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O prabéhu 40. roéniku matematické olympiady

Soutéz Matematickd olympidda poradaji pro zaky stred-
nich a zdkladnich skol Ministerstvo skolstvi, mladeze a télo-
vychovy CR, Ministerstvo skolstvi, mladeZe a sportu SR ve
spolupréci s Jednotou éeskych matematiki a fyzika, Jed-
notou slovenskych matematiki a fyziki a Matematickym
astavem CSAV. Soutéi ridi tstfedni vybor matematické
olympiady (UV MO) prosttednictvim krajskych a okresnich
vybord matematické olympiady (KV MO, OV MO).

Cilem soutéze je vyhledavani zaka talentovanych v ma-
tematice, probouzeni jejich hlubsiho zdjmu o matematiku
a rozvijeni jejich matematickych schopnosti. V §kolnim roce
1990/91 se uskutecnil jeji jubilejni, 40. roénik.

Ustfedni vybor MO pracoval ve slozeni, v némiz byl
jmenovan ministerstvy skolstvi CR a SR na pétileté
obdobi pfi zahajeni 39.ro¢niku. Piedsedou UV MO byl
doc. dr. Leo Bocek, CSc., z MFF UK v Praze, tajemniky
byli dr. Karel Horék, CSc., z MU CSAV v Praze a dr. Jifi
Binder, CSc., z PF UK v Praze. V pribéhu roku doslo
k nékolika zménam. Predevsim se na navrh predsednictva
UV MO a Jednoty ceskych a slovenskych matematikii
a fyzikti znovu stali ¢leny PUV MO prof. Jozef Moravéik
a dr. Antonin Vrba, kterym byla v minulém obdobi prace
v MO znemoznéna. Zastupcem MSMS SR v PUV MO se
stal dlouholety pracovnik v oblasti vychovy matematickych
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talenti dr. Vladimir Burjan. Posledni zména nastala
v Brné, kde v praci v UV MO vystiidal dr. Lubose Brima
doc. dr. Véclav Sedlacek, CSc., z prirodovédecké fakulty
Masarykovy univerzity v Brné.

V pritbéhu 40. roéniku MO se konala dvé zasedani UV
MO, prvni ve dnech 4. prosince 1990 v Brné, druhé 22.-23. 4.
1991 v Nitfe pfi celostdtnim kole MO. Bylo projednavano
hodnoceni prubéhu soutéze, zabezpeceni celostatnich sou-
stfedéni Gspésnych fesiteli MO vcetné soustfedéni pro pri-
pravu na MMO, korespondenéni seminai UV MO a organi-
zace dal$ich kol soutéze. Byla diskutovana vhodnost vybéru
uloh MO.

Hlavnim pfedmétem jedndni béhem obou zasedani byl
dopad zmén probihajicich v nasem staté na ekonomické za-
bezpeceni a na organizaci MO. Bylo nutno reagovat zejména
na situaci vzniklou zrusenim kraji a v nadvaznosti s tim i na
zruSeni krajskych pedagogickych ustavi, které v minulych
ro¢nicich pomahaly zajistovat krajska kola soutéze 1 dalsi
pomocné akce. Bylo nutno najit novy zpusob financovani
zeJména akci zabezpecovanych krajskymi vybory MO.

V pribéhu tohoto ro¢niku doslo ke zméné Gzemné-sprav-
niho uspofadani CSFR. Organizace matematické olympiady
se tykalo pfedevsim zruseni kraju, nebot druha kola soutéze
byla porddéana jako krajska a celd soutéz byla organizovana
prostfednictvim krajskych vybori MO. Proto byly v zavéru
ro¢niku krajské vybory MO pfeménény na oblastni vybory
v navaznosti na pobocky JCMF a JSMF. V dals$im textu
véetné vysledkovych listin budeme uvazovat organizaci tak,
jak byla pfi zahajeni rocniku a jak také soutéz v podstaté
probéhla.



V organizaci vlastni soutéze nedoslo k zadnym zménam.
Pro zaky zakladnich skol byla soutéz rozdélena do péti
kategorii Z4, 75, 76, Z7 a 78, které byly urceny postupné
zaktm 4. az 8. ro¢niku. Podrobnosti mohou najit zajemci
v brozurce Koman a kol.: 40. roénik MO na zdkladnich
skoldch, ktera vyjde soucasné s touto brozurkou.

Pro zaky stfednich skol byla soutéz organizovana ve Cty-
fech kategoriich A, B, C a P. Kategorie A byla urcena zakim
3. a 4. ro¢nikl stfednich skol, kategorie B byla pro zaky
2. ro¢niki a v kategorii C soutézili zaci 1. ro¢niki. Pro
zaky vsech trid stfednich skol byla urcena jesté kategorie P,
zaméFend na ulohy z programovani a matematické informa-
tiky.

V kategoriich A, B a C ma L. kolo dvé casti. V prvni casti
fesi soutézici 6 tloh doma nebo v matematickych krouzcich
a mohou se pfitom radit se svymi uciteli, vedoucimi krouzk
apod. Druhd ¢ast ma formu klauzurni prace, v niz fesi zaci
tfi Glohy v omezeném ¢ase 4 hodin. Resitelé, ktefi Gispésné
projdou prvnim kolem, jsou pozvani do druhého (krajského)
kola soutéze, kde fesi ¢tyri tlohy opét v limitu ¢tyf hodin.

V kategoriich A a P se kona jesté treti, celostatni kolo.
V ném je vlastni soutéz rozdélena do dvou dni. V kate-
gorii A tesi soutézici kazdy den tfi Glohy v ¢asovém limitu
ctyfi hodiny, v kategorii P ve stejném limitu vzdy dvé alohy.

Celostatni kolo 40. ro¢niku se uskutecnilo Nitfe ve dnech
21.-24.4. 1991 (kat. A) a 24.-27.4. 1991 (kat. P). Na za-
bezpeceni soutéze véetné bohatého doprovodného programu
pro soutézici i éleny UV MO se obétavé podileli élenové KV
MO Zapadoslovenského kraje, pracovnici katedry matema-
tiky pedagogické fakulty v Nitfe i spoluporadajiciho domu



déti a mladeze IUVENTA z Bratislavy. Za vsechny jmenuj-
me alespon predsedu KV MO prof. dr. Ondreje Sedivého,
CSc., a Vlastu Michéalkovou z bratislavské IUVENTY.

Vybrané druzstvo se zi¢astnilo mezinarodni matematické
olympiady 1 mezinarodni soutéze v programovani. Témto
soutézim je vénovana samostatna kapitola v zavéru brozury.

K matematické olympiadé vedle vlastni soutéze patiiira-
da doprovodnych akci pro talentované zaky. Z akci porada-
nych krajskymi vybory MO k nim zejména patfi seminére
pro resitele MO a krajské korespondencni seminare. Pro
nejGspésnéjsi resitele krajskych kol MO a korespondencnich
seminafi byla porddana (vétsinou tydenni) soustfedéni. Pro
ucitele pripravily krajské vybory MO instruktaze.

Ustfedni vybor MO zajistoval tii celostatni soustiedéni.
Pro zaky nematurujicich ro¢nikiu to bylo jiz tradi¢ni soustre-
déni 80 resiteld iloh MO a FO. Probéhlo ve dnech 11.-22. 6.
1991 v Jevicku. Dalsi dvé soustfedéni byla vénovana pripra-
vé Ceskoslovenského druzstva na mezinarodni matematickou
olympiadu. Prvni se konalo 28.3.-5.4. 1991 v Modré u Bra-
tislavy (12 Gcastniki), druhé 13.-27.6. 1991 v Pardubicich
(8 Gcastnikit). UV MO téz zajistoval celostatni korespon-
denéni semindaf (semindfi je vénovana samostatnd ¢ast této
brozury).
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10.
11.-16.

17.-23.

Vysledky celostatniho kola 40. roéniku MO
kategorie A

Vitézové

. Stépdn Kasal, 4M, Korunni, Praha

Michal Kubecek, 3M, Korunni, Praha

. Michal Konecny, 4M, tt. kpt. Jarose, Brno
. Viliam Bir, 2M, G A. Markusa, Bratislava

Peter Langfelder, AMF, GJH, Bratislava
Petr Tobiska, 4M, Tylovo nam., Hr. Kralové
Michal Stehlik, 3M, ti. kpt. Jarose, Brno
Ladislav Kis, 3M, G A. Markusa, Bratislava

. Richard Kollir, 3M, GAM, Bratislava

Katarina Skalovd, 2M, GAM, Bratislava
Juraj Lorinc, 4M, Tajovského, Ban. Bystrica
Miroslav Chladny, 3M, Pivovarska, Kosice
Pavel Ruzicka, 3M, tf. kpt. Jarose, Brno
Zdenék Pezlar, 4M, t¥. kpt. Jarose, Brno
Michal Schenk, 3M, Jirovcova, C. Budéjovice
Jan Kolar, 4M, Korunni, Praha .

Dalsi ispésni Tesitelé

Filip Muntz, 3M, tf. kpt. JaroSe, Brno
Lubos Motl, 3MF, Opavska, Plzen

40b.
40b.
38b.
35b.
35b.
35b.
35b.
35b.
32b.
30b.
29b.
29b.
29b.
29b.
29b.
29b.

28b.
28b.
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Jakub Tésinsky, 4M, Korunni, Praha 28 b.

Jan Kasprzak, 4M, tf. kpt. Jarose, Brno 28 b.
Pavol Mederly, 3M, GAM, Bratislava 28 b.
Lubos Pdstor, 3M, Pivovarska, Kosice 28 b.
Herbert Vojcik, 3M, Pivovarska, Kosice 28 b.

24.-26. Michal Bulant, 4M, tt. kpt. JaroSe, Brno 27b.
Tomds Zellerin, 3MF, Jate¢ni, Usti n. L. 27b.
Ales Kubéna, 4M, 17. listopadu, Bilovec 27b.
27.-28. Karel Soukenik, 4M, Mikulas. nam., Plzen 26 b.
Martin Pandk, 4M, tf. kpt. Jarose, Brno 26 b.
29.-30. Pavel Jurus, 2M, Jirovcova, C. Budé&jovice 25b.

Novdk Vit, 2M, Korunni, Praha 25b.
31.-33. Pavel Cizek, 4M, Tylovo nam., Hradec Kr. 24b.
Martin Schndbl, 4AM, Korunni, Praha 24 b.
Srefankovi¢ Daniel, 2M, GAM, Bratislava 24b.
34.-36. Jan Hannig, 4M, Korunni, Praha 22b.

Michal Brodsky, 3M, ti. kpt. Jarose, Brno 22b.
37.-40. Slavomir Hrinko, 4AMF, Konstantinova, Presov 22b.
Viadimir Spitalsky, 4M, GAM, Bratislava  21b.
Pavlina Capkovd, 3, Stépanska, Praha 21b.
Mario Bohdaé, 4M, 17. listopadu, Bilovec 21b.
Radovan Garabik, SMF, G E. Gudernu, Nitra 21b.

U tfid se zamérenim studijniho oboru 01 Matematika
je za ro¢nikem oznaceni M, u zaku z tfid se zamérenim
studijniho oboru 02 Matematika a fyzika je za rocnikem
oznaceni MF. Vsichni soutézici byli zaci gymnazia.

14



Potadi ispésnych resiteli z t7id,
které nejsou se zamérenim studijnitho oboru 01 Matematika

1. Peter Langfelder, AMF, G J. Hronca, Bratislava 35b.
2.-3. Juraj Lorinc, 4M, Tajovského, Ban. Bystrica  29b.

Miroslav Chladny, 3M, Pivovarska, Kosice 29b.
4.-6. Lubos Motl, 3MF, Opavska, Plzen 28b.
Lubos Pdstor, 3M, Pivovarska, Kosice 28 b.
Herbert Vojcik, 3M, Pivovarska, Kosice 28b.

7. Tomds Zellerin, 3SMF, Jateéni, Usti n. L. 27b.

8. Karel Soukenik, 4M, Mikulas. nam., Plzen 26 b.
U tfid se zaméfenim studijniho oboru 02 Matematika

a fyzika je za rocnikem oznaceni MF. Vsichni Gspésni re-
sitelé byli Zaci gymnazia.

15



Vysledkova listina celostatniho kola 40. roéniku MO

3

4

5.7

8
9.-10
11.-13.
14.
15.-18.

16

kategorie P

Vitézové

. Matej Ondrusek, 2, G J. Hronca, Bratislava

Martin Vojtko, 4, G J. Hronca, Bratislava

. Stépin Kasal 4, Korunni, Praha
. Herbert Vojcik, 3, Smeralova, Kosice
. Miroslav Kocan, 4, G J. Hronca, Bratislava

Radim Moric, 4, GMK Bilovec
Jaroslav Sprongl, 4, Korunni, Praha

. Tomds Vinar, 1, Srobarova, Kosice
. Igor Maly, 4, G J. Hronca, Bratislava

Milan Simdnek, 4, Pelhfimov
Dalsi ispésni resitelé

Radovan Brecka, 4, Snina

Jan Hannig, 4, Korunni, Praha
Zdenék Pezlar, 4, tf. kpt. Jarose, Brno
Petr Novotny, 3, Korunni, Praha

Jan Kotas, 3, Plzen

Petr Tobiska, 4, GJK Hradec Kralové
Jakub Tésinsky, 4, Korunni, Praha
Lubomir Zlacki, 4, Michalovce

34b.
34b.
33b.
32b.
31b.
31b.
31b.
30b.
29b.
29b.

27b.
27b.
27b.
26b.
25b.
25b.
25b.
25b.



19. Martin Stanek, 4, G J. Hronca, Bratislava 24 b.

20.-23. Pavel Cizek, 4, Hradec Kralové 23b.
Miroslav Kovdr, 3, Videnska, Brno 23b.
Vit Novdk, 2, Korunni, Praha 23 b.
Michal Relich, 4, tt. kpt. Jarose, Brno 23 b.
24.-25. Jan Hriza, 4, Korunni, Praha 22b.
Karel Srsen, 3, Benesov . 22b.

U tfid se zamérenim studijniho oboru 01 Matematika
je za rocnikem oznacCeni M, u zakd z tfid se zaméfenim
studijniho oboru 02 Matematika a fyzika je za rocnikem
oznaceni MF. Vsichni Gspésni feSitelé byli zici gymnazia.

17



Nejuspésnéjsi resitelé I1. kola MO
v kategoriich A, B,C a P

Z kazdého kraje a z kazdé kategorie je uvedeno nejvyse
prvnich deset fesiteld. Oznaceni G znamend gymnézium, M,
resp. MF zaméreni studijniho oboru 01 Matematika, resp.
02 Matematika a fyzika.

Praha

Kategorie A

. Stépdn Kasal 4, G, Korunni

Jakub Tésinsky, 4, G, Korunni

. Michal Kubecek, 3, G, Korunni

Petr Novotny, 3, G, Korunni
Jan Hannig, 4, G, Korunni

. Antonin Jancarik, 4, G, Korunni
. Jan Koldr, 4, G, Korunni
. Vit Novdk, 2, G, Korunni
9.

Martin Schnabl, 4, G, Korunni

10.-11 David Bezdék, 4, G, U libenského zamku

18
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Kategorie B

. Jirt Vanicek, 2, G, Korunni

. Vit Nowvdk, 2, G, Korunni

. Cyril Sochor, 2, G, Korunni

. Tomds Dusek, 2, G, Korunni

Tomds Petrdn, 2, G, Korunni

. Jakub Addmek, 2, G, Korunni

Petr Holman, 2, G, Korunni

. Jirt Hanika, 2, G, Korunni

Tomads Kocka, 2, G, U libenského zamku
Pavel Kos, 2, G, Vodéradska

Kategorie C

. Viclav éapek, 1, G, Sladkovského
Jirt Kosek, 1, G, Korunni

Alena Novdkovd, 1, G, Korunni

. Anna Matouskovd, 1, G, Korunni
Lukds Prochdzka, 1, G, Litoméficka
. Robert Chudy, 1, G, Korunni

Jan Vanék, 1, G, Korunni

Kategorie P

. Jan Hanning, 4, G, Korunni

. Jaroslav Sprongl, 4, G, Korunni
. Petr Novotny, 3, G, Korunni

. Jan Hriza, 4, G, Korunni
gtépdn Kasal, 4, G, Korunni
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Michal Koucky, 3, G, Korunni
Michal Kubecek, 3, G, Korunni
Jan Kybic, 3, G, Korunni

. Martin Mares, 8, ZS Na Sutce
10.

Jakub Tésinsky, 4, G, Korunni

Stfedocesky kraj
Kategorie A

Tomds Némec, 3M, G, Beroun

. Miroslav Bdrta, 4M, G, Benesov

Josef Soukal, 4M, G, Mlada Boleslav

Kategorie B

. Jan Bldha, 2M, G, Beroun

Martin Janecek, 2M, G, Mlad4 Boleslav

. Karel Duda, 2M, G, Kladno

Vit Sebek, 2M, G, Beroun

. Strnad Jakub, 2, G, Mlada Boleslav
. Jan Korbeldw, 2, G, Cesky Brod

Kategorie C

. Petr Ivancdk, 1, G, Pfibram

2. David Sitensky, 1M, G, Kladno

. Martin Havelka, 1, G, Benesov

Martina Trejbalovd, 1M, G, Beroun

. Renata glehoferova’, 1M, G, Beroun



6.
7.-8.

9.

Miroslave Kardskovd, 1M, G, Kolin
Lenka Faltinovd, 1M, G, Kolin
Michal Hruska, 1, G, Dobris
Patrik Kucera, IM, G, Kladno

10.-11 Martin Masata, 1M, G, Beroun

SO WN =

Hana Vlachovd, 1, G, Vlasim

Kategorie P

. Martin Helmich, 3M, G, Mlada Boleslav

. Karel Srsen, 3M, G, Benesov

. Tomds Pracka, 4, G, Ricany

. Tomds Némec, 3M, G, Beroun

. Lenka Kurzveilovd, 4M, G, Mlada Boleslav
. Pavel Buzek, 3, G, Vlasim

Jihocesky kraj

Kategorie A

. Jiri Fontdn, 4, G, Jirovcova, Ceské Budéjovice
. Monika Mertenovd, 3, G, Jirovcova, C. Budé&jovice
. Ondrej Cikhart, 3, G, Tabor

Michael Schenk, 3, G, Jirovcova, Ceské Budéjovice

. Pavel Jurus, 2, G, Jirovcova, Ceské Budé&jovice

Milan Simdnek, 4, G, Pelhfimov

. Petr Machdcek, 3, G, Pelhfimov
. Josef Leza, 4, G, Jirovcova, Ceské Budéjovice
. Libuse Stépnickovd, 3, G, Pisek
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Kategorie B

. Pavel Jurus, 2, G, Jirovcova, Ceské Budéjovice
. Ludék Hdjicek, 2, G, Jirovcova, Ceské Budéjovice

David Kimr, 2, G VJ Ceské Budgjovice

. Jakub Ridel, 2, G VJ Ceské Bud&jovice
. Vojtéch Franék, 2, G, Jirovcova, Ceské Budgjovice
. Jana Holzlovd, 2, G, Jirovcova, Ceské Budéjovice

Ales Jelinek, 2, G VJ Ceské Budéjovice

. Milos Beran, 2, G, Pelhfimov

Pavel Fott, 2, G, Jirovcova, Ceské Budéjovice
Daniel Kdlal, 2, G, Pisek

Petra Miksovd, 2, G, Jirovcova, Ceské Budéjovice
Zdenék Vicek, 2, G, Jirovcova, Ceské Budéjovice

Kategorie C

. Ondrej Mares, 1, G, Jirovcova, Ceské Budéjovice
. Ondrej Pangrdc, 1, G, Pelhfimov
. Jaroslav Hamrle, 1, G, Pelhfimov

Tomds Mrkvicka, 1, G, Strakonice
Jana Packovd, 1, G, Jindfichtiv Hradec
Ondrej Stasek, 1, G, Jirovcova, Ceské Budéjovice

. Josef Skopek, 1, G, Jirovcova, Ceské Budé&jovice
. Miroslav Norek, 1, G, Pelhfimov

Roman Otec, 1, G, Jirovcova, Ceské Budéjovice

Kategorie P

. Milan Simdnek, 4, G, Pelhfimov



o

. Roman Filipsky, 3, G, Pisek
. Petr Machdcek, 3, G, Pelhfimov
. Richard Vlk, 4, G, Pelhfimov

Zéapadocesky kraj

Kategorie A

. Lubos Motl, 3M, 3. G, Plzen
. Jaroslav Kaas, 3M, 1. G, Plzen

Karel Soukenik, 4M, 1. G, Plzen

. Jan Kotas, 3M, 1. G, Plzen
. Jan Smolik, 3M, 1. G, Plzen
. Miroslav Orsdg, 3P, G, Klatovy

Kategorie B

. Jiri Cerng, 2M, 1. G, Plzen
. Jitka Dribkovd, 2M, 1. G, Plzen

Tomds Kubr, 2M, 2. G, Plzen
Pavel Wunsch, 2, G, Rokycany

. Romana Lavickovd, 2M, 1. G, Plzen
. Jindtich Knourek, 2M, 1. G, Plzen
. Ludek Hyncik, 2M, G, Domazlice

Jan Krapdé, 2, G, Ostrov
Miroslav Skala, 2, 2. G, Plzen
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Kategorie C

. Petr Vachovec, IM, 1. G, Plzen
. Jan Pospisil, 1M, 1. G, Plzen

. Petr Pisek, 1M, 1. G, Plzen

. Jiri Cizek, 1M, 2. G, Plzei

Jan Fiala, 1M, 1. G, Plzen

Marek Vacka, 1M, G, Domazlice
Irena Zimecénikovd, 1M, 1. G, Plzen
Jii Stika, IM, G, Karlovy Vary

. Eva Wenigrova, 1M, G, Karlovy Vary

Kategorie P

. Jan Kotas, 3, 1. G, Plzen

. Jaroslav Kaas, 3, 1. G, Plzen

. Martin Cihdk, 4, G, Karlovy Vary
. Petr Fromnek, 3, 1. G, Plzen

Ales Zidek, 4, 3. G, Plzen

Severocesky kraj

Kategorie A

. Tomds Zellerin, 3, G, Jate¢ni, Usti nad Labem
. Jiri Fiala, 4, G, Partyzanska, Liberec

Zdenék Slavik, 4, G, Décin

. Radek Skoda, 4, G, Partyzanska, Liberec
. Filip Bartl 4, G, Partyzanska, Liberec
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Kategorie B

. Pavel Pelc, 2M, G, Teplice
. Martin Kacer, 2M, G, Partyzanska, Liberec
. Michal Gust, 2 SPS Chomutov

Sylvia Sydvalovd, 2M, G, Teplice

5. Daniel Havalka, 2M, G, Partyzanska, Liberec

W N =

. Jan Kudrna, 2P, G, Litomérice

Kategorie C

. Vladimir Beran, 1M, G, Kadan
. Jaroslav Pisk, 1M, G, Partyzanska, Liberec

Petr Schlosinger, 1M, G, DéCin

. Jan Birédk, IM, G, Partyzanska, Liberec

Michal Kaut, IM, G, Partyzanska, Liberec

. Miroslav Bulin, 1M, G, Partyzanska, Liberec
. Karel Divis, 1M, G, Partyzanska, Liberec

Jan Dostdl, 1, G, Chomutov
Petr Kratochvil, 1, G, Frydlant
Jaroslav Sazama, 1, G, Rumburk

Vychodocesky kraj

Kategorie A

. Petr Tobiska, 4M, G J. K. Tyla, Hradec Kralové
. Pavel Cizek, 4M, G J. K. Tyla, Hradec Kralové
. Jiti Lakosil, 4AM, G J. K. Tyla, Hradec Kralové
. Martin Dvordk, 3, G, Pardubice
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. Martin Streda, 4, G, Vrchlabi

Kategorie B

. Rudolf Cejka, 2, G J. K. Tyla, Hradec Kralové

2. Michal Sorel, 2, G, Pardubice

o N =

26

. Jan K7iz 2, G, B. Némcové, Hradec Kralové
-5. Marek Cerng, 2, G J. K. Tyla, Hradec Kralové

Roman Konecny, 2, G, Pardubice

. Petr Plasil, 2, G, Pardubice
. Jan Mocek, 2, G, Pardubice

Martin Rosenbach, 2, GJKT, Hradec Krélové
Petr Gregor, 2, G, Chotébor

Kategorie C

. Jirt Hartman, 1, G J. K. Tyla, Hradec Krélové
. Karel Houfek, 1, G J. K. Tyla, Hradec Kralové
. Ladislav Ostry, 1, G J. K. Tyla, Hradec Kralové

Michal Johanis, 1, G J. K. Tyla, Hradec Krélové
Boris Letocha, 1, G J. K. Tyla, Hradec Kralové

Petr Chmelicek, 1, G J. K. Tyla, Hradec Kralové
Petr Cermdk, 1, G, B.Némcové, Hradec Kralové
Lubos Vesely, 1, G, Vrchlabi

. Jaroslav Rejda, 1, G J. K. Tyla, Hradec Kralové

Radek Bohata, 1, G, B.Némcové, Hradec Kralové

Kategorie P

. Pavel Cizek, G J. K. Tyla, Hradec Kralové



2. Petr Tobiska, G J. K. Tyla, Hradec Kralové
3. Antonin Blatny, G, Pardubice
4. Ales Makarov, G, Pardubice
5.6 Boris Lechota, G J. K. Tyla, Hradec Kralové
Michal Sorel, G, Pardubice

Jihomoravsky kraj

Kategorie A

1.-3. Michal Bulant, 4M, G, tf. kpt. Jarose, Brno
Zdenék Pezlar, 4M, G, tF. kpt. Jarose, Brno
Michal Stehlik, 3M, G, tf. kpt. Jarose, Brno

4.-5. Michal Koneény, 4M, G, tf. kpt. JaroSe, Brno
Filip Munz, 3M, G, tf. kpt. Jarose, Brno

6.-8. Pavel Ruzicka, 4M, G, tf. kpt. Jarose, Brno
Pavel Vrbacky, 3M, G, tf. kpt. Jarose, Brno
Milan Zamazal, 4M, G, tf. kpt. Jarose, Brno

9.-12. Oldrich Auda, 4M, G, tf. kpt. JaroSe, Brno
Jiri Kalvoda, 4M, G, tf. kpt. JaroSe, Brno
Jan Mutl, 3M, G, tf. kpt. Jarose, Brno
Martin Pandk, 4M, G, tf. kpt. JaroSe, Brno

Kategorie B

1. Ondrej Klima, 2M, G, tf. kpt. Jarose, Brno

2. Petr Konecény, 2M, G, tf. kpt. Jarose, Brno

5. David Kruml, 2M, G, tf. kpt. Jarose, Brno
Markéta Kylouskovd, 2M, G, tf. kpt. Jarose, Brno
Markéta Trefilovd, 2M, G, ti. kpt. Jarose, Brno
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. Alena Buresovd, 2M, G, tf. kpt. Jarose, Brno
. Miroslav Fitz, 2M, G, tf. kpt. JaroSe, Brno

Viclav Kominek, 2M, G, tf. kpt. Jarose, Brno

. Rostislav Frélich, 2M, G, Prostéjov

Kategorie C

. Michal Andrlik, 1P, G, Boskovice

ITveta Tomenenddlovd, 1M, G, Jihlava

. Dana Cernd, 1M, G, t¥. kpt. Jarose, Brno

Helena Handkovd, 1P, G, Prostéjov
Petr Novdk, 1M, G, tf. kpt. Jarose, Brno
Pavel Stehlik, 1M, G, tf. kpt. Jarose, Brno

. Jan Hradil, 1M, G, tf. kpt. JaroSe, Brno

Blazej Neradilek, IM, G, tf. kpt. Jarose, Brno

. Martina Benesovd, 1M, G, Jihlava

Michal Slanina, 1M, G, tf. kpt. Jarose, Brno

Kategorie P

. Michal Relich, 4, G, tf. kpt. JaroSe, Brno
. Zdenék Pezlar, 4, G, tf. kpt. Jarose, Brno
. Jan Kasprzak, 4, G, ti. kpt. Jarose, Brno
. Miroslav Kovd7, 3, G, Videnska, Brno

. Petr Dobids, 4, G, Zdar n.Sazavou

Milan Sedldcek, 4, G, tt. kpt. JaroSe, Brno
Jana Syrovdtkovd, 2, G, tf. kpt. Jarose, Brno



10.-12.

Severomoravsky kraj

Kategorie A

. Ales Kubéna, 4M, G, Bilovec
. Mario Bohdé¢, 4M, G, Bilovec
. Radek Horensky, 4M, G, J. z Podébrad, Olomouc

Martin Kubacki, 4M, G, Bilovec
Pavel Rychly, 4M, G, J. z Podébrad, Olomouc

. Jirt Chamrdd, 3M, G, Bilovec
. Ondrej Kamenik, 3M, G, Bilovec

Robert Wadura, 4M, G, Bilovec

. Oldtich Dosedél 4M, G, Bilovec

David Zik, 3M, G, Bilovec
Michal Sevéik, 4M, G, J. z Podébrad, Olomouc

Kategorie B

. Marcela Hlawiczkovd, 2, G, Tfinec
. Katetina Janoskovd, 2M, G, Bilovec
. Radek Pastyrik, 2M, G, Bilovec

JiFi Simecek, 2M, G, Bilovec

. Hana Ratajovd, 2M, G, Bilovec
. Petr Kacenka, 2M, G, Bilovec

Vit Strddal, 2M, G, Bilovec

Petr Jiticek, 2M, G, Bilovec

Jiri Lindovsky, 2M, G, Bilovec
Martin Benes, 2M, G, Bilovec

Petr Jandik, 2M, G, Bilovec

Zuzana Stachovicovd, 2M, G, Bilovec
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Kategorie C

Jiti Cech, 1, G, Bilovec

Jaromir Fiurdsek, 1, G, Frydlant
Marek Pesa, 1, G, Frydlant
Zdenék Stasko, 1, G, Bilovec

. Jan Mrézek, 1, G, Bilovec
. Tomds Jurtik, 1, G, Bilovec
. Otmar Onderek, 1, G, Bilovec

Zdenék Romdnek, 1, G, Bruntal
Kamil Sgkora, 1, G, Jifiho z Podébrad, Olomouc
Radim Wystyrk, 1, G, Bilovec

Kategorie P

. Radim Moric, 4, G, Bilovec
. Jarmil Halamicek, 4, G, Roznov p. Rad.
. Viclav Divis, 4, G, Bilovec

Marek Kudrna, 4, G, Roznov p. Rad.
David Poldsek, 4, G, Bilovec

. Petr Blahos, 3, G, Sumperk

Oldtich Dosedél, 4, G, Bilovec

. Martin Bodldk, 4, G, M. Majerové, Ostrava

Mario Bohdé, 4, G, Bilovec
Tomds Gelnar, 4, G, Bilovec



Bratislava

Kategorie A

. Pavol Mederly, 3, G A. Markusa

Martin Stanek, 4, G J. Hronca
Boris Stitnicky, 3, G A. Markusa

. M. Macaj, 4, G A. Markusa
. Ladislav Kis, 3, G A. Markusa

Richard Kollir, 3, G A. Markusa

. Vladimir Spitdlsky, 4, G A. Markusa
. Peter Hecht, 3, G A. Markusa

Matej Ondrusek, 2, G J. Hronca
Juraj Slanicka, 2, G A. Markusa

Kategorie B

. Viliam Bair, 2, G A. Markusa

Pavol Marton, 2, G A. Markusa

. Daniel Kostecky, 2, G A. Markus$a

Katarina Skalovd, 2, G A. Markusa
Milos Volauf, 2, G A. Markusa
Daniel Stefankovié, 2, G A. Markusa

. Kamil Budinsky, 2, G J. Hronca
. Martin Suster, 2, G A. Markusa
. Milan Kabdt, G J. Hronca

Darina Kozlovd, G A. Markusa
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Kategorie C

Matis Kirchmayer, 1, G A. Markusa
Urban Kovdc, 1, G A. Markusa
Madria Kuklisovd, 1, G A. Markusa
Martin Niepel, 1, G A. Markusa
Daniel Pastor, 1, G A. Markusa
Marek Spdl, 1, G A. Markusa

. Zuzana Bezekovd, 1, G A. Markusa

Eva Chorvdtovad, 1, G A. Markusa
Marek Macuha, 1, G A. Markusa
Zuzana Mederlyovd, 1, G A. Markusa
Andrej Zlatos, 1, G A. Markusa

Zapadoslovensky kraj

Kategorie A

. Radovan Garabik, 3M, E. Gudernu, Nitra
. Ignac Bugdr, 4, mad. G, Galanta

Miroslav Zivna, 4, G, Skalica

. Rastilav Krajnak, 3M, G E. Gudernu, Nitra
. Zoltdn Szocs, 4, mad. G, Galanta

Kategorie B

. Andrej Hucek, 2M, G, Parovska, Nitra
. Rastislav Graus, 2M, G E. Gudernu, Nitra

Gdbor Rdcz, 2, mad. G, Dunajskd Streda
Alena Urbanovd, 2M, G E. Gudernu, Nitra



—

Milan Valky, 2M, G, Péarovska, Nitra

. Roland Haulitus, 2, G, Koméarno

. Frantisek Antal, 2, G, Nové Mesto nad Vahom
Maridn Harustik, 2, G, Nové Mesto nad Vahom
Gyula Poldk, 2, mad. G, Komdrno

Kategorie C

. Frantisek Gdbris, 1, G Hlohovec

Milan Hargas, 1, G Samorin

Frantisek Mizera, 1, mad. G, Komdarno

. Josef Drahovsky, 1, G, Piestany

Juraj Vidéky, 1, G, Trencin

. Tinde Keszegh, 1, mad. G, Komarno
Martin Lehotsky, 1, G, Galanta

Martin Vanék, 1, G, Trencin

. Zsolt Brankd, 1, mad. G, Dunajska Streda

Kategorie P

. Michal Slezik, 4, G E. Gudernu, Nitra
. Peter Durfina, 4, G E. Gudernu, Nitra
. Josef Nagy, 2, G, Levice

. Igor Klepoch, 4, SPSE Nové Zamky

. Peter Majernik, 3, mad. G, Galanta

. Lubomir Stuller, 3, G, Levice

Peter Mindrik, 3, G, Piestany

. Zoltdn Bugdr, 2, mad. G, Galanta

. Pavol Gregor, 2, SPSE Nové Zamky

. Martin Pabis, 2, G, Piestany

33



34

Stredoslovensky kraj

Kategorie A

. Valerian Valdsek, 4M, G, Tajovského, B. Bystrica
. Radovan Harman, 4P, G, Liptovsky Hradok

Martin Lancz, 4M, G, Tajovského, Ban. Bystrica
Dusan Svitek, 3 F, G, Tajovského, Ban. Bystrica
Sosa Simanovd, 3M, G, Tajovského, Ban. Bystrica

. Vladimir Glasndk, 4M, G, Velka Okruzna, Zilina

Lubo Macek, 3M, G, Liptovsky Mikulas

. Juraj Lorincz, 4M, G, Bansk4d Bystrica

Roman Mackovédk, 3M, G, Velka Okruzné, Zilina

. Simon Malyj, 4M, G, Ziar nad Hronom

Kategorie B

. Marek Zabka, 2M, G, Tajovského, Ban. Bystrica
. Dagmar Hrmovd, 2M, G, Tajovského, B. Bystrica

Jin Zabka, 2M, G, Velka Okruzna, Zilina

. Petr Duda, 2M, G, Tajovského, Ban. Bystrica

Monika Kozdkovd, 2M, G, Tajovského, B. Bystrica
Dusan Trstensky, 2, G, Velkd Okruzna, Zilina

. Miroslav Dobrota, 2M, G, Tajovského, B. Bystrica
. Vojtech Bdlint, 2M, G, Velk4a Okruzna, Zilina

Monika Balogovd, 2M, G, Tajovského, B. Bystrica
Peter Hazucha, 2M, G, Tajovského, Ban. Bystrica
Peter Hlavaty, 2, G, Liptovsky Mikulas



Kategorie C

. Peter Marsina, 1M, G, Velka Okruzna, Zilina
. Martin Gazik, 1M, G, Velka Okruzna, Zilina
Miroslav Kulla, IM, G, Martin

Stanislav Visiovsky, IM, G, Martin

. Jitka Huskovd, 1M, G, Martin

Michal Skokan, 1M, G, Velka Okruzna, Zilina
. Emilia Dubcovd, 1M, G, Martin

Miroslav Liska, 1, G, RuZzomberok

. Marek Hamran, 1M, G, Martin

Peter Humaj, 1M, G, Velka Okruzna, Zilina
Marek Kdcer, 1, G, Martin

Roman Ruckschloss, 1M, G, Tajov., B. Bystrica

Kategorie P

. Josef Antony, 4M, G, Prievidza

2. Peter Maléovsky, 4M, G, Prievidza

D W N =

Vychodoslovensky kraj
Kategorie A

. Lubos Pdstor, 3, G, Pivovarska, Kosice

. Slavomir Hrinko, 4, G, Konstantinova, Presov
. Herbert Vojcik, 3, G, Pivovarska, Kosice

. Miroslav Chladny, 3, G, Pivovarska, Kosice

. Marek Gura, 3, G, Popr. nabr., Poprad
Marek Kelbel 4, G, Srobarova, Kosice
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. Cyril Hrusédk, 3, G, Poprad
Peter Kovdcik, 2, G, Alejova, Kosice
Jdn Machun, 3, G, Pivovarska, Kosice

Peter Varga, 4, G, Srobarova, Kosice
Lubomir Zlacky, 4, G, Michalovce

Kategorie B

. Peter Katuscdk, 2, G matem., KoSice

. Peter Kovdcik, 2, G matem., KoSice

. Milan Melichercik, 2, G, Kovacikova, Kosice

. Brazio Jendrol, 2, G matem., Kosice

. Darius Germala, 2, G matem., Kosice

. Pavel Diko, 2, G matem., KoSice

. Martina Hrusc¢dkovd, 2, G, Popr. nabr., Poprad

Igor Magda, 2, G matem., KoSice
Peter Suli¢, 2, G, Vranov

Kategorie C

. Milos Gaj, 1, G, D. Tatarku, Poprad

Radoslav Valovsky, 1, G, Michalovce
Peter Zdmborsky, 1, G, Pivovarska, Kosice
Ivana Stmockovd, 1, G, Konstantinova, Presov

. Martin Sepeldk, 1, G, Michalovce
. Ivana Brudidkovd, 8, ZS, 17. novembra, Presov

Richard Molokdé, 1, G, Pivovarska, Kosice
Igor Pauer, 1, G, Pivovarska, Kosice

. Martin Cajbik, 1, G, Humenné

Peter.Fehér, 1, G, Pivovarska, Kosice
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Kategorie P

. Herbert Vojcik, 3, G, Smeralova, Kosice

. Lubomir Zlacky, 4, G, Michalovce

. Radovan Brecka, 4, G, Snina

. Tomds Vinar, 1, G, Srobarova, Kosice

. Marek Jakub, 4, G, Michalovce

. Marek Gura, 3, G, Popradské ndm., Poprad

Cyril Hrusédk, 3, G, Popradské nam., Poprad
Norbert Kopco, 4, G, Opatovské, Kosice
Ondrej Pajtds, 4, G, Michalovce
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Kategorie C

Texty uloh

C-1-1

Kolik je ctyfcifernych cisel s touto vlastnosti: Jestlize v ném
skrtneme kteroukoliv ¢islici, nedostaneme &islo délitelné tre-
mi.

C-1-2

Najdéte nejmensi pfirozené Cislo k, pro které maji souciny
384k a 2592k stejny pocet déliteld.

C-1-3

Tti fotbalova druzstva hraji turnaj systémem, v némz kazdé
druzstvo hraje s kazdym k zdpasi. Po skonéeni turnaje
se zjistilo, ze druzstva ziskala rdzny pocet bodu. Vitézem
turnaje se nestalo druzstvo, které ziskalo nejvice vyher,
ani druzstvo, které mélo neyméné proher. Urcete nejmensi
Cislo k, pro které mohla uvedend situace nastat.
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C-1-4

Rozhodnéte, zda existuje tétivovy ctyfahelnik s témito
vlastnostmi:
a) Uhlopticky ho déli na ctyfi pythagorejské trojihelniky.
b) Ctyfthelnik neni osové soumérny.

(Pythagorejsky trojahelnik je pravouhly trojihelnik s ce-
lociselnymi délkami stran.)

C-1-5

Je dén konvexni ¢tyfahelnik ABCD, |AB| = 9cm, |BC| =
= 6cm, |CD| = 5,5cm, |[DA| = 4,5¢m, |[BD| = 9cm.
Najdéte mnozinu vsech bodi, pro které paty kolmic z tohoto
bodu na vSechny ctyri strany Ctyrahelniku lezi na obvodé
ctyfahelniku ABC D. Hledanou mnozinou je jisty n-thelnik.
Zjistéte velikosti jeho vnitfnich Ghla.

C-1-6

Strany ¢tyrahelniku maji délky 5, 5, 5, 3. Dokazte, ze jeho
obsah je vétsi nez 2v/6, a je-li ¢tyFahelnik konvexni, je jeho
obsah vétsi nez 12.

C-§-1

Ctytiahelnik m4 tii strany stejné dlouhé, délka ctvrté strany
se rovna délce jedné i druhé tuhlopricky. Uréete velikosti
vnitfnich (hla ¢tyfahelniku. Jaky je to ¢tyFahelnik?
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C-§-2

Najdite vetky prirodzené &isla n, pre ktoré ¢islo n? +1 deli
¢islo n3 — 8n2 + 2n.

C-S5-3
V oboru nezapornych redlnych ¢isel feste soustavu rovnic
r+y+z=a,
r+y—z=0,
r—y+z=c,
r—y—z=d,

Jjestlize mnozina {a,b,c,d} je totozna s mnozinou {4, 8,12,

16}.

C-n-1

Dokézte, ze pre kazdé prirodzené &islo n je &islo n® — n
delitelné dvatsiatimi.

2

C-1-2

Obdélnikovy list papiru ABC'D o rozmérech |AB| = 30 cm,
|BC| = 21 cm je prelozen tak, ze bod B piejde do bodu E
na Gsecce AD a |AFE| = 15cm (obr.1). Vypoététe velikosti
|KH|a|GH]|.

cC-n-3

Dany je pravouhly trojuholnik APM s pravym uhlom pri
vrchole P. Zostrojte rovnoramenny trojuholnik ABC so
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zdkladnou AB tak, aby bod M bol stredom strany BC a P
bol patou vysky na tato stranu.

C-1-4

Ve fotbalovém turnaji tfi druzstev A, B, C hralo kazdé
druzstvo s kazdym druzstvem dvakrat. Ve vysledné tabulce,
ktera u kazdého muzstva udava pocet vyher, pocet neroz-
hodnych zdpast a pocet proher, zname néasledujici idaje:

A
B |1 1
C 3

Doplnte zbyvajicich pét ¢isel tabulky. Sviij postup zdivod-
néte.
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Reseni uloh

C-1-1

Pouzijeme znamé tvrzeni, Ze zbytek pfi déleni cisla tFemi
je stejny jako pii déleni tfemi ciferného souétu toho &isla.
Napriiklad v pripadé ctyfciferného ¢isla m o é&islicich a, b,
¢, d je m = 1000a + 1006 + 10c + d = 3(333a + 33b +
+ 3¢) + (a + b + ¢+ d), odkud vidime, ze rozdil &isla m
a jeho ciferného souétu a+b+c+d je délitelny tFemi. Ma-li
¢islo m pozadovanou vlastnost, nesméji zadné tii jeho &islice
davat pri déleni tfemi stejny zbytek. Jinak by byl jejich
soucet délitelny tfemi, a tim by bylo délitelné tfemi i Eislo,
jez bychom dostali z ¢isla m vynechanim zbyvajici, étvrté
Cislice. Ze stejného diivodu nesméji zadné tfi éislice &isla
m dévat pri déleni tfemi navzdjem rtzné zbytky. Zbyva
tedy pouze moznost, Ze dvé Cislice davaji stejny zbytek
a zbyvajici dvé rovnéz, avsak rizny od prvniho. Davaji-li
napftiklad dvé cislice zbytek 1 a zbyvajici dvé zbytek 2, neni
soucet zadnych tfi z nich délitelny tfemi. Ty dvé ¢Eislice
se zbytkem 1 muzeme ze Ctyf Cislic vybrat celkem Sesti
zpusoby, pfitom kazda z nich se mize rovnat 1, 4 nebo 7.
Zbyvajici dvé Cislice se mohou nezévisle rovnat 2, 5 nebo 8.
Méame tedy celkem 6 -3 -3 -3 -3 = 486 moznosti. Podobné
je tomu u zbytkid 0 a 1 nebo 0 a 2. Avsak Eislice se zbytkem 0
pii déleni tfemi se mize rovnat 0, 3, 6 nebo 9 (4 moznosti),
proto dostdvame nyni dvakrat 6-4-4-3-3 = 864, tedy 1728
moznosti. Z nich vSak musime vynechat ty pfipady, v nichz
je na prvnim misté 0, nebylo by to ¢islo Ctyfciferné. Je-li
na prvnim misté 0, je jesté na jednom misté ¢islice délitelna
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tFemi, tedy 0, 3, 6, 9, na dalsich dvou mistech pak éislice 1,4
nebo 7 nebo 2, 5, 8. Musime tedy vylouéit 2-3-4-3-3 = 216
pfipadi. Vysledek tlohy je 486 + 1728 — 216 = 1998.

C-1-2

Je 384 = 27 .3, 2592 = 25 . 3% Poloime napiiklad
k=2 .35 pak je

384k = 277 .3°*1 .5t 2592k = 27F° . 30+ . 5t

Prvni z nich mé (r+8)(s+2)(t+1), druhé (r+6)(s+5)(t+1)
déliteli. M4 tedy platit

(r+8)(s+2)=(r+6)(s+5), tj.2s=3r+14.

Protoze hledame neymensi k, polozime r =0, s =7 at = 0.
Podobné bychom dostali, Ze i u dalsich prvocisel v rozkladu
¢sla k by byl exponent nulovy. Resenim tlohy je tedy ¢islo
k=3".

cC-1-3

Vitézné muzstvo oznaéme A a necht vice vitéznych zapast
nez A mélo muzstvo B. Kdyby toto muzstvo mélo méné
proher nez A, nemohlo by byt A vitézem turnaje. Proto
* méné proher nez A mélo tieti druzstvo C. Oznacme p, q, r
po fadé pocet vitéznych zdpasi muzstva A nad B, muzstva
B nad C a muzstva C nad A. Podobné oznacime u, v, w
pocet vitéznych zdpasi muzstva A nad C, muzstva C nad
B a muzstva B nad A, viz pfilozené schéma (obr. 2).
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Obr. 2

Muzstvo A vyhralo p+u zdpasi a prohralo r+ w zapasi,
B vyhralo ¢+ w utkani, C prohrélo ¢+ u. Podle predpokladu
jept+u< g+ w, r+ w > q+ u. Pfitom muzstvo A ziskalo
2(p+u)+2k—(p+w+r+u) =2k+(p+u)—(r+w) bodg,
muzstvo B ziskalo 2k + (¢ + w) — (p+v) bodi a bodovy zisk
muzstva C byl 2k + (7 + v) — (¢ + u), kde k znaéi pocet kol
turnaje. Jelikoz A ziskalo nejvice bodi, je
ptu—(r+w)>q¢+w—(p+v),
pru—(r+w)>r+v—(g+u),
seCtenim dostaneme
pt+u>r+w.
Mame tedy
gtw>ptu>r+w>q+u.
Protoze jde o cela &isla, je
gt+tw2pt+u+l,
ptur+w+l,
r+w2qg+u+l,
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odkud

q 2 v+ 2 (se¢tenim prvnich dvou nerovnosti),
p 2 ¢+ 2 (sectenim poslednich dvou nerovnosti),
w 2 u+ 3 (seCtenim vSech t¥i nerovnosti).
7 odvozenych tfi nerovnosti zase plyne jejich se¢tenim
ptw2r+u+T.

Cisla r, u jsou neziporna, proto muistva A a B sehrila
mezi sebou aspon 7 utkani, je tedy k 2 7. UkaZeme, ze k =
= 7 vyhovuje. Je pak nutné r =u=0,p=4, w=3, ¢ =2
a pro v mame podminku 0 < v < 3, takze v = 1 nebo v =
= 2. Vsechna utkani mezi A a C skoncila nerozhodné, mezi
A a B neskondilo zadné utkani remizou. Muzstvo A ziskalo
15 bodi, zbyvajici dvé muzstva 13 a 14 bodu.

C-1-4
Predstavme si, Ze ctyfahelnik ABCD (obr.3) ma pozado-

D
Y. C

§

Obr. 3
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vané vlastnosti, ozna¢me O prusecik jeho uhlopficek. Pro-
toze to ma byt ctyfahelnik tétivovy, musi byt |XADO| =
= | A BCO|, takze trojuhelniky ADO a BCO jsou podobné
(pfi vrcholu O maji pravy ahel) a pythagorejské. Jeden
z pythagorejskych trojihelniki ma strany 3, 4, 5, zkusme
tedy zvolit pFirozend Cisla k, [ tak, aby |AO| = 3k, |DO| =
= 4k, |BO| = 31, |CO| = 4l. Pak staci, aby k, [ byly délky
odvésen pythagorejského trojihelniku. Pokud by vsak bylo
k:1l =3:4nebok : 1 =4 : 3, byl by étyfFahelnik
ABC D osové soumérny, coz nechceme. Vzpomenme si na
pythagorejsky trojihelnik o odvésnach 5 a 12 a polozme
k = 5,1 = 12, takze |AO| = 15, |DO| = 20, |BO| = 36,
|CO| = 48. Tyto délky naneseme od priseliku O dvou
kolmych primek a dostaneme tak ¢tyfiahelnik pozadovanych
vlastnosti.

C-1-5

Body A, D vedeme kolmice k strané AD, hledana mnozina
M bodi je ¢asti rovinného pasu ohraniceného témito dvéma
kolmicemi. Podobné postupujeme u dalsich stran ctyfahel-
niku. Mnozina M je prinikem Ctyf rovinnych pasi, v nasem
piipadé je M sestidhelnik PQRSTU (obr.4). Protoze PU L
L DC, QP L AD, je |2AQPU| = |2AADC|. Podobné by-
chom uréili velikosti ostatnich Ghlia Sestithelniku M pomoci
velikosti hli ¢tyrahelniku ABCD.

C-1-6
Uvazujme nejdfive Ctyfahelnik ABC'D s danymi délkami
stran, ktery neni konvexni, (obr.5) a oznaéme ¢ = |AC]|.

46



DT S,
1T
B
: R
A P\ /Q
Obr. 4

Obr. 5

Podle trojihelnikové nerovnosti je 2 < z. Pritom je rov-
noramenny trojihelnik AC'D ostrothly, jinak by bylo z =
> 5v/2. Protoze vsak bod A lezi uvnitf trojahelniku CBD,
je ¢ < 5. Ostrouhly rovnoramenny trojihelnik o ramenech
5, 5 a zakladné z > 2 ma vétsi obsah nez stejny trojahel-
nik o zakladné 2. Posledni m4 obsah 2v/6, proto je obsah
trojahelniku AC'D, a tim spise obsah ¢tyrihelniku ABC' D
vétsi nez 21/6.

Déle se budeme zabyvat ctyrahelniky konvexnimi
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a
A A B
Obr. 6 Obr. 7

(obr.6). Bez Gjmy na obecnosti mizeme predpoklidat,
ze |AC| 2 |BD|, jinak bychom zaménili oznaceni bodi
D, A a souiasné B, C. Pro z = |AC| tedy plati z <
< 8 a zaroven z 2 21/10, nebot 21/10 je délka thlopfFicek
v rovnoramenném lichobézniku o stranéch 5, 5, 5, 3 (obr. 7).
Obsah trojuhelniku AC'D je pro vSechna z € (2\/ﬁ, 8)
vétsi nez 12 (obr. 8).

2/10, 4 5
\ 5
Obr. 8
C-S-1

Ma-li étyrahelnik ABC' D pozadované vlastnosti, mizeme
oznaéeni jeho vrcholl zvolit tak, ze |AD| = |DC| = |CB]|
a |AB| = |AC| = |BD| (obr.9).
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A B
Obr. 9

Trojihelniky ABC, BAD jsou shodné rovnoramenné
trojahelniky soumérné sdruzené podle osy usecky AB. Ctyi-
thelnik je proto rovnéz osové soumérny podle této osy,
takZe je to rovnoramenny lichobéznik. Oznacime-li @ =
= |ICABj|, je také o = |AABD| = |aABDC| = |ADCA|.
Trojtihelniky AC D, BDC' jsou rovnéz rovnoramenné, proto
je a = |ADAC| = |aDBC|, |<ACB| = |9ADB| = 2a.
Z trojuhelniku ABC pak plyne rovnost 5a = 180°, takze
velikosti vnitinich Ghla ¢tyrahelniku jsou 2o = 72°, 72°,
3o = 108° a 108°.

C-S5-2
Jelikoz
3 2 4 _ 2
n®=8n‘+2n=(n-8)(n*+1)+n+8,
je toto &islo délitelné éislem n? + 1 pravé tehdy, kdyz je jim
délitelné ¢islo n + 8. Pro n = 1 a n = 3 to splnéno neni,
pro n = 2 to splnéno je. Je-li n 2 4, je (n — %—)2 2 44—9, takze
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n?—n 212, n2+ 12 n+11 > n+8. Vétsi éislo nemiize
délit mensi, je tedy n = 2 jedinym FeSenim tlohy.

C-5-3

M34-li mit dané soustava FeSeni v oboru nezapornych d&isel,
musi byt @ 2 b,a 2¢,b2d c2d takiea2b2c2d
nebo @ 2 ¢ 2 b 2 d. Musi tedy byt a = 16, d = 4 a déale
b =12, ¢ = 8 nebo b = 8, ¢ = 12. V prvnim pfipadé vyjde
z =10,y = 4, z = 2, v druhém pfipadé ¢ = 10, y = 2,
z =4.

C-n-1

Je
n® —n? = n?(n — 1)(n+ 1)(n% 4+ 1).

Je-li n sudé, je n? délitelné étyFmi, v opaéném piipadé jsou
éisla n — 1,n + 1 sudd a Ctyfmi je délitelny souéin (n —
— 1)(n + 1). Neni-li Zddné z &isel n, n — 1, n + 1 délitelné
péti, je n = 5k + 2 nebo n = 5k + 3, kde k je celé. Pak je
ale n?2 +1 = 25k? + 20k + 5 nebo n? + 1 = 25k2 + 30k + 10,
takze n? + 1 je délitelné péti. Tim je dokazano, ze dané &islo
n® — n? je vidy délitelné &isly 4 a 5, a tudiz dvaceti.

Jiny diikaz délitelnosti &isla n® — n? &islem pét poda-
la Anna Vidncovd, Zdkyné I. roéniku gymndzia v PovaZské
Bystrici. Vi, Ze soulin péti po sobé jdoucich pfFirozenych
isel n—2,n—1,n,n+ 1, n+ 2 je jisté délitelny péti.
Pfitom je

(n=2)(n—1)n(n+1)(n+2) = n(n*-5n*+4) = n®—5n+4n
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n® —n? = n(n® - 5n3 + 4n) 4 5(n* — n?).

JelikoZ jsou oba séitance délitelné péti, je péti délitelny

i jejich soucet n — n2.

cC-1u-2

Oznatme ¢ = |AF| (obr.10), kde F je prisecik asecky
AB a osy Gse¢ky BE. Je |FE| = |FB| = 30cm — «z.
Uzitim Pythagorovy véty na trojihelnik AFE dostaneme
z = Bcm. Z podobnosti pravothlych trojihelniki KDE
a EAF plyne |[EK| = 10cm, takie |[KH| = 11cm. Z po-
dobnosti trojihelniki K DE a KHG plyne |HG| = % cm.

H

D K G C

| 1

|

£ |

|

I

—

A z F 30-z B
Obr. 10

c-n-3
Sestrojime nejdfive t&zisté T trojihelniku ABC (obr.11),

lezi na Gseéce AM, kterou déli v poméru 2 : 1 (|AT]| :
: |TM| = 2 : 1). Protoze mé platit |AC| = |BC|, musi
také platit |AT| = |BT|. Lezi tedy bod B na kruZnici k
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o stfedu T a poloméru |T'A|, jez protinad piimku PM ve
dvou bodech, kazdy z nich mizeme vzit za bod B. Bod C
dostaneme jako prusecik pfimky PM s osou tsecky AB,
nebo také jako bod soumérné sdruzeny k bodu B podle
bodu M. Uloha ma dvé Feseni.

C

Obr. 11

C-11-4

Protoze B ma jednu prohru a A Zadnou vyhru, muselo B
prohrat s C, takze C ma aspon jednu vyhru. Vice vsak
mit nemohlo, protoze sehralo jen 4 utkani, takze nemélo
zadnou prohru. Jednu prohru mélo muzstvo A (prohrélo
nutné s B). Muzstvo A pak mélo tfi a B dva nerozhodné
zapasy. Vysledna tabulka byla tedy takovato:

A 0|3 |1
B|1|2]|1
Cl1]3
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Kategorie B

Texty uloh

B-1-1

V oboru redlnych &isel feste rovnici 3z3 — [z] = 3, kde [z]
znadli celou ¢ast Cisla z.

B-1-2

Na strané AB trojihelniku ABC jsou dany body K, L tak,
7e |AK| = |KL| = |LB|, podobné na strané CB body M, N
tak, Ze |CM| = |MN| = |NB]|. Prisecik tse¢ek AN a KM
oznatme P, pruselik pfimek LP a AC je bod Q. Uriete
obsah ctyrihelniku CQPM, jestlize se obsah trojihelniku
ABC rovna 18.

B-1-3

V roviné je dano 7 bodiu, z nichZz nékteré jsou spojeny
useckou. Pritom jsou splnény podminky:
a) z kazdé trojice bodi jsou aspon dva spojeny tseckou,
b) pocet tsecek je minimalni.

Kolik tsecek obsahuje atvar, ktery spliuje tyto podmin-
ky? Nakreslete pfiklad takového Gtvaru.
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B-1-4
Sestrojte trojahelnik, jestlize je din polomér r kruznice mu
vepsané, pomér poloméru R kruZnice mu opsané a strany a

se rovnd 2 a pomeér velikosti 8, v Ghla pFilehlych k strané a
se rovna 3.

B-1-5

Pro realna é&isla a, b, ¢ (ac # 0) ma rovnice az? +bz+c =0
realny kofen r, rovnice az? — bz — ¢ = 0 m4 realny kofen s.
Dokaite, Ze rovnice ax? — 2bz — 2c = 0 ma reéalny kofen,
ktery lezi mezi r a s.

B-1-6

Dokazte, ze pro velikosti «, (3, v Ghli v trojihelniku plati

sin asin Bsiny £ g\/g

B-S-1

Dokaite, ie rovnice
(z—a)z=b)+(z=b)(z—c)+(z—c)(xz—a)=0

maé pro kazdou trojici redlnych &isel a, b, ¢ redlné FeSeni.
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B-S§S-2

Najdéte aspon jednu dvojici celych éisel a, b tak, aby pro
kazdé celé éislo « platilo

z+a - z+b] |22
5 5 | L5
([x] znaéi celou &ast &isla z, tj. nejvétsi celé &islo, které neni
vétsi nez Cislo z.)

B-S-3

Na uhlopriecke AC rovnobeznika ABCD st dané body K
a L také, ze |AK| : |KL|: |LC| = 4 : 5 : 3. Ozna¢me P
prieseénik priamok AB, DK a @ prieseénik priamok CD
a BL. Vypoéitajte pomer |PR| : |QR)|, kde R je prieseénik
uhloprie¢ky AC' a priamky PQ.

B-1l-1

Dokaite, Ze funkce f(z) = kz —[z] definovand na mnoziné R
vSech realnych cisel neni pro k > % prosta.

B-11-2

Ukazte, Ze rovnica
et —2e3 4322 -4245=0

nema rieSenie v mnozine realnych &isel.
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B-11-3

V rovine je danych sedem bodov, z ktorych niektoré s
spojené tseckou. Pritom v kazdej Stvorici bodov st aspon
dve dvojice spojené tseckou a pocet useciek je minimalny.
Zistite, kolko useéiek takyto Gtvar obsahuje, a nakreslite
priklad.

B-I1l-4

Je dan obdélnik ABCD a na jeho straniach AB, C'D jsou
zvoleny body E, F' tak, ze trojihelniky AFG,GHF a HCF
mayji stejny obsah (G a H oznacuji priseéiky Ghlopficky AC
s pifimkami EF a BF'). Urlete pomér obsahu trojihelniku
AFEG a obsahu daného obdélniku.

Reseni uloh

B-1-1

Oznaéme [z] = n, takie n < z < n + 1. Funkce y = 23 je
rostouci, takze
nd <z® < (n+1)>

Vynésobime-li tuto nerovnost tfemi a odeéteme n, dostane-
me
3n3 —n <323 — [2] < 3n® 4+ 9n% + 8n + 3.

Spliyje-li  danou rovnici, je nutné
3n3 —n <3 <3n®+9n? +8n+3,
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tedy
n(3n®—1)<3 asoucasné 0 < n(3n’+9n+8).

Druhd nerovnice neni splnéna pro zadné n < 0, protoze
3n% 4+ 9n + 8 > 0 pro kazdé n. Z pfirozenych &isel spliuje
prvni nerovnici pouze Cislo n = 1, takZe FeSenad rovnice
muzZe mit feSeni pouze v intervalu (1,2). Pro takové feseni
pak plati 3z3 — 1 = 3, tedy z = \3/3_. Tato hodnota je
z uvedeného intervalu a je jedinym fesenim tlohy.

B-1-2
Z podobnosti trojihelniki ABC, KBM (obr.12) plyne

C
M M
Q N Q N
DN SVAN
A K L B A K L B
Obr. 12 Obr. 13

|[KM| = %|AC|, z podobnosti trojihelniki ANC, PNM
plyne |[MP| = 1|AC|, takie |PK| = |KM| - |[MP| =
= }|AC|. Usetka PK je stfedni piitkou v trojihelniku
ALQ, takie |AQ| = 2|PK| = 1|AC|, neboli |CQ| =
= 2|AC]|. Ctyfhelnik CQPM je lichob&znik se zékladnami
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CQ a MP a vyskou v, kde v je vyska trojahelniku ABC
na stranu AC. Hledany obsah je tedy

1/2 1 1 7
5 (§+§> |Ac|.§v_§-6|AC|v_7,

nebot 1|AC|v = 18.

Jiné ¥esSeni. Body M, N vedeme rovnobézky s pfimkou
AB i s pfimkou AC (obr.13), body K a L vedeme rovno-
bézky s pfimkou BC. Tim se trojahelnik ABC rozdéli na 9
shodnych trojthelnikd, kazdy z nich ma obsah 2. Ctyfahel-
nik CQPM je slozen z 3,5 téchto trojihelniki, jeho obsah
je tedy 7.

B-1-3

Jestlize z nékterého z danych bodi (oznaéme ho A) ne-
vychézi zadna Gsecka, museji byt kazdé dva ze zbyvajicich
6 bodt spojeny, jinak by tyto dva body tvofily spolu s bo-
dem A trojici, ktera by nespliiovala podminku a). Sest bodd
uréuje (3) = 15 tsecek. Necht z nékterého bodu A vychézi
pouze jedna usecka, jeji druhy krajni bod oznaéme B. Kaz-
dé dva ze zbyvajicich péti bodi museji byt opét spojeny
useckou, je tedy v tomto pripadé tfeba aspon 11 usecek.
Necht z nékterého bodu A vychézeji pouze dvé asecky (do
bodli B, C). Kazdé dva ze zbyvajicich 4 bodi museji byt
spojeny, to dava 6 Gseiek. Podminka a) vSak bude splnéna
jen tehdy, bude-li kazdy z téchto 4 bodl spojen s B nebo
s C (12 tsecek) nebo budou-li spojeny body B, C (pak
je tieba aspon 9 Gseiek — obr. 14). Vychazeji-li z kazdého
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B
Obr. 14

bodu asponi 3 useéky, je jich celkem aspon % -3 -7, tedy
aspon 11. Nejmensi mozny pocet asecek je tedy 9.

B-1-4

Nejdrive sestrojime trojihelnik ABC, ktery ma vsechny po-
zadované vlastnosti kromé daného poloméru vepsané kruz-
nice. Zvolime libovolnou tse¢ku BC za stranu a a sestrojime
kruznici o poloméru 2a, kterd prochazi body B, C (obr. 15).

Tim zndme velikost Ghlu a = | A BAC|, spravnéji dvé moiz-
né velikosti — podle toho, zvolime-li A na véts$im, nebo
na mensim oblouku. Rozdil 180° — « rozdélime graficky na
4 stejné dily, 1 dil je velikost Ghlu 7, 3 dily tvofi velikost
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thlu B. Usecka BC spolu s 3 a v uz uréuji bod A. Tak-
to obdrzeny trojihelnik musime ovSem jesté stejnolehlosti
zobrazit tak, aby se polomér kruznice vepsané rovnal r. Za
stfed stejnolehlosti zvolime napfiklad bod B. Oznaéime-li o
polomér kruznice vepsané trojiuhelniku ABC, rovna se ko-
eficient stejnolehlosti poméru 7 : p.

B-1-5

Jear? +br+c = 0, as? — bs — ¢ = 0. Kvadraticka funkce
y = az? —2bz —2c nabyva v bodé z = r hodnoty ar? —2br —
—2¢ = 3ar?, v bodé z = s hodnoty as? — 2bs — 2¢ = —as?.
Jelikoz ars # 0, maji ¢isla 3ar?, as? opaéna znaménka, musi
tedy mezi &isly r, s lezet &islo z, pro které je az? — 2bx —
—2c=0.

Pékné se Gloha tesi téz graficky pomoci grafu funkei y =
= az? (parabola), y = bz + ¢,y = —bz — ¢, y = 2bz + 2¢
(vesmés pFimky, které neprochézeji pocatkem).

Pouzijeme nejdfive nerovnost mezi aritmetickym a geomet-
rickym primeérem, dostaneme

. . . 1 . . .
sinasinfBsiny < ﬁ(sma + sin 8 + sin y)?,

dale postupujeme podle 57. svazku SMM, str. 27, anebo
pouZijeme tzv. Jensenovu nerovnost, podle které pro a, S,
v € (0,2n) plati

sin « + sin 3 + sin y <sina+ﬂ+7
3 = 3 '

60



Rovnost plati pravé jen pro trojihelnik rovnostranny.

B-S-1

Mizeme predpokladat, ze a £ b < ¢. Pro funkei
f(z) =(z—a)(z—b)+(z—b)(z— )+ (z - c)(z - a)

je pak f(a) 20, f(b) £ 0, takze v ptipadé a = b je f(a) =0
a v pfipadé a < b existuje nutné z € (a,b), pro které plati
f(z) =o.

Mohli bychom ovsem také spocitat diskriminant kvadra-
tického trojélenu f(z) a ukazat, Ze neni zdporny. To by se
nam snadno podafilo, nebot je

D =4(a+b+c)* - 12(ab+bc+ ca) =
=2(a—b)2+2(b—c)*+2(c —a)%.

B-S-2

Pro cisla a, b musi platit [%} + [g] = 0, coz dostaneme

z dané rovnosti pro z = 0. Zkusime zvolit &isla a £ b
z mnoziny {0, 1,2,3,4}. Dosadime-li postupné = = 1, 2, 3,
4, vyjde

1[4 - 1) 1] -
s o s ]
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takze

a+4] b+3] _ b+2]
s [ [0

odkud vychdzi @ = 0, b = 2. Pro tato dvé &isla je dana
rovnice splnéna pro kazdé z € {0,1,2,3,4}. Je oviem vidét,
ze dand rovnice je splnéna pro z tvaru x = 5k + zo (k je
celé), pravé kdyz je splnéna pro zo.

B-S-3

Z podobnosti trojuhelniki APK ~ CDK, ABL ~ CQL
a APR ~ CQR plynou rovnosti

|AP| _|AP| _|AK| _1 IcQ| _|cL| 1
|CD| ~ |AB| ~ |KC| ~ 2’ |AB| ~ |AL| — 3’
takze
|PR| _ |AP| _3
IQR| |CQ| 2
B-Il-1

Z grafu uvedené funkce zjistime, Ze pro k 2 1 je f(1) =
=k—1larovné f(1-3)=k(1-¢)=k—1.Prok € (3,1)
je £(0) = 0 a zaroved f(}) = 0, nebot &islo § leZi v intervalu
(1,2):

Jiné jeSeni. Uvedend funkce zobrazi interval (0,1)
na interval (0,k) a interval (1,2) zobrazi na interval
(k—1,2k —1). Pfitom pro k 2 1 je zfejmé 0 < k —
—1 < kaprok € (%,l) zase 0 £ 2k — 1 < k, takze
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v obou pfipadech je prinik intervald (0, k), (k — 1,2k — 1)
neprazdny, coz znamend Ze dana funkce neni prosta.

B-1l-2
Mnohodlen jednodu$e upravime na tvar

24 -223 + 322 -4z + 5=
=z3(z2 - 22+ 1)+ 22> -2z +1)+3 =
=z¥z - 1)2+2(z - 1)2+3,

odkud je vidét, ze pro kazdé redlné z je uvedeny vyraz
kladny. Rovnice tedy nemd zadné redlné feseni.

B-1l-3

Kdyby mezi danymi body existovala trojice, ve které by
zadné dva body nebyly spojeny tseckou, musel by kazdy ze
zbyvajicich ¢tyf bodd byt spojen aspon se dvéma z téchto
tfi bodt. To je celkem 8 Gsecek. Tyto ¢ty body jsou také
spojeny asponi dvéma useckami, takze celkové by takovy
atvar obsahoval aspon 10 Gsecek.

Jsou-li naopak v kazdé trojici bo-
di asponn dva spojeny useckou, vime
z ulohy B-I-3, ze Gtvar obsahuje aspon
9 tisecek (obr. 16). Takovy Gtvar zfejmé
vyhovuje pozadavkim tlohy.

Obr. 16

B-ll-4

Z rovnosti obsaht trojuhelniki GH F a HC'F plyne rovnost
|GH| = |HC)|. Protoze trojuhelniky CFG a AEG jsou
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podobné a jejich obsahy jsou v poméru 2 : 1, je |GC| =
=V2|AG|, tj. |AG| = V2|HC).

Z podobnosti trojihelniki CFH, ABH plyne, Ze
|AB|:|CF| = 1 + /2. Ve stejném poméru jsou i vysky
v, w téchto trojahelniki, takze

v v 1
ICB| " v4+w 242

ProtoZe obsah trojahelniku CFH je 3 |CF|v a obsah ob-
délniku ABCD je |AB|(v + w), je hledany pomér

11 1 3/2-4
2 142 242 4
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Kategorie A

Texty loh

A-1-1

Pre kazdé prirodzené n 2 6 plati n! < (%)n Dokazte.

A-1-2

Pravidelny stvorboky antihranol ABCDEFGH ma dve
stvorcové steny ABCD, EFGH a osem stien tvaru rov-
nostranného trojuholnika ABE, BCF,CDG, DAH, EF B,
FGC, GHD, HEA. Vsetky hrany maja dlzku a. Vypoéi-
tajte objem daného antihranola.

A-1-3

V roviné je dano devét bodu, z nichz nékteré jsou spojeny

useckou. Pfitom jsou splnény nésledujici podminky:

a) v kazdé trojici danych bodi jsou aspon dva spojeny
useckou,

b) pocet Gseiek je minimalni.

Kolik tsecek obsahuje Gtvar, ktery tyto dvé podminky spl-

nuje? Nacrtnéte pfiklad takového atvaru.
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A-1-4

Kazdy mnohouhelnik M (ne nutné konvexni) lze rozfezat
na trojuhelniky s vrcholy ve vrcholech M. Dokazte.

A-1-5
Najdite taky mnohoclen p s celociselnymi koeficientami, pre
ktory plati
p()=1, p(2)=3, pB3)=15

a ktory ma najmensi stcet absolatnych hodnét svojich koe-
ficientov. Zmeni sa odpoved, ak budeme uvazovat mnoho-
¢leny p s lubovolnymi redlnymi koeficientami?

A-1-6
Je dana funkce f spojitd na intervalu (0,1) a s hodnotami
f(0) = f(1) =1, jez pro kazda dvé éisla z < y z intervalu
(0, 1) spliiuje rovnici

(3 =30+ 3w,

Urcete f(3).
A-S-1

Nech a, b, ¢ st dlzky stran trojuholnika. DokaZte nerovnost

a+ b +c <9
b+c a+4c a+b 7
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A-S-2

Dokaizte, ze pro kazdé celé k 2 2 existuji celd nezdporna
éisla @ > b takova, ze hodnota mnohoélenu z® — z° je
délitelna cislem k pro kazdé celé cislo z.

A-S-3
Je dan ctyistén ABCD, jehoz hrany DA, DB, DC jsou
navzajem kolmé a maji délky a, b, c. Vypoctéte velikost
vysky v daného Ctyfsténu, jez prislusi sténé ABC. Dokaite,
ze pfi dané hodnoté v ma Ctyfstén nejmensi objem, pravé
kdyza=0b=rc.

A-1l1l-1

Dokazte, ze pro libovolna pfrirozena Cisla p a ¢ plati nerov-
nost
(p9)! 2 (P)*(¢!)".

A-11-2
Dany je trojuholnik ABC, v ktorom pre priesecnik vysok O
plati |OC| = |AB|. Zistite, aka velkost mdze mat uhol ACB.
A-11-3

Néajdite najmensie prirodzené ¢islo n, ku ktorému existuje
polyném p s celociselnymi koeficientami tvaru p(z) =2z" +
+ap—12" 71 + ...+ ao taky, ze p(k) je delitelné dsmimi pre
vsetky celé k.
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A-1l-4

Uvazujme funkci f: N — N, ktera je ostfe rostouci a pro
kazda dvé prirozena ¢isla m, n spliiuje rovnost

f(mn) = f(m)f(n).
Urcete f(30), vite-li, ze f(2) = 4.
A-1lIl-1
Dokazte, ze pre redlne ¢isla p, ¢, 7, ¢ plati

pcos? @+ gsinpcosp + rsin’ ¢ 2

25 (ptr- Vo).

A-1Il -2

Vnitfni prostory muzea maji tvar mnohothelniku (ne nut-
né konvexniho) s 3n vrcholy. Dokazte, Ze v ném mizeme
rozestavit n hlidaca tak, aby vidéli cely prostor muzea.

A-1lIl-3

Pro libovolnou permutaci p mnoziny {1,2,...,n} oznaime
d(p) soucet '

Ip(1) = 1]+ [p(2) = 2| + ... + |p(n) — n]

a i(p) pofet inverzi permutace p, tj. pocet vSech dvojic ¢,
J takovych, ze 1 £ ¢ < j £ n a p(i) > p(j). Dokaite, ze
d(p) < 2i(p).
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A-1lll-4

Dokazte, ze vSechny trojihelniky ABC, jejichz thel pri
vrcholu A je dvakrat vétsi nez thel pri vrcholu B, maji
steyjny pomeér vzdalenosti bodu C' od bodu A a od osy Gsecky

AB.

A-1ll-5

Ak v skupine matematikov je kazdy s niekym spriateleny
(predpokladame, ze priatelstvo je symetrickd relacia), pak
medzi nimi existuje taky matematik, ze priemerny pocet
priatelov vsetkych jeho priatelov nie je mensi nez priemerny
pocet priatelov vietkych élenov uvedenej skupiny. Dokazte.

A-1ll-6

Mnozina N vsetkych prirodzenych ¢isel je zjednotenim troch
podmnozin Ay, Ay, As. Dokazte, Ze aspon jedna z nich ma
nasledujiicu vlastnost: Existuje také kladné ¢islo m, ze pre

kazdé k mozeme v tejto mnozine najst cisla aq, ao, .. ., aj,
pre ktoré plati 0 < aj41 —a; Sm (1 S j<k-1).

Reseni uloh

A-1-1

Pro n = 6 tvrzeni skuteéné plati (720 < 729). Déle se
pokusime o dikaz indukci. Pfedpokladejme tedy, ze tvrzeni
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plati pro néjaké n > 6 prirozené. Potom
n n
(n+1)!=nl(n+1)< (n+1) (5) ;

pfitom nerovnost
n\" n+1\"*
n(3) <
(n+1) 5 __( 2 )

plati, pravé kdyz
1 n
(1 + —) 2 2.
n

K dikazu posledni nerovnosti potfebujeme znat binomic-
kou vétu, ze které snadno dostaneme pozadovany odhad.

Poznamka. Nerovnost mezi aritmetickym a geometrickym
primérem poskytne horsi odhad V/n! < l‘-gi

A-1-2

Hledany objem vypocitame nejjednoduseji tak, ze da-
ny antihranol doplnime na pravidelny osmiboky hranol
AA'BB'CC'DD'EE'FF'GG'HH’. Ten sestrojime tak,
ze kazdym vrcholem antihranolu vedeme novou hranu
kolmou k obéma zdkladndm (obr.17). Pfitom tento osmi-
boky hranol vznikne z piavodniho antihranolu pfidanim
osmi shodnych ¢étyfsténu, jejichz objem stejné jako objem
vysledného osmibokého hranolu neni tézké urcit.
Oznacime-li P obsah trojihelniku EE’F, S obsah pravi-
delného osmithelniku EE'FF'GG'HH' a h vysku daného
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Obr. 18

antihranolu (a tedy i osmibokého hranolu), bude pro ob-
jem V daného antihranolu platit V = Sh — -g—hP, kde S =
1v2-1
2 2

podle Pythagorovy véty z trojuhelniku BBy E’, vyjde

= a%?+4P (obr.18)a P = a®. Vysku h vypocitame

h=2/3-(V2-1)>=2V3.
2 2
Pro objem V pak dostaneme

V= (a2+ %P)h = %\'/ga"(l " %(\/5— 1))

= %\/5(1 + ?)a".

Jind moznost, jak uvedeny objem vypocitat, je pouzit
vzorec V = %h(Pl + P, + 4M), kde Py, P, jsou obsahy
obou podstav, M je obsah fezu antihranolu rovinou, ktera
je rovnobézna s obéma podstavami a ma od nich stejnou
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vzdalenost, a h je jeho vyska. Dikaz najdete v feseni alohy
41 ve sbirce Horak-Vrba: Ulohy MMO.

A-1-3

Méjme néjakou konfiguraci n bodu splnujicich podminku
a) tlohy. Pokud existuje bod A, z néhoz vychézi pravé k <
< 1n Gseiek, musi byt kazdé dva z ostatnich n —k —1 bodd
spojeny useCkou. Uvazujme dale libovolnou dvojici bodi
spojenych s A tseckou (napt. Ay, A2 — obr. 19). Uvazovana
dvojice bodi A;, A; je bud spojena Gseckou, anebo ke
kazdému z bodi By, Bs, ..., By_k-1,]€Z s A spojeny nejsou,
existuje aspon jedna Gsecka, ktera jej spojuje s jednim z bo-
di uvazované dvojice. V takovém pfipadé zvolené dvojici
odpovida aspon n — k — 1 tsecek, pricemz kazdou takovou
tse¢ku pak pocitame nejvyse (k — 1)krat (koncovy bod A;
Gsecky A;Bj se vyskytuje v k —1 dvojicich A;4;, 1 S 1<k,
n—k—1
k—1
tak pro kazdou z (’;) dvojic aspon 1 tsecku, celkem tedy
dostaneme nejméné ("_;_1) +&) +k= ("D + (K 2
2 (7) + ("3 tsecek, kde m = [n/2].

l # i). Protoze pro k < in je 2 1, dostaneme

A1 — Bi

Obr. 19 Obr. 20
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Pokud by ovsem z kazdého bodu vychazelo vice nez %n
usecek, dostali bychom celkem vice nez %nz usecek, coz je
vice nez v predchozim pripadé, jak zjistime vypoétem. Pro
n = 9 vyjde nejmensi pocet Gseéek pro k = 4 (obr.20).
Odpovidajici Gtvar obsahuje (3) + (3) = 16 tGsecek.

Jiné Feseni. Oznaime A bod, z néjz vychazi minimalni
kladny pocet, feknéme k Gsecek. Z kazdého bodu, ktery je
s A spojen tseckou, vychazi aspon k GseCek. Uvedenych k+1
bodu je tedy spojeno aspon %k(k+ 1) Gseckami. Zbyvajicich
n—k—1 bodi musi byt pospojovano navzajem. Kdyby tomu
tak nebylo, daly by nespojené dva z téchto bodti s bodem A
trojici, v niz neni ani jedna tsecka. Tim by byla porusena
podminka a).

Pocet p vSech Gsecek mnoziny tedy miZeme odhadnout
zdola hodnotou p(k), ktera zavisi na &isle k:

KE+1)  (n—k=1)(n—k=2) _
2 2 .

2k? = 2k(n—2)+ (n—1)(n—2) _

2. -

oo (252
n—2\2 2(n-1)(n-2)

- ( 2 ) + 4 -

B n—2\2 n(n-2)

=(b-") + 5

p2p(k) =

Odtud je vidét, ze nejmensi pocet 16 tsecek dostaneme pro
k = 3 nebo k = 4.

Ulohu Ize samoziejmé fesit i rozborem jednotlivych kon-
krétnich moznosti (viz feseni Glohy B-1-3).
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A-1-4

Tvrzeni Glohy se mize na prvni pohled zdat trividlni. Pro
konvexni n-thelnik je opravdu zfejmé — thlopfickou dany
mnohothelnik M rozdélime na dva mnohothelniky s men-
$im pocétem vrcholl, takze miZeme pouzit matematickou
indukci. Musime vsak dokézat, Ze i v nekonvexnim mnoho-
thelniku M vzdycky existuje takova ahlopficka (tj. Gsecka
spojujici dva jeho vrcholy), ktera lezi celd v M.

Méjme tedy n-thelnik M = A;A, ... A,, ktery ma ne-
konvexni Ghel napf. pfi vrcholu A;. Vrcholem A; vedme
pfimku p takovou, Ze s ni Zzddna ze stran M neni rovnobéz-
na, a pritom oba sousedni vrcholy A, a A, lezi ve stejné
poloroviné urcené primkou p.

Oznacme L a P body, v nichz pfimka p poprvé protne
hranici M (LP lezi celd v M), a Ly, resp. P; ten vrchol strany
obsahujici bod L, resp. P, ktery lezi v poloroviné opacné
k pAs (obr.21). Uvazujme ted vrchol A; # Aj, ktery lezi ve
ctyfahelniku LPPyL; a ma od pfimky p nejmensi vzdale-
nost (takovy bod jisté existuje, protoze prvni vlastnost ma
napf. bod L,). ’
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Uké&zeme, ze zminény vrchol A; je spojen s vrcholem A
ahloprickou, ktera lezi cela v M. Kdyby tsecka A; A; neleze-
la celd v M, musela by v néjakém vnitinim bodé @ protinat
hranici uvazovaného mnohothelniku v néjaké jeho strané
AjAj41. Strana AjAj4; neni rovnobéinad s p, neprotind
zadnou ze stran Ly L, LP, PP, a proto néktery jeji krajni
bod lezi uvniti L P P; L, blize k p nez bod A;. To je ve sporu
s volbou bodu A;.

A-1-5

Uvazujme kvadraticky mnohoélen ¢, pro ktery plati ¢(1) =
=1,4¢(2) = 3,¢(3) = 15. Ten je uvedenymi tfemi hodnotami
jednoznac¢né urcen; pro jeho koeficienty dostaneme tfi rov-
nice o tfech neznamych a vyjde ¢(z) = 522 — 13z +9. Tento
mnoho¢len ma soucet absolutnich hodnot koeficienti 27.

Kazdy mnohoclen tfetiho stupné, ktery spliiuje uvedené
podminky, se d4 psat ve tvaru

f(z) =522 - 1324+ 9+k(z—1)(z-2)(z—-3) =
= kz® + (5 — 6k)z? + (11k — 13)z + (9 — 6k),

s xz

kde k je celé ¢islo. Vcelku snadno odhadneme, ze pfislusny
soucet |k|+ |5 — 6k|+ |11k — 13|+ |9 — 6k| je nejmensi pro
k=1 ajeroven 7.

Kazdy mnohoclen vyssiho stupné, ktery spliiuje podmin-
ky tlohy, miazeme vyjadfit jako

p(z) = ¢(z) + (2 = 1)(z - 2)(z - 3)k(z) =
n+3
= q(z) + (23 — 627 + 11z — 6)k(z) = Z a;z',
i=0
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n .
kde k(z) = ) biz' je mnohoclen s celodiselnymi koeficienty.
1=0
Porovnanim koeficient vyjde

ap = —6bo + 9,

ay = —6by + 116 — 13,

ay = —6by + 11b; — 6by + 5,
az = —6b3 + 11by — 6b; + bo,
ag = —6bg + 11b3 — 6by + by,

Nyni hledame cela cisla bg, by, b, ... takova, aby soucet
|ao| + |a1| + |az| + . .. nebyl vétsi nez 7. Protoze |az| + |az| +
+ ... 2 1, musi byt |ag| = |9 — 6bo| £ 6, coz dava dvé
moznosti: by = 1 nebo by = 2.

Pro by = 1 vyjde |ag| = 3, a proto |a;| £ 3, tj. b, = 0,

a; = —2. Pak ale musi byt |az| £ 2, t]. b = 0, a2 = —
—1,a lag| £ 1,tj. b3 = ... = b, = 0. Dostadvame tak
3

mnohoélen z3 — z? — 2z + 3, ktery ma soucet absolutnich
hodnot koeficientti rovny 7.

Pro by = 2 postupujeme analogicky a zjistime, ze zadny
dalsi mnohoclen s uvedenou vlastnosti neexistuje.

Poznamka. Pokud uvaZujeme mnohoéleny s libovolnymi
realnymi koeficienty, najdeme mnohoclen s mensim souctem
absolutnich hodnot koeficientd. Napf. mnohoélen f(z) =
= {5(13z® — 2322 + 21), ktery dostaneme pro k = 13, m4
prislusny soucet % <T.
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A-1-6

Hodnoty funkce f jsou jednozna¢né urceny v bodech tvaru
£ (0 £ k £ 2"). Protoze

11 (1 1y_1 11
778 7 8) 8 17 8

ORISR0}

Pfitom z daného vzorce pro z = 0 indukci snadno vypocte-
me, Ze pro libovolné y € (0,1) a n 2 0 plati

je

f (2%) =1-— =13 f(y) a specidlné f (%'.) =1,

takZe pro f(%) dostaneme vztah

1 2 1 1 1 1
V=21 =4+ —f(= -
f(7) 3( 32+32f(7))+3’
odkud vychédzi f(1) =
A-S-1

Jednoduchou upravou dostaneme ekvivalentni nerovnost
(¢isla a, b, c jsou dle pfedpokladu kladnd)
ala+c)(a+b)+bb+c)a+bd)+c(b+c)a+tc) =
=a® + 6%+ 3+ 3abe+ a®(b+c) + b3 (c +a) + cZ(a+b) <
< 2(a®(b+ c) + b*(c + a) + c*(a + b) + 2abe),
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neboli

a(b+c)+b%(c+a)+c2(a+b)—a®— b2 - +abec=
=a*(b+c—a)+b%(c+a—b)+cXa+b—c)+abec>0,

ktera pro cisla spliujici trojihelnikovou nerovnost ziejmé
plati.

A-S-2

Uvazujme mnozinu Z; zbytkovych tfid mod k. Kazdy mno-
hoclen z® pfedstavuje pro dané a prirozené zobrazeni Z; —
— Zj, ale takovych zobrazeni mezi dvéma koneénymi mno-
zinami existuje jen konecné mnoho. Proto jisté existuji dvé
rizna Cisla a > b takova, ze

z® = 2% (mod k)

pro vSechna celd ¢isla z. Je jasné, Ze mnohoclen p(z) =
= z* — z* m4 pozadovanou vlastnost.

Jiné Feseni. Tvrzeni mizeme také odvodit pomoci Eule-
rovy véty, kterd fika, ze pro kazdé z nesoudélné s k plati
z#*)—1 = 0 (mod k), kde (k) oznatuje poéet pfirozenych
Cisel nejvyse rovnych k a nesoudélnych s k. Pro z soudélné
s k uvazujme rozklad k = ki k, Cisla k takovy, ze ky je s z
nesoudélné a k9 obsahuje ve svém rozkladu na prvocinitele
jen ta prvodisla, kterd déli z. Protoze funkce ¢ je multipli-
kativni, tedy (k) = ¢(k1)p(k2), vidime, ze podle Eulerovy
véty

(k2)
2ok — (xw(kn))‘p Y= (mod k),
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takze staci vzit p(z) = z™*) (z¢*) — 1), kde m(k) je
nejvyssi exponent v prvociselném rozkladu ¢isla k. Potom
mame zaruceno, ze z™*) bude délitelno &islem ko, takize
soucin z™(*) (z#(¥) — 1) je pak délitelny souéinem k = kyks.
Mizeme tedy vzit a = m(k) + ¢(k), b = m(k).

A-S-3
Pro objem V daného ¢tyfsténu ABCD plati
1
V:gabc:%Sv, (1)
kde S je obsah stény ABC a v pfislusnd vyska. Obsah
S snadno spolteme podle Heronova vzorce, protoze délky
stran trojihelniku ABC umime vyjadfit pomoci a, b, c
pouzitim Pythagorovy véty. Je tedy
1
S = Z\/((\/(12-+-b2+ \/b2+c2)2-(a2+c2)) .
(o - (VT - Vi) =
1
_ Z\ﬂw V@ + 2V ) -

.\/(zmm_w) -

= %\/azb2 + b2¢2 + c2a2.

Ze vztahu (1) pro vysku v plyne

1 abe 1
V= = —

2 S 11 1
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(Tento vzorec miZeme ovSem snadno ziskat pfimo ze vzor-
ce pro vzdélenost bodu D od roviny ABC, ktery zname
z analytické geometrie prostoru.)

Nerovnost mezi aritmetickym a geometrickym primeérem

1 1 1\3 33
(a2+b2+c2) 2 a?b2c?’
tj.
3V3
3’
1 1 1
( ZtEta

1 V3
== > 28
v 6abc: 5

dava odhad

. 1 .
s rovnosti pravé jen pro — = — = —, tj. proa=b =c.
a? b2 c?

Tim je dikaz hotov.
A-11-1
Souéin (pq)! napiseme jako

(p)!=(1-2....p((P+DP+2) ... (p+p) -
((a=Dp+1))((g=Dp+2)...((4- Dp+p),

pfiéemZ soulin v k-té zivorce napravo (0 £ k < ¢ —1)
miZeme vyjadFit jako
(kp+ 1)(kp+2)...(kp+p) =

=(@+...+p+)(p+...+p+2)...(p+ ...+ p+p).

=
k
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Po ,,rozndsobeni“ viech zavorek dostaneme (k+1)P s¢itanci
vesmés nejméné rovnych p!. Je tedy

(kp+ 1) (kp+2)...(kp+p) 2 (k+1)Pp

(pg)! 2 1Pp!-2Pp!- ... - ¢"p! = (p!)*(g").

Jiné Feseni. Dokazeme nerovnost matematickou indukei.
Pro p = 1 nerovnost trivialné plati pro libovolné prirozené
Cislo ¢. Predpokladejme, ze uvazovana nerovnost plati pro
néjaké p prirozené a libovolné ¢q. Potom je

(p+1)g)! =
(pa+1)(pa+2)...(pg+4q) 2
P+ 1)(2p+2)...(ep+4q) =

i@+ = ((p+ 1)) (g")y+"

Tim je dikaz hotov.

Jiné FesSeni (podle Jifiho Fialy, G Liberec). Pfedpokla-
dejme, ze uvazovana nerovnost plati pro néjaké p prirozené
a libovolné ¢. Uvazujme tabulku k x ¢. Je zfejmé, ze pocet
k? vsech ¢-prvkovych podmnozin, jez obsahuji z kazdého
z k sloupci tabulky pravé jeden prvek, neni mensi nez pocet
(qu) vSech ¢-prvkovych podmnozin prvka tabulky. Pro k =
= p+1 tak dostavame nerovnost ((p+1)g)! = (p+1)7q!(pq)!-
Podle indukéniho predpokladu odtud plyne

((p+1)g)! 2 (p0)!(p+1)%q' 2
2 (P)e)(p+ )¢ = ((p+ 1)) (g")PF.
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Tim je dikaz hotov.

Jiné feSeni (podle Oldficha Audy, G, tf. kpt. Jarose,
Brno). Uvazujme tabulku p x ¢ vyplnénou ¢isly 1, 2, ...,
pq. Mezi vSemi takovymi uspofadanimi je pravé (p!)? téch,
které se od zdkladniho poradi lisi jen poradim v jednotlivych
fadcich, a pravée (¢!)P téch, jez se od zakladniho poradi
lisi jen poradim ¢isel v jednotlivych sloupcich uvazované
tabulky.

Uvazujme nyni vSechny permutace ¢isel 1, 2, ..., pq, jez
vzniknou slozenim obou druhd permutaci. (Je-li na k-tém
misté jednoho poradi ¢islo m (1 £ m £ pg) a na m-tém
misté druhého poradi cislo n, bude na k-tém misté no-
vé tabulky, odpovidajici slozeni obou permutaci, éislo n.)
Pocet vSech permutaci, jez takto dostaneme, je (p!)?(q!)?
a je nejvyse roven poctu vsech riznych usporadani pq cisel
v tabulce, kterych je (pq)!.

A-1Il-2

Predpokladejme nejprve, ze tthel ACB pfi vrcholu C je
ostry, a ozna¢me A;, C; paty prislusnych vysek. Protoze
(obr.22) |XA1AB| = 90° — |1 ABC| = |2 C1CB], jsou pra-
vouhlé trojihelniky ABA; a COA; shodné, takze |A; A| =
= |A1C| a trojuhelnik AA,C je rovnoramenny. Proto ma
tuhel ACB velikost 45°.

V tupouhlém trojihelniku ABC (s tupym thlem pfi
vrcholu B — pfipad tupého Ghlu pfi vrcholu A dostaneme
jednoduchou zdménou oznaéeni A a B) dostaneme obdobné
(obr.23) |XA1AB| = 90° — |XAOC| = |41 C,CB|, takze

znovu vychazi, ze thel ACB ma velikost 45°.
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Q

C
Ay B
0 % \L} Cl
A1 0
Ch B

A
Obr. 22 Obr. 23
0]
Ay f c
A C B
Obr. 24

Pokud Ghel ACB je tupy (obr. 24), vyjde zase, ze trojahel-
niky ABA; a COA; jsou shodné, takze trojuhelnik AC A,
je rovnoramenny. Odtud plyne, zZe thel ACB ma velikost
135°.

Koneéné snadno ovérime, ze pokud thel ACB je pravy,
nemohou byt predpoklady tlohy splnény.
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A-11-3
Z cisel x — 1, z, 2 + 1, z + 2 jsou dvé suda a z nich aspon
jedno je délitelné ctyimi, takze soucin (z — 1)z(z+1)(z+2)
je délitelny osmi. Odtud plyne, ze pro n = 4 je
z* 4 223 — 22 — 22 = 0 (mod 8).
Predpokladejme, ze existuje mnohoclen tretiho stupné,
pro ktery plati
2%+ az? + bz + ¢ =0 (mod 8).
Pro ¢ = 0 pak vychéazi ¢ = 0 (mod 8) a dosazenim z = +1
(mod 8) dostaneme dvé kongruence
l+a+b=0 (mod 8),
—1l+a—5b=0 (mod 8).
Jejich odectenim vyjde
2(14b) =0 (mod 8),

coz dava b = —1 (mod 4), a jejich seCtenim dostaneme a =
= 0 (mod 4), zatimco pro z = 2 (mod 8) vyjde podminka
4a + 2b = 0 (mod 8), neboli b = 0 (mod 4). To je ovsem
ve sporu s predchozim vysledkem b = —1 (mod 4). Uplné
stejné dokazeme, Ze neexistuje ani kvadraticky nebo linearni
mnohoclen, ktery by tloze vyhovoval.

Poznamka. Jestlize 8 | p(z) pro kazdé celé z, je osmi
délitelnd i n-ta diference mnohoclenu p, tj. soucet

p(z +n) — (T)p(r—{—n—l)-&- (;)p(z+n—2)+...+
4 (=1)"p(z) =nl.
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Odtud plyne, ze 8 | n!, tj. n 2 4.

A-1l-4

Z multiplikativni vlastnosti uvazované funkce f plyne, ze je
f(30) = f(2)f(3)f(5). Nejdfive uréime hodnotu f(3).
Diky monotonii funkce f plati

f(8) =4° =64 < f(9) = (f(3))°, ti. 8<f(3),
a dale
£(243) = (£(3))® < £(256) = 4% = 65536 < 10°,

coz dava f(3) < 10, musi tedy byt f(3) = 9.
Podobné pro hodnotu f(5) plati

£(24) = 9-4% = 24 < f(25) = (f(5))*, ti. 24 < f(5),
a
£(125) = (£(5))° < £(128) = 47 = 16384 < 17576 = 26,

takze vychazi 24 < f(5) < 26 a f(5) = 25.
Je tedy f(30) =4-9-25 = 900.

Jiné FeSeni (podle Jakuba Tésinského, G, Korunni, Pra-
ha). Zfejmé je f(1) = 1. Predpoklddejme, ze neni f(z) =
= 22, a oznaéme zo nejmensi pfirozené &islo, pro které
existuje &islo ¢ takové, ze f(zo) = ¢ < z3. Pak v intervalu

2 . . . ’ 2 w7 :
(logy g,10g, 275) existuje raciondlni ¢islo 2%, tj.
¢t <A™ < 2",
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neboli
2™ < xg.

Z vlastnosti funkce f plyne, ze

f(z3) = (f(z0))" = ¢" < 4™ = f(2)™ = f(2™),

coz odporuje predpokladu, ze funkce f je rostouci. Podobné
dojdeme ke sporu, predpokldadame-li, Ze existuje pFirozené
&slo zg, pro které f(zo) > z2. Je tedy f(z) = z? pro kazdé
pfirozené &islo z a f(30) = 30% = 900.

A-1ll-1

Pouzitim znamych vztahd mezi trigonometrickymi funkce-
mi postupné dostaneme ekvivalentni nerovnost

Vip—r)2+¢* 2
;p+T‘—2(pcosch+qsin<pcosgo+rsin2<p) .
=p—r—2(p—r)cos’p—gsin2p =
=(p—r)(1 —2cos?p) — ¢sin2p =
= —(p — ) cos 2¢ — gsin 2¢p,

ktera je vlastné snadnym disledkem Cauchyovy nerovnosti

—(p—r)cos2¢p —gsin2¢p <
< V(p—7)? + ¢2\/cos? 2¢ +sin 22¢,

nebot cos? 2p + sin? 2p = 1.
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A-1Il -2

Predpokladejme, ze prislusny mnohothelnik je rozdélen na
trojihelniky s vrcholy ve vrcholech daného mnohothelni-
ku (existence takovéto triangulace byla dokazana v tloze -
A-1-4), a o&islujme vsechny vrcholy &isly 1, 2, 3 tak, aby
kazdy z trojihelnika triangulace obsahoval ve svych vrcho-
lech kazdé z téchto cisel.

To lze udélat v kazdém n-thelniku. Pro n = 3 to je
zfejmé; pokud to jde udélat v k-tihelniku pro libovolné k <
< n, pak staci uvazovany n-thelnik rozdélit jednou ze stran
zvolené triangulace na dva (triangulované) mnohothelniky,
pro které podle indukéniho pfedpokladu takové ocislovani
existuje. Nyni sta¢i v jednom z mnohouhelniki ocislovani
zménit tak, aby se ¢isla v obou spolecnych vrcholech sho-
dovala. Dostaneme tak pozadované ocislovani vsech vrchola
daného n-thelniku.

Vezmeme-li takovéto ocislovani v uvazovaném 3n-ahelni-
ku, vyskytne se jedno z &isel 1, 2, 3 nejvyse n-krat. Roze-
stavenim hlida¢a v téchto vrcholech budou podminky Glohy
splnény.

A-1lI1-3

Nerovnost dokazeme matematickou indukei podle poétu in-
verzi v permutaci.

Tvrzeni zfejmé plati, jestlize i(p) = 0, potom je p identic-
ki permutace, takze 1 d(p) = 0. Pfedpokladejme, Ze tvrzeni
plati pro kazdou permutaci s poctem inverzi i(p) < &k,
a uvazujme permutaci pg, kterd ma i(pg) = k + 1 inverzi.
Protoze py neni identickd permutace, urcité existuje index
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i takovy, ze po(7) > po(i+ 1). UtvoFme novou permutaci p’,
ktera bude mit o jednu inverzi méné: staci polozit p'(i) =
=po(i + 1), p'(i+ 1) = po(2) a p'(j) = po(j) pro vsechna
ostatni j, i # j # i+ 1. Potom i(p’) = k a podle indukéniho
predpokladu i d(p’) £ i(p') = 2k.
Jednoduchym vypocétem dostavame
d(po) — d(p') = lpo(i) — il + lpo(i + 1) =i — 1| =
S =il = P+ ) =i 1] =
= |po(i) — il + |po(i + 1) =i — 1] -
= Ipo(i +1) = 1| = |po(i) =i — 1| =
= (Ipo(i) = 1| = |po(3) = (i + 1)]) +
+ (Ipo(i + 1) = (i 4+ 1)| = |po(i +1) — i) <
<2

(s rovnosti pravé jen pro po(i + 1) £ 7 < po(7)), takze je

d(po) < d(p') +2 < 2(k + 1) = 2i(po).

A-1lI1-4
Pro vzdalenost d bodu C od osy tsecky AB plati

d= %—bcosa = % — bcos2p

(to plati i pro tupy thel §). Zaroven z predpokladu a = 24
plyne podle sinové véty rovnost
bsiny  bsin3p
C= — = .
sin 3 sin 3

= b(4cos? g — 1),

= b(3cos? B —sin? B) =
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takze

b b
d= 3 (4cos? B —1)—b(2cos’ B —1) = 3
To znamend, ze obé uvedené vzdalenosti jsou v poméru
b:d=2.

A-1lIl-5

Ozna¢me M mnozinu vSech ¢leni uvazované skupiny mate-
matiki a n jejich pocet. Dile oznaéme F(m) mnozinu vSech
pratel matematika m a f(m) jejich pocet. Mame dokazat,
ze existuje matematik mg, pro kterého plati

o 2 Jmzi Y fm),
0 meF(mo) meM

Predpokladejme naopak, ze pro zadného z ¢lentu skupiny
takova nerovnost neplati, tedy Ze pro kazdé mg z M je

n Y f(m)< f(mo) Y f(m).

meF(mo) meM

Kazdy z matematiki m € M se pro dané mg vyskytuje
celkem v f(m) mnozinach F(my), takze se¢teme-li uvedené
nerovnosti pro vsechna mg € M, dostaneme

n Y f(m)? < (Z f(m))z-

meM meM

To ale odporuje znamé Cauchyové nerovnosti. Tim je tvr-
zeni Glohy dokazano.
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A-1lll-6

Ztejmé muzeme predpokladat, ze dané mnoziny jsou navza-
jem disjunktni. Jestlize A; nema pozadovanou vlastnost,
muzeme pro libovolné prirozené ¢islo m najit k; > 0 ta-
kové, ze kazdych ki ¢isel a1 < as < ... < ap, z mnoziny
A, obsahuje mezeru m po sobé jdoucich ¢isel, kterd do ni
nepatii (aj41 —a; > m). Odtud plyne, ze doplnék mnoziny
A; v N, tj. sjednoceni mnozin A, U Agz, obsahuje libovolné
dlouhou posloupnost po sobé jdoucich ¢isel.

Predpokladejme, ze ani mnozina As nemé pozadovanou
vlastnost. Pak tedy existuje ko > 0 takové, ze kazdych ks
¢isel a3 < as < ... < ag, z Ag obsahuje mezeru m po sobé
jdoucich éisel, které do ni nepat¥i. Podle predchézejici avahy
v mnoziné A, UA3 existuje kom po sobé jdoucich ¢isel; pokud
ko z nich patii do mnoziny A, obsahuje takova ko-tice me-
zeru nejméné m po sobé jdoucich ¢isel, ktera lezi v Az. Je-li
naopak jen nejvyse ko — 1 z nich z mnoziny A, rozdéli tato
Cisla vybranych kom cisel na nejvyse k, interval, z nichz
aspon jeden obsahuje nejméné m po sobé jdoucich &isel z As.
To ovSem znamena, ze 1 v takovém pripadé mnozina Ag ob-
sahuje libovolné dlouhou posloupnost po sobé jdoucich ¢isel.
Pak ale mnozina Az mé pozadovanou vlastnost dokonce pro
m=1.
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Kategorie P

Texty uloh

P-1-1

V roviné je dano N bodu ocislovanych od 1 do N. Dvojice

¢isel (X[i],Y[¢]) pro 1 £ @ £ N reprezentuje kartézské

soufadnice bodu i. Robot projde vsemi body v poradi jejich

ocislovani podle téchto pravidel:

1. Na zacatku stoji robot v bodé 1 a diva se k bodu 2.

2. Robot se pohybuje vidy pfimo tim smérem, kterym se
diva.

3. Vbodéiprol i< N serobot otoéi ve sméru pohybu
hodinovych ruéi¢ek o thel «, 0° £ a < 360°, tak, aby
se dival k bodu (¢ + 1) mod N.

4. Robot skonéi svij pohyb v bodé 1 tak, Ze se opét diva
k bodu 2.

Béhem svého pohybu se robot celkem d-krat Gplné oto-
¢i kolem své osy. Navrhnéte co nejlepsi algoritmus, ktery
pro zadand celoéiselnd pole X[1..N], Y[1.. N] vypocita
hodnotu d. Je povoleno pouzivat jen celo¢iselné proménné.
Zdivodnéte spravnost algoritmu.
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P-1-2

Je dano celoéiselné pole P[1.. M], které obsahuje permutaci
Cisel 1, 2, ..., M, tj. pro kazdé i, 1 £ i £ M, existuje
pravé jedno h, 1 < h £ M, takové, ze P[h] = i. Dale
je dadno celociselné pole X[1..N]. Navrhnéte co nejlepsi
algoritmus, ktery uréi, kolikrat se permutace P vyskytuje
v poli X tj. kolik existuje riznych rostoucich celociselnych
posloupnosti R[1..M] takovych, ze pro vSechna i, 1 <7 <
< M, )plati

1<REEN, Pli|=X[R[].
Zdtvodnéte spravnost navrzeného algoritmu.

P-1-3

Orientovany graf je dvojice G = (V, E), kde V je kone¢na
mnozina, jejiz prvky se nazyvaji vrcholy nebo uzly grafu,
a E je binarni relace na mnoziné V. Je-li (z,y) € E, fi-
kdme, Ze v orientovaném grafu vede hrana z vrcholu z do
vrcholu y, y se nazyva naslednik uzlu z a z je pfedchudce uz-
lu y. Cesta délky k v orientovaném grafu je posloupnost vy,
v1, ..., vk vrchold, k 2 0, takova, ze pro vSechna 7, 0 < i <
< k je v; predchiidce v;_1. Rikame, ze vrchol y je dosazitelny
z vrcholu z, jestlize existuje cesta z ¢ do y. Poznamenejme,
ze kazdy vrchol je dosazitelny sam ze sebe cestou délky 0.

Graf G budeme reprezentovat dvéma celociselnymi poli
B[l1..N + 1] a E[1..M], kde N je pocet vrcholi a M
poéet hran v grafu G. Vrcholy jsou ocislovany od 1 do N.
Uzel j ma B[j + 1] — B[j] nésledniki; jsou zachyceni v prv-
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cich E[B[j]+1], ..., E[B[j+1]] pole E. Polozime B[1] = 0,
B[N + l] =M.

Cyklus v orientovaném grafu je cesta, jejiz délka je as-
pon 1 a v niz je prvni uzel totozny s poslednim uzlem. Graf,
ktery neobsahuje zadny cyklus, se nazyva acyklicky.

Navrhnéte co nejlepsi algoritmus, ktery pro zadana celo-
¢iselnd pole B, E reprezentujici orientovany graf G zjisti,
zda graf G je acyklicky. Pri feSeni nepouzivejte rekurzi.
Zdivodnéte spravnost navrzeného algoritmu.

P-1-4

a) Navrhnéte Turingiv stroj, ktery pocita souéet dvou p¥i-
rozenych cisel.

b) Navrhnéte Turingiv stroj, ktery pocita funkci zdvojeni
vstupniho slova nad abecedou {a,b}. Pro vstupni slo-
vo P bude tedy vysledkem vypoctu slovo PP.

Turingovy stroje

Abecedou nazveme konecnou neprazdnou mnozinu X. Jeji
prvky nazyvame symboly. Konecnou posloupnost symboli
abecedy ¥ nazveme slovem nad abecedou ¥. Prazdnou po-
sloupnost symbolti abecedy, znacenou ¢, nazveme prazdné
slovo. Turingtv stroj M nad abecedou ¥ ma ridici jednotku,
ktera se muze dostavat do konecné mnoha riznych stavi
a pracuje nad paskou rozdélenou na jednotlivd pole. Na
pasce existuje nejlevéjsi pole, smérem doprava je vsak neko-
necna. Kazdé pole obsahuje vzdy jeden symbol paskové abe-
cedy. Paskova abeceda II je tvofena jednak symboly vstupni
abecedy X, dale symboly pomocné abecedy V, ENV =0
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a specidlnim prazdnym symbolem A, A ¢ ¥ U V. Tedy
n=xuvu{Aa}.

V kazdém okamziku je fidici jednotka Turingova stroje
v pravé jednom ze svych moznych vnitinich stavi a stroj ma
pristup k pravé jednomu poli pasky prostiednictvim cteci
a zapisovaci hlavy. V této situaci stroj provede krok vypoétu
nasledovné: hlava zapise novy symbol paskové abecedy na
pole, nad kterym je umisténa hlava, a tim nahradi ptivodné
zapsany symbol; po tomto zapisu piejde na levé nebo pravé
sousedni pole. Soucasné Fidici jednotka mize zménit svij
stav. VSechny tyto zmény zavisi jednak na vnitfnim stavu
fidici jednotky, jednak na obsahu ¢teného pole pasky.

Cinnost Turingova stroje je zadana dvojrozmérnou tabul-
kou, kterd obsahuje pro kazdy vnitini stav Fidici jednotky
jeden tadek a pro kazdy symbol paskové abecedy jeden
sloupec. Jeden zvoleny stav ridici jednotky je oznacen jako
pocatecni a zadny, jeden nebo vice stavi jako koncové.
Polozka tabulky odpovidajici stavu ¢ a symbolu s paskové
abecedy je bud prazdna, nebo je tvofena trojici (a, f,7),
kde a je stav, 8 je symbol paskové abecedy, v € {L, P}.

Kazda trojice popisuje jeden mozny krok vypoctu Turin-
gova stroje M: je-li béhem vypoctu stroj M ve stavu i
a hlava je umisténa nad pole pasky se symbolem s, pak
stroj prejde do stavu «, hlava zapiSe na pasku symbol
do pole, nad nimz se nachazi cteci hlava, a posune hlavu
na pasce o jedno pole doleva nebo doprava podle toho,
zda v = L, nebo P. Na pocatku vypoctu je dané vstupni
slovo w nad abecedou ¥ umisténo zcela vlevo na zacatku
pasky a vSechna zbyvajici pole vpravo od slova w obsahuji
prazdny symbol A. Hlava je na pocatku vypoctu umisténa
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nad nejlevéjsim polem a fidici jednotka je v pocatecnim
stavu. Vypocet probiha podle tabulky. Dosadhne-li stroj né-
kterého koncového stavu, vypocet konci. Pokud vypocet
dojde do nekoncového stavu 7, pficemz ve cteném poli pasky
je symbol s a polozka tabulky odpovidajici stavu ¢ a sym-
bolu s je prazdna, pak vypocet rovnéz konéi. Rekneme, ze
funkce f(wy,ws,...,wy), n 2 1, zobrazujici mnozinu n-tic
slov nad abecedou ¥ do mnoziny slov nad ¥, je pocitana
Turingovym strojem M nad YU {x}, kde x ¢ X, jestlize pro
kazdé vstupni slovo w; *x wy * - - - * w, zadané na pasce se
stroj M chova nasledovné:

1. Je-li funkéni hodnota f(w;,ws,...,w,) definovina
a rovna slovu w, pak vypocet stroje M konci a po
skonceni je na pasce od zacatku zapsano slovo w,
nasledované pouze prazdnymi symboly.

2. Neni-li funkéni hodnota f(wy,ws,...,w,) definovana,
pak vypocet stroje M neskonéi.

Turingiv stroj M mize pocitat i funkce booleovské, a to
takto:

1. Je-li funkéni hodnota f(wy,ws,...,w,) = true (prav-
da), pak stroj M skonéi v koncovém stavu. Rikdme také,
ze vstupni slovo je pfijimano strojem M.

2. Je-li funkéni hodnota f(wy, ws, ..., w,) = false (neprav-
da), pak stroj M skon¢i v nekoncovém stavu. Vstupni
slovo neni pfijiméano.

3. Neni-li funkéni hodnota f(w;,ws,...,w,) definovana,
pak vypocet stroje M neskonéi.

Turingovy stroje muzeme pouzivat i k praci s prirozenymi
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¢isly. Cisla reprezentujeme napf. v unarni soustavé v abe-
cedé ¥ = {1} takto:

Cislo n reprezentujeme slovem 7, které je definovano tak-
to:

0=1, n+1=nl.

P-1l-1

Je déno pole A[l..N] celych kladnych ¢&isel. Je-li hodno-
taj = Al £ N, 1 £ ¢ £ N, znamena odkaz (nepfimou
adresu) na prvek A[j] (pro ktery miize platit opét tato pod-
minka), v opaéném pripadé jde o jiz ulozenou hodnotu. Déle
je dano pole ZAC|[1.. M] obsahujici hodnoty z 1, ..., N, kde
M je mnohem mensi nez N.

Rekneme, ze i-ty prvek pole A je dosazitelny, jestlize se
v poli ZAC bud vyskytuje &islo ¢, anebo j-ty prvek pole A
je dosazitelny a A[j] = 1.

Navrhnéte co nejlepsi algoritmus, ktery vypise indexy
viech prvki pole A, které nejsou ze ZAC dosazitelné. VSech-
ny dosazitelné prvky pole A musi zistat po skonceni vypoc-
tu beze zmény.

P—11-2
V roviné je dano N bodi odislovanych od 1 do N. Dvo-
jice &sel (X[i],Y[i]), 1 £ i £ N, reprezentuje kartézské
soufadnice bodu i. Zadné t¥i body nelezi v jedné ptimce.

Napiste co nejlepsi program, ktery urci néjakou permuta-
ci (k1,kz,...,kn) Cisel 1,2, ..., N takovou, ze N usecek
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s krajnimi body
(X[ki), Y[ki]), (X[kip1], Y [kiz1])
prolSiSN-1la
(X[kN]r Y[kN])’ (X[kl]v Y[kl])

se navzajem neprotina.

P-11-3
Pocet vsech moznosti, jak rozdélit N navzajem raznych

prvki do pravé M neprazdnych skupin pro N 2 M, je dan
hodnotami Stirlingovych cisel {ﬁ}, pro ktera plati

{1(\)[}:0 pro N 20, {x}:l pro N > 0,

N N -1 N -1
{M}—M{ M }+{M—l} pro N > M > 0.

a) Navrhnéte co nejlepsi algoritmus, ktery pro zadané hod-
noty celych ¢isel N, M, kde N 2 M 2 0, vypoéte
hodnotu Stirlingova ¢isla {)I\V'!}

b) Uréete minimalni pocet operaci s¢itani a nasobeni me-
zivysledkt nezbytnych pro vypocet cisla {ﬁ} pro dané
hodnoty N, M (pro N 2 M 2 0).

P-1l-4

a) Navrhnéte Turinglv stroj nad abecedou {1,x}, ktery
pocita nasledujici funkci dvou pfirozenych cisel:
. {x_yr je-liz)y,
X — _—
d 0, jelliz Sy
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Cisla z, y jsou zapsana na pasce v unarni soustavé a od-
délena hvézdickou, tj.

x

z ‘ Y i
o e fafa Ji[1]

b) Navrhnéte Turingiv stroj nad abecedou {a,b}, ktery
zjisti, zda vstupni slovo na pésce je palindrom.

Pozndmka: Palindrom je slovo, které se Cte stejné zleva
doprava 1 zprava doleva. Napf. fetézce

KOBYLAMAMALYBOK,
NANABALILABANAN

jsou palindromy.

P-1ll-1

Je ddno pole A[1.. N] celych kladnych Cisel. Je-li j = A[i] £
< N, 1< ¢ £ N, znamend tato hodnota odkaz (nepfimou
adresu) na prvek A[j] (pro ten mize platit stejnd podmin-
ka), v opacném piipadé jde o jiz uloZzenou hodnotu. Déle
je dano pole ZAC[1 .. M] obsahujici hodnoty z {1,..., N},
kde M je mnohem mensi nez N.

Navrhnéte co nejlepsi algoritmus, ktery kazdy prvek po-
le ZAC nahradi jiz pfimo indexem prvku pole A s plivodné
referencovanou hodnotou, pokud je mozné takovou hodnotu
najit. V opaéném piipadé bude prvek pole ZAC obsahovat
nulu.
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P-1l-2
Legendreiv polynom N-tého stupné P je definovan vztahy

P()(.’L‘): 1, Pl(.’l?):.'t,
2N +1 N
P, = -
vei(@) = o vE - 5
pro vSechna redlna z a celd kladna cisla N.

PN_I(x)

a) S pouzitim pouze celoéiselnych proménnych navrhnéte
co nejlepsi algoritmus, ktery pro zadanou hodnotu N vy-
pocte koeficienty Legendreova polynomu N-tého stupné.
Koeficienty musi byt vypocteny presné.

b) Jaky je minimélni poéet koeficienti polynomi (do stup-
né N) nezbytnych pro vypocet koeficienti polynomu P?

P-1ll-3

Je ddno N letist ocislovanych 1 az N a jejich vzdalenosti
v matici V[1..N,1..N] (prvek V[, j] udava pfimou vzda-
lenost mezi letisti ¢ a j). Matice V je symetricka. Dale je
dana hodnota D urcujici dolet letadla a prirozené cislo L,
1 £ L £ N, oznacujici vybrané letisté.

Navrhnéte co nejlepsi algoritmus, ktery sestavi letové tra-
sy z letisté L do vsech ostatnich, pokud existuji. Ze vsech
moznych tras nas vSak zajimaji pouze ty nejkratsi, a pokud
existuje vice tras minimalni délky, zajimaji nas z nich jen
trasy s nejmensim poc¢tem mezipfistani.

P-1ll1-4

a) Navrhnéte Turinglv stroj nad abecedou {a,b, c}, ktery
rozpoznava mnozinu viech slov M = {a™b"c" | n > 0}.
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b) Navrhnéte Turingiv stroj, ktery dané slovo nad abece-
dou {a, b} doplni zprava nejkratsim zptsobem na palin-

drom.
Priklad:
aba — aba
abaa — abaaba
aab — aabaa
Poznamka. Palindrom je slovo, které se ¢te stejné zleva

doprava i zprava doleva. Napf. fetézce NANABALILABA-
NAN, JELENOVIPIVONELEJ jsou palindromy.

Reseni uloh

P-1-1

Aby meélo zadani tlohy smysl, ué¢inime dvé dodate¢na ome-
zeni a jednu zménu:

e N2>2

e pro 1 £i7 < N plati

(X[),Y[:]) = (X[i mod N + 1],Y[i mod N + 1])
e z bodu 7 se bude robot divat do bodu i mod N + 1
Pri uréovani, kolikrat se robot otoéi kolem své osy, neni

nutné pocitat jeho Ghel natoceni, staci podcitat, kolikrat
tento thel prekrodi kladny smér (nebo dojde do kladné-
ho sméru) osy z. Tento pocet se zfejmé nezméni, zalina-li
robotem v bodé 1 obraceny do kladného sméru osy z, nebot
pri otaceni z tohoto sméru do sméru k bodu 2 nedojde
k prekroceni kladné osy z.
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Smeér, ve kterém prisel robot do bodu, v némz se zrovna
nachdzi, reprezentujeme jako vektor, tj. dvojici celoéiselnych
proménnych (s,t), (pro bod 1 bude na zalatku (s,t) =
= (1,0)). Smér, do kterého se v tomto bodé ma natocit,
reprezentujeme podobné dvojici (u, v).

Podminku vyjadfujici, zda pfi otaceni ze sméru (s,t)
do sméru (u,v) mine pohled robota kladny smér osy z,
oznacime passz (s,t,u,v). Pokud (s,t) a (u,v) sméfuji do
stejného kvadrantu, je passz (s,t,u,v) = uv < sv. Pokud
sméruji do rauznych kvadrantl, zavisi podminka passz na
tom, o kterou kombinaci kvadrantd jde. Rozepsanim vsech
moznosti lze ovérit, ze passz lze obecné vyjadrit takto (za

predpokladu (s,t) # (0,0) # (u,v)):

passz (s,t,u,v) =t >0A (v S0V ut < sv)
VESO0AvS0Aut<sv
Vs <0Au>0Av=0

Vlastni algoritmus je jednoduchy:

e Zaliname v bodé 1 s robotem natoenym v kladném
sméru osy z a vynulujeme si pocitadlo d.

e Pro1 £ 47 £ N + 1 provddime krok: oto¢ime robota
stojictho v bodé (¢ — 1) mod N + 1 tak, aby se dival do
bodu i mod N + 1, a pokud pfitom doslo k prechodu
pfes smér (nebo natoceni do sméru) (1,0), pfipocteme
tento prechod k pocitadlu d. Tim povazujeme robota za
doslého do bodu i mod N + 1.

e Hodnotou proménné d je hledany pocet aplnych otoceni
robota okolo jeho osy.

Uvedeny algoritmus je linearni vzhledem k N.
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{Algoritmus v pascalu — predpokldddme, ze jsou dany
konstanty N, X, Y}

var s,t,u,v,d,1,J: integer;

function passz (s,t, u,v: integer): boolean;

{passz (s,t,u,v) <= smér (s,t) je rizny od sméru (1,0)
a pfi otaéeni ze sméru (s,t) do sméru (u,v) v zdporném
smyslu prejdeme smér (1, 0); predpoklad: (s,t) # (1,0) #
# (v, v)}

begin

passz := (t > 0) and ((v <=0) or (uxt < s *v))
or (t <=0) and (v <=0) and (u*t < s xv)
or (s < 0) and (u > 0) and (v = 0)

end;

begin
s:=1;t:=0; {smér, kam hledi robot pfed tarou}
d:=0; {nastaveni pocitadla}
i:=1;7:=2; {pocatecni body}
repeat

u:= X[j] = X[i]; v:=Y[5] - Y[i];
{(u,v) je smér k bodu j}
if passz (s,t,u,v) then d := d + 1,
{dokoncend otocka = zvysime d}
{invariant: d je pocet uplnych otoéek robota ko-
lem své osy od zacatku po dorazeni do bodu ¢
a obréceni se k bodu j}
s:=u;t:=v {novy smér se stane starym}
i:=J;j:=jmod N +1 {nebot robot popoleze}
until j = 2; {aZ uZ se zas diva do bodu 2, tak skondil}
{d je pocet uplnych otocek robota kolem své osy od
zal4tku po navratu do bodu 1 a obréceni se k bodu 2}
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writeln (’polet obratek =’,d)
end.

P-1-2

Zavedeme pomocné pole S[0, M] a definujeme podminku
C(j): C@j) = Vi, 1 £ i £ M: S[i] je pocet vyskytd
i-tice (P[1],..., P[2]) v Gseku X[1],..., X[j — 1]. Jestlize je
S[1] = S[2) = --- = S[M] = 0, pak trividlné plati C(1).
Méjme j, 1 £ j < N, a predpoklddejme, ze S[0] = 1
a ostatni prvky pole S maji takové hodnoty, Ze je splnéna
podminka C(j).

Potom, pokud X[j] & {1,..., M}, je splnéno také C(j),
nebot v Gseku X[1],..., X[j] se vyskytuje pravé tolik riz-
nych &asti permutace P jako v Gseku X[1],..., X[j —1].

Necht X[j] € {1,..., M}. Tedy X[j] se vyskytuje v per-
mutaci P, feknéme na k-tém misté, tj. X[j] = P[k]. Nyni
kdyz | # k, pak pocet vyskyta I-tic (P[1],..., P[l]) v Gse-
ku X[1],..., X[j] je tentyz jako v Gseku X[1], ..., X[j — 1],
tj. je roven S[l]. Vsechny vyskyty k-tice (P[1],..., P[k])
v Gseku X[1], ..., X[j] se skladaji jednak z k-tic, které se
celé vyskytuji v kratsim aseku X[1], ..., X[j — 1] (téch je
S[k]), jednak z k-tic (P[1],..., P[k]), které vzniknou pfi-
pojenim prvku X[j] ke (k — 1)-ticim z Gseku X[1], ..., X
[/ —1], a téch je S[k—1]. (To plati i pro k = 1 diky tomu, ze
jsme polozili S[0] = 1.) Odtud dostavdme, ze kdyz v poli S
nahradime prvek S[k] hodnotou S[k] + S[k — 1], pak bude
splnéna podminka C(j + 1).
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Odtud jiz dostavame algoritmus. Pouzivd dvé pomocna
pole délky M a jeho casova slozitost je linearni vzhledem

k N.

{Algoritmus v pascalu — pfedpokldddme, ze jsou dany
konstanty M, N, P, X}
var [P: array [1..M] of 1.. M
{pole pro inverzni permutaci}
S: array [0..M] of integer;
{pole pro poéitani vyskytd prefixii permutace P}
i, k:1..M;
7: 1.N;
begin
if N < M then writeln (’pocet vyskyti: 0°)
else begin
for i := 1 to M do IP[P[i]] := i; {IP je inverzni k P}
S[0] :=1;

for i := 1 to M do S[7] := 0; {inicializace}
for j:=1to N do
{invariant: pro 1 £ ¢ £ M: S[i] je pocet

vyskytd i-tice (P[1],..., P[i]) v posloup-
nosti X[1], ..., X[j — l]}
if (X[j] >= 1) “and (X[s] <= M) then begin
k= IP[X[j]]; S[k] := S[k] + S[k — 1]
end;
{pro 1 £ ¢ £ M: S[i] je polet vyskytd
i-tice (P[1],..., P[i]) v poli X, tj. zejména S[M]
je rovno poétu vyskytd P v X}
writeln (’pocet vyskyti: ’,S[M])
end
end.
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P-1-3

Necht G = (V, E) je orientovany graf, V! C V, SG(V’) znaéi
podgraf grafu G, ktery je indukovany V| tj. graf, ktery ma
V'’ jako mnozinu uzl, a hrana mezi dvéma uzly je, pravé
kdyz je tato hrana v G. Uvazujme nasledujici podminku.

(SG(U) je acyklicky) = (G je acyklicky)

Tato podminka plati pro U = V. Nasledujici postup tedy
inicializujeme pro U = V.

Chceme vypoustét uzly z U, aby ztstala zachovana plat-
nost podminky. Jestlize j € U nem4a pfedchidce v SG(U),
pak nemize patfit do cyklu v SG(U), a tedy

(SG(U \ {j}) je acyklicky) = (SG(U) je acyklicky).

Totéz plati samoziejmé 1 o uzlech bez nasledniki. K od-
stranéni téchto uzli potfebujeme program pro zjisténi pred-
chidct kazdého uzlu.

Pro mnozinu uzld W a uzel j € W oznalime P(j, W)
mnozinu predchidci j v SG(W) a S(j, W) mnozinu nasled-
nikd j v SG(W). Je-li v P nebo S vynechan argument W je
minéna celd mnozina V| tj. mnozina uzli G. Podmnozina U,
kterd sestava z uzli j: P(j,U) = 0, je mnozina kandidatd
pro vypusténi z U. Oznacme tuto mnozinu U, a Up = U\U;.
Pak lze nase podminky pfepsat na Py A P;, kde

Py: (SG(UO U U1) je acyklicky) = (G je acyklicky)
Pi: (Vj:j € Ug: P(j,UgUUy) = 0)A(Vj: j € Up: P(j,UpU
U U1) = @)
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Protoze postup inicializujeme pro V' a jediné uzly, které
vypoustime z Uy U Uy, jsou ty bez predchidct v Uy U Uy,
plati téz Py:

P2: (V] ] € U() U U1 : S(]) g Uo)

Po vypusténi uzlu j z U; dostavame Vk € S(j, Uy U Uy),
ze je také j € P(k,UyUU,), a tedy P(k,UyUU;) se zmensi
o jeden prvek. Kazdy prvek k, pro ktery se P(k,Uy U U))
stane (), je presunut z Uy do U; (podle P, je k € Uyp). Dale
z P, plyne, ze pro j € U; je S(3, UpUU;) = S(j). Opakovéani
ukonéime pro U; = 0. Z toho dostadvame

(SG(Uy) je acyklicky) = (G je acyklicky).
Z Uy =0 a P, dostavame
(¥ j € Uns PG, Un) #0),

tj. kazdy uzel v SG(Up) ma predchidce. A tedy SG(Up) je
acyklicky, pouze je-li Uy = 0.

Tato diskuse nas vede k nasledujici struktufe programu:
Uo :={j | P(j) # 0}; Ur := {j | P(j) = 0};
while U; # 0 do begin

snecht j € Ur“; Uy := Uy \ {j}; ,Vk € S(3);

if P(k,UyUU;) = 0 then begin

Uy :=Up \ {k}, Uy:=U,U {k},

end

end

acykl := (Up = 0);
Zavedeme celoéiselné pole t(j: 1 £ j £ N), aby platilo:

(Vk: k€ UpUUy: t(k) = |{j € UoUU,: j € P(k)}|)
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Pak platnost P(k,Us U U;) = 0 lze ovéfit jako t(k) = 0.
Mnozinu U; budeme reprezentovat pomoci dvou promén-
nych vy a nvy, kde v; (j: 0 £ j < nvy) je celodiselné pole
a nvy Je celociselnd; kde nv; je pocet uzli U; a uzly U,
jsou v poli v; (0 £ j < nvy). Pro mnozinu Uy je dilezity
pouze pocet jejich prvki. Budeme ji reprezentovat pomoci
promeénné nuyg.

Inicializaci ¢, vy, nvy, nvg lze zapsat takto:

procedure INIT;
var 7, j: integer;
begin
for j :=1to N do t[j] :=0;
for i := 1 to M do t[e[i]] :=t[e[d]] + ;
nvg := 0;
nvy := 0;
for j:=1to N do
if t[j] = 0 then begin
vi[nv] i= J; nvy :=nvy + 1
end
else nvy := nvg + 1
end;

Cela procedura pak vypada takto:

type UZLY:= array [1..N + 1] of integer;
NASL:= array [1..N] of integer;

function ACYKL(b: UZLY ; e: NASL):boolean;

)

var nvg, nv,t, j, k: integer;
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vy : array[0.. N — 1] of integer;
t: array [1..N] of integer;
begin
INIT;
while nv; <> 0 do begin
J = vi[nvy — 1]; nvy := nvy — 1;
for i := b[j] + 1 to b[j + 1] do begin
k :=e[i]; t[k] :=t[k] — 1;
if ¢[k] = 0 then begin
vi[nv1] := k; nvg := nvg — 1; nvy :=nvy + 1
end,;
end
end;
ACYKL := (nvy = 0)
end;

Spravnost algoritmu plyne z postupu na zacatku popisu.

Slozitost algoritmu. Pokud byl uzel j z U; vypustén, tak
Jiz do U znovu nebude pfidan (do U; jsou pridavany nasled-
nici uzli a j nema predchiidce). Tedy kazdy uzel se testuje
maximalné jednou. Celkovy pocet naslednikd vsech uzld
Jje celkem M. Vnotené cykly se tedy provedou maximéalné
M-krat. Celkova slozitost je O(M).

P-1-4

a) Cisla z, y budeme reprezentovat v unarni soustavé oddé-
lena . Pak se feSeni ztotozni s vypoctem zfetézeni dvou
slov nad abecedou {1} a s ubrdnim jednoho symbolu
z vysledného slova. Popis Turingova stroje je tedy ana-
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logicky jako ve vzorovém prikladu v zadani. Uvedeme
proto pouze tabulku:

T 1 * A
START 1 (L,1,P) (1,%,P) (2,A,L)
2 3,A,L) (5,A,L)
3 (4,A,L) (5,A,L)
4 | (4,1,L) (5,1,L)
STOP 5

b) Uzijeme pomocnou abecedu V = {A, B, a,}. Pokud
je vstupni slovo prazdné, stroj se zastavi. Jinak si za-
pamatuje prvni symbol a prepsanim na velké pismeno
oznadi jiz zkopirovanou ¢ast. Dale stroj projde zbytek
slova a na jeho konec pripiSe zapamatovany symbol,
ale v fecké abecedé {a,B}. Déale se stroj vraci vlevo,
dokud nenarazi na velké pismeno, to prepise na malé
a pravého souseda si opét zapamatuje, pfepise na vel-
ké pismeno a pokracuje predchozim zpusobem. Timto
postupem stroj pokracuje do té doby, nez pfi navratu
vlevo narazi na sousedici velké a fecké pismeno. V tom
okamiziku bylo jiz zkopirovano celé vstupni slovo a stroj
Jiz pouze prepise toto velké pismeno a vSechna fecka
pismena na mala latinskad. Dale uvedme tabulku pro
stroj T'.

Spravnost ¢innosti stroje plyne z postupu pred tabulkou.
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T a b A A B o 8
START 1 ((2,A,P)(3,B,P)

2 |(2,a,P) (2,b,P)(4,,L) (2,0,P)(2,8,P)
3 ((3,a,P) (3,b,P)(4,8,L) (3,a,P)(3,8,P)
4 |(5,a,L) (5,b,L) (6,a,P)(6,b,P)(4,c,L) (4,8,L)
5 ((5,a,L) (5,b,L) (1,a,P)(1,b,P)

6 (7,4, P) (6,a,P) (6,b,P)

STOP 7
P-1Il-1

Algoritmus je jednoduchy. Nejdfive si oznaéime vsechny
dosazitelné prvky pole A. Potom projdeme polem A a vypi-
Seme indexy vSech neoznacenych, tj. nedosazitelnych prvki.

Postup oznacovani dosazitelnych prvka je nasledujici:
Prochazime pole ZAC a pro kazdy jeho prvek ZAC[i]
oznacujeme vsechny prvky pole A dosazitelné ze ZAC(i].
KdyZ pfi tom narazime na uz oznaleny prvek A[j], (tj. uz
dfive jsme poznali, ze A[j] je dosaZitelny), pfestaneme dalsi
prvky, na néz A[j] pipadné odkazuje (tj. A[A[j]] atd.),
oznacovat — ty uz oznacené zarucené jsou — a prejdeme
k dalsimu zacatku ZAC[i + 1].

Dosazitelnych prvki je nejvyse N, unejvyse M z nich tes-
tujeme oznaceni dvakrat, u ostatnich jen jednou. Algoritmus
je tedy linedrni vzhledem k N.

Pfi programové realizaci oznacovani prvki pole A nemu-
sime zavadét dalsi pole, ale mizeme vyuzit jednak toho,
ze A je programova proménnd, do niz lze zapisovat, jednak
toho, ze prvky A jsou celd kladna ¢isla. Oznaceni prvku A[j]
pak realizujeme jeho nahrazenim ¢islem —lA[]]l (Aby byla
dodrzena posledni podminka v zadani alohy, je nutno na
konci vSechna oznaceni zrusit, tj. nahradit dosazitelné prvky
jejich absolutni hodnotou.)
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{Algoritmus v pascalu}
{pfedpokladame, ze jsou dany konstanty M, N a naplnéna
pole ZAC, A}
var ZAC: array[l..M]of 1..N;
A: array[l.. N] of integer;
i, j, K : integer;
begin
for i :=1to M do
{invariant: jsou oznaceny (tj. zdporné) vsechny prvky
pole A dosazitelné ze ZAC[1),...,ZAC[i — 1]}
begin
K = ZAC[i);
while (1 <= A[K]) and (A[K] <= N) do begin
A[K]:= —A[K];  {oznaleni dosaZitelného prvku}
K := —A[K] {posunuti na dalsi}
end;
if A[K] >= 0 then A[K] := —A[K]
{oznaceni dosazitelného prvku, ktery uz neni

ukazatelem}
end;

for j:=1to N do
if Aj] >= 0 then writeln (j)
{vypis nedosazitelnych prvki}
else A[j] := —A[j] {restaurace dosazitelnych}
end.

P-11-2

Pii feSeni tulohy pouzijeme nasledujici tGvahu. Necht
bod (X[I],Y[l]) je takovy, ze X[I] = min{X[i],i =
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= 1,...,n}, a oznatime «; (j # ) Ghel uréeny bo-
dy (X[0,Y[), (X[ + 1,Y[M), (X[5),Y[]) (obr.25).
(Pokud Y[j] < Y[l], pak Ghel ma znaménko —.)

o

Obr. 25

Nyni setfidime ahly podle velikosti takto: aj, < --- <
< ap—1. Ostrou nerovnost mizeme predpokladat, protoze
zadné tfi body nelezi v jedné pfimce. Hledand permutace
bodi je potom takovato:

{I)jl)"')jﬂ}

Ukazeme, ze pro tuto posloupnost se urcené tsecky ne-
protinaji. Necht se protinaji Gsecky urcené body j;, jit1,
Jky Je+1, pak napf. aj, < aj,, < aj, < aj,,,. Oznac-
me s prusecik téchto tsecek. Protoze zadné tfi zadané body
nelezi na jedné primce, je bod s vnitfni bod obou usecek.
Oznadlime-li a, Ghel uréeny analogicky jako thly aj, pak
plati:

aj, < as < Qi

aj, <oy < Qjyy,
To je ale spor. Tedy tsecky se neprotinaji.
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V programu pouzijeme nasledujici vlastnost. Abychom
nemuseli pfimo pocitat velikost hlu, staci pocitat pouze
podil (Y[I] — Y[i])/(X[l] — X[1]). Je zde viak problém, ze
jeden bod miZze mit stejnou z-ovou souradnici jako X[I].
To odstranime tak, ze bod X[I] ,zanedbatelné posuneme*
doleva (napf. 0.0001 pro zadani s pfesnosti 0.1).

Algoritmus ma nasledujici postup:

1. Nacteni zadani.

2. Zjisténi X[I] = min{X[7],i=1,...,n}.

3. Vypoéet (Y[i] - Y[I])/(X[i] - X[+ 0.0001).
4. Setfidéni uzla i =1, ..., n;i # L.

Pro pamétové zvyhodnéni je hodnota vypoétena v bo-
dé 3 ukladana znovu do pole X. Pro tfidéni je pouzito
pomocné pole Z. Tridéni je vykonano metodou Quicksort.
(Viz napf. roCenka 36. ro¢niku MO na stfednich Skolach,
priklad P-1-2.)

SloZitost algoritmu

Body 1, 2, 3 majislozitost O(n), bod 4 O(nlogn). Celkova
slozitost je tedy O(nlogn) za pouziti jednoho pomocného
pole velikosti n.

Zipis algoritmu (v jazyce Pascal)

program mnoh;

const u = —1000;

var X,Y : array[l..10] of real;
Z: array[l..10] of integer;
t,5,k,l,n:0..11;
m: real;

procedure SORT(I,r: integer);
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var 7, j, k, w: integer;
begin
i=0j=r; k:={+r)div 2
repeat
while z[2[i]] < z[z[k]] doi:=i+1;
while z[z[k]] < z[2[j]] do j :=j - 1;
if : <= j then begin
w = z[i]; 2[i] := z[j]; z[j) = ws; =i+ ] =51
end
until ¢ > j;
if | < j then SORT(l, j);
if i < r then SORT (i,r)
end,;
begin
writeln ("Zadej pocet bodd 1-10’); readin (n); {nacteni}
writeln (’Zadej body pomoci souradnic’);
for i := 1 to n do readin (z[i], y[7]);
m:=z[1];1:=1;
for i := 2 ton do
if z[7] < m then begin

m = z[i];
{nalezeni bodu s nejmensi z-ovou soufadnici. }
l:=1
end;

for i := 1 to n do begin

z[i] := (y[i] — y[1]) / (z[i] = m + 0.0001);
{vypocet hodnot}

z[i] =1 {pro srovnani}
end;
SORT (1,n); {setFidéni}
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writeln ("Vyslednd permutace je nasledujici:’);
write (1 : 3);
for i := 1 ton do
if z[i] <> [ then write (2[7] : 3);
writeln
end.

P-1l—-3

Ndstin algoritmu: Jeden z moznych postupti vypoctu {ﬁ}
je néasledujici (pfedpokladame N 2 M > 0, jinak je vypocet
trivialni).

Oznaéime k = N —M azavedeme pomocné pole P[0 .. k],
do néhoz na zacatku ulozime hodnoty {i}, {f}, ce {k'{'l},
tj. samé jednicky.

V kazdém dalsim (i-tém, pro 2 < i £ M) kroku zmé-
nime obsah pole P z hodnot { } {’ 1} ,{H’k 1} na
hodnoty { } {"H} {”"h} Po M-tém kroku pak bude
platit P[k] = {M}

Provedeni i-t€ho kroku: Na zalatku i-tého kroku pole P
obsahuje prvky

i 1 i+ k-1

i | i _ 1 1 "1 Ey 2' - l )
nebot P[0] = {iZ1} = {i} = 1. Proto pfictenim souéi-
nu i - P[0] k prvku P[1] dostaneme P[1] = {**'}. Dalsim

pfictenim ¢ - P[1] k prvku P[2] dostaneme P[2] = 2%,
atd., az nakonec P[k] = {'fk}. :

Algoritmus v pascalu:
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{predpokladame, ze jsou dany konstanty N, M, a ze N 2
2 M 20}
{podminka C(¢,j) je definovina nize a slouzi jako
invariant}
const k=N — M;
var 7, j: integer;
P: array([0..k] of integer;

begin
if M = 0 then writeln (’{’, N,” 0} = 0°)
else begin
for j :=0 to k do P[j] := 1, {inicializace}
for i := 2 to M do {CG,1)}
for j := 1 to k do P[j] := P[j]+i*xP[j —1]; {C(3,4)}
{C(M +1,1)}
writeln {’, N, M '} =, P[k])
end
end.

Diikaz: Pro 2 £ i S M +1,1 <5 £ k+ 1 definujeme
podminku

C(i, ) = Vr, 0§r<j:P[r]:{'“:"}

a soucasné

Vs, j§s§k:P[s]:{z+js—l-1}.
z—

Nyni Ize snadno ovérit tato fakta:

a) Po provedeni prvniho — inicializa¢niho kroku (tj. na
zacatku druhého kroku) plati C(2,1).
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b) Plati-li C(7,j) pro uréité ¢, j, 2 S i S M, 1 < j <k,
potom po provedeni pfifazeni P[j] := P[j]+i* P[j — 1]
bude platit C(z,j + 1).

¢) Pro2SisMijeC@i,k+1)=C(>i+1,1).

d) Uzitim bodu (b) a indukce vzhledem k j mame, ze pla-
ti-li C(¢,1) na zaéatku i-tého kroku, 2 < i £ M, (pfed
provedenim vnitfniho cyklu), pak po jeho skonceni bude
platit C(¢, k+ 1), tedy, podle (c), bude platit C(i+1,1).

e) Uzitim bodi (a), (d) a indukce vzhledem k 7 dostava-
me, ze na zacatku kazdého i-tého kroku (2 £ i £ M)
plati C(7,1) a na konci M-tého kroku plati C(M +1,1).

Po provedeni celého algoritmu tedy plati C(M + 1,1).
Odtud podle definice podminky C' mame P[k] = {ﬁ}

Pocet aritmetickych operaci na mezivysledcich: Jediné
s¢itani a jediné nasobeni mezivysledki se provadi ve vniti-
nim cyklu algoritmu. Pocet provedéni vnitiniho cyklu je k,
pocet provedeni vnéjsiho cyklu je M — 1. Vidime tedy, ze
celkovy pocet séitani mezivysledki je tentyz jako pocet
nasobeni a je roven (M —1)-k=(M —-1)- (N - M).

P-11-4

a) Cisla jsou reprezentovana v unarni soustavé, oddélena x.
Necht |z|, resp. |y| znadi poclet jednicek v zdpisu =z,
resp. y. ReSeni plyne z nasledujicich fakt. Necht |z| =
=k, |y = Lpak |e — y| = k—=1+1,jeli k 2 I
resp. |¢ —y| =1, jelik <.

Postup feseni je nasledujici. Nejprve se vstupni slovo na
pasce prepise tak, ze bude zacinat 0, kterd bude indikovat
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pravy okraj pasky. Pak se postupné jedni¢ky v prvnim &isle
nahradi *, dokud neni

a) * tolik, jako bylo cifer v 2. &isle, nebo
b) se nenahradila 0.

Na zavér se pridé jedna 1 a * se smazou. Postup lze zapsat
do této tabulky:

T 1 * A 0
START 1 (2,0, P)
2 (2,1,P) (3,1,P)
3 (4, %, P)
4 (4,1, P) (5,1, P)
5 (6,A,L) (5,A,L)
6 (6,1,L) (7,%, L)
7 | (8,%P) (7,%1L) (10,1, P)
8 | (9,1,P) (8 P) (11,A,L)
9 (9,1, P) (5,A,L)
10 (10, A, P)
11 | (1,1,L) (11,4,L) (11,1, P)

b) UZijeme pomocnou abecedu V = {A, B}. Pokud je
vstup prazdny, odpovéd je ano. Jinak si stroj zapamatuje
prvni pismeno vstupu, zméni ho na velké z divodu jiz
ovéfeného oznaceni. Déle se procte zbytek slova a porov-
na se zapamatované pismeno s poslednim. Pokud nejsou
stejnd, slovo neni palindrom a odpovéd je ne. Jinak se
posledni pismeno pfepise na velké a ovéruje se platnost
palindromu pro zbytek slova. Tento postup lze napsat
do nésledujici tabulky:
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T a b A A B
START1 | (2,A,P) (3,B,P) (8,4,P) (8,4,P) (8B,P)
2 (2,a,P) (2,b,P) (4,4,L) (4,A,L) (4,B,L)
3 (3,a,P) (3,b,P) (5,4,L) (5,A,L) (5,B,L)
4 (6,A,L) (7,b,L) (7,A,L) (8,A,L) (8,B,L)
5 (7,e¢,L) (6,B,L) (7,A,L) (8,A,L) (8,B,L)
6 | (6,a,L) (6,bL) (1,A,P) (1,B,P)
7
STOP 8
P-1l-1

Zavedeme si nasledujici pojem: Koncovym indexem prv-
ku A[j] (pro 1 £ j £ N) nazveme éislo j, pokud A[j] > N;
jestlize 1 £ A[j] £ N a prvek A[A[j]] mé4 koncovy index,
pak tento index bude také koncovym indexem prvku A[j];
v ostatnich pfipadech polozime koncovy index prvku A[j]
roven nule.

Koncovym indexem prvku ZAC[i] (pro1 £ i< M, 1<
< ZAC[i] £ N) rozumime koncovy index prvku A[ZAC[i]].

Ukolem algoritmu tedy bude nahradit kazdy prvek po-
le ZAC jeho koncovym indexem. Snadno nahlédneme nasle-
dujici tvrzeni: Jestlize v poli A libovolny prvek nahradime
jeho koncovym indexem, pak koncové indexy vsech prvki
poli ZAC a A zistanou stejné jako pred zaménou.

Hrubd idea algoritmu: Prochazime postupné prvky
ZAC[1],..., ZAC[M] a v kazdém kroku nahradime ty prvky
pole A, jez jsou dosazitelné ze ZAC[i], jejich koncovym
indexem. Ten je také koncovym indexem prvku ZAC[i],
takze ho zapiseme i do ZAC[i].

Pf1 zjistovani koncovych indexi postupujeme podobné
jako v tloze P-II-1, pripadné zacykleni odkazi (tj. pFipad,
kdy koncovy index je nula) si hliddme tak, Ze si pribézné
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oznacujeme (obracenim znaménka) prvky pole A dosazitel-

né ze ZACi.

{Algoritmus v pascalu}

{pfredpokladame, Ze jsou dany konstanty M, N a naplnéna
pole ZAC, A}

var ZAC: array[l..M]of 0..N;

A: array[l.. N] of integer;
i,k, L, P: integer;

begin
for::=1to M do »INVE
begin
k= ZAC[i];
while (1 £ A[k]) and (A[k] <= N) do begin
Alk] := —A[k]; {oznageni prvki pole A}
k= —Alk] {dosazitelnych ze ZAC[i]}
end;
if Alk] <=0 then P :=0
else P := k; {P = koncovy index prvku ZAC[)}

k:= ZAC[i]; ZAC[3) :=

{nahrazenl ZA C[7] koncovym indexem}

while A[k] < 0 do {nahrazeni vsech prvki}
begin
L:=k; {pole A z piivodniho ZAC[i]}
k= —Alk]; {dosazitelnych jejich}
AlL]:=P {koncovym indexem}
end
end

end.

V misté oznaceném ,inv“ plati invariant:
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- prvky ZAC([1],...,ZAC[i — 1] jsou svymi koncovymi
indexy,

— vSechny prvky pole A, které byly dosazitelné z pivod-
nich hodnot ZAC(1],..., ZAC[i — 1], jsou svymi konco-
vymi indexy,

- ostatni prvky poli maji své ptiivodni hodnoty,

— koncové indexy vSech prvki poli ZAC a A jsou stejné
jako koncové prvky jejich pivodnich hodnot,

V prvnim vnitinim cyklu hledame koncovy index prv-
ku ZAC[i]. Jsou-li odkazy v poli A cyklické, bude koncovy
index roven nule (pfikaz if za cyklem). Koncovy index se
zapiSe do ZAC(i]. Ptifazeni tohoto indexu prvkim pole
A (druhy vnitini cyklus) neni nutné z hlediska spravnosti
algoritmu, ale je dulezité z hlediska jeho ¢asové slozitosti.

Je-li vysetfovan néjaky prvek A[k], je pocet jeho zpFi-
stupnéni roven fadové ¢islu M.V prvnim vnitfnim cyklu je
opakovanému prochazeni prvku zabranéno tim, Ze si hlida-
me cykleni odkazi, v druhém vnitinim cyklu se prvek A[k]
nahradi svym koncovym indexem a diky tomu na ném kazdé
dalsi provedeni prvniho while-cyklu ihned skonéi. Odtud vy-
plyva Casova slozitost algoritmu O(M + N), coz (vzhledem
k podmince M < N) je rovno O(N). Algoritmus je tedy
linearni vzhledem k N.

P-1ll-2

Koeficienty Legendreovych polynomi jsou racionélni éisla,
kterd v paméti miizeme reprezentovat dvojicemi celych &i-
sel (Citatel, jmenovatel). Pro Gcely generovani koeficientd je
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vhodné citatele uchovavat v jednorozmérném poli A[0 .. N],
v prvku A[j] je ¢itatel koeficientu u j-té mocniny.

Polynom P je pro sudé, resp. liché i sudou, resp. lichou
funkei, tj. jeho liché, resp. sudé koeficienty jsou nulové. Proto
lze v poli A uchovévat nardz citatele koeficienti polyno-
mu P;, P;_;. Pro kazdy polynom je uchovan spolecny jme-
novatel jeho koeficientl tak, aby aspon 1 koeficient tohoto
polynomu byl v zakladnim tvaru.

Algoritmus mize tedy pracovat takto:

e Do pole A umistime Citatele koeficienti polynomi Py, Py
a do proménnych ds, dl umistime hodnoty jmenovatela.
e Proi=2,..., N opakujeme:
— vypocteme koeficienty polynomu P; a prepiSeme jimi
koeficienty polynomu P;_;
— provedeme mozné kraceni hodnot vypoétenych koefici-
entli polynomu F;.
e Vypiseme koeficienty polynomu Py, tj. sudé nebo liché
prvky pole A, a hodnotu ds nebo dl podle toho, zda N
Je sudé, nebo liché.

Pro zjednoduseni algoritmu je pole A indexovano od —1,
pti¢emz A[—1] je vidy nulové.

{Algoritmus v pascalu — pfedpoklddame, zZe je dana kon-
stanta N}
var A: array[—1..N] of integer;
{Zitatele koeficientd polynomu}
ds, dl: integer;{jmenovatele koeficienti polynomu}
1,7, NN1, Ny, M, NSD: integer;
begin
A[-1]:= 0; A[0] := 1; A[1] := 1;
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for j:=2to N do A[j] :=0;ds:=1;dl:=1; NN, := 1,
for i := 2 to N do
{vypocet Citateld koeficientd polynomu stupné 7}
begin
NNy :=NNi+2; Ny :=i—1;j:=1
repeat
if ds = dl then A[j] := NN * A[j — 1] — Ny * A[j]
else A[j] := NN * A[j — 1] — Ny x Ny x A[j];
J=3-2
until j < 0;
if ¢ mod 2 = 0 then begin
ds:=dl *x1; NSD :=ds
end
else
begin
dl:=dsx1; NSD :=dl
end;
{zjisténi NSD vypoétenych hodnot}
Ji=1
repeat
M := abs(A[j]);
while M <> NSD do begin
while NSD < M do M := M — NSD;
while NSD > M do NSD := NSD — M
end;
J=j-2
until (J < 0) or (NSD =1);
{kraceni koeficientii}
if NSD <> 1 then begin
J =1,
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repeat
Alj] := A[j] div NSD; j := j - 2;
until j < 0;
if ¢ mod 2 = 0 then ds := ds div NSD
else dl := dl div NSD;
end
end;
{ vypis koeficienti }
if N mod 2 = 0 then writeln (jmenovatel:’, ds)
else writeln (’jmenovatel:’, dl);
J:=N;
repeat
writeln ('mocnina’, j, ’:koeficient ’, A[j]); j:=j —2;
until j < 0;
end.

P-1ll-3

Reseni tlohy prevedeme jednoduchou tivahou na feseni kla-
sického grafového problému hledani nejkratsich cest z dané-
ho uzlu grafu do vsSech ostatnich. Pro feseni tohoto problé-
mu pak pouzijeme klasicky Dijkstriv algoritmus. Nasi Glohu
prevedeme tak, ze z matice V vypustime hrany delsi nez
dolet letadla. Nyni miZeme jiz pouzit Dijkstriv algoritmus
pro uréeni d[v], nejkratsi vzdalenosti z u do v pro graf G:

Pomocné promeénné

— M, mnozina vrcholi, pro které jesté neni vzdalenost d[v]
definitivné urcena

— V, vektor, kde pro kazdy uzel v je uveden predposledni
uzel nejkratsi cesty z u do v a neprochazi M
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— L, matice pfimé vzdalenosti

Algoritmus

1. Inicializace. M = V(G) \ {u}; d[u] = 0; V[u] = u;
pro v # u: d[v] = L[u,v] a je-li d[v] < oo, V[v] = u.

2. Test ukonceni. Je-li M prazdna, vypocet kondi.

3. Urceni d[v] pro dalsi uzel. Z uzli mnoziny M vybereme
uzel v s minimalni hodnotou d[v]. Je-li d[v] = oo, pak
vypocet konéi, jinak vyjmeme v z M.

4. Aktualizace d a V. Je-li v uzel vybrany v bodé 3, pak
pro kazdy uzel w € M: pokud d[v] + Lv,w] < d[w],
provedeme V{[w] = v, d[w] = d[v] + L[v, w].

5. Skok do bodu 2.

Vlastni program v jazyce Pascal:

program LET,;
label 5,10;
var M : set of 1..20;
L: array[1..20,1..20] of integer;
i,7,k,n,u:0..20;
v, w: integer;
begin
w:=0;
5: writeln ("Zadej dolet letadla’);
readin (v);
writeln ("Zadej pocet letist [1-20]’);
readln (n);
writeln (Zadej matici vzdélenosti °);
writeln (’[pokud neni hrana —1}’);
for i := 1 to n do begin
for j := 1 to n do begin
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read (L3, j]);
if L[i, 5] > v then L[i, j] := —1;
{Odstranéni hran presahujicich dolet}
end;
readln
end;
writeln ("Zadej letisté, ze kterého se uréujf trasy:’);
readln (u); M :=[1..n];
for i := 1 to n do
if L{u,i] 2 0 then L[i, u] := u; {* 1%}
= [u;
while M <> [] do begin
w:=nxv+1;7:=0;
for i :=1 to n do
ifi in M then
if (L[u,7] >=0) and (L[u,:] <= w) then begin

w:= Llu,i]; j =1 {* 3 *}
end; g
if j = 0 then goto 10; {*4*}
M := M - [j];

for i :=1 ton do
if i in M then
if (L[j,7] >=0) and
((w+ L[j,7) < L[u,1]) or (L[u, ] < 0)) then begin
L[i,u] := j; L[u,i] := w+ L[j, ] {* 5 *}
end;
end;
10: L[u,u] := 0;
writeln (° :27,’Trasy z letisté’ u:3); writeln ;
write ( :10,’letidté’,” *:10,’vzdalenost’);

126



write (° *:10,’ nejkratsi trasa’); writeln ;

for i := 1 to n do begin
v := L[u,1;
if v >= 0 then begin
k:=1j5:=1,
while k£ <> u do begin
L[j,4)= L[k, u]; k := L[k, u]; {*6*}
Jj=Jj+1
end;
write (* 11,7 : 2);
write ’ :14,v : 3,” *:14);

for k := j — 1 downto 1 do write(L[k,1]:2,"));
write (i : 2); writeln

end
else
begin
write (° :11,3 : 2);
write (’ ’:12,’nekoneéno’);
write (° ’:11,’neexistuje’);
writeln
end
end;
writeln ("Opakovat vypoéet [0/1]’); readln (j);
if j = 1 then goto 5;
end.
*¥*KOMENTARE ***
* 1*: Odstranéni hran presahujicich dolet
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* 2% . Ztotoznéni u-tého sloupce matice L s vektorem V
a u-tého fadku a d

* 3 *: Nalezeni minima d[v] pro v € M

* 4 * . Neexistuje zlepseni

* 5 *: Provedeni zlepseni

* 6 *: Rekonstrukce letové trasy

Casovd sloZitost: Algoritmus zpracuje vstup n letist v ¢a-
se O(n).

Sprdvnost algoritmu: Dokazeme pouze pro Dijkstriv al-
goritmus. Indukci ukaZeme, ze pro v vybrany v bodé 3
algoritmu je d[v] = dy,, tj. délka nejkratsi cesty. Necht
pfedpoklad plati pro uzly z V(G) \ M. Necht v je uzel
vybrany v bodé 3 algoritmu a necht existuje cesta Pz u dov
tak, ze délka dp < d[v]. Necht « je prvni uzel z P, ktery lezi
v M a y jeho pfedchiidce v P. Pak d[z] £ d[y] + L[y, z] =
= duy + L[y, 2] £ dp < d[v], coz je spor s minimalitou d[v].

P-1ll-4

a) Uzijeme pomocnou abecedu V = {A, B,C}. Pokud je
slovo prazdné, pak stroj odpovi ano. Jinak pfecte prvni
symbol slova. Pokud neni tento symbol a, pak slovo neni
pfijimano. Pokud je symbol a, stroj ho pfepise na A
a hledd k nému b. Pokud jej nalezne, prepise ho na B
a hleda ¢, které prepise na C. Tento postup se opakuje,
dokud stroj neskonéi spésné, i nelispésné.
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T| a b c A A B C
START 1|(2, A, P) (5,4,P)(1,A,P)(1,B,P)(1,C, P)
2|(2,a,P)(3,B,P) (2,B,P)

3 (3,b,P)(4,C, L) (3,C,P)
4((4,a,L) (4,b,L) (4,¢,L) (1,A,P)(4,B,L) (4,C, L)
STOP 5

b) Uzijeme pomocnou abecedu V = {4, B,«,}. Pokud
je vstup prazdny, je slovo palindrom. Jinak stroj po-
stupné testuje postfixy vstupniho slova, dokud nenarazi
na palindrom. Pro testovani se pouziva stroj z prikladu
v krajském kole (stavy 2, 3, 4, 5, 6, 7). Pokud postfix
neni palindrom vlozi se jeho prvni znak mezi vstupni
slovo a jiz pfipsanou ¢ast vpravo a ta se posune o jeden
znak (stavy 8, 12,13, 14, 15, 16, 17). Zacatek testovaného
postfixu a zacatek jiz doplnéné Casti je oznacen Fecky-
mi pismeny. Vzdy po ukonceni testovani palindromu se
velka pismena prepisi na mald. Po zjisténi, ze postfix je
palindrom, se prepisi vSechna pismena na mala.

T a b A A B o J¢]
START 1/(3,4,P) (4,4,P) (9,40, P)

2|(3,A,P) (4,B,P) (9,A,P) (9,B,P) (9,4,P) (9,47,P)

3/(3,a,P) (3,b,P) (5,A,L) (5,A,L) (5,B,L) (5,A,L) (5,4,L)

4|(4,a,P) (4,b,P) (6,40,L) (6,A,L) (6,B,L) (6,A,L) (6,A,L)

5|(7,A,L) (8,b,L) (9,A,P) (9,B,P) (9,A,P) (9,4,P)

6/(8,a,L) (7,B,L) (9.4, P) (9,B,P) (9,2, P) (9, P)

71(7,a,L) (7,b,L) (2,A,P) (2,B,P) (2,A,P) (2,A,P)

8((8,a,L) (8,b,L) (8,4,L) (8,B,L) (12,A,P) (15,1, P)

9/(9,a,P) (9,b,P) (10,A,L)(9,a,L) (9,b,P) (10,a,L) (10,b,L)

10(10,a, L) (10,b, L) (10,a,L) (10,b,L) (11,a, P) (11,b, P)
STOP 11

12{(12,a,P)(12,b,P) (16,4, P)(12,a,P)(12,b, P) (13,47, P) (14,4, P)

13|(13,a,P)(14,a,P)(16,a, L)

14|(13,b,P) (14,b,P) (16,b,L)

15(15,a, P) (15,b, P) (16,4, P) (15, a, P) (15,b, P) (13, A, P) (14, A, P)

16|(16,a,L) (16,b,L) (16,A,L 17,4,L) (17,4,L)

17|(17,a,L) (17,b,L) (17,a,L) (17,b,L) (1,a,P) (1,b,P)




Korespondenéni seminai UV MO 1990/91

Korespondenc¢ni seminar je jednou z forem péce o talento-
vané zaky. Vznikl ve 24. ro¢niku MO proto, aby bylo mozno
vénovat individualni péci i tém zakum, kteri neméli moznost
navstévovat specidlni skoly a pracovat v tamnich semina-
fich. Nyni, kdy existuji 1 krajské korespondencni seminéare
a kdy specidlni skoly s tfidami zaméfenymi na matematiku
najdeme v kazdém kraji, je cilem tohoto seminéfe zlepsit
individudlni pfipravu vSech studentt, ktefi prokazali své
schopnosti a matematicky talent v predchozich roénicich
matematické olympiady. Korespondenéni seminar tak na-
déle zistava dileZitou soucasti pfipravy na mezinarodni
matematickou olympiadu.

K casti v korespondencnim seminari jsme pozvali vSech-
ny Spickové fesitele kategorie A spolu s témi studenty, ktefi
néjak vynikli v krajskych kolech kategorii B a C predchoziho
rocniku MO. V pribéhu 40. ro¢niku MO jim bylo postup-
né zasldno 5 sérii pomérné naro¢nych uloh, jejichz texty
najdete v Glohové &asti této rocenky (tentokriat poprvé
s FeSenimi). Dosla feSeni pak byla opravena, ohodnocena
a s rozmnozenym komentarem vracena Gcastnikim semina-
fe. Nejlepsimi v celkovém hodnoceni byli:
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Vladimir Glasndk, 3. roénik G, V. Okruzna, Zilina
Michal Konecny, 4. rocnik G, kpt. Jarose, Brno
Pavel Rizicka, 4. rocnik G, kpt. Jarose, Brno
Richard K. Kolldr, 4. rocnik GAM, Bratislava
Josef Mensik, 4. rocnik G, kpt. Jarose, Brno
Slavomir Hrinko, 4. ro¢. G, Konstantinova, Presov
Stépdn Kasal, 3. roénik G, Korunni, Praha
Ales Kubéna, 4. roénik G M. Kopernika, Bilovec
9. Zdenék Pezlar, 4. ro¢nik G, Plzen

Korespondenéni seminéf je fizen tajemnikem UV MO
RNDr. Karlem Hordkem, CSc., ktery se staral o vybér Gloh
a provadél i redakci komentari. Opravu pak zajistovalo né-
kolik pracovnikt MU CSAV a nékolik studentii a aspiranti
MFF UK Praha (vsichni jsou byvali olympionici).

> o
|
© NN oA e

Ulohy korespondenéniho seminaie

1.1 Je dan kvadraticky trojélen f(z) = z? + 2bz + ¢ s celo-
¢iselnymi koeficienty b a c. Jestlize je f(n) 2 0 pro viechna
celd &isla n, pak je f(z) 2 01 pro viechna raciondlni &isla .
Dokazte.
1.2 Je déna posloupnost (a,)3%,, jez spliuje rekurentni
vztah

[ o P 2(an+1 + an), n 2 1.
Je-li ap = 0, a; = 1, ay = 1, pak je kazdy ¢clen uvedené
posloupnosti ctvercem celého éisla. Dokazte.
1.3 Urcete vSechny dvojice (a,b) redlnych cisel, pro néz je
nerovnost
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splnéna pro vsechna z € (0, 1).

1.4 Je mozno obarvit policka tabulky 1990 x 1990 cernou
a bilou barvou tak, aby policka soumérné sdruzena podle
stfedu tabulky méla opac¢nou barvu a v libovolném sloupci
a v libovolném fadku bylo stejné &ernych i bilych poli?

1.5 Uvnitf strany AB konvexniho é&tyrthelniku ABCD
zvolme bod F a prisecik uhlopfiéek ¢tyrahelniku AEC D
oznacme F'. Dokazte, ze kruznice opsané trojihelnikiim
ABC, CDF a BDE se protinaji v jednom bodé.

1.6 Uvazujme kvadraticky trojclen f(z) = az? + bz + c,
ktery ma kladné koeficienty spliujici rovnost a+b+c¢ = 1.
Dokazte, ze pro libovolna kladna &isla z1, zo, ..., z,, jez
splnuji rovnost z; - ...z, = 1, plati nerovnost

f(@1) f(z2) ... f(za) 2 1.

1.7 Uvazujme ,draténou” krychli o hrané 100, jez je jed-
notlivymi draty rozdélena na 1000 000 jednotkovych krych-
licek. Rozhodnéte, zda lze celou draténou krychli rozlozit
na jednotlivé trojice navzajem kolmych jednotkovych hran
se spolecnym vrcholem, pficemz zZadné dvé trojice nemayji
spole¢nou hranu.

2.1 Je dan rovinny thel s vrcholem A, do néhoz jsou vepsa-
ny dvé kruznice, jez se protinaji v bodé B. Oznac¢me C a D
jejich body dotyku s jednim ramenem daného Ghlu. Dokaz-
te, ze primka AB se dotyka kruznice opsané trojihelniku
BCD.

2.2 Pro ktera prirozena cisla n je ¢islo

32n+1 _ 22n+1 _ 6n
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slozené?

2.3 Ozna¢me d nejmensi vzdalenost dvou mimobéznych
hran daného ¢tyfsténu a h jeho nejmensi vysku. Dokazte,
ze 2d > h.

2.4 Vsechny strany a thlopricky konvexniho n-thelniku se
daji obarvit k barvami tak, ze neexistuje uzaviend lomena
cara spojujici vrcholy uvazovaného mnohothelniku, jez by
byla jednobarevna. Zjistéte, pro jaké nejvétsi n je takova
situace mozna.

2.5 V roviné je ddn bod Ay a n vektoru ay, as, ..., a,,
jez maji nulovy soulet. Kazdé poradi (1,12, ...,,) Cisel 1,
2, ..., n urCuje v dané roviné body A, A,, ..., A, = Ap

tak, Ze bude a;, = AoA;, @, = A1As, ..., 6, = A,_1A,.
Dokaizte, ze existuje takové poradi, pro které budou vsechny
body Ay, A, ..., An—1 lezet uvnitf nebo na ramenech Ghlu
velikosti 60° s vrcholem v bodé Ag.

2.6 Predpokladejme, ze z1, x4, ..., z, jsou kladna realna
Cisla takova, ze ¢1 < 2 a x3, T4, T5 Jsou vesmeés vétsi nez
z9. Dokazte, Ze pro a > 0 plati

1 1 1
+ + <
(1 +z3)*  (z2+24)* (22 +25)
1 1 1

< + + .
(z1+z2)* (224 23)* (T4 +25)*

2.7 V trojthelniku o obsahu 1 je dano pét bodi. Dokazte,
ze mezi nimi existuji tfi, které uréuji trojihelnik s obsahem
nejvyse -}1-.
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3.1 Cislo 9 se d4 napsat jako soucet dvou po sobé jdoucich
cisel, 9 = 44 5; 9 se da navic napsat jako soucet (nékolika)
po sobé jdoucich cisel pravé dvéma zpisoby: 9 = 445 = 2+
+ 3 + 4. Zjistéte, zda existuje &islo, které se d4 napsat jako
soucet 1990 po sobé jdoucich kladnych é&isel a zaroven se
da napsat jako soucet (aspon dvou) po sobé jdoucich éisel
pravé 1990 zpusoby.

3.2 Oznacme T', V|, H po radé tézisté, stfed kruznice vepsa-
né a prusecik vysek daného trojihelniku ABC), jehoz zadné
dvé strany nejsou shodné. Dokazte, ze Ghel TV H je tupy.

3.3 Pro dané prirozené &islo k ozna¢me fy(k) soucet dru-
hych mocnin éislic v desitkovém rozvoji ¢isla k a pron 2 1
polozme

fat1(k) = fi (fa(k)) .
Najdéte hodnotu f; 991 (21 990).

3.4 V trojuhelniku ABC oznacme V stfed kruznice vepsa-
né, By a C; stfedy stran AC a AB a déle oznatme B,
prisecik pfimek C,V, AC a C; prisecik pfimek BV, AB.
Jak velky je thel C AB, jsou-li obsahy trojihelniki AB,C,
a ABC shodné?

3.5 V roviné s kartézskou soustavou soufadnic je dan pra-

vothelnik s vrcholy v mfizovych bodech (0,0), (m, 0), (0, n),

(m,n), kde m i n jsou liché ¢isla. Pravothelnik je rozlozen

na trojuhelniky tak, ze

a) kazdy trojihelnik rozkladu ma aspon jednu ,dobrou“
stranu takovou, ze vyska trojuhelniku na tuto stranu ma
velikost 1; pfitom za dobrou stranu povazujeme stranu
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lezici na pfimce ¢ = j nebo y = k, kde j ¢i k je celé
Cislo;

b) kazda ,Spatna“ strana (tj. strana trojahelniku uvazova-
ného rozkladu, jez neni ,,dobra“) je spole¢nou stranou
dvou trojuhelniki rozkladu.

Dokazte, ze v takovém rozkladu existuji aspon dva troj-
thelniky, z nichz kazdy ma dvé dobré strany.

3.6 Uvazujme bod P uvniti pravidelného ¢tyisténu. Ctyfi
roviny prochézejici bodem P rovnobézné se sténami daného
¢tyfsténu ho rozdéli na 14 ¢asti. Oznacme v(P) celkovy
objem téch ¢asti, jez nejsou ani ¢tyfsténem, ani rovnobéz-
nosténem (tj. ty ¢asti, jez obsahuji hranu, ale ne vrchol
daného ¢ctyfsténu). Urcete hodnoty, kterych mize funkce v
nabyvat.

3.7 Dokazte, ze kazdé prirozené ¢islo k > 1 ma kladny celo-
¢iselny nasobek mensi nez k*, ktery se da napsat v desitkové
soustavé pomoci nejvyse Ctyf riznych éislic.

4.1 V roviné je dan konvexni mnohouhelnik K a kartézska
soustava souradnic tak, ze K kromé pocatku neobsahuje
zadny mfizovy bod (tj. bod s celo¢iselnymi soufadnicemi).
Pfitom pro obsah mnohothelniku K v jednotlivych kvad-
rantech Q;, 1 £ < 4, uréenych osami, plati

S(KNQi) = iS(K).

Dokazte, ze potom S(K) < 4.

4.2 V roviné je dan konvexni ¢tyrihelnik ABC' D. Oznaé¢me
A stfed kruznice opsané trojihelniku BC' D, B stred kruz-
nice opsané trojuihelniku AC D, C; stfed kruznice opsané

135



trojuhelniku ABD a B, stfed kruznice opsané trojihelniku

ABC'. Dokaite, ze pak plati:

(a) Bud jsou vsechny body Ay, By, Cy, D; totoiné, ane-
bo jsou vesmés rizné a pak lezi body A;, C; v opai-
nych polorovinach uréenych ptimkou B;D; a podobné
i body Bi, D; lezi v opaénych polorovinich uréenych
pfimkou A;Cy. (Odtud plyne konvexita étyFihelniku
A1B1C1D1.)

(b) Oznacme analogicky Az, Bz, C2, Do stfedy kruznic
opsanych trojahelnikim ByCyD,, A,CiD,, A1B1D;
a A1B;Cy. Potom jsou ctyfihelniky AyBoCseDo
a ABCD podobné.

4.3 Dokazte, ze nerovnost

1-s° S(l+s)“
l1—s = 1+s

plati pro kazdé kladné s # 1 a libovolné racionalni ¢islo a,
0<a<fl.

4.4 Kolmy kuzel je rozdélen rovinou na dvé &asti. Tato
rovina se dotyka kruznice na obvodu zakladny kuzele a pro-
chézi stfedem jeho vysky. Urcete pomér objemu mensi ¢asti
kuzele urcené danou rovinou a objemu celého kuzele.

4.5 pqr jednotkovych krychli¢ek je navleceno na nit (dirka-
mi podél télesové Ghlopticky) tak, Ze dvé sousedni se vzdy
dotykaji alespon vrcholy. Zjistéte, pro jaka prirozena cisla
p, q, r je mozno z krychlicek sestavit kvadr o rozmérech p,
q, r za predpokladu, ze obé koncové krychli¢ky se dotykaji,
resp. za predpokladu, ze nemaji zadny spole¢ny bod.
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4.6 Jestlize n je slozené prirozené cislo a p jeho vlastni
deélitel, uréete dvojkovy zapis nejmensiho pfirozeného cisla
N, pro néz je
(1427 42" P)N -1
271.

celé éislo.

4.7 Pfedpokladejme, ze p je kubicky mnohoclen s racio-
nalnimi koeficienty, a oznacme gqi, ¢, q3, ... posloupnost
raciondalnich &isel, v niz ¢, = p(gn+1) pro kazdé pfirozené
n 2 1. Dokaizte, ze existuje k 2 1 takové, ze gn4r = ¢n pro
kazdé n 2 1.

5.1 Na kruznici jsou dany ¢étyfi body A, B, C, D takové,
ze tétivy AB, CD jsou ruznobézné. Jestlize K a H jsou
body téze roviny, pro néz jsou thly KAB, KCD, HBA
a HDC vsechny pravé, pak pifimka K H prochézi stfedem
dané kruznice a zarovei i prisetikem pfimek AD, BC (po-
kud existuje). Dokazte.

5.2 V roviné jsou dany dvé kruznice, jez se vné dotykaji
a maji poloméry r a R. Uvazujme vSechny mozné lichobéz-
niky ABCD, jez jsou obéma kruznicim opsany (tj. kazda
z danych kruznic se dotyka obou ramen a jedné ze zakla-
den uvazovaného lichobézniku). Najdéte nejmensi moznou
délku ramene takového lichobézniku.

5.3 Urcete nejmensi ¢islo tvaru [36% — 5!| a nejmensi &islo
tvaru |[53% — 37'|, kde k a [ jsou pfirozena &isla.
5.4 V roviné je dano n jednotkovych vektori, jejichz sou-

ctem je nulovy vektor. Dokazte, ze vektory je mozno uspo-
fadat tak, aby pro kazdé k, 1 £ k < n, byla velikost souctu
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prvnich k vektord nejvyse rovna 3. Pokuste se uvedeny
odhad zlepsit, pfipadné najit analogicky odhad za predpo-
kladu, ze kazdy z danych vektori ma velikost nejvyse rovnu
1 (a dohromady davaji nulovy soucet).

5.5 V roviné je dan ctverec ABCD a na jeho stranach AB,
BC jsou dny body P, Q, pficemz |BP| = |BQ|. Ozname
H patu kolmice spusténé z bodu B na tsecku PC. Dokaite,
ze Uhel DHQ) je pravy.

5.6 Je-li délka kazdé ze stran konvexniho Sestitithelniku vétsi
nez 1, musi byt nékterd z jeho uhlopficek vétsi nez 27
A jsou-li Ghlopticky AD, BE a CF konvexniho Sestithelni-
ku ABCDFEF vétsi nez 2, je délka aspon jedné jeho strany
vétsi nez 17

5.7 Na kruznici je zapsdno n (n 2 3) &isel rovnych +1 nebo
—1. Jaky je nejmensi pocet dotazii, pomoci nichz lze zjistit
soucin vsech n Cisel, jestlize jednotliva ¢isla jsou zakryta
a pomoci jedné otazky je mozno zjistit, jaky je

a) souéin ¢isel na libovolnych tfech mistech;

b) souéin &isel na tfech po sobé jdoucich mistech?

Reseni uloh korespondenéniho seminaie

1.1 Stali dokazat, ze (globalni) minimum funkece f je
v bodé —b. To vyplyva z rozkladu

f(x)=2? 42z +c=(z+b)%*+c—1b%

kde ¢ — b? je konstanta a (z + b)? > 0 s rovnosti pravé pro
z = -b.
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Protoze —b je celé &islo, musi byt f(—b) 2 0. Je-li (glo-
balni) minimum nezdporné, jsou i vsechny ostatni funkéni
hodnoty nezaporné na celém definicnim oboru, tedy pro
vSechna redlna ¢isla vcetné racionalnich.

1.2 Asi nejjednodussi je ukazat, ze a, = f2, kde (fn)
je znama Fibonacciova posloupnost, ktera je definovana
vztahy

f():O, flzl) fn+2:fn+1+fn,

a vSechny jeji ¢leny jsou tudiz celd ¢isla. Diikaz provedeme
indukei. Pro n = 0, 1, 2 vatah a, = f2 plati. Predpokladej-
me, ze plati pro kazdé n < k (k 2 2). Potom
ap41 = 2(ag + ag—1) — ag—2 =
=2 +2fi - fica=
=fi+fi 2+ i + f;?_l -
—2fife-1—fia =

= e+ fi-1)?+ (fe = fim1)? = fiy =

S fl?+1 +fia—fia=

= f1?+1-

Dokazovany vztah plati tedy 1 pro n = k + 1.
1.3 Budeme vyuzivat znamé nerovnosti
la+b| < la[+[b], a<|a|, —a<]al (1)

Oznaéme f(z) = V1 — 22 —az —b a pfedpokladejme, ze pro
kazdé z € (0,1) plati

l\/l—-z'z——a:c—b|§%(\/§—l). (2)
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Pro krajni hodnoty z = 0 a z = 1 pak dostavame

-8 < 5(VE-1), 3

1
la+bl S 5(V2-1). (4)
Jejich sectenim vyjde
la+1]S[1—bl+]a+b SV2-1<1,

odkud a < 0.
Hledejme extrémy funkce f. Derivovanim méme

fla)= e = -
S Sl =z

Polozime-li f'(z) = 0, dostaneme

el = A2
V1+a?
coZz nas zajima pro ¢ > 0 a a < 0. Z (2) po dosazeni z tak
mame 1
[V1+a2-b<5(V2-1). (5)

Seltenim (5) a (3) potom vyjde

[V1+a2—1]S|[V1+a2-b|+[p-1SV2-1,

odkud plyne V1 + a2 £ /2, tedy |a| £ 1.

Podobné seétenim (4) a (5) dostaneme
[V1+a®+a|SV2-1.
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Protoze /1 + a2 > |al, je vnitiek absolutni hodnoty kladny,

tedy
V1i+a?<V2-1-a,

po umocnéni
14+a? <241+ a?-2vV2-2av2+ 2q,

tedy a £ —1. To spolu s predchéazejici podminkou |a| £ 1
dava a = —1.

" Dosazenim do (5) dostaneme |\/§ -b <1 (V2 -1), coz
znamena, ze

\/§—b§——l, teda

5 (V2+1) b
Podobné ze (4) plyneb—1< 1 (\/5 —1), tedy

b< < (\/—+1)

3
[\
N =

Celkem tak mame b = 1 (\/_+ 1).

Na zavér se jesté presvédéime, ze pro a = —1, b =
= 1 (V2+1) a pro kazdé z € (0, 1) plati (2) (to neni viibec
samoziejmé).

Protoze

0< (x—ﬁ)zz 22% - 2v2z + 1),

1
2 5(
1-2? L2 - 2V2z + 2,

Je
V1-22<V2 -z,
1—x2+z—1-%(\/§—1) ;(\/5—1),

tedy
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\/1—1'2—a:c—b§%(\/§—1)
proa:—l,b:%(\/5-}-1).1%0:66(0,1) dale plati
11—z <V1-"22
~ S (VB ) SVIm a4z -1- L (VE-1),

tedy

_%(\/5_1)§\/1—x2—am~b

proa=—1,b=1(v/2+1). Tim je platnost (2) ovéfena.

1.4 1.¥eseni. Rozdélme tabulku na éty-

F1 ¢tverce 995 x 995, které oznaéime A, A B
B, C, D (obr.26). Pro X € {A,B,C, D}

oznafme by (resp. cx) pocet bilych (resp.

Cernych) Ctvereckd ve étverci X. Vzhle- ¢ D
dem k pozadované stfedové antisymetrii b8

je bA =cCp.

Ma-li kazdy rfadek ¢i sloupec obsahovat stejné bilych i ¢er-

nych ¢tverecku, musi byt

ba+bg =995 a bg+bp = 995%

Je tedy by = 9952 — bg = bp a by = cp. Odtud plyne, ze
9952 = ¢p 4+ bp = 2by4, coi je spor, nebot ¢islo 9952 je liché.

Obarveni pozadovanych vlastnosti tedy neexistuje.

2. FeSeni. Zachovejme rozdéleni na ctverce A, B, C, D.
Protoze bg + ca = 9952 je liché, je by # c4. Bez Gjmy na
obecnosti mizeme predpokladat, ze by > ca, takze bp <
< cp.Z rovnostibs+bpg = cqs+cp plyne nerovnost bg < cp.

Pak ale bg + bp < cg + cp, coz je spor.
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3. FeSeni. Policko a;; v tabulce nazveme vodorovné, ma-li
stejnou barvu jako pole a; 1 991—j, a nazveme je svislé, pokud
ma stejnou barvu jako pole ajg91—; ;. Z vlastnosti tabulky
plyne, ze kazdé policko je bud vodorovné, nebo svislé (ale
nikdy oboji najednou — dokaizte!). Kazdy fadek obsahuje
sudy pocet vodorovnych bilych, kazdy sloupec obsahuje su-
dy pocet svislych bilych poli¢ek. Celkem tedy je v tabulce
2p-1990 vodorovnych bilych a 2¢ -1 990 svislych bilych poli.
Celkovy pocet bilych policek %1 9902 by tak byl délitelny
CtyFmi, coZ neni mozné.

1.5 (podle P. Vrbackého). Oznaime k kruznici opsanou
trojihelniku ABC, [ kruznici opsanou trojihelniku DFC
a m kruznici opsanou trojihelniku EBD. Prozatim pred-
pokladejme, Ze existuje prusecik X # C kruznic k a l, ktery
lezi v poloroviné CDF (obr. 27).

Oznatme a = |AABX|. Pak |JACX| = |QFCX| =«
(Ctyfahelnik ABCX je tétivovy) a |[AFDX| = |IFCX| =
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= a (FCDX je tétivovy). To vSak znamena, ze ¢tyrahelnik
EBDX je tétivovy, tj. X lezi téz na kruznici m. (Tento
dikaz plati nezavisle na poradi bodi F' a X na kruznici [
— je jasné pro¢?!)

Pfedpokladejme ted, ze priise¢ik X lezi v poloroviné
opaéné k CDF (obr.28). Oznalime-li @ = |IABX]|, je
opét |FACX| = |IFCX| = a, a proto |IFDX| = n —
—|AFCX|=n—a (FCDX je tétivovy). Odtud dostaneme,
ze EBDX je tétivovy, tedy bod X lezi i na kruznici m.

Obr. 29

Pokud X = D, je tvrzeni trividlni. Vynechali jsme pfipad,
kdy k a ! maji jediny spoleény bod C (obr.29). Necht g =
= |IABC]|. Je-li t spoleénd teéna kruznic k a [, zvolme na
ni bod P v poloroviné ACD. Potom | JACP| = 3 (tzv. Gse-
kovy thel odpovidajici obvodovému thlu 3 na kruznici k).
Z toho pro kruznici [ plyne, 7e |IFDC| = n — a, a proto
Ctyfahelnik EBC D je tétivovy, tj. bod C lezi na m.

Poznamky. Diskusi lze podstatné zjednodusit, budeme-li
pouzivat orientovany thel dvou prFimek: orientovanym
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thlem (p, ¢) dvou riznobézek p, ¢ (v tomto pofadi!) rozu-
mime ten Ghel, o ktery se musi prfimka p otoéit v kladném
sméru kolem spolecného priseciku, aby splynula s pfim-
kou ¢ (obr. 30). Snadno potom zjistime, Ze plati nasledujict
ponékud kompaktnéjsi verze véty o obvodovych thlech:
Bod X ¢ {A,B,C} leii na kruznici opsané trojihelniku
ABC, pravé kdyz (AX,XC) = (AB, BC).

q

Obr. 30

V dané situaci mizeme piredpoklddat, ze druhy prise-
¢ik X # C kruznic k a [ je rizny od bodd B, D (ji-
nak k& = [ a tvrzeni je trividlni). Protoze body A, B,
C, X lezi na kruznici k, je (AB,BX) = (AC,CX) =
= (FC,CX), a podobné pro body C, F, X, D na kruznici [
dostaneme (F'C,CX) = (FD,DX) = (ED,DX). Je tedy
(EB,BX) = (AB,BX) = (ED,DX), coz znamena, ze
body B, D, E, X lezi na kruznici.

1.6 Ozna¢me Gp(uq,...,u,) geometricky primeér cisel
Uy, ..., up. Pak plati

Gu(ui+vi,...,un+v,) 2 Gn(ul,...,un)+Gn(v1,....,vn)

(k dikazu tohoto tvrzeni stali seéist nerovnosti me-
zi aritmetickym a geometrickym primérem pro n-tice
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Uy Unp vyl VUp ~ o v
(5550 o) & (555 o1 o557)) takie miiZeme

psat
Gn(f(z1), .-, f(zn)) =
=Gn(az? + by +c,...,azl 4+ bz, 4 ¢)
> Gplaz?, ... az’) + G, (bzy,. .. bxy)
+ Grl(e,...,c) =
=a(Gn(z1,...,20))" + bGn(zy, ... zn) +c =
a+b+c=1,

z
+

nebot Gp(z1,...,z,) = 1. Umocnénim dostaneme pozado-
vané tvrzeni.

Jiny postup. Levou stranu nerovnosti, tj. soucin
(az? +bzy +c)...(az2 + bz, +c),

roznascbime a slouc¢ime cleny, v nichz vystupuji a, b, ¢ se
stejnou mocninou. Pravou stranu pozadované nerovnosti
lze napsat ve tvaru 1 = (a + b + ¢)*, coz také roznéso-
bime. Pomoci nerovnosti mezi aritmetickym a geometric-
kym primérem ukazeme, ze koeficient u ¢lenu a'b/ =i~
na levé strané nerovnosti je nejméné roven odpovidajicimu
koeficientu na strané pravé. Nedostatkem tohoto postupu je
naroc¢nost zapisu reseni. (Z toho divodu uvadime jen hlavni
myslenku dikazu.)

Tvrzeni lze také dokazat matematickou indukei.

Pro n = 1 je tvrzeni trividlni. Pfedpokladejme, ze tvrzeni
plati pro n = k, a dokazme je pro n = k + 1. Bez Gjmy na
obecnosti mizeme predpokladat, ze 1 S 29 S ... £ Tg41.
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Protoze soucin Cisel z1,..., 241 je roven jedné, je zfej-
mé zy £ 1, zx41 2 1. Ukazme nyni, ze f(z1)f(zk41) 2
2 f(z12k+1). Jednoduchou Gpravou méame

f(z)f(zr41) = f(z1ze41) =

= (az? 4 bz + c)(a:r%+1 + by + ) —
—(a+b+c)(aziz},, +bzizk1 + ) =

= abz1ziq1(l — z1)(zp41 — 1) +ac(l — 23)(zfy, — 1) +
+be(l —z1)(zk41 — 1) 20,

takze

f(z1) .- f(ze)f(zetr) 2 f@rze41) f(22) - flzi) 211

dle indukéniho predpokladu.

Na zavér uvedme jesté ndznak feseni (J. Kolaf, J. Men-
sik), které vyuziva téch vlastnosti funkce f, které jsou pro
platnost nerovnosti podstatné (nerovnost plati pro mnohem
obecnéjsi funkce). Z Cauchyovy nerovnosti pro kladnd ¢isla
z1, £9 dostaneme

((Vaz) + (Vov/an)" + (v/o)") -
((Vam) + (VBE) + (V)') 2

2 (az1zo + b\/z122 + c)2 ,

neboli

fle)f(x2) 2 (F(VErE))".
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Odtud snadno dostaneme (pfidame-li k ¢islim z; nékolik
jednicek, miizeme predpokladat, ze n je tvaru n = 2¥ pro
k22)
f(@1) ... f(zn) 2
2 (f(VEE)” . (f(VEn12m)" 2
2 (f(\‘/$1$21231:4))4 e
L. (f(\‘/:c,,_3.17,l_2:r:,,_1:1:,,))4 2.2

(f(/z1z2. 20 ))n = (f(l))" =1.

v

N
1.7 (podle S. Kasala). Krychli oznaéime ABCDEFGH
(obr. 31). Odfizneme z ni CtyTi rohy, a to tak, ze roviny fezu

H G

f

Obr. 31

jsou BDE, BDG, EGB, EGD. Kazdy odfiznuty Ctyfstén
lze vyplnit pozadovanymi trojicemi — dukaz je zfejmy
z nalrtki na obr.32. Uprostied zbyva ¢tyistén BDEG,
dokazme, ze jej lze vyplnit ,hvézdickami“ 7F sestavenymi
ze dvou trojic (se spoleénym vrcholem). Vsimnéme si, Ze
jeho vodorovné fezy (tj. ty rovnobézné s podstavou ABCD)
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vypadaji postupné tak jako na obr.33. V kazdé této ,vr-
stvé“ lze hrany jednotkovych krychlicek zjevné rozdélit do
HKFizka“ "" Doplnime-li ,krizky“ na ,hvézdicky“, lze na-
hlédnout (pfedstavime-li si dvé vrstvy nad sebou), Ze tim
vyCerpame presné vSechny hrany lezici ve ¢tyfsténu BDEG.
Tim je diikaz hotov — krychli jsme rozlozili pozadovanym
zpusobem.

L b

Obr. 32 Obr. 33

2. Feseni (dle M. Kone¢ného). Danou krychli umistime do
kartézské souradné soustavy tak, aby pocatek byl v nékte-
rém vrcholu krychle a souradnicové osy obsahovaly nékteré
tfi hrany krychle. Body (a, b, ¢),kde a,b,c € {0,1,...,100},
oznacime K, . a nazveme je uzly. Mnoziny uzli tvaru

Dyy = {Ksy,:: 2€{0,1,...,100}} (1)

nazveme tfadami ve sméru z; podobné definujeme rady ve
sméru ¢ a y. Konetné oznaéme G = {Kqp.:a + b+
+ ¢ je délitelné 101}.

Vsimnéme si, ze v kazdé fadé lezi pravé jeden uzel z mno-
ziny G. Skutecné, napf. v fadé (1) probiha soucet z + y+ 2z
mnozinu {z+y,z+y+1,...,2+y+100}, coz je 101 po sobé
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jdoucich prirozenych cisel; je tedy mezi nimi pravé jedno,
které je délitelné 101.

Uvazujme nyni uzel K ¢ G. V fadé ve sméru z, kterd bod
K obsahuje, lezi podle posledniho odstavce pravé jeden uzel
patfici do G — oznaéme ho K’; zfejmé K’ # K. Pfifadme
nyni bodu K jednotkovou hranu ve sméru osy z, ktera z néj
vychdazi, a to ve sméru ke K’. Podobné prfifadime hrany ve
smérech os y a z. Tim jsme kazdému uzlu K ¢ G pfiradili
trojici navzajem kolmych jednotkovych hran se spolecnym
vrcholem K. Dokéazeme, ze tyto trojice tvori kyzeny rozklad
dané draténé krychle. Pfedné je jasné, ze kazda hrana je
pouzita nejvyse jednou: kdyby jednotkova hrana AB byla
prifazena uzlu A i uzlu B, musel by nékde v jejim vnittku
lezet bod z G, coz neni mozné. Navic neni zddna hrana AB
vynechana: pravé v jednom sméru AB nebo BA najdeme
uzel L € G; je-li nyni napf. A déle od L nez B (pfipadné
mize byt L = B), pak byla hrana pfifazena bodu A. Se-
strojeny rozklad krychle na trojice jednotkovych hran tedy
spliiuje podminky ze zadani.

Na zavér poznamenejme, ze oba zpusoby lze pouzit 1 na
krychli n x n x n; druhy z nich funguje dokonce i pro
vicerozmérné krychle. ’

2.1 (podle J. Kolafe). Vyuzijeme toho, Ze kruznice k;
a ko (obr. 34) jsou stejnolehlé podle stiedu A. Mizeme tedy
napsat

|AX| _ |AB|
|AB| ~— |AY]|’
takze
|AB|* = |AX||AY]. (1)
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Obr. 34

Pro mocnosti bodu A ke kruznicim k; a k, plati

|AX||AB| = |AC?,
|AB||AY| = |AD|?,

vynasobenim dostaneme
|AX||AY ||ABJ* = |AC|ADF",
dosazenim z (1) po odmocnéni vyjde
|AB|® = |AC||AD|. (2)

Body A, C, D jsou kolinearni a A lezi vné kruznice [.
Protoze mocnost bodu A ke kruznici [ je (podle (2)) rovna
|AB|?, musi byt AB tetna kruznice I. (Kdyby nebyla, exi-
stoval by druhy prusecik X pfimky AB a kruznice [, tedy
|AX| # |AB|, a pomoci mocnosti dostaneme |AC||AD| =
= |AB||AX| # |AB|* = |AC||AD], co# je spor.)

Kruznice [ je opsana trojihelniku BC'D a pfimka AB
je tedy jeji te¢nou. Protoze |AB| = |AB’|, plati vztah (2),
a tedy 1 dokazované tvrzeni platii pro body B’, C, D a diky
symetrii i pro zbylé kombinace C’, D', B a C’, D', B'.
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Jiny zpusob feseni vyuziva obvodovych a tsekovych Ghla
(M. Konecny, obr. 35). Oznatme o = |ACBA| a X obraz
bodu B ve stejnolehlosti se sttedem A, ktera prevadi mensi
z obou kruznic na vétsi. Stejnolehlost zachovava velikost
Ghli, tedy |[IDXA| = .

Obr. 35

Usekovy tthel C DB oblouku DB vétsi kruznice ma také
velikost a. Je tedy |ACBA| = |ACDB|, to ale znameni,
ze CBA je tsekovy uhel k oblouku C'B kruznice opsané
trojihelniku BC'D a ptimka AB je te¢na této kruznice
(postup pro druhy priseéik B’ vepsanych kruznic je stejny).

2.2 Nejprve dané Cislo rozlozime na soucin
32n+1 _ 22n+1 _ 6n - (311 _ 2n)(3n+1 + 2n+1).

Pro n = 1 je vyraz roven 13, coz je prvoéislo. (Tento krok
mnozi z vas zapomnéli udélat a soustfedili se pouze na
pfipad n > 1 — znamenalo to ztratu pul bodu.)

Pro n > 1 jsou vyrazy v obou zavorkach vétsi nez 1
(v druhé zavorce je to zfejmé a vyraz v prvni zavorce lze
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n—l . .

pro n > 2 napsat jako 3" — 2" = Y 3'2"~1-% > 1) jejich
i=0

soucin je tedy sloZené Eislo.

2.3 (M. Kordos). Ozna¢me AB a C'D ty mimobézné hra-
ny, které maji nejmensi vzdalenost d (obr. 36) a promitnéme
¢tyfstén do roviny kolmé na CD (obr. 37).

CI:DI

ap az

A’ a B’
Obr. 36 Obr. 37

Vysky v trojuhelniku A’B’C’ jsou obrazy pficky mimo-
bézek a dvou télesovych vysek a zachovdvaji jejich skutecné
velikosti d, hy a hy. Oznaéme |A'B’'| = d, |A'C'| = ay,
|B’C’| = ay délky jeho stran a pfedpokladejme, ze

2d < hy, 2d < hy. (1)

Obsah P trojahelniku mizeme vyjadfit tfemi zpisoby
jako

1 1 1
P = = h = - = - 4 .
2(11 1 202’12 2(1 d
Po dosazeni z nerovnosti (1) dostaneme

2a; £ad', 2a;<d,
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takze

a;+a; <d.

To je ale spor s trojahelnikovou nerovnosti.

Proto alesponi jedna z vysek hi, hy je mensi nez 2d, tedy
1 nejmensi vyska h je mensi nez 2d.

Jiné feSeni (Z. Pezlar). Necht nejkratsi vzdélenost mimo-
béznych hran je pficka mimobézek AB a CD. Jeji priseéiky
s pfimkami AB a CD oznaéme po fadé A;, C; (obr.37).
Piedpokladejme, Ze

|CCy| 2 |DC| (2)

(sem lze zaclenit i pfipady, kdy bod C} lezi mimo tsecku C D
za bodem D). UvaZujme rovinu g rovnobéznou se sténou
ABC a prochazejici stfedem télesové vysky z vrcholu D na
sténu ABC (oznacme ji hp). Vzdélenost rovin ABC a g je
tedy $hp. Bod Cy lezi (podle (2)) v poloprostoru uréeném
¢ a bodem D. Proto je nutné

1
d= |A101| > EhD,

¢imz je dikaz hotov.

Poznamka. Nerovnost 2d < h dostaneme v 1. feSeni pfimo
z nasledujici avahy: Je-li d vzdéalenost hran AB, C'D, vyska
C'X, trojahelniku A’B’C’ na stranu A’B’ mé velikost d
(dalsi dvé vysky jsou télesovymi vyskami daného Ctyfsténu),
a je-li naptf. |A'X;| < |B'Xi], je také (obr.38) |A'Y| <
< 2d a v pravouhlém trojihelniku A’B’Y je zfejmé vyska
z vrcholu A’ mensi nez odvésna A'Y .
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Cl

d
Al X4
Obr. 38

2.4 Nejvétsi nejasnosti se tykaly pojmu uzaviena lomend
¢ara. V pripadé sestitthelniku je na obr. 39 lomena cara, na
obr. 40 uzaviena lomena Cara, zatimco atvar na obr. 41 neni
lomené ¢ara. Ani Gtvar na obr.42 neni lomend céra, ale
jedna jeho podmnozina je uzaviend lomend ¢ara. Z obrazkid
je také patrno, Ze uzaviena lomena Cara nemusi spojovat

PN

vSechny vrcholy n-thelniku.

Obr. 39 Obr. 40

Obr. 41 Obr. 42
Protoze vétsina feSiteli ovlada terminologii teorie gra-
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fd, prfeformulujeme tlohu do pfirozenéjsi podoby. Nejprve
strucné uvedeme prislusné pojmy: strany a ahlopti¢ky kon-
vexniho n-thelniku se nazyvaji hrany aplného grafu o n
vrcholech; uzaviend lomend ¢ara slozend z hran grafu se
nazyva kruznice; souvisly graf bez kruznic se nazyva strom;
graf, jehoz kazda komponenta souvislosti je strom, se nazyva
les.

Uloha tedy zni: Pro kazdé k uréete maximalni n tak, ze
hrany uplného grafu o n vrcholech lze obarvit k& barvami
tak, Ze kazdy graf uréeny hranami stejné barvy je les.

Reseni. Nejprve dokdzeme jednoduché lemma.

LEMMA. Kazdy les o m vrcholech ma nejvyse m — 1 hran.

(Toto je notoricky zndmé tvrzeni a viceméné staéi odkaz
na literaturu. Vétsina pilbodovych ztrat je dusledkem chyb
v dikazu tohoto lemmatu.)

DUKAZ. Indukci podle m. Pro m = 1 tvrzeni zfejmé plati.

Predpokladejme, ze tvrzeni plati pro néjaké m 2 1, a uva-
zujme les o m + 1 vrcholech. Kazdy les obsahuje vrchol
stupné mensiho nez 2 — v opacném pripadé uvazme cestu
vov1v3 . .. definovanou rekurzivné tak, ze wvi4q je vrchol
spojeny hranou s v; a rizny od vk_;. Protoze pocet vrcholu
Jje konecny, existuji indexy i < j tak, ze v; = v; a v;, vit1,

.., vj = v; je kruZnice.

Necht vy, 41 je tedy vrchol stupné mensiho nez 2. Graf
vznikly odstranénim tohoto vrcholu je les o m vrcholech
a podle indukéniho pfedpokladu ma nejvyse m — 1 hran,
uvazovany graf o m + 1 vrcholech ma nejvyse m —1+1 =
=m=(m+1)—1 hran.

Predpokladejme, ze pozadované obarveni existuje. Podle
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uvedeného lemmatu je kazdou barvou obarveno nejvyse
n — 1 hran, celkem tedy graf obsahuje nejvyse k(n — 1)
obarvenych hran. Protoze plny graf ma ('2‘) hran (a kazda

je obarvena), je

odkud plyne nerovnost

n < 2k.

Dokazeme matematickou indukci, Ze pro n = 2k pozado-
vané obarveni existuje. Pro k = 1 obarvime snadno jedinou
hranu barvou b,. Pfedpokladejme tedy, ze pro néjaké k 2 1
a graf s n = 2k vrcholy obarveni existuje, a uvazujme graf
s n = 2k+2 vrcholy. Vezméme jeho podgraf's vrcholy vy, .. .,
vor Obarveny k barvami tak, ze kazda barva indukuje les.
Uvazme dva nové vrcholy vak41, v2k+2 a hrany incidentni
s témito vrcholy obarvéme takto:

hranu ViVok 41 barvou b;, i€{l,2,...,k},
hranu  wvgyiver42  barvou b, 1 €{1,2,...,k},
hrany vg4ivok+1, vivogss, ¢ € {1,2,...,k}, a hranu
V2k4+1V2k+2 barvou bgy;.

Je snadné se presvédcit, ze v barvach by, .. ., by nevznikly

kruznice a podobné barva by4; indukuje strom.

Neéktefi resitelé na tento dilezity krok zapomnéli. Vétsi-
nou uvadéli konstrukce, ze kterych nebylo zcela patrno, ze
barvy jsou pouzity disjunktné.
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Jiné FeSeni. Dokazeme jen, Zze pro n = 2k pozadované
obarveni existuje.

Oznaéme A, A, ..., Ay vrcholy pravidelného 2k-thel-
niku a obarvéme jednou barvou lomenou ¢&aru
A1A2kA2A2k—1 ... A Ak41. Dalsi barvou obarvime lome-
nou caru, kterou dostaneme otocenim kolem stfedu daného
2n-thelniku o dhel £, atd.

Neni tézké se presvédiit, ze takto bude kazd4 strana &i
uhlopricka obarvena pravé jednou z k barev a Ze nevznikne
zadna jednobarevna uzaviena lomend cara.

2.5 Lezi-li vsechny body na jedné pfimce (vektory jsou
rovnobézné), zvolime za Ag krajni bod a neni co dokazovat.
V jiném pripadé usporadame vektory podle velikosti orien-
tovaného thlu, ktery sviraji s vektorem a;, ¢imz dostaneme
konvexni m-Ghelnik pro m < n, protoze dva po sobé jdouci
vektory musi svirat Ghel mensi nez 180°, jinak by soucet
vSech vektori nemohl byt nulovy.

V tomto konvexnim m-thelniku vyberme tfi vrcholy A,
B, C tak, aby obsah tohoto trojihelniku byl mezi vsemi ta-
kovymi trojihelniky maximalni. Je-li K LM trojihelnik ta-
kovy, ze AB, AC, BC jsou jeho stfedni pricky, pak vSechny
vrcholy m-thelniku lezi uvnitf trojihelniku K LM (obr.43),
jinak by ABC nebyl maximalni, a navic Zadny z vrcholi ne-
lezi uvnitf ABC. Odtud plyne, ze pokud vezmeme postupné
-vektory lezici mezi AB, potom mezi C'A a nakoniec mezi
BC, dosdhneme timto pfeusporadanim toho, ze vsechny bo-
dy lezi v trojihelniku ABM podobném trojihelniku ABC.
Aspon jeden jeho thel je nejvyse 60°, a volbou oznaceni Ag
pro tento vrchol Gspésné koncime.
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K

Obr. 43

2.6 Nejprve dokazme pomocné tvrzeni. Oznaéme fq(z) =
=z¢7%—(z+d)”? kde z, a, d > 0. Potom funkce f; je
klesajici. Skutecné, je

9(z)
1

e e
1
o= (1 gy

. . 1 . . o . . AL
piitom jak — tak i g(z) jsou klesajici a navic kladné. Avsak
z

soucin kladnych klesajicich funkci je opét klesajici funkce,
takze 1 fg je klesajici.
Nyni vlastni feseni tlohy. Oznacme

F(-’L’l, Z2,T3,T4, .’85) =
=(zat2s) ™+ (22t 23) "+ (21 +22)7" =
—(Z1+23) %= (x2+2a) % — (22+25)7

mame tedy dokazat, ze plati F(zq,zs,z3,24,25) > 0. Po-
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lozme na chvili d = z3 — z5 > 0. Potom

F(zy, 2,23, 4, 25) — F(22, 22, 23,24, 25) =
= ((z1 4 22)"% — (z1 + 23)™%) —
= ((m2+22)™ % = (22 4+ 23)™%) =
=((z1+22) "= (21 +22+d)"%) -
— (24 z2)™ " = (2 + 22 +d)™) =
= fa(z1 + z2) — fa(z2 + z2),

coz je ale podle pomocného tvrzeni kladné &islo (jelikoz
z) < z2); je tedy

F(Il,$2,$3,1‘4,135) > F(£2)£2)£3yx4)x5)'
Avsak

F(zy,z0,23,24,25) =
=(z4+25) "+ (z2+22)7 % -
— (T2t z4) " = (z2+25)"% =
= ((z2 +22)7* = (22 +25)7%) -
—((za+22)™% = (a4 25)7%) =
= fa(z2 + 22) — fa(za + 22),

kde h = z5 — 22 > 0, takze podle pomocného tvrzeni je
F(zy, 22,23, 24,25) > 0. Tim je dikaz hotov.

2.7 (M. Koneény). Na avod poznamenejme, ze tfi body
na asecce povazujeme za trojihelnik s nulovym obsahem —
jinak by tvrzeni Glohy neplatilo. Dokazme nejprve lemma.
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LEMMA. Lezi-li v rovnobézniku KLMN trojihelnik
XY Z, plati pro jejich obsahy nerovnost S(XYZ) <
< 1S(KLMN).

DUKAzZ. Oznalme z, y, z vzdalenosti bodi X, Y, Z od
pfimky K L; bez Gjmy na obecnosti lze pfedpokladat, ze
z < y £ z (obr.44). Bodem Y vedme rovnobézku s KL
a oznacme W jeji prusecik s pfimkou X Z. Potom

S(XYZ)=S(XYW) + S(ZYW) =
= WYy =)+ 3 WY - ) =

= % IWY|(z —2) < %IKLIv = %S(KLMN).

N - .UM A
,W//\/7 A

Obr. 44 Obr. 45

Nyni k samotné tloze. Dany trojihelnik rozdélme stfed-
nimi prickami na ¢tyri trojahelniky — nazvéme je Ty, T,
T», T3 podle obr.45. Pokud v Ty lezi nékteré tfi z danych
péti bodd, urcuji trojihelnik s obsahem nejvyse S(Tp) =
= i— a jsme hotovi. Lezi-li v Ty pravé dva z danych bodu,
lezi napt. v T} jeden ze zbyvajicich tii; diky tomu v rov-
nobézniku Ty U Ty lezi tfi z danych bodi a dle lemmatu
trojihelnik jimi uréeny ma obsah nejvyse £ S(Tpo UTy) =
= %. Pokud v Ty je pravé jeden dany bod, musi podle
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Dirichletova principu v nékterém T;, i € {1,2,3}, lezet
aspon dva ze Ctyf zbyvajicich — necht je to v Ti; pak opét
v rovnobézniku Ty UT) lezi tfi z danych bodi a trojahelnik
jimi urceny ma opét obsah nejvyse %.

Zbyva pripad, kdy v Tp neni zadny z danych bodu. Lezi-li
pak v nékterém z trojahelnika T3, T3, T3 aspon tfi dané
body, urcuji opét trojihelnik o obsahu nejvyse S(T;) = %
a jsme hotovi.

Staci tedy uz jen vysetfit pripad, kdy v Ty neni zadny
bod a ve zbylych tfech trojahelnicich 7T; jsou po fadé 2, 2
a 1 z danych bodi. Necht napf. v T3 jsou dva — nazvéme
je K, L (obr.46). Vedme bodem R rovnobézku p s pfimkou
K L; ta zfejmé mize rozetinat nejvyse jeden z trojihelnika
T1, T> — necht napf. nerozetind T;. V T} lezi aspon jeden
z danych bodi — oznac¢me ho M. Potom ale M lezi v pasu
mezi rovnobézkami p a K L, a jeho vzdalenost od K L je tedy
nejvyse rovna vzdalenosti bodu R od pfimky K L. Proto

S(KLM) < S(KLR).
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Ale podle lemmatu S(KLR) < 1S(T5 UTy) = 5. Tim je
dikaz hotov.

3.1 Soucet n za sebou jdoucich éisel zacinajicich p je
n(n—1
p+(p+1)+...+(p+n—1)=np+—(-——)=

2
_n(n+2p-1) )

B 2
takze soucet 1990 za sebou jdoucich ¢isel je

995(1 989 + 2p). (2)

Hledané cislo C je proto tohoto tvaru.

Podle (1) pro kazdou dvojici A, B, A < B, délitelu &isla
2C = AB (vyjma dvojice 1, 2C) existuje rozklad na pfislus-
ny pocet scitanct, kterych je A anebo %A podle parity A
(a obracené). Proto 2C musi mit 2(1990+ 1) déliteld (z (2)
vime, ze C je liché).

Je-li D = pi‘pg’ ...pir rozklad &isla D na prvoéinitele,
je pocet jeho déliteld (i3 + 1)(32 + 2)...(in + 1). Protoze
2-1991 =2-11-181, m4 &islo 2C tfi prvocinitele a ty musi
mit exponenty 1, 10, 180.

Z (2) vidime, Ze C je liché a ma délitele 5 a 199, protoze
995 = 5 - 199. Proto exponent u 2 v ¢isle 2C je 1 a pro C
zistavaji moznosti C; = 510199180 5 ¢, = 5180. 19910,

3.2 Nejprve dokazeme lemma.

LEMMA. Jestlize v trojihelniku ABC plati « > f, pak
bod H¢ lezi na polopfimce VoA a bod T¢ na polopfimce
Ve B.
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DUKAZ. Jestlize a < 90°, pak

oty

|SHcCA| = 90° —a < 90° — 2 = % = |qVeCA|.

Tedy Hc lezi na polopfimce VoA (pro a 2 90° je to
ziejmé). Oznaéme A’ bod soumérny s vrcholem A podle
pifimky CVe. Bod A’ lezi uvniti Gse¢ky BC. Trojuhelniky
AVeC a A’V C maji stejny obsah, ktery je mensi nez obsah
trojihelniku Ve BC'. Je tedy |AVe| < |Ve B| a odtud plyne,
ze Tc lezi na polopiimce V¢ B.

Bez (jmy na obecnosti predpokladejme, ze plati a« > 3 >
> 7. Necht trojuhelnik ABC je ostrouhly, tedy a < 90°
(obr.47). Z lemmatu plyne, ze bod H (stejné jako Hc) lezi
v poloroviné CVc A a bod H (stejné jako H ) lezi v polo-
roviné AV, B. Bod H tedy lezi uvnitf trojihelniku AV V.
Podobné z lemmatu plyne, ze bod T lezi v trojihelniku
VVaC. Uhel TV H je tedy vétsi nez tthel CV A. A protoze

[2CVA| = 180° —%—%:9o°+

B
2 )

je thel TV H tupy.

Nyni pfedpokladejme, Ze trojihelnik ABC' je tupouhly
nebo pravothly, tedy a 2 90°. Oznaéme S priseéik Gsecky
CTc s Gseckou AH,. Z lemmatu vyplyva, ze bod V lezi
v trojuhelniku T'SA (obr.48). Plati tedy

|ATVH|>|ATSH| = |ACSA| > |ACHA| = 90°.

Opét jsme dokazali, ze Ghel TV H je tupy.
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C
Ta
T
Va VAH A
H4
S
A/
A He'le B A Vele B
Obr. 47 Obr. 48

Jiné FeSeni. Oznacme O stfed kruznice opsané trojihel-
niku ABC a FE stfed Gsecky OH. Z vlastnosti vyznacnych
bodl trojihelniku plyne, ze je OH = 30T, pficemz po-
dle Eulerova vzorce (viz napf. Ulohy MMO, str. 83, nebo
SMM, sv. 57 Nerovnosti v trojihelniku) plati |OV{|? = R?—
—2rR, kde r a R jsou poloméry kruznice vepsané a opsané,
a |VE| = $R — r. Odtud plyne, ze

VH=2VE-VO, VT= M,
takze
VH~VT:%(4VE-VE—VO-VO):—%r(R—2T)<0.

Proto je cos |ITVH| < 0 a Ghel TV H je tupy.

3.3 Pii prekladu této alohy z anglického originalu doslo
bohuzel k chybé. Misto ,,soucet druhych mocnin ¢islic“ mélo
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byt ,,druhd mocnina souctu €islic“. Tim se stfedné obtizna
tloha zménila v problém, jehoz korektni matematické feseni
nikdo nenalezl.

Vétsina FesitelG si pomohla programem na poéitadi,
coz jaksi do matematického seminafe nepatii (bilou vra-
nou byl A. Kubéna, ktery vse spocital ru¢né). Tém, ktefi
pouzitim vypocetni techniky opovrhuji, prozrazujeme, ze
f1991(219%°) = 16.

3.4 (Z. Pezlar). Jestlize tfi body roviny X, Y, Z nelezi
v pfimce, pak kazdy bod T roviny lze psat ve tvaru

3
T=aX+Y +asZ, Y ai=1,
i=1
a podobné kazdy bod T pfimky XY lze vyjadiit jako
2
T=a1X + asy, Za,- =1.
i=1

Nyni k vlastnimu feSeni. Oznacme prisecik pfimky CV
se stranou AB jako X. Je zndmo (a lze to dokdzat pomoci
podobnosti trojihelnikii anebo jednoduchym pouzitim si-
nové véty), ze

|AX| |AC| _ k
|[BX|  |BC| a
(viz napf. H. J. Bartsch, Matematické vzorce, SNTL, Praha,
1983, s. 311).

Protoze
V=pC+(1-pX a (a+b)X =aA+bB,
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je
V=a1A+ asB + a3C, t]. — =

Podobné dostaneme, ze

a9 é

)

a3 c

tedy
(a+b+c)V=aA+bB+cC.

Zvolme pro zjednoduseni pocatek soustavy soufadné

v bodé A, tedy

(a+b+c)V=0bB+cC.

Ziejmé By = 3C, Cy = 1B, a pro jistd k al je By = kC,
Cy = IB, tj. |AB2| = kb, |AC3| = lc. Protoze By € C1V, je

By = ICV-{-(I —K)Cl

a podobné
Cy = AV + (1 - /\)Bl

Po dosazeni vyjde

K 1—«
A 1-2A

IB= —— -
B=—5——(bB+cC)+ —=C,

odkud porovnanim koeficienti dostaneme

a+b+e a+b+c
= —, A= — ———
a—b+ec a+b—c
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c b

T a—-b+ec’ T a+b-—c

Pro zminéné obsahy plati
| 1 .
Sapc = 3 besin a, SaB,c, = 5 bkclsin a.

Oba obsahy se zfejmé rovnaji, pravé kdyz kl = 1, neboli

c _a+b-c
a—b+c b
be = a® — (b—c)?,

b2 + ¢ — be = a2

) .

Ale podle kosinové véty

b2 + ¢? — 2bccosa = a?,

takze cosa = % aa=%.

Z postupu je ziejmé, ze Sapc = Sap,c, pravé tehdy,
Jestlize o = 3.

3.5 Nejprve ukazeme, Ze pocet trojihelnikd se dvéma
dobrymi stranami je vidy sudy. Sestrojme graf, jehoz uz-
ly odpovidaji trojuhelnikim rozkladu, pficemz dva uzly
spojime hranou, pravé kdyz pfislusné trojahelniky sdileji
Spatnou stranu. Podle pfedpokladu b) je stupei uzlu roven
poctu Spatnych stran ptislusného trojahelniku, takze vsech-
ny uzly maji stupen 1 nebo 2. Vysledny graf je disjunktni
sjednoceni kruznic a cest, pficemz kazda cesta ma dva uz-
ly stupné 1, odpovidajici dvéma trojihelnikiim se dvéma
dobrymi stranami (podle A. Kubény).
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Nyni ukéazeme, Ze vySe uvedeny graf obsahuje alespon
jednu cestu (elegantni dikaz je vyptjcen od J. Mensika).

Predpokladejme naopak, ze kazdy trojahelnik obsahuje
pravé jednu dobrou stranu. V takovém pfipadé mizeme
sestrojit lomenou ¢aru L, kterd spojuje stfedy ,,Spatnych
stran, a sklada se tedy ze stfednich pricek trojuhelniki
rovnobéznych s jejich dobrymi stranami. Pro ¢aru L plati
nasledujici tvrzeni (dokaZte si je sami):

(1) Kazda tsecka ¢ary L nalezi pfimce ¢ = j + % nebo y =
=k+ % pro néjaké celé j, 0 £ j < m — 1, & celé k,
0Sk<n-1.

(2) Céra L se sklada z neprotinajicich se cykld, které odpo-
vidajf cyklim v grafu z prvni ¢asti feSeni.

(3) Uvnitf kazdého ¢tverce 1 x 1 ma L délku 1 a nabyva
jednoho z téchto Sesti tvardt BO A M HAGE.

(4) Celkova délka Eary je mn, tedy licha.

(5) Délka kazdého cyklu éary L je suda. [K dikazu pouzij-
te napft. Sachovnicové obarveni ctvercu, kazdy uzavieny
cyklus prochazi stejnym poctem bilych a ¢ernych ctver-
ci.]

Tvrzeni tlohy plyne z (4) a (5).

Na zavér si ukazme protipiiklad pii vy-
kladu poymu ,,dobra strana“ = strana lezici
na pfimce z = j, resp. y = k a navic takova,
ze prislusné vyska je 1 — v takovém pFipa-
dé je ovéem pojem Spatné strany zavisly
na konkrétnim trojihelniku. (Kazda Spatna strana nalezi
dvéma trojahelnikim, ale v druhém trojihelniku nemusi
byt nutné Spatna.)
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3.6 Bez 0jmy na obecnosti mizeme predpokladat, ze hra-
na daného ¢tyfsténu ABC D ma délku 1; jeho télesova vyska
je pak h = \/g a objem V = 115\/5 Oznacme ah, bh, ch,
dh vzdélenosti bodu P od stén &tyfsténu ABCD (ah je
vzdalenost od stény naproti vrcholu A atd.). Jak zndmo,
platia+ b+ c+d = 1, coz plyne z toho, Ze objem CtyFsté-
nu ABCD je souttem objemu ¢étyfsténa PBCD, PACD,
PABD, PABC, neboli

1 1 1 1 1
ghS_gahS+gth+gchS+gth,

kde S je plocha (kter k- liv) stény daného Ctyfsténu.

Obr. 49

Ctrnact ¢asti, na néz je rozlozen ABC D (obr. 49), 1ze roz-
délit do t¥{ skupin. Za prvé jsou mezi nimi ¢tyfi pravidelné
CtyTstény se spoleénym vrcholem P a podstavami lezicimi
po fadé ve sténdch BCD, ACD, ABD, ABC'. Jejich télesové
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vysky jsou po fadé ah, bh, ch, dh; délky jejich hran jsou tedy
po fadé a, b, ¢, d a soucet jejich objemu je roven
Via® + b +c + d°).
Za druhé jsou mezi nimi ¢tyfi rovnobéznostény — kazdy
z nich m4 jeden vrchol v nékterém z bodu A, B, C, D, zatim-
co protéjsim vrcholem je P. VSsimnéme si napf. rovnobéz-
nosténu s vrcholem v A. Jeho stény jsou rovnobézniky, které
maji u vrcholu A a P thel 60°, druhé dva thly 120°. Své
tf1 hrany, vychazejici z vrcholu P, ma tento rovnobéznostén
spolecné se tfemi ze Ctyt pravidelnych Ctyfsténd z predeslé
skupiny (nakreslete si obréazek!); délky téchto hran jsou
tedy b, ¢, d. Odtud snadno nahlédneme, Ze objem tohoto
rovnobéznosténu je
V3 2. V2
—bc -y/=d=—1bed =6V - bcd.
2 Vit ‘
Podobnou Gvahu lze provést i pro ostatni tfi rovnobéznos-
tény. Do treti skupiny patii zbyvajicich 8 ¢asti, které nés
zajimaji. Soucet jejich objemt musi byt tedy roven
v(P) = V=V (a®+b3+c>+d®) -6V (becd+acd + abd+abc).
Tento vzorec upravime (dvojim) pouzitim vztahu a + b +
+c+d=1,
v(P)=V ((a+b+c+d)P®—(a®+b*>+3+d°) -
— 6(bed + acd + abd + abc)) =
=V3(a’(b+c+d)+b*(a+c+d)+
+c2a+b+d)+d*(a+b+c)) =
=3V (a*(1 —a) +b*(1 - b) +
+ c3(1 —¢) + d*(1 - d)). (1)
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Protoze a?(1—a) = —a(a’—a+§)+ta=—a(a-})?+1a
a podobné vztahy platii pro b, ¢, d, 1ze posledni vyraz déle
upravit na

o(P) = 3V (—a (a-—%)z-—b(b_%>2_
Sy ey

Odtud je ihned vidét, ze v(P) £ 3V. Protoze P leii uvnitr
Ctyfsténu ABCD, jsou a, b, ¢, d kladna cisla, takze rovnost
by mohla nastat pouze pro a = b = ¢ = d = }; to viak neni

mozné (a + b + ¢ + d = 1). Nerovnost tedy plati dokonce
ostfe. Zaroven ziejmé v(P) > 0, takZe celkem

0<v(P)<%V

pro vSechny vnitini body P ctyfsténu ABCD.

UkéazZeme, Ze vSechny hodnoty v tomto intervalu se naby-
vaji. Blizi-li se bod P vrcholu A,jea — 1,b,¢,d — 0 a podle
(2) tedy v(P) — 0. Blizi-li se P ke stfedu T hrany CD, je
a,b—0,c,d— 1, atak podle (2) v(P) — 2V. Probiha-li
bod P vsechny vnitini body asecky AT, probéhne v(P) cely
interval (0, 2V'). Hledanym oborem hodnot funkce v(P) je
tedy interval (0,3V).

Jiné FeSeni (V. Glasnék). Funkce f(z) = z(1 — z) je
konkavni na R; podle Jensenovy nerovnosti proto plati

4 4
;mif(xi) § f(gmi-'ci);
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pokud m;, i = 1, 2, 3, 4, jsou nezaporna Cisla se souc¢tem 1.
Pro m; = 21 = a, my = 9 = b, atd. dostavame

a?(1—a)+b*(1-b)+ (1 -c)+d*(1-d) £
<@ 4P 4P+ S T

protoze f(z) = z(1—z) = § — (z — )* £ § pro libovolné
z € R. Dosazenim do (1) dostavame

3
WP S5

a dalsi postup je jiz stejny.
3.7 Oznalme n celé nezaporné &islo, pro které plati
10% ST <= 1077

a ozna¢me M mnozinu vsech celych nezapornych Ccisel, je-
jichz zapis v desitkové soustavé ma nejvyse n cifer a obsa-
huje pouze cislice 0 a 1. Pocet prvki mnoziny M je 2.
Je-li 2" < k, plati 24 < k* < 107+ tedy 16 < 10"+,
odkud postupné plyne 1,6 < 10, n < 4, k* < 10%, k < 18,
a nasobek 1-k lze zapsat dokonce pomoci nejvyse dvou cifer.
Je-li 2" > k, existuji podle Dirichletova principu ¢éisla z,
y € M, z > y, kterd davaji stejny zbytek pii déleni islem k.
Cislo z — y je tedy kladné, délitelné k a mensi nez 10F <
< k*. Avsak z obvyklého algoritmu pro odéitani plyne, Ze
dekadicky zapis tohoto ¢isla mize obsahovat pouze cifry 0,
1, 8, 9: rozdily pfi od&itani dvou cifer budou bud' 1-0, 1-1,
0-0,10—1 (bez ,pfenosu®), anebo 1 — 1,10 — 1, 11 — 2,
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10—2 (pfi pfenosu jednotky z predeslého sloupce). Uvedeny
rozdil z — y tedy spliuje vSechny podminky ze zadani, ¢imz
je dikaz hotov.

4.1 (podle M. Volaufa). Pouzijeme dilezité LEMMA: Je-Ii
K konvexni mnoZina a P bod, ktery do ni nepatri, pak exis-
tuje pfimka prochazejici bodem P takova, ze K lezi v jedné
poloroviné uréené primkou p.

Je-li K konvexni mnohothelnik, je dikaz této vlastnosti
ziejmy: Zvolime libovolny bod @ uvnitf K a sestrojime
pruseéik T" Gsecky PQ s hranici K (ten musi byt jediny). Za
hledanou pfimku mizeme pak volit prodlouzeni té strany K,
které nalezi bod T' (je-li T' vrcholem K, miZeme si libovolné
vybrat ze dvou moznych stran).

Uzitim uvedeného lemmatu pro body R; = [1,0], R =
= [0,1], R3 = [-1,0], R4 = [0,—1] dostaneme po Fadé
ctyt1 pfimky p1, p2, p3, pa, které ohranicuji konvexni Gtvar
obsahujici K ve svém vnittku.

Predpokladejme, ze néktera z primek p; protina jednu
z os wvnitt intervalu (—1, 1) (obr. 50). Pak jedna z ¢asti KN
N Q; je obsazena v trojihelniku o obsahu nejvyse %, tedy
S(K)§4~%:2<4.

Neni-li tomu tak, omezuji pfimky p1, p2, p3, p4 konvexni
ctyrahelnik, ktery ma v kazdém kvadrantu jeden vrchol.
Soucet vnitFnich ahlua je 360°, existuje tedy alespon jeden
thel o velikosti nejméné 90°. Pokud p¥islusny vrchol A lezi
napf. v Q (obr.51), pak lezi uvnitf Thaletovy kruznice nad
primérem R;R,, anebo na ni. Obsah trojihelniku R3 ARs
je nejvétsi, je-li A = [1,1]. Cely ctyFahelnik ORy AR, pak
ma4 obsah 1. Je'tedy S(KN Q1) £ 1, pfitom je ovSem jasné,
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0\ 0 Rl\
p2

Obr. 50 Obr. 51

ze nemiize byt S(Q;) = 1 pro vsechna i = 1, 2, 3, 4. Proto
S(K) < 4.

Jiny postup: Pro ¢tyfihelnik ABCD omezeny piimkami
pi dokdzeme (obr. 52):

B, A,

T2 e
y T 41,
Az v, Uy B,
B, | A

Ay B4

Obr. 52

Bod A lezi bud v oblasti By, nebo A,. Je-li napf. v Ay, pak
B € A3,C € Ay, D € A;. Obsah ¢tyFahelniku ABC D vznik-
ne z obsahu ¢tverce Ry Ry R3R4 odeétenim obsahi trojthel-

175



nikd Ty, To, T3, T4 a pfi¢tenim obsahi U;, Uy, Us, Uy. Ukaze
se, Ze pro jejich obsahy plati S(U;) < S(Ti41) (Ts = Ty),
a proto obsah ABCD je mensi nez obsah Ry Ry R3Ra, tj. je
mensi nez 4.

4.2 (a) Pfedpokladejme, ze nékteré dva z bodi A;, Bi,
C1, D, splynou — necht napt. A; = B;. Pak oviem bod A
lezi na kruznici opsané trojihelniku BCD, tj. body A, B,
C, D lezi na jedné kruznici, a proto A; = B; = C; = D;.
Podobné lze postupovat i v pfipadé, ze splynou nékteré jiné
dva z bodd A;, B, Cy, D;. Tim je dokdzana prvni ¢ast
tvrzeni. Nadale budeme pfedpokladat, ze body A;, By, Cy,
D, jsou navzajem rizné.

Dokazme nyni, ze body A;, C; lezi v opaénych polorovi-
nach uréenych pfimkou B; D;. Rozlisime dva ptipady:

1. |XBAD| + |4BCD| < r. Protoze &tyrahelnik ABC D
je konvexni, takze body A a C' lezi v opaénych polorovi-
néach uréenych primkou BD, plyne odtud, ze bod C lezi
vné kruznice opsané trojuhelniku ABD, takze |C1C| >
> |C1A|. Podobné A lezi vné kruznice opsané trojihel-
niku BCD, takie |A;C| < |A14A|. Body A; a C; musi
proto lezet v opacnych polorovinach uréenych osou o4¢
pfimky AC.

2. |ABAD|+ |<xBCD| > n. Nyni bod C lezi uvnitr kruz-
nice opsané trojiuhelniku ABD a A lezi uvnitf kruznice
opsané trojihelniku BC'D. Odtud plyne |C;C| < |C1A]|
a|A;C| > |A; A|, takze body A, C} opét lezi v opaénych
polorovinach urcenych osou o4¢.

(Pro |XBAD| + |ABCD| = = je &tyfahelnik ABCD
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tétivovy a Ay = B; = C; = Dy; tento pfipad jsme vsak
vyloudili.)

Ze zadani plyne, ze By a D lezi na oa¢. Je tedy oa¢c =
= B;1D; a dikaz je hotov. Podobné lze ukazat, ze body B
a Dy lezi v opacnych polorovinach urcenych primkou A;C}.

(b) Pokud body Ay, By, Cy, D; splynou, je tvrzeni
trividlni; muzeme proto predpokladat, ze jsou navzajem
rizné, a tvori tedy — podle ¢asti (a) — konvexni ¢tyf-
thelnik. Z konstrukce plyne, ze A;B; je osa strany C'D,
proto A1B; L CD. Ze stejného divodu je CyD; L
L AlBl, tedy CcD || CzDz. Podobné AB “ Ang, BC ||
|| B2C2, DA || DyAs. Protoze By D, je osa Ghlopricky AC
a AzCy je osa uhlopficky BiDy, je rovnéz AC || A2Cs;
stejné tak BD || B2D,. Odtud jiz plyne, ze étyfihelniky
ABCD a Ay B,C3 D4 jsou podobné. (Skuteéné, oznacime-li
napt. S, Sy pruseciky uhlopricek ¢tyfahelniki ABC D, resp.
Ay ByC9 Dy, pak z téchto rovnobéznosti plyne

AABS ~ AA3B2Sy, ABCS ~ AByCS,,
ACDS ~ ACyD2Sy, ADAS ~ ADyA32S,,

a tedy 1 ABCD ~ AszCng.)

4.3 Pro a = 1 plati rovnost. Pro 0 < a < 1 vyuzijeme
Bernoulliho nerovnost

(1+z)" <1+ b, (1)

kterad plati proz 21,0 < b < 1.
Rozebereme dva pfipady. Necht nejdiive 0 < s < 1.
Polozme v (1) = s—1 (plati tedy z > —1) anecht b = 1—a
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(takze 0 < b < 1). Dostaneme tak nerovnost
s <1+b(s—1)
a odtud mame
(1+b)s® < (1+b)(1+b(s—1)) = 1+bs+b*(s—1) < 1+bs,
protoze s < 1. Vynasobime-li tuto nerovnost s®, dostaneme
(je s%s® = )
s* +bs't% > (14 b)s, (2)
znovu vyuzijeme Bernoulliho nerovnost (1) pro z = s
(14 s)" <1+ bs,
odkud podle (2) plyne
1—s > 1 _ 1—s _
= 14bs 1-s
5%+ bs'te — (14 b)s
(1+4bs)-(1—y9)
Z posledni nerovnosti po dosazeni 1 — a za b dostavame
_ 1—s® .. (148 1-s°
1 ’ Gil
(1+5) 1= 1+s 1-s
coz jsme chtéli dokazat.

—b
(1+s)" — T

> 0.

b

: > . . 1 .
Uvazujme ted s > 1. Zavedeme substituci s = B (Je 0 <

<t < 1) a mizeme vyuzit uz dokdzanou nerovnost z prvni
casti. Je tedy

l—s“__l—t“‘__tl__a 1—t“<
1-s  1-1 7 1-t
<tl_a.(1+t)“_(1+%)“_(1+8)“
1+t 141 7 14s

t
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Tim je dikaz aplny.

Uvedené feSeni nevyuziva vibec predpokladu, ze a je
raciondlni ¢islo (nerovnost samoziejmé plati pro libovolné
redlné a, 0 < a £ 1).

Jiné reSeni. Pfredpokladejme, ze a je racionalni ¢islo, tedy
k . P <
a = —, kde 0 < k < n jsou celd ¢isla, a polozme s = t" pro
n

t > 0. Mame dokéazat nerovnost

1—t5  14t+... +tk1 k_
_1+t+...+ <141t 1’
1—t"  14t4...+tr-1 =

coz je ekvivalentni nerovnosti
A4t+.. +tF A4 F < (A 4t4.. . +7 7 (3)

Tato nerovnost zfejmé plati pro k = n. Staci tedy dokazat,
ze leva strana nerovnosti (3) je rostouci funkei &, neboli ze
pro 0 < k < n plati

k n
1+t"<( L+t+...+t ) = @

SA\l4t+... k-1

Protoze A > 1, je ale

A" —t" = (A-t)(A" T+ A4 4 2

2(A-t)(1+t+...+t" )=

1
= (I4+t+... +t"H>1
14+t+...+tk-1 e )>1,

coz dava nerovnost (4).
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4.4 Prinik dané roviny g s kuzelem tvori podle véty Qué-
teletovy-Dandelinovy!) elipsu. Ozna¢me a, b délky jejich
poloos, S jeji stied, v = |PO| vysku daného kuzele a r =
= |PA| polomér jeho podstavy (obr.53). Objem kuzele pak
je

V = Znriy,

3

zatimco objem Césti, kterd obsahuje jeho vrchol O, bude
1
V' = —rabv’,
37a

kde v’ je vzdalenost vrcholu O od roviny g, tj. vzdalenost
O od primky AC.

P
Obr. 53 Obr. 54

1) Kolektiv: Aplikovand matematika. Praha, SNTL 1977, str. 963.
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Z podobnosti trojihelniki ABD ~ COD plyne
|AD| = 2|CD|,

takze 1 1
a = |AS| = 5 |AD| = 5 IACI

Oznafme n rovinu rovnobéznou s podstavou kuzele, jez
obsahuje vedlejsf osu elipsy EF. Protoze |AS| = $|AC|, lez
tato rovina ve tfetiné vysky kuzele, a jeji prinik s plastém
kuzele je tedy tvofen kruZnici o poloméru —g-r (obr. 54).
Z podobnosti ARST ~ ARAP plyne, ze |ST| = 3r. Odtud

Zbyva vypoéitat v'; ze vzorce pro obsah trojuhelniku OAC

vsak plyne
|OC|-v =2S(0AC) = |AC| -V,

takze
rv

'UI

Celkem tedy dostavame

1
V= gnabv’ = -;-n . % |AC| -

a proto
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1 1. . R ' ,
Protoze —= < —, je V'’ objem mensi ¢asti kuzele, a hledany

3V3 2

pomér je tedy roven L
3v3

4.5 Pripomenme, ze posloupnost uzlia vg, vy, ..., v, se
nazyva eulerovsky tah, pokud v;v;y, je hrana pro kazdé i =
=0,1,..., n—1 a pokud kazdd hrana grafu se v tahu
vyskytne pravé jednou (uzly se mohou na tahu opakovat).
Tah je uzavrieny, pokud vy = v, . Znadma Eulerova véta pravi,
ze v souvislém grafu existuje uzavreny eulerovsky tah, pravé
kdyz vSsechny uzly maji sudy stupen, a existuje neuzavieny
tah, pravé kdyz pravé dva uzly maji lichy stupen. (Dikaz
lIze provést indukci podle poctu hran nebo nalézt v kazdé
zékladni ucebnici teorie grafi.)

Uvédomme si, ze pro spravné vyrfeSeni tlohy je tfeba
dokazat implikace
(1) (p=2vg=2Vr=2)& D,
(2) (alespon 2 &isla suda) < D,
(3) (alespon 2 &islalichdap#2,¢q#2,r #2Apegr#1) &

& N

a také
(4) (p=2vqg=2Vr=2)& N,
(5) (alespon 2 ¢isla sudd) ¢ —N,
(6) (alespon 2 ¢&islalichdap#2,¢+#2,r#2) & D,
kde jsme pro struc¢nost jako D oznacili vyrok , kvadr lze slo-
71t tak, ze koncové krychlicky se dotykaji“, a jako N vyrok
»kvadr lze slozit tak, ze koncové krychlicky se nedotykaji“,
a — znaci negaci.

Umistéme kvadr p x ¢ x r v souradné soustavé tak, aby
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vrcholy jednotkovych krychli¢ek byly mrizové body a vrcho-
ly kvadru mély soutadnice (0,0,0), (p,0,0), ..., (p,q,7).
Uvazme nyni ctyrfi grafy:

Gisuzly {(2,9,2):0S2<p0Sy<q 028
<r,(z=y=2=0(mod 2))V(z=y=z=1 (mod 2))},
Gy suzly {(2,9,2):0 L2 <p0<y<q 0528
<Sr(z=1(mod2)Ay =2 =0(mod2)V(z=0
(mod 2)Ay=z=1 (mod 2))},

Gssuzly {(2,5,2):0 Sz <p0Sy<q 028
<Sr(z=2z=0(mod2)Ay=1(mod2)V(z=z=1
(mod 2) Ay =0 (mod 2))},

Gy s uzly {(2,4,2):0 S 2 < p0Sy<q 0828
Sr(z=y=0(mod2)Az=1(mod2)V(z=y=1

(mod 2) Az =0 (mod 2))}.

Pro kazdy graf G; plati, ze (z,y,2) a (z',y,z") jsou
spojeny hranou, pravé kdyz zéroven |t —2'| = 1, [y—y'| =1
alz—2'|=1.

FAKT 1. Hrany grafi G;, i = 1, 2, 3, 4, odpovidaji
télesovym uhloprickam jednotkovych krychlicek, a proto
Ize-1i alespon jeden z grafi G; nakreslit jednim (uzavre-
nym) tahem, lze kvadr slozit (tak, Ze se koncové krychlicky
dotykayji). '

FAKT 2. Lze-lIi kvadr slozit, pak nit provlecena krychlicka-
mi vytvori eulerovsky tah pro jeden z grafi G;. Tento fakt je
treba dokazat, a to jednak, ze vSechny ¢asti nité patri témuz
G; (indukci dle nité), jednak, Ze cely graf G; je nakreslen
(kazda hrana G; patfi krychlice, a kazda krychlicka ma
Jedinou télesovou thlopricku, jez tvori hranu Gj;).

FAkT 3. Proi = 1, 2, 3, 4 ma kazdy uzel grafu G; su-
dy stupen, s vyjimkou (pfipadné) vrcholi kvadru. (Vnitfni
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vrcholy kvddru maji stupen 8, vnitfni vrcholy stén stupen
4 a vrcholy lezici na hranach stupen 2.)

FAKT 4. Graf G; Ize nakreslit jednim (resp. jednim uza-
vienym) tahem, pravé kdyz nejvyse dva vrcholy kvéddru jsou
(resp. zddny jeho vrchol neni) vrcholem G;. (Uvédomte si,
ze kazdy G; je souvisly a pouZijte Eulerovu vétu.)

DUKAZ IMPLIKACE (2). Bez Gjmy na obecnosti mizeme
predpokladat, ze p = ¢ = 0 (mod 2). Potom zadny vrchol
kvadru neni vrcholem grafu G, dle faktu 4 lze G5 nakreslit
uzavienym tahem a dle faktu 1 plati D.

DUKAZ IMPLIKACE (3). Bez Gjmy na obecnosti miiZzeme
predpokladat, ze p = ¢ = 1 (mod 2). Potom graf G; ma
pravé.dva uzly kvadru, a to [0,0,0], [p, ¢, 7], pokud 7 je liché,
a [0,0,0], [0,0,7], pokud 7 je sudé. Kvadr tedy slozit lze,
navic prvni krychlicka obsahuje vrchol [0,0,0] a posledni
bud vrchol [p, ¢, 7], nebo [0,0, r], takze se nedotykaji, nebot
pgr#lap#2,q#2,r#2.

DUKAZ IMPLIKACE (1). Bez Gjmy na obecnosti mizeme
predpokladat, ze p = 2; vzhledem k (2) staéi implikaci
dokdzat pro ¢ = r = 1 (mod 2). Pak ale G; obsahuje
pouze dva vrcholy kvadru, a to [0,0, 0], [2,0, 0], podle faktu
4 a faktu 1 kvadr slozit lze, a navic koncové krychlicky se
dotykaji sténou s vrcholy [1,0,0], [1,1,0], [1,1,1], [1,0, 1].

DUKAZ IMPLIKACE (5). Bez Gjmy na obecnosti muze-
me predpoklddat, ze p = ¢ = 0 (mod 2). Pak G a G3
neobsahuji zadny vrchol kvadru, takze je nelze nakreslit
neuzavienym eulerovskym tahem, a proto v kazdém slozeni
kvadru podle G ¢ G3 se koncové krychlicky dotykaji.

Graf (i obsahuje naopak aspon 4 vrcholy kvadru
([0,0,0], [p,0,0], [0,q,0], [p,q,0]), takze neni eulerovsky.
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Podobné G4 neni eulerovsky pro r liché, zatimco pro r sudé
mé viechny stupné sudé, tudiz nejde nakreslit neuzavienym
tahem.

DUKAZ IMPLIKACE (4). Bez Gjmy na obecnosti mizZeme
predpokladat, ze p = 2, a vzhledem k (5) necht p = r =
= 1 (mod 2). Pak kazdy z grafi G; obsahuje dva vrcholy
kvadru, vzdy vrcholy o vzdélenosti 2, které ve slozeném
kvadru odpovidaji dotykajicim se koncovym krychlickdm.

DUKAZ IMPLIKACE (6). Bez Gjmy na obecnosti mize-
me pfedpokladat, ze p = ¢ = 1 (mod 2). Potom kazdy
z grafi G; obsahuje pravé dva vrcholy kvadru (pro r liché
jsou to protéjsi vrcholy, pro r sudé vrcholy spojené hranou
délky r) a ve slozeni kvadru podle G; se koncové krychlicky
nedotykaji.

Vsimnéte si zajimavé vlastnosti reseni. Pro kazdou trojici
parametri (p, q,r) plati bud D, nebo N, ale nikdy D i N
soucasné. Na tom je zaloZeno nasledujici feseni:

Jiné Feseni. Pouzijeme konstrukci grafi G;, 7 =1, 2, 3, 4,
fakta 1-4 a navic nasledujici fakt.

FAKT 5. Kazdy kvadr Ize slozit.

DUKAZ. Kvadr ma 8 vrcholi, kazdy z nich nélezi pravé
jednomu z grafi Gy, ..., G4. Proto aspon jeden z téchto
grafi obsahuje nejvyse dva vrcholy kvadru, a tedy jej lze
nakreslit jednim tahem. Podle tohoto tahu pak lze kvadr
slozit (netvrdime nic o dotykani koncovych krychlicek).

DUKAZ IMPLIKACE (6). Bez (ijmy na obecnosti miZeme
predpokladat, ze p = 0 (mod 2), a tedy i p > 2. Pfedpo-
kladeyme, ze kvadr je slozen tak, ze koncové krychlicky se
dotykaji. Uvazme rovinu ¢ = {(z,y,2z): 2 = t},0 <t <
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< p, t & Z, ktera neprotind zadnou koncovou krychlicku.
Obé krychlicky pak lezi ve stejném poloprostoru uréeném
rovinou p, takze nit ma s g sudy pocet pruseciki. Vrstva,
kterou prochézi rovina g, mé vsak ¢gr = 1 (mod 2) krychli-
Cek a uvnitf kazdé z nich pravé jeden prisecik nité s p. To
je spor.

DUKAZ IMPLIKACE (5). Jestlize lze kvadr slozit tak, ze
koncové krychlicky se nedotykaji, pak existuje vrstva, kterd
tyto krychlicky oddéluje. Je-li g rovina rovnobézna s touto
vrstvou, jez prochazi jejim stfedem, ma nit s g lichy pocet
priseciki, proto ma tato vrstva lichy pocet krychlicek, takze
alespon dva rozméry kvadru jsou liché.

DUKAZ IMPLIKACE (4). Bez Gjmy na obecnosti mizeme
predpokladat, ze p = 2, a vzhledem k (5) miZeme pfedpo-
klddat, ze ¢ = r = 1 (mod 2). Predpokladejme, ze kvadr
lze slozit tak, ze koncové krychlicky se nedotykaji. Opét
existuje vrstva, kterd tyto krychlicky oddéluje (viz pfed-
chozi odstavec). Protoze p = 2, je tato rovina rovnobézna
s hranou délky p, a tudiz obsahuje pq (resp. pr) = 0 (mod 2)
krychlicek; to je spor.

DUkAz IMPLIKACI (1)—(3) nyni plyne pfimo z (4)-(6)
a faktu 5.

4.6 (A. Kubéna). Pfedevsim existuje pravé jedno takové
N €{0,1,...,2"—1} s pozadovanou vlastnosti (kdyby exis-
tovala dvé N1 # Na, byl by souéin (1+2P +2"7P)(N; — N3)
délitelny &islem 2", coz nejde). Hledejme tedy zbytkovou
tFidu cisla N.

Ziejmé plati

(1427 +2""P)N = (1+ 2°)(1 +2""P)N (mod 2").
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Vime ale, ze n = mp 2 2p, takze 2n — 2p 2 n; je tedy
(142"7P)(1=2""P)=1-22""? =1 (mod 2"). (1)
Zaroven ovsem plati

(2P +1)(1 -2 4 2% — (- 12" P) =142 =
=1 (mod 2").

Odtud vidime, Ze

N =(1-2""7)(1-2P 422 — .. +(=1)""12""?) (mod 2").

Jednoduchym vypoctem snadno zjistime, ze cislo
N=1-2042% _ 4 (-1)mlon-P_9gn-P 9"

spliuje pozadavek 0 < N < 2". Abychom dostali vyjadfeni

Cisla N v dvojkové soustavé, rozlisime dva pfipady:

Je-lim = % sudé, je

N =2"—2n"P =P 4 9n=2p _
—2nTRP 42 P 4 ) =
=2"TP(2P —2) 42" P(2P — 1) +
4. 422 = 1)+ 1,

takze N ma v dvojkovém zapisu n Cislic rozdélenych do p-tic
takto:
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Je-lim = % liché, vyjde

N =9n —9n-P 4 gn—p _gn=2p 4 gn-3p _
—on Py 424 ]=
=2""P(2P — 1)+ 2"7(2P — 1) +

4277 (2P — 1) 4. 4 2P(2P - 1)+ 1.

Dvojkovy zapis N je tedy opét slozen z n ¢islic po p-ticich

11...1 11...1 00...0 11...1

P P p P
00...0 11...1 00...01.
—— S N —

4 4 4

4.7 Protoze p je kubicky mnohoélen, plati |p(z)/z| — oo
pro |z| — oo, existuje tedy pfirozené M > |q1| takové,
ze |p(z)| 2 |z| pro vSechna z takova, ze |z| 2 M. To ale
znamend, ze pro zadné n nemize byt ¢, 2 M, protoze pak
by bylo |gn—1| = |p(¢n)| 2 |gn|l 2 M, a jak snadno ovéfime
matematickou indukei, i |q1] 2 |g2] 2 ... 2 |gn| 2 M.

Predpokladejme nejprve, ze (qx )i >, je posloupnost celych
éisel. Podle predchoziho vysledku to ale znamend, ze takova
posloupnost nabyv4 jen koneéného poétu N < 2M + 1
hodnot. Pro kazdé m 2> 1 tedy najdeme ky,, 1 < k,, £ N,
takové, ze ¢m = ¢m+k,, - Protoze i odpovidajicich hodnot &,
je jen koneény pocet, je jasné, ze pro vhodné k plati rovnost
¢m = @m+k pro nekoneény pocet m 2 1. Pro libovolné n <
< m pak ovSem mame

qn = p(qn+1) =...= pm—n(qm) -
= pm—n(‘]m+k) =...= p(4n+k+l) = qn+k,
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kde pi(z) = p(z) a pj+1(z) = p(pj(z)) pro j 2 1. Odtud
hned plyne, Ze ¢n4k = qn pro kazdé n 2 1.
Za predpokladu, ze ¢ jsou celd cisla, je tvrzeni alohy
dokazano. Predpokladejme ted, ze q; = L J jsou racional-
Sk
ni &isla (rgx a sg jsou nesoudélnd celd &isla) a ze kubicky
mnohocélen p ma tvar

p(z) = ! (az® + ba? + cz + d) , (1)
e

kde a, b, ¢, d a e > 0 jsou celd ¢isla. Uvazujme prvocislo ¢,
které déli jmenovatel s; nékterého ¢lenu posloupnosti (g ).
Ukéazeme, Ze mocniny daného prvoéisla ¢, v nichz déli jed-
notlivé jmenovatele, jsou shora ohraniceny, tj. ze pro kazdé
takové ¢ existuje p takové, pro néz ¢**! nedéli zadny ze
Jmenovateld sg.

Predpokladejme naopak, ze tomu tak neni. Je-li tedy a =
=Aq®, b=Bq¢?, c=Cq",d= Dq¢° e = Eq° as; =mqh,
kde A, B, C, D, E a m; jsou cela ¢isla s ¢ nesoudélna, a k
libovolné takové, ze pp > p1. Potom muzeme psat

qk-1 = P(Qk) e P(gz—) =

1 rd r?
= —( Ag® k B B k
e ( q qSIJk m-z + Bq q2l-‘k m% +

1 B
= —Emsqaﬂk‘a+€ (AT‘? + Bmkriql‘lﬂ-ﬂ ay

+ka,.kq2uk+7 “+Dm3 3pk+6— a)
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Nyni staci vybrat k tak, aby citatel 7,_; byl s ¢ nesoudélny
a aby bylo pg—1 > px; tomu snadno vyhovime (za predpo-
kladu, Ze pr nejsou shora ohraniceny) volbou p, pro néz

B > p1, 2up > o, pp > a— 0, 2up > a—75, 3ur > a—6.

Je jasné, ze takto postupné dostaneme pp < pr_1 < ... <
< p1, coz odporuje volbé py.

Je-li tedy ted g¢; ten prvek posloupnosti (¢x), jehoz jme-
novatel obsahuje dané prvocislo ¢ v nejvyssi mocniné y > 0,
je bud 7 = 1, anebo vyjde ze vztahu (2), ze 3p—a+¢ S g,
tj. @ 2 2p+ ¢ > 0. Vidime, ze kazdé takové prvodéislo g
déli bud q;, anebo koeficient a mnohoélenu p. Prvoéisel ¢,
jez déli jmenovatele jednotlivych ¢lend posloupnosti (qx), je
tudiz jen konecny pocet a jejich mocniny jsou ohraniceny
jednim ¢islem. Odtud plyne, ze existuje spolecny jmenovatel

Q vsech gg, a pro kazdé k 2 1 mizeme psat g; = %
Pro libovolné k 2 1 je tedy

le =qk-1=p(qk)=p<%) =
(-
‘—‘GP(Qk)

pro kubicky mnohoclen

P(z) = =5 (az® + (bQ)z” + (cQ?)z + dQ°).

1
Q e
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Tento kubicky mnohoclen spliiuje rovnéz predpoklady tlohy
s posloupnosti (Qx) celych &isel, ktera je podle predchoziho
vysledku periodicka. Je tedy i posloupnost (gx) periodicka
a diikaz je hotov.

Uvedeme jesté strucné reseni, které cely uvedeny postup
skryva v sikovném pouziti véty o raciondlnich kofenech
mnohoclenu (zde doporucujeme ke studiu vybornou knizku
1. Korce Ulohy o velkjch cislech, SMM ¢.61).

Jiné FeSeni (struéné). Z predchoziho FeSeni uz vime, ze
¢leny posloupnosti (g ) lezi v ohrani¢eném intervalu. Pfed-

pokladdejme, ze mnohoclen p ma tvar (1) a ¢; = I, kde r, s
s

jsou nesoudélnd cela cisla. Ukazeme, ze pro N = sa je Ngx
celé ¢islo pro kazdé k 2 1.

To je jasné pro k = 1. Predpokladejme, ze Ngq; je pro
néjaké k 2 1 celé, a protoze qr = p(qk+1),je Nqi+1 kofenem
mnohoclenu

N (p(§) - @) = 27+ (sb)z? + (sPac)e +
+ ((%a2d) — (s%ae)(Nav)

s celoc¢iselnymi koeficienty. Podle zminéné véty ma tento
mnohoclen jediné celoéiselné racionalni kofeny (to plyne
z toho, ze jmenovatel kazdého racionalniho kofenu musi
délit koeficient u nejvyssi mocniny neznamé), takze Nqi41
je celé cislo. Podle principu matematické indukce je Ngj
celé pro kazdé k 2> 1.

Protoze mezi Cisly v absolutni hodnoté mensimi nez M

. 1 . .
je pouze 2M|N| -1 celociselnych nasobkii e ziejmé,
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ze posloupnost (¢x) mé pouze konecny poéet hodnot. Déle
postupujeme jako v predchozim fesSeni.

5.1 Oznacme a, b kolmice k pfimce AB vztycené v bodech
A, B a c¢,d kolmice k primce CD vztyéené v bodech C', D
(obr.55). Zfejmé K = aNe, H =bNd.

Necht S je stfed dané kruznice. Protoze Gsecka AB je
tétivou této kruznice, maji pfimky a a b od S stejnou
vzdalenost; jinymi slovy, ozna¢ime-li k stfedovou symetrii
podle bodu S, plati k(a) = b. Podobné x(c) = d. Odtud
plyne k(aN¢) = bNd, neboli k(K) = H, takze body K, S
a H lezi na jedné piimce. Tim je dokazano prvni tvrzeni.

Bu_p d
AN Se
: b
K /8
C C
a
Obr. 55

Oznafme P prusecik primek AD a BC' (pokud existuje).
Bod P miize lezet uvnitf, vné i na dané kruznici. Lezi-li na
ni,je P = B = D = H a tvrzeni trivialné plati. Ve zbyvaji-
cich dvou pripadech vidy |J<APB| = |ICPD| a navic,
podle véty o obvodovych thlech, |SABP| = |JICDP|
a|JIBAP| = | DCP|. Odtud plyne, ze trojihelniky ABP
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a C'DP jsou podobné. Musi tedy platit

vzdalenost P od a _ vzdalenost P od ¢
vzdalenost P od b ~ vzdalenost P od d

Existuje tudiz stejnolehlost &’ se stfedem v P takova, ze
K'(a)=b a K'(c)=4d

Pak ale opét
kK'(K)=+K'(anec)=bNd=H,

takze body K, H a P lezi na jedné primce.

5.2 Bez ijmy na obecnosti lze predpokladat, ze R 2 r.
Necht ABC'D je néjaky lichobéznik spliujici podminky tlo-
hy. Vrcholy oznaéme tak, aby BC byla zékladna a |BC| 2
2 |AD|. Pfimky, na nichz lezi ramena AB a C'D, jsou zfejmé
spoleéné tecny k danym kruznicim, jez neprochazeji body
dotyku (obr. 56). Podle Pythagorovy véty plati

C
D
KR
1% [A E F |IB
Obr. 56

|EF|? =518 = (R = 1) = (R+7)? = (R—r)* = 4Rr,
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takze |EF| = 2V Rr. Protoze

1
|AFBSy| = = |AFBC| = §(n— |AEADJ|) =

N AN —

- |QEA51| = |§:E51A|,

plyne z podobnosti pfislusnych pravothlych trojahelnik
rovnost

|FB|
"R |AE|
Zavedeme-li oznaceni |AF| = a, bude délka ramene AB
rovna

|AB| = |AE|+ |EF|+ |FB| =

Ja

pFi¢emz rovnost mize nastat jen pro a = V/Rr.

Jestlize R = 7, lze najit lichobéznik s libovolnym kladnym
a. Specialné tedy existuje lichobéznik s a = /Rr, a jeho
rameno AB ma tedy nejmensi moznou délku 4v/Rr.

Jestlize R > r, mize a probihat pouze interval 0 < a <
< |VE|, kde V je priseéik piimek AB a C'D. Z podobnosti
AV ES) ~ AV FSs plyne

\VE| _|VE|+|EF|

= (\f—@) +4VRr 2 4VRr, (1)

r R ’
odkud :
r 2rvV Rr
{VE|_R_T|EF|_ T
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7 predchozi rovnosti vidime, ze a = VRr < |VE|, pravé
kdyz R < 3r; pro R < 3r tedy opét existuje lichobéznik
s a = V/Rr a jeho rameno ma diky (1) minimalni moznou
délku 4v/Rr. Zbyvé vysetiit ptipad, kdy R > 3r, a tedy
VRr 2 |VE|. Vsimnéme si, ze funkce a — /a — \/Rr/a
je pro kladnd a rostouci (kdyz se a zvétsi, \/a se zvétsi
a y/Rr/a se zmensi); kromé toho je zaporna pro a < V/Rr
a kladna pro a > VRr. Protoze v uvedeném pripadé je
0 < a < |VE| £ VRr, plyne odtud nerovnost

Rr Rr
_ _ — <
Va \/ . <VI|VE]| ”lVE <0,

takze

Rovnost zde nemiize nikdy nastat; kdyz se vsak a bude blizit
k |VE| (to znamen4, ze A se blizi k V'), bude se leva strana
nerovnosti v limité blizit pravé strané.

Zjistili jsme tedy, ze kdyZ R < 3r, je nejmensi mozZna
délka ramene rovna 4V/Rr. Kdy? R 2 3r, nejmensi mozna
délka ramene neexistuje (nenabyva se); existuje pouze infi-

. NP . (R+r)?
mum vSech moznych délek, a to je rovno =—————+/Rr.
2r(R—r)
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5.3 (podle Z. Pezlara). Uvazujme vyraz v = 36% — 5'. Je

v=—(6-1) = (-1)"*! (mod 6)
v=(3541)F =1 (mod 5),

tedy
v=1 nebo v =11 (mod 30). (1)

Protoze 36 — 25 = 11, staci uvazovat uz jen |v| < 11, coz
podle (1) davd v = 1. To by ale muselo byt 36F — 5/ = 1,
neboli 5' = (6% — 1)(6* + 1), takze 6 —1 =5 a 6% +1 =5/
odkud plyne 2 = 5/ — 5, co# zjevné nemiize nastat (staci
probrat jednotlivé moznosti mod 5). Minimélni hodnota |v|
je tedy 11 = |36 — 52|.

Nyni uvazujme v = 53% — 37'. Pak

v= (524 1)F — (364 1) =0 (mod 4)
v=(54—1)F — (36 + 1) = (=1)* = 1 (mod 9),

tedy
v=0 nebo v =16 (mod 36). (2)

Protoze 53 — 37 = 16, stali dal uvazovat jen |v| < 16, coz
podle (2) dava v = 0. Pak ale 53* = 37!, coz ale zjevné
neplati, nebot (53,37) = 1. Minimélni hodnota |v| je tudiz
16 = |53 — 37|.

5.4 Predevsim si uvédomme, ze vektory, jejichz souctem
je nulovy vektor, nemohou pfi umisténi do jednoho bodu
vsechny lezet jen v jedné z.polorovin urcenych primkou pro-
chazejici spoleénym poéatkem (pokud oviem nelezi vsechny
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v jedné primce). Tento jednoduchy postieh budeme ¢asto
pouzivat.
Umistéme vsechny vektory do pocatku kartézské sousta-

vy soufadnic a pfedpoklddejme, Ze pro k 2 1 vektor s =
k
= Y e spliuje nerovnost |si| £ 1. Pokud mezi zbyvajicimi
i=1
jednotkovymi vektory néktery svira s vektorem s; thel ales-
pon 120° (lezi tedy v Ghlu AOB, obr. 57), zfejmé pro takovy

vektor eg4; plati

Isk+1| = [sk + ex41| S 1.

Sk
E
€k +2 == |-
C 10) D
€k +1
A B
Obr. 57

Pokud v Ghlu AOB 7adny vektor nelezi, musi néktery
z vektort lezet v poloroviné C DB, kde C D je primka kolma
na s; prochazejici pocatkem; tedy v jednom z ahla BOD
nebo AOC' lezi néktery z danych vektori. Oznaéme jako
er+1 ten vektor, ktery svird s s; nejvétsi thel (bez Gjmy
na obecnosti muzeme predpokladat, ze lezi napf. v ahlu

BOD). Oznaéime-li E ten bod, pro ktery OF = —eg41,
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musi 1 v Ghlu FOA lezet jeden z danych vektori. Ten
oznafime ej42. Protoze oba takto vybrané vektory ej4i
a eg4o sviraji Ghel aspon 120°, je jasné, Ze je |ex 41 +exq2| S
< 1 a zéroven |sg + ex+1 + ex2| S 1, protoze souéet obou
vektori er41 + er42 lezi v Ghlu AOB; soudasné ale plati
Isk +exs1| < V2 (rovnost nemiize nastat, protoze to by pak
musely vSechny vektory lezet v poloroviné opacné k C DA
obsahujici vektor s).

Je jasné, ze uvedenym postupem lze dané vektory uspo-
fadat tak, Ze velikost jejich souétu nikdy nedosdhne /2.

5.5 (podle S. Kasala). Uvazujme zobrazeni M slozené
z otoceni se stfedem v H o orientovany thel PH B (ktery je
pravy) a stejnolehlosti se sttedem v H a koeficientem }%}
(obr. 58). Potom jisté plati, ze H zobrazi trojahelnik PH B
na trojuhelnik BHC (H(B) = C), a navic pro H(p) = p' je
p L p'. Bod @ se tedy zobrazi na né&jaky bod pfimky CD.
Protoze {g—ﬂl = % a zaroven souhlasi 1 orientace obou
Gsecek, je H(Q) = D, tedy H(HQ) = HD. Odpovidajici si
usecky v zobrazeni H jsou navzijem kolmé, je tedy HQ L
1L HD, takze ithel DHQ je pravy.

D C
N\
AN
\ /Q
\ //
H .
A P B
Obr. 58
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5.6 Na prvni otadzku je zdporna odpovéd, coz ukdzeme na
tomto pfikladu: Vytvoirme Sestithelnik ABCDEF 1z rov-
nostranného trojthelniku ACE o strané 2 pfidanim shod-
nych rovnoramennych trojihelniki ABC, CDE a EFA
(se zékladnami AC, CE, EA). Vysku téchto trojahelniki
zvolme tak, aby platilo |[AD| = |CF| = |EB| = 2 (obr. 59).
Vsechny strany takového Sestitthelniku maji velikost |[AB| =
= a > 1, vSechny tuhlopficky kromé BD, DF, FB maji
velikost 2.

Obr. 59 Obr. 60

Snadno ukdzeme, ze |BD| = |DF| = |FB| < 2. V troj-
thelniku ABD je |4DAB| < a < |4ABD|, a proto
|BD| < |AD| = 2.

Dokonce muzeme Sestitthelnik zmensit v podobnosti tak,
aby délka strany zlstala vétsi nez jedna (napf. v poméru

a—1
2

a
Na druhou otédzku je odpovéd kladna. Uvedme FeSeni dle
M. Koneéného.

a —

) , ale vSechny Ghlopticky mély délku mensi nez dvé.
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Predpokladejme naopak, ze |AD| > 2, |BE| > 2, |CF| >
> 2, ale vSechny strany maji délku nejvyse 1. Jsou-li ¢, ¢,
Ghly podle obr. 60, pak d(B, AE) < |AB| £ 1, takze sine =
=4 %EE < %; podobné dostaneme 1 nerovnost sina < %,
tedy € < 30°, @ < 30°, a proto ¢ = a + ¢ < 60°.

Obdobné dokazeme, ze 1 druhé dvé dvojice uhlopricek
AD, CF a BE, CF sviraji thel mensi nez 60°. To je ale
spor, nebot soucet téchto tfi Ghla je 180°.

5.7 OznaCme ¢isla na kruznici po radé ap, as, ..., an,.
Dotaz je tfiprvkovd mnozina T C {1,2,...,n}, odpovédi
na dotaz T je soutin st = [] a;. Chceme-li dokazat, ze

€T
n o
k uréeni sou¢inu s = [] a; staci a je potfeba p dotazi,
i=1
musime dokazat dvé véci:
(I) Existuje systém tiiprvkovych mnozin 7 C {T: T C
c {L,2,...,n},|T| = 3} takovy, ze |T| £ p, a za-

rovein pro kazdé dvé n-tice (ay,...,an), (b,...,by) €
€ {—1,1}", kde [] a; = [] bi pro vSechna t € T, plati
€T €T

b;.
1

n
fT -
i=1

n
i=

(IT) Pro kazdy systém dotazi 7 C {T: T C {1,2,...,n},
IT| = 3} takovy, ze |[T| < p, existuji dvé n-tice
(a1, ---,an), (b1,...,bn) € {—1,1}", pro néz

Lo~ I10

€T €T
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pro kazdé T € T, ale

Nejjednodussi zptisob, jak zafidit ¢ast (1), je najit takovy

systém T, ze
H H a; = H a;. (1)

Polozime-li t; = |{T: a; € T € T}, pak

[T e =T«

TET ieT i=1

n

coz je rovno [] ai, pokud t; = 1 (mod 2) pro kazdé i,
i=1

tj. pokud kazdé ¢Eislo a; lezi v lichém poctu dotazi. Je

mozné prekvapujici, ze tento jednoduchy postup vede vzdy
k minimélnimu poctu dotazu.

Reseni. Uplna odpovéd je vyjadfena tabulkou

n=0 [n=1 (mod 3)|n=4|n=2 (mod 3)
(mod 3)] An>4 (mod 3)
2 T I
(b) - n 4 n

n = 0 (mod 3). Aby bylo lze jednozna¢né urcit soucin
vSech ¢isel, musi se kazdé ¢islo vyskytnout alespon v jednom
dotazu (jinak staci zménit znaménko u ¢isla, jez se v zddném
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dotazu nevyskytuje). Proto je vidy potfeba alespon p 2 %
dotazi. Je-li n délitelné tremi, splhuje systém dotaza 7 =
={{1,2,3}, {4,5,6}, ..., {n—2,n — 1,n}} podminku (I),
a tedy p = § jak v pfipadé (a), tak i v pfipadé (b).

(b), n # 0 (mod 3). Jsou-li povoleny pouze dotazy na
Cisla jdouci po sobé, je maximalni mozny systém dotazi

Tmax = {{1,2,3}, {2,3,4}, ..., {n,1,2}}.
Je-i T C Tmax, |7| < |Tmex|, je bez Gjmy na obecnosti

T CT' = Tmax \ {{1,2,3}}. Ukazeme, ze pro 7' (a tudiz
i pro 7) plati tvrzeni z (II): za jednu n-tici zvolime napf.

a; =as =...=a, =1, vdruhé polozime
b--{+l prot=4,7,...,n,
B jinak,
pokud n =1 (mod 3), a _
bi:{+1 proi=3,6,..,n—2ai=1,
-1 jinak,

je-lin =2 (mod 3).
V obou téchto pripadech je

Hag:]:[bizl

i€T €T

pro kazdé T € 7', ale

fIaiII;é—l:ﬁbi.
i=1 =1

202



Proto je nutné potfeba p 2 n = |Tax| dotazi.
Ovsem n dotazu staci, protoze pro Tnax je

a;.
1

[ [o=Ila=

n n
T€Tmax1€T i=1 =
(a),n=1 (mod 3). Pron =4 je kazdy dotaz typu (b),

a podle jiz dokazaného je p = 4.
Pro n > 4 potiebujeme p 2 %, tedy p 2 1‘-312
dotazi, pricemz tento pocet dotazi staci. Systém 7 =

= {{1,2,3}, {1,4,5}, {1,6,7}, {8,9,10}, ..., {n — 2,n —

- 1,n}} ma mohutnost "—;‘iﬁ a spliuje

(a), n = 2 (mod 3). Opét potiebujeme alespon [5] =
= 1‘—%’—1 dotazli, abychom se na kazdé &islo dotazali ales-
pon jednou. Tentokrat vsak tento pocet nestaci. Méme
totiz systém 7 mohutnosti "3—'L1 Aby pro kazdé ¢ €
€ {1,2,...,n} existovalo T € T obsahujici 7, bez Gjmy
na obecnosti musi byt (jinak pozice pfelislujeme) 7 =
= {{1,2,3}, {1,4,5}, {6,7,8}, ..., {n — 2,n — 1,n}}. Pak

ale n-tice
a;=+1 proi=1,2,... n,
{—1 proi=1,2 4,
+1 Jinak

spliuji

Ha,—:Hbi:l

1€T i€T
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pro kazdé T € T, ale

ﬁa;:l#—l:ﬁbi.
i=1 i=1

Tudiz je tfeba p 2 -'ESL“ dotazti. Tento poéet dotazli sta-
&, viz napt. 7 = {{1,2,3},{1,2,4},{1,2,5},{6,7,8},. ..,
{n —2,n —1,n}}, kteryito systém spliuje (1).

204



32. Mezinarodni matematicka olympiada

se konala ve dnech 12.-23. ¢ervence v univerzitnim meés-
té Uppsala a v malém méstecku Sigtuna ve Svédsku. Zi-
¢astnilo se ji 318 studentt z 56 zemi. Ceskoslovensko se
v neoficidlnim poradi druzstev umistilo na 11. misté, na
prvnich péti mistech se umistila druzstva SSSR, Ciny, Ru-
munska, Némecka a USA. I kdyZz jsme v ptedchazejicich
letech skon¢ili lépe (v Ciné na 8. misté, v roce 1989 v SRN
na 6. misté), neni mozné hodnotit 11. misto pfed Francii,
Polskem, Velkou Britanii a dalsimi zemémi negativné. Sku-
teénost, ze jsme se od roku 1985 vzdy zafadili mezi prvnich
12 zemi svédéi o dobré praci v ceskoslovenské matematické
olympiadé i o pékné trovni naseho skolstvi.

Mezindrodni matematicka olympiada je pfedevsim souté-
z{ jednotlivcd. Vysledky nasich zaki na 32. MMO ukazuje
tabulka na dalsi strané.

Vedoucim ceskoslovenské delegace byl doc. dr. Leo Bo-
cek, CSc. z MFF UK v Praze, zastupce vedouciho byl
doc. dr. Tomds Hecht, CSc. z MFF UK v Bratislave.
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Umisténi Body za tdlohu Celkem Cena
1 2 3 4 5 6

21.-23. Michal Stehlik, 773777 38 II.
3. ro¢. gymnazia,
Brno, tf. kpt. Jarose

34.-38. Michal Koneény, 77 5 7 4 7 37 1I.
4. ro¢. gymnazia,
Brno, tf. kpt. Jarose

47.-53. Michal Kubecek, 74 37 77 35 1I.
3. ro¢. gymnazium,
Praha, Korunni

58.—60. Richard Kollar, 7T 7 3 7T 7 2 33 II.
3. ro¢. gymnazia,
A. Markusa, Bratislava

96.-104. étépa’.n Kasal, 02 3777 26 III.
4. ro¢. gymnazia,
Praha, Korunni

162.-169. Viliam Bur, 03 4 0 7 3 17
2. roé. gymnazia,
A. Markusa, Bratislava

Celkem 28 30 21 35 39 33 186

Texty soutéznich dloh
(v zavorce je vidy uvedena zemé, kterd tlohu navrhla)

1. Je dan trojihelnik ABC, ozna¢me I stfed kruznice mu
vepsané. Osy vnitfnich Ghla trojihelniku ABC ve vrcho-
lech A, B, C protinaji protéjsi stranu po radé v bodech A’,
B’, C'. Dokaite, ze

1 |AI| - |BI|-|CI| 8

- <—. . SSR

1 S TAA| [BBT-[CC| = 27 (555K)
2. Necht n je prirozené cislo vétsi nez 6 a aq, as, ..., ax

vSechna ta pfirozend ¢isla, kterd jsou mensi nez n a kazdé
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je s &islem n nesoudélné. Je-li
az—ay=az—az=--=ax —ag-1 >0,

je n prvocislo nebo mocnina ¢isla 2 s pfirozenym exponen-
tem. Dokazte.

(Rumunsko)

3. Necht S = {1,2,3,...,280}. Uréete nejmensi pFirozené
Cislo n s touto vlastnosti: Kazda n-prvkovd podmnozina
mnoziny S obsahuje 5 isel, které jsou po dvou nesoudélna.

(Cina)
4. G je souvisly graf s k hranami. Dokazte, ze je mozné
hrany ocislovat pouzitim vsech ¢isel 1,2,3, ..., k tak, ze pro

kazdy vrchol grafu G plati: Sbihaji-li se v tomto vrcholu dvé
nebo vice hran, je nejvétsi spolecny délitel vsech jejich Cisel
roven 1.
[Kazdy graf G se sklad4d z mnoziny bodu, tzv. vrchold,
a z mnoziny hran, spojujicich uréité dvojice ruznych vrcho-
la. Pfitom je kazda dvojice riznych vrcholi spojena nejvyse
jednou hranou. Graf G se nazyva souvisly, jestlize ke kazdé
dvojici (z,y) riznych vrchold existuje posloupnost vrchold
T = vy, V1, V2, ..., Uy = Yy tak, ze kazda dvojice (v;, vi41),
(0 £ i < m) je spojena hranou.]
(USA)

5. Necht P je libovolny vnitini bod trojihelniku ABC.
Dokazte, ze aspon jeden z Ghla PAB, PBC, PC A je mensi
nebo roven 30°.

(Francie)
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6. Nekonecna posloupnost zg,z;,zs,... redlnych &isel se
nazyva ohranicend, existuje-li konstanta C' tak, ze |z;| <
< C pro vsechna ¢ 2 0.

Necht a je libovolné realné éislo vétsi nez 1. Sestrojte
ohranicenou nekoneénou posloupnost redlnych ¢isel zq, x1,
zs, ... tak, aby pro kazdou dvojici riznych, celych a neza-
pornych ¢&isel i, j platilo

|lzi — @] li—g|* 2 1.
(Nizozemi)
Reseni iloh
1. Oznaéme S obsah trojihelniku ABC, r polomér mu

vepsané kruznice, a, b, ¢ délky jeho stran a u, v, w pFislusné
vysky. Pak je

]C’I|_u)—7'__1 r_q,_rec
lcc'l— w w28
a analogicky pro
|BI| |AI|
|BB'|"  |AA'|

Uzitim nerovnosti mezi geometrickym a aritmetickym pri-
mérem téchto hodnot dostavame

a1 )
[AA'| - |BB'[-[CC'| 25 25 25 ) =
_1__(3_ r(a+b+c )
27

_ 8

1 3_§ _
“aw\""2s) T

lIN
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¢imz je dokazéana prava nerovnost. K dikazu levé nerovnosti
pouzijeme jesté tuto Gpravu:

] rc _rla+b+c)—rc  rla+b)  a+b
25 25 T rla+b+ce) a+b+c’
podobné

rb_ a+c | ra  b+tec
25 " a+b+c’ 2S “a+b+c

Méame tedy dokéazat, ze 4(a+c)(b+c)(a+b) > (a+b+c)3.
To je vsak primym dusledkem nerovnosti

(a+b—c)c? >0, (b+c—a)a®>0,
(c+a—1b)b* >0, 2abec>0,

jejich sectenim dostaneme dokazovanou levou nerovnost.

2. Jezfejmé a; = 1,ar = n—1. RozliSme nyni tfi pfipady:

a) az = 2, potom aj = j pro j = 1,2,...,n — 1. Pak neni

cislo n délitelné zadnym mensim prirozenym cislem, je
tedy n prvodislo.

b) a; = 3,potoma; =2j—-1,7=1,2,.., %n.Toznamené,
ze n neni délitelné zadnym lichym prirozenym cislem, je
tedy n mocninou ¢éisla 2.

¢) az > 3, pak jsou ¢isla 2, 3 s &islem n soudélnd, je tedy
n = 6m, m prirozené a vétsi nez 1. Oznacme ay — a; =
=d> 2. Jepakn—1=ay = 14 (k—1)d, to znamena, ze
¢islo ag — 1 déli &islo n — 2. Cislo as neni délitelné tfemi,
je tedy as = 31+ 1 nebo 3l + 2. V prvnim pripadé déli
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cislo 3l cislo n — 2, takze je n — 2 délitelné tFemi. Avsak
Cislo n je rovnéz délitelné tfemi, coz je spor. V druhém
pripadé je a; = 1, ap = 3l + 2, takze az = 61 + 3, coz je
opét spor, protoze Cisla azg = 3(2/ 4+ 1) a n = 6m maji
byt nesoudélna.

Pro ptirozené ¢islo n zbyvaji tedy pouze moznosti uvede-
né pod body a), b), coz jsme méli dokazat.

K dikazu sporu v pfipadé c) jsme potfebovali, aby po-
sloupnost aj,as,...,ar byla aspon tficlenna. Neni tomu
tak pro n = 6, coz je vsak podle predpokladu vyloucené.
Predpokladejme, ze n > 6 a ze as = n — 1. To znamen4, ze
je n délitelné kazdym prvocislem mensim nez n — 1, necht
jsou to prvodisla 2,3,5,...,p (2 < 3 < 5 < --- < p).
Kdyby n—1 nebylo prvocislem, existoval by jeho prvociselny
délitel 7, ten by byl mensi nez n — 1 a délil by tedy 1 ¢islo n,
coz Je spor. Musi byt tedy n — 1 prvocislo nésledujici po
prvoéislu p. Je tedy n =272 .37 ... .. p"» kde r; 2 1, takze
¢q=2-3-....p—1<272.3.. .p»—1=n-1.Cislo ¢ neni
délitelné zadnym z prvocisel mensich nez n—1, je ale mensi
nez n, musi byt tedy délitelné prvocislem n — 1, a proto se

pfimo rovnd ¢islu n — 1, tj. r;, = 1 proi = 2,3,...,p, n =
=2-3....-.p.Cislog+4=n+3=3(2-5-...-p+1)
neni délitelné zadnym z prvocisel 2,5, ..., p, n—1, musi byt

proto mocninou tif, takie n = 3' =3 = 3(3'"1 - 1),n—-1 =
=3 —4. Jelilsudé, jen—1=23% —4=(3"-2)(3" +2).
Vime, ze n — 1 je prvocislo, proto s = 1, n = 6, coz je ve
sporu s predpokladem n > 6. Je-li I liché, je n = 3(3%° —
—1) = 3(3° — 1)(3° +1). Pak je ale n délitelné ctyfmi, coz
je ve sporu s tim, ze n =2-3-...-p. Je tedy vidy k 2 3.
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3. Ozna¢me A, mnozinu vsech sudych ¢isel mnoziny S,
podobné Az, As a A; mnozinu vSech nasobku tri, péti
a sedmi z mnoziny S. Zfejmé se pocet |As| vSech prvki
mnoziny A, rovnd 140, |As| = 93, |As| = 56, |A7| = 40.
Déle je |A2 N A3| = 46, protoze Az N A3 je mnozina viech
téch Cisel z S, kterd jsou délitelna Sesti. Podobné |[A; N A5 N
N A7zl =4, |A2N A3 N As N A7| = 1. Podle principu inkluze
a exkluze plati pro poéet |A| mnoziny A = AyUA3UAs UA7
vztah

|Al = [Az| + |As| + |As| + |A7] = [A2 NAg| — - +
+|A20A30A5'+~-~—|A20A30A50A7|,

takze |A| = 216. Zvolime-li v A libovolné pét éisel, museji
dvé z nich patfit do jedné z mnozin A,, Az, As, A7, a jsou
tedy nutné soudélnd. Tim jsme dokézali, ze hledané n je
vétsi nez 216. Ukazeme, ze n = 217. Za tim Gcelem roz-
délime mnozinu S na dvé disjunktni mnoziny B, C tak,
ze do mnoziny B budou patrit vSechna ¢isla slozenda, a do
mnoziny C ¢islo 1 a véechna prvocisla. To znamena, ze do B
patfi vSechna cisla z A kromé cisel 2, 3,5 a 7, dale patfi do B
tyto nasobky jedenacti: 112,11-13,11-17,11-19, 11-23, a tyto
nasobky tFinacti: 132, 1317, 13- 19. Vidime, Ze mnozina B
obsahuje 216 —4+8 = 220 cisel, do mnoziny C patii 60 éisel
(¢islo 1 a 59 prvocisel, jak bychom mohli vycist z tabulky
prvocisel). Vezmeme nyni libovolnou mnozinu T C S, ktera
ma 217 prvki. Ukdzeme, Ze mnozina T obsahuje § Cisel, jez
jsou po dvou nesoudélnd. Obsahuje-li mnozina T pét Cisel
z C, tvori téchto pét ¢isel takovou pétici. V opa¢ném pripadé
obsahuje T nejvyse 4 prvky z C a tedy aspon 213 prvki

211



z B. Jinak feCeno — mnozina B obsahuje nejvyse sedm
prvki, které nepatii do T. Muazeme také fici, ze z kazdych
osmi slozenych ¢isel mensich nez 281 patfi aspon jedno do
mnoziny T. DAl stac¢i dokonce uvazovat jen 40 Cisel z B,
ktera jsou soucinem dvou prvocisel, a sdruzit je do osmi
pétic tak, aby v kazdé pétici byla cisla po dvou nesoudélna,
naprfiklad takto:

{2-47, 3.43, 5-41, 7.37, 11-23},
{2-43, 3.41, 5-37, 7-31, 11-19},
{2-41, 3-37, 5-31, 7-29, 11-17},
{237, 3-31, 5.29, 7-23, 11.13},
{2-31, 3.29, 5-23, 7-19, 13-17},
{2-29, 3-23, 5.19, 7-17, 13-19},
{2-23, 3-19, 5-17, 7-13, 112},

{2-19, 3-17, 5-43, 7-11, 132}

Kdyby zadna z téchto pétic nebyla obsazena v T, existo-
valo by v kazdé pétici ¢islo nepattici do T. Dostali bychom
tak osm slozenych cisel z S, kterd by nepatfila do T. To je
vsak spor s vyse odvozenou vlastnosti mnoziny T. Vysledek
je tedy n = 217.

Tato iloha méla na 32. MMO zvldstni osud. Jisté jste si
povsimli, Ze vybrdni 40 soucini a jejich rozdéleni do osmi
pétic je moin€ provést mnoha zpisoby. VSichni soutézici
z druzstva KLDR to vsak méli provedeno stejngm zpisobem,
a to tak, jak bylo uvedeno ve vzorovém rteseni predlozeném
Cinskou delegaci. Po dlouhém jedndni mezindrodni poroty
bylo druistvo KLDR diskvalifikovino. Nasi Zdci vyresili pro-
ni ¢dst dlohy, tedy dokazali, Ze n > 216. Nikdo z nich vsak
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nedokdzal druhou, podstatnéjsi ¢dst, ze n = 217. O to vic je
treba ocenit vSechny ty soutézict z dalsich zemi, kteri dosdhli
za tuto tézkou ulohu plny pocet, tj. 7 bodi.

4. Vyjdeme z nékterého vrcholu grafu po nékteré ces-
té grafu, preslé hrany cislujeme &isly 1, 2, ... a to tak
dlouho, az dojdeme do vrcholu, z néhoz uz nevede zadna
neocislovana hrana. Pro vsechny proslé vrcholy je podmin-
ka ulohy splnéna, nebot z prvniho vrcholu vychézi hrana
¢islo 1, z dalsich vrchola vychazeji hrany ocislované dvéma
za sebou jdoucimi prirozenymi cisly, a totéz plati 1 pro
posledni vrchol. (Jde o vrchol, z néhoz vychézi jen jedna
hrana, nebo je to vrchol, kterym jsme jiz prosli.) Nejsou-li
vSechny hrany-ocislované, existuje cesta v grafu, ktera tuto
hranu obsahuje, pfi¢emz zadna hrana této cesty neni jesté
ocislovana a cesta vychazi z nékterého vrcholu, ktery jsme
Jiz prosli. Jednotlivé hrany grafu opét ocislujeme po fadé
dalsimi, zatim nepouzitymi ¢isly. Vsechny vrcholy proslé pri
této cesté opét splnuji podminky tlohy. Takto pokracujeme,
az vycerpame vSechny hrany a vSechna prirozena ¢isla {, pro
kterd je I £ k. Poznamenejme, ze v pfipadé nesouvislého
grafu neni mozné hrany ocislovat pozadovanym zpusobem,
staci vzit graf z obr.61.

Obr. 61
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5. Oznacme ¢, ¥, w ahly PAB, PBC, PCA (obr.62)
a predpokladejme, Ze kazdy z nich je vétsi nez 30°. Déle

C

Obr. 62
oznaéme a, 3, v velikosti ahld CAP, ABP, BCP au, v, w
délky tiseéek PA, PB, PC. Podle sinové véty je

u sinff w siny w sina

siny’ u© sinw’

v sing’ u
takze
sina sin 3 siny = sin ¢ sin ¥ sinw.

Kdyby byl néktery z ahld «, B3, v, ¢, ¥, w vétsi, nebo
roven 150°, byl by jeden z Ghld trojihelniku ABC vétsi
nez 150°, aspon jeden ze zbyvajicich by musel byt mensi
nez 30°, takze by nemohly byt ahly ¢, ¥, w vétsi nez 30°.
Jelikoz je tedy ¢, ¥, w € (30°,150°),je sin ¢ siny sinw > %.
Proto je

sin a +sinﬂ+sin‘y)3 <

1
§<sinasinﬂsin7§( 3

3
< (Sin f_+_ﬁ+l> ,

= 3
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takze
a +B+y

3
Jetedy o+ +w >90° a +8+5>90° alea +5+v+
+ o+ Y +w =180°, coz je spor.

> 30°.

6. Uvedeme nejdrive fesenti, které podal nas soutézici Ste-
pan Kasal. Vychéazi z nerovnosti

kterd plati pro kazdé a > 1 a kazdé prirozené cislo n. K
diikazu se pouzije nevlastniho integralu z funkce y = z~¢
pfes interval (1, +00). Uvazujme interval J = (0, -22-) a de-
finuyme 2o = 0. Dalsi ¢leny posloupnosti zg, z1, ... definu-
jeme v J rekurentné. Predpokladejme, ze jsme jiz definovali
cleny zg, z1, ..., z, tak, aby vyhovovaly podmince tlohy.

Pro dalsi ¢len 2,4, ma platit

1

|1‘n+1—$k|§m pro k=0,1,...,n,
tedy
z g |z ! Tr + ! =J
n+1 k ('n+1—k)a, k (n+1—k)a — JInk-

Uvazujme tedy mnozinu

M, =J— Lnj Jn i
k=0
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Je to mnozina neprazdna, protoze soucet délek interva-
la Jn,O» Jn,ly ceny Jn,n Je

2 2

2
m_f.F_f.....+._

1¢’
a tedy mensi nez délka intervalu J, takze je M,, neprazdna.
Kromé toho jsou intervaly J, ; oteviené, takie M, je uza-
viena. Polozime-li 2,41 = min M,,, spliiuje posloupnost z,
z1, g, ... podminky tGlohy.

Ve vzorovém feseni nizozemské delegace, ktera ilohu na-
vrhla, je hledand posloupnost dana explicitné takto: Kazdé
prfirozené ¢islo ¢ vyjadiime v dvojkové soustave,

i=bo+b1-24by- 224+ -+ b2k,

pak polozme

2% —1 by by by
£i:2a_2(b0+2_a+2ﬁ+"'+—2ﬂ)'

Je pak

90 _ 1 1 90
<<t (14—4..)= ,
0=x<2a—2<+2a+ ) 332

takze z; tvori posloupnost omezenou. Podobné, i kdyz tro-

chu slozitéji se dokaze, ze pro i # j je

1
IJ"l x]l = |2_]|a
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Treti mezinarodni olympiada v informatice

Ve dnech 19.-25. 5. 1991 se v Recku konala 3. mezinarod-
ni olympidda v informatice. Po pocatecnich nejasnostech,
které v minulych letech provazely vznik a formovani této
nejmladsi mezinarodni olympiady stfedoskolak, ziskala jiz
soutéz jasny organizacni fdd. Dostala se tak do rovnocen-
ného postaveni s mezindrodni matematickou olympiadou,
mezinarodni fyzikalni olympiaddou a dalsimi podobnymi me-
zindrodnimi soutézemi studentt stfednich skol. Tato pozice
mezinarodni olympiady v informatice byla potvrzena i sku-
tecnosti, Zze nad ni pfevzala zaStitu organizace UNESCO.
Pracovnik UNESCA odpovédny za vychovu a vzdélavani
v matematice a informatice byl také osobné pfitomen po
celou dobu soutéze v Recku.

Treti mezinarodni olympiady v informatice se zacastnili
soutézici z 23 zemi, mezi nimi také z Ceskoslovenska. V tom-
to ro¢niku byla soutézni druzstva mimoradné pouze tficlen-
na, od pristiho roéniku se pocita jiz opét s druzstvy étyi-
clennymi. Kazdé soutézni druzstvo bylo doprovazeno svym
vedoucim a jeho zastupcem. Olympiddy se dale zGcastnili
pozorovatelé z dalsich dvou zemi (Finsko, fran), které by
se od budouciho roé¢niku chtély do soutéze zapojit aktivné
se soutéznimi druzstvy, a jiz zminény delegat mezinarodni
organizace UNESCO.
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Ze strany organizatort byla soutéz pfipravena a zajisténa
vynikajicim zptisobem. Mistem konani byl pfimofsky hotel
Helios lezici nedaleko od mésta Anavissos asi 50 km jizné od
Athén. Na prvotfidni Grovni bylo ubytovani a stravovani,
bohaty doprovodny program pro volny ¢as i zajisténi do-
state¢ného mnozstvi kvalitni vypocetni techniky pro soutéz
i pro volnou préaci véech Gcastnikt. Recko je zemi s bohatou
kulturni tradici a organizitofi olympiddy vénovali velkou
péCi tomu, aby se s kulturnim bohatstvim zemé mohli vsich-
ni Gcastnici seznamit. Hned na Gvod pro nas pripravili na-
v§tévu Athén, jejiz hlavni soucasti byla prohlidka Akropolis
spojend s odbornym vykladem mistnich priivodcii. Recka
lidovd kultura byla prezentovdna na fadé veéernich vy-
stoupeni péveckych, hudebnich a tanec¢nich souborii. Recko
Je také zemi s krasnou prirodou, zajimavou architekturou,
s mofem a mnoha ostrovy. Vsechny tyto krasy hostitelské
zemé jsme mohli poznat na prochazkach do okoli hotelu, pfi
vyletu na jih poloostrova Attika do pfimofiského strediska
Sounio a zejména na celodennim vyletu lodi po ostrovech
lezicich v Egejském mofi.

Mezinarodni olympiada v informatice je orientovana tro-
chu jinak nez nase kategorie P matematické olympiddy. Je
zaméfena na feSeni danych problému pfimo na pocitaéi,
kdy hlavnim cilem soutéze je vytvofeni Gplnych funguji-
cich programi. Soutéz probiha ve dvou soutéznich dnech,
v kazdém z nich fesi soutézici jednu dlohu. Ke své praci
méa kazdy k dispozici osobni poéitaé typu IBM PC/XT,
bézné systémové programové vybaveni (seznam prekladaci
programovacich jazyki je pfedem zndm) a kazdy den ¢tyfi
hodiny €asu na préaci. Vybér soutéznich Gloh provadi na
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misté mezinarodni jury na zdkladé navrhi, které predem
zaslaly jednotlivé Gicastnické zemé. Clenové jury také pro-
gramy ihned ohodnoti a na zavér soutéze vyhlasi vysledky.

Vyse uvedenému zaméteni celé soutéze odpovida i cha-
rakter soutéznich dloh. Pro 3. mezinarodni olympiadu v in-
formatice vybrala jury nésledujici dvé tlohy. Z prostoro-
vych diivodii je zde uvadime v ponékud zkraceném znéni
bez ilustrujicich priklada, obrazkl, poznamek a informaci
o zpusobu hodnoceni.

Texty soutéznich dloh

Uloha 1.

Ocislujte policka v matici 5 x 5 ¢isly od 1 do 25 nésledujicim
zpusobem. Je-li éislo ¢ (1 £ ¢ < 25) pFifazeno policku o sou-
fadnicich (z, y), pak ¢islo i+1 bude pfifazeno pravé jednomu
policku se soufadnicemi (z,w), kde z, w jsou ureny podle
nékterého z téchto pravidel:

(z,w) = (z £ 3,y) (1)
(z,w) = (z,y£3) (2)
(zy,w) =(zx£2,y£2) (3)

a) Napiste program, ktery najde jedno z moznych ocislova-
ni matice 5 x 5 pro zadanou pocatecni pozici (po¢ateéni
pozici je prifazeno &islo 1).

b) Napiste program, ktery uréi a vypiSe pocet moznych
ocislovani matice pro kazdou jednu pocateéni pozici.
Uvazujte pocatecni pozice, které lezi v pravé horni po-
loviné matice véetné hlavni diagonaly.
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Piiklad: Je-li zaddna pocateéni pozice (2,2), potom dalsim
polickem, kterému lze prifadit ¢islo 2, bude jedno z policek
o soufadnicich (2,5), (5,2), (4,4).

Uloha 2.

S-term je posloupnost znakt S a zavorek definovana rekur-
zivné takto:

1. S je S-term,
2. jsou-li M, N dva S-termy, potom také (M N) je S-term.

Priklad S-termu:
((((SS)(55))S)(SS))

Jelikoz pravé zavorky nenesou Zadnou informaci, mohou se
vynechat, tzn. namisto (M N) je mozné psat (M N. Pred-
chézejici pfiklad lze tedy zapsat ve tvaru:

(((SS(SSS(SS

1. Napiste proceduru GENSTERM, ktera generuje S-ter-
my. VaSe procedura bude vytvafet N soubori (kde
N je délka, tj. pocet znakt S), které obsahuji vsechny
S-termy délek 1, ..., N. Prvni soubor obsahuje S-termy
délky 1, druhy délky 2, atd. Jednotlivé S-termy jsou
oddéleny znakem ‘;’, za poslednim S-termem je uveden
znak ‘. . Napiste program, ktery precte ¢islo N (N <
< 10) a s pouzitim procedury GENSTERM zobrazi na
obrazovce vSechny vygenerované S-termy.

Definujme kalkulus nad S-termy. Jediné algebraické pra-
vidlo (tzv. S-pravidlo) zni: libovolny podterm tvaru
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(((SA)B)C), kde A, B, C jsou S-termy, mize byt nahrazen
podtermem ((AC)(BC)), tj.

((SA)B)C) ... — ... ((AC)(BC))

Aplikaci S-pravidla na S-term nazveme redukci S-termu.
Existuji rizné zptsoby (strategie) vybéru podtermu, na
ktery aplikujeme S-pravidlo. Postupné opakovani aplikace
S-pravidla na S-term probihajici tak dlouho, az zadna dalsi
redukce neni mozna, nazveme normalizaci S-termu.

2.

Zvolte takovou datovou strukturu pro reprezentaci
S-termu, kterd bude vhodnd na provadéni redukei.
Napiste procedury READTERM a PRINTTERM, které
transformuji S-termy z tvaru generovaného procedu-
rou GENSTERM do vasi reprezentace a naopak. Vas
program musi ddvat moznost testovat tyto procedury
samostatné (zobrazovat jejich vstupy a vystupy).
Napiste proceduru REDUKCE, ktera provadi jednu re-
dukci pomoci S-pravidla na specifikovany podterm da-
ného S-termu. V4§ program musi ddvat moznost pred-
vést vysledek této procedury.
Napiste proceduru NORMALIZE. Tato procedura v za-
daném S-termu opakované vyhledava podterm pouzitel-
ny k redukci S-pravidlem tak dlouho, az dalsi redukce
neni mozna nebo az pocet provedenych redukci prekroci
dané maximum, napf. 30. Va$ program musi mit moz-
nost predvést efekt této procedury.
Nakonec spojte vSechno do programu, ktery
a) vyzada od uzivatele Cislo N
b) pouzije S-termy délky N vygenerované procedurou
GENSTERM '
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¢) prevede S-termy do vasi reprezentace

d) normalizuje je (pokud to je mozné)

e) vypise vysledné (normalizované) S-termy

f) vypise pocet redukci pouzitych pro kazidy S-term
nebo hlaseni “NOT NORMALIZED” v pfipadé, ze
se normalizaci nepodafi provést do 30 kroku

g) vypiSe pocet nenormalizovanych S-termd a pocet
vsech S-termi dané délky N.

Soutéz byla provazena také zasedanim vedoucich vsech
delegaci ztcastnénych zemi. Na téchto zasedanich byla po-
tvrzena a pro pfisti ro¢niky mezinarodni olympiady v infor-
matice mirné upravena soutézni pravidla. Bylo rozhodnuto
o vytvoreni stdlého mezinarodniho koordinaéniho centra,
které bude ridit pravidelné kazdoroc¢ni poradani soutéze.
Zaroven bylo rozhodnuto o zajisténi dalsich rocnikt olym-
piady. Pristi, v poradi ¢tvrtad mezinarodni olympidda v in-
formatice se bude konat v cervenci 1992 v Bonnu, patou
mezinarodni olympiddu v informatice usporada v roce 1993
Argentina.

Ceskoslovenské druzstvo se zticastnilo véech mezinarod-
nich olympiad v informatice, které se dosud konaly. Vybér
ucastniki 3. mezinirodni olympiddy v informatice jsme
provedli na zdkladé vysledki celostatniho kola 39. ro¢niku
matematické olympiaddy - kategorie P, nebof jména sou-
tézicich bylo nutné oznamit jesté pred terminem konani
celostatniho kola aktuédlniho 40. ro¢niku MO kategorie P.
Pozdéjsi vysledky 40. rocniku MO kategorie P a zejména
nase uspésné vystoupeni v Recku potvrdily, ze byl vybér
proveden spravné. Ceskoslovensko bylo reprezentovano sou-
téznim druzstvem ve slozeni:
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Stépdn Kasal, 4. r., gymnazium, Korunni, Praha
Igor Maly, 4. r., gymnéazium J. Hronca, Bratislava
Matej Ondrusek, 2. r., gymnazium J. Hronca, Bratislava

Vedenim ceskoslovenského druzstva byli povéreni RNDr.
Peter Tomcsdanyi z MFF UK v Bratislavé a RNDr. Pavel
Topfer, CSc. z MFF UK v Praze.

Nasi soutézici se na soutéz velmi svédomité pripravili
a v Recku odvedli vyborny vykon. Igor Maly ziskal I. cenu
a navic se stal absolutnim vitézem soutéze. V hodnoceni
ziskal celkem 196 bodu z 200 moznych a zvitézil s pomérné
velkym sedmibodovym naskokem pfed druhym Cifanem
Cheng Yangem (189 bodid) a tfetim Madarem Zoltdinem
Tyranyim (187 bodi). Dalsi dva nasi soutézici Stépin Kasal
a Matej Ondrusek ziskali shodné 136 bodt, coz predstavo-
valo pro oba II. cenu a velmi pékné 13.-16. misto v celkovém
poradi. V neoficidlni soutézi druzstev obsadilo Ceskosloven-
sko vynikajici 2. misto (468 bodi) za vitéznou reprezentaci
Ciny (499 bodi) a prfed tfetim v pofadi druzstvem Jugoslé-
vie (451 bod).

Pavel Topfer
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