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O průběhu 40. ročníku matematické olympiády

Soutěž Matematická olympiáda pořádají pro žáky střed-
nich a základních škol Ministerstvo školství, mládeže a tělo-
výchovy CR, Ministerstvo školství, mládeže a sportu SR ve

spolupráci s Jednotou českých matematiků a fyziků, Jed-
notou slovenských matematiků a fyziků a Matematickým
ústavem ČSAV. Soutěž řídí ústřední výbor matematické
olympiády (ÚV MO) prostřednictvím krajských a okresních
výborů matematické olympiády (KV MO, OV MO).

Cílem soutěže je vyhledávání žáků talentovaných v ma-

tematice, probouzení jejich hlubšího zájmu o matematiku
a rozvíjení jejich matematických schopností. V školním roce

1990/91 se uskutečnil její jubilejní, 40. ročník.
Ústřední výbor MO pracoval ve složení, v němž byl

jmenován ministerstvy školství CR a SR na pětileté
období při zahájení 39. ročníku. Předsedou ÚV MO byl
doc. dr. Leo Boček, CSc., z MFF UK v Praze, tajemníky
byli dr. Karel Horák, CSc., z MÚ ČSAV v Praze a dr. Jiří
Binder, CSc., z PF UK v Praze. V průběhu roku došlo
к několika změnám. Především se na návrh předsednictva
ÚV MO a Jednoty českých a slovenských matematiků
a fyziků znovu stali členy PÚV MO prof. Jozef Moravčík
a dr. Antonín Vrba, kterým byla v minulém období práce
v MO znemožněna. Zástupcem MŠMS SR v PÚV MO se
stal dlouholetý pracovník v oblasti výchovy matematických
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talentů dr. Vladimír Burjan. Poslední změna nastala
v Brně, kde v práci v ÚV MO vystřídal dr. Luboše Brima
doc. dr. Václav Sedláček, CSc., z přírodovědecké fakulty
Masarykovy univerzity v Brně.

V průběhu 40. ročníku MO se konala dvě zasedání ÚV
MO, první ve dnech 4. prosince 1990 v Brně, druhé 22.-23.4.
1991 v Nitře při celostátním kole MO. Bylo projednáváno
hodnocení průběhu soutěže, zabezpečení celostátních sou-
středění úspěšných řešitelů MO včetně soustředění pro pří-
právu na MMO, korespondenční seminář ÚV MO a organi-
zace dalších kol soutěže. Byla diskutována vhodnost výběru
úloh MO.

Hlavním předmětem jednání během obou zasedání byl
dopad změn probíhajících v našem státě na ekonomické za-

bezpečení a na organizaci MO. Bylo nutno reagovat zejména
na situaci vzniklou zrušením krajů a v návaznosti s tím i na
zrušení krajských pedagogických ústavů, které v minulých
ročnících pomáhaly zajišťovat krajská kola soutěže i další
pomocné akce. Bylo nutno najít nový způsob financování
zejména akcí zabezpečovaných krajskými výbory MO.

V průběhu tohoto ročníku došlo ke změně územně-správ-
ního uspořádání ČSFR. Organizace matematické olympiády
se týkalo především zrušení krajů, neboť druhá kola soutěže
byla pořádána jako krajská a celá soutěž byla organizována
prostřednictvím krajských výborů MO. Proto byly v závěru
ročníku krajské výbory MO přeměněny na oblastní výbory
v návaznosti na pobočky JCMF a JSMF. V dalším textu
včetně výsledkových listin budeme uvažovat organizaci tak,
jak byla při zahájení ročníku a jak také soutěž v podstatě
proběhla.
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V organizaci vlastní soutěže nedošlo к žádným změnám.
Pro žáky základních škol byla soutěž rozdělena do pěti
kategorií Z4, Z5, Z6, Z7 a Z8, které byly určeny postupně
žákům 4. až 8. ročníku. Podrobnosti mohou najít zájemci
v brožurce Koman a kol.: \0. ročník MO na základních
školách, která vyjde současně s touto brožurkou.

Pro žáky středních škol byla soutěž organizována ve čty-
řech kategoriích А, В, С a P. Kategorie A byla určena žákům
3. a 4. ročníků středních škol, kategorie В byla pro žáky
2. ročníků a v kategorii C soutěžili žáci 1. ročníků. Pro
žáky všech tříd středních škol byla určena ještě kategorie P,
zaměřená na úlohy z programování a matematické informa-
tiky.

V kategoriích А, В a C má I. kolo dvě části. V první části
řeší soutěžící 6 úloh doma nebo v matematických kroužcích
a mohou se přitom radit se svými učiteli, vedoucími kroužků
apod. Druhá část má formu klauzurní práce, v níž řeší žáci
tři úlohy v omezeném čase 4 hodin. Řešitelé, kteří úspěšně
projdou prvním kolem, jsou pozváni do druhého (krajského)
kola soutěže, kde řeší čtyři úlohy opět v limitu čtyř hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo.
V něm je vlastní soutěž rozdělena do dvou dnů. V kate-
gorii A řeší soutěžící každý den tři úlohy v časovém limitu
čtyři hodiny, v kategorii P ve stejném limitu vždy dvě úlohy.

Celostátní kolo 40. ročníku se uskutečnilo Nitře ve dnech
21.-24.4. 1991 (kat. A) a 24.-27.4. 1991 (kat. P). Na
bezpečen! soutěže včetně bohatého doprovodného programu

pro soutěžící i členy ÚV MO se obětavě podíleli členové KV
MO Západoslovenského kraje, pracovníci katedry matema-
tiky pedagogické fakulty v Nitře i spolupořádajícího domu

za-
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dětí a mládeže IUVENTA z Bratislavy. Za všechny jmenuj-
me alespoň předsedu KV MO prof. dr. Ondřeje Šedivého,
CSc., a Vlastu Michálkovou z bratislavské IUVENTY.

Vybrané družstvo se zúčastnilo mezinárodní matematické
olympiády i mezinárodní soutěže v programování. Těmto
soutěžím je věnována samostatná kapitola v závěru brožury.

К matematické olympiádě vedle vlastní soutěže patří i řa-
da doprovodných akcí pro talentované žáky. Z akcí pořádá-
ných krajskými výbory МО к nim zejména patří semináře
pro řešitele МО a krajské korespondenční semináře. Pro
nejúspěšnější řešitele krajských kol МО a korespondenčních
seminářů byla pořádána (většinou týdenní) soustředění. Pro
učitele připravily krajské výbory MO instruktáže.

Ústřední výbor MO zajišťoval tři celostátní soustředění.
Pro žáky nematurujících ročníků to bylo již tradiční soustře-
dění 80 řešitelů úloh MO a FO. Proběhlo ve dnech 11.-22. 6.

1991 v Jevíčku. Další dvě soustředění byla věnována přípra-
vě československého družstva na mezinárodní matematickou

olympiádu. První se konalo 28. 3.-5. 4. 1991 v Modré u Bra-
tislavy (12 účastníků), druhé 13.-27.6. 1991 v Pardubicích
(8 účastníků). ÚV MO též zajišťoval celostátní korespon-
denční seminář (semináři je věnována samostatná část této
brožury).
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Výsledky celostátního kola 40. ročníku MO
kategorie A

Vítězové

1.-2. Stepán Kasal, 4M, Korunní, Praha
Michal Kubeček, 3M, Korunní, Praha

3. Michal Konečný, 4M, tř. kpt. Jaroše, Brno
4.-8. Viliam Bár, 2M, G A. Markuša, Bratislava 35 b.

Peter Langfelder, 4MF, GJH, Bratislava
Petr Tobiška, 4M, Tylovo nám., Hr. Králové 35 b.
Michal Stehlík, 3M, tř. kpt. Jaroše, Brno
Ladislav Kis, 3M, G A. Markuša, Bratislava 35 b.

9. Richard Kollár, 3M, GAM, Bratislava
10. Katarina Skálová, 2M, GAM, Bratislava

11.-16. Juraj Lorinc, 4M, Tajovského, Ban. Bystrica 29 b.
Miroslav Chladný, 3M, Pivovarská, Košice
Pavel Růžička, 3M, tř. kpt. Jaroše, Brno
Zdeněk Pezlar, 4M, tř. kpt. Jaroše, Brno
Michal Schenk, 3M, Jírovcova, C. Budějovice 29 b.
Jan Kolář, 4M, Korunní, Praha

40 b.

40 b.

38 b.

35 b.

35 b.

32 b.

30 b.

29 b.
29 b.

29 b.

29 b.

Další úspěšní řešitelé

17.-23. Filip Múntz, 3M, tř. kpt. Jaroše, Brno
Luboš Moil, 3MF, Opavská, Plzeň

28b.

28 b.
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Jakub Těšínský, 4M, Korunní, Praha
Jan Kasprzak, 4M, tř. kpt. Jaroše, Brno
Pavol Mederly, 3M, GAM, Bratislava
Luboš Pástor, 3M, Pivovarská, Košice
Herbert Vojčík, 3M, Pivovarská, Košice

24.-26. Michal Bulaní, 4M, tř. kpt. Jaroše, Brno
Tomáš Zellerin, 3MF, Jateční, Ústí n. L.
Aleš Kuběna, 4M, 17. listopadu, Bílovec

27.-28. Karel Soukeník, 4M, Mikuláš, nám., Plzeň
Martin Panák, 4M, tř. kpt. Jaroše, Brno

29.-30. Pavel Juruš, 2M, Jírovcova, 0. Budějovice
Novák Vít, 2M, Korunní, Praha

31.-33. Pavel Čížek, 4M, Tylovo nám., Hradec Kr.
Martin Schnábl, 4M, Korunní, Praha
Srefankovič Daniel, 2M, GAM, Bratislava

34.-36. Jan Hannig, 4M, Korunní, Praha
Michal Brodský, 3M, tř. kpt. Jaroše, Brno

37.-40. Slavomír Hrinko, 4MF, Konštantínova, Prešov 22 b.
Vladimír Špitálský, 4M, GAM, Bratislava
Pavlína Čapková, 3, Štěpánská, Praha
Mario Boháč, 4M, 17. listopadu, Bílovec
Radovan Garabík, 3MF, G E. Gudernu, Nitra 21 b.

28 b.
28 b.
28 b.

28 b.

28 b.
27 b.

27 b.

27 b.

26 b.

26 b.
25 b.

25 b.
24 b.

24 b.

24 b.

22 b.

22 b.

21b.

21b.

21b.

U tříd se zaměřením studijního oboru 01 Matematika
je za ročníkem označení M, u žáků z tříd se zaměřením
studijního oboru 02 Matematika a fyzika je za ročníkem
označení MF. Všichni soutěžící byli žáci gymnázia.
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Pořadí úspěšných řešitelů z tříd,
které nejsou se zaměřením studijního oboru 01 Matematika

1. Peter Langfelder, 4MF, G J. Hronca, Bratislava 35 b.
2.-3. Juraj Lorinc, 4M, Tajovského, Ban. Bystrica

Miroslav Chladný, 3M, Pivovarská, Košice
4.-6. Luboš Moil, 3MF, Opavská, Plzeň

Luboš Pástor, 3M, Pivovarská, Košice
Herbert Vojčík, 3M, Pivovarská, Košice

7. Tomáš Zellerin, 3MF, Jateční, Ústí n. L.
8. Karel Soukeník, 4M, Mikuláš, nám., Plzeň

29 b.

29 b.
28 b.
28 b.
28 b.

27b.
26b.

U tříd se zaměřením studijního oboru 02 Matematika
a fyzika je za ročníkem označení MF. Všichni úspěšní ře-
šitelé byli žáci gymnázia.
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Výsledková listina celostátního kola 40. ročníku MO
kategorie P

Vítězové

1.-2. Matěj Ondrušek, 2, G J. Hronca, Bratislava 34b.
Martin Vojtko, 4, G J. Hronca, Bratislava

3. Štěpán Kasal, 4, Korunní, Praha
4. Herbert Vojčík, 3, Šmeralova, Košice

5.-7. Miroslav Kočan, 4, G J. Hronca, Bratislava
Radim Moric, 4, GMK Bílovec
Jaroslav Sprongl, 4, Korunní, Praha

8. Tomáš Vinař, 1, Šrobárova, Košice
9.-10. Igor Malý, 4, G J. Hronca, Bratislava

Milan Simánek, 4, Pelhřimov

34 b.

33b.
32 b.
31b.

31b.
31b.
30 b.

29 b.
29 b.

Další úspěšní řešitelé

11.-13. Radovan Brečka, 4, Snina
Jan Hannig, 4, Korunní, Praha
Zdeněk Pezlar, 4, tř. kpt. Jaroše, Brno

14. Petr Novotný, 3, Korunní, Praha
15.-18. Jan Kotas, 3, Plzeň

Petr Tobiška, 4, GJK Hradec Králové
Jakub Těšínský, 4, Korunní, Praha
Lubomír Zlackv, 4, Michalovce

27 b.

27 b.

27 b.

26 b.

25 b.
25 b.

25 b.

25 b.
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19. Martin Stanek, 4, G J. Hronca, Bratislava
20.-23. Pavel Čížek, 4, Hradec Králové

Miroslav Kovář, 3, Vídeňská, Brno
Vít Novák, 2, Korunní, Praha
Michal Relich, 4, tř. kpt. Jaroše, Brno

24.-25. Jan Hrůza, 4, Korunní, Praha
Karel Sršeň, 3, Benešov

24 b.

23 b.

23 b.

23 b.

23 b.
22 b.

22 b.

U tříd se zaměřením studijního oboru 01 Matematika
je za ročníkem označení M, u žáků z tříd se zaměřením
studijního oboru 02 Matematika a fyzika je za ročníkem
označení MF. Všichni úspěšní řešitelé byli žáci gymnázia.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše
prvních deset řešitelů. Označení G znamená gymnázium, M,
resp. MF zaměření studijního oboru 01 Matematika, resp.

02 Matematika a fyzika.

Praha

Kategorie A

1.-2. Stepán Kasal, 4, G, Korunní
Jakub Těšínský, 4, G, Korunní

3.-4. Michal Kubeček, 3, G, Korunní
Petr Novotný, 3, G, Korunní

5. Jan Hannig, 4, G, Korunní
6. Antonín Jančařík, 4, G, Korunní
7. Jan Kolář, 4, G, Korunní
8. Vít Novák, 2, G, Korunní
9. Martin Schnabl, 4, G, Korunní

10.-11 David Bezděk, 4, G, U libeňského zámku
Petr Mourek, 4, G, Korunní
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Kategorie В

1. Jiří Vaniček, 2, G, Korunní
2. Vít Novák, 2, G, Korunní
3. Cyril Sochor, 2, G, Korunní

4.-5. Tomáš Dušek, 2, G, Korunní
Tomáš Petráň, 2, G, Korunní

6.-7. Jakub Adámek, 2, G, Korunní
Petr Holman, 2, G, Korunní

8.-10. Jiří Hanika, 2, G, Korunní
Tomáš Kočka, 2, G, U libeňského zámku
Pavel Kos, 2, G, Voděradská

Kategorie C

1.-3. Václav Čapek, 1, G, Sladkovského
Jiří Kosek, 1, G, Korunní
Alena Nováková, 1, G, Korunní

4.-5. Anna Matoušková, 1, G, Korunní
Lukáš Procházka, 1, G, Litoměřická

6.-7. Robert Chudý, 1, G, Korunní
Jan Vaněk, 1, G, Korunní

Kategorie P

1. Jan Hanning, 4, G, Korunní
2. Jaroslav Sprongl, 4, G, Korunní
3. Petr Novotný, 3, G, Korunní

4.-8. Jan Hrůza, 4, G, Korunní
Stepán Kasal, 4, G, Korunní
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Michal Копеку, 3, G, Korunní
Michal Kubeček, 3, G, Korunní
Jan Kybic, 3, G, Korunní

9. Martin Mareš, 8, ZŠ Na Šutce
10. Jakub Těšínský, 4, G, Korunní

Středočeský kraj

Kategorie A

1 Tomáš Němec, 3M, G, Beroun
2.-3. Miroslav Bárta, 4M, G, Benešov

Josef Soukal, 4M, G, Mladá Boleslav

Kategorie В

1.-2. Jan Bláha, 2M, G, Beroun
Martin Janeček, 2M, G, Mladá Boleslav

3.-4. Karel Duda, 2M, G, Kladno
Vít Šebek, 2M, G, Beroun

5. Strnad Jakub, 2, G, Mladá Boleslav
6. Jan Korbelář, 2, G, Český Brod

Kategorie C

1. Petr Ivančák, 1, G, Příbram
2. David Sitenský, 1M, G, Kladno

3.-4. Martin Havelka, 1, G, Benešov
Martina Trejbalová, 1M, G, Beroun

5. Renata Slehoferová, 1M, G, Beroun
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6.Miroslava Karáskové, 1M, G, Kolín
7.-8. Lenka Faltinová, 1M, G, Kolín

Michal Hruška, 1, G, Dobříš
9. Patrik Kučera, 1M, G, Kladno

10.-11 Martin Mašata, 1M, G, Beroun
Hana Vlachová, 1, G, Vlašim

Kategorie P

1. Martin Helmich, 3M, G, Mladá Boleslav
2. Karel Sršeň, 3M, G, Benešov
3. Tomáš Pračka, 4, G, Říčany
4. Tomáš Němec, 3M, G, Beroun
5. Lenka Kurzveilová, 4M, G, Mladá Boleslav
6. Pavel Bůžek, 3, G, Vlašim

Jihočeský kraj

Kategorie A

1. Jiří Fontán, 4, G, Jírovcova, České Budějovice
2. Monika Mertenová, 3, G, Jírovcova, Č. Budějovice

3.-4. Ondřej Cikhart, 3, G, Tábor
Michael Schenk, 3, G, Jírovcova, České Budějovice

5.-6. Pavel Juruš, 2, G, Jírovcova, České Budějovice
Milan Šimánek, 4, G, Pelhřimov

7. Petr Macháček, 3, G, Pelhřimov
8. Josef Lexa, 4, G, Jírovcova, České Budějovice
9. Libuše Štěpničková, 3, G, Písek
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Kategorie В1.Pavel Juruš, 2, G, Jírovcova, České Budějovice
2.-3. Luděk Hájíček, 2, G, Jírovcova, České Budějovice

David Kimr, 2, G VJ České Budějovice
4. Jakub Řídel, 2, G VJ České Budějovice
5. Vojtěch Franěk, 2, G, Jírovcova, České Budějovice

6.-7. Jana Hólzlová, 2, G, Jírovcova, České Budějovice
Aleš Jelínek, 2, G VJ České Budějovice

8.-12. Miloš Beran, 2, G, Pelhřimov
Pavel Fořt, 2, G, Jírovcova, České Budějovice
Daniel Kálal, 2, G, Písek
Petra Miksová, 2, G, Jírovcova, České Budějovice
Zdeněk Vlček, 2, G, Jírovcova, České Budějovice

Kategorie C

1. Ondřej Mareš, 1, G, Jírovcova, České Budějovice
2. Ondřej Pangrác, 1, G, Pelhřimov

3.-6. Jaroslav Hamrle, 1, G, Pelhřimov
Tomáš Mrkvička, 1, G, Strakonice
Jana Packová, 1, G, Jindřichův Hradec
Ondřej Stašek, 1, G, Jírovcova, České Budějovice7.Josef Škopek, 1, G, Jírovcova, České Budějovice

8.-9. Miroslav Norek, 1, G, Pelhřimov
Roman Otec, 1, G, Jírovcova, České Budějovice

Kategorie P

1. Milan Simánek, 4, G, Pelhřimov
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2. Roman Filipský, 3, G, Písek
3. Petr Macháček, 3, G, Pelhřimov
4. Richard Vlk, 4, G, Pelhřimov

Západočeský kraj

Kategorie A

1. Luboš Motl, 3M, 3. G, Plzeň
2.-3. Jaroslav Kaas, 3M, 1. G, Plzeň

Karel Soukeník, 4M, 1. G, Plzeň
4. Jan Kotas, 3M, 1. G, Plzeň
5. Jan Smolík, 3M, 1. G, Plzeň
6. Miroslav Orság, 3P, G, Klatovy

Kategorie В

1. Jiří Černý, 2M, 1. G, Plzeň
2.-4. Jitka Drábková, 2M, 1. G, Plzeň

Tomáš Kubr, 2M, 2. G, Plzeň
Pavel Wúnsch, 2, G, Rokycany

5.-6. Romana Lavičková, 2M, 1. G, Plzeň7.Jindřich Kňourek, 2M, 1. G, Plzeň
8.-10. Luďek Hynčík, 2M, G, Domažlice

Jan Krapáč, 2, G, Ostrov
Miroslav Skala, 2, 2. G, Plzeň
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Kategorie С

1. Petr Vachovec, 1M, 1. G, Plzeň
2. Jan Pospíšil, 1M, 1. G, Plzeň
3. Petr Písek, 1M, 1. G, Plzeň

4.-8. Jiří Čížek, 1M, 2. G, Plzeň
Jan Fiala, 1M, 1. G, Plzeň
Marek Vacka, 1M, G, Domažlice
Irena Zámečníkova, 1M, 1. G, Plzeň
Jiří Štika, 1M, G, Karlovy Vary

9. Eva Wenigrová, 1M, G, Karlovy Vary

Kategorie P

1. Jan Kotas, 3, 1. G, Plzeň
2. Jaroslav Kaas, 3, 1. G, Plzeň
3. Martin Čihák, 4, G, Karlovy Vary

4.-5. Petr Froňek, 3, 1. G, Plzeň
Aleš Zídek, 4, 3. G, Plzeň

Severočeský kraj

Kategorie A

1. Tomáš Zellerin, 3, G, Jateční, Ústí nad Labem
2.-3. Jiří Fiala, 4, G, Partyzánská, Liberec

Zdeněk Slavík, 4, G, Děčín
4. Radek Skoda, 4, G, Partyzánská, Liberec
5. Filip Bartl, 4, G, Partyzánská, Liberec
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Kategorie В

1. Pavel Pele, 2M, G, Teplice
2. Martin Kačer, 2M, G, Partyzánská, Liberec

3.-4. Michal Gust, 2 SPŠ Chomutov
Sylvia Sydvalová, 2M, G, Teplice

5. Daniel Havalka, 2M, G, Partyzánská, Liberec
6. Jan Kudrna, 2P, G, Litoměřice

Kategorie C1.Vladimír Beran, 1M, G, Kadaň
2.-3. Jaroslav Pisk, 1M, G, Partyzánská, Liberec

Petr Sehlósinger, 1M, G, Děčín
4.-5. Jan Birčák, 1M, G, Partyzánská, Liberec

Michal Кaut, 1M, G, Partyzánská, Liberec
6. Miroslav Bulín, 1M, G, Partyzánská, Liberec

7.-10. Karel Diviš, 1M, G, Partyzánská, Liberec
Jan Dostál, 1, G, Chomutov
Petr Kratochvíl, 1, G, Frýdlant
Jaroslav Sazama, 1, G, Rumburk

Východočeský kraj

Kategorie A

1. Petr Tobiška, 4M, G J. K. Tyla, Hradec Králové
2. Pavel Čížek, 4M, G J. K. Tyla, Hradec Králové
3. Jiří Lakosil, 4M, G J. K. Tyla, Hradec Králové
4. Martin Dvořák, 3, G, Pardubice
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5.Martin Středa, 4, G, Vrchlabí

Kategorie В

1. Rudolf Čejka, 2, G J. К. Tyla, Hradec Králové
2. Michal Šorel, 2, G, Pardubice
3. Jan Kříž, 2, G, B. Němcové, Hradec Králové

4.-5. Marek Černý, 2, G J. K. Tyla, Hradec Králové
Roman Konečný, 2, G, Pardubice6.Petr Plašil, 2, G, Pardubice

7.-9. Jan Мосек, 2, G, Pardubice
Martin Rosenbach, 2, GJKT, Hradec Králové
Petr Gregor, 2, G, Chotěboř

Kategorie C

1. Jiří Hartman, 1, G J. К. Tyla, Hradec Králové
2. Karel Houfek, 1, G J. K. Tyla, Hradec Králové

3.-8. Ladislav Ostrý, 1, G J. K. Tyla, Hradec Králové
Michal Johanis, 1, G J. K. Tyla, Hradec Králové
Boris Letocha, 1, G J. K. Tyla, Hradec Králové
Petr Chmelíček, 1, G J. K. Tyla, Hradec Králové
Petr Čermák, 1, G, B.Němcové, Hradec Králové
Luboš Veselý, 1, G, Vrchlabí

9.-10. Jaroslav Rejda, 1, G J. K. Tyla, Hradec Králové
Radek Bohata, 1, G, B.Němcové, Hradec Králové

Kategorie P

1. Pavel Čížek, G J. K. Tyla, Hradec Králové
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2. Petr Tobiška, G J. К. Tyla, Hradec Králové
3. Antonín Blatný, G, Pardubice
4. Aleš Makarov, G, Pardubice

5.-6 Boris Lechota, G J. K. Tyla, Hradec Králové
Michal Sorel, G, Pardubice

Jihomoravský kraj

Kategorie A

1.-3. Michal Bulaní, 4M, G, tř. kpt. Jaroše, Brno
Zdeněk Pezlar, 4M, G, tř. kpt. Jaroše, Brno
Michal Stehlík, 3M, G, tř. kpt. Jaroše, Brno

4.-5. Michal Konečný, 4M, G, tř. kpt. Jaroše, Brno
Filip Múnz, 3M, G, tř. kpt. Jaroše, Brno

6.-8. Pavel Růžička, 4M, G, tř. kpt. Jaroše, Brno
Pavel Vrbacký, 3M, G, tř. kpt. Jaroše, Brno
Milan Zamazal, 4M, G, tř. kpt. Jaroše, Brno

9.-12. Oldřich Auda, 4M, G, tř. kpt. Jaroše, Brno
Jiří Kalvoda, 4M, G, tř. kpt. Jaroše, Brno
Jan Mutl, 3M, G, tř. kpt. Jaroše, Brno
Martin Panák, 4M, G, tř. kpt. Jaroše, Brno

Kategorie В

1. Ondřej Klíma, 2M, G, tř. kpt. Jaroše, Brno
2. Petr Konečný, 2M, G, tř. kpt. Jaroše, Brno

3.-5. David Kruml, 2M, G, tř. kpt. Jaroše, Brno
Markéta Kyloušková, 2M, G, tř. kpt. Jaroše, Brno
Markéta Trefilová, 2M, G, tř. kpt. Jaroše, Brno
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6. Alena Burešová, 2M, G, tř. kpt. Jaroše, Brno
7.-8. Miroslav Filz, 2M, G, tř. kpt. Jaroše, Brno

Václav Komínek, 2M, G, tř. kpt. Jaroše, Brno
9. Rostislav Frélich, 2M, G, Prostějov

Kategorie C

1.-2. Michal Andrlík, IP, G, Boskovice
Iveta Tomenendálová, 1M, G, Jihlava

3.-6. Dana Černá, 1M, G, tř. kpt. Jaroše, Brno
Helena Hanáková, IP, G, Prostějov
Petr Novák, 1M, G, tř. kpt. Jaroše, Brno
Pavel Stehlík, 1M, G, tř. kpt. Jaroše, Brno

7.-8. Jan Hradil, 1M, G, tř. kpt. Jaroše, Brno
Blažej Neradílek, 1M, G, tř. kpt. Jaroše, Brno

9.-10. Martina Benešová, 1M, G, Jihlava
Michal Slanina, 1M, G, tř. kpt. Jaroše, Brno

Kategorie P

1. Michal Relich, 4, G, tř. kpt. Jaroše, Brno
2. Zdeněk Pezlar, 4, G, tř. kpt. Jaroše, Brno
3. Jan Kasprzak, 4, G, tř. kpt. Jaroše, Brno
4. Miroslav Kovář, 3, G, Vídeňská, Brno

5.-7. Petr Dobiáš, 4, G, Ždar n.Sázavou
Milan Sedláček, 4, G, tř. kpt. Jaroše, Brno
Jana Syrovátková, 2, G, tř. kpt. Jaroše, Brno
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Severomoravský kraj

Kategorie A

1. Aleš Kuběna, 4M, G, Bílovec
2. Mario Boháč, 4M, G, Bílovec

3.-5. Radek Horenský, 4M, G, J. z Poděbrad, Olomouc
Martin Kubacki, 4M, G, Bílovec
Pavel Rychlý, 4M, G, J. z Poděbrad, Olomouc

6. Jiří Chamrád, 3M, G, Bílovec
7.-8. Ondřej Kameník, 3M, G, Bílovec

Robert Wadura, 4M, G, Bílovec
9.-11. Oldřich Doseděl, 4M, G, Bílovec

David Žák, 3M, G, Bílovec
Michal Ševčík, 4M, G, J. z Poděbrad, Olomouc

Kategorie В

1. Marcela Hlawiczková, 2, G, Třinec
2. Kateřina Janošková, 2M, G, Bílovec

3.-4. Radek Pastyřík, 2M, G, Bílovec
Jiří Šimeček, 2M, G, Bílovec

5. Hana Ratajová, 2M, G, Bílovec
6.-9. Petr Kačenka, 2M, G, Bílovec

Vít Strádal, 2M, G, Bílovec
Petr Jiříček, 2M, G, Bílovec
Лп Lindovský, 2M, G, Bílovec

10.-12. Martin Beneš, 2M, G, Bílovec
Petr Jandík, 2M, G, Bílovec
Zuzana Stachovičová, 2M, G, Bílovec
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Kategorie С

1.-4. Jiří Čech, 1, G, Bílovec
Jaromír Fiurášek, 1, G, Frýdlant
Marek Pesa, 1, G, Frýdlant
Zdeněk Stasko, 1, G, Bílovec

5. Jan Mrázek, 1, G, Bílovec
6. Tomáš Jurtík, 1, G, Bílovec

7.-10. Otmar Onderek, 1, G, Bílovec
Zdeněk Románek, 1, G, Bruntál
Kamil Sýkora, 1, G, Jiřího z Poděbrad, Olomouc
Radim Wystyrk, 1, G, Bílovec

Kategorie P

1. Radim Moric, 4, G, Bílovec
2. Jarmil Halamíček, 4, G, Rožnov p. Rad.

3.-5. Václav Diviš, 4, G, Bílovec
Marek Kudrna, 4, G, Rožnov p. Rad.
David Polášek, 4, G, Bílovec

6.-7. Petr Blahoš, 3, G, Šumperk
Oldřich Doseděl, 4, G, Bílovec

8.-10. Martin Bodlák, 4, G, M. Majerové, Ostrava
Mario Boháč, 4, G, Bílovec
Tomáš Gelnar, 4, G, Bílovec
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Bratislava

Kategorie A

1.-3. Pavol Mederly, 3, G A. Markuša
Martin Stanek, 4, G J. Hronca
Boris Stítnický, 3, G A. Markuša

4. M. Mačaj, 4, G A. Markuša
5.-6. Ladislav Kis, 3, G A. Markuša

Richard Kollár, 3, G A. Markuša
7. Vladimír Špitálský, 4, G A. Markuša

8.-10. Peter Hecht, 3, G A. Markuša
Matěj Ondrušek, 2, G J. Hronca
Juraj Stanička, 2, G A. Markuša

Kategorie В

1.-2. Viliam Búr, 2, G A. Markuša
Pavol Marton, 2, G A. Markuša

3.-6. Daniel Kostečky, 2, G A. Markuša
Katarina Skálová, 2, G A. Markuša
Miloš Volauf, 2, G A. Markuša
Daniel Stefankovič, 2, G A. Markuša

7. Kamil Budinský, 2, G J. Hronca
8. Martin Suster, 2, G A. Markuša

9.-10. Milan Kabát, G J. Hronca
Darina Kozlová, G A. Markuša
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Kategorie С

1.-6. Matúš Kirchmayer, 1, G A. Markuša
Urban Kováč, 1, G A. Markuša
Mária Kuklišová, 1, G A. Markuša
Martin Niepel, 1, G A. Markuša
Daniel Pastor, 1, G A. Markuša
Marek Spál, 1, G A. Markuša

7.-11. Zuzana Bezeková, 1, G A. Markuša
Eva Chorvátová, 1, G A. Markuša
Marek Mačuha, 1, G A. Markuša
Zuzana Mederlyová, 1, G A. Markuša
Andrej Zlatoš, 1, G A. Markuša

Západoslovenský kraj

Kategorie A

1. Radovan Garabík, 3M, E. Gudernu, Nitra
2.-3. Ignác Bugár, 4, maď. G, Galanta

Miroslav Živna, 4, G, Skalica
4. Rastilav Krajňák, 3M, G E. Gudernu, Nitra
5. Zoltán Szocs, 4, maď. G, Galanta

Kategorie В

1. Andrej Huček, 2M, G, Párovská, Nitra
2.-5. Rastislav Graus, 2M, G E. Gudernu, Nitra

Gábor Rácz, 2, maď. G, Dunajská Středa
Alena Urbanová, 2M, G E. Gudernu, Nitra
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Milan Války, 2M, G, Párovská, Nitra6.Roland Haulitus, 2, G, Komárno
7.-9. František Antal, 2, G, Nové Město nad Váhom

Marián Harušták, 2, G, Nové Město nad Váhom
Gyula Polák, 2, maď. G, Komárno

Kategorie C

1.-3. František Gábriš, 1, G Hlohovec
Milan Hargaš, 1, G Šamorín
František Mizera, 1, maď. G, Komárno

4.-5. Josef Drahovský, 1, G, Piešťany
Juraj Vidéky, 1, G, Trenčín

6.-8. Túnde Keszegh, 1, maď. G, Komárno
Martin Lehotský, 1, G, Galanta
Martin Vaněk, 1, G, Trenčín

9. Zsolt Branko, 1, maď. G, Dunajská Středa

Kategorie P

1. Michal Slezák, 4, G E. Gudernu, Nitra
2. Peter Durfina, 4, G E. Gudernu, Nitra
3. Josef Nagy, 2, G, Levice
4. Igor Klepoch, 4, SP§E Nové Zámky
5. Peter Majerník, 3, maď. G, Galanta
6. Lubomír Stuller, 3, G, Levice
7. Peter Minárik, 3, G, Piešťany
8. Zoltán Bugár, 2, maď. G, Galanta
9. Pavol Gregor, 2, SPŠE Nové Zámky10.Martin Pabiš, 2, G, Piešťany
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Středoslovenský kraj

Kategorie A

1. Valerian Valášek, 4M, G, Tajovského, B. Bystrica
2.-5. Radovan Harman, 4P, G, Liptovský Hrádok

Martin Lancz, 4M, G, Tajovského, Ban. Bystrica
Dušan Svitek, 3 F, G, Tajovského, Ban. Bystrica
Soňa Simanová, 3M, G, Tajovského, Ban. Bystrica

6.-7. Vladimír Glasnák, 4M, G, Velká Okružná, Žilina
Dubo Macek, 3M, G, Liptovský Mikuláš

8.-9. Juraj Lórincz, 4M, G, Banská Bystrica
Roman Mackovčák, 3M, G, Veťká Okružná, Žilina

10. Simon Malý, 4M, G, Žiar nad Hronom

Kategorie В

1. Marek Žabka, 2M, G, Tajovského, Ban. Bystrica
2.-3. Dagmar Hrmová, 2M, G, Tajovského, B. Bystrica

Ján Žabka, 2M, G, Velká Okružná, Žilina
4.-6. Petr Duda, 2M, G, Tajovského, Ban. Bystrica

Monika Kozáková, 2M, G, Tajovského, B. Bystrica
Dušan Trstenský, 2, G, Velká Okružná, Žilina7.Miroslav Dobrota, 2M, G, Tajovského, B. Bystrica

8.-12. Vojtech Bálint, 2M, G, Velká Okružná, Žilina
Monika Balogová, 2M, G, Tajovského, B. Bystrica
Peter Hazucha, 2M, G, Tajovského, Ban. Bystrica
Peter Hlavatý, 2, G, Liptovský Mikuláš
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Kategorie С1.Peter Marsina, 1M, G, Vefká Okružná, Žilina
2.-4. Martin Gažák, 1M, G, Vefká Okružná, Žilina

Miroslav Kulla, 1M, G, Martin
Stanislav Višňovský, 1M, G, Martin

5.-6. Jitka Hušková, 1M, G, Martin
Michal Skokan, 1M, G, Vefká Okružná, Žilina

7.-8. Emilia Dubcová, 1M, G, Martin
Miroslav Liška, 1, G, Ružomberok

9.-12. Marek Hamran, 1M, G, Martin
Peter Humaj, 1M, G, Vefká Okružná, Žilina
Marek Káčer, 1, G, Martin
Roman Rňckschloss, 1M, G, Tajov., B. Bystrica

Kategorie P

1. Josef Antony, 4M, G, Prievidza
2. Peter Malčovský, 4M, G, Prievidza

Východoslovenský kraj

Kategorie A

1. Luboš Pastor, 3, G, Pivovarská, Košice
2. Slavomír Hrinko, 4, G, Konstantinova, Prešov
3. Herbert Vojčík, 3, G, Pivovarská, Košice
4. Miroslav Chladný, 3, G, Pivovarská, Košice

5.-6. Marek Gura, 3, G, Popr. nábr., Poprad
Marek Kelbel, 4, G, Srobárova, Košice
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7.-11. Cyril Hruščák, 3, G, Poprad
Peter Kováčik, 2, G, Alejová, Košice
Ján Machuň, 3, G, Pivovarská, Košice
Peter Varga, 4, G, Šrobárova, Košice
Lubomír Zlacký, 4, G, Michalovce

Kategorie В

1. Peter Katuščák, 2, G matem., Košice
2. Peter Kováčik, 2, G matem., Košice
3. Milan Melicherčík, 2, G, Kováčikova, Košice
4. Braňo Jendrol’, 2, G matem., Košice
5. Dárius Germala, 2, G matem., Košice
6. Pavel Diko, 2, G matem., Košice

7.-9. Martina Hruščáková, 2, G, Popr. nábr., Poprad
Igor Magda, 2, G matem., Košice
Peter Šulič, 2, G, Vranov

Kategorie C

1.-4. Miloš Gáj, 1, G, D. Tatarku, Poprad
Radoslav Valovský, 1, G, Michalovce
Peter Zámborský, 1, G, Pivovarská, Košice
Ivana Simočková, 1, G, Konštantínova, Prešov

5. Martin Sepelák, 1, G, Michalovce
6.-8. Ivana Brudňáková, 8, ZŠ, 17.novembra, Prešov

Richard Molokáč, 1, G, Pivovarská, Košice
Igor Pauer, 1, G, Pivovarská, Košice

9.-10. Martin Cajbík, 1, G, Humenné
Peter Fehér, 1, G, Pivovarská, Košice
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Kategorie P

1. Herbert Vojčík, 3, G, Smeralova, Košice
2. Lubomír Zlacký, 4, G, Michalovce
3. Radovan Brečka, 4, G, Snina
4. Tomáš Vinař, 1, G, Šrobárova, Košice
5. Marek Jakub, 4, G, Michalovce

6.-9. Marek Gura, 3, G, Popradské nám., Poprad
Cyril Hruščák, 3, G, Popradské nám., Poprad
Norbert Kopčo, 4, G, Opatovská, Košice
Ondřej Pajtáš, 4, G, Michalovce
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Kategorie С

Texty úloh

C - I - 1

Kolik je čtyřciferných čísel s touto vlastností: Jestliže v něm
škrtneme kteroukoliv číslici, nedostaneme číslo dělitelné tře¬
mi.

С - I - 2

Najděte nejmenší přirozené číslo k, pro které mají součiny
384к a 2 592к stejný počet dělitelů.

C - I - 3

Tři fotbalová družstva hrají turnaj systémem, v němž každé
družstvo hraje s každým к zápasů. Po skončení turnaje
se zjistilo, že družstva získala různý počet bodů. Vítězem
turnaje se nestalo družstvo, které získalo nejvíce výher,
ani družstvo, které mělo nejméně proher. Určete nejmenší
číslo k, pro které mohla uvedená situace nastat.
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С - I - 4

Rozhodněte, zda existuje tětivový čtyřúhelník s těmito
vlastnostmi:

a) Úhlopříčky ho dělí na čtyři pythagorejské trojúhelníky.
b) Čtyřúhelník není osově souměrný.

(Pythagorejský trojúhelník je pravoúhlý trojúhelník s ce-
ločíselnými délkami stran.)

С - I - 5

Je dán konvexní čtyřúhelník ABCD, \AB\ = 9 cm, \BC\ —

= 6 cm, \CD\ — 5,5 cm, \DA\ = 4,5 cm, \BD\ — 9 cm.
Najděte množinu všech bodů, pro které paty kolmic z tohoto
bodu na všechny čtyři strany čtyřúhelníku leží na obvodě
čtyřúhelníku ABCD. Hledanou množinou je jistý n-úhelník.
Zjistěte velikosti jeho vnitřních úhlů.

C - I - 6

Strany čtyřúhelníku mají délky 5, 5, 5, 3. Dokažte, že jeho
obsah je větší než 2л/б, a je-li čtyřúhelník konvexní, je jeho
obsah větší než 12.

C - S - 1

Čtyřúhelník má tři strany stejně dlouhé, délka čtvrté strany
se rovná délce jedné i druhé úhlopříčky. Určete velikosti
vnitřních úhlů čtyřúhelníku. Jaký je to čtyřúhelník?
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С - S - 2

Nájdite všetky prirodzené čísla n, pře ktoré číslo n2 4 1 dělí
číslo n3 — 8n2 + 2n.

C - S - 3

V oboru nezáporných reálných čísel řešte soustavu rovnic

x 4 у + 2 = a,

x 4 у - z = b,
x - у + z = c,

x - у - z = d,

jestliže množina {a, b, c, d} je totožná s množinou {4, 8,12,
16}.

C - II - 1

Dokážte, že pre každé prirodzené číslo n je číslo n6 — n2
dělitelné dvatsiatimi.

С - II - 2

Obdélníkový list papíru ABCD o rozměrech \AB\ = 30 cm,

\BC\ = 21 cm je přeložen tak, že bod В přejde do bodu E
na úsečce AD a \AE\ — 15 cm (obr. 1). Vypočtěte velikosti
\KH\ a \GH\.

C - II - 3

Daný je pravoúhlý trojuholník АРМ s pravým uhlom pri
vrchole P. Zostrojte rovnoramenný trojuholník ABC so
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E

základňou AB tak, aby bod M bol stredom strany ВС a P
bol pátou výšky na túto stranu.

С - II - 4

Ve fotbalovém turnaji tří družstev А, В, C hrálo každé
družstvo s každým družstvem dvakrát. Ve výsledné tabulce,
která u každého mužstva udává počet výher, počet neroz-

hodných zápasů a počet proher, známe následující údaje:

1

Doplňte zbývajících pět čísel tabulky. Svůj postup zdůvod-
něte.
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Řešení úloh

C - I - 1

Použijeme známé tvrzení, že zbytek při dělení čísla třemi
je stejný jako při dělení třemi ciferného součtu toho čísla.
Například v případě čtyřciferného čísla m o číslicích a, 6,
c, d je m — 1 000a -f 1006 4- 10c -f d = 3(333a + 336 +
+ 3c) + (a + 6 + c + d), odkud vidíme, že rozdíl čísla m
a jeho ciferného součtu a + 6 + c + dje dělitelný třemi. Má-li
číslo m požadovanou vlastnost, nesmějí žádné tři jeho číslice
dávat při dělení třemi stejný zbytek. Jinak by byl jejich
součet dělitelný třemi, a tím by bylo dělitelné třemi i číslo,
jež bychom dostali z čísla m vynecháním zbývající, čtvrté
číslice. Ze stejného důvodu nesmějí žádné tři číslice čísla
m dávat při dělení třemi navzájem různé zbytky. Zbývá
tedy pouze možnost, že dvě číslice dávají stejný zbytek
a zbývající dvě rovněž, avšak různý od prvního. Dávají-li
například dvě číslice zbytek 1 a zbývající dvě zbytek 2, není
součet žádných tří z nich dělitelný třemi. Ty dvě číslice
se zbytkem 1 můžeme ze čtyř číslic vybrat celkem šesti
způsoby, přitom každá z nich se může rovnat 1, 4 nebo 7.
Zbývající dvě číslice se mohou nezávisle rovnat 2, 5 nebo 8.
Máme tedy celkem 6 • 3 • 3 • 3 • 3 = 486 možností. Podobně
je tomu u zbytků 0 a 1 nebo 0 a 2. Avšak číslice se zbytkem 0
při dělení třemi se může rovnat 0, 3, 6 nebo 9 (4 možnosti),
proto dostáváme nyní dvakrát 6 • 4 • 4 • 3 • 3 = 864, tedy 1 728
možností. Z nich však musíme vynechat ty případy, v nichž
je na prvním místě 0, nebylo by to číslo čtyřciferné. Je-li
na prvním místě 0, je ještě na jednom místě číslice dělitelná
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třemi, tedy O, 3, 6, 9, na dalších dvou místech pak číslice 1,4
nebo 7 nebo 2,5,8. Musíme tedy vyloučit 2-3-4-3-3 = 216
případů. Výsledek úlohy je 486 + 1 728 — 216 = 1 998.

С - I - 2

Je 384 = 27 • 3, 2 592 = 25 • 34. Položme například
к — 2r • 3s • 5ť, pak je

Шк = 2r+7 • 3S+1 • 5* 2 592fc = 2r+5 • 3,+4 • 5*.

První z nich má (r+8)(s+2)(í +1), druhé (r+6)(s+5)(ř+ l)
dělitelů. Má tedy platit

(r + 8)(s + 2) = (r + 6)(s + 5) tj. 2s = 3r + 14.

Protože hledáme nejmenší k, položíme r = 0, s = 7 aí = 0.
Podobně bychom dostali, že i u dalších prvočísel v rozkladu
čísla к by byl exponent nulový. Řešením úlohy je tedy číslo
к = 37.

C - I - 3

Vítězné mužstvo označme A a nechť více vítězných zápasů
než A mělo mužstvo B. Kdyby toto mužstvo mělo méně
proher než A, nemohlo by být A vítězem turnaje. Proto

’ méně proher než A mělo třetí družstvo C. Označme p, q, r

po řadě počet vítězných zápasů mužstva A nad B, mužstva
В nad C a mužstva C nad A. Podobně označíme и, v, w

počet vítězných zápasů mužstva A nad C, mužstva C nad
В a mužstva В nad A, viz přiložené schéma (obr. 2).
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Obr. 2

Mužstvo A vyhrálo р + и zápasů a prohrálo r + w zápasů,
В vyhrálo q + w utkání, C prohrálo q + u. Podle předpokladu
jep + u<q + w,r + w>q + u. Přitom mužstvo A získalo
2(p + u) + 2fc — (p + w + r + u) = 2k-\-(p + u) — (r + w) bodů,
mužstvo В získalo 2k + (q -f w) — (p + v) bodů a bodový zisk
mužstva C byl 2k + (r + г>) — (q -f и), kde к značí počet kol
turnaje. Jelikož A získalo nejvíce bodů, je

p + и — (r + w) > q + w - (p + v),
p + и — (r + w) > r + v — (q + u),

sečtením dostaneme

p + и > r + w.

Máme tedy

q + w>p-\-u>r + w>q-\-u.

Protože jde o celá čísla, je

q + Wílp + u+l,

p+tt^r + iu-fl,
r + u; ^ q -\- и + 1,
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odkud

q ^ r -f 2 (sečtením prvních dvou nerovností),
p ^ q + 2 (sečtením posledních dvou nerovností),
if ^ u + 3 (sečtením všech tří nerovností).

Z odvozených tří nerovností zase plyne jejich sečtením

p + w^r + u + 7.

Čísla г, и jsou nezáporná, proto mužstva А а В sehrála
mezi sebou aspoň 7 utkání, je tedy к ^ 7. Ukážeme, že к =
= 7 vyhovuje. Je pak nutně r = и = 0, p = 4, w = 3, q = 2
a pro и máme podmínku 0 < v < 3, takže v = 1 nebo v =

= 2. Všechna utkání mezi A a C skončila nerozhodně, mezi
А а В neskončilo žádné utkání remízou. Mužstvo A získalo

15 bodů, zbývající dvě mužstva 13 a 14 bodů.

С - I - 4

Představme si, že čtyřúhelník ABCD (obr. 3) má požado-
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vane vlastnosti, označme O průsečík jeho úhlopříček. Pro-
tože to má být čtyřúhelník tětivový, musí být \<$ADO\ =
= \<$BCO\, takže trojúhelníky ADO a BCO jsou podobné
(při vrcholu O mají pravý úhel) a pythagorejské. Jeden
z pythagorejských trojúhelníků má strany 3, 4, 5, zkusme
tedy zvolit přirozená čísla к, l tak, aby \AO\ — 3Ar, \DO\ =
= 4k, \BO\ = 3/, \CO\ = 4/. Pak stačí, aby к, / byly délky
odvěsen pythagorejského trojúhelníku. Pokud by však bylo

3 : 4 nebo к : l = 4:3, byl by čtyřúhelník
ABCD osově souměrný, což nechceme. Vzpomeňme si na

pythagorejský trojúhelník o odvěsnách 5 a 12 a položme
к = 5, / = 12, takže \AO\ = 15, |DO| = 20, \BO\ = 36,
|CO| = 48. Tyto délky naneseme od průsečíku O dvou
kolmých přímek a dostaneme tak čtyřúhelník požadovaných
vlastností.

к : l

С - I - 5

Body A, D vedeme kolmice к straně AD, hledaná množina
M bodů je částí rovinného pásu ohraničeného těmito dvěma
kolmicemi. Podobně postupujeme u dalších stran čtyřúhel-
niku. Množina M je průnikem čtyř rovinných pásů, v našem
případě je M šestiúhelník PQRSTU (obr. 4). Protože PU X
X DC, QP X AD, je \<QPU\ = \<ADC\. Podobně by-
chom určili velikosti ostatních úhlů šestiúhelníku M pomocí
velikostí úhlů čtyřúhelníku ABCD.

C - I - 6

Uvažujme nejdříve čtyřúhelník ABCD s danými délkami
stran, který není konvexní, (obr. 5) a označme x = \AC\.

46



Podle trojúhelníkové nerovnosti je 2 < x. Přitom je rov-

noramenný trojúhelník ACD ostroúhlý, jinak by bylo x ^
^ 5\/2. Protože však bod A leží uvnitř trojúhelníku CBD,
je x < 5. Ostroúhlý rovnoramenný trojúhelník o ramenech
5, 5 a základně x > 2 má větší obsah než stejný trojúhel-
nik o základně 2. Poslední má obsah 2\/6, proto je obsah
trojúhelníku ACD, a tím spíše obsah čtyřúhelníku ABCD
větší než 2\/6-

Dále se budeme zabývat čtyřúhelníky konvexními
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Obr. 7

(obr. 6). Bez újmy na obecnosti můžeme předpokládat,
že \AC\ ^ \BD\, jinak bychom zaměnili označení bodů
D, A a současně В, C. Pro x — \AC\ tedy platí x <
< 8 a zároveň x ^ 2л/Ш, neboť 2\/Г0 je délka úhlopříček
v rovnoramenném lichoběžníku o stranách 5, 5, 5, 3 (obr. 7).
Obsah trojúhelníku ACD je pro všechna x £ (2\/Г0,8)
větší než 12 (obr. 8).

C - S - 1

Má-li čtyřúhelník ABCD požadované vlastnosti, můžeme
označení jeho vrcholů zvolit tak, že \AD\ = \DC\ = \CB\
a \AB\ = \AC\ = \BD\ (obr. 9).
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Obr. 9

Trojúhelníky ABC, BAD jsou shodné rovnoramenné
trojúhelníky souměrně sdružené podle osy úsečky AB. Čtyř-
úhelník je proto rovněž osově souměrný podle této osy,
takže je to rovnoramenný lichoběžník. Označíme-li а =
= \<CAB\, je také а = \<$ABD\ = \<BDC\ = \<DCA\.
Trojúhelníky ACD, BDC jsou rovněž rovnoramenné, proto
je а = \<DAC\ = \<DBC\, \<ACB\ = \<ADB\ = 2a.
Z trojúhelníku ABC pak plyne rovnost 5a = 180°, takže
velikosti vnitřních úhlů čtyřúhelníku jsou 2a = 72°, 72°,
3a = 108° a 108°.

C - S - 2

Jelikož

n3 — 8n2 + 2n = (n — 8)(n2 -f 1) + n 4- 8

je toto číslo dělitelné číslem n2 + 1 právě tehdy, když je jím
dělitelné číslo n -f 8. Pro n = 1 a n = 3 to splněno není,

= 2 to splněno je. Je-li n ^ 4, je (n — ^ takžepro n
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n2 — n ^ 12, n2 4- 1 ^ n + 11 > n + 8. Větší číslo nemůže
dělit menší, je tedy n = 2 jediným řešením úlohy.

C - S - 3

Má-li mít daná soustava řešení v oboru nezáporných čísel,
musí být a ^ b, a ^ c, 6 ^ d, c ^ d, takže a ^ 6 ^ c ^ d
nebo a ^ c ^ 6 ^ d. Musí tedy být a = 16, d = 4 a dále
6 = 12, c = 8 nebo b = 8, c = 12. V prvním případě vyjde
x = 10, у — 4, г = 2, v druhém případě x = 10, у = 2,
2 = 4.

C - II - 1

Je

n6-n2 = n2(n - l)(n + l)(n2 + 1).

Je-li n sudé, je n2 dělitelné čtyřmi, v opačném případě jsou
čísla n — l,n + 1 sudá a čtyřmi je dělitelný součin (n —
— 1)(tí -f 1). Není-li žádné z čísel n, n — 1, n + 1 dělitelné
pěti, je гг = bk + 2 nebo тг = bk + 3, kde к je celé. Pak je
ale 7i2 -f 1 = 25fc2 + 20к -j- 5 nebo тг2 + 1 = 25fc2 + 30к + 10,
takže ti2 -f- 1 je dělitelné pěti. Tím je dokázáno, že dané číslo
тг6 — тг2 je vždy dělitelné čísly 4 a 5, a tudíž dvaceti.

Jiný důkaz dělitelnosti čísla n6 — n2 číslem pět podá-
la Anna Vánčová, žákyně I. ročníku gymnázia v Považské
Bystrici. Ví, že součin pěti po sobě jdoucích přirozených
čísel тг — 2, тг — 1, тг, тг-fl, n -f 2 je jistě dělitelný pěti.
Přitom je

(тг—2)(тг— 1) тг (тг—1) (тг—2) = тг(тг4—5n2-f4) = тг5—5тг3+4тг
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a

2).2
= n(n5 — 5n3 + 4n) + 5(n4

Jelikož jsou oba sčítance dělitelné pěti, je pěti dělitelný
i jejich součet n6 — n2.

n6 — n— n

С - II - 2

Označme x = |./4F| (obr. 10), kde F je průsečík úsečky
AB a osy úsečky BE. Je \FE\ = \FB\ = 30 cm —

Užitím Pythagorovy věty na trojúhelník AFE dostaneme
x = jcm. Z podobnosti pravoúhlých trojúhelníků KDE
a EAF plyne \EK\ = 10 cm, takže \KH\ = 11 cm. Z po-
dobnosti trojúhelníků KDE a KHG plyne \HG\ = ^

x.

cm.

E

C - II - 3

Sestrojíme nejdříve těžiště T trojúhelníku ABC (obr. 11),
leží na úsečce AM, kterou dělí v poměru 2 : 1 (|ЛТ| :
: \TM\ = 2:1). Protože má platit \AC\ — \BC\, musí
také platit \AT\ — \BT\. Leží tedy bod В na kružnici к
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o středu Т a poloměru \ТА\, jež protíná přímku PM ve
dvou bodech, každý z nich můžeme vzít za bod B. Bod C
dostaneme jako průsečík přímky PM s osou úsečky AB,
nebo také jako bod souměrně sdružený к bodu В podle
bodu M. Úloha má dvě řešení.

С - II - 4

Protože В má jednu prohru a A žádnou výhru, muselo В
prohrát s C, takže C má aspoň jednu výhru. Více však
mít nemohlo, protože sehrálo jen 4 utkání, takže nemělo
žádnou prohru. Jednu prohru mělo mužstvo A (prohrálo
nutně s B). Mužstvo A pak mělo tři а В dva nerozhodné
zápasy. Výsledná tabulka byla tedy takováto:

A 0 3 1
в 11 2

c 1 3 o
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Kategorie В

Texty úloh

В - I - 1

V oboru reálných čísel řešte rovnici Зж3 — [ж] = 3, kde [ж]
značí celou část čísla ж.

В - I - 2

Na straně AB trojúhelníku ABC jsou dány body К, L tak,
že \AK\ = \KL\ = \LB\, podobně na straně CB body M, N
tak, že \CM\ = \MN\ = \NB\. Průsečík úseček AN a KM
označme P, průsečík přímek LP a AC je bod Q. Určete
obsah čtyřúhelníku CQPM, jestliže se obsah trojúhelníku
ABC rovná 18.

В - I - 3

V rovině je dáno 7 bodů, z nichž některé jsou spojeny
úsečkou. Přitom jsou splněny podmínky:
a) z každé trojice bodů jsou aspoň dva spojeny úsečkou,
b) počet úseček je minimální.

Kolik úseček obsahuje útvar, který splňuje tyto podmiň-
ky? Nakreslete příklad takového útvaru.
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В - I - 4

Sestrojte trojúhelník, jestliže je dán poloměr r kružnice mu

vepsané, poměr poloměru R kružnice mu opsané a strany a
se rovná 2 a poměr velikostí /?, 7 úhlů přilehlých к straně a
se rovná 3.

В - I - 5

Pro reálná čísla a, 6, с (ас ф 0) má rovnice ax2 + bx + c = 0
reálný kořen r, rovnice ax2 — bx — c = 0 má reálný kořen s.

Dokažte, že rovnice ax2 — 2bx — 2c = 0 má reálný kořen,
který leží mezi ras.

В - I - 6

Dokažte, že pro velikosti a, /?, 7 úhlů v trojúhelníku platí

3
sin a sin (3 sin 7 ^ rV3-8

в - s -1

Dokažte, že rovnice

(x - a)(x - 6) + (x - 6)(x - c) + (x - c)(x - a) = 0

má pro každou trojici reálných čísel a, b, c reálné řešení.
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В - S - 2

Najděte aspoň jednu dvojici celých čísel a, b tak, aby pro
každé celé číslo x platilo

x 4- b 2xx + a
+

5 '55

([x] značí celou část čísla x, tj. největší celé číslo, které není
větší než číslo x.)

В - S - 3

Na uhlopriečke AC rovnoběžníka ABCD sú dané body К
a L také, že |v4A"| : \KL\ : \LC\ = 4:5:3. Označme P
priesečník priamok AB, DK a Q priesečník priamok CD
a BL. Vypočítajte poměr |P#| : |QP|, kde R je priesečník
uhlopriečky AC a priamky PQ.

В - II - 1

Dokažte, že funkce /(x) = kx — [x] definovaná na množině R
všech reálných čísel není pro к > ^ prostá.

В - II - 2

Ukážte, že rovnica

x4 — 2x3 + 3x2 — 4x -f 5 = 0

nemá riešenie v množině reálných čísel.
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В - II - 3

V rovině je daných sedem bodov, z ktorých niektoré sú
spojené úsečkou. Přitom v každej štvorici bodov sú aspoň
dve dvojice spojené úsečkou a počet úsečiek je minimálny.
Zistite, kofko úsečiek takýto útvar obsahuje, a nakreslite
příklad.

В - II - 4

Je dán obdélník ABCD a na jeho stranách AB, CD jsou
zvoleny body E, F tak, že trojúhelníky AEG, GHF a HCF
mají stejný obsah (G a H označují průsečíky úhlopříčky AC
s přímkami EF a BF). Určete poměr obsahu trojúhelníku
AEG a obsahu daného obdélníku.

Řešení úloh

В - I - 1

Označme [z] = n, takže n ^ x < n + 1. Funkce у = x3 je
rostoucí, takže

n3 <; z3 < (n + l)3.
Vynásobíme-li tuto nerovnost třemi a odečteme n, dostane-
me

Зп3 — n ^ 3x3 — [x] < 3n3 + 9n2 + 8n + 3.

Splňuje-li x danou rovnici, je nutně

3n3 — n ^ 3 < 3n3 + 9n2 -I- 8n + 3,
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tedy

n(3n3 —1)^3 a současně 0 < n(3n2 + 9n + 8).

Druhá nerovnice není splněna pro žádné n ^ 0, protože
3n2 -f 9n + 8 > 0 pro každé n. Z přirozených čísel splňuje
první nerovnici pouze číslo n = 1, takže řešená rovnice
může mít řešení pouze v intervalu (1,2). Pro takové řešení
pak platí 3x3 — 1 = 3, tedy x = Tato hodnota je
z uvedeného intervalu a je jediným řešením úlohy.

В - I - 2

Z podobnosti trojúhelníků ABC, KBM (obr. 12) plyne

A К L В
Obr. 13

\KM\ = §|ЛС|, z podobnosti trojúhelníků ANC, PNM
plyne \MP\ = \\AC\, takže \PK\ = \KM\ - \MP\ =
= \\AC\. Úsečka PK je střední příčkou v trojúhelníku
ALQ, takže \AQ\ = 2\PK\ = ||ЛС|, neboli \CQ\ =
= ||ЛС|. Čtyřúhelník CQPM je lichoběžník se základnami
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CQ a MP a výškou kde v je výška trojúhelníku ABC
na stranu AC. Hledaný obsah je tedy

Ш+£> |ж7|-г ^-\AC\v = 7,36

neboť ^\AC\v = 18.
Jiné řešení. Body M, N vedeme rovnoběžky s přímkou

AB i s přímkou AC (obr. 13), body К a L vedeme rovno-

běžky s přímkou BC. Tím se trojúhelník ABC rozdělí na 9
shodných trojúhelníků, každý z nich má obsah 2. Ctyřúhel-
nik CQPM je složen z 3,5 těchto trojúhelníků, jeho obsah
je tedy 7.

В - I - 3

Jestliže z některého z daných bodů (označme ho A) ne-
vychází žádná úsečka, musejí být každé dva ze zbývajících
6 bodů spojeny, jinak by tyto dva body tvořily spolu s bo-
dem A trojici, která by nesplňovala podmínku a). Šest bodů
určuje (®) = 15 úseček. Nechť z některého bodu A vychází
pouze jedna úsečka, její druhý krajní bod označme B. Kaž-
dé dva ze zbývajících pěti bodů musejí být opět spojeny
úsečkou, je tedy v tomto případě třeba aspoň 11 úseček.
Nechť z některého bodu A vycházejí pouze dvě úsečky (do
bodů B,C). Každé dva ze zbývajících 4 bodů musejí být
spojeny, to dává 6 úseček. Podmínka a) však bude splněna
jen tehdy, bude-li každý z těchto 4 bodů spojen s В nebo
s C (12 úseček) nebo budou-li spojeny body В, C (pak
je třeba aspoň 9 úseček — obr. 14). Vycházejí-li z každého
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bodu aspoň 3 úsečky, je jich celkem aspoň | • 3 • 7, tedy
aspoň 11. Nejmenší možný počet úseček je tedy 9.

В - I - 4

Nejdříve sestrojíme trojúhelník ABC, který má všechny po-
žadované vlastnosti kromě daného poloměru vepsané kruž-
nice. Zvolíme libovolnou úsečku BC za stranu a a sestrojíme
kružnici o poloměru 2a, která prochází body В, C (obr. 15).

Tím známe velikost úhlu a = \<$BAC\, správněji dvě mož-
né velikosti — podle toho, zvolíme-li A na větším, nebo
na menším oblouku. Rozdíl 180° — a rozdělíme graficky na
4 stejné díly, 1 díl je velikost úhlu 7, 3 díly tvoří velikost
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úhlu /?. Úsečka ВС spolu s (3 a 7 už určují bod A. Tak-
to obdržený trojúhelník musíme ovšem ještě stejnolehlostí
zobrazit tak, aby se poloměr kružnice vepsané rovnal r. Za
střed stejnolehlosti zvolíme například bod B. Označíme-li g

poloměr kružnice vepsané trojúhelníku ABC, rovná se ко-
eficient stejnolehlosti poměru r : g.

В - I - 5

Je ar2 + br + c = 0, as2 — bs — c = 0. Kvadratická funkce
у = ax2 — 2bx — 2c nabývá v bodě x — r hodnoty ar2 — 2br —

— 2c = 3ar2, v bodě x = s hodnoty as2 — 2bs — 2c— —as2.
Jelikož ars ф 0, mají čísla 3ar2, as2 opačná znaménka, musí
tedy mezi čísly r, s ležet číslo x, pro které je ax2 — 2bx —

- 2c = 0.
Pěkně se úloha řeší též graficky pomocí grafu funkcí у =

= ax2 (parabola), у = bx + с, у = —bx — с, у = 2bx + 2c
(vesměs přímky, které neprocházejí počátkem).

В - I - 6

Použijeme nejdříve nerovnost mezi aritmetickým a geomet-
rickým průměrem, dostaneme

sin a sin (3 sin 7 ^ ^-(sina + sin/? + sin7)3,27

dále postupujeme podle 57. svazku ŠMM, str. 27, anebo
použijeme tzv. Jensenovu nerovnost, podle které pro a, (3,
7 G (0, 2n) platí

a + (3 + 7sin a sin /3 + sin 7 < sin
3 3
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Rovnost platí právě jen pro trojúhelník rovnostranný.

В - S - 1

Můžeme předpokládat, že a ^ 6 5Í c. Pro funkci

/(ar) =-(x — a)(x — 6) + (ж — b)(x — c) + (x — c)(x — a)

je pak /(a) ^ 0, /(6) ^ 0, takže v případě a — b je /(a) = 0
a v případě a < b existuje nutně x £ (a, b), pro které platí
f{x) = 0.

Mohli bychom ovšem také spočítat diskriminant kvadra-
tického troj členu f(x) a ukázat, že není záporný. To by se
nám snadno podařilo, neboť je

D = 4(a -f 6 4- c)2 — 12(a6 -f bc 4- ca) =

= 2(a - 6)2 + 2(6 - c)2 + 2(c - a)2.

В - S - 2

— =0, což dostaneme
5-

a
Pro čísla a, 6 musí platit -

L5
z dané rovnosti pro x = 0. Zkusíme zvolit čísla a ^ 6
z množiny {0,1,2,3,4). Dosadíme-li postupně x = 1, 2, 3,
4, vyjde

+

'6 + 2'6+1a + 1 a + 2
= 0+ +

5 5 5 5

'6 + 3' a + 4" '6 + 4'a + 3
= 1+ +

5 5 5 5
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takže

a + 4 '6 + 3' '6 + 2'
= 0 = 1 = 0,

5 5 5

odkud vychází a = 0, 6 = 2. Pro tato dvě čísla je daná
rovnice splněna pro každé iG {0,1,2,3,4}. Je ovšem vidět,
že daná rovnice je splněna pro x tvaru x = bk + xo (к je
celé), právě když je splněna pro xq.

B-S-3

Z podobnosti trojúhelníků APK ~ CDK, ABL ~ CQL
a APR ~ CQR plynou rovnosti

\AP\
_ \AP\ _ \AK\ _ 1

|CT>| ~ \AB\ ~ \KC\ ~ 2
\£Q\ \CL\ 1
\AB\ \AL\ 3

takže
\PR\

_ \AP\ _ 3
|<ЭЯ| _ 1CQ] _ 2'

В - II - 1

Z grafu uvedené funkce zjistíme, že pro к ^ 1 je /(1) =
= к — 1 a rovněž /(1 — £) = fc(l — £) = к — 1. Pro к € (|, 1)
je /(0) = 0 a zároveň /(£) = 0, neboť číslo £ leží v intervalu
(1.2).

Jiné řešení. Uvedená funkce zobrazí interval (0,1)
na interval {0, к) a interval (1,2) zobrazí na interval
(к — 1,2к — 1). Přitom pro к ^ 1 je zřejmě 0 ^ к —
— 1 < к a pro к G (5, l) zase 0 5Í 2к — 1 < к, takže
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v obou případech je průnik intervalů (0, к), (к — 1,2k — 1)
neprázdný, což znamená že daná funkce není prostá.

В - II - 2

Mnohočlen jednoduše upravíme na tvar

ж4 — 2x3 + Зж2 — 4x + 5 =

= x2(x2 — 2x + 1) 4- 2(x2 — 2x + 1) + 3 =

2(x — l)2 + 2(x — l)2 -f 3,= x

odkud je vidět, že pro každé reálné x je uvedený výraz
kladný. Rovnice tedy nemá žádné reálné řešení.

В - II - 3

Kdyby mezi danými body existovala trojice, ve které by
žádné dva body nebyly spojeny úsečkou, musel by každý ze

zbývajících čtyř bodů být spojen aspoň se dvěma z těchto
tří bodů. To je celkem 8 úseček. Tyto čtyři body jsou také
spojeny aspoň dvěma úsečkami, takže celkově by takový
útvar obsahoval aspoň 10 úseček.

Jsou-li naopak v každé trojici bo-
dů aspoň dva spojeny úsečkou, víme
z úlohy B-I-3, že útvar obsahuje aspoň
9 úseček (obr. 16). Takový útvar zřejmě
vyhovuje požadavkům úlohy. Obr. 16

В - II - 4

Z rovnosti obsahů trojúhelníků GHF a HCF plyne rovnost
\GH\ = \HC\. Protože trojúhelníky CFG a AEG jsou
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podobné a jejich obsahy jsou v poměru 2 : 1, je \GC\ =
= V2\AG\,ty \AG\ = V2 \HC\.

Z podobnosti trojúhelníků CFH, ABH plyne, že
\AB\ : \CF\ = 1 + y/2. Ve stejném poměru jsou i výšky
v, w těchto trojúhelníků, takže

1v v

V + w 2 + уД'

Protože obsah trojúhelníku CFH je ^ \CF\v a obsah ob-
délníku ABCD je \AB\(v 4- w), je hledaný poměr

Зл/2-4

\CB\

1 1

2 ‘ 1 + Д ' 2 + Д ~ 4
1
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Kategorie A

Texty úloh

A - I - 1

Pře každé prirodzené n ^ 6 platí n! ^ (f)”- Dokážte.

A - I - 2

Pravidelný štvorboký antihranol ABCDEFGH má dve
štvorcové steny ABCD, EFGH a osem stien tvaru rov-
nostranného trojuholníka ABE, BCF, CDG, DAH, EFB,
FGC, GH D, HEA. Všetky hrany majú dížku a. Vypočí-
tajte objem daného antihranola.

A - I - 3

V rovině je dáno devět bodů, z nichž některé jsou spojeny
úsečkou. Přitom jsou splněny následující podmínky:
a) v každé trojici daných bodů jsou aspoň dva spojeny

úsečkou,
b) počet úseček je minimální.
Kolik úseček obsahuje útvar, který tyto dvě podmínky spi-
ňuje? Načrtněte příklad takového útvaru.
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A - I - 4

Každý mnohoúhelník M (ne nutně konvexní) lze rozřezat
na trojúhelníky s vrcholy ve vrcholech M. Dokažte.

A - I - 5

Nájdite taký mnohočlen p s celočíselnými koeficientami, pre

ktorý platí

p(l)=l, p(2) = 3, p(3)=15

a ktorý má najmenší súčet absolútnych hodnot svojich koe-
ficientov. Změní sa odpověď, ak budeme uvažovat’ mnoho-
členy p s lubovolnými reálnými koeficientami?

A - I - 6

Je dána funkce / spojitá na intervalu (0,1) a s hodnotami
/(0) = /(1) = 1, jež pro každá dvě čísla x ^ у z intervalu
(0,1) splňuje rovnici

(4J9 = f/(*)+5/(y)-f

Určete f(j)-

a - s - i

Nech a, b, c sú dížky stráň trojuholníka. Dokážte nerovnost’

b c

L 1 1 L ^b + c a -f c a + o

a
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A - S - 2

Dokažte, že pro každé celé к ^ 2 existují celá nezáporná
čísla a > b taková, že hodnota mnohočlenu xa — xb je
dělitelná číslem к pro každé celé číslo x.

A - S - 3

Je dán čtyřstěn ABCD, jehož hrany DA, DB, DC jsou
navzájem kolmé a mají délky a, 6, c. Vypočtěte velikost
výšky v daného čtyřstěnu, jež přísluší stěně ABC. Dokažte,
že při dané hodnotě v má čtyřstěn nej menší objem, právě
když a — b — c.

A - II - 1

Dokažte, že pro libovolná přirozená čísla p a q platí nerov-
nost

(pq)\ ^ (р\У(д\у.

A - II - 2

Daný je trojuholník ABC, v ktorom pre priesečník výšok O
platí \OC\ = \AB\. Zistite, akú velkost’ móže mať uhol ACB.

A - II - 3

Nájdite najmenšie prirodzené číslo n, ku ktorému existuje
polynom p s celočíselnými koeficientami tvaru p(x) = xn +
+ an-ixn~1 + ... + ao taký, že p(k) je dělitelné ósmimi pre
všetky celé k.
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A - II - 4

Uvažujme funkci /: N
každá dvě přirozená čísla m, n splňuje rovnost

N, která je ostře rostoucí a pro

f(mn) = /(m)/(n).

Určete /(30), víte-li, že /(2) = 4.

A - III - 1

Dokážte, že pre reálne čísla p, q, r, p platí

p cos2 p + q sin p cos p + r sin2 p >

= 9 (P + Г - V^P- r)2 + 92) •

A - III - 2

Vnitřní prostory muzea mají tvar mnohoúhelníku (ne nut-
ně konvexního) s 3n vrcholy. Dokažte, že v něm můžeme
rozestavit n hlídačů tak, aby viděli celý prostor muzea.

A - III - 3

Pro libovolnou permutaci p množiny {1,2,..., n} označme
d(p) součet

|p(l) - 1| + Ip(2) - 2| + ... + |p(n) - n|

a i(p) počet inverzí permutace p, tj. počet všech dvojic i,
j takových, že 1 5Í i < j n a p(i) > p(j). Dokažte, že
d(p) й 2i(p).
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A - III - 4

Dokažte, že všechny trojúhelníky ABC, jejichž úhel při
vrcholu A je dvakrát větší než úhel při vrcholu B, mají
stejný poměr vzdáleností bodu C od bodu áaod osy úsečky
AB.

A - III - 5

Ak v skupině matematikov je každý s niekým spriatelený
(předpokládáme, že priatelstvo je symetrická relácia), pak
medzi nimi existuje taký matematik, že priemerný počet
priatefov všetkých jeho priatelov nie je menší než priemerný
počet priatelov všetkých členov uvedenej skupiny. Dokážte.

A - III - 6

Množina N všetkých prirodzených čísel je zjednotením troch
podmnožin Ai, A2, A3. Dokážte, že aspoň jedna z nich má
nasledujúcu vlastnost’: Existuje také kladné číslo m, že pre
každé к možeme v tejto množině nájsť čísla a\, 0,2, ■.., Ufc,

pre ktoré platí 0 < aJ + i — aj ^ m (1 5^ j к — 1).

Řešení úloh

A - I - 1

Pro n = 6 tvrzení skutečně platí (720 < 729). Dále se
pokusíme o důkaz indukcí. Předpokládejme tedy, že tvrzení
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platí pro nějaké n ^ 6 přirozené. Potom

(n + 1)! = n\(n + 1) <í (n + 1) Q) ;

přitom nerovnost

n + 1

platí, právě když
l\n

> 2.1 + -
■

К důkazu poslední nerovnosti potřebujeme znát binomic-
kou větu, ze které snadno dostaneme požadovaný odhad.

Poznámka. Nerovnost mezi aritmetickým a geometrickým
průměrem poskytne horší odhad \fn\ ^

A - I - 2

Hledaný objem vypočítáme nejjednodušeji tak, že da-
ný antihranol doplníme na pravidelný osmiboký hranol
AA'BB'CC'DD'EE'FF'GG'HH'. Ten sestrojíme tak,
že každým vrcholem antihranolu vedeme novou hranu
kolmou к oběma základnám (obr. 17). Přitom tento osmi-
boký hranol vznikne z původního antihranolu přidáním
osmi shodných čtyřstěnů, jejichž objem stejně jako objem
výsledného osmibokého hranolu není těžké určit.

Označíme-li P obsah trojúhelníku EE'F, S obsah pravi-
dělného osmiúhelníku EE'FF'GG'HH' a h výšku daného
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A
Obr. 17 Obr. 18

antihranolu (a tedy i osmibokého hranolu), bude pro ob-
jem V daného antihranolu platit V = Sh — |hP, kde S =

= a2-f4.P (obr. 18) a P = - ^
podle Pythagorovy věty z trojúhelníku BBiE', vyjde

-— a2. Výšku h vypočítáme

h=y3-(V2-i)2 = l<rs.
Pro objem V pak dostaneme

(o2+íp)/>= iy8a3(l + i(V2-l))V =

a3.

Jiná možnost, jak uvedený objem vypočítat, je použít
vzorec V = + P*2 + 4M), kde P\, P2 jsou obsahy
obou podstav, M je obsah řezu antihranolu rovinou, která
je rovnoběžná s oběma podstavami a má od nich stejnou

71



vzdálenost, а Л je jeho výška. Důkaz najdete v řešení úlohy
41 ve sbírce Horák-Vrba: Úlohy MMO.

A - I - 3

Mějme nějakou konfiguraci n bodů splňujících podmínku
a) úlohy. Pokud existuje bod A, z něhož vychází právě к ^
^ in úseček, musí být každé dva z ostatních n — k — 1 bodů
spojeny úsečkou. Uvažujme dále libovolnou dvojici bodů
spojených s A úsečkou (např. A\, A2 —obr. 19). Uvažovaná
dvojice bodů A\, A4 je bud’ spojena úsečkou, anebo ke
každému z bodů B\, #2, • •Bn-k-i, jež s A spojeny nejsou,
existuje aspoň jedna úsečka, která jej spojuje s jedním z bo-
dů uvažované dvojice. V takovém případě zvolené dvojici
odpovídá aspoň n — k — 1 úseček, přičemž každou takovou
úsečku pak počítáme nejvýše (к — l)krát (koncový bod A{
úsečky AiBj se vyskytuje v к — 1 dvojicích A{Ai, 1 ^ ^ k,
l ф г). Protože pro к 5Í je ——

tak pro každou z (2) dvojic aspoň 1 úsečku, celkem tedy
dostaneme nejméně ("“í-1) + (-)+&= Ú*-,-1) + (^t1) =

š (?) + (nT)ůseíek.kde m = I"/2]•

^ 1, dostaneme
- 1



Pokud by ovšem z každého bodu vycházelo více než
úseček, dostali bychom celkem více než ^n2 úseček, což je
více než v předchozím případě, jak zjistíme výpočtem. Pro
n = 9 vyjde nejmenší počet úseček pro к = 4 (obr. 20).
Odpovídající útvar obsahuje (2) + Q) = 16 úseček.

Jiné řešení. Označme A bod, z nějž vychází minimální
kladný počet, řekněme к úseček. Z každého bodu, který je
s A spojen úsečkou, vychází aspoň к úseček. Uvedených fc+1
bodů je tedy spojeno aspoň 1) úsečkami. Zbývajících
n — k — 1 bodů musí být pospojováno navzájem. Kdyby tomu
tak nebylo, daly by nespojené dva z těchto bodů s bodem A
trojici, v níž není ani jedna úsečka. Tím by byla porušena
podmínka a).

Počet p všech úseček množiny tedy můžeme odhadnout
zdola hodnotou p(k), která závisí na čísle к:

k(k + 1) (n — к — l)(n — к — 2)
p ^ p(k) = 2 2

2k2 - 2k(n - 2) + (n - l)(n - 2)
2 .

2(n — l)(n — 2)(^r 4

n(n — 2)
4

Odtud je vidět, že nejmenší počet 16 úseček dostaneme pro
к = 3 nebo к = 4.

Úlohu lze samozřejmě řešit i rozborem jednotlivých kon-
krétních možností (viz řešení úlohy B-I-3).
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A - I - 4

Tvrzení úlohy se může na první pohled zdát triviální. Pro
konvexní n-úhelník je opravdu zřejmé — úhlopříčkou daný
mnohoúhelník M rozdělíme na dva mnohoúhelníky s men-
ším počtem vrcholů, takže můžeme použít matematickou
indukci. Musíme však dokázat, že i v nekonvexním mnoho-
úhelníku M vždycky existuje taková úhlopříčka (tj. úsečka
spojující dva jeho vrcholy), která leží celá v M.

Mějme tedy n-úhelník M = А\Аг ... An, který má ne-
konvexní úhel např. při vrcholu A\. Vrcholem A\ veďme
přímku p takovou, že s ní žádná ze stran M není rovnoběž-
ná, a přitom oba sousední vrcholy A2 a An leží ve stejné
polorovině určené přímkou p.

Označme L a P body, v nichž přímka p poprvé protne
hranici M (LP leží celá v M), a L\, resp. P\ ten vrchol strany
obsahující bod L, resp. P, který leží v polorovině opačné
к рЛг (obr. 21). Uvažujme teď vrchol Л, ф A1, který leží ve
čtyřúhelníku LPP\L\ a má od přímky p nejmenší vzdále-
nost (takový bod jistě existuje, protože první vlastnost má
např. bod L\).

PxLx
I*

Q /
Aj/

A?+1
pL

PA 1

A„ A 2

Obr. 21
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Ukážeme, že zmíněný vrchol A{ je spojen s vrcholem A\
úhlopříčkou, která leží celá v M. Kdyby úsečka A^Ai neleže-
la celá v M, musela by v nějakém vnitřním bodě Q protínat
hranici uvažovaného mnohoúhelníku v nějaké jeho straně
AjAj+1. Strana AjAj+1 není rovnoběžná s p, neprotíná
žádnou ze stran L\L, LP, PP\, a proto některý její krajní
bod leží uvnitř LPP\L\ blíže к p než bod Л*. To je ve sporu
s volbou bodu Ai.

A - I - 5

Uvažujme kvadratický mnohočlen q, pro který platí g(l) =
= 1, q(2) = 3, q(3) = 15. Ten je uvedenými třemi hodnotami
jednoznačně určen; pro jeho koeficienty dostaneme tři rov-
nice o třech neznámých a vyjde q(x) = 5x2 — 13x + 9. Tento
mnohočlen má součet absolutních hodnot koeficientů 27.

Každý mnohočlen třetího stupně, který splňuje uvedené
podmínky, se dá psát ve tvaru

f(x) = 5x2 — 13x -f 9 4- k(x — l)(x — 2)(x — 3) =

= kx3 + (5 — 6k)x2 -f (11Лг — 13)x -j- (9 — 6^:)

kde k je celé číslo. Vcelku snadno odhadneme, že příslušný
součet |Л:| + |5 — 6Ar| + 111 k — 13| + |9 — €>k\ je nejmenší pro
к = 1 a je roven 7.

Každý mnohočlen vyššího stupně, který splňuje podmiň-
ky úlohy, můžeme vyjádřit jako

p(x) = q(x) + (x — l)(x — 2)(x — 3 )k(x) =

= q(x) -f (x3 — 6x2 + llx — 6)A:(x) = ^ a^x*,
n+3

ť=0
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n

kde k(x) = £2 bix1 je mnohočlen s celočíselnými koeficienty.
*=o

Porovnáním koeficientů vyjde

flo — —66o d* 9,

fli = —661 d- 1160 — 13,

0*2 — ““662 d- II61 — 660 d~ 5,

a3 = -663 + 1162 - 661 d- 60

<24 — —664 -f- II63 — 662 d- ^1

Nyní hledáme celá čísla 60, 61, 62, ... taková, aby součet
|oto| H- lai| *d~ la2| d- - • • nebyl větší než 7. Protože |a21 -f |аз| -f
+ ... ^ 1, musí být |ao| = |9 — 6601 ^ 6, což dává dvě
možnosti: 60 = 1 nebo 60 = 2.

Pro 60 = 1 vyjde |ao| = 3, a proto |cti| ^ 3, tj. b 1 = 0,
ai = —2. Pak ale musí být |аг| ^ 2, tj. 62 = 0, a2 = —
— 1, a |аз| ^ 1, tj. 63 = ... = bn — 0. Dostáváme tak
mnohočlen x3 — x2 — 2x + 3, který má součet absolutních
hodnot koeficientů rovný 7.

Pro 60 = 2 postupujeme analogicky a zjistíme, že žádný
další mnohočlen s uvedenou vlastností neexistuje.

Poznámka. Pokud uvažujeme mnohočleny s libovolnými
reálnými koeficienty, najdeme mnohočlen s menším součtem
absolutních hodnot koeficientů. Např. mnohočlen f(x) =
= jj(13a:3 — 23ж2 + 21), který dostaneme pro k = jy, má
příslušný součet fy < 7.
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A - I - 6

Hodnoty funkce / jsou jednoznačně určeny v bodech tvaru
£ (0 ^ к <; 2n). Protože

1 1

7 ~ 8 +
1

_ 1
7 “ 8

1 11
~

8 + 7 ' 8’

je

1 1
r • r + ř
8 7

Přitom z daného vzorce pro x = 0 indukcí snadno vypočte-
me, že pro libovolné у £ (0,1) ^ 0 platía n

!{h) = l-h + hí(y) aspeciální /(^r) = 1

takže pro f{\) dostaneme vztah

1
1 - + -

3’

odkud vychází /(y) = 1.

A - S - 1

Jednoduchou úpravou dostaneme ekvivalentní nerovnost
(čísla a, 6, c jsou dle předpokladu kladná)

a(a + c)(a + b) + 6(6 + c)(a -f 6) 4- c(6 + c)(a + c) =

— o3 63 -f- c3 3a6c -(- <з2(6 —c) —|— 62(c -(- ct) -(- c2(q 6) <C
< 2(a2(6 + c) + 62(c + a) -f c2(a + 6) + 2a6c),
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neboli

2(6 4 c) -f fe2(c 4- a) + c2(a 4 6) — a3 — 63 — c3 4 abc =

2(6 + c — a) + 62(c 4 a — 6) 4 c2(a 4 6 — c) 4 abc > 0= a

která pro čísla splňující trojúhelníkovou nerovnost zřejmě
platí.

A - S - 2

Uvažujme množinu zbytkových tříd mod к. Každý mno-
hočlen xa představuje pro dané a přirozené zobrazení Zk —►
—► Z*, ale takových zobrazení mezi dvěma konečnými mno-
žinami existuje jen konečně mnoho. Proto jistě existují dvě
různá čísla a > b taková, že

xa = xb (mod к)

pro všechna celá čísla x. Je jasné, že mnohočlen p(x) =
= xa — xb má požadovanou vlastnost.

Jiné řešení. Tvrzení můžeme také odvodit pomocí Eule-
rovy věty, která říká, že pro každé x nesoudělné s к platí
хч>{к)_ \ = o (mod к), kde <р(к) označuje počet přirozených
čísel nejvýše rovných к a nesoudělných s k. Pro x soudělné
s к uvažujme rozklad к = k\k^ čísla к takový, že k\ je s x
nesoudělné а к2 obsahuje ve svém rozkladu na prvočinitele
jen ta prvočísla, která dělí x. Protože funkce <p je multipli-
kativní, tedy <p(k) = (p(ki)ip(k2), vidíme, že podle Eulerovy
věty

¥>(*2)
= 1 (mod к i)
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takže stačí vzít p(x) = xm^ (х^(к) — l), kde m(k) je
nejvyšší exponent v prvočíselném rozkladu čísla k. Potom
máme zaručeno, že xmbude dělitelno číslem к2, takže
součin xm(k^ (x*^ — l) je pak dělitelný součinem к = k\k2-
Můžeme tedy vzít a — m(k) + y>(k), b = m(k).

A - S - 3

Pro objem V daného čtyřstěnu ABCD platí
11

(1)V — - abc = - Sv,
6 3

kde S je obsah stěny ABC a v příslušná výška. Obsah
S snadno spočteme podle Heronova vzorce, protože délky
stran trojúhelníku ABC umíme vyjádřit pomocí a, 6, c

použitím Pythagorovy věty. Je tedy

S = ((\/a2 + b2 + \Jb2 + c2)2 - (a2 + c2)^
• yj^a2 -f c2 — (\/a2 + 62 — \/b2 + c2)2^ =

= iу (262 + 2\/a2 + 62\/^T^) •

• =

= —\/a262 + 62c2 + c2a2.

Ze vztahu (1) pro výšku v plyne
1 abc

2 ‘ "5"
1

v =

J_ j_ J_
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(Tento vzorec můžeme ovšem snadno získat přímo ze vzor-
ce pro vzdálenost bodu D od roviny ABC, který známe
z analytické geometrie prostoru.)

Nerovnost mezi aritmetickým a geometrickým průměrem

33
\a2 b2 с2) = a42c2

tj-
3лД

abc > 3 5

III
a2 62 c2

dává odhad
1

6abc=TV =

1 1 1
s rovností právě jen pro — = — = tj. pro a = b — c.

az bz cz
Tím je důkaz hotov.

A - II - 1

Součin (pq)\ napíšeme jako

(Pí)! = (1 • 2 • ... • p)({p + l)(p + 2) • ... • (p + p)) • ... •
• ((í - 1)P+ !))((?- 1)P + 2) ...{{q- l)p + p),

přičemž součin v k-té závorce napravo (0 ^ к ^ q — 1)
můžeme vyjádřit jako

(kp + 1 )(kp + 2)... (kp + p) =
= (p + • • ■ + p + l)(p -f ■ • • + p+2)... (p+ ... + p+p).

ккк
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Po „roznásobeni všech závorek dostaneme (fc + l)p sčítanců
vesměs nejméně rovných p!. Je tedy

{kp + 1 )(kp + 2)... (kp + p) ^ {k + l)pp!

a

(p^)! ^ lpp! • 2pp! • ... • qpp\ — (р!)9(?!)р-

Jiné řešení. Dokážeme nerovnost matematickou indukcí.

Pro p = 1 nerovnost triviálně platí pro libovolné přirozené
číslo q. Předpokládejme, že uvažovaná nerovnost platí pro

nějaké p přirozené a libovolné q. Potom je

((P+ !)?)! = (PQ + яУ ^
^ (p!)9(í!)p(pí + 1)(pí + 2)... (pq + q) ^
^ (p!)9(?!)P(P + !)(2P + 2) • • • (qp + q) =

= W(p+ i)4q'Y+l = ((p + 1)!)*(<í!)p+1-
Tím je důkaz hotov.

Jiné řešení (podle Jiřího Fialy, G Liberec). Předpoklá-
dejme, že uvažovaná nerovnost platí pro nějaké p přirozené
a libovolné q. Uvažujme tabulku к x q. Je zřejmé, že počet
kq všech ^-prvkových podmnožin, jež obsahují z každého
z к sloupců tabulky právě jeden prvek, není menší než počet
( q) všech ^-prvkových podmnožin prvků tabulky. Pro к =
= p+1 tak dostáváme nerovnost ((p-fl)í)! ^ (p-f 1)9í!(pí)!.
Podle indukčního předpokladu odtud plyne

((P+ !)?)! ^ (p?)!(p+ l)4Q- ^
^(p!)«(?!)í’(p+l)»,!=((p+l)!),(9!)'>+1.
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Tím je důkaz hotov.
Jiné řešení (podle Oldřicha Audy, G, tř. kpt. Jaroše,

Brno). Uvažujme tabulku p x q vyplněnou čísly 1, 2, ..

pq. Mezi všemi takovými uspořádáními je právě (p!)9 těch,
které se od základního pořadí liší jen pořadím v jednotlivých
řádcích, a právě (g!)p těch, jež se od základního pořadí
liší jen pořadím čísel v jednotlivých sloupcích uvažované
tabulky.

Uvažujme nyní všechny permutace čísel 1, 2, ..., pq, jež
vzniknou složením obou druhů permutací. (Je-li na fc-tém
místě jednoho pořadí číslo m (1 ^ m ^ pq) a na m-tém
místě druhého pořadí číslo n, bude na k-tém místě no-
vé tabulky, odpovídající složení obou permutací, číslo n.)
Počet všech permutací, jež takto dostaneme, je (p!)?(^!)p
a je nejvýše roven počtu všech různých uspořádání pq čísel
v tabulce, kterých je (pq)\.

* )

A - II - 2

Předpokládejme nejprve, že úhel ACB při vrcholu C je
ostrý, a označme A\, C\ paty příslušných výšek. Protože
(obr. 22) \ <A1AB\ = 90° — \<$ABC\ = |<CXCB\, jsou pra-
voúhlé trojúhelníky ABA\ a COA\ shodné, takže \A\A\ =
= |AiCj a trojúhelník AA\C je rovnoramenný. Proto má
úhel ACB velikost 45°.

V tupoúhlém trojúhelníku ABC (s tupým úhlem při
vrcholu В — případ tupého úhlu při vrcholu A dostaneme
jednoduchou záměnou označení A a B) dostaneme obdobně
(obr. 23) \<AXAB\ = 90° - |<AOCj = \<C1CB\, takže
znovu vychází, že úhel ACB má velikost 45°.
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w O
A Ci В

Obr. 22

ClA В
Obr. 24

Pokud úhel ACB je tupý (obr. 24), vyjde zase, že trojúhel-
niky ABA\ a COA\ jsou shodné, takže trojúhelník ACA\
je rovnoramenný. Odtud plyne, že úhel ACB má velikost
135°.

Konečně snadno ověříme, že pokud úhel ACB je pravý,
nemohou být předpoklady úlohy splněny.
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A - II - 3

Z čísel x — 1, x, ж + 1, x -\-2 jsou dvě sudá a z nich aspoň
jedno je dělitelné čtyřmi, takže součin (x — l)x(x-f 1)(ж + 2)
je dělitelný osmi. Odtud plyne, že pro n = 4 je

x4 + 2x3 — x2 — 2x = 0 (mod 8).

Předpokládejme, že existuje mnohočlen třetího stupně,
pro který platí

x3 + ax2 + bx + c = 0 (mod 8).
Pro x = 0 pak vychází c = 0 (mod 8) a dosazením x = ±1
(mod 8) dostaneme dvě kongruence

1 + a + b = 0 (mod 8),
— 1 -f a — b = 0 (mod 8).

Jejich odečtením vyjde

2(1 -f- 6) = 0 (mod 8)
což dává b = — 1 (mod 4), a jejich sečtením dostaneme a =
= 0 (mod 4), zatímco pro x = 2 (mod 8) vyjde podmínka
4a -f 26 = 0 (mod 8), neboli b = 0 (mod 4). To je ovšem
ve sporu s předchozím výsledkem b = — 1 (mod 4). Úplně
stejně dokážeme, že neexistuje ani kvadratický nebo lineární
mnohočlen, který by úloze vyhovoval.

Poznámka. Jestliže 8 | p(x) pro každé celé x, je osmi
dělitelná i n-tá diference mnohočlenu p, tj. součet

n. Jp(x + n- x -p n ~ 2) -+■ ... +p(x + n) — 1

+ (-l)np(x) = n\.
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Odtud plyne, že 8 | n!, tj. n ^ 4.

A - II - 4

Z multiplikativní vlastnosti uvažované funkce / plyne, že je
/(30) = /(2)/(3)/(5). Nejdříve určíme hodnotu /(3).

Díky monotonii funkce / platí

Д8) = 43 = 64 < Д9) = (ДЗ))2 tj. 8 < ДЗ)

a dále

/(243) = (ДЗ))5 < /(256) = 48 = 65 536 < 105,

což dává /(3) < 10, musí tedy být /(3) = 9.
Podobně pro hodnotu /(5) platí

/(24) = 9 • 43 = 242 < /(25) = (Д5))2 , tj. 24 < Д5),

/(125) = (Д5))3 < /(128) = 47 = 16 384 < 17 576 = 263,

takže vychází 24 < /(5) < 26 a /(5) = 25.
Je tedy /(30) = 4 • 9 • 25 = 900.
Jiné řešení (podle Jakuba Těšínského, G, Korunní, Pra-

ha). Zřejmě je /(1) = 1. Předpokládejme, že není f(x) =
= ж2, a označme жо nejmenší přirozené číslo, pro které
existuje číslo q takové, že /(жo) = q < Xq. Pak v intervalu
(log4<7,log4 Xq) existuje racionální číslo tj.

qn < 4m < xl",
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neboli

2m < atf.

Z vlastností funkce / plyne, že

/(*0) = (/(*0))" = 9" < 4™ = /(2)™ = f(2m)

což odporuje předpokladu, že funkce / je rostoucí. Podobně
dojdeme ke sporu, předpokládáme-li, že existuje přirozené
číslo xo, pro které f(x0) > Xq. Je tedy f(x) = x2 pro každé
přirozené číslo x a /(30) = 302 = 900.

A - III - 1

Použitím známých vztahů mezi trigonometrickými funkce-
mi postupně dostaneme ekvivalentní nerovnost

y/(P~ г)2 + Я2 =

^ p -f r — 2(p cos2 <p + q sin <p cos <p + r sin2 <p) =

= p — r — 2(p — r) cos2 <p — q sin 2<p =

= (p — r)(l — 2 cos2 9?) — q sin 2<p =

= — (p — r) cos 2<p — q sin 2<p,

která je vlastně snadným důsledkem Cauchyovy nerovnosti

— (p — r) cos 2<p — q sin 2<p 5Í
^ \/(p — r)2 + ?2 \/cos2 2<p + sin 22<p,

neboť cos2 2<p 4- sin2 2<p = 1.
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A - III - 2

Předpokládejme, že příslušný mnohoúhelník je rozdělen na

trojúhelníky s vrcholy ve vrcholech daného mnohoúhelní-
ku (existence takovéto triangulace byla dokázána v úloze '
A—1—4), a očíslujme všechny vrcholy čísly 1, 2, 3 tak, aby
každý z trojúhelníků triangulace obsahoval ve svých vrcho-
lech každé z těchto čísel.

To lze udělat v každém n-úhelníku. Pro n = 3 to je
zřejmé; pokud to jde udělat v fc-úhelníku pro libovolné к <
< n, pak stačí uvažovaný n-úhelník rozdělit jednou ze stran
zvolené triangulace na dva (triangulované) mnohoúhelníky,
pro které podle indukčního předpokladu takové očíslování
existuje. Nyní stačí v jednom z mnohoúhelníků očíslování
změnit tak, aby se čísla v obou společných vrcholech sho-
dovala. Dostaneme tak požadované očíslování všech vrcholů
daného n-úhelníku.

Vezmeme-li takovéto očíslování v uvažovaném 3n-úhelní-

ku, vyskytne se jedno z čísel 1, 2, 3 nejvýše n-krát. Róze-
stavením hlídačů v těchto vrcholech budou podmínky úlohy
splněny.

A - III - 3

Nerovnost dokážeme matematickou indukcí podle počtu in-
verzí v permutaci.

Tvrzení zřejmě platí, jestliže i(p) — 0, potom je p identic-
ká permutace, takže i d(p) — 0. Předpokládejme, že tvrzení
platí pro každou permutaci s počtem inverzí i(p) ^ k,
a uvažujme permutaci po, která má г(ро) = к + 1 inverzí.
Protože po není identická permutace, určitě existuje index
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i takový, že po(i) > Po{i+ 1). Utvořme novou permutaci p',
která bude mít o jednu inverzi méně: stačí položit p'(i) =
= Po(i + 1), p'{i + 1) = Po(í) a p'{j) - po (i) pro všechna
ostatní j, i ф j ф i+ 1. Potom i(p') = к a podle indukčního
předpokladu i d(p') ^ i(p') = 2k.

Jednoduchým výpočtem dostáváme

d(po) - d(p') = |po(0 - i| + |p0(i + 1) - * - 1| -
- |p'(i) - i\ - Ip'(i + 1) - i - 1| =

= bo(0 - г\ + |р0(г -hi) — г — 1| —

- |po(* + 1) - г\ - |р0(г) — г — 11 =

= (ЫО - г'| - |р0(0 - (* + 1)1) +
+ (|Ро(г + 1) — (* + 1)| — |Ро(* + 1) — *|) ^

< 2

(s rovností právě jen pro po(i + 1) ^ г < ро(0)> takže je

d{po) й d(p') + 2 ^ 2(fc + 1) = 2i(po).

A - III - 4

Pro vzdálenost d bodu C od osy úsečky AB platí
c c

d = - — 6 cos о — — — 6 cos 2/3

(to platí i pro tupý úhel (3). Zároveň z předpokladu a = 2(3
plyne podle sinové věty rovnost

b sin 7 b sin 3(3
= 6(3 cos2 (3 — sin2 (3) =c =

sin /3
= 6(4 cos2 (3—1)

sin (3
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takže

^ (4 cos2 /?—!) — 6(2 cos2 p - 1) = ^d =

To znamená, že obě uvedené vzdálenosti jsou v poměru
b:d = 2.

A - III - 5

Označme M množinu všech členů uvažované skupiny mate-
matiků a n jejich počet. Dále označme F(m) množinu všech
přátel matematika m a /(m) jejich počet. Máme dokázat,
že existuje matematik mo, pro kterého platí

1
Y, /(ra) = ^ Лго)-f(mo) mg Mm£F(m0)

Předpokládejme naopak, že pro žádného z členů skupiny
taková nerovnost neplatí, tedy že pro každé mo z M je

n < /(m°) /(w)-
mg Mmg F(m0 )

Každý z matematiků m £ M se pro dané ttiq vyskytuje
celkem v f(m) množinách F(mo), takže sečteme-li uvedené
nerovnosti pro všechna mo E M, dostaneme

n Лт)2 < ( Z) Am))
mg M 'mgM ^

To ale odporuje známé Cauchyově nerovnosti. Tím je tvr-
zení úlohy dokázáno.
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A - III - 6

Zřejmě můžeme předpokládat, že dané množiny jsou navzá-
jem disjunktní. Jestliže Ai nemá požadovanou vlastnost,
můžeme pro libovolné přirozené číslo m najít к i > 0 ta-
kove, že každých к i čísel a\ < <22 < . . . < a/Cl z množiny
Ai obsahuje mezeru m po sobě jdoucích čísel, která do ní
nepatří (aj + i — aj > m). Odtud plyne, že doplněk množiny
Ai v N, tj. sjednocení množin A2 U A3, obsahuje libovolně
dlouhou posloupnost po sobě jdoucích čísel.

Předpokládejme, že ani množina A2 nemá požadovanou
vlastnost. Pak tedy existuje &2 > 0 takové, že každých
čísel сц < «2 < • • • < tU-2 z A2 obsahuje mezeru m po sobě
jdoucích čísel, které do ní nepatří. Podle předcházející úvahy
v množině A2UA3 existuje A^m po sobě jdoucích čísel; pokud
k2 z nich patří do množiny A2, obsahuje taková A^-tice me-
žeru nejméně m po sobě jdoucích čísel, která leží v A3. Je-li
naopak jen nejvýše A2 - 1 z nich z množiny A2, rozdělí tato
čísla vybraných čísel na nejvýše k2 intervalů, z nichž
aspoň jeden obsahuje nejméně m po sobě jdoucích čísel z A3.
To ovšem znamená, že i v takovém případě množina A3 ob-
sáhuje libovolně dlouhou posloupnost po sobě jdoucích čísel.
Pak ale množina A3 má požadovanou vlastnost dokonce pro
m = 1.
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Kategorie P

Texty ůloli

P - I - 1

V rovině je dáno N bodů očíslovaných od 1 do N. Dvojice
čísel (Х[г],У[г]) pro 1 = i = N reprezentuje kartézské
souřadnice bodu i. Robot projde všemi body v pořadí jejich
očíslování podle těchto pravidel:
1. Na začátku stojí robot v bodě 1 a dívá se к bodu 2.
2. Robot se pohybuje vždy přímo tím směrem, kterým se

dívá.

3. V bodě i pro 1 ^ i ^ N se robot otočí ve směru pohybu
hodinových ručiček o úhel a, 0° ^ a < 360°, tak, aby
se díval к bodu (i + 1) mod N.

4. Robot skončí svůj pohyb v bodě 1 tak, že se opět dívá
к bodu 2.

Během svého pohybu se robot celkem d-krát úplně oto-
čí kolem své osy. Navrhněte co nejlepší algoritmus, který
pro zadaná celočíselná pole X[1..7V], y[1..7V] vypočítá
hodnotu d. Je povoleno používat jen celočíselné proměnné.
Zdůvodněte správnost algoritmu.
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P - I - 2

Je dáno celočíselné pole P[1.. M], které obsahuje permutaci
čísel 1, 2, tj. pro každé i, 1 i ^ M, existuje
právě jedno h, 1 ^ h ^ M, takové, že P[/i] = i. Dále
je dáno celočíselné pole V[l..iV]. Navrhněte co nejlepší
algoritmus, který určí, kolikrát se permutace P vyskytuje
v poli X, tj. kolik existuje různých rostoucích celočíselných
posloupností R[ 1.. M] takových, že pro všechna i, 1 5Í i 5Í
^ M, )platí

РИ = х[лм].1 ^ R[Í] <: N,

Zdůvodněte správnost navrženého algoritmu.

P - I - 3

Orientovaný graf je dvojice G = (V,E), kde V je konečná
množina, jejíž prvky se nazývají vrcholy nebo uzly grafu,
a E je binární relace na množině V. Je-li (x,y) £ E, ří-
káme, že v orientovaném grafu vede hrana z vrcholu x do
vrcholu у, у se nazývá následník uzlu x a x je předchůdce uz-
lu y. Cesta délky к v orientovaném grafu je posloupnost uo,

Ui, ..., Vk vrcholů, к ^ 0, taková, že pro všechna i, 0 5; i <
< к je V{ předchůdce u, _i. Říkáme, že vrchol у je dosažitelný
z vrcholu x, jestliže existuje cesta z x do y. Poznamenejme,
že každý vrchol je dosažitelný sám ze sebe cestou délky 0.

Graf G budeme reprezentovat dvěma celočíselnými poli
B[l .. N + 1] a E[l..M], kde N je počet vrcholů a M
počet hran v grafu G. Vrcholy jsou očíslovány od 1 do V.
Uzel j má B[j + 1] — B[j] následníků; jsou zachyceni v prv-
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cích E [B[j] +1], ..E [B[j +1]] pole E. Položíme 5[1] = 0,
B[N+1] = M.

Cyklus v orientovaném grafu je cesta, jejíž délka je as-

poň 1 a v níž je první uzel totožný s posledním uzlem. Graf,
který neobsahuje žádný cyklus, se nazývá acyklický.

Navrhněte co nej lepší algoritmus, který pro zadaná celo-
číselná pole В, E reprezentující orientovaný graf G zjistí,
zda graf G je acyklický. Při řešení nepoužívejte rekurzi.
Zdůvodněte správnost navrženého algoritmu.

P - I - 4

a) Navrhněte Turingův stroj, který počítá součet dvou při-
rozených čísel.

b) Navrhněte Turingův stroj, který počítá funkci zdvojení
vstupního slova nad abecedou {a, b}. Pro vstupní slo-
vo P bude tedy výsledkem výpočtu slovo PP.

Turingovy stroje

Abecedou nazveme konečnou neprázdnou množinu E. Její
prvky nazýváme symboly. Konečnou posloupnost symbolů
abecedy E nazveme slovem nad abecedou E. Prázdnou po-

sloupnost symbolů abecedy, značenou e, nazveme prázdné
slovo. Turingův stroj M nad abecedou E má řídicí jednotku,
která se může dostávat do konečně mnoha různých stavů
a pracuje nad páskou rozdělenou na jednotlivá pole. Na
pásce existuje nejlevější pole, směrem dopřávaje však neko-
nečná. Každé pole obsahuje vždy jeden symbol páskové abe-
cedy. Pásková abeceda П je tvořena jednak symboly vstupní
abecedy E, dále symboly pomocné abecedy V, E П V = 0
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a speciálním prázdným symbolem Д, Д ýt E U V. Tedy
П = ЕиУи{Д}.

V každém okamžiku je řídicí jednotka Turingova stroje
v právě jednom ze svých možných vnitřních stavů a stroj má
přístup к právě jednomu poli pásky prostřednictvím čtecí
a zapisovací hlavy. V této situaci stroj provede krok výpočtu
následovně: hlava zapíše nový symbol páskové abecedy na

pole, nad kterým je umístěna hlava, a tím nahradí původně
zapsaný symbol; po tomto zápisu přejde na levé nebo pravé
sousední pole. Současně řídicí jednotka může změnit svůj
stav. Všechny tyto změny závisí jednak na vnitřním stavu
řídicí jednotky, jednak na obsahu čteného pole pásky.

Činnost Turingova stroje je zadána dvojrozměrnou tabul-
kou, která obsahuje pro každý vnitřní stav řídicí jednotky
jeden řádek a pro každý symbol páskové abecedy jeden
sloupec. Jeden zvolený stav řídicí jednotky je označen jako
počáteční a žádný, jeden nebo více stavů jako koncové.
Položka tabulky odpovídající stavu i a symbolu s páskové
abecedy je buď prázdná, nebo je tvořena trojicí (o,/?,7),
kde a je stav, (3 je symbol páskové abecedy, 7 £ {L, P}.

Každá trojice popisuje jeden možný krok výpočtu Turin-
gova stroje M: je-li během výpočtu stroj M ve stavu i
a hlava je umístěna nad pole pásky se symbolem s, pak
stroj přejde do stavu a, hlava zapíše na pásku symbol /3
do pole, nad nímž se nachází čtecí hlava, a posune hlavu
na pásce o jedno pole doleva nebo doprava podle toho,
zda 7 = L, nebo P. Na počátku výpočtu je dané vstupní
slovo w nad abecedou E umístěno zcela vlevo na začátku

pásky a všechna zbývající pole vpravo od slova w obsahují
prázdný symbol Д. Hlava je na počátku výpočtu umístěna
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nad nejlevějším polem a řídicí jednotka je v počátečním
stavu. Výpočet probíhá podle tabulky. Dosáhne-li stroj ně-
kterého koncového stavu, výpočet končí. Pokud výpočet
dojde do nekoncového stavu i, přičemž ve čteném poli pásky
je symbol s a položka tabulky odpovídající stavu i a sym-
bolu s je prázdná, pak výpočet rovněž končí. Řekneme, že
funkce f(wi, u>21..., wn), n ^ 1, zobrazující množinu n-tic
slov nad abecedou E do množiny slov nad E, je počítána
Turingovým strojem M nad EU{*}, kde * £ E, jestliže pro
každé vstupní slovo wi * W2 * ■ • • * wn zadané na pásce se

stroj M chová následovně:

wn) definována1. Je-li funkční hodnota f(wi,W2,--
a rovna slovu w, pak výpočet stroje M končí a po
skončení je na pásce od začátku zapsáno slovo w,
následované pouze prázdnými symboly.

2. Není-li funkční hodnota f(wi,W2,... ,wn) definována,

* )

pak výpočet stroje M neskončí.

Turingův stroj M může počítat i funkce booleovské, a to
takto:

wn) — true (prav-
da), pak stroj M skončí v koncovém stavu. Říkáme také,
že vstupní slovo je přijímáno strojem M.

2. Je-li funkční hodnota f(w\, W2, ■ ■ ■, wn) = false (neprav-
da), pak stroj M skončí v nekoncovém stavu. Vstupní
slovo není přijímáno.

3. Není-li funkční hodnota f(wi,W2,--.,wn) definována,
pak výpočet stroje M neskončí.

Turingovy stroje můžeme používat i к práci s přirozenými

1. Je-li funkční hodnota f(wi,W2,-- * >
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čísly. Čísla reprezentujeme např. v unární soustavě v abe-
cedě E = {1} takto:

Číslo n reprezentujeme slovem n, které je definováno tak¬
to:

0=1 n + 1 = nl.

P - II - 1

Je dáno pole A[1.. TV] celých kladných čísel. Je-li hodno-
ta j = А[г] ^ TV, 1 i ^ TV, znamená odkaz (nepřímou
adresu) na prvek A[j] (pro který může platit opět tato pod-
minka), v opačném případě jde o již uloženou hodnotu. Dále
je dáno pole ZAC[ 1 .. M] obsahující hodnoty z 1,...,TV, kde
M je mnohem menší než TV.

Řekneme, že г'-tý prvek pole A je dosažitelný, jestliže se
v poli ZAC buď vyskytuje číslo i, anebo j-tý prvek pole A
je dosažitelný a A[j] = i.

Navrhněte co nejlepší algoritmus, který vypíše indexy
všech prvků pole A, které nejsou ze ZAC dosažitelné. Všech-
ny dosažitelné prvky pole A musí zůstat po skončení výpoč-
tu beze změny.

P - II - 2

V rovině je dáno N bodů očíslovaných od 1 do TV. Dvo-
jice čísel (Х[г],У[г]), 1 ^ г ^ TV, reprezentuje kartézské
souřadnice bodu i. Žádné tři body neleží v jedné přímce.
Napište co nejlepší program, který určí nějakou permuta-
ci (k\, &2> • • •, км) čísel 1, 2, TV takovou, že TV úseček
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s krajními body

рвд.УМ), (x[ti+1],y[ii+1])
pro 1 ^ i ^ iV - 1 a

se navzájem neprotíná.

P - II - 3

Počet všech možností, jak rozdělit N navzájem různých
prvků do právě M neprázdných skupin pro N ^ M, je dán
hodnotami Stirlingových čísel {^}, pro která platí

N

Q = 0 pro N ^ 0,
N - 1

= 1 pro N > 0,

N - 1

M - 1
= M ■ pro N > M > 0.

M

a) Navrhněte co nejlepší algoritmus, který pro zadané hod-
noty celých čísel N, M, kde N ^ M ^ 0, vypočte
hodnotu Stirlingova čísla {j^}.

b) Určete minimální počet operací sčítání a násobení me-
zivýsledků nezbytných pro výpočet čísla {^} pro dané
hodnoty N, M (pro TV ^ M ^ 0).

P - II - 4

a) Navrhněte Turingův stroj nad abecedou {1,*}, který
počítá následující funkci dvou přirozených čísel:

je-li x > y,

je-li x й y.

x-y,
x - у ~

0,
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Čísla x, у jsou zapsána na pásce v unární soustavě a od-
dělena hvězdičkou, tj.

x У

1 * 1 1 1 1 ••• 11 1 1 ••• 1 1

b) Navrhněte Turingův stroj nad abecedou {a, 6}, který
zjistí, zda vstupní slovo na pásce je palindrom.

Poznámka: Palindrom je slovo, které se čte stejně zleva
doprava i zprava doleva. Např. řetězce

KOBYLAMAMALYBOK

NÁNABALILABANÁN

jsou palindromy.

P - III - 1

Je dáno pole A\1.. N] celých kladných čísel. Je-li j = A[i] ^
^ N, 1 ^ i N, znamená tato hodnota odkaz (nepřímou
adresu) na prvek A[j] (pro ten může platit stejná podmiň-
ka), v opačném případě jde o již uloženou hodnotu. Dále
je dáno pole ZAC[ 1 .. M] obsahující hodnoty z {1,..., N},
kde M je mnohem menší než N.

Navrhněte co nejlepší algoritmus, který každý prvek po-
le ZAC nahradí již přímo indexem prvku pole A s původně
referencovanou hodnotou, pokud je možné takovou hodnotu
najít. V opačném případě bude prvek pole ZAC obsahovat
nulu.
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P - III - 2

Legendreův polynom N-tého stupně P je definován vztahy

Pi(x) = x,ВД = 1,
2N 4- 1 N

Pn+i(x) =

pro všechna reálná ж a celá kladná čísla N.
a) S použitím pouze celočíselných proměnných navrhněte

co nejlepší algoritmus, který pro zadanou hodnotu N vy-

počte koeficienty Legendreova polynomu N-tého stupně.
Koeficienty musí být vypočteny přesně.

b) Jaký je minimální počet koeficientů polynomů (do stup-
ně N) nezbytných pro výpočet koeficientů polynomu PÍ

Pn(x) - Pn-i{x)N + l N + 1

P - III - 3

Je dáno N letišť očíslovaných 1 až N a jejich vzdálenosti
v matici V[\ .. N, 1.. N] (prvek V[i,j] udává přímou vzdá-
lenost mezi letišti i a j). Matice V je symetrická. Dále je
dána hodnota D určující dolet letadla a přirozené číslo L,
1 ^ L ^ N, označující vybrané letiště.

Navrhněte co nejlepší algoritmus, který sestaví letové tra-
sy z letiště L do všech ostatních, pokud existují. Ze všech
možných tras nás však zajímají pouze ty nejkratší, a pokud
existuje více tras minimální délky, zajímají nás z nich jen
trasy s nejmenším počtem mezipřistání.

P - III - 4

a) Navrhněte Turingův stroj nad abecedou {a,b,c}, který
rozpoznává množinu všech slov M = {anbncn | n > 0}.
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b) Navrhněte Turingův stroj, který dané slovo nad abece-
dou {a, b} doplní zprava nejkratším způsobem na palin-
drom.

Příklad:
aba

abaa —► abaaba

aab

aba

clčlbclcl

Poznámka. Palindrom je slovo, které se čte stejně zleva
doprava i zprava doleva. Např. řetězce NÁNABALILABA-
NÁN, JELENOVIPIVONELEJ jsou palindromy.

Řešení úloh

P - I - 1

Aby mělo zadání úlohy smysl, učiníme dvě dodatečná ome-
zení a jednu změnu:
• N ^ 2
• pro 1 ^ i ^ N platí

(X[í], У [г]) = (X[i mod N + 1], У [г mod N + 1])
• z bodu i se bude robot dívat do bodu i mod N + 1

Při určování, kolikrát se robot otočí kolem své osy, není
nutné počítat jeho úhel natočení, stačí počítat, kolikrát
tento úhel překročí kladný směr (nebo dojde do kladné-
ho směru) osy x. Tento počet se zřejmě nezmění, začíná-li
robotem v bodě 1 obrácený do kladného směru osy x, neboť
při otáčení z tohoto směru do směru к bodu 2 nedojde
к překročení kladné osy x.
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Směr, ve kterém přišel robot do bodu, v němž se zrovna

nachází, reprezentujeme jako vektor, tj. dvojicí celočíselných
proměnných (s,t), (pro bod 1 bude na začátku (s,t) =
= (1,0)). Směr, do kterého se v tomto bodě má natočit,
reprezentujeme podobně dvojicí (ií,u).

Podmínku vyjadřující, zda při otáčení ze směru (s,t)
do směru (ií,u) mine pohled robota kladný směr osy x,
označíme passx (s,t,u,v). Pokud (s,t) a (u,v) směřují do
stejného kvadrantu, je passx (s,t,u, v) = uv < sv. Pokud
směřují do různých kvadrantů, závisí podmínka passx na

tom, o kterou kombinaci kvadrantů jde. Rozepsáním všech
možností lze ověřit, že passx lze obecně vyjádřit takto (za
předpokladu (s,t) ф (0,0) ф (u,t;)):

passx (s,t,u,v) = t > 0 Л (и ^ 0 V ut < sv)
\/t^0f\v^0/\ut<sv
Vs<0Au>0At) = 0

Vlastní algoritmus je jednoduchý:
• Začínáme v bodě 1 s robotem natočeným v kladném

směru osy x a vynulujeme si počitadlo d.
• Pro 1 ^ i ^ jV + 1 provádíme krok: otočíme robota

stojícího v bodě (i — 1) mod N + 1 tak, aby se díval do
bodu i mod N + 1, a pokud přitom došlo к přechodu
přes směr (nebo natočení do směru) (1,0), připočteme
tento přechod к počitadlu d. Tím považujeme robota za

došlého do bodu i mod N + 1.
• Hodnotou proměnné d je hledaný počet úplných otočení

robota okolo jeho osy.

Uvedený algoritmus je lineární vzhledem к N.
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{Algoritmus v pascalu - předpokládáme, že jsou dány
konstanty N, X, Y}

var s, t, u, v, d, i, j: integer;
function passx (s,t,u,v: integer): boolean;
{passx (s, t, u, v) <=$>• směr (s, t) je různý od směru (1, 0)

a při otáčení ze směru (s,t) do směru (u,r) v záporném
smyslu přejdeme směr (1,0); předpoklad: (s, t) ф (1,0) ф
Ф (w,u)}

begin
passx (t > 0) and ((v <= 0) or (u * t < s * u))

or (t <= 0) and (t> <= 0) and (u*t<s*v)
or (s < 0) and (u > 0) and (i> = 0)

end;

begin
s := 1; t := 0;
d := 0;
i := 1; j := 2;
repeat

и := X[j] - X[{\; v := Y[j] - Y[{]-

{směr, kam hledí robot před túrou}
{nastavení počitadla}

{počáteční body}

{(tí, v) je směr к bodu j}
if passx (s,t, u, v) then d := d -f 1;

{dokončená otočka => zvýšíme d}
{invariant: d je počet úplných otoček robota ко-
lem své osy od začátku po doražení do bodu i
a obrácení se к bodu j}

s := u,t v;
i := j; j j mod N + 1

until j = 2; {až už se zas

{d je počet úplných otoček robota kolem své osy od
začátku po návratu do bodu 1 a obrácení se к bodu 2}

{nový směr se stane starým}
{neboť robot popoleze}

dívá do bodu 2, tak,skončil}
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writeln (’počet obrátek =\d)
end.

P - I - 2

Zavedeme pomocné pole S^O, M] a definujeme podmínku
C(j): C(j) = Vi, 1 ^ гM: S[i] je počet výskytů
г-tice (P[l],..., P[i]) v úseku X[l],..., X[j — 1]. Jestliže je
5[1] = 5[2] = • • • = S[M] = 0, pak triviálně platí C(l).
Mějme j, 1 ^ j < N, a předpokládejme, že S[0] = 1
a ostatní prvky pole 5 mají takové hodnoty, že je splněna
podmínka C(j).

Potom, pokud X[j] {1,..., M}, je splněno také C(j),
neboť v úseku X[l],..., X[j] se vyskytuje právě tolik růz-
ných částí permutace P jako v úseku X[l],..., X\j — 1].

Nechť X\j] G {1,,M}. Tedy X[j] se vyskytuje v per-
mutaci P, řekněme na fc-tém místě, tj. X[ý] = P[k]- Nyní
když l ф к, pak počet výskytů /-tie (P[l],..., P[l]) v úse-
ku X[l],..., X[j] je tentýž jako v úseku X[l], ..., X[j — 1],
tj. je roven S[l]. Všechny výskyty k-tice (P[l],..., P[fc])
v úseku X[l], ..., X[ý] se skládají jednak z Ar-tic, které se
celé vyskytují v kratším úseku V[l], ..., X[j — 1] (těch je
S’fAr]), jednak z Ar-tic (P[l],..., P[Ar]), které vzniknou při-
pojením prvku X[j] ke (Ar — l)-ticím z úseku X[l], ... ,X
[j — 1], a těch je 5[Ar — 1]. (To platí i pro Ar = 1 díky tomu, že
jsme položili 5[0] = 1.) Odtud dostáváme, že když v poli S
nahradíme prvek 5[Ar] hodnotou 5[Ar] + 5[Ar — 1], pak bude
splněna podmínka C(j + 1).

103



Odtud již dostáváme algoritmus. Používá dvě pomocná
pole délky M a jeho časová složitost je lineární vzhledem
к N.

{Algoritmus v pascalu -

konstanty M, N, P, A}
IP: array [1.. M] of 1.. M;
{pole pro inverzní permutaci}
S: array [0 .. M] of integer;
{pole pro počítání výskytů prefixů permutace P}
i, к: 1..M;
j: 1..N;

předpokládáme, že jsou dány

var

begin
if N < M then writeln (’počet výskytů: O’)
else begin

for i := 1 to M do /Р[Р[г]] := г; {IP je inverzní к P)
S[0] := 1;
for i := 1 to M do 5[г] 0;
for j := 1 to N do

{invariant: pro 1 ^ i ^ M: 5[г] je počet
výskytů г-tice (P[l],..., Р[г]) v posloup-
nosti X[l], ..X[j — 1]}

if (A[ý] >= 1) and (A[j] <= M) then begin
к := IP[X[j]]; S[k] := 5[Ar] + S[k - 1]

{inicializace}

end;
{pro 1 ^ i ^ M: 5[г] je počet výskytů
г-tice (P[l],..., P[d) v poli X, tj. zejména S[M]
je rovno počtu výskytů řvi)

wriieln (’počet výskytů: ’^[M])
end

end.
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P - I - 3

Nechť G — (V, E) je orientovaný graf, V С V, SG(V') značí
podgraf grafu G, který je indukovaný V, tj. graf, který má
V jako množinu uzlů, a hrana mezi dvěma uzly je, právě
když je tato hrana v G. Uvažujme následující podmínku.

(SG(U) je acyklický) = (G je acyklický)

Tato podmínka platí pro U = V. Následující postup tedy
inicializujeme pro U = V.

Chceme vypouštět uzly z U, aby zůstala zachována plat-
nost podmínky. Jestliže j £ U nemá předchůdce v SG(U),
pak nemůže patřit do cyklu v SG(U), a tedy

(SG(U \ {ý}) je acyklický) = (SG(U) je acyklický).

Totéž platí samozřejmě i o uzlech bez následníků. К od-
stranění těchto uzlů potřebujeme program pro zjištění před-
chůdců každého uzlu.

Pro množinu uzlů W a uzel j £ W označíme P(j, W)
množinu předchůdců j v SG(W) a S(j, W) množinu násled-
níků j v SG(W). Je-li v P nebo S vynechán argument W, je
míněna celá množina V, tj. množina uzlů G. Podmnožina U,
která sestává z uzlů j: P(j, U) = 0, je množina kandidátů
pro vypuštění z U. Označme tuto množinu Ui aí/o = U\U\.
Pak lze naše podmínky přepsat na Po Л P\, kde

Po'- (SGiUo Uí/i) je acyklický) = (G je acyklický)
Pi ■ (V) :jeu0: P(j. U0 U£/i) = 0) Л (Vj :j€U,: P(j, Uol)
Uí/i) = 0).
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Protože postup inicializujeme pro V a jediné uzly, které
vypouštíme z Uo U U\, jsou ty bez předchůdců v Uq U U\,
platí též P2:
P2: (Vj:í€UaUUi:S(j)CUo).

Po vypuštění uzlu j z U\ dostáváme 6 S(j, Uq U U\),
že je také j 6 P(k, Uq U U\), a tedy P(k, UqUUi) se zmenší
o jeden prvek. Každý prvek k, pro který se P(k, Uq U U\)
stane 0, je přesunut z Uq do U\ (podle P2 je к £ Uq). Dále
z P2 plyne, že pro j € U\ je S(j, U0UU1) = S(j). Opakování
ukončíme pro Ui =0. Z toho dostáváme

(SG(Uo) je acyklický) = (G je acyklický).
Z U\ = 0 a P\ dostáváme

W-jeUo: P(j, Uo) ф 0),

tj. každý uzel v SG{Uq) má předchůdce. A tedy SG(Uq) je
acyklický, pouze je-li Uq = 0.

Tato diskuse nás vede к následující struktuře programu:

U„:= U I P(j) Ф ЧУ Vi := {i I P(j) = 0};
wliile U\ "Ф 0 do begin

„nechť j e U1“; Щ := Ui \ {i}; „Vfc 6 S(j)“;
if P(fc, t/o U C/i) = 0 then begin

C/0 := Uo \ {fc}; Cl := U\ U {&};
end

end

acykl := (Uo = 0);
Zavedeme celočíselné pole : 1 й j ^ A), aby platilo:

(VAr: * € Uq U Ui: t(k) = \{j £ Uq U U\: j £ P(Ar)}|)
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Pak platnost P(k, Uo U U\) = 0 lze ověřit jako t(k) = 0.
Množinu U\ budeme reprezentovat pomocí dvou proměn-
ných ví a nv\, kde t>i (j: 0 ^ j < nvi) je celočíselné pole
a nv i je celočíselná; kde nv i je počet uzlů U\ a uzly U\
jsou v poli vi (0 š j < nv i). Pro množinu Uo je důležitý
pouze počet jejích prvků. Budeme ji reprezentovat pomocí
proměnné nvo-

Inicializaci t, v i, nv nvo lze zapsat takto:

procedure INIT;
var i, j: integer;
begin

for j := 1 to N do ť[jí] := 0;
for i := 1 to M do ř[e[i]] := ť[e[i]] + 1;
nv0 := 0;
nvi := 0;
for j := 1 to N do

if /[j] = 0 then begin
Vi[nwi] j; nv\ := nv\ + 1

end

else nvo := nvo + 1
end;

Celá procedura pak vypadá takto:

type UZLY:= array [1.. jV + 1] of integer;
NASL:= array [1 .. TV] of integer;

function ACYKL(b: UZLY; e: NASL):boolean;
var nvo, nui, i,j, k: integer;
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V\: array[0 .. N — 1] of integer;
t: array [1.. N] of integer;

begin
INIT]
while nvi <> 0 do begin
j := i>i[nui — 1]; nv\ := nvi — 1;
for i := b[j] -f 1 to b[j + 1] do begin

к \= e[г]; ř[fc] := t[k] — 1;
if t[k] = 0 then begin

vi[ni>i] k] nvo := nvо — 1; nv\ := nv\ + 1
end;

end

end;
ACYKL := (nv0 = 0)

end;

Správnost algoritmu plyne z postupu na začátku popisu.
Složitost algoritmu. Pokud byl uzel j z U\ vypuštěn, tak

již do U\ znovu nebude přidán (do U\ jsou přidávány násled-
níci uzlů a j nemá předchůdce). Tedy každý uzel se testuje
maximálně jednou. Celkový počet následníků všech uzlů
je celkem M. Vnořené cykly se tedy provedou maximálně
M-krát. Celková složitost je O(M).

P - I - 4

a) Čísla x, у budeme reprezentovat v unární soustavě oddě-
lená *. Pak se řešení ztotožní s výpočtem zřetězení dvou
slov nad abecedou {1} as ubráním jednoho symbolu
z výsledného slova. Popis Turingova stroje je tedy ana-
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logický jako ve vzorovém příkladu v zadání. Uvedeme
proto pouze tabulku:

ДT 1 *

(1,1, P) (1 ,*,p) (2,д,£)
(3,Д,L) (5, Д, L)
(4, Д, L) (5, Д, L)
(4,1,1) (5,1,L)

START 1
2
3
4

STOP 5

b) Užijeme pomocnou abecedu V — {А, В, a, (3}. Pokud
je vstupní slovo prázdné, stroj se zastaví. Jinak si za-

pamatuje první symbol a přepsáním na velké písmeno
označí již zkopírovanou část. Dále stroj projde zbytek
slova a na jeho konec připíše zapamatovaný symbol,
ale v řecké abecedě {a,/3}. Dále se stroj vrací vlevo,
dokud nenarazí na velké písmeno, to přepíše na malé
a pravého souseda si opět zapamatuje, přepíše na vel-
ké písmeno a pokračuje předchozím způsobem. Tímto
postupem stroj pokračuje do té doby, než při návratu
vlevo narazí na sousedící velké a řecké písmeno. V tom
okamžiku bylo již zkopírováno celé vstupní slovo a stroj
již pouze přepíše toto velké písmeno a všechna řecká
písmena na malá latinská. Dále uveďme tabulku pro

stroj T.
Správnost činnosti stroje plyne z postupu před tabulkou.
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т b л А В Аа

(2, А, Р) (3,В,Р)
(2,а,Р) (2, 6, Р) (4, a, L)
(3, а, Р) (3, 6, Р) (4, /3, L)
(5,а, L) (5,6,L)
(5,a,L) (5,6,L)

START 1

(2,a,P)(2,p,P)
(3,a,P)(3,(3,P)

(6, а, P) (6, 6, P) (4, a, L) (4, /3, L)
(1, a, P) (1,6, P)

2

3
4

5

(7, Л, P) (6, a, P) (6,6,P)6
STOP 7

P - II ~ 1

Algoritmus je jednoduchý. Nejdříve si označíme všechny
dosažitelné prvky pole A. Potom projdeme polem A a vypí-
šeme indexy všech neoznačených, tj. nedosažitelných prvků.

Postup označování dosažitelných prvků je následující:
Procházíme pole ZAC a pro každý jeho prvek ZAC[i\
označujeme všechny prvky pole A dosažitelné ze ZAC[i\.
Když při tom narazíme na už označený prvek A[j], (tj. už
dříve jsme poznali, že A[j] je dosažitelný), přestaneme další
prvky, na něž A[j] případně odkazuje (tj. A[A[j]] atd.),
označovat — ty už označené zaručeně jsou
к dalšímu začátku ZAC\i + 1].

Dosažitelných prvků je nejvýše N, u nejvýše M z nich tes-
tujeme označení dvakrát, u ostatních jen jednou. Algoritmus
je tedy lineární vzhledem к N.

Při programové realizaci označování prvků pole A němu-
símě zavádět další pole, ale můžeme využít jednak toho,
že A je programová proměnná, do níž lze zapisovat, jednak
toho, že prvky A jsou celá kladná čísla. Označení prvku A[j]
pak realizujeme jeho nahrazením číslem — |A[ý]|. (Aby byla
dodržena poslední podmínka v zadání úlohy, je nutno na
konci všechna označení zrušit, tj. nahradit dosažitelné prvky
jejich absolutní hodnotou.)

a přejdeme
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{Algoritmus v pascalu}
{předpokládáme, že jsou dány konstanty M, N a naplněna
pole ZAC, A}

ZAC: array[l .. M) of 1 .. N\
A: array[1.. N] of integer;
i, j, К -. integer;

var

begin
for i := 1 to M do

{invariant: jsou označeny (tj. záporné) všechny prvky
pole A dosažitelné ze ZAC[1],..., ZAC[i — 1]}

begin
К := ZAC[i\\
while (l <= A[K]) and (A[K] <— N) do begin

A[K] := —A[K]\
К := —A[K]

{označení dosažitelného prvku}
{posunutí na další}

end;
if A[K] >= 0 then A[K] := —A[K]
{označení dosažitelného prvku, který už není
ukazatelem}

end;
for j := 1 to N do
if A[j] >— 0 then wriieln (j)

{výpis nedosažitelných prvků}
{restaurace dosažitelných}else A[j] := -A[j]

end.

P - II - 2

Při řešení úlohy použijeme následující úvahu. Nechť
bod (A[/],y[/j) je takový, že X[l] = min{X[i], i =
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= l,...,n}, a označíme aj (j ф l) úhel určený bo-
dy (Х[<],У[/]), (*[/] + l,y[/]), (X\j),Y\j}) (obr.25).
(Pokud y[j] < У[/], pak úhel má znaménko - .)

Nyní setřídíme úhly podle velikosti takto: aj1 < ■ ■ ■ <
< an_i. Ostrou nerovnost můžeme předpokládat, protože
žádné tři body neleží v jedné přímce. Hledaná permutace
bodů je potom takováto:

Ukážeme, že pro tuto posloupnost se určené úsečky ne-

protínají. Nechť se protínají úsečky určené body ji, ji+i,
jk, jk+1, pak např. ajt < ajt+1 < ajk < ajk+1. Označ-
me s průsečík těchto úseček. Protože žádné tři zadané body
neleží na jedné přímce, je bod s vnitřní bod obou úseček.
Označíme-li as úhel určený analogicky jako úhly aj, pak
platí:

(Xj, < a* < aj,+i

ajk <qs < aifc+1

To je ale spor. Tedy úsečky se neprotínají.

112



V programu použijeme následující vlastnost. Abychom
nemuseli přímo počítat velikost úhlu, stačí počítat pouze

podíl (У[/] — У[г])/(Х[/] — А[г]). Je zde však problém, že
jeden bod může mít stejnou x-ovou souřadnici jako X[l].
To odstraníme tak, že bod A[/] „zanedbatelně posuneme"
doleva (např. 0.0001 pro zadání s přesností 0.1).

Algoritmus má následující postup:

1. Načtení zadání.
2. Zjištění X[/] = min{JV[i], i = 1,..., n}.
3. Výpočet (У[г] - Y[l])/(X[Í\ - X[l\ + 0.0001).
4. Setřídění uzlů * = 1, .. n;

Pro paměťové zvýhodnění je hodnota vypočtená v bo-
dě 3 ukládána znovu do pole X. Pro třídění je použito
pomocné pole Z. Třídění je vykonáno metodou Quicksort.
(Viz např. ročenka 36. ročníku MO na středních školách,
příklad P-I-2.)
Složitost algoritmu

Body 1,2, 3 mají složitost 0(n), bod 4 0(n logn). Celková
složitost je tedy O(nlogn) za použití jednoho pomocného
pole velikosti n.

Zápis algoritmu (v jazyce Pascal)

program mnoh;
const и = —1000;
var X, Y : arrayfl.. 10] of real;

Z: array[1.. 10] of integer;
г, j, k,l,n : 0 .. 11;
m: real;

procedure SORT(l,r : integer);
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var i, j, к, w: integer;
begin

i := /; j := г; к := (/ + r) div 2;
repeat

while ж[г[г]] < ж[г[&]] do г := г + 1;
while ж [2[А:]] < x[z[j]] do j := j — 1;
if г <= j then begin

w := г [г]; z[i\ := z[j]; z[j] := i := *'+ 1; j := j - 1
end

until i > j\
if / < j then SORT(l, j);
if г < r then SORT(i, r)

end;

begin
wriieln (’Zadej počet bodů 1-10’); readln{n)\ {načtení}
writeln (’Zadej body pomocí souřadnic’);
for i := 1 to n do readln (ж[г], у[г]);
гп := ж[1]; / := 1;
for г 2 to n do

if ж [г] < m then begin
т := ж [г];

{nalezení bodu s nejmenší ж-ovou souřadnicí.}
I := i

end;
for г := 1 to n do begin

ж [г] := (у [г] - у[/])/(ж[г] - т + 0.0001);
{výpočet hodnot}

{pro srovnání}z[i] i
end;
SORT(l,n)- {setřídění}
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writeln (’Výsledná permutace je následující:’);
write (/ : 3);
for i := 1 to n do

if z [г] O / then write (z [г] : 3);
writeln

end.

P - II - 3

Nástin algoritmu: Jeden z možných postupů výpočtu {^}
je následující (předpokládáme N ^ M > 0, jinak je výpočet
triviální).

Označíme к = N — M a zavedeme pomocné pole P [0 .. k],
do něhož na začátku uložíme hodnoty {i}>{i}>- -> I*!1}’
tj. samé jedničky.

V každém dalším (г-tém, pro 2 ^ i 5Í M) kroku zrně-
níme obsah pole P z hodnot {j}, {ťx},..., {
hodnoty {*-}, {*-^1},..., {*+*}. Po M-tém kroku pak bude
platit P[k] = Ц}.

Provedení i-tého kroku: Na začátku г-tého kroku pole P
obsahuje prvky

i + к — 1 } na
*-i

i -f к — 1i i

i У li- 1
* * >

i - 1

neboť P[0] = {*_{} = {*} = 1. Proto přičtením souči-
i • P[0] к prvku P[l] dostaneme P[l] = {‘t1}. Dalším

přičtením i • P[l] к prvku P[2] dostaneme P[2] = {*“t2},
atd., až nakonec P[k] — {*+*}.
Algoritmus v pascalu:

nu
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{předpokládáme, že jsou dány konstanty N, M, a že TV ^
^ m ;> 0}

{podmínka С(г,;) je definována níže a slouží jako
invariant}

const к — N — M]
var i,j: integer;

P: array[0 .. к] of integer;
begin

if M = 0 then wriieln (’{’, N0} = O’)
else begin

for j := 0 to к do P[j] := 1;
for i := 2 to M do

for; := 1 to к do P[j] := P[j] + i*P[j- 1]; {C(i,;')}
{C(M +1,1)}
wriieln (’{’, N

{inicializace}
{C(i, 1)}

,M ,’} = P[*])5 >

end

end.

Důkaz: Pro 2 ^ г ^ M + 1, 1 ^ ^ fc + 1 definujeme
podmínku

i + г
C(i, j) = Vr, 0 ^ r < j: P[r] =

г

a současně

i + s- 1
j = s = к ■ P[s] —Vs

i - 1

Nyní lze snadno ověřit tato fakta:

a) Po provedení prvního — inicializačního kroku (tj. na
začátku druhého kroku) platí C(2,1).
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b) Platí-li C(i,j) pro určité i, j, 2 й i ^ M, 1 ^ j ^ k,
potom po provedení přiřazení P[j] := P[j] + i* P[j — 1]
bude platit C(i,j + 1).

c) Pro 2 <; i g M je C(i, * + 1) = C(* + 1,1).
d) Užitím bodu (b) a indukce vzhledem к j máme, že pla-

tí-li C(i, 1) na začátku г-tého kroku, 2 ^ гM, (před
provedením vnitřního cyklu), pak po jeho skončení bude
platit С(г, k + 1), tedy, podle (c), bude platit С(г + 1,1).

e) Užitím bodů (a), (d) a indukce vzhledem к i dostává-
me, že na začátku každého г-tého kroku (2 ^ i ^ M)
platí C(i, 1) a na konci M-tého kroku platí C(M + 1,1).

Po provedení celého algoritmu tedy platí C(M + 1,1).
Odtud podle definice podmínky C máme P[k] = {^}.

Počet aritmetických operací na mezivýsledcích: Jediné
sčítání a jediné násobení mezivýsledků se provádí ve vnitř-
ním cyklu algoritmu. Počet provedení vnitřního cyklu je к,
počet provedení vnějšího cyklu je M — 1. Vidíme tedy, že
celkový počet sčítání mezivýsledků je tentýž jako počet
násobení a je roven (M — 1) • к = (M — 1) ■ (N — M).

P - II - 4

a) Čísla jsou reprezentována v unární soustavě, oddělená *.
Nechť |ar|, resp. |г/| značí počet jedniček v zápisu x,

resp. y. Řešení plyne z následujících faktů. Nechť |z| =
= к, |г/| = /, pak |# — y\ = к — / + 1, je-li к ^ /,
resp. \x — y\ = 1, je-li к < l.

Postup řešení je následující. Nejprve se vstupní slovo na

pásce přepíše tak, že bude začínat 0, která bude indikovat
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pravý okraj pásky. Pak se postupně jedničky v prvním čísle
nahradí *, dokud není

a) * tolik, jako bylo cifer v 2. čísle, nebo
b) se nenahradila 0.

Na závěr se přidá jedna 1 a * se smažou. Postup lze zapsat
do této tabulky:

T Л1 o*

(2,0, P)
(2,1, P) (3,1, P)
(4, *, P)
(4,1, P)
(6 ,A,L)
(6,1, i) (7, *, L)
(8,»,P) (7, *, L)
(9,1,P) (8, *, P)
(9,1,P)

START 1
2
3

(5,1,P)
(5, A, i)

4

5
6

(10,1,P)7

(И,A,I)
(5, A ,L)

8
9

(10, A, P)
(11,1,i) (11, A, L)

10

(11.1.P)11

b) Užijeme pomocnou abecedu V = {A,B}. Pokud je
vstup prázdný, odpověď je ano. Jinak si stroj zapamatuje
první písmeno vstupu, změní ho na velké z důvodu již
ověřeného označení. Dále se pročte zbytek slova a porov-
ná se zapamatované písmeno s posledním. Pokud nejsou
stejná, slovo není palindrom a odpověď je ne. Jinak se

poslední písmeno přepíše na velké a ověřuje se platnost
palindromu pro zbytek slova. Tento postup lze napsat
do následující tabulky:
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вb д АТ а

(2,А,Р) (3,В,Р) (8, Д, Р) (8, А, Р) (8, В, Р)
(2, а, Р) (2, Ь,Р) (4, Д, L) (4,A,L) (4, В, L)
(3, а, Р) (3,6,Р) (5,Д,Т) (5, A, L) (5,B,L)
(6, A, L) (7, b, L) (7, Д, L) (8,A,L) (8,B,L)
(7, а, L) (6, В, L) (7, Д, L) (8, A, L) (8,B,L)

(1,А,Р) (1,В,Р)

START 1
2
3
4

5

(6, а, L) (6,b,L)6

7

STOP 8

Р - III - 1

Zavedeme si následující pojem: Koncovým indexem prv-
ku A[j] (pro 1 ^ j й N)
jestliže 1 ^ A[j] ^ N a prvek ylfylfj]] má koncový index,
pak tento index bude také koncovým indexem prvku A[j\,
v ostatních případech položíme koncový index prvku A[j]
roven nule.

Koncovým indexem prvku ZAC[i] (pro 1 ^ i ^ M, 1 ^
^ ^ N) rozumíme koncový index prvku ^1[^ЛС[г]].

Úkolem algoritmu tedy bude nahradit každý prvek po-
le ZAC jeho koncovým indexem. Snadno nahlédneme násle-
dující tvrzení: Jestliže v poli A libovolný prvek nahradíme
jeho koncovým indexem, pak koncové indexy všech prvků
polí ZAC a A zůstanou stejné jako před záměnou.

Hrubá idea algoritmu: Procházíme postupně prvky
ZAC[1],..., ZAC[M] a v každém kroku nahradíme ty prvky
pole A, jež jsou dosažitelné ze ZAC[i], jejich koncovým
indexem. Ten je také koncovým indexem prvku ZAC[i\,
takže ho zapíšeme i do ZAC\i\.

Při zjišťování koncových indexů postupujeme podobně
jako v úloze P—II—1, případné zacyklení odkazů (tj. případ,
kdy koncový index je nula) si hlídáme tak, že si průběžně

číslo j, pokud A[j] > N\nazveme

119



označujeme (obrácením znaménka) prvky pole A dosažitel-
né ze ZAC[i\.

{Algoritmus v pascalu}
{předpokládáme, že jsou dány konstanty M, N a naplněna
pole ZAC, A}

ZAC: array[1 .. M] of 0 .. N]
A: array [1.. N] of integer ;

i, к, L, P : integer;

var

begin
for i := 1 to M do {,,inv“}
begin

к := ZA С [г];
while (1 ^ A[fc]) and (A[&] <= N) do begin

A[k\ := —A[k\]
к — A[k]

{označení prvků pole A}
{dosažitelných ze ZAC [i]}

end;
if A[k] <= 0 then P := 0
else P к;
к := ZAC[i\; ZAC[i\ := P\

{P = koncový index prvku ZAC [i]}

{nahrazení ZAC[i\ koncovým indexem}
{nahrazení všech prvků}while A[k] < 0 do

begin
L := к;
к := —A[k];
A{L] := P

{pole A z původního ZAC[i]}
{dosažitelných jejich}
{koncovým indexem}

end

end

end.

V místě označeném „inv“ platí invariant:
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- prvky ZAC[l],..., ZAC[i — 1] jsou svými koncovými
indexy,

- všechny prvky pole A, které byly dosažitelné z původ-
nich hodnot ZAC[1],..., ZAC[i — 1], jsou svými konco-
vými indexy,

- ostatní prvky polí mají své původní hodnoty,
- koncové indexy všech prvků polí ZAC a, A jsou stejné

jako koncové prvky jejich původních hodnot,
V prvním vnitřním cyklu hledáme koncový index prv-

ku ZAC[i\. Jsou-li odkazy v poli A cyklické, bude koncový
index roven nule (příkaz if za cyklem). Koncový index se
zapíše do ZAC[i]. Přiřazení tohoto indexu prvkům pole
A (druhý vnitřní cyklus) není nutné z hlediska správnosti
algoritmu, aleje důležité z hlediska jeho časové složitosti.

Je-li vyšetřován nějaký prvek A[fc], je počet jeho zpří-
stupnění roven řádově číslu M. V prvním vnitřním cykluje
opakovanému procházení prvku zabráněno tím, že si hlídá-
me cyklení odkazů, v druhém vnitřním cyklu se prvek A[k]
nahradí svým koncovým indexem a díky tomu na něm každé
další provedení prvního while-cyklu ihned skončí. Odtud vy-

plývá časová složitost algoritmu 0(M + N), což (vzhledem
к podmínce M < N) je rovno O(N). Algoritmus je tedy
lineární vzhledem к N.

P - III - 2

Koeficienty Legendreových polynomů jsou racionální čísla,
která v paměti můžeme reprezentovat dvojicemi celých čí-
sel (čitatel, jmenovatel). Pro účely generování koeficientů je
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vhodné čitatele uchovávat v jednorozměrném poli A[0 .. N],
v prvku A[j] je čitatel koeficientu u j-té mocniny.

Polynom P je pro sudé, resp. liché i sudou, resp. lichou
funkcí, tj. jeho liché, resp. sudé koeficienty jsou nulové. Proto
lze v poli A uchovávat naráz čitatele koeficientů polyno-
mů Pí, Pi-\. Pro každý polynom je uchován společný jme-
novatel jeho koeficientů tak, aby aspoň 1 koeficient tohoto
polynomu byl v základním tvaru.

Algoritmus může tedy pracovat takto:
• Do pole A umístíme čitatele koeficientů polynomů Po, P\

a do proměnných ds, dl umístíme hodnoty jmenovatelů.
• Pro i = 2,..., N opakujeme:

- vypočteme koeficienty polynomu Рг a přepíšeme jimi
koeficienty polynomu P,-_ 2;

- provedeme možné krácení hodnot vypočtených koefici-
entů polynomu Рг.

• Vypíšeme koeficienty polynomu Рдг, tj. sudé nebo liché
prvky pole A, a hodnotu ds nebo dl podle toho, zda N
je sudé, nebo liché.

Pro zjednodušení algoritmu je pole A indexováno od — 1,
přičemž A[— 1] je vždy nulové.

{Algoritmus v pascalu - předpokládáme, že je dána kon-
stanta N}

var A: array[—1.. N] of integer;
{čitatele koeficientů polynomu}
ds,dl: integer;{jmenovatele koeficientů polynomu}
i, j, NN 1 NSD : integer;

begin
Л[-1] := 0; Л[0] := 1; Л[1] := 1;
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for j := 2 to N do A[j] := 0; ds := 1; dl := 1; NNi := 1;
for i := 2 to N do

{výpočet čitatelů koeficientů polynomu stupně i}
begin

NN i := NNi + 2; Ni := i - 1; j := i;
repeat

if ds = dl then Л[}] := iVTVi * A[j — 1] — N\ * A[j]
else A[j] := NN i * A[j — 1] — N\ * N\ * A[j];
j ■= 3 ~ 2;

until j < 0;
if i mod 2 = 0 then begin

ds := dl * i; NSD := ds
end

else

begin
dl := ds * i; := d/

end;
{zjištění N57} vypočtených hodnot}
j := *;

repeat
M := a6s(^[ý]);
while M <> N5.D do begin

while N5£> < M do M := M - NSD;
while jV5£ > M do N5£ := N5Z> - M

end;
i := i - 2;

until (J < 0) or (NSD = 1);
{krácení koeficientů}
if NSD <> 1 then begin

J:= 1;
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repeat
A[j] ■= A[j] div NSD] j := j - 2;

until j < 0;
if i mod 2 = 0 then ds := ds div NSD
else dl := dl div NSD]

end

end;
{ výpis koeficientů }
if N mod 2 = 0 then wriieln (’jmenovatel:’, ds)
else wriieln (’jmenovatel:’, dl)]
j := N;
repeat

wriieln (’mocnina’, j, ’:koeficient :’, vl[ý]); j := j — 2;
until j < 0;

end.

P - III - 3

Řešení úlohy převedeme jednoduchou úvahou na řešení kla-
sického grafového problému hledání nej kratších cest z dané-
ho uzlu grafu do všech ostatních. Pro řešení tohoto problé-
mu pak použijeme klasický Dijkstrův algoritmus. Naši úlohu
převedeme tak, že z matice V vypustíme hrany delší než
dolet letadla. Nyní můžeme již použít Dijkstrův algoritmus
pro určení d[v], nejkratší vzdálenosti z и do v pro graf G:
Pomocné proměnné

- M, množina vrcholů, pro které ještě není vzdálenost d[t;]
definitivně určena

- V, vektor, kde pro každý uzel v je uveden předposlední
uzel nejkratší cesty z и do v a neprochází M
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- L, matice přímé vzdálenosti

Algoritmus
1. Inicializace. M = V(G) \ {гг}; d[u] = 0; V[u\ — u;

pro v ф u\ d[v] = L[u,v] a je-li d[v] < oo, V[v] = u.
2. Test ukončení. Je-li M prázdná, výpočet končí.
3. Určení d[v] pro další uzel. Z uzlů množiny M vybereme

uzel v s minimální hodnotou с/[г>]. Je-li d[v] = oo, pak
výpočet končí, jinak vyjmeme v z M.

4. Aktualizace d а V. Je-li v uzel vybraný v bodě 3, pak
pro každý uzel w € M: pokud d[v] + L[v,w] < d[w],
provedeme V[w] = v, d[w] = d[v] -f L[v, tu].

5. Skok do bodu 2.

Vlastní program v jazyce Pascal:

program LET;
label 5,10;
var M : set of 1.. 20;

L: arrayfl.. 20,1.. 20] of integer;
i,j, к, n, и : 0 .. 20;
v, w: integer;

begin
w := 0;

5: writeln (’Zadej dolet letadla’);
readln (u);
writeln (’Zadej počet letišť [1-20]’);
readln (n);
writeln (’Zadej matici vzdálenosti ’);
writeln (’[pokud není hrana —1]’);
for i := 1 to n do begin

for j := 1 to n do begin
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read (L[i,j]);
if L[i,j] > v then L[i,j] := — 1;

{Odstranění hran přesahujících dolet}
end;
readIn

end;
writeln (’Zadej letiště, ze kterého se určují trasy:’);
readln (u); M := [1.. n];
for i := 1 to n do

if L[u, г] ^ 0 then L[i, u] := it;
M — M — [«];
while M O [] do begin

w := n * v + 1; j := 0;
for i := 1 to n do

if г in M then

{*1*}

if (L[u, г] >= 0) and (L[u, г] <= w) then begin
w := L[u, г]; j := i {* 3 *}

end;
if j = 0 then goto 10;
M:=M- [j];
for г := 1 to n do

{* 4 *}

if г in M then

if (L[j, г] >= 0) and
((it; 4- L[j, г] < L[it, г]) or (L[u, г] < 0)) then begin

L[i, it] := j; L[u, i] := w + L[j, i] {* 5 *}
end;

end;
10: L[u,u] := 0;

writeln (’ ’:27,’Trasy z letiště’,u:3); writeln;
write (’ ’: 10,’letiště’,’ ’: 10,’vzdálenost’);
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write (’ 10,’nejkratší trasa’); writeln;

for i := 1 to n do begin
v L[u, *'];
if v >— 0 then begin

к := i; j := 1;
while it <> ti do begin

L[j, *]-:= L[k, «]; := L[&,tt];
j •- j + 1

{*6*}

end;
write (’ ’: 11,г : 2);
write (’ ’:14,u : 3,’ 14);

for к := j — l downto 1 do write(L[k, i]:2,’,’);
write (i : 2); writeln

end

else

begin
write (’ ’: 11,г : 2);
write (’ ’:12,’nekonečno’);
write (’ ’: 11,’neexistuje’);
writeln

end

end;
writeln (’Opakovat výpočet [0/1]’); reading);
if j = 1 then goto 5;

end.

KOMENTÁŘE
* 1 * : Odstranění hran přesahujících dolet
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* 2 * : Ztotožnění it-tého sloupce matice L s vektorem V
a u-tého řádku a d
Nalezení minima d[u] pro v € M
Neexistuje zlepšení
Provedení zlepšení
Rekonstrukce letové trasy

* 3 *
* 4 *
* 5 *
* 6 *

Časová složitost: Algoritmus zpracuje vstup n letišť v ča-
se 0(n).

Správnost algoritmu: Dokážeme pouze pro Dijkstrův al-
goritmus. Indukcí ukážeme, že pro v vybraný v bodě 3
algoritmu je d[t?] = duv, tj. délka nejkratší cesty. Nechť
předpoklad platí pro uzly z V(G) \ M. Nechť v je uzel
vybraný v bodě 3 algoritmu a nechť existuje cesta P z и do v

tak, že délka dp < d[v]. Nechť x je první uzel z P, který leží
v M а у jeho předchůdce v P. Pak d[:c] ^ d[y] -f L[y, x] =
= duy 4- L[y, x]údP< d[v], což je spor s minimalitou d[u].

P - III - 4

a) Užijeme pomocnou abecedu V = {A,B,C}. Pokud je
slovo prázdné, pak stroj odpoví ano. Jinak přečte první
symbol slova. Pokud není tento symbol a, pak slovo není
přijímáno. Pokud je symbol a, stroj ho přepíše na A
a hledá к němu b. Pokud jej nalezne, přepíše ho na В
a hledá c, které přepíše na C. Tento postup se opakuje,
dokud stroj neskončí úspěšně, či neúspěšně.
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т b л в сАса

(2, А, Р)
(2, а, Р) (3,Р,Р)

(3, 6, Р) (4, С, L)
(4, a, L) (4, Ь, L) (4, с, L)

(5,Д,Р)(1,Л,Р)(1,В,Р)(1,С,Р)
(2, В, Р)

START 1
2

(3,С,Р)
(1) А, Р) (4, В, L) (4, С, L)

3
4

STOP 5

b) Užijeme pomocnou abecedu V = {А, В, а, /?}. Pokud
je vstup prázdný, je slovo palindrom. Jinak stroj po-

stupně testuje postfixy vstupního slova, dokud nenarazí
na palindrom. Pro testování se používá stroj z příkladu
v krajském kole (stavy 2, 3, 4, 5, 6, 7). Pokud postfix
není palindrom vloží se jeho první znak mezi vstupní
slovo a již připsanou část vpravo a ta se posune o jeden
znak (stavy 8, 12,13,14, 15, 16, 17). Začátek testovaného
postfixu a začátek již doplněné části je označen řecký-
mi písmeny. Vždy po ukončení testování palindromu se
velká písmena přepíší na malá. Po zjištění, že postfix je
palindrom, se přepíší všechna písmena na malá.

T b Л в £Aa a

(3, Д,Р) (4, Д, P) (9, Д, P)
(3, A, P) (4, В, P)
(3 ,a,P) (3,b,P) (5, Д, L) (5, A, L) (5 ,B,L) (5 ,A,L) (5 ,A,L)
(4 ,a,P) (4, 6, P) (6 ,A,L) (6, A, L) (6,B,L) (6, Д, L) (6 ,A,L)
(7,A,L) (8, 6, L)
(8, a, L) (7, B, L)
(7, a, L) (7, 6, L)
(8, a, L) (8, 6, L)
(9, a, P) (9, 6, P) (10, Д,Ь) (9,a,L) (9, b, P) (10, a, L) (10, b, L)

(10, a, L) (10, 6, L) (11, a, P) (11,6, P)

START 1

(9, A, P) (9, B,P) (9, Д, P) (9, Д, P)2

3
4

(9, A, P) (9, B,P) (9, Д, P) (9, Д, P)
(9, A, P) (9, B,P) (9, Д, P) (9, Д, P)
(2, A, P) (2, B,P) (2, Д, P) (2, Д, P)
(8, A, L) (8, B,L) (12,Д,Р)(15, Д, P)

5
6
7

8

9

(10, a, L) (10, 6, L)10
STOP 11

(12, a, P) (12, 6, P) (16, Д,Р) (12, a, P) (12, 6, P) (13, Д, P) (14, Д,Р)
(13, a, P) (14, a, P) (16, a, L)
(13, 6, P) (14, 6, P) (16,6, L)
(15, a, P) (15, 6, P) (16, Д, P) (15, a, P) (15, 6, P) (13, Д,Р) (14, Д, P)
(16, a, L) (16, 6,L) (16, Д,Р)
(17, a, L) (17, b, L)

12
13
14

15

(17, Д, L) (17, Д, L)
(17, a, L) (17, 6, L) (1, a, P) (1,Ь, P)

16
17
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Korespondenční seminář ÚV MO 1990/91

Korespondenční seminář je jednou z forem péče o talento-
vane žáky. Vznikl ve 24. ročníku MO proto, aby bylo možno
věnovat individuální péči i těm žákům, kteří neměli možnost
navštěvovat speciální školy a pracovat v tamních seminá-
řích. Nyní, kdy existují i krajské korespondenční semináře
a kdy speciální školy s třídami zaměřenými na matematiku
najdeme v každém kraji, je cílem tohoto semináře zlepšit
individuální přípravu všech studentů, kteří prokázali své
schopnosti a matematický talent v předchozích ročnících
matematické olympiády. Korespondenční seminář tak na-
dále zůstává důležitou součástí přípravy na mezinárodní
matematickou olympiádu.

К účasti v korespondenčním semináři jsme pozvali všech-
ny špičkové řešitele kategorie A spolu s těmi studenty, kteří
nějak vynikli v krajských kolech kategorií В a C předchozího
ročníku МО. V průběhu 40. ročníku MO jim bylo postup-
ně zasláno 5 sérií poměrně náročných úloh, jejichž texty
najdete v úlohové části této ročenky (tentokrát poprvé
s řešeními). Došlá řešení pak byla opravena, ohodnocena
a s rozmnoženým komentářem vrácena účastníkům seminá-
ře. Nejlepšími v celkovém hodnocení byli:
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1. Vladimír Glasnák, 3. ročník G, V. Okružná, Žilina
2. Michal Konečný, 4. ročník G, kpt. Jaroše, Brno
3. Pavel Růžička, 4. ročník G, kpt. Jaroše, Brno
4. Richard K. Kollár, 4. ročník GAM, Bratislava
5. Josef Menšík, 4. ročník G, kpt. Jaroše, Brno

6.-7. Slavomír Hrinko, 4. roč. G, Konštantínova, Prešov
6.-7. Siěpán Kasal, 3. ročník G, Korunní, Praha

8. Aleš Kuběna, 4. ročník G M. Koperníka, Bílovec
9. Zdenek Pezlar, 4. ročník G, Plzeň

Korespondenční seminář je řízen tajemníkem ÚV MO
RNDr. Karlem Horákem, CSc., který se staral o výběr úloh
a prováděl i redakci komentářů. Opravu pak zajišťovalo ně-
kolik pracovníků MÚ ČSAV a několik studentů a aspirantů
MFF UK Praha (všichni jsou bývalí olympionici).

Úlohy korespondenčního semináře1.1Je dán kvadratický trojčlen f(x) = x1 + 2bx + cs celo-
číselnými koeficienty b a c. Jestliže je f(n) ^ 0 pro všechna
celá čísla n, pak je f(x) ^ 0 i pro všechna racionální čísla x.
Dokažte.1.2Je dána posloupnost (an)£L0, jež splňuje rekurentní
vztah

^n+2 “b a,n — i — 2(an+i + On)) n ^ 1.
Je-li ao — 0, a\ = 1, 02 = 1, pak je každý člen uvedené
posloupnosti čtvercem celého čísla. Dokažte.1.3Určete všechny dvojice (a,b) reálných čísel, pro něž je
nerovnost

-&|gi(V2-l)y/l — X2 — ax
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splněna pro všechna x £ (0,1).
1.4 Je možno obarvit políčka tabulky 1 990 x 1 990 černou
a bílou barvou tak, aby políčka souměrně sdružená podle
středu tabulky měla opačnou barvu a v libovolném sloupci
a v libovolném řádku bylo stejně černých i bílých polí?
1.5 Uvnitř strany AB konvexního čtyřúhelníku ABCD
zvolme bod E a průsečík úhlopříček čtyřúhelníku AECD
označme F. Dokažte, že kružnice opsané trojúhelníkům
ABC, CDF a BDE se protínají v jednom bodě.
1.6 Uvažujme kvadratický trojčlen f(x) — ax2 -f bx + c,

který má kladné koeficienty splňující rovnost a -f b + c = 1.
Dokažte, že pro libovolná kladná čísla x\, x?,, ..., xn, jež
splňují rovnost Xi • ... • xn = 1, platí nerovnost

/(*i) ■ /(*2) • • • • • f(xn) ^ 1.1.7Uvažujme „drátěnou“ krychli o hraně 100, jež je jed-
notlivými dráty rozdělena na 1 000 000 jednotkových krych-
liček. Rozhodněte, zda lze celou drátěnou krychli rozložit
na jednotlivé trojice navzájem kolmých jednotkových hran
se společným vrcholem, přičemž žádné dvě trojice nemají
společnou hranu.
2.1 Je dán rovinný úhel s vrcholem A, do něhož jsou vepsá-
ny dvě kružnice, jež se protínají v bodě B. Označme C a D
jejich body dotyku s jedním ramenem daného úhlu. Dokaž-
te, že přímka AB se dotýká kružnice opsané trojúhelníku
BCD.

2.2 Pro která přirozená čísla n je číslo

^2п+1 2^+ 1 gro

132



složené?2.3Označme d nejmenší vzdálenost dvou mimoběžných
hran daného čtyřstěnu a h jeho nejmenší výšku. Dokažte,
že 2d > h.2.4Všechny strany a úhlopříčky konvexního n-úhelníku se

dají obarvit к barvami tak, že neexistuje uzavřená lomená
čára spojující vrcholy uvažovaného mnohoúhelníku, jež by
byla jednobarevná. Zjistěte, pro jaké největší n je taková
situace možná.2.5V rovině je dán bod Ao a n vektorů oi, a2, ..., an,

jež mají nulový součet. Každé pořadí (i\, *2,..., г'п) čísel 1,
2, ..., n určuje v dané rovině body A\, A2, ..., An = Aq
tak, že bude aix — AqA\, o,2 = A\A2, ..., o»n = An-iAn.
Dokažte, že existuje takové pořadí, pro které budou všechny
body Ai, A2, ..., An-1 ležet uvnitř nebo na ramenech úhlu
velikosti 60° s vrcholem v bodě Aq.

xn jsou kladná reálná2.6Předpokládejme, že x\, x2, ..

čísla taková, že xi < x2 а X3, X4, X5 jsou vesměs větší než
* J

x2. Dokažte, že pro a > 0 platí

1 1 1
á +a + <

(xi 4- *3) (x2 + xA) (x2 + Xr>)a
1 11

á + a +<
(x4 + X5)a(Xi + x2) (x2 + Ж3)2.7V trojúhelníku o obsahu 1 je dáno pět bodů. Dokažte,

že mezi nimi existují tři, které určují trojúhelník s obsahem
nejvýše
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3.1 Číslo 9 se dá napsat jako součet dvou po sobě jdoucích
čísel, 9 = 4 + 5; 9 se dá navíc napsat jako součet (několika)
po sobě jdoucích čísel právě dvěma způsoby: 9 = 4 + 5 = 2 +
+ 3 + 4. Zjistěte, zda existuje číslo, které se dá napsat jako
součet 1 990 po sobě jdoucích kladných čísel a zároveň se
dá napsat jako součet (aspoň dvou) po sobě jdoucích čísel
právě 1 990 způsoby.

3.2 Označme T, V, H po řadě těžiště, střed kružnice vepsa-
né a průsečík výšek daného trojúhelníku ABC, jehož žádné
dvě strany nejsou shodné. Dokažte, že úhel TVH je tupý.3.3Pro dané přirozené číslo к označme fi(k) součet dru-
hých mocnin číslic v desítkovém rozvoji čísla к a pro n ^ 1
položme

= /l(/»(*)) •

Najděte hodnotu /1991 (21 990).3.4V trojúhelníku ABC označme V střed kružnice vepsa-

né, B\ a C\ středy stran АС a AB a dále označme B2
průsečík přímek C\V, АС а C2 průsečík přímek B\V, AB.
Jak velký je úhel CAB, jsou-li obsahy trojúhelníků AB2C2
a ABC shodné?3.5V rovině s kartézskou soustavou souřadnic je dán pra-
voúhelník s vrcholy v mřížových bodech (0, 0), (m, 0), (0, n),
(m,n), kde m i n jsou lichá čísla. Pravoúhelník je rozložen
na trojúhelníky tak, že
a) každý trojúhelník rozkladu má aspoň jednu „dobrou“

stranu takovou, že výška trojúhelníku na tuto stranu má
velikost 1; přitom za dobrou stranu považujeme stranu
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ležící na přímce x = j nebo у = к, kde j či к je celé
číslo;

b) každá „špatná" strana (tj. strana trojúhelníku uvažova-
ného rozkladu, jež není „dobrá") je společnou stranou
dvou trojúhelníků rozkladu.

Dokažte, že v takovém rozkladu existují aspoň dva troj-
úhelníky, z nichž každý má dvě dobré strany.

3.6 Uvažujme bod P uvnitř pravidelného čtyřstěnu. Čtyři
roviny procházející bodem P rovnoběžně se stěnami daného
čtyřstěnu ho rozdělí na 14 částí. Označme v(P) celkový
objem těch částí, jež nejsou ani čtyřstěnem, ani rovnoběž-
nostěnem (tj. ty části, jež obsahují hranu, ale ne vrchol
daného čtyřstěnu). Určete hodnoty, kterých může funkce v

nabývat.

3.7 Dokažte, že každé přirozené číslo к > 1 má kladný celo-
číselný násobek menší než k4, který se dá napsat v desítkové
soustavě pomocí nejvýše čtyř různých číslic.

4.1 V rovině je dán konvexní mnohoúhelník К a kartézská
soustava souřadnic tak, že К kromě počátku neobsahuje
žádný mřížový bod (tj. bod s celočíselnými souřadnicemi).
Přitom pro obsah mnohoúhelníku К v jednotlivých kvad-
rantech Q;, 1 ^ i 5Š 4, určených osami, platí

1
S(K П Qx) = -5(K).

Dokažte, že potom 5(K) < 4.
4.2 V rovině je dán konvexní čtyřúhelník ABCD. Označme
A\ střed kružnice opsané trojúhelníku BCD, B\ střed kruž-
nice opsané trojúhelníku ACD, C\ střed kružnice opsané
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trojúhelníku ABD a B\ střed kružnice opsané trojúhelníku
ABC. Dokažte, že pak platí:

(a) Buď jsou všechny body A\, В i, Ci, D\ totožné, ane-
bo jsou vesměs různé a pak leží body Ai, C\ v opáč-
ných polorovinách určených přímkou B\D\ a podobně
i body В i, D\ leží v opačných polorovinách určených
přímkou A\C\. (Odtud plyne konvexita čtyřúhelníku
A\B\CiD\.)

(b) Označme analogicky A2, В2, C2, D2 středy kružnic
opsaných trojúhelníkům B\C\Di, A\C\D\, A\B\Di
a AiB\C\. Potom jsou čtyřúhelníky A2B2C2D2
a ABCD podobné.4.3Dokažte, že nerovnost

(1 + *)°
1 — s ~ 1 + s

1 - sa
<

platí pro každé kladné s ф la libovolné racionální číslo a
0 < a < 1.

4.4 Kolmý kužel je rozdělen rovinou na dvě části. Tato
rovina se dotýká kružnice na obvodu základny kužele a pro-

chází středem jeho výšky. Určete poměr objemu menší části
kužele určené danou rovinou a objemu celého kužele.

4.5 pqr jednotkových krychliček je navlečeno na nit (dírka-
mi podél tělesové úhlopříčky) tak, že dvě sousední se vždy
dotýkají alespoň vrcholy. Zjistěte, pro jaká přirozená čísla
p, q, r je možno z krychliček sestavit kvádr o rozměrech p,

q, r za předpokladu, že obě koncové krychličky se dotýkají,
resp. za předpokladu, že nemají žádný společný bod.
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4.6 Jestliže n je složené přirozené číslo a p jeho vlastní
dělitel, určete dvojkový zápis nejmenšího přirozeného čísla
N, pro něž je

(l + 2P + 2n-P)7V- 1
2"

celé číslo.

4.7 Předpokládejme, že p je kubický mnohočlen s racio-
nálními koeficienty, a označme <71, </2, <73, ••• posloupnost
racionálních čísel, v níž qn = p(qn+1) pro každé přirozené
n ^ 1. Dokažte, že existuje к ^ 1 takové, že qn+k — Qn pro
každé n ^ 1.
5.1 Na kružnici jsou dány čtyři body А, В, C, D takové,
že tětivy AB, CD jsou různoběžné. Jestliže К a H jsou
body téže roviny, pro něž jsou úhly KAB, KCD, HBA
a HDC všechny pravé, pak přímka KH prochází středem
dané kružnice a zároveň i průsečíkem přímek AD, BC (po-
kud existuje). Dokažte.
5.2 V rovině jsou dány dvě kružnice, jež se vně dotýkají
a mají poloměry r a R. Uvažujme všechny možné lichoběž-
niky ABCD, jež jsou oběma kružnicím opsány (tj. každá
z daných kružnic se dotýká obou ramen a jedné ze zákla-
den uvažovaného lichoběžníku). Najděte nejmenší možnou
délku ramene takového lichoběžníku.

5.3 Určete nejmenší číslo tvaru |36fc — 5*| a nejmenší číslo
tvaru 153* — 37ř|, kde к a / jsou přirozená čísla.
5.4 V rovině je dáno n jednotkových vektorů, jejichž sou-
čtem je nulový vektor. Dokažte, že vektory je možno uspo-
řádat tak, aby pro každé к, 1 к n, byla velikost součtu
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prvních к vektorů nejvýše rovna 3. Pokuste se uvedený
odhad zlepšit, případně najít analogický odhad za předpo-
kladu, že každý z daných vektorů má velikost nejvýše rovnu
1 (a dohromady dávají nulový součet).
5.5 V rovině je dán čtverec ABCD a na jeho stranách AB,
BC jsou dány body P, Q, přičemž \BP\ = \BQ\. Označme
H patu kolmice spuštěné z bodu В na úsečku PC. Dokažte,
že úhel DHQ je pravý.

5.6 Je-li délka každé ze stran konvexního šestiúhelníku větší
než 1, musí být některá z jeho úhlopříček větší než 2?
A jsou-li úhlopříčky AD, BE a CF konvexního šestiúhelní-
ku ABCDEF větší než 2, je délka aspoň jedné jeho strany
větší než 1?

5.7 Na kružnici je zapsáno n (n ^ 3) čísel rovných +1 nebo
— 1. Jaký je nejmenší počet dotazů, pomocí nichž lze zjistit
součin všech n čísel, jestliže jednotlivá čísla jsou zakryta
a pomocí jedné otázky je možno zjistit, jaký je
a) součin čísel na libovolných třech místech;
b) součin čísel na třech po sobě jdoucích místech?

Řešení úloh korespondenčního semináře

1.1 Stačí dokázat, že (globální) minimum funkce / je
v bodě —b. To vyplývá z rozkladu

f(x) = x2 + 2bx -f c = (x + 6)2 + c — 62

kde c — 62 je konstanta a (x + b)2 ^ 0 s rovností právě pro
x = —b.
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Protože —b je celé číslo, musí být f(—b) ^ 0. Je-li (glo-
bální) minimum nezáporné, jsou i všechny ostatní funkční
hodnoty nezáporné na celém definičním oboru, tedy pro
všechna reálná čísla včetně racionálních.

1.2 Asi nejjednodušší je ukázat, že an = f%, kde (/„)
je známá Fibonacciova posloupnost, která je definována
vztahy

/o — 0) /1 — 1) /n+2 — fn+1 + fn,
a všechny její členy jsou tudíž celá čísla. Důkaz provedeme
indukcí. Pro n = 0, 1, 2 vztah an = platí. Předpokládej-
me, že platí pro každé n ^ к (k žl 2). Potom

ajfc + l = 2(ajfc + ajfc_i) - Gtjfc_2 =

= Vl+Vl-l-ft-2 =

— fk + /l-i + 2ДД-1 + fl + fk
- :2/fc/fc-i - fl_2 =

= (Л + Л-l)2 + (fk — fk-1)2 — fk-2 —

— /ifc + 1 + /jfc_2 - /jfc-2 —

= /*+ !■

Dokazovaný vztah platí tedy i pro n = к + 1.

-i ~

1.3 Budeme využívat známé nerovnosti

la + 6| ^ \a\ + |6|, a ^ |a|, -a ^ |a|. (1)
Označme f(x) = \/l — x2 — ax — b a předpokládejme, že pro
každé x £ (0,1) platí

1
| \/l — x2 — -6|Š-(n/2-1). (2)ax
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Pro krajní hodnoty x = 0 a x = 1 pak dostáváme

1

|a + 6|g i(^2-l).
(3)

(4)

Jejich sečtením vyjde

|a+l|^|l-6|+|a + 6|g%/2-l<l,
odkud a < 0.

Hledejme extrémy funkce f. Derivováním máme

—2x
/'(*) = — a — —

— a.

2\/l - x2 \/\ — x2

Položíme-li f'(x) = 0, dostaneme

|a|M =
\/l + a2

což nás zajímá pro x > 0 a a < 0. Z (2) po dosazení x tak
máme

|4/l + a2_(,|g '(V5-1).
Sečtením (5) a (3) potom vyjde

|\/l + a2 - l| <í | \/l -h a2 — 6| + |6- 1| ^ V2- 1

odkud plyne y/T+~a? ^ \/2, tedy |a| ^ 1.
Podobně sečtením (4) а (5) dostaneme

| \/l + a2 + a| й V2 — 1.

(5)
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Protože \J\ + a2 > |a|, je vnitřek absolutní hodnoty kladný,
tedy

\/l + a2 ^ \/2 — 1 — a

po umocnění
1 + a2 < 2 + 1 + a2 - 2\/2 - 2a^2 + 2 a,

tedy a 5Í —1. To spolu s předcházející podmínkou |a| й 1
dává a = — 1.

'

Dosazením do (5) dostaneme |\/2 — 6| ^ | (\/2 — l), což
znamená, že

y/2 1
2 + !) =

^ 6
- 2

Podobně ze (4) plyne 6 — 1 ^ | (\/2 — l), tedy

teda
2’

6ži(\/2 + l).
Celkem tak máme b = ^ (\/2 + l).

Na závěr se ještě přesvědčíme, že pro a = — 1,6 =
= ^ (л/2+ l) a pro každé ar E (0,1) platí (2) (to není vůbec
samozřejmé).

Protože

(x - = i (2x2 - 2л/2х + 1)0 <

1 — x2 š x2 — 2\Í2x + 2,

je

\J\ — x2 5Í л/2 — x,

+ I(V2-1) ^ | (л/2 - 1),
tedy
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bš\(V2-l)
pro a = — 1, b = I (\/2 -f l). Pro x G (0,1) dále platí

1 — x ^ \J 1 — x2,

\f\ — x2 — ax —

i (y/2- l) ^ \/l- x2 + x - 1 - i (V2 - l),

i (V2- 1) g ^1 - x2 -

tedy

ax — b

pro a = —1, 6 = i (л/2 + 1). Tím je platnost (2) ověřena.

1.4 1. řešení. Rozdělme tabulku na čty-
ři čtverce 995 x 995, které označíme A,
В, C, D (obr. 26). Pro X 6 {A,B,C,D}
označme bx (resp. cx) počet bílých (resp.
černých) čtverečků ve čtverci X. Vzhle-
dem к požadované středové antisymetrii
je bA = C£>.

Má-li každý řádek či sloupec obsahovat stejně bílých i čer-
ných čtverečků, musí být

t>A + Ьв = 9952 а Ьв + Ьв = 9952.
Je tedy bA = 9952 — Ьв = Ьв a bA = св. Odtud plyne, že
9952 = св + Ьв — 2bA, což je spor, neboť číslo 9952 je liché.
Obarvení požadovaných vlastností tedy neexistuje.

2. řešení. Zachovejme rozdělení na čtverce А, В, C, D.
Protože bA -\- cA = 9952 je liché, je bA ф cA. Bez újmy na
obecnosti můžeme předpokládat, že bA > cA, takže Ьв <
< cb-Z rovnosti bA-\-bs = ca-\-cb plyne nerovnost Ьв < св■
Pak ale Ьв + bв < св + св, což je spor.
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3. řešení. Políčko агу v tabulce nazveme vodorovné, má-li
stejnou barvu jako pole аг-д 99i_j, a nazveme je svislé, pokud
má stejnou barvu jako pole ai99i_;j. Z vlastnosti tabulky
plyne, že každé políčko je buď vodorovné, nebo svislé (ale
nikdy obojí najednou — dokažte!). Každý řádek obsahuje
sudý počet vodorovných bílých, každý sloupec obsahuje su-

dý počet svislých bílých políček. Celkem tedy je v tabulce
2p-1 990 vodorovných bílých a 2q • 1 990 svislých bílých polí.
Celkový počet bílých políček |19902 by tak byl dělitelný
čtyřmi, což není možné.

1.5 (podle P. Vrbackého). Označme к kružnici opsanou
trojúhelníku ABC, l kružnici opsanou trojúhelníku DFC
a m kružnici opsanou trojúhelníku EBD. Prozatím před-
pokládejme, že existuje průsečík X ф C kružnic к a /, který
leží v polorovině CDF (obr. 27).

Označme а = \ <$ABX\. Pak \ <$ACX\ = \ <FCX\ = a

(čtyřúhelník ABCX je tětivový) a \<$FDX\ = \<$FCX\ =
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= a (FCDX je tětivový). To však znamená, že čtyřúhelník
EBDX je tětivový, tj. X leží též na kružnici m. (Tento
důkaz platí nezávisle na pořadí bodů F a X na kružnici /
— je jasné proč?!)

Předpokládejme teď, že průsečík X leží v polorovině
opačné к CDF (obr. 28). Označíme-li a = \<$ABX\, je
opět \<$ACX\ = \<$FCX\ = a, a proto \ <$FDX\ = л -
— | <$FCX\ = я—cm (FCDX je tětivový). Odtud dostaneme,
že EBDX je tětivový, tedy bod X leží i na kružnici m.

Pokud X = D, je tvrzení triviální. Vynechali jsme případ,
kdy к a / mají jediný společný bod C (obr. 29). Nechť /3 =
= \ <$ABC\. Je-li t společná tečna kružnic kal, zvolme na
ní bod P v polorovině ACD. Potom | < ACP\ = /3 (tzv. úse-
kový úhel odpovídající obvodovému úhlu /? na kružnici к).
Ъ toho pro kružnici / plyne, že \<$FDC\ = я — a, a proto
čtyřúhelník EBCD je tětivový, tj. bod C leží na m.

Poznámky. Diskusi lze podstatně zjednodušit, budeme-li
používat orientovaný úhel dvou přímek: orientovaným
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úhlem (p, q) dvou různoběžek p, q (v tomto pořadí!) rozu-
mime ten úhel, o který se musí přímka p otočit v kladném
směru kolem společného průsečíku, aby splynula s přím-
kou q (obr. 30). Snadno potom zjistíme, že platí následující
poněkud kompaktnější verze věty o obvodových úhlech:
Bod X £ {A,B,C} leží na kružnici opsané trojúhelníku
ABC, právě když (AX, XC) = (AB, BC).

V dané situaci můžeme předpokládat, že druhý průse-
čík X ф C kružnic к a / je různý od bodů B, D (ji-
пак к = l a tvrzení je triviální). Protože body A, B,
С, X leží na kružnici k, je {AB,BX) = (AC,CX) =
= (FC, CX), a podobně pro body C, F, X, D na kružnici /
dostaneme (FC,CX) = {FD, DX) = (ED,DX). Je tedy
(EB,BX) — (AB,BX) = (ED, DX), což znamená, že
body B, D, E, X leží na kružnici.

1.6 Označme Gn{u\,..
un. Pak platí

un) geometrický průměr čísel* ?

«1, • * •)

Gn{u\ + i>i,.. «n d- vn) ^ Gn (ui, . . Un)F Gn{vi,..., vn)• J • 1

(k důkazu tohoto tvrzení stačí sečíst nerovnosti me-
zi aritmetickým a geometrickým průměrem pro n-tice
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Ц» \ я ( «1
U„+Un / ^ VUi+^i ’ - - ц ■)), takže můžemef__«iV tii 4-1+wi ’ • •

• ) • J

psát

Gn(f(xi), . ..,f(xn)) =

= Gn(axl + bxi + c,..., azj; + 6xn + c) ^
^ Gn(axJ,..., axjj) + Gn(bxi,bxn) +

+ Gn(c,... ,c) =

= a(Gn(xi,..
= a + 6 + c = 1

Xn))2 + bGn(xi,.. xn) + c =* > * >

neboť Gn(a:i,. .

vane tvrzení.

Jiný postup. Levou stranu nerovnosti, tj. součin

xn) = 1. Umocněním dostaneme požado-* J

(axf + bxi + c)... (ax2n + bxn + c),

roznásobíme a sloučíme členy, v nichž vystupují a, b, c se

stejnou mocninou. Pravou stranu požadované nerovnosti
lze napsat ve tvaru 1 = (a -f b -j- c)n, což také roznáso-
bíme. Pomocí nerovnosti mezi aritmetickým a geometrie-
kým průměrem ukážeme, že koeficient u členu at6Jcri-l_JI
na levé straně nerovnosti je nejméně roven odpovídajícímu
koeficientu na straně pravé. Nedostatkem tohoto postupu je
náročnost zápisu řešení. (Z toho důvodu uvádíme jen hlavní
myšlenku důkazu.)

Tvrzení lze také dokázat matematickou indukcí.
Pro n = 1 je tvrzení triviální. Předpokládejme, že tvrzení

platí pro n = к, a dokažme je pro n = к + 1. Bez újmy na
obecnosti můžeme předpokládat, že x\ ^ z 2 ^ ^ Xk + i-
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Protože součin čísel x\,..., xk+i je roven jedné, je zřej-
mě x\ ^ 1, Xk+i ^ 1. Ukažme nyní, že f(xi)f(xk+i) ^
^ /(xi®fc+i). Jednoduchou úpravou máme

/(a?i)/(zjfc+i) - f{x\xk+1) =

= ([ax\ + bx^ -f c)(ax2k+1 + bxk+l + c) —
- (a + 6 + c)(ax\xk+l + Ьх\хк+\ + c) =

= abxixk+1(l - xi)(xjk+i - 1) + ac(l - ®i)(®*+1 - 1) +
+ 6c(l - a?i)(ar*+i - 1) ^ 0,

takže

f(x i) • •. f(xk)f(xk+1) /(xi®jfc+i)/(®2) • ••/(«*) ^ 1

dle indukčního předpokladu.
Na závěr uveďme ještě náznak řešení (J. Kolář, J. Men-

šik), které využívá těch vlastností funkce /, které jsou pro
platnost nerovnosti podstatné (nerovnost platí pro mnohem
obecnější funkce). Z Cauchyovy nerovnosti pro kladná čísla
®i, dostaneme

((\faxi)2 + (y/by/i7)2 + (\/č)2) •
• ((\Jax2)2 + (\fb\fx2)2 + Ш2) >

2
d. (axix2 + by/xix2 + c)

neboli

f(xi)f{x2) ^ (/(v/®l®2))2-
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Odtud snadno dostaneme (přidáme-li к číslům Xi několik
jedniček, můžeme předpokládat, že n je tvaru n = 2k pro
к ^ 2)

/(*1)-••/(*«) ^
^ (/(%/*i*2))2 • • • (f(Vxn-i*n))2 ^
^ (/(v^*l*2*3*4))4 • ••

• • • (/(^*n-3^n-2*n-l*n))4 ^ ^
^ (/( = (/(I))” = I-

\

1.7 (podle S. Kasala). Krychli označíme ABCDEFGH
(obr. 31). Odřízneme z ní čtyři rohy, a to tak, že roviny řezu

jsou BDE, BDG, EGB, EGD. Každý odříznutý čtyřstěn
lze vyplnit požadovanými trojicemi — důkaz je zřejmý
z náčrtků na obr. 32. Uprostřed zbývá čtyřstěn BDEG\
dokažme, že jej lze vyplnit „hvězdičkami14 7^ sestavenými
ze dvou trojic (se společným vrcholem). Všimněme si, že
jeho vodorovné řezy (tj. ty rovnoběžné s podstavou ABCD)
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vypadají postupně tak jako na obr. 33. V každé této „vr-
stvě“ lze hrany jednotkových krychliček zjevně rozdělit do
„křížků“ ~j~. Doplníme-li „křížky“ na „hvězdičky'1, lze na-
blednout (představíme-li si dvě vrstvy nad sebou), že tím
vyčerpáme přesně všechny hrany ležící ve čtyřstěnu BDEG.
Tím je důkaz hotov — krychli jsme rozložili požadovaným
způsobem.

I
I

L В

Obr. 32 Obr. 33

2. řešeni (dle M. Konečného). Danou krychli umístíme do
kartézské souřadné soustavy tak, aby počátek byl v někte-
rém vrcholu krychle a souřadnicové osy obsahovaly některé
tři hrany krychle. Body (a, b, c), kde a, b, c 6 {0,1,..., 100},
označíme Ка,ь,с a nazveme je uzly. Množiny uzlů tvaru

Dx,y = {A’ : г€ {0,1,...,100}} (1)Х,У,2 ■

nazveme řadami ve směru z; podobně definujeme řady ve
směru x a y. Konečně označme G = {Ka,b,c■ a + b +
-f c je dělitelné 101}.

Všimněme si, že v každé řadě leží právě jeden uzel z mno-

žiny G. Skutečně, např. v řadě (1) probíhá součet x + у + г
množinu {x + y, x + y-\-1,..., x + y+100}, což je 101 po sobě
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jdoucích přirozených čísel; je tedy mezi nimi právě jedno,
které je dělitelné 101.

Uvažujme nyní uzel К £ G. V řadě ve směru г, která bod
К obsahuje, leží podle posledního odstavce právě jeden uzel
patřící do G — označme ho K'; zřejmě К' ф К. Přiřaďme
nyní bodu К jednotkovou hranu ve směru osy z, která z něj
vychází, a to ve směru ke K1. Podobně přiřadíme hrany ve
směrech os у a x. Tím jsme každému uzlu К G přiřadili
trojici navzájem kolmých jednotkových hran se společným
vrcholem К. Dokážeme, že tyto trojice tvoří kýžený rozklad
dané drátěné krychle. Předně je jasné, že každá hrana je
použita nejvýše jednou: kdyby jednotková hrana AB byla
přiřazena uzlu A i uzlu B, musel by někde v jejím vnitřku
ležet bod z G, což není možné. Navíc není žádná hrana AB
vynechána: právě v jednom směru AB nebo BA najdeme
uzel L G G; je-li nyní např. A dále od L než В (případně
může být L = B), pak byla hrana přiřazena bodu A. Se-
strojený rozklad krychle na trojice jednotkových hran tedy
splňuje podmínky ze zadání.

Na závěr poznamenejme, že oba způsoby lze použít i na

krychli n x n x n; druhý z nich funguje dokonce i pro
vícerozměrné krychle.

2.1 (podle J. Koláře). Využijeme toho, že kružnice к i

a &2 (obr. 34) jsou stejnolehlé podle středu A. Můžeme tedy
napsat

\AX\ \AB\
\AB\ \AY\

takže

\AB\2 = \AX\\AY\. (1)
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Pro mocnosti bodu A ke kružnicím k\ a k^ platí

\AX\\AB\ = |ЛС|2,
\AB\\AY\ = \AD\2,

vynásobením dostaneme

\AX\\AY\\AB\2 = \AC\2\AD\2
dosazením z (1) po odmocnění vyjde

\AB\2 = \AC\\AD\. (2)

Body A, C, D jsou kolineární a A leží vně kružnice /.
Protože mocnost bodu A ke kružnici / je (podle (2)) rovna

\AB\2, musí být AB tečna kružnice /. (Kdyby nebyla, exi-
stoval by druhý průsečík X přímky AB a kružnice /, tedy
\AX\ ф \AB\, a pomocí mocnosti dostaneme |ACj|j4D| =
= \AB\\AX\ ф \AB\2 = \AC\\AD\, což je spor.)

Kružnice / je opsaná trojúhelníku BCD a přímka AB
je tedy její tečnou. Protože \AB\ = \AB'\, platí vztah (2),
a tedy i dokazované tvrzení platí i pro body B1, C, D a díky
symetrii i pro zbylé kombinace C\ D', В a C, D', B'.
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Jiný způsob řešení využívá obvodových a úsekových úhlů
(M. Konečný, obr. 35). Označme a = \<$CBA\ a X obraz
bodu В ve stejnolehlosti se středem A, která převádí menší
z obou kružnic na větší. Stejnolehlost zachovává velikost
úhlů, tedy \<$DXA\ = a.

Úsekový úhel CDB oblouku DB větší kružnice má také
velikost a. Je tedy \<$CBA\ = \ <$CDB\, to ale znamená,
že CBA je úsekový úhel к oblouku CB kružnice opsané
trojúhelníku BCD a přímka AB je tečna této kružnice
(postup pro druhý průsečík B' vepsaných kružnic je stejný).

2.2 Nejprve dané číslo rozložíme na součin

32n + l _ 22n + l _ gn _ (3n _ 2”)(3" + 1 + 2n + 1).

Pro n = 1 je výraz roven 13, což je prvočíslo. (Tento krok
mnozí z vás zapomněli udělat a soustředili se pouze na

případ n > 1 — znamenalo to ztrátu půl bodu.)
Pro n > 1 jsou výrazy v obou závorkách větší než 1

(v druhé závorce je to zřejmé a výraz v první závorce lze
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n-1
-1-г

pro п ^ 2 napsat jako 3” — 2” = ^ 3*2n
součin je tedy složené číslo.

> 1), jejich
i=o

2.3 (M. Kordoš). Označme AB a CD ty mimoběžné hra-
ny, které mají nej menší vzdálenost d (obr. 36) a promítněme
čtyřstěn do roviny kolmé na CD (obr. 37).

a B'A
Obr. 37

Výšky v trojúhelníku A'B'C jsou obrazy příčky mimo-
běžek a dvou tělesových výšek a zachovávají jejich skutečné
velikosti d, hi a h^. Označme \A'B'\ — a', |у!'С'| = a\,

\B'C'\ = (Z2 délky jeho stran a předpokládejme, že

2d^hu 2d^h2. (1)

Obsah P trojúhelníku můžeme vyjádřit třemi způsoby
jako

1 1 1
-a\h\ — -aih? — - a! d.

Po dosazení z nerovností (1) dostaneme

2ai ^ o!, 2d2 o!,

P =

153



takže

ах + a2 ^ o!.
To je ale spor s trojúhelníkovou nerovností.

Proto alespoň jedna z výšek h\, h2 je menší než 2d, tedy
i nejmenší výška h je menší než 2d.

Jiné řešení (Z. Pezlar). Nechť nejkratší vzdálenost mimo-
běžných hran je příčka mimoběžek AB a, CD. Její průsečíky
s přímkami AB a CD označme po řadě A\, C\ (obr. 37).
Předpokládejme, že

\сс,\г\ос,\ (2)

(sem lze začlenit i případy, kdy bod C\ leží mimo úsečku CD
za bodem D). Uvažujme rovinu g rovnoběžnou se stěnou
ABC a procházející středem tělesové výšky z vrcholu D na

stěnu ABC (označme ji ho)- Vzdálenost rovin ABC a g je
tedy Bod C\ leží (podle (2)) v poloprostoru určeném
g a bodem D. Proto je nutně

1
d = \A,C,\ > -hD

čímž je důkaz hotov.
Poznámka. Nerovnost 2d < h dostaneme v 1. řešení přímo

z následující úvahy: Je-li d vzdálenost hran AB, CD, výška
C'X1 trojúhelníku A'B'C na stranu A!B' má velikost d
(další dvě výšky jsou tělesovými výškami daného čtyřstěnu),
a je-li např. |vťXi| < \B'X\\, je také (obr. 38) |^4'У"| <
< 2d a v pravoúhlém trojúhelníku A!B'Y je zřejmě výška
z vrcholu A! menší než odvěsna A'Y.
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В'
А Xi

Obr. 38

2.4 Největší nejasnosti se týkaly pojmu uzavřená lomená
čára. V případě šestiúhelníku je na obr. 39 lomená čára, na
obr. 40 uzavřená lomená čára, zatímco útvar na obr. 41 není
lomená čára. Ani útvar na obr. 42 není lomená čára, ale
jedna jeho podmnožina je uzavřená lomená čára. Z obrázků
je také patrno, že uzavřená lomená čára nemusí spojovat
všechny vrcholy n-úhelníku.

Obr. 40

Obr. 42

Protože většina řešitelů ovládá terminologii teorie gra-

155



fů, přeformulujeme úlohu do přirozenější podoby. Nejprve
stručně uvedeme příslušné pojmy: strany a úhlopříčky kon-
vexního rc-úhelníku se nazývají hrany úplného grafu o n

vrcholech; uzavřená lomená čára složená z hran grafu se

nazývá kružnice; souvislý graf bez kružnic se nazývá strom;
graf, jehož každá komponenta souvislosti je strom, se nazývá
les.

Úloha tedy zní: Pro každé к určete maximální n tak, že
hrany úplného grafu o n vrcholech lze obarvit к barvami
tak, že každý graf určený hranami stejné barvy je les.

Řešení. Nejprve dokážeme jednoduché lemma.

Lemma. Každý les o m vrcholech má nejvýše m — 1 hran.
(Toto je notoricky známé tvrzení a víceméně stačí odkaz

na literaturu. Většina půlbodových ztrát je důsledkem chyb
v důkazu tohoto lemmatu.)

Důkaz. Indukcí podle m. Pro m — 1 tvrzení zřejmě platí.
Předpokládejme, že tvrzení platí pro nějaké m ^ 1, a uvá-

žujme les o m + 1 vrcholech. Každý les obsahuje vrchol
stupně menšího než 2 — v opačném případě uvažme cestu
V0V1V2 -.. definovanou rekurzivně tak, že Vk+i je vrchol
spojený hranou s^ a různý od vjb-i- Protože počet vrcholů
je konečný, existují indexy i < j tak, že Vj = ví a V{, fj+i,
..., Vj = ví je kružnice.

Nechť um+i je tedy vrchol stupně menšího než 2. Graf
vzniklý odstraněním tohoto vrcholu je les o m vrcholech
a podle indukčního předpokladu má nejvýše m — 1 hran,
uvažovaný graf o m + 1 vrcholech má nejvýše m — 1 + 1 =
= m = (m + 1) — 1 hran.

Předpokládejme, že požadované obarvení existuje. Podle
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uvedeného lemmatu je každou barvou obarveno nejvýše
n — 1 hran, celkem tedy graf obsahuje nejvýše k(n — 1)
obarvených hran. Protože úplný graf má (2) hran (a každá
je obarvena), je

(2)
odkud plyne nerovnost

n < 2k.

Dokážeme matematickou indukcí, že pro n — 2k požado-
vane obarvení existuje. Pro к = 1 obarvíme snadno jedinou
hranu barvou b\. Předpokládejme tedy, že pro nějaké к ^ 1
a graf s n = 2k vrcholy obarvení existuje, a uvažujme graf
sn = 2fc-f2 vrcholy. Vezměme jeho podgraf s vrcholy vi,...,
V21b obarvený к barvami tak, že každá barva indukuje les.
Uvažme dva nové vrcholy V2k+i, ť2ifc+2 a hrany incidentní
s těmito vrcholy obarvěme takto:

i€{1,2,...,*}
ÍG{1,2,•••,*}

hranu

hranu

barvou b{
barvou 6,

ViV21c + \

Vk+iVlk+l

hrany vk+iV2k+i, ViV2k+2, i G {1,2,..., к}, a hranu
V2k + lV2k+2 barvou 6jfe + i.

Je snadné se přesvědčit, že v barvách 61, ..., bk nevznikly
kružnice a podobně barva bk+i indukuje strom.

Někteří řešitelé na tento důležitý krok zapomněli. Větši-
nou uváděli konstrukce, ze kterých nebylo zcela patrno, že
barvy jsou použity disjunktně.
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Jiné řešení. Dokážeme jen, že pro n = 2k požadované
obarvení existuje.

Označme A\, A2 ..Аы vrcholy pravidelného 2fc-úhel-
niku a obarvěme jednou barvou lomenou čáru
АхАъкАчАък-х ■ ■ ■ Ak Ak+i ■ Další barvou obarvíme lome-
nou čáru, kterou dostaneme otočením kolem středu daného
2n-úhelníku o úhel j, atd.

Není těžké se přesvědčit, že takto bude každá strana či
úhlopříčka obarvena právě jednou z к barev a že nevznikne
žádná jednobarevná uzavřená lomená čára.

2.5 Leží-li všechny body na jedné přímce (vektory jsou
rovnoběžné), zvolíme za Aq krajní bod a není co dokazovat.
V jiném případě uspořádáme vektory podle velikosti orien-
tovaného úhlu, který svírají s vektorem 01, čímž dostaneme
konvexní m-úhelník pro m ^ n, protože dva po sobě jdoucí
vektory musí svírat úhel menší než 180°, jinak by součet
všech vektorů nemohl být nulový.

V tomto konvexním m-úhelníku vyberme tři vrcholy A,
В, C tak, aby obsah tohoto trojúhelníku byl mezi všemi ta-
kovými trojúhelníky maximální. Je-li KLM trojúhelník ta-
kový, že AB, АС, BC jsou jeho střední příčky, pak všechny
vrcholy m-úhelníku leží uvnitř trojúhelníku KLM (obr. 43),
jinak by ABC nebyl maximální, a navíc žádny z vrcholů ne-
leží uvnitř ABC. Odtud plyne, že pokud vezmeme postupně

• vektory ležící mezi AB, potom mezi CA a nakoniec mezi
BC, dosáhneme tímto přeuspořádáním toho, že všechny bo-
dy leží v trojúhelníku ABM podobném trojúhelníku ABC.
Aspoň jeden jeho úhel je nejvýše 60°, a volbou označení Ao
pro tento vrchol úspěšně končíme.
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2.6 Nejprve dokažme pomocné tvrzení. Označme fd(x) —

= x~a — (ж -f d)~a, kde x, a, d > 0. Potom funkce fd je
klesající. Skutečně, je

9(x)

1 1
fd{x) = — ' I 1 -

(1 + í)°xa

1
přitom jak —, tak i g(x) jsou klesající a navíc kladné. Avšak

xa

součin kladných klesajících funkcí je opět klesající funkce,
takže i fd je klesající.

Nyní vlastní řešení úlohy. Označme

F(xi, ar2, *3, x4, xs) =

= (x4 + x5)~a + (x2 + X3)_a + (xi -f x2)~a -

- (Xí + X3)~a - (x2 + x4)~a - (x2 + x5)~a;

máme tedy dokázat, že platí F(xi, x2, x3, x4, x3) > 0. Po-
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ložme na chvíli d = x3 — £2 > 0. Potom

F(xU X2j X3, ®4> *^5) F(x2 , X2, *^3> ®4> ®б) —

= ((®1 + *2)“" - (^1 + *з)"а) -

- ((®2 + *2)"“ - {x2 + £3)“°) =
= ((*1 + X2)~a - (xi + X2 + d)~a) -

- ((^2 + Z2)-a - (x2 + x2 + d)~a) =
= /d(a?i + X2) - fd{x2 + X2),

což je ale podle pomocného tvrzení kladné číslo (jelikož
*1 < £2); je tedy

F(xi,x2, x3, x4> x5) > ^(х2, x2, x3, x4, x5).

Avšak

F(x2,X2,X3,X4,X5) =

= (ж4 + X5)~a + {X2 + X2)-Q -

- (x2 + x4)~a - (x2 + x5)~a =

= ((*2 + X2)~° - (x2 + *5)”“) -
- ((*4 + X2)~a - (*4 + X5)“a) =

= fh(x2 + X2) - fh(x4 + x2),

kde h — x5 — X2 >0, takže podle pomocného tvrzení je
F(x2, x2, x3, x4, X5) > 0. Tím je důkaz hotov.

2.7 (M. Konečný). Na úvod poznamenejme, že tři body
na úsečce považujeme za trojúhelník s nulovým obsahem —

jinak by tvrzení úlohy neplatilo. Dokažme nejprve lemma.
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Lemma. Leží-li v rovnoběžníku KLMN trojúhelník
XYZ, platí pro jejich obsahy nerovnost S(XYZ) ^
^ \S{KLMN).

Důkaz. Označme x, y, z vzdálenosti bodů X, Y, Z od
přímky KL\ bez újmy na obecnosti lze předpokládat, že
x ^ у ^ z (obr. 44). Bodem Y veďme rovnoběžku s KL
a označme W její průsečík s přímkou XZ. Potom

S(XYZ) = S(XYW) + S(ZYW) =

= \\WY\(y-x)+l-\WY\(z-y) =
= \\WY\(z - i) g i \KL\v = i S(KLMN).

N M

к
Obr. 44

Nyní к samotné úloze. Daný trojúhelník rozdělme střed-
nimi příčkami na čtyři trojúhelníky — nazvěme je To, Ti,
T2, T3 podle obr. 45. Pokud v To leží některé tři z daných
pěti bodů, určují trojúhelník s obsahem nejvýše 5(To) =
= \ a jsme hotovi. Leží-li v To právě dva z daných bodů,
leží např. v Ti jeden ze zbývajících tří; díky tomu v rov-
noběžníku To U Ti leží tři z daných bodů a dle lemmatu
trojúhelník jimi určený má obsah nejvýše | 5(To U Ti) =
= Pokud v Tq je právě jeden daný bod, musí podle
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Dirichletova principu v některém Ti, i £ {1,2,3}, ležet
aspoň dva ze čtyř zbývajících — nechť je to v Ti; pak opět
v rovnoběžníku To UTi leží tři z daných bodů a trojúhelník
jimi určený má opět obsah nejvýše |.

Zbývá případ, kdy v To není žádný z daných bodů. Leží-li
pak v některém z trojúhelníků Ti, T2, T3 aspoň tři dané
body, určují opět trojúhelník o obsahu nejvýše S(Ti) = |
a jsme hotovi.

Stačí tedy už jen vyšetřit případ, kdy v To není žádný
bod a ve zbylých třech trojúhelnících T, jsou po řadě 2, 2
a 1 z daných bodů. Nechť např. v T3 jsou dva — nazvěme
je К, L (obr. 46). Veďme bodem R rovnoběžku p s přímkou
KL; ta zřejmě může rozetínat nejvýše jeden z trojúhelníků
Ti, T2 — nechť např. nerozetíná Ti. V Ti leží aspoň jeden
z daných bodů — označme ho M. Potom ale M leží v pásu
mezi rovnoběžkami pa, КL, a jeho vzdálenost od KL je tedy
nejvýše rovna vzdálenosti bodu R od přímky KL. Proto

S(KLM) <; S(KLR).
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Ale podle lemmatu S(KLR) ^ |5(Тз U To) = Tím je
důkaz hotov.

3.1 Součet n za sebou jdoucích čísel začínajících p je

n(n - 1)
p + (p + 1) + ... + (p + n - 1) = np + 2

(1)n(n + 2p — 1)
2

takže součet 1 990 za sebou jdoucích čísel je

995(1 989 + 2p). (2)

Hledané číslo C je proto tohoto tvaru.
Podle (1) pro každou dvojici А, В, A < B, dělitelů čísla

2C = AB (vyjma dvojice 1, 2C) existuje rozklad na přísluš-
ný počet sčítanců, kterých je A anebo |A podle parity A
(a obráceně). Proto 2C musí mít 2(1 990+ 1) dělitelů (z (2)
víme, že C je liché).

Je-li D = pl\Pl2 ■ ■-Pln rozklad čísla D na prvočinitele,
je počet jeho dělitelů (z’i + l)(z2 + 2)... (in + 1). Protože
2 • 1 991 = 211- 181, má číslo 2C tři prvočinitele a ty musí
mít exponenty 1, 10, 180.

Z (2) vidíme, že C je liché a má dělitele 5 a 199, protože
995 = 5 • 199. Proto exponent u 2 v čísle 2C je 1 a pro C
zůstávají možnosti C\ = 510 • 199180 a Ci = 5180 • 19910.

3.2 Nejprve dokážeme lemma.
Lemma. Jestliže v trojúhelníku ABC platí a > (3, pak

bod Hc leží na polopřímce VcA a bod Tc na polopřímce
VCB.
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Důkaz. Jestliže a < 90°, pak

| <HcCA\ = 90° - a < 90° -
l = \4VcCA\.

Tedy Hc leží na polopřímce VcA (pro a ^ 90° je to
zřejmé). Označme A' bod souměrný s vrcholem A podle
přímky CVc■ Bod A' leží uvnitř úsečky BC. Trojúhelníky
AVcC a A'VcC mají stejný obsah, který je menší než obsah
trojúhelníku VcBC. Je tedy |AVc| < |VcJ5| a odtud plyne,
že Tc leží na polopřímce VqB.

Bez újmy na obecnosti předpokládejme, že platí a > /? >
> 7. Nechť trojúhelník ABC je ostroúhlý, tedy a < 90°
(obr. 47). Z lemmatu plyne, že bod H (stejně jako Hc) leží
v polorovině CVc A a bod H (stejně jako Ha) leží v polo-
rovině AVaB. Bod H tedy leží uvnitř trojúhelníku AVVc■
Podobně z lemmatu plyne, že bod T leží v trojúhelníku
WaC. Úhel TVH je tedy větší než úhel CVA. A protože

14CVA\ = 180° - f - I = 90° + f.
je úhel TVH tupý.

Nyní předpokládejme, že trojúhelník ABC je tupoúhlý
nebo pravoúhlý, tedy a ^ 90°. Označme S průsečík úsečky
CTc s úsečkou АНa- Z lemmatu vyplývá, že bod V leží
v trojúhelníku TSA (obr. 48). Platí tedy

\<TVH\ > I<$TSH\ = |<C5A| > \ <CHaA\ = 90°.

Opět jsme dokázali, že úhel TVH je tupý.
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л А VcTc
Obr. 48

Нс Тс
Obr. 47

В

Jiné řešeni. Označme O střed kružnice opsané troj úhel-
niku ABC a E střed úsečky OH. Z vlastností význačných
bodů trojúhelníku plyne, že je OH = ЗОТ, přičemž po-
dle Eulerova vzorce (viz např. Úlohy MMO, str. 83, nebo
ŠMM, sv. 57 Nerovnosti v trojúhelníku) platí |0l/j2 = R? —
— 2rR, kde r a R jsou poloměry kružnice vepsané a opsané,
a | VE\ = \R — r. Odtud plyne, že

‘IVE- 1/0
V H = ‘2V E — VO, VT =

3

takže

1 ?г(Я-2г) < 0.
O

VH ■ VT = - (AVE - VE - V O VO) =

Proto je cos | <$TVH\ < 0 a úhel TVH je tupý.

3.3 Při překladu této úlohy z anglického originálu došlo
bohužel к chybě. Místo „součet druhých mocnin číslic“ mělo
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být „druhá mocnina součtu číslic“. Tím se středně obtížná
úloha změnila v problém, jehož korektní matematické řešení
nikdo nenalezl.

Většina řešitelů si pomohla programem na počítači,
což jaksi do matematického semináře nepatří (bílou vrá-
nou byl A. Kuběna, který vše spočítal ručně). Těm, kteří
použitím výpočetní techniky opovrhují, prozrazujeme, že
/l 99l(2‘ 990) = 16.

3.4 (Z. Pezlar). Jestliže tři body roviny X, Y, Z neleží
v přímce, pak každý bod T roviny lze psát ve tvaru

3

T — oí\X 4- oí2Y -f- 03Z, 'У ^ o,' — 1,
»=i

a podobně každý bod T přímky XY lze vyjádřit jako
2

T=cnX + a2Y, ]Га,- = 1.
í=i

Nyní к vlastnímu řešení. Označme průsečík přímky CV
se stranou AB jako V. Je známo (a lze to dokázat pomocí
podobnosti trojúhelníků anebo jednoduchým použitím si-
nové věty), že

\AX\
_ \AC\ _ b

\BX\ ~ \BC\ ~ a

(viz např. H. J. Bartsch, Matematické vzorce, SNTL, Praha,
1983, s. 311).

Protože

V = (3C+(1-(3)X (a + b)X — aA + bBа
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je
«1 a

V = ť*i A + oc^B + с*зC, tj-
a 2 b

Podobně dostaneme, že

a 2 6
ca3

tedy
(<2 -f- 6 -f- c)P — aA -(- bB -(- cC.

Zvolme pro zjednodušení počátek soustavy souřadné
v bodě A, tedy

(a + 6 + c)V = ЬВ + сС.

Zřejmě B\ — ^С, C\ — \В, a pro jistá к а / je В2 = &С,
С2 = IB, tj. |ЛВ2| = Агб, |ЛС2| = 1с. Protože 52 G CiV, je

В2 = kV + (1-k)C!

a podobně
C2 = \V + {l-\)Bi.

Po dosazení vyjde

(bB + cC) + В

(bB + cC) + C,

К
kC =

a + b + c

A
IB =

a + 6 + c

odkud porovnáním koeficientů dostaneme

a + 6 + c a -\- b c
A =к =

a — b + c’ a + 6 — c
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a

6c
к = l =

a + 6 — ca — b + c

Pro zmíněné obsahy platí

1 1
Sabc =

£ 6c sin a Sab2c2 = -bkcl sin a.

Oba obsahy se zřejmě rovnají, právě když kl — 1, neboli

a + b — cc

a — b + c

bc = a2 - (b - c)2,
b2 + c2 — bc = a2.

b

Ale podle kosinové věty

b2 + c2 — 26c cos a = a2

takže cos a = |
Z postupu je zřejmé, že Sabc — Sab2c2 právě tehdy,

jestliže a =

a o — -
3 •

3.5 Nejprve ukážeme, že počet trojúhelníků se dvěma
dobrými stranami je vždy sudý. Sestrojme graf, jehož uz-

ly odpovídají trojúhelníkům rozkladu, přičemž dva uzly
spojíme hranou, právě když příslušné trojúhelníky sdílejí
špatnou stranu. Podle předpokladu b) je stupeň uzlu roven
počtu špatných stran příslušného trojúhelníku, takže všech-
ny uzly mají stupeň 1 nebo 2. Výsledný graf je disjunktní
sjednocení kružnic a cest, přičemž každá cesta má dva uz-

ly stupně 1, odpovídající dvěma trojúhelníkům se dvěma
dobrými stranami (podle A. Kuběny).
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Nyní ukážeme, že výše uvedený graf obsahuje alespoň
jednu cestu (elegantní důkaz je vypůjčen od J. Menšíka).

Předpokládejme naopak, že každý trojúhelník obsahuje
právě jednu dobrou stranu. V takovém případě můžeme
sestrojit lomenou čáru L, která spojuje středy „špatných“
stran, a skládá se tedy ze středních příček trojúhelníků
rovnoběžných s jejich dobrými stranami. Pro čáru L platí
následující tvrzení (dokažte si je sami):
(1) Každá úsečka čáry L náleží přímce x = j + ^ nebo у =

= к + \ pro nějaké celé j, 0 ^ j ^ m — 1, či celé k,
0

= & = n — i.
(2) Cárá L se skládá z neprotínajících se cyklů, které odpo-

vídají cyklům v grafu z první části řešení.
(3) Uvnitř každého čtverce lxl má L délku 1 a nabývá

jednoho z těchto šesti tvarů В Ш И В В □.
(4) Celková délka čáry je mn, tedy lichá.
(5) Délka každého cyklu čáry L je sudá. [K důkazu použij-

te např. šachovnicové obarvení čtverců, každý uzavřený
cyklus prochází stejným počtem bílých a černých čtver-
ců.]

Tvrzení úlohy plyne z (4) a (5).

Na závěr si ukažme protipříklad při vý-
kladu pojmu „dobrá strana“ = strana ležící
na přímce x — j, resp. у — к a navíc taková,
že příslušná výška je 1 — v takovém přípa-
dě je ovšem pojem špatné strany závislý
na konkrétním trojúhelníku. (Každá špatná strana náleží
dvěma trojúhelníkům, ale v druhém trojúhelníku nemusí
být nutně špatná.)
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3.6 Bez újmy na obecnosti můžeme předpokládat, že hra-
na daného čtyřstěnu ABCD má délku 1; jeho tělesová výška
je pak h = yj| a objem V = jžVŽ. Označme ah, bh, ch
dh vzdálenosti bodu P od stěn čtyřstěnu ABCD (ah je
vzdálenost od stěny naproti vrcholu A atd.). Jak známo,
platí a + 6-t-c + d= 1, což plyne z toho, že objem čtyřstě-
nu ABCD je součtem objemů čtyřstěnů PBCD, PACD,
PABD, PABC, neboli

1 1 1 1 1
- hS = - ahS + - bhS + - chS + - dhS
6 6 6 6 6

kde S je plocha (které к >1 i v) stěny daného čtyřstěnu.

Čtrnáct částí, na něž je rozložen ABCD (obr. 49), lze roz-
dělit do tří skupin. Za prvé jsou mezi nimi čtyři pravidelné
čtyřstěny se společným vrcholem P a podstavami ležícími
po řadě ve stěnách BCD, ACD, ABD, ABC. Jejich tělesové
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výšky jsou po řadě ah, bh, ch, dh\ délky jejich hran jsou tedy
po řadě a, b, c, d a součet jejich objemů je roven

V (a3 + 63 + c3 + d3).
Za druhé jsou mezi nimi čtyři rovnoběžnostěny — každý

z nich májeden vrchol v některém z bodů A, B) C, D, zatím-
co protějším vrcholem je P. Všimněme si např. rovnoběž-
nostěnu s vrcholem v A. Jeho stěny jsou rovnoběžníky, které
mají u vrcholu A a P úhel 60°, druhé dva úhly 120°. Své
tři hrany, vycházející z vrcholu P, má tento rovnoběžnostěn
společné se třemi ze čtyř pravidelných čtyřstěnů z předešlé
skupiny (nakreslete si obrázek!); délky těchto hran jsou
tedy b, c, d. Odtud snadno nahlédneme, že objem tohoto
rovnoběžnostěnu je

V3
—— bed = 6V • bed.—— be ■

2

Podobnou úvahu lze provést i pro ostatní tři rovnoběžnos-
těny. Do třetí skupiny patří zbývajících 8 částí, které nás
zajímají. Součet jejich objemů musí být tedy roven

v(P) = V — V (a3 + b3 + c3 + d3) — 6V (bcd + acd + abd+abc).
Tento vzorec upravíme (dvojím) použitím vztahu a + 6 +
T c + d = 1,

v(P) = V ((a + b + c + d)3 - (a3 + b3 + c3 + d3) -
— 6(bcd + acd + abd + abc)) =

= V 3(a2(6 -f c + d) + b2(a + c + d) +
T c2(ct T 6 T d) T d2(a T 6 T c)) —

= 3V(a2(l —a) + 62(l—fc) +
+ c2(l - c) + d2(l - d)). (1)
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Protože a2(l — a) = —a(a2 — a+^) + ^a = —a(a — |)2 +
a podobné vztahy platí i pro 6, c, d, lze poslední výraz dále
upravit na

1\2 1\2
v(P) = 3U -66--—a a — -

2 2

(2)
1\2 n +iV-d d--—c c — -

2 2 4

Odtud je ihned vidět, že v(P) ^ |V. Protože P leží uvnitř
čtyřstěnu ABCD, jsou a, 6, c, d kladná čísla, takže rovnost
by mohla nastat pouze pro a = b = c = d= |;to však není
možné (a + 6-fc + d = 1). Nerovnost tedy platí dokonce
ostře. Zároveň zřejmě v(P) > 0, takže celkem

0 < v(P) <\v4

pro všechny vnitřní body P čtyřstěnu ABCD.
Ukážeme, že všechny hodnoty v tomto intervalu se nabý-

vají. Blíží-li se bod P vrcholu A, je a —► 1, 6, c, d —► 0 a podle
(2) tedy v(P) —> 0. Blíží-li se P ke středu T hrany CD, je
a, 6 —* 0, c, d
bod P všechny vnitřní body úsečky AT, proběhne v(P) celý
interval (0, \V). Hledaným oborem hodnot funkce v(P) je
tedy interval (0, |U).

Jiné řešení (V. Glasnák). Funkce f(x) = ж(1 — x) je
konkávní na R; podle Jensenovy nerovnosti proto platí

i, a tak podle (2) v(P) \V. Probíhá-li

= f(Yl m»x‘)
1=1 ^1=1 '
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pokud m,-, i = 1, 2, 3, 4, jsou nezáporná čísla se součtem 1.
Pro mi = xi = a, m2 = X2 = b, atd. dostáváme

a2(l — a) + 62( 1 — 6) + c2(l — c) + d2(l — d) ^

§/(a2 + f>2 + c2 + <i2)^ i
protože /(ж) = x(l — x) = i — (x — ^)2 ^ ^ pro libovolné
x G R. Dosazením do (1) dostáváme

é |
a další postup je již stejný.

3.7 Označme n celé nezáporné číslo, pro které platí

10” < k4 < 10n+1

a označme M množinu všech celých nezáporných čísel, je-
jichž zápis v desítkové soustavě má nejvýše n cifer a obsa-
huje pouze číslice 0 a 1. Počet prvků množiny M je 2”.

Je-li 2n ^ k, platí 24” ^ k4 < 10n+1, tedy 16” < 10n+1,
odkud postupně plyne 1,6” < 10, n ^ 4, к4 < 105, к < 18,
a násobek 1 • Ar lze zapsat dokonce pomocí nejvýše dvou cifer.

Je-li 2” > k, existují podle Dirichletova principu čísla x,

у G M, x > y, která dávají stejný zbytek při dělení číslem k.
Číslo x — у je tedy kladné, dělitelné к a menší než 10* ^
^ k4. Avšak z obvyklého algoritmu pro odčítání plyne, že
dekadický zápis tohoto čísla může obsahovat pouze cifry 0,
1, 8, 9: rozdíly při odčítání dvou cifer budou buď 1 — 0, 1 — 1,
0 — 0, 10—1 (bez „přenosu”), anebo 1 — 1, 10 — 1, 11 — 2,
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10 — 2 (při přenosu jednotky z předešlého sloupce). Uvedený
rozdíl x — у tedy splňuje všechny podmínky ze zadání, čímž
je důkaz hotov.

4.1 (podle M. Volaufa). Použijeme důležité LEMMA: Je-li
К konvexní množina a P bod, který do ní nepatří, pak exis-
tuje přímka procházející bodem P taková, že К leží v jedné
polorovině určené přímkou p.

Je-li К konvexní mnohoúhelník, je důkaz této vlastnosti
zřejmý: Zvolíme libovolný bod Q uvnitř К a sestrojíme
průsečík T úsečky PQ s hranicí К (ten musí být jediný). Za
hledanou přímku můžeme pak volit prodloužení té strany K,
které náleží bod T (je-li T vrcholem K, můžeme si libovolně
vybrat ze dvou možných stran).

Užitím uvedeného lemmatu pro body Ri = [1,0], R2 =
= [0,1], R3 = [—1,0], R4 = [0,-1] dostaneme po řadě
čtyři přímky p\, P2, рз, P4, které ohraničují konvexní útvar
obsahující К ve svém vnitřku.

Předpokládejme, že některá z přímek p, protíná jednu
z os uvnitř intervalu (—1,1) (obr. 50). Pak jedna z částí Kfl
П Qj je obsažena v trojúhelníku o obsahu nejvýše tedy
S(K) <í 4 • i = 2 < 4.

Není-li tomu tak, omezují přímky p\, P2, рз, P4 konvexní
čtyřúhelník, který má v každém kvadrantu jeden vrchol.
Součet vnitřních úhlů je 360°, existuje tedy alespoň jeden
úhel o velikosti nejméně 90°. Pokud příslušný vrchol A leží
např. v Qi (obr. 51), pak leží uvnitř Thaletovy kružnice nad
průměrem R1R2, anebo na ní. Obsah trojúhelníku R1AR2
je největší, je-li A = [1,1]. Celý čtyřúhelník OR1AR2 pak
má obsah 1. Je'tedy S'(KnQi) ^ 1, přitom je ovšem jasné,
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Р2

Obr. 51Obr. 50

že nemůže být S(Qi) = 1 pro všechna * = 1, 2, 3, 4. Proto
S(K) < 4.

Jiný postup: Pro čtyřúhelník ABCD omezený přímkami
Pi dokážeme (obr. 52):

B2 a2
T2
* Ti

ÚlA3 Bi-u2

AiB3

A4 B4
Obr. 52

Bod A leží buď v oblasti Bi, nebo A2. Je-li např. v A2, pak
В € A3, C € A4, D € Ai. Obsah čtyřúhelníku ABCD vznik-
ne z obsahu čtverce R1R2R3R4 odečtením obsahů troj úhel-
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níků Ti, T2, T3, T4 a přičtením obsahů U1, U2, U3, U4. Ukáže
se, že pro jejich obsahy platí 5(U,) < S^Tj+i) (T5 = Ti),
a proto obsah ABCD je menší než obsah R1R2R3R4, tj. je
menší než 4.

4.2 (a) Předpokládejme, že některé dva z bodů A1, В i,

C1, Di splynou — nechť např. A\ = B\. Pak ovšem bod A
leží na kružnici opsané trojúhelníku BCD, tj. body A, B,
C, D leží na jedné kružnici, a proto A\ — B\ — C\ — D\.
Podobně lze postupovat i v případě, že splynou některé jiné
dva z bodů A\, B\, C\, D\. Tím je dokázána první část
tvrzení. Nadále budeme předpokládat, že body A\, B\, C\,
D\ jsou navzájem různé.

Dokažme nyní, že body Ai, Ci leží v opačných polorovi-
nách určených přímkou B1D1. Rozlišíme dva případy:
1. \<$BAD\ -f \<$BCD\ < я. Protože čtyřúhelník ABCD

je konvexní, takže body A a C leží v opačných polorovi-
nách určených přímkou BD, plyne odtud, že bod C leží
vně kružnice opsané trojúhelníku ABD, takže ICiCj >
> |CiA|. Podobně A leží vně kružnice opsané troj úhel-
niku BCD, takže |TiCj < |T^|. Body Ai a Ci musí
proto ležet v opačných polorovinách určených osou 0,4c

přímky AC.
2. \<$BAD\ + \ <$BCD\ > я. Nyní bod C leží uvnitř kruž-

nice opsané trojúhelníku ABD a A leží uvnitř kružnice
opsané trojúhelníku BCD. Odtud plyne |CiC| < |Ci.<4|
a |TiC| > Iv4i-Л|, takže body Ai, Ci opět leží v opačných
polorovinách určených osou oac■

(Pro \<$BAD\ + \<$BCD\ = я je čtyřúhelník ABCD
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tětivový a Ai — B\ — С\ — D\\ tento případ jsme však
vyloučili.)

Ze zadání plyne, že B\ a Di leží na oac■ Je tedy oac =
= B\ D\ a důkaz je hotov. Podobně lze ukázat, že body B\
a D\ leží v opačných polorovinách určených přímkou A\C\.

(b) Pokud body vli, В i, Ci, D\ splynou, je tvrzení
triviální; můžeme proto předpokládat, že jsou navzájem
různé, a tvoří tedy
úhelník. Z konstrukce plyne, že A\B\ je osa strany CD,
proto A\B\ _L CD. Ze stejného důvodu je C2D2 -L
I AxBu tedy CD II C2D2. Podobně AB || A2B2, BC ||
II B2C2, DA К D2A2. Protože B\D\ je osa úhlopříčky AC
а A2C2 je osa úhlopříčky B\D\, je rovněž АС || A2C2',
stejně tak BD || B2D2. Odtud již plyne, že čtyřúhelníky
ABCD a A2B2C2D2 jsou podobné. (Skutečně, označíme-li
např. S, S2 průsečíky úhlopříček čtyřúhelníků ABCD, resp.

A2B2C2D2, pak z těchto rovnoběžností plyne

podle části (a) konvexní čtyř-

AABS ~ AA2B2S2, ABCS ~ AB2C2S2,
ACDS ~ AC2D2S2, ADAS ~ AD2A2S2,

a tedy i ABCD ~ A2B2C2D2.)

4.3 Pro а — 1 platí rovnost. Pro 0 < а < 1 využijeme
Bernoulliho nerovnost

(1 + x)b ^ 1 4- bx,

která platí pro 1, 0 < 6 < 1.
Rozebereme dva případy. Nechť nejdříve 0 < s < 1.

Položme v (1) x = s— 1 (platí tedy x > — 1) a nechť b = 1—a

(1)
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(takže О < b < 1). Dostaneme tak nerovnost

s6 <; 1 + b(s - 1)
a odtud máme

(1 + b)sb ^ (1 + 6)(l + 6(s — 1)) = 1 + bs + b2(s - 1) < l + 6s
protože s < 1. Vynásobíme-li tuto nerovnost sa, dostaneme
(je sasb = s)

sa -f bs1+a > (1 + b)s,
znovu využijeme Bernoulliho nerovnost (1) pro x = s

(1 + s)b й 1 + bs,

(2)

odkud podle (2) plyne

(1 + s)"6-
1 - sa 1 1 - sa

>
1 — s ~ 1 + bs 1 — s

sa -f bs1+a — (1 + b)s
> 0.

(1 + bs) ■ (1 - s)
Z poslední nerovnosti po dosazení 1 — a za 6 dostáváme

1 -(1 + *Г1 - sa
(! + *)-*> čili >

1 — s

což jsme chtěli dokázat.

Uvažujme teď s > 1. Zavedeme substituci s = - (je 0 <

1 + s 1 — 5

1

< t < 1) a můžeme využít už dokázanou nerovnost z první
části. Je tedy

1 - sa 1 -ta1 - t~a 1 — a
= t <

i-i i -11 — s
t

a (1+ty (1 + })“ (l + »)°
1 + S

1-
< t

1 + i1 + t
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Tím je důkaz úplný.
Uvedené řešení nevyužívá vůbec předpokladu, že a je

racionální číslo (nerovnost samozřejmě platí pro libovolné
reálné a, 0 < a 5Í 1).

Jiné řešení. Předpokládejme, že a je racionální číslo, tedy
tn pro

к
—, kde 0 < к < n jsou celá čísla, a položme s —
n

a =

t > 0. Máme dokázat nerovnost

1 - tk 1 +t + ... + Г-1
r S (! + <■)■ \1 - tU 1 + *+... + *»"

což je ekvivalentní nerovnosti

(l + ř + ... + /fc-1)n(l + r)n-fc ^ (l+t + .-. + r-1)”. (3)

Tato nerovnost zřejmě platí pro к = n. Stačí tedy dokázat,
že levá strana nerovnosti (3) je rostoucí funkcí k, neboli že
pro 0 < к < n platí

1 +t + ... + tk \n
1 + í + ... + t*-v

1 + tn < (4)= An.

Protože A > 1, je ale

An - tn = (A - t)(An~1 + An~2t + ... + tn~l) ^
^ (Л- í)(i + < + ■;- + <n_1) =

1
•(!+* + .., + ť1-1) > 1,1+ť + .. , + ť*"1

což dává nerovnost (4).
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4.4 Průnik dané roviny g s kuželem tvoří podle věty Qué-
teletovy-Dandelinovy1) elipsu. Označme a, b délky jejích
poloos, S její střed, v = |.PO| výšku daného kužele a r —

— \PA\ poloměr jeho podstavy (obr. 53). Objem kužele pak
je

1
-кг2и,V =

zatímco objem části, která obsahuje jeho vrchol O, bude

1
V'= -nabv'

kde v' je vzdálenost vrcholu O od roviny g, tj. vzdálenost
O od přímky AC.

O
W

v

D

e/á
T

F

В
P

Obr. 53

x) Kolektiv: Aplikovaná matematika. Praha, SNTL 1977, str. 963.
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Z podobnosti trojúhelníků ABD ~ COD plyne

\AD\ = 2\CD\

takže
1 1

a = \AS\ = -\AD\=-\AC\.

Označme л rovinu rovnoběžnou s podstavou kužele, jež
obsahuje vedlejší osu elipsy EF. Protože |A5| = ^\AC\, leží
tato rovina ve třetině výšky kužele, a její průnik s pláštěm
kužele je tedy tvořen kružnicí o poloměru |r (obr. 54).
Z podobnosti ARST ~ ARAP plyne, že \ST\ = ^r. Odtud

6 = \/(Ir)2-(H2 =

Zbývá vypočítat vze vzorce pro obsah trojúhelníku OAC
však plyne

\OC\ • v = 2S(OAC) = \AC| • v'

takže

\AC\’
Celkem tedy dostáváme

1 . . 1 1 . . r rv 7ir2v
-nabv = -n • - L4C • —= • 7-7—7 = ——
3 3 31 1 V3 |AC| 9\/3

a proto
V'

_ 1
V ~ Зл/З
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1 1
< -, je V' objem menší části kužele, a hledaný

3v3 2
Protože

1
poměr je tedy roven

3\/3'

4.5 Připomeňme, že posloupnost uzlů Vo, fi, . . ., vn se

nazývá eulerovský tah, pokud t>iVj+i je hrana pro každé i =
= 0, 1,..., n — 1 a pokud každá hrana grafu se v tahu
vyskytne právě jednou (uzly se mohou na tahu opakovat).
Tah je uzavřený, pokud v0 = vn. Známá Eulerova věta praví,
že v souvislém grafu existuje uzavřený eulerovský tah, právě
když všechny uzly mají sudý stupeň, a existuje neuzavřený
tah, právě když právě dva uzly mají lichý stupeň. (Důkaz
lze provést indukcí podle počtu hran nebo nalézt v každé
základní učebnici teorie grafů.)

Uvědomme si, že pro správné vyřešení úlohy je třeba
dokázat implikace

(1) (p = 2 V q = 2 V r = 2) O D,
(2) (alespoň 2 čísla sudá) <(=> D,
(3) (alespoň 2 čísla lichá ap^ 2, q ф 2, г ф 2 Л pqr ф 1)

<£> N
a také

(4) (p = 2V<7 = 2Vr = 2)<=> ~>N,
(5) (alespoň 2 čísla sudá) <=> —>Ač,
(6) (alespoň 2 čísla lichá а p ф 2, q ф 2, г ф 2) <=> ->D,
kde jsme pro stručnost jako D označili výrok „kvádr lze slo-
žit tak, že koncové krychličky se dotýkají“, a jako N výrok
„kvádr lze složit tak, že koncové krychličky se nedotýkají'4,
a -i značí negaci.

Umístěme kvádr p x q x r v souřadné soustavě tak, aby
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vrcholy jednotkových krychliček byly mřížové body a vrcho-
ly kvádru měly souřadnice (0, 0,0), (p, 0,0), ..., (p, y, r).

Uvažme nyní čtyři grafy:
G\ s uzly {(ж,у, z): Q^x^p,0^y^q,0^zš

^ r, (x = у = z = 0 (mod 2)) V (ж = у = г = 1 (mod 2))},
G2 s uzly {(ж, у, z): О^ж^р, 05íy5íy, 05ÍZÍÍ

^ г, (ж = 1 (mod 2) Л у = г = 0 (mod 2)) V (ж = 0
(mod 2) Л у Е г Е 1 (mod 2)) },

G3 s uzly {(ж, у, г): О^ж^р, 0£íy^y, 05íz^
^ г, (ж = г = 0 (mod 2) Л у Е 1 (mod 2)) V (ж = z = 1
(mod 2) Л у = 0 (mod 2)) },

G4 s uzly {(ж, у, z): 0 ^ ж ^ р, 0 ^ у ^ у, 0 ^ z ^
^ г, (ж = у = 0 (mod 2) Л z е 1 (mod 2)) V (ж = у = 1
(mod 2) Л z = 0 (mod 2)) }.

Pro každý graf Gi platí, že (ж,у, z) а (ж',y',z') jsou
spojeny hranou, právě když zároveň \x — x'\ — 1, |y — y'| = 1
а I z — z' I = 1.

Fakt 1. Hrany grafů Gi, i = 1, 2, 3, 4, odpovídají
tělesovým úhlopříčkám jednotkových krychliček, a proto
lze-li alespoň jeden z grafů Gi nakreslit jedním (uzavře-
ným) tahem, lze kvádr složit (tak, že se koncové krychličky
dotýkají).

Fakt 2. Lze-li kvádr složit, pak nit provlečená krychlička-
mi vytvoří eulerovský tah projeden z grafů Gi. Tento fakt je
třeba dokázat, a to jednak, že všechny části nitě patří témuž
Gi (indukcí dle nitě), jednak, že celý graf Gi je nakreslen
(každá hrana Gi patří krychličce, a každá krychlička má
jedinou tělesovou úhlopříčku, jež tvoří hranu Gi).

Fakt 3. Pro i — 1, 2, 3, 4 má každý uzel grafu Gi su-

dý stupeň, s výjimkou (případně) vrcholů kvádru. (Vnitřní
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vrcholy kvádru mají stupeň 8, vnitřní vrcholy stěn stupeň
4 a vrcholy ležící na hranách stupeň 2.)

Fakt 4. Graf Gi lze nakreslit jedním (resp. jedním uza-

vřeným) tahem, právě když nejvýše dva vrcholy kvádru jsou
(resp. žádný jeho vrchol není) vrcholem Gi. (Uvědomte si,
že každý Gi je souvislý a použijte Eulerovu větu.)

Důkaz implikace (2). Bez újmy na obecnosti můžeme
předpokládat, že p = q = 0 (mod 2). Potom žádný vrchol
kvádru není vrcholem grafu Gi, dle faktu 4 lze G2 nakreslit
uzavřeným tahem a dle faktu 1 platí D.

Důkaz implikace (3). Bez újmy na obecnosti můžeme
předpokládat, že p = q = 1 (mod 2). Potom graf G1 má
právě,dva uzly kvádru, a to [0, 0, 0], (p, q, r], pokud r je liché,
a [0,0,0], [0,0, r], pokud r je sudé. Kvádr tedy složit lze,
navíc první krychlička obsahuje vrchol [0, 0, 0] a poslední
buď vrchol (p, q, r], nebo [0,0, r], takže se nedotýkají, neboť
pqr ф 1 a p ф 2, q ф 2, г ф 2.

DŮKAZ implikace (1). Bez újmy na obecnosti můžeme
předpokládat, že p — 2; vzhledem к (2) stačí implikaci
dokázat pro q = r = 1 (mod 2). Pak ale G\ obsahuje
pouze dva vrcholy kvádru, a to [0,0, 0], [2, 0, 0], podle faktu
4 a faktu 1 kvádr složit lze, a navíc koncové krychličky se

dotýkají stěnou s vrcholy [1,0,0], [1,1,0], [1,1,1], [1,0,1].
Důkaz implikace (5). Bez újmy na obecnosti může-

me předpokládat, že p = q = 0 (mod 2). Pak G2 a G3
neobsahují žádný vrchol kvádru, takže je nelze nakreslit
neuzavřeným eulerovským tahem, a proto v každém složení
kvádru podle G2 či G3 se koncové krychličky dotýkají.

Graf G1 obsahuje naopak aspoň 4 vrcholy kvádru
([0,0,0], [p, 0,0], [0,g,0], (p, <7,0]), takže není eulerovský.
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Podobně G4 není eulerovský pro r liché, zatímco pro r sudé
má všechny stupně sudé, tudíž nejde nakreslit neuzavřeným
tahem.

Důkaz implikace (4). Bez újmy na obecnosti můžeme
předpokládat, že p = 2, a vzhledem к (5) nechť p = r =
= 1 (mod 2). Pak každý z grafů Gi obsahuje dva vrcholy
kvádru, vždy vrcholy o vzdálenosti 2, které ve složeném
kvádru odpovídají dotýkajícím se koncovým krychličkám.

Důkaz implikace (6). Bez újmy na obecnosti může-
me předpokládat, že p = q = 1 (mod 2). Potom každý
z grafů Gi obsahuje právě dva vrcholy kvádru (pro r liché
jsou to protější vrcholy, pro r sudé vrcholy spojené hranou
délky r) a ve složení kvádru podle G, se koncové krychličky
nedotýkají.

Všimněte si zajímavé vlastnosti řešení. Pro každou trojici
parametrů (p, q, r) platí bud’ D, nebo N, ale nikdy D i N
současně. Na tom je založeno následující řešení:

Jiné řešení. Použijeme konstrukci grafů G,, i = 1, 2, 3, 4,
fakta 1-4 a navíc následující fakt.

Fakt 5. Každý kvádr lze složit.
Důkaz. Kvádr má 8 vrcholů, každý z nich náleží právě

jednomu z grafů G\, ..., G4. Proto aspoň jeden z těchto
grafů obsahuje nejvýše dva vrcholy kvádru, a tedy jej lze
nakreslit jedním tahem. Podle tohoto tahu pak lze kvádr
složit (netvrdíme nic o dotýkání koncových krychliček).

Důkaz implikace (6). Bez újmy na obecnosti můžeme
předpokládat, že p = 0 (mod 2), a tedy i p > 2. Předpo-
kládejme, že kvádr je složen tak, že koncové krychličky se

dotýkají. Uvažme rovinu g = {(x, t/, z) : x — ř), 0 < t <
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< p, t ф Z, která neprotíná žádnou koncovou krychličku.
Obě krychličky pak leží ve stejném poloprostoru určeném
rovinou g, takže nit má s g sudý počet průsečíků. Vrstva,
kterou prochází rovina g, má však qr = 1 (mod 2) krychli-
ček a uvnitř každé z nich právě jeden průsečík nitě s g. To
je spor.

DŮKAZ IMPLIKACE (5). Jestliže lze kvádr složit tak, že
koncové krychličky se nedotýkají, pak existuje vrstva, která
tyto krychličky odděluje. Je-li g rovina rovnoběžná s touto
vrstvou, jež prochází jejím středem, má nit s g lichý počet
průsečíků, proto má tato vrstva lichý počet krychliček, takže
alespoň dva rozměry kvádru jsou liché.

Důkaz implikace (4). Bez újmy na obecnosti můžeme
předpokládat, že p = 2, a vzhledem к (5) můžeme předpo-
kládat, že q = r = 1 (mod 2). Předpokládejme, že kvádr
lze složit tak, že koncové krychličky se nedotýkají. Opět
existuje vrstva, která tyto krychličky odděluje (viz před-
chozí odstavec). Protože p = 2, je tato rovina rovnoběžná
s hranou délky p, a tudíž obsahuje pq (resp. pr) = 0 (mod 2)
krychliček; to je spor.

Důkaz implikací (1)—(3) nyní plyne přímo z (4)-(6)
a faktu 5.

4.6 (A. Kuběna). Především existuje právě jedno takové
N E {0,1,..., 2n —1} s požadovanou vlastností (kdyby exis-
tovala dvě N\ ф N2, byl by součin (1 -f 2P -f 2n~p)(iVi — N2)
dělitelný číslem 2n, což nejde). Hledejme tedy zbytkovou
třídu čísla N.

Zřejmě platí

(1 + 2P + 2n~p)N = (1 + 2P)(1 + 2n~p)N (mod 2n).
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Víme ale, že n = mp ^ 2p, takže 2n — 2p ^ n; je tedy

(1 + 2n_p)(l - 2n-p) = 1 - 22n-2p = 1 (mod 2n). (1)

Zároveň ovšem platí

(2P + l)(l - 2P + 22p - ... + (—l)m-12n-p) = 1 ± T =
ЕЕ 1 (mod 2n).

Odtud vidíme, že

) (1 — 2P -h 22p —... + ( —1) m— 1 2”-p) (mod 2”).N ЕЕ (1-2n —p

Jednoduchým výpočtem snadno zjistíme, že číslo

N = i _ 2P + 22p - ... + (—l)m-12n-p - 2n~p + 2n

splňuje požadavek 0 < N < 2n. Abychom dostali vyjádření
čísla N v dvojkové soustavě, rozlišíme dva případy:

Je-li m = j sudé, je
2n 2n—p 2n—p _j_ 2n ~

_ 2n-3P + _ + 22p - 2P + 1) =

= 2n_p(2p - 2) + 2n-3p(2p - 1) +
+ • . • + 2P(2P — 1) + 1,

takže N má v dvojkovém zápisu n číslic rozdělených do p-tic
takto:

11...10 00...0 11...1 ... 11...1 00...01.
' " v ' v •* v -* ^ ^

p p p p p
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Je-li m = ^ liché, vyjde
N = 2n - T~p + 2n-p - 2n-2p + 2n_3p -

_ 2n-4p + + 22p - 2P + 1 =

= 2"-p(2p - 1) + 2n-2p(2p - 1) +
+ 2ri_4p(2p - 1) + ... + 2P(2P - 1) + 1.

Dvojkový zápis N je tedy opět složen z n číslic po p-ticích

11...1 11...1 00...0 11...1 ...

p p p p

00...0 11...1 00... 01.
4 ✓

p p p

4.7 Protože p je kubický mnohočlen, platí \p(x)/x\ —► oo
pro |я| —* oo, existuje tedy přirozené M > |<?i| takové,
že |р(я)| ^ |я| pro všechna x taková, že |x| ^ M. To ale
znamená, že pro žádné n nemůže být qn ^ M, protože pak
by bylo |g„_i| = |p(g„)| ^ \qn\ ^ M, a jak snadno ověříme
matematickou indukcí, i |?i| ^ |<?21 = • • • = |?n| = M.

Předpokládejme nejprve, že (qk)k>i Je posloupnost celých
čísel. Podle předchozího výsledku to ale znamená, že taková
posloupnost nabývá jen konečného počtu N й 2M + 1
hodnot. Pro každé m ^ 1 tedy najdeme к
takové, že qm = qm+km ■ Protože i odpovídajících hodnot km
je jen konečný počet, je jasné, že pro vhodné к platí rovnost
qm = pro nekonečný počet m ^ 1. Pro libovolné n <
< m pak ovšem máme

Qn = P(Qu + l) — • • • — Pm — n (Qm) —

— Рт — п(Ят+к) — P{Qn+k +1) — Qn + kt

1 ^ km ^ Nm j
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kde pi(x) = p(x) a pj+i(:r) = p(pj(x)) pro j ^ 1. Odtud
hned plyne, že qn+k — qn pro každé n ^ 1.

Za předpokladu, že qk jsou celá čísla, je tvrzení úlohy
dokázáno. Předpokládejme teď, že qk = — jsou racionál-
ní čísla (rk a Sk jsou nesoudělná celá čísla) a že kubický
mnohočlen p má tvar

1
p(x) = - (ax3 -f bx2 cx d) (1)

kde a, 6, c, d a e > 0 jsou celá čísla. Uvažujme prvočíslo q,

které dělí jmenovatel Sk některého členu posloupnosti (qk)-
Ukážeme, že mocniny daného prvočísla q, v nichž dělí jed-
notlivé jmenovatele, jsou shora ohraničeny, tj. že pro každé
takové q existuje p takové, pro něž q^+1 nedělí žádný ze

jmenovatelů Sk-

Předpokládejme naopak, že tomu tak není. Je-li tedy a =
— Aqa, b = BqP, c = Cq1, d = Dq\ e = Eq£ a s, = m,^*,
kde А, В, C, D, E a mi jsou celá čísla s q nesoudělná, а к
libovolné takové, že pk > pi- Potom můžeme psát

рЫ = р(^) =qk-i —

rl

+ DqS) =

[Аг^ -f Bmkrlq,lk+I3~0‘ -f

(2)+ СУ
q^krnk
1

Em3q3fik~a+£
+ Cmí;r*92^+7-a +
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Nyní stačí vybrat к tak, aby čitatel r^_i byl s q nesoudělný
a aby bylo pk-i > Pk\ tomu snadno vyhovíme (za předpo-
kladu, že pk nejsou shora ohraničeny) volbou pk, pro něž

Pk > Pi, 2pk > а, Цк> a- P, 2/ifc > a - 7, 3/i* > a - 6.

Je jasné, že takto postupně dostaneme pk < pk-i < ... <
< p1, což odporuje volbě pk-

Je-li tedy teď qi ten prvek posloupnosti (qk), jehož jme-
novatel obsahuje dané prvočíslo q v nejvyšší mocnině p > 0,
je buď г = 1, anebo vyjde ze vztahu (2), že 3/^ — a -f e ^ p,
tj. a ^ 2/i 4- £ > 0. Vidíme, že každé takové prvočíslo q
dělí buď <71, anebo koeficient a mnohočlenu p. Prvočísel q,

jež dělí jmenovatele jednotlivých členů posloupnosti (qk), je
tudíž jen konečný počet a jejich mocniny jsou ohraničeny
jedním číslem. Odtud plyne, že existuje společný jmenovatel

Q všech qk, a pro každé к ^ 1 můžeme psát qk = 7^-.
Pro libovolné ^ 1 je tedy

Qk-1
= gjb-i = р(Ы = p

= ~e\ab + bb + C% + Í
= TS-P(Qt)

Q Q
1

pro kubický mnohočlen

1
P(z) = Q^-(ax3 -(- (bQ)x2 + (cQ2)a: + ďQ3).
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Tento kubický mnohočlen splňuje rovněž předpoklady úlohy
s posloupností (Qk) celých čísel, která je podle předchozího
výsledku periodická. Je tedy i posloupnost (qk) periodická
a důkaz je hotov.

Uvedeme ještě stručně řešení, které celý uvedený postup
skrývá v šikovném použití věty o racionálních kořenech
mnohočlenu (zde doporučujeme ke studiu výbornou knížku
I. Korce Úlohy o velkých číslech, ŠMM č. 61).

Jiné řešení (stručně). Z předchozího řešení už víme, že
členy posloupnosti (qk) leží v ohraničeném intervalu. Před-

r

pokládejme, že mnohočlen p má tvar (1) a q\ — -, kde r, s
s

jsou nesoudělná celá čísla. Ukážeme, že pro N = sa je Nqk
celé číslo pro každé к ^ 1.

To je jasné pro к = 1. Předpokládejme, že Nqk je pro

nějaké к ^ 1 celé, a protože qk = p(qk+1), je Nqk+i kořenem
mnohočlenu

^N3 (j> - q^j = x3 + (s6)z2 + (s2ac)x +
+ ((s3a2d) - (s2ae)(Nqk))

s celočíselnými koeficienty. Podle zmíněné věty má tento
mnohočlen jedině celočíselné racionální kořeny (to plyne
z toho, že jmenovatel každého racionálního kořenu musí
dělit koeficient u nejvyšší mocniny neznámé), takže Nqk+i
je celé číslo. Podle principu matematické indukce je Nqk
celé pro každé к ČI 1.

Protože mezi čísly v absolutní hodnotě menšími než M

je pouze 2M\N\ — 1 celočíselných násobků -^r, je zřejmé,
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že posloupnost (qk) má pouze konečný počet hodnot. Dále
postupujeme jako v předchozím řešení.

5.1 Označme a, b kolmice к přímce AB vztyčené v bodech
А, В а c, d kolmice к přímce CD vztyčené v bodech C, D
(obr. 55). Zřejmě К = a П с, H = b Od.

Nechť S je střed dané kružnice. Protože úsečka AB je
tětivou této kružnice, mají přímky a a b od S stejnou
vzdálenost; jinými slovy, označíme-li к středovou symetrii
podle bodu S, platí к(а) = b. Podobně k(c) = d. Odtud
plyne к(а D c) — b D d, neboli к (К) = H, takže body К, S
а Н leží na jedné přímce. Tím je dokázáno první tvrzení.

Označme P průsečík přímek AD a BC (pokud existuje).
Bod P může ležet uvnitř, vně i na dané kružnici. Leží-li na

ní, je P = В = D = H a tvrzení triviálně platí. Ve zbývají-
cích dvou případech vždy \<$APB\ = \<$CPD\ a navíc,
podle věty o obvodových úhlech, \<$ABP\ = \<$CDP\
a |<$BAP\ = |<íDCP\. Odtud plyne, že trojúhelníky ABP
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a CDP jsou podobné. Musí tedy platit

vzdálenost P od a vzdálenost P od c

vzdálenost P od b vzdálenost P od d

Existuje tudíž stejnolehlost к' se středem v P taková, že

k'(c) = d.к'(а) = b a

Pak ale opět

к\К) = /с'(аПс) =bnd= H,

takže body К, H a P leží najedná přímce.

5.2 Bez újmy na obecnosti lze předpokládat, že R ^ r.
Nechť ABCD je nějaký lichoběžník splňující podmínky úlo-
hy. Vrcholy označme tak, aby BC byla základna a \BC\ ^
^ \AD\. Přímky, na nichž leží ramena AB a CD, jsou zřejmě
společné tečny к daným kružnicím, jež neprocházejí body
dotyku (obr. 56). Podle Pythagorovy věty platí

C

D S2
S:

R
r

A E F IBV

Obr. 56

\EF\2 = |5i52|2 — (R - r)2 = (R+ r)2 - (R- r)2 = ARr,
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takže \EF\ = 2л/Яг. Protože

|«*FBS2| = = i(i- |«*ЯЛД|) =

= |-|<^5i| = |<£S^|,
plyne z podobnosti příslušných pravoúhlých trojúhelníků
rovnost

\FB\
R \AE[

Zavedeme-li označení \AE\ = a, bude délka ramene AB
rovna

|^5| = |i4£?| + |£7F| + |F5| =

= a + 2 л//?г + =
a

у/ш\2
+ 4\/fíř ^ 4\/fíř,л/а — (1)л/а

přičemž rovnost může nastat jen pro a = у/Rr.
Jestliže R = r, lze najít lichoběžník s libovolným kladným

a. Speciálně tedy existuje lichoběžník s a = y/Řr, a jeho
rameno AB má tedy nejmenší možnou délku Ay/llr.

Jestliže R > r, může a probíhat pouze interval 0 < a <
< |P-£j, kde V je průsečík přímek AB a CD. Z podobnosti
AVESx ~ ЛVFS2 plyne

\VE\
_ \VE\ + \EF\

R

odkud
2ry/Řř
R — r

VE\ = ňF-r\EF\ =
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Z předchozí rovnosti vidíme, že a — y/Řř < \VE\, právě
když R < 3r; pro R < 3r tedy opět existuje lichoběžník
s a = y/Řř a jeho rameno má díky (1) minimální možnou
délku 4y/Řř. Zbývá vyšetřit případ, kdy R ^ 3r, a tedy
y/Řř ^ |jE7|. Všimněme si, že funkce а н-» л/а — \fRr/a
je pro kladná a rostoucí (když se a zvětší, Řa se zvětší
a Rr/a se zmenší); kromě toho je záporná pro a < y/Řř
a kladná pro a > y/Řř. Protože v uvedeném případě je
0 < a < \VE\ ^ y/Řř, plyne odtud nerovnost

Rr
< V\VĚ\-yfa —

< 0
WE | =

takže

+ 4VŘř >\AB | = [s/Б-

+ 4y/~Řr => V\VE\ -

(R + r)2
2г(Я — r)

Rovnost zde nemůže nikdy nastat; když se však a bude blížit
к |V£j (to znamená, že A se blíží к V), bude se levá strana
nerovnosti v limitě blížit pravé straně.

Zjistili jsme tedy, že když R < 3r, je nejmenší možná
délka ramene rovna 4y/Řř. Když R ^ 3r, nejmenší možná
délka ramene neexistuje (nenabývá se); existuje pouze infí-

(R + r)2 y/Řř.mum všech možných délek, a to je rovno
2r(R — r)
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5.3 (podle Z. Pezlara). Uvažujme výraz v — 36* — 5*. Je

v = —(6 — 1)' = (-1),+1 (mod 6)
v = (35 -f 1)* = 1 (mod 5),

tedy
v = 1 nebo v = 11 (mod 30).

Protože 36 — 25 = 11, stačí uvažovat už jen |i>| < 11, což
podle (1) dává v = 1. To by ale muselo být 36* — 5* = 1,
neboli 5* — (6* — 1)(6* -f 1), takže 6* — 1=5* a 6* + 1 = 5J,
odkud plyne 2 = 5J — 5', což zjevně nemůže nastat (stačí
probrat jednotlivé možnosti mod 5). Minimální hodnota |v|
je tedy 11 = |36 — 52|.

Nyní uvažujme v — 53* — 37*. Pak

(1)

v = (52 -f 1)* - (36 + l)ř = 0 (mod 4)
v = (54 — 1)* - (36 + 1)* = (-1)* - 1 (mod 9),

tedy
v = 0 nebo v = 16 (mod 36).

Protože 53 — 37 = 16, stačí dál uvažovat jen |u| < 16, což
podle (2) dává v = 0. Pak ale 53* = 37*, což ale zjevně
neplatí, neboť (53,37) = 1. Minimální hodnota |v| je tudíž
16 = |53 — 371.

(2)

5.4 Především si uvědomme, že vektory, jejichž součtem
je nulový vektor, nemohou při umístění do jednoho bodu
všechny ležet jen v jedné z.polorovin určených přímkou pro-

cházející společným počátkem (pokud ovšem neleží všechny
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v jedné přímce). Tento jednoduchý postřeh budeme často
používat.

Umístěme všechny vektory do počátku kartézské sousta-
vy souřadnic a předpokládejme, že pro к ^ 1 vektor s,^ =

к
= ei splňuje nerovnost |s^| 1. Pokud mezi zbývajícími

i = l

jednotkovými vektory některý svírá s vektorem Sk úhel ales-
poň 120° (leží tedy v úhlu AOB, obr. 57), zřejmě pro takový
vektor efc+i platí

I Sfc+11 — | Sk + efc+i| ^ 1.

Sk

лE

efc+2

Obr. 57

Pokud v úhlu AOB žádný vektor neleží, musí některý
z vektorů ležet v polorovině CDB, kde CD je přímka kolmá
na Sk procházející počátkem; tedy v jednom z úhlů BOD
nebo AOC leží některý z daných vektorů. Označme jako
ejk+i ten vektor, který svírá s Sk největší úhel (bez újmy
na obecnosti můžeme předpokládat, že leží např. v úhlu
BOD). Označíme-li E ten bod, pro který OE = — е*+1,
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musí i v úhlu EOA ležet jeden z daných vektorů. Ten
označíme е*,+2- Protože oba takto vybrané vektory ejfc+i
a e*;+2 svírají úhel aspoň 120°, je jasné, že je |e^+i 4- e*,_|_21 ^
^ 1 a zároveň \sk + efc+i + е*,+2| ^ 1, protože součet obou
vektorů efc+i + е^+2 leží v úhlu AOB\ současně ale platí
|Sk -f e^+i | < л/2 (rovnost nemůže nastat, protože to by pak
musely všechny vektory ležet v polorovině opačné к CDA
obsahující vektor s*,).

Je jasné, že uvedeným postupem lze dané vektory uspo-
řádat tak, že velikost jejich součtu nikdy nedosáhne л/2.

5.5 (podle Š. Kasala). Uvažujme zobrazení Ti složené
z otočení se středem v H o orientovaný úhel PHВ (který je
pravý) a stejnolehlosti se středem \ H a koeficientem
(obr. 58). Potom jistě platí, že 7ť zobrazí trojúhelník PH В

trojúhelník BHC (7í(B) = C), a navíc pro H(p) = p' je
p _L p'. Bod Q se tedy zobrazí na nějaký bod přímky CD.
na

\CD\ \CB\
IPB] a zároveň souhlasí i orientace obouProtože ÍBQÍ “

úseček, je 'H(Q) = D, tedy 7i(HQ) = HD. Odpovídající si
úsečky v zobrazení Ti jsou navzájem kolmé, je tedy HQ J_
_L HD, takže úhel DHQ je pravý.
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5.6 Na první otázku je záporná odpověď, což ukážeme na
tomto příkladu: Vytvořme šestiúhelník ABCDEF z rov-
nostranného trojúhelníku АСЕ o straně 2 přidáním shod-
ných rovnoramenných trojúhelníků ABC, CDE a EFA
(se základnami АС, СЕ, EA). Výšku těchto trojúhelníků
zvolme tak, aby platilo \AD\ = \CF\ = \EB\ = 2 (obr. 59).
Všechny strany takového šestiúhelníku mají velikost \AB\ =
—

a > 1, všechny úhlopříčky kromě BD, DF, FB mají
velikost 2.

Snadno ukážeme, že \BD\ = \DF\ = \FB\ < 2. V troj-
úhelníku ABD je \<$DAB\ < a < \<$ABD\, a proto
\BD\ < \AD\ = 2.

Dokonce můžeme šestiúhelník zmenšit v podobnosti tak,
aby délka strany zůstala větší než jedna ^např. v poměru
a —

—— ), ale všechny úhlopříčky měly délku menší než dvě
a /

Na druhou otázku je odpověď kladná. Uveďme řešení dle
M. Konečného.
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Předpokládejme naopak, že \AD\ > 2, \BE\ > 2, |CF| >
> 2, ale všechny strany mají délku nejvýše 1. Jsou-li <p, z, a

úhly podle obr. 60, pak d(B, AE) ^ |ЛВ| ^ 1, takže sine =
d(B,AE) I ; podobně dostaneme i nerovnost sin a < |

tedy £ < 30°, o < 30°, a proto = o -f z < 60°.
<\EB\ 2 ’

Obdobně dokážeme, že i druhé dvě dvojice úhlopříček
AD, CF a BE, CF svírají úhel menší než 60°. To je ale
spor, neboť součet těchto tří úhlů je 180°.

5.7 Označme čísla na kružnici po řadě a\, a2, ..., an.
Dotaz je tříprvková množina T C {1,2, ...,n}, odpovědí
na dotaz T je součin sj — П a*- Chceme-li dokázat, že

i€T

к určení součinu s = fl ai stačí a je potřeba p dotazů,
i=i

musíme dokázat dvě věci:

(I) Existuje systém tříprvkových množin T С {T: T C
C {1,2,..., n), |T| = 3} takový, že |T| й p, a zá-
roven pro každé dvě n-tice (ai,..., an), (bi,...,bn) G
G { —1, l}n, kde PJ a{ = П Pro všechna ť G T, platí

*e t *gt

П0* ~ ПЬг
1=1*=1

(II) Pro každý systém dotazů T С {T: T C {l,2,...,n},
|T| = 3} takový, že \T\ < p, existují dvě n-tice
(ai,...,an), (61,..., bn) G {-l,l}n, pro něž

П a‘ = П6-
*€T *£T
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pro každé T G Т, ale
П П

Па‘ ^ Yl 6*
i=l t=i

Nejjednodušší způsob, jak zařídit část (I), je najít takový
systém T, že

П

П Па- = Па' (1)
тег ígt

Položíme-li t{ = |{T: а,- G T G T}|, pak

i=i

П

П Па< = Па!'
тепет t=i

П

což je rovno J~[ cti, pokud ti = 1 (mod 2) pro každé i,
i = 1

tj. pokud každé číslo аг leží v lichém počtu dotazů. Je
možná překvapující, že tento jednoduchý postup vede vždy
к minimálnímu počtu dotazů.

Řešení. Úplná odpověď je vyjádřena tabulkou

n = 1 (mod 3)
Л n > 4

n = 2 (mod 3)
(mod 3)

n = 4n = 0

(mod 3)
n-f4n + 2(a) « 4

33 3

(b) n 4n n
3

n = 0 (mod 3). Aby bylo lze jednoznačně určit součin
všech čísel, musí se každé číslo vyskytnout alespoň v jednom
dotazu (jinak stačí změnit znaménko u čísla, jež se v žádném
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dotazu nevyskytuje). Proto je vždy potřeba alespoň p ^ |
dotazů. Je-li n dělitelné třemi, splňuje systém dotazů T =
= {{1,2,3}, {4,5,6}, ..., {n — 2, n — 1, n}} podmínku (I),
a tedy p = ^ jak v případě (a), tak i v případě (b).

(b), n ^ 0 (mod 3). Jsou-li povoleny pouze dotazy na
čísla jdoucí po sobě, je maximální možný systém dotazů

{{1,2,3}, {2,3,4}, 1,2}}.T,max

|T| < |Tmax|, je bez újmy na obecnostiJe-li T C Tr
T С T' = Tmax \ {{1,2,3}}. Ukážeme, že pro T' (a tudíž
i pro T) platí tvrzení z (II): za jednu n-tici zvolíme např.

max j

cti = a2 = ... = an = 1, v druhé položíme

+ 1 pro i = 4, 7, ..., n,

jinak,
bi =

-1

pokud n = 1 (mod 3), a

n — 2 a i = 1pro г z= 3, 6, .

jinak,

+ 1 * *>

bi =
-1

je-li n = 2 (mod 3).
V obou těchto případech je

П к = П 6. = i
t€Ti'£T

pro každé T £ T', ale

n<*i=i # -i=
z—ii=i
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Proto je nutně potřeba p^. n = |7^ах| dotazů.
Ovšem n dotazů stačí, protože pro Tmax je

П п°. = гк = п cti.

TĚTmix l£T

(a), n = 1 (mod 3). Pro n — 4 je každý dotaz typu (b),
a podle již dokázaného je p = 4.

Pro n > 4 potřebujeme p ^ tedy p ^ ^±1
dotazů, přičemž tento počet dotazů stačí. Systém T =
= {{1,2,3}, {1,4,5}, {1,6,7}, {8,9,10}, ..., {n - 2,n -
— 1, n}} má mohutnost a splňuje

i=i »=i

ПП «i П аг - П aiai =

тег ígt

(a), n = 2 (mod 3). Opět potřebujeme alespoň =
= dotazů, abychom se na každé číslo dotázali ales-
poň jednou. Tentokrát však tento počet nestačí. Mějme
totiž systém T mohutnosti Aby pro každé i £
£ {1,2,..., n) existovalo T £ T obsahující i, bez újmy
na obecnosti musí být (jinak pozice přečíslujeme) T =
= {{1,2,3}, {1,4,5}, {6,7,8},..., {n — 2, n — 1, n}}. Pak
ale n-tice

i — 2 t = l

ai = + 1 pro г = 1, 2, ..., n

pro * = 1,2, 4,
jinak

-1
bi =

+ 1

splňují
ГТ- = П^ = 1
i£T *€T
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pro každé T £ Т, ale

П П

Ца, = 1#-1 = ЦЬ-
1 = 1 1 = 1

Tudíž je třeba p ^ ^4^4 dotazů. Tento počet dotazů sta-
čí, viz např. T = {{1,2,3},{1,2,4},{1,2,5}.{6,7,8},..
{n — 2, n — 1, n}}, kterýžto systém splňuje (1).

• >
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32. Mezinárodní matematická olympiáda

se konala ve dnech 12.-23. července v univerzitním měs-

tě Uppsala a v malém městečku Sigtuna ve Švédsku. Zú-
častnilo se jí 318 studentů z 56 zemí. Československo se
v neoficiálním pořadí družstev umístilo na 11. místě, na

prvních pěti místech se umístila družstva SSSR, Cíny, Ru-
munska, Německa a USA. I když jsme v předcházejících
letech skončili lépe (v Číně na 8. místě, v roce 1989 v SRN
na 6. místě), není možné hodnotit 11. místo před Francií,
Polskem, Velkou Británií a dalšími zeměmi negativně. Sku-
tečnost, že jsme se od roku 1985 vždy zařadili mezi prvních
12 zemí svědčí o dobré práci v československé matematické
olympiádě i o pěkné úrovni našeho školství.

Mezinárodní matematická olympiáda je především soutě-
ží jednotlivců. Výsledky našich žáků na 32. MMO ukazuje
tabulka na další straně.

Vedoucím československé delegace byl doc. dr. Leo Во-
ček, CSc. z MFF UK v Praze, zástupce vedoucího byl
doc. dr. Tomáš Hecht, CSc. z MFF UK v Bratislavě.
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Umístění Body za úlohu Celkem Cena
1 2 3 4 5 6

7 7 3 7 7 721.-23. Michal Stehlík,
3. roč. gymnázia,
Brno, tř. kpt. Jaroše

34.-38. Michal Konečný,
4. roč. gymnázia,
Brno, tř. kpt. Jaroše

47.-53. Michal Kubeček,
3. roč. gymnázium,
Praha, Korunní

58.-60. Richard Kollár,
3. roč. gymnázia
A. Markuša, Bratislava

96.-104. Štěpán Kasal,
4. roč. gymnázia,
Praha, Korunní

162.-169. Viliam Búr,
2. roč. gymnázia
A. Markuša, Bratislava

II.38

II.7 7 5 7 4 7 37

7 4 3 7 7 7 II.35

7 7 3 7 7 2 II.33

III.0 2 3 7 7 7 26

0 3 4 0 7 3 17

Celkem 28 30 21 35 39 33 186

Texty soutěžních úloh
(v závorce je vždy uvedena země, která úlohu navrhla)

1. Je dán trojúhelník ABC, označme I střed kružnice mu

vepsané. Osy vnitřních úhlů trojúhelníku ABC ve vrcho-
lech А, В, C protínají protější stranu po řadě v bodech A
B', C. Dokažte, že

/

\AI\ ■ \BI\ ■ \CI\1
< —

,

4 ' \AA'\ ■ \BB'\• \CC'\ = 27' (SSSR)- <

2. Nechť n je přirozené číslo větší než 6 a a-i, аг, ..., a*,
všechna ta přirozená čísla, která jsou menší než n a každé
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je s číslem n nesoudělné. Je-li

«2 — al — <Z3 — 02 — • • — Gtfc — Ofc-i > О,

je n prvočíslo nebo mocnina čísla 2 s přirozeným exponen-
tem. Dokažte.

(Rumunsko)3.Nechť S = {1, 2,3,..., 280}. Určete nejmenší přirozené
číslo n s touto vlastností: Každá n-prvková podmnožina
množiny S obsahuje 5 čísel, které jsou po dvou nesoudělná.

(Čína)4.G je souvislý graf s к hranami. Dokažte, že je možné
hrany očíslovat použitím všech čísel 1,2, 3,..., к tak, že pro

každý vrchol grafu G platí: Sbíhají-li se v tomto vrcholu dvě
nebo více hran, je největší společný dělitel všech jejich čísel
roven 1.

[Každý graf G se skládá z množiny bodů, tzv. vrcholů,
a z množiny hran, spojujících určité dvojice různých vrcho-
lů. Přitom je každá dvojice různých vrcholů spojena nejvýše
jednou hranou. Graf G se nazývá souvislý, jestliže ke každé
dvojici (x,y) různých vrcholů existuje posloupnost vrcholů
x = vo, v\, V2, ..., vm = у tak, že každá dvojice (ví, v,-+i),
(0 ^ * < m) je spojena hranou.]

(USA)5.Nechť P je libovolný vnitřní bod trojúhelníku ABC.
Dokažte, že aspoň jeden z úhlů PAB, PBC, PCA je menší
nebo roven 30°.

(Francie)
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6. Nekonečná posloupnost xo, x\, x-i, ■.. reálných čísel se

nazývá ohraničená, existuje-li konstanta C tak, že |ar* |
^ C pro všechna i ^ 0.

Nechť a je libovolné reálné číslo větší než 1. Sestrojte
ohraničenou nekonečnou posloupnost reálných čísel xq, x\,

X2, ... tak, aby pro každou dvojici různých, celých a nezá-
porných čísel i,j platilo

IXi - Xj I |ť - j\a ^ 1.

(Nizozemí)

Řešení úloh

1. Označme S obsah trojúhelníku ABC, r poloměr mu

vepsané kružnice, a, b, c délky jeho stran a u, v, w příslušné
výšky. Pak je

\CI\ w — r r rc

\CC'\
a analogicky pro

25w w

\BI\ \AI I
\ВВ'У \AA'\'

Užitím nerovnosti mezi geometrickým a aritmetickým prů-
měrem těchto hodnot dostáváme

\AI\ ■ \B1\ ■ \CI\ rbrc ra
<1 - —

\AA'\ ■ \BB'\ ■ \CC'\ 25 25 25

3 _ r(a + fc + c)\31
< _

= 27 25

1 (3 _ 2£\3
27 V 25 J

8

27
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čímž je dokázána pravá nerovnost. К důkazu levé nerovnosti
použijeme ještě tuto úpravu:

r(a + b)rc
_ r(o + 6 + c) - rc a-\-b

r(a + b + c) a + b + c25 25

podobně

rb b + ca + c ra
1 - —=

25 a -f- b + c 25 o T b -(- c

Máme tedy dokázat, že 4(a + c)(6 + c)(a + b) > (a + b + c)3.
To je však přímým důsledkem nerovností

(a -f b — c)c2 >0, (6 + c — a)a2 > 0,
(c + a — b)b2 > 0, 2abc > 0,

jejich sečtením dostaneme dokazovanou levou nerovnost.

2. Je zřejmě a\ = l,a^ = n— 1. Rozlišme nyní tři případy:
a) 02 = 2, potom aj = j pro j = 1, 2,..., n — 1. Pak není

číslo n dělitelné žádným menším přirozeným číslem, je
tedy n prvočíslo.

b) 02 = 3, potom Oj = 2j — 1, j = 1, 2, ..., ^n. To znamená,
že n není dělitelné žádným lichým přirozeným číslem, je
tedy n mocninou čísla 2.

c) 02 > 3, pak jsou čísla 2, 3 s číslem n soudělná, je tedy
n — 6m, m přirozené a větší než 1. Označme 02 — ai =
= d > 2. Je pak n — l = 1 )d, to znamená, že
číslo 02 — 1 dělí číslo n — 2. Číslo 02 není dělitelné třemi,
je tedy 02 = 3/ + 1 nebo 3/ + 2. V prvním případě dělí
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číslo 3/ číslo n — 2, takže je n — 2 dělitelné třemi. Avšak
číslo n je rovněž dělitelné třemi, což je spor. V druhém
případě je ai = 1, a2 = 3/ -f 2, takže аз = 6/ + 3, což je
opět spor, protože čísla аз = 3(2/ + 1) a n — 6m mají
být nesoudělná.

Pro přirozené číslo n zbývají tedy pouze možnosti uvede-
né pod body a), b), což jsme měli dokázat.

К důkazu sporu v případě c) jsme potřebovali, aby po-

sloupnost ai, a2,..., a* byla aspoň tříčlenná. Není tomu
tak pro n = 6, což je však podle předpokladu vyloučené.
Předpokládejme, že n > 6 a že a2 = n — 1. To znamená, že
je n dělitelné každým prvočíslem menším než n — 1, nechť
jsou to prvočísla 2,3,5,..., p (2 < 3 < 5 < • •• < p).
Kdyby n — 1 nebylo prvočíslem, existoval by jeho prvočíselný
dělitel r, ten by byl menší než n — 1 a dělil by tedy i číslo n,
což je spor. Musí být tedy n — 1 prvočíslo následující po

prvočíslu p. Je tedy n = 2Г2 • 3Гз • .. . • prp, kde rř ^ 1, takže
q = 2 • 3 •.. . • p — 1 <í 2Гз • 3Гз •. .. • рГр — 1 = n — 1. Číslo q není
dělitelné žádným z prvočísel menších než n — 1, je ale menší
než n, musí být tedy dělitelné prvočíslem n — 1, a proto se

přímo rovná číslu n — 1, tj. rz- = 1 pro i = 2, 3,,p, n =
= 2 • 3 • ... • p. Číslo ^-(-4 — n + 3 = 3(2 • 5 • ... • p + 1)
není dělitelné žádným z prvočísel 2, 5, ..., p, n— 1, musí být
proto mocninou tří, takže n = 3l — 3 = 3(3,_1 — 1), n — 1 =
= 3ř - 4. Je-li / sudé, je n — 1 = 325 — 4 = (33 — 2)(3* + 2).
Víme, že n — 1 je prvočíslo, proto s = 1, n = 6, což je ve

sporu s předpokladem n > 6. Je-li / liché, je n = 3(32s —
— 1) = 3(33 — 1)(3Л + .1). Pak je ale n dělitelné čtyřmi, což
je ve sporu s tím, že n = 2 • 3 • ... • p. Je tedy vždy к ^ 3.
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3. Označme A2 množinu všech sudých čísel množiny S,
podobně A3, A5 a A7 množinu všech násobků tří, pěti
a sedmi z množiny S. Zřejmě se počet |A2| všech prvků
množiny A2 rovná 140, |A31 = 93, |A51 = 56, |A7I = 40.
Dále je |A2 П A3| = 46, protože A2 П A3 je množina všech
těch čísel z S, která jsou dělitelná šesti. Podobně |A2 П A5 П
П A7I = 4, |A2 П A3 П A5 П A7| = 1. Podle principu inkluze
a exkluze platí pro počet |A| množiny A = А2иАзиАбиА7
vztah

|A| — |A2| + I A31 4- IA51 4- IA71 — |A2 П Аз| — • • • -f
4~ |A2 П A3 П A51 4- • • • — |A2 П A3 П A5 П A71

takže IАI = 216. Zvolíme-li v A libovolně pět čísel, musejí
dvě z nich patřit do jedné z množin A2, A3, A5, A7, a jsou
tedy nutně soudělná. Tím jsme dokázali, že hledané n je
větší než 216. Ukážeme, že n = 217. Za tím účelem roz-

dělíme množinu S na dvě disjunktní množiny В, C tak,
že do množiny В budou patřit všechna čísla složená, a do
množiny C číslo 1 a všechna prvočísla. To znamená, že do В
patří všechna čísla z A kromě čísel 2,3,5 a 7, dále patří do В
tyto násobky jedenácti: 112, 1113,1117,1119,11-23, atyto
násobky třinácti: 132, 13 • 17, 13 • 19. Vidíme, že množina В
obsahuje 216-44-8 = 220 čísel, do množiny C patří 60 čísel
(číslo 1 a 59 prvočísel, jak bychom mohli vyčíst z tabulky
prvočísel). Vezmeme nyní libovolnou množinu T C S, která
má 217 prvků. Ukážeme, že množina T obsahuje 5 čísel, jež
jsou po dvou nesoudělná. Obsahuje-li množina T pět čísel
z C, tvoří těchto pět čísel takovou pětici. V opačném případě
obsahuje T nejvýše 4 prvky z C a tedy aspoň 213 prvků

211



z В. Jinak řečeno — množina В obsahuje nejvýše sedm
prvků, které nepatří do T. Můžeme také říci, že z každých
osmi složených čísel menších než 281 patří aspoň jedno do
množiny T. Dál stačí dokonce uvažovat jen 40 čísel z B,
která jsou součinem dvou prvočísel, a sdružit je do osmi
pětic tak, aby v každé pětici byla čísla po dvou nesoudělná,
například takto:

{2 -47, 3-43, 5 -41, 7 • 37, 11 23},
{2 - 43, 3 - 41, 5 37, 7 31, 11 • 19},
{2 - 41, 3 37, 5 31, 7 29, 11 17},
{2-37, 3-31, 5 -29, 7 - 23, 11 13},
{2- 31, 3 - 29, 5 • 23, 7 19, 13 17},
{2 - 29, 3-23, 5 19, 7 • 17, 13 - 19},
{2 • 23, 3 19, 5 17, 7 13, ll2},
{2 19, 3 17, 5 ■ 43, 7 11, 132}-

Kdyby žádná z těchto pětic nebyla obsažena v T, existo-
válo by v každé pětici číslo nepatřící do T. Dostali bychom
tak osm složených čísel z S, která by nepatřila do T. To je
však spor s výše odvozenou vlastností množiny T. Výsledek
je tedy n = 217.

Tato úloha měla na 32. MMO zvláštní osud. Jistě jste si
povšimli, že vybrání \0 součinů a jejich rozdělení do osmi
pětic je možné provést mnoha způsoby. Všichni soutěžící
z družstva KLDR to však měli provedeno stejným způsobem,
a to tak, jak bylo uvedeno ve vzorovém řešení předloženém
čínskou delegací. Po dlouhém jednání mezinárodní poroty
bylo družstvo KLDR diskvalifikováno. Naši žáci vyřešili prv-
ní část úlohy, tedy dokázali, že n > 216. Nikdo z nich však
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nedokázal druhou, podstatnější část, že n — 217. O to víc je
třeba ocenit všechny ty soutěžící z dalších zemí, kteří dosáhli
za tuto těžkou úlohu plný počet, tj. 7 bodů.

4. Vyjdeme z některého vrcholu grafu po některé ces-
tě grafu, přešlé hrany číslujeme čísly 1, 2, .

dlouho, až dojdeme do vrcholu, z něhož už nevede žádná
neočíslovaná hrana. Pro všechny prošlé vrcholy je podmiň-
ka úlohy splněna, neboť z prvního vrcholu vychází hrana
číslo 1, z dalších vrcholů vycházejí hrany očíslované dvěma
za sebou jdoucími přirozenými čísly, a totéž platí i pro

poslední vrchol. (Jde o vrchol, z něhož vychází jen jedna
hrana, neboje to vrchol, kterým jsme již prošli.) Nejsou-li
všechny hrany očíslované, existuje cesta v grafu, která tuto
hranu obsahuje, přičemž žádná hrana této cesty není ještě
očíslovaná a cesta vychází z některého vrcholu, který jsme
již prošli. Jednotlivé hrany grafu opět očíslujeme po řadě
dalšími, zatím nepoužitými čísly. Všechny vrcholy prošlé při
této cestě opět splňují podmínky úlohy. Takto pokračujeme,
až vyčerpáme všechny hrany a všechna přirozená čísla /, pro
která je / 5; k. Poznamenejme, že v případě nesouvislého
grafu není možné hrany očíslovat požadovaným způsobem,
stačí vzít graf z obr. 61.

a to tak* ’)
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5. Označme p, гр, to úhly PAB, PBC, PCA (obr. 62)
a předpokládejme, že každý z nich je větší než 30°. Dále

označme ot, (3, 7 velikosti úhlů САР, АВР, BCP а и, v, w

délky úseček PA, PB, PC. Podle sinové věty je
и sin /3 w sin 7

v sin<£>’ и sin гр ’ и sinu;
w sin a

takže

sin a sin (3 sin 7 = sin p sin гр sin и.

Kdyby byl některý z úhlů a, (3, 7, p, ip, u> větší, nebo
roven 150°, byl by jeden z úhlů trojúhelníku ABC větší
než 150°, aspoň jeden ze zbývajících by musel být menší
než 30°, takže by nemohly být úhly p, гр, ш větší než 30°.
Jelikož je tedy р,гр,ш £ (30°, 150°), je sin p sin гр sinu; >
Proto je

• \ 3
sin ct +sin/? + sin7^ <1

— < sin a sin (3 sin 7 ^
8 3

. a + (3 + 7\3< sm
3
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takže
a + /3 + 7

> 30°.
3

Je tedy <p + -ф + ш > 90°, a + /3 + 7 > 90°, ale a + /3 -f 7 +
-f <p + ф -f u) — 180°, což je spor.

6. Uvedeme nejdříve řešení, které podal náš soutěžící Stě-
pán Kasal. Vychází z nerovnosti

1 1

Ja 2a ^
1 a

a — 1 ’

která platí pro každé a > 1 a každé přirozené číslo n. К
důkazu se použije nevlastního integrálu z funkce у = x~a
přes interval (1,-foo). Uvažujme interval J = (0, ^j-) a de-
finujme xo = 0. Další členy posloupnosti xo, xi, ... definu-
jeme v J rekurentně. Předpokládejme, že jsme již definovali
členy жо, a?i, ..., xn tak, aby vyhovovaly podmínce úlohy.
Pro další člen xn+i má platit

1
Fn+i - xk\ > к = 0,1,..., npro

(n + 1 — k)a

tedy

1 1
Zrz + l & i Xk- a'Xk +(n + 1 — k) (n + 1 — k)a

Uvažujme tedy množinu

M„ = J - U J„
k=o
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Je to množina neprázdná, protože součet délek interva-
lu Jn,0j Jn,l> • • •) Jn,n je

2 22

(n + l)a + na + ••+77
la ’

a tedy menší než délka intervalu J, takže je Mn neprázdná.
Kromě toho jsou intervaly Jn ^ otevřené, takže Mn je uza-
vřená. Položíme-li xn+i = minMn, splňuje posloupnost x0,

x\, x?, ... podmínky úlohy.
Ve vzorovém řešení nizozemské delegace, která úlohu na-

vrhla, je hledaná posloupnost dána explicitně takto: Každé
přirozené číslo i vyjádříme v dvojkové soustavě,

i — bo b\ ■ 2 &2 ' 22 +- • • • +- bk2k,

pak položme

b 2 bk
+

22a н ^ 2ka ) 'Xi =
2a -

Je pak

2a2a - 1 1
0 ^ xí < 2 l1 + F 2a -22a -

takže Xi tvoří posloupnost omezenou. Podobně, i když tro-
chu složitěji se dokáže, že pro i ф j je

1
I Xi - Xj I ^ I*- j\a'
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Třetí mezinárodní olympiáda v informatice

Ve dnech 19.-25. 5. 1991 se v Řecku konala 3. mezinárod-
ní olympiáda v informatice. Po počátečních nejasnostech,
které v minulých letech provázely vznik a formování této
nejmladší mezinárodní olympiády středoškoláků, získala již
soutěž jasný organizační řád. Dostala se tak do rovnocen-
ného postavení s mezinárodní matematickou olympiádou,
mezinárodní fyzikální olympiádou a dalšími podobnými me-
zinárodními soutěžemi studentů středních škol. Tato pozice
mezinárodní olympiády v informatice byla potvrzena i sku-
tečností, že nad ní převzala záštitu organizace UNESCO.
Pracovník UNESCA odpovědný za výchovu a vzdělávání
v matematice a informatice byl také osobně přítomen po
celou dobu soutěže v Řecku.

Třetí mezinárodní olympiády v informatice se zúčastnili
soutěžící z 23 zemí, mezi nimi také z Československa. V tom-
to ročníku byla soutěžní družstva mimořádně pouze tříčlen-
ná, od příštího ročníku se počítá již opět s družstvy čtyř-
člennými. Každé soutěžní družstvo bylo doprovázeno svým
vedoucím a jeho zástupcem. Olympiády se dále zúčastnili
pozorovatelé z dalších dvou zemí (Finsko, Írán), které by
se od budoucího ročníku chtěly do soutěže zapojit aktivně
se soutěžními družstvy, a již zmíněný delegát mezinárodní
organizace UNESCO.
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Ze strany organizátorů byla soutěž připravena a zajištěna
vynikajícím způsobem. Místem konání byl přímořský hotel
Helios ležící nedaleko od města Anavissos asi 50 km jižně od
Athén. Na prvotřídní úrovni bylo ubytování a stravování,
bohatý doprovodný program pro volný čas i zajištění do-
statečného množství kvalitní výpočetní techniky pro soutěž
i pro volnou práci všech účastníků. Řecko je zemí s bohatou
kulturní tradicí a organizátoři olympiády věnovali velkou
péči tomu, aby se s kulturním bohatstvím země mohli všich-
ni účastníci seznámit. Hned na úvod pro nás připravili ná-
vštěvu Athén, jejíž hlavní součástí byla prohlídka Akropolis
spojená s odborným výkladem místních průvodců. Řecká
lidová kultura byla prezentována na řadě večerních vy-

stoupení pěveckých, hudebních a tanečních souborů. Řecko
je také zemí s krásnou přírodou, zajímavou architekturou,
s mořem a mnoha ostrovy. Všechny tyto krásy hostitelské
země jsme mohli poznat na procházkách do okolí hotelu, při
výletu na jih poloostrova Attika do přímořského střediska
Sounio a zejména na celodenním výletu lodí po ostrovech
ležících v Egejském moři.

Mezinárodní olympiáda v informatice je orientována tro-
chu jinak než naše kategorie P matematické olympiády. Je
zaměřena na řešení daných problémů přímo na počítači,
kdy hlavním cílem soutěže je vytvoření úplných fungují-
cích programů. Soutěž probíhá ve dvou soutěžních dnech,
v každém z nich řeší soutěžící jednu úlohu. Ke své práci
má každý к dispozici osobní počítač typu IBM PC/XT,
běžné systémové programové vybavení (seznam překladačů
programovacích jazyků je předem znám) a každý den čtyři
hodiny času na práci. Výběr soutěžních úloh provádí na
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místě mezinárodní jury na základě návrhů, které předem
zaslaly jednotlivé účastnické země. Členové jury také pro-

gramy ihned ohodnotí a na závěr soutěže vyhlásí výsledky.
Výše uvedenému zaměření celé soutěže odpovídá i cha-

rakter soutěžních úloh. Pro 3. mezinárodní olympiádu v in-
formatice vybrala jury následující dvě úlohy. Z prostoro-
vých důvodů je zde uvádíme v poněkud zkráceném znění
bez ilustrujících příkladů, obrázků, poznámek a informací
o způsobu hodnocení.

Texty soutěžních úloh

Úloha 1.

Očíslujte políčka v matici 5x5 čísly od 1 do 25 následujícím
způsobem. Je-li číslo i (1 i < 25) přiřazeno políčku o sou-
řadnicích (x, y), pak číslo г+l bude přiřazeno právě jednomu
políčku se souřadnicemi (z,w), kde г, w jsou určeny podle
některého z těchto pravidel:

(z,w) = (x± 3,y)
(Z,w) = (x,y± 3)
(z,w) = (x± 2,y± 2)

(1)
(2)
(3)

a) Napište program, který najde jedno z možných očíslová-
ní matice 5x5 pro zadanou počáteční pozici (počáteční
pozici je přiřazeno číslo 1).

b) Napište program, který určí a vypíše počet možných
očíslování matice pro každou jednu počáteční pozici.
Uvažujte počáteční pozice, které leží v pravé horní po-
lovině matice včetně hlavní diagonály.
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Příklad: Je-li zadána počáteční pozice (2,2), potom dalším
políčkem, kterému lze přiřadit číslo 2, bude jedno z políček
o souřadnicích (2,5), (5,2), (4,4).
Úloha 2.

5-term je posloupnost znaků 5 a závorek definovaná rekur-
zívne takto:

1. 5 je 5-term,
2. jsou-li M, N dva 5-termy, potom také (MN) je 5-term.
Příklad 5-termu:

((((55)(55))5)(55))

Jelikož pravé závorky nenesou žádnou informaci, mohou se

vynechat, tzn. namísto (MN) je možné psát (MN. Před-
cházející příklad lze tedy zapsat ve tvaru:

((((SS(SSS(SS

1. Napište proceduru GENSTERM, která generuje 5-ter-
my. Vaše procedura bude vytvářet N souborů (kde
N je délka, tj. počet znaků 5), které obsahují všechny
5-termy délek 1. První soubor obsahuje 5-termy
délky 1, druhý délky 2, atd. Jednotlivé 5-termy jsou
odděleny znakem ‘; ’, za posledním 5-termem je uveden
znak ‘. ’. Napište program, který přečte číslo N (N 5Í
^ 10) a s použitím procedury GENSTERM zobrazí na
obrazovce všechny vygenerované 5-termy.

Definujme kalkulus nad 5-termy. Jediné algebraické pra-
vidlo (tzv. 5-pravidlo) zní: libovolný podterm tvaru
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(((5A)f?)C), kde А, В, С jsou 5-termy, může být nahrazen
podtermem ((AC)(BC)), tj.

... (((5Л)В)С) ... - ... ((AC)(BC)) ...

Aplikaci 5-pravidla na 5-term nazveme redukcí 5-termu.
Existují různé způsoby (strategie) výběru podtermu, na
který aplikujeme 5-pravidlo. Postupné opakování aplikace
5-pravidla na 5-term probíhající tak dlouho, až žádná další
redukce není možná, nazveme normalizací 5-termu.
2. Zvolte takovou datovou strukturu pro reprezentaci

5-termů, která bude vhodná na provádění redukcí.
Napište procedury READTERM a PRINTTERM, které
transformují 5-termy z tvaru generovaného procedu-
rou GENSTERM do vaší reprezentace a naopak. Váš
program musí dávat možnost testovat tyto procedury
samostatně (zobrazovat jejich vstupy a výstupy).

3. Napište proceduru REDUKCE, která provádí jednu re-
dukci pomocí 5-pravidla na specifikovaný podterm da-
ného 5-termu. Váš program musí dávat možnost před-
vést výsledek této procedury.

4. Napište proceduru NORMALIZE. Tato procedura v za-
daném 5-termu opakovaně vyhledává podterm použitel-
ný к redukci 5-pravidlem tak dlouho, až další redukce
není možná nebo až počet provedených redukcí překročí
dané maximum, např. 30. Váš program musí mít mož-
nost předvést efekt této procedury.

5. Nakonec spojte všechno do programu, který
a) vyžádá od uživatele číslo N
b) použije 5-termy délky N vygenerované procedurou

GENSTERM
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c) převede 5-termy do vaší reprezentace
d) normalizuje je (pokud to je možné)
e) vypíše výsledné (normalizované) S-termy
f) vypíše počet redukcí použitých pro každý .S-term

nebo hlášení “NOT NORMALIZED” v případě, že
se normalizaci nepodaří provést do 30 kroků

g) vypíše počet nenormalizovaných S-termů a počet
všech S-termů dané délky N.

Soutěž byla provázena také zasedáním vedoucích všech
delegací zúčastněných zemí. Na těchto zasedáních byla po-
tvrzena a pro příští ročníky mezinárodní olympiády v infor-
matice mírně upravena soutěžní pravidla. Bylo rozhodnuto
o vytvoření stálého mezinárodního koordinačního centra,
které bude řídit pravidelné každoroční pořádání soutěže.
Zároveň bylo rozhodnuto o zajištění dalších ročníků olym-
piády. Příští, v pořadí čtvrtá mezinárodní olympiáda v in-
formatice se bude konat v červenci 1992 v Bonnu, pátou
mezinárodní olympiádu v informatice uspořádá v roce 1993
Argentina.

Československé družstvo se zúčastnilo všech mezinárod-
nich olympiád v informatice, které se dosud konaly. Výběr
účastníků 3. mezinárodní olympiády v informatice jsme
provedli na základě výsledků celostátního kola 39. ročníku
matematické olympiády - kategorie P, neboť jména sou-
těžících bylo nutné oznámit ještě před termínem konání
celostátního kola aktuálního 40. ročníku MO kategorie P.
Pozdější výsledky 40. ročníku MO kategorie P a zejména
naše úspěšné vystoupení v Řecku potvrdily, že byl výběr
proveden správně. Československo bylo reprezentováno sou-
těžním družstvem ve složení:
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Stepán Kasal, 4. г., gymnázium, Korunní, Praha
Igor Malý, 4. r., gymnázium J.Hronca, Bratislava
Matěj Ondrušek, 2. r., gymnázium J. Hronca, Bratislava

Vedením československého družstva byli pověřeni RNDr.
Peter Tomcsányi z MFF UK v Bratislavě a RNDr. Pavel
Tópfer, CSc. z MFF UK v Praze.

Naši soutěžící se na soutěž velmi svědomitě připravili
a v Řecku odvedli výborný výkon. Igor Malý získal I. cenu
a navíc se stal absolutním vítězem soutěže. V hodnocení

získal celkem 196 bodů z 200 možných a zvítězil s poměrně
velkým sedmibodovým náskokem před druhým Číňanem
Cheng Yangem (189 bodů) a třetím Maďarem Zoltánem
Tyranyim (187 bodů). Další dva naši soutěžící Stepán Kasal
a Matěj Ondrušek získali shodně 136 bodů, což představo-
válo pro oba II. cenu a velmi pěkné 13.-16. místo v celkovém
pořadí. V neoficiální soutěži družstev obsadilo Ceskosloven-
sko vynikající 2. místo (468 bodů) za vítěznou reprezentací
Cíny (499 bodů) a před třetím v pořadí družstvem Jugoslá-
vie (451 bodů).

Pavel Tópfer
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