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O prabéhu 39. rocniku matematické olympiady

Soutéz Matematicka olympiada poradaji pro zaky stred-
nich a zdkladnich skol ministerstvo skolstvi, mladeze a té-
lovychovy CR a ministerstvo skolstvi, mladeze a sportu SR
ve spolupraci s Jednotou ceskych matematiki a fyziki, Jed-
notou slovenskych matematiki a fyziki a Matematickym
astavem CSAV. Soutéz fidi tstiedni vybor matematické
olympiady (UV MO) prostfednictvim krajskych a okres-
nich vybori matematické olympiddy (KV MO, OV MO).
Cleny KV MO a OV MO jmenuji odbory $kolstvi kraj-
skych a okresnich narodnich vybord, éleny UV MO jme-
nuji MSMT CR a MSMS SR. Na zacatku skolniho roku
1989/90 uréilo ministerstvo skolstvi, mladeze a télovychovy
CR a ministerstvo skolstvi, mladeze a sportu SR na navrh
hlavnich vybord JCMF a JSMF toto slozeni UV MO na
dalsi pétileté obdobi:

Piedsednictvo UV MO
predseda: doc. RNDr. Leo Bocek, CSc., MFF UK, Praha
mistopfedsedové: prof. RNDr. Miroslav Fiedler,
élen korespondent CSAV, MU CSAV, Praha

doc. RNDr. Eva Gedeonovd, CSc.,

MFF UK, Bratislava
zéstupce MSMT CR: RNDr. Viclav Siila,
MSMT CR, Praha



zastupce MSMS SR: RNDr. Jén Lastivka,

MSMS SR, Bratislava

tajemnici: RNDr. Jiri Binder, CSc., PF UK, Praha
RNDr. Karel Hordk, CSc., MU CSAV, Praha

dalsi ¢lenové predsednictva

RNDr. Pavol Cernek, CSc., SF SVST, Bratislava

RNDr. Tomds Hecht, CSc., MFF UK, Bratislava

doc. RNDr. Jozef Hvorecky, CSc., MFF UK, Bratislava

doc. RNDr. Milan Koman, CSc., PF UK, Praha

PhDr. Helena Ladrovdi, MSMT CR, Praha

RNDr. Viadimir Repds, EF SVST, Bratislava

RNDr. Jiii Sedldéek, CSc., MU CSAV, Praha

Stanislav Rypdcek, gymnéazium, Praha 3

doc. RNDr. Bohuslav Siwdk, CSc., PF, Banska Bystrice

RNDr. Pavel Topfer, MFF UK, Praha

Dal3f &lenové UV MO

RNDr. Gabriela Andrejkovd, PTF UPJS, Kogice

RNDr. Andrej Blaho, MFF UK, Bratislava

RNDr. Lubos Brim, CSc., PiF MU, Brno

RNDr. Viado Burjan, CSc., gymnazium A. Markusa,

Bratislava

PhDr. Ivan BuSek, Ped. Gistav hl. m. Prahy, Praha

RNDr. Milan Cirjak, Krajsky ped. Gstav, Presov

RNDr. Viadimir Dfizal, PF UK, Praha

RNDr. Libuse Hozovd, ZS, Lid. milici, Opava

RNDr. Libor Jelinek, gymndazium, Pardubice

RNDr. Jan Kratochvil, CSc., MFF UK, Praha

doc. PhDr. Karol Krizalkovi¢, CSc., PF, Nitra

Olga Mafikovd, Nar. vybor hl. m. Prahy, Praha

Vlasta Michdlkovd, UDPM KG, Bratislava



RNDr. Oliver Ralik, PF, Nitra
RNDr. Jaromir Simsa, CSc., MU CSAV, Brno
Ing. Oldfich Skopal, gymnazium, Brno :
RNDr. Jaroslav Svréek, CSc., PiF UP, Olomouc
RNDr. Ladislav Topolsky, gymnazium, Banska Bystrica
RNDr. Jiti Vindrek, CSc., MFF UK, Praha
PhDr. Marta Volfovd, CSc., PF, Hradec Kralové
Jana ZuZicovd, ZS, Bratislava
Cleny UV MO jsou také pfedsedové KV MO
prof. RNDr. Karel Drbohlav, DrSc., MFF UK, Praha
Frantisek Sturc, gymnazium, Benesov
RNDr. Pavel Pech, PF, Ceské Budéjovice
doc. RNDr. Josef Poldk, CSc., VSSE, Plzei
doc. RNDr. Miroslav Bélik, CSc., PF, Usti n. Lab.
RNDr. Josef Kubdt, gymnéazium, Pardubice
doc. RNDr. Jaroslav Bayer, CSc., EF VUT, Brno
RNDr. Vladimir Vicek, CSc., PfF UP, Olomouc
doc. dr. Ladislav Misik, DrSc., Bratislava
prof. RNDr. Ondrej Sedivy, CSc., PF, Nitra
doc. RNDr. Vojtech Bdlint, CSc., VSDS Zilina
RNDr. Boiena Mihalikovd, CSc., PiF UPJS, Kosice

V pribéhu 39.roéniku MO se konala dvé zasedani 1A%
MO, prvni ve dnech 11.-12. prosince 1989 v Praze, druhé
24.-25.4.1990 v Jihlavé pfi celostatnim kole MO. Hlavnim
bodem obou zasedani bylo hodnoceni priibéhu soutéze, za-
bezpecéeni celostatnich soustfedéni Gspésnych fesiteldi MO
véetné soustfedéni pro pfipravu na MMO, korespondenc-
ni seminaf UV MO a organizace dalich kol soutéze. Byla
projednévéana téz ediéni &innost UV MO, predeviim pfipra-
va dalsich svazkii edice Skola mladych matematikii. Byla
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diskutovana vhodnost vybéru tloh MO. Pracovni predsed-
nictvo se schazelo jednou mési¢né a zabyvalo se hlavné vy-
bérem uloh pro vSechna kola soutéze.

V organizaci MO nedoslo k zddnym zménam. Kategorie A
byla urcena zdkim 3. a 4. roéniki stfednich skol, kategorie
B byla pro zaky 2. roéniki a v kategorii C soutézili zaci
1. ro¢nikia. Pro zaky vSech tfid stfednich skol byla urcena
jesté kategorie P, zaméfend na lohy z programovani a ma-
tematické informatiky.

V kategoriich A, B, C ma I. kolo dvé ¢asti. V prvni ¢asti
fesi soutézici 6 Gloh doma nebo v matematickych krouzcich
a mohou se pri tom radit se svymi uéiteli, vedoucimi krouz-
ki apod. Druhd ¢dst ma formu klauzurni prace, v niz resi
zaci tfi tlohy v omezeném case 4 hodin.

V kategoriich A a P se kona jesté tteti, celostatni kolo.
V ném je vlastni soutéz rozdélena do dvou dni. V kate-
goril A Fesi soutézici kazdy den tfi Glohy v ¢asovém limi-
tu ctyfi hodiny, v kategorii P ve stejném limitu vzdy dvé
alohy. Organizaci celostdtniho kola byl ministerstvem skol-
stvi, mladeze a télovychovy CR povéfen Jihomoravsky kraj.
Uskute¢nilo se v Jihlavé ve dnech 23.-25.4.1990 (kat. A)
a 26.-28.4. 1990 (kat. P). Soutéze vcetné pékného doprovod-
ného programu zabezpecoval tym zkusenych organizatoru
pod vedenim profesora Jana Benese z jihlavského gymna-
zia.

Vybrané druzstvo se zi¢astnilo Mezinarodni matematic-
ké olympiady i mezinarodni soutéze v programovani. Témto
soutézim je vénovana samostatna kapitola v zavéru brozury.

Hlavni napln nésledujicich kapitol tvori texty tloh vsech
kategorii véetné jejich FeSeni. Kazd4 aloha je oznacena kate-



gorii, fimskou ¢islici udavajici kolo nebo pismenem S, které
znadi skolni, klauzurni ¢ast I. kola, a ¢islem alohy.

Nyni uvadime prehled akci porddanych pro zaky v pra-
béhu skolniho roku v jednotlivych krajich a akci organizo-
vanych UV MO.

Praha. Pro fesitele MO v jednotlivych kategoriich byly
uspofddany instruktdze (pro kategorie A, B a C celkem
16-20 hodin, pro kategorie P 8 hodin), s primérnou tcas-
ti 25-35 zaki. Pro 32 fesiteld korespondencéniho seminére
a MO se v Gnoru konalo tfidenni soustfedéni. Soustfedéni
pro fesitele kategorii B a C probéhlo v Cervnu, trvalo 5 dni
a zGcastnilo se ho 33 zaku.

Stredocesky kraj. Tydenni soustfedéni pro 40 zakd 1. az
3. rocniku se konalo v zafi. V éervnu se uskuteénilo kraj-
ské soustfedéni zadku 8. tfid jako pfiprava na kategorii C.
Byly provedeny instruktaze uditeld k tGloham I. kola. Pro
zaky, tesitele iloh MO, probéhly instruktdze na vybranych
gymnaziich.

Jihocesky kraj. Letni skola pro Gspésné fesitele jednotli-
vych kategorii MO se konala v Cervnu, trvala jeden tyden
a zucastnilo se ji 25 Fesiteld kategorie A, 25 v kategorii B
a 50 fesitelu kategorie C. Déle byly usporddany instruk-
taze pro ulitele stfednich kol (celkem 3 dny), prednéasky
pro fesitele MO na Pedagogické fakulté v Ceskych Budé&jo-
vicich a dvoudenni soustfedéni fesitelt kategorie A. Kores-
pondencni seminaf mél tfi série aloh.

Zdpadocesky kraj. V Plzni, Klatovech a Karlovych Varech
se konalo vzdy po dvou prednéaskach k Gloham jednotlivych

9



kategorii. Ulohy korespondencniho seminéfe pro kategorii
A fesilo 46 zaku, pro kategorie B a C 62 zaka.

Severocesky kraj. V ervnu probéhlo v Krupce soustredé-
ni pro 51 fesiteld kategorii A, B a C. V Liberci byly pofa-
dany seminare pro fesitele MO.

Jihomoravsky kraj. V Brné, v Jihlavé a ve Zliné se konaly
pro fesitele loh MO seminéfe, zvlast pro kazdou kategorii
s pramérnou Gcasti 20 zakd. Jednou tydné se poradal semi-
nar pro zaky z tfidy zaméfené na matematiku na gymnaziu
v Brné, ti. kpt. Jarose. Pro 15 vybranych fesiteld kategorie
A probihal v bfeznu a dubnu seminaf zaméreny na pfipra-
vu na celostatni kolo MO. Tydenni soustfedéni Gspésnych
fesiteli kategorie B a C probéhlo v Ivanéicich v éervnu.
Zucastnilo se ho celkem 60 zaku.

Severomoravsky kraj. V zafi probéhly instruktaze referen-
td MO, zacastnilo se 39 uciteli. Na sobotnich besedach MO
byla primérna tcast 32 zakd. Na gymnaziu M. Kopernika
v Bilovci se konaly jednou tydné seminéafe pro fesitele MO
(26 Gcastnikt). Korespondenéni seminéf pro kategorie A, B,
C (3 série tuloh) fesilo celkem 260 acastnikd. Seminaf byl
doplnén dvéma tydennimi soustfedénimi v inoru a v dubnu.
V Zervnu se konalo pro 40 Gspésnych fesiteld MO desetiden-
ni soustfedéni. V Cervnu téz probéhlo tfidenni soustfedéni
zaku 3. ro¢niku tfid gymnazii se zamérenim na matematiku
(30 Gcastniki).

Bratislava. Pro fesitele MO byly pro kazdou kategorii
usporadany instruktdze. Dale probihal korespondenéni se-
minaf doplnény soustfedénim.
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Zdpadoslovensky kraj. Instruktazi uciteld a vedoucich
krouzki MO (pro kategorie A, B, C i P) se ztcastnilo 60
uciteld. Soustfedéni Gspésnych fesiteli MO kategorii B a C
bylo tydenni a zGcastnilo se ho 40 zakt. V korespondenénim
seminafi fesilo 72 zakt Glohy péti sérii, z toho 18 nejlepsich
bylo pozvano na c¢tyfdenni soustfedéni.

Stredoslovensky kraj. V tijnu probéhly instruktaze pro
ucitele. Krajsky korespondencni seminar pro kategorii A
a kategorie B, C mél 2 série a byl doplnén soustfedénim.
Koresponden¢ni seminaf byl organizovan téz pro zaky stied-
nich odbornych ucilist. Soustfedéni pro Gspésné fesitele MO
probéhlo v zafi v Terchové.

Vichodoslovensky kraj. Pro kazdou kategorii se uskuteé-
nily samostatné instruktaze referenti MO. V kraji probiha-
ly korespondenéni seminafe doplnéné dvéma soustiedénimi
(z4F a Gnor). V Kosicich a Presové byly organizoviny ma-
tematické krouzky pro fesitele aloh kategorie A. Krouzky
nav§tévovalo primeérné 15 Gcastniki. Pii KDPM v Kosi-
cich fungoval Klub mladych matematiki. Schézel se jednou
tydné a navstévovalo ho 15-20 zaku.

Ustiedni vybor MO. Ustfedn{ vybor MO zajistoval tfi ce-
lostatni soustfedéni. Pro zaky nematurujicich ro¢niki to
bylo jiz tradi¢ni soustfedéni 80 resiteld uloh MO a FO.
Probéhlo ve dnech 11.-22.6.1990 v Jevicku. Dalsi dvé sou-
stfedéni byla vénovana pripravé ceskoslovenského druzstva
na Mezinarodni matematickou olympiddu. Prvni se konalo
28.3.-5.4.1990 v Modré u Bratislavy (12 G¢astniki), druhé
18.-28.6.1990 v Pardubicich (8 Gcastniki). UV MO téz za-
jistoval celostatni korespondenéni seminaf (seminafi je vé-
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novéna samostatna ¢ast této brozury). V edici Skola mla-
dych matematikii vydaval UV MO v nakladatelstvi Mlad4
fronta matematické brozury pro zaky. V priibéhu 39. roéni-
ku uz zadny novy svazek nevysel, nevysla ani zadn4 reedice
starsich titula.
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Vysledky celostatniho kola 39. roéniku MO
kategorie A

Vitézové

. Michal Konecny, 3M, tf. kpt. JaroSe, Brno

. Stépdn Kasal, 3M, Korunni, Praha 2

. Ondrej Such, 4M, G A. Markusa, Bratislava
. Martin Dindos, 4AMF, G J. Hronca, Bratislava
. Viliam Bur, 1M, G A. Markusa, Bratislava

. Pavol Severa, 4M, G A. Markusa, Bratislava
. Michal Stehlik, 2M, t¥. kpt. JaroSe, Brno

. Michal Kubecek, 2M, Korunni, Praha 2

. Petr Hlinény, 4M, G M. Kopernika, Bilovec
. Vladimir Spitdlsky, 3M, GAM, Bratislava

. Vladimir Skalsky, 4, T. Sevéenka, Presov

. Ales Kubéna, 3M, G M. Kopernika, Bilovec
. Petr Mourek, 3M, Korunni, Praha 2

. Ondrej Kalenda, 4M, Korunni, Praha 2

. Zdenék Pezlar, 3M, ti. kpt. Jarose, Brno

. Jan Bajcsy, 4M, G A. Markusa, Bratislava

. Pavol Mederly, 2M, GAM, Bratislava

. Jan Koldr, 3M, Korunni, Praha 2

. Vladimir Chvdtil, AMF, Videnska, Brno

. Milos Volauf, 1M, GAM, Bratislava

39b.
39b.
38b.
36b.
36b.
35b.
35b.
35b.
35b.
30b.
30b.
30b.
28b.
28b.
27b.
26b.
25b.
25b.
25b.
22b.
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Dalsi 1ispésni fesitelé

21.-23. Milan Ptedota, 4M, Jirovcova, C. Bud&jovice 21b.
21.-23. Antonin Janéarik, 3M, Korunni, Praha 2 21b.

21.-23. Jan Hannig, 3M, Korunni, Praha 2 21b.
24.-29. Jan Vecler, 4M, Korunni, Praha 2 20b.
24.-29. Petr Tobiska, 3M, G J. K. Tyla, Hr. Kralové 20b.
24.-29. Vladimir Solc, 4MF, Beroun 20b.
24.-29. Richard Kollir, 2M, GAM, Bratislava 20b.
24.-29. Vladimir Glasndk, 3MF, V. Okruzn4, Zilina 20b.
24.-29. Martin Cizek, 4, Roznov p. Radhostem 20b.

30. Karel Janecek, 3M, Korunni, Praha 2 19b.

31. Jaroslav Sprongl, 3M, Korunni, Praha 2 18b.
32.-33. Boris Stitnicky, 2M, GAM, Bratislava 16 b.
32.-33. Martin Bures, 4M, G J. Fuéika, Plzen 16 b.
34.-35. Petr Toman, 4M, Korunni, Praha 2 15b.
34.-35. Jiri Kalvoda, 3M, tf. kpt. JaroSe, Brno 15b.

36. Jan Vomlel 4M, G J. K. Tyla, Hr. Kralové  14b.

37. Jan Mutl 2M, ti. kpt. JaroSe, Brno 13b.
38.-40. Simon Malyj, 3MF, Zdiar n. Hronom 12b.
38.-40. Pavel Hordk, AMF, Zlin 12b.
38.-40. Jiri Hanika, 1M, Korunni, Praha 2 12b.

U tfid se zaméfenim studijniho oboru 01 Matematika je
za roénikem oznaéeni M, u zZaki z tfid se zaméfenim studij-
niho oboru 02 Matematika a fyzika je za ro¢nikem oznaleni
MF. Vsichni Gspésni feSitelé byli Zaci gymnazia.
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Potadi ispésnyjch resiteli z trid,
které nejsou se zamérenim studijniho oboru 01 Matematika

1. Martin Dindos, AMF, G J. Hronca, Bratislava 36 b.

2. Viadimir Skalsky, 4, T. Sevenka, Presov 30b.

3. Vladimir Chvdtil, AMF, Videnska, Brno 25b.
4.-6. Vladimir Solc, 4AMF, Beroun 20b.
Vladimir Glasndk, 3MF, V. Okruzna, Zilina 20b.
Martin Cizek, 4, Roinov p. Radhostem 20b.
7.-8. Simon Maly, 3MF, Ziar n. Hronom 12b.
Pavel Hordk, AMF, Zlin 12b.

U tfid se zaméfenim studijniho oboru 02 Matematika
a fyzika je za roénikem oznaleni MF. Vsichni Gspésni fe-
sitelé byli Zaci gymnézia.
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Vysledkova listina celostatniho kola 39. roéniku MO

13.
14.-15.

16.-19.

20

kategorie P

Vitézové

. Igor Maly, 3SMF, GJH, Bratislava
. Stépdn Kasal, 3M, Korunni, Praha
. Radek Ktiwvdnek, 4MF, Videnska, Brno

Martin Cizek, 4, Roznov p.- Radhostém

. Martin Ondrusek, IMF, GJH, Bratislava
. Jan Machdcek, 4M, Korunni, Praha

Dawid Krdsensky, 4M, tt. kpt. Jarose, Brno

. Herbert Vojcik, 2M, Smeralova, Kosice

Vladimir Solc, AMF, Beroun

Radek Maric, 3M, GMK, Bilovec

Martin Matas, 7. t¥., ZS, Na utce, Praha
Jan Kasprzak, 3M, tf. kpt. Jarose, Brno

Dalsi 1ispésni resitelé
Tomds Dolezal, AM, Partyzéanska, Liberec

Viadimir Skalsky, 4, T. Sevéenka, Presov
Zdenék Pezlar, 3M, tf. kpt. Jarose, Brno

Martin Vojtko, 3MF, G J. Hronca, Bratislava

Petr Hinény, 4M, GMK, Bilovec
Martin Dindos, 4M, G J. Hronca, Bratislava

31b.
29b.
25b.
25b.
24b.
23b.
23b.
22b.
22b.
22b.
22b.
22b.

21b.
20b.
20b.
19b.
19b.
19b.



Radovan Brecka, 2, Snina 19b.
20.-23. Ondrej Such, 4M, G A. Markusa, Bratislava 18b.
Jaroslav Sprongl, 3M, Korunni, Praha 18 b.
Peter Haluska, 4M, Smeralova, Kosice 18b.
Jakub Cermdk, 4M, Jirovcova, C. Budégjovice 18b.

U tfid se zaméfenim studijniho oboru 01 Matematika je
za ro¢nikem oznacdeni M, u zaki z tfid se zamérenim studij-
niho oboru 02 Matematika a fyzika je za rocnikem oznaceni
MF. Vsichni Gspésni fesitelé byli zaci gymnazia.
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Nejuspésnéjsi resitelé II. kola MO
v kategoriich A, B,Ca P

Z kazdého kraje a z kazdé kategorie je uvedeno nejvyse
prvnich deset fesiteld. Pokud neni uvedena skola, byl fesi-
tel zadkem gymnazia. Oznaceni G znamena gymnazium, M,
resp. MF zaméfeni studijniho oboru 01 Matematika, resp.
02 Matematika a fyzika.

Praha
Kategorie A

1.-4. Michal Kubecek, 2M, Korunni
Antonin Jancatik, 3M, Korunni
Stépdn Kasal, 3M, Korunni
Petr Toman, 4M, Korunni

5.-6. Jan Koldr, 3M, Korunni
Ondrej Kalenda, 4M, Korunni

7. Michal Maruska, 4, Na vitézné plani
8.-10. Jiri Hantka, 1M, Korunni
Petr Mourek, 3M, Korunni
Jan Hannig, 3M, Korunni

22



Kategorie B

. Petr Novotny, 2M, Korunni
. Michal Kubecek, 2M, Korunni
. Petra Bidlasovd, 2M, Korunni
. Igor Gottwald, 2M, Korunni
Michal Kabdt, 2M, Korunni
Frantisek Veselyj, 2M, Korunni
Jan Matousek, 2M, Korunni
Petr Kardas, 2MF, Sladkovského
J. Leps, 2, Na vitézné plani
Tomds$ Pardubicky, 2MF, Vodéradska

O W N =

Kategorie C

1.-9. Petr Zvdra, 1M, Korunni
Jakub Addmek, 1M, Korunni
Tomds Dusek, 1M, Korunni
Milan Kratochvil, 1M, Korunni
Jiri Ndprstek, 1M, Korunni
Vit Novdk, 1M, Korunni
Jan Tichy, 1M, Korunni
Jiri Vanicek, 1M, Korunni
Pavel Kos, IMF, Vodéradska

10.-12. Pavel Kraemer, 8. ti., ZS, Na dlouhém lanu

Petr Smolik, 1IMF, Sladkovského
Ondrej Porddek, 1M, Korunni
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Kategorie P

. S‘te’pdn Kasal, 3M, Korunni
. Michal Kubecek, 2M, Korunni

Jaroslav Sprongl, 3M, Korunni

. Jan Hannig, 3M, Korunni

. Jan Milota, 4M, Korunni

. Petr Novotng, 2M, Korunni
. Jan Machdcek, 4M, Korunni

Martin Mares, 7. ti., ZS, Na Sutce

. Jan Various, 4, Pfipoto¢ni
. Michal Maruska, 4, Na vitézné plani

Stredocesky kraj

Kategorie A

. Vladimir Solc, AMF, Beroun

. Tomds Pracka, 3, Ricany

. Josef Soukal, 3SMF, Mlad4 Boleslav

. Martin Vysohlid, AMF, Mlada Boleslav

Ondrej Cinek, AMF, Mlada Boleslav

. Petr Hantych, 4, Kralupy nad Vltavou

Jan Némec, 3, Nymburk

. Tomds Vrbata, 3MF, Kladno

Jan Brychta, 4AMF, Kolin



10.-11.

W N

Kategorie B

. Dusan Janovsky, 2, Slany

. Tomds Némec, 2MF, Beroun

. ‘Adrian Tréka, 2MF, Beroun

. Vladimir Tuéan, 2MF, Kladno

Pavel Tolar, 2, Ritany

. Karel Kvapil, 2, Caslav

Lenka Marsikovd, 2, Ricany

Kategorie C

. Viktor Elsik, 1, Kralupy
. Karel Duda, 1IMF, Kladno

Vladimir Masin, 1, Podébrady

. Martin Janecek, 1MF, Mlad4a Boleslav
. Milos Mojzis, 1, Slany
. Petr Knize, IMF, Kladno

Jan Zdk, 1, Nymburk

. Jan Bldha, IMF, Beroun

Dagmar Pavlistovd, 1MF, Mlada Boleslav
Helena Dvordkovd, IMF, Mlada Boleslav
Bohdan Spaéek, IMF, Kutna Hora

Kategorie P

. Vladimir Solc, 4AMF, Beroun

. Jan Tolar, 3, Ritany

. Martin Helmich, 2MF, Mlada Boleslav
. Ivan Zuéenko, 2MF, Mlad4 Boleslav
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1.-2.

3.-4.

. Stanislav Hecht, 3, Rakovnik

. Jan Bliha, IMF, Beroun

. Vlastimil Juricek, 2MF, Mlad4 Boleslav
. Pavel Klobdsa, 4, SPS, Kutna Hora

. Marcel Vorlicek, AMF, Beroun

JihoCesky kraj

Kategorie A

Jan Machdéek, 4, Pelhfimov

Milan Predota, 4, Jirovcova, Ceské Bud&jovice
Jan Baldk, 4, Jirovcova, Ceské Budéjovice
Milan Simdnek, 3SMF, Pelhfimov

. Stanislav Havelka, 4, G K. Satala, Ceské Bud&jovice
. Martin Rehout, 4, Jirovcova, Ceské Bud&jovice

Michael Schenk, 2M, Jirovcova, Ceské Budé&jovice

. Karel Netoéng, 3, Jirovcova, Ceské Bud&jovice
. Jiri Fontdn, 3M, Jirovcova, Ceské Budéjovice
. Martin Duspiva, 3, G K. Satala, Ceské Bud&jovice

Jan Januska, 3, SPS, Pisek
Josef Silha, 3, Tabor

Kategorie B

. Michael Schenk, 2M, Jirovcova, Ceské Bud&jovice
. Dalibor Jelinek, 2, G K. Satala, Ceské Budé&jovice

Petr Machdcek, 2, Pelhfimov

. Ladislav Nagy, 2, Jirovcova, Ceské Bud&jovice
. Tomds Kimmer, 2, Pelhfimov



8.-9.

8.-10.

O O W W N =

9.-10.

Jan Lepi¢, 2, Jirovcova, Ceské Budéjovice

Radim Skalicky, 2, Tabor

Libor Dusek, 2, Jindfichuv Hradec

Monika Mertenovd, 2, Jirovcova, Ceské Bud&jovice

Kategorie C

. Vit Pekdrek, 1, Jindfichiv Hradec

Daniel Prisa, 1, Tabor
Milos Beran, IMF, Pelhfimov
Vojtéch Franék, 1M, Jirovcova, Ceské Budéjovice

. Jana Holzlovd, 1M, Jirovcova, Ceské Budéjovice

Pavel Jarus, 1M, Jirovcova, Ceské Bud&jovice
Petra Miksovd, 1M, Jirovcova, Ceské Budéjovice
Oleg Hanzal, 1, Dacice

Pavel Fort, IM, Jirovcova, Ceské Budéjovice
Ludék Hajicek, 1M, Jirovcova, Ceské Bud&jovice

Kategorie P

. Jakub Cermdk, Jirovcova, Ceské Bud&jovice

. Jan Machdcek, Pelhfimov

. Stanislav Havelka, G K. Satala, Ceské Bud&jovice
. Milan Predota, Jirovcova, Ceské Budé&jovice

. Petr Machdcek, Pelhfimov

. Martin Duspiva, G K. Satala, Ceské Bud&jovice

Ludék Lastovka, G K. Satala, Ceské Budéjovice
Richard Vik, Pelhfimov

Anna Matasovd, Humpolec

Milan Simdnek, Pelhfimov
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Zapadocesky kraj

Kategorie A

. Martin Bures, 4M, G1, Plzen

. Alan Svoboda, 4M, G1, Plzen

. Jan Nepras, 4M, G1, Plzen

. Tomds Kadlec, 3M, G1, Plzen

. Martin Handk, 4AMF, Klatovy

. Martin Kraus, 4MF, Karlovy Vary

Martin Cihdk, 3MF, Karlovy Vary
Karel Soukenik, 4AM, G1, Plzen
Martin Muller, 4M, G1, Plzen

Kategorie B

. Jan Kotas, 2M, G1, Plzen

. Milan Stétina, 2M, G1, Plzeii
. Jan Smolik, 2M, G1, Plzen

. Miroslav Cernyj, 2MF, Karlovy Vary

Martin Marz, 2MF, Cheb

. Petr Hamernik, 2M, G1, Plzen
. Jan Sembera, 2M, G1, Plzeii

Martin Kohout, 2M, G1, Plzen
Jan Klicka, 2M, G1, Plzen
Bohumal Novdcek, 2M, G1, Plzen
Daniel Hordk, 2M, G1, Plzen
Jan Kunes, 2MF, G2, Plzen
Lubos Motl 2MF, G2, Plzen
Vidclav Novdcek, 2MF, Klatovy



Martin Jezek, 2MF, Cheb

Kategorie C

. Helena Nyklovd, IMF, Karlovy Vary
. Jiti Cerng, 1M, G1, Plzeii

Roman Knize, IMF, Cheb

. Miroslav Skala, IMF, G2, Plzen

Jitka Drdbkovd, 1M, G1 Plzen

. Romana Lavickovd, 1M, G1, Plzen

. Ivana Janovd, IMF, G3, Plzen

. Vladimir Menol, IMF, Karlovy Vary
. Daniel Némecek, IMF, G2, Plzen

. Pavel Wunsch, 1, Rokycany

Jan Krapd¢, 1, Ostrov
Lenka Syrovdtkovd, IMF, Cheb
Tomds Kubr, IMF, G2, Plzen

Kategorie P

. Martin Bures, 4M, GJF, Plzen

. Jan Strunc, 4M, GJF, Plzeii

. Jirt Urban, 2MF, Karlovy Vary

. Jan Kotas, 4M, GJF, Plzen

. Martin Cernyj, 4AMF, Karlovy Vary

Ludék Kovdr, 4M, GJF, Plzen

. Dagmar Novdkovd, 4AMF, Cheb
. Alan Svoboda, 4M, GJF, Plzen
. Martin Pittermann, 4M, GJF, Plzen
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1.-2.

Severodesky kraj

Kategorie A

. Radek Skoda, 3M, Partyzanska, Liberec

. Jiri Fiala, 3M, Partyzanska, Liberec

. Jaromir Os¢ddal, 3, SPSE, Liberec

. Ladislav Subr, 4M, Partyzanska, Liberec

. Ladislav Simek, 3MF, Jateéni, Usti nad Lab.

Dalimil Kol¢aba, 3M, Partyzanska, Liberec

. Stanislav Dunaj, 3MF, Jateéni, Usti nad Lab.

Katetina Jdgrovd, 4M, Partyzanska, Liberec

. Pavel Simek, 4M, Partyzanska, Liberec

Kategorie B

. Tomds Zellerin, 2MF, Jatetni, Usti nad Lab.
. Ales Bednarik, 2M, Partyzanska, Liberec

. Petr Jiti¢ka, 2M, Partyzéinska, Liberec

. Bohumil Cimbdl, 2M, Partyzanska, Liberec

Hans Ginzel, 2M, Partyzanska, Liberec
Daniel Mordvek, 2M, Partyzanska, Liberec
Silvie Tvrdd, 2, Chomutov

. Jindfich Pluhat, 2M, Partyzanska, Liberec
. Jana Pernd, 2, Frydlant

Kategorie C

Daniel Havelka, 1M, Partyzanska, Liberec
Martin Kacer, 1M, Partyzanska, Liberec
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Tomds Marek, 1M, Partyzanska, Liberec

. Jiri Lahvicka, 1M, Partyzanska, Liberec

Michal Gust, 1, SPS, Chomutov

. Martin Jares, IMF, Jatecni, Ust{ nad Lab.
Pavel Kodyjtek, IMF, Jateéni, Usti nad Lab.

Sylva Rydvalovd, 1MF, Teplice
Libor Fidler, 1M, Partyzanska, Liberec
Petr Skoda, 1M, Partyzénské, Liberec

Kategorie P

. Karel Egem, 4, LitoméFice

. Tomds Dolezal, 4M, Liberec

. Vladimir Soukal, 4MF, Usti nad Labem
. Jiri Hoblik, 4, Liberec

. Martin Cmucha#, 3MF, Usti nad Labem

Milan Kocian, SMF, Usti nad Labem
Karel Nechvile, 4AMF, Usti nad Labem

. Jaromir Kohout, 2, Zatec
. Vojtéch Dohnal, 1, Liberec

Vychodocesky kraj

Kategorie A

. Petr Tobiska, 3M, GJKT, Hradec Kralové

2. Pavel Cizek, 3M, GJKT, Hradec Kralové

. Jan Vomlel 4M, GJKT, Hradec Kralové

. Antonin NebuZelsky, IMF, Jate¢ni, Usti nad Lab.
. Michal Nesvara, IMF, Partyzanska, Liberec
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. Lenka Eslerovd, 3, SPSE, Pardubice
. Jirt Hordk, 3, Pardubice

. Tomds Pospichal, SMF, Pardubice

. Petr Ledvina, 3MF, Pardubice

Kategorie B

. Martin Dvordk, 2MF, Pardubice

. Jarmil Skop, 2MF, Pospichalova, Hradec Kralové

. Jaroslav Vdvra, 2MF, Pardubice

. Bohumila Pisovd, 2MF, Pardubice

. Filip Ldznicéek, 2MF, Pospichalova, Hradec Kralové
. Jiri Kratochvil, 2M, GJKT, Hradec Kralové

Kategorie C

. Josef Durech, IMF, Pardubice
. Michal Sorel, IMF, Pardubice
. Jan Zeithaml, 1IMF, Pardubice

Jan K7iZ, IMF, Pardubice
Michal Docekal, 1MF, Pardubice

. Rudolf Cejka, 1M, GJKT, Hradec Kralové

Petr Plasil, IMF, Pardubice

. Tomds Kokoska, IMF, Trutnov
. Rudolf Vagenknecht, IMF, Trutnov
. Petr Gregor, 1, Chotébor

Kategorie P

. Martin Horky, 4, Pardubice



1.-2.

3.-5.

10.-11.

. Petr Blumel, 3, Pardubice
. Petr Tobiska, 4M, GJKT, Hradec Kralové

Jihomoravsky kraj

Kategorie A

Vladimir Chvdtil 4MF, Videnska, Brno
Zdenék Pezlar, 3M, tf. kpt. Jarose, Brno
Michal Koneény, 3M, tf. kpt. Jarose, Brno
Michal Stehlik, 2M, tf. kpt. Jarose, Brno
Milan Zamazal, 3M, tf. kpt. Jarose, Brno

. Jan Velesik, 4P, Videnska, Brno
. Radim Ktwdnek, 4AMF, Videnska, Brno

Jan Mutl, 2M, tf. kpt. Jarose, Brno

Josef Pojsl, 4M, tf. kpt. Jarose, Brno

Filip Munz, 2M, tf. kpt. Jarose, Brno

Jana Syrovdtkovd, 1M, tf. kpt. JaroSe, Brno

Kategorie B

. Pavel Vrbacky, 2M, t¥. kpt. Jarose, Brno
. Jan Mutl, 2M, tf. kpt. Jarose, Brno
. Michal Stehlik, 2M, tf. kpt. Jarose, Brno

Pavel Rizicka, 2M, tf. kpt. Jarose, Brno

. Milos Dvotdk, 2M, tf. kpt. Jarose, Brno
. Jiri Fuchs, 2M, tf. kpt. Jarose, Brno

Josef Mensik, 2M, ti. kpt. Jarose, Brno
Filip Munz, 2M, tf. kpt. Jarose, Brno

. Jan Pazdziora, 2M, tt. kpt. Jarose, Brno

33



10.

1.-2.

3.-5.
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8.-12.

34

Petr Ptdcnik, 2, Prostéjov
Kategorie C

Viclav Kominek, 1M, ti. kpt. Jarose, Brno
Jana Syrovdtkovd, 1M, tf. kpt. Jarose, Brno
Pavel Filipensky, 1, Kyjov

Petr Konecny, 1M, tf. kpt. Jarose, Brno
Markéta Trefilovd, 1M, tf. kpt. Jarose, Brno

. David Kruml, 1M, tf. kpt. Jarose, Brno

Jaroslav Ktivdnek, 1M, tf. kpt. Jarose, Brno
Pavel Matula, 1M, tf. kpt. Jarose, Brno
Zdenék Spacek, 1M, ti. kpt. Jarose, Brno
Petr Spatka, 1M, ti. kpt. Jarose, Brno

Kategorie P

. David Krdsensky, 4, tf. kpt. Jarose, Brno
. Zdenék Pezlar, 3, tf. kpt. JaroSe, Brno

. Jan Kasprzak, 3, tf. kpt. Jarose, Brno

. Radim Gottwald, 4, Kyjov

. Vladimir Chvdtil, 4, Videnska, Brno

. Petr Dobids, 3, Zd4r nad Sazavou

Radim Ktivdnek, 4, Videnska, Brno
Dusan Dobes, 4, Boskovice

Zdenék Hldvka, 4, Jihlava

Miroslav Kovdr, 2, Videnska, Brno
Jan Pavelka, 3, tf, kpt. JaroSe, Brno
Zdenék Salvet, 4, Uhersky Brod



Severomoravsky kraj

Kategorie A

. Petr Hiinény, 4AM, G M. Kopernika, Bilovec

Ales Kubéna, 3M, G M. Kopernika, Bilovec

. Martin Cizek, 4, Roznov p. Radhostém
. Oldfich Dosedél, 3M, G M. Kopernika, Bilovec

Radim Kubacki, 3M, G M. Kopernika, Bilovec

. Michal Sevcik, 3M, Jifiho z Podébrad, Olomouc
. Lumir Budinsky, AMF, Komenského, Havifov
. Mario Bohdé¢, 3M, G M. Kopernika, Bilovec

Robert Wadura, 3M, G M. Kopernika, Bilovec

Kategorie B

. Marek Blahuta, 2M, G M. Kopernika, Bilovec
. Jiri Tengler, 2M, G M. Kopernika, Bilovec

Pavel Vicenik, 2, SPSE, Bozetéchova, Olomouc

. Roman Solich, 2M, G M. Kopernika, Bilovec

Martin Masdr, 2M, G M. Kopernika, Bilovec

. Tomads Fojta, 2M, G M. Kopernika, Bilovec

Lukds Abram, 2M, G M. Kopernika, Bilovec
Roman Koch, 2M, G M. Kopernika, Bilovec
Alezander Kupco, 2M, G M. Kopernika, Bilovec
Petra Coufalikovd, 2, Komenského, Tfinec
Pavel Vaviik, 2MF, G CSLA, Frydek-Mistek
Richard Mensik, 2MF, G CSLA, Frydek-Mistek
Romana Kozlovd, 2, Novy Ji¢in

Machal Popule, 2, Ostrava-Zabtieh
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8.-10.

36

1.-

7.

Ludmila Novotnd, 2, Ostrava-Zabieh
Irena Jezkovd, 2, Ostrava-Zabreh
Radek Handcek, 2, Roznov pod Radhostém

Kategorie C

Martin Benes, 1M, G M. Kopernika, Bilovec
David Havrlant, IM, G M. Kopernika, Bilovec
Markéta Matusovd, IM, G M. Kopernika, Bilovec
Radek Pastyrik, IM, G M. Kopernika, Bilovec
Radovan Pekar, 1M, G M. Kopernika, Bilovec
Richard Zlamal, 1M, G M. Kopernika, Bilovec
Petr Masopust, 8. t¥., ZS, t¥. Rudé armady,
Frydek-Mistek
Jana Uhrovd, IM, G M. Kopernika, Bilovec
Marcela Hlawiczkovd, 1, Komenského, Trinec
Radim Wystyrk, 8. ti., ZS, tf. Rudé armady,
Frydek-Mistek

Kategorie P

. Ivan Dvorsky, 4, G CSLA, Frydek-Mistek
. Petr Hiinény, 4, G M. Kopernika, Bilovec
. Radim Moric, 3, G M. Kopernika, Bilovec

Martin Cizek, 4, Roinov pod Radhostém

. Radek Lucan, 4, G CSLA, Frydek-Mistek
. Jarmil Halamicek, 3, Roznov pod Radhostém
. Karel Holub, 4, G M. Kopernika, Bilovec

Pavel Skotnica, 4, G M. Kopernika, Bilovec

. Rostislav Gemrot, 4, G M. Kopernika, Bilovec
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1.-3.

1.-2.
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Jiri Suchomel, 4, Zabreh na Moravé

Bratislava
Kategorie A

Martin Dindos, 4AMF, G J. Hronca
Viadimir Spitdlsky, 3M, G A. Markusa
Ondrej Such, 4M, G A. Markusa

. Juray Dzubas, 3M, G A. Markusa
. Viliam Bir, IM, G A. Markusa

Pavol Mederly, 2M, G A. Markusa

. Jdn Bajesy, 4M, G A. Markusa

Malos Volauf, IM, G A. Markusa
Pavol Severa, 4M, G A. Markusa

Kategorie B

Pavol Mederly, 2M, G A. Markusa
Richard Kollar, 2M, G A. Markusa

. Rastislav Nukovi¢, 2M, G A. Markusa
. Miroslav Ozordk, 2M, G A. Markusa
. Ladislav Kis, 2M, G A. Markusa

. Matey Kordos, 2M, G J. Hronca

. Lenka Fedorovd, 2M, G A. Markusa

Juray Linyt, 2M, G A. Markusa

Andrea Richterovd, 2M, G A. Markusa
Kristina Gendiarovd, 2M, G A. Markusa
Martin Benca, 2M, G J. Hronca

Marek Kalavsky, 2M, G J. Hronca
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1.-9.

10.

10.-11.
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Andrej Luptdk, 2M, G J. Hronca
Peter Haldk, 2M, G A. Markusa
Lubomir Guldn, 2, Toméasikova

Kategorie C

Kamil Budinsky, 1M, G J. Hronca
Vladimir Krno, IM, G J. Hronca

Pavol Marton, IM, G A. Markusa
Martin Niepel, 8. t¥., ZS, Ho Ci Minova
Matej Ondrusek, 1M, G J. Hronca

Juraj Slanicka, IM, G A. Markusa
Daniel Stefankovié, IM, G A. Markusa
Jozef Vdros, IM, G A. Markusa

Milos Volauf, 1M, G A. Markusa

Marek Macuha, 8. ti., ZS, Ho Ci Minova

Kategorie P

. Martin Dindos, 4, G J. Hronca
. Vladimir Duracka, 4, G J. Hronca

Igor Maly, 3, G J. Hronca

. Matej Ondrusek, 4, G J. Hronca
. Ondrej Such, 4, G A. Markusa

Martin Vojtko, 3, G J. Hronca

. Miroslav Kocan, 3, G J. Hronca

Rudolf Sedmina, 4, G J. Hronca

. Martin Stanek, 3, G J. Hronca

Monika Obrancovd, 4, G J. Hronca
Jdn Repisky, 4, G J. Hronca
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3.-4.
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Zapadoslovensky kraj

Kategorie A

. Peter Sedik, 4, G, Trencin

. Alezander Tomik, 3, G, Piestany
. Danzel Brsel, 4, G, Hlohovec

. Marek Machdé, 3, G, Sered

Gabriela Pilljakovd, 3, G E. Gudernu, Nitra
Radovan Derisek, 4, G, Skalica

Kategorie B

Petrik Rampasek, G, Surany
Miroslav Svitek, G, Komarno
Frantisek Sladkay, G, Partizanské
Jaroslav Tuzimsky, G, Levice

Dusan Foltin, G, Surany

Andrey Hrmo, G E. Gudernu, Nitra
Kamil Krajcouvié, G, Partizanské
Ingrid Szabé, G, mad., Koméarno
Monika Téthovd, G, Parovska, Nitra

Kategorie C

. Milan Valky, G, Parovska, Nitra

. Peter Galovi¢, G, Piestany

. Gdbor Rdcz, G, Dunajska Streda
. Pavol Gregor, SPSE, Nové Zamky

Peter Holik, G, Piestany
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7.-9.

10.

DD N =

7.-8.

Jozef Nagy, G, Levice

. Peter Mdrkus, G, Dunajska Streda
. Andrej Hucek, G, Parovska, Nitra
. Michal Dovican, G, Banovce nad Bebravou

Kategorie P

. Marian Gasparovi¢, G E. Gudernu, Nitra
. Roman Ptdk, G, Pezinok

. Roman Téda, G E. Gudernu, Nitra

. Igor Klepoch, SPSE, Nové Zamky

Michal Slezak, G E. Gudernu, Nitra
Tomads Klein, G, Piestany

Jdan Jendrichovsky, G, Modra

Jozef Sklendr, G, Piestany

Peter Durfina, G E. Gudernu, Nitra
Lubomir Stuller, G, Levice

Stredoslovensky kraj

Kategorie A

. Vladimir Glasndk, 3MF, Velka Okruzna, Zilina
. Simon Maly, 3MF, Ziar nad Hronom
. Ivan Milan, 3, Brezno

Juraj Lorine, 3M, Tajovského, Banska Bystrica
Valeridan Valdsek, 3M, Tajovského, Banska Bystrica

Elena Seresovd, AMF, Zvolen
Jozef Skokan, 4M, Velk4 Okruzna, Zilina
Stanislav Mores, 4M, Velka Okruzn4, Zilina



1.-2.

3.-4.

. Eduard Omasta, 4, Ruzomberok
10.-12.

Vogtech Goculiak, 3M, Tajovského, Banska Bystrica
Stanislav Taziar, 4, Prievidza
Ivan Valent, 4, Lucenec

Kategorie B

. Martin Berka, 2M, Tajovského, Banska Bystrica
. Dusan Svitek, 2M, Tajovského, Banska Bystrica

Peter Svitdk, 2M, Velka Okruzna, Zilina

. Sonia Simanovd, 2M, Tajovského, Bansk4 Bystrica
. Martin Lancz, 2M, Tajovského, Banska Bystrica

Jaroslava Kucianovd, 2M, Velk4 Okruzna, Zilina

. Jan Vozdir, 2M, Tajovského, Banska Bystrica

Kategorie C

Jdn Zabka, 1M, Velka Okruzna, Zilina

Marek Zabka, 1M, Tajovského, Banska Bystrica
Anton Ostrechovskyj, 1M, Velka Okruzna, Zilina
Jin Simon, 1M, Tajovského, Banska Bystrica

. Vojtech Bdlint, IM, Velka Okruzna, Zilina
. Pavol Durec, IMF, V. Pauliny Tétha, Martin
. Miroslav Dobrota, 1M, Tajovského, Banska Bystrica

Martin Klimo, 1M, Velka Okruzna, Zilina
Ivan Luptdk, IMF, Luéenec
Jana Pilnikovd, IMF, Ziar nad Hronom
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Kategortie P

. Eduard Omasta, 4, RuZomberok

. Pavol Chalmouviansky, 3, Prievidza

. Peter Vanoch, 4, Velka Okruzn4, Zilina
. Richard Farkas, 4, Lucenec

Juraj Hrabovec, 3, Wolkerova, Zilina

. Peter Malcovsky, 3, Prievidza

. Pavel Uhliar, 4, Liptovsky Hradok

. Frantisek Kossuth, 4, SPS, Dubnica
. Miroslav Bielik, 4, Wolkerova, Zilina

Anton Janetka, 4, Velka Okruzna, Zilina

Vychodoslovensky kraj

Kategorie A

. Peter Haluska, 4M, Smeralova, Kosice

Viadimir Skalsky, 4, T. Sevéenka, Presov

. Radoslav Jencéus, 4M, Smeralova, Kosice
. Slavomir Gmatro, 4, Konstantinova, Presov

Mirko Chladny, 2M, Smeralova, Kosice

. Radovan Teleki, 3, kpt. Nalepku, Sp. Nova Ves
. Vladimir Komdr, 4M, Smeralova, Kogice
. Milan Benedik, 3, Leninova, Poprad

Slavomir Hrinko, 3, Konstantinova, Presov
Maridn Rauéina, 3, Zapadna, Poprad



1.
2.
3.
4.-5.

1.-2.

3.-5.

Kategorie B

Lubos Pdstor, 2M, Smeralova, Kosice
Oskdr Hritz, 2M, Smeralova, Kosice
Jin Masiuch, 2M, Smeralova, Kosice
Herbert Vojcik, 2M, Smeralova, Kosice
Marek Gura, 2, Leninova, Poprad

Kategorie C

. Milan Mato$, 1, Leninova, Poprad

Jdn Soltis, 1, Leninova, Poprad
Peter Kopca, 1, Humenné
Peter Katusédk, 1M, Kosice
Elena Halesovd, 1M, Kosice

. Juraj Bardt, 1, Srobarova, Kosice
. Pavol Diko, 1M, Kosice

Silvia Kulcsdrovd, 1, Smeralova, Kosice

. Peter Kovdcik, 1M, Kosice
. Martina Hrusédkovd, 1, Leninova, Poprad

Kategorie P

Viadimir Skalsky, 4, G T. Sevéenka, Presov
Herbert Vojcik, 2, Smeralova, Kogice
Tomds Vinar, ZS, Hronské, Kosice
Slavomir Gmitro, 4, Konstantinova, Presov
Peter Haluska, 4, Smeralova, Presov

. Lubomir Zlacky, 3, G Gottw., Michalovce
. Radovan Brecka, 3, G Gottw:, Snina
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8.-10. Marek Gura, 2, Leninova, Poprad
Peter Budai, 2, Opatsk., Kosice
Maros Grund, 3, Srobarova, Kosice
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Kategorie C

Texty uloh

C-1-1

Ctverec 100 x 100 je rozdélen na 10000 jednotkovych
ctvercti. Do nich jsou libovolnym zplisobem vepsana cisla
1 az 10000 (do raznych Etverci rizné Eisla). Dokazte, ze
pak existuji dva sousedni ¢tverce, v nichz jsou éisla lisici se
aspofi 0 51. Ctverce povazujeme za sousedni, maji-li spolec-
nou stranu.

C-1-2

Necht n je pfirozené éislo a a, = 888...8 je n-mistné
pfirozené Cislo zapsané v desitkové soustavé n osmickami.
Dokazte, ze pro poéty d(n), d(a,) délitela &isel n, a, plati
d(a,) 2 8d(n) — 8.

C-1-3

Na kruznici je napsano 108 prirozenych ¢isel, pric¢emz sou-
cet libovolnych dvaceti vedle sebe stojicich Cisel se rovna
1990. Déle vime, ze na 37. misté stoji ¢islo 158, na 66. misté

~ ¥/

Cislo 1 a na 83. misté é&islo 200. Jaké ¢islo stoji na 40. misté?
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C-1-4
Je dan rovnostranny trojihelnik ABC se stranou délky a.
Na strané AC je dan bod L tak, 7e |AL| < -‘21. Na stranich

AB, BC, CA sestrojime po fadé body M, N, P tak, aby
LM || BC, MN || AC, NP || AB. Vypocitejte obvod a ob-
sah Ctyfahelniku LM N P. Pfi které volbé bodu L je jeho
obsah nejvétsi?

C-1-5

V roviné jsou dany shodné kruznice ki(P,r), k2(@, )
a délka d, pri¢emz kruznice k;, k2 nemaji spoleény bod.
Najdéte vSechny dvojice bodid X, Y takové, ze |XY| = d,
bod X lezi na kruznici k;, bod Y lezi na kruznici ko a pfim-
ka XY prochazi stfedem tsecky PQ.

C-1-6
Je dano prirozené Cislo s lichym poctem éislic. Dokazte, Ze

jednu z jeho é&islic 1ze skrtnout tak, aby cislo, které vznikne,
mélo na sudych i na lichych mistech stejny pocet sedmicek.

C-§-1

Najdéte nejmensi piirozené &islo k, pro které maji souciny
384 -k, 2592 - k stejny pocet délitelu.
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C-§-2

Urcete Cislice a, b tak, aby (islo, jez je v desitkové soustavé
zapsano ve tvaru a 005, bylo druhou mocninou pfirozeného
Cisla.

C-§-3

Na dahlopficce obdélniku se stranami délek 4cm a 3cm
Je zvolen bod X. Pfi které poloze bodu X (obr. 1) je obsah
vysrafované ¢asti nejvétsi? Svou odpovéd zdivodnéte.

%

N

Obr. 1

cC-n-1

Najdéte vSechna pfirozena &isla n, pro kterd ma &islo n
v mnoziné prirozenych ¢isel pravé tfi délitele a ¢islo n + 32
pravé pét déliteld.
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C-11-2

Na thlopfi¢ce BD étverce ABCD je zvolen bod X. Pri
které poloze bodu X je obsah vysrafované ¢asti na obr.2
nejvétsi? Svou odpovéd zdivodnéte.

Obr. 2

cC-1n-3
Dokazte, ze ¢islo 111...1222...225, ve kterém se Cislice 1
vyskytuje k-krat a ¢islice 2 (k+1)-krat, je druhou mocninou
prirozeného cisla. Urcete toto Eislo.

C-1-4

Je déna étvercova sit se stranou délky 1, pfirozené ¢islo r
a v roviné sité kruznice k o poloméru r se stfedem ve vrcholu

48



nékterého Ctverce sité. Dokaite, ze kruznice k neprochézi
stfedem zadného &tverce sité.

ReSeni uloh

C-1-1

V nékterém policku je napsdno éislo 1, v jiném ¢&islo
10000. Od prvniho k druhému policku se dostaneme na-
priklad tak, Ze ptijdeme nejdfive svisle (nahoru nebo doli),
aZ se dostaneme do stejného tfadku, v jakém je druhé pole
(obr.3). Pak pfejdeme vodorovné do tohoto druhého pole.

Obr. 3

Jsou-li obé uvazovana pole v témze radku, jdeme jen vo-
dorovné. Jsou-li obé policka v témze sloupci, jdeme pouze
svisle. V kazdém pripadé obsahuje naSe cesta nejvyse 100
policek z téhoz sloupce a nejvyse dalsich 99 policek v fadé.
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Pfejdeme tedy nejvyse 198krat z jednoho policka do polié-
ka sousedniho. Kdyby byl rozdil ¢isel v sousednich polickach
vzdy nejvyse 50, mohlo by se éislo v poslednim policku nasi
cesty rovnat nejvyse ¢islu 1+ 198 -50 = 9901. Protoze tam
vsak stoji ¢islo 10000, musi se na nasi cesté objevit aspon
Jjednou prirtstek vétsi nez 50.

C-1-2

Je zfejmé a, = 8 - 111...11, kde je b, = 111...11
n-mistné Cislo zapsané n jednickami. Je to ¢islo liché, takze
neni délitelné dvéma, tim méné ctyfmi nebo osmi. Proto
ma éislo a,, pravé ctyfikrat vice délitelt nez &islo by,. Je-li
totiz Cislo p délitelem cisla b,, jsou déliteli ¢isla a,, cisla p,
2p, 4p a 8p. A také plati, ze kazdy délitel ¢isla a,, se rovna
nékterému z Cisel p, 2p, 4p, 8p, kde p je délitel &isla b,,. Staci
tedy zabyvat se poltem délitelt éisla b,. Jestlize pFirozené
cislo k déli ¢islo n, je

bp=111...11=11...111...1...11...1=
S————— S S~ o s’
n k k k
=11...1- (14 10F 4 ... 4+ 10" %) = by - 4,

kde je ¢y pfirozené &islo. Je-lik = 1,je by = 1, ¢ = b,. PHi
k=njec, =1 Jelil <k < n, kondi ¢islo ¢, dvojcislim
01 a nerovnéa se tedy zadnému z &isel b,. Vidime tudiz, ze
déliteli &isla b, jsou &isla 1, b, a téz Cisla by, cx pro ta Cisla
k, kterd déli ¢islo n. M4-li tedy cislo n kromé 1 a n jeSté
d(n) — 2 netrividlnich déliteld, ma ¢islo b, kromé 1 a b,
jesté aspon 2[d(n) — 2] dalsich déliteld, celkem tudiz aspon
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2d(n) — 2 déliteld. Cislo a, pak mé aspoii 4[2d(n) — 2] =
= 8d(n) — 8 déliteld, coz jsme méli dokazat. Tvrzeni plati
ipron =1, kdy je b, = 1.

Poznamenejme, Ze Slo o ilohu naroénou, kterd vyzadovala
od fesiteld nejdfive rozbor nékolika konkrétnich pfipadd.

cC-1-3

Soucet kazdych 20 vedle sebe stojicich &isel je vidy 1990.
Také soucet kazdych 108 vedle sebe stojicich Cisel je stejny,
rovnd se prosté souctu p vSech ¢isel umisténych na kruznici.
Zvolme nyni osm vedle sebe stojicich ¢isel. Ostatnich 100
Cisel tvori pét skupin po dvaceti vedle sebe stojicich éislech,
proto se soucet zvolenych osmi &isel rovnd p — 5 - 1990,
je tedy také stejny pro kazdych osm C&isel stojicich vedle
sebe. To pak plati také pro 16 ¢isel. A kdyzZ je stejny soucet
kazdych dvaceti a rovnéz kazdych Sestnicti vidy vedle sebe
stojicich éisel, plati to i pro kazda ¢tyfi vedle sebe stojici
Cisla. Pak to vSak znamend, Ze se Cisla vidy po é&tyfech
opakuji, paté se rovné prvnimu, Sesté druhému atd. Soucet
kazdych ctyf vedle sebe stojicich éisel je 1990 : 5 = 398.
Na 37. misté stoji Cislo 158, na 38. misté sto)i stejné cislo
jako na 66. misté, nebot 66 = 38 + 7 - 4, tedy ¢&islo 1. Déle
je 39 = 83 — 11 - 4, takZe na 39. misté stoji &slo 200. Proto
na 40. misté stoji ¢islo 398 — 158:— 1 — 200 = 39.

C-1-4

Oznacme z = |AL|. Trojihelniky AML, MBN a PNC
jsou rovnostranné (obr.4) se stranami délek z, a — z, z.
Proto je |PL| = a— 2z a obvod lichobé&zniku MNPL je a—
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Obr. 4

—2z+z+a—z+2z = 2a—=z, jeho obsah je %(a—-:c+a—2z)v
kde v je jeho vyska. Ta se rovna téz vysce v trojuhelniku

AML, takze v = ;\/g Obsah lichobézniku je \/Tg:c@a -
. ) V3 a\? a?

—3z), vysledek upravime na tvar e [—3(1’ - §) + ?]

Vidime, Ze tento obsah je nejvétsi pro z = E, kdy se rovna

3
a*V3
12

C-1-5

Oznaéme S stfed Gsecky PQ a predpoklddejme, ze body
X, Y spliiuji podminky tlohy. Pak jsou mozZné pouze dva
ptipady, bud jsou body X, Y soumérné sdruzené podle bodu
S (obr.5), nebo tomu tak neni (obr. 6).
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Obr. 5

Obr. 6
Uvazujme nejdfive prvni piipad. Je pak |XS| = |Y S| =
d . d
=3 takze bod X lezi na priniku kruZnic k; a Ic(S, 5)

Je-li obracené X spole¢nym bodem téchto kruznic, lezi bod
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Y k nému soumérné sdruzeny podle bodu S na kruznici k-
a dvojice X, Y je feSenim ulohy. Pocet feSeni je v tom-
to pfipadé 2, 1 nebo 0 podle toho, maji-li kruznice kq, k
dva, jeden nebo zadny spoleény bod. Pfitom dva spoleéné
priseciky maji uvazované kruznice praveé tehdy, je-li |SP|—

d :
—r < g5 <|SPl+r 4. [PQ|-2r < d < |PQ|+2r.

Jeden spolecny bod maji kruznice k, k; pravé tehdy, je-li
d = |PQ| - 2r nebo d = |PQ| + 2r. V ostatnich pfipadech
nemaji tyto kruznice zadny spoleény bod.

Piejdéme k druhé moznosti. Body P, @ vedme kolmice
k pfimce XY, jejich paty oznaéme U, V. Ze stfedové sou-
mérnosti plyne |YV| = |UX]|, takze |XY| = |UV| = d,
ISU| = g.
Thaletové kruznici [/ nad primérem SP, nebot thel SUP je
pravy. Pfitom je bod U bodem vnitini oblasti kruznice k&,
protoze pfimka XY je se¢nou kruznice ki (md s kruznici
spolecny bod X a nemize byt tecnou, v tom pfipadé by
byly body X, Y soumérné sdruzené podle bodu S). Je-li

Bod U lezi tedy na kruznici k£ a soucasné na

. d
obréacené bod U prisecikem kruznic k a [, je 3 S|SPlaU

je bodem vnitini oblasti kruznice k; pravé tehdy, kdyz je

d2
|PU| < r, kde |PU| = {[|SP|? - T Ke kazdému takové-

mu bodu U sestrojime dvé dvojice bodu X, Y, které jsou
feSenim tlohy, bod X je jednim nebo druhym prisecikem
pfimky SU s kruznici ky. Je-li 0 < \/|PQ|? — d? < 2r, do-
staneme dva takové body U, a tedy Ctyfi feSeni alohy. Pro
d = |PQ| je U = P a tloha ma kromé nalezenych feSeni
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v prvni Casti jesté dvé feSeni, pro kterd neni bod S stfe-
dem tsecky XY . Celkovy pocet FeSeni v zavislosti na délce
d mizeme prehledné vycist z této tabulky:

d<|PQ|-2r ... O feSeni

d=|PQ|-2r ... 1 feSeni

|PQ|—2r <d<\/|PQ?—4r? ... 2 feSeni
VIPQ2—4r2 <d < |PQ| ... 6 feseni

d=|PQ| ... 4 feSeni

|PQ| < d < |PQ|+2r ... 2 feSeni

d=|PQ|+2r ... 1 feSeni

d>|PQ|+2r ... 0 feSeni
C-1-6

2 %7

Vezméme libovolné ¢islo s lichym poctem ¢Eislic a oznacme
p pocet jeho sedmicek na lichych mistech a ¢ pocet sedmi-
ek na sudych mistech v jeho zdpisu v desitkové soustavé.
Ubranim dvou sedmicek stojicich vedle sebe nebo obréce-
né jejich pfidanim se nezméni rozdil p — q. Totéz plati pfi
ubrani nebo pfidani dvou dislic stojicich vedle sebe, jestli-
Ze z4dné z nich neni sedmicka. Budeme-li takto stale podle
moznosti ubirat, dojdeme opét k &islu s lichym poctem cis-
lic, v némz se budou stfidat sedmicky s cislicemi riznymi
od sedmicky. Mize se ovSem stat, ze na jeho prvnim misté
bude stat éislice 0. V takto ziskaném C&isle pak staéi skrt-
nout prostfedni &islici (je to sedmicka, mélo-li pivodni ¢islo
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lichy pocet sedmicek, jinak je to éislice riizné od sedmicky),
abychom dostali ¢islo se stejnym poctem sedmicek na li-
chych a na sudych mistech. K nému pak vratime ty dvojice
Cisel, které jsme predtim ubrali. Tim dostaneme vzdy Cis-
lo pozadovanych vlastnosti. UkdZeme si popsany postup na
prikladé ¢isla 12 375 707 727. Vynechanim dvojic 12, 77, pak
02 a pak opét 77 dostaneme cislo 375, z néhoz vynechame
prostredni ¢islici 7. K vysledku 35 pfidame zpét ty dvojice,
které jsme predtim vynechali. Kone¢nym vysledkem je ¢islo
1235707 727.

Uvedeme jesté aspon strucné jiny postup, ktery by si vsak
vyzadal podrobnéjsi diskusi. Obsahuje-li dané ¢islo lichy po-
Cet sedmicek, je zfejmé, ze bude tfeba vynechat nékterou
sedmicku. Zacnéme prvni sedmickou zleva. Nejdiive ukaze-
me, Ze pokud po jejim vynechani je vice sedmicek na sudych
mistech, nebude tomu tak pfi vynechdni posledni sedmicky.
Pak jesté ukaZeme, ze pocet sedmicek na sudych mistech
po vynechani nékteré sedmicky se nezméni, nebo se zvétsi
o 1, nebo se zmensi o 1, jestlize misto ni vynechdme hned
sedmicku dalsi. Jinymi slovy, poéet sedmiéek na sudych mis-
tech po vyskrtnuti nékteré sedmicky se zméni nejvyse o jed-
nu, Skrtneme-li misto ni tu, ktera je k ni nejbliz. Z toho pak
plyne, Ze pro jednu sedmiéku zbude po jejim vynechani stej-
ny pocet sedmicek na sudych a na lichych mistech. Podobné
bychom postupovali pfi sudém poétu sedmiéek, kdy musime
vynechat nékterou ¢islici riznou od sedmicky.
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C-S-1
Je 384 = 27 .3, 2592 = 25 . 3%, Polozme k = 2% -3 - ¢,

kde c neni délitelné dvéma ani tfemi. Pak je 384 -k = 29+7.
- 3b+1 . ¢ poéet délitel tohoto &isla je (a + 8)(b + 2)d, kde
d je pocet déliteli cisla c¢. Pocet déliteld druhého souéinu
je (a+ 6)(b + 5)d. Jelikoz k ma byt nejmensi, jec=d =1
a pro a, b mé platit (a + 8)(b+2) = (a + 6)(b+ 5), tedy
2b = 3a + 14. Nejmensi k dostaneme pfia = 0, b = 7, je
tedy k = 37 = 2187.

C=-5~2

Konéi-li druhd mocnina pfirozeného ¢&isla pétkou, kon-
¢i 1 zdklad pétkou. Druhd mocnina &isla konéictho pétkou
konéi dvojéislim 25, je tedy nutné b = 2. Kromé toho je
(10n+5)% = 25+ 100n(n+1). Hleddme tedy pfirozené &islo
n tak, aby ¢islo n(n+1) bylo dvojmistné a ndsobkem deseti.
Jedina feseni jsou n = 4, 5 nebo 9, tedy a = 2, 3 nebo 9.
Resenim idlohy jsou pravé tyto dvojice (a,b): (2,2), (3,2)
a (9,2).

C-§-3

Oznaéme ¢ = |AY|, y = |DZ| (obr.7). Je y : z = 3 : 4,
obsah vySrafované ¢asti je z(3 — y) + y(4 — z). Po dosazeni
za y a Gpravé dostaneme vyraz 6 — g(:c —2)2. Proto je obsah
nejvétsi pri ¢ = 2, kdy je bod X stfedem uhlopricky.

Uloha navazovala na tlohu C-I1-4, aviak zcela jiny, velmi
jednoduchy postup zvolil zak Michal Kruzhak z 1. rocniku
gymnazia v Namestove. Podal toto jednoduché feSeni:

57



Obr. 7

Je-li X stfedem uhlopficky, rovna se obsah vysrafova-
né &asti poloviné obsahu obdélniku. Neni-li bod X stfedem
thlopficky, rovnd se obsah vySrafované ¢asti nejdfive obsa-

hu vysrafované ¢4sti na obr. 8 a ten pak obsahu vySrafované
¢asti na obr. 9, ktery je mensi nez polovina obsahu obdélni-

Obr. 8 Obr.9
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C-1-1

Cislo 22-3%.5¢ ... m4 pravé (a+1)(b+1)(c+1). .. déliteld.
Ma-li &slo n pravé tii délitele, je nutné n = p? pro néjaké
prvoéislo p. Jelikoz éislo n + 32 ma mit pravé 5 délitelq,
musi byt n + 32 = ¢*, kde ¢ je rovnéi prvocislo. Pak je
32 = ¢* — p? = (¢* — p)(¢% + p). Rozlozime proto &islo 32 na
soufin dvou pfirozenych &isel. Rozklady 32 =1-32 a 32 =
= 4.8 nevedou k z4dnému vysledku. Polozime-li ¢> —p = 2,
¢*+p = 16, dostaneme ¢ = 3, p = 7. Jediné feSeni je n = 49.

C-1-2

Oznaéime-li z vzdalenost bodu X od pfimky AD, je ob-
sah vysrafované ésti 2z(a — ) + §(a— z)? = 2a? — 3(z -
— 1a)?. Obsah je tedy nejvétsi pro z = ia, kde a je stra-
na &tverce. Bod X je dan napfiklad podminkou |BX| =

= 2|DX]|.

c-n-3

Jelikoz 1225 = 352, 112225 = 3352, dochazime k do-
mnénce, Ze hledanym &islem je ¢islo 333. . .35, ve kterém se
pocet trojek rovnd éislu k. Domnénku dokdzeme uzitim zné-
mého vztahu z Glohy C-S-2 (10n +5)? = 100n(n + 1) + 25.
Staéi ukazat, ze souéin &isla 333...3 (k trojek) s Cislem o 1
vétsim se rovnd Cislu 111...1222...2, které obsahuje k jed-
nicek a stejny pocet dvojek. To vSak plyne ihned z rovnosti
333...34-3=1000...02.

Velmi pékné a zcela korektni FeSeni podal zak I. roéniku
gymnazia v Dolnim Kubiné FrantiSek Mala. Ukazal, Ze se
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dané ¢islo d4 napsat ve tvaru

k k
10 1 ega, 104411

9 5 -2-10+5,

coz po jednoduchych algebraickych Gpravach dava

10F+1 4 542
(=)
10k+1

3
¢islo 10¥+! 4 5 délitelné tiemi. To vsak plyne ihned z toho,
ze jeho ciferny soucet je 6, a tudiz délitelny tfemi. A cislo
Je délitelné tfemi, pravé kdyz je délitelny tfemi jeho ciferny
soucet.

Staci nyni ukazat, ze Je pfirozené Cislo, tedy ze je

C-1-4

Podle Pythagorovy véty se vzdalenost stfedu nékterého
ctverce sité od vrcholu libovolného &tverce sité rovna

\/ 1\2 12

+ ‘) + ( + _) )
(v 2 AT
kde p, ¢ jsou cela ¢isla. MizZeme si totiz predstavit, ze jsme
pocatek soustavy soufadnic zvolili v uvazovaném vrcholu
(obr. 10) ¢Etverce sité a osy soustavy soufadnic jsou pro-
dlouZenim stran tohoto ctverce. Uvazovany stfed pak ma
soufadnice [p+ %,q+ %], kde p, ¢ jsou cela ¢isla. Druha
mocnina zkoumané vzdalenosti, a tedy ani vzdalenost sama
neni celé &islo, nemize se tudiz rovnat pfirozenému cislu 7.
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Kategorie B

Texty uloh

B-1-1

Je dano liché pfirozené ¢islo n. Najdéte aspon jednu dvo-
Jici pfirozenych &isel z, y tak, aby nejvétsim spoleénym dé-
litelem ¢éisel z, y bylo Cislo n a aby nejvétsim spoleCnym
délitelem cisel zy + z, zy + y bylo éislo 2n.

B-1-2
Realné nezdporna &isla x, y spliuji nerovnosti z +y < 1,
n R e -
z 2 1 kde n je pfirozené cislo. Dokazte, ze
n

2™(1-2) 2 y(1 - y)".

B-1-3

Trojthelnik ABC' s obsahem 10 je téznici C'D a tseckou
AFE rozdélen na Ctyfi Casti (bod E lezi uvnitf strany BC,
D je stied strany AB). Obsah trojihelniku AFC je 4, F je
prisecik CD a AE. Urcete obsahy trojuhelniki ADF',CEF
a ctyfahelniku BDFE.
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B-1-4

Urcete nejvétsi prirozené Cislo, které se neda vyjadrit ja-
ko soulet dvou pFirozenych &isel, z nichz mé kazdé ciferny
soucet aspon 10.

B-1-5

Pro reélnd éisla z4, z2, ..., z, (n 2 3) plati z; 2 z3 +n,
12222 ...22,, 21+ T2+ ...+ 2, = n? Dokaite, ze

z1 + z2 2 3n — 2. Kdy plati rovnost z; + z5 = 3n — 27

B-1-6

V roviné je dana Gsecka AB. Najdéte mnozinu vSech
vrcholi Z pravotihlych trojahelniki XY Z, jejichz pfepo-
na je Casti usecky AB a |AX|=|XZ|, |BY|=|YZ]|.

B-S-1

Je dano prirozené Cislo n. Najdéte aspon jednu dvojici
pfirozenych &isel z, y tak, aby D(z,y) = D(zy + z,zy +
+ y) = n. D(a,b) znali nejvétsiho spoleéného délitele éisel
a,b.

B-S-2

V trojihelniku ABC je D stied strany AB, E je bod
usecky BC, F je priselik Gse¢ek AE a CD. Obsah troj-
uhelniku ABC je 15, obsah trojihelniku CFE je 4. Urcete
obsahy trojihelniki AFC, ADF a ¢tyiihelniku DBEF .
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B-§-3

Najdéte vSechny uspofadané dvojice (n, k) celych Eisel n,
k, které spliiuji rovnici k3 — 3k?n + 3kn? — 61 = 0.

B-1l-1

Je dano prirozené Cislo n. Najdéte aspon jednu dvojici
pfirozenych Cisel z, y tak, aby to byla Cisla nesoudélna a aby
nejvétsim spolecnym délitelem cisel zy + =, zy + y bylo
&islo n.

B-I1l-2

Je dana kruznice k. Sestrojte trojahelnik ABC se stfe-
dem D strany BC tak, aby byl trojihelnik ABD kruznici k
vepsan, pfimka AC byla tenou kruznice k a |AC| = 2|AD|.

B-1-3

Pro nezdpornd &isla z1, z2, ..., zioplatizy 2 222 ... 2

2 210, 21— 6 2 3, 22+ 22 +. ..+ 2%, = 25. Jakou nejmensi
hodnotu mtize mit soucet z? + 22 + z2 + z3 + z2?

B-I1l-4

V konvexnim &tyfihelniku ABCD ozname E prisecik
uhlopficek a S stfed kruznice opsané trojuhelniku ABE.
Potom jsou pfimky CD a SE kolmé, pravé kdyz je Ctyi-
thelnik ABCD tétivovy. Dokazte.
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Reseni aloh

B-1-1

Ulohu vyfesime nejdiive pro néktera konkrétni n. Napfi-
klad pro n = 15 mizeme vzit z = 15, y = 45. Pfi obecném
n zkusime ¢ = n, y = kn. Snadno zjistime, ze Cislo k¥ musi
byt liché. Zvolme k = 3, pak je zy + & = n(3n + 1), zy +
+y=n(3n+3). Cisla 3n + 1, 3n + 3 jsou sud4 a kromé
jednicky a dvojky nemaji spole¢ného délitele. Ten by totiz
musel délit jejich rozdil, tj. ¢islo 2. Odtud plyne, Ze nejvét-
$im spole¢nym délitelem cisel zy + z, zy + y je Cislo 2n.

B-1-2

n
Polozme z = 1 — y. Potom —— < z £ 2z a mame
n+1 — =

dokazat nerovnost 2" (1—z) 2 z"(1—2z). Jinymislovy méme

n
n+1
klesajici. To lze snadno dokazat pomoci derivace uvazované
funkce, neodpovida to vsak osnovam 2. ro¢niku stfednich
skol. Bez uziti derivace mizeme postupovat takto:

dokéazat, ze funkce f(z) = z"(1 — z) je pro z 2

n
Proz>z 2 ] méme dokéazat, ze z" (1 —z) > z"(1 -
—2), tj. 2" —z" < 2"t — g+l Vydélenim nezdpornym

éislem 2z — x dostaneme ekvivalentni nerovnost

D A W L b P

-1 1
<"+ 2"z 4. 422" 42"
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tj.
A—z)" 42" 224 . 422" 242" ) < 2"

Pro > 1 to zfejmé plati, nebot leva strana je pak zadporna.

. . , P n
Je-liz £ 1,je 1—z nezéporné. Jelikoz z 2

1,je1—:c§

é nL-}-l Dale je

2T 4 24 22" 4 2" <

takze

nzn—l

n+1

Q=-2)("" 142" 2z 4+.. 422" 242" ) < <2

)
coz jsme méli dokazat.

B-1-3
Oznaéme a, b, ¢, d obsahy trojihelniki ADF, EFC,
BDF, BFE (obr.11). Potom a +4 = 5, b+ ¢+
+d =5, dile je a = ¢, nebot |[AD| = |BD|. Koneéné plati
b:d=(b+4):(a+c+d)=|CE|:|BE|. Jetedya=c=1,
b+d=4,b2+d)=(b+4)d, takie b = 2d, odkud d = 3,
b= %. Hledané obsahy jsou 1, %, %

B-1-4

D4-li se ¢islo N napsat jako soucet dvou prirozenych &isel
A, B, z nichz ma kazdé ciferny soucet aspon 10, jsou éisla A,
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A D B
Obr. 11

B aspon dvojciferna a vétsi nebo rovna 19, takze N je vétsi
nez 37. Pro A = B = 99 dostaneme ¢islo 198. Avsak ¢islo
199 se nedd napsat pozadovanym zpusobem. Kdyby totiz
bylo 199 = (100 + 10a + b) + (10c + d), muselo by platit
soucasné b+d =9, a+c = 9, takze soucet cifernych souctu
obou séitancti by byl 19, a tudiz by nemohly byt oba ciferné
souéty rovny aspon 10. Zkusmo zjistime, ze ndhodné zvo-
lena cisla vétsi nez 199 se pozadovanym zpusobem zapsat
daji. Pokusime se tedy dokdzat, ze kazdé ¢islo N 2 200 se
da napsat jako soucet A + B, kde A, B mayji ciferny sou-
Cet vétsi nez 9. V nésledujici tabulce je uvedeno, jak zvolit
posledni &islice y, z ¢isel A, B, je-li posledni &islice ¢isla N
rovna z:

z|001 2 3 4 5 6 7 8 9 |u
y|5 5 6 6 7 7 8 8 9 5 |v
2|5 6 6 7 7 8 8 9 9 4 |w
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V dalsi tabulce je uvedeno, jak zvolit pfedposledni ¢islice
v, w Cisel A, B, je-li pfedposledni cislice ¢isla N rovna u

ar#9:

|01 2 3 45 6 7 8 9
v|(b 5 5 6 6 7T 7 8 8 9
w|4 5 6 6 7 7 8 8 9 9

Je-liz = 9, zvolime pfi daném u hodnoty v, w podle prvni
tabulky. Vidime, Ze jiZ soucet poslednich dvou &islic ¢isla A
i ¢isla B je aspon 10, kromé pfipadi, kdy N konéi nékterym
z dvojéisli 00, 09 nebo 99. Pak mizeme vzdy zvolit A = 145
a B tak, aby koncilo dvojcislim 55, resp. 64, resp. 54, kon¢i-li
N dvojcislim 00, resp. 09, resp. 99. V poslednim pfipadé je
vsak ¢&islo B aspon trojciferné, protoze A + B 2 200. Takze
v kazdém piipadé je ciferny soucet cisla A 1 ¢isla B vétsi
nez 9.

B-1-5

Je i¢elné pokusit se fesit Glohu nejprve tsudkem. Pri
pevné zvoleném z3 je z, + , aspon 2z3 + n, nebot z; >

2 z3+n a xy 2 z3. Plitom z; + z2 = 2z3 + n pravé
tehdy, kdyz =y = z3 + n, 22 = z3. Vzhledem k tomu, ze
soucet &isel z1, 9, ..., T, je pevny, rovna se n?, je r1 + o

nejmensi, kdyZ je souéet z3+ x4 + ...+ z, nejvétsi. Avsak
z3+ ...+ z, £ (n — 2)z3, rovnost plati pravé tehdy, kdyz
Tp = Tpo1 = ... = T4 = r3. Mizeme tedy Fici, ze =, +
+ x4 nabyva nejmensi hodnoty 2z3 + n, kdyz z; = z3 + n,
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Ty =3 =...= . Pak ale musi platit z3 + n+ 23+ (n —
—Dzz=n?tedyza=n—1,223+n=3n—2.

Jiny postup: Sectenim nerovnosti z; 2 z3+ n, zo
dostaneme z; + 23 2 223 + n. UZitim nerovnosti z;
prot =3, 4, ..., n dostaneme

nZ::cl+:c2+...+zn:_<_:cl+xz+(n—-2)x3,

takze je 21 + 22 2 n? — (n — 2)z3. Seétenim s nerovnosti

dostaneme

n
z1+ 23 2 223+ n vynasobenou faktorem

pozadovanou nerovnost.

B-1-6

Necht trojihelnik XYZ m4 pozadované vlastnosti. Pak
je (obr. 12)

Obr. 12

9ZAX|=|4AZX|=«a, |IZBY|=|IBZY|=p,
2a + 26 + 90° = 180°,

takie o + B = 45°, [JAZB| = a + B+ 90° = 135°. Proto
lezi bod Z nutné na jednom ze dvou kruhovych oblouki,
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Jez jsou tvofeny vSemi body, z nichz je vidét Gsecka AB
pod thlem 135°. Jsou to mensi kruhové oblouky ohrani-
cené body A, B (bez bodd A, B) na kruZznicich se stfedy
Sy, Sa, pticemz | AS1B| = |9 AS2B| = 90°. Je-li obrace-
né Z bod nékterého z téchto obloukd, je |YAZB| = 135°,
osy useCek AZ, BZ prochézeji bodem S; nebo S; a pro-
tinaji Gise¢ku AB v bodech X, Y. Oznaéme [{XZY| = v,
[9ZAX| = |9AZX]| = a,|dZBY| = |4BZY| = 8. Je tedy
a+v+0 =135° a2a+28+v = 180°, odkud y = 90°. Hle-
danou mnozinou je mnozina vSech bodl uvazovanych dvou
obloukd.

B-S-1

Staéi polozit z = n, y = 2n. Je pak D(z,y) = n, zy +
+z=n2n+1), zy+y =n(2n+2). Cisla 2n + 1, 2n + 2
jsou nesoudélna, jejich spolecny délitel by musel délit i jejich
rozdil, tj. Cislo 1. Je tedy téz D(zy + z,zy +y) = n.

B-S-2

Oznacme obsahy trojuhelnikit ADF, BDF, AFC, BFE
po fadé a, b, z, y (obr.13). Jeb=a,a+2 =75, b+y =
=35,y:4=(2a+y): (z+4). Upravou posledni rovnice
mame zy = 8a, po dosazeni za z, y dostaneme rovnici a? —
—19a + 14& = 0. Kofen a = 17,5 nevyhovuje, pro a = 1,5 je
z = 6, y = 2. Tyto hodnoty vyhovuji, hledané obsahy jsou
6, 1,5 a 3,5.
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E
a b
A D B
Obr. 13
B-S-3

Je k(k? — 3kn + 3n?) = 61. Cislo 61 je prvoéislo, takze se
k mize rovnat pouze nékterému z &isel 1, —1, 61, —61, pro
n pak dostaneme vidy kvadratickou rovnici. Ta ma pouze
v pfipadé k = 1 nezdporny diskriminant a kofeny 5, —4.
Uloha ma4 proto pravé dvé feseni: (5,1) a (—4,1).

B-1l-1

Jezy+z=z(y+1),zy+y=y(z+1). Cisla z, y maji
byt nesoudélnd, nejvétsim spolenym délitelem &isel z + 1,
y + 1 musi byt ¢islo n. Polozime-liz+1 =n, y+1 = 2n,
Jje tato podminka splnéna a ¢isla z = n — 1, y = 2n —
— 1 jsou nesoudélnd (jejich spoleény délitel by musel délit
1 ¢islo y — 2z = 1). Pouze v pfipadé n = 1. nenf &slo n — 1
pfirozené, mizeme vSak pron =1 zvolit c = 1, y = 2.
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B-1l-2

Z mocnosti bodu C ke kruznici k plyne |AC|? = 2|CD|?,
takze |AC| : |CD| : |AD| = 2 : v/2 : 1. V libovolném bodé
A kruznice k (obr. 14) sestrojime teénu, na ni bod C’ tak,
aby |AC’| = 2. Body A, C’ doplnime na trojahelnik AC’' D’
tak, aby |AD'| = 1, |C'D’| = V2. Bod B’ zvolime tak,
aby byl bod D’ stfedem tusec¢ky C’B’. Kruznice k' opsana
trojahelniku AD’ B’ se pak v bodé A dotyka primky AC’.
To vyplyva z mocnosti bodu ke kruznici. Stejnolehlost se

Obr. 14

stfedem v bodé A zobrazujici k' na kruznici k zobrazuje
body C’, D', B’ na hledané body C, D, B. Az na shodnost
ma Gloha pravé jedno feSeni.

B-11-3

Postupujeme podobné jako v tiloze B-1-5, hledanou nej-
mensi hodnotu dostaneme v pfipadé z; = z¢+3, 2 = z3 =
=...==z0, kdy jex; =4, 2o = ... = 210 = 1. Hledana
nejmensi hodnota je 20.
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B-1l1-4

Trojthelniky ABS, AES, BES (obr.15) jsou rovnora-
menné, jejich vnitini Ghly pfi zdkladné oznacme 7, «a, S,
déle oznatme ¢ = |JCDE|, ¥ = |{DFE|, kde F je prise-
¢ik CD a SE. Z trojahelniku ABE plyne a + 3 — v = 90°.
Je v = 180° — ¢ — B, a tedy ¥ = 90° pravé tehdy, kdyz
je ¢ = 90° — f = a —v. Podminka ¢ = o — v je podle
véty o obvodovych thlech ekvivalentni s tim, ze ¢tyrahelnik
ABCD je tétivovy. Podobné bychom postupovali v pfipadé,
kdyby byl bod S bodem trojihelniku ABE.

Obr. 15
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Kategorie A

Texty tuloh

A-1-1

Urcete nejmensi prirozené ¢islo n, pro které v prostoru
existuje konvexni mnohostén K s nasledujicimi vlastnostmi:

a) K ma alespon 10 vrchold,

b) kazdé jeho dva rizné vrcholy lze po hranach spojit ales-
pon ctyfmi ruznymi cestami, z nichz zddné dvé uz ne-
maji dalsi spole¢ny vrchol,

¢) K mé n hran.

A-1-2

Ukazte, ze existuje nekonecné mnoho prirozenych cisel n
s touto vlastnosti: Cisla 0, 0, 1, 1, ..., n, n lze sefadit do
posloupnosti tak, ze mezi dvéma vyskyty cisla k je praveé k
jejich ¢lent (0 £ k < n).

A-1-3

Je déan ctyfstén ABCD, stiedy dvou jeho protilehlych
hran oznac¢me K a L. Dokazte, Ze kazda rovina prochazejici
body K, L déli dany ctyFstén na dvé casti stejného objemu.
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A-1-4

Predpokladejme, ze délky a, b, ¢ stran trojuhelniku a dél-
ky jeho téznic jsou cela cisla. Dokazte, ze pak a, b, ¢ jsou
sudd a pro délky téznic plati: Bud jsou vSechny délitelné
tfemi, anebo zadna z nich neni délitelna tfemi.

A-1-5

Je-li G graf takovy, ze z kazdého jeho vrcholu vychazi
nejméné 2m — 1 hran, lze vrcholy grafu rozdélit do dvou
disjunktnich mnozin A a B tak, ze z kazdého vrcholu v A
vychézi nejméné m hran do vrcholi v B a z kazdého vrcholu
v B vychéazi nejméné m hran do vrcholi v A. Dokazte.

A-1-6

Najdéte vsechna redlnd ¢isla a s vlastnosti: Jsou-li z, y,
z délky stran trojahelniku, pak

224+ y? 4+ 22 < a(ey + yz + 22).

A-S-1

Jsou dany posloupnosti (an)s%;, (bn)s%;, kde

N —

an

(@+v3)y +@-Vv3r),

m=%((2+\/§)"—(2—\/§)").
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Najdéte cisla ¢, d a p, ¢ tak, aby pro kazdé prirozené n
platily nasledujici vztahy

Any2 = Canyy + day,

pa’ +qbZ = 1.

A-S-2

V roviné je ddno n 2 3 bodi, z nichz zadné tii nelezi

v pfimce. Pak existuje agpoﬁ én(n—l) trojuhelniki s vrcho-
ly v danych bodech, které neobsahuji zadny dalsi z danych
bodi. Dokazte.

A-S-3

Spomedzi stvorstenov ABC' D s danymi dizkami a, ¢ hran
AB, CD a danou vzdialenostou d stredov hran AB, CD
najdite ten, ktory ma najvacsi objem, a tento objem urcte.

A-11-1
Postupnost (a,)i%, je dana vztahmi
ay =1, ap =4,
agkyj = —a; pre 1<j<2k=1,2,...

Vypoéitajte sicet a; + az + ...+ aj ggo-

A-11-2

Spomedzi stvorstenov ABC'D s danymi dizkami a, ¢ hran
AB, CD a danou vzdialenostou d stredov hran AB, C'D
najdite ten, ktory ma najvacsi povrch, a tento povrch urcte.
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A-11-3

Najdéte neymensi ¢, pro které plati: Je-li T ostrothly troj-
thelnik s Ghly «, 8, v, pak existuje rovnoramenny nebo
pravouhly trojthelnik s Ghly o/, 3, v’ takovy, ze

la—o'|Se 1B-F|Se Iv—7|Ze

A-1l1-4
Zjistéte, kolik existuje poradi (a1,as,...,a10) Cisel 1,
2, ..., 10 takovych, Ze a; > a3 (1 £ ¢ £ 5) aa; > azjq
(1<j<a).
A-1ll-1

Postupnost (a,)5%; je dana vztahmi

01:1,

asktj = —a; prel <j<26k=0,1,2,...
Dokazte, ze dand postupnost nie je periodicka.

A-IlIl-2

Néajdite vsetky redlne Cisla «, pre ktoré ma kazdé kladné
rieSenie (z,y, z) nerovnice

22 +y? + 22 < a(zy + yz + 22)

tha vlastnost, Ze existuje trojuholnik so stranami dizok z,
Y, 2.

7



A-1lIl-3

Je dana krychle ABCDEFGH. Najdéte vSechna cisla
P> %n, pro kterd existuje rovina, jejiz prinik se étyfsténem
ABDE je tupouhly trojahelnik s tupym thlem ¢.

A-1lI1-4
Urcete nejvétsi Cislo k 2 0 takové, ze pro vSechny n-tice
T, Ta, ..., £ (n 2 2) nezdpornych &isel plati

(z1+Ta+ ...+ 2.) (2122 4 ToZs 4 ...+ T 1T + Tpzy) 2

2> k(zf:c% + z%zg +... 4 1'721—11'3; + :cf,:z:f .

A-1lIl-5

V zemi jsou kazdd dvé mésta spojena pravé jednou sil-
nici. Kazda z nich je jednosmérnd a je uréena bud jen pro
motorova vozidla, anebo jen pro cyklisty. Silnice se kfizuji
pouze ve méstech (jinde maji mimotroviiové kfizeni). Do-
kazte, ze existuje mésto, z néhoz lze do libovolného jiného
mésta dojet bez zmény dopravniho prostfedku.

A-1l1-6

Dokazte, ze pro kazdé prirozené ¢islo k existuje systém S
dvouprvkovych podmnozin mnoziny {1,2,...,2k} takovy,
ze plati: Jsou-li My, My, ..., Ms libovolné mnoziny takové,
Ze

M;NM; #0 & {i,j} €S,

pak mnozina M; UM, U. ..UMy, obsahuje aspon k? prvki.
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Reseni tloh
A-1-1

Aby byla splnéna podminka b) alohy, musi zfejmé z kaz-
dého vrcholu vychéazet aspon 4 hrany. Oznacime-li v pocet
vrchold takového mnohosténu, plati podle a) pro jeho pocet
hran n nerovnost n 2 2v 2 20 (s¢{tdme-li pocet hran pro
v8echny vrcholy, pocitdme kazdou hranu dvakrat).

Mnohostén K na obr. 16 méa pravé 10 vrchold, 20 hran
a z kazdého vrcholu vychazeji pravé 4 hrany. Zbyva ovérit,

H
7
4
/%— ¥
7|
7
A | B
I
I
// \\ =
D A}
\
\
G
Obr. 16

ze skutecné kazdé dva vrcholy mnohosténu K maji pozado-
vanou vlastnost. Vzhledem k soumérnosti uvedeného mno-
hosténu staci spoéitat, kolik riznych cest vede mezi dvoji-
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cemi vrcholi A, B; A, C; A, D; A, E; A, F; A, G; A, H
aH,G.

Nejmensi hledané n s uvedenymi vlastnostmi je tedy
n = 20.

A-1-2

Pomérné snadno zjistime, ze pro n = 1, 2 takova posloup-
nost neexistuje. Pron = 3 vyhovuje nap¥. posloupnost (0, 0,
3, 1,2, 1, 3, 2). Tézko se podafi najit néjaky obecny pred-
pis, ktery by daval pozadovanou posloupnost pro pfirozené
n jistého tvaru. Ukazeme nékolik navodnych pozorovani:
1. Ze sudych ¢isel 0, 0, 2, 2, ..., 2k, 2k snadno sestavime

posloupnost s pozadovanou vlastnosti:

2%, ..., 4,20, 0, 2, 4, ..., 2k.

2. Prolichacislal,1,3,3,...,2k+1, 2k +1 to jde, kdyz
jedno misto vynechdme:

2k+1, ..., 3,1, %, 1,3, ..., 2k+1.
3. Z posloupnosti ay, as, ..., dap41, @242 pro n dostaneme

yroztazenim“ Cast jiné posloupnosti (s lichymi ¢isly 1,
3, ..., 2n+ 1) takto:

2&1+1, *, 202+1, ¥, ..., k¥, 202n+1+1, *, 2&2n+2+1
Méjme posloupnost (aj, as, ..., aspt2), kterd vyhovuje
pro néjaké n 2 3 (obsahuje ¢&isla 0, 0, 1, 1, ..., n, n). Se-

strojime néasledujici posloupnost, kterd bude vyhovovat pro
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n' =4n+3:

2n, 2n—2, ..., 2, 0,0, 2, ..., 2n— 2, 2n,

n+3, 2a,+1, 4n+2, 2a2+ 1, 4n+1, ...,
2n+ 2, 2asn42+ 1,

dn+3, 4n+2, 4n+1, ..., 2n+3, 2n+ 2

(nejprve podle 1. uspordddme vsechna suda éisla 0, 2, ...,
2n, pak podle 3. roztdhneme danou posloupnost (ay, ...,
@2n+2) a do prislusnych mezer umistime postupné vsechna
Cisladn+3,4n+2, ..., 2n+2 a ta pak jesté jednou zopaku-
Jjeme na konci posloupnosti. Je zfejmé, Ze nova posloupnost
obsahuje kazdé z ¢isel 0, 1, ..., 4n+3 pravé dvakrat, a snad-
no se presvédcime, ze je splnéna i1 podminka Glohy.

Pron = 4-3+ 3 = 16 tak dostaneme posloupnost (6,
4,2,0,0,2,4,6,15,1, 14,1, 13, 7, 12, 3, 11, 5, 10, 3, 9,
7, 8, 5, 15, 14, 13, 12, 11, 10, 9, 8). Z uvedené konstrukce
plyne, ze kazdé prirozené éislo tvaru 4n + 3 pro n 2 3 méa
pozadovanou vlastnost.

A-1-3

Pro rovinu ABL je tvrzeni zfejmé, protoze body C, D
maji od roviny ABL stejnou vzdalenost.

Uvazujme rovinu, ktera protne hranu BD vbodé X a hra-
nu AC v bodé Y (obr. 17). Nyni si sta¢i uvédomit, ze téleso
KXLYAD vznikne z étyfsténu ABLD pridanim ctyfsténu
AKLY aubranim ¢tyfsténu K BLX . Jejich podstavy AK L
a K BL maji stejny obsah, sta¢i tedy dokazat, ze oba Ctyf-
stény maji 1 stejnou vysku, tj. body X a Y jsou od roviny
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Obr. 17

ABL stejné vzdaleny. To je nejlépe vidét, kdyz promitne-
me dany Etyfstén do roviny kolmé na pfimku K L (obr. 18).
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Protoze |AK| = |BK| a |CL| = |DL|, je uvedenym pru-
métem rovnobéznik A’C’B’D’ a rovina KLX se promitne
do pfimky XY’ prochdzejici jeho stfedem K’ = L', pfi-
cemz vzdalenosti bodi X, Y od roviny ABL se promitnou
ve skutecné velikosti. Stejné postupujeme i v pripadé, kdy
uvazovand rovina protind hrany BC a AD. Tim je tvrzeni
dokazano.

Poznamka. Tvrzeni Glohy lze zobecnit na pripad, kdy bo-
dy K a L déli pfislusné hrany v daném poméru. Ve stejném
pomeéru jsou pak i objemy pfislusnych ¢asti ctyfsténu, jez
vzniknou fezem néjakou rovinou prochazejici body K a L.

A-1-4

K feseni potfebujeme vyjadrit délky téznic pomoci délek
stran trojihelniku. Je-li napt. A; stfed strany BC, vyjadri-
me v trojihelniku ABA; délku t, = |AA;| a v trojahelniku
ABC zase délku b pomoci kosinové véty. Vylouéenim cos 3
vyjde vzorec

4t = 2(b* 4+ ¢?) — a® (1)
(dalsi dva dostaneme cyklickou zdménou a — b — ¢ — a).
Odtud hned plyne, ze a? (a tedy i b2, ¢?) jsou suda &isla,
tudiz 1 a, b, ¢ musi byt suda.

Druhé tvrzeni tlohy dostaneme se¢tenim vzorci (1) pro
vSechny tFfi téznice,

4(t2 + 12 +t2) = 3(a® + b% + ¢2).

Vyslednd rovnost fika, ze t2 +¢2 + 2 je ¢islo délitelné tfemi
(protoze ¢isla 3 a 4 jsou nesoudélnd). Nyni si staci uvédo-
mit, ze druhd mocnina kazdého celého ¢isla dava prfi déleni
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tfemi zbytek 0 nebo 1 (podle toho, zda je zdklad sam dé-
litelny tfemi, ¢i nikoli). Odtud plyne, Ze soucet tifi ctverct
je délitelny tfemi, jen kdyZz jsou vsechna tfi ¢isla délitelna
tfemi, anebo zadné z nich neni tfemi délitelné.

Poznamka. Posledni ivahu lze nahradit 1 dalsim vyuzitim
vzorcl (1). Odectenim dvou z nich vyjde napf.

A(t; — 1) = 3(* — a?),

takze hned vidime, ze &isla t2, tZ (a tedy i &islo t2) davaji
stejny zbytek (mod 3), a tedy vSechna tfi &isla t2, ¢2, ¢2
maji stejny zbytek (mod 3).

A-1-5

Hleddme vlastné takovy disjunktni rozklad V = AUB
(AN B = 0) mnoziny V vrcholi daného grafu G, aby mezi
mnozinami A a B bylo ,mnoho hran“. Vezméme proto ze
vSech moznych rozkladi ten, pro ktery je prislusny pocet
hran co nejvétsi. Takovy rozklad ma uz pozadovanou vlast-
nost, protoze kdyby z néjakého vrcholu v € A vedlo do B
nejvyse m — 1 hran, dostali bychom pfemisténim v z A do
B novy rozklad A\ {v}, BU{v}, ktery bude mit mezi obé-
ma mnoZinami vice hran, protoze v je podle predpokladu
s ostatnimi vrcholy v A spojen asponi m hranami.

A-1-6

Predpoklad, ze z, y, z jsou délky stran trojuhelniku, zna-
mena, ze plati

z4+y—2>0, z—y+2z>0, —-z+y+2>0 (1)

84



Nerovnost, kterd nas zajima, ma jednu charakteristickou
vlastnost: je symetrickou funkei proménnych z, y, 2 (tj. pfi
jejich libovolné permutaci se nezméni). Z (1) dostaneme sy-
metrickou nerovnost tak, ze se¢teme souciny kazdych dvou
vyraza v (1), takze

(z+y—2)(z-—y+2)+(ez+y—-2)(-z+y+2)+
tE-y+2)(-z+y+2)=
=2zy+yz+22)— (22 + >+ 2%) > 0,

tj. uvazovana nerovnost plati pro kazdé a 2 2.
Podivejme se, co se stane pro ¢ = y = 1 (pak musi byt
0 < z < 2). Vyjde nerovnost

22— 2z-a+2Z£0, (2)

ktera pro a < 2 jisté nebude platit, vezmeme-li z > 0 do-
state¢né malé. Kvadraticky trojélen (2) ma totiz pro a < 1
zaporny diskriminant (tj. je vidy 22 — 2az — a + 2 > 0)
apro 1 £ a < 2 jeho kofeny 21, z2 splnuji nerovnosti 0 <
< 71 < a < 73 (takze pro 0 < z < z; bude zase 2% — 2az —
—a+2>0).

Resenim tlohy jsou viechna « 2 2.

Jiné FeSeni. Polozme
2a=xz—y+z2, 2b=zx+y—=z, 2c=-z+y+z,

neboli
z=a+b, y=b+ec, z=c+a.
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Podle predpokladu jsou x, y, z délky stran trojahelniku,
takze a, b, ¢ > 0. Dosazenim do dané nerovnosti dostaneme
po Gpravé nerovnost

(2 —a)(a® +b>+c*) 4+ (2 —-3a)(ab+ bc+ca) £0, (3)

ktera zfejmé plati pro kazdé a 2 2.
Uvazujme ted o < 2 a polozme a = b = 1; pak
(2 —a)(a® 4+ b2 + ¢?) + (2 — 3a)(ab + be + ca) =
=(2—a)c? +2(2-3a)c+6 - 5a.

Protoze 2 — a > 0, vime z vlastnosti kvadratické funkce, ze
existuje kladné ¢islo ¢o takové, ze

(2 — a)c 4+ 2(2 = 3a)co + 6 — 5a > 0.

Cislaa = b =1, ¢ = ¢o tedy nespliiji nerovnost (3), a proto
ani Cislaxz = 2,y = z = 1+c¢o, Jez vyhovuji trojihelnikovym
nerovnostem, nespliuji pozadovanou nerovnost.

A-S-1

Dosazenim do pozadovaného rekurentniho vztahu (a po
vydéleni 1) dostaneme rovnost

(T+4V3)(2+V3)" + (T-4V3)(2 - V3)" =
=2+ V3)2+ V3" +c(2-V3)(2- V3" +

+d2+V3)" +d(2 - V3)" =

=(2c+d+cV3)(24 V3" + (2¢ +d—cV3)(2 - V3)".
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Porovnanim obou stran ziskaného vztahu dostaneme, Ze:
predpokladana rovnost je splnéna proc =4, d = —1.
Protoze

((2+\/§)"+(2—\/§)") (7+4V3)" +(T— 4/3)" +
= (@+v3yr-(- \/_)

plyne odtud rovnost

4a2 - 3b2 =4, . ai—%bi:L

Druhému pozadavku tlohy tedy vyhovuji ¢isla p = 1,
¢=-5

Jiné FeSeni dostaneme, pokud mdame zékladni znalosti
z teorie diferenc¢nich rovnic. Odtud plyne, Ze posloupnos-
ti (an) odpovid4 charakteristickd rovnice A2 —4X +1 =0
(jeji kofeny jsou A; o = 2 ++/3), takie pislusny rekurentnf
vztah, ktery uvedena posloupnost spliiuje, je

Any2 = 4an+l — Qn,

tj.c=4,d=—-1.

Rovnéz je mozno spocitat prvni étyfi cleny posloupnosti
a; = 2, a3 = 7, a3 = 26, ag = 97 a pro neznama dcisla
sestavit dvé linearni rovnice. Jejich fesenim dostaneme ¢ =
=4, d = —1. Zbyva ovSem dokazat (nejlépe matematickou
indukci), ze uvaZovana posloupnost spliiuje ziskany vztah
pro kazdé prirozené n. Podobné miizeme vyfesit 1 druhou
Cast tlohy. Pro n = 1 a n = 2 dostaneme dvé linearni
rovnice.
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A-S-2

Z danych n bodu vezméme libovolné dva body X, Y.
K nim z danych bodt uréime treti bod Z tak, aby vyska
trojihelniku XYZ na stranu XY byla co nejmensi. V tako-
vém pripadé uz nebude trojuhelnik XYZ obsahovat zadny

Jiny z danych bodi. Ke kazdé z (g dvojic danych bo-

di jsme tak nasli jeden ,,prazdny“ trojahelnik, pfitom jsme
ale mohli kazdy takovy trojuhelnik pocitat nejvyse tfikrat

. :f & 1
(pro kazdou stranu jednou). Existuje tedy aspon g(;) =

1 - e y P
= = n(n — 1) trojahelniki s pozadovanou vlastnosti, coz

Jjsme méli dokazat.

A-S-3

Oznacme K, L stfedy hran AB, C'D uvazovaného ctyft-
sténu. Objem ctyfsténu ABC D pak muzeme spocitat tak,
ze ho rozdélime rovinou ABL na dva ctyistény ABLC
a ABLD (obr.19). Pro objem V(ABC D) uvazovaného Ctyi-
sténu pak zfejmé plati

V(ABCD) <

1 1
- JAKL|- D] = -
5 |AB|-|KL|-|CD| 5 ade

QO =

s rovnosti, pravé kdyz KL je vyskou trojihelniku ABC
a CD je kolm4 na rovinu ABL, coz je pravé tehdy, jsou-li
obé mimobézné hrany AB a C'D navzajem kolmé a zaroven
obé kolmé na spojnici svych stfedi. Objem odpovidajiciho
CtyFsténu pak bude éacd.
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A-I1l-1

Z¥eymé je azg = —1, aqy = —4, takze plati a; + as + az +
4+ a4 = 0. Z toho, jak je uvedena posloupnost definovana,
snadno plyne, Ze soucet prvnich 4n ¢lent posloupnosti je
pro libovolné prirozené n nulovy: pro kazdé cislo n tvaru
n = 2% (k > 0) to zfejmé plati, nebot

a1+ ...+a4.2k:
:(11+(lg+...+a2k+x-+—(12k+1+1+...+(12k+2:
:a1+a2+...+a2k+1—(a1+a2+...+a2k+1):0.

Predpokladejme navic, ze soucet a; +as+. . .+as,, je nulovy
pro libovolné m < n (tj. i pro m = 0, kterému odpovida
prazdny soucet). Pro kazdé n 2 1 a pro vhodné k 2 2 pak
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miizeme psat 4n = 2¥ + 4m, kde 0 £ m < n, takze
aitasz+.. .+as, = ar+az+. . +agk —(a1+az+. . .+a4m) =0

podle indukéniho pfedpokladu. Podle definice dané po-
sloupnosti tedy plati

ay+az+...+ajgo =

= aj989 + @1 990 = —Ages5 — G966 = A453 + Aa54 =
= —aj197 — @198 = Ggg + G790 = —A5 — Gg = A1 + a2 = 5.

Oznaéme K a L stfedy hran AB, C'D uvazovaného &tyf-
sténu ABCD. Pro obsah stén ABC a ABD zfejmé plati
(obr.20) S(ABC) < laty, S(ABD) < iaty, kde t; =
= |KC|, t = |KD| jsou délky pfislusnych téZnic. Rovnost
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v obou nerovnostech nastane, pravé kdyz obé téznice CK,
DK budou kolmé na hranu AB, tj. pravé kdyz bude ro-
vina CDK kolméa na AB. Pro &ast povrchu uvazovaného
Ctyfsténu tak dostavame odhad

S(ABC) + S(ABD) < %(tl + ). (1)

Z kosinové véty pro trojihelniky CKL a DKL plynou
rovnosti

2

i = T +d* — cdcos |3 K LC|,

2

i = T +d? + cdcos|3KLC)|,
takze podle znamé nerovnosti (z + y)? = 2% + y + 22y <
< 2(2? + y?) dostavame nerovnost

(t +t2)? < 2(t2 +12) = % + 4d?,

v niZz nastane rovnost, pravé kdyz t; = t,. Ze vztahu (1)
tak vychazi odhad

Ve 4 4d2.

V nerovnosti (1) zfejmé nastane rovnost, pravé kdyz jsou
obé téznice t; 1ty kolmé na AB, tj. pravé kdyz je rovina
CDK, a tedy 1 hrana C'D kolma na AB. Z rovnosti t; = t,
pak navic plyne, ze je KL L CD.

Zcela analogicky odvodime nerovnost

vVa? + 4d2.

S(ABC) + S(ABD) <

N

S(CDA) + S(CDB) £ %
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Podle predchozich ivah nastane v obou poslednich ne-
rovnostech rovnost, pravé kdyz jsou obé hrany AB, CD
navzajem kolmé a zaroven jsou obé kolmé na svoji stfedni
pficku K L. Takovy ctyfstén ABC D pak ma povrch

g\/ﬁ + 4d? + gx/«ﬂ + 4d2.
A-11-3

Uvazujme ostrothly trojihelnik s Ghly a < # < v a &islo
€ > 0 takové, ze zménou libovolného z Ghlu «, 3, v o nejvyse
€ nedostaneme ani pravouhly, ani rovnoramenny trojahel-
nik. Pak soucasné plati

¥y<90°—¢, B—a>2, v—p0>2.
Odtud plyne
B<y—2<90° -3¢, a<f—2<90° -5,
a protoze a + 8 + v = 180°, vychazi
180° < 90° — 5e + 90° — 3¢ + 90° — ¢,

tedy 9¢ < 90°, € < 10°.

To znamen4, ze pro kazdé € 2 10° uz mame zarucenu exi-
stenci pravotihlého ¢i rovnoramenného trojihelniku, jehoz
odpovidajici Ghly se od danych lisi nejvyse o €. A ¢ = 10°
je skutecné nejmensi éislo s touto vlastnosti, jak je vidét
z trojahelniku s Ghly o = 40°, 8 = 60°, v = 80°.
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A-1I1l-4

Predpokladejme, ze pofadi (ai,az,...,a10) spliuje uve-
dené nerovnosti. Cisla ay,as, ..., a0 pak mizeme uspora-
dat do nésledujiciho schématu

a
' N
a as
7N 7N\
ay as ae ar

7N N\

as ag ajo

v némz a; — a; znamena, ze a; > a; (relace > je ovsem
tranzitivni).

Je jasné, ze musi byt a; = 10. Déle uvazujme jednu z (g)
moznosti, jak zbylych devét cisel 1, 2, ..., 9 rozdélit na
dvé disjunktni mnoziny Sesti a tii ¢isel. Pro kazdé takové
rozdéleni jsou hodnoty as a az jednoznaéné urceny jako
maximalni prvky pfislusnych podmnozin, pro volbu hodnot,
ag, a7 pak mame dvé moznosti, zatimco &isla ay, as, ag, ag,
ajo musime jesté rozdélit do dvou disjunktnich mnozin se
tfemi a dvéma prvky (to jde (g) zplsoby). Pro kazdé takové
rozdéleni ndm pak zbyvaji pravé dvé moznosti jak urcit ag
a ag (prvky as, as, a tedy 1 ajo jsou takovym rozdélenim uz
jednoznacné urceny!).

Celkem tedy existuje

() () o-om

riznych poradi, kterd splnuji pozadované podminky.
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Jiné FeSeni (podle P. Tomana, 4. roénik GWP, Praha,
a R. Kubackiho, 3. roénik GMK, Bilovec). Uvazujme vSe-
chna mozna potadi (aj, as, ..., a10) deseti &isel 1,2, ..., 10,
kterych je 10!. Téch, kterd maji na prvnim misté nejvétsi
islo 10, je 9! = 11—0 10!. Ze vsech poradi s a; = 10 jich je
zfejmé % = 5!/6! takovych, zZe a, je mezi &isly aq, as, as, ag,
ag, ajp nejvétsi. Podobné uvazujeme i pro aq > as, ag (tyto
dvé nerovnosti spliuje praveé % vsech vyhovujicich pofadi),
pro as > ajo (% dosud vyclenénych potadi) a koneéné pro
asz > ag, ay (% dosud vyclenénych poradi). Celkem tedy je
takovych poradi

1 1111
... = .
0633 3 10! = 3360
A-Illl-1
Pro j = 2% dostdvdme, Ze agy1 = —agx, tedy age =

= (—1)*. Pfedpokladejme, ze dana posloupnost ma periodu
p, tj. ze pro kazdé pfirozené m plati a;nqp = ay,. Vezméme
k takové, ze 2F > p. Potom

a2k+p = Qgk = (—1)k, a2k+1+p = Qgok+1 = ('—1)k+1,

tedy asky, # agx+14,. Piitom ale podle definice posloup-
nosti je pro p < 2F

a2k+p = —G,p = azk+1+p.

Uvedend posloupnost tudiz nemize byt periodicka.
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A-1Il -2

Polozime-li z =y = 1 a z = 2, vyjde 6 < 5a, takze dand
nerovnost bude splnéna pro vsechna redlnd &isla o 2 g.
Aby kazdé kladné feseni uvazZované nerovnice davalo strany
trojihelniku, musi proto platit o < g.

UkéaZeme, ze pro a < g ma kazdé kladné feseni uvede-
né nerovnice pozadovanou vlastnost. Kdyby nerovnice méla
takové kladné feseni (z, y, z), které by nespliiovalo trojihel-
nikové nerovnosti, mizeme bez ztraty obecnosti pfedpokla-
dat, Ze je t = z — (z + y) 2 0 (nerovnice je symetricka
v proménnych z, y, z). Dosazenim do ptivodni nerovnosti
postupné pro a < g dostaneme

6
24y +(z+y+t)? < 5(xy+y(x+y+t)+z(x+y+t)),

4 4 8 4
t2+g:v2+gy2—g:cy+gt(x+y)<0,

t2+§(x—y)2+ %t(:c+y) <0,
coz nemize platit, nebot na levé strané nerovnosti je kladné
Cislo.

Pozadovanou vlastnost tedy maji vSechna ¢isla a < g.

Jiné FeSeni (podle M. Kubecka, 3. roénik GWP, Praha).
Pokud a 2 £, ma uvaZovana nerovnice kladné feseni z =
=y =1, z = 2, pro které trojihelnik zfeymé neexistuje.

Na druhé strané, pokud pro néjaka kladna cisla z, y, z
neexistuje trojihelnik se stranami délek z, y, z, mizeme
predpokladat, ze je ¢ £ y £ z, a pfitom z +y — 2z £ 0.
Umocnénim této nerovnosti dostaneme

22422 4+ y? 2 2z2 4 2yz — 22y,

95



zaroven ale plati

427 2 42(z + y),
4(z* + %) 2 4- 2y,

coz dohromady dava nerovnost
5(z2 + y? + 22) 2 6(zy + yz + 22).

Odtud vidime, ze takova &isla z, y, z nejsou fesenim uvazo-
vané nerovnice pro a < g.

A-1lIl-3

Protoze zadna ze stén ctyfsténu ABDE neni tupouhly
trojihelnik, mizeme predpokladdat, Ze rovina fezu g neni
s zaddnou jeho sténou rovnobézna. PFitom dvé rovnobéz-
né roviny ¢ || ¢/, pokud pfislusny pas neobsahuje zadny
z vrcholii uvazovaného Ctyfsténu, davaji v fezu podobné
Gtvary, takze bez Gjmy na obecnosti mizeme dale predpo-
kladat, Ze rovina fezu p prochéazi nékterym z vrcholi A nebo
B (vrcholy B, D, E jsou zaménitelné).

Budeme vyuzivat nasledujicich vlastnosti kolmého promi-
tani Ghld, jez se snadno odvodi pomoci kosinové véty (obé
vlastnosti jsou struéné dokdzany v poznamce).

Pfi promitani do roviny obsahujici jen jedno rameno thlu
se tupy uhel zvétsi a ostry thel se zmensi.

Tupy thel se pfi promitani do roviny protinajici obé jeho
ramena zvetsi.

Uvazujme tedy rovinu g prochazejici vrcholem A a proti-
najici podstavu BDE v tseéce XY (obr.21). Protoze thel
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XAB je ostry, je ostry i hel XAY. Bez (ijmy na obecnosti
muzZeme zfejmé predpokladat, ze |AX| 2 |AY|. Z uvede-
nych vlastnosti promitani nyni plyne, ze Ghel AYX je tu-
py, jen kdyz je tupy i Ghel AYB, pfi¢emz |JAYB| < %n.
Ze spojitosti snadno uvazime, ze pro kazdé ¢ z intervalu
%n < p < %n existuje rovina g prochdzejici vrcholem A,
jejiz prinik se ¢tyisténem ABDE je tupothly trojihelnik
s thlem ¢. (Je-1i Y vnitfni bod ase¢ky BE a bod X’ uvnitf
AB takovy, ze |JAYX'| = %n, pak pro odpovidajici bod X
na BD, jehoz je bod X’ primétem do roviny ABE, bude
rovnéz |[JAYX| = in. Pro body Z uvnitf XB bude tupy
Ghel AYZ nabyvat libovolné hodnoty mensi nez |4 AYB|.)

A

Obr. 22

Uvazujme ted rovinu p prochazejici vrcholem B. Pokud
rovina ¢ protind obé kratsi hrany uvazovaného Ctyfsténu
(obr.22), dostaneme v Fezu ostrothly trojthelnik, proto-
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ze pruméty uvazovanych hli do roviny ABD jsou vesmés
ostré nebo pravé.
Protina-li rovina ¢ napf. hrany AD a DE v bodech X
a Y, oznaéme Y’ kolmy primét bodu Y do roviny ABD
(Y’ lezi na hrané AD). V kazdém pripadé ale je (obr.23)
jak [§Y'XB| < 3r, tak i [ XY'B| < 2r, takie i pfipadny
3

tupy thel fezu BXY je mensi nez §m.

Obr. 23

Poznamka. Dokazeme jesté vlastnosti kolmého promitani
Ghld pouzité v predchozim feseni. Podle kosinové véty pro

trojahelniky ABC, A’ B'C" plati (obr. 24)

c? = a? + b? — 2abcosy,
2 +d*=a?+d*+ b2 — 2b\/a? + d?cos ',

takze

acosy = Va2 +d?cosy’.
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Odtud plyne, ze

1. jelli0<y< 3n, pak cosy >cosy >0a0<y<y <
< -;-n,

2. jeliy = %n, pak v/ = %n,

3. jelli n <y <, pak |cosy| > |cosy|a in<y <y <

< |

Obr. 24 Obr. 25
Podobné pro situaci na obr. 25 dostaneme
¢? = a? + b% — 2abcosy

a zaroven

=a?+d>+ 6> +d> —2va? + d2 /b2 + d2 cos v,

takze

abcosy = Va2 + d2 \/b2+d2cos7’ —d

To znamen4, Ze pro in < 7' je

—abcosy = Va2 + d2 /b2 + d? | cosy'| + d* > ab| cosv'|,

99



neboli

T /
7> 3 a | cosy| > | cosv'|,

tj.y > 7.

Jiné Feseni. Kazdému trojihelnikovému fezu uvazované-
ho ctyfsténu odpovida trojboky jehlan. Je-li jeho vrcholem
bod A, je jeho podstavou (fezem) ostrothly trojihelnik,
protoze kolmym primétem kazdého jeho ihlu je pravy thel.
Zbyva tedy moznost, ze vrcholem odfiznutého jehlanu je je-
den z vrcholi B, D, E. Tento pripad vysetiime obdobné
jako v pfedchozim feseni.

A-1ll-4

Vzhledem k tomu, Ze uvazovana nerovnost se nezmeéni,
.y

kdyz misto kazdého z; piseme — (1 < ¢ £ n) pro né&jaké

1
a
kladné a, mizeme pfedpokladat, ze je ¢y +zo+.. .+ 2, = 1.

Pro n = 2 pak bude mit uvazovana nerovnost tvar

. 1
z1z2(1 — kzy29) 20, t]. r1zy S %

(pokud zj;z2 > 0). A protoze pro nezdporna Cisla z1,z
takova, ze 1 + z2 = 1, plati

1 1
Vaizs < 5(1‘1 +zy) = 5

jevzdy z1ze < % s rovnosti pro £; = x5 = % Odtud plyne,
ze je k £ 4.

Stejny odhad ovsem dostaneme i pro libovolné n 2 2,
kdyz polozime z3 = ... =z, = 0.
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Ukéazeme ted, Ze uvazovana nerovnost plati pro k = 4
a pro libovolné n > 2. Protoze

via; < (e +29) € (3 tzat . ten) =

je 1 —4zxiz; 2 0, takze je také
r1z2(1—-4z129)+xoz3(1—4z023)+. . +zpz(1—42,21) 2 0.

A to je nerovnost, kterd je pro £ = 4 s danou nerovnosti
ekvivalentni.

A-1lIl-5

Oznacime-li n pocet mést v zemi, je tvrzeni pro n =
= 2 zfejmé. Predpokladejme tedy, Ze uvedené tvrzeni plati
pro vSechna pfirozend cisla mensi nez n, a uvazujme zemi
s n mésty uy, us, ..., U,. Méstu s pozadovanou vlastnosti
budeme fikat ,hlavni“. Oznac¢me jako v hlavni mésto mést
Uy, Uz, ..., Up—1 a uvazujme mnozinu A téch mést, do nichz
se da z v dojet motorovym vozidlem, a mnozinu B mést, do
nichz se d4 z v dojet na kole. Navic mizeme pfedpokladat,
ze u, nepatii do zddné z mnozin A, B (jinak bychom byli
hotovi), takze z u,, do v vede jednosmérn4 silnice (bez ztraty
obecnosti muzeme predpokladat, Ze je to napf. cesta pro
cyklisty).

Oznaéme nyni w hlavni mésto mnoziny (A \ B) U {u,},
v niz je nejvyse n — 1 mést. Pokud w = u,, jsme hotovi,
protoze z u, se lze dostat i do libovolného mésta mnoziny
B. Pokud w # u, a z w se lze do u, dostat na kole, jsme
rovnéz hotovi, protoze pak je w hlavni mésto i1 vSech mést
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v B. Pokud ovsem vede z w do u, cesta jen motorovym
vozidlem, Ize se do u,, dostat motorovym vozidlemi z mésta
v (pfes w), takZe v je hlavni mésto vSech mést uy, u,, ...,
Up.

Jiné FeSeni (podle V. Bira, 1. ro¢énik GAM, Bratislava).
Oznacime-li n pocet mést v zemi, jsou pfipady n =2 an =
= 3 jasné (bud z jednoho mésta vedou cesty do zbylych
dvou, nebo jsou cesty mezi tfemi mésty usporadany cyklicky
a pak aspon dvé z nich jsou stejného druhu).

Predpokladejme, ze tvrzeni Glohy plati pro libovolné k <
< n—1, a uvazujme n mést my, mo, ..., m,. Vynechdme-li
mésto m; (1 £ i < n), bude mezi zbylymi n — 1 mésty exis-
tovat jedno ,hlavni mésto“ h;. Pokud pro néjaké dva indexy
i # j dostaneme h; = h;, jsme hotovi, protoze takové mésto
je hlavnim méstem vSech uvazovanych mést.

Budeme tedy déle predpokladat, ze vsechna ,hlavni®
meésta hy, hy, ..., h, Jsou vesmés rizna a jsou pritom ozna-
cena tak, Ze hy je hlavni mésto, kdyz vynechame h,, hs je
hlavni mésto, kdyz vynechame h,, atd. az nam vyjde, ze hy
je hlavni mésto, kdyZ vynechdme néjaké h,, (3 £ m < n).
Dostaneme tak ,cyklus“, v némz neexistuje jednosmérna
silnice z h; do h;_; (jinak bychom byli hotovi), ale naopak.

Bez Gjmy na obecnosti miizeme ted predpokladat, ze sil-
nice vedouci z h; do hj je uréena pro cyklisty. Z hy do hy,
pak musi vést cesta pro motoristy (jinak by existovala cesta
z hy do h,, a byli bychom hotovi) a ze stejného divodu je
existujici silnice z h,, do h; uréena pro cyklisty (obr. 26).
Tuto Gvahu nyni zopakujeme (z hy do k-1 musi vést cesta
pro motoristy, protoze jinak by h,, bylo hlavnim méstem,
takze z h,,—1 do h; vede cesta pro cyklisty, atd.) celkem
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(m — 3)-krat a zjistime (pokud jsme nenasli hlavni mésto
Jiz dfive), ze hs je hlavnim méstem vSech uvazovanych n
mést.

Jiné Feseni (podle M. Konecného, 3. ro¢nik G, Brno, kpt.
Jarose). Pfedpokladejme, Ze tvrzeni plati pro libovolné k <
< n—1 a uvaZujme situaci s n mésty. Stejné jako v predcho-
zim FeSeni pfifadime kazdému méstu ,hlavni mésto“ zby-
lych n — 1 mést (indukéni predpoklad). Kdyby toto zobra-
zeni mnoziny {1,2,...,n} do mnoziny {1,2,...,n} nebylo
permutaci, pak zfejmé najdeme hlavni mésto véech n mést.

Je-li uvedené pfirazeni permutaci, existuje v ném cyklus
hy = hy — ... = hy — hy, ve kterém je h; hlavnim
méstem vSech n — 1 mést vyjma hj_; a v némz tedy vidy
existuje jednosmérna silnice z h; do hj4;. Kdyby vsechny
uvedené silnice byly stejného druhu, je jasné, Ze libovolné
z mést hy, hy, ..., hy, by bylo hlavni. MiZeme tedy pfedpo-
kladat, ze existuji tFi mésta h;, hit1, hiy2 (indexy poéitime
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mod m) takovd, ze napf. z h; do h;4, vede silnice pro cyk-
listy a z hiy1 do hit2 pro motoristy (obr.27). Z h;4o pak
existuje néjaka cesta do h; — je-li priijezdnd pro cyklisty, je
hlavnim méstem h; 42, je-li urena pro motoristy, je hlavnim
méstem h; .

Obr. 27

A-1ll1-6

Uvazujme 2k bodi Ay, A, ..., Aox v roviné, z nichz zad-
né tfi nelezi v piimce. Pro kazdou dvojici {7, j} € S spojme
odpovidajici body tseckou. Pokud takto nedostaneme zad-
ny trojihelnik, budou mit libovolné tfi mnoziny M;, M;,
Mj prazdny prinik (jinak by odpovidajici body musely byt
spojeny UseCkami). Mizeme tedy kazdé dvojici {i,j} € S
prifadit prvek m;; € M; N M;, ktery uz v Zadné jiné z mno-
zin My, My, ..., My nelezi. Sjednoceni My UMy U ...UMy
tedy obsahuje alespon tolik prvkl co mnozina S.

Vezmeme-li nyni za mnozinu S mnozinu téch dvojic
{1,7} C {1,2,...,2k}, pro néz je soulet i + j lichy, bude
mit S pravé k? prvki, pfi¢emz odpovidajici tisecky nebu-
dou tvorfit zadny trojahelnik. Tim je dikaz hotov.
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Jiné FeSeni (podle P. Hlinéného, 4. roénik GMK, Bilovec).
Hledany systém je napf. mnoZina

S={{i,j}: 1<i<k, k+1<j< 2}

V takovém pripadé jsou mnoziny M;, Ms, ..., My po
dvou disjunktni a totéz platii o mnozinach Mgy, ..., Mag.
Pfitom kazda z mnozin My, M, ..., My ma neprazdny pra-
nik s kazdou z mnozin Mgy, ..., Mg, a protoZe mnoziny
Mi41, - .., Mo jsou navzdjem disjunktni, musi byt |M;| 2 k
pro vSechna 1 £ i < k. Celkem tedy je

M UM U...UMg| 2 IMjUMaU...UMg| =
= M|+ Mo +.. . 4+ M| 2 k- k=K%
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Kategorie P

Texty uloh

P-1-1

Napiste co nejlepsi algoritmus, ktery vytiskne vsechny
ruzné rozklady zadaného prirozeného ¢isla N na soucty pri-
rozenych Cisel. Rozklady nepovazujeme za rizné, jestlize se
lisi pouze poradim séitancl. Zdivodnéte spravnost algorit-
mu.

Napf. pro N = 5 algoritmus vytiskne tyto rozklady (v li-
bovolném poradi a s libovolnym pofadim scitanci v jednot-
livych rozkladech):

5=1+1+1+4+1+1
5=24+14+1+1

5=2+2+1
5=3+1+1
5=3+2
5=4+1
5=5
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P-1-2

V roviné je pevné rozmisténo n bodu oznaéenych ¢isly 1,
2, ..., n. Vzadaném poli D[1..n,1..n] jsou uloZeny jejich
vzijemné vzdalenosti. Hodnota D¢, j] udava vzdalenost bo-
du 7 od bodu j. Déle je dano ¢islo t. Zapiste algoritmus,
ktery zjistuje, zda lze uvazovanych n bodi rozdélit do dvou
skupin tak, aby vzdjemné vzdalenosti viech bodi patficich
do stejné skupiny byly mensi nez ¢. Pokud takové rozdéleni
bodi je mozné, algoritmus vypiSe jedno libovolné pfipustné
rozdéleni. Zdivodnéte spravnost algoritmu.

P-1-3
Je dan nésledujici program:
PASCAL BASIC
var A, B, C, D, E, F: integer;
I, N: integer;
begin
read(N); 10 INPUT N
A:=-1; 20 LET A = -1
B :=0; 30LETB=0
D :=0; 40 LET D=0
E :=0; 50 LETE=0
for ] :=1to N do 60 FORI=1TON
begin
A:=A+2; TOLET A=A +2
B := B+ A; S80LETB=B+ A
C:=BxI; OLETC=B*I
D:=D+C; 100LETD=D + C
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E:=E+1I 110 LETE = E 4+ 1

F:=ExE, I120LETF=E*E
end; 130 NEXT 1
writeln(D); 140 PRINT D
writeln(F); 150 PRINT F
end.

Vstupem programu je jedno celé &islo (hodnota promén-
né N).

a) Odvodte a dokazte vztah mezi hodnotami proménnych
D a F po ukonceni vypoctu.

b) Napiste program, ktery bude poéitat vysledné hodno-
ty proménnych D a F' v zavislosti na vstupni hodnoté pro-
ménné N co nejrychleji. Rychlost vypoétu obéma zptsoby
(tj. zde uvedenym zpusobem a vasim vlastnim programem)
porovnejte z hlediska poctu provedenych aritmetickych ope-
raci.

Poznamka. Proménné A, B, C, E a [ jsou pomocné, na
jejich hodnotach po ukonceni vypoctu nezalezi.

P-1-4

Zasobnikovy pocitac

Nejprve se seznamime se zasobnikovym pocitacem a s je-
ho programovacim jazykem. Zasobnikovy pocitaé pracuje
vyhradné s celymi ¢isly. Oproti béznym pocitacim ma znac-
na omezeni v moznostech prace s pamétovymi bunkami. Ma
sice pamét dostatecné velikosti, ale celd jeho pamét je orga-
nizovana zasobnikovym zptisobem. Zasobnik ma neomeze-
nou hloubku, ukladaji se do néj cel4 &isla. Cisla se v zasobni-
ku uchovavaji v tom poradi, v jakém do néj byla vlozena. To
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Cislo, které bylo do zasobniku vlozeno jako posledni, je vzdy
na vrcholu zasobniku. Pouze ¢islo nachazejici se na vrcholu
zasobniku je v danou chvili dostupné pro cteni nebo smaza-
ni. Po smazani ¢isla z vrcholu zasobniku se novym vrcholem
zasobniku stava cislo ulozené pod nim. Na zacatku prace je
zasobnik prazdny. Kromé zasobnikové paméti ma pocitac
ulozit jedno celé ¢islo. V registru lze provadét zakladni celo-
Ciselné aritmetické operace, prostfednictvim registru muze
pocitac ¢ist Cisla ze vstupu a zapisovat ¢isla na vystup.

Jednoduché prikazy
Zakladnim operacim zasobnikového pocitace odpovidaji
jednoduché prikazy jeho programovaciho jazyka:

IN ze vstupu je precteno jedno c¢islo a je ulozeno do
pracovniho registru (pokud pfi provedeni pri-
kazu IN jiz na vstupu zadné cislo neni, dojde
k béhové chybé)

ouT ¢islo z pracovniho registru je zapsano na vystup,
obsah registru zistane nezménén

CONST n  do pracovniho registru se ulozi ¢islo ,n“, kte-
ré je v instrukci CONST uvedeno jako piimy
operand (jednd se o jediny prikaz s primym
operandem)

PUSH ¢islo z pracovniho registru je ulozeno na zasob-
nik (stane se novym vrcholem zésobniku), ob-
sah registru zistane nezménén

POP odstrani se jedno ¢islo ze zdsobniku (Eislo
z vrcholu zasobniku); je-li pfi provedeni pfikazu
POP zasobnik prazdny, dojde k béhové chybé
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TOP

EXCH

ADD

SUB

MUL

DIV

¢islo nachazejici se na vrcholu zasobniku je vlo-
zeno do pracovniho registru, obsah zasobniku
zistane nezménén (je-li pfi provedeni prikazu
TOP zasobnik prazdny, dojde k béhové chybé)
provede se vzajemna vyména Cisel ulozenych
v pracovnim registru a na vrcholu zasobni-
ku (je-li pfi provedeni piikazu EXCH z4sobnik
prazdny, dojde k béhové chybg)

aritmetickd operace séitani: k ¢islu ulozenému
v pracovnim registru se pficte Cislo z vrcholu
zasobniku, vysledny soucet se ulozi do registru,
obsah zasobniku zlistane nezménén
aritmetickd operace odéitani: od ¢isla ulozeného
v pracovnim registru se odecte Cislo z vrcholu
zasobniku, vysledny rozdil se ulozi do registru,
obsah zasobniku zistane nezménén
aritmetickd operace ndasobeni: cislo ulozené
v pracovnim registru se vynasobi ¢islem z vrcho-
lu zdsobniku, vysledny souéin se ulozi do regist-
ru, obsah zasobniku zlistane nezménén
aritmetickd operace celoCiselné déleni: ¢islo ulo-
zené v pracovnim registru se celociselné vydéli
¢islem z vrcholu zasobniku, vysledny celociselny
podil (tj. celd ¢ast z podilu obou &isel) se ulozi
do registru, obsah zasobniku zlistane nezménén

Podminky
Zasobnikovy pocita¢ dale muze provadét testy, kterym
odpovidaji jednoduché podminky jeho programovaciho ja-

zyka a jejich negace. Tyto podminky lze pouzit pouze na
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misté podminky v nékterém slozeném pfikazu. Existuji na-
sledujici jednoduché podminky:
ZERO  cislo ulozené v pracovnim registru je rovno nule

POS ¢islo ulozené v pracovnim registru je kladné
NEG cislo ulozené v pracovnim registru je zaporné
EMPTY zasobnik je prazdny

EOF na vstupu jiz neni zadné ¢islo

Negaci jednoduché podminky zapisujeme klicovym slo-
vem not pred jménem jednoduché podminky. Tedy napf.
not ZERO znamen4, ze ¢islo v registru je nenulové.

Slozené prikazy

Program v programovacim jazyce zasobnikového pocitace
Jje tvofen posloupnosti pfikazi oddélenych mezerami. Kaz-
dy pfikaz je bud jednoduchy (jedendct vyse uvedenych za-
kladnich operaci), nebo slozeny. Slozené prikazy se vytvareji
pomoci téchto ridicich konstrukei:
if (podminka) then (pfikaz)  nelplny podminény piikaz
if (podminka) then (pfikaz1)

else (pfikaz2)  Gplny podminény piikaz

while (podminka) do (pfikaz) while-cyklus
begin

(pfikaz 1)

(pfikaz 2)

end prikaz slozeny
z posloupnosti prikazi
Vyznam podminéného prikazu, cyklu i pfikazu slozeného
z posloupnosti prikazii je obdobny jako vyznam stejnojmen-
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nych prikazi v Pascalu. Na misté prikazu muze byt uveden
jednoduchy prikaz nebo opét néktery slozeny prikaz.
Poznamka. Resitelé, ktefi neznaji idici konstrukce pro-
gramovaciho jazyka Pascal a nemaji moznost se s nimi se-
znamit, mohou misto uvedenych slozenych prikazi pouzit
¢islovani radka programu a prikazu
GOTO (cislo tadku)
a
IF (podminka) THEN (ptikaz)
kde na misté prikazu mﬁie stat jednoduchy prikaz nebo
ptikaz GOTO (¢islo fadku) (obdobné jako v jazyce Basic).

Priklad

Zpusob programovani zasobnikového pocitace ukazeme
na nasledujicim pfikladu. Nasim tkolem bude napsat pro-
gram, ktery ze vstupu pfecte posloupnost ¢isel a uréi, zda
tato posloupnost obsahuje sudy pocet kladnych cisel men-
sich nez 10. Pokud ano, program vytiskne ¢islo 1, jinak vy-
tiskne 0. Uvedeme zde program, ktery neni nejrychlejsim
moznym programem fesicim zadanou tlohu, ale ktery dobre
ukazuje, jak se zasobnikovy pocita¢ programuje. Do zavo-
rek budeme zapisovat komentare vysvétlujici zpusob prace
programu.

while not FOF do
begin
IN (pFecteni dalsiho ¢isla)
if POS then
begin (¢islo je kladné)
PUSH (¢islo se ulozi do zasobniku)
CONST 10
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SUB (rozdil ,,10 — &islo ze vstupu®)
if not POS then POP

(neni-li ¢islo < 10, smaze se)
end

end
(nyni jsou ze vstupu pFectena vSechna ¢isla a v zasobniku

jsou ulozena ta z nich, ktera jsou kladna a zaroven mensi
nez 10)
CONST 1
while not FMPTY do
(¢isla jsou vzdy po dvou vybirdna
ze zasobniku)
begin
POP
if EMPTY then CONST 0
(lichy pocet &isel v zasobniku)
else POP
end
(zasobnik je vyprazdnén, v pracovnim registru je pfipravena
spravna vyslednd hodnota)
our (tisk vysledku)

Soutézni aloha

A. Je zadana posloupnost navzajem ruznych celych ¢i-
sel tvorena alespon tremi ¢isly. Rozhodnéte, zda je mozné
pomoci zasobnikového pocitace nalézt a vytisknout

a) nejvétsi ze zadanych ¢isel,

b) dvé nejvétsi ze zadanych cisel,

¢) tF1 nejvétsi ze zadanych Cisel.

Pro kazdou z tloh a), b), ¢): Je-li to mozné, napiste pro-
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gram v programovacim jazyce zasobnikového pocitace, kte-
ry tuto Glohu fesi a ktery pracuje co mozna nejrychleji. Do-
mnivate-li se, Ze to neni mozné, své stanovisko vysvétlete
a zdivodnéte.

B. Je zadana posloupnost obsahujici 2n + 1 celych cisel
pro néjaké n celé, nezaporné. Jedinym nulovym prvkem této
posloupnosti je ¢islo s pofadim n+ 1 (tzn. prostfedni prvek
posloupnosti). Zjistéte pomoci zasobnikového poéitace, zda
Je zadand posloupnost symetrickd, tzn. stejna pfi ¢teni ze-
pfedu 1 odzadu. Napftiklad posloupnost 2 8 —1 0 —1 8 2
Je symetricka, zatimco posloupnost 3 0 5 symetrickd neni.
Odpovéd vytisknéte ve tvaru: 1 — je symetricka

0 — neni symetricka.

P-11-1

Je dano pole A[1.. N,1.. N]obsahujici N% navz4jem riiz-
nych celych kladnych ¢isel. Navrhnéte co nejrychlejsi al-
goritmus, ktery vytiskne N nejvétsich cisel ulozenych v poli
A. Pivodni obsah pole A nemusi byt po ukonceni vypoctu
zachovan. Zduvodnéte spravnost navrzeného algoritmu.

Poznamka. Optimalni algoritmus fesi zadanou Glohu pro-
vedenim nejvyse p- N2 operaci pro néjaké pevné &islo p (tzn.
pfi vyjaddfeni pomoci parametru N ma kvadratickou ¢aso-
vou slozitost).

P-11-2

Je dana koneénd posloupnost celych éisel délky N. Prvky
této posloupnosti oznaéime po fadé X (1), X(2), ..., X(N).
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Podposloupnosti délky k vybranou ze zadané posloupnos-
ti budeme rozumét libovolnou koneénou posloupnost tvaru
X(il), X(ig), . X(ik), kde 1 § 1 <lp <...< 1 _S_ N
(tzn. ze zadané posloupnosti je vybrano libovolnych k &isel,
pfi¢emz je zachovano jejich pofadi).

Navrhnéte co nejlepsi algoritmus, ktery uréi délku nej-
delsi rostouci podposloupnosti vybrané ze zadané posloup-
nosti. To znamend, zZe uréi maximalni k takové, ze X (7;) <
< X(lz) < ... < X(lk) pro 1 _E 1 <ip < ...< 1 g N.
Zduvodnéte spravnost algoritmu.

Priklad

Pro posloupnost 4 276 4539859 jek =5, nebot
maximalni vybrana rostouci podposloupnost 2 4 5 8 9 ma
délku 5.

P-11-3
Je dan nasledujici program:
PASCAL
const N = 100;

var A: array [1.. N] of integer;
J, K, L, R, X: integer;

begin
for J := 1 to N do read(A[J]);
L:=2;
R := N;
K := N,
repeat

for J := R downto L do
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if A[J — 1] < A[J] then
begin
X = A[J - 1}; A[J - 1] := A[J]; A[J] := X;
K:=J
end;
L:=K+1
for / := L to R do
if A[J — 1] < A[J] then
begin
X = A[J - 1}; A[J - 1] := A[J]; AlJ] := X;
i i=J
end;
R:=K-1
until L > R;
for J := 1 to N do writeln(A[J])
end.

BASIC
10 LET N = 100

20 DIM A(N)

30 FORJ =1 TO N
40 INPUT A(J)

50 NEXT J

60 LET L = 2
70 LET R =N
80 LET K =N

90 FOR J = R TO L STEP —1

100 IF A(J—1) >= A(J) THEN GOTO 150
110 LET X = A(J—1)
120 LET A(J—1) = A(J)
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130 LET A(J) =X

140 LET K =1J

150 NEXT J

160 LET L = K+1

170 FORJ =L TO R

180 IF A(J—1) >= A(J) THEN GOTO 230
190 LET X = A(J-1)

200 LET A(J-1) = A(J)

210 LET A(J) =X

220 LET K =1J

230 NEXT J

240 LET R = K-1

250 IF L <= R THEN GOTO 90
260 FORJ =1TON

270 PRINT A(J)

280 NEXT J

Vstupem programu je 100 celych ¢isel.

a) Zjistéte a zdivodnéte, co je vysledkem prace progra-
mu.

b) Provedte alespon pfiblizny horni odhad rychlosti vy-
poctu uvedeného programu. Uvazujte pFitom pouze opera-
ce porovnani dvou c¢isel. To znamend, Ze vasim tkolem je
zjistit, kolik porovnani bude pfi vypoétu maximalné prove-
~ deno. Ulohu feste obecné a vysledek vyjadrete v zavislosti
na hodnoté konstanty N.

P-1l-4

Studijni text k této loze je shodny s textem pro soutézni
Glohu P-1-4 v doméacim kole.
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Soutézni Gloha

Napiste co nejlepsi program v programovacim jazyce za-
sobnikového pocitace, ktery precte zadanou posloupnost ¢i-
sel a urci pocet kladnych sudych &isel a jejich soucet.

P-1ll-1

Je déno pole celych ¢isel S[1..N] a funkce F, kterd kaz-
dému celému c¢islu prifazuje celoéiselnou hodnotu z inter-
valu od 1 do K (vCetné obou mezi). Pfitom hodnota K je
podstatné mensi nez pocéet prvkia N ulozenych v poli S. Na-
vrhnéte algoritmus, ktery prerovna prvky pole S tak, aby
byly usporadany vzestupné podle hodnot, které jim prira-
zuje funkce F'. Po prerovnani tedy musi platit pro kazdou
dvojici prvka S[i], S[j], kde 1 £ i< j £ N, ze F(S[i]) £
< F(S[j]). V algoritmu nesmite pouzit ziddnou dalsi dato-
vou strukturu o rozsahu imérném velikosti N, je povoleno
uzit nanejvys takovy pocet pomocnych pamétovych bunék,
ktery je Gmérny hodnoté K. Existuje algoritmus s linear-
ni casovou slozitosti vzhledem k velikosti N zadaného pole,
tzn. algoritmus, ktery vykona pozadované prerovnani pro-
vedenim nejvyse p - N operaci pro néjaké pevné Cislo p.
Zdtivodnéte spravnost navrzeného algoritmu.

P-1l-2
Funkce V dvou proménnych je definovina pro vsechna

celd nezdporna ¢isla néasledujicim rekurzivnim predpisem:

V(0,y) =y+1 pro y20
V(z,0)=V(ze—-1,z-1) pro z >0
V(z,y)=V(z—-Ly+1)+V(z,y—1)pro >0, y>0

118



a) Urlete minimalni poéet riéiznych funkénich hodnot
funkce V, které je tfeba vypodéitat, mame-li uréit hodnotu
V(m, n) pro dana éisla m, n. Vysledek vyjadiete v zavislosti
na hodnotach m, n.

b) Napiste co nejlepsi algoritmus pro vypocet hodnoty
V(m,n) a zdivodnéte jeho spravnost. Predpokladejte, ze
nezaporna celd cisla m, n zadana na vstupu jsou dostatecné
malé a Ze tedy nenastane situace, ze by hodnota V(m,n)
prekroé¢ila maximéalni hodnotu zobrazitelnou v pocitaéi pri
bézné praci s celociselnou aritmetikou.

¢) Jak se zméni vysledek alohy a), pokud proz > 0,y > 0
bude hodnota funkce V' definovana predpisem

Vz,y) =V(z-1y+1)+V(e-1,y—1)?

P-1l1-3

Nejprve si zavedeme nékolik zakladnich pojmi. Rekneme,
ze N-thelnik A(1)A(2)...A(N) je konvexni, jestlize vSech-
ny jeho vnitfni Ghly jsou mensi nez 180 stupni. Diagona-
lou konvexniho N-tithelniku budeme rozumét kazdou taseé-
ku spojujici dva rtizné vrcholy N-thelniku, které spolu ne-
sousedi na obvodu (t). nejsou spojené hranou N-thelniku).
Z kazdého vrcholu N-thelniku tedy vychazi celkem N —3
diagonal. Triangulaci konvexniho N-thelniku nazveme kaz-
dy takovy soubor jeho navzajem se neprotinajicich diago-
nal, které rozdéluji plochu N-thelniku na samé trojahel-
niky. O souctu délek vsech diagonal, které tvori triangulaci
konvexniho N-thelniku, budeme hovofit jako o velikosti tri-
angulace.

119



Zadani ulohy

Konvexni N-thelnik A(1)A(2)...A(N) je zadan kartéz-
skymi soufadnicemi svych vrcholi v roviné. Navrhnéte co
nejlepsi algoritmus, ktery uréi minimalni velikost jeho tri-
angulace. Zdivodnéte spravnost navrzeného algoritmu.

P-1l-4

Studijni text k této Gloze je shodny s textem pro soutézni
ulohu P-1-4 v domécim kole.

Soutézni Gloha

a) Je zaddna posloupnost celych &isel néasledujiciho spe-
cidlniho tvaru. Nejprve obsahuje nékolik ¢isel 10, potom né-
kolik éisel 20 a nakonec nékolik ¢isel 30. Pfitom od kazdé
z uvedenych tfi hodnot obsahuje alespon jedno cislo.

Napiste co nejlepsi program v programovacim jazyce za-
sobnikového pocitace, ktery zjisti, zda pocet vyskyti cisla
10 v zadané posloupnosti je roven poctu vyskytu cisla 20
nebo poétu vyskytu cisla 30 nebo zda pocet vyskytu cisla
20 je stejny jako pocet vyskyta cisla 30. Jestlize néktera
z uvedenych tFi rovnosti plati, tzn. obsahuje-li zadand po-
sloupnost shodny pocet cisel alesponn dvou hodnot, program
vypise ¢islo 1, jinak je vysledkem 0.

Mizete predpokladat, ze vstupni tdaje jsou uvedeny
spravné podle zadani Glohy. Program tedy nemusi kontro-
lovat spravnost zadané vstupni posloupnosti Cisel.

b) Reste tutéz alohu bez pouziti piikazii SUB, MUL,
DIV.
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Reseni tloh
P-1-1

Ulohu Jje mozné fesit rtiznymi zpisoby. Ukazeme si zde,
jak lze Feseni elegantné vysvétlit a zapsat pomoci rekurze.

Rozklady zadaného ¢isla N budeme vytvaret postupné
po krocich. V kazdém kroku prodlouzime jiz vytvorenou
cast rozkladu o jednoho dalsiho séitance. Abychom zby-
teéné nevytvareli rozklady lisici se pouze pofadim sé¢itanct
(takové rozklady podle zadani tlohy nepovazujeme za riz-
né), zvolime si pevné usporadani scitanct v rozkladu podle
velikosti. Vsechny rozklady budeme vytvéret tak, aby po-
sloupnost s¢itanct byla neklesajici. Pro usnadnéni vykladu
budeme nadéle pfedpokladat, ze jednotlivé scitance vytva-
feného rozkladu ukldddme do pole A[l..N] a ze P udava
pocet €lend jiz vytvorené casti rozkladu. Neustdle tedy plati
nerovnost A[1] £ A[2] £ ... < A[P].

Popiseme nyni jeden krok naseho algoritmu. Predpokla-
dejme, ze jiz mame prvnich P ¢lent rozkladu zadaného ¢isla
N, P 20, A[1] £ A[2] £ ... < A[P]. K rozlozeni jesté zbyva
takova hodnota M, ze

All]+ A2]+ ...+ A[P]+ M = N.

Chceme prodlouzit vytvareny rozklad o jednoho scitance, t).
o ¢len A[P+1]. Uvazujme, jakou hodnotu K mize mit tento
dalsi scitanec. Vzhledem k zavedenému usporadani s¢itan-
cd v rozkladu podle velikosti musi byt K 2 A[P]. Polozime
nejprve K = A[P]. Musime rozlisit dva pripady. Jestlize
zbytek M jiz neni mozné rozlozit ani na dva scitance velké
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alespon jako K, celd zbyvajici hodnota M se musi pouzit
jako dalsi s¢itanec a rozklad je tim vytvoren. V opatném
pripadé se dalsi vypocet rozkladu rozvétvi do dvou cest po-
dle toho, zda se ve vytvareném rozkladu pouzije nebo nepo-
uzije dalsi s¢itanec o hodnoté K. Obé tyto varianty musime
zpracovat. Pokud se pouzije, bude A[P+1] = K a v dalsim
kroku budeme stejnym zplsobem vysetfovat situaci s jiz
vytvorenym usekem rozkladu délky P + 1. Jestlize se dalsi
s¢itanec hodnoty K v rozkladu nepouzije, budeme stejnym
zpusobem vySetfovat situaci s nezménénym jiz vytvofenym
usekem rozkladu délky P, ale s hodnotou K zvétsenou o 1.
Uvedeny postup zapiSseme v programovacim jazyce Pascal
snadno s pouzitim rekurzivni procedury R. Uziti rekurze je
zde vhodné, nebot odpovida charakteru naseho algoritmu.
Neni ovSem nezbytné, algoritmus by bylo mozné naprogra-
movat bez uZziti rekurze s jednim pomocnym polem.

program ROZKLAD (input, output);
const MAX = 50; {maximaln{ vstupni hodnota N}

var A: array[l.. MAX] of integer;
{uklddani rozkladu}
N: integer; {rozkladané &islo}

procedure R (P, K, M: integer);
{P — pocet ¢lent rozkladu ulozenych v poli A,
K — uvazovana hodnota dalsiho scitance,
M — hodnota, kterou je jesté tieba rozlozit;
invariant: A[1] + A[2]+ ...+ A[P]+ M =N
& AL A[2]S...SAP]S K
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procedura doplni rozklad délky P uloZeny v A na delsi
rozlozenim hodnoty M, pfi¢emz A[P + 1] 2 K; dalsim
rekurzivnim volanim sama sebe vytvori vSechna mozna
doplnéni a vypise je}

var [: integer;

begin {R}

if M < 2x K then
begin {zbytek M jiz nelze déle rozlozit}
A[P+1]:= M;
for I := 1 to P+ 1 do write(A[I] : 3);
writeln
end

else
begin
A[P+1]:=K; {dalsi s¢itanec velikosti K se ...}
R(P+1,K,M - K); {... bud uplatni v rozkladu ...}
R(P,K+1,M) { ... nebo neuplatni v rozkladu}
end

end; {R}

begin

read(N); {hodnota rozkladaného cisla}

R(0,1, N) {na zalatku jesté nemame zadny séitanec,
kazdy sCitanec musi mit hodnotu alespon 1

st v

end.
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Pl ~2

Algoritmus fesi Glohu postupnym ,obarvovanim“ zada-
nych bodi. Na zacatku vypoctu maji viechny body barvu 0
(nejsou obarveny). Béhem vypoctu kazdému z nich pfira-
dime barvu 1 nebo barvu 2 podle toho, do které skupiny
bude patfit. Existuje-li néjaké rozdéleni bodt do dvou sku-
pin podle zadani Glohy, budou po ukonceni vypoétu vsech-
ny body obarveny a vzajemna vzdalenost libovolné dvojice
bodt stejné barvy bude mensi nez t. Obarveni tedy bude
udavat pozadované rozdéleni bodi do dvou skupin (jedno
z moznych, pokud existuje vice raznych takovych rozdéle-
ni).

Popiseme nyni postup obarvovani. Zacneme tim, ze zvo-
lime jeden libovolny bod B a obarvime ho na 1. Nyni pro-
jdeme vSechny body, jejichz vzdalenost od B je vétsi nebo
rovna t. Tyto body nesméji byt ve stejné skupiné s bodem B
a musi tedy mit opacnou barvu. Obarvime je proto vsechny
na 2 a k bodu B si poznamename, ze je ,vyFeSen“ (tj. je
zajisténo, zZe nebude ve stejné skupiné s néjakym bodem,
ktery ma od néj vzdélenost vétsi nebo rovnu t).

Obecny krok algoritmu vypadé nasledovné. Cést bodi
je jiz obarvena, z nich nékteré jsou vyreseny. Vybereme li-
bovolny obarveny bod, ktery dosud neni vyfesen (opét ho
pracovné oznaéime B). Pokud jsou vSechny obarvené bo-
dy vyfeseny, zvolime za B libovolny dosud neobarveny bod
a obarvime ho tfeba na 1 (zde na volbé barvy nezdlezi, jiz
vyfesené body si obarveni zddného dalstho bodu nevynu-
cuji a vlastné zacinadme fesit lohu od zacatku se zbylymi
body). Neexistuje-li jiz Zddny neobarveny bod, algoritmus
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konci. Po zvoleni bodu B projdeme vsechny body, které ma-
Ji od bodu B vzdalenost vétsi nebo rovnu t, a kontrolujeme
jejich obarveni. Pokud takovy bod neni dosud obarven, pri-
fadime mu opaénou barvu, nez ma B (nesmi byt s bodem
B ve stejné skupiné). Jestlize jiz takovy bod ma opaénou
barvu nez B, je vse v poradku a pokracujeme ve vypoctu.
Pokud ovsem ma barvu stejnou jako bod B, doslo k nefesi-
telnému konfliktu, stanovenym podminkam obarveni nelze
vyhovét. Pozadované rozdéleni bodi tedy neexistuje a al-
goritmus predcasné ukonéi svoji praci. Nedoslo-li k tomuto
predcasnému ukonceni, oznacime bod B za vyfeSeny. Cely
postup se opakuje tak dlouho, dokud existuje néjaky nevy-
feseny bod.

Pro programovou realizaci algoritmu zavedeme dvé pra-
covni pole. V poli B[l .. n] je ulozena barva kazdého z bodi.
Evidenci vyresenych a nevyresenych bodu provedeme jinym
zpusobem, abychom ¢&innost algoritmu urychlili (abychom
si usetfili praci s prohledavanim pole pfi vybéru néjaké-
ho dosud nevyfeseného bodu). Pole S[1..n] budeme proto
pouzivat jako zasobnik, v némz budou ulozena cisla téch
vrchold, které jsou obarveny a nejsou dosud vyfeseny.

program SKUPINY (input, output);

const MAX = 100; {maximalni pocet bodi}

var D: array[l.. MAX,1.. MAX] of real;
{vzdalenosti bodi}
B: array[l.. MAX] of 0..2; {obarveni bodi}
S: array[l.. MAX] of 1.. MAX;

{zasobnik nevyfesenych}
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SP: integer; {ukazatel do zasobniku}
N integer; {pocet bodi}

T real; {mezni vzdalenost bodi}

POC: integer; {pocet obarvenych bodii}
I, J: integer; {pomocné proménné}

begin

{Nacteni vstupnich adaji v pofadi N, D, T:}
read(N);
for I :=1to N do
for J := 1 to N do read(D[I, J]);
read(T);

{Inicializace proménnych — obarveni prvniho bodu:}
SP :=1;

S[1] :=1;

B(1] = 1;

for I := 2 to N do B[I] :=0;

POC =1,

{Vlastni vypocet:}
repeat
while SP <> 0 do
begin {existuje obarveny nevyfeseny bod}
I := S[SP]; {vezmi jeden takovy bod — I}
SP :=SP — 1,
for J :=1to N do {vyfeseni situace v bodé I:}
if D[I,J] >=T then
{J musi mit jinou barvu nez I'}
if B[J] = 0 then
begin
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B[J] := 3 — B[I]; {obarveni bodu J}
POC := POC + 1;
SP:=SP+1;
S[SP}:=J
end
else if B[J] = B|[I] then
begin
SP :=0; {konflikt v obarveni bodt I,
J — umaélé ukonceni vypocltu}
POC := N + 1 {zvlastni nastaveni pro oznaceni
konfliktu — vyuziva se v zavéru}
end
end;
if POC < N then
begin {existuje neobarveny bod}
I:=1,
while B[I] >0do I :=1+1;
B[I]:=1; {vybereme jeden takovy a obarvime}
POC := POC + 1;

SP =1,
S[):=1
end

until (POC >= N) and (SP = 0);

{Vypis vysledki algoritmu:}
if POC = N then
begin
writeln(’Rozdeleni bodu do skupin:’);
write(’l. skupina:’);
for I :==1to N do
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if B[I] = 1 then write([ : 4);
writeln;
write(’2. skupina:’);
for I :=1to N do
if B[I] = 2 then write(I : 4);
writeln
end
else {tzn. POC = N + 1}

writeln(’Rozdeleni bodu neni mozne!”)

end.

Spravnost naseho algoritmu vyplyvd z vyse uvedeného
rozboru. Postupnym obarvovanim bodi je zajisténo, ze bo-
dy majici vzdjemnou vzdalenost vétsi nez ¢ se nemohou
dostat do stejné skupiny. Pfitom bod je obarven (a tim za-
fazen do jedné z vytvafenych skupin) jediné tehdy, je-li to
vynuceno jeho vzdalenosti od néjakého jiného bodu jiz za-
fazeného do nékteré ze skupin, popf. tehdy, jsou-li vSechny
pozadavky uspokojeny a pritom jesté zbyvaji neobarvené
body (potom barvu jednoho dalsiho bodu lze zvolit libovol-
né).

Vypocet podle uvedeného algoritmu je koneény, nebot
v kazdém kroku je pravé jeden z bodi oznacen jako vyFeseny
(v programu je odstranén ze zasobniku S) a cely vypocet
kon¢i nejpozdéji po vyreseni vSech bodi. Vykona se tedy
nejvyse N kroki vypoctu, kde N je pevné zadany pocet
bodi.

Algoritmus ma kvadratickou ¢asovou slozitost. V kazdém
z N kroki vypocétu je vyreSen jeden bod. Pfitom vyfeSe-
ni kazdého bodu vyzaduje vyhodnotit jeho vzdélenost od
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vSech ostatnich bodia (s pripadnymi dalsimi akcemi kon-
stantni slozitosti, jako je obarvovani bodd apod.). V kaz-
dém kroku se dale provadi vybér dalsiho bodu ke zpraco-
vani. Tento vybér ma ovsem také nejvyse linearni casovou
slozitost (v programu: hledani prvniho neobarveného bo-
du, je-li zdsobnik prazdny). Celkové je tedy tfeba provést
maximalné poéet operaci imérny hodnoté N2.

P-i-3

a) Nejprve ukdzeme, jakych hodnot nabyvaji béhem vy-
poctu jednotlivé proménné A, B, C, D, E, F. Vyjadfime
hodnoty téchto proménnych po K prichodech for-cyklem
V programu.

— Hodnota proménné A se zvysuje od —1 po 2. Promén-
nad A tedy nabyva postupné hodnot 1, 3, 5, ..., a po K
priuchodech cyklu ma hodnotu 2K — 1.

— V proménné B se scitaji vSechny dosud vypoctené hod-
noty proménné A. Po K prichodech ma tedy hodnotu

K K K

. . K« (K+1) .9
E 27—1 :2*2 —E 1=2%x————=—-K =K~".
J'=1(J ) j—lj J e

1=1

— Hodnota proménné C se v kazdém kroku vytvafi nové
(bez ohledu na svou pfedchozi hodnotu) jako souéin hodnot
proménné B a parametru cyklu 7. Tedy po K-tém prichodu
bude mit C hodnotu K? «+ K = K3.

- V proménné D se scitaji vSechny dosud vypoctené
hodnoty proménné C. Po K priichodech mé tedy hodno-

K
tu 5 53
j=1
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-V proménné E se pocita soucet vSech hodnot parametru
cyklu I. Po K prichodech cyklem ma proto E hodnotu

K Kx(K+1)
$5,- el
i=1
- Hodnota proménné F' se v kazdém kroku vypoctu po-
Cita nové jako kvadrat hodnoty proménné E. Po K pricho-

dech nabude F' hodnoty

K2 % (K + 1)
; .

Po ukonceni vypoctu, tzn. po N prichodech for-cyklem

N
v programu, tedy proménnd D bude mit hodnotu y_ j3
J=1
a proménna F' hodnotu
N2 % (N +1)?
4
Ukézeme, Ze tyto hodnoty se sobé rovnaji. Diikaz rovnosti
provedeme matematickou indukci:
1. pro N = 1 rovnost zfeymé plati,
2. necht plati dokazovand rovnost pro N = z; ukidZeme,
ze platiipro N =z + 1:

T+l e dle
po
ij’ - Zf + (2 4 1)3 = indukéntho =
=1 g=i predpokladu
2 * + 1 2
(x4 1)?x(2?+424+4)  (2+1)?x(2+2)?
- 4 B 4
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Tedy i pro N = z + 1 dokazovana rovnost skute¢né plati.
Tim je celé tvrzeni dokazano.

Zavér: Po ukonceni vypoctu maji obé proménné D a F
stejnou vyslednou hodnotu, a to

N2 x (N +1)?
1 :

b) Program poéitajici vysledné hodnoty proménnych D
a F' co nejrychlejsim zplisobem vyuziva vysledku tlohy a):

var D, F'| N: integer;

begin
read(N);
D:=N=x(N+1);
D := (D« D) div 4;
F .= D;
writeln(D);
writeln(F)

end.

Zbyva porovnat rychlost vypoctu programu uvedeného
v zadani tlohy a naseho zrychleného. Podle ptvodniho pro-
gramu se provadélo N prichodd for-cyklem a pfi kazdém
pruchodu 6 aritmetickych operaci. Program tedy pracoval
v linedrnim case (méfeno v zavislosti na vstupni hodno-
té proménné N) a provadél celkem 6N operaci. N&§ novy
program dosdhne zcela stejnych vysledkd vyrazné rychle-
Ji. Pracuje totiz v konstantnim case bez ohledu na vstupni
hodnotu N a provadi celkem pouze 4 aritmetické operace.
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P-1-4

A. a) Nalezeni nejvétsiho ze zadanych ¢isel je snadné. Ulo-
hu fesi nasledujici jednoduchy program. Béhem vypoétu je
v zasobniku uchovavdno pouze jediné éislo, a sice hodno-
ta dosud nalezeného maxima. Zadan4 éisla ze vstupu neni
tfeba vibec ukladat do zdsobniku.

IN
PUSH (ulozeni prvniho &isla)
while not £OF do
begin
IN
SUB (porovnani dalsiho ¢isla . . .)
if POS then (... s dosud nalezenym max.)
begin
ADD
EXCH (ulozeni nové hodnoty maxima)
end
end
TOP
our (tisk vysledného maxima)

b) Nalezeni dvou nejvétsich ze zadanych cisel je mozné
provést v principu dvéma odlisnymi zpusoby. Ukazeme si
Jje postupné oba. V prvni varianté feseni jsou vsechna cisla
ctenda ze vstupu ukladana do zasobniku, pficemz na vrcholu
zasobniku se stdle udrzuje nejvétsi z nich. Nalezené maxi-
mum se po precteni vSech ¢isel vytiskne a odstrani se ze
zasobniku. V dalsi fazi vypoctu se hledd maximum ze zby-
lych ¢isel (tzn. celkové druhé nejvétsi ¢islo) pfi postupném
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vybirani Cisel ze zasobniku. Hodnota tohoto maxima se pri-
tom udrzuje a prubézné aktualizuje v pracovnim registru
pocitace.

IN
PUSH (ulozeni prvniho ¢&isla)
while not FOF do
begin
IN
SUB (porovnani dalsiho ¢isla . . .)
if POS then (s dosud nalezenym maximem)
begin
ADD
PUSH (nova hodnota maxima na z3s.)
end
else
begin (prectené ¢islo neni maximem)
ADD
EXCH (ulozeni do zésobniku pod ...)
PUSH (... dosud nalezené maximum)
end
end
ouT (vytisknuti nejvétsiho ¢isla)
pPOP (smazani nejvétsiho &isla)
TOP
POP
while not EMPTY do  (hledani maxima ze zbylych ¢.)
begin
SUB (porovnani)

if NEG then TOP  (nova hodnota maxima do reg.)
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else ADD  (obnoveni pivodni hodnoty max.)
POP
end
our (vypséni druhého nejv. éisla)

Ve druhém zpilsobu feseni se ¢isla zadand na vstupu
do zasobniku neukladaji. V zasobniku jsou stile uloZena
(a pribézné aktualizovdna) pouze dvé &isla: nejvétsi z do-
sud pfectenych Cisel a druhé nejvétsi (to je na vrcholu).

IN
PUSH (ulozeni prvniho &isla)
IN
SUB (porovnani prvnich dvou isel)
if POS then
begin
ADD
EXCH
end
else
ADD
PUSH (pFipravena prvni dvé ¢isla
v z4sobniku, mensi navrchu)
while not FOF do

begin
IN
SUB (porovnéni dalsiho éisla . . .)
if POS then (... s druhym nejvétsim)
begin
ADD (je-li nové &islo vétsi, ...)
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POP (... dosavadni vrchol se smaze)
SUB

if POS then (porovnani s dosud max. ¢islem)
begin
ADD
EXCH
end
else
ADD
PUSH (uloZeni ve spravném pofadi ..)
end (... do zdsobniku)
end
TOP
POP
EXCH (nejdFive vypiseme nejvétsi .. )
ourT (... ze vSech disel)
TOP
our (vypsani druhého nejv. ¢isla)

c) Jestlize budeme do zdsobniku naseho zisobnikového
pocitace ukladat pouze Cisla ¢tend ze vstupu, popf. jina
Cisla srovnatelné velikosti, ilohu nalézt tfi nejvétsi ze zada-
nych Cisel neni mozné fesit. Pro nalezeni k nejvétsich Cisel
pfi jednom prichodu zadanou posloupnosti Cisel je tfeba
mit k dispozici stale pristupnych k£ pamétovych mist. V pfi-
padé zasobnikového pocitace mame pfimo pfistupny pouze
pracovni registr a vrchol zdsobniku. Pfi ¢teni ¢isel ze vstu-
pu je pracovni registr vyuzivan pro Cteni, takZe je mozné
zaroven se ¢tenim cisel ze vstupu a jejich uklddanim do za-
sobniku vyhledat pouze jedno nejvétsi ze zadanych cisel.
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Pt1 vybirani ¢isel ze zasobniku se vyuzivd misto na vrcholu
zasobniku, pres které se uskutecnuje pristup do zdsobniku.
Jako pracovni pamét zbyva k dispozici pouze registr, takze
Je mozné vyhledavat opét pouze jedno, napt. druhé nejvétsi
ze zadanych ¢isel. Pokud bychom ctend éisla nechtéli do za-
sobniku vibec uklddat, mizeme opét udrzovat v zasobniku
hodnoty pouze dvou nejvétsich cisel. P¥i tfech bychom jiz
nedokazali obnovovat potrebny stav zasobniku. Kdybychom
totiz precetli ze vstupu hodnotu nového maxima, nemame
kam odlozit druhé a treti nejvétsi ¢islo, abychom mohli ulo-
zit nové maximum na dno zasobniku.

Existuje ovsem feseni tlohy zaloZzené na moznosti zako-
dovat vhodnym zptsobem vice ¢isel do jediného ¢isla, které
pak ulozime do zasobniku. Na vrcholu zdsobniku si tedy mii-
zeme udrzovat jediny zaznam obsahujici informaci o tfech
nejvétsich dosud nalezenych cislech. Po precteni kazdého
dalsiho cisla ze vstupu tento zaznam rozkédujeme a po po-
rovnani s nové prectenou hodnotou opét zakédujeme (s pri-
padnymi zménami) a ulozime. Moznych kédu je celd rada,
napfiiklad lze pouzit soucin pfislusnych mocnin tfi pevné
zvolenych prvocisel. Trojici cisel a, b, ¢ lze tedy ulozit ve
tvaru 2¢ - 3% . 5¢.

Toto FesSeni je sice zcela spravné, ale ma dvé nevyhody. Je
velmi pracné a komplikované, pfislusny program je znacné
rozsahly, a proto ho zde ani neuvddime. Druhou, vyznam-
uklddanych do zasobniku. I to nejaspornéjsi zakédovani tii
¢isel bézné velikosti do jediného vede k velmi velké vysledné
hodnoté. V definici zasobnikového pocitace nebylo stanove-
no zadné omezeni na velikost éisel, kterd lze ukladat do
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zasobniku, takze ve smyslu této definice je uvedené feseni
spravné. Je ovsem dobré uvédomit si, ze takovéto feseni by
bylo zcela neredlné v pfipadé, ze bychom programovali né-
Jaky skutecné existujici zasobnikovy poéita¢, nebot u néj by
velikost ¢isel, s nimiz se pracuje, byla jisté omezena.

B. Cisla ze vstupu postupné ¢teme a uklddame do zésob-
niku tak dlouho, dokud nepfecteme prostiedni prvek zada-
né posloupnosti (jednoznaéné identifikovatelny tim, ze jako
Jediny ma hodnotu 0). Pfi éteni dalsich ¢isel ze vstupu ode-
birdme cisla ze zasobniku a kontrolujeme, zda je splnéna
podminka symetrie podle zadani.

IN
while not ZERO do

begin

PUSH

IN

end (prvni polovina posloupnosti

je ulozena v zasobniku)

while not FOF do

begin

IN (precteni dalsiho ¢isla)

SUB

if ZERO then (pti shodé s vrcholem zés. ...)
POP (... snizime tGroven zasobniku)

else
while not FOF do (jinak docteme &isla ze vstupu)

IN
end

if ZERO then CONST 1 (nastaveni vysledné hodnoty)
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else CONST 0
our (tisk vysledku)

P-1l-1

Zavedeme pomocné pole SLMAX|[1.. N], které bude ob-
sahovat informace o poloze maximalnich hodnot v jednot-
livych sloupcich pole A. Bude tedy platit SLMAX[J] = 1
pravé tehdy, jestlize A[I, J] je nejvétsi ze vsech &isel uloze-
nych v J-tém sloupci pole A.

Nejprve provedeme pocatecni zaplnéni pole SLMAX od-
povidajicimi hodnotami. Vybér N nejvétsich éisel ulozenych
v poli A potom probéhne v N krocich nésledujiciho vypoc-
tu:

— pomoci pole SLMAX nalezneme nejvétsi hodnotu ze
sloupcovych maxim; tuto hodnotu ziskdme jako maximum
z Cisel A[SLMAX[J],J] pro J od 1 do N; necht je to &islo
All, K]

— &islo A[I, K] je tedy nejvétsim z é&isel ulozenych v poli
Aj; vytiskneme ho a vypustime ho z pole A dosazenim nuly
za A[l, K]

— obnovime informaci o poloze sloupcového maxima ve
sloupci, v némz doslo ke zméné, tzn. spocteme novou hod-
notu SLMAX[K].

program MAXIMA (input, output);

const M = 100; {maximaln{ pfipustnd hodnota N}

var N: integer; {velikost zadané matice}
A: array [1..M,1.. M] of integer; {zadani matice &isel}
SLMAX: array [1.. M] of integer;
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{polohy sloup. maxim}
MAX: integer; {pro vybér max. hodnoty}
I, J, K: integer; {pomocné proménné}

procedure SLOUPEC(J:integer);
{po¢ita polohu maximaélniho &isla v J-tém sloupci
pole A a uklada ji jako hodnotu SLMAX[J]
do pom. pole SLMAX}
var M X, I: integer;
begin {SLOUPEC}
MX :=0;
for I :=1to N do
if MX < A[l,J] then
begin
MX = A[l,J];
SLMAX[J]:=1
end
end; {SLOUPEC}

begin
read(N);
for I :=1to N do
for J :=1 to N do read(A[I, J]);
{¢teni zadané matice A}
for J :=1to N do SLOUPEC(J);
{nastaveni hodnot SLMAX}
for I := 1 to N do {N kroki vypoctu:}
begin
MAX :=0;
for J :=1 to N do {vybér nejvétsiho &isla}
if AlISLMAX([J],J] > MAX then
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begin
MAX := A[SLMAX|[J], J);
{MAX je nejvétsi &islo}
K := J {K je sloupec, odkud bylo
vybréano ¢islo MAX}
end;
writeln(MAX); {vypsani nejvétsiho &isla}
A[SLMAX[K],K]:=0; {... a jeho smazan{ z A}
SLOUPEC(K) {nova hodnota nejvétsiho
¢isla ve sloupci K}
end
end.

Spravnost algoritmu pfimo plyne z Gvodniho rozboru.
V kazdém kroku vypoctu je nalezena a vytisténa nejvét-
§1 hodnota z maxim v jednotlivych sloupcich, coz je jisté
nejvétsi cislo momentalné se nachazejici v poli A. Pfepsani
tohoto ¢isla nulou je vytisknuté cislo z pole A vynechano
(vSechna ¢isla v poli A jsou podle zadani kladna!) a v dalsim
kroku se tedy bude vyhleddvat nejvétsi ze vsech zbyvaji-
cich éisel. Celkem program po N krocich vypoétu vytiskne
skutecné N nejvétsich cisel ulozenych pivodné v poli A.
Vypocet je koneény, ma predem omezeny pocet kroku hod-
notou N.

Popsany algoritmus ma kvadratickou ¢asovou slozitost.
Precteni N2 &isel ze vstupu i pocéateéni zaplnéni pole
SLMAX jisté vyzaduji fadové N? operaci. Vlastni vypocet
je pak tvoren N kroky, pficemz v kazdém z nich je nejprve
pomoci pole SLMAX vybrano maximum z N ¢éisel a po
jeho vypsani a smazéani je opét vybérem maxima z N Cisel
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obnoveno spravné zaplnéni pole SLMAX. Celkem se tedy
provede pocet operaci tmérny hodnoté N2.

Rychlejsi algoritmus fesici zadanou tlohu neni mozny,
nebot jiz jenom pocet hodnot, které je tieba zpracovat
a z nichz kazda mize ovlivnit vysledek, je N2.

Poznamka. Zkuste sami modifikovat zde uvedené feseni
alohy tak, aby ptivodni obsah pole A zistal zachovan.

P-11-2

Postupné budeme prochazet zadanou posloupnost cisel
X. V i-tém kroku vypoctu budeme sledovat, jak mohou
vypadat rostouci podposloupnosti vybrané z pocatecniho
Gseku posloupnosti X délky ¢, tzn. z posloupnosti X(1),
X(2), ..., X(i). Pro dosazenf{ co nejispornéjsiho a nejrych-
lejsiho feseni Glohy si zavedeme pomocné pole M[1.. N],
do néhoz si budeme pribézné ukladat néasledujici informa-
ci: prvek M[j] je v kazdém okamziku roven minimalni dosud
znadmé hodnoté posledniho prvku vybrané rostouci podpo-
sloupnosti délky j. Dalsi pribézné aktualizovana proménna
K udéva délku maximalni (tzn. nejdelsi) dosud nalezené
rostouci podposloupnosti. V poli M jsou tedy definovany
hodnoty M[1], M[2], ..., M[K]. Po provedeni i-tého kroku
vypoctu budou tudiz splnény nésledujici podminky:

1.1Si<N

2. K je délka maximalni rostouci podposloupnosti vybra-
né z posloupnosti X(1), X(2), ..., X(7)

3. M[j] = min{X (7;); existuji indexy 7y <is < ...<¢;

< i takové, ze X (1) < X(i2) < ... < X(45)}
...proj=1 .., K
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Z posledni uvedené podminky zfejmé plyne platnost ne-
rovnosti M[1] < ... < M[K]. Pokud totiz rostouci vybrana
podposloupnost délky j muze konéit ¢islem M[j], pak exis-
tuje také vybrana podposloupnost délky j—1, ktera vznikne
z predchozi uvazované podposloupnosti vynechanim posled-
niho ¢lenu. Jeji posledni ¢len bude ovsem jisté mensi nez
M([j], a tedy skutené plati M[j — 1] < M[j].

Po provedeni vsech N kroki vypoctu bude proménna K
obsahovat délku maximalni rostouci podposloupnosti vy-
brané z celé zadané posloupnosti X (1), ..., X(N), a pravé
to je pozadovany vysledek tlohy.

Zbyva ukazat, jakym zplsobem provedeme aktualizaci
hodnot proménné K a tdaji ulozenych v poli M pfi jed-
nom kroku vypoctu. Uvazujme i-ty krok vypoctu a zpraco-
vani &isla X (7) ze zadané posloupnosti. Je-li X (i) vétsi nez
M|[K], je mozné prodlouzit dosud nejdelsi nalezenou vybra-
nou rostouci podposloupnost o &islo X(i). Zvétsime tedy
hodnotu proménné K o jedni¢ku a pro nové K definujeme
udaj M[K] jako hodnotu &isla X (7). V opaéném pFipadé ne-
ni mozné dosud maximalni vybranou podposloupnost pro-
dlouzit a hodnota K se tedy nezméni. Muze se ovSem stat,
ze ¢&islo X (7) ndm umozni sniZit nékterou z dfive stanove-
nych hodnot M[j]. Jak jsme jiz uvedli, plati stéle nerovnost
M[1] < ... < M[K]. Je tedy mozné najit takovy index j,
ze bud

j=1 a  X(i) £ M[1],
nebo
1<jSK a M[j-1]<X(i) £ M[)
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Nastane-li ostrd nerovnost X (i) < M[j], miZeme nyni sni-
zit hodnotu M[j] tim, Ze za ni dosadime &islo X (7). Existuje
totiz rostouci vybrana podposloupnost délky j — 1 konéici
éislem M([j — 1], a protoze X (i) > M[j — 1], &islo X(2)
tuto podposloupnost prodluzuje na rostouci vybranou pod-
posloupnost délky j. Jejim poslednim prvkem je pravé ¢islo
X (1), které tedy snizi idaj M[j], je-li to mozné.

Uvedeny rozbor je zaroven zdivodnénim spravnosti navr-
zeného algoritmu. Vypodéet je jisté koneény, nebot je tvofen
pfesné N kroky, kde N je délka zpracovavané posloupnosti
éisel. Casova slozitost algoritmu je v optimalnim piipads
N xlog,(N). Provadi se totiz N krokd vypoctu a v kazdém
z kroki se kromé jednoduchych akci s konstantni ¢asovou
slozitosti musi vyhledavat v poli M index j urcujici, kterou
hodnotu M[j] budeme modifikovat. Vzhledem k usporada-
ni pole M podle velikosti je mozné urcit index j binar-
nim prohledavanim (pilenim intervali), a tedy s ¢asovou
slozitosti log,(N). Odtud plyne slozitost celého algoritmu
N xlogy(N).

program PODPOSLOUPNOST (input, output);
const MAX = 100; {maximalni délka posloupnosti}

var X: array[l.. MAX] of integer;
{zadana posloupnost &isel}
M: array[l .. MAX] of integer;
{pomocné pole dle rozboru}
N: integer; {pocet &isel v posloupnosti X}
K: integer; {vysledna délka podposloupnosti}
D, H: integer; {meze pro binarni prohledavani}
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I, J: integer; {pomocné proménné}

begin
read(N);
for I := 1 to N do read(X[I]); {precteni posloupnosti}
I:=1;
K :=1;
M[1] := X[1];
while 7 < N do {N kroki vypoctu:}
begin
I:=1+1,
if X[I] > M[K] then {zpracovani &isla X[I]}
begin
K := K + 1; {prodlouzeni max. podposloupnosti}
M[K] := X[I]
end
else
begin {nalezeni indexu J v poli M}
if X[I] <= M[1] then
J =1
else
begin {chceme 1< J < K
& M[J -1] < X[I] £ M[J]}
D=1:
H = K;
while H — D > 1 do
{binarni prohledavani v Gseku D — H}
begin {stale plati: M[D] < X[I] £ M[H]}
J = (H + D) div 2;
if X[I] > M[J] then D :=J
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else H :=J
end;
J := H {vysledna hodnota indexu J}
end,;
M[J] := X[I] {nova hodnota M[J] pro nalezené J}
end
end,;
write(’Nejdelsi vybrand rostouci podposloupnost’);
writeln(’ ma délku ’, K, ’.%);
writeln
end.

P-11-3

a) Vysledkem prace uvedeného programu je setfidéni N
Cisel zadanych na vstupu podle velikosti od nejvétsiho k nej-
mensimu a vytisknuti vSech Cisel v tomto sestupném poradi.
Jednd se o programovou realizaci tfidiciho algoritmu zva-
ného shake-sort, coz je vylepsena varianta znamého bublin-
kového tfidéni.

Proménné L a R slouzi k vyznaceni Gseku pole A, ktery
je jesté tieba setfidit. V kazdém okamziku plati, Ze musi-
me jeSté tfidit Cisla ulozend v Gseku A[L — 1], ..., A[R],
zatimco ostatni ¢isla v poli A jsou jiz na svych mistech (tj.
na mistech, kam budou patfit i po setfidéni celého pole A).
Tomu odpovida pocatecni nastaveni hodnot proménnych L
a R, nebot na zacatku vypoctu je treba setridit celé pole A.
Tridéni kondi, jestlize L > R, tzn. jsou-li jiz vSechna cisla
v poli A na svych mistech.
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Celé tfidéni probiha po krocich. Kazdy krok je v uvede-
ném programu predstavovan provedenim jednoho for-cyklu
a naslednym nastavenim nékteré z hodnot L, R. Pravidelné
se stfidaji kroky vypoctu, v nichz je dosud neutfidény tGsek
pole A prochazen pomoci proménné J od nizsich indext
k vyssim a naopak. Je-li pfi takovém priichodu nalezena
dvojice sousednich &isel A[J — 1], A[J], pro kterou plati
A[J — 1] < A[J], jsou tato dvé ¢&isla mezi sebou prohoze-
na (vymeéni si mista v poli A). Do proménné K je ziroven
zaznamenano misto posledni vymény dvou sousednich &i-
sel béhem jednoho prichodu polem A. Je tudiz jisté, Ze
po ukonéeni priichodu dosud nesetfidénym tsekem pole A
se dostane na svoje spravné misto v poli A nejméné jedno
dalsi ¢islo. Pfi priichodu ve sméru od nizsich indexi k vys-
8im je to nejmensi z Cisel nachazejicich se v tomto Gseku
(dostane se na konec Gseku), pfi opa¢ném smeéru je to nej-
vétsi z Cisel (dostane se na zalitek). Je tedy mozné zménit
hodnotu pfislusné proménné L nebo R a tim zmensit Gsek
pole A, ktery je jesté tfeba setfidit. V nékterych pfipadech
je mozné zmensit sledovany Gsek pole A i o vice ¢isel na-
jednou. Na svych mistech jsou totiz jisté vSechna ¢isla od
mista posledni provedené vymény dvou sousednich cisel az
k odpovidajicimu konci Gseku. Spravné zmény hodnoty pro-
ménné L nebo R proto dosihneme pfifazovacim prikazem
za for-cyklem vyuzivajicim hodnoty proménné K.

Vypocet programu je pro libovolna vstupni data jisté ko-
neény, nebot v kazdém kroku vypoctu se dostane na své
spravné misto v poli A nejméné jedno cislo a asek, ktery je
jesté tfeba setfidit, se tedy zmensi. Pocet krokd vypoctu je
proto pfedem omezen hodnotou konstanty N.
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b) Program tfidi celkem N ¢isel. V kazdém kroku vy-
poctu se dostane na své spravné misto v poli A minimalné
jedno C&islo, takze k setfidéni celého pole je tieba provést
maximalné N — 1 krokd (bude-li na svych mistech N —1
¢isel, pak posledni N-té &islo jiz také). V kazdém kroku vy-
poctu se usek pole A, ktery je jesté tieba setfidit, zmensuje
alespon o jedno cislo. V prvnim kroku ma délku N, v nej-
horsim pfipadé méa vypocet plnych N — 1 krokd a potom
v poslednim kroku ma tfidény tsek délku 2. Pfi prichodu
usekem délky D v jednom kroku vypoctu se provede D —
— 1 porovnani dvou sousednich ¢isel. Celkové proto bude
pri vypoctu provedeno maximalné

N(N -1)

2
porovnani. Pro konstantu N = 100 zvolenou v nasem pro-
gramu predstavuje tento vyraz celkem 4950 porovnani. T¥i-
dici algoritmus shake-sort ma tedy kvadratickou ¢asovou
slozitost.

(N-1D)4+(N=-2)+...+3+2+1=

P-11-4

Program bude ¢ist ze vstupu postupné zadana ¢isla a bu-
de z nich vybirat ta, kterd jsou kladna a suda. Otestovat,
zda je cislo kladné, mizeme snadno pomoci jednoduché
podminky POS. Ke zjisténi, jestli je ¢islo sudé, musime na-
programovat test délitelnosti dvéma. Vzhledem k tomu, ze
zdsobnikovy poéita¢ pracuje v celociselné aritmetice, staci
vstupni ¢islo vydélit dvéma, zpétné vynasobit dvéma a po-
rovnat s jeho pivodni hodnotou (kterou jsme si pfedem
uschovali na zasobniku).
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S vybranymi kladnymi sudymi ¢isly je tieba provadét dvé
operace — urcovat jejich pocet a jejich soucet. To je mozné
provadét v zasadé dvéma riznymi zpisoby, podobné jako
u Glohy P-1-4 Ab). Prvni moznosti je uklddat vybrana cisla
prubézné do zdsobniku. Pritom musime jednu z vyslednych
hodnot (napf. pocet &isel) pocitat zaroven s jejich uklada-
nim do zasobniku a druhou hodnotu (soucet €isel) potom
spocteme béhem vyprazdnovani zasobniku. Druha metoda
feSeni Glohy spociva v tom, zZe se éisla ¢tend ze vstupu do
zasobniku vibec neuklddaji. BEhem celého vypoctu se v za-
sobniku udrzuji pouze dvé hodnoty, a to soucet a pocet jiz
zpracovanych kladnych sudych éisel. Po pfecteni vsech éisel
ze vstupu pak mame v zasobniku oba hledané daje.

Ukazeme si nejprve podrobné feseni nasi Glohy vyuzivaji-
ci prvni z uvedenych postupd. V prvni etapé vypoétu tedy
Cteme Eisla ze vstupu, provedenim potfebnych testl z nich
vybirdme kladnd suda a tato ¢isla ukladame do zasobniku.
Na vrcholu zédsobniku zaroven udrzujeme hodnotu udava-
jici pocet éisel uloZenych do zdsobniku. Po pfecteni vsech
Cisel ze vstupu tuto hodnotu vytiskneme a odstranime ze
zasobniku. Ve druhé etapé vypocltu potom ¢éisla ze zasob-
niku postupné odebirdme a v pracovnim registru pocitime
jejich soucet. Ten pak vytiskneme jako dalsi vysledek nase-
ho programu.

CONST 0
PUSH (v zasobniku zatim neni zadné
ze vstupnich éisel)
while not EOF do
begin
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IN (pFecteni dalsiho &isla)
if POS then
begin (¢islo je kladné)
PUSH
PUSH
CONST 2
EXCH
DIv (test délitelnosti dvéma)
MUL
POP
SUB
if ZERO then (¢islo je sudé)
begin
TOP (zdména vrchnich dvou &isel ..)
POP (.. v zasobniku, na vrchol ..)
EXCH (.. se dostane pocet Cisel)
PUSH
CONST 1
ADD (zvétSeni poctu Cisel o 1)
EXCH (ulozZeni nového poétu Eisel)
end
else
POP (¢islo neni sudé — smazeme ho)
end
end
TOP
ouT (vypséani poctu Cisel)
POP
CONST 0
while not EMPTY do
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begin
ADD
POP
end

ouT

(soucet hodnot ¢isel ze zés.)

(vypséani souctu &isel)

Pf1 druhém z moznych postupi si budeme na vrcholu z4-
sobniku uchovéavat soucet jiz prectenych kladnych sudych
¢isel a pod nim jejich pocet. Po nalezeni dalsiho kladného
sudého c¢isla tyto dva idaje zaktualizujeme. Na zavér vy-
poctu program vypiSe obé ¢isla ulozena v zasobniku.

CONST 0
PUSH
PUSH
while not EOF do
begin
IN
if POS then
begin
PUSH
PUSH
CONST 2
EXCH
DIV
MUL
POP
SUB
if ZERO then
begin
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TOP

POP (pfesun ¢isla do registru)
ADD (pficteni éisla k souctu)
POP (odstranéni dosavadniho souétu)
EXCH (pocet cisel do registru)
PUSH (pocet ¢isel do zasobniku)
CONST 1
ADD (zvySeni poétu Eisel o 1)
pPopP (odstranéni dosavadniho poétu)
EXCH
PUSH (obnoveni situace v zasobniku)
end
else
pPOP (¢islo neni sudé — smazeme ho)
end
end

TOP

POP

ouT (vypséni souétu Cisel)

TOP

pPOP

ouT (vypséani poctu Eisel)

P-1ll-1

Algoritmus fesici zadanou Glohu bude zalozen na néasledu-
Jicim postupu. Nejprve si rozdélime celé pole S na K , pfi-
hradek“, pficemz kazda prihradka je urcena vidy pro éisla,
Jjimz funkce F' pfifazuje jednu z hodnot od 1 do K. Veli-
kosti téchto prihradek neni tézké predem zjistit pri jednom
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pruchodu polem S. Pro ulozeni velikosti pfihradek budeme
pouzivat pomocné pole C[1..K]. Ve druhé fazi vypoctu
pak budeme prihradky zapliiovat témi prvky pole S, které
do nich patfi. Pritom je tfeba zaznamenavat si, kam az je
ktera prihradka zaplnéna. K tomuto G¢elu bude slouzit dru-
hé pomocné pole A[l.. K]. Obé pomocna pole C' a A maji
v souladu se zadanim tlohy velikost imérnou hodnoté K.
Zbyvéa vyrtesit technickou otazku, jak cely proces zafazova-
ni ¢isel do pfihradek organizovat, aby tfidéni probihalo ,na
misté“ bez nutnosti pracovat s dalsim polem velikosti N.
Timto problémem se budeme podrobnéji zabyvat v dalsim
detailnim popisu algoritmu.

V prvni fazi vypoctu provedeme dosazeni pocatecnich
hodnot do poli C a A. Toto dosazeni se snadno uskute¢ni
pri jednom sekvenénim prichodu polem S. Po inicializaci
poli C a A bude C[i] urcovat pocet vsech ¢isel ulozenych
v S, kterym funkce F' prifazuje hodnotu z. [’Idaj A[7] bude
mit vyznam indexu, od kterého budou po usporadani cisel
v poli S ulozZena ta z nich, jimz funkce F' pfifazuje hodnotu
i (tzn. jsou to zacdtky jednotlivych ,pfihradek® v poli S).

Druhou fazi vypoctu je pak vlastni usporadani Ccisel.
Prerovnavani cisel ulozenych v poli S probihd po krocich.
V kazdém kroku je jedno z N cisel pfemisténo na své sprav-
né misto (tj. na prvni volné misto v té , prihradce“, do které
toto éislo patii). Pritom se pribézné méni hodnoty ulozené
v polich C' a A. V pribéhu této druhé faze vypoctu bude
hodnota C[i] udavat (pro kazdy index ¢ z rozmezi od 1 do
K) pocet ¢isel ulozenych v poli S takovych, ze jim funkce
F prifazuje pravé hodnotu i a ze tato cisla dosud nebyla
zafazena na své vysledné misto v poli S. Hodnota A[i] bu-
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de indexem v poli S, kam se ma umistit dalsi premistované
¢islo, jemuz funkce F' prifazuje hodnotu z.

Zaéneme umistovanim é&isla S[j] s indexem j = 1. Toto
¢islo patfi do pole S na misto s indexem A[F(S[j])]. Umis-
time ho tam proto a zvysime hodnotu A[F(S[j])] o 1, aby
se stala indexem volného mista v poli S, kam lze ulozit dal-
§f ¢islo, jemuz funkce F pfifazuje stejnou hodnotu F(S[j]).
Zaroven snizime hodnotu C[F(S[j])] o 1, nebot jedno éislo
s hodnotou F'(S[j]) je jiz umisténo. Jestlize je A[F(S[j])]
razné od j, nesmime ztratit ¢islo, které bylo dosud ulozeno
v poli S na misté s indexem A[F(S[j])]. Toto ¢islo proto
pfesuneme vymeénou na uvolnénou pozici v poli S s inde-
xem j. Tim jsme zaroven, aniz bychom zmeénili hodnotu
J, ziskali nové &islo S[j], které budeme umistovat v dal-
§im kroku vypoctu. Pokud bylo ndhodou ¢islo S[j] jiz na
svém misté, tj. pokud bylo j = A[F(S[j])], zadny pfesun
cisel v poli S v tomto kroku neprovadime a pouze zménime
hodnoty ulozené v polich A a C' vySe uvedenym zptsobem.
V tomto pfipadé ale jesté musime zménit hodnotu indexu
J a uréit tak nové &islo S[j], které se bude umistovat na své
misto v dalsim kroku vypoétu. Vyhleddme proto takové m,
ze C[m] je nenulové, tzn. jesté je tfreba umistit néjaké &islo,
. jemuz funkce F' prifazuje hodnotu m. Polohu takového cisla
v poli S nezname, ale vime, Ze po usporadani patfi na misto
s indexem A[m]. Tedy prvek s indexem j = A[m] nenf jesté
umistén a zvolime ho proto pro dalsi krok vypoctu. V kaz-
dém kroku vypoctu se jedno z ¢isel dostane na své spravné
misto v poli S, takze po provedeni N kroka bude na svych
mistech vsech N ¢isel ulozenych v poli S.

Z uvedeného rozboru pfimo plyne spravnost popsaného
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algoritmu. Koneénost vypoctu je dina provedenim pfedem
znamého poctu N kroku vypoctu. Algoritmus ma linearni
casovou slozitost z hlediska parametru N, jak pozaduje za-
dani Glohy. Poc¢atecni obsazeni poli C' a A vyzaduje provést
Jeden sekvencni prichod polem S, tedy fadové N operaci.
Vlastni vypocet ma presné N kroku, pficemz pocet ope-
raci provadénych v kazdém kroku je omezen konstantou.
Za konstantu zde povazujeme i hodnotu K, kterad je podle
predpokladu uvedeného v zadani tlohy podstatné mensi nez
pocet prvkia N ulozenych v poli S.

program PREROVNANI (input, output);
const N = 100; {velikost pole S}
K = 10; {pocet riznych hodnot funkce F'}

var S: array[l.. N] of integer; {zadané pole ¢isel}
A, C: array[l .. K] of integer;
{prac. pole podle rozboru}
I,J,D, M, H, P, T: integer; {pomocné proménné}

function F' (X: integer): integer; {zadan4 funkce F'}
begin
if X >= 0 then {... mize vypadat tfeba takto}
F:=XmodK +1
else
F:=1
end;
begin
{Pretteni &isel do pole S a inicializace poli C a A:}
for I := 1 to N do read(S[I));
for I := 1 to K do C[I] :=0;
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for I :=1to N do C[F(S[1])] := C[F(S[I])]+ 1,
D :=1; {pro vypocet pottecnich hodnot A}
for I :=1 to K do

begin

A[l] := D;

D :=D+C[]]
end,;

{Pterovnani &isel v poli S:}
J := 1; {index umistovaného prvku v poli S}
M := 1; {minimélni index v poli C, ze C[M] > 0}
for I :=1to N do
begin
H := F(S[J]); {hodnota funkce F' umistovaného &isla}
P := A[H]; {nova pozice v S pro umist. ¢islo}
A[H] := A[H] + 1;
C[H]:=C[H]-1;
if P <> J then
begin {vyména &isel na pozicich J a P v poli S}

T := S[J);
S[J) := S[P];
S[P]=T
end

else

begin {&islo S[j] je jiz na svém misté}
while (C[M]=0) and (M < K) do M := M + 1;
J := A[M] {vybrano dalsi ¢islo, které je tfeba
umistit v nasledujicim kroku}
end
end;
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{Vypis setfidéného pole S:}
writeln(’Setfidéné pole &isel:’);
for I :=1 to N do write(S[I],”’);
writeln

end.

P-1ll1-2

a) Z definice funkce V' je patrné, ze k vyjadfeni hodnoty
V(m,n) neni tfeba znit zidnou hodnotu V(z,y) pro z >
> m. Budeme proto postupné zjistovat pocet potiebnych
hodnot V(z,y) proz =m,z=m—-1,z=m-2,..., 2z =
= 0. Uvazujme nejprve vzajemné zavislosti riznych hodnot
funkce V v pfipadé, ze oba argumenty funkce jsou kladné
(tzn. podle tretiho fadku definice funkce V).

Ke stanoveni hodnoty V(m, n) je tfeba znat V(m,n—1),
k uréeni V(m,n — 1) potfebujeme V(m,n —2), ... atd., aZ
ke stanoveni V(m, 1) potfebujeme znat V(m,0). Tedy pro
z = m je nutné spocitat celkem n + 1 hodnot funkce V,
a sice hodnoty V(m, y) pro vSechna y od 0 do n. K vypocltu
hodnoty V(m,n) dale podle definice funkce V' musime znéat
hodnotu V(m — 1,n + 1). Urceni této hodnoty ze stejnych
diivodi jako v pripadé £ = m vyzaduje znat viechny hodno-
ty V(m—1,y) proy od 0 do n+1, tedy celkem n+2 hodnot
funkce V. Mezi témito n + 2 hodnotami jsou jiz obsazeny
také vSechny hodnoty, které potfebujeme znat pro vypocet
V(im,n—1), V(m,n—2), ..., V(m,1). Zbyva vyfesit pfi-
pad hodnoty V(m,0), k jejimuz vypoétu potfebujeme znat
V(m — 1,m — 1). Pro stanoveni posledni uvedené hodno-
ty musime opét ze stejnych divodi znat vsechny hodnoty
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V(m — 1,y) pro y od 0 do m — 1. Zavedeme-li oznaceni
d = max(n + 1,m — 1), lze tedy pocet potfebnych hodnot
funkce V pro ¢ = m—1 vyjadrit jako d+ 1. Jsou to hodnoty
V(m —1,y) pro y od 0 do d.

S postupné klesajici hodnotou prvniho argumentu funkce
V nyni pocet hodnot této funkce, které je tfeba spocitat,
stale roste po jedné. Pro vypocet &isla V(m — 1,d) totiz
potfebujeme znat V(m—2,d+1), a tedy také vsechny V(m—
—2,y) pro y od 0 do d + 1 atd. Problémy nyni nedéla ani
vypocet hodnot V(z,0) pro z < m. Hodnota V(m — 1,0)
je stanovena definici funkce V' jako V(m — 2, m — 2) a jisté
m—2 < d+ 1. Pro £ = 0 budeme tedy potfebovat znat
hodnoty V(0,y) pro y od 0 do d + m — 1, tzn. celkem d +
+ m hodnot. Tyto hodnoty jsou jiz podle definice funkce V'
pfimo dany a neodkazuji se na Zadné dalsi hodnoty.

Pocet vsech potfebnych hodnot funkce V' pro vypocet
V(m, n) jsme tedy stanovili takto:

prozx =m ... n+ 1 hodnot funkce V
proz=m—1... d+ 1 hodnot funkce V
proz =m—2 ... d+ 2 hodnot funkce V
proz =1 ... d+ m — 1 hodnot funkce V'
proz =0 ... d 4+ m hodnot funkce V

Zbyva provést jednu malou ne prilis vyznamnou korekei.
V pripadé z = 0 neni tfeba pocitat hodnotu V' (0, 1), nebot
k vyjadfeni V(1,0) potfebujeme znat V' (0,0) a k vyjadfeni
hodnot V(1,1), V(1,2), ..., V(1,d+m—2) potiebujeme po
fadé V(0,2), V(0,3), ..., V(0,d+ m — 1). Od vysledného
poc¢tu potfebnych hodnot V' tedy muzeme odecist 1.
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Celkovy pocet potfebnych hodnot funkce V nyni ziskdme
souctem:

(n+D)+d+1)+(d+2)+...+
+(d+m—-1)+(d+m)—-1=
=n+md+ im(m+1),

kde d = max(n + 1,m — 1).

Uvedeny vzorec plati pro vypocet libovolné hodnoty
V(m,n), pokud m > 0. V pfipadé m = 0 sta¢i samozfejmé
spocitat pouze jedinou (pozadovanou) hodnotu funkce V.

b) Pro vypocet hodnoty V(m, n) musi algoritmus postup-
né spocitat vsechny potrebné hodnoty funkce V| jejichz cel-
kovy pocet jsme stanovili v FeSeni Glohy a). Je tfeba zvolit
takové poradi vypoétu hodnot funkce V', abychom v kaz-
dém kroku pouzivali pouze jiz spoctené hodnoty. Z definice
funkce V je zfeymé, ze toto vhodné poradi je nasledujici:
pocitdme hodnoty V(z,y) pro z rostouci od 0 do m a pro
kazdé takové z postupné pro y rostouci od 0 dod+m — =z
(az v pFipadé z = m staci pouze pro y od 0 do n).

Je tieba jesté uvazit, které predchozi hodnoty funkce V
musi algoritmus uchovavat a jakou datovou strukturu tedy
bude vhodné pouzit. Podle definice funkce V' potrebujeme
znat pfi vypoctu V(z,y) pro z > 0 pouze nékterou z hodnot
V(z—1,z2),kde z 2 y (viz 2. a 3. Fadek definice), a pfipadné
jesté idaj V(z,y—1). Pro ulozeni starsich hodnot funkce V
ndm proto bude stacit jednorozmérné pole P[0..d+ m], ve
kterém budeme spoctené hodnoty funkce V' postupné pre-
pisovat pres sebe. V kazdém okamziku, tj. pfi vypoctu cisla
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V(z,y), maji ulozené hodnoty P(j] nasledujici vyznam:

pro j<y ... P[j] ma hodnotu V(z,j)
pro j 2y ... P[j] md hodnotu V(z - 1,j).

Algoritmus vypoétu V(m, n) nyni zapiSeme v programo-
vacim jazyce Pascal. Pro zjednoduseni zapisu algoritmu bu-
deme i pro £ = m poéitat vSechny hodnoty V(z,y) pro y
od 0 az do d.

program FUNKCE V (input, output);

const MAX = 100; {maximalni velikost pole P,
tzn. maximalni pfipustna hodnota
prom+n+1 a pro 2m — 1}

var P: array[0.. MAX] of integer;
{z4kl. datova struktura}
M, N: integer; {argumenty ze vstupu}
D: integer; {hodnota dle rozboru}
I, J: integer; {pomocné proménné}

begin
read(M, N);
if M = 0 then
writeln(N + 1)
else
begin
fN+1>M-1then D:=N+1
else D := M — 1; {vypoé¢tena hodnota d}
for J :=0to D+ M do P[J]:=J +1;
{vypocet &isel V(1,y)}
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for I := 1 to M do {zbyvajici hodnoty V'}
begin
P[0] := P[I - 1J;
for J:=1toD+ M —1do

P[J]:= P[J = 1]+ P[J + 1]

end;

writeln(P[N])

end

end.

¢) Pfi uvedené zméné v definici funkce V se pocet hod-
not funkce V potfebny k vypoctu hodnoty V(m,n) snizi.
Presné stanoveni tohoto po¢tu ovsem bude o néco obtiznéj-
§i. Rozlisime tf1 zdkladni pfipady:

.m<n

Pro vypocet hodnoty V(m,n) potfebujeme znat V(m —
—1,n—1) a V(m—1,n+ 1), k jejich vyjaddfeni musime
zase pouzit hodnoty V(m —2,n—2), V(m — 2,n), V(m —
—2,n+2),...atd. Vzhledem k pfedpokladu m < n se nikdy
nedostaneme k hodnoté V(z,0) pro z > 0 a nikdy se proto
neuplatni druhy faddek v definici funkce V' v zadani tlohy.
Bude tudiz tfeba spocitat

proz =m ... 1 hodnotu funkce V
proxz =m —1 ... 2 hodnoty funkce V
prox =m — 2 ... 3 hodnoty funkce V

pro x = ... m+ 1 hodnot funkce V

tedy celkem 1+2+...4+(m+1) = 3(m+1)(m+2) hodnot
funkce V.
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2. m > n a &isla m, n maji riznou paritu (tzn. jedno je
sudé a druhé liché).

Pfi vypoétu hodnoty V(m,n) zjistime, ze potfebujeme
znat V(m—n,0). Uvazujme nejprve potfebny pocet hodnot
funkce V bez uréovani poc¢tu hodnot nutnych k vyjadreni
V(z,0) pro z > 0 (podle 2. fadku definice). Az do hodnot
s £ = m — n je situace stejnd jako v pfipadé 1. Je tfeba
spocitat

proz =m ... 1 hodnotu funkce V'
proz =m —1... 2 hodnoty funkce V

proz =m —n... n+ 1 hodnot funkce V.

Pocet potfebnych hodnot funkce V se dale nebude zvySovat
o 1 s kazdym snizenim prvniho argumentu funkce V, ale
pouze prfi kazdém druhém snizeni. Budeme totiz pocitat
hodnoty

Vim—n,y)proy=0,2,4,...,2n
Vim—n—-1,y)proy=1,3,5...,2n+1
Vim—n—-2,y)proy=0,2,4,...,2n+2

V(O,y) proy=1,3,5,...,2n+(m—n)=m+n,
nebot m, n maji riiznou paritu. Celkem je tedy tfeba uréit

1+42+...+n+
+2Ar+1)+(n+2)+...+3(m+n+1)=
=in(n+1)+i(m+3n+3)(m—-n+1)
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hodnot funkce V.

Zbyva vyfesit vypolet hodnot V(z,0) pro z > 0. Je tieba
spocitat V(m — n,0), V(m — n - 2,0), ..., V(1,0). Podle
definice je tfeba k uréeni V(m — n,0) spoéitat V(m — n —
—1,m—n—1). Zatimco vechny dosud vyjadfované hodnoty
funkce V mély argumenty rizné parity, v tomto pripadé ma-
Ji oba argumenty stejnou paritu a také k vyjadieni hodnoty
V(m—n—1,m—n—1) budeme potiebovat samé dalsi hod-
noty se stejnou paritou obou argumenti funkce V. Jedna se
tedy o rozdilné hodnoty, nez jaké jsme dosud pocéitali. Jejich
pocet urcime snadno podle jiz vyfeseného 1. pfipadu. Bude
jich tfeba 2(m—n)(m—n+1). Mezi témito hodnotami jsou
Jiz obsaZeny také viechny hodnoty potfebné k vyjadfeni ¢i-
sel V(m —n—2,0), ..., V(1,0). Celkové je tedy nutné pfi
vypoétu hodnoty V(m,n) uréit

1 1 1
5n(n+1)+Z(m+3n+3)(m—-n+1)+—2—(m—n)(m——n+l)

riznych hodnot funkce V.

3. m > n a &isla m, n maji stejnou paritu (tzn. jsou obé
sudé nebo obé lich4).

Tento pfipad je velmi podobny pfedchozimu. Opét bude

tfeba spocitat prox = m, m—1,...,m—npotadél, 2, ...,
n + 1 hodnot funkce V. Konkrétné pro £ = m — n jsou to
opét hodnoty V(m — n,y) proy =0, 2, ..., 2n. Vypocet

bude tentokrat konéit hodnotami V(0,y) proy =0, 2, ...,
m + n, nebot m, n maji nyni stejnou paritu. Bude tedy
tfeba urcit

1424+...+n+
+2[(n+1)+(n+2)+...+(m+n)]+3(m+n)+1=
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:%n(n—{—l)—{-%(m+3n+2)(m—n)+%(m+n)+1

hodnot funkce V.

Opét zbyva dofesit vypocet hodnot V(z,0) pro z > 0.
Budou se poéitat ¢isla V(m — n,0), V(m — n —2,0), ...,
V(2,0). Stejné jako ve 2. pfipadé je tieba spocitat hodnotu
V(m—n—1,m—n—1). Mezi hodnotami k tomu potfebnymi
budou jiz hodnoty funkce V nezbytné k vyjadieni vsech
ostatnich &isel V(m—n,0), ..., V(2,0). Polet téchto hodnot
mizeme opét vyjadFit pomoci vysledku 1. feseného pfipadu
vyrazem 1(m —n)(m —n + 1).

Situace je nyni ovSem trochu komplikovanéjsi tim, ze jak
tyto pridavané, tak i dfive spocitané hodnoty funkce V ma-
Ji argumenty stejné parity, takze nékteré z hodnot jsou za-
pocitany v obou poctech. Zjistime, kolik takovych pfipadi
nastalo, a od celkového souctu je jednou odecteme. Z geo-
metrického vyjadfeni obou mnozin hodnot v roviné snadno
odvodime, 7e se jedna o hodnoty nezbytné k vyjadfeni &isla
V(3(m+n), 3(m+n)), coi je celkem L[L(m+n)+1][1(m+
+ n) + 2] riznych hodnot.

Pro vyjadfeni V(m,n) je tedy v tomto pfipadé nutné
spocitat

nn+1)+3(m+3n+2)(m—n)+i(m+n)+1+
+i(m—n)(m—-n+1)—i(m+n+2)(m+n+4)
riznych hodnot funkce V.
P-1I-3

Pfedpoklddejme, ze proménna N udavd pocet vrcholi
zadaného N-thelniku a Ze v polich AX, AY jsou uloZeny
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z-ové a y-ové soufadnice vrcholi A(1), ..., A(N). Indexy
vrcholt 1, 2, ..., N budeme uvazovat usporddané v tom-
to poradi, jak za sebou néasleduji na obvodu N-thelniku.
Po vrcholu A(N) néasleduje opét vrchol A(1), uspofddani
je tedy cyklické. V nasem algoritmu budeme chtit pracovat
s indexem vrcholu, ktery nasleduje jako d-ty za vrcholem
s indexem 1. Jeho poradové ¢islo je i+ d, pokud ovsem hod-
nota tohoto souctu neptrekroc¢i N. Jinak je tfeba vzhledem
k cyklickému usporadani index vysledného vrcholu pocitat
pomoci operace modulo N. Tento pfepocet ndm bude pro-
vadét pomocna funkce R, kterd je definovidna predpisem
R(k) = (k— 1) mod N + 1. Tedy v poradi d-tym vrcholem
nésledujicim za A(¢) je vrchol A(R(7 + d)).

Vrcholy N-thelniku jsou zadany svymi kartézskymi sou-
radnicemi. PFi hleddni minimalni triangulace budeme po-
tfebovat znat velikosti riznych diagonal N-thelniku. Délku
asecky spojujici vrcholy A(k) a A(l) ozna¢me DIST(k,I).
Pomocné funkce DIST spocte vzdalenost vrcholi A(k)
a A(l) snadno pomoci Pythagorovy véty. Vysledek je ro-
ven druhé odmocniné ze souctu kvadrati rozdila z-ovych
a y-ovych soutadnic bodi A(k) a A(]).

Hlavni datovou strukturou naseho algoritmu bude dvou-
rozmérnd tabulka redlnych éisel T[1..N,1.. N —2]. Tabul-
ku T budeme postupné zaplhovat tak, aby hodnotou T7i, d]
byla minimalni mozna velikost triangulace mnohothelniku
A()A(R(i+1)). . . A((i + d)), zvétSend jesté o délku Gsed-
ky A(:)A(R(i + d)). Budeme tedy uvazovat mnohothelni-
ky tvofené d + 1 sousednimi vrcholy ptvodniho zadaného
N-thelniku. Pro kazdé pevné zvolené d z rozmezi od 2 do
N —2 je takovych mnohothelniki pfesné N raznych, nebot
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je N moznych voleb indexu i. Pro d = N — 1 je jiz takovy
mnohothelnik jediny a je jim cely ptivodni N-thelnik.

Pro d = 1 definujeme T'[¢,d] = 0 pro vSechna ¢ od 1 do
N. Vypocet dalsich hodnot T'7, d] bude probihat postupné
po krocich pro d rostouci od 2 do N — 2 a pro kazdé ta-
kové d vidy pro vsechna i od 1 do N. Kazdou jednotlivou
hodnotu T'[7, d] ud4vajici minimdln{ triangulaci mnohothel-
niku A(2)A(R(i+1))...A(R(i+d)) zvétsenou o délku tsecky
A(7)A(R(i + d)) spocteme nésledujicim zptsobem: Kazda
triangulace uvedeného mnohothelniku obsahuje dvojici se-
¢ek A())A(R(i+7)), A(R(i+j))A(R(i+d)) pro néjaké cislo
j z rozmezi 1 az d — 1. Triangulace totiz musi délit plochu
mnohouhelniku na samé trojahelniky, jeden z takto vznik-
lych trojahelniki musi mit jako jednu svoji stranu tsecku
A(1)A(R(i+d)) a jeho tfetim vrcholem pak musi byt pravé
néjaky bod A(R(i + j)). Pfi vypoétu hodnoty Tz, d] pro-
to budeme postupné zkoumat triangulace obsahujici dvojici
tGsecek A(i)A(R(i + 7)), A(R(i + j))A(R(i + d)) pro vsech-
na j od 1 do d — 1 (coz jsou vSechny existujici triangulace,
jak jsme pravé vysvétlili). Velikost kazdé takové triangulace
snadno spoéteme jako soucet hodnot T'[¢, j] a T[R(i+j),d—
— 7], které jiz zndme z predchozich krokd vypoétu, nebot
tabulku 7" zapliujeme postupné od nejmensich hodnot pro-
ménné d k nejvétsim a plati jak j < d, tak1d—j < d. Za
hodnotu 777, d] nyni staéi vzit minimélni hodnotu ze vsech
velikosti takovych triangulaci pro j od 1 do d — 1 a pFicist
k ni jesté délku asecky A(:)A(R(i + d)).

Po zaplnéni celé tabulky 7' lze nalézt vysledek Glohy mezi
hodnotami T'[¢, N — 2]. Pro kazdou hodnotu indexu 7 od
1 do N udava T[i, N — 2] minimélni velikost triangulace
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mnohothelniku A(7)...A(R(: + N — 2)) zvétsenou o délku
Gsetky A(i)A(R(i + N — 2)). Cisla T[i, N — 2] jsou tedy
vSechna velikostmi jistych triangulaci zadaného N-thelniku
a nejmensi z nich je hledanou minimalni moznou velikosti
triangulace.

Z uvedeného rozboru vyplyva spravnost navrzeného al-
goritmu. Vypocet podle algoritmu je jisté konecny, nebot
pocet vSech opakovani v cyklech je pfedem omezen hod-
notou proménné N. Zakladem algoritmu je vypocet hod-
not ulozenych v tabulce T'. Pocet téchto pocitanych hodnot
T[i,d) je Gmérny N? (= velikost tabulky T'). Pfitom vypo-
¢et jednoho &isla T¢, d] predstavuje Fddové N operaci (pro
jednotlivé mozné volby indexu j). Cely algoritmus ma tedy
¢asovou slozitost N3.

program TRIANGULACE (input, output);
const MAX = 100; {maximalni pocet vrcholii}

var AX, AY: array[l.. MAX] of real,
{soufadnice vrcholii}
N: integer; {pocet vrcholi}
T: array[l.. MAX,1.. MAX] of real;
{tabulka dle rozboru}
I, J, D: integer; {pomocné proménné}
M, Q: real; {pro vypoéet minim}

function R (K: integer): integer;
{pfepocet indexd vrcholi modulo N}

begin

R:=(K—-1)modN +1

end; {R}
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function DIST (K, L: integer): real;
{vzdalenost bodi v roviné}
begin
DIST := sqrt(sqr(AX[K] — AX[L]) +
+sqr(AY[K] — AY[L)))

end; {DIST}
begin
{Nagteni vstupnich dat:}
read(N);
for I :=1to N do
begin
read(AX[I], AY[I]);
T[1,1] := 0
end,;

{Zaplnéni tabulky T}
for D:=2to N—-2do
for I :=1to N do
begin
M := 0; {libovoln4 inicializace proménné M}
for J :=1to D—1do
begin
Q:=T[,J)+T[R(I+J),D-J]
if (Q< M)or(J=1)then M :=Q
{vybér minimalni triangulace}
end;
T[I,D] := M + DIST(I, R(I + D))
end,;

{Stanoveni vysledné hodnoty jako minimum z T[I, N — 2]:}
M :=T[1,N - 2]
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for ] :=2to N do

if T(I, N -2 < M then M :=T[I,N - 2];
writeln("Minimalni velikost triangulace’);
writeln(’zadaného mnohothelniku: ’, M)
end.

P-1ll-4

Budeme fesit pouze tlohu b), nebot tato tloha je obec-
néjsi a jeji feSeni v sobé zahrnuje i feSeni alohy a). Sa-
mostatné feSeni Glohy a) s pouzitim aritmetickych operact
zakdzanych v b) se pFilis nelisi, zdkladni myslenka feSeni
i efektivita vysledného programu zistava zachovana, pouze
zapis algoritmu se mirné zjednodusi.

V programu je nutné porovnavat mezi sebou rizné dvo-
Jice hodnot. Porovnani jsme dosud provadéli pomoci pfika-
zu SUB. Staéi si ovSem uvédomit, zZe odeéist od &isla jis-
tou konstantu znamend totéz jako pficist k nému stejnou
konstantu, ovSem s opaénym znaménkem. Timto zpisobem
nahradime operace SUB piikazy ADD, jejichZz pouziti neni
zakazano.

Ulohu je mozné fesit mnoha riznymi zptsoby. Ukazeme
si zde dvé FeSeni, z nichz kazdé jinym zpusobem vyuziva
zasobniku k uchovani potfebnych tdaji. V prvnim feSeni
se do zasobniku uklddaji pouze citace obsahujici vhodné
informace o poctech ¢isel na vstupu. Hodnoty téchto ¢itaca
se v pribéhu vypoétu méni pomoci aritmetickych operaci.
Druhé feseni Glohy pouziva zasobnik pfimo k ulozeni ¢isel ze
vstupu. Poéty uloZenych ¢isel tak vlastné nahrazuji hodnoty
¢itaca z predchoziho feseni.
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Prvni varianta feseni Glohy spociva v provedeni nésledu-
jicich krokid vypoctu:

1. Ze vstupu se ctou éisla ,,10“. V zasobniku se pfitom
udrzuje ¢itac, jehoz hodnota se priibézné zvysuje o 1, takze
po precteni vsech ,10“ ze vstupu ¢ita¢ udava jejich pocet.

2. Ze vstupu se Ctou disla ,,20“. V zésobniku se pfitom
udrzuji dva ¢itace, jejichz hodnota se pribézné méni. Na
dné zasobniku se od dfive stanoveného poctu ,10“ vidy
odecte 1 a na vrcholu zasobniku se pocita pocet vsech ,20¢
pficitdnim 1 k druhému ¢itaci. Po pfecteni vsech cisel ,,20¢
ze vstupu jsou v zdsobniku uloZeny dvé hodnoty: na dné
zasobniku je rozdil pocet ,10“ — pocet ,20“ a na vrcholu
pocet ,20“.

3. Je-li hodnota udévajici rozdil poétu ,,10“ a ,20“ nulo-
va, vytiskne se ,1“ jako vysledek prace algoritmu a ukonéi
se vypocet. Jinak se tato hodnota ponecha na dné zasobni-
ku pro dalsi pouziti, nad ni na vrcholu zasobniku zistava
uloZen pocet ,20“ a pokracuje se ve vypoctu nasledujicim
krokem.

4. Ze vstupu se ctou ¢isla ,,30“. Pritom se priubézné snizu-
je o 1 hodnota Citace ulozeného na vrcholu zasobniku,-takze
po precteni vSech Cisel ze vstupu bude tento ¢itac udavat
rozdil pocet ,,20“ — pocet ,, 30 .

5. Je-li hodnota udavayjici rozdil poétu ,20“ a ,,30“ nulo-
va, vytiskne se ,1“ jako vysledek préace algoritmu a ukondéi
se vypocet. Jinak se tato hodnota ponecha na vrcholu za-
sobniku pro dalsi pouziti, pod ni na dné zasobniku zistava
nadale ulozen rozdil poctu ,10“ a ,20“ a pokracuje se ve
vypoctu nasledujicim krokem:.

6. Sectou se obé hodnoty uloZené v zasobniku. Tyto hod-
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noty pfedstavuji dfive zjisténé rozdily (poéet ,,10“ — pocet
»20%) a (pocet ,20“ — pocet ,,30“). Vysledkem tohoto sou-
¢tu je hodnota rozdilu (pocet ,,10“ — pocet ,,30%).

7. Je-li vysledny rozdil nulovy, algoritmus vytiskne vy-
sledek ,, 1, jinak vytiskne ,0“. Tim je Gloha vyfeSena a al-
goritmus ukon¢i svoji praci.

CONST -1
PUSH
IN
PUSH
CONST -10
ADD
while ZERO do
begin
POP
CONST 1
ADD
EXCH
IN
PUSH
CONST —-10
ADD
end
CONST 1
EXCH

(pocet ,,10“ je zatim nulovy ..)
(... z techn. diivodi ddme —1)

(na vrcholu je pfeétené ¢&islo)

(pFectené &islo je ,10¢)
(zruseni ,,10 ze zésobniku)

(zvysime hodnotu &itade o 1)
(ulozime novou hodnotu ¢&itade)

(dalsi ¢islo ze vstupu do zés.)
(otestujeme, zda je to ,,10¢)

(mame pfeétenu prvni ,,20¢)
(zalozeni druhého &itace)

(za toto prvni ¢&islo ,,20“ nemusime sniZovat hodno-
tu Citace na dné zasobniku diky pocatecni inicializa-
ci na —1 misto na 0 v prvnim fddku programu; na
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dné zasobniku je nyni pocet ,,10“ zmenSeny o 1 a na
vrcholu hodnota 1 — zatim bylo pfecteno jedno &islo

»20“)
IN
PUSH (pfectené &islo na vrcholu)
CONST -20
ADD (otestujeme, zda je to ,20%)
while ZERO do
begin (prectené &islo je ,,20“)
POP (zruseni ,,20“ ze zasobniku)
CONST 1
ADD (nova hodnota horniho &itace)
POP
EXCH (zdména ulozeni Citach)
PUSH
CONST -1
ADD (nova hodnota druhého citace)
POP
EXCH (obnova ulozeni &itaci)
PUSH
IN
PUSH (dalsi ¢islo ze vstupu do zés.)
CONST -20
ADD (otestujeme, zda je to ,20¢)
end

(nyni je v zdsobniku uloZen rozdil poétu ,,10¢ a ,,20¢,
nad nim je pocet ,,20“, na vrcholu zasobniku prvni
&islo ,,30“ prectené ze vstupu)
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pPopP

TOP (horni &itac do registru)
popP
EXCH (zdména &italu)
if ZERO then
CONST 1 (pocet ,,10“ = pocet ,,20)
else
begin
EXCH (obnova uloZeni ¢itacl)
PUSH
CONST -1
ADD (§iz jsme pFecetli prvni ,,30¢)
EXCH (novéa hodnota horniho &itace)
while not EOF do
begin
IN (pFecteni ¢isla ,,30“ ze vstupu)
CONST -1
ADD (sniZeni hodnoty ¢itace)
EXCH
end
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(nyni jsou pfectena viechna &isla ze vstupu; v z4sob-
niku jsou ulozeny rozdily poétu ,,10“ a ,,20“ a poétu
»20¢ a ,30%)

TOP (horni ¢ita¢ do registru)
if ZERO then

CONST 1 (pocet ,20“ = pocet ,,30%)
else

begin

POP



ADD (soucet obou &itaci)

if ZERO then
CONST 1 (pocet ,10¢ = pocet ,,30)
else
CONST 0 (zaporny vysledek)
end
end
ouT (tisk vysledku)

Druha varianta feseni zadané lohy se sklada z postup-
ného provedeni nasledujicich kroku vypoctu:

1. Ze vstupu se prectou vsechna ¢isla ,,10“. Pribézné se
uklddaji do zasobniku a v ¢itaci udrzovaném na vrcholu
zdsobniku se zaroven spocita jejich pocet.

2. Ze vstupu se prectou vsechna ¢isla ,,20“. Ukladaji se do
zasobniku nad ¢isla ,10“, kterd byla do zasobniku vlozena
v predchéazejicim kroku. Odé¢itanim jednic¢ky za kazdé ulo-
zené ¢islo ,,20“ od ¢itace udrzovaného na vrcholu zasobniku
se urdi rozdil poctu éisel ,10“ a ,,20¢.

3. Je-li tento rozdil nulovy, vytiskne se ,,1“ jako vysledek
prace algoritmu a ukond¢i se vypocet. Jinak se ¢itac z vrcho-
lu zasobniku zrusi a pokracuje se ve vypoctu nasledujicim
krokem.

4. Ze vstupu se prectou vsechna ¢isla ,,30“. Pri jejich ¢teni
se prubézné vypoustéji cisla ,,20“ ze zasobniku, dokud je to
mozné (za kazdé prectené ¢islo ,30“ se vypusti jedno &islo
»20“ ze zdsobniku). Tim se urci rozdil poétu ,,30“ a ,,20“.
Zaroven se v ¢itaéi udrzovaném na vrcholu zasobniku spo-
Cita pocet vSech prectenych cisel ,,30¢.
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5. Je-li na vstupu stejny pocet cisel ,30“ a ,,20“, je mozné
vypustit ze zasobniku za kazdé ctené Cislo ,,30“ jedno ¢islo
»20“ (tj. nestane se, ze by se béhem cteni ,30“ ze vstupu
narazilo v zasobniku na ¢islo ,,10“ ulozené pod vsemi ,,20“)
a po precteni vsech ¢isel ze vstupu uz naopak v zasobni-
ku zadné cislo ,,20“ nezbude. V takovém pripadé vytiskne
algoritmus vysledek ,, 1 a skonéi. Jinak se ze zadsobniku vy-
pusti vSechna zbyla ¢isla ,20“ (jsou-li tam néjakd) a pokra-
Cuje se ve vypoctu nasledujicim krokem.

6. Porovna se pocet Cisel ,,30“ zaznamenany v éitaci na
vrcholu zasobniku s poétem cisel ,,10“ ulozenych v zasobni-
ku pod timto ¢itac¢em. Toho dosdhneme postupnym vypous-
ténim cisel ,,10“ a sou¢asnym snizovanim hodnoty citace.

7. Jsou-li tyto pocty stejné, algoritmus vytiskne vysledek
» 1%, jinak vytiskne ,,0“. Tim je Gloha vyfeSena a algoritmus
ukon¢i svoji praci.

Naprogramovani uvedeného postupu feseni je opét pouze
technickou zalezitosti. Kroky 1 az 3 jsou snadné. V kroku
4 je vyhodné zavést zvlastni pomocnou hodnotu uklada-
nou do zasobniku jako priznak v pripadé, ze pfi vybirani
Cisel ,,20“ ze zasobniku zjistime, ze jich je méné, nez kolik
Je »,30“ na vstupu. Tento pfiznak nam umozni rozhodnout
o dalsim postupu v kroku 5. Mizeme pouzit naptiklad ¢islo
»40%, kterym nahradime éislo ,,10“ lezici v zadsobniku nejbli-
ze k vrcholu hned pod ¢isly ,,20¢. Zbyvajici kroky vypoctu
jsou jiz opét snadné.
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Korespondenéni seminai UV MO 1989/90

Korespondenéni seminaf je jednou z forem péce o ta-
lentované zaky. Vznikl ve 24. roéniku MO proto, aby bylo
mozno vénovat individudlni pééi i tém zaktim, ktefi neméli
moznost navstévovat specialni skoly a pracovat v tamnich
seminafich. Nyni, kdy existuji i krajské korespondenéni se-
minafe a kdy specidlni skoly s tfidami zaméfenymi na ma-
tematiku najdeme v kazdém kraji, je cilem tohoto seminére
zlepsit individualni pfipravu vsech studenti, ktefi prokazali
své schopnosti a matematicky talent v predchozich roc¢ni-
cich matematické olympiddy. Korespondenéni seminaf tak
nadéle zlstava dilezitou soucasti pfipravy na mezinarodni
matematickou olympiddu.

K wcasti v korespondenénim semindfi jsme pozvali vSech-
ny Spickové fesitele kategorie A spolu s témi studenty, kte-
fi néjak vynikli v krajskych kolech kategorii B a C pfed-
choziho roéniku MO. V pribéhu 39. roéniku MO jim bylo
postupné zaslano 5 sérii pomérné narolnych tloh, jejichz
texty najdete v Glohové asti této roCenky (tentokrat popr-
vé s FeSenimi). Dosl4 FeSeni pak byla opravena, ohodnocena
a s rozmnoZenym komentafem vracena Géastnikiim seminé-
fe. Nejlepsimi v celkovém hodnoceni byli:
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Petr Hlinény, 4. rocnik G M. Kopernika, Bilovec
Vladimir Skalsky, 4. roénik G, T. Sevéenka, Presov
gtépdn Kasal, 3. ro¢nik G, Korunni, Praha
Ondrej Kalenda, 4. rocnik G, Korunni, Praha
Martin Dindos, 4. rocnik G J. Hronce, Bratislava
Martin Cizek, 4. roénik G, Roznov p. Radhostém
Jdan Bajcsy, 4. roénik G A. Markusa, Bratislava
Viadimir Glasndk, 3. ro¢nik G, V. Okruzna, Zilina
9. Martin Schnabl 4. ro¢nik G, Korunni, Praha
10.-11. Jan Hannig, 3. ro¢nik G, Korunni, Praha
10.-11. Ondrej Such, 4. ro¢nik G A. Markusa, Bratislava

Korespondenéni seminaf je Fizen tajemnikem UV MO
RNDr. Karlem Hordkem, CSc., ktery se staral o vybér tuloh
a provadél 1 redakct komentari. Opravu pak zajistovalo né-
kolik pracovnikit MU CSAV a nékolik studenti a aspiranti
MFF UK Praha (vsichni jsou byvali olympionici).

Ijlohy korespondenéniho seminare

1.1 Zjistéte, jaka je nejdelsi cesta, po které muze Sachovy
kral obejit celou sachovnici 8 x 8 tak, ze kazdé pole projde
pravé jednou a vrati se na vychozi pole, pficemz jeho cesta
spojujici stfedy jednotlivych poli tvori uzavienou neproti-
najici se lomenou caru.

1.2 Na listu étvereckovaného papiru n x n jsou nékteré
ctverecky obarveny jednou z n riznych barev. Pravidelnym
obarvenim budeme rozumét takové obarveni ¢tverecki, pri
némz v zadném radku ani sloupci nejsou dva ¢tverecky stej-
né barvy. Lze vzdy pravidelné ,,dobarvit“ vsechny ctverecky,
jestlize uz je (pravidelné) obarveno
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a) n? — 1 ¢tverecki,
b) n% — 2 Etverecki,

c) n tverecka?

1.3 Dokazte, ze rovnostranny (ne nutné pravidelny) konvex-
ni pétithelnik obsahuje rovnostranny trojihelnik se stranou
téze délky jako strana daného pétitihelniku.

1.4 Je dan jednotkovy ctverec, z néhoz odrizneme rohy —
Ctyti trojuhelniky, jejichz dvé strany tvori % prislusné strany
Ctverce. Se vzniklym osmithelnikem provedeme tutéz ope-
raci: z kazdého jeho vrcholu odfizneme trojihelnik, jehoz
dvé strany tvofi vzdy % prislusnych stran osmithelniku, atd.
Dostaneme tak posloupnost mnohothelniki (kazdy dalsi je
zfejmé Casti predchoziho). Uréete obsah priniku vsech ta-
kovychto mnohothelnikii.

1.5 V kruhové aréné o poloméru 10 m pobiha lev. Pohy-
bem po lomené cafe ubéhl celkem 30 km. Dokazte, ze soucet
vSech hl{, o néz se pri béhu otocil, je aspon 2998 rad.

1.6 Dokazte, ze soucet

n n n 5
(1) + (3)1989+ (5>1989 + ...

je pro kazdé prirozené n délitelny ¢islem 2771

1.7 V prostoru je dan trojhran, v némz jsou sestrojeny osy
jednotlivych rovinnych ahla. Dokazte, ze vzdajemné thly
téchto os jsou bud vesmés ostré, nebo vesmés tupé, ane-
bo vsechny pravé.
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2.1 Stény jednotkové krychle jsou oznaceny ¢isly 1,2,...,6
tak, ze soucet Cisel na protéjsich sténach je 7. Krychli bude-
me pfemistovat z levého spodniho rohu $achovnice 50 x 50
do protéjsiho rohu tak, Ze ji budeme otacet kolem jedné
z jejich hran, aby se pohybovala doprava nebo nahoru. Prfi-
tom kazdému poli 8achovnice pfifadime ¢&islo té stény, ktera
na ném stala. Najdéte nejmensi a nejvétsi mozny soucet
uvedenych 99 isel.

2.2 Prifadme krajnim bodim dané tsecky &isla 1, jejimu
stfedu pak prifadime jejich soucet, tj. 2. V kazdém nasledu-
Jicim kroku napiseme mezi kazdd dvé uz napsana sousedni
Cisla jejich soucet. Kolikrat bude mezi éisly, kterd dostane-
me po 1973. kroku, zapséano ¢islo 19737

2.3 V roviné jsou dany dva body A, B. Zvolme bod C lezi-
ci na ose usecky AB a sestrojme posloupnost Cy = C, C,
..y Cny, Cpya, ..., kde Cp4q je stied kruznice opsané troj-
thelniku ABC,,. Pro jakou polohu bodu C bude bod C,
stfedem usecky AB (takze Cp41 a dalsi body posloupnosti
nebudou definovany)? A v jakém pfipadé vyjde C, = C?

2.4 Jsou dana realna ¢isla aq, ao, ..., a, a by, by, ..., by,
ktera spliuji aspoii jednu z néasledujicich dvou podminek:
a) Jestlize a; < aj, pak b; < b;,
a;+az+...+an

b) jestlize a; < < aj, pak b; < b;.

Dokazte, ze pak plati

n(a1b1+a2b2+...+anb,,) z
g(a1+a2+...+a,,)(b1+b2+...+b,,).
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2.5 Predpokladejme, ze chceme sestrojit body My, M, ...,
M, v roviné, jestlize jsou dany jejich vzdjemné vzdalenos-
ti ri; = |M;M;| (1 £ 4,5 £ n). Lze tyto body sestrojit,
Jestlize vime, Ze libovolna pétice z uvazovanych n bodt se-
strojit jde? Nestaci pozadovat moznost sestrojeni libovolné
Ctvetice? Jaké bude nejmensi k v prostoru takové, Ze moz-
nost sestrojeni libovolné k-tice z uvazovanych n bodi zaruéi
moznost sestrojeni vSech n bodi (na zdkladé danych &isel
Tij, 1 g i, ] § n)?

2.6 V roviné jsou dany dvé prfimky m, n a bod O. Sestrojte
trojahelnik, jehoz vysky lezi na danych primkich m a n
a pro ktery je bod O stfedem kruznice opsané.

2.7 Zjistéte, pro kterd k se da Ctverec 6 x 6 zaplnit 12 platky,
z nichz k ma tvar thelniku a 12 — k pravothelniku (kazdy
obsahuje tfi ctverecky — obr. 28).

Obr. 28

3.1 Jsou déna pfirozena ¢isla 1 < k < n. Urlete nejmensi
pfirozené &islo m tak, aby platilo: Je-li na Sachovnici n x n
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rozmisténo libovolnym zptisobem m vézi, mizeme jich vy-
brat k tak, ze Zddné dvé se nebudou navzajem ohrozovat.

3.2 Pro dané r mtzeme hodnotu z® urcit pomoci tii ope-

raci: 2?2 = z -z, 2% = 22 . 22, 28 = z* . z*; podobné lze

z!5 uréit pomoci péti operaci (kdyz k uvedenym operacim

pfiddme jesté z16 = z8 . 28 215 = 216 : 2). Dokaite, 7e

a) z!990 je mozno uréit pomoci 12 operaci (nasobeni a dé-
leni),

b) pro kazdé pfFirozené n mizeme uréit ™ pomoci nejvyse
3 logy n + 1 operaci.

3.3 Oznaéme A; H; vysku a A; M; téznici ostrothlého troj-
thelniku Ay A2A3 (i = 1, 2, 3). Dokazte, ze jeden ze soucinu
IH1M1| . |A2A3|, lHQMQl . |A3A1I, IH3M3I . |A1A2| se rovna
souctu zbylych dvou. Plati toto tvrzeni 1 pro tupouhly ¢i
pravouhly trojahelnik?

3.4 Do konvexniho n-thelniku A;A,...A, je vepsan
n-thelnik B;B; ... B,, ktery ma obsah P (pfitom vrchol
Bi; lezi na strané A;A;41 proi=1,2,...,n—1avrchol B,
na strané A, A;). Zaroven je mnohothelniku A;4,... 4,
opsan n-uhelnik C;Cs...C,, jehoz obsah je @, pficemz
C1Cz ” Ble, C'QC;; || BQB;;, ce ey C,,Cl || BnBl (VI‘(:hOl
A; zase lezi na strané C;_,C; prot1 = 2, ..., n a A} na
strané C,,C). Urcete obsah S mnohothelniku A1 Az ... Ay,
popfipadé zjistéte, jaké hodnoty mize S nabyvat.

3.5 Uvnitf hran E'F a F'G krychle ABCDEFGH jsou dany
dvabody K a M tak, ze rovina K BM se dotyka koule, ktera
je dané krychli vepsana. Dokazte, ze velikost ahlu ¢ dvou
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stén Ctyfsténu HBK M se spole¢nou hranou BH nezavisi
na volbé bodi K a M. Najdéte velikost tohoto ihlu ¢.

3.6 Na dvore krale Artuse se seslo n rytifi. Néktefi z nich
jsou v nepratelském vztahu, ale kazdy z rytifa tu ma aspon
%n pratel. Dokazte, ze kouzelnik Merlin, radce kréale Artuse,
mize rozesadit rytife okolo kulatého stolu tak, aby kazdy
z nich sedél vedle pratel.

Pokud ma4 kazdy rytif stejny sudy (samoziejmé nenulovy)
pocet pratel, mize Merlin rozesadit rytife okolo nékolika
(aspon tFi) kulatych stolt tak, aby nikdo nesedél vedle svého
nepfitele (rizné velkych stold ma dostatek). Dokazte.

3.7 Najdéte hodnotu odmocniny

V0,11111...11111
N
100

s presnosti na dvé sté platnych cislic.

4.1 Najdéte kofeny ry, ro, ..., 7, TOVDICE
" +nz" 4 a " +.. . 4a,=0,

vite-li, Ze plati r1¢4+ri6+ ... +7l% = n (n je dané pfirozené
Cislo).

4.2 Dany pravothelnik R je rozdélen na koneény pocet pra-
vothelnikid R;, 1 £ ¢ £ n, které se navzajem nepfekryvaji,
pficemz strany kazdého z nich jsou rovnobézné se stranami
R a kazdy z pravothelniki R; ma aspon jednu stranu celo-
Ciselné délky. Dokazte, ze 1 R ma stranu celociselné délky.
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4.3 V roviné jsou dany body O, A,, ..., A4 takové, ze kazdy
z trojahelniki OA;Aj, 1 £ i < j < 4, mé obsah aspon 1.
Dokazte, Ze pak pro nékteré dva body A;, A; ma trojihelnik
OA;A;j obsah nejméné V2.

4.4 Predpokladejme, Ze vrchol A ostrothlého trojahelniku
ABC ma od stfedu opsané kruznice a od priseciku vysek

stejnou vzdalenost. Uréete vSechny mozné hodnoty tGhlu pfi
vrcholu A.

4.5 Dané kruznici je opsan mnohouhelnik. Body dotyku
tvofi vrcholy mnohothelniku vepsaného dané kruznici. Do-
kazte, ze soucin vzdalenosti libovolného bodu M na kruz-
nici od stran jednoho z mnohotihelnikl je roven souéinu
vzdalenosti stejného bodu od stran druhého mnohothelni-
ku. (Vzdalenosti bodu od strany mnohoiuthelniku tu rozu-
mime vzdalenost tohoto bodu od pfislusné pfimky.)

4.6 Ve mésté je jedno kruhové a n ctvercovych namésti, pfi-
cemz kazdé ze étvercovych ndmésti je spojeno ulici s kruho-

/N

Obr. 29
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vym a se dvéma Ctvercovymi (obr.29). Na kazdé z 2n ulic
mésta je zaveden jednosmérny provoz tak, Ze na kazdé na-
mésti lze pfijet a z kazdého namésti lze odjet. Dokazte, Ze
z kazdého namésti lze dojet na libovolné jiné, aniz bychom
narusili zavedena pravidla.

4.7 Oznaéme «, (3, v Ghly, které svira télesova thlopricka
AG hranolu ABCDEFGH s hranami AB, AD a AE. Do-
kazte, Ze a+ B+ v < 7.

5.1 Jsou déna redlnd ¢isla a, b a pfirozené Eislo n. Zjistéte,
jakych hodnot mize nabyvat zg, jestlize redlna cisla z,
zy, ..., T, spliuji rovnosti

n

n
2ozi=a, S z2=b.
1=0

i=0

5.2 Jsou-li Ay, A,, ..., As body na povrchu jednotkové kou-
le, jaka je nejvétsi hodnota vyrazu

min |A;A;|?
1§i<j§5| ! JI

Urcete vSechny konfigurace bodu A;, Ag, ..., As, pro néz
se uvedené maximum nabyva.

5.3 Obchodnik s koberci potfebuje urcit rozméry nového
koberce, ale nemiize najit metr. Pfi uklddani obdélnikového
koberce vsak zjistil, ze v kazdé ze dvou skladovacich mist-
nosti muze novy koberec polozit na podlahu tak, ze kazdy
roh koberce se dotyka jiné stény mistnosti. Ty maji rozméry
38 x 55 a 50 x 55 m. Jak velky je novy koberec?
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5.4 Pro jaka pfirozend isla n 2 2 je nerovnost
24zl 4222 p(ziza 4 Torz ...+ Tao12y)

splnéna pro libovolna realna ¢isla 1, o, ..., z,, jestlize a)

p=1b)p=3%¢c)p=2¢?

5.5 Kruznice je body A;, As, ..., A, rozdélena na n stej-
nych &asti, z nichz kazda je obarvena n&akou barvou. Rek-
neme, Ze dva oblouky dané kruznice (jejich krajni body jsou
nékteré z danych bodi) jsou shodné obarveny, jestlize pfi
néjakém otoceni dané kruznice se uvazované oblouky sho-
duji veetné pFislusnych barev. Dokazte, ze plati: Jestlize ke
kazdému bodu A;, 1 £ i < n, existuji dva shodné obarve-
né oblouky se spoleénym krajnim bodem A;, pak lze celou
kruznici rozdélit na nékolik shodné obarvenych obloukd, tj.
uvazované obarveni je ,periodické.

5.6 Jsou déna &isla p > 1, ¢ > 1. Na strandch BC, CD
pravotihelniku ABC D jsou dany body P, @ tak, ze |BC| =
= p|BP| a |CD| = q|@QD]|. Pro jaky pomér stran AB a BC
bude Ghel PAQ nejvétsi?

5.7 V rohu 8achovnice n x n stoji Sachova figurka, které ob-
vykle fikdme jezdec. Prvni hrac s ni tdhne dvakrat po sobé
obvyklym zptisobem (2 pole v jednom sméru rovnobé&zném
s okrajem Sachovnice a 1 pole ve sméru kolmém), zatim-
co druhy hra¢ tdhne jednim prodlouzenym tahem (o 3 pole
v jednom sméru a 1 pole ve sméru kolmém). Oba hréci se
stfidaji, pfitom prvni se snaZi postavit jezdce do protéjsiho
rohu 3achovnice, zatimco druhy mu v tom chce zabranit.
Kdo z nich miiZe vyhrat, jestlize je n 2 47

184



Reseni tiloh korespondenéniho semindie

1.1 Kral mize tdhnout bud rovnobézné s nékterym okra-
jem 8achovnice (rovné), anebo rovnobézné s nékterou th-
lopfi¢kou (8ikmo). Nejprve dokaZeme, Ze pfi své cesté musel
udélat aspon 28 rovnych tahu.

Vsimnéme si okrajovych poli Sachovnice (obr. 30, je jich
28). Pfi své cesté musel krél projit kazdym z nich. Oéislujme
je &isly 1, 2, ..., 28 v tom porfadi, jak je kral prochézel.
Tvrdime, Ze pole 1a2,2a3,3a4,...,28al jsou sousedni
(tj. maji spole¢nou hranu).

Skutecéné, nebudou-li napf. pole 1 a 2 sousedni, pak st
kralovy cesty mezi 1 a 2 rozdéli Ssachovnici na dvé casti;
kazda z nich obsahuje jedno z okrajovych poli, sousedicich
8 2 — necht jsou to pole i a j, 3 < i< j < 28.

PFi pokracovani své cesty z 2 se kral casem dostane do 7,
odtud pak do i+ 1,742, ..., az by mél posléze dojit do j.
Avsak Gsek cesty mezi i a j zfejmé musi protnout asek 1-2,
coz je spor se zadanim (cesta krale ma byt neprotinajici se
kfivka). Pole 1 a 2 tedy musi byt sousedni; podobné 2 a 3,
3a4,...,28al.

Uvazujme nyni obvyklé Cernobilé obarveni Sachovnice.
Pole 1 a 2 jsou sousedni, maji tedy rtiznou barvu. Odtud
plyne, ze béhem cesty 1-2 musel kral udélat aspon jeden
rovny tah — pfi Sikmych tazich se totiz barva policka nemé-
ni. Podobné v ¢astech 2-3, 3-4, ..., 28—1 musel kral udélat
aspon jeden rovny tah, tj. udélal celkem aspon 28 rovnych
tahu.

Oznalme r pocet rovnych, s pocet sikmych tahti. Protoze
kral proSel vsechna pole, udélal 64 tahi, tedy r + s = 64.
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Délka jeho cesty pak bude
d=(r+sV2)a = (r+(64—r)V2)a = (64v2 - (V2-1)r)a,

kde a je délka strany policka Sachovnice. Jelikoz jsmé uka-
zali, Ze r 2 28, je nutné

d < (28 + 36V2)a.

Na obr. 31 je priklad cesty, pro kterou r = 28, tj. pro kterou
nastava v poslednim vztahu rovnost.

iZjA

7
% TV V]

1
7
)
7 % 0

Obr. 30 Obr. 31

Maximialni délka tedy je (28 + 36v/2)a.

Jiné feseni. Uvazujme mfiizové body, které jsou stiedy
prislusnych 64 poli dané Sachovnice. Navic budeme pfedpo-
kladat, Ze pole této sachovnice maji jednotkovou stranu.

Pokud cesta spojuje dva sousedni mfizové body ,sikmo“,
lezi pravé polovina pfislusného ¢tverecku s thlopfickou dél-
ky V/2 uvnitf ¢asti omezené uvazovanou (uzavienou) lome-
nou é&arou (obr. 32), zatimco jeho druhd polovina lezi vné.
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Obr. 32

Pritom vSechny takto sestrojené ¢tverecky lezi uvnitf ctver-
ce 7 x 7, ktery celou uzavienou cestu obsahuje.

Obsah ¢&asti uvnitf lomené ¢ary dovedeme spocitat po-
dle zndmého Pickova vzorce: Obsahuje-li mnohothelnik
s vrcholy v mfizovych bodech h mfizovych bodd (véetné
vrchold) na hranici a ¥ mfizovych bodid uvnitf, je jeho ob-

h o .
sah S = 3 + u — 1. Obsah prislusné casti je tedy 31 a je
konstantni bez ohledu na délku odpovidajici cesty. Pro po-
et s ,,8ikmych“ taht odtud plyne 49—31 2 %, tedy s < 36.

Obr. 32 ukazuje, Ze cesta s 36 Sikmymi tahy vskutku exis-
tuje.

1.2 Pro struénost nazyvejme ,list étvereckovaného papi-
ru n x n“ Sachovnici. Snadno zjistime, ze v pfipadech b)
a c) Sachovnici pravidelné dobarvit nelze; staéi vzit n = 2
(takZe n? —2 = 2) a Sachovnici 2 x 2 obarvit jako na obr. 33
(1, 2 jsou dvé rizné barvy). Déle ukizeme, Ze v ptipadé a)
Sachovnici dobarvit lze.

Pfedpokladejme, Ze v Sachovnici n X n je pravidelné obar-
veno n? — 1 poli n barvami. Sachovnice m4 n sloupci, takze
kazda barva muize byt pouzita nejvyse n-krat (jinak by né-
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ktery sloupec obsahoval dvé pole stejné barvy). Protoze je
ale celkem obarveno n? — 1 poli, musi se kazd4 barva vysky-
tovat na Sachovnici pravé n-krat s vyjimkou jediné, ktera se
vyskytuje pouze (n — 1)-krat; oznaéme tuto barvu B. Uka-
zeme, Ze touto barvou lze (pravidelné) dobarvit zbyvajici
pole.

Oznalme S sloupec a R fadek, ve kterém se neobarvené
pole nachdzi. Staci zfejmé ukazat, Ze ani v S, ani v R se
barva B nevyskytuje. DokadZeme to pro S (pro R je dikaz
analogicky).

V kazdém sloupci je pravidelné obarveno vsech n poli n
barvami, takze kazda barva se tam vyskytuje pravé jednou
— 1 barva B. Takovych sloupct je celkem n—1, takze barva
B se v nich vyskytuje (n — 1)-krat. Pfesné tolikrat se ale B
vyskytuje na celé Sachovnici, takze ve sloupci S se uz barva
B nevyskytuje.

1 203 (4|51 |1
2(3|4|5]|86 2
1 213 [4]5(6]1 2
3[4(5]|6(1]2 2
2 LI5(|6|1]2|3 2
5(6(1(2(3]4 2
Obr. 33 Obr. 34

Kromé prikladu uvedeného v feSeni lze uvést i priklad
pro obecné n pfirozené (obr.34 pro n = 6). Samoziejmé,
Ze obecné nelze Sachovnici n x n dobarvit, ani kdyz pocet
uz obarvenych poli lezi mezi n a n? — 2. Na druhé strané
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by bylo zajimavé najit néjaké jednoduché podminky na da-
né obarveni, pfi nichz Sachovnici (pravidelné) dobarvit 1ze!
Také plati, ze pokud je pocet uz obarvenych poli mensi nez
n, lze Sachovnici vidy dobarvit (pokuste se to dokazat!).

1.3 Predpokladejme, ze existuje takovy konvexni rov-
noramenny pétiahelnik ABCDE, ktery pozadovany rov-
nostranny trojuhelnik neobsahuje. Zaroven budeme pred-
pokladat, ze |AB| = 1. Jeho vrcholy ozna¢me napf. tak,

Obr. 35

aby Ghlopficka AD byla nejvétsi (obr. 35), podle trojihel-
nikové nerovnosti pak je
|AD| < |AE|+ |ED| = 2.

Protoze v trojahelnicich ABD, ACD je strana AD nejdelsi,
musi byt Ghly proti ni vétsi nez 60°, je tedy také |JABC| >
> 60°, | BCD| > 60°.

Protoze predpoklddame, ze pétithelnik ABC DE neob-
sahuje zZadny rovnostranny trojihelnik se stranou 1, ply-
ne odtud, Ze rovnostranné trojthelniky nad AB, BC, CD
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protinaji Ghlopficku AD. Sestrojme v poloroviné, v niz lezi
i body B, C, rovnostranné trojuhelniky AB; By, C1C:2D,
kde body B, C) lezi na AD aje |AB,| = |C1D| = 1.

Za uvedeného predpokladu tedy vychdazi, Ze bod B musi
lezet uvnitf oblouku B; By jednotkové kruZnice se stfedem
A a analogicky bod C uvnitf oblouku CC5. Uvnitf licho-
bézniku ByC5B;C) ale nenajdeme zadnou tasecku délky 1
(je |B1B2| = |C1C2] = 1 a |B2Cs| < 1). Takovy pétithel-
nik tedy neexistuje. Uvedeny postup lze snadno zobecnit na
pfipad rovnostranného (2k + 1)-thelniku.

1.4 Predpoklddejme, Ze v nékterém okamziku jsme
odfizli trojihelnik ABC. Uvazujme trojihelniky BDE
a CFG, které odfizneme (obr. 36). Pro jejich obsahy pla-
ti S(BDE) = 1S(ABC), protoze |BD| = 3|AB| a vyska
ve v trojihelniku BDE je rovna jedné tfetiné vysky v,
v trojithelniku ABC, a podobné je i S(CFG) = 1S(ABC).
V n-tém kroku tedy odfezavame 2"*! trojthelniki, jejichz
obsahy davaji % sou¢tu obsahli trojihelnikii odfiznutych
v (n — 1)-nim kroku.

Obr. 36
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V prvém kroku odfezavame 4 trojihelniky o obsahu —1%.
Hledany obsah je tedy

1.5 Piedpokladejme, ze lomena cara, ktera je drahou lva,
ma krajni body X, Y alomise po fadé v bodech Ay, A,, ...,
A,,. Oznaime «; orientovany uahel otoceni lva v bodé A;.
Drahu lva nyni ,narovname“ do pfimky nasledujicim zpu-
sobem:

Proi=1,2,..., npostupné vezmeme bod A; a celou dra-
hu lva poéinaje bodem A; oto¢ime kolem stfedu A; o thel
—a;. Pf1 tomto otaceni se bude stfed S arény pohybovat po
¢asti kruznice se stfedem A;, kterd ma délku d; = |SA;| -
- |a;|. Pro jednoduchost budeme otoéenou drdhu lva znacit
stejné jako pred otolenim. Po provedeni dostaneme drahu
lva jako Gsecku XY, kterd ma délku 30 km, a lezi na ni po
fadé body X, Ay, A,, ..., A,, Y. Nas vsak bude hlavné
zajimat kfivka, kterou pfi ,narovnavani“ drahy opsal bod
S, a ta se skldda z obloukd kruznic. Jeji krajni body maji
zfejmé od bodi X, Y vzdalenosti nejvyse 10 m. Pro délku
kfivky pak srovnanim s délkou secky XY snadno zjistime,
ze

d 2 30000—2-10 = 29980,
n n n
29980 § d= Z d; = Z |SA,| - |a,~| g Z 10|a,~|,
g i=1 i=1

=1

S oy > 2998.
i=1
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Soucet hli otoéeni lva tedy je alespon 2998 rad.

1.6 Oznacme

Podle vzorce

n + n _(n+1
k k+1)  \k+1)’
ktery plati pro libovoln4 k, n pfirozena, kdyz ovsem klade-

n
me =0 pro n < k,!) dostaneme

k

n n n n
n+b, = 1 ive =
ant (0)+(1)+((2)+(3)) I
1 1
=("+ )+<”+ )1989+...:a,,+1.
1 3
Podobné uréime soucet
n n n
1 n+ by = 1989+ ... =
989, + (0)+((1)+(2)) 989 +

- ("gl)+ (";1)1989+...=b,,+1.

') Vzhledem k tomu ma dany soucet jen koneény pocet nenulovych
séitancy, takZe je nekoneény pouze formalné.
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Nasli jsme tak rekurentni vzorce ap41 = ap+b, abyyy =
= 1989ay, + b,. Jejich Gpravou dostaneme

bnt1 = 1989a, + b, = 1988a, + a, + b, = 1988a, + ant1,

takze

Gny1 = an + b, =a, +a, +1988a,_; =

2
= 2a, + 1988a,,_;. )

Matematickou indukci dokdzeme, Ze soucet a, je délitelny
2"=1 Pro n =1 je a; = 1, coz je délitelné 2'-! = 1 a pro
n=2je az = 2, coz je délitelné 22-1 = 2. Predpokladejme,
fe 272 délf a,_; a 2"~! déli a, pro kazdé n 2> 2, tj. Ze
existuji pfirozena &isla k, I tak, Ze a,_y = 2" %k a a, =
= 2"~ Podle rekurentntho vztahu (2) pak je

Any1 = 20, + 1988a,_; = 2-2" "1 449722 . 2" 2k =
= 2"(1 + 497k).

Je tedy ap4+1 délitelné 2" pro kazdé prirozené n, ¢imz je
diikaz matematickou indukci hotov.

Jiné FeSeni. Oznaime

_(n n n 2
Sn = (1) + (3)1989+ (5)1989 +...

aa=14++1989, b=1-1+/1989. Rozvinutim podle bino-
mické véty vyjde

a" — b = 2v/1989 S,. 3)
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Daéle vyuzijeme rovnost
a™*t? — p"*?2 = (a 4 b)(a™*! — b"*1) — ab(a™ - b").

Protoze a + b = 2, ab = 1 — 1989 = —1988, plynou z (3)
rovnosti

2v1989 5,42 =2-2v19895, 41 + 1988 -2v1989.S,,
Sn+2 = 2Sn+1 + 19885, = 2Sn+1 +4-497S,,.

Pro n = 1, 2 dané tvrzeni snadno ovérime, pro vyssi n je
dokadzeme matematickou indukci stejné jako v predchozim
feSeni.

1.7 (Podle P. Hlinéného, 4. roénik GMK, Bilovec.) Ze
vzorce pro skalarni soué¢in vektoru

u-v=|ul|v|]cosa

vyplyva, ze jejich Ghel « je ostry (pravy, tupy) pravé tehdy,
kdyZ skalarni souéin je kladny (nulovy, zdporny). Zvolme
na hranéch trojhranu jednotkové vektory a, b, ¢; a+ b, b+
+ ¢, ¢+ a jsou pak zfejmé smérové vektory os jednotlivych
rovinnych ahli trojhranu. Vzajemné skalarni souéiny jsou

(a+b)-(b+c)=a-b+a-c+b-c+1,
(b+c)-(c+a)=a-b+a-c+b-c+1,
(c+a)-(a+b)=a-b+a-c+b-c+1,

jsou tedy vsSechny stejné, a proto jsou vzijemné thly os
budto vSsechny ostré, nebo pravé, nebo tupé.
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Jiné Fedeni (podle M. Zamazala, 3. roénik G, Brno, kpt.
Jarose). Je-li trojhran tvofen polopfimkami PA, PB, PC,
oznafme prislusné osy Ghli o4p, 0ac, opc. Uvazujme kol-
my priumét celé situace do roviny o4 popc (pruméty oznacu-
jeme &arkou). Obé polopfimky PA’, PB' sviraji s osou o4p
stejny ahel B (obr.37). Podobné PB’, PC’ sviraji s osou

o/
’ . OAC

Obr. 37

opc tUhel 7. Uhel os oaB,opc je p+ 7. Jeli B+7y < 3,
je |[JA'PC’| < n (jako na obr.37) a primét osy oac lezi
uvnitf Ghlu A’PC’. Uhly viech os jsou zfejmé ostré. Je-li
B+ = 3, je Ghel A’PC’ pfimy. Je-li odchylka PB od
primétu rovna —a, maji PA, PC od primétu obé stejnou
odchylku a. Proto osa os¢ je kolmici na primétnu. Tedy
ahly vSech os jsou pravé.

Ve zbyvajicim pfipadé jsou Ghly vSech os pfirozené tupé.

2.1 (Podle M. Stehlika, 2. roénik G, Brno, kpt. Jaro-
Se.) NapiSme si nejprve &isla na Sachovnici do posloupnosti
v tom poradi, v jakém vznikala. UkdZeme, ze mezi dvéma
po sobé jdoucimi vyskyty ¢isla a se vidy vyskytne éislo 7 —
—a (1 £ a £ 6). Skutecnd, uvazujme nékteré policko, na
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némz je napriklad ¢islo 1, a tdhnéme z tohoto poli¢ka napf.
doprava. Tim se dostanou ¢isla 1 a 6 na levou, resp. na pra-
vou sténu krychle. Nyni pfi libovolném poctu taht nahoru
tam ¢isla 1 a 6 zdstanou, tj. budou se otiskovat pouze &isla
2, 3, 4, 5 (v néjakém pofadi). Chceme-li jesté nékdy otisk-
nout znovu ¢islo 1, musime tdhnout aspon jednou doprava
— tim otiskneme ¢&islo 6, tj. mezi dvéma vyskyty Cisla 1 se
musi vyskytovat ¢islo 6. Podobné to dopadne, pajdeme-li
z puvodniho policka s ¢islem 1 nahoru. Stejna Gvaha plati
i pro libovoln4 jiné ¢islaa, 7—a (1 £ a £ 6).

Oznaéme p, pocet vyskyti cisla a. Z pravé dokdzaného
tvrzeni plyne, zZe Cisla p, a p7—4 se lisi nejvyse o jednicku.
Soucet vSech 99 cisel otisknutych na sachovnici bude

s =p1 + 2p2 + 3p3 + 4pa + 5ps + 6ps =
7
=5(P1+P2+pstpatps +ps) +

(5(ps — p1) + 3(ps — p2) + (P4 — p3))-

DO =

+

Avsak py + ...+ ps = 99 a rozdily ps — p1, ps — p2, P4 — P3
mohou nabyvat pouze hodnot 0, 1, —1, nutné tedy

1
sé%-99+§(5+3+1)=351

7 1
2 = —(=5—-3-1)=342.
s2 5 99+2(5 3-1)

Snadno nahlédneme, Ze téchto soucti lze skute¢né dosah-
nout. Staéi jit nejprve 49krat nahoru a pak 49krat doprava.
Bude-li na za¢4tku krychle stat na sténé s ¢islem 6, vpfedu
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mit 5 a vpravo 4, bude s = 351, bude-li krychle stat na 1,
vpredu mit 2 a vpravo 3, bude s = 342. Hledané extrémy
tedy jsou smax = 351, Smin = 342.

2.2 Predevsim si vSimnéme, ze v n-tém kroku a pozdéji
vznikaji uz pouze isla vétsi nez n (za prvni krok tu pova-
zujeme vznik ¢&isla 2). Snadno to odvodime matematickou
indukci. To znamen4, Ze 1973 mohlo vzniknout stejné jen
v prvnich 1972 krocich. Staci tedy spocitat vsechny vy-
skyty éisla 1973 (ve vSech krocich) pfi éislovani secky. To
nam umozni nasledujici tvrzeni: Jsou-li a, b dvé nesoudél-
na pfirozena cisla, pak se pfi postupném cislovani tsecky
vyskytnou vedle sebe (v tomto pofadi) pravé jednou.

Dokazeme ho matematickou indukci podle souétu s = a+
+b. Pro s = 2 je jedinou moznosti a = b = 1, takze tvrzeni
plati. Pfedpokladejme, ze tvrzeni plati pro vSechna 2 £ s £
< N — 1, a uvazujme nesoudélnd &isla a > b se souétem
N. Pak éisla a, b budou (v tomto pofadi) v néjakém kroku
sousedni, pravé kdyz v pfedchozim kroku jsou sousedni éisla
a—b, b. Avsak (a—b)+b = a £ N—1, takze podle indukéniho
pfedpokladu dojde k takové situaci béhem c¢islovani Gsecky
pravé jednou. Tim je dokazano i celé tvrzeni.

Nyni si sta¢i uvédomit, ze ¢islo 1973 vznikne v néjakém
kroku pravé tehdy, pokud v pfedchozim kroku byla vedle
sebe &isla k a 1973 —k, 1 £ k £ 1972. Protoze 1973 je
prvocislo, jsou k a 1973 — k nesoudélna pro kazdé k od 1 do
1972. Podle pravé dokdzaného tvrzeni se tedy vyskytnou
obé &isla vedle sebe pravé jednou. Tim dostiaviame celkem
1972 vyskytt ¢isla 1973, coz je hledany vysledek.

Jiné feSeni (podle P. Mederlyho, 2. roénik GAM, Brati-
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slava). Zadani trochu pozménime: krajnim bodim pivod-
ni Gsecky pfifadime zlomky %, % a stfedu asecky, jejimz
a a+c

b b+d
Zlomky nekratime, ani kdyby to bylo mozné. Jmenovate-

le téchto zlomki tvofi pivodné konstruovanou posloupnost

Cisel. Hleddme tedy zlomky tvaru I_S;c’ﬁ’ kde 1 S k £1972.

Stejné jako v pfedchozim feSeni snadno zjistime, ze kazdy
z uvedenych jmenovateld vzniklych po n-tém kroku je vétsi
nez n, a navic kazdy z Citateld vzniklych naopak v prvnich
n krocich je nejvyse roven n.

krajnim bodim jsme pfifadili ¢isla

C .o
o pfifadime

Déle si vSimnéme, Ze lezi-li zlomek % nalevo od s—, je % <
c v~ . ’ ’ . 0 1 1
< r To ovéfime indukci: V prvnim kroku je 1 < 3<7

. a c , ;o ..
z nerovnosti — < p potom snadnym vypoctem vyplyva,

. a a+ cb c . .
ze 3 < b1 d < 7 A odtud hned plyne, Ze zlomki tvaru
1973 je v uvazované posloupnosti nejvyse 1972, pficemz
kazdy se mize vyskytnout nejvyse jednou.

Dale plati, Ze jsou-li v nékterém kroku % < % sousedni
zlomky, je bc — ad = 1. To ovéfime rovnéz indukci. Konecné

.y . . a c ,
plati nésledujici tvrzeni: Jsou-li 3 < p sousedni a 2 €

€ (%,5), pak ¢ 2 b+ d. To plyne z toho, Ze pro 5 > sje

198



E—E_A,pncemzA>ltedyﬁ—-BZ—l— Podobné je
d ¢ dq = dq
1 p_¢ 2> —1— Dostaneme tak nerovnost
g b= bg
1 bc — ad 1 1
1 _tbe-ad_c_a_(c_p), (p_a)y 1 1
bd bd d b d g qg b dq bq
neboli

g2b+d.

Tim je posledni tvrzeni dokazéno.
Toto tvrzeni zaruéuje, ze po 1973. kroku Zadny z inter-

o c . . ’,
valt (E d) kde E p jsou libovolné dva dosud sestro-

k
jené sousedni zlomky, neobsahuje zlomek tvaru 173" Po

1973. kroku je totiz b+ d > 1973, protoze jeden ze zlomkid

a c .
b3 musel vzniknout v tomto kroku.

Protoze 1973 je prvocislo, nemtze zidné z Cisel 1973
(1 £ k £ 1972) splynout s nékterym dosud utvofenym
zlomkem. Proto kazdy z téchto 1972 zlomkd je ¢lenem se-
strojené posloupnosti. Protoze jsme uz ukazali, ze se vic
nez jednou vyskytnout nemiize, vyskytne se pravé jednou,
a Cislo 1973 se jakojmenovatel objevi 1972krat.

o« 8 iy

zlomky jsou vesmés v zdkladnim tvaru, snadno zjistime, ja-
k4 je odpovéd na otazku, kolikrat se v uvedené posloupnosti
objevi libovolné pfirozené cislo n.
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2.3 (Podle O. Kalendy, 4. roénik GWP, Praha.) Vsechny
body C, lezi na ose tsecky AB. Pfifadme bodu C), thel
Yn = |4 AC, B|, pficemz pro C, nad AB bereme konvexni
a pro C,, pod AB nekonvexni thel (obr. 38).

G

/\

Obr. 38

Definujme relaci a ~ S, pravé kdyz o = B + 2kn pro
k celé. Pak plati y,41 ~ 29,. To plyne néasledovné z véty
o obvodovém thlu: Je-li Cy, 1 Cr41 nad AB, je yp41 = 279y.
Je-li Cpp i Crgq pod AB, je 21 — Y41 = 2(21 — 7p), tedy
Tnt1 = 29n — 2n. Je-li C, pod a Cpy; nad AB, je 2n —
= Ynt+1 = 221 — vp), tedy Ynt1 = 29, — 2r. Je-li Cp, nad
a Cny1 pod AB, je Yn41 = 275.

To znamena, Ze je

Tn ~ 29n-1 ~227,,_2~...~2"'171, (1)
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a protoze relace ~ je tranzitivni (tj. je-lia~ f a g~ v, je
i a ~v), plyne odtud vztah

Y~ 2y neboli 2" 1y = v, + 2kn

pro néjaké celé k. C,, je pak stfedem tsecky AB, pravé kdyz
Yn = T, tj. pravé kdyz je v, € (0, ) tvaru

_ (2k+Dr

N =" k=0,1,...,2"7 ' -1 (2)

Je-i C, = C1, je y7n ~ 71, zérovei ale podle (1) je
T ~ 21y, takie 71 ~ 2"lq;. Odtud dostdvdme, Ze
2"~ly; = 1 + 2kx, neboli

2kn -
N =gy Pro k=1,2,...,2"1-2

To plati pro n > 2. Pro n = 1 vyhovuyje libovolny bod C
osy useCky AB, pro n = 2 bod C neexistuje (kdyby C, =
= C} = C, byl by polomér kruznice opsané |C,C}| = 0).

2kn
=11

2"kn 2kn

= -2—"—-__—1-_—1 = 2kﬂ+m ~ . Je tedy Cn = C,
pravé kdyz n = 1 a C je libovolny bod osy tsecky AB, ne-

2kn -
m,kdek_l,z...ﬂ -2.

Obrécené, je—li 7”1 = s pak Yn ~ 2"—171 —

bokdyzn>2a~y =

(Hodnotu k = 0 neuvaZzujeme, protoze 4; > 0.)
2.4 Nejdfive si uvédomme, ze podminka b) m4 silnéjsi
pfedpoklad nez a), ale stejné tvrzeni, proto spliiuje-li néjaka

dvojice indexii (%, j) podminku a), spliiuje i b).
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aytaz+...+a,
n
nost pak muzZeme ekvivalentné zapsat jako

Oznalme A =

, pozadovanou nerov-

bl(al—A)+b2(a2—A)+...+b,,(a,,—A);O. (1)
Oznacime-li b = max{b;; a; < A} = b;,, plati
bi(a; — A) 2 b(a; — A) pro i=1,2,...,n. (2)

To je zfejmé pro a; — A < 0, zatimco pro a; — A > 0 je
a;, < A < a;, takZze podle podminky b) dostaneme b =
= b, < b;. SeCtenim nerovnosti (2) pro viechna i = 1,
2, ..., n dostdvame

bi(ar —A)+ ... +bp(an—A) 2 b(a1 + ...+ a, —nA) =0,
tim je nerovnost (1) dokdzana.

2.5 (Podle P. Hlinéného, 4. roénik GMK, Bilovec.) Vy-
fesime tlohu nejdfive na pfimce, pak v roviné a nakonec
v prostoru. Ukdzeme, Ze nejmensi &islo k je rovno N + 3,
kde N =1, 2, 3 je dimenze prostoru.

Nejprve ukazeme, ze pro body lezici v pfimce nestaci
sestrojitelnost trojic. Méme &tyfi body A, B, C, D, kde
rap=1,rBc =%, rac=%,TaD=3%,rBD=3%,rcp = 1.
Jde o Gsecku AB a o jeji jakoby dvojnasobny stied C, D.
Vzdalenost r¢p je vzdalenost stfedu tsecky od jeho obrazu
v sdumérnosti podle A, popfipadé B (obr. 39). Celd étvefi-
ce neni sestrojitelna, ale vSechny trojice sestrojit lze. Nyni
ukdZeme, Ze sestrojitelnost Ctvefic staci.
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A B
L ~— PLE Y—_—J
Teo Teo
Obr. 39

Jsou-li dany dva rizné body na pfimce, existuje nejvyse
jeden bod, ktery ma od téchto bodi pfedem zadané vzdéle-
nosti. Jsou-li vzdalenosti danych n bodi navzajem vSechny
nulové, jsou tyto body sestrojitelné. V opaéném pripadé vy-
bereme body A, B, pro které je r4,p nenulové a sestrojime
Je kdekoli na pfimce ve vzdjemné vzdalenosti r4p. Kazdy
dalsi bod X ma predepsiny takové vzdalenosti rax, rpx,
Ze je sestrojitelny. PFitom tento bod je uréen jednoznaéné.
Sestrojme tedy jedinym moznym zpisobem vSechny dalsi
body. Ty uz budou fesenim tlohy. Kdyby totiz nékteré dva
z dalsich bodi X, Y nemély spravnou vzdélenost, nebyla
by ctverfice A, B, X, Y sestrojitelna.

Rozeberme ted Glohu v roviné — nejdfive na prikladu
ukdzeme, Ze sestrojitelnost ctvefic nestaci. PouZijeme rov-
nostranny trojihelnik ABC (obr.40) a jeho , dvojndsobny*
stfed D, E (tim jsou dany vzdéalenosti bodt D, E od vrcho-
li A, B, C). Vzdalenost rpg je pak ddna jako vzdélenost
stfedu trojihelniku ABC od jeho obrazu v soumérnosti po-
dle AB (BC, C A). Kazdou ¢tverici sestrojit lze, celou pétici
ne. Nyni ukazme, Ze sestrojitelnost pétic staéi.

Podobné jako na pfimce existuje v roviné nejvyse jeden
bod, ktery ma pfedem zadané vzdélenosti od tii danych
bodi nelezicich v pfimce (maji-li tfi kruznice dva spoleéné
priseciky, lezi jejich stfedy na primce). Jestlize kazdé tfi
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z danych n bodu lezi po sestrojeni v pfimce, Gtloha se redu-
kuje na pfimku, kde podle predeslého staci i sestrojitelnost
Ctvefic. V opacném piipadé vybereme tfi body A, B, C,
které po sestrojeni nelezi v pfimce. Sestrojme k bodim A,
B, C jednoznalné kazdy z dalsich uvazovanych bodi. Zis-
kané body jsou fesenim. Kdyby totiz nékteré z dalsich bodi
X, Y nemély spravnou vzdalenost rxy , nebyla by pétice A,
B, C, X, Y sestrojitelna.

A koneéné pripad prostoru. Dikaz je Gplné analogicky,
proto jen strucné. Sestrojitelnost pétic nestaci, protoze staci
vzit pravidelny étyfstén ABCD s ,,dvojndsobnym* stfedem
E, F, pficemz rgp bude vzdalenost stfedu od jeho obrazu
v soumérnosti podle rovin ABC (ABD, ACD, BCD). Kaz-
dou pétici sestrojit lze, ale celou Sestici ne. Sestrojitelnost
Sestic je uz postacujici, protoze pokud kazdé ctyrfi body lezi
po sestrojeni v jedné roviné, redukuje se tloha do mensi
dimenze, a jinak sestrojime néjakou étvefici A, B, C, D,
ktera nelezi v roviné, a ukidzeme, ze vSechny dalsi body jsou
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touto Ctverici jednoznacné urceny. Kazdé dva X, Y z nich
budou mit spravnou vzdalenost rxy, jinak by odpovidajici
Sestice A, B, C, D, X, Y nebyla sestrojitelna.

2.6 (Podle P. Hlinéného, 4. ro¢nik GMK, Bilovec.) Pfed-
pokladejme, ze trojihelnik ABC vyhovuje podminkam tlo-
hy a ze A lezi na pfimce m a B na pfimce n (pfimky m,
n musi byt riznobézky). Ozna¢me p osu soumérnosti bodi
B, C, ta prochazi bodem O a je rovnobézna s m. Proto-
ze B € n, musi bod C lezet na obraze n’ pfimky n podle
osy p. Podobné lezi C' na obraze m’ pfimky m podle osy gq.
Odtud plyne postup konstrukce: bod C najdeme jako prise-
¢ik primek m/, n’ a zbytek trojihelniku sestrojime snadno,
protoze zname stied O i polomér |OC| kruznice opsané.

Konstrukce pfimek m/, n’ je jednoznaénéa. Prvni zadrhel
mize nastat, kdyz jsou ptimky m’, n’ rovnobézné (obr. 41).

Obr. 41
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Pokud bod O lezi v ostrém thlu pfimek m, n, dostdvime
pro uhel téchto pfimek vztah 2a + @ = =, tj. a = %n.
Stejny vysledek dostaneme, pokud bod O lezi v tupém Ghlu
téchto pfimek. Proto konstrukci nelze jednoznaéné provést
jen tehdy, je-li Ghel pfimek m, n roven %n. Tento pfipad
rozebereme zvlast na zavér.

Dalsi zadrhel miiZe nastat, pokud se pifimky m', n’ pro-
tnou v bodé O. To nastane, pravé kdyz je bod O priseéikem
i pfimek m, n. Pokud ndhodou pfimky m’, n’ nesplynou (to
nastane, jak snadno zjistime, opét pro thel pfimek m, n rov-
ny %n), bude bod O jejich jedinym priise¢ikem. V tom pf¥i-
padé nedostaneme trojuhelnik, protoze nemize byt C = O.

Protoze je obtizné zjistovat, kdy kruZznice se sttedem O
a polomérem |OC| protne pifimky m, n v hledanych bodech
A, B tak, abychom dostali trojihelnik, sestrojime hledané
vrcholy jinak: bod A lezi na priseciku pfimky m s pfim-
kou b, kterd prochazi vrcholem C' a je kolmé na pfimku n.
Analogicky sestrojime i bod B. Protoze je jasné, ze pfimky
m a b mohou byt rovnobézné, jen kdyz jsou m a n kolmé,
vySetfime tento pfipad zvlast. V tomto pripadé vyjde, Ze
vrchol C je prisecikem pfimek m a n, takZe iloha ma nede-
generované feseni, jen kdyz bod O nelezi na zadné z primek
m, n.

Nyni jesté vysetiime pfipad, kdy pfimky m, n sviraji (hel
%n. Snadno zjistime (obr. 42), ze pokud bod O lezi v tupém
ahlu pfimek m, n, rovnobé&zky m’, n’ nikdy nesplynou; tlo-
ha tedy nemize mit feSeni. Pro polohu bodu O v ostrém
ahlu piimek m, n splynou pfimky m’, n’, pravé kdyz VQOP
bude koso&tverec (obr. 42), neboli bod O bude lezet na ose
Ghlu pfimek m, n. Jsou-li pfimky m’, n’ totozné, lze kte-
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Obr. 42

rykoli jejich bod zvolit jako bod C' (pokud O je prisecik
m, n, pak nemize byt C = O) a podle popsané konstrukce
k nému vzdy sestrojit zbyvajici vrcholy A, B. Uloha pak
ma nekoneéné mnoho feseni.

Uloha ma tedy pravé jedno feseni, pokud jsou pfimky m,
n riznobézné (nesplyvaji) a nesviraji Ghel %n, bod O neni
jejich pruseéikem, a je-li pfimka m kolma na n, nelezi bod
O na 74dné z piimek m, n. Uloha m4 nekoneéné mnoho
feseni, pokud pfimky m, n sviraji Ghel %n a bod O lezi na
ose jejich ostrého Ghlu. V ostatnich pfipadech Gloha nema
zadné feseni.

2.7 Spravna odpovéd zni, Ze to jde pro vSechna k # 1
a k # 3. Pripady sudého k jsou jasné, trochu prekvapiva je
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existence zaplnéni pro k = 5, 7, 9, 11. Pfislusné zaplnéni je
znazornéno na obr. 43. (Obdélnik 2 x 3 je mozno vyplnit bud
dvéma pravothelniky, nebo dvéma thelniky. V zavislosti na
vyplnéni obdélnikd A, B, C tak dostdvidme pozadovany typ
zaplnéni celého Etverce.)

Obr. 43

Uvazujme k = 1. Predpoklidejme, Ze existuje zaplnéni
s pravé jednim thelnikem; bez ﬁjmy na obecnosti mizeme
predpokladat, Ze je umistén takto B] Vypliime jednotlivé
ctvereCky ve Etverci Cisly 0, 1, 2 podle obr. 44. Soucet vSech
Cisel ve Ctverci je 36, je tedy délitelny tfemi. Rovnéz soucet
&isel v kazdém pravothelniku 1 x 3 je délitelny tfemi. Z4d-
nému uhelniku typu H] vSak neodpovida souclet délitelny
tfemi, a proto zaplnéni nemiZe obsahovat pravé jen jeden
thelnik.

Uvazujme ted piipad k = 3. Pfi ocislovani podle obr. 45
davaji thelniky 5 a (] soucet 2 (mod 3) a @ihelniky { atH
soulet 1 (mod 3). Proto kazdy ze tii Ghelnikd je typu B]
nebo EB, nebo je kazdy typu Bj & EB To ovSem plati i po
otoéeni o 90°, a tedy v pivodnim étverci je kazdy thelnik

typu . & 0, nebo je kazdy thelnik typu Hy ¢ B Odtud
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Obr. 44 Obr. 45

plyne, ze vSechny tfi Ghelniky jsou stejného typu; bez Gjmy
na obecnosti mizeme predpokladat, ze jsou typu B:,
Vratme se k olislovani na obr.45. Kazdy pravothelnik
obsahuje po jednom z éisel 0, 1, 2, a proto mezi ahelniky
Jje pravé jeden s Cisly 0, 1, 1, pravé jeden s &isly 1, 2, 2
a pravé jeden s &isly 2, 0, 0. UvaZme polohu toho s éisly
2, 0, 0. Jeho rohovy étverecek lezi v jednom ze Etvereckiu
vyznacenych na obr. 46, pfitom vzhledem k symetrii podle

X X : 2
2 % 1 AE

% 87
% 10

- N W s~ 0o
\
[e2]
(8]

a b c de f
Obr. 46 Obr. 47

diagondly al — f6 staci uvazovat jen polovinu ¢tverce nad
touto thlopfickou. Z vyznaéenych poli vSak nelze pouzit
pole ¢6, f6 (ihelnik by &nél ven ze &tverce) a db (Ctverecek
6 by pak neslo pokryt). Na obr. 47 je vyznaleno, pro¢ nelze
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pouzit ani EtvereCek ab (pouziti pravothelniki je pak totiz
vynuceno, a to v pofadi uvedeném na obrazku). Podobné
se ukaze, ze 1 pfipady ctverecki a2, b4, ¢3 vedou ke sporu.

Poznamka. Uvédomte si, Ze pro diikaz pfipadu k = 1 jsme
stejné dobfe mohli pouzit i obr. 42.

Pripad k = 3 plyne (po provedeni prvni Gvahy) z nésle-
dujiciho tvrzeni: Obdélnik velikosti 3n x 3m nelze zaplnit
pravouhelniky 1 x 3 a helniky B:, Zkuste toto tvrzeni do-
kazat nebo vyvratit.

3.1 (Podle P. Ruzicky, 2. roénik G, Brno, kpt. Jarose,
a A. Kubény, 3. roénik GMK, Bilovec.) Nejmensi hledany
pocet vézi je m(n, k) = n(k — 1) + 1. Pfedné, pokud je vézi
méné nez m(n, k), lze je umistit do k — 1 fad Sachovnice.
Potom z nich ovSem nelze pozadovanym zptsobem vybrat
k vézi. Ukazme déle, ze pro alespon m(n, k) vézi to jiz lze.

Ocislujme Fadky a sloupce Sachovnice Cisly 1 az n. Jed-
notlivd pole Sachovnice odislujme tak, ze poli v i-té radé
a j-tém sloupci pfifadime &islo i — j (modn) (tedy cislo
mezi 0 a n — 1). Nyni si sta¢i uvédomit nasledujici jedno-
duché skutecnosti:
1. Kazdym ¢éislem mezi 0 a n — 1 je oznaceno pravé n poli.
2. Véze na polich oznacenych tymz ¢islem se neohrozuji.
3. Pokud je vézi alesponr m(n, k), existuje podle Dirichleto-

va principu k vézi, které jsou na polich oznacenych tymz
Cislem, a proto se neohrozuji.

Jind moinost je pouzit matematickou indukci. Nejsnazsi
je postupovat indukci podle k.

Pro k = 1 je tvrzeni trivialni.

Necht & £ n — 1 a tvrzeni plati pro k — 1. Pak podle
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Dirichletova principu existuje fddek r, ve kterém je alespon
k vézi (zaroven samozfejmé nejvyse n). V ostatnich Fadcich
je potom alespoir n(k — 1)+ 1—n = n(k —2) + 1 véii
alze z nich tedy podle indukéniho predpokladu vybrat k — 1
vézi, které se neohrozuji. Téchto k — 1 vézi lezi v k — 1
sloupcich. Proto v fadku r existuje véz, ktera se ani s jednou
z nich neohrozuje. Dohromady tedy mame k vézi, které se
navzajem neohrozuji, a dikaz je hotov.

3.2 Cést a) je trividlni, napf.
r-z=z% z?.2%=12"
gtz =28, ..., 512,512 = g1024

2?1024 . 1:16 — :Bl 008, :L'l 008 . 1:8 - 131 000.

Pro ¢ast b) uvedeme dvé feseni.

1. FeSeni (podle O. Sucha, 4. roénik GAM, Bratislava).
Napisme ¢islo n v dvojkové soustavé; protoze mozné Cislice
Jjsou pouze 0 a 1, je to vlastné totéz co rozklad

n=2a1+202+---+2a", a1>ag>...>ak§0.

2 %2z

Uvazujme naésledujici dva zptisoby vytvoreni cisla z™.

1. Pomoci z - z = z%, 2% - 2% = z* atd. vytvofime viech-
ny mocniny z2* pro 0 < i < ay; to zabere a; operaci. Mezi
témito Cisly jsou i &isla 2/ pro j = 291,292, ... 2%; vynaso-
bime-li je postupné mezi sebou, spotfebujeme na to dalsich
k — 1 operaci. Tim dostaneme 2™ pomoci a; +k — 1 operaci.

2. NejdFive pouzijeme (stejnym zpisobem) a; + 1 operaci
na vytvofeni &isel z2° pro 0 £ i < a; + 1. Déle posledni
z téchto Cisel vydélime z, ¢imz ziskdme

zZ“"“-—l — z2“1+2“1“+...+4+2+1

211



Toto &islo délime vsemi &isly 22’ pro j € {0,1,2,...,a1} \
\{ai,ay,...,ai}; téchto &isel je dohromady (a; +1)—k a po
vydéleni dostaneme zfejmé &islo ™. Na déleni je tfeba (a1 +
+1) — k operaci; celkem jsme 2" vytvofili pomoci (a3 + 1)+
+ 1+ (a1 +1—k)=2a; —k + 3 operaci.

Nyni ukdzeme, Ze pfi aspoii jednom zpiisobu je poéet ope-
raci nejvyse %log2 n + 1. Kdyby tomu tak nebylo, muselo
by zaroven platit

a1+k—1>glog2n+1

3
201 —k+3> -2-log2n+ 1.
Sectenim a Gpravami dostaneme
a; > logyn,
291 > n =29 429 4 4 2%,

coz je spor, a diikaz je hotov.

2. fedeni (podle S. Kasala, 3. roénik GWP, Praha.) Pro
1 £ n £ 11 se pfesvéd&ime pFimo, ze tvrzeni plati. Pron 2
> 12 ukazeme, Ze dokonce sta&i 3 log,(n—1) operaci. Dikaz

provedeme indukci. Pron = 12,13, .. ., 45 toto tvrzeni plati
podle nasledujici tabulky:
n 1213141516 17 18 19 20 21 22 23 24 25 26 27 28

pocet operaci 4 555 455605686605 66 76
[3logy(n—1)] 5 5 5556666666666 77

n 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
pocet operaci 76 656 6767776778738
[(Blogy(n—1)] 7 7777777777778

8 8
Méjme nyni n 2 46 a predpokladejme, ze pro 12 S m <
< n — 1 tvrzeni plati. Rozlisime dvé moznosti:
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a) n je sudé, n = 2k. Pak z" vyjadfime jedinou operaci
z zF (z" = z¥ . z*); na z* podle indukéniho predpokladu
staci %logz(k — 1) operaci. Celkem ndm tedy pro z" sta&i

3 3
5 logz(k - 1) +1< E(logz(k - 1) + 1) =
= glog2(2k -2)< glogz(n -1)
operaci.

b) n je liché; pak lze n psit ve tvaru n = 4k + 1. Pfitom
z" lze vyjadfit z «¥ tfemi operacemi

Celkem tedy umime vytvofit £™ pomoci

;logz(k —1)+3=-(logy(k—-1)+2) =

LN

= 2 logy(4k — 4) < glogz(n ~1)

operaci.

Tim je diikaz hotov.

Poznamka. Poznamenejme, ze obéma zptsoby lze Fesit
i nepatrné tézsi verzi Glohy, kdy jsou povoleny pouze ope-
race
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(Potfebny poéet operaci je opét nejvyse %logz n+ 1.) Do-
dejme jesté, zZe zadny z uvedenych odhadi neni optimalni.
Napf. pro z!7° staci pouze 9 operaci!

3.3 Oznalme a = |A243|, b = |A143], ¢ = |A142]|.
Z Pythagorovy véty pro trojahelniky Ay H3Az, A2 H3A3 do-
staneme

|A3Hs|? = |A1 43| — | A1 H3|? = |A2A45]% — |H3As |2
Odectenim odtud plyne

b2 — (12 = |A1A3|2 - |A2A3|2 = |A1H3|2 = |H3A2|2 -
= (|A1Hs| + |H3A2|)(| A1 H3| — |H3As|).

(1)
Vyuzijeme-li rovnosti |A; M3| = |M3A2|, snadno uréime
Jednotlivé Cinitele
| A1 H3| + |H3Az2| = |A1 A2, @
||A1H3| = |H3A2|I — 2|H3M3|
a dosazenim do (1) pak dostaneme
bZ _ a2
|A1As| - |HsM3| = |—2—|
Analogicky dokdzZeme i rovnosti
a?-c? c? - b?
PWRRTATAR =i VW YN iLi}

Bez Gjmy na obecnosti mizeme déle predpoklidat, ze
a £ b < c. Pak hned dostaneme pozadovanou rovnost

|A1As| - |[HoMa| = |A1Ag| - |HaMs| + |A2As| - |Hi M,y |.
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Podivejme se ted, jak se zménf situace pro pravouhly &i
tupothly trojahelnik. Platnost (1) se samozfejmé zachova.
Jedind potiz nastane, kdyZ bod Hj3 neleZi na tsecce A;A,.
Potom se (2) zméni na

‘A1H3| + |A3H2| = 2|H3M3|,
[|A1Hs| — |H3As|| = |A1 4.

To v8ak znamend, Ze se jen prohodily hodnoty &initeld
v souéinu (1), takZe tvrzeni zlistdvd v platnosti i pro pra-
votihly a tupoihly trojihelnik.

Poznamka. Uvedené FeSeni je zcela elementarni, zato tro-
chu umélé. Pomoci kosinové véty lze snadno vypocéitat
| H; M;| pfimo, v podstaté jde ale o totéz. Vyuzitim vzorec-
ki pro délky téznic trojihelniku bylo mozno ziskat tvrzeni
rovnou pro libovolny trojihelnik (avsak feSeni je technicky
néaro¢néjsi). Podobné pro libovolny trojihelnik funguje fe-
Seni pomoci zékladnich operaci s vektory (s¢itani a skaldrni
souéin).

3.4 Spravna odpovéd zni: bud S = P = Q, anebo S lezi
v intervalu /PQ £ S < Q.

Nejprve dokazeme, ze libovolné takové hodnoty S, P, @
se skuteéné mohou nabyvat. Pfipad S = P = Q@ je jasny
(vSechny tfi mnohothelniky splynou, tj. A; = B; = Cj);
méjme tedy déna kladna &isla P, @, S tak, Ze

VPRLS<Q.

Zvolme v roviné dvé rovnobézky o vzdélenosti 2 a néjakou
jejich pficku B3Cs (obr.48), dile body Bs, C tak, aby
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Obr. 48

bylo |Bs B3| = S— P, |C2C3| = Q — S. Obsahy trojahelnikid
B3B3C3 a B;C2C3 jsou tedy S — P, resp. @ — S.

Pokud bude |ByBs| 2 |C2Cs), neboli S > 222 pak se
polopfimky C3 B3 a C B, neprotnou; mizeme na nich zvolit
body A4 = By = C4 a Ay = By = C) tak, aby ¢tyfahel-
nik B; B, B3 B4 mél obsah P. Zbyva vzit Ay = By, A3 = Cj3
a jsme hotovi (obr. 49). Pokud |B2 B3| < |C2C3], neboli S <
< #, pak se polopfimky CsB3 a C3Bs protnou v bodé
W, pravé popsanou konstrukci miZeme tedy zopakovat, jen
kdyz bude P £ S(B3;BsW) (symbolem S(-) budeme i na-
déle znagdit obsah pFislusného Gtvaru). VyuZitim podobnosti
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¥ BM Ci+1

Obr. 49

trojihelniki W By B3 ~ W5C2C3 lze spoéitat, ze je

(S—-P)?
P+Q-2S
Nasi konstrukei lze tedy pouzit, bude-li

ps 5=P" :

=P+Q-25
coz je pro S < % ekvivalentni nerovnosti PQ < S?,
kterd plati. MlZeme tedy opét zvolit body A; = By = C;
a Ay = By = C4 (popf. pouze A; = B; = Cy = W, pokud
S = /PQ) a jsme hotovi.

Zbyvé tézka &ast Glohy — dokazat, ze vidy plati S 2
2 /PQ. Dokazeme vlastné silnéjsi tvrzeni:

Jsou-li B1B,...B, C C,C;...C, dva konvexni n-ihel-
niky takové, Ze B;Biy:1 || CiCit1 (takovym dvéma mno-
hothelnikim budeme dile Fikat ,rovnobézné“) a body A;

S(ByBsW) =
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lezi na stranach C;_1C;, A, na strané C,C, pak pro obsa-
hy P, Q n-thelniktt ByBy...B, a C;C,...C, a obsah S
2n-ihelniku A1B1A3B; ... A, B, plati S 2 \/PQ.

Nejprve vyfesime pfipad, kdy mnohothelniky B, B,. . .B,,
a C1C;...Cy, jsou stejnolehlé (tak je tomu napt. vidy pro
|C1Cs|
| B1B2|
stejnolehlosti. Je-li h; vzdélenost pfimek B;B;y; a C;Ciyq,
bude platit (obr.49)

koeficient uvedené

n = 3). Ozna¢me U stfed a k =

S(Bi Biy14i41) _
S(BiCiAit1) + S(Bi14i+1Ciy1)
_ | Bi Biy1|hi _
" |CiAig1|hi + |Cig1Aigr|hi

_ |BiBiya| _ 1

T |CiCiga| K’

takze
k- S(B;iBit14it+1) = S(BiBi41Ci41C;) — S(Bi Biy14i41)-
Seétenim pro vSechna i, 1 £ i < n, vyjde
k(S-P)=Q-S.

Zaroven ale je Q = k%P, takie (vylou¢ime-li trivialni pfipad
S=P)

Q-5 _Q

S-P) P’
a po tpravé vyjde S? = PQ, coi jsme chtéli dokazat.
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Obr. 50

Nyni vyfeSime pfipad, kdy n = 4 a C1C2C35C4 je rov-
nobéznik. V situaci na obr.50 mame @ = absina, P =
= cdsin a. Obsahy dvou vyznacenych trojahelniki daji do-
hromady 3d(a — c)sin a; podobné druhé (analogickd) dvo-
Jjice d& %c(b —d)sina. Odtud plyne

ad + be

1
S=P+§d(a-c)sina+%c(b-—d)sina: sina

a podle nerovnosti mezi aritmetickym a geometrickym pri-
meérem vyjde
S 2 Vad - besina = \/PQ.

Prejdéme ted koneéné k obecnému ptipadu; dikaz pro-
vedeme indukci. Pro n = 3 nerovnost S 2 /PQ plati (do-
konce s rovnosti). Pfedpokladejme platnost tohoto tvrzeni
pro n — 1 2 3; dokdZeme je pro n.

Uvazujme tedy pfislusné n-thelniky popsané v zada-
ni. Je-li n = 4 a C1C2C3C4 je rovnobéznik, je nerov-
nost dokazana v pfedchozim odstavci. V opaéném pripa-
dé existuji v mnohothelniku C,C;...C, tfi po sobé jdou-
ci strany (zvolme oznaceni takové, aby to byly napf. stra-

ny C1C2, C2C3 a C3C4) tak, ze polopfimky C1C; a CsCj3
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se protinaji (obr.51); dikaz tohoto tvrzenitka pfenecha-

Obr, 51

vadme &tendfi (ndpovéda: dle Dirichletova principu existu-
ji dva sousedni vnitfni Ghly, jejichZ soulet je vétdi nei
180°). Oznaéme X, resp. Y priseéfk polopfimek C,C,
a C4Cs, resp. By By a B4Bg. Trojlhelniky B; B3Y a C3C3X
jsou podobné s koeficientem k; oznaéme a = |B;Bs|, tak-
te |C2Cs| = ka. Déle oznaime Py a Qo obsahy (n —
— 1)-thelnikd B1Y B4Bs...Bp a C1XC4Cs...Cp a Sy ob-
sah 2(ﬂ o 1)-l'lhelnfku AlBlAQYAqB4 .o .Aan. Koneéné
bud h vzdalenost pfimek B;Bs a C3C3 a R obsah troj-
ahelnfku B B3Y .
Ziejmé platf Pp= P+ R, Qo =Q +k’R a

So=8~- S(BzBsAs) + S(BzAzY) + S(BsAqY) + R.

Nynf je S(ByA3Y) = S(B3;C3Y) a (podobné jsme to pro-
vedli uz v dikazu pro n = 3)
S(BAY) S(B2CaY) 1
S(B2C2XY) ~ S(BaCyY) + S(CoYX) k41
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Podobné pro S(B3A4Y); sectenim pak vyjde

1
S(BzAgY) + S(B;-;A4Y) = mS(BzYBaC;;XCz).

Obsah na pravé strané je roven

S(BgYB303X02) =
= S(CzCaX) + S(BzBaCaCz) - S(BzBaY) =

=k2R+%(a+ka)h——R.—_(k+1) ((k—l)R+ 5;-)

Koneéné S(B; B3 As) = %ah. Dosadime-li ve do vztahu pro
So, vyjde

So=S—%ah+(k—l)R+%ah+R=S+kR.

Podle indukéniho predpokladu plati Sy 2 /PoQo, a my
chceme dokézat nerovnost S > /P@, neboli

(So — kR)? 2 (Po — R)(Qo — k*R). (1)
Jeji Gpravou dostaneme nerovnost
S2 — 2kRSy — PoQo + k2 RPy + RQo 2 0,
ktera je kvadratickd v k a pro jeji diskriminant D plati

D = 4R*S} — 4RPy(RQo + S5 — PoQo) =
= 4R(S2 — PoQo)(R — Po) < 0.
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Odtud vidime, Ze nerovnost (1) opravdu plati, a podle prin-
cipu matematické indukce je diikaz uvedeného tvrzeni ho-
tov.

Jiné FeSeni (struén€). Oznaéme |B; Bi+1| = b, |CiCiy1| =
= ¢; (bereme Cp41 = C1, Bpy1 = By) a vzdélenost pfimek
B;Biy1 a C;Ci4+1 budiz h;. Pak plati

n n
=Y S(BiBiz14iy1) = Y 3bihi,
i=1 i=1

a podobné

Oznaéme déle

=

Il

N

|

'O

&

Il
[V]a
ol
5)

|

Q'
\Sf

Jetedy S= P+ Ra@ = P+ T. Chceme dokazat, Ze
S? 2 PQ, neboli (P + R)? 2 P(P +T), coz je ekvivalentn{
vztahu

R?2 PK.

Pfedstavme si nyni nasledujici situaci: V roviné je déno

n bodi, které se pohybuji rovnomérnym pfimocarym po-
hybem tak, ze v Case t = 0 se nachézeji v bodech B, Bs,
.., By, zatimco v Case t = 1 v bodech Cy, Cs, ..., Cy.
Snadno se lze presvédéit (provedte!), Ze v libovolném Case
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t € (0,1) tvofi uvazované body n-tihelnik, ktery je ,rovno-
béiny“ s B1 B, ...B,, a ma obsah

P(t) =P+ Z %(b, + (1 - t)b,' +tc.~)th,~ = (2)
i=1
= P+ 2Rt + Kt%.

Diskriminant této kvadratické funkce je roven 4(R? —
— PK). Nerovnost S? 2 PQ je tedy ekvivalentni tomu,
ze tento diskriminant je neziporny, tj. Ze existuje takové
realné cislo to, Ze P(to) = 0. (Upozoriiujeme, Ze pro t ¢
¢ (0, 1) uZ nelze obecné P(t) interpretovat jako obsah né&ja-
kého mnohothelniku — miZe dochézet k rtiznému , kfiZeni“
ap.) Existenci takového ¢, dokdZeme indukei.

Nejprve (stejné jako v predchozim feSeni) vyfesime
»2zvlastni pripady“, kdyz n = 3 nebo kdyz n = 4 a
C1C2C3C4 je rovnobéznik. Pro rovnobéznik provedeme di-
kaz Gplné stejné jako v predeSlém fFeSeni (tj. pfimo, bez
pouziti funkce P(t)). Pro n = 3 je vidét, Ze vechny troj-
thelniky M, t € (0,1), jsou stejnolehlé; odtud plyne rov-
nost

P(t) = c(t = T)?

pro jisté ¢ > 0 a redlné éislo T'; nyni staéi vzit to = T,
a bude P(to) = 0.

Pfedpokladejme nyni, Ze jsme uz tvrzeni dokazali pro
(n — 1)-Ghelniky, n 2 4; dokaZeme je pro n-Ghelniky. Uva-
zujme tedy dva ,rovnobézné“ n-thelniky B1B;...B, C
C C1C;...C, a predpoklddejme, ze C1C5 ...Cy, neni rov-
nobéznik. Stejné jako v prfedchozim feSeni najdeme tFi
po sobé jdouci strany (napf. C1C2,C2C3 a C3Cy) tak,
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Obr. 52

ze polopifimky C1C,; a C4Cs se protinaji (obr.52). Pro
mnohothelniky C1C,...C, a B1B;...B, ozna¢me P,(t)
pfislusnou kvadratickou funkci. Protoze mnohothelniky
C1XC4Cs...C, a BiY B4Bs ... B, jsou rovnéz ,rovnobéz-
né“, miZeme i pro né sestrojit odpovidajici kvadratickou
funkci P,_1(t). Takovou funkci Pa (t) miizeme koneéné se-
strojit i pro ,rovnobé&zné“ trojihelniky CoC3X a By B3Y.
Z pfipadu n = 3 vime, ze
Pa(t) = c(t —T)?
pro néjakd ¢ > 0 a T. Podle definice jsou vsak pro t €
€ (0,1) funkce P,,P,_1 a Pa rovny obsahim pfislus-
nych mnohothelnikd M; vzniklych ,smrstovanim“ z M; =
=C1Cs...Cp na My =B1B;...By, resp. z C1XC4...Cy,
na B1YBs...B,, resp. z C2C3X na By;B3Y; plati tedy
P, = P,_; — Py, dili
Pa(t) = Pa_y(t) — c(t = T)?

pro vSechna t € (0,1). PonévadZ na obou stranich stoji
kvadratické funkce, musi tato rovnost platit dokonce pro
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vSechna redln4 ¢&isla t. Avsak podle indukéniho pfedpokladu
existuje to takové, Ze P,_1(to) = 0. Potom ale je

Pa(to) = Pa-1(to) = c(to ~T)* £ Pa-a(to) = 0,

coz zaruluje existenci kofene funkce P,, protoZe koeficient
K kvadratického ¢lenu ve vztahu (2) je vidy kladny (mno-
hothelnik C1Cy...C, mé vétsi obvod nez B;B;...By,).
Tim je dikaz hotov.

Na zavér poznamenejme, ze z obou FeSeni lze po chvilce
pfemysleni zjistit, kdy nastane rovnost S? = PQ: je to pra-
vé tehdy, jsou-li mnohothelniky CyC;...C, a BB, ...B,
podobné.

3.5 Predpokladejme, Ze se rovina BKM dotyka vepsané
koule v bodé P, a ozna¢me X prusecik pfimek BD a KM

H G
| M
E ! S
KA\ F
I\
-\ A
VAN
\
P N\ ——C
///
//
A B
Obr. 53
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(obr.53). Predpokliddejme, Ze K lezi uvniti EF a M uvnitf
FG. Ukazeme, ze roviny H EB a H X B jsou soumérné podle
roviny HK B.

Pfimka BK je prisecnici dvou teénych rovin ke kouli —
EKB a XKB. Pfitom roviny HEB, HX B prochézeji do-
tykovymi body, stfedem koule a bodem B. Analogicky jsou
roviny HXB a HGB soumérné podle HM B. Uhel rovin
HMB, HKB je proto roven poloviné uhlu rovin HEB,
HGB. Tento thel je %n, protoze uvedené roviny splynou
pfi otoceni o %n kolem osy BH. Proto je thel ¢ vidy tyz

a je roven %n.

3.6 Jedna se o dvé tézké alohy z teorie grafi. Pfeformulo-
vani do feci grafi je nasnadé — vrcholy grafu budou rytifi,
hrany spojuji rytife, ktefi se prateli (zde predpokladame,
ze relace pratelstvi je symetrickd, déle Ze relace pratelstvi
a nepratelstvi jsou komplementarni, tedy pokud dva ryti-
Fi jsou pfatelé, pak nejsou nepfatelé). Kruznice v daném
grafu je posloupnost navzdjem riznych vrchold vy, v, ...,
vk (k 2 3) takova, Ze dvojice viva, vavs, ..., Vk—1Vk, UkV1
jsou hrany grafu. KruZnice, kterd prochéazi vSemi vrcholy
grafu (kazdym pravé jednou), se nazyva hamiltonovska. Sy-
stém navzajem disjunktnich kruznic, ktery pokryva vsech-
ny vrcholy grafu (kazdy pravé jednou kruznici) se nazyva
2-faktor. (Jinymi slovy, 2-faktor je podgraf, jehoZ vSechny
vrcholy maji stupen 2 a ktery obsahuje viechny vrcholy pu-
vodniho grafu). Uloha 3.6 tak sestava ze dvou &ésti:

Uloha 3.6.1 Dokazte, ze graf o n vrcholech, jehoz kaz-
dy vrchol mé stupen aspoii n/2, obsahuje hamiltonovskou
kruznici.
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Uloha 3.6.2 Dokaite, e 2k-regularni graf (k 2 1 pfiroze-
né) obsahuje 2-faktor. (Stupen vrcholu je pocet hran, které
z néj vychdazeji; graf se nazyva d-regularni, jestlize vSechny
jeho vrcholy maji stupen d.)

Reseni tlohy 3.6.1 (sporem). Pfedpokladejme, Ze existuje
graf o n vrcholech, ktery mé vSechny vrcholy stupné aspon
n/2 a neobsahuje hamiltonovskou kruznici. Pfiddvejme mu
po jedné hrané. Protoze Gplny graf hamiltonovskou kruznici
obsahuje, existuje graf G a hrana ab takovd, ze G ma vsech-
ny hrany stupné aspon n/2 a neobsahuje hamiltonovskou
kruznici, zatimco graf G s pfidanou hranou ab jiz hamilto-
novskou kruznici obsahuje. Kazda takova kruznice pak nut-
né obsahuje hranu ab (jinak by to byla kruznice i v grafu
G), necht tedy a = vy, vs, ..., vy = b je poradi vrchold na
hamiltonovské kruznici. Polozme A = {i; av; je hrana G},
B = {i; v;—1b je hrana G}. Potom 1 nepatii do AUB, takze

AUB| £ n—1. Pfitom |A| 2 2, B|>2 podle predpokladu
= =2 =2

o stupnich, a proto |JANB| = |A|+ |B| - |[AUB| 2 1. Exi-
stuje tedy io takové, Ze av;, i vi,—1b jsou hrany G. Potom
ale a = vy, v2, ..., Vig—1, b = vp, Vp_1,..., Vi, je hamilto-
novska kruznice v grafu G. To je spor. (Povsimnéte si, Ze
toto je vlastné dikaz indukci podle poctu hran. Rozmyslete

si, ktery je prvni krok indukce a zformulujte pfesné znéni
indukéniho kroku.)

Jiné Fedeni (stru¢né podle M. Badidy, 4. ro¢nik G Kosice,
gmeralova). Nejprve dokdzeme, ze kdyz n rytifd sedi na
lavici tak, Ze spolu sousedi jen pratelé a krajni maji mezi
sedicimi aspon n/2 pratel, pak je lze posadit kolem kulatého
stolu.
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Oznaéme uvedené rytife ry, rq, ..., r, v pofadi, v jakém
sedi na lavici. Pokud 7, a r,, nejsou prateli, staci uvazit ty
z rytifa, ktefi se prateli s rq, a ty, jez sousedi zprava s pfateli
rytife r,. Téch ¢i onéch je aspon n/2, ale dohromady jich je
nejvySe n — 1. Snadno nahlédnete, Ze rytife lze pak ke stolu
posadit v pofadi rj_y...7r17j ...y, kde r; je rytif spolecny
obéma zminénym mnoZzinim.

Déle pak postupujeme induktivné: Z n rytiid vybereme
dva préatele, jez posadime na lavici a postupné k nim pfi-
sazujeme na jeden ¢&i druhy kraj lavice dalsi, dokud to jde
(aby vedle sebe sedéli jen ptatelé). Jakmile jiz nelze déle
pokracovat, znamena to, Ze kazdy krajni rytif ma uz vsech
svych aspon n/2 pfatel usazenych na lavici, takZe na lavici

sedi k 2 g + 1 rytifd. Podle predchoziho tvrzeni lze tyto

rytife rozesadit u kulatého stolu. Pokud jesté néjaky rytif
u stolu nesed{, najdeme mu mezi sedicimi jisté pfitele (nese-
di jich méné nez n/2), potinaje timto pfitelem je posadime
zase na lavici a rytife k nim pfisadime, atd.

Reseni tlohy 3.6.2. Diikaz tlohy 3.6.2 ve v3i obecnosti se
opira o nésledujici netrividlni vétu:

Véta o manZelstvi. Necht D (resp. H) je mnoZina divek
(resp. hochii). Pro divku d € D oznaéme H(d) C H mnoZinu
hocht, které je ochotna pojmout za muze. Chceme vSechny
divky najednou provdat (za rizné hochy, bigamie dosud
neni povolena) tak, aby 7adna divka nemusela pojmout za
muzZe nékoho, koho nechce. Toto je moZno provést, pravé
kdyZ% je splnéna podminka

D"CD=>|D*|§| U H(d)|. (1)
deD+*
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Jinymi slovy, pravé kdyz kazdych k divek (k < n) ma do-
hromady alespori k napadniki!

Méjme 2k-regularni graf. Opét stali uvazovat sou-
visly graf, a ten lze nakreslit jednim tahem. Vezmé-
me jeden takovy tah a pamatujme si, v jakém poradi
jsme vrcholy grafu prochézeli (do kazdého vrcholu jsme
k-krat vesli a k-krat z néj odesli). Vrcholy tohoto gra-
fu oznaéme vy, vz, ..., v,. Sestrojme mnoziny D =
= {di,...,dn} a H = {hy,...,h,} a polozme H(d;) =
= {h;; hranu v;v; jsme prochézeli ve sméru v; — v;}. Po-
tom |H(d)| = k pro kazdé d € D a téz kazdy hoch h € H
nalezi do k mnozin H(d).

Pravé popsany systém spliiuje podminku (1) a podle véty
o manzelstvi lze vSechny divky provdat (tj. vSechny divky
a chlapce lze vzédjemné jednoznacné sparovat).

Pro kazdé i tedy existuje j(i) (pro riznd i jsou j(7) téz
riiznd) tak, ze h;;) € H(d;). Protoze |[H| = |D|, plyne od-
tud, Ze i pro kazdé j existuje pravé jedno i(j) tak, ze h; €
€ H(d;(j)). Polozime-li E = {v;v;j); ¢ = 1,2,...,n}, patfi
kazdy vrchol v; dvéma hrandm z E (jednou hrané v;v;(;),
podruhé hrané wviv; pro ¢ = j(k)). Tedy nas 2k-regularni
graf obsahuje 2-faktor E.

3.7 (Podle P. Hlinéného, 4. roénik GMK, Bilovec.) Dané
¢islo pod odmocninou miizeme zapsat jako

0,11111...11111 =
N e

100

(1-1071%9).

O =

P . . s : .
Na vypocet uvedené odmocniny proto pouzijeme binomic-
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kou fadu

\/0,11111...11111:%(1 107190)3 =
100 - 1)
1 1 _ (
= 52—0: (Z> (—107200)"

Protoze pro n 2 2 je
2L

(}) M) Gone ) L

1-2-...-n
nemaji ¢leny binomické fady (1) poéinaje tfetim na prvnich
200 desetinnych mist vliv (pEislusna fada m4a jako majoran-
tu geometrickou Fadu s mensim souétem). Proto s pfesnosti
na 200 platnych mist plati

\/0,11111...11111=‘%_é.w-m:
R ——

100
1 1 1
= (2_21. q0-100 2.10-100)
(3 310 )+(6 0 )

Cislo v prvni zavorce mé na prvnich 100 desetinnych mis-
tech samé trojky a pak samé nuly, zatimco ¢islo v druhé
zdvorce ma na 101. desetinném misté jednicku a pak dal
samé Sestky. Na 200 platnych ¢islic tedy je

V0,11111...11111=10,333...3331666...666. ...

e

100 100 99

4.1 Hledame reélné kofeny rovnice s redlnymi koeficienty.
Vyuzijeme bud specidlniho pfipadu Cauchyovy nerovnosti

(£a) snfia W

=1
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ve které nastava rovnost, pravé kdyz z; = 2z, = ... = z,,
anebo nerovnosti mezi mocninnym a aritmetickym primeé-
rem

COE o) > L5 Il 2

ve které nastava rovnost, pravé kdyz £, = zo = ... = z,,.
Podle Vietovych vztaht plati

n
2 ri=-n, 3)
i=1
odtud pak podle (1) plyne
6 n 16
= r; n
() =(
< nl? (n r,~8)

Ve vsech nerovnostech nastava rovnost, je tedy ry = r, =
=...=rpapodle(3)ri=rp=...=r, = -1
Ve druhém pfipadé podle (2) dostaneme

IIA

2
i

II/\

rfé w5

15 ,.16 —

N-.
A EM’

i~

I=nl_,

n

1z 75 n 1
=(FZInl) 2 i X Il 2 -
ni=1 1 n

1=

n
Zril =
i=1

Opét tedy v obou nerovnostech plati rovnost. Z té prvni

mame, ze |r1| = |r2] = ... = |ra|, a z druhé vidime, Ze
vSechna r; maji stejné znaménko, takze ry = ro = ... =
= r, = —1. Dana rovnice ma tvar

(z+1)"=0.
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Obr. 54

4.2 Dany pravouhelnik si predstavime tak jako na obr. 54;
Jje jasné, co myslime slovy vlevo, dole, vodorovny, svisly,
atd. (napfiklad strana a je vodorovnd, strana b svisla). Bez
Ujmy na obecnosti lze pfedpokladat, ze kazdy pravouhelnik
R; ma aspon jednu stranu délky 1 (jinak rozsekdme kazdy
R; rozmért k x z (k pfirozené) na k pravothelniki 1 x z).
Pravouhelniky, jejichz svisld strana ma délku 1, nazveme
svislymi, ostatni (musi mit nutné vodorovnou stranu dél-
ky 1) vodorovnyma.

Pro z € (0,a) ozname f(z) soucet ,vysek* viech vodo-
rovnych pravoahelniki R;, jejichz levé strany lezi na svislé
pfimce L. lezici ve vzdélenosti £ napravo od b (obr.54).
Uvazujme néjaké z z intervalu (1, a). Oznagime-li z;(z) sou-
Cet vysek vSech svislych pravoihelniki, jejichz leva strana
lezi na L., bude

f(z) + z1(2)

rovno souétu vysek vsech pravothelniki, jejichz leva strana
lezi na L. Podobnou tivahou zjistime, ze souéet vysek vsech
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pravouhelniki, jejichZ prava strana lezi na L, je

f(z = 1) + 29(2),

kde z3(z) je soulet vysek vSech svislych pravoihelnikd, je-
JichZ prava strana lezi na L,. Tyto dva posledni vyrazy si
vsak musi byt rovny, takze

f(@) = f(z = 1) + 22(z) - 21(2).

ProtoZe svislé pravotihelniky maji vysku 1, jsou 21(z), z2(z)
cela &isla, tedy i f(z)— f(z —1) je celé Eislo. Provedme tuto
avahuproz =1, 2, ..., N, kde N je nejvétsi pfirozené ¢islo
mensi nez a, vidime, ze f(N) — f(0) je celé &islo.

Z predchozich Gvah nyni vyplyva, ze

£(0) + z1(0) = b.

Pfedpokladdejme, ze délka strany b neni celé ¢islo. Jak uz by-
lo Fe€eno, 21(z) je vidy celé, tedy ani f(0) neni celé, a proto
ani f(N) neni celé &islo. Specidlné f(N) # 0, takze pifimky
Ly se dotyka zleva aspon jeden vodorovny pravothelnik.
ProtoZe je vodorovny a lezi cely v R, musi byt délka strany
a aspoi N + 1. Ale N bylo definovino jako nejvétsi celé
Cislo mensi nez a, je tedy nutné a = N + 1, tj. a je celé.

Dokazali jsme, zZe pokud b neni celé, musi byt celociselné
a; tim je dikaz hotov.

Jiné ¥eSeni. Oznaime A, B, C, D vrcholy daného pravo-
ahelniku R a zavedme kartézskou soustavu soufadnic s po-
catkem v bodé A as osamiz = AB, y = AD. Mnozinu téch
bodd, jez jsou vrcholy nékterého z pravothelniki R; a maji
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obé souradnice celoliselné, oznaéme S. Kazdému z vrcholi
E v uvazovaném rozkladu pravothelniku R pfifadme funkci
ng, oznacujici pocet pravouhelniki R;, jichZ je E vrcholem.
Jetedyng = np =n¢c =np =1, jinak ng = 0, nebong =
= 2, nebo ng = 4. Pfitom

n
Z ng = E f(R:),
Ees i=1

kde f(R;) oznaduje poéet vrchold, jez patii do S (maji obé
soufadnice celoéiselné). Vzhledem k tomu, Ze aspoii jedna
dvojice stran pravothelniku R; je celodiselnd, je f(R;) €
€ {0,2,4}, takze

n
Yng=3 f(R)=0 (mod 2).
EE€S i=1

Protoze ale A € S a ny = 1, patii jesté aspon jeden
z vrcholi B, C, D rovnéz do S. Tim je tvrzeni alohy doka-
zano.

4.3 (Podle S. Kasala, 3. roénik GWP, Praha.) Pfedpo-
kladejme, Ze obsahy S(OA;Aj) vsech trojihelniki OA;A;,
1 £i<j£4,leii v intervalu (1, v2), a z tohoto predpo-
kladu vyvodime spor.

Ztejmé zadné tfi z danych péti bodi nejsou kolinedrni.
Sestrojme rovnobézky p1, ps, q1, ¢2 s pfimkou OA,, jez lezi

2 2\/5
ve vzdalenostech —— od OA; (obr.55
0A,] * Toay °¢ O (obr-59)
Uvazujme nyni body A, k = 2, 3, 4. Protoze obsah troj-
Ghelniku OA; A je aspoit 1 a méné nez /2, musi Ay le-

Zet v pasu vymezeném pfimkami p;, p2 (p1 do pasu patfi,
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Obr. 55

p2 nikoliv) nebo v obdobném pésu mezi pfimkami ¢; a ¢s.
Obsah Zadného z trojihelnikd OA;Aj, 1 £ i < j < 4, se
vSak nezméni, nahradime-li nékteré body Ax body A} s ni-
mi soumérné sdruzenymi podle O. Bez Gjmy na obecnosti
miZeme tedy pfedpoklddat, Ze vSechny body Ax (k = 2,
3, 4) lezi v pasu mezi p; a py. Déle miZeme pfedpokladat,
ze polopfimka OAg nélezi ihlu A20A4 (staci body vhodné
pfejmenovat).

Oznaime P prisecik této polopfimky s tseékou AzA4.
Protoze Az, A4 leZi v pasu mezi p;, ps, lezi v ném i P;
proto

|OAs| < V2|OP|.
Nyni plati
S(A20A4) = S(A20P) + S(A4OP) =

opP
|' of ll (S(A2043) + S(A4043)) >

>ﬁ'(l+l)=‘/§’
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coz je spor s pfedpokladem, ze S(OA;A4;) € (l,\/i) pro
viechna 1S i< j <4

Obr. 56

Jiné FeSeni. Pfedpokladejme, ze body A, ..., A, jsou
oznaleny ve sméru hodinovych rucicek a vzdjemné hly po-
lopfimek OA;, OA;41 jsou po Fadé a, 3, v (obr. 56). Pro ob-
sahy uvaZovanych trojahelniki pak plati (Si; = S(OA;A;))

Sia = %|0A1| |OA||sina|

Sia = 1041] |04 | sin(a + B)
Sia = 310411044l [sin(a + 8+ )]
Spa = %IOA2| 045 | sin 4]

Saa = 1045|1044 [sin(8 + )]

S = 510451 [0As] | sin].
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Jednoduchym vypoétem vsak vyjde

sin(a + f+ v)sin f + sinasiny =

= sin(a + () cosysin g +
+ sin #siny cos(a + B) + sinasiny =

= sin(a + B) cos v sin B + sin Bsin vy cos a cos f —
—sin? Bsinysina + sinasiny =

= sin(a + f) cosysin 3 +
+ sin v cos f(sin B cos a + sin a cos ) =

= sin(a + B) sin(8 +7),

takze pro vhodnou kombinaci znamének + dostaneme
514523 & S12534 £ 513524 = 0.

Pro vhodnou kombinaci {z, 3, k, 1} = {1, 2, 3,4} tedy bude

2
.Y >6.6. —G.G. G >
(1§I?<a;(§45|1) = St]Skl SlkSJI + SlIS]k = 2,

neboli
max Sij 2 V2.

4.4 (S. Hrinko, A. Kubéna, J. Mensik.) Ozna¢me V pri-
selik vysek, O stfed kruZnice opsané, P patu vysky spus-
téné z bodu B na stranu AC, S stfed strany AB (obr. 57).
Trojahelnik APV je pravoihly a velikost thlu AVP je «.
Podle véty o obvodovém a stfedovém thlu mé Ghel AOB
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Obr. 57

velikost 2y. Trojihelnik AOB je rovnoramenny, takze ve-
likost hlu AOS je v. Trojihelnik ASO je také pravouhly
a podle pfedpokladu |AV| = |AO|, takze trojahelniky APV
a ASO jsou shodné. Je tedy
|AP| = |4S| = 5|AB|.

Odtud plyne, ze a = § (napf. cosa = ).

Obracenim sledu predchéazejicich Gvah dostaneme, Zze
|AV| = |AO|, pravé kdyz a = §.

Poznamka. Velmi kratké feseni obdrzime pouzitim vzorce
pro obvod kruZnice opsané. Je

_ |AB|

_|AP| _ |AB|cosa
2siny’ B - ’

sin y sin 7y

|AO| |AV|

Odtud okamzité plyne Feseni.

4.5 Dokadzeme nasledujici tvrzeni, z néhoz tvrzeni ulohy
snadno plyne. Oznaéme a;, as teény kruznice k£ v bodech
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Ay, Az a uvazujme bod X kruznice k. Jsou-li Py, P, P (po
fadé€) paty kolmic spusténych z bodu X na pfimky ai, a;
a A1A2, je IP)(I2 = |P1X”P2X|

Podle véty o obvodovém a tisekovém thlu je thel A7 X A,
roven Ghlu a pfi vrcholu A; (kdo toto tvrzeni nezné, mize je
snadno nahlédnout ze zndmé véty o stfedovém a obvodovém
Ghlu). Déle je snadno vidét, Ze i Ghel PXP, je roven a.
Proto se thly PX P, a A} X Ay rovnaji a rovnaji se i Ghly
A1 XP a Ay X P,, takze trojihelniky Ay PX a A P, X jsou
podobné. Odtud

|PX| _ |PX]

42X A1 X|
a symetricky také

PX] _ |PX]

A1 X]  [A2X]

Uvedené rovnosti plati i v pfipadé, kdy A, X & A; X je
primérem kruznice k (obr. 58). Vynasobenim obou vztaht
dostaneme pozadovanou rovnost

|PLX||PX| = |PX|?,

ktera plati, i kdyz |4; X| = 0 nebo |42X| = 0, protoze pak

Uvedené tvrzeni lze také snadno dokazat analyticky.

4.6 Jesté nez uvedeme Feseni této tlohy, je tfeba pozna-
menat, Ze obrazek je soucasti podminek alohy. Jinak exis-
tuje protipfiklad (obr.59), pro ktery tvrzeni alohy neplati.
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Obr. 59

Kruhové nameésti oznaéme O, ulici z A do B oznalme
A — B. Dokazeme, Ze

a) z libovolného ndmésti A # O se dostaneme na O,

b) z O se dostaneme na libovolné &tvercové namésti.
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Z a) a b) pak snadno plyne tvrzeni Glohy.

Nejprve dokdzeme, ze z ndmésti A # O se dostaneme
na O. Jestlize A — O, neni co dokazovat, jinak z A ve-
de cesta na néjaké ¢tvercové namésti. Pokracujme z A po
ctvercovych nameéstich, dokud je to mozné, anebo dokud se
nevratime zpatky do A.

Jestlize prijdeme na néjaké namésti B, odkud nemtzeme
pokracovat po obvodé, je podle zadani B — O, ¢imZ jsme
se dostali z A na O. Pokud jsme se nikde nezastavili, pak
se vratime na A, protoze namésti je konecny pocet. Pred-
pokladame-li, ze plan mésta odpovida obrazku, museli jsme
projit vSechna Ctvercovd namésti a podle zadani pak exis-
tuje namésti B takové, ze B — O. Z A tedy pujdeme do B
a odtud do O.

Tvrzeni b) dostaneme, jestlize zménime orientaci ulic;
podminky zadani se zachovaji a podle a) se (v novém més-
té) dostaneme z A na O, to znamend, ze v daném mésté se
lze dostat z O na A.

Poznamka. Uloha se d4 zobecnit takto: Pfedpokladejme,
ze se v mésté da oznacit smér jednotlivych ulic tak, aby se
dalo z kazdého nameésti odjet a na kazdé namésti prijet. Pak
se da z kazdého namésti dojet na libovolné jiné, pravé kdyz
kazda ,kruhova“ trasa po jednotlivych ndméstich (bez ohle-
du na zvolené sméry) prochézi jednim pevnym nadméstim.

Pokuste se to dokazat.

4.7 (Podle V. Skalského, 4. roénik G, Presov, T. Seven-
ka.) Ozna¢me O stfed télesové Ghlopficky AG a O; stfed
sténové Ghlopticky AH (obr.60). Pak OO je stfedni pficka
trojuhelniku GHA, a proto OO;, GH, AB jsou navzijem
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Obr. 60

rovnobézné. Podle véty o stfidavych dhlech je |[JAOO,| =
= |JOAB| = a. Protoze OO, je kolma na AH (nebot je
kolma na boéni sténu ADHE), je trojahelnik AOH rov-
noramenny, takze |JAOH| = |JAOO;| + | HOO,| = 2.
Analogicky dostaneme, ze |JHOC| = 28, |JCOA| = 2y
(velmi nazorné je to vidét i na obr.61). Trojhran OAHC
mé tedy rovinné thly 2«, 23, 2v. Ale soucet ahli v kazdém
trojhranu, ktery nelezi v roviné, je mensi nez 2rn. V naSem
pripadé jisté O nelezi v roviné AHC, jinak bychom lehko
dokazali, ze v ni lezi vSsechny vrcholy kvadru. Proto a + 8+
+y<m.

Tvrzeni o souctu Ghlia v trojhranu dokazeme pomoci kosi-
nové véty: Oznaéme O’ kolmy primét bodu O, ktery nelezi
v roviné AHC, do této roviny. Ziejmé plati

[SAO'H| + |[JHO'C| + |[ICO'A| = 2=
aje |0'A| = |O'H| = |0'C| < |0OA| = |OH| = |0OC|. Z kosi-
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Obr. 61

nové véty plyne
|AH|? — |O'A]> - |O'H|* _
2|0'A||O'H| -
_ |AH? = 2j0ap
- 2|0'A)?
|AH? - |OAP = [OH* _
2|0A||OH | -
= cos [JAOH|.
Protoze velikosti thld AO'H, AOH lezi v intervalu (0, ),
plyne odtud |[JAOH| < |JAO'H|. Podobné dokizeme, ze
[JCOH| < [JCO'H|, |SCOA| < |ACO'A|. Po seiteni vyjde
[JAOH|+ |SCOH| + |[3COA| < 2r.

cos |[JAO'H| =

5.1 Pro n = 1 dostavame

b=z} +z? =2+ (a—20)? = 222 — 2azo + a?,
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takze zg je kofenem kvadratické rovnice
2z% — 2az + (a® — b) = 0,

jejiz diskriminant 4(2b — a?) je zfejmé nezaporny, a plati

tedy
{a:t\/2b-—a2}
2

o €

)

pricemz obé hodnoty se mohou nabyvat.
Dale predpokladejme, ze n > 1. Pouzijeme-li Cauchyovu
nerovnost
n 2 n n
(L) sTase
i=1 1
na lisla a; = 1 b; = yi (1 £ 1 £ n), jez spliuji rovnosti

Z yi = A, E y? = B, dostaneme nerovnost A% < nB;

- nB — A% |
pfitom pro ¢ = | —— a {isla
2n
4 A e g oA
yl—n (N y?*n ) y3—y4—°"—yn—'n

(na tomto misté pouzivime pfedpoklad n > 1) obracené
plati

du=4,

i=1

- A N (4 Y A2
2 _ _
iz:;y,- = (;—c) +(—5+c> +(n—2)n—2-_

2
A—+2c2:B.
n
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Protoze cisla zg, ..., , spliuji rovnosti
n

n
3oy =y Yozt =b,
i=0 1=0

musi analogicky podle Cauchyovy nerovnosti platit a? <
< (n + 1)b. Za tohoto predpokladu hleddme tedy vSechna

zg, pro néz existuji =y, ..., =, tak, aby
n n 9 9
Y.z =a—zo, Yoxi=b—zf.
i=1 i=1
Podle predchozi Gvahy takova Cisla x, . . ., z,, existuji, pravé
kdyz

(a—z0)* < n(b—zf),

neboli
(n+ 1)z2 — 2azo + (a®> — nb) L0.

Protoze a? < (n+1)b, je diskriminant kvadratického troj-
clenu na levé strané nezaporny,

D = 4a* — 4(n + 1)(a* — nb) = 4n((n + 1)b —a?) 2 0.
UvaZzovana nerovnice je tedy ekvivalentni podmince

x0€<2a—\/5 2a+\/5>

2(n+1)" 2(n+1)

neboli
c a—+/n(n+1)b—na? a++/n(n+1)b— na?
o n+1 ’ n+1 ’
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coz je odpovéd na nasi Glohu.

5.2 Misto s eukleidovskymi vzdéalenostmi budeme radéji
pocitat s velikostmi Ghld 4;0A;, kde O je stfed dané ku-
lové plochy. Pro jednodussi vyjadfovani budeme pouzivat
zemépisnou terminologii.

Vezmeme-li napf. pét vrcholi pravidelného osmisténu, vi-

dime, Ze existuji body A;, A,, ..., As takové, Ze
3
i ; A > =
min |34:04;] 2 5. (1)

UvaZujme mnozinu bodt {4y, ..., As}, jez spliuji (1). Uk4-
Zeme, Ze aspon dva z nich tvofi primér dané kulové plochy.

Pfedstavme si napf. bod As jako ,severni pdl“ a pred-
pokladejme, Ze zddné dva z bodli A;, ..., As netvofi pri-
mér. Body Aj, ..., A4 musi tedy lezet na ,jizni polokouli“
s vyjimkou jizniho pélu. Uvazujme libovolny kvadrant té-
to polokoule ohranieny &tvrtinou rovniku (obr. 62). Pokud

<~

X
h N
N

Obr. 62
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obsahuje dva z bodt Ay, ..., A4, musi kazdy leZet na jiném
poledniku, protoze jejich ,,délky“ se lisi aspon o 7. Odtud
plyne, Ze body A, ..., A4 leZi na polednicich, jez rozdéluji
sféru na &tyfi shodné &asti (kvadranty). Pokud by ovsem
néktery z nich neleZel na rovniku, musf tam lezet oba jeho
sousedé, jez jsou stfedové soumérni podle stiedu O dané
kulové plochy.

Odtud plyne, Ze je vidy r’_r;ip|A,~OAj| < 3, pfi¢emz rov-
nost nastane, pravé kdyz dvan bodid Aj, ..., As jsou stfe-
dové soumérné (tvofi ,poly“) a ostatni lezi na odpovidaji-
cim ,rovniku“ ve vrcholech trojihelniku s vnitinimi ahly
aspoii 3.

Pro nejmensi vzdalenost bodii A4;, A;j tak dostaneme hra-
nici v/2.

5.3 (Podle A. Kubény, 3. roénik GMK, Bilovec.) Oznac-

me a, b délky stran koberce a pfedpokliddejme, Ze koberec
ma tvar pravotihelniku. Jestlize v mistnosti 55 x 38 svira

55

38

Obr. 63
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strana délky a se sténou délky 55 thel @ < n/2, pak pro
ahly, které sviraji strany koberce s pruniky stén a podla-
hy mistnosti, plati to, co je vyznaleno na obr. 63 (plyne to
z toho, Ze jde pouze o pravohlé trojihelniky a obdélnik).
Plati tedy

asina + bcosa = 38

bsina 4+ acosa = 5H5.

Po umocnéni, seCteni a vzdjemném vynasobeni téchto
dvou rovnic dostavame

a? + b? + 2absin 20 = 382 + 552
(a? 4 b?)sin 2a 4 2ab = 38 - 55 - 2.

Polozime-li z = a? + b2, y = 2ab, bude z, y > 0 a

382+55°—z 2-38-55—y
y B z ’
tedy
(382 4+ 55%)z — 2% = 2-38 - 55y — 32,

a podobné v druhé mistnosti zjistime, ze
(502 + 55%)z — 2% = 2-50 - 55y — y°.

Jediné kladné feseni soustavy poslednich dvou rovnic je
(z,y) = (3125,2500). Jim odpovidajici kladna a, b jsou
jediné (a,b) = (50, 25).

Zkousku, ze koberec rozméru 25 x 50 lze skute¢né do skla-
dovacich mistnosti ulozit uvedenym zpisobem, prenechava-
me tém, ktefi obchodnikovi nedavéruji.
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5.4 (Podle P. Novotného, 2. roénik GWP, Praha.)
a) Jestlize p = 1, pak nerovnost plati pro vsechna n 2 2,
nebot

:cf+x§+...+:cf, —(z1z2+ 2223+ ...+ Tp_12p) =
I 1
= 51‘?-}- —2-(1‘1 —22)2+...+
+l(:c -z )2+—1-:c2>0
2 n—1 n 9¥%n = :
b) Necht p = g—. Upravme rozdil levé a pravé strany ne-
rovnosti (zatim formalné) nasledujicim zpisobem:

4
z'{"+z§+...+:cf,—g(:clzg+x2x3+...+x,,_1:cn)=

2 N 2V
=a <.’l?1—:—3-(-l—1-222) + ay (1‘2—-3(1—2-1:3) + ...+

2
2 T +a z2
3an_1 n nen-

+ an-1 (zn—l -

Pfedné a; = 1. Porovnénim koeficientdi u 3, dostaneme
pro 1 £ k £ n— 1 rekurentni vztah

4
94 +ap41 =1,
_ 9ar -4
Ak 41 = gak .
(Vsimnéte si, ze Cisla ay, asz, ... nezavisi na n!) Mizeme
tedy snadno vypoéitat ay = 3, a3 = %, a4 = =& To

znamena, zZe pro n = 2, 3 jsme uvazovany rozdil upravili na
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soucet ¢tvercl a nerovnost tedy pro tato n plati. Dosazenim
21 =1, 2p41 = %akzk (k=2,3,4), 25 = ... =2, =0
naopak dostavime, Ze pro n 2 4 nerovnost neplati.

¢) Necht p = g. Postupujeme obdobné jako v pfipadé b).
Porovnanim koeficient v rovnosti

6
Z¥+£§+...+2,2‘—5(221272-{-.’822:3-}-...-*-17"_12"):

3\’ 3\
=a (Il—azz) +02<$2—5—a;1€3) +...+

3 z 2-{~a z?
5(1"_1 n nen

+an-1 (mn—l -

dostaneme pro 1 £ k £ n — 1 rekurentni vztah

a = 1;
25a; — 9
it = g
a konkrétn{ hodnoty a; = 3¢, a3 = {5, a1 = 5, a5 = — 2.

Stejnou ivahou jako v b) pak nahlédneme, ze nerovnost
plati pravé pro n = 2, 3, 4.

Vsimnéte si, ze tento zplsob FeSeni v podstaté nezdvi-
sel na hodnoté p. Pro konkrétni hodnoty (p = %, %) bylo
samozfejmé mozné napsat rovnou, jak se nerovnost upravi
— a to co nejrychleji a nejjednoduseji — na soucet Etverci
a jak najdeme protipfiklad, pro ktery nerovnost neplati.

Poznamka. Je dobré si vSimnout, ze pokud uvedend ne-
rovnost pro dané p a pro néjaké n plati pro vSechna redlna
Cisla z1, z9, ..., z,, pak plati i pro vSechna k < n. Staci
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polozit 441 = ... = 2, = 0. To znamen4, ze pro kazdé p
existuje prirozené Cislo N(p) 2 2 takové, Ze nerovnost (1)
plati pro kazdé n < N(p) a neplati pro n 2 N(p) (tj. exis-
tuji redlna Cisla 2y, 22, ..., ¢, takova, ze ...). Z vysledku
a) vime, ze mizeme klast N(1) = oo, a déle jsme zjistili, ze
N(3)=4,N(§)=5.

D4 se dokazat, Ze nerovnost (1) plati pravé pro p <

lIA

1 . T 1
—, tj. N(p) = [——T].Propz — pak
cos Ay arccos cos iy

nastane rovnost pro &isla zy = sin £ , 1Sk <n.
n+l1 = =

5.5 (Pouzita myslenka A. Kubény, 3. ro¢nik GMK, Bi-
lovec.) Podminku , ke kazdému bodu A; existuji dva shod-
né obarvené oblouky ...“ budeme nazyvat podminkou (1).
V zadani mélo byt presné&ji fFeceno, Ze to musi byt rizné
oblouky (jinak by uvedend podminka byla trividlné splnéna
pro ,oblouky“ délky celé kruznice a pro libovolné obarvenj).

Pro libovolné i ozna¢me p; nejmensi ¢islo, pro které jsou
oblouky A;_,, Ai, AiAit+p, shodné. Nejprve si viimnéme, Ze
nemiize byt p; > n/2. Je-li totiz 3 prinik obloukid A;_,, A;,
A;Aitp, (obr.64), plyne z jejich shodnosti, ze A; je spo-
le¢nym krajnim bodem dvou obloukid shodnych s f, coz
odporuje minimalité p;.

Budiz nyni p = Iréliag(" pi. Zvolme oéislovani tak, aby bylo

P = Pn, tedy An_p,An = AnAnyp, = a (obarvené oblou-
ky budeme oznacovat malymi feckymi pismeny). Jestlize
z kruznice ,vynechame® oblouk A,_p,k A,, nova ,kruznice”
(s body Af, ..., A;_,) bude opét spliovat podminku (1)
a pro pfislusné &islo p’ bude p’ < p.
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n-p A

pel

&

Obr. 64

To je jasné pro bod A, = An_p a pro body 4; = Aj,
p < j S n—p (obr.65, kde € je oblouk pfislusny A,_, a By
je oblouk pfislusny A;). Pfipad n — p = p je rovnéz jasny
— zde neni co dokazovat.

An=Aln—p

Any

Obr. 65

Uvazujme ted bod A; pro 1 £ ¢ £ p. Vzhledem k to-
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mu, Ze si body A;, An_p4i navzajem odpovidaji, mizeme
dokonce predpokladat, ze je i < p/2. Vezméme nejprve ten
pripad, kdy nejmensi oblouky pfislusné bodu A; (na pivod-
nf kruZnici) neobsahuji bod A, a prvni z nich je bodem A,
rozdélen na oblouky S a « (obr. 66). Jestlize analogicky bo-

Obr. 66

du An_p4i odpovidaji shodné oblouky ya, musi byt jeden
z oblouki ya, fa obsazen v druhém: Bude-li napf. § = %€,

6 g 1 a” i |
|
3 .
73 0 i
An
r 55y
a/
Obr. 67
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pak je také a = £a’ (obr.67), takze bodu A, odpovida
kratsi oblouk ¢! To ale znamen4, Ze je 8 = 7.

Podobné si poradime i s pfipadem, kde jeden z oblou-
ki odpovidajicich bodu A; obsahuje bod A, (obr. 68). Je-li

Obr. 68

jeden z obloukt opét rozdélen bodem A, na oblouky
a a, vyjde postupné, ze a = o’ = €2 = ... = pt¥ =
= pp€F—1 takze zase bodu A, odpovidaji kratsi oblouky
¢y (obr.69). To je opét spor s nasim pfedpokladem.
Tvrzeni Glohy uZ ted snadno dokdzeme matematickou in-
dukei (a navic dokdzeme i to, ze perioda je rovna &islu p).
Pro n = 2 musi byt podle podminky (1) obarveny dva
oblouky stejnou barvou, obarveni je tedy periodické s perio-
dou 1. Predpokladejme, Ze tvrzeni plati pro kazdé k < n.
Danou kruZnici zredukujeme popsanym zptsobem na kruz-
nici s body Aj, ..., An_p. Pro &islo p/, jez odpovida této
nové kruznici, plati p’ £ p £ n — p, nebot p < n/2. Pokud
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Pyl 8 oo | £
I | | |
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[
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I '
| [ 1Yy 1 3
An g A;
Obr. 69
P’ = n —p, je p = n/2 a obarveni je periodické s perio-

dou n/2. Pokud p’ < n — p, je obarveni redukované kruzni-
ce periodické s periodou p’ podle indukéniho predpokladu.
Kdyby ted bylo p = kp’ +r pro 0 < r < p’, bude me-
zi App a Ap lezet ,zbytkovy“ oblouk a délky r (obr.70).
Diky periodé p’ najdeme oblouk « i mezi A, a A, a di-

Obr. 70
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ky shodnosti oblouki A,_,An, AnAp leii o téz mezi A,_,
a A,. To je ale ve sporu s definici éisla p, = p. Proto je
p = kp', takie snadno nahlédneme, Ze i pivodni kruzni-
ce musela mit periodu p’, takze je dokonce p’ = p. Tim je
tvrzeni Glohy dokazéano.

D Q C
. P
n
14 (%%
A a B
Obr. 71

b
5.6 Necht |AB| = a, |AD| = b, takze |BP| = > |DQ| =

= E, a dale polozme % = k (obr.71). Pro obsahy pfislus-
q
nych trojahelnikd plati
b b
2P(ABP) = “;, 2P(ADQ) = “?

2P(PCQ) = ab(l - %) (1 - ;)
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2
Protoze |AP|? = a? + |AQ|2 = b2 + 3—2-, dostaneme
pro ¢ = |[JPAQ)| rovnost

2

4PY(APQ) = (a2 + Z—Z) (b2 + 27) sin® ¢ =

= a??(1 - ;15)2,

t).
(Hk; )(H’g;)smap:(l_;%)?

Ma4-li byt ¢ maximdlni, musi byt hodnota funkce

f(k) = (1+;21—p5)(1+§-22-)

minimdlni. Ale podle Cauchyovy nerovnosti je

1 & 1
k le-{-——:l'f‘_y
1) 2 kp ¢ Pq

pfiCemz rovnost nastava, pravé kdyz

2
=2 peboli k=L a4 k=2= /1
P b

5.7 Prvni hra¢ ma vyhravajici strategii: Predpoklddejme,
ze jeho cilem je pfemistit se z pole (1,1) na (n,n). Z tahi
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L 0
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Ar1X
Obr. 72

druhého hréace, jez jsou soumérné podle Ghlopficky, budeme
rozebirat vZdy jen jednu moZnost.

Prvni tah prvniho hrace bude (1,1) — (2, 3) — (4,4).

Piedpoklddejme ted, Ze po tahu prvniho hrie jsme na
poli (h,h), h 2 4 (podminka h 2 4 zaruéuje, zZe existuje
platny tah druhého, napfiklad (h — 1, h — 3)).

Jestlize h = n, prvni vyhrél, jinak (h < n) ma druhy tyto
moznosti (obr. 72):

tah druhého hrace odpovéd prvniho hréiée

a) (h,h) — (h—1,h—3) —[(h,h—1) — (h+ 1, h+1)],
b) (h,h) — (h+1,h—3) —[(h,h—1) — (h+ 1,h + 1)],
¢) (hyh) = (h+3,h—1) =[(h+2,h+1) — (h+3,h+3)],

jelih<n-—3
d) (h,h) = (h+3,h+1)—>[(h+1,h+2)— (h+3,h+3)],
jelih<n-3

Pokazdé tedy postoupi prvni hrad¢ po Ghlopficce alespon
o jedno policko bliZe ke svému cili. PFitom moznosti, ze by se
pro h = n—1 nemohl po tahu soupefe dostat do rohu (n,n),
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se nemusi obavat, protoze pole oznafend * (v tabulce tahy
¢) a d)) uZ nejsou v takovém piipadé pro soupefe dostupna.

Zaginé-li druhy hra&, m4a jenom moznost d) a po tahu prv-
niho se dostaneme na pole (4,4), tedy i v tomto pfipadé ma
prvni hra¢ vyhravajici strategii. Protoze délka. ihlopficky
je kone¢né, dosdhne prvni hrd¢ po koneéném poétu kroku
cilového pole (n,n).
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Ako sme pocitali v Pekingu

(Spréava z 31. medzinirodnej matematickej olympiady)

Stalo sa uz tradiciou, ze kazdoro¢ne zaciatkom letnych
prazdnin sa stretdvaja najlepsi z najlepsich stredoskoldkov
z desiatok krajin, aby si na medzinirodnej matematickej
olympidde zmerali svoje sily v rieSeni naro¢nych aloh. V ro-
ku 1990 sa ujala usporiadania tohto velkého podujatia Cin-
ska fudova republika a za miesto konania sttaZe zvolila svoje
hlavné mesto Peking. Ugast na sttazi bola rekordna: za&ast-
nili sa jej ziaci z 54 krajin (tab. 6, str. 266), zvacsa zastlpe-
nych Gplnymi Sestclennymi druzstvami. Ceski a Slovensk
Federativnu Republiku reprezentovalo na 31. MMO v Pe-
kingu tychto Sest ziakov:

Martin Dindos 4 G J. Hronca, Bratislava
Petr Hiinény 4 G M. Kopernika, Bilovec
Stépdin Kasal 3 G W. Piecka, Praha
Michal Koneény 3 G Brno, tf. kpt. Jarose
Pavol Severa 4 G A. Markusa, Bratislava
Ondrej Such 4 G A. Markusa, Bratislava

Vedicim delegécie bol RNDr. Karel Hordk, CSc. (MU
CSAV), jeho zastupcom RNDr. Viadimir Burjan (MSMS
SR), obaja élenovia predsednictva UV MO.
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Vedici delegécie odletel do Pekingu 7. jila, aby sa ako
¢len medzinarodnej jury zGcastnil vyberu sitaznych tloh.
Jury po dvojdiiovom néarofnom rokovani vybrala z de-
siatok navrhov Sest stitaznych aloh. Mozno povazovat za
aspech, Ze medzi vybrané Glohy sa dostala aj jedna Cesko-
slovenskd (tloha ¢.2), ktorej autorom je RNDr. Pavol Cer-
nek, CSc., z katedry matematiky Elektrotechnickej fakulty
SVST v Bratislave.

Naobed 9. jala 1990, po vyse 7 hodinovom lete z Moskvy,
dorazili do Pekingu aj Siesti sGtaziaci sprevadzani V. Bur-
janom. Organizatori stitaze im poskytli nasledujice dva dni
na aklimatizaciu a pripravu na sataz. Vzhfadom na vyso-
ké teploty vzduchu a jeho mimoriadnu vlhkost, na aka nie
sme v naSich podmienkach zvyknuti, bola tato aklimatiza-
cia ozaj potrebna. NavySse — vzhladom na osemhodinovy
¢asovy posun medzi Pekingom a CSFR — bolo v Pekingu
doobedie v tom é&ase, kedy je u nas doma noc. Kedze si-
taz prebiehala vidy doobeda, boli nasi Ziaci niteni podavat
vrcholny intelektudlny vykon v (biologickom) Case, kedy je
zvycajne ich organizmus v najhlbsom atlme. Tato skutoc-
nost, ako aj spomenuté horacavy s vlhkostou vzduchu urcite
mali vplyv na ich vykony.

Poéas dvoch pripravnych dni si Ziaci prezreli niektoré cas-
ti Pekingu a navstivili ZOO, kde videli okrem iného pandy
— zvierata, ktoré st narodnym symbolom Cifianov. Poobe-
de pred sGtazou sa konal v modernej Sportovej hale cere-
monidl slavnostného otvorenia 31. medzinirodnej matema-
tickej olympiady. Po ivodnych prejavoch zastupcov minis-
terstva skolstva a mesta Pekingu ho spestrilo velmi atrak-
tivne a exoticky pdsobiace vystipenie réznych artistickych
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a akrobatickych skupin. Na tomto stretnuti sa prvykrat od
priletu do Pekingu videli vedici delegicii s ostatnymi ich
clenmi. Aj to len na vzdialenost niekolko desiatok metrov.
Pravidla sutaze totiz vyzaduja, aby veduci delegacii (ktorf
sa podielaji na vybere sataznych aloh) ostali oddeleni od
sttaziacich aZ do skoncenia druhého sitazného dna.

Vo stvrtok a piatok (12. a 13. jala) prebiehala samotna
sttaz. Ziaci riesili kazdy def tri sitazné Glohy, pri¢om na vy-
pracovanie rieSeni mali vZdy 4,5 hodiny ¢istého ¢asu. V trie-
dach, kde sa sitazilo, nebola dostatocné klimatizéacia, a tak
ti Ziaci, ktori nesedeli bezprostredne pri niektorom z venti-
latorov, sa dost potili nielen nad lohami. Zd4 sa, ze ¢o sa
podmienok tyka, bola tato olympidda jedna z najnarocnej-
Sich. To v8ak v ziadnom pripade nema byt kritika organiza-
torov, ktori skutocne dékladne vsetko pripravili a vyvinuli
maximalne Usilie, aby sitaz prebehla hladko a aby sa hos-
tia v ich krajine citili prijemne. Ked si uvedomime, ze ide
o skupinu zhruba 500 ludi, ktorych treba ubytovat, stravo-
vat, zabezpedit pre nich program na 10 dni, dopravovat ich
z miesta na miesto, atd., uvedomime si, ze MMO v dne3nej
podobe je podujatim velmi ndkladnym a navyse organizac-
ne nesmierne narocnym. (Usporiadanie 30. MMO v Spolko-
vej republike Nemecko si Gdajne vyziadalo 1,3 miliéna ma-
riek). Navyse stale trva trend zvySovat polet Gcastnickych
krajin. Preto neprekvapuje, ze budici organizdtori medzi-
narodnych olympidd uvazuji aj o moznom zniZeni poctu
sataziacich z jednotlivych krajin na styroch. (Pre tych, kto-
ri sa na zaciatky MMO nepamataji, dodajme, ze pdvodne
boli druzstva jednotlivych krajin osemélenné.)

Po dvoch siitaznych diioch nastdva medzi sitaziacimi vel-
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kad psychickd Gfava — zvySok pobytu stravia exkurziami
po krajine, navstevou zaujimavych miest a pamatihodnosti.
Pre vedicich delegicii a ich zdstupcov naopak zacina nie-
kolko dnf niroénej prace. Vsetky rieSenia svojich zverencov
musia opravit a podla vopred stanovenych kritérii obodo-
vat. Aby bola zabezpecend objektivnost, musia byt vsetky
rieSenia a ich opravy nésledne skoordinované. Touto néroc-
nou a Ginavnou précou si spravidla povereni matematici po-
riadajtcej krajiny. Ti postupne prejdia kazdé jedno ziacke
rieSenie s vedicimi prislusnej krajiny (ktori ho opravovali),
nechaji si ho slovo po slove prelozit do niektorého zo sveto-
vych jazykov a posidia, ¢ bodové ohodnotenie navrhnuté
vedenim delegécie je opodstatnené. Vzhladom na to, ze by
nebolo rozumné, aby koordindtori kontrolovali aj opravu
rieSeni Ziakov z ich vlastnej krajiny, bolo prijaté pravidlo,
podTla ktorého riesenia ziakov z poriadajicej krajiny koordi-
nujh vedici delegicii krajin, z ktorych pochddzajia jednotli-
vé stitazné tlohy. KedZe tentokrat bola jedna zo stifaznych
tiloh z Ceskoslovenska, pripadla ndm tloha koordinovat jej
rieSenia z pera Siestich ¢inskych Studentov. Zhodou okol-
nosti i8lo o Glohu, ktorej rieSenie bolo zalozZené len na istych
logickych a kombinatorickych tvahéach, takze v rieSeniach
sa takmer nevyskytovali ¢isla a vzorce. Tie by boli mohli
byt istymi zachytnymi bodmi pre nds, pretoze ¢instina (na-
Stastie) pouziva arabské &islice a v matematickych textoch
dokonca aj latinské pismena pre premenné, takze mnohé
matematické texty vyzeraji ,obdobne“ ako u nés. Zial, rie-
Senia nami zadanej Glohy neobsahovali takmer ziadne ¢isla
a vzorce, a tak vacSina textu vyzerala asi takto:
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Usporiadatelia pripravili iéastnikom sataze velmi atrak-
tivny a bohaty program na nestitazné dni. Pocas desiatich
dni stravenych v Pekingu sme mali moznost zhliadnut tak-
mer vSetky vyznamné pamatihodnosti tohto starého mesta
a jeho blizkeho okolia. Navstivili sme rozsiahly areal legen-
darneho Zakazaného mesta, kde po storocia zili ¢inski cisari
a kam prosty obéan nesmel nikdy vkroéit, ani nahliadnut.
Rovnako exoticky a oktzlujtico na nas zapdsobil letny pa-
lac ¢inskej cisarovnej, ktory vystavila na okraji Pekingu pri
nadhernom jazere. Dodajme, Ze z penazi, za ktoré sa ma-
lo vybudovat ¢inske vojnové ndmornictvo. Stary Peking bol
mestom chramov: nahliadli sme do chrdmu spiaceho Budd-
hu, do chrdmu Bi-Yun, do Nebeského chramu, kde sa konali
obety na zabezpeéenie dobrej Grody. Strnuli sme na najvaé-
Som namesti sveta Tien’an men, ktoré sa smutne preslavilo
v roku 1989 ako centrum studentskych nepokojov a ich na-
silného potladenia. Presli sme niekolko kilometrov po naj-
vacSej stavbe sveta sldvnom ¢inskom mire pri Ba-Da-Lingu
a vosli do podzemia, kde st v obrovskych, umelo vytesanych
priestoroch umiestené hrobky prislusnikov starej dynastie
Mingov. Velkym zaZitkom bola navsteva &inskej narodnej
opery, ktora s eurépsky ponimanou operou ma len pramalo
spoloé¢ného.

Podvecer predposledného diia nasho pobytu v Pekingu
(18. jala) bol vyplneny slavnostnym ukonéenim olympiady
a ceremonialom odovzd4avania cien a medaili. Tu sa nasi Zia-
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ci dozvedeli, ze napriek nadroénym podmienkam sttaze ob-
stali velmi dobre: vSetci Siesti ziskali medaile, a to M. Din-
dos bronzovi (chybal mu 1 bod do striebornej) a ostatni
strieborné (pri¢om P. Hlinénému chybal 1 bod do zlatej).
Spolu ziskali nasi ziaci 153 bodov (z 252 moznych), ¢o aj
pri silnej konkurencii stacilo na obsadenie celkového 8. mies-
ta (pozri tabulku 6). Pritom treba poznamenat, ze MMO
je podla svojho Statitu stitazou jednotlivcov, poradie kra-
jin sa urcuje iba neoficidlne. Styria Gcastnici sataze (dvaja
z Ciny, jeden z Francizska a jedna ziacka zo ZSSR) ziskali
plny pocet 42 bodov. Vseobecné uznanie vyvolalo presveddi-
vé vitazstvo Cinskeho druzstva, ktorého naskok na v poradi
druhy Sovietsky Zvaz bol Gctyhodny.

V dalsom uvidzame siatainé alohy 31. MMO v Cine,
ich struéné rieSenia a tabulky, obsahujtice niektoré podrob-
nosti o vysledkoch sttaze. Mozno nie je bez zaujimavosti,
ze vybor, povereny pripravou budicich MMO uZ rozhodol
o miestach konania stifaZe v nasledujtcich 11 rokoch (s vy-
nimkou roku 1998), a to takto:

1991 Svédsko (Sigtuna)

1992 ZSSR

1993 Turecko

1994 Mongolsko (ndhradne Hong Kong)

1995 Kanada

1996 Brazilia

1997 Velk4 Britania

1998 777

1999 Rumunsko (jubilejnd 40. MMO)

2000 Juzna Koérea

2001 USA
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Verime, Ze sa nasi ziaci vSetkych tychto medzinarodnych
matematickych olympiad zi¢astnia a uspej na nich aspon
tak dobre, ako v roku 1990 na 31. MMO v Pekingu.

Vladimir Burjan

Karel Hordk
Tabulka 5
Vysledky ndsho druZstva v jednotlivych tilohich
Body ziskané za tlohu é&.

Meno 1 2 3 4 5 6 | Spolu | Cena
Martin Dindos 0 7 2 2 3 2 16 II1.
l:"etr Hlinény 7 7 2 7 7 3 33 11.
Stépan Kasal 7 7 1 1 7 7 30 II.
Michal Koneény 0 7 0 7 7 3 24 II.
Pavol ngera 0 7 2 7 7 1 24 II.
Ondrej Such 3 3 3 7 7 3 26 1I.
Spolu bodov 17 38 10 31 38 19 153
% z moznychb. | 40% 90% 24% 74% 90% 45% | 52 %

Tabulka 6
Neoficidlne poradie krajin a po&ty ziskanych medailf
Pocet medaili Pocet
Miesto Krajina Spolu bodov| Z S B | sataziacich
1. |Cina 230 5 1 0 6
2 ZSSR 193 3 2 1 6
3. USA 174 2 3 0 6
4. Rumunsko 171 2 2 2 6
5. | Franctzsko 168 3 1 0 6
6. | Madarsko 162 1 3 2 6
7. I:IDR 158 0 4 2 6
8. | Ceskoslovensko 153 0 5 1 6
9. | Bulharsko 152 1 4 1 6
10. Velka Britania 141 2 0 2 6
11. |Kanada 139 0 3 1 6
12. SRN 138 0 2 4 6
13. | Taliansko 131 1 1 4 6




okradovani tabulky 6

Pocet medaili Pocet
Miesto Krajina Spolu bodov| Z S B | sutaziacich
14. Iran 122 0 4 0 6
15. | Austrélia 121 0 2 4 6
15. | Rakusko 121 0 1 4 6
17. India 116 1 1 2 6
18. Nérsko 112 0 3 1 6
19. |KLDR 109 o 1 3 6
20. | Japonsko 107 0 2 1 6
21. Polsko 106 0 2 1 6
22. [Hong Kong 105 0 0 4 6
23. Vietnam 104 0 1 3 6
24. | Brazilia 102 1 0 2 6
25. | Juhoslavia 98 0 1 2 6
26. | Izrael 95 0 1 3 6
27. | Singapur 93 0 0 2 6
28. | Svédsko 91 0o 1 2 6
29. | Holandsko 90 0 1 2 6
30. | Kolumbia 88 0 1 2 6
31. |Novy Zéland 83 0 0 2 6
32. | JuzZna Koérea 79 0 1 1 [
33. | Thajsko 75 0 0 2 6
33. '}‘urecko 75 0 0 1 6
35. | Spanielsko 72 0 o0 0 6
36. | Maroko 71 0 1 0 5
37. Mexiko 69 0 0 1 6
38. | Argentina 67 0o 0 1 6
38. Kuba 67 0 0 1 6
40. |Bahrajn 65 0 0 0 6
40. Irsko 65 0 0 1 6
42. Grécko 62 0 0 1 6
43. | Finsko 59 0 0 1 6
44. Luxembursko 58 1 0 1 2
45. | Tunisko 55 0 0 1 4
46. | Mongolsko 54 0 0 0 6
47. | Kuvajt 53 0 0 1 4
48. | Cyprus 46 0 0 1 4
48. Filipiny 46 0 0 1 6
50. | Portugalsko 44 0 0 0 6
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okracovani tabulky 6
Pocet medaili Pocet

Miesto | Krajina Spolu bodov| Z S B | stitaziacich

51. |Indonézia 40 0 0 0 6

52. | Macao 32 0 0 0 6

53. Island 30 0 0 1 3

54. Alzirsko 29 0 0 0 4
Spolu 5286 23 56 76 | 308 ziakov

40,86 % 155 medaili

Texty soutéznich dloh

1. Je dana kruznice, jejiz dvé tétivy AB a C'D se proti-

naji ve vnitfnim bodé E. Je-li M vnitini bod tsecky EB,

oznaéme F a G priseciky piimek BC a AC s teCnou se-

strojenou v bodé E ke kruznici prochazejici body D, E, M.
. |[AM| |EG

Je-li ———

|AB| |EF|

= t, vyjadrete pomér pomoci t.

(Indie)

2. Pron 2 3 uvazujme mnozinu E obsahujici 2n—1 riznych
bod® na kruznici. Pfedpokladejme, ze pravé k téchto bodi
je obarveno cerné. Takové obarveni oznacime jako dobré,
jestliZe existuje aspon jedna dvojice éernych bodi, pro kte-
rou vnitfek jednoho z piislusnych obloukd obsahuje pravé
n bod mnoziny E. Najdéte nejmensi k, pro které je kazdé

takové obarveni dobré. (CSFR)

S x PR L. 2041

3. Najdéte vsechna celd Cisla n > 1, pro néz je 5— celé
n

¢islo. (Rumunsko)

4. Oznaéme Q1 mnozinu vsech kladnych racionalnich ¢isel.
Sestrojte funkci f: QT — Q7 takovou, ze pro véechna z a y
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z QF plati

f(= fw) = 2 (;).

(Turecko)

5. Je-li dano celé ¢islo ng > 1, dva hraci A a B stiidavé vy-
biraji cela ¢isla nq, ns, ng, ... podle nasledujicich pravidel:
Jakmile je znadmo ¢islo ngg, hra¢ A zvoli celé &islo nag4q
takové, ze

2
nak S Nokr S Ny

Je-li zndmo nagy1, zvoli hrac B celé Cislo nogyo takové, ze
podil

N2k+1

N2k+42

Je kladnou mocninou néjakého prvodéisla. Hra¢ A vyhraje,
Jakmile zvoli ¢islo 1990, zatimco hra¢ B vyhrava, kdyz zvoli
¢islo 1. Pro jaka ng

a) hrad¢ A ma vyhravajici strategii,

b) hraé B ma vyhravajici strategii,

¢) ani jeden z hrad¢d nema vyhravajici strategii?

(SRN)

6. Dokazte, Ze existuje konvexni 1990ahelnik s nasledujici-

mi dvéma vlastnostmi:

a) vsechny jeho Ghly jsou shodné;

b) jeho strany maji v né&akém potadi délky 1%, 2%, ...,
19892, 19902 (Nizozemi)
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Reseni uloh

1 (podle P. Hlinéného, 4. roénik GMK, Bilovec). Oznag-
me a = |[JDAB|, 8 = |JABD| a ¢ = |[AMD| (obr.73),
pak je podle véty o obvodovych a Gsekovych thlech také
€ = |AGED| (nebot GE je teénou kruznice prochazejici
body D, E, M), a = [{BCD| a § = |JACD|.

Obr. 73

Zvolme nyni bod X na polopfimce ED tak, aby thel
EGX mél velikost a. Podle véty o obvodovych thlech lezi
body C, F, G, X na kruznici a plati |JGF X| = |[IGCX| =
= f. Trojihelniky GEX a AMD a trojihelniky EFX
a M BD jsou tedy podobné, takze

|GE| _ |AM| |[EF|  |MB|
|[EX|  |MD|’ |[EX|  |MD|
Odtud snadno plyne, ze je
|GE| _ |AM| _ |[AM| B 1 ot
|EF| ~ |MB|  |AB|-|AM| %l[_l 1t
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Obr. 74

Jiné Feseni. ProtoZe podle véty o obvodovych a Gisekovych
thlech plati (obr. 74) |SCEF| = [ DEG| = |SEMD| a za-
rovenl také |JECF| = |[SMAD], jsou trojuhelniky ECF
a MAD podobné. Ziroven ale je i [JACD| = |SABD|
a|[dGEC|=n—|94CEF|=n—|dEMD| = |4BMD|, tak-
ze 1 trojihelniky GEC a DMB jsou podobné. Porovnanim
odpovidajicich stran dostaneme

|GE| _ |CE| |AM|  |MD]|
IMD| — |MBJ|’ |CE| — |EF|’
takze
|GE| _ |AM| _ |[AM| 1 t

|[EF| ~ |MB| ~ [AB| - |AM] — I 1t

2 (podle S. Kasala, 3. roénik GWP, Praha). Oznatme
uvazované body postupné Ag, A,, ..., As,_9 a uvazujme
posloupnost Ay, A,_2, Asn_4, ..., Azn_6 = An_s, ..., vniz
kazdé dva nasledujici body obsahuji mezi sebou n — 3 body
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na jednom oblouku a n bodd na druhém oblouku (pfitom
zfejmé je Ay = A; pro k =1 (mod 2n — 1)). Tato posloup-
nost se po koneéném poctu krokl zacykli, protoze danych
bodi je jen koneiny pocet. Dané body se tak rozpadnou

o —
do z = D(n — 2,2n — 1) cykld po n-1

(2n—1)—2(n—2)=3,je z=1nebo z = 3.
Dana mnozina E bude zfejmé dobfe obarvena, pravé kdyz

v uvedené posloupnosti budou nékteré dva sousedni body
2n -1

bodech. Protoze

cerné. Polozme 2m—1 = . Pokud je v kazdém z cyk-

ld méné nez m cernych bodi, snadno sestrojime priklad
obarveni, jez nebude dobré (body v kazdém cyklu budeme
stfidavé obarvovat). Bude-li naopak aspoi v jednom z cykla
m &ernych bodi, bude uz mnozina dobfe obarvena, protoze
at jsou body obarveny jakkoli, budou dva z éernych bodu
sousedni.

Pro 2 = 1 (tj. n # 2 (mod 3)) vyjde jediny cyklus
a z predchozi Gvahy je zfejmé, ze hledané nejmensi k je
rovno n. Pro z = 3 (tj. n = 2 (mod 3)) dostaneme tfi cykly
po 2m — 1 = (2n — 1) bodech, takie pron —2 = 3(m — 1)
snadno sestrojime pfiklad ,,Spatného“ obarveni, zatimco pro
k = n — 1 aspon jeden z cykli obsahuje asponn m Cernych
bodd, tj. kazdé takové obarveni je dobré. Hledané nejmensi
k je v tomto pfipadé k =n — 1.

3. Protoze &islo 2™ + 1 je liché, je i n liché. Oznacme p
nejmensi prvoéinitel &isla n, je tedy p 2 3 a zéroven 2" =
= —1 (mod p). Uvazujme ted nejmensi pfirozené &islo i,
pro které plati 2° = —1 (mod p). Protoze podle malé véty
Fermatovy je 2?~! = 1 (mod p), zaénou se nejpozdéji od
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(p — 1)-nf mocniny zbytky &sel 20, 2}, ... 21 cyklicky
opakovat, takze je uréité i < p—1 < n.

Pisme n = ki + r, kde pro zbytek r plati 0 S r S i — 1.
Protoze —1 = 2" = 2% .27 = (—1)¥2" (mod p), musi byt
k liché a zaroven 2" = 1 (mod p), jinak bychom dostali
2" = —1 (mod p), coz odporuje volbé i. Kdyby vsak bylo
r > 0, mohli bychom psat i=r+d, kde 1 Sd=i—-r< i,
takze —1 = 2¢ = 27.29 = 29, coi opét odporuje volbé éisla 7.
Vychazi tedy nutné r = 0, takze n = ki, a protoze ¢ < p
déli ¢islo n, musi byt ¢ = 1 (jako p jsme oznadili nejmensi
prvodinitel &isla n). To ale znamen4, Ze je 2 = —1 (mod p),
neboli p = 3.

Predpokladejme ted, ze n je tvaru n = 3¥m, kde k > 1
a ¢isla 3 a m jsou nesoudélna. Podle predpokladu n? =
= 3%km? dali

2"+1=(3—1)"+1:-i(?)(_l)fgfz
e, W
=3*+tlm — ZZ; (i)(—l)‘3 :

; _nn—1)...(n—1i41)
!

pro i > 2 délitelné aspon 3*+2. To plyne z toho, jak velka

je mocnina éisla 3 v rozkladu éisla ¢! na prvodéinitele. Pro

exponent « v rozkladu i! = 3*d plati (viz téz napf. tlohu

34-A-1-2 v pfislusné ro¢ence MO)

3% jsou

Pfitom koeficienty (n) 3
i

a= L] +]|2 |+ <i(1+i+ )—5
=5+ |5+ <iG+y+-) =3
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(ostrd nerovnost proto, Ze na levé strané nerovnosti je ve
skute¢nosti jen konecny pocet nenulovych séitanci, zatim-
co na pravé strané je nekonecnd geometrickd fada!), takze
celkovd mocnina 3 v souctu zn: (?)(—1)'3* je aspon k—Li+
i=
+1l+i=k+3i+12k+2.

Z vyjadreni (1) tudiz plyne, Ze 2" + 1 je délitelné nejvyse
3k+1 tedy nutné 2k < k+ 1, tj. k = 1, a vidime, ze n je
tvaru n = 3m, kde 3 a m jsou nesoudélna.

Oznalme ¢ nejmensi prvocinitel &isla m, pak je ¢ 2 5
a zaroven 2" = —1 (mod ¢). Oznacme j nejmensi pFirozené
&islo takové, 7e 2/ = —1 (mod q). Uplné stejné jako v prvni
Casti tohoto feseni nam vyjde, ze j < ¢—1 aze j déli n =
= 3m. Protoze ¢ je nejmensi prvocinitel ¢isla m, musi j
byt délitelem &isla 3, tj. 7 € {1,3}. Z kongruence 2/ = —1
(mod q) ale plyne, Ze je bud ¢ | 3 nebo ¢ | 9, neboli ¢ = 3,
coz odporuje tomu, ze ¢ 2 5. Celkem jsme tedy dokazali, ze
n = 3 je pro n > 3 jedind moznost, kdy n? déli 2" + 1.

4. 7 uvedené rovnice plyne, ze hledand funkce musi byt
prosta: je-li f(y1) = f(y2), pak pro kazdé z € Qt vychdai
y1 = y2. Dosazenim y = 1 dostaneme f(zf(1)) = f(z),
takze vzhledem k prostoté funkce f musi byt f(1) = 1.
A konecné pro z = 1 vychazi vztah

1
f(f() = o (1)

neboli

1 1
1(5) = 10U = 755
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coz po dosazeni z = u, y = f(—) do pivodni funkcionalni
v
rovnice dava rovnost

f(uv) = f(u)f(v) (2)
pro vsechna u, v € Q*.
Obracené je ziejmé, ze kazda funkce f, jez spliuje rov-
nosti (1), (2), vyhovuje dané funkcionalni rovnici.
Podle (2) pro libovolné pfirozené &islo n = pfpg? ... pp*
musi platit

feps? .. pe*) = f(p1)™ f(p2)™* ... f(pr)™*

a zaroven pro kazdé raciondlni ¢islo tvaru p/q je

#(2) = 14(;) = —ﬁ—%

Staci tedy funkci f definovat na prvocislech tak, aby pla-
tilo (1), tj. aby funkce f? = f o f zaméiovala Citatel za
jmenovatel a obracené, tedy aby pro p # ¢ platilo

1

fp) =g, préivekdyi flg) = f(/()) = 2

Staci proto rozdélit vsechna prvoéisla do dvou disjunktnich
podmnozin A, B a sestrojit vzajemné jednoznacné prifazeni
téchto dvou mnozin.
Jedna z moznych konstrukei je takovato: Oznacme
(pn)5, posloupnost vsech prvocisel a polozme
Pj+1 pro j liché,
f(pj) = o
pro j sudé.
Pj-1
Diky multiplikativité (2) snadno rozsifime definici funkce f
na celou mnozinu Q*.
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5 (podle P. Hlinéného, 4. ro¢nik GMK, Bilovec). Jestlize
pro néjaké k 2 0 plati

45 < ngy <1990,

pak vyhrava hra¢ A, protoze mize rovnou zvolit nogy; =
=1990 (je 1990 < 452 = 2025 < n3;).

Predpokladejme, Ze pro néjaké k 2 0 je nyr > 1990. Pak
pro vhodné i 2 1 mizeme psat

4771 .53 < ngy, < 47° .53

a A vyhraje tak, e zvoli nyp41 = 47° - 53, protoze hraci B
pak nezbyva nic jiného nez zvolit ngx 42 = 47 nebo Nok42 =
=477 .53 pro j < i. V kazdém piipadé bude 47 < ngpya <
< 53-47"~1 < nyy, takze v pripadé, ze A pokratuje obdobné
i1 v dalsich krocich, po konecném poctu krokid bude muset
B zvolit &fslo nyy < ... < nggy2 < nok, pro néz 47 < ny <
< 1990. Proto i v tomto pfipadé ma A vyhravajici strategii.
Je-li 11 £ nyi < 45 pro n&jaké k 2 0, pak A zvoli ngg41 =
=3-5-7 =105 (coz miZe: je nap41 < 121 < n2,). Hrae B
musi volit z &isel 3-5, 3-7, 56, takze 15 < nopyo < 35,
A pak zvolf ngr43=2-3-5-7 =210 < 225 < n3; ,,. Nyni
B musi volit nog44 2z Cisel 2-3-5,2-3-7,2-5-7,3-5-7,
pro néz vesmés plati 30 < norys S 70, takie A pak mize
zvolit nggps = 23-3-5-7 = 840 < 900 < nj, . ,. Po tomto
tahu ma B nejmensi moznou volbu ngg46 =3 -5-7 > 105,
takze podle predchozich ivah ma vyhravajici strategii A.
Je-li 8 £ np < 11, m4 hraé A rovnéz vyhréavajici strategii
— staéi, kdyz zvoli n; =4-3-5 = 60 < 82 < nd, protoze
B pak ma na vybranou z cisel 4 -3, 4-5, 3 -5, pro néz
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je vesmés ny 2 12. A pro takové ny uz zndme vyhravajici
strategii hrace A.

Jestlize pro néjaké k 2 0 je ngx < 5, pak A musi zvolit
Cislo mezi 5 a 25. Nesmi volit mocninu prvoéisla — to by
vyhral B. M4 tedy nésledujici moznosti (1. fadek tabulky)

(A) ngepa| 6 10 12 14 15 | 18 20 21 22 24
(B) nas2]| 2 2 3 2 3] 2 4 3 2 3

Na kazdou z nich odpovi hrd¢ B volbou é&isla nypys < 4,
takZe ted uz A mize volit éisla jen z levé poloviny tabulky,
jeZ jsou nejvyse rovna 16; pro né ale pak bude ngp4q < 3,
takze A muze podle tabulky zvolit jen nsgys = 6, na coz
odpovi B nyx46 = 2 a zfejmé vyhraje. V tomto pfipadé ma
tedy vyhravajici strategii hra¢ B.

Pro ng = 6, 7 nema zadny z obou hraci vyhravajici stra-
tegii. Hra¢ A, aby vyhraél, nesmi volit ani mocninu prvocisla,
ani ¢islo, jez ve svém rozkladu na prvoéinitele obsahuje jen
dvé prvodisla, z nichz jedno je nejvyse 5. To jsme vidél
v predchozim pfipadu! Hra¢ A tedy musi volit jedno z ¢isel
2-3-5=30 nebo 2-3-7 = 42, jez obsahuji aspon tfi prvo-
Cinitele, B pak musi volit n, = 6, jinak podle pfedchozich
Gvah umozni vyhru hra¢i A (musi volit nejvyse 7). Hrac
A pak musi pokracovat opét jednim z Cisel 30, 42 a hra pri
spravné hie obou hraca skonéi nerozhodné.

Ukazali jsme, Ze pro ng £ 5 md vyhravajici strategii hrac¢
B, pro ng = 6, 7 nema zadny z hraci vyhravajici strategii
a pro ng 2 8 existuje vyhravajici strategie pro hrace A.

6 (podle S. Kasala, 3. roénik GWP, Praha). Budeme hle-
dat 1990 vektori v (komplexni) roviné, jez maji sméry
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vSech rtznych 1990. odmocnin z jednotky, maji v néjakém
poradi velikosti 12, 22, ... 19902 a davaji nulovy soucet.
Vektory délek (2k)? a (2k — 1)? (1 £ k £ 995) budeme
pfitom umistovat tak, aby mély opacny smér a vektor ve-
likosti (2k)? mél smér nékteré 995. odmocniny z jednotky.
Soultem takto umisténé dvojice vektori pak bude vektor
délky (2k)? — (2k —1)2 = 4k — 1 a sméru pfislusné 995. od-
mocniny z jednotky. Jinymi slovy, potfebujeme rozmistit
995 vektort vg, vy, . o V994, jejichz délky tvorfi aritmetickou
posloupnost (4k — 1) v=1, Mmaji sméry viech riznych 995. od-
mocnin z jednotky a jejich souétem je nulovy vektor. Bez
0jmy na obecnosti miZeme ovSem pfedpokladat, ze jejich
délky tvori aritmetickou posloupnost 0, 1, ..., 994.
Oznafme py = 1, p;, ..., p4 komplexni jednotky odpo-
vidajici vrcholim pravidelného pétithelniku (5. odmocniny
z jednotky) a dg = 1, di, ..., d19s komplexni jednotky od-
povidajici vrcholim pravidelného 199 Ghelniku. Je tedy

Odtud plyne, Ze pro kazdé i, 0 £ i < 198, je také
4 . . . 4 4 . 4 .
> (5i+ j)dip; = 5idi ) pj +di 3 jp; =di ) jpj,
j=0 j=0 j=0 j=0

takze
198 4 . 198
> Z(5z+1)dsp1 Z d; Zap, = Z:OJpj .Zodf =0. (1)
J= 1=

i=035=0

278



Staci tedy vzit vektory wg, vi, ..., ¥g994, jimZ budou pfi
umisténi do pocatku odpovidat koncové body

vsivj = (51 + j)pid;.

994
Podle (1) pak bude Z vk = 0. Z nich pak snadno sestro-

Jjime 1990 vektora uo, ul, ..., U1 989, JeZ budou tvofit strany
hledaného 1990xhelniku.
Jednoduchym vypoctem zjistime, ze staéi volit

wr0i42j+1 = —(10i + 2j + 1)%p;id;,
wi0i42j+2 = (108 + 25 + 2)%pid;,
(05i5198, 055 <4).

Odpovidajici vektory u;y, us, ..., 4y 990 pak umistime tak,
aby pocatek u;41 splyval s koncovym bodem vektoru w;.
Poznamka. Jin4d moznost, jak z kvadratické posloupnosti
n? sestrojit aritmetickou posloupnost, je vzit dvojice (996 +
+ k)2 a (995 — k)2. Vysledny vektor pak bude mit velikost
(996 + k)2 — (995 — k)2 = 1991+ 2- 1991k (0 £ k £ 994).
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