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O průběhu 41. ročníku matematické olympiády

Soutěž Matematická olympiáda ve školním roce 1991/92 pořádaly pro
žáky středních a základních škol Ministerstvo školství, mládeže a tělový-
chovy ČR, Ministerstvo školství, mládeže a sportu SR ve spolupráci s Jed-
notou českých matematiků a fyziků, Jednotou slovenských matematiků
a fyziků a Matematickým ústavem ČSAV. Soutěž řídil ústřední výbor ma-
tematické olympiády (ÚV MO) prostřednictvím oblastních a okresních
výborů matematické olympiády.

Cílem soutěže je vyhledávání žáků talentovaných v matematice, pro-
bouzení jejich hlubšího zájmu o matematiku a rozvíjení jejich matema-
tických schopností. Ve školním roce 1991/92 se uskutečnil její 41. ročník.

Ústřední výbor MO pracoval ve složení, v němž byl jmenován mi-
nisterstvy školství ČR a SR na pětileté období při zahájení 39. ročníku.
Předsedou ÚV MO byl doc. dr. Leo Boček, CSc., z MFF UK v Praze,
tajemníky byli dr. Karel Horák, CSc., z MÚ ČSAV v Praze a dr. Jiří
Binder, CSc., z PF UK v Praze.

V průběhu 41. ročníku MO se konala dvě zasedání ÚV MO, první dne
9. prosince 1991 v Brně, druhé 6.-7. dubna 1992 v Bílovci při celostátním
kole kategorie A. Bylo projednáváno hodnocení průběhu soutěže, zabez-
pečení celostátních soustředění úspěšných řešitelů MO včetně soustředění
pro přípravu na MMO, korespondenční seminář ÚV MO a organizace
dalších kol soutěže. Byla diskutována vhodnost výběru úloh MO.

V organizaci vlastní soutěže nedošlo к žádným změnám. Pro žáky
základních škol byla soutěž rozdělena do pěti kategorií Z4, Z5, Z6, Z7
a Z8, které byly určeny postupně žákům 4. až 8. ročníku. Podrobnosti
mohou najít zájemci v brožurce M. Koman a kol.: Ц. ročník MO na
základních školách, jejíž vydání se rovněž připravuje.

Pro žáky středních škol byla soutěž organizována ve čtyřech kategori-
ích А, В, С a P. Kategorie A byla určena žákům 3. a 4. ročníků středních
škol, kategorie В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci
1. ročníků. Pro žáky všech tříd středních škol byla určena ještě katego-
rie P, zaměřená na úlohy z programování a matematické informatiky.
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V kategoriích А, В a C má I. kolo dvě části. V první části řeší soutěžící
6 úloh doma nebo v matematických kroužcích a mohou se přitom radit se

svými učiteli, vedoucími kroužků apod. Druhá část má formu klauzurní
práce, v níž řeší žáci tři úlohy v omezeném čase 4 hodin. Řešitelé, kteří
úspěšně projdou prvním kolem, jsou pozváni do druhého (oblastního)
kola soutěže, kde řeší čtyři úlohy opět v limitu čtyř hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo. V něm je
vlastní soutěž rozdělena do dvou dnů. V kategorii A řeší soutěžící každý
den tři úlohy v časovém limitu čtyři hodiny, v kategorii P ve stejném
limitu vždy dvě úlohy.

Celostátní kolo 41. ročníku se uskutečnilo v Bílovci ve dnech 5.-8. dub-
na 1992 (kat. A) a 8.-11. dubna 1992 (kat. P). Na zabezpečení soutěže
včetně bohatého doprovodného programu pro soutěžící i členy ÚV MO se
obětavě podíleli členové oblastního výboru MO Severní Moravy, pracov-
níci matematických kateder přírodovědecké fakulty Palackého univerzity
v Olomouci a zejména profesoři a pedagogický sbor gymnázia Mikuláše
Koperníka v Bílovci.

Vybraná družstva se zúčastnila mezinárodní matematické olympiády
i mezinárodní olympiády v informatice. Těmto soutěžím je věnována sa-
mostatná kapitola v závěru této ročenky.

К matematické olympiádě vedle vlastní soutěže patří i řada doprovod-
ných akcí pro talentované žáky. Z akcí pořádaných oblastními výbory MO
к nim zejména patří semináře pro řešitele MO a instruktáže pro učitele.
Pro nejúspěšnější řešitele oblastních kol MO a korespondenčních semi-
nám byla pořádána (většinou týdenní) soustředění.

Ústřední výbor MO zajišťoval dvě celostátní soustředění. Pro žáky ne-

maturujících ročníků to bylo již tradiční soustředění 80 řešitelů úloh MO
a FO. Proběhlo ve dnech 14.-26.6.1992 v Banské Štiavnici. Další soustře-
dění bylo věnováno přípravě československého družstva na mezinárodní
matematickou olympiádu a konalo se 22.-26. června 1992 v Pardubicích
(8 účastníků). ÚV MO též zajišťoval celostátní korespondenční seminář
(semináři je věnována samostatná část této brožury).

Soutěžní úlohy I. (domácího) kola všech kategorií matematické olym-
piády jsou publikovány v tzv. soutěžních letácích. Úlohy jsou dále zve-

řejňovány v časopisech Matematika, fyzika, informatika a Rozhledy та-

tematicko-fyzikální. Na pomoc učitelům jsou pak rozesílány na školy ко-
mentáře к úlohám.
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Na závěr každého ročníku MO byla ministerstvem školství ve Státním
pedagogickém nakladatelství až do 40. ročníku vydávána ročenka, která
uvedla všechny zajímavé výsledky, přehled o počtu účastníků v jednot-
livých regionech a zejména všechny úlohy jak naší, tak i mezinárodních
olympiád včetně jejich řešení. Ročenky dalších ročníků však několik let
chyběly. Nyní se vám konečně dostává do ruky první z chybějících roče-
nek, a to péčí Ústředního výboru MO a Jednoty českých matematiků a fy-
ziků. Současně vychází i ročenka 43. ročníku MO na základních školách
a vzápětí vyjde i ročenka právě ukončeného 45. ročníku MO. Postupně
by se tak měly objevit i ostatní chybějící ročenky, jejichž těžištěm je
zejména bohatství velkého počtu zajímavých a originálních úloh. Těšíme
se na váš ohlas a připomínky.

Autoři ročenky jménem Ústředního výboru MO děkují touto cestou
všem organizátorům soutěže, především pak učitelům za jejich obětavou
spolupráci a za péči, kterou věnují svým žákům. Zároveň vyzývají všechny
zájemce o spolupráci při tvorbě zajímavých — především původních —

úloh.
Zkuste zažít pocit radosti z toho, objevíte-li svou úlohu i se svým

jménem v soutěžním letáku.
Návrhy na soutěžní úlohy pro kategorie А, В a C laskavě zasílejte na

adresu předsedy české úlohové komise doc. RNDr. Jaromíra Šimši, CSc.,
MÚ AV CR, Žižkova 22, 61600 Brno. Návrhy úloh vhodných pro kate-
gorii P zasílejte na adresu doc. RNDr. Pavla Topfera, MFF UK Praha,
Malostranské nám. 25, 11800 Praha 1.

7



Tabulka 1

Počty žáků středních škol soutěžících v I. kole 41. ročníku MO

Kategorie
Oblast Celkem

CA В P
s и s и s и s и s и

Praha
Střední Cechy
Jižní Cechy
Západní Cechy
Severní Cechy
Východní Cechy
Brno
Jihlava
Zlín
Severní Morava
Bratislava

Západní Slovensko
Střední Slovensko

Východní Slovensko

100 30
86 27

58 45
52 31

90 56
87 38

55 46

63 46

80 53

160 44

61 47
77 50

17 17

12 10

20 18
17 12

287 156

345 119

194 156

209 139

114 42
42 22

9 8
128 54
110 55
167 135

85 71
82 55

97 78
57 31
43 20

158 100
140 97
207 184
180 137
175 121

73 51
72 38-
45 24

138 69
170 160
273 201

9 9
4 2

293 180
175 93
97 52

436 235
420 312
695 559
402 314
673 376

12 12

48 39
12 8

29 16
125 98
387 184

Česká republika
Slovenská republika

589 259

444 316

650 415

702 539

706 376

955 643

91 80

89 63

2 036 1130

2190 1561

ČSFR 1033 575 1352 954 1661 1019 180 143 4 226 2 691

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 41. ročníku MO

Kategorie
Oblast Celkem

A В C P

S u s и s и s и s и

Praha
Střední Cechy
Jižní Cechy
Západní Cechy
Severní Cechy
Východní Cechy
Brno
Jihlava
Zlín
Severní Morava
Bratislava

Západní Slovensko
Střední Slovensko

Východní Slovensko

29 24

24 7

32 15

28 13

52 19
38 7
42 21

43 13

49 45

41 20
39 21
47 39

17 9
10 6
17 3

10 4

147 97
113 40

130 60
128 69

J

41 27

20 3
8 1

51 29

53 43
131 31

62 36
53 17

71 22

29 5
19 2
99 46
94 32

51 35
37 13
19 10
69 59.

138 98
185 77
95 61

173 79

9 5 172 89
86 21
46 13

228 142
285 173
530 127
260 122
347 129

9 8

38 10
8 4

16 7

176 9
95 21

105 26

Česká republika
Slovenská republika

233 119

299 127

393 135

470 88

352 242

591 315

72 35

62 21

1050 531

1422 551

ČSFR 863 223 943 557 134 56 2 472 1082532 246

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Výsledky celostátního kola 41. ročníku MO
kategorie A

Vítězové

1.-2. Luboš Motl, 4 G Plzeň, Opavská,
Michal Stehlík, 4 G Brno, kpt. Jaroše,

3. Juraj Lanyi, 4 GAM Bratislava,
4.-6. Kamil Budinský, 3 GJH Bratislava,

Vít Novák, 3 G Praha, Korunní,
Pavel Růžička, 4 G Brno, kpt. Jaroše,

7.-10. Ondřej Klíma, 3 G Brno, kpt. Jaroše,
Michal Kubeček, 4 G Praha, Korunní,
Martin Niepel[ 2 GAM Bratislava,
Matěj Ondrušek, 3 GJH Bratislava,

11.-16. Viliam Búr, 3 GAM Bratislava,
Pavol Mederly, 4 GAM Bratislava,
Рг/гр Můnz, 4 G Brno, kpt. Jaroše,
Jose/ Menšík, 4 G Brno, kpt. Jaroše,
Daniel Štefankovič, 3 GAM Bratislava,
Herbert Vojčík, 4 G Košice, Pivovarská,

17.-19. Richard K. Kollár, 3 GAM Bratislava,
Luboš Pástor, 4 G Košice, Pivovarská,
Andrej Zlatoš, 2 GAM Bratislava,

42 b.

42 b.
41b.

38 b.
38 b.
38 b.

37 b.

37b.

37 b.

37 b.

35 b.

35 b.
35 b.
35 b.
35 b.
35 b.
34 b.

34 b.

34 b.

.Da/sí úspěšní řešitelé

20.-21. Katarina Skálová, 3 GAM Bratislava
Michal Skokan, 2 G Žilina, Velká Okružná

22.-23. Pavol Marton, 3 GAM Bratislava
Peír Novotný, 4 G Praha, Korunní

24.-26. Peír Staufčík, 3 GMK Bílovec
Miloš Volauf3 GAM Bratislava
Tomáš Zellerin, 4 G Ústí n.L., Jateční

27.-29. Jiří Černý, 3 G Plzeň, Mikulášské nám.

33 b.
33 b.

32 b.

32 b.

31b.

31b.
31b.
30 b.
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Roman Koch, 4 GMK Bílovec
Václav Komínek, 3 G Brno, kpt. Jaroše

30.-36. Martin Beneš, 3 GMK Bílovec
Marcela Hlawiczková, 3 G Třinec
Ján Maňuch, 4 G Košice, Pivovarská
Dušan Svitek, 4 G Ban. Bystrica, Tajovského
Jana Uhrová, 3 GMK Bílovec
Jiří Vaniček, 3 G Praha, Korunní
Ján Žabka, 3 G Žilina, Velká Okružná

37.-43. Tomáš Bruna, 3 G Žilina, Velká Okružná
Martin Kačer, 3 G Liberec
Ladislav Kis, 4 GAM Bratislava
Matěj Kordoš, 4 GJH Bratislava
Alexander Kupčo, 4 GMK Bílovec
Roman Mackovčák, 4 G Banská Štiavnica
Michael Schenk, 4 G C. Budějovice, Jírovcova

30 b.
30 b.
29 b.
29 b.
29 b.

29 b.
29 b.
29 b.

29 b.

28 b.
28 b.
28 b.
28 b.

28 b.
28 b.
28 b.

10



Výsledky celostátního kola 41. ročníku MO
kategorie P

Vítězové

1. Matěj Ondrušek, 3 GJH Bratislava
2. Michal Kubeček, 4 G Praha, Korunní
3. Herbert Vojčík, 4 G Košice, Pivovarská
4. Jana Syrovátková, 3 G Brno, kpt. Jaroše

5.-6. Tomáš Vinař, 2 G Košice, Šrobárova
Jan Kotas, 4 G Plzeň, Mikulášské nám.

7.-8. Jan Kybic, 4 G Praha, Korunní
Rastislav Královič, 3 G Bratislava, Vazovova

9. Pavel Kaňkovský, 4 G Brno, kpt. Jaroše
10.—11. Michal Koucký, 4 G Praha, Korunní

Daniel Stefankovič, 3 GAM Bratislava
12. Pavel Petrovič, 3 GJH Bratislava

40 b.

37 b.
30 b.
29 b.
28 b.
28 b.

27b.

27 b.

26 b.

25 b.
25 b.

24 b.

Další úspěšní řešitelé

13.-16. Martin Helmich, 4 G Mladá Boleslav
Jaroslav Kaas, 4 G Plzeň, Mikulášské nám.
Martin Mareš, 1 G Praha, U libeň. zámku
Karel Sršeň, 4 G Benešov

17.-18. Peter Budai, 4 G Košice
Tomáš Němec, 4 G Beroun

19.-22. Juraj Barát, 3 G Košice, Šrobárova
Milan Bok, 3 G Praha; Korunní
Vít Novák, 3 G Praha, Korunní
Dušan Vallo, 4 GJH Bratislava

23.-26. Marek Gura, 4 G Poprad
Richard Ostertág, 4 GJH Bratislava
Michael Schenk, 4 G C. Budějovice, Jírovcova
Jiří Vaniček, 3 G Praha, Korunní

22 b.
22 b.
22 b.
22 b.
22 b.

22 b.

19 b.

19 b.

19 b.
19b.
18 b.
18b.

18 b.

18b.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše prvních deset
řešitelů. Označení G znamená gymnázium.

Praha

Kategorie A1.Jiří Vaniček, 3E, G Korunní
2.-4. Vít Novák, 3E, G Korunní

Tomáš Krakolev, 4E, G Korunní
Michal Kubeček, 4D, G Korunní

5. Jan Vondrák, 4E, G Korunní
6. Petr Novotný, 4D, G Korunní
7. Tomáš Kočka, 3D, G U libeňského zámku

8.-9. Jiří Hanika, 3E, G Korunní
Vladimír Boháček, 4A, G Voděradská

10. Tomáš Dušek, 3E, G Korunní

Kategorie В

1. Pavel Kraemer, 2A, G Nad alejí
2. Jan Vaněk, 2D, G Korunní
3. Jitka Nečasová, 2D, G Korunní

4.-5; Pavel Korber, 2D, G Korunní
Michaela Marková, 2D, G Korunní

6. Robert Chudý, 2D, G Korunní
7. Milan Hokr, 2D, G Korunní

8.-9. Pavlína Mařánková, 2D, G Korunní
Petr Pajas, 2D, G Korunní

10.-12. Jiří Kosek, 2D, G Korunní
Kateřina Pacovská, 2D, G Korunní
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Pavla Hlavicová, 2E, G Korunní

Kategorie С

1.-10. Lukáš Bernard, 1C, G Korunní
Martin Potužník, 1C, G Korunní
Jiří Hájek, ID, G Korunní
Pavel Kundrát, ID, G Korunní
Lukáš Novák, ID, G Korunní
Michal Ostátnický, ID, G Korunní
Robert Šámal, ID, G Korunní
Norbert Vaněk, ID, G Korunní
Mikuláš Vejlupek, ID, G Korunní
Michal Fabinger, IE, G Korunní

Kategorie P

1. Jan Kybic, 4D, G Korunní
2. Petr Novotný, 4D, G Korunní
3. Michal Koucký, 4D, G Korunní
4. Michal Kubeček, 4D, G Korunní
5. Vít Novák, 3E, G Korunní
6. Martin Mareš, IE, G U libeňského zámku
7. Jiří Vaniček, 3E, G Korunní
8. Milan Bok, 3E, G Korunní
9. Ondřej Pořádek, 3E, G Korunní

Střední Čechy

Kategorie A

1. Martin Helmich, 4, G Mladá Boleslav
2. Petr Burian, 4, G Vlašim
3. Vlastimil Juříček, 4, G Mladá Boleslav
4. Tomáš Němec, 4, G Beroun
5. Dušan Janovský, 4, G Slaný
6. Jan Skřivánek, 4, G Kralupy
7. Jakub Strnad, 3, G Mladá Boleslav
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Kategorie В1.Pavla Drábková, G Kladno
2.-3. Renata Šlehoberová, G Beroun

Martina Trejbalová, G Beroun
4.-5. Petr Ivančák, G Příbram

Olga Janouchová, G Čáslav
6.-7. Antonín Fuksa, G Kolín

Martina Valášková, G Mladá Boleslav

Kategorie C

1. Martin Růžička, G Slaný
2. Štěpán Verecký, G Kolín
3. Eva Novotná, G Mladá Boleslav

4.-5. Iva Kolářová, G Mladá Boleslav
Marek Ort, G Mnichovo Hradiště

6.-8. Martin Jaroš, G Benešov
Jan Šuráň, G Mladá Boleslav
Jan Wasserbauer, G Mladá Boleslav

9.-11. Jan Berný, G Poděbrady
Milan Jakubec, G Sedlčany
Martina Jeřábková, G Vlašim

Kategorie P

1. Karel Sršeň, 4A, G Benešov
2. Tomáš Němec, 4A, G Beroun
3. Jan Bláha, ЗА, G Beroun
4. Martin Helmich, 4A, G Mladá Boleslav

5.-6. Vlastimil Juříček, 4A, G Mladá Boleslav
Jan Stoklasa, 4A, G Benešov

Jižní Čechy

Kategorie A

1.-2. P. Juruš, ЗА, G Jírovcova, Č. Budějovice
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M. Schenk, 4А, G Jírovcova, Č. Budějovice
3.-5. O. Cikhart, 4B, G Tábor

P. Miksová, ЗА, G Jírovcova, Č. Budějovice
L. Štěpničková, 4C, G Písek

6.-7. M. Mertenová, 4A, G Jírovcova, C. Budějovice
D. Průša, 3B, G Tábor

8.-9. D. Jelínek, 4A, G VJ C. Budějovice
P. Macháček, 4A, G Pelhřimov

10. J. Franěk, 4A, G Jírovcova, Č. Budějovice

Kategorie В

1.-2. Ondřej Mareš, 2A, G Jírovcova, Č. Budějovice
Jaroslav Novotný, 2A, G Jírovcova, Č. Budějovice

3. Tomáš Mrkvička, 2A, G Strakonice
4. Vojtěch Kačírek, 2A, G VJ C. Budějovice
5. Karel Šmolek, 2A, G Jírovcova, 0. Budějovice

6.-7. Kateřina Hubová, 2A, G Strakonice
Vladimír Kožíšek, 2C, G Písek

8.-15. Jana Červenková, 2A, G VJ Č. Budějovice
Igor Glůcksmann, 2D, G Písek
Marie Kasková, 2A, GJ Č. Budějovice
Ondřej Pangrác, 2A, G Pelhřimov
Jan Plojhar, E2b, SPŠ Písek
Lucie Snášelová, 2A, G VJ Č. Budějovice
Ondřej Stašek, 2A, G Jírovcova, C. Budějovice
Pavla Tichovská, 2A, G VJ C. Budějovice

Kategorie C

1.-3. M. Havlíček, OA Písek
F. Hudák, OA Písek
M. Piller, G Pelhřimov4.T. Novák, G Jírovcova, 0. Budějovice

5.-6. V. Honetschláger, G Jírovcova, Č. Budějovice
M. Prokešová, G Jírovcova, Č. Budějovice

7. L. Kobližková, G Jindřichův Hradec
8. S. Smejkal, G Tábor

9.-12. /. Borovková, G Jírovcova, Č. Budějovice
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O. Filip, G Jírovcova, Č. Budějovice
J. Rychtář, G Strakonice
K. Svadlenka, G Jírovcova, 0. Budějovice

Kategorie P

1. Pečr Macháček, G Pelhřimov
2. Michal Schenk, G Jírovcova, Č. Budějovice
3. Ondřej Cikhard, G Tábor

Západní Čechy

Kategorie A

1.-2. Jaroslava Kass, 4, 1. G Plzeň
Luboš Koti, 4, 3. G Plzeň

3.-4. Jan Kotas, 4, 1. G Plzeň
Jan Smolík, 4, 1. G Plzeň

5. Jiří Černý, 3, 1. G Plzeň
6.-7. Ondřej Králík, 4, G Klatovy

Jan Kuneš, 4, G Plzeň
8. Miroslava Orság, 4, G Plzeň
9. Jič&a Drábková, 3, 1. G Plzeň

10.—11. Miroslav Skala, 3, 2. G Plzeň
Tomáš Větrovský, 4, 1. G Plzeň

Kategorie В

1.-2. Pavel Janda, 2, G Sokolov
Michal Škop, 2, 1. G Plzeň

3. Petr Vachovec, 2, 1. G Plzeň
4.-5. Roman Cecil, 2, 2. G Plzeň

Pečr Písek, 2, 1. G Plzeň
6.-7. Zdenek Jedlička, 2P, G Cheb

Eva Wenigrová, 2, G Karlovy Vary
8.-10. Jan Hajič, 2, 1. G Plzeň

Jitka Lhotská, 2, 1. G Plzeň
Robert Pelikán, 2, 1. G Plzeň
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Kategorie С

1.-2. S. Demjanovičová, 1, 1. G Plzeň
Eva Frofíková, 1, 1. G Plzeň

3.-6. Alfréd Kraus, 1, 1. G Plzeň
Hedvika Šimková, 1, 1. G Plzeň
St. Štěpánek, 1, 1. G Plzeň
Petr Zdeněk, 1, 1. G Plzeň

7.-8. Veronika Hyťhová, 1, 2. G Plzeň
Karel Trefný, 1, 1. G Plzeň

9.-13. Daniel Basi, 1, 1. G Plzeň
Martin Klička, 1, 1. G Plzeň
František Kunský, 1, 1. G Plzeň
Petr Mařík, 1, 1. G Plzeň
Kateřina Němcová, 1, Svob. chebská škola Cheb

Kategorie P

1. Jaroslava Kass, 4, 1. G Plzeň
2. Jan Kotas, 4, 1. G Plzeň
3. Ondřej Králík, 4, G Klatovy
3. Vladimír Kot, 4, G Cheb

Brno

Kategorie A

1.-4. Ondřej Klíma, ЗА, G, tř. kpt. Jaroše, Brno
Václav Komínek, ЗА, G, tř. kpt. Jaroše, Brno
Josef Menšík, 4A, G, tř. kpt. Jaroše, Brno
Pavel Vrbacký, 4A, G, tř. kpt. Jaroše, Brno

5.-6. Filip Miinz, 4A, G, tř. kpt. Jaroše, Brno
Michal Stehlík, 4A, G, tř. kpt. Jaroše, Brno

7. Jana Syrovátková, ЗА, G, tř. kpt. Jaroše, Brno
8.-9. Blažej Neradílek, 2A, G, tř. kpt. Jaroše, Brno

Pavel Růžička, 4A, G, tř. kpt. Jaroše, Brno
10.-11. Petr Kaňovský, 1A, G, tř. kpt. Jaroše, Brno

Markéta Kyloušková, ЗА, G, tř. kpt. Jaroše, Brno
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Kategorie В

1. Mikuláš Piňos, 2A, G, tř. kpt. Jaroše, Brno
2. Blažej Neradílek, 2A, G, tř. kpt. Jaroše, Brno
3. Michal Politzer, 2A, G, tř. kpt. Jaroše, Brno
4. Dana Černá, 2A, G, tř. kpt. Jaroše, Brno

5.-7. Jan Hradil, 2A, G, tř. kpt. Jaroše, Brno
Pavel Klepáč, 2B, G, Vídeňská, Brno
Martina Krčová, 2C, G Prostějov

8.-10. Pečr Luzný, 2C, G Prostějov9.Břetislav Regner, 2A, G, tř. kpt. Jaroše, Brno10.Jan Václavík, P2B, SPŠE, Kounicova, Brno

Kategorie C

1.-9. Jitka Crhová, 1A, G, tř. kpt. Jaroše, Brno
Petr Kaňovský, 1A, G, tř. kpt. Jaroše, Brno
Filip Krška, 1A, G, tř. kpt. Jaroše, Brno
Jiří Kunovjánek, 1A, G, tř. kpt. Jaroše, Brno
David Nečas, 1A, G, tř. kpt. Jaroše, Brno
Martin Nečesal, 1A, G, tř. kpt. Jaroše, Brno
Milan Roupec, 1A, G, tř. kpt. Jaroše, Brno
Barbora Seidlová, 1A, G, tř. kpt. Jaroše, Brno
Jan Sirotek, 1A, G, tř. kpt. Jaroše, Brno

10. Josef Novotný, 1 A, G, tř. kpt. Jaroše, Brno

Kategorie P

1. Pavel Kaňkovský, 4A, G, tř. kpt. Jaroše, Brno
2.-3. Jana Syrovátková, ЗА, G, tř. kpt. Jaroše, Brno

Petr Špatka, ЗА, G, tř. kpt. Jaroše, Brno
4. Filip Doušek, 2A, G, tř. kpt. Jaroše, Brno
5. Pavel Pitner, 3D, G Boskovice

Jihlava

Kategorie A

1.-2. Eva Nováková, 4A, G Jihlava -
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Zdeněk Zahrádka, 4E, G Třebíč3.Irena Přibylová, 4A, G Jihlava

Kategorie В

1.-2. Jiří Komzák, 2A, G Jihlava
Helena Málková, 2A, G Mor. Budějovice

3. Iveta Tomenendálová, 2A, G Jihlava
4.-5. Martina Benešová, 2A, G Jihlava

Antonín Svoboda, 2A, G Mor. Budějovice

i

Kategorie C

1. Tomáš Vejchodský, IB, G Jihlava
2. Petr Kuba, 1A, G Zdar nad Sáz.
3. Josef Šilhán, IB, G Velké Meziříčí
4. Milan Beneš, IB, G Telč
5. Josef Novotný, IB, G Zdar nad Sáz.
6. Petr Časa, IB, G Jihlava
7. Zdeněk Molík, 1A, G Znojmo
8. Petr Pavlinec, IB, G Jihlava

9.-12. Tomáš Fuňka, IB, G Jihlava
Jan Kratochvíl, 1C, G Třebíč
Jana Minářová, 1C, G Jihlava
Miloslav Trojan, 1C, G Třebíč

Zlín

Kategorie A

proběhla společně s Brněnskou oblastí

Kategorie В

1.-2. Marek Juřica, G Zlín
Pavel Urban, G Zlín
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Kategorie С

1. Radek Vintr, 1A, G Zlín
2.-3. Jan Budík, 1A, G Kroměříž

Libor Foltýnek, IB, G Valašské Klobúky
4.-5. Zdeněk Hanák, 1C SPŠ Uherské Hradiště

Václav Jirkovský, 1A, G Zlín
6.-8. Libuše Cibulková, 1C, G Uherské Hradiště

Tomáš Duda, 1C, G Uherské Hradiště
Zdeněk Jelínek, 1A, G Zlín „

9. Jan Petrásek, 1A, G Zlín
10. Tomáš Graja, 1A, G JAK Uherský Brod

Severní Morava

Kategorie A

1. Marcela Hlawiczková, 3C, G Komenského, Třinec
2.-3. Jana Uhrová, 3D, GMK Bílovec

Petr Staufčík, 3C, GMK Bílovec
4. Alexander Kupčo, 4D, GMK Bílovec
5. Roman Koch, 4D, GMK Bílovec

6.-8. Martin Beneš, 3C, GMK Bílovec
Petr Kačenka, 3C, GMK Bílovec
Petr Jandík, 3C, GMK Bílovec

9. Ondřej Kameník, 4D, GMK Bílovec
10. Marta Janebová, 4A, GMK Bílovec

Kategorie В

1. Tomáš Jurtík, 2D, GMK Bílovec
2.-3. Zdeněk Románek, 2C, G Bruntály

Jaromír Fiurášek, 2D, G Přerov
4. Viktor Pavliska, 2B, G, Komenského, Havířov

5.-13. Pavel Fekar, 2C, GMK Bílovec
Jan Kňazovčík, 2C, GMK Bílovec
Petr Ludvík, 2C, GMK Bílovec
Zbyněk Richter, 2C, GMK Bílovec
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Ivo Milota, 2C, GMK Bílovec
Zdeněk Stasko, 2C, GMK Bílovec
Daniel Vachtarčík, 2B, G, Studentská, Havířov
Michal Bartoň, 2D, Slovan. G, tř. J. z Pod., Olomouc
Kamil Sýkora, 2D, Slovan. G, tř. J. z Pod., Olomouc

Kategorie C

1.-2. Martin Volařík, 1C, GMK Bílovec
Jiří Novák, 1C, GMK Bílovec

3.-7. Petr Mareš, 1C, GMK Bílovec
Jana Sítková, 1C, GMK Bílovec
Zdeněk Vodička, 1C, GMK Bílovec
Luděk Меса, 1A, G ČSLA 517, Frýdek-Místek ,

Radek Mlčák, ID, G Přerov
8.-12. Milada Bičovská, 1C, GMK Bílovec

Petr Němec, 1C, GMK Bílovec
Daniel Klimsza, 1C, GMK Bílovec
Pavla Bartoňová, ID, Slovan. G, tř. J. z Pod., Olomouc
Václav Knápek, ID, Slovan. G, tř. J. z Pod., Olomouc

Kategorie P

1. David Žák, 4C, GMK Bílovec

Bratislava

Kategorie A

1.-5. Ladislav Kis, 4, GAM Bratislava
Matěj Kordoš, 4, GJH Bratislava
Juraj Lányi, 4, GAM Bratislava
Pavol Mederly, 4, GAM Bratislava
Andrej Zlatoš, 2, GAM Bratislava

6.-8. Kamil Budinský, 3, GJH Bratislava
Katarina Skálová, 3, GAM Bratislava
Miloš Volauf, 3, GAM Bratislava

9.-12. Viliam Búr, 3, GAM Bratislava
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Michal Kopčok, 4, GAM Bratislava
Pavol Marton, 3, GAM Bratislava
Martin Niepeť, 2, GAM Bratislava

Kategorie В

1. Martin Niepel, 2 GAM Bratislava
2.-3. Andrej Zlatoš, 2 GAM Bratislava

Pastor, GAM Bratislava
4.-5. Martinka, GAM Bratislava

Vagaský, GAM Bratislava
6.-12. Mederlyová, GAM Bratislava

Topolský, GAM Bratislava
Kuklisová, GAM Bratislava
Vegh, G Dunajská
Kusnieriková, GJH Bratislava
Ondrejovič, GAM Bratislava
Uzovič, BIL

/

Kategorie C

1 .—10. Ivona Bezáková, 1A, GAM Bratislava
Martin Čaprnda, 1A, GJH Bratislava
Matěj Černák, 1A, GAM Bratislava
Patrik Hormik, 1B, GAM Bratislava
Michal Kovář, 1A, GAM Bratislava
''František Luzsicza, 1A, GAM Bratislava
Juraj Marcinčin, 1A, GAM Bratislava
Katarina Pirchanová, 1B, GJH Bratislava
Jakub Steiner, 1A, GAM Bratislava
Radoslav Tausinger, 1B, GJH Bratislava

Západní Slovensko

Kategorie A

1.-2. Norbert Futó, 4, G maď. Galanta
Roman Hrmo, 3, G, Párovská, Nitra
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3.Tibor Drinka, 4, G maď. Galanta
4.-5. Andrej Hrmo, 4, G, Piaristická, Nitra

Ingrid Szabóová, 4, G maď. Galanta
6.-7. Radovan Garabík, 4, G, Piaristická, Nitra

Andrej Huček, 3, G, Párovská, Nitra8.Anikó Báderová, 4, G maď. Galanta
9.-11. Репе' Pizúr, 4, G, Párovská, Nitra

Eva Tomašová, 3, G Nové Město nad Váhom
Ivana Vladovičová, 4, G, Hollého, Trnava

Kategorie В

1. Július Šiška, 2, G, Párovská, Nitra
2. Miroslav Hroššo, 2, G, Párovská, Nitra
3. František Gábriš, 2, G Hlohovec
4. Peíer Strešík, 2, G, Piaristická, Nitra

5.-7. Jura; Chlpík, 2, G, Párovská, Nitra
Ferenc Mizera, 2, G maď. Komárno
Lea Uhrinová, 2, G Komárno

8.-9. Ivan Mesároš, 2, G, Párovská, Nitra
Gabriel Tóth, 2, G Komárno

Kategorie C

1.-5. Zoltán Horváth, 1, G maď. Dunajská Středa
Andrej Macko, 1, G Topolcany
Miroslav Nachtmann, 1, G Tudovíta Štúra Trenčín
Branislav Šnajder, 1, G Senica
Ján Uličky, 1, G, Hviezdoslavova, Trnava6.Ladislav Gaál, 1, G maď. Dunajská Středa

7.-9. Jana Havettová, 1, G Senica
Peter Kosa, 1, G maď. Velký Meder
Gabriela Mišunová, 1, G, Párovská, Nitra

10.—11. Tibor Csollár, 1, G Partizánske
Ladislav Szabó, 1, G maď. Šamorín

Kategorie P

1. Zoltán Bugár, 3, G maď. Galanta
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2. Lubomír Stuller, 4, G Levice
3. Lubomír Salanci, 4, G, Párovská, Nitra

4.-7. Rastislav Heglas, 4, SPŠ Nové Město nad Váhom
Peter Majerník, 4, G maď. Galanta
Peíer Miština, 4P, G Piešťany
Pavol Privitzer, 4, G, Piaristická, Nitra

8.-9. Andrej Hrmo, 4, G, Piaristická, Nitra
Martin Pabiš, 3P, G Piešťany

10. Józe/ iVaýi/, 3, G Levice

Střední Slovensko

Kategorie A

1. Marek Žabka, 3, G, Tajóvského, Banská Bystrica
2. Vojtěch Bálint, 3, G, Velká Okružná, Žilina

3.-5. Tomáš Bruna, 3, G, Velká Okružná, Žilina
Michal Skokan, 3, G, Velká Okružná, Žilina
Monika Kozáková, 2, G, Tajovského, Banská Bystrica

6.-7. Roman Mackovčák, 4, G Banská Štiavnica
Ján Žabka, 3, G, Velká Okružná, Žilina

8. Peter Sivák, 4, G, Velká Okružná, Žilina
9.-11. Martin Sivák, 2, G, Velká Okružná, Žilina

Dušan Svitek, 4, G, Tajovského, Banská Bystrica
Ján Simon, 3, G, Tajovského, Banská Bystrica

Kategorie В

1. Martin Gažak, 2B, G, Velká Okružná, Žilina
2. Michal Skokan, 2B, G, Velká Okružná, Žilina
3. Peter Humaj, 2B, G, Velká Okružná, Žilina
4. Jitka Hušková, 2C, G V.P. Tótha, Martin

5.-6. Stanislav Stanek, 2C, G V.P. Tótha, Martin
Lucie Řeháková, 2, G, Tajovského, Banská Bystrica7.Miroslav Kulla, 2C, G V.P. Tótha, Martin

8.-11. Martin Nemček, 2A, G Liptovský Hrádok
Karol Boško, 2A, G B, Němcovej, Prievidza
Martin Liner, 2A, G Púchov

24



Vladimír Chovanec, 2A, G L. Štúra, Zvolen

Kategorie C1.Marek Škereň, 1, G, Velká Okružná, Žilina
2.-5. Alena Djabliková, 1, G, Kysucké Nové Město

Michal Hlaváč, 1, G Martin
Ján Kudlička, 1, G Martin
Zuzana Surová, 1, G, Velká Okružná, Žilina

6.-8. Ondřej Kasák, 1, G, Velká Okružná, Žilina
Tána Krasulová, 1, G, Velká Okružná, Žilina
Radoslav Vážan, 1, G Martin

9.-12. Ivan Debnár, 1, G, Tajovského, Banská Bystrica
Veronika Joštiaková, 1, G, Velká Okružná, Žilina
Tomáš Machalík, 1, G, Velká Okružná, Žilina
Michal Pikna, 1, G, Velká Okružná, Žilina

Kategorie P

1. Marián Kučera, 4A, G Liptovský Hrádok
2. Peter Kunetka, 2C, G VPT Martin

/

Východní Slovensko

Kategorie A

1.-2. Peter Katuščák, ЗА, G, Alejová, Košice
Ján Maňuch, 4A, G, Pivovarská, Košice

3.-5. Miroslav Chladný, 4A, G, Pivovarská, Košice
Luboš Pástor, 4A, G, Pivovarská, Košice
Herbert Vojčík, 4A, G, Pivovarská, Košice

6. Jana Višňovská, 4A, G, Pivovarská, Košice
7.-8. Oskar Hritz, 4A, G, Pivovarská, Košice

Vladimír Lacko, ЗА, G, Alejová, Košice
9. Andrea Annová, 4C, G, Hnilná, Košice

10.—11. Cyril Hruščák, 4A, G Poprad
Milan Matoš, ЗА, G Poprad
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Kategorie В

1. Radoslav Valovský, 2A, G Michalovce
2. Reguli Štefan, 2E, G Michalovce
3. Tomáš Vinař, 2A, G, Šrobárova, Košice

4.-6. Martin Rexa, 2E, G, Šrobárova, Košice
Jana Šimočková, 2B, G, Konštantínova, Prešov
Robert Kučera, 2A, G, Opatovská, Košice

7.-11. Tomáš Csajka, 2A, G, Kuzmányho, Košice
Peter Feher, 2E, G, Pivovarská, Košice
Lenka Michališinová, 2A, G, Pivovarská, Košice
Tomáš Futáš, 2A, G, Alejová, Košice
Milan Žipaj, 2E, G, Konštantínova, Prešov

Kategorie C

1.-3. Ivana Brudňáková, IE, G, Konštantínova, Prešov
Martin Domány, 1A, G Michalovce
Radoslav, Gočik, 1A, G, Pivovarská, Košice

4. Ladislav Oravec, 1A, G, Šrobárova, Košice
5.-11. Dušana Bajusová, IB, G, Pivovarská, Košice

Dalibor Blažek, 1A, G, Pivovarská, Košice
Zuzana Hrinková, IE, G, Konštantínova, Prešov
Radek Ivančo, 1A SPŠS Prešov
Peter, Gašpar, IB, G Bardejov
Martin Vozár, IB, G Bardejov
Martin Each, ID, G, Tat., Poprad

Kategorie P

1. Herbert Vojčík, 4A, G, Pivovarská, Košice
2. Tomáš Vinař, 2A, G, Šrobárova, Košice
3. Marek, Gura, 4A, G Poprad
4. Juraj Barát, 3D, G, Šrobárova, Košice
5. Peter Budai, 4B, G, Opatovská, Košice
6. Peter Feher, 2A, G, Pivovarská, Košice
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Kategorie С

Texty úloh

C - I - 1

Mezi čísly 6n+2, kde n je přirozené číslo, neexistuje žádná druhá mocnina
přirozeného čísla. Naopak mezi čísly 6n + 3, kde n je přirozené číslo, je
nekonečně mnoho druhých mocnin přirozených čísel. Dokažte.

С - I - 2

Kamilka si na tři kartičky napsala po jedné číslici. Potom z nich vytvořila
všechna možná trojciferná čísla, která sečetla. Vyšlo jí 3159. Pak si ale
uvědomila, že jedno číslo zapomněla. Které to bylo?

C - I - 3

Obdélník, jehož jedna strana je 13,2 cm, je rozdělen na sedm čtverců
podle obr. 1. Zjistěte velikost druhé strany.

Obr. 1

С - I - 4

Vypočtěte objem čtyřstěnu, jehož rovinná síť vyplní čtverec se stranou 10.
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С - I - 5

Jsou-li a, 6, c velikosti stran trojúhelníku a ta, tb, tc velikosti příslušných
těžnic, pak

3 ta + tb + tc
4 ' a + b + c

< 1.- <

Dokažte.

C - I - 6

Najděte nejmenší přirozené číslo n tak, aby existovalo právě 45 uspořá-
daných dvojic (u, v) přirozených čísel, jejichž nejmenší násobek je n.

C - S - 1

Nájdite všetky prirodzené čísla n menšie než 100, pre ktoré je číslo 7n + 4
druhou mocninou prirodzeného čísla.

C - S - 2

Pro která přirozená čísla p existují přirozená čísla x, у tak, že

x + у = p2,
Юх + у = p3 ?

C - S - 3

Lichoběžník je střednou priečkou rozdělený na dva lichoběžníky, ktoré
majú poměr obsahov rovný q. Určte poměr dížok základní lichoběžníka.
Pre ktoré q má úloha riešenie?

C - II - 1

V oboru reálných čísel řešte soustavu rovnic

x + 2y = 4,
2xy — 3z2 = 4.
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С - II - 2

DÍžky a, 6, с stráň trojuholníka sú prirodzené čísla, pře ktoré platí a +
+ 6 = 9, a + c= 10. Zo všetkých trojuholníkov takýchto vlastností určte
ten, ktorý má najmenší obvod, a ten, ktorý má najváčší obvod.

C - II - 3

Součtem trojciferného čísla A s trojcifernými čísly В, C, jež dostaneme
z čísla A cyklickou záměnou číslic, je čtyřciferné číslo, které je dělitelné
číslem 72. Určete čísla A, В, C, víte-li, že každé z nich je zapsáno navzá-
jem různými číslicemi.

С - II - 4

Dokážte, že pre každý ostroúhly trojuholník platí

1 Va + Vb + Vc
< 1- <

a + 6 + c2

kde a, 6, c sú dížky stráň a va, Vb, vc dížky výšok trojuholníka.
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Řešení úloh

C - I - 1

Zjistíme, jaké zbytky při dělení číslem šest dávají druhé mocniny přiroze-
ných čísel. Jak ukážeme, zbytek čísla m2 závisí jen na zbytku celého čísla
m. Skutečně, je-li r zbytek při dělení čísla m šesti, pak r £ {0,1,..., 5}
a m = 6k 4- r pro vhodné celé číslo k. Rozlišme proto šest případů podle
hodnoty r:

m = 6k 4 0 =$► m2 = 36k2 = 6 • 6k2 4- 0

m = 6k + 1 =>■ m2 = 36k2 4 12к 4 1 = 6(6A;2 + 2к) 4 1
m — Qk + 2 =4- m2 = 36k2 4- 24/г 4 4 = 6(6/c2 4 4fc) 4 4

= 6/c -f 3 =4 m2 = 36fc2 4 36A; 4 9 = 6(6/г2 + 6k + 1) + 3
m = 6k + 4 => m2 =, 36/г2 + 48A; + 16 = 6(6fc2 + 8fc + 2) + 4
m = 6/c + 5 =» m2 = 36fc2 + 60fc + 25 = 6(6fc2 + lOfc + 4) + 1

Vidíme tedy, že při dělení šesti se zbytek čísla m2 rovná pouze některému
z čísel 0, 1, 4 nebo 3, nikdy se nerovná dvěma (ani pěti). Proto žádné
celé číslo tvaru 6n 4- 2 není druhou mocninou přirozeného čísla. Naše
výpočty rovněž potvrzují, že číslo 6n-t-3 je pro některé přirozené n druhou
mocninou přirozeného čísla, právě když je n tvaru n = 6k2 + 6k + 1, kde
к je celé číslo. Pro к = 0,1,... tak dostáváme nekonečně mnoho čísel
tvaru 6n + 3, jež jsou druhých mocninami přirozených čísel. Jsou to čísla
З2, 92, 152 atd.

m

С - I - 2

Označme číslice na kartičkách a, b, c v takovém pořadí, aby číslo, které
Kamilka zapomněla, bylo právě 100a + 106 + c. Kamilka tedy vypočetla
součet pěti čísel

(100a -f- 10c + 6) + (1006 + 10a -Ь c) + (1006 4 10c 4 a) 4
4" (100c 4 10a 4 6) 4 (100c 4 106 4 a) = 122a 4 2126 4 221c,

takže máme řešit rovnici 122a4-21264221c = 3159 v oboru {0,1,..., 9}.
Provedeme následující trik: к oběma stranám rovnice přičteme zapome-
nuté číslo 100a 4 106 4 c,

222(a 4 6 4 c) = 3159 4 (100a 4 106 4 c).
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Budeme tak hledat celé násobky N čísla 222, tedy N = 222k, které leží
mezi čísly 3159 a 3159 + 1000 = 4159 a poté porovnávat, zda je číslo к
rovno cifernému součtu „přebytku44 N — 3159.

Předně platí 222 • 14 = 3108 < 3159 a dále

222-15 = 3159 + 171, 15 # 1 + 7+1,
222-16 = 3159 + 393, 16 #3 + 9 + 3,
222-17 = 3159 + 615, 17 # 6 + 1 + 5,
222 • 18 = 3 159 + 837, 18 = 8 + 3 + 7.

Další násobky už testovat nemusíme, neboť 222 • 19 = 4218 > 4159.
Kamilka proto zapomněla napsat číslo 100 • 8 + 10 • 3 + 7 = 837.

C - I - 3

Strany a vrcholy čtverců si označíme tak, jak je uvedeno na obr. 2. Mezi
délkami a, 6, ..., e lze podle tohoto obrázku najít řadu závislostí. Tak

D
c

d

E

a

A

Obr. 2

z rovností délek úseček

\AG\ = \EF\, \HI\ = |CJ|, \BK\ = \GL\, \HJ\ = \ED\

plynou po řadě rovnosti

2a = d + e, e + b = c,

2b = a + e, e + c = d.
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Odtud pomocí délky e snadno vyjádříme ostatní:
7

h 5
зе’ 6=зе’c =

8 11
- e, d — —— e.
3 3

a =

Podle toho, která ze stran obdélníku ABCD má zadanou velikost 13,2 cm,

platí buď 2a 4- b = 13,2, nebo a + d = 13,2. Dosadíme-li sem předchozí
vyjádření délek o, 6, c a d, dostaneme rovnici pro určení neznámé e:

7 5 7
2 • r e 4--e = 13,2 resp. -e+— e = 13,2.

V prvním případě vychází e = , ve druhém e = Délka druhé strany
obdélníku je tedy v prvním případě rovna

1188

11

3

a + d — 6e — cm,
95

ve druhém
19 209

2a + 6 — — e = —— cm.
ó 15

С - I - 4

Síť libovolného čtyřstěnu ABCV rozvinutá do roviny ABC se skládá
ze čtyř trojúhelníků (obr. 3), jejichž sjednocení vytvoří „šestiúhelník"

AKBLCM, ve kterém platí

\AK\ = \AM\, \BK\ = \BL\ a \CL\ = \CM\. (1)
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Použití uvozovek v předchozí větě je namístě, neboť některé z dvojic
úseček AK, AM nebo BK, BL resp. CL, CM mohou svírat přímý úhel
180°, tehdy je síť mnohoúhelník s menším počtem stran. V naší úloze je síť
čtverec, zvolme označení vrcholů tak, aby \<$KBL\ = \<$LCM\ = 180°,
potom s ohledem na (1) platí

\AK\ = \AM\ = 10, \BK\ = \BL\ = \CL\ = \CM\ = 5

(obr. 4). Protože při otočení čtverce AKLM kol jeho středu o 90° přejde
úsečka AB v úsečku КС, platí AB 1. КС. Označíme-li proto D průsečík

přímek AB а КС, je bod D patou stěnové výšky spuštěné z vrcholu V
čtyřstěnu ABCV na hranu AB. To ale znamená, že pata P tělesové výšky
z vrcholu V na stěnu ABC padne na úsečku КС. Protože \AC\ = \AB\
a \VC\ = |Pi?|, je čtyřstěn ABCV souměrný podle roviny souměrnosti
úsečky BC\ bod P proto padne i na úhlopříčku AL (obr. 5). Z podobnosti
trojúhelníků АКР a LCP plyne, že bod P dělí úsečku КС v poměru
2 : 1 od vrcholu К, a tedy

\PK\ = ~\KC\ = H4/№ + 52 = y\^.
Úsečka DK je výška na přeponu trojúhelníku ABK, proto

\AK\ ■ \KB\
_ 10-5

= 2\/5.\DK\ = \AB\
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Můžeme proto určit velikost \PD\ = \PK\ — \DK\ = |\/5, a tedy i těle-
sovou výšku

|PV| = ->J\VD\2 - \PD\2 = y/\DK\2 - \PD\2 =
16

20-
9 '5

Obsah S trojúhelníku ABC získáme odečtením od obsahu čtverce
AKLM obsahů tří trojúhelníků AKB, BLC a CMA:

25 75
S = 100 - 25-y — 25 = —

2

Proto je hledaný objem čtyřstěnu roven

1 75 10
_ 125

’ ‘

T “ T
1
5-1^1 = ---

С - I - 5

Označme К, L, M středy stran po řadě protilehlých vrcholům A, В,
C daného trojúhelníku a T jeho těžiště (obr. 6). Podle trojúhelníkové

A M В

Obr. 6

nerovnosti v trojúhelníku BCT platí

\BC\ < \BT\ + \CT\, tj. a<|tb + hc
■
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Podobně z trojúhelníků ABT a CAT usoudíme, že

2 2 2
n b <C ~íc з^а’

2
c< 2^®

Sečtením těchto tří nerovností dostaneme

4
a + b + C < — • {ta + tb + tc),

což je vlastně levá dokazovaná nerovnost. Dále si všimněme, že podle
trojúhelníkové nerovnosti v trojúhelníku KMA platí

b
\AK\ < \KM\ + \AM\, tj. ta<2+2

podobně z trojúhelníků LKB a MLC plyne

bc a a

tb<2 + 2 a tc < 2 + 2'

Sečtením těchto tří nerovností dostaneme

/a b
ta + tb + tc < 2^— + — + -2) — cl + b + c,

a to je vlastně pravá dokazovaná nerovnost.

C - I - 6

Je-li p, q, r,... posloupnost všech prvočíselných dělitelů hledaného čísla n,

pak rozklad n na prvočinitele má tvar n — paqbrc ..., kde exponenty a, b,
c, ... jsou celá kladná čísla. Libovolní dva dělitelé čísla n pak mají tvar

a n = p9qhrl...,n = pdqer* ...

kde d, e, /, ..., g, h, i, ... jsou celá nezáporná čísla. Navíc je číslo n je
nejmenší společný násobek těchto čísel и & v, právě když platí soustava
rovností

a = max(d,g), 6 = max(e,h), c = max(/,i), ....

Výběry možných dvojic (d, g), (e, h), (/, i), ... jsou tedy navzájem nezá-
vislé, např. pro dvojici (d, g) máme možnosti

(0,o), (V®)) •••> (fl,n), (o,fl 1), ..., (u, 1), (й,0)
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tj. právě (2a+1) možností. Existuje tedy právě (2a + l)(2b+l)(2c+l)...
uspořádaných dvojic (u, v) zkoumané vlastnosti. (Všimněte si, že určený
počet závisí na exponentech a, 6, c, ..., nikoliv na hodnotách prvočísel
p, q, r, ... v rozkladu čísla n.) Požadovaná rovnost

45 = (2a + l)(2b+l)(2c+l)...

představuje rozklad čísla 45 na několik celých činitelů větších než 1, tedy
jeden ze součinů 45, 15 • 3, 9 • 5 nebo 5-3-3 (na pořadí činitelů nebereme
ohled). To znamená, že číslo n má jeden z tvarů

22
p ,

7 _1 4 _2 pYr1.P9, P Q

Nejmenší představitelé těchto čtyř typů jsou čísla 222, 27 • 3, 24 • 32
a 22 • 3 • 5 (za p, q, r dosazujeme nejmenší prvočísla, přitom vždy к men-
Šímu prvočíslu přiřazujeme větší exponent). Nejmenší je poslední z těchto
čísel, tj. číslo 60.

C - S - 1

Hledáme všechna přirozená čísla n < 100 taková, že 7n + 4 = m2 pro
vhodné přirozené m. Možné zbytky při dělení čísla m číslem 7 bychom
mohli zjistit stejnou metodou jako v úloze C-T-l, ukažme si však kratší
postup: Upravíme-li rovnici na tvar 7n — (m — 2)(m + 2), ihned vidíme,
že prvočíslem 7 musí být dělitelné jedno z čísel (m — 2) nebo (m + 2).
Číslo m je tedy buďto tvaru 7к + 2, nebo 7к — 2. Platí

m = 7k + 2 =► m2 = Ш2 + 28A: + 4 = 7k(7k + 4) + 4,
= 7k-2 => m2 = Ш2 - 28k + 4 = 7k{7k - 4) + 4,771

tedy hledaná čísla n jsou tvaru k(7k + 4) nebo k(7k — 4). Dosadíme-li
sem postupně к = 1,2,..., dostaneme všechna hledaná čísla 3, 11, 20,
36, 51, 75, 96 (další čísla jsou již větší než 100).

C - S - 2

Dosadíme-li vyjádření x = p2 — у z první rovnice do rovnice druhé, do-
staneme

10(p2 - у) + у = p3, odkud у = ^Р2(Ю - p)
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takže x = p2 — у = \p2(p — 1). Mají-li být obě čísla x а у přirozená,
musí platit 1 < p < 10. Postupným dosazením p = 2, 3, ..., 9 se snadno
přesvědčíme, že ve skutečnosti vyhovují pouze hodnoty p = 3, 6 a 9.

C - S - 3

Označíme-li a, c délky základen a v výšku hledaného lichoběžníku, pak
a -+- c

délka jeho střední příčky je rovna —-— a oba lichoběžníky vzniklé děle-

ním mají tutéž výšku ~v. Podle zadání platí

a + c\ v \

2~) ' 2
( ra + c \ v( 2 ^ C) 2

u\

(CL +

= q-
2 2

7 V
Protože poměr nalevo je roven (3a + c) : (a + 3c), můžeme např. délku a

vyjádřit s pomocí délky c a poměru q. Vychází

3q-l 3q - 1a
odkuda = •c,

3~q 3~qc

Tím je poměr délek základen určen. Protože tento poměr může být libo-
volné kladné číslo různé od jedné, zbývá najít všechna q > 0, pro která
je

3q-l
> 0.

3-q
V každém ze tří případů

1 1
- < q < 3 a q > 3
O

snadno rozhodneme o znaménku zkoumaného zlomku, který je roven 1
jedině pro q = 1; zjistíme tak, že hledané hodnoty q tvoří množinu (|, 1)U
U (1,3).

0<«<3'

С - II - 1

Dosadíme-li vyjádření x = 4 — 2y z první rovnice do rovnice druhé,
dostaneme

2(4 — 2y)y — 3z2 — 4 neboli 3z2 — —4y2 + 8y — 4.
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Všimněme si, že —4у2 + 8y — 4 = —4(у — l)2 й O pro každé reálné у.
Protože na druhé straně 3z2 ^ 0 pro každé reálné z, musí platit z2 —

— (у — l)2 = 0, a tedy z = 0ay = l. Nakonec určíme x = 4 — 2y = 2.
Jediné řešení dané soustavy je trojice (x, y, z) = (2,1,0).

С - II - 2

Podle trojúhelníkové nerovnosti platí c < a + b, takže musí být c š 8,
což spolu s rovností a + c = 10 vede к odhadu a ^ 2. Protože b + c =
= (9 - a) + (10 — a), plyne z další trojúhelníkové nerovnosti a < b + c
nerovnost a < 19 — 2a, odkud a ^ 6. Máme tedy tyto možnosti:

2 3 4 5 6a

b = 9 — a 7 6 5 4 3

c — 10 — a 8 7 6 5 4

obvod 17 16 15 14 13

Nejmenší obvod má trojúhelník o stranách 3, 4, 6, největší obvod troj-
úhelník o stranách 2, 7, 8.

C - II - 3

Jsou-li a, 6, c cifry hledaného čísla A (zleva doprava), pak A = 100a +
+ 106 -I- с a čísla В, C mají tvar

В — 1006 -f- 10c ~ba а C — 100c -H 10a -Ь 6.

Číslo
A + В + C = lll(a + 6 + c) = 3 • 37(a + 6 + c)

je dělitelné číslem 72 = 3 • 24, právě když číslo 24 dělí součet a + 6 + c.
Protože a, 6, c jsou po dvou různé cifry, platí

a + 6 + c ^ 9 + 8 + 7 = 24,

takže musí být
a + 6 -Ь c — 24.

Navíc poslední rovnost platí, jen když {a, 6, c} = {7,8,9}. Až na pořadí
je pak trojice А, В, C rovna buď trojici 987, 879, 798, nebo trojici 978,
789, 897.
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С - II - 4

Označme Р, Q, R paty výšek spuštěných po řadě z vrcholů А, В, C da-
něho ostroúhlého trojúhelníku а V —jeho ortocentrum (obr. 7). Protože

A R В

Obr. 7

přepona je nejdelší stranou každého pravoúhlého trojúhelníku, dostaneme
z trojúhelníků APC, BQA a CRB nerovnosti

va < b, Vb < c a vc < a

a jejich sečtením pravou dokazovanou nerovnost. Protože ortocentrum V
je vnitřním bodem úseček AP, BQ a CR, platí

va > \AV\, Vb > \BV\ a uc > \CV\.

Pak ale z trojúhelníkových nerovností

\AV\ + \BV\ > \AB\, \BV\ + \CV\ > \BC\,
\CV\ + \AV\ > \CA\

ihned plynou odhady

va+vb> c, vb + vc > a, vc+va > b,
\

jejichž sečtením dostaneme

2(va + vb + vc) > a + b + c,

tj. levou dokazovanou nerovnost.
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Kategorie В

Texty úloh

В - I - 1

Jedna z výšek trojúhelníku ABC je menší než každá z jeho stran a tvoří
s délkami stran trojúhelníku ABC čtyři za sebou jdoucí přirozená čísla.
Určete velikost této výšky.

В - I - 2

Nech 0 < a < c. Nájdite všetky x G (a,c), pre ktoré platí

x(2a — x + 2c)3 ^ 27a2c2.

В - I - 3

Uvnitř trojúhelníku o stranách 3, 4, 5 najděte všechny body, jejichž vzdá-
lenosti od stran tvoří trojici délek stran nějakého trojúhelníku.

В - I - 4

Dokážte, že obvod každého pythagorejského trojuholníka je párne číslo.

В - I - 5

Na listě papíru jsou narýsovány části stran daného trojúhelníku, jehož
vrcholy leží mimo. Sestrojte střed kružnice vepsané danému trojúhelníku.

В - I - 6

Kolko existuje celých kladných čísel x ^ 1992 000 takých, že 1992 000
dělí x3 — x?
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В - S - 1

Nájdite najváčšie dvojciferné číslo n s tou vlastnostem, že existuje pytá-
gorejský trojuholník s obsahom n.

В - S - 2

Na listu papíru jsou narýsovány části stran konvexního čtyřúhelníku
ABCD a jeho vrcholy B, D. Vrcholy A, C leží mimo papír. Sestrojte
úhlopříčku AC.

В - S - 3

Nechť a, b jsou daná reálná čísla. Potom platí

(a + 6)4 ^ 8(a3b + ab3).

Dokažte!

В - II - 1

Nájdite všetky pytagorejské třojuholníky, ktorých výška na přeponu sa
rovná 12.

В - II - 2

Bod T je bodom vonkajšieho dotyku kružnice к s priemerom AT a kruž-
nice h s priemerom ВТ. Dotyčnica kružnice h vedená bodom A zviera
s priamkou AT uhol a a dotyčnica kružnice к vedená bodom В zviera
s priamkou AT uhol (3.

Dokážte, že
3 sin a sin (3 + sin a + sin (3 = 1. i

В - II - 3

Nechť x, y, z G (—1, oo) a x -f у + г = 3. Pak

2
< 3

i + l ' y-fl ' z + 1 = 2

X У
(1)

Dokažte. Kdy ve vztahu (1) platí rovnost?
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В - II - 4

Je dán trojúhelník ABC se stranami 3,4,5. V rovině daného trojúhelníku
najděte všechny body X, pro které existuje pravoúhlý trojúhelník se
stranami \XA\, \XB\, \XC\.

/

/

i
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Řešení úloh

В - I - 1

Označme n velikost výšky na stranu c, zbývající strany označme a, b. Ob-
sah trojúhelníku ABC lze vyjádřit dvěma způsoby (používáme Herónův
vzorec)

у = \Jsis ~ a){s — b)(s — c)
kde s = i (a + b + c). Je tedy

a + b + c b+c—a a+c—b a+b—ccn

2 2 2 22

Ze zadání víme, že {a, 6, c} = {n-t- l,n+2,n+3}, můžeme proto předchozí
rovnost upravit na tvar

= sj(3n + 6)(n + 2 )n(n + 4).2cn

Po umocnění a menší úpravě dostaneme

4c2n = 3(n + 2)2(n + 4). (1)

Nyní rozlišíme tři situace:
a) Je-li c = n + 1, pak z (1) po dosazení a úpravě dostaneme

48
n2 — 16n — 56 = —

n

Výraz na levé straně je pro n e M celočíselný, tj. n musí být dělitelem čísla
48. Postupným dosazováním se snadno přesvědčíme, že žádný z množiny
dělitelů čísla 48 dané rovnici nevyhovuje.

b) Pro c = n + 2 dostaneme z (1) lineární rovnici (po dosazení a vy-
dělení výrazem (n 4- 2)2) s kořenem n = 12. Tomu odpovídá ostroúhlý
trojúhelník se stranami 13, 14 a 15.

c) Je-li c = n -1-3, obdržíme podobně jako v a) rovnici

48
n2 - 24 = —

n

která opět v množině N nemá řešení.
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Jediným řešením tedy je trojúhelník se stranami délek 13, 14 a 15
a výškou 12 na stranu délky 14.

Poznámka. Úlohu lze řešit také na základě Pythagorovy věty diskusí
tří různých možností strany proti výšce délky n:

Přísluší-li např. výška nejdelší straně (obr. 8), pak platí

\/(n + 2)2 - n2 + yj(n + l)2 -n2 = n + 3.

Z tohoto vztahu po úpravě a dvojím umocnění postupně dostaneme

2л/n T 1 -t- \/2n -t- 1 — íi -f 3,

4 (n + l)(2n + 1) = n2 + 4,
2 o, 48n2 - 24 = —.

n

Tato rovnice, jak již víme, nemá řešení v N. Další případy se řeší obdobně.

n + 3

Obr. 8

В - I - 2

Za daných podmínek zřejmě platí

(c-x) =°-

Odtud dostáváme
. ac

— x > —.a + c
x
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Tento vztah a nerovnost mezi aritmetickým a geometrickým průměrem
tří kladných čísel využijeme při úpravách levé strany zadané nerovnice.
Je tedy

x(2a + 2c — a:)3 = x(a + с + (a + c - x))3 ^
/ oc\3

(a+c+7)> >

^ x ■ 33 • a ■ c ■ — = 27a2c2.
x

Nerovnice proto platí pro všechna x € (a, c). Platí vždy dokonce ostrá
nerovnost, neboť podle předpokladu je а Ф c.

В - I - 3

Vzdálenosti libovolného vnitřního bodu M od jednotlivých stran troj-
úhelníku označme x, y, z (obr. 9). Paty kolmic z bodu M na strany BC,

A

У

B[0,3]

Q

M/zp R

ЛГ4.01
C[0,0] X

Obr. 9

AB označme P, Q a R nechť je průsečík přímek PM, AB. Trojúhelníky
BCA, MQR, BPR jsou navzájem podobné, tj. mají délky stran v poměru
3:4:5. Platí tedy

\MR\ = ||MQ| = §z,
|РЛ| = ||ВР| = |(3-»),

\MP\ = X.
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Po dosazení těchto vztahů do rovnosti

\MP\ 4- \MR\ = \PR\

zjistíme, že
12 — 4у — 3x

(2)2 =
5

Kladná čísla x, y, z jsou délky stran nějakého trojúhelníku, právě když
platí

x + у > z Л x + z > у Л у + z > x.

Dosazením výrazu (2) do těchto tří vztahů vyjádříme hledanou množinu
jako průnik vnitřků polorovin určených nerovnicemi

Sx 4- 9y > 12 Л 9y — 2x < 12 Л 8x — у < 12.

Množinou je vnitřek trojúhelníku XYZ, jehož vrcholy X = [|,0],
Y = [0, |], Z = [y-, y] tezí uvnitř stran daného trojúhelníku ABC.

Poznámka. Vztah (2) se dá odvodit i jinými způsoby. Například použi-
tím vzorce z analytické geometrie pro vzdálenost bodu od přímky, nebo
z faktu, že součet obsahů trojúhelníků ABM, ACM, BCM se rovná
obsahu trojúhelníku ABC.

В - I - 4

Označme c přeponu trojúhelníku a a, b jeho odvěsny. Druhá mocnina
obvodu je

o2 = (a + b + c)2 = a2 4- b2 + c2 + 2(ab 4- ac 4- bc) =

= 2(c2 + ab + ac + bc).

To je sudé číslo, takže i o musí být sudé.

В - I - 5

Vepíšeme-li nějakému trojúhelníku ABC kružnici к, pak je její střed S
od jeho stran stejně vzdálen a tato vzdálenost je rovna poloměru g kruž-
nice k. Sestrojíme-li к trojúhelníku ABC stejnolehlý trojúhelník A!B'C
se středem S a koeficientem stejnolehlosti >c, 0 < x < 1, má střed S
od stran trojúhelníku A'B'C shodné vzdálenosti kg. Proto i vzdálenosti
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stran trojúhelníků odpovídajících si v dané stejnolehlosti jsou shodné.
Toho využijeme к vyřešení úlohy.

Konstrukce: Uvnitř daného trojúhelníku vedeme ve stejných vzdále-
nostech rovnoběžky s jeho stranami tak, aby se protly ve vrcholech A',
B', C uvnitř obdélníku tvořeného uvažovaným listem papíru a sestrojíme
střed 5 kružnice vepsané trojúhelníku A'B'C'. Ten bude zároveň středem
kružnice vepsané trojúhelníku ABC.

В - I - 6

Před řešením úlohy připomeňme následující tvrzení: Jsou-li a, b, c celá
čísla a a, b nesoudělná, má diofantovská rovnice

(3)au + bv = c

s neznámými u, v £ Z vždy řešení. Vyhovují-li této rovnici nějaká čísla
uq,vq € Z, dá se množina všech řešení rovnice (3) vyjádřit ve tvaru

{(u,v): и = u0 + bt, v = v0 + at, t € Z}. (4)

Řešení úlohy. Číslo 1992 000 = 26 • 3 • 53 • 83 má dělit součin tří po
sobě jdoucích nezáporných čísel

x3 — x = (x — l):r(a; + 1).

Pro tři po sobě jdoucí čísla vždy platí, že
a) právě jedno je dělitelné třemi,
b) nejvýše jedno je dělitelné daným číslem větším než 3,
c) sudé je buď prostřední z obou čísel, anebo obě krajní. Jsou-li však

obě krajní sudá, je jedno z nich lichým násobkem čísla 2.
Se zřetelem na tato fakta mohou pro činitele x — 1, x, x + 1 nastat

možnosti, jejichž přehled je uveden v následujících tabulkách.
Tabulka III vznikne z tabulky II záměnou x — 1 za x + 1.
Zabývejme se nejprve tabulkou I. Pro první řádek dostáváme tři řeše-

ní, neboť x = 664 000/ ^ 1 992 000, tedy l = 1, 2, 3. Ostatní řádky vedou
na rovnice typu (3). Například v posledním řádku dosadíme x = 64/ do
vztahu x — 1 = 125A;, dostaneme rovnici 64/ — 125A: = 1, jejíž kořeny mají
tvar к = ко + 64г, / = /0 + 125r, г € Z. То vede na x = x\ + 64 • 125r,
což dosadíme do vztahu x + 1 = 83m. Dostaneme 83m — 8 OOOr = 1 + xi.

Tato rovnice vede nakonec na x = xq + 664000/, tel. Vzhledem к dané
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x — 1 X + 1 x — 1 x + 1X X

26 • 53 • 83/ 25 • 53 • 83/c

53A; 26 • 83/ 25 • 53fc 83/

26 • 83/ 53m 25 • 53A: 83m

26 • 53/ 25 • 83fc 53/83A:

26 • 53/ 25 • 83к 53m83m

83 • 53fc 26/ 25& 83 • 53/

26/ 83 • 53m 25fc 83 • 53m

26/ 53m 2ък 53m83fc 83/

53fc 26/ 25A: 53/83m 83m

Tabulka I Tabulka II

periodě můžeme kořen xo zvolit v intervalu (1,664 000) a z podmínky
x < 1992 000 zjistíme t E {0,1,2}. Každý řádek tabulky I tedy vede na
tři vyhovující řešení. Obdobně postupujeme i v tabulkách II a III. Ten-
tokrát však vede každý řádek na šest řešení, neboť kořeny příslušných
rovnic dávají x tvaru

x = x0 + 332 000/, x0 E (1,332 000), t E {0,1,2,3,4,5}.

Dané úloze vyhovuje celkem 9-3 + 18-6 = 135 přirozených čísel x.

В - S - 1

Ako je známe (pozři napr. Štefan Znám: Teória čísel, častT., kap. 6) pre

odvěsny a, b a přeponu c lubovolného pytágorej ského trojúhelníka platí

a = k{q2 -p2),
b = 2kpq,
c= k(q2 + p2)

(1)

kde k, p, q sú prirodzené čísla, p, q sú nesúdelitefné čísla roznej parity
a q > p. Pre obsah P tohto pravoúhlého trojúhelníka však platí P — |a6,
číže P = k2pq(q2 — p2). Z toho vyplývá, že úlohe može vyhovovat’ len také
dvojciferné číslo n, ktoré možno vyjádřit’ v tvare

n = k2pq(q2 -p2), (2)
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kde к, p, q sú prirodzené čísla uvedených vlastností. Vzhladom к tomu,
že p, q musia mať rožnu paritu, stačí uvažovat’ len o párnych n. Kedze je
98 = 2 • 72, číslo 98 nevyhovuje. Platí však 96 = 3 • 25 = 42 • 1 • 2 • (22 -12),
z čoho porovnáním s (2) dostaneme fc = 4, p=l,g = 2apo dosadení
do (1) máme

a = 4(22 - l2) = 12,
b = 2-4-1-2 = 16,
с = 4(22 4- l2) = 20.

Pre plošný obsah P pytagorejského trojúhelníka so stranami 12, 16, 20
skutočne platí P = | • 12 • 16 = 96. Hladaným číslom je teda číslo 96.

В - S - 2

Rozbor (pozři obr. 10). V rovnolahlosti so stredom В a vhodným koefi-

В
A'A

Obr. 10

cientom 0 < к < 1 zodpovedá konvexnému štvoruholníku ABCD štvoru-
holník A'BCD' (A'D' || AD a C'D' || CD), ktorý sa už celý nachádza vo
vnútri obdížnika predstavujúceho daný list papiera. Bodu S £ АС П BD
v tejto rovnolahlosti zodpovedá bod S' £ A'C C\BD', pričom BD' = BD
a A'C || AC.

Z toho plynie následujúca konštrukcia. Vo vnútri úsečky DB zvolíme
bod D' tak, aby body A' e p = AB (A'D' || AD), C £q = BC (CD' ||
|| CD) ležali vo vnútri uvažovaného obdížnika. Označme S' £ A'C C\BD
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a zvolme vo vnútri úsečky A'S' (resp. vo vnútri úsečky S'C) lubovolhe
bod M'. Bodom D vedieme rovnoběžku s priamkou D'M' a jej priesečník
s polpriamkou BM' označme M. Rovnoběžka s priamkou A'C' = M'S'
idúca bodom M je priamka AC.

Dokaž správnosti konštrukcie vyplývá zo základných vlastností rov-
nofahlosti. Je zřejmé, že úloha má riešenie vždy, a to jediné.

В - S - 3

Najskór dokážeme, že pre každé dve čísla a, b platí (a+b)4 ^ 8(ab3 +a3b).
Podlá binomickej vety platí

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

ale tiež

0 ú (a — b)4 = a4 — 4a3b + 6a2b2 — 4ab3 + b4
čiže

a4 + 6a2b2 + b4 ^ 4(a36 + ab3).
Preto platí

(a + b)4 ^ 4(a36 + ab3) + 4(a36 + ab3) ^ 8(a36 + ab3),
ako bolo třeba dokázat’.

В - II - 1

Ako je známe, pre odvěsny a, b a přeponu c lubovolného pytagorejského
trojuholníka platí

c = k(q2 +p2)a = k(q2 -p2), (1)b = 2kpq,

kde к, p, q sú prirodzené čísla, p, q sú nesúdelitelné čísla roznej parity
a q > p. Ak výška vc na přeponu c sa rovná 12, potom pre plošný obsah
P uvažovaného trojuholníka platí jednak P = | • 12c = 6c a jednak
P = |ab. Vzhládom na (1) z toho vyplývá, že

k2pq(q2 - p2) = 6k(q2 + p2),

čiže
6(g2+p2)

pq{q2 -p2)’ (2)
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Z toho, že čísla p a q sú nesúdelitefrié, vyplývá, že musia byť nesúdeliteFné
aj čísla q2 +p2, p a čísla q2 +p2, <7. Preto číslo к z (2) može byť prirodzené
len vtedy, keď súčin pq dělí 6. Vzhladom na předpoklady o číslach p, q

prichádzajú do úvahy len dvojice a) p = 1, q = 2; b) p = 1, q = 6;
c) p = 2, q = 3. Dosadením do právej strany (2) sa lahko přesvědčíme,
že prirodzené к dostaneme len pre p = 1, q = 2 (k = 5). Ak tieto
hodnoty dosadíme do (1), dostaneme a = 15, b = 20, c = 25. Z toho,
že v pravouhlom trojuholníku platí aft = ucc, dostáváme, že vc = — =

15-20
c

= 12.
25

Úlohe teda vyhovuje jediný pytagorejský trojuholník so stranami a =
= 15, 6 = 20, c = 25.

В - II - 2

Označme r poloměr kružnice fcafí poloměr kružnice h (obr. 11). Potom

je
sin /3 = .

r + 2RR + 2r
Preto platí

3Rr R r
3 sin a sin /3 + sin a + sin (3 =

(Я + 2г)(г + 2Я) R + 2r ' r + 2R
_ 3Rr + Rr + 2R2 + Rr + 2r2
“

(Д + 2г)(г + 2Я) = ’
čo bolo třeba dokázat’.
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В - II - 3

Pre každé tri kladné reálne čísla a, b, c vyplývá z nerovnosti medzi arit-
metickým a geometrickým priemerom, že

(a + b + c)(i + i + i) > 3\fábc • 3 л /— • 7 • - = 9.
V a b c

Pre a = x + l, 6 = y + l, c = z + lz tohto vztahu dostaneme

((x + 1) + to + 1) + (zv+ D) (ji. x . y + 1 . 2 + 1
1 1

= 9,

odkial vzhladom na podmienku x + у + z = 3 vyplývá, že

>3.1 1 1

a: + 1 ' у + 1 z + 1 2

Platí však

-zx У

x+1 y+1 z + 1

11 1
<= 1- + 1- + 1-

y + 1 z + 1X + 1

<3-3 Л
“2 2’

čo už je nerovnost’, ktorej správnost’ sme mali dokázat’.
V nerovnosti medzi aritmetickým a geometrickým priemerom platí

rovnost’ právě vtedy, keď platí a = b = c. Z toho vyplývá, že vo vztahu
(1) platí rovnost’ právě vtedy, keď x + l = y+l = z + 1 čiže x = у = z = 1
(vzhladom na podmienku x + у + z = 3).

В - II -4

Je zřejmé, že pravoúhlý trojuholník so stranami \XA\, \XB\, \XC\ exis-
tuje právě vtedy, keď nastane niektorý z týchto prípadov:

1) \XA\2 + \XB\2 = |XC|2,
2) \XA\2 + \XC\2 = \XB\2,
3) \XB\2 + \XC\2 = \XA\2.

52



Ak v rovině zvolíme karteziánsku súradnicovú sústavu tak, že platí
(obr. 12) C = [0,0], A = [4,0], В = [0,3], X = [x,y], potom \XA\2 =
= (x — 4)2 + y2, \XB\2 = x2 + (y — 3)2, |XC|2 = x2 +y2 a v jednotlivých
uvedených prípadoch dostaneme1)(x — 4)2 + y2 + x2 + (у — 3)2 = a:2 + y2, čiže

(x - 4)2 + (!/ - 3)2 = 0.

Tejto rovnici vyhovuje jediný bod D = [4,3].2)(x — 4)2 + y2 + x2 + y2 = x2 + (у — 3)2, čiže

{x - 4)2 + y2 + 6y = 9,

odkial’ po doplnění na úplný štvorec dostaneme

{x - 4)2 + (у + 3)2 = 18.

To je rovnica kružnice k\ so stredom S\ = [4, —3] a polomerom r\ — 3\/2.3)x24*(y — 3)2 + x2 + y2 = (x —4)2+y2, čiže ж2+8x + (y — 3)2 = 16,
odkial’ opat’ po doplnění na úplný štvorec dostaneme

(x + 4)2 + (у - 3)2 = 32,

čo je rovnica kružnice к2 so stredom S2 = [—4,3] a polomerom r2 = 4\/2.
Závěr. Podmienkam úlohy vyhovujú teda všetky body X € M =■ k± U

U^2U{I»}.
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Kategorie A

Texty úloh

A - I - 1
n

Nech p{x) = аг%г je polynom stupňa n ^ 1, pričom pre každé 0 ^
i=0 j,

^ к ^ n platí a0 + cii +... + a,k ^ 0 a súčasne dk+\ + ... + an ^ 0. Potom
pre každé x ^ 0 je p(x) ^ 0. Dokážte.

A - I - 2

Nech А', B' sú kolmé priemety bodov А, В do stien BCD a ACD štvor-
stená ABCD. Ak A! je ortocentrom trojuholníka BCD, tak B' je orto-
centrom trojuholníka ACD. Dokážte.

A - I - 3

Jestliže všechny zlomky se jmenovatelem nejvýše rovným n, jež leží v in-
tervalu (0,1) a jsou zapsány v základním tvaru, seřadíme podle velikosti,

a c

pak pro každé dva sousední zlomky - < — bude platit cb — dd = 1 (číslab d

0 a 1 chápeme jako zlomky y, y). Dokažte.

A - I - 4

Vypočítajte všetky prirodzené čísla n, pre ktoré platí rovnost’ r(n) +
+ 33 = r(n2), kde r(a) udává počet nezáporných delitelov prirodzeného
čísla a.
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A - I - 5

Zjistěte, pro která n má soustava n + 1 rovnic

x0 + 2xi = 1,
nxо + X\ + 4x2 = n,

(in-i + l)xi_i + Xi + 2(i + l)xi+i =

OCji—\ ”f“ — 1

řešení v oboru celých nezáporných čísel

A - I - 6

Označme A = {n(í): t > 0} množinu všech reálných čísel n(í), jejichž
dekadický zápis má tvar

n(t) = 0, ai(í)a2(í)a3(í)... ak(t)...,

kde o/c(í) = [tk + 5] (mod 10). Najděte nejmenší a takové, že x < a pro
každé x G A.

A - S - 1

Jestliže pro mnohočlen

ao + aix + a2x2 + ... + anxn = (x — xi)(x — x2)... (x — xn)

xn platí, že |a{| = 1 pro všechna i G {0,1,s reálnými kořeny xi, x2,..

..., n), potom n ^ 3. Dokažte.
• ?

A - S - 2

V prostoru je dán čtyřstěn ABCD, jehož mimoběžné hrany jsou navzá-
jem kolmé. Dokažte, že středy jeho hran leží na jedné kulové ploše.
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A - S - 3

Nájdite n, pre ktoré má sústava

'2 '4'
Xi = *r2

3 2 '5
2 Xl+ 2

=

* '

П + 1 '2' n + 3n

X\ +
2 X2 + "

. + 2Г” =2 4

riešenie (xi, X2,..., xn) také, že a:n = 100.

A - II - 1

V oboru reálných čísel řešte soustavu rovnic

x(y + z) = 1,
y{z + x) = 1,
z(x + y) =p

s parametrem p. Proveďte diskusi vzhledem к parametru p.

A - II - 2

Zistite najvačšie štvorciferné číslo n, pre ktoré platí

3 r(n) = r(n2),

kde r(n) označuje počet kladných delitelov čísla n.

A - II - 3

Nech H je priesečník výšok trojuholníka ABC a DH je výška štvorstena
ABCD. Potom platí

cos|<ADB\ : cos\<$BDC\ : со8|<$С1М| —

= \CD\ : \AD\ : \BD\.

Dokážte.
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A - II - 4

Najděte všechny hodnoty parametru p, pro které má mnohočlen

x3 — 3x + p

aspoň dva různé celočíselné kořeny.

A - III - 1

Nechp = (<ii, a2, •. •, an) je lubovolné poradie čísel 1,2,..., 17. Označme
kp najvačší index к taký, že ešte platí nerovnost’

«1 + «2 +'...+ Ofc < dk+l + ak+2 + • • • + ai7-

Určte najváčšiu a najmenšiu hodnotu kp a nájdite súčet čísel kp odpove-
dajúcich všetkým róznym poradiam p.

A - III - 2

Označme o, b, c, d, e, / velikosti hran čtyřstěnu a S jeho povrch. Dokažte,
že

\/3
S ^ — (a2 + 62 + c2 + d2 + e2 + /2).6

A - III - 3

Určete všechna přirozená čísla n, pro která platí rovnosti

S(n) = S(2n) — S(3n) = ... — S(n2),

kde 5(x) označuje ciferný součet čísla x (zapsaného v desítkové soustavě).

A - Ml - 4

Riešte rovnicu

cos 12x — 5 sin 3x + 9 tg2 x + cotg2 x.
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A - III - 5

Uvažujme funkci / definovanou v intervalu (0,1) jako

x iracionální'

x,

f{x) = p+ 1 p
x = -

ЯQ

'kde 0 < p < q jsou nesoudělná celá čísla. Najděte maximum funkce / na
intervalu (|, |).

A - III - 6

V rovině je dán ostroúhlý trojúhelník ABC. Jeho výška procházející bo-
dem В protíná kružnici s průměrem AC v bodech P, Q a výška pro-

cházející bodem C protíná kružnici s průměrem AB v bodech M, N.
Dokažte, že body M, N, P, Q leží najedná kružnici.
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Řešení úloh

A - I - 1

Z vyjádření

p(x) -p(l) = ai(x - 1) + a2{x2 - 1) + ... + an(xn - 1) =

= {x — 1) (ai 4- o,2 + 1) + .. • +
+ an(xn 1 + xn 2 4- ... 4- 1)) =

= (x — 1) ((ai 4- a2 4- ... 4- an) 4-
4- (й2 4- йз 4-... 4- an)x 4-... 4- anxn

a z předpokladů a\ 4- a2 4- ... 4- an ^ 0, a2 4- 03 4- ... 4- an ^ 0, ..

je zřejmé, že pro x ^ 1 platí
an = 0

p(x) ^ p(l) = a0 4- ai 4- ... 4- an ^ 0.

1
Abychom dokázali, že p(x) ^ 0 pro x 6 (0,1), stačí položit x —

У
Pak je

1
p(x) = — (an 4- an-iy + ..

У

Předcházející postup aplikujeme na mnohočlen an 4- an-\y 4- ... 4- aoyn
a využijeme předpokladů an_ 1 4- an_2 4-... + йо ^ 0, an_2 4- йп_з 4-... 4-
4- а0 = 0, ..., ао ^ 0. Pro х = 0 je р(х) — йо ^ 0.

Jiné řešení. Úlohu lze řešit i matematickou indukcí. Pro n = 1 doka-

zovaná věta zřejmě platí. Mějme n > 1 a předpokládejme, že věta platí
pro všechny mnohočleny stupně menšího než n. Pro x ^ 1 je

. +a0yn).

71—1p(x) ^ a0 4- axx + ... 4- (a 4- an)x71 — 1

a pro 0 ú ж ú 1 je

p(x) ^ (o0 4- a{)x 4- ... 4- anxn —

— ((йо + fli) + • • • + anx
П —1 )z.

Mnohočleny na pravé straně obou nerovností nabývají nezáporných hod-
not podle indukčního předpokladu.
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A - I - 2

Protože AA! ± BC a DA' _L BC, platí ВС J. ADA', tedy ВС JL AD
(obr. 13).

Podobně BB' J_ AD a BC J_ AD (jak jsme již dokázali) dává
AD _L BCB', takže AD _L B'C, to znamená, že bod B1 leží na výšce
trojúhelníku ACD z vrcholu C.

Zaměníme-li CaD, dostaneme, že B1 leží na výšce trojúhelníku ACD
z vrcholu D.

A - I - 3

a + c

7 < 3 (b,d > 0), platí i 7ba b

Q
< - . Je-li navíc 6c — ad =

a
Platí-li 1<

b + d
je také b(a + c) — a(6 + d) = 1 a c(6 + d) — d(a + c) = 1. Vyjdeme tedy od
zlomků у a j, to bude první krok. Při druhém kroku přidáme mezi tyto
zlomky zlomek y+x = při třetím kroku přidáme mezi tyto zlomky |
a |, dostaneme tak konečnou posloupnost j, p Tak postupujeme
dále, při n-tém kroku přidáme mezi každé dva zlomky 7, - zlomek6 d

pokud ovšem bude b + d n. Dostaneme konečnou posloupnost zlomků,
jejichž jmenovatelé jsou vesměs přirozená čísla nejvýše rovná n, a budou-li

CL C
stát v této posloupnosti zlomky 7, - vedle sebe, platí pro nebe —ad = 1.6 d
Stačí už jenom ukázat, že jsme tím dostali všechny zlomky z intervalu
(0,1) se jmenovatelem menším než n + 1.

a + c

b + d
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p
Předpokládejme tedy, že zlomek - (q ^ n) v naší posloupnosti není,

pak musí ležet mezi dvěma jejími sousedními členy ^ c
. a p

b' d' b < q < *
odkud plyne bp — aq ^ 1, cq — dp ^ 1. Vynásobíme-li první nerovnost
d, druhou b a sečteme-li je, dostaneme s využitím vztahu be — ad = 1
nerovnost q ^ 6 + d. To ale znamená, že b 4- d ^ n. Pak by ale zlomky

nemohly být sousedními členy uvažované posloupnosti, protože by
b d

a + c

bTd'

obsahuje posloupnost všechny zlomky -, pro které je 0 úpúq^n.

A - I - 4

Je-li n = PilP22 • • -Pkk rozklad čísla n na prvočinitele, je zřejmě

r(n) = (ai + l)(d2 + 1)... (ak + 1),

c

ď

mezi nimi ležel ještě zlomek Tím je dokázáno, že po n-tém kroku

a tedy
r(n2) = (2ai 4- l)(2a2 + 1)... (2a*, 4- 1).

V
Řešme rovnici

r(n2) — r(n) = 33,
neboli

(2k — l)aia2 ... dfc +

+(2fc 1 — l)(aia2 ,.. i 4-... 4- d2d3 ... a^) + ... +

+(2 — l)(ai 4* d2 -i-... 4" dfc) = 33.

Pro к — 1 má tvar di = 33, pro к -= 2 má tvar

3did2 + dj + d2 — 33

a řešením jsou dvojice (3,3), (8,1) a (1,8), pro к = 3 má tvar

7did2d3 4- 3did2 4* 3did3 4- 3d2d3 + a,\ 4* d2 + d3 = 33

a řešením jsou trojice (1,1,2), (1,2,1), (2,1,1), pro к = 4 má tvar

15did2d3d4 + 7(did2d3 4- did2d4 4- did3d4 4- d2d3d4) 4-
+ 3(. ..) + (•■■) =33
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a nemá řešení, neboť pro každou čtveřici přirozených čísel a\, a2, аз, а4

je levá strana alespoň 15 + 7- 4 + 3- 6 + 4. Tím spíše nemá rovnice řešení
pro к > 4.

Závěr: Úloze vyhovují právě ta čísla n, která mají rozklad na prvoči-
nitele n = p33, n = pípl, n = pfp2 nebo n = р\р2Рз •

A - I - 5

Pro n = 1 dostaneme soustavu

x0 + 2xi = 1,

x0 + Xi = 1,

která má jediné řešení xq = 1, x\ = 0.
Pro n = 2,3 dostaneme soustavy rovnic, které mají také právě jedno

řešení, ne však v oboru celých čísel, pouze v oboru racionálních čísel.
Stejný výsledek dostaneme i pro n = 5, případně i pro některá další
přirozená čísla. To nás vede к domněnce, že soustava nemá pro n > 1
řešení v oboru celých čísel.

Předpokládejme naopak, že soustava má v oboru celých čísel řešení
xo, xi,..., xn. Pravé strany rovnic jsou kombinační čísla, koeficienty můc-
nin qr v rozvoji dvojčlenu (1 + q)n. Vynásobíme tedy první rovnici čís-
lem 1, druhou zatím neurčeným číslem q, třetí číslem q2 atd., poslední
číslem qn a všechny získané rovnice sečteme. Na pravé straně dostaneme
(1 + q)n, na levé bude součet

(1 + qn)xo + [2 + q + (n - l)q2]xi + ... +
+ [2i + q + (n - i)g2]^_1Xt + ... + [2n +

Zvolíme-li q = \/2, rovnají se všechny výrazy v hranatých závorkách
výrazu -s/2(l + nV2), takže pak platí

(l + n\/2) [xo + X1V2 + 2z2 + 2^3/2 + ... + (/2) xn]
= (l + nV2)n,

П *

stejně tak pro q = — /2 dostaneme rovnici

(l - n/2) [x0 - X1V2 + 2x2 - 2x3/2 + ... + ( - /2)nxn]
= (l — nV2)n.
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Vynásobíme-li obě rovnice, dostaneme

(1 — 2n2) [xq + 4xqx^ — 2x\ + .. • + (—l)n • 2nx2] — (—l)n.

V hranaté závorce je podle předpokladu celé číslo, to znamená, že číslo
1 — 2n2 dělí číslo 1. Odtud plyne, že n = 1, pro n > 1 nemá daná soustava
celočíselné řešení.

A - I - 6

Zřejmě a ^ 1, neboť n(t) ^ 1 pro každé reálné t > 0. Hledané a (jde
o supremum) sestrojíme „po číslicích" zleva doprava: Jeho první číslice
ci za desetinnou čárkou bude rovna největší ze všech prvních číslic ai(íj
pro t > 0. Druhá číslice C2 bude největší z druhých číslic <22 (í) všech těch
t, která mají 01 (í) = ci atd. Ještě si uvědomme, že se stačí omezit na
t G (0,10). Snadno zjistíme, že

oi (t) = 9 pro t G (4,5), tedy Ci = 9,
a2(í) ^ 4 pro t G (4,5),

o2(ř) = 4 pro t G , tedy c2 = 4,

14
03 (t) = 9 pro t G tedy C3 = 9 atd.Y’5

5m — 1,5Dostáváme tak zmenšující se intervaly typu které obsa-
m

hiijí právě ta t G (0,10), pro něž desetinný rozvoj n{t) začíná číslicemi
cm. Vzhledem к tomu, že tyto intervaly vždy obsahují číslaCi, c2, • •

libovolně blízká к 5, budeme postupně dostávat cm = 9 pro lichá m
a Cm = 4 pro sudá m. Hledané číslo je tedy a = 0,949494 ... = ||.
Přitom pro žádné t > 0 není n(t) = a, jde o pěkný příklad suprema,
které není maximem.
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A - S - 1

Roznásobením jednotlivých dvojčlenů dostaneme známé algebraické
vztahy mezi kořeny algebraické rovnice a jejími koeficienty

71

= {-l)nXiX2...Xn = (-l)n Джг,CLq
2=1

— X\X2 + X\X2 + . . . + Xn-iXn — У ' XiXj,CLn-2

i<j
n

-(xi + X2 + . . . + Xn) = - У'xjCLn—1 —

i=l

a samozřejmě an = 1.
Pro druhou mocninu součtu kořenů dané rovnice tedy platí

2= (í>) =Y,xí +2'£ix‘xí =
' i— 1 ' 1 = 1 t<7

1 — I1

72

= +2«n—21

2=1

takže
П

x\ =F 1 — 2on_2 = 3.
2=1

Z nerovnosti mezi aritmetickým a geometrickým průměrem pro nezá-
porná čísla x\, x\, ■ ■x\ ovšem plyne

neboli n 3. Tím je tvrzení úlohy dokázáno.

A - S - 2

Označme K, L, M středy hran AB, BC, CA a P, Q, R středy hran
AD, BD, CD. Každá ze spojnic dvou středů hran je rovnoběžná s někte-
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rou hranou čtyřstěnu (je střední příčkou příslušné trojúhelníkové stěny,

D

RPj

l
i Q

<S
—h—> CMA

L

В

Obr. 14

obr. 14), proto jsou KLRP, KQRM a MLQP rovnoběžníky. Protože
mimoběžné hrany jsou navzájem kolmé, jsou uvedené čtyřúhelníky pra-

voúhelníky, a tak např. body К, L, R, P leží na kružnici se středem 5
ve středu úsečky KR a průměrem \KR\. Podobně ale leží na kružnici se

-středem S a průměrem \KR\ i body K, Q, R, M (protože jsme v prosto-
ru, nemusí se ovšem jednat o tutéž kružnici). Odtud plyne, že všech šest
uvedených bodů leží na kulové ploše se středem S a poloměrem \SR\.

A - S - 3

Z první rovnice dostaneme x\ = 1, dosazením do druhé rovnice vyjde
X2 = 2. Z třetí rovnice vypočteme £3 = 3.

Předpokládejme, že jsme již vypočetli, že Xi = i pro i — 1,2,..., к — 1.
Hodnotu Xk vypočteme z к-té rovnice, která má tvar

(*;>■♦© 3 к -f- 32
£2 + • • • 4*

2 *‘-I+ 2
xk =

4

Dosadíme-li za X{ číslo i (i = 1,2,.— 1), dostaneme

+ (& - 2) Q)+ • +Xk

к 4- 3
Xk — 4
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Opakovaným použitím vztahu ^ ^ ^ dostaneme

к -Ь 3 к + 2 k + 2
4 3 4

k + 2' кк 4- 1 к + 1 '3
+ + + ...++

3 3 3 3 3

Rozložíme-li obdobně každý sčítanec na pravé straně, dostaneme

к + 3 к + 1 к к- 1

+2U + 3 +... +
24 2

+ (^ — 1) (2) "*■ ^ (2) ’
takže Xk = к. Tím je dokázáno, že Xi = i pro všechna i € {1,2,... , n},
řešením úlohy je tedy n = 100.

Jiné řešení. První rovnici ponecháme, od každé další odečteme před-

, dostaneme ekvi-cházející. Využitím vztahu ^ Г ^ ^
valentní soustavu

= 1Xi
'4'

2x\ + X2
3
'5

2X2 + X33xi +
3

n + 1
(n - l)x\ + (n - 2)X2 + . . . + 2xn-2 + Xn-1 3

n + 2'
nx 1 + (n - 1)X2 + • • • “f" 2^72^1 “1“ *^7l —

3

Zopakujeme-li uvedený postup ještě jednou, dostaneme další ekvivalentní
soustavu

= 1Xi
= 3X\ + X2

П

X\ + X2 + ••• + Xn—2 + Xn—1
2
n -1- 1

X\ + X2 + • • • ”f” Xn—1 Xn —
2
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Odtud už snadno dostaneme jediné řešení dané soustavy Xi = i pro
i 6 {1,2,..., n}. Řešením úlohy je tedy n = 100.

A - II - 1

Z dané soustavy spočteme
P P P

xy = 1 УZ = - zx = -

2’ 2’ 2

Je-li p = 0, je xy = 1, уz = xz — 1, takže z = 0. Soustavě rovnic vyhovují

všechny trojice (z, y, z), pro které je z — 0, x Ф 0 а, у = -.
x

Je-li p Ф 0, je xyz Ф 0 a x = y, přičemž x2 = 1 — |. Soustava tedy
nemá řešení pro p > 2, ale ani pro p = 2 (bylo by x = у = 0).

Pro p < 2 (p Ф 0) vyhovují dané soustavě právě dvě trojice reálných
čísel

P
x = y z —

a

P
x = y z = —

)

A - II - 2

Je-li n = p“xP22 • • •Pkk rozklad čísla n na prvočinitele, je zřejmě

r(n) = (ai + l)(a2 + 1)... (a* + 1),
a tedy

r(n2) = (2ai + l)(2a2 + 2)... (2afc -I-1).

Rovnice

r(n2) = 3r(n),
nemá zřejmě pro fc = 1 žádné nezáporné řešení ai. Pro A: = 2 ji můžeme
zapsat ve tvaru

3(&i + 1) (u2 + 1) — (2oi + l)(2a2 + 1),
neboli

(ai-l)(a2 - 1) = 3.
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Proto je ai = 2, 02 = 3, anebo obráceně. Pro к = 2 tak dostáváme řešení
n = p2qA.

Pro к > 3 má uvedená rovnice tvar

(2k — 3)ai<22 ... о* +
+ (2k 1 — 3)(ai<22 ... dk-i + •.. + d2da ... dk) + •...=

= Oi + 02 + • • • + d- 2,

přičemž první dva členy na levé straně jsou nejméně 5 + oi + 02 + ... +
+dk > d\+d2 + . ■ -+dk+ 2; rovnice nemá tedy pro к ^ 3 žádné celočíselné
řešení.

Z nerovnosti (pq2)2 < 104 plyne pq2 < 100 a snadno zjistíme, že
největším číslem tohoto tvaru je 99 = 11 • 32. Hledané n tedy je n =
= 992 = 9801.

Jiné řešení. (Podle Josefa Menšíka, gymnázium v Brně, tř. kpt. Ja-
roše.) Rovnici

r(n2) = 3r(n)

můžeme napsat ve tvaru

(01 + l)(o2 + 1)... (dk + 1) — (2ai + 1)(2й2 + 2)... (2dk + 1).

Protože pravá strana uvedené rovnice je lichá, jsou všechna čísla ai,

02,.. •, dk vesměs sudá, takže vidíme, že číslo n je úplný kvadrát. Největší
takové čtyřciferné číslo je 992. Snadno se přesvědčíme, že n = 992 dané
rovnici vyhovuje.
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A - II - 3

Označme a, Ь, c strany trojúhelníku ABC a a\ — \AD\, bx = \BD\,

D

Clai

Г CÁ
Hi

ac

£

Obr. 15

ci = \CD\ zbylé hrany čtyřstěnu ABCD (obr. 15). Podle kosinové věty
pro trojúhelníky ABD a BCD platí

aj +bj - c2
cos |< ADB\ = 2aib\

b\+ c\ — a2
cos |< BDC\ = 2biCi

takže
cos \< ADB\

_ (a2 + b\ — c2)c\
cos \<BDC\ ~ (62 + c2 - a2)ai ‘

Zřejmě stačí ukázat, že poslední výraz je roven c\/a\. (Cyklickou zámě-
nou obdržíme další dvě rovnosti.)

Je-li v = \DH\ uvažovaná výška čtyřstěnu ABCD a BBi výška troj-
úhelníku ABC, dostaneme několikerým použitím Pythagorovy věty

c2 — o2 — {v2 + \CH\2) - {v2 + |ЛЯ|2) =

- \CH\2 - |ЛЯ|2 - |СЯ!|2 -\ABX\2

a zároveň

a2 -c2 = \CBX\2 - \ABX\2.
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Odtud ovšem plyne

62 + c2 - a2 = a2 + 62 - c2.

Tím je důkaz hotov.
Dopustili jsme se ovšem malého zjednodušení vynecháním případu,

kdy je úhel ADВ pravý, a tedy cos | < ADB\ = 0. Pak je b\ + cf — a2 =
= af + b\ — c2 = 0, takže pravý je i úhel BDC. Stejně bychom dokázali,
že je pravý i úhel CDA. Jde o čtyřstěn, jehož každé dvě z hran DA, DB,
DC jsou kolmé a všechny tři hodnoty kosinů na levé straně dokazované
rovnosti se rovnají nule. Chápeme-li ji jako rovnosti

cos\<$ADB\
_ cos|<JjBDC| _ cos|<íCZM|

\CD\ \AD | \BD\

platí i v tomto zvláštním případě.

Jiné řešení. (Podle Josefa Menšíka, gymnázium v Brně, tř. kpt. Ja-
roše.) Tvrzení úlohy můžeme zapsat pomocí vektorů jako

AD BD = BD CD = CD • AD.

Přitom je

AD • BD = (AH + HD) ■ (BH + HD) = AH KBH + HD HD,

neboť z kolmosti HD к rovině ABC plyne rovnost АН ■ HD = HD ■ BH =
= 0. Zřejmě tedy stačí dokázat rovnosti

AH BH = BH CH = CH АН.

Protože vektory АС a BH jsou navzájem kolmé, platí

АН BH = (AC + CH) • BH = CH • BH.

Druhou rovnost dokážeme obdobně.

Jiné řešení. Protože výška DH je kolmá к podstavě ABC, je spe-
ciálně DH _L АС a zároveň BH ± AC, takže hrana AC je kolmá na
rovinu BDH. Odtud plyne, že hrany AC a BD jsou navzájem kolmé, to
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znamená, že oba vrcholy A i C mají týž kolmý průmět P na přímku BD.
Potom

\DP\ \DP\
cos \ <šADB\ = ± a cos\<BDC\ = ± \CD\'\AD\

přičemž v obou rovnostech platí stejné znaménko (podle toho, zda P leží
na polopřímce DB, anebo na polopřímce к ní opačné). Odtud ale plyne
rovnost

cos\<ADB\ : cos|«£DC| = \CD\ :\AD\.

Zbylou rovnost dokážeme analogicky.

A - II - 4

Je-li ra celočíselný kořen daného mnohočlenu, je p — Зга — га3 a rovnice

ж3 — Зж + Зга — га3 = (ж — га) (ж2 + гаж + га2 - 3) = О

by měla mít ještě další celočíselný kořen ж ф га. To ale znamená, že
diskriminant ,

D = ra2 — 4(ra2 — 3) = 12 — Зга2
kvadratického trojčlenu v druhé závorce musí být druhou mocninou ce-
lého čísla. Je tudíž Зга2 5Í 12, neboli |ra| ^ 2. Z pěti možných celých čísel
ra nevyhovuje uvedené podmínce pouze číslo m = 0, pro ostatní vyjde
p = ±2.

A - III - 1

Je-li p = (ai, Й2,..., an) uvažované pořadí a kp příslušný index, pak
zřejmě platí

<2l + d2 + • • • + Gfcp < dkp4-1 + • . • + Й17 —

— 153 — (di + d2 + ... + dfcp)

takže
kp

1 ■+• 2 + ... + kp 'У ] di ^ 76,
i— i

odkud plyne, že je kp(kp + 1) ^ 152, neboli kp ^ 11.
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Podobně dostaneme nerovnost

153 — (afcp+i + ... + an) < akp+1 + • •. + О17,

takže

17

77 ^ 'У ] clí ^ (kp + 1) + ... + 17 — 153 — -kp(kp + 1).
i=kp +1

Odtud vyjde odhad kp ^ 5. Snadno nahlédneme, že pro pořadí a =
= (1,2,..., 17) vyjde ka = 11 a pro pořadí 2 = (17,16,..., 2,1) zase
kz = 5.

Uvažujme dvě navzájem opačná pořadí

P — (oi,a2,... ,^17)5 Я — (oi7,oi6, • • • ,oi)-

Protože ai + 02 + ... 4- 017 = 1 + 2 + ...+ 17= 153 je liché číslo, platí
zároveň

Oi + 02 + • • • + Ofcp < Ofcp+i + . . . + fli7,
01 + a2 + ... + afcp+i > Ojfcp+2 + ... + ai7.

To ale znamená, že je kp + kq = 16 pro libovolná navzájem opačná po-
řadí p, q. Rozdělíme-li všech 17! možných pořadí sedmnácti čísel do |17!
dvojic navzájem opačných pořadí, plyne odtud, že hledaný součet je 8T7!.

- *

A - III - 2

Pro obsah P trojúhelníku o stranách a, b, c dostaneme podle Heronova
vzorce

P2 = — (2oV + 26V16

= ((a2 + 62 + c2)2 - 2(a4 + 64 + c4)).

Podle Cauchyovy nerovnosti je

+ 2c2 a2 — o4 — 64 — c4) =

(a2 + Ь2 + с2)2 й 3(a4 + b4 + c4)

72



takže

P2 й Л ' i(<»2 + b2 + c2)2,16 3

^^(а2 + 62 + с2).12

Pro povrch S uvažovaného čtyřstěnu odtud plyne

Sg з|(а2+62 + с2 + 62 + е2 + /2 +
4- с2 + /2 + d2 + a2 + d2 + e2) =

= ^(a2+62+c2+d2 + e2 + /2).
O

Protože pro pravidelný čtyřstěn nastane rovnost, nedá se koeficient
|V3 v dokázané nerovnosti zmenšit.

A - III - 3

Je-li n = ci - 10p—1+C2 * 10p—2 H-.. .+Cp (ci Ф 0) rozvoj p-ciferného přiroze-
ného čísla n v desítkové soustavě, budeme stručně psát n = \c1\c2 \... |cp|.
Jelikož je c\ Ф 0, je n ^ 10p_1. Číslo 10p_1 zřejmě podmínce úlohy ne-
vyhovuje, vyloučíme-li triviální případ p = 1. Stačí tedy uvažovat jen
ta p-ciferná čísla, která jsou větší než 10p_1. Zkusíme porovnat ciferný
součet ci + C2 + C3 + ... + cp čísla n a čísla m = (10P_1 -f l)n. Je

IciIc21•. .\cp-i\cp\ 0 I 0 I...I 0 I
|ci|c2|c3|...|cp|

\do\d1\d2\. ■ .\dp-i\dp\c2\c3\.. .|cp|m =

Je-li Cp + C\ ^ 9) je dp — Cp “f“ Cj5 dp—i — Cp—^^ * * *) d\ — ci ^ do — 0
a S(m) — 2(ci + C2 +...+ cp) Ф S(n). Je-li cp + Ci ^ 10, je dp = cp + ci —

10) a pokud Cp—^ ~ 8j Jg dp—^ — Cp—\ ~f" 1) dp—2 — Cp—2? • • •? d\ — ci ^

do — 0, 5(m) = 2S(n) — 9, 5(n) ^ 10, takže opět je S(m) ф S(n). Aby
S(m) = S(n), musí být nutně cp_i = 9. Podobně bychom dokázali, že
musí být Cp_2 = ... = c2 = cx = 9. Protože cp^lan musí být dělitelné
devíti (to plyne ze vztahu S(2n) = S(n)), je i cp = 9. Aby tedy číslo n
splňovalo podmínku S(m) = S(n), musí být nutně n = 10p — 1 nebo
n — 1.
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Ukážeme, že tato čísla splňují podmínku úlohy. V případě n = 1 je
to zřejmé, zvolme tedy n = 10p —-1, tedy 5(n) = 9p, p ^ 1 a nechť к je
libovolné přirozené číslo menší než 10p. Nechť je к = |bi|&2| • • • IM zápis
čísla к v desítkové soustavě, přičemž nevylučujeme případ &i = 0 nebo
bi = 62 = 0 atd., tedy nevylučujeme případy, kdy je к číslo g-ciferné
a q < p. Budeme však nejdříve předpokládat, že к není dělitelné deseti,
tj. bp ф 0. Je pak kn = к • 10p — к,

\bi\b2\... ...|6P|0|0|
-\bl\b2\

|0|к ■10p =
'

-k = IЫ
kn = |bi|.. .\bp-i\bp - 1|9 - bi\... |9 - bp_i|10 - 6p|,'

takže S(kn) =9p = S(n). Pokud je bp = 0, je к = 1CП, r ^ 1, a l
není dělitelné deseti. Podle předcházejícího je S(ln) = 5(n) a zřejmě
5(10r/n) = 5(n). Tím je důkaz dokončen, úloze vyhovují právě čísla 1,
9, 99, 999, ...

Jiné řešení. Předpokládejme, že p-ciferné číslo n vyhovuje dané sou-
stavě rovnic a že ciC2...cp je jeho zápis v desítkové soustavě, takže
S(n) = ci + C2 4- ... + cp. Protože n ^ 10p—1, ale 5(10p_1) = 1^2 =
= 5(2 • 10p_1), je n ^ 10p_1 + 1. Číslo n(10p_1 +1) ^ n2 má v desítkové
soustavě zápis

10p xn + n = C1C2 ... Cp 00... 0 -1- C1C2 •.. Cp =
p-1

— (Cl C2 • • • Cp "f" C\ ) C2C3 • • • Cp.

Odtud plyne rovnost

5((10p 1 4* l)n) = 5(ciC2 ... Cp + Ci) + C2 + C3 + ... + Cp

takže

5(cic2 ...Cp + Ci) = ci.

Číslo C1C2 . •. cp + ci není p-ciferné (jinak by začínalo číslicí ci nebo číslicí
ci + 1, takže by bylo 5(ciC2 ... cp+ci) > ci). Platí tedy 10p ^ C1C2 ... cp +
+ Ci, zároveň ovšem je C1C2 ... cp ^ 99... 9 = 10p — 1. Dohromady tak
dostáváme nerovnosti

10p ^ cic2...cp + ci ^ 10p + 8.
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Díky této nerovnosti snadno zjistíme, že nemůže být C\ й 8, neboť
89... 9 + 8 < 10p; je tedy c\ = 9 a S(cic2 • • • cp 4- 9) = 9. Protože rovnice
S(x) =9 má v intervalu (10p, 10p + 8) jediné řešení x = 10p + 8, vychází

n = cic2 ... cp = 10p + 8 - 9 = 10p - 1.

Zbývá ověřit, že nalezené číslo n = 10TO — 1 vyhovuje pro libovolné při-
rozené m všem rovnostem úlohy. Pro к ún označme cic2 ... cp dekadický
zápis čísla к — 1. Potom

kn = k{ 10m - 1) = (k - l)10m + (10m - k) =

= cic2 ... cp 00... 0 +
771

+ 99...9(9-ci)(9-c2)...(9-cp),
m—p

neboť 10m — к — (10та — 1) — (к — 1) = 99... 9 —cic2 ... cp. Je tedy
771

kn = C1C2 .. .cp99.. .9(9 — Ci)(9 — c2)... (9 - cp)
m—p

a proto

S(kn) = ci + c2 + ... + cp + 9(m -r- p) +
+ (9 — Ci) + (9 — c2) + ... + (9 — Cp) — 9m.

A - III - 4

Levá strana rovnice

cos 12ж — 5 sin 3x = 9 tg2 a; + cotg2 a:.

splňuje pro libovolné reálné číslo x nerovnost

cos 12a; — 5 sin 3a; ^ 6, (1)

pravá
9 tg2 x + cotg2 x ^ 6, (2)

/ '
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1
neboť pro každé kladné и platí и-\— ^ 2, a tedy

и

9 tg2 x + cotg2 x = 3 > 6.

Danou rovnici splňují tedy právě ta x, pro něž v obou nerovnostech
(1) a (2) nastane rovnost. To znamená, že

cosl2a: = l, sin3x =
V3'

Z těchto podmínek vychází, že

, K
x — к

6

kde к, l, m jsou celá čísla. Společným řešením jsou čísla

(12k + 11)^ a x = (I2k + 7)^,

За: = (4/ — 1)^ a x = (6m ± 1)^,

x =

kde к G Z je libovolné celé číslo.

A - III - 5

V intervalu (|, f) leží číslo pro které je /(if) = if > §• Podle
řešení úlohy A-I-3 neleží v intervalu žádné racionální číslo |
se jmenovatelem q < 25 a podobně interval (y|, |) neobsahuje žádné
racionální číslo £ se jmenovatelem q < 26. Pro každé racionální číslo ^
z intervalu (|, |), | ^ Щ, tedy platí q ^ 26, a proto je

p 18 1 16
~

~q + ~qK 9 + 26 < 17'
V

f
Q

Protože pro každé iracionální číslo x 6 (|, |) je f(x) — x < |, je
hledané maximum
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A - III - 6

Označme К patu výšky z bodu В na stranu AC, L patu výšky z bo-

du C na stranu AB. Z Eukleidovy věty pro pravoúhlý trojúhelník APC
(obr. 16) dostaneme rovnost

\AP\2 = \AK\ • \AC\ = \AB\ ■ \AC\ cosa.

Stejný výsledek dostaneme i pro velikost \AM\2 z Eukleidovy věty pro

pravoúhlý trojúhelník ABM,

\AM\2 = \AL\ ■ \AB\ = \AB\ • \AC\ cos a.

Je tedy \AP\ = \AQ\ = \AM\ = |АЛГ|, takže body M, N, P, Q leží
kružnici se středem ve vrcholu A daného trojúhelníku.

na

Jiné řešení. Zřejmě AC je osa úsečky PQ, AB je osa úsečky MN.
Odtud plyne, že \AM\ = |^4iV| a \AP\ = |AQ|. (Pokud tedy leží body
M, N, P, Q na kružnici, je jejím středem bod A.

Protože P leží na výšce z bodu В, je PB ■ AC = 0. Z Thaletovy věty
dále plyne rovnost AP • PC = 0. Analogicky dostaneme CN ■ АВ = 0
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a AM • MB = 0. Je tedy

I AP|2 ±= АР AP = АР AP + AP ■ PC = AP AC =

= AP•AC + PB■AC = AB•AC,

|AM|2 = AM • AM = AM • AM + AM ■ MB = AM • AB =
= AM AB + MCAB = AC- AB,

takže |AiV| = \AM\ = \AP\ = |AQ|. Tím je důkaz tvrzení úlohy hotov.

Jiné řešení. Označme H průsečík výšek trojúhelníku ABC a A' patu
výšky vedené bodem A. Pro mocnost bodu H ke každé z obou uvažova-
ných kružnic platí

|ЯА| • |ЯА'| = |ЯМ| • |ЯЯ|

a zároveň

|ЯА|-|ЯА'| = |ЯР|-|Яд|.
Odtud ovšem plyne, že body M, N, P, Q leží na kružnici.
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Kategorie P

Texty úloh

P - I - 1

Permutáciou čísel 1,2,..., iV (krátko permutáciou) nazýváme prosté zo-
brazenie množiny {1,2,..., Ač} na seba. Permutácia P přiřadí každé-
mu číslu z intervalu (1.. N) nějaké číslo z intervalu (1.. N). Skládáním
permutácií dostáváme znova permutácie. Dvojité zloženie permutácie P
je permutácia D s vlastnosťou: D[i] = Р[Р[г]] pre každé i z intervalu
(1.. N). Permutácia čísel 1,2,..., JV sa v počítači reprezentuje dátovou
strukturou typu pole, pričom г-ty prvok póla obsahuje funkčnú hodno-
tu P[i].

Úloha: Napište a zdóvodnite program, ktorý pre zadané celé číslo N >
> 0 a pole P[1.. N], reprezentujúce permutáciu čísel 1,2,..., AT, vypočítá
jej dvojité zloženie. Výsledná permutácia musí byť po ukončení výpočtu
uložená v poli P a program nesmie používat’ iné pole (resp. inú váčšiu
dátovú štruktúru).

P - I - 2

So špeciálnym grafickým výstupem sa pracuje tak, že jeho štvorcová ob-
razovka je rozdělená na štvrtiny označené 1, 2, 3 a 4 (lává horná má
číslo 1, pravá horná 2, lává dolná 3 a pravá dolná 4), každá zo štvrtín je
zase rozdělená na štvrtiny a tak ďalej. Takto získané štvrtinky sa ozna-

čujú kódom (tj. konečnou postupnosťou obsahujúcou číslice 1, 2, 3, 4)
a nazývajú sa typizované štvorce. Pri komunikácii s programom sa kódy
zapisujú vo forme prirodzených čísel v desiatkovej sústave (zmysel majú
samozřejmé len čísla obsahujúce iba cifry 1, 2, 3, 4). Celá obrazovka má
kód 0. Například štvorec 1, 4, 2 vidno na obrázku s nápisom „TU“ a jeho
kód je číslo 142. Útvar je množina typizovaných štvorcov, reprezentovaná
množinou ich kódov.
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Úloha: Napište a dokážte čo najefektívnejší algoritmus, ktorý pre za-
dané N > 0 a pole K[1.. N] celých čísel — kódov typizovaných štvorcov
zistí, či z nich vytvořený útvar je typizovaný štvorec.

P - I - 3

Máme daný nasledovný program v Pascale:
program MOPI3;

var A;, x, pocvel, pocmal: integer;
begin

write(’K: ’); readln(fc);
->} pocvel := 0; pocmal := 0;

x := 0;
while к > 1 do

begin
■>} pocvel := pocvel + 1;

while (к mod 2) = 0 do
begin
x := x + 1; к := к div 2
end;

к := к - 1;
while х > 0 do

begin
*} pocmal := pocmal + 1;

к := к * 2 + 1; x := x — 1
end

end;
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writeln(’Pocet velkých prechodov bol: pocvel);
writeln(’Pocet malých prechodov bol: pocmal)

end.

Premenné pocvel a pocmal iba počí tajů počty prechodov cez vonkajší
cyklus a cez jeden z vnútorných.

Úloha: Zistite (a zdovodnite svoje tvrdenie), pre ktoré čísla к je počet
velkých prechodov rovný počtu malých.

P - I - 4

Na vstupe máme slovo v tvare w\ # W2, kde reťazce wi, w2 sú neprázdné
a obsahujú iba znaky ‘O’ a ‘1’. Tieto reťazce reprezentujú čísla v dvojkovej
sústave, pričom vyššie rády sú zapísané neskór. Napr. vstup ‘1011#01Г
reprezentuje dvojicu čísel 1101 a 110 zapísaných v dvojkovej sústave.
a) Napište program vo Froscale, ktorý vypočítá súčet čísel W\ a u>2 a vy-

píše ho v dvojkovom zápise v obrátenom poradí cifier (tj. tak isto,
ako sú tie čísla zapísané 11a vstupe). Například pre vstup v tvare
‘001#0111’ by mal vypísať ‘0100Г.

b) Napište program vo Froscale, ktorý vypočítá súčin čísel w\ aw? & vy-
píše ho v dvojkovom zápise v obrátenom poradí cifier. Například pre

vstup ‘01#100110Г by mal vypísať ‘01001101’.
c) Popište (neformálně), ako by vyzerali programy riešené v časti a) a b)

v případe, že by reťazce wi, obsahovali znaky ‘0’ až ‘9’ a repre-
zentovali by čísla v desiatkovej sústave.

Učebný text к 4. příkladu: Froscal — Frontový Pascal
Jazyk bez procedúr, premenných, syntaxou pripomínajúci Pascal (aj

so skokmi) a s jedinou pamáťovou štruktúrou — frontom — to je Froscal.
Front je dátová štruktúra s proměnlivou velkosťou (nie nepodobná zá-
sobníku), u ktorej sa vkládá na jeden koniec a vyberá sa z druhého. Je
známa rovnaká organizácia památi pod názvom FIFO — first in first out.
Presnejšie: Froscal je Pascal bez premenných (a teda aj bez priradenia),
s while a repeat cyklami, prikazmi case a if a skokom goto. Má dve fiktivně
premenné INP a TOP typu char a skrytů premennú front znakov. INP
je právě čítaný znak zo vstupu a TOP je znak na začiatku frontu. Ďalšie
příkazy: NEXT načíta nový znak zo vstupu do fiktívnej premennej INP,
PUT(znak) resp. PUT(premenná) uloží znak resp. hodnotu premennej
INP alebo TOP na koniec frontu, GET vyhodí prvý prvok z frontu. Příkaz
write má Pascalovskú definíciu, tj. móže sa vypísať znak, premenná, re-
ťazec alebo postupnost’ takýchto výrazov. Špeciálnym znakom na vstupe
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a vo fronte je znak ktorý na vstupe znamená presiahnutie vstupného
slova a vo fronte znamená prázdny front. Ak INP = ‘?’ (resp. TOP =

*?’), potom příkaz NEXT (resp. GET) nič nespraví. Ani PUT(‘?’) nič
nevykoná.

Program pracuje tak, že na vstupe má slovo nad dopředu presne urče-
nou abecedou (podmnožinou vypísatelhých znakov) a na výstupe (write)
može vypísať riešenie problému. Testovat’ korektnost’ vstupnej abecedy
nie je nutné; dokonca ak je specifikovaný formát vstupu, tak ho netřeba
testovat’. Do frontu ukladať, testovat’ a vypisovat’ možno lubovofné vypí-
satelné znaky. Na začiatku práce programu je front prázdny (tj. TOP =

*?’).
Orientačná gramatika jazyka Froscal:

(program) = program (měno); [(dekl. skokov)] (tělo programu)
(dekl. skokov) = label (skok)[, (skok)]*;
(skok) = (celé číslo)
(tělo programu) = begin (příkazy) end.
(příkazy) = (nič) | (příkaz) [; (příkazy)]
(příkaz) = [(skok): ]*(elem. příkaz)
(elem. příkaz) = begin (příkazy) end

| if (podm) then (příkaz) [ else (příkaz)]
| case (výraz) of

((selektor): (příkaz);)*
[else (příkaz)]

end

| while (podm) do (příkaz)
| repeat (příkazy) until (podm)
| goto (skok)
| write((write výraz)[, (write výraz)]*)
| PUT ((výraz))
I GET
| NEXT

(podm) = (relácia)
| ((podm)) and ((podm))
| ((podm)) or ((podm))
| not ((podm))

(relácia) = (výraz) (relačný znak) (výraz)
(relačný znak)=
= | < | <= | > | >= | <> | in
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(výraz) = INP | TOP | (znak konšt.)
| (interval znakov) | (množina znakov)

(write výraz) = INP | TOP | (znak konšt.) | (reťazec)
(poznámka) = {(text bez ‘}’)}
poznámka móže byť kdekolvek rovnako ako v Pascale.

Příklad: Program, ktorý má na vstupe slovo nad abecedou [‘a’, lb\
‘c’, iď] v tvare wi # W2- Třeba otestovat’, či sa Wi = W2-

program TEST;
label 13;
begin

{front sice prázdnit’ netřeba, ale na precvičenie}
while TOP<>’?’ do GET;
while not ((INP = ’#’) or (INP = ’?’)) do

begin {ešte sme vo w\, třeba uložit’}
PUT(INP); NEXT

end;
if INP<>’#’ then goto 13; {slovo má tvar w\ bez ’#’}
NEXT;
while (INP<>’?’) and (TOP = INP) do

begin {další znak sa rovná, ideme d’alej}
GET; NEXT

end;
if ((INP = TOP) and (INP = ’?’)) then write(’ANO’)
else 13: write(’NIE’)

end.

P - II - 1

Permutáciou čísel 1,2,..., N (krátko permutáciou) nazýváme prosté zo-
brazenie množiny {1,2,..., N} na seba. Permutácia P přiřadí každému
číslu i G (1..ÍV) nějaké číslo P[i\ G (X..N). Skládáním permutácií dostá-
vame znova permutácie. K-te zloženie permutácie P je permutácia PK
s vlastnosťou:

pk[í] = p[p[...p[í]])
v v

Ví G (1 ..N).
К-krát

Permutácia čísel 1,2,..., N sa v počítači reprezentuje dátovou štruk-
túrou typu pole, pričom г-ty prvok polá obsahuje funkčnú hodnotu Р[г].
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TJloha: Napište a zdovodnite čo najefektívnejší program (doraz je na
rýchlosti), ktorý pre zadané celé číslo N > 0 a pole P[l..N], reprezentu-
júce permutáciu čísel 1,2,..., /V, a celé číslo К podstatné váčšie než N
vypočítá jej K-te zloženie. Výsledná permutácia musí byť po ukončení
výpočtu uložená v poli P.

P - II - 2

Uvažujme špeciálny grafický výstup opísaný v úlohe P-I-2.
Úloha: Napište a zdovodnite program, ktorý pre dané dve celé čísla

51,52 ^ 0, reprezentujúce dva typizované štvorčeky (dané svojím kó-
dom), zistí, či ležia pri sebe, tj. či sa dotýkajú svojimi stranami zvonka.

Příklad: Štvorčeky 3 a 143 ležia pri sebe, ale 143 a 1423 neležia pri
sebe, rovnako ani 14 a 143 neležia pri sebe.

P - II - 3

Napište a dokážte čo najefektívnejší (doraz je na rýchlosti) program,
ktorý pre zadaný reťazec R dížky N nájde také dva rožne znaky Z1 a Z2,
pri ktorých vykoná nasledovný algoritmus maximálny počet výměn.

EsteHladaj:=true;
while EsteHladaj do

begin
EsteHladaj:=false;
for i:=1 to N-l do

if (R[i]=Z1) and (R[i+l]=Z2) then

begin
{ výměna }
R[i] : =Z2;
R[i+l] : —Z1;
EsteHladaj:=true

end;
end;

\ ' . /, ^ ‘ у ,

Znaky v reťazci R možete uvažovat’ z intervalu ’ A ’. . ’ J ’.
Poznámka: DÍžka zadaného reťazca N može byť velmi velká.

P - II - 4

Na vstupe je neprázdné slovo w obsahujúce iba znaky ’a’. Navrhnite
a popište program vo Froscale, ktorý vypočítá dolnú celú časť dvojkového
logaritmu dížky slova w a vypíše ju v dvojkovom zápise v obrátenom
poradí cifier.
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Poznámka: Příklad sa dá riešiť aj bez použitia příkazu goto.

P - III - 1

Permutáciou čísel 1,2,..., N (krátko permutáciou) nazýváme prosté zo-
brazenie množiny {1,2,..., iV} na seba. Permutácia P přiřadí každému
číslu i G (1..ÍV) nějaké číslo P[i] G (1..N). Skládáním permutácií dostá-
vame znova permutácie. Dvojité zloženie permutácie P je permutácia P2
s vlastnosťou:

Р2[г]=Р[Р[г]] Vi G (1..N).

Permutácia čísel 1,2,..., N sa v počítači reprezentuje dátovou struk-
túrou typu pole, pričom г-ty prvok póla obsahuje funkčnú hodnotu Р[г].

Úloha: Napište a zdovodnite čo najefektivnější program (doraz je na

rýchlosti), ktorý pre zadané celé číslo AT > 0 a pole P2[l..iV], repre-
zentujúce permutáciu čísel 1,2,..., N, vypočítá počet takých permutácií
P, ktorých druhé zloženie je zadaná permutácia P2, tj. pre ktoré platí
P2 =P2.

P - III - 2

Uvažujme špeciálny grafický výstup opísaný v úlohe P-I-2.
Niekedy třeba typizovaný štvorec presunúť niekam inam. Aký bude

jeho kód po jeho přesunutí о К jeho šírok doprava a L jeho šírok nahor?
Úloha: Napište a zdovodnite program, ktorý pre dané celé číslo S ^ 0,

reprezentujúce typizovaný štvorec (daný svojim kódom), a nezáporné celé
čísla K,L 't. 0 vypočítá a vypíše kód štvorca S po přesunutí о К jeho
šírok doprava a L jeho šírok nahor, alebo ohlásí MIMO OBRAZOVKY, ak
výsledný štvorec sa nachádza mimo obrazovky zariadenia.

P - III - 3

Máme daný nasledovný program v Pascale:

program M0PIII3;
var k,x,рос:integer;

q:0..9;
begin
write(’К:’);readln(к);
{ > } рос:=0;
while к>0 do { hlavný cyklus }
begin

{ > } poc:=poc+l;
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q:=0;x:=0;
while (к mod 10)=q do { cyklus A}
begin
x:=x*10+q; k:=k div 10;q:=9-q

end;
if q=9 then if k>0 then k:=(k+l)*10+9

else begin k:=0; x:=0; poc:=0 end
else begin k:=k-l; x:=x*10 end;

while x>0 do { cyklus В }
begin
k:= k*10 + x mod 10; x:= x div 10

end;
end;

writeln(’Pocet prechodov bol:’,poc)
end.

Úloha: Napište a dokážte program, ktorý pre zadané P vypočítá taký
vstup К, aby výsledný počet prechodov hlavným cyklom рос bol rovný
zadanému P.

P - III - 4

Na vstupe je slovo v tvare w\ * W2, pričom (neprázdné) šlová wi, W2

obsahujú iba znaky J a’ až ’z’ a dížka. slova W]_ je omnoho menšia než
dížka slova

Úloha: Napište a popište program vo Froscale, ktorý vypočítá počet
výskytov slova w\ v slově W2 a vypíše ho v dvojkovom tvare v obrátenom
poradí cifier.

Například pre vstup ’aba+abababababababababababiuababab’ by
mal vypísať postupnost’ znakov ’ 0011 *, reprezentujúcu číslo 12 (dvojkovo
11002).

w2-
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Řešení úloh

P - I - 1

Každú permutáciu P móžeme rozložit’ na niekolko navzájom disjunkt-
ných cyklov, P = C1C2 .. ■ Cm. Každý cyklus tvoria nějaké prvky mno-

žiny {I,...,N}, označme preto Ci =a(ai,iai,2 ■ • • ai,/;). Číslo li nazveme
dížkou cyklu Ci.

Samotná permutácia (zobrazenie P) vznikne zložením jednotlivých
cyklov. Podobné dvojité zloženie permutácie vznikne zložením dvojitých
zložení jednotlivých cyklov; D — P2 = C\C\ ... C^. Stačí preto prejsť
každým cyklom, „přečíslovat’ ho“, tj. zabezpečit’ aby P'[i] = Р[Р[г]] (P' je
stav роГа P po skončení programu, P'[i] = D[i]) a úloha je vyriešená.

Cyklus Ci tvořený prvkami a*, 1, a,^,..., možeme přečíslovat’ po-
stupnosťou priradení

í>'[au] := P[P[au]]
P'[af,2] := P[P[a.,]]

Ale v okamihu vykonania prvého priradenia je hodnota Р^д] prepísa-
ná novou hodnotou Р'[агд], preto si třeba póvodnú hodnotu predchá-
dzajúceho prvku památať, aby sme věděli určit’ a*,2 (= Р[а{д]). Takisto
narazíme na problém prř přečíslovávaní posledného prvku cyklu. Totiž

P'Kl.] ~ P[P[oi,i()] = P[oí,i],

ale táto hodnota je opat’ prepísaná (památáme si len jeden predchádzajúci
prvok). Tento problém sa dá odstrániť uchováním hodnoty prvého prvku
cyklu.

Potřebujeme teda zabezpečit’ dve věci: nájsť cyklus, ktorý sme zatiaf
neprečíslovali, a přečíslovat’ ho.

Jeden spósob, ako nájsť ešte neprečíslovaný cyklus, je takýto:
Nech všetky prvky, ktoré sú už přečíslované, majú záporné znamienko;

teda nech P'[x] = — P[P[x]]. Potom sa začiatok cyklu nájde Tahko ako
prvý výskyt kladného čísla:

novy:=1;
repeat

while (novy<=N) and (p[novy]<0) do
begin

p[novy] :=-p[novy] ;
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prvok p[novy] už je přečíslovaný;
možeme mu obnoviť kladné znamienko,
pretože ho už nebudeme testovat

inc(novy)
end;

if novy<=N then
přečísluj(novy) přečísluj musí súčasne

nastavovat znamienko
until novy>N;

Úsek programu, ktorý zabezpečuje prečíslovanie jedného cyklu, móže
vyzerať napr. takto:

procedure přečísluj (zac:integer);
var i,j,pa:integer;
begin

i:=zac;
pa: =p[zac] ;
while p[i]Ozac do

zac je začiatok cyklu
do pa uchováme P[prvý prvok cyklu]
podmienka P[i]=zac je splněná, iba
ak už je spracovaný posledný prvok
cyklu
uchováme P[i]

> toto je vlastně priradenie;
súčasne nastavujeme znamienko

a posunieme sa na další prvok cyklu

begin
j :=pCi] ;
p[i] :=~p[p[i}] ;

i-'=j
end;

p[i] : =-pa ešte nastav posledný, opat na záporné
end;

Pretože maximálna dížka cyklu je N, je aj zložitosť prečíslovania
jedného cyklu O(N). Lenže pri přečíslovávaní cyklu sa přistupuje iba
к prvkom tohoto cyklu, teda pri přečíslovaní všetkých cyklov spolu sa

vykoná O(N) operácií. Časová zložitosť celého prečíslovania je teda li-
neárna vzhládom к N. Pri hladaní začiatku cyklu popísaný algoritmus
testuje každý prvok právě raz (a právě raz sa mu otočí znamienko), preto
je celková časová zložitosť tohoto riešenia úlohy O(N).

Otáčanie znamienka je tu použité ako trochu nečistý trik, pretože
sa takto vlastně simuluje pole logických hodnot, a pomocné polia sú
zakázané. Vychádzajúc z minulého ročníka МО-P, kde rozbor jedného
příkladu považoval pomocné logické pole a „znamienkovanie“ za rovno-
cenné metody z hládiska pamáťovej náročnosti, nemálo by to vlastně byť
korektné riešenie. Faktom však ostává, že předkládané riešenie skutočne
pole v pravom slova zmysle nepoužívá, dosahuje však poměrně výhodnú
časovú zložitosť. Pozor! Ak by sme hládali začiatok cyklu vždy znova od
prvého prvku, zvyšuje sa tým časovú zložitosť na 0(N2).
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Predvedieme teraz riešenie, ktoré sa dosledne snaží nepoužívat’ me-

tódy stotožnitefné s použitím póla (majme napr. obmedzenie, že všetky
prvky póla P móžu nadobúdať iba hodnoty z intervalu (I..N)).

Na prvý pohlad sa zdá byť správná takáto metoda hládania začiatku
cyklu: Považujme za začiatky cyklov iba ich najlávejšie prvky. Pre každý
prvok permutácie teda najprv předpokládáme, že v ňom cyklus začína.
Přejdeme postupné celý cyklus, a ak sme přitom přešli prvok s indexom
menším ako předpokládaný začiatok, právě testovaný prvok už nemože
byť začiatkom cyklu a třeba skúsiť další prvok:

skúšaj postupné všetky prvkyfor a:=l to n do

begin
i:=a; I

repeat
moze:=(i>=a); ak sme vpravo od a, ešte stále može byť

posunieme sa po permutácii
until (a=i) or not moze; celý cyklus alebo a nie je zač.
if moze then

i:=p[i]

ak sme našli začiatok,
precisluj2(a) možeme přečíslovat

end;

(Pozn. přečísluj2 je ekvivalent procedúry přečísluj s tým rozdie-
lom, že neotáča znamienka.)

Pri tomto spósobe vyhládávania začiatku prechádzame pre každý pr-
vok jeho cyklus (nie nutné celý, pretože hládanie končí hned’ pri prvom
zlom prvku v cykle, ale vo všeobecnosti je počet prejdených prvkov v jed-
nom cykle porovnatelný s N). Kedze prvkov je N, časová zložitosť je
0(N2).

Popísaný sposob má však výrazný nedostatok — rieši úlohu chybné.
Ak totiž v permutácii P existuje cyklus párnej dížky, tak po dvojná-
sobnom zložení sa rozpadne na dva cykly polovičnej dížky. Ak potom
pri hládaní začiatku dálšieho cyklu narazíme na najlávejší prvok patriaci
druhej časti rozpadnutého cyklu (všetky prvky tejto druhej časti ležia
vpravo od už nájdeného začiatku povodného velkého cyklu), považujeme
ho za začiatok nového, dosial’ neprečíslovaného cyklu a aplikujeme naňho
prečíslovanie. Tým sa však poruší póvodné prečíslovanie, ktorým tento
cyklus polovičnej dížky vlastně vznikol, čo v konečnom dosledku poruší
celé riešenie. '

Celý postup teda zlyhá na druhej časti rozpadnutého velkého cyklu.
Stačí však za začiatok cyklu považovat’ nie najlávejší, ale najpravejší pr-
vok cyklu. Tým sa zabezpečí, že žiaden z prvkov, ktoré sa právě prečíslujú,
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sa už nebude testovat’ na to, či je začiatkom cyklu. Teda ak sa aj cyklus
rozpadne, už to nevadí. Upravená časť programu:

skúšaj postupné všetky prvkyfor a:=l to n do

begin
i:=a;
repeat

moze:=(i<=a); ak sme před a, ešte stále može byť
posunieme sa po permutácii

until (a=i) or not moze; celý cyklus alebo a nie je zač.
if moze then

i :=p[i]

ak sme našli začiatok,
precisluj2(a) možeme prečíslovať

end;

(Rovnako správné je hládať najlávejší prvok, ale postupovat’ od konca
polá к začiatku.)

Pre takto upravený program platí všetko, čo sme povedali o predchá-
dzajúcom (zložitosť), ale rieši úlohu správné a bez pomocného роГа.

Kompletný výpis jedného z riešení:

program P_I_1;
var p : array [1..100] of integer;

n,a,i у integer;
moze : boolean;

procedure precisluj (a:integer);
var i,j,pa:integer;
begin

i :=a;

pa: =p [a] ;
while p[i]<>a do

begin
j :=p[i] ;
p[i] :=p[p[i]] ;
i:=j

end;
p[i] :=pa

end;
begin

write(’N: ’); read(n) ;

write(’P: ’);
for i:=l to n do read(p[i]);
for a:=l to n do

begin
moze:=true;
i:=a;
repeat

moze:=(i<=a);
i:=p[i]
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until (a=i) or not moze;

if moze then

precisluj(a)
end;

writeC’D: >);
for i:=l to n do write(p[i],’ ’);
writeln

end.

4
P - I - 2

Nech А, В sú kódy dvoch typizovaných štvorcov. Štvorec В leží v štvorci
A (je pokrytý štvorcom A) právě vtedy, keď ЗА; ^ 0: A — В div 10fc, teda
kód A je prefixom kódu B. Takúto situáciu označíme A = otec(B).

Štvorec К sa dá pokryt’ (štvorcami К\... Kn), ak sa kód К vysky-
tuje medzi kódmi K\... Kn, alebo ak sa medzi týmito kódmi vyskytujú
súčasne 10 • К + 1, 10 • К + 2, 10 • К + 3, 10 • К + 4.
(1) Nech Кх = otec(Ky). Je zřejmé, že kód Ky neovplyvní, či výsledný

útvar bude typizovaný štvorec, alebo nie, lebo štvorec Ky je úplné
pokrytý štvorcom I\x. Kód Ky teda nemusíme brat’ do úvahy.

(2) Nech Kx, Ку, Kz, Kv sú 4 rožne kódy, pre ktoré platí: v

К — Kx div 10 = Ky div 10 = Kz div 10 = Kv div 10.

Potom tieto štvorce tvoria spolu typizovaný štvorec К (o 1 „rád“
váčší).
Pravidlá (1) aj (2) redukujú počet kódov, ktoré třeba brat’ do úvahy.

Pravidlo (1) určuje, ktoré kódy sú zbytočné a pravidlo (2) skládá 4 štvor-
ce do jedného. Prakticky všetky možné riešenia spočívajú v aplikovaní
týchto pravidiel na vstupné kódy.

Tvrdenie: Ak Ki... sú kódy, ktoré ešte třeba spracovať, Ač > 1
a na kódy K\ ...K^ sa nedá aplikovat’ žiadne z uvedených pravidiel,
útvar nie je typizovaný štvorec.

Dokaž sporom: Predpokladajme, že výsledný útvar bude typizovaný
štvorec, nech je jeho kód T. Nech K\... sú kódy, ktoré ostali po

aplikovaní pravidiel (1) a (2) a nech sa už žiadne z týchto pravidiel nedá
použiť.Potom výsledný útvar je typizovaný štvorec právě vtedy, keď sa
T dá pokryt’ štvorcami I\\ ... Kn. To znamená, že
a) 3i, 1 i ^ N: Ki = T. Kedze ale T pokrývá všetky štvorce, platí

Vý: Кi = otec(Kj) (a — otec(a) platí). To znamená, že sa dá použit’
pravidlo (1), čo je spor s predpokladom.
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b) Эх, у, z, v: Kx = 10 • T + 1, Ку = 10 • Т + 2, Kz = 10 • Т 4- 3,
Kv = 10 • Т + 4. Z toho vyplývá, že sa dá aplikovat’ pravidlo (2), čo
je spor s predpokladom.
Rozdiel v riešeniach spočívá hlavně v rozdielnom spósobe aplikácie

pravidiel. Najjednoduchší algoritmus je nasledovný:

opakuj
skús aplikovat (1)
skús aplikovat (2)

pokial sa ešte dá aplikovat
ak ostal jediný kód, tak Je typizovaný štvorec

inak Nie je typizovaný štvorec

skús aplikovat (1) je zložitosti N2 (prehládávanie dvojíc čísel)
skús aplikovat (2) je zložitosti N4 (prehládávanie stvoříc čísel)
Hlavný cyklus prebehne rádovo iV-krát (pravidlo (1) zmenší Лг o 1

a pravidlo (2) o tri (jeden kód nahradí štyri)). Celková zložitosť takéhoto
algoritmu teda móže byť podlá individuálnych vylepšení 0(N4) a viac.

Výrazné zlepšeme zložitosti sa dá dosiahnuť usporiadaním polá kó-
dov. Nech pre kódy K\ ... Kn platí:
a) Vx < у < z: Kx = otec(Kz) => Kx = otec(Ky), teda kódy štvor-

cov pokrytých štvorcom Kx tvoria súvislý úsek hned’ za kódom Kx,
a zároveň

b) Vx < у < z < v (jlK: Kx = 10 • К + 1; Ky = 10 • К + 2;
Kz = 10 • К + 3; Kv = 10 • К + 4 =►

Vu>;x ^w^v: (Kw = otec(Kx) V Kw = otec(Ky) V
V Kw = otec(Kz) V Kw = otec(Kv)Ýj

potom by sa operácie z predchádzajúceho programu skús aplikovat
(1), skús aplikovat (2) dali previesť lineárně vzhládom na N aj
s úpravou polá.
Usporiadanie móže vyzerať například takto: Nech A = ai... a

В = bi. bno. Potom
nA >

a\ < bi =$ A < В

ai > &i => A > В

a\ = &i => 02 < &2 =*• A < В
02 > 62 =>■ A > В

a2 = b2 => a3 < 63 ...

92



pričom ax = 0 pre x > па, podobné pre B. Toto usporiadanie vyhovuje
požiadavkám.

Vidíme, že sa jedná o normálně usporiadanie podlá velkosti kódov
K\ ... Kn, kebysme ich všetky doplnili sprava nulami na rovnaký počet
cifier. Nech maximálny počet cifier je L. Potom zarovnanie na rovnaké
dížky kódov je ziožitosti L ■ N. Triedenie možno použit’ Quick-sort, Do-
bosiewics-sort (zložitosť N ■ log N) alebo takzvaný Radix-sort ziožitosti
L • N.

Toto triedenie využívá skutočnosť, že čísla K\ .. .Kn vieme jedným
priechodom utriediť podlá jednej z cifier. Ak použijeme pomocné pole, dá
sa dokonca zabezpečit’, aby pri triedení zachovával poradie kódov s rov-
nakou cifrou, podlá ktorej sa triedi, tzn. ak Ki, Kj sú kódy, zhodujú sa
v cifře, podlá ktorej sa triedi a i < j, potom aj po roztriedení bude Кi

před Kj. Ak teda čísla roztriedime podlá poslednej (L-tej), predposlednej
(L — l~vej), ... 2., 1. cifry, budú utriedené podlá velkosti. Nech x-tá cifra

mod 10,
Ki

aql~x

(L cifier),
'(L cifier).

A = ai... a

B = b1...bna,0,0...
0,0...nA 1

Nech (3r: ai = b\ A a.2 = ř>2 Л ... Л ar — br A ar+1 < br+i) A < B.
Po triedení (r + l)-vou cifrou musí byť A před В; po triedení r, r — 1,

r — 2, ..., 1. cifrou sa poradie А, В musí zachovat’, čiže skutočne A < B,
takže po pretriedení bude A před В.

Triedenie jednou cifrou je jeden priechod pofa; triedenie podlá L cifier
má zložitosť L • N.

Opat’ existuje viac spósobov ako zistiť, či takto utriedené pole je ty-
pizovaný štvorec. Ideálne by bolo, keby zložitosť tejto operácie nebola
váčšia ako zložitosť triedenia.

Nech sa na K\.. .K^ nedá aplikovat’ (1) a dá sa (2). Móže nastat’
situácia, že by po aplikovaní (2) sa dalo aplikovat’ (1)? Nech 3x, y, z,v,K:
Kx = 10-АГ+1, Ky = 10T+2, Kz = 10-/\+3, Kv = 10-АГ+4. Teda К je
predchodca /ťx, Ky, Kz, Kv ■ Je jasné, že také, že by К = otec(Kh), ale
ani jeden z Kx .... Kv nie sú predchodcom I\h móže existovat’ len vtedy,
ak Kh = К. Potom by sa ale dal aplikovat’ (1), lebo К = otec(Kx) ..

čo je spor s predpokladom. To znamená, že pravidlo (1) stačí aplikovat’
iba raz.

* ?
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Majme utriedené pole K\ .. .Kn, aplikujme naň pravidlo (1). Ak by
zvyšné kódy tvořili typizovaný štvorec, tak by sa dalo opakované apliko-
vať pravidlo (2), kým by nezostal jediný štvorec.

Všimnime si prvok K\:
a) buď Ki je kódom výsledného typizovaného štvorca, potom ale N musí

byť 1.
b) Ki sa bude podlá pravidla (2) skladať s dalšími kódmi; potom ale

vdaka usporiadaniu sa musí Ki mod 10 rovnat’ 1.
Algoritmus: opakované, pokial’ N > 1 a K\ mod 10 = 1, skúšame

poskládat’ kód K\ div 10.
Celé zistpnie, či množina kódov je typizovaný štvorec, alebo nie, je

zložitosti L • N: každý kód sa použije na spájanie do váčšieho štvorca
právě raz; vdaka usporiadaniu sa štvorce využívajú poradě.

P - I - 3

Správné riešenie je, že PocVel = К — 1 a počet priechodov malým a vel-
kým cyklom sa rovná vtedy, keď К = 2\ г G M.

Aby sme mohli dokázat’ toto tvrdenie, musíme najprv dokázat’ niekol-
ко pomocných tvrdení:

Majme daný nasledovný algoritmus:

vstupná hodnota: К [0]

for i:=l to x do

К [i] :=2*K[i-l] +1;

výstupná hodnota К [x]
Dokážme, že Kx — Kq • 2х + (2х — 1).

kx

Кз

к2

к i

Kx = ((... ({(K0 ■ 2 + l)'-2 + 1) -2 + 1).. )■ 2 + 1),
čo je v podstatě princip Hornerovej schémy na výpočet hodnoty polynó-
mu p(y) = Ко ■ yx + 1 • yx~l + 1 • yx~2 + ... + 1 • x + 1 v bode 2. Hodnota
polynomu bude

Кx = Kq ■ 2X + (2X_1 + 2X_2 + ... + 2 + 1) = Ao • 2X 4- M,
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kde M = 2х 1 + 2х 2 + ... + 2 + 1. М je súčet geometrickej postupnosti:
a0 = 2х-1; n = z; q = §, v

1-4(7n - 1 2х - 1
= 2X_1 •

2X tjx = 2х - 1,M = ao • i 219-1 2

teda A"x = /i0 • 2X 4- 2х — 1, čo bolo třeba dokázat’.

(1) Dokážme teraz, že hodnota К sa zmenší v každom priechode vonkaj-
ším cyklom o jedna, z čoho vyplývá, že hodnota PocVel bude К — 1:

Program Mopi3;
Var КД,PocVel,PocMal:Integer;

Begin
Write(’К:’); Readln(K);
PocVel:=0; PocMal:=0;
X:=0;
While K>1 Do

Begin
PocVel:=PocVel + 1; К = m • 2J ; m mod 2 = 1; taký

zápis musí existovat, lebo К > 1
bude splněné, až keď К = m,
lebo К sa jedine dělí dvorná

While (К Mod 2)=0 Do

Begin
X:=X+1; K:=K Div 2 K = m- 2j~1 2j~2 ... m ■ 2°, m ■

2i-xКx = rn •

ak К = m ■ 2jl, tak X = j — j 1
К = m;X = j
K-m- 1

opakuj X-krát

End;
K:=K-1;
While X>0 Do

Begin
PocMal :=PocMal + 1; zváčši PocMal о 1 =Ф-

na konci PocMal = PocMal + X
К:=K*2+1; X:=X-1

viď hoře: Kx — (m — 1) • 2X H- 2X — 1 =
= m ■ 2х - 1 = К - 1
Vo velkom cykle sa К zmenší o 1.
К teda nadobúda hodnoty
К, К - 1, К — 2,... 3, 2.
Vo velkom cykle sa zároveň PocVel
zváčši o 1 => PocVel = К — 1

End

End;
Writeln(’Počet velkých prechodov bol:’,PocVel);
Writeln(’Počet malých prechodov bol:’,PocMal)

End.
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(2) Hodnotu PocMal určíme následovně: Vieme, že velký cyklus prebeh-
ne К — 1 krát s hodnotami К: K,K — 1, К — 2,..., 3,2,1. Ďalej
vieme, že PocMal sa v každom cykle zváčší o i, kde К = m • 2\
mmod2 == 1. Teda pre К dělitelné 2l sa inkrementuje о г, ak 2г
je maximálna mocnina 2, ktorá deli K. Medzi číslami od 1 po К je

dělitelných 2г právě j^j
premennej К sa PocMal zváčší o i. Celková hodnota PocMal je teda

, to znamená, že pri právě |^J hodnotách

-ЕЧ1]. 2l<:K<2l+1 (L = [log2 K]).PocMal
i—l

V tomto súčte sme ale niektoré hodnoty zarátali viackrát, lebo hod-
nota К, ktorá je dělitelná 2г (г > 1), je dělitelná aj 2
1 ú j < i. Potom každé 2l-J-te číslo dělitelné 2J je dělitelné aj 2\
Teda správná hodnota PocMal bude

г-1
.., 21. NechV •

г=1 ' • j=1 '

=e(4|]-&|г=1 4

L Т/

PocMal

7 = 1

i—1

Tento výraz lepšie pochopíme následovně: Ak 2г je najváčšia moc-
nina 2, ktorá dělí К, tak číslo i je vlastně počet núl na konci čísla К
zapísaného v dvoj kovej sústave.

K-1 rK]
4 J + l 8 J

< К — 1 a že rovnost’ nastáva právě vtedy, keď К = 2L.

-к-
Poslednou častou dókazu je dokázat’, že — +
-к-

+ ... +

+
L2L

Nech

К = 2Al + 2M +2M + ... + 2Ar
Ai = LAi > A2 > A3 >...> Ar
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Potom

JÍ-J = 2Al-1 + 2M~1 + 2Аз-1 + ... + 2A,_1

j^J = 2Al~2 + 2Л2-2 + 2Лз~2 + ... + 2Ar~2

(1)

(2)

^ К I _ 2^i-^r _|_ 2^2—Ar 2^3—Ar _j_ Ш... + 1

Ш-* — Ar-1 _J_ 2^2 —-Ar-1 _|_ 2^3-^4.-1 _|_ + 0 (A,—i)

[£]- <+>1 + 0 + 0 + ... + 0

Spolu 2Al - 1 + 2Дз - 1 + 2Лз - 1 + ... + 2Ar - 1 =

= К — г,

ale г = 1 len рге К = 2L, čo bolo třeba dokázat’.

2. spósob.

PocMal = £ [§] á £ | = AT • £ 2-S =
i=l Í=1 1=1

L
iť

К - —r

2L ’

L bolo ale definované tak, že 2L ^ K, teda PocMal ^ К - 1. Rovnost’
nastáva právě рге К = 2L. Vtedy

É[|] = E|
í=i í=i

2l/v
a teda /ť — —r- = К — —r — К — 1, čo bolo třeba dokázat’.2L 2L

P - I - 4

Nech .4, В sú čísla, ktorým zodpovedajú dvojkové zápisy

m —1
+ . . . + По 2°,A — am2m + a,n_i2

В = bn2n + bn—i2n 1 + ... +

97



a nech wi, w2 sú zápisy čísel А, В y dvojkovej sústave v obrátenom
poradí cifier, teda w\ = o0ai... am, w2 = b0bi ... bn.

Súčet C čísel А а, В možeme určit’ nasledujúcim postupom:
Vyhodnotením výrazu «o + 6o získáme prvú cifru co zápisu súčtu

v obrátenom poradí cifier a prvý přenos po do vyššieho rádu, pretože
ao + b0 = co + 2po. Podobné a\ + b\ + po = C\ + 2p\. Takto možeme
vyjádřit’ všetky cifry súčtu. Dóležité přitom je, že na získanie сг- potřebu-
jeme poznat’ iba ог-, 6г- a Pi-\. Tieto tri vstupné hodnoty móžu byť určené
znakom na začiatku frontu (аг), na vstupe (6г) a stavom programu
Kedze všetky tri móžu nadobúdať iba hodnoty 0 alebo 1, potřebujeme na

správné rozlíšenie dva rózne stavy programu (stav s prenosom 0 a stav
s prenosom 1). Z toho už priamo vyplývá návrh štruktúry programu:

(1) Načítáme slovo w\ reprezentujúce číslo A do frontu.
(2) Výpočet začneme v stave s prenosom 0.
(3) Prečítame a; (z frontu) а Ьг- (zo vstupu). Vyhodnotíme а* + 6,- + pi-i ■

Párnosť výsledku udává г-tu cifru výsledku сг-. Podlá toho, či nastal
přenos, pokračujeme v príslušnom stave.

(4) Krok 3 opakujeme, kým sme neprečítali obe čísla, teda max(m,n)~
-krát, pričom za „chýbajúce cifry“ (bj), ak i > m (j > n), použije-
me 0.

Cifry čísla A čítáme dvakrát (prvýkrát pri kopírovaní vstupu na front,
druhýkrát pri samotnom výpočte), cifry čísla В iba raz; časová zložitosť
popísaného algoritmu je teda lineárna vzhládom na dížku vstupného slova
W\ * w2.

Jeden z možných zápisov popísaného algoritmu v jazyku Froscal:

načítanie slova w\ do frontuwriteln;
while INPO’*’ do begin PUT(INP); NEXT end;
NEXT preskočenie oddelovača *

stav bez přenosu0:

while INPO’?’ do
case INP of

’O’: begin
NEXT;
if Т0Рв,1* then writeď) else write(’O’);
GET

end;
’1’: begin

NEXT;
if T0P=,1’ then begin write(’O’); GET; goto 1 end;
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writeC’l’);
GET

end
N end;
goto 3;

1: stav s přenosom
while INPO’?’ do

case INP of
’O’: begin

NEXT;
if T0P=,1’ then write(’l’)
else begin write(* 1 *); GET; goto 0 end;
GET

end;
’ 1*: begin

NEXT;
if Т0Р=,1’ then writeC’l’) else write(’O’);
GET

end

end;
while T0P=’l’ do

begin
write(’O’);
GET

end;
write(’i’);
GET;

3:

while TOPO’?’ do

begin
write(TOP);
GET

end;
end.

Základná myšlienka počítania súčinu dvoch čísel zapísaných v dvoj-
kovej sústave spočívá v spočítavaní mocnin jedného z činítělov. Nech A,
В sú čísla vyjádřené rovnako ako v časti a), nech S je ich súčin. Platí

S = А- В = В ■А =

— (bn2n + bn-i2n 1 + ... + bo'20) • A =

— bn(2nA) + bn-i(2n 1 A) + ... + bo(2°A).

Čísla bi nadobudajú hodnoty 1 alebo 0, určujú teda, či příslušný člen 21A
do súčinu připočítáme alebo nie. Stačí teda postupné generovat’ čísla A,

У
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2A, 22A, ..., 2nA, po každom kroku prečítať príslušnú cifru čísla В, a ak
je nenulová, připočítat’ násobok А к súčinu. Číslo В teda netřeba nikde
uchovávat’; každá jeho cifra prislúcha právě jednému násobku čísla A. Ak
tieto násobky vieme generovat’ v potrebnom poradí (neskór ukážeme, že
áno), potom třeba každé bi použit’ právě raz, možu sa preto čítat’ priamo
zo vstupu. Číslo A však třeba uchovat’ na front. Spolu s týmto číslom je
potřebné památať si vo fronte aj medzivýsledok sčitovania. Je vhodné
ukladať tieto dve čísla tak, že pri sebe stoja vždy cifry rovnakého rádu,
teda mať na fronte postupnost’ aoSoaiSi kde Si sú cifry me-

dzivýsledku. Takýto tvar uloženia čísel prináša výhodu, že pri sčitovaní
násobku čísla A a medzivýsledku stačí prejsť frontom iba raz; takisto
zdvojnásobenie čísla A (čo je vlastně posunutie cifier a* o jedno mies-
to vpravo) vyžaduje iba jeden priechod frontom. Na vypočítanie celého
súčinu je preto potřebných rádovo m ■ n základných frontových operácií.

Popišme teraz bližšie samotnú implementáciu násobenia vo Froscale:
Najskór načítáme číslo A do frontu a inicializujeme medzisúčet.

repeat
PUT(INP); PUT(’O’); NEXT

until INP=’*’;
NEXT;

Na fronte je teraz aoOaiOo^O... am0. Tu začína samotné násobenie.
Ak sa v čísle В vyskytuje cifra 1, ktorá zodpovedá právě sa vyskytujú-
čemu násobku čísla A na fronte, třeba tento násobok připočítat’ к dosia-
hnutému medzisúčtu. Algoritmus sčítania je totožný s riešením úlohy a)
s tou výnimkou, že obe čísla sú teraz uložené na fronte.

repeat
if INP=’1’ then

begin
PUT(’*’);
if T0P=’*’ then goto 2;
PUT(TOP);
case TOP of

’O’: begin GET; PUT(TOP); GET; goto 0 end;
’1’: begin

GET;
case TOP of

’O’: begin PUT(’l’); GET; goto 0 end;
’1’: begin PUT(’O’); GET; goto 1 end

0:

end
end

end;
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if TOP=,*) then begin PUK’O'); PUT(’l’); goto 2 end;
PUT(TOP);
case TOP of

’O': begin
GET;
case TOP of

’O’: begin PUT(’l’); GET; goto 0 end;
*1*: begin PUT(’O’); GET; goto 1 end

1:

end

end;
*1»: begin GET; PUT(TOP); GET; goto 1 end

end;
GET2:

end;

Vytvoříme další násobok čísla A. Znamená to, že súčasný násobok po-

trebujeme prenásobiť dvoma, číže posunúť o jednu cifru vpravo vzhladom
na medzisúčet. To je ale to isté, ako keď posunieme medzisúčet o jednu
cifru vfavo. Najnižšia cifra medzisúčtu, ktorá by takto zanikla, už patří
hladanému súčinu, pretože všetky ďalšie připočítávané násobky čísla A
majú v dvojkovom zápise na konci dostatočný počet núl. Možeme preto
túto cifru vypísať.

PUT(’*’);
case TOP of

’O’: begin GET; write(TOP); GET; goto 10 end;
’l’: begin GET; write(TOP); GET; goto 11 end

end;
10: if Т0Р=’*’ then goto 20;

PUT(’O’);
goto 19;

11: if T0P=’*’ then begin PUT(’l’); PUT(’O’); gota 20 end;
PUT(’1J);

19: case TOP of
’O’: begin GET; PUT(TOP); GET; goto 10 end;

begin GET; PUT(TOP); GET; goto 11 end
end;

20: GET;

Z póvodného stavu frontu aoSiOiSj+i. • • am_1Si+m_iamsi+m sme te-
da získali ooSi+iaiS;+2 • • • am-iSi+mam0 a móžeme pokračovat’ v spraco-
vávaní ďalšej cifry čísla B.

NEXT
until INP=’?’;

Prečítali sme obe čísla, spočítali sme ich súčin a vypísali sme jeho
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menej významné cifry. Najvyššie cifry ešte ostali na fronte; třeba ich
vypísať. Ak je najvýznamnejšia cifra súčinu nula, nevypisujeme ju.

GET;
while TOP in [»0V1*] do

case TOP of

’O’: begin GET; if TOPO’?’ then write (’O’); GET end;
*1»: begin GET; GET; writeC’l’) end

end;
writeln

Ak by sme čísla na fronte neuchovávali „pomiešané“, teda cifry rovna-
kého rádu pri sebe, ale najprv jedno číslo a potom druhé číslo — zložitosť
by vzrástla na m2 • n.

Pri riešení časti c) si třeba uvědomit’, ako sa zmenia počiatočné pod-
mienky, ktoré sme položili pre naše riešenia a) a b).

Pre úlohu a) musíme namiesto štyroch kombinácií vstupných cifier
uvažovat’ o 100 kombináciách. Znamená to, že každý příkaz case bude
mať desať vetiev. Sčítavame vždy tri desiatkové číslice. Dve z nich patria
zadaným číslam, ich súčet je najviac 18. V prvom kroku móžeme dostat’
přenos najviac 1, v druhom kroku teda max. súčet 19, čiže zase přenos 1.
Je zřejmé, že přenos 2 nenastane nikdy, stačia preto dva stavy na vyjad-
renie přenosu.

V úlohe b) sa, rovnako rozšíri blok zabezpečujúci sčítanie. Všetky
ostatné časti programu sa zmenia do tej miery, že namiesto dvoch ci-
fier musíme rozlišovat’ cifier desať. Předpoklady riešenia změna základu
číselnej sústavy nemení, preto myšlienka riešenia zostáva rovnaká.

P - II - 1

Permutáciu P móžeme rozložit’ na niekofko navzájom disjunktných cyk-
lov, P = С\С2 ■. -Cm- Každý cyklus tvoria nějaké prvky množiny
{1,..., N}, označme preto Ci = (а»д ai,2 • • • a;,/;)- Číslo U nazveme dížkou
cyklu Ci.

Cykly sú navzájom disjunktně, takže každý prvok x G N}
patří právě do jedného cyklu. Preto ak zoberieme fubovolné číslo e* pre

každý cyklus Ci, tak x patří právě do jedného zo zložení C\{.
Nie je ťažké ukázat’, že pre cyklus С,- dížky li a pre každé x spomedzi

prvkov cyklu агд,..., a*,/i platí
Ci[x] = C-[x] = li I (u - v).
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Ďalej ak P = CXC2 ... Cm, tak PK = CfCf ... C%. Pretože Я je
ovelá váčšie ako N (a teda aj ako /{), je výhodnejšie zapísať ako P =
=

... C, kde li\(K - е*). Čím menšie budú čísla ej, tým menej
operácií budeme potřebovat’ na výpočet C, a tým bude náš algoritmus
efektivnější.

Zoberme ei = К mod U. Potom С^[х] = С^[х] pre každé zmys-
luplné x. Budeme preto počítat’ ej-te zloženia cyklov C* pre každé
i € {1,... ,m}. Zjednotenie týchto „čiastočných zložení“ bude K-te zlo-
ženie permutácie P.

Na vypočítáme C** si stačí uchovat’ povodné hodnoty prvkov póla
P prislúchajúce danému cyklu C{ v pomocnom poli (Я) a potom ich
z tohoto pofa spát’ ukladať do póla P „posunuté о еД teda PK[x] =
= H[(x + et- — 1) mod l{ + 1] (na ukladanie výsledku možeme použit’ opat’
pole P, lebo cykly sú navzájom disjunktně).

Takéto riešenie spracuje každý prvok každého cyklu právě raz, preto
je jeho časová zložitosť lineárna vzhládom na N. Pamaťová zložitosť je
taktiež lineárna, pretože v pomocnom poli potřebujeme uchovávat’ naraz

vždy iba jeden cyklus s maximálnou dížkou N. Na vyhládanie začiatku
dálšieho cyklu je použitá „znamienkovacia“ metoda, teda prvky už spra-

covaných cyklov dostanú dočasné záporné znamienko, aby sa odlišili od
dosiaf nespracovaných.

program Permutácie;
type pole = array [1..100] of integer;

: pole;
: integer;

var p
k,n
i.prvy : integer;

procedure cyklus (prvy:integer);
var h : pole;

i,dalsi,d,s : integer;
begin

i:=prvy;
d:=0;
repeat

inc(d);
h [d] : =p [i] ;
i:=p[i]

until i=prvy;
s: =k mod d;
i:=prvy;
repeat

dalsi :=p[i] ;
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p[i] :=-h[s] ;
i:=dalsi;
s:=(s mod d)+l

until i=prvy
end;

begin
write(’Zadaj N: ’); read(n);
write(’Zadaj P: ’); for i:=1 to n do read(p[i]);
write(’Zadaj K: ’); read(k);
for prvy:=l to n do

if p[prvy]>0 then cyklus(prvý);
for i:=l to n do p[i]:=-p[i];
writeCP-’.k, ’: ’) ;
for i:=l to n do write(’ *,p[i]); writeln

end.

P - II - 2

Najvýznamnejšie cifry kódu budeme zrejme spracovávať ako prvé, preto
je vhodné obrátit’ poradie cifier v kódoch sl aj s2. Povodně prvá cifra sa

potom 1’ahko zistí ako kód mod 10.
Kým sa kódy vo svojich cifrách (teraz už od konca) zhodujú, ležia oba

zadané štvorce v tom istom typizovanom štvorci (nie je podstatné, v kto-
rom), a nemóžeme preto začat’ rozhodovat’ o susedstve. Zhodné cifry preto
odstránime. Ak jeden zo zvyšných kódov je 0 (a ten pokrývá najmenší
typizovaný štvorec, v ktorom sa oba zadané štvorce nachádzajú), nemóžu
sa už dotýkat’ zvonku; takisto je tomu v případe, že ležia v protiláhlých
kvadrantoch (1 a 4 alebo 2 a 3, vždy teda súčet 5). Tieto triviálně případy
preto vylúčime.

Teraz móžu nastat’ dva případy: štvorce budú mať spoločnú buď vo-
dorovná hranu (ležia v kvadrantoch 1 a 3, resp. 2 a 4), alebo zvislú hranu
(1 a 2, resp. 3 a 4). Na vzájomnom poradí štvorcov přitom nezáleží, preto
bez ujmy na všeobecnosti riešenia nech kód sl prislúcha štvorcu ležiace-
mu v kvadrante s nižším číslom (teda „l’avejšiemu“, resp. „vrchnejšiemu11
z oboch štvorcov).

Spomínané dva případy rozlišíme vyhodnotením rozdielu posledných
cifier zostávajúcich kódov. Pre každú z oboch možností existuje odteraz
jednoznačný algoritmus na zistenie susedstva. Rozoberieme podrobnejšie
iba případ susedstva zvislou hranou; druhý případ je obdobný:

Štvorec sl má poslednú cifru kódu 1 a štvorec s2 dvojku (alebo 3
a 4) — pozor! tu už záleží na poradí týchto cifier. Potom jediné přípustné
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kombinácie cifier na dálšom mieste sú 2 a 1 alebo 4 a 3, inak sa susedstvo
poruší. (Kód 0 je ekvivalentný všetkým kódom, teda napr. aj kombinácia
2, 0 je přípustná.)

V programe je definované pole Test. Jeho prvým indexom je druh su-
sedstva (vodorovne/zvislo), druhý index je posledná cifra kódu sl a třetí
index posledná cifra kódu s2. Toto pole představuje tabulku stavov ne-

jakého konečného automatu a je definované takto:
0 - oba kódy sú celé spracované a nezistilo sa, že štvorce nesusedia,

tedy štvorce susedia.
1 - dosiaf spracované časti kódov zodpovedali susediacim dvojiciam

štvorcov. Tento fakt susedstvo nepopiera, ale ani nepotvrdzuje,
preto třeba testovat’ ďalšie cifry.

2 - štvorce nesusedia

program Štvorce;
const Test : array [0..1,0..4,0..4] of 0..2 =
(((О,1,1,2,2),(2,2,2,2,2),(2,2,2,2,2),(1,1,2,2,2),(1,2,1,1,1)),
((0,1,2,1,2),(2,2,2,2,2),(1,1,2,2,2),(2,2,2,2,2),(1,2,2,1,2)));

var Sl,S2,Slkon,S2kon,Pom,T : integer;

function Prevrat (S:integer) : integer;
var p : integer;
begin

p:=0;
while S>0 do

begin
p:=10*p+S mod 10;
S:=S div 10

end;
Prevrat:=p

end;

begin
write(’Zadaj SI: ’); readln(Sl);
write(’Zadaj S2: ’); readln(S2);
SI:=Prevrat(SI);
S2:=Prevrat(S2);
while (SI mod 10) = (S2 mod 10) do

begin
S1:=S1 div 10;
S2:=S2 div 10

end;
Slkon:=Sl mod 10;
S2kon:=S2 mod 10;
if (Slkon=0) or (S2kon=0) or (Slkon+S2kon = 5) then T:=2

{ Keď jeden leží v druhom alebo sú v uhlopriečnych štvorcoch.}
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else

begin
if Slkon>S2kon then

begin Pom:=Sl; S1:=S2; S2:=Pom end;
Pom:=abs(Slkon-S2kon) mod 2;
repeat

S1:=S1 div 10;
S2:=S2 div 10;
T:=Test[Pom, SI mod 10, S2 mod 10];

until TOl

end;
if T=0 then writeln(’Lezia pri sebe!’)

else writeln(’Nelezia pri sebe!’)
end.

P - II - 3

Pojmom lokálny počet inverzií znakov Z\ a Z2 v ret’azci R rozumieme
počet takých výskytov dvojíc Z\ a Z2 v ret’azci R, že medzi nimi sa

nenachádzajú iné znaky ako Z\ a Z2. Eahko sa nahliadne, že hladané
znaky zo zadania sú právě také dva znaky, ktoré majú maximálny lokálny
počet inverzií.

Skúsme si teraz představit’, že máme vytvořenu tabulku (dvojrozmer-
nú) lokálnych inverzií pre nějaký začiatočný úsek reťazca R. Přidáním
ďalšieho znaku (inp) móžu nastat’ tri případy:
(1) Nový znak je zhodný s posledným (posl2) a nech před ním existuje

znak rozny od něho (posil). Vtedy stačí opravit’ tabulku inverzií iba
na mieste [posil,inp] přičítáním počtu výskytov znaku posil na
konci přerušovaných nanajvýš výskytmi znaku inp.

(2) Nový znak je zhodný s predposledným znakom posil. Vtedy stačí na
mieste [posl2, inp] přičítat’ počet výskytov posl2 (posledného znaku)
přerušovaných nanajvýš znakom posil.

(3) Nový znak je rozny od posledného (posl2) aj od posil. Vtedy stačí
tabulku inverzií poopravit’ na mieste [posl2, inp] o velkost’ posledného
súvislého úseku znakov posl2:
Z uvedeného vidíme, že by bolo vhodné si viesť priebežne hodnoty po-

sledných dvoch roznych znakov posil, posl2, ich počty posledných vý-
skytov přerušovaných len navzájom (pocl, poc2), a velkost’ posledného
súvislého úseku posledného znaku (poc2posl). Po prepísaní do programu
dostáváme lineárny algoritmus s polom konštantnej velkosti.
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Hladanie maximálnej hodnoty sa dá robit’ priebežne. Osobitne třeba
ešte vyriešiť inicializáciu a začiatok, lebo v rozbore sa předpokládá, že
už máme aspoň dva rožne znaky spracované.

program Znaky;
var inp,posil,posl2,maxl,max2 : char;

pocl,poc2,poc2posl,pom
inver : array[,A,..,J,,,A,..,J’] of integer;

: integer;

begin
for maxl:=,A’ to ’ J’ do

for max2:=,A’ to ’ J’ do

{inicializácia}inver[maxi,max2]:=0;
maxl^’A’; т&х2:=>k’;

{prvé načítanie}
repeat inc(pocl); read(posl2) until posl2<>posll;
poc2:=l; poc2posl:=l;
while not(eoln) do

read(posll); pocl:=0

{hlavný cyklus}
begin

read(inp);
if inp=posl2 then

begin inc(poc2); inc(poc2posl) end
else if inp=posll then

begin
posil:=posl2; posl2:=inp;
pom:=poc2; poc2:=pocl+l; pocl:=pom;
poc2posl:=l;

{případ (1)}

{případ (2)}

end

else {iný znak (3)}
begin

posil:=posl2; pocl:=poc2posl;
posl2:=inp; poc2:=l; poc2posl:=l;

end;
pom:=inver[posil,posl2] +pocl;
inver [posil,posl2]:=pom;
if pom>inver[maxi,max2] then

begin maxl:=posll; max2:=posl2 end;

{zvýšime počet }
{ inverzií.
{je maximálny ?}

}

end;
writeln(,Zl=’,maxl,’ Z2=’,max2)

end.

P - II - 4

Dolná celá časť dvojkového logaritmu čísla je rovná počtu cifier v zápise
tohoto čísla v dvojkovej sústave mínus 1. Tento počet cifier móžeme zistiť
tak, že číslo celočíselné delíme dvorná. Počet delení, potřebný na to, aby
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sme získali výsledok nula, sa rovná počtu cifier. Potřebujeme ale počet
cifier mínus jedna, delenie preto skončíme, ak je výsledok menší ako 2.

Pre zadaný tvar vstupného slova, keď počet znakov ’ a ’ udává hod-
notu čísla, sa delenie dvoma realizuje lahko tak, že pre každá dvojicu
po sebe idúcich znakov (’aa’) do medzivýsledku přidáme iba jeden znak
'a’; tým získáme číslo reprezentované polovičným počtom znakov, te-
da v našom zápise s polovičnou hodnotou. Súčasne zvyšujeme počítadlo,
ktoré udává počet vykonaných delení. Ak dosiahneme pri delení výsledok
0 alebo 1, náš výpočet končí. Stav počítadla potom udává dolnú celá časť
dvojkového logaritmu zadaného čísla.

program Logaritmus;
begin t

repeat PUT(INP); NEXT until INP=’?’;
PUT(’*’); PUT(’O’); PUT(’*’);
repeat

GET;
if ТОРО’*’ then

begin
GET; PUT(’a’);
while T0P<>’*’ do

{redukuj počet ’a’ na polovicu a zvýš čítač}

{aspoň 2 znaky}

{každú celú}
{dvojicu ’ aa’}
{změň na ’a’}

begin
GET;
if ТОРО’*’ then begin GET; PUT (’a’) end

end;
GET; PUT(’*');
while TOPHI’ do begin GET; PUT (’O’) end; {zvýš čítač}
PUT ( ’ 1 ’ ) ; if TOPO1*’ then GET;
while TOPO’*’ do begin PUT (TOP); GET end;
GET; PUK’*’) {čítač zvýšený}

end
until T0P=’*’;
GET; repeat write(TOP); GET until Т0Р=’*>

end.

Časová zložitosť tohoto riešenia je 0(2N+log2 A4og2 log2 A”), parna-
ťová zložitosť (maximálna velkost’ frontu) je N 4- log2 log2 N; N je dížka
slova w.

i

P - III - 1

Pri riešení je dóležité si uvědomit’, čo sa s permutáciou deje, ak ju umoc-

ňujeme (teda vytvárame jej druhá mocninu), konkrétné nás zaujíma, čo
sa deje s jej jednotlivými cyklami. Vieme, že cyklus nepárnej dížky bude
po umocnění opat’ cyklom (s rovnakou dížkou). Ale každý cyklus párnej
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dížky sa po umocnění rozpadne na dva cykly polovičnej dížky. Z toho
možeme s určitosťou tvrdit’, že ak sa v druhej mocnině vyskytuje cyklus
párnej dížky, vznikol rozpadnutím cyklu dvojnásobnej dížky v póvodnej
permutácii. Ak sa v druhej mocnině vyskytuje cyklus nepárnej dížky,
mohol vzniknúť z cyklu rovnakej dížky, alebo rozpadom cyklu dížky dvoj-
násobnej. *

Spočítajme v druhej mocnině počty cyklov jednotlivých dížok. V dal-
šom texte budeme L označovat’ dížku cyklu a K(L) počet cyklov tejto
dížky. Zrejme cyklom dvoch rozdielnych dížok možeme prisúdiť nezávislé
spósoby vzniku, a teda pri stanovovaní počtu druhých odmocnin, teda
počtu permutácii, z ktorých po ich umocnění vznikla zadaná permutácia,
musíme vyčíslit’ súčin počtov spósobov vzniku skupin cyklov jednotlivých
dížok. Ak označíme S(L) počet spósobov, ktorými mohli vzniknúť cykly
dížky L, možeme písať

počet druhých odmocnin = JJS(L),

pričom násobíme cez všetky L, pre ktoré K(L) > 0.
Našou úlohou ostává stanovit’ S(L) pre jednotlivé L. Predchádzajúce

úvahy vedú к rozdeleniu na dva případy podlá, párnosti L:
(а) V případe, že L = 2m + 1, teda L je nepárne, stanovíme S(L) takto:

- jedna možnost’ je, že všetky cykly vznikli zobrazením z cyklov rov-

nakej dížky (teda ani jeden nevznikol rozpadom dlhšieho cyklu) —

príspevok do S(L) je 1
- druhá možnost’ je, že právě dva z K(L) cyklov vznikli rozpadom

cyklu dížky 2L; týchto možností je (K^). Lenže rozpadom ne-
jakého cyklu V (dížky 2L) vzniknú rovnaké cykly W\ a W2, ako
rozpadom cyklu V', ktorý sa od V líši tým, že má cyklicky posu-
nuté prvky na všetkých párnych (alebo všetkých nepárnych, čo je
to isté) miestach; napr. z cyklu V = l-»2->-3-»4—vzniknú
cykly W\ — 1 —» 3 —>• 1 a W2 = 2 -> 4 -> 2, rovnako ako z cyklu
V — \ —>4—»3-*2—>1. Možných vzájomných posunutí cyklov
W\ a W2 (teda možných cyklov V) je L, teda celkový príspevok
bude L(K{2l))

- podobné mohli právě dve dvojice cyklov vzniknúť rozpadom cyk-
lov dížky 2L: analogickým odvodením získáme príspevok L2 •
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Sčítáním týchto príspevkov dostáváme S(L):

(K(L)\ (K(L)\(K(L)-2\
S(L) = 1 + + L2 ''—2-—2!

+ L3 + ...

3!

pričom sčítáme po prvý nulový sčítanec.

(b) V případe, že L — 2m, teda L je párne, museli všetky cykly vznik-
núť rozpadom cyklov dížky 2L (okrem iného to znamená, že K(L)
je párne, ale to je pre nás skoro nevyužitelné). Potom S(L) je po-
čet spósobov, ktorými móžeme „popárovať“ K(L) cyklov do dvo-
jíc, krát 1,2K(L)) (každá z \K(L) dvojíc mohla vzniknúť z L róz-
nych cyklov; pozři úvahu v (a). Počet spósobov vytvorenia dvojíc je
(K(L) — l) (K(L) — 3) ... 1 (k prvému prvku móžeme vybrat’ druhý
z K(L) - 1 prvkov, ostalo K(L) — 2 prvkov; к ďalšiemu prvému je to
(K(L) - 2) - 1 = K(L) - 3 spósobov atď.). Teda

S{L) = (K(L) - 1) (K{L) - 3) •... • 1 • L?k(l)

P - III - 2

Ak si uvědomíme, že dva typizované štvorce s kódmi dížky D a D+1 majú
dížky svojich stráň v pomere 2 : 1, je prirodzené uvažovat’ o reprezentácii
súradníc štvorca v dvojkovej sústave. Nech kód S má D cifier. Potom
jemu zodpovedajúci štvorec je reprezentovaný dvorná súradnicami X a Y,
ktoré majú v zápise v dvojkovej sústave D cifier. Přiřaďme týmto zápisom
cifry nasledujúcim spósobom (nech Ci je г-tá cifra čísla C):

Xi = 1 <=> S{ = 2 alebo S{ = 4,

Xi — 0 Si = 1 alebo Si = 3,

Yi = 1 Si = 3 alebo Si = 4,

Yi — 0 Si = 1 alebo Si = 2, 1 й i ^ D

Je zřejmé, že ak rozdělíme celú obrazovku na typizované štvorce rov-

nakej velkosti zhodné so štvorcom s kódom S, tak súradnice X (resp. Y)
zodpovedajúce týmto štvorcom stúpajú v smere vpravo (resp. dolu). Po-
tom posunutie štvorca s kódom S о К jeho dížok vpravo znamená pri-
počítanie čísla К к A-ovej súradnici tohoto štvorca. Podobné posunutie
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o L dížok hoře znamená odčítanie čísla L od У-ovej súradnice. Po tejto
úpravě získáme kód nového štvorca spatným prevodom zo súradníc X
a Y na kód S:

Si = 1 <£> Xi = 0 a Yi = 0,

Si = 2 Xi = 1 a Yi — 0,

Si = 3 ^ Xi — 0 a Yi — l

Si = 4 o A* = 1 a Yi = 1, lúi ^ Д

čo sa dá prehladnejšie zapísať ako Si = 14- Aý- + 2}ý.

x:=0;
y:=0;
rad:=l;
while s>0 do

begin
last:=s mod 10;
s:=s div 10;
if (last=3) or (last=4) then y:=y+rad;
if (last=2) or (last=4) then x:=x+rad;
rad:=rad*2

end;
x:=x+k;
y:=y-i;
if (x<0) or (y<0) or (x>=rad) or (y>=rad) then

writelní’MIMO OBRAZOVKY’)
else

begin
write(’Po přesunuti: ’);
repeat

rad:=rad div 2;
last:=l;
if x>=rad then begin last:=last+l; x:=x-rad end;
if y>=rad then begin last:=last+2; y:=y-rad end;
write(last)

until rad=l;
yriteln;

end

P - III - 3

Pozrime sa, ako vyzerá dekrementovanie čísla v mínus-desiatkovej sústa-
ve.

Nech A = (anan-i... Qiao)-io. .

Ak ao > 0, potom A — 1 = anan_i .,. a\ (ao — 1).
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Ak a0 = O a ai < 9, potom A — 1 = anan-1... (ai + 1)9.
Ak a0 = 0, ai = 9 a a2 > 0, potom A - 1 = anan_i...(a2 — 1)09.

Nech všeobecný algoritmus vyzerá následovně:

A) j:=0;
while a[j] = 9*(j mod 2) do j:=j+l;

B) if j mod 2=1 then inc(a[j])
else dec(a[j])

C) for i:=j-l downto 0 do a[i]:=9-a[i];

Ukážme si, že uvedený algoritmus robí presne to isté, čiže zmenšuje
číslo v (—10)-sústave.
(1) Nech A = an ... а^ЭОЙО 90, tzn. j mod 2 = 0. Potom A =

■ (-10)n + ... + aj • 10J' - 9 • KP'-1 - 9 • 10J~3 - ... - 90. Uvedený
algoritmus transformuje A na A' v tvare A' = an ... (aj — 1)09... 09,
tzn. A! = an • (—10)n +... + (aj — 1) • 10J + 9-10-7-2 + 9- 10J-4 + ... + 9.
Tvrdíme, že A — A' = 1:

(an ■ (-10)n + ... + aj ■ 107' - 9 • 10i_1 - 9 • 10i_3 - ... - 90)-
- (a„ • (-10)n + ... + aá • 10j - 10j + 9 • 10J-2 + 9 • 10J'~4+
+ ... + 9) =

= IV - 9 • 10j_1 - 9 • 10j_2 - ... - 90 - 9 = 1

Cín

(2) Nech A = an ... а^-ОЭО... 90, tzn. j mod 2 = 1. Potom A = an •
■ (-10)n + ... - aj • HP - 9 • lpi-2 - 9 • 10J~4 - ... - 90. Uvedený
algoritmus transformuje A na A! = an ... (a, + 1)909... 09, tzn. A! =
= an ■ (-10)n + ... - (áj + 1) • 10J‘ + 9 • ÍO^'-1 + 9 • 10J'“3 +.... + 9.
Tvrdíme, že A — A! = 1:

(an • (-10)n + • • - - aj • 10J' - 9 • 10J"2 - 9 • 10J'_4 - ... - 90)-
- (an • (-10)n + ... - aj ■ 10j - 10J‘ + 9 • 10J_1 + 9 • 10J_3 +
+ ... + 9) =

= 10-7’ - 9 • 10j_1 - 9 • I0j~2 - ... - 90 - 9 = 1

Ukážme si teraz, že daný program vykoná v jednom cykle presne túto
operáciu (zmenšeme čísla v (—10)-sústave o 1).

Cyklus A) zjavne vykonává časť A) nášho algoritmu, pričom si ešte
vytvára pomocná premennú X: Xj-1 = a0, Xj-2 = a-i, • •.,. Xq = áj-1.
Kedze očakávame ao = 0, potom Xj_ 1 = 0, tedy X má j — 1 cifier.
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Premenná q představuje výraz 9 • (j mod 2). Ak teda po skončení
cyklu je q = 9, očakávali sme dj = 9, teda j mod 2 = 1, podobné q = 0,
a teda j mod 2 = 0.

Keď po skončení cyklu platí:
q = 9 а к = 0, dj = 0; dj-1 = 0; dj-2 =9; ..znamená to, že A má

záporná hodnotu, nemožeme ho zmenšovat’, lebo by cyklus neskončil.
q = 9a,k>0, 9>a,j ^ 0. V tomto případe sa vykonajú priradenia:

Oj = dj + l;aj_i =9 (třeba si uvědomit’, že v tomto případe xo =
= 0), následné sa vykoná cyklus B), ktorý vykoná priradenia: dj-2 =
= rco, dj-3 = xi, ..., do = Xj-2. Ak sa dj-1 sa rovnalo 0, teraz má
hodnotu 9. Ak sa dj-2 rovnalo 9, teraz má hodnotu 0 (xq). Ak sa do
rovnalo 0, teraz má hodnotu 9 (xj-2).

q = 0 (j mod 2 = 0), platí x0 = 9 (dj-1 = 9, а^_2 =0, ...). V tomto
případe sa vykonajú priradenia: а = а — 1; Xj-1 = Xj-2, Xj-2 =
= Xj-3, ..., x\ = Xo, xo = 0 (teraz bude xq = 0, Xi — 9, ...,

Xj—1 — 9) dj—1 — £(ь Q>j—2 — X\) • • ^0 — Xj—1 •

Opat’ sa móžeme fahko přesvědčit’, že cifry na pozíciách j — 1 až 0 sa

„zinvertovali“. Iste ste si všimli, že předpokládáme priechod aj cyklom A),
aj cyklom B). Vyjasníme si teda tieto krajné případy:

(1) Počet priebehov prvým cyklom bol 0, tzn., že ao 7^ 0. A = K + ao, ‘
teda A — 1 = У + (ао — 1). Presne takéto priradenie sa vykoná v pod-
mienkovej časti, cyklus B) tiež neprebehne, výsledok je teda správný.

(2) Nech ao = 0, ai Ф 9. A = Y — ai • 10 + 0, teda A — 1 = У - (ai +
+ 1) • 10 + 9. Opat’ sa presne takéto priradenie vykoná v podmienkovej
časti, čiže aj v tomto případe je výsledok správný.

Z uvedeného vyplývá, že uvedený program v cykle zmenšuje čísla
v mínus-desiatkovej sústave o 1. Cyklus sa vykonává, pokiaF К > 0; рос

určuje počet priechodov cyklu. Ak vstupné К je číslo v mínus-desiatkovej
sústave, рос bude po skončení cyklu hodnota К (číslo v desiatkovej sústa-
ve). Ak chceme, aby výstup programu bol p (рос — p), musí byť vstupné
К číslo p v mínus-desiatkovej sústave. Ťažisko úlohy je teda napísať prog-
ram, ktorý vstupné p prevedie do mínus-desiatkovej sústavy.

Riešenie: Vytvořme polynom KK(-10), ktorého hodnota by bola p,
následovně (kk0, kk\,..., kkm sú koeficienty polynomu КК):

Pre všetky cifry p (v desiatkovej sústave):
Ak cifra pí by v (—10)-sústave zodpovedala kladnej mocnině -10,

tzn. i mod 2 = 0, potom vykonáme kk{ = kki + Pí.
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Ak cifra Pí by v (—10)-sústave zodpovedala zápornej mocnině —10,
tzn. i mod 2 = 1, potom túto cifru rozpíšeme ako kk{+1 = fcfci+i + 1,
kki = kki + 10 — pi, napr. (20)ю = (180)_ю.

Takto vytvořený polynom má hodnotu p. Ak by sme chceli z koefi-
cientov polynomu zostaviť číslo v mínus-desiatkovej sústave, třeba, aby
pre všetky i platilo 0 ^ kki ^ 9.

Třeba teda vymyslieť pravidlo, ktoré by změnilo koeficienty polynomu
tak, aby bola zabezpečená podmienka, ale nezměnilo by jeho hodnotu.
Kedze koeficienty kk nemóžu byť záporné, stačí nám uvažovat’ koeficienty
váčšie ako 9.

Nech aj je posledný koeficient váčší ako 9 (pre všetky i > j platí
di < 10). Potom sa hodnota polynomu nezmení, ak vykonáme:

kkj+i = kkj+i — 1, kkj = kkj mod 10 (c- (—10)x = (c—10) • (—10)1 —
— (—10)x+1). Ak je ale kkj+1 = 0, dostali by sme záporný koeficient,
čo předpokládáme, že sa nestane. Vtedy priradenia trochu obměníme:
kkj = kkj mod 10, kkj+i = 9kkj+2 = kkj+2 + 1 (c • (—10)J = (c — 10) •
• (-10)j + 9 • (-10)J+1 + (-10)J+2) ((-10) • (-10)J+1 + 9 • (-10)i+1 =
= -(-10P+1 = 10- (-10)0-

Použitím tohoto pravidla na každý koeficient polynomu váčší ako 9
dostaneme polynom, ktorého koeficienty sú nezáporné a menšie ako 10,
dá sa jednoduchým použitím koeficientov ako cifier dostat’ číslo v mí-
nus-desiatkovej sústave, ktorého hodnota je p.

Je jasné, že povodný polynom móže mať l + 1 koeficientov, kde l je
počet cifier p v (10) sústave. Aplikovanie pravidla móže počet koeficien-
tov zváčšiť maximálně o 2, teda maximálny počet cifier je Z + 3, teda
algoritmus je konečný.

const MAXCIF =15;
var kk:array[0..MAXCIF] of integer;

p,i,j:integer;
begin

writeln;
write(’Zadaj P :’); readln(p);
for i:=0 to MAXCIF do kk[i]:=0;
i:=0;
while p>0 do

begin
if odd(i) then

begin
kk[i] :=kk[i]+10-(p mod 10);
kk[i+l] :=kk[i+l] + l

end
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else

kk[i]:=kk[i] + (p mod 10);
inc(i); p:=p div 10

end;
for j:= 0 to i do

if kk[j]>9 then
begin

if kk[j+l]>0 then dec(kk[j+l])
else

begin
kk[j+l] :=9;
kk[j+2] :=kk[j+2]+l;
if j+2>i then i:=j+2;

end;
kk[j] :=kk[j]-10

end;
k:=0;
for j: = i downto 0 do k:=10*k+kk[j];
writeln(’Vstupná hodnota musi byt ’,k)

end.

P - III - 4

Základná myšlienka riešenia úlohy je založená na tom, že počas čítania
slova W2 si budeme v slově w\ památať, pokial’ až sa dosial načítaná časť
vú2 zhoduje so začiatkom w\.

Označme M dížku slova iui, N dížku slova W2- Kedze M je omnoho
menšie ako N, možeme ho považovat’ za konstantu.

Pre náš algoritmus je potřebné uchovat’ slovo w\ vo fronte. Zvolme
nasledujúci tvar: Slovo w\ uložíme do fronty a za každý znak, ktorý je
posledným znakom dosial’ zhodnej časti w\ a w2, uložme špeciálny znak
’. *. Okrem toho budeme potřebovat’ mať uložené počítadlo výskytov wi
vo W2■ Odlišme toto počítadlo od dosial’použitej abecedy ,a,..,z), ’. ’
použitím znakov ’ 0 ’, ’ 1 ’.

Zaveďme nasledujúce označenie: Z nech je 1’ubovolný znak frontu
z abecedy ’a’.-'z’ (potom postupnost’ Z. označuje znak frontu, ktorý
je zatiaf posledným zhodným znakom medzi wi a častou W2), Q nech je
právě spracúvaný znak slova W2, C nech je symbolické označenie počítad-
la výskytov, D nech je označenie počítadla reprezentujúceho hodnotu o 1
váčšiu ako C.

Vykonáváme algoritmu možeme zapísať nasledujúcimi pravidlami:
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(0) Z -* Z., ak Z=Q a Z je prvý znak frontu (potenciálny začiatok vý-
Skytu W\ vo W2)

(1) .Z -» Z., ak Z=Q (zhoduje sa aj další znak)
(2) .Z -y Z, akZ^Q (další znak sa nezhoduje =Ф- nenašli sme podslovo)
(3) . C -» D (celé wi sa vyskytovalo vo W2 => zarátame výskyt)

Po prepísaní do Froscalu máme riešenie:

okopírujeme w\ do fronturepeat
PUT(INP);
NEXT

until INP3’*’;
NEXT;
PUT(’O’); zatial bolo 0 výskytov

Nášmu označeniu zodpovedajú Q=INP, Z=T0P (lebo к inému znaku
frontu ako к TOP nemáme přístup).

repeat
PUT(’*’);
PUT(TOP);
if INP=T0P then PUT(’.’);

zarážka proti zacykleniu

pravidlo (0)
GET;

while ТОРО’*’ do

begin
if T0P=’.’ then

begin
GET;
if T0POINP then begin PUT (TOP); GET end (2)
else

begin
PUT(TOP); GET;
if (TOP^O’) or (TOPHI’) or (T0P=’*’) then

begin
while TOPHI’ do begin PUT (’O’); GET end;
PUT(’l’);
if TOPO’*’ then GET;
while TOPO1*’ do begin PUT (TOP) ; GET end;

end
else PUT(’.')

pravidlá (1,2) - začiatok

(2,3)

(2)
end

end
else begin PUT(TOP); GET end; ak sa nedá aplikovat

ani jedno pravidlo, zober další znakend;
GET;

ďalšie QNEXT;
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until INP= * ? *;

Nakoniec vypíšeme výsledok v požadovanom tvare:

repeat
if (ТОР3’©’) or (Т0Р=’1’) then write(TOP);
GET

until T0P=’?’

Stanovenie zložitosti riešenia:

Vo fronte je uchovaných max. L = 2M +1 + log V znakov (V je počet
výskytov, V ^ N). Kedze M móžeme považovat’ za konstantu, priestoro-
vá náročnost’ navrhovaného algoritmu je logaritmická vzhfadom к dížke
vstupného slova. Pre každý znak slova гс2 spracujeme každý znak frontu,
celková časová zložitosť je teda 0(NL) = 0(N log V) = 0(N log N).

у
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Korespondenční seminář ÚV MO 1991/92

Korespondenční seminář je jednou z forem péče o talentované žáky.
Vznikl ve 24. ročníku MO proto, aby bylo možno věnovat individuální
péči i těm žákům, kteří neměli možnost navštěvovat speciální školy a pra-
covat v tamních seminářích. Nyní, kdy existují i krajské korespondenční
semináře a kdy speciální školy s třídami zaměřenými na matematiku
najdeme v každém kraji, je cílem tohoto semináře zlepšit individuální
přípravu všech studentů, kteří prokázali své schopnosti a matematický
talent v předchozích ročnících matematické olympiády. Korespondenční
seminář tak nadále zůstává důležitou součástí přípravy na mezinárodní
matematickou olympiádu.

К účasti v korespondenčním semináři jsme pozvali všechny špičkové
řešitele kategorie A spolu s těmi studenty, kteří nějak vynikli v krajských
kolech kategorií В a C předchozího ročníku МО. V průběhu 41. ročníku
MO jim bylo postupně zasláno 5 sérií poměrně náročných úloh, jejichž
texty najdete na následujících stranách. Došlá řešení pak byla opravena,
ohodnocena a s rozmnoženým komentářem vrácena účastníkům seminá-
ře. Nej lepšími v celkovém hodnocení byli:

1. Pavel Růžička, 4. ročník G, kpt. Jaroše, Brno
2. Pavel Vrbacký, 4. ročník G, kpt. Jaroše, Brno
3. Josef Menšík, 4. ročník G, kpt. Jaroše, Brno
4. Richard K. Kollár, 4. ročník GAM, Bratislava
5. Filip Sajdák, 3. ročník G, V. Okružná, Žilina

Korespondenční seminář byl řízen tajemníkem ÚV MO RNDr. Kar-
lem Horákem, CSc., který se staral o výběr úloh a prováděl i redakci ко-
mentám. Opravu pak zajišťovalo několik pracovníků MÚ ČSAV a několik
studentů a aspirantů MFF UK Praha (všichni jsou bývalí olympionici).
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Úlohy korespondenčního semináře

1.1 V rovině je dána množina E 1991 bodů, z nichž některé dvojice jsou
spojeny čarou. Předpokládejme, že pro každý bod z E existuje v E aspoň
1 953 dalších bodů, s kterými je uvedený bod spojen čarou. Dokažte, že
v E existuje šest bodů, z nichž každé dva jsou spojeny čarou.

1.2 V ostroúhlém trojúhelníku ABC postupně označme M střed stra-
ny ВС, P ten bod úsečky AM, pro který je \PM\ = \BM\, H patu
kolmice spuštěné z bodu P na stranu BC, Q průsečík strany AB s přím-
kou procházející bodem Я, která je kolmá na PB, a R průsečík strany
AC s přímkou procházející bodem H, která je kolmá na PC. Dokažte,
že strana BC daného trojúhelníku se dotýká kružnice opsané trojúhel-
niku HQR.

1.3 Dokažte, že

995
(-1Ú 1 991 - k 1

E 1991 - к к 1991
к=О1.4Je dáno přirozené číslo n a celá čísla a\, й2, ..., an, z nichž žádné není

dělitelno n, dokonce ani jejich součet není n dělitelný. Dokažte, že existuje
aspoň n různých posloupností {e\, e?,..,, en) nul a jedniček takových, že
n dělí součet eiai -i- e2a,2 + ... + enan.1.5Označme a kladný kořen rovnice x2 = 1991x + la pro kladná celá
čísla m, n označme

m * n = mn + [am] [an],

kde [x] je celá část čísla x. Dokažte, že pro libovolná přirozená čísla p, q,
r platí

(P*Q) *r = p* (q*r).1.6Dva studenti A & В hrají následující hru: Každý z nich napíše na
lístek papíru kladné celé číslo a dá lístek rozhodčímu. Ten napíše na tabuli
dvě čísla, z nichž jedno je rovno součtu čísel napsaných oběma hráči.
Poté se rozhodčí zeptá studenta A: „Můžeš říci číslo napsané soupeřem?“
Je-li jeho odpověď „ne“, rozhodčí se zeptá na totéž hráče B. Jestliže i В
odpoví záporně, zeptá se rozhodčí opět hráče A, atd. Předpokládejme, že
oba studenti jsou inteligentní a pravdomluvní. Dokažte, že po konečném
počtu otázek jeden z nich odpoví „ano“.
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1.7 Najděte maximální hodnotu součtu

iXj(xi + xj)
i<j

kde n-tice (xi,x2,..
= 1.

2.1 Uvnitř trojúhelníku ABC je dán bod P. Označme P\, P2 paty kolmic
spuštěných z bodu P na přímky АС a BC a Qi, Q2 nechť jsou paty kolmic
spuštěných z bodu C na přímky АР a BP. Dokažte, že průsečík přímek
Q\Pi a Q2P1 leží na přímce AB.

2.2 Předpokládejme, že a, 6, c jsou celá čísla a p liché prvočíslo. Jestliže
f(x) = ax2 + bx + c je druhou mocninou celého čísla pro 2p — 1 po sobě
jdoucích celých čísel x, pak p dělí b2 — 4ac. Dokažte.
2.3 Nechť a je racionální číslo, 0 < a < 1, a nechť

xn) splňují podmínky Xi ^ 0 (1 ^ i ^ n) a ^ X{ =• ?

2=1

cos Зтт + 2 cos 2:m = 0.

Dokažte, že a = |.
2.4 Označme O střed kulové plochy opsané danému čtyřstěnu ABCD,
středy jeho stran BC, CA, ЛВ označme po řadě L, M, N a předpoklá-
dejme, že \AB\ + \BC\ = \AD\ + \DC\, \BC\ + \CA\ = \BD\ + \DA\
a \CA\ + \AB\ = |CD| + |£>S|. Dokažte, že |<LOM| = \<MON\ =
= \<NOL\.
2.5 Je dán trojúhelník ABC s úhlem a = 60°. Sestrojme rovnoběžku
VF se stranou AC, kde V je střed kružnice vepsané a F bod ležící na
straně AB. Jestliže pro bod P na straně BC platí 3\BP\ = \BC\, pak
\<BFP\ = 1/3.
2.6 Jsou dána reálná čísla a, 6, c taková, že existuje právě jeden čtverec,
jehož všechny vrcholy leží na kubické křivce у = x3 Fax2 + bx + c. Zjistěte
velikost strany takového čtverce.

2.7 Jsou dány dvě celočíselné funkce / a g, jež jsou definovány pro
všechna celá čísla a splňují následující dvě podmínky:
(a) /(m + /(/(n))) = + 1)) — n pro všechna celá čísla man;
(b) g je mnohočlen s celočíselnými koeficienty a g(n) = g(f{n)) pro

všechna celá n.

Určete /(1991) a tvar mnohočlenu g.
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3.1 Uvažujme množinu S v rovině, která obsahuje n bodů, z nichž žádné
tři neleží v přímce. Dokažte, že existuje množina P obsahující 2n — 5 bodů
s touto vlastností: Uvnitř každého trojúhelníku, jehož vrcholy patří do
S, leží bod množiny P.

3.2 Označme an poslední nenulovou číslici dekadického rozvoje čísla n\.
Zjistěte, zda je posloupnost (an) od jistého členu počínaje periodická.

3.3 Je dán mnohočlen f(x) = z1991 + a^x
koeficienty. Ukažte, že počet různých celočíselných kořenů mnohočlenu
g(x) = f2(x) — 9 nemůže být větší než 1995.

3.4 V rovině je dán ostroúhlý trojúhelník ABC. Předpokládejme, že
kružnice s průměrem AB protíná přímku CC v bodech M, N a přím-
ku BB' v bodech P, Q, kde CC a BB' jsou výšky trojúhelníku ABC.
Dokažte, že body M, N, P, Q leží na jedné kružnici.

3.5 Náhrdelník A obsahuje 14 korálků a náhrdelník В 19 korálků. Do-
kažte, že pro každé liché přirozené číslo n existuje způsob, jak všech 33
korálků očíslovat čísly z množiny

1990 + ... s celočíselnými

{n, n + 1, n + 2,..., n + 32}

tak, že každé číslo použijeme jen jednou a sousední korálky budou ozna-

čeny nesoudělnými čísly. (Na náhrdelník se díváme jako na kružnici s ко-
rálky, z nichž každý má právě dva sousední.)
3.6 Pravoúhelníkový list papíru o rozměrech a x b je rozřezán na obdél-
níkové kousky, z nichž každý má jednu stranu délky 1. Dokažte, že aspoň
jedno z čísel a, b je celé.

3.7 V rovině je dáno n bodů. Vyznačme středy všech úseček s krajními
body v daných bodech. Jaký je nejmenší možný počet takto označených
bodů?

4.1 V daném trojúhelníku ABC označme Ai, Вi, C\ středy stran BC,
CA, AB. Jaký je nejmenší možný obsah průniku trojúhelníků A\B\Ci
a KLM, jestliže body К, L, M leží na úsečkách AB\, BC\, resp. CA\?

4.2 Uvažujme konvexní mnohoúhelník s následující vlastností: jestliže
všechny jeho strany posuneme vně o jednotkovou vzdálenost, vytvoří od-
povídající přímky mnohoúhelník podobný danému mnohoúhelníku. Do-
kažte, že takovému mnohoúhelníku lze vepsat kružnici.
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4.3 Součet stovky přirozených čísel, z nichž žádné není větší než 100, je
roven 200. Dokažte, že z nich lze vybrat několik čísel, jejichž součet je
roven 100.

4.4 Uvažujme n závaží s celočíselnou hmotností, jež jsou rozdělena do
к skupin stejné hmotnosti (к ^ 2). Dokažte, že lze nejméně к různými
způsoby odstranit jedno ze závaží tak, aby zbývajících n — 1 závaží už
nešlo rozložit na к skupin stejné hmotnosti.

4.5 V rovině je dáno 2n bodů — n modrých a n červených, přičemž žádné
tři body neleží v přímce. Dokažte, že je možno sestrojit n úseček tak, že
každá z nich má jeden krajní bod modrý a jeden červený, přičemž žádné
dvě úsečky nemají společný bod.
4.6 Dokažte, že na množině Z+ celých nezáporných čísel existuje právě
jedna binární operace o s následujícími vlastnostmi:
(1) aob = boa;
(2) jestliže a o b = c, je 6 o c = a;

(3) jestliže a o b > c, pak 6 o c < a nebo a o c < b.
Najděte pravidlo umožňující pro daná čísla a, b € 1+ vypočítat aob.

4.7 Do rovnoběžníku P\ je vepsán rovnoběžník P2, do kterého je vepsán
další rovnoběžník P3, jehož strany jsou rovnoběžné se stranami P\. Do-
kažte, že alespoň jedna ze stran rovnoběžníku P3 je rovna nejméně jedné
polovině strany P\, která je s ní rovnoběžná.

5.1 Je dáno přirozené číslo n. Jestliže pro libovolné reálné x platí

ai cos x + a2 cos 2x + ... + an cos nx ^ — 1,

splňují čísla ai, a2, ..., an nerovnost

cii + d2 + . • • + dn ^ n.

Dokažte.

5.2 Na tětivách AB a A!B' dané kružnice jsou zvoleny body C, C tak,
že přímky AA', BB' a CC mají společný bod P. Označíme-li

( = ИР|.|Л'Р|,
s = \AC\-\CB\,

s' = IA'C'\ ■ \C'B'\,
Q = \CP\ q' = \C'P'\,
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pak platí
s' + q'2r tQ

s + q2‘tQ

Dokažte.

5.3 V rovině je dán rovnostranný trojúhelník ABC o straně 1. První hráč
vybere bod X na straně AB, druhý bod Y na straně ВС a nakonec zas
první hráč zvolí bod Z na straně CA.
a) Cílem prvního hráče je dostat trojúhelníku byl co nejmenší. Jakého

největšího obsahu může první hráč dosáhnout při optimální hře dru-
hého?

b) Řešte tutéž úlohu pro obvod místo obsahu.

5.4 Je dán mnohočlen p s celočíselnými koeficienty. Pro libovolné při-
rozené číslo n označme an součet číslic v dekadickém zápisu čísla p(n).
Dokažte, že existuje číslo, které se v posloupnosti ai, a2, a3,... vyskytuje
nekonečněkrát.

5.5 V rovině je dán obrazec, který je průnikem n kruhů a obsahuje aspoň
dva body. Dokažte, že hranici takového obrazce lze vyjádřit jako sjedno-
cení nejvýše 2n — 2 kruhových oblouků.

5.6 V rovině je dána kružnice к a uvnitř ní bod P. Uvažujme čtyřstěny
ABCD, jejichž stěny jsou shodné trojúhelníky a stěna ABC je vepsána
do kružnice к tak, že bod P je jejím těžištěm. Pro které body P uvnitř
kružnice к takový čtyřstěn existuje? Dokažte, že vrcholy D takových
čtyřstěnů leží vždy v jednom ze dvou bodů prostoru, jež jsou souměrné
podle dané roviny.

5.7 Mezi n-místnými čísly, jejichž zápis v desítkové soustavě neobsahuje
žádnou nulu, najděte takové, jehož rozdíl od součinu jeho číslic je
a) nejmenší;
b) největší.
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33. mezinárodní matematická olympiáda

zose konala 10.-21. července 1992 v Moskvě, hlavním
městě Ruska. Olympiády se zúčastnilo 322 žáků
z 56 zemí a mimo vlastní soutěž ještě dalších
29 studentů z osmi zemí bývalého SSSR. Výsledky
jednotlivých zemí, jejichž studenti měli v souhrnu
nejvíce bodů, ukazuje následující tabulka:

3*я o<

%v* mMoscow •

ATXXlfl

bodyceny

ČLR
USA
Rumunsko

Spolčenství nezáv. států
Velká Británie
Rusko
Německo
Maďarsko

Japonsko
Vietnam
Francie

Jugoslávie
Československo

24061.

2. 3 3 181

2 2 1773. 2

1762 34.

1682 2 25.

2 2 1586. 2

7. 40 2 149

1428.-9. 3 11

1 3 1428.-9. 1

1 2 3 13910.-11.

10.-11. 3 1391 1

2 4 13612.

2 3 13413.

I. cenu získalo celkem 26 soutěžících, kteří měli 32-42 bodů, II. cena

se udělovala za 24-31 bodů a dostalo ji 55 soutěžících, о III. cenu se
s 14-23 body podělili 74 studenti. Celkem tedy bylo rozděleno 155 „me-
dailí“.

Celkově byl z našich nejlepší Michal Stehlík následován Michalem Ku-
bečkem, Martinem Niepelem, Lubošem Motlem, Pavlem Růžičkou a Da-
nielem Štefankovičem. Jejich podrobnější výsledky vidíte v připojené ta-
bulce.
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Naše družstvo vedli doc. Leo Boček z MFF UK Praha a prof. Jozef
Moravčík z Vysoké školy dopravní v Žilině.

Umístění Body za úlohu Body Cena
1 2 3 4 5 6

27.-31. Michal Stehlík,
3. roč. gymnázia
Brno, tř. kpt. Jaroše

47.-50. Michal Kubeček,
3. roč. gymnázium
Praha, Korunní

86.-92. Martin Niepel,
2. roč. gymnázia
A. Markuša, Bratislava

93.-99. Luboš Motl,
4. roč. gymnázia
Plzeň, Opavská

108.-114. Pavel Růžička,
4. roč. gymnázia
Brno, tř. kpt. Jaroše

156.-169. Daniel Štefankovič,
3. roč. gymnázia
A. Markuša, Bratislava

7 3 7 2 7 5 31 II.

7 7 7 1 0 6 28 II.

7 3 1 5 0 6 22 III.

5 2 1 7 0 6 21 III.

5 0 1 2 7 4 19 III.

5 4 0 0 0 4 13

Celkem 36 19 17 17 14 31 134

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Najděte všechna celá čísla a, b, c, pro která jel<a<6<ca číslo
(a — 1)(6 — l)(c — 1) je dělitelem čísla abc — 1.

{Nový Zéland )

2. Nechť IR značí množinu všech reálných čísel. Najděte všechny funkce
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/: IR -> IR, pro které platí

f{x2 + f{y)) = y+ (/(x))2
pro všechna x, у G IR.

(Indie )3.V prostoru je dáno 9 bodů, z nichž žádné čtyři neleží v rovině. Každá
dvojice těchto bodů je spojena úsečkou a každá tato úsečka může být
obarvena modře, nebo červeně, nebo může zůstat neobarvena. Najděte
nejmenší hodnotu n tak, aby při libovolném obarvení právě n úseček
obsahovala množina obarvených úseček nutně trojúhelník, jehož všechny
strany mají stejnou barvu.

{ŮLR )4.V rovině je dána kružnice fé7, přímka Jí? dotýkající se ^ a bod M
na přímce Л?. Najděte množinu všech bodů P následující vlastnosti: Na
přímce Jí? existují body Q, R tak, že M je středem úsečky QR a kruž-
nice ^ je trojúhelníku PQR vepsána.

(Francie )5.Nechť (0,x,y,z) je pravoúhlá soustava souřadnic v prostoru a S ко-
nečná množina bodů tohoto prostoru. Nechť Sx, Sy, Sz jsou po řadě mno-
žiny kolmých průmětů všech bodů množiny S do rovin Oyz, Oxz, Oxy.
Dokažte, že

|S|2 ^ |SX| • |Sy| • |SZ|,
kde |A| značí počet prvků konečné množiny A.
Poznámka: Kolmým průmětem bodu do roviny rozumíme patu kolmice
vedené tímto bodem na rovinu.

(Itálie )6.Pro každé celé číslo n označme S(n) největší celé číslo, pro které platí:
Pro každé kladné celé číslo k,l й к ^ S(n),\ze číslo n2 napsat jako součet
к druhých mocnin kladných celých čísel.
a) Dokažte, že S(n) й n2 — 14 pro každé n ^ 4.
b) Najděte celé číslo n, pro které je S(n) = n2 — 14.
c) Dokažte, že existuje nekonečně mnoho celých čísel n, pro která je

S(n) — n2 — 14.
(Velká Británie )
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Řešení úloh

1. (Podle M. Niepela z gymnázia A. Markuša v Bratislavě.) Zřejmě platí
implikace

. m n
m ^ n > 1 =>• S .

m — 1 n — 1

Jelikož a ^ 2, 6 ^ 3 a c ^ 4, je

6
< 3

-1 = 2

c 4
— <

-,
с- 1 - 3’—= 2> ьa — 1 o

a tedy
abcabc — 1

<4.<
(o — 1)(6 — l)(c — 1) (o — 1)(6 — l)(c — 1)

Pro poměr
_ abc — 1

P
(a — l)(b — l)(c — 1)

tedy přicházejí v úvahu pouze hodnoty p=l,p = 2ap = 3. Pro p — 1
by ale muselo platit ab + bc + ca = a + b + c, tj. a(b - 1) + b(c — 1) +
+ c(a — 1) = 0, což odporuje daným předpokladům. Budeme tedy řešit
v oboru přirozených čísel rovnice

abc — 1 abc — 1

(a-l)(ó-l)(c—1) =3'
Nejdříve první rovnici. Je-li a ^ 4, je b ^ 5, c ^ 6, a tedy

— 2,
(a - 1)(6 — l)(c — 1)

n _ abc — 12~
(a-l)(6-l)(c-l)

<

b c ^456
o-l b^í' с- 1 = 3 ’ 4 ’ 5

o

T = 2,<

což nejde. Je proto a < 4. Protože abc — 1 = 2(a — 1)(Ь — l)(c - 1),
musí být abc číslo liché, je tedy nutně a = 3. Pro 6, с pak máme rovnici
3bc - 1 = 4(6 - l)(c - 1) a po úpravě (6 - 4)(c - 4) = 11, takže vzhledem
к předpokladu 6 < c je a = 3, 6 = 5, c = 15 jediné řešení při p = 2.

Přejděme к rovnici abc— 1 = 3(a— 1)(6- l)(c- 1). Kdyby bylo a ^ 3,
c ,

• S 2,5. Je proto nutně
c — 1

6
bylo by 6^ 4, c^5a3< —•

a — 1 6—1
a = 2, pro 6, с pak máme rovnici 3(6 — l)(c — 1) = 26c — 1, po úpravě
(6 — 3)(c — 3) = 5 s jediným řešením 6 = 4, c = 8.
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Úloha má právě dvě řešení:

(a, b, c) = (3,5,15) a (a, 6, c) = (2,4,8).

2. Označme /(0) = a. Položíme-li у = 0, dostaneme Дх2+а) = (/(x))2,
položíme-li x = 0, dostaneme

/(/Ы) — У + °2 • (1)

Z druhé rovnice vidíme, že / je funkce prostá a zobrazuje IR na !R. Kromě
toho je /(o) = a2, f(f(-a2)) = 0. Je tedy f(x2 + a) = (Дх))2 +
+ /(/(—'a2))- Aplikujeme-li na obě strany funkci /, dostaneme užitím
daného vztahu pro / a (1) rovnost

x2 + a + a2 = /(—a2) + (x + a2)2,

neboli

2a2x = a + a2 - a4 - /(-a2).
Jelikož uvedená rovnost platí pro každé x £ IR, je nutně a = 0, /(0) = 0,
a tedy

Д*2) = (/0*0)2> f{f(x)) = x pro všechna x € IR.

Zvolíme-li pro dané x hodnotu у tak, aby bylo f(y) = -x2, dostaneme
z daného vztahu rovnost /(—x2) = —/(x2). Funkce / je tedy lichá, zob-
rázuje kladná čísla na kladná a záporná čísla na záporná.

Předpokládejme, že existuje kladné číslo x tak, že /(x) ф x. Položme
x — z2 a předpokládejme, že je například z2 — f{z2) > 0. Pak je f(z2 —
- f(z2)) = f(z2 + f(—z2)) = -z2 + f (z2) < 0. To je spor s tím, že
obrazem kladného čísla je číslo kladné, podobně dojdeme ke sporu pro
z2 — f(z2) < 0. To znamená, že pro všechna kladná x je /(x) = x,
a protože / je lichá, platí to i pro x záporná.

Dané funkcionální rovnici vyhovuje pouze funkce /(x) = x.

Jiné řešení (M. Kubeček z gymnázia v Praze 2, Korunní). Kdyby pro

některé у E IR platilo у > /(у), dostali bychom pro x = yjу — /(у)
rovnost

tedy /(у) = у + (Дх))2f{x2 +/(y)) = у + (Дх))2
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což vede ke sporu. Dále uvažujme nezápornou funkci g(x) — f(x) — x,
která jak: snadno ověříme, splňuje funkcionální rovnici

g(x2 + g(y) + y) + g{y) = g{x) (!2x + g(x)).

Kdyby byla funkce g kladná, platila by pro všechna reálná x nerovnost
g(x) > — 2x, g by tedy nemohla být omezená. Na druhé straně pro x = 0
dostaneme rovnost g{y)+g(g(y)+y) = <?2(0), což znamená, že nezáporná
funkce g musí být omezená. Proto existuje xo tak, že g{xo) = 0. Pak je
ale pro každé у 6 [R splněna rovnost

9(g(y) + y + xl) +9(y) = 0,

což znamená, že g(y) = 0 pro všechna у, tedy f(x) = x pro každé x € IR.
3. (Podle M. Stehlíka z gymnázia v Brně, tř. kpt. Jaroše.) Především
je zřejmé, že existence obarvených úseček nijak nezávisí na poloze bodů
v prostoru a všechny úvahy budou stejné i pro body v jedné řovině.
Na příkladě ukážeme, že lze obarvit 32 úsečky tak, aby nevznikl jedno-

barevný trojúhelník. Dané body označme
1, 2, 3, ..., 9, přičemž neobarvené zůsta-
nou úsečky 15, 26, 37, 48, červeně obarvíme
úsečky 91, 93, 95, 97, 24, 46, 68, 82, 12, 25,
56, 61 a 34, 47, 78, 83, ostatní obarvíme
modře (obr. 17, kde 12345678 je pravidelný
osmiúhelník a bod 9 je jeho středem).

Obarvíme-li 33 úsečky, existuje již nut-
ně jednobarevný trojúhelník. Pak jsou totiž
pouze 3 úsečky neobarvené, tedy nejvýše
ze 6 bodů vychází aspoň jedna neobarvená
úsečka. Jinými slovy existují 3 body tak,

že všech 8 úseček spojujících libovolný z těchto bodů s každým jiným
bodem, je obarvených. Označme tyto body 1, 2, 3 a předpokládejme, že
trojúhelník 123 není jednobarevný, jinak bychom byli hotovi. Pak mů-
žeme bez újmy na obecnosti předpokládat, že úsečky 12, 13 jsou modré
a úsečka 23 červená. Dále rozlišíme dva případy:

a) Z bodu 1 vede další modrá úsečka do bodu 4 ^ {2,3}. Pak je buď
trojúhelník 423 červený, anebo trojúhelník 413 je modrý.

b) Všechny úsečky vycházející z bodu l (kromě úseček 12, 13) jsou
červené. Mezi úsečkami spojujícími libovolné dva z bodů 4,5,..., 9 jsou
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právě tři neobarvené, ostatní musejí být obarveny modře, jinak by každá
červená úsečka spolu s bodem 1 dala červený trojúhelník. Nyní mohou
nastat pouze tyto tři případy:
1. Všechny tři neobarvené úsečky vycházejí z jednoho bodu, pak ale

jejich koncové body vytvoří modrý trojúhelník.
2. Dvě neobarvené úsečky vycházejí z téhož bodu, označení zvolíme tak,

že to jsou úsečky 45, 46, další neobarvená úsečka je buď úsečka 56,
nebo úsečka obsahující jeden z bodů různých od bodů 4, 5, 6, např. 7.
Pak bude ale trojúhelník 589 modrý.

3. Žádné dvě neobarvené úsečky nemají společný bod — označení zvo-
líme tak, že to jsou úsečky 45, 67 a 89, pak však bude trojúhelník 468
modrý.
Tím jsme dokázali, že nejmenší hledané číslo s požadovanou vlastností

je n = 33.4.Předpokládejme, že PQR je trojúhelník opsaný kružnici fé7 (obr. 18),
přičemž přímka QR je totožná s přímkou -šf. Označme T bod dotyku
přímky -šř a kružnice fé7, S střed
kružnice cé’ a D bod souměrný
s bodem T podle středu 5. Průse-
číky tečny kružnice fé7 v bodě D
s přímkami PQ, PR označme U,
V. Stejnolehlost se středem P
zobrazující bod U na bod Q zob-
rázuje trojúhelník PUV na troj-
úhelník PQR a kružnici ^ na
kružnici £, která se dotýká přím-
ky Sč v bodě F, který je obrazem
bodu D. V uvedené stejnolehlosti
se body К, L zobrazí na body X,
Y, kde K, L jsou body dotyku
kružnice Y? a přímek PQ, PR
a body X, Y jsou body dotyku
těchto přímek a kružnice £. Je
tedy \KX\ = \LY\, tedy \KQ\ +
+|дл-| = |ду|+|ль|,у. |<зг|+
+ |QF| = |tfF| + \RT\. Přitom je
\QF\ = \QT\ + \TF\, \RT\ = |/2F| + \TF\, takže \QT\ = \RF\. Proto je
bod M středem úsečky QR, právě když je středem úsečky TF, tedy právě
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když SM || DF, tj. SM || PD. Hledanou množinou je tedy polopřímka
s počátečním bodem D rovnoběžná s5M a ležící v polorovině opačné
к polorovině UVM (polopřímku bereme ovšem bez bodu D).
5. (Podle P. Růžičky z gymnázia v Brně, tř. kpt. Jaroše.) Rozdělme mno-
žinu S na disjunktní podmnožiny Zi, Z2, ..Zn tak, že do každé množiny
Z i dáme právě ty body množiny S, které mají stejnou souřadnici z. Pro
každou množinu Z i označme Xi počet těch bodů, které jsou průmětem
aspoň jednoho bodu množiny Z * do roviny Oyz, podobně уi počet těch
bodů, které jsou průmětem aspoň jednoho bodu množiny Z* do roviny
Oxz, a a,i označme počet bodů množiny Z{. Je pak

15*1 — \$y\ — Víi |S| - £ *
1=11=1

Xiyi ^ di, |SZ| ^ max(ai,a2,... ,on). Proto je

|S*| • |S*| • |SW| Z max dk х{ y{ ^
.=1 ,=1

(ŽVžiýiJ = у?-' ak
> max dk

l^i^n
>

2 / П \ 2

*(E*) =' 1 '4 i— 1

|S|2.max ak •
l^tgn

6. (Upraveno podle Luboše Motla z gymnázia v Plzni.)
а) К důkazu první části úlohy stačí dokázat, že přirozené číslo n2

se nedá napsat jako součet n2 — 13 druhých mocnin přirozených čísel.
Předpokládejme, že tomu tak je, tj. n2 = a2 + b2 + c2 + d2 + ... + z2,
kde na pravé straně je n2 — 13 sčítanců. Nejvýše čtyři z nich mohou
být větší než 1, protože jinak by byl součet na pravé straně roven aspoň
5 • 4 + (n2 — 13 — 5) = n2 + 2 > n2. Máme tedy n2 = a2 + b2 + c2 + d2 +
+ (n2 —17) • l2, takže a2 + 62 + c2 +d2 = 17. Tato rovnice však nemá řešení
v oboru přirozených čísel, což lehce ověříme přímým dosazením čísel 1,
2, 3, 4.

b) Ukážeme, že číslo 13 splňuje podmínky úlohy. Je totiž 132 = 122 +
+ 52 = 122+42 + 32 = 82 + 82+52+42 = 82 +82 +42 +42 + 32 = 82+62 +

+ 62 + 52 + 22 + 22 = 82 + 82 + 42 + 42 + 22 + 22 +12, takže 132 je součtem
jednoho, dvou, tří, čtyř, pěti, šesti i sedmi druhých mocnin přirozených
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čísel. Rozklad 132 = 82+82-t-42+32-t-32+22 + l2 + l2 + l2 ukazuje, že 132
je také součtem devíti druhých mocnin přirozených čísel. Dále využijeme
toho, že každou druhou mocninu (26)2 sudého čísla můžeme nahradit
součtem 62 4- 62 + 62 + 62 čtyř druhých mocnin, čímž se počet druhých
mocnin v součtu zvýší o tři. Například číslo 82 můžeme nahradit součtem
42 + 42 + 42 + 42 a každý sčítanec 42 můžeme postupně nahradit součtem
22 4- 22 -b 22 + 22, konečně můžeme každý sčítanec 22 nahradit součtem
l2 + l2 + l2 + l2. Tímto způsobem jsme ukázali, že dovedeme číslo 82
napsat postupně jako součet 4, 7, 10, 13, 16, 19, 22, ..., 64 druhých
mocnin přirozených čísel. Podobně 42 dovedeme napsat jako součet 4, 7,
10, 13 a 16 druhých mocnin, číslo 22 jako součet čtyř druhých mocnin
přirozených čísel. Vyjdeme-li tedy z rozkladu 132 = 82 + 82 + 42 + 42 + 32
na pět druhých mocnin, dostaneme tak rozklady na součet 8, 11, 14, ...

až na 64 + 64 + 16 + 16 + 1 = 161 druhých mocnin přirozených čísel.
Vyjdeme-li z rozkladu 132 = 82 + 82 4- 42 4- 42 4- 22 4- 22 4- l2, tedy ze
součtu sedmi druhých mocnin, můžeme tak dostat rozklad na 10, 13,
16, ... až 64 4- 64 4-16 4-16 + 4 4- 4 +1 = 169 druhých mocnin. Rozkladem
součtu 82 4- 82 4- 42 4- 32 4- 32 4- 22 +12 4-12 4-12 dostaneme postupně číslo
169 jako součet 12, 15, 18, ... až 64 + 64+16 + 1 + 1+4 + 1 + 1 + 1 = 153
druhých mocnin přirozených čísel. Poslední rozklad obsahuje 151 jedniček
a dvě devítky.

c) Ukážeme, že platí implikace

n ^ 8 Л S(n) = n2 — 14 =4 S(2n) = 4n2 — 14.

Předpokládejme tedy, že se číslo n2 dá napsat jako к druhých mocnin
přirozených čísel pro každé /с, 1 ^ к й n2 — 14. Pak se dá také číslo (2n)2
napsat jako к druhých mocnin přirozených čísel, která budou nyní vesměs
sudá. Je-li totiž n2 = a2 4- 62 4- ..., je (2n)2 = (2a)2 4- (26)2 4- .... Na-
hradíme-li postupně číslo (2a)2 součtem a2 + a2 -i- a2 + a2, číslo (26)2
součtem 62 4- 62 + 62 4- 62, vidíme, že se číslo (2n)2 dá nejen napsat jako
součet к, ale i jako součet к 4- 3, к 4- 6, А: + 9, ..., к + ЗА: = 4к druhých
mocnin přirozených čísel. Jelikož к mohlo nabýt všech hodnot 1, 2, ...,

n2 — 14, dostáváme tak rozklad čísla (2n)2 na součet r druhých mocnin
přirozených čísel, kde r nabývá hodnot 1, 2, ..., 4n2 — 62, 4n2 — 60,
4n2 — 59 a 4n2 — 56. Kromě toho můžeme ale psát (2n)2 = 3n2 + n2
a n2 dovedeme napsat jako к druhých mocnin, 1 й к ^ n2 — 14, takže
se dá (2n)2 napsat jako součet 3n2 jedniček а к dalších druhých mocnin,
tedy celkem jako 3n2 + 2, ..., 4n2 — 14 druhých mocnin přirozených čísel.

132



Jelikož 3n2 + 1 ^ 4n2 — 62 pro n > 8, je tím dokázáno, že se dá číslo
(2n)2 napsat jako součet m druhých mocnin přirozených čísel, kde m je
libovolné přirozené číslo splňující podmínku m 4n2 — 14. Tím jsme
dokázali, že existuje nekonečně mnoho přirozených čísel n s vlastností
S(n) = n2 — 14. Jsou to například všechna čísla tvaru 2m • 13, kde m je
přirozené číslo.

v

ч
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4. mezinárodní olympiáda v informatice

Čtvrtá mezinárodní olympiáda v informatice (ЮГ92) pro středoško-
láky se konala ve dnech 12.-21. čer-
vence 1992 v Bonnu pod záštitou
UNESCO s přispěním několika děsí-
tek sponzorů, z nichž к nejvýznam-
nějším patřili IBM, APPLE, Sprin-
ger Verlag, SIEMENS, Borland atd. Olympiády se zúčastnilo 166 soutě-
žících (z toho 5 dívek) ze 45 zemí ze všech kontinentů a navíc 5 dalších
zemí vyslalo své pozorovatele.

Československý tým byl složen na základě výsledků studentů v celo-
státním kole matematické olympiády v kategorii P a podle výsledků tes-
tů, konaných v průběhu týdenního soustředění 11 vítězů v této kategorii,
které se konalo na KU v Bratislavě. Složení našeho družstva bylo násle-
dující: Matěj Ondrušek, student 3. ročníku gymnázia J. Hronca v Brati-
slavě, Jan Kotas, absolvent gymnázia na Mikulášském náměstí v Plzni,
Jan Kybic, absolvent gymnázia v Korunní uliči v Praze a Tomáš Vinař,
student 2. ročníku gymnázia na Šrobárově ulici v Košicích. Vedoucím
delegace byl doc. Václav Sedláček z Masarykovy university v Brně a jeho
zástupcem Mgr. Richard Nemec z Univerzity Komenského v Bratislavě.

V rámci vlástní soutěže byly řešeny 2 soutěžní úlohy, na které měli
soutěžící vyhrazeno vždy 5 hodin čistého času. Úlohy byly vybrány v den
jejich řešení mezinárodní porotou, složenou z vedoucích delegací všech
zúčastněných států. Pro výběr byly vědeckou komisí soutěže předloženy
vždy 3 úlohy. Každý student pak řešil úlohu na přiděleném osobním počí-
tači. Výsledné produkty byly za přítomnosti studenta a vedoucího týmu
testovány koordinátory, kteří je podrobili předepsaným testům a na je-
jich základě bodově ohodnotili tak, že maximální možný bodový zisk
byl 100 bodů. Případné námitky ze strany delegací řešilo shromáždění
koordinátorů, které rovněž stanovilo definitivní bodové hodnocení sou-
těžících. Ocenění zlatými, stříbrnými a bronzovými medailemi pak bylo
dáno bodovým ziskem za obě úlohy.

ů-■§ cb*nd4.

*<S5
tioO»|em
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Celkem bylo uděleno 13 zlatých (pro soutěžící se ziskem 198-200 bo-
dů), 31 stříbrných (175-195 bodů) a 41 bronzových medailí (123-172
bodů). Českoslovenští soutěžící navázali na vynikající výsledky z před-
chozí olympiády a ve dvojnásobné konkurenci ve srovnání s předchozí
olympiádou získali M. Ondrušek zlatou medaili (200 bodů), Jan Kotas
(185 bodů) a Jan Kybic (190 bodů) medaile stříbrné. V neoficiální soutěži
družstev, do níž byly sečteny body všech členů družstva, byl českosloven-
ský tým uveden mezi 12 nejúspěšnějšími družstvy se ziskem 645 bodů.

Mezinárodní olympiáda v programování se svým charakterem liší od
naší kategorie P matematické olympiády především v tom, že účastníci
řeší zadané úlohy na osobním počítači, který má každý soutěžící к dis-
pozici. Zadání úlohy je mu к dispozici v angličtině a v rodném jazyku.
Případné dotazy je možno klást pouze písemně přes mezinárodní jury,
která dotaz předá vedoucímu delegace. Možné odpovědi na dotazy jsou
jenom „ano“, „neu, „bez komentáře", a to pouze prvních 30 minut sou-
těže. Po skončení soutěže jsou úlohy soutěžících podrobeny testům. Na
základě výsledků testů jsou úlohy obodovány. V žádném případě se ne-

provádí analýza zdrojového textu s ohledem na složitost navrhovaných
algoritmů. Ostatně jak uvidíte z textu zadání úloh, byly v letošním roce

vybrány mezinárodní jury obě úlohy, které bylo myslitelné řešit techni-
kou backtracking. Trend v návrzích úloh je v současné době takový, že
se uplatní úlohy typu spíše vytváření prostředků (tools) pro sérii úloh.
Přestože naši soutěžící byli v rámci matematické olympiády orientováni
poněkud jiným směrem, ukazuje se na základě jejich výsledků, že jejich
průprava v psaní efektivních programů z hlediska paměťové či časové
složitosti jim umožňuje úspěšné výsledky i v mezinárodních soutěžích
s přímým použitím počítačů. Snad jenom větší pečlivost při návrhu testů
omezujících podmínek pro vstupní data byla příčinou oněch nepatrných
bodových ztrát, které nás dělily od dalších zlatých medailí. Přitom efek-
tivita resp. osekávání možností pro backtracking nebyly vůbec zohledňo-
vány ve výsledném bodovém ohodnocení, takže úloha trvající na počítači
1 sekundu byla ohodnocena stejně jako úloha trvající 8 hodin.

Mimo vlastní soutěž připravili organizátoři z Institutu pro matema-
tiku a zpracování dat a z Institutu Gustava Stresemanna pod vede-
ním dr. Petra Heyderhoffa bohatý kulturní, společenský a doprovodný
program. Všichni účastníci soutěže byli přijati před zahájením soutěže
starostou Bonnu, v průběhu zájezdu do Dússeldorfu byli přijati zem-

ským ministrem školství, navštívili Kolín nad Rýnem, Heidelberg, poznali
Bonn, jeho okolí i část Porýní. Sponzoři soutěže věnovali mimo jiné dr-

135



žitelům zlatých medailí hodnotné ceny a všem účastníkům věcné dárky.
Při slavnostním vyhlášení výsledků byly tyto ceny předány řadou oficiál-
nich osobností v čele s federálním ministrem školství SRN. Účastníkům
olympiády poslal pozdravný telegram prof. Konrad Zuse.

Závěrem uvádíme doslovné znění úloh, které byly řešeny účastníky
olympiády, abyste si na nich mohli prověřit svoje programátorské zkuše-
nosti. Nezapomeňte dodržet všechna omezení a pokyny, jejichž nedodr-
žení v soutěži by znamenalo bodovou ztrátu.

Texty soutěžních úloh

7. Ostrovy v moři
MOŘE je representováno sítí velikosti N krát N. Každý OSTROV

je „*“ v této síti. Vaší úlohou je zrekonstruovat MAPU ostrovů pouze
z KÓDOVANÉ INFORMACE o horizontálním a vertikálním rozložení
těchto ostrovů. Pro ilustraci tohoto kódování sledujte následující mapu:

1 2* * *

3 1* * * *

1 1 1* * *

53jc 3+: %

2 1 1* * * *

1*

1 1 4 2 2 1

1 2 3 2

1

Čísla napravo v každém řádku representují pořadí a velikost každé
skupiny ostrovů v tomto řádku. Například „1 2“ v prvním řádku zna-

mená, že jeden ostrov je následován skupinou dvou ostrovů, které jsou
obklopeny mořem nějaké délky nalevo i napravo od každé skupiny ost-
rovů. Podobně posloupnost „1 1 1“ pod prvním sloupcem znamená, že
tento sloupec obsahuje tři skupiny, každá po jednom ostrovu, atd.

Zadání úlohy: Implementujte program, který opakuje následující kro-
ky, dokud není úplně přečten vstupní soubor, který obsahuje několik ta-
kových bloků informací:

1. Přečti následující blok informací ze vstupního ASCII souboru (pro
strukturu dat v tomto souboru viz příklad dále) a zobraz jej na obrazovce.
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Každý blok informací je složen z velikosti čtvercové sítě, následované
informacemi o řádcích a sloupcích. Popis každého řádku i sloupce se obje-
vuje v jednom řádku souboru jako posloupnost čísel oddělených mezerami
a ukončená 0.

2. Zrekonstruujte mapu (nebo všechny možné mapy, pokud je možné
více než jedno řešení, viz Příklad-4 dále) a zobrazte je na obrazovce.

3. Zapište mapu (mapy) na konec výstupního ASCII souboru. Každé
prázdné místo musí být representováno dvojicí mezer. Každý ostrov nechť
je representován následovanou jednou mezerou. Různé mapy vyho-
vující stejným omezením nechť jsou odděleny prázdným řádkem. Pokud
neexistuje řešení vyhovující popisům, indikujte to řádkem s textem „no

map“. Řešení odpovídající různým blokům informací musí být oddělena
řádkem s textem „next problem".

Technická omezení:

Omezení-1: N nesmí být menší než 1 a větší než 8
Omezení-2: Uložte váš výsledný program do textového ASCII sou-

boru C:\I0I\DAY-1\413-PR0G.xxx.
Přípona . xxx je:
.BAS pro programy v BASICu, .C pro programy v jazyku C, .LCN
pro LOGO programy, .PAS pro programy v PASCALu. v

Omezení-3: Jméno vstupního ASCII souboru pro čtení kódované in-
formace musí být C:\I0I\DAY-1\413-SEAS.IN.

Omezení-4: Jméno výstupního souboru pro zápis mapy (map) musí
být C:\I0I\DAY-1\413-SEAS.0U.

Příklady:
Příklad-1. (viz problém v zadání): 6 je velikost

<— začátek popisu řádků

6

12 0

3 10

1110

5 0

2 110

1 0

1110 <— začátek popisu sloupců
1 2 0

4 0

2 3 0

2 0

12 0

sítě
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Příklad-2. Řešení:sloupce: 1234
řádek 1:

řádek 2:

řádek 3:

řádek 4:

4

0

1 0 *

2 0 * *

0

o

1 o

2 0

o

2 Příklad-3. Všimněte si, že neexistuje řešení
vyhovující těmto popisům0

0

2 0

2 0

2 Příklad-4. Všimněte si, že existují dvě různé
mapy, vyhovující těmto popisům1 0

1 0

1 0

1 0

Vzorové soubory:
Tyto správné příklady souborů jsou vám к disposici v souborech:

C:\I0I\DAY-1\413-SEAS.IN a C:\I0I\DAY-1\413-SEAS.OU.

Upozornění: Úspěšný běh vašeho programu s těmito příklady neza-

ručuje nutně, že váš program je správný !!!
Bodové hodnocení:

Přečti blok informací ze vstupního souboru a zobraz jej ...

Zpracovávej všechny bloky informací postupně po jednom,
dokud není úplně přečten celý vstupní soubor

Zrekonstruuj jednu mapu pro každý blok informací (pokud
existuje řešení) a zobraz ji

Zapiš výslednou mapu do výstupního souboru
Zrekonstruuj všechny možné mapy (pokud existuje více ře-

šení) a zobraz je
Zapiš všechny výsledné mapy do výstupního souboru správ-

ně oddělené '

Identifikuj bloky informací, které nemají řešení
Dodržení technických omezení

5 bodů

10 bodů

35 bodů

5 bodů

20 bodů

10 bodů

5 bodů

10 bodů

maximálně 100 bodů
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8. Slézání hory
Klub horolezců má P členů očíslovaných 1 až P. Každý člen leze stej-

nou rychlostí a není rozdílu mezi rychlostí lezení nahoru a dolů. Horolezec
číslo i spotřebuje denně C(i) jednotek ZÁSOB a je schopen nést nejvýše
S(i) takových jednotek. Všechna C(i) a S(i) jsou celá čísla.

Předpokládejte, že horolezec s dostatečným množstvím zásob by po-
třeboval N dnů к dosažení vrcholu. Hora ale může být příliš vysoká,1
takže samotný horolezec není schopen nést všechny potřebné zásoby. Tu-
díž jistá SKUPINA horolezců začne na stejném místě a ve stejném čase.
Horolezec, který se začne předčasně vracet ještě před dosažením vrcholu,
odevzdá své nepotřebné zásoby ostatním horolezcům. Horolezci během
expedice neodpočívají.

Vaší ÚLOHOU je najít rozvrh pro klub horolezců. Aspoň jeden horo-
lezec musí dosáhnout vrcholu hory a všichni horolezci z vybrané skupiny
se musí vrátit do startovního místa.

Zadání úlohy: Implementujte program, který dělá následující:
1. Přečte z klávesnice celé číslo N dnů potřebných к dosažení vr-

cholu, počet P horolezců v klubu a (pro všechna 1 ^ i ^ P) hodnoty
S(i) a C(i). Můžete předpokládat, že vstupní hodnoty jsou celá čísla.
Zamítněte vstupy, které jsou nesmyslné.

2. Pokuste se najít plán pro slezení hory. Určete možnou skupinu
a(l), ..., a(k) horolezců, kteří by měli být vybráni do skupiny a (pro
všechna 1 й j ^ k) množství zásob M(j), které horolezec a(j) ponese na
startu.

Poznámka: Nemusí existovat plán pro všechny možné kombinace N,
S(i) a C(i).

3. Vypište následující informace na obrazovce:
a) Počet horolezců, kteří se skutečně zúčastní výpravy,
b) celkové množství potřebných zásob,
c) čísla horolezců a(l), ..., a(fc),
d) pro všechna a(j) (1 ^ j ^ k) počáteční množství zásob M(j), které

ponese horolezec a(j),
e) den D(j), kdy horolezec a(j) začne sestupovat.

4. Rozvrh je OPTIMÁLNÍ, jestliže:
a) počet vybraných horolezců je minimální a

b) mezi všemi skupinami splňujícími podmínku a) jsou celkové spotře-
bované zásoby minimální.
Pokuste se najít řešení pokud možno nejbližší к optimálnímu.
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Technická omezení:

Omezení-1: Uložte váš výsledný program do textového ASCII sou-
boru C:\I0I\DAY-2\422-PR0G.xxx. Přípona .xxx je: .BAS pro

programy v BASICu, .C pro programy v jazyku C, .LCN pro
LOGO programy, . PAS pro programy v PASCALu.

Omezení-2: Program musí zamítnout vstupy, kdy N je menší než 1
nebo větší než 100. P nesmí být menší než 1 ani větší než 20.

Vzorové soubory: Pro vaše potřeby je připraveno několik souborů
obsahujících testovací data a vzory správných výstupů; podívejte se do
adresáře C:\I0I\DAY-2.

Upozornění: Úspěšný běh vašeho programu s těmito příklady neza-

ručuje nutně, že váš program je správný!!!
Příklady: Následující text by mohl být dialogem s vaším programem,

který může být i v rodném jazyce:

Dní na dosažení vrcholu:

Počet členů klubu:
Maximální zásoby horolezce 1:7
Denní spotřeba horolezce
Maximální zásoby horolezce 2:8
Denní spotřeba horolezce
Maximální zásoby horolezce 3:12
Denní spotřeba horolezce
Maximální zásoby horolezce 4:15
Denní spotřeba horolezce
Maximální zásoby horolezce 5:7
Denní spotřeba horolezce

2 potřební horolezci, potřebné množství zásob je 10.
Horolezci 1, 5 půjdou.
Horolezec 1 nese 7 a sestupuje po 4 dnu.
Horolezec 5 nese 3 a sestupuje po 1 dnu.
Naplánovat další výpravu? (Y/N) Y

Dní na dosažení vrcholu
Počet členů klubu
Maximální zásoby horolezce 1:3
Denní spotřeba horolezce

Uskutečnění výpravy není možné.
Naplánovat další výpravu? (Y/N) N

4

5

1:1

2:2

3:2

4:3

5:1

:2

:1

1:1
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Na shledanou

Bodové hodnocení:

Uživatelský dialog podle ilustračního příkladu
Nalezení řešení pro speciální případ, kdy všechna C(i) = 1

a všechna S(i) jsou stejná
Nalezení řešení pro obecný případ
Nalezení řešení co nejblíže optimálnímu pro obecný případ 30 bodů
Detekce neřešitelných situací..
Dodržení technických omezení

10 bodů

20 bodů

20 bodů

10 bodů
10 bodů

maximálně 100 bodů
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