ^ (#1 +Як,

1
(ai + a.2 +-f a-2 + ... + aic) je nejvýše rovno číslu

+ * • • + #?<)•18.Množina přirozených čísel má následující vlastnost: ani
jedno z čísel množiny nedělí jiné, ale mezi libovolnými

n
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třemi čísly vždy některé dělí součet ostatních dvou. Jaký
je největší možný počet prvků takové množiny? Jaký je
největší možný počet prvků takové množiny, požadujeme-
-li navíc, aby to byla lichá čísla ?19.Je dáno n reálných čísel xi3 x2, ..., xn rozmístěných na

kružnici, přičemž |х*| = 1 (1 ^ i ^ n) a pro každé
k e {1, 2, ..., n — 1} jsou součty n součinů všech dvojic
čísel vzdálených od sebe k míst vždy nulové (xn+i = v,):

*i*i+jfc + x2x2 +k + ... + xnxjc = 0

Dokažte, že n je čtvercem celého čísla. Čtveřice —1,1,1,1
je příkladem takových čísel pro n — 4. Existuje taková
w-tice pro n = 16? Pro jaká n taková w-tice existuje?20.Dokažte, že pro každé přirozené n > 1 platí

n — 12—тс

sin X sin + ] sin I X -f J... sin ( X +

= cn sin nx ,

kde cn je nějaké číslo závislé na n. Najděte cn.21.S daným přirozeným číslem budeme provádět následující
operace:

A) připíšeme к němu číslici 4;
B) připíšeme к němu číslici 0;
C) vydělíme ho číslem 2 (je-li sudé).
Provedeme-li např. s číslem 4 postupně operace С, C, A
a B, dostaneme číslo 140. Jak dostaneme pomocí operaci
А, В, C z čísla 4 číslo 1988? Dokažte, že z čísla 4 lze
popsaným způsobem dostat libovolné přirozené číslo.

-7Z =
П n n

56



22. Najděte všechna přirozená čísla ш, pro něž

m(m t lj
(2m — 1)! — ! .11.3Í.5!

223.Je dán trojúhelník ABC a kladná čísla />, q. Uvnitř daného
trojúhelníku najděte bod O s následující vlastností: pro
libovolnou přímku procházející bodem O a protínající
strany АВ a BC v bod ech K, L platí

\AK\ \СЦ
P

\KB\ + q\LB\
= 1 .

24. Označme s(n) ciferný součet přirozeného čísla и (v desítko-
vé soustavě). Přirozené číslo m nazveme »zvláštní«, jestliže
je nemůžeme vyjádřit ve tvaru m = n + s(n) pro nějaké
přirozené n. Existuje zvláštních čísel jen konečně mnoho?

25. Sestrojíme-li v tětivovém čtyřúhelníku osy úhlů sevře-
ných jeho prodlouženými protějšími stranami, jsou jejich
průsečíky se stranami čtyřúhelníku vrcholy kosočtverce.
Dokažte.

26. Pomocí čísel 1, 2, ..., k utvořme množinu M všech
uspořádaných и-tic (ai, «2, ..., an) (je jich kn). Uvažujme
dvě podmnožiny P, Q množiny M, pro které platí: Je-li
Оъ P2, • • •, Pn) e P a Oi, 02, , i») e Q, je pi = qt pro

aspoň jedno г e (1, 2, ..., w). Dokažte, že jedna z množin
P nebo Q má nejvýše kn~x prvků.

27. Najděte nutnou a postačující podmínku pro čísla a, b,
a, /5, aby šlo obdélník а X b rozřezat na obdélníky а X /5.

28. Dva hrají následující hru: Jeden postupně volí číslici,
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kterou druhý zapíše na místo jedné hvězdičky v násle-
dujícím rozdílu

★ ★ ★ ★

★ ★ ★ ★

atd., celkem osmkrát. Ten, který určuje číslice, se snaží,
aby byl rozdíl co největší, druhý zas, aby byl co nej-
menší. Dokažte, že:
a) druhý může umísťovat číslice tak, aby vzniklý rozdíl
nebyl větší než 4 000 bez ohledu na to, jaké číslice volí
první hráč;
b) první může volit číslice tak, aby rozdíl nebyl menší než
4 000 bez ohledu na to, kam je druhý umístí.29.Najděte poměr velikostí stran trojúhelníku, jehož jedna
těžnice je vepsanou kružnicí rozdělena na tři stejné části.

30. Nechť a, b jsou celá čísla. Pro jaká a, b lze rozdělit napůl
a + b litrů mléka, máme-li jen nádoby o objemu a, b,
a + b litrů ?

31. A se zavazuje platit В průměrně j/2 korun za den. Do-
mluvili se, že w-tý den dostane В celé číslo an korun
(an E {1, 2}) tak, aby celková suma po n dnech (tj.
a\ + #2 + • • • + an) byla co nejblíže číslu n] 2 (např.
a\ = 1, a-z = 2, аз = 1). Dokažte, že posloupnost
(an)n = i není periodická.

32. Nechť a, b, m, n jsou přirozená čísla, přičemž a, b jsou
nesoudělná a a > 1. Dokažte, že pokud an + bn dělí
am pak n dělí w>
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33.Jestliže součet n kladných čísel x\, X9, ..., xn je 1,
označme S největší z čísel

*1 Xo

1 + Л-! 1 + #1 4“ 1 4“ Xi + . . . + Xfi

Najděte nejmenší možnou hodnotu S. Pro jaká čísla xi,

xn se nabývá ?

34. Je možno rozestavit číslice 0, 1, 2 na pole čtverečkovaného
papíru o rozměrech 100 X 100 tak, aby v každém právo-
úhelníku 3X4 čtverečky byly tři nuly, čtyři jedničky
a pět dvojek?

35. Po skončení hokejového turnaje (jednoко lově každý s kaž-
dým) se ukázalo, že pro libovolnou skupinu mužstev
existuje mužstvo, které v zápasech s mužstvy zvolené
skupiny získalo lichý počet bodů. Dokažte, že v turnaji
hrál sudý počet mužstev.

*2, • • • 5
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ŘEŠENÍ ÚLOH KATEGORIÍ А, В, C

Kategorie C

C - i - 1

Nechť uspořádaná trojice (а, b, c) reálných čísel vyhovuje
podmínkám úlohy. Do výrazu ax + by + cxy dosadíme za

x,y postupně hodnoty 0, 1, 2. Podle předpokladu úlohy tím
zjistíme, že do množiny A patří čísla a, b, 2a, 2b, a + b + c,
2a -f- b 4* 2c, a -j- 2b T 2c, 2a -4- 2b 4- 4c. Je-li a = b = 0,
musí do A patřit čísla c, 2c, 4c, což vzhledem к podmínce
с Ф 0 není možné. Zkusíme ted a = 1, b — 0, do A pak
musí patřit čísla 1 + c, 2 + 2с, 1 + 2c, 2 + 4c. Protože
1 + c je prvkem A, je с = 1 nebo c = —1. Pak však nepatří
do A číslo 1 + 2c, takže nemůže být a = 1, b = 0. Stejně
tak nemůže být a = 0, b = 1. Je-li a — b = 1, patří do A
čísla 2 + c, 3 + 2c, 4 + 4c. To je splněno pouze pro c = — 1.
Nemůže být a = 2, protože by do A nepatřil prvek 2a, po-
dobně pro b = 2. Úloha má tedy jediné řešení (a, b, c) =
= -i).

C - i -2

Je-li číslo n2 + 5n + 8 dělitelné číslem 49, je tím spíše
dělitelné sedmi. Každé přirozené číslo n se dá napsat právě
v jednom z tvarů Ik, Ik + 1, ..., Ik + 6, kde k je přirozené
číslo nebo 0. Dosadíme-li postupně každý z uvedených tvarů
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za n do výrazu n2 + 5n + 8, dostaneme pouze v případě
n = Ik -j- 1 číslo dělitelné sedmi, a to číslo A9k(k + 1) -f 14.
Toto číslo je dělitelné sedmi, ale není dělitelné číslem 49.
Tím jsme dokázali, že pro žádné přirozené číslo n není číslo
n2 -j- 5n + 8 dělitelné číslem 49.

Uvedme ještě jiný důkaz. Je n2 + 5n -f 8 = n2 — 2n +
4-1 4- In 4- 7 = (n — l)2 4- l(n 4-1). Aby bylo toto číslo
dělitelné sedmi, musí být nutně číslo (n — l)2, a tedy i číslo
n — 1, dělitelné sedmi, tedy n — Ik 4- 1. Pak je číslo (n
dělitelné číslem 49, číslo l(n 4- 1) ale pouze sedmi. Dochá-
zíme ke stejnému výsledku jako při předcházejícím postupu.

I)2

C - \ - 3

Nechť p, q, p 4- q, pq jsou délky stran čtyřúhelníku. Mů-
žeme předpokládat, že p ^ q. Součet délek každých tří stran
čtyřúhelníku je větší než délka čtvrté strany, takže musí na-

příklad platit p 4- q + (p + q) > pq, tj. 4 > (p — 2) (q — 2).
Odtud je vidět, že (p — 2, q — 2) může být pouze jednou
z dvojic (3, 1), (2, 1), (1, 1), takže máme tyto tři možnosti pro

p, q, u nichž uvádíme i odpovídající hodnoty p + q, pq'-

P = 5, q = 3,p + q = 8,pq = 15
P = 4, q = 3, p 4- q = 7, pq = 12
P = 3, q = 3, p + q = 6, pq = 9

Ve všech třech případech má nej kratší strana délku 3, nej-
delší stranou je strana s délkou pq, což je 15, 12 nebo 9. Ze
zbývajících dvou stran musí aspoň jedna s nejkratší stranou
sousedit. V prvním případě mají tedy dvě sousední strany
délky 3 a 5 nebo 3 a 8, v druhém případě 3 a 4 nebo 3 a 7,
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v posledním případě mají dvě sousední strany délku 3 nebo
jedna délku 3, druhá 6. Vidíme, že ve všech šesti možnostech
je součet délek dvou sousedních stran nejvýše 11. Podle
trojúhelníkové nerovnosti je proto délka úhlopříčky, která
tvoří s těmito dvěma stranami trojúhelník, menší než 11, což
jsme měli dokázat.

С- I -4

Předpokládejme, že jsme si rovinu BCC' otočili kolem přím-
ky BB' do roviny ABB' tak, že se bod C otočí do bodu C0
a bod В je středem úsečky AC0 (obr. 5). Střed přejde při-

C
i

A* i \B‘
1

LIS
i v \/ S01 41 !чч

/

/ 5A К/ /

Q\
N

CoВ P

Obr. 5

tom do bodu S0, bod К je průsečíkem úseček BB' a /ISo,
protože pouze tak je \AK\ + |KS\ — \AK\ + \KS0\ nejmenší.
Označme P patu kolmice vedené bodem S0 na přímku BC0.

1
Z podobnosti trojúhelníků ABK,APS0 plyne, že \BK\ = —
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1
protože |PS0| = — v a \AB\ = — \AP\. Stejně tak je \CL\ =

1
— v. Dále je KL j| BC, \KL\ = a, výška na tuto stranu

1
—

v, jeho obsah je proto6

1 1
v trojúhelníku íčLS je — v — z> =

1
—a®. Pata O výšky v jehlanu na stěnu KLS splývá se

1
středem úsečky BC a má tedy délku — a ] 3. Proto se objem

1
jehlanu KLSA rovná — a2v j;3, objem daného hranolu je

a2r | 3, hledaný poměr je
1 1

18'4

C- í -5

Jistě existuje družstvo A, které mělo v turnaji největší počet
výher, přesněji řečeno existuje družstvo A tak, že žádné další
družstvo nemělo více výher než družstvo A. Nechť В je libo-
volné další družstvo. Mohly nastat právě dvě možnosti, bud
družstvo A vyhrálo nad družstvem В, nebo s ním prohrálo.
V prvním případě vezmeme za C libovolné další družstvo
a požadavky úlohy budou splněny. Složitější situace nastane
v druhém případě, kdy družstvo A prohrálo s mužstvem B.
Pak ale musí existovat družstvo C, se kterým A vyhrálo а В
prohrálo, jinak by mělo družstvo В více výher než družstvo A.
Ve vzájemných střetnutích mezi A, В, C pak mělo družstvo A
právě jednu výhru (nad C) a družstvo В také právě jednu
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výhru (nad A). Opět je požadavek úlohy splněn a tím je
tvrzení úlohy dokázáno.

C- I -6

Z věty o obvodovém a středovém úhlu plyne (obr. 6), že
360°

[<t BFG\ = 80°, neboť |<£ BSG\ = 4.—— = 160°, S jsme

označili střed kružnice k opsané danému devítiúhelníku. Stej-
ně tak odvodíme, že |<£ FGC\ = 60°, takže |<£ FLG\ = 40°,
neboť součet úhlů v trojúhelníku je 180°. Úhly CLB a FLG

jsou vrcholové, proto je také |<£ KLM\ = 40°. Obdobně od-
vodíme, že |<£ KML\ = 60°, |^C MKL\ = 80°. Obvodový
úhel kružnice k odpovídající jedné straně devítiúhelníku má
velikost 20°. Vrcholy trojúhelníku s vnitřními úhly 40°, 60°
a 80°, jež jsou zároveň vrcholy devítiúhelníku, dělí proto kruž-
nici k na tři oblouky odpovídající dvěma, třem a čtyřem stra-
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nám devítiúhelníku. Takovými trojúhelníky jsou například
trojúhelníky ACF a ACG. Úloze vyhovuje dále všech 8 troj-
úhelníků, které dostaneme otočením trojúhelníku ACF kolem
bodu S o celý násobek 40°, a 8 trojúhelníků, které dostaneme
stejným způsobem z trojúhelníku ACG. Celkem je tedy těch
trojúhelníků 18.

C-S-1

Označme A, C sousední vrcholy к vrcholu В dvanácti-
úhelníku, který je pravidelný a je vepsán kružnici o středu
a poloměru 2 (obr. 7). Označme dále P průsečík úseček AC,

BS. Trojúhelník ACS je rovnostranný, P je střed úsečky AC,
proto je |CP| = 1, \PS\ = % \BP\ =2 - yí. Podle Pytha-
gorovy věty je |C5|2 = 1 4- (2 — ] 3)2 = 4(2 — |/3), \CB\ =

= 2]/2 - УЗ. Protože(Уб - 1'2)3 = 8 - 2]/l2 = 4(2 - Уз) =
= [CPi2, je také |CBj = Уб - 1/2.
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C-S-2

Protože číslo končící devítkou není dělitelné ani dvěma, ani
pěti, musí být zbývající tři číslice hledaných čísel z množiny
1, 3, 7, 9. Jejich součet musí být dělitelný devíti, takže při-
cházejí v úvahu pouze trojice (1, 1, 7), (3, 3, 3) a (9, 9, 9).
Čísla 1179 a 1719 nejsou dělitelná sedmi, takže hledanými
čísly jsou právě čísla 7119, 3339 a 9999.

C-S-3

Z každého zápasu odchází právě jeden hráč poražený. Kro-
mě vítěze prohrál každý hráč dvakrát. Protože zápasů bylo 45,
tedy lichý počet, musel v jednom zápase prohrát vítěz. Ve
zbývajících 44 zápasech byli všichni ostatní hráči vyloučeni,
bylo jich tedy 44 : 2 = 22. Celkem se turnaje zúčastnili 23
hráči.

C - il - 1

Jde o lehčí úlohu, kterou vyřešila většina účastníků kraj-
ského kola. Hledaná čísla si označíme po řadě a, b, c, d. Podle
podmínek úlohy platí a + b = 707, b + c = 700, c + d —

= 689. Z poslední rovnice vyjádříme c, dosadíme do druhé,
vyjádříme z ní & a dosadíme do první. Dostaneme postupně
c — 689 — d>b — 11 + d, a + d = 696, takže součet první-
ho a čtvrtého čísla je 696. Odečtením prvních dvou rovnic
dostaneme a — c = 7, takže a je aspoň 8. Je-li a — 8, je
b = 699, c — 1, d = 688. Nejmenší možná hodnota prvního
čísla je tudíž 8.
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С - tl - 2

Uvádíme řešení podle Michala Kubečka, žáka 8. třídy zá-
kladní školy v Praze 4, Na planině. Vrcholy lichoběžníku označil
А, В, C, D tak, že a — \AB\ > |CD| = с, AB j CD. Středy
stran AB, BC, CD, DA označíme К, M, L, N (obr. 8).
Mají-li čtyřúhelníky NAKX, LDNX, MCLX a KBMX stej-
né obsahy, rovnají se sobě součty obsahů prvních dvou a po-
sledních dvou, oba součty se rovnají polovině obsahu licho-
běžníku ABCD. Jelikož úsečka KL dělí lichoběžník na dva
lichoběžníky stejného obsahu, musí ležet bod X na úsečce KL.
Označme S střed úsečky MN (obr. 9), v výšku lichoběžníku

D L CГ’D L

a h vzdálenost bodu X ležícího na úsečce SK od přímky MN.
Stačí určit h, a tedy bod X tak, aby se sobě rovnaly obsahy
čtyřúhelníků NAKX a LDNX, pak se již budou sobě rovnat
obsahy čtyřúhelníků MCLX a KBMX. Obsah čtyřúhelníku
LDNX dostaneme sečtením obsahů lichoběžníku LDNS
a trojúhelníku NSX, obsah čtyřúhelníku NAKX se rovná
rozdílu obsahů lichoběžníku NAKS a trojúhelníku NSX,
takže pro h platí
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a + с a -f сс
— + — +

а + с h v 2

~4~ ' ~2 У ~
2 4 а + с h4t?

4-
4 2 52 2 2

z? а — с

odkud h — —
2

. Dále je \SX\ : h = \KL\ : v, takže
a + c

a — c a c

|SX| = \KL\, \LX\ = IKL\, \KX\ =2(a -j- c) а + c

.\KL\. Tím je bod X určen, dělí úsečku KL v poměru a : c
a leží blíž к bodu K. Průsečík T úhlopříček AC, BD licho-
běžníku leží také na úsečce KL a z podobnosti trojúhelníků
CDT a ABT plyne, že \LT\ : \KT\ = c : a. Je proto \KX\ =
= \LT\, \LX\ = |^T7’|. To dává rychlou konstrukci bodu X :
Na úsečku KL naneseme od bodu К vzdálenost \LT\, dosta-
neme tak bod X.

a+c

C - II - 3

Uvádíme málo upravené řešení, které v soutěži předložil
Václav Korál, žák I. ročníku gymnázia v Praze 4, Postupická
ul. Čísla А, В zapíšeme ve tvarech A = 103a 4- 102ž> 4- 10c 4-
+ d, В — 103d + 1026 4- 10c 4- a. Jelikož jsou obě děli-
telná číslem 63, je dělitelný číslem 63 i jejich rozdíl A — В =
= 999(а — d), tj. 999(a — d) = 63n, n přirozené číslo, tedy
lll(a — d) — In. Číslo 111 není dělitelné sedmi, proto musí
být dělitelné sedmi číslo a — d. Je proto a = 8, d — 1 nebo
a = 9, d = 2. Případ a = d můžeme totiž hned vyloučit,
protože by bylo A = В a největším společným dělitelem čísel
А, В by bylo čtyřmístné číslo A, a tedy ne číslo 63.

Nechť je tedy a = 8, d = 1. Pak je A = 8001 -f 1026 4- 10c,
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В = 1008 + 1026 + Юс. Čísla 8001, 1008 jsou obě dělitelná
číslem 63, proto musí být dělitelné číslem 63 i číslo 10(106 -f c),
takže 106 + c = 0 nebo 106 -f c = 63. Dvojice (8001, 1008)
a (8631, 1638) skutečně vyhovují podmínkám úlohy.

Nechť je a = 9, d = 2 a tedy A = 9002 -f 1026 + Юс,
_ i? = 2009 + 1026 + 10c. Čísla 2009, 9002 jsou dělitelná

sedmi, proto musí být dělitelné sedmi i číslo 106 + c. Kromě
toho musí být čísla А, В dělitelná devíti, tedy musí být děli-
telný devíti jejich ciferný součet 2 + 6 + c, takže 6 + c = 7
nebo 6 + c = 16. Z nejvýše dvouciferných násobků sedmi
vyhovují této podmínce pouze čísla 7 a 70, takže A = 9072,
В = 2079 nebo A = 9702, В = 2709. První dvojice však
nevyhovuje všem podmínkám úlohy, protože největším spo-

léčným dělitelem čísel 9072, 2079 je číclo 3.63 = 189, druhá
dvojice je řešením úlohy.

Úloha má právě tři řešení: (8001, 1008), (8631, 1638)
(9702, 2709).

a

C - li - 4

Označme a = ABC\ = |«3C AED\ (obr. 10). Čtyřúhelník
ABCD je tětivový, proto ADC\ = 180° — a, podobně
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|<3C DCA\ =■ 180° — a. Trojúhelník ADC je tedy rovnora-

menný, osa jeho základny DC prochází bodem A i středem 6'
kružnice k. Je tudíž kolmá na přímku DC i na tečnu kruž-
nice k v bodě A, a proto jsou přímka DC a tečna kružnice k
v bodě A spolu rovnoběžné.
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Kategorie В

В - I - 1

Označme každé pole šachovnice n X n uspořádanou dvojicí
(i,f) přirozených čísel podle obr. 11. Postavíme-li figurky na
všechna pole, pro která jsou obě čísla i,j lichá, nebudou žádné
dvě figurky sousedit, neboť pole sousední к poli (г,/) s lichými
čísly i, j je označeno dvojicí čísel, z nichž je aspoň jedno

n + 1\2
sudé. Při lichém n jsme tak na šachovnici rozmístili

2

n \2
figurek, při sudém n jsme rozmístili

ještě, že více figurek nelze při dodržení podmínky úlohy roz-
místit. Důkaz provedeme matematickou indukcí. Při n — 1
a n — 2 skutečně nelze rozmístit více než jednu figurku.
Předpokládejme, že и je liché číslo, n ^ 3. Šachovnici n X n

pak můžeme rozdělit na šachovnici (и — 1) X (n — 1) a jeden
řádek a jeden sloupec (obr. 12), přičemž tyto mají společné

figurek. Ukážeme

!
|o OÍO■

(1.3) (23)1(3,3)
:

o{n -1) X {n -1)(1.2) 12,2)1(3,2)
-J

12.1)1(3.1) (4.11(1.1) o íL.

Obr. 11 Obr. 12
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jedno pole. V tomto řádku a sloupci je celkem 2n — 1 polí
a můžeme na nich rozmístit nejvýše n figurek, nemají-li žádné
dvě sousedit. Podle indukčního předpokladu můžeme na

n — 1\2
šachovnici (n — 1) X (n — 1) rozmístit nejvýše 2

n — 1\2 n + l\2
figurek, celkem nejvýše n + (—-

jsme měli dokázat. Při sudém n rozdělíme šachovnici n X n
na šachovnici (n — 2) X (w — 2) a na n — 1 šachovnic typu
2x2 (obr. 13). Na šachovnici (n — 2) X (n — 2) můžeme

figurek,což2

OO O

O

(n-2)x(n-2) O

Obr. 13

n — 2\2
podle indukčního předpokladu rozmístit nejvýše 2

figurek, na každou šachovnici 2X2 nejvýše jednu figurku,
n - 2\2 2П

—J figurek. Tím je in-
n + IV2

celkem nejvýše + n — 1 =
2

dukční krok dokázán i při sudém n. Výsledek je tedy 2
2П

při lichém n, í — figurek při sudém n.
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В - f -2

Zřejmě O ani 1 nejsou kořeny mnohočlenu Pn(x) při
žádném n. Jeli x > 1, je vždy x— x*2*-!)’ > O pro
k = 1, 2, n. Sečtením těchto nerovností s nerovností
1 > 0 dostaneme Pn(x) > 0. Při x < 0 je — лг<24г—D* > 0,
a tedy také Pn(x) > 0. Pro x e (0,1) je —я*2*-!)’ -f л(2Л-2)* >
>0,pro& = 1, 2, ..., w. Sečtením těchto nerovností a ne-
rovnosti >0 dostaneme Pn(x) > 0 i pro яе(0, 1).
Dokázali jsme tudíž, že pro všechna reálná čísla x je Pn(x) >
> 0, tedy pro žádné reálné číslo x není Pn(x) = 0.

B- J -3

Zvolme jednotkový čtverec ABCD s vrcholy v mřížových
bodech roviny (obr. 14). Předpokládejme, že zobrazeni F

D C

A В

Obr. 14

splňuje podmínku úlohy. Pak je F(A) + F(D) + F(C) = 0,
F(D) + F(C) + F(B) = 0, takže F(A) = F(B). Stejně tak
dokážeme, že F(B) = F(C). Přiřazuje tedy zobrazení F
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každým dvěma sousedním mřížovým bodům, a tudíž kaž-
dým dvěma mřížovým bodům, totéž číslo, jež se podle
podmínky (1) v textu úlohy musí rovnat nule. Tudíž nenu-
lově zobrazení požadovaných vlastností neexistuje. Bu-
deme-li platnost (1) požadovat jen pro pravoúhlé trojúhelní-
ky, jejichž přepona je rovnoběžná s přímkou BD, dostaneme
pouze podmínku F(A) = F(C), a to použitím trojúhelníků
ABD a BDC. Víme pak, že zobrazení F přiřazuje stejnou
hodnotu každým takovým dvěma mřížovým bodům, jejichž
spojnice je rovnoběžná s přímkou AC. Za F můžeme vzít
třeba zobrazení, které mřížovému bodu o souřadnicích
[.v, y] přiřadí číslo 0, 1 nebo —1 podle toho, je-li číslo
у — x dělitelné třemi, dává při dělení třemi zbytek 1 nebo
zbytek 2. Na obr. 15 je к několika mřížovým bodům při-
psána hodnota, kterou jim zobrazení F přiřazuje.

-P 4?
+? -:1 +1 S

+P +1 }1 £ +?
0 -I1 V

*-c
í1

01

.0

Obr. 15

B- \ -4

Označme e, f délky úhlopříček v rovnoběžníku ABCD,
který je jednou stěnou rovnoběžnostěnu ABCDEFGH
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(obr. 16), dále označíme a = \AB\, b = \BC\ délky hran
a a = \<£DAB\. Podle kosinové věty je f2 = a2 + b2 —
— 2abcos a, e1 = a2 + b2 — 2abcos (тс — a) = a2 4- 62 4-
4- 2abcos a, takže e2 4- /2 = 2(a2 4- ^2). Označme ještě u,
v délky tělesových úhlopříček BH, DF rovnoběžnostěnu
a c = \AE\ délku jeho třetí hrany. Podobně jako při před-
cházejícím postupu odvodíme, že

A

и2 4- v2 — 2(/2 4- c2), zv2 + z2 = 2(e2 + c2),
kde za — \AG\, z — \CE\ jsou délky zbývajících dvou těle-
sových úhlopříček rovnoběžnostěnu. Sečtením dostaneme

u2 4- v2 4- w2 4- z2 = 2(e2 + f2) + 4c2 = 4(a2 + b2 4- c2).
Tím je úloha vyřešena. Je možné ji řešit také pomocí ska-
lárního součinu vektorů. Označíme-li u = H — B, v =
= F-D, w = G-A, z = E-C, a = В - A, b =
= D - А, с = E - A, je u = b- a4-c, v = -b 4-
4- a 4- c, w - a + b + c, z = -b - a + c, takže

|u|2 -f |v|2 4- |w[2 4- |zl2 = 4(|a[2 + |b|2 4- |cj2).

75



В- I -s

Přímka BD je kolmá к přímkám AC i AA', proto je kolmá
к rovině CAA' (obr. 17), a tedy i к přímce AC'. Stejně tak

X
л/

/
\c: B[

/ \

/ К
D' К

q;
/ \

/ \M /

z
в/

Y D A

Obr. 17

dokážeme, že BA’ J_ AC', takže je к přímce AC kolmá
rovina BDA'. Roviny BDA' a B'D'C jsou rovnoběžné, je
tedy i rovina B’D’C kolmá к přímce AC'. Rovina uvažova-
ného řezu je s těmito rovinami rovnoběžná. Je-li t ~ 0,
tj. К — A', je řezem trojúhelník BDA', je-li t = a, je řezem
trojúhelník B'D'C. Je-li К vnitřním bodem úsečky A'B’,
je řezem šestiúhelník KLNMPQ, přičemž KL || NP || BD,
LM || PQ || CB', MN || QK || BA'. Rovina řezu protne
přímky AA', AD a AB v bodech X, Y, Z, které tvoří rovno-

stranný trojúhelník o straně délky (a
= (a + ť) У2. Obvod o šestiúhelníku je 3(a — ť) | 2 +

t) У2 + 2t У2 =
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+ 31 ]/2 = За 1/2, neboť \KL\ = \KX\ = t }/2, \PN\ = (a -

— ť) 12. Obsah 5 šestiúhelníku KLMNPO dostaneme,
když od obsahu trojúhelníku XYZ odečteme obsahy troj-
úhelníků XKL, YMN, ZPQ, tedy trojnásobek obsahu
rovnostranného trojúhelníku o straně délky t ]/2, takže

1/3 ГЗа2l/з
s = —

a \2
— (a2 + 2at — 212) = —

—

- 2 ř - —
2 \ 2

a

Vidíme, že pro t e (0, a) je obsah maximální při t =

minimální při t = 0 nebo t = a, kdy se však šestiúhelník
redukuje na trojúhelník. Obvod o na t nezávisí, je kon-
stantní.

2 5

В - I - 6

1
Důkaz provedeme matematickou indukcí. Je хз = 2 5

2
—. Pro n = 3 a n — 4 dokazované nerovnosti 0 < < 1,

tedy platí. Předpokládejme, že platí pro všechna k ^ n + 1.
Pak je 2 — xn — xw+i > 0,1 — > 0, takže xn+2 > 0.
Je pak také (1 — xn)(l — xn+i) > 0, tj. 2 — xn — xn+1 >
> 1 — xnxn+i >0, odkud plyne xn+z < 1. Dokázali jsme
0 < X/i+2 < 1- Tím je tvrzení úlohy matematickou indukcí
dokázáno.

*4 =

B-S-1

Úloha má více řešení, dvě jsou uvedena na obr. 18 a 19.
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Obr. 19Obr. 18

В - S - 2

Pro х — 1 а х = 2 dostaneme celá čísla a + b, 219S8a -f b,
jejich rozdíl a(21988 — 1) je tedy také celé číslo, takže je

P
—, čísla p, q celá. Položíme-Iičíslo a racionální. Nechť je a =

x = q, vidíme, že číslo aq1988 + b = pq1987 + b je číslo
celé. To však znamená, že je i číslo b celé. Jelikož b je celé
a číslo a + b rovněž, je i číslo a celé. Tím je důkaz tvrzení
úlohy dokončen, a i b jsou čísla celá.

g

B-S-3

Trojúhelník BGP\ (obr. 20) je rovnoramenný se základ-
nou délky 2]/2, délky ramen BP\ a GP\ jsou |/ 5. Jeho výška
příslušná к základně má tudíž délku ]/3, obsah trojúhelníku
BGPi je Si = ]/6. Pro t = 0 je řezem kosočtverec EA0CG0,
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e

Aq Af. В

Obr. 20

jehož obsah je25’i = 21 6. Pro t £ (0,1) je řezem pětiúhelník
PtAtBtCtGt, který dostaneme z kosočtverce PtAtQtGt od-
říznutím trojúhelníku Bt.QtCt• Z podobnosti trojúhelníku
BtQtCt a GPiB plyne, že se obsah trojúhelníku BtQtCt rov-
ná г2У6. Obsah St řezu PtAtBtCtGt je tudíž (2 — ť2)|6.

B- H -1

Dále uvedené řešení je od Marty Bendové, žákyně 2. roč-
niku gymnázia v Praze 1, Štěpánské ul. Přímka BG je kolmá
к rovině EFC, protože je kolmá к přímkám FC a FE (obr. 21).
Pak je však přímka BG také kolmá к přímce ЕС. Podobně
dokážeme, že je rovina EBC kolmá к přímce AF, takže je
FC JL AF, ЕС J_ BG. Zřejmě je KL || ЕС, takže je KL _L
_L AF a KL J_ BG, což jsme měli dokázat.

Jiný důkaz se opírá pouze o Pythagorovu větu. Polo-
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GH

FE
/

К

/
/ /

/
В

Obr. 21

žíme-li \AB\ = 3, je \KL\ = \BL\ = |'2 a \BK\ = ]/5,
takže je trojúhelník .КХБ pravoúhlý s pravým úhlem při
vrcholu L. Stejně tak dokážeme, že je trojúhelník FKL
pravoúhlý s pravým úhlem při vrcholu K, takže KL J_ BG
a KL J_ AF.

B- 11 -2

Úloha úzce navazuje na úlohu В - S - 1, velmi pěkně
ji řešil Vladimír Šolc, žák 2. řečníku gymnázia v Berouně,
jehož řešení zde uvádíme. Stojí-li na šachovnici 7 střelců,
existuje jedna barva (bílá nebo černá) tak, že na polích této
barvy stojí nejvýše tři střelci. Můžeme předpokládat, že je
to barva bílá. Při kraji šachovnice je 14 bílých polí, přitom
každý střelec na bílém poli může ohrezit nejvýše 4 bílá
krajní pole šachovnice. Celkem tedy může být ohroženo
nejvýše 12 bílých okrajových polí, nejméně dvě ohrožena
nebudou.
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в - и -3

Žák Ondřej Kalenda z 2. ročníku gymnázia W. Piecka
v Praze ukázal, že podmínkám úlohy vyhovuje mnohočlen

1
/O) - (x — 1) (x — 2) ... (x — n),(n -f 1) !

jeho spolužák Jakub Cvach uvedl polynom

1
g(x) = (x — 2) (x — 3) ... (x — n) [x — (n -f 2)].(n + 1) !

В - 11 - 4

Velmi pěkné řešení uvedl v soutěži Lubomír Ridíšek, žák
2. ročníku gymnázia W. Piecka v Praze. Postupoval asi
takto: Těleso ABCKLM (obr. 22) se skládá z jehlanu ABCK

M

:

вA

Obr. 22
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1
a jehlanu BCMLK. První jehlan má objem — Sp, objem

1
druhého jehlanu je ~Pv, kde v je výška jehlanu na stěnu

BLMC, což je zároveň výška v trojúhelníku ABC na stranu
1

ВС, P je obsah lichoběžníku BLMC. Proto je P — — (q 4-

1 1
-f- r) a, kde a = |£C|. Je tudíž — Pv = — (q + r) av =3 o

1
= — (q + r) S, celkový objem tělesa ABCKLM je proto

1
— S(p + q + r).

Jiné řešení ukázal Jaw Macháček z 2. ročníku téhož gymná-
zia. Rozložil těleso ABCKLM na jehlany ABCM, ABML
a ALMK. Objem jehlanu ABML (obr. 23) se rovná objemu

Mé

/
/

/ii

z.-"

A В

Obr. 23
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ABCL, protože tyto jehlany mají stejnou podstavu ABL
a body My C jsou od ní stejně vzdáleny. Obsah trojúhelníku
AKL se rovná obsahu trojúhelníku AKB, takže objem jeh-
lanu AKLM se rovná objemu jehlanu AKBM a ten se
rovná objemu jehlanu AKBC, neboť poslední dva jehlany
mají stejnou podstavu AKB, od níž jsou body M, C stejně
vzdáleny. Jehlany ABCM, ABCL, ABCK mají objemy

1 1 1
— Sq, — Sr, — Sp, takže celkový objem tělesa ABCKLM

1
je у S(p + q + r).
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Kategorie A

A - 1 - 1

Uvažujeme množinu M všech mnohočlenů s požadova-
nými vlastnostmi. Množina M je neprázdná, protože do ní
patří mnohočlen m(x) = .r1987 — 2. Označme p ten z mno-
hočlenů v množině M, který má nejmenší stupeň. Potom p
dělí každý mnohočlen v M, tedy i m. To plyne z dělitelnosti
mnohočlenů: Je-li ne M, označme q jeho podíl při dělení
mnohočlenem par příslušný zbytek, tj. mnohočlen s racio-
nálními koeficienty stupně menšího, než je stupeň mnoho-
členu p. Protože n i p leží v množině M, plyne z rovnosti

n — pq + r,

že je také r e M. Protože předpokládáme, že p má v mno-
žině M nejmenší stupeň, musí být r = 0.

1987 _Mnohočlen m(x) = x 2 má kořeny

2nk 2nk
xk = 19871/2 + i sin \, 0 s k й 1986.cos

1987 1987

Mnohočlen p má reálné koeficienty, takže s každým koře-
nem Xk má i komplexně sdružený kořen x&(l ^ k ^ 1986).
Odtud vyplývá, že mnohočlen p je součinem některých
trojčlenů

(x — X/c) (x X]c) — X2 — 2x Re Xfc + |*л-|2 =
2izk

! 4= x2 — 2x cos 1987+
1987
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] 2. Jeho absolutní
|/2-? pro nějaké je {1, 2, ..., 1987).

_ 1987a případně i dvojčlenu x — xq = .v
1987člen je pak tvaru

To je ale racionální číslo jen pro j = 1987. Je tedy p = m
a hledaný mnohočlen je x1987 — 2.

Poznámka. Tvrzení, že odmocnina 1987]/2^ je racionální
jen pro čísla j — 1987/i, není asi každému zřejmé. Dokáže
se ale obdobně jako známé tvrzení, že |/2 je iracionální.

— P
\'2i = — pro nějaká nesoudělná

q
Předpokládejme, že

celá čísla />, q, tj. že platí g1987.2^ = />1987, odkud plyne, že
p je sudé. A protože q musí být liché a 21987 dělí g1987.2^‘,
vychází, že exponent j je násobkem čísla 1987.

1987

A- I -2

Označme m spojnici středů hran AB a CD (jejich společ-
nou osu) a pro libovolný bod X prostoru označme Aro jeho
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pravoúhlý průmět na přímku m (obr. 24). Je-li X’ pravoúhlý
průmět bodu X do roviny ABm, je

\AX\ + \BX\ = ]/\AX'\2 + \XX'\* + ]/\BX'\2 + \XX'\2
^ \AX'\ + \BX'\ ^ \AXo| + \BX0\

(přímky AB a XqX' jsou rovnoběžné!) s rovností, právě
když bod X leží na m nebo na úsečce AB. Podobně dosta-
neme nerovnost

\CX\ + \DX\ ^ \CX0\ + |Mol

s rovností, právě když bod X leží na m nebo na úsečce CD.
Stačí tedy zkoumat jen body X ležící na přímce m.

Otočme úsečku CD kolem přímky m do roviny určené
přímkami AB a m; dostaneme úsečku C'D' (obr. 25). Pro
každý bod X e m potom je

\AX | + \BX\ + \CX\ + I DX\ =
= \AX | + \BX\ + \CX\ + \D'X\,

m

CD'

ВA

Obr. 25
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přitom

\AX\ + \D'XI ^ \AT| + |D'T{,
\BX\ + \C'X\ ^ \BT\ + \C'T\,

kde T je střed (těžiště) daného čtyřstěnu, takže

\AX| + \BX\ + \C'X\ + \D'X\ 2
^ \AT\ + \BT\ + |CT\ + \DT\

s rovností, právě když X = T.
Jiné řešení. Pro libovolný bod A' prostoru označme

/(X) = \AX\ + \BX\ + |CA| + \DX\.

Protože podle předcházejícího řešení funkce / může nabývat
minima pouze v některém bodě ležícím na ose dvou pro-

tějších hran daného čtyřštěnu, stačí ukázat, že funkce /
má minimum. Funkce / pak nabývá minima v průsečíku
obou os protějších hran čtyřstěnu, což je střed S opsané
kulové plochy.

Funkce/je zřejmě spojitá. Uvažujme kouli К se středem A
a poloměrem/(5). Daný čtyřstěn leží celý v kouli K, což je
omezená a uzavřená množina, na které nabývá spojitá funkce/
svého minima. A vně koule К už je f(X) >/(5’).

A - 1 - 3

Nejprve ukážeme, že vždy existují tři stejně obarvené
body R, S, T takové, že bod S půlí úsečku R T. Jistě existují
dva body U, V obarvené stejnou barvou. Uvažujme body
/, J, К (obr. 26) takové, že I půlí úsečku UV, U je střed
úsečky JV а V je střed úsečky UK. Pokud nejsou stejno-

87



и v
-

J к

Obr. 26

barevné trojice bodů U, /, V; J, U, V; U, V, K, mají tři
body I,J, К stejnou barvu, přičemž I je středem úsečky JK.

Mějme tedy tři stejnobarevné body R, S, T, kde S půlí
úsečku RT, a uvažujme rovnostranný trojúhelník PRT
(obr. 27). Pokud má některý z bodů O, P, Q stejnou barvu

*

/ .v

/
>

*S0^

z ■o-

а яP

Obr. 27

jako body R, S, T, jsme hotovi (vznikne stejnobarevný rov-

nostranný trojúhelník OST, resp. PRT, resp. QRS). V opáč-
ném případě bude mít rovnostranný trojúhelník OPO
stejně obarvené vrcholy.

Jiné řešení. Uvažujme šest bodů ve vrcholech pravidelného
šestiúhelníku a střed opsané mu kružnice. Má-li střed
šestiúhelníku např. černou barvu, můžeme předpokládat, že
jeho vrcholy nejsou všechny dejme tomu bílé, jinak bychom
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byli hotovi. Podobně nám vyjde, že i body А, В (obr. 28)
budou bílé а к nim příslušný vrchol rovnostranného troj-
úhelníku černý (obr. 29). Konečně musí být zbývající dva
body bílé (obr. 30), jinak jsme s vybarvováním bodů roviny

hotovi. Přidáme-li ale к uvedeným sedmi bodům další bod
podle obr. 30, vidíme, že ať ho obarvíme jakkoli, dostaneme
stejnobarevný rovnostranný trojúhelník.

A - I - 4

Využijme známou skutečnost, že čtyřúhelník TPCO je
tečnový, právě když

(1)\TP\ + \CQ\ = \PC\ + \TO\.

Je-li trojúhelník ABC rovnoramenný se základnou AB,
je |7T| = \TQ\ a \CP\ = \CQ\, takže podle (1) je TPCQ
tečnový čtyřúhelník. Označme ]£C| = a, \CA\ = b, \AP\ =
- ta, \BQ\ = tb; z (1) pak plyne:
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I b 1 a

3 + 2 3 2 *

a tedy

2(ta tb) = 3(a — b). (2)

Kružnice vepsaná čtyřúhelníku TPCO je vepsána též troj-
úhelníkům APC a BOC, které mají stejný obsah 5. Pro
poloměr q vepsané kružnice platí

25 25
Q \AP\ + \PC\ + \AC\ \BQ\ + \QC\ + \CB\'

takže

ba

2 + b — tb Л- 2

2(ta — tb) = a — b.

Z rovností (2) a (3) dostáváme a — 6 = 0, tj. a — b a troj-
úhelník ЛВС je rovnoramenný se základnou ЛВ.

Jiné řešení. Dokážeme jen druhou implikaci. Při stejném
označení jako v prvním řešení spočteme velikosti těžnic
podle kosinové věty

ta “Г

(3)

2b2 + 2c2 _ Q-
ta2 =

4

2a2 + 2c2 - b2
tb2 =

4

(napíšeme kosinovou větu pro strany АР, AB trojúhelníků
A PC, ABC, které mají společný úhel, vyloučením členu
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s cos у dostaneme první rovnost, druhou odvodíme analo-
gicky či cyklickou záměnou), takže dostaneme

3
tb2 - ta2 = — (a2-62).

Odtud je vidět, že a > b, právě když > ta, zatímco ze
vztahu (2) plyne, že a > 6, právě když ta > Je proto
nutně a = b a trojúhelník zlBC je rovnoramenný.

A- 1 -5

Předpokládejme, že tvrzení neplatí, tj. že existuje přiro-
zené číslo k takové, že pro každá dvě přirozená čísla m,

n, m + k, platí

f(m, n) ^/(w + 1, ti) + f(jn, n + 1) ^ 2.

Odtud ale dále plyne

f(m, n) ^ f(m + 2, n) +f(m + 1, n + 1) +
4- f(m + 1, n 4- 1) 4- f(m, n + 2) ^ 2'2,

takže pro pevně zvolená dvě čísla m, n, m + n
matickou indukcí dostaneme, že

f(m, n) ^ 2N

pro libovolné přirozené N. To je spor.

Jiné řešení. Pro dané k přirozené označme

c = inf/O, y),
x+y^k

k, mate-
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zřejmě je c ^ 1. Z vlastností infima plyne, že existují přiro-
zená čísla m, ny m -f n ^ k, taková, že

c У f(m, n) < 2c.

Odtud ale plyne nerovnost

f(m, n) < 2c У f(m 4- 1 ,n) +f(m, n -f 1)

pro všechna přirozená čísla m, и taková, že ni + n^i k.

А- I -6

Předpokládejme, že takové číslo existuje a že
22

n — У 10 О/
i = o

je jeho zápis v desítkové soustavě. Protože

102ž+1 = —1 а 102* = 1 (mod 11),

dává číslo n při dělení 11 zbytek
li 10

z = 2a2i — У. Я2г+1 (mod 11),
i = 0 í = 0

kde 1 S z S 10- Jak ted můžeme změnou jedné číslice
dostat číslo dělitelné 11? Je-li např. pro nějaké ze (0, 1,
..., 11} a^i ^ z, změníme číslici a^i na a^i — z, je-li naopak
ci2i = z — 2, napíšeme místo a^i číslici a^t + 11 — z a dosta-
neme tak nové číslo, které bude dělitelné 11. Musí tedy být
ci2i — z — 1, 1 ^ i 51 11. Podobně pro číslice na lichých
místech nemůže být ani a2*+i ^9 — z, ani a%i+\ ^11 — z.

Vychází tedy jediná možnost агг+1 = 10 — гг, 1 ý гУ 10.
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V úvahu proto přichází jedině číslo n, které má na lichých
místech číslici 10 — z a na sudých z — 1. Pro jeho zbytek z

při dělení 11 však máme kongruenci
z = 12(z 1 (mod 11),

což nejde. Číslo požadovaných vlastností tedy neexistuje.

1) - 11(10 - z) = z

A - S - 1

Označme A, B, C, D vrcholy daného čtverce a K, L
středy jeho protějších stran AB, CD (obr. 31). Kruhy, jejichž
hraniční kružnice jsou opsány obdélníkům AKLD, KBCL,

5 i/-
zřejmě pokryjí celý čtverec a jejich poloměr je — p.

L CD

ВКА

Obr. 31

Předpokládejme, že čtverec ABCD je pokryt dvěma shod-
nými kruhy o poloměru r. Ze čtyř jeho vrcholů aspoň dva
leží v jednom z kruhů. Jsou-li to protější vrcholy, vyjde
2r ^ 10 ]/2 > 5 j/5. V opačném případě musí jeden z kruhů
obsahovat dvojici sousedních vrcholů (např. В, C) a druhý
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kruh protější dvojici A, D. Protože aspoň jeden z kruhů
musí obsahovat taky bod K, je vidět, že 2r ^ 5 ]/5. Je tedy

— ] 5 hledaný nejmenší poloměr.r —

A - S - 2

Jsou-li xi, X2, ..., xn kořeny uvažované rovnice, dosta-
neme roznásobením kořenových činitelů

Xi + X2 + ... + xn = 4,
X\X2 ... Xn — (— 1)и.

Je hned vidět, že n nemůže být liché, protože všechna xi

jsou nezáporná. Z nerovnosti mezi aritmetickým a geo-

metrickým průměrem čísel x±, X2, ..., xn pak plyne, že
— ^ 1, je tedy nutně n = 2 nebo n = 4.

Pro n — 4 vyjde ví = V2 = ... = = 1 a rovnice má
tvar

(x — l)4 — xA — 4x3 -f 6x2 — 4x + 1 = 0.

Pro n = 2 dostaneme kvadratickou rovnici

x2 — 4x -f 1 = 0

s nezápornými kořeny 2 i ]'3. Požadavkům úlohy vyhovují
obě čísla n = 2 i n = 4.
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A-S-3

Jestliže krychle ABCDEFGH splňuje podmínky úlohy,
leží obdélník ABGH v rovině APQ a je \BG\ = \AB\j2
(obr. 32). Obdélníkem ABGH je krychle jednoznačně určena
(až na záměnu označení hran CD, FE).

F
\
v
T E
\
\S\ 'v

\ Q B-
0A

0 A

Obr. 32

Označme 5“ střed krychle, který je zároveň středem obdél-
niku ABGH. Známe velikost a úhlu, který svírají tělesové
úhlopříčky AG a BH, je to velikost úhlu úhlopříček v obdél-
niku, jehož strany jsou v poměru j/2 : 1. Označme ještě
velikost úhlu SAB. Přitom je /5 < a, jak snadno zjistíme

71
а > —

3 /
Z rozboru plyne následující konstrukce: Na polopřímce AP

zvolíme bod S tak, aby přímky AP, SQ svíraly úhel a.

Je-li 5 Ф A, můžeme bod A doplnit právě jedním způso-
bem na obdélník ABGH se středem S a úhlem |<£ Лб’В! = a

(bod В leží na přímce OS).
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Pro volbu bodu S máme dvě možnosti, označme je S\
a S? (obr. 33), jejich pořadí volíme tak, aby orientace S1S2

Q

/

/
/
/

■s

/
/
/ d

9 cC *

S, A S2 P
Obr. 33

byla stejná jako orientace ^3P. Obdélník ABGH se středem S±
bude splňovat podmínky úlohy, právě když bod Si bude ležet
na polopřímce AP, Si Ф A (bod В pak bude ležet na polo-
přímce opačné к polopřímce čuO). Obdélník ABGH se
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středem S-г bude splňovat podmínky úlohy, právě když bod В
ležící tentokrát na polopřímce S2O nepadne dovnitř úsečky
OS2 (obr. 34), tj. právě když bod Q' souměrně sdružený
s bodem Q podle osy úhlu OS?A bude ležet na polopřímce
AP. Podle toho má úloha bud dvě řešení (Q' leží na polo-
přímce AP), nebo jedno řešení (O' leží vně polopřímky AP
a 5i ф A leží na polopřímce AP), anebo žádné řešení ne-

existuje.

A - II - 1

Uvažujme čtyři vrcholy daného jednotkového čtverce a jeho
střed. Jestliže je čtverec pokryt čtyřmi shodnými kruhy o po-
loměru r, obsahuje jeden z kruhů aspoň dva z uvedených
pěti bodů. A protože každé dva z těchto pěti bodů mají

1/2 F2
vzdálenost aspoň—, plyne odtud, že je r

jednotkový čtverec pokryjeme pěti kruhy opsanými obdél-
níkům podle obr. 35 (jejich úhlopříčky jsou shodné). Z rov-
nosti

4 '

1 1
a2 — — -f (1 — x)2 = — + X2

31
plyne x = takže

72’

31\2 1
< —

1
u2 =

4 + 2 ’72

Příslušné kruhy tedy mají poloměr menší než ——.4
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1/3

■V2

Poznámky. Mnoho účastníků II. kola místo racionálního
důkazu vyšlo ze »zřejmé« skutečnosti, že optimální pokrytí
čtverce čtyřmi shodnými kruhy musí být symetrické (podle
středu). Žel, takováto heuristická úvaha к opravdovému dů-
kazu nestačí, jak ostatně ukázala druhá část uvedené úlohy.
Vycházejíce ze souměrnosti, usuzovali tito »řešitelé« většinou

ь
na to, že pokrytí pěti shodnými kruhy pro r < —— rovněž ne-4

existuje... Na druhé straně se však v žákovských řešeních
objevily i následující dva pěkné nápady:

У2
Pro r < — nelze úhlopříčku jednotkového čtverce pokrýt

dvěma shodnými kruhy, takže na to potřebujeme kruhy
aspoň tři. Ale žádný z těchto kruhů nemůže obsahovat zbylé
dva vrcholy druhé úhlopříčky, a ty nelze jedním kruhem o po-

V2
loměru r < — oba najednou pokrýt (Jaroslav Trnka, 4. roč.

4

G Liberec).
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1
Kruh o poloměru г < — pokryje nejvýše 2|;2 r z obvodu

jednotkového čtverce (obr. 36), neboť a + b ^ 2 j 2 r. Čtyři

shodné kruhy tak celkem pokryjí nejvýše 8j/2 r z obvodu

čtverce. Proto musí být 8 ]' 2 r
1/2

4, tj. r ^ —.

А- II -2

Předpokládejme, že daná rovnice má reálné kořeny *i, x?,
*3, *4, takže

.v4 + 4*3 + 6x2 + ax + b = (x — *i) ... (x — X4) .

Porovnáním koeficientů dostaneme

(1)*1 + *2 + X3 + X4 = —4 ,

X1X2 + X1X3 + X\X4 + X2X3 + X2X4 + X3X4 = 6 .

Odtud plyne, že

x\ + xi + x] + x\ — 4 . (2)
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Protože pro reálná čísla щ, ш, щ, щ platí (Cauchyova) ne-
rovnost

Ol + М2 + M3 + z/4)2 <: 4(mj + u\ + u] + iq),

plyne z (1) a (2), že pro kořeny dané rovnice v uvedené ne-
rovnosti nastane rovnost. To znamená, že existuje reálné k,
pro které je xi = *2 = x3 = X4 = k. Z (1) pak vyjde k =

Uvedená rovnice má proto jediný (čtyřnásobný) kořen
a je

1.

1

x4 + 4x3 + 6x2 -J- ах + b = O -t- l)4 ,

takže a = 4, b = 1.
Jiné řešení. Protože

x4 + 4x3 + óx2 + ax + b = (x -f l)4 — 4x — 1 + ax + b —

= (x + l)4 + (x + 1) O — 4) + b — a + 3 ,

dostaneme po substituci и = x + 1 rovnici

M4 = pu + q , p — 4 — a, q = a — b — 3 .

Ta může mít čtyři reálné kořeny jen v tom případě, když s^
přímka v = pu + q dotýká bikvadratické paraboly v — ux ve
vrcholu (pak má jeden čtyřnásobný kořen), tedy jen pro

p = q = 0. Odtud plyne a = 4, b = 1.

A - II - 3

Předpokládejme, že hledaný čtyřstěn ABCD existuje. Troj-
úhelník PQD je určen podle věty usu. Tím jsou zároveň
jednoznačně (až na uspořádání) určeny body A, B, nebot
vzdálenost bodu D od úsečky PO je výškou rovnostranného
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trojúhelníku ABD. Sestrojíme tedy v libovolné rovině q э PO
bod D0 tak, aby |<): QPD0\ = 30°, |<£ PQD0\ = 45°. VrcholD
čtyřstěnu bude pak ležet na kružnici k (obr. 37), kterou do-

Do, к

a
P A S В Q

Obr. 37

staneme otáčením bodu D0 kolem osy PQ, a zároveň v rovině ó.
Trojúhelník ABD pak doplníme na pravidelný čtyřstěn,
který bude řešením úlohy.

Počet řešení závisí na vzájemné poloze roviny ú a kružnice
k. Pokud k n d = 0, nemá úloha řešení; je-li průnik jedno-

Di=C2 4P2 = C1
/

\ф/

s

c;
C2

к

Obr. 38a



bodový, má úloha dvě řešení souměrně sdružená podle ro-

viny ABD; a leží-li kružnice k v rovině <5, existuje nekonečně
mnoho řešení. Zbývá případ, kdy kružnice k má s rovinou b
dva společné body Di, Zb. Každý z trojúhelníků ABDi,
ABD-г můžeme doplnit na pravidelný čtyřstěn dvěma způ-
soby. Je-li však |<£ DiADo\ = 60° (obr. 38), dva ze čtyřstěnů
splynou (ABC2D2 = ABC1D1) a úloha má jen tři řešení.
V opačném případě (|<£ DiADz\ Ф 60°) dostaneme čtyři růz-
ná řešení.

A- II -4

Označme d(p) uvažovaný součet. Ukážeme, že největší
součet se nabývá pro permutaci po, kde po(i) — n — i -f- 1,

n. Permutace p0 má tu vlastnost, že je klesající, tj.
pro každé i < j jepo(0 >Po(j)• Je-И P Ф Po, existuje k, pro
které je p(k) <p(k + 1). Prohozením hodnot p(k), p(k + 1)
dostaneme novou permutaci p', pro kterou je

P'(0 = P(i), k ф i Ф k + 1 ,

p'(k)=p(k + 1), p'(k + 1) = p{k) ,

d(p') - d(p) = I p(k) -k-l\+ I p(k + l)-k\-
— \p(k) — k\—\p(k + l) — k — l\. .

Pro p(k) < p(k + 1) ^ k i pro ^ + 1 ^ p(k) <p(k + 1) vy-
jde d(p') = d(p), prop(k) ^ k < k + 1 ^ + 1) je d(p') —
— íí(p) = 2. Je tedy ^ d(p). Přitom počet těch dvojic
i < j, pro něž je p(i) <p(j), se uvedenou změnou zmenšil.
Po konečném počtu kroků tak dojdeme к permutaci po, pro
kterou je
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d^pо) — я — 1 +- n — 3 + ... +2 + 2-1- ... -4-я — 1 —

и +- 1 я — 1 я2 — 1
pro и liché,= 2

2 2

= я —1+я —3+- ... + 3 + 1 + 1 +- ... +• я — 1 =

я2я я
= 2 У ' Y = У pro я sudé,

я2
což můžeme jednoduše zapsat jako d(p0) =

Jiné řešení. Pro danou permutaci p odstraňme v součtu
2

_ ‘

d(p) = 2 I P(0 - г’1
i=i

absolutní hodnoty. Je zřejmé, že v získaném součtu bude я
sčítanců s kladným znaménkem а я sčítanců se záporným
znaménkem. Přitom každé z čísel 1, 2, ..., я se v uvedeném
součtu vyskytne právě dvakrát. Je tedy jasné, že platí (viz
též poznámky)

я +- 31 Md(p) <£ я +- я +■ (я — 1) +- ... +- +-
2

Гя1я

2 - 2 - 1 - 1 =
2 2

я2я я
= 2 я —

2 2 2

Nyní stačí zjistit, zda existuje nějaká permutace, pro kterou
uvedená situace nastane. Tomuto požadavku vyhovuje např.
permutace

Po(i) — n — i + 1,
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(Permutací s maximálním součtem d(p) existuje ovšem více,
jejich počtem se zabývá např. úloha 24 v knize A. Vrby
Kombinatorika, Škola mladých matematiků č. 45.)

Jiné řešení. Pro danou permutaci p označme A množinu
těch čísel ie {1, 2, ..., «}, pro která je i <p(i), a předpc-
kládejme, že A má k prvků (0 k fŠL n — 1). Pak platí

d(p) = 2 (K0 - 0 + I 0 - K0) =
ieА иA

= 2 КО + 2 i - 2 i - 2 КО
í'sA ieA/eA

^ (w + П — 1 + ... +И — Hl) +
+ (я + П — 1 + ... +(&+!)) —

(1 + 2+ ... + &) — (1 + 2+ ... + (n — кУ) —

k -f 12n — k -j- 1 n -f- k -}- 1
+ (n-k) 2

- &= k
22

и. — к + 1 n2
— (n — k) — 2k(n — k)2

Dále stačí dokázat, že existuje permutace, pro kterou zde na-
stane rovnost.

Jiné řešení. Pro danou permutaci p a pro k e (1,2, ..., n — 1}
spočtěme, kolik je takových dvojic (i, KOX že i^k <p(i)
nebo p(0 ^ k < i. Označme tento počet du- Nyní je důležité
si uvědomit, že je vlastně

л—i

2 IKO - *1 = 2 dk.
k=ii=i

n

Odtud dostaneme vhodný odhad, protože pro к ^ Iе odpc-
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n

vídajících dvojic nejvýše 2k, tj. dk

d/c < 2(n — k), takže dohromady je

2ki a pro k > — je zase

n 1

<*(/>) ^ 2 2H I 2(n-k) =
/с — 1

1

Ы я2
= 22^ + 2 2! & — 2 ГА = 1 А = 1

jak postupně spočteme. Dále stačí ukázat, že existuje permu-

táce, pro kterou nastane rovnost.
Poznámky. Výpočty v 2. řešení vypadají trochu kouzelně,

ale jinak bychom nemohli uvedené vztahy zapsat najednou pro
lichá i sudá w; rozlišením obou možností snadno ověříte, že
je vše v pořádku. Podobně není těžké ověřit, že pro každé
přirozené n platí

Й+Н n2n -)- 1n

2

Pro ty, kteří hned nevidí např. rovnost

2n — k \
k +1 = k1 + • - • + nn + n

2

připomínáme, že pro součet konečné aritmetické posloupnosti
a\, a-2, ..., a/е kromě známého vzorečku platí i

a\ + ak
<*i + a2 + ... + ak = k

2
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A - 111 - 1

Protože M je konečná, existují indexy r, r -f p takové, že
xr = xr+p. Pak už je zřejmě xn = xn+p pro každé n ^ r
a dokonce xn = xn+kp pro každé n ^ r a k ^ 0. Vezmeme-li
m = kp tak, aby bylo m > r, bude xm = xjcp = Хкр+кр =
= #2m •

A- lil -2

Pro kořeny x*i, х-з, хз dané rovnice platí

*i + x-2 + x3 = —a ,

X1X2 4- X2X3 4- *3*1 = b ,

X1X2X3 = —c,

takže z podmínky a2 — 2b — 2 plyne

Xj + x\ + X3 = 2 .

Je tedy
4 — (a — c)2 = 4 — a2 + 2ac — c2 = 2 — 26 + 2ac — c2 =

= 2 — 2(x]X2 + X2X3 + X3X1) +
4- 2(xjX2X3 4- X1X2X3 4- X1X2X3) — *1*2*3 =

= 2(1 — X1X2 — X2X3 — X3X2 + XjX2X3 4- *1*2*3 4- X1X2X3 —
„22 2\ 1 „222 _

Л 1 2 J "I Л 1 Л2Л3
= 2(1 — X1X2) (1 — X2X3) (1 — X3X1) 4- *1*1*3 ^ 0 ,

neboť pro každé i e (1, 2, 3} platí (indexy počítáme mod 3)
2(1 — XiXi+i) — 2 — 2x/Xi+i =
= xj 4- xf+, 4- xf+2
= (Xi — xi+1)2 4- *?+2 ^ 0 .

Získaná nerovnost je ekvivalentní nerovnosti \a — cj ^ 2.

— 2x/xť-+i =
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A - III - 3

Označme К, L středy hran AB, CD. Ze shodnosti troj-
úhelníků ACD, BDC (obr. 39) plyne \BL\ — \AL\, takže
KL J_ AB. Podobně je i KL J_ CD. Jestliže bod X neleží
na přímce KL a bod X' je jeho kolmý průmět na přímku KL,
je

lOX] + \DX\ > |CAT'| + \DX'\ ,

\AX| + \BX\ >\AX’\ + \BX'\ ,

jak už víme z řešení úlohy A - I - 2. Stačí tedy uvažovat body
X na přímce KL.

Otočme úsečku CD do roviny ABL, dostaneme tak úsečku
CD' (obr. 40), |C'D'| = |CD|. Pro každý bod X přímky KL

je \CX\ = \C'X\, \DX\ = \D'X\, takže pro uvedený součet
platí

^ = \AX | + \BX\ + \ CX\ + \DX\ = 2(\AX\ + \C'X\)^
^ 2\AC\
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s rovností pro průsečík P úseček KL a AC. Je tedy

c -f d\2
+ \KL\2s = 2

2

a z trojúhelníků ABL, BCD postupně spočteme (BL je těž-
nice v trojúhelníku BCD)

c2 a2 + b2 c2 + d2
1ВД2 = \BL\2

4 2 4

Odtud vychází s — ]/2(a2 + b2 + cd).

A - II! -4

Všech obarvení daných čísel je 22". Každá aritmetická po-

sloupnost je určena svým prvním členem a diferencí d. V uve-
2»

děném případě je d fSj takže z daných čísel lze vybrat2n - 1’

O)2
nejvýše takových posloupností. Ke každé 2n-členné2n - 1

posloupnosti existuje celkem 22 "~2n obarvení zbylých 2n — 2n
čísel, při nichž je tato posloupnost jednobarevná (má jednu
ze dvou možných barev). Existuje tedy nejvýše

22"-2и _22h 2
< 22'1 (n> 1)= 22".2.

2n - 1 2n - 1

obarvení, při nichž je některá 2n-členná aritmetická posloup-
nost jednobarevná. Odtud plyne existence požadovaného
obarvení pro n > 1, pro n = 1 je jeho existence zřejmá.
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A- III -5

Pro a e (—2, 2) má rovnice и2 — au + 1 =0 dva komplex-
ně sdružené kořeny и, й, pro které platí im — \u\2 = 1,
и 4- й — 2 Re и — a. Je-li и = cos а 4- i sin a, a G (0,тг), má
rovnice x7 = и (a tedy i rovnice x14 — ax7 -f 1 = 0) kcřeny

a 4- 2&TCa -f 2kiz
Ле{0, 1,+ i sinX/c = COS

7 7

Mnohočlen />(x) = x134 — ax77 4- 1 bude násobkem mno-
hočlenu x14 — ax7 4- 1, právě když p(x/c) = (иn)2 — au11 4-
4-1=0 pro všechna k, 0 ^ k ^ 6, tj.

a11 = cos lín 4- i sin 11a = и — ccs a 4- i sin a }

anebo

u11 = cos 11a 4- i sin 11a = и = cos a — i sin a .

Je tedy bud

nm

те {1, 2, 3, 4},11a = a 4- 2wtc, a = 5 5

nebo

tlTZ

ne{l,2, 3, 4,5}.

Protože a = 2 Re и = 2cos a, vyhovují úloze čísla a e | — j/3,
2 2 7Г

—, —1, —2 COS — 7Г, 0, 2 cos — тс, 1,2 cos—,

11a = —a 4- 2mz, a — 6 5

77

—2 cos
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A- III -6

Předpokládejme, že v trojúhelníku А\АоАз existuje takový
bod X, který neleží v žádném z uvedených trojúhelníků.
Změníme tedy přiřazení bodů Рг- a stran aj daného troj-
úhelníku tak, abychom tento bod X pokryli. Protože ke každé-
mu bodu P trojúhelníku A1A2A3 můžeme určit jeho stranu
ai tak, že trojúhelník Раг- bude obsahovat bod X, můžeme
najít stranu aj, pro kterou je X e P\aj, podobně к bodu P;
určíme stranu a* tak, že X e Pjajc, a pokud k Ф najdeme
ještě stranu am, pro kterou X e Pjcam. Nyní je bud m = 1,
anebo m — j.

Pokud k = 1, vezmeme místo trojúhelníků Piai, Pjaj
trojúhelníky Piaj, P;ai, podobně pro k ф 1 а m — 1 místo
původních trojúhelníků vezmeme trojúhelníky Pia;-, P;u*,
P/,ai. Pokud k Ф 1 ф m, tedy m — j, vezmeme místo troj-
úhelníků РгЯг, -^заз trojúhelníky P2CI3, P3CI2 (vždy některé
trojúhelníky neobsahující bod X nahrazujeme trojúhelníky,
které bod X obsahují).

Označíme-li кц vzdálenost bodu Pí od strany aj, z původ-
ního součinu /zn/z22^33 dostaneme popsanou změnou součin
hijhj\li33, anebo součin hijhjkhjd, či součin Ац/ггз^зг- Ukážeme,
že nové přiřazení bodů a stran trojúhelníku A1A2A3 dá větší
součin odpovídajících vzdáleností, což odporuje předpokladu
úlohy.

Je-li P bod daného trojúhelníku а X e Pat, X $ Paj (obr.
41), pak pro vzdálenosti hi, hj bodu P a vzdálenosti п, Г)
bodu X od stran аг-, aj platí

hi hi + x

rt rt + x

hj\PX'\
\XX'\ n
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kde X' je průsečík polopřímky PX s přímkou obsahující
stranu aj, pokud není rovnou

hi
< 1 < —

ri

(to by bod X' neexistoval). Odtud plyne, že např. pro k — 1
bude

^11^22^33h\ jh jihss
Г1Г2Г3

tedy i hijhjihsz > /ůi^22^33- A podobně i v ostatních případech
se příslušný součin odpovídajících vzdáleností zvětší. Tím je
důkaz hotov.

Poznámka. Platí obecnější tvrzení, které v prostoru můžeme
formulovat takto: Jsou-li Pi, P2, ..., Pn body uvnitř daného

>
ПГ2Г3

111



konvexního и-stěnu M, pak lze jeho stěny označit а±, a2,

an tak, že jehlany Přa<: pokrývají celý mnohostěn M.
(Stěny označíme tak, aby součin vzdáleností bodů Pí od od-
povídajících stěn a-t byl co největší.)

• * ?

Korespondenční seminář ÚV MO

Korespondenční seminář je jednou z forem péče o talento-
váné žáky. Vznikl ve 24. ročníku MO proto, aby bylo možno
věnovat individuální péči i těm žákům, kteří neměli možnost
navštěvovat speciální školy a pracovat v tamních seminářích.
Nyní, kdy existují i krajské korespondenční semináře a kdy
speciální školy s třídami zaměřenými na matematiku najdeme
v každém kraji, je cílem tohoto semináře zlepšit individuální
přípravu všech studentů, kteří prokázali své schopnosti a ma-

tematický talent v předchozích ročnících matematické olym-
piádv. Korespondenční seminář tak nadále zůstává důležitou
součástí přípravy na mezinárodní matematickou olympiádu.

К účasti v korespondenčním semináři jsme pozvali všechny
špičkové řešitele kategorie A spolu s těmi studenty, kteří ně-
jak vynikli v krajském kole kategorií В a C předchozího roč-
niku МО. К účasti se tentokrát přihlásilo 75 řešitelů z celé
republiky, z nichž jen 33 vydrželo až do posledního kola.

V průběhu 37. ročníku MO jim bylo postupně zasláno
5 sérií poměrně náročných úloh, jejichž texty najdete v úloho-
vé části ročenky (bez řešení). Došlá řešení pak byla opravena,
ohodnocena a s rozmnoženým komentářem vrácena účast-
níkům semináře. Nejlepšími v celkovém hodnocení byli
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1. Pavol Gvozdjak, 4 G A. Markuša, Bratislava,
2. Ilja Martišovitš, 3 G J. Hronce, Bratislava,
3. Radomír Měch, 4 G M. Koperníka, Bílovec,
4. Stanislav Krajči, 4 G Šmeralova, Košice,
5. Andrej Doboš, 3 G A. Markuša, Bratislava,
6. Vladimír Komár, 2 G Šmeralova, Košice,
7. Ondřej Such, 2 G A. Markuša, Bratislava.

Korespondenční seminář byl řízen tajemníkem UV MO
Karlem Horákem, který se staral o výběr a přípravu úloh
a prováděl i redakci komentářů. Opravu pak zajišťovalo ně-
kolik pracovníků xMÚ ČSAV a několik studentů a aspirantů
MFF UK Praha (všichni jsou bývalí olympionici).
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TEXTY A ŘEŠENÍ ÚLOH KATEGORIE P

P - I - 1

Je dáno celé číslo T a dvě konečné celočíselné posloupnosti
Ai, A2, ..., An а B\, Во, ..., By takové, že N ^ 1, A\ <
< A2 < ... < Ay a pro všechna i, 1 ^ x ^ N, je > 0.
Na poště jsou tři přepážky poskytující stejné služby. Přepáž-
ky otvírají v čase T. Poštu navštíví během dne N zákazníků.
Zákazník i přichází v čase A i a požaduje službu v délce Bc
časových jednotek. Zákazníci jsou obsluhováni v pořadí jejich
příchodu na poštu. Přepážka je ihned po obsloužení jednoho
zákazníka к dispozici pro obsluhu dalšího. Přepážky zavírají
po obsloužení všech zákazníků.
Navrhněte a dokažte algoritmus, který určí celkovou dobu, po
kterou na poště čeká na obsluhu alespoň jeden zákazník.
Řešení
Hledaná doba F je délka sjednocení intervalů [Ai, Ci] pro
1 ^ x 5^ N, kde Ci je okamžik, kdy zákazník x přijde na řadu.
Platí At ^ Ci pro všechna x, C\ ^ C2 ^ ... ú Cy.
Dále budeme hodnoty Ci počítat postupně pro zákazníky
x = 4, 5, ..., N.
Označme di okamžik, kdy je zákazník x obsloužen. Platí
di = Ci + Bi. Pro první tři zákazníky je určení okamžiku,
kdy přijdou na řadu, snadné. Je to bud ihned v čase T, nebo,
přijdou-li až po otevření pošty, ihned v čase H*. Tj. C; =
= тах(Г, Ai), i = 1, 2, 3.
Zákazník x (x > 3) přijde na řadu bud v čase Ai, je-li v době
jeho příchodu alespoň jedna přepážka volná, nebo v opačném
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případě (všechny přepážky jsou obsazené) v okamžiku, kdy
se jedna z nich uvolní. V situaci, kdy jsou všechny přepážky
obsazené, jsou u nich obsluhováni tři zákazníci z množiny
{1, 2, ..., i — 1}. Pro všechny z nich jsme již stanovili, kdy
přišli na řadu (hodnoty Q), a známe tedy i kdy byli nebo
budou obslouženi (hodnoty dj). Můžeme tedy i určit, kteří
zákazníci jsou u přepážek: jsou to zákazníci x, y, z, pro něž
platí dx, dy, dz > die pro všechna k z 2, ..., i — 1} —
— {x,y, z}.
Jedna z přepážek se uvolní, jakmile první ze zákazníků x,y, z

odejde, a to bude v čase min^, dy, dz). Z provedených úvah
je vidět, že tento čas je dán třetí největší hodnotou z {d\, do,
..., di —i J.
Shrneme-li,pak Ci = max(max3(di, <i2, ..di-1), Až), kde
max 3 je třetí největší hodnota z hodnot uvedených v závorkách.
V algoritmu budeme předpokládat, že prvky posloupností
А а В jsou uloženy v polích A[1.. N] a i?[l..N], hodnoty Ci
budeme ukládat do pole C[1..NJ. Tři největší z doposud
spočtených hodnot di budou průběžně uloženy v poli Z>[ 1.. 3].
Napišme proceduru max3, která ve svém výstupním para-
metru určí index j nejmenší hodnoty z D[l], D[2], D[3], což
znamená, že v D[j] je uložena třetí největší hodnota z doposud
spočtených hodnot di.

procedure max3 (var j: integer);
begin if Z>[1] < D[2] then j := 1 else j := 2;

if ОД >£>[3] then j : = 3
end;
První část algoritmu počítá hodnoty Сг :
for i := 1 to min (3, N) do begin C[ť] := max (Г, A[i]);
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ОД := ОД + ОД;
end;

for i4 to N do

begin max3 (/);
ОД := шах(ДУ], í4[í]);
ОД := C[í] + ОД;

end; .

Nyní máme N intervalů [Ai, Ci], i = 1, 2, ..., N. Platí
Ai < A% < ... < An, Ci ^ Co <L ... Cn• Máme určit
délku jejich sjednocení. Předpokládejme, že známe délku
sjednocení prvních i intervalů. Mohou nastat dva případy:
1. Je-li At > Cť-i, pak interval [Ai, Cř] má prázdný průnik
se všemi intervaly [Aj, Q] pro j < i (neboť Ci-1 ^ Ci-% ^
^ ... ^ Ci) a délku je nutno zvětšit o C* — Aj.
2. Je-li Ai ^ Ci-i, pak interval [Ai, Cř-i] je průnikem inter-
valú [At, Ci] a [Ai-1, Ci-1], a protože Cí-i ^ C,-2 Л
^ Ci, je délku nutno zvětšit o Ci — C*-i.
Shrneme-li oba případy, pak dosavadní délku je nutno zvětšit
o Ci — max(Ai, Ci-1). Protože délku prvního intervalu zná-
me, s využitím právě popsaného postupu dokončíme algorit-
mus:

F:= C[l] — A[l];
for i': — 2 to N do

F:= F + C[i] - max(A[i], C[i - 1]);
writeln(jp).

Důkaz správnosti algoritmu byl prováděn současně s jeho
návrhem, složitost je lineární.
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P - í - 2

Je dána konečná celočíselná posloupnost X\, ... Xy taková,
že N ^ 2 a X\ < ... < Áa- Navrhněte a dokažte (co nej-
lepší) algoritmus, který určí celkový počet konečných celo-
číselných posloupností Fo, ... Fa takových, že Fo ^ ... ^
^ Fjv a pro všechna i, 1 ^ i^ N, platí Vi~\ + Ví — 2*X(.
Řešeni
Podle zadání platí:

Vi-1 ^ V i pro i = 1, 2, ..., N
Vi-1+Vi=2X, i = 1, 2, ..., N

Využitím (1) a (2) dostáváme:

2Xt = Vi-1 + F( ^ Fí-i + Vt-1 = 2Fť_! => Až ^ F,_i,
i = 1, ..., N
2AŽ - Fi-i + Fť ^ F, + Vt = 2F* =>

i = 1,2, ...,N

Vztahy (3) a (4) dohromady dávají:

Ať^Fř^Xž+1 í= 1,2, ...,N-1
F0 ^ Xi, XN ^ Fa-

Každá z posloupností Fo, Fi, ..., Vy je jednoznačně určena
svým libovolným prvkem Fř- (ostatní prvky se vypočítají z rov-
nic Vj —i + Fj = 2XjJ = 1, 2, ..., iV).
Celkový počet posloupností Fo, Fi, ..., Fa je proto roven

počtu celých čísel, která mohou být г-tým prvkem (pro libo-
volné pevné i, 0 ^ i ^ N) nějaké z takových posloupností.
Řekneme, že celé číslo c má vlastnost v(i), 1 г < iV, jestliže
Xi ^ c ^ a jestliže existuje celočíselná posloupnost

(1)
(2)

(3)
Ví

(4)

(5)
(6)
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V0, V\, ..., Vt taková, že Vo ^ V\ ^ ^ Vi = c, a pro
všechna /, 1 <Z,j i je Fy-i + F; = 2Xj.
Označme jako/>(í) počet čísel s vlastností »(z).
Potom />(^т — 1) je rovno hledanému počtu posloupností
Fo, Fl, VN. Platí: Jestliže p(i) — 0 pro nějaké i, pak
p(i + 1) = p(i + 2) = ... = p(N — 1) = 0. Dále platí
p(l) = X? — X\ + 1 (čísla s vlastností ©(1) jsou totiž právě
jen všechna celá čísla splňující nerovnost X\ ^ с ^ Хг).
Jsou-li ci a C'2 čísla s vlastností v(i), i — 1, 2, ..., N — 1 tako-
vá, že ci = c-2 — k, 0, pak pro čísla bi, bi taková, že
ci + bi = 2Xi+i, C2 + b2 = 2Xi+i, z těchto rovnic dostane-
me bi = 62 +

Je-li c rovněž číslo s vlastností v(i) takové, že ci ^ с ^ c?, pak
číslo 6 takové, že c + b = 2X(+i3 vyhovuje nerovnosti
bi ^ b ^ b2- Z těchto úvah a z definice vlastnosti я(г) vyplývá,
že jsou-li všechna čísla s vlastností vix), i — 1, 2, ..., N — 2,
právě všechna celá čísla c splňující nerovnost D
pro nějaké D a H, pak všechna čísla b s vlastností v(i 4-1)
musí splňovat nerovnosti 2Xí+i — H ^ b 2Xi+i — D
a Xi+i ^ b ^ Xi+2 a zároveň každé celé číslo splňující tyto
nerovnosti má vlastnost v(i +1).
Protože čísla s vlastností z>(l) jsou všechna celá čísla vyhovující
nerovnosti Xi c Xo, jsme tedy schopni počítat počty
p(i) postupně pro i = 2, 3, ..., N — 1, jak je zachyceno
v algoritmu: (Předpokládáme, že prvky posloupnosti X jsou
uloženy v poli AJ1. .N]}

c^H

D := X[l]; H := X [2]; počet := H — D + 1;
(počet = p (1)}
i := 2;
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while i < N and počet > 0 do
begin {počet = p (i — 1)}

Dl := D;
D := max (X [i], 2* X [г] - Я);
Я := min (X [г' + 1], 2 * X [г] - D 1);
if D ^ Я then počet := Н — D + 1

else počet := 0;
(počet = p (í)}
i — i -f- 1

end;
writeln (počet).

Algoritmus je lineární, důkaz správnosti je obsažen v návrhu
algoritmu.

P - 3 - 3

Je dán následující program:

10 LET Y =1
20 IF X > 100
THEN 60
30 LET X = X + 11
40 LET Y = Y + 1
50 GOTO 20
60 IF Y =1
THEN 100
70 LET X =X - 10
80 LET Y = Y - 1
90 GOTO 20
100 STOP

Y:= 1;
while (Y <> 1) or (X < = 100)
do if X < = 100

then

begin X := X + 11; {30}
Y := Y + 1

end

else

begin X := X — 10; {70}
Y := Y -l

end;
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Nechť m je libovolná celočíselná hodnota vstupní proměn-
né X. Označme A(m), resp. B(m) počet provedení příkazu
30, resp. 70 při výpočtu pro m. Určete a zdůvodněte vztah
mezi hodnotami A(m) a B(t?í).

Řešení
Současně s příkazem 30, resp. 70 se vždy provádí i příkaz
bezprostředně následující, tj. У := У + 1, resp. Y : =
Y — 1. Na počátku je proměnné Y přiřazena hodnota 1,
tj. před cyklem platí Y = 1. Cyklus končí při splnění pod-
minky Y = 1 and X > 100. Proto v případě ukončení
cyklu je hodnota proměnné Y před jeho provedením a po

jeho ukončení stejná, a tedy počet provedení příkazu 30 se
rovná počtu provedení příkazu 70, tj. A(m) = B(m).
Nyní dokážeme, že pro každé m cyklus končí. Je-li m > 100,
pak se cyklus přímo ukončí. Předpokládejme proto dále, že
m ^ 100. Nejprve doplníme program o speciální pomocné
proměnné i3 j, n, tzv. čítače, které »počítají« počet skuteč-
ných průchodů cyklem:

Y := 1; i : — 0; / := 0; n : = 0;
while ( Y ф 1) or (X ^ 100) do

begin {A} n := n + 1;
if X ^ 100 then
begin X := X + 11;

У := У + 1;
i := i + 1

{30}

end

else

begin X := X — 10; {70}
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У := У- 1;
J J + 1

end

end

Ukážeme, že hodnota čítače n je shora omezena konstantou,
a tedy že cyklus končí. Je zřejmé, že v bodě A vždy platí

(1)n = i + /.

Tento vztah umožňuje omezit n za pomoci omezení pro /
a /. Poněvadž Y je zvětšeno o 1 vždy společně s / a zmenšeno
o 1 vždy společně se zvětšením / o 1, platí v bodě A vždy
podmínka

Y=i-j+ 1. (2)

Podobně platí i

(3)X = 11/ — 10/ -f m.

Dále si všimněme, že proměnné У je na počátku přiřazena
hodnota 1 a že У je zmenšeno jen tehdy, když У > 1.
Proto v A vždy platí

(4)У^ 1,

což společně se vztahem (2) dává, že v A vždy platí

i ^ /• (5)

Užitím (5) a (3) dostáváme

(6)11/ — 10/ + m = / + mX

a

(7)X ^ 11/ — 10/ + m = / + m.
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Sečtením posledních dvou nerovností dostaneme 2X
+ j + 2m a užitím (1) získáme v bodě A podmínku

i +

X ^ w/2 -f m. (8)

Omezením hodnot proměnné X se nám tedy podaří omezit
i hodnoty čítače w.
Při prvním vstupu výpočtu do bodu A platí X = m and
Y — 1 and n = 0. Podle našeho předpokladu je m ^ 100,
a proto v bodě A vždy platí X ^ 111. Tedy v bodě A vždy
platí

(X = m and Y = 1 and w = 0) or Z ^ 111.

Z (8) a (9) nyní dostáváme

w/2 + m and [(X = m and Y — 1 and w = 0)
or A ^ 111]

(9)

X

(10)

tedy

n = 0 or w/2 H- w ^ 111.

Hodnota čítače w je shora omezena a cyklus musí skončit.

P- I -4

(a) Navrhněte schéma S, které počítá součin dvou přiroze-
ných čísel.
(b) Navrhněte schéma S takové, že pro každé vstupní slovo X,
tvořené znaky a, b, c, je výsledek Y výpočtu dán takto:
— S(X) = X, je-li délka X sudá, a
— S(X) vznikne z X vynecháním každého třetího znaku b

zleva, je-li délka slova X lichá.
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Poznámka: Markovovy algoritmy
Konečnou posloupnost znaků nazveme slovem (napři-

klad, aba, 01AB, 1234 jsou slova). Prázdnou posloupnost,
značenou s, nazveme prázdné slovo. Počet znaků ve slově
nazveme délkou slova (slovo e je délky 0, slovo abaa má
délku 4). Zřetězení slova P = a\ ... an se slovem Q =
— b\ ... bm je slovo PQ — a\ ... an, bi ... bm (např.:
Je-li P = aabb, Q = bba, pak PQ = aabbbba’, je-li O' — e,

pak PQ' = aabb).
Jsou-li P a O slova, řekneme, že slovo P se vyskytuje

v O, jestliže existují slova U a T taková, že Q = UPT.
Nejlevější výskyt P v Q je takový, pro který má slovo U
nejmenší délku.

Nechť P a Q jsou slova. Výraz tvaru P -> Q nazýváme
obyčejné pravidlo, výraz tvaru P -> .Q nazýváme koncové
pravidlo. Zápis P->(.)0 znamená obyčejné nebo koncové
pravidlo. Konečnou posloupnost pravidel
S: (■)Qi

Pn (• )Qn
nazveme schéma. Každé schéma zadává (tzv. Markovův)
algoritmus následujícím způsobem. Výpočet podle schématu
S pro dané vstupní slovo X probíhá takto: Nalezneme
první pravidlo Pm (. )Qm takové, že Pm se vyskytuje v X.
Nejlevější výskyt slova Pm v X nahradíme slovem Qm. Nechť
Ri je výsledek tohoto nahrazení (stručně budeme psát
X f— Ri). Bylo-li použito koncové pravidlo P;
výpočet končí a výsledek výpočtu je slovo Ri. Bylo-li použito
obyčejné pravidlo Pm -» Qm, použijeme na Ri stejný postup,
který byl aplikován na X (schéma prohledáváme opět od

■ Qm, pakm
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začátku) atd. Jestliže někdy nastane situace, kdy se žádné
ze slov Pi, Pn nevyskytuje v právě zpracovaném slově
Ri, pak výpočet končí s výsledkem Rt. Při tom je možné,
že popsaný proces nikdy neskončí. Pak řekneme, že výsledek
výpočtu není pro slovo X definován. Je-li výsledek výpočtu
pro X definován, označíme ho S(X).
Příklad 1

Navrhněte schéma S, které připíše na konec každého slova X,
tvořeného ze znaků 1, 0, slovo 10. Řešením je schéma

S: cl —> lc

cO —> 0c

.10c

Schéma S používá pomocný znak c. Jako první bude apli-
kováno pravidlo e -> c, neboť předchozí pravidla obsahují
na svých levých stranách znak c, a ten se nevyskytuje v žád-
ném vstupním slově. Navíc, prázdné slovo se vyskytuje na
začátku každého slova. Následuje opakované užití vždy
jednoho z prvních dvou pravidel, a to tak dlouho, dokud
se c »neposune« až na konec. Poté je aplikováno třetí pra-
vidlo a výpočet končí, neboť se jedná o koncové pravidlo.
Například pro vstupní slovo X = 1011 probíhá výpočet
takto:

Ri = clOll, R2 = lcOll, i?3 = lOcll, R4 = lOlcl, Rs =
= 1011c, Rq = 101110. Stručně zapsáno 1011 [— clOll 1—
h lcOll 1— lOcll H 101 cl H 1011c H 101110.

Poznamenejme ještě, že uvedené schéma S lze zapsat také
ve zkrácené podobě ve tvaru:
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S: cx xc

.10c

£ C

kde x g [0, 1}, ve kterém jsou první dvě pravidla původního
schématu zapsána jako jedno pravidlo.
Příklad 2

Navrhněte schéma S, které »zdvojuje« vstupní slovo X,
tvořené ze znaků a, b, tj. S(X) — XX. Řešením je schéma

(1)S: za aAz

(2)zb bBz

(3)Aa -> aA

(4)bAAb

(5)Ba aB

(6)Bb Bb

(7)tz

(8)At ta

(9)Bt tb

(10)t £

(11)£

Schéma S používá pomocné znaky А, В jako dvojníky pro

znaky a, b a další pomocné znaky z, t.
První bude aplikováno pravidlo (11), kterým se na začátek
slova X připíše znak z. Pak jsou opakovaně aplikována pra-
vidla (1) a (2) připisující za každý znak jeho dvojníka. Přitom
se znak z posouvá doprava tak dlouho, dokud se nestane
posledním znakem. Dále jsou aplikována pravidla (3)—(6),
kterými se přesunou všechny znaky А, В doprava. Přitom
zůstává zachováno vzájemné pořadí znaků a, b i vzájemné
pořadí znaků A, B. Tím vznikne slovo tvořené vstupním
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slovem X, následovaným jeho »dvojníkem«. Pravidlem (7)
se znak z změní na znak t. Pravidly (8) a (9) jsou pak po-
mocné znaky А, В nahrazeny svými protějšky a, b. Výpočet
končí užitím pravidla (10), které odstraní pomocný znak t
ze středu slova. Například pro vstupní slovo X = abb pro-
bíhá výpočet takto:
X = abb |— zabb (— aAzbb |— aAbBzb 1— aAbBbBz 1—

1—abABbBz (— abAbBBz f— abbABBz \— abbABBt I—

b-abbABtb (— abbAtbb |— abbtabb \— abbabb.

Markovovy algoritmy můžeme používat i к práci s přiroze-
nými čísly. Pro její usnadnění se často přirozené číslo n

reprezentuje slovem n, které je definováno induktivně takto:
0 = a, n + 1 = na. Každou £-tici přirozených čísel (ni,
..., njc) reprezentujeme slovem (wi, ..., «&) = npbn^b ...

... bnjc. Například (3, 1,2) = aaaabaabaaa. Poznamenejme,
že jsou možné i jiné reprezentace.
Příklad 3

Navrhněte schéma S, které počítá součet tří přirozených
čísel. Vstupním slovem bude výše uvedená reprezentace této
trojice. Řešením je schéma

S: ba

Každý výpočet podle schématu S končí po dvou aplikacích
jediného pravidla schématu. Všimněte si, že na rozdíl od
příkladů 1 a 2, kde výpočet končil aplikací koncového pra-
vidla, zde končí výpočet tím, že pravidlo již nelze více apli-
kovat. Např. pro součet 1 + 1 + 2 je vstupní slovo X —

= aabaabaaa a výpočet proběhne takto: aabaabaaa |—
(— aaabaaa b- aaaaa. Výsledek reprezentuje číslo 4.
Řešeni
a) Dvojici m, n přirozených čísel (m, n ^ 0) reprezentujeme

e
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slovem am+1ban+1. Algoritmus je založen na postupném
»sčítání«. Řešením je schéma

(1)S: FAA FX

FX (2)a

(3)aX Xa

(4)XaEEX

(5)E D

(6)aDh -> bE

(7)Db -> F

(8)aD -> Da

(9)AD DA

(10)D66D

AC CA (И)
6C (12)Db

(13)ADBa

-> C (14)D

(15)Aaba bB

Aa aA (i6)
(17)/1£

Schéma S používá pomocné symboly А, В, C, D, E, F a A.
Algoritmus má 4 části. Nejprve je vstupní slovo am+1bau+1
převedeno pravidly (15) —(17) na tvar ambBan. Ve druhé
části (pravidla (11)—(14)) je toto slovo převedeno na tvar
amDbXn. Slovo Xn slouží к zapamatování druhého čini-
tele pro potřeby sčítání. Třetí část (pravidla (3)—(10))
realizuje vlastní násobení. Pro každý symbol a vlevo od b
je za Xn připsáno slovo an tak, že Xn je »zkopírováno«.
Přesněji můžeme jeden krok činnosti algoritmu v této části
popsat takto: am~iDbXnai-n H am~l~1 bEXnai-n 1— ... |—
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am-i-4X*anDai,n l_ ... h- am~i~1DbXna^+l^n (pro i >
> 0). Tato část končí aplikací pravidla (6). Poslední část
(pravidla (1)—(2)) pak již jen vymaže pomocné X a doplní
jeden symbol a, čímž dostaneme výsledný tvar a

b) Řešením je schéma (ve zkráceném zápisu, kde x,ye {a, b})

m • и-l-l

S: Ba -» аВ (1)
bCBb (2)

Ca —> aC
Cb -> bD

(3)
(4)

Da (5)aD

Db (6)В

(7)В .£

С (8).£

(9)D

(10)Аху -> лгуЛ
(11)
(12)Е -> В

Ех (13)
(14).4 .£

А (15)

Schéma používá pomocné symboly А, В, С, D, Е. Nejprve
je pravidlem (10) pomocí A po dvojicích znaků procházeno
vstupní slovo X. Je-li slovo sudé délky, pak je výsledek
čtení tvaru YA, je-li liché délky, pak YAa nebo YAb. Pro
lichou délku je pravidly (11)—(13) toto slovo převedeno na
tvar BX a tím připraveno к provedení požadované modifi-
kace. Následuje postupné procházení slovem pravidly
(1)—(6), přičemž pomocný symbol určuje, kolikáté b (mod 3)
je hledáno: В - první, C - druhé, D - třetí. Třetí symbol b
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je pravidlem (6) vymazán. Výpočet končí aplikací jednoho
z pravidel (7), (8), (9) po zpracování celého slova. Pro slovo
sudé délky je pomocné A pravidlem (14) vymazáno a vý-
počet bezprostředně končí s S(.AT) = X.

P - И -1

Jsou dána dvě celočíselná pole А, В (1..ЛГ) taková, že
N > 2, a pro všechna z, 1 ^ i ^ N, platí A(z) ^ N, B(i) ^
^ N, A(i) ^ B(i), A(i) > i nebo A(i) = 0, B(i) > i nebo
B(i) = 0.

Mezi N městy, očíslovanými postupně od 1 do N, je
vybudována jednosměrná silniční síť podle těchto pravidel:

1. Pro všechna i, 1 5Š г N, vede přímá silnice z města i
do města A(i), jestliže A(i) > 0, a z města i do města B(i)3
jestliže B(i) > 0.

2. Žádné jiné silnice nejsou.
Navrhněte a dokažte (nejlépe lineární) algoritmus, který

určí, kolika různými způsoby se lze dostat z města 1 do
města N.

Poznámka. Algoritmus je lineární, jestliže existuje přirozené
číslo L takové, že žádný krok algoritmu se neprovede více-
krát než L * N krát.

Řešení
Z definice silniční sítě vyplývá, že každá přímá silnice vy-
chází z města, jehož číslo je menší než číslo města do něhož
vede, a že mezi žádnými městy nevede více než jedna přímá
silnice. Čísla měst, kterými projíždíme při libovolné cestě
v silniční síti, tvoří tedy vzestupnou posloupnost a do žád-
ného města, kterým jsme projeli, se nemůžeme již vrátit.
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Pro všechna z, 1 ^ i ^ N, označme jako p(i) počet cest
z města 1 do města i a jako PŘED(z) množinu čísel těch
měst, z nichž vede přímá silnice do města i. Definitoricky
položme p(l) = 1. Z výše uvedených vlastností silniční
sítě zřejmě plyne, že pro všechna i, 1 < i ^ N, je p(i) rovno
součtu všech p(k), pro něž k patří do PŘED(z). Protože pro
všechna k z množiny PŘED(z) platí k < i, můžeme hodnotu
p(i) stanovit, jakmile známe hodnoty p(k) pro všechna k,
1 ^ k < i. To nás vede к tomu, že hodnoty p(i) budeme
zjišťovat pro města v pořadí i = 2, 3, ..., N.
Výpočet hodnoty p(i), která je součtem zmíněných sčítanců,
budeme průběžně provádět ve složce c[i] pomocného pole
c[l...iV] a budeme přitom vycházet ze způsobu zadání
silniční sítě v polích A[1. ,N] a B[l. .N].
Jestliže totiž A[k\ — i a i Ф 0, pak ^ePŘED(i), a máme-li
již vypočtenou hodnotu pik), která je jedním ze sčítanců
tvořících součet p(i), můžeme ji hned přičíst к průběžnému
součtu v ф']. Analogická úvaha platí pro pole B.
Algoritmus navrhneme tak, aby byla zachovávána platnost
tvrzení Pij), 1 ^ i ^ N.

P(i): Pro všechna /, 1 < j N, platí, že c[j] je součet všech
p(k) takových, že k e PŘED (/) and {k < i).

for i := 2 to N do c[i] : — 0;
c[l] := 1;
(Zde platí c[l] = /O)}
for i 1 to N — 1 do

begin {zde platí P(i) a cjl] = />(!)}
if A[i] Ф 0 then c[A\i]\ := [г]] + с[г];
if 5[г] ф 0 then с[5[г]] := c[B[i]\ + ф’];
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[zde platí P(i + 1)}
end;

[zde platí P(N) => v c(N) je hledaný výsledek}
writeln (c[N]).

Z platnosti P(i) a c[l] = p(\) před provedením těla cyklu
a z vlastností hodnot p(j) plyne, že pro všechna у, 1 S j ú h

je c[j) — p(j). Přičteme-li tedy známou hodnotu p(i) к těm
hodnotám c[k], pro něž zePŘED(&), splníme podmínku
P(i + 1). Algoritmus je lineární.

P - íí -2

//-sekvence je konečná posloupnost tvořená z 0 a 1 podle
těchto pravidel:

1. 0 je//-sekvence,
2. Jsou-li H a H' dvě //-sekvence, pak i spojení 1HH'

je //-sekvence a
3. žádné jiné //-sekvence nejsou.
Je dáno pole H(\. .N) tvořené z 0 a 1, N ^ 1. Navrhněte

a dokažte algoritmus, který rozhodne, zda konečná posloup-
nost H(1) ... H(N) je //-sekvence.
Příklad

Posloupnost 1011000 je //-sekvence, neboť vznikla spojením
podle bodu 2 ze sekvencí H = 0 a H' — 11000, při tom
H je //-sekvence podle bodu 1, H' je //-sekvence, která
vznikla opět podle bodu 2 z H" = 100 a //-sekvence 0.
Konečně H" je spojením podle bodu 2 //-sekvencí 0 a 0.
Řešení

Nejprve si všimněme, že podle druhého pravidla je každá
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(netriviální) //-sekvence tvaru \HiH%. Jestliže chceme
zjistit, zda je zadaná posloupnost začínající 1 //-sekvencí,
musíme zjistit, zda je zbytek této posloupnosti (po odstranění
první 1) zřetězením dvou //-sekvencí. Předpokládejme, že
Hi je opět tvaru I//3//4. Původní posloupnost bude H-sek-
vend, jestliže je zbytek posloupnosti //1//2 (opět po odstra-
nění prvního symbolu) zřetězením //3ZZ4Z/2 tří //-sekvencí.
Zobecnění těchto úvah nás přivádí к závěru, že úlohu umíme
vyřešit, pokud můžeme zjistit, zda je nějaká posloupnost
z 0 a 1 zřetězením určitého počtu //-sekvencí. Vzhledem
к tomu, že vlastní začátek //-sekvence není H-sekvencí, lze
posloupnost z 0 a 1 rozložit nejvýše jedním způsobem do
zřetězení //-sekvencí. Počet //-sekvencí je při tom jedno-
značně určen prvním symbolem posloupnosti, a sice takto:
(1) Posloupnost tvořená jedinou 0 je H-sekvencí (pravidlo 1).
Tedy posloupnost z 0 a 1, která začíná 0, je zřetězením
m //-sekvencí, m ^ 1, právě když je zbytek této posloup-
nosti zřetězením m — 1 //-sekvencí.

(2) Posloupnost začínající 1, která je následována dvěma
//-sekvencemi, je //-sekvence (pravidlo 2). Proto posloup-
nost z 0 a 1, která začíná 1, je zřetězením m H-sekvencí,
m ^ 1, právě když je zbytek této posloupnosti zřetězením
m -f- 1 //-sekvencí. Algoritmus vychází bezprostředně z pro-
vedeného rozboru. Jeho idea je následující:
Budeme postupně procházet zadanou posloupností a na
základě právě zpracovávaného symbolu určovat, z kolika
//-sekvencí musí být zřetězen zbytek. Původní posloupnost
bude //-sekvencí, právě když po zpracování celé posloup-
nosti má následovat nulový počet //-sekvencí.
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m:= 1; n : = 0;
while (m Ф 0) and (n Ф N) do

begin n := n + 1;
H(n) — 0 then m : = m — 1 {viz (1)}

else m := m + 1 (viz (2)}
if

end;
if (m = 0) and (и = N) then write ('je //-sekvence')

else write ('není //-sekvence').
Algoritmus je lineární.

P - II - 3

V urně je m bílých a n černých kuliček, m, n ^ 0, m + n ^ 2.
Náhodným způsobem vytáhneme z urny dvě kuličky. Jsou-li
stejné barvy, vložíme místo nich do urny jednu černou ku-
ličku; nejsou-li stejné barvy, vložíme místo nich do urny
jednu bílou kuličku. Celý postup opakujeme tak dlouho, až
v urně zbude jedna kulička. Předpokládejme při tom, že máme
к dispozici neomezený počet černých kuliček.
a) Stanovte, po kolika krocích popsaný algoritmus skončí.
b) Pro všechny dvojice m, n takové, že m + n = 4, určete

barvu poslední kuličky v urně.
c) Určete barvu poslední kuličky v urně v závislosti na m

a n.

Řešení
a) Při každém kroku algoritmu odebereme z urny dvě ku-
ličky a vrátíme jen jednu. Při každém kroku dojde tedy ke
snížení počtu kuliček v urně o 1. Na počátku je v urně m + n
kuliček. Algoritmus končí, jestliže v urně zůstává jedna ku-
lička. Algoritmus tedy končí po m + n — 1 krocích.
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b), c) Zkoumejme nejprve, jaký vliv mají jednotlivé tahy na

pcčet černých a bílých kuliček v urně:

— jsou-li taženy dvě černé, pak je vrácena jedna černá;
počet bílých se nemění a počet černých se zmenší o 1;

— jsou-li taženy dvě bílé, pak se počet bílých sníží o 2
a počet černých se zvětší o 1;

— je-li tažena černá a bílá, pak po tahu je v urně o jednu
bílou méně, ale po přidání další bílé (jejím vrácení) je
jejich počet opět stejný jako před tahem a počet černých
se zmenší o 1.

Z uvedené analýzy vyplývá, že po každém tahu je počet
bílých kuliček v urně bud stejný jako před tahem, nebo o 2
menší. Proto poslední kulička v urně je černá, právě když
počet bílých kuliček na počátku je sudý.
Odpověd na část b) dostáváme aplikací právě získaného zá-
věru na případ, kdy m + n = 4.

P - II - 4

Nechť P = a0 ... an je neprázdné slovo. Slovo opačné ke
slovu P je slovo P' = an ... ao-

Navrhněte schéma S, které určí, zda vstupní slovo A", tvořené
znaky А, В, C, je tvaru PP' pro nějaké slovo P, tj.

S(AT) = £ právě když X = PP,
pro nějaké slovo P (e je prázdné slovo).
Řešení
Pokud by byl ve vstupním slovu vyznačen střed, tj. slovo
by bylo tvaru PtP', te{A,B, C}, pak by řešením bylo
schéma
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ала -> t, а Е {А, В, С)
t

které od středu postupně maže symetrickou část. Určení
středu však nemusí být snadné.
Všimněme si, že slovo X je tvaru PP' právě když slovo XX
je tvaru RR', neboť X = X' právě když X je tvaru PP'.
Tato skutečnost dovoluje řešit nyní úlohu tak, že vstupní
slovo X nejprve převedeme na slovo XtX s vyznačeným
středem (»zdvojíme je«), a pak budeme zkoumat symetričnost
shora uvedeným způsobem. Ke zdvojení použijeme jako
pomocné symboly dvojníky А, В, С к symbolům А, В, C,
symbol t к vyznačení středu a symbol z jako ukazatel použí-
váný při procházení slovem. Řešením úlohy je schéma

S: za (1)aaz

(2)db -> ba

(3)t

(4)at ta

(5)a ta t

(6)t

(7)
kde a, be {А, В, C).
Nejprve je aplikováno pravidlo (7), kterým se na začátek
slova X připíše symbol z (tj. X f— zX). Pak je opakovaně
aplikováno pravidlo (1) připisující za každý znak jeho dvoj-
nika. Aplikací pravidla (2) se přesunou všechny znaky
А, В, C doprava za všechny znaky А, В, C. Zůstává zacho-
váno vzájemné pořadí symbolů ve slově (tj. zX |— ... |— XXz).
Pravidlo (3) mění z na t a pravidlo (4) mění dvojníky opět
v původní symboly a současně vyznačí střed (tj. XX'z 1—
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h- ... 1— XtX). Pak je aplikací pravidla (5) prověřována
symetričnost. Pravidlo (6) končí činnost algoritmu a právě
v případě, že slovo bylo tvaru PP', je výsledkem prázdné
slovo.

Р-Ш-1

Jsou dána dvě celočíselná pole A, 5(1. .A7) taková, že

1,
A(z) ^ 0 a B(i) > 0 pro všechna i, 1 ^ i rg A7,
J(l) + ... + A(N) = 5(1) + ... + B(N).

Podél kruhové závodní dráhy je umístěno N nádrží s ben-
zínem, po řadě očíslovaných od 1 do N. Po nádrži s číslem N
následuje opět nádrž s číslem 1. V nádrži i je A(i) litrů ben-
zínu a spotřeba benzínu při cestě od nádrže i к následující,
tj. (i mod N) + 1, je B(i) litrů benzínu.

Navrhněte a dokažte algoritmus (nejlépe lineární), který
určí všechny nádrže, od kterých může vůz, s počátečně
prázdnou a dostatečně velkou nádrží, projet celým okruhem
(ve směru daném očíslováním nádrží).
Poznámka 1

(i mod N) je zbytek po dělení čísla i číslem N.
Poznámka 2

Algoritmus je lineární, jestliže existuje přirozené číslo L
takové, že žádný krok algoritmu se neprovede více než
L* N.

Řešení
Ukažme nejprve, například matematickou indukcí vzhledem
к počtu nádrží N, že existuje alespoň jedna nádrž, od které
se dá objet celý okruh.
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Pro N = 1 to zřejmě platí. Předpokládejme, že tvrzení platí
pro N — 1 a ukažme, že platí i pro N. Ze zadání plyne, že
musí existovat nádrž y, od níž se dá dojet к nádrži j + 1.
Vyřadme nádrž j -f- 1 z okruhu tak, že její obsah přidáme
do nádrže j (k A(j) přičteme A(j + 1)) a upravíme spotřebu
benzínu při jízdě od nádrže j к následující (k B(j) přičteme
B(j + 1)). Máme nyní okruh s N — 1 nádržemi splňující
podmínky zadání. Podle předpokladu existuje nádrž k,
od níž se dá objet celý okruh. Od téže nádrže k se dá ovšem
objet i původní okruh s N nádržemi.
Definujeme funkci S(í, /), která udává obsah nádrže auto-
mobilu po jízdě od nádrže i к nádrži y, přičemž vozidlo s po-
čátečně prázdnou nádrží natankuje poprvé u nádrže i, poté
u každé nádrže, kolem které projíždí, a dojede к nádrži y,
aniž by u ní tankovalo.

7—1

3 (A(k) — B(k)) pro i < j
к= 1
N 7-i

2 (A(k) - B(k)) + 2 (A(k) - B(k)) pro i S j.
к= 1 k = 1

Funkce (na rozdíl od reality) může nabývat i záporných
hodnot. Platí S(i, j) = S(i, j — 1) + A(j — 1) — B(j — 1).
Od nádrže i, 1 ^ i ^ N, se dá objet celý okruh právě tehdy,
když splňuje podmínku
d(í): pro všechna y, 1 S j S N je S(i, j) ^ 0.
Budeme zjišťovat postupně pro nádrže i = 1, 2, ..., 2V,
zda se od nich dá dojet к nádrži 1. Dá-li se od nádrže i dojet
к nádržím h — i + 1, i + 2, — 1, kde i ^ j ^ iV,
tj. 5(t, Q pro všechna ale nedá se dojet к nádrži y,
tj. 5(z, y) < 0, pak ani jedna z nádrží i ^ h ^ j — 1,
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nesplňuje podmínku d(h) (při jízdě cd i к j jsme jimi pro-

jížděli s nezáporným obsahem nádrže, a přesto jsme nedc-
jeli) a jako následující budeme prověřovat nádrž j. Tímto
způsobem najdeme minimální k takové, že od nádrže k se
dá dojet к nádrži 1. Kdyby nádrž k nesplňovala podmínku
d(&), nesplňovaly by podmínku d(h) ani nádrže h = k + 1,
..., N, a protože rovněž nádrže m = 1,2, ..., k — 1 ne-

splňují d(m), byl by to spor s existencí alespoň jedné nádrže
splňující podmínku d. Nádrž k tedy splňuje podmínku d(k)
a všechny ostatní nádrže h splňující d(A) jsou ty, pro něž
S(k, h) = 0.
Algoritmus

j : = 1; k := 1, s: = 0;
while j ^ N do
(zjišťuj, zda se dá od nádrže k dojet к nádrži /}

begin í := í + A[j] - B[j];j : = / + 1;
if 5 < 0 then begin k : = /; s := 0 end

end;
(od nádrže k se dá objet celý okruh, od 1,2, ..k — 1
nikoliv }
writeln(&); í := A[k\ —

for j : = k + 1 to N do
begin if s — 0 then writeln (;);

í := Я- A[k\ -
end;

Důkaz správnosti je obsažen v argumentaci pro návrh algo-
ritmu. Algoritmus je lineární.
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P- 111 -2

Je dáno celočíselné pole A(l, ..., N), N št. 1. P-sekvence
délky k pro pole A je celočíselná posloupnost pi, ..., pk ta-
ková, že k ^ 1, pro všechna i, 1 ^ i ^ k, platí 1 ^ pi ^ N
a pi-1 < Pí ^ A(pi~i).

Navrhněte a dokažte co nejlepší algoritmus, který určí ma-
ximální délku P-sekvence pro pole A.
Řešení
Jedním z mnoha způsobů řešení úlohy je nalézt pro každé /,

délku m(j) nejdelší P-sekvence, jejíž poslední
člen je/, a z hodnot m(j) vybrat maximální.
Označme jako P(j, z)-sekvenci P-sekvenci, jejíž poslední člen
je j a ostatní členy p vyhovují nerovnostem 1 p a p < i.
Označme dále jako d(j, i) délku nej delší P(j, f)-sekvence.
Zřejmě d(j, 1) = 1, d(j, k) ^ d(J, 1) pro k < 1 a d(j,j) = m(j)
pro všechna /, 1 fSj / ^ N.
Hodnoty d(j, 1) tedy známe, přirozeným dalším postupem je
počítat hodnoty d(j, i + 1) na základě znalostí hodnot d(j, i).
Hodnoty d(j, i) budeme ukládat v pomocném poli c[l. .N],
maximum z již vypočtených hodnot m(j) v proměnné m
a algoritmus budeme navrhovat tak, aby při výpočtu byla
dodržována platnost tvrzení Q(i):

c[j] = d(j, i) pro všechna/, 1 ^/ ^ N
a současně m = max{m(l), m(2), ..m(i)} .

První verze algoritmu může tedy vypadat takto:
for i: = 1 to N do ф] : = 1;
rn := 1;

{zde platí Q(l)}
for i1 to N — 1 do
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begin (zde platí Q(ť)}
S; (S je příkaz pro výpočet hodnot d(j, i -f 1)}

(zde platí Q(i + 1)}
end;

(zde platí Q(N)}
writeln(m)

Počítáme-li hodnoty d(J, i + 1) na základě již dříve vypočte-
ných hodnot d(j, i), vyjdeme z těchto faktů
— zřejmě d(j, i -j- 1) = d(j, i) pro všechna /, 1 5^/ ^ i,
— hodnota d(j, i + 1) se může lišit od d(j, i) jen tehdy, exi-

stuje-li P-sekvence s posledním členem j a předposledním
členem i. Z definice P-sekvence plyne, že v tom případě
musí být j fý A[i],

Stačí tedy počítat jen hodnoty d(j, i + 1) pro j splňující ne-
rovnosti i -f 1 <:j,j ^ N,j ^ A[i].
Příkaz S můžeme částečně rozepsat:

for j := i + 1 to min(A/’, A[ÍJ) do
begin U;
end;

M;

Jedinou P(j, i + l)-sekvencí s délkou větší než d(j, i) může
být P-sekvence vytvořená z nejdelší P(i, f)-sekvence (její délka
je d(i, i) přidánímj jako posledního členu. Vzniklá P-sekvence
je P(j, i + l)-sekvencí a její délka je d(i, i) + 1. Toto využije-
me při dokončení příkazu S.

for j i + 1 to min(N, A[i]) do
if c[i] + 1 > c[j] then c[j] : = c[i] + 1;

(hodnota d(i -f 1, i + 1) = m(i + 1) je nyní v c[i + 1]}
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if c[i -f 1] > m then m : = c[i + 1];

Konečná verze algoritmu:

for i: = 1 to N do ф] : = 1;
rn := 1;
{zde platí Q(l)|
for i: = 1 to N — 1 do

{zde platí Q(i)}
for j i + 1 to min(Af, A[i]) do
if c[i] + 1 > c[j] then c[j] c[i] + 1;
if c[i + 1] > m then m := c[i + 1];

(zde platí Q(i + 1)}

begin

end;
{zde platí Q(iV)}
writeln(m).

Důkaz správnosti algoritmu byl prováděn současně s kon-
strukcí algoritmu. Uvedený algoritmus má kvadratickou slo-
žitost.

Р-Ш-3

Je dán kruh s 16 světly a vypínač. Každé světlo se nachází
právě v jednom ze dvou stavů - svítí, nesvítí. Jedno otočení
vypínačem vyvolá změnu stavu každého světla v závislosti na
dosavadních stavech tohoto světla a světla následujícího (ve
směru pohybu hodinových ručiček) podle těchto pravidel:
1. Jestliže světlo i jeho následovník svítí, pak světlo svítí dále.
2. Jestliže světlo svítí a jeho následovník nesvítí, pak světlo

přestane svítit.
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3. Jestliže světlo í jeho následovník nesvítí, pak se světlo roz-
svítí.

4. Jestliže světlo nesvítí a jeho následovník svítí, pak světlo
nesvítí dále.

Dokažte, že pro libovolné počáteční stavy světel budou nej-
výše po 16 otočeních vypínačem svítit všechna světla.
Řešení
Máme dva možné stavy každého světla. Tyto stavy budeme
modelovat pomocí pravdivostních hodnot (pravda, nepravda)
a změnu stavu jako logickou funkci b argumentů i (číslo
světla) a j (pořadové číslo otočení vypínačem), i, j ^ 0, defi-
novanou takto:

b(i,j) =»z-té světlo svítí po y-tém otočení«.
Uvažujme situaci po j otočeních a popišme situaci, která na-
stane po dalším otočení, tj. vyjádříme hodnotu b(i,j +1) po-
mocí hodnot b(i, j) a b(i + 1, ;). Platí, že světlo i bude po

j + 1 otočeních svítit, právě když světla i a i + 1 po j otoče-
nich současně obě bud svítila, nebo nesvítila, což vyplývá
z pravidel [1] a [2].
Formálně píšeme

Ki,j+ 1)= W,i) = Ki+ i,/)]-
Podobně z pravidel [3] a [4] dostáváme

b(i + 1 ,j)= [b(i,j + 1) = b(i,j)] .

Vztahy (1) a (2) zapíšeme (vzhledem к asociativitě logické
ekvivalence) do jediného výrazu

KhJ + 1) = b(i,j) = b(i + 1,7) .

Naším cílem je ukázat, že b(i,j + 16) je pravda. Za tímto úče-
lem dokážeme obecnější výsledek, a sice ten, že platí

(1)

(2)

(3)
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(4)H(k): b(i,j + 2*) s= b(i,j) == b(i + 2k,j) .

Potom, protože 16 = 24 a b(i,j) he= b(i + 16,/) je pravda, bude
platit, že i b(i,j + 16) je pravda. Vztah (4) dokážeme indukcí.
Pro & = 0je2° = la H(0) platí podle (3).
Nyní předpokládejme, že platí H(k) pro k > 0, a dokažme
platnost H(k +1). Podle indukčního předpokladu platí

b(i,j + 2k + 2k) = b(i,j + 2k) = b(i + 2k,j + 2k) (5)
a rovněž i

b(i + 2*,/ + 2k) = b(i + 2k,j) = b(i + 2k + 2*,/). (6)

Spojením vztahů (5) a (6) dostáváme

KU + 2Í+1) = KU + 2ř) = K> + 2*,/) = К» + 2*+1,Л . (7)

Protože však

K>',/ + 2») = Ki,i) = + 2*,/),

platí i

Я(Л + 1): b(i,j + 2k+1) = fe(b/) = K* + 2*+1,/) •

P - HĚ - 4

Libovolné přirozené číslo n je reprezentováno v unární sou-
stavě slovem Un> které obsahuje právě n + 1 znaků 1 (L70 = 1,
Ui = 11, atd.). Označme Bn reprezentaci přirozeného čísla n
v binární soustavě (B0 = 0, i?i = 1, B% = 10, atd.).
Navrhněte schéma S, které převádí unární reprezentaci při-
rozeného čísla na reprezentaci binární, tj. pro libovolné při-
rozené číslo n je
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S( Un) = в
a dále navrhněte schéma T, které převádí binární reprezentaci
přirozeného čísla na unární, tj. pro libovolné přirozené číslo n

n ,

je
T(Bn) = Un .

Řešení
a) Navrhneme schéma S, které převádí unární reprezentaci
přirozeného čísla na binární. Převod bude realizován postupně,
a proto budeme pracovat se slovem tvaru XB Y, kde X repre-

zentuje doposud vytvořenou binární reprezentaci a Y zbý-
vající část unární reprezentace. Začínáme slovem BoBUn
a postupně pro každý symbol 1 v unární části přičteme jed-
ničku к binární části.

S: OA -> 1

1A -> АО

A -> 1

Bil ABl

CD
(2)
(3)
(4)
(5)В1 £

OB (6)e

Schéma používá pomocné symboly A, B. Nejprve je pravid-
lem (6) převedeno vstupní slovo Un na 0BUn. Pravidlem (4)
je započato zpracování jednoho symbolu 1, které spočívá
v jeho odstranění a v přičtení jedničky к levé části. Pravidla
(1), (3) představují přičtení jedničky bez přenosu do vyšších
řádů, (2) s přenosem. Výpočet končí vymazáním posledního
symbolu 1 pravidlem (5).
b) Binární reprezentace Bn čísla n je posloupnost am . .. ao
cifer 0 nebo 1 taková, že platí

n = am.2m + am-\.2m~1 + ... + ax.2 + a0 .
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Po úpravě můžeme číslo n vyjádřit též ve tvaru
n = (.. .(am-2 + ат-1).2 + • • • + <2i)-2 + <20 .

Řešením je proto schéma

(1)T: 1A -> All

(2)X e

Cl -> A1C
CO -> XC

(3)
(4)

C (5)1

C (6)

Pravidly (3) a (4) je postupně odebírán nejlevější symbol z bi-
nární reprezentace a pravidlem (1) je vždy provedeno násobení
dvěma, které končí aplikací pravidla (2). Pokud je odebírána
cifra 1, pak je současně pravidlem (3) i přičtena jednička.
Algoritmus končí aplikací pravidla (5), které doplňuje
(n + l)-ní jedničku do unární reprezentace čísla n.
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Medzinárodná matematická olympiáda

29. medzinárodná matematická olympiáda sa konala v dňoch
9.—21. júla 1988 v Austrálii pri rekordnej účasti 268 súťa-
žiacich zo 49 krajin. Dalších 8 krajin - Fidži, Francúzska Po-
lynézia, India, Nová Kaledónia, Reunion, Thajsko, Tonga
a Západná Samoa vyslali pozorovatelov. Československo re-

prezentovalo úplné óčlenné družstvo. Súťaž riadila medzi-
národná porota, v ktorej každá zúčastněná krajina mala svojho
zástupců.

Porota pod vedením profesora R. Pottsa z Austrálie vybrala
z návrhov úloh jednotlivých krajin 6 súťažných úloh a roz-

hodlá, že každá úloha bude hodnotená maximálně siedmimi
bodmi. Slávnostné zahájenie súťaže bolo popoludní 14. júla
za přítomnosti austrálskeho ministra práce a vzdelávania
p. J. S. Dawkinsa. Žiaci riešili úlohy 15. a 16. júla dopoludní,
prvý deň prvú trojicu úloh, 2. deň druhů trojicu úloh, na
riešenie bolo к dispozícii po 4,5 hodiny čistého času.

Texty úloh

(v zátvorke za úlohou je uvedena krajina, ktorá úlohu navrhla)

1. V rovině sú dané dve sústredné kružnice s polomermi
R a r (R > r) a bod P na menšej kružnici. Nech bod В
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je (premenlivý) bod velkej kružnice. Ďalej nech priamka
BP znovu přetíná velkú kružnicu v bode C a kolmica /
na priamku BP v bode P přetíná malú kružnicu v bode A
(ak 1 je dotyčnica ku kružnici v bode P, tak A = P). PotomI.Nájdite množinu hodnot výrazu \AB\2 -f \AC\2-\- |.BC|2.
II. Nájdite geometrické miestobodov stredov úsečky AB.
(Luxemburg)

2. Nech n je kladné celé číslo a nech Ai, A2, ..., А2И+1 sú
podmnožiny množiny B. Předpokládájme, že
a) A i má právě 2n prvkov pre i = 1, 2, ..., 2n + 1
b) А г П Aj obsahuje právě jeden prvok pre všetky i, j

1 i < j ^ 2n + 1
c) každý prvok množiny В patří aspoň do dvoch množin Aj.
Pre ktoré čísla n existuje zobrazenie/: В -> (0, 1} tak, aby
každá množina A i obsahovala právě n prvkov, ktorým je
priradená 0? (ČSSR)

3. Na množině kladných celých čísel je definovaná funkcia
/následovně:

/(1) = 1, /(3) = 3
/(2n) =/(я)

/(4n + 1) = 2/(2я + 1) -/(я)
/(4я + 3) = 3/(2« + 1) - 2/(n)

pre všetky kladné celé čísla n. Určte počet tých celých klad-
ných čísel n nepřevyšujúcich 1988, pre ktoré f(n) = n.

(Velká Británia)4.Dokážte, že množina takých reálných čísel x, pre ktoré
k 570

V

i x — k 4A =
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je zložená z disjunktných intervalov, ktorých súčet dížok
je 1988. (írsko)

5. V pravouhlom trojuholníku ABC s přeponou BC označme
D patu výšky z vrcholu A. Priamka, ktorá spojuje středy
kružnic vpísaných trojuholníkom ABD a ACD přetíná
strany AB, AC po radě v bodoch K, L. Označme S, resp.

T, obsah trojuholníka ABC, resp. AKL. Dokážte, že
S^2T. (Grécko)

6. Nech a, b sú také kladné celé čísla, že číslo ab + 1 je děli-
a2 + b2

telom čísla a- + b2. Dokážte, že číslo

prirodzeného čísla. (SRN)

je štvorcomab -f 1

Vybrané úlohy s výnimkou šiestej úlohy neboli ťažké, boli
z klasických tém a ich obťažnosť bola primeraná úrovni súťa-
že. Siesta úloha bola velmi ťažká, vyriešilo ju len 11 súťažia-
cich, jej riešenie sa zakladalo na netradičnom obrate.

Koordinácia opráv úloh prebehla hladko, takže 19. júla na
záverečnom zasadaní poroty sa rozhodovalo už len o bodo-
vých hraniciach pre jednotlivé ceny. Stanovili sa takto 33—42
bodov 1. cena, 23—31 2. cena, 14—22 3. cena. 20. júla bolo
slávnostné odovzdávanie cien a ukončenie olympiády. Prvé
ceny odovzdával austrálsky ministerský předseda p. R. jf. L.
Hawke. Medzi tými, čo získali prvú cenu bol aj 13-ročný
Austrálčan Terrence Tao (bola to už jeho tretia medzinárodná
olympiáda). Jedinú zvláštnu cenu za elegantně riešenie úlohy
získal účastník z Bulharska. Výsledky členov československého
družstva ako aj ostatných súťažiacich vidno z priloženej ta-
bulky.
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Olympiáda sa konala v rámci csláv 200 rokov bieleho osidle-
nia Austrálie, bola velmi dobré organizovaná a pre účast-
níkov bola velkým zážitkom. Československé družstvo s vý-
nimkou vedúceho delegácie, dr. F. Zítka, CSc., ktorý ako
člen jury priletel skór, přiletělo do Sydney 11. júla, 11. —13.
júla strávilo prehliadkou Sydney, 14. júla nás previezli do
Canberry, ktorá je asi 300 km na juhozápad od Sydney v ho-
rách. Všetky dalšie činnosti boli potom v Canberre. 15. a 16.
júla boli súťažné dni, 17. júla bola prehliadka Canberry,
19. júla výlet do nedalekej prirodnej rezervácie. S množstvom
dojmov sme sa vrátili domov, do Prahy, 23. júla.

ČESKOSLOVENSKÁ ÚČAST NA MMO

Do súťaže na 29. MMO vyslalo Československo šesť žiakov
vybraných na základe výsledkov dosiahnutých v domácej
MO, na přípravných sústredeniach, korešpondenčnom semi-
nári ÚV MO a iných podobných akciách. Dvaja boli v šk.
roku 1987(88 študentami 2. ročníka, dvaja 3. řečníka a dvaja
4. ročníka gymnázia, piati boli zo špeciálnych matematických
tried.

Výkon československého družstva trochu zaostal za očaká-
váním. Po vcelku dobrom výkone v 1. deň súťaže nastal 2. deň
útlm a všetci šiesti súťažiaci dosiahli spolu len 26 bodov zo
126 možných, čo vzhladom к lahkej 4. úlohe (jej trik bol
dobré známy z domácich súťaží) a nie ťažkej 5. úlohe, bolo
málo. Čakalo sa najma, že všetci československí účastníci
získajú cenu. 12. miesto v neoficiálnom hodnotení družstiev
medzi 49 krajinami opticky nie je zlé, avšak úroveň starostli-
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vosti o talenty v ČSSR a tradicie by dali tušit’ výraznejšie
úspěchy.

Československo přispělo na MMO aj prácou v jury. Jedna
zo šiestich súťažných úloh (úloha č. 2) bola československá,
všetky 3 úlohy z čsl. návrhu sa dostali do užšieho vyberu úloh
pre MMO.

Riešenia úloh

1. časť i). Označme O spoločný střed oboch kružnic, Si
střed tětivy BC, S2 střed tětivy AP, |PC| = c, \PB\ = b,
\PA\ = a. Z Pytagorovej vety pre trojuholníky APC,
APB dostaneme

\AB|2 + \AC |2 + \BC\2 = c2 + a2 + № + a2 + (b + c)2 =
= 2(a2 + b2 + c2 + bc)

a c — b
(1)

b -(- c

г,\зд= —Zrejme\S2P\ = —, \SiP\ =

(obr. 42).
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Teraz napíšeme Pytagorovu vetu pre trojuholníky OS9P
a OSiC

c — b\2 2a

(2)—

у2+u2

c 4- b\2 2a

(3)= R-+
22

Ak vynásobíme rovnosť (2) dvorná a rovnost (3) šiestimi
a vynásobené rovnosti sčítáme, tak dostaneme

2(a2 + b2 + c2 + bc) = 2r2 + 6ič2

t.j. vzhladom na (1)

\AB\2 + \BC\2 + |^C|2 = 2r2 + 6 R2

čo nezávisí na polohe bodu B.
Časť ii). Vedme bodom A rovnoběžku s tětivou BC, jej
priesečníky s váčšou kružnicou označme С', B'. Potom
APBB' aj APCC' sú pravouholníky a střed uhlopriečky
АВ je zároveň aj stredom uhlopriečky PB'. Ked bod В
prebehne celú vefkú kružnicu, tak aj bod B' prebehne celú
velkú kružnicu, to znamená, že hladaným geometrickým
miestom bodov je kružnica rovnolahlá s velkou kružnicou

1
v rovnolahlosti so stredom P a koeficientem — .

2

2. Ukážeme, že každý prvok množiny В patří právě do
dvoch množin ANaozaj, keby prvok aeAj patřil do
aspoň dalších dvoch množin A.j,Ak, tak zvyšných 2n — 1
prvkov množiny A i by patřili do zvyšných 2n — 2 množin
(okrem Aj, Aj, A*) t.j. aspoň dva by patřili do nejakej
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množiny А/ a teda А г П A; by málo aspoň dva prvky.
Potom množina В má n(2n -f 1) prvkov. Ak n je ne-

párne, tak požadované zobrazenie neexistuje, pretože ak
označíme Во = (ZeB | f(X) = 0}, tak počet prvkov mno-

n(2n + l)
žiny Bo by mal byť (totiž každý prvok patří právě

do dvoch množin), čo nie je možné. Na druhej straně, pre

párne n taká funkcia existuje napr. pre X e В, {X} =
— At n Aj položme f(X) = 0 právě vtedy, ak »vzdiale-

nosť« medzi vrcholmi Xf, Xj pravidelného 2n + 1 uholníka
X1X2 ... X-2n+i je párna. (Vzdialenosťou tu rozumieme
počet úsečiek najkratšej lomenej čiary pozostávajúcej zo
stráň 2n + 1 uholníka spájajúcej body Xt, Xj).

3. Vypočítejme niekolko prvých hodnot funkcie /

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

№ 113153719 5 13 3 11 7 15
n

Ak by sme čísla n, f(ri) zapísali v dvojkovej sústave, tak
naša tabulka by vyzerala takto

1 10 11 100 101 110 111 1000 1001 1010 1011

f(n) 1 1 11
n

1 1001 101 11011 101 11 111

Vzniká hypotéza, že zápis čísla f(n) v dvojkovej sústave
vznikne zo zápisu čísla n v dvojkovej sústave obrátením
poradia cifier (»čítaním odzadu«). Túto hypotézu dokáže-
me matematickou indukciou. Pre n — 1, n = 3 tvrdenie
platí. Nech tvrdenie platí pre všetky n < t. Ukážeme, že
platí aj pre t.

Ak t = 2w, tak n, 2n, af(n) majú podlá indukčného před-
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pokladu tvar uvedený v tabulke. Potom f(2ri) = f(ri)
a pohlad do tabulky nás přesvědčí, že tvrdenie platí.

Ak t — An + 1 tak n, 2n -f 1, 4n 4- l,/(w), f(2n 4- 1)
móžeme podlá indukčného předpokladu vyčítat z tabulky
a f(An + 1) = 2f(2n + 1) — /(я) = f(2n + 1) +
+ (f(2n + 1) —f(n)) = (10c0ci • • • Ck)2 č. b. t. d.

Ak t = 4« + 3 postupujeme podobné využijuc rovnosť

/(4« + 3) = 3/(2» + 1) - 2/(2») = 2(f(2n + 1) -/(n))+
4- f(2n 4- 1)

Dokaž nasej hypotézy je skončený. Teraz už vidíme, že
f(ri) = и ked číslo n má symetrický zápis v dvojkovej sú-

Tabulka 1

jeho zápis v dvojkovej sústave
2fc+2 2k+l 2k 2k~l ... 22 21

číslo
2o

n ^k— i

Cb-2

COCk C2 Cl

2ra 4- 1 1C\z Ck.— i

^k—1 Ck—2

CoCl

2я 0Ck Cl Co

4и 4- 1
4и 4- 3

0 1Cle Cle—1 Ck-2 Cle—3 CO

1 1Cle Cle—1 Ck—2 Cle—3 CO

f(n) CO Cl Ck—2 Ck-1 Ck

f(2n + 1)
f(2n 4- 1) - fín)
2(/(2n + 1) -

- An))

i Co Cl Ck—2 Ck-1 Ck

L 0 0 00 0

1 0 00 0 0 0
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stave. Podia předpokladu n ^ 1988, teda n je nanajvýš
11 ciferné číslo (v dvojkove) sústave). Nasledujúca tabulka
udává počet p(k) symetrických &-ciferných čísel,

123456789 10 11

p(k) 1 1 2 2 4 4 8 8 16 16 32

čo v súčte dává 94 symetrických čísel. Avšak 1988 =

(111 11000100)2 a existujú len dve symetrické 11 ciferné čís-
la prevyšujúce 1988 a to (11111011111)2 a (11111111111)2,
takže hladaný počet je 92.

k

V ^
Označmef(x) súčet ^ Na obrázku 43 vidíme na-4.

k= 1

kreslený graf funkciejy = f(x). Je totiž jasné, že na každom
intervale (г, i + 1) * = 1, 2, ..., 69 je funkcia f(x) ako
súčet klesajúcich funkcií klesajúca. To samé platí pre inter-
vály (—00, 1), (70, 00). Ďalej vidíme, že lim f(x) = —00,

x-*i~

lim f(x) = 00 pre i — 1, 2, ..., 70 a že lim f(x) =
*->í+ x—>— co

L íl1 :

У
\

r

\
: X
I

681 xJ 170хЛ2 хЛЗ, x,\ t4

\ l!

Obr. 43
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= lim f(x) = 0. Tieto fakty implikujú, že graf funkcie
X—У CO

у — /(x) je kvalitativně taký, ako je nakreslený na obrázku
43.

Z obrázku vidíme, že riešením nasej nerovnice bude
zjednotenie 70 disjunktných intervalov tvaru (i, *ř->, kde

70

Y k 5
Xi je kořeň rovnice > =

Z-i x — k
. . < *70—j Xi < X2 < .4

fc=i

pre * = 1, 2, ..., 70. To však znamená že súčet dížok
70 70

týchto 70 intervalov S = У xt — ]> *• Upravujme našu
&=i

rovnicu. Postupné dostáváme:
/=i

70

k(x — 1)(jc — 2) ... (x -70)I x — k
к = 1

5
= — (*-l)(*-2)...(*-70)

o - 1) (x - 2) ... O - 70) -
70

4 у» k(x — 1) (x — 2) ... (я — 70)
5 Zu ' = °

к = 1

teda rovnicu tvaru

#70 -f лвол:69 + ... + ao = 0

Zo súvisu medzi koreňmi a koeficientami normovaného
70

polynomu vieme, že 2 xt — —<*69- Avšak
л = 1
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70 70 70

-2>-т2>-^69

k = 1 к= 1 k = l

í
lebo &-tý sčítance v sumě má koeficient pri v09 rovný — k.

70 70 70

Potom 5 1988 č. b. t. d.

»=i i=i /=1

5. Označme U resp. V střed kružnice vpísanej trojuholníku
ABD resp. trojuholníku ACD, Z resp. M bod dotyku
kružnice vpísanej trojúhelníku ACD a strany AC resp.
AD. Dókaz spravíme v troch krokoch:

a) ukážeme, že A UDV ~ A BAC
b) ukážeme, že A AKL je rovneramenný a pravoúhlý.
c) ukážeme, že | AL | = | AD\

a) Nech r je poloměr kružnice vpísanej trojuholníku BAC
(obr. 44), ri trojuholníku ADC, r% trojuholníku ADB.
Z podobnosti trojuholníkov ABC, DAC, DBA vyplývá; že
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Г2|/ 2
\DV\ ~ уф - \ЛС\

čo spolu s kolmosťou stráň UD, VD dokazuje, že trojuhol-
nik UDV je podobný s trojuholníkom BAC.
b) Všimnime si štvoruholník CDUL. Z podobnosti
A ABC ~ A DUVvyplývá, že |< DUV\ + |< BCA\ =

7t 3
= —

, čo spolu s faktom |4: Ш)С| = —тг dává rovnosť

3
|< £/LC| = — 7i, teda trojuholník KLA jerovnoramenny4

\AC\ \DU\ \AB |ИБ|
tedari = r |БС|5?'2 r |£C|

7T7Г

lebo |< ATLzl| = — , |< BAC\ = 2 /'
c) |ZL| = n, lebo FZL je rovnoramenný trojuholník. Po-
tom \AL\ = |^Z| + n = \AM\ + n = \AD\. Avšak A =

I
= — \AD\.\BC\, 2T = \AD\2. Požadovaná nerovnosť je

potom ekvivalentná s nerovnosťou \BC\ ^ 2\AD\, ktorú
lahko nahliadneme, ak narýsujeme Tálesovu kružnicu nad
priemerom BC.

a2 + b2
= q, qe N. Potom6. Nech

ab -f 1

(1)a2 + b2 = + q

Dokaž urobíme sporom. Ak tvrdenie neplatí, tak existujú
celé kladné čísla a, b, q, ktoré spíňajú (1) a navýše také,
že q nie je štvorcom prirodzeného čísla. Spomedzi ta-
kýchto trojíc celých čísel, zvolme tú, v ktorej je b naj-
menšie (ak je takýchto trojíc viac, tak lubovolnú z nich).

157



Nech je to trojica ao, bo, qo. Potom qo nie je štvorec a zrej-
me ao ^ ba > 0 (ináč by sme zaměnili ao, bo resp. qo = a^).
Ďalej kvadratická rovnica

x2 — q0b0x + b\ — qo = 0

má podia (1) celočíselný kořeň ao. Potom aj jej druhý ко-
reň a" je celočíselný a očividné platí aoa' = bl — qo Ф 0,
teda

blb] — qo bo
< ^ -r- = boď =

boao ao

Vzhladom к rovnosti aoa' = <?060 je zrejme a' > 0.
Čísla a', bo, qo tvoria tiež protipříklad a po záměně pre-

menných a', bo dostáváme protipříklad, v ktorom je
b < bo, čo je spor s predpokladom minimality bo.
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Celkové výsledky 29. MMO

Stát 1. cena 2. cena 3. cena Súčet

bodov

Počet

účast.

Alžírsko

Argentina
Austrália

Belgicko
Brazília

425 1

3 23

6 1001 1

3 766

6 39

Bulharsko

J Cyprus
I ČSSR
I Čína
i Ekuádor

4 2 1446

6 21

6 2 2 120

2 2016 4

11

i Filipíny
Finsko

Francúzsko
Grécko

I Holandsko

295

2 656

3 1286 1 1

6 1 65

3 856

Indonézia
Irán

Irsko

j Island
! Izrael

3 6

6 3 861

306

374 1

1 11546

Južná Korea
Kanada

Kolumbia

Kuba
Kuwait

6 3 79

6 1 1241 2

6 3 66

356

236
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Stát Počet

účast.

1. cena 2. cena 3. cena Súčet

bodov

} Luxemburg
Maďarsko

Maroko

I Mexico
1 NDR
i NSR

3 1 2 64

6 2 2 109

6 2 62

6 1 40

1 4 1455

6 4 1 1741

í Norsko
Nový Zéland
Peru

Polsko
i Rakúsko

6 33

6 1 47

6 1 55

3 1 54

6 1 1 1 110

Rumunsko

Hong Kong
Singapúr
Španielsko
Švédsko

6 2 4 201

6 2 68

6 22 96

6 34

6 1 4 115
i

Taliansko

Tunis

Turecko

USA

Velká Británia

4 1 44

4 3 67

26 65

56 1 153

36 2 121

Vietnam

Juhoslávia
ZSSR

6 41 166

6 4 92

6 4 2 217
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