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O prubéhu 37. rocniku
matematické olympiady

Matematicka olympidda je soutéz v matematice a v progra-
movéni pro z4ky zikladnich a stfednich $kol. Poradaji ji
ministerstvo $kolstvi, mladeze a télovychovy CR, minister-
stvo $kolstvi, mlddeZe a télesné vychovy SR, Jednota Cesko-
slovenskych matematikt a fyzikia Jednota slovenskych mate-
matika a fyzikd. Soutéz Fidi ustfedni vybor matematické
olympiddy (UV MO), jehoz predsedou byl ve §kolnim roce
1987—88 RNDr. Frantisek Zitek, CSc., z Matematického
ustavu CSAV v Praze, mistoptedsedy prof. RNDr. Miro-
slav Fiedler, &len korespondent CSAV z téhoz ustavu
a doc. RNDr. Branislav Rovan, CSc., z matematicko-fyzi-
kalni fakulty Univerzity Komenského v Bratislavé. Vyse uve-
dend ministerstva zastupovali v UV MO RNDr. Viclav Sila
a RNDr. ¥ilia Lukdtsovd, funkci tajemnika UV MO zastavali
doc. RNDr. Leo Boéek, CSc., z matematicko-fyzikalni fakul-
ty Univerzity Karlovy v Praze a RNDr. Karel Hordk, CSc.,
z Matematického astavu CSAV v Praze.

Tato brozurka je vénovdna pouze matematické olympiddé
na stfednich $kolach, o matematické olympiddé na zdkladnich
$koldch vychédzi jind publikace. Zici stiednich $kol soutéz
v MO ve 4 kategoriich. Kategorie P je urfena Zdkim vsech
trid stiednich $kol a je zaméfena na ulohy z programovéni.
Ostatni kategorie jsou urceny zikum, ktefi soutéZi v mate-
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matice mimo programovani, pfi¢emz kategorie A je pro zdky
3. a 4. ro¢niku, kategorie B pro zaky 2. ro¢nikl a kategorie C
pro zaky prvnich ro¢nika. V I. kole fesi soutézici viech ka-
tegorii lohy doma nebo v matematickych krouZcich, mohou
pritom pouzit raznou literaturu a konzultovat naptiklad
s ulitelem matematiky. V kategoriich A, B, C ma I. kolo
jesté cast klauzurni, pii které fesi soutézici ve Skole 3 ulohy
formou pisemné price. Podobné jako klauzurni ¢4st probihd
ve vSech kategoriich II. kolo, krajské, jez obsahuje v kazdé
kategorii tfi nebo ¢tyfi tlohy. V kategoriich A a P se kond jesté
III. kolo, celostitni. V ném fe$i soutézici v kategorii A 6 tloh,
v kategorii P 4 tlohy ve dvou pualdnech. Celostitni kola
37.ro¢niku MO se konala v Bratislavé, ve dnech 24. —27. dub-
na 1988 celostiatni kolo kategorie A a hned navazovalo ve
dnech 27.—30. dubna celostétni kolo kategorie P, nebot hodné
zdkt se probojovalo do nejvy3siho kola v obou kategoriich.
Na slavnostnim zahijeni prednesl po kritkém kulturnim
programu Uvodni slovo prof. RNDr. Miroslav Fiedler, clen
korespondent CSAV a mistoptedseda ustfedniho vyboru MO.
Vyzval soutézici, aby se zapojili do boje proti pramérnosti ve
studiu a aby v budoucnosti vyuzili své matematické znalosti
vSude, kde budou pracovat, i v nematematickych oborech.
Reditel odboru gymnézii a stiednich odbornych $kol minister-
stva Skolstvi, mlddeze a télesné vychovy SR PaedDr. Ondiej
Bartko konstatoval potéSujici jev - Bratislava se stava lihni
venskych uspé$nych ucastnikit MO jsou dnes jiz vyznamnymi
védeckymi a pedagogickymi pracovniky, napiiklad doceni:
I. Korec, T. Marcisovd, B. Sivdk.

Vsechny krajské a okresni vybory MO vénuji ve spolu-



praci s odbory $kolstvi pfislusnych ndrodnich vyborii a s po-
botkami JCSMF a JSMF talentovanym Zikim v matematice
velkou pé&i a pofddaji pro né riznd matematickd soustfedéni,
korespondentni seminafe, pfednasky apod., pro uditele
instruktaze k ulohdm MO i k dal$im matematickym tématim.
Ve vSech krajich se konala soustiedéni Gspé$nych feSitelu
tloh MO, né&kde spoletné soustfedéni felitelt matematické
a fyzikdlni olympiddy. Napriklad v JihoCeském kraji uspoid-
dali i semindf pro fesitele tloh MO kategorie P. Pokud se
v nékterém kraji nepofadal koresponden¢ni semindf, byla
7akim umoznéna Ucast v korespondenénim seminafi v jiném
kraji, napiiklad Z4ci Stfedoleského kraje se zapojili do praz-
ského koresponden¢niho semindte, ktery organizoval KV MO
Praha na matematicko-fyzikdlni fakulté¢ Karlovy univerzity
v Praze. V Severomoravském kraji se jiz vzily sobotni besedy
MO, jez se konaji pro feditele MO kategorii A, B, Cna Palac-
kého univerzité v Olemouci. V Slovenské republice se pofa-
daji akce pro nadané Zzdky ve spoluprici s domy pionyra
a mlddeze, naptiklad v Kosicich se schdzi jednou tydné
v krajském domé pionyru a mliddeze Klub mladych matema-
tikd.

UV MO potidal jako v piedchazejicich letech celostatni
korespondencni seminarf, ktery byl téz piipravou pro Cesko-
slovenskou u¢ast na mezindrodni matematické olympiadé. Po-
drobnéji se o koresponden¢nim seminati UV MO dottete
dale, rovnéZ mezindrodni matematické olympiddé je v této
brozurce vé€novdna samostatnd ¢ast. Po obsahové strance za-
jistoval UV MO také dvé soustiedéni vybranych 74k, z nichz
pak byli vybrdni Ceskoslovensti ucastnici MMO. Prvni se
konalo u Bratislavy, druhé v Pardubicich. Spolu s UV fy-
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zikilni olympiady zajistoval UV MO celostatni soustiedéni
MO a FO, které se konalo v Jevicku.

Velkou pomoci fesitelum uloh MO je edice Skola mladych
matematiki, kterou vydavda UV MO v nakladatelstvi Mlada
fronta. V edici vyslo jiz 59 svazku, poslednim vydanym svaz-
kem je brozurka Mordvek, Viach: Oddélitelnost mnoZin, ktera
vy$la jiz v druhém vydéni. Ve Stitnim pedagogickém nakla-
datelstvi vyddva UV MO sbirky vybranych aloh MO a v kaz-
dém roce dvé brozurky o uplynulém ro¢niku MO, jedna je
vénovdna MO na stfednich $koldch, druhd na zdkladnich
Skolach. Jednu z nich, popisujici 37. ro¢nik MO na stfednich
Skoldch, miate pravé v ruce. Obsahuje v8echny tlohy véetné
jejich tfedeni. Ulohy jsou oznaleny kategorii, kolem a pofa-
dovym &islem tilohy, naptiklad B-I-5, P-III-2. Ulohy $kolni -
klauzurni - Casti I. kola kategorii A, B, C jsou oznaleny
pismenem S misto I za oznalenim kategorie, napf. A-S-2.
Dale najdete v brozurce ulohy celostdtniho korespondenéniho
semindfe UV MO (bez fedeni) a ilohy mezinirodni matema-
tické olympiady.
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Poéty zuéastnénych zdku v III. kole 37. roéniku MO

Kategorie A Kategorie P
Kraj
S U \% S U A\

Praha 9 8 6 12 7 5
Stiedocesky 2 1 — 2 2 —
Jihocesky 1 — — 3 2 1
Zapadocesky 6 2 — 2 1 1
Severocesky 2 1 — 1 — —
Vychodocesky 5 2 — 1 — —

‘ Jihomoravsky 10 7 3 5 3 2

{ Severomoravsky 5 4 2 5 1 —
Bratislava 29 12 9 13 6 2
Zapadoslovensky 3 1 — 3 2 1
Stiedoslovensky 5 2 - 3 3 1
Vychodoslovensky 3 3 1 1 — —
CSR 0 25 11 31 16 9
SSR 40 18 10 20 11 4
CSSR 80 43 21 51 27 13

S ... poclet viech soutézicich

U ... polet uspé$nych fesitela

V ... pocet uspé$nych, kteti byli prohlaseni za vitéze
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USPESNI RESITELE CELOSTATNIHO KOLA MO

KAT. A

Uvéadime potadi zéka, jeho jméno a pfijmeni, ro¢nik, §kolu
a pocet dosazenych boda ze 42 moznych. U zdka z tfid se
zaméfenim studijniho oboru 01 Matematika, resp. 02 Mate-
matika a fyzika, je za oznaCenim ro¢niku uvedeno M, resp.
MF. Vsichni byli zky gymnazii - G.

1.
2.-3.
4.—5
6.
7.—12.
13.—14.

Vitézové

Perr Hlinény, 2 M, G M. Kopernika, Bilovec
Petr Cisek, 3 M, G W. Piecka, Praha

Pavol Gvozdjak, 4 M, G A. Marku3a, Bratislava
David Pancza, 4 M, G A. Markusa, Bratislava
Ondyiej Pokluda, 4 M, Brno, tf. kpt. Jarose
Stanislav Krajéi, 4 M, Kosice, Smeralova
Stépdn Kasal, 1 M, G W. Piecka, Praha
Martin Kraus, 2 M, G W. Piecka, Praha

1lja Martisovits, 3 MF, G J. Hronca, Bratislava
Pavol Severa, 2 M, G A. Marku3a, Bratislava
Marek Velesik, 3, Brno, Konévova

Martin Zufan, 3 M, Brno, tf. kpt. Jarose
Frantisek Kuminiak, 3 M, G A. Markusa,
Bratislava,

Ondrej Such, 2 M, G A. Marku3a, Bratislava

34
29
29
28
28
26
25
25
25
25
25
25

24
24
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15.—17.

18.—21.

22.

23.—-24.
25.—26.
27.—-28.
29.—31.
32.—36.
37.—43.

14

Petr BroZ, 3 M, G W. Piecka, Praha

Martin Kucera, 3 M, G M. Kopernika, Bilovec
S. Januschke, 3 MF, G J. Hronca, Bratislava
Tibor Bartos, 4 M, G A. Markus3a, Bratislava
Andrej Dobos, 3 M, G A. Markus3a, Bratislava
Ondiej Kalenda, 2 M, G W. Piecka, Praha
Arnost Kobylka, 3 M, G W. Piecka, Praha

Dalst uspésni Fesitelé

Daniel Elleder, 3 M, G W. Piecka, Praha
Tomds Brodsky, 3 M, Brno, ti. kpt. Jarose
Radomir Méch, 4 M, G M. Kopernika, Bilovec
Dalibor Prochdzka, 4 MF, Karlovy Vary
Zbynék Sir, 3 M, G J. K. Tyla, Hr. Kralové
Viadimir Duratka,2 MF, G J. Hronca, Bratislava
Fi¥t Zatloukal, 4 M, G M. Kopernika, Bilovec
Peter Elds, 4, Presov, KonStantinova
Jaroslav Masdr, 4 M, G A. Markusa, Bratislava
Jan Vomlel, 2 M, G J. K. Tyla, Hr. Krélové
Tomas Dvordk, 4 M, Brno, tf. kpt. Jarose
it Fiirst, 3 M, G J. Fulika, Plzen

Dalibor Jakus, 4 M, Zilina, V. Okruzni
Viadimir Komdr, 2 M, Kosice, Smeralova
Milan Sekanina, 4 M, Brno, ti. kpt. JaroSe
Radovan Cigek, 4 MF, Mlada Boleslav
Karol Hrivndk, 4 M, G A. Markusa, Bratislava
David Krdsensky, 2 M, Brno, tf. kpt. Jaro$e
Jozef Skokan, 2 M, Zilina, V. Okruzn4
Marta Sochorovd, 4 M, G W. Piecka, Praha



Pavel Truhlar, 4 M, Liberec, Partyzanska 12
Gabriel Varga, 3, Samorin, mad. G 12

Zdci z t7id jiného studijntho zaméveni nes 01 Matematika
se umistili v tomto poradi:

1.—2. Ilja Martsovits, 3, G J. Hronca, Bratislava
Marek Velesik, 3, Brno, Konévova
Stanislav Fanuschke, 3, G J. Hronca, Bratislava
Dalibor Prochdzka, 4, Karlovy Vary
Viadimir Duracka, 2, G J. Hronca, Bratislava
Peter Eligs, 4, PreSov, Konstantinova

—8. Radovan Cizek, 4, Mlada Boleslav
Gabriel Varga, 3, Samorin, mad. G

NoWneWw
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USPESNI RESITELE CELOSTATNIHO KOLA MO

KAT. P

Uvddime poradi zdka, jeho jméno a piijmeni, ro¢nik
a Skolu a pocCet dosazenych boda ze 40 moznych. Vsichni
byli zaky gymndézii (G).

1.
2.-3.
4.—5.
6.
7.
8.
9.
10.
11.
12.—13.

16

Vitézové

Petr Broz,3, G W. Piecka, Praha

Arnost Kobylka, 3, G W. Piecka, Praha
Marek Velesik, 3, Brno, Konévova

Vidclav Bohdanecky, 3, G W. Piecka, Praha
Petr Ctzek, 3, G W. Piecka, Praha

Furaj Simko, 4, Nitra, Parovska

Ilja Martisovits, 3, G J. Hronca, Bratislava
§iri Fiirst, 3, G J. Futika, Plzen

Jozef Saniga, 4, Zilina, V. Okruznd

Stépan Kasal, 1, G W. Piecka, Praha
Viadimir Chvdtil, 2, Brno, Konévova
Martin Bujddk, 4, G A. Marku3a, Bratislava
Pavel Kozlovsky, 4, Jindfichtv Hradec

40
38
38
37
37
36
34
31
29
28
27
25
25



14.—16.

17.—18.

Dalsi uispésni resitelé

Andrej Lucny, 3, Pie$tany

Zdenék Pavlas, 3, Brno, tf. kpt. Jarose
René Pdzman, 3, G J. Hronca, Bratislava
Martin Dindos, 2, G J. Hronca, Bratislava
Gregor Rayman, 3, Zilina, Wolkerova

19.—21. fan Machdcek, 2, Pelhiimov

22.—-24.

25.

Marta Sochorovd, 4, G W. Piecka, Praha
Viadimir Sole, 2, Beroun

Miroslav Srol, 4, G J. Hronca, Bratislava
Petr Stépan, 3, G W. Piecka, Praha

Petr Vyhiidk, 4, Mlad4 Boleslav,

Stefan Dobrev, 3, G A. Markusa, Bratislava

26.—27. Jozef Gemela, 4, Prievidza

Radek Porazil, 4, G M. Kopernika, Bilovec

24
24
24
23
23
22
22
22
21
21
21
20
19
19
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NEJUSPESNE]SI RESITELE II.,
KRAJSKEHO KOLA MO

Z kazdého kraje a v kazdé kategorii je uvedeno nejvyie
prvnich deset nejuspéinéjsich fesiteld. Pokud neni uvedeno
jinak, byli v8ichni uvedeni Zaci v kategorii B Z4ky 2. ro¢niku,
v kategorii C zdky 1. ro¢niku stfedni $koly. V kategoriich A
a P je za jménem uveden ro¢nik. Neni-li uveden typ §koly,
byl fesitel zikem gymnazia (G). Oznaceni M, resp. MF,
v kategoriich A, B, C znamend zaméfeni studijniho oboru
01 Matematika, resp. 02 Matematika a fyzika.

Praha
Kategorie A

1. Petr Cigek, 3 M, G W. Piecka
2: Tomas Rylek, 3 M, G W. Piecka
3.—5. Daniel Elleder, 3 M, G W. Piecka
Martin Kraus, 2 M, G W. Piecka
Marta Sochorovd, 4 M, G W. Piecka
6. Petr Knobloch, 4 MF, Praha 10, Vodéradska
7.—9. Ondrej Kalenda, 2 M, G W. Piecka
Stépdn Kasal,1 M, G W. Piecka
Arnost Kobylka, 3 M, G W. Piecka

18



1.
2.-3.
4.—9.
1.—-2.
3.
4.
5.—8.
9.

Kategorie B

Jakub Cvach, M, G W. Piecka

Petr Toman, M, G W. Piecka

Jan Zemlitka, Praha 8, U libefiského zimku
Karel Hejtmdnek, M, G W. Piecka

Perr Kolman, Praha 3, Sladkovského ndm.

Fan Machdcek, M, G W. Piecka

Richard Némeclek, Praha 8, U liberiského zémku
Lubomir Rulicek, M, G W. Piecka

Davwid Schreib, M, G W. Piecka

Kategorie C

Stépan Kasal, M, G W. Piecka
Michal Kubecek, 8. tiida, zékladni $kola,
Praha 4, Na planiné

Jan Hannig, M, G W. Piecka

Fakub Tésinsky, M, G W. Piecka

Karel Fridrich, M, G W. Piecka

Jan Kold¥, M, G W. Piecka

Petr Mourek, M, G W. Piecka

Milan Sebesta, Praha 8, U libefiského zémku

Petr Novotny, 8. tfida, zdkladni $kola,
Praha 7, F. Ktizka
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1.-3.
4.

5.

6.
7.-9.
10.

1.

2.

3.

4.
5.—17.
1.

2
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Kategorie P

Perr Cizek, 3

Arnost Kobylka, 3

Marta Sochorovd, 4

Fan Hannig, 1

Vidclav Bohdanecky, 3

Pavel Plachky, 4

David Obdridlek, 4

Petr Stépdn, 3

Ludvik Tesar, 3

Petr Bro#, 3, vsichni G W. Piecka

Stiedocesky kraj
Kategorie A

Radovan Cigek, 4 MF, Mlada Boleslav
Viadimir Solc, 2 MF, Beroun

Pavel Krejciv, 4 MF, Mlada Boleslav
Richard Suchy, 4 MF, Benelov
Martin Smid, 4 MF, Beroun

Karel Spdda, 3 MF, Mlada Boleslav
Radek Tezaur, 4, VlaSim

Kategorie B

Viadimir Solc, MF, Beroun
Michal Gruncl, SPS Kutni Hora



Borivoj Strach, Mlada Boleslav
Jan Brychta, Kolin

Jan Soubusta, BeneSov

Petr Doiiar, Kralupy n. V.
Zdenék Kohout, Kladno

Hana K¥iZovd, Beroun

Martin VySohlid, Mlada Boleslav

Kategorie C

Pavlina Kuthanovd, Kralupy n. V.
Oldrich Baroch, Kladno

Zdenka Beranovd, Kolin

Jan Cervenka, Kladno

Lenka Kurzweilovd, Mlad4 Boleslav
Klira Mésteckd, Mlad4a Boleslav
Miroslav Vaic, Kladno

Kategorie P
Petr Vyhiidk, 4, Mlad4 Boleslav
Viadimir Solc, 2, Beroun
JihoCesky kraj
Kategorie A

David Boukal, 3 M, Ceské Budé&jovice, Jirovcova
Jaroslav Pavlitek, 3, SPS Pisek
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Martin Hanus, 3 MF, G K. Satala, C. Budg&jovice
Milan Predota, 2, Ceské Budé&jovice, Jirovcova

Fan Baldk, 2 M, Ceské Budgjovice, Jirovcova
Michael Humpdl, 4 MF, G K. Satala, C. Bud&jovice
Pavel Kozlovsky, 4, Jindfichuv Hradec

Martin Kronika, 4 MF, G K. Satala, C. Bud&jovice
Martin Rehout, 2 M, Ceské Budgjovice, Jirovcova

1.
2.-3.
4.

5.
6.—17.
8.—10
1.
2.-3
4.
5.—8.

Kategorie B

Fan Balik, M, Ceské Budgjovice, Jirovcova
Michal KobliZek, Jindfichiv Hradec

Petr Mach, M, Ceské Budg&jovice, Jirovcova
Milan Predota, M, Ceské Budgjovice, Jirovcova
Martin Rehout, M, Ceské Budéjovice, Jirovcova
Milena Beranovd, Strakonice

Fakub Cermdk, M, Ceské Budgjovice, Jirovcova

. Josef Festidb, Pisek

Fan Machdcéek, Pelhiimov
Radim Zd&ek, Humpolec

Kategorie C

Firi Sedlik, M, Ceské Budgjovice, Jirovcova
Yan Dovordk, M, Ceské Budéjovice, Jirovcova
Karel Netoény, M, Ceské Budéjovice, Jirovcova
Richard Viria, Pisek

Daniel Bican, Milevsko



1.

2.

3.
4.—6.
1.—2.
3.—5.
6.
7.—8.
9.—10.

Lenka Krejzarovd, Pisek
Vit Pesek, Pisek
Denisa Vrydnkovd, Tébor

Kazegorie P

Pavel Kozlovsky, 4, Jindfichav Hradec

Fakub Cermdk, 2, Ceské Budgjovice, Jirovcova
Jan Machdcek, 2, Pelhiimov

Miroslav Nerad, 4, Ceské Budéjovice, Ceska
Tomds Parkos, 4, Ceské Budéjovice, Ceska
Fi7i Raraj, 3, Strakonice

ZapadocZesky kraj
Kategorie A

Fi#l First, 3 M, G J. Fulika, Plzeni

Simon Kos, 3 M, G J. Futika, Plzeit
Dalibor Prochdzka, 4 MF, Karlovy Vary
Zdenék Tryner, 4 M, G J. Futika, Plzen
Pavel Vinter, 4, Plzen, ul. Pionyra
Miroslav Vicher, 3 MF, Karlovy Vary
Pavel Kdss, 3 M, G J. Futika, Plzeil
Miroslav Ldvicka, 3 M, G ]. Futika, Plzen
Martin Bares, 2 M, G J. Fucika, Plzen
Petr Hejda, 4 M, G ]J. Futika, Plzeii
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1.

2.

3.
4.—6.
7.

8.
9.—10
1.

2.
3.—-8.
1.
2
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Kategorie B

Jan Strunc, M, G J. Futika, Plzeni
Jan Nepras, M, G J. Futika, Plzei
Martin Handk, MF, Klatovy

Jolana Cernd, MF, Plzefi, Opavska
Petr Knap, MF, Plzeii, ul. Pionyra
Tomas Mika, MF, Plzen, ul. Pionvra
Milo§ Brejcha, MF, G J. Fuclika, Plzen
Petr Somol, Maridnské Lizné

. Michal Fried, MF, Plzeii, ul. Pionyra

Martin Schaffer, MF, Karlovy Vary

Kategorie C

Tomas Kadlec, M, G J. Fucika, Plzen
Martin Sobotka, Klatovy

Dana Benesovd, M, G J. Futika, Plzen
Martin Cihdk, MF, Karlovy Vary
Ales Hodina, M, G J. Fuclika, Plzen
Frantisek Steifl, MF, Karlovy Vary
Zderika Svobodovd, MF, Cheb

Zdenék Valecko, M, G J. Fucika, Plzen

Kategorie P

et Fiirst, 3 M, G J. Fucika, Plzen
Jirt Gogela, 4 MF, G ]. Futika, Plzei



3.
4.
1.-2.
3.
4.
5.—6.
7.—8.
1.
2.-8.

Vitézslay Babicky, 3 M, G ]. Fucika, Plzen
Petr Kodl, 3 M, G J. Fucika, Plzeni

SeveroCesky kraj
Kategorie A

Viadimir Richter, 4 M, Liberec, Partyzanska
Pavel Truhldr, 4 M, Liberec, Partyzanska
Jaroslav Trnka, 4 M, Liberec, Partyzanska
Petr Nohdaé, 3 M, Liberec, Partyzanska

Jan Dvoidk, 4 MF, Usti n. L.

David Swigori, 4 M, Liberec, Partyzénska
Stépdanka Lazarovd, 3, Détin,

Daniel Suta, 4, Chomutov

Kategorie B

Tomds Burger, MF, Teplice

Pavel Hoza, MF, Usti n. L.

Miroslav Fohanovsky, MF, Usti n. L.
Marie Kovdrovd, M, Liberec, Partyzanska
Michal Rizek, MF, Usti n. L.

Pavel Semerdd, MF, Rumburk

Marta Slavikovd, MF, Teplice

Ladislav Simek, M, Liberec, Partyzinska

9.—10. Tomdas Horkel, Usti n. L.

Josef Marx, M, Liberec, Partyzanska
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1.-2.
3.—4.
5:

6.
7.—9.
1.

2

1.

2.

3.

4.

5.
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Kategorie C

Radek Skoda, M, Liberec, Partyzanska
Stépanka Zitkovd, M, Liberec, Partyzanska
it Fiala, M, Liberec, Partyzinska

Ales Hdcha, M, Liberec, Partyzdnska
Roman Hanzl, Jablonec

Faroslav Svébis, M, Liberec, Partyzinsk
Stanislav Dunaj, MF, Usti n. L.

Perr ¥iticka, 8. téida, zdkladni $kola,
Liberec, Na bojisti

Vit Smékal, M, Liberec, Partyzanska

Kategorie P

Miroslav Hoblik, 3, Liberec, Partyzanska
Oldiich Vojtisek, 3, Liberec, Partyzinska

Vychodocesky kraj
Kategorie A

FJan Vomlel, 2 M, G J. K. Tyla, Hradec Krélové
Tomas Pospichal, 2 M, G J. K. Tyla, Hradec Kralové
Zbynék Vasatra, 3, G J. K. Tyla, Hradec Krélové
Stépan Holub, 3 MF, Trutnov

Zbynék Sir, 3 M, G J. K. Tyla, Hradec Krilové



(NS

Kategorie B

Jan Vomlel, M, G J. K. Tyla, Hradec Krélové
Josef Otéendsek, Dvar Kralové

Ales Drydk, Novy Bydzov

Martin Horky, MF, Pardubice

Tomds Pospichal, M, G J. K. Tyla, Hradec Kralové

Ondyiej Baudys, Hlinsko v C.
Roman Hei'man, MF, Pardubice

Kategorie C
Daniela Loskotovd, Havlickav Brod
Miroslav Hirsl, Nichod
Perr Kiecil, M, G J. K. Tyla, Hradec Kralové
Jiri Postupa, M, G J. K. Tyla, Hradec Krilové

Fiit Cyrany, Havlickav Brod
Ales Hlavsa, Nachod

Kategorie P

Stépdin Holub, 3, Trutnov

Jihomoravsky kraj
Kategorie A

Tomas Dvor'dk, 4 M, Brno, ti. kpt. Jarose
Marek Velesik, 3, Brno, Konévova
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3.

4.

5.

6.
7.—9.
1.

2.

3.

4.
5.—6.
7.—9.
10.

1.
2.-3.
4.
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Tomas Brodsky,3 M, Brno, tf. kpt. Jaro$e
Radek Vystavél, 4, Prostéjov

Ondrej Pokluda, 4 M, Brno, tf. kpt. JaroSe
David Krdsensky, 2 M, Brno, ti'. kpt. Jarose
Josef Pojsl, 2 M, Brno, ti'. kpt. Jarose
Milan Sekanina, 4 M, Brno, tf. kpt. Jarose

Martin Vondrdéek, 4 M, Brno, tf. kpt. Jarose

Kategorie B

Pavel Hordk, MF, Gottwaldov

David Krdsensky, M, Brno, tf. kpt. JaroSe
Viadimir Chvdtil, MF, Brno, Konévova
Jana Bendovd, M, Brno, tf. kpt. Jaro$e
Marek Brejl, M, Brno, tf. kpt. Jaro$e
Eva Rohovskd, M, Brno, tf. kpt. Jarose
Tomds Pitner, M, Brno, ti. kpt. Jaro$e
Radoslav Rusina, M, Brno, ti'. kpt. Jarose
Radek Vasin, M, Brno, tf. kpt. Jarose
Tomads Urbdnek, M, Brno, tf. kpt. Jarose

Kategorie C

Michal Konecny, M, Brno, tf. kpt. JaroSe

Michal Bulant, M, Brno, tf. kpt. JaroSe

Bohdan Farnik, M, Brno, tf. kpt. Jarose

Michal Stehlik, 8. tfida, zékladni $kola,
Brno, Ktidlovicka



5.—7. Ji¥i Kalvoda, M, Brno, tf. kpt. Jarose
Pavel Ruzicka, 8. tfida, zikladni skola,
Brno, Ktidlovickd
Radek Svoboda, Boskovice
8. Jan Kasprzak, M, Brno, ti'. kpt. Jarose
9.—10. Petra Mdsovd, MF, Brno, Kifenova
Vit Schorm, M, Brno, tf. kpt. Jarose

Kategorie P

1.—2. Viadimir Chvdtil, 2, Brno, Konévova
Marek Velesik, 3, Brno, Konévova
Miloslav Hledik, 4, Ivancice

Milos Ondrdk, 4, Zdar n. S.

Zdenék Pavlas, 3, Brno, tf. kpt. Jarose
Petr Kolenéik, 2, Brno, Konévova
Martin Dlouhy, 4, SES Tiebi¢

Radim Haliv, 4, Brno, tf. kpt. Jarose

® N o e W

Severomoravsky kraj
Kategorie A

1. Perr Hlinény, 2 M, G M. Kopernika, Bilovec
2.—3. Martin Kuéera, 3 M, G M. Kopernika, Bilovec

Jiri Zatloukal, 4 M, G M. Kopernika, Bilovec
4. Radomir Méch, 4 M, G M. Kopernika, Bilovec
5.—6. fan Slovdk, 4, Unicov



7.—8.
1.—-2.
3.—5.
6.—9.
10.

1.
2.—5.
6.—17.
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Zdenék Sarman, 4 M, G M. Kopernika, Bilovec
Ondrej Blaha, 4 M, G M. Kopernika, Bilovec
Radek Porazil, 4 M, G M. Kopernika, Bilovec

Kategorie B

Perr Hlinény, M, G M. Kopernika, Bilovec
Ales Kubéna, 1 M, G M. Kopernika, Bilovec
Jiri Bétak, M, G M. Kopernika, Bilovec
Stépan Cabelka, M, G M. Kopernika, Bilovec,
Libor Sindlar, Novy Ji¢in

Tomas Duraj, SPSE Frenstat p. R.

Martin Pavlica, M, G M. Kopernika, Bilovec
Tomds Rosinsky, SPSE Frenstat p. R.

Ludék Vecsey, M, G M. Kopernika, Bilovec
Perr Lindovsky, M, G M. Kopernika, Bilovec

Kategorie C

it Svoboda, M, G M. Kopernika, Bilovec
Oldrich Dosedél, M, G M. Kopernika, Bilovec
Adrian Horzyk, Cesky Té&in, polské G
Radim Kubacki, M, G M. Kopernika, Bilovec
Tomads Némecek, Opava

Mario Bohaé, M, G M. Kopernika, Bilovec
Radek Horensky, Olomouc, tf. J. z Podé¢brad



1.

2.

3.

4.

5.
6.—17.
8.
9.—10.

1.

2.—4.
5.
6.—17.
8.—10.

Kategorie P

Radek Porazil, 4, G M. Kopernika, Bilovec
Viadimir Stiller, 4, G M. Kopernika, Bilovec
Zdenék Pestuka, 4, G M. Kopernika, Bilovec
Richard Vlach, 3, Roznov p. R.

Perr Velerek, 4, Ostrava, Smeralova

Radmila Ryskovd, 4, Frydek- Mistek

David Sindler, 3, G M. Kopernika, Bilovec
Michal Prokes, 4, Ostrava-Hrabtuvka
Viadimir Solnickv, 4, Opava

Pavel Sparny, 4, Roznov p. R.

Bratislava
Kategorie A

Ilja Martisovits, 3 MF, G J. Hronca
Andrej Dobos, 3 M, G A. Markusa

Pavol Gvozdjak, 4 M, G A. Markusa
Ondrej Such, 2 M, G A. Markusa

Frantisek Komora, 4 M, G A. Markusa
Tibor Barros, 4 M, G A. Markusa

Robert Bodi, 4 M, G A. Markusa

Martin Dindos, 2 MF, G J. Hronca

Dawid Pancza, 4 M, G A. Markusa .
Stanislav Simunek, 4 M, G A. Markusa
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1.—4.
5.
6.—7.
8.—9.
1.
2.
3.
4.—5.
1.
2.
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Kategorie B

Jdn Bajesy, M, G A. Markusa
Martin Dindos, MF, G J. Hronca
Pavol Severa, M, G A. Markuga
Ondrej Such, M, G A. Markusa
Tomas Szalay, M, G A. Marku3a
Stefan Dobik, M, G A. Markusa
Martin Pavlik, M, G A. Markusa
Martin Kobetic, M, G A. Markusa
Rudolf Sedmina, MF, G J. Hronca

Kategorie C

Pavol Mederly, 8. tiida, zdkladni $kola, KogSicka ul.
Peter Kabos, M, G A. Marku3a

Matej Kordos, 8. trida, zékladni $kola, Kosicka ul.
Miroslav Koéan, MF, G J. Hronca

Kristina Kostkovd, MF, G J. Hronca

Kategorie P

Zapadoslovensky kraj
. Kategorie A

Furaj Simko, 4 MF, Nitra, Parovska
Jdn Trojan, 4 MF, Nitra, Parovskd



3.

4.

5.

6.

7.

8.

0.

10.

1.
2.—-3.
4.
5.—17.
8.
9.—10.
1.
2.—4.

Gabriel Varga, 3, Samorin, mad. G

Kaztarina Kis Petikovd, 4 MF, Komérno, mad G

Martin Nehéz, 2, Levice

Eva Fasangovd 3, Zeliezovce, mad G

Ondrej Sedivy, 2 MF, Nitra, Parovskd
Ivo Kluvanec, 2 MF, Nitra, Parovska

Roman Gregus, 4 MF, G E. Gudernu, Nitra

Stefan Bakaldr, 4, Topoléany

Kategorie B

Ondrej Sedivy, MF, Nitra, Pérovska
Daniel Brsel, Hlohovec

Fozef Micuch, SPSE Piestany

Viadimir Krdlik, Zlaté Moravce

Henrich Harant, MF, Nitra, Pdrovska
Tomdas Hrno, MF, G E. Gudernu, Nitra
Martin Nehéz, Levice

Angela Nagyovd, MF, Komarno, mad. G
Radovan Dermisek, Skalica

Gabriel Sabik, MF, Nitra, Parovska

Kategorie C

Peter Sedik, MF, Trentin
Fela Abelovd, MF, Trencin
Maridin Mrva, Sala

Mdria Ondruskovd, Trenlin
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5.
6.—9.
1.
2.-3.
4.—5.
6.
7.—8.
1.

2.
3.—4.
5.—6
7.

Pavol Cechvala, Piestany

Igndc Bugdr, Galanta, mad. G

Jana Dolnikovd, Hlohovec

Tatiana Halabrinovd, G E. Gudernu, Nitra
Viadimir Kulich, Trnava

Kategorie P

Andrej Lucny, 3, PieStany

Jozef Sklendr, 2, Piestany

Furaj Simko, 4, Nitra, Parovska

Viktor Bddi, 4, G E. Gudernu, Nitra

Jozef Gerhdt, 3, Topoltany

Drahoslav Ondruska, 4, G E. Gudernu, Nitra
Silvia Cernuskovd, 4, Trnava

Maridn famriska, 4, G E. Gudernu, Nitra

Stiedoslovensky kraj
Kategorie A

Viadimir Sosovicka, 4 M, Zilina, V. Okruzn4
Dalibor Jakus, 4 M, Zilina, V. Okruzn4
Peter Botek, 4 M, Zilina, V. Okruzni

Peter Oravec, 4 M, Zilina, V. Okruzna
Rébert Mitka, 3 M, Zilina, V. Okruzni
Fozef Skokan, 2 M, Zilina, V. Okruzn4
Jozef Saniga, 4 M, Zilina, V. Okruzn4



Vi W=

ol

Kategorie B

Fozef Skokan, M, Zilina, V. Okruzna
Eduard Omasta, Ruzomberok
Stanislav Tagiar, MF, Prievidza

Martin Pavlenda, MF, Banska Bystrica, Tajovského
Furaj Kodydek, MF, Banskd Bystrica, Tajovského

Pavwol Rafaj, MF, Banskéa Bystrica, Tajovského
Peter Vanoch, M, Zilina, V. Okruzn4
Peter Micich, Zilina, Wolkerova

Kategorie C
Simon Maly, Ziar n. H.

Juraj Lorinc, Banska Bystrica, Tajovského
Ruzena Zimanovd, MF, Prievidza

. Roland Cagdii, M, Zilina, V. Okruzn4

Karol Dokus, Banskéa Bystrica, Tajovského
Radoslav Harman, Liptovsky Hradok

Peter Maléovsky, MF, Prievidza

Roman Tlsték, MF, Liptovsky Mikul4s
Valeridn Valdsek, Banska Bystrica, Tajovského
Peter Visiiovsky, MF, Martin

Kategorie P

Jozef Gemela, 4, Prievidza
Gregor Rayman, 3, Zilina, Wolkerova
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3.

4.

5.
6.—17.
8.

9.

1.

2.

3.
4.—6.
7.
8.—10.
1.
2.-3.

Jozef Saniga, 4, Zilina, V. OkruZna

Dalibor Jakus, 4, Zilina, V. Okruzna

Eduard Omasta, 4, Ruzomberok

Martin Bubniak, 4, Banska Bystrica, Tajovského
Robert Hagara, 3, Prievidza

Marian Kollarik, 1, Banskd Bystrica, Tajovského
Michal Hrabovec, 3, Zilina, Wolkerova

Vychodoslovensky kraj
Kategorie A

Stanislav Krajéi, 4 M, Kosice, Smeralova
Viadimir Komdr, 2 M, Kosice, Smeralova
Peter Elidgs, 4, Preov, KonStantinova
Zdeno Kdlnassy, 4, PreSov, Kon$tantinova
Viadimir Korba, 4, SPSE Presov

Maros Rusiidk, 3 M, Kosice, Smeralova
Roman Vdvra, 4, Roziava

Peter Fisek, 3, Poprad, Leninovo nébr.
Rudolf Krejci, 4, Poprad, Leninovo ndbr.
Slavomir Onderko, 4, Michalovce

Kategorie B
Viadimir Skalsky, Presov, T. Sev¢enka

Slavomir Gmitro, Pre$ov, Kon§tantinova
Viadimir Komdr, M, Ko$ice, Smeralova



4.
5.—6.
7.—10.
1.

2.
3.—8.
1.

2.

3.

4.

Martin Tomko, Kosice, Srobarova
Miroslav Bobovsky, SPS Poprad

Peter Haluska, M, Kosice, Smeralova
Rastislav Hagowsky, Spisskd Nové Ves
Radoslav Fenéus, M, Kosice, Smeralova
Marek Kolesdr, Kosice, Srobarova
Martin Mrva, Presov, T. Sevéenka

Kategorie C

Maridn Rauéina, Poprad, Zapotockého
Peter Varga, Kosice, Srobérova

Michaela Bodndrovd, Kosice, Srob4rova
Zuzana Horvdthovd, Presov, T. Sevenka
Slavomir Hrinko, PreSov, Konstantinova
Martin Kalovec, Poprad, Zapotockého
Viadimir Koo, Snina

Lubomir Kusnir, Prefov, T. Sevéenka

Kategorie P

Robert Mrdz, 4, Poprad

Marek Bedndr, 2, Kosice, TrebiSovska
Alena Murovd, 4, Kosice, Opatovska
Slavomir Hrinko, 1, PreSov, Konstantinova
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Hodnoceni 37. ro¢niku matematické olympiady
na stfednich Skolach

Poltem uastnika se tento ro¢nik jen malo lisil od pfedché-
zejicich. Ve vSech kategoriich se MO ztcastnilo 9 500 stfedo-
$koldku, z toho pfes 300 v kategorii P zaméfené na progra-
movani. Porovnivat uaspéSnost v jednotlivych kategoriich
s odpovidajicimi udaji pfedchézejicich let je velmi problema-
tické, asi jako bychom porovnavali dosazené ¢asy v ruznych
zavodech piespolniho béhu. Tak jak tady zavisi ¢as hlavné na
vibéru traté, jsou vysledky v MO zivislé na vybéru dloh.
V kazdém pfipadé vSak muzeme s potéSenim konstatovat, ze
tspésnost v II. kole 37. ro¢niku MO kategorii A, B, C, P
byla pies 30 9, proti 12 %] roku predchéazejiciho. Podle hod-
noceni krajskych vybort MO k tomu pfispél lepsi vybér tiloh
1épe odpovidajici osnovdm, a tedy znalostem ziku, a také nové
zavedeny zpusob bodovani. Spocival v tom, Ze vSechny
4 ulohy II. kola byly rovnocenné a zici si nevybirali 3. Glohu
ze dvou variant. Piitom Gspé$nym feSitelem se stal ten sou-
tézici, ktery ziskal vice bodu nez byla polovina plného poctu
bodu za tii Glohy. Tento systém se osvéd¢il, bude se pouzivat
1 v dal8ich ro¢nicich MO.

V celostitnim kole jsou ulohy niro¢néjsi, v kategorii A se
jevila nejtéz8i uloha &tvrtd, ze sedmi moznych boda byl
pramérny vysledek pouze 0,44 bodu. Nejleh¢i byla tdloha
prvni s prumérnym ziskem 4,94 bodu, pricemz kazdy z prv-
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nich 28 u&astnik ji vyfesil na plny pocet, tj. 7 bodu. Z celko-
vého poltu 80 ulastnik bylo ptes 70 9, z tiid gymnézii se
studijnim zaméfenim 01 Matematika. Svéd¢i to o dobrém
vybéru téch nejlepsich zéka do téchto tiid, na druhé strané
je dobfe, Ze i Zici ostatnich t¥id se dovedou prosadit a zaradit
se nejen do celostdtniho kola MO, ale 1 mezi jeho vitéze.

Domnivdme se, Ze matematickd olympiada i v 37. ro¢niku
splnila cil dany ji organizaénim fddem - prohloubit a rozsirit
védomosti a dovednosti 24k v matematice, pomdhat rozvijet
schopnosti a naddni z4ka, vést je k samostatné tvardi praci.
Zvlasté se slibnym rozvojem kategorie P vystupuje do po-
pfedi tloha MO pfi rozvoji algoritmického mysleni a orientace
stfedo8koldkti na uplatnéni matematiky v ruznych oborech,
predevsim technickych.
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1.

TEXTY ULOH KATEGORI{ A, B, C
A KORESPONDENCNIHO SEMINARE

Kategorie C

C-1
Oznatme A = {0, 1, 2}. Najdéte viechny trojice redlnych
cisel a, b, ¢ (¢ # 0), pro které plati
xeAayeA=ax +by +cxycA.

Pro ktera prirozena Cisla n je Cislo n2 + 5n + 8 délitelné
Cislem 497

Jsou-li p, g, pq a p + g délky stran Ctyfuhelniku, kde
p = 3, g = 3 jsou piirozena Cisla, pak jedna z jeho thlo-
pri¢ek ma délku men$i nez 11. Dokazte.

. Je dén pravidelny trojboky hranol ABCA'B'C’ s pod-

stavnou hranou délky a a vy$kou v. Oznat¢me S stied stény
BCC'B’ a K, L ty body na hrandch BB’, CC’, pro néz jsou
lomené Ciry AKS a ALS nejkrat$i. Vypocitejte pomér
objemu jehlanu AKLS a daného hranolu.

. Vevolejbalovém turnaji se utkalo n = 3 druzstev. Dokazte,

ze existuje takové druzstvo A4, ze ke kazdému jinému druz-
stvu B najdeme tfeti druzstvo C tak, ze ve vzdjemnych za-
pasech druzstev A, B, C vyhrédlo A aspon jednou a druz-
stvo B nejvyse jednou.
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6. V pravidelném devitithelniku ABCDEFGHI oznatme K,
L, M pruseciky dvojic pfimek AD a CG, BF a CG, AD
a BF. Najdéte 18 raznych trojihelniki podobnych s troj-
uhelnikem KLAM, jejichz v§echny vrcholy jsou vrcholy da-
ného devitiahelniku.

C-S§

1. Vypocltem ovéite, ze délka strany pravidelného dvandcti-

tthelniku vepsaného kruznici o poloméru 2 je V 6 = 11'2

2. Najdéte vsechna Ctyfciferna Cisla koncici &islici 9, kterd
jsou délitelna kazdou svou &islici.

3. V tenisovém klubu se hrél turnaj tak, ze hrac, ktery dva-
krat prohral, byl vyfazen. Po 45. zdpase zbyl jediny hra¢ -
- vitéz turnaje. Mohl vitéz projit turnajem bez pordzky?
Kolik bylo tcastnikl turnaje ?

c-1

1. Jarda napsal na tabuli Ctyfi pfirozena Cisla. Soucet prvaich
dvou byl 707, soucet druhého a tfetiho byl 700, tf¥etiho
a Ctvrtého 689. Urcete
a) soucet prvniho a tvrtého Cisla,
b) nejmensi moznou hodnotu prvniho Cisla.

2. V daném lichobézniku urcete takovy bod, jehoz spojnice se
stiedy stran rozdéli lichob&znik na Ctyfi ¢tyfuhelniky stej-
ného obsahu.

3. Je dano Ctyfciferné &islo 4. Zaménime-li v Cisle 4 prvni
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Cislici s posledni, dostaneme ¢tyfciferné ¢islo B. Nejvétsim
spole¢nym délitelem Cisel A, B je &islo 63. Urcete Cisla
A4, B.

. Do kruZnice k je vepsin pétithelnik ABCDE tak, Ze
AB || DE a AE || BC. Dokaite, 7e te¢na kruznice k v bod&
A je rovnobézna s pfimkou CD.
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1.

2.

Kategorie B

B-1

Jaky nejvétsi pocet figurek lze na Sachovnici n X n roz-
mistit tak, aby zddné dvé nesousedily ? (Za sousedni pova-
Zujeme ta politka, kterd maji spoletny alespoil jeden
vrchol.)

Dokazte, ze polynom
Py(x) = x@0' — x@n-1)' 4 x@n-2' _ x@n-3)' 4
oot xt—x 41

nema4 redlny kofen pro z4dné ptirozené &islo n.

Rozhodnéte, zda existuje nenulové zobrazeni F mnoZiny
miizovych bodd v roviné (tj. bodu s celodiselnymi sou-
fadnicemi) do mnoziny redlnych &isel takové, Ze pro kazdy
pravouhly trojuhelnik ABC s vrcholy v mfiZzovych bodech
a odvésnami délky 1 plati

F(4) + F(B) + F(C) = 0. <1>

Existuje takové zobrazeni F, poZzadujeme-li, aby rovnost (1)
platila pouze pro takové pravothlé trojuhelniky ABC, je-
jichZ osa pravého uhlu je rovnobézna s osou prvniho kvad-
rantu ?

Vyjadiete soucet ¢tverct délek télesovych thlopri¢ek rov-
nobé&znosténu pomoci délek jeho hran.

Uvazujme fez krychle ABCDA’B'C'D’ o hrané délky a
rovinou, kterd je kolmd k uhlopti¢ce AC” a prochézi bo-
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dem K hrany A’B’, ptitemz |A’K| = t. Spoltéte obvod o
a obsah P fezu a zjistéte, pro které hodnoty 7 € €0, a) na-
byva funkce P maximum a minimum.

6. Posloupnost (x,) je definovéna rekurentn& vztahy

1 — xpXn1

Xn+2 = x1=x2=0.

2 —xXn — Xpn ¢
Ukazte, ze pro kazdé ptirozené &islo n, n =3 je
0< Xn < L.

B-S

1. Na obrazku 1 je 3achovnice 8 X 8 s jednim stielcem.
Rozmistéte na ni daldich sedm stfelca tak, aby kazdé ne-
obsazené pole 3achovnice bylo ohroZeno nékterym ze
stielct. (Napfiklad stfelec na obrizku ohroZuje viechna
pole oznaend x.)

X
%
_

) X
CAX

S
X

Obr. 1
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2. Necht a, b jsou realna Cisla. Jestlize pro kazdé celé kladné
Lislo x je Cislo ax1988 4 b celé, jsou i Cisla a, b celd. Do-

kazte.

3. Je déna krychle ABCDEFGH o hrané délky 2. Pro
te€ (0, 1) oznatme P; bod hrany EF takovy, ze |[EP;| = t.
Urcete obsah fezu dané krychle rovinou prochdzejici
bodem P; a rovnobéznou s rovinou BGP;.

1. Krychle ABCDEFGH o hrané délky 3 je rozdélena na
27 krychli¢ek o hrané 1 (obr. 2). Ukazte, 7e pfimka KL je
kolma4 na sténové thlopti¢ky AF a BG.

(L]

>

G
4
F| ¥
/
/
/
gy

Obr. 2

2. Dokazte, Ze na Sachovnici 8 X 8 nelze rozmistit 7 stfelca
tak, aby vSechna pole $achovnice byla ohroZena.

3. Dokazte, ze pro kazdé pfirozené ¢&islo n (n = 1) existuje

polynom f stupné n takovy, Ze hodnoty f(1), f(2),

ce s f(m)

f(n + 2) jsou cel4 &isla a &islo f(n + 1) neni celé.
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4. Na rovnobéznych hraniach 4A4’, BB’, CC’' kolmého troj-
bokého hranolu ABCA'B’C’ jsou zvoleny po fadé body
K, L, M. Vyjidfete objem télesa ABCKLM pomoci
obsahu S trojuhelniku ABC a délek p. g, r usetek AK,
BL, CM.
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1.

2.

4.

5.

Kategorie A

A-l

Najdéte mnoho¢len nejmensiho stupné s raciondlnimi koe-
ficienty, ktery ma kofen 1987]/2,
Dokazte, ze stfed kulové plcchy opsané pravidelnému

Ctyfsténu md ze vSech bodd prostoru nejmensi soulet
vzdélenosti od jednotlivych vrchola ¢tyfsténu.

. Piedpoklddejme, Ze kazdy bod roviny je obarven jednou

ze dvou barev. DokaZte, Zze v této roviné existuje rovno-
stranny trojuhelnik, jehoz vrcholy jsou obarveny stejnou
barvou.

Oznatme P, Q stiedy stran BC, CA trojahelniku ABC
ramenny se zdkladnou AB, pravé kdyz je Ctyfahelnik
TPCQ tetnovy.

Pritadme kazdé dvojici pfirozenych &isel (x, ) redlné Cislo
f(x, ¥) = 1. Pak pro libovolné ptirozené &islo % existuji
pfirozend &isla m, n takova, Ze

m+n=*kafimn) <f(m+ 1,n) + f(m,n +1).
Dokazte.

. Zjistéte, zda existuje ptirozené &islo, jehoz dekadicky zapis

m4d 23 &islice a které neni délitelné 11, ani kdyz zménime
libovolnou z jeho &islic.
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1.

A-S

Urcete nejmensi Cislo 7, pro které je mozno Ctverec o stra-
né 10 pokryt dvéma shodnymi kruhy o poloméru 7.

. Urlete vSechna pfirozend &isla n (n = 2), pro kterd md

rovnice
a — Axnl 4 ogy ox" 2 4 L fax? +ax+1=0
s redlnymi koeficienty vSechny kofeny redlné a nezdporné.

. V prostoru jsou dény body 4, P, O, které nelezi na piimce.

Popiste konstrukei krychle ABCDEFGH takové, Ze polo-
piimka AG prochazi bcdem P a polopiimka BH prochézi
bodem Q. Najdéte podminky feSitelnosti.

A-ll

Jestlize ¢tyfi shodné kruhy o poloméru » pokryvaji jednot-
/2
kovy &tverec, je v = ]Z— Dokazte.

Zjistéte, zda lze jednetkovy ¢tverec pokryt péti shodnymi

J2
kruhy o poloméru mens$im nez e

. Najdéte viechna komplexni &isla a, b, pro kterd mé rovnice

xt +4x3 +6x2 +ax +b=0
v oboru komplexnich &isel jen redlné koteny.

V prostoru jsou dény dva rtizné body P, Q a rovina 4.
Popiste konstrukci pravidelného &tyisténu ABCD, jehoz
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50

hrana AB lezi na tsetce PQ, vrchol D leZi v roviné 4,
| APD| = 30° a | < BQD| = 45°. Provedte diskusi.

Je déno ptirozené &islo n. Jaké nejvétsi hodnoty miZe nabyt
soucet

p(1) — 1] +1p(2) = 2| + ... + |p(n) —n]|,

je-li p prosté zobrazeni mnoziny {1, 2, ..., n} na sebe?

A -1l

. Necht f je zobrazeni mnoziny M = {1, 2, ..., 1988}

do M. Pro libovoIné prirozené n polozme x; = f(1),
Xn11 = f(xn). Zjistéte, zda existuje takové m, ze xo;, = x,.

JestliZze pro koeficienty rovnice
w4ax+bx+c=0,

jejiz viechny kofeny jsou redlné, plati a2 = 2(b + 1),
potom |a — ¢| = 2. Dokazte.

Je din (&tyfstén ABCD s hranami |4AD| = |BC| = a,
|AC| = |BD| = b, |AB| = ¢, |CD| = d. Urlete nejmensi
hodnotu sou¢tu |4AX| + |BX| + |CX| + |DX]|, kde X je
libovolny bod prostoru.

Dokazte, ze kazdé z &isel 1, 2, 3, ..., 27 lze zapsat jednou
ze dvou barev (Cervenou a modrou) tak, ze zddn4 nekon-
stantni 2n-Clennd aritmetickd posloupnost vybrand z téchto
Cisel neni jednobarevna.

Najdéte viechna ¢&isla a € (—2, 2), pro kterd je mnohoclen
x154 — gx77 + 1 ndsobkem mnohollenu x4 — ax? 4 1.



6. V trojahelniku A; 4243 se stranami aj, az, az jsou dény tii
body, které oznalime Pi, Ps, P tak, aby soucin jejich vzda-
lenosti od odpovidajicich stran aj, as, a3 byl co nejvétdi.
Dokazte, ze trojuhelniky P;AsAs, AiPeAs, A1A42Ps po-
kryvaji trojuhelnik A4; A>As.

Korespondenéni seminar UV MO

1. Reste rovnici

31 —x +3]1 + x =p,
kde p je redlny parametr.

2. a) Oznalme E, F,G body na stranich AB, BC, CA troj-

thelniku ABC, pro néz plati
|AE|  |BF| |CG]
|[EB| ~ |FC| ~ |G4]

Najdéte pomér obsahu trojuhelniku KLM urceného prim-

kami AF, BG, CE a obsahu trojuhelniku 4BC.

b) Rozdélte dany trojahelnik Sesti pfimkami na takové

¢asti, z nichz by bylo mozno slozit sedm shodnych troj-

thelnika.

B, O0<k<1.

3. Je dan pravouhly trojuhelnik ABC s pravym uhlem pii
vrcholu 4. Oznalme D patu vysky z vrcholu 4 a sestroj-
me kruznici % se stftedem L nad pramérem A4D. Pruseciky
kruznice & s odvésnami AB a AC oznalme K, M. Urlete
uhly trojihelniku ABC, vite-li, ze délky usetek AK, AL,
AM tvoii geometrickou posloupnost.
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4.

7.

52

Uvazujme okraj ¢tvercové Sachovnice n X n o $ifce dvou
poli. DokaZte, ze 1ze 8(n — 2) poli tohoto okraje obejit
Sachovym koném, pravé kdyz n — 1 je délitelné Ctyfmi.
Je mozné 18 dominovych kostek o rozméru 2 X 1 slozit
do &tverce tak, aby nevznikl Zddny Sev spojujici protéjsi
strany Ctverce a jdouci po hranédch kostek? (Napt. uspo-
fddani na obr. 3 se nehodi, nebot obsahuje Sev AB.)

B

A
Obr. 3

Devatenictisténu je vepsdna koule o poloméru 10. Do-
kazte, Ze na jeho povrchu existuji dva body, jejichz vzda-
lenost je vétsi nez 21.

Uvazujme nekonelny list ¢tveretkovaného papiru. V kaz-
dém ctvereCku je napsdno Cislo, pricemz soucet Cisel
v libovolném ¢&tverci, jehoZ strany lezi na ptimkach Ctver-
cové sité, v absolutni hodnoté neni vétsi nez 1. Dokaite,
Ze existuje takové Cislo c, ze soucet &isel v libovolném pra-
vouhelniku, jehoZ strany lezi na pfimkach dané sité, je
nejvyse c.



10.

11.

Dokazte, ze uvedené tvrzeni plati pro ¢ = 4. Muze byt
¢ =3neboc =27

. V kazdé ze tfi nddob je celoliselny pocet litra vody. Do

kterékoli nddoby je dovoleno pfelit stejné mnozstvi vody,
které jiz v naddobé je, z jiné nadoby. Dokazte, ze pomoci
takovych prelévani muzete jednu z nadob vyprizdnit.
(Nédoby jsou dostate¢né velké, do kazdé se vejde celé
mnozstvi pouzité vody.)

Obdélnikova tabulka s m fadky a n sloupci je vyplnéna
isly. Srovnejme &isla v kazdém fadku podle velikosti.
Dokazte, Ze srovnéte-li pak i ¢isla v kazdém sloupci podle
velikosti, budou i &isla v jednotlivych fddcich srovnéna
zas podle velikosti. Zjistéte, co se stane, budete-li rovnat
nejdfive sloupce a pak fadky: dostanete stejnou tabulku
jako v prvnim piipadé, ¢i ne?

V tabulce m X n jsou zapséna Cisla tak, Ze v libovolném
pravouhelniku (tvofeném dvéma fddky a dvéma sloupci
tabulky) jsou soulty &isel v prot&j§ich vrcholech stejné.
Cast ¢isel byla smazéna, piesto ale bylo mozno tabulku
jednozna¢né doplnit. Dokazte, Ze v tabulce zistalo aspoil
n + m — 1 &isel.

Dva hradi hraji »pi§kvorky« na neohrani¢eném listu ¢tve-
re¢kovaného papiru podle nasledujicich pravidel. Prvni
udéld kiizek do libovolného ¢tverecku. V kazdém dal$im
tahu pak déld kiizek do libovolného volného policka,
které sousedi s jednim z poli¢ek, na némZ uz je kiizek
(sousedni poli¢ka jsou ta, kterd maji spole¢ny aspoii jeden
vrchol). Druhy hr4¢ udéld v kaZdém svém tahu tii ko-
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12

13.

14.

54

le¢ka do libovolnych tii volnych poli¢ek. Dokazte, ze at
hraje prvni hra¢ jakkoli, druhy ho muZe »zavfite, tj.
muze dosdhnout toho, ze prvni hra¢ nebude mit kam dat
kiizek.

Na tabuli byl narysovan lichobéznik se stfedni pfitkou
EF a kolmici OK z prusetiku O uhlopfitek na v&tsi
zdkladnu (obr. 4). Pak byl lichobéZnik smazin. Jak lze

znovu sestrojit pavodni lichobéZnik ze zachovanych dse-
Cek EF, OK?

SN,
LA

\
N

Xp——"1

Obr. 4

Je dano 2n + 1 kladnych C&isel takovych, Ze rozdil mezi
sou¢tem libovolnych n + 1 danych &isel a souctem zby-
Iych n &isel je kladny. Dokazte, Ze pro soulin B vsech

2n +1
( n+1
nych ¢isel plati

) takovych rozdila a soutin 4 vSech 2n + 1 da-

Br < A6 -

Je d4n konvexni n-tihelnik M. Pro mnohothelnik s vrcho-
ly ve stfedech stran mnohothelniku M plati, Ze jeho
obvod neni mensi neZ polovina obvoedu M (pro n = 3)



i5.

16.

17.

18.

a jeho obsah neni mensi nez polovina obsahu M (pro
n = 4). Dokazte.

a) Vrcholu A4; pravidelného dvanictighelniku 4; 4 ...
... A1z je ptipsdno znaménko —, v ostatnich vrcholech
je +. Je dovoleno zménit znaménko na opacné v libo-
volnych $esti po sobé jdoucich vrcholech daného mnoho-
uhelnjku. DokaZte, ze ani po nékolika takovych operacich
nelze dojit k tomu, ze by ve vrcholu As bylo minus
a v ostatnich vrcholech plus.

b) Dokazte totéZ tvrzeni, je-li dovoleno ménit soucasné
znaménka ne v $esti, ale ve ¢tyfech po sobé jdoucich
vrcholech.

c) Dokazte totéz tvrzeni, je-li dovoleno ménit soucasné
znaménka ve tfech po sobé jdoucich vrcholech.

Jestlize ke kazdé sténé daného konvexniho mnohosténu
sestrojime v nékterém jejim bodé vektor k ni kolmy, ktery
bude sméfovat ven z télesa a jehoz velikost bude rovna
obsahu pfisluiné stény, pak bude souet viech takovychto
vektora roven nule. Dokazte.

Dokazte, Ze pro libovolnych n redlnych Cisel ay, az, ...,
an existuje takové prirozené Cislo & = n, Ze kazdé z k Cisel

1 1
k> —2_(ak_1 + ak)’ ? (ak'“'l + ap—1 + ak): . -,‘Z (al -+

1
+ az + ... + ax) je nejvyse rovno Cislu = (a1 + as +

+ ...+ ap).
Mnozina pfirozenych &isel md nésledujici vlastnost: ani
jedno z &isel mnoziny nedgli jiné, ale mezi libovolnymi
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19.

20.

21.

56

tfemi &isly vzdy nékteré déli soucet ostatnich dvou. Jaky
je nejvétdi mozny polet prvka takové mnoziny? Jaky je
nejvetsi mozny polet prvka takové mnoziny, pozadujeme-
-li navic, aby to byla lich4 &isla?

Je déno n redlnych Cisel x1, x2, ..., xp rozmisténych na
kruznici, pfi¢emz |x;] = 1 (1 <7< n) a pro kazdé
ke {1,2,...,n — 1} jsou soulty n soucint viech dvojic
Cisel vzdélenych od sebe & mist vzdy nulové (x,4; = x;):

X1X14% + XeXo4k + ... + Xpxp =0

Dokazte, 7e n je &tvercem celého &isla. Ctvefice —1,1,1,1
je prikladem takovych &isel pro » = 4. Existuje takova
n-tice pro n = 167 Pro jakd n takovd nm-tice existuje?

Dokazte, ze pro kazdé pfirozené n > 1 plati

) . bid 2n n—1
sinxsin| x + sinfx +—J...sin|x +—= |=
n n n

= ¢y sin nx ,

kde ¢, je n&jaké Cislo zavislé na n. Najdéte ¢,,.

S danym pfirozenym &islem budeme provadét nasledujici
operace:

A) pfipiSeme k nému &islici 4;

B) pfipiSeme k nému dislici 0;

C) vydélime ho &islem 2 (je-1i sudé).

Provedeme-li napt. s &islem 4 postupné operace C, C, A
a B, dostaneme ¢islo 140. Jak dostaneme pomoci operaci
A, B, C z lisla 4 &islo 1988? Dokazte, ze z Cisla 4 lze
popsanym zptsobem dostat libovolné piirozené &islo.



22.

23.

24.

25

.

26.

27.

28.

Najdéte vSechna prirozeni Cisla m, pro néz
m(m + 1)
113150 .. @2m —1)! = — I.

Je dén trojuhelnik ABC a kladn4 Cisla p, ¢. Uvnitf daného
trojuhelniku najdéte bod O s nésledujici vlastnosti: pro
libovolnou pfimku prochizejici bodem O a protinajici
strany AB a BC v bodech K, L plati

|AK)| |CL|

PSS SEPER L + —_— = l
?1kB T LB
Oznaéme s(n) ciferny soucet pfirozeného ¢islan (v desitko-
vé soustavé). Pfirozené &islo m nazveme »zvlastnic, jestlize
je nemuZeme vyjadrit ve tvaru m = n + s(n) pro né&jaké
ptirozené n. Existuje zvla§tnich Cisel jen kone¢né mnoho ?

Sestrojime-li v tétivovém {tyfahelniku osy thla sevie-
nych jeho prodlouzenymi protéj$imi stranami, jsou jejich
pruseciky se stranami Etyfthelniku vrcholy kosoltverce.
Dokazte.

Pomoci &isel 1, 2, ..., k utvofme mnozinu M viech
uspotadanych n-tic (ai, as, . . ., a,) (je jich £7). Uvazujme
dvé podmnoziny P, Q mnoZiny M, pro které plati: Je-li
(PhPZ; oo -,Pn)e Pa (ql: q2, ..., qn)e Q: jepi = qi pro
aspoti jedno i€ {1, 2, ..., n}. DokaZte, Ze jedna z mnozin
P nebo Q mé nejvyse k-1 prvki.

Najdéte nutnou a postatujici podminku pro &isla a, b,
a, 3, aby 8lo obdélnik @ X b rozi'ezat na obdélniky a X f.

Dva hraji nésledujici hru: Jeden postupné voli &islici,
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29.

30.

31.

32.

58

kterou druhy zapiSe na misto jedné hvézdic¢ky v nésle-
dujicim rozdilu

* k Kk X

I

atd., celkem osmkrit. Ten, ktery urluje &islice, se snaZi,
aby byl rozdil co nejvétsi, druhy zas, aby byl co nej-
mensi. Dokazte, Ze:

a) druhy muze umistovat Cislice tak, aby vznikly rozdil
nebyl vétsi nez 4 000 bez ohledu na to, jaké Cislice voli
prvni hrac;

b) prvni maze volit &islice tak, aby rozdil nebyl mensi nez
4 000 bez ohledu na to, kam je druhy umisti.

Najdéte pomér velikosti stran trojihelniku, jehoZ jedna
téZnice je vepsanou kruznici rozdélena na tii stejné Casti.

Necht a, b jsou celd &isla. Pro jaka a, b 1ze rozdélit napal
a + b litrt mléka, mime-li jen niadoby o objemu a, b,
a + blitra?

/

A se zavazuje platit B pramérné 12— korun za den. Do-
mluvili se, ze n-ty den dostane B celé &islo a, korun
(an€ {1, 2}) tak, aby celkovd suma po n dnech (tj.
ar + a2 + ... + ay) byla co nejblize Cislu nlE (napt.
ap =1, a2 =2, az =1). Dokaite, ze posloupnost
(an),.; neni periodicka.

Necht a, b, m, n jsou piirozena Cisla, pfi¢emZ a, b jsou
nesoudélnd a a > 1. Dokazte, ze pokud a” + b dé€li
am + bm, pak n déli m.



33.

34.

35.

Jestlize soulet n kladnych &isel xi1, x2, ..., x, je 1,
oznalme S nejveétsi z Cisel

X1 X2 Xn

1+ o’ T+ + 2’ "l +x+ ... +x,

Najdéte nejmensi moznou hodnotu S. Pro jaké Cisla xi,
X2, ..., X, S€ nabyva?

Je mozno rozestavit Cislice 0, 1, 2 na pole ¢tvereckovaného
papiru o rozmérech 100 X 100 tak, aby v kazdém pravo-
uhelniku 3 X 4 Ctveretky byly tii nuly, &tyfi jednicky
a pét dvojek ?

Po skoneni hokejového turnaje (jednokolové kazdy s kaz-
dym) se ukizalo, Ze pro libovolnou skupinu muZstev
existuje muZstvo, které v zipasech s muistvy zvolené
skupiny ziskalo lichy pocet bodii. Dokazte, Ze v turnaji
hral sudy pocet muzstev.
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RESEN{ ULOH KATEGORI{ A, B, C

Kategorie C

C-1-1

Necht uspofddand trojice (a, b, ¢) realnych &isel vyhovuje
podminkdm tlohy. Do vyrazu ax + by + cxy dosadime za
x, v postupné hodnoty 0, 1, 2. Podle predpokladu tlohy tim
zjistime, ze do mnoziny A patii &isla a, b, 2a, 2b, a + b + ¢,
2a + b + 2¢, a + 2b + 2¢, 2a + 2b + 4c. Je-li a=b =0,
musi do A patfit &isla ¢, 2¢, 4¢, coz vzhledem k podmince
¢ 5+ 0 neni mozné. Zkusime ted a =1, b =0, do A pak
musi patfit Cisla 1 +¢, 2 + 2¢, 1 + 2¢, 2 + 4c. Protoze
1 + ¢ je prvkem A, je ¢ = 1 nebo ¢ = —1. Pak v3ak nepatii
do A ¢&islo 1 + 2c¢, takZe nemuze byt a = 1, b = 0. Stejné
tak nemaze byt a =0, b = 1. Je-li a = b = 1, patfi do A
&sla2 + ¢,3 + 2¢,4 + 4c. To je splnéno pouze proc = —1.
NemuZe byt a = 2, protoze by do A nepatfil prvek 2a, po-
dobné pro b = 2. Uloha m4 tedy jediné Feleni (a, b, ¢) =
=(,1, —1).

C-1-2
Je-li &islo n2 + 5n + 8 délitelné Cislem 49, je tim spise
delitelné sedmi. Kazdé pfirozené Cislo n se dd napsat pravé
v jednom z tvarQ 7k, 7k + 1, ..., Tk + 6, kde k% je pfirozené

¢islo nebo 0. Dosadime-li postupné kazdy z uvedenych tvara
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za n do vyrazu n2 + 5n 4+ 8, dostaneme pouze v piipadé
n = Tk + 1 &islo délitelné sedmi, a to &islo 49%(k + 1) + 14.
Toto cCislo je délitelné sedmi, ale neni délitelné Cislem 49.
Tim jsme dokazali, Ze pro zddné pfirozené Cislo » neni &islo
n2 + 5n + 8 délitelné Cislem 49.

Uvedme jesté jiny dukaz. Je n? + 5n + 8 = n? — 2n +
+14+Tn+7=m—12+7n+ 1). Aby bylo toto Cislo
délitelné sedmi, musi byt nutné ¢&islo (n — 1)2, a tedy i &islo
n — 1, délitelné sedmi, tedy n = 7% + 1. Pak je ¢islo (n — 1)2
délitelné Cislem 49, Cislo 7(n + 1) ale pouze sedmi. Doché-
zime ke stejnému vysledku jako pfi predchdzejicim postupu.

C-1-3

Necht p, ¢, p + ¢, pq jsou délky stran Ctyfahelniku. M-
zeme predpoklddat, ze p = ¢. Soulet délek kazdych tif stran
¢tyiuhelniku je vét$i nez délka Ctvrté strany, takze musi na-
piiklad platitp + ¢ + (p + ¢) >pg, 4.4 >(p —2)(q9 — 2).
Odtud je vidét, ze (p — 2, ¢ — 2) muze byt pouze jednou
z dvojic (3, 1), (2, 1), (1, 1), takZe mame tyto tii moznosti pro
P, g, u nichz uvddime i odpovidajici hednoty p + ¢, pg:

p=54q9g=3,p+q9=8pg=15
p=4q9=3,p+q="7p3=12
p=3,9=3,p+q=6p3=9

Ve vsech tfech pfipadech md nejkratdi strana délku 3, nej-
del3i stranou je strana s délkou pg, coz je 15, 12 nebo 9. Ze
zbyvajicich dvou stran musi aspoil jedna s nejkratsi stranou
sousedit. V prvnim pfipadé maji tedy dvé sousedni strany
délky 3 a 5 nebo 3 a 8, v druhém piipadé 3 a 4 nebo 3 a 7,

61



v poslednim pfipadé maji dvé sousedni strany délku 3 nebo
jedna délku 3, druh4 6. Vidime, ze ve viech $esti moznostech
je soucet délek dvou sousednich stran nejvySe 11. Podle
trojuhelnikové nerovnosti je proto délka uhlopficky, ktera
tvori s témito dvéma stranami trojthelnik, mensi nez 11, coz
jsme méli dokdzat.

C-1-4
Predpoklddejme, Ze jsme si rovinu BCC” ototili kolem piim-

ky BB’ do roviny ABB’ tak, e se bod C ototi do bodu Co
a bod B je stiedem tusetky AC, (obr. 5). Stted S piejde pfi-
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Obr. 5

tom do bodu S, bod K je prisetikem usetek BB’ a ASo,
protoze pouze tak je |AK| + |KS| = |AK]| + |KS,| nejmensi.
Oznaéme P patu kolmice vedené bodem S, na piimku BC,.

1
Z podobnosti trojuhelnikt ABK, APS, plyne, ze |[BK| = 3%
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1 2
protoze |PS,| = S va |AB| = EY |AP|. Stejné tak je |CL| =

1

=5 Dile je KL || BC, |KL| = a, vy$ka na tuto stranu
. 1 1 1 :

v trojuhelniku KLS je S v — 3% v,jeho obsah je proto

1
2% Pata Q vysky v jehlanu KLSA na sténu KLS splyvé se

1 —
sttedem Usecky BC a mi tedy délku~2~ a}/3. Proto se objem

1 _
jehlanu KLSA rovni Ea‘l-vv?;, cbjem daného hranolu je

— 1
7 a?v)/3, hledany pomér je 18

C-1I-5

Jisté existuje druZstvo A, které mélo v turnaji nejvétsi pocet
vvher, pfesnéji feCeno existuje druzstvo A tak, ze zddné dali
druzstvo nemélo vice vyher nez druzstvo A. Necht B je libo-
volné dalsi druzstvo. Mohly nastat pravé dvé moznosti, bud
druzstvo A vyhrélo nad druzstvem B, nebo s nim prohralo.
V prvnim piipadé vezmeme za C libovolné dal§i druzstvo
v druhém pripadé, kdy druzstvo A prohralo s muzstvem B.
Pak ale musi existovat druzstvo C, se kterym A vyhrélo a B
prohralo, jinak by mélo druzstvo B vice vyher nez druzstvo A.
Ve vzidjemnych stietnutich mezi 4, B, C pak mélo druzstvo 4
pravé jednu vyhru (nad C) a druzstvo B také prdvé jednu
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vyhru (nad A). Opét je pozadavek ulohy splnén a tim je
tvrzeni ulohy dokdzdno.

C-1-6

Z véty o obvodovém a stiedovém thlu plyne (obr. 6), Ze
e}

3
|<C BFG| = 80°, nebot |< BSG| = 4. = 160°, S jsme

9
oznadili stied kruznice k& opsané danému devitiahelniku. Stej-
n¢ tak odvodime, ze |<C FGC| = 60°, takze |<C FLG| = 40°,
nebot soudet hlal v trojihelniku je 180°. Uhly CLB a FLG

Obr. 6

jsou vrcholové, proto je také |<¢ KLM| = 40°. Obdobné od-
vodime, Ze |<C KML| = 60°, |<¢ MKL| = 80°. Obvodovy
ahel kruZnice k£ odpovidajici jedné strané devitithelniku mé
velikost 20°. Vrcholy trojihelniku s vnitinimi ahly 40°, 60°
a 80°, jez jsou zdroven vrcholy devitiGhelniku, déli proto kruz-
nici & na tii oblouky cdpovidajici dvéma, tfem a Ctyfem stra-
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ndm devititthelniku. Takovymi trojuhelniky jsou napfiklad
trojtihelniky ACF a ACG. Uloze vyhovuje déle viech 8 troj-
thelnik(, které dostaneme otolenim trojihelniku ACF kolem
bodu S o cely nidsobek 40°, a 8 trojihelniki, které dostaneme
stejnym zpusobem z trojihelniku 4CG. Celkem je tedy téch
trojihelnika 18.

C-S-1

Oznatme A, C sousedni vrcholy k vrcholu B dvanicti-
thelniku, ktery je pravidelny a je vepsin kruZznici o stfedu S
a poloméru 2 (obr. 7). Oznatme dale P prasecik Gsetek AC,

Obr. 7

BS. Trojahelnik ACS je rovnostranny, P je stied Gse¢ky AC,
proto je |CP| = 1, |PS| = |3, |BP| = 2 — |/3. Podle Pytha-
gorovy véty je [CB2 =1 + (2 — |32 = 42 — |/3), |CB| =
= 21/ 2 —3. Protoze (|6 — | )-2 =8—2]12=42—13)=

= |CBJ2, je také |CB| = |6 — ]
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C-§5-2

Protoze ¢&islo koncici devitkou neni délitelné ani dvéma, ani
péti, musi byt zbyvajici tii Cislice hledanych &isel z mnoziny
1, 3,7, 9. Jejich soucet musi byt délitelny deviti, takze pfi-
chazeji v uvahu pouze trojice (1, 1, 7), (3, 3, 3) a (9, 9, 9).
Cisla 1179 a 1719 nejsou délitelnd sedmi, takZe hledanymi
Cisly jsou pravé &isla 7119, 3339 a 9999.

C-§-3

Z kazdého zépasu odchazi pravé jeden hra¢ porazeny. Kre-
mé vitéze prohral kazdy hra¢ dvakrat. Protoze zépast bylo 45,
tedy lichy pocet, musel v jednom zipase prohrat vitéz. Ve
zbyvajicich 44 zépasech byli vSichni ostatni hraci vylouceni,
bylo jich tedy 44 : 2 = 22. Celkem se turnaje zucastnili 23
hracdi.

C-l-1

Jde o leh¢i ulohu, kterou vyfedila vétSina ucastnika kraj-
ského kola. Hledan4 Cisla si oznacime po fadé a, b, ¢, d. Podle
podminek tlohy plati @ + & = 707, b + ¢ = 700, ¢ + d =
= 689. Z posledni rovnice vyjadiime ¢, dosadime do druhé,
vyjaédiime z ni b a dosadime do prvni. Dostaneme postupné
¢ =689 —d,b=11 + d, a + d = 696, takze soulet prvni-
ho a ¢tvrtého ¢&isla je 696. Ode¢tenim prvnich dvou rovnic
dostaneme a — ¢ = 7, takze a je asponn 8. Je-li a =8, je
b =699, c =1, d = 688. Nejmensi mozné hodnota prvniho
¢isla je tudiz 8.
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C-1i-2

Uvédime feSeni podle Michala Kubetka, zdka 8. tiidy za-
kladni $koly v Praze 4, Na planiné. Vrcholy lichobéZniku oznacil
4, B, C, D tak, ze a = |AB| > |CD| = ¢, AB || CD. Stfedy
stran AB, BC, CD, DA oznatime K, M, L, N (obr. 8).
Maji-li ¢tyfuhelniky NAKX, LDNX, MCLX a KBMX stej-
né obsahy, rovnaji se sobé soucty obsaha prvnich dvou a po-
slednich dvou, oba soulty se rovnaji poloviné obsahu licho-
bézniku ABCD. Jelikoz tseCka KL déli lichobéznik na dva
lichobéZzniky stejného obsahu, musi lezet bod X na usecce KL.
Oznatme § stied tseC¢ky MN (obr. 9), v vysku lichobézniku

D L C
\\\T ///
N 1S M
////‘ X \\\\
A K B
Obr. 8 Obr. 9

a k vzdalenost bodu X leZiciho na tseéce SK od ptimky MN.
Stadi urdit £, a tedy bod X tak, aby se sobé& rovnaly obsahy
¢tyfuhelnikt NAKX a LDNX, pak se jiz budou sobé rovnat
obsahy ¢tyfuhelnikdt MCLX a KBMX. Obsah ¢tyfuhelniku
LDNX dostaneme seltenim obsaha lichobézniku LDNS
a trojuhelniku NSX, obsah ¢tyfthelniku NAKX se rovna
rozdilu obsah lichobé&Zzniku NAKS a trojuhelniku NSX,
takze pro & plati
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a+c¢ a a+c

c
i Rl
v 2 4 +a+c h_*v 2 4 a+c h
2 2 4 . 0 % 2 4, D
v a—c A
odkud 2 = — . Dile je |SX|:h = |KL|:wv, takie
2 a+c

— a c
|1SX]| = KL, |[LX| = —— |KL|, |KX| = —— -
a-—+c¢

2(a + ¢) a+c
.|KL|. Tim je bod X urcen, déli use¢ku KL v poméru a: ¢
a lezi bliz k bodu K. Prusec¢ik T uhlopficek AC, BD licho-
bézniku lezi také na tsetce KL a z podobnosti trojahelniki
CDT a ABT plyne, ze |[LT|:|KT| = ¢ : a. Je proto | KX| =
= |LT|, |LX| = |KT|. To dava rychlou konstrukci bodu X :
Na ase¢ku KL naneseme od bodu K vzdélenost |LT|, dosta-
neme tak bod X.

C-11-3

Uvidime maélo upravené feSeni, které v soutézi pfedlozil
Viclav Kordl, 74k 1. ro¢niku gymnézia v Praze 4, Postupické
ul. Cisla A, B zapiSeme ve tvarech 4 = 103a + 1026 + 10c +
+d, B =103 + 1026 + 10c + a. Jelikoz jsou obé déli-
telnd Cislem 63, je délitelny &islem 63 ijejichrozdil 4 — B =
= 999(a — d), tj. 999(a — d) = 63n, n prirozené Cislo, tedy
111(a — d) = 7n. Cislo 111 neni délitelné sedmi, proto musi
byt délitelné sedmi ¢&islo a — d. Je proto a = 8, d = 1 nebo
a =29, d =2. Pfipad a = d muzeme totiz hned vyloucit,
protoze by bylo 4 = B a nejvétdim spole¢nym délitelem Cisel
A, B by bylo ¢tyimistné Cislo A4, a tedy ne Cislo 63.

Necht jetedy a = 8,d = 1. Pakje 4 = 8001 + 1026 + 10c,
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B = 1008 + 1026 + 10c. Cisla 8001, 1008 jsou obé& déliteln4
¢islem 63, proto musi byt délitelné ¢islem 63 i ¢islo 10(106 + ¢),
takze 106 + ¢ = 0 nebo 106 + ¢ = 63. Dvojice (8001, 1008)
a (8631, 1638) skute¢né vyhovuji podminkdm ulohy.

Necht je a =9, d =2 a tedy 4 = 9002 + 1026 + 10c,
. B = 2009 + 1020 + 10c. Cisla 2009, 9002 jsou délitelnd
sedmi, proto musi byt délitelné sedmi i &islo 106 + ¢. Kromé
toho musi byt &isla A, B délitelnd deviti, tedy musi byt déli-
telny deviti jejich ciferny soutet 2 + b + ¢, takze b + ¢ =7
nebo b + ¢ = 16. Z nejvySe dvoucifernych ndsobku sedmi
vyhovuji této podmince pouze &isla 7 a 70, takze 4 = 9072,
B = 2079 nebo A = 9702, B = 2709. Prvni dvojice viak
nevyhovuje viem podminkdm ulohy, protoze nejvét§im spo-
le¢nym délitelem Cisel 9072, 2079 je &iclo 3.63 = 189, druha
dvojice je feSenim tlohy.

Uloha md pravé tii feSeni: (8001, 1008), (8631, 1638) a
(9702, 2709).

C-1i-4

Oznaéme a = |<L ABC| = |<t AED| (obr. 10). Ctyithelnik
ABCD je tétivovy, proto |<C ADC| = 180° — @, podobné
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|<c DCA| = 180° — a. Trojuhelnik ADC je tedy rovnora-
menny, osa jeho zdkladny DC prochdzi bodem 4 i stfedem S
kruznice k. Je tudiZ kolméd na pfimku DC i na teCnu kruz-
nice k£ v bodé 4, a proto jsou pfimka DC a te¢na kruznice %
v bodé A4 spolu rovnobézné.
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Kategorie B

B-1-1

Ozna¢me kazdé pole Sachovnice 7 X n uspotddanou dvojici
{1, 7) ptirozenych ¢&isel podle obr. 11. Postavime-1i figurky na
vSechna pole, pro kterd jsou obé ¢isla 7, 7 lich4, nebudou Z4dné
dve figurky sousedit, nebot pole sousedni k poli (7, /) s lichymi
Cisly 1, 7 je oznaleno dvojici Cisel, z nichZ je asponl jedno

n 4 1\2
sudé. Pri lichém » jsme tak na Sachovnici rozmistili( 2 >

n\2
figurek, pii sudém 7 jsme rozmistili <7> figurek. Ukdzeme

jesté, Ze vice figurek nelze pii dodrzeni podminky tlohy roz-
mistit. Dtkaz provedeme matematickou indukci. Pfi n = 1
a2 n = 2 skuteCné¢ nelze rozmistit vice nez jednu figurku.
Pfedpoklidejme, Ze n je liché &islo, n» = 3. Sachovnici n X n
pak muzeme rozdélit na Sachovnici (n — 1) X (n — 1) ajeden
fiadek a jeden sloupec (obr. 12), pfi¢emz tyto maji spoletné

(1.0 {230 |61}

o| o]

Obr. 11 Obr. 12
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jedno pole. V tomto fadku a sloupci je celkem 2n — 1 poli
a muZeme na nich rozmistit nejvyse #n figurek, nemaji-1i Zddné
dvé sousedit. Podle indukéniho pfredpokladu muZeme na

n — 1\2
Sachovnici (n — 1) X (n — 1) rozmistit nejvyse <—2—>

) n — 1\? n 4+ 1\2
figurek, celkem nejvyse n + — ) =\ figurek, coz
jsme méli dokézat. Pfi sudém » rozdélime Sachovnici n X n
na Sachovnici (n — 2) X (n — 2) a na n — 1 $achovnic typu
2 X 2 (obr. 13). Na Sachovnici (n — 2) X (n — 2) maZeme

o O O

O

(n-2)x(n-2) o

Obr. 13

n — 2\2
podle indukéniho predpokladu rozmistit nejvy'%e( > >

figurek, na kazdou $achovnici 2 X 2 nejvyse jednu figurku,

. n — 2\2 n \2
celkem nejvyse 5 +n—1= a figurek. Timjein-

n 4+ 1\2
dukeni krok dokézén i pii sudém n. Visledek je tedy <—2—)
n\2
pii lichém n, (7) figurek pii sudém n.
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B-1-2

Ziejmé 0 ani 1 nejsou kofeny mnohotlenu Py(x) pii
74dném n. Jeli x >1, je vidy x@®' — x@-1' > 0 pro
k=1, 2, ..., n. Seltenim téchto nerovnosti s nerovnosti
1 >0 dostaneme P,(x) >0. P¥ x <0 je —x@-D" >0,
atedy také P,(x) > 0. Pro x € (0, 1) je —x@k-D" 4 x@k-2" >
>0,prok =1, 2, ..., n. Se¢tenim té€chto nerovnosti a ne-
rovnosti x2®* > 0 dostaneme P,(x) >0 i pro x< (0, 1).
Dokézali jsme tudiz, ze pro viechna redlna Cisla x je Py(x) >
> 0, tedy pro z&dné redlné C&islo x neni Pj,(x) = 0.

B-1-3

Zvolme jednotkovy &tverec ABCD s vrcholy v miizovych
bodech roviny (obr. 14). Pfedpoklddejme, Ze zobrazeni F

Obr. 14
spliiuje podminku ulohy. Pak je F(4) + F(D) + F(C) =0,
F(D) 4+ F(C) + F(B) = 0, takie F(A) = F(B). Stejné tak
dokazeme, ze F(B) = F(C). Piifazuje tedy zobrazeni F
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kazdym dvéma sousednim miizovym bcdim, a tudiz kaz-
dym dvéma mfizovym bodum, totéz ¢&islo, jez se podle
podminky (1) v textu Gilohy musi rovnat nule. Tudiz nenu-
lové zobrazeni pozadovanych vlastnosti neexistuje. Bu-
deme-li platnost (1) pozadovat jen pro pravothlé trojihelni-
ky, jejichz pfepona je rovnobézna s piimkou BD, dostaneme
pouze podminku F(A4) = F(C), a to pouzitim trojahelnika
ABD a BDC. Vime pak, ze zobrazeni F pfifazuje stejnou
hodnotu kazdym takovym dvéma mfizovym bodum, jejichz
spojnice je rovnob&znd s pfimkou AC. Za F muzeme vzit
tfeba zobrazeni, které mfizovému bodu o soufadnicich
[x, y] ptitadi ¢islo 0, 1 nebo —1 podle toho, je-li &islo
v — x délitelné tiemi, dava pifi déleni tfemi zbytek 1 nebo
zbytek 2. Na obr. 15 je k nékolika mfizovym bedim pri-
psana hodnota, kterou jim zobrazeni F ptifazuje.

L 4
S e
QAo
0 1 1001 1 9
400008
I Y
_O
Obr. 15
B-1-4

vy

Oznalme e, f délky uhlopfi¢ek v rovnobézniku ABCD,
ktery je jednou sténou rovnobéznosténu ABCDEFGH

74



(obr. 16), dale oznatime a = |4B|, b = |BC| délky hran
a a = |<{DAB|. Podle kosinové véty je f2 = a2 + b2 —
— 2abcos a, €> = a% + b2 — 2abcos (x — a) = a® + b2 +
+ 2abcos u, takze 2 + f2 = 2(a? + b2). Oznalme jeitd u,
v délky télesovych thlopfitek BH, DF rovnobé&Znosténu
ac= |AE[ délku jeho tieti hrany. Podobné jako pfi pied-
chdzejicim postupu odvodime, Ze

Obr. 16

w? + 02 = 2(f2 + ¢2), w2 + 22 = 2(e? + ¢2),
kde w = |AG|, z = |CE| jsou délky zbyvajicich dvou té&le-
sovych tdhlopfi¢ek rovnob&Znosténu. Seétenim dostaneme
W+ 0% 4+ w? 4 22 = 2(e2 + f2) + 4c% = 4(a® + b2 + 2).
Tim je tloha vyfedena. Je mozné ji Fesit také pomoci ska-
lairniho soutinu vektord. Oznadime-li u = H — B, v =
=F—-D, w=G—4, z=E—-C, a=B— A4, b=
=D—4, c=E—A4, je u=b —-a+¢ v=—b +
+a+cw=a+b+c,z=—-b—a+c, takze
[ul + [VI® + W2 + [z|> = 4(ja]2 + [b]z + [c[2).
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B-1-5

Ptimka BD je kolmé k pfimkém AC i AA4’, proto je kolma
k roviné CAA’ (obr. 17), a tedy i k pifimce AC’. Stejné tak

XA
Cl d \\ Br
4 \
// \ K
0 /
D 3 A
|
| N
| 7/ \
| /s \
M/ : . // )
// \\‘ CI P/,”‘”’_”Z
- \i\i’:f:;;"’“‘” """"" B
R v
Y D A
Obr. 17

dokaZeme, ze BA’ | AC’, takZe je k pfimce AC’ kolmé
rovina BDA’. Roviny BDA’ a B'D’C jsou rovnobézné, je
tedy i rovina B’D’C kolma k pfimce AC’. Rovina uvazova-
ného fezu je s témito rovinami rovnobéznd. Je-li ¢z = 0,
tj. K = A’, je fezem trojuhelnik BDA’, je-li ¢ = a,jefezem
trojuhelnik B’D’C. Je-li K vnitinim bodem usetky A'B’,
je fezem Sestithelnik KLNMPQ, pfitemz KL || NP || BD,
LM || PQ|| CB, MN| QK| BA4’. Rovina fezu protne
piimky AA4’, AD a AB v bodech X, Y, Z, které tvoii rovno-
stranny trojthelnik o stran& délky (a — 1) |2 + 21 )2 =
=(a+ 1) ]2. Obvod o Zestithelniku je 3(a — ) |2 +
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+ 3t |2 = 3a |/2, nebot |[KL| = |KX| = ¢ ]2, |PN| = (a —
—1))2. Obsah S Sestitthelniku KLMNPQ dostaneme,
kdyz od obsahu trojuhelniku XYZ odelteme obsahy troj-
thelnika XKL, YMN, ZPQ, tedy trojndsobek obsahu

rovnostranného trojihelniku o stran& délky ¢ |2, takze

5o B Fa? 2 z]
S:—2(a—+2at—2z):—-2-— 7—2([—7) .

a
Vidime, ze pro t € {0, a) je obsah S maximdlni pfi ¢ = P
minimalni pfi z = 0 nebo ¢ = a, kdy se vSak Sestitthelnik
redukuje na trojihelnik. Obvod o na ¢ nezivisi, je kon-
stantni.

B-1-6
. . 1
Dukaz provedeme matematickou indukci. Je x3 = o0
x4 = . Pron = 3 an = 4 dokazované nerovnosti 0 << x, <1,

3
tedy plati. Pfedpoklddejme, Ze plati pro viechna £ < n + 1.
Pakje2 — xy — xp41 > 0,1 — xpxp+1 > 0, takZe x,,19 > 0.
Je pak také (1 — xp)(1 — xp41) >0, tj. 2 — xy — Xp11 >
>1 — xpxn1 >0, odkud plyne x,42 < 1. Dokdzali jsme
0 < xy+2 <<1. Tim je tvrzeni ulohy matematickou indukci
dokézéno.

B-S-1

Uloha ma vice feSeni, dv& jsou uvedena na obr. 18 a 19.
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Obr. 18 Obr. 19

B-S-2

Pro x = 1 a x = 2 dostaneme celd Cisla a + b, 21988q + &,
jejich rozdil a(21988 — 1) je tedy také celé &islo, takze je

. : p .

¢islo a racionélni. Necht jea = ——, &isla p, ¢ celd. Polozime-li
q

x = g, vidime, Ze Cislo agq'%8 4+ b = pq'%7 4+ b je d&islo

celé. To viak znamend, ze je i Cislo b celé. Jelikoz & je celé

a Cislo a + b rovnéz, je i &islo a celé. Tim je dukaz tvrzeni
ulohy dokoncen, a i b jsou &isla cela.

B-S-3

Trojthelnik BGP; (obr. 20) je rovnoramenny se zdklad-
nou délky 2|2, délky ramen BP; a GP; jsou |/5. Jeho vyska
prisluina k zédkladné ma tudiz délku |/3, obsah trojuhelniku

BGP; je S; = |/6. Pro z = 0 je fezem kosoltverec EA,CG,,
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Obr. 20

jehoz obsahje2S; = 2/6. Pro z €(0,1) je fezem pétitihelnik
P, A:B;C,G;, ktery dostaneme z koso¢tverce P;A;0:G; od-
fiznutim trojuhelniku B;Q;C;. Z pcdobnosti trojuhelnika
B;0;C; a GP1B plyne, Ze se obsah trojuhelniku B;Q;C; rov-

né 2]/6. Obsah S; fezu PA4:B;C,G; je tudiz (2 — 2)]6.

B-II-1

Dale uvedené feseni je od Marry Bendové, zakyné 2. roc-
niku gymnézia v Praze 1, Stépanské ul. Pfimka BG je kolm4
k roviné EFC, protoze je kolma k pfimkém FC a FE (obr. 21).
Pak je vSak pfimka BG také kolmé k piimce EC. Podobné
dokézeme, Ze je rovina EBC kolmé k pifimce AF, takze je
EC | AF, EC | BG. Ztejmé je KL || EC,takze je KL |
| AF a KL | BG, coz jsme méli dokazat.

Jiny dukaz se opird pouze o Pythagorovu vétu. Polo-
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Obr. 21

sime-li [AB| =3, je |KL| = |/3, |BL| = 2 a |BK| = |5,
takze je trojuhelnik KLB pravothly s pravym thlem pfi
vrcholu L. Stejn¢ tak dokdzeme, 7e je trojuhelnik FKL
pravouhly s pravym thlem pii vrcholu K, takze KL | BG
a KL | AF.

B-11-2

Uloha tzce navazuje na tlohu B - S - 1, velmi p&kng
ji fesil Viadimir Solc, zak 2. roéniku gymnazia v Beroung,
jehoz feleni zde uvadime. Stoji-li na Sachovnici 7 stfelcq,
existuje jedna barva (bild nebo Cernd) tak, ze na polich této
barvy stoji nejvyse tii stfelci. Muzeme predpokladat, ze je
to barva bild. Pfi kraji Sachovnice je 14 bilych poli, pfitom
kazdy stielec na bilém poli muze ohrczit nejvyse 4 bild
krajni pole Sachovnice. Celkem tedy muze byt ohrozeno
nejvys$e 12 bilych okrajovych poli, nejméné dvé ohrozena
nebudou.
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B-11-3

7Zik Ondiej Kalenda z 2. rotniku gymnizia W. Piecka
v Praze ukdzal, Ze podminkdm tlohy vyhovuje mnohoclen

1
f(®) =(—n—+—l)—!(x— D(x—2)...(x —n),

jeho spoluzak Jakub Cvach uvedl polynom

g(x) (x —2)(x —3)...(x —n)[x —(n + 2)].

T+ 1!
B-1i-4
Velmi pékné feseni uvedl v soutézi Lubomir RuliSek, zak

2. ro¢niku gymnizia W. Piecka v Praze. Postupoval asi
takto: Téleso ABCKLAM (obr. 22) se sklad4 z jehlanu ABCK

M

Obr. 22
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1
a jehlanu BCMLK. Prvni jehlan md objem ?Sp, objem

druhého jehlanu je %-P'v, kde » je vyska jehlanu na sténu
BLMGC, coz je ziroven vyska v trojuhelniku ABC na stranu
BC, P je obsah lichob&Zniku BLMC. Proto je P = % (g +
+ 7) a, kde a = |BC]|. Je tudii%Pv . % (g + 1) av =
= %(q + r) S, celkovy objem télesa ABCKLM je proto
1
3 S@+a+n)

Jiné feSeni ukéazal Fan Machdlek z 2. ro¢niku téhoz gymna-

zia. Rozlozil téleso ABCKLM na jehlany 4BCM, ABML
a ALMK. Objem jehlanu ABML (obr. 23) se rovnéd objemu

Obr. 23
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ABCL, protoze tyto jehlany maji stejnou podstavu ABL
a body M, C jsou od ni stejné vzdéleny. Obsah trojihelniku
AKL se rovnéa obsahu trojuhelniku AKB, takZe objem jeh-
lanu AKLM se rovni objemu jehlanu AKBM a ten se
rovnd objemu jehlanu AKBC, nebot posledni dva jehlany
maji stejnou podstavu AKB, od niz jsou body M, C stejné
vzdaleny. Jehlany ABCM, ABCL, ABCK maji objemy

1 1

1
w53 Sgq, Ty Sr, 3 Sp, takze celkovy objem télesa ABCKLM

1
je?S(p+q+r).
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Kategorie A

A-1-1

UvaZujeme mnozinu M vSech mnohotlent s pozadova-
nymi vlastnostmi. Mnozina M je neprdzdni, protoze do ni
patfi mnohotlen m(x) = x1987 — 2. Ozname p ten z mno-
hotlent v mnoZiné M, ktery m4 nejmensi stupefi. Potom p
déli kazdy mnoho&len v M, tedy i m. To plyne z délitelnosti
mnohodlent: Je-li n € M, oznalme ¢ jeho podil pti déleni
mnohotlenem p a r pfisluiny zbytek, tj. mnohoc¢len s racio-
nalnimi koeficienty stupné mensiho, nez je stupen mnoho-
¢lenu p. Protoze #n i p lezi v mnoziné M, plyne z rovnosti

n=pq+r,
7e je také r € M. Protoze predpokliddme, Ze p mi v mno-
7in& M nejmensi stuperi, musi byt r = 0.
Mnohotlen m(x) = x1987 — 2 m4 kofeny

2ntk 27tk :
isin —— <k< :
1987+18m1987 , 0= %< 1986

xp = 1987]/2 (cos

Mnohoclen p ma realné koeficienty, takZze s kazdym kofe-
nem x; ma i komplexné sdruzeny koten x; (1 < k& < 1986).
Odtud vyplyvd, Ze mnohoclen p je souinem nékterych
troj¢lent

(x — xp)(x — &) = x2 — 2x Re xp + |xx]2 =

f1
2 0T 1987y
x 2x cos 1987 + /4

I
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a piipadné i dvojclenu x — x9 = x — 19871/2_. Jeho absolutni
¢len je pak tvaru 1987]/5 pro n&aké je {1, 2, ..., 1987}.
To je ale racionalni ¢islo jen pro j = 1987. Je tedy p = m
a hledany mnohotlen je x1987 — 2.

Pozndmka. Tvrzeni, ze odmocnina 1987]/5 je raciondlni
jen pro Cisla j = 1987/1, neni asi kazdému zfejmé. Dokaze

se ale obdobn& jako znimé tvrzeni, %e |2 je iracionalni.
] e 4 . .
Piedpoklidejme, Ze 1987]/2/ = 7 7 néjakd nesoudélni

cela &isla p, g, tj. Ze plati ¢1987.2/ = p1987 odkud plyne, Ze
p je sudé. A protoze g musi byt liché a 21987 d&li ¢1987.27,
vychdzi, Zze exponent ; je ndsobkem Cisla 1987.

A-1-2

Oznatme m spojnici stfedt hran AB a CD (jejich spolec-
nou osu) a pro libovolny bod X prostoru oznaéme X, jeho
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pravouhly pramét na pfimku m (obr. 24). Je-li X’ pravothly
pramét bodu X do roviny ABm, je

|AX| + |BX| = VIAX'? + | XX + VIBX? + XX =
> |AX'| + |BX'| = |AXo| + |BXo|

(ptimky AB a XX’ jsou rovnob&zné!) s rovnosti, pravé
kdyz bod X lezi na m nebo na usetce AB. Podobné dosta-
neme nerovnost

|CX| + |DX| = [CXo| + |DXol

s rovnosti, pravé kdyZ bod X lezi na m nebo na usetce CD.
Stati tedy zkoumat jen body X lezici na pfimce m.

Oto¢me tuse¢ku CD kolem piimky m do roviny urlené
ptimkami AB a m; dostaneme tuseCku C’'D” (obr. 25). Pro
kazdy bod X € m potom je

|AX| + |BX| + |CX| + |DX]| =
= |4X| + |BX| + |C'X| + |[D'X],

D' C

Obr. 25
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ptitom

|[AX| + |D’'X| = |AT| + |D'T,
[BX| + |C'X| = |BT| + |C'T|,

¥ vow

|[AX] + |BX| + |C'X]| + |[D'X| =
= |AT| + |BT| + |CT| + | DT|

s rovnosti, pravé kdyz X = T.
Finé FeSeni. Pro libovolny bod X prostoru oznaime

f(X) =|4X]| + |BX| + |CX| + |DX].

Protoze podle piedchazejiciho feseni funkce f muze nabyvat
minima pouze v nékterém bodé& lezicim na ose dvou pro-
téjSich hran daného Ctyf$ténu, staci ukdzat, ze funkce f
méd minimum. Funkce f pak nabyvd minima v pruaseciku
obou os protéj§ich hran Ctyfsténu, coz je stied S opsané
kulové plochy.

Funkce f je zfejmé spojitd. Uvazujme kouli K se stfedem A4
a polomérem f(S). Dany Ctyfstén lezi cely v kouli K, coz je
omezend a uzaviend mnozina, na které nabyva spojita funkce f
svého minima. A vn& koule K uZ je f(X) > f(S).

A-1-3

Nejprve ukizeme, Ze vzdy existuji tfi stejné obarvené
body R, S, T takové, ze bod S puli tseCku RT. Jist& existuji
dva body U, V obarvené stejnou barvou. UvaZujme body
I, ¥, K (obr. 26) takové, ze I puli tse¢ku UV, U je stfed
usetky JV a V je stfed tsetky UK. Pokud nejsou stejno-
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Obr. 26

barevné trojice bodu U, I, V3 ¥, U, V; U, V, K, maji tii
body I, 7, K stejnou barvu, pfi¢emz I je stfedem usecky K.

M¢jme tedy tii stejnobarevné body R, S, 7, kde § puli
use¢ku R7, a uvazujme rovnostranny trojuhelnik PRT
(obr. 27). Pokud m4a néktery z boda O, P, Q stejnou barvu

/’/ \*-\ A P”; B
O/ g/ ‘l S /\ .

Obr. 27 Obr. 28

jako body R, S, 7, jsme hotovi (vznikne stejnobarevny rov-
nostranny trojuhelnik OST, resp. PRT, resp. QRS). V opad-
ném pripadé bude mit rovnostranny trojihelnik OPQ
stejné obarvené vrcholy.

Jiné FeSeni. Uvazujme Sest bodu ve vrcholech pravidelného
Sestithelniku a stfed opsané mu kruznice. Ma-li stied
Sestithelniku napf. Cernou barvu, muzeme piedpokladat, Ze
jeho vrcholy nejsou viechny dejme tomu bilé, jinak bychom
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byli hotovi. Podobné ndm vyjde, ze i body 4, B (obr. 28)
budou bilé a k nim pfislusny vrchol rovnostranného troj-
uhelniku Cerny (obr. 29). Konetné musi byt zbyvajici dva
body bilé (obr. 30), jinak jsme s vybarvovanim bodu roviny

Obr. 29 Obr. 30

hotovi. Pfiddme-li ale k uvedenym sedmi bodim dalsi bod
podle obr. 30, vidime, Zze at ho obarvime jakkoli, dostaneme
stejnobarevny rovnostranny trojuhelnik.

A-1-4
Vyuzijme zniamou skuteCnost, ze Ctyiuhelnik TPCQ je
teCnovy, pravé kdyz
ITP| + |CQ| = |PC| + |TQ|. 1)

Je-li trojuhelnik ABC rovnoramenny se zdkladnou AB,
je |TP) = |TQ| a |CP| = |CQ|, takze podle (1) je TPCQ
te¢novy &tyfthelnik. Oznaéme |BC| = a, |CA| = b, |AP| =
= t4, |BO| = tp; z (1) pak plyne:
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1 b 1 a
Tt =+ 5

3 2 3 2
a tedy
2(tq — tp) = 3(a — b). (2)

Kruznice vepsand Ctyfahelniku 7PCQ je vepsdna téz troj-
thelnikim APC a BQC, které maji stejny obsah S. Pro
polomér ¢ vepsané kruznice plati

28 28
? T 4P| + [PC| + |AC| ~ |BQ| + |QC| + [CB|’
takze
a b
za+”2—+b:tb+?+a:
2ty — tp) = a — b. (3)

Z rovnosti (2) a (3) dostdvime a — b = 0, tj. a = b a troj-
thelnik ABC je rovnoramenny se zdkladnou AB.

Jiné fefeni. Dokazeme jen druhou implikaci. Pfi stejném
oznaleni jako v prvnim FeSeni spolteme velikosti t&Znic
podle kosinové véty

202 + 2¢2 — a*

fg? = =
4

2a% + 2¢2 — b2

W=y

(napiSeme kosinovou vétu pro strany AP, 4B trojuhelnika
APC, ABC, které maji spoletny uahel, vyloulenim ¢&lenu
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s cosy dostaneme prvni rovnost, druhou odvodime analo-
gicky &i cyklickou zdménou), takze dostaneme

3

tb2 — ta2 = Z(a‘l — b‘z),

Odtud je vidét, ze a > b, pravé kdyz z, > t4, zatimco ze
vztahu (2) plyne, ze a > b, pravé kdyz 75 > 1p. Je proto
nutné a = b a trojuhelnik ABC je rovnoramenny.

A-i-5

Predpokladejme, Ze tvrzeni neplati, tj. Ze existuje pfiro-
zené Cislo & takové, ze pro kazdd dvé prirozena cCisla m,
n,m + n = k, plati

Fomy ) = fm + 1,m) + fom, n + 1) = 2.
Odtud ale dale plyne

flmyn) = f(m + 2,n) +f(m + 1,n + 1) +
+fm+ 1,n+ 1) +flm,n + 2) = 22,

takze pro pevné zvolend dvé &isla m, n, m + n = k, mate-
matickou indukci dostaneme, Ze

f(m, n) = 28

pro libovolné pfirozené N. To je spor.
JFiné feSeni. Pro dané %k pfirozené oznalme

¢ = inf f(x, y),

x+y=k
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ziejmé je ¢ = 1. Z vlastnosti infima plyne, Ze existuji ptiro-
zena Cisla m, n, m + n = k, takovd, ze

¢ < f(m, n) < 2c.
Odtud ale plyne nerovnost
fmyn) <2¢ < f(m + 1,n) + f(m,n + 1)

pro vSechna pfirozena Cisla m, n takova, ze m + n = k.
A-1-6

Predpokladejme, Ze takové Cislo existuje a ze

22
n = z 10{(177

i=0
je jeho zapis v desitkové soustavé. Protoze
10241 = —1 a 102t =1 (mod 11),

dava c&islo n pti déleni 11 zbytek

1 10

2= Z az; — E azi+y (mod 11),

i—0 i=0
kde 1 £ 2 £10. Jak ted muZeme zménou jedné Cislice
dostat Cislo délitelné 11? Je-li napf. pro néjaké ie {0, 1,
<.y 11} as; = 2z, zménime &islici as; na az; — 2, je-li naopak
az; = g — 2, napiSeme misto as; Cislici az; + 11 — z a dosta-
neme tak nové &islo, které bude délitelné 11. Musi tedy byt
ay; =2 —1, 1 £¢< 11. Podobné pro ¢&islice na lichych
mistech nemiiZe byt ani ag;41 £ 9 — 2, ani az;4; = 11 — z.
Vychézi tedy jedind moZnost ag;j11 = 10 — 2, 1 <7 < 10.

92



V tavahu proto prichazi jediné &islo n, které ma na lichych
mistech Cislici 10 — 2 a na sudych 2 — 1. Pro jeho zbytek z
pii déleni 11 vSak mame kongruenci

z2=12(z — 1) — 11(10 — 2) =2z — 1 (mod 11),
coz nejde. Cislo pozadovanych vlastnosti tedy neexistuje.
A-S-1
Oznatme A, B, C, D vrcholy daného ¢tverce a K, L
stiedy jeho protéjsich stran AB, CD (obr. 31). Kruhy, jejichz
hrani¢ni kruznice jsou opsédny obdélnikam AKLD, KBCL,

ziejmé pokryji cely Ctverec a jejich polomér je -2_V§

D L C
A K B
Obr. 31

Predpokladejme, ze ¢tverec ABCD je pokryt dvéma shod-
nymi kruhy o poloméru r. Ze Ctyf jeho vrcholu asponi dva
lezi v jednom z kruhu. Jsou-li to prot&jsi vrcholy, vyjde
2r=10)2 >5 ]/E V opatném pfipadé musi jeden z kruht
obsahovat dvojici sousednich vrchola (napf. B, C) a druhy
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xewr

kruh protéjsi dvojici A, D. Protoze aspoil jeden z kruhit
musi obsahovat taky bod K, je vidét, Ze 2r = 5 ]/5. Je tedy

r=5 15 hledany nejmensi polomér.
A-S-2
Jsou-li x3, x2, ..., x, kofeny uvazované rovnice, dosta-

neme roznasobenim kofenovych Cinitela

x1+ x2 4+ ...+ xp =4,
X1X2 ... Xn —_—-(_l)n.

Je hned vidét, ze n» nemuze byt liché, protoze vSechna x;
jsou nezédpornd. Z nerovnosti mezi aritmetickm a geo-
metrickym primérem d&isel x3, xo, ..., x, pak plyne, ze

4
" = 1, je tedy nutné # = 2 nebo n = 4.

Pro n = 4 vyjde x1 = x2 = ... = x, = 1 a rovnice ma
tvar

(x — 1 =x* —4x3 + 6x2 —4x + 1 = 0.
Pro n = 2 dostaneme kvadratickou rovnici
x2—4x +1=0

s nezdpornymi kofeny 2 + Vg Pozadavkam ulohy vyhovuji
obélislan =2in = 4.
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A-S-3

Jestlize krychle ABCDEFGH spliiuje pcdminky tlohy,
lezi obdélnik ABGH v rovingé APQ a je |BG| = |AB||2
(obr. 32). Obdélnikem ABGH je krychle jednoznalné urlena
(az na zéménu oznaleni hran CD, FE).

Obr. 32

Oznatme S stied krychle, ktery je zdroven stfedem obdél-
niku ABGH. Znédme velikost a Ghlu, ktery sviraji télesové
uhlopii¢ky AG a BH, je to velikost thlu Ghlopti¢ek v obdél-
niku, jehoZ strany jsou v poméru |2 :1. Oznatme jeité f
velikost thlu SAB. Pfitom je [ << a, jak snadno zjistime

<a > 3)

Z rozboru plyne nésledujici konstrukce: Na poloptimce AP
zvolime bod § tak, aby pfimky AP, SQ sviraly uhel a.
Je-li § % A4, mazeme bod A doplnit pravé jednim zpuso-
bem na obdélnik ABGH se stfedem S a thlem |<{ ASB| = a
(bod B lezi na ptimce QS).
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Pro volbu bodu § médme dvé moznosti, ozna¢me je Si
a Sy (obr. 33), jejich poradi volime tak, aby orientace S1S:

P

Ry
Obr. 33

_ \
/ \
/"J \
wldre oc\
S,

byla stejné jako orientace AP. Obdélnik ABGH se stiedem S
bude spliiovat podminky tlohy, pravé kdyz bod S: bude lezet
na polopiimce AP, S1 % A (bod B pak bude lezet na polo-
pfimce opatné k polopiimce $1Q). Obdélnik ABGH se
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sttedem S bude splitovat podminky tlohy, pravé kdyz bod B
lezici tentokrdt na polopfimce S2Q nepadne dovniti Gsecky
OS> (obr. 34), tj. pravé kdyz bod Q' soumérné sdruzeny
s bodem Q podle osy uhlu QS>4 bude lezet na polopfimce
AP. Podle toho mé tloha bud dvé feSeni (Q lezi na polo-
ptimce AP), nebo jedno FeSeni (Q lezi vné poloptimky AP
a §) %% A lezi na poloptimce AP), anebo zidné feSeni ne-
existuje.

A-11-1

Uvazujme Ctyfi vrcholy daného jednotkového ¢tverce a jeho
stied. Jestlize je Ctverec pokryt Ctyfmi shodnymi kruhy o po-
loméru r, obsahuje jeden z kruhi aspont dva z uvedenych
péti bodu. A protoze kazdé dva z téchto péti bodu maji

12 12
vzdalenost aspoil Y plyne odtud, Ze je r = R

Jednotkovy Ctverec pokryjeme péti kruhy opsanymi obdél-
nikiim podle obr. 35 (jejich uhlopti¢ky jsou shodné). Z rov-
nosti

1

1
u2:‘9—+(1—x)'3=z-+x2

23
Prislusné kruhy tedy maji polomér mensi nez l—4~.
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/
,»'/
1-x| 4
/
P4
N
\\
x| Y
N
N
AN
. 1/2
Obr. 35

Pozndmky. Mnoho tucastnika II. kola misto racionélniho
dukazu vy$lo ze »ziejmé« skuteCnosti, Ze optimalni pokryti
Ctverce Ctyfmi shodnymi kruhy musi byt symetrické (podle
stfedu). Zel, takovito heuristickd ivaha k opravdovému di-
kazu nestali, jak ostatné ukézala druhd Cist uvedené tulohy.
Vychézejice ze soumérnosti, usuzovali tito »fesitelé« vétdinou

12
na to, ze pokryti péti shodnymi kruhy pro r << vy rovnéz ne-
existuje... Na druhé strané se vSak v Zdkovskych FeSenich
objevily i nésledujici dva pékné napady:

Pror < 4 nelze uhlopficku jednotkového &tverce pokryt

dvéma shodnymi kruhy, takZe na to potiebujeme kruhy
aspon tfi. Ale zadny z téchto kruhii nemuze obsahovat zbylé
dva vrcholy druhé ahlopiicky, a ty nelze jednim kruhem o po-

loméru r < ) oba najednou pokryt (Jaroslav Trnka, 4. ro¢.

G Liberec).
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1 _
Kruh o poloméru r < > pokryje nejvyie 2)/2 r z obvodu

jednotkového &tverce (obr. 36), nebot a + b < 2]/5 r. Ctyii

QObr. 36

shodné kruhy tak celkem pokryji nejvyse 8]/51' z obvodu

— 2
tverce. Proto musi byt 8)/2r =4, tj. r = T

A-1l-2
Pfedpokladejme, Ze dand rovnice ma redlné kofeny xj, x2,
x3, X4, takZe
M+ 453 +6x2 +ax +b=(x—=x1)...(x — xq).
Porovnéanim koeficienta dostaneme

X1+ xe + x3 + xa = —4, Y]
X1X2 + X1X3 + X1X4 -+ Xex3 + XoxXa + x3x3 = 6.

Odtud plyne, ze
R+t ai=4. 2)
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Protoze pro redlnd &isla uy, us, uz, us plati (Cauchyova) ne-
rovnost

(i + us + u3 + w)? = 4u; + 13 + 153 + 1),

plyne z (1) a (2), ze pro kofeny dané rovnice v uvedené ne-
rovnosti nastane rovnost. To znamena, ze existuje redlné k&,
prokteréje x; = xo = x3 = x4 = k. Z (1) pakvyjde & = —1.
Uvedena rovnice ma proto jediny (¢tyfndsobny) kofen —1
aje
x4+ 4x3 + 6x2 +ax + b =(x + 1)*,
takzea = 4,b = 1.
Jiné feseni. Protoze

¥+ 4t 462 dax +b=(x+1)*—4x—14ax + b=

=x+ 1 +x+1)(a—4)+b—a+3,
dostaneme po substituci # = x + 1 rovnici

w=pu+q, p=4—a, g=a—b—3.

Ta muze mit Ctyii redlné kofeny jen v tom pripadé, kdyz s¢€
pfimka v = pu + g dotyka bikvadratické paraboly v = u* ve
vrcholu (pak méd jeden Ctyfndsobny kofen), tedy jen pro
p = ¢q=0.0dtud plynea = 4,b = 1.

A-11-3
Predpokliddejme, ze hledany &étyfstén ABCD existuje. Troj-
thelnik POD je uren podle véty usu. Tim jsou zdroven

jednoznatné (az na uspofddani) urleny body A, B, nebot
vzdédlenost bodu D od usetky PQ je vyskou rovnostranného
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trojihelniku ABD. Sestrojime tedy v libovolné roviné ¢ 3 PO
bod Dy tak, aby |- QPDy| = 30°, |<C PQDy| = 45°. Vrchol D
Ctyfsténu bude pak lezet na kruznici k& (obr. 37), kterou do-

O,

P A S B Q

Obr. 37

staneme otdCenim bodu D, kolem osy PQ, a zdroveri v roviné J.
Trojahelnik ABD pak doplnime na pravidelny <tyfstén,
ktery bude feSenim tlohy.

Pocet feSeni z4visi na vzdjemné poloze roviny 6 a kruznice
k. Pokud &£ N 0 = 0, nem4 tGloha feSeni; je-li prunik jedno-

. Ds=C
Dg=C2 DZ=C1 1 2

Obr. 38a Obr. 38b
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bedovy, mé tloha dvé feSeni soumérné sdruzena podle ro-
viny ABD; a lezi-li kruZnice & v roviné ¢, existuje nekonetné
mnoho feSeni. Zbyva piipad, kdy kruznice £ md s rovinou 0
dva spole¢né body Di, D». Kazdy z trojuhelnika ABDq,
ABD> muzeme doplnit na pravidelny &tyfstén dvéma zpu-
soby. Je-li vSak | < D1 ADs| = 60° (obr. 38), dva ze Ctyfsténu
splynou (ABCeD> = ABCiD) a Gloha mé jen tii feSeni.
V opatném pripadé (|<¢ D1AD| = 60°) dostaneme Ctyfi raz-
né reseni.

A-11-4

Oznatme d(p) uvazovany soulet. Ukdzeme, Ze nejveétsi
soulet se nabyvd pro permutaci pg, kde po(i) =n — 1 + 1,
1 = 7 =< n. Permutace p, ma tu vlastnost, ze je klesajici,. tj.
pro kazdé ¢ <<j jepo(i) > po(s). Je-li p #* po, existuje &, pro
které je p(k) << p(k + 1). Prohozenim hodnot p(k), p(k + 1)
dostaneme novou permutaci p’, pro kterou je

P(k)=pk +1), p'(k+1)=pk),
d(p’) —dp) = |p(k) — k — 1| + |p(k + 1) — k| —
— 1 pCk) — Bl — [pCk + 1) — k— 1.

Pro p(k) < pk + 1) = kiprok + 1 = p(k) < p(k + 1) vy-
jded(p’) = d(p),prop(k) <k <k + 1 < p(k + 1)jed(p’) —
— d(p) = 2. Je tedy d(p") = d(p). Pfitom pocet téch dvojic
1 <7, pro néz je p(i) < p(j), se uvedenou zménou zmensil.
Po kone¢ném poctu kroku tak dojdeme k permutaci po, pro
kterou je
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dp)=n—1+n—3+ ... 4+2+2+ ... +n—1 =
n+1 n—1 n: —1

=2 2 =% pro n lich€,
=n—14n—-3+...+3+1+14+ ...4+n—1=
n n n? .
22 2—2pronsue,

coz muzeme jednoduse zapsat jako d(p,) = [ 2 ]

Jiné fefeni. Pro danou permutaci p odstraiime v soultu
n
d(p) = 2 |p() — 1|
i=1

absolutni hodnoty. Je ziejmé, Ze v ziskaném soultu bude n
s¢itanctt s kladnym znaménkem a n scitanct se zdpornym
znaménkem. Pfitom kazdé z Cisel 1, 2, ..., n se v uvedeném
soultu vyskytne pravé dvakrit. Je tedy jasné, ze plati (viz
téZ poznidmky)

n+3] [n+3
dpysnt+n+(n—D+ ... +|——(+|5 |~

| .

“[‘Z‘]‘B] B
oo LDl 2]

Nyni staci zjistit, zda existuje néjakd permutace, pro kterou
uvedend situace nastane. Tomuto pozadavku vyhovuje napf.
permutace

p)=n—i+l, 1<=i<n.
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(Permutaci s maximalnim soultem d(p) existuje oviem vice,
jejich potem se zabyvd napf. tloha 24 v knize A. Vrby
Kombinatorika, Skola mladych matematiki &. 45.)

Jiné feseni. Pro danou permutaci p ozname A mnoZinu
téch &isel 1€ {1, 2, ..., n}, pro kter je i < p(7), a pfedpo-
kladejme, Ze A m4 k prvka (0 = k = n — 1). Pak plati

d(p) =ZA (D) =D+ 2@ —p(0) =

i¢A
=2pN+2i—2i— 3=
icA ieA icA i€eA

=n+n—1+ ... +n—k+1)+
+m+n—1+ ... +(k+1)—
—Q 42+ ...+ —-AQ+2+ ... +(n—k)=
2n — k + 1 n+k+1 E+1

kR ——— —k——

% n—k+ 1 oL [nz
— LER _ = — < | —

Dile staci dokazat, ze existuje permutace, pro kterou zde na-
stane rovnost.

finé Fefeni. Pro danou permutacipaprok € {1,2, ...,n — 1}
spottéme, kolik je takovych dvojic (7, p(i)), ze ¢ = k << p(i)
nebo p(i) = k << i. Ozname tento polet dj. Nyni je dulezité
si uvédomit, Ze je vlastné

n w—1
2@ —il= 2 dy.
i=1 k=1

n
Odtud dostaneme vhodny odhad, protoze pro k = > je odpo-
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n
vidajicich dvojic nejvyse 2k, tj. d = 2k, a prok > 3 je zase

dip << 2(n — k), takze dohromady je

B .

dp)< S 2+ 5 2n—k) =

SReaR
G
2 2 n2
S )
k=1 k=1 2.
jak postupné spocteme. Dile stali ukdzat, Ze existuje permu-
tace, pro kterou nastane rovnost.

Pozndmky. Vypotty v 2. feeni vypadaji trochu kouzelné,
ale jinak bychom nemohli uvedené vztahy zapsat najednou pro
lichd i sudd n; rozlienim obou moZnosti snadno ovéfite, ze
je vSe v porddku. Podobné neni tézké ovéfit, ze pro kazdé
pfirozené n plati

[ 5 S ]

Pro ty, ktefi hned nevidi napf. rovnost

2n — k + 1

n+n~l+...+n—k+1:k—2———,

piipomindme, Ze pro soucet kone¢né aritmetické posloupnosti
@, as, ..., @ kromé zndmého vzorecku plati i

a + ai

a +a + ... +ak:k7*v.
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A-1l1-1

Protoze M je konetn4, existuji indexy 7, r + p takové, Ze
Xy = Xrip. Pak uz je ziejmé x, = x,4p pro kazdé n=r
a dokonce x;, = xp1xp pro kazdé n = r a k = 0. Vezmeme-li
m = kp tak, aby bylo m >r, bude x; = xpp = Xppirp =

= X2m-
A-l1l1-2

Pro kofeny x1, x2, x3 dané rovnice plati

X1 + x2 + x3 = —a,
X1x2 + X2x3 + x3x1 = b,
X1X2X3 = —C,

takze z podminky a2 — 2b = 2 plyne
242+ x2=2.
Je tedy
4 —(a—cP=4—a%2+2ac—c2=2—2b+2ac—c%=
= 2 — 2(x1%2 + X203 + x3%1) +
+ 2(x3x2x3 + x1%2%8 + X1%2%3) — XJX2XS =
= 2(1 — x1x2 — xa2X3 — X3x2 + xfxgxg + x1x§x3 + x1x2x§ —
— xjx3x3) + xjaiay =
= 2(1 — x1x2) (1 — x2x3) (1 — x3%1) + %3%3%3 =0,
nebot pro kazdé i€ {1, 2, 3} plati (indexy politime mod 3)
21 — xixi1) = 2 — 2x4x401 =
= + x4+ X, — 2%iXin =
=(x; — xi+1)? + x,?_z =0.

Ziskana nerovnost je ekvivalentni nerovnosti |a — ¢| = 2.
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A-1l1-3

Oznatme K, L stfedy hran AB, CD. Ze shodnosti troj-
thelnika ACD, BDC (obr. 39) plyne |BL| = |AL|, takze
KL | AB. Podobné je i KL | CD. Jestlize bod X nelezi
na pfimce KL a bod X" je jeho kolmy pramét na pfimku KZ,
je

|CX| + |DX| > |CX'| + |DX"|,
|AX| + |BX| > |4X'| + |[BX'|,

jak uz vime z FeSeni tlohy A - I - 2. Stati tedy uvazovat body
X na pfimce KL.

Oto¢me usetku CD do roviny ABL, dostaneme tak tsecku
C’D’ (obr. 40), |C’'D’| = |CD|. Pro kazdy bod X ptimky KL

D' L c'
/
X
By
<A £ K B
Obr. 40

je |CX| = |C'X|, |DX| = |D’'X]|, takze pro uvedeny soucet
plati

s =14X| + |BX| + |CX| + |DX| = 2(|4X| + [C'X]) =
= 2]4C7|
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s rovnosti pro prasecik P usetek KL a AC'. Je tedy

’/C+d2
s=2/(——) + IKLE

a z trojuhelnikd ABL, BCD postupné spolteme (BL je t&€z-
nice v trojuhelniku BCD)

. s 2 @+ B 24 d
IKL|? = | =y ="~ 1

Odtud vychézi s = }2(a? + b2 + cd).

A-lll-4

Vsech obarveni danych &isel je 22", Kazd4 aritmetickd po-

sloupnost je uréena svym prvnim ¢lenem a diferenci d. V uve-
271

deném pfipadé je d = PEET takZe z danych ¢&isel lze vybrat

(211)2

nejvyse ——
VIS o i
posloupnosti existuje celkem 22"~2% obarveni zbylych 27 — 2n
Cisel, pri nichZz je tato posloupnost jednobarevna (mé jednu

ze dvou moznych barev). Existuje tedy nejvyse

] takovych posloupnosti. Ke kazdé 2n-Clenné

22"-2n _2n

2
ot med e ED

obarveni, pfi nichz je nékterd 2n-Clennd aritmetickd posloup-
nost jednobarevna. Odtud plyne existence pozadovaného
obarveni pro n > 1, pro n = 1 je jeho existence zfejma.
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A-1I-5

Proae(—2,2) marovnice u> — au + 1 = 0 dva komplex-
né sdruzené kofeny wu, #, pro které plati wi = |u]®> =1,
u+ 4 =2Reu =a.Je-liu = cosa + isina, a €(0,%), md
rovnice x7 = u (a tedy i rovnice x1* — ax7 + 1 = 0) kcieny

a + 2kw o + 2km

Xp = 08— + isin-‘*;—, ke{0,1,...,6}.

Mnohoclen p(x) = x15% — ax77 4+ 1 bude ndsobkem mno-
ho¢lenu x4 — ax? + 1, pravé kdyz p(xx) = (1) — aull +
+ 1 = 0 pro viechna £, 0 = £ = 6, tj.

ull = cos lla + isin lla = u =cesa + isina,
anebo

ull = cos 1la +isinlla =4 =cosa —isina.

Je tedy bud
mm
1la = a + 2mr, a = &5 me 1,2,3,4},
nebo
nw
lla = —a + 21w, «a =% ne{l,2,3,4,5}.

Protozea = 2 Re u = 2cos «, vyhovuji uloze &isla a € {~V3,

] 2 2 T
=0 cos —1, —2 cos 5 0, 2 cos 5 ™ 1, 2c0s V3} .
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A-1l-6

Predpokladejme, Ze v trojihelniku A; A>As existuje takovy
bod X, ktery nelezi v zddném z uvedenych trojuhelniku.
Zménime tedy prifazeni bodi P; a stran a; daného troj-
uhelniku tak, abychom tento bod X pokryli. Protoze ke kazdé-
mu bodu P trojuhelniku 4; A2 A3 mizeme urdit jeho stranu
a; tak, ze trojuhelnik Pa; bude obsahovat bod X, muzZeme
najit stranu a;, pro kterou je X € Pja;, podobné k bodu P;
urlime stranu ay tak, ze X € Pjar, a pokud & 5= 1, najdeme
jesté stranu a,, pro kterou X € Pray,. Nyni je bud m = 1,
anebo m = .

Pokud % =1, vezmeme misto trojuhelnika Piai, Pja;
trojuhelniky Piaj, Pjai, podobné pro k-1 a m = 1 misto
puvodnich trojdhelnikit vezmeme trojuhelniky Pia;, Pjag,
Pray. Pokud k 4 1 5= m, tedy m = j, vezmeme misto troj-
thelnika Poas, Psas trojuhelniky Poas, Psas (vzdy nékteré
trojuhelniky neobsahujici bod X nahrazujeme trojahelniky,
které bod X obsahuji).

Oznalime-li 4;; vzdalenost bodu P; od strany a;, z puvod-
niho soulinu Ay1/h09k33 dostaneme popsanou zménou soucin
hljh71h33, anebo soulin hljhjkhkl, ¢i soudin h11h23h32. Ukéieme,
Ze nové prifazeni bodu a stran trojuhelniku 4;A>A3 da vétsi
soulin odpovidajicich vzdélenosti, coz odporuje pfedpokladu
ulohy.

Je-li P bod daného trojuhelniku a X € Pa;, X ¢ Pa; (obr.
41), pak pro vzdalenosti 4;, ; bodu P a vzdalenosti r;, r;
bodu X od stran a;, a; plati
h; h;+ x |PX'| h;

ri >ri+x=|_j(—)}—|= rj’
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Obr. 41

kde X’ je pruseCik polopfimky PX s primkou obsahujici
stranu a;, pokud neni rovnou

(to by bod X’ neexistoval). Odtud plyne, ze napf. pro k£ =1
bude

hijhjihss  hiihoohss

r1rars rirers

tedy 1 hijhjihss > hi1hoohss. A podobné i v ostatnich pripadech
se prislusny soucin odpovidajicich vzdalenosti zvétsi. Tim je
dikaz hotov.

Pozndmka. Plati obecnéjsi tvrzeni, které v prostoru muzeme
formulovat takto: Jsou-li Py, Ps, ..., P, body uvnitf daného
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konvexniho n-sténu M, pak lze jeho stény oznalit ay, as,

., ap tak, ze jehlany P;a; pokryvaji cely mnohostén M.
(Stény oznacime tak, aby soutin vzddlenosti bodu P; od od-
povidajicich stén a; byl co nejvétsi.)

Korespondenéni semina¥ UV MO

Korespondencni seminaf je jednou z forem péce o talento-
vané zaky. Vznikl ve 24. ro¢niku MO proto, aby bylo mozno
vénovat individudlni péci i t€ém zdktm, ktefi neméli moznost
navstévovat specidlni Skoly a pracovat v tamnich seminafich.
Nyni, kdy existuji i krajské koresponden¢ni semindfe a kdy
specialni $koly s tfidami zaméfenymi na matematiku najdeme
v kazdém kraji, je cilem tohoto semindfe zlepsit individudlni
pripravu viech studentu, ktefi prokdzali své schopnosti a ma-
tematicky talent v piedchozich ro¢nicich matematické olym-
piady. Koresponden¢ni semindi tak naddle zustava dalezitou
soulasti pfipravy na mezindrodni matematickou olympiddu.

K ucasti v korespondenénim seminafi jsme pozvali viechny
$pickové fesitele kategorie A spolu s témi studenty, ktefi né-
jak vynikli v krajském kole kategorii B a C piedchoziho roc-
niku MO. K ucasti se tentokrat piihlasilo 75 feSitela z celé
republiky, z nichz jen 33 vydrzelo az do posledniho kola.

V prabéhu 37. ro¢niku MO jim bylo postupné zasldno
5 sérii pomérné naro¢nych tuloh, jejichz texty najdete v tlohc-
vé Casti roCenky (bez FeSeni). Dosld feSeni pak byla opravena,
ohodnocena a s rozmnoZenym komentdfem vracena ulast-
nikam seminafe. Nejlepsimi v celkovém hodnoceni byli
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Pavol Gvozdjak, 4 G A. Marku3a, Bratislava,
Ilja Martisovits, 3 G J. Hronce, Bratislava,
Radomir Méch, 4 G M. Kopernika, Bilovec,
Stanislav Krajéi, 4 G Smeralova, Kosice,
Andrej Dobos, 3 G A. Markusa, Bratislava,
Viadimir Komdr, 2 G Smeralova, Kogice,
Ondrej Such, 2 G A. Marku3a, Bratislava.

SOV U R B0 s

Korespondenéni seminaf byl fizen tajemnikem UV MO
Karlem Hordkem, ktery se staral o vybér a pfipravu uloh
a provadél i redakci komentdiu. Opravu pak zajitovalo né-
kolik pracovniki MU CSAV a n&kolik studentt a aspiranti
MFF UK Praha (vsichni jsou byvali olympionici).
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TEXTY A RESENf ULOH KATEGORIE P

P-1-1

Je déno celé &islo T a dvé konetné celodiselné posloupnosti
Ay, Aoy ..., Ax a By, Ba, ..., By takové, 72e N =1, 4; <
< As < ... <<Ay apro viechna i, 1 =7= N, je B; > 0.
Na posté jsou tii prepazky poskytujici stejné sluzby. Piepaz-
ky otviraji v ¢ase 7. Postu navitivi béhem dne N zékazniku.
Zakaznik 7 pfichdzi v Case 4; a pozaduje sluzbu v délce B;
¢asovych jednotek. Zdkaznici jsou obsluhovéni v poradi jejich
pfichodu na postu. Piepédzka je ihned po obslouzeni jednoho
zdkaznika k dispozici pro obsluhu dal$iho. Piepazky zaviraji
po obslouzeni vSech zdkazniku.

Navrhnéte a dokaZte algoritmus, ktery ur¢i celkovou dobu, po
kterou na posté ¢ekd na obsluhu alespoil jeden zdkaznik.
Reseni

Hledand doba F je délka sjednoceni intervala [A4;, C;] pro
1 = 7= N, kde C; je okamzik, kdy zédkaznik 7 pfijde na fadu.
Plati 4; =< C; proviechna 7, C; = Co = ... = Cy.

Diéle budeme hodnoty C; podlitat postupné pro zdkazniky
t=4,5...,N.

Oznalme d; okamzik, kdy je zdkaznik ¢ obslouzen. Plati
d; = C; + B;. Pro prvni tfi zdkazniky je urleni okamziku,
kdy pfijdou na fadu, snadné. Je to bud ihned v ¢ase T, nebo,
pfijdou-li az po otevieni poty, ihned v &ase 4;. Tj. C; =
=max (7T, 4;),1 =1, 2, 3.

Zskaznik 7 (1 > 3) pfijde na fadu bud v Case A, je-li v dobé
jeho pfichodu alespori jedna pfepazka volné, nebo v opaéném
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ptipadé (viechny pfepdzky jsou obsazené) v okamziku, kdy
se jedna z nich uvolni. V situaci, kdy jsou viechny pfepazky
obsazené, jsou u nich obsluhovani tfi zdkaznici z mnoziny
{1,2, ..., 71— 1}. Pro viechny z nich jsme jiZ stanovili, kdy
pfisli na fadu (hodnoty Cj), a zndme tedy i kdy byli nebo
budou obslouzeni (hodnoty d;). MuZeme tedy i urdit, ktefi
zékaznici jsou u prepazek: jsou to zdkaznici x, v, 2z, pro néz
plati dy, dy, d; > dy pro viechna 2 z {1,2, ..., 71— 1} —
— {x,», 2}.

Jedna z pfepézek se uvolni, jakmile prvni ze zdkaznika x, v, z
odejde, a to bude v tase min(dy, dy, dz). Z provedenych tGvah
je vidét, Ze tento Cas je dan tfeti nejvétdi hodnotou z {d1, d>,
seey di -1 }

Shrneme-li, pak C; = max (max3(di, da, ..., di-1), 4;), kde
max 3 je tfeti nejvétsi hodnota z hodnot uvedenych v zdvorkach.
V algoritmu budeme pfedpokladat, Ze prvky posloupnosti
A a B jsou uloZeny v polich A[1..N]a B[1..N], hodnoty C;
budeme uklddat do pole C[1..N]. Tfi nejvétsi z doposud
spo¢tenych hodnot d; budou priubézné ulozeny v poli D[1..3].
Napi$me proceduru max3, kterd ve svém vystupnim para-
metru uréi index ;j nejmensi hodnoty z D[1], D[2], D[3], coz
znamend, ze v D[] je uloZena tfeti nejvétsi hodnota z doposud
spoctenych hodnot d;.

procedure max3 (var j: integer);
begin if D[1] < D[2] thenj:= lelse;:= 2;
if D[j] > D[3] then;:=3
end;
Prvni &ast algoritmu potitd hodnoty C;:
for i := 1 to min (3, N) do begin C[i] := max (T, A[1]);
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D[i] := C[i] + B[i];
end; :
fori:= 4 to N do
begin max3 (7);
Cli] := max(D[j], A[);
D{j] := Cli] + Blil;
end; .

Nyni mame N intervala [4;, C;], 1 =1, 2, ..., N. Plati
Ay <Ay < ... <Ay, C1 = Cy= ... = Cy. Miame urtit
délku jejich sjednoceni. Predpoklddejme, Ze zname délku
sjednoceni prvnich 7 intervala. Mohou nastat dva piipady:
1. Je-li 4; > C;, pak interval [4;, C;] ma prizdny prinik
se viemi intervaly [4;, C;] pro j << i (nebot C; 1 = C; » =
= ... = (C}) a délku je nutno zvétdit o C; — A;.
2. Je-li A; = C;-1, pak interval [4;, C; 1] je prunikem inter-
vala [4;, Ci] a [A1'41, Cial,a protoze Cia=Cia= ... =
= (4, je délku nutno zvétsit o C; — C;—.
Shrneme-li oba ptipady, pak dosavadni délku je nutno zvétsit
o C; — max(A4;, C;—1). Protoze délku prvniho intervalu zni-
me, s vyuzitim pravé popsaného postupu dokon¢ime algorit-
mus:
F:= C[1] — A[l1];
for i:= 2 to N do

F:= F + C[i] — max(A4[z], C[7 — 1]);
writeln(F).
Dukaz spravnosti algoritmu byl provadén soucasné s jeho
ndvrhem, sloZitost je linedrni.
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P-1-2

Je déna konelnd celoCiselnd posloupnost Xj, ... Xy takovd,
ze N=2a X; < ... <<Xy. Navrhnéte a dokaZte (co nej-
lepsi) algoritmus, ktery uréi celkovy pocet kone¢nych celo-
iselnych posloupnosti Vy, ... Vy takovych, ze Vo = ... =
= Vyaproviechnaz,1 =i= N,plati V;; + V; = 2 X.
Resent

Podle zadéni plati:

ViasV; pro i=1,2,...,N (1)
Via+Vi=2X, i=12,...,N (2)

Vyuzitim (1) a (2) dostdvame:

2Xi=Via+Vi= V11+V11——2Vz-1:’X12V11,

t=1,...,N 3
2X;=Via+Vi=V, +Vi=2Vi=X; =V,
i=1,2,..,N (4)
Vztahy (3) a (4) dohromady dévaji:

Xi=Vi<Xim i=1,2,...,N—1 )
Vo= X1, In=Vn (6)

Kazda z posloupnosti Vo, V1, ..., Vy je jednoznané uréena
svym libovolnym prvkem V; (ostatni prvky se vypocitaji z rov-
nic Via + Vj =2X;,7=1,2, ..., N)

Celkovy pocet posloupnosti Vo, Vi, ..., Vy je proto roven
poctu celych &isel, kterd mohou byt i-tym prvkem (pro libo-
volné pevné 7, 0 = ¢ =< N) né&jaké z takovych posloupnosti.
Rekneme, Ze celé &islo ¢ ma vlastnost o(z), 1 < i << N, jestlize
Xi=c= X;41 a jestlize existuje celoliselnd posloupnost
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Vo, Vi, ..., Vitakovd, Ze Vo= V1 =< ... = V; = ¢, a pro
viechnaj, 1 =;<1ije V1 + V; = 2X;.

Oznacme jako p(7) potet &isel s vlastnosti o(%).

Potom p(N — 1) je rovno hledanému poltu posloupnosti
Vo, Vi, ..., Vy. Plati: Jestlize p() = 0 pro n&jaké i, pak
P+ 1) =p(i +2) = ... = p(N — 1) = 0. Dile plati
p(1) = Xo — X1 + 1 (Cisla s vlastnosti 2(1) jsou totiZ pravé
jen viechna celd &isla splitujici nerovnost X1 =< ¢ < Xo).
Jsou-li ¢ a c» ¢isla s vlastnosti (i), 7 = 1,2, ..., N — 1 tako-
vd, Ze ¢ = c2 — k, k=0, pak pro ¢isla by, by takovd, Ze
1+ b1 = 2X;.41, ¢ + b2 = 2X;41, z té€chto rovnic dostane-
me by = bs + k.

Je-li ¢ rovngz &islo s vlastnosti o(7) takové, Ze ¢1 = ¢ < ¢», pak
Cislo b takové, Ze ¢ + b = 2X;41, vyhovuje nerovnosti
b1 = b = by. Z t&chto Uvah a z definice vlastnosti v(7) vyplyva,
Ze jsou-li viechna &isla s vlastnosti 2(7), 7 = 1,2, ..., N — 2,
pravé vSechna celd &isla ¢ splilujici nerovnost D = ¢ = H
pro n&jaké D a H, pak v3echna &isla b s vlastnosti o(7 + 1)
musi splilovat nerovnosti 2X;41 — H=b=2X;11 — D
a X1 < b= X4o a zdroveni kazdé celé &islo spliujici tyto
nerovnosti mé vlastnost o(7 + 1).

Protoze Cisla s vlastnosti 2(1) jsou viechna celd Cisla vyhovujici
nerovnosti X7 = ¢ =< X», jsme tedy schopni politat polty
p(i) postupné pro 7 =2, 3, ..., N — 1, jak je zachyceno
v algoritmu: {Pfedpokldddme, Ze prvky posloupnosti X jsou
uloZeny v poli X[1..N]}

D:=X[1;H:= X[2];potet := H — D + 1;
{potet = p (1)}

gipEstrg s
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while 7 << N and pocet > 0 do
begin {potet = p (i — 1)}
D1 := D;
D:=max (X [i,2 * X [{]] — H);
H:=min(X[{+1],2* X[i]]— D1);
if D £ Hthen polet:= H — D + 1
else pocet := 0;
{potet = p (i)}
1: =1+ 1
end;
writeln (pocet).

Algoritmus je linedrni, dikaz spravnosti je obsaZzen v ndvrhu
algoritmu.

P-1-3

Je dén nisledujici program:

10 LETY =1 Y:=1;
20 IF X > 100 while (Y <> 1) or (X < = 100)
THEN 60 doif X < =100

30LET X =X 4+ 11 then
4OLETY =Y 41 begin X := X + 11; {30}

50 GOTO 20 Y: =Y +1
60IFY =1 end

THEN 100 else

JOLET X =X —10 begin X := X — 10; {70}
8OLETY =Y —1 Y:=Y—1

90 GOTO 20 end;

100 STOP
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Necht m je libovolna celo¢iselnd hodnota vstupni promén-
né X. Oznalme A(m), resp. B(m) pocet provedeni piikazu
30, resp. 70 pfi vypoltu pro m. Urlete a zdivodnéte vztah
mezi hodnotami A(m) a B(m).

Reseni

Soutasné s prikazem 30, resp. 70 se vzdy provadi i pfikaz
bezprostiedné nésledujici, tj. Y :=Y + 1, resp. Y :=
Y — 1. Na pocatku je proménné Y prifazena hodnota 1,
tj. pfed cyklem plati ¥ = 1. Cyklus kon¢i pii splnéni pod-
minky ¥ =1 and X > 100. Proto v pfipadé ukon&eni
cyklu je hodnota proménné Y pied jeho provedenim a po
jeho ukonceni stejnd, a tedy poclet provedeni piikazu 30 se
rovnd pocltu provedeni pfikazu 70, tj. A(m) = B(m).

Nyni dokdzeme, ze pro kazdé m cyklus kon&i. Je-li m > 100,
pak se cyklus pfimo ukond&i. Pfedpokliddejme proto déle, ze
m < 100. Nejprve doplnime program o specidlni pomocné
proménné i, 7, n, tzv. Citale, které »podlitaji« polet skutel-
nych prichodi cyklem:

Y:i=1;1:=0;j:=0;n:= 0;
while (Y £ 1) or (X = 100) do
begin {(A}n:=n + 1;
if X < 100 then
begin X := X + 11; {30}
Y: =Y+ 1;
ti=1+1
end
else
begin X := X —10; {70}
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Y:=Y—1;
=7+ 1
end
end

Ukézeme, ze hodnota &itale n je shora omezena konstantou,
a tedy ze cyklus kondi. Je zifejmé, ze v bodé A vzdy plati

n=id+j. (1)

Tento vztah umoziiuje omezit n za pomoci omezeni pro I
a j. Ponévadz Y je zvétSeno o 1 vzdy spole¢né s 7 a zmenseno
o 1 vzdy spole¢né se zvétSenim j o 1, plati v bodé¢ A4 vzdy
podminka

Y=i—j+1. (2)
Podobné plati i
X =111 — 107 + m. (3)

Dile si viimnéme, Ze proménné Y je na politku prifazena
hodnota 1 a ze Y je zmenSeno jen tehdy, kdyz Y > 1.
Proto v A4 vzdy plati

Y=1, (4)
coz spolené se vztahem (2) davd, ze v A vzdy plati

=y ©)
Uzitim (5) a (3) dostavame

X=1li—10i+m=1+m (6)
X=117—-10j+m=j + m. )
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Settenim poslednich dvou nerovnosti dostaneme 2X = 7 +
+7 + 2m a uzitim (1) ziskime v bodé¢ 4 podminku

X=n2 +m. (8)

Omezenim hodnot proménné X se ndm tedy podafi omezit
i hodnoty ¢itace n.

Pti prvnim vstupu vypoltu do bodu 4 plati X = m and
Y =1 and n = 0. Podle naeho ptedpokladu je m < 100,
a proto v bodé 4 vzdy plati X < 111. Tedy v bodé 4 vidy
plati

(X=mand Y=1andn =0)or X < 111. 9)
Z (8) a (9) nyni dostdvime
X=Zn2+mand (X =mand YV =1andn = 0)
or X < 111] (10)
tedy
n=0orn?2+m< 111.

Hodnota citace n je shora omezena a cyklus musi skoncit.
P-1-4

(a) Navrhnéte schéma S, které potitd soudin dvou ptiroze-

nych ¢isel.

(b) Navrhnéte schéma S takové, Ze pro kazdé vstupni slovo X,

tvofené znaky a, b, ¢, je vysledek Y vypoltu dén takto:

— S(X) = X, je-li délka X sudi, a

— S(X) vznikne z X vynechdnim kazdého tfetiho znaku b
zleva, je-li délka slova X lichd.
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Pozndmka: Markovovy algoritmy

Konetnou posloupnost znakdl nazveme slovem (napfi-
klad, aba, 01A4B, 1234 jsou slova). Priazdnou posloupnost,
znalenou &, nazveme prazdné slovo. Pocet znakii ve slové
nazveme délkou slova (slovo ¢ je délky O, slovo abaa mé
délku 4). Zfetézeni slova P =a; ... a, se slovem Q =
=b1 ... by je slovo PQ =a1 ... an, b1 ... by (napt.:
Je-li P = aabb, Q = bba, pak PQ = aabbbba; je-li Q' = ¢,
pak PQ’ = aabb).

Jsou-li P a Q slova, fekneme, 7e slovo P se vyskytuje
v Q, jestlize existuji slova U a T takovd, ze Q = UPT.
Nejlevéjsi vyskyt P v Q je takovy, pro ktery ma slovo U
nejmensi délku.

Necht P a Q jsou slova. Vyraz tvaru P — Q nazyvime
obycejné pravidlo, vyraz tvaru P — .Q nazjyvdme koncové
pravidlo. Zépis P —(.)Q znamend obylejné nebo koncové
pravidlo. Kone¢nou posloupnost pravidel

S: P] —>() Q1

Py —(.)On
nazveme schéma. Kazdé schéma zadavd (tzv. Markovav)
algoritmus nisledujicim zpusobem. Vypocet podle schématu
S pro dané vstupni slovo X probihd takto: Nalezneme
prvni pravidlo P, —(.)Q,, takové, Ze P, se vyskytuje v X.
Nejlevéjsi vyskyt slova Py, v X nahradime slovem Q,. Necht
R, je vysledek tohoto nahrazeni (stru¢né budeme psat
X —Ry). Bylo-li pouZito koncové pravidlo Py, —.Qmn, pak
vypoclet konéi a vysledek vypoltu je slovo R;. Bylo-li pouZito
obytejné pravidlo Py, — O, pouzijeme na R; stejny postup,
ktery byl aplikovdn na X (schéma prohleddvime opét od
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zaCatku) atd. Jestlize nékdy nastane situace, kdy se Zddné
ze slov Py, ..., P, nevyskytuje v pravé zpracovaném slové
R;, pak vypocet kon&i s vysledkem R;. Pfi tom je moZné,
ze popsany proces nikdy neskondi. Pak fekneme, Ze vysledek
vypoctu neni pro slovo X definovan. Je-li vysledek vypoctu
pro X definovan, ozna¢ime ho S(X).

Priklad 1

Navrhnéte schéma S, které pfipiSe na konec kazdého slova X,
tvoteného ze znaka 1, 0, slovo 10. ReSenim je schéma

S: ¢l = Ic

0 — Oc
¢ —.10
E => €

Schéma S pouzivd pomocny znak c. Jako prvni bude apli-
kovano pravidlo & — ¢, nebot predchozi pravidla obsahuji
na svych levych stranich znak c, a ten se nevyskytuje v zad-
ném vstupnim slové. Navic, prazdné slovo se vyskytuje na
zalitku kazdého slova. Nisleduje opakované uziti vzdy
jednoho z prvnich dvou pravidel, a to tak dlouho, dokud
se ¢ »neposune« az na konec. Poté je aplikovdno tieti pra-
vidlo a vypocet kon¢i, nebot se jednd o koncové pravidlo.
Naptiklad pro vstupni slovo X = 1011 probihd vypocet
takto:

Ry = c1011, Ry = 1c011, R3 = 10cll, Ry = 101cl, R5 =
= 1011lc, R¢ = 101110. Stru¢né zapsino 1011 |- c1011 —
— 1c011 - 10cll - 101cl - 101lc +— 101110.
Poznamenejme jes$té, Zze uvedené schéma S Ize zapsat také
ve zkrdcené podobé ve tvaru:

124



S: ex — xc

c —.10

& —> ¢
kde x € {0, 1}, ve kterém jsou prvni dv& pravidla pavodniho
schématu zapséna jako jedno pravidlo.
Piiklad 2
Navrhnéte schéma S, které »zdvojuje« vstupni slovo X
tvorené ze znaka a, b, tj. S(X) = XX. Relenim je schéma

S: za — adz (1)
2b — bBz (2)
Aa — a4 (3)
Ab — bA (4)
Ba — aB (5)
Bb — Bb (6)
z —>1 (7)
At — ta (8)
Bt — tb 9)
t —& (10)
g —z (11)

Schéma S pouzivd pomocné znaky A, B jako dvojniky pro
znaky a, b a dal$i pomocné znaky z, ¢.

Prvni bude aplikovano pravidlo (11), kterym se na zacatek
slova X pfipiSe znak z. Pak jsou opakované aplikovina pra-
vidla (1) a (2) ptipisujici za kazdy znak jeho dvojnika. Pfitom
se znak 2z posouvd doprava tak dlouho, dokud se nestane
poslednim znakem. Daile jsou aplikovana pravidla (3)—(6),
kterymi se pfesunou viechny znaky A, B doprava. Pfitom
zustdva zachovano vzajemné pofadi znaka a, b i vzdjemné
pofadi znaka 4, B. Tim vznikne slovo tvofené vstupnim
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slovem X, ndsledovanym jeho »dvojnikem«. Pravidlem (7)
se znak z zméni na znak z. Pravidly (8) a (9) jsou pak po-
mocné znaky A4, B nahrazeny svymi protéj§ky a, b. Vypocet
kon¢i uzitim pravidla (10), které odstrani pomocny znak 7
ze stfedu slova. Napiiklad pro vstupni slovo X = abb pro-
bihd vypocet takto:
X = abb — zabb — aAzbbt\—- aAbBzb - aAbBbBz \—
—abABbBz - abAbBBz |- abbABBz |- abbABB: |-
abbABtb — abbAtbb - abbtabb — abbabb.
Markovovy algoritmy muZzeme pouzivat i k préci s pfiroze-
nymi Cisly. Pro jeji usnadnéni se Casto pfirozené Cislo n
reprezentuje slovem 7, které je definovdno induktivné takto:
0 =a, n+ 1 =mna. Kazdou k-tici pfirozenych ¢&isel (m,
..., ng) reprezentujeme slovem (m1, ..., ng) = mbngb . ..
... bnp. Naptiklad (3, 1, 2) = aaaabaabaaa. Poznamenejme,
7e jsou mozné i jiné reprezentace.
Priklad 3
Navrhnéte schéma S, které politd soulet tfi pfirozenych
¢isel. Vstupnim slovem bude vy$e uvedena reprezentace této
trojice. Resenim je schéma

S:ba—¢
Kazdy vypolet podle schématu S konéi po dvou aplikacich
jediného pravidla schématu. VSimnéte si, ze na rozdil od
piiklada 1 a 2, kde vypocet koncil aplikaci koncového pra-
vidla, zde konéi vypolet tim, ze pravidlo jiz nelze vice apli-
kovat. Napf. pro soutet 1 + 1 + 2 je vstupni slovo X =
= aabaabaaa a vypolet probéhne takto: aabaabaaa —
I aaabaaa \— aaaaa. Vysledek reprezentuje Cislo 4.
Resent
a) Dvojici m, n ptirozenych Cisel (m, n = 0) reprezentujeme
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slovem a™+1lbgn+1, Algoritmus je zaloZen na postupném
»sCitani«. ReSenim je schéma

S: FXX —- FX (1)
FX —a (2)
aX — Xa (3)
EX — XaE (4)
E — D (5)
aDb — bE (6)
Db — F (7N
aD — Da (8)
XD — DX 9
bD — Db (10)
XC — CX (11)
»C — Db (12)
Ba — XB (13)
B - C (14)
Aaba — bB (15)
Aa — a4 (16)
&€ — A 17

Schéma S pouzivd pomocné symboly 4, B, C, D, E, F a X.
Algoritmus mé 4 &asti. Nejprve je vstupni slovo a”+lpan+1
pfevedeno pravidly (15) — (17) na tvar a™bBa”. Ve druhé
¢asti (pravidla (11)—(14)) je toto slovo pievedeno na tvar
amDbX". Slovo X" slouzi k zapamatovani druhého <&ini-
tele pro potfeby sitani. Treti &ast (pravidla (3)—(10))
realizuje vlastni ndsobeni. Pro kazdy symbol a vlevo od &
je za X7 pripsino slovo a” tak, ze X" je »zkopirovino«.
Pfesnéji muzeme jeden krok Cinnosti algoritmu v této &ésti
popsat takto: am~iDbX"qt-n |- qm—i-1 pEX"qi-" - .. |-
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agm—i-lp XngnuDgi*n - | |- gm—i-1DpXnqgli+l) n (pro 1>
> 0). Tato &ast konci aplikaci pravidla (6). Posledni &ast
(pravidla (1)—(2)) pak jiz jen vymaze pomocné X a doplni
jeden symbol a, ¢imz dostaneme vysledny tvar am«»+1,

b) ReSenim je schéma (ve zkriceném zipisu, kde x, ye {a, b})

S: Ba — aB (1)
Bb — bC 2)
Ca — aC (3)
Cb — bD (4)
Da — aD (5)
Db — B (6)
B —.¢ (7
C —.c (8)
D —.¢ 9)
Axy — xy4 (10)
xE — Ex (11)
E — B (12)
Ax — Ex (13)
A —.e (14)
€ — A4 (15)

Schéma pouzivd pomocné symboly 4, B, C, D, E. Nejprve
je pravidlem (10) pomoci 4 po dvojicich znaku prochizeno
vstupni slovo X. Je-li slovo sudé délky, pak je vysledek
Cteni tvaru YA, je-li liché délky, pak YAa nebo YAb. Pro
lichou délku je pravidly (11)—(13) toto slovo pievedeno na
tvar BX a tim pfipraveno k provedeni pozadovené modifi-
kace. Nasleduje postupné prochdzeni slovem pravidly
(1)—(6), ptitemz pomocny symbol urluje, kolikité b (mod 3)
je hledédno: B - prvni, C - druhé, D - tfeti. Tteti symbol b
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je pravidlem (6) vymazin. Vypocet kon&i aplikaci jednoho
z pravidel (7), (8), (9) po zpracovéani celého slova. Pro slovo
sudé délky je pomocné A pravidlem (14) vymazéno a vy-
pocet bezprostiedné kenéi s S(X) = X.

P-11-1

Jsou ddna dvé celotiselnd pole 4, B (1..N) takovd, Ze
N >2,apro viechna 7, 1 =1 < N, plati A(G) < N, B(i) <
< N, A(i)+ B(1), A(%) >1 nebo A7) = 0, B(i) >1 nebo
B() = 0.

Mezi N mésty, olislovanymi postupné od 1 do N, je
vybudovéna jednosmeérnd silni¢ni sit podle téchto pravidel:

1. Pro v8echna 7, 1 £ 7 < N, vede piima4 silnice z mésta ¢
do mésta A(7), jestlize A(7) >0, a z mésta ¢ do mésta B(7),
jestlize B(i) > 0.

2. Z4dné jiné silnice nejsou.

Navrhnéte a dokazte (nejlépe linedrni) algoritmus, ktery
urci, kolika raznymi zplasoby se lze dostat z mésta 1 do
mésta N.

Pozndmka. Algoritmus je linedrni, jestlize existuje pfirozené
Cislo L takové, ze zadny krok algoritmu se neprovede vice-
krat nez L * N krit.

Resent

Z definice silni¢ni sité vyplyva, 7e kazda primé silnice vy-
chdzi z mésta, jehoz ¢islo je men3i nez ¢islo mésta do néhoz
vede, a Ze mezi zddnymi mésty nevede vice nez jedna pfima
silnice. Cisla mést, kterymi projizdime pfi libovolné cestd
v silniéni siti, tvofi tedy vzestupnou posloupnost a do 74d-
ného mésta, kterym jsme projeli, se nemuzeme jiz vratit.
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Pro viechna i, 1 £ ¢ < N, oznalme jako p(7) polet cest
z mésta 1 do mésta ¢ a jako PRED(7) mnozinu &isel téch
mést, z nichz vede pfima silnice do mésta :. Definitoricky
polozme p(1) =1. Z vySe uvedenych vlastnosti silni¢ni
sité zfejmé& plyne, ze pro viechna 7, 1 << i < N, je p(i) rovno
soultu viech p(k), pro néz k patii do PRED(i). ProtoZe pro
viechna % z mnoziny PRED() plati 2 < i, miZeme hodnotu
p(7) stanovit, jakmile zndme hodnoty p(k) pro vSechna %,
1 <k <i. To nis vede k tomu, Ze hodnoty p(i) budeme
zji§tovat pro mésta v pofadi = 2, 3, ..., N.

Vypolet hodnoty p(i), kterd je souttem zminénych séitancu,
budeme prubézné provadét ve slozce c[z] pomocného pole
c[1...N] a budeme pfitom vychidzet ze zpusobu zadéni
silni¢ni sit€¢ v polich 4[1..N] a B[1..N].

Jestlize totiz A[k] = i a i % 0, pak kePRED(i), a mame-li
jiz vypocltenou hodnotu p(k), kterd je jednim ze sCitancu
tvoticich soudet p(i), muZeme ji hned pfitist k prubéznému
soultu v ¢[7]. Analogickd Gvaha plati pro pole B.
Algoritmus navrhneme tak, aby byla zachovévéna platnost
tvrzeni P(i), 1 £ i < N.

P(i): Provsechnaj, 1 <j < N, plati, Ze ¢[/] je soucet viech
p(k) takovych, ze k € PRED (;) and (k& < i).

for i:=2to N do ([i] := 0;
1l :=:1;
{Zde plati c[1] = p(1)}
for i:=1to N —1do
begin {zde plati P(i)a c[1] = p(1)}
if A[i] + 0 then c[A[i]] := [A4[i]] + [i];
if B[i] =~ 0 then ([B[i]] := [B[i]] + c[7];
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{zde plati P(i + 1)}
end;
{zde plati P(N) = v ¢(N) je hledany vysledek }
writeln (¢[N]).

Z platnosti P(7) a c[1] = p(1) pfed provedenim téla cyklu
a z vlastnosti hodnot p(7) plyne, ze pro viechnaj, 1 <7 < 4,
je c[j] = p(j). Pri¢teme-li tedy zndmou hodnotu p(i) k t€m
hodnotdm c[%k], pro né&z iePRED(k), splnime podminku
P(i + 1). Algoritmus je lineérni.

P-Il-2

H-sekvence je kone¢nd posloupnost tvofend z 0 a 1 podle
téchto pravidel:

1. 0 je H-sekvence,

2. Jsou-li H a H' dvé H-sekvence, pak i spojeni 1HH’
je H-sekvence a

3. z4dné jiné H-sekvence nejsou.

Je ddno pole H(1..N) tvofené z 0 a 1, N = 1. Navrhnéte
a dokazte algoritmus, ktery rozhodne, zda kone¢na posloup-
nost H(1) ... H(N) je H-sekvence.
Piiklad
Posloupnost 1011000 je H-sekvence, nebot vznikla spojenim
podle bodu 2 ze sekvenci H =0 a H’ = 11000, pfi tom
H je H-sekvence podle bodu 1, H’ je H-sekvence, kterd
vznikla opét podle bodu 2 z H” = 100 a H-sekvence 0.
Konetné H” je spojenim podle bodu 2 H-sekvenci 0 a 0.
Resent
Nejprve si v§imnéme, Ze podle druhého pravidla je kazda
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(netrividlni) H-sekvence tvaru 1H;H,. Jestlize chceme
zjistit, zda je zadand posloupnost zalinajici 1 H-sekvenci,
musime zjistit, zda je zbytek této posloupnosti (po odstranéni
prvni 1) zietézenim dvou H-sekvenci. Predpokladejme, Ze
H; je opét tvaru 1H3H;. Pavodni posloupnost bude H-sek-
venci, jestlize je zbytek posloupnosti HiH> (opét po odstra-
néni prvniho symbolu) zietézenim HsHiH> tii H-sekvenci.
Zobecnéni téchto Gvah nis privadi k zavéru, ze ulohu umime
vyresit, pokud muzZeme zjistit, zda je néjakd posloupnost
z 0 a 1 zfetézenim urcitého poctu H-sekvenci. Vzhledem
k tomu, Ze vlastni zacdtek H-sekvence neni H-sekvenci, lze
posloupnost z 0 a 1 rozlozit nejvyse jednim zpusobem do
zietézeni H-sekvenci. Pocet H-sekvenci je pfi tom jedno-
zna¢né urcen prvnim symbolem posloupnosti, a sice takto:
(1) Posloupnost tvofend jedinou 0 je H-sekvenci (pravidlo 1).
Tedy posloupnost z 0 a 1, kterd zacind 0, je zfetézenim
m H-sekvenci, m = 1, pravé kdyZ je zbytek této posloup-
nosti zietézenim m — 1 H-sekvenci.

(2) Posloupnost zainajici 1, kterd je nasledovdna dvéma
H-sekvencemi, je H-sekvence (pravidlo 2). Proto posloup-
nost z 0 a 1, kterd zalind 1, je zfetézenim m H-sekvenci,
m =1, pravé kdyz je zbytek této posloupnosti zietézenim
m + 1 H-sekvenci. Algoritmus vychdzi bezprostfedné z pro-
vedeného rozboru. Jeho idea je ndsledujici:

Budeme postupné prochazet zadanou posloupnosti a na
zakladé pravé zpracovavaného symbolu urcovat, z kolika
H-sekvenci musi byt zietézen zbytek. Puvedni posloupnost
bude H-sekvenci, pravé kdyz po zpracovani celé posloup-
nosti mé néasledovat nulovy pocet H-sekvenci. :
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mi=1;n:=0;
while (m =~ 0) and (n 5= N) do
begin n:=n + 1;
if Hn) =0 thenm:=m—1 {viz(1)}
elsem:=m+ 1 {viz(2)}
end; ’
if im = 0) and (n = N) then write ("je H-sekvence’)
else write (‘neni H-sekvence”).
Algoritmus je linedrni.

P-11-3

V urné je m bilych a n ¢ernych kuli¢ek, m,n = 0, m + n =

Néahodnym zpusobem vytdhneme z urny dve kuhcky. ]sou h

stejné barvy, vloZime misto nich do urny jednu Cernou ku-

licku; nejsou-li stejné barvy, vloZzime misto nich do urny

jednu bilou kuli¢ku. Cely postup opakujeme tak dlouho, az

v urné zbude jedna kuli¢ka. Pfedpoklddejme pfi tom, ze mame

k dispozici neomezeny pocet ¢ernych kulicek.

a) Stanovte, po kolika krocich popsany algoritmus skondi.

b) Pro viechny dvojice m, n takové, ze m + n = 4, urCete
barvu posledni kuli¢ky v urné.

c¢) Urcete barvu posledni kuli¢ky v urné v zdvislosti na m
an.

Reieni

a) Pfi kazdém kroku algoritmu odebereme z urny dvé ku-

licky a vratime jen jednu. Pii kazdém kroku dojde tedy ke

snizeni poCtu kuli¢ek v urné o 1. Na pocétku je v urné m + n

kuli¢ek. Algoritmus kondi, jestlize v urné zustdvé jedna ku-

licka. Algoritmus tedy kon&i po m + n — 1 krocich.
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b), ¢) Zkcumejme nejprve, jaky vliv maji jednotlivé tahy na
pocet Cernych a bilych kuli¢ek v urné:

— jsou-li tazeny dvé Cerné, pak je vracena jedna Cerni;
pocet bilych se neméni a polet Cernych se zmensi o 1;

— jsou-li tazeny dvé bilé, pak se polet bilych snizi o 2
a pocet Cernych se zveétsi o 1;

— je-li tazena Cernd a bild, pak po tahu je v urné o jednu
bilou méng, ale po pfiddni dal3i bilé (jejim vriceni) je
jejich pocet opét stejny jako pfed tahem a polet Cernych
se zmen$i o 1.

Z uvedené analyzy vyplyvd, Ze po kazdém tahu je poclet
bilych kulicek v urné bud stejny jako pied tahem, nebo o 2
mensi. Proto posledni kulicka v urné je Cernd, pravé kdyz
pocet bilych kuli¢ek na po&éitku je sudy.

Odpovéd na ¢ast b) dostdavame aplikaci praveé ziskaného za-
véru na pripad, kdy m + n = 4.

P-11-4
Necht P =ap ... an je neprizdné slovo. Slovo opatné ke
slovu Pjeslovo P’ = a, ... ap.

Navrhnéte schéma S, které urdi, zda vstupni slovo X, tvofené
znaky 4, B, C, je tvaru PP’ pro né&jaké slovo P, tj.

S(X) = ¢ pravé kdyz X = PP,
pro né&jaké slovo P (¢ je prazdné slovo).
Reseni
Pokud by byl ve vstupnim slovu vyznalen stied, tj. slovo
by bylo tvaru PtP’, t€ {4, B, C}, pak by fefenim bylo
schéma
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ata —t, ac{4,B,C}
r  —.g,

které od stfedu postupné maze symetrickou c¢dst. Urceni
stfedu vSak nemusi byt snadné.

Viimnéme si, ze slovo X je tvaru PP’ pravé kdyz slovo XX
je tvaru RR’, nebot X = X’ pravé kdyz X je tvaru PP’
Tato skuteCnost dovoluje fesit nyni ulohu tak, ze vstupni
slovo X nejprve pievedeme na slovo X:X s vyznaCenym
stiedem (»zdvojime je«), a pak budeme zkoumat symetri¢nost
shora uvedenym zpusobem. Ke zdvojeni pouzijeme jako
pomocné symboly dvojniky 4, B, C k symbolam 4, B, C,
symbol ¢ k vyznaCeni stiedu a symbol 2z jako ukazatel pouzi-
vany pfi prochizeni slovem. Re$enim tlohy je schéma

S: za — aaz ))
ab — ba (2)
z —>t 3)
at — ta 4)
ata — t (5)
r —¢ (6)
& —z ©)

kde a, be {4, B, C}.

Nejprve je aplikovano pravidlo (7), kterym se na zalitek
slova X ptipi§e symbol 2 (tj. X — zX). Pak je opakované
aplikovano pravidlo (1) ptipisujici za kazdy znak jeho dvoj-
nika. Aplikaci pravidla (2) se pfresunou viechny znaky
A, B, C doprava za viechny znaky 4, B, C. Zustavé zacho-
vino vzdjemné poradi symbola ve slové (tj. 2 X ... - XX2).
Pravidlo (3) méni 2 na t a pravidlo (4) méni dvojniky opét
v puvodni symboly a soufasné vyzna¢i stied (tj. XXz
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—...  XtX). Pak je aplikaci pravidla (5) provéfovéna
symetri¢nost. Pravidlo (6) kon¢i Cinnost algoritmu a prévé
v piipadé, ze slovo bylo tvaru PP’ je vysledkem prédzdné
slovo.

P-IH-1

Jsou déna dvé celotiselnd pole A, B(1..N) takova, ze

Ne &
A(?)=0a B(i) >0 pro viechna 7,1 £ 71 < N,
A1)y + ... + A(N) = B(1) + ... + B(N).

Podél kruhové zdvodni dréhy je umisténo N nadrzi s ben-
zinem, po fadé o&islovanych od 1 do N. Po néddrzi s Cislem N
nésleduje opét nadrz s &islem 1. V nadrZi ¢ je A®7) litra ben-
zinu a spotieba benzinu pfi cesté od nadrze ¢ k nésledujici,
tj. (¢ mod N) + 1, je B(7) litr benzinu.

Navrhnéte a dokazte algoritmus (nejlépe linedrni), ktery
ur¢i vSechny néddrze, od kterych muze viaz, s poclitetné
prazdnou a dostatetné velkou néadrzi, projet celym okruhem
(ve sméru daném olislovanim nddrZi).

Pozndmka 1

(i mod N) je zbytek po déleni &isla ¢ &islem N.

Pozndmka 2

Algoritmus je linedrni, jestlize existuje pfirozené Cislo L
takové, Ze z4dny krok algoritmu se neprovede vice nez
L*N.

Reseni

Ukazme nejprve, naptiklad matematickou indukei vzhledem
k poltu nadrzi N, Ze existuje alespoil jedna nadrz, od které
se d4 objet cely okruh.
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Pro N =1 to ziejmé plati. Pfedpokladejme, Ze tvrzeni plati
pro N — 1 a ukazme, Ze plati i pro N. Ze zadani plyne, Ze
musi existovat nddrz j, od niz se d4 dojet k nadrzi ; + 1.
Vytadme néddrz j + 1 z okruhu tak, Ze jeji obsah pfidédme
do nadrze j (k A(j) pri¢teme A(j + 1)) a upravime spotfebu
benzinu pii jizdé od nddrze ; k nésledujici (k B(j) pfi¢teme
B(j + 1)). Méme nyni okruh s N — 1 nddrzemi spliujici
podminky zadani. Podle piedpokladu existuje nadrz &,
od niz se d4 objet cely okruh. Od téze nddrze & se dd oviem
objet i ptvodni okruh s N nadrzemi.

Definujeme funkci S(z, j), kterd udéva obsah néadrze auto-
mobilu po jizdé od nddrze 7 k nddrzi 7, pti¢emZ vozidlo s po-
Cate¢né prazdnou nddrzi natankuje poprvé u nidrze 7, poté
u kazdé nidrze, kolem které projizdi, a dojede k nadrzi j,
aniz by u ni tankovalo.

j—1
> (A(R) — B(k)) proi<j
SG,j) =1 ' i—i
S (A(R) — B(R) + S (AR) — B(R)) pro i = j.
k=1 k=1
Funkce (na rozdil od reality) muze nabyvat i zapornych
hodnot. Plati 8z, j) = S(3, 7 — 1) + AG — 1) — BG — 1).
Odnédrze 7, 1 < ¢ £ N, se di objet cely okruh pravé tehdy,
kdyz splituje podminku
d(7): pro v8echnaj, 1 <7 < Nje S(1,7) = 0.
Budeme zjistovat postupné pro ndadrze 1 =1, 2, ..., N,
zda se od nich d4 dojet k nddrzi 1. D4-li se od néddrze 7 dojet
k nddrzim A=:+1, 14+ 2, ..., 7 —1, kde 1<j < N,
tj. S(¢, k) = 0 pro viechna A, ale ned4d se dojet k néadrzi 7,
ti. S8(i, /) <0, pak ani jedna z nddrzi A, i< h <) — 1,

137



nespliluje podminku d(%) (pfi jizdé cd 7 k j jsme jimi pro-
jizdéli s nezdpornym obsahem nidrze, a pfesto jsme nedc-
jeli) a jako néasledujici budeme provéfovat nddrz j. Timto
zptsobem najdeme minimélni % takové, Ze od nddrze % se
da dojet k nadrzi 1. Kdyby néddrz % nesplilovala podminku
d(%), nespliiovaly by pcdminku d(%) ani nddrze b = k& + 1,
..., N, a protoze rovnéZ nidrze m =1, 2, ..., & — 1 ne-
spliuji d(m), byl by to spor s existenci alespoil jedné nadrze
spliiyjici podminku d. N4drZ % tedy spliluje podminku d(%)
a vSechny ostatni nadrze # spliujici d(%) jsou ty, pro néz
Sk, b)) = 0.

Algoritmus

Ji=1l3k:=1,5: =0;
while ; =< N do
{zjituj, zda se dé od nadrZe % dojet k nadrzi 7}
begin s := s + A[j] — Bljl;j:=7 + 1;
if s << 0 then begin 2 :=;;s5:= 0 end
end;
{od nadrze k se d4 objet cely okruh, od 1, 2, ..., k£ — 1
nikoliv }
writeln (k); s : = A[k] — B[k];
forj:=% + 1to Ndo
begin if s = 0 then writeln (5);
s:=s + A[k] — B[]
end;

Dukaz sprivnosti je obsazen v argumentaci pro navrh algo-
ritmu. Algoritmus je linedrni.
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P-11-2

Je déno celotiselné pole A(1, ..., N), N = 1. P-sekvence
délky % pro pole A4 je celotiselnd posloupnost p1, ..., pr ta-
kovéd, ze £ = 1, pro viechna 7, 1 = 1=k, plati 1 = p; = !
api-1 <pi= Alpi).

Navrhnéte a dokazte co nejlepsi algoritmus, Ktery uréi ma-
ximalni délku P-sekvence pro pole A.
Resent
Jednim z mnoha zpusobu feSeni ulohy je nalézt pro kazdé j,
1 =7 = N, délku m(j) nejdeldi P-sekvence, jejiz posledni
¢len je 7, a z hodnot m(j) vybrat maximalni.
Ozna¢me jako P(7, 7)-sekvenci P-sekvenci, jejiz posledni Clen
je 7 a ostatni ¢leny p vyhovuji nerovnostem 1 =p a p <1i.
Ozna¢me déle jako d(j, 7) délku nejdeldi P(j, 7)-sekvence.
Ziejmé d(j, 1) = 1,d(G, k) =< d(j, 1) pro k < 1 ad(j,j) = m(j)
pro viechnay, 1 =7 = N.
Hodnoty d(j, 1) tedy zname, pfirozenym dal$im postupem je
pocitat hodnoty d(7, 7 + 1) na zdkladé znalosti hodnot d(7, 7).
Hodnoty d(j, ©) budeme uklddat v pomocném poli ¢[1..N],
maximum z jiz vypoltenych hodnot m(j) v proménné m
a algoritmus budeme navrhovat tak, aby pfi vypoltu byla
dodrzovana platnost tvrzeni Q(z):

c[j] = d(j,7) proviechnaj, 1=;=N
a soutasné m = max{m(l), m(2), ..., m(i)} .
Prvni verze algoritmu muze tedy vypadat takto:
for::=1to Ndo ([i]:=1;
m:=1;

{zde plati Q(1)}
fori:=1to N — 1 do
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begin  {zde plati Q(i)}
S; (S je pfikaz pro vypolet hodnot d(j, i + 1)}
{zde plati Q(7 + 1)}
end;
{zde plati Q(N)}
writeln(m)

Potitame-li hodnoty d(j, i + 1) na zékladé jiz dfive vypocte-

nych hodnot d(j, 1), vyjdeme z téchto fakta

— ziejmé d(j,1 + 1) = d(j, 1) pro viechnaj, 1 =; < 7,

— hodnota d(j, i + 1) se muze li§it od d(j, 7) jen tehdy, exi-
stuje-li P-sekvence s poslednim ¢lenem ; a pfedposlednim
¢lenem 7. Z definice P-sekvence plyne, Ze v tom piipadé
musi byt ;j = A[7].

Stadi tedy pocitat jen hodnoty d(j, 7 + 1) pro j spliiujici ne-

rovnosti 7 + 1 = 7,7 = N,j = A[1].

Piikaz S muzeme Caste¢né rozepsat:

forj:= 1+ 1 to min(N, A[:]) do

begin U;

end;
M;
Jedinou P(j, ¢ 4+ 1)-sekvenci s délkou vétsi nez d(j, i) muze
byt P-sekvence vytvofend z nejdelsi P(7, 1)-sekvence (jeji délka
je d(i,7) pfidanim ; jako posledniho ¢lenu. Vznikla P-sekvence
je P(j,1 + 1)-sekvenci a jeji délka je d(7,7) + 1. Toto vyuzije-
me piidokonceni pifikazu S.

forj:=1 + 1 te min(N, A4[7]) do
if c[i] + 1 > ([j] then [j] := c[i] + 1;
{hodnota d(i + 1,7 + 1) = m(i + 1) je nyni v ¢[7 + 1]}
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if (i + 1] >mthenm := ¢[1 + 1];

Koneln4 verze algoritmu:

for i:=1to N do 7] := 1;
mi=1;
{zde plati Q(1)}
fori:=1to N —1do
begin  {zde plati Q(i)}
for j := 1 + 1 to min(N, A[:]) do
if c[i] + 1 > ¢[f] then ¢[j] := c[1] + 1;
if [z + 1] >mthenm := c[i + 1];
{zde plati Q7 + 1)}
end;
{zde plati Q(N)}
writeln(m). «

Dukaz sprévnosti algoritmu byl providén Soulasné s kon-
strukei algoritmu. Uvedeny algoritmus ma kvadratickou slo-
Zitost.

P-1I1-3

Je dén kruh s 16 svétly a vypina¢. Kazdé svétlo se nachdzi
pravé v jednom ze dvou stavia - sviti, nesviti. Jedno otoeni
vypinacem vyvold zménu stavu kazdého svétla v zdvislosti na
dosavadnich stavech tohoto svétla a svétla nasledujiciho (ve
sméru pohybu hodinovych ruci¢ek) podle téchto pravidel:

1. Jestlize svétlo i jeho nésledovnik sviti, pak svétlo sviti déle.
2. Jestlize svétlo sviti a jeho nisledovnik nesviti, pak svétlo

prestane svitit.
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3. Jestlize svétlo 1 jeho nésledovnik nesviti, pak se svétlo roz-
SViti.
4. Jestlize svétlo nesviti a jeho nasledovnik sviti, pak svétlo
nesviti dale.
Dokazte, ze pro libovolné pocatecni stavy svétel budou nej-
vyse po 16 otoCenich vypinaem svitit viechna svétla.
Reseni
Miame dva mozné stavy kazdého svétla. Tyto stavy budeme
modelovat pomoci pravdivostnich hodnot (pravda, nepravda)
a zménu stavu jako logickou funkci & argument i (Cislo
svétla) a j (pofadové &islo otoCeni vypinatem), 7, ; = 0, defi-
novanou takto:
b(1,7) = »i-té svétlo sviti po j-tém otoleni«.
UvaZujme situaci po j otoenich a popi§me situaci, kterd na-
stane po dal$im otoceni, tj. vyjadiime hodnotu &(7, j + 1) po-
moci hodnot b(7, j) a b(¢ + 1, ). Plati, Ze svétlo 7 bude po
J + 1 otoCenich svitit, pravé kdyz svétla za ¢ + 1 po j otoCe-
nich souasné obé bud svitila, nebo nesvitila, coz vyplyva
z pravidel [1] a [2].
Formalné piseme

b(i,j + 1) =[8(1,7) =0 + 1,/)] . (1)
Podobné z pravidel [3] a [4] dostavame
b(i + 1,7) =[o(,7 + 1) =80, 7)) - (2)

Vztahy (1) a (2) zapiSeme (vzhledem k asociativité logické
ekvivalence) do jediného vyrazu

b, 7 + 1) =b(,/) =i + 1,)). 3)

Nagim cilem je ukézat, ze b(7,j + 16) je pravda. Za timto tce-
lem dokézeme obecnéjii vysledek, a sice ten, ze plati
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H(E): (1,7 + 2F) = b(i,7) = b(i + 2,j) . @

Potom, protoze 16 = 2%a b(7,7) = b(i + 16,/)je pravda, bude
platit, ze i b(z,j + 16) je pravda. Vztah (4) dokdZeme indukci.
Pro £ =0 je 20 = 1 a H(0) plati podle (3).
Nyni predpokliddejme, ze plati H(k) pro & >0, a dokazme
platnost H(k + 1). Podle indukéniho pfedpokladu plati

b(i,j + 2% + 28) = b(i,j + 2F) = (i + 2%, + 2F) (5)
a rovnéz i

b(i + 2k, + 28) = b(i + 2F,j) = b(i + 2¥ + 2F,/). (6)
Spojenim vztaha (5) a (6) dostdvame
b(i,j + 2KH) =b(i,j + 2F) = b(i + 2%,/) = b(i + 2F+1,5) . (7)
Protoze vsak

b(i,j + 2¥) =¥(i,/) = b(: + 2,)),
plati i
H(k + 1): b(i,j + 2k+1) = b(4,7) = b(i + 2k+1,)) .

P-1ll-4

Libovelné prirozené Cislo n je reprezentovano v undrni sou-
stavé slovem Uy, které obsahuje pravé n + 1 znaka 1 (U, = 1,
Up = 11, atd.). Ozna¢me B, reprezentaci pfirozeného Cisla n
v binérni soustavé (By = 0, By = 1, By = 10, atd.).
Navrhnéte schéma S, které pievadi undrni reprezentaci pfi-
rozeného (isla na reprezentaci binarni, tj. pro libovolné pii-
rozené Cislo 7 je
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S(Uyn) = By,

a déle navrhnéte schéma T, které pfevadi bindrni reprezentaci
prirozeného Cisla na unarni, tj. pro libovolné pfirozené &islo
je

T(By) = U, .

Resent

a) Navrhneme schéma S, které pfevadi undrni reprezentaci
pfirozeného Cisla na bindrni. Pfevod bude realizovan postupné,
a proto budeme pracovat se slovem tvaru XBY, kde X repre-
zentuje doposud vytvofenou bindrni reprezentaci a Y zby-
vajici Cdst undrni reprezentace. Zacindme slovem ByBU,
a postupné pro kazdy symbol 1 v undrni Césti pfi¢teme jed-
ni¢ku k bindrni Casti.

S: 04 — 1 1)
14 — A0 2)
A =1 3)
B11 — AB1 (4)
Bl — ¢ (5)
e — 0B (6)

Schéma pouziva pomocné symboly A4, B. Nejprve je pravid-
lem (6) pfevedeno vstupni slovo U, na 0BU,. Pravidlem (4)
je zapofato zpracovani jednoho symbolu 1, které spoliva
v jeho odstranéni a v pricteni jednicky k levé Césti. Pravidla
(1), (3) pfedstavuji pfi¢teni jedni¢ky bez pfenosu do vyssich
radu, (2) s ptrenosem. Vypocet kon¢i vymazanim posledniho
symbolu 1 pravidlem (5).

b) Bindrni reprezentace B, (isla n je posloupnost ay, ... ag
cifer 0 nebo 1 takovd, ze plati

n=amu.2"m + ap—1.2"1 + .. +a1.2 +ag.
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Po upravé muzeme C&islo n vyjadrit téz ve tvaru
n=_..(amn2+an1)2+ ... +a1).2+ao.
Resenim je proto schéma

T: 1X — X11

X -

Cl — X1C
co — XC

C —

e —

€

1
C

(D
2
©)
(4)
)
(6)

Pravidly (3) a (4) je postupné odebirdn nejlevéjsi symbol z bi-
néarni reprezentace a pravidlem (1) je vZdy provedeno ndsobeni
dvéma, které konci aplikaci pravidla (2). Pokud je odebirdna
cifra 1, pak je soutasné pravidlem (3) i pfi¢tena jednicka.
Algoritmus konéi aplikaci pravidla (5), které dopliuje

(n + 1)-ni jedni¢ku do unirni reprezentace Cisla 7.
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Medzinirodna matematicka olympiada

29. medzindrodnd matematickéd olympidda sa konala v dfioch
9.—21. jula 1988 v Australii pri rekordnej ucasti 268 suta-
7iacich zo 49 krajin. Dal3ich 8 krajin - Fidzi, Franctzska Po-
lynézia, India, Novd Kaleddénia, Reunion, Thajsko, Tonga
a Zipadni Samoa vyslali pozorovatelov. Ceskoslovensko re-
prezentovalo uplné 6¢lenné druzstvo. Sutaz riadila medzi-
nirodna porota, v ktorej kazd4 zacCastnend krajina mala svojho
zastupcu.

Porota pod vedenim profesora R. Potzsa z Australie vybrala
z navrhov udloh jednotlivych krajin 6 sutaznych tloh a roz-
hodla, Ze kazd4 uloha bude hodnotend maximaélne siedmimi
bodmi. Sldvnostné zahdjenie sttaze bolo popoludni 14. jala
za pritomnosti austrdlskcho ministra price a vzdelavania
p. J. S. Dawkinsa. Ziaci riesili Glohy 15. a 16. jala dopoludni,
prvy deil prvua trojicu uloh, 2. deil druhd trojicu uloh, na
rieSenie bolo k dispozicii po 4,5 hodiny ¢istého Casu.

Texty Gloh

(v zatvorke za tGlohou je uvedena krajina, ktord tlohu navrhla)

1. V rovine st dané dve ststredné kruZnice s polomermi
R ar (R >r)abod P na mensej kruznici. Nech bod B
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je (premenlivy) bod velkej kruznice. Dalej nech priamka
BP znovu pretina velka kruznicu v bode C a kolmica /
na priamku BP v bode P pretina mali kruznicu v bode A4
(ak 7 je doty¢nica ku kruznici v bode P, tak 4 = P). Potom

1. N4jdite mnoZinu hodnét vyrazu |AB|2 + |AC|2+ |BC|2.
II. Néjdite geometrické miesto bodov stredov usetky AB.
(Luxemburg)

2. Nech 7 je kladné celé Cislo a nech Aj,Aq, ..., Agyi st
podmnoZiny mnoziny B. Predpokladajme, Ze
a) A; ma prave 2n prvkovprei = 1,2, ...,2n + 1
b) A; N A; obsahuje prive jeden prvok pre vietky i, j

1Zi<j=2n+1

¢) kazdy prvok mnoZiny B patri aspoti do dvoch mnozin A;.
Pre ktoré &isla n existuje zobrazenie f: B — {0, 1] tak, aby
kazd4 mnozina A;obsahovala préve n prvkov, ktorym je
priradend 0? (CSSR)

3. Na mnozine kladnych celych &isel je definovana funkcia
f nasledovne:

=1, f3) =3
f(2n) = f(n)

fldn + 1) = 2f(2n + 1) — f(n)

f4n + 3) = 3f(2n + 1) — 2f(n)
pre vietky kladné celé ¢isla n. Urcte pocet tych celych klad-
nych &isel n neprevySujtcich 1988, pre ktoré f(n) = n.
(Velka Britania)

4. Dokazte, ze mnozina takych redlnych Cisel x, pre ktoré

70 k 5
N

, = —
iyx— kT 4
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je zlozen4 z disjunktnych intervalov, ktorych stdet dizok
je 1988. (frsko)

5. V pravouhlom trojuholniku ABC s preponou BC oznatme
D pitu vysky z vrcholu A. Priamka, ktord spojuje stredy
kruznic vpisanych trojuholnikom ABD a ACD pretina
strany AB, AC po rade v bodoch K, L. Oznatme S, resp.
T, obsah trojuholnika ABC, resp. AKL. Dokiite, 7e
S = 27T. (Grécko)

6. Nech a, b st také kladné celé &isla, Ze &islo ab + 1 je deli-

a® + b2
telom Cisla a2 + b2. Dokdzte, Ze Cislo ——
ab + 1

je Stvorcom

prirodzeného &isla. (SRN)

Vybrané tlohy s vynimkou S$iestej ulohy neboli tazké, boli
z klasickych tém a ich obtaznost bola primerand Grovni suta-
ze. Siesta tloha bola velmi tazka, vyriesilo ju len 11 stfazia-
cich, jej rieSenie sa zakladalo na netradi¢nom obrate.

Koordindcia oprav uloh prebehla hladko, takze 19. jula na
zivereCnom zasadani poroty sa rozhodovalo uz len o bodo-
vych hraniciach pre jednotlivé ceny. Stanovili sa takto 33 —42
bodov 1. cena, 23—31 2. cena, 14—22 3. cena. 20. jala bolo
sldvnostné odovzdidvanie cien a ukonlenie olympiddy. Prvé
ceny odovzdaval australsky ministersky predseda p. R. 7. L.
Hawke. Medzi tymi, ¢o ziskali prvi cenu bol aj 13-ro¢ny
Austral¢an Terrence Tao (bola to uz jeho tretia medzinarodna
olympidda). Jedint zvla$tnu cenu za elegantné rieSenie Glohy
ziskal Gcastnik z Bulharska. Vysledky ¢lenov ¢eskoslovenského
druzstva ako aj ostatnych sutaziacich vidno z priloZenej ta-
bulky.
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Olympiéda sa konala v ramci osldv 200 rokov bieleho osidle-
nia Austréilie, bola velmi dobre organizovani a pre ucast-
nikov bola velkym zaZitkom. Ceskoslovenské druzstvo s vy-
nimkou vedtceho delegicie, dr. F. Zitka, CSc., ktory ako
&len jury priletel skor, priletelo do Sydney 11. jula, 11.—13.
jala stravilo prehliadkou Sydney, 14. jula nas previezli do
Canberry, ktord je asi 300 km na juhozépad od Sydney v ho-
rach. Vietky daldie ¢innosti boli potom v Canberre. 15. a 16.
jala boli sttazné dni, 17. jula bola prehliadka Canberry,
19. jula vylet do nedalekej prirodnej rezervacie. S mnozstvom
dojmov sme sa vratili domov, do Prahy, 23. jala.

CESKOSLOVENSKA UCAST NA MMO

Do stitaze na 29. MMO vyslalo Ceskoslovensko Sest Ziakov
vybranych na ziklade vysledkov dosiahnutych v domicej
MO, na pripravnych ststredeniach, Kore$pondentnom semi-
néri UV MO a inych podobnych akcidch. Dvaja boli v 3k.
roku 1987|88 Studentami 2. ro¢nika, dvaja 3. rc¢nika a dvaja
4. ro¢nika gymndzia, piati boli zo $pecidlnych matematickych
tried.

Vykon Ceskoslovenského druzstva trochu zaostal za ocaka-
vanim. Po vcelku dobrom vykone v 1. defi stitaze nastal 2. deni
atlm a vietci Siesti stitaziaci dosiahli spolu len 26 bodov zo
126 moznych, ¢o vzhladom k lahkej 4. ulohe (jej trik bol
dobre znamy z domécich sutaZi) a nie tazkej 5. ulohe, bolo
malo. Cakalo sa najmi, Ze vietci Ceskoslovenski Gastnici
ziskaji cenu. 12. miesto v neoficidlnom hodnoteni druZstiev
medzi 49 krajinami opticky nie je zI¢, aviak aroven starostli-
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vosti o talenty v CSSR a tradicie by dali tusit vyraznejiie
uspechy.

Ceskoslovensko prispelo na MMO aj précou v jury. Jedna
zo Siestich sutaznych uloh (dloha €. 2) bola ¢eskoslovenska,
vsetky 3 ulohy z &sl. navrhu sa dostali do uzsieho vyberu uloh
pre MMO.

RieSenia tloh

1. Casz i). Oznatme O spolo¢ny stred oboch kruznic, S
stred tetivy BC, S; stred tetivy AP, |PC| = ¢, |PB| = b,
|PA| = a. Z Pytagorovej vety pre trojuholniky APC,
APB dostaneme

|AB|2 + |ACI2 + |BC2=c2+ a2+ b2+ a2+ (b+ ¢ =

= 2(a? + b2 + 2 + bc) (1)

i b+c¢

. a c—b
Zrejme |S2P| = Y |S1P| = b |S:1C| = 5

(obr. 42).

c A \B

/

[/ s,

a 0

\

c S
Obr. 42
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Teraz napiSeme Pytagorovu vetu pre trojuholniky OS:P

a 0§,C
¢ — b\2 a \2
(%) +(5) -
¢ + b\2 a\?
(5) +(5) =#

Ak vynisobime rovnost (2) dvoma a rovnost (3) Siestimi
a vyndsobené rovnosti s¢itame, tak dostaneme

(5]

2

o

3)

2(a® + b2 + ¢ + be) = 2r2 + 6R?
t.j. vzhladem na (1)
|AB|2 + |BC|%2 4+ |AC|2 = 212 + 6R?

¢o nezéavisi na polohe bodu B.

Cast ii). Vedme bodom A rovnobezku s tetivou BC, jej
priese¢niky s vidcSou kruZnicou oznaime C’, B’. Potom
APBB’ aj APCC’ st pravouholniky a stred uhloprie¢ky
AB je zérovenl aj stredom uhloprie¢ky PB’. Ked bod B
prebehne celt velk( kruZnicu, tak aj bod B’ prebehne celt
velka kruZnicu, to znamend, 7e hladanym geometrickym
miestom bodov je kruZnica rovnolahld s velkou kruZnicou

1
v rovnolahlosti so stredom P a koeficientom >

Ukazeme, ze kazdy prvok mnoZiny B patri prive do
dvoch mnozin A;. Naozaj, keby prvok a € A; patril do
aspoil dalgich dvoch mnozin Aj, Ak, tak zvy$nych 2n — 1
prvkov mnoZiny A; by patrili do zvy$nych 2n — 2 mnoZin
(okrem A;, Aj, Ax) t.j. aspoil dva by patrili do nejakej
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mnoziny A; a teda A; N A; by malo aspori dva prvky.

Potom mnozina B mé4 n(2n + 1) prvkov. Ak 7 je ne-
parne, tak pozadované zobrazenie neexistuje, pretoze ak
oznatime By = {X € B | f(X) = 0}, tak pocet prvkov mno-

n+1)
7T (totiz kazdy prvok patri préve

do dvoch mnozin), o nie je mozné. Na druhej strane, pre
parne n takd funkcia existuje napr. pre Xe€B, {X} =
= A; N Aj polozme f(X) = 0 préve vtedy, ak »vzdiale-
nost« medzi vrcholmi X, X; pravidelného 2z + 1 uholnika
X1Xs ... Xopy1 je pérna. (Vzdialenostou tu rozumieme
pocet tuseliek najkratSej lomenej Ciary pozostavajucej zo
strdan 2n + 1 uholnika spéjajicej body X;, X;).

ziny By by mal byt

3. Vypotitajme niekolko prvych hodnét funkcie f

n 123456789101112131415
f) 113153719 513 311 715

Ak by sme d&isla n, f(n) zapisali v dvojkovej suastave, tak
nasa tabulka by vyzerala takto

n 110 11 100 101 110 111 1000 1001 1010 1011
fm) 1 111 1101 11 111 1 1001 101 1101

Vznika hypotéza, ze zéapis Cisla f(n) v dvojkovej ststave
vznikne zo zépisu Cisla n v dvojkovej ststave obritenim
poradia cifier (»¢itanim odzadu«). Ttto hypotézu dokéze-
me matematickou indukciou. Pre n = 1, n = 3 tvrdenie
plati. Nech tvrdenie plati pre vSetky n < z. Ukadzeme, ze
plati aj pre z.

Ak 7 = 2n, tak n, 2n, a f(n) majt podla indukéného pred-
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pokladu tvar uvedeny v tabulke. Potom f(2n) = f(n)

a pohlad do tabulky néds presved¢i, Ze tvrdenie plati.
Akt =4n + 1 tak n, 2n + 1, 4n + 1, f(n), f(2n + 1)

mozeme podla indukéného predpokladu vycitat z tabulky

af(dn + 1) = 2f(2n + 1) — f(n) = f(2n + 1) +
+ (f(2n + 1) — f(n)) = (10copcy ..

. Ck)z . b.t.d.

Ak r = 4n + 3 postupujeme podobne vyuzijuc rovnost
f(4n + 3) = 3f(2n + 1) — 2f(2n) = 2(f(2n + 1) — f(n))+
+ f(2n + 1)

Dokaz nasej hypotézy je skonCeny. Teraz uz vidime, zZe
f(n) = n ked Cislo n mé symetricky zépis v dvojkovej st-

Tabulka 1
i jeho zapis v dvojkovej sustave
Cislo 2k+2 2k+l Dk 2r-1 22 21 20
|
n Cx Ci—y 2] Ci co
2n + 1 Cic Ci—y  Cik-2 i co 1
2n Ckc k-1 Ck-2 ci co 0
an + 1 €k Ck-1 Ck-2 Ck-3 co 0 1
4n + 3 Cic Ci-1  Cr-2  Ck-3 co 1 1
f(n) co ct Ck—2  Ck-1 Ck
2n + 1) 1 co ct Ck—2 Ck-1 Ck
fen + 1) — fn) 1 0 0 o o0 0
2(fCn + 1) —
— f) 1 0 o0 o0 o 0 o
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4

stave. Podla predpokladu »n = 1988, teda n je nanajvys
11 ciferné &islo (v dvojkovej ststave). Nasledujuca tabulka
udéva polet p(k) symetrickych k-cifernych Cisel,

B 123 456 78 9 10 11
pB) 1 1 2 2 4 4 8 816 16 32

Co v sulte diva 94 symetrickych Cisel. AvSak 1988 =
(11111000100); a existuju len dve symetrické 11 ciferné Cis-
la prevySujuce 1988 a to (11111011111)2 a (11111111111)2,
takZe hladany pocet je 92.

70

k
Oznalme f(x) sucet z;——_—k Na obréazku 43 vidime na-
k=1
kresleny graf funkcie y = f(x). Je totiz jasné, Ze na kazdom
intervale (4, i + 1) ¢ = 1, 2, ..., 69 je funkcia f(x) ako
sulet klesajucich funkcii klesajuca. To samé plati pre inter-
valy (— 00, 1), (70, c0). Dalej vidime, Ze lim f(x) = — o0,

X—>1

lim f(x)= oo prei=1,2, ...,70 a ¢ lim f(x) =

x—>it X—— 0

x
»
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= lim f(x) = 0. Tieto fakty implikuju, Ze graf funkcie

X—> 0
v = f(x) je kvalitativne taky, ako je nakresleny na obrdzku
43.

Z obrazku vidime, Ze rieSenim nafej nerovnice bude

zjednotenie 70 disjunktnych intervalov tvaru (7, x;>, kde
70

k 5
x; je korefi rovnice Z e ke < W <L e o X0
o x— k 4
pre i =1, 2, ..., 70. To viak znamend e stlet dizok
70 70

tychto 70 intervalov S = > x; — > i. Upravujme nasu
k=1 i=1
rovnicu. Postupne dostdvame:

70
Zk(x—l)(x—2)...(x—70) B
x —Fk .

k=1
:—z—(x—l)(x—2)...(x—70)

(x—1D(x—2)...(x —170) —

70
4 k(x —1)(x—2)...(x —70)
——;5—;1 x—k =

teda rovnicu tvaru

x0 4+ agex% + ... + a0 =0

Zo stvisu medzi korefimi a Koeficientami normovaného
70

polynému vieme, ze > x; = —aeg. AvSak
k=1
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70 70
ARy
a, = — _ k = — -
69 5 5
k=1 k=1
lebo k-ty sCitanec v sume m4 keceficient pri x69 rovn}_"? k.

70 70 1 70
2
Pctom S = 2 xX; — Z 1= ?Z 7 =1988 ¢&.b:.t.-d.
i=1 i—1 i=1

5. Oznatme U resp. V stred kruZnice vpisanej trojuholﬁiku
ABD resp. trojuholniku ACD, Z resp. M bod dotyku
kruznice vpisanej trojaholniku ACD a strany 4AC resp.
AD. Dokaz spravime v troch krokoch: R

a) ukdzeme, ze A UDV ~ A BAC .
b) ukizeme, ze A AKL je rovncramenny a pravouhly.
c) ukdzeme, 7e |AL | = |AD)|

a) Nech r je polomer kruZnice vpisanej trojuholniku BAC
(obr. 44), r; trojuholniku ADC, rs trojuholniku 4ADB.
Z podobnosti trojuholnikov ABC, DAC, DBA vyplyva, ze
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AC] |4B| ~|DU| r}2 |4B

=r =~ re=r 54 teda =
IBC]> *""|BC| ~ IDV| )2 IAC|

n

o spolu s kolmostou stran UD, VD dokazuje, ze trojuhol-
nik UDV je podobny s trojuholnikom BAC.
b) V&imnime si $tvoruholnik CDUL. Z podobnosti

' AABC ~ A DUV vyplyva, 3¢ |« DUV| + |« BCA| =

6.

] 3
=7 ¢o spolu s faktom |« UDC| = Vi déva rovnost

3
|« ULC| = 2 teda trojuholnik KLA je rovnoramenny

T T
<lebo |<C KLA| = e |<t BAC| = 3)
¢)|ZL| = r1, lebo VZL je rovnoramenny trojuholnik. Po-
tom |AL| = |AZ| + r1 = |AM| + r1 = |4D|. Avak S =
1
= |AD|.|BC|, 2T = |AD|?. Pozadovana nerovnost je

potom ekvivalentnd s nerovnostou |BC| = 2|4D|, ktora
lahko nahliadneme, ak narysujeme T4lesovu kruZznicu nad
priemerom BC.

= ¢, g€ N. Potom

a? + b2 = qab + q ¢))

Dékaz urobime sporom. Ak tvrdenie neplati, tak existuja
celé kladné &isla a, b, g, ktoré spifajua (1) a navyse také,
ze g nie je §tvorcom prirodzeného Cisla. Spomedzi ta-
kychto trojic celych &isel, zvolme ta, v ktorej je & naj-
menSie (ak je takychto trojic viac, tak Iubovolnu z nich).
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Nech je to trojica ao, bo, go. Potom ¢ nie je Stvorec a zrej-
me ap = by > 0 (ina¢ by sme zamenili ao, bo resp. go = a(z,).
Dalej kvadratickd rovnica

x2 — gobox + b5 — g0 =0

ma podla (1) celo¢iselny koreil ag. Potom aj jej druhy ko-
refl @’ je celotiselny a otividne plati apa’ = by — go # 0,
teda

a =

bt b _ b
ap ap b()
Vzhladom k rovnosti apa” = gyb, je zrejme a” > 0.
Cisla a’, bo, qo tvoria tiez protipriklad a po zimene pre-

mennych a’, by dostdvame protipriklad, v ktorom je
b < by, €o je spor s predpokladom minimality bo.
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Celkové vysledky 29. MMO

!

Stat Potet 1.cena 2.cena 3.cena  Sudet
acast. bodov
Alzirsko 5 1 42
Argentina 3 23
Australia 6 1 1 100
Belgicko 6 76
Brazilia 6 39
Bulharsko 6 4 2 144
Cyprus 6 21
CSSR 6 2 2 120
Cina 6 2 4 201
Ekuador 1 1
Filipiny 5 29
Finsko 6 2 65
Francuzsko 6 1 1 3 128
Grécko 6 1 65
Holandsko 6 3 85
Indonézia 3 6
Irin 6 1 3 86
Irsko 6 30
Island 4 1 37
Izrael 6 1 4 115
Juznid Kérea 6 3 79
Kanada 6 1 1 2 124
Kolumbia 6 3 66
Kuba 6 35
Kuwait 6 23
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Stat Pocet l.cena 2.cena 3. cena Sucet
udast. bodov
Luxemburg 3 1 2 64
Madarsko 6 2 2 109
Maroko 6 2 62
Mexico 6 1 40
NDR 5 1 4 145
NSR 6 1 4 1 174
Noérsko 6 33
Novy Zéland 6 1 47
Peru 6 1 55
Polsko 3 1 54
Rakusko 6 1 1 1 110
Rumunsko 6 2 4 201
Hong Kong 6 2 68
Singapur 6 2 2 96
Spanielsko 6 34
Svédsko 6 1 4 115
Taliansko 4 1 44
Tunis 4 3 67
Turecko 6 2 65
USA 6 5 1 153
Velka Britania 6 3 2 121
Vietnam 6 1 4 166
Juhoslavia 6 4 92
ZSSR 6 4 2 217
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