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42. ročník matematické olympiády
na středních školách
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O průběhu 42. ročníku matematické olympiády

Soutěž Matematická olympiáda ve školním roce 1992/93 pořádaly pro

žáky středních a základních škol Ministerstvo školství, mládeže a tělový-
chovy ČR, Ministerstvo školství, mládeže a sportu SR ve spolupráci s Jed-
notou českých matematiků a fyziků, Jednotou slovenských matematiků
a fyziků a Matematickým ústavem AV ČR. Soutěž řídil ústřední výbor
matematické olympiády (ÚV MO) prostřednictvím oblastních a okres-
nich výborů matematické olympiády.

Cílem soutěže je vyhledávání žáků talentovaných v matematice, pro-
bouzení jejich hlubšího zájmu o matematiku a rozvíjení jejich matema-
tických schopností. Ve školním roce 1992/93 se uskutečnil její 42. ročník.

Ústřední výbor MO pracoval ve složení, v němž byl jmenován minis-
terstvy školství ČR a SR na pětileté období při zahájení 39. ročníku.
Předsedou ÚV MO byl doc. dr. Leo Boček, CSc., z MFF UK v Praze,
tajemníky byli dr. Karel Horák, CSc., z MÚ AV ČR v Praze a dr. Jiří
Binder, CSc., z PF UK v Praze.

V průběhu 42. ročníku MO se konala tři zasedání ÚV MO, první
dne 2. prosince 1992 v Praze, druhé 26.-27. dubna 1993 na gymnáziu
v Jevíčku při celostátním kole kategorie A a pak se ústřední výbor sešel
ještě jednou 10. června 1993 na gymnáziu na třídě kpt. Jaroše v Brně.
Bylo projednáváno hodnocení průběhu soutěže, zabezpečení celostátních
soustředění úspěšných řešitelů MO včetně soustředění pro přípravu na

MMO, korespondenční seminář ÚV MO a organizace dalších kol soutěže
a v neposlední řadě i další spolupráce mezi českým a slovenským výborem
olympiády.

V organizaci vlastní soutěže nedošlo к žádným podstatným změnám.
Přes rozpad Československa na počátku roku 1993 proběhla všechna kola
MO společně včetně závěrečných III. kol kategorií A a P (proto v ročence
najdete zadání a řešení některých úloh ve slovenštině). Byla to však po-
slední společná celostátní kola, nicméně dle vzájemné dohody českého
i slovenského organizačního výboru zůstanou nadále společné úlohy a ter-
miny jednotlivých kol MO. Mezinárodních olympiád se poprvé účastnila
samostatná družstva obou republik.
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Pro žáky středních škol byla soutěž organizována ve čtyřech katego-
riích А, В, С a P. Kategorie A byla určena žákům 3. a 4. ročníků středních
škol, kategorie В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci
1. ročníků. Pro žáky všech tříd středních škol byla určena ještě katego-
rie P, zaměřená na úlohy z programování a matematické informatiky.

V kategoriích А, В a C má I. kolo dvě části. V první části řeší soutěžící
6 úloh doma nebo v matematických kroužcích a mohou se přitom radit se

svými učiteli, vedoucími kroužků apod. Druhá část má formu klauzurní
práce, v níž řeší žáci tři úlohy v omezeném čase 4 hodin. Řešitelé, kteří
úspěšně projdou prvním kolem, jsou pozváni do druhého (oblastního)
kola soutěže, kde řeší čtyři úlohy opět v limitu čtyř hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo. V něm je
vlastní soutěž rozdělena do dvou dnů. V kategorii A řeší soutěžící každý
den tři úlohy v časovém limitu čtyři hodiny, v kategorii P ve stejném
limitu vždy dvě úlohy.

Celostátní kolo se mělo podle dosud zaběhnutého cyklu původně ко-
nat v Praze. Jeho organizace v metropoli se však ukázala jako finančně
příliš nákladná, a tak nakonec přijali Pražané nabídnutou pomoc malého
města v srdci Malé Hané, jehož význam pro českou matematiku bude
ještě doceněn.

Celostátní kolo 42. ročníku se tak uskutečnilo v Jevíčku ve dnech
25.-28. dubna 1993 (kategorie A) a 28. dubna až 1. května 1993 (katego-
rie P). Na zabezpečení soutěže včetně bohatého doprovodného programu
pro soutěžící i členy ÚV MO se obětavě podíleli profesoři a pedagogický
sbor jevíčského gymnázia včele s jeho ředitelem dr. Dagem Hrubým.

Vybraná družstva se zúčastnila mezinárodní matematické olympiády
i mezinárodní olympiády v informatice. Těmto soutěžím je věnována sa-
mostatná kapitola v závěru této ročenky.

К matematické olympiádě vedle vlastní soutěže patří i řada doprovod-
ných akcí pro talentované žáky. Z akcí pořádaných oblastními výbory MO
к nim zejména patří semináře pro řešitele MO a instruktáže pro učitele.
Pro nejúspěšnější řešitele oblastních kol MO a korespondenčních semi-
nářů byla pořádána (většinou týdenní) soustředění.

Ústřední výbor MO zajišťoval dvě celostátní soustředění. Pro žáky
nematurujících ročníků to bylo již tradiční soustředění řešitelů úloh MO
a FO. Proběhlo ve dnech 6.-18.6. 1993 v Jevíčku (naposledy společně
pro úspěšné řešitele z Čech i Slovenska). Další soustředění bylo věnováno
přípravě českého a slovenského družstva na mezinárodní matematickou
olympiádu a konalo se 6.-13. května 1993 v Bratislavě. Vybraní čeští
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i slovenští reprezentanti se společně s náhradníky v září 1993 zúčastnili
společného týdenního přípravného soustředění před mezinárodní olympi-
ádou v informatice. Soustředění se konalo na matematicko-fyzikální fa-
kultě Univerzity Komenského v Bratislavě pod vedením vedoucího druž-
štva Slovenské republiky mgr. Richarda Nemce.

Soutěžní úlohy I. (domácího) kola všech kategorií matematické olym-
piády jsou publikovány v tzv. soutěžních letácích. Úlohy jsou dále
zveřejňovány v časopisech Matematika, fyzika, informatika a Rozhledy
matematicko-fyzikální. Na pomoc učitelům jsou pak rozesílány na školy
komentáře к úlohám.

Po roce 1990 přestaly vycházet obvyklé ročenky MO, které uváděly
všechny zajímavé výsledky, přehledy o počtu účastníků v jednotlivých
regionech a zejména pak všechny úlohy jak naší, tak i mezinárodních
olympiád včetně jejich řešení. Po ročence 40. ročníku vydané ještě péčí
Státního pedagogického nakladatelství se až do jubilejního 50. ročníku
objevily jen dvě ročenky (41. a 45. ročníku). Ročenky dalších ročníků MO
však chyběly. Nyní se vám konečně dostává do ruky první z chybějících
ročenek, a to péčí Ústředního výboru MO, Jednoty českých matematiků
a fyziků a Polygrafického střediska Univerzity Palackého v Olomouci.
Vzápětí vyjde i ročenka právě ukončeného 51. ročníku MO. Postupně by
se tak měly objevit i ostatní chybějící ročenky, jejichž těžištěm je zejména
bohatství velkého počtu zajímavých a originálních úloh. Těšíme se na váš
ohlas a připomínky.

Autoři ročenky jménem Ústředního výboru MO děkují touto cestou
všem organizátorům soutěže, především pak učitelům za jejich oběta-
vou spolupráci a za péči, kterou věnují svým žákům. Zároveň vyzývají
všechny zájemce o spolupráci při tvorbě zajímavých úloh. Zkuste zažít
pocit radosti z toho, objevíte-li svou úlohu i se svým jménem v soutěžním
letáku.

Návrhy na soutěžní úlohy pro kategorie А, В a C laskavě zasílejte na
adresu předsedy úlohové komise MO doc. RNDr. Jaromíra Šimši, CSc.,
MÚ AV ČR, Žižkova 22, 616 00 Brno. Úlohová komise se schází zpravidla
dvakrát ročně za účasti českých i slovenských kolegů.

Návrhy úloh vhodných pro kategorii P zasílejte na adresu doc. RNDr.
Pavla Topfera, MFF UK Praha, Malostranské nám. 25, 118 00 Praha 1.
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Výsledky celostátního kola 42. ročníku MO
kategorie A

Vítězové

1. Villiam Búr, 4b G Bratislava, Grosslingová
2. Andrej Zlatoš, 3b G Bratislava, Grosslingová
3. Jiří Černý, 4a G Plzeň, Mikulášské nám.

4.-5. Michal Brodský, 4a G Brno, kpt. Jaroše
Jana Syrovátková, 4a G Brno, kpt. Jaroše

6.-7. Marek Mačuha, 3b G Bratislava, Grosslingová
Vít Novák, 4e G Praha 2, Korunní

8. Robert Šámal, 2d G Praha 2, Korunní
9.-11. Petr Kaňovský, 2a G Brno, kpt. Jaroše

Pavol Marton, 4 G Bratislava, Grosslingová
Daniel Štefankovič, 4b G Bratislava, Grosslingová

12.-14. Marcela Hlawiczková, 4c G Třinec
Daniel Pastor, 3b G Bratislava, Grosslingová
Jiří Vaniček, 4e G Praha 2, Korunní

15. Ondřej Klíma, 4a G Brno, kpt. Jaroše
16. František Vymazal, 4a G Brno, kpt. Jaroše

17.-19. Jan Mach, 3c G Bílovec
Martin Niepel, 3b G Bratislava, Grosslingová
Martin Vagaský, 3b G Bratislava, Grosslingová

35 b.
34 b.

32 b.

31b.

31b.
30 b.

30 b.

29 b.

28 b.

28 b.

28 b.

27b.
27b.

27b.

26 b.

25 b.
24 b.

24 b.

24 b.

Další úspěšní řešitelé

20.-24. Kamil Budínský, 4b G Bratislava, Novohradská
Blažej Neradílek, 3a G Brno, kpt. Jaroše
Jan Rychtář, 2c G Strakonice
Katarina Skálová, 4b G Bratislava, Grosslingová
Juraj Slanička, 4 G Bratislava, Grosslingová

25.-26. Jana Uhrová, 4d G Bílovec
Miloš Volauf, 4 G Bratislava, Grosslingová

23 b.

23 b.

23 b.

23 b.

23 b.

22 b.
22 b.
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27.-28. Matěj Ondrušek, 4b G Bratislava, Novohradská
Marek Žabka, 4f Banská Bystrica, Tajovského

29.-31. Milan Hokr, 3d G Praha 2, Korunní
Filip Krška, 2a G Brno, kpt. Jaroše
Libor Masíček, 2a G Brno, kpt. Jaroše

32.-35. Ivana Brudnáková, 2e G Prešov, Konštantínova
David Kruml, 4a G Brno, kpt. Jaroše
Boris Křupa, 1 G Bratislava, Grosslingová
Petr Vachovec, 3a G Plzeň, Mikulášské nám.

36.-38. Matúš Kirchmayer, 3a G Bratislava, Metodova
Mikuláš Piňos, 3a G Brno, kpt. Jaroše
Martin Semerád, 4e G Praha 2, Korunní

21b.

21b.

20 b.

20 b.

20 b.

19b.
19b.

19b.

19b.

17b.

17b.
17b.

9



Výsledky celostátního kola 42. ročníku MO
kategorie P

Vítězové

1. Tomáš Vinař, 3.A G Košice, Šrobárova
2. Jiří Vaniček, 4.E G Praha, Korunní

3.-5. Martin Mareš, 2.E G Praha, U libeňského zámku
Martin Niepel, 3.B G Bratislava, Grosslingová
Matěj Ondrušek, 4.В G Bratislava, Novohradská

6. Bronislava Brejová, 3.B G Bratislava, Novohradská
7.-8. Vít Novák, 4.E G Praha, Korunní

Daniel Štefankovič, 4.B G Bratislava, Grosslingová
9.-10. Jiří Hanika, 4.E G Praha, Korunní

Cyril Sochor, 4.E G Praha, Korunní
11.-13. Martin Gažák, 3.B G Žilina, Velká Okružná

Ondřej Pár, 3.D GMK Bílovec
Jana Syrovátková, 4.A G Brno, kpt. Jaroše

33 b.
31b.

30 b.

30 b.

30 b.
29 b.

26 b.

26 b.

23 b.

23 b.

22 b.

22 b.

22 b.

Další úspěšní řešitelé

14.-15. Ivana Brudňáková, 2.E G Prešov, Konštantínova
Rastislav Královič, 4.F G Bratislava, Vazovova

16.-19. Milan Bok, 4.E G Praha, Korunní
Zoltán Bugár, 4.A G Galanta
Pavel Machek, 2.D G Praha, Korunní
Ondřej Pořádek, 4.E G Praha, Korunní

20. Jan Mach, 3.C GMK Bílovec
21.-24. Marek Fekete, 4.A G Michalovce

Patrik Horník, 2.В G Bratislava, Grosslingová
Boris Letocha, 3.A G Hradec Králové, Tylovo nám.
Robert Šámal, 2.D G Praha, Korunní

25.-27. Kamil Budinský, 4.В G Bratislava, Novohradská
Pavel Petrovič, 4.В G Bratislava, Novohradská
Marián Varga, 3.A G Bratislava, Novohradská

20 b.

20 b.

19b.

19b.

19b.

19b.

18 b.
17b.

17b.

17b.

17b.

16b.

16b.

16 b.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou uvedeni úspěšní řešitelé
na nejvýše prvních deseti místech. Označení G znamená gymnázium, M,
resp. MF zaměření studijního oboru 01 Matematika, resp. 02 Matematika
a fyzika.

Praha

Kategorie A1.Lucie Bittnerová, 4M, G Praha 2, Korunní
2.-3. Martin Semerád, 4M, G Praha 2, Korunní

Jiří Vaniček, 4M, G Praha 2, Korunní
4. Martin Vejražka, 4MF, G Praha 8, U lib. zámku
5. Vít Novák, 3M, G Praha 2, Korunní
6. Milan Hokr, 4M, G Praha 2, Korunní

7.-8. Robert Šámal, 2M, G Praha 2, Korunní
Jan Rataj, 3M, G Praha 2, Korunní

9. Tomáš Kočka, 4MF, G Praha 8, U lib. zámku
10. Jan Tichý, 4M, G Praha 2, Korunní

Kategorie В

1. Martin Mareš, 2E, G Praha 8, U lib. zámku
2. Robert Šámal, 2D, G Praha 2, Korunní

3.-4. Pavel Kůrka, 2D, G Praha 2, Korunní
Michal Fabinger, 2E, G Praha 6, Nad alejí

5. Norbert Vaněk, 2D, G Praha 2, Korunní
6. Michal Ostatnický, 2D, G Praha 2, Korunní
7. Lukáš Bernard, 2C, G Praha 2, Korunní
8. Jan Adamčák, 2D, G Praha 2, Korunní

9.-11. Jiří Hájek, 2D, G Praha 2, Korunní

11



Karel Patera, 2D, G Praha 2, Korunní
Zdeněk Štěpán, 2D, G Praha 2, Korunní

Kategorie С

1.-4. Karel Výborný, 1A, G Praha 2, Korunní
.Petra Nečasová, ID, G Praha 2, Korunní
Jiří Vaněk, ID, G Praha 2, Korunní
Dagmar Podaná, ID, G Praha 2, Korunní5.Petr Holzhauser, ID, G Praha 2, Korunní

6.-10. Alan Drozen, ID, G Praha 2, Korunní
Petr Janeček, ID, G Praha 2, Korunní
Václav Šubrta, ID, G Praha 2, Korunní
Jan Vodička, ID, G Praha 2, Korunní
Michal Beneš, ID, G Praha 2, Korunní

Kategorie P

1. Pavel Machek, 2D, G Korunní 2, P2
2. Jiří Vaniček, 4E, G Korunní 2, P2

3.-4. Milan Bok, 4E, G Korunní 2, P2
Robert Šámal, 2D, G Korunní 2, P2

5. Martin Mareš, 2D, G U líben, zámku 1/3, P8
6. Vít Novák, 4E, G Korunní 2, P2

7.-8. Jiří Hanika, 4E, G Korunní 2, P2
Cyril Sochor, 4E, G Korunní 2, P2

9. Ondřej Pořádek, 4E, G Korunní 2, P2
10. Jiří Kosek, 3D, G Korunní 2, P2

Středočeský kraj

Kategorie A

1. Jakub Strnad, 4C, G Mladá Boleslav.
2.-3. Pavel Kučera, ЗА MF, G Mladá Boleslav

Jiří Louša, 4A MF, G Benešov
4.-6. Jan Bláha, 4A MF, G Beroun

František Liška, 4A MF, G Beroun
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Václav Petříček, ЗА MF, G Mladá Boleslav
7. Karel Duda, 4A MF, G Kladno

Kategorie В

1. Petr Špička, 2A, G Kralupy
2. Martin Jaroš, 2B, G Benešov

3.-4. Ondřej Beran, 2B, G Sedlčany
Jan Strnad, 2A, G Kolín

5.-7. Milan Jakubec, 2A, G Sedlčany
Jitka Kratochvílová, 2A, G Kolín
Martin Růžek, 2A, G Slaný

8.-10. Pavel Erben, 2A, G Kolín
David Konvalina, 2A, G Čáslav
/ш Kovářová, 2A, G Mladá Boleslav

Kategorie C

1. Jiří Franta, 1A, G Příbram
2.-4. Ondřej Crha, 1A, G Mladá Boleslav

Miroslav Knotek, 1A, G Kolín
Tomáš Miller, 1A, G Mladá Boleslav

5.-6. Václav Havlík, 1C, G Benešov
Michal Špiryt, IB, G Beroun

7.-9. Jaroslav Borovička, 1A, G Mladá Boleslav
Marek Herda, IB, G Kutná Hora
Veronika Novotná, IB, G Sedlčany

10. Pavel Ambrož, 1A, G Slaný

Kategorie P

1. Jan Bláha, 4A MF, G Beroun
2.-3. Miloš Kleint, 4A MF, G Benešov

Jaroslav Borovička, 1A MF, G Mladá Boleslav
4.-5. Pavel Kučera, ЗА MF, G Mladá Boleslav

David Sitenský, ЗА MF, G Kladno
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Jihočeský kraj

Kategorie A

1. Daniel Průša, 6B, G Tábor
2. Petr Šlechta, 6B, G JVJ Č. Budějovice

3.-6. David Kimr, 5B, G JVJ Č. Budějovice
Luděk Hájíček, 2B, G Jírovcova, Č. Budějovice
Jan Rychtář, 6B, G Strakonice
Vít Pekárek, 6B, G JH

7.-9. Ondřej Mareš, 4B, G Jírovcova, 0. Budějovice
O. Hanzal, 2B, G DačiceH.Deverová, 4B, G Jírovcova, 0. Budějovice

10.-11. O. Pangrác, 4B, G Pelhřimov
D. Rožek, 4B, G JH

Kategorie В

1. Karel Švadlenka, 2, G Jírovcova, Č. Budějovice
2. Jan Rychtář, 2, G Strakonice
3. Michaela Prokešová, 2, G Jírovcova, C. Budějovice

4.-5. Václav Honetschláger, 2, G Jírovcova, C. Budějovice
Stanislav Smejkal, 2, G Tábor

Kategorie C

1.-3. M. Elisová, 1A, G J Č. Budějovice
J. Hamrle, 1A, G PelhřimovJ.Honnerová, 1, G CA C. Budějovice

4.-6. J. Huml, 1A, G J Č. Budějovice
M. Toman, IB, G J. Hradec
M. Vojta, 1A, G Strakonice

7. P. Zeman, 1C, G Tábor
8. M. Květoň, 1A, G Jírovcova, Č. Budějovice

9.-10. J. Doležal, 1, G Kaplice
R. Ženka, 1, G Jírovcova, Č. Budějovice
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Západočeský kraj

Kategorie A

1. Jiří Černý, 4M, 1. G Plzeň
2. Petr Vachovec, 3M, 1. G Plzeň
3. Jan Gillar, 3P, G Cheb

4.-5. Josef Černý, 4MF, G Domažlice
Michal Škop, 3M, 1. G Plzeň

6. František Šanda, 3, G Klatovy
7.-8. Jan Pospíšil, 3M, 1. G Plzeň

Miroslav Skala, 3M, 2. G Plzeň
9.-11. Roman Kníže, 4MF, G Cheb

Romana Lavičková, 4M, 1. G Plzeň
Petr Písek, 3M, 1. G Plzeň

Kategorie В

1. Petr Marik, 2M, 1. G Plzeň
2. Stanislav Štěpánek, 2M, 1. G Plzeň

3.-4. Kateřina Němcová, 2, Svob. chebská škola Cheb
Jiří Svoboda, 2M, 1. G Plzeň

5.-6. Jiří Fornous, 2M, 1. G Plzeň
Eva Legátová, 2, G Sušice

7. Poňa Demjanovičová, 2M, 1. G Plzeň
8. Pavel Kalianko, 2M, 1. G Plzeň

Kategorie C

1.-2. Michal Ježek, 1M, 1. G Plzeň
Tomáš Suda, 1, G Klatovy

3.-4. Jm Benedikt, 1M, 1. G Plzeň
Jakub Slovan, 1M, 1. G Plzeň

5.-6. Dana Kovaříková, 1M, 1. G Plzeň
Lukáš Šmahel, 1M, 1. G Plzeň

7. Jan Vachulka, IMF, 2. G Plzeň
8.-9. Kristina Forstová, 1M, 1. G Plzeň

Jan Ludvík, 1M, 1. G Plzeň
10.-13. Jiří Fajt, 1, G Domažlice
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Alena Svobodová, IMF, 1. G Plzeň
Jiří Valenta, 1, G Ostrov
Zuzana Vydrová, IMF, 2. G Plzeň

Liberec

Kategorie A

1. Michal Čermák, 3G, GFXŠ Liberec
2. Tomáš Marek, 4G, GFXŠ Liberec
3. Václav Cintl, 4G, G Česká Lípa

4.-5. Daniel Havelka, 4G, GFXŠ Liberec
Jiří Lahvička, 4G, GFXŠ Liberec

6. Vladimír Čermák, 4G, GFXŠ Liberec

Kategorie В

1. Pavel Strnad, 4G, GFXŠ Liberec
2. Eva Čmelíková, 4G, GFXŠ Liberec

3.-4. David Kamenář, 4G, G Česká Lípa
Petr Strnad, 4G, GFXŠ Liberec5.Martin Vidner, 4G, G Frýdlant v C.

Kategorie C

1. Michal Celler, 4G, GFXŠ Liberec
2. Petr Rálek, 4G, GFXŠ Liberec
3. Michal Bodnár, 4G, G Česká Lípa
4. Jiří Princ, 4G, GFXŠ Liberec

Ústí nad Labem

Kategorie A

1. Sylva Rydvalová, G Teplice, Cs. dobrovolců
2. Jakub Velímský, G Ústí n.L., Jateční
3. Pavel Pele, G Teplice, Cs. dobrovolců
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Východní Čechy

Kategorie A

1. Michal Hvězda, 3D, G Pardubice
2. Jan Kříž, 4D, G Pardubice

3.-4. /Гаге/ Houfek, ЗА, G J. K. Tyla, Hradec Králové
Michal Šorel, 4D, G Pardubice

5.-6. Stanislav Hencl, 3D, G Pardubice
Michal Johanis, ЗА, G J.K. Tyla, Hradec Králové

7. Jiří Hartman, ЗА, G J.K. Tyla, Hradec Králové
8. Roman Konečný, 4DA, G Pardubice

Kategorie В

1.-3. Pe/r Doubek, G Pardubice
Jan Vebersik, G B. Němcové, Hradec Králové
Martin Vohralík, G Pardubice4.Alena Píšová, G Pardubice

5.-7. Emil Jeřábek, G Turnov
David Stanovský, G Pardubice
Раге/ Zahradník, G Polička

8.-10. Pavel Carvan, G Lanškroun
Radek Erban, G Nová Paka
Květa Chotěnovská, G J.K. Tyla, Hradec Králové

Kategorie C

1. Martin Tajovský, G B. Němcové, Hradec Králové
2.-4. Zdeňka Broklová, G Polička

Petr Vodstrčil, G Polička
Ví/ Žďára, G Polička

5. Tomáš Tichý, G Pardubice
6. A/eš /Гга/, G J.K. Tyla, Hradec Králové

7.-9. Pe/r Horák, G Náchod
Martin Kopecký, G J.K. Tyla, Hradec Králové
Václav Novák, G J.K. Tyla, Hradec Králové

10.—11. Lenka Pražanová, G Polička
Vojtěch Rejdák, G J. K. Tyla, Hradec Králové
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Brno

Kategorie A

1. Jana Syrovátková, 4A, G Brno, tř. kpt. Jaroše
2. Ondřej Klíma, 4A, G Brno, tř. kpt. Jaroše
3. Mikuláš Piňos, ЗА, G Brno, tř. kpt. Jaroše

4.-8. Michal Brodský, 4A, G Brno, tř. kpt. Jaroše
Petr Kaňovský, 2A, G Brno, tř. kpt. Jaroše
David Kruml, 4A, G Brno, tř. kpt. Jaroše
Blažej Neradilek, ЗА, G Brno, tř. kpt. Jaroše
František Vymazal, 4A, G Brno, tř. kpt. Jaroše

9.-10. Jan Hradil, ЗА, G Brno, tř. kpt. Jaroše
Markéta Kyloušková, 4A, G Brno, tř. kpt. Jaroše

Kategorie В

1. Libor Mašíček, 2A, G Brno, tř. kpt. Jaroše
2. Martin Nečesal, 2A, G Brno, tř. kpt. Jaroše
3. Filip Krška, 2A, G Brno, tř. kpt. Jaroše

4.-5. Pavel Stehlík, 2A, G Brno, tř. kpt. Jaroše
Josef Šilhán, 2A, G Brno, tř. kpt. Jaroše

6.-7. Marta Bednářová, 2A, G Brno, tř. kpt. Jaroše
Daniel Polanský, 2A, G Brno, tř. kpt. Jaroše

8. Josef Novotný, 2A, G Brno, tř. kpt. Jaroše
9. Jan Strejček, 2A, G Brno, tř. kpt. Jaroše

10. Jan Bursa, 2A, G Brno, tř. kpt. Jaroše

Kategorie C

1.-2. Jan Mašek, 1A, G Brno, tř. kpt. Jaroše
Eva Synková, IB, G Brno, tř. kpt. Jaroše

3.-5. Pavel Klang, 1A, G Brno, tř. kpt. Jaroše
Silvie Křivánková, 1A, G Brno, tř. kpt. Jaroše
Martin Šteflíček, 1A, G Brno, tř. kpt. Jaroše

6.-8. Milan Fikar, 1A, G Brno, tř. kpt. Jaroše
Petr Vejchoda, 1A, G Brno, tř. kpt. Jaroše
Michal Vít, 1A, G Brno, tř. kpt. Jaroše

9.-11. Radek Běhavý, 1A, G Brno, Křenová
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Ondřej Dolínek, IB, G Vyškov
Jan Pešl, 1A, G Brno, tř. kpt. Jaroše

Jihlava

Kategorie A

1. Michal Nikiforov, 4A, G Jihlava
2. Helena Málková, ЗА, G Mor. Budějovice
3. Jiří Komzák, ЗА, G Jihlava

Kategorie В1.Tomáš Vejchodský, 2B, G Jihlava
2.-3. Radek Rychnovský, 2B, G Jihlava

Oldřich Večerek, G Třebíč4.Josef Novotný, 2B, G Žďár nad Sázavou

Kategorie C

1.-2. Petr Příplata, IB, G Jihlava
Karel Zikmund, IB, G Jihlava

3. Tomáš Karban, IB, G Jihlava
4. Zdeněk Ambrož, IB, G Velké Meziříčí
5. Martin Černý, 1A, G Žďár nad Sázavou

6.-7. Vojtěch Minárik, IB, G Jihlava
Michal Vopálenský, ID, G Jihlava

8. Ondřej Kubík, 1A SPŠ Jihlava
9. Jakub Machek, 1A, G Žďár nad Sázavou

10.—11. Tomáš Dvořák, 1C, G Znojmo
David Zelený, G Třebíč

Zlín

Kategorie В

1. Pavel Dostál, G Kroměříž
2. Jan Petrásek, G Zlín
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3.-4. David Mrlík, G Zlín
Michal Novotný, G Kroměříž

5. Lukáš Josefík, G Uherský Brod

Kategorie C

1. Daniel Král’ G Zlín

2. Jiří Vajdík, G Uherské Hradiště
3. Josef Pavela, G Uherské Hradiště
4. David Hanslian, G Uherské Hradiště

5.-6. Radek Svoboda, G Hodonín
Marek Zdráhal, G Holešov

7. Václav Bezděk, G Uherské Hradiště
8.-11. Barbora Hedbávná, G Uherské Hradiště

Michak Kusák, G Uherský Brod
Jakub Mácha, G Uherské Hradiště
Zuzana Šíblová, G Holešov

Severomoravský kraj

Kategorie A

1. Marcela Hlawiczková, 4C, G Komenského 713, Třinec
2. Peír Staufčík, 4C, GMK, Bílovec
3. Jaromír Fiurášek, 3D, G Komenského 29, Přerov
4. Jana Uhrová, 4D, GMK, Bílovec
5. Jan Mach, 3C, GMK, Bílovec
6. Petr Jiříček, 4D, GMK, Bílovec
7. Jaroslav Kuba, 4A, G Tomkova 45, Olomouc-Hejčín
8. Renáta Sikorová, 4C, GMK, Bílovec
9. Zdeněk Románek, 3C, G Dukelská 1, Bruntál10.Petr Jandík, 4C, GMK, Bílovec

Kategorie В

1. David Pavlica, 2C, GMK, Bílovec
2. Martin Kubala, 2A, GPB CSA 517, Frýdek Místek
3. Lenka Bartoňková, 2B, G Dukelská 1, Bruntál
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4.-6. Petr Trávníček, 2C, GMK, Bílovec
Pavel Cenek, 2A, G Tomkova 45, Olomouc-Hejčín
Petr Dub, 2B, SPŠE gen.Svobody 2, Mohelnice

7. Vojtěch Záškodný, 2C, GMK, Bílovec
8. Luděk Меса, 2A, GPB ČSA 517, Frýdek Místek
9. Eva Kašpárková, 2B, MG Jičínská 528, Příbor

Kategorie C

1.-7. Jan Foniok, 1C, GMK, Bílovec
David Opěla, 1C, GMK, Bílovec
Peřr Škovroň, 1C, GMK, Bílovec
Zbyněk Pawlas, 1C, GMK, Bílovec
Hynek Окоп, 1C, GMK, Bílovec
Stanislav Elbl, 1E, SPŠS Zakaldat., Karviná 6
Pavel Skalický, ID, Slovan. G, tř. J. z Pod., Olomouc

8. A/es Keprt, ID, Slovan. G, tř. J. z Pod., Olomouc
9.-10. Ondřej Nejdek, 1C, GMK, Bílovec

Miroslav Hebký, 1A, České G, Český Těšín

Kategorie P

1. Ondřej Pár, 3D, GMK, Bílovec
2. Jan Mach, 3C, GMK, Bílovec
3. Kzř Strádal, 4C, GMK, Bílovec
4. Pavel Frýda, 4G, G Zábřeh na Moravě

5.-6. Pavel Běhal, 3B, G Rožnov pod Radhoštěm
Martin Stiller, 4A, G Rožnov pod Radhoštěm

7.-8. Roman Zámečník, 4B, G Rožnov pod Radhoštěm
Bohuslav Czudek, 4C, G Dr. E. Beneše 7, Hlučín

9.-10. Jiří Kupczyn, 4C, G J. Palacha 794, Bohumín
Jan Valuštík, 4C, G J. Palacha 794, Bohumín

Západoslovenský kraj

Kategorie A

1.-2. Jozef Drahovský, 4G, G Piešťany
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Andrej Krídl, 4G, G Malacky
3.-4. František Gábriš, 4G, G Hlohovec

Stanislav Grónský, 4G, G Skalica
5.-6. Martin Pabiš, 4G, G Piešťany

Michal Šebáň, 4G, GTŠ Trenčín
7.-10. Roland Haulitusz, 4G, G Komárno

Miroslav Hroššo, 4G, G Nitra, Párovská ul.
Tiinde Keszeghová, 4G, GM Komárno
Lajos Ódor, 4G, GM Komárno

Kategorie В

1.-4. Ivana Lovásová, 2, G Nitra, Párovská ul.
Tibor Macko, 2, G Piešťany
Gabriela Mišunová, 2, G Nitra, Párovská ul.
Ján Uličky, 2, G Hviezdoslavova, Trnava

5.-8. Jana Havettová, 2, G Senica
Karina Chudá, 2, G Piešťany
Józe/ Opálený, 2, G Nitra, Párovská ul.
Marek Vaňuš, 2, GSCM Nitra

9. Zoltán Horváth, 2, GM Dunajská Středa

Kategorie C

1.-3. Miroslav Šedivý, 1, G Levica
Tomáš Varga, 1, GM Komárno
Martin Vojtek, 1, G Nitra, Párovská ul.

4. Ondřej Lonek, 1, GTŠ Trenčín
5. Juraj Juhás, 1, G Nitra, Párovská ul.

6.-16. Matúš Beresecký, 1, G Nitra, Párovská ul.
Zoltán Fazekaš, 1, G Nové Zámky
Eva Lukášová, 1, G Nitra, Párovská ul.
Zoltán Nagy, 1, G Nové Zámky
Juraj Poljovka, 1, G Nitra, Párovská ul.
Lubica Sádovská, 1, G Nitra, Párovská ul.
Krisztián Sági, 1, GM Komárno
Peter Richtárik, 1, G Nitra, Párovská ul.
Peter Schmidt, 1, G Nitra, Piaristická ul.
Miroslav Toma, 1, G Nitra, Párovská ul.
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Peter Zmeko, 1, G Nové Město nad Váhom

Kategorie P

1. Ján Hulala, G Hlohovec
2. Zoltán Bugár, GM Galanta
3. Maroš Michalík, SPŠ Nové Město nad Váhom
4. Gabriela Mišunová, G Nitra, Párovská ul.
5. Filip Denker, G Nitra, Piaristická ul.
6. Milan Belica, G Nitra, Párovská ul.

7.-9. Peter Mruškovič, G Partizánské
Martin Černák, G Šurany
Pavol Machyniak, G Trnava, Hviezdoslavova

Stredoslovenský kraj

Kategorie A

1.-2. Monika Kozáková, 4F, GT Banská Bystrica
Marek Žabka, 4F, GT Banská Bystrica

3. Tomáš Bruna, 4B, G Žilina, V. Okružná
4. Michal Skokan, 3B, G Žilina, V. Okružná
5. Marián Bucholcer, 4F, GT Banská Bystrica

6.-7. Stefan Godiš, IB, G Žilina, V. Okružná
Ján Žabka, 4B, G Žilina, V. Okružná

8. Peter Hazucha, 4F, GT Banská Bystrica
9. Martin Gažák, 3B, G Žilina, V. Okružná

10.—11. Vojtech Bálint, 4B, G Žilina, V. Okružná
Roman Ruckschlos, 3F, GT Banská Bystrica

Kategorie В

1. Marek Piliarik, M, GJGT Banská Bystrica
2. Tomáš Machalík, M, G Žilina, V. Okružná
3. Michal Kubáňík, G Liptovský Mikuláš
4. Mária Feťková, MF, G Žilina, V. Okružná

5.-6. Marek Škereň, M, G Žilina, V. Okružná
Marián Lichner, M, G Banská Štiavnica
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Kategorie С

1. Juraj Majerský, M, GT Banská Bystrica
2. Jozef Mika, M, G Žilina, V. Okružná

3.-7. Ivan Cimrák, M, G Žilina, V. Okružná
Henrich Datel, G Martin
Štefan Godiš, M, G Žilina, V. Okružná
Peter Ochodnický, G Martin
Branislav Tichý, M, G Žilina, V. Okružná

8.-9. Pavol Droba, M, GT Banská Bystrica
Vladimír Hiadlovský, M, GT Banská Bystrica

10.—11. Stacho Mudrák, M, GT Banská Bystrica
/ran Strohnerlovský, MF, G Prievidza

Kategorie P

1. Martin Gažák, 3B, G Žilina, V. Okružná
2. Peter Kunetka, 3C, G Martin
3. Roman Guniš, 3C, G Martin
4. Pavol Jankech, 2E, G Povážská Bystrica
5. Martin Škulec, 4A, G Prievidza
6. Peter Kočalka, 4F, G Banská Bystrica

Východoslovenský kraj

Kategorie A

1. Ivana Brudňáková, 2E, G Konstantinova, Prešov
2. Milan Matoš, 4A, G Popr. nábr., Poprad
3. Peter Kováčik, 4A, G Alejová, Košice

4.-8. Pavol Dikoš, 4A, G Alejová, Košice
Vladimír Lacko, 4A, G Alejová, Košice
Peter Macko, 4D, G Spišská Nová Ves
Ján Soltis, 4G, G Popr. nábr., Poprad
Peter Zámborský, ЗА, G Poštová, Košice

9.-11. Juraj Barát, 4D, G Šrobárová, Košice
Miloš Gáj, ЗА, G D. Tatarku, Poprad
Mikuláš Madaras, ЗА, G Poštová, Košice
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Kategorie В

1.-2. Ivana Brudňáková, 2E, G Konstantinova, Prešov
Ján Bábeía, 2A, G Poštová, Košice

3. Radoslav Gočík, 2A, G Poštová, Košice
4. Dalibor Blažek, 2A, G Poštová, Košice
5. Tomáš Vnenčák, 2C, G D. Tatarku, Poprad

6.-8. Slávka Jendrejová, 2A, G Poštová, Košice
Radek Ivančo, 2A SPŠS Prešov
Peter Gašpar, 2B, G Bardejov

Kategorie C

1.-3. Juraj Nemjo, IB, G Humenné
Eugen Kováč, IB, G Stropkov
Peter Taraba, 1A, G Popr. nábr., Poprad

4. Zuzana Hagarová, 1A, G Kežmarok
5.-7. Kornel Csach, 1A, G Poštová, Košice

Juraj Lisoň, 1A, G Poštová, Košice
Józe/ Slepecký, IB, G Stropkov8.Marek Neupauer, 1C, G Stará Cubovňa

9.-10. Józe/ Haleš, lkvinta, G Alejová, Košice
Eva Trenklerová, 1A, G Poštová, Košice

Kategorie P

1. Tomáš Vinař, 3, G Šrobárová, Košice
2. /ran Schréter, 3, G Trebišovská, Košice
3. Peter Fehér, 3, G Poštová, Košice
4. Józe/ Ráhef 4, G Bardejov

5.-8. Ivana Brudňáková, 2, G Konštantínova, Prešov
Marek Fekete, 4, G Michalovce
Ján Hrůz, 4, G Michalovce
Štefan Pčola, 4, G Opatovská, Košice

9. Viktor Kováč, 3, G Opatovská, Košice10.Marek Bezaniuk, 4, G Bardejov
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Kategorie С

Texty úloh

C - I - 1

Dokažte, že pro přirozená čísla m, n (m > n) je číslo 4m — 4n dělitelné
devíti, právě když je číslo m — n dělitelné třemi.

С - I - 2

Každá ze stran AB a DC konvexního čtyřúhelníku ABCD je rozdě-
léna na 5 shodných úseček. Spojením odpovídajících si bodů (obr. 1) je
čtyřúhelník rozdělen na pět čtyřúhelníků, z nichž první má obsah 10
a poslední 22 cm2. Určete obsah čtyřúhelníku ABCD.

A В

Obr. 1

C - I - 3

Rovnostranný trojuholník je rozdělený na dve časti priamkou, ktorá pre-
chádza jeho ťažiskom. Dokážte, že pre poměr p obsahov týchto častí platí

í<P<®
5 ~ 4

С - I - 4

V matematické soutěži řešil každý žák 30 úloh. Za správně vyřešenou
úlohu obdržel 4 body, špatně vyřešená úloha znamenala —1 bod, 0 bodů
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bylo za úlohu, kterou neřešil. Kolik muselo být účastníků, abychom mohli
s jistotou tvrdit, že dva žáci skončili se stejným počtem bodů?

С - I - 5

Daný je lichoběžník ABCD, v ktorom \AB\ — 8cm, \CD\ = 4cm,
\<$:DAB\ = 53°, \<$:CBA\ = 37°. Vypočítajte vzdialenosť stredov zá-
kladní AB, DC.

C - I - 6

Ze sítí na obr. 2 můžeme složit tři kostky. Pokud je postavíme do sloupeč-
ku, na jeho bocích si můžeme shora dolů přečíst trojmístná čísla (některé
číslice budou ležet na boku nebo budou vzhůru nohama). Tato čtyři čísla
sečteme. Kolik takových součtů můžeme dostat?

6 5

4 46

3 2 34 3 2 1 1 5

2 1 65

b) c)a)

Obr. 2

C - S - 1

Dokažte, že pro přirozená čísla m, n (m > n) je číslo 4m — 4n dělitelné
číslem 27, právě když je rozdíl m — n dělitelný devíti.

C - S - 2

Tri kruhy s polomerom r sú umiestnené do kruhu
s polomerom R tak, že ich středy tvoria vrcholy
rovnostranného trojuholníka s ťažiskom v střede
velkého kruhu (obr.3). Ďalej platí, že vzdiale-
nosť d každých dvoch menších kruhov sa rovná
vzdialenosti každého z týchto kruhov od hranič-
nej kružnice velkého kruhu. Vyjadrite d porno-
cou R a r.



С - S - 3

Uvnitř čtverce o straně 2 je dáno 61 různých bodů. Dokažte, že existuje
kruh o poloměru uvnitř kterého leží aspoň 16 těchto bodů.

C - II - 1

Ak je páťciferné číslo 6А В73 dělitelné 99, tak je tiež dělitelné 19. Dokážte.

С - II - 2

Každá zo stráň AB, DC konvexného štvoruholníka ABCD je rozdělená
na 9 zhodných úsečiek. Spojením odpovedajúcich si deliacich bodov sa
štvoruholník rozdělí na 9 štvoruholníkov (obr. 4), z ktorých prostredný
má obsah 7cm2. Aký je obsah štvoruholníka ABCD ?

A В

Obr. 4

C - II - 3

V kruhu o poloměru 1 je dáno 77 různých bodů. Dokažte, že existuje
л/З

kruh o poloměru —-, ve kterém leží aspoň 13 těchto bodů.
O

С - II - 4

Ve fotbalovém turnaji hrálo každé mužstvo s každým právě jednou. Za
výhru získává 2 body, za nerozhodný výsledek 1 bod, za prohru žádný
bod nezíská. Vítězné mužstvo získalo celkem 7 bodů, třetí v pořadí 5 bodů
a čtvrté 3 body. Kolik bylo mužstev?
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Řešení úloh

C - I - 1

Označme m — n = d\ potom 4m — 4n = 4n(4d — 1). Kedze čísla 9 a 4n sú
nesúdelitelné (pre lúbovofné n prirodzené), je 4m — 4n dělitelné deviatimi
právě vtedy, keďje deviatimi dělitelné číslo 4d — 1.

Platí však

d-24d — 1 = (4 — 1)(4d-1
+ ... +42 + 4 + 1) = 3M,+ 4

kde pre každé prirodzené číslo d volíme vhodné celé M. Z toho vyplývá, že
pre každé d je číslo 4d — 1 dělitelné troma, čo taktiež znamená, že číslo 4d
má pri delení číslom 3 zvyšok 1. Ak v poslednej rovnosti dosadíme za
4k = 3 Mfc + 1, kde Mk sú vhodné prirodzené čísla al ^ к ^ d — 1,
dostaneme

4d — 1 = 3((ЗАГ^-1 + 1) + {2>Md-2 + 1) + ... +
+ (3M2 + 1) + (3Mi + 1) + l) —

= 9(Md—i + Md-2 + ... + -Mi) + 3d.

Z toho je však zřejmé, že číslo 4d — 1 je dělitelné deviatimi právě vtedy,
keď d je dělitelné troma, ako bolo třeba dokázat’.

Iné riešenie (založené na binomickej vete). Nech d = 3/c, kde к je
prirodzené. Potom

4d — 1 = 4зк — 1 = 64fc - 1 =

= (64 - 1) (64fc—1 + 64fc"2 + ... + 64 + 1) =

= 9 • 7(64fc_1 + 64fc-2 + ... + 64 + 1),

čo znamená, že 4d — 1 je dělitelné deviatimi.
Nech naopak 4d — 1 = 9К pre К prirodzené, čo však móže platit’ len

pre d ^ 3. Kedze 4d — (3 + l)d, podlá binomickej vety dostaneme

4d — 1 = ((3 + l)d - 1) =

(2)3+d) ’
d

= 3 ( 3d-1 +
d—2

d-ir
+... +

z čoho vyplývá, že číslo d musí byť dělitelné troma, ako bolo třeba doká-
zať.
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С - I - 2

Označme deliace body podlá obr. 5. Nech pre i = 0, 1, 2, 3, 4 je
|.Ai.Aí+i| = a a |D;Dí+i| = b. Pre i = 1, 2, 3, 4, 5 označme O; obsah
štvoruholníka A;_i A;D;Dj_i. Vieme, že Oi = 10cm2, O5 = 22cm2.

A = A0 A A2 A3 A4 A5 — Вi

Obr. 5

Zrejme je AD jf CD. Ak by totiž bolo AB || CD, všetky štvoruholníky
Ai-iA{DiDi_i (pre 1 ^ i ^ 5) by boli lichoběžníky s rovnako velkými
základnami i zhodnou výškou v a tiež ich obsahy by museli byť rovnako
velké (totiž |u(a + &)), čo však nemóže nastat’ (05 ф O{).

Označme teraz Ti plošný obsah trojuholníka Aí_iA;Dí_i (1 ^ i 5)
a Ví jeho výšku z vrchola D;_ 1 na stranu Ai-iA*. Platí teda T* = |аг>г.
Nech Pí je pata kolmice z bodu D;_i na výšku Vi+1, kde V6 označuje
vzdialenosť bodu C od priamky AD (obr. 6). Trojuholníky D;_iP;Dí
(i — 1,2,3,4,5) sú zrejme zhodné, pretože majú zhodné vnútorné uhly
a dížku jednej strany. Z toho vyplývá, že rozdiel — ví je rovnaký
pre všetky hodnoty i = 1, 2, 3, 4, 5; označme ho k. Teda ani rozdiel
T{+1 — Ti = \ak nezávisí na г; ak ho označíme ako c, bude T2 = Ti + c,
T3 = T2 + c, X4 — T3 -f C, T5 = T4 + c.

D
D2

D,
D3D

D2
Di

^3Ul
^2

Ai A2 A3 A4A D

Obr. 6
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Ak označíme Si plošný obsah trojuholníka Dí-iAíDí (i = 1,2,3,4,5),
analogickou úvahou nahliadneme, že rozdiel Sí+i — Si nie je závislý na i,
čiže pre vhodné d platí S2 = S\ + d, S3 = S2 + d, S4 = S3 + d, S5 =
= S4+d. Zrejme je Oi = Ti + Si, i = 1, 2, 3, 4, 5, aritmetická postupnost’
s diferenciou c + d. Kedze je 01 = 10cm2, O5 = 22cm2, bude hfadaný
obsah O — 0\ + O2 -Ь 4*O4 + O5 — 4" O5) — 5 • 16cm2 — 80cm2.

C - I - 3

Bez ujmy na všeobecnosti móžme předpokládat’, že obsah daného troju-
holníka ABC sa rovná 1. Nech q je priamka prechádzajúca ťažiskom T
tohto trojuholníka. Ak prechádza niektorým z vrcholov trojuholníka
ABC, rozdělí ho na dva trojuholníky rovnakého obsahu. V tomto případe
je teda p = 1.

Ak q neprechádza žiadnym z vrcholov trojuholníka ABC, potom
přetíná dve jeho strany, napr. (ako na obr. 7) stranu AC v bode P a stranu
BC v bode Q.

\
A В

Obr. 7

Keď je priamka q rovnoběžná s priamkou AB, sú trojuholníky ABC
a PQC rovnolahlé, a teda podobné. Z podobnosti týchto trojuholníkov
vyplývá, že \PQ\ = §|Ai?| a \CT\ = |u, kde v je výška trojuholníka
ABC. Preto obsah trojuholníka PQC je |, obsah štvoruholníka ABQP
je |. Tedap = | alebop = (Krajší spósob, ako to zistiť, je však rozdělit’
trojuholník na deváť rovnakých rovnostranných trojuholníkov.)

Nech q Ц AB. Označme K, resp. L priesečníky stráň AC, resp. BC
s rovnoběžkou so stranou AB prechádzajúcou ťažiskom T (obr. 7). Nech
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P je vnútorným bodom úsečky AK. Potom Q leží vo vnútri úsečky CL.
Označme S střed strany BC. Bodom К veďme rovnoběžku so stranou BC
a jej priesečníky s úsečkami PT, resp. AT označme P, resp. U. Pretože
T je střed úsečky KL, sú trojuholníky TKR a TLQ, ako aj TRU a TQS
zhodné. Preto pre obsah Opqc trojuholníka PQC platí

Opqc = Oklc + Optk ~ Otlq =
— | + Optk ~ Otkr =
= | + Okpr > f;

na druhej straně však

Opqc = Oasc — Oatp + Otqs =

= \ - Oatp + Otru =
— \ — Oaurp <

Z toho vyplývá, že | < Opqc < §, odkial’ dostaneme, že \ <
< Oabqp < §• Pre poměr p obsahov oboch častí teda v tomto případe
musí platit’ I < p < V oboch prípadoch sme úspěšně dokázali danú
nerovnost’.

Poznamenajme, že tvrdenie úlohy platí pre lubovolný trojuholník,
nielen pre rovnostranný. Dokaž možno urobit’ tým istým spósobom.

С - I - 4

Každý žiak mohol v súťaži dosiahnuť celkový bodový súčet od —30 bodov
(ak riešil všetkých 30 úloh nesprávné) až do 120 bodov (pri správnom
vyriešení všetkých 30 úloh) s výnimkou súčtov 119, 118, 117, 114, 113
a 109 bodov, ktoré sa pri danom bodovacom systéme nedajú žiadnym
spósobom dosiahnuť. Možných výsledkov v súťaži je teda 151 — 6 = 145.
Podlá Dirichletovho principu to znamená, že ak sa súťaže zúčastní aspoň
146 žiakov, móžme s istotou tvrdit’, že aspoň dvaja žiaci skončili s rov-

nakým počtom bodov.

С - I - 5

Průsečík přímek AD a BC označme V. Protože \<$lAVB\ = 180° —
— (53° + 37°) = 90°, je trojúhelník ABV pravoúhlý. Označme S\ střed
strany AB a S2 střed strany CD daného lichoběžníku (obr. 8). Zřejmě
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je \ASi\ = 4cm, \DS2\ = 2cm. V pravoúhlém trojúhelníku ABV je
Si středem kružnice opsané a platí |SiVj = |SiA|. Trojúhelníky S2VD

D

Si\
\

4

A Si В

Obr. 8

a SiVA jsou podobné, protože mají všechny úhly shodné. Z rovnosti
|S2£>| : \S\A\ = 2 : 4 = 1 : 2 proto plyne IS^VI : l-SiVI = 1 : 2 a odtud
pak, že |5i52| - |SiF| - \S2V\ =2 cm.

C - I - 6

Označme A kočku, ktorej sieť je na obr. 2a. Na tejto коске bude stená
s číslom 1 proti stene s číslom 3, stená s číslom 2 proti stene s číslom 4
a stená s číslom 5 proti stene s číslom 6.

Ak В bude коска so sieťou na obr. 2b, bude na tejto коске proti stene
s číslom 1 stená s číslom 6, proti stene s číslom 2 stená s číslom 4 a proti
stene s číslom 3 stená s číslom 5.

Na коске C — so sieťou na obr. 2c — je proti stene s číslom 1 stená
s číslom 5, proti stene s číslom 2 stená s číslom 3 a proti stene s číslom 4
stená s číslom 6.

Z toho vyplývá, že všetky tri коску sú navzájom rózne. Skór, než
začneme uvažovat’ o možnom počte súčtov štyroch trojmiestnych čísel na
stěnách stípčeka, musíme si uvědomit’, že tento počet nezávisí od umiest-
nenia číslic na viditelných stěnách jednotlivých kociek, ale len od usporia-
dania kociek v stípčeku a od toho, ktoré číslice sú na „skrytých stěnách"
(hornej a dolnej) jednotlivých kociek. Přitom súčet číslic na viditelných
bočných stěnách hornej коску představuje počet stoviek, na strednej po-
čet desiatok a na dolnej počet jednotiek v súčte. Možné polohy kociek
v stípčeku, ktoré majú vplyv na počet súčtov, sú zapísané v nasledujúcej
tabulke (indexmi označujeme možné rózne polohy príslušnej коску):
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Číslice na hornej,
resp. dolnej stene

Číslice viditelné na boč-

ných stěnách a ich súčet
Poloha коску

Ai 2+5+4+6 = 17i; 3
A-2 2; 4 1 + 5 + 3 + 6=15

5; 6 1+2 + 3 + 4 = 10

Bi 2 + 3 + 4 + 5 = 141; 6
B2 2; 4 1+3 + 6 + 5 — 15

B3 3; 5 1 + 2 + 6 + 4 = 13

Ci i; 5 2 + 4 + 3 + 6 = 15

C2 2; 3 1+4 + 5 + 6 = 16

C3 4; 6 1 + 2 + 3 + 5 — 11

Pre usporiadanie kociek do stípčeka máme
celkom 6 roznych možností, ktoré móžme zná-
zornit’ touto schémou:

Z toho, že všetky tri коску sú vzájomne rožne a že rozdiel medzi naj-
váčším a najmenším možným súčtom štyroch viditelných číslic je menej
ako desať, vyplývá, že všetkým polohám jednotlivých kociek pri uspo-
riadaní ABC (zhora nadol) zodpovedá celkom 3-3-3 = 27 roznych
súčtov.

А В А С В C
В А С А С В
С С В В А А

Vzhladom na to, že pre každú kočku existuje jedna poloha s rovna-

kým súčtom číslic na viditelných bočných stěnách (totiž 15), pri ostat-
ných usporiadaniach kociek v stípčeku dostaneme už menší počet nových
súčtov.

Pri usporiadaní BAC to bude 3 • 3 • 3 — 3 = 24, pretože súčet v polohe
B2A2Cí je rovnaký ako v polohe A2B2Cí (pre i = 1, 2, 3). Pri usporia-
daní АС В to bude opat’ 3 • 3 • 3 — 3 = 24, lebo súčet v polohe AiC\ B2
je rovnaký ako v polohe AíB2C\, i = 1, 2, 3. Pri usporiadaní CAB
pribudne už len 3 • 3 • 3 — 5 = 22 nových súčtov, pretože súčet v polohe
C\A2Bí je rovnaký ako v polohe A2C\Bí (i = 1, 2, 3) a súčet v polohe
C\AíB2 je rovnaký ako súčet v polohe В2А{С\, pre i = 1 a i = 3. Pri
usporiadaní BCA bude nových súčtov opat’ len 3 • 3 • 3 — 5 = 22, pretože
súčet v polohe B2 Ci A2 je rovnaký ako súčet v polohe A2 Ci B2 (pre i = 1,
2, 3) a súčet v polohe BíC\A2 je rovnaký ako súčet v polohe BíA2C\,
i = 1,3. Konečne pri usporiadaní С В A pribudne už iba 3 • 3 - 3 — 7 = 20
nových súčtov, lebo súčet v polohe C\B2Aí je rovnaký ako v polohe
B2C\ Ai (i = 1, 2, 3), súčet v polohe C\ BíA2 je rovnaký ako v polohe
A2BíC\ (i = 1, 3) a súčet v polohe CíB2A2 je rovnaký ako v polohe
CíA2B2 (í = 2, 3).
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Celkom teda móžeme dostat’ 27 + 2 • 24 + 2 • 22 + 20 = 139 roznych
súčtov.

C - S - 1

Položme d = m — n > 0. Kedze je 4TO — 4n = 4n(4d — 1) a číslo 4n je pre
každé n nesúdelitelné s číslom 27, je 4m — 4n dělitelné 27 právě vtedy, keď
má túto vlastnost’ číslo 4d - 1. Je zřejmé, že ak číslo 4TO — 4n je dělitelné
číslom 27, musí byť dělitelné deviatimi. Z úlohy C-I-l však vieme, že to
platí právě vtedy, keď d je dělitelné troma. Nech preto d = 3k, kde к je
prirodzené číslo. Potom je

4d — 1 = A3k - 1 = 64k - 1 =

= (64 — 1)(64
= 7 • 9•(64

fc-i
+ 64/c-2 + ... + 64 + 1) =

+ ... + 64 + 1).к — 1 k—2
+ 64

Každé z čísel 64s, s = 1,..., fc — 1, však pri delení troma dává zvyšok 1
pretože

64s = (3 • 21 + l)s = 3M8 + 1,

kde Ms, 1 ^ s ^ к — 1, sú vhodné prirodzené čísla. Preto bude

Jfc-264fe_1 + 64 + ... + 64 + 1 — 3(.Mfc—i + Mk—2 + • • • + M\) + A:,

z čoho vyplývá, že

4d — 1 — 7 • 27 • (Mk—i + -М/с—2 + • • • + M\) + 7 • 9 • k.

To však znamená, že číslo 4d — 1 je dělitelné 27, právě vtedy, keď к je
dělitelné troma, a kedze je d = 3k, platí to právě vtedy, keď je d dělitelné
deviatimi, ako bolo třeba dokázat’.

C - S - 2

Označme S střed velkého kruhu a Si, S2, S3 středy jednotlivých do něho
umiestnených menších kruhov. Pre poloměr R velkého kruhu zrejme platí
R = d+r+ |u, kde v je výška rovnostranného trojuholníka SiSzS^. Kedze
IS1S2I =d + 2r, je v = (d + 2r) • |л/3- Preto platí

= d + г + |(d + 2г)^ = (3 + 2^)rO z
я

3

35



z čoho vyplývá, že

j _ 3P - (3 + 2\/3)r
зТТз

(3 - у/3)д - (1 + >/3)r
2

С - S - 3

Daný čtverec můžeme rozdělit na čtyři čtverce o straně 1; každému
z těchto čtverců opišme kružnici s poloměrem Kruhy ohraničené tě-
mito kružnicemi zcela pokryjí vnitřek daného čtverce. Kdyby v každém
z těchto kruhů leželo nejvýše 15 bodů, nemohlo by v celém čtverci být
dohromady více než 4-15 = 60 < 61 bodů. Proto aspoň v jednom z kruhů
musí ležet aspoň 16 bodů.

C - II - 1

Víme, že číslo 6А В73 = 60 073 + 1000A+100P = 606 • 99 + 79 + 990 A +
+ 10 A+ 99 В + В = 99(606 + 10A + В) + 79 + 10 A + В. Aby bylo toto
číslo dělitelné číslem 99, musí být 10 A + В = 20. Číslo 6AB73 se tedy
rovná číslu 62 073, které je dělitelné číslem 19, což se mělo dokázat.

Jiné řešení. Násobek к ■ 99 končí dvojčíslím, které se rovná rozdílu
100 — koncové dvojčíslí čísla k. Odtud vidíme, že 6А B73 = к • 99, kde к
končí dvojčíslím 27. V úvahu připadá к = 627 а к — 727. Úloze vyhovuje
jen к = 627.

С - II - 2

Z riešenia druhej úlohy domáceho kola vyplývá, že plošné obsahy štvoru-
holníkov, na ktoré sme rozdělili štvoruholník ABCD, tvoria aritmetickú
postupnost’: P0, Po + d, • •Po + 4d, ..., Po + 8d. Plošný obsah P štvor-
uholníka ABCD dostaneme ako súčet členov tejto postupnosti:

9 P1+(P1+8d) =9,(Pi+4d)P =

Zo zadania úlohy vieme, že P\ + Ad = 7cm2. Preto je P — 9 • 7cm2 =
= 63 cm2.
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С - II - 3

Do kruhu s polomerom 1 móžme vpísať pravidelný konvexný šesťuhol-
nik so stranou 1, ktorý rozdělíme na 6 rovnostranných trojuholníkov
so stranou 1 a spoločným vrcholom v střede daného kruhu. Každému
z týchto rovnostranných trojuholníkov opíšeme
kružnicu s polomerom r = |\/3. Tým vznikne
6 zhodných kruhov s polomerom |\/3, ktoré cel-
kom pokrývajú daný jednotkový kruh (obr. 9).
Kedze 6 • 12 = 72 < 77, musí podlá Dirichletovho
principu aspoň v jednom z týchto kruhov ležať
aspoň 13 z daných bodov.

С - II - 4

Označme n hledaný počet mužstev. Celkem bylo sehráno |n(n — 1) zá-
pasů a všechna mužstva získala dohromady n(n — 1) bodů. Přitom druhé
získalo nejvýše 7 bodů, páté a všechna další nejvýše tři body. Dohromady
získala všechna mužstva nejvýše 7 + 7 + 5 + 3+(n — 4) -3 = 3n +10 bodů,
takže n{n — 1) ^ 3n + 10, tedy (n — 2)2 ^ 14, odtud vychází n = 5.
Mužstva získala celkem 20 bodů, druhé a páté dohromady 5, takže druhé
získalo 5 bodů a páté nezískalo ani bod. (Hodnota n = 4 nevyhovuje,
protože počet přidělených bodů 7 + 5 + 3 třem mužstvům je již větší
než 4 • 3.)

К úplnému řešení musíme ještě ukázat, že tato situace mohla skutečně
nastat. Příklad turnaje, který dané podmínky splňuje, je

А В C D E body
A 1 2 2

x 0 2
2 x 1

0 1 x

0 0 0

72x

В 1 2 5

C 0 2 5

D 20 3
E 0 0x
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Kategorie В

Texty úloh

В - I - 1

Nechť a, b, c (a ^ b ^ c) jsou délky stran trojúhelníku, jehož obsah je
10 cm2. Jakou nejmenší délku může mít strana 6?

В - I - 2

Pre ktoré reálne čísla c existujú právě dve rózne reálne čísla, ktoré sú
riešením rovnice

x3 4- (с — 1)ж + c = 0?

В - I - 3

Jakou délku může mít šestá hrana čtyřstěnu, jestliže délky zbývajících
pěti hran jsou 2 cm, 2 cm, 2 cm, 3 cm a 4 cm?

В - I - 4

Honza si zapomněl poznačit kvadratickou rovnici, kterou měl doma řešit.
Pamatoval si však, že koeficient u kvadratického členu byl 3 a u lineárního
členu 25. U absolutního členu se spletl pouze ve znaménku. Obě rovnice
(ta, kterou měl řešit, i ta, kterou řešil) měly celočíselný kořen. Zjistěte,
které to byly rovnice.

В - I - 5

Dané sú body A, B. Zostrojte dve navzájom kolmé priamky prechádza-
júce bodom В tak, aby ich vzdialenosti od bodu A boli v pomere 1 : 2.
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В - I - 6

Jsou dány dva shodné kruhy o poloměru 1 cm. Mezi všemi čtyřúhelníky,
které se dají pokrýt přemístěním těchto dvou kruhů, najděte takový, který
má největší obsah.

В - S - 1

Najděte největší trojciferné přirozené číslo x, pro které existuje prvo-
číslo p takové, že číslo \Jx1 — p3 je celé.

В - S - 2

Pre ktoré reálne čísla p má sústava rovnic

x3 — x + 3p = 6,
x3 + x + 4p = 10

aspoň jedno riešenie v obore reálných čísel?

В - S - 3

Uvnitř daného pravého úhlu AMВ sestrojte body К a L tak, aby KLM
byl rovnostranný trojúhelník o straně 5 cm a aby vzdálenost bodu К od
ramene MA byla dvojnásobkem vzdálenosti bodu L od ramene MB.

В - II - 1

Zistite, pre ktoré reálne čísla a má sústava rovnic

x + у = z + 2,
x2 + y2 = z2 + 4,
x3 + y3 = z3 + a

riešenie v obore reálných čísel, a riešte ju.

В - II - 2

Rozhodněte, zda existuje pravoúhlý trojúhelník, jehož obě odvěsny mají
délky vyjádřené celými čísly a jehož výška na přeponu je vyjádřena pr-
vočíslem.
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В - II - 3

Ак pre reálne čísla р, q, г platí, že obe čísla 4p + 2q + r, —p + q — r sú
kladné, potom je q2 > Apr. Dokážte.

В - II - 4

Záhon tvaru rovnostranného trojúhelníku je pokryt pěti navzájem shod-
nými plachtami tvaru rovnostranného trojúhelníku. (Části plachet se
mohou překrývat i přesáhnout záhon.) Dokažte, že na pokrytí záhonu
stačí čtyři tyto plachty.
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Řešení úloh

В - I - 1

Je-li 7 velikost úhlu, který svírají strany délek a, 6, je obsah trojúhelníku
5 = \absiny. Protože 0 < siny ^ 1, a ^ 6, platí 20 ^ absiny й ab йЬ2,
neboli 6 ^ >/20 = 2\/5- Odtud přímo vyplývá, že b bude nejmenší, právě
když siny = 1 a zároveň b — a. Odpovídající trojúhelník má strany
a = b — 2\/5cm, jež svírají úhel у = 90°, takže c = 2\/l0cm.

В - I - 2

Rovnicu upravíme nasledujúcim sposobom:

x3 — x + c(x + 1) = 0,

x(x — l)(rr 4- 1) + c(x + 1) = 0,
(x + l)(x2 — x + c) = 0.

Odtial’je zřejmé, že rovnica má pre každé reálne číslo c kořeň x\ = —1.
Ak má mať celkom dva rožne reálne kořene, musí byť alebo х% = жз,

alebo X2 — —1, pričom хз je reálne číslo rožne od čísla —1. Vzhládom
na to, že x2, x3 sú kořene rovnice x2 — x + c = 0, prvý případ nastane
právě vtedy, ak je jej diskriminant 1 — 4c nulový, čiže pre c = ^ (bude
x2 = x3 = \).

V druhom případe využijeme vztahy medzi koreňmi a koeficientami
kvadratickej rovnice. Pre x2 = —1 dostáváme —l+хз = 1, — X3 = c, čiže
13 = 2 a c = —2.

Daná rovnica má teda právě dve rožne riešenia, právě keď c = \ alebo
c — -2.

Iné riešenie. Využijeme Vičtové vztahy. Označme и, v rožne reálne
kořene rovnice X3 + (c — l)x + c = 0, pričom předpokládáme, že kořeň v

je dvojnásobný. Potom platí

x3 + (c — l)x + c = (x — u)(x — v)2.
Po roznásobení a porovnaní koeficientov u rovnakých mocnin premen-

nej x dospějeme к vzťahom

и = —2v,
c — 1 = v2 + 2uv,

uv2 — —c.
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Dosadením z prvej rovnice do druhých dvoch dostaneme

(1)

Vylúčením premennej c dostaneme rovnicu

2v3 + 3u2 - 1 = 0,

ktorá má zrejme kořeň v\ — — 1 a je teda možné ju upravit’ na tvar

(v + l)(2v2 + v — 1) = 0.

Odtial’ obdržíme V2 = v\ = —1, Dosadením do (1) dospejeme
к tomu istému závěru ako v prvom riešení: pre c = —2jeu = 2au = — 1,
pre c = i je и = —1, v =

В - I - 3

Všimněme si dvou stěn, jejichž hrany mají uvedené délky (čili těch dvou,
které neobsahují šestou hranu neznámé délky). Jejich společná hrana
(nechť je označena AB) nemůže mít délku 4 cm — pak by totiž nebyla
pro některou z těchto stěn splněna trojúhelníková nerovnost. Rozlišíme
proto zbylé dvě možnosti.

Nejprve vyřešíme případ, kdy společná hrana těchto stěn má délku
2 cm. Pak délka x hrany CD (mimoběžné s AB) je omezena situacemi,
kdy stěny ABC, ABD leží v téže rovině (obr. 10).

i

A В

Obr. 10
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Jinak řečeno: úhel stěn ABC, ABD má velikost 0° < (p < 180°.
Omezující hodnoty pro délku x hrany CD jsou x\ = \C\D\\ pro <p = 0°
a x2 = \C2D2\ pro (p = 180°.

Z obr. 10 určíme pomocí kosinové věty pro trojúhelníky ABD\
a ABD2, že

УТ354+16-9
_ 11

2-2-4 ~ 16
sin a = v 1 “ cos2 a =cos o =

16

Odtud

cos(60° ± a) = cos 60° cos a + sin 60° sin a = (ll + 9\/5).
O Z

Z trojúhelníků C\D\A a C2D2A obdržíme opět pomocí kosinové věty:

£1,2 = л/4 + 16—16 cos(60° + a) =

2,107 cm,

yi(29T9V5)i( 4,956 cm.

Šestá hrana čtyřstěnu má délku x větší než x\ a menší než x2.

Má-li ve čtyřstěnu ABCD hrana AB společná stěnám, jejichž délky
hran známe, délku 3cm (obr. 11), zjistíme analogickým postupem jako
v předchozím případě, že cos(3 = |, sin/3 = cos7 = |, sin7 =
Je tedy

cos(/3T7) = ^(21±v/ÍĎ5),
2,092 cmyi(l9T\^Ď5) = (2+2 =
3,824 cm.

V tomto případě může mít šestá hrana čtyřstěnu délku x; X\ < x < x2.

A

Obr. 11
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В - I - 4

Rovnice mají tvar
Заг2 + 25x ± c = 0; c > 0.

Jejich diskriminanty jsou

(2)£>1)2 = 625 T 12c

a kořeny
—25 ± yfDl

i = 1, 2.Xl,2 =

Odtud ±y/Ďl = 25 + 6xi:2- Je-li některý z kořenů celé číslo, musí být také
±y/Ďl celé a dále některý z výrazů —25 ± y/Di je dělitelný šesti. Číslo
y/D\ = \/625 — 12c < 25 budeme tedy hledat ve tvaru y[D\ = 6A; ± 1,
к G No- Ze vztahu (2) vyplývá, že D\ + D2 = 1 250. у/Щ = х/Г250~^О1
musí být celé. Postupně volíme za yfD\ čísla 1, 5, 7, 11, 13, 17, 19, 23
a určujeme \[Ď2. Zjistíme, že vyhovuje pouze y/D\ = 5 nebo y/D[ = 17.

V prvém případě je c = ^(625 — D\) = 50 a jedná se o rovnice
3a:2+25a:±50 = 0, ve druhém případě to budou rovnice Зж2+25а:±28 = 0.
Vyřešením rovnic se přesvědčíme, že vyhovují podmínkám úlohy. Existují
tedy dvě různé dvojice rovnic, které jsou řešením dané úlohy.

6

В - I - 5

Označme p, q priamky, ktoré máme zostrojiť, tak, aby vzdialenosť bodu A
od priamky q bola dvakrát vačšia ako od priamky q (obr. 12). Nech К je

pata kolmice z A nap, teda AK || q a priamka ВК je totožná s p. Priamky
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p, q sú teda rovnoběžky s odvěsnami pravoúhlého trojuholníka ABK
a tieto odvěsny sú rovnoběžkami s odvěsnami lúbovofného trojuholníka,
ktorý je s trojuholníkom ABK rovnoláhlý.

Odtial’ vyplývá konštrukcia. Zostrojíme pravoúhlý trojuholník RST
tak, aby odvěsna RS mala akúkolVek zvolenú dížku a odvěsna ST bola
dvakrát dlhšia. Tento trojuholník otočíme například podlá středu R
o taký uhol, aby otočený trojuholník RS'T' mal přeponu RT' rovnobežnú
so stranou AB. Priamky p, q dostaneme ako rovnoběžky s priamkami
RS', S'T'.

Úloha má dve riešenia, lebo okrem takto zostrojených priamok p, q

vyhovujú aj ich obrazy v osovej súmernosti podlá priamky AB.

В - I - 6

Čtyřúhelník maximálního obsahu musí obsahovat celou společnou tětivu
kruhů, které jej pokrývají. Jinak bychom mohli jeho obsah zvětšit při
zachování podmínek úlohy — mohli bychom posunout kruhy dál od sebe.

Rozeberme možnosti, které mohou nastat:

Čtyřúhelník (označme jej ABCD) se skládá ze dvou čtyřúhelníků
vepsaných do kruhů — obr. 13. Tyto čtyřúhelníky AKLD, KBCL mají
maximální obsah, právě když to jsou čtverce.

Důkaz tvrzení, že ze všech čtyřúhelníků vepsaných do téhož kruhu má
největší obsah čtverec, provedeme pomocí obr. 14. Čtyřúhelník TXYZ je
složen z trojúhelníků ZXY, ZXT. Jeho obsah je

Otxyz — \\XZ\ ■ v\ + \\XZ\ • V2 — \\XZ\(v\ + v2)
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ale \XZ\ ^ 2r a v\ + ^ 2r. Odtud

Otxyz = \ ' 2r • 2r = 2r2.
Rovnost nastane pouze pro čtverec vepsaný do daného kruhu.

Čtyřúhelník ABCD ze zadání úlohy má v tomto případě maximální
obsah 4r2.

Čtyřúhelník se skládá z trojúhelníka vepsaného do prvního kruhu
a pětiúhelníku vepsaného do druhého kruhu (obr. 15), nebo se skládá
ze dvou trojúhelníků vepsaných do kruhů (obr. 16). V obou situacích
odhadneme obsah čtyřúhelníku shora následujícím výrazem

\\AC\ ■ V\ + ||ЛС| • t?2 — \\AC\ • (ui + V2)
Podle obrázků platí \AC\ < 4r, v\ + V2 ^ \BD\ й 2г. V tomto případě
je tedy obsah menší než 4r2.

Obr. 17

Čtyřúhelník maximálního obsahu je obdélník se stranami délky \/2 cm
а 2л/2ст; je znázorněn na obr. 17.
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В - S - 1

Je-li у hodnota dané odmocniny, je x2-y2 = p3, takže (x—y) (x + y) = p3.
Protože p je prvočíslo a čísla x — у < x 4- у jsou přirozená, musí nastat
jedna ze dvou možností

x - у = 1,
x + у = p3

x-y=p,

x + y = p2.
nebo

Snadný výpočet v obou případech dává

1 + p3 p2 + p
x =x =

22
resp.

p2 -pp3 - 1
У =У = 22

(Tato čísla jsou přirozená pro každé liché p ^ 3.) Pro funkci /(p) =
= \{p3 + 1) platí

/(11) = 666 a /(13) = 1 099 > 103,

a pro funkci g(p) = \{p2 + p)

0(43) = 946 a 0(47) = 1 128 > 103.

Hledané největší trojciferné číslo x je proto rovno 946.

В - S - 2

Je-li и společný kořen obou rovnic, pak

0 = (и3 — и + 3p — 6) — (it3 + и + 4p — 10) = — 2u — p + 4,

odkud и = — + 2. Dosazením zpět do libovolné z obou rovnic do-
staneme podmínku na číslo p, která je po úpravě tvaru kubické rovnice
p{p2 — 12p + 20) = 0 s kořeny pi = 0, p2 = 2 а рз = 10. Snadno se
přesvědčíme, že daná dvojice rovnic pak má skutečně společný kořen и

rovný 2, 1 resp. —3.

В - S - 3

V úhlu AMB sestrojíme nejdříve pomocný trojúhelník K'L'M, který
je stejnolehlý s hledaným trojúhelníkem KLM v některé stejnolehlosti
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se středem M a kladným koeficientem, a přitom bod K' má od ramene
MA vzdálenost 2 cm. Konstrukce bodů K' a L' je snadná: protože bod V
musí mít od ramene MB vzdálenost 1 cm, leží body K' a L' po řadě na

polopřímkách PQ a RS, kde PQ dostaneme posunutím MA o 2 cm ve
směru MB a RS posunutím MB o 1 cm ve směru MA. Protože bod
L' je obrazem bodu K' při otočení se středem M o 60°, určíme L' jako
průsečík polopřímky RS s polopřímkou P'Q', která je obrazem PQ ve
zmíněném otočení. (Bod K' je pak obrazem L' při opačném otočení.)
Zobrazíme-li nakonec body K' a L' ve stejnolehlosti se středem M а ко-
eficientem 5/\MK'\, dostaneme hledané body К a L. Důkaz správnosti
je zřejmý, úloha má jediné řešení (i když existují dvě různá otočení kol M
o 60°, jen při jedné z nich protne obraz polopřímky PQ polopřímku RS).

В - II - 1

Umocníme-li první rovnici na druhou a od výsledku odečteme rovnici
druhou, dostaneme 2xy = 4z. Z dvojice rovnic xy = 2zax + y = z + 2
vyplývá, že {x, y} = {2, z}. Proto x3 + y3 = z3 + 8, takže a = 8 je jediná
hodnota, kdy má soustava řešení. Všechna řešení pro a = 8 jsou trojice
(x,y,z) tvaru (2,p,p) nebo (p,2,p), kde p je libovolný parametr.

В - II - 2

Pro výšku v na přeponu a odvěsny a, b platí v\/a2 + b2 = ab, neboli
v2(a2 + b2) = a2b2. Protože v je prvočíslo, plyne odtud v | a nebo v | b.
Nechť a = mv pro vhodné celé m > 1 (bez újmy na obecnosti). Po
dosazení do rovnice a krácení číslem v2 dostaneme m2v2 + b2 — m2b2,
neboli m2v2 = b2(m2 — 1). Z poslední rovnice plyne, že (kladné) číslo
m2 — 1 je druhou mocninou celého čísla, a to je spor, neboť

(m — l)2 < m2 — 1 < m2 pro každé m > 1.

Žádný takový trojúhelník proto neexistuje.

Jiné řešení. Podle Eukleidovy věty výška v na přeponu a odvěsny a,
b splňují rovnost v2 = \/a2 — v2\/b2 — v2, neboli v4 = (a2 — v2)(b2 — v2).
Protože v je prvočíslo a činitelé (a2 — v2), (b2 — v2) jsou dvě celá čísla
větší než 1, je buď jedno z nich v a druhé v3, nebo jsou obě rovna v2.
Druhá možnost vede к a = b = v\/2, a to je spor, neboť číslo v\/2 je
iracionální. Zkoumejme první možnost: předpokládejme a2 — v2 — v bez
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újmy na obecnosti. Z rovnosti a2 = v2 + v plyne v < a < v 4-1, což pro
celá a, v nemůže nastat. Žádný takový trojúhelník proto neexistuje.

В - II - 3

Nerovnost q2 > Apr jistě platí, pokud pr < 0. Pokud pr ^ 0, rozlišíme
dva případy: jsou-li obě čísla par nezáporná, pak můžeme umocnit
nerovnost q > p + r a dostat tak

q2 > (p + r)2 = (p — r)2 + 4pr ^ 4pr;

jsou-li obě čísla par nekladná, pak umocněním nerovnosti 2q ^ —4p — r

0) dostaneme

4q2 > (4p + r)2 = (4p — r)2 + 16pr ^ 16pr.

V obou případech tedy platí q2 > 4pr.

Jiné řešení. Označíme-li /(x) = px2 + qx + r, bude podle zadání
/(—1) < 0 a /(2) > 0. To je možné, jen když diskriminant q2 — Apr
kvadratického trojčlenu / je kladný.

В - II - 4

Jednou z pěti plachet musejí být přikryty aspoň dva body z mno-

žiny, která je tvořena třemi vrcholy trojúhelníku
a třemi středy jeho stran. To ale znamená, že
strana plachty je přinejmenším rovna aspoň polo-
vině strany celého záhonu. Ten se pak dá pokrýt
čtyřmi plachtami podle obr. 18.

Obr. 18
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Kategorie A

Texty úloh

A - I - 1

Uvažujme n jednotkových kružnic se středy ve vrcholech konvexního
mnohoúhelníku. Dokažte, že na některé z těchto kružnic existuje oblouk
délky 2n/n, který nemá společný bod s žádnou jinou z uvažovaných kruž-
nic.

A - I - 2

Najděte všechny hodnoty parametru p, pro který existují reálná čísla x,

y, 2 taková, že

x + y + z = 4,
xy + уz + zx = 4,

xyz = p.

A - I - 3

Jsou dány dvě rekurentní posloupnosti

йп+i — 5an -b 26n,
Ьтг-j-i — 2an -f- &П)

bi = -3.ai = 12

Najděte n-tý člen obou posloupností.

A - I - 4

Označme S obsah trojúhelníku ABC a q poloměr jeho kružnice vepsané,
v výšku čtyřstěnu ABCD na stěnu ABC. Pro povrch P čtyřstěnu ABCD
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pak platí
2

v

P>S\1+ 1 +
Q

Dokažte a zjistěte, kdy nastane rovnost.

A - I - 5

Ve čtvercovém schématu je zapsáno 1 000 x 1000 celých čísel. Přitom
každá dvě sousední čísla v řádku nebo ve sloupci se liší nejvýše o 100.
Dokažte, že mezi zapsanými čísly je jedno, jež se ve schématu vyskytuje
aspoň šestkrát.

A - I - 6

3n + 1
Dokažte, že pro n ^ 1 má zlomek nekonečný periodický rozvoj.

n(2n - 1)

A - S - 1

Pre ktoré hodnoty reálného parametra p má sústava rovnic

x + у + z — 1,
lil,
—I 1— — 1,
x

x2 +y2 + z2 =p

riešenie v obore reálných čísel?

A - S - 2

Pro každé přirozené číslo n jsou přirozená čísla an, bn určena podmínkou
an + bnV5 = (3 + \/5)n. Dokažte, že pro každé přirozené číslo n jsou obě
čísla an + bn, an — bn dělitelná číslem 2n.

A - S - 3

V pravidelném čtyřstěnu ABCD označme P patu výšky vedené bodem D
na rovinu ABC a M střed úsečky DP. Rovina rovnoběžná s přímkou BC
a obsahující přímku AM rozdělí čtyřstěn na dvě části. Určete poměr jejich
objemů.
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A - II - 1

Určte dvaciaty člen postupnosti prirodzených čísel (a*), ak je člen ai992

rovný prvočíslu 1 993 a pre každé к G N platí

Q>k-\-\ — CLк ”1“ Cl{o,ki CLk-|-l) , ®fc+l)

kde n(x,y), resp. D(x,y) označuje najmenší spoločný násobok, resp. naj-
váčší spoločný deliteí čísel x, y.

A - II - 2

Je dána kružnice к a na ní dva různé body A, B. Uvažujme kružnice k\,
&2 takové, že ki se dotýká к zevnitř v bodě A, к2 se dotýká к zevnitř
v bodě В a obě kružnice ki, &2 se navzájem dotýkají v bodě C. Najděte
množinu všech takto vzniklých bodů C.

A - II - 3

Ak pre reálne nenulové čísla x, y, z platí

{x + y + z)(- + -
\x у

+ i) =z/
1,

potom xy + уz + zx < 0. Dokážte.

A - II - 4

Uvažujme čtyřstěn ABCD, jehož stěna ABC má obsah 60 cm2 a žádná
z jejích stran a, b, c není delší než 13 cm. Přitom zvolíme-li jejich označení
tak, že a ^ b ^ c, mají aspoň dvě z hran DA, DB, DC čtyřstěnu délku
b. Určete největší možný objem takového čtyřstěnu.

A - III - 1

Pre ktoré prirodzené číslo n je číslo 7n — 1 násobkom čísla 6n — 1?

A - III - 2

V tabulce 19x19 jsou zapsána celá čísla tak, že čísla zapsaná v sousedních
políčkách se liší nejvýše o 2. Jaký je nejvyšší možný počet různých čísel
v takovéto tabulce? (Dvě políčka tabulky považujeme za sousední, mají-li
společnou stranu.)
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A - III - 3

V rovině je dán trojúhelník AKL takový, že \<$:ALK\ > 90° + \<$:LAK\.
Sestrojte rovnoramenný lichoběžník ABCD, AB || CD, tak, aby bod К
ležel na straně BC, bod L ležel na úhlopříčce АС a průsečík S úseček
AK a BL byl středem kružnice opsané lichoběžníku ABCD.

A - III - 4

Daná je postupnost’ (a™)!^ prirodzených čísel určená rekurentně takto:
ai = 2, pre každé n ^ 1 je an+i rovné súčtu desiatych mocnin cifier
čísla an. Rozhodnite, či sa móže v postupnosti (an)^Lx vyskytnúť nějaká
hodnota dvakrát.

A - III - 5

Nájdite všetky funkcie /: Z —> 1 také, že

f(x) + /(y) = f(x + 2xy) + /(y - 2xy) (1)

platí pre každé x, у celé a naviac /(—1) = /(!)•

A - III - 6

Dokažte, že existuje čtyřstěn, který lze rozdělit na osm shodných čtyřs-
těnů podobných původnímu.
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Řešení úloh

A - I - 1

Uvažujme nejprve konvexní úhel ABC a jeho vnitřní bod M ф В a dále
dvě kružnice se stejnými poloměry a se středy v bodech M а В (obr. 19).

Průsečíky těchto kružnic (existují-li) leží v polorovině určené bodem M
a přímkou procházející bodem В kolmo к BM. Tyto průsečíky tedy neleží
uvnitř úhlu s vrcholem B, jehož ramena jsou kolmá к BA, ВС a neleží
v úhlu ABC.

Buďte nyní А, В, C sousední vrcholy konvexního mnohoúhelníku.
Průsečíky jednotkové kružnice, která má střed ve vrcholu В, s jednotko-
vými kružnicemi, které mají středy v ostatních vrcholech, neleží uvnitř
úhlu из, neboť tyto vrcholy leží v úhlu ABC. Zbývá uvážit, že nejmenší
z vnitřních úhlů n-úhelníku není větší než из, takže největší z příslušných
úhlů není menší než 2tí/n.
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A - I - 2

Podle známých vztahů mezi kořeny a koeficienty mnohočlenu má daná
soustava rovnic řešení v oboru reálných čísel, právě když mnohočlen

f(ť) = t3 - 4í2 + 4t - p

má tři reálné kořeny. Vyšetříme průběh této funkce. Zřejmě

lim f(t) =
t —У — ОС

lim /(£) = oo.
t—¥ OO

— OO

Protože / má derivaci

=3((Hi+C>=3(H)(i-2)f'{ť) = 3t2 -8t + 4

funkce f(t) v intervalech (—oo,|) a (2,00) roste a v intervalu (|, 2) klesá.
Funkce má tedy v bodě t\ = § lokální maximum a v bodě t2 = 2 lokální
minimum. Mnohočlen bude mít tři reálné kořeny (počítány i s násob-
ností), právě když f{t\) ^ O a zároveň f(t2) ^ 0. Snadno zjistíme, že to
nastane, právě když p 6 (0, ||).

A - I - 3

Uvažujme posloupnost cn definovanou vztahem

cn — &n "F bn.

Protože

Cn+1 — ®n+i "F ^n+i — ~F 2bn ‘ŽQn + bn —

3Chjl “1“ З672 3Cyj5

a = 12 - 3 = 9,

je cn = 3n+1 pro všechna n € M. Odtud

bji — C72 an — 3 cín 7

fln+i — 5an + 2(3n+1 — an) = 3an + 2 • З71"*”1.
Z tohoto rekurentního vztahu můžeme posloupnost an určit např. takto:
Všimneme si, že 3n | an pro každé n 6 a položíme

(*)

dpi — 3 Xji .
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Dosadíme-li do (*), dostaneme

xn-\-\ — %n + 2,

a protože X\ — 4, máme

a„ = 2-3"(n + l),xn = 2 (n + 1)
bn = 3n+1 — an = —3n(2n — 1).

Snadno se přesvědčíme, že tyto posloupnosti an, 6n splňují požadavky
úlohy.

A - I - 4

Označme Q patu výšky čtyřstěnu na stěnu ABC, a, 6, c délky stran
trojúhelníku ABC a x, y, z vzdálenosti bodu Q od stran BC, CA, AB.
Pro obsah S(BCD) trojúhelníku BCD platí

S(BCD) = - aVv2 + x2 > i aV ' 2 - 2 ^2^2

(podle Cauchyovy nerovnosti

\fxí+x2 \[у1 +2/i = + Ж2У2|
v níž nastane rovnost, právě když xiy2 = x2yi), analogicky

1 u2 + yz

2 + y2

1
, v2 + gy S(ABD) t -S{ACD) ^-b2 Wv2 + g2’

Je tedy

P = S + S(BCD) + S{ACD) + S(ABD) t
ts +

1
= [a(v2 + gx) + b(v2 + gy) + c(v2 + gz)]

. 1 (ag + bg + cg) +

2yjv2 + g

, 9~—~{ax + by + cz).
V tr + g2

= S +

Přitom

i(ax + by + cz) = S(BCD) + S(ACD) + S{ABD) t 5,
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protože trojúhelník ЛВС je vždy obsažen ve sjednocení trojúhelníků
BCQ, ACQ, ABQ. (Rovnost zde nastane, právě když bod Q leží v troj-
úhelníku ABC.) Je tedy

v2 —J=s
\/v2 + e2

p>s + s + = 5 1 +
Q\Jv2 + Q2 Q

Rovnost nastane, právě když g = x = у = z, tj. právě když bod Q splyne
se středem kružnice vepsané trojúhelníku ABC.

Poznámka. Ze všech čtyřstěnů daného objemu a s danou podstavou
má nejmenší povrch ten, který má shodné odchylky všech tří poboč-
ných stěn od podstavy. Ze všech čtyřstěnů daného objemu s podstavou
daného obsahu má nejmenší povrch právě ten, jehož podstava je navíc
rovnostranný trojúhelník.

A - I - 5

Zvolme libovolná dvě čísla ve schématu. Od jednoho к druhému se mů-
žeme dostat nanejvýš 999 + 999 = 1 998 kroky tak, že postupně prochá-
zíme přes sousední čísla. Žádná dvě čísla ve schématu se tedy neliší více
než o 199 800, proto čísla ve schématu nabývají nanejvýš 199 801 různých
hodnot. Kdyby tam byla každá hodnota zastoupena nejvýše pětkrát, ne-

bylo by ve schématu více než 5 • 199 801 < 106 čísel, je jich tam však
milión. Musí tam tedy být aspoň jedno číslo nejméně šestkrát.

A - I - 6

Nejprve prozkoumáme soudělnost čitatele a jmenovatele. Čísla 3n + 1, n

jsou zřejmě nesoudělná a čísla 3n + 1, 2n — 1 mohou mít jako společného
dělitele jedině číslo 5: je-li d jejich společný dělitel, 3n +1 = da, 2n — l =
= db, je

d{2a - 36) = 2(3n + 1) - 3(2n - 1) - 5.

Všechna uvažovaná čísla jsou racionální a jejich desetinné rozvoje
mohou tedy být, jak známo, buď konečné, nebo nekonečné periodické (ke
zdůvodnění je potřeba vědět něco málo o nekonečných řadách).

Vyloučíme první případ: Konečný rozvoj mají právě ty zlomky v zá-
kladním tvaru, které mají jmenovatele tvaru 2r5s (to vidíme hned, uvědo-
míme-li si, že vynásobením takového zlomku vhodnou mocninou deseti
dostaneme celé číslo). Dejme tomu, že jmenovatel našeho zlomku má
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tento tvar (o to, zda je v základním tvaru, se starat nemusíme, zkrátit
by šel, jak už víme, leda číslem 5). Čísla n, 2n — 1 jsou nesoudělná, 2n — 1
je liché, musí tedy být n = 2Г, 2n — 1 = 5S. Potom je

2P+1 = 5s + 1 = (4+ l)s + 1.

Toto číslo dává při dělení čtyřmi zbytek 2 (binomická věta), je tedy r = 0,
s = 0 a n = 1. Pro n > 1 tento případ nemůže nastat a rozvoj je
nekonečný.

A - S - 1

Protože

(x + у + z)2 = x2 + y2 + z2 + 2 (xy + yz + zx)
xy T уz T zx1 1 1

-+-+-=
X z xyzУ

je uvedená soustava tří rovnic pro xyz ф 0 ekvivalentní soustavě

x + у + z = 1,
1 —p

xy + yz + zx = -у-
1 ~P

xyz =
2

Dále postupujeme jako při řešení úlohy A-I-2: Čísla x, y, z jsou řešením
této soustavy, právě když jsou řešením rovnice

(з-«2 + Цр t -

neboli

((-1)(«2 + Ц^) =0
Je zřejmé, že poslední rovnice má tři nenulové reálné kořeny, právě když
pro parametr p platí p > 1.

Jiné řešení dostaneme, jestliže dosadíme z z první rovnice do druhé;
po úpravě dostaneme (x + y)( 1 - x)(l — y) — 0. Odtud plyne, že aspoň
jedno z čísel x, y, z je rovno 1. Dále postupujeme stejně jako v předešlém
řešení.
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A - S - 2

Využijeme toho, že dvě čísla a + b\/5, c+dy/E, kde a, 6, c, d jsou celá čísla,
se rovnají, právě když a = c a b = d (to plyne z iracionality čísla \/5).
Po roznásobení pravé strany rovnosti

an+1 + frn+iV^á — (an + bn\/b) (З T л/б)
tak dostaneme dva rekurentní vztahy

bn-\-i — fln 3bn.

Tvrzení úlohy dokážeme matematickou indukcí. Pro n = 1 je ai = 3,
6i = 1, takže ai +bi = 4, a\ —b\ — 2, tj. obě čísla jsou dělitelná dvěma.
Předpokládejme, že an + bn, an — bn jsou dělitelná číslem 2n. Potom je
йп+1 T bn-\-1 — ářijj 8bn — 6(dn &n) 2(йп &n)i takže йп-|_1 T &n+i je
dělitelné číslem 2n+1. Podobně je i an+\ — 6n+i = 2йп + 2bn = 2(an + bn)
dělitelné číslem 2n+1. Tím je důkaz hotov.

A - S - 3

Označme К průsečík přímky AM s rovinou BCD, L střed úsečky BC
a B', C průsečíky dané roviny s hranami DB, DC (obr. 20).

D X

К
M

P L

Obr. 21
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Bodem D veďme přímku rovnoběžnou s přímkou AL a její průsečík
s přímkou AK označme X (obr. 21 ukazuje situaci v rovině AKD). Troj-
úhelníky ALK a XDK jsou souměrně sdružené podle středu M, takže
|£)X| = \AP\. Ze stejnolehlosti trojúhelníků ALK ~ XDK vychází

\DK\
_ \DX\ _ \AP\ _ 2

\KL\ ~ \AL\ ~ ]AL\ ~ 3

neboť P je těžiště trojúhelníku ABC. Je tedy

\DK\ \DK\ 21

\DL\ \DK\ + \KL\ \KL\ 51 +
\DK\

Objemy čtyřstěnů AB'C'D a ABCD jsou ve stejném poměru jako obsahy
trojúhelníků B'C'D a BCD, tj. 4 : 25. Hledaný poměr je tedy 4 : 21.

A - II - 1

Nejmenší společný násobek n = n(a, b) dvou přirozených čísel a > b
a jejich největší společný dělitel d = D(a,b) zřejmě splňují nerovnost
n t a > b t d, přičemž znaménko rovnosti v obou krajních nerovnostech
nastane, právě když b \ a. To ale znamená, žen — dta — b s rovností,
právě když 6 | a.

Pro danou posloupnost (a*,) odtud tedy plyne, že a\ | a2, a2 | аз, ..

П\ 990 I aiggi, 01991 | fli 992 • Protože 1 993 je prvočíslo, vyskytují se v po-

sloupnosti (ofc)j
Й20 — 1 993.

* 4

1 992 jen čísla 1 a 1993. Proto je buď 020 = 1, nebo

Jiné řešení. Označme D = D(ak,ak+1), potom je dk+1 = cD, ад, =
= dD, kde c, d jsou nesoudělná čísla. Podle předpokladu pro dané к
platí

cD — dD + cdD — D

tj-
(c + l)(ď — 1)D = 0,

takže d = 1. Je tedy a^+i přirozeným násobkem čísla a*,. Dále postupu-
jeme stejně.
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A - II - 2

Uvažujme společnou tečnu kružnic k\, v bodě C. Pro úsekové úhly
příslušné tětivám АС а ВC platí (obr. 22)

|-*XCB| = §|<íCS2B|,|<*ХСА| = H-MSjCI,

takže

\<ACB\ = !(|.MSiC| + |<CS2B|) =
= í(2h-|<SS1C|-|<SSS2C|) =
= 1(2k-(k-|<MSB|)) =

_ n + \<£ASB\ = konst.
2

Bod C tedy leží na oblouku příslušné kružnice nad tětivou AB. Je-li
ovšem \<£ASB\ = 180° (body A, В jsou krajními body průměru dané
kružnice к), vychází \<$:ACB\ = 180°, takže hledanou množinu bodů C
tvoří vnitřek úsečky AB.

Naopak pro libovolný bod tohoto oblouku (resp. úsečky AB) různý
od bodů А, В sestrojme kružnice k[, resp. k'2 tak, aby se dotýkaly kruž-
nice к v bodě A, resp. В a procházely bodem C. Obrácením předchozího
postupu je vidět, že obě kružnice mají v bodě C společnou tečnu.
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A - II - 3

Podle předpokladu pro daná nenulová reálná čísla x, y, z platí

(x + у + z){xy A yz A zx) = xyz

což po úpravě dává

(x A y){y A z){z A x) =0.

Protože daná rovnost je invariantní vůči permutacím čísel x, y, z, můžeme
bez újmy na obecnosti předpokládat, že je např. у = —x, a tudíž i xy 4-
+ yz A zx = —x2 < 0. Tím je důkaz hotov.

A - II - 4

Předpokládejme, že pro hrany a, 6, c platí 13 ^ a ^ b ^ c. Jednu ze stěn
uvažovaného čtyřstěnu při vrcholu D tvoří rovnoramenný trojúhelník
s rameny délky 6, pro jehož výšku na základnu x, a tedy i pro výšku v

čtyřstěnu při vrcholu D platí

v ^ \Jb2 - \x2 ú yj132 — |c2.
Odtud je zřejmé, že objem V = • 60 čtyřstěnu ABCD bude největší,
bude-li délka strany c co nejmenší (a uvažovaná stěna bude zároveň kolmá
na stěnu ABC).
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Pro výšku vc trojúhelníku ABC podobně platí vc ^ yj132 — |c2
(obr. 23), a protože 60 = |cuc, splňuje c nerovnici

60 ^ ^cyj132 — |c2.
Vyřešením této nerovnice dostaneme pro délku strany c nerovnost
10 ^ c ^ 24. Pro c = 10 pak vyjde v = 12, takže maximální objem
uvažovaného čtyřstěnu je V = | • 60 • 12 = 240 cm3.

A - III - 1

Je jasné, že každé číslo tvaru 6n—1 = (6—l)(6n-1-K . .+1) pro n přirozené
je dělitelné pěti. Probereme-li zbytky mocnin 7г, 1 i ^ 5, zjistíme, že
7n — 1 je dělitelné pěti právě jen pro čísla n tvaru n = 4k (tomu, kdo
zná malou Fermatovu větu, stačí probrat mocniny 7, 72 a 74). Pro taková
čísla n však platí, že 6n — 1 = 64A: — 1 = 362fc — 1 = (7 • 5 + l)2fc — 1 je
dělitelné sedmi. Číslo 7n — 1 tedy nemůže být násobkem čísla 6n — 1 pro
žádné přirozené n, protože není dělitelné sedmi.

A - III - 2

Uvažujme tabulku n x n, n ^ 3, a označme m nejmenší a M největší
z čísel tabulky.

Cestou mezi políčky tabulky o souřadnicích (г, j) а (к, l) nazveme kaž-
dou posloupnost sousedních políček tabulky, která začíná v (i,j) a končí
v (k,l). Vzdálenost dvou políček tabulky o souřadnicích (i,ý) a (k,l)
definujeme jako \i — k\ + \j — l\. Je jasné, že pro takovouto vzdálenost
libovolných dvou políček tabulky platí, že je nejvýše rovna 2n — 2.

Pokud je vzdálenost políček s čísly m a M menší, tedy nejvýše 2n —3,
dostaneme pro rozdíl M — m odhad M — m ^ 2(2n — 3) = 4n — 6, takže
tabulka může obsahovat nejvýše 4n — 5 různých čísel (víc se jich do
intervalu (m,M) nevejde).

Je-li vzdálenost políček s čísly m a M právě 2n — 2 (maximální
možná), musí příslušná políčka ležet v protějších rozích tabulky. V ta-
kovém případě označme к počet různých čísel v dané tabulce a nechť
6i = m < 62 < . •. < bk-1 < bk = M jsou všechna čísla v ní zapsaná.
Vzdálenost mezi políčky obsahujícími čísla 62 a bk-1 je nejvýše 2n — 4,
a proto bk-1 — 62 = 2(2n — 4) = 4n — 8. Pro rozdíl čísel Mam tak máme

M - m — (M - Ьк-1) + (bk-1 - b2) + (62 - m) й
й(М- Ък-1) + 4n - 8 + (62 — m).
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Podle toho, zda některé z čísel M — bk-i a 62 — m je 1 nebo 2, odtud
plyne, že může nastat jedna z následujících tří možností:

1) M — m й An — 6,
2) M — m й An — 5, přičemž tabulka neobsahuje buď číslo m +1, nebo

číslo M — 1,
3) M — m й 4n — 4, přičemž tabulka neobsahuje ani jedno z čísel

m + 1 a M — 1.
V každém případě vychází, že tabulka obsahuje nejvýše An—5 různých

celých čísel intervalu (m,M).
Nyní stačí ukázat, že do tabulky nxn lze zapsat čísla 1, 2, 3,..., 4n — 5

tak, aby byly splněny podmínky úlohy. To můžeme udělat například tak,
že rozmístíme čísla podle schématu

1 3 5 2n — 3

2n — 2

2n - 1

2 4 6 2n

4 6 8 2n 2n T 1

2n — 4

2n — 2

2n — 2 4n — 8

4n — 6

4n — 7

4n - 5

2n

2n 2n -f- 2

A - III - 3

Předpokládejme, že hledaný lichoběžník ABCD existuje. Protože obvo-
dovému úhlu ABC v kružnici opsané trojúhelníku ABC přísluší středový
úhel ASC (obr. 24), jehož velikost je 180° — 2\<$:LAK\, známe velikost
úhlu /3 = |<£ABCj = 90° — \<$:LAK\ hledaného lichoběžníku. Jeho vrchol
В tedy leží na oblouku l kružnice к o středu O, kterému nad tětivou AK
v polorovině opačné к polorovině AKL odpovídá obvodový úhel (3. Pro-
tože \<$:ALK\ > 180° — /3, je bod L vnitřním bodem kruhu vymezeného
kružnicí к.

Uvažujme průsečík P kružnice к s ramenem AD lichoběžníku ABCD.
Ze souměrnosti podle osy SO úsečky AB plyne, že bod P je v této
souměrnosti obrazem bodu 7Í, bod L leží uvnitř úsečky BP a platí
\AK\ = \BP\. Odtud plyne konstrukce tětivy BP: Daným bodem L
je nutno vést takovou přímku, která by na již sestrojené kružnici к vy-
ťala tětivu BP dané délky \AK\. Takovou přímku sestrojíme jako tečnu
vedenou bodem L ke kružnici k\ soustředné s kružnicí k, jejíž poloměr je
roven \OM\, kde M je střed AK. Protože |ASj = |C5| > IS'JsTJ, vybereme
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ze dvou takových tečen tu, která protíná úsečku MK (a ne MA, obr. 25).
Bod C pak najdeme jako průsečík polopřímek AL a BK.

Důkaz správnosti konstrukce. Stačí ověřit, že průsečík S sestrojené
tětivy BP s úsečkou MK je střed kružnice opsané trojúhelníku ABC a že
\<$:CAB\ < \<$lABC\ (pak je totiž možné doplnit ABC na lichoběžník
ABCD). Předně ze shodnosti tětiv AK a BP ihned plyne, že \AS\ =
= |S5|. Označme 6 = \<$:LAK\ a e = |<£5ЛБ| = |<^:5ВЛ|. Podle
konstrukce je \*$iCBA\ = /3 = 90° - <5 a z jednotlivých trojúhelníků plyne

BSA: \<£BSA\ = 180° -\<£SAB\ - \<£SBA\ = 180° - 2e,
BAL: \<£BLA\ = 180° - \<£LBA\ - \<£LAB\ = 180° - e - (e + S) =

= 180° -2e-S,
BCL: \^pBCL\ = 180° - \<£CBL\ - \<£CLB\ =

= 180° - (90° - 6 - e) - {2e + 5) = 90° - e.

Platí tedy |<£BSA| = 2\<$:BCA\, a to podle věty o středovém a obvo-
dovém úhlu znamená, že bod C leží na kružnici o středu S procházející
body A a B. Konečně platí

\<CAB\ = \«£LAB\ < \<£PAB\ = \^:KBA\ = \^CBA\

Diskuse. Protože přímky LA a LK kružnici k\ neprotínají a přím-
ka LM je její sečna, lze bodem L proložit právě jednu tečnu ke kružnici

65



ki, která protne úsečku MK (druhá tečna protne úsečku MÁ). Existence
bodu C: Polopřímky AL а ВК se protnou (v jediném bodě), pokud
\«£LAB\ + \<£ABK\ < 180°. Protože platí \<£LAB\ < \<£PAB\ =
= \<£ABK\ = (3 < 90°, je také \*£LAB\ + \<£ABK\ < 2(5 < 180°.
Úloha má proto jediné řešení.

A - III - 4

Ukážeme, že daná posloupnost je shora omezená číslem 1012. Z čísel men-
ších než 1012 má zřejmě největší součet desátých mocnin svých číslic číslo
1012 — 1, přičemž je 12 • 910 < 12 • 1010 < 1012. V omezené (nekonečné)
posloupnosti se aspoň jedna hodnota vyskytuje dokonce nekonečněkrát.

A - III - 5

Položíme-li v (1) x :=■ —у а у x, dostaneme

f(~y) + f{x) = f ( у - 2xy) + f(x + 2xy). (2)

Odečtením (2) a (1) vyjde rovnost

/Ы “ f{~y) = f(y( 1 - 2x)) - f(y(-1 - 2x)).
Protože 1 — 2x a — 1 — 2x jsou libovolná dvě sousední lichá čísla, usoudíme,
že / je lineární na množině všech lichých násobků pevného čísla y. Tedy

(■x 6 Tk, k — 0,1,2,...)f(x) = akx + bk

kde Tfc značí množinu všech lichých násobků čísla 2k.
Abychom zjistili čísla ak, bk, dosadíme do (1): je-li xeTkayeJi

je ovšem
y{ 1 - 2x) G Т/x(l + 2y) G Tfc

takže rovnost (1) bude mít tvar

akx + bk+ щу + 6/ = ak(x + 2xy) + bk + щ(у - 2xy) + bi

neboli xy{ak — щ) = 0. Protože xy Ф 0, dostáváme nutnou i postačující
podmínku: všechna čísla ak jsou rovna témuž číslu a. Protože rovnost
(1) je triviálně splněna, je-li jedno z čísel z, у rovno nule, mají všechny
funkce, jež vyhovují podmínce (1), tvar

ax + bk, x G Tfc,
x = 0,

/0*0 =
c,
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kde a, c a bfc jsou libovolné konstanty. V naší úloze

= 0, a tedy bk = f{2k) a c = /(0)./(!)-/(-!)
a =

2

A - III - 6

Ukážeme, že takový čtyřstěn existuje. Uvažujme čtyřstěn ABCD
(obr. 26), jehož dvě protější hrany AB a CD délky 2 jsou shodné a na-
vzájem kolmé a který je osově souměrný podle střední příčky těchto
dvou hran. Stěny tohoto čtyřstěnu jsou navzájem shodné trojúhelníky
o stranách 2, \/3 a \/3.

Obr. 26

Rozdělme každou stěnu uvažovaného čtyřstěnu ABCD středními přič-
kami na čtyři shodné trojúhelníky. Každá z rovin určených středy tří hran
se společným vrcholem je rovnoběžná s protější stěnou a ze čtyřstěnu
oddělí čtyřstěn podobný původnímu (stejnolehlý s koeficientem |). Od-
říznutím těchto čtyř čtyřstěnů dostaneme osmistěn M1M2M3M4M5M6,
který lze rozložit na čtyři shodné čtyřstěny, jež mají společnou hranu
Mi Me (střední příčku hran AB a CD). Bude-li velikost této společné
hrany rovna velikosti к ní kolmých hran osmistěnu, budou uvedené čtyř-
stěny podobné původnímu čtyřstěnu s koeficientem |.

Početně se uvedená tvrzení snadno ověří, zvolíme-li vrcholy A, R, C,
D v mřížových bodech krychlové sítě:

/1 = (1,0,0), В = (-1,0,0), C = (0,1,1), D = (0,-1,1).
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Kategorie P

Texty úloh

P - I - 1

Úloha o výměně podreťazcov
Je daný reťazec znakov dížky N uložený v poli A. (V jazyku Pascal
by sme to mohli vyjádřit’ deklaráciou var A: array [1.. AT] of char.) Hod-
nota N je přitom tak velká, že A zaberá skoro celú operačnú pamáť;
představte si například, že A slúži ako pracovná pamáť editora a právě
editujeme obrovský súbor.

Blok je súvislý podreťazec reťazca A začínajúci znakom s indexom z
a končiaci znakom s indexom к (1 ^ z 5Í к ^ N); takýto blok budeme
označovat’ A[z .. к]. Bloky A[z\ .. ki] a A[z2 .. A^] sa neprekrývajú, ak k\ <
< Z2 alebo k2 < z\. Například podreťazce A[4 .. 5] = ak a A[8 .. 10] = abr
sú neprekrývajúce sa bloky reťazca A = abrakadabra.

Napište a zdovodnite algoritmus (program v programovacom jazyku),
ktorý vymění dva neprekrývajúce sa bloky reťazca A, t.j. pre zadané
indexy z\ 'š ki < Z2 ^ k2 premení reťazec

A = A[1.. (zi — l)]A[zi .. k^A^h+l).. (z2-l)]A[z2 .. k2\A[(k2 + l).. N]

na reťazec

A[1 • - {zx - 1 )\A[z2 .. k2\A[(k1 + l)..(z2- l)]A[zi .. ki]A[(k2 + 1) •. N]

Například výměnou vyznačených blokov v reťazci A — abrakadabra by
mal vzniknúť reťazec A = abrabradaka.

Algoritmus smie použit’ len pomocnú pamáť konštantnej velkosti (ope-
račná pamáť je skoro plná, nemusí sa do nej zmestiť ani kópia menšieho
z blokov) a počet krokov algoritmu by mal byť úměrný N (editor nesmie
byť pomalý).
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P - I - 2

Úloha o priemere mnohouholníka
Priemer rovinného útvaru S je najváčšia vzájomná vzdialenosť medzi
dvoma bodmi S:

diam(S) = max у (x — x')2 + (y — y')2.
{x',y')e s

Body Xi = (xi,yi),...,Xn = (xn,yn) (n ^ 3) tvoria (v tomto po-
radí) vrcholy konvexného n-uholníka M v rovině. Napište a zdóvodnite
program, ktorý určí diam(M)

Poznámka. Existuje algoritmus s lineárnou časovou zložitosťou.
priemer mnohouholníka M!

P - I - 3

Multiplikatívna zložitosť
Lineárny algoritmus je algoritmus nasledujúceho tvaru:

(vstupné premenné)Vstup: xi, X2, - -xn

fi := 9\ © úi
/2 := 92 © Ú2

fi := 9i © hi

fk ■= 9k © hk
Výstup: j/b y2, ..ym (výstupné premenné)

pričom
(i) pre každé i = 1, ..к je gi,hi e {xi,x2,.. .,xn} U {/1, /2, - - -Ji-1}

a operácia 0 je jedna z operácií * (sčítanie, odčítanie, násobě-
nie).

(ii) pre každé i = 1, ..m je у» € {/i, /2, • • •, fk}-
Zložitosť lineárneho algoritmu je počet operácií ©, multiplikatívna

zložitosť lineárneho algoritmu je počet operácií * (násobenie).
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Například nasledujúci lineárny algoritmus

Vstup: a, b, c, d

fi := a * b
/2 := c*d
/3 := /1 — /2

Výstup: /3

počítá hodnotu výrazu ab — cd a má multiplikatívnu zložitosť 2.

Úlohy
(a) Nájdite lineárny algoritmus, ktorý pre vstup x vypočítá hodnotu

mnohočlena 1ж+9а;2+9а:3+2а;4 a má najmenšiu možnú multiplikatív-
nu zložitosť! Svoje tvrdenie zdóvodnite (ukážte, že neexistuje lineárny
algoritmus s mensou multiplikatívnou zložitosťou než váš algoritmus!)

(b) Ukážte, že hodnota výrazu ab — cd sa nedá vypočítat’ lineárnym algo-
ritmom s multiplikatívnou zložitosťou 1!

P - I - 4

McCullochov stroj
McCullochov stroj je opísaný v študijnom texte.
1. Nájdite také číslo M, ktoré vytvára samo seba, t.j. M b M!
2. Existuje V, ktoré vytvára svoje zdvojenie, t.j. N b NN?
3. Existuje číslo P, ktoré vytvára číslo P2, t.j. P b P2?
4. Existuje číslo Q, ktoré vytvára číslo 6Q, t.j. Q b 6Q?
5. (McCullochov zákon) Pre každé číslo A existuje také číslo X, že X

vytvára AX, t.j. X b AX. Dokážte!
6. Existuje také P, že R b P6?

McCullochov stroj (studijný text)
McCullochov stroj slúži na spracovanie čísel. Má vstup a výstup; ak

na vstup podáme číslo, t.j. konečnú neprázdnu postupnost’ ciíier 1, 2, 3,
4, 5, 6, 7, 8, 9, po konečnom čase sa na výstupe móže (ale nemusí) objaviť
(iné) číslo — odpověď stroja na vstupné číslo. V prvom případe (t.j. ak
sa odpověď objaví), vstupné číslo sa nazýva přijatelným. Odpověď stroja
je vstupným číslom jednoznačné určená:

- ak vstupné číslo je přijatelné, tak sa odpověď objaví vždy a je vždy
rovnaká,
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- ak vstupné číslo nie je přijatelné, nikdy sa neobjaví odpověď a stroj
sa po konečnom čase zastaví (t.j. možeme zistiť, že vstupné číslo nie
je přijatelné).
Stroj sa riadi určitými pravidlami — najprv ale uvedieme niekolko de-

finícií. Ako už vieme, čísla sú pre nás kladné celé čísla, ktorých desiatkový
zápis neobsahuje nulu.

Ak А, У sú čísla, tak АУ označuje ich spojenie: číslo, ktoré dostane-
me napísaním zápisov čísel А, У za sebou. Napr. ak A je 53 а У je 728,
tak АУ je 53728 а АУА je 5372853. Číslo AA ... A zapíšeme ako Xk.

Zdvojením čísla A je číslo AA. Napr. zdvojením čísla A = 12345 je
číslo AA = 1234512345.

Hovoříme, že číslo A vytvára číslo У, ak A je přijatelné a po podaní A
na vstup stroj a odpoveďou je У. Tento vztah budeme skrátene zapisovat’
АЬУ.

McCullochov stroj sa riadi nasledujúcimi pravidlami:

Pravidlo P\. Pre íubovolhé číslo A, 2X2 je přijatelné a vytvára X. Skrá-
tene, 2A2 b A.

Pravidlo P2. Pre íubovolhé čísla X, Y, ak X vytvára Y, tak 7A vytvára
číslo У2. Skrátene, z X b У vyplývá 7A b У2.

Pravidlo P3. Pre íubovolhé čísla X, Y, ak X vytvára Y, tak 5A vytvára
zdvojenie čísla Y. Skrátene, z X b У vyplývá 5A b УУ.

Pravidlo Po- číslo X je přijatelné len vtedy, ak to vyplývá z pravidiel
Pi,P2,P3.

Například, 2532 b 53 podlá Pu 72532 b 532 podlá P2, 572532 b
b 532532 podlá P3, ale 4253 nie je přijatelné podlá Pq.

P - II - 1

Úloha o nákladných autách
Mestá А а В sú spojené rovným úsekom cesty. Na tejto ceste ležia mestá

., An, Bi,..., Bn (nie nutné v tomto poradí, ale město A{ je bližšie
к A než město Вi (1 ^ i n)). Nákladné auto premáva medzi А а В
a má n objednávok: previezť náklad z každého A; do příslušného Bp
přitom naraz móže viezť len jeden náklad a po naložení v A{ ho móže
vyložit’ len v B{.

Aь • •
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Jazdou nákladného auta budeme rozumieť cestu auta z města A do

města В (s případným splněním niektorých objednávok) a spát’; počas
jazdy smie změnit’ směr len v meste В.

Napište a zdóvodnite program, ktorý zostaví plán nákladného auta
(t.j. určí počet jázd a splněné objednávky pre každú jazdu) tak, aby
splnilo všetky objednávky minimálnym počtom jázd!

P - II - 2

Úloha o pokrytí štvorcom
Body Xi = (xi,yi), ..., Xn = (xn,yn) (n ^ 3) tvoria (v tomto po-

radí) vrcholy konvexného n-uholníka M v rovině. Napište a zdovodnite
program, ktorý určí dížku strany štvorca S s nasledujúcimi vlastnosťami:
(a) S pokrývá M: M C S,
(b) aspoň jedna strana M leží na straně S,
(c) S má najmenší možný obsah.

Poznámka. V programe móžete využit’ vzorce z analytickej geometrie
(napr. pre vzdialenosť dvoch bodov alebo vzdialenosť bodu od priamky)
ako funkcie; tieto funkcie nemusíte programovat’.

P - II - 3

Multiplikatívna zložitosť
Lineárny algoritmus je algoritmus nasledujúceho tvaru:

Vstup: xi, X2, ■ ■ ■, xn (vstupné premenné)
h ■■= 9i © hi
/2 := 92 © h,2

fi := 9i © hi

fk •— 9k © hfc
Výstup: y1, y2,.. •, Ут (výstupné premenné)

pričom
(i) pre každé i = 1, —, Ar je gi,hi G {rri,x2,... ,xn) U {/1, /2,..., fi-i}

a operácia © je jedna z operácií * (sčítanie, odčítanie, násobě-
nie);
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(ii) pre každé i = 1,... ,m je yf € {/ъ/2, • • • ,/*}.
Zložitosť lineárneho algoritmu je počet operácií ©, multiplikatívna

zložitosť lineárneho algoritmu je počet operácií * (násobenie).

Úlohy
(a) Zistite, akú činnost’ vykonává nasledujúci lineárny algoritmus:

Vstup: ац, ai2, агъ «22> ^12, 621, &22,
/1 = a11 + a22

/2 = bn -f 622

/3 = «21 + «22

/4 — &12 ~ ^22
/5 = 621 - &11
/б = «11 + «12

/7 = «21 — «11

/в — bn + Ъ\2
/9 = «12 — «22

/lO = ^21 + &22
/ll = /l * /2
/l2 = /3 * frll
/l3 = «11 * /4

Výstup: /22, /23, /24, /25

/14 = «22 * /5
/l5 = /б * Ь22
fl6 = /7 * /в
fl7 = /9 * /lO
/l8 = /ll + /14
/l9 = /l5 — /l7
/20 = /ll + /l3
/21 = /l2 — /l6
/22 = /l8 — /l9
/23 = /l2 + /14
/24 = /l3 + /15
/25 = /20 — /21

(b) Nájdite lineárny algoritmus s čo najmensou multiplikatívnou zloži-
tosťou, ktorý pre vstup yi,...,yn, «i,...,un, ub..

vypočítá
* ?

^1^1 • • • ”1”

X\V\ + ... + Xnun,

yi«i ~b • • • "b Уп«п)

yiUl +...+ yn^n-

P - II - 4

McCullochov stroj
Operačně číslo je číslo zložené z cifier 5,7. Každé operačně číslo M určuje
operáciu M() v nasledujúcom zmysle: zlhY vyplývá MI b M(Y).
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Například 5 určuje operáciu zdvojenia (5(Y) = YY), lebo X b Y =>
=> 5X b YY; 75 určuje operáciu pripísania 2 к zdvojeniu (75(Y) =
= YY2), lebo X b Y =» 75X b YY2; 757(89) = 8928922, lebo 7572892 b
b 8928922.

Úlohy1.(Craigov zákon) Pre každé operačně číslo M a pre každé číslo A
existuje číslo X vytvárajúce M(AX), t.j.

(V operačné M)(VH)(3X)(X b M(AX)).

Dokážte!
2. Nájdite čísla X ф Y také, že X b Y a zároveň Y b X!
3. (Fergussonov zákon) Pre lubovolné А, В existujú čísla X, Y také,

že X b AY a zároveň Y b BX. Dokážte!

P - III - 1

Úloha o viditelnosti mnohouholníka

ym) (m = 3) sú (v tomto рога-Body Xi = (zi,j/i), Xm = (x
dí, proti směru hodinových ručičiek) vrcholy konvexného m-uholníka M
v rovině.

771 7

Mnohouholník M leží vo vnútri kruhu К so stredom S = (xs,ys)
a polomerom r (to znamená, že každé X* je vnútorným bodom K).

Hovoříme, že bod и ležiaci na obvode (hranici) M je viditelný z bo-
du v, ak úsečka uv neobsahuje vnútorné body M. (Všimnite si, že podlá
tejto definície sú všetky body strany XíXí+i viditelné z každého bodu
priamky X{Xi+1; na druhej straně, obvod M je „neviditelný" pre vnútorné
body M!)

Napište a zdóvodnite čo najrýchlejší program, ktorý
a) vypíše také údaje, z ktorých bude možné pre lubovolný bod v ležiaci

na obvode kruhu К určit’ množinu tých bodov z obvodu M, ktoré sú
viditelné z bodu v,

b) určí minimálny počet bodov ležiacich na obvode К tak, aby každý
bod na obvode M bol viditelný aspoň z jedného z týchto bodov.
Poznámka. V programe možete využit’ vzorce z analytickej geomet-

rie (napr. pre vzdialenosť dvoch bodov alebo priesečník dvoch priamok,
priamky a kružnice apod. ) ako funkcie; tieto funkcie nemusíte progra-
movať.
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P - III - 2

Multiplikatívna zložitosť
Lineárny algoritmus je algoritmus nasledujúceho tvaru:

Vstup: x\, X2, ■ ■ (vstupné premenné)%n• 1

fi •■= 9\ © hi
/2 “ 92 © ^2

fi := 9i © К

fk •— 9k © hj.j
(výstupné premenné)Výstup: У1,У2,...,Ут

pričom
(i) pre každé i = 1,..., к je git h{ G {xi, x2,. •., xn} U {/1, /2, •. •, /*—1}

a operácia © je jedna z operácií * (sčítanie, odčítanie, násobě-
nie);

(ii) pre každé i = 1,... ,m je y{ G {/1, /2, — > /fc}-
Zložitosť lineárneho algoritmu je počet operácií ©, multiplikatívna

zložitosť lineárneho algoritmu je počet operácií * (násobenie).
Zistite, akú činnost’ vykonává následujúci lineárny algoritmus:

Vstup: a, 6, c, d
/5 = /1 * /2
/б = /5 — /з
h = /з - /4
/8 = /б — /4

/i — a + b
/2 = c + d
/3 = a * c

f4 ■= b * d
Výstup: /7, /8

a rozhodnite, či existuje lineárny algoritmus počítajúci /7 a /8 s lepšou
multiplikatívnou zložitosťou!

P - III - 3

Úloha o plátení
Dané sú mince v hodnotě #1, (Z2, • • •, korún, kde 1 ^ (Zi < <72 < • • • < 9n
sú prirodzené čísla a qi+i/qi je nepárne prirodzené číslo pre 1 й i < n.
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Platitel’ aj príjemca majú к dispozícii neobmedzený počet mincí kaž-
dej hodnoty. Platitel’ ma zaplatit’ obnos X korún příjemcovi. Platba je
optimálna, ak sa pri nej vymění najmenší možný počet mincí; t.j. pre
každé 1 ^ i ^ n dá platitel’ Xi 0) mincí hodnoty qi, príjemca vydá уi

П П

0) mincí hodnoty qi tak, že Y ixi ~ Ví)Qí — X, a přitom Y (xi + Ví)

je minimálně.
Například pri minciach s hodnotou 1, 3 a 9 korún (n = 3) sa dá

17 korún vyplatit’ tak, že platitel’ dá 1 deváťkorunáčku, 2 trojkorunáčky
a 2 jednokorunáčky; vymění sa 5 mincí. Pri optimálnej platbě ovšem dá
platitel’ 2 devaťkorunáčky a príjemca vráti 1 jednokorunáčku; vymenia
sa 3 mince.

Napište a zdóvodnite program, ktorý pre vstupné celé kladné číslo X
určí optimálny sposob platby X korún!

2=1 2=1

P - III - 4

McCullochov stroj
Chovanie McCullochovho stroja je popísané v študijnom texte! Nájdete
tam aj zhrnutie známých vlastností dokázaných v minulých kolách.

Číslo Xo je nesmrtelné, ak nasledujúci proces je nekonečný (t.j. ne-
vyskytne sa v ňom nepřijatelné číslo):

Zadám strojů číslo Xo;
Ak sa objaví odpověď Xi, zadám strojů číslo Xi;

Ak sa objaví odpověď X2, zadám strojů číslo X2,
Ak sa objaví odpověď X3, zadám strojů číslo X3,

... ; atď.

Otázky:
1. Nájdite 4 nesmrtelné čísla!
2. Nájdite 1993 nesmrtelných čísel!
3. McCullochov algoritmus zisťovania nesmrtelnosti čísel

Základom algoritmu je číslo H také, že (X je nesmrtelné) -ФФ- (HX
nie je nesmrtelné). Použijeme dva stroje — SI a S2.
VSTUP: Číslo X.
OTÁZKA: Je X nesmrtelné?
ALGORITMUS

1. Y :=X-U := HX;
2. Strojů S1 zadáme číslo Y; strojů S2 zadáme číslo U;
3. AK stroj S1 vydá odpověď Z, TAK Y := Z
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INAK STOP; Číslo X nie je nesmrtelné!
4. AK stroj S2 vydá odpověď V, TAK U := V

INAK STOP; Číslo X je nesmrtelné!
5. SKOK na 2.

Je tento algoritmus správný?
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Řešení úloh

P - I - 1

Uvažujme o „velkom“ bloku A[z\ .. A^], ktorý zahřňa obidva vyznačené
bloky A[z\.. k\], A[z2 .. £2] aj nevyznačený blok A[(k\ + 1).. (z2 — 1)]
medzi nimi; tento „medziblok“ je v případe k\ = z^ — 1 prázdny. Základom
algoritmu je pozorovanie, že obrátením poradia znakov v bloku A[z\ .. /^2]
sa vyznačené bloky dostanú na „správné" miesto, ale ich znaky budú
v obrátenom poradí. To sa dá napravit’ tým, že před obrátením velkého
bloku obrátíme jeho „podbloky".

Aby sme to mohli presnejšie sformulovať, označme XR reťazec, ktorý
dostaneme obrátením poradia znakov v reťazci X. Příklad:

[abrakadabra)R = arbadakarba.

Potom pre 1’ubovol’né reťazce U, V, W, X, Y platí

U(VrWrXr)rY = UXWVY, (*)

t. j. postupnost’ štyroch operácií obrátenia bloku vymění bloky V, X v re-
ťazci UVWXY. (Bloky dížky ^ 1 nemusíme obracať.) Příklad:

= ab((akar) (d) (ba))R ra = ab(ab) (d) (raka)ra.ab((raka)R (d)R (ab)R)R ra

К dokončeniu algoritmu si stačí všimnúť, že blok sa dá obrátit’ v čase
úmernom jeho dížke s použitím pomocnej památi konštantnej velkosti.

Program v PASCALe:

program VÝMĚNA;
const N = ..

type index = 1.. N;
var

* ?

A : array [index] of char;
zl,z2, к 1, fc2, zpom, kpom : index;

procedure OBRAT(zac, коп : index);
(* Ak zac ^ kon, neurobí nič *)

var

pom : char;
begin
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while (zac < коп) do begin
pom := A [zac];
A[zac] := A[kon];
A[kon] := pom;
zac := zac + 1;
коп := коп — 1;

end; (* while *)
(* OBRAT *)end;

begin (* hlavný program *)
... (* Načítanie ret’azca A a medzi blokov: *)
... (* zl ^ kl, z2 ^ k2 *)
if (zl > z2) then begin

zpom := zl; zl := z2; z2 := zpom;

kpom := kl; kl := k2; k2 kpom;
end;
if (kl ^ z2) then

writelnCBloky sa prekrývajú!’)
else

begin
OBRAT(zl,kl);
OBRAT(kl + 1,22-1);
OBRAT(z2,k2);
OBRAT(zl,k2);

end

end. (* hlavný program *)

Správnost’ algoritmu vyplývá zo vztahu (*); správnost’ procedury
OBRAT je očividná.

Odhad časovej a pamáťovej zložitosti: Procedúra OBRAT sa vyvolá
štyrikrát; jedno jej prevedenie pozostáva z nanajvýš c • l krokov, kde l
je dížka bloku, ktorý chceme obrátit’, a c je vhodná konstanta. Celkový
počet krokov je teda nanajvýš

C • [(k\ + 1 — Z\) + (z2 — — 1) + (k2 + 1 — Z2) + (&2 + 1 — Z].)] ^
2c • (/ř2 + 1 — z\) 2c • N,

t. j. lineárny v N. Zo zápisu programu je jasné, že sme použili pomocnú
pamáť konštantnej velkosti.
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P - I - 2

Vzdialenosť bodov X, Y označíme d(X,Y); vzdialenosť bodu X od
priamky YZ označíme d(X, YZ). V ďalšom budeme předpokládat’, že vr-

choly M sú usporiadané (v cyklickom zozname Xi, X2,..., Xn, Xi) proti
směru hodinových ručičiek, a položíme X0 = Xn, Xn+Í = X\.

Klučovým pozorováním je nasledujúce
Tvrdenie. diam(M) = diam({Xi,..., Xn}).

NÁZNAK dokážu. Prijmime (bez dokážu) fakt, že existujú body X,
Y € M, ktoré majú vzdialenosť diam(M). Tieto body zrejme ležia na
hranici M (inak by vzdialenosť priesečníkov priamky XY s hranicou M
bola váčšia, než d(X,Y).) Keby X ležalo vnútri hrany XíXí+ i, bolo by
d(X,Y) < m&x{d(Xi,Y),d(Xi+i,Y)}i čo je spor s definíciou bodov X
a Y. Podobné sa nahliadne, že Y nemože byť vnútorným bodom hrany
M, a teda X aj Y sú vrcholy M, čo bolo třeba dokázat’.

Vyzbrojení týmto aparátom 1’ahko navrhneme kvadratický algoritmus
spočívajúci vo vyskúšaní každej dvojice vrcholov. Keby sa nám podařilo
zredukovat’ úlohu na vyskúšanie lineárneho počtu dvojíc vrcholov, dostali
by sme lineárny algoritmus.

Predpokladajme najprv, že M nemá dvojicu rovnoběžných hrán. Pre
každú hranu hi = X;X;+i (1 ^ i ^ n) označíme Xd^ vrchol M najviac
vzdialený od priamky XíXí+i-

Pre každý vrchol Xi definujeme množinu kandidátov pre vrchol Xd^:
К(г) = {^(г-_!), ..., Vd(i)_!, Xd(i)} •

Pozorovanie (obr. 27). Pre 1 й i,j ^ n ак Xj £ К(г), potom diam(M) >
>d{Xi,Xj).

/ Xd(i-1)

К(г)Xd(i)

Xi+Í

hi-1
XiXi—i

Obr. 27
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Intuitivné, ak Xj nie je kandidátom pre i, tak je vylúčené, aby sa
priemer dosahoval na dvojici vrcholov Xi, Xj.

Dokaž. Ak totiž Xj К(г) a Xj ф Xi, tak

Xj e {Xi+i,... ,Xd(i-i)-i} alebo Xj e {Xd^+Í,..., X;-i}.
V prvom případe

d(X}+uXi-iXi) > d(Xj,Xi-ЛУ,

zostrojíme priamku rovnobežnú s XiXj pretínajúcu hrany hi-1, hj vo
vnútorných bodoch Y, Z a priesečník U priamok Xj+íXj a Xi-\Xi.
Potom (obr. 28) uhol XiUXj je ostrý (podlá predchádzajúcej nerovnosti),
a preto

diam(M) ^ d(Y, Z) > d(XuXj),
co bolo třeba ukázat’. V druhom případe sa postupuje podobné.

Xi-г Y Xi U

Obr. 28

Pre každé i teda stačí vyskúšať dvojice (Xi,Xj), Xj £ К (г). V případe
hi || hj sa situácia změní len v tom, že sa musia vyskúšať všetky dvojice
№,Xj), (Xi,xj+i), №+1,Xj), (xi+l,xj+1y

V každom případe tvoří množina kandidátov vrcholu Xi „súvislý“
úsek vrcholov M a „susedné“ množiny kandidátov (t.j. pre Xi, Xi+1)
majú nanajvýš dva spoločné prvky. To je základom nasledujúceho algo-
ritmu.

Program v PASCALe:

program PRIEMER;
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const

n = . • • 5

type
bod=record x,y : real end;

var

m : array [1.. n\ of bod;
i, j : 1 • -П]
diam : real;

function d(i,j : index) : real; (* vzdialenost’ bodov *)
begin d := sqrt(sqr(m[i\.x — m[j].x) + sqr(m[i].y — m[j].y)); end;

function dalsi(i : index) : index; (* další bod v cykl. usporiadani *)
begin dalsi := imodn + 1; end;

function max(x,y : real) : real; (* maximum čísel *)
begin if (x > y) then max := x else max := y; end;

function P(i, j, к : index) : real; (* obsah trojuholnika *)
begin

P := ((m[j].x — m[i\.x) * (m[k].x — m[i].x)
~ ('МЯУ ~ тЩ-У) * (m[k\.y - m[i\.y))/2;

end;
begin

(* Načítanie súradníc zadaných bodov *)
(* POZOR! Program neoveruje, či dané body skutočne tvoria *)
(* (v zadanom poradí) vrcholy konvexného mnohouholníka!!! *)

i := n; j := 1; diam := 0;
while P(i,dalsi{i),dalsi(j)) > Р(г, dalsi(i), j) do
j := dalsi(j);

while j ф 1 do begin
i dalsi(i);
diam := max {diam, d(i, j))‘
while P(i,dalsi(i),dalsi(j)) > P(i,dalsi(i),j) do begin
j := dalsi(j);
diam max (diam, d(i, ý));

end;
if P(i,dalsi(i),dalsi(j)) = P(i,dalsi(i),j) then

diam := max(diam,d(i,dalsi(j));
end;
writeln(diam);

end.
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Odhad časovej zložitosti: Priradenie j := dalsi(j) sa vykoná presne
n-krát; priradenie i := dalsi(i) sa vykoná nanajvýš n-krát. Tělo if-príkazu
sa vykoná nanajvýš |n-krát (nemóže byť viac dvojíc paralelných hrán).
Každé priradenie hodnoty premennej diam je spojené s priradením hod-
noty premennej i alebo j alebo s vykonáním těla if-príkazu; to znamená,
že premennej diam sa přiřadí hodnota nanajvýš |n-krát. Každý příkaz
v programe sa vykoná nanajvýš |n-krát, algoritmus má teda lineárnu
časovú zložitosť.

Poznámky к implementácii: Vzdialenosti bodov od priamky (určenej
úsečkou) porovnáváme pomocou obsahov trojuholníkov určených týmito
bodmi a danou úsečkou. Je to efektívnejšie, než mechanická aplikácia
postupu z analytickej geometrie, hlavně ak vezmeme do úvahy, že chceme
len porovnávat’ vzdialenosti, a nepotřebujeme ich explicitně spočítat’.

P - I - 3

(a) Například nasledujúci lineárny algoritmus

Vstup: x

fl=x + x

/5 = /4 + /4
/б — /4 + /5
Výstup: /9

/1 = X * X

/2 = /1 + X

/3 = /1 + /2

/7 = /3 + /б
/в = /2 * /7
/э = /в'+'/з

má multiplikatívnu zložitosť 2.
Lineárny algoritmus pre vstup x nepoužívajúci násobenie dokáže spo-

čítat’ iba polynomy tvaru kx, kde к £ Z. Ak lineárny algoritmus používá
jediné násobenie, potom činitele sú tvaru kix, k2X a výsledok násobenia
je k\k2X2. Teda lineárny algoritmus dokáže spočítat’ iba polynomy tvaru
kx2 + jx, k,j £ Z, t.j. iba kvadratické polynomy. Náš polynom je štvr-
tého stupňa, a preto neexistuje lineárny algoritmus s multiplikatívnou
zložitosťou 1, ktorý ho počítá.

(b) Sporom dokážeme,, že ab — cd sa nedá spočítat’ lineárnym algorit-
mom zložitosti 1.

Lineárny algoritmus pre vstup a, b, c, d nepoužívajúci násobenie do-
káže spočítat’ iba polynomy tvaru k\a + + k^c + &4d, ki £ Z, lineárny
algoritmus používajúci právě jedno násobenie dokáže spočítat’ iba póly-
nómy tvaru

^l(Aia + Í2b + Í3C + Í4Cř)(Mia + M2^ + W3C + U4d) +V2a + V3b + V4C + V5d. (*)
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Keby ab — cd bolo tvaru (*), potom z porovnania máme (vzhládom
na symetriu možno bez újmy na všeobecnosti předpokládat’ t\ Ф 0):

t\Ui = 0, (1) tiu3 + t3ui =0, (5)
t2U2=0, (2) íiit4 + t4u4 = 0, (6) Vi(tiU2 + t2Ui) = 1
t3u3 = 0, (3) t2u3 + t3u2 = 0, (7) vi(ť3u4 + í4u3) =-1, (10)
t4u4 = 0, (4) t2u4 + t4u2 = 0, (8)

vi ф0, v2 = v3 - v4 = v5 = 0,

(9)

potom ui = 0 z (1), u3 = 0 z (5), t3 Ф 0 а u4 ф 0 z (10), t4 = 0 z (4),
t2 = 0 z (8) а u2 ф 0 z (9). Teda ti,t3,u2,u4 Ф 0, Ui,u3, t2, t4 =0, avšak
to je podlá (6) spor:

0 Ф tiu4 = t4u4 + 0 = t4u4 + t4u4 = 0.

Všimnime si, že hodnota výrazu a- a — b-b — a2 — b2 sa dá vypočítat’
lineárnym algoritmom zložitosti 1!

P - I - 4

1. Keby sme našli také H, že

(*)X h Y =* HX h Y2Y2,

po dosadení X := 2Y2 by sme dostali 2У2 h Y => H2Y2 h Y2Y2, čo
dává (spolu s Pi a po dosadení Y := H) H2H2 b H2H2 a stačilo by
položit’ M := H2H2.

Podmienka (*) nám vlastně hovoří, že H spósobí pripísanie 2 na ко-
niec čísla a následné zdvojenie. Z toho je vidieť, že H = 57 vyhovuje (*).
Riešením je teda M = 572572. Skutočne, 2572 b 57 (Pi), 72572 b 572
(P2), 572572 b 572572 (P3).

Ak (*) nahradíme podmienkou X b Y =>• HX b УУ2, po dosadení
У := Я2, X := 2У2 = 2Я22, Я := 75 dostaneme riešenie M = 7527522
(overte!).

Teraz pride malý podraz: vyriešime hned’ 5. otázku.
5. Chceme nájsť X také, že X b AX. Hládajme ho v tvare X = 5У

(přijatelné sú len čísla tvaru 2У2, 5У а 7У). Potom У b Z => X —

= 5У b ZZ. My ale chceme, aby ZZ = AX = A5Y. Teraz je rozumné
předpokládat’, že У je dlhšie než A, t. j. Z = A5U. Hládáme teda také U,
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že UAbU b A5U. Prečo by U nemohlo byť tvaru U = 7V? (5 sme už mali,
skúsme 7!) Teraz chceme splnit’ podmienku 7VA57V b A57V. Přitom
VA57V b W =» 7VA57V b W2, t.j. by málo platit’ W2 = A57V. Túto
podmienku splníme položením W := A57, V := 2. Po spátnom dosadení
dostaneme X = 572A572. Tahko sa overí, že toto X vyhovuje.

Keď v predchádzajúcej úvahe přehodíme úlohu 5 a 7, dostaneme dru-
hé riešenie X = 752A7522 (overte!)

Poznámka. Ak dovolíme, aby A bolo „prázdné číslo“, vyriešili sme1.úlohu iným sposobom (dostali sme ovšem rovnaké riešenia).
2. Skúsme hladať N v tvare 5X. Ak X b 5X, potom 5X b 5X5X.

T.j. (použijeme McCullochov zákon pre A = 5) N = 55725572 alebo
N = 575257522 vyhovuje.

3. Hládajme P v tvare 7X. X \- 7X => 7X b 7A2, teda možné riešenia
sú P — 75727572, P = 775277522.

4. To je triviálna aplikácia McCullochovho zákona: Q — 5726572 alebo
Q = 75267522.

6. Predpokladajme, že existuje číslo R vytvárajúce R6; z tohoto před-
pokladu odvodíme spor.

Počet cifier čísla Y budeme označovat’ \Y|, počet jeho pátiek resp. sed-
mičiek jt5(Y) resp. #7(У).

Přijatelné čísla sú tvaru Я2У2, kde H pozostáva z cifier 5, 7, Y je
lubovolné, |У| ^ 1.
Pozorovanie. Nech X b У, HX b Z. Potom \Z\ ^ 2«5(Я)|У| + Ц7(Я).

Číslo R je tvaru H2Y2, lebo je přijatelné; přitom R vytvára číslo
R6 = H2Y26. Z Pozorovania vyplývá |Я2У26| ^ 2^5^Я^|У| +[}7(Я), t.j.

k(H) + #7(Я) + \Y\ + 3 S 2»=<Н>|У| + #7(Я),
U{H) + 3^ (2«=<Н)|У|-1)|У|,

a teda ^(Я) € {0,1,2}, lebo |У| ^ 1.
Rozlišíme tri případy:

(1) Лб(Я) = 0. V tomto případe R je tvaru 7S2Y2, ale 7S2P2 b 72s
a |Y2S| < |7S2F26| — spor.

(2) Ц5(Я) = 1. V tomto případe R = 7a57b2Y2 b Y2bY2a+b = Я6,
t. j. a + 6 = 0, a = b = 0, R = 52У2 b YY = R6 a porovnáme dížok
(\R\ + 1 = |Я6|) dává |У| + 4 = 2|У|, У = 4, pričom У končí cifrou 6.
Teda Y = uvw6 a podmienka 52uvwQ26 = R6 = uvw6uvw6 vedie
к sporu (porovnáme 2. cifier dává v = 2, porovnáme 6. cifier 6 = v).
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(3) #5(Я) = 2. V tomto případe R = 7a57b57c2Y2 b Y2cY2b+cY2a+b+c
a podobné ako vyššie dostaneme a = b = c = 0,R = 552У2 b YYYY
a porovnáme dížok vedie к sporu: 4|Y| = |YYYY| = |Я6| = \R\ 4-
+ 1 = |Y| + 5 => 3|Y| = 5.

Zhrnutie: neexistuje R také, že R b R6.

P - II - 1

Označme ctj = |AA;|, Pí = \ABi\. Podlá zadania 0 ^ щ < Pí pre 1 ú
i ^ n. V ďalšom objednávka j bude označovat’ objednávku patriacu

mestám Aj, Bj.
Myšlienka algoritmu je jednoduchá: pokiaf sú nějaké nesplněné ob-

jednávky, přidáme ďalšiu jazdu a simulujeme cestu auta z A do B; ak
v nejakom meste je auto volné, vyberieme si ako ďalšiu tú objednávku
zo zatial’ nesplněných, ktorá začína čo najskór.

Efektívna implementácia tejto myšlienky vedie к příliš zložitému
programu. Nebudeme preto priraďovať objednávky jazdám, ale naopak.
Vektory (on,..., an) a (Pi,..., pn) usporiadame vzostupne a potom
„prechádzame“ úsek AB. Přitom si udržiavame zatial’ potřebný počet
jázd v premennej p a zoznam „volných jázd“ (spočiatku je prázdny). Ak
narazíme na město A{ a zožnam je prázdny, zvýšíme počet jázd na p + 1
a г-tu objednávku splníme v (p + l)-vej jazde. Ak zoznam je neprázdný,
vyberieme si z něho volnú jazdu a г-tu objednávku splníme v tejto jazde.
Ak narazíme na město B{, jazdu, v ktorej sme splnili г-tu objednávku,
„uvolníme41 — přidáme do zoznamu volných jázd.

Program v PASCALe:

program MINJAZD]
const n= ...;

type
mesto=record

(* vzdialenosť od města A *)
(* číslo města *)

vzd : real;
рог : 1.. n;

end;
zoznam=record

prvky : array [1.. гг] of 1.. гг;
ukaž : 0 .. гг;

end;
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var

a, b : array [1.. n] of město;
plan : array [1.. n] of 1.. n; (* jazdy priradené objednávkám *)
volne-jazdy : zoznam] (* zoznam volných jázd *)
i,j,P: l-.ra;

procedure INIT (var z : zoznam);
begin z.ukaz := 0; end;

function EMPTY(var г : zoznam) : boolean;
begin EMPTY := (z.ukaz = 0) end;

function GET (var z : zoznam) : 1.. n;

begin GET := z.prufcyfz.u/caz]; z.ukaz \= z.ukaz—1; end;
procedure PUT (var 2 : zoznam; a; : 1.. n);

begin z.ukaz := z.ukaz+1} z.prvky [z.ukaz] := x; end ;

begin
for i 1 to n do begin (* vstup *)

read(a[i].vzd, b[i].vzd);
a[i\.por := i; b[i\.por := г;

end; (* for *)
INIT (volne.jazdy);
SORT (a)-
SORT(b);
г := 1; j := 1; p := 0;
while г ^ n do

if a[i\.vzd < b\j].vzd then begin
(* začiatok objednávky a[i\.por *)

if EMPTY (volne-jazdy) then begin
p :=p+1;
plan[a[i].por\ := p-,

end else

plan[a[i].por] := GET (volne-jazdy)]
i := i+1;
end

else begin (* koniec objednávky b[j].por *)
PUT (volne-jazdy, plan[b[j].por])]
j := i+i; 4

end;
for i := 1 to n do (* výsledok *)

writeln('Objednávku c.\i, ’splníme v jazde č.\plan\i])]
end.
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Poznámky к implementácii:
- pomocná procedúra SORT usporiada pole záznamov typu město

vzostupne podlá hodnoty položky vzd. V položke por sa uchovává in-
formácia o mestách — ak a[i].por — j, potom \AAj\ — ctj = a[i\.vzd,
podobné pre mestá Bj.

- zoznam volných jázd připomíná zásobník, ale to nie je podstatné —

zvolili sme si čo najjednoduchšiu implementáciu. Tento zoznam nikdy ne-

pretečie, lebo počet volaní procedúry PUT je zhora ohraničený číslom n.

Dokaž správnosti algoritmu. Je jasné, že po skončení while-cyklu
má každý prvok polá pian priradenú hodnotu (všetky objednávky sú
splněné). Objednávky s rovnakým číslom jazdy sú súčasne (t.j. počas
jednej jazdy) splnitelné, lebo rovnost’ plan[a[i\.por] = plan[a[i'].por] — q
pre i < i' znamená, že pri preberaní prvku a[i'] bola jazda q na zozname
volných jázd, t.j. koncový bod (3a[i\.por objednávky a[i\.por predchádza
začiatočnému bodu a[i'].vzd objednávky a[i'].por.

Dokážme teraz optimálnosť získaného plánu. Označme

ко = max
xG(0,|AB|)

maximálny počet intervalov (c^, /%) s neprázdným prienikom. Je jasné, že
potřebujeme aspoň ко jázd. Ukážeme, že algoritmus vytvoří plán s presne

ко jazdami.
Uvažujme také i, že počet jázd (premenná p) sa v programe zvy-

suje z po na po + 1 pri preberaní počiatočného bodu a[i].vzd objed-
návky a[i\.por. Vtedy nie je к dispozícii žiadna volná jazda, t.j. platí
EMPTY(volne-jazdy). Ku každej jazde q, 1 q й p0, přiřaďme index

iq = max{i': 1 "Si' < i Л plan[a[i'].por\ = q}.
Z iq < i vyplývá OLa[iq].por — a[iq].vzd й a[i].vzd; z toho, že pri preberaní
a[i\.vzd jazda q nie je volná, vyplývá (3a[iq].por > a[i]-vzd (v případe nerov-
nosti ^ by algoritmus preberal koncový bod 0a[iq].por Pred počiatočným
bodom a[i].vzd a uvolnil by jazdu q).

Zhrnutie: Bod x = аа[{].рог — a[i\.vzd leží v po intervaloch

{pa[iq].pori fia[iq].por) (1=9= Po) 1

bod x + E £ (olí,Pí), kde e je velmi malé kladné číslo, leží v po +1 interva-
loch, t.j. ко ^ po + 1 — algoritmus nikdy nezvýši hodnotu premennej p
nad ко.

|{г: x e (ai,(3i)}\
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Odhad časověj zložitosti: Program (okrem dvoch volaní procedúry
SORT) v podstatě pozostáva z jediného while-cyklu. V tele cyklu sa
zvyšuje hodnota súčtu i + j, a přitom platí invariant j ^ i (v žiadnom
úseku AX nemože skončit’ viac objednávok, než sa ich začalo), t. j. i+j ^
^ 2i ^ 2n — cyklus prebehne 5Í 2n-krát. Každé vykonanie těla cyklu trvá
konštantný počet krokov (por. implementáciu operácií so zoznamom) —

while-cyklus trvá 0(n) krokov.
Kritickým miestom programu je teda procedúra SORT. Nebudeme

ju tu implementovat’ ani dokazovat’, že horným odhadom jej časovej zlo-
žitosti (pri vhodnej implementácii) je konstanta x nlog2n.

Horný odhad časovej zložitosti algoritmu je konstanta x nlog2 n.

P - II - 2

Vzdialenosť bodu X od priamky YZ označme d(X,YZ), priemet ro-
vinného útvaru X na priamku p označme pr(X,p). Vzdialenosť bodu
C = (xc,yc) od priamky AB (A = (xA,yA), В = (хв,Ув)) určíme
vzorcom

(УС - Уа){хВ - XA) - (XC - XA)(yB - yA)vzd(y4, В, C) =
л/(хв ~ xA)2 + (yB - уa)2

Na rozdiel od d(C,AB), vzd(A,B,C) má znamienko, a to kladné pre
C ležiace nalavo od priamky AB (t.j. pre \<Y-BCA\ G (0,tc)) a záporné
pre C ležiace napravo od tejto priamky.

V ďalsom budeme předpokládat’, že vrcholy M sú usporiadané (v poli
X[1. .n]) proti směru hodinových ručičiek, a položíme Xn+\ = X\.

Pre každé г, 1 ^ i ú n, nám stačí určit’ nasledujúce dve čísla:

šírkai = max d(Xj, X{Xi+1),

priemeti = dížka pr(M, XíXí+x).

Híadaná dížka strany S je potom min max{šírkai,priemeti}.
Pre každý index i určíme indexy di, li a pi následovně:

• Xdi je vrchol M najviac vzdialený od priamky X{Xi+1;
• pr(M, XiXi+í) - pr(XuXpi, XiXi+i) a body pr(VH, XiXi+i), X{,

Xi+1, pr(Xpi, XiXi+i) ležia na priamke XiX{+1 v tomto poradí (li —

1’avý index, pi — pravý index).
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Body Хц, Xpi sa dajú charakterizovat’ aj takto: položme Х[ = obraz
bodu Xi+i v otočení o ti/2 okolo bodu Xi (X[ leží vlavo od priamky
XiXi+i a Xj-Xí+i ± Х{Х[). Potom Хц (Xvi) je najvzdialenejší vrchol M
ležiaci nalavo (napravo) od priamky XiX[ (obr. 29). Teda

sirkcii — d(Xdi, ) — v7íó.(Xi) ) Xdi')
priemeti = d(Xu,XiX!i) + d(Xpi,XiX[)

= vzd(Xj, X't,X,i) - vzdpCi, Xj, Xpi).

priemeti

šírkdi

Zostáva určit’, ako prejsť od indexov di, li, pi pre i к indexom di\ li',
pi' pre i + 1. Představme si priamku, ktorá sa otáča z polohy do
polohy Xí+iXí+2. Vrchol M najvzdialenejší od tejto priamky sa postupné
presúva z polohy Xdi do polohy Хм- Novů hodnotu di' určíme z pod-
mienky d(Xdi',Xi+\Xi+2) ^ d(Xdi'+i, Xi+iXi+2). Podobné určíme aj li'
a pi'. Tieto úvahy dokazujú správnost’ nasledujúceho programu, v ktorom
A = Xi, В = Xi+1, C — X[ a maxi = max{šírkdi, priemeti}.

Odhdd čdsovej zložitosti: Počiatočné nastavenie hodnót di, li, pi trvá
lineárny čas (prvé tri while-cykly). for-cyklus sa vykoná (n — l)-krát; vno-
rené while-cykly (v súčte pre všetky vykonania for-cyklu) trvajú lineárny
čas, lebo indexy di, li, pi „obídu“ mnohouholník M nanajvýš raz, ako to
ukazuje vyššie uvedená úvaha s otáčajúcou sa priamkou.

Časová zložitosť algoritmu je teda lineárna.

Program v PASCALe:

program STVOREC;
const

n = .
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type
bod = record ж, у : real end;

var

X : array [1.. n\ of bod;
i, li,pi, di: 1.. n;

sirka,priemet, minstrana, maxi : real;
A,B,C : bod;

function vzd(A, В,C : bod) : real;
begin

vzd := ((C.y — A.y) * (B.x — Аж) — (C.x — A.x) * (B.y — A.y))/
sqrt((B.x - A.x) * (Б.ж — Аж) + (B.y — A.y) * (Б.у - A.y));

end;
function dalsi(i : integer) : integer;

begin
dalsi := i mod n + 1;

end;
function max(x,y : real) : real;

begin
if ж > у then max := ж else max := у

end;
function min(x,y : real) : real;

begin
if ж < у then max := x else max := у

end;
begin

for г := 1 to n do

геас?/п(А[г].ж, Х[г].у);
A := X[n];
B:=X[1];
С.ж := А.ж — (B.y - A.y);
C.y \= A.y + (B.x — A.x);
li n;pi := 1 ;di := 1;
while i;zd(A, С, Х[/г - 1]) > vzd(A, C,X[li]) do li := li - 1;
while vzd(A, C, X[pi + 1]) < vzd(A, C, X\pi]) do pi := pi + 1;
while vzd(A, B,X[di + 1]) > vzd(A, B, X[di)) do di := di + 1;
sirfca := vzd(A, B, X[di]);
priemet := vzd(A, C, X[li]) — vzd(A, C, X\pi});
maxi := max(sirka,priemet);
minstrana := maxi;

91



for i := 1 to n — 1 do begin
A := X[i]\
B:=X[i + 1];
C.x := A.x — (B.y — A.y);
C.y \= A.y + (B.x — A.x);
while vzd(A, C, X[dalsi(li)]) > vzd(A, C,X[li])

do li := dalsi(li);
while vzd(A, C, X[do/sz(pi)]) < vzd(A, C, X\pi])

do pi := dalsi (pi)]
while vzd(A, B, X[dalsi(di)]) > vzd(A, B, X[di])

do di := dalsi(di)]
sirka := vzd(A, В, X[di])]
priemet ~ vzd(A, C, X[li]) — vzd(A, C, X\pi])]
maxi max (sirka, priemet)]
minstrana := min(maxi, minstrana)]

end;
end.

P - II - 3

(2a)

/22 — Я1Д&1Д + 01,262,1,
/23 = 02Д&1Д + 02,2&2,ъ

/24 — Ol,l6i,2 + а1,2^2,2,
/25 = 02,161,2 + «2,262,2,

/22 /24
/23 /25

teda matica je výsledkom násobenia matic:

W6u M; U.i *>2,2
/22 /24
/23 /25

Й1Д Oi,2
02,1 02,2

(2b) Ak n je párne, potom |n-krát použijeme algoritmus z časti (2a)
postupné pre vstup Xi, xi+\, уi, yi+i, Ui, v», ui+1, Ui+i, i = 1,3,..., \n -1,
pomocou |n násobení získáme

XiVi 4- Xj-)-iUi-j-i,

yiUi + yi+lUi+i,

yiVi + Vi+iVi+1
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hn — 1) a sčítáním příslušných medzivýsledkov dostaneme(i = 1,3,..
požadované súčty. Ak n je nepárne, potom n — 1 je párne a súčty

• ’ 2

71—1 71—1 71—171—1

Y,XiUi, /;XjVi, ) yjUj, ViVj
1=1 1=11=1 1=1

získáme popísaným spósobom pomocou |(n — 1) násobení a dalších 4 ná-
sobení xnun, xnun, ynun, ynvn• Požadované súčty tak získáme použitím
|(n — 1) + 4 = |(7n + 1) násobení.

P - II - 4

1. Ak Y b AMY, tak MY b M(AMY) podlá definície operácie
M(). Stačí teda nájsť takéto Y (ale to je McCullochov zákon) a položit’
X := MY.

Odpověď: X = M572AM572 alebo X = M752AM7522.
2. Zrejme 2X2 b X (pravidlo Pi); stačí teda nájsť také X, že X b

b 2X2. Ovšem 2X2 = 7(2X) a možeme použit’ Craigov zákon s M = 7,
A = 2: dostáváme X = 757227572 a X = 7752277522.

3. Postupujme podobné ako v predchádzajúcom riešení: 2BX2 b BX,
teda hládáme také X, že X b A2BX2 — 7(A2BX). Craigov zá-
kon (s M = 7, A = A2B) dává riešenia X = 7572A2P7572 alebo
X = 7752A2B77522.

P - III - 1

Obvod (hraničnú kružnicu) kruhu К označíme C. Body u,d 6 C jedno-
značné určujú oblúk uv (od tíki; proti směru hod. ručičiek). Položíme
Xk = X(fc modm)+i pre kel. Pre i,j,k e {1,2,... ,m}, j leží medzi i
а к, ak i ^ j к, к ^ i ^ j alebo j ^ к 5Í i (tento fakt v programe zistí
boolovská funkcia medzi(i,j, k)).

Ak bod и ležiaci vnútri hrany X^X^+i je viditelný z bodu v e C,
z definície viditelnosti vyplývá, že celá hrana XkXk+i je viditelná z bodu
v. Z toho a z konvexnosti M vyplývá, že z bodu v na kružnici C je viditelný
úsek („množina viditelnosti“) Mv(u) = X{Xí+iUXí+iX;+2U. . .UXj_iXj
z obvodu M. Tento úsek je jednoznačné určený (usporiadanou) dvojicou
indexov (i,j) (v dálšom budeme rozumieť pod (i,j) bud’ usporiadanú
dvojicu, alebo úsek obvodu M medzi X; a Xj — z kontextu bude jasné,
ktorý význam máme na mysli). Obrátene, každý vrchol Xj je viditelný
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»
z oblúka zacikorii С C, kde zaci = XíXí-i П C („začiatok“) a koni =

= X{Xi+i П C („koniec“). Navrhneme algoritmus, ktorý určí body zaci,
koni (1 i ^ m), usporiada ich na kružnici C a tým rozdělí C na 2m
oblúkov s konštantnými množinami viditelnosti (niektoré oblúky móžu
byť přitom jednobodové). Pre každý oblúk určíme aj Mv — úsek (i,j).
Mv pre koncové (t.j. styčné) body oblúkov určíme tak, že porovnáme
množiny viditelnosti susediacich oblúkov a Mv styčného bodu je váčšia
z nich. Výsledkom časti a) bude (cyklický) zoznam koncových bodov
oblúkov s příslušnými usporiadanými dvojicami (i, j) (t.j. pre v na danom
oblúku je Mv(v) = prvé, resp. druhé prvky týchto dvojíc budú
v zozname usporiadané proti směru hodinových ručičiek.

Aby sme nemuseli triediť, budeme prechádzať priesečníkmi proti sme-
ru hodinových ručičiek. Ak „prejdeme“ cez zacj, Mv sa rozšíri o Xj-iXj;
ak „přejdeme" cez korii, z Mv vypadne hrana Xi+iX{. Daný priesečník sa

přitom stane koncovým bodom oblúka (pole obluky v programe). Cyklus
nastartujeme tým, že (tentokrát výnimočne v smere hod. ručičiek) náj-
deme vrchol X;, ktorý nie je viditelný z bodu zac\, ale X*+i ešte áno.
Potom oblúk začínajúci v bode zac\ má Mv = (г + 1,1). Za zvláštnu
pozornost’ stojí len případ korii = zacj, vtedy dostaneme jednobodový
„oblúk" s Mv = Mv(korii) = My(zacj) = (г, j). Algoritmicky to znamená,
že pri usporiadaní má zacj přednost’ před korii.

V časti b) stačí určit’ minimálny počet oblúkov (dvojíc), ktorých mno-

žiny viditelnosti „pokrývajú" obvod M. Budeme hladať takýto „mini-
málny zoznam" (nemusí byť určený jednoznačné). Vstupom algoritmu
bude cyklický zoznam «if usporiadaných dvojíc z časti a); koncové body
oblúkov nebudeme potřebovat’. Nech dalsi(d) je dvojica nasledujúca za
dvojicou d = (d.i,d.j) v zozname 2zf. (V programe sa =žf reprezentuje
polom L a dalsi je inkrement indexu modulo 2m.)

Ku každej dvojici d 6 if určíme dvojicu najdalej(d), pre ktorú platí

medzi(d.i, najdalej(d).i, d.j)
and not medzi(d.i,dalsi(najdalej(d)).i,d.j).

Je jasné, že ak sa v minimálnom zozname vyskytne d, tak existuje mi-
nimálny zoznam obsahujúci d a najdalej(d) a neobsahujúci dvojice z «if
„medzi nimi" — z dvojíc dalsi(d), dalsi2(d), dalsi3(d), ..., najdalej(d)
musí byť aspoň jedna v minimálnom zozname; zoznam zostane minimál-
nym, ak ju nahradíme dvojicou najdalej(d). V případe ď = dalsik(d),
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najdalej (d) = najdalej (ď) hodnotu najdalej (ď) zmeníme na nedefino-
vanú. (V programe sa najdalej reprezentuje polom indexov; nedefinovaná
hodnota je 0.)

К dokončeniu algoritmu si všimnime, že minimálny zoznam musí ob-
sahovať dvojicu d, ktorá pokrývá X\, t.j. platí medzi(d.i, 1 ,d.j). (Všetky
dvojice pokrývajúce X\ sú v poli L na začiatku, lebo obluky[l] = zaci.)
Pre každé takéto d postupné vypočítáme najdalej(d), najdalej2(d), ..

pokiaf nenájdeme najmenšie к také, že najdalejk(d) pokrývá d.i. Ak
přitom narazíme na nedefinovaný ukazovatel’ najdalej1 (d), tak existu-
jú postupnosti d,najdalej(d),..., najdalej1-1 (d) a ď, najdalej(ď),...,
najdalej1-1 (ď) rovnakej dížky bez spoločných prvkov (keby mali spoloč-
ný prvok, bolo by najdalej1 (d) = 0 už pre /'</), pričom d aj ď pokrývá-
jú Xi, ď je před d v zozname Jř a hodnota najdalej1 (d) je nedefinovaná,
lebo by sa mala rovnat’ hodnotě najdalej1 (ď). To znamená, že existu-
je minimálny zoznam neobsahujúci d: podzoznam d,najdalej(d),... na-
hradíme podzoznamom ď, najdalej(ď),..., a teda výpočet pre dané d
móžeme ukončit’.

* ?

Program v PASCALe:

program VIDITELNOST;
const m = dvem = 2 * m;

type
bod = record x, у : real end;
dvojica = record г, j : 1.. т end;
index = 1.. m; index2 = 1.. dvem;

var

X : array [index] of bod;
C : record S : bod; r : real end;
zac, kon : array [index] of bod;
L : array [index2] of dvojica;
obluky : array [mde:r2] of bod;
najdalej : array [mdea;2] of 0 .. dvem\
к : index2;

function medzi(i,j,k : index) : boolean;
begin medzi (г <= j and j <= k)

or (fc <= г and г <= j) or (j <= к and к <= i) end;
function гпс1(г : index) : index; begin mel i mod m + 1; end;
function decl(i : index) : index;

begin decl := (г + m — 2) mod m + 1; end;
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function dalsi(i : index2) : index2;
begin dalsi := i mod dvem + 1; end;

procedure p-polpriamka-kruznica(i, j : index; var pries : bod)]
>

begin (* určí priesečník X{Xj П C *) end;
function uhol(U, V : bod) : real]

begin (* určí velkost’ uhla USV: číslo z intervalu (0,2ti) *) end;
procedure cast.a]

var ii,jj : integer]
begin

for к 1 to m do begin
P-polpriamka-kruznica(k, decl(k), zac[k])]
pjpolpriamka-kruznica{k, incl(k), kon[k])]

end;
jj ■= 1; ii ■= m;

repeat ii := decl(ii)
until uhol(kon[m\, zac[1]) < uhol(kon[m\, kon[ii])]

(* Xu je posledný vrchol ešte neviditelný z bodu zac[1] *)
obluky[l] := zoc[l];
for к := 1 to dvem — 1 do begin

L[k\.i := incl(ii)] L[k\.j := jj]
if uhol(zac[incl(jj)\, kon[ii]) <= uhol(kon[incl(iij\, kon[ii])

then begin jj incl(jj)] obluky[k + 1] := zac[jj]] end
else begin ii := mcl(n); obluky[k + 1] := kon[ii\] end;

L[dvem].i := incl(ii)] L[dvem].j := jj]
end; (* cast-a *)

procedure castJb]
var k, minpocet,pocet : index2; nd : 0 .. dvem]
begin

(* výpočet hodnót najdalej *)
nd := 1;
for к := 1 to dvem do begin

while medzi(L[k\.i, L[dalsi(ndj\.i, L[k\.j) do nd := dalsi(nd);
najdalej[k\ := nd

end;
(* vynulovanie zbytočných hodnót najdalej *)

nd := najdalej [dvem]]
for к := dvem downto 2 do

if (najdalej[k\ = najdalej[k — 1]) then najdalej[k\ := 0;
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if (najdalej[1] = nd) then najdalej[1] 0;
(* určenie minimálneho počtu bodov *)

к := 1; minpocet := dvem\
while medzi(L[k\.i, 1 ,L[k\.j) do begin

nd := najdalej[k]; pocet := 2;
while (nd <> 0) and not medzi(L[nd\.i, L[k\.i, L[nd\.j) do
begin

nd := najdalej[nd\; pocet := pocet + 1;
end;
if (nd <> 0) and (pocet < minpocet) then minpocet \= počet,
к := к + 1;

end;
end; (* cast-b *)

Časová zložitosť je lineárna. Procedúra častLa neobsahuje vnořené
cykly. V procedúre časLb sú dva vnořené cykly: v prvom případe je to
while-cyklus vnořený do for-cyklu. Přitom while-cyklus sa vykoná line-
árny počet krát, lebo к „prebehne“ zoznamom «if právě raz, nd prebieha
zoznamom «if v cyklickom poradí (1, 2, 3, ..., 2m, 1, 2, ...) a nikdy
„nepredbehne“ k, t. j. prebehne «if nanajvýš dvakrát.

Druhý vnořený cyklus trvá tiež lineárny počet krokov, lebo každým
nenulovým smerníkom najdalej sa „prejde“ nanajvýš raz a nulové sa

testujú tiež len raz. o

P - III - 2

Pre výstup daného algoritmu platí /7 — ac — bd, fg = ad + bc, teda
komplexně číslo /7 -I- /в i je súčin komplexných čísel: /7 + /в i = (a + 6 i) *

(c + di).
Lineárny algoritmus pre vstup a, b, c, d používajúci právě jedno ná-

sobenie dokáže spočítat’ iba polynomy tvaru

vi(tia + t2b + t3c + t4d)(uia + U2b + U3C + U4d)+V2a + v3b + V4C + v5d (*)

a z riešenia úlohy P-I-3 vieme, že výraz ac — bd nie je tohoto tvaru,
t. j. nedá sa spočítat’ lineárnym algoritmom (multiplikatívnej) zložitosti 1.
Celkom analogicky to móžme dokázat’ aj o výraze ad + bc.

Teraz sporom dokážeme, že na súčasný výpočet ac — bd, ad + bc po-

trebujeme aspoň tri násobenia. Keby sa dali spočítat’ pomocou dvoch
násobení, nech pi je výsledok prvého násobenia, P2 výsledok druhého
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násobenia (pripúšťame aj možnost’, že pri výpočte p2 sa použil súčin pi).
Výstupné hodnoty ac — bd, ad + bc potom dostaneme pomocou operácií

- z pi, p2, a,b,c a d:

ac-bd = ripi + Г2Р2 + r3a + r46 + r5c + r6d,
ad+bc = sípí + S2P2 + 53a + s46 + s5c + s6d,

kde koeficienty sú celé čísla, pričom Г2 ф 0 ф S2 (lebo na ac—bd i na ad+bc
potřebujeme dve násobenia). Odčítáním r2-násobku druhej rovnice od
s2-násobku prvej dostaneme

s2ac — r2ad — s26d — r26c =

= (s2ri - r2s1)p1 + (s2r3 - r2s3)a + (s2r4 - r2s4)6 +
+ (s2r5 - r2s5)c + (s2r6 - r2s6)d,

vidíme teda, že výraz s2ac — r2ad — s26d — r26c sa dá spočítat’ pomocou

jedného násobenia, a je preto tvaru (*) s v\ /0. Keby sa totiž v\ rovnalo
nule, pre a = b — c = d by sme dostali —2r2a2 = (г>2 + v3 + v4 + v5)a.
Ak V2 + vv + V4 + U5 =0, dostáváme spor dosadením a := 1, v opačnom
případe dosadením a := v2 + u3 + v4 + U5.

Porovnáním koeficientov pri a, 6, c, d, a2, 62, c2, d2, a6, ac, ad, 6c, 6d,
cd postupné dostáváme

V2 = V3 = V4 = V5 = 0,
Í1U2 + ta = 0

Ul(ílW3 + Í3U1) = S2,

Vi(íiU4 + t4Ui) = —r2,

^l(<2W3 + Í3U2) = -r2,

'Ul(í2W4 + Í4U2) = —S2 j

t3u4 t4u3 = 0,

(5)
(6)Í1W1 = 0, (1)

í2u2 = 0, (2)
ta = 0, (3)
í4u4 = 0, (4)

(7)
(8)
(9)

(10)

pričom i?i, s2 a r2 sa nerovnajú nule. Vzhládom к symetrii (*) móžeme
předpokládat’, že щ = 0 (kvoli (1)) a postupné dostanemé ý 0 ý u3
z (6), U2 = 0 z (5), u4 7^ 0 z (7), t3 = í4 = 0 z (3) a (4), t2 ф 0 z (8),
t.j. íi,Í2,w3,w4 ф 0, ui,u2,í3,ť4 = 0, a teda s2 = viíiw3, —r2 = uiřiw4,
—r2 = uiť2u3, — s2 = vií2u4 a získáváme spor

0 > -s\ = (uiíiu3)(uií2u4) = (uiťiu4)(i>ií2tt3) = r2 > 0,
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ktorý dokazuje, že dvojica výrazov ac — bd, ad + bc sa nedá spočítat’
pomocou dvoch násobení.

P - III - 3

Najprv si všimnime, že pri hfadaní optimálnej platby sa stačí obmedziť
na také platby, pri ktorých pre každé i je buď xi = 0, alebo yi = 0,
lebo nemá cenu, aby platitel’ dával mince, ktoré potom príjemca vráti.
Platbou teda budeme rozumieť n-ticu U = (щ,... ,un) G Zn (kladné u;

znamená, že platitel’ dal Ui mincí hodnoty qp, záporné Ui znamená, že
príjemca vrátil —u; mincí tejto hodnoty).

Ďalej si uvědomme, že sa stačí zaoberať obnosmi dělitelnými q\ —

iné obnosy danými mincami nevyplatíme.
Označme ti = ^{qi+i/qi - 1), t. j. qi+i/qi = 2U + l,ti ^ 1 pre 1 ^ i <

< n. Předpokládáme q\ \ X a budeme uvažovat’ platby U s vlastnosťou
Uiqi — X.

i— 1

Pozorovanie 1. Pre lubovolhú platbu U sa dá zostrojiť platba U* =
= s rovnakým zaplateným obnosom, nie vyšším celkovým
počtom mincí a s vlastnosťou

k*l йи pre 1 ^ i < n. (*)

Dokaž. Ak totiž U nesplňuje podmienku (*), označíme si Íq naj-
menšie i < n také, že \щ\ > ti. Existujú (jednoznačné určené) celé
čísla p, r s vlastnosťou Ui0 = p(2ti0 + 1) 4- r, |r| й ti0, p Ф 0. Teraz
p(2ti0 + 1) mincí hodnoty g;0 zaměníme p mincami hodnoty qi0+p. polo-
žíme u'ÍQ = Ui0 — p(2ti0 + 1), u'io+1 = Ui0+1 +p; ostatné zložky vektora U
necháme nezmenené. Dostali sme tak novů platbu U' s rovnakým zapla-
teným obnosom a s \u'ÍQ \ = \r\ ^ tio, \u'ÍQ+1\ = \uio+1 + p\ й |uio+i| + |p|.
Spočítajme, ako sa změnil počet použitých mincí!

Ak |uj0| ^ 2ti0 + 1, počet mincí hodnoty qi0 sa znížil o \p\(2ti0 + 1)
a počet mincí hodnoty qi0+i sa zvýšil nanajvýš o |p|, celkový počet sa
teda určité znížil.

Ak ti0 < |iti0| ^ 2tÍQ (v tomto případe |p| = 1), počet mincí hodno-
ty qi0 sa znížil aspoň o 1 a počet mincí hodnoty qi0+i sa zvýšil nanajvýš
o |p| = 1, celkový počet sa teda určité nezvýšil.

Příklad: Pre qi = 1, q^ = 5 sa platba (6, —2) změní na (1, —1), (—4, 2)
na (—1,3) a (3,1) na (—2,2). Změna počtu mincí je —6, —2 resp. 0.
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Zhrnutie: dostali sme platbu U1 s rovnakým obnosom, nie vyšším
počtom mincí a s vlastnosťou \u'ÍQ \ ú íio pre 1 й i ^ г‘о- Postup móžeme
opakovat’ s platbou Ur, ..., atď; po nanajvýš n — 1 — i0 takýchto krokoch
dostaneme platbu U* splňujúcu (*), čo bolo třeba ukázat’.

Nasledujúce pozorovanie ukazuje, že platba U s vlastnosťou (*) je
jednoznačné určená:

Pozorovanie 2. Nech U, U' sú platby s vlastnosťou (*). Potom U = U'.

Dokaž. Ak totiž U ф U', existuje io <n také, že

U{о Ф u'io.

(Zrejme nemóže byť Íq = гг, lebo potom by obnosy zaplatené U a U'
neboli rovnaké.) Potom

щ =и\ (1 й i < i0),

^2 uiqi = u^i.
Í=ÍQ Í=ÍQ

Obe strany tejto rovnosti vydělíme číslom qi0+i = qi0(2ti0 + 1). Dosta-
neme

(иг"0 Ui0)qio ^Qio "b ť)
a vzhladom к (*)

|fc| (2ťj0 + 1) — |w*0 ui01 = lwíol "b lwj0l = ^íq

t.j. к = 0 a Ui0 = , čo je spor s definíciou г'о- Tým je pozorovanie
dokázané.

Algoritmus je vlastně hotový, ak si všimneme, že obnos X sa dá
vyplatit’ X/qi mincami hodnoty q\. Vyjdeme z tejto platby U =
= {X/qi, 0,0,..., 0) a zostrojíme к nej platbu U* s vlastnosťou (*) podlá
Pozorovania 1. Na druhej straně určité existuje optimálna platba Uopt;
к nej móžeme zostrojiť (podlá Pozorovania 1) optimálnu platbu U* t

s vlastnosťou (*). Platby U* a U*t majú vlastnost’ (*), a preto podlá
Pozorovania 2 sa musia rovnat’: U* = U*pt. To ale znamená, že platba i/*,
ktorú sme zostrojili, je optimálna.

Správnost’ algoritmu sme už dokázali; nasledujúci program určí plat-
bu U vyhovujúcu vztahu (*) (ktorá je optimálna). Názvy premenných
v programe sa zhodujú s názvami použitými v predchádzajúcich úvahách
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až na to, že v programe sa nepracuje s polom hodnot q[l.. п]. V programe
vystupuje len hodnota q\ ako premenná q 1, hodnota qi (pre aktuálně i)
ako premenná q a pole t[l..n] s hodnotami ti. Hodnota t[n] je lubo-
volná a slúži len na zabránenie behovej chyby pri testovaní podmienky
while-cyklu pre i = n (keby sa testovala aj druhá časť and-podmienky
napriek neplatnosti prvej časti). Program netestuje, či vstupné dáta spi-
ňujú podmienky úlohy (vstupný súbor mincí 1, 4, 8 napr. „transformuje"
na 1, 5, 15).

Odhad časovej zložitosti: Pri odhade zložitosti záleží na reprezentácii
čísel vystupujúcich v algoritme. Ak q\, <72, • • •, qn a X sú celé čísla menšie
než nějaká konstanta INTMAX, tak hodnota n je zhora ohraničená kon-
štantou (2n-1 ^ gi(2fi + l)(2f2 + l)...(2fn_i + l) = qn ^ INTMAX,ate-
da n ý log2 INTMAX + 1). Vykoná sa najviac n opakovaní while-cyklu
a každý přechod cyklom trvá konštantný počet krokov (vykonávajú sa
len aritmetické operácie). Algoritmus teda trvá konštantný počet krokov
a použije pamáť konštantnej velkosti. (Pri použití aritmetiky velkých čísel
by boli potřebné iné odhady.)

Program v PASCALe:

program PLATBA;
const n = . • 9 7

var

t : array [1.. n] of integer;
ql,q, qq : integer-,
U : array [1.. n] of integer-,
X : integer-,
i : 1.. n;

begin
read(ql);
qq := q\\
for i := 1 to n — 1 do begin

read(q)-,
t[i] (q div qq) div 2;
qq := q-,

end;
t[n] 0;
read(X);
if (X modgl — 0) then begin

ř7[l] := X div^l;
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i:= 1;
while (г < n) and (abs(U[i]) > £[г]) do begin

U[i + 1] := (abs(U[í\) + í[i]) div (2 * t[i] + 1);
if U\i\ < 0 then U[i + 1] := -U[i + 1];
U[i] := U[i\ - U[i + 1] * (2 * t\i\ + 1));
writeln(U[i\, ’ mincí hodnoty ’,g);
q := q* (2* t[i] + 1);
i := i + 1;

end;
writeln(U[i\, ’ mincí hodnoty \q)-,

end else

writeln('Obnos \X, ’ Kčs sa nedá vyplatit’.’);
end.

P - III - 4

1. Spomeňme si na úlohy predchádzajúcich kol. Našli sme tam čísla
7527522, 572572 (vytvárajúce sami seba) resp. 757227572 a 27572275722
(vytvárajúce sa navzájom). Hněď vidíme, že všetky sú nesmrtelné.

2. Pre každé n ^ 1 nájdeme n čísel Xi,..., Xn takých, že

(i = i,. -
n — 1)Xi h Xi+r

Xnt-Xi.

• ?

Položíme Xi = 2n~1X2n~\ ..., Xt = 2п~{Х2п~\ ..., Xn = X a chce-
me nájsť také X, že X = Xn h Xi = 2n~1X2n~1. Ale 2n-1X2n“1 =
_ 7n~i(2n_1X) a stačí použit’ Craigov zákon s M — 7n_1, A — 2
existuje X s vlastnosťou X h M(AX) = 2n-1X2n-1.

Riešením je napr. X = M572AM572 = 7n-15722n"17n-1572.
Pre n = 1,2 sme dostali niektoré riešenia z bodu 1.3.Neexistuje také 77, aby bola splněná ekvivalencia uvedená ako zá-

klad algoritmu. To sa nahliadne pomocou McCullochovho zákona: keby
také H existovalo, nájdeme X s vlastnosťou X b HX. Potom

- ak X je nesmrtelné, HX je tiež nesmrtelné;
- ak X nie je nesmrtelné, HX tiež nie je nesmrtelné.

To je spor s uvedenou ekvivalenciou.

71—1 .
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Korespondenční seminář ÚV MO 1992/93

Korespondenční seminář je jednou z forem péče o talentované žáky.
Vznikl ve 24. ročníku MO proto, aby bylo možno věnovat individuální
péči i těm žákům, kteří neměli možnost navštěvovat speciální školy a pra-
covat v tamních seminářích. V tomto ročníku matematické olympiády
se však poprvé nepodařilo rozběhnout korespondenční seminář ÚV MO
způsobem obvyklým v dřívějších letech. Po roce 1990 bohužel ubylo času
i ochotných spolupracovníků, a tak se podařilo rozeslat jen dvě sedmice
úloh, které uvádíme dále (většina úloh byla vybrána z materiálu jury
33. MMO). К prvním sedmi úlohám zde najdete i jejich řešení.

Úlohy korespondenčního semináře1.1Označme IR+ množinu všech nezáporných reálných čísel a pro daná
kladná čísla a, b uvažujme funkci /: [R+ —> R+, která splňuje funkcionální
rovnici

f(f(x)) + af(x) = b(a + b)x.
Dokažte, že tato rovnice má jediné řešení.1.2Je dán konvexní čtyřúhelník ABCD, jehož úhlopříčky ЛС, BD jsou
na sebe kolmé, AC _L BD. Vně daného čtyřúhelníku sestrojme nad jeho
stranami čtverce AEFB, BGHC, CUD, DKLA (jejich vrcholy jsou
značeny proti směru hodinových ručiček). Dokažte, že čtyřúhelníky Qi,
Q2 ohraničené přímkami AG, BI, CK, DE, resp. A J, BL, CF, DH jsou
shodné.1.3Je-li / mnohočlen s racionálními koeficienty a a reálné číslo, pro které
platí

a3 - a = (f{a))3 - f(a) = 331992,
pak pro každé n ^ 1 platí

(/W(a))3-/<n,(Q)= 331992,
kde f(n\x) = /(/(• • • f(x)...)) pro každé přirozené n. Dokažte.
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1.4 V daném trojúhelníku ABC označme D a E průsečíky os úhlů ABC
a ACB s odpovídajícími stranami AC, AB. Najděte velikosti úhlů troj-
úhelníku ABC, jestliže \<£BDE\ = 24°, \^:CED\ = 18°.

5125 - 1

525 — 1

1.6 Pro libovolné kladné celé číslo x označme

1.5 Dokažte, že N = je složené číslo.

g(x) = největší lichý dělitel čísla x,

je-li x sudé,
f x X

- 4-

je-li x liché.

Ukažte, že se v posloupnosti xi = 1, xn+i = f(xn) vyskytne číslo 1992,
a zjistěte nejmenší n, pro které xn = 1 992. Vyskytne se číslo 1 992 v dané
posloupnosti víckrát?
1.7 V rovině jsou dány tři kružnice к, Jež se navzájem dotýkají tak,
že kružnice ki, &2 se dotýkají vně v bodě W ležícím uvnitř kružnice k.
Navíc jsou na kružnici к dány tři body А, В, C tak, že přímka BC se

dotýká v různých bodech obou kružnic k\, &2 a spojnice WA je zároveň
jejich společnou tečnou, přičemž body A a W leží v téže polorovině určené
přímkou BC. Dokažte, že W je středem kružnice vepsané trojúhelní-
ku ABC.2.1Řešte soustavu rovnic

tgxi + 3 cotgzi = 2 tg #2,

tgrr2 + 3cotgx2 = 2tgz3,

tg xn + 3 cotg xn = 2 tg xi.

2.2 Zjistěte, pro jaká přirozená čísla n existuje konvexní n-úhelník, kte-
rému lze vepsat kružnici a jehož strany mají (v nějakém pořadí) veli-
kosti 1, 2, ..., n.

2.3 Jestliže fag jsou mnohočleny s reálnými koeficienty a pro libovolná
reálná čísla x, у platí

f{x) ~ f{y) = a(x, y) (g(x) - g(y))
pak existuje mnohočlen h takový, že f(x) = h[g(x)) pro libovolné reál-
né x. Dokažte.
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2.4 Rozhodněte, zda existuje množina M s následujícími vlastnostmi:
(1) Množina M obsahuje 1992 přirozených čísel.
(2) Každý prvek množiny M a součet libovolného počtu jejích prvků má

tvar mk (m, к jsou přirozená čísla, к ^ 2)?

2.5 Jestliže

m —2m — 1f(x) — xm + d\X

g(x) = xn + a\x

+ d2x

+ d2x

+ • • • + dm-lX + d

+ ... + dn—\X + dn

m •>

n—271 — 1

jsou dva mnohočleny s reálnými koeficienty takové, že pro každé reálné
číslo x je f(x) druhou mocninou celého čísla, právě když je druhou moc-
ninou celého čísla i g(x), potom pro m + n > 0 existuje mnohočlen h
s reálnými koeficienty takový, že f(x) ■ g(x) = (h(x))2 pro každé x. Do-
kažte.2.6Nechť [rej označuje největší celé číslo nejvýše rovné číslu x. Zvolme li-
bovolné číslo x\ v intervalu (0,1) a definujme posloupnost (Xk)k>i vztahy

je-li xn = 0,0,
1 Li•£n+i —

jinak.
xn П “

Dokažte, že pro libovolné n přirozené platí

F\ F2
X\ x2 *b ... J- xn < — + — + ...+

x2 r 3

Fn
Fn+1’

kde Fi = F2 = 1 a Fn+2 = Fn+i + Fn pro n ^ 1.2.7Jestliže a(n) označuje počet jedniček ve dvojkovém zápisu čísla n,

potom
a) a(n)2 ^ |a(n)(a(n) + l);
b) v předchozí nerovnosti nastává rovnost pro nekonečně mnoho klad-

ných čísel n;

c) existuje posloupnost pro kterou podíl a(n?)/a(ni) konverguje
pro n —> 00 к nule.
Dokažte.
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Řešení úloh korespondenčního semináře

1.1 Nebylo zvlášť obtížné uhodnout, že f(x) = bx je řešením dané rovni-
ce; problém byl ukázat, že jiná neexistují. Uvedené řešení je podle M. Hla-
wiczkové.

Uvažujme libovolné číslo у E IR+ a definujme rekurentně posloupnost
{an} vztahy

an — / (an—l)iao - У

tj. ai = /(y), <22 = /(/(y)), • •atd. Daná funkcionální rovnice pro
x = an pak říká, že

^7i-f-2 1 — b(^d + b)an. a)

Charakteristická rovnice tohoto rekurentního vztahu (tj. rovnice, kterou
dostaneme, hledáme-li řešení rekurentního vztahu mezi geometrickými
posloupnostmi (qn))

q2 + aq = b(a + b)
má kořeny q\ = b, q2 = — {a + b). Existují tedy reálná čísla Л, В tak, že

an = Abn + B(-l)n{a + b)n (2)n — 0,1,2,.. • ?

a tedy

Protože a/b > 0, vyplývá z binomické věty, že

<2n

bn

Л a\n . ^ a(1+6) -1 + 6n-
Je-li В < 0, je pro n sudé

^ = Л + в(1 + 2)"^ + в(1+п2)=п,в2 + (Л + В)
což však bude (v rozporu se zadáním) menší než nula pro dostatečně
velká n. Obdobně pro В > 0 a n liché

-nB^ + {A-B)
o

— = A - В
bn

což je menší než nula pro dostatečně velké n. Musí tedy být В = 0,
tj. an = Abn. Tím pádem

у = ao = A

takže /(y) = by, což jsme chtěli dokázat.

/(y) =ai= Ab,
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1.2 Uvažujme nejprve dva čtverce AB'CD' a BCDA s úhlopříčkami
AC a BD (obr. 30). Protože BD _L CD, jsou oba uvedené čtverce stejno-
lehlé. To znamená, že přímky AA', BB\ CC a DD' procházejí společným
bodem O (středem stejnolehlosti).

Otočení kolem vrcholu A o +90° zřejmě zobrazí trojúhelník AED na

trojúhelník ABL (obr. 31), takže přímky BL a ED jsou navzájem kol-
mé. Přitom množina všech takových bodů X, že otočení kolem středu X
o +90° zobrazí přímku BL na DE, je zřejmě osa úhlu BTD, kde T
označuje průsečík přímek BL na DE. Na této ose tedy leží i vrchol A.
Bod T leží na Thaletově kružnici nad průměrem BD stejně jako bod A'.
Navíc osa úhlu BTD prochází středem oblouku BD, což je právě bod A',
prochází tedy i středem O uvažované stejnolehlosti. Odtud plyne, že oto-
čení kolem středu O o +90° zobrazí přímku BL na

DE, a analogicky zjistíme, že stejné otočení zob-
razí i přímku AJ na CK, DH na BI a CF na AG.
Čtyřúhelník Qi je tedy v uvedeném otočení obra-
zem čtyřúhelníku Gb. Oba čtyřúhelníky jsou proto
shodné.

1.3 Kubický mnohočlen x3 — x — 331992 má pouze

jeden reálný kořen. Stačí si uvědomit, jak vypadá
funkce g(x) = x3 — x (obr. 32), uvedený mnohočlen
z ní vznikne posunutím o konstantu 331992 mno-
hem větší, než je lokální extrém pro x = l/л/З: pro

У
x

Ю

Obr. 32
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x < 1 je určitě x3 — x — 331992 < O a pro x ^ 1 je funkce x3 — x — 331992
ostře rostoucí. Protože a i f(a) jsou dle předpokladu úlohy reálné kořeny
uvažovaného kubického mnohočlenu, je f(a) = a a matematickou indukcí
pak odtud plyne rovnost f(n\a) = a. Tím je tvrzení úlohy dokázáno.
1.4 Označme S průsečík obou os BD a CE (obr.33), (5 = \<$lABC\,

A E В

Obr. 33

7 = \<£BCA\, a = |<fcCAB|, á = \^:SDE\ = 24°, e = \<£SED\ = 18°.
Podle vztahu pro vnější úhly trojúhelníku je

/5 1
\<BDA\ = 7+

Podle sinové věty v trojúhelníku SDE platí

\^CEA\=0+^.

|DS| sine

siná’\ES\
Podle sinové věty v trojúhelnících DSA a ESA máme (víme, že SA je
osou úhlu BAC)

sin f sin (/3 + 3r)\DS\
_ \DS\ \AS\

|£S| ~ |AS| |ES| ~~ sin(7 + f) sinf '
Srovnáním obou vztahů vidíme, že

siná • sin(^/3 + ^ = sine • sin^7 + — ^
Zároveň platí

£+!=*-\<£CSB\ = Ti - \<£DSE\ =ó + e = 42°. (1)
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Až do tohoto bodu dospěli víceméně všichni řešitelé; korektně však tuto
soustavu rovnic nevyřešil žádný.

Označíme-li
7

P + ± - 48° = x,

bude

7
0+ j = s + 48°,

(p + D = 3 • 42° - (x + 48°) = 78°
O P + l=3—7+2

a potřebujeme tedy řešit rovnici

-x,

sin S • sin(x + 48°) = sin e ■ sin(78° — x)

tj-
sin 24° sin(a; + 48°) = sin 18° sin(78° — x) (2)

neboli

sin 24° (sin 48° cos x + cos 48° sin x) =

— sin 18°(sin 78° cosx - cos 78° sinx). (3)

Označme na okamžik cos 36° = a. Podle vzorců pro cos 2a a cos 3a pak
bude

cos 72° = 2a2 — 1,
cos 108° = 4a3 — 3a.

Zároveň cos 108° = cos(180° — 72°) = — cos 72°, takže

4a3 + 3a2 — 3a — 1 = 0,

čili

2(a + l)(2a2 — a — 1) = 0.

Zřejmě cos 36° Ф —1, takže a + 1 Ф 0, a tedy

1
2a2 -o-- = 0,

1
2a2 — 1 = a

2’
cos 72° = cos 36° — cos 60°.
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Protože cos 72° = sin 18° a cos a - cos в = 2 sin — sin
2 2

váme

(3 - a
dostá-

sin 18° = 2 sin 12° sin 48°

a po vynásobení obou stran číslem sin 78° = cos 12° vyjde

sin 18° sin 78° = sin 24° sin 48°.

Dosazením tohoto vztahu do (3) obdržíme rovnici

sin 24° cos 48° sin x = — sin 18° cos 78° sin x.

Pokud by platilo sin24°cos48° = — sin 18°sin78°, byla by rovnice (3),
a tedy i (2) splněna identicky pro všechna x; to však není pravda (např.
pro x = 78° je pravá strana (2) nulová, zatímco levá ne). Musí tedy být
siná; = 0, to znamená, že

x = к ■ 180° к celé.

Avšak x + 48° = (3 + ^7 leží v intervalu (0°, 180°), takže к = 0, a tedy

7
= 48°.0+í

Odtud pomocí (1) plyne

(3 = 12°, 7 = 72°

a konečně

a = 180° — /3 — 7 = 96°.

Tím je příklad vyřešen.

1.5 Označme x = 525, pak

N = x* + x3 + x2 + x + 1 = (x2 + Зх + l)2 — Ьх{х + l)2 =

= ((x2 + 3x + 1) - 513(ж + 1)) ((x2 + За; + 1) + 513(x + 1)).

Odtud je zřejmé, že N je složené přirozené číslo.
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1.6 Je-li (pro nějaké a) xa = I • 2fe, kde l je liché а к ^ 1, pak

у + 2k = (l + 2) ■ 2fc_1.
Speciálně, pokud xa = 2k, dostáváme postupně

2/с
*«+1 =3-2*-1,

= 5 • 2fc_2,

za

•^а+2

(*)
ха+,- = (2j + 1). 2k~>

xa+k = (2к + 1) • 2°

načež

xaMk+1) =2k+1.
Protože x\ — 1 = 2° a x^ = 2 = 21, bude

£1+1+2 — 22 2++1+2+3 — 23,£1+1 — 21, • ?

čili
r — 2fc

kde jsme označili mk = l + (l + 2 + ... + fc) = l + \k(k + 1). Z (*) pak
vyplývá, že

к = 0,1,2,.. * 4

xmt+j = (2j + 1) • 2k-> j = 0,1,2,..., A:.

Protože ixtk + (k + 1) — mk+i, jsou tímto vzorcem určeny všechny členy
posloupnosti (tj. každé přirozené číslo n se dá, a přitom zřejmě jediným
způsobem, napsat ve tvaru n = mk + j, kde к £ {0,1,2,...} a je
£ {0,1,..., k}).

Nyní 1 992 = 23 • 249, takže

xmk+j = 1 992 4=4> j = 124,
127-128

A: = 127 -Ф=Ф- mk + j = 1 + + 124 = 8 253.
2

Číslo 1 992 se tedy vyskytne v posloupnosti {:rn} právě jednou, a to pro
n = 8 253.
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1.7 Označme Q resp. P body dotyku kružnice ki s kružnicí к resp. s přím-
kou BC, D střed toho oblouku BC kružnice к, který neobsahuje bod A,
a budiž DL\, L\ £ k\, ta tečna z bodu D ke kružnici ki, která leží na

opačné straně přímky QD než bod В (obr. 34). Uvažujme stejnolehlost

se středem Q, která zobrazuje kružnici k\ na kružnici k. Protože tečna
ke к v bodě D je rovnoběžná s přímkou BC, zobrazí se při této stejnoleh-
losti bod P do bodu D. Odtud vyplývá, že Q, P a D leží v přímce. Dále
\BD\ = |CDI, takže \*$iCBD\ — \<$:BQD\ (obvodové úhly), trojúhelníky
BQD a PBD jsou tedy podobné. Tím pádem

\DB\2 = \DP\ • \DQ\ = \DLi\2
(poslední rovnost plyne z mocnosti bodu D ke kružnici k\), takže |DLi | —

= \DB\. Podobná úvaha pro к% místo k\ (jestliže definujeme L2 pro k2
analogicky jako Li pro k\) ukazuje, že i IDL2I = |DC| = \DB\. Platí
tedy

Protože se však k\ a ^2 dotýkají, plyne odtud, že Li = L2 = W a

(*)\DW\ = \DB\ = \DC\.

Protože \BD\ — \CD\, shodují se obvodové úhly BAD a CAD, tj. AW
je osa úhlu BAC (obr. 35).

Protože BWD je vnějším úhlem trojúhelníku ABW, platí \^ABW\ +
+ \<£BAW\ = \«£BWD\. Dále díky (*) \<£BWD\ = \<£WDB\ a podle
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věty o obvodových úhlech \<$:CBD\ = \<$:BAD\. Celkem máme

\*£ABW\ = \^BWD\-\<£BAD\ = \<$.WBD\-\^:CBD\ = \^CBW\,

a tedy BW je osa úhlu ABC. Bod W je tedy průsečíkem os úhlů troj-
úhelníku ABC, neboli středem jeho vepsané kružnice.
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34. mezinárodní matematická olympiáda

Ve dnech 13.-24. července 1993 se v tureckém Istanbulu konala 34. mezi-

národní matematická olympiáda. Českou republiku na ní velmi úspěšně
reprezentovala šestice studentů tří gymnázií. Jejich výsledky vidíte v ná-
sledující tabulce:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

102.-110. Michal Brodský
4. roč. gymnázia
Brno, tř. kpt. Jaroše

143.-150. Marcela Hlawiczková

4. roč. gymnázia
Třinec

122.-132. Ondřej Klíma
4. roč. gymnázia
Brno, tř. kpt. Jaroše

52.-58. Vít Novák
4. roč. gymnázia
Praha, Korunní

19.-24. Jana Syrovátková
4. roč. gymnázia
Brno, tř. kpt. Jaroše

59.-66. Robert Šámal
2. roč. gymnázia
Praha, Korunní

2 2 1 7 4 3 19 III.

1 7 0 0 7 0 15 III.

1 0 4 7 1 4 17 III.

7 0 4 5 3 6 25 II.

7 2 7 4 7 5 32 I.

7 2 0 7 5 3 24 II.

Celkem 25 13 16 30 27 21 132

Vedoucím české delegace byl jednatel ÚV MO dr. Karel Horák, CSc.,
z Matematického ústavu Akademie věd, který se zúčastnil i zasedání me-
zinárodní jury. 16. července pak do Istanbulu přijelo naše šestičlenné
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družstvo vedené doc. dr. Leo Bočkem, CSc., z Matematicko-fyzikální fa-
kulty University Karlovy, předsedou ÚVMO. Celkem se 34. MMO zú-
častnilo 413 studentů ze 73 zemí (soutěž však dokončilo jen 410 z nich).
Podle pravidel byla polovina účastníků oceněna jednou ze tří medailí:
za zisk 30-42 bodů byla udělena zlatá medaile (I. cena), za 20-29 bodů
stříbrná (II. cena) a za 11-19 bodů bronzová (III. cena).

V neoficiálním pořadí družstev jednotlivých zemí se Česká republika
s jednou zlatou, dvěma stříbrnými a třemi bronzovými medailemi umis-
tila se 132 body na 10. místě, což je výsledek, který se nám asi dlouho
nepodaří zopakovat!

i ii ni bodyI II III body

Clr
Německo
Bulharsko
Rusko

Tchaj-wan
Írán
USA
Maďarsko
Vietnam
Česká republika
Rumunsko
Slovensko
Austrálie
Velká Británie
Indie
Korea
Francie
Izrael
Kanada

Japonsko
Ukrajina
Rakousko
Itálie
Turecko
Kazachstán
Gruzie
Kolumbie
Arménie
Polsko

Singapur
Lotyšsko
Dánsko

Hongkong
Brazílie
Nizozemsko
Kuba

Belgie

Bělorusko
Švédsko
Maroko

Thajsko
Argentina
Švýcarsko
Norsko

Nový Zéland
Slovinsko

Španělsko
Makedonie
Litva
Irsko

Portugalsko
Ázerbájdžán
Filipíny
Finsko
Chorvatsko
Estonsko
JAR
Trinidad a Tobago
Moldavsko

Kirgizie
Macao
Mexiko

Mongolsko
Island
Lucembursko
Albánie
Severní Kypr
Bahrajn
Kuvajt
Indonézie

0 1 1
0 1 1
0 0 1
0 0 2
0 1 1
0 1 1
0 0 2
0 0 2
0 0 2
0 1 1
0 0 3
0 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 0
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 0
0 1 o
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

546 0 0
4 2 0
2 4 0
4 1 1
1 4 1
2 3 1
2 2 2
3 1 2
1 4 1
1 2 3
1 2 3
1 3 1
1 2 3
0 3 3
0 4 1
0 3 3
2 1 1
1 2 2
1 1 3
0 2 3
0 2 3
0 1 4
1 0 2
0 1 2
0 1 3
0 1 3
0 0 4
1 1 0
0 2 1
0 1 3
0 2 1
0 1 3
0 0 4
0 0 1
0 0 1
0 1 1
0 0 1

215
51189

178 49
177 47

46162
153 46
151 44
143 43
138 43
132 43
128 42
126 41
125 39
118 35
116 33
116 33
115 33
113 32
113 31

98 30
96 30
87 29
86 28
81 24
80 24
79 24
79 23
78 20
78 18
75 17
73 16
72 16
70 15

Bosna a Hercegovina 0 0 1
Alžírsko
Turkmenistán

60 14
58 0 0 0 9
56 0 0 0 9
55
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Nechť f(x) = xn + 5xn~1 +3, kde n > 1 je přirozené číslo. Dokažte, že
/ nelze rozložit na součin dvou mnohočlenů, z nichž každý má celočíselné
koeficienty a stupeň aspoň 1.

2. Nechť D je vnitřní bod ostroúhlého trojúhelníku ABC, pro který platí

{Irsko)

\<£ADB\ = \<£ACB\ + 90°
a

\AC\ ■ \BD\ = \AD\ ■ \BC\.
\AB| • \CD\
\AC\ ■ \BD\ ’a) Spočtěte hodnotu podílu

b) Dokažte, že tečny v bodě C kružnic opsaných trojúhelníkům ACD
{Velká Británie)a BCD jsou na sebe kolmé.3.Uvažujme následující hru na nekonečné šachovnici. Na počátku je n2

kamenů uspořádáno do bloku n x n sousedících polí, přičemž v každém
poli stojí jeden kámen. Tahem rozumíme přemístění kamene horizontál-
ním či vertikálním směrem přes jedno obsazené sousední pole na bezpro-
středně následující pole volné. Přeskočený kámen odstraníme.
Najděte všechna n, pro něž může hra skončit s jediným kamenem na
šachovnici. {Finsko)4.Pro body P, Q, R v rovině označme m{PQR) minimum délek výšek
trojúhelníku PQR {m{PQR) = 0 pro kolineární body P, Q, R).
Jsou-li A, P, C tři body v dané rovině, dokažte, že pro každý bod X této
roviny platí

m{ABC) S m{ABX) + m{AXC) + m{XBC).

{Makedonie)5.Nechť № = {1,2,3,...}. Rozhodněte, zda existuje funkce f: N N,
pro niž

/(1) = 2,

f{f{n)) = f{n) + n pro všechna n G N
a

f{n) < f{n + 1) pro všechna n 6 N.

{Německo)
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6. Nechť n > 1 je celé číslo. Uvažujme n lampiček Lo, Li, ..., L
uspořádaných do kruhu. Každá lampička je buď zapnutá, nebo vypnutá.
Postupně provádíme kroky Zo, Zi, ..., Z*, ..., přičemž krok Zj ovlivní
pouze stav lampičky Lj (nechává všechny ostatní lampičky nezměněny),
a to následovně: Je-li Lj_i zapnutá, změní Zj stav lampičky Lj ze zapnu-
tého na vypnutý, anebo z vypnutého na zapnutý. Je-li Lj_i vypnutá, Zj
nechá stav Lj nezměněn. Lampičky jsou číslovány modulo n, to známe-
ná, že L_i = Ln-1, Lo = Ln, L\ = Ln+1, atd. Na začátku jsou všechny
lampičky zapnuty. Dokažte, že
a) existuje kladné celé číslo M(n) takové, že po M(n) krocích budou

všechny lampičky zapnuty,
b) je-li n tvaru 2k, budou po n2 — 1 krocích všechny lampičky zapnuty,
c) je-li n tvaru 2k + 1, budou po n2 — n + 1 krocích všechny lampičky

zapnuty.

71 — 1

[Nizozemsko)

Řešení úloh

1. Předpokládejme, že daný mnohočlen / lze rozložit, tj. že platí / = gh,
kde g a h jsou mnohočleny s celočíselnými koeficienty stupně aspoň 1
a s koeficientem 1 u nejvyšší mocniny. Protože /(0) = g[0)h(0) = 3, je
buď \g{0)\ = 1, nebo \h(0)\ = 1. Bez újmy na obecnosti budeme předpo-
kládat, že \g{0)\ = 1.

Nechť 01,0:2,... ,Ofc (к ^ 1) jsou kořeny rovnice g(x) = O v oboru
komplexních čísel, tj. platí

g(x) = (x - Oi)(x - o2)... (ж - Oik). (1)

Je tedy zároveň |g(0)| = |oio2 ... o^l = 1.
Protože / = gh, jsou čísla oi,o2,..., o*, (к ^ 1) kořeny i rovnice

f(x) = xn~1(x + 5) + 3 = O, proto

o?-1(oí + 5) = -3, l^i^k.

Součinem těchto vztahů pro i = 1,2,..., к dostaneme

|(oi + 5)(o2 + 5)... (o*, + 5)| — 3k. (2)

Z vyjádření (1) podle (2) nyní plyne

|#(—5)| — |(oi + 5)(o2 + 5)... (o*, + 5)| — 3k,
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přitom ale pro mnohočleny g a h s celočíselnými koeficienty máme 3 =
— /(—5) = g{—5)h(—5). Protože g{—5) dělí číslo 3, musí v rovnosti (2)
nutně být к = 1, a mnohočlen g je tedy lineární.

Jestliže g je lineární dvojčlen s koeficientem 1 u nejvyšší mocniny
a s vlastností |ý(0)| = 1, je g(x) = x ± 1, takže je buď g{—1) = 0, nebo
g(l) = 0. Odtud plyne, že je buď /(—1) = 0, nebo /(1) = 0. Jak se
snadno přesvědčíme, ani jedno z čísel /(—1), /(1) však není nulové.

Rozklad mnohočlenu / na součin dvou netriviálních mnohočlenů s ce-

ločíselnými koeficienty není tedy možný.

Jiné řešení. Racionálními kořeny daného mnohočlenu / mohou být
jedině čísla ±1, ±3, pro liché číslo x je však hodnota f(x) rovněž lichá,
takže / nemá žádný racionální kořen. To znamená, že mnohočlen / není
dělitelný lineárním dvoj členem s celočíselnými koeficienty (takový má
vždy racionální kořen!).

Předpokládejme, že

f(x) = (akxk + afc_ ix
n—k

к — 1
+ . . . + d\X + Clo) x

— к — 1
X (bn-kX (3)+ ... + b\x + &o))“b bn—k—\X

kde di (0 ^ i ^ к) a bj (0 ^ j ^ n — k) jsou celá čísla, к ^ 2, n — к ^ 2 (je
tedy n^4a2^fc^n-2). Porovnáním koeficientů vychází aobo = 3.
Volme označení tak, že ao je dělitelné třemi a |&o| — 1- Koeficienty аг-

prvního mnohočlenu na pravé straně (3) nemohou být všechny dělitelné
třemi (to by byly třemi dělitelné i koeficienty mnohočlenu /), existuje
tedy index t (1 ^ t ^ k) takový, že 3 | аг- pro všechna i < t a 3 \ at.
Protože t ^ к ^ n — 2, je koeficient u xl mnohočlenu / roven nule:

0 — atbo + (cit-ibi + ...).

Protože výraz v závorce je dle předpokladu dělitelný třemi, ale 3 { |at&o| =
= |at|, dostáváme spor.

Poznámka. Analogicky druhému řešení můžeme dokázat následující
obecnější tvrzení (tvrzení úlohy dostaneme pro p = 3afc = n-l):

Nechť f(x) = cnxn + cn_ircn-1 + ... + c\x + co je mnohočlen s celo-
číselnými koeficienty takový, že pro nějaké prvočíslo p jsou koeficienty q
dělitelné p pro všechna i, 0 ^ i < к й n, p \ Ck a p2 \ cq. Jestliže se
/ dá rozložit na součin dvou mnohočlenů s celočíselnými koeficienty, má
aspoň jeden z nich stupeň nejvýše n — k.
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Je to zobecnění tzv. Eisensteinova kritéria, které dostaneme pro к = n

a které říká, že mnohočlen s koeficientem 1 u nejvyšší mocniny, jehož
všechny ostatní koeficienty jsou dělitelné prvočíslem p, přičemž absolutní
člen je dělitelný jen p, a nikoli p2, je nerozložitelný ve třídě mnohočlenů
s celočíselnými koeficienty.
2. а) V polorovině opačné к ABC uvažujme bod E takový, že DEB je
pravoúhlý rovnoramenný trojúhelník s pravým úhlem při vrcholu D. Platí
tak \BD\ = \DE\. Protože \<£ADB\ = \<£ACB\ + 90°, je \<£ADE\ =
= \<£.ACB\. Podle zadání

\AC\
_ \AD\ _ \AD\

\BC\ ~ \BD\ ~ \DE\ ’
odkud plyne, že trojúhelníky ABC a AED jsou podobné, a proto
\<$lDAE\ = \<£САВ\ (obr. 36). Odečtením \<£DAB\ od obou stran pře-
dešlé rovnosti dostáváme rovněž \~$:CAD\ — \<$:BAE\.

Z uvedené podobnosti trojúhelníků ABC a AED vychází
\AB\

= \AC\
\AE\ \AD\-

Ze shodnosti úhlů CAD a BAE a předešlé rovnosti dále plyne, že i troj-
úhelníky ADC a AEB jsou podobné. Platí tedy

\AB\
_ \BE\

\AC\ ~ \ČĎ\
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a tudíž
\AB\ • \CD\ \BE\
\AC\ • \BD\ ~ IBD\

= y/2.

b) Označme t ať tečny ke kružnicím opsaným trojúhelníkům ACD
a BCD v bodě D (obr. 37). Ze shodnosti vyznačených obvodových a úse-

kových úhlů 71 a 72 příslušných tětivě AD kružnice ADC a tětivě BD
kružnice ВDC dostáváme pro velikost úhlu který svírají přímky t ať,

(p = \<ADB\ - (7l + 72) = \<ADB\ - \<£ACB\ = 90°.

Protože tečny к oběma opsaným kružnicím v bodě C jsou s tečnami t ať
souměrně sdružené podle osy společné tětivy CD, je tvrzení b) dokázáno.
3. Zvolme kartézský souřadný systém v rovině nekonečné šachovnice tak,
že jednotlivá pole v něm mají celočíselné souřadnice
a n2 kamenů zabírá všechny mřížové body (x, у), kde
l^x^n, l^y^n. Každý tah má vliv na ob-
sazení tří polí sousedících horizontálně či vertikálně.
Obarvíme-li pole šachovnice třemi barvami (obr. 38)
tak, že stejnou barvu budou mít pole, jejichž součet
souřadnic x + y dává stejný zbytek modulo 3, vidíme,
že po každém tahu se celkový počet obsazených polí
každé barvy změní o jednu (ve dvou případech klesne, v jednom vzroste).

Označme ao, a\, a,2 počet obsazených polí té které barvy. Na počátku
je počet obsazených polí roven n2. Je-li n násobek tří, je počet obsazených
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polí každé barvy stejný (ao = ai = a2 = |n2), takže všechna tři čísla
mají stejnou paritu (jsou všechna sudá, nebo všechna lichá). Jak jsme
už ukázali, po každém tahu se parita každého z čísel ao, ai, a2 změní na

opačnou, a protože konečné pozici odpovídá trojice čísel 0,0,1 s různou
paritou, je zřejmé, že pro n dělitelné třemi nelze této konečné pozice
žádnou posloupností tahů dosáhnout.

Není-li n dělitelné třemi, popíšeme postup, kterým lze vždy požado-
váné konečné pozice dosáhnout. Tím bude úloha vyřešena.

Pro n = 1 jsme hotovi. Pro n = 2 dosáhneme konečné pozice násle-
dující posloupností tahů:

O O •

O O •

o o •

o o o
o o o• •

Nyní ukážeme, jak zredukovat čtyři obsazená pole z pětice polí tvaru „T“
na jediné obsazené pole, přičemž uvolníme trojici sousedních polí:

• O OO • • • • O O O •

o o
o o

Pomocí tohoto postupu (ne nutně v uvedené orientaci) zredukujeme
pro n — 4 počet obsazených polí na 1, pro n = 5 na 22 a obecně pro n ^ 6
na čtverec (n — 3) x (n — 3) (obr. 39). Pro n = 4an = 5 postupujeme
odebíráním trojic ve vyznačeném pořadí, pro n ^ 6 postupujeme ana-

logicky od pravého dolního rohu a skončíme vodorovnou trojicí v levém
horním rohu. Odtud plyne naše tvrzení matematickou indukcí.

n — 3

> n — 3

75 6

3 4 5

4 21 1

32

Obr. 39

Závěr. Hra může skončit s jediným kamenem na šachovnici, právě
když n není dělitelné třemi.
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4. V případě, že body А, В, C jsou kolineární, je tvrzení zřejmé.
Pro libovolné body P, Q, R uvažované roviny označme M(PQR)

maximum délek stran trojúhelníku PQR a S(PQR) dvojnásobek jeho
obsahu. Pak zřejmě platí

S(PQR)
M(PQR)'m(PQR) =

Dále si všimněme, že pro libovolný bod Z trojúhelníku PQR platí

M(ZQR) ^ M(PQR).

Označíme-li totiž S a T průsečíky polopřímek QZ a RZ s protějšími
stranami PR a PQ trojúhelníku PQR (obr. 40), bude zřejmě (spojnice
vrcholu s libovolným bodem protější strany není nikdy delší než delší
z obou sousedních stran!)

\QZ\ ^ |<2*Sj ^ max(|QP|, \QR\)
\RZ\ <í \RT\ S max(|Qi*|, \RP\)

takže

M(ZQR) = max(\QR\, \RZ\, \ZQ\) ^
^ max(|PQ|,\QR\, \RP\) = M(PQR).

Q R

Obr. 40

Leží-li nyní bod Z na některé straně trojúhelníku PQR, řekněme QR
(obr.41), pak rozhodně nejsou délky výšek trojúhelníku PQZ z vrcholů
P a Z větší než odpovídající délky výšek trojúhelníku PQR z vrcholů
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P a R] a pokud je nejkratší výškou trojúhelníku PQR zbývající výška

z vrcholu Q, musí být úhel QPR ostrý. V tom případě pro délku poslední
výšky trojúhelníku PQZ platí

\PQ\sm\<$:QPZ\ ^ \PQ\sin\^:QPR\

takže je v každém případě

m(PQZ) <. m{PQR).

Poslední nerovnost snadno zobecníme pro libovolný bod Z trojúhel-
niku PQR (obr. 42): je-li Z vnitřní bod trojúhelníku PQR a Z1 průsečík

QP

Obr. 42

spojnice PZ s protější stranou QR, je podle právě dokázané nerovnosti

m(PQZ) <; m(PQZ') й m(PQR). (1)
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Uvedené poznatky nyní využijeme к vyřešení úlohy.a)Nechť X je bod trojúhelníku ABC (obr. 43).
V tomto případě platí pro obsahy trojúhelníků ABC, ABX, AXC

a XBC

S(ABC) = S(ABX) + S{AXC) + S{XBC) =

= m(ABX)M(ABX) + m{AXC)M(AXC) + m(XBC)M(XBC) ^
^ (m(ABX) + m(AXC) + m{XBC))M{ABC),

odkud po vydělení kladným číslem M(ABC) plyne dokazovaná nerov-
nost.b)Nechť X je vnějším bodem trojúhelníku ABC, přičemž jeden z vr-
cholů trojúhelníku ABC (označme ho např. C) leží uvnitř trojúhelníku
určeného zbývajícími dvěma vrcholy a bodem X (tedy uvnitř trojúhel-
niku ABX, obr. 44). У tom případě je podle (1)

o

m(ABC) C m(ABX) ^ m(ABX) + m{AXC) + m{XBC).

X

A A AВ В В

Obr. 43 Obr. 44 Obr. 45c)Zbývá případ, kdy jsou body A, Б, С, X vrcholy konvexního
čtyřúhelníku. Volme označení vrcholů např. tak, že ABXC je konvexní
(obr. 45) a označme X' průsečík úhlopříček АХ a BC.

Podle (1) pro bod X' platí т(АВХ') й m(ABX) a m{AX'C) ^
^ m(AX’C), zatímco m{X'BC) = 0. Užitím výsledku části a) tak dostá-
váme

m(ABC) С m(ABX') + m{AX'C) + m(X'BC) ^
^ m{ABX) + m(AXC) + m(XBC),

což je opět nerovnost, kterou jsme chtěli dokázat.
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Poznámka. Není těžké uvážit, že rovnost v dokázané nerovnosti na-
stane v případě rovnostranného trojúhelníku ABC pro všechny body X
v trojúhelníku (tj. včetně jeho hranice), pro rovnoramenný trojúhelník
ABC, jehož základna AB je menší než rameno AC, pro všechny body X
základny AB a pro X = C a pro všechny ostatní trojúhelníky jen pro

body X 6 {A,B,C}.
5. Ukážeme, že funkce / daných vlastností existuje.

Na základě hodnoty /(1) = 2 dostaneme opakovaným použitím
vztahu =/(n) + n rovnosti

/(2) = /(!) +1=2 +1=3,
/(3) = /(2) + 2 = 3 + 2 = 5,
/(5) = /(3) + 3 = 5 + 3 = 8,
Д8) = /(5) + 5 = 8 + 5 = 13,

Předpokládejme, že n ^ 3 a že máme již definovány hodnoty /(1),
/(2),..., f(n — 1) tak, že současně platí

Д1)</(2)<...</(n-l).

Položme

g(n) = таx{k: 1 ^ к < n,f(k) ^ n}
f(n) — n + g{n).

(1)

Protože /(2) = 3 ^ n, je množina na pravé straně (1) neprázd-
ná, takže definice funkce g má dobrý smysl. Navíc z předpokladu
/(1) < /(2) < ... < f(n - 1) plyne, že je g(n) ^ g(n - 1), a tedy
f(n) > f (n — 1). Užitím principu matematické indukce zjistíme, že takto
definovaná funkce / je rostoucí.

Zbývá ještě ověřit, že°funkce / splňuje pro všechna n G № podmínku
/(/(n)) = f(n) + n. Protože / je rostoucí funkce a /(1) = 2, platí
f(n) > n. Odtud již plyne

9(f{n)) = maxjA:: 1 йк< f{n),f(k) й /(n)} #= n,

a proto f(f(n)) = f (ti) +g(f(n)) = f{n) + n.
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Nalezená funkce / má tedy všechny požadované vlastnosti.

Jiné řešení. Zkusme funkci / hledat mezi lineárními funkcemi tvaru
f(n) = an. Z rovnosti /(/(n)) = f(n) + n vychází

a2n = an + n П £ N.

Koeficient a tedy splňuje kvadratickou rovnici a2 — a — 1 = 0, která má
kladný kořen o: = |(l + \/б). Funkce n ь» an není ovšem celočíselná,
zkusíme ji proto zaokrouhlit:

Nechť a = |(l + y/Š). Položme

1
f{n)= an+- (n £ N). (2)

Protože a je iracionální číslo, bude pro libovolné n £ N platit

1
\f(n) - an| < - (3)2

a speciálně

!/(/(«)) (4)

Spočtěme dále rozdíl (využijeme přitom rovnost a2 — a = 1)

= /(/(n)) - /(n) - {a2 - a)n =
= (/(/Ы) - otf(n)) + {a - 1 )(/(n) - an).

/(/H) - f(n)-n

Odtud podle (3) а (4) plyne

1
|/(/Ы) - f(n) - n\ < \ + \{a - i) = ^a < 1.

Protože na levé straně stojí absolutní hodnota celého čísla, je rovna nule,
tj-

f(f(n)) = f(n)+n.
Konečně rovnost /(1) = 2 plyne z definice (2) díky tomu, že | < a <

< 2.

Poznámka. Z uvedených řešení je vidět, že funkce / není podmínkami
úlohy určena jednoznačně.
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6. Uvažujme posloupnost ao,ai,a2,... nul a jedniček takovou, že pro

j ^ 0 je aj = 1, právě když po provedení Zj je lampička Lj zapnutá
(v daném okamžiku j tak zapisujeme pouze stav lampičky Lj, protože
v dalších n — 1 krocích se její stav nebude měnit). Výsledek operace Zj
můžeme charakterizovat kongruencí

aj = aj-n + aj-i (mod 2).

Pravidlo (1) platí pro každé j^na bude platit i pro j 6 {0,1,,
n — 1}, jestliže položíme

(1)

CL—yi — CL — 77,—J— 1 — CL — n-1_2 — • • • — CL—2 — CL—\ — 1

což odpovídá počátečnímu stavu, kdy jsou všechny lampičky zapnuty.
Vektor Vj = (aj-n,... ,aj-1) charakterizuje stav lampiček v oka-

mžiku j (bezprostředně před provedením operace Zj), i/o = (1,1,..., 1).
Protože existuje jen konečný počet takových vektorů nul a jedniček
(totiž 2n), existují celá čísla j ^ 0 a m ^ 1 taková, že Vj = Vj+m.

Uvědomme si, že ze složek vektoru Vj = (oj_n,... ,Oj_i) dokážeme
.. ,Oj-2) —pomocí vztahu (1) určit složky vektoru Vj-1 = (aj

stačí pomocí (1) spočítat jedinou neznámou souřadnici:
—n—1> •

aj—n—i — aj—i — aj—2 (mod 2)

(jinými slovy přiřazení Vj-\ Vj je invertibilní). Z rovnosti Vj = Vj+m
tak rovnou plyne Vj-i = Vj+m-i, ..., v0 = vm. Číslo M(n) = m má tedy
požadovanou vlastnost a).

Použijeme-li rovnost (1) opakovaně na sčítance na její pravé straně,
dostaneme postupně

CLj — CLj— л CLj— \ —

= (<U-2n + Oj-n-l) + (aj-i-n + Oj_2) =
= aj-2n + 2aj-n-i + aj-2 (mod 2),

aj — (aj-3n + aj-2n-1) + 2(aj-2n-i + flj-n-2) +
+ (flj-2-n + aj-3) =

= aj-зп + 3aj_2n_i + 3aj—n—2 + aj—3 (mod 2).

Dostáváme tak vzorec

^ ^ (-^od 2),
i=0 ' '

(2)aj ~
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který platí pro všechna jar taková, že index j — (r — i)n — i je aspoň — n,

tj. pro j ^ (r — l)n, a který snadno zdůvodníme indukcí pomocí rov-
nosti (1) a vzorce (r”|1) = (/J + Q pro 0 < i < r + 1.

Vzorec (2) se velmi zjednoduší pro r = 2fc, protože kombinační čísla
tvaru ) jsou pro všechna г G {l,...,2fc — 1} sudá. To je snadno vidět
např. z vyjádření

'2k
2fc 2fe - 1 2k — 2 2k-i + l 1

i 1 2 i - 1 i

2k - t
v němž žádný ze zlomků

a přitom 2k/i ^ 2.
Pro r = n = 2k a j ^ (n — l)n můžeme tedy psát

po zkrácení neobsahuje mocninu dvojky,
t

čij — dj_n2 -P dj—n — P- (dj — dj—i) (mod 2)

neboli

dj—n2 dj—i,

což znamená, že posloupnost (dj) je periodická s periodou n2 — 1. Tím
je dokázáno tvrzení b).

Je-li konečně n = 2k + 1, využijeme vzorec (5) pro r
takže pro libovolné j ^ (n — 2)n platí

= n

dj — <3j_n2_|_n -p dj—n-)_i — flj_n2_|_n -(- (djj-i Qy) (mod 2)

neboli (je x — —x (mod 2))

—n2+n ®J + 1

což znamená, že posloupnost (a^) je periodická s periodou n2 — n + 1.
Tím je dokázáno tvrzení c).
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5. mezinárodní olympiáda v informatice

Po vzoru mezinárodní matematické a fyzikální olympiády byla v roce
1989 založena také mezinárodní olympiáda v informatice (IOI — Inter-
national Olympiad in Informatics). Zájem o tuto soutěž v celém světě
neustále roste a každoročně se zvyšuje počet zúčastněných zemí. Ještě
před dvěma lety v roce 1991 přijely na 3. mezinárodní olympiádu v in-
formatice soutěžní družstva pouze z 23 zemí, na tomto 5. ročníku IOI byl
již počet účastníků téměř dvojnásobný. Poprvé ve své historii také IOI
opustila evropský kontinent a přenesla se až do Jižní Ameriky.

Pátá mezinárodní olympiáda v informatice IOP93 pro středoškoláky
se konala ve dnech 16.-25.10.1993 ve městě Mendoza v Argentině. Olym-
piády se zúčastnilo 155 soutěžících (z toho 5 dívek) ze 44 zemí, několik
dalších zemí vyslalo na soutěž své pozorovatele.

Mezinárodní olympiáda v informatice je vyhlášena jako soutěž jed-
notlivců, každá země na ni může vyslat delegaci tvořenou dvěma ve-
doucími a nejvýše čtyřmi soutěžícími. Vedoucí delegace se automaticky
stává členem mezinárodní jury, jeho zástupce se po dobu soutěže stará
o soutěžní družstvo. Soutěžícími jsou studenti středních škol, případně
čerství absolventi v příslušném školním roce ve věku do 19 let.

Československé družstvo se zúčastnilo všech čtyř předchozích ročníků
a pravidelně dosahovalo výborných výsledků. Po rozdělení Českosloven-
ska jela poprvé soutěžit samostatná družstva České a Slovenské republiky.
Obě družstva byla vybrána na základě výsledků 3. kola kategorie P. Vy-
braní čeští i slovenští reprezentanti se společně s náhradníky v září 1993
zúčastnili společného týdenního přípravného soustředění před meziná-
rodní olympiádou. Soustředění se konalo na matematicko-fyzikální fa-
kultě Univerzity Komenského v Bratislavě pod vedením vedoucího druž-
štva Slovenské republiky mgr. Richarda Nemce.

České reprezentační družstvo pro ЮГ93 odcestovalo do Argentiny
v následujícím složení: Martin Mareš, student 3. ročníku gymnázia U li-
beňského zámku v Praze 8, Jana Syrovátková, absolventka gymnázia na
tř. kpt. Jaroše v Brně (dnes studentka MFF UK v Praze), Vít Novák
a Jiří Vaniček, oba absolventi gymnázia v Korunní ul. v Praze 2 (dnes oba

129



studenti MFF UK v Praze). Vedoucím delegace byl doc. RNDr. Václav
Sedláček, CSc., z přírodovědecké fakulty Masarykovy univerzity v Br-
ně, jeho zástupcem RNDr. Pavel Tópfer, CSc., z matematicko-fyzikální
fakulty Univerzity Karlovy v Praze.

V organizaci tohoto ročníku soutěže došlo к několika drobným úpra-
vám. V prvním soutěžním dnu nebyla řešena pouze jedna velká úloha
jako dříve, ale místo toho byly studentům zadány к řešení tři méně ná-
ročně problémy. Ve druhém soutěžním dnu pak byla soutěžícím předlo-
žena к řešení jedna obtížnější úloha. Soutěžní úlohy byly zvoleny vždy
v den jejich řešení mezinárodní porotou složenou z vedoucích delegací
všech zúčastněných států. Mezinárodní jury vybírala pokaždé ze tří růz-
ných návrhů na každou soutěžní úlohu. Soutěžící pracovali samostatně
u přidělených osobních počítačů typu PC. V každém soutěžním dnu měli
na práci 5 hodin čistého času. Výsledné programy pak byly za přitom-
nosti studenta a vedoucího delegace testovány koordinátory. Novinkou
bylo stanovení časových limitů při testování studentských programů po-
mocí předem připravených souborů zkušebních dat. V hodnocení úloh
se tak letos poprvé odrazila také efektivita vytvořených programů. Na
základě výsledků předepsaných testů byla řešení úloh obodována. Každý
den mohl soutěžící získat maximálně 100 bodů. Celkové výsledky byly
stanoveny na základě součtu bodového zisku v obou soutěžních dnech.

Prvních 82 soutěžících z přítomných 155 bylo oceněno některou z me-
dailí. Celkově bylo uděleno 13 zlatých medailí (za bodový zisk 186-200
bodů), 27 stříbrných medailí (za 161-178 bodů) a 42 bronzové medaile (za
123-158 bodů). Naši studenti navázali na dobrou tradici československé
reprezentace na IOI a opět dosáhli vynikajících výsledků. Martin Mareš
získal zlatou medaili (200 bodů) a obsadil 1.-4. místo v celkovém pořa-
dí. Dvě stříbrné medaile obdrželi Vít Novák (175 bodů, 15.-25. místo)
a Jana Syrovátková (167 bodů, 31.-32. místo). Pouze Jiří Vaniček zůstal
letos bez medaile (40 bodů, 137. místo). Navíc byl Martin Mareš jedním
ze čtyř nejúspěšnějších řešitelů, kteří za absolutní možný zisk 200 bodů
obdrželi zvláštní cenu UNESCO. Mezi oceněnými účastníky byly pouze
dvě dívky, a to Jana Syrovátková z ČR a Bronislava Brejová ze SR (obě
získaly stříbrnou medaili). Soutěž družstev nebyla na IOI vyhlášena a ani
žádné pořadí družstev nebylo publikováno. Bylo by ostatně velmi obtížné
jakékoliv pořadí družstev stanovit, neboť řada zemí vyslala do Argentiny
neúplné delegace pouze se dvěma nebo třemi soutěžícími.

Mimo vlastní soutěž připravili organizátoři pro všechny účastníky bo-
hatý doprovodný program. Jeho nejhodnotnější součástí byl závěrečný
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celodenní výlet autobusy do And téměř až ke státní hranici Argentiny
s Chile.

Texty soutěžních úloh

1. Máme náhrdelník složený z N korálků (N й 100), z nichž některé jsou
červené, jiné modré a zbývající bílé. Korálky jsou seřazeny náhodně. Na
obr. 46 jsou dva příklady pro N = 29. (Korálky, považované v dalším
textu za první a druhý, jsou na obrázku označeny.)

1 21 2

.•° *0
o

□
□

□o
o

o
oo

oo
oo

o
• • červený korálek 0

o modrý korálek •
□ bílý korálek

o

*•# #n°°-.C*
b)a)

Obr. 46

Konfigurace na obrázku a) může být reprezentována jako řetězec
znaků 6 a r, kde b reprezentuje modrý korálek a r korálek červený, ná-
sledovně:

brbrrrbbbrrrrrbrrbbrbbbbrrrrb.

Vaším úkolem je přerušit náhrdelník, napřímit jej, a potom odebírat
korálky jedné barvy z jednoho konce, dokud nenarazíte na korálek jiné
barvy. Stejným způsobem odebíráte korálky z druhého konce (tyto ко-
rálky mohou mít jinou barvu, než měly korálky odebírané z opačného
konce).

Určete bod, v němž má být náhrdelník přerušen, aby bylo možné
odebrat největší počet korálků.

Například z náhrdelníku na obrázku a) může být odebráno 8 korálků,
pokud bude dělicí bod mezi korálky 9 a 10 nebo mezi korálky 24 a 25.

Některé náhrdelníky mohou obsahovat i bílé korálky, jak ukazuje ob-
rázek b). Při odebírání korálků může být bílý korálek považován za čer-
vený nebo modrý a obarven požadovanou barvou. Řetězec reprezentující
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tuto konfiguraci bude obsahovat symboly r, b, w. Napište program, který
dělá následující:1.Přečte konfigurace ze vstupního ASCII souboru NECKLACE.DAT.
Soubor obsahuje na každém řádku jednu konfiguraci. Zapíše vstupní data
do výstupního ASCII souboru NECKLACE.SQL.

Příklad vstupního souboru NECKLACE.DAT:

brbrrrbbbrrrrrbrrbbrbbbbrrrrb

bbwbrrrwbrbrrrrrb.

2. Pro každou konfiguraci určí maximální počet M korálků, které lze
odebrat a místo přerušení náhrdelníku.

3. Do výstupního souboru NECKLACE. SOL zapíše počet M a dělicí bod.
Řešení různých konfigurací budou oddělena prázdným řádkem.

Příklad možného řešení (soubor NECKLACE.SQL):

brbrrrbbbrrrrrbrrbbrbbbbrrrrb

8 between 9 a 10

bbwbrrrwbrbrrrrrb

10 between 16 a 17

2. Některé společnosti jsou částečnými vlastníky jiných společností, ne-
boť získaly část jejich akcií (podílů). Např FORD vlastní 12% MAZDY.
Řekneme, že společnost A kontroluje společnost B, pokud je splněna
alespoň jedna z následujících podmínek:
a) A = B,
b) A vlastní více než 50% R,
c) A kontroluje к (к ^ 1) společností C(l),..., C(k) takových, že C(i)

vlastní x(i) % společnosti В pro 1 ^ г й к a platí x(l) + ... + x(k) >
> 50.
Řešte tuto úlohu:

Je dán seznam trojic (i,j,p), které znamenají, že společnost i vlastní
p% společnosti j. Určete všechny dvojice (ů,s) takové, že společnost h
kontroluje společnost s. Existuje nejvýše 100 společností. Napište pro-

gram, který dělá následující:
1. Ze vstupního ASCII souboru CQMPANY.DAT přečte seznam trojic

(г, j, k), který je považován za data pro jednu úlohu. Hodnoty i, j, к jsou
kladná celá čísla. Data pro jednotlivé úlohy jsou ve vstupním souboru
oddělena vždy prázdným řádkem.
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2. Určí všechny dvojice (h,s) takové, že společnost h kontroluje spo-
lečnost s.

3. Do výstupního souboru COMPANY.SOL zapíše všechny nalezené dvo-
jice (h,s), v nichž h je různé od s. Dvojice (h,s) musí být při zápisu
uspořádány podle rostoucí hodnoty h. Řešení jednotlivých úloh musí být
oddělena prázdným řádkem.

Příklad: COMPANY.DAT

2 3 25

COMPANY.SOL

4 2

361 4 4 3

634 5 4 5

2 1 48

3 30 2 34

52 2 44 2

5 3 30 2 5

3 4

2 30 31 5

2 3 52 4 5

3 514

4 5 70

205 4

3 204

3. Na bílý list papíru je pokládáno přes sebe N obdélníků různých barev.
List papíru má rozměry: šířka a cm, délka 6 cm. Strany pokládaných ob-
délníků jsou rovnoběžné s okraji papíru. Žádný z obdélníků nepřesahuje
okraje listu papíru. Po položení obdélníků jsou vidět různé obrazce růz-
ných barev. Dvě oblasti stejné barvy považujeme za části téhož obrazce,
pokud mají aspoň jeden společný bod. Jinak jsou považovány za různé
obrazce. Úkolem je určit plochu každého z těchto obrazců. Čísla a, b jsou
kladná sudá čísla, ne větší než 30.

Uvažovaný souřadnicový systém má počátek ve středu listu, osy jsou
rovnoběžné s okraji listu.

Data pro jednotlivá zadání úloh jsou zapsána ve vstupním ASCII
souboru RECTANG.DAT. Hodnoty a, 6, N jsou na prvním řádku každé
skupiny dat a jsou odděleny mezerou. V každém z dalších řádků jsou:
• celočíselné souřadnice místa, kde bude umístěn levý dolní vrchol ob-

délníku,
• následované celočíselnými souřadnicemi místa, kde bude umístěn

pravý horní roh obdélníku,
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• a pak následuje barva obdélníku reprezentovaná celým číslem od 1
do 64.

Napište program, který:
1. čte vstupní data ze souboru RECTANG.DAT,
2. určí plochu každého obrazce,
3. zapíše do výstupního ASCII souboru RECTANG.SOL barvu a plochu

každého obrazce, jak ukazuje příklad. Řádky budou uspořádány podle
rostoucího čísla barvy, řešení jednotlivých úloh budou oddělena prázd-
ným řádkem.
Příklad: RECTANG. DAT

20 12 5

-7 -5 -3 -1 4

-3 5 3 2

-4 -2-2 2 4

2-2 3

3 17 5 1

RECTANG.SOL

1 172

2 47

-5 4 12

4 8

-1 12

1 630

2 70

30 30 2

0 5

-7 0

15 200

0 14 2

-10 13 15

4. Vyhrál jste soutěž kanadských aerolinií. Vaší výhrou je volná letenka
na cestování po Kanadě. Vaše cesta začíná v nejzápadnějším místě, do
kterého létají tyto aerolinie. Potom cestujete pouze směrem ze západu
na východ, dokud nedoletíte do nejvýchodnějšího místa, do kterého létají
tyto aerolinie. Potom se vracíte zpět pouze směrem z východu na západ,
dokud nedoletíte do výchozího místa. Žádné město nesmí být navštíveno
více než jednou s výjimkou výchozího místa, které musí být navštíveno
přesně dvakrát (na začátku a na konci vašeho výletu). Nesmíte použít
žádné jiné aerolinie ani žádný jiný druh dopravy.

Vyřešte následující úlohu: Je dán seznam měst a seznam letů mezi
dvojicemi měst. Nalezněte rozpis, umožňující navštívit co nejvíce měst
při splnění výše uvedených podmínek.

Data pro jednotlivá zadání úloh jsou uložena ve vstupním ASCII
souboru C: \I0I\ITIN. DAT. Data pro každou úlohu mají následující tvar:
• Na prvním řádku je počet měst N a počet V přímých letů, jejichž

seznamy budou následovat. Hodnota N bude celé kladné číslo ne větší
než 100, V je celé kladné číslo.

• Na každém z následujících n řádků je jméno jednoho města. Jména
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měst jsou ve vstupním souboru seřazena od západu na východ. To
znamená, že г-té město leží východně od ý-tého města, právě když
i > j. (Neexistují žádná dvě města, která by ležela na stejném poled-
niku.) Jméno každého města je řetězec tvořený nejvýše 15 číslicemi
nebo písmeny latinské abecedy, například

AGR34 nebo BEL4.

• Na každém z dalších V řádků jsou vždy jména dvou měst z předcho-
zího seznamu. Jsou oddělena mezerou. Dvojice měst

cityl city2

uvedená na jednom řádku znamená, že existuje přímé letecké spojení
ze cityl do city2 a samozřejmě také přímé spojení ze city2 do
cityl.
Data pro jednotlivé úlohy jsou ve vstupním souboru oddělena prázd-

ným řádkem (tj. řádkem obsahujícím pouze znak EQLN). Za posledním
řádkem dat pro poslední úlohu není prázdný řádek. Příklad vstupního
souboru C:\IOI\ITIN.DAT:

8 9

Vancouver

Yellowknife

Edmonton

Calgary
Winnipeg
Toronto

Montreal

Halifax

Vancouver Edmonton

Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax

Montreal Halifax

Edmonton Montreal

Edmonton Yellowknife

Edmonton Calgary
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5 5

Cl

C2

C3

C4

C5

C5 C4

C2 C3

C3 Cl

C4 Cl

C5 C2

Nalezené řešení každé úlohy musí být zapsáno do výstupního ASCII
souboru C: \I0I\ITIN. SOL v následujícím tvaru: Na prvním řádku je za-

psán celkový počet měst (zapsaný na vstupu), na druhém řádkuje uveden
počet M různých měst navštívených dle nalezeného rozpisu. Na dalších
M + 1 řádcích jsou jména měst v pořadí, v němž budou navštívena. Na
každém řádku je zapsáno jméno jednoho města. Pozor, první navštívené
město musí být znovu uvedeno jako poslední. Pokud není nalezeno žádné
řešení úlohy, do souboru ITIN.SOL zapište pouze dva řádky: první ob-
sáhuje celkový počet měst, na druhém je nápis NO SOLUTION. Výsledky
řešení jednotlivých úloh oddělte v souboru ITI. SOL prázdným řádkem.
Možné řešení předchozího příkladu:

8

7

Vancouver

Edmonton

Montreal

Halifax

Toronto

Winnipeg
Calgary
Vancouver

5

N0 SOLUTION

Program uložte do ASCII souboru C: \I0I\DDD. xxx. Přípona . xxx je
.BAS pro QBASIC, .LCN pro LOGO, .C pro C a .PAS pro Pascal.
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