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O průběhu 39. ročníku matematické olympiády

Soutěž Matematická olympiáda pořádají pro žáky střed-
nich a základních škol ministerstvo školství, mládeže a tě-
lovýchovy ČR a ministerstvo školství, mládeže a sportu SR
ve spolupráci s Jednotou českých matematiků a fyziků, Jed-
notou slovenských matematiků a fyziků a Matematickým
ústavem ČSAV. Soutěž řídí ústřední výbor matematické
olympiády (ÚV MO) prostřednictvím krajských a okres-
nich výborů matematické olympiády (KV MO, OV MO).
Členy KV MO a OV MO jmenují odbory školství kraj-
ských a okresních národních Výborů, členy UV MO jme-
nují MŠMT ČR a MŠMS SR. Na začátku školního roku
1989/90 určilo ministerstvo školství, mládeže a tělovýchovy
ČR a ministerstvo školství, mládeže a sportu SR na návrh
hlavních výborů JČMF a JSMF toto složení ÚV MO na

další pětileté období:

Předsednictvo ÚV MO

předseda: doc. RNDr. Leo Boček, CSc., MFF UK, Praha
místopředsedové: prof. RNDr. Miroslav Fiedler,
člen korespondent ČSAV, MÚ ČSAV, Praha

doc.RNDr. Eva Gedeonová, CSc.,
MFF UK, Bratislava
zástupce MŠMT ČR: RNDr. Václav Šůla,
MŠMT ČR, Praha
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zástupce MŠMS SR: RNDr. Ján Lastivka,
MŠMS SR, Bratislava
tajemníci: RNDr. Jiří Binder, CSc., PF UK, Praha

RNDr. Karel Horák, CSc., MÚ ČSAV, Praha
další členové předsednictva
RNDr. Pavol Čemek, CSc., SF SVŠT, Bratislava
RNDr. Tomáš Hechi, CSc., MFF UK, Bratislava
doc. RNDr. Jozef Hvorecký, CSc., MFF UK, Bratislava
doc. RNDr. Milan Koman, CSc., PF UK, Praha
PhDr. Helena Ladrová, MŠMT ČR, Praha
RNDr. Vladimír Repáš, EF SVŠT, Bratislava
RNDr. Jiří Sedláček, CSc., MÚ ČSAV, Praha
Stanislav Rypáček, gymnázium, Praha 3
doc. RNDr. Bohuslav Sivák, CSc., PF, Banská Bystrica
RNDr. Pavel Tópfer, MFF UK, Praha

Další členové ÚV MO
RNDr. Gabriela Andrejková, PřF UPJŠ, Košice
RNDr. Andrej Blaho, MFF UK, Bratislava
RNDr. Luboš Brim, CSc., PřF MU, Brno
RNDr. Vládo Burjan, CSc., gymnázium A. Markuša,
Bratislava

PhDr. Ivan Bušek, Ped. ústav hl. m. Prahy, Praha
RNDr. Milan Cirjak, Krajský ped. ústav, Prešov
RNDr. Vladimír Dřízal, PF UK, Praha
RNDr. Libuše Hozová, ZŠ, Lid. milicí, Opava
RNDr. Libor Jelínek, gymnázium, Pardubice
RNDr. Jan Kratochvíl, CSc., MFF UK, Praha
doc. PhDr. Karol Križalkovič, CSc., PF, Nitra
Olga Maříková, Nár. výbor hl. m. Prahy, Praha
Vlasta Michálková, UDPM KG, Bratislava

6



RNDr. Oliver Ralík, PF, Nitra
RNDr. Jaromír Šimša, CSc., MÚ ČSAV, Brno
Ing. Oldřich Skopal, gymnázium, Brno
RNDr. Jaroslav Švrček, CSc., PřF UP, Olomouc
RNDr. Ladislav Topolský, gymnázium, Banská Bystrica
RNDr. Jiří Vinárek, CSc., MFF UK, Praha
PhDr. Marta Volfová, CSc., PF, Hradec Králové
Jana Zužičová, ZS, Bratislava
Členy ÚV MO jsou také předsedové KV MO
prof. RNDr. Karel Drbohlav, DrSc., MFF UK, Praha
František Šturc, gymnázium, Benešov
RNDr. Pavel Pech, PF, České Budějovice
doc. RNDr. Josef Polák, CSc., VŠSE, Plzeň
doc. RNDr. Miroslav Bělík, CSc., PF, Ústí n. Lab.
RNDr. Josef Kubát, gymnázium, Pardubice
doc. RNDr. Jaroslav Bayer, CSc., EF VUT, Brno
RNDr. Vladimír Vlček, CSc., PřF UP, Olomouc
doc. dr. Ladislav Mišík, DrSc., Bratislava
prof. RNDr. Ondřej Šedivý, CSc., PF, Nitra
doc. RNDr. Vojtech Bálint, CSc., VŠDS Žilina
RNDr. Božena Mihaliková, CSc., PřF UPJŠ, Košice

V průběhu 39.ročníku MO se konala dvě zasedání ÚV
MO, první ve dnech 11.-12. prosince 1989 v Praze, druhé
24.-25.4.1990 v Jihlavě při celostátním kole MO. Hlavním
bodem obou zasedání bylo hodnocení průběhu soutěže, za-

bezpečení celostátních soustředění úspěšných řešitelů MO
včetně soustředění pro přípravu na MMO, korespondenč-
ní seminář ÚV MO a organizace dalších kol soutěže. Byla
projednávána též ediční činnost ÚV MO, především přípra-
va dalších svazků edice Škola mladých matematiků. Byla
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diskutována vhodnost výběru úloh MO. Pracovní předšed-
nictvo se scházelo jednou měsíčně a zabývalo se hlavně vý-
běrem úloh pro všechna kola soutěže.

V organizaci MO nedošlo к žádným změnám. Kategorie A
byla určena žákům 3. a 4. ročníků středních škol, kategorie
В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci
1. ročníků. Pro žáky všech tříd středních škol byla určena
ještě kategorie P, zaměřená na úlohy z programování a ma-
tematické informatiky.

V kategoriích А, В, C má I. kolo dvě části. V první části
řeší soutěžící 6 úloh doma nebo v matematických kroužcích
a mohou se při tom radit se svými učiteli, vedoucími krouž-
ků apod. Druhá část má formu klauzurní práce, v níž řeší
žáci tři úlohy v omezeném čase 4 hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo.
V něm je vlastní soutěž rozdělena do dvou dnů. V kate-
gorii A řeší soutěžící každý den tři úlohy v časovém limi-
tu čtyři hodiny, v kategorii P ve stejném limitu vždy dvě
úlohy. Organizací celostátního kola byl ministerstvem škol-
ství, mládeže a tělovýchovy ČR pověřen Jihomoravský kraj.
Uskutečnilo se v Jihlavě ve dnech 23.-25.4.1990 (kat. A)
a 26.-28.4.1990 (kat. P). Soutěže včetně pěkného doprovod-
ného programu zabezpečoval tým zkušených organizátorů
pod vedením profesora Jana Beneše z jihlavského gymná-
zia.

Vybrané družstvo se zúčastnilo Mezinárodní matematic-
ké olympiády i mezinárodní soutěže v programování. Těmto
soutěžím je věnována samostatná kapitola v závěru brožury.

Hlavní náplň následujících kapitol tvoří texty úloh všech
kategorií včetně jejich řešení. Každá úloha je označena kate-
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gorií, římskou číslicí udávající kolo nebo písmenem S, které
značí školní, klauzurní část I. kola, a číslem úlohy.

Nyní uvádíme přehled akcí pořádaných pro žáky v prů-
běhu školního roku v jednotlivých krajích a akcí organizo-
váných ÚV MO.

Praha. Pro řešitele MO v jednotlivých kategoriích byly
uspořádány instruktáže (pro kategorie А, В a C celkem
16-20 hodin, pro kategorie P 8 hodin), s průměrnou účas-
tí 25-35 žáků. Pro 32 řešitelů korespondenčního semináře
a MO se v únoru konalo třídenní soustředění. Soustředění

pro řešitele kategorií В a C proběhlo v červnu, trvalo 5 dní
a zúčastnilo se ho 33 žáků.

Středočeský kraj. Týdenní soustředění pro 40 žáků 1. až
3. ročníků se konalo v září. V červnu se uskutečnilo kraj-
ské soustředění žáků 8. tříd jako příprava na kategorii C.
Byly provedeny instruktáže učitelů к úlohám I. kola. Pro
žáky, řešitele úloh MO, proběhly instruktáže na vybraných
gymnáziích.

Jihočeský kraj. Letní škola pro úspěšné řešitele jednotli-
vých kategorií MO se konala v červnu, trvala jeden týden
a zúčastnilo se jí 25 řešitelů kategorie A, 25 v kategorii В
a 50 řešitelů kategorie C. Dále byly uspořádány instruk-
táže pro učitele středních škol (celkem 3 dny), přednášky
pro řešitele MO na Pedagogické fakultě v Českých Budějo-
vicích a dvoudenní soustředění řešitelů kategorie A. Kores-
pondenční seminář měl tři série úloh.

Západočeský kraj. V Plzni, Klatovech a Karlových Varech
se konalo vždy po dvou přednáškách к úlohám jednotlivých
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kategorií. Úlohy korespondenčního semináře pro kategorii
A řešilo 46 žáků, pro kategorie В a C 62 žáků.

Severočeský kraj. V červnu proběhlo v Krupce soustředě-
ní pro 51 řešitelů kategorií А, В а С. V Liberci byly pořá-
dány semináře pro řešitele MO.

Jihomoravský kraj. V Brně, v Jihlavě a ve Zlíně se konaly
pro řešitele úloh MO semináře, zvlášť pro každou kategorii
s průměrnou účastí 20 žáků. Jednou týdně se pořádal semi-
nář pro žáky z třídy zaměřené na matematiku na gymnáziu
v Brně, tř. kpt. Jaroše. Pro 15 vybraných řešitelů kategorie
A probíhal v březnu a dubnu seminář zaměřený na přípra-
vu na celostátní kolo MO. Týdenní soustředění úspěšných
řešitelů kategorie В a C proběhlo v Ivančicích v červnu.
Zúčastnilo se ho celkem 60 žáků.

Severomoravský kraj. V září proběhly instruktáže referen-
tů MO, zúčastnilo se 39 učitelů. Na sobotních besedách MO
byla průměrná účast 32 žáků. Na gymnáziu M. Koperníka
v Bílovci se konaly jednou týdně semináře pro řešitele MO
(26 účastníků). Korespondenční seminář pro kategorie A, B,
C (3 série úloh) řešilo celkem 260 účastníků. Seminář byl
doplněn dvěma týdenními soustředěními v únoru a v dubnu.
V červnu se konalo pro 40 úspěšných řešitelů MO desetiden-
ní soustředění. V červnu též proběhlo třídenní soustředění
žáků 3. ročníků tříd gymnázií se zaměřením na matematiku
(30 účastníků).

Bratislava. Pro řešitele MO byly pro každou kategorii
uspořádány instruktáže. Dále probíhal korespondenční se-
minář doplněný soustředěním.
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Západoslovenský kraj. Instruktáží učitelů a vedoucích
kroužků MO (pro kategorie А, В, C i P) se zúčastnilo 60
učitelů. Soustředění úspěšných řešitelů MO kategorií В a C
bylo týdenní a zúčastnilo se ho 40 žáků. V korespondenčním
semináři řešilo 72 žáků úlohy pěti sérií, z toho 18 nejlepších
bylo pozváno na čtyřdenní soustředění.

Středoslovenský kraj. V říjnu proběhly instruktáže pro
učitele. Krajský korespondenční seminář pro kategorii A
a kategorie В, C měl 2 série a byl doplněn soustředěním.
Korespondenční seminář byl organizován též pro žáky střed-
nich odborných učilišť. Soustředění pro úspěšné řešitele MO
proběhlo v září v Terchové.

Východoslovenský kraj. Pro každou kategorii se uskuteč-
nily samostatné instruktáže referentů МО. V kraji probíhá-
ly korespondenční semináře doplněné dvěma soustředěními
(září a únor). V Košicích a Prešově byly organizovány ma-
tematické kroužky pro řešitele úloh kategorie A. Kroužky
navštěvovalo průměrně 15 účastníků. Při KDPM v Koši-
cích fungoval Klub mladých matematiků. Scházel se jednou
týdně a navštěvovalo ho 15-20 žáků.

Ústřední výbor MO. Ústřední výbor MO zajišťoval tři ce-
lostátní soustředění. Pro žáky nematurujících ročníků to
bylo již tradiční soustředění 80 řešitelů úloh MO a FO.
Proběhlo ve dnech 11.-22.6. 1990 v Jevíčku. Další dvě sou-

středění byla věnována přípravě československého družstva
na Mezinárodní matematickou olympiádu. První se konalo
28.3.-5.4. 1990 v Modré u Bratislavy (12 účastníků), druhé
18.-28.6.1990 v Pardubicích (8 účastníků). ÚV MO též za-

jišťoval celostátní korespondenční seminář (semináři je vě-
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nována samostatná část této brožury). V edici Škola mla-
dých matematiků vydával UV MO v nakladatelství Mladá
fronta matematické brožury pro žáky. V průběhu 39. roční-
ku už žádný nový svazek nevyšel, nevyšla ani žádná reedice
starších titulů.
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Výsledky celostátního kola 39. ročníku MO

kategorie A

Vítězové

1.-2. Michal Konečný, 3M, tř. kpt. Jaroše, Brno
1.-2. Štěpán Kasal, 3M, Korunní, Praha 2

3. Ondřej Such, 4M, G A. Markuša, Bratislava 38 b.
4.-5. Martin Dindoš, 4MF, G J. Hronca, Bratislava 36b.
4.-5. Viliam Búr, 1M, G A. Markuša, Bratislava 36 b.
6.-9. Pavol Ševera, 4M, G A. Markuša, Bratislava 35 b.
6.-9. Michal Stehlík, 2M, tř. kpt. Jaroše, Brno
6.-9. Michal Kubeček, 2M, Korunní, Praha 2
6.-9. Petr Hliněný, 4M, G M. Koperníka, Bílovec 35 b.

10.-12. Vladimír Špitálský, 3M, GAM, Bratislava
10.-12. Vladimír Skalský, 4, T. Ševčenka, Prešov
10.-12. Aleš Kuběna, 3M, G M. Koperníka, Bílovec 30 b.
13.-14. Petr Mourek, 3M, Korunní, Praha 2
13.-14. Ondřej Kalenda, 4M, Korunní, Praha 2

15. Zdeněk Pezlar, 3M, tř. kpt. Jaroše, Brno
16. Ján Bajcsy, 4M, G A. Markuša, Bratislava

17.-19. Pavol Mederly, 2M, GAM, Bratislava
17.-19. Jan Kolář, 3M, Korunní, Praha 2
17.-19. Vladimír Chvátil, 4MF, Vídeňská, Brno

20. Miloš Volauf, 1M, GAM, Bratislava

39 b.

39 b.

35 b.

35 b.

30 b.

30 b.

28 b.

28 b.

27 b.

26 b.
25 b.
25 b.

25 b.
22 b.
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Další úspěšní řešitelé

21.-23. Milan Předota, 4M, Jírovcova, Č. Budějovice 21b.
21.-23. Antonín Jančařík, 3M, Korunní, Praha 2
21.-23. Jan Hannig, 3M, Korunní, Praha 2
24.-29. Jan Večer, 4M, Korunní, Praha 2
24.-29. Petr Tobiška, 3M, G J. K. Tyla, Hr. Králové 20b.
24.-29. Vladimír Šolc, 4MF, Beroun
24.-29. Richard Kollár, 2M, GAM, Bratislava
24.-29. Vladimír Glasnák, 3MF, V. Okružná, Žilina 20 b.
24.-29. Martin Čížek, 4, Rožnov p. Radhoštem

30. Karel Janeček, 3M, Korunní, Praha 2
31. Jaroslav Šprongl, 3M, Korunní, Praha 2

32.-33. Boris Štítnický, 2M, GAM, Bratislava
32.-33. Martin Bureš, 4M, G J. Fučíka, Plzeň
34.-35. Petr Toman, 4M, Korunní, Praha 2
34.-35. Jiří Kalvoda, 3M, tř. kpt. Jaroše, Brno

36. Jan Vomlel, 4M, G J. K. Tyla, Hr. Králové 14b.
37. Jan Mutl, 2M, tř. kpt. Jaroše, Brno

38.-40. Šimon Malý, 3MF, Ždiar n. Hronom
38.-40. Pavel Horák, 4MF, Zlín
38.-40. Jiří Hanika, 1M, Korunní, Praha 2

21b.
21b.

20 b.

20 b.
20 b.

20 b.
19b.
18b.
16b.
16b.

15b.
15b.

13b.
12b.

12b.
12b.

U tříd se zaměřením studijního oboru 01 Matematika je
za ročníkem označení M, u žáků z tříd se zaměřením studij-
ního oboru 02 Matematika a fyzika je za ročníkem označení
MF. Všichni úspěšní řešitelé byli žáci gymnázia.
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Pořadí úspěšných řešitelů z tříd,
které nejsou se zaměřením, studijního oboru 01 Matematika

1. Martin Dindoš, 4MF, G J. Hronca, Bratislava 36b.
2. Vladimír Skalský, 4, T. Ševčenka, Prešov
3. Vladimír Chvátil, 4MF, Vídeňská, Brno

4.-6. Vladimír Šolc, 4MF, Beroun
Vladimír Glasnák, 3MF, V. Okružná, Žilina 20 b.
Martin Čížek, 4, Rožnov p. Radhoštem

7.-8. Šimon Malý, 3MF, Žiar n. Hronom
Pavel Horák, 4MF, Zlín

30 b.
25 b.
20 b.

20 b.
12 b.

12 b.

U tříd se zaměřením studijního oboru 02 Matematika
a fyzika je za ročníkem označení MF. Všichni úspěšní ře-
šitelé byli žáci gymnázia.

19



Výsledková listina celostátního kola 39. ročníku MO

kategorie P

Vítězové

1. Igor Malý, 3MF, GJH, Bratislava
2. Štěpán Kasal, 3M, Korunní, Praha

3.-4. Radek Křivánek, 4MF, Vídeňská, Brno
Martin Čížek, 4, Rožnov p. Radhoštěm

5. Martin Ondrušek, IMF, GJH, Bratislava
6.-7. Jan Macháček, 4M, Korunní, Praha

David Krásenský, 4M, tř. kpt. Jaroše, Brno
8.-12. Herbert Vojčík, 2M, Šmeralova, Košice

Vladimír Sole, 4MF, Beroun
Radek Maňc, 3M, GMK, Bílovec
Martin Mataš, 7. tř., ZS, Na šutce, Praha
Jan Kasprzak, 3M, tř. kpt. Jaroše, Brno

31b.
29 b.

25b.
25 b.

24 b.

23 b.

23 b.
22 b.

22 b.

22 b.

22 b.

22 b.

Další úspěšní řešitelé

21b.13. Tomáš Doležal, 4M, Partyzánská, Liberec
14.-15. Vladimír Skalský, 4, T. Sevčenka, Prešov

Zdeněk Pezlar, 3M, tř. kpt. Jaroše, Brno
16.-19. Martin Vojtko, 3MF, G J. Hronca, Bratislava 19 b.

Petr Hliněný, 4M, GMK, Bílovec
Martin Dindoš, 4M, G J. Hronca, Bratislava 19b.

20 b.

20b.

19b.
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Radovan Brečka, 2, Snina
20.-23. Ondřej Šuch, 4M, G A. Markuša, Bratislava 18 b.

Jaroslav Sprongl, 3M, Korunní, Praha
Peter Haluška, 4M, Smeralova, Košice
Jakub Čermák, 4M, Jírovcova, C. Budějovice 18 b.

19b.

18b.

18b.

U tříd se zaměřením studijního oboru 01 Matematika je
za ročníkem označení M, u žáků z tříd se zaměřením studij-
ního oboru 02 Matematika a fyzika je za ročníkem označení
MF. Všichni úspěšní řešitelé byli žáci gymnázia.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše
prvních deset řešitelů. Pokud není uvedena škola, byl řeši-
tel žákem gymnázia. Označení G znamená gymnázium, M,
resp. MF zaměření studijního oboru 01 Matematika, resp.
02 Matematika a fyzika.

Praha

Kategorie A

1.-4. Michal Kubeček, 2M, Korunní
Antonín Jančařík, 3M, Korunní
Štěpán Kasal, 3M, Korunní
Petr Toman, 4M, Korunní

5.-6. Jan Kolář, 3M, Korunní
Ondřej Kalenda, 4M, Korunní

7. Michal Maruška, 4, Na vítězné pláni
8.-10. Jiří Натка, 1M, Korunní

Petr Mourek, 3M, Korunní
Jan Hanmg, 3M, Korunní
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Kategorie В

1. Petr Novotný, 2M, Korunní
2. Michal Kubeček, 2M, Korunní
3. Petra Bidlasová, 2M, Korunní

4.-10. Igor Gottwald, 2M, Korunní
Michal Kabát, 2M, Korunní
František Veselý, 2M, Korunní
Jan Matoušek, 2M, Korunní
Petr Kardaš, 2MF, Sladkovského
J. Lepš, 2, Na vítězné pláni
Tomáš Pardubický, 2MF, Voděradská

Kategorie C

1.-9. Petr Zvára, 1M, Korunní
Jakub Adámek, 1M, Korunní
Tomáš Dušek, 1M, Korunní
Milan Kratochvíl, 1M, Korunní
Jiří Náprstek, 1M, Korunní
Vít Novák, 1M, Korunní
Jan Tichý, 1M, Korunní
Jiří Vaniček, 1M, Korunní
Pavel Kos, IMF, Voděradská

10.-12. Pavel Kraemer, 8. tř., ZŠ, Na dlouhém lánu
Petr Smolík, IMF, Sladkovského
Ondřej Pořádek, 1M, Korunní

23



Kategorie P1.Štěpán Kasal, 3M, Korunní
2.-3. Michal Kubeček, 2M, Korunní

Jaroslav Sprongl, 3M, Korunní
4. Jan Hannig, 3M, Korunní
5. Jan Milota, 4M, Korunní
6. Petr Novotný, 2M, Korunní

7.-8. Jan Macháček, 4M, Korunní
Martin Mareš, 7. tř., ZS, Na Sutce

9. Jan Vaňous, 4, Přípotoční
10. Michal Maruška, 4, Na vítězné pláni

Středočeský kraj

Kategorie A

1. Vladimír Šolc, 4MF, Beroun
2. Tomáš Pračka, 3, Říčany
3. Josef Soukal, 3MF, Mladá Boleslav

4.-5. Martin Vyšohlíd, 4MF, Mladá Boleslav
Ondřej Činek, 4MF, Mladá Boleslav

6.-7. Petr Hantych, 4, Kralupy nad Vltavou
Jan Němec, 3, Nymburk

8.-9. Tomáš Vrbata, 3MF, Kladno
Jan Brychta, 4MF, Kolín
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Kategorie В

1. Dušan Janovský, 2, Slaný
2. Tomáš Němec, 2MF, Beroun
3. 'Adrian Trčka, 2MF, Beroun

4.-5. Vladimír Tučan, 2MF, Kladno
Pavel Tolar, 2, Říčany

6.-7. Karel Kvapil, 2, Čáslav
Lenka Maršíková, 2, Říčany

Kategorie C1.Viktor Elšík, 1, Kralupy
2.-3. Karel Duda, IMF, Kladno

Vladimír Mašin, 1, Poděbrady
4. Martin Janeček, IMF, Mladá Boleslav
5. Miloš Mojžíš, 1, Slaný

6.-7. Petr Kníže, IMF, Kladno
Jan Žák, 1, Nymburk

8.-9. Jan Bláha, IMF, Beroun
Dagmar Pavlištová, IMF, Mladá Boleslav

10.-11. Helena Dvořáková, IMF, Mladá Boleslav
Bohdan Špaček, IMF, Kutná Hora

Kategorie P

1. Vladimír Šolc, 4MF, Beroun
2. Jan Tolar, 3, Říčany
3. Mariin Helmich, 2MF, Mladá Boleslav
4. Ivan Žučenko, 2MF, Mladá Boleslav
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5. Stanislav Hecht, 3, Rakovník
6. Jan Bláha, IMF, Beroun
7. Vlastimil Juňček, 2MF, Mladá Boleslav
8. Pavel Klobása, 4, SPŠ, Kutná Hora
9. Marcel Vorlíček, 4MF, Beroun

Jihočeský kraj

Kategorie A

1.-2. Jan Macháček, 4, Pelhřimov
Milan Předota, 4, Jírovcova, České Budějovice

3.-4. Jan Balák, 4, Jírovcova, České Budějovice
Milan Šimánek, 3MF, Pelhřimov

5. Stanislav Havelka, 4, G K. Šatala, České Budějovice
6.-7. Martin Rehout, 4, Jírovcova, České Budějovice

Michael Schenk, 2M, Jírovcova, České Budějovice
8. Karel Netočný, 3, Jírovcova, České Budějovice
9. Jiří Fontán, 3M, Jírovcova, České Budějovice

10.-12. Martin Duspiva, 3, G K. Šatala, České Budějovice
Jan Januška, 3, SPŠ, Písek
Josef Šilhá, 3, Tábor

Kategorie В

1. Michael Schenk, 2M, Jírovcova, České Budějovice
2.-3. Dalibor Jelínek, 2, G K. Šatala, České Budějovice

Petr Macháček, 2, Pelhřimov4.Ladislav Nagy, 2, Jírovcova, České Budějovice
5.-7. Tomáš Kimmer, 2, Pelhřimov
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Jan Lepič, 2, Jírovcova, České Budějovice
Radim Skalický, 2, Tábor

8.-9. Libor Dušek, 2, Jindřichův Hradec
Monika Mertenová, 2, Jírovcova, České Budějovice

Kategorie C

1.-4. Vít Pekárek, 1, Jindřichův Hradec
Daniel Průša, 1, Tábor
Miloš Beran, IMF, Pelhřimov
Vojtěch Franěk, 1M, Jírovcova, České Budějovice

5.-7. Jana Hólzlová, 1M, Jírovcova, České Budějovice
Pavel Jaruš, 1M, Jírovcova, České Budějovice
Petra Miksová, 1M, Jírovcova, České Budějovice

8.-10. Oleg Hanzal, 1, Dačice
Pavel Fořt, 1M, Jírovcova, České Budějovice
Luděk Hajíček, 1M, Jírovcova, České Budějovice

Kategorie P

1. Jakub Čermák, Jírovcova, České Budějovice
2. Jan Macháček, Pelhřimov
3. Stanislav Havelka, G K. Satala, České Budějovice
4. Milan Předota, Jírovcova, České Budějovice
5. Petr Macháček, Pelhřimov

6.-8. Martin Duspiva, G K. Satala, České Budějovice
Luděk Laštovka, G K. Satala, České Budějovice
Richard Vlk, Pelhřimov

9.-10. Anna Matasová, Humpolec
Milan Šimánek, Pelhřimov
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Západočeský kraj

Kategorie A

1. Martin Bureš, 4M, Gl, Plzeň
2. Alan Svoboda, 4M, Gl, Plzeň
3. Jan Nepraš, 4M, Gl, Plzeň
4. Tomáš Kadlec, 3M, Gl, Plzeň
5. Martin Hanák, 4MF, Klatovy

6.-9. Martin Kraus, 4MF, Karlovy Vary
Martin Čihák, 3MF, Karlovy Vary
Karel Soukeník, 4M, Gl, Plzeň
Martin Muller, 4M, Gl, Plzeň

Kategorie В

1. Jan Kotas, 2M, Gl, Plzeň
2. Milan Štětina, 2M, Gl, Plzeň
3. Jan Smolík, 2M, Gl, Plzeň

4.-5. Miroslav Černý, 2MF, Karlovy Vary
Martin Marx, 2MF, Cheb

6. Petr Hamerník, 2M, Gl, Plzeň
7.-15. Jan Šembera, 2M, Gl, Plzeň

Martin Kohout, 2M, Gl, Plzeň
Jan Klička, 2M, Gl, Plzeň
Bohumil Nováček, 2M, Gl, Plzeň
Daniel Horák, 2M, Gl, Plzeň
Jan Kuneš, 2MF, G2, Plzeň
Luboš Moil, 2MF, G2, Plzeň
Václav Nováček, 2MF, Klatovy
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Martin Ježek, 2MF, Cheb

Kategorie C

1. Helena Nyklová, IMF, Karlovy Vary
2.-3. Jiří Černý, 1M, Gl, Plzeň

Roman Kníže, IMF, Cheb
4.-5. Miroslav Skala, IMF, G2, Plzeň

Jitka Drábková, 1M, Gl Plzeň
6. Romana Lavičková, 1M, Gl, Plzeň
7. Ivana Janova, IMF, G3, Plzeň
8. Vladimír Menol, IMF, Karlovy Vary
9. Daniel Němeček, IMF, G2, Plzeň

10.-13. Pavel Wunsch, 1, Rokycany
Jan Krapáč, 1, Ostrov
Lenka Syrovátková, IMF, Cheb
Tomáš Kubr, IMF, G2, Plzeň

Kategorie P

1. Martin Bureš, 4M, GJF, Plzeň
2. Jan Štrunc, 4M, GJF, Plzeň
3. Jiří Urban, 2MF, Karlovy Vary
4. Jan Kotas, 4M, GJF, Plzeň

5.-6. Martin Černý, 4MF, Karlovy Vary
Luděk Kovář, 4M, GJF, Plzeň

7. Dagmar Nováková, 4MF, Cheb
8. Alan Svoboda, 4M, GJF, Plzeň

9.-10. Martin Pittermann, 4M, GJF, Plzeň
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Severočeský kraj

Kategorie A

1. Radek Škoda, 3M, Partyzánská, Liberec
2. Jiří Fiala, 3M, Partyzánská, Liberec
3. Jaromír Oščádal, 3, SPŠE, Liberec
4. Ladislav Šubr, 4M, Partyzánská, Liberec

5.-6. Ladislav Šimek, 3MF, Jateční, Ústí nad Lab.
Dalimil Kolčaba, 3M, Partyzánská, Liberec

7.-8. Stanislav Dunaj, 3MF, Jateční, Ústí nad Lab.
Kateřina Jágrová, 4M, Partyzánská, Liberec

9. Pavel Šimek, 4M, Partyzánská, Liberec

Kategorie В

1. Tomáš Zellerin, 2MF, Jateční, Ústí nad Lab.
2. Aleš Bednařík, 2M, Partyzánská, Liberec
3. Petr Jiřička, 2M, Partyzánská, Liberec

4.-7. Bohumil Cimbál, 2M, Partyzánská, Liberec
Hans Ginzel, 2M, Partyzánská, Liberec
Daniel Morávek, 2M, Partyzánská, Liberec
Silvie Tvrdá, 2, Chomutov

8. Jindřich Pluhař, 2M, Partyzánská, Liberec
9. Jana Perná, 2, Frýdlant

Kategorie C

1.-2. Daniel Havelka, 1M, Partyzánská, Liberec
Martin Kačer, 1M, Partyzánská, Liberec
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3.Antonín Nebuželský, IMF, Jateční, Ústí nad Lab.
4.-5. Michal Nešvara, IMF, Partyzánská, Liberec

Tomáš Marek, 1M, Partyzánská, Liberec
6.-7. Jiří Lahvička, 1M, Partyzánská, Liberec

Michal Gust, 1, SPS, Chomutov
8.-12. Martin Jareš, IMF, Jateční, Ústí nad Lab.

Pavel Kodýtek, IMF, Jateční, Ústí nad Lab.
Sylva Rydvalová, IMF, Teplice
Libor Fidler, 1M, Partyzánská, Liberec
Petr Škoda, 1M, Partyzánská, Liberec

Kategoňe P

1. Karel Egem, 4, Litoměřice
2. Tomáš Doležal, 4M, Liberec
3. Vladimír Soukal, 4MF, Ústí nad Labem
4. Jiří Hoblík, 4, Liberec

5.-7. Martin Čmuchař, 3MF, Ústí nad Labem
Milan Kocian, 3MF, Ústí nad Labem
Karel Nechvíle, 4MF, Ústí nad Labem

8. Jaromír Kohout, 2, Zatec
9. Vojtěch Dohnal, 1, Liberec

Východočeský kraj

Kategorie A

1. Petr Tobiška, 3M, GJKT, Hradec Králové
2. Pavel Čížek, 3M, GJKT, Hradec Králové
3. Jan Vomlel, 4M, GJKT, Hradec Králové

31



4. Lenka Eslerová, 3, SPŠE, Pardubice
5. Jiří Horák, 3, Pardubice
6. Tomáš Pospíchal, 3MF, Pardubice
7. Petr Ledvina, 3MF, Pardubice

Kategorie В

1. Martin Dvořák, 2MF, Pardubice
2. Jarmil Skop, 2MF, Pospíchalova, Hradec Králové
3. Jaroslav Vávra, 2MF, Pardubice
4. Bohumila Píšová, 2MF, Pardubice
5. Filip Lázníček, 2MF, Pospíchalova, Hradec Králové
6. Jiří Kratochvíl, 2M, GJKT, Hradec Králové

Kategorie C

1. Josef Ďurech, IMF, Pardubice
2. Michal Šorel, IMF, Pardubice
3. Jan Zeithaml, IMF, Pardubice
4. Jan Kříž, IMF, Pardubice
5. Michal Dočekal, IMF, Pardubice
6. Rudolf Čejka, 1M, GJKT, Hradec Králové
7. Petr Plašil, IMF, Pardubice
8. Tomáš Kokoška, IMF, Trutnov
9. Rudolf Vágenknecht, IMF, Trutnov10.Petr Gregor, 1, Chotěboř

Kategorie P

1. Martin Horký, 4, Pardubice
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2. Petr Blůmel, 3, Pardubice
3. Petr Tobiška, 4M, GJKT, Hradec Králové

Jihomoravský kraj

Kategorie A

1.-2. Vladimír Chvátil, 4MF, Vídeňská, Brno
Zdeněk Pezlar, 3M, tř. kpt. Jaroše, Brno

3.-5. Michal Konečný, 3M, tř. kpt. Jaroše, Brno
Michal Stehlík, 2M, tř. kpt. Jaroše, Brno
Milan Zamazal, 3M, tř. kpt. Jaroše, Brno

6. Jan Velešík, 4P, Vídeňská, Brno
7.-9. Radim Křivánek, 4MF, Vídeňská, Brno

Jan Mutl, 2M, tř. kpt. Jaroše, Brno
Josef Pojsi, 4M, tř. kpt. Jaroše, Brno

10.-11. Filip Munz, 2M, tř. kpt. Jaroše, Brno
Jana Syrovátková, 1M, tř. kpt. Jaroše, Brno

Kategorie В

1. Pavel Vrbacký, 2M, tř. kpt. Jaroše, Brno
2. Jan Mutl, 2M, tř. kpt. Jaroše, Brno
3. Michal Stehlík, 2M, tř. kpt. Jaroše, Brno
4. Pavel Růžička, 2M, tř. kpt. Jaroše, Brno
5. Miloš Dvořák, 2M, tř. kpt. Jaroše, Brno

6.-8. Jiří Fuchs, 2M, tř. kpt. Jaroše, Brno
Josef Menšík, 2M, tř. kpt. Jaroše, Brno
Filip Múnz, 2M, tř. kpt. Jaroše, Brno

9. Jan Pazdziora, 2M, tř. kpt. Jaroše, Brno
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10. Petr Ptáčník, 2, Prostějov

Kategorie C

1.-2. Václav Komínek, 1M, tř. kpt. Jaroše, Brno
Jana Syrovátková, 1M, tř. kpt. Jaroše, Brno

3.-5. Pavel Filipenský, 1, Kyjov
Petr Konečný, 1M, tř. kpt. Jaroše, Brno
Markéta Trefilová, 1M, tř. kpt. Jaroše, Brno

6.-10. David Kruml, 1M, tř. kpt. Jaroše, Brno
Jaroslav Křivánek, 1M, tř. kpt. Jaroše, Brno
Pavel Matula, 1M, tř. kpt. Jaroše, Brno
Zdeněk Špaček, 1M, tř. kpt. Jaroše, Brno
Petr Špatka, 1M, tř. kpt. Jaroše, Brno

Kategorie P

1. David Krásenský, 4, tř. kpt. Jaroše, Brno
2. Zdeněk Pezlar, 3, tř. kpt. Jaroše, Brno
3. Jan Kasprzak, 3, tř. kpt. Jaroše, Brno
4. Radim Gottwald, 4, Kyjov
5. Vladimír Chvátil, 4, Vídeňská, Brno

6.-7. Petr Dobiáš, 3, Ždar nad Sázavou
Radim Křivánek, 4, Vídeňská, Brno

8.-12. Dušan Dobeš, 4, Boskovice
Zdeněk Hlávka, 4, Jihlava
Miroslav Kovář, 2, Vídeňská, Brno
Jan Pavelka, 3, tř, kpt. Jaroše, Brno
Zdeněk Salvet, 4, Uherský Brod
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Severomoravský kraj

Kategorie A

1.-2. Petr Hliněný, 4M, G M. Koperníka, Bílovec
Aleš Kuběna, 3M, G M. Koperníka, Bílovec

3. Martin Čížek, 4, Rožnov p. Radhoštěm
4.-5. Oldřich Doseděl, 3M, G M. Koperníka, Bílovec

Radim Kubacki, 3M, G M. Koperníka, Bílovec
6. Michal Ševčík, 3M, Jiřího z Poděbrad, Olomouc
7. Lumír Budínský, 4MF, Komenského, Havířov

8.-9. Mano Boháč, 3M, G M. Koperníka, Bílovec
Robert Wadura, 3M, G M. Koperníka, Bílovec

Kategone В

1. Marek Blahuta, 2M, G M. Koperníka, Bílovec
2.-3. Jiří Tengler, 2M, G M. Koperníka, Bílovec

Pavel Viceník, 2, SPSE, Božetěchova, Olomouc
4.-5. Roman Solích, 2M, G M. Koperníka, Bílovec

Mariin Masár, 2M, G M. Koperníka, Bílovec
6.-17. Tomáš Fojta, 2M, G M. Koperníka, Bílovec

Lukáš Abram, 2M, G M. Koperníka, Bílovec
Roman Koch, 2M, G M. Koperníka, Bílovec
Alexander Kupčo, 2M, G M. Koperníka, Bílovec
Petra Coufalíková, 2, Komenského, Třinec
Pavel Vavřík, 2MF, G ČSLA, Frýdek-Místek
Richard Menšík, 2MF, G ČSLA, Frýdek-Místek
Romana Kozlová, 2, Nový Jičín
Michal Popule, 2, Ostrava-Zábřeh
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Ludmila Novotná, 2, Ostrava-Zábřeh
Irena Ježková, 2, Ostrava-Zábřeh
Radek Hanáček, 2, Rožnov pod Radhoštěm

Kategorie C

1.-7. Martin Beneš, 1M, G M. Koperníka, Bílovec
David Havrlant, 1M, G M. Koperníka, Bílovec
Markéta Matušová, 1M, G M. Koperníka, Bílovec
Radek Pastyňk, 1M, G M. Koperníka, Bílovec
Radovan Pekař, 1M, G M. Koperníka, Bílovec
Richard Zlámal, 1M, G M. Koperníka, Bílovec
Petr Masopust, 8. tř., ZS, tř. Rudé armády,

Frýdek-Místek
8.-10. Jana Uhrová, 1M, G M. Koperníka, Bílovec

Marcela Hlawiczková, 1, Komenského, Třinec
Radim Wystyrk, 8. tř., ZS, tř. Rudé armády,

Frýdek-Místek

Kategorie P

1. Ivan Dvorský, 4, G ČSLA, Frýdek-Místek
2. Petr Hliněný, 4, G M. Koperníka, Bílovec

3.-4. Radim Moric, 3, G M. Koperníka, Bílovec
Martin Čížek, 4, Rožnov pod Radhoštěm

5. Radek Lučan, 4, G ČSLA, Frýdek-Místek
6. Jarmil Halamíček, 3, Rožnov pod Radhoštěm

7.-8. Karel Holub, 4, G M. Koperníka, Bílovec
Pavel Skotnica, 4, G M. Koperníka, Bílovec

9. Rostislav Gemrot, 4, G M. Koperníka, Bílovec
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10. Jiří Suchomel, 4, Zábřeh na Moravě

Bratislava

Kategoňe A

1.-3. Martin Dindoš, 4MF, G J. Hronca
Vladimír Špitálský, 3M, G A. Markuša
Ondřej Such, 4M, G A. Markuša4.Juraj Džubas, 3M, G A. Markuša

5.-6. Viliam Búr, 1M, G A. Markuša
Pavol Mederly, 2M, G A. Markuša

7.-9. Ján Bajcsy, 4M, G A. Markuša
Miloš Volauf, 1M, G A. Markuša
Pavol Severa, 4M, G A. Markuša

Kategorie В

1.-2. Pavol Mederly, 2M, G A. Markuša
Richard Kollár, 2M, G A. Markuša

3. Rastislav Nukovič, 2M, G A. Markuša
4. Miroslav Ozorák, 2M, G A. Markuša
5. Ladislav Kis, 2M, G A. Markuša
6. Matěj Kordoš, 2M, G J. Hronca

7.-15. Lenka Fedorová, 2M, G A. Markuša
Juraj Lányi, 2M, G A. Markuša
Andrea Richterová, 2M, G A. Markuša
Kristina Gendiarová, 2M, G A. Markuša
Martin Benča, 2M, G J. Hronca
Marek Kalavský, 2M, G J. Hronca
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Andrej Lupták, 2M, G J. Hronca
Peter Halák, 2M, G A. Markuša
Pubomír Gulán, 2, Tomášikova

Kategorie C

1.-9. Kamil Budinský, 1M, G J. Hronca
Vladimír Кто, 1M, G J. Hronca
Pavol Marion, 1M, G A. Markuša
Martin Niepel, 8. tř., ZS, Ho Či Minová
Matěj Ondrušek, 1M, G J. Hronca
Jura] Slanička, 1M, G A. Markuša
Daniel Stefankovič, 1M, G A. Markuša
Jozef Vároš, 1M, G A. Markuša
Miloš Volauf, 1M, G A. Markuša

10. Marek Mačuha, 8. tř., ZŠ, Ho Či Minová

Kategorie P

1. Martin Dindoš, 4, G J. Hronca
2.-3. Vladimír Duračka, 4, G J. Hronca

Igor Malý, 3, G J. Hronca
4. Matěj Ondrušek, 4, G J. Hronca

5.-6. Ondřej Such, 4, G A. Markuša
Martin Vojtko, 3, G J. Hronca

7.-8. Miroslav Kočan, 3, G J. Hronca
Rudolf Sedmina, 4, G J. Hronca

9. Martin Stanek, 3, G J. Hronca
10.-11. Monika Obrancová, 4, G J. Hronca

Ján Repiský, 4, G J. Hronca
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Západoslovenský kraj

Kategorie A

1. Peter Šedík, 4, G, Trenčín
2. Alexander Tomík, 3, G, Piešťany
3. Daniel Bršel, 4, G, Hlohovec

4.-6. Marek Macháč, 3, G, Sereď
Gabriela Pilljaková, 3, G E. Gudernu, Nitra
Radovan Deríšek, 4, G, Skalica

Kategorie В

1.-2. Petřík Rampašek, G, Šurany
Miroslav Svitek, G, Komárno

3.-4. František Sladkay, G, Partizánské
Jaroslav Tužimský, G, Levice

5.-9. Dušan Foltín, G, Šurany
Andrej Hrmo, G E. Gudernu, Nitra
Kamil Krajčovič, G, Partizánské
Ingrid Szabó, G, maď., Komárno
Monika Tóthová, G, Párovská, Nitra

Kategorie C

1. Milan Války, G, Párovská, Nitra
2. Peter Galovič, G, Piešťany
3. Gábor Rácz, G, Dunajská Středa

4.-6. Pavol Gregor, SPŠE, Nové Zámky
Peter Holík, G, Piešťany
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Jozef Nagy, G, Levice
7. Peter Márkus, G, Dunajská Středa
8. Andrej Huček, G, Párovská, Nitra
9. Michal Domčan, G, Bánovce nad Bebravou

Kategorie P

1. Manán Gašparovič, G E. Gudernu, Nitra
2. Roman Pták, G, Pezinok
3. Roman Tóda, G E. Gudernu, Nitra

4.-6. Igor Klepoch, SPŠE, Nové Zámky
Michal Slezák, G E. Gudernu, Nitra
Tomáš Klein, G, Piešťany

7.-9. Ján Jendnchovský, G, Modra
Jozef Sklenář, G, Piešťany
Peter Durfina, G E. Gudernu, Nitra10.Lubomír Stuller, G, Levice

Středoslovenský kraj

Kategorie A

1. Vladimír Glasnák, 3MF, Velká Okružná, Žilina
2. Simon Malý, 3MF, Ziar nad Hronom

3.-6. Ivan Milan, 3, Březno
Juraj Lónnc, 3M, Tajovského, Banská Bystrica
Valeňán Valášek, 3M, Tajovského, Banská Bystrica
Elena Serešová, 4MF, Zvolen

7.-8. Jozef Skokan, 4M, Velká Okružná, Žilina
Stanislav Mores, 4M, Velká Okružná, Žilina
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9. Eduard Omasta, 4, Ružomberok
10.-12. Vojtech Goculiak, 3M, Tajovského, Banská Bystrica

Stanislav Tažiar, 4, Prievidza
Ivan Valent, 4, Lučenec

Kategorie В1.Martin Berka, 2M, Tajovského, Banská Bystrica
2.-3. Dušan Svitek, 2M, Tajovského, Banská Bystrica

Peter Sviták, 2M, Velká Okružná, Žilina4.Soňa Simanová, 2M, Tajovského, Banská Bystrica
5.-6. Martin Lancz, 2M, Tajovského, Banská Bystrica

Jaroslava Kucianová, 2M, Velká Okružná, Žilina
7. Ján Vozár, 2M, Tajovského, Banská Bystrica

Kategorie C

1.-2. Ján Žabka, 1M, Velká Okružná, Žilina
Marek Žabka, 1M, Tajovského, Banská Bystrica

3.-4. Anton Ostrechovský, 1M, Velká Okružná, Žilina
Ján Simon, 1M, Tajovského, Banská Bystrica

5. Vojtech Bálint, 1M, Velká Okružná, Žilina
6. Pavol Durec, IMF, V. Pauliny Tótha, Martin

7.-10. Miroslav Dobrota, 1M, Tajovského, Banská Bystrica
Mariin Klímo, 1M, Velká Okružná, Žilina
Ivan Eupták, IMF, Lučenec
Jana Pilníková, IMF, Žiar nad Hronom
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Kategorie P

1. Eduard Omasta, 4, Ružomberok
2. Pavol Chalmoviansky, 3, Prievidza
3. Peter Vanoch, 4, Velká Okružná, Žilina

4.-5. Richard Farkaš, 4, Lučenec
Juraj Hrabovec, 3, Wolkerova, Žilina

6. Peter Malšovský, 3, Prievidza
7. Pavel Uhliar, 4, Liptovský Hrádok
8. František Kossuth, 4, SPŠ, Dubnica

9.-10. Miroslav Bielik, 4, Wolkerova, Žilina
Anton Janetka, 4, Velká Okružná, Žilina

Východoslovenský kraj

Kategorie A

1.-2. Peter Haluška, 4M, Šmeralova, Košice
Vladimír Skalský, 4, T. Sevčenka, Prešov

3. Radoslav Jenčuš, 4M, Šmeralova, Košice
4.-5. Slavomír Gmitro, 4, Konštantínova, Prešov

Mirko Chladný, 2M, Šmeralova, Košice
6. Radovan Teleki, 3, kpt. Nálepku, Sp. Nová Ves
7. Vladimír Komár, 4M, Šmeralova, Košice

8.-10. Milan Benedik, 3, Leninova, Poprad
Slavomír Hrinko, 3, Konštantínova, Prešov
Manán Raučina, 3, Západná, Poprad
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Kategorie В

1. Luboš Pástor, 2M, Šmeralova, Košice
2. Oskár Hritz, 2M, Šmeralova, Košice
3. Ján Maňuch, 2M, Šmeralova, Košice

4.-5. Herbert Vojčík, 2M, Šmeralova, Košice
Marek Gura, 2, Leninova, Poprad

Kategorie C

1.-5. Milan Matoš, 1, Leninova, Poprad
Ján Šoltis, 1, Leninova, Poprad
Peter Kopča, 1, Humenné
Peter Katuščák, 1M, Košice
Elena Halešová, 1M, Košice

6. Juraj Barát, 1, Šrobárova, Košice
7.-8. Pavol Diko, 1M, Košice

Silvia Kulcsárová, 1, Šmeralova, Košice
9. Peter Kováčik, 1M, Košice

10. Martina Hruščáková, 1, Leninova, Poprad

Kategorie P

1.-2. Vladimír Skalský, 4, G T. Ševčenka, Prešov
Herbert Vojčík, 2, Šmeralova, Košice

3.-5. Tomáš Vinař, ZŠ, Hronská, Košice
Slavomír Gmitro, 4, Konštantínova, Prešov
Peter Haluška, 4, Šmeralova, Prešov

6. Lubomír Zlacky, 3, G Gottw., Michalovce
7. Radovan Brecka, 3, G Gottw:, Snina

43



8.-10. Marek Gura, 2, Leninova, Poprad
Peter Budai, 2, Opatsk., Košice
Maroš Grund, 3, Srobárova, Košice
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Kategorie С

Texty úloh

C - I - 1

Čtverec 100 x 100 je rozdělen na 10 000 jednotkových
čtverců. Do nich jsou libovolným způsobem vepsána čísla
1 až 10 000 (do různých čtverců různá čísla). Dokažte, že
pak existují dva sousední čtverce, v nichž jsou čísla lišící se

aspoň o 51. Čtverce považujeme za sousední, mají-li společ-
nou stranu.

С - I - 2

Nechť n je přirozené číslo a an = 888...8 je n-místné
přirozené číslo zapsané v desítkové soustavě n osmičkami.
Dokažte, že pro počty d(n), d(an) dělitelů čísel n, an platí
d(an) ^ 8d(n) — 8.

C - I - 3

Na kružnici je napsáno 108 přirozených čísel, přičemž sou-
čet libovolných dvaceti vedle sebe stojících čísel se rovná
1 990. Dále víme, že na 37. místě stojí číslo 158, na 66. místě
číslo 1 a na 83. místě číslo 200. Jaké číslo stojí na 40. místě?

45



С - I - 4

Je dán rovnostranný trojúhelník ABC se stranou délky a.

Na straně AC je dán bod L tak, že \AL\ < ^
AB, BC, CA sestrojíme po řadě body M, N, P tak, aby
LM || BC, MN || AC, NP || AB. Vypočítejte obvod a ob-
sah čtyřúhelníku LMNP. Při které volbě bodu L je jeho
obsah největší?

. Na stranách

С - I - 5

V rovině jsou dány shodné kružnice ki(P,r), k^(Q,r)
a délka d, přičemž kružnice к i, &2 nemají společný bod.
Najděte všechny dvojice bodů X, Y takové, že |ХУ| = d,
bod X leží na kružnici к i, bod Y leží na kružnici &2 a přím-
ka XY prochází středem úsečky PQ.

C - I - 6

Je dáno přirozené číslo s lichým počtem číslic. Dokažte, že
jednu z jeho číslic lze škrtnout tak, aby číslo, které vznikne,
mělo na sudých i na lichých místech stejný počet sedmiček.

C - S - 1

Najděte nejmenší přirozené číslo k, pro které mají součiny
384 • k, 2 592 • к stejný počet dělitelů.
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С - S - 2

Určete číslice a, 6 tak, aby číslo, jež je v desítkové soustavě
zapsáno ve tvaru a 065, bylo druhou mocninou přirozeného
čísla.

C - S - 3

Na úhlopříčce obdélníku se stranami délek 4 cm a 3 cm

je zvolen bod X. Při které poloze bodu X (obr. 1) je obsah
vyšrafované části největší? Svou odpověď zdůvodněte.

Obr. i

C - II - 1

Najděte všechna přirozená čísla n, pro která má číslo n
v množině přirozených čísel právě tři dělitele a číslo n + 32
právě pět dělitelů.
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С - II - 2

Na úhlopříčce BD čtverce ABCD je zvolen bod X. Při
které poloze bodu X je obsah vyšrafované části na obr. 2
největší? Svou odpověď zdůvodněte.

C - II - 3

Dokažte, že číslo 111... 1222.. .225, ve kterém se číslice 1
vyskytuje &-krát a číslice 2 (fc + l)-krát, je druhou mocninou
přirozeného čísla. Určete toto číslo.

С - II - 4

Je dána čtvercová síť se stranou délky 1, přirozené číslo r
a v rovině sítě kružnice к o poloměru r se středem ve vrcholu
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některého čtverce sítě. Dokažte, že kružnice к neprochází
středem žádného čtverce sítě.

Řešeni úloh

C - I - 1

V některém políčku je napsáno číslo 1, v jiném číslo
10 000. Od prvního к druhému políčku se dostaneme na-

příklad tak, že půjdeme nejdříve svisle (nahoru nebo dolů),
až se dostaneme do stejného řádku, v jakém je druhé pole
(obr. 3). Pak přejdeme vodorovně do tohoto druhého pole.

Ы
Obr. 3

Jsou-li obě uvažovaná pole v témže řádku, jdeme jen vo-
dorovně. Jsou-li obě políčka v témže sloupci, jdeme pouze
svisle. V každém případě obsahuje naše cesta nejvýše 100
políček z téhož sloupce a nejvýše dalších 99 políček v řadě.
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Přejdeme tedy nejvýše 198krát z jednoho políčka do polič-
ka sousedního. Kdyby byl rozdíl čísel v sousedních políčkách
vždy nejvýše 50, mohlo by se číslo v posledním políčku naší
cesty rovnat nejvýše číslu 1 + 198 • 50 = 9 901. Protože tam
však stojí číslo 10 000, musí se na naší cestě objevit aspoň
jednou přírůstek větší než 50.

С - I - 2

Je zřejmě an = 8 111. ..11, kde je bn = 111... 11
n-místné číslo zapsané n jedničkami. Je to číslo liché, takže
není dělitelné dvěma, tím méně čtyřmi nebo osmi. Proto
má číslo an právě čtyřikrát více dělitelů než číslo bn. Je-li
totiž číslo p dělitelem čísla bn, jsou děliteli čísla an čísla p,

2p, Ар a 8p. A také platí, že každý dělitel čísla an se rovná
některému z čísel p, 2p, 4p, 8p, kde p je dělitel čísla bn. Stačí
tedy zabývat se počtem dělitelů čísla bn. Jestliže přirozené
číslo к dělí číslo n, je

bn = 111...11 = 11... 111... 1... 11... 1 =

к к к

= 11... 1-(1 + 10*+ ... + 10"-*) = 6*-с*

kde je c* přirozené číslo. Je-li = 1,je 6* = 1, Ck = bn. Při
к = n je cn = 1. Je-li 1 < к < n, končí číslo c* dvojčíslím
01 a nerovná se tedy žádnému z čísel bn. Vidíme tudíž, že
děliteli čísla bn jsou čísla 1, bn a též čísla 6*,, c* pro ta čísla
к, která dělí číslo n. Má-li tedy číslo n kromě lan ještě
d(n) — 2 netriviálních dělitelů, má číslo bn kromě 1 a bn
ještě aspoň 2[d(n) — 2] dalších dělitelů, celkem tudíž aspoň
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2d(n) — 2 dělitelů. Číslo an pak má aspoň 4[2d(n) — 2] =
= 8d(n) — 8 dělitelů, což jsme měli dokázat. Tvrzení platí
i pro n = 1, kdy je bn = 1.

Poznamenejme, že šlo o úlohu náročnou, která vyžadovala
od řešitelů nejdříve rozbor několika konkrétních případů.

C - I - 3

Součet každých 20 vedle sebe stojících čísel je vždy 1 990.
Také součet každých 108 vedle sebe stojících čísel je stejný,
rovná se prostě součtu p všech čísel umístěných na kružnici.
Zvolme nyní osm vedle sebe stojících čísel. Ostatních 100
čísel tvoří pět skupin po dvaceti vedle sebe stojících číslech,
proto se součet zvolených osmi čísel rovná p — 5 • 1 990,
je tedy také stejný pro každých osm čísel stojících vedle
sebe. To pak platí také pro 16 čísel. A když je stejný součet
každých dvaceti a rovněž každých šestnácti vždy vedle sebe
stojících čísel, platí to i pro každá čtyři vedle sebe stojící
čísla. Pak to však znamená, že se čísla vždy po čtyřech
opakují, páté se rovná prvnímu, šesté druhému atd. Součet
každých čtyř vedle sebe stojících čísel je 1 990 : 5 = 398.
Na 37. místě stojí číslo 158, na 38. místě stojí stejné číslo
jako na 66. místě, neboť 66 = 38 + 7 • 4, tedy číslo 1. Dále
je 39 = 83 — 11 • 4, takže na 39. místě stojí číslo 200. Proto
na 40. místě stojí číslo 398 - 158— 1 - 200 = 39.

С - I - 4

Označme x = \AL\. Trojúhelníky AML, MBN a PNC
jsou rovnostranné (obr. 4) se stranami délek x, a — x, x.
Proto je \PL\ = a — 2i a obvod lichoběžníku MNPL je a —
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A M В

Obr. 4

— 2х+х+а—х+х = 2а — х, jeho obsah je |(а — х + а — 2x)v
kde v je jeho výška. Ta se rovná též výšce v trojúhelníku

AML, takže v = |V3. Obsah lichoběžníku je x(2a —

— 3x), výsledek upravíme na tvar ^ [_3(« - |)’ +f .
Vidíme, že tento obsah je největší pro x = kdy se rovná

ó

а2л/3
12 '

С - I - 5

Označme 5 střed úsečky PQ a předpokládejme, že body
X, Y splňují podmínky úlohy. Pak jsou možné pouze dva
případy, buď jsou body X, Y souměrně sdružené podle bodu
S (obr. 5), nebo tomu tak není (obr. 6).
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Uvažujme nejdříve první případ. Je pak |XSj = |YSj =

takže bod X leží na průniku kružnic k\ a k(^S,
Je-li obráceně X společným bodem těchto kružnic, leží bod
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У к němu souměrně sdružený podle bodu S na kružnici к2
a dvojice X, Y je řešením úlohy. Počet řešení je v tom-
to případě 2, 1 nebo 0 podle toho, mají-li kružnice к i, к
dva, jeden nebo žádný společný bod. Přitom dva společné
průsečíky mají uvažované kružnice právě tehdy, je-li \SP\ —

— r <

Jeden společný bod mají kružnice к, к i právě tehdy, je-li
d = \PQ\ — 2r nebo d = \PQ\ + 2г. V ostatních případech
nemají tyto kružnice žádný společný bod.

Přejděme к druhé možnosti. Body P, Q veďme kolmice
к přímce XY, jejich paty označme U, V. Ze středové sou-
měrnosti plyne \YV\ = \UX\, takže \XY\ = \UV\ = d,

|5ř7| = —. Bod U leží tedy na kružnici к a současně na

Thaletově kružnici / nad průměrem SP, neboť úhel SUP je
pravý. Přitom je bod U bodem vnitřní oblasti kružnice k\,
protože přímka XY je sečnou kružnice к i (má s kružnicí
společný bod X a nemůže být tečnou, v tom případě by
byly body X, Y souměrně sdružené podle bodu S). Je-li
obráceně bod U průsečíkem kružnic к a /, je ^ ^ \SP\ a U
je bodem vnitřní oblasti kružnice k\ právě tehdy, když je

^ < \SP\ + r, tj. \PQ\ - 2r < d < \PQ\ + 2r.

d2
\SP\2 . Ke každému takové-4

mu bodu U sestrojíme dvě dvojice bodů X, Y, které jsou
řešením úlohy, bod X je jedním nebo druhým průsečíkem
přímky SU s kružnicí k\. Je-li 0 < \J\PQ\2 — d2 < 2r, do-
staneme dva takové body U, a tedy čtyři řešení úlohy. Pro
d = \PQ\ je U = P a úloha má kromě nalezených řešení

\PU\ < r, kde \PU\ =
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v první části ještě dvě řešení, pro která není bod S stře-
dem úsečky XY. Celkový počet řešení v závislosti na délce
d můžeme přehledně vyčíst z této tabulky:

d< \PQ\-2r
d = \PQ\ — 2r

\PQ\ -2r<d<: víP<2|2-4r2
y/\PQ\2 - 4r2 < d < \PQ\

d=\PQ\

\PQ\ <d< \PQ\ + 2r
d= |PQ| + 2r

d>\PQ\ + 2r

0 řešení

1 řešení

2 řešení

6 řešení

4 řešení

2 řešení

1 řešení

0 řešení

C - I - 6

Vezměme libovolné číslo s lichým počtem číslic a označme
p počet jeho sedmiček na lichých místech a q počet sedmi-
ček na sudých místech v jeho zápisu v desítkové soustavě.
Ubráním dvou sedmiček stojících vedle sebe nebo obráce-
ně jejich přidáním se nezmění rozdíl p — q. Totéž platí při
ubrání nebo přidání dvou číslic stojících vedle sebe, jestli-
že žádné z nich není sedmička. Budeme-li takto stále podle
možnosti ubírat, dojdeme opět к číslu s lichým počtem čís-
lie, v němž se budou střídat sedmičky s číslicemi různými
od sedmičky. Může se ovšem stát, že na jeho prvním místě
bude stát číslice 0. V takto získaném čísle pak stačí škrt-
nout prostřední číslici (je to sedmička, mělo-li původní číslo
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lichý počet sedmiček, jinak je to číslice různá od sedmičky),
abychom dostali číslo se stejným počtem sedmiček na li-
chých a na sudých místech. К němu pak vrátíme ty dvojice
čísel, které jsme předtím ubrali. Tím dostaneme vždy čís-
lo požadovaných vlastností. Ukážeme si popsaný postup na

příkladě čísla 12 375 707 727. Vynecháním dvojic 12, 77, pak
02 a pak opět 77 dostaneme číslo 375, z něhož vynecháme
prostřední číslici 7. К výsledku 35 přidáme zpět ty dvojice,
které jsme předtím vynechali. Konečným výsledkem je číslo
1235 707 727.

Uvedeme ještě aspoň stručně jiný postup, který by si však
vyžádal podrobnější diskusi. Obsahuje-li dané číslo lichý po-
čet sedmiček, je zřejmé, že bude třeba vynechat některou
sedmičku. Začněme první sedmičkou zleva. Nejdříve ukáže-
me, že pokud po jejím vynechání je více sedmiček na sudých
místech, nebude tomu tak při vynechání poslední sedmičky.
Pak ještě ukážeme, že počet sedmiček na sudých místech
po vynechání některé sedmičky se nezmění, nebo se zvětší
o 1, nebo se zmenší o 1, jestliže místo ní vynecháme hned
sedmičku další. Jinými slovy, počet sedmiček na sudých mís-
těch po vyškrtnutí některé sedmičky se změní nejvýše o jed-
nu, škrtneme-li místo ní tu, která je к ní nejblíž. Z toho pak
plyne, že pro jednu sedmičku zbude po jejím vynechání stej-
ný počet sedmiček na sudých a na lichých místech. Podobně
bychom postupovali při sudém počtu sedmiček, kdy musíme
vynechat některou číslici různou od sedmičky.
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С - S - 1

Je 384 = 27 • 3, 2 592 = 25 • 34. Položme к = T • 36 • c,
kde c není dělitelné dvěma ani třemi. Pak je 384 • к = 2a+7 •

• 36+1 • c, počet dělitelů tohoto čísla je (a -f 8)(6 + 2)d, kde
d je počet dělitelů čísla c. Počet dělitelů druhého součinu
je (a + 6)(6 + 5)d. Jelikož к má být nejmenší, je c — d = 1
a pro a, 6 má platit (a + 8)(6 + 2) = (a + 6)(6 + 5), tedy
26 = 3a + 14. Nejmenší к dostaneme při a = 0, 6 = 7, je
tedy к = 37 = 2 187.

C - S - 2

Končí-li druhá mocnina přirozeného čísla pětkou, kon-
čí i základ pětkou. Druhá mocnina čísla končícího pětkou
končí dvojčíslím 25, je tedy nutně 6 = 2. Kromě toho je
(10n + 5)2 = 25 + 100n(n + 1). Hledáme tedy přirozené číslo
n tak, aby číslo n(n +1) bylo dvojmístné a násobkem deseti.
Jediná řešení jsou n = 4, 5 nebo 9, tedy a — 2, 3 nebo 9.
Řešením úlohy jsou právě tyto dvojice (a, 6): (2,2), (3,2)
а (9,2).

C - S - 3

Označme x = \AY\, у — \DZ\ (obr. 7). Je у : x = 3 : 4,
obsah vyšrafované části je ar(3 — y) + y(4 — x). Po dosazení
гг, у г. úpravě dostaneme výraz 6 — |(ж — 2)2. Proto je obsah
největší při x — 2, kdy je bod X středem úhlopříčky.

Úloha navazovala na úlohu C-I-4, avšak zcela jiný, velmi
jednoduchý postup zvolil žák Michal Kružhak z I. ročníku
gymnázia v Námestove. Podal toto jednoduché řešení:
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Je-li X středem úhlopříčky, rovná se obsah vyšrafova-
né části polovině obsahu obdélníku. Není-li bod X středem
úhlopříčky, rovná se obsah vyšrafované části nejdříve obsa-
hu vyšrafované části na obr. 8 a ten pak obsahu vyšrafované
části na obr. 9, který je menší než polovina obsahu obdélní-
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С - II - 1

Číslo 2а-36-5с... má právě (а + 1)(6+1)(с+1)... dělitelů.
Má-li číslo n právě tři dělitele, je nutně n = p2 pro nějaké
prvočíslo p. Jelikož číslo n -f 32 má mít právě 5 dělitelů,
musí být n -f 32 = q4, kde q je rovněž prvočíslo. Pak je
32 = qA — p2 = (q2 —p)(q2 + p). Rozložíme proto číslo 32 na
součin dvou přirozených čísel. Rozklady 32 = 1 • 32 a 32 =
= 4-8 nevedou к žádnému výsledku. Položíme-li q2 — p = 2,
q2-\-p = 16, dostaneme q = 3, p = 7. Jediné řešení je n = 49.

С - II - 2

Označíme-li x vzdálenost bodu X od přímky AD, je ob-
sah vyšrafované části 2x(a — x) + |(a — x)2 = |a2 — |(x —
— |a)2. Obsah je tedy největší pro x = |a, kde a je stra-
na čtverce. Bod X je dán například podmínkou \BX\ —

= 2\DX\.

C - II - 3

Jelikož 1225 = 352, 112225 = 3352, docházíme к do-
mněnce, že hledaným číslem je číslo 333.. .35, ve kterém se

počet trojek rovná číslu k. Domněnku dokážeme užitím zná-
mého vztahu z úlohy C-S-2 (lOn + 5)2 = 100n(n + 1) + 25.
Stačí ukázat, že součin čísla 333.. .3 (k trojek) s číslem o 1
větším se rovná číslu 111... 1222... 2, které obsahuje к jed-
niček a stejný počet dvojek. To však plyne ihned z rovnosti
333... 34-3 = 1000...02.

Velmi pěkné a zcela korektní řešení podal žák I. ročníku
gymnázia v Dolním Kubíně František Mala. Ukázal, že se
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dané číslo dá napsat ve tvaru

10* - 1 10*+1 - 1
•10*+2 + •2-10 + 5,9 9

což po jednoduchých algebraických úpravách dává

^10*+1 + 5^2
10*+1 +5

Stačí nyní ukázat, že je přirozené číslo, tedy že je

číslo ÍO*-*-1 + 5 dělitelné třemi. To však plyne ihned z toho,
že jeho ciferný součet je 6, a tudíž dělitelný třemi. A číslo
je dělitelné třemi, právě když je dělitelný třemi jeho ciferný
součet.

3

С - II - 4

Podle Pythagorovy věty se vzdálenost středu některého
čtverce sítě od vrcholu libovolného čtverce sítě rovná

kde p, q jsou celá čísla. Můžeme si totiž představit, že jsme
počátek soustavy souřadnic zvolili v uvažovaném vrcholu
(obr. 10) čtverce sítě a osy soustavy souřadnic jsou pro-
dloužením stran tohoto čtverce. Uvažovaný střed pak má
souřadnice [p+ |,<?+ ^], kde p, q jsou celá čísla. Druhá
mocnina zkoumané vzdálenosti, a tedy ani vzdálenost sama
není celé číslo, nemůže se tudíž rovnat přirozenému číslu r.
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Kategorie В

Texty úloh

В - I - 1

Je dáno liché přirozené číslo n. Najděte aspoň jednu dvo-
jici přirozených čísel x, у tak, aby největším společným dě-
litelem čísel x, у bylo číslo n a aby největším společným
dělitelem čísel xy + x, xy + у bylo číslo 2n.

В - I - 2

Reálná nezáporná čísla x, у splňují nerovnosti x + у ^ 1
> nx > 7~

n -f 1
kde n je přirozené číslo. Dokažte, že

x"(l - *) ^ y( 1 - y)n■

В - I - 3

Trojúhelník ABC s obsahem 10 je těžnicí CD a úsečkou
AE rozdělen na čtyři části (bod E leží uvnitř strany BC,
D je střed strany AB). Obsah trojúhelníku AFC je 4, F je
průsečík CD a AE. Určete obsahy trojúhelníků ADF, CEF
a čtyřúhelníku BDFE.
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В - I - 4

Určete největší přirozené číslo, které se nedá vyjádřit ja-
ко součet dvou přirozených čísel, z nichž má každé ciferný
součet aspoň 10.

В - I - 5

Pro reálná čísla x\, X2, ..., xn (n ^ 3) platí x± ^ X3 + n,
xi ^ X2 ^ ^ xn, x\ + X2 + ... + xn — n2. Dokažte, že
x\ + X2 ^ 3n — 2. Kdy platí rovnost x\ + %2 — 3n — 2?

В - I - 6

V rovině je dána úsečka AB. Najděte množinu všech
vrcholů Z pravoúhlých trojúhelníků XYZ, jejichž přepo-
na je částí úsečky AB a \AX\ = |XZ|, |5У| = \YZ\.

В - S - 1

Je dáno přirozené číslo n. Najděte aspoň jednu dvojici
přirozených čísel x, у tak, aby D(x,y) = D(xy + x,xy +
-f y) = n. D(a,b) značí největšího společného dělitele čísel
a, b.

В - S - 2

V trojúhelníku ABC je D střed strany AB, E je bod
úsečky BC, F je průsečík úseček AE a CD. Obsah troj-
úhelníku ABC je 15, obsah trojúhelníku CFE je 4. Určete
obsahy trojúhelníků AFC, ADF a čtyřúhelníku DBEF.
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B-S-3

Najděte všechny uspořádané dvojice (n, к) celých čísel n,
k, které splňují rovnici k3 — 3k2n + 3kn2 — 61 = 0.

В - II - 1

Je dáno přirozené číslo n. Najděte aspoň jednu dvojici
přirozených čísel x, у tak, aby to byla čísla nesoudělná a aby
největším společným dělitelem čísel xy + x, xy + у bylo
číslo n.

В - II - 2

Je dána kružnice k. Sestrojte trojúhelník ABC se stře-
dem D strany BC tak, aby byl trojúhelník ABD kružnici к
vepsán, přímka AC byla tečnou kružnice к a \ AC\ = 2|тШ|.

В - II - 3

Pro nezáporná čísla x\, X2, ■ .., хю platí x\ ^ x^ ^ ^
^ xio, Xi — xq ^ 3, xl + X2 + .. - + ^10 — 25. Jakou nejmenší
hodnotu může mít součet x\ + x\ -f x\ + x\ + x\l

В - II - 4

V konvexním čtyřúhelníku ABCD označme E průsečík
úhlopříček a S střed kružnice opsané trojúhelníku ABE.
Potom jsou přímky CD a SE kolmé, právě když je čtyř-
úhelník ABCD tětivový. Dokažte.
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Řešení úloh

В - I - 1

Úlohu vyřešíme nejdříve pro některá konkrétní n. Napři-
klad pro n = 15 můžeme vzít x = 15, у = 45. Při obecném
n zkusíme x = n, у = kn. Snadno zjistíme, že číslo к musí
být liché. Zvolme к = 3, pak je xy + x = n(3n + 1), xy -f
+ у = n(3n + 3). Čísla 3n + 1, 3n -f 3 jsou sudá a kromě
jedničky a dvojky nemají společného dělitele. Ten by totiž
musel dělit jejich rozdíl, tj. číslo 2. Odtud plyne, že nej vět-
ším společným dělitelem čísel xy + x, xy -\- у je číslo 2n.

В - I - 2

TI
Položme z = l — y. Potom

n 4-1
dokázat nerovnost xn(\ — x) ^ г”(1— z). Jinými slovy máme

dokázat, že funkce f(x) = xn(l — x) je pro x ^
klesající. To lze snadno dokázat pomocí derivace uvažované
funkce, neodpovídá to však osnovám 2. ročníku středních
škol. Bez užití derivace můžeme postupovat takto:

Ti
Pro z > x > máme dokázat, že xn(l — x) > zn( 1 —

-

n + 1 v ; v
— z), tj. zn — xn < zn+1 — xn+1. Vydělením nezáporným
číslem z — x dostaneme ekvivalentní nerovnost

< x < z a máme

zn_1 -f zn~2x + ... +ZX
n-2 71 — 1

+ x <

< zn + zn 1x + ... + zx
71 — 1

+ x
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tj.

71 — 1 71 — 2 71-2
+ xn~l)<zn.(!-*)(* + Z X + . . . + ZX

Pro x > 1 to zřejmě platí, neboť levá strana je pak záporná.

Je-li x < 1, je 1 — x nezáporné. Jelikož x > ——--, je 1 — x <—

n + 1 —

1
< Dále je

n + 1

ti — 2z”-1 + z
71-2 71 — 1

< nzn 1X + . . . + ZX -(- X

takže

nz”"171-2 71 — 271-1
+ *"“1)<(l-x)(z < znX + . . . + ZX+ Z

n + 1 —

což jsme měli dokázat.

В - I - 3

Označme a, b, c, d obsahy trojúhelníků ADF, EFC
BDF, BFE (obr. 11).
-f d = 5, dále je a = c, neboť \AD\ = \BD\. Konečně platí
b : d = (6 + 4) : (a + c+d) = \CE\ : \BE\. Je tedy a = c = 1,
6 + d = 4, 6(2 + d) = (6 + 4)d, takže 6 = 2d, odkud d = |,
6 = |. Hledané obsahy jsou 1, |, |.

Potom a + 4 = 5, 6 + c +

В - I - 4

Dá-li se číslo N napsat jako součet dvou přirozených čísel
A, B, z nichž má každé ciferný součet aspoň 10, jsou čísla A,
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Obr. 11

В aspoň dvojciferná a větší nebo rovna 19, takže N je větší
než 37. Pro A — В = 99 dostaneme číslo 198. Avšak číslo
199 se nedá napsat požadovaným způsobem. Kdyby totiž
bylo 199 = (100 + 10a + 6) -f (Юс + d), muselo by platit
současně b-\-d=9,a + c = 9, takže součet ciferných součtů
obou sčítanců by byl 19, a tudíž by nemohly být oba ciferné
součty rovny aspoň 10. Zkusmo zjistíme, že náhodně zvo-
lená čísla větší než 199 se požadovaným způsobem zapsat
dají. Pokusíme se tedy dokázat, že každé číslo N ^ 200 se
dá napsat jako součet A + B, kde А, В mají ciferný sou-
čet větší než 9. V následující tabulce je uvedeno, jak zvolit
poslední číslice y, z čísel А, В, je-li poslední číslice čísla N
rovna x:

0123456789 иX

5566778895 vУ

5667788994 wz
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V další tabulce je uvedeno, jak zvolit předposlední číslice
v, w čísel A, B, je-li předposlední číslice čísla N rovna и
a x ф 9:

0123456789и

5556677889v

4566778899iv

Je-li x = 9, zvolíme při daném и hodnoty v, w podle první
tabulky. Vidíme, že již součet posledních dvou číslic čísla A
i čísla В je aspoň 10, kromě případů, kdy N končí některým
z dvojčíslí 00, 09 nebo 99. Pak můžeme vždy zvolit A = 145
а В tak, aby končilo dvojčíslím 55, resp. 64, resp. 54, končí-li
N dvojčíslím 00, resp. 09, resp. 99. V posledním případě je
však číslo В aspoň trojciferné, protože A -f В ^ 200. Takže
v každém případě je ciferný součet čísla A i čísla В větší
než 9.

В - I - 5

Je účelné pokusit se řešit úlohu nejprve úsudkem. Při
pevně zvoleném £3 je x\ + £2 aspoň 2£з + n, neboť x\ ^
^ £3 -(- n a £2 ^ X3. Přitom x\ + £2 = 2£з + n právě
tehdy, když x\ = £3 + n, £2 = X3. Vzhledem к tomu, že
součet čísel £1, £2, ..., xn je pevný, rovná se n2, je £1 + £2

nejmenší, když je součet £3 + £4 + ... + xn největší. Avšak
X3 -f ... + £n ^ (n — 2)*3, rovnost platí právě tehdy, když

.. = £4 = £3. Můžeme tedy říci, že £1 +
+ £2 nabývá nejmenší hodnoty 2£з + n, když x\ = £3 + n,

xn xn-1
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x2 — хз — • • • = xn. Pak ale musí platit £3 + n + £3 -f (n —
— 2)^3 — n2, tedy £3 = n — 1, 2хз + n — 3n — 2.

Jiný postup: Sečtením nerovností £1 ^ £3 + n, £2 ^ £3
dostaneme £1 + £2 ^ 2£з -f n. Užitím nerovností £,• ^ £3
pro i = 3, 4, .

n2 = £! + £2 + ... + xn й xi+ x2 + (n - 2)£3,

takže je £1 + £2 ^ n2 — (n — 2)£з. Sečtením s nerovností

£1 + £2 ^ 2£з + n vynásobenou faktorem П ^ dostaneme
požadovanou nerovnost.

n dostaneme• •)

В - I - 6

Nechť trojúhelník XYZ má požadované vlastnosti. Pak
je (obr. 12)

\4ZAX\ = \$AZX\ = a, \$ZBY\ = |<^[5Zy | = /?,
2a+ 2/?+ 90° = 180°,

takže a + /? = 45°, |<£Л££| = a + /? + 90° = 135°. Proto
leží bod Z nutně na jednom ze dvou kruhových oblouků,
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jež jsou tvořeny všemi body, z nichž je vidět úsečka AB
pod úhlem 135°. Jsou to menší kruhové oblouky ohřáni-
čené body А, В (bez bodů A, B) na kružnicích se středy
S\, S2, přičemž = |<£A52-B| = 90°. Je-li obrace-
ně Z bod některého z těchto oblouků, je \ý.AZB\ = 135°,
osy úseček AZ, BZ procházejí bodem Si nebo S2 a pro-

tínají úsečku AB v bodech X, Y. Označme \<$XZY\ = 7,

\$ZAX\ = \$AZX\ = a, \$ZBY\ = \$BZY\ = /?. Je tedy
a + 7 + /? — 135° a 2o-f 2/?-f 7 = 180°, odkud 7 = 90°. Hle-
danou množinou je množina všech bodů uvažovaných dvou
oblouků.

В - s - 1

Stačí položit x = n, у = 2n. Je pak D(x,y) = n, xy -f
+ x = n{2n -f 1), xy + у = n(2n + 2). Čísla 2n -f 1, 2n -f 2
jsou nesoudělná, jejich společný dělitel by musel dělit i jejich
rozdíl, tj. číslo 1. Je tedy též D{xy + x, xy -f y) — n.

В - S - 2

Označme obsahy trojúhelníků ADF, BDF, AFC, BFE
po řadě a, b, x, у (obr. 13). Je b = a, a -f x = 7,5, b + у =
= 3,5, у : 4 = (2a + у) : (x + 4). Úpravou poslední rovnice
máme xy = 8a, po dosazení za x, у dostaneme rovnici a2 —
— 19a -f = 0. Kořen a = 17,5 nevyhovuje, pro a = 1,5 je
x = б, у = 2. Tyto hodnoty vyhovují, hledané obsahy jsou
6, 1,5 a 3,5.
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В - S - 3

Je к(к2 — Зктг + 3п2) = 61. Číslo 61 je prvočíslo, takže se
к může rovnat pouze některému z čísel 1, —1, 61, —61, pro
n pak dostaneme vždy kvadratickou rovnici. Ta má pouze
v případě к — 1 nezáporný diskriminant a kořeny 5, —4.
Úloha má proto právě dvě řešení: (5,1) a (—4,1).

В - II - 1

Je xy -f x = x(y + 1), xy + у = y(x + 1). Čísla x, у mají
být nesoudělná, největším společným dělitelem čísel x -f 1,
у + 1 musí být číslo n. Položíme-li z + 1 = n, у + 1 = 2n,
je tato podmínka splněna a čísla x — n — 1, у = 2n —

— 1 jsou nesoudělná (jejich společný dělitel by musel dělit
i číslo у — 2x = 1). Pouze v případě n = ]. není číslo n — 1
přirozené, můžeme však pro n = 1 zvolit :c = 1, у = 2.
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В - II - 2

Z mocnosti bodu C ke kružnici к plyne |ACj2 = 2\CD\2,
takže \AC\ : \CD\ : \AD\ = 2 : \/2 : 1. V libovolném bodě
A kružnice к (obr. 14) sestrojíme tečnu, na ní bod C tak,
aby \AC'\ — 2. Body A, C doplníme na trojúhelník ACD'
tak, aby \AD'\ — 1, \C'D'\ = \/2. Bod B' zvolíme tak,
aby byl bod D' středem úsečky СB'. Kružnice k' opsaná
trojúhelníku AD'B' se pak v bodě A dotýká přímky AC.
To vyplývá z mocnosti bodu ke kružnici. Stejnolehlost se

C'A C
řV
/ \

/

D'k7 /
/

//

B7
/

■'IDi
i
i

/
/

к

В
Obr. 14

středem v bodě A zobrazující k' na kružnici к zobrazuje
body C\ D', B' na hledané body (7, D, B. Až na shodnost
má úloha právě jedno řešení.

В - II - 3

Postupujeme podobně jako v úloze B-I-5, hledanou nej-
menší hodnotu dostaneme v případě x\ = Хб + 3, — —

—
... — xio, kdy je x\ = 4, x^ — ... — x\o = 1. Hledaná

nejmenší hodnota je 20.
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В - II - 4

Trojúhelníky ABS, AES, BES (obr. 15) jsou
menné, jejich vnitřní úhly při základně označme 7, a, /3,
dále označme ip = \<$CDE\, ф = \<$DFE\, kde F je průse-
čík CD a SE. Z trojúhelníku ABE plyne a + /3 — 7 = 90°.
Je ф = 180° — <p — (3, a tedy ф = 90° právě tehdy, když
je <p = 90° — (3 = a — 7. Podmínka <p = a — 7 je podle
věty o obvodových úhlech ekvivalentní s tím, že čtyřúhelník
ABCD je tětivový. Podobně bychom postupovali v případě,
kdyby byl bod S bodem trojúhelníku ABE.

rovnora-
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Kategorie A

Texty úloh

A - I - 1

Určete nej menší přirozené číslo n, pro které v prostoru
existuje konvexní mnohostěn К s následujícími vlastnostmi:

a) К má alespoň 10 vrcholů,
b) každé jeho dva různé vrcholy lze po hranách spojit ales-

poň čtyřmi různými cestami, z nichž žádné dvě už ne-

mají další společný vrchol,
c) К má n hran.

A - I - 2

Ukažte, že existuje nekonečně mnoho přirozených čísel n
s touto vlastností: Čísla 0, 0, 1, 1, ..., n, n lze seřadit do
posloupnosti tak, že mezi dvěma výskyty čísla к je právě к
jejích členů (0 к ^ n).

A - I - 3

Je dán čtyřstěn ABCD, středy dvou jeho protilehlých
hran označme К a L. Dokažte, že každá rovina procházející
body К, L dělí daný čtyřstěn na dvě části stejného objemu.
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A - I - 4

Předpokládejme, že délky a, b, c stran trojúhelníku a dél-
ky jeho těžnic jsou celá čísla. Dokažte, že pak a, b, c jsou
sudá a pro délky těžnic platí: Buď jsou všechny dělitelné
třemi, anebo žádná z nich není dělitelná třemi.

A - I - 5

Je-li G graf takový, že z každého jeho vrcholu vychází
nejméně 2m — 1 hran, lze vrcholy grafu rozdělit do dvou
disjunktních množin А а В tak, že z každého vrcholu v A
vychází nejméně m hran do vrcholů v В a z každého vrcholu
v В vychází nejméně m hran do vrcholů v A. Dokažte.

A - I - 6

Najděte všechna reálná čísla a s vlastností: Jsou-li x, у,
г délky stran trojúhelníku, pak

x2 -\- y2 -\- z2 ^ a(xy + yz -\- zx).

A - S - 1

Jsou dány posloupnosti (an)%L (bn)n = 1, kde1 >

\ ((2 + VŽ)n + (2 - л/3)") ,

6„ = -^((2 + л/3)"-(2-л/3)")
On —
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Najděte čísla c, d a p, q tak, aby pro každé přirozené n

platily následující vztahy

an+2 — can+1 + da
Pal + ЯЬ1 = i-

П )

A - S - 2

V rovině je dáno n ^ 3 bodů, 'z nichž žádné tři neleží
v přímce. Pak existuje aspoň |n(n—1) trojúhelníků s vrcho-
ly v daných bodech, které neobsahují žádný další z daných
bodů. Dokažte.

A - S - 3

Spomedzi štvorstenov ABCD s danými dížkami a, c hrán
AB, CD a, danou vzdialenosťou d stredov hrán AB, CD
nájdite ten, ktorý má najváčší objem, a tento objem určte.

A - II - 1

Postupnost’ (an)£°=1 je daná vzťahmi

ai = 1,

a2k+j ~ ~aj

Vypočítajte súčet сц + 02 -f ... + ui 990-

a2 — 4

prelgjg2‘, k = l, 2, ...

A - II - 2

Spomedzi štvorstenov ABCD s danými dlžkami a, c hrán
AB, CD a danou vzdialenosťou d stredov hrán AB, CD
nájdite ten, ktorý má najváčší povrch, a tento povrch určte.
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A - II - 3

Najděte nej menší £, pro které platí: Je-li T ostroúhlý troj-
úhelník s úhly a, /3, 7, pak existuje rovnoramenný nebo
pravoúhlý trojúhelník s úhly a', /3', 7' takový, že

\a - a'\ <,e, \/3 - /3'\ й £, |7 - 7'I ^ £.

A - II - 4

Zjistěte, kolik existuje pořadí (ť*i, <*2, • • • > aio) čísel 1,
2, ..., 10 takových, že a, > а,ц (1 й i ^ 5) a a,j > a^j+i
(1 éíú 4).

A - III - 1

Postupnost’ je daná vzťahmi

«1 = 1,

a2k+j = -aj pre 1 ^ j ^ 2*, к = 0, 1, 2, ...

Dokážte, že daná postupnost’ nie je periodická.

A - III - 2

Nájdite všetky reálne čísla a, pre ktoré má každé kladné
riešenie (x,y,z) nerovnice

x2 + y2 + z2 й a(xy + yz + zx)

tú vlastnost’, že existuje trojuholník so stranami dížok x,

У,
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A - III - 3

Je dána krychle ABCDEFGH. Najděte všechna čísla
у? > pro která existuje rovina, jejíž průnik se čtyřstěnem
ABDE je tupoúhlý trojúhelník s tupým úhlem <p.

A - III - 4

Určete největší číslo к ^ 0 takové, že pro všechny n-tice
xn (n ^ 2) nezáporných čísel platí

(zi + X2 + • • • + Xn)2(xlX2 + x2x3 + . . . + Xn-\Xn + XnX\) ^
^ k{x2x22 + x2x2 + ... + x2n_lX2n + x2nx\).

Xi, x2, . .

A - III - 5

V zemi jsou každá dvě města spojena právě jednou sil-
ničí. Každá z nich je jednosměrná a je určena bud’jen pro
motorová vozidla, anebo jen pro cyklisty. Silnice se křižují
pouze ve městech (jinde mají mimoúrovňové křížení). Do-
kažte, že existuje město, z něhož lze do libovolného jiného
města dojet bez změny dopravního prostředku.

A - III - 6

Dokažte, že pro každé přirozené číslo к existuje systém S
dvouprvkových podmnožin množiny {1,2,..., 2A:} takový,
že platí: Jsou-li Mi, М2, ..., Мг* libovolné množiny takové,
že

Mj П My ф fy O {i,j}£ S,
pak množina M1UM2U...UM2A; obsahuje aspoň к2 prvků.
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Řešení úloh

A - I - 1

Aby byla splněna podmínka b) úlohy, musí zřejmě z kaž-
dého vrcholu vycházet aspoň 4 hrany. Označíme-li v počet
vrcholů takového mnohostěnu, platí podle a) pro jeho počet
hran n nerovnost n ^ 2v ^ 20 (sčítáme-li počet hran pro
všechny vrcholy, počítáme každou hranu dvakrát).

Mnohostěn К na obr. 16 má právě 10 vrcholů, 20 hran
a z každého vrcholu vycházejí právě 4 hrany. Zbývá ověřit,

H

//
7

C

7
V

ВA

F

/
\/

\—-
\
\

G
Obr. 16

že skutečně každé dva vrcholy mnohostěnu К mají požado-
vanou vlastnost. Vzhledem к souměrnosti uvedeného mno-

hoštěnu stačí spočítat, kolik různých cest vede mezi dvoj i-
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cemi vrcholů A, B\ A, C; A, D\ A, E\ A, F; A, G\ A, H
a H, G.

Nejmenší hledané n s uvedenými vlastnostmi je tedy
n = 20.

A - I - 2

Poměrně snadno zjistíme, že pro n = 1, 2 taková posloup-
nost neexistuje. Pro n — 3 vyhovuje např. posloupnost (0, 0,
3, 1, 2, 1, 3, 2). Těžko se podaří najít nějaký obecný před-
pis, který by dával požadovanou posloupnost pro přirozené
n jistého tvaru. Ukážeme několik návodných pozorování:1.Ze sudých čísel 0, 0, 2, 2, , 2k, 2к snadno sestavíme

posloupnost s požadovanou vlastností:

2k, .. 2k.4, 2, 0, 0, 2, 4, ..• ) * 52.Pro lichá čísla 1, 1,3,3, ..., 2k + 1, 2k + 1 to jde, když
jedno místo vynecháme:

2Ar + l, .. 3,1, *, 1, 3, ..., 2k + 1.* ?

3. Z posloupnosti ai, ct2, ..., U2n+i, «2п+2 pro п dostaneme
„roztažením" část jiné posloupnosti (s lichými čísly 1,
3, ..., 2n + 1) takto:

*> 2a2n+i + l, *, 2ct2n+2T 12ai + 1, *, 2ci2T 1, *, •• * )

Mějme posloupnost (ai, d2, ..., a,2n+2), která vyhovuje
pro nějaké n ^ 3 (obsahuje čísla 0, 0, 1, 1, ..., n, n). Se-
strojíme následující posloupnost, která bude vyhovovat pro
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тх' — 4м 4- 3:

2м, 2n -2, . 2, О, О, 2, ..., 2n-2, 2м,
4м 4" 3, 2ai -|- 1, 4м 2, 2ci2 4- 1) 4м -}- 1, ..

2м + 2, 2бЕ2п + 2 4- 1,
4м 4-3, 4м 4-2, 4м 4-1, ..., 2м 4-3, 2м 4-2

* * 3

* 3

(nejprve podle 1. uspořádáme všechna sudá čísla 0, 2, ..

2m, pak podle 3. roztáhneme danou posloupnost (ai, .

Огп+г) a do příslušných mezer umístíme postupně všechna
čísla 4m 4- 3, 4m 4- 2, ..., 2m 4- 2 a ta pak ještě jednou zopaku-
jeme na konci posloupnosti. Je zřejmé, že nová posloupnost
obsahuje každé z čísel 0, 1, ..., 4m4-3 právě dvakrát, a snad-
no se přesvědčíme, že je splněna i podmínka úlohy.

Pro m = 4-34-3 = 16 tak dostaneme posloupnost (6,
4, 2, 0, 0, 2, 4, 6, 15, 1, 14, 1, 13, 7, 12, 3, 11, 5, 10, 3, 9,
7, 8, 5, 15, 14, 13, 12, 11, 10, 9, 8). Z uvedené konstrukce
plyne, že každé přirozené číslo tvaru 4m -f 3 pro n ^ 3 má
požadovanou vlastnost.

* 3

* *3

A - I - 3

Pro rovinu ABL je tvrzení zřejmé, protože body C, D
mají od roviny ABL stejnou vzdálenost.

Uvažujme rovinu, která protne hranu BD v bodě X a hra-
nu AC v bodě Y (obr. 17). Nyní si stačí uvědomit, že těleso
КXLYAD vznikne z čtyřstěnu ABLD přidáním čtyřstěnu
AKLY a ubráním čtyřstěnu KBLX. Jejich podstavy AKL
а КBL mají stejný obsah, stačí tedy dokázat, že oba čtyř-
stěny mají i stejnou výšku, tj. body X a Y jsou od roviny
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ABL stejně vzdáleny. To je nejlépe vidět, když promítne-
me daný čtyřstěn do roviny kolmé na přímku KL (obr. 18).

B'
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Protože \AK\ = \BK\ a \CL\ — \DL\, je uvedeným prů-
mětem rovnoběžník A'CB' D' a rovina KLX se promítne
do přímky X'Y' procházející jeho středem K' = L', při-
čemž vzdálenosti bodů X, Y od roviny ABL se promítnou
ve skutečné velikosti. Stejně postupujeme i v případě, kdy
uvažovaná rovina protíná hrany ВС a AD. Tím je tvrzení
dokázáno.

Poznámka. Tvrzení úlohy lze zobecnit na případ, kdy bo-
dy К a L dělí příslušné hrany v daném poměru. Ve stejném
poměru jsou pak i objemy příslušných částí čtyřstěnu, jež
vzniknou řezem nějakou rovinou procházející body К at.

A - I - 4

К řešení potřebujeme vyjádřit délky těžnic pomocí délek
stran trojúhelníku. Je-li např. A\ střed strany BC, vyjádří-
me v trojúhelníku ABA\ délku ta = |TTi| a v trojúhelníku
ABC zase délku b pomocí kosinové věty. Vyloučením cos (3
vyjde vzorec

4t2a = 2(62 + c2) - a2
(další dva dostaneme cyklickou záměnou a
Odtud hned plyne, že a2 (a tedy i 62, c2) jsou sudá čísla,
tudíž i a, b, c musí být sudá.

Druhé tvrzení úlohy dostaneme sečtením vzorců (1) pro

všechny tři těžnice,

(1)

4(tl+ťb+ťc) = 3(a2 + b2 + c2).
Výsledná rovnost říká, že t2 +t2 +ř2 je číslo dělitelné třemi
(protože čísla 3 a 4 jsou nesoudělná). Nyní si stačí uvědo-
mit, že druhá mocnina každého celého čísla dává při dělení
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třemi zbytek O nebo 1 (podle toho, zda je základ sám dě-
litelný třemi, či nikoli). Odtud plyne, že součet tří čtverců
je dělitelný třemi, jen když jsou všechna tři čísla dělitelná
třemi, anebo žádné z nich není třemi dělitelné.

Poznámka. Poslední úvahu lze nahradit i dalším využitím
vzorců (1). Odečtením dvou z nich vyjde např.

4 (t2a-t2b) = 3 (62 — a2),
takže hned vidíme, že čísla t2, t2 (a tedy i číslo t2) dávají
stejný zbytek (mod 3), a tedy všechna tři čísla t2a, t2, t2
mají stejný zbytek (mod 3).

A - I - 5

Hledáme vlastně takový disjunktní rozklad V = A U В
(А П В = 0) množiny V vrcholů daného grafu G, aby mezi
množinami А а В bylo „mnoho hran“. Vezměme proto ze
všech možných rozkladů ten, pro který je příslušný počet
hran co největší. Takový rozklad má už požadovanou vlast-
nost, protože kdyby z nějakého vrcholu v E A vedlo do В
nejvýše m — 1 hran, dostali bychom přemístěním v z A do
В nový rozklad A \ {t>}, В U {г>}, který bude mít mezi obě-
ma množinami více hran, protože v je podle předpokladu
s ostatními vrcholy v A spojen aspoň m hranami.

A - I - 6

Předpoklad, že x, y, z jsou délky stran trojúhelníku, zna-

mená, že platí

x -f у — z > 0, x — у + z > 0, —x + y + z> 0. (1)
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Nerovnost, která nás zajímá, má jednu charakteristickou
vlastnost: je symetrickou funkcí proměnných x, y, z (tj. při
jejich libovolné permutaci se nezmění). Z (1) dostaneme sy-
metrickou nerovnost tak, že sečteme součiny každých dvou
výrazů v (1), takže

(x + у - z)(x -y + z) + (x-fy- z)(-x -f у + z) +
+ (x - у 4- z)(-x + у + z) =

= 2(xy + yz -f zx) - (x2 + y2 + z2) > 0,

tj. uvažovaná nerovnost platí pro každé a ^ 2.
Podívejme se, co se stane pro x — у — 1 (pak musí být

0 < z < 2). Vyjde nerovnost

z2 — 2az — a + 2 ^ 0, (2)

která pro a < 2 jistě nebude platit, vezmeme-li z > 0 do-
statečně malé. Kvadratický trojčlen (2) má totiž pro a < 1
záporný diskriminant (tj. je vždy z2 — 2az — a + 2 > 0)
a pro 1 ^ a < 2 jeho kořeny z i, z^ splňují nerovnosti 0 <
< z\ < a < Z2 (takže pro 0 < z < z\ bude zase z2 — 2az —
- a + 2 > 0).

Řešením úlohy jsou všechna a ^ 2.
Jiné řešeni. Položme

26 = x + у — z,2a = x — у -f z, 2c = -ж + j/ + z,

neboli

у — 6 -f- c, z = c -f a.x = a + 6
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Podle předpokladu jsou x, у, 2 délky stran trojúhelníku,
takže a, 6, c > 0. Dosazením do dané nerovnosti dostaneme
po úpravě nerovnost

(2 — a)(a2 -f b2 -f c2) + (2 — 3a)(ab + bc -f ca) ^ 0, (3)

která zřejmě platí pro každé a ^ 2.
Uvažujme teď a < 2 a položme a = b = 1; pak

(2 — a)(a2 -f 62 + c2) + (2 — 3a)(a6 -f bc + ca) =

= (2 - a)c2 + 2(2 - 3a)c + 6 - 5a.

Protože 2 — а > 0, víme z vlastností kvadratické funkce, že
existuje kladné číslo cq takové, že

(2 — a)c2 -f 2(2 — 3a)co -f 6 — 5a > 0.

Čísla a = b = 1, c = co tedy nesplňují nerovnost (3), a proto
ani čísla x = 2, у = z = 1 + co, jež vyhovují trojúhelníkovým
nerovnostem, nesplňují požadovanou nerovnost.

A - S - 1

Dosazením do požadovaného rekurentního vztahu (a po

vydělení |) dostaneme rovnost

(7 + 4\/3)(2 + \/3)n + (7 - 4\/3)(2 - VŽ)n =

c(2 + V3)(2 + V3)n + c(2 - л/3)(2 - +
+ d(2 + уД)п + d{2 - уД)п =

(2c + d + c\/3)(2 + 73)п + (2c + d- суД)(2 - л/З)".
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Porovnáním obou stran získaného vztahu dostaneme, ie
předpokládaná rovnost je splněna pro c = 4, d = — 1.

Protože

((2 + \/3)n + (2 - V3)nJ = (7 + 4\/3)n + (7 - 4VŠ)n
= ((2 + V3)n - (2

+ 2 =

+ 4,

plyne odtud rovnost

-bl =Л nК - 3b2n = 4, tj- 1.

Druhému požadavku úlohy tedy vyhovují čísla p = 1,
_зq = 4 ■

Jiné řešení dostaneme, pokud máme základní znalosti
z teorie diferenčních rovnic. Odtud plyne, že posloupnos-
ti (an) odpovídá charakteristická rovnice Л2 — 4Л + 1 = 0
(její kořeny jsou A12 = 2 ± \/3), takže příslušný rekurentní
vztah, který uvedená posloupnost splňuje, je

«n+2 — 4an+i — aП j

tj. c = 4, d = — 1.
Rovněž je možno spočítat první čtyři členy posloupnosti

a\ = 2, a2 = 7, аз = 26, = 97 a pro neznámá čísla
sestavit dvě lineární rovnice. Jejich řešením dostaneme c =
= 4, d = —1. Zbývá ovšem dokázat (nejlépe matematickou
indukcí), že uvažovaná posloupnost splňuje získaný vztah
pro každé přirozené n. Podobně můžeme vyřešit i druhou
část úlohy. Pro n = 1 a n = 2 dostaneme dvě lineární
rovnice.
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A - S - 2

Z daných n bodů vezměme libovolné dva body X, Y.
К nim z daných bodů určíme třetí bod Z tak, aby výška
trojúhelníku XYZ na stranu XY byla co nejmenší. V tako-
vém případě už nebude trojúhelník XYZ obsahovat žádný

jiný z daných bodů. Ke každé z dvojic daných bo-

dů jsme tak našli jeden „prázdný“ trojúhelník, přitom jsme
ale mohli každý takový trojúhelník počítat nejvýše třikrát

lín
(pro každou stranu jednou). Existuje tedy aspoň -3 V 2

1
- n{n — 1) trojúhelníků s požadovanou vlastností, což

jsme měli dokázat.

A - S - 3

Označme K, L středy hran AB, CD uvažovaného čtyř-
stěnu. Objem čtyřstěnu ABCD pak můžeme spočítat tak,
že ho rozdělíme rovinou ABL na dva čtyřstěny ABLC
a ABLD (obr. 19). Pro objem V {ABCD) uvažovaného čtyř-
stěnu pak zřejmě platí

11 1
V {ABCD) й - • - \AB\ • \KL\ • \CD\ = - adc

O Lj D

s rovností, právě když КL je výškou trojúhelníku ABC
a CD je kolmá na rovinu ABL, což je právě tehdy, jsou-li
obě mimoběžné hrany AB a, CD navzájem kolmé a zároveň
obě kolmé na spojnici svých středů. Objem odpovídajícího
čtyřstěnu pak bude | acd.
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A - II - 1

Zřejmě je аз = — 1, а4 = —4, takže platí сц + a,2 + «з +
-b сц = 0. Z toho, jak je uvedená posloupnost definována,
snadno plyne, že součet prvních 4n členů posloupnosti je
pro libovolné přirozené n nulový: pro každé číslo n tvaru
n = 2k (k ^ 0) to zřejmě platí, neboť

Cíl + • • • + я4 2k —

= dl a-2 0,2k + 1 + (32^ + 1-f 1 + • • • + Ct2fc+2 =
= d\ -(- 02 + • • • + flÍ2'c + 1 — (al + 0-2 + • • • + + О = 0-

Předpokládejme navíc, že součet Я1+Я2 + . • .-f-Gt4m je nulový
pro libovolné m < n (tj. i pro m = 0, kterému odpovídá
prázdný součet). Pro každé n ^ 1 a pro vhodné к ^ 2 pak
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můžeme psát 4n = 2k + 4m, kde O 5Í m < n, takže

«l+«2 + - • -+«4n = «l+«2+ - . .-f*«2fc ~(«l+«2+ - • -+«4m) = O

podle indukčního předpokladu. Podle definice dané po-

sloupnosti tedy platí

«1 + «2 + • • • + «1 990 —

= «1 989 + fll 990 — ~«965 ~ <*966 — «453 + «454 —

— — «197 — «198 — «69 + «70 — — «5 — «6 = Ol + «2 — 5.

A — 11 — 2

Označme К a L středy hran AB, CD uvažovaného čtyř-
stěnu ABCD. Pro obsah stěn ABC a ABD zřejmě platí
(obr. 20) S(ABC) <; \atu S(ABD) ^ \ at
— \KC\, t% = \KD\ jsou délky příslušných těžnic. Rovnost

kde t\ —2,

90



v obou nerovnostech nastane, právě když obě těžnice CK,
DK budou kolmé na hranu AB, tj. právě když bude ro-
vina CDK kolmá na AB. Pro část povrchu uvažovaného
čtyřstěnu tak dostáváme odhad

S(ABC) + S(ABD) g 2(í, + t2). (1)

Z kosinové věty pro trojúhelníky CKL a DKL plynou
rovnosti

c2
t\ = — A d2 - cd cos КLC\

c2
t2 = — + d2 A cd cos \<$KLC\

takže podle známé nerovnosti (x А у)2 = x2 + y2 + 2xy
^ 2(x2 + y2) dostáváme nerovnost

(ti + t2)2 ^ 2(t2 At2) = c2 + 4d2,

v níž nastane rovnost, právě když ti = t2. Ze vztahu (1)
tak vychází odhad

S(ABC) A S(ABD) ^ ~y/c2 +4d2.

V nerovnosti (1) zřejmě nastane rovnost, právě když jsou
obě těžnice ti i t2 kolmé na AB, tj. právě když je rovina
CDK, a tedy i hrana CD kolmá na AB. Z rovnosti t\ — t2
pak navíc plyne, že je KL J_ CD.

Zcela analogicky odvodíme nerovnost

S(CDA) + S(CDB) <, ~y/a2 A 4d2.
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Podle předchozích úvah nastane v obou posledních ne-
rovnostech rovnost, právě když jsou obě hrany AB, CD
navzájem kolmé a zároveň jsou obě kolmé na svoji střední
příčku KL. Takový čtyřstěn ABCD pak má povrch

— \Jc1 + 4dP -f -\/a2 + 4dP.

A - II - 3

Uvažujme ostroúhlý trojúhelník s úhly a < (3 < 7 a číslo
€ > 0 takové, že změnou libovolného z úhlů a, /3, 70 nejvýše
e nedostaneme ani pravoúhlý, ani rovnoramenný trojúhel-
nik. Pak současně platí

7 < 90° — e, /3 — a > 2e 7 - (3 > 2e.

Odtud plyne

a < /3 — 2e < 90° — 5e,(3 < 7 - 2e < 90° - 3£

a protože a + /3 + 7 = 180°, vychází

180° < 90° - 5e + 90° - 3č + 90° - e,

tedy 9č < 90°, £ < 10°.
To znamená, že pro každé £ ^ 10° už máme zaručenu exi-

stenci pravoúhlého či rovnoramenného trojúhelníku, jehož
odpovídající úhly se od daných liší nejvýše o £. A £ = 10°
je skutečně nejmenší číslo s touto vlastností, jak je vidět
z trojúhelníku s úhly a = 40°, (3 = 60°, 7 = 80°.
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A - II - 4

Předpokládejme, že pořadí (oi, 02,..., аю) splňuje uve-
děné nerovnosti. Čísla a\, a2,..., аю pak můžeme uspořá-
dat do následujícího schématu

a i

/ \
«3a2

/ \ / \
07а4 05 (2б

\/ \
аюа8 Og

a,j znamená, že a* > aj (relace > je ovšemv němž Oi -

tranzitivní).
Je jasné, že musí být oi = 10. Dále uvažujme jednu z (3)

možností, jak zbylých devět čísel 1, 2, ..., 9 rozdělit na
dvě disjunktní množiny šesti a tří čísel. Pro každé takové
rozdělení jsou hodnoty 02 a 03 jednoznačně určeny jako
maximální prvky příslušných podmnožin, pro volbu hodnot
Об, 07 pak máme dvě možnosti, zatímco čísla 04, 05, ag, ag,

аю musíme ještě rozdělit do dvou disjunktních množin se
třemi a dvěma prvky (to jde (®) způsoby). Pro každé takové
rozdělení nám pak zbývají právě dvě možnosti jak určit ag
a ад (prvky 04, 05, a tedy i аю jsou takovým rozdělením už
jednoznačně určeny!).

Celkem tedy existuje

'9 5
•2 = 3 360• 2 •

3 2

různých pořadí, která splňují požadované podmínky.
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Jiné řešení (podle P. Tomana, 4. ročník GWP, Praha,
a R. Kubackiho, 3. ročník GMK, Bílovec). Uvažujme vše-
chna možná pořadí (ai, a2,..., аю) deseti čísel 1,2, ..., 10,
kterých je 10!. Těch, která mají na prvním místě největší
číslo 10, je 9! = jq 10!. Ze všech pořadí s a\ — 10 jich je
zřejmě | = 5!/6! takových, že a2 je mezi čísly 02, a4, 05, ag,
ag, аю největší. Podobně uvažujeme i pro a4 > ag, ад (tyto
dvě nerovnosti splňuje právě | všech vyhovujících pořadí),
pro Д5 > аю (| dosud vyčleněných pořadí) a konečně pro
a3 > аб, 07 (| dosud vyčleněných pořadí). Celkem tedy je
takových pořadí

11111

TO ' 6 ' 3 ' 3 ‘ 2
10! = 3 360.

A - III - 1

Pro j = 2k dostáváme, že a2*+i = — a2*, tedy a2* =
= (—1)*. Předpokládejme, že daná posloupnost má periodu
p, tj. že pro každé přirozené m platí am+p = am. Vezměme
к takové, že 2k ^ p. Potom

a2k+p — a2k — (“1)^5 a2fc+i+p = a2fc+1 = ( —1)*+1,

tedy a2k+p ф a2k+i +p. Přitom ale podle definice posloup-
nosti je pro p ^ 2k

k-\-p — ^p — ^2 fc + 1-fp-

Uvedená posloupnost tudíž nemůže být periodická.
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A - III - 2

Položíme-li я = у = 1 a z = 2, vyjde 6 ^ 5a, takže daná
nerovnost bude splněna pro všechna reálná čísla a ^ |.
Aby každé kladné řešení uvažované nerovnice dávalo strany
trojúhelníku, musí proto platit a < |.

Ukážeme, že pro a < | má každé kladné řešení uvede-
né nerovnice požadovanou vlastnost. Kdyby nerovnice měla
takové kladné řešení (x, y, z), které by nesplňovalo trojúhel-
níkové nerovnosti, můžeme bez ztráty obecnosti předpoklá-
dat, že je t = г — (x + y) ^ 0 (nerovnice je symetrická
v proměnných x, y, z). Dosazením do původní nerovnosti
postupně pro a < | dostaneme

x2 + у2 -f (я-f у-И)2 < ^(xy + y(x + y + t) + x(x + y + t))O

8 4 x л
- xy + - t(x + y) < 0,

t2 + | (x - y)2 + í t(x + y) < 0,

.2 , 4 2,4 2‘ + 5* +5У

což nemůže platit, neboť na levé straně nerovnosti je kladné
číslo.

Požadovanou vlastnost tedy mají všechna čísla a < |.
Jiné řešení (podle M. Kubečka, 3. ročník GWP, Praha).

Pokud o ^ |, má uvažovaná nerovnice kladné řešení x —
— у — 1, z = 2, pro které trojúhelník zřejmě neexistuje.

Na druhé straně, pokud pro nějaká kladná čísla x, y, z

neexistuje trojúhelník se stranami délek x, y, z, můžeme
předpokládat, že je x ^ у ^ z, a přitom x + у — г ^ 0.
Umocněním této nerovnosti dostaneme

z2 -f ar2 + y2 ^ 2яг + 2yz — 2яу,
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zároveň ale platí

4z2 ^ 4z(x + y),
A(x2 + y2) ^ 4 • 2zy,

což dohromady dává nerovnost

5(z2 + y2 + z2) ž 6(xy + yz + zz).

Odtud vidíme, že taková čísla x, y, z nejsou řešením uvažo-
vane nerovnice pro a < |.

A - III - 3

Protože žádná ze stěn čtyřstěnu ABDE není tupoúhlý
trojúhelník, můžeme předpokládat, že rovina řezu q není
s žádnou jeho stěnou rovnoběžná. Přitom dvě rovnoběž-
né roviny q || g' , pokud příslušný pás neobsahuje žádný
z vrcholů uvažovaného čtyřstěnu, dávají v řezu podobné
útvary, takže bez újmy na obecnosti můžeme dále předpo-
kládat, že rovina řezu g prochází některým z vrcholů A nebo
В (vrcholy £, D, E jsou zaměnitelné).

Budeme využívat následujících vlastností kolmého promí-
tání úhlů, jež se snadno odvodí pomocí kosinové věty (obě
vlastnosti jsou stručně dokázány v poznámce).

Při promítání do roviny obsahující jen jedno rameno úhlu
se tupý úhel zvětší a ostrý úhel se zmenší.

Tupý úhel se při promítání do roviny protínající obě jeho
ramena zvětší.

Uvažujme tedy rovinu g procházející vrcholem A a proti-
nající podstavu BDE v úsečce XY (obr. 21). Protože úhel
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ХАВ je ostrý, je ostrý i úhel XAY. Bez újmy na obecnosti
můžeme zřejmě předpokládat, že \AX\ ^ \AY\. Z uvede-
ných vlastností promítání nyní plyne, že úhel AYX je tu-
pý, jen když je tupý i úhel AYB, přičemž \<$AYB\ < |k.
Ze spojitosti snadno uvážíme, že pro každé <p z intervalu

< <p < |л existuje rovina g procházející vrcholem A,
jejíž průnik se čtyřstěnem ABDE je tupoúhlý trojúhelník
s úhlem <p. (Je-li Y vnitřní bod úsečky BE a bod X' uvnitř
AB takový, že \-$AYX'\ = ^л, pak pro odpovídající bod X
na BD, jehož je bod X' průmětem do roviny ABE, bude
rovněž |<£ЛУХ| = Tj-к. Pro body Z uvnitř XB bude tupý
úhel AYZ nabývat libovolné hodnoty menší než \^AYB\.)

\Y D

t X

X'
в

Obr. 21

Uvažujme teď rovinu g procházející vrcholem B. Pokud
rovina g protíná obě kratší hrany uvažovaného čtyřstěnu
(obr. 22), dostaneme v řezu ostroúhlý trojúhelník, proto-
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že průměty uvažovaných úhlů do roviny ABD jsou vesměs
ostré nebo pravé.

Protíná-li rovina g např. hrany AD a DE v bodech X
а У, označme У kolmý průmět bodu У do roviny ABD
{Y' leží na hraně AD). V každém případě ale je (obr. 23)
jak \ý.Y'XB\ < |k, tak i \<§.XY'B\ < takže i případný
tupý úhel řezu BXY je menší než |тг.

Poznámka. Dokážeme ještě vlastnosti kolmého promítání
úhlů použité v předchozím řešení. Podle kosinové věty pro

trojúhelníky ABC, A'B'C platí (obr. 24)

c2 — a2 + b2 — 2ab cos 7,

c2 + d2 = a2 + d2 + b2 — 26\Ja2 + d? cos 7',

takže

a cos 7 = \Jai1 + d2 cos 7'.
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Odtud plyne, že
1. je-li 0 < 7 < pak cos 7 > 0057' >0а0<7<У<

< 571’
2. je-li 7 = ijt, pak 7' = ±k,
3. je-li < 7 < к, pak | C0S7I > | cos 7'! a < 7' < 7 <

Podobně pro situaci na obr. 25 dostaneme

c2 = a2 -f 62 — 2ab cos 7

a zároveň

c2 = a2 + d2 -f- b2 + d2 — 2 \/a2 + d2 \A2 + d2 cos 7'

takže

ab cos 7 — v a2 + d2 \/b2 + d2 cos 7' — d2.

To znamená, že pro ^л < 7' je

—ab cos 7 = \Ja? + d2 \/б2 -f d2 | cos 7' | -f d2 > a6| cos 7' |
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neboli
я

I COS 7] > I COS Y I7 > -1 2
a

tj. 7 > 7'.
Jiné řešení. Každému trojúhelníkovému řezu uvažované-

ho čtyřstěnu odpovídá trojboký jehlan. Je-li jeho vrcholem
bod A, je jeho podstavou (řezem) ostroúhlý trojúhelník,
protože kolmým průmětem každého jeho úhluje pravý úhel.
Zbývá tedy možnost, že vrcholem odříznutého jehlanu je je-
den z vrcholů B, D, E. Tento případ vyšetříme obdobně
jako v předchozím řešení.

A - III - 4

Vzhledem к tomu, že uvažovaná nerovnost se nezmění,

když místo každého 27 píšeme — (1 < г < n) pro nějaké
a

kladné a, můžeme předpokládat, že je X\ -f X2 + .. • + £„ = 1.
Pro n = 2 pak bude mít uvažovaná nerovnost tvar

1
xix2 S £

(pokud X\X2 > 0). A protože pro nezáporná čísla X\,X2
taková, že xi + X2 = 1, platí

XiX2(l - kX!X2) ^ 0, tj-

11
Vх 1*2 ^ 7}(Xl + X2) = 2’

je vždy X1X2 = j s rovností pro x\ = X2 = Odtud plyne,
že je к ^ 4.

Stejný odhad ovšem dostaneme i pro libovolné n ^ 2,
když položíme X3 = ... = xn = 0.
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Ukážeme teď, že uvažovaná nerovnost platí pro к = 4
a pro libovolné n ^ 2. Protože

„))2 1
... + xXiXj ~

4’

je 1 — 4XiXj ^ 0, takže je také

Х\Х2{1—4х\Х2)+Х2Хз(1—4x2x3)+ .. .+xnxi(l-4xnxi) ^ 0.

A to je nerovnost, která je pro к = 4 s danou nerovností
ekvivalentní.

A - III - 5

Označíme-li n počet měst v zemi, je tvrzení pro n =
= 2 zřejmé. Předpokládejme tedy, že uvedené tvrzení platí
pro všechna přirozená čísla menší než n, a uvažujme zemi
s n městy и i, U2, . . ., un. Městu s požadovanou vlastností
budeme říkat „hlavní“. Označme jako г; hlavní město měst
til, u2, ■ ■ ■> un-1 a uvažujme množinu A těch měst, do nichž
se dá z v dojet motorovým vozidlem, a množinu В měst, do
nichž se dá z v dojet na kole. Navíc můžeme předpokládat,
že un nepatří do žádné z množin А, В (jinak bychom byli
hotovi), takže z un do v vede jednosměrná silnice (bez ztráty
obecnosti můžeme předpokládat, že je to např. cesta pro

cyklisty).
Označme nyní w hlavní město množiny (A \ B) U {un},

v níž je nejvýše n — 1 měst. Pokud w — un, jsme hotovi,
protože z un se lze dostat i do libovolného města množiny
B. Pokud w ф un a z w se lze do un dostat na kole, jsme
rovněž hotovi, protože pak je w hlavní město i všech měst
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v В. Pokud ovšem vede z w do un cesta jen motorovým
vozidlem, lze se do un dostat motorovým vozidlem i z města
v (přes w), takže v je hlavní město všech měst u\, 112, ...,

Un ■

Jiné řešení (podle V. Búra, 1. ročník GAM, Bratislava).
Označíme-li n počet měst v zemi, jsou případy n = 2 a n =
= 3 jasné (buď z jednoho města vedou cesty do zbylých
dvou, nebojsou cesty mezi třemi městy uspořádány cyklicky
a pak aspoň dvě z nich jsou stejného druhu).

Předpokládejme, že tvrzení úlohy platí pro libovolné к й
^ n— 1, a uvažujme n měst m\, m2, ..., mn. Vynecháme-li
město rrii (1 ^ i ^ n), bude mezi zbylými n — 1 městy exis-
tovat jedno „hlavní město“ ňt . Pokud pro nějaké dva indexy
i ф j dostaneme ň, = hj, jsme hotovi, protože takové město
je hlavním městem všech uvažovaných měst.

Budeme tedy dále předpokládat, že všechna „hlavní“
města h 1, /12, ..., hn jsou vesměs různá a jsou přitom ozna-
čena tak, že h2 je hlavní město, když vynecháme h 1, /13 je
hlavní město, když vynecháme /12, atd. až nám vyjde, že h 1

je hlavní město, když vynecháme nějaké hm (3 5Í m ^ n).
Dostaneme tak „cyklus“, v němž neexistuje jednosměrná
silnice z h{ do /i,_ 1 (jinak bychom byli hotovi), ale naopak.

Bez újmy na obecnosti můžeme teď předpokládat, že sil-
nice vedoucí z h\ do h2 je určena pro cyklisty. Z /12 do hm
pak musí vést cesta pro motoristy (jinak by existovala cesta
z ůi do hm a byli bychom hotovi) a ze stejného důvodu je
existující silnice z hm do h 1 určena pro cyklisty (obr. 26).

musí vést cestaTuto úvahu nyní zopakujeme (z /12 do h
pro motoristy, protože jinak by hm bylo hlavním městem,
takže z h

m—\

do h\ vede cesta pro cyklisty, atd.) celkemm— 1
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(m — 3)-krát a zjistíme (pokud jsme nenašli hlavní město
již dříve), že /13 je hlavním městem všech uvažovaných n
měst.

Jiné řešení (podle M. Konečného, 3. ročník G, Brno, kpt.
Jaroše). Předpokládejme, že tvrzení platí pro libovolné к ^
^n-la uvažujme situaci s n městy. Stejně jako v předcho-
zim řešení přiřadíme každému městu „hlavní město“ zby-
lých n — 1 měst (indukční předpoklad). Kdyby toto zobra-
zení množiny {1,2,..., n} do množiny (1,2,..., n} nebylo
permutací, pak zřejmě najdeme hlavní město všech n měst.

Je-li uvedené přiřazení permutací, existuje v něm cyklus
h\ —► Л-2 —*■ • • •

městem všech n — 1 měst vyjma /i;_ 1 a v němž tedy vždy
existuje jednosměrná silnice z hj do hj+1. Kdyby všechny
uvedené silnice byly stejného druhu, je jasné, že libovolné
z měst Л1, Л2, •.., hm by bylo hlavní. Můžeme tedy předpo-
kládat, že existují tři města /i,, /1;+2 (indexy počítáme

hm hi, ve kterém je hj hlavním
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mod m) taková, že např. z h{ do /i,+i vede silnice pro cyk-
listy a z /i,+1 do /i,-+2 pro motoristy (obr. 27). Z /ij+2 pak
existuje nějaká cesta do /1, —je-li průjezdná pro cyklisty, je
hlavním městem /i,-+2, je-li určena pro motoristy, je hlavním
městem h,+i.

A - III - 6

Uvažujme 2к bodů Ai, A2, ..., Аъь v rovině, z nichž žád-
né tři neleží v přímce. Pro každou dvojici {г, jí} £ S spojme
odpovídající body úsečkou. Pokud takto nedostaneme žád-
ný trojúhelník, budou mít libovolné tři množiny M,, Mj,
IVU prázdný průnik (jinak by odpovídající body musely být
spojeny úsečkami). Můžeme tedy každé dvojici {i,j} £ S
přiřadit prvek m,; £ Mt П Mj, který už v žádné jiné z mno-
žin Mi, М2, ..., M2fc neleží. Sjednocení Mi U M2 U .. .UM2lt
tedy obsahuje alespoň tolik prvků co množina S.

Vezmeme-li nyní za množinu S množinu těch dvojic
{г, j} C {1,2,..., 2Ar}, pro něž je součet i + j lichý, bude
mít S právě k2 prvků, přičemž odpovídající úsečky nebu-
dou tvořit žádný trojúhelník. Tím je důkaz hotov.

104



Jiné řešení (podle P. Hliněného, 4. ročník GMK, Bílovec).
Hledaný systém je např. množina

S = {{i, j} : lgťgt, i + 1 g j Í2k}.

V takovém případě jsou množiny Mi, М2, ..., M*, po
dvou disjunktní a totéž platí i o množinách ..., Мгь
Přitom každá z množin Mi, М2, ..., M*, má neprázdný prů-
nik s každou z množin Mjt+i, ..., М2*:, a protože množiny
Mjfc+i, ..., М2*: jsou navzájem disjunktní, musí být |M,j ^ к
pro všechna 1 i ^ k. Celkem tedy je

|Mi UM2 U...UM2jfc| ^ |Mi UM2U...UMjk| =

= |M,| + |M2| + ...+ |Mt|ží:* = *2.
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Kategorie P

Texty úloh

P - I - 1

Napište co nej lepší algoritmus, který vytiskne všechny
různé rozklady zadaného přirozeného čísla N na součty při-
rozených čísel. Rozklady nepovažujeme za různé, jestliže se
liší pouze pořadím sčítanců. Zdůvodněte správnost algorit-
mu.

Např. pro N = b algoritmus vytiskne tyto rozklady (v li-
bovolném pořadí a s libovolným pořadím sčítanců v jednot-
livých rozkladech):

5=1 + 1 + 14-1 + 1

5=2+l+l+l

5 = 2 + 2+1

5 = 3 + 1 + 1

5 = 3 + 2

5 = 4+1

5 = 5
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P - I - 2

V rovině je pevně rozmístěno n bodů označených čísly 1,
n. V zadaném poli D[1.. n, 1.. n] jsou uloženy jejich2,..

vzájemné vzdálenosti. Hodnota D[i,j] udává vzdálenost bo-
du i od bodu j. Dále je dáno číslo t. Zapište algoritmus,
který zjišťuje, zda lze uvažovaných n bodů rozdělit do dvou
skupin tak, aby vzájemné vzdálenosti všech bodů patřících
do stejné skupiny byly menší než t. Pokud takové rozdělení
bodů je možné, algoritmus vypíše jedno libovolné přípustné
rozdělení. Zdůvodněte správnost algoritmu.

• 1

P - I - 3

Je dán následující program:

PASCAL
var А, В, C, D, E, F: integer;

I, N: integer;
begin

read(TV);
A '■= —1;
В :=0;
D := 0;
E := 0;
for I 1 to N do

begin
A := A+ 2;
В :=B + A;
C := В */;
D := D + C;

BASIC

10 INPUT N

20 LET A = -1

30 LET В = 0
40 LET D = 0

50 LET E = 0

60 FOR I = 1 TO N

70 LET A = A + 2
80 LET В = В + А
90 LET С = В * I

100 LET D = D + C
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E:=E+I;
F:=E*E-

end;
writeln(D);
writeln(F);

110 LET E = E + I
120 LET F = E * E

130 NEXT I

140 PRINT D

150 PRINT F

end.

Vstupem programu je jedno celé číslo (hodnota proměn-
né N).

a) Odvoďte a dokažte vztah mezi hodnotami proměnných
D a F po ukončení výpočtu.

b) Napište program, který bude počítat výsledné hodno-
ty proměnných D a F v závislosti na vstupní hodnotě pro-
měnné N co nej rychleji. Rychlost výpočtu oběma způsoby
(tj. zde uvedeným způsobem a vaším vlastním programem)
porovnejte z hlediska počtu provedených aritmetických ope-
raci.

Poznámka. Proměnné А, В, С, E a / jsou pomocné, na

jejich hodnotách po ukončení výpočtu nezáleží.

P - I - 4

Zásobníkový počítač

Nejprve se seznámíme se zásobníkovým počítačem a s je-
ho programovacím jazykem. Zásobníkový počítač pracuje
výhradně s celými čísly. Oproti běžným počítačům má znač-
ná omezení v možnostech práce s paměťovými buňkami. Má
sice paměť dostatečné velikosti, ale celá jeho paměť je orga-
nizována zásobníkovým způsobem. Zásobník má neomeze-
nou hloubku, ukládají se do něj celá čísla. Čísla se v zásobní-
ku uchovávají v tom pořadí, v jakém do něj byla vložena. To
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číslo, které bylo do zásobníku vloženo jako poslední, je vždy
na vrcholu zásobníku. Pouze číslo nacházející se na vrcholu
zásobníku je v danou chvíli dostupné pro čtení nebo smazá-
ní. Po smazání čísla z vrcholu zásobníku se novým vrcholem
zásobníku stává číslo uložené pod ním. Na začátku práce je
zásobník prázdný. Kromě zásobníkové paměti má počítač
к dispozici ještě jeden pracovní registr, do něhož je možné
uložit jedno celé číslo. V registru lze provádět základní celo-
číselné aritmetické operace, prostřednictvím registru může
počítač číst čísla ze vstupu a zapisovat čísla na výstup.

Jednoduché příkazy
Základním operacím zásobníkového počítače odpovídají

jednoduché příkazy jeho programovacího jazyka:
ze vstupu je přečteno jedno číslo a je uloženo do
pracovního registru (pokud při provedení pří-
kazu IN již na vstupu žádné číslo není, dojde
к běhové chybě)
číslo z pracovního registruje zapsáno na výstup,
obsah registru zůstane nezměněn
do pracovního registru se uloží číslo „n“, kte-
ré je v instrukci CONST uvedeno jako přímý
operand (jedná se o jediný příkaz s přímým
operandem)
číslo z pracovního registru je uloženo na zásob-
nik (stane se novým vrcholem zásobníku), ob-
sah registru zůstane nezměněn
odstraní se jedno číslo ze zásobníku (číslo
z vrcholu zásobníku); je-li při provedení příkazu
POP zásobník prázdný, dojde к běhové chybě

IN

OUT

CONST n

PUSH

POP
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TOP číslo nacházející se na vrcholu zásobníku je vlo-
ženo do pracovního registru, obsah zásobníku
zůstane nezměněn (je-li při provedení příkazu
TOP zásobník prázdný, dojde к běhové chybě)
provede se vzájemná výměna čísel uložených
v pracovním registru a na vrcholu zásobní-
ku (je-li při provedení příkazu EXCH zásobník
prázdný, dojde к běhové chybě)
aritmetická operace sčítání: к číslu uloženému
v pracovním registru se přičte číslo z vrcholu
zásobníku, výsledný součet se uloží do registru,
obsah zásobníku zůstane nezměněn

aritmetická operace odčítání: od čísla uloženého
v pracovním registru se odečte číslo z vrcholu
zásobníku, výsledný rozdíl se uloží do registru,
obsah zásobníku zůstane nezměněn

aritmetická operace násobení: číslo uložené
v pracovním registru se vynásobí číslem z vrcho-
lu zásobníku, výsledný součin se uloží do regist-
ru, obsah zásobníku zůstane nezměněn
aritmetická operace celočíselné dělení: číslo ulo-
ženě v pracovním registru se celočíselně vydělí
číslem z vrcholu zásobníku, výsledný celočíselný
podíl (tj. celá část z podílu obou čísel) se uloží
do registru, obsah zásobníku zůstane nezměněn

EXCH

ADD

SUB

MUL

DIV

Podmínky
Zásobníkový počítač dále může provádět testy, kterým

odpovídají jednoduché podmínky jeho programovacího ja-
zyka a jejich negace. Tyto podmínky lze použít pouze na
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místě podmínky v některém složeném příkazu. Existují ná-
sledující jednoduché podmínky:

číslo uložené v pracovním registru je rovno nule
číslo uložené v pracovním registru je kladné
číslo uložené v pracovním registru je záporné

EMPTY zásobník je prázdný
na vstupu již není žádné číslo

Negaci jednoduché podmínky zapisujeme klíčovým slo-
vem not před jménem jednoduché podmínky. Tedy např.
not ZERO znamená, že číslo v registru je nenulové.

ZERO

POS

NEG

EOF

Složené příkazy
Program v programovacím jazyce zásobníkového počítače

je tvořen posloupností příkazů oddělených mezerami. Kaž-
dý příkaz je buď jednoduchý (jedenáct výše uvedených zá-
kladních operací), nebo složený. Složené příkazy se vytvářejí
pomocí těchto řídicích konstrukcí:
if (podmínka) then (příkaz)
if (podmínka) then (příkaz 1)

neúplný podmíněný příkaz

else (příkaz 2) úplný podmíněný příkaz
while (podmínka) do (příkaz) while-cyklus
begin

(příkaz 1)
(příkaz 2)

end příkaz složený
z posloupnosti příkazů

Význam podmíněného příkazu, cyklu i příkazu složeného
z posloupnosti příkazů je obdobný jako význam stejnojmen-
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ných příkazů v Pascalu. Na místě příkazu může být uveden
jednoduchý příkaz nebo opět některý složený příkaz.

Poznámka. Řešitelé, kteří neznají řídicí konstrukce pro-

gramovacího jazyka Pascal a nemají možnost se s nimi se-

známit, mohou místo uvedených složených příkazů použít
číslování řádků programu a příkazů

GOTO (číslo řádku)
a

IF (podmínka) THEN (příkaz)
kde na místě příkazu může stát jednoduchý příkaz nebo
příkaz GOTO (číslo řádku) (obdobně jako v jazyce Basic).

Příklad

Způsob programování zásobníkového počítače ukážeme
na následujícím příkladu. Naším úkolem bude napsat pro-

gram, který ze vstupu přečte posloupnost čísel a určí, zda
tato posloupnost obsahuje sudý počet kladných čísel men-
ších než 10. Pokud ano, program vytiskne číslo 1, jinak vy-
tiskne 0. Uvedeme zde program, který není nejrychlejším
možným programem řešícím zadanou úlohu, ale který dobře
ukazuje, jak se zásobníkový počítač programuje. Do závo-
rek budeme zapisovat komentáře vysvětlující způsob práce
programu.

while not EOF do

begin
(přečtení dalšího čísla)IN

if POS then

begin
PUSH

CONST 10

(číslo je kladné)
(číslo se uloží do zásobníku)
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(rozdíl „10 — číslo ze vstupu“)SUB
if not POS then POP

(není-li číslo < 10, smaže se)
end

end

(nyní jsou ze vstupu přečtena všechna čísla a v zásobníku
jsou uložena ta z nich, která jsou kladná a zároveň menší
než 10)
CONST 1

while not EMPTY do

(čísla jsou vždy po dvou vybírána
ze zásobníku)

begin
POP
if EMPTY then CONST 0

(lichý počet čísel v zásobníku)
else POP

end

(zásobník je vyprázdněn, v pracovním registruje připravena
správná výsledná hodnota)
OUT (tisk výsledku)

Soutěžní úloha

A. Je zadána posloupnost navzájem různých celých čí-
sel tvořená alespoň třemi čísly. Rozhodněte, zda je možné
pomocí zásobníkového počítače nalézt a vytisknout

a) největší ze zadaných čísel,
b) dvě největší ze zadaných čísel,
c) tři největší ze zadaných čísel.
Pro každou z úloh a), b), c): Je-li to možné, napište pro-
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gram v programovacím jazyce zásobníkového počítače, kte-
rý tuto úlohu řeší a který pracuje co možná nejrychleji. Do-
mníváte-li se, že to není možné, své stanovisko vysvětlete
a zdůvodněte.

B. Je zadána posloupnost obsahující 2n + 1 celých čísel
pro nějaké n celé, nezáporné. Jediným nulovým prvkem této
posloupnosti je číslo s pořadím n+ 1 (tzn. prostřední prvek
posloupnosti). Zjistěte pomocí zásobníkového počítače, zda
je zadaná posloupnost symetrická, tzn. stejná při čtení ze-

předu i odzadu. Například posloupnost 28—10—182
je symetrická, zatímco posloupnost 3 0 5 symetrická není.
Odpověď vytiskněte ve tvaru: 1 —je symetrická

0 — není symetrická.

P - II - 1

Je dáno pole A[ 1 .. N, 1.. N] obsahující N2 navzájem růz-
ných celých kladných čísel. Navrhněte co nej rychlejší al-
goritmus, který vytiskne N největších čísel uložených v poli
A. Původní obsah pole A nemusí být po ukončení výpočtu
zachován. Zdůvodněte správnost navrženého algoritmu.

Poznámka. Optimální algoritmus řeší zadanou úlohu pro-
vedením nejvýše p-N2 operací pro nějaké pevné číslo p (tzn.
při vyjádření pomocí parametru N má kvadratickou časo-
vou složitost).

P - II - 2

Je dána konečná posloupnost celých čísel délky N. Prvky
této posloupnosti označíme po řadě X(l), X(2), ..., X(N).
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Podposloupností délky к vybranou ze zadané posloupnos-
ti budeme rozumět libovolnou konečnou posloupnost tvaru
X(h), X(i2), .... X(ik), kde 1 g ц < «2 < ... < ik g N
(tzn. ze zadané posloupnosti je vybráno libovolných к čísel,
přičemž je zachováno jejich pořadí).

Navrhněte co nejlepší algoritmus, který určí délku nej-
delší rostoucí podposloupností vybrané ze zadané posloup-
nosti. To znamená, že určí maximální к takové, že X(ii) <
< X(i2) < ... < X(ik) pro 1 ^ z'i < i2 < ... < ik й N.
Zdůvodněte správnost algoritmu.

Příklad

Pro posloupnost 42764539859 je к = 5, neboť
maximální vybraná rostoucí podposloupnost 2 4 5 8 9 má
délku 5.

P - II - 3

Je dán následující program:

PASCAL
const N — 100;
var A: array [1 .. N] of integer;

J, К, L, R, X: integer;
begin

for J := 1 to TV do read(A[J]);
L := 2;
R := N;
К := N]
repeat

for J := R downto L do
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if A[J - 1] < A[J] then
begin
X := A[J - 1 ]\A[J - 1] := A[J]; A[J] := X;
К := J

end;
L К + 1
for J := L to R do

if A[J — 1] < A[J] then
begin
X := A[J - 1]; A[J - 1] := A[J]\ A[J) := X;
К := J

end;
R := К - 1

until L > R\
for J := 1 to jV do writeln(yl[J])

end.

BASIC
10 LET N = 100

20 DIM A(N)
30 FOR J = 1 TO N

40 INPUT A(J)
50 NEXT J

60 LET L = 2

70 LET R = N

80 LET К = N

90 FOR J = R TO L STEP -1
100 IF A(J-l) >= A(J) THEN GOTO 150
110 LET X = A(J-l)
120 LET A(J-l) = A(J)
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130 LET A(J) = X
140 LET К = J

150 NEXT J

160 LET L = K+l
170 FOR J = L TO R

180 IF A(J-l) >= A(J) THEN GOTO 230
190 LET X = A(J-l)
200 LET A(J-l) = A(J)
210 LET A(J) = X
220 LET К = J

230 NEXT J

240 LET R = K-l

250 IF L <= R THEN GOTO 90

260 FOR J = 1 TO N

270 PRINT A(J)
280 NEXT J

Vstupem programuje 100 celých čísel.
a) Zjistěte a zdůvodněte, co je výsledkem práce progra¬

mu.

b) Proveďte alespoň přibližný horní odhad rychlosti vý-
počtu uvedeného programu. Uvažujte přitom pouze opera-
ce porovnání dvou čísel. To znamená, že vaším úkolem je
zjistit, kolik porovnání bude při výpočtu maximálně prove-
děno. Úlohu řešte obecně a výsledek vyjádřete v závislosti
na hodnotě konstanty N.

P - II - 4

Studijní text к této úloze je shodný s textem pro soutěžní
úlohu P-I-4 v domácím kole.
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Soutěžní úloha

Napište co nej lepší program v programovacím jazyce zá-
sobníkového počítače, který přečte zadanou posloupnost čí-
sel a určí počet kladných sudých čísel a jejich součet.

P - III - 1

Je dáno pole celých čísel S[1.. N] a funkce F, která kaž-
dému celému číslu přiřazuje celočíselnou hodnotu z inter-
válu od 1 do К (včetně obou mezí). Přitom hodnota К je
podstatně menší než počet prvků N uložených v poli S. Na-
vrhněte algoritmus, který přerovná prvky pole S tak, aby
byly uspořádány vzestupně podle hodnot, které jim přiřa-
zuje funkce F. Po přerovnání tedy musí platit pro každou
dvojici prvků S[i], S[j], kde 1 ^ i < j ^ N, že F(5[z]) й
^ F(S'[ý]). V algoritmu nesmíte použít žádnou další dato-
vou strukturu o rozsahu úměrném velikosti N, je povoleno
užít nanejvýš takový počet pomocných paměťových buněk,
který je úměrný hodnotě К. Existuje algoritmus s lineár-
ní časovou složitostí vzhledem к velikosti N zadaného pole,
tzn. algoritmus, který vykoná požadované přerovnání pro-
vedením nejvýše p ■ N operací pro nějaké pevné číslo p.
Zdůvodněte správnost navrženého algoritmu.

P - III - 2

Funkce V dvou proměnných je definována pro všechna
celá nezáporná čísla následujícím rekurzivním předpisem:

pro у ^ 0
pro x > 0

V(x, y) - V(x - 1, у + 1) + V(x, у - 1) pro x > 0, у > 0

V'(O.y) = y+l
V(x, 0) = V(x — 1, x — 1)
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a) Určete minimální počet různých funkčních hodnot
funkce V, které je třeba vypočítat, máme-li určit hodnotu
V(m, n) pro daná čísla m, n. Výsledek vyjádřete v závislosti
na hodnotách m, n.

b) Napište co nejlepší algoritmus pro výpočet hodnoty
V(m,n) a zdůvodněte jeho správnost. Předpokládejte, že
nezáporná celá čísla m, n zadaná na vstupu jsou dostatečně
malá a že tedy nenastane situace, že by hodnota V(m,n)
překročila maximální hodnotu zobrazitelnou v počítači při
běžné práci s celočíselnou aritmetikou.

c) Jak se změní výsledek úlohy a), pokud pro x > 0, у > 0
bude hodnota funkce V definována předpisem

V(x, y) = V(x - 1, у + 1) + V(x - 1, у - 1)?

P - III - 3

Nejprve si zavedeme několik základních pojmů. Řekneme,
že V-úhelník Л(1)Т(2)...A(N) je konvexní, jestliže všech-
ny jeho vnitřní úhly jsou menší než 180 stupňů. Diagoná-
lou konvexního iV-úhelníku budeme rozumět každou úseč-

ku spojující dva různé vrcholy V-úhelníku, které spolu ne-
sousedí na obvodu (tj. nejsou spojené hranou JV-úhelníku).
Z každého vrcholu TV-úhelníku tedy vychází celkem N — 3
diagonál. Triangulací konvexního V-úhelníku nazveme kaž-
dý takový soubor jeho navzájem se neprotínajících diago-
nál, které rozdělují plochu iV-úhelníku na samé trojúhel-
niky. O součtu délek všech diagonál, které tvoří triangulaci
konvexního A^-úhelníku, budeme hovořit jako o velikosti tri-
angulace.
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Zadání úlohy
Konvexní 7V-úhelník A(1)A(2)...A(N) je zadán kartéz-

skými souřadnicemi svých vrcholů v rovině. Navrhněte co

nejlepší algoritmus, který určí minimální velikost jeho tri-
angulace. Zdůvodněte správnost navrženého algoritmu.

P - III - 4

Studijní text к této úloze je shodný s textem pro soutěžní
úlohu P-I-4 v domácím kole.

Soutěžní úloha

a) Je zadána posloupnost celých čísel následujícího spe-
ciálního tvaru. Nejprve obsahuje několik čísel 10, potom ně-
kolik čísel 20 a nakonec několik čísel 30. Přitom od každé
z uvedených tří hodnot obsahuje alespoň jedno číslo.

Napište co nejlepší program v programovacím jazyce zá-
sobníkového počítače, který zjistí, zda počet výskytů čísla
10 v zadané posloupnosti je roven počtu výskytů čísla 20
nebo počtu výskytů čísla 30 nebo zda počet výskytů čísla
20 je stejný jako počet výskytů čísla 30. Jestliže některá
z uvedených tří rovností platí, tzn. obsahuje-li zadaná po-

sloupnost shodný počet čísel alespoň dvou hodnot, program

vypíše číslo 1, jinak je výsledkem 0.
Můžete předpokládat, že vstupní údaje jsou uvedeny

správně podle zadání úlohy. Program tedy nemusí kontro-
lovat správnost zadané vstupní posloupnosti čísel.

b) Řešte tutéž úlohu bez použití příkazů SUB, MUL,
DIV.
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Řešení úloh

P - I - 1

Úlohu je možné řešit různými způsoby. Ukážeme si zde,
jak lze řešení elegantně vysvětlit a zapsat pomocí rekurze.

Rozklady zadaného čísla N budeme vytvářet postupně
po krocích. V každém kroku prodloužíme již vytvořenou
část rozkladu o jednoho dalšího sčítance. Abychom zby-
tečně nevytvářeli rozklady lišící se pouze pořadím sčítanců
(takové rozklady podle zadání úlohy nepovažujeme za růz-
né), zvolíme si pevné uspořádání sčítanců v rozkladu podle
velikosti. Všechny rozklady budeme vytvářet tak, aby po-

sloupnost sčítanců byla neklesající. Pro usnadnění výkladu
budeme nadále předpokládat, že jednotlivé sčítance vytvá-
řeného rozkladu ukládáme do pole A[1 .. N] a že P udává
počet členů již vytvořené části rozkladu. Neustále tedy platí
nerovnost A[ 1] ^ A[2] ‘š ... ^ A[P}.

Popíšeme nyní jeden krok našeho algoritmu. Předpoklá-
dejme, že již máme prvních P členů rozkladu zadaného čísla
N, P ^ 0, A[l] ^ A[2] ^ ... ^ А[Р]. К rozložení ještě zbývá
taková hodnota M, že

A[ 1] + A[2] + ... + A[P] + M = N.

Chceme prodloužit vytvářený rozklad o jednoho sčítance, tj.
o člen A[P+1]. Uvažujme, jakou hodnotu К může mít tento
další sčítanec. Vzhledem к zavedenému uspořádání sčítán-
ců v rozkladu podle velikosti musí být К ^ A[P]. Položíme
nejprve К = А[Р]. Musíme rozlišit dva případy. Jestliže
zbytek M již není možné rozložit ani na dva sčítance velké
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alespoň jako К, celá zbývající hodnota M se musí použít
jako další sčítanec a rozklad je tím vytvořen. V opačném
případě se další výpočet rozkladu rozvětví do dvou cest po-
dle toho, zda se ve vytvářeném rozkladu použije nebo перо-

užije další sčítanec o hodnotě К. Obě tyto varianty musíme
zpracovat. Pokud se použije, bude A[P+ 1] = К a v dalším
kroku budeme stejným způsobem vyšetřovat situaci s již
vytvořeným úsekem rozkladu délky P + 1. Jestliže se další
sčítanec hodnoty К v rozkladu nepoužije, budeme stejným
způsobem vyšetřovat situaci s nezměněným již vytvořeným
úsekem rozkladu délky P, ale s hodnotou К zvětšenou o 1.

Uvedený postup zapíšeme v programovacím jazyce Pascal
snadno s použitím rekurzivní procedury R. Užití rekurze je
zde vhodné, neboť odpovídá charakteru našeho algoritmu.
Není ovšem nezbytné, algoritmus by bylo možné naprogra-
movat bez užití rekurze s jedním pomocným polem.

program ROZKLAD (input, output);

const MAX = 50; {maximální vstupní hodnota N}

A: array[l .. MAX] of integer;var

{ukládání rozkladů}
{rozkládané číslo}N: integer;

procedure R (P, К, M: integer);
{P — počet členů rozkladu uložených v poli A,
К — uvažovaná hodnota dalšího sčítance,
M — hodnota, kterou je ještě třeba rozložit;
invariant: Л[1] + A[2] + ... 4- A[P] + M = N

к A[ 1] ^ АЩ ^ ... ^ A[P] ^ К
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procedura doplní rozklad délky P uložený v A na delší
rozložením hodnoty M, přičemž A[P + 1] ^ K\ dalším
rekurzivním voláním sama sebe vytvoří všechna možná
doplnění a vypíše je}

var I: integer;

begin {Я}
if M < 2 * К then

begin
A[P+\] := M;
for I := 1 to P 4- 1 do write(yl[/] : 3);
writeln

end

{zbytek M již nelze dále rozložit}

else

begin
A[P + 1] := К;
R{P + 1, К, M — К)] { ... buď uplatní v rozkladu ... }
R(P,K+1,M)
end

end; {R}

{další sčítanec velikosti К se ... }

{ ... nebo neuplatní v rozkladu}

begin
read(A^); {hodnota rozkládaného čísla}
R(0,1, N) {na začátku ještě nemáme žádný sčítanec,

každý sčítanec musí mít hodnotu alespoň 1
a zbývá ještě rozložit celé číslo A^}

end.
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P - I - 2

Algoritmus řeší úlohu postupným „obarvováním“ zada-
ných bodů. Na začátku výpočtu mají všechny body barvu 0
(nejsou obarveny). Během výpočtu každému z nich přiřa-
dime barvu 1 nebo barvu 2 podle toho, do které skupiny
bude patřit. Existuje-li nějaké rozdělení bodů do dvou sku-
pin podle zadání úlohy, budou po ukončení výpočtu všech-
ny body obarveny a vzájemná vzdálenost libovolné dvojice
bodů stejné barvy bude menší než t. Obarvení tedy bude
udávat požadované rozdělení bodů do dvou skupin (jedno
z možných, pokud existuje více různých takových rozděle-
ní).

Popíšeme nyní postup obarvování. Začneme tím, že zvo-
líme jeden libovolný bod В a obarvíme ho na 1. Nyní pro-

jdeme všechny body, jejichž vzdálenost od В je větší nebo
rovna t. Tyto body nesmějí být ve stejné skupině s bodem В
a musí tedy mít opačnou barvu. Obarvíme je proto všechny
na 2 а к bodu В si poznamenáme, že je „vyřešen" (tj. je
zajištěno, že nebude ve stejné skupině s nějakým bodem,
který má od něj vzdálenost větší nebo rovnu t).

Obecný krok algoritmu vypadá následovně. Část bodů
je již obarvena, z nich některé jsou vyřešeny. Vybereme li-
bovolný obarvený bod, který dosud není vyřešen (opět ho
pracovně označíme В). Pokud jsou všechny obarvené bo-
dy vyřešeny, zvolíme za В libovolný dosud neobarvený bod
a obarvíme ho třeba na 1 (zde na volbě barvy nezáleží, již
vyřešené body si obarvení žádného dalšího bodu nevynu-

cují a vlastně začínáme řešit úlohu od začátku se zbylými
body). Neexistuje-li již žádný neobarvený bod, algoritmus
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končí. Po zvolení bodu В projdeme všechny body, které ma-

jí od bodu В vzdálenost větší nebo rovnu t, a kontrolujeme
jejich obarvení. Pokud takový bod není dosud obarven, při-
řadíme mu opačnou barvu, než má В (nesmí být s bodem
В ve stejné skupině). Jestliže již takový bod má opačnou
barvu než B, je vše v pořádku a pokračujeme ve výpočtu.
Pokud ovšem má barvu stejnou jako bod B, došlo к neřeši-
telnému konfliktu, stanoveným podmínkám obarvení nelze
vyhovět. Požadované rozdělení bodů tedy neexistuje a al-
goritmus předčasně ukončí svoji práci. Nedošlo-li к tomuto
předčasnému ukončení, označíme bod В za vyřešený. Celý
postup se opakuje tak dlouho, dokud existuje nějaký nevy-

řešený bod.
Pro programovou realizaci algoritmu zavedeme dvě pra-

covní pole. V poli B[l .. n] je uložena barva každého z bodů.
Evidenci vyřešených a nevyřešených bodů provedeme jiným
způsobem, abychom činnost algoritmu urychlili (abychom
si ušetřili práci s prohledáváním pole při výběru nějaké-
ho dosud nevyřešeného bodu). Pole 5[1 .. n] budeme proto
používat jako zásobník, v němž budou uložena čísla těch
vrcholů, které jsou obarveny a nejsou dosud vyřešeny.

program SKUPINY (input, output);

const MAX =100; {maximální počet bodů)

D: array[l . . MAX, 1.. MAX] of real;
{vzdálenosti bodů}

B: array[l .. MAX] of 0 .. 2; {obarvení bodů}
S: array [1 .. MAX] of 1 .. MAX;

var

{zásobník nevyřešených}
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SP: integer; {ukazatel do zásobníku}
N: integer; {počet bodů)
T: real; {mezní vzdálenost bodů}
РОС: integer; {počet obarvených bodů}
I, J: integer; {pomocné proměnné}

begin

{Načtení vstupních údajů v pořadí N, D, T:}
read(jV);
for I := 1 to N do

for J := l to N do read(jD[I,«/]);
read(T);

{Inicializace proměnných —

SP := 1;
S[l] := 1;
B[l] := 1;
for I := 2 to TV do B[I] := 0;
РОС := 1;

obarvení prvního bodu:}

{Vlastní výpočet:}
repeat

while SP O 0 do

{existuje obarvený nevyřešený bod}
{vezmi jeden takový bod —► 7}

begin
/ := S[SP];
SP := SP — 1;
for J := 1 to N do {vyřešení situace v bodě /:}

if D[I, J] >= T then
{J musí mít jinou barvu než /!}

if B[J] = 0 then
begin
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B[J] 3 — B[I)\ {obarvení bodu J}
POC:= POC + 1;
SP := SP+ 1;
S[SP] := J
end

else if 5[J] = B[I\ then
begin
SP := 0; {konflikt v obarvení bodů I,

J —► umělé ukončení výpočtu}
РОС := N + 1 {zvláštní nastavení pro označení

konfliktu — využívá se v závěru}
end

end;
if РОС < N then

begin
/:= 1;
while ад > 0 do / := /+ 1;
B[I] 1; {vybereme jeden takový a obarvíme}
РОС := РОС Л- 1;
SP := 1;
Sil] := /
end

until (РОС >= N) and (SP = 0);

{existuje neobarvený bod}

{Výpis výsledků algoritmu:}
if РОС = N then

begin
writeln(’Rozděleni bodu do skupin:’);
write(’l. skupina:’);
for I := 1 to N do
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if B[I] = 1 then write(7 : 4);
writeln;
write(’2. skupina:’);
for 7 1 to N do

if B[I] = 2 then write(7 : 4);
writeln

end

else {tzn. РОС = 77 + 1}
writeln(’Rozděleni bodu neni mozne!’)

end.

Správnost našeho algoritmu vyplývá z výše uvedeného
rozboru. Postupným obarvováním boduje zajištěno, že bo-
dy mající vzájemnou vzdálenost větší než t se nemohou
dostat do stejné skupiny. Přitom bod je obarven (a tím za-
řazen do jedné z vytvářených skupin) jedině tehdy, je-li to
vynuceno jeho vzdáleností od nějakého jiného bodu již za-
řazeného do některé ze skupin, popř. tehdy, jsou-li všechny
požadavky uspokojeny a přitom ještě zbývají neobarvené
body (potom barvu jednoho dalšího bodu lze zvolit libovol-
ně).

Výpočet podle uvedeného algoritmu je konečný, neboť
v každém krokuje právě jeden z bodů označen jako vyřešený
(v programu je odstraněn ze zásobníku S) a celý výpočet
končí nej později po vyřešení všech bodů. Vykoná se tedy
nejvýše N kroků výpočtu, kde N je pevně zadaný počet
bodů.

Algoritmus má kvadratickou časovou složitost. V každém
z N kroků výpočtu je vyřešen jeden bod. Přitom vyřeše-
ní každého bodu vyžaduje vyhodnotit jeho vzdálenost od
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všech ostatních bodů (s případnými dalšími akcemi kon-
stantní složitosti, jako je obarvování bodů apod.). V kaž-
dém kroku se dále provádí výběr dalšího bodu ke zpraco-
vání. Tento výběr má ovšem také nejvýše lineární časovou
složitost (v programu: hledání prvního neobarveného bo-
du, je-li zásobník prázdný). Celkově je tedy třeba provést
maximálně počet operací úměrný hodnotě N2.

P - I - 3

a) Nejprve ukážeme, jakých hodnot nabývají během vý-
počtu jednotlivé proměnné А, В, C, D, E, F. Vyjádříme
hodnoty těchto proměnných po К průchodech for-cyklem
v programu.

- Hodnota proměnné A se zvyšuje od —1 po 2. Proměn-
ná A tedy nabývá postupně hodnot 1, 3, 5, ..., a po К
průchodech cyklu má hodnotu 2K — 1.

- V proměnné В se sčítají všechny dosud vypočtené hod-
noty proměnné A. Po К průchodech má tedy hodnotu
К к к

К * (К + 1)£(2i-l) = 2.£j-£l - К = к2.— 2 *
2

7 = 1 7=1 7=1

- Hodnota proměnné С* se v každém kroku vytváří nově
(bez ohledu na svou předchozí hodnotu) jako součin hodnot
proměnné В a parametru cyklu I. Tedy po Л'-tém průchodu
bude mít C hodnotu К2 * К — К3.

- V proměnné D se sčítají všechny dosud vypočtené
hodnoty proměnné C. Po К průchodech má tedy hodno-

к

tu £ i3.
7=1
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- V proměnné E se počítá součet všech hodnot parametru
cyklu I. Po К průchodech cyklem má proto E hodnotu

к
К *(K + 1)

2
j=i

- Hodnota proměnné F se v každém kroku výpočtu po-
čítá nově jako kvadrát hodnoty proměnné E. Po К průcho-
dech nabude F hodnoty

К2 * (К + l)2
4

Po ukončení výpočtu, tzn. po N průchodech for-cyklem
N

v programu, tedy proměnná D bude mít hodnotu Y1 J3
a proměnná F hodnotu

i=i

N2*(N + l)2
■4

Ukážeme, že tyto hodnoty se sobě rovnají. Důkaz rovnosti
provedeme matematickou indukcí:

1. pro N = 1 rovnost zřejmě platí,
2. nechť platí dokazovaná rovnost pro iV = x; ukážeme,

že platí i pro N = x + 1:

r+l podle
indukčního

předpokladuI>'3= ;£j3 + (* + i)3 =

x2 * (x 4- l)2
j=i i=i

+ (® + l)3 =

(x + l)2 * (x2 -J- 4x -h 4)
_ (x + l)2 * (x + 2)2

4

44
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Tedy i pro N — x -1- 1 dokazovaná rovnost skutečně platí.
Tím je celé tvrzení dokázáno.

Závěr: Po ukončení výpočtu mají obě proměnné D a F
stejnou výslednou hodnotu, a to

N2 *(N + l)2
4

b) Program počítající výsledné hodnoty proměnných D
a F co nejrychlejším způsobem využívá výsledku úlohy a):

var D, F, N: integer;
begin

read(TV);
D := N*(N + 1);
D \= (D * D) div 4;
F:= D-

writeln(D);
writeln(F)

end.

Zbývá porovnat rychlost výpočtu programu uvedeného
v zadání úlohy a našeho zrychleného. Podle původního pro-

gramu se provádělo N průchodů for-cyklem a při každém
průchodu 6 aritmetických operací. Program tedy pracoval
v lineárním čase (měřeno v závislosti na vstupní hodno-
tě proměnné N) a prováděl celkem 6N operací. Náš nový
program dosáhne zcela stejných výsledků výrazně rychle-
ji. Pracuje totiž v konstantním čase bez ohledu na vstupní
hodnotu N a provádí celkem pouze 4 aritmetické operace.
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P - I - 4

A. a) Nalezení největšího ze zadaných čísel je snadné. Úlo-
hu řeší následující jednoduchý program. Během výpočtu je
v zásobníku uchováváno pouze jediné číslo, a sice hodno-
ta dosud nalezeného maxima. Zadaná čísla ze vstupu není
třeba vůbec ukládat do zásobníku.

IN

(uložení prvního čísla)PUSH
while not EOF do

begin
IN

SUB (porovnání dalšího čísla ...)
(. . . s dosud nalezeným max.)if POS then

begin
ADD

EXCH
end

(uložení nové hodnoty maxima)

end

TOP

(tisk výsledného maxima)OUT

b) Nalezení dvou největších ze zadaných čísel je možné
provést v principu dvěma odlišnými způsoby. Ukážeme si
je postupně oba. V první variantě řešení jsou všechna čísla
čtená ze vstupu ukládána do zásobníku, přičemž na vrcholu
zásobníku se stále udržuje největší z nich. Nalezené maxi-
mum se po přečtení všech čísel vytiskne a odstraní se ze
zásobníku. V další fázi výpočtu se hledá maximum ze zby-
lých čísel (tzn. celkově druhé největší číslo) při postupném
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vybírání čísel ze zásobníku. Hodnota tohoto maxima se při-
tom udržuje a průběžně aktualizuje v pracovním registru
počítače.

IN

(uložení prvního čísla)PUSE
while not EOF do

begin
IN

(porovnání dalšího čísla ...)
(s dosud nalezeným maximem)

SUB
if POS then

begin
ADD

PUSH (nová hodnota maxima na zás.)
end

else

(přečtené číslo není maximem)begin
ADD

EXCH

PUSH
end

(uložení do zásobníku pod ...)
(... dosud nalezené maximum)

end

(vytisknutí největšího čísla)
(smazání největšího čísla)

OUT
POP
TOP

POP

while not EMPTY do (hledání
begin
SUB
if NEG then TOP

zbylých č.)maxima ze

(porovnání)
(nová hodnota maxima do reg.)
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(obnovení původní hodnoty max.)else ADD

POP
end

OUT (vypsání druhého nejv. čísla)

Ve druhém způsobu řešení se čísla zadaná na vstupu
do zásobníku neukládají. V zásobníku jsou stále uložena
(a průběžně aktualizována) pouze dvě čísla: největší z do-
sud přečtených čísel a druhé největší (to je na vrcholu).

IN

(uložení prvního čísla)PUSH
IN

(porovnání prvních dvou čísel)SUB
if POS then

begin
ADD

EXCH
end

else

ADD

PUSH (připravena první dvě čísla
v zásobníku, menší navrchu)

while not EOF do

begin
IN

(porovnání dalšího čísla ...)
(... s druhým největším)

SUB
if POS then

begin
ADD (je-li nové číslo větší, ...)

134



(... dosavadní vrchol se smaže)POP
SUB
if POS then

begin
ADD

EXCH
end

(porovnání s dosud max. číslem)

else

ADD

PUSH (uložení ve správném pořadí ..)
(... do zásobníku)end

end

TOP
POP

EXCH
OUT

(nejdříve vypíšeme největší ..)
(... ze všech čísel)

TOP

(vypsání druhého nejv. čísla)OUT

c) Jestliže budeme do zásobníku našeho zásobníkového
počítače ukládat pouze čísla čtená ze vstupu, popř. jiná
čísla srovnatelné velikosti, úlohu nalézt tři největší ze zada-
ných čísel není možné řešit. Pro nalezení к největších čísel
při jednom průchodu zadanou posloupností čísel je třeba
mít к dispozici stále přístupných к paměťových míst. V pří-
pádě zásobníkového počítače máme přímo přístupný pouze

pracovní registr a vrchol zásobníku. Při čtení čísel ze vstu-
pu je pracovní registr využíván pro čtení, takže je možné
zároveň se čtením čísel ze vstupu a jejich ukládáním do zá-
sobníku vyhledat pouze jedno největší ze zadaných čísel.

135



Při vybírání čísel ze zásobníku se využívá místo na vrcholu
zásobníku, přes které se uskutečňuje přístup do zásobníku.
Jako pracovní paměť zbývá к dispozici pouze registr, takže
je možné vyhledávat opět pouze jedno, např. druhé největší
ze zadaných čísel. Pokud bychom čtená čísla nechtěli do zá-
sobníku vůbec ukládat, můžeme opět udržovat v zásobníku
hodnoty pouze dvou největších čísel. Při třech bychom již
nedokázali obnovovat potřebný stav zásobníku. Kdybychom
totiž přečetli ze vstupu hodnotu nového maxima, nemáme
kam odložit druhé a třetí největší číslo, abychom mohli ulo-
žit nové maximum na dno zásobníku.

Existuje ovšem řešení úlohy založené na možnosti zakó-
dovát vhodným způsobem více čísel do jediného čísla, které
pak uložíme do zásobníku. Na vrcholu zásobníku si tedy mů-
žeme udržovat jediný záznam obsahující informaci o třech
největších dosud nalezených číslech. Po přečtení každého
dalšího čísla ze vstupu tento záznam rozkódujeme a po po-
rovnání s nově přečtenou hodnotou opět zakódujeme (s pří-
pádnými změnami) a uložíme. Možných kódů je celá řada,
například lze použít součin příslušných mocnin tří pevně
zvolených prvočísel. Trojici čísel a, b, c lze tedy uložit ve
tvaru T • 36 • 5C.

Toto řešení je sice zcela správné, ale má dvě nevýhody. Je
velmi pracné a komplikované, příslušný program je značně
rozsáhlý, a proto ho zde ani neuvádíme. Druhou, význam-
nější a důležitější problematickou otázkou je velikost čísel
ukládaných do zásobníku. I to nej úspornější zakódování tří
čísel běžné velikosti do jediného vede к velmi velké výsledné
hodnotě. V definici zásobníkového počítače nebylo stanové-
no žádné omezení na velikost čísel, která lze ukládat do
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zásobníku, takže ve smyslu této definice je uvedené řešení
správné. Je ovšem dobré uvědomit si, že takovéto řešení by
bylo zcela nereálné v případě, že bychom programovali ně-
jaký skutečně existující zásobníkový počítač, neboť u něj by
velikost čísel, s nimiž se pracuje, byla jistě omezena.

B. Čísla ze vstupu postupně čteme a ukládáme do zásob-
niku tak dlouho, dokud nepřečteme prostřední prvek zada-
né posloupnosti (jednoznačně identifikovatelný tím, že jako
jediný má hodnotu 0). Při čtení dalších čísel ze vstupu ode-
bíráme čísla ze zásobníku a kontrolujeme, zda je splněna
podmínka symetrie podle zadání.

IN

while not ZERO do

begin
PUSH
IN

(první polovina posloupnosti
je uložena v zásobníku)

end

while not EOF do

begin
(přečtení dalšího čísla)IN

SUB
if ZERO then

POP
(při shodě s vrcholem zás. ...)
(... snížíme úroveň zásobníku)

else

while not EOF do (jinak dočteme čísla ze vstupu)
IN

end

if ZERO then CONST 1 (nastavení výsledné hodnoty)
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else CONST 0

OUT (tisk výsledku)

P - II - 1

Zavedeme pomocné pole SLMAX[1.. N], které bude ob-
sahovat informace o poloze maximálních hodnot v jednot-
livých sloupcích pole A. Bude tedy platit SLMAX[J] = I
právě tehdy, jestliže A[I, J] je největší ze všech čísel ulože-
ných v J-tém sloupci pole A.

Nejprve provedeme počáteční zaplnění pole SLMAX od-
povídajícími hodnotami. Výběr N největších čísel uložených
v poli A potom proběhne v N krocích následujícího výpoč¬
tu:

- pomocí pole SLMAX nalezneme největší hodnotu ze

sloupcových maxim; tuto hodnotu získáme jako maximum
z čísel A[SLMAX[J], J] pro J od 1 do N\ nechť je to číslo
A[I, I<\

- číslo A[I, K] je tedy největším z čísel uložených v poli
A; vytiskneme ho a vypustíme ho z pole A dosazením nuly

A[l,K]
- obnovíme informaci o poloze sloupcového maxima ve

sloupci, v němž došlo ke změně, tzn. spočteme novou hod-
notu SLMAX[I<}.

za

program MAXIMA (input, output);
const M = 100; {maximální přípustná hodnota N}
var N: integer; {velikost zadané matice}

A: array [1 . . M, 1 . . M] of integer; {zadaná matice čísel}
SLMAX: array [1 . . M] of integer;
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{polohy sloup, maxim}
MAX: integer; {pro výběr max. hodnoty}
I, J, K: integer; {pomocné proměnné}

procedure SLOUPEC(J:integer);
{počítá polohu maximálního čísla v J-tém sloupci
pole A a ukládá ji jako hodnotu SLMAX[J]
do pom. pole SLMAX}

var MX, /: integer;
begin {SLOUPEC}
MX := 0;
for I := 1 to N do

if MX < A[I, J) then
begin
MX :=A[I,J];
SLMAX[J] := I
end

end; {SLOUPEC}

begin
read(./V);
for I := 1 to N do

for J := 1 to N do read(A[7, J]);
{čtení zadané matice A}

for J := 1 to N do SLOUPEC(J);
{nastavení hodnot SLMAX}

for I := 1 to N do {N kroků výpočtu:}
begin
MAX := 0;
for J := 1 to N do {výběr největšího čísla}

if A[SLMAX[J], J] > MAX then
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begin
MAX :=A[SLMAX[J],J]-,

{MAX je největší číslo}
К := J {К je sloupec, odkud bylo

vybráno číslo MAX}
end;

writeln(AA4X); {vypsání největšího Čísla}
A[SLMAX[K], K] := 0; {... a jeho smazání z A]
SLOUPEČEK) {nová hodnota největšího

čísla ve sloupci A'}
end

end.

Správnost algoritmu přímo plyne z úvodního rozboru.
V každém kroku výpočtu je nalezena a vytištěna největ-
ší hodnota z maxim v jednotlivých sloupcích, což je jistě
největší číslo momentálně se nacházející v poli A. Přepsání
tohoto čísla nulou je vytisknuté číslo z pole A vynecháno
(všechna čísla v poli A jsou podle zadání kladná!) a v dalším
kroku se tedy bude vyhledávat největší ze všech zbývají-
cích čísel. Celkem program po N krocích výpočtu vytiskne
skutečně N největších čísel uložených původně v poli A.
Výpočet je konečný, má předem omezený počet kroků hod-
notou N.

Popsaný algoritmus má kvadratickou časovou složitost.
Přečtení N2 čísel ze vstupu i počáteční zaplnění pole
SLMAX jistě vyžadují řádově N2 operací. Vlastní výpočet
je pak tvořen N kroky, přičemž v každém z nich je nejprve
pomocí pole SLMAX vybráno maximum z N čísel a po

jeho vypsání a smazání je opět výběrem maxima z N čísel
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obnoveno správné zaplnění pole SLMAX. Celkem se tedy
provede počet operací úměrný hodnotě N2.

Rychlejší algoritmus řešící zadanou úlohu není možný,
neboť již jenom počet hodnot, které je třeba zpracovat
a z nichž každá může ovlivnit výsledek, je N2.

Poznámka. Zkuste sami modifikovat zde uvedené řešení

úlohy tak, aby původní obsah pole A zůstal zachován.

P - II - 2

Postupně budeme procházet zadanou posloupnost čísel
X. V г-tém kroku výpočtu budeme sledovat, jak mohou
vypadat rostoucí podposloupnosti vybrané z počátečního
úseku posloupnosti X délky i, tzn. z posloupnosti X(l),
A(2), ..., X(i). Pro dosažení co nejúspornějšího a nejrych-
lejšího řešení úlohy si zavedeme pomocné pole M[l..N],
do něhož si budeme průběžně ukládat následující informa-
ci: prvek M[j] je v každém okamžiku roven minimální dosud
známé hodnotě posledního prvku vybrané rostoucí podpo-
sloupnosti délky j. Další průběžně aktualizovaná proměnná
К udává délku maximální (tzn. nejdelší) dosud nalezené
rostoucí podposloupnosti. V poli M jsou tedy definovány
hodnoty M[ 1], M[2], ..., M[K]. Po provedení г-tého kroku
výpočtu budou tudíž splněny následující podmínky:

2. К je délka maximální rostoucí podposloupnosti vybra-
né z posloupnosti X(l), A(2), ..., X(i)

3. M[j] = min{A(zý); existují indexy *i < *2 < • • • < b =

i takové, že Ar(z!) < X(i2) < . . .< X(ij)}
... pro j = 1, ..., К
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Z poslední uvedené podmínky zřejmě plyne platnost ne-
rovnosti M[1] < ... < M[K]. Pokud totiž rostoucí vybraná
podposloupnost délky j může končit číslem M[j], pak exis-
tuje také vybraná podposloupnost délky j— 1, která vznikne
z předchozí uvažované podposloupnosti vynecháním posled-
ního členu. Její poslední člen bude ovšem jistě menší než
M\j], a tedy skutečně platí M[j — 1] < M[j].

Po provedení všech N kroků výpočtu bude proměnná К
obsahovat délku maximální rostoucí podposloupnosti vy-
brané z celé zadané posloupnosti .АГ(1), ..X(N), a právě
to je požadovaný výsledek úlohy.

Zbývá ukázat, jakým způsobem provedeme aktualizaci
hodnot proměnné К a údajů uložených v poli M při jed-
nom kroku výpočtu. Uvažujme г'-tý krok výpočtu a zpraco-
vání čísla X(i) ze zadané posloupnosti. Je-li X(i) větší než
M[K], je možné prodloužit dosud nejdelší nalezenou vybra-
nou rostoucí podposloupnost o číslo Х(г). Zvětšíme tedy
hodnotu proměnné К o jedničku a pro nové К definujeme
údaj M[K] jako hodnotu čísla Х(г). V opačném případě ne-
ní možné dosud maximální vybranou podposloupnost pro-
dloužit a hodnota К se tedy nezmění. Může se ovšem stát,
že číslo X(i) nám umožní snížit některou z dříve stanové-
ných hodnot M[j]. Jak jsme již uvedli, platí stále nerovnost
M[1] < ... < M[K]. Je tedy možné najít takový index j,
že buď

X(i) ^ M[1]j = 1 a

nebo

M[j - 1] < X(i) § M[j}.1 <j^K
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Nastane-li ostrá nerovnost V(i) < M[j], můžeme nyní sní-
žit hodnotu M[j] tím, že za ni dosadíme číslo V(i). Existuje
totiž rostoucí vybraná podposloupnost délky j — 1 končící
číslem M[j — 1], a protože .АГ(г) > M[j — 1], číslo V(i)
tuto podposloupnost prodlužuje na rostoucí vybranou pod-
posloupnost délky j. Jejím posledním prvkem je právě číslo
Х(г), které tedy sníží údaj M[j], je-li to možné.

Uvedený rozbor je zároveň zdůvodněním správnosti navr-
ženého algoritmu. Výpočet je jistě konečný, neboť je tvořen
přesně N kroky, kde N je délka zpracovávané posloupnosti
čísel. Časová složitost algoritmu je v optimálním případě
N * \og2(N). Provádí se totiž N kroků výpočtu a v každém
z kroků se kromě jednoduchých akcí s konstantní časovou
složitostí musí vyhledávat v poli M index j určující, kterou
hodnotu M[j] budeme modifikovat. Vzhledem к uspořádá-
ní pole M podle velikosti je možné určit index j binár-
ním prohledáváním (půlením intervalů), a tedy s časovou
složitostí log2(V). Odtud plyne složitost celého algoritmu
N * log2(N).

program PODPOSLOUPNOST (input, output);
const MAX = 100; (maximální délka posloupnosti)

X\ array[1 .. MAX] of integer;var

(zadaná posloupnost čísel)
M: array[1 .. MAX] of integer;

(pomocné pole dle rozboru)
N: integer; (počet čísel v posloupnosti X}
К: integer; (výsledná délka podposloupnosti)
D, H: integer; (meze pro binární prohledávání)
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I, J: integer; {pomocné proměnné}

begin
read(iV);
for I 1 to N do read(X[/]); {přečtení posloupnosti}
I:= 1;
К := 1;
Af[l] := X[l];
while I < N do {N kroků výpočtu:}

begin
/:=/+ 1;
if X[I] > M[K] then {zpracování čísla X[/]}

begin
К := К + 1; {prodloužení max. podposloupnosti}
M[K] :=X[I]
end

else

begin {nalezení indexu J v poli M}
if X[I]<= M[1] then

J := 1
else

begin {chceme 1 < J ^ К
k M[J - 1] < X[I\ <: M[J]}

D:= 1;
H := K]
while H — D > 1 do

{binární prohledávání v úseku D — H]
begin {stále platí: M[D\ < X[I] ^ M[H]}
J := (H + D) div 2;
if X[/] > M[J] then D :=J
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else H J

end;
J H {výsledná hodnota indexu J}
end;

M[J] X[I] {nová hodnota M[J] pro nalezené J}
end

end;
write(’Nejdelší vybraná rostoucí podposloupnosť);
writeln(’ má délku К, V);
writeln

end.

P - II - 3

a) Výsledkem práce uvedeného programu je setřídění N
čísel zadaných na vstupu podle velikosti od největšího к nej-
menšímu a vytisknutí všech čísel v tomto sestupném pořadí.
Jedná se o programovou realizaci třídicího algoritmu zva-
ného shake-sort, což je vylepšená varianta známého bublin-
kového třídění.

Proměnné L a R slouží к vyznačení úseku pole A, který
je ještě třeba setřídit. V každém okamžiku platí, že musí-
me ještě třídit čísla uložená v úseku A[L — 1], ..., A[R],
zatímco ostatní čísla v poli A jsou již na svých místech (tj.
na místech, kam budou patřit i po setřídění celého pole A).
Tomu odpovídá počáteční nastavení hodnot proměnných L
a R, neboť na začátku výpočtu je třeba setřídit celé pole A.
Třídění končí, jestliže L > R, tzn. jsou-li již všechna čísla
v poli A na svých místech.
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Celé třídění probíhá po krocích. Každý krok je v uvede-
ném programu představován provedením jednoho for-cyklu
a následným nastavením některé z hodnot L, R. Pravidelně
se střídají kroky výpočtu, v nichž je dosud neutříděný úsek
pole A procházen pomocí proměnné J od nižších indexů
к vyšším a naopak. Je-li při takovém průchodu nalezena
dvojice sousedních čísel A[J — 1], A[J], pro kterou platí
A[J — 1] < A[J], jsou tato dvě čísla mezi sebou prohoze-
na (vymění si místa v poli A). Do proměnné К je zároveň
zaznamenáno místo poslední výměny dvou sousedních čí-
sel během jednoho průchodu polem A. Je tudíž jisté, že
po ukončení průchodu dosud nesetříděným úsekem pole A
se dostane na svoje správné místo v poli A nejméně jedno
další číslo. Při průchodu ve směru od nižších indexů к vyš-
ším je to nejmenší z čísel nacházejících se v tomto úseku
(dostane se na konec úseku), při opačném směru je to nej-
větší z čiísel (dostane se na začátek). Je tedy možné změnit
hodnotu příslušné proměnné L nebo R a tím zmenšit úsek
pole A, který je ještě třeba setřídit. V některých případech
je možné zmenšit sledovaný úsek pole A i o více čísel na-

jednou. Na svých místech jsou totiž jistě všechna čísla od
místa poslední provedené výměny dvou sousedních čísel až
к odpovídajícímu konci úseku. Správné změny hodnoty pro-
měnné L nebo R proto dosáhneme přiřazovacím příkazem
za for-cyklem využívajícím hodnoty proměnné K.

Výpočet programuje pro libovolná vstupní data jistě ко-
nečný, neboť v každém kroku výpočtu se dostane na své
správné místo v poli A nejméně jedno číslo a úsek, který je
ještě třeba setřídit, se tedy zmenší. Počet kroků výpočtu je
proto předem omezen hodnotou konstanty N.
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b) Program třídí celkem N čísel. V každém kroku vý-
počtu se dostane na své správné místo v poli A minimálně
jedno číslo, takže к setřídění celého pole je třeba provést
maximálně N — 1 kroků (bude-li na svých místech N — l
čísel, pak poslední N-té číslo již také). V každém kroku vý-
počtu se úsek pole A, který je ještě třeba setřídit, zmenšuje
alespoň o jedno číslo. V prvním kroku má délku N, v nej-
horším případě má výpočet plných N — 1 kroků a potom
v posledním kroku má tříděný úsek délku 2. Při průchodu
úsekem délky D v jednom kroku výpočtu se provede D —

— 1 porovnání dvou sousedních čísel. Celkově proto bude
při výpočtu provedeno maximálně

N(N - 1)(N -1) + (N -2) + ... + 3 + 2+1 = 2

porovnání. Pro konstantu N = 100 zvolenou v našem pro-

gramu představuje tento výraz celkem 4950 porovnání. Tří-
dici algoritmus shake-sort má tedy kvadratickou časovou
složitost.

P - II - 4

Program bude číst ze vstupu postupně zadaná čísla a bu-
de z nich vybírat ta, která jsou kladná a sudá. Otestovat,
zda je číslo kladné, můžeme snadno pomocí jednoduché
podmínky POS. Ke zjištění, jestli je číslo sudé, musíme na-

programovat test dělitelnosti dvěma. Vzhledem к tomu, že
zásobníkový počítač pracuje v celočíselné aritmetice, stačí
vstupní číslo vydělit dvěma, zpětně vynásobit dvěma a po-
rovnat s jeho původní hodnotou (kterou jsme si předem
uschovali na zásobníku).
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S vybranými kladnými sudými čísly je třeba provádět dvě
operace - určovat jejich počet a jejich součet. To je možné
provádět v zásadě dvěma různými způsoby, podobně jako
u úlohy P-I-4 Ab). První možností je ukládat vybraná čísla
průběžně do zásobníku. Přitom musíme jednu z výsledných
hodnot (např. počet čísel) počítat zároveň s jejich ukládá-
ním do zásobníku a druhou hodnotu (součet čísel) potom
spočteme během vyprazdňování zásobníku. Druhá metoda
řešení úlohy spočívá v tom, že se čísla čtená ze vstupu do
zásobníku vůbec neukládají. Během celého výpočtu se v zá-
sobníku udržují pouze dvě hodnoty, a to součet a počet již
zpracovaných kladných sudých čísel. Po přečtení všech čísel
ze vstupu pak máme v zásobníku oba hledané údaje.

Ukážeme si nejprve podrobné řešení naší úlohy využívají-
cí první z uvedených postupů. V první etapě výpočtu tedy
čteme čísla ze vstupu, provedením potřebných testů z nich
vybíráme kladná sudá a tato čísla ukládáme do zásobníku.
Na vrcholu zásobníku zároveň udržujeme hodnotu udává-
jící počet čísel uložených do zásobníku. Po přečtení všech
čísel ze vstupu tuto hodnotu vytiskneme a odstraníme ze
zásobníku. Ve druhé etapě výpočtu potom čísla ze zásob-
niku postupně odebíráme a v pracovním registru počítáme
jejich součet. Ten pak vytiskneme jako další výsledek naše-
ho programu.

CONST 0

PUSH (v zásobníku zatím není žádné
ze vstupních čísel)

while not EOF do

begin
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(přečtení dalšího čísla)IN

if POS then

begin
PUSH
PUSH
CONST 2

EXCH

(číslo je kladné)

(test dělitelnosti dvěma)DIV
MUL

POP
SUB

(číslo je sudé)if ZERO then

begin
TOP (záměna vrchních dvou čísel ..)

(.. v zásobníku, na vrchol ..)
(.. se dostane počet čísel)

POP
EXCH
PUSH
CONST 1

ADD

EXCH
(zvětšení počtu čísel o 1)
(uložení nového počtu čísel)

end

else

(číslo není sudé — smažeme ho)POP
end

end

TOP

(vypsání počtu čísel)OUT

POP
CONST 0
while not EMPTY do
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begin
ADD

POP
(součet hodnot čísel ze zás.)

end

OUT (vypsání součtu čísel)

Při druhém z možných postupů si budeme na vrcholu zá-
sobníku uchovávat součet již přečtených kladných sudých
čísel a pod ním jejich počet. Po nalezení dalšího kladného
sudého čísla tyto dva údaje zaktualizujeme. Na závěr vý-
počtu program vypíše obě čísla uložená v zásobníku.

CONST 0

PUSH

PUSH
while not EOF do

begin

(zatím počet = 0)
(zatím součet = 0)

(přečtení dalšího čísla)IN

if POS then

begin
PUSH

PUSH
CONST 2

EXCH

(číslo je kladné)

(test dělitelnosti dvěma)DIV

MUL

POP

SUB
if ZERO then

begin
(číslo je sudé)
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TOP

(přesun čísla do registru)
(přičtení čísla к součtu)
(odstranění dosavadního součtu)
(počet čísel do registru)
(počet čísel do zásobníku)

POP

ADD

POP
EXCH
PUSH

CONST 1
ADD (zvýšení počtu čísel o 1)

(odstranění dosavadního počtu)POP
EXCH
PUSH (obnovení situace v zásobníku)
end

else

(číslo není sudé — smažeme ho)POP

end

end

TOP

POP
OUT (vypsání součtu čísel)
TOP

POP
OUT (vypsání počtu čísel)

P - III - 1

Algoritmus řešící zadanou úlohu bude založen na následu-
jícím postupu. Nejprve si rozdělíme celé pole S na К „při-
hrádek“, přičemž každá přihrádka je určena vždy pro čísla,
jimž funkce F přiřazuje jednu z hodnot od 1 do К. Veli-
kosti těchto přihrádek není těžké předem zjistit při jednom
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průchodu polem S. Pro uložení velikostí přihrádek budeme
používat pomocné pole C[l.. К]. Ve druhé fázi výpočtu
pak budeme přihrádky zaplňovat těmi prvky pole S, které
do nich patří. Přitom je třeba zaznamenávat si, kam až je
která přihrádka zaplněna. К tomuto účelu bude sloužit dru-
hé pomocné pole A[1.. A']. Obě pomocná pole C a A mají
v souladu se zadáním úlohy velikost úměrnou hodnotě K.
Zbývá vyřešit technickou otázku, jak celý proces zařazová-
ní čísel do přihrádek organizovat, aby třídění probíhalo „na
místě“ bez nutnosti pracovat s dalším polem velikosti N.
Tímto problémem se budeme podrobněji zabývat v dalším
detailním popisu algoritmu.

V první fázi výpočtu provedeme dosazení počátečních
hodnot do polí C a A. Toto dosazení se snadno uskuteční
při jednom sekvenčním průchodu polem S. Po inicializaci
polí C a A bude C[i\ určovat počet všech čísel uložených
v S, kterým funkce F přiřazuje hodnotu i. Údaj A[i] bude
mít význam indexu, od kterého budou po uspořádání čísel
v poli S uložena ta z nich, jimž funkce F přiřazuje hodnotu
i (tzn. jsou to začátky jednotlivých „přihrádek44 v poli S).

Druhou fází výpočtu je pak vlastní uspořádání čísel.
Přerovnávání čísel uložených v poli S probíhá po krocích.
V každém kroku je jedno z N čísel přemístěno na své správ-
né místo (tj. na první volné místo v té „přihrádce44, do které
toto číslo patří). Přitom se průběžně mění hodnoty uložené
v polích С а А. V průběhu této druhé fáze výpočtu bude
hodnota C[i\ udávat (pro každý index i z rozmezí od 1 do
K) počet čísel uložených v poli S takových, že jim funkce
F přiřazuje právě hodnotu i a že tato čísla dosud nebyla
zařazena na své výsledné místo v poli S. Hodnota A[i\ bu-
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de indexem v poli S, kam se má umístit další přemisťované
číslo, jemuž funkce F přiřazuje hodnotu i.

Začneme umísťováním čísla S[j] s indexem j = 1. Toto
číslo patří do pole S na místo s indexem ^[F(5[ý])]. Umis-
time ho tam proto a zvýšíme hodnotu ^4[T(5[ý])] o 1, aby
se stala indexem volného místa v poli S, kam lze uložit dal-
ší číslo, jemuž funkce F přiřazuje stejnou hodnotu T(S'[j]).
Zároveň snížíme hodnotu CfTýí^ý])] o 1, neboť jedno číslo
s hodnotou -^(^[ý]) je již umístěno. Jestliže je -4[T(5[ý])]
různé od j, nesmíme ztratit číslo, které bylo dosud uloženo
v poli S na místě s indexem T[F(5[ý])]. Toto číslo proto
přesuneme výměnou na uvolněnou pozici v poli S s inde-
xem j. Tím jsme zároveň, aniž bychom změnili hodnotu
j, získali nové číslo S[j], které budeme umísťovat v dal-
ším kroku výpočtu. Pokud bylo náhodou číslo S[j] již na
svém místě, tj. pokud bylo j = ^4[T(5[ý])], žádný přesun
čísel v poli S v tomto kroku neprovádíme a pouze změníme
hodnoty uložené v polích A a C výše uvedeným způsobem.
V tomto případě ale ještě musíme změnit hodnotu indexu
j a určit tak nové číslo 5[ý], které se bude umisťovat na své
místo v dalším kroku výpočtu. Vyhledáme proto takové m,
že C[m\ je nenulové, tzn. ještě je třeba umístit nějaké číslo,
jemuž funkce F přiřazuje hodnotu m. Polohu takového čísla
v poli S neznáme, ale víme, že po uspořádání patří na místo
s indexem Л[т]. Tedy prvek s indexem j = A[m] není ještě
umístěn a zvolíme ho proto pro další krok výpočtu. V kaž-
dém kroku výpočtu se jedno z čísel dostane na své správné
místo v poli S, takže po provedení N kroků bude na svých
místech všech N čísel uložených v poli S.

Z uvedeného rozboru přímo plyne správnost popsaného
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algoritmu. Konečnost výpočtu je dána provedením předem
známého počtu TV kroků výpočtu. Algoritmus má lineární
časovou složitost z hlediska parametru TV, jak požaduje za-
dání úlohy. Počáteční obsazení polí Cad vyžaduje provést
jeden sekvenční průchod polem S, tedy řádově TV operací.
Vlastní výpočet má přesně TV kroků, přičemž počet ope-
raci prováděných v každém kroku je omezen konstantou.
Za konstantu zde považujeme i hodnotu K, která je podle
předpokladu uvedeného v zadání úlohy podstatně menší než
počet prvků TV uložených v poli S.

program PŘEROVNANÍ (input, output);
const TV =100; {velikost pole 5}

К = 10; {počet různých hodnot funkce F}
S: array[l .. TV] of integer; {zadané pole čísel)
A, C: array[l .. К] of integer;

var

{prac. pole podle rozboru)
I, J, D, M, #, P,T: integer; {pomocné proměnné)

function F (V: integer): integer; {zadaná funkce F]
begin
if X >= 0 then {. . . může vypadat třeba takto)

F := X mod К + 1
else

F : = 1

end;

begin
{Přečtení čísel do pole S a inicializace polí С a A:}
for I := 1 to TV do read(S'[/]);
for I := 1 to К do C[I] := 0;
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for / := 1 to N do C[F(S[/])] := C[F(S[I])\ + 1;
D := 1; {pro výpočet počátečních hodnot A}
for I := 1 to К do

begin
A{1\ := D\
D := D + C[7]
end;

{Přerovnání čísel v poli 5:}
J := 1; {index umísťovaného prvku v poli 5}
M := 1; {minimální index v poli C, že C[M] > 0}
for / := 1 to TV do

begin
H := F(S[J]); {hodnota funkce F umísťovaného čísla}
P := A[H]\ {nová pozice v S pro umísť. číslo}
A[H] := A[H\ + 1;
C[H] ■.= C[H} - 1;
if P <> J then

begin {výměna čísel na pozicích JaPv poli 5}
T := S[J];
SH := S[P];
S[P] := T
end

else

begin {číslo S'fj] je již na svém místě}
while (C[M] = 0) and (M < K) do M := M + 1;
J := A[M] {vybráno další číslo, které je třeba

umístit v následujícím kroku}
end

end;
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{Výpis setříděného pole S:}
writeln(’Setříděné pole čísel:’);
for I := 1 to N do write(S[/],’ ’);
writeln

end.

P - III - 2

a) Z definice funkce V je patrné, že к vyjádření hodnoty
V(m,n) není třeba znát žádnou hodnotu V(x,y) pro x >
> m. Budeme proto postupně zjišťovat počet potřebných
hodnot V(x, y) pro x = m, x = m — l, x = m — 2, .

= 0. Uvažujme nejprve vzájemné závislosti různých hodnot
funkce V v případě, že oba argumenty funkce jsou kladné
(tzn. podle třetího řádku definice funkce V).

Ke stanovení hodnoty V(m, n) je třeba znát V(m, n — 1),
к určení V(m, n — 1) potřebujeme V(m, n — 2), ... atd., až
ke stanovení V(m, 1) potřebujeme znát V(m,0). Tedy pro
x — m je nutné spočítat celkem n + 1 hodnot funkce V,
a sice hodnoty V(m, y) pro všechna у od 0 do n. К výpočtu
hodnoty V(m, n) dále podle definice funkce V musíme znát
hodnotu V(m — 1, n + 1)- Určení této hodnoty ze stejných
důvodů jako v případě x = m vyžaduje znát všechny hodno-
ty V(m — 1, y) pro у od 0 do n +1, tedy celkem n -f 2 hodnot
funkce V. Mezi těmito n + 2 hodnotami jsou již obsaženy
také všechny hodnoty, které potřebujeme znát pro výpočet
V(m, n — 1), V(m, n — 2), ..., V(m, 1). Zbývá vyřešit pří-
pad hodnoty V(m, 0), к jejímuž výpočtu potřebujeme znát
V(m — 1, m — 1). Pro stanovení poslední uvedené hodno-
ty musíme opět ze stejných důvodů znát všechny hodnoty

x =• *>
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V(m — l, у) pro у od 0 do m — 1. Zavedeme-li označení
d = max(n + 1, m — 1), lze tedy počet potřebných hodnot
funkce V pro x — m— 1 vyjádřit jako d-f 1. Jsou to hodnoty
V(m — 1, y) pro у od 0 do d.

S postupně klesající hodnotou prvního argumentu funkce
V nyní počet hodnot této funkce, které je třeba spočítat,
stále roste po jedné. Pro výpočet čísla V(m — 1 ,d) totiž
potřebujeme znát V(m—2, d+1), a tedy také všechny V(m—
— 2,y) pro у od 0 do d + 1 atd. Problémy nyní nedělá ani
výpočet hodnot Р(ж,0) pro x < m. Hodnota V(m — 1,0)
je stanovena definicí funkce V jako V(m — 2, m — 2) a jistě
m — 2 < d + 1. Pro x = 0 budeme tedy potřebovat znát
hodnoty P(0, y) pro 2/od0dod + m— 1, tzn. celkem d +
+ m hodnot. Tyto hodnoty jsou již podle definice funkce V
přímo dány a neodkazují se na žádné další hodnoty.

Počet všech potřebných hodnot funkce V pro výpočet
V(m, n) jsme tedy stanovili takto:

... n + 1 hodnot funkce Vpro x = m

pro x = m — 1 ... d -f 1 hodnot funkce V
pro x — m — 2 ... d + 2 hodnot funkce V

... d + m — 1 hodnot funkce V

... d + m hodnot funkce V
pro x = 1
pro x = 0

Zbývá provést jednu malou ne příliš významnou korekci.
V případě x = 0 není třeba počítat hodnotu P(0,1), neboť
к vyjádření 1/(1, 0) potřebujeme znát 1/(0, 0) а к vyjádření
hodnot 1/(1,1), 1/(1, 2), ..., 1/(1, d + m —2) potřebujeme po
řadě 1/(0, 2), 1/(0, 3), ..., V(0,d + m — 1). Od výsledného
počtu potřebných hodnot V tedy můžeme odečíst 1.
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Celkový počet potřebných hodnot funkce V nyní získáme
součtem:

(n 1) + (d 4- 1) 4- (d 4- 2) 4- ... 4-
4- (d 4- m — 1) 4- (d -f m) — 1 =

— n -f md 4- |m(m 4- 1),

kde d = max(n 4- 1, m — 1).
Uvedený vzorec platí pro výpočet libovolné hodnoty

V(m,n), pokud m > 0. V případě m = 0 stačí samozřejmě
spočítat pouze jedinou (požadovanou) hodnotu funkce V.

b) Pro výpočet hodnoty V(m, n) musí algoritmus postup-
ně spočítat všechny potřebné hodnoty funkce V, jejichž cel-
kový počet jsme stanovili v řešení úlohy a). Je třeba zvolit
takové pořadí výpočtu hodnot funkce V, abychom v kaž-
dém kroku používali pouze již spočtené hodnoty. Z definice
funkce V je zřejmé, že toto vhodné pořadí je následující:
počítáme hodnoty V(x,y) pro x rostoucí od 0 do m a pro
každé takové x postupně pro у rostoucí od 0 do d + m — x

(až v případě x = m stačí pouze pro у od 0 do n).
Je třeba ještě uvážit, které předchozí hodnoty funkce V

musí algoritmus uchovávat a jakou datovou strukturu tedy
bude vhodné použít. Podle definice funkce V potřebujeme
znát při výpočtu V(x, y) pro x > 0 pouze některou z hodnot
V(x— 1, z), kde z у (viz 2. a 3. řádek definice), a případně
ještě údaj V(x,y— 1). Pro uložení starších hodnot funkce V
nám proto bude stačit jednorozměrné pole P[0 . . d+ m], ve
kterém budeme spočtené hodnoty funkce V postupně pře-
pisovat přes sebe. V každém okamžiku, tj. při výpočtu čísla
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V(x,y), mají uložené hodnoty P[j] následující význam:

pro j < у ... P[j] má hodnotu V(x,j)
pro j ^ у ... P[j] má hodnotu V(x — 1 ,j).

Algoritmus výpočtu V(m,n) nyní zapíšeme v programo-
vacím jazyce Pascal. Pro zjednodušení zápisu algoritmu bu-
deme i pro x = m počítat všechny hodnoty V(x,y) pro у
od 0 až do d.

program FUNKCE V (input, output);
const MAX = 100; {maximální velikost pole P,

tzn. maximální přípustná hodnota
pro m + n + 1 a pro 2m — 1}

P: array[0 .. MAX] of integer;var

{zákl. datová struktura)
M, N: integer; {argumenty ze vstupu)
D: integer; {hodnota dle rozboru)
I, J: integer; {pomocné proměnné)

begin
read(M, A);
if M = 0 then

writeln (N + 1)
else

begin
if N + 1 > M — 1 then D := N + 1

else D := M — 1; {vypočtená hodnota d}
for J := 0 to D + M do P[J] := J + 1;

{výpočet čísel V"(1, г/))
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for I := 1 to M do {zbývající hodnoty V}
begin
P[0] := P[1 — 1];
for J 1 to D + M — I do

P[7] := P[J - 1] + P[J + 1]
end;

writeln(P[A^j)
end

end.

c) Při uvedené změně v definici funkce V se počet hod-
not funkce V potřebný к výpočtu hodnoty V(m,n) sníží.
Přesné stanovení tohoto počtu ovšem bude o něco obtížněj-
ší. Rozlišíme tři základní případy:

1. m ^ n
Pro výpočet hodnoty V(m,n) potřebujeme znát V(m —

— l,n — 1) a V(m — l,n+l), к jejich vyjádření musíme
zase použít hodnoty V(m — 2,72 — 2), V(m — 2,72), V(m —
— 2,72 + 2), ... atd. Vzhledem к předpokladu m ^ n se nikdy
nedostaneme к hodnotě V(x, 0) pro i>0a nikdy se proto
neuplatní druhý řádek v definici funkce V v zadání úlohy.
Bude tudíž třeba spočítat

... 1 hodnotu funkce Vpro x = 722

pro x — 772 — 1 ... 2 hodnoty funkce V
pro x = m — 2 ... 3 hodnoty funkce V

... 772 + 1 hodnot funkce V

tedy celkem 1 + 2 + ... + (722 + 1) = ^(ттг + 1 )(ттг + 2) hodnot
funkce V.

pro x = 0
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2. m > n a čísla m, n mají různou paritu (tzn. jedno je
sudé a druhé liché).

Při výpočtu hodnoty V(m,n) zjistíme, že potřebujeme
znát V(m — n, 0). Uvažujme nejprve potřebný počet hodnot
funkce V bez určování počtu hodnot nutných к vyjádření
U(z,0) pro x > 0 (podle 2. řádku definice). Až do hodnot
s x — m — n je situace stejná jako v případě 1. Je třeba
spočítat

... 1 hodnotu funkce Vpro x — m

pro x — m — 1... 2 hodnoty funkce V

pro x — m — n... n + l hodnot funkce V.

Počet potřebných hodnot funkce V se dále nebude zvyšovat
o 1 s každým snížením prvního argumentu funkce V, ale
pouze při každém druhém snížení. Budeme totiž počítat
hodnoty

V(m — n, у) pro у - 0, 2, 4, ..., 2тг
V(m — n — l,y) pro у = 1, 3, 5, ..., 2n + 1
V(m — n — 2, y) pro у — 0, 2, 4, ..., 2тг + 2

U(0, у) pro у — 1, 3, 5, ..., 2n + (m — тг) = m + n

neboť m, n mají různou paritu. Celkem je tedy třeba určit

1 + 2 + ... + n +

+2[(n + 1) + (n + 2) + ... + + n + 1)] =

= \n(n + 1) + \(m + Зтг + 3)(ттг - n + 1)
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hodnot funkce V.

Zbývá vyřešit výpočet hodnot V(x, 0) pro x > 0. Je třeba
spočítat V{m — n, 0), V(m — n — 2, 0), ..V(l, 0). Podle
definice je třeba к určení V{m — n, 0) spočítat V(m — n —
— l,m—n— 1). Zatímco všechny dosud vyjadřované hodnoty
funkce V měly argumenty různé parity, v tomto případě ma-

jí oba argumenty stejnou paritu a také к vyjádření hodnoty
V(m — n— l,m — n — 1) budeme potřebovat samé další hod-
noty se stejnou paritou obou argumentů funkce V. Jedná se

tedy o rozdílné hodnoty, než jaké jsme dosud počítali. Jejich
počet určíme snadno podle již vyřešeného 1. případu. Bude
jich třeba \{m — n)(m — n+ 1). Mezi těmito hodnotami jsou
již obsaženy také všechny hodnoty potřebné к vyjádření čí-
sel V(m — n — 2, 0), ..., V(l, 0). Celkově je tedy nutné při
výpočtu hodnoty V(m,n) určit
1 1 1
-n(n+ l) + ^(m + 3n-|-3)(m — n + l) + -(m — n)(m — n-f 1)
různých hodnot funkce V.

3. m > n a čísla m, n mají stejnou paritu (tzn. jsou obě
sudá nebo obě lichá).

Tento případ je velmi podobný předchozímu. Opět bude
třeba spočítat pro x = m, m— 1, ..., m — n po řadě 1,2, ..

n + 1 hodnot funkce V. Konkrétně pro x = m — n jsou to
opět hodnoty V(m — n, y) pro у = 0, 2, ..., 2n. Výpočet
bude tentokrát končit hodnotami V(0, y) pro у = 0, 2, ..

m + n, neboť m, n mají nyní stejnou paritu. Bude tedy
třeba určit

* >

* J

1 + 2 + ... + n +

+ 2[(n + 1) -f- (n + 2) + ... + + n)] + -f- n) + 1 =

162



= \n(n + 1) + \(rn + 3n + 2)(m — n) + |(m 4 n) 4 1
hodnot funkce V.

Opět zbývá dořešit výpočet hodnot У(я,0) pro x > 0.
Budou se počítat čísla V(m — n, 0), V(m — n — 2,0), ...,

V(2, 0). Stejně jako ve 2. případě je třeba spočítat hodnotu
V(m—n— 1, m — n— 1). Mezi hodnotami к tomu potřebnými
budou již hodnoty funkce V nezbytné к vyjádření všech
ostatních čísel V (m — n, 0), ..., V' (2,0). Počet těchto hodnot
můžeme opět vyjádřit pomocí výsledku 1. řešeného případu
výrazem ^(m — n)(m - n + 1).

Situace je nyní ovšem trochu komplikovanější tím, že jak
tyto přidávané, tak i dříve spočítané hodnoty funkce V ma-

jí argumenty stejné parity, takže některé z hodnot jsou za-

počítány v obou počtech. Zjistíme, kolik takových případů
nastalo, a od celkového součtu je jednou odečteme. Z geo-
metrického vyjádření obou množin hodnot v rovině snadno
odvodíme, že se jedná o hodnoty nezbytné к vyjádření čísla
V(\(m + n), |(m4-n)), což je celkem |[|(m4-n)41][|(т +
4 n) + 2] různých hodnot.

Pro vyjádření V(m,n) je tedy v tomto případě nutné
spočítat

\n(n + 1)4- 5(m + 3n + 2)(m - n) + |(m + n) + 1 +
+ |(m - n)(m - n + 1) - |(m + n + 2)(m + n + 4)

různých hodnot funkce V.

P - III - 3

Předpokládejme, že proměnná N udává počet vrcholů
zadaného ./V-úhelníku a že v polích AX, AY jsou uloženy
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x-ové a y-ové souřadnice vrcholů A(l), ..A(N). Indexy
vrcholů 1, 2, TV budeme uvažovat uspořádané v tom-
to pořadí, jak za sebou následují na obvodu TV-úhelníku.
Po vrcholu A(N) následuje opět vrchol A(l), uspořádání
je tedy cyklické. V našem algoritmu budeme chtít pracovat
s indexem vrcholu, který následuje jako d-tý za vrcholem
s indexem i. Jeho pořadové číslo je i + d, pokud ovšem hod-
nota tohoto součtu nepřekročí TV. Jinak je třeba vzhledem
к cyklickému uspořádání index výsledného vrcholu počítat
pomocí operace modulo N. Tento přepočet nám bude pro-
vádět pomocná funkce R, která je definována předpisem
R(k) = (к — 1) mod TV + 1. Tedy v pořadí d-tým vrcholem
následujícím za A(i) je vrchol A(R(i + d)).

Vrcholy TV-úhelníku jsou zadány svými kartézskými sou-
radnicemi. Při hledání minimální triangulace budeme po-
třebovat znát velikosti různých diagonál TV-úhelníku. Délku
úsečky spojující vrcholy A(k) a A(l) označme DIST(k, /).
Pomocná funkce DIST spočte vzdálenost vrcholů A(k)
a A(l) snadno pomocí Pythagorovy věty. Výsledek je ro-
ven druhé odmocnině ze součtu kvadrátů rozdílů x-ových
a y-ových souřadnic bodů A(k) a A(l).

Hlavní datovou strukturou našeho algoritmu bude dvou-
rozměrná tabulka reálných čísel T[1.. N,l.. N — 2]. Tabul-
ku T budeme postupně zaplňovat tak, aby hodnotou T[i, d]
byla minimální možná velikost triangulace mnohoúhelníku
A(i)A(R(i + 1)).. ,A(R(i + d)), zvětšená ještě o délku úseč-
ky A(i)A(R(i + d)). Budeme tedy uvažovat mnohoúhelní-
ky tvořené d -f 1 sousedními vrcholy původního zadaného
TV-úhelníku. Pro každé pevně zvolené d z rozmezí od 2 do
TV — 2 je takových mnohoúhelníků přesně TV různých, neboť
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je N možných voleb indexu i. Pro d = N — 1 je již takový
mnohoúhelník jediný a je jím celý původní iV-úhelník.

Pro d = 1 definujeme T[i, d] = 0 pro všechna i od 1 do
N. Výpočet dalších hodnot T[i, d] bude probíhat postupně
po krocích pro d rostoucí od 2 do N — 2 a pro každé ta-
kove d vždy pro všechna i od 1 do N. Každou jednotlivou
hodnotu T[i, d] udávající minimální triangulaci mnohoúhel-
niku Л(г')Л(Д(г-|-1)).. .A(R(i+d)) zvětšenou o délku úsečky
A(i)A(R(i -f d)) spočteme následujícím způsobem: Každá
triangulace uvedeného mnohoúhelníku obsahuje dvojici úse-
ček A(i)A(R(i+j)), A(R(i-f j))A(R(i-f d)) pro nějaké číslo
j z rozmezí 1 až d — 1. Triangulace totiž musí dělit plochu
mnohoúhelníku na samé trojúhelníky, jeden z takto vznik-
lých trojúhelníků musí mít jako jednu svoji stranu úsečku
A(i)A(R(i + d)) a jeho třetím vrcholem pak musí být právě
nějaký bod A(R(i -f j)). Při výpočtu hodnoty T[i,d\ pro-
to budeme postupně zkoumat triangulace obsahující dvojici
úseček A(i)A(R(i + j)), A(R(i + j))A(R(i + d)) pro všech-
na j od 1 do d — 1 (což jsou všechny existující triangulace,
jak jsme právě vysvětlili). Velikost každé takové triangulace
snadno spočteme jako součet hodnot T[i,j] a T[R(i+j), d—
— j], které již známe z předchozích kroků výpočtu, neboť
tabulku T zaplňujeme postupně od nej menších hodnot pro-
měnné d к největším a platí jak j < d, tak i d — j < d. Za
hodnotu T[i, d] nyní stačí vzít minimální hodnotu ze všech
velikostí takových triangulací pro j od 1 do d — 1 a přičíst
к ní ještě délku úsečky A(i)A(R(i + d)).

Po zaplnění celé tabulky T lze nalézt výsledek úlohy mezi
hodnotami T[i, N — 2]. Pro každou hodnotu indexu i od
1 do V udává T[i, N — 2] minimální velikost triangulace
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mnohoúhelníku А(г).. ,A(R(i + N — 2)) zvětšenou o délku
úsečky A(i)A(R(i A N — 2)). Čísla T[i,N — 2] jsou tedy
všechna velikostmi jistých triangulací zadaného 7V-úhelníku
a nejmenší z nich je hledanou minimální možnou velikostí
triangulace.

Z uvedeného rozboru vyplývá správnost navrženého al-
goritmu. Výpočet podle algoritmu je jistě konečný, neboť
počet všech opakování v cyklech je předem omezen hod-
notou proměnné N. Základem algoritmu je výpočet hod-
not uložených v tabulce T. Počet těchto počítaných hodnot
T[i, d\ je úměrný N2 (= velikost tabulky T). Přitom výpo-
čet jednoho čísla T[i, d\ představuje řádově N operací (pro
jednotlivé možné volby indexu j). Celý algoritmus má tedy
časovou složitost N3.

program TRIANGULACE (input, output);
const MAX = 100; {maximální počet vrcholů}

AX, AY: array[l.. MAX] of real;
{souřadnice vrcholů}

var

N: integer; {počet vrcholů}
T: array[l .. MAX, 1.. MAX] of real;

{tabulka dle rozboru}
I, J, D: integer; {pomocné proměnné}
M, Q: real; {pro výpočet minim}

function R (K: integer): integer;
{přepočet indexů vrcholů modulo N}

begin
R := (К - 1) mod N A I
end; {R}
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function DIST (К, L: integer): real;
{vzdálenost bodů v rovině)

begin
DIST := sqrt(sqr(^X[/ř] - AX[L}) +

+ sqr(Xy[íf]-^y[L]))
end; {DIST}
begin
{Načtení vstupních dat:}
read(iV);
for I := 1 to N do

begin
read(AX[I], AY[I])-,
T[1,1] := 0
end;

{Zaplnění tabulky T:}
for D := 2 to N — 2 do

for I := 1 to N do

begin
M 0; {libovolná inicializace proměnné M}
for J := 1 to D — 1 do

Q f= T[I, J} + T[R(I + J),D — J];
if (Q < M) or (J = 1) then M Q

{výběr minimální triangulace)
end;

T[I, D]:=M + DIST(I, R(I + D))
end;

{Stanovení výsledné hodnoty jako minimum z T[I, N — 2]:}
M := T[l, N — 2];
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for I := 2 to N do

if T[I, N - 2] < M then M := T[I, N - 2];
writeln(’Minimální velikost triangulace’);
writeln(’zadaného mnohoúhelníku: ’, M)
end.

P - III - 4

Budeme řešit pouze úlohu b), neboť tato úloha je obec-
nější a její řešení v sobě zahrnuje i řešení úlohy a). Sa-
mostatné řešení úlohy a) s použitím aritmetických operací
zakázaných v b) se příliš neliší, základní myšlenka řešení
i efektivita výsledného programu zůstává zachována, pouze

zápis algoritmu se mírně zjednoduší.
V programu je nutné porovnávat mezi sebou různé dvo-

jice hodnot. Porovnání jsme dosud prováděli pomocí příka-
zu SUB. Stačí si ovšem uvědomit, že odečíst od čísla jis-
tou konstantu znamená totéž jako přičíst к němu stejnou
konstantu, ovšem s opačným znaménkem. Tímto způsobem
nahradíme operace SUB příkazy ADD, jejichž použití není
zakázáno.

Úlohu je možné řešit mnoha různými způsoby. Ukážeme
si zde dvě řešení, z nichž každé jiným způsobem využívá
zásobníku к uchování potřebných údajů. V prvním řešení
se do zásobníku ukládají pouze čítače obsahující vhodné
informace o počtech čísel na vstupu. Hodnoty těchto čítačů
se v průběhu výpočtu mění pomocí aritmetických operací.
Druhé řešení úlohy používá zásobník přímo к uložení čísel ze

vstupu. Počty uložených čísel tak vlastně nahrazují hodnoty
čítačů z předchozího řešení.
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První varianta řešení úlohy spočívá v provedení následu-
jících kroků výpočtu:

1. Ze vstupu se čtou čísla „10“. V zásobníku se přitom
udržuje čítač, jehož hodnota se průběžně zvyšuje o 1, takže
po přečtení všech „10“ ze vstupu čítač udává jejich počet.

2. Ze vstupu se čtou čísla „20“. V zásobníku se přitom
udržují dva čítače, jejichž hodnota se průběžně mění. Na
dně zásobníku se od dříve stanoveného počtu „10“ vždy
odečte 1 a na vrcholu zásobníku se počítá počet všech „20“
přičítáním 1 к druhému čítači. Po přečtení všech čísel „20“
ze vstupu jsou v zásobníku uloženy dvě hodnoty: na dně
zásobníku je rozdíl počet „10“ — počet „20“ a na vrcholu
počet „20“.

3. Je-li hodnota udávající rozdíl počtu „10“ a „20“ nulo-
vá, vytiskne se „1“ jako výsledek práce algoritmu a ukončí
se výpočet. Jinak se tato hodnota ponechá na dně zásobní-
ku pro další použití, nad ní na vrcholu zásobníku zůstává
uložen počet „20“ a pokračuje se ve výpočtu následujícím
krokem.

4. Ze vstupu se čtou čísla „30“. Přitom se průběžně snižu-
je o 1 hodnota čítače uloženého na vrcholu zásobníku, takže
po přečtení všech čísel ze vstupu bude tento čítač udávat
rozdíl počet „20“

5. Je-li hodnota udávající rozdíl počtu „20“ a „30“ nulo-
vá, vytiskne se „1“ jako výsledek práce algoritmu a ukončí
se výpočet. Jinak se tato hodnota ponechá na vrcholu zá-
sobníku pro další použití, pod ní na dně zásobníku zůstává
nadále uložen rozdíl počtu „10“ a „20“ a pokračuje se ve

výpočtu následujícím krokem.
6. Sečtou se obě hodnoty uložené v zásobníku. Tyto hod-

počet „30“ .
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noty představují dříve zjištěné rozdíly (počet „10“ — počet
„20“) a (počet „20“ — počet „30“). Výsledkem tohoto sou-
čtu je hodnota rozdílu (počet „10“ — počet „30“).

7. Je-li výsledný rozdíl nulový, algoritmus vytiskne vý-
sledek „1“, jinak vytiskne „0“. Tím je úloha vyřešena a al-
goritmus ukončí svoji práci.

(počet „10“ je zatím nulový ..)
(... z techn. důvodů dáme —1)

CONST -1

PUSH
IN

(na vrcholu je přečtené číslo)PUSH
CONST -10
ADD

while ZERO do

begin
POP

CONST 1
ADD

EXCH

(přečtené číslo je „10“)
(zrušení „10“ ze zásobníku)

(zvýšíme hodnotu čítače o 1)
(uložíme novou hodnotu čítače)

IN

(další číslo ze vstupu do zás.)PUSH
CONST -10

ADD

end

CONST 1

EXCH

(otestujeme, zda je to „10“)

(máme přečtenu první „20“)
(založení druhého čítače)

(za toto první číslo „20“ nemusíme snižovat hodno-
tu čítače na dně zásobníku díky počáteční inicializa-
ci na —1 místo na 0 v prvním řádku programu; na
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dně zásobníku je nyní počet „10“ zmenšený o 1 a na
vrcholu hodnota 1 — zatím bylo přečteno jedno číslo
„20“)

IN

(přečtené číslo na vrcholu)PUSH
CONST -20

ADD

while ZERO do

begin
POP

CONST 1
ADD

(otestujeme, zda je to „20“)

(přečtené číslo je „20“)
(zrušení „20“ ze zásobníku)

(nová hodnota horního čítače)
POP

(záměna uložení čítačů)EXCH

PUSH
CONST -1

ADD (nová hodnota druhého čítače)
POP

(obnova uložení čítačů)EXCH
PUSH
IN

(další číslo ze vstupu do zás.)PUSH
CONST -20

ADD

end
(otestujeme, zda je to „20“)

(nyní je v zásobníku uložen rozdíl počtu „10“ a „20“,
nad ním je počet „20“, na vrcholu zásobníku první
číslo „30“ přečtené ze vstupu)
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POP
TOP (horní čítač do registru)
POP
EXCH
if ZERO then

CONST 1

(záměna čítačů)

(počet „10“ = počet „20“)
else

begin
EXCH
PUSH
CONST -1

ADD
EXCH
while not EOF do

begin

(obnova uložení čítačů)

(již jsme přečetli první „30“)
(nová hodnota horního čítače)

(přečtení čísla „30“ ze vstupu)IN

CONST -1

ADD

EXCH
end

(snížení hodnoty čítače)

(nyní jsou přečtena všechna čísla ze vstupu; v zásob-
niku jsou uloženy rozdíly počtu „10“ a „20“ a počtu
„20“ a„30“)

(horní čítač do registru)TOP
if ZERO then

CONST 1 (počet „20“ = počet „30“)
else

begin
POP
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(součet obou čítačů)ADD
if ZERO then

CONST 1 (počet „10“ = počet „30“)
else

(záporný výsledek)CONST 0

end

end

(tisk výsledku)OUT

Druhá varianta řešení zadané úlohy se skládá z postup-
ného provedení následujících kroků výpočtu:

1. Ze vstupu se přečtou všechna čísla „10“. Průběžně se

ukládají do zásobníku a v čítači udržovaném na vrcholu
zásobníku se zároveň spočítá jejich počet.

2. Ze vstupu se přečtou všechna čísla „20“. Ukládají se do
zásobníku nad čísla „10“, která byla do zásobníku vložena
v předcházejícím kroku. Odčítáním jedničky za každé ulo-
žené číslo „20“ od čítače udržovaného na vrcholu zásobníku
se určí rozdíl počtu čísel „10“ a „20“.

3. Je-li tento rozdíl nulový, vytiskne se „1“ jako výsledek
práce algoritmu a ukončí se výpočet. Jinak se čítač z vrcho-
lu zásobníku zruší a pokračuje se ve výpočtu následujícím
krokem.

4. Ze vstupu se přečtou všechna čísla „30“. Při jejich čtení
se průběžně vypouštějí čísla „20“ ze zásobníku, dokud je to
možné (za každé přečtené číslo „30“ se vypustí jedno číslo
„20“ ze zásobníku). Tím se určí rozdíl počtu „30“ a „20“.
Zároveň se v čítači udržovaném na vrcholu zásobníku spo-
čítá počet všech přečtených čísel „30“.
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5. Je-li na vstupu stejný počet čísel „30“ a „20“, je možné
vypustit ze zásobníku za každé čtené číslo „30“ jedno číslo
„20“ (tj. nestane se, že by se během čtení „30“ ze vstupu
narazilo v zásobníku na číslo „10“ uložené pod všemi „20“)
a po přečtení všech čísel ze vstupu už naopak v zásobní-
ku žádné číslo „20“ nezbude. V takovém případě vytiskne
algoritmus výsledek „1“ a skončí. Jinak se ze zásobníku vy-

pustí všechna zbylá čísla „20“ (jsou-li tam nějaká) a pokra-
čuje se ve výpočtu následujícím krokem.

6. Porovná se počet čísel „30“ zaznamenaný v čítači na
vrcholu zásobníku s počtem čísel „10“ uložených v zásobní-
ku pod tímto čítačem. Toho dosáhneme postupným vypouš-
těním čísel „10“ a současným snižováním hodnoty čítače.

7. Jsou-li tyto počty stejné, algoritmus vytiskne výsledek
„1“, jinak vytiskne „0“. Tím je úloha vyřešena a algoritmus
ukončí svoji práci.

Naprogramování uvedeného postupu řešení je opět pouze
technickou záležitostí. Kroky 1 až 3 jsou snadné. V kroku
4 je výhodné zavést zvláštní pomocnou hodnotu ukládá-
nou do zásobníku jako příznak v případě, že při vybírání
čísel „20“ ze zásobníku zjistíme, že jich je méně, než kolik
je „30“ na vstupu. Tento příznak nám umožní rozhodnout
o dalším postupu v kroku 5. Můžeme použít například číslo
„40“, kterým nahradíme číslo „10“ ležící v zásobníku nejblí-
že к vrcholu hned pod čísly „20“. Zbývající kroky výpočtu
jsou již opět snadné.
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Korespondenční seminář ÚV MO 1989/90

Korespondenční seminář je jednou z forem péče o ta-
lentované žáky. Vznikl ve 24. ročníku MO proto, aby bylo
možno věnovat individuální péči i těm žákům, kteří neměli
možnost navštěvovat speciální školy a pracovat v tamních
seminářích. Nyní, kdy existují i krajské korespondenční se-
mináře a kdy speciální školy s třídami zaměřenými na ma-
tematiku najdeme v každém kraji, je cílem tohoto semináře
zlepšit individuální přípravu všech studentů, kteří prokázali
své schopnosti a matematický talent v předchozích roční-
cích matematické olympiády. Korespondenční seminář tak
nadále zůstává důležitou součástí přípravy na mezinárodní
matematickou olympiádu.

К účasti v korespondenčním semináři jsme pozvali všech-
ny špičkové řešitele kategorie A spolu s těmi studenty, kte-
ří nějak vynikli v krajských kolech kategorií В a C před-
chozího ročníku МО. V průběhu 39. ročníku MO jim bylo
postupně zasláno 5 sérií poměrně náročných úloh, jejichž
texty najdete v úlohové části této ročenky (tentokrát popr-
vé s řešeními). Došlá řešení pak byla opravena, ohodnocena
a s rozmnoženým komentářem vrácena účastníkům seminá-
ře. Nejlepšími v celkovém hodnocení byli:
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1. Petr Hliněný, 4. ročník G M. Koperníka, Bílovec
2. Vladimír Skalský, 4. ročník G, T. Ševčenka, Prešov
3. Štěpán Kasal, 3. ročník G, Korunní, Praha
4. Ondřej Kalenda, 4. ročník G, Korunní, Praha
5. Martin Dindoš, 4. ročník G J. Hronce, Bratislava
6. Martin Čížek, 4. ročník G, Rožnov p. Radhoštěm
7. Ján Bajcsy, 4. ročník G A. Markuša, Bratislava
8. Vladimír Glasnák, 3. ročník G, V. Okružná, Žilina
9. Martin Schnabl, 4. ročník G, Korunní, Praha

10.—11. Jan Hannig, 3. ročník G, Korunní, Praha
10.—11. Ondřej Such, 4. ročník G A. Markuša, Bratislava

Korespondenční seminář je řízen tajemníkem UV MO
RNDr. Karlem Horákem, CSc., který se staral o výběr úloh
a prováděl i redakci komentářů. Opravu pak zajišťovalo ně-
kolik pracovníků MU ČSAV a několik studentů a aspirantů
MFF UK Praha (všichni jsou bývalí olympionici).

Úlohy korespondenčního semináře

1.1 Zjistěte, jaká je nej delší cesta, po které může šachový
král obejít celou šachovnici 8x8 tak, že každé pole projde
právě jednou a vrátí se na výchozí pole, přičemž jeho cesta
spojující středy jednotlivých polí tvoří uzavřenou neprotí-
nající se lomenou čáru.

1.2 Na listu čtverečkovaného papíru n x n jsou některé
čtverečky obarveny jednou z n různých barev. Pravidelným
obarvením budeme rozumět takové obarvení čtverečků, při
němž v žádném řádku ani sloupci nejsou dva čtverečky stej-
né barvy. Lze vždy pravidelně „dobarvit“ všechny čtverečky,
jestliže už je (pravidelně) obarveno
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a) n2 — 1 čtverečků,
b) n2 — 2 čtverečků,
c) n čtverečků?

1.3 Dokažte, že rovnostranný (ne nutně pravidelný) konvex-
ní pětiúhelník obsahuje rovnostranný trojúhelník se stranou
téže délky jako strana daného pětiúhelníku.

1.4 Je dán jednotkový čtverec, z něhož odřízneme rohy —

čtyři trojúhelníky, jejichž dvě strany tvoří | příslušné strany
čtverce. Se vzniklým osmiúhelníkem provedeme tutéž ope-
raci: z každého jeho vrcholu odřízneme trojúhelník, jehož
dvě strany tvoří vždy | příslušných stran osmiúhelníku, atd.
Dostaneme tak posloupnost mnohoúhelníků (každý další je
zřejmě částí předchozího). Určete obsah průniku všech ta-
kovýchto mnohoúhelníků.

1.5 V kruhové aréně o poloměru 10 m pobíhá lev. Pohy-
bem po lomené čáře uběhl celkem 30 km. Dokažte, že součet
všech úhlů, o něž se při běhu otočil, je aspoň 2 998 rad.

1.6 Dokažte, že součet

(;)*(;)'»» G)'»"+
je pro každé přirozené n dělitelný číslem 2n 1.1.7V prostoru je dán trojhran, v němž jsou sestrojeny osy

jednotlivých rovinných úhlů. Dokažte, že vzájemné úhly
těchto os jsou buď vesměs ostré, nebo vesměs tupé, ane-
bo všechny pravé.
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2.1 Stěny jednotkové krychle jsou označeny čísly 1, 2, ..., 6
tak, že součet čísel na protějších stěnách je 7. Krychli bude-
me přemísťovat z levého spodního rohu šachovnice 50 x 50
do protějšího rohu tak, že ji budeme otáčet kolem jedné
z jejích hran, aby se pohybovala doprava nebo nahoru. Při-
tom každému poli šachovnice přiřadíme číslo té stěny, která
na něm stála. Najděte nejmenší a největší možný součet
uvedených 99 čísel.

2.2 Přiřaďme krajním bodům dané úsečky čísla 1, jejímu
středu pak přiřadíme jejich součet, tj. 2. V každém následu-
jícím kroku napíšeme mezi každá dvě už napsaná sousední
čísla jejich součet. Kolikrát bude mezi čísly, která dostane-
me po 1 973. kroku, zapsáno číslo 1 973?2.3V rovině jsou dány dva body A, B. Zvolme bod C leží-
cí na ose úsečky AB a sestrojme posloupnost C\ — С, C?,
..., Cn, Cn+1, ..., kde Cn+1 je střed kružnice opsané troj-
úhelníku ABCn. Pro jakou polohu bodu C bude bod Cn
středem úsečky AB (takže Cn+i a další body posloupnosti
nebudou definovány)? A v jakém případě vyjde Cn = Cl

&n 3. bi, 621 • • •> bn2.4Jsou dána reálná čísla cti, <*2, •

která splňují aspoň jednu z následujících dvou podmínek:
a) jestliže a, < aj, pak 6t- ý bj,

* *)

al a2 + • • • On
< aj, pak 6, ^ bj.b) jestliže a, <

Dokažte, že pak platí
n

n(a\bi (Z262 + •.. *f* o-nbn) ^
^ (cti + Ct2 + • • • + an)(^l + í>2 + • • • + bn).
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2.5 Předpokládejme, že chceme sestrojit body Mi, M2, ..

Mn v rovině, jestliže jsou dány jejich vzájemné vzdálenos-
ti rij = \MiMj\ (1 ^ i,j ^ n). Lze tyto body sestrojit,
jestliže víme, že libovolná pětice z uvažovaných n bodů se-

strojit jde? Nestačí požadovat možnost sestrojení libovolné
čtveřice? Jaké bude nejmenší к v prostoru takové, že mož-
nost sestrojení libovolné fc-tice z uvažovaných n bodů zaručí
možnost sestrojení všech n bodů (na základě daných čísel
rij, 1 ^ *, j ^ n)?
2.6 V rovině jsou dány dvě přímky m, n a bod O. Sestrojte
trojúhelník, jehož výšky leží na daných přímkách man
a pro který je bod O středem kružnice opsané.

2.7 Zjistěte, pro která к se dá čtverec 6x6 zaplnit 12 plátky,
z nichž к má tvar úhelníku a 12 — к pravoúhelníku (každý
obsahuje tři čtverečky — obr. 28).

Obr. 28

3.1 Jsou dána přirozená čísla 1 < к < n. Určete nejmenší
přirozené číslo m tak, aby platilo: Je-li na šachovnici n x n
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rozmístěno libovolným způsobem m věží, můžeme jich vy-
brat к tak, že žádné dvě se nebudou navzájem ohrožovat.

3.2 Pro dané x můžeme hodnotu x8 určit pomocí tří ope-
raci: x2 = x, x4 = x2 ■ x2, x8 = x4 ■ x4\ podobně lze
x15 určit pomocí pěti operací (když к uvedeným operacím
přidáme ještě ж16 = x8 ■ x8, x15 — z16 : x). Dokažte, že
a) x1 000 je možno určit pomocí 12 operací (násobení a dě-

lení),
b) pro každé přirozené n můžeme určit xn pomocí nejvýše

| log2 n -(- 1 operací.

x ■3.3Označme A{Hi výšku а ЛгМг těžnici ostroúhlého troj-
úhelníku A\A2A3 (i = 1, 2, 3). Dokažte, že jeden ze součinů
\H\M\ I • |Л2Л3|, \H2M2\• \A3Ai\, \H3M3\■ \AXA2\ se rovná
součtu zbylých dvou. Platí toto tvrzení i pro tupoúhlý či
pravoúhlý trojúhelník?3.4Do konvexního n-úhelníku AiA2...An je vepsán
n-úhelník B\B2 ... Bn, který má obsah P (přitom vrchol
Bi leží na straně AíAí+\ pro г = 1,2,..., n — la vrchol Bn
na straně AnA\). Zároveň je mnohoúhelníku A\A2...An
opsán n-úhelník C\C2 .. .Cn, jehož obsah je Q, přičemž
C1C2 II B1B2, C2C3 II B2B3, .... C„Ci II BnBi (vrchol
Ai zase leží na straně Cí-\Cí pro i — 2, ..., n a A\ na
straně CnC\). Určete obsah S mnohoúhelníku A\A2 .. .A
popřípadě zjistěte, jaké hodnoty může S nabývat.

П )3.5Uvnitř hran EF a FG krychle ABODEFGH jsou dány
dva body К a M tak, že rovina KBM se dotýká koule, která
je dané krychli vepsána. Dokažte, že velikost úhlu dvou
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stěn čtyřstěnu HBKM se společnou hranou BH nezávisí
na volbě bodů К a M. Najděte velikost tohoto úhlu <p.

3.6 Na dvoře krále Artuše se sešlo n rytířů. Někteří z nich
jsou v nepřátelském vztahu, ale každý z rytířů tu má aspoň
|n přátel. Dokažte, že kouzelník Merlin, rádce krále Artuše,
může rozesadit rytíře okolo kulatého stolu tak, aby každý
z nich seděl vedle přátel.
Pokud má každý rytíř stejný sudý (samozřejmě nenulový)
počet přátel, může Merlin rozesadit rytíře okolo několika
(aspoň tří) kulatých stolů tak, aby nikdo neseděl vedle svého
nepřítele (různě velkých stolů má dostatek). Dokažte.

3.7 Najděte hodnotu odmocniny

A 111 11... 11111
100

s přesností na dvě stě platných číslic.

4.1 Najděte kořeny t*i, Г2, ..., rn rovnice

xn + nxn 1 -f d^X
n —2

+ • • • + On — Oj

víte-li, že platí r{6 -f r\6 +... + r*6 = n (n je dané přirozené
číslo).
4.2 Daný pravoúhelník R je rozdělen na konečný počet pra-
voúhelníků R{, 1 ^ i ^ n, které se navzájem nepřekrývají,
přičemž strany každého z nich jsou rovnoběžné se stranami
R a každý z pravoúhelníků Ri má aspoň jednu stranu celo-
číselné délky. Dokažte, že i R má stranu celočíselné délky.
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4.3 V rovině jsou dány body O, A\,..., A4 takové, že každý
z trojúhelníků OAíAj, 1 ^ i < j ^ 4, má obsah aspoň 1.
Dokažte, že pak pro některé dva body Ai,Aj má trojúhelník
OA{Aj obsah nejméně л/2.
4.4 Předpokládejme, že vrchol A ostroúhlého trojúhelníku
ABC má od středu opsané kružnice a od průsečíku výšek
stejnou vzdálenost. Určete všechny možné hodnoty úhlu při
vrcholu A.

4.5 Dané kružnici je opsán mnohoúhelník. Body dotyku
tvoří vrcholy mnohoúhelníku vepsaného dané kružnici. Do-
kažte, že součin vzdáleností libovolného bodu M na kruž-
nici od stran jednoho z mnohoúhelníků je roven součinu
vzdáleností stejného bodu od stran druhého mnohoúhelní-
ku. (Vzdáleností bodu od strany mnohoúhelníku tu rozu-
mime vzdálenost tohoto bodu od příslušné přímky.)
4.6 Ve městě je jedno kruhové a n čtvercových náměstí, při-
čemž každé ze čtvercových náměstí je spojeno ulicí s kruho-

Obr. 29
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vým a se dvěma čtvercovými (obr. 29). Na každé z 2n ulic
města je zaveden jednosměrný provoz tak, že na každé ná-
městí lze přijet a z každého náměstí lze odjet. Dokažte, že
z každého náměstí lze dojet na libovolné jiné, aniž bychom
narušili zavedená pravidla.

4.7 Označme a, /3, 7 úhly, které svírá tělesová úhlopříčka
AG hranolu ABCDEFGH s hranami AB, AD a AE. Do-
kažte, že <* + /? + 7 < я.5.1Jsou dána reálná čísla a, b a přirozené číslo n. Zjistěte,
jakých hodnot může nabývat xo, jestliže reálná čísla xo,

zi, ..., xn splňují rovnosti

E *? = ь.£ Xi = a,
i=0 i=05.2Jsou-li A\, A2, ..., Л5 body na povrchu jednotkové kou-

le, jaká je největší hodnota výrazu

min IAiAj I ?
l=*<j=5

Určete všechny konfigurace bodů A\, A2, ..., A$, pro něž
se uvedené maximum nabývá.5.3Obchodník s koberci potřebuje určit rozměry nového
koberce, ale nemůže najít metr. Při ukládání obdélníkového
koberce však zjistil, že v každé ze dvou skladovacích míst-
ností může nový koberec položit na podlahu tak, že každý
roh koberce se dotýká jiné stěny místnosti. Ty mají rozměry
38 x 55 a 50 x 55 m. Jak velký je nový koberec?
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5.4 Pro jaká přirozená čísla n ^ 2 je nerovnost

x\ + xl + • • • + xn ^ p(xix2 + x2x3 + ... + xn_ixn)

xn, jestliže a)splněna pro libovolná reálná čísla x\, x2, .

P= 1> b) p = §, с) p = I?
5.5 Kružnice je body A\, A2, ..rozdělena na n stej-
ných částí, z nichž každá je obarvena nějakou barvou. Rek-
neme, že dva oblouky dané kružnice (jejich krajní body jsou
některé z daných bodů) jsou shodně obarveny, jestliže při
nějakém otočení dané kružnice se uvažované oblouky sho-
dují včetně příslušných barev. Dokažte, že platí: Jestliže ke
každému bodu A{, 1 ^ i ^ n, existují dva shodně obarve-
né oblouky se společným krajním bodem A,, pak lze celou
kružnici rozdělit na několik shodně obarvených oblouků, tj.
uvažované obarvení je „periodické14.
5.6 Jsou dána čísla p > 1, q > 1. Na stranách BC, CD
pravoúhelníku ABCD jsou dány body P, Q tak, že \BC\ =
= p\BP\ a \CD\ = q\QD\. Pro jaký poměr stran AB a BC
bude úhel PAQ největší?
5.7 V rohu šachovnice n x n stojí šachová figurka, které ob-
vykle říkáme jezdec. První hráč s ní táhne dvakrát po sobě
obvyklým způsobem (2 pole v jednom směru rovnoběžném
s okrajem šachovnice a 1 pole ve směru kolmém), zatím-
co druhý hráč táhne jedním prodlouženým tahem (o 3 pole
v jednom směru a 1 pole ve směru kolmém). Oba hráči se

střídají, přitom první se snaží postavit jezdce do protějšího
rohu šachovnice, zatímco druhý mu v tom chce zabránit.
Kdo z nich může vyhrát, jestliže je n ^ 4?

* *>
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Řešení úloh korespondenčního semináře

1.1 Král může táhnout buď rovnoběžně s některým okra-
jem šachovnice (rovně), anebo rovnoběžně s některou úh-
lopříčkou (šikmo). Nejprve dokážeme, že při své cestě musel
udělat aspoň 28 rovných tahů.

Všimněme si okrajových polí šachovnice (obr. 30, je jich
28). Při své cestě musel král projít každým z nich. Očíslujme
je čísly 1, 2, ..., 28 v tom pořadí, jak je král procházel.
Tvrdíme, že pole 1 a 2, 2 a 3, 3 a 4, ..., 28 a 1 jsou sousední
(tj. mají společnou hranu).

Skutečně, nebudou-li např. pole 1 a 2 sousední, pak část
královy cesty mezi 1 a 2 rozdělí šachovnici na dvě části;
každá z nich obsahuje jedno z okrajových polí, sousedících
s 2 — nechť jsou to pole i a j, 3 ^ i < j ^ 28.

Při pokračování své cesty z 2 se král časem dostane do i,
odtud pak do i 4- 1, i + 2, ..., až by měl posléze dojít do j.
Avšak úsek cesty mezi i a j zřejmě musí protnout úsek 1-2,
což je spor se zadáním (cesta krále má být neprotínající se

křivka). Pole 1 a 2 tedy musí být sousední; podobně 2 a 3,
3 a 4, ..., 28 a 1.

Uvažujme nyní obvyklé černobílé obarvení šachovnice.
Pole 1 a 2 jsou sousední, mají tedy různou barvu. Odtud
plyne, že během cesty 1-2 musel král udělat aspoň jeden
rovný tah — při šikmých tazích se totiž barva políčka němě-
ní. Podobně v částech 2-3, 3-4, ..., 28-1 musel král udělat
aspoň jeden rovný tah, tj. udělal celkem aspoň 28 rovných
tahů.

Označme r počet rovných, s počet šikmých tahů. Protože
král prošel všechna pole, udělal 64 tahů, tedy r + s = 64.
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Délka jeho cesty pak bude

d = (r + sV2)a = (r + (64 -r)VŽ)a = (64^2- (л/2— l)r>

kde a je délka strany políčka šachovnice. Jelikož jsme uká-
žali, že r ^ 28, je nutně

d <: (28 -f 36\/2)a.
Na obr. 31 je příklad cesty, pro kterou r = 28, tj. pro kterou
nastává v posledním vztahu rovnost.

Z2

Z Z Л"7
Z ZiZ Z
z
z z žíÉ4 z1

zzz z
ШШШШ. Z17z 17

Obr. 31Obr. 30

Maximální délka tedy je (28 + 36\/2)a.
Jiné řešení. Uvažujme mřížové body, které jsou středy

příslušných 64 polí dané šachovnice. Navíc budeme předpo-
kládat, že pole této šachovnice mají jednotkovou stranu.

Pokud cesta spojuje dva sousední mřížové body „šikmo“,
leží právě polovina příslušného čtverečku s úhlopříčkou dél-
ky \/2 uvnitř části omezené uvažovanou (uzavřenou) lome-
nou čarou (obr. 32), zatímco jeho druhá polovina leží vně.
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Obr. 32

Přitom všechny takto sestrojené čtverečky leží uvnitř čtver-
ce 7 x 7, který celou uzavřenou cestu obsahuje.

Obsah části uvnitř lomené čáry dovedeme spočítat po-
dle známého Pickova vzorce: Obsahuje-li mnohoúhelník
s vrcholy v mřížových bodech h mřížových bodů (včetně
vrcholů) na hranici а и mřížových bodů uvnitř, je jeho ob-
sah S = ^ -f ií — 1. Obsah příslušné části je tedy 31 a je
konstantní bez ohledu na délku odpovídající cesty. Pro po-

čet s „šikmých“ tahů odtud plyne 49 — 31 ^ tedy s ^ 36.
Obr. 32 ukazuje, že cesta s 36 šikmými tahy vskutku exis-
tuje.

1.2 Pro stručnost nazývejme „list čtverečkovaného papi-
ru n x n“ šachovnicí. Snadno zjistíme, že v případech b)
a c) šachovnici pravidelně dobarvit nelze; stačí vzít n = 2
(takže n2 — 2 = 2) a šachovnici 2x2 obarvit jako na obr. 33
(1,2 jsou dvě různé barvy). Dále ukážeme, že v případě a)
šachovnici dobarvit lze.

Předpokládejme, že v šachovnici n x n je pravidelně obar-
véno n2 — 1 polí n barvami. Šachovnice má n sloupců, takže
každá barva může být použita nejvýše n-krát (jinak by ně-
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který sloupec obsahoval dvě pole stejné barvy). Protože je
ale celkem obarveno n2 — 1 polí, musí se každá barva vysky-
tovat na šachovnici právě n-krát s výjimkou jediné, která se

vyskytuje pouze (n — l)-krát; označme tuto barvu B. Uká-
žeme, že touto barvou lze (pravidelně) dobarvit zbývající
pole.

Označme S sloupec a R řádek, ve kterém se neobarvené
pole nachází. Stačí zřejmě ukázat, že ani v S, ani v R se
barva В nevyskytuje. Dokážeme to pro S (pro R je důkaz
analogický).

V každém sloupci je pravidelně obarveno všech n polí n

barvami, takže každá barva se tam vyskytuje právě jednou
— i barva B. Takových sloupců je celkem n — 1, takže barva
В se v nich vyskytuje (n — l)-krát. Přesně tolikrát se ale В
vyskytuje na celé šachovnici, takže ve sloupci S se už barva
В nevyskytuje.

1

2

Obr. 33

Kromě příkladu uvedeného v řešení lze uvést i příklad
pro obecné n přirozené (obr. 34 pro n = 6). Samozřejmě,
že obecně nelze šachovnici n x n dobarvit, ani když počet
už obarvených polí leží mezi n a n2 - 2. Na druhé straně
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by bylo zajímavé najít nějaké jednoduché podmínky na da-
né obarvení, při nichž šachovnici (pravidelně) dobarvit lze!
Také platí, že pokud je počet už obarvených polí menší než
n, lze šachovnici vždy dobarvit (pokuste se to dokázat!).

1.3 Předpokládejme, že existuje takový konvexní rov-

noramenný pětiúhelník ABCDE, který požadovaný rov-

nostranný trojúhelník neobsahuje. Zároveň budeme před-
pokládat, že \AB\ — 1. Jeho vrcholy označme např. tak,

aby úhlopříčka AD byla největší (obr. 35), podle trojúhel-
níkové nerovnosti pak je

\AD\ < \AE\+\ED\ = 2.
Protože v trojúhelnících ABD, ACD je strana AD nejdelší,
musí být úhly proti ní větší než 60°, je tedy také \$.ABC\ >
> 60°, \$BCD\ > 60°.

Protože předpokládáme, že pětiúhelník ABCDE neob-
sáhuje žádný rovnostranný trojúhelník se stranou 1, ply-
ne odtud, že rovnostranné trojúhelníky nad AB, BC, CD
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protínají úhlopříčku AD. Sestrojme v polorovině, v níž leží
i body В, C, rovnostranné trojúhelníky AB\B2, C\C2D,
kde body B\, C\ leží na AD a je \AB\\ = \C\D\ — 1.

Za uvedeného předpokladu tedy vychází, že bod В musí
ležet uvnitř oblouku B\B2 jednotkové kružnice se středem
A a analogicky bod C uvnitř oblouku C\C2. Uvnitř licho-
běžníku B2C2B\C\ ale nenajdeme žádnou úsečku délky 1
(je \BiB2\ = \C\C2\ = 1 a \B2C2\ < 1). Takový pětiúhel-
nik tedy neexistuje. Uvedený postup lze snadno zobecnit na

případ rovnostranného (+ l)-úhelníku.

1.4 Předpokládejme, že v některém okamžiku jsme
odřízli trojúhelník ABC. Uvažujme trojúhelníky BDE
a CFG, které odřízneme (obr. 36). Pro jejich obsahy pla-
tí S(BDE) = ^S(ABC), protože \BD\ = ±\AB\ a výška
ve v trojúhelníku BDE je rovna jedné třetině výšky vc
v trojúhelníku ABC, a podobně je i S(CFG) = ^S(ABC).
V n-tém kroku tedy odřezáváme 2n+1 trojúhelníků, jejichž
obsahy dávají | součtu obsahů trojúhelníků odříznutých
v (n — l)-ním kroku.
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V prvém kroku odřezáváme 4 trojúhelníky o obsahu yg.

Hledaný obsah je tedy
2

-ž©"n = l

9 _5
1-H=Í

S = = 1 -

9

1.5 Předpokládejme, že lomená čára, která je dráhou lva,
má krajní body X,Y a lomí se po řadě v bodech A\, A2, ...,

An. Označme a,- orientovaný úhel otočení lva v bodě Л,.
Dráhu lva nyní „narovnáme" do přímky následujícím způ-
sobem:

Pro i = 1,2, . . ., n postupně vezmeme bod A{ a celou drá-
hu lva počínaje bodem Л, otočíme kolem středu A{ o úhel
—a, . Při tomto otáčení se bude střed S arény pohybovat po
části kružnice se středem Л,-, která má délku d, = |5Л, | ■
• |a,|. Pro jednoduchost budeme otočenou dráhu lva značit
stejně jako před otočením. Po provedení dostaneme dráhu
lva jako úsečku XY, která má délku 30 km, a leží na ní po
řadě body X, A\, A2, ..An, Y. Nás však bude hlavně
zajímat křivka, kterou při „narovnávání" dráhy opsal bod
S, a ta se skládá z oblouků kružnic. Její krajní body mají
zřejmě od bodů X, Y vzdálenosti nejvýše 10 m. Pro délku
křivky pak srovnáním s délkou úsečky XY snadno zjistíme,
že

d ^ 30 000 — 2 • 10 = 29 980,

29980 Sd = Y.di = £ |5Л,| • |a.| S T 10|ať|
» = 1 t = l í = 1

£ ^ 2 998.
t=i
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Součet úhlů otočení lva tedy je alespoň 2 998 rad.

1.6 Označme

CM;)1-*-On —

a

Podle vzorce

n + l\n n
+

jfe & + 1

který platí pro libovolná к, n přirozená, když ovšem klade-

)=0 pro n < k,1) dostanememe
к

1989 + ...=

71+1 гг + 1
1 989 + ... — fln-fi •+

1 3

Podobně určíme součet

1989a„ + 6„ = Г
TI n

1989 + ...=+ +
1 2

71+1 71+1
1 989 + ... — &n+i.+

0 2

) Vzhledem к tomu má daný součet jen konečný počet nenulových
sčítanců, takže je nekonečný pouze formálně.
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Našli jsme tak rekurentní vzorce an+i = an+bn a 6n+i =
= 1 989an + bn. Jejich úpravou dostaneme

&n+i — 1 989an -f- bn — 1 988an + ап 4 bn — 1988an -f en+i

takže

Uf»+i — an 4- bn — an 4- an 4- 1 988an_i —

= 2an -f- 1 988an_i.
(2)

Matematickou indukcí dokážeme, že součet an je dělitelný
2n—1 . Pro n = 1 je «i = 1, což je dělitelné 21-1 = 1 a pro
n = 2 je «2 = 2, což je dělitelné 22-1 = 2. Předpokládejme,

dělí an-1 a 2n_1 dělí an pro každé n ^ 2, tj. žen —2že 2

existují přirozená čísla к, l tak, že an_i = 2n~2k a an =
_ 2n_1/. Podle rekurentního vztahu (2) pak je

n-l / 4- 497 ■ 22 • 2n~2k =— 2a„ 4* 1 988an_i — 2^2
= 2n(/4 497ik).

Je tedy an+i dělitelné 2n pro každé přirozené n, čímž je
důkaz matematickou indukcí hotov.

Jiné řešeni. Označme

СМЗ-ЧЗ1”4 ■
s» =

a a = 1 4- \/l 989, 6 = 1 — y/1 989. Rozvinutím podle bino-
mické věty vyjde

an-bn = 2Vl 989 S„. (3)
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Dále využijeme rovnost

an+2 _ 6n+2 _ (a + 6)(a"+ l _ 6« + i) _ a6(a« _ fen)

Protože a + b = 2, ab = l — 1 989 = —1 988, plynou z (3)
rovnosti

2л/1 989Sn+2 = 2 -2/1989 5n+j + 1 988 • 2/1 989 S;
<Sn+2 — 25n+i + 1 9885,! = 25n+i + 4 • 497Sn.

П )

Pro n = 1, 2 dané tvrzení snadno ověříme, pro vyšší n je
dokážeme matematickou indukcí stejně jako v předchozím
řešení.

1.7 (Podle P. Hliněného, 4. ročník GMK, Bílovec.) Ze
vzorce pro skalární součin vektorů

v = |i/||v| cosaи •

vyplývá, že jejich úhel a je ostrý (pravý, tupý) právě tehdy,
když skalární součin je kladný (nulový, záporný). Zvolme
na hranách trojhranu jednotkové vektory o, b, c; a + b, b +
4- c, c + a jsou pak zřejmě směrové vektory os jednotlivých
rovinných úhlů trojhranu. Vzájemné skalární součiny jsou

(a + b) ■ (b + c) = a ■ b + a • c + b ■ с + l,
(b + c) • (c + o) = o • b + a ■ c + b • c -f 1,
(c + a) ■ (a + b) = a ■ b + a ■ c b • с + l,

jsou tedy všechny stejné, a proto jsou vzájemné úhly os
buďto všechny ostré, nebo pravé, nebo tupé.
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Jiné řešeni (podle M. Zamazala, 3. ročník G, Brno, kpt.
Jaroše). Je-li trojhran tvořen polopřímkami PA, PB, PC,
označme příslušné osy úhlů oab, oac, obc• Uvažujme kol-
mý průmět celé situace do roviny oabobc (průměty označu-
jeme čárkou). Obě polopřímky PA', PB' svírají s osou oab
stejný úhel (3 (obr. 37). Podobně PB1, PC svírají s osou

obc úhel 7. Úhel os oAb,obc je (3 + 7. Je-li (3 + 7 < |,
je I-§.A'PC\ < тс (jako
uvnitř úhlu A!PC. Úhly všech os jsou zřejmě ostré. Je-li
(3 -1- 7 = |, je úhel A'PC přímý. Je-li odchylka PB od
průmětu rovna —a, mají PA, PC od průmětu obě stejnou
odchylku a. Proto osa oac je kolmicí na průmětnu. Tedy
úhly všech os jsou pravé.

Ve zbývajícím případě jsou úhly všech os přirozeně tupé.

2.1 (Podle M. Stehlíka, 2. ročník G, Brno, kpt. Jaro-
še.) Napišme si nejprve čísla na šachovnici do posloupnosti
v tom pořadí, v jakém vznikala. Ukážeme, že mezi dvěma
po sobě jdoucími výskyty čísla a se vždy vyskytne číslo 7 —
— a (1 ^ a ^ 6). Skutečně, uvažujme některé políčko, na

obr. 37) a průmět osy oac ležína
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němž je například číslo 1, a táhněme z tohoto políčka např.
doprava. Tím se dostanou čísla 1 a 6 na levou, resp. na pra-
vou stěnu krychle. Nyní při libovolném počtu tahů nahoru
tam čísla 1 a 6 zůstanou, tj. budou se otiskovat pouze čísla
2, 3, 4, 5 (v nějakém pořadí). Chceme-li ještě někdy otisk-
nout znovu číslo 1, musíme táhnout aspoň jednou doprava
— tím otiskneme číslo 6, tj. mezi dvěma výskyty čísla 1 se
musí vyskytovat číslo 6. Podobně to dopadne, půjdeme-li
z původního políčka s číslem 1 nahoru. Stejná úvaha platí
i pro libovolná jiná čísla a, 7 — a (1 ^ a ^ 6).

Označme pa počet výskytů čísla a. Z právě dokázaného
tvrzení plyne, že čísla pa a p7-a se liší nejvýše o jedničku.
Součet všech 99 čísel otisknutých na šachovnici bude

s = pi + 2p2 + Зрз + 4p4 + 5p5 + 6рб =

= ^ (pi + P2 + Рз + Pa + Рь + Рб) +
+ \ (5(P6 - Pl) + 3(p5 - P2) + (P4 - Рз)) ■

Avšak pi -f ... + ре = 99 a rozdíly p6 - Pi, Ръ - P2, Pa - Рз
mohou nabývat pouze hodnot 0, 1, —1, nutně tedy

^ .99+i(5 + 3+l) = 351

5 ■ 99+i(—5 -3- 1) = 342.
Snadno nahlédneme, že těchto součtů lze skutečně dosáh-

nout. Stačí jít nejprve 49krát nahoru a pak 49krát doprava.
Bude-li na začátku krychle stát na stěně s číslem 6, vpředu

a
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mít 5 a vpravo 4, bude s = 351, bude-li krychle stát na 1,
vpředu mít 2 a vpravo 3, bude s = 342. Hledané extrémy
tedy jsou s — 351, Smin — 342.max

2.2 Především si všimněme, že v n-tém kroku a později
vznikají už pouze čísla větší než n (za první krok tu pova-

žujeme vznik čísla 2). Snadno to odvodíme matematickou
indukcí. To znamená, že 1 973 mohlo vzniknout stejně jen
v prvních 1972 krocích. Stačí tedy spočítat všechny vý-
skyty čísla 1 973 (ve všech krocích) při číslování úsečky. To
nám umožní následující tvrzení: Jsou-li a, b dvě nesouděl-
ná přirozená čísla, pak se při postupném číslování úsečky
vyskytnou vedle sebe (v tomto pořadí) právě jednou.

Dokážeme ho matematickou indukcí podle součtu s = a +
+ b. Pro s = 2 je jedinou možností a — b = 1, takže tvrzení
platí. Předpokládejme, že tvrzení platí pro všechna 2 ^ s й

N — 1, a uvažujme nesoudělná čísla a > b se součtem
N. Pak čísla a, b budou (v tomto pořadí) v nějakém kroku
sousední, právě když v předchozím kroku jsou sousední čísla
a—b, b. Avšak (a—6)+6 = а й N—1, takže podle indukčního
předpokladu dojde к takové situaci během číslování úsečky
právě jednou. Tím je dokázáno i celé tvrzení.

Nyní si stačí uvědomit, že číslo 1 973 vznikne v nějakém
kroku právě tehdy, pokud v předchozím kroku byla vedle
sebe čísla к a 1 973 — к, 1 ^ к ^ 1 972. Protože 1 973 je
prvočíslo, jsou к a 1 973 — к nesoudělná pro každé к od 1 do
1 972. Podle právě dokázaného tvrzení se tedy vyskytnou
obě čísla vedle sebe právě jednou. Tím dostáváme celkem
1 972 výskytů čísla 1 973, což je hledaný výsledek.

Jiné řešení (podle P. Mederlyho, 2. ročník GAM, Brati-
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slava). Zadání trochu pozměníme: krajním bodům původ-
ní úsečky přiřadíme zlomky у, у a středu úsečky, jejímž
krajním bodům jsme přiřadili čísla 7, přiřadímeb a

Zlomky nekrátíme, ani kdyby to bylo možné. Jmenovate-
le těchto zlomků tvoří původně konstruovanou posloupnost

к
čísel. Hledáme tedy zlomky tvaru kde 1 ^ к ^ 1 972.

Stejně jako v předchozím řešení snadno zjistíme, že každý
z uvedených jmenovatelů vzniklých po n-tém kroku je větší
než n, a navíc každý z čitatelů vzniklých naopak v prvních
n krocích je nejvýše roven n.

Dále si všimněme, že leží-li zlomek — nalevo od —, je — <
b db

c . / .01
< —. To ověříme indukcí: V prvním kroku je - < - < -

d 12

z nerovnosti 7 < 3 potom snadným výpočtem vyplývá,b d

Q
< -. A odtud hned plyne, že zlomků tvaru

d
к .

----- je v uvažované posloupnosti nejvýše 1 972, přičemž
1 У i o

každý se může vyskytnout nejvýše jednou.
CL C

Dále platí, že jsou-li v některém kroku 7 < - sousedníb d

zlomky, je bc — ad= 1. To ověříme rovněž indukcí. Konečně

platí následující tvrzení: Jsou-li ^ <

a + c

b + ď

1

1’

a + c
že j <b b + d

— sousední a — £
d q

(CL C\ C p
G ( 7, -7 ), pak q > b + d. To plyne z toho, že pro - > - je

\b dJ ~ d q
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— - = -p-, přičemž Л > 1, tedy ^
q dq d

. P
_ « > J_

q b = bq

1c V > —. Podobně je
q dqd

. Dostaneme tak nerovnosti

bc — ad1
= dq + bq

c a c p--a,\>P

bd bd db d q bЯ

neboli

q ^ 6 + d.

Tím je poslední tvrzení dokázáno.
Toto tvrzení zaručuje, že po 1 973. kroku žádný z inter-

f T) i > kde 7 < 3 jsou libovolné dva dosud sestro-
\b d) b d

valů

к
jene sousední zlomky, neobsahuje zlomek tvaru ——

1 У i o

1 973. kroku je totiž b + d > 1 973, protože jeden ze zlomků

7, — musel vzniknout v tomto kroku,
o d

Protože 1 973 je prvočíslo, nemůže žádné z čísel

(1 ^ к ^ 1972) splynout s některým dosud utvořeným
zlomkem. Proto každý z těchto 1 972 zlomků je členem se-

strojené posloupnosti. Protože jsme už ukázali, že se víc
než jednou vyskytnout nemůže, vyskytne se právě jednou,
a číslo 1 973 se jako jmenovatel objeví 1 972krát.

Poznámka. Když si ještě všimneme toho, že takto tvořené
zlomky jsou vesměs v základním tvaru, snadno zjistíme, ja-
ká je odpověď na otázku, kolikrát se v uvedené posloupnosti
objeví libovolné přirozené číslo n.

. Po
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2.3 (Podle O. Kalendy, 4. ročník GWP, Praha.) Všechny
body Cn leží na ose úsečky AB. Přiřaďme bodu Cn úhel
7n = \^ACnB\, přičemž pro Cn nad AB bereme konvexní
a pro Cn pod AB nekonvexní úhel (obr. 38).

Definujme relaci a ~ /3, právě když a = /3 + 2кк pro
к celé. Pak platí 7n+i ~ 27n. To plyne následovně z věty
o obvodovém úhlu: Je-li Cn i Cn+1 nad AB, je 7n+i = 27n.
Je-li Cn i Cn+1 pod AB, je 2л - jn+i = 2(2k - 7n), tedy
7n+i = 27„ — 2л. Je-li Cn pod a Cn+1 nad AB, je 2л —
- 7n+i = 2(2л - 7n), tedy 7„+i = ~ 2k. Je-li Cn nad
a Cn+1 pod AB, je 7„+i = 27„.

To znamená, že je

7n ~ 27n_i ~ 227n_2 ~ ... ~ 2n x7i (1)
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a protože relace ~ je tranzitivní (tj. je-li a ~ /3 a /? ~ 7, je
i ot ~ 7), plyne odtud vztah

TI — 1 T x7i = jn + 2ккneboli7n ~ 2 7ь

pro nějaké celé k. Cn je pak středem úsečky AB, právě když
7n = n, tj. právě když je 71 E (0,71) tvaru

(2к + l)7i Ar = 0,1,, 2n_1 — 1. (2)7i = pro2n—1

Je-li C„ = Ci, je 7n ~ 71, zároveň ale podle (1) je
7n ~ 2n_17i, takže 71 ~ 2n-17i. Odtud dostáváme, že
2n-171 = ji + 2kn, neboli

2kn
к = 1,2,...,2n"1 -2.7i = pro2«-i

To platí pro n > 2. Pro n = 1 vyhovuje libovolný bod C
osy úsečky AB, pro n = 2 bod C neexistuje (kdyby C2 =
= Ci = C, byl by poloměr kružnice opsané IC2C1I = 0).

2ku
pak 7n ~ 2n x7i =Obráceně, je-li 71 = 2n~l - 1

2"b 2A:k
~ 71. Je tedy Cn = C,

právě když n = 1 a C je libovolný bod osy úsečky AB, ne-

u 1 j - o 2foibo když n > 2 a 71 = ^37
(Hodnotu A: = 0 neuvažujeme, protože 71 > 0.)

= 2kn +
2n~1 - 1 2n~ 1 - 1

kdeib= 1,2, ..., 2n-1 — 2.
- 1

2.4 Nejdříve si uvědomme, že podmínka b) má silnější
předpoklad než a), ale stejné tvrzení, proto splňuje-li nějaká
dvojice indexů (i,j) podmínku a), splňuje i b).
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al T a2 + ■ • • +Označme A =

nost pak můžeme ekvivalentně zapsat jako

, požadovanou nerov-
n

bi(ai — A) + &2(а2 — Л) -|-... -f bn(an — A) ^ 0. (1)

Označíme-li b = max{6j; a, < A} = 6,0, platí

6,(at- — A) ^ 6(a,- — A) pro i =1,2, (2)

To je zřejmé pro a,- — A ^ 0, zatímco pro а,- — Л > 0 je
a,0 < A < cti, takže podle podmínky b) dostaneme b =
— bio = b,-. Sečtením nerovností (2) pro všechna ť = 1,
2, ..n dostáváme

bi(ai — Л) + ... + bn(an — Л) ^ 6(ai + ... + an — nA) — 0,

tím je nerovnost (1) dokázána.

2.5 (Podle P. Hliněného, 4. ročník GMK, Bílovec.) Vy-
řešíme úlohu nejdříve na přímce, pak v rovině a nakonec
v prostoru. Ukážeme, že nejmenší číslo к je rovno N + 3,
kde N = 1, 2, 3 je dimenze prostoru.

Nejprve ukážeme, že pro body ležící v přímce nestačí
sestrojitelnost trojic. Mějme čtyři body А, В, C, D, kde
гав = 1, гвс =

Jde o úsečku AB a o její jakoby dvojnásobný střed C, D.
Vzdálenost rcD je vzdálenost středu úsečky od jeho obrazu
v sduměrnosti podle A, popřípadě В (obr. 39). Celá čtveři-
ce není sestrojitelná, ale všechny trojice sestrojit lze. Nyní
ukážeme, že sestroj itelnost čtveřic stačí.

- I - i rBD = rCD = I-гас = гав =2 ’ 2 ’
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D"C=DD
i

A В
J V.

rCDfCD

Obr. 39

Jsou-li dány dva různé body na přímce, existuje nejvýše
jeden bod, který má od těchto bodů předem zadané vzdále-
nosti. Jsou-li vzdálenosti daných n bodů navzájem všechny
nulové, jsou tyto body sestrojitelné. V opačném případě vy-
bereme body A, B, pro které je гав nenulové a sestrojíme
je kdekoli na přímce ve vzájemné vzdálenosti гав■ Každý
další bod X má předepsány takové vzdálenosti гах, т'вх,
že je sestrojitelný. Přitom tento bod je určen jednoznačně.
Sestrojme tedy jediným možným způsobem všechny další
body. Ty už budou řešením úlohy. Kdyby totiž některé dva
z dalších bodů X, У neměly správnou vzdálenost, nebyla
by čtveřice А, В, X, Y sestrojitelná.

Rozeberme teď úlohu v rovině — nejdříve na příkladu
ukážeme, že sestrojitelnost čtveřic nestačí. Použijeme rov-

nostranný trojúhelník ABC (obr. 40) a jeho „dvojnásobný”
střed D, E (tím jsou dány vzdálenosti bodů D, E od vrcho-
lů А, В, C). Vzdálenost гее je pak dána jako vzdálenost
středu trojúhelníku ABC od jeho obrazu v souměrnosti po-
dle AB (BC, CA). Každou čtveřici sestrojit lze, celou pětici
ne. Nyní ukažme, že sestroj itelnost pětic stačí.

Podobně jako na přímce existuje v rovině nejvýše jeden
bod, který má předem zadané vzdálenosti od tří daných
bodů neležících v přímce (mají-li tři kružnice dva společné
průsečíky, leží jejich středy na přímce). Jestliže každé tři
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v
Obr. 40

z daných n bodů leží po sestrojení v přímce, úloha se redu-
kuje na přímku, kde podle předešlého stačí i sestrojitelnost
čtveřic. V opačném případě vybereme tři body А, В, C,
které po sestrojení neleží v přímce. Sestrojme к bodům A,
В, C jednoznačně každý z dalších uvažovaných bodů. Zís-
kané body jsou řešením. Kdyby totiž některé z dalších bodů
X, Y neměly správnou vzdálenost r\y, nebyla by pětice A,
В, С, X, Y sestrojitelná.

A konečně případ prostoru. Důkaz je úplně analogický,
proto jen stručně. Sestroj itelnost pětic nestačí, protože stačí
vzít pravidelný čtyřstěn ABCD s „dvojnásobným“ středem
E, F, přičemž rEF bude vzdálenost středu od jeho obrazu
v souměrnosti podle rovin ABC (ABD, ACD, BCD). Kaž-
dou pětici sestrojit lze, ale celou šestici ne. Sestrojitelnost
šestic je už postačující, protože pokud každé čtyři body leží
po sestrojení v jedné rovině, redukuje se úloha do menší
dimenze, a jinak sestrojíme nějakou čtveřici А, В, C, D,
která neleží v rovině, a ukážeme, že všechny další body jsou
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touto čtveřicí jednoznačně určeny. Každé dva X, Y z nich
budou mít správnou vzdálenost rxY, jinak by odpovídající
šestice Л, B, C, D, X, Y nebyla sestrojitelná.

2.6 (Podle P. Hliněného, 4. ročník GMK, Bílovec.) Před-
pokládejme, že trojúhelník ABC vyhovuje podmínkám úlo-
hy a že A leží na přímce m а В na přímce n (přímky m,
n musí být různoběžky). Označme p osu souměrnosti bodů
В, C, ta prochází bodem O a je rovnoběžná s m. Proto-
že В E n, musí bod C ležet na obraze n' přímky n podle
osy p. Podobně leží C na obraze m' přímky m podle osy q.
Odtud plyne postup konstrukce: bod C najdeme jako průse-
čík přímek m', n! a zbytek trojúhelníku sestrojíme snadno,
protože známe střed O i poloměr \OC\ kružnice opsané.

Konstrukce přímek m', n' je jednoznačná. První zádrhel
může nastat, když jsou přímky m', n' rovnoběžné (obr. 41).
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Pokud bod O leží v ostrém úhlu přímek m, n, dostáváme
pro úhel těchto přímek vztah 2a -f a = к, tj. o = |л.
Stejný výsledek dostaneme, pokud bod O leží v tupém úhlu
těchto přímek. Proto konstrukci nelze jednoznačně provést
jen tehdy, je-li úhel přímek m, n roven |k. Tento případ
rozebereme zvlášť na závěr.

Další zádrhel může nastat, pokud se přímky m', n' pro-
tnou v bodě O. To nastane, právě když je bod O průsečíkem
i přímek m, n. Pokud náhodou přímky m', n' nesplynou (to
nastane, jak snadno zjistíme, opět pro úhel přímek m, n rov-

ný |k), bude bod O jejich jediným průsečíkem. V tom pří-
pádě nedostaneme trojúhelník, protože nemůže být C — O.

Protože je obtížné zjišťovat, kdy kružnice se středem O
a poloměrem \OC\ protne přímky m, n v hledaných bodech
А, В tak, abychom dostali trojúhelník, sestrojíme hledané
vrcholy jinak: bod A leží na průsečíku přímky m s přím-
kou 6, která prochází vrcholem C a je kolmá na přímku n.

Analogicky sestrojíme i bod B. Protože je jasné, že přímky
mat mohou být rovnoběžné, jen když jsou man kolmé,
vyšetříme tento případ zvlášť. V tomto případě vyjde, že
vrchol C je průsečíkem přímek man, takže úloha má nede-
generované řešení, jen když bod O neleží na žádné z přímek
m, n.

Nyní ještě vyšetříme případ, kdy přímky m, n svírají úhel
|k. Snadno zjistíme (obr. 42), že pokud bod O leží v tupém
úhlu přímek m, n, rovnoběžky m', n' nikdy nesplynou; úlo-
ha tedy nemůže mít řešení. Pro polohu bodu O v ostrém
úhlu přímek m, n splynou přímky m', n', právě když VQOP
bude kosočtverec (obr. 42), neboli bod O bude ležet na ose
úhlu přímek m, n. Jsou-li přímky m', n' totožné, lze kte-
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rýkoli jejich bod zvolit jako bod C (pokud O je průsečík
m, n, pak nemůže být C = O) a podle popsané konstrukce
к němu vždy sestrojit zbývající vrcholy A, B. Úloha pak
má nekonečně mnoho řešení.

Úloha má tedy právě jedno řešení, pokud jsou přímky m,
n různoběžné (nesplývají) a nesvírají úhel |tc, bod O není
jejich průsečíkem, a je-li přímka m kolmá na n, neleží bod
O na žádné z přímek m, n. Úloha má nekonečně mnoho
řešení, pokud přímky m, n svírají úhel |л a bod O leží na
ose jejich ostrého úhlu. V ostatních případech úloha nemá
žádné řešení.

2.7 Správná odpověď zní, že to jde pro všechna к ф 1
а к ф 3. Případy sudého к jsou jasné, trochu překvapivá je
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existence zaplnění pro к = 5,7, 9, 11. Příslušné zaplnění je
znázorněno na obr. 43. (Obdélník 2 x 3 je možno vyplnit buď
dvěma pravoúhelníky, nebo dvěma úhelníky. V závislosti na

vyplnění obdélníků А, В, C tak dostáváme požadovaný typ
zaplnění celého čtverce.)

Uvažujme к = 1. Předpokládejme, že existuje zaplnění
s právě jedním úhelníkem; bez újmy na obecnosti můžeme
předpokládat, že je umístěn takto fp. Vyplňme jednotlivé
čtverečky ve čtverci čísly 0, 1, 2 podle obr. 44. Součet všech
čísel ve čtverci je 36, je tedy dělitelný třemi. Rovněž součet
čísel v každém pravoúhelníku 1 x 3 je dělitelný třemi. Zád-
němu úhelníku typu fp však neodpovídá součet dělitelný
třemi, a proto zaplnění nemůže obsahovat právě jen jeden
úhelník.

Uvažujme teď případ к — 3. Při očíslování podle obr. 45
dávají úhelníky fp a p součet 2 (mod 3) a úhelníky fp a *p
součet 1 (mod3). Proto každý ze tří úhelníků je typu fp
nebo p, nebo je každý typu [p či p. To ovšem platí i po
otočení o 90°, a tedy v původním čtverci je každý úhelník
tyPu p Й 4, nebo je každý úhelník typu fp či [p. Odtud
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Obr. 44 Obr. 45

plyne, že všechny tři úhelníky jsou stejného typu; bez újmy
na obecnosti můžeme předpokládat, že jsou typu f-f-p

Vraťme se к očíslování na obr. 45. Každý pravoúhelník
obsahuje po jednom z čísel 0, 1, 2, a proto mezi úhelníky
je právě jeden s čísly 0, 1, 1, právě jeden s čísly 1, 2, 2
a právě jeden s čísly 2, 0, 0. Uvažme polohu toho s čísly
2, 0, 0. Jeho rohový čtvereček leží v jednom ze čtverečků
vyznačených na obr. 46, přitom vzhledem к symetrii podle

X X6

52 X5

%4

3

12

1

a b c d e f
Obr. 46

diagonály al — /6 stačí uvažovat jen polovinu čtverce nad
touto úhlopříčkou. Z vyznačených polí však nelze použít
pole c6, /6 (úhelník by čněl
e6 by pak nešlo pokrýt). Na obr. 47 je vyznačeno, proč nelze

čtverce) a db (čtverečekven ze
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použít ani čtvereček a5 (použití pravoúhelníků je pak totiž
vynuceno, a to v pořadí uvedeném na obrázku). Podobně
se ukáže, že i případy čtverečků a2, 64, c3 vedou ke sporu.

Poznámka. Uvědomte si, že pro důkaz případu к = 1 jsme
stejně dobře mohli použít i obr. 42.

Případ к = 3 plyne (po provedení první úvahy) z násle-
dujícího tvrzení: Obdélník velikosti 3rz x 3m nelze zaplnit
pravoúhelníky 1 x 3 a úhelníky . Zkuste toto tvrzení do-
kázat nebo vyvrátit.

3.1 (Podle P. Růžičky, 2. ročník G, Brno, kpt. Jaroše,
a A. Kuběny, 3. ročník GMK, Bílovec.) Nejmenší hledaný
počet věží je m(n, к) = n(k — 1) + 1. Předně, pokud je věží
méně než m(n, k), lze je umístit do к — 1 řad šachovnice.
Potom z nich ovšem nelze požadovaným způsobem vybrat
к věží. Ukažme dále, že pro alespoň m(n, к) věží to již lze.

Očíslujme řádky a sloupce šachovnice čísly 1 až n. Jed-
notlivá pole šachovnice očíslujme tak, že poli v г-té řadě
a ý-tém sloupci přiřadíme číslo i — j (mod гг) (tedy číslo
mezi 0 a n - 1). Nyní si stačí uvědomit následující jedno-
duché skutečnosti:

1. Každým číslem mezi 0 a n — 1 je označeno právě n polí.
2. Věže na polích označených týmž číslem se neohrožují.
3. Pokud je věží alespoň m(n, k), existuje podle Dirichleto-

va principu к věží, které jsou na polích označených týmž
číslem, a proto se neohrožují.

Jiná možnost je použít matematickou indukci. Nejsnazší
je postupovat indukcí podle k.

Pro к = 1 je tvrzení triviální.
Nechť к ^ n — 1 a tvrzení platí pro к — 1. Pak podle
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Dirichletova principu existuje řádek r, ve kterém je alespoň
к věží (zároveň samozřejmě nejvýše n). V ostatních řádcích
je potom alespoň n(k — 1) + 1 — n = n(k — 2) + 1 věží
a lze z nich tedy podle indukčního předpokladu vybrat к — 1
věží, které se neohrožují. Těchto к — 1 věží leží v к — 1
sloupcích. Proto v řádku r existuje věž, která se ani s jednou
z nich neohrožuje. Dohromady tedy máme к věží, které se

navzájem neohrožují, a důkaz je hotov.

3.2 Část a) je triviální, např.
XX —

x^ ■ x4 = x&,
ж1 024 . x16 _ ,,.1008

Pro část b) uvedeme dvě řešení.
1. řešení (podle O. Sucha, 4. ročník GAM, Bratislava).

Napišme číslo n v dvojkové soustavě; protože možné číslice
jsou pouze 0 a 1, je to vlastně totéž co rozklad

cti > a2 > ... > ak ž 0.

x2 x2-x2 = x4,
„512 „512 _ „1024X • X — X ,

2«1 008 . x8 _ дИКЮ

* * >

n = 2ai + 2aa + ... + 2a*

Uvažujme následující dva způsoby vytvoření čísla xn.
1. Pomocí x ■ x = x2, x2 ■ x2 = x4 atd. vytvoříme všech-

2’
pro 0 ^ i ^ ai; to zabere ai operací. Meziny mocniny x

těmito čísly jsou i čísla xJ pro j = 2ai, 2aa, ..., 2a*; vynáso¬
bíme-li je postupně mezi sebou, spotřebujeme na to dalších
к — 1 operací. Tím dostaneme xn pomocí ai + к — 1 operací.

2. Nejdříve použijeme (stejným způsobem) ai -f 1 operací
na vytvoření čísel x2' pro 0 ^ a\ + 1. Dále poslední
z těchto čísel vydělíme x, čímž získáme

_ x2ai+2a'~4..,+4+2+1
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2j
pro j 6 {0,1,2,.. .,ai} \Toto číslo dělíme všemi čísly x

\{«b a2, • • • > etik}; těchto čísel je dohromady (ai + 1) — k a po
vydělení dostaneme zřejmě číslo xn. Na dělení je třeba (cti +
+ 1) — к operací; celkem jsme xn vytvořili pomocí (ai + 1) +
+ 1 + (ai + 1 — Ar) = 2ai — к + 3 operací.

Nyní ukážeme, že při aspoň jednom způsobuje počet ope-
raci nejvýše | log2 n + 1. Kdyby tomu tak nebylo, muselo
by zároveň platit

3
ai + к - 1 > - log2 n + 1

3
2ai — к + 3 > - log2 n + 1.

Sečtením a úpravami dostaneme

ai > log2n,
2ai > n = 2fll + 2aa + ... + 2afc

což je spor, a důkaz je hotov.
2. řešení (podle Š. Kasala, 3. ročník GWP, Praha.) Pro

1 ^ n ^ 11 se přesvědčíme přímo, že tvrzení platí. Pro n ^
^ 12 ukážeme, že dokonce stačí | log2(n — 1) operací. Důkaz
provedeme indukcí. Pro n = 12, 13, ..., 45 toto tvrzení platí
podle následující tabulky:

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
45554556566656676
55555666666666677

počet operací
[|log2(n - 1)]

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
76656676777677878
77777777777778888

počet operací
[|log2(n - 1)]

Mějme nyní n ^ 46 a předpokládejme, že pro 12 ^ m ^
^ n — 1 tvrzení platí. Rozlišíme dvě možnosti:
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a) n je sudé, n — *2k. Рак xn vyjádříme jedinou operací
z xk (xn — xk ■ xfc); na xk podle indukčního předpokladu
stačí | log2(& — 1) operací. Celkem nám tedy pro xn stačí

5 log2(Ár - 1) + 1 < ^(log2(fc - 1) + 1) =
= \ bg2(2fc - 2) < ? log2(n - 1)

operací.
b) n je liché; pak lze n psát ve tvaru n = \k ± 1. Přitom

xn lze vyjádřit z xk třemi operacemi

x4k = x2k • x2k,
xn = x4k ■ x nebo xn = x4k : x.

_2fc _Jfc
X — X • X

Celkem tedy umíme vytvořit xn pomocí

\ log2(fc - 1) + 3 = |(log2(Ar - 1) + 2) =
= \ log2(4* - 4) < ? log2(n - 1)

operací.
Tím je důkaz hotov.
Poznámka. Poznamenejme, že oběma způsoby lze řešit

i nepatrně těžší verzi úlohy, kdy jsou povoleny pouze ope-
race

к „к _2к
• X — X , X

_ к
а х

к
-X = xk+1

xk~l.

„кX t—»■ X >—► X

к
t—► x : x =
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(Potřebný počet operací je opět nejvýše |log2 n + 1.) Do-
dejme ještě, že žádný z uvedených odhadů není optimální.
Např. pro x170 stačí pouze 9 operací!

3.3 Označme a = |Л2Лз|, b = |^4ivl31, c = |^4i|-
Z Pythagorovy věty pro trojúhelníky A1H3A3, A3H3A3 do-
staneme

ИзЯ3|2 = Hi^b|2 — ИхЯз!2 = |Л2Лз|2 — |Я3Л2|2.
Odečtením odtud plyne

2
= И1^4з|2 — И2^з|2 = И1Яз|2 — |ЯзЛг|2 —

= (и1Я3| + |/М2|)(|Л,Я3|- |Я*42|).

62 — а

(1)
Využijeme-li rovnosti \A\M3\ — \МзАз\, snadno určíme
jednotlivé činitele

\AiH3\ + \H3A,\ = \AiAi\,
|И1Яз|-|ЯзЛ2|| = 2|Я3М3|

(2)

a dosazením do (1) pak dostaneme

\b2 — a2|\AiA2\\H3M3\= 2

Analogicky dokážeme i rovnosti

\c2-b21\A2A3\\HiMi\ = 2\ArA3\ ■ |Я2М2| =

Bez újmy na obecnosti můžeme dále předpokládat, že
a úb 'šc. Pak hned dostaneme požadovanou rovnost

|Л1Лз| • 1Я2М21 = 1Л1Л21 • |ЯзМз| + |ЛгЛ31 • \H\M\\.
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Podívejme se teď, jak se změní situace pro pravoúhlý či
tupoúhlý trojúhelník. Platnost (1) se samozřejmě zachová.
Jediná potíž nastane, když bod #3 neleží na úsečce A1A2.
Potom se (2) změní na

И1Я31 + ИзЯ2| = 2|Я3М3|,
|И1Я3|-|Я3Л2|| = |.<М2|.

To však znamená, že se jen prohodily hodnoty činitelů
v součinu (1), takže tvrzení zůstává v platnosti i pro pra-
voúhlý a tupoúhlý trojúhelník.

Poznámka. Uvedené řešení je zcela elementární, zato tro-
chu umělé. Pomocí kosinové věty lze snadno vypočítat

přímo, v podstatě jde ale o totéž. Využitím vzoreč-
ků pro délky těžnic trojúhelníku bylo možno získat tvrzení
rovnou pro libovolný trojúhelník (avšak řešení je technicky
náročnější). Podobně pro libovolný trojúhelník funguje ře-
šení pomocí základních operací s vektory (sčítání a skalární
součin).

3.4 Správná odpověď zní: buď S = P = Q, anebo S leží
v intervalu y/PQ ^ S < Q.

Nejprve dokážeme, že libovolné takové hodnoty S, P, Q
se skutečně mohou nabývat. Případ 5 = P = Q je jasný
(všechny tři mnohoúhelníky splynou, tj. A{ = Я, = C,);
mějme tedy dána kladná čísla P, Q, S tak, že

y/PQ^S <Q.

Zvolme v rovině dvě rovnoběžky o vzdálenosti 2 a nějakou
jejich příčku B3C3 (obr.48), dále body f?2, C2 tak, aby
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bylo IB2B3I = S — P, IC2C3I = Q — S. Obsahy trojúhelníků
B2B3C3 a B2C2C3 jsou tedy S — P, resp. Q — S.

Pokud bude |В2£з| ^ \СзСз\, neboli S ^ pak se
polopřímky C3B3 а C2B2 neprotnou; můžeme na nich zvolit
body A4 = B4 = C4 a A\ — B\ = C\ tak, aby čtyřúhel-
nik B1B2B3B4 měl obsah P. Zbývá vzít A3 — B2, A3 = C3
a jsme hotovi (obr. 49). Pokud \ВзВз\ < \СзСз\, neboli S <
< p1^, pak se polopřímky C3B3 а C2B2 protnou v bodě
W\ právě popsanou konstrukci můžeme tedy zopakovat, jen
když bude P ^ S{B2B3W) (symbolem S(-) budeme i
dále značit obsah příslušného útvaru). Využitím podobnosti

na-

216



С:
I

в.

h

U В С.и i+1

Obr. 49

trojúhelníků WB2B3 ~ W2C2C3 lze spočítat, že je

(■S-P)2
P + Q-2S'S{B2B3W) =

Naši konstrukci lze tedy použít, bude-li

= P + Q-2S’
což je pro S < ekvivalentní nerovnosti PQ ^ S2,
která platí. Můžeme tedy opět zvolit body A\ = B\ — C\
а A4 = B4 = C4 (popř. pouze A\ = B\ = C\ = W, pokud
S = \/PQ) a jsme hotovi.

Zbývá těžká část úlohy — dokázat, že vždy platí 5 ^
^ y/PQ. Dokážeme vlastně silnější tvrzení:

Jsou-li B1B2 .. ■ Bn C CiC2 --Cn dva konvexní n-úhel-
niky takové, že || (7,(7,+1 (takovým dvěma mno-
hoúhelníkům budeme dále říkat ,,rovnoběžné“) a body A i
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leží na stranách C,~\Ci, A\ na straně CnCi, pak pro obsa-
hy P, Q n-úhelníků B1B2 .. .Bn a C\Ci.. .Cn a obsah S
2n-úhelníku A1B1A2B2 .. .AnBn platí S ^ \JPQ-

Nejprve vyřešíme případ, kdy mnohoúhelníky B1B2.. Bn
a C1C2 • • Cn jsou stejnolehlé (tak je tomu např. vždy pro

|CiC2|
3). Označme U střed а к = koeficient uvedenén =

|ад|
stejnolehlosti. Je-li /1, vzdálenost přímek 5,5,+1 а С»С,+1
bude platit (obr. 49)

S(BjBi+iAj+i)
S(BiCiAi+\) -l- 5(5i+iAt+iC,+i)

\BiBi+í\hi
\CiAi+\\hi + \Ci+iAi+1\hi

\CiCi+l\ к’

takže

к ■ S(BiBi+iAi+i) = S(Bií?í+iC,-+iCí) — 5(P»P»+iA+i).

Sečtením pro všechna г, 1 ^ i ^ n, vyjde

k(S - P) = Q - S.

Zároveň aleje Q = k2P, takže (vyloučíme-li triviální případ
S= P)

Q-SY Q
S-P P

a po úpravě vyjde S2 = PQ, což jsme chtěli dokázat.
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Obr. 50

Nyní vyřešíme případ, kdy n = 4 a C1C2C3C4 je rov-
noběžník. V situaci na obr. 50 máme Q = afesina, P —
= cdsin a. Obsahy dvou vyznačených trojúhelníků dají do-
hromady \d{a — c)sina; podobně druhá (analogická) dvo-
jice dá ^c(6 — oř) sin a. Odtud plyne
S — P + ^ d(a — c) sin a + ^ c(b — d) sin a = sin a
a podle nerovnosti mezi aritmetickým a geometrickým prů-
měrem vyjde

S ^ Vad • be sin a = \fPQ.
Přejděme teď konečně к obecnému případu; důkaz pro-

vedeme indukcí. Pro n — 3 nerovnost S ^ \fPQ platí (do-
konce s rovností). Předpokládejme platnost tohoto tvrzení
pro n — 1 ^ 3; dokážeme je pro n.

Uvažujme tedy příslušné n-úhelníky popsané v zadá-
ní. Je-li n — 4 a C1C2C3C4 je rovnoběžník, je nerov-
nost dokázána v předchozím odstavci. V opačném přípa-
dě existují v mnohoúhelníku C1C2 .. .Cn tři po sobě jdou-
cí strany (zvolme označení takové, aby to byly např. stra-
ny C1C2, C2C3 а C3C4) tak, že polopřímky C1C2 а C4C3
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se protínají (obr. 51); důkaz tohoto tvrzeníčka přenechá-

váme čtenáři (nápověda: dle Dirichletova principu existu-
jí dva sousední vnitřní úhly, jejichž součet je větší než
180°). Označme X, resp. Y průsečík polopřímek C1C2
a C4C3, resp. BiB? a B4B3. Trojúhelníky B2B3Y a C2C3X
jsou podobné s koeficientem k\ označme a = \В2Вз\, tak-
že IC2C3I = ka. Dále označme Po a Qo obsahy (n —
- l)-úhelníků BxYBABb ... Bn a CxXCACb ... Cn a 50 ob-
sah 2(n — l)-úhelníku A1B1A2YA4B4 .. .AnBn. Konečně
buď h vzdálenost přímek B2B3 a C2C3 a R obsah troj-
úhelníku B2B3Y.

Zřejmě platí P0 = P -f R, Q0 = Q -f k2R a

So = S — 8(В2ВзАз) ■+• S(B2A2Y) -f в(ВзA+Y) + R.

Nyní je S(B2A2Y) = S(B2C2Y) a (podobně jsme to pro-
vedli už v důkazu pro n = 3)

S(B2A2Y)
S(B2C2XY) ~ S(B2C2Y) + S(C2YX) ~ к+ Г

S(B2C2Y) 1
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Podobně pro S(B3A^Y)\ sečtením pak vyjde

1
S{B2A2Y) + S(B3AtY) = S(B2YB3C3XC2).k + 1

Obsah na pravé straně je roven

S(B2YB3C3XC2) =

= S(C2C3X) + S(B2B3C3C2) - S(B2B3Y) =

k2R + i (a + ka)h -R=(k+l)((k- 1 )R + у^
Konečně S(B2B3A3) = \ah. Dosadíme-li vše do vztahu pro
So, vyjde

11
Sq = S — -ah + (к — 1) R + -ah + R = S + kR.

Podle indukčního předpokladu platí So ^ \JPoQa, a my
chceme dokázat nerovnost S ^ \/PQ, neboli

(Sq - kR)2 ž (P0 - R)(Qo - k2R). (1)

Její úpravou dostaneme nerovnost

Sq — 2kRSo — PqQo + k2RPq + RQo ^ 0,

která je kvadratická v к a, pro její diskriminant D platí

D = 4R2S2 - \RPo(RQo + S%- PoQo) =

= 4Я(5? - P0Qo)(R - Po) < 0.
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Odtud vidíme, že nerovnost (1) opravdu platí, a podle prin-
čipu matematické indukce je důkaz uvedeného tvrzení ho-
tov.

Jiné řešení (stručně). Označme |PjP,+i| = bi, |C,C»+i| =
= с,- (bereme Cn+1 = C\, Bn+1 = В i) a vzdálenost přímek
B{B{+1 a CiCi+i budiž hi. Pak platí

s-p= e s(B,Bi+lAi+1) = f; UíAí
i=l »=1

a podobně

Q-s=£ |сл-.
1 = 1

Označme dále

R= ^2 ±6,/i,, T — \(bi +
»=i »=i

К = T-2R = t,k(ci-bi)hi.
» = 1

Je tedy S = P + P a Q = P -f T. Chceme dokázat, že
S'2 ^ PQ, neboli (P + P)2 ^ P(P -f T), což je ekvivalentní
vztahu

P2 > PP.

Představme si nyní následující situaci: V rovině je dáno
n bodů, které se pohybují rovnoměrným přímočarým po-

hybem tak, že v čase t = 0 se nacházejí v bodech Вi, B2,
..., Bn, zatímco v čase t — lv bodech C\, C2, • •Cn.
Snadno se lze přesvědčit (proveďte!), že v libovolném čase
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t £ (0,1) tvoří uvažované body n-úhelník, který je „rovno-
běžný“ s Bi52...J9n a má obsah

P{t) — -f* + 5Z 5 (б» + (1 ~ t)b{ + tci)thi —
1 = 1

= P + 2Rt + Kt2.
(2)

Diskriminant této kvadratické funkce je roven 4(R2 —
— PK). Nerovnost S2 ^ PQ je tedy ekvivalentní tomu,
že tento diskriminant je nezáporný, tj. že existuje takové
reálné číslo to, že P(to) — 0. (Upozorňujeme, že pro t ^
£ (0,1) už nelze obecně P(t) interpretovat jako obsah něja-
kého mnohoúhelníku— může docházet к různému „křížení"
ap.) Existenci takového to dokážeme indukcí.

Nejprve (stejně jako v předchozím řešení) vyřešíme
„zvláštní případy", když n = 3 nebo když n = 4 a

C1C2C3C4 je rovnoběžník. Pro rovnoběžník provedeme dů-
kaz úplně stejně jako v předešlém řešení (tj. přímo, bez
použití funkce P(t)). Pro n = 3 je vidět, že všechny troj-
úhelníky Mt, t E (0,1), jsou stejnolehlé; odtud plyne rov-
nost

P(t) = c(t - T)2
pro jisté c > 0 a reálné číslo T; nyní stačí vzít to = T,
a bude P(to) = 0.

Předpokládejme nyní, že jsme už tvrzení dokázali pro

(n — l)-úhelníky, n ^ 4; dokážeme je pro n-úhelníky. Uva-
žujme tedy dva „rovnoběžné" n-úhelníky B1B2 ... Bn C
С C1C2 • -Cn a předpokládejme, že C1C2 .. .C„ není rov-
noběžník. Stejně jako v předchozím řešení najdeme tři
po sobě jdoucí strany (např. C1C2, C2C3 а C3C4) tak,
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že polopřímky C1C2 a C4C3 se protínají (obr. 52). Pro
mnohoúhelníky C1C2 .. . C„ a B\B-z .. .Bn označme Pn(t)
příslušnou kvadratickou funkci. Protože mnohoúhelníky
C1XC4C5 ... Cn a, B\YB4B5 ... Bn jsou rovněž „rovnoběž-
né“, můžeme i pro ně sestrojit odpovídající kvadratickou
funkci Pn_i(ť). Takovou funkci Рд(<) můžeme konečně se-
strojit i pro „rovnoběžné" trojúhelníky C2C3X. a B2B3Y.
Z případu n = 3 víme, že

PA(t) = c(i - Tf
pro nějaká c > 0 a T. Podle definice jsou však pro t 6
G (0,1) funkce Pn,Pn-1 а Рд rovny obsahům přísluš-
ných mnohoúhelníků Mt vzniklých „smršťováním" z M\ =
= C1C2 ... Cn na Mq = B\ B2 ... Bn, resp. z C1XC4 ... Cn
na B\ YВ4 ... Bn, resp. z C2C3X na B2B3Y; platí tedy
Pn = P„_ 1 - Рд, čili

pro všechna t E (0,1). Poněvadž na obou stranách stojí
kvadratické funkce, musí tato rovnost platit dokonce pro
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všechna reálná čísla t. Avšak podle indukčního předpokladu
existuje to takové, že Pn-i(ío) = 0. Potom aleje

Pn(to) — Pn-i(to) — c(<o — T)2 = Pn-i(to) = 0

což zaručuje existenci kořene funkce Pn, protože koeficient
К kvadratického členu ve vztahu (2) je vždy kladný (mno-
hoúhelník C\Ci.. .Cn má větší obvod než B1B2 •. .Bn).
Tím je důkaz hotov.

Na závěr poznamenejme, že z obou řešení lze po chvilce
přemýšlení zjistit, kdy nastane rovnost S2 = PQ: je to prá-
vě tehdy, jsou-li mnohoúhelníky C1C2 ... Cn а B\ B2 ... Bn
podobné.

3.5 Předpokládejme, že se rovina BKM dotýká vepsané
koule v bodě P, a označme X průsečík přímek BD a. KM

H

M
X

E
FK\\

\

Л
\\

c\\
/

/

A В

Obr. 53
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(obr. 53). Předpokládejme, že К leží uvnitř EF a M uvnitř
FG. Ukážeme, že roviny HEB a HXB jsou souměrné podle
roviny HKB.

Přímka BK je průsečnicí dvou tečných rovin ke kouli —

EKB а, XKB. Přitom roviny HEB, HXB procházejí do-
týkovými body, středem koule a bodem B. Analogicky jsou
roviny HXB a HGB souměrné podle HMB. Uhel rovin
HMB, HKB je proto roven polovině úhlu rovin HEB,
HGB. Tento úhel je |tc, protože uvedené roviny splynou
při otočení o |k kolem osy BH. Proto je úhel <p vždy týž
a je roven

3.6 Jedná se o dvě těžké úlohy z teorie grafů. Přeformulo-
vání do řeči grafů je nasnadě — vrcholy grafu budou rytíři,
hrany spojují rytíře, kteří se přátelí (zde předpokládáme,
že relace přátelství je symetrická, dále že relace přátelství
a nepřátelství jsou komplementární, tedy pokud dva rytí-
ři jsou přátelé, pak nejsou nepřátelé). Kružnice v daném
grafu je posloupnost navzájem různých vrcholů «i, v^, ...,

Vk (к ^ 3) taková, že dvojice V\V2, V2V3, ..., Vk-iVk, fjtvi
jsou hrany grafu. Kružnice, která prochází všemi vrcholy
grafu (každým právě jednou), se nazývá hamiltonovská. Sy-
stém navzájem disjunktních kružnic, který pokrývá všech-
ny vrcholy grafu (každý právě jednou kružnicí) se nazývá
2-faktor. (Jinými slovy, 2-faktor je podgraf, jehož všechny
vrcholy mají stupeň 2 a který obsahuje všechny vrcholy pů-
vodního grafu). Úloha 3.6 tak sestává ze dvou částí:

Úloha 3.6.1 Dokažte, že graf o n vrcholech, jehož kaž-
dý vrchol má stupeň aspoň n/2, obsahuje hamiltonovskou
kružnici.
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Úloha 3.6.2 Dokažte, že 2fc-regulární graf (к ^ 1 přiroze-
né) obsahuje 2-faktor. (Stupeň vrcholu je počet hran, které
z něj vycházejí; graf se nazývá d-regulární, jestliže všechny
jeho vrcholy mají stupeň d.)

Řešení úlohy 3.6.1 (sporem). Předpokládejme, že existuje
graf o n vrcholech, který má všechny vrcholy stupně aspoň
n/2 a neobsahuje hamiltonovskou kružnici. Přidávejme mu
po jedné hraně. Protože úplný graf hamiltonovskou kružnici
obsahuje, existuje graf G a hrana ab taková, že G má všech-
ny hrany stupně aspoň n/2 a neobsahuje hamiltonovskou
kružnici, zatímco graf G s přidanou hranou ab již hamilto-
novskou kružnici obsahuje. Každá taková kružnice pak nut-
ně obsahuje hranu ab (jinak by to byla kružnice i v grafu
G), nechť tedy a = t»i, V2, ..., vn = b je pořadí vrcholů na
hamiltonovské kružnici. Položme A = {i; a v,- je hrana G},
В = {i; Vi-\b je hrana G}. Potom 1 nepatří do AuB, takže

|AUB| ^ n —1. Přitom |A| ^ |B| ^ ^ podle předpokladu
o stupních, a proto |A П B| = |A| + |B| — |A U B| ^ 1. Exi-
stuje tedy t‘o takové, že av{0 i v,0_i& jsou hrany G. Potom
ale a = vi, V2, ..v,-0_i, & = vn, vn-i,..., V{0 je hamilto-
novská kružnice v grafu G. To je spor. (Povšimněte si, že
toto je vlastně důkaz indukcí podle počtu hran. Rozmyslete
si, který je první krok indukce a zformulujte přesné znění
indukčního kroku.)

Jiné řešení (stručně podle M. Badidy, 4. ročník G Košice,
Smeralova). Nejprve dokážeme, že když n rytířů sedí na
lavici tak, že spolu sousedí jen přátelé a krajní mají mezi
sedícími aspoň n/2 přátel, pak je lze posadit kolem kulatého
stolu.
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Označme uvedené rytíře r*i, Г2, ..., rn v pořadí, v jakém
sedí na lavici. Pokud r\ a rn nejsou přáteli, stačí uvážit ty
z rytířů, kteří se přátelí s r\, a ty, jež sousedí zprava s přáteli
rytíře rn. Těch či oněch je aspoň n/2, ale dohromady jich je
nejvýše n — 1. Snadno nahlédnete, že rytíře lze pak ke stolu
posadit v pořadí r;_i ... r\rj ... rn, kde r; je rytíř společný
oběma zmíněným množinám.

Dále pak postupujeme induktivně: Z n rytířů vybereme
dva přátele, jež posadíme na lavici a postupně к nim při-
sazujeme na jeden či druhý kraj lavice další, dokud to jde
(aby vedle sebe seděli jen přátelé). Jakmile již nelze dále
pokračovat, znamená to, že každý krajní rytíř má už všech
svých aspoň n/2 přátel usazených na lavici, takže na lavici

TI
sedí к ^ — + 1 rytířů. Podle předchozího tvrzení lze tyto

rytíře rozesadit u kulatého stolu. Pokud ještě nějaký rytíř
u stolu nesedí, najdeme mu mezi sedícími jistě přítele (nese-
dí jich méně než n/2), počínaje tímto přítelem je posadíme
zase na lavici a rytíře к nim přisadíme, atd.

Řešeni úlohy 3.6.2. Důkaz úlohy 3.6.2 ve vší obecnosti se

opírá o následující netriviální větu:
Veta o manželství. Nechť D (resp. H) je množina dívek

(resp. hochů). Pro dívku d E D označme H(d) С H množinu
hochů, které je ochotna pojmout za muže. Chceme všechny
dívky najednou provdat (za různé hochy, bigamie dosud
není povolena) tak, aby žádná dívka nemusela pojmout za
muže někoho, koho nechce. Toto je možno provést, právě
když je splněna podmínka

D* C D=> |D‘|g I (J H(d)|. (1)
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Jinými slovy, právě když každých к dívek (k ^ n) má do-
hromady alespoň к nápadníků!

Mějme 2Á;-regulární graf. Opět stačí uvažovat sou-

vislý graf, a ten lze nakreslit jedním tahem. Vezmě-
me jeden takový tah a pamatujme si, v jakém pořadí
jsme vrcholy grafu procházeli (do každého vrcholu jsme
fc-krát vešli a fc-krát z něj odešli). Vrcholy tohoto gra-
fu označme ví, V2, ..., vn. Sestrojme množiny D =
= {d\,... ,dn] a H = {hi,..., hn) a položme H(d,) =
= {hj ; hranu V{Vj jsme procházeli ve směru v, —► Uj}. Po-
tom | H (oř) | = к pro každé d E D a též každý hoch h E H
náleží do к množin H(d).

Právě popsaný systém splňuje podmínku (1) a podle věty
o manželství lze všechny dívky provdat (tj. všechny dívky
a chlapce lze vzájemně jednoznačně spárovat).

Pro každé i tedy existuje j(i) (pro různá i jsou j(i) též
různá) tak, že Лд,) E H(d,). Protože |H| = |D|, plyne od-
tud, že i pro každé j existuje právě jedno i(j) tak, že hj E
E H(di(j)). Položíme-li E = ; i = 1,2,..., гг}, patří
každý vrchol ví dvěma hranám z E (jednou hraně ViVj^p
podruhé hraně VkV, pro г = j(k)). Tedy náš 2Ar-regulární
graf obsahuje 2-faktor E.

3.7 (Podle P. Hliněného, 4. ročník GMK, Bílovec.) Dané
číslo pod odmocninou můžeme zapsat jako

1
..11111= - (1 - НГ100).
v ' 9 v ’0,11111.

100

Na výpočet uvedené odmocniny proto použijeme binomic-
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kou řadu

VO, 11111. ..11111= l (1 - ÍO"100)’ =
V* y 3

-io-100)n
100 (1)1 00

= sE
n=0

Protože pro n ^ 2 je

(i) 1
< -

1 -2- ... n
- 8

nemají členy binomické řady (1) počínaje třetím na prvních
200 desetinných míst vliv (příslušná řada má jako majoran-
tu geometrickou řadu s menším součtem). Proto s přesností
na 200 platných míst platí

V0„11111...nin=í-í-10

(И-
Číslo v první závorce má na prvních 100 desetinných mís-

tech samé trojky a pak samé nuly, zatímco číslo v druhé
závorce má na 101. desetinném místě jedničku a pak dál
samé šestky. Na 200 platných číslic tedy je

-100
_

100

) + (I.10-°°)-100

Vo, 11111.. .1 111 1 = 0,333... 33 316 66... 6 66....
100 100 99

4.1 Hledáme reálné kořeny rovnice s reálnými koeficienty.
Využijeme buď speciálního případu Cauchyovy nerovnosti

/ n \2 n

(E*0v* = l ' » = 1
(1)
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ve které nastává rovnost, právě když x\ = x? = ..

anebo nerovnosti mezi mocninným a aritmetickým průmě-
rem

ХП )

/ 1 n \ -гг n

(£.EM16)“ši£W' ^ t = 1 ť=l
(2)

ve které nastává rovnost, právě když x\ = ж2 = • • • = xn.
Podle Viétových vztahů platí

П

Er,= (3)—n

»=i

odtud pak podle (1) plyne

n16 = ( E r«) ^ (n Er»2)
l2(n±rfÝ én'*±r}° = n'°.

4 i=1 7 t=l

8

< n

Ve všech nerovnostech nastává rovnost, je tedy ri = r2 =
= rn = -1.... = r„ a podle (3) ri = r2 =

Ve druhém případě podle (2) dostaneme

(i t Ы16)* ^ i t Ы ^ - tr> =!—\n1=1 / ni=i n f=1 n
1 = = 1.

Opět tedy v obou nerovnostech platí rovnost. Z té první
máme, že |ri| = |r2| = ... = |rn|, a z druhé vidíme, že
všechna r, mají stejné znaménko, takže n = r2 = ... =
= rn = — 1. Daná rovnice má tvar

(x + l)n = 0.
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Obr. 54

4.2 Daný pravoúhelník si představíme tak jako na obr. 54;
je jasné, co myslíme slovy vlevo, dole, vodorovný, svislý,
atd. (například strana a je vodorovná, strana 6 svislá). Bez
újmy na obecnosti lze předpokládat, že každý pravoúhelník
Ri má aspoň jednu stranu délky 1 (jinak rozsekáme každý
Ri rozměrů к x x (k přirozené) na к pravoúhelníků lxi).
Pravoúhelníky, jejichž svislá strana má délku 1, nazveme

svislými, ostatní (musí mít nutně vodorovnou stranu dél-
ky 1) vodorovnými.

Pro x € (0, a) označme f(x) součet „výšek“ všech vodo-
rovných pravoúhelníků Ri, jejichž levé strany leží na svislé
přímce Lx ležící ve vzdálenosti x napravo od b (obr. 54).
Uvažujme nějaké x z intervalu (1, a). Označíme-li z\(x) sou-
čet výšek všech svislých pravoúhelníků, jejichž levá strana
leží na Lx, bude

f(x) + zi(z)

rovno součtu výšek všech pravoúhelníků, jejichž levá strana
leží na Lx. Podobnou úvahou zjistíme, že součet výšek všech
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pravoúhelníků, jejichž pravá strana leží na Lr, je

f(x - 1 ) + z2(x),

kde 22(ж) je součet výšek všech svislých pravoúhelníků, je-
jichž pravá strana leží na Lx. Tyto dva poslední výrazy si
však musí být rovny, takže

f(x) = f(x - 1) + z2(x) - Z\(ж).

Protože svislé pravoúhelníky mají výšku 1, jsou z\(x), z2(x)
celá čísla, tedy i /(ж) — /(ж — 1) je celé číslo. Proveďme tuto
úvahu pro x = 1, 2, ..N, kde N je největší přirozené číslo
menší než a, vidíme, že f(N) — /(0) je celé číslo.

Z předchozích úvah nyní vyplývá, že

/(0) + 2,(0) =6.

Předpokládejme, že délka strany b není celé číslo. Jak už by-
lo řečeno, z\ (ж) je vždy celé, tedy ani /(0) není celé, a proto
ani f(N) není celé číslo. Speciálně f(N) ф 0, takže přímky
Ln se dotýká zleva aspoň jeden vodorovný pravoúhelník.
Protože je vodorovný a leží celý v R, musí být délka strany
a aspoň N + 1. Ale N bylo definováno jako největší celé
číslo menší než a, je tedy nutně a = N + 1, tj. a je celé.

Dokázali jsme, že pokud b není celé, musí být celočíselné
a; tím je důkaz hotov.

Jiné řešení. Označme А, В, C, D vrcholy daného právo-
úhelníku R a zaveďme kartézskou soustavu souřadnic s po-
čátkem v bodě A a s osami ж = AB, у = AD. Množinu těch
bodů, jež jsou vrcholy některého z pravoúhelníků Я, a mají
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obě souřadnice celočíselné, označme S. Každému z vrcholů
E v uvažovaném rozkladu pravoúhelníku R přiřaďme funkci
пе, označující počet pravoúhelníků Д, , jichž je E vrcholem.
Je tedy па = tib = nc = no = 1, jinak n# = 0, nebo n# =
= 2, nebo пе = 4. Přitom

E пе = E f(Ri)>
Ees

kde f(Ri) označuje počet vrcholů, jež patří do S (mají obě
souřadnice celočíselné). Vzhledem к tomu, že aspoň jedna
dvojice stran pravoúhelníku Я, je celočíselná, je /(#*) G
G {0,2,4},takže

«=1

E пе = E /(#») = ° (mod 2).
1 = 1Ееs

Protože ale A G S а пд = 1, patří ještě aspoň jeden
z vrcholů B,C,D rovněž do S. Tím je tvrzení úlohy doká-
záno.

4.3 (Podle Š. Kasala, 3. ročník GWP, Praha.) Předpo-
kládejme, že obsahy S(OAiAj) všech trojúhelníků OAiAj,
1

= * < i = 4, leží v intervalu (l, л/2), a z tohoto předpo-
kladu vyvodíme spor.

Zřejmě žádné tři z daných pěti bodů nejsou kolineární.
Sestrojme rovnoběžky pi, P2, qi, </2 s přímkou ОЛ1, jež leží

2^2
104,1 a 104,1

Uvažujme nyní body Ak, к = 2, 3, 4. Protože obsah troj-
úhelníku OA\Ak je aspoň 1 a méně než \/2, musí Ak le-
žet v pásu vymezeném přímkami pi, P2 (pi do pásu patří,

2
od 0A\ (obr. 55).ve vzdálenostech
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q2

Pí nikoliv) nebo v obdobném pásu mezi přímkami q\ a qi.
Obsah žádného z trojúhelníků OAiAj, 1 ^ i < ý ^ 4, se
však nezmění, nahradíme-li některé body At body A'k s ni-
mi souměrně sdruženými podle O. Bez újmy na obecnosti
můžeme tedy předpokládat, že všechny body Ak (к = 2,
3, 4) leží v pásu mezi p\ a pí. Dále můžeme předpokládat,
že polopřímka ОЛ3 náleží úhlu A2OA4 (stačí body vhodně
přejmenovat).

Označme P průsečík této polopřímky s úsečkou A2A4.
Protože A2, A4 leží v pásu mezi pi, p2, leží v něm i P;
proto

|043| < \/2|Oi»|.
Nyní platí

5(Л2ОЛ4) = S(AiOP) + S{A4OP) =

= p£](S(^0^) + S(^O43)) >
>-^.(1 + 1) = Л
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což je spor s předpokladem, že S(OA{Aj) E (1, \/2) pro
všechna 1 5Í i < j ^ 4.

Jiné řešení. Předpokládejme, že body A i, ..., An jsou
označeny ve směru hodinových ručiček a vzájemné úhly po-

lopřímek CM,-, QAj+i jsou po řadě a, /3, 7 (obr. 56). Pro ob-
sáhy uvažovaných trojúhelníků pak platí (Sij = S(OA{Aj))

1
512 = — |QAi I |042| I sin a I

513 = ^ 104,1 |a43||sin(a + /3)|
Sl4= i 104,1 |ОЛ4||зт(а +/3 + 7)|

S23= i|042||043||sin/3|
S24 = i|0+2||0+4Msin(/3 + 7)|

S34 = Ьо4з||а44||зт7|.
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Jednoduchým výpočtem však vyjde

sin(a -f P + 7) sin /3 + sin a sin 7 =

= sin(a + (3) cos 7 sin /? -f
+ sin /3 sin 7 cos(a + /3) + sin a sin 7 =

= sin(a + (3) cos 7 sin /3 + sin /3 sin 7 cos a cos (3 —

— sin2 (3 sin 7 sin a -f sin a sin 7 =

= sin(a + (3) cos 7 sin /? +
-f sin 7 cos /?(sin /? cos or + sin a cos (3) =

= sin(a + /?) sin(/? -f 7),

takže pro vhodnou kombinaci znamének ± dostaneme

S14S23 ^ ‘^12'5’з4 i *S'l3*S,24 — 0.

Pro vhodnou kombinaci {i, j, k, 1} = {1,2,3,4} tedy bude

Sij^J ^ SijSki = SikSji + SuSjk ^ 2( max

1=*’<Í =4

neboli

max Sij ^ \/2.

4.4 (S. Hrinko, A. Kuběna, J. Menšík.) Označme V prů-
sečík výšek, O střed kružnice opsané, P patu výšky spuš-
těné z bodu В na stranu AC, S střed strany AB (obr. 57).
Trojúhelník APV je pravoúhlý a velikost úhlu AVP je 7.
Podle věty o obvodovém a středovém úhlu má úhel AOB
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Obr. 57

velikost 27. Trojúhelník АОВ je rovnoramenný, takže ve-
likost úhlu AOS je 7. Trojúhelník ASO je také pravoúhlý
a podle předpokladu \AV\ — \AO\, takže trojúhelníky APV
a ASO jsou shodné. Je tedy

1
\AP\ = \AS\ = z\AB\.

Odtud plyne, že a = | (např. cos a = ^).
Obrácením sledu předcházejících úvah dostaneme, že

\AV\ = \AO\, právě když a = |.
Poznámka. Velmi krátké řešení obdržíme použitím vzorce

pro obvod kružnice opsané. Je

\AB\ \AP\ |v!B|cosq;\AO\ = \AV\ = —2 sin 7

Odtud okamžitě plyne řešení.

sin 7 sin 7

4.5 Dokážeme následující tvrzení, z něhož tvrzení úlohy
snadno plyne. Označme a 1, 02 tečny kružnice к v bodech
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A\, A2 a uvažujme bod X kružnice k. Jsou-li P\, P2, P (po
řadě) paty kolmic spuštěných z bodu X na přímky ai, ao

a AiAlt je |PX|2 = |P,X||P2X|.
Podle věty o obvodovém a úsekovém úhluje úhel A\XA2

roven úhlu a při vrcholu A2 (kdo toto tvrzení nezná, může je
snadno nahlédnout ze známé věty o středovém a obvodovém
úhlu). Dále je snadno vidět, že i úhel PXP2 je roven a.
Proto se úhly PXP2 а A1XA2 rovnají a rovnají se i úhly
A\XP а A2XP2, takže trojúhelníky A\PX а A2P2X jsou
podobné. Odtud

1^2*1
_ \PXI

\A2X\ \AiX\
a symetricky také

IPiXI
_ \PX\

\AtX\ I A2X\'

Uvedené rovnosti platí i v případě, kdy A2X či A\X je
průměrem kružnice к (obr. 58). Vynásobením obou vztahů
dostaneme požadovanou rovnost

\PxX\\P2X\ = \PX\\

která platí, i když |^iV| = 0 nebo |ЛгХ| = 0, protože pak
také \РгХ\ \P2X\ = 0= \PX\.

Uvedené tvrzení lze také snadno dokázat analyticky.

4.6 Ještě než uvedeme řešení této úlohy, je třeba pozná-

menat, že obrázek je součástí podmínek úlohy. Jinak exis-
tuje protipříklad (obr. 59), pro který tvrzení úlohy neplatí.
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Kruhové náměstí označme O, ulici z A do В označme
A —► B. Dokážeme, že

a) z libovolného náměstí А ф O se dostaneme na O,
b) z O se dostaneme na libovolné čtvercové náměstí.
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Z a) a b) pak snadno plyne tvrzení úlohy.
Nejprve dokážeme, že z náměstí А ф O se dostaneme

na O. Jestliže A —► O, není co dokazovat, jinak z A ve-
de cesta na nějaké čtvercové náměstí. Pokračujme z Л po

čtvercových náměstích, dokud je to možné, anebo dokud se
nevrátíme zpátky do A.

Jestliže přijdeme na nějaké náměstí В, odkud nemůžeme
pokračovat po obvodě, je podle zadání В —у O, čímž jsme
se dostali z A na O. Pokud jsme se nikde nezastavili, pak
se vrátíme na A, protože náměstí je konečný počet. Před-
pokládáme-li, že plán města odpovídá obrázku, museli jsme
projít všechna čtvercová náměstí a podle zadání pak exis-
tuje náměstí В takové, že В —► O. Z A tedy půjdeme do В
a odtud do O.

Tvrzení b) dostaneme, jestliže změníme orientaci ulic;
podmínky zadání se zachovají a podle a) se (v novém měs-
tě) dostaneme z A na O, to znamená, že v daném městě se
lze dostat z O na A.

Poznámka. Úloha se dá zobecnit takto: Předpokládejme,
že se v městě dá označit směr jednotlivých ulic tak, aby se
dalo z každého náměstí odjet a na každé náměstí přijet. Pak
se dá z každého náměstí dojet na libovolné jiné, právě když
každá „kruhová“ trasa po jednotlivých náměstích (bez ohle-
du na zvolené směry) prochází jedním pevným náměstím.

Pokuste se to dokázat.

4.7 (Podle V. Skalského, 4. ročník G, Prešov, T. Ševčen-
ka.) Označme O střed tělesové úhlopříčky AG a 0\ střed
stěnové úhlopříčky АН (obr. 60). Pak 00\ je střední příčka
trojúhelníku GHA, a proto OOi, GH, AB jsou navzájem
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rovnoběžné. Podle věty o střídavých úhlech je \-^.AOO\\ =
= \-$OAB\ = a. Protože 00\ je kolmá na АН (neboť je
kolmá na boční stěnu ADHE), je trojúhelník AOH
noramenný, takže \$AOH\ = \-$AOOi \ + \$HOO\\ = 2a.
Analogicky dostaneme, že \$.HOC\ = 2(3, \$COA\ = 2j
(velmi názorně je to vidět i na obr. 61). Trojhran OAHC
má tedy rovinné úhly 2a, 2/3, 2j. Ale součet úhlů v každém
trojhranu, který neleží v rovině, je menší než 2л. V našem
případě jistě O neleží v rovině AHC, jinak bychom lehko
dokázali, že v ní leží všechny vrcholy kvádru. Proto <* + /? +
+ 7 < я.

Tvrzení o součtu úhlů v trojhranu dokážeme pomocí kosi-
nové věty: Označme O' kolmý průmět bodu O, který neleží
v rovině AHC, do této roviny. Zřejmě platí

rov-

\$AO'H\ + \$HO'C\ + \$CO'A\ = 2л

a je \0'A\ = \0'H\ = \Q'C\ < \OA\ = \OH\ = \OC\. Z kosi-

242



A

I \

Л ■

Y~

Y
\

в

Obr. 61

nové věty plyne

\AH\2- \0'A\2- \0'H\2
2\0'A\\0'H\

\AH\2 — 2\0'A\2
2\0'A\2

\AH\2 — \OA\2 — \OH\2
2\OA\\OH\

= cos \<$AOH\.
Protože velikosti úhlů АО'Н, AOH leží v intervalu (0,7t),
plyne odtud \-$AOH\ < \-$AO'H\. Podobně dokážeme, že
\$.COH\ < \ý.CO'H\, \-$COA\ < \$CO'A\. Po sečtení vyjde
\$AOH\ + \^СОН\ + \$COA\ < 2л.

cos \-$AO'H\ —

<

<

5.1 Pro n = 1 dostáváme

b = xl + x\ - xl + (a - x0)2 = 2xl ~ 2-clxq + a2,
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takže xq je kořenem kvadratické rovnice

2x2 — 2ax + (a2 — 6) = 0,

jejíž diskriminant 4(26 — a2) je zřejmě nezáporný, a platí
tedy

a ± y/2b — a2
Xq e

2

přičemž obě hodnoty se mohou nabývat.
Dále předpokládejme, že n > 1. Použijeme-li Cauchyovu

nerovnost

t <чь.) f-,2
»=1 «=l i = l

na čísla at- = 1, 6,- = у, (1 ^ i ^ n), jež splňují rovnosti
П П

^ у, = Л, у2 = B, dostaneme nerovnost A2 ^ nB;
i=i i= 1

nB-A2
a číslapřitom pro c =

2n

AA A
У1 = с, У2 = — + с, Уз = 2/4 = - • • = yn = —

n

(na tomto místě používáme předpoklad n > 1) obráceně
platí

nn

П

Y.yi = A
»=i

Š4H4H' A2
+ (n — 2)—2 —гг"'

Л2
= — + 2c2 = B.

n
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Protože čísla xq, ..xn splňují rovnosti
П

tx] = bE = a,
i = 0ť = 0

musí analogicky podle Cauchyovy nerovnosti platit a2 ^
^ (n+ 1)6. Za tohoto předpokladu hledáme tedy všechna
xq, pro něž existují xi, ..xn tak, aby

П

E x? = b-xlE Xi = a - x0
t=i i=i

Podle předchozí úvahy taková čísla x\, ..xn existují, právě
když

(a - x0)2 ^ n(b - x2),
neboli

(n + l)x2 — 2ax0 + (a2 — nb) ^ 0.
Protože a2 5Í (n + 1)6, je diskriminant kvadratického troj-

členu na levé straně nezáporný,

2) £0.D = 4a2 — 4(n -f l)(a2 — nb) = 4n((n + 1)6 — a

Uvažovaná nerovnice je tedy ekvivalentní podmínce

2 a — y/Ď 2a -f y/Ď
2(n+ 1) ’ 2(n+ 1)

x0 E

neboli

a — \Jn(n + 1)6 — na2 a -f y/n/j/+V)b^-na?
Xq 6

n + 1n -f 1
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což je odpověď na naši úlohu.

5.2 Místo s eukleidovskými vzdálenostmi budeme raději
počítat s velikostmi úhlů A{OAj, kde O je střed dané ku-
lově plochy. Pro jednodušší vyjadřování budeme používat
zeměpisnou terminologii.

Vezmeme-li např. pět vrcholů pravidelného osmistěnu, vi-
dime, že existují body A\, Л2, A5 takové, že

min|^ 1 ^ (1)

Uvažujme množinu bodů {Л1,..., Л5}, jež splňují (1). Uká-
žeme, že aspoň dva z nich tvoří průměr dané kulové plochy.

Představme si např. bod Л5 jako „severní pól“ a před-
pokládejme, že žádné dva z bodů Ai, ..., Л5 netvoří prů-
měr. Body A\, ..., Л4 musí tedy ležet na „jižní polokouli“
s výjimkou jižního pólu. Uvažujme libovolný kvadrant té-
to polokoule ohraničený čtvrtinou rovníku (obr. 62). Pokud
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obsahuje dva z bodů A\, ..., A4, musí každý ležet na jiném
poledníku, protože jejich „délky“ se liší aspoň o |. Odtud
plyne, že body A\, ..., A\ leží na polednících, jež rozdělují
sféru na čtyři shodné části (kvadranty). Pokud by ovšem
některý z nich neležel na rovníku, musí tam ležet oba jeho
sousedé, jež jsou středově souměrní podle středu O dané
kulové plochy.

Odtud plyne, že je vždy min\AiOAj\ ^ |, přičemž rov-
*5*7

nost nastane, právě když dva z bodů A\, ,.., Л5 jsou stře-
dově souměrné (tvoří ,,póly“) a ostatní leží na odpovídají-
cím „rovníku" ve vrcholech trojúhelníku s vnitřními úhly
aspoň |.

Pro nejmenší vzdálenost bodů A{, Aj tak dostaneme hra-
nici y/2.

5.3 (Podle A. Kuběny, 3. ročník GMK, Bílovec.) Označ-
b délky stran koberce a předpokládejme, že koberec

má tvar pravoúhelníku. Jestliže v místnosti 55 x 38 svírá
me a

55

38

Obr. 63
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strana délky a se stěnou délky 55 úhel a k/2, pak pro

úhly, které svírají strany koberce s průniky stěn a podlá-
hy místnosti, platí to, co je vyznačeno na obr. 63 (plyne to
z toho, že jde pouze o pravoúhlé trojúhelníky a obdélník).
Platí tedy

a sin a + b cos a = 38

b sin a + a cos a = 55.

Po umocnění, sečtení a vzájemném vynásobení těchto
dvou rovnic dostáváme

a2 + b2 -f 2a6sin2a = 382 + 552
(a2 + b2) sin 2a; -f 2ab = 38-55-2.

Položíme-li x = a2 + 62, у — 2ab, bude x, у > 0 а

382 + 552 — x 2-38-55 -у

xУ

tedy
(382 + 552)x - x2 = 2 • 38 • 55у - у2

a podobně v druhé místnosti zjistíme, že

(502 + 552)x - x2 = 2 • 50 • bby - y2.
Jediné kladné řešení soustavy posledních dvou rovnic je
(x,y) = (3 125,2 500). Jim odpovídající kladná a, 6 jsou
jedině (a, b) = (50,25).

Zkoušku, že koberec rozměrů 25 x 50 lze skutečně do skla-
dovacích místností uložit uvedeným způsobem, přenechává-
me těm, kteří obchodníkovi nedůvěřují.
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5.4 (Podle P. Novotného, 2. ročník GWP, Praha.)
a) Jestliže p — 1, pak nerovnost platí pro všechna n ^ 2,

neboť

xí + x\ + • • • + xn ~ (x\x2 + x2x3 + ... + a?n-i*n) =
1 o 1 / .o

= 2^1+ 2^1 ~x^ + '•
1, ч2 X

+ 2Vx«-i Xn) *h 2

• +

к £ o.

b) Nechť p = |. Upravme rozdíl levé a pravé strany ne-
rovnosti (zatím formálně) následujícím způsobem:

+ ...+

2 . 2 i i 2
X1 + x2 + . . . + *„ -

2 2
22

+ Ct2 *2 “ ~
= ai X\ — -—x2

3a23ai
2

2
++ «ГХ — 1 XnXn-1 ~

3ctn—1

Předně cti = 1. Porovnáním koeficientů u x\
pro 1 ^ к ^ n — 1 rekurentní vztah

dostanemefc+i

4
(- Qjfc + i — 1,

9ak
9ajk - 4

ajfc+i = 9ajfc

(Všimněte si, že čísla a i, a2, ... nezávisí na n!) Můžeme
tedy snadno vypočítat a2 = §
znamená, že pro n — 2,3 jsme uvažovaný rozdíl upravili na

b a4 = -U-. To9 > «3
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součet čtverců a nerovnost tedy pro tato n platí. Dosazením
X\ — 1, — 2Q'kXk (к — 2, 3, 4), X5 — ... — Xn — 0
naopak dostáváme, že pro n ^ 4 nerovnost neplatí.

c) Nechť p = |. Postupujeme obdobně jako v případě b).
Porovnáním koeficientů v rovnosti

^(xix2 + X2X3 + . . . + Xn_iXn) =x\ + x\ + ... + X2n -

2 2

( 3 3
+ a2 X2 - -—X3 4- • • • += a 1 x\ - —x2

5ai 5a2
2

3
+ anxl+ an_ 1 — 1 Zn

5an_i

dostaneme pro 1 ^ к ^ n — 1 rekurentní vztah

ai = 1
25a*; — 9

ajfc+i = 25ajfc

a konkrétní hodnoty a2 = 4|, a3 = сц ss p^r, 05 = ~§f-
Stejnou úvahou jako v b) pak nahlédneme, že nerovnost

platí právě pro n = 2, 3, 4.
Všimněte si, že tento způsob řešení v podstatě nezávi-

sel na hodnotě p. Pro konkrétní hodnoty (p = |, |) bylo
samozřejmě možné napsat rovnou, jak se nerovnost upraví
— a to co nejrychleji a nejjednodušeji — na součet čtverců
a jak najdeme protipříklad, pro který nerovnost neplatí.

Poznámka. Je dobré si všimnout, že pokud uvedená ne-

rovnost pro dané p a pro nějaké n platí pro všechna reálná
čísla xi, x2, ..., xn, pak platí i pro všechna к < n. Stačí
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položit Xk+i = ... = xn = 0. To znamená, že pro každé p

existuje přirozené číslo N(p) ^ 2 takové, že nerovnost (1)
platí pro každé n < N(p) a neplatí pro n ^ N(p) (tj. exis-
tují reálná čísla x\, x^, ..xn taková, že ...). Z výsledku
a) víme, že můžeme klást N{\) = oo, a dále jsme zjistili, že
ЛЧ§) = 4, JV(f) = 5.

Dá se dokázat, že nerovnost (1) platí právě pro p ^
x

f . Pro p =
arccos £

nastane rovnost pro čísla Xk — sin

11
<

—, tj. N(p) = — pak
cosW+TcosMT

1 < k < n.
n + 1

5.5 (Použita myšlenka A. Kuběny, 3. ročník GMK, Bí-
lovec.) Podmínku „ke každému bodu A{ existují dva shod-
ně obarvené oblouky ...“ budeme nazývat podmínkou (1).
V zadání mělo být přesněji řečeno, že to musí být různé
oblouky (jinak by uvedená podmínka byla triviálně splněna
pro „oblouky“ délky celé kružnice a pro libovolné obarvení).

Pro libovolné i označme p,- nejmenší číslo, pro které jsou
oblouky Ai-PiAi, AjAi+p, shodné. Nejprve si všimněme, že
nemůže být p, > n/2. Je-li totiž (3 průnik oblouků A,-_PtAj,
AiAi+Pi (obr. 64), plyne z jejich shodnosti, že A{ je spo-
léčným krajním bodem dvou oblouků shodných s /?, což
odporuje minimalitě p, .

Budiž nyní p = max p, . Zvolme očíslování tak, aby bylo
lgign

An = AnAn+Pn = a (obarvené oblou-P = Pn, tedy A
ky budeme označovat malými řeckými písmeny). Jestliže
z kružnice „vynecháme“ oblouk A

n-Pn

An, nová „kružnice4*
.., A'n_p) bude opět splňovat podmínku (1)

a pro příslušné číslo p' bude p' ^ p.

n-pn

(s body A\i> •
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a pro body Aj = Aj,
P = j = n — p (obr. 65, kde e je oblouk příslušný A
je oblouk příslušný Aj). Případ n — p — p je rovněž jasný
— zde není co dokazovat.

To je jasné pro bod An — An-p

a 07n-p

Obr. 65

Uvažujme teď bod Л,- pro 1 й i ^ p. Vzhledem к to-
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mu, že si body Л,-, Лп_р+, navzájem odpovídají, můžeme
dokonce předpokládat, že je i ^ p/2. Vezměme nejprve ten
případ, kdy nejmenší oblouky příslušné bodu A{ (na původ-
ní kružnici) neobsahují bod Ap a první z nich je bodem An
rozdělen na oblouky f3 a a (obr. 66). Jestliže analogicky bo-

du Л„_р+,- odpovídají shodné oblouky ya, musí být jeden
z oblouků ya, /За obsažen v druhém: Bude-li např. /3 = y£,

Oc
>1+

!
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pak je také a = £a' (obr. 67), takže bodu An odpovídá
kratší oblouk £! To ale znamená, že je (i = 7.

Podobně si poradíme i s případem, kde jeden z oblou-
ků odpovídajících bodu Л, obsahuje bod Ap (obr. 68). Je-li

An
OL

Г

в 06 >yA.

АM
n-p + i

ос

А
п-р

У

ОЬг. 68

jeden z oblouků opět rozdělen bodem An na oblouky
a a, vyjde postupně, že a = a'£ = a"^2 — ... — <p£k =
= takže zase bodu An odpovídají kratší oblouky
ipíp (obr. 69). To je opět spor s naším předpokladem.

Tvrzení úlohy už teď snadno dokážeme matematickou in-
dukcí (a navíc dokážeme i to, že perioda je rovna číslu p).

Pro n = 2 musí být podle podmínky (1) obarveny dva
oblouky stejnou barvou, obarvení je tedy periodické s perio-
dou 1. Předpokládejme, že tvrzení platí pro každé к < n.
Danou kružnici zredukujeme popsaným způsobem na kruž-
nici s body Ai, ..., An-p. Pro číslo p', jež odpovídá této
nové kružnici, platí p' ^ p ^ n — p, neboť p ^ n/2. Pokud
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ос

f\ j I I i41

1У
осAn А.

Obr. 69

р' = n — р, jep = п/2 a obarvení je periodické s perio-
dou n/2. Pokud p' < n — p, je obarvení redukované kružni-
ce periodické s periodou p' podle indukčního předpokladu.
Kdyby teď bylo p = kp' -f r pro 0 < r < p', bude me-
zi Akp' а Лр ležet „zbytkový“ oblouk a délky r (obr. 70).
Díky periodě p' najdeme oblouk a i mezi An a Ar a dí-
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ky shodnosti oblouků An-pAn, AnAp leží a též mezi Tn_r
a An. To je ale ve sporu s definicí čísla pn = p. Proto je
p = kp', takže snadno nahlédneme, že i původní kružni-
ce musela mít periodu p', takže je dokonce p' = p. Tím je
tvrzení úlohy dokázáno.

5.6 Nechť \AB\ = a, \AD\ = b, takže \BP\ = \DQ\ =
P

= —, a dále položme — = к (obr. 71). Pro obsahy přísluš-
q

, ,

ných trojúhelníků platí

ab ab
2P(ABP) = 2 P(ADQ) = -

P 4

‘IP(PCQ) = a&(l ~ “) (l - ~)
Proto

2P(APQ) = аб(2 — — — (l — “) (l “ "))
ab(l - —).\ pqJ
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b2 a2
Protože \AP\2 = a2 H—-, \AQ\2

Pl
pro <p — \$PAQ\ rovnost

= b2 H—2 > dostaneme
9

(APQ) = (a2 + £j) (i2 + %;) si
= °2б2(1-й)2’

4P2 sin2 (f —

tj.

(l-l)2.\ pq)
sin2 (p =

Má-li být <£> maximální, musí být hodnota funkce

/(t)- (1 +1^)(1 + ?)
minimální. Ale podle Cauchyovy nerovnosti je

f(k) ši.i+i .* = i + ikp q pq

přičemž rovnost nastává, právě když

fc2

</2q2i
neboli fc4 =

P21 1

k2p2

5.7 První hráč má vyhrávající strategii: Předpokládejme,
že jeho cílem je přemístit se z pole (1,1) na (n, n). Z tahů
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h п/
7 n

T.

*
h

*

Obr. 72

druhého hráče, jež jsou souměrné podle úhlopříčky, budeme
rozebírat vždy jen jednu možnost.

První tah prvního hráče bude (1,1) —► (2, 3) —► (4,4).
Předpokládejme teď, že po tahu prvního hráče jsme na

poli (h,h), h ^ 4 (podmínka h ^ 4 zaručuje, že existuje
platný tah druhého, například (h — 1, h — 3)).

Jestliže h = n, první vyhrál, jinak (h < n) má druhý tyto
možnosti (obr. 72):

tah druhého hráče odpověď prvního hráče

a) (h, h) —► (h — 1, h — 3) —>[(h, h — 1) —► (h + 1, h -f 1)],
b) (h, h) —► (h + 1, h — 3) —»►[(/*, h — 1) —► (h + 1, h + 1)],
c) (h, h) —► (h + 3, h — 1) —i►[(/» + 2, h + 1) —► (h + 3, h -f 3)]

je-li h ^ n — 3
d) (h, h) — (h + 3, h +1) —[(Л + 1, h + 2) -► (h + 3, h + 3)]

je-li h ^ n — 3
Pokaždé tedy postoupí první hráč po úhlopříčce alespoň

o jedno políčko blíže ke svému cíli. Přitom možnosti, že by se

pro h = n— 1 nemohl po tahu soupeře dostat do rohu (n, n),
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se nemusí obávat, protože pole označená * (v tabulce tahy
c) a d)) už nejsou v takovém případě pro soupeře dostupná.

Začíná-li druhý hráč, má jenom možnost d) a po tahu prv-
ního se dostaneme na pole (4,4), tedy i v tomto případě má
první hráč vyhrávající strategii. Protože délka úhlopříčky
je konečná, dosáhne první hráč po konečném počtu kroků
cílového pole (n, n).
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Ako sme počítali v Pekingu
(Správa z 31. medzinárodnej matematickej olympiády)

Stalo sa už tradíciou, že každoročně začiatkom letných
prázdnin sa stretávajú najlepší z najlepších stredoškolákov
z desiatok krajin, aby si na medzinárodnej matematickej
olympiádě zmerali svoje sily v riešení náročných úloh. V ro-
ku 1990 sa ujala usporiadania tohto velkého podujatia Cín-
ska ludová republika a za miesto konania súťaže zvolila svoje
hlavně město Peking. Účast’ na súťaži bola rekordná: zúčast-
nili sa jej žiaci z 54 krajin (tab. 6, str. 266), zváčša zastúpe-
ných úplnými šesťčlennými družstvami. Ceskú a Slovenská
Federatívnu Republiku reprezentovalo na 31. MMO v Pe-
kingu týchto šestí žiakov:

Martin Dindoš 4 G J. Hronca, Bratislava
Petr Hliněný
Štěpán Kasal
Michal Konečný 3 G Brno, tř. kpt. Jaroše
Pavol Ševera
Ondřej Šuch

4 G M. Koperníka, Bílovec
3 G W. Piecka, Praha

4 G A. Markuša, Bratislava
4 G A. Markuša, Bratislava

Vedúcim delegácie bol RNDr. Karel Horák, CSc. (MÚ
ČSAV), jeho zástupcom RNDr. Vladimír Burjan (MŠMŠ
SR), obaja členovia předsednictva ÚV MO.
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Vedúci delegácie odletel do Pekingu 7. júla, aby sa ako
člen medzinárodnej jury zúčastnil vyberu súťažných úloh.
Jury po dvojdňovom náročnom rokovaní vybrala z de-
siatok návrhov šesť súťažných úloh. Možno považovat’ za

úspěch, že medzi vybrané úlohy sa dostala aj jedna česko-
slovenská (úloha č.2), ktorej autorom je RNDr. Pavol Čer-
nek, CSc., z katedry matematiky Elektrotechnickej fakulty
SVŠT v Bratislavě.

Naobed 9. júla 1990, po výše 7 hodinovom lete z Moskvy,
dorazili do Pekingu aj šiesti súťažiaci sprevádzaní V. Bur-
janom. Organizátoři súťaže im poskytli následujúce dva dni
na aklimatizáciu a přípravu na súťaž. Vzhfadom na vyso-
ké teploty vzduchu a jeho mimoriadnu vlhkost’, na akú nie
sme v našich podmienkach zvyknutí, bola táto aklimatizá-
cia ozaj potřebná. Navýše — vzhfadom na osemhodinový
časový posun medzi Pekingom a ČSFR — bolo v Pekingu
doobedie v tom čase, kedy je u nás doma noc. Kecfže sú-
ťaž prebiehala vždy doobeda, boli naši žiaci nútení podávat’
vrcholný intelektuálny výkon v (biologickom) čase, kedy je
zvyčajne ich organizmus v najhlbšom útlme. Táto skutoč-
nosť, ako aj spomenuté horúčavy s vlhkosťou vzduchu určité
mali vplyv na ich výkony.

Počas dvoch přípravných dní si žiaci prezreli niektoré čas-
ti Pekingu a navštívili ZOO, kde viděli okrem iného pandy
— zvieratá, ktoré sú národným symbolom Číňanov. Poobe-
de před súťažou sa konal v modernej športovej hale cere-
moniál slávnostného otvorenia 31. medzinárodnej matema-
tickej olympiády. Po úvodných prejavoch zástupcov minis-
terstva školstva a města Pekingu ho spestrilo vefmi atrak-
tívne a exoticky pósobiace vystúpenie róznych artistických
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a akrobatických skupin. Na tomto střetnutí sa prvýkrát od
příletu do Pekingu viděli vedúci delegácií s ostatnými ich
členmi. Aj to len na vzdialenosť niekofko desiatok metrov.
Pravidlá súťaže totiž vyžadujú, aby vedúci delegácií (ktorí
sa podiďajú na vybere súťažných úloh) ostali oddělení od
súťažiacich až do skončenia druhého súťažného dňa.

Vo štvrtok a piatok (12. a 13. júla) prebiehala samotná
súťaž. Ziaci riešili každý deň tri súťažné úlohy, pričom na vy-

pracovanie riešení mali vždy 4,5 hodiny čistého času. V trie-
dach, kde sa súťažilo, nebola dostatočná klimatizácia, a tak
tí žiaci, ktorí nesedeli bezprostředné při niektorom z venti-
látorov, sa dosť potili nielen nad úlohami. Zdá sa, že čo sa

podmienok týká, bola táto olympiáda jedna z najnáročnej-
ších. To však v žiadnom případe nemá byť kritika organizá-
torov, ktorí skutočne dokladné všetko připravili a vyvinuli
maximálně úsilie, aby súťaž přeběhla hladko a aby sa hos-
tia v ich krajině cítili príjemne. Keď si uvědomíme, že ide
o skupinu zhruba 500 Fudí, ktorých třeba ubytovat’, stravo-
vať, zabezpečit’ pre nich program na 10 dní, dopravovat’ ich
z miesta na miesto, atď., uvědomíme si, že MMO v dnešnej
podobě je podujatím veťmi nákladným a navýše organizač-
ne nesmierne náročným. (Usporiadanie 30. MMO v Spolko-
vej republike Nemecko si údajné vyžiadalo 1,3 milióna ma-

riek). Navýše stále trvá trend zvyšovat’ počet účastnických
krajin. Preto nepřekvapuje, že budúci organizátoři medzi-
národných olympiád uvažujú aj o možnom znížení počtu
súťažiacich z jednotlivých krajin na štyroch. (Pre tých, kto-
rí sa na začiatky MMO nepamátajú, dodajme, že povodně
boli družstvá jednotlivých krajin osemčlenné.)

Po dvoch súťažných dňoch nastáva medzi súťažiacimi vel-
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ká psychická úfava — zvyšok pobytu strávia exkurziami
po krajině, návštěvou zaujímavých miest a památihodností.
Pře vedúcich delegácií a ich zástupcov naopak začína nie-
коГко dní náročnej práce. Všetky riešenia svojich zverencov
musia opravit’ a podlá vopred stanovených kritérií obodo-
vať. Abý bola zabezpečená objektivnost’, musia byť všetky
riešenia a ich opravy následné skoordinované. Touto nároč-
nou a únavnou prácou sú spravidla poverení matematici po-

riadajúcej krajiny. Tí postupné přejdu každé jedno žiacke
riešenie s vedúcimi príslušnej krajiny (ktorí ho opravovali),
nechajú si ho slovo po slově přeložit’ do niektorého zo sveto-
vých jazykov a posúdia, či bodové ohodnotenie navrhnuté
vedením delegácie je opodstatněné. Vzhradom na to, že by
nebolo rozumné, aby koordinátoři kontrolovali aj opravu
riešení žiakov z ich vlastnej krajiny, bolo přijaté pravidlo,
podlá ktorého riešenia žiakov z poriadajúcej krajiny koordi-
nujú vedúci delegácií krajin, z ktorých pochádzajú jednotli-
vé súťažné úlohy. Kecfže tentokrát bola jedna zo súťažných
úloh z Československa, připadla nám úloha koordinovat’ jej
riešenia z pera šiestich čínských študentov. Zhodou okol-
ností išlo o úlohu, ktorej riešenie bolo založené len na istých
logických a kombinatorických úvahách, takže v riešeniach
sa takmer nevyskytovali čísla a vzorce. Tie by boli mohli
byť istými záchytnými bodmi pře nás, pretože čínština (na-
šťastie) používá arabské číslice a v matematických textoch
dokonca aj latinské písmená pre premenné, takže mnohé
matematické texty vyzerajú „obdobne“ ako u nás. ZiaF, rie-
šenia námi zadanej úlohy neobsahovali takmer žiadne čísla
a vzorce, a tak váčšina textu vyzerala asi takto:
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* Ш ± t
Usporiadatelia připravili účastníkom súťaže velmi atrak-

tívny a bohatý program na nesúťažné dni. Počas desiatich
dní strávených v Pekingu sme mali možnost’ zhliadnuť tak-
mer všetky významné památihodnosti tohto starého města
a jeho blízkého okolia. Navštívili sme rozsiahly areál legen-
dárneho Zakázaného města, kde po storočia žili čínski cisári
a kam prostý občan nesmel nikdy vkročit’, ani nahliadnuť.
Rovnako exoticky a okúzfujúco na nás zapósobil letný pa-
lác čínskej cisárovnej, ktorý vystavila na okraji Pekingu pri
nádhernom jazere. Dodajme, že z peňazí, za ktoré sa ma-
lo vybudovat’ čínské vojnové námořnictvo. Starý Peking bol
mestom chrámov: nahliadli sme do chrámu spiaceho Budd-
hu, do chrámu Bi-Yun, do Nebeského chrámu, kde sa konali
obety na zabezpečenie dobrej úrody. Strnuli sme na najváč-
šom náměstí světa Tien’an men, ktoré sa smutné preslávilo
v roku 1989 ako centrum študentských nepokojov a ich ná-
silného potlačenia. Přešli sme niekolko kilometrov po naj-
váčšej stavbě světa slávnom čínskom múre pri Ba-Da-Lingu
a vošli do podzemia, kde sú v obrovských, umělo vytesaných
priestoroch umiestené hrobky príslušníkov starej dynastie
Mingov. Velkým zážitkom bola návštěva čínskej národnej
opery, ktorá s európsky ponímanou operou má len pramálo
spoločného.

Podvečer predposledného dňa nášho pobytu v Pekingu
(18. júla) bol vyplněný slávnostným ukončením olympiády
a ceremoniálom odovzdávania cien a medailí. Tu sa naši žia-
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ci dozvěděli, že napriek náročným podmienkam súťaže ob-
stáli velmi dobré: všetci šiesti získali medaile, a to M. Din-
doš bronzová (chýbal mu 1 bod do striebornej) a ostatní
strieborné (pričom P. Hliněnému chýbal 1 bod do zlatej).
Spolu získali naši žiaci 153 bodov (z 252 možných), čo aj
pri silnej konkurencii stačilo na obsadenie celkového 8. mies-
ta (pozři tabulku 6). Přitom třeba poznamenat’, že MMO
je podlá svojho štatútu súťažou jednotlivcov, poradie kra-
jín sa určuje iba neoficiálně. Styria účastníci súťaže (dvaja
z Cíny, jeden z Francúzska a jedna žiačka zo ZSSH) získali
plný počet 42 bodov. Všeobecné uznanie vyvolalo presvedči-
vé víťazstvo čínského družstva, ktorého náskok na v poradí
druhý Sovietsky Zváz bol úctyhodný.

V ďalšom uvádzame súťažné úlohy 31. MMO v Cíne,
ich stručné riešenia a tabulky, obsahujúce niektoré podrob-
nosti o výsledkoch súťaže. Možno nie je bez zaujímavosti,
že výbor, poverený přípravou budúcich MMO už rozhodol
o miestach konania súťaže v nasledujúcich 11 rokoch (s vý-
nimkou roku 1998), a to takto:

1991 Švédsko (Sigtuna)
1992 ZSSR
1993 Turecko
1994 Mongolsko (náhradně Hong Kong)
1995 Kanada
1996 Brazília
1997 Velká Británia
1998 ???

1999 Rumunsko (jubilejná 40. MMO)
2000 Južná Korea

2001 USA
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Veríme, že sa naši žiaci všetkých týchto medzinárodných
matematických olympiád zúčastnia a uspejú na nich aspoň
tak dobře, ako v roku 1990 na 31. MMO v Pekingu.

Vladimír Burjan
Karel Horák

Tabulka 5

Výsledky nášho družstva v jednotlivých úlohách

Body získané za úlohu č.
Měno Spolu Cena1 2 3 4 5 6

Martin Dindoš
Petr Hliněný
Štěpán Kasal
Michal Konečný
Pavol Še
Ondřej Šuch

III.0 7 2
7 7 2

7 7 1
0 7 0

0 7 2

2 3 2
7 7 3

17 7
7 7 3

7 7 1

3 3 3 7 7 3

16

II.33

II.30
II.24

II.24vera

и.26

Spolu bodov
% z možných b.

17 38 10 31 38 19

40% 90% 24% 74% 90% 45%
153

52%

Tabulka 6

Neoficiálně poradie krajin a počty získaných medailí

Počet medailí Počet

súťažiacichMiesto Krajina Z S ВSpolu bodov

Čína
ZSSR
USA
Rumunsko
Francúzsko
Maďarsko
NDR
Československo
Bulharsko
Velká Británia
Kanada

1. 5 1 0 6230

3 2 1 62. 193
174 3 63. 2 0
171 2 64. 2 2

168 3 1 0 65.
3 2 66. 162 1

7. 0 4 2 6158

153 0 5 1 68.
1 69. 152 1 4

2 610. 141 2 0
0 3 1 611. 139

SRN
Taliansko

0 2 4 612. 138

1 4 613. 131 1
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pokračování tabulky 6

Počet medailí Počet

súťažiacichMiesto Krajina Spolu bodov Z S В

Irán
Australia
Rakúsko
India
Norsko
KBDR
Japonsko
Polsko
Hong Kong
Vietnam
Вrazilia
Juhoslávia
Izrael

Singapur
Švédsko
Holandsko
Kolumbia

Nový Zéland
Južná Korea

Thajsko
Turecko

Španielsko
Maroko
Mexiko

Argentina
Kuba

Bahrajn
Irsko
Grécko
Finsko
Luxembursko
Tunisko

Mongolsko
Kuvajt
Cyprus
Filipíny
Portugalsko

14. 122 60 4 0

0 2 4

0 14
1 1 2
0 3 1
0 1 3
0 2 1
0 2 1
0 0 4

0 1 3
1 0 2
0 1
0 1 3
0 0 2

0 12
0 12
0 1

0 0 2
0 1

0 0 2

0 0 1

0 0 0
0 10

0 0 1

0 0 1

0 0 1

0 0 0

0 0 1

0 0 1

0 0 1

1 0 1
0 0 1
0 0 0
0 0 1
0 0 1
0 0 1

0 0 0

15. 121 6
15. 121 6
17. 116 6

18. 112 6

619. 109
20. 107 6

621. 106
22. 6105

23. 6104
24. 102 6

25. 98 2 6
26. 95 6
27. 693

28. 691
29. 690
30. 88 2 6

31. 683
32. 79 1 6

33. 75 6
33. 75 6

35. 72 6
36. 71 5

37. 69 6
67 638.

38. 67 6

40. 665

40. 65 6
42. 62 6
43. 59 6
44. 258

45. 455
46. 54 6

47. 53 4
48. 46 4
48. 46 6
50. 644
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pokračování tabulky 6

Počet medailí Počet

súťažiacichZ S ВMiesto Krajina Spolu bodov

Indonézia
Macao
Island
Alžírsko

40 0 0 0

0 0 0
0 0 1
0 0 0

651.

52. 32 6
353. 30
454. 29

308 žiakovSpolu 23 56 76
155 medailí

5 286

40,86 %

Texty soutěžních úloh1.Je dána kružnice, jejíž dvě tětivy AB a CD se proti-
nají ve vnitřním bodě E. Je-li M vnitřní bod úsečky EB
označme F a G průsečíky přímek ВС a AC s tečnou se-

strojenou v bodě E ke kružnici procházející body D, E, M.
\EG |\AM\ pomocí t.Je-li = t, vyjádřete poměr
\EF\\AB\

(Indie)2.Pro п'Е 3 uvažujme množinu E obsahující 2n —1 různých
bodů na kružnici. Předpokládejme, že právě к těchto bodů
je obarveno černě. Takové obarvení označíme jako dobré,
jestliže existuje aspoň jedna dvojice černých bodů, pro kte-
rou vnitřek jednoho z příslušných oblouků obsahuje právě
n bodů množiny E. Najděte nejmenší k, pro které je každé
takové obarvení dobré. (ČSFR)

_ . 2n + 1
3. Najděte všechna celá čísla n > 1, pro něž je -—

číslo.

4. Označme Q+ množinu všech kladných racionálních čísel.
Sestrojte funkci /: Q+ —+ Q+ takovou, že pro všechna x а у

celé

(Rumunsko)
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z Q+ platí
/(*)/(x f(y)) = —

(Turecko)
5. Je-li dáno celé číslo no > 1, dva hráči А а В střídavě vy-

bírají celá čísla n\, n2, пз, ... podle následujících pravidel:
Jakmile je známo číslo n^k, hráč A zvolí celé číslo ri2jfc+i

takové, že
п2к ^ п2к +1 ^ «2А:-

Je-li známo n2k+i, zvolí hráč В celé číslo n2k+2 takové, že
podíl

^2ik + l

П2к+2

je kladnou mocninou nějakého prvočísla. Hráč A vyhraje,
jakmile zvolí číslo 1 990, zatímco hráč В vyhrává, když zvolí
číslo 1. Pro jaká no

a) hráč A má vyhrávající strategii,
b) hráč В má vyhrávající strategii,
c) ani jeden z hráčů nemá vyhrávající strategii?

(SRN)
6. Dokažte, že existuje konvexní 1 990úhelník s následující-
mi dvěma vlastnostmi:

a) všechny jeho úhly jsou shodné;
b) jeho strany mají v nějakém pořadí délky l2, 22, ...,

(Nizozemí)1 9892, 1 9902.
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Řešení úloh

1 (podle P. Hliněného, 4. ročník GMK, Bílovec). Označ-
= \$DAB\, (3 = \<$ABD\ a e = \$AMD\ (obr. 73),

pak je podle věty o obvodových a úsekových úhlech také
£ = \<$GED\ (neboť GE je tečnou kružnice procházející
body D, E, M), a = \$BCD\ a (3 = \$ACD\.

me a

Zvolme nyní bod X na polopřímce ED tak, aby úhel
EGX měl velikost a. Podle věty o obvodových úhlech leží
body C, F, G, X na kružnici a platí \-$GFX\ = \<$GCX\ =
= /3. Trojúhelníky GEX a AMD a trojúhelníky EFX
a MBD jsou tedy podobné, takže

\GE\
_ \AM\ \EF\ _ \MB\

\EX\ ~ \MD\ ’ \ĚX\~\MĎ\'
Odtud snadno plyne, že je

\GE\
_ \AM\

\EF\~ \MB\~ \AB\-\AM\
\AM\ 1 t

1AMf “ 1 1 - t
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Jiné řešení. Protože podle věty o obvodových a úsekových
úhlech platí (obr. 74) \$CEF\ = \$DEG\ = \$EMD\ a zá-
roveň také \<$ECF\ = \<$MAD\, jsou trojúhelníky ECF
a MAD podobné. Zároveň ale je i \<$ACD\ = \<$ABD\
a \$GEC\ = к- |<£C£F| = к- |^MD| = \$BMD\, tak-
že i trojúhelníky GEC a DMB jsou podobné. Porovnáním
odpovídajících stran dostaneme

\GE\
_ \CE\ \AM\ _ \MD\

\MD\ ~ \MB\' \CE\ ~ \EF\ '

takže

\GE\
_ \AM\

1^1 ~ \MB\ ~ \AB\-\AM\ - ЩТТ
\AM\ 1 t

1 -t

2 (podle Š. Kasala, 3. ročník GWP, Praha). Označme
uvažované body postupně Ao, A\, ..., A2n-2 a uvažujme
posloupnost A0, An-2, A2n-4, ■ •^4зп-б = A»-5, .

každé dva následující body obsahují mezi sebou n — 3 body
v níž* •)
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na jednom oblouku a n bodů na druhém oblouku (přitom
zřejmě je Ak = Ai pro к — l (mod 2n — 1)). Tato posloup-
nost se po konečném počtu kroků zacyklí, protože daných
bodů je jen konečný počet. Dané body se tak rozpadnou

— bodech. Protože
2n —

do z = D(n -2,2n- 1) cyklů po ——

(2n — 1) — 2(n — 2) = 3, je z = 1 nebo z — 3.
Daná množina E bude zřejmě dobře obarvená, právě když

v uvedené posloupnosti budou některé dva sousední body
2n — 1

. Pokud je v každém z cyk-
lů méně než m černých bodů, snadno sestrojíme příklad
obarvení, jež nebude dobré (body v každém cyklu budeme
střídavě obarvovat). Bude-li naopak aspoň v jednom z cyklů
m černých bodů, bude už množina dobře obarvená, protože
ať jsou body obarveny jakkoli, budou dva z černých bodů
sousední.

Pro г = 1 (tj. n ф 2 (mod 3)) vyjde jediný cyklus
a z předchozí úvahy je zřejmé, že hledané nejmenší к je
rovno n. Pro z = 3 (tj. n = 2 (mod 3)) dostaneme tři cykly
po 2m — 1 = ^(2n — 1) bodech, takže pro n — 2 = 3(m — 1)
snadno sestrojíme příklad „špatného" obarvení, zatímco pro
к = n — 1 aspoň jeden z cyklů obsahuje aspoň m černých
bodů, tj. každé takové obarvení je dobré. Hledané nejmenší
к je v tomto případě к = n — 1.

černé. Položme 2m— 1 =

3. Protože číslo 2n + 1 je liché, je i n liché. Označme p

nejmenší prvočinitel čísla n, je tedy p ^ 3 a zároveň 2n =
= —1 (mod p). Uvažujme teď nejmenší přirozené číslo i,
pro které platí 2* = — 1 (mod p). Protože podle malé věty
Fermatovy je 2P_1 = 1 (mod p), začnou se nejpozději od
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(p — l)-ní mocniny zbytky čísel 2°, 21, ..2P-1 cyklicky
opakovat, takže je určitě i < p — 1 < n.

Pišme n = ki + r, kde pro zbytek r platí 0 ^ r ^ i — 1.
Protože — 1 = 2n = 2kl ■ 2r = (—l)*2r (mod p), musí být
к liché a zároveň 2Г = 1 (mod p), jinak bychom dostali
2r = —1 (mod p), což odporuje volbě i. Kdyby však bylo
г > 0, mohli bychom psát i = r + d, kde 1 ^ d = i — r < i,
takže —1 =2* = 2r -2d — 2d, což opět odporuje volbě čísla i.
Vychází tedy nutně r = 0, takže n = ki, a protože i < p
dělí číslo n, musí být i = 1 (jako p jsme označili nejmenší
prvočinitel čísla n). To ale znamená, že je 2 = —1 (mod p),
neboli p = 3.

Předpokládejme teď, že n je tvaru n = 3km, kde к ^ 1
a čísla 3 a m jsou nesoudělná. Podle předpokladu n2 =
= 32km2 dělí

Ě (")(->'*• =2n + 1 = (3- 1)" + 1 = -

(1)

(n) 3, = n(n-l)...(n-<+l) 3i jsouPřitom koeficienty

pro г ^ 2 dělitelné aspoň 3k+2. To plyne z toho, jak velká
je mocnina čísla 3 v rozkladu čísla г! na prvočinitele. Pro
exponent a v rozkladu г! = 3ad platí (viz též např. úlohu
34-A-I-2 v příslušné ročence MO)

ii 1 ,) = i) 2<’'(5 + з^+'+a —

323
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(ostrá nerovnost proto, že na levé straně nerovnosti je ve
skutečnosti jen konečný počet nenulových sčítanců, zatím-

pravé straně je nekonečná geometrická řada!), takže
П

celková mocnina 3 v součtu (”)(—1)*3* je aspoň k — |z-|-
i=2

+ 1 + i = к + + 1 ^ к + 2.
Z vyjádření (1) tudíž plyne, že 2n + 1 je dělitelné nejvýše

3*+1, tedy nutně 2A: ^ Ar + 1, tj. fc = 1, a vidíme, že n je
tvaru n = 3m, kde 3 a m jsou nesoudělná.

Označme q nejmenší prvočinitel čísla m, pak je q ^ 5
a zároveň 2n = — 1 (mod q). Označme j nejmenší přirozené
číslo takové, že 2; = —1 (mod q). Úplně stejně jako v první
části tohoto řešení nám vyjde, že j < q — 1 a že j dělí n —

= 3m. Protože q je nejmenší prvočinitel čísla m, musí j
být dělitelem čísla 3, tj. j 6 {1,3}. Z kongruence 2J = —1
(mod q) ale plyne, že je buď q | 3 nebo q \ 9, neboli q — 3,
což odporuje tomu, že q ^ 5. Celkem jsme tedy dokázali, že
n = 3 je pro n ^ 3 jediná možnost, kdy n2 dělí 2n + 1.

co na

4. Z uvedené rovnice plyne, že hledaná funkce musí být
prostá: je-li f(y\) = /(2/2), pak pro každé x £ Q+ vychází
y\ — 2/2- Dosazením у = 1 dostaneme /(x/(l)) = f(x),
takže vzhledem к prostotě funkce / musí být /(1) = 1.
A konečně pro x = 1 vychází vztah

1
Му)) = -

/0 = f(Kf(y)))

(1)

neboli
1

№'
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^ do původní funkcionálnícož po dosazení x — и, у =

rovnice dává rovnost

f(uv) = (2)
pro všechna u,dG Q+.

Obráceně je zřejmé, že každá funkce /, jež splňuje rov-
nosti (1), (2), vyhovuje dané funkcionální rovnici.

Podle (2) pro libovolné přirozené číslo n — • • •P
musí platit

КрГрГ • • -Ptk) = f(pi)Ql /Ы"2 • • ./(р*Г
a zároveň pro každé racionální číslo tvaru p/q je

f(p)Kq) = /<P)/( í) Л9)'
Stačí tedy funkci / definovat na prvočíslech tak, aby pla-
tilo (1), tj. aby funkce /2 = f o f zaměňovala čitatel za
jmenovatel a obráceně, tedy aby pro p ф q platilo

1
f(p) = Я, Právě když f(q) = f(f(p)) =

P

Stačí proto rozdělit všechna prvočísla do dvou disjunktních
podmnožin А, В a sestrojit vzájemně jednoznačné přiřazení
těchto dvou množin.

Jedna z možných konstrukcí je takováto: Označme
(pn)^Li posloupnost všech prvočísel a položme

'

Pj +1 pro j liché,
f(Pj) = < 1

pro j sudé.
Pj-1

Díky multiplikativitě (2) snadno rozšíříme definici funkce /
na celou množinu Q+.
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5 (podle P. Hliněného, 4. ročník GMK, Bílovec). Jestliže
pro nějaké к ^ 0 platí

45 й ri2k ^ 1990,

pak vyhrává hráč A, protože může rovnou zvolit n^k+i =
= 1 990 (je 1 990 < 452 = 2 025 ^ n2*).

Předpokládejme, že pro nějaké к ^ 0 je n2k > 1 990. Pak
pro vhodné i žl 1 můžeme psát

47*-1 • 53 < n2jb ^ 47* -53

a A vyhraje tak, že zvolí n2jfc+i = 47* • 53, protože hráči В
pak nezbývá nic jiného než zvolit n2jfc+2 = 47* nebo n2k+2 =
= 47J • 53 pro j < i. V každém případě bude 47 5Í п2*+2 ^
^ 53-47*-1 < n2fc, takže v případě, že A pokračuje obdobně
i v dalších krocích, po konečném počtu kroků bude muset
В zvolit číslo nu < ... < n2k-(-2 < n2jk, pro něž 47 ^ n2i й
^ 1 990. Proto i v tomto případě má A vyhrávající strategii.

Je-li 11 ^ n2k < 45 pro nějaké к ^ 0, pak A zvolí n2k+i —

= 3-5*7= 105 (což může: je n2k+i < 121 ^ n2^). Hráč В
musí volit z čísel 3 -5, 3 • 7, 5 • 6, takže 15 ^ n2jt+2 ^ 35,
A pak zvolí n2k+3 = 2 • 3 • 5 • 7 = 210 < 225 ^ n2
В musí volit n2k+4 z čísel 2-3*5, 2*3*7, 2 -5*7, 3-5-7,
pro něž vesměs platí 30 ^ U2Jfc+4 = 70, takže A pak může
zvolit n2fc+5 = 23 • 3 • 5 • 7 = 840 < 900 ^ n2k+4- P° tomto
tahu má В nejmenší možnou volbu п2*+б = 3-5-7 > 105,
takže podle předchozích úvah má vyhrávající strategii A.

Je-li 8 ^ no < 11, má hráč A rovněž vyhrávající strategii
— stačí, když zvolí ni = 4 • 3 ■ 5 = 60 < 82 ^ n2, protože
В pak má na vybranou z čísel 4-3, 4 • 5, 3 • 5, pro něž

Nyní2Jfc + 2-
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je vesměs П2 ^ 12. A pro takové n2 už známe vyhrávající
strategii hráče A.

Jestliže pro nějaké к ^ 0 je П2к ^ 5, pak A musí zvolit
číslo mezi 5 a 25. Nesmí volit mocninu prvočísla — to by
vyhrál B. Má tedy následující možnosti (1. řádek tabulky)

(A) n2jb+i 6 10 12 14 15 18 20 21 22 24

(B) ri2Jfc+2 2 2 3 2 3 2 4 3 2 3

Na každou z nich odpoví hráč В volbou čísla ri2k+2 ^ 4,
takže teď už A může volit čísla jen z levé poloviny tabulky,
jež jsou nejvýše rovna 16; pro ně ale pak bude ri2k+4 = 3,
takže A může podle tabulky zvolit jen П2к+ь = 6, na což
odpoví В ri2jb+6 = 2 a zřejmě vyhraje. V tomto případě má
tedy vyhrávající strategii hráč B.

Pro no = 6, 7 nemá žádný z obou hráčů vyhrávající stra-
tegii. Hráč A, aby vyhrál, nesmí volit ani mocninu prvočísla,
ani číslo, jež ve svém rozkladu na prvočinitele obsahuje jen
dvě prvočísla, z nichž jedno je nejvýše 5. To jsme viděli
v předchozím případu! Hráč A tedy musí volit jedno z čísel
2 • 3 • 5 = 30 nebo 2-3-7 = 42, jež obsahují aspoň tři prvo-

činitele, В pak musí volit П2 = 6, jinak podle předchozích
úvah umožní výhru hráči A (musí volit nejvýše 7). Hráč
A pak musí pokračovat opět jedním z čísel 30, 42 a hra při
správné hře obou hráčů skončí nerozhodně.

Ukázali jsme, že pro no ^ 5 má vyhrávající strategii hráč
B, pro no = 6, 7 nemá žádný z hráčů vyhrávající strategii
a pro no ^ 8 existuje vyhrávající strategie pro hráče A.

6 (podle Š. Kasala, 3. ročník GWP, Praha). Budeme hle-
dat 1 990 vektorů v (komplexní) rovině, jež mají směry
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všech různých 1 990. odmocnin z jednotky, mají v nějakém
pořadí velikosti l2, 22, ..1 9902 a dávají nulový součet.

Vektory délek (2fc)2 a (2к — l)2 (1 ^ к ^ 995) budeme
přitom umisťovat tak, aby měly opačný směr a vektor ve-
likosti (2k)2 měl směr některé 995. odmocniny z jednotky.
Součtem takto umístěné dvojice vektorů pak bude vektor
délky (2fc)2 — (2к — l)2 = 4A: — 1 a směru příslušné 995. od-
mocniny z jednotky. Jinými slovy, potřebujeme rozmístit
995 vektorů k0, *i, ..., V994, jejichž délky tvoří aritmetickou
posloupnost (4к — 1)
mocnin z jednotky a jejich součtem je nulový vektor. Bez
újmy na obecnosti můžeme ovšem předpokládat, že jejich
délky tvoří aritmetickou posloupnost 0, 1, ..., 994.

Označme po = 1, pi, ■ ■■, Pa komplexní jednotky odpo-
vídající vrcholům pravidelného pětiúhelníku (5. odmocniny
z jednotky) a do = 1, di, • • •, digs komplexní jednotky od-
povídající vrcholům pravidelného 199 úhelníku. Je tedy

995 mají směry všech různých 995. od-jfc = H

198 4

E = É pí = 0.
»=0 j=0

Odtud plyne, že pro každé i, 0 ^ i й 198, je také

4 444

E (5* + j)diPj = 5idi E Pj + di E JPj = di E JPj
j=oj=o 3=o 3=o

takže

198 4 198 4 4 198

E É (5i+i)dťPj = E di E JPj = É jPjÍ2di = Q- í1)
1=0j=0 »=0 j=0 i=o «=0
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Stačí tedy vzít vektory vq, ki, ..K994, jimž budou při
umístění do počátku odpovídat koncové body

V5i+j = (5 i + j)pidj.
994

Podle (1) pak bude ^ v*, = o. Z nich pak snadno sestro-
k—0

jíme 1 990 vektorů «o, u\, ..1/1 939, jež budou tvořit strany
hledaného 1 990úhelníku.

Jednoduchým výpočtem zjistíme, že stačí volit

«ioť+2j+i = —(10* + 2j + 1 )2pidj
wioi+2j+2 = (10* + 2j + 2 )2pidj,

(0 ^ i <: 198, 0 ^ j ^ 4).

Odpovídající vektory i#i, 1/2, ..., í/i 990 pak umístíme tak,
aby počátek i/j+i splýval s koncovým bodem vektoru

Poznámka. Jiná možnost, jak z kvadratické posloupnosti
n2 sestrojit aritmetickou posloupnost, je vzít dvojice (996 +
+ к)2 a (995 — к)2. Výsledný vektor pak bude mít velikost
(996 + k)2 - (995 - Ar)2 = 1 991 + 2 • 1 991Ar (0 ^k^ 994).
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