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O priabéhu 42. ro¢niku matematické olympiady

Soutéz Matematickd olympidda ve Skolnim roce 1992/93 poradaly pro
zaky stfednich a zakladnich $kol Ministerstvo Skolstvi, mladeze a télovy-
chovy CR, Ministerstvo $kolstvi, mladeZe a sportu SR ve spolupréci s Jed-
notou Ceskych matematikt a fyziki, Jednotou slovenskych matematikt
a fyzik@ a Matematickym tstavem AV CR. Soutéz fidil Gstfedni vybor
matematické olympiaddy (UV MO) prostfednictvim oblastnich a okres-
nich vybort matematické olympiady.

Cilem soutéze je vyhledavéani zakl talentovanych v matematice, pro-
bouzeni jejich hlubs$iho zdjmu o matematiku a rozvijeni jejich matema-
tickych schopnosti. Ve $kolnim roce 1992/93 se uskutecnil jeji 42. ro¢nik.

Ustiedni vybor MO pracoval ve sloZeni, v némz byl jmenovan minis-
terstvy Skolstvi CR a SR na pétileté obdobi pii zah4jeni 39. ro¢niku.
Ptedsedou UV MO byl doc. dr. Leo Boéek, CSc., z MFF UK v Praze,
tajemniky byli dr. Karel Hordk, CSc., z MU AV CR v Praze a dr. Jifi
Binder, CSc., z PF UK v Praze.

V pribéhu 42. roéniku MO se konala t¥i zasedani UV MO, prvni
dne 2. prosince 1992 v Praze, druhé 26.-27. dubna 1993 na gymndziu
v Jevicku pii celostatnim kole kategorie A a pak se Gstfedni vybor seSel
jesté jednou 10. ¢ervna 1993 na gymndaziu na tiidé kpt. JaroSe v Brné.
Bylo projednavano hodnoceni pribéhu soutéze, zabezpeceni celostatnich
soustiedéni tspésnych resiteld MO vcetné soustiedéni pro piipravu na
MMO, korespondenéni seminai UV MO a organizace dalsich kol soutéze
a v neposledni fadé i dalsi spoluprédce mezi ceskym a slovenskym vyborem
olympiady.

V organizaci vlastni soutéze nedoslo k zadnym podstatnym zménam.
Ptes rozpad Ceskoslovenska na po&atku roku 1993 probéhla viechna kola
MO spole¢né véetné zavérecnych III. kol kategorii A a P (proto v rocence
najdete zadani a feSeni nékterych tloh ve slovensting). Byla to vSak po-
sledni spole¢né celostatni kola, nicméné dle vzdjemné dohody &eského
i slovenského organiza¢niho vyboru ziistanou nadale spole¢né tlohy a ter-
miny jednotlivych kol MO. Mezinarodnich olympiad se poprvé i¢astnila
samostatna druzstva obou republik.



Pro zéky stfednich $kol byla soutéz organizovana ve ¢tyrech katego-
riich A, B, C a P. Kategorie A byla urcena zéaktim 3. a 4. ro¢niki stf¥ednich
Skol, kategorie B byla pro zaky 2. ro¢nikt a v kategorii C soutézili zaci
1. ro¢nikd. Pro zaky vSech tfid stfednich $kol byla urcena jesté katego-
rie P, zamérend na tlohy z programovani a matematické informatiky.

V kategoriich A, B a C méa I. kolo dvé ¢asti. V prvni ¢asti fesi soutézici
6 uloh doma nebo v matematickych krouzcich a mohou se pfitom radit se
svymi uciteli, vedoucimi krouzki apod. Druhé ¢ast méa formu klauzurni
prace, v niz fesi zaci tfi tlohy v omezeném Case 4 hodin. Resitelé, ktefi
Uspésné projdou prvnim kolem, jsou pozvani do druhého (oblastniho)
kola soutéze, kde tesi ¢tyti Glohy opét v limitu ¢tyt hodin.

V kategoriich A a P se kona jesté treti, celostatni kolo. V ném je
vlastni soutéz rozdélena do dvou dnti. V kategorii A fesi soutézici kazdy
den tri ulohy v ¢asovém limitu ¢tyii hodiny, v kategorii P ve stejném
limitu vzdy dvé ulohy.

Celostatni kolo se mélo podle dosud zabéhnutého cyklu ptivodné ko-
nat v Praze. Jeho organizace v metropoli se vSak ukazala jako finan¢né
prilis nakladné, a tak nakonec ptijali Prazané nabidnutou pomoc malého
meésta v srdci Malé Hané, jehoZz vyznam pro ceskou matematiku bude
jesté docenén.

Celostatni kolo 42. ro¢niku se tak uskutecnilo v Jevicku ve dnech
25.-28. dubna 1993 (kategorie A) a 28. dubna az 1. kvétna 1993 (katego-
rie P). Na zabezpeceni soutéze véetné bohatého doprovodného programu
pro soutézici i leny UV MO se obétavé podileli profesoii a pedagogicky
sbor jevicského gymnéazia vcele s jeho reditelem dr. Dagem Hrubym.

Vybrana druzstva se zicastnila mezindrodni matematické olympiady
i mezinarodni olympiddy v informatice. Témto soutézim je vénovana sa-
mostatna kapitola v zavéru této rocenky.

K matematické olympiadé vedle vlastni soutéze patiiirada doprovod-
nych akei pro talentované zaky. Z akci poradanych oblastnimi vybory MO
k nim zejména patii seminafe pro reSitele MO a instruktaze pro ucitele.
Pro nejuspésnéjsi tesitele oblastnich kol MO a korespondené¢nich semi-
nara byla porddana (vétsinou tydenni) soustfedéni.

Ustfedni vibor MO zajistoval dvé celostatni soustfedéni. Pro ziky
nematurujicich ro¢nika to bylo jiz tradi¢ni soustiedéni fesiteli tloh MO
a FO. Probéhlo ve dnech 6.-18.6. 1993 v Jevicku (naposledy spole¢né
pro Gispésné fesitele z Cech i Slovenska). Dalsi soustfedéni bylo vénovano
pripravé ¢eského a slovenského druzstva na mezinarodni matematickou
olympiddu a konalo se 6.-13. kvétna 1993 v Bratislavé. Vybrani ¢esti
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i slovensti reprezentanti se spolecné s nahradniky v zafi 1993 zacastnili
spoletného tydenniho piipravného soustiedéni pied mezinirodni olympi-
adou v informatice. Soustifedéni se konalo na matematicko-fyzikalni fa-
kulté Univerzity Komenského v Bratislavé pod vedenim vedouciho druz-
stva Slovenské republiky mgr. Richarda Nemce.

Soutézni tlohy I. (doméciho) kola vSech kategorii matematické olym-
piady jsou publikovany v tzv. soutéznich letacich. Ulohy jsou déle
zvefejiiovany v Casopisech Matematika, fyzika, informatika a Rozhledy
matematicko-fyzikdlni. Na pomoc ucitelim jsou pak rozesilany na skoly
komentare k tloham.

Po roce 1990 prestaly vychazet obvyklé ro¢enky MO, které uvadély
vSechny zajimavé vysledky, prehledy o poctu Gcastnikii v jednotlivych
regionech a zejména pak vSechny tulohy jak na$i, tak i mezinarodnich
olympiad vcetné jejich reSeni. Po rocence 40. ro¢niku vydané jesté péci
Statniho pedagogického nakladatelstvi se az do jubilejniho 50. ro¢niku
objevily jen dvé rocenky (41. a 45. ro¢niku). Ro¢enky dalsich ro¢nikt MO
vSak chybély. Nyni se vam kone¢né dostava do ruky prvni z chybéjicich
rocenek, a to pééi Ustfedniho viboru MO, Jednoty ¢eskych matematikii
a fyzika a Polygrafického strediska Univerzity Palackého v Olomouci.
Vzéapéti vyjde i roCenka pravé ukonceného 51. ro¢niku MO. Postupné by
se tak mély objevit i ostatni chybéjici rocenky, jejichz tézistém je zejména
bohatstvi velkého poctu zajimavych a origindlnich tloh. Tésime se na vas
ohlas a pripominky.

Autofi ro¢enky jménem Ustfedniho vyboru MO dékuji touto cestou
vSem organizatorim soutéze, predevsim pak ucitelim za jejich obéta-
vou spolupréci a za péci, kterou vénuji svym zakim. Zaroven vyzyvaji
vSechny zdjemce o spolupraci pri tvorbé zajimavych tloh. Zkuste zazit
pocit radosti z toho, objevite-li svou tlohu i se svym jménem v soutéznim
letaku.

Névrhy na soutézni tlohy pro kategorie A, B a C laskavé zasilejte na
adresu predsedy tlohové komise MO doc. RNDr. Jaromira Simsi, CSc.,
MU AV CR, Zizkova 22, 616 00 Brno. Ulohov4 komise se schazi zpravidla
dvakrat ro¢né za Gcasti eskych i slovenskych kolegu.

Néavrhy tloh vhodnych pro kategorii P zasilejte na adresu doc. RNDr.
Pavla Topfera, MFF UK Praha, Malostranské nam. 25, 118 00 Praha 1.



12.-14.

15.
16.
17.-19.

20.-24.

25.-26.

Vysledky celostatniho kola 42. roéniku MO
kategorie A

Vitézovée

Villiam Bur, 4b G Bratislava, Grosslingova
Andrej Zlatos, 3b G Bratislava, Grosslingova
Jiri Cerny, 4a G Plzen, Mikulasské nam.
Michal Brodsky, 4a G Brno, kpt. Jarose
Jana Syrovdtkovd, 4a G Brno, kpt. JaroSe

. Marek Macuha, 3b G Bratislava, Grosslingova

Vit Novdk, 4e G Praha 2, Korunni

. Robert Sdmal, 2d G Praha 2, Korunni
. Petr Kanovsky, 2a G Brno, kpt. Jarose

Pavol Marton, 4 G Bratislava, Grosslingova
Daniel Stefankovi¢, 4b G Bratislava, Grosslingova,
Marcela Hlawiczkovd, 4c G Ttinec

Daniel Pastor, 3b G Bratislava, Grosslingova

Jiri Vanicek, 4e G Praha 2, Korunni

Ondrej Klima, 4a G Brno, kpt. JaroSe

Frantisek Vymazal, 4a G Brno, kpt. Jarose

Jan Mach, 3¢ G Bilovec

Martin Niepel, 3b G Bratislava, Grosslingova
Martin Vagasky, 3b G Bratislava, Grosslingova

Dalsi uspésni Tesitele

Kamil Budinsky, 4b G Bratislava, Novohradska
Blazej Neradilek, 3a G Brno, kpt. Jarose

Jan Rychtdr, 2¢ G Strakonice

Katarina Skalovd, 4b G Bratislava, Grosslingova
Juraj Slanicka, 4 G Bratislava, Grosslingova
Jana Uhrova, 4d G Bilovec

Milos Volauf, 4 G Bratislava, Grosslingova

35b.
34b.
32b.
31b.
31b.
30b.
30b.
29b.
28 b.
28 b.
28b.
27b.
27b.
27b.
26 b.
25b.
24 b.
24 b.
24b.

23b.
23b.
23b.
23b.
23b.
22b.
22b.



27.-28.

29.-31.

32.-35.

36.-38.

Matej Ondrusek, 4b G Bratislava, Novohradska
Marek Zabka, 4f Bansk4 Bystrica, Tajovského
Milan Hokr, 3d G Praha 2, Korunni

Filip Krska, 2a G Brno, kpt. JaroSe

Libor Masicek, 2a. G Brno, kpt. Jarose

ITvana Brudndkova, 2e G PreSov, Konstantinova
David Kruml, 4a G Brno, kpt. Jarose

Boris Krupa, 1 G Bratislava, Grosslingova
Petr Vachovec, 3a G Plzen, Mikul4dsské nam.
Matus Kirchmayer, 3a G Bratislava, Metodova
Mikulas Pinos, 3a G Brno, kpt. Jarose

Martin Semerdd, 4e G Praha 2, Korunni

21b.
21b.
20b.
20b.
20b.
19b.
19b.
19b.
19b.
17b.
17b.
17b.



14.-15.

16.-19.

20.
21.-24.

25.-27.
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Vysledky celostatniho kola 42. roéniku MO
kategorie P

Vitezove

Tomds Vina#, 3.A G Kosice, Srobarova

Jiri Vanicek, 4. E G Praha, Korunni

Martin Mares, 2.E G Praha, U libefiského zamku
Martin Niepel, 3.B G Bratislava, Grosslingova
Matej Ondrusek, 4.B G Bratislava, Novohradska

. Bronislava Brejovd, 3.B G Bratislava, Novohradska
. Vit Novdk, 4.E G Praha, Korunni

Daniel Stefankovi¢, 4.B G Bratislava, Grosslingova

. Jiti Hanika, 4.E G Praha, Korunni

Cyril Sochor, 4.E G Praha, Korunni

. Martin Gazdk, 3.B G Zilina, Velkd Okruzna

Ondrej Par, 3.D GMK Bilovec
Jana Syrovdtkovd, 4.A G Brno, kpt. JaroSe

Dalsi uspésni Tesitelé

ITvana Brudndkova, 2.E G PreSov, Konstantinova
Rastislav Kralovic, 4.F G Bratislava, Vazovova
Milan Bok, 4.E G Praha, Korunni

Zoltan Bugdr, 4.A G Galanta

Pavel Machek, 2.D G Praha, Korunni

Ondrej Poradek, 4.E G Praha, Korunni

Jan Mach, 3.C GMK Bilovec

Marek Fekete, 4.A G Michalovce

Patrik Hornik, 2.B G Bratislava, Grosslingova
Boris Letocha, 3.A G Hradec Kralové, Tylovo nam.
Robert Sdmal, 2.D G Praha, Korunni

Kamil Budinsky, 4.B G Bratislava, Novohradska
Pawvel Petrovi¢, 4.B G Bratislava, Novohradska
Marian Varga, 3.A G Bratislava, Novohradska

33b.
31b.
30b.
30b.
30b.
29b.
26b.
26 b.
23b.
23b.
22b.
22b.
22b.

20b.
20b.
19b.
19b.
19b.
19b.
18b.
17b.
17b.
17b.
17b.
16 b.
16 b.
16 b.



Nejuspésnéjsi resitelé II. kola MO
v kategoriich A, B,Ca P

7 kazdého kraje a z kazdé kategorie jsou uvedeni uspésni fesitelé
na nejvyse prvnich deseti mistech. Oznaceni G znamena gymnéazium, M,
resp. MF zaméreni studijniho oboru 01 Matematika, resp. 02 Matematika
a fyzika.

Praha

Kategorie A

1. Lucie Bittnerovd, 4M, G Praha 2, Korunni
2.-3. Martin Semerdd, 4M, G Praha 2, Korunni

Jiri Vanicek, 4M, G Praha 2, Korunni
4. Martin Vejrazka, 4MF, G Praha 8, U lib. zamku
5. Vit Nowvdk, 3M, G Praha 2, Korunni
6. Milan Hokr, 4M, G Praha 2, Korunni
8. Robert Sdmal, 2M, G Praha 2, Korunni

Jan Rataj, 3M, G Praha 2, Korunni
9. Tomads Kocka, 4MF, G Praha 8, U lib. zamku
10. Jan Tichy, 4M, G Praha 2, Korunni

Kategorie B

1. Martin Mares, 2E, G Praha 8, U lib. zdmku
2. Robert Sdmal, 2D, G Praha 2, Korunni
3.-4. Pavel Kurka, 2D, G Praha 2, Korunni
Michal Fabinger, 2E, G Praha 6, Nad aleji
. Norbert Vanék, 2D, G Praha 2, Korunni
. Michal Ostatnicky, 2D, G Praha 2, Korunni
. Luka$ Bernard, 2C, G Praha 2, Korunni
. Jan Adamcadk, 2D, G Praha 2, Korunni
9.-11. Jiri Hdajek, 2D, G Praha 2, Korunni

0 ~J O ot
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Karel Patera, 2D, G Praha 2, Korunni
Zdenék Stépdn, 2D, G Praha 2, Korunni

Kategorie C

. Karel Vyborny, 1A, G Praha 2, Korunni

Petra Necasovad, 1D, G Praha 2, Korunni
Jiri Vanek, 1D, G Praha 2, Korunni
Dagmar Podand, 1D, G Praha 2, Korunni

. Petr Holzhauser, 1D, G Praha 2, Korunni
. Alan Drozen, 1D, G Praha 2, Korunni

Petr Janecek, 1D, G Praha 2, Korunni
Viclav Subrta, 1D, G Praha 2, Korunni
Jan Vodicka, 1D, G Praha 2, Korunni

Michal Benes, 1D, G Praha 2, Korunni

Kategorie P

. Pavel Machek, 2D, G Korunni 2, P2
. Jirt Vanicek, 4E, G Korunni 2, P2
. Milan Bok, 4E, G Korunni 2, P2

Robert Samal, 2D, G Korunni 2, P2

. Martin Mares$, 2D, G U liben. zdmku 1/3, P8
. Vit Novak, 4E, G Korunni 2, P2
. Jiri Hanika, 4E, G Korunni 2, P2

Cyril Sochor, 4E, G Korunni 2, P2

. Ondrej Porddek, 4E, G Korunni 2, P2
. Jiri Kosek, 3D, G Korunni 2, P2

Stiedoclesky kraj

Kategorie A

. Jakub Strnad, 4C, G Mlada Boleslav .
. Pavel Kucera, 3A MF, G Mlada Boleslav

Jiri Lou$a, 4A MF, G BeneSov

. Jan Bldha, 4A MF, G Beroun

Frantisek Liska, 4A MF, G Beroun



10.

Viclav Petricek, 3A MF, G Mlada Boleslav

. Karel Duda, 4A MF, G Kladno

Kategorie B

. Petr Spicka, 2A, G Kralupy
. Martin Jaros, 2B, G BeneSov
. Ondrej Beran, 2B, G Sedl¢any

Jan Strnad, 2A, G Kolin

. Milan Jakubec, 2A, G Sedl¢any

Jitka Kratochvilovd, 2A, G Kolin
Martin Ruzek, 2A, G Slany

. Pavel Erben, 2A, G Kolin

David Konvalina, 2A, G Céslav
Iva Kovdrovd, 2A, G Mlada Boleslav

Kategorie C

. Jifi Franta, 1A, G Ptibram
. Ondrej Crha, 1A, G Mlad4 Boleslav

Miroslav Knotek, 1A, G Kolin
Toma$ Miiler, 1A, G Mlada Boleslav

. Viclav Havlik, 1C, G Benesov

Michal Spiryt, 1B, G Beroun

. Jaroslav Borovicka, 1A, G Mlada Boleslav

Marek Herda, 1B, G Kutna Hora
Veronika Novotnd, 1B, G Sedl¢any
Pavel Ambroz, 1A, G Slany

Kategorie P

. Jan Blaha, 4A MF, G Beroun

. Milo$ Kleint, 4A MF, G BeneSov
Jaroslav Borovicka, 1A MF, G Mlada Boleslav
. Pavel Kucera, 3A MF, G Mlada Boleslav

David Sitensky, 3A MF, G Kladno



10.-11.
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——— Jihocesky kraj

Kategorie A

. Daniel Prisa, 6B, G Tabor
. Petr Slechta, 6B, G JVJ C. Budéjovice
. David Kimr, 5B, G JVJ C. Budgjovice

Ludék Hdjicek, 2B, G Jirovcova, C. Bud&jovice
Jan Rychtdr, 6B, G Strakonice
Vit Pekarek, 6B, G JH

. Ondrej Mares, 4B, G Jirovcova, C. Budé&jovice

0. Hanzal, 2B, G Dacice

H. Deverovd, 4B, G Jirovcova, C. Budéjovice
0. Pangrac, 4B, G Pelhfimov

D. Rozek, 4B, G JH

Kategorie B

. Karel Svadlenka, 2, G Jirovcova, C. Budéjovice

. Jan Rychtar, 2, G Strakonice

. Michaela Prokesovd, 2, G Jirovcova, C. Budé&jovice

. Viclav Honetschliger, 2, G Jirovcova, C. Budé&jovice

Stanislav Smejkal, 2, G Tabor

Kategorie C

. M. Elisovd, 1A, G J C. Budé&jovice

J. Hamrle, 1A, G Pelhfimov
J. Honnerovd, 1, G CA C. Budéjovice

. J. Huml, 1A, G J C. Budé&jovice

M. Toman, 1B, G J. Hradec
M. Vojta, 1A, G Strakonice

. P. Zeman, 1C, G Téabor
. M. Kvétori, 1A, G Jirovcova, C. Bud&jovice
. J. Dolezal, 1, G Kaplice

R. Zenka, 1, G Jirovcova, C. Budéjovice



Zapadocesky kraj

Kategorie A

. Jiri Cerngj, 4M, 1. G Plzenr

. Petr Vachovec, 3M, 1. G Plzen
. Jan Gillar, 3P, G Cheb

. Josef Cernyj, 4MF, G DomaZlice

Michal Skop, 3M, 1. G Plzen

. Frantisek Sanda, 3, G Klatovy
. Jan Pospisil, 3M, 1. G Plzen

Miroslav Skala, 3M, 2. G Plzen

. Roman Knize, 4AMF, G Cheb

Romana Lavickova, 4M, 1. G Plzen
Petr Pisek, 3M, 1. G Plzen

Kategorie B

. Petr Marik, 2M, 1. G Plzen

2. Stanislav Stépdnek, 2M, 1. G Plzen

. Katerina Némcovd, 2, Svob. chebska $kola Cheb

Jiri Svoboda, 2M, 1. G Plzen

. Jiti Fornous, 2M, 1. G Plzen

Eva Legdtova, 2, G Susice

. Soria Demjanovicova, 2M, 1. G Plzen
. Pavel Kalianko, 2M, 1. G Plzen

Kategorie C

. Michal Jezek, 1M, 1. G Plzen

Tomas Suda, 1, G Klatovy

. Jiri Benedikt, 1M, 1. G Plzen

Jakub Slovan, 1M, 1. G Plzen

. Dana Kovarikova, 1M, 1. G Plzen

Lukds Smahel, 1M, 1. G Plzen

. Jan Vachulka, 1IMF, 2. G Plzen
. Kristina Forstova, 1M, 1. G Plzen

Jan Ludvik, 1M, 1. G Plzen

. Jiri Fajt, 1, G Domazlice
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Alena Svobodovd, IMF, 1. G Plzen
Jiri Valenta, 1, G Ostrov
Zuzana Vydrovd, IMF, 2. G Plzen

——— Liberec

Kategorie A

. Michal Cermdk, 3G, GFXS Liberec
. Tomd$ Marek, 4G, GFXS Liberec

. Viclav Cintl, 4G, G Ceska Lipa

. Daniel Havelka, 4G, GFXS Liberec

Jirt Lahvicka, 4G, GFXS Liberec

. Viadimir Cermdk, 4G, GFXS Liberec

Kategorie B

. Pavel Strnad, 4G, GFXS Liberec
. Eva Cmelikovd, 4G, GFXS Liberec
. David Kamendf, 4G, G Ceska Lipa

Petr Strnad, 4G, GFXS Liberec

. Martin Vidner, 4G, G Frydlant v C.

Kategorie C

. Michal Celler, 4G, GFXS Liberec
. Petr Rdlek, 4G, GFXS Liberec

. Michal Bodndr, 4G, G Ceska Lipa
. Jiti Princ, 4G, GFXS Liberec

Usti nad Labem ———

Kategorie A

. Sylva Rydvalova, G Teplice, Cs. dobrovolett

2. Jakub Velimskyj, G Usti n.L., Jate¢ni

. Pavel Pelc, G Teplice, Cs. dobrovolct



Vychodni Cechy

Kategorie A

. Michal Hvézda, 3D, G Pardubice

2. Jan Kriz, 4D, G Pardubice

10.-11.

. Karel Houfek, 3A, G J.K. Tyla, Hradec Kralové

Michal Sorel, 4D, G Pardubice

. Stanislav Hencl, 3D, G Pardubice

Michal Johanis, 3A, G J. K. Tyla, Hradec Krélové

. Jirt Hartman, 3A, G J.K. Tyla, Hradec Krélové
. Roman Konecny, 4DA, G Pardubice

Kategorie B

. Petr Doubek, G Pardubice

Jan Vebersik, G B. Némcové, Hradec Kralové
Martin Vohralik, G Pardubice

. Alena Pisovd, G Pardubice
. Emil Jerabek, G Turnov

David Stanovsky, G Pardubice
Pavel Zahradnik, G Policka

. Pavel Carvan, G Lanskroun

Radek Erban, G Nova Paka
Kvéta Choténovska, G J. K. Tyla, Hradec Kralové

Kategorie C

. Martin Tajovsky, G B. Némcové, Hradec Kralové
. Zdenka Broklovd, G Policka

Petr Vodstréil, G Policka
Vit Zddra, G Policka

. Tomas Tichy, G Pardubice
. Ales Kral, G J. K. Tyla, Hradec Kralové
. Petr Hordk, G Nachod

Martin Kopecky, G J.K. Tyla, Hradec Kralové
Viclav Novdk, G J.K. Tyla, Hradec Kralové
Lenka PrazZanovd, G Policka

Vojtéch Rejdak, G J. K. Tyla, Hradec Krélové

17



o W N

Brno

Kategorie A

. Jana Syrovatkovd, 4A, G Brno, tf. kpt. JaroSe
. Ondrej Klima, 4A, G Brno, ti'. kpt. Jarose

. Mikulas Pinos, 3A, G Brno, tt. kpt. JaroSe

. Michal Brodsky, 4A, G Brno, tf. kpt. JaroSe

Petr Kanovsky, 2A, G Brno, tf. kpt. Jarose
David Kruml, 4A, G Brno, tf. kpt. Jarose
Blazej Neradilek, 3A, G Brno, tf. kpt. Jarose
Frantisek Vymazal, 4A, G Brno, tt. kpt. JaroSe

. Jan Hradil, 3A, G Brno, tf. kpt. Jarose

Markéta Kylouskovd, 4A, G Brno, tr. kpt. Jarose

Kategorie B

. Libor Masicek, 2A, G Brno, tf. kpt. Jarose
. Martin Necesal, 2A, G Brno, tf. kpt. JaroSe
. Filip Krska, 2A, G Brno, tf. kpt. JaroSe

. Pavel Stehlik, 2A, G Brno, tf. kpt. JaroSe

Josef Silhan, 2A, G Brno, tf. kpt. Jarose

. Marta Bednartova, 2A, G Brno, tf. kpt. Jarose

Daniel Polansky, 2A, G Brno, tf. kpt. Jarose

. Josef Novotny, 2A, G Brno, tf. kpt. Jarose
. Jan Strejcek, 2A, G Brno, tf. kpt. Jarose
. Jan Bursa, 2A, G Brno, tf. kpt. Jarose

Kategorie C

. Jan Masek, 1A, G Brno, tf. kpt. Jarose

Eva Synkova, 1B, G Brno, tf. kpt. Jarose

. Pavel Klang, 1A, G Brno, ti'. kpt. Jarose

Silvie Ktivdnkovd, 1A, G Brno, tf. kpt. Jarose
Martin Steflicek, 1A, G Brno, t¥. kpt. Jaroge

. Milan Fikar, 1A, G Brno, tt. kpt. Jarose

Petr Vejchoda, 1A, G Brno, tf. kpt. Jarose
Michal Vit, 1A, G Brno, tf. kpt. Jarose

. Radek Béhavy, 1A, G Brno, Kfenova



Ondrej Dolinek, 1B, G Vyskov
Jan Pesl, 1A, G Brno, ti. kpt. Jarose

——— Jihlava

Kategorie A

. Michal Nikiforov, 4A, G Jihlava

2. Helena Malkovd, 3A, G Mor. Budéjovice

. Jiri Komzak, 3A, G Jihlava

Kategorie B

. Tomas Vejchodsky, 2B, G Jihlava
. Radek Rychnouvsky, 2B, G Jihlava

Oldrich Vecerek, G Trebic¢

. Josef Novotny, 2B, G Zd4r nad Sazavou

Kategorie C

. Petr Priplata, 1B, G Jihlava

Karel Zikmund, 1B, G Jihlava

. Tomas Karban, 1B, G Jihlava

. Martin Cerng, 1A, G Zd4r nad Sazavou
. Vojtéch Minarik, 1B, G Jihlava

Michal Vopdlensky, 1D, G Jihlava

. Ondrej Kubik, 1A SPS Jihlava
. Jakub Machek, 1A, G Zd4r nad Sazavou

Tomdads Dvordk, 1C, G Znojmo
David Zeleny, G Trebic¢

Zlin

Kategorie B

. Pavel Dostadl, G Kromériz
. Jan Petrasek, G Zlin
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. David Mrlik, G Zlin

Michal Novotny, G Kromériz

. Lukds Josefik, G Uhersky Brod

Kategorie C

. Daniel Krdl, G Zlin

. Jiri Vajdik, G Uherské Hradisté

. Josef Pavela, G Uherské Hradisté

. David Hanslian, G Uherské Hradisté
. Radek Svoboda, G Hodonin

Marek Zdrdhal, G HoleSov

. Vaclav Bezdék, G Uherské Hradisté
. Barbora Hedbavnd, G Uherské Hradisté

Michak Kusak, G Uhersky Brod
Jakub Mdacha, G Uherské Hradisté
Zuzana Siblovd, G Holesov

Severomoravsky kraj

Kategorie A

. Marcela Hlawiczkovd, 4C, G Komenského 713, T¥inec
. Petr Staufcik, 4C, GMK, Bilovec
. Jaromir Fiurasek, 3D, G Komenského 29, Pierov

Jana Uhrova, 4D, GMK, Bilovec

. Jan Mach, 3C, GMK, Bilovec

. Petr Jiricek, 4D, GMK, Bilovec

. Jaroslav Kuba, 4A, G Tomkova 45, Olomouc-Hejéin
. Rendta Sikorovd, 4C, GMK, Bilovec

. Zdenék Romanek, 3C, G Dukelska 1, Bruntél

. Petr Jandik, 4C, GMK, Bilovec

Kategorie B

. David Pavlica, 2C, GMK, Bilovec

2. Martin Kubala, 2A, GPB CSA 517, Frydek Mistek

20

. Lenka Bartornikovd, 2B, G Dukelska 1, Bruntal



. Petr Trdvnicek, 2C, GMK, Bilovec

Pavel Cenek, 2A, G Tomkova 45, Olomouc-Hej¢in
Petr Dub, 2B, SPSE gen.Svobody 2, Mohelnice

. Vojtéch Zaskodny, 2C, GMK, Bilovec
. Ludék Meca, 2A, GPB CSA 517, Frydek Mistek
. Eva Kaspdrkovd, 2B, MG Jicinské 528, Piibor

Kategorie C

. Jan Foniok, 1C, GMK, Bilovec

David Opéla, 1C, GMK, Bilovec

Petr Skovroti, 1C, GMK, Bilovec

Zbynék Pawlas, 1C, GMK, Bilovec

Hynek Okon, 1C, GMK, Bilovec

Stanislav Elbl, 1E, SPSS Zakaldat., Karvina 6

Pavel Skalicky, 1D, Slovan. G, tf. J. z Pod., Olomouc

. Ales Keprt, 1D, Slovan. G, tf. J. z Pod., Olomouc
. Ondrej Nejdek, 1C, GMK, Bilovec

Miroslav Hebky, 1A, Ceské G, Cesky Tésin

Kategorie P

. Ondiej Pdr, 3D, GMK, Bilovec

. Jan Mach, 3C, GMK, Bilovec

. Vit Stradal, 4C, GMK, Bilovec

. Pavel Fryda, 4G, G Zéabreh na Moravé

. Pavel Béhal, 3B, G Roznov pod Radhostém

Martin Stiller, 4A, G Roznov pod Radho$tém

. Roman Zamecnik, 4B, G Roznov pod Radhostém

Bohuslav Czudek, 4C, G Dr. E. BeneSe 7, Hluc¢in

. Jiti Kupczyn, 4C, G J. Palacha 794, Bohumin

Jan Valustik, 4C, G J. Palacha 794, Bohumin

Zapadoslovensky kraj

Kategorie A

. Jozef Drahovsky, 4G, G Piestany

21



| Andrej Kridl, 4G, G Malacky

22

. Frantisek Gabris, 4G, G Hlohovec

Stanislav Gronsky, 4G, G Skalica

. Martin Pabis, 4G, G Piestany

Michal Sebdni, 4G, GLS Trenéin

. Roland Haulitusz, 4G, G Komérno

Miroslav Hrosso, 4G, G Nitra, Parovska ul.
Tinde Keszeghovad, 4G, GM Komérno
Lajos Odor, 4G, GM Komaérno

Kategorie B

. Ivana Lovasovd, 2, G Nitra, Parovska ul.

Tibor Macko, 2, G Piestany

Gabriela Misunovd, 2, G Nitra, Parovska ul.

Jan Ulicky, 2, G Hviezdoslavova, Trnava

. Jana Hawvettovd, 2, G Senica

Karina Chuda, 2, G Piestany
Jozef Opaleny, 2, G Nitra, Parovska ul.
Marek Vanu$, 2, GSCM Nitra

. Zoltan Horvdth, 2, GM Dunajska Streda

Kategorie C

. Miroslav Sedivy, 1, G Levica

Tomas Varga, 1, GM Koméarno
Martin Vojtek, 1, G Nitra, Parovska ul.

. Ondrej Lonek, 1, GLS Trenéin
. Juraj Juhas, 1, G Nitra, Parovska ul.
. Matus Beresecky, 1, G Nitra, Parovska ul.

Zoltan Fazekas, 1, G Nové Zamky

Eva Lukdcovd, 1, G Nitra, Parovska ul.
Zoltan Nagy, 1, G Nové Zamky

Juraj Poljovka, 1, G Nitra, Parovska ul.
Lubica Sddovskd, 1, G Nitra, Parovska ul.
Krisztian Sagi, 1, GM Komarno

Peter Richtdrik, 1, G Nitra, Parovska ul.
Peter Schmidt, 1, G Nitra, Piaristicka ul.
Miroslav Toma, 1, G Nitra, Parovska ul.
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Peter Zmeko, 1, G Nové Mesto nad Vahom

Kategorie P

. Jdn Hulala, G Hlohovec

. Zoltan Bugdr, GM Galanta

. Maro§ Michalik, SPS Nové Mesto nad Vahom
. Gabriela Misunovd, G Nitra, Parovska ul.

. Filip Denker, G Nitra, Piaristickd ul.

. Milan Belica, G Nitra, Parovska ul.

. Peter Mruskovic¢, G Partizanské

Martin Cerndk, G Surany
Pavol Machyniak, G Trnava, Hviezdoslavova

Stredoslovensky kraj

Kategorie A

. Monika Kozdkova, 4F, GT Banska Bystrica

Marek Zabka, 4F, GT Banska Bystrica

. Tomd$ Bruna, 4B, G Zilina, V. Okruzna

. Michal Skokan, 3B, G Zilina, V. Okruzna

. Maridn Bucholcer, 4F, GT Banska Bystrica
. Stefan Godis, 1B, G Zilina, V. Okruzna

Jan Zabka, 4B, G Zilina, V. Okruzn

. Peter Hazucha, 4F, GT Banska Bystrica
. Martin Gazdk, 3B, G Zilina, V. Okruzna
. Vojtech Bdlint, 4B, G Zilina, V. Okruzn4

Roman Riickschlos, 3F, GT Banské Bystrica

Kategorie B

. Marek Piliarik, M, GJGT Banska Bystrica
. Tomds$ Machalik, M, G Zilina, V. Okruzna
. Michal Kubdnik, G Liptovsky Mikulas

. Mdria Fetkovd, MF, G Zilina, V. Okruzna
. Marek Skereri, M, G Zilina, V. Okruzné

Maridn Lichner, M, G Banska Stiavnica
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Kategorie C

. Juraj Majersky, M, GT Banska Bystrica
. Jozef Mika, M, G Zilina, V. Okruzna
. Ivan Cimrdk, M, G Zilina, V. Okruznéa

Henrich Datel, G Martin

Stefan Godis, M, G Zilina, V. Okruzna
Peter Ochodnicky, G Martin

Branislav Tichy, M, G Zilina, V. Okruzna

. Pavol Droba, M, GT Banska Bystrica

Vladimir Hiadlovsky, M, GT Banska Bystrica
Stacho Mudrik, M, GT Banska Bystrica
Ivan Strohnerlovsky, MF, G Prievidza

Kategorie P

. Martin Gazdk, 3B, G Zilina, V. Okruzna
. Peter Kunetka, 3C, G Martin

Roman Gunis, 3C, G Martin

. Pavol Jankech, 2E, G Povazské Bystrica
. Martin Skulec, 4A, G Prievidza
. Peter Kocalka, 4F, G Banska Bystrica

Vychodoslovensky kraj

Kategorie A

. Ivana Brudnakovd, 2E, G KonStantinova, Presov
. Milan Matos, 4A, G Popr. nabr., Poprad
. Peter Kovacik, 4A, G Alejova, Kogice

. Pavol Dikos, 4A, G Alejovéa, KoSice

Vladimir Lacko, 4A, G Alejova, Kosice
Peter Macko, 4D, G Spisskd Nova Ves
Jdan Soltis, 4G, G Popr. nabr., Poprad
Peter Zamborsky, 3A, G Postova, Kosice

. Juraj Bardt, 4D, G Srobarova, Kogice

Milos Gaj, 3A, G D. Tatarku, Poprad
Mikulas Madaras, 3A, G Postova, Kosice
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Kategorie B

. Ivana Brudnakovd, 2E, G Konstantinova, Presov

Jdn Bdbela, 2A, G Postova, Kosice

. Radoslav Gocik, 2A, G Postova, KoSice

. Dalibor Blazek, 2A, G Postova, Kosice

. Tomad$ Vnencak, 2C, G D. Tatarku, Poprad
. Slavka Jendrejova, 2A, G Postova, Kosice

Radek Ivanco, 2A SPSS Presov
Peter Gaspar, 2B, G Bardejov

Kategorie C

. Juraj Nemjo, 1B, G Humenné

Eugen Kovdc, 1B, G Stropkov
Peter Taraba, 1A, G Popr. ndbr., Poprad

. Zuzana Hagarovd, 1A, G Kezmarok
. Kornel Csach, 1A, G Postova, Kosice

Juraj Lison, 1A, G Postova, Kosice
Jozef Slepecky, 1B, G Stropkov

. Marek Neupauer, 1C, G Stara Lubovia
. Jozef Hales, 1kvinta, G Alejova, KoSice

Eva Trenklerovd, 1A, G Postova, KoSice

Kategorie P

. Tomds Vinar, 3, G Srobarova, Kosice

. Ivan Schréter, 3, G TrebiSovska, Kosice

. Peter Fehér, 3, G Postova, Kosice

. Jozef Rahel, 4, G Bardejov

. Ivana Brudndkovd, 2, G Kon$tantinova, PreSov

Marek Fekete, 4, G Michalovce
Jan Hruz, 4, G Michalovce
Stefan Pcola, 4, G Opatovska, KoSice

. Viktor Kovaé, 3, G Opatovska, KoSice
10.

Marek Bezaniuk, 4, G Bardejov
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Kategorie C

Texty tuloh

C-1-1

Dokazte, ze pro prirozena ¢isla m, n (m > n) je ¢islo 4™ — 4™ délitelné
deviti, pravé kdyz je ¢islo m — n délitelné tfemi.

C=1=2

Kazd4 ze stran AB a DC konvexniho ¢tyfthelniku ABCD je rozdé-
lena na 5 shodnych tsecek. Spojenim odpovidajicich si bodid (obr. 1) je
Ctyrthelnik rozdélen na pét ¢tyrthelnikd, z nichz prvni ma obsah 10
a posledni 22 cm?. Uréete obsah &tytihelniku ABCD.
C
D

Obr. 1

C-1-3

Rovnostranny trojuholnik je rozdeleny na dve casti priamkou, ktora pre-
chédza jeho taziskom. Dokazte, Ze pre pomer p obsahov tychto ¢asti plati

4 5
—_<p< =
5:p:4'
C-1-4

V matematické soutézi resil kazdy zak 30 uloh. Za spravné vyreSenou
tlohu obdrzel 4 body, Spatné vyreSend tloha znamenala —1 bod, 0 bodi
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bylo za tlohu, kterou nefesil. Kolik muselo byt a¢astniki, abychom mohli
s jistotou tvrdit, Ze dva Zéci skoncili se stejnym poctem bodua?

C-1-5

Dany je lichobeznik ABCD, v ktorom |AB| = 8cm, |CD| = 4cm,
|<<DAB| = 53°, |<xCBA| = 37°. Vypocitajte vzdialenost stredov za-
kladni AB, DC.

C-1-6

Ze siti na obr. 2 mizeme slozit tfi kostky. Pokud je postavime do sloupec-
ku, na jeho bocich si miizeme shora dolt pfecist trojmistnd éisla (nékteré
Cislice budou lezet na boku nebo budou vzhiiru nohama). Tato ¢tyfi ¢isla
sefteme. Kolik takovych soucti mizeme dostat?

- GE -

6 4] 4
l4]3]2]1] 3 [2]1]3]5]
B 23] 5
a) b) c)
Obr. 2
C-S-1

DokaZte, Ze pro pfirozena ¢isla m, n (m > n) je ¢islo 4™ — 4™ dé&litelné
éislem 27, pravé kdyz je rozdil m — n délitelny deviti.

C-=S-2

Tri kruhy s polomerom 7 st umiestnené do kruhu
s polomerom R tak, Ze ich stredy tvoria vrcholy
rovnostranného trojuholnika s faziskom v strede
velkého kruhu (obr.3). Dalej plati, Zze vzdiale-
nost d kazdych dvoch mensich kruhov sa rovna
vzdialenosti kazdého z tychto kruhov od hranié-
nej kruznice velkého kruhu. Vyjadrite d pomo-
cou Rar.

Obr. 3
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C-S§-3

Uvnitf ¢tverce o strané 2 je dano 61 ruznych bodu. Dokazte, ze existuje
kruh o poloméru ‘/75, uvnitt¥ kterého lezi aspon 16 téchto bodu.

cC-1-1

Ak je patciferné ¢islo 6 A B73 delitelné 99, tak je tiez delitelné 19. Dokézte.

C-1n-2

Kazda zo stran AB, DC konvexného Stvoruholnika ABCD je rozdelend
na 9 zhodnych useciek. Spojenim odpovedajicich si deliacich bodov sa
Stvoruholnik rozdeli na 9 §tvoruholnikov (obr.4), z ktorych prostredny
mé obsah 7 cm?. Aky je obsah §tvoruholnika ABCD ?

C

Obr. 4

C-1-3
V kruhu o poloméru 1 je ddno 77 ruznych bodi. Dokazte, ze existuje

3
kruh o poloméru —\g—_ , ve kterém lezi aspon 13 téchto bodu.

C-1-4

Ve fotbalovém turnaji hralo kazdé muzstvo s kazdym pravé jednou. Za
vyhru ziskéva 2 body, za nerozhodny vysledek 1 bod, za prohru zadny
bod neziska. Vitézné muzstvo ziskalo celkem 7 bodu, tfeti v poradi 5 bodu
a &tvrté 3 body. Kolik bylo muzstev?
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Reseni tloh

C-1-1

Oznaéme m — n = d; potom 4™ — 4" = 4"(4% — 1). Kedze &isla 9 a 4™ st
nestdelitelné (pre lubovolné n prirodzené), je 4™ — 4™ delitelné deviatimi
prave vtedy, ked je deviatimi delitelné &islo 4 — 1.

Plati vSak

44 —1=(4-1)(4%1 44724 44244 +41)=3M,

kde pre kazdé prirodzené ¢islo d volime vhodné celé M. Z toho vyplyva, ze
pre kazdé d je ¢islo 4% — 1 delitelné troma, ¢o taktiez znamen4, ze &islo 4¢
mé pri deleni ¢islom 3 zvySok 1. Ak v poslednej rovnosti dosadime za
4k = 3M; + 1, kde M) st vhodné prirodzené ¢isla a 1 < k < d -1,
dostaneme

4% —1=3((3Mg—1 + 1)+ (3My—a + 1) +... +
+(BM2+ 1)+ (BMy+1)+1) =
= Q(Md_1 + Mg+ ...+ Ml) + 3d.
Z toho je vSak zrejmé, ze ¢islo 4¢ — 1 je delitelné deviatimi prave vtedy,
ked d je delitelné troma, ako bolo treba dokézat.
Iné rieSenie (zaloZené na binomickej vete). Nech d = 3k, kde k je
prirodzené. Potom
44 —1=4% _1=64F-1=
=(64—1)(64""1+64* 24+ . +64+1)=
=9-7(64"1 464" 2 4 ... +6441),
¢o znamena, ze 4% — 1 je delitelné deviatimi.

Nech naopak 4¢ — 1 = 9K pre K prirodzené, ¢o viak moze platit len
pre d 2 3. Kedze 4¢ = (3 + 1)¢, podla binomickej vety dostaneme

44-1=(B+1)%-1) =

d d
_ d—1 d—2
Cofsmn (1) (Boa),

z ¢oho vyplyva, ze ¢islo d musi byt delitelné troma, ako bolo treba doké-
zat.
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C-1-2

Ozna¢me deliace body podla obr.5. Nech pre i = 0, 1, 2, 3, 4 je
|AiAiy1] = a a |D;Diy1| = b. Pre i = 1, 2, 3, 4, 5 ozname O; obsah
stvoruholnika A;_;1 A;D;D;_,. Vieme, ze O; = 10cm?, O = 22 cm?.

A= Ao A1 A2 AS Ay A5

Il
sy}

Obr. 5

Zrejme je AB }f CD. Ak by totiz bolo AB || CD, vsetky $tvoruholniky
A;_1A;D;D;_;1 (pre 1 £ 1 < 5) by boli lichobeZniky s rovnako velkymi
zdkladhami i zhodnou vyskou v a tiez ich obsahy by museli byt rovnako
velké (totiz $v(a + b)), ¢o viak nemdze nastat (Os # Oy).

Ozna¢me teraz T; plo$ny obsah trojuholnika 4; 1A4;D; 1 (1 <i<5)
a v; jeho vysku z vrchola D;_; na stranu A;_; A;. Plati teda T; = fav;.
Nech P; je péta kolmice z bodu D;_; na vysku v;4;, kde vg oznacuje
vzdialenost bodu C od priamky AB (obr.6). Trojuholniky D;_1P;D;
(1 = 1,2,3,4,5) st zrejme zhodné, pretoze maji zhodné vnttorné uhly
a dlzku jednej strany. Z toho vyplyva, Ze rozdiel v;;; — v; je rovnaky
pre vSetky hodnoty ¢ = 1, 2, 3, 4, 5; ozna¢me ho k. Teda ani rozdiel
Tiy1—T; = %ak nezavisi na 7; ak ho oznacime ako ¢, bude To = T} + ¢,
Ts=To+c,Ty=T3+c¢,T5 =Ty +c.

Ds Dy C
D2 P5
D, Py Vg
D jo Py
P 7 Us
V1 U3 &
V2
A Ay Ay A3z Ay B
Obr. 6
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Ak oznacime S; plosny obsah trojuholnika D; _1A;D; (i = 1,2,3,4,5),
analogickou Gvahou nahliadneme, ze rozdiel S;y1 — S; nie je zavisly na 1,
¢ize pre vhodné d plati So = S; +d, S3 = Sa+d, Sy = S +d, S5 =
= Sy +d. Zrejme je O; = T; + S;, i =1, 2, 3, 4, 5, aritmetickd postupnost
s diferenciou ¢ + d. Kedze je O; = 10cm?, Os = 22 cm?, bude hladany
obsah O = 01 + 02+ O3+ 04+ 05 = 3(01 + Os) = 5-16 cm? = 80 cm?.

C-1-3

Bez ujmy na v8eobecnosti mézme predpokladat, ze obsah daného troju-
holnika ABC' sa rovna 1. Nech ¢ je priamka prechddzajica taziskom T
tohto trojuholnika. Ak prechddza niektorym z vrcholov trojuholnika
ABC, rozdeli ho na dva trojuholniky rovnakého obsahu. V tomto pripade
je teda p=1.

Ak g neprechddza ziadnym z vrcholov trojuholnika ABC, potom
pretina dve jeho strany, napr. (ako na obr. 7) stranu AC v bode P a stranu
BC v bode Q.

C

Obr. 7

Ked je priamka ¢ rovnobezna s priamkou AB, s trojuholniky ABC
a PQC rovnolahlé, a teda podobné. Z podobnosti tychto trojuholnikov
vyplyva, ze |PQ| = %|AB| a |CT| = %v, kde v je vyska trojuholnika
ABC. Preto obsah trojuholnika PQC je %, obsah Stvoruholnika ABQ P
je 2. Teda p = £ alebo p = 2. (Krajii sposob, ako to zistit, je viak rozdelit
trojuholnik na devit rovnakych rovnostrannych trojuholnikov.)

Nech ¢ }f AB. Oznalme K, resp. L priese¢niky stran AC, resp. BC
s rovnobezkou so stranou AB prechadzajicou taziskom 7' (obr. 7). Nech
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P je vnutornym bodom tsecky AK. Potom @ lezi vo vnutri tsecky CL.
Oznacme S stred strany BC. Bodom K vedme rovnobezku so stranou BC
a jej priesecniky s useckami PT, resp. AT ozna¢me R, resp. U. Pretoze
T je stred Gsecky K L, st trojuholniky TK R a TLQ, ako aj TRU a TQS
zhodné. Preto pre obsah Opgc trojuholnika PQC' plati

Opgc = Okrc + Oprk — Orrg =
% +Oprk — Orkr =
=3+ OkpPr> §;

na druhej strane vSak

Opqc = Oasc — Oarp + Orqgs =

1

=35 —0arp +OrpU =
1 1

=35 —Oaurp < 3.

Z toho vyplyva, ze 3 < Opgc < 3, odkial dostaneme, ze 1 <
< OaBgr < g‘ Pre pomer p obsahov oboch ¢asti teda v tomto pripade
musi platit % <p< %. V oboch pripadoch sme tuspesne dokéazali dant
nerovnost.

Poznamenajme, Ze tvrdenie tlohy plati pre lubovolny trojuholnik,

nielen pre rovnostranny. Dékaz mozno urobit tym istym sposobom.

cC-1-4

Kazdy ziak mohol v stitazi dosiahnut celkovy bodovy stcet od —30 bodov
(ak riesil v8etkych 30 tloh nesprévne) az do 120 bodov (pri sprdvnom
vyrieSeni vSetkych 30 tloh) s vynimkou saétov 119, 118, 117, 114, 113
a 109 bodov, ktoré sa pri danom bodovacom systéme nedaji Ziadnym
sposobom dosiahnut. Moznych vysledkov v stitazi je teda 151 — 6 = 145.
PodTa Dirichletovho principu to znamend, ze ak sa stitaze ziucastni aspon
146 ziakov, mdézme s istotou tvrdit, ze aspon dvaja Ziaci skonéili s rov-
nakym poc¢tom bodov.

C-1-5

Prisecik pfimek AD a BC oznatme V. Protoze |<cAVB| = 180° —
— (53° 4+ 37°) = 90°, je trojuhelnik ABV pravothly. Ozna¢me S; stfed
strany AB a Sy stfed strany CD daného lichobé&zniku (obr.8). Ziejmé
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je |ASi1| = 4cm, |DS2] = 2cm. V pravouthlém trojuhelniku ABV je
S stfedem kruznice opsané a plati |S;V| = |S1A|. Trojtuhelniky SoV D

Obr. 8

a S1V A jsou podobné, protoze maji vSechny thly shodné. Z rovnosti
|S2D| : |S14] =2 :4 =1:2 proto plyne |SoV|: |S;1V| =1:2 a odtud
pak, ze ISngl = ‘51V| = |SQV| = 2cm.

C-1-6

Ozna¢me A kocku, ktorej siet je na obr.2a. Na tejto kocke bude stena
s ¢islom 1 proti stene s ¢islom 3, stena s ¢islom 2 proti stene s ¢islom 4
a stena s Cislom 5 proti stene s ¢islom 6.

Ak B bude kocka so sietou na obr. 2b, bude na tejto kocke proti stene
s ¢islom 1 stena s ¢islom 6, proti stene s ¢islom 2 stena s ¢islom 4 a proti
stene s ¢islom 3 stena s ¢islom 5.

Na kocke C' — so sietou na obr. 2c — je proti stene s ¢islom 1 stena
s ¢islom 5, proti stene s ¢islom 2 stena s ¢islom 3 a proti stene s ¢islom 4
stena s Cislom 6.

Z toho vyplyva, Ze vSetky tri kocky st navzdjom rdzne. Skor, nez
zafneme uvazovat o moznom pocte suctov Styroch trojmiestnych ¢isel na
stenach stipéeka, musime si uvedomit, Ze tento pocet nezavisi od umiest-
nenia ¢islic na viditelnych stenéach jednotlivych kociek, ale len od usporia-
dania kociek v stipéeku a od toho, ktoré &islice st na ,skrytych stenach“
(hornej a dolnej) jednotlivych kociek. Pritom stcet éislic na viditelnych
boénych stendch hornej kocky predstavuje pocet stoviek, na strednej po-
Cet desiatok a na dolnej pocet jednotiek v sicte. Mozné polohy kociek
v stlpéeku, ktoré majt vplyv na pocet sii¢tov, st zapisané v nasledujice;
tabulke (indexmi oznac¢ujeme mozné rézne polohy prislusnej kocky):
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Poloha kocky Cislice na hornej, Cislice viditeIné na bo¢-
resp. dolnej stene nych stenach a ich stacet
Ay 1; 3 24+5+44+6=17
As 2; 4 1+54+3+6=15
As 5; 6 1+2+3+4=10
By 1,6 24+3+44+5=14
B, 2, 4 I1+3+6+5=15
B3 35 1+24+6+4=13
Cy 1;5 24+4+34+6=15
Cs 2;3 1+44+5+6=16
Cs 4; 6 1+243+5=11
Pre usporiadanie kociek do stlpéeka mame A B A C B C
celkom 6 r6znych moZnosti, ktoré moézme zné- g é g g g ﬁ

zornit touto schémou:

Z toho, ze vSetky tri kocky s vzajomne rozne a ze rozdiel medzi naj-
ako desat, vyplyva, Ze v8etkym polohdm jednotlivych kociek pri uspo-
riadani ABC (zhora nadol) zodpovedad celkom 3 -3 -3 = 27 roznych
stactov.

Vzhladom na to, Ze pre kazda kocku existuje jedna poloha s rovna-
kym stétom ¢éislic na viditelnych boénych stendch (totiz 15), pri ostat-
nych usporiadaniach kociek v stipéeku dostaneme uz mensi pocet novych
stctov.

Pri usporiadani BAC to bude 3-3-3 —3 = 24, pretoze sucet v polohe
By A5 C; je rovnaky ako v polohe A; BoC; (pre i = 1, 2, 3). Pri usporia-
dani AC B to bude opit 3-3-3 — 3 = 24, lebo stcet v polohe A;C; By
je rovnaky ako v polohe A;B>Cy, @ = 1, 2, 3. Pri usporiadani C AB
pribudne uz len 3 -3 -3 — 5 = 22 novych stctov, pretoze sucet v polohe
Cj Ay B; je rovnaky ako v polohe A3 C1 B; (i = 1, 2, 3) a st¢et v polohe
C1 A; Bs je rovnaky ako sucet v polohe Bs A;Cy, prei =1 ai = 3. Pri
usporiadani BC A bude novych staétov opit len 3-3-3 — 5 = 22, pretoze
stlet v polohe B, C; Az je rovnaky ako stcet v polohe A5 C; By (prei = 1,
2, 3) a sucet v polohe B;C As je rovnaky ako stucet v polohe B; AsCy,
i = 1,3. Konecne pri usporiadani C'B A pribudne uz iba 3-3-3 -7 = 20
novych stctov, lebo sucet v polohe C; B2 A; je rovnaky ako v polohe
By,C1 A; (i =1, 2, 3), stfet v polohe C; B; Az je rovnaky ako v polohe
A2 B;Cy (i = 1, 3) a stéet v polohe C; By A2 je rovnaky ako v polohe
C,'Ang (2 = 2, 3)
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Celkom teda mozeme dostat 27 + 2 - 24 + 2 - 22 + 20 = 139 rdéznych
suctov.

C-S-1

Polozme d = m —n > 0. KedZze je 4™ — 4™ = 4"(4% — 1) a &islo 4™ je pre
kazdé n nestdelitelné s ¢islom 27, je 4™ —4™ delitelné 27 prave vtedy, ked
maé thto vlastnost ¢islo 44 — 1. Je zrejmé, Ze ak &islo 4™ — 4™ je delitelné
¢islom 27, musi byt delitelné deviatimi. Z tlohy C-I-1 v8ak vieme, Ze to
plati prave vtedy, ked d je delitelné troma. Nech preto d = 3k, kde k je
prirodzené ¢islo. Potom je

44 _1=43%_1=64"-1=
=(64—-1)(64""1 464" 24 . . +64+1)=
=7-9-(64*1 464" 24+ .. +64+1).
Kazdé z ¢isel 64°, s =1,...,k — 1, vSak pri deleni troma déava zvySok 1,

pretoze
64° =(3-21+1)°=3M,;+1,

kde M, 1 £ s £ k-1, st vhodné prirodzené ¢isla. Preto bude
6471 4+ 64" 24 4+644+1=3(My_1+Mp_o+...4 M) +k,
z ¢oho vyplyva, Ze
44— 1=7-27-(My_1+ My_o+ ...+ M) +7-9-k.

To vSak znamena, ze Cislo 4¢ — 1 je délitelné 27, prave vtedy, ked k je
delitelné troma, a kedZe je d = 3k, plati to prave vtedy, ked je d delitelné
deviatimi, ako bolo treba dokézat.

C-S§-2

Oznalme S stred velkého kruhu a Sy, Sa, S3 stredy jednotlivych do neho
umiestnenych mensich kruhov. Pre polomer R velkého kruhu zrejme plati
R =d+r+ %v, kde v je vyska rovnostranného trojuholnika S; S5 S3. Kedze
|S1S2| =d+2r, jev=(d+2r) - %\/5 Preto plati

R:d+r+§(d+2r)_‘é_§: (3+\/§)d-;(3+2\/§)7‘,
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z ¢oho vyplyva, ze

d_3R—(3+2\/§)r _ (3=V3)R-(1+3)r
- 3+3 B 2 '

C-§-3

Dany ¢tverec mizeme rozdélit na ¢tyfi ¢tverce o strané 1; kazdému
z téchto ¢tverci opiSme kruznici s polomérem ‘/75 Kruhy ohranicené té-
mito kruznicemi zcela pokryji vnitiek daného ¢tverce. Kdyby v kazdém
z téchto kruht lezelo nejvyse 15 bodl, nemohlo by v celém ¢tverci byt
dohromady vice nez 4-15 = 60 < 61 bodt. Proto aspon v jednom z kruht
musi lezet aspon 16 bodi.

C-1n-1

Vime, Ze ¢islo 6A B73 = 60073+1000 A+100 B = 606-99+ 794990 A+
+10A+99B+ B =99(606 + 104 + B) + 79+ 10 A + B. Aby bylo toto
&islo délitelné &fslem 99, musi byt 10 A + B = 20. Cislo 64 B73 se tedy
rovna Cislu 62 073, které je délitelné Cislem 19, coz se mélo dokézat.

Jiné feSeni. Nasobek k - 99 konci dvojcislim, které se rovna rozdilu
100 — koncové dvojcisli ¢isla k. Odtud vidime, ze 6A B73 = k- 99, kde k
koné&i dvojéislim 27. V Gvahu pfipada k = 627 a k = 727. Uloze vyhovuje
jen k = 627.

C-1-2

Z rieSenia druhej tlohy doméceho kola vyplyva, ze plosné obsahy $tvoru-
holnikov, na ktoré sme rozdelili $tvoruholnik ABCD, tvoria aritmeticka
postupnost: Py, Po +d, ..., Py +4d, ..., Py + 8d. PloSny obsah P Stvor-
uholnika ABCD dostaneme ako stcet ¢lenov tejto postupnosti:

.P1+(P1+8d) _9.
R

P=9 (P +4d).

Zo zadania tlohy vieme, 7e P; + 4d = 7cm?. Preto je P = 9-7cm? =
= 63 cm?.
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cC-n-3

Do kruhu s polomerom 1 méZzme vpisat pravidelny konvexny Sestuhol-
nik so stranou 1, ktory rozdelime na 6 rovnostrannych trojuholnikov
so stranou 1 a spolo¢nym vrcholom v strede daného kruhu. Kazdému
z tychto rovnostrannych trojuholnikov opiSeme

kruznicu s polomerom r = 1v/3. Tym vznikne

6 zhodnych kruhov s polomerom %\/3_), ktoré cel-

kom pokryvaji dany jednotkovy kruh (obr.9).

KedZe 6 - 12 = 72 < 77, musi podla Dirichletovho

principu aspon v jednom z tychto kruhov lezat

aspon 13 z danych bodov.

C-l-4 Obr.9

Ozna¢me n hledany pocet muzstev. Celkem bylo sehrano %n(n —1) z4-
past a viechna muzstva ziskala dohromady n(n — 1) bodd. Ptitom druhé
ziskalo nejvyse 7 bodi, paté a vSechna dalsi nejvyse tfi body. Dohromady
ziskala vSechna muZstva nejvySe 7+ 7+5+3+ (n—4)-3 = 3n+10 bodt,
takze n(n — 1) < 3n + 10, tedy (n — 2)? £ 14, odtud vychazi n = 5.
Muzstva ziskala celkem 20 bodi, druhé a paté dohromady 5, takze druhé
ziskalo 5 bodd a paté neziskalo ani bod. (Hodnota n = 4 nevyhovuje,
protoze pocet pridélenych bodd 7 + 5 + 3 tfem muZstvam je jiz vétsi
nez 4-3.)

K Gplnému reseni musime jesté ukazat, ze tato situace mohla skuteéné
nastat. Priklad turnaje, ktery dané podminky spliuje, je

»

|A B C D E|body
Alx 1 2 2 2] 7
B|1 x 0 2 2| 5
clo 2 x 1 2| 5
D|0o 0 1 x 2| 3
E|0 0 0 0 x| 0
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Kategorie B

Texty tloh

B-1-1
Necht a, b, ¢ (a £ b £ ¢) jsou délky stran trojihelniku, jehoz obsah je
10 cm?. Jakou nejmensi délku miize mit strana b?

B-1-2

Pre ktoré redlne ¢isla ¢ existuja prave dve rozne redlne ¢isla, ktoré st
rieSenim rovnice

B+ (c-Dr+c=0?

B-1-3
Jakou délku mize mit Sestd hrana ctyrsténu, jestlize délky zbyvajicich
péti hran jsou 2cm, 2cm, 2cm, 3cm a 4cm?

B-1-4

Honza si zapomnél poznacit kvadratickou rovnici, kterou mél doma fesit.
Pamatoval si vSak, ze koeficient u kvadratického ¢lenu byl 3 a u linedrniho
¢lenu 25. U absolutniho ¢lenu se spletl pouze ve znaménku. Obé rovnice
(ta, kterou mél Fesit, i ta, kterou Fesil) mély celoCiselny kofen. Zjistéte,
které to byly rovnice.

B-1-5

Dané st body A, B. Zostrojte dve navzajom kolmé priamky prechidza-
juce bodom B tak, aby ich vzdialenosti od bodu A boli v pomere 1 : 2.
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B-1-6

Jsou dany dva shodné kruhy o poloméru 1 cm. Mezi v8emi ¢tyrahelniky,
které se daji pokryt premisténim téchto dvou kruhi, najdéte takovy, ktery
ma nejvetsi obsah.

B-S-1

Najdéte nejvétsi trojciferné prirozené cislo z, pro které existuje prvo-
&islo p takové, Ze Cislo /22 — p3 je celé.

B-S-2
Pre ktoré realne ¢isla p mé stistava rovnic

3 -2+ 3p=6,
P +24+4p=10
aspon jedno rieSenie v obore redlnych ¢isel?
B-S-3

Uvnitf daného pravého thlu AM B sestrojte body K a L tak, aby K LM
byl rovnostranny trojuhelnik o strané 5cm a aby vzdalenost bodu K od
ramene M A byla dvojnasobkem vzdalenosti bodu L od ramene M B.

B-1l-1

Zistite, pre ktoré realne ¢isla a ma ststava rovnic

T+y=z+2,
I2+y2222+4,

o3+ y3 =2z3+a
rieSenie v obore redlnych ¢isel, a rieSte ju.

B-11-2

Rozhodnéte, zda existuje pravothly trojahelnik, jehoZz obé odvésny maji
délky vyjadrené celymi ¢isly a jehoz vyska na preponu je vyjadrena pr-
vocislem.
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B-1l-3
Ak pre reélne &isla p, g, r plati, Ze obe Cisla dp+2g+ 71, —p+ q — r st
kladné, potom je ¢> > 4pr. Dokézte.

B-1l-4

Zahon tvaru rovnostranného trojahelniku je pokryt péti navzdjem shod-
nymi plachtami tvaru rovnostranného trojihelniku. (Céasti plachet se
mohou prekryvat i pfeséhnout zédhon.) DokaZte, Ze na pokryti zdhonu
stadi ¢tyfi tyto plachty.
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Reseni tloh

B-1-1
Je-li v velikost hlu, ktery sviraji strany délek a, b, je obsah trojihelniku
S = Labsiny. Protoze 0 < siny £ 1, a £ b, plati 20 < absiny < ab £ b,
neboli b = /20 = 2v/5. Odtud p¥imo vyplyva, Ze b bude nejmensi, pravé
kdyz siny = 1 a zaroven b = a. Odpovidajici trojihelnik mé strany
a = b= 2v5cm, jez sviraji Gthel v = 90°, takZe ¢ = 2v/10cm.

B-1-2
Rovnicu upravime nasledujicim spésobom:

B —z4clx+1)=0,
z(z—1)(z+1)+c(x+1)=0,
(x+1)(z> -z +c)=0.

Odtial je zrejmé, Ze rovnica mé pre kazdé realne ¢islo ¢ korenn 3 = —1.
Ak méa mat celkom dva rézne realne korene, musi byt alebo x5 = z3,
alebo zo = —1, prifom z3 je reélne {islo rézne od ¢isla —1. Vzhladom

na to, Ze x2, 3 su korene rovnice xo — x 4+ ¢ = 0, prvy pripad nastane
prave vtedy, ak je jej diskriminant 1 — 4c¢ nulovy, Cize pre ¢ = % (bude

1
T2 = T3 = 5)

V druhom pripade vyuzijeme vztahy medzi korefiimi a koeficientami
kvadratickej rovnice. Pre zo = —1 dostdvame —1+ 23 = 1, —x3 = ¢, CiZe
rz3=2ac=-2.

Dand rovnica mé teda prave dve rozne rieSenia, prave ked ¢ = % alebo
c=-2.

Iné rieSenie. Vyuzijeme Vietové vztahy. Ozna¢me u, v rézne redlne
korene rovnice z3 + (¢ — 1)z + ¢ = 0, pri¢om predpokladame, ze koren v
je dvojnasobny. Potom plati

B +(c-Dr+c=(z-u)(z—v)
Po roznasobeni a porovnani koeficientov u rovnakych mocnin premen-
nej x dospejeme k vztahom
u = —2v,
c—1=1v?+ 2uv,

U’U2 = —C.
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Dosadenim z prvej rovnice do druhych dvoch dostaneme

c—1=-30%

c= 203 (1)
Vylacenim premennej ¢ dostaneme rovnicu
208 + 302 -1 =0,
ktord mé zrejme koreh v; = —1 a je teda mozné ju upravit na tvar

(v+1)(2v2 +v—-1)=0.

Odtial obdrzime vy = v; = —1, v3 = 3. Dosadenim do (1) dospejeme
k tomu istému zaveru ako v prvom rieSeni: prec = -2 jeu=2av = —1,
prec=1jeu=-1,v=1.

B-1-3

Vsimnéme si dvou stén, jejichz hrany maji uvedené délky (¢ili téch dvou,
které neobsahuji Sestou hranu nezndmé délky). Jejich spoleénd hrana
(necht je oznacena AB) nemiZze mit délku 4 cm — pak by totiZ nebyla
pro nékterou z téchto stén splnéna trojihelnikovd nerovnost. Rozlisime
proto zbylé dvé mozZnosti.

Nejprve vytesime pripad, kdy spolecnd hrana téchto stén mé délku
2cm. Pak délka z hrany CD (mimobézné s AB) je omezena situacemi,
kdy stény ABC, ABD lezi v téze roviné (obr. 10).

Obr. 10
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Jinak Feceno: thel stén ABC, ABD ma velikost 0° < ¢ < 180°.
Omezujici hodnoty pro délku z hrany CD jsou xz; = |CyD;| pro ¢ = 0°
a xo = |CyDy| pro ¢ = 180°.

Z obr.10 uréime pomoci kosinové véty pro trojuhelniky ABD;
a ABD,, ze

4+16-9 11 V135
= = — 1 . —_ 2 = —_—
cos a 5 5.4 6 sina = y/1 — cos 16
Odtud
1
cos(60° + a) = cos60° cos a F sin 60° sina = 32 (11 9\/5)
Z trojuhelniki C1 D1 A a Co Dy A obdrzime opét pomoci kosinové véty:

T1,2 = \/4 + 16 — 16 cos(60° F a) =

i 2,107 cm,
=4/5(29F 9V5) = <
2 4,956 cm.

Sest4 hrana ¢tyrsténu méa délku = vétsi nez x; a mensi nez xs.

Ma4-li ve ¢tyfsténu ABCD hrana AB spoletné sténdm, jejichz délky
hran zndme, délku 3cm (obr.11), zjistime analogickym postupem jako
v predchozim pripadé, ze cos f = %, sin 3 = ‘/Ti, cosy = %, siny = 3@.
Je tedy

cos(BFv) = 31—2(21 +/105),

2,092 cm,

1
T12 =1/=(19F V105) =
b 2( ) <3,824cm.

V tomto pripadé muize mit Sestd hrana ¢tyrsténu délku z; 21 < z < 5.

Cy

T2

D,
Obr. 11
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B-1-4

Rovnice maji tvar
322+ 252 +¢c=0; ¢>0.

Jejich diskriminanty jsou

Dy, =625F12c (2)
a koreny
-25+vD; .
$1,2=—————6 , 1=1,2.

Odtud ++/D; = 25+6x; 2. Je-li néktery z kofent celé &islo, musi byt také
++/D; celé a dale néktery z vyrazti —25 + /D; je délitelny Sesti. Cislo
v/D; = /625 — 12¢ < 25 budeme tedy hledat ve tvaru v/D; = 6k £ 1,
k € No. Ze vztahu (2) vyplyva, ze D; + Dy = 1250. /Dy = /1250 — D,
musi byt celé. Postupné volime za +/D; &isla 1, 5, 7, 11, 13, 17, 19, 23
a uréujeme /D,. Zjistime, Ze vyhovuje pouze v/D; = 5 nebo v/D; = 17.

V prvém pripadé je ¢ = 11—2(625 — Dy) = 50 a jedna se o rovnice
3224252450 = 0, ve druhém p¥ipadé to budou rovnice 322 +252+28 = 0.
VyfeSenim rovnic se presvéd¢ime, ze vyhovuji podminkam tlohy. Existuji
tedy dvé rtzné dvojice rovnic, které jsou resenim dané ulohy.

B-1-5

Ozname p, ¢ priamky, ktoré mame zostrojit, tak, aby vzdialenost bodu A
od priamky ¢ bola dvakrat vicsia ako od priamky g (obr.12). Nech K je

Obr. 12

pita kolmice z A na p, teda AK || ¢ a priamka BK je totozné s p. Priamky
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p, q st teda rovnobezky s odvesnami pravouhleho trojuholnika ABK
a tieto odvesny s rovnobezkami s odvesnami lubovolného trojuholnika,
ktory je s trojuholnikom ABK rovnolahly.

Odtial vyplyva konstrukcia. Zostrojime pravouhly trojuholnik RST
tak, aby odvesna RS mala akiikolvek zvolent dlzku a odvesna ST bola
dvakrat dlhSia. Tento trojuholnik oto¢ime napriklad podla stredu R
o taky uhol, aby oto¢eny trojuholnik RS’T”" mal preponu RT" rovnobeznii
so stranou AB. Priamky p, ¢ dostaneme ako rovnobezky s priamkami
RS', S'T".

Uloha mé dve rieSenia, lebo okrem takto zostrojenych priamok p, g
vyhovujt aj ich obrazy v osovej simernosti podla priamky AB.

B-1-6

Ctyithelnik maximélniho obsahu musi obsahovat celou spole¢nou tétivu
kruhti, které jej pokryvaji. Jinak bychom mohli jeho obsah zvétsit pii
zachovéani podminek tlohy — mohli bychom posunout kruhy dal od sebe.

Rozeberme moznosti, které mohou nastat:

Ctytthelnik (ozna¢me jej ABCD) se sklada ze dvou &tyfthelnikii
vepsanych do kruhid — obr. 13. Tyto ¢tyfthelniky AKLD, K BCL maji
maximalni obsah, pravé kdyz to jsou ¢tverce.

A Y
Obr. 13 Obr. 14

Dtikaz tvrzeni, Ze ze v8ech ¢tyftahelnika vepsanych do téhoz kruhu mé
nejvétsi obsah &tverec, provedeme pomoci obr. 14. Ctyfthelnik TXY Z je
slozen z trojuhelniki ZXY, ZXT. Jeho obsah je

Orxyz = %|XZ1 - v+ %lXZl cVUy = -;—|XZ|(’U1 +112),
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ale |[XZ| £ 2r awv; + vy £ 2r. Odtud
Orxyz < %~27‘~27‘=21‘2.

Rovnost nastane pouze pro ¢tverec vepsany do daného kruhu.
Ctytthelnik ABCD ze zadéni tilohy méa v tomto p¥ipadé maximalni
obsah 4r2.

Ctytthelnik se skldda z trojthelnika vepsaného do prvniho kruhu
a pétithelniku vepsaného do druhého kruhu (obr.15), nebo se skladd
ze dvou trojihelnik vepsanych do kruht (obr.16). V obou situacich
odhadneme obsah ¢tyfihelniku shora nésledujicim vyrazem

%lACI -v + %|AC| cUg = %|A0| . (’01 +’02)

Podle obrazka plati |[AC| < 4r, v1 + vo £ |BD| < 2r. V tomto piipadé
je tedy obsah mensi nez 4r2.

D
’ L —
A :
K
B
Obr. 15
D L C
A B

Obr. 17

Ctyrahelnik maximalniho obsahu je obdélnik se stranami délky v/2 cm
a 2v/2 cm; je zndzornén na obr. 17.
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B-S-1

Je-li y hodnota dané odmocniny, je 2% —y? = p?, takze (z—y)(z + y) = p*.
ProtoZe p je prvodislo a ¢isla x — y <  + y jsou prirozend, musi nastat
jedna ze dvou moznosti

I‘—yzl, r—yYy=p,
5 nebo 5
r+y=p°, T+y=p°.

Snadny vypocet v obou pripadech dava

x:1+p3 x:p2+p
32 resp. 22

. il
y=—= 2

(Tato &isla jsou pfirozend pro kazdé liché p 2 3.) Pro funkci f(p) =
= 3(p* +1) plati

f(11) =666 a f(13)=1099 > 10°,
a pro funkci g(p) = 3(p* + p)
g(43) =946 a g(47) = 1128 > 10°.
Hledané nejvétsi trojciferné ¢islo = je proto rovno 946.
B-S-2
Je-li u spoletny koren obou rovnic, pak
0=(u®—-u+3p—6)— (ud+u+4p—10) = —2u—p+4,

odkud u = —%p + 2. Dosazenim zpét do libovolné z obou rovnic do-
staneme podminku na &islo p, ktera je po tpravé tvaru kubické rovnice
p(p? —12p+20) = 0 s kofeny p; = 0, po = 2 a p3 = 10. Snadno se
presvédéime, ze dana dvojice rovnic pak ma skutecné spole¢ny koren u
rovny 2, 1 resp. —3.

B—58-3

V thlu AM B sestrojime nejdfive pomocny trojuhelnik K'L'M, ktery
je stejnolehly s hledanym trojuhelnikem K LM v nékteré stejnolehlosti
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se stfedem M a kladnym koeficientem, a pfitom bod K’ méa od ramene
M A vzdélenost 2 cm. Konstrukce bodt K’ a L' je snadné: protoze bod L’
musi mit od ramene M B vzdélenost 1cm, lezi body K’ a L' po fadé na
polopfimkach PQ a RS, kde PQ dostaneme posunutim MA o 2cm ve
sméru M B a RS posunutim MB o 1cm ve sméru M A. Protoze bod
L' je obrazem bodu K' pii otoleni se stiedem M o 60°, uréime L’ jako
pruseéik polopfimky RS s polopfimkou P'Q’, kterd je obrazem PQ ve
zminéném otoceni. (Bod K’ je pak obrazem L’ pfi opa¢ném otoceni.)
Zobrazime-li nakonec body K’ a L' ve stejnolehlosti se stfedem M a ko-
eficientem 5/|M K|, dostaneme hledané body K a L. Diikaz spravnosti
je ziejmy, tloha m4 jediné Fedeni (i kdyZ existuji dvé riizna otoleni kol M
0 60°, jen pii jedné z nich protne obraz poloptimky PQ polopfimku RS).

B-1Il-1

Umocnime-li prvni rovnici na druhou a od vysledku odecteme rovnici
druhou, dostaneme 2xy = 4z. Z dvojice rovnic zy = 2z az+y = z + 2
vyplyva, ze {z,y} = {2,2}. Proto 23 + y® = 23 + 8, takZe a = 8 je jedina
hodnota, kdy ma soustava feSeni. VSechna feSeni pro a = 8 jsou trojice
(z,y, z) tvaru (2,p,p) nebo (p,2,p), kde p je libovolny parametr.

B-1l-2

Pro vysku v na pieponu a odvésny a, b plati vv/a? + b2 = ab, neboli
v2(a? + b%) = a®b?. Protoze v je prvoéislo, plyne odtud v | a nebo v | b.
Necht a = mv pro vhodné celé m > 1 (bez Gjmy na obecnosti). Po
dosazeni do rovnice a kraceni ¢islem v? dostaneme m?v? 4 b2 = m?2b?,
neboli m?v? = b*(m? — 1). Z posledni rovnice plyne, Ze (kladné) &islo
m? — 1 je druhou mocninou celého &isla, a to je spor, nebot

2

(m—1)2 <m? —1<m? prokazdé m > 1.

Zadny takovy trojihelnik proto neexistuje.

Jiné feSeni. Podle Eukleidovy véty vyska v na preponu a odvésny a,
b spliwji rovnost v? = Va2 — v2v/b% — vZ, neboli v* = (a? — v?)(b* — v?).
ProtoZe v je prvodislo a ¢initelé (a? — v?), (b — v?) jsou dvé cel4 &isla
vétsi nez 1, je bud jedno z nich v a druhé v3, nebo jsou obé& rovna v2.
Druh4 moznost vede k a = b = vy/2, a to je spor, nebot ¢&slo vv/2 je
iracionélni. Zkoumejme prvni moznost: predpokladdejme a? — v? = v bez
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(jmy na obecnosti. Z rovnosti a®> = v? + v plyne v < a < v + 1, coz pro
celd a, v nemiZe nastat. Zadny takovy trojihelnik proto neexistuje.

B-11-3

Nerovnost ¢ > 4pr jisté plati, pokud pr < 0. Pokud pr 2 0, rozligime
dva pfipady: jsou-li obé ¢isla p a r nezdpornd, pak muzZeme umocnit
nerovnost ¢ > p + r a dostat tak

@ >@p+r)?=(p—r)’+4pr 2 dpr;

jsou-li obé &isla p a r nekladné, pak umocnénim nerovnosti 2¢ 2 —4p—r
(2 0) dostaneme

4¢* > (4p+1)* = (4p — 1) + 16pr > 16pr.

V obou ptipadech tedy plati ¢> > 4pr.

Jiné FeSeni. Ozna¢ime-li f(z) = pa? + gz + r, bude podle zadani
f(=1) < 0 a f(2) > 0. To je mozné, jen kdyZ diskriminant ¢? — 4pr
kvadratického trojclenu f je kladny.

B-1l-4

Jednou z péti plachet museji byt prikryty aspon dva body z mno-
ziny, ktera je tvorena tfemi vrcholy trojuhelniku
a tfemi stfedy jeho stran. To ale znamena, Ze
strana plachty je pfinejmens$im rovna aspon polo-
viné strany celého zdhonu. Ten se pak da pokryt
¢tyrmi plachtami podle obr. 18.

Obr. 18
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Kategorie A

Texty tuloh

A-1-1

Uvazujme n jednotkovych kruZnic se stfedy ve vrcholech konvexniho
mnohothelniku. DokaZte, Ze na nékteré z téchto kruznic existuje oblouk
délky 2n/n, ktery nemd spole¢ny bod s zZadnou jinou z uvazovanych kruz-
nic.

A-1-2

Najdéte vSechny hodnoty parametru p, pro ktery existuji redlna ¢isla z,
y, z takova, ze

r+y+z=4,

Ty +yz + 2z =4,

TYz = p.
A-1-3

Jsou dany dvé rekurentni posloupnosti

an+1 - 5an + 2bn7
bn+1 = —2an + bn,
ay = 12, bl = -3

Najdéte n-ty ¢len obou posloupnosti.

A-1-4

Oznaéme S obsah trojihelniku ABC' a ¢ polomér jeho kruznice vepsané,
v vysku ¢tyfsténu ABC D na sténu ABC'. Pro povrch P ¢tyisténu ABC D
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pak plati

2
P>s|1+ 1+(g>

Dokazte a zjistéte, kdy nastane rovnost.

A-1-5

Ve &tvercovém schématu je zapsano 1000 x 1000 celych ¢isel. Pritom
kazda dvé sousedni ¢isla v fadku nebo ve sloupci se lisi nejvyse o 100.
DokaZte, Ze mezi zapsanymi Cisly je jedno, jez se ve schématu vyskytuje
aspon Sestkrat.

A-1-6
. : 3n+1 NP :
Dokazte, ze pron 2 1 mé zlomek m nekoneény periodicky rozvoj.
A-S-1

Pre ktoré hodnoty redlneho parametra p ma sustava rovnic

r+y+z=1,
1 1 1
—+-+-=1,
T Yy =z

];2 2 ’
rieSenie v obore reé.lnych Cisel?

A-S-2

Pro kazdé prirozené ¢islo n jsou pfirozena ¢isla a,, b, urc¢ena podminkou

n v ~ v 12 e s ws . v
an +b,V/5 = (3+/5)". Dokaite, Ze pro kazdé p¥irozené &slo n jsou obé
&isla an + by, an — b, délitelné Cislem 2™.

A-S-3

V pravidelném ¢tyisténu ABCD ozna¢me P patu vysky vedené bodem D
na rovinu ABC a M stied Gsecky DP. Rovina rovnobézna s pfimkou BC
a obsahujici pfimku AM rozdéli ¢tyrstén na dvé ¢asti. Urcete pomér jejich
objemi.
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A-1l-1

Uréte dvaciaty ¢len postupnosti prirodzenych ¢&isel (a), ak je ¢len aq ggo
rovny prvocislu 1993 a pre kazdé k € N plati

ap4+1 = ak + n(ag, ax+1) — D(ak, ak+1),

kde n(z,y), resp. D(z,y) oznafuje najmensi spolo¢ny nasobok, resp. naj-

.....

A-1l1-2

Je dana kruznice k a na ni dva riizné body A, B. UvaZujme kruznice kq,
ko takové, ze k; se dotyka k zevnitf v bodé A, ko se dotykd k zevnit¥
v bodé B a obé kruznice k1, ky se navzdjem dotykaji v bodé C. Najdéte
mnozinu vSech takto vzniklych bodd C.

A-11-3
Ak pre realne nenulové &isla z, y, z plati
1 1 1
(:c+y+z)(—+—+—) =1,
T Yy =z
potom zy + yz + zz < 0. Dokézte.

A-1l1-4

Uvazujme &tyistén ABCD, jehoz sténa ABC m4 obsah 60 cm? a 7adna
z jejich stran a, b, ¢ neni del3i nez 13 cm. Pfitom zvolime-li jejich oznaceni
tak, Ze a 2 b 2 ¢, maji asponn dvé z hran DA, DB, DC &tyisténu délku
b. UrCete nejvétsi mozny objem takového ¢tyfsténu.

A-1l-1
Pre ktoré prirodzené ¢islo n je ¢islo 7* — 1 ndsobkom ¢isla 6™ — 17
A-1ll1-2
V tabulce 19x 19 jsou zapséna celd ¢isla tak, ze ¢isla zapsand v sousednich
polickach se lisi nejvyse o 2. Jaky je nejvySsi mozny pocet riznych cisel
v takovéto tabulce? (Dvé policka tabulky povazujeme za sousedni, maji-li
spole¢nou stranu.)

52



A-1lI1-3

V roviné je dan trojuhelnik AKL takovy, ze |XALK| > 90° + | LAK]|.
Sestrojte rovnoramenny lichob&znik ABCD, AB || CD, tak, aby bod K
lezel na strané BC, bod L lezel na thlopficce AC a prisecik S tsecek
AK a BL byl stfedem kruznice opsané lichobézniku ABCD.

A-1ll1-4

Dané je postupnost (a,)32; prirodzenych ¢isel uréena rekurentne takto:
a; = 2, pre kazdé n 2 1 je any1 rovné suétu desiatych mocnin cifier
&isla a,. Rozhodnite, & sa moéZe v postupnosti (a,)52; vyskytnat nejaka
hodnota dvakrat.

A-1ll-5
Néajdite vSetky funkcie f: Z — Z také, ze
f(@) + f(y) = f(z + 2zy) + f(y — 22y) 1)
plati pre kazdé z, y celé a naviac f(—1) = f(1).

A-11-6

Dokazte, ze existuje CtyTstén, ktery lze rozdélit na osm shodnych ¢ty¥s-
tént podobnych ptvodnimu.
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Regeni tloh

A-1-1

Uvazujme nejprve konvexni thel ABC' a jeho vnitini bod M # B a déle
dvé kruznice se stejnymi poloméry a se stfedy v bodech M a B (obr. 19).

Obr. 19

Priiseéiky téchto kruznic (existuji-li) lezi v poloroviné uréené bodem M
a primkou prochézejici bodem B kolmo k BM . Tyto pruseciky tedy nelezi
uvnit¥ Ghlu s vrcholem B, jehoz ramena jsou kolmé k BA, BC' a nelezi
v thlu ABC.

Budte nyni A, B, C sousedni vrcholy konvexniho mnohothelniku.
Pruseciky jednotkové kruznice, kterd ma stied ve vrcholu B, s jednotko-
vymi kruznicemi, které maji stfedy v ostatnich vrcholech, nelezi uvnitr
thlu w, nebot tyto vrcholy lezi v thlu ABC. Zbyva uvazit, Ze nejmensi
z vnitinich (hlt n-thelniku neni vétsi nez w, takze nejvétsi z prislusnych
(hld neni mensi nez 2r/n.
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A-1-2

Podle znamych vztaht mezi kofeny a koeficienty mnohoélenu mé dana
soustava rovnic feSeni v oboru redlnych ¢&isel, pravé kdyz mnohoclen

fO)=t3 4> +4t—p
ma tii redlné kofeny. VySetiime pribéh této funkce. Zrejmé
im f(t) = —oo,  lim f(t) = oo.

Protoze f ma derivaci

') = 342 — _ U A N P AN
f'(t) = 3t 8t+4_3<t2 3t+3)—3<t 3>(t 2),

funkce f(t) v intervalech (—o0, ) a (2, 00) roste a v intervalu (,2) kles4.
Funkce ma tedy v bodé t; = % lokéalni maximum a v bodé to = 2 lokalni
minimum. Mnoho¢len bude mit tii redlné koreny (pocitany i s nasob-
nosti), pravé kdyz f(t1) = 0 a zdrovenr f(t2) < 0. Snadno zjistime, Ze to
nastane, pravé kdyz p € (0, 32).

A-1-3
Uvazujme posloupnost ¢, definovanou vztahem

Cpn = Ay + by
Protoze

Cn41 = Qn41 + bn+1 = dan, + 2bn - 2an + bn =
= 3a, + 3b, = 3c,,
C1 = 12-3= 9,

je ¢, = 3™ pro viechna n € N. Odtud

bp = Cn — an = 3" —ay,,

Ant1 = 5an +2(3"! = a,) = 3a, + 23" (%)

Z tohoto rekurentniho vztahu mizeme posloupnost a, uréit napt. takto:
Vsimneme si, ze 3" | a,, pro kazdé n € N, a polozime

an = 3"x,.
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Dosadime-li do (x), dostaneme
Tnil = Tn + 2,
a protoze x; = 4, mame

Tn =2(n+1), an =2-3"(n+1),
b, = 3" —q, = -3"(2n - 1).

Snadno se presvédéime, Ze tyto posloupnosti an, b, spliuji pozadavky
ulohy.
A-1-4

Oznaéme @ patu vysky CEtyfsténu na sténu ABC, a, b, ¢ délky stran
trojahelniku ABC a z, y, z vzdélenosti bodu @ od stran BC, CA, AB.
Pro obsah S(BCD) trojuhelniku BC'D plati

1 2
S(BCD) = % oV +22 2 a1 EE

2 /v2 + 92

(podle Cauchyovy nerovnosti

\/xf +a3 \/yf +93 2 |z1y1 + 2292,

v niZ nastane rovnost, pravé kdyz z;ys = x2y;), analogicky

1, v2+ oy 1 02 +op02
S(ACD) 2 - b —=, S(ABD) 2 - ¢ ———.
(40D) 2 30T B, S(4BD) 2 5o

Je tedy
P =S+ S(BCD)+ S(ACD) + S(ABD) 2

> [a(v?® + oz) + b(v? + gy) + c(v® + 02)] =

+—_
2¢/v? + 02

1
=S+ ————(ap+bo+co) +

N

—Q——(ax + by + cz).
V2 + g2
Pfitom

—;—(aa: +by + cz) = S(BCD) + S(ACD) + S(ABD) S,
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protoze trojihelnik ABC je vidy obsaZen ve sjednoceni trojiahelnikid
BCQ, ACQ, ABQ. (Rovnost zde nastane, pravé kdyz bod @ lezi v troj-
thelniku ABC'.) Je tedy

Prs+ Y 512 s_s(14 1+(3)2
= 0/v? + p? /02 + p? 0 ’

Rovnost nastane, pravé kdyz ¢ = x = y = z, tj. pravé kdyz bod @ splyne
se stfedem kruznice vepsané trojihelniku ABC.

Pozndmka. Ze vSech Etyrstént daného objemu a s danou podstavou
mé nejmensi povrch ten, ktery ma shodné odchylky vSech tii poboc-
nych stén od podstavy. Ze vSech Ctyrstént daného objemu s podstavou
daného obsahu mé nejmensi povrch pravé ten, jehoz podstava je navic
rovnostranny trojuhelnik.

A-1-5

Zvolme libovolna dvé ¢isla ve schématu. Od jednoho k druhému se mi-
zeme dostat nanejvys 999 + 999 = 1998 kroky tak, Ze postupné procha-
zime pies sousedni ¢isla. Zadna dvé &isla ve schématu se tedy nelisi vice
nez o 199 800, proto ¢isla ve schématu nabyvaji nanejvys 199 801 rtiznych
hodnot. Kdyby tam byla kazda hodnota zastoupena nejvyse pétkrat, ne-
bylo by ve schématu vice nez 5 - 199801 < 106 &isel, je jich tam viak
milién. Musi tam tedy byt aspon jedno ¢islo nejméné Sestkrat.

A-1-6

Nejprve prozkouméame soudélnost &itatele a jmenovatele. Cisla 3n +1, n
jsou ziejmé nesoudélnd a ¢isla 3n + 1, 2n — 1 mohou mit jako spole¢ného
délitele jediné ¢islo 5: je-li d jejich spole¢ny délitel, 3n+1 = da, 2n—1 =
= db, je

d(2a —3b) =2(3n+1) —3(2n—1) — 5.

VSechna uvazovand ¢isla jsou racionalni a jejich desetinné rozvoje
mohou tedy byt, jak zndmo, bud kone¢né, nebo nekoneéné periodické (ke
zdivodnéni je potfeba védét néco mélo o nekoneénych radéch).

Vylouéime prvni ptipad: Koneény rozvoj maji pravé ty zlomky v za-
kladnim tvaru, které maji jmenovatele tvaru 2"5° (to vidime hned, uvédo-
mime-li si, Ze vynasobenim takového zlomku vhodnou mocninou deseti
dostaneme celé ¢islo). Dejme tomu, Ze jmenovatel naSeho zlomku mé
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tento tvar (o to, zda je v zdkladnim tvaru, se starat nemusime, zkrétit
by $el, jak uz vime, leda &islem 5). Cisla n, 2n — 1 jsou nesoudélné, 2n — 1
je liché, musi tedy byt n = 27, 2n — 1 = 5°. Potom je

2Pt =55 4 1=(4+1)°+1.

Toto ¢islo dava pri déleni ¢ty¥mi zbytek 2 (binomicka véta), je tedy r = 0,
s = 0amn = 1. Pron > 1 tento pifipad nemiize nastat a rozvoj je
nekonecny.

A-S-1
Protoze

(x+y+2)? =22 +9y%+ 22 + 2(zy + yz + 23),
1 1+1_:cy+yz+zx

T Yy =z TYZ

je uvedend soustava t¥i rovnic pro xyz # 0 ekvivalentni soustavé

T+y+z=1,
1-p
acy+yz+zx=—2—,
zz—l_p
Yz = 5

Déle postupujeme jako pii feSeni tlohy A-I-2: Cisla z, y, z jsou FeSenim
této soustavy, pravé kdyz jsou reSenim rovnice
1—-p 1-p

t——= =0,

3 — 2
Tt 2

neboli 1
(t— 1)(t2 + —p) ~0.
2
Je zfejmé, Ze posledni rovnice ma tfi nenulové realné koteny, pravé kdyz
pro parametr p plati p > 1.

Jiné feSeni dostaneme, jestlize dosadime z z prvni rovnice do druhé;
po apravé dostaneme (z + y)(1 — z)(1 —y) = 0. Odtud plyne, Ze aspon
jedno z éisel z, y, z je rovno 1. Dale postupujeme stejné jako v predeslém
feSeni.
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A-S-2

VyuZijeme toho, ze dvé ¢isla a+bV5, c+dv5,kde a, b, c, d jsou cela cisla,
se rovnaji, pravé kdyz a = ¢ a b = d (to plyne z iracionality &isla v/5).
Po roznasobeni pravé strany rovnosti

a’n+1 + bn-{—l\/g = (an + bn\/g) (3 =1 \/—5)
tak dostaneme dva rekurentni vztahy

An41 = 3an + 5bn,
bn+1 =a, + 3bn

Tvrzeni tlohy dokdzeme matematickou indukci. Pron = 1 je a; = 3,
by =1, takZe a; + by = 4, a; — by = 2, tj. obé cisla jsou délitelna dvéma.
Predpokladejme, ze a, + by, a, — by jsou délitelnd cislem 2™. Potom je
Ant1 + bpt1 = dan + 8b, = 6(an + by) — 2(an, — by), takze aniy + bpt1 je
délitelné &islem 2"+, Podobné je i any1 — bny1 = 2an +2b, = 2(an +by,)
délitelné &islem 27*!. Tim je dfikaz hotov.

A-S-3

Oznaéme K pruseCik piimky AM s rovinou BCD, L stied tselky BC
a B’, C' prusec¢iky dané roviny s hranami DB, DC (obr. 20).

D

Obr. 21
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Bodem D vedme piimku rovnob&znou s pfimkou AL a jeji prisecik
s pfimkou AK oznalme X (obr. 21 ukazuje situaci v roviné AK D). Troj-
thelniky ALK a XDK jsou soumérné sdruzené podle stfedu M, takze
|DX| = |AP)|. Ze stejnolehlosti trojuhelniktt ALK ~ XDK vychézi

|DK| |DX| |AP| 2

KL = JAL| ~ JAL| 3’

nebot P je t&zisté trojuhelniku ABC. Je tedy
|DK| |DK]| B 1 _2
|IDL| ~ |DK|+|KL| . |KL| 5
|DK]|

Objemy ¢&tytsténti AB'C'D a ABCD jsou ve stejném poméru jako obsahy
trojuhelniktt B'C'D a BCD, tj. 4 : 25. Hledany pomér je tedy 4 : 21.

A-1l-1

Nejmensi spoleény ndsobek n = n(a,b) dvou ptirozenych ¢éisel a > b
a jejich nejvétsi spolecny délitel d = D(a,b) zfejmé spliiuji nerovnost
n 2 a > b 2 d, pfitemZ znaménko rovnosti v obou krajnich nerovnostech
nastane, pravé kdyz b | a. To ale znamend, 7e n — d 2 a — b s rovnosti,
pravé kdyz b | a.

Pro danou posloupnost (ax) odtud tedy plyne, Ze a; | az, az | as, ...,
a1 990 | aj 991, 1991 I a1 992. Protoze 1993 je prvocislo, vyskytuji se v po-
sloupnosti (ax)1%%? jen ¢isla 1 a 1993. Proto je bud asp = 1, nebo
azo = 1993.

Jiné feSeni. Oznaéme D = D(ak, ak+1), potom je ar+1 = cD, ar =
= dD, kde ¢, d jsou nesoudélnd ¢isla. Podle predpokladu pro dané k
plati
¢D =dD + cdD - D,

tj.
(c+1)(d-1)D =0,

takze d = 1. Je tedy ar41 pfirozenym nasobkem ¢isla ay. Déle postupu-
jeme stejné.
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A-11-2

Uvazujme spole¢nou teénu kruznic ki, k2 v bodé C. Pro tsekové uhly
prislusné tétivam AC a BC plati (obr. 22)

| XCA| = %|<):A51C|, |<XCB| = %|<T.CSQB|,
takze
| ACB| = 1(|<AS:C| + |<CS,B|) =
=1(2n— (n - |<ASB|)) =
= K_-l_‘j;_@ = konst_

Bod C tedy lezi na oblouku prislusné kruznice nad tétivou AB. Je-li
oviem |<xASB| = 180° (body A, B jsou krajnimi body priméru dané
kruznice k), vychézi |<xACB| = 180°, takze hledanou mnozinu bodi C
tvor{ vnitiek tsecky AB.

Naopak pro libovolny bod tohoto oblouku (resp. tsetky AB) rtzny
od bodti A, B sestrojme kruZnice ki, resp. k4 tak, aby se dotykaly kruz-
nice k v bodé A, resp. B a prochazely bodem C. Obracenim predchoziho
postupu je vidét, Ze ob& kruznice maji v bodé C spole¢nou teénu.
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A-11-3
Podle predpokladu pro dana nenulova realna &isla z, y, z plati
(x+y+2)(zy +yz + 2z) = 2y2,
coz po upravé dava
(z+y)y+2)(z+z)=0.

Protoze dana rovnost je invariantni vii¢i permutacim éisel z, y, z, miZzeme
bez Ujmy na obecnosti predpokladat, ze je napt. y = —z, a tudiz i zy +
+yz+ 22 = —2% < 0. Tim je dikaz hotov.

A-11-4

Predpokladejme, Ze pro hrany a, b, ¢ plati 13 2 a 2 b 2 ¢. Jednu ze stén
uvazovaného Ctyrsténu pii vrcholu D tvofi rovnoramenny trojuhelnik
s rameny délky b, pro jehoz vysku na zdkladnu z, a tedy i pro vysku v
Ctyrsténu pri vrcholu D plati

v < \/b2——i12 < \/132—%02.

Odtud je zfejmé, ze objem V = %v - 60 ctyrsténu ABCD bude nejvétsi,
bude-li délka strany ¢ co nejmensi (a uvazované sténa bude zaroven kolm4
na sténu ABC).

Obr. 23
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Pro vysku v, trojihelniku ABC podobné plati v, < (/132 — L¢2

(obr.23), a protoze 60 = %cvc, spliiuje ¢ nerovnici

60 < 2c4/13% — 1¢2.

VyfeSenim této nerovnice dostaneme pro délku strany c nerovnost
10 £ ¢ £ 24. Pro ¢ = 10 pak vyjde v = 12, takZe maximalni objem
uvazovaného Ctyisténu je V = 1 - 6012 = 240 cm®.

A-1-1

Je jasné, ze kazdé &islo tvaru 6" —1 = (6—1)(6""1+...41) pro n pfirozené
je délitelné péti. Probereme-li zbytky mocnin 7¢, 1 < i < 5, zjistime, Ze
7" — 1 je délitelné péti pravé jen pro ¢isla n tvaru n = 4k (tomu, kdo
zna malou Fermatovu vétu, staéi probrat mocniny 7, 7% a 7%). Pro takova
&isla n viak plati, ze 6" — 1 = 6% —1 =362 —1 = (7-5+1)** =1 je
délitelné sedmi. Cislo 7" — 1 tedy nemiize byt n4sobkem &isla 6™ — 1 pro
z4dné prirozené n, protoze neni délitelné sedmi.

A-1l1-2

Uvazujme tabulku n x n, n 2 3, a ozna¢me m nejmensi a M nejvétsi
z Cisel tabulky.

Cestou mezi poli¢ky tabulky o soutadnicich (4, j) a (k, ) nazveme kaz-
dou posloupnost sousednich policek tabulky, kterd za¢ind v (i, ) a konéi
v (k,1). Vzdélenost dvou poli¢ek tabulky o soufadnicich (i,j) a (k,I)
definujeme jako |¢ — k| + |7 — {|. Je jasné, Ze pro takovouto vzdalenost
libovolnych dvou poli¢ek tabulky plati, Ze je nejvySe rovna 2n — 2.

Pokud je vzdélenost policek s ¢isly m a M mensi, tedy nejvyse 2n — 3,
dostaneme pro rozdil M —m odhad M —m £ 2(2n — 3) = 4n — 6, takZe
tabulka muze obsahovat nejvySe 4n — 5 raznych éisel (vic se jich do
intervalu (m, M) nevejde).

Je-li vzdélenost policek s ¢isly m a M pravé 2n — 2 (maximdlni
moznd), musi prislu$na poli¢ka lezet v protéjsich rozich tabulky. V ta-
kovém pripadé oznacme k pocet riznych ¢isel v dané tabulce a necht
by =m < by < ... < b1 < b, = M jsou vSechna ¢isla v ni zapsana.
Vzdalenost mezi policky obsahujicimi ¢isla by a by—1 je nejvyse 2n — 4,
a proto by_1 — by < 2(2n —4) = 4n — 8. Pro rozdil ¢isel M a m tak méme

M —m= (M —bg_1) + (bg—1 — b2) + (bg —m) =
S (M —bg—1)+4n -8+ (by — m).
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Podle toho, zda nékteré z ¢isel M — by_; a by — m je 1 nebo 2, odtud
plyne, Ze muze nastat jedna z nasledujicich t¥i moznosti:

)M —-—m < 4n—6,

2) M —m £ 4n -5, pfi¢emz tabulka neobsahuje bud ¢islo m + 1, nebo
Cislo M — 1,

3) M —m £ 4n — 4, pfi¢emz tabulka neobsahuje ani jedno z &sel
m+1laM-1.

V kazdém pripadé vychazi, ze tabulka obsahuje nejvyse 4n—5 riznych
celych ¢isel intervalu (m, M).

Nyni stac¢i ukézat, ze do tabulky n x n lze zapsat ¢isla 1,2,3,...,4n—>5
tak, aby byly splnény podminky tlohy. To miZeme udélat napriklad tak,
Ze rozmistime ¢isla podle schématu

1 3 5 2n—3 2n —1
4 6 2n — 2 2n
4 6 8 2n 2n +1
2n — 4 2n — 2 2n 4n — 8 4n -7
2n — 2 2n 2n + 2 4n — 6 4n -5
A-1lIl-3

Predpokladejme, ze hledany lichobéznik ABCD existuje. Protoze obvo-
dovému thlu ABC v kruznici opsané trojihelniku ABC prislusi stfedovy
uhel ASC (obr.24), jehoz velikost je 180° — 2|<cLAK]|, znadme velikost
thlu 8 = |<xABC| = 90° — | < LAK | hledaného lichobézniku. Jeho vrchol
B tedy lezi na oblouku ! kruznice k o stfedu O, kterému nad tétivou AK
v poloroviné opa¢né k poloroviné AKL odpovida obvodovy thel 3. Pro-
toze |<xALK| > 180° — f3, je bod L vnitinim bodem kruhu vymezeného
kruznici k.

Uvazujme prusecik P kruznice k s ramenem AD lichobézniku ABCD.
Ze soumérnosti podle osy SO tusecky AB plyne, ze bod P je v této
soumérnosti obrazem bodu K, bod L lezi uvniti Gsecky BP a plati
|AK| = |BP|. Odtud plyne konstrukce tétivy BP: Danym bodem L
je nutno vést takovou pfimku, kterd by na jiz sestrojené kruznici k vy-
tala tétivu BP dané délky |AK|. Takovou pfimku sestrojime jako tecnu
vedenou bodem L ke kruZnici k; soustfedné s kruznici k, jejiz polomér je
roven |OM]|, kde M je stfed AK . Protoze |AS| = |CS| > |SK|, vybereme
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Obr. 24 Obr. 25

ze dvou takovych teden tu, kterd protind usetku MK (a ne M A, obr. 25).
Bod C pak najdeme jako prisecik polopfimek AL a BK.

Diikaz spravnosti konstrukce. Staci ovérit, ze prusecik S sestrojené
tétivy BP s iseCkou M K je stfed kruznice opsané trojihelniku ABC a ze
|<<CAB| < |<ABC]| (pak je totiz mozné doplnit ABC na lichob&znik
ABCD). Ptedné ze shodnosti tétiv AK a BP ihned plyne, ze |AS| =
= |BS|. Oznalme § = |XLAK| a ¢ = |<SAB| = |<SBA|. Podle
konstrukce je |<cCBA| = 8 = 90° — ¢ a z jednotlivych trojihelnikd plyne

BSA: |<BSA| =180° — |<XSAB| — |xSBA| = 180° — 2¢,
BAL: |<xBLA| =180° — |<<LBA| — |<xLAB| =180° —¢ — (¢ +4) =
= 180° — 2¢ — 4,
BCL: |<xBCL| =180° — |<xCBL| — |<«CLB| =
=180°—(90° -6 —¢) — (2 + 6) = 90° — €.
Plati tedy |<cBSA| = 2|<cBCA|, a to podle véty o stfedovém a obvo-

dovém thlu znamen4, Ze bod C lezi na kruznici o stfedu S prochazejici
body A a B. Koneéné plati

|<CAB| = |<LAB| < |<PAB| = |<KBA| = |<CBA],

Diskuse. Protoze pfimky LA a LK kruznici k; neprotinaji a p¥fim-
ka LM je jeji seCna, lze bodem L prolozit pravé jednu teénu ke kruznici
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k1, kterd protne tiseCku M K (druhé te¢na protne tsecku M A). Existence
bodu C: Polopfimky AL a BK se protnou (v jediném bodé&), pokud
|<<LAB| + |<xABK| < 180°. Protoze plati |<cLAB| < |<<PAB| =
= |<ABK| = B < 90°, je také |XLAB| + |<ABK| < 28 < 180°.
Uloha mé proto jediné feSen.

A-1ll1-4

Ukazeme, Ze dana posloupnost je shora omezen4 &islem 10'2. Z &isel men-
§ich nez 10'2 m4 ziejmé nejvétsi soucet desatych mocnin svych é&islic éislo
10'2 — 1, pfitemz je 12 - 90 < 12-10'° < 10'2. V omezené (nekoneéné)
posloupnosti se aspon jedna hodnota vyskytuje dokonce nekone¢nékréat.

A-11-5
Polozime-li v (1) z := —y a y := z, dostaneme
f(=y) + f(2) = f(=y — 2zy) + f(z + 22y). (2)

Odettenim (2) a (1) vyjde rovnost
f@) = f(=y) = f(y(1 - 22)) — f(y(-1 - 22)).

Protoze 1—2z a —1—2x jsou libovolna dvé sousedni liché ¢isla, usoudime,
ze f je linedrni na mnoziné vSech lichych nasobkt pevného ¢isla y. Tedy

f(x)=arz+b (z€Tk £=0,1,2,...),

kde T} zna¢i mnozinu viech lichjch nasobki &isla 2.
Abychom zjistili ¢isla ay, by, dosadime do (1): je-liz € T ay € Ty,
je ovSem
z(142y) € Tk a y(1—2z) €Ty,

takze rovnost (1) bude mit tvar
arT + by + ay + b = ak(ac + 2zy) + b + lll(y —2zy) + by,

neboli zy(ax — a;) = 0. Protoze zy # 0, dostdvdme nutnou i postacujici
podminku: vSechna ¢isla ax jsou rovna témuz Cislu a. Protoze rovnost
(1) je trivialné splnéna, je-li jedno z €isel x, y rovno nule, maji vSechny
funkce, jez vyhovuji podmince (1), tvar

az + by, z € Ty,

c, =0,

@) = {
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kde a, ¢ a by, jsou libovolné konstanty. V nasi tloze

:@__2)(_(—,1_)=0, atedy by = f(2) a c=f(0).

A-1l1-6

Uk4zeme, ze takovy Ctyfstén existuje. Uvazujme Ctyrstén ABCD
(obr. 26), jehoz dvé protéjsi hrany AB a CD délky 2 jsou shodné a na-
vzajem kolmé a ktery je osové soumérny podle stfedni pricky téchto
dvou hran. Stény tohoto Ctyfsténu jsou navzajem shodné trojuhelniky
o stranach 2, v/3 a V/3.

Obr. 26

Rozdélme kazdou sténu uvazovaného ctyrsténu ABCD stfednimi pric-
kami na ¢tyfi shodné trojahelniky. Kazda z rovin uréenych stiedy t¥{ hran
se spolenym vrcholem je rovnobézna s protéjsi sténou a ze Ctyfsténu
oddéli étyistén podobny pivodnimu (stejnolehly s koeficientem %) Od-
F{znutim téchto ¢tyr ¢tyrsténtt dostaneme osmistén My Mo M3 My MsMe,
ktery lze rozlozit na ¢tyri shodné ¢tyrstény, jez maji spoleénou hranu
M; Mg (stfedni pficku hran AB a CD). Bude-li velikost této spole¢né
hrany rovna velikosti k ni kolmych hran osmisténu, budou uvedené ¢tyi-
stény podobné puvodnimu Ctyfsténu s koeficientem %

Pocetné se uvedend tvrzeni snadno ovéri, zvolime-li vrcholy A, B, C,
D v mfizovych bodech krychlové sité:

A=(1,0,0), B=(~1,0,0), C =(0,1,1), D = (0,-1,1).
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Kategorie P

Texty uloh

P-1-1
Uloha o vymene podrefazcov

Je dany retazec znakov dlzky N ulozeny v poli A. (V jazyku PASCAL
by sme to mohli vyjadrit deklardciou var A: array [1.. N] of char.) Hod-
nota N je pritom tak velkd, Ze A zaberd skoro celi operaéni pamit;
predstavte si napriklad, ze A slazi ako pracovnd pamiit editora a prave
editujeme obrovsky subor.

Blok je stvisly podretazec retazca A zafinajici znakom s indexom z
a kondiaci znakom s indexom k (1 £ z £ k £ N); takyto blok budeme
oznafovat A[z..k|. Bloky A[z; .. k1] a A[z2 . . k2] sa neprekryjvaji, ak k; <
< 29 alebo ko < z;. Napriklad podretazce A[4..5] = ak a A[8..10] = abr
st neprekryvajuce sa bloky retazca A = abrakadabra.

Napiste a zdévodnite algoritmus (program v programovacom jazyku),
ktory vymeni dva neprekryvajice sa bloky retazca A, t.j. pre zadané
indexy 21 £ k1 < z3 £ ko premeni refazec

A= A[l o (21 —1)]A[21 .. kl]A[(k1+1) .. (22—1)]A[22 .. k‘g]A[(k‘z'{'l) .. N]
na retazec

Napriklad vymenou vyznacenych blokov v retazci A = abrakadabra by
mal vzniknat refazec A = abrabradaka.

Algoritmus smie pouzit len pomocnt pamit konstantnej velkosti (ope-
ra¢né pamit je skoro plna, nemusi sa do nej zmestit ani kdpia mensieho
z blokov) a pocet krokov algoritmu by mal byt tmerny N (editor nesmie
byt pomaly).
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P-1-2
Uloha o priemere mnohouholnika

Priemer rovinného ttvaru S je najvicésia vzadjomné vzdialenost medzi
dvoma bodmi S:

diam(S) = max v/(z — 2')2 + (y — ¢')2.
(z,y)€S
(«y')€s

Body X; = (z1,¥1),---,Xn = (Zn,Yn) (n 2 3) tvoria (v tomto po-
radi) vrcholy konvexného n-uholnika M v rovine. NapiSte a zdovodnite
program, ktory uréi diam(M) — priemer mnohouholnika M!

Pozndmka. Existuje algoritmus s linedrnou ¢asovou zloZitostou.

P-1-3
Multiplikativna zloZitost

Linearny algoritmus je algoritmus nasledujtaceho tvaru:

Vstup: 1, 22, ..., Tp (vstupné premenné)
i=a0h
f2:=920ho
fi=9iOh;
fr =gk © hk

Vystup: y1, y2, -+, Ym  (V¥stupné premenné)

pricom

(i) prekazdéi =1, ..., kje gi,h; € {z1,22,..., 20} U{f1, f2,..., fiu1}
a operacia O je jedna z operécii +, —, * (s¢itanie, od¢itanie, ndsobe-
nie).

(i) prekazdéi=1,...,mjey; € {f1,foy- -, fr}

ZloZitost linedrneho algoritmu je pocet operdcii ®, multiplikativna
zlozitost linedrneho algoritmu je podet operacii * (ndsobenie).

69



Napriklad nasledujuci linedrny algoritmus

Vstup: a,b,c,d

fl =axb
f2 =cxd
far=hfi—fa

Vystup: f3

pocita hodnotu vyrazu ab — c¢d a ma multiplikativnu zlozitost 2.

Ulohy
(a) Néjdite linedrny algoritmus, ktory pre vstup x vypod&ita hodnotu
mnohoc¢lena 1z+92% 4923 +2z* a ma najmensiu moznt multiplikativ-
nu zlozitost! Svoje tvrdenie zdévodnite (ukéZte, Ze neexistuje linedrny
algoritmus s mensou multiplikativnou zlozitostou nez vas algoritmus!)
(b) Ukéazte, ze hodnota vyrazu ab— cd sa neda vypoditat linedrnym algo-
ritmom s multiplikativnou zlozitostou 1!

P-1-4
McCullochov stroj

McCullochov stroj je opisany v Studijnom texte.

Najdite také ¢islo M, ktoré vytvara samo seba, t.j. M F M!
Existuje N, ktoré vytvara svoje zdvojenie, t.j. N - NN7?

Existuje ¢islo P, ktoré vytvara ¢islo P2, t.j. P+ P27

Existuje ¢islo @, ktoré vytvéra ¢islo 6Q, t.j. Q F 6Q7

(McCullochov zdkon) Pre kazdé ¢islo A existuje také ¢islo X, ze X
vytvara AX, t.j. X - AX. Dokazte!

6. Existuje také R, ze R+ R67

ANl i o

McCullochov stroj ($tudijny text)

McCullochov stroj sliazi na spracovanie ¢isel. M& vstup a vystup; ak
na vstup podame ¢islo, t.j. kone¢nt neprazdnu postupnost cifier 1, 2, 3,
4,5,6,7,8,9, po koneénom Case sa na vystupe moze (ale nemusi) objavit
(iné) €islo — odpoved’ stroja na vstupné Cislo. V prvom pripade (t.]. ak
sa odpoved objavi), vstupné &islo sa nazyva prijatelnym. Odpoved stroja
je vstupnym cislom jednoznacne urcené:

— ak vstupné &islo je prijatelné, tak sa odpoved objavi vzdy a je vidy
rovnaka,
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— ak vstupné &slo nie je prijatelné, nikdy sa neobjavi odpoved a stroj
sa po kone¢nom c¢ase zastavi (t.j. mdZzeme zistit, Ze vstupné ¢islo nie
je prijatelné).

Stroj sa riadi uréitymi pravidlami — najprv ale uvedieme niekolko de-
finicii. Ako uZz vieme, ¢isla st pre nas kladné celé ¢isla, ktorych desiatkovy
z4&pis neobsahuje nulu.

Ak X, Y st éisla, tak XY oznacuje ich spojenie: ¢islo, ktoré dostane-
me napisanim zapisov ¢isel X, Y za sebou. Napr. ak X je 53 a Y je 728,
tak XY je 53728 a XYX je 5372853. Cislo X X ... X zapiSeme ako X*.

S———

k-krat
Zdvojenim Cisla X je ¢islo X X. Napr. zdvojenim ¢isla X = 12345 je

Cislo X X = 1234512345.

Hovorime, Ze ¢islo X wvytvdra ¢islo Y, ak X je prijatelné a po podani X
na vstup stroja odpovedou je Y. Tento vztah budeme skratene zapisovat
XFY.

McCullochov stroj sa riadi nasledujacimi pravidlami:

Pravidlo P;. Pre Iubovolné ¢islo X, 2X 2 je prijatelné a vytvdra X . Skra-
tene, 2X2 F X.

Pravidlo P,. Pre Iubovolné ¢isla X, Y, ak X vytvdaraY, tak 7X vytvdra
Cislo Y2. Skratene, z X FY vyplyva 7X + Y2.

Pravidlo P;. Pre Iubovolné ¢isla X, Y, ak X vytvdra Y, tak 5X vytvdra
zdvojenie Cisla Y. Skratene, z X -Y vyplyva5X FYY.

Pravidlo Py. Cislo X je prijatelné len vtedy, ak to vyplyva z pravidiel
Pl} P2; P3-

Napriklad, 2532 + 53 podla P;, 72532 + 532 podla P, 572532 +
F 532532 podla Ps, ale 4253 nie je prijatelné podla Fy.

P-1Il-1
Uloha o nakladnych autich

Mesta A a B st spojené rovnym tGsekom cesty. Na tejto ceste lezia mestd
Ai,...,A,, By,..., B, (nie nutne v tomto poradi, ale mesto A; je bliz&ie
k A nez mesto B; (1 £ ¢ £ n)). Nakladné auto preméava medzi A a B
a ma n objedndvok: previezt ndklad z kazdého A; do prislusného B;;
pritom naraz moze viezt len jeden naklad a po naloZzeni v A; ho moze
vylozit len v B;.
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Jazdou nékladného auta budeme rozumiet cestu auta z mesta A do
mesta B (s pripadnym splnenim niektorych objedndvok) a spiit; pocas
jazdy smie zmenit smer len v meste B.

NapiSte a zdovodnite program, ktory zostavi pldin ndkladného auta
(t.j. uréi pocet jazd a splnené objednavky pre kazda jazdu) tak, aby
splnilo v8etky objednavky minimélnym pocétom jazd!

P-ll-2

Uloha o pokryti §tvorcom

Body X1 = (z1,11), -+, Xn = (Tn,yn) (n 2 3) tvoria (v tomto po-
radi) vrcholy konvexného n-uholnika M v rovine. NapiSte a zdovodnite
program, ktory uréi dlzku strany tvorca S s nasledujiicimi vlastnostami:
(a) S pokryva M: M CS,
(b) aspon jedna strana M lezi na strane S,
(c) S mé najmensi mozny obsah.

Pozndmka. V programe mozete vyuzit vzorce z analytickej geometrie
(napr. pre vzdialenost dvoch bodov alebo vzdialenost bodu od priamky)
ako funkcie; tieto funkcie nemusite programovat.

P-11-3
Multiplikativna zloZitost
Linearny algoritmus je algoritmus nasledujticeho tvaru:

Vstup: z1,z2,...,Tn (vstupné premenné)
h=ga0oh
fai =920 h2
fi =9 ©h;
fr =9k © hx
Vystup: y1,92,--.,Ym (vystupné premenné)
pri¢om
(i) pre kazdé i = 1,...,k je gi,hi € {z1,Z2,..., o} U{f1, f2,. .., fi—1}
a operacia © je jedna z operécii +, —, * (s¢itanie, od¢itanie, ndsobe-
nie);
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(i) prekazdéi=1,...,mjey; € {f1,fo,..., fr}
Zlozitost linedrneho algoritmu je pocdet operacii ®, multiplikativna
zloZitost linedrneho algoritmu je polet operacii * (ndsobenie).

Ulohy
(a) Zistite, akt ¢innost vykonava nasledujici linedrny algoritmus:

Vstup: a11, a2, a1, asz, b1, b1z, ba1, baa,

fi = a1 +ag

f1a = a22 * f5

f2 = bi1 + b2 fi5 = fo * ba2
f3 = a2 + a2 fie = frx fs
fa = b1z — b2 fir = fo* f1o
fs =b21 — by fis = fu1 + fia
fo = a1 + a2 fio = fis — fir
fr=an —an foo = f11 + fi3
fs = b1 + b12 fo1 = fi2 — fie
fo = a1z — a2 f22 = f1s — fio

fio = bay + baa

faz = fi2 + fia

fmu=fi*xf

fiz = faxbn

fiz3 = a1 * f4
Vystup: f22, fo3, fo4, fos

foa = f13+ fis
f2s = fa0 — fa1

(b) Né&jdite linedrny algoritmus s ¢o najmensSou multiplikativnou zlozi-
tostou, ktory pre vStup Ti,...,Tn, Y1y« Yny Uly .-y Un, V1,.-.,Vpn
vypocita

iUy + ...+ Tply,

TV + ...+ TpUnp,
Y1u1 + ... + Ynln,
Y11 + ... + YnUn.

P-11-4

McCullochov stroj

Operacné ¢islo je Cislo zlozené z cifier 5,7. Kazdé opera¢né ¢islo M urcuje
operdciu M () v nasledujicom zmysle: z X F Y vyplyva MX + M(Y).
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Napriklad 5 ur€uje operéciu zdvojenia (5(Y) = YY), lebo X - Y =
= 5X F YY; 75 urcuje operdciu pripisania 2 k zdvojeniu (75(Y) =
=YY2),lebo X FY = 75X F YY2; 757(89) = 8928922, lebo 7572892 I
F 8928922.

Ulohy
1. (Craigov zdkon) Pre kazdé operaéné ¢islo M a pre kazdé ¢islo A
existuje ¢islo X vytvarajuce M(AX), t.j.

(V opera¢né M)(VA)(3X)(X F M(AX)).

Dokazte!

2. Néjdite ¢isla X # Y také, ze X Y a zaroven Y + X!

3. (Fergussonov zdkon) Pre Iubovolné A, B existuja ¢isla X, Y také,
ze X F AY a zaroven Y + BX. Dokézte!

P-1ll-1
Uloha o viditelnosti mnohouholnika

Body X1 = (z1,v1), .-+, Xm = (Tm,ym) (m 2 3) st (v tomto pora-
di, proti smeru hodinovych ruci¢iek) vrcholy konvexného m-uholnika M
v rovine.

Mnohouholnik M lezi vo vnitri kruhu K so stredom S = (zg,ys)

a polomerom 7 (to znamend, Ze kazdé X; je vnitornym bodom K).
Hovorime, Ze bod u leziaci na obvode (hranici) M je viditelny z bo-

du v, ak Gsecka uv neobsahuje vnitorné body M. (VsSimnite si, Ze podla

tejto definicie st v8etky body strany z;x;y1 viditelné z kazdého bodu
priamky z;x;41; na druhej strane, obvod M je ,neviditelny“ pre vnttorné

body M!)

Napiste a zdovodnite co najrychlejsi program, ktory

a) vypiSe také udaje, z ktorych bude mozné pre lubovolny bod v leZiaci
na obvode kruhu K uré¢it mnozinu tych bodov z obvodu M, ktoré s
viditelné z bodu v,

b) uréi minimélny pocet bodov leziacich na obvode K tak, aby kazdy
bod na obvode M bol viditelny aspon z jedného z tychto bodov.
Pozndmka. V programe moZzete vyuZzit vzorce z analytickej geomet-

rie (napr. pre vzdialenost dvoch bodov alebo prieseénik dvoch priamok,

priamky a kruznice apod. ) ako funkcie; tieto funkcie nemusite progra-
movat.
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P-1I1-2
Multiplikativna zloZitost

Linearny algoritmus je algoritmus nasledujiceho tvaru:

Vstup: z1,%2,...,Tn (vstupné premenné)
i=00Mh
foi=g20hy
fi:=9iOh;
fe =gk © hi
Vystup: y1,92,...,Ym  (vystupné premenné)
pricom
(i) prekazdé i = 1,...,k je g;,hi € {x1,22,..., 22} U{f1, fo,..., fiu1}
a operacia © je jedna z operdcii +, —, * (s¢itanie, od¢itanie, nasobe-
nie);

(ii) prekazdéi=1,...,mjey; € {fl,fg,.. .,fk}.
Zlozitost linearneho algoritmu je polet operacii ®, multiplikativna
zloZitost linedrneho algoritmu je pocet operacii * (nésobenie).
Zistite, akt ¢innost vykondava nasledujtci linedrny algoritmus:
Vstup: a, b, ¢, d
fi=a+b fs=fixfa
fa=c+d fe=fs—fs
fa=axc fi=fs—fa
fa=bxd fs=1fe— fa
Vystup: f7, fs
a rozhodnite, ¢i existuje linedrny algoritmus pocitajici fr a fg s lepSou
multiplikativnou zlozitostou!

P-1I-3
Uloha o plateni

Dané st mince v hodnote q1, g2, ...,q, kortin, kde 1 S ¢; < 2 < ... < qn
st prirodzené &isla a g;1+1/g; je neparne prirodzené ¢&islo pre 1 £ i < n.
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Platitel aj prijemca maju k dispozicii neobmedzeny pocet minci kaz-
dej hodnoty. Platitel ma zaplatif obnos X kortn prijemcovi. Platba je
optimdlna, ak sa pri nej vymeni najmensi mozny pocet minci; t.j. pre
kazdé 1 £ ¢ < n d& platitel z; (2 0) minci hodnoty ¢;, prijemca vyda v;

n n
(2 0) minci hodnoty ¢; tak, ze > (z; — yi)¢; = X, a pritom Y (z; + v;)
je minimadlne. = =

Napriklad pri minciach s hodnotou 1, 3 a 9 korin (n = 3) sa d4
17 kortn vyplatit tak, ze platitel da 1 devitkorunacku, 2 trojkorunacky
a 2 jednokorunécky; vymeni sa 5 minci. Pri optimdalnej platbe oviem d&
platitel 2 devitkorunicky a prijemca vrati 1 jednokorunacku; vymenia
sa 3 mince.

Napiste a zdévodnite program, ktory pre vstupné celé kladné ¢islo X
urc¢i optimalny spdsob platby X kortn!

P-1Illl-4
McCullochov stroj

Chovanie McCullochovho stroja je popisané v studijnom texte! Ndjdete
tam aj zhrnutie zndmych vlastnosti dokazanych v minulych koléch.

Cislo Xy je nesmrtelné, ak nasledujtci proces je nekone¢ny (t.j. ne-
vyskytne sa v iom neprijatelné ¢islo):

Zadam stroju ¢islo Xo;
Ak sa objavi odpoved X7, zadadm stroju ¢islo Xi;
Ak sa objavi odpoved X5, zaddm stroju &islo Xo,
Ak sa objavi odpoved X3, zaddm stroju &islo X3,
. atd.

Otazky:

1. N&jdite 4 nesmrtelné ¢isla!

2. Néajdite 1993 nesmrtelnych ¢isel!

3. McCullochov algoritmus zistovania nesmrtelnosti cisel
Zékladom algoritmu je ¢islo H také, ze (X je nesmrtelné) < (HX
nie je nesmrtelné). Pouzijeme dva stroje — S1 a S2.
VSTUP: Cislo X.

OTAZKA: Je X nesmrtelné?
ALGORITMUS

1. Y =X, U:=HX;

. Stroju S1 zadame ¢islo Y'; stroju S2 zadame ¢islo U;

3. AK stroj S1 vyd4 odpoved Z, TAKY :=2Z

(3]
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INAK STOP; Cislo X nie je nesmrtelné!
4. AK stroj S2 vyda odpoved V, TAK U :=V
INAK STOP; Cislo X je nesmrtelné!
5. SKOK na 2.
Je tento algoritmus spravny?
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Reseni tloh

P-1-1

Uvazujme o ,velkom* bloku A[z .. k2], ktory zahfha obidva vyznacené
bloky A[z1..k1], Alzz..k2] aj nevyznaleny blok A[(k1 +1)..(z2 — 1)]
medzi nimi; tento ,,medziblok“ je v pripade k; = 2o—1 prazdny. Zakladom
algoritmu je pozorovanie, Ze obratenim poradia znakov v bloku A[z; .. k2]
sa vyznacené bloky dostani na ,spravne“ miesto, ale ich znaky budua
v obratenom poradi. To sa da napravit tym, Ze pred obratenim velkého
bloku obratime jeho ,,podbloky“.

Aby sme to mohli presnejsie sformulovat, oznaéme X! retazec, ktory
dostaneme obratenim poradia znakov v retazci X. Priklad:

(abrakadabra)® = arbadakarba.
Potom pre Iubovolné retazce U, V, W, X, Y plati
UVREWRXR)RY = UXWVY, (%)

t.j. postupnost $tyroch operacii obratenia bloku vymeni bloky V', X v re-
tazci UVW XY (Bloky dizky < 1 nemusime obracat.) Priklad:

ab((raka)®(d)® (ab)?)Rra = ab((akar)(d)(ba))Rra = ab(ab)(d)(raka)ra.

K dokonceniu algoritmu si sta¢i v§imnut, ze blok sa da obrétit v Case
timernom jeho dlzke s pouZitim pomocnej pamiti konstantnej velkosti.

Program v PASCALe:

program VYMENA,
const N =...;
type index = 1.. N,
var
A : array [indez] of char;
21,22, k1, k2, zpom, kpom : index;
procedure OBRAT (zac, kon : index);
(* Ak zac 2 kon, neurobi ni¢ )
var
pom : char;
begin
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while (zac < kon) do begin
pom := Alzac);
Alzac] := Alkon];
Alkon] := pom;
zac := zac+ 1;
kon := kon — 1;
end; (* while %)
end; (x OBRAT )
begin (* hlavny program x)
(* Nacitanie retazca A a medzi blokov: *)
(x 21 £ k1, 22 S k2 %)
if (21 > 22) then begin
zpom := z1; z1 := 22; 22 := zpom;
kpom := k1; k1 := k2; k2 := kpom;
end;
if (k1 2 22) then
writeln(’Bloky sa prekryvaja!’)
else
begin
OBRAT
OBRAT
OBRAT
OBRAT
end
end. (x hlavny program x)

z1,k1);
k1+4+1,22-1);
22,k2);
z1,k2);

—~ N~ o~

Sprdavnost algoritmu vyplyva zo vztahu (x); spravnost procedtry
OBRAT je o€ividna.

Odhad casovej a pamdatovej zloZitosti: Procedira OBRAT sa vyvola
Styrikrat; jedno jej prevedenie pozostava z nanajvys c - [ krokov, kde [
je dlzka bloku, ktory chceme obratit, a ¢ je vhodn4 konstanta. Celkovy
pocet krokov je teda nanajvys

C'[(k1+1-—21)+(2!2—-k1—1)+(k‘2+1—22)+(k2+1—21)]é
<2 (ke +1—21) £2c- N,

t.j. linedrny v N. Zo zapisu programu je jasné, ze sme pouzili pomocnii
pamit konstantnej velkosti.
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P—1-2

Vzdialenost bodov X, Y oznaéime d(X,Y); vzdialenost bodu X od

priamky Y Z oznacime d(X,Y Z). V dalSom budeme predpokladat, Ze vr-

choly M st usporiadané (v cyklickom zozname X1, Xo, ..., X,, X1) proti

smeru hodinovych rudiciek, a polozime Xy = X,,, X,41 = Xi.
KTaéovym pozorovanim je nasledujice

Tvrdenie. diam(M) = diam({X3,...,X,}).

NAzZNAK DOKAZU. Prijmime (bez ddkazu) fakt, e existuji body X,
Y € M, ktoré maji vzdialenost diam(M). Tieto body zrejme leZia na
hranici M (inak by vzdialenost prieseénikov priamky XY s hranicou M
bola vécsia, nez d(X,Y).) Keby X lezalo vnitri hrany X;X;,1, bolo by
d(X,Y) < max{d(X;,Y),d(X;+1,Y)}, ¢o je spor s definiciou bodov X
a Y. Podobne sa nahliadne, Zze Y nemdze byt vnitornym bodom hrany
M, a teda X aj Y st vrcholy M, ¢o bolo treba dokazat.

Vyzbrojeni tymto apardtom lahko navrhneme kvadraticky algoritmus
spocivajuci vo vyskaSani kazdej dvojice vrcholov. Keby sa ndm podarilo
zredukovat tlohu na vyskiSanie linedrneho poétu dvojic vrcholov, dostali
by sme linearny algoritmus.

Predpokladajme najprv, Ze M neméa dvojicu rovnobeznych hran. Pre
kazda hranu h; = X; X1 (1 £ i £ n) ozna¢ime Xy(;) vrchol M najviac
vzdialeny od priamky X;X;4;.

Pre kazdy vrchol X; definujeme mnozinu kandiddtov pre vrchol X 4(;):

K@) = {Xa@i=1)> Xa@i=1)+1, - - - Xai)-1, Xa(s) } -

Pozorovanie (obr.27). Prel <i,j < n ak X; ¢ K(i), potom diam(M) >
> d(Xi, XJ)

Xa(i-1)

Xit1
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Intuitivne, ak X; nie je kandiddtom pre i, tak je vylicené, aby sa -
priemer dosahoval na dvojici vrcholov X;, X;.

DOKAz. Ak totiz z; ¢ K(i) a X; # X;, tak
X; € {Xiy1,..., Xgi-1)-1} alebo X; € {Xa@)41,---» Xim1}-
V prvom pripade
d( X1, Xic1X:) > d(Xj, Xio1 X5);

zostrojime priamku rovnobezna s X;X; pretinajicu hrany h;_i, h; vo
vnutornych bodoch Y, Z a priese¢nik U priamok X;1X; a X;_1X;.
Potom (obr. 28) uhol X;U X je ostry (podla predchadzajicej nerovnosti),
a preto

diam(M) > dly,z) > d(Xi,Xj),

¢o bolo treba ukdzat. V druhom pripade sa postupuje podobne.

Xj1

XY X; U

Obr. 28

Pre kazdé ¢ teda staci vyskasat dvojice (X;, X;), X; € K(z). V pripade
hi || h; sa situdcia zmeni len v tom, Ze sa musia vyskaSat vSetky dvojice
(X'i7 Xj), (X‘i7 XJ'+1)’ (Xi+1’ Xj)’ (Xi+1’ Xj-’r-l)'

V kazdom pripade tvori mnozina kandiditov vrcholu X; ,stvisly“
asek vrcholov M a ,susedné“ mnoziny kandidatov (t.j. pre X;, X;y1)
maji nanajvys dva spolo¢né prvky. To je zdkladom nasledujtceho algo-
ritmu.

Program v PASCALe:
program PRIEMER;
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const
n=...;
type
bod=record z,y : real end;
var
m : array [1..n] of bod;
1,7:1..m;
diam : real;
function d(i,j : index) : real; (x vzdialenost bodov *)
begin d := sqrt(sqr(m[i].z — m[j].xz) + sqr(m[i].y — m[j].y)); end;
function dalsi(i : index) : index; (* dalsi bod v cykl. usporiadani *)
begin dalsi := imodn + 1; end,;
function maz(z,y : real) : real; (* maximum Cisel *)
begin if (x > y) then maz := x else maz := y; end,
function P(i, ],k : index) : real; (x obsah trojuholnika )
begin
P := ((m[j].z — m[i].z) * (m[k].x — m[i].z)
= (mljly = m[il.y) x (m[k].y —m[i).y))/2;
end;
begin
(* Nacitanie stradnic zadanych bodov *)
(* POZOR! Program neoveruje, ¢i dané body skuto¢ne tvoria )
(* (v zadanom poradi) vrcholy konvexného mnohouholnikal!!! )
i:=mn; j:=1; diam:=0;
while P(i,dalsi(i),dalsi(j)) > P(i,dalsi(i),j) do

j = dalsi(j);
while j # 1 do begin
1 := dalsi(1);

diam := max(diam,d(i, j));
while P(i,dalsi(i),dalsi(j)) > P(i,dalsi(i), j) do begin

j = dalsi(j);
diam := mazx(diam,d(i, j));
end,;

if P(i,dalsi(1),dalsi(j)) = P(i,dalsi(i), j) then
diam := maz(diam, d(i, dalsi(j));
end,;
writeln(diam);
end.
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Odhad casovej zloZitosti: Priradenie j := dalsi(j) sa vykoné presne
n-krat; priradenie 7 := dalsi(i) sa vykond nanajvys n-krat. Telo if-prikazu
sa vykond nanajvy$ in-krit (nemoze byt viac dvojic paralelnych hrén).
Kazdé priradenie hodnoty premennej diam je spojené s priradenim hod-
noty premennej i alebo j alebo s vykonanim tela if-prikazu; to znamena,
7e premennej diam sa priradi hodnota nanajvys %n—kré.t. Kazdy prikaz
v programe sa vykond nanajvys gn-krét, algoritmus m4 teda linedrnu
Casov zlozitost.

Pozndmky k implementdcii: Vzdialenosti bodov od priamky (uréenej
aseckou) porovnavame pomocou obsahov trojuholnikov uréenych tymito
bodmi a danou tseckou. Je to efektivnejSie, nez mechanickd aplikdcia
postupu z analytickej geometrie, hlavne ak vezmeme do vahy, ze chceme
len porovndvat vzdialenosti, a nepotrebujeme ich explicitne spoéitat.

P-1-3
(a) Napriklad nasledujtci linedrny algoritmus
Vstup: z
fi=zxz fai=z+z fr="Ffs+fe

fo=fitz fs=fa+fa fs=faxfr
si=Hhi+fo fe=fatfs fo=fs+ fs
‘ -~ Vystup: fo

mé multiplikativnu zlozitost 2.

Linearny algoritmus pre vstup « nepouzivajici ndsobenie dokéaze spo-
¢itat iba polynémy tvaru kz, kde k € Z. Ak linedrny algoritmus pouZiva
jediné nésobenie, potom Cinitele s tvaru kyx, ko a vysledok nésobenia
je ki1kox?. Teda linedrny algoritmus dokaZe spoéitat iba polynémy tvaru
kx? + jz, k,j € Z, t.j. iba kvadratické polynémy. N43 polyném je Stvr-
tého stupha, a preto neexistuje lineArny algoritmus s multiplikativnou
zlozitostou 1, ktory ho pocita.

(b) Sporom dokazeme, Ze ab — cd sa neda spocitat linedrnym algorit-
mom zloZitosti 1. .

Linearny algoritmus pre vstup a, b, ¢, d nepouzivajici nasobenie do-
kéaze spocitat iba polynémy tvaru kja + kab + ksc + kad, k; € Z, linearny
algoritmus pouzivajici prave jedno nasobenie dokaze spoéitat iba poly-
némy tvaru

U1 (t1a+t2b+t30+ t4d) (U1a+U2b+U30+ U4d) +’Uza+U3b+U4C+’U5d. (*)
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Keby ab — cd bolo tvaru (*), potom z porovnania mame (vzhladom
na symetriu mozno bez Gjmy na vSeobecnosti predpokladat ¢; # 0):

tiug =0, (1) tyuz+t3u; =0, (5
(2) tiug +tqu; =0, (6

tsug =0, (3) (
(4)

t4’U,4 = 0,

)

tauz =0, ) vi(tiug +taur) =1,  (9)
7) ’U1(t3U4 + t4U3) = —1, (10)
t2U4 + t4U2 = O, (8)

v #0, vz =v3=v4 =v5 =0,

touz + tzus = 0,

potom u; =02z (1), us =0z (5),t3 #0aus # 0z (10), t4 =01z (4),
to =02z (8) aus #02z (9). Teda t1,t3,us, ug # 0, uy,us, to,t4 = 0, aviak
to je podla (6) spor:

0 # tiug = tug + 0 = tyug + t4u; = 0.

Vsimnime si, ze hodnota vyrazu a-a —b-b = a? — b* sa d4 vypocitat
linedrnym algoritmom zlozitosti 1!

P-1-4

1. Keby sme nasli také H, ze
XFY=>HXFY2Y2, (*)

po dosadeni X := 2Y2 by sme dostali 2Y2 Y = H2Y2 F Y2Y2, ¢o
déva (spolu s P, a po dosadeni Y := H) H2H2 + H2H2 a statilo by
polozit M := H2H?2.

Podmienka (x) ndm vlastne hovori, Ze H spdsobi pripisanie 2 na ko-
niec &isla a néasledné zdvojenie. Z toho je vidiet, ze H = 57 vyhovuje ().
RieSenim je teda M = 572572. Skutolne, 2572 + 57 (Py), 72572 F 572
(Py), 572572 F 572572 (Ps).

Ak (%) nahradime podmienkou X Y = HX F YY2, po dosadeni
Y := H2, X :=2Y2 =2H22, H := 75 dostaneme rieSenie M = 7527522
(overte!).

Teraz pride maly podraz: vyriesime hned 5. otdzku.

5. Chceme ndjst X také, ze X + AX. Hladajme ho v tvare X = 5Y
(prijatelné s len &isla tvaru 2Y2, 5Y a 7Y). Potom YV + Z = X =
=5Y + ZZ. My ale chceme, aby ZZ = AX = A5Y. Teraz je rozumné
predpokladat, Ze Y je dlhSie nez A, t.j. Z = A5U. Hladdme teda také U,
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7e UASU + A5U. Preco by U nemohlo byt tvaru U = 7V'? (5 sme uz mali,
sktisme 7!) Teraz chceme splnit podmienku 7TVA57V F A57V. Pritom
VASTV = W = TVA57TV F W2, t.j. by malo platit W2 = A57V. Tato
podmienku splnime polozenim W := A57, V := 2. Po spdtnom dosadeni
dostaneme X = 572A4572. Lahko sa overi, Ze toto X vyhovuje.

Ked v predchadzajicej tivahe prehodime tilohu 5 a 7, dostaneme dru-
hé rieSenie X = 752A7522 (overte!)

Poznamka. Ak dovolime, aby A bolo ,prazdne ¢islo“, vyriesili sme
1. Glohu inym spdsobom (dostali sme ovSem rovnaké rieSenia).

2. Sktisme hladat N v tvare 5X. Ak X F 5X, potom 5X F 5X5X.
T.j. (pouzijeme McCullochov zédkon pre A = 5) N = 55725572 alebo
N = 575257522 vyhovuje.

3. Hladajme P vtvare 7X. X F 7X = 7X I 7X2, teda mozné rieSenia
st P = 75727572, P = 775277522.

4. To je trividlna aplikacia McCullochovho zékona: Q) = 5726572 alebo
Q = 75267522.

6. Predpokladajme, Ze existuje ¢islo R vytvarajice R6; z tohoto pred-
pokladu odvodime spor.

Pocet cifier ¢isla Y budeme oznacovat |Y|, polet jeho pitiek resp. sed-
miciek f5(Y) resp. #7(Y).

Prijatelné ¢isla st tvaru H2Y 2, kde H pozostava z cifier 5, 7, Y je
Tubovolné, |Y| 2 1.

Pozorovanie. Nech X Y, HX + Z. Potom |Z| 2 2% |Y| + 7 (H).

Cislo R je tvaru H2Y2, lebo je prijatelné; pritom R vytvara &slo
R6 = H2Y 26. Z Pozorovania vyplyva |H2Y 26| > 2ts(D)|Y| + 4,(H), t.j.

s (H) + §7(H) + Y] + 3 2 2%F)|y| + 47 (H),
ts(H) +3 2 (2BHy| - 1)|y],

a teda f5(H) € {0,1,2}, lebo |Y]| 2 1.
Rozlisime tri pripady:

(1) #5(H) = 0. V tomto pripade R je tvaru 7°2Y2, ale 7°2Y2  Y2¢
a |Y2°] < |7°2Y'26| — spor.

(2) $s5(H) = 1. V tomto pripade R = 7957°2Y2 F Y2bY2°tt = Rg,
t.ja+b=0,a=b=0,R=52Y2FYY = R6 a porovnanie dfzok
(|R|+1=|R6|) dava |Y|+4 = 2|Y|, Y =4, pri¢om Y konéi cifrou 6.
Teda Y = wvw6 a podmienka 52uvw626 = R6 = uvwbuvwb vedie
k sporu (porovnanie 2. cifier ddva v = 2, porovnanie 6. cifier 6 = v).
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(3) #5(H) = 2. V tomto pripade R = 7°57°57°2Y 2 |- Y 2¢Y 2b+ey gatbte
a podobne ako vyssie dostaneme a =b=c=0, R =552Y2 - YYYY
a porovnanie dlzok vedie k sporu: 4|Y| = |YYYY| = |R6| = |R| +
+1=|Y|+5= 3[Y|=5.

Zhrnutie: neexistuje R také, ze R+ R6.

P-1l-1

Oznatme a; = |AA;|, B; = |AB;|. Podla zadania 0 £ a; < fB; pre 1 <
< i £ n. V dalsom objedndvka j bude oznacovat objednavku patriacu
mestam Aj;, Bj.

Myslienka algoritmu je jednoduché: pokial st nejaké nesplnené ob-
jednavky, pridime daldiu jazdu a simulujeme cestu auta z A do B; ak
v nejakom meste je auto volné, vyberieme si ako dal$iu t objednavku
zo zatial nesplnenych, ktord zacina ¢o najskor.

Efektivna implementacia tejto mySlienky vedie k prili§ zlomtemu
programu. Nebudeme preto priradovat objednavky jazdam, ale naopak.
Vektory (ai,...,an) a (B1,...,0Bn) usporiadame vzostupne a potom
sprechddzame” usek AB. Pritom si udrziavame zatial potrebny pocet
jazd v premennej p a zoznam ,volnych jazd“ (spociatku je prazdny). Ak
narazime na mesto A; a zoznam je prazdny, zvySime pocet jazd na p+ 1
~ ai-tu objednévku splnime v (p + 1)-vej jazde: Ak zoznam je nepréazdny,
vyberieme si z neho volnt jazdu a i-tu objednévku splnime v tejto jazde.
Ak narazime na mesto B;, jazdu, v ktorej sme splnili i-tu objednéavku,
yuvolnime* — priddme do zoznamu volnych jazd.

Program v PASCALe:

program MINJAZD;
const n=...;
type
mesto=record
vzd : real; (x vzdialenost od mesta A *)
por :1..m; (x Cislo mesta *)
end,;
zoznam=record
proky :array [1..n]of 1..n
ukaz : 0..n;
end;
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var
a,b: array [1..n] of mesto;
plan :array [1..n] of 1..n; (x jazdy priradené objedndvkam x)
volne_jazdy : zoznam; (% zoznam volnych jazd x)
,5,p:1l..n;
procedure INIT (var z : zoznam);
begin z.ukaz := 0; end;
function EMPTY (var z : zoznam) : boolean;
begin EMPTY := (z.ukaz = 0) end;
function GET (var z : zoznam) : 1..n;
begin GET := z.prvky[z.ukaz]; z.ukaz := z.ukaz—1; end;
procedure PUT (var z : zoznam;x : 1..n);
begin z.ukaz := z.ukaz+1; z.prokylz.ukaz] := x; end ;
begin
for i := 1 to n do begin (* vstup *)
read(a[i].vzd, b[i].vzd);
ali].por := i; b[i].por :=i;
end; (x for *)
INIT (volne_jazdy);
SORT(a);
SORT (b);
i:=1;7:=1;p:=0;
while i < n do
if a[i].vzd < b[j].vzd then begin
(* zaciatok objednavky a[i].por x)
if EMPTY (volne_jazdy) then begin

p:=pt+l

plan[a[i].por] := p;
end else

planali].por] := GET (volne_jazdy);
1:=1+1;
end

else begin (x koniec objednavky b[j].por *)
PUT (volne_jazdy, plan[b[j].por]);
ji=g+1
end;
fori:=1ton do (x vysledok %)
writeln(’Objednavku ¢.’,4, 'splnime v jazde &.’, plan|i]);
end.
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Pozndamky k implementacii:

— pomocnd procedira SORT usporiada pole zdznamov typu mesto
vzostupne podla hodnoty polozky vzd. V polozke por sa uchovéava in-
formécia o mestach — ak afi].por = j, potom |AA;| = a; = a[i].vzd,
podobne pre mestéd B;.

— zoznam volnych jazd pripomina zdsobnik, ale to nie je podstatné —
zvolili sme si ¢o najjednoduchs$iu implementaciu. Tento zoznam nikdy ne-
pretecie, lebo pocet volani procedary PUT je zhora ohraniceny ¢islom n.

DOKAZ SPRAVNOSTI ALGORITMU. Je jasné, ze po skonceni while-cyklu
ma kazdy prvok pola plan priradenti hodnotu (vSetky objednavky st
splnené). Objednavky s rovnakym ¢islom jazdy st stalasne (t.j. pocas
jednej jazdy) splnitelné, lebo rovnost plan|a[i].por] = plan[a[i'].por] = ¢
pre i < i’ znamena, Ze pri preberani prvku a[i'] bola jazda ¢ na zozname
volnych jazd, t.j. koncovy bod Bai).por Objedndvky a[i].por predchidza
zatiatotnému bodu a[i'].vzd objednavky a[i'].por.

Dokazme teraz optimélnost ziskaného planu. Ozna¢me

o= max I{i: 2 € (ai, Bi) }
maximélny pocet intervalov (a;, 8;) s neprazdnym prienikom. Je jasné, ze
potrebujeme aspon kg jazd. Ukazeme, Ze algoritmus vytvori plan s presne
ko jazdami.

Uvazujme také i, Ze poCet jazd (premennd p) sa v programe zvy-
§uje z po na po + 1 pri preberani pociatoéného bodu afi].vzd objed-
navky a[i].por. Vtedy nie je k dispozicii ziadna volné jazda, t.j. plati
EMPTY (volne_jazdy). Ku kazdej jazde q, 1 £ q < po, priradme index

ig =max{i': 1 £’ <i A plan[a[i'].por] = ¢}.

Ziq < ivyplyva aq[i,).por = a[iq].vzd < afi].vzd; z toho, Ze pri preberani
ali].vzd jazda g nie je volnd, vyplyva Ba[i,].por > ali].vzd (v pripade nerov-
nosti < by algoritmus preberal koncovy bod B,[;,].por Pred pociatonym
bodom afi].vzd a uvolnil by jazdu g).

Zhrnutie: Bod & = q[i).por = a[i].vzd lezi v po intervaloch

(aa[iq].pora ﬂa[iq].por) (1 é q g pO)?

bod z+¢ € (ai, Bi), kde € je velmi malé kladné ¢islo, lezi v pp + 1 interva-
loch, t.j. ko 2 po + 1 — algoritmus nikdy nezvysi hodnotu premennej p
nad k‘o.
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Odhad casovej zloZitosti: Program (okrem dvoch volani procediry
SORT) v podstate pozostava z jediného while-cyklu. V tele cyklu sa
zvysuje hodnota siuctu ¢ + j, a pritom plati invariant j < 4 (v Ziadnom
tseku AX nemoéze skonéit viac objednavok, nez sa ich zacalo), t.j. i+j <
< 2i £ 2n — cyklus prebehne < 2n-krat. Kazdé vykonanie tela cyklu trva
kon3tantny pocet krokov (por. implementaciu operacii so zoznamom) —
while-cyklus trvd O(n) krokov.

Kritickym miestom programu je teda procedira SORT. Nebudeme
ju tu implementovat ani dokazovat, Ze hornym odhadom jej casovej zlo-
zitosti (pri vhodnej implementacii) je konstanta x nlog, n.

Horny odhad ¢asovej zlozitosti algoritmu je konstanta x nlog, n.

P-11-2

Vzdialenost bodu X od priamky Y Z oznalme d(X,Y Z), priemet ro-
vinného ttvaru X na priamku p oznaéme pr(X,p). Vzdialenost bodu
C = (z¢,yc) od priamky AB (A = (za,ya), B = (zB,yB)) uréime
vzorcom

vzd(A, B,C) = (yo — ya)(@p — z4) — (¥c —24)(yB ~ y4)
o V(@ —24)? + (yB — ya)? '

Na rozdiel od d(C, AB), vzd(A, B,C) mé znamienko, a to kladné pre
C leziace nalavo od priamky AB (t.]. pre |<cBCA| € (0,n)) a zdporné
pre C leziace napravo od tejto priamky.

V dalSom budeme predpokladat, ze vrcholy M st usporiadané (v poli
X[1..n]) proti smeru hodinovych ruciciek, a polozime X, ; = X;.

Pre kazdé i, 1 £ i < n, ndm staéi uréit nasledujtce dve &sla:

§z’rkai = maX d(Xj,XiXi+1),
1SjSn

priemet; = dlzka pr(M, X; X;41).

Hladana dlzka strany S je potom 12121 max{$irka;, priemet;}.
Pre kazdy index ¢ urcime indexgr di , li a pi nasledovne:
e Xg; je vrchol M najviac vzdialeny od priamky X;X;41;
e pr(M, X;Xiy1) = pr(XiiXpi, XiXit1) a body pr(Xu, X;Xi1), Xi,
Xit1, pr(Xpi, XiXiy1) lezia na priamke X;X;11 v tomto poradi (I7 —
lavy index, pi — pravy index).
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Body Xu;, Xpi sa daju charakterizovat aj takto: polozme X! = obraz
bodu X;41 v otoceni o n/2 okolo bodu X; (X| lezi vlavo od priamky
XiXit1 a XiXip1 L X;X]). Potom X;; (Xp:) je najvzdialenejsi vrchol M
leziaci nalavo (napravo) od priamky X; X! (obr.29). Teda

§irka,~ = d(Xdi, XiXi+1) = VZd(Xi, Xi+1a Xdi),
priemet; = d(Xy;, X; X;) + d(Xpi, Xi X)
= VZd(Xi, XII, Xli) = VZd()(i7 X:, Xpi).

priemet;
Xai
X;
X Sirka;
Xpi
X Xit1
Obr. 29

Zostava urcit, ako prejst od indexov di, li, pi pre i k indexom di’, li’,
pi’ pre i + 1. Predstavme si priamku, ktora sa otd¢a z polohy X;X;.; do
polohy X1 Xit2. Vrchol M najvzdialenejsi od tejto priamky sa postupne
presiva z polohy Xg4; do polohy Xg;. Novil hodnotu di’ uréime z pod-
mienky d(Xdi' s Xi+1X1;+2) g d(Xdi/+1, X,'+1Xi+2). Podobne uréime aj i
a pi’. Tieto ivahy dokazuju spravnost nasledujiceho programu, v ktorom
A=X;, B=X;1, C = X! amazi =max{sirka;, priemet; }.

Odhad casovej zloZitosti: Pociato¢né nastavenie hodnot di, li, pi trva
linedrny ¢as (prvé tri while-cykly). for-cyklus sa vykona (n—1)-kréat; vno-
rené while-cykly (v sacte pre vSetky vykonania for-cyklu) trvaja linedrny
Cas, lebo indexy di, li, pi ,obidu“ mnohouholnik M nanajvys raz, ako to
ukazuje vy$Sie uvedend uvaha s otacajicou sa priamkou.

Casova zlozitost algoritmu je teda linearna.

Program v PASCALe:

program STVOREC;
const
n=..,
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type
bod = record z,y : real end,;
var
X : array [1..n] of bod;
i,li,pi,di:1..n;
sirka, priemet, minstrana, mazi : real;
A, B,C : bod,
function vzd(A, B, C : bod) : real;
begin
vzd := ((C.y — Ay) * (B.x — Ax) — (C.x — Ax) % (B.y — Ay))/
sqrt((B.x — A.x) * (B.x — Ax) + (B.y — Ay) x (B.y — Ay));
end,;
function dalsi(i : integer) : integer;
begin
dalsi := 1 mod n + 1;
end;
function max(z,y : real) : real;
begin
if x > y then maz := x else mazx ==y
end,;
function min(z,y : real) : real;
begin
if z < y then max := z else maz :=y
end,;
begin
for i :=1ton do
readin(X[i].z, X[i].y);
A = X[n];
B := X[1];
Cx:=Az - (By-—Ay);
Cy:=Ay+ (Bx— Ax);
li:=n;pi:=1;di :=1;
while vzd(A, C, X[li — 1]) > vzd(A,C, X[li]) do li := li — 1;
while vzd(A, C, X[pi + 1]) < vzd(A, C, X[pi]) do pi := pi + 1;
while vzd(A, B, X[di + 1]) > vzd(A, B, X[di]) do di := di + 1;
sirka := vzd(A, B, X [di]);
priemet := vzd(A, C, X [li]) — vzd(A, C, X[pi]);
mazi := maz(sirka, priemet);
minstrana := maxi;
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for i := 1 ton — 1 do begin

A= X[i);

B = X[i + 1];

Cz:=Azxz— (By-Ay);

Cy:=Ay+ (Bz - Aux),

while vzd(A, C, X|[dalsi(li)]) > vzd(A, C, X[li])
do li := dalsi(li);

while vzd(A, C, X[dalsi(pi)]) < vzd(A,C, X[pi])
do pi := dalsi(pi);

while vzd(A, B, X[dalsi(di)]) > vzd(A, B, X[di])
do di := dalsi(di);

sirka = vzd(A, B, X [di]);

priemet := vzd(A, C, X[li]) — vzd(A, C, X [pi]);

mazxi = maz(sirka, priemet);

minstrana := min(maxi, minstrana);

end,;
end.
P-I11-3
(2a)
faa = a1,1b11 + a1 2621, foa = a11b12 + a12b2 2,
faz = a2,1b11 + a2 2021, fas = a2,1b1,2 + az,2b2 2,

teda matica (f 2 f 24> je vysledkom nésobenia matic:

f23 f25

fa2 faa) _ (@11 arp . b1 bi2
faz fos a1 azp2 ba1 b2 )
(2b) Ak n je parne, potom n-krit pouZijeme algoritmus z Casti (2a)

> __ 1
postupne pre VStl.lp Tiy Tit1Yis Yi+1, Uiy Uiy Uit1, Vit1,0 = 1,3, ey En——l,

pomocou %n néasobeni ziskame

TiU; + Tip1Uiya,
TiV; + Tit1Viy1,
Yili + Yit1Uit1,

YiVi + Yit+1Vit1
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(E=1,3,.:; %n — 1) a séitanim prislusnych medzivysledkov dostaneme
pozadované sucty. Ak n je neparne, potom n — 1 je parne a sucty

n—1 n—1 n—1 n—1
E Tilsg, E TiVs, E Yili, E Yivq
1=1 1=1 =1 i=1

ziskame popisanym spésobom pomocou %(n — 1) nésobeni a dalsich 4 na-
sobeni TpUn, TnUn, Ynln, YnVn. Pozadované siéty tak ziskame pouzitim
I(n— 1)+ 4 = (7n + 1) nésobeni.

P-11-4

1. Ak Y + AMY, tak MY + M(AMY') podla definicie operécie
M (). Stadi teda néjst takéto Y (ale to je McCullochov zdkon) a polozit
X :=MY.

Odpoved': X = M572AM572 alebo X = MT752AM7522.

2. Zrejme 2X2 F X (pravidlo P;); stacéi teda nédjst také X, ze X F
F 2X2. OvSem 2X2 = 7(2X) a mdZeme pouZit Craigov zdkon s M =7,
A = 2: dostavame X = 757227572 a X = T752277522.

3. Postupujme podobne ako v predchadzajicom rieSeni: 2BX2 F BX,
teda hladdme také X, ze X + A2BX2 = 7(A2BX). Craigov za-
kon (s M = 7, A = A2B) dava rieSenia X = 7572A2B7572 alebo
X = T752A2B77522.

P-1l1-1

Obvod (hrani¢nt kruznicu) kruhu K ozna¢ime C. Body u,v € C jedno-
znacne uréuju oblik wv (od u k v proti smeru hod. ruéitiek). Polozime
Xt = X(k modm)+1 Pre k € Z. Pre i,5,k € {1,2,...,m}, j lezi medzi i
ak,aki<j <k, k<i<jaleboj £k < (tento fakt v programe zisti
boolovska funkcia medzi(i, j, k)).

Ak bod wu leziaci vnutri hrany XXy je viditelny z bodu v € C,
z definicie viditelnosti vyplyva, Ze celd hrana X X4 je viditelné z bodu
v. Z toho a z konvexnosti M vyplyva, Ze z bodu v na kruznici C je viditelny
usek (,,mnoiina viditel’nosti“) MV(U) = XiXi+1 UXit1 Xi+2u. . .UXj_1Xj
z obvodu M. Tento Gsek je jednoznacne uréeny (usporiadanou) dvojicou
indexov (i,7) (v dalsom budeme rozumiet pod (i,j) bud usporiadani
dvojicu, alebo tsek obvodu M medzi X; a X; — z kontextu bude jasné,
ktory vyznam mdame na mysli). Obratene, kazdy vrchol X; je viditelny
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ey TR TR ..
z oblika zac;kon; C C, kde zac; = X;X;—1 N C (,zaciatok*) a kon; =
—
= X;Xi+1 NC (,koniec”). Navrhneme algoritmus, ktory uréi body zac;,

kon; (1 £ 4 < m), usporiada ich na kruZnici C a tym rozdeli C na 2m
oblikov s konStantnymi mnoZinami viditelnosti (niektoré obliky mézu
byt pritom jednobodové). Pre kazdy obluk ur¢ime aj M, — usek (i, j).
M, pre koncové (t.]. styéné) body oblukov uréime tak, ze porovnime
mnoziny viditelnosti susediacich oblikov a M, sty¢ného bodu je vicsia
z nich. Vysledkom ¢asti a) bude (cyklicky) zoznam koncovych bodov
obltkov s prislunymi usporiadanymi dvojicami (7, ) (t. . pre v na danom
obliku je My (v) = (4,7)); prvé, resp. druhé prvky tychto dvojic buda
v zozname usporiadané proti smeru hodinovych ruciciek.

Aby sme nemuseli triedit, budeme prechddzat priese¢nikmi proti sme-
ru hodinovych ruciciek. Ak ,prejdeme“ cez zac;, My sa rozsiri o X;_1 Xj;
ak ,prejdeme* cez kon;, z My vypadne hrana X;1; X;. Dany priese¢nik sa
pritom stane koncovym bodom oblika (pole obluky v programe). Cyklus
naStartujeme tym, Ze (tentokrat vynimoc¢ne v smere hod. ruciciek) néaj-
deme vrchol X;, ktory nie je viditelny z bodu zac;, ale X;y; eSte ano.
Potom oblik zaéinajici v bode zac; mad My = (i + 1,1). Za zvlaStnu
pozornost stoji len pripad kon; = zac;, vtedy dostaneme jednobodovy
,oblik“ s My = My (kon;) = My (zac;) = (3, j). Algoritmicky to znamena,
ze pri usporiadani mé zac; prednost pred kon;.

V ¢asti b) stadi ur¢it minimalny pocet oblikov (dvojic), ktorych mno-
Ziny viditelnosti ,pokryvaju“ obvod M. Budeme hladat takyto ,mini-
malny zoznam“ (nemusi byt uréeny jednoznacne). Vstupom algoritmu
bude cyklicky zoznam .# usporiadanych dvojic z ¢asti a); koncové body
oblikov nebudeme potrebovat. Nech dalsi(d) je dvojica nasledujtca za
dvojicou d = (d.i,d.j) v zozname .¥. (V programe sa .Z reprezentuje
polom L a dalsi je inkrement indexu modulo 2m.)

Ku kazdej dvojici d € £ uréime dvojicu najdalej(d), pre ktort plati

medzi(d.i,najdalej(d).i,d.j)
and not medzi(d.i, dalsi(najdalej(d)).i,d.j).

Je jasné, Ze ak sa v minimédlnom zozname vyskytne d, tak existuje mi-
niméalny zoznam obsahujtci d a najdalej(d) a neobsahujici dvojice z .Z
,medzi nimi“ — z dvojic dalsi(d), dalsi*(d), dalsi®*(d), ..., najdalej(d)
musi byt aspoi jedna v minimalnom zozname; zoznam zostane minimal-
nym, ak ju nahradime dvojicou najdalej(d). V pripade d' = dalsi*(d),
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najdalej(d) = najdalej(d’) hodnotu najdalej(d') zmenime na nedefino-
vani. (V programe sa najdalej reprezentuje polom indexov; nedefinovana
hodnota je 0.)

K dokonéeniu algoritmu si v§imnime, Ze minimélny zoznam musi ob-
sahovat dvojicu d, ktord pokryjva X1, t.j. plati medzi(d.i,1,d.j). (Vsetky
dvojice pokryvajtice X; st v poli L na zaciatku, lebo obluky[l] = zac;.)
Pre kazdé takéto d postupne vypocitame najdalej(d), najdalej?(d), . . .,
pokial nendjdeme najmensie k také, ze najdalej*(d) pokryva d.i. Ak
pritom narazime na nedefinovany ukazovatel najdalej'(d), tak existu-
ju postupnosti d,najdalej(d), ..., najdalej'~*(d) a d',najdalej(d'),...,
najdalej'='(d') rovnakej dlzky bez spolo¢nych prvkov (keby mali spoloé-
ny prvok, bolo by najdalej’ (d) = 0 uz prel’ < ), pricom d aj d’' pokryva-
ja X1, d je pred d v zozname £ a hodnota najdalej'(d) je nedefinovana,
lebo by sa mala rovnat hodnote najdalej'(d’). To znamené, Ze existu-
je minimalny zoznam neobsahujici d: podzoznam d,najdalej(d), ... na-
hradime podzoznamom d’,najdalej(d'),..., a teda vypocet pre dané d
mozeme ukondit.

Program v PASCALe:

program VIDITELNOST,
const m = ...; dvem = 2% m,;
type

bod = record z,y : real end;

dvojica = record 7,7 : 1..m end;

index =1..m; index2=1..dvem;
var

X : array [index] of bod;

C :record S : bod;r : real end,;

zac, kon : array [indez] of bod,

L : array [index2] of dvojica;

obluky : array [index2] of bod;

najdalej : array [indez2] of 0..dvem;

k :index2;
function medzi(i, j, k : index) : boolean;

begin medzi ;= (i <=j and j <= k)

or (k<=iand i <=j)or (j <=k and k <=1) end;
function incl(i : index) : index; begin incl := i mod m + 1; end;
function decl (i : index) : index;
begin decl := (i + m — 2) mod m + 1;end;
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function dalsi(i : indez2) : index2;
begin dalsi := i mod dvem + 1; end;
procedure p_polpriamka_kruznica(i, j : index; var pries : bod);
begin  (* urdi priese¢nik )TX; N C %) end;
function uhol(U,V : bod) : real;
begin (x ur¢i velkost uhla USV': &islo z intervalu (0, 21) *) end;
procedure cast_a;
var i, jj : integer;
begin
for k := 1 to m do begin
p-polpriamka_kruznica(k,decl(k), zac[k]);
p-polpriamka_kruznica(k,incl(k), kon[k]);
end;
jj:=1; w:=m;
repeat ii := decl (i)
until uhol(kon[m], zac[1]) < uhol(kon[m], kon[ii]);
(* Xi; je posledny vrchol eSte neviditelny z bodu zac[1] *)
obluky([1] := zac[1];
for k£ := 1 to dvem — 1 do begin
Llk).i :==incl(ii); L[k].7 := jJ;
if uhol(zac[incl(jj)], kon[ii]) <= uhol(kon[incl(ii)], kon[ii])
then begin jj :=incl(jj); obluky[k + 1] := zac[jj]; end
else begin ii := incl(ii); oblukylk + 1] := kon[ii]; end;
L{dvem].i :=incl(ii); L[dvem].j := jj;
end; (* cast_a x)
procedure cast_b;
var k, minpocet, pocet : index2; nd:0..dvem;

begin
(* vypolet hodndt najdalej *)
nd :=1;

for k := 1 to dvem do begin
while medzi(L[k].i, L{dalsi(nd)].i, L[k].j) do nd := dalsi(nd);
najdalej[k] := nd
end,;
(* vynulovanie zbyto¢nych hodnét najdalej *)
nd := najdalej[dvem];
for k := dvem downto 2 do
if (najdalejk] = najdalej[k — 1]) then najdalej[k] := 0;
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if (najdalej[1] = nd) then najdalej[1] := 0;
(* urCenie minimalneho poétu bodov )
k:=1; minpocet := dvem;
while medzi(L[k].i, 1, L[k].j) do begin
nd := najdalejlk]; pocet := 2;
while (nd <> 0) and not medzi(L[nd].i, L[k].i, L[nd].j) do

begin
nd := najdalejnd]; pocet := pocet + 1;
end;
if (nd <> 0) and (pocet < minpocet) then minpocet := pocet;
k:=k+1,
end,;

end; (* cast.b x)

Casovd zloZitost je linedrna. Procedtra cast.a neobsahuje vnorené
cykly. V procedire cast_b st dva vnorené cykly: v prvom pripade je to
while-cyklus vnoreny do for-cyklu. Pritom while-cyklus sa vykoné line-
arny pocet krat, lebo k ,,prebehne“ zoznamom .# prave raz, nd prebieha
zoznamom % v cyklickom poradi (1, 2, 3, ..., 2m, 1, 2, ...) a nikdy
yhepredbehne“ k, t.j. prebehne % nanajvys dvakrat.

Druhy vnoreny cyklus trva tiez linedrny pocet krokov, lebo kazdym
nenulovym smernikom najdalej sa ,prejde“ nanajvys raz a nulové sa
testuju tiez len raz. N

P-1l1-2

Pre vystup daného algoritmu plati fr = ac — bd, fs = ad + bc, teda
komplexné ¢islo f7 + fsi je sfin komplexnych &isel: f7+ fsi = (a+bi) *
(c + di). ’

Linearny algoritmus pre vstup a, b, ¢, d pouzivajici prave jedno na-
sobenie dokaZe spoéitat iba polynémy tvaru

v1(tia+tab+tsc+tad)(ura+usb+usc+usd) + voa+vzb+vic+vsd (%)

a 7z rieSenia tlohy P-I-3 vieme, Ze vyraz ac — bd nie je tohoto tvaru,
t.j. nedd sa spocitat linedrnym algoritmom (multiplikativnej) zloZitosti 1.
Celkom analogicky to mézme dokazaf aj o vyraze ad + bc.

Teraz sporom dokédzeme, Ze na stcasny vypocet ac — bd, ad + bc po-
trebujeme aspon tri nasobenia. Keby sa dali spocitat pomocou dvoch
nasobeni, nech p; je vysledok prvého néasobenia, ps vysledok druhého
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nasobenia (pripastame aj moznost, Ze pri vypoclte p, sa pouzil silin p).
Vystupné hodnoty ac — bd, ad + bc potom dostaneme pomocou operécii
+, — Zz p1, P2, a, b7 cad:

ac — bd = rip; + rops + r3a + r4b + r5¢ + 16 d,
ad + bc = s1p1 + sap2 + S3a + s4b + ssc + sgd,

kde koeficienty st celé ¢isla, pri¢om ro # 0 # so (lebo na ac—bd i na ad+bc
potrebujeme dve nasobenia). Od¢itanim ro-nasobku druhej rovnice od
so-nasobku prvej dostaneme

$oac — road — $obd — robe =
= (8a11 — r281)p1 + (8213 — r2s3)a + (sar4 — rass)b +

+ (8215 — r285)c + (S276 — r256)d,

vidime teda, Ze vyraz ssac — read — sobd — robe sa da spocitat pomocou
jedného nésobenia, a je preto tvaru () s v; # 0. Keby sa totiz v; rovnalo
nule, pre a = b = ¢ = d by sme dostali —2r2a% = (v + v3 + v4 + vs)a.
Ak vg + v, + v4 + v5 = 0, dostdvame spor dosadenim a := 1, v opa¢nom
pripade dosadenim a := vs + v3 + v4 + V5.

Porovnanim koeficientov pri a, b, c, d, a2, b?, ¢?, d?, ab, ac, ad, be, bd,
cd postupne dostavame

’U2-_—’U3=-"U4:U5=0,
t1U2 + t2u1 =0 (5)

tiug =0, (1) v1(tiusg + tau1) = s, (6)
tous = 0, (2) U1 (t1U4 + t4u1) = —Tq, (7)
tsuz =0, (3) vi(tous + tauz) = —r2,  (8)

taug =0, (4) vi(taug + tauz) = —s2,  (9)
tsug + tqug =0, (10)
pri¢om vy, S2 a ro sa nerovnaju nule. Vzhladom k symetrii (x) mézeme
predpokladat, ze u; = 0 (kvdli (1)) a postupne dostanemé t; # 0 # us
Z(6),U2=0Z(5),U4750Z(7),t3=t4=0Z(3)a(4),t2;é0Z(8),
t.j. t1,t2,u3,uq # 0, u,us,ts,t4 = 0, a teda sy = vitius, —re = vytiuy,
—7ry = v1tousz, —S3 = vitauy a ziskavame spor

0> —Sg = (Ult1U3)(’U1t2U4) = (v1t1u4)(vlt2u;:,) = ’I‘g >0,

98



ktory dokazuje, Ze dvojica vyrazov ac — bd, ad + bc sa nedd spocditat
pomocou dvoch nasobeni.

P-1l1-3

Najprv si v8imnime, Ze pri hladani optimalnej platby sa sta¢i obmedzit
na také platby, pri ktorych pre kazdé i je bud z; = 0, alebo y; = 0,
lebo nemé cenu, aby platitel ddval mince, ktoré potom prijemca vrati.
Platbou teda budeme rozumiet n-ticu U = (uq,...,u,) € Z" (kladné u;
znamend, ze platitel dal u; minci hodnoty ¢;; zdporné u; znamena, ze
prijemca vratil —u; minci tejto hodnoty).

Dalej si uvedomme, 7e sa stadi zaoberat obnosmi delitelnymi q; —
iné obnosy danymi mincami nevyplatime.

Oznaéme t; = %(qiﬂ/qi—l), t.3- qiv1/qi =2t +1,t; 2 1prel i<
< n. Predpokladdme ¢; | X a budeme uvaZzovat platby U s vlastnostou

n
Z uiq; = X.
i=1

Pozorovanie 1. Pre Iubovolni platbu U sa dd zostrojit platba U* =
= (u},...,u}) s rovnakym zaplatenym obnosom, nie vy$sim celkovym
poc¢tom minci a s vlastnostou

luf| £t prel <i<n. (*)

DOKAzZ. Ak totiz U nespliiuje podmienku (), oznaime si ig naj-
mensie i < n také, ze |u;| > t;. Existuji (jednoznalne urcené) celé
isla p, r s vlastnostou u;, = p(2t;, + 1) + 7, || £ tiy, p # 0. Teraz
p(2t;, + 1) minci hodnoty ¢;, zamenime p mincami hodnoty g¢;,+1: polo-
zime wj = ui, — p(2ti, + 1), uj 1 = ui+1 + p; ostatné zlozky vektora U
nechdme nezmenené. Dostali sme tak nova platbu U’ s rovnakym zapla-
tenym obnosom a s |uj | = |7 < tig, [uf, 1] = [uig41 + P| S |uig4a| + |pl.
Spocitajme, ako sa zmenil pocet pouzitych minci!

Ak |ui,| 2 2t;, + 1, poCet minci hodnoty g;, sa zniZil o |p|(2t;, + 1)
a pocCet minci hodnoty g;,+1 sa zvysil nanajvys o |p|, celkovy poclet sa
teda urcite znizil.

Ak t;, < |ui| £ 2t;, (v tomto pripade |p| = 1), pocet minci hodno-
ty ¢i, sa znizil aspon o 1 a pocet minci hodnoty ¢;,+1 sa zvysil nanajvys
o |p| = 1, celkovy pocet sa teda urcite nezvysil.

Priklad: Pre ¢; = 1, g2 = 5 sa platba (6, —2) zmeni na (1, —1), (-4, 2)
na (—1,3) a (3,1) na (—2,2). Zmena po¢tu minci je —6, —2 resp. 0.
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Zhrnutie: dostali sme platbu U’ s rovnakym obnosom, nie vy3$im
po¢tom minci a s vlastnostou |uj | < t;, pre 1 < i < ip. Postup moZzeme
opakovat s platbou U’, ..., atd; po nanajvys n — 1 —ig takychto krokoch
dostaneme platbu U* spliiujicu (*), ¢o bolo treba ukézat.

Nasledujtce pozorovanie ukazuje, ze platba U s vlastnostou (x) je
jednoznacne urcené:

Pozorovanie 2. Nech U, U’ su platby s vlastnostou (x). Potom U = U'.
DOKAz. Ak totiz U # U’, existuje ip < n také, Ze
ui=u§ (1 £1i <), Usj, ;éugo.

(Zrejme nemdze byt i = n, lebo potom by obnosy zaplatené U a U’
neboli rovnaké.) Potom

n n
Z Uiqi = Z Uéql'-

1=1g 1=1g

Obe strany tejto rovnosti vydelime ¢islom g;,+1 = ¢, (2t;, + 1). Dosta-
neme

(uio - u;'())qio = kqio (2t1'0 e 1)
a vzhladom k (x)

[kl(2ts + 1) = luip — i | S Juso | + uiy| < 2t

t.j. k = 0 a uy, = uj, ¢o je spor s definiciou ip. Tym je pozorovanie
dokézané.

Algoritmus je vlastne hotovy, ak si vSimneme, ze obnos X sa da
vyplatit X/¢1 mincami hodnoty ¢;. Vyjdeme z tejto platbhy U =
= (X/q1,0,0,...,0) a zostrojime k nej platbu U* s vlastnostou (*) podla
Pozorovania 1. Na druhej strane urcite existuje optimédlna platba Ugpy;
k nej mozeme zostrojit (podla Pozorovania 1) optimélnu platbu U,
s vlastnostou (). Platby U* a Uj,, majt vlastnost (*), a preto podla
Pozorovania 2 sa musia rovnat: U* = U; ;. To ale znamen4, Ze platba U*,
ktora sme zostrojili, je optimalna.

Sprdavnost algoritmu sme uz dokézali; nasledujtci program uréi plat-
bu U vyhovujicu vztahu (x) (ktord je optimélna). Nazvy premennych
v programe sa zhoduji s ndzvami pouzitymi v predchadzajacich ivahach
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az na to, ze v programe sa nepracuje s polom hodnét ¢[1..n]. V programe
vystupuje len hodnota ¢; ako premenna g1, hodnota g; (pre aktudlne 7)
ako premennd ¢ a pole t[1..n] s hodnotami t;. Hodnota t[n] je lubo-
volné a sluzi len na zabranenie behovej chyby pri testovani podmienky
while-cyklu pre ¢ = n (keby sa testovala aj druhé ¢ast and-podmienky
napriek neplatnosti prvej ¢asti). Program netestuje, ¢i vstupné déata spl-
huji podmienky tlohy (vstupny stbor minci 1, 4, 8 napr. ,transformuje®
na 1, 5, 15).

Odhad casovej zloZitosti: Pri odhade zlozitosti zalezi na reprezentacii
Cisel vystupujicich v algoritme. Ak ¢, g2, - . ., g, a X st celé ¢isla menSie
nez nejaka konstanta INTMA X , tak hodnota n je zhora ohrani¢ené kon-
Stantou (2"7! £ q1 (281 4+1)(2ta+1) ... (2tn—1+1) = g, S INTMAX, a te-
da n < log, INTMAX + 1). Vykona sa najviac n opakovani while-cyklu
a kazdy prechod cyklom trva konStantny pocet krokov (vykonédvaja sa
len aritmetické operacie). Algoritmus teda trva konstantny pocet krokov
a pouZije pamét konstantnej velkosti. (Pri pouziti aritmetiky velkych &isel
by boli potrebné iné odhady.)

Program v PASCALe:

program PLATBA;
const n = ...;
var
t :array [1..n] of integer;
ql,q,qq : integer;
U : array [1..n] of integer;
X :integer;
1:1..m;
begin
read(ql);
qq := q1;
for i := 1 ton —1 do begin
read(q);
t[i] == (g div ¢q) div 2;
99 :=g;
end;
t[n] := 0;
read(X);
if (X modgl = 0) then begin
Ull] := X divgl;
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1:=1; q:=4ql;

while (i < n) and (abs(U[i]) > t[i]) do begin
Uli + 1] := (abs(U[i]) + t[z]) div (2 = t[i] + 1);
if U[i] < 0 then U[i + 1] := =U[i + 1];
Uli] :=Uli] = U[i + 1] % (2 * t[i] + 1));
writeln(U[i],” minci hodnoty ’, q);
q:=qx* (2%t +1);
i=i 41

end;

writeln(U[i],” minci hodnoty ’, g);

end else
writeln(’Obnos ’, X,” K& sa neda vyplatit.’);
end.

P-1ll-4

1. Spomenme si na tlohy predchadzajtcich kol. Nasli sme tam ¢isla
7527522, 572572 (vytvéarajlice sami seba) resp. 757227572 a 27572275722
(vytvarajice sa navziajom). Hned vidime, Ze vSetky st nesmrtelné.

2. Pre kazdé n =2 1 najdeme n ¢isel X1,..., X, takych, Ze

Xi}_Xi+1 (i:l,...,n—l),
X, F Xy

Polozime X; = 2»~1Xx271 . X;=2""iX2"% . X, =X a chce-
me najst také X, ze X = X, F X; = 2"71X271 Ale 27~ 1Xx2n-1 =
= 7"71(2"71X) a sta¢i pouzit Craigov zékon s M = 771 A = 2n~1:
existuje X s vlastnostou X - M(AX) = 2"t X271,

Riesenim je napr. X = M572AM572 = 70157227~ 177~1572,

Pre n = 1,2 sme dostali niektoré rieSenia z bodu 1.

3. Neexistuje také H, aby bola splnené ekvivalencia uvedend ako za-
klad algoritmu. To sa nahliadne pomocou McCullochovho zakona: keby
také H existovalo, ndjdeme X s vlastnostou X + HX. Potom

— ak X je nesmrtelné, HX je tieZ nesmrtelné;
— ak X nie je nesmrtelné, HX tiez nie je nesmrtelné.

To je spor s uvedenou ekvivalenciou.
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Korespondenéni seminai UV MO 1992/93

Korespondenéni seminaf je jednou z forem péce o talentované zaky.
Vznikl ve 24. roéniku MO proto, aby bylo mozno vénovat individualni
pé¢iitém zaktm, ktefi neméli moznost navstévovat specidlni skoly a pra-
covat v tamnich seminarich. V tomto ro¢niku matematické olympiddy
se vSak poprvé nepodafilo rozb&hnout korespondenéni seminai UV MO
zpusobem obvyklym v diivéjsich letech. Po roce 1990 bohuzel ubylo ¢asu
i ochotnych spolupracovniki, a tak se podarilo rozeslat jen dvé sedmice
aloh, které uvadime dale (vétSina tloh byla vybréna z materidlu jury
33. MMO). K prvnim sedmi Glohdm zde najdete i jejich reSeni.

Ulohy korespondenéniho seminaie

1.1 Ozna¢me Ry mnozinu vSech nezdpornych redlnych ¢isel a pro dana
kladné ¢isla a, b uvazujme funkci f: Ry — R4, kterd spliuje funkcionalni
rovnici
f(f(2)) +af(z) =bla+b)z.

Dokazte, Ze tato rovnice mé jediné reseni.

1.2 Je dan konvexni ¢tyifuhelnik ABCD, jehoz thlopticky AC, BD jsou
na sebe kolmé, AC L BD. Vné daného ¢tyifuhelniku sestrojme nad jeho
stranami ¢tverce AEFB, BGHC, CIJD, DKLA (jejich vrcholy jsou
znaleny proti sméru hodinovych rucicek). Dokazte, Ze ¢tyrahelniky Qq,
Q2 ohranic¢ené primkami AG, BI, CK, DE, resp. AJ, BL, CF, DH jsou
shodné.

1.3 Je-li f mnohoclen s racionalnimi koeficienty a a realné ¢islo, pro které
plati s
o ~a = (f(@)° - fla) =331,

pak pro kazdé n = 1 plati
(f™(@)® = £ (a) = 33192,

kde f(™(z) = f(f(... f(z)...)) pro kazdé pfirozené n. Dokazte.
N’

n
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1.4 V daném trojihelniku ABC ozna¢me D a E pruseéiky os thli ABC
a ACB s odpovidajicimi stranami AC, AB. Najdéte velikosti thli troj-
thelniku ABC, jestlize |<scBDE| = 24°, |<<CED| = 18°.

125

1.5 Dokazte, ze N = m 1 je slozené cislo.

1.6 Pro libovolné kladné celé ¢islo z oznaéme

g(z) = nejvétsi lichy délitel ¢isla z,

= + — je-li z sudé
f@)=42" g() ’
23(=+) jeli z liché.

Ukazte, ze se v posloupnosti z1 = 1, 2,41 = f(z,) vyskytne &islo 1992,
a zjistéte nejmensi n, pro které x,, = 1992. Vyskytne se ¢islo 1992 v dané
posloupnosti vickrat?

1.7 V roviné jsou dany tfi kruznice k, k1, k2, jeZ se navzajem dotykaji tak,
Ze kruznice k;, ko se dotykaji vné v bodé W lezicim uvnitf kruZnice k.
Navic jsou na kruZnici k£ dany tfi body A, B, C tak, ze primka BC se
dotyka v riuznych bodech obou kruznic k;, ko a spojnice W A je zaroven
jejich spole¢nou te¢nou, pricemz body A a W lezi v téze poloroviné urcené
pfimkou BC. Dokazte, ze W je stfedem kruZnice vepsané trojuhelni-
ku ABC.

2.1 Reste soustavu rovnic
tgz1 + 3cotgx; = 2tgxs,
tgxo + 3cotg e = 2tg 3,
tgz, + 3cotgx, = 2tgz;.

2.2 Zjistéte, pro jaka prirozend cisla n existuje konvexni n-thelnik, kte-
rému lze vepsat kruZnici a jehoZz strany maji (v néjakém poradi) veli-
kosti1,2,...,n

2.3 Jestlize f a g jsou mnohocleny s redlnymi koeficienty a pro libovolna
redlnd ¢isla z, y plati

f@) = f(y) = a(z,y) (9(z) - 9(v)),

pak existuje mnoho¢len h takovy, ze f(z) = h(g(z)) pro libovolné reél-
né z. Dokazte.
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2.4 Rozhodnéte, zda existuje mnozina M s nasledujicimi vlastnostmi:

(1) Mnozina M obsahuje 1992 pfirozenych ¢isel.

(2) Kazdy prvek mnoziny M a soucet libovolného poétu jejich prvki méa
tvar m* (m, k jsou pfirozend &isla, k > 2)?

2.5 Jestlize

f@E) =z +a12™ 1 +az™ 2 + ...+ am-1Z + G,

g@) =z"+a1z" +az" i + ...+ a1z + an

jsou dva mnoho¢leny s redlnymi koeficienty takové, ze pro kazdé realné
¢islo z je f(z) druhou mocninou celého éisla, pravé kdyz je druhou moc-
ninou celého ¢isla i g(x), potom pro m + n > 0 existuje mnohoclen h
s realnymi koeficienty takovy, ze f(z)-g(z) = (h(ac))2 pro kazdé z. Do-
kazte.

2.6 Necht |z] oznaduje nejvétsi celé ¢islo nejvyse rovné &islu z. Zvolme li-
bovolné &islo z; v intervalu (0, 1) a definujme posloupnost (zx);>; vztahy

0, je-li z,, =0,
+ {—J jinak.
Tn

Tn
Dokazte, ze pro libovolné n prirozené plati

SIS L U . SASE .
1 2 n F2 F Fn+1,

kde i =F,=1a F,49=F,41 + F, pron 2 1.

2.7 Jestlize a(n) oznacuje polet jedni¢ek ve dvojkovém zdpisu éisla n,

potom

a) a(n)? £ fa(n)(a(n) +1);

b) v predchozi nerovnosti nastava rovnost pro nekone¢né mnoho klad-
nych cisel n;

¢) existuje posloupnost (n;)$2,, pro kterou podil a(n?)/a(n;) konverguje
pro n — oo k nule.
Dokazte.
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Reseni tiloh korespondenéniho semindie
1.1 Nebylo zvlast obtizné uhodnout, ze f(z) = bz je feSenim dané rovni-
ce; problém byl ukédzat, Ze jina neexistuji. Uvedené feseni je podle M. Hla-
wiczkové.
Uvazujme libovolné ¢islo y € Ry a definujme rekurentné posloupnost

{a,} vztahy

a =y,  an= f(an-1),
tj. a1 = f(y), a2 = f(f(y)), ..., atd. Dana funkcionalni rovnice pro
T = a, pak rika, Ze

Anto + atnt1 = bla+b)ay,. (1)

Charakteristickd rovnice tohoto rekurentniho vztahu (tj. rovnice, kterou
dostaneme, hledame-li feSeni rekurentniho vztahu mezi geometrickymi
posloupnostmi (g™))

¢® +aq = bla+0)

ma kofeny ¢; = b, g2 = —(a + b). Existuji tedy realna ¢isla A, B tak, zZe
an = Ab™ + B(—=1)"(a + b)", n=0,1,2,..., (2)

a tedy o wan
= :A+B(—1)"(1+ E) .

Protoze a/b > 0, vyplyva z binomické véty, ze
a\m a

1+2) 21+ 5n

(1+3) z1+gn

Je-li B < 0, je pro n sudé

a a\™ a a

= - -) < —) = —

= A+B(1+ b) :A+B(1+nb) nBY +(A+B),
coz v8ak bude (v rozporu se zadanim) mensi nez nula pro dostate¢né
velkd n. Obdobné pro B > 0 a n liché

%:A-B(1+%>R§A—B(l+n%)=—HB%+(A_B)a

coz je mensi nez nula pro dostatecné velké n. Musi tedy byt B = 0,
tj. a, = Ab™. Tim padem

y=ag=A, fly) = a; = Ab,

takze f(y) = by, coz jsme chtéli dokazat.
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1.2 Uvazujme nejprve dva étverce AB'CD' a BC'DA’ s hlopfitkami
AC a BD (obr. 30). Protoze BD L CD, jsou oba uvedené ¢tverce stejno-
lehlé. To znamena, ze pfimky AA’, BB', CC" a DD’ prochézeji spole¢nym

bodem O (stfedem stejnolehlosti).

Otoceni kolem vrcholu A o +90° zfejmé zobrazi trojihelnik AED na
trojahelnik ABL (obr. 31), takze pfimky BL a ED jsou navzajem kol-
mé. Pfitom mnozina vSech takovych bodi X, Ze otoceni kolem stfedu X
0 +90° zobrazi pfimku BL na DE, je zfejmé osa thlu BT D, kde T
oznacuje prisecik pfimek BL na DE. Na této ose tedy lezi i vrchol A.
Bod T lezi na Thaletové kruznici nad primérem BD stejné jako bod A’.
Navic osa thlu BT D prochazi stifedem oblouku BD, coZ je pravé bod A’,
prochazi tedy i stfedem O uvaZované stejnolehlosti. Odtud plyne, Ze oto-

¢eni kolem stfedu O o +90° zobrazi pfimku BL na
DE, a analogicky zjistime, Ze stejné otoceni zob-
razii pfimku AJ na CK, DH na BI a CF na AG.
Ctyfthelnik Q; je tedy v uvedeném otodeni obra-
zem Ctyrahelniku Qo. Oba ¢tyithelniky jsou proto
shodné.

1.3 Kubicky mnoho¢len z3 — z — 33! 992 m4 pouze
jeden redlny kofen. Staci si uvédomit, jak vypada
funkce g(z) = 2® —z (obr. 32), uvedeny mnohoclen
z ni vznikne posunutim o konstantu 33'°°2 mno-
hem vétsi, ne je lokalni extrém pro z = 1/+/3: pro

A

Obr. 32
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z < 1jeurdité 23 —z — 33192 < 0 a pro z 2 1 je funkce 23 — x — 331992
ostie rostouci. Protoze i f(«a) jsou dle pfedpokladu tlohy redlné kofeny
uvazovaného kubického mnohoclenu, je f(a) = a a matematickou indukci
pak odtud plyne rovnost f(™(a) = a. Tim je tvrzeni Glohy dokézano.

1.4 Oznalme S prisetik obou os BD a CE (obr.33), 8 = |<<ABC|,

Obr. 33

v =|<xBCA|, a =|<xCAB|, 6 = |<SDE| = 24°, ¢ = |<<SED| = 18°.
Podle vztahu pro vnéjsi thly trojihelniku je

|<BDA| =y + g |<CEA| =3+ %
Podle sinové véty v trojihelniku SDE plati
|DS| _ sine
|[ES| ~ siné’

Podle sinové véty v trojahelnicich DSA a ESA mame (vime, ze SA je
osou thlu BAC)

IDS| _|DS||AS|  sing sin(B+ %)
|ES|  |AS||ES|  sin(y + g) sing

Srovnanim obou vztaht vidime, ze
sind - sin(ﬂ -4 %) =sine - sin(’y + g)

Zaroven plati

B

5+

N |2

=n—|<XCSB|=n—|<DSE|=6+¢e =42° (1)
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A7 do tohoto bodu dospéli viceméné vSichni FeSitelé; korektné vak tuto
soustavu rovnic nevyresil zadny.
Oznacime-li -
,3 + '2' —48° = Z,
bude
B+ % = +48°,
B_4B+7

T+5 =

04880 (54 ) m ot - o) =7

a potfebujeme tedy fesit rovnici
sind - sin(z + 48°) = sine - sin(78° — ),

tj.
sin 24° sin(z + 48°) = sin 18° sin(78° — ), (2)

neboli

sin 24°(sin 48° cos z + cos 48° sinz) =

= sin 18°(sin 78° cos & — cos 78° sin z). (3)

Ozna¢me na okamzik cos 36° = a. Podle vzorci pro cos2a a cos3a pak
bude

cos 72° = 2a% — 1,

cos 108° = 4a® — 3a.
Zaroven cos 108° = cos(180° — 72°) = — cos 72°, takze
4a® +3a*> - 3a—-1=0,

¢ili
2(a+1)(2a®* —a—1) =0.
Z¥ejmé cos36° # —1, takze a + 1 # 0, a tedy

€08 72° = cos 36° — cos 60°.
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. sin B_Ta, dosté-

.«
Protoze cos72° = sin18° a cosa — cos B = 2sin +
vame
sin 18° = 2sin 12° sin 48°

a po vynasobeni obou stran ¢islem sin 78° = cos 12° vyjde
sin 18° sin 78° = sin 24° sin 48°.

Dosazenim tohoto vztahu do (3) obdrzime rovnici

sin 24° cos 48° sinz = — sin 18° cos 78° sin x.
Pokud by platilo sin 24° cos48° = — sin 18° sin 78°, byla by rovnice (3),
a tedy i (2) splnéna identicky pro vSechna z; to vSak neni pravda (napt.
pro x = 78° je prava strana (2) nulova, zatimco leva ne). Musi tedy byt
sinz = 0, to znamena, Ze

z=k-180°, k celé.

Aviak z +48° = B + 17 lezi v intervalu (0°,180°), takze k = 0, a tedy

ﬂ+%=48°.

Odtud pomoci (1) plyne
,6 — 120, v¥= 720,

a konecéné
a=180° - — v =96°.

Tim je priklad vyfeSen.

1.5 Oznaéme x = 5%°, pak

N=z*4+224+224+2+1=(2>+3x+1)? -5x(z+1)° =
=((@® +3z+1) = 5%z +1))((2* + 3z + 1) + 5'%(z + 1)).

Odtud je ziejmé, zZe N je slozené piirozené ¢islo.
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1.6 Je-li (pro néjaké a) x, =1 -2*, kde I je liché a k > 1, pak
Za k k-1
$a+1=—2—+2 =({+2)-2"".

Specialné, pokud z, = 2*, dostdvdme postupné

Ty = Zk) )

— k-1

Tat+1 = 3-2 )
Ta42 = 5- 2k_2,

Tatj = (2.7 + 1) : 2k_j’

Tat+k = (2k + 1) . 20,

nacez
_ ok+1
Tat(kt1) =277 .

Protoze 21 =1 =2% a 2o = 2 = 2!, bude
1 2 _ o3
Ti+1 =27,  Tipi42 =27, T3 =20, L,
¢ili
k
xmk=2, k:0,1,2,...,

kde jsme oznatilimy =1+ (1+2+...+k) =1+ $k(k +1). Z (*) pak
vyplyva, ze

zmk+j=(2j+l).2k—j, j=0,1,2,... k.

Protoze my + (k + 1) = mg41, jsou timto vzorcem urdeny viechny ¢leny
posloupnosti (tj. kazdé prirozené ¢islo n se da, a pfitom ziejmé jedinym
zpusobem, napsat ve tvaru n = my + j, kde £k € {0,1,2,...} a j €
€{0,1,...,k}).

Nyni 1992 = 23 - 249, takZe

Tt = 1992 <= j =124,
127128
k=127 <= mk+j=1+-T+124=8253.
Cislo 1992 se tedy vyskytne v posloupnosti {z,} pravé jednou, a to pro
n = 8253.
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1.7 Oznalme Q@ resp. P body dotyku kruZnice k; s kruznici k resp. s pfim-
kou BC, D stied toho oblouku BC kruZnice k, ktery neobsahuje bod A,
a budiz DLy, L1 € kq, ta teéna z bodu D ke kruznici ki, kterd lezi na
opacné strané piimky @D nez bod B (obr.34). Uvazujme stejnolehlost

D
Obr. 34

se stfedem @, kterd zobrazuje kruznici k1 na kruznici k. ProtozZe te¢na
ke k v bodé D je rovnobéznd s ptimkou BC, zobrazi se pfi této stejnoleh-
losti bod P do bodu D. Odtud vyplyva, ze Q, P a D lezi v pfimce. Déle
|BD| = |CD|, takze |<cCBD| = |<<BQD| (obvodové thly), trojihelniky
BQD a PBD jsou tedy podobné. Tim padem

|DB|* = |DP|-|DQ| = |DL,|?

(posledni rovnost plyne z mocnosti bodu D ke kruZznici k1 ), takze |[DL;| =
= |DB|. Podobn4 uvaha pro k, misto k; (jestlize definujeme Lo pro ks
analogicky jako L; pro ki) ukazuje, Ze i |DLy| = |DC| = |DB]. Plati
tedy

|DLy| = |DLs|.

Protoze se vSak k; a ko dotykaji, plyne odtud, ze Ly = Lo =W a
|DW| = |DB| = |DC|. (*)

Protoze |BD| = |CD|, shoduji se obvodové tthly BAD a CAD, tj. AW
je osa thlu BAC (obr. 35).

Protoze BW D je vn&jsim ithlem trojuhelniku ABW , plati |<cABW |+
+ |<BAW| = |<BWD|. Déle diky (%) |<xBWD| = |<W DB| a podle
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D
Obr. 35

véty o obvodovych thlech |<cCBD| = |<BAD)|. Celkem méme
|<xABW| = |<xBWD|-|<BAD| = |<WBD|-|<xCBD| = |<CBW|,

a tedy BW je osa thlu ABC. Bod W je tedy prusecikem os thli troj-
thelniku ABC, neboli stfedem jeho vepsané kruZnice.
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34. mezinarodni matematicka olympiada

Ve dnech 13.-24. Eervence 1993 se v tureckém Istanbulu konala 34. mezi-
narodni matematick4 olympiada. Ceskou republiku na ni velmi tusp&sné
reprezentovala Sestice studentti tii gymnazii. Jejich vysledky vidite v né-
sledujici tabulce:

Body za tlohu Body Cena
Umisténi 1 2 3 4 56
102.-110. Michal Brodsky 2 21 7 4 3 19 IIL
4. ro€. gymnazia
Brno, tf. kpt. Jarose
143.-150. Marcela Hlawiczkova 1 70 0 7 0 15 IIL
4. ro¢. gymnazia
Ttinec
122.-132. Ondfej Klima 1 0 4 7 1 4 17 1L
4. ro¢. gymnézia
Brno, tf. kpt. Jaro$e
52.-58. Vit Novak 7 0 4 5 3 6 25 I
4. ro¢. gymnazia
Praha, Korunni
19.-24. Jana Syrovatkova 7T 2 7 4 7 5 32 L
4. ro¢. gymnazia
Brno, tf. kpt. Jarose
59.-66. Robert Samal 7 2 0 7 5 3 24 IL

2. ro€. gymnézia
Praha, Korunni

Celkem 25 13 16 30 27 21 132

Vedoucim &eské delegace byl jednatel UV MO dr. Karel Hordk, CSc.,
z Matematického tstavu Akademie véd, ktery se zGcastnil i zasedani me-
zindrodni jury. 16. Cervence pak do Istanbulu pfijelo nase Sesticlenné
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druzstvo vedené doc. dr. Leo Bockem, CSc., z Matematicko-fyzikalni fa-
kulty University Karlovy, piedsedou UV MO. Celkem se 34. MMO zii-
Castnilo 413 studentti ze 73 zemi (soutéz vSak dokoncilo jen 410 z nich).
Podle pravidel byla polovina acastnikii ocenéna jednou ze tii medaili:
za zisk 3042 bodt byla udélena zlatd medaile (I. cena), za 20-29 bodu
st¥ibrné (II. cena) a za 11-19 bodd bronzova (III. cena).

V neoficidlnim poradi druzstev jednotlivych zemi se Ceska republika
s jednou zlatou, dvéma stiibrnymi a tfemi bronzovymi medailemi umis-
tila se 132 body na 10. misté, coz je vysledek, ktery se ndm asi dlouho
nepodari zopakovat!

I II III body I II III body
CLR 6 0 0 215 Bélorusko 0 11 54
Né&mecko 4 2 0 189 Svédsko 011 51
Bulharsko 2 4 0 178 Maroko 0 0 1 49
Rusko 4 1 1 177 Thajsko 0 0 2 47
Tchaj-wan 1 4 1 162 Argentina 01 1 46
ran 2 3 1 153 Svycarsko 01 1 46
USA 2 2 2 151 Norsko 0 0 2 44
Madarsko 31 2 143 Novy Zéland 0 0 2 43
Vietnam 1 4 1 138 Slovinsko 0 0 2 43
Ceskd republika 1 2 3 132 Spanélsko 01 1 43
Rumunsko 1 2 3 128 Makedonie 0 0 3 42
Slovensko 1 3 1 126 Litva 0 0 O 41
Australie 1 2 3 125 Irsko 0 0 1 39
Velka Britanie 0 3 3 118 Portugalsko 0 0 1 35
Indie 0 4 1 116 Azerbajdzan 0 0 1 33
Korea 0 3 3 116 Filipiny 0 0 1 33
Francie 2 11 115 Finsko 0 0 O 33
Izrael 1 2 2 113 Chorvatsko 0 0 1 32
Kanada 11 3 113 Estonsko 0 0 1 31
Japonsko 0 2 3 98 JAR 0 0 0 30
Ukrajina 0 2 3 96 Trinidad a Tobago 00 0 30
Rakousko 01 4 87 Moldavsko 0 0 O 29
Italie 1 0 2 86 Kirgizie 000 28
Turecko 01 2 81 Macao 0 0 0 24
Kazachstan 01 3 80 Mexiko 0 0 1 24
Gruzie 01 3 79 Mongolsko 0 0 1 24
Kolumbie 0 0 4 79 Island 0 0 O 23
Arménie 1 10 78 Lucembursko 01 0 20
Polsko 0 2 1 78 Albanie 0 0O 18
Singapur 01 3 75 Severni Kypr 0 0 O 17
Lotyssko 0 2 1 73 Bahrajn 0 0 O 16
Dénsko 0 1 3 72 Kuvajt 00 0 16
Hongkong 0 0 4 70 Indonézie 0 0 0 15
Brazilie 0 0 1 60 Bosna a Hercegovina 0 0 1 14
Nizozemsko 0 0 1 58 Alzirsko 0 0 0 9
Kuba 0 1 1 56 Turkmenistan 0 0 O 9
Belgie 0 0 1 55
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Texty soutéZnich tloh
(v zévorce je uvedena zemé, kterd tlohu navrhla)

1. Necht f(z) = 2" +52""1 +3, kde n > 1 je pfirozené &islo. Dokaite, Ze
f nelze rozloZit na soué¢in dvou mnohodéleni, z nichz kazdy ma celo¢iselné
koeficienty a stupen asponi 1. (Irsko)

2. Necht D je vnitini bod ostrothlého trojihelniku ABC, pro ktery plati
|<<ADB| = |<cACB| + 90°

|AC| - |BD| = |AD| - |BC)|.

AB|-|CD
a) Spoctéte hodnotu podilu W
b) Dokazte, Ze te¢ny v bodé C kruznic opsanych trojuhelnikim ACD
a BCD jsou na sebe kolmé. (Velkd Britdnie)

3. UvaZujme néasledujici hru na nekoneéné Sachovnici. Na pocatku je n?
kament uspofddano do bloku n x n sousedicich poli, pricemz v kazdém
poli stoji jeden kdmen. Tahem rozumime premisténi kamene horizontal-
nim ¢i vertikdlnim smérem pres jedno obsazené sousedni pole na bezpro-
stfedné nasledujici pole volné. Preskoceny kdmen odstranime.

Najdéte vSechna n, pro néz muze hra skoncit s jedinym kamenem na
Sachovnici. (Finsko)

4. Pro body P, Q, R v roviné ozna¢me m(PQR) minimum délek vySek
trojihelniku PQR (m(PQR) = 0 pro kolinedrni body P, Q, R).

Jsou-li A, B, C tfi body v dané roviné, dokazte, ze pro kazdy bod X této
roviny plati

m(ABC) £ m(ABX) + m(AXC) + m(XBC).
(Makedonie)

5. Necht N = {1,2,3,...}. Rozhodnéte, zda existuje funkce f: N — N,
pro niz

fQ1) =2,
f(f(n)) = f(n) +n pro viechnan € N

f(n) < f(n+1) pro vSechnan € N.
(Némecko)
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6. Necht n > 1 je celé &islo. UvaZzujme n lampiéek Lo, L1, ..., Ln_q
usporddanych do kruhu. Kazda lampicka je bud zapnuté, nebo vypnuta.
Postupné provadime kroky Zy, Z1, ..., Z;, ..., pricemz krok Z; ovlivni
pouze stav lampicky L; (nechava vSechny ostatni lampic¢ky nezménény),
a to néasledovné: Je-li L;_; zapnutd, zméni Z; stav lampicky L; ze zapnu-
tého na vypnuty, anebo z vypnutého na zapnuty. Je-li L;_; vypnutd, Z;
nechd stav L; nezménén. Lampicky jsou ¢islovany modulo n, to zname-
nd, ze Ly = L1, Lo = Ly, L1 = Lp41, atd. Na zacatku jsou vSechny
lampicky zapnuty. Dokazte, ze
a) existuje kladné celé ¢islo M(n) takové, Ze po M(n) krocich budou
vSechny lampicky zapnuty,
b) je-li n tvaru 2*, budou po n? — 1 krocich viechny lampicky zapnuty,
¢) je-li n tvaru 2* + 1, budou po n? — n + 1 krocich viechny lampicky
zapnuty. (Nizozemsko)

Reseni tloh

1. Predpoklddejme, ze dany mnohoclen f lze rozlozit, tj. ze plati f = gh,
kde g a h jsou mnohocleny s celociselnymi koeficienty stupné aspon 1
a s koeficientem 1 u nejvyssi mocniny. Protoze f(0) = g(0)h(0) = 3, je
bud |g(0)| = 1, nebo |h(0)| = 1. Bez Gijmy na obecnosti budeme predpo-
kladat, ze |g(0)| = 1.

Necht a1, 2,...,a, (K 2 1) jsou kofeny rovnice g(z) = 0 v oboru
komplexnich ¢isel, tj. plati

9(z) = (z —a1)(z —az)...(z — o). (1)
Je tedy zéaroven |g(0)| = |a1s ... x| = 1.
Protoze f = gh, jsou ¢isla aj,ag,...,ar (kK 2 1) kofeny i rovnice
f(z) =2 1(z +5) + 3 =0, proto
a’ Yo +5)=-3, 15isk.

1

Souéinem téchto vztaht proi=1,2,...,k dostaneme
(@1 + 5)(ag +5) ... (ax + 5)| = 3. (2)
Z vyjadieni (1) podle (2) nyni plyne
19(=5)] = [(e1 +5)(as +5) ... (o +5)| = 3%,
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pritom ale pro mnohocleny g a h s celo¢iselnymi koeficienty mame 3 =
= f(=5) = g(—5)h(—5). Protoze g(—5) déli &islo 3, musi v rovnosti (2)
nutné byt k = 1, a mnohoclen ¢ je tedy linearni.

Jestlize g je linearni dvojclen s koeficientem 1 u nejvy$si mocniny
a s vlastnosti |g(0)| = 1, je g(z) = x £ 1, takze je bud g(—1) = 0, nebo
g(1) = 0. Odtud plyne, Ze je bud f(—1) = 0, nebo f(1) = 0. Jak se
snadno presvéd¢ime, ani jedno z &isel f(—1), f(1) v8ak neni nulové.

Rozklad mnoho¢lenu f na soucin dvou netrividlnich mnohocleni s ce-
lo¢iselnymi koeficienty neni tedy mozny.

Jiné feSeni. Raciondlnimi kofeny daného mnohoc¢lenu f mohou byt
jediné ¢isla £1, £3, pro liché ¢islo x je vSak hodnota f(z) rovnéz lich4,
takze f nemd zadny racionalni kofen. To znamend, Ze mnohodélen f neni
délitelny linedrnim dvojclenem s celo¢iselnymi koeficienty (takovy ma
vzdy raciondalni kofen!).

Predpoklddejme, Ze

f(@) = (akz® + ap—12* 1 + ...+ a17 + ap) x

X (k™% + bp_p_12™ ¥ 4 4 bz + by), (3)

kdea; (0Si<k)ab; (0 j <n—k)jsouceldéisla, k 22,n—k 22 (je
tedy n 24 a2 < k < n—2). Porovnanim koeficientlt vychazi agby = 3.
Volme oznaceni tak, Ze ao je délitelné tfemi a |bg| = 1. Koeficienty a;
prvniho mnohoc¢lenu na pravé strané (3) nemohou byt vSechny délitelné
t¥femi (to by byly tfemi délitelné i koeficienty mnohoclenu f), existuje
tedy index t (1 £t < k) takovy, Ze 3 | a; pro viechna i < t a 3 { a;.
Protoze t £ k < n — 2, je koeficient u zt mnohoélenu f roven nule:

0 = asbg + (at_lbl + .. )

Protoze vyraz v zévorce je dle pfedpokladu délitelny tfemi, ale 3 { |atbo| =
= |a¢|, dostdvame spor.

Pozndmka. Analogicky druhému reSeni mizeme dokdzat nasledujici
obecnéjsi tvrzeni (tvrzeni tlohy dostaneme prop=3ak=n—1):

Necht f(z) = caz™ + cp_12™ 1 +... + 1T + co je mnohoclen s celo-
¢iselnymi koeficienty takovy, Ze pro néjaké prvocislo p jsou koeficienty c;
délitelné p pro viechna i, 0 < i < k £ n, ptcr a p? { co. Jestlize se
f d& rozlozit na soudin dvou mnoho¢lent s celo¢iselnymi koeficienty, ma
aspon jeden z nich stupen nejvyse n — k.
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Je to zobecnéni tzv. Eisensteinova kritéria, které dostaneme prok = n
a které fika, ze mnohoclen s koeficientem 1 u nejvyssi mocniny, jehoz
vSechny ostatni koeficienty jsou délitelné prvocislem p, pri¢emz absolutni
¢len je délitelny jen p, a nikoli p?, je nerozlozitelny ve tiidé mnoho¢lent
s celodiselnymi koeficienty.

2. a) V poloroviné opatné k ABC uvazujme bod E takovy, ze DEB je
pravouhly rovnoramenny trojuhelnik s pravym thlem pfi vrcholu D. Plati
tak |BD| = |DE|. Protoze |<xADB| = |<xACB| + 90°, je |<XADE| =
= |<<ACB|. Podle zadéni

|AC| _|AD| _ |AD|

|BC| ~ |BD| |DEJ|’
odkud plyne, ze trojuhelniky ABC a AED jsou podobné, a proto
|<<DAE| = |<<CAB]| (obr. 36). Odectenim |<xDAB| od obou stran pfe-
deslé rovnosti dostdvame rovnéz |<cCAD| = |<<BAE)|.

C

W
N

E
Obr. 36

Z uvedené podobnosti trojuhelniki ABC a AED vychéazi
|AB| |AC|
[AE| ~ [AD|
Ze shodnosti thldt CAD a BAE a predeslé rovnosti dale plyne, Ze i troj-
uhelniky ADC a AEB jsou podobné. Plati tedy
|AB| _ |BE|
[AC| ~ icp|’
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a tudiz

|AB|-|CD| |BE| _

= =V2.
|AC|-|BD| |BD| V2

b) Ozna¢me t a t’ te¢ny ke kruznicim opsanym trojthelnikim ACD
a BCD v bodé D (obr. 37). Ze shodnosti vyznacenych obvodovych a tise-

Obr. 37

kovych Uhlt v; a 7y, pfislusnych tétivé AD kruznice ADC a t&tivé BD
kruznice BDC' dostavame pro velikost tihlu ¢, ktery sviraji pfimky ¢t a t’,

¢ = | ADB| — (11 +72) = | < ADB| — | < ACB]| = 90°.

Protoze teény k obéma opsanym kruznicim v bodé C jsou s te¢nami t a t’
soumérné sdruzené podle osy spolecné tétivy CD, je tvrzeni b) dokdzano.

3. Zvolme kartézsky soufadny systém v roviné nekonec¢né Sachovnice tak,
ze jednotliva pole v ném maji celoCiselné souradnice
a n? kament zabira viechny m¥izové body (z,y), kde
1<z < n,1< y £ n Kazdy tah ma vliv na ob-
sazeni t¥i poli sousedicich horizontélné ¢i vertikalné.
Obarvime-li pole Sachovnice tfemi barvami (obr. 38)
tak, Ze stejnou barvu budou mit pole, jejichz soucet
soufadnic = + y dava stejny zbytek modulo 3, vidime, Obr. 38
Ze po kazdém tahu se celkovy pocet obsazenych poli
kazdé barvy zméni o jednu (ve dvou pfipadech klesne, v jednom vzroste).
Ozna¢me ag, a1, az pocet obsazenych poli té které barvy. Na pocatku
je pocet obsazenych poli roven n?. Je-li n nasobek t¥i, je pocet obsazenjch
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poli kazdé barvy stejny (ap = a1 = az = in?), takZe viechna ti &sla
maji stejnou paritu (jsou vSechna sudé, nebo vsechna lichd). Jak jsme
uz ukézali, po kazdém tahu se parita kazdého z Cisel ag, a1, as zméni na
opacnou, a protoze konecné pozici odpovida trojice ¢isel 0,0,1 s riznou
paritou, je ziejmé, ze pro n délitelné tiemi nelze této konecné pozice
zadnou posloupnosti tahti dosdhnout.

Neni-li n délitelné tfemi, popiSeme postup, kterym lze vzdy pozado-
vané konecné pozice dosahnout. Tim bude dloha vyfesena.

Pro n = 1 jsme hotovi. Pro n = 2 dosdhneme konec¢né pozice nasle-
dujici posloupnosti taht:

®
o0 - 00 - O0O0O®@ — 00O
[ N J (ONON | [ONON ] (ONONE)

Nyni ukdzeme, jak zredukovat ¢ty¥i obsazena pole z pétice poli tvaru ,, T“
na jediné obsazené pole, pricemz uvolnime trojici sousednich poli:

cee ® OO [ X Ne) (ONON )
@ — o — @] — (@]
® @ O O

Pomoci tohoto postupu (ne nutné v uvedené orientaci) zredukujeme
pro n = 4 pocet obsazenych poli na 1, pro n = 5 na 22 a obecné pron > 6
na ¢tverec (n — 3) x (n — 3) (obr.39). Pro n = 4 a n = 5 postupujeme
odebirdnim trojic ve vyznadeném pofadi, pro n = 6 postupujeme ana-

logicky od pravého dolniho rohu a skonéime vodorovnou trojici v levém
hornim rohu. Odtud plyne nase tvrzeni matematickou indukci.

n—3

n—3
5067
3lals
1 4 2|1
2 3

Obr. 39

Zdver. Hra mutze skoncit s jedinym kamenem na Sachovnici, pravé
kdyz n neni délitelné tfemi.
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4. V pripadé, Ze body A, B, C jsou kolineéarni, je tvrzeni ziejmé.

Pro libovolné body P, @, R uvaZzované roviny ozna¢me M (PQR)
maximum délek stran trojihelniku PQR a S(PQR) dvojnasobek jeho
obsahu. Pak zfejmé plati

S(PQR)

Déle si vSimnéme, ze pro libovolny bod Z trojahelniku PQR plati
M(ZQR) £ M(PQR).
Oznacime-li totiz S a T pruseéiky polopfimek QZ a RZ s protéjsimi
stranami PR a PQ trojahelniku PQR (obr.40), bude zfejmé (spojnice

vrcholu s libovolnym bodem protéjsi strany neni nikdy del$i nez delsi
z obou sousednich stran!)

|QZ] < |QS| £ max(|QP],|QR]),
|RZ| < |RT| < max(|QR|,|RP]),

takze

M(ZQR) = max(|QR|,|RZ|,|ZQ]) =
< max(|PQ|,|QR|,|RP|) = M(PQR).

Q R
Obr. 40

LeZi-li nyni bod Z na nékteré strané trojihelniku PQR, feknéme QR
(obr. 41), pak rozhodné nejsou délky vysek trojahelniku PQZ z vrcholt
P a Z vétsi nez odpovidajici délky vysek trojuhelniku PQR z vrchold
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P a R; a pokud je nejkratsi vySkou trojihelniku PQR zbyvajici vyska

R

R

Obr. 41

z vrcholu @, musi byt thel @ PR ostry. V tom piipadé pro délku posledni
vy$ky trojuhelniku PQZ plati

|PQ|sin|<xQPZ| £ |PQ|sin|<xQPR]|,
takze je v kazdém pripadé
m(PQZ) £ m(PQR).

Posledni nerovnost snadno zobecnime pro libovolny bod Z trojahel-
niku PQR (obr.42): je-li Z vnitini bod trojahelniku PQR a Z’ priseéik

R

ZI

P Q

Obr. 42

spojnice PZ s protéjsi stranou QR, je podle pravé dokdzané nerovnosti
m(PQZ) £ m(PQZ') £ m(PQR). (1)
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Uvedené poznatky nyni vyuzijeme k vyfeSeni alohy.

a) Necht X je bod trojihelniku ABC (obr.43).
V tomto pfipadé plati pro obsahy trojuhelniki ABC, ABX, AXC
a XBC

S(ABC) = S(ABX)+ S(AXC)+ S(XBC) =
=m(ABX)M(ABX)+m(AXC)M(AXC)+m(XBC)M(XBC) <
< (m(ABX) + m(AXC) + m(XBC))M(ABC),
odkud po vydéleni kladnym ¢islem M (ABC) plyne dokazovand nerov-
nost.

b) Necht X je vné&jsim bodem trOJuhelmku ABC, pticemz jeden z vr-
cholt trojihelniku ABC (oznalme ho napt. C) lezi uvnitf trojahelniku
urceného zbyvajicimi dvéma vrcholy a bodem X (tedy uvnitf trojihel-
niku ABX, obr.44). V tom piipadé je podle (1)

m(ABC) £ m(ABX) < m(ABX) + m(AXC) + m(X BC).

C X c

Obr. 43 Obr. 44 Obr. 45

c) Zbyvé pripad, kdy jsou body A, B, C, X vrcholy konvexniho
Ctyrahelniku. Volme oznaceni vrchold napt. tak, ze ABXC je konvexni
(obr.45) a oznatme X' prusecik thlopticek AX a BC.

Podle (1) pro bod X' plati m(ABX') < m(ABX) a m(AX C) <
< m(AXC), zatimco m(X'BC) = 0. Uzitim vysledku ¢4sti a) tak dosté-
vame

m(ABC) £ m(ABX') + m(AX'C) + m(X'BC) £
< m(ABX) + m(AXC) + m(X BC),

coZ je opét nerovnost, kterou jsme cht&li dokazat.
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Pozndmka. Neni tézké uvazit, ze rovnost v dokdzané nerovnosti na-
stane v pripadé rovnostranného trojuhelniku ABC pro vSechny body X
v trojuhelniku (tj. v¢etné jeho hranice), pro rovnoramenny trojihelnik
ABC, jehoz zékladna AB je mensi nez rameno AC, pro vSechny body X
zdkladny AB a pro X = C a pro vSechny ostatni trojihelniky jen pro
body X € {A,B,C}.

5. UkdZeme, Ze funkce f danych vlastnosti existuje.
Na zékladé hodnoty f(1) = 2 dostaneme opakovanym pouZitim
vztahu f(f(n)) = f(n) 4+ n rovnosti

fF@) =f1)+1=2+1=3,
fB)=f(2)+2=3+2=5,
f(5)=f(3)+3=5+3=38,
Ff(8)=f(5)+5=8+5=13,

Piedpokladejme, ze n 2 3 a ze mame jiz definovany hodnoty f(1),
f(2),..., f(n—1) tak, Ze souCasné plati

f)<f2)<...< f(n-1).

Polozme
g(n) = max{k: 1 £ k <n, f(k) £ n}, (1)
f(r) =n+ g(n).

Protoze f(2) = 3 < n, je mnoZina na pravé strané (1) neprazd-

na, takze definice funkce g ma dobry smysl. Navic z predpokladu
f(1) < f(2) < ... < f(n—1) plyne, ze je g(n) 2 g(n — 1), a tedy
f(n) > f(n —1). Uzitim principu matematické indukce zjistime, Ze takto
definovana funkce f je rostouci.

Zbyvé jesté ovérit, zeefunkce f spliiuje pro vSechna n € N podminku
f(f(n)) = f(n) + n. Protoze f je rostouci funkce a f(1) = 2, plati
f(n) > n. Odtud jiz plyne

9(f(n)) = max{k: 1 S k < f(n), f(k) < f(n)} &=n,
a proto f(f(n)) = f(n) +g(f(n)) = f(n) +n.
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Nalezend funkce f ma tedy vSechny pozadované vlastnosti.

Jiné feseni. Zkusme funkci f hledat mezi linedrnimi funkcemi tvaru
f(n) = an. Z rovnosti f(f(n)) = f(n) + n vychéz

o®n=an+n, neN.

Koeficient o tedy splituje kvadratickou rovnici a? — o — 1 = 0, kterd ma

kladny kofen a = %(1 + \/3) Funkce n — an neni ovSem celodiselna,
zkusime ji proto zaokrouhlit:
Necht a = 1(1 + v/5). Polozme

fln) = [an + %J (n €N). (2)

Protoze a je iracionalni ¢islo, bude pro libovolné n € N platit

£m) — an] < 5 3)

a specialné
£ (F) - af)] < 5. @

Spoétéme dale rozdil (vyuZzijeme pfitom rovnost a? — a = 1)

F(f() = f(n) =n = f(f(n)) = f(n) = (&® —a)n =
)) = af(n) + (a—1)(f(n) - an).

ProtoZe na levé strané stoji absolutni hodnota celého ¢isla, je rovna nule,
tj.
f(f(n)) = f(n) +n.
Koneéné rovnost f(1) = 2 plyne z definice (2) diky tomu, ze % <a<
< 2.

Pozndmka. Z uvedenych fefeni je vidét, Ze funkce f neni podminkami
tlohy urcena jednoznacné.
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6. Uvazujme posloupnost ag,a,as,... nul a jedni¢ek takovou, Ze pro
j 2 0jea; = 1, pravé kdyz po provedeni Z; je lampicka L; zapnutd
(v daném okamziku j tak zapisujeme pouze stav lampicky L;, protoze
v dalsich n — 1 krocich se jeji stav nebude ménit). Vysledek operace Z;
miZeme charakterizovat kongruenci

aj = aj—n +aj—1 (mod 2). (1)

Pravidlo (1) plati pro kazdé j 2 n a bude platit i pro j € {0,1,...,
n — 1}, jestlize polozime

A—p =0—n41 =Q@_p42 = ... = A2 =0-1 = 1,

coz odpovida pocateénimu stavu, kdy jsou vSechny lampicky zapnuty.

Vektor v; = (@j—n,...,a;j—1) charakterizuje stav lampicek v oka-
mziku j (bezprostfedné pred provedenim operace Z;), vo = (1,1,...,1).
ProtoZze existuje jen konecny pocet takovych vektort nul a jednicek
(totiz 2™), existuji celd ¢isla j 2 0 a m 2 1 takova, Ze vj = Vjym.

Uvédomme si, ze ze slozek vektoru v; = (aj—n,...,aj—1) dokdZeme
pomoci vztahu (1) uréit slozky vektoru v;—1 = (aj—n-1,...,0j-2) —
stadi pomoci (1) spocitat jedinou nezndmou souradnici:

Aj—n—1 = Qj—1 — Qj-2 (mod 2)

(jinymi slovy pfifazeni v;_1 + v; je invertibilni). Z rovnosti v; = vj4m,
tak rovnou plyne vj_1 = Vj4m—1, - - ., Vo = Vp,. Cislo M (n) = m ma tedy
pozadovanou vlastnost a).
Pouzijeme-li rovnost (1) opakované na s¢itance na jeji pravé strané,
dostaneme postupné
aj; = Qj—n + a;—1 =
= (@j-2n + @j-n-1) + (@j—1-n + aj_2) =
= Qj_2n + 20j—n-1 + aj—_2 (mod 2),
a; = (aj_gn + aj_zn_l) + 2(aj_2n_1 + aj_n_z) +
+ (aj_z_n + aj_g) =

= Qj_3n + 3aj—2n—1 + 3aj_n—2 + aj_3 (mod 2).

Dostavame tak vzorec
T T
aj = Z (;)aj_(,_i)n_i (mod 2), (2)
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ktery plati pro vSechna j a r takovd, ze index j — (r —i)n—1 je aspon —n,
tj. pro j 2 (r — 1)n, a ktery snadno zdtivodnime indukci pomoci rov-
nosti (1) a vzorce ("t1) = (,7) + (7)) pro0 < i <7+ 1.

Vzorec (2) se velmi zjednodusi pro r = 2¥, protoze kombinaéni &isla
tvaru (2:) jsou pro viechna i € {1,...,2F — 1} sud4. To je snadno vidét
napf. z vyjadreni

2k _2k2k—1 26-2 2*-i+1 1
i) 1 2 i-1

k

v némz zadny ze zlomku

po zkraceni neobsahuje mocninu dvojky,

a pfitom 2*/i > 2.
Pror =n=2% aj > (n — 1)n mizeme tedy psat

Qj = Qj_p2 + Qj—n = Qj_p2 + (aj — aj_l) (mod 2)

neboli
Aj—n2 = Qj-1,

coz znamena, ze posloupnost (a;) je periodickd s periodou n? — 1. Tim
je dokazano tvrzeni b).
Je-li koneéné n = 2% + 1, vyuzijeme vzorec (5) pror =n — 1 = 2%,
takze pro libovolné j 2 (n — 2)n plati
Aj = Qj_n24n + Qjont1 = QGj_n24n + (@j+1 — a;) (mod 2)
neboli (je z = —z (mod 2))

Aj—n24n = Qj+1,

coZ znamena, ze posloupnost (a;) je periodicka s periodou n? — n + 1.
Tim je dokdzano tvrzeni c).
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5. mezinadrodni olympidda v informatice

Po vzoru mezinidrodni matematické a fyzikalni olympiddy byla v roce
1989 zaloZena také mezinarodni olympiada v informatice (I0I — Inter-
national Olympiad in Informatics). Zajem o tuto soutéz v celém svété
neustale roste a kazdoro¢né se zvySuje pocet zucastnénych zemi. Jesté
pred dvéma lety v roce 1991 prijely na 3. mezinadrodni olympiadu v in-
formatice soutézni druzstva pouze z 23 zemi, na tomto 5. ro¢niku IOI byl
jiz pocet tcastniku témér dvojnasobny. Poprvé ve své historii také 101
opustila evropsky kontinent a prenesla se az do Jizni Ameriky.

P4ta mezinarodni olympidda v informatice 10’93 pro stfedoskoldky
se konala ve dnech 16.-25. 10. 1993 ve mésté Mendoza v Argentiné. Olym-
piddy se zucastnilo 155 soutézicich (z toho 5 divek) ze 44 zemi, nékolik
dalsich zemi vyslalo na soutéz své pozorovatele.

Mezindrodni olympidda v informatice je vyhlasena jako soutéz jed-
notlivel, kazda zemé na ni muze vyslat delegaci tvorenou dvéma ve-
doucimi a nejvyse ¢tyrmi soutézicimi. Vedouci delegace se automaticky
stdva ¢lenem mezindrodni jury, jeho zastupce se po dobu soutéZe stara
o soutézni druzstvo. Soutézicimi jsou studenti stfednich $kol, pfipadné
Cerstvi absolventi v prislusném Skolnim roce ve véku do 19 let.

Ceskoslovenské druzstvo se zi¢astnilo viech étyt predchozich roéniki
a pravidelné dosahovalo vybornych vysledkit. Po rozdéleni Ceskosloven-
ska jela poprvé soutézit samostatna druzstva Ceské a Slovenské republiky.
Obé druzstva byla vybrana na zakladé vysledki 3. kola kategorie P. Vy-
brani ¢esti i slovensti reprezentanti se spole¢né s nadhradniky v zari 1993
zuCastnili spole¢ného tydenniho pripravného soustiedéni pred mezina-
rodni olympiddou. Soustfedéni se konalo na matematicko-fyzikalni fa-
kulté Univerzity Komenského v Bratislavé pod vedenim vedouciho druz-
stva Slovenské republiky mgr. Richarda Nemce.

Ceské reprezentalni druzstvo pro I0I'93 odcestovalo do Argentiny
v nésledujicim slozeni: Martin Mares, student 3. ro¢niku gymnézia U li-
benského zamku v Praze 8, Jana Syrovatkova, absolventka gymnézia na
tf. kpt. JaroSe v Brné (dnes studentka MFF UK v Praze), Vit Novdk
a Jiri Vanicek, oba absolventi gymnazia v Korunni ul. v Praze 2 (dnes oba
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studenti MFF UK v Praze). Vedoucim delegace byl doc. RNDr. Viclav
Sedlacek, CSc., z ptirodovédecké fakulty Masarykovy univerzity v Br-
né, jeho zastupcem RNDr. Pavel Topfer, CSc., z matematicko-fyzikalni
fakulty Univerzity Karlovy v Praze.

V organizaci tohoto ro¢niku soutéze doslo k nékolika drobnym tpra-
vam. V prvnim soutéznim dnu nebyla feSena pouze jedna velkd tloha
jako drive, ale misto toho byly studentim zadéany k feSeni tii méné na-
ro¢né problémy. Ve druhém soutéznim dnu pak byla soutézicim piedlo-
zena k TeSeni jedna obtiznéjsi aloha. Soutézni tlohy byly zvoleny vzdy
v den jejich feSeni mezindrodni porotou slozenou z vedoucich delegaci
vSech zucastnénych stat. Mezinarodni jury vybirala pokazdé ze t¥ riiz-
nych navrhi na kazdou soutéZni tlohu. Soutézici pracovali samostatné
u pfidélenych osobnich pocitaca typu PC. V kazdém soutéZznim dnu méli
na praci 5 hodin ¢istého Casu. Vysledné programy pak byly za p¥fitom-
nosti studenta a vedouciho delegace testovany koordinatory. Novinkou
bylo stanoveni ¢asovych limitt pfi testovani studentskych programi po-
moci predem pripravenych soubort zkuSebnich dat. V hodnoceni tloh
se tak letos poprvé odrazila také efektivita vytvorenych programt. Na
zakladé vysledki predepsanych test byla feSeni tloh obodovéana. Kazdy
den mohl soutézici ziskat maximalné 100 bodt. Celkové vysledky byly
stanoveny na zakladé sou¢tu bodového zisku v obou soutéznich dnech.

Prvnich 82 soutézicich z pritomnych 155 bylo ocenéno nékterou z me-
daili. Celkové bylo udéleno 13 zlatych medaili (za bodovy zisk 186-200
bod), 27 stiibrnych medaili (za 161-178 bodii) a 42 bronzové medaile (za
123-158 bodti). Nagi studenti navézali na dobrou tradici ¢eskoslovenské
reprezentace na 101 a opét dosahli vynikajicich vysledka. Martin Mares
ziskal zlatou medaili (200 bodi) a obsadil 1.-4. misto v celkovém pora-
di. Dvé stfibrné medaile obdrzeli Vit Novdk (175 bodi, 15.-25. misto)
a Jana Syrovdtkova (167 bodt, 31.—-32. misto). Pouze Jiri Vanicek zistal
letos bez medaile (40 bodi, 137. misto). Navic byl Martin Mare$ jednim
obdrzeli zvlastni cenu UNESCO. Mezi ocenénymi Gcastniky byly pouze
dvé divky, a to Jana Syrovatkova z CR a Bronislava Brejova ze SR (obé
ziskaly stfibrnou medaili). Soutéz druzstev nebyla na IOI vyhldSena a ani
zadné poradi druzstev nebylo publikovano. Bylo by ostatné velmi obtizné
jakékoliv poradi druZstev stanovit, nebot fada zemi vyslala do Argentiny
neuplné delegace pouze se dvéma nebo tiemi soutézicimi.

Mimo vlastni soutéz pripravili organizatori pro vSechny tcastniky bo-
haty doprovodny program. Jeho nejhodnotnéjsi soucésti byl zavéreény
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celodenni vylet autobusy do And témér az ke statni hranici Argentiny
s Chile.

Texty soutéZnich uloh

1. Mame néahrdelnik slozeny z N koralkd (N < 100), z nichz nékteré jsou
gervené, jiné modré a zbyvajici bilé. Korédlky jsou sefazeny ndhodné. Na
obr. 46 jsou dva piiklady pro N = 29. (Koralky, povazované v dal$im
textu za prvni a druhy, jsou na obrazku oznadeny.)

19 12
O0O0e [ X Ne)
e® o4 o° o4
.. ° DO °
o ® ] &
o © ° ¢
o o o
% o o o
° ® ¢ Cerveny kordlek g ®
o .. o modry korélek ® ..
Ceg,e®  Obily korlek ®eeen®
a) b)

Obr. 46

Konfigurace na obrdzku a) muze byt reprezentovina jako fetézec
znakl b a r, kde b reprezentuje modry koralek a r koralek Cerveny, né-

sledovné:
brorrrbbbrrrrrbrrbbrbbbbrrrrb.

Vasim tkolem je prerusit nadhrdelnik, napfimit jej, a potom odebirat
korélky jedné barvy z jednoho konce, dokud nenarazite na koralek jiné
barvy. Stejnym zptisobem odebirate koralky z druhého konce (tyto ko-
ralky mohou mit jinou barvu, nez mély koralky odebirané z opa¢ného
konce).

Urcete bod, v némz mé byt ndhrdelnik preruSen, aby bylo moZzné
odebrat nejvétsi pocet koralku.

Napftiklad z ndhrdelniku na obrazku a) mtze byt odebrano 8 koralk,
pokud bude délici bod mezi kordlky 9 a 10 nebo mezi koralky 24 a 25.

Nékteré nahrdelniky mohou obsahovat i bilé koralky, jak ukazuje ob-
razek b). Pfi odebirani koralkt muZze byt bily kordlek povaZovan za Ger-
veny nebo modry a obarven pozadovanou barvou. Retézec reprezentujici
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tuto konfiguraci bude obsahovat symboly r, b, w. NapiSte program, ktery
déla nésledujici:

1. Precte konfigurace ze vstupniho ASCII souboru NECKLACE.DAT.
Soubor obsahuje na kazdém fadku jednu konfiguraci. ZapiSe vstupni data
do vystupniho ASCII souboru NECKLACE. SOL.

Priklad vstupniho souboru NECKLACE.DAT:

brbrrrbbbrrrrrbrrbbrbbbbrrrrb
bbwbrrrwbrbrrrrrb.

2. Pro kazdou konfiguraci ur¢i maximalni pocet M koralkil, které lze
odebrat a misto prerusSeni nahrdelniku.

3. Do vystupniho souboru NECKLACE. SOL zapiSe pocet M a délici bod.
Reseni riiznych konfiguraci budou oddélena prazdnym radkem.

Piiklad mozného feSeni (soubor NECKLACE.SOL):

brbrrrbbbrrrrrbrrbbrbbbbrrrrb
8 between 9 a 10

bbwbrrrwbrbrrrrrb
10 between 16 a 17

2. Neékteré spolecnosti jsou ¢asteénymi vlastniky jinych spole¢nosti, ne-

bot ziskaly éast jejich akcii (podilt). Napt FORD vlastni 12 % MAZDY.

Rekneme, Ze spoletnost A kontroluje spole¢nost B, pokud je splnéna

alespon jedna z nésledujicich podminek:

a) A= B,

b) A vlastni vice nez 50 % B,

c) A kontroluje k (k = 1) spole¢nosti C(1),...,C(k) takovych, ze C(7)
vlastni z(i) % spolefnosti B pro 1 £ i < k aplati z(1) +... 4+ z(k) >

> 50.

Reste tuto tilohu:

Je dén seznam trojic (i, j, p), které znamenaji, ze spolecnost ¢ vlastni
p% spole€nosti j. Urcete vSechny dvojice (h,s) takové, ze spolecnost h
kontroluje spoletnost s. Existuje nejvySe 100 spolecnosti. Napiste pro-
gram, ktery déla nasledujici:

1. Ze vstupniho ASCII souboru COMPANY.DAT precte seznam trojic
(4, ], k), ktery je povazovan za data pro jednu tlohu. Hodnoty i, j, k jsou
kladnd celd &isla. Data pro jednotlivé tlohy jsou ve vstupnim souboru
oddélena vzdy prazdnym radkem.
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2. Urd vSechny dvojice (h, s) takové, Ze spoletnost h kontroluje spo-
le¢nost s.

3. Do vystupniho souboru COMPANY . SOL zapiSe vSechny nalezené dvo-
jice (h,s), v nichz h je rizné od s. Dvojice (h,s) musi byt pfi zapisu
uspofadany podle rostouci hodnoty h. ReSeni jednotlivych tloh musi byt
oddélena prazdnym radkem.

Priklad: COMPANY.DAT COMPANY . SOL
2 3 25 4 2
1 4 36 4 3
4 5 63 4 5
2 1 48
3 4 30 2 3
4 2 b2 2 4
5 3 30 2 5

3 4
1 2 30 3 5
2 3 52 4 5
3 4 51
4 5 70
5 4 20
4 3 20

3. Na bily list papiru je pokladano pres sebe N obdélniki riznych barev.
List papiru mé rozméry: Sirka a cm, délka bcm. Strany pokladanych ob-
délnikii jsou rovnob&zné s okraji papiru. Zadny z obdélniki nepiesahuje
okraje listu papiru. Po polozeni obdélnikt jsou vidét rizné obrazce riz-
nych barev. Dvé oblasti stejné barvy povazujeme za ¢asti téhoZ obrazce,
pokud maji aspon jeden spolecny bod. Jinak jsou povaZovény za rizné
obrazce. Ukolem je uré¢it plochu kazdého z téchto obrazci. Cisla a, b jsou
kladna sudé cisla, ne vétsi nez 30.

Uvazovany souradnicovy systém ma pocatek ve stfedu listu, osy jsou
rovnobézné s okraji listu.

Data pro jednotlivd zadani tloh jsou zapséna ve vstupnim ASCII
souboru RECTANG.DAT. Hodnoty a, b, N jsou na prvnim radku kazdé
skupiny dat a jsou oddéleny mezerou. V kazdém z dal$ich fadkl jsou:

e celociselné souradnice mista, kde bude umistén levy dolni vrchol ob-
délniku,

e nasledované celociselnymi sourfadnicemi mista, kde bude umistén
pravy horni roh obdélniku,
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e a pak nésleduje barva obdélniku reprezentovana celym c¢islem od 1
do 64.
Napi$te program, ktery:

1. ¢te vstupni data ze souboru RECTANG.DAT,

2. urdi plochu kazdého obrazce,

3. zapiSe do vystupniho ASCII souboru RECTANG.SOL barvu a plochu
kazdého obrazce, jak ukazuje piiklad. R4dky budou usporddany podle
rostouciho ¢isla barvy. feSeni jednotlivych tloh budou oddélena prazd-
nym fadkem.

Priklad: RECTANG.DAT RECTANG.SOL
20 12 5 1 172
-7 -5 -3 -1 4 2 a7
-5 -3 b 3 2 4 12
-4 -2 -2 2 4 4 8
2 -2 3 -1 12
3 1 7 5 1 1 630
2 70
30 30 2 15 200

0 0 5 14 2
-10 -7 0 13 15

4. Vyhrél jste soutéz kanadskych aerolinii. Vasi vyhrou je volna letenka
na cestovani po Kanadé. VaSe cesta zacind v nejzipadnéjsim misté, do
kterého 1étaji tyto aerolinie. Potom cestujete pouze smérem ze zapadu
na vychod, dokud nedoletite do nejvychodnéjsiho mista, do kterého létaji
tyto aerolinie. Potom se vracite zpét pouze smérem z vychodu na zépad,
dokud nedoletite do vychoziho mista. Z4dné mésto nesmi byt navstiveno
vice nez jednou s vyjimkou vychoziho mista, které musi byt navstiveno
presné dvakrat (na zacatku a na konci vaSeho vyletu). Nesmite pouzit
zadné jiné aerolinie ani zadny jiny druh dopravy.

Vyreste nasledujici dlohu: Je dan seznam mést a seznam lett mezi
dvojicemi mést. Naleznéte rozpis, umoznujici navstivit co nejvice mést
pfi splnéni vySe uvedenych podminek.

Data pro jednotlivd zadani aloh jsou ulozena ve vstupnim ASCII
souboru C:\IOI\ITIN.DAT. Data pro kazdou tlohu maji nasledujici tvar:

e Na prvnim fadku je pocet mést N a pocet V piimych letd, jejichz
seznamy budou nésledovat. Hodnota IV bude celé kladné ¢islo ne vétsi
nez 100, V je celé kladné ¢islo.

e Na kazdém z nasledujicich n fadkt je jméno jednoho mésta. Jména
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mést jsou ve vstupnim souboru serazena od zapadu na vychod. To
znamend, ze i-té mésto lezi vychodné od j-tého mésta, pravé kdyz
i > j. (Neexistuji zidna dvé mésta, kterd by leZela na stejném poled-
niku.) Jméno kazdého mésta je retézec tvoreny nejvyse 15 Cislicemi
nebo pismeny latinské abecedy, naptiklad

AGR34 nebo BEL4.

e Na kazdém z dalsich V' radka jsou vzdy jména dvou mést z predcho-
ziho seznamu. Jsou oddélena mezerou. Dvojice mést

cityl city2

uvedend na jednom fadku znamena, ze existuje pfimé letecké spojeni

ze cityl do city2 a samoziejmé také primé spojeni ze city2 do

cityl.

Data pro jednotlivé tlohy jsou ve vstupnim souboru oddélena prazd-
nym Fddkem (tj. Faddkem obsahujicim pouze znak EOLN). Za poslednim
fadkem dat pro posledni Glohu neni prazdny rédek. Priklad vstupniho
souboru C:\IOI\ITIN.DAT:

8 9

Vancouver
Yellowknife
Edmonton

Calgary

Winnipeg

Toronto

Montreal

Halifax

Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary
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C1
Cc2
C3
Cc4
C5
C5 C4
C2 C3
C3 C1
C4 C1
C5 C2

Nalezené treseni kazdé tlohy musi byt zapsano do vystupniho ASCII
souboru C:\IOI\ITIN.SOL v nasledujicim tvaru: Na prvnim radku je za-
psan celkovy polet mést (zapsany na vstupu), na druhém fadku je uveden
pocet M ruznych mést navstivenych dle nalezeného rozpisu. Na dalsich
M + 1 tadcich jsou jména mést v poradi, v némz budou navstivena. Na
kazdém radku je zapsano jméno jednoho mésta. Pozor, prvni navstivené
mésto musi byt znovu uvedeno jako posledni. Pokud neni nalezeno zadné
.TeSeni tlohy, do souboru ITIN.SOL zapiste pouze dva fadky: prvni ob-
sahuje celkovy pocet mést, na druhém je napis NO SOLUTION. Vysledky
feSeni jednotlivych tloh oddélte v souboru ITI.SOL prazdnym radkem.
Mozné reSeni predchoziho prikladu:

8

7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver

5
NO SOLUTION

Program ulozte do ASCII souboru C:\IOI\DDD.xxx. Pfipona .xxx je
.BAS pro QBASIC, .LCN pro LOGO, .C pro C a .PAS pro Pascal.
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