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O průběhu 45. ročníku matematické olympiády

Soutěž Matematická olympiáda ve školním roce 1995/96 pořádaly pro

žáky středních a základních škol Ministerstvo školství, mládeže a tě-
lovýchovy ČR ve spolupráci s Jednotou českých matematiků a fyziků
a Matematickým ústavem AV ČR. Soutěž řídil ústřední výbor matema-
tické olympiády (ÚV MO) prostřednictvím oblastních a okresních výborů
matematické olympiády.

Cílem soutěže je vyhledávání žáků talentovaných v matematice, pro-
bouzení jejich hlubšího zájmu o matematiku a rozvíjení jejich matema-
tických schopností. Ve školním roce 1995/96 se uskutečnil její 45. ročník.

Ústřední výbor MO pracoval ve složení, v němž byl jmenován Minis-
terstvem školství ČR v roce 1989. Předsedou ÚV MO byl doc. dr. Leo Во-
ček, CSc., z MFF UK v Praze, tajemníky byli dr. Karel Horák, CSc., z MÚ
AVČR v Praze a dr. Jiří Binder, CSc., z PF UK v Praze.

V průběhu 45. ročníku MO se konala dvě zasedání ÚV MO, první
dne 5. prosince 1995 v Praze, druhé 22.-23. dubna 1996 v Bílovci při
celostátním kole kategorie A. Na programu bylo hodnocení průběhu sou-

těže, zabezpečení celostátních soustředění úspěšných řešitelů MO včetně
soustředění pro přípravu na MMO, korespondenční seminář ÚV MO a or-

ganizace dalších kol soutěže. Jako vždy se diskutovalo o vhodnosti ně-
kterých soutěžních úloh MO.

V organizaci vlastní soutěže nedošlo к žádným změnám. Pro žáky
základních škol byla soutěž rozdělena do pěti kategorií Z4, Z5, Z6, Z7
a Z8, které byly určeny postupně žákům 4. až 8. ročníku. Podrobnosti
mohou najít zájemci v brožurce ^5. ročník MO na základních školách,
jejíž vydání se připravuje.

Pro žáky středních škol byla soutěž organizována ve čtyřech katego-
riích А, В, С a P. Kategorie A byla určena žákům 3. a 4. ročníků středních
škol, kategorie В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci
1. ročníků. Pro žáky všech tříd středních škol byla určena ještě katego-
rie P, zaměřená na úlohy z programování a matematické informatiky.

V kategoriích А, В a C má I. kolo dvě části. V první části řeší soutěžící
6 úloh samostatně doma a mohou se případně i poradit se svými učiteli,
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vedoucími kroužků apod. Druhá část má formu klauzurní práce, v níž řeší
žáci tři úlohy v omezeném čase 4 hodin. Řešitelé, kteří úspěšně projdou
prvním kolem, jsou pozváni do druhého (oblastního) kola soutěže, kde
řeší čtyři úlohy opět v limitu čtyř hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo. V něm je
vlastní soutěž rozdělena do dvou dnů. V kategorii A řeší soutěžící každý
den tři úlohy v časovém limitu čtyři hodiny, v kategorii P ve stejném
limitu vždy dvě úlohy.

Celostátní kolo 45. ročníku se uskutečnilo v Bílovci ve dnech 22. až
25. dubna 1996 (kategorie A) a 25.-28. dubna 1996 (kategorie P). Na za-
bezpečení soutěže včetně bohatého doprovodného programu pro soutěžící
i členy ÚV MO se obětavě podíleli členové oblastního výboru MO Se-
věrní Moravy, pracovníci matematických kateder přírodovědecké fakulty
Palackého univerzity v Olomouci a zejména profesoři a pedagogický sbor
gymnázia Mikuláše Koperníka v Bílovci.

Vybraná družstva se zúčastnila mezinárodní matematické olympiády
i mezinárodní olympiády v informatice. Těmto soutěžím je věnována sa-
mostatná kapitola v závěru této ročenky.

К matematické olympiádě vedle vlastní soutěže patří i řada doprovod-
ných akcí pro talentované žáky. Z akcí pořádaných oblastními výbory MO
к nim zejména patří semináře pro řešitele MO a instruktáže pro učitele.
Pro nejúspěšnější řešitele oblastních kol MO a korespondenčních semi-
nám byla pořádána (většinou týdenní) soustředění.

Ústřední výbor MO zajišťoval tři soustředění. Pro žáky nematurují-
cích ročníků to bylo již tradiční soustředění několika desítek úspěšných
řešitelů úloh MO a FO. Proběhlo ve dnech 10.-21.6.1996 v Jevíčku. Další

dvě soustředění byla věnována přípravě českého družstva na mezinárodní
matematickou olympiádu a konala se opět v Jevíčku, a to pro 15 nejlep-
ších řešitelů II. kola kategorie A v týdnu od 24. do 29. března ještě před
celostátním kolem, druhé pak už jen pro vybraný tým 6 reprezentantů
a 2 náhradníků od 9. do 14. června 1996.

Soutěžní úlohy I. (domácího) kola všech kategorií matematické olym-
piády jsou publikovány v tzv. soutěžních letácích. Úlohy jsou dále zve-
řejňovány v časopisech Matematika, fyzika, informatika a Rozhledy та-

tematicko-fyzikální. Na pomoc učitelům jsou pak rozesílány na školy ко-
mentáře к úlohám.

Úlohy pro jednotlivá kola soutěže připravuje již čtvrtý rok úlohová
komise pod vedením doc. RNDr. Jaromíra Šimši, CSc., z pobočky MÚ AV
CR v Brně. Komise se schází dvakrát ročně na podzim a na jaře, tentokrát
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se úlohové semináře konaly v Bratislavě a v Jevíčku. V komisi pracuje
zhruba 16 členů z Čech i Slovenska (úlohy obou národních olympiád jsou
vybírány i zadávány společně). V tomto ročníku zodpovídali za výběr
úloh pro jednotlivé kategorie RNDr. Pavol Čemek, CSc., z Bratislavy
(kategorie A), doc. RNDr. Antonín Vrba, CSc., z Prahy (kategorie B)
a RNDr. Jaroslav Zhouf z Prahy (kategorie C). Autory jednotlivých úloh
uvádíme za jejich texty.

Autoři ročenky jménem Ústředního výboru MO i jménem úlohové
komise děkují touto cestou všem organizátorům soutěže, především pak
učitelům za jejich obětavou práci a za péči, kterou věnují svým žákům.
Zároveň vyzývají všechny zájemce o spolupráci při tvorbě zajímavých —

především původních — úloh.
Zkuste zažít pocit radosti z toho, objevíte-li svou úlohu i se svým

jménem v soutěžním letáku nebo v této ročence.
Návrhy na soutěžní úlohy pro kategorie А, В a C laskavě zasílejte na

adresu předsedy české úlohové komise doc. RNDr. Jaromíra Šimši, CSc.,
MÚ AV ČR, Žižkova 22, 61600 Brno. Návrhy úloh vhodných pro kate-
gorii P zasílejte na adresu doc. RNDr. Pavla Topfera, MFF UK Praha,
Malostranské nám. 25, 11800 Praha 1.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 45. ročníku MO

Kategorie
CelkemOblast

A В C P
s us и s и s и s и

Praha

Střední Cechy
Jižní Cechy
Západní Cechy
Liberec

Ostí n. Labem

Východní Cechy
Brno
Jihlava
Zlín
Severní Morava

64 32

94 33
71 41

41 29
31 11

51 25

83 22'

52 36
37 26
18 5

124 60
145 70

105 64
71 54
30 10

26 26

13 6

265 143
335 131

228 141

158 118
84 31

9 9
5 5

25 25
88 41
36 19
16 4
81 31

48 36
43 36
38 20
30 14

102 40

28 15
84 63
47 29
19 16

193 81

31 25 132 101
215 140
133 76
69 36

399 175

12 8
4 2

23 23

CR 2 018 1092547 266 502 260 846 462 123 104

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 45. ročníku MO
Kategorie

CelkemOblast
CA В P

s и s s и s иs и и

129 69

121 24

95 35
112 52

29 13

Praha
Střední Cechy
Jižní Cechy
Západní Cechy
Liberec
Ústí n. Labem

Východní Cechy
Brno
Jihlava
Zlín
Severní Morava

30 23

29' 8
28 9
29 11
10 4

24 12

19 6
23 12

25 13
5 2

49 24

67 7
44 14

50 26
9 5

26 10
6 3

8 2
5 2

24 7 89 30
121 62
66 27
33 10

174 73

23 7
40 25

16 7
4 1

31 17

31 11

30 15

16 4
13 2
40 20

11 5
51 22
26 10 8 6

2 1

22 7
14 6
81 29

CR 101 38 969 395402 148240 112 226 97

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Výsledky celostátního kola 45. ročníku MO
kategorie A

Vítězové

1. David Opěla, 4.r. GMK Bílovec
2. Tomáš Bárta, 4.r. G Zborovská, Praha
3. Jan Spěvák, 3.r. G Hellichova, Praha
4. Michal penes, 4.r. G Zborovská, Praha

5.-6. Daniel Král’ 4.r. G Zlín
Robert Špalek, 4.r. G tř. Kpt. Jaroše, Brno

7.-9. Tomáš Brauner, 3.r. G Moravský Krumlov
Petr Vilím, 4.r. GMK Bílovec
Jan Vybíral, 3.r. GMK Bílovec

10.—11. Karel Výborný, 4.r. G Zborovská, Praha
Peír Vodstrčil, 4.r. G Polička

34 b.
32 b.
29 b.
28 b.
26 b.

26 b.
23 b.
23 b.

22 b.

21b.

21b.

Další úspěšní řešitelé

12.-13. Roman Ženka, 4.r. G Jírovcova, Č. Budějovice
Pavel Strnad, 5.r. GFXŠ Liberec

14. Zbyněk Pawlas, 4.r. GMK Bílovec
15.-17. Petr Pudlák, 3.r. G Zborovská, Praha

Jana Flašková, 3.r. Svob. cheb. škola, Cheb
Petr Škovroň, 4.r. GMK Bílovec

18.-20. Jan Štola, 3.r. G Zborovská, Praha
Radek Pelánek, 2.r. G tř. Kpt. Jaroše, Brno
Jiří Benedikt, 4.r. G Mikulášské nám., Plzeň

21. Karel Zikmund, 4.r. G Jihlava

20 b.
20 b.

17b.
15 b.

15 b.

15 b.
14 b.

14b.
14 b.

13 b.
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Výsledky celostátního kola 45. ročníku MO
kategorie P

Vítězové

1. Daniel Král\ 4 G Zlín
2. Stanislav Mikeš, 4 G Jírovcova, České Budějovice

3.-4. Michal Beneš, 4 G Zborovská, Praha
Tomáš Tichý, 4 G Dašická, Pardubice

5. Robert Špalek, 4 G tř. Kpt. Jaroše, Brno
6. Jan Vodička, 4 G Zborovská, Praha

7.-8. Tomáš Miiller, 4 G J. Pekaře, Mladá Boleslav
Mikuláš Patočka, 3 G Kpt. Jaroše, Brno

48 b.

38 b.

37 b.
37 b.

35 b.

33 b.
32 b.

32 b.

Další úspěšní řešitelé

30 b.9. Pavel Jelínek, 4 G Mikulášské nám., Plzeň
10.-13. Vlastimil Janda, 5 G Humpolec

Věroslav Kaplan, 3 G tř. Kpt. Jaroše, Brno
Petr Vilím, 4 GMK Bílovec
Roman Ženka, 4 G Jírovcova, České Budějovice

14. Aleš Přívětivý, G Dašická, Pardubice
15.-16. Jan Březina, 3 G F. X. Saldy, Liberec

Karel Zikmund, 4 G Jihlava

29 b.
29 b.

29 b.

29 b.
28 b.

27 b.

27 b.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše prvních de-
set řešitelů. Označení G znamená gymnázium, M, resp. MF zaměření
studijního oboru 01 Matematika, resp. 02 Matematika a fyzika.

Praha

Kategorie A

1.-3. Jan Spěvák, ЗА, G Hellichova
Petr Pudlák, ЗА M, G Zborovská
Karel Výborný, 4A, G Zborovská

4.-5. Martin Rumlena, 3D M, G Zborovská
Jan Štola, 3D M, G Zborovská6.Michal Beneš, 4D M, G Zborovská

7.-9. Ondřej Demel, ЗА, G Zborovská
Milan Hladík, 3D M, G Zborovská
Mikuláš Vejlupek, 4D M, G Zborovská

10.-12. Anna Jančaříková, 4C, G Zborovská
Petr Janeček, 4D M, G Zborovská
Jiří Vaněk, 4D M, G Zborovská

Kategorie В

1. Libor Bárto, 2A, G Hellichova
2. Filip Matějka, 2C, G Zborovská
3. Jiří Lhotský, 2C, G Zborovská
4. Zdeněk Michl, 2C, G Zborovská

5.-6. Michaela Horinová, 2C, G Zborovská
Jan Malý, 2A, G Sladkovského

7. Jan Petr, 2C, G Zborovská
8. Michal Mackanič, 2A, G Litoměřická
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9.-10. Ondřej Hromádka, 2C, G Parléřova
Jan Kára, 2C, G U libeňského zámku

Kategorie C

1.-3. Marek Čtrnáct, V., G Buďánka, Voctářova
Jiří Domlátil, 1C, G Zborovská
Robert Káldy, 2C, G Zborovská

4.-5. Markéta Havlíčková, V., G Buďánka, Voctářova
Alexandr Kára, 2C, G Hellichova

6. Jaroslav Hlinka, 1C, G Zborovská
7.-8. Martin Diensbier, 1C, G Zborovská

Filip Laně, 1C, G Zborovská
9. Jan Stuchl, 1C, G Zborovská

10. Jan Tax, 1C, G Zborovská

Kategorie P

1. Michal Beneš, 4D, G Zborovská
2. Jan Štola, 3D, G Zborovská

3.-4. Lukáš Neterda, 3D, G U libeňského zámku
3.-4. Jan Vodička, 4D, G Zborovská5.Tomáš Ostatnický, 4D, G Zborovská

Střední Cechy

Kategorie A

1. Jiří Franta, G Příbram
2.-4. Vladimír Pilný, G Český Brod

Petr Sedláček, G Benešov
Jiří Šrain, G Beroun

5. Jiří Lukavský, Sport, škola a G Kladno
6. Tomáš Muller, G Mladá Boleslav

7.-8. Milena Svobodová, Sport, škola a G Kladno
Matouš Jirák, G Říčany
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Kategorie В

1. Jan Šťovíček, 2A, G Kladno
2. Petr Zima, 2A, G Kladno
3. Lucie Henzlová, 2, G Český Brod
4. Jakub Koňas, V, G Vlašim .

5.-6. Michal Červenka, 2C, G Kutná Hora
Pavel Surynek, 2A, G Vlašim

Kategorie C1.Jaroslav Černý, 1A, G Mladá Boleslav
2.-3. Jan Hanák, IV, G Slaný

Michaela Nová, IV, G Hořovice
4.-7. Jaroslav Kopsa, IV.C, G Kladno

Tomáš Hora, IV, G Slaný
Luboš Lipinský, IV.В, G Beroun
František Janoušek, 3B, G Kladno

Kategorie P

1. Tomáš Muller, 4A, G Mladá Boleslav
2. Jiří Šrain, kvinta, G Beroun
3. Radan Baše, 4C, G Benešov

Jižní Čechy

Kategorie A

1.-2. Markéta Elisová, 4, G, Jírovcova, Č. Budějovice
Roman Ženka, 4, G, Jírovcova, Č. Budějovice3.Martin Hadrávek, 4, G, Jírovcova, Č. Budějovice

4.-5. Klára Bezpalcová, 3, G, Jírovcova, Č. Budějovice
Miroslav Šiman, 3, G, Jírovcova, Č. Budějovice

6. M. Houda, 4, G Tábor
7. Václav Porod, 3, G Týn nad Vltavou
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Kategorie В

1.-2. Rostislav Doležal, G, Jírovcova, C. Budějovice
Jan Trávníček, G, Jírovcova, C. Budějovice

3. Jana Koubovská, G, Strakonice
4. František Daněk, SPŠS Tábor
5. Radim Brůžek, G Tábor
6. Jan Kališ, G Soběslav
7. Petr Pekárek, G, Jírovcova, C. Budějovice
8. Miroslav Bulíček, G Humpolec
9. Jan Ehrlich, Biskupské G C. Budějovice

10.-13. Jiří Cajthaml, G Tábor
Michal Codl, G Český Krumlov
Petr Kostka, G Pelhřimov

Kategorie C

1. Jan Houštěk, G Pelhřimov
2. Jan Čepelák, G Český Krumlov
3. Jaroslav Trnka, G Pelhřimov
4. Aleš Krajník, G Pelhřimov
5. Helena Kunstová, G Pelhřimov

6.-7. Kamila Pacovská, G Tábor
Jan Vida, G Jindřichův Hradec

8.-10. Miloslav Brada, G Tábor
Vladimír Faltus, G, Jírovcova, C. Budějovice

* Jiří Ortman, G, Jírovcova, C. Budějovice

Kategorie P

1. Roman Ženka, 4A, G Jírovcova, C. Budějovice
2. Jan Hubička, 4A, G Jírovcova, C. Budějovice
3. Stanislav Mikeš, 4A, G Jírovcova, C. Budějovice

Západní Cechy

Kategorie A

1. Jana Flašková, 4M, 1. G Plzeň
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2.-3. Jiří Benedikt, 3, Svobodná chebská škola, Cheb
Tomáš Pešek, 3M, 1. G Plzeň

4.-5. Michal Krčma, 4MF, 1. G Plzeň
Martin Moravec, 3, Svobodná chebská škola, Cheb

6. Tomáš Ebelendr, sexta, Masarykovo G Plzeň
7.-9. Zdeněk Slovan, 3M, 1. G Plzeň

Tomáš Suda, 4, G Klatovy
Lukáš Šmahel, 4M, 1. G Plzeň

10. Michal Ježek, 4M, 1. G Plzeň

Kategorie В

1. Karel Kolář, kvinta, G Sušice
2. Jan Šnaidauf, kvinta, 1. G Plzeň
3. Jan Ježek, 2, G Rokycany

4.-5. Tomáš Kubař, 2, G Domažlice
Martin Střelec, kvinta, 1. G Plzeň

6. David Legát, 2, G Karlovy Vary
7.-9. Michal Hazi, sexta, G Cheb

Stanislav Kašny, kvinta, G Cheb
Jan Paus, 2MF, 1. G Plzeň

10.—11. Josef Bečvář, 2MF, 1. G Plzeň
Ondřej Černý, 2, G Rokycany

Kategorie C

1.-2. Luboš Dostál, kvinta, G Stříbro
Michal Havlena, kvarta, G Karlovy Vary3.Michal Belihar, kvarta, 2. G Plzeň

4.-5. Dana Šteklová, 1, 1. G Plzeň
Lenka Zdeborová, 1, 1. G Plzeň

6.-8. Michaela Šimandlová, kvarta, 1. G Plzeň
Jan Šroub, 1, 1. G Plzeň
David Štěpánek, 1, 1. G Plzeň

9.-10. Petr Bohm, kvarta, Svobodná chebská škola, Cheb
Kateřina Dolejšová, kvarta, 3. G Plzeň
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Kategorie P

1. Pavel Jelínek, 4, 1. G Plzeň
2. Dalibor Šmíd, 4, 1. G Plzeň
3. Michal Ježek, 4M, 1. G Plzeň

Liberec

Kategorie A

1. Pečr Strnad, 5, GFXŠ, Liberec
2. Pavel Strnad, 5, GFXŠ, Liberec
3. Michal Celler, 4, GFXŠ, Liberec
4. Jan Březina, 3, GFXŠ, Liberec

Kategorie В

1. Pefr Just, GFXŠ, Liberec
2. Václav Klimpl, GFXŠ, Liberec

Kategorie C

1. Jan Vršovský, GFXŠ, Liberec
2. Jakub Vidner, G Frýdlant

3.-4. Lukáš Hlůže, G Tanvald
Jakub Staněk, SPŠSE Liberec

5. Lukáš Cerman, G Česká Lípa
6. Soňa Kvochová, G Jablonec n. N.
7. Zbyněk Dolejší, GFXŠ, Liberec

Kategorie P

1. Jan Březina, 3D, GFXŠ, Liberec

Ústí nad Labem

Kategorie A

1. Zuzana Pokorná, G T.G. Masaryka, Litvínov
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Kategorie P1.Pavel Rydvan, G Kadaň

Východní Čechy

Kategorie A

1. Petr Vodstrčil, 4A, G Polička
2. Tomáš Tichý, 4D, G Pardubice
3. Pavel Příhoda, ЗА, G J.K. Tyla, Hradec Králové ,

4. Martin Klíma, 6A, G Havl. Brod.
5. Jan Fátor, ЗА, G J.K. Tyla, Hradec Králové

6.-7. A/es Král, 4A, G J.K. Tyla, Hradec Králové
Petr Luner, 6A, G Moravská Třebová

Kategorie В

1.-2. Martin Klíma, 6A, G Havl. Brod.
Jan Němeček, G Česká Třebová

3.-4. Petr Paluska, G J. K. Tyla, Hradec Králové
Irena Hejlová, G Lanškroun

5. Jakub Oma, G Turnov
6.-8. Jiří Vejnar, G Pardubice

Jakub Kaše, G Ústí nad Orlicí
Karel Vaniček, G B. Němcové, Hradec Králové

5. Zdeněk Korda, G B. Němcové, Hradec Králové

Kategorie C

1. Jan Krejčík, G Pardubice
2. Miroslav Kašpar, SPŠE Pardubice
3. Tomáš Jelínek, G J. K. Tyla, Hradec Králové
4. Přemysl Volf, G J. K. Tyla, Hradec Králové
5. Pavla Doubková, G Pardubice
6. Kateřina Rousová, G Dvůr Králové n. L.
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Kategorie P

1. Tomáš Tichý, G Pardubice
2. Aleš Přívětivý, G Pardubice
3. Robert Chocholouš, G J. K. Tyla, Hradec Králové

Brno

Kategorie A

1. Tomáš Brauner, 3B, G Moravský Krumlov
2. Jan Pešl, 4A M, G Brno, tř. Kpt. Jaroše

3.-4. Oldřich Stražovský, ЗА M, G Brno, tř. Kpt. Jaroše
Robert Špalek, 4A M, G Brno, tř. Kpt. Jaroše5.Radek Pelánek, 2A M, G Brno, tř. Kpt. Jaroše

6.-7. Pavel Moravec, 1A M, G Brno, tř. Kpt. Jaroše
Pavel Šmerk, ЗА, G Brno, Vídeňská

8. Jaroslav Jánský, 1A M, G Brno, tř. Kpt. Jaroše
9.-12. Pavel Klang, 4A M, G Brno, tř. Kpt. Jaroše

Václav Linkov, ЗА M, G Brno, tř. Kpt. Jaroše
Jiří Mikulášek, ЗА M, G Brno, tř. Kpt. Jaroše
Mikuláš Patočka, ЗА M, G Brno, tř. Kpt. Jaroše

Kategorie В

1.-2. Martin Ondráček, VC, G Kyjov
Pavel Podbrdský, 2A M, G Brno, tř. Kpt. Jaroše

3.-4. Radek Pelánek, 2A M, G Brno, tř. Kpt. Jaroše
Petr Šimeček, 2A M, G Brno, tř. Kpt. Jaroše

5.-6. Tomáš Hanzl, 2A M, G Brno, tř. Kpt. Jaroše
Pavlína Vařeková, 2A M, G Brno, tř. Kpt. Jaroše

7. Ivana Vařeková, 2A M, G Brno, tř. Kpt. Jaroše
8. Roman Rozník, 2A M, G Brno, tř. Kpt. Jaroše
9. Zdeněk Daniel, 2A M, G Brno, tř. Kpt. Jaroše

10.—11. Martin Ježek, 2A M, G Brno, tř. Kpt. Jaroše
Vít Nováček, 2B MF, G Brno, tř. Kpt. Jaroše
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Kategorie С

1.-2. Eva Burešová, 1A M, G Brno, tř. Kpt. Jaroše
Martin Viščor, 1A M, G Brno, tř. Kpt. Jaroše

3. Lukáš Vokřínek, 1A M, G Brno, tř. Kpt. Jaroše
4.-5. David Holec, 1A M, G Brno, tř. Kpt. Jaroše

Pavel Moravec, 1A M, G Brno, tř. Kpt. Jaroše
6.-8. Michaela Hrnčířova, 1A M, G Brno, tř. Kpt. Jaroše

Petr Liška, 1A M, G Brno, tř. Kpt. Jaroše
Ondřej Přibyla, 1A M, G Brno, tř. Kpt. Jaroše

9. Alexander Jevsejenko, 1A M, G Brno, tř. Kpt. Jaroše
10. Jan Holeček, 1A M, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Robert Špalek, 4A M, G Brno, tř. Kpt. Jaroše
2. Mikuláš Patočka, ЗА M, G Brno, tř. Kpt. Jaroše
3. Věroslav Kaplan, ЗА M, G Brno, tř. Kpt. Jaroše

4.-5. Roman Kozubík, 4A M, G Brno, tř. Kpt. Jaroše
Helena Kupková, 4A M, G Brno, tř. Kpt. Jaroše

Jihlava

Kategorie A

1. Karel Zikmund, 4B, G Jihlava
2. Vojtěch Mirtárik, 4B, G Jihlava
3. Markéta Hladká, 6G, G Třebíč

4.-5. Ondřej Caha, sexta, G Jihlava
Michal Janda, 4C, G Žďár nad Sázavou

6. Martin Černý, 4A, G Žďár nad Sázavou
7. Tomáš Karban, 4B, G Jihlava

Kategorie В

1. Zdeněk Charvát, 2B, G Jihlava
2.-3. Jiří Banszel, 5G, G Třebíč

Martin Zítka, kv, G Žďár nad Sázavou
4. Karel Volný, 5G, G Třebíč
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Kategorie С

1. Zdeněk Dvořák, IVA, G Nové Město nad Metují
2. Robert Vácha, 1A, G Jihlava

3.-4. Jaroslav Hulín, 4G, G Třebíč
Sabina Richterová, 4A, SPgŠ a G Znojmo

5.-6. Marta Smolíková, 1A, G Jihlava
Pavel Svoboda, 1A, G Velké Meziříčí

7.-10. Hana Bartušková, 4G, G lYebíč
Karel Hladký, IB, G Třebíč
Ondřej Hudec, 4G, G Třebíč
Markéta Vaňková, 1A, G Velké Meziříčí

Kategorie P

1. Tomáš Karban, 4B, G Jihlava
2. Jindřich Makovička, 3B, G Telč

3.-4. Karel Zikmund, 4G, G Jihlava
Aleš Povolný, 4C, G Třebíč

5.-6. Jaroslav Abraham, 6G, G Třebíč
Karel Volný, 2B, G Třebíč

Zlín

Kategorie A

1. Daniel Král’, 4, G Zlín

Kategorie В

1.-2. Michal Jarošek, G Hodonín
Zuzana Martínková, G Strážnice

3. Tomáš Cehel, G Uherský Brod
4.-6. Milan Mahdal, G Uherský Brod

Dagmar Marková, G Hodonín
Jindřiška Šobáňová, G Uherský Brod

7.-9. Zdeněk Píchá, G Uherské Hradiště
Martin Piškula, G Strážnice
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Petr Staník, G Uherský Brod
10. Marek Omelka, G Uherské Hradiště

Kategorie C

1.-2. Alena Vraníková, G Kroměříž
Josef Zlomek, G Strážnice

3. Jaromír Zajíček, G Strážnice
4. Marek Machalík, G Uherský Brod

5.-6. Jafcufe Mze/’ G Uherský Brod
Кг/ Marek, G Holešov

7. Alena Dokulilová, G Zlín
8.-10. Lukáš Foltýn, G Zlín

Jiří Hofman, G Strážnice
Ondřej Krejčíř, G Uherský Brod

Kategorie P

1. Daniel Král] G Zlín
2. Jose/ Zlomek, G Strážnice
3. Zbyněk Uher, G Uherský Brod

Severní Morava

Kategorie A

1.-2. David Opěla, 4C, GMK Bílovec
Petr Vilím, 4C, GMK Bílovec

3. Zbyněk Pawlas, 4C, GMK Bílovec
4. Jan Vybíral, 3C, GMK Bílovec
5. Petr Škovroň, 4C, GMK Bílovec

6.-7. Dominik Michálek, 3B, G Komenského, Jeseník
Pavel Skalický, 4D, Slovan. G, tř. J. z Pod., Olomouc

8.-9. Aleš Benda, 3C, GMK Bílovec
Petr Ho.daň, 3C, GMK Bílovec

10.-14. Přemysl Jedlička, 4E, Mendelovo G, Opava
Tomáš Кasi, 4C, GMK Bílovec
David Kubánek, 3B, G J. Škody, Přerov
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Antonín Navrátil, 3C, GMK Bílovec
Josef Špaček, 4C, GMK Bílovec

Kategorie В1.Petr Kolovrat, 2C, GMK Bílovec
2.-4. Adam Ptašnik, 2C, GMK Bílovec

Martin Trčka, 2C, GMK Bílovec
Ladislav Bobr, 6A, G Jeseník

5. Filip Švrček, 2B, G J. Škody, Přerov
6. Přemysl Čončka, 2A, Mendelovo G, Opava

7.-8. Hue Do thi, 2C, GMK Bílovec
Vladimír Šišma, 2C, GMK Bílovec

9.-11. Roman Lukáš, 5B, GJW, Prostějov
Daniel Pravda, 5D, G 17. listopadu, Orlová-Lutyně
Petr Táborský, 4B, G Rožnov pod Radhoštěm

Kategorie C

1. Petr Tomčík, 1A, Matiční G, Ostrava
2. Ondřej Baldrman, 4A, G Havířov 1, Komenského

3.-4. Veronika Vilášková, 1C, GMK Bílovec
Martin Zdráhal, 4A, G J. Škody, Přerov

5. Jan Haškovec, 4, Matiční G, Ostrava
6.-10. Tomáš Beránek, 3A/6, reál. G, Prostějov, Studentská

Radomír Chabiniok, 1C, GMK Bílovec
Radek Kubiš, 1C, GMK Bílovec
Dušan Přecechtěl, 4, Matiční G, Ostrava
Roman Šimčík, 1A F, Slovanské G, Olomouc

Kategorie P

1. Petr Vilím, 4C, GMK Bílovec
2. David Opěla, 4C, GMK Bílovec
3. Miroslav Hebký, 4A, G Český Těšín
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Kategorie С

Texty úloh

C - I - 1

V rovnostranném trojúhelníku ABC o straně délky a označme K, L, M
po řadě středy stran AB, BC, CA. Uvnitř nebo na obvodu trojúhelníku
ABC je zvolen bod 5. Dokažte, že platí rovnost

|ASj2 + \BS\2 + \CS\2 = \KS\2 + \LS\2 + \MS\2 + 5 a2.

i

(J. Zhouf)

С - I - 2

Rozhodněte, zda lze množinu čísel 1,2,..., 1995 rozdělit na dvě skupiny
tak, aby v první skupině bylo

• b) třikrát, c) čtyřikráta) dvakrát,

více čísel než ve druhé skupině a aby součty čísel v obou skupinách byly
stejné. (J. Zhouf)

C - I - 3

Sestrojte lichoběžník ABCD (AB || CD) s pravým úhlem při vrcholu A,
je-li \AC\ = 5 cm, \BD\ = 7 cm a úhlopříčka AC dělí obsah lichoběžníku

(J. Švrček)na dvě části v poměru 2:1.

С - I - 4

Určete všechny dvojice x, у přirozených čísel, pro které současně platí:
a) 2100 < xy < 2 500,

b) 0,85 < - < 0,9,
У
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у + хс) podíl je celočíselný. (J. Zhouf)
y-x

С - I - 5

Určete všechna čtyřciferná čísla A, která mají pro každé к = 2, 3, 4, ..9
tuto vlastnost: Vepíšeme-li cifru к mezi prostřední cifry čísla A, dosta-
neme pěticiferné číslo, jež je násobkem čísla k. (J. Šimša)

C - I - 6

Určete délku přepony pravoúhlého trojúhelníku, znáte-li poloměr r kruž-
nice vepsané a poloměr R kružnice připsané к přeponě tohoto trojúhel-
niku (tj. kružnice, která se dotýká zvnějšku přepony a prodloužení obou
odvěsen trojúhelníku.) (P. Leischner)

C - S - 1

Rozložte všemi možnými způsoby číslo 1996 na součet několika (aspoň
dvou) po sobě jdoucích přirozených čísel. (J. Zhouf)

C - S - 2

Uvnitř rovnostranného trojúhelníku ABC je dán bod D, jímž jsou po-

stupně vedeny rovnoběžky KL, MN, PQ se stranami AB, BC, CA jako
na obrázku. Bod D je zvolen tak, že vzniklý šestiúhelník QMLPNK
má pravé úhly při vrcholech M a N. Určete poměr obsahů šestiúhelníku

(J. Zhouf)QMLPNK a trojúhelníku ABC (obr. 1).
C

NA

JP

П
Kt

A Q M в

Obr. 1

24



С - S - 3

Určete všechna pěticiferná čísla A s vlastností: Zapíšeme-li za sebe (zleva
doprava) zbytky, které dává číslo A při dělení čísly 2,3,4,5 a 6, dostaneme
opět výchozí číslo A. (J. Šimša)

C - II - 1

Zjistěte, pro která přirozená čísla n je možno rozdělit množinu čísel 1,
2, ...,nna dvě skupiny tak, aby v první skupině bylo třikrát více čísel
než ve druhé a aby součty čísel v obou skupinách byly stejné.

(R. Kollár)

С - II - 2

Určete všechny body S daného čtverce ABCD, pro které platí

\SA\ • |SC| = \SB\ • \SD\.

(J. Zhouf)

C - II - 3

Najděte nejmenší pěticiferné číslo abcde, jehož všechny číslice jsou nenu-
lové a které je dělitelné každým z čísel e, de, cde, bcde. (J. Zhouf)

С - 11 - 4

V polorovině ABM sestrojte kružnice k\ a &2, které se dotýkají přím-
ky AB po řadě v daných bodech áaB, dotýkají se vně v nějakém bodě T
a jejich společná tečna v tomto bodě prochází daným bodem M.

(J. Švrček)
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Řešení úloh

C - I - 1

Označme P, Q, R paty kolmic vedených z bodu S ke stranám AB, BC,
CA (obr. 2) a dále označme

|SP|=p, |SQ| = <ř, \SR\ = r,

\AP\=u, \BQ\ = v, \CR\

A и P В A x D P E z В

Obr. 2 Obr. 3

Platí

|ASj2 + \BS\2 + \CS\2 =

= (u2 + p2) + (v2 + q2) + (w2 + r2),
\KS\2 + \LS\2 + \MS\2 =

= (u - |a) +p2 + (v - |a) + q2 + (w - |a) + r2 =
= u2 +p2 +v2 + q2 + w2 -f r2 — a(u + v + w) + |a2.

Abychom dokázali platnost dané rovnosti, stačí, když dokážeme, že platí

и + v + w = |a.

Bodem S vedeme rovnoběžky IF, EH, GD se stranami AB, BC, CA
trojúhelníku ABC (obr. 3). Označme

—a(u + v + w) = —fa2, tj-

\AD | = \GC\ = \HI\ = x, \DE\ = |5F| = \IA\ = y,

\EB\ = \FG\ = \CH\ = 2Г.
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Porovnáme-li obrázky 1 a 2, můžeme psát

и + v + w = (x + \y) + (y + \z) + (z + |x) =
— \{x + У + z) = fa,

což jsme chtěli dokázat. Využili jsme toho, že x + у 4- 2 = a.

Jiným způsobem zapsané řešení (obr. 2, obr. 3):

|AS|2 + \BS\2 + |CSj2 =

= (® + Ы + (#у) +
+ (y + hz) + (^z) +(z + \x) + (^x) -

= 2(x2 +y2 + z2) +xy + yz + zx,

\KS\2 + |LS|2 + |MSj2 + fa2 =

= (x+\y-\°) + (^y) +(y+2z“l°) + +

+ (z + §* - |a)2 + (fx) + fa2 =
= 2 (x2 +y2 + z2) + xy 4- уz + zx + |a2 — |a2 + |a2 =
= 2(x2 + y2 + z2) + xy + уz + zx

(využili jsme toho, že r + у + z — a). Vidíme, že dokazovaná rovnost
skutečně platí.

Poznámka. V obrázcích je bod S zakreslen uvnitř trojúhelníku ABC,
všechny výpočty jsou však v pořádku i v případě, že bod S leží na obvodu
tohoto trojúhelníku.

С - I - 2

Nejprve si připravíme dva rozklady:

(1)1995 = 3 • 5 • 7 • 19,
1995 • 1996 3 • 5 • 7 • 19 • 22 • 499

1 + 2 + ... + 1995 =
2 2

= 2 • 3 • 5 • 7 • 19 • 499. (2)

a) Rozdělení do skupin existuje, není však jednoznačné, uvedeme jen
jednu možnost. První dvě třetiny čísel od 1 do 1995 mají součet

1330 • 1331
1 + 2 + ... + 1330 = = 665-1331

2
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zbývající třetina (obsahující 665 čísel) má součet

665
— (1995 + 1331) = 665-1663.1331 + ... + 1995 =

Druhý součet je větší o 332 • 665 = 166 • 1330, proto vyměníme 166 čísel,
která se liší o 665. V první skupině pak budou např. čísla1,2, ..., 1164, 1830, 1831, ..., 1995,

ve druhé skupině čísla

1165, 1166,'..., 1330, 1331, ..., 1829.

b) Množinu nelze rozdělit, protože číslo 1995 není dělitelné čtyřmi.
c) První čtyři pětiny čísel od 1 do 1995 mají součet

1596 • 1 597
1 + 2 + ... + 1596 = = 1 597 • 798,

2

zbývající pětina (obsahující 399 čísel) má součet

399 • (1 597 + 1995)1 597 +... + 1995 = = 893 • 798.
2

Jelikož součet čtyř pětin nejmenších čísel je větší než součet jedné pětiny
největších čísel, nelze podmínky úlohy splnit.

C - I - 3

Jelikož obsahy trojúhelníků ABC a CDA jsou v poměru 2 : 1 (ob-
sah trojúhelníku ABC je větší než obsah trojúhelníku CDA, neboť
\BD\ > |^4C*|), a protože tyto trojúhelníky mají stejnou výšku \DA\,
platí \AB\ = 2\CD\. Proto též \BC\ = \AC\ = \A'C\ = e (obr.4).
Konstrukce:
1. úsečka BA', \BA'\ = 2e, kde e = 5 cm, bod C ve středu úsečky BA',
2. kružnice к s průměrem A'C,
3. kružnice l(B;f), kde / = 7cm,
4. bod D e knl,
5. bod Л tak, aby D byl střed AA!.
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Úloha má jediné řešení.
В

Úlohu je též možno řešit pomocí výpočtu. Pro trojúhelníky ABD
a ACD můžeme napsat Pythagorovu větu (obr. 4):

X2 + (2yf = /2 = 49,
X2 + y2 = e2 = 25.

Z této soustavy získáme x = л/TŤ, у — 2\f2. Konstrukce je pak zřejmá
z obr. 4.

С - I - 4

Nejprve určíme všechny dvojice x, y, které splňují podmínky a) a b),
vyřešením soustavy nerovnic

(1)2 100 < xy < 2 500,

0,85y < x < 0,9y. (2)

Jestliže nerovnice (2) vynásobíme číslem y, dostaneme

0,85y2 < xy < 0,9y2. (3)

Porovnáním nerovnic (1) a (3) zjistíme, že 0,85y2 < 2 500 a zároveň
2100 < 0,9y2, odkud 48 < у < 55.

Jestliže nerovnice (2) vynásobíme číslem x, dostaneme
/

0,85a;y < x2 < 0,9xy. (4)
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лX
Porovnáním nerovnic (1) а (4) zjistíme, že — < 2 500 a zároveň 2100 <

, odkud 42 < x < 48.
x2

<
0,85
Získali jsme 30 možných dvojic x, у. Jelikož nešlo o ekvivalentní úpra-

vy, je pro tyto dvojice nutné ověřit všechny tři podmínky. Podmínce a)
nevyhovuje dvojipé 47, 54. Po ověření podmínky b) zbude 11 dvojic x, y:
43, 49; 43, 50; 44, 49; 44, 50; 44, 51; 45, 51; 45, 52; 46, 52; 46, 53; 46, 54;
47, 53. Z nich podmínku c) splňuje jediná dvojice: x = 45, у = 51.

к- 1 2y + x
, pak - =Jiné řešení. Označíme-li к = = 1 -

к + 1у к + 1y-x
Odtud a z podmínky b) zjistíme, že pro celé číslo к platí 13 ^ к ^ 18.

X
Proto je zlomek — roven jednomu ze zlomků (zapsány jsou v základním

У
tvaru)

6 13 7 15 8 17

7’ 15’ 8’ I7’ 9’ 19'
Nyní zbývá posoudit, které z těchto zlomků lze rozšířit přirozeným číslem
n na zlomek — tak, aby byla splněna podmínka a). Např. pro první zlomek

je x = 6n, у — 7n a podmínka má tvar 2 100 < 42n2 < 2 500, žádné n ji
však nesplňuje. Analogicky vyzkoušíme ostatní zlomky. Úloha má jediné
řešení x = 45, у = 51.

С - I - 5

Je-li A = pqrs ciferný zápis hledaného čísla, pak číslo s vepsanou cifrou
к můžeme rozložit na součet

pqkrs = pqOrs + к ■ 100.

Protože druhý sčítanec je dělitelný číslem к, lze vlastnost čísla A vyjádřit
takto: Pěticiferné číslo В se zápisem В = pqOrs je dělitelné každým z čísel
2, 3, 4, ..., 9, neboli každým z čísel 40, 9 a 7. Číslo В je násobkem čty-
řiceti, právě když je násobkem čtyřiceti dvojčíslí řš, tj. řš € {00,40,80}.
Rozlišíme jednotlivé případy.
a) rs = 00. Číslo В = pq 000 je dělitelné čísly 9 a 7 jedině v případě

pq = 63. Dostáváme první řešení A = 6 300.
b) rs = 40. Číslo В = pq 040 je dělitelné devíti, právě když p + q = 5

nebo p + q = 14. V prvním případě

В = 1000(10p + 5 - p) + 40 = 7(1 285p + 720) + 5p,
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což není násobek sedmi pro žádnou cifru p ^ 5. V druhém případě
В = 1000(10p + 14 - p) + 40 = 7(1285p + 2 005) + 5(p + 1),

což je násobek sedmi jedině pro p = 6. Tehdy q = 8 a A = 6 840.
c) rs = 80. Číslo В = pq 080 je dělitelné devíti, právě když p + q = 1

nebo p + q = 10. V prvním případě В = 10080, což je násobek sedmi,
takže máme řešení A = 1080. V druhém případě

В = 1000(10p + 10 - p) + 80 = 7(1 285p + 1440) + 5p,
což je násobek sedmi jedině pro p = 7. Tehdy g = 3 a A = 7 380.

Odpověď: Hledaná čísla Л jsou 1080, 6300, 6840 a 7 380.

C - I - 6

Pro trojúhelník ABC (obr. 5) platí jednak

A b LV C

r I
K':

иx O r a

ВR

th.
S

R
T

Obr. 5

a + b + c = (\BK\ + r) + {\AL\ + r) + c =

= |J3M| + |ЛМ| + 2r + с = c + 2r + c = 2c + 2r,

jednak
а + Ь + с= \BC\ + |Ж7| + \AU\ + \BU\ =

= (\BC\ + \BT\) + (|ЛС| + |ЛР|) = 2Л.
Porovnáním obou rovností dostaneme c = R — r.
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С - S - 1

Uvažujme zvlášť nejprve lichý, potom sudý počet sčítanců.
Pro lichý počet sčítanců požadovaného rozkladu musí platit

1996 = (s — k) 4- (s — (к — 1)) -1-... 4-
4- (s — 1) + s 4- (5 4- 1) 4- ... 4- (5 4- к),

kde s je prostřední sčítanec, a sčítanců je 2k 4-1, к ^ 1. Přitom musí být
s > k. Součet upravíme na tvar"

22 • 499 = 1996 = (2к 4- l)s,

odkud vychází jedině 2k+1 = 499, s = 4, což dává к = 249. Tento případ
není řešením, protože vyšlo s < k.

Pro sudý počet sčítanců musí platit analogicky

22 • 499 = 1996 = (s — k) 4- ... + (s — 1) + s + (s + 1) + ... +
+ (s + k) + (s + к + 1) =

= (2к + 2)s + {к + 1) = [к + l)(2s + 1),

kde s, s +1 jsou prostřední sčítance, к ^ 0 a 5 > k. Odtud vychází jedině
2s + 1 = 499, к + 1 = 4, což dává s = 249, к = 3.

Tedy jediný rozklad čísla 1996 na požadovaný součet je

1996 = 246 + 247 + 248 + 249 + 250 + 251 + 252 + 253.

Jiné řešení (pro sudý i lichý počet sčítanců najednou). Hledaný roz-
klad má tvar

1996 = p + {p + 1) + • • • + (p + k) =

k(k+1) (k + l){2p+k)
= {k + l)p +

1 2 2

kde p je první sčítanec; sčítanců je A:4-1, к ^ 1. Musí tedy platit 23 • 499 =
= (k 4- l)(2p 4- k).

Je-li к sudé, může být jedině к 4- 1 = 499, tj. к = 498 a p < 0, což
není možné.
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Je-li к liché, může být jedině к + 1 = 8, tj. к = 7, p = 246, což dává
jediné možné řešení

1996 = 246 + 247 + 248 + 249 + 250 + 251 + 252 + 253.

C-S-2

Trojúhelník PCN je pravoúhlý a |<PCiVj = 60°, proto |C7A7| : \CP\ =
= 1:2 (obr. 6). Analogicky platí i \MB\ : \BL\ = 1:2.

C

NA
p

П
K,

QA M В

Obr. 6

Jelikož \NC\ = |PD| = |PL| (trojúhelník LPD je rovnostranný), je
\CP\ : |PL| : \LB\ = 2:1:2

a obdobně

\AQ\ : \QM\ : \MB\ = 2:2:1.
Je tedy

\AQ\ = \AK\ = \KQ\ = \LB\ = \PC\ = \\AB\,
\MB\ = |WC| = %\AB\.

Trojúhelník AQK je rovnostranný a spojením trojúhelníků PCN
a LBM shodnými stranami NP a ML dostaneme trojúhelník shodný
s trojúhelníkem AQK. Pro příslušné obsahy proto platí

S(QMLPNK) = S(ABC) - 2S(AQK) =

= \\AB\ ■ \V3\AB\ - 2 ■ i • §|/1B| ■ Ín/3 • \\AB\ =

Пу/ъ \AB\\100

^/ЩАВ1
_ 17

\V3\AB\* 25'
S(QMLPNK)

S(ABC)
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С - S - 3

Číslo A je nutně liché (jeho první číslice nemůže být 0, takže je 1), proto
při dělení šesti dává zbytek 1, 3 nebo 5 (a tedy při dělení třemi dává po
řadě zbytek 1, 0 nebo 2). Proto má zápis čísla A jeden z tvarů

11**1, 10**3, 12**5,

které je možno s ohledem na dělení pěti upřesnit na

11*11, 10*33, 12*05.

S ohledem na dělení čtyřmi je tedy A rovno jednomu z čísel

11311, 10133, 12105.

Zbývá ověřit (např. pomocí ciferného součtu), zda zbytek při dělení třemi
skutečně odpovídá druhé číslici zleva. Zjistíme, že tomu tak je pouze
u prvního čísla.

Odpověď: Hledané číslo A je jediné: 11311.

C - II - 1

Číslo n musí být dělitelné čtyřmi, neboť je čtyřnásobkem počtu prvků
druhé skupiny. Jestliže do této skupiny zahrneme největší čísla, bude
jejich součet

Hn) =

•(l + 1b 32

52 “ (3‘^ + 1)
n

n n
—

— • 3 ■ — + — • —
4 4 2 4

+ '...+

7n2 + 4n1 n

V první (početnější) skupině bude pak součet čísel

9n2 4- 12n1
„ n n \2'3t(3-4+1) =S\ — 1 + 2 + ... + 3- —

32

Jelikož pro každé n G je S\ > 52, neexistuje přirozené číslo n, které
by splňovalo podmínky úlohy.
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С - II - 2

Označme a velikost strany čtverce ABCD, x vzdálenost bodu S od stra-
ny AD а у vzdálenost bodu S od strany AB. Ze vztahu |SA| • |5С| =
= \SB\ ■ \SD\ plyne

\Jx2 + y2 yj(a - x)2 + (а- у)2 =

= \/(a-x)2 +y2\/x2 -I- (а-у)2.

Umocněním na druhou, roznásobením a převedením na jednu stranu do-
staneme

a2(4xy — 2ax — 2ay + a2) = 0,
a2(2x — a)[2y — a) = 0.

Odtud x = ^ nebo у = Této podmínce vyhovují všechny body, které
leží na spojnici středů stran AB, CD nebo na spojnici středů stran AD,
BC. Snadno se přesvědčíme, že všechny takovéto body S splňují rovnost
\SA\ ■ |SC| = \SB\ • \SD\.

C - II - 3

Platí

abcde = a ■ 104 4- bcde = a ■ 24 • 54 + bcde.

Aby bylo číslo abcde dělitelné číslem bcde, musí jím být dělitelné i číslo
a • 24 • 54. Protože je e Ф 0, musí být bcde lichý dělitel čísla a ■ 54 (číslo
a ■ 24 není čtyřciferné ani pro a = 9).

Pokud a = 1, a — 2 nebo a = 4, neexistuje žádný takový dělitel.
(Největší případný dělitel je 54 = 625, který ale není čtyřciferný.)

Pokud a = 3, připadá v úvahu pouze dělitel 3 • 54 = 1875. Číslo
abcde = 31875 ale není dělitelné číslem 875.

Pokud a = 5, připadá v úvahu pouze dělitel 55 = 3 125. Číslo abcde =
= 53 125 je skutečně dělitelné čísly 125, 25 i 5. (Případy a > 5 již není
nutné diskutovat.)

Hledané číslo je abcde = 53125.

Poznámka. Ostatní pěticiferná čísla s danou vlastností jsou 91125,
91875, 95 625.
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С - II - 4

Označme 5 průsečík uvažované tečny obou hledaných kružnic s přím-
kou AB. Z vlastností tečen ke kružnici plyne, že je |5A| = \ST\ = \SB\
(obr. 7), takže bod S je středem úsečky AB. Odtud již snadno -plyne
konstrukce.

i

Nejprve sestrojíme střed S úsečky AB, pak najdeme bod T na polo-
přímce SM takový, že |ST| = |5Л|. Střed S\ hledané kružnice ki najdeme
jako průsečík kolmice к přímce AB v bodě A a kolmice к přímce SM
v bodě T. Podobně sestrojíme i střed S2 kružnice k2. Sestrojené kružnice
ki a k2 zřejmě mají všechny požadované vlastnosti.

Úloha má vždy jedno řešení.

X.
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Kategorie В

Texty úloh

В - I - 1

Zjistěte, pro která reálná čísla p má rovnice
*

x3 + px2 + 2px = Sp + 1

tři různé reálné kořeny x\, x2 a x3 takové, že x\x2 — x\. (J. Šimša)

В - I - 2

V rovině je dán trojúhelník ABC, v kterém \ <$BAC\ = 105°, |<í ABC\ =
= 55° a \ AB\ = 6 cm. Na straně BC sestrojte body X, Y (\BX\ < \BY\)
a na straně AC body M, N (|AM| < |ЛЛГ|) tak, aby čtyřúhelníky
ABXM a MXYN byly tětivové a kružnice jim opsané měly stejný po-
loměr jako kružnice opsaná trojúhelníku NYC. (P. Černek)

В - I - 3

Zvolíme-li libovolně 11 různých dvojciferných čísel, vždy z nich lze vy-
brat dvě skupiny čísel, které mají stejný počet prvků, neobsahují žádný
společný prvek a dávají stejný součet. Dokažte. (A. Vrba)

В - I - 4

Číslo 2n4 + n3 + 50 je dělitelné šesti právě pro ta přirozená čísla n, pro
která je číslo 2 • 4n + 3n + 50 dělitelné třinácti. Dokažte. (J. Šimša)

В - I - 5

Je dán trojboký jehlan ABCV, jehož podstavou je rovnostranný troj-
úhelník ABC s délkou strany a. Přímky AV, ВV a CV mají od roviny
podstavy stejnou odchylku 45°. Určete poloměr koule, která se dotýká
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jak roviny ABC v bodě A, tak přímky VB. (Odchylkou přímky od roviny
rozumíme úhel, který přímka svírá se svým kolmým průmětem do této
roviny.) {R. Kollár)

В - I - 6

Umístěte v rovině 7 navzájem různých bodů a 7 navzájem různých přímek
tak, aby každými dvěma z těchto bodů procházela jedna z těchto přímek
a aby se každé dvě z těchto přímek protínaly v jednom z těchto bodů.

(P. Hliněný)Proveďte diskusi.

В - S - 1

Najděte všechna přirozená čísla n, pro která platí: Číslo 199...96 je
dělitelné třinácti. (A. Vrba, J. Šimša)

В - S - 2

Do kružnice je vepsán čtverec ABCD. Libovolným bodem M úhlopříčky
AC je vedena tětiva KL rovnoběžná se stranou AB. Dokažte, že

\KM\2 + \ML\2 = \AB\2.

(P. Leischner)

В - S - 3

Najděte 1996 navzájem různých celých čísel a\, a2, «1996 tak, aby
mezi součty všech jejich dvojic ai + aj (1 ^ i < j 1996) bylo
a) co nejvíce různých čísel,
b) co nejméně různých čísel. (.R. Kollár)

В - II - 1

Najděte všechna přirozená čísla n, pro která je číslo 5n — 3n + 2 dělitelné
sedmi. (A. Vrba, J. Šimša)

В - II - 2

Body dotyku tečen vedených z bodu V ke kružnici к označme A, B.
Sestrojte sečnu kružnice к tak, aby procházela bodem V a kružnici к

(J. Švrček)protínala v bodech C, D, kde \AC\ = \BD\.
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В - II - 3

Dokažte, že rovnice x3 — 1996x2 +rx — 1995 = 0 má pro každý reálný
koeficient r nanejvýš jeden celočíselný kořen. (A. Vrba)

В - II - 4

TYojboký jehlan ABCV má podstavu ABC (\AB\ = 8 cm, \AC\ =
= \BC\ = 5cm), jeho boční stěny mají od roviny podstavy odchylku 45°
a pata P jeho výšky spuštěné z vrcholu V leží uvnitř podstavy. Vypočtěte
velikost výšky VP. (Odchylkou dvou rovin rozumíme odchylku přímek,
které leží v těchto rovinách a jsou kolmé na jejich průsečnici.)

(P. Leischner)
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Řešení úloh

В - I - 1

Využijeme vztahů mezi kořeny a koeficienty mnohočlenu, tzv. Vietových
vzorců. Podle nich je

Xi + x2 4- x3 = -p,

xix2 + x\x3 + X2X3 = 2p,
x\x2x3 = 3p + 1.

Dosadíme-li do druhého vztahu za X1X2 = rr|, dostaneme

2p = x\ + X\X3 + x2x3 = x3(xi + X2 + .t3) = -px3

a protože p = 0 zřejmě nevyhovuje, je x3 — — 2.
Dále platí

3p + 1
-2 ’

X\X2X3
4 = = X1X2 =

%3
\

odkud p = —3. Jen pro toto p tedy může daná rovnice vyhovovat daným
podmínkám. Dosadíme-li do Vietových vzorců za £3 a za p, dopočteme
zbývající řešení ^ = 4, r2 = 1 a přesvědčíme se, že je tomu opravdu tak.

В - I - 2

Úlohu vyřešíme pro obecný trojúhelník.

Rozbor: Předpokládejme, že je úloha vyřešena (obr. 8). Protože NY
je tětiva společná kružnicím k{, &2, které mají stejný poloměr, a body X,
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C leží v opačných polorovinách určených přímkou ХУ, je |<$ХХУ| =
= |<NCY\ = 7 = |<ACB|. Podobně |<МЛХ| = |<MXX| = 27 (je
totiž |«МХХ] = |<íXXC| + |<XCX|).

Konstrukce: Nejprve sestrojíme na úsečce BC bod X tak, aby
\<$.CAX\ = 27. Dále sestrojíme na úsečce AC bod N tak, aby
| <XCXX| = 7. Body M, У můžeme získat analogicky (vyjdeme z bodu
В) nebo jako průsečíky kružnic určených trojicemi bodů А, В, X а X,
M, X se stranami AC, BC.

Důkaz správnosti konstrukce plyne z toho, že kružnice procházející
body А, В, X, M, resp. M, X, X, У mají společnou tětivu MX a shodné
obvodové úhly MAX, MNX. Mají tedy stejný poloměr. Analogicky pro
kružnice k“2i k\.

Diskuse: Bod X lze popsaným způsobem sestrojit, právě když 27 < c*,
a bod M, právě když 27 < (3. Body X, У lze pak sestrojit vždy. Nutná
a postačující podmínka řešitelnosti úlohy je současná platnost podmínek
27 < a, 27 < /3. (Úloha může tedy mít řešení, jen když 7 < 36°.) V našem
případě a = 105°, (3 = 55°, 7 = 20° jsou podmínky splněny.

Poznámka. Stejným způsobem můžeme řešit obecnější úlohu, která
požaduje sestrojit к kružnic stejného poloměru umístěných analogicky
jako v úloze pro к = 3. Obvodové úhly budou po sobě následovat v po-

sloupnosti 7, 27, З7, ..., (k — 1)7.

В - I - 3

Dejme tomu, že dvě množiny čísel mají stejný počet prvků a dávají stejný
součet. Vynecháme-li z nich všechny společné prvky, dostaneme množiny,
které neztratily uvedené dvě vlastnosti a navíc ještě neobsahují žádný
společný prvek.

Jedenáctiprvková množina obsahuje (“) A;-prvkových podmnožin
a toto číslo je největší pro fc = 5afc = 6: (g1) = (g1) = 462. Přitom
součty pěti různých dvojciferných čísel mohou nabývat jen 421 hodnot
od 11 + 12 -f ... + 15 = 65 do 95 + 96 + ... + 99 = 485. Dvě pětiprvkové
podmnožiny se stejným součtem tedy existují pro každou jedenáctiprv-
kovou množinu dvojciferných čísel.

Poznámka. Kromě elementární kombinatoriky je v úloze využit
tzv. Dirichletův princip: Nechť К > к. Ať rozdělíme К králíků do к
králíkáren jakkoliv, vždy budou v některé králíkárně alespoň dva králíci.
V našem případě jsou „králíci" pětiprvkové množiny a „králíkárny" čísla

V
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65, ..485. Obecněji: Je-li К > nk, bude v některé králíkárně více než
n králíků.

В - I - 4

Sestavíme tabulku zbytků při dělení čísel A = 2n4 4- n3 + 50 šesti v zá-
vislosti na zbytku čísla n (zbytek při dělení čísla A šesti totiž závisí jen
na zbytku při dělení čísla n šesti):

n n2 n3 n4 2n4 2ri4 + ?г3 A — 2n4 + n3 + 50

0 0 0 0

1111

2 4 2 4

3 3 3 3

4 4 4 4

5 15 1

20 0

2 3 5

2 4 0

0 3 5

0 22

2 31

Z tabulky vidíme, že číslo A je násobkem šesti, právě když číslo n dává při
dělení šesti zbytek rovný 2, tj. je rovno jednomu z čísel 2, 8, 14, 20, ... .

Nyní sestavíme tabulku zbytků při dělení několika prvních čísel В =
— 2 • 4n+3n+50 třinácti. (Na rozdíl od výrazu A, který je mnohočlenem,
se ve výrazu В vyskytuje proměnná n i v exponentu. Nelze proto říci,
že zbytek při dělení čísla В třinácti závisí na zbytku při dělení čísla n
třinácti. Až při sestavování tabulky se ukáže, s jakou periodou se zbytky
opakují.) ; '

n 3n 4n 2 • 4n ' 2 • 4n + 3n B = 2 • 4n + 3n + 50

0 11 2

13 4 8

2 9 3 6

3 1 12 11

4 3 9 5

5 9 10 7

6 11 2

3 1

911

02

1012

8 6

3 1

3 1

Další výpočty už nemusíme provádět. Vidíme totiž, že zbytky mocnin
3n a 4n se vzhledem к číslu n opakují se společnou periodou rovnou
šesti (u mocnin 3n existuje dokonce menší perioda rovna třem). Proto/
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i posloupnost zbytků čísel В má periodu 6. Navíe je z tabulky patrno, že
В je násobkem třinácti, právě když číslo n dává při dělení šesti zbytek 2,
tj. je rovno jednomu z čísel 2, 8, 14, 20, ... .

Poznámka: Periodicitu v posloupnosti zbytků při dělení mocnin ak
číslem d přesněji postihují Fermatova a Eulerova věta. Podle Fermatovy
věty je v případě,' kdy d je prvočíslo, délka periody rovna některému
děliteli čísla d — 1.

В - I - 5

Situaci znázorňuje obr. 9, v němž T je bod dotyku tečny BV, O je střed
koule, \AB\ = \BC\ = \AC\ = 2|AD| = a, R kolmý průmět bodu T
do roviny ABC, \BT\ = \BA\ = a (tečny), \TR\ = \BR\ = \as/2.
Hledaný poloměr r vypočteme z pravoúhlého lichoběžníku ARTO, je-
hož stranu \AR\ vypočteme z pravoúhlého trojúhelníku ADR, ve kte-
rém známe \AD\ = |a, \DR\ = \BD\ — \BR\ = |a\/3 — \a\fl. Vyjde
\AR\2 = \a2{3 — \/б), r = |а(2\/5 — л/З).

В - I - 6

Budeme mluvit jen o umísťovaných bodech a přímkách. Ze 7 bodů lze
utvořit 21 dvojic a ty leží na 7 přímkách. Mohou tedy nastat jen dva
případy:

(1) Na každé přímce leží právě 3 dvojice bodů, tj. právě 3 body.
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(2) Na některé z přímek leží více než 3 dvojice bodů, tj. více než
3 body.

Pokusme se nejprve vytvořit konfiguraci 7 bodů a 7 přímek typu (1):
Zvolme přímku a na ní tři body 1, 2, 3. Dále zvolíme bod 4 — ten musí
ležet mimo přímku 12 (obr. 10). Sestrojíme přímky 14, 24 a 34. Na přímce
24 leží ještě jeden bod 5. Můžeme ho zvolit

(a) uvnitř úsečky 24,
(b) uvnitř polopřímky opačné к 42,
(c) uvnitř polopřímky opačné к 24.

Doplníme přímky 15 a 35 a jejich průsečíky s přímkami 14, resp. 34.
V případech (a), (b) dojdeme vždy ke konfiguraci jako na obr. 11. V pří-
pádě (c) může ještě nastat několik různých situací podle toho, kam padne
průsečík přímek 15, 34 a průsečík přímek 35, 14, vždy však vedou ke kon-
figuraci jako na obr. 12.

Do každé z těchto dvou konfigurací obsahující 7 bodů a 6 přímek
zbývá doplnit sedmou přímku tak, aby procházela právě třemi body.
Každý z bodů А, В, C, D je již spojen s každým ze šesti ostatních bodů,
sedmá přímka tedy musí procházet třemi body neoznačenými písmeny.
Ty však neleží v přímce, takže žádná konfigurace typu (1) neexistuje.
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Přistoupíme к vytvoření konfigurace typu (2). Vyjdeme od přímky p,
na níž leží 4 body. Všech 7 bodů na ní ležet nemůže (to bychom neměli
7 různých přímek), zvolme tedy pátý bod mimo tuto přímku (obr. 13).
Kdyby další bod ležel mimo přímku p, určoval by spolu s předchozími
body 3 nebo 5 přímek, což není možné.

Obr. 13

Zbývající dva body tedy leží také na přímce p. Úloze vyhovuje jedině
konfigurace z obr. 14.

Poznámka. Celý důkaz můžeme provést i duálním způsobem: v textu
všude vzájemně vyměníme přímky a body, průsečíky přímek a spojnice
bodů.

В - S - 1

Vzhledem к tomu, že 199... 96 = 2(10n+1 — 2), je toto číslo dělitelné

třinácti, právě když 10n+1 dává při dělení třinácti zbytek 2. Při dělení
čísel 1, 10, 100, ... třinácti však dostáváme zbytky 1, 10, 9, 12, 3, 4,
1, ... (dále se zbytky periodicky opakují). Žádné z daných čísel tedy
není dělitelné třinácti.

Jiné řešení. Dělíme-li číslo 199... 9 třinácti obvyklým způsobem, sepi-
sujeme postupně zbytky 6, 4, 10, 5, 7,1, 6, ... (dále se zbytky periodicky
opakují). Poslední krok při dělení čísla 1999. ..6 třinácti spočívá tedy
v tom, že třinácti vydělíme některé z čísel 66, 46, 106, 56, 76 nebo 16.
Žádné z nich však není dělitelné třinácti beze zbytku.
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В - S - 2

Bodem M veďme ještě tětivu K'L' || BC (obr. 15). Zřejmě je \KD\ =

= \LC\ = \L'C\, takže \KL'\ = \DC\ (úsečka DC je obraz úsečky KL'
v otočení kolem středu kružnice). Je tedy

\AB\2 = \CD\2 = \KL'\2 = \KM\2 + \ML'\2 =
= \KM\2 + \ML\2.

В - S - 3

n(n - 1)
dvojic indexů i, к takových, že 1 ’š i < к й

n(n — 1)

Existuje právě
2

й n. Pro žádných n čísel ai, аг,..., an neexistuje tedy více než

různých součtů cti + cik- Na druhé straně, je-li ai < < ... < an, je
dl + 0,2 < ni + ds < ... < ni + dn < d% + dn < ... < nn_i + <2n,
a tedy mezi součty di + dk je vždy alespoň 2n — 3 různých součtů. Krajní
možnosti nastávají např. pro následující n-tice čísel
a) 2, 22 , 23, , 2n,
b) 1, 2, 3, ..., n.

V našem případě je n = 1996.

2
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В - II - 1

Sestavíme tabulku zbytků při dělení čísel 3n, 5n, 5n - 3n + 2 sedmi:

0 1 2 3 4 5 6...n

3n 1 3 2 6 4 5 1...

1 5 4 6 2 3 1...

2 4 4 2 0 0 2...

5n

5n — 3n + 2

(Šestice zbytků ve všech třech řádcích se dále periodicky opakují.)
Vidíme, že hledaná přirozená čísla n jsou právě ta, která při dělení

šesti dávají zbytek 4 nebo 5, tj. čísla tvaru n = 6A; 4- 4 a n = 6k 4- 5,
к — 0,1,2,....

В - II - 2

Rozbor (obr. 16): Je-li \AC\ = \BD\, platí pro odpovídající obvodové úhly
\<$BAD\ = \<ADC\. Dále je \<CAB\ = \<CDB\, takže \<CAD\ =
= |<$ ADB\ a pro příslušné tětivy je \CD\ = \AB\.

Konstrukce 1 (obr. 17): Sestrojíme kružnici к', která je soustředná
s kružnicí к a dotýká se tětivy AB. Hledaná sečna kružnice к je tečnou
kružnice k' vedenou z bodu V.

Konstrukce 2 (obr. 18): Hledanou sečnu procházející bodem V do-
staneme jako obraz přímky AB ve vhodném otočení kolem středu S
kružnice к: Sestrojíme kružnici se středem S a poloměrem |»S,V^|, její prů-
sečíky s přímkou AB označíme W, W. Úhel otočení je pak <$.WSV,
resp. <W'SV a |<íSVC| = 90° -\<WSV\.
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Konstrukce 3: Využijeme mocnost bodu V ke kružnici k. Předpoklá-
dejme, že \VC\ ^ \VD\, potom je (obr. 19)

\VA\2 = \VC\ ■ \VD\ = \VC\{\VC\ + \CD\) =

= \VC\(\VC\ + \AB\).

Sestrojíme pravoúhlý trojúhelník A'B'V' s odvěsnami \A'B'\ = \AB\,
|Л'У'| = l-AVj. Střed strany A'B' označme S a průsečíky kružnice
(5, |5V'|) s přímkou A'B' označme T, U tak, aby |TVť| < \UA'\. Pak
je \TA'\ = \VC\.

T \VC\ A' \AB\ B' \VC\ U
Obr. 19/
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DŮKAZ. Podle Eukleidovy věty o výšce je

\V'A'\2 = \TA'\ ■ \A'U\ = \TA'\(\A'B'\ + \B’U\) =
= \TA'\(\A'B'\ + \TA'\),

tj-
\VA\2 = \TA'\(\TA'\ + \AB\).

Pro \VC\ > \VD\ postupujeme obdobně. Přitom zjistíme, že v tomto
případě vyjde \VC\ = \UA'\.

Konstrukce 4 (podle prof. Málka z gymnázia Kyjov): Úsečky AB
a. CD jsou souměrně sdružené podle některé přímky, jež prochází stře-
dem S kružnice k. Obraz W bodu V v příslušné osové souměrnosti na-

jdeme jako průsečík přímky AB s kružnicí o středu S a poloměru \SV\.
Body C a D pak sestrojíme jako obrazy bodu А а, В v osové souměrnosti
podle osy úsečky VW. ,

Úloha má vždy dvě řešení.

В - II - 3

Připusťme, že pro některé číslo r má daná rovnice dva celočíselné ко-
řeny a, b. Dělení levé strany rovnice mnohočlenem (x — a)(x — b) vyjde
beze zbytku a výsledný podíl bude tvaru x — c pro vhodné reálné číslo c.
Číslo c musí být ovšem celé, neboť a + b + c= 1996. Všechna tři čísla a,

b, c nemohou být lichá, když je jejich součet sudý. Jejich součin je však
liché číslo 1995, což není možné. Rovnice může mít tedy nanejvýš jeden
celočíselný kořen.

В - II - 4

Označme U patu výšky z vrcholu V ve stěně ABV. Protože VUTAB
a VPTAB, je přímka AB kolmá na rovinu VUP, takže je také PUTAB.
Je tedy | < VUP\ = 45° a trojúhelník VUP je pravoúhlý a rovnoramenný
s rameny VU, VP, takže v = \VP\ = \PU\. Zopakujeme-li stejnou
úvahu i pro boční stěny BCV a CAV, zjistíme, že bod P je středem
kružnice vepsané podstavě ABC a velikost v výšky VP její poloměr.
Úlohu jsme tak převedli na výpočet poloměru kružnice vepsané troj-
úhelníku ABC (dbr. 20). Z pravoúhlého trojúhelníku ČUB dostaneme
\CU\ — 3 a v pravoúhlém trojúhelníku PTC pak máme \CT\ = 1 .(je
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Kategorie A

Texty úloh

A - I - 1

Sloupce šachovnice 8x8 označme zleva doprava čísly 1,2,..., 8, řádky
označme stejnými čísly zdola nahoru. Do každého políčka zapíšeme součet
čísel příslušného řádku a sloupce. Vybereme 8 polí tak, aby žádná dvě
z nich nebyla ani ve stejném řádku, ani ve stejném sloupci. Jaký je
a) největší možný součet,
b) největší možný součin,
c) nejmenší možný součet druhých mocnin
čísel na vybraných polích?

r

(J. Zhouf)

A - I - 2

Na stranách AB, ВС a CA daného trojúhelníka ABC jsou zvoleny po
řadě body K, L a M tak, že platí

\AI<\
__ \BL\ _ \CM\

\AB\ ~ \BC\ ~ \CA\
0 < < 1.

Dokažte, že pokud je trojúhelník KLM rovnostranný, pak je rovno-

stranný i trojúhelník ABC. (J. Šimša)

A - I - 3

Posloupnost přirozených čísel ai, a2, a3, ... splňuje pro každé přirozené
n > 1 tři rovnosti:

Q.n ~t~ 02n — 03n,

Q-n + «Зп-l = Я-2 n + &2n—b

dn + ЙЗп+1 = a2n + Й2п+1-

Přitom víme, že všechny čtyři členy ai, ai4, ап a a2i jsou prvočísla.
Dokažte rovnost <21995 = 02000- (J. Šimša)
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A - I - 4

Dokažte, že pokud pro přirozená čísla a, 6 je i číslo
#■ •

о 4* 1 b 4* 1

b a

přirozené, pak pro největší společný dělitel D čísel a, b platí nerovnost
D ^ y/a + b. Může nastat rovnost v případě, že D < a < 6?

(převzatá úloha)

A - I - 5

Najděte všechny funkce /: N -> Z splňující pro každá x,y £ N rovnost

f(xy) = /0*0 + f(y) - f(D(x,y)),
kde D(x, y) značí největší společný dělitel čísel x, у, víte-li, že platí f(p) =
= p pro každé prvočíslo p. (P. Hliněný)

i
A - I - 6

V prostoru je dán trojúhelník ABC se stranami \AB\ = \AC\ = 10cm
a \BC\ = 12 cm. Najděte množinu všech bodů D, pro které spojnice
středu O koule opsané čtyřstěnu ABCD s těžištěm T tohoto čtyřstěnu

(P. Leischner)je přímka kolmá na rovinu ADT.

A - S - 1

Najděte všechny dvojice celých čísel a, b takových, že obě čísla

a+1 b+1 a2
+ b2

bb a a

(R.Kollár)jsou celá.

A - S - 2

Najděte největší reálné číslo q, pro které nerovnost 2n ^ 1 -f nqn platí
pro každé přirozené číslo n ^ 2. (J.Šimša)

A - S - 3

Popište konstrukci rovnoramenného trojúhelníku ABC se základnou АВ,
pro který platí \OA\ = 9 cm a \OB\ = 3cm, kde O je střed kružnice
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připsané straně ВС trojúhelníku ABC (tj. kružnice, která se vně dotýká
strany ВС a prodloužení stran AB a AC). (A. Vrba)

A - II - 1

Určete, pro která přirozená čísla n existuje liché n-ciferné číslo, které je
dělitelné třinácti a má ciferný součet rovný čtyřem. (J. Šimša)

A - II - 2

Dané jsou dvě kružnice kx{S\,rx) a k2(S2, r2), rx < r2, které se vně
dotýkají v bodě F. Nechť t je jejich společná vnější tečna, její body
dotyku s kružnicemi kx, k2 označme po řadě A, B. Veďme teď jinou tečnu
ke kružnici kx rovnoběžnou s přímkou t. Její dotykový bod s kružnicí kx
označme C a průsečíky s kružnicí k2 označme D, E. Dokažte, že bod F
a středy kružnic opsaných trojúhelníkům ABC a ADE leží na jedné
přímce. (M. Niepel)

A - II - 3

V rovině je dána úsečka AB. Najděte všechny body C této roviny takové,
že pro střed O kružnice opsané trojúhelníku ABC a jeho těžiště T platí:

(M. Engliš)О ф T, ОТ ± CT.

A - II - 4

Děti se v táboře dělily do družin následujícím způsobem: Vedoucí určil
mezi dětmi několik náčelníků. Každý náčelník si pak do své družiny vzal
všechny své kamarády z tábora (kamarádství je vzájemné). Kupodivu
to vyšlo dobře, tedy tak, že se náčelníci nemuseli o žádné dítě hádat,
žádné dítě nezbylo a žádní dva náčelníci nebyli kamarádi. Podruhé určil
vedoucí jiný počet náčelníků. Mohlo rozdělení dětí popsaným způsobem
opět dopadnout dobře? (P. Hliněný)

A - III - 1

Jestliže pro posloupnost {G(n))°^_0 celých čísel platí

G(0) = 0.
G(n) = n — G{G{n — 1)) (n = 1,2,3,...)
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potom
a) pro každé přirozené číslo к je G{k) ěL G(k — 1);
b) neexistuje přirozené číslo к takové, že G(k — 1) = G(k) = G(k + 1).
Dokažte. (M. Engliš)

A - III - 2

V prostoru je dán ostroúhlý trojúhelník ABC s výškami AP, BQ a CR.
Dokažte, že pro každý vnitřní bod V trojúhelníku PQR existuje čtyřstěn
ABCD takový, že bod V má ze všech bodů stěny ABC největší vzdále-
nost (po povrchu čtyřstěnu) od bodu D. (P. Černek, J. Šimša)

A - III - 3

Je dáno šest tříprvkových podmnožin konečné množiny X. Dokažte, že
prvky množiny X je možno obarvit dvěma barvami tak, aby žádná ze šesti
daných podmnožin nebyla jednobarevná, tj. neměla všechny tři prvky
stejné barvy. (P. Hliněný)

A - III - 4

Je dán ostrý úhel XCY a .na jeho ramenech CX, CY po řadě body A
а В tak, že \CX\ < \CA\ — \CB\ < \CY\. Popište konstrukci přímky,
která protíná rameno CX a úsečky AB, BC po řadě v bodech K, L а, M
tak, že platí

\KA\ ■ \YB\ = \XA\ ■ \MB\ = \LA\ ■ \LB\ ф 0.

(P. Černek)

A - III - 5

Pro která celá čísla к existuje funkce /: N —> 1 splňující
(i) /(1 995) = 1 996,
(ii) f(xy) — f(x)+f(y) + k-f(D(x,y)) pro všechna přirozená čísla x, y?

(P. Hliněný)D(x,y) označuje největší společný dělitel čísel x, y.
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A - III - 6

Na stranách AB, ВС a CA daného trojúhelníku ABC jsou dány po řadě
body К, L a M tak, že platí

\AK\
_ \BL\ _ \CM\ _ 1

\AB\ ~ \BC\ ~ \CA\ ~ 3‘

Jsou-li kružnice opsané trojúhelníkům AKM, BLK a CML shodné, jsou
shodné i kružnice těmto třem trojúhelníkům vepsané. Dokažte.

(J. Šimša)
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Řešení úloh

A - I - 1

a) Ukážeme, že celkový součet vybraných čísel nezávisí na způsobu
jejich výběru. Každé číslo v tabulce je součtem čísla řádku a sloupce,
v němž je zapsáno, proto je celkový součet čísel roven součtu čísel sloupců
plus součet čísel řádků, v nichž jsou zapsána. Protože z každého sloupce
a z každého řádku vybíráme právě jedno číslo, bude celkový součet vždy
roven součtu čísel všech sloupců plus součet čísel všech řádků. Oba součty
jsou však rovny součtu přirozených čísel 1,2,...,8, proto je součet vy-

braných čísel roven

1 + 2 + ... + 8 + 1 + 2 + ... + 8 = 72,

a tento součet nezávisí na způsobu výběru čísel, je to tedy i součet ma-
ximální. x

b) Označme a\ číslo řádku, v němž je číslo vybrané z prvého sloupce.
Podobně označme 02 číslo řádku, v němž je číslo vybrané z druhého
sloupce. Takto pro i 6 {1,2,... ,8} označíme аг- číslo řádku, v němž je
číslo vybrané z г-tého sloupce. Součin vybraných čísel je pak roven

(1 + ai)(2 + 02) *...■• (8 + ag)
kde ai,..., as je nějaká permutace čísel 1, 2,..., 8. Maximální hodnotu "

tohoto výrazu můžeme určit více způsoby.
Protože máme jen konečný počet možností výběru čísel аь <22,..., as,

maximum uvažovaného výrazu zřejmě existuje. Ukážeme, že součin (1)
je maximální, jestliže ai > 02 > аз > ... > аз, neboli ai = 8, 02 = 7, ...,

аз = 1. Nechť například a{ < aj pro i < j. Součin ostatních výrazů
k+ak se nezmění, vyměníme-li navzájem а; a aj. Dokážeme, že takovouto
výměnou se zvětší hodnota (г + a;)(ý + aj), a tedy i celkový součin:

(i + a{)(j + aj) < (j + а.;) (г + aj),
ij + iaj + jai + aiaj < ji + jaj + га; + a;Oj,

j(a; - aj) + i(aj - a;) < 0,.
(i - j)(aj - a{) < 0.

Ale i — j < 0 a zároveň aj — аг- > 0, tj. záměnou čísel а* a aj se hodnota
výrazu zvětšila, proto vzrostl i celý součin. Daný výraz bude tudíž ma-
ximální pro ai = 8, аг — 7, ..., 03 = 1, kdy je roven 98.

(1)

+
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Jiný postup. Protože čísla i + a* (i = 1,2, ...,8) jsou nezáporná,
můžeme použít nerovnost mezi aritmetickým a geometrickým průměrem
této osmice čísel:

yj(fli + l)(fl2 + 2) • ... • (a8 + 8) ^
(ai + 1) + (й2 + 2) -f ... + (a8 + 8)<

8

Ale z části a) už víme, že součet (ai + 1) + (02 + 2) + ... + (a8 + 8) je
roven 72 pro každý výběr čísel a;. Proto platí:

72 4 8
(ai + 1)(«2 + 2) • ... • (а8 4- 8) = 9 .

8

Protože rovnost v této nerovnosti nastává, právě když je všech osm čísel
stejných, bude součin největší pro a\ +1 = a2 + 2 = ... = a8 +8 — To
však nastane jen pro a\ = 8, аг = 7, ..., а8 = 1. Uvažovaný součin je pak
roven 98. Maximální součin vybraných čísel dostaneme proto v případě,
že vybereme čísla na úhlopříčce vedoucí z levého horního do pravého
dolního rohu.

c) Použijeme stejné označení jako v části b). Minimalizujeme hodnotu
výrazu

(oi -j- 1)^ + (a2 + 2)2 + ... + (a8 + 8)2.
Po roznásobení (2) dostaneme

(2)

a2 + 02 + •. • + ag + l2 + 22 + ... + 82 + 2(ai + 2й2 + ... + 8a8).

Protože součet a2 + a\ + ... + a| + l2 + 22 + ... + 82 nezávisí na pořadí
ai, «2,..., a8, potřebujeme minimalizovat výraz ai + 2а2 + Заз +... + 8а8.
O tom, že tento výraz je nejmenší právě pro ai = 8, 02 = 7, ..., a8 = 1,
se můžeme přesvědčit více způsoby. Můžeme např. použít Čebyševovu
nerovnost, anebo podobné úvahy jako v části b) 1. postupu:

Stačí uvážit, že pokud není a\ > 02 > ... > a8, musí pro nějaké
i,ý £ {1,2, ...,8} platit a,i > aj a zároveň i > j. Výměnou hodnot a^
a aj však dostaneme

icii + jaj > jai + iaj
ti ~ *)(«j - Qi) > O,
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neboli

lni 4- . • • -f- jcij 4- ... 4- 4-... 4- 8a$ >
> loi 4-... 4- jcii 4- ... 4- ia,j + .,. + 8q8,

a proto takováto volba nemůže být nejlepší. Je tedy

(<2i 4* l)2 4- (a2 4* 2)2 4-... 4- (as 4* 8)2 ^ 648,

přičemž rovnost nastane jen pro ai = 8, a2 = 7, .:., a8 = 1.

Jiný postup. Z nerovnosti mezi kvadratickým a aritmetickým průmě-
rem pro čísla ai 4- 1, a2 4- 2,..., as 4- 8 dostáváme, že

(<2i + l)2 4- (a2 4- 2)2 + ... (as 4- 8)2 >
8

> ^ (ai ~k 1) + (a2 4- 2) + ... 4- (as + 8) = 81,

(ai 4-1)2 4- (a2 4- 2)2 + ... (as 4- 8)2 ^ 648,

kde rovnost nastane, jen když se budou rovnat čísla ai 4- 1, a2 + 2, ...,

a8 4- 8, neboli pro ax = 8, a2 = 7, ..., a8 = 1 stejně jako v části b).

A - I - 2

Vzhledem к dané rovnosti poměrů

\AK\
_ \BL\ _ \CM\ _ 1

\AB\ ~ \BC\ ~ \CA\ ~ k + l

(k > 0), můžeme zavést následující označení: \AK\ = x, \KB\ = kx,
\BL\ — y, \LC\ — fcy, |CM| = z, |МЛ| = &,г (obr. 21).

0 < < 1

A x к kx В

Obr. 21
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Použijeme dvakrát kosinovou větu:

\BC\2 = \AB\2 + \AC\2 - 2\AB\\AC\ cosa,

\KM\2 = \AK\2 + \AM\2 -2\AK\\AM\cosa

a vyloučíme cos a. Použitím zavedeného označení dostaneme

2(1 — k) + y2k + z2(k2 — к);\MK\2 = x

\analogicky

\KL\2 =.y2( 1 — k) + z2k + x2(k2 — k),
\LM|2 = z2 (1 — k) + x2k + y2(k2 k).

Protože \MK\ = \KL\, musí platit

x2(l — к2) + y2(2k — 1) + z2(k2 — 2k) = 0.

Podobně z rovností \KL\ = \LM\, \LM\ = |MAT| vyjde

y2(l — A:2) + z2{2k — 1) + x2{k2 — 2A;) = 0,
z2( 1 — /с2) + x2(2k — 1) + y2(k2 — 2k) = 0.

Vyloučením z2 z rovnic (1) a (2) dostaneme

(x2 - y2)(k2 - к + l)2 = 0.

Protože rovnice k2 — k + 1 = 0 nemá žádný reálný kořen а x, у > 0, plyne
odtud, že x = y. Analogicky z rovnic (2) a (3) dostaneme у = z. Je tedy
x = y = z, a tudíž i \AB\ = \BC\ = |CA|.

(1)

(2)
(3)

Jiné řešení. Označme obsahy trojúhelníků MAK, KBL, LCM
a A1?C po řadě SU, Sc a 5. Potom

1
Sa = - x ■ kz • sin a —

2
к

2 ' (& + 1)# ' ' sin a —

1

2 (fc + 1) (k + 1)

Analogicky je

*
g

(A; + l)2
k

s
(k + 1)2 ’

a Sc =Sb =
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tj. 5д = Sb = Sc- Protože trojúhelníky MAK, KBL, LCM majř stejný
obsah a \MK\ = \KL\ = \LM\, mají shodné výšky na strany MK, JiL,
Ш.

Veďme body А, В, C po řadě rovnoběžky ХУ, FZ, ZA s přímkami
Miř, KL, LM. Především trojúhelník АУZ je rovnostranný (neboť troj-
úhelník KLM je rovnostranný). Z předcházejícího vyplývá, že body K,
L, M jsou stejně vzdálené od příslušných stran trojúhelníku XYZ, a leží
tedy na osách příslušných úhlů. Proto můžeme zavést následující označení
(osa úhlu rozděluje protilehlou stranu trojúhelníku v poměru přilehlých
stran):

\AY\ = s, \YB\ = ks, \BZ\ =t,

\ZC\ = kt, \CX\ = u, \XA\ = ku.

Z rovností \XY\ — \YZ\ — \ZX\ pak plyne, že ku + 5 = ks + t = kt + u.
Řešením této soustavy dostaneme s — t = u. Trojúhelníky AYB, BZC,
CXA jsou tedy shodné (podle věty sus) a \AB\ = \BC\ = \CA\.

Jiné řešení. Zvolme na stranách /ÍL, LM, MK po řadě body Z), E,
F tak, aby platilo

\LD\
_ \ME\ _ \KFI _ |Aří|

|£>/ť| _ |FL| “ |FM| “ \KB\
= m.

Protože trojúhelník KLM je rovnostranný, je rovnostranný i trojúhelník
DEF. Nechť <Za, dx, d\f, do, dx jsou postupně vzdálenosti bodů A, K,
M, D, E od přímky BC. Z daných poměrů pak vyplývá, že

1 m
dx = dA, dM — dA

m + 1 m + 1
1m

do — dx dx = d‘M ■

m + 1 m + 1

m
Odtud plyne, že do = dx = 5- takže FD a FC jsou rovnoběž-

(m + 1)
né. Analogicky se dokáže, že i dvojice EF, CA a FF, AF jsou rovnoběžné.
Trojúhelník ABC je tedy rovnostranný.
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A - I - 3

Přepíšeme-li dané rekurentní vztahy na tvar

®3n — On "h 0-2711

®3n+l — 0-2n "h U2n+1 On,

Озп—1 — 02n d" Й2п—1 Ощ

vidíme, že daná posloupnost je jednoznačně určená svými prvními dvěma
členy. Nechť ai = r, 02 = s. Přímým výpočtem dostaneme

03 = r + s, a5 = r + 2s, a7 = r ,+ 3s, . )
a17 = r + 8s, ..., 021 = r + 10s, ..

ČI4 = 25, Й6 = 3s, as = 4s, ..

* ?

' 5

Oi4 = 7s, . . .
• J

Protože oi4 = 75 je prvočíslo, musí být s = 1, a protože čísla 01 =
= г, 017 = r + 8s, 021 = t + IO5 jsou prvočísla, která dávají při dělení
třemi různé zbytky, je jedno z nich dělitelné třemi, takže r — 3. Nyní
můžeme (i když poněkud zdlouhavě) pokračovat v postupném používání
rekurentních vztahů až do výpočtu 01995, 02000-

Lepší ovšem je všimnout si po výpočtu několika prvních členů dané
posloupnosti, že patrně pro každé přirozené к platí

<*2fc+i =r + ks,
02 к = ks;

díky již zmíněné jednoznačnosti stačí ověřit, že každá takto definovaná
posloupnost splňuje rekurentní vztahy ze zadání,

a) n je sudé tvaru n = 2k:

&n "b &2n — &2к "b &4/c — ^ H"" 2IvS — 3

03 n — Ogk — 3ks,
an + озп—i = 02 к + OQk—1 — ks + r + (ЗА: — l)s =

= r -f (4A: — l)s,
02n + 02n—l = O4 к + 0/{k—l — 2ks + r + (2k — l)s =

= r + (4A: — l)s,
an + озП4-1 = 02fc 4- ОбА;4-1 — ks r 3ks = r + 4A;s,

02n + 02n+i = + o4fc+i = 2ks + r + 2ks = r + 4ks.
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b) n je liché tvaru n = 2k 4 1:

an 4 a-2n = «2/c+i + «4fc+2 = r 4 ks 4 (2 fc 4 l)s =

= r 4 (ЗА; 4 l)s,
азп = <J6fc+3 = r 4 (3к 4 1 )s,

On 4 Озп—i = 02fc+i 4 Q6fc+2 — t 4 ks 4 (ЗА: 4 l)s —

= r 4 (4k 4 1)5,
a2n 4 02n—1 = úkfc+2 4 04fc-)_i = (2A; 4 1)5 4 г 4 2ks =

—

r + (4k 4 l)s,
on 4 0*371+1 — 02fc+i 4 ОбА:+4 = r 4 ks 4 (ЗА: 4 2)s =

= r 4- (4A; 4 2)s,
a2n + a2n+l — 04fc+2 + 04k+s =

= (2A: 4 l)s 4 r 4 (2A: 4 l)s = r 4 (4A: 4 2)s.

Potom pro r — 3 a s = 1 dostáváme <21 995 = 3 + 997 = 1000 = <22000-

A - I - 4

Po jednoduché úpravě dostaneme, že

й 4 1 b 4" 1 <2^ 4* b^ 4* <2 4" b
(1)b ab

Protože D je největší společný dělitel čísel a, 6, můžeme psát a = Da\
a 6 = Dbi, kde <21, b\ jsou nesoudělná přirozená čísla. Výraz (1) má po
vykráčení tvar

Dal 4~ Db\ 4" <2i 4" b\ (2)Da,\bi

Aby výraz (2) byl přirozené číslo, musí být čitatel dělitelný jmenovatelem,
a tedy i všemi jeho děliteli. Proto musí být čitatel dělitelný D,

D I Dal 4 Dbl 4 <2.4 4 b\.

Číslo D zřejmě dělí čísla Dal a ^i> proto musí platit

D I <21 4” 61.

Protože čísla <21, 61, D jsou přirozená a platí (3), musí zároveň být

D a\ 4 b\,

(3)

(4)
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což po přenásobení D (D > 0) dává

D2 < a + b.

Po odmocnění (obě strany jsou kladné) vychází, že

D ^ у/а~+Ъ. (5)

Ještě musíme zjistit, zda někdy nastane v (5) rovnost. Ta zřejmě
nastane, právě když nastane rovnost v nerovnosti (4). Proto musí být
D — q,\ b\. Aby byla zároveň splněna podmínka D < a < b, musí platit
1 < ai < b\. Volme proto a\ — 2 a b\ = 5. Potom musí být D = 2 + 5 = 7,
neboli a — Da,\ = 14 a b = Dbi = 35. Snadno se přesvědčíme, že v tomto
případě rovnost (5) skutečně nastane.

Poznámka. Můžeme postupovat také tak, že na začátku zavedeme
substituci a = aiD, b = b\D a po obdobných úvahách dojdeme к tvrzení
D2 | a + 6, což po odmocnění dává (5)'.

A - I - 5

Především si všimněme, že pro nesoudělná čísla x, у platí

f{xy) = f(x) + f(y) - /(1).

Proto pro prvočíselný rozklad n = p^p^2 • • -Pm1 čísla n (pi,P2, ■ ■ • ,Pm
jsou různá prvočísla a au, a2, ■ ■ ■, am jsou přirozená čísla) dostáváme, že
f(n) = /(p^1) + /(P22) + • • • + f(Pml) ~ (m ~ i)/!1)- Dále opakovaným
použitím dané rovnosti zjistíme, že f(p°í) = f{pa~1) = ... = f(p) = p

pro prvočíslo p a libovolné přirozené číslo a. Odtud vyplývá, že platí

f(n) =Pl +P2 + ... +Pm - (m- 1)/(1), n =P*1P%2

Dokažme ještě uvedené tvrzení podrobněji:
Nejdříve dokážeme matematickou indukcí podle a, že pro prvočíslo p

platí f{pa) = f(p)= p.
První krok. Pro a = 1 plyne tvrzení přímo ze zadání.
Druhý krok. Nechť tvrzení platí pro a ^ 1, potom

Q + l ) = f(p“) + f(P) - f(D(pa,p)) = /(P“).f(P
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Odtud podle indukčního předpokladu plyne, že je také

f(pa+1) = f(pa) = f(p) = p.

Dále dokážeme, že pokud n = p^pí?2 • • ■ Pm'1 Je prvočíselný rozklad
čísla n ^ 2, je

/(«) = f(PllP22 • ••Pm”) =Pl+P2 + ■■■+Pm- (rn- 1)/(1).

Tvrzení dokážeme opět indukcí, tentokrát podle počtu m prvočíselných
dělitelů čísla n.

První krok. Pro m — 1 dostáváme předchozí tvrzení, které jsme právě
dokázali.

Druhý krok. Nechť tvrzení platí pro m ^ 1. Potom platí

ЯрГрГ ■ ■ ■ Pm+T ) = /(P?‘P?S • • • Pm” ) + /(Pm+r ) -
-/ИрГрГ -Рт’-.Рт+Г)).

Protože ale D(pilp%2...»Pm+Í1) = T má dle indukčního předpo-
kladu předcházející rovnost tvar

f(PllP22 • • • Pm+l ) =Pl+P2 +■■■+Pm-
- (m - 1)/(1) +Pm+1 - /(1) =

= Pl + • . • + Pm+l - m/(1). (1)

Ještě zbývá ukázat, že takto definovaná funkce / vyhovuje dané pod-
mince pro libovolnou hodnotu /(1). Nechť a a b jsou přirozená čísla.
Označme c = D(a, b) a nechť c = p"1 .. .p^m je jeho prvočíselný rozklad.
Prvočíselný rozklad čísla a má pak zřejmě tvar

a=p?\..p^ř"‘+1 •••Га

a podobně číslo 6 bude mít prvočíselný rozklad

Ь = Р?-,р1?гр+' Tm+ I
• • • rs

Zároveň víme, že prvočísla pi,..., pm, q\,..., qs a ri,..., rt jsou navzá-
jem různá. Proto rozklad čísla a ■ b na prvočinitele je

a ■ b = pf1+71 ... p%?+lmqfm+1 ... gf”‘+3r^m+1 ... .
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Podmínka ze zadání říká, že

f(a-b) = f(a) + f(b)-f(D(a,b)). (2)

Spočítejme tyto hodnoty pro funkci definovanou pomocí (1):

7(a) = pi + ... + Pm + q\ + ... + qs - (m + s - 1)/(1)
f{b) = Px + •.. + Pm + ri + ... + rt - (m + t - 1)/(1),

f(a • b) = pi + ... + pm + q\ + ... + qs + ri + ... + rt —

- (m + s + t- 1)/(1),
’

/(c) = pi + ... + pm - (m - 1)/(1).

Snadno nahlédneme, že po dosazení těchto hodnot do (2) dostaneme
identitu (ještě je potřeba si uvědomit, že všechny tyto úvahy jsou korektní
i v případě m = 0, s = 0, t = 0). Funkce / definovaná pomocí (1) je tedy
jediným řešením dané úlohy pro libovolnou hodnotu /(1).

A - I - 6

Označme L а К středy hran BC a AD, X a Y kolmé průměty bodů T
a O do roviny ABC a Z těžiště trojúhelníka ABC (obr. 22).

D
/I

/
/

/
/

CK, /

''Г//
^ Tff

/
/

/ Y

/Z Y Ti
/

/

N

В

Obr. 22

V dalším budeme využívat následující vlastnosti čtyřstěnu:
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> body A, T, D, K, L leží v téže rovině, kterou označíme 5 (К = \(A +
+D),L = §(£+C),Tje střed KL, T= \(K+L) = \(A+B+C+D)),

> body O, T, X, У leží v téže rovině, kterou označíme a,
> У je střed kružnice opsané trojúhelníku ABC,
> T leží ve čtvrtiiiě úsečky ZD (Z = |(Л + В + С));

navíc platí, že přímka je kolmá na rovinu, právě když je kolmá na dvě
její různoběžné přímky (a tato přímka je pak kolmá na všechny přímky
roviny).

Především musíme vyloučit případ O = T, kdy ОТ neurčuje přímku.
a) Protože ОТ je kolmá na rovinu ú, je ОТ kolmá na KL, a tedy

\OL\ = \OK\. To znamená, že oba rovnoramenné trojúhelníky OBC
a OAD jsou shodné, takže \AD\ = \BC\ = 12 cm. Bod D proto leží na
kulové ploše Г se středem A a poloměrem 12 cm.

Naopak, leží-li bod D na Г, je \AD\ = \BC\ = 12 cm. Potom \OL\ =
= \OK\, a tedy ОТ je kolmá na KL.

b) Protože TX je kolmá na AL (TX je kolmá na rovinu ABC) а ОТ
je kolmá na AL (ОТ je kolmá na rovinu 6), je AL je kolmá na a. Rovina a

je ale jednoznačně určená body A, В, C (prochází bodem У a je kolmá
na AL). Označme (3 rovinu, která vznikne z roviny a. ve stejnolehlosti se
středem Z a koeficientem 4. Taje rovněž jednoznačně určená body А, В,
C (je kolmá na AL a prochází bodem 5, který vznikne z bodu У zmíněnou
stejnolehlostí) a leží v ní bod D. Naopak, leží-li bod D v rovině /3, snadno
nahlédneme, že body X, У, T, O leží v rovině a, která je kolmá na AL.
Proto TO je kolmá na AL.

Případ O = T nastane, právě když je DS kolmá na rovinu ABC (DS
odpovídá ve zmíněné stejnolehlosti úsečce TY = OY).

Množina bodů D je tedy kružnice (bez čtyř bodů tvořících vrcholy
čtverce, dva z nich jsou body roviny ABC), která je průnikem kulové
plochy Г a roviny (3.

Jiné řešení. Především \AL\ = 8 cm. Zaveďme souřadnicový systém
s počátkem v bodě L tak, že BC je osa x (B = (—6,0,0), C = (6,0,0))
a AL je osa у (A = (0,8,0)). Nechť D = (x,y,z).

Z podobnosti trojúhelníků BLA a YNA (N je střed AB) dostaneme
\AY\ = 6,25. Potom У = (0; 1,75; 0) a O = (0; 1,75;o),

A+B+C+D (X у z\(i’2 + I’4)-
Protože ОТ je kolmá na AL, je ОТ ■ AL = 0. Odtud dostaneme

у = — 1. Protože ОТ je kolmá na LD, je ОТ • LD = 0. Odtud vyjde

T =
4
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x2 + z2 = 4az (využíváme toho, že у = —1). Dále z rovnosti \OA\ =
= \OD\ dostaneme 2x2 + 2z2 —4za = 63. (Využili jsme toho, že у = —1.)
Z posledních dvou rovností plyne x2 + z2 = 63. Souřadnice bodu D tedy
splňují podmínky у = — 1 a x2 + z2 = 63.

A - S - 1

Nejprve oba výrazy upravíme:

a + 1 b -Ь 1 a2 + a + b2 + b
(1)abb a

a2 b2 a3 + b3
(2)abb a

Protože obě čísla (1), (2) jsou celá, musí být a2 + o + b2 4- b i a3 + b3
dělitelné číslem b. To znamená, že musí být také

b | a2 + a a b \ a3 (3)

(označení x \ у znamená, že číslo x dělí číslo y). Nyní lze snadno ukázat,
že odtud plyne i b | a. Uvedeme tři různé způsoby:
1) Z (3) plyne, že b dělí i číslo a3 — (a — l)(a2 + a) = a, takže b | a.

2) Z b | a3 plyne, že každý prvočinitel čísla b je také prvočinitelem čísla a.
Proto jsou čísla b a (a + 1) nesoudělná, takže z b \ a(a + 1) plyne b \ a.

3) Jestliže b dělí a2 + a, dělí jistě i jeho a-násobek a3 + a2. Celé číslo b
tedy dělí zároveň a3 + a2 i a3. Dělí proto i jejich rozdíl a2. My už ale
víme, že b děH i a2 + a, proto dělí i číslo a2 + a — a2 = a, tedy b \ a.
Protože oba uvažované výrazy jsou symetrické vzhledem к a a 6,

platí zároveň i a j b. Odtud plyne rovnost |a| = |6|. Nyní mohou nastat
dvě možnosti:

1) Pro a = b můžeme dané výrazy zřejmě upravit po řadě na tvar
2(a + 1)

a 2a. Vzhledem к tomu, že čísla a a a + 1 jsou nesoudělná,

platí a | 2 (prvý výraz musí být celočíselný). Dostáváme čtyři řešení
a = be {-2,-1,1,2}.

2) Pro a — — b se dané výrazy rovnají po řadě —2 a 0. V tomto případě
tedy dostáváme nekonečně mnoho řešení a = —b = í, kde t je libovolné
nenulové celé číslo.

a
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A - S - 2

Pro n = 2 má platit nerovnost 4^1 + 2q2, odtud vyplývá horní odhad
pro číslo q: q ^ ^/| = Dokážeme matematickou indukcí, že číslo
q = ^ má požadovanou vlastnost.

1. krok: Vzhledem к volbě čísla q v dané nerovnosti platí pro n — 2
rovnost. N

2. krok: Nechť nerovnost platí pro n = к ^ 2, neboli 2k ^ 1 + kqk.
Potom

2k+1 = 2-2* ^2 + 2kqk.

Zřejmě stačí dokázat, že platí

2 + 2kqk ^ 1 + {к + 1 )qk+1

neboli 1 ^ qk[(k + 1 )q — 2fc]. Poslední nerovnost ale platí, protože pro

g=^jeqí<|<2, takže qk > 0, zatímco výraz v hranaté závorce je
záporný:

(к + \)q — 2k = k(q — 2) + q ^ 2(g — 2) + q = 3q — 4 < 0.

Zkoumaná nerovnost tedy platí i pro n = к + 1. Tím je důkaz matema-
tickou indukcí hotov.

Odpověď: Hledané největší q je rovno číslu

A - S - 3

Označme X bod dotyku kružnice připsané straně BC s přímkou AB
(obr. 23). Protože АО je osa úhlu CAB а ВО je osa úhlu CBX, je
\<OAB\ = \ol (\<CAB\ = \<ABC\ = a), \<OBX\ = ±(180° -
— a) = 90° — Na polopřímce BX zvolme bod Y, У ф В, tak, aby
\BX\ = |ХУ|. Potom v trojúhelníku AYO platí:

|AO| = 9 cm,

\<AOY\ = 180° -\<OAB\ -\<XYO\ =

= 180° - | -\<XBO\ = 90°.

\OY\ = \OB\ = 3cm,
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Odtud vyplývá konstrukce:
1. AAYO; podle věty sus: \AO\ = 9cm, \OY\ = 3cm, \<$AOY\ = 90°,2.X-XE AY, OX 1 AY,
3. В; В e AX, \XB\ = \XY\,
4. АЙ; \<BAD\ = 2\<BAO\, D E BÓ,
5. BÉ-, \<ABE\ = 2\<BAO\, E eAÓ,6.C;CeAĎn BĚ.
Poznámka. Můžeme postupovat i jinak. Nejprve vyjádříme všechny

potřebné úhly pomocí úhlu a a dále lze pokračovat například takto:
a) použitím sinové věty v trojúhelníku ABO zjistíme, že tg
b) z podobnosti trojúhelníků AXO ~ OXB zjistíme, že

\BX\ 1 a
_ |am

\OX\ ~ 3 tg 2 ~ \AX\) '

Potom může sestrojit trojúhelník BXO nebo AXO. Případně mů-
žeme pomocí Pythagorovy věty vypočítat

3vlo 9л/10
|BX|= 10 \ox\ =11 10

27VT0 24y/TÓ
MX|= 1Q ИВ|= 10

a pak sestrojit příslušné výrazy.

A - II - 1

Pro n = 1 takové číslo samozřejmě neexistuje, pro n = 2 je příkladem
takového čísla číslo 13. Pro n = 3an = 4 taková čísla neexistují, protože
žádné z čísel 301, 211, 121, 103 ani žádné z čísel 3 001, 2101, 2 011, 1201,
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1111, 1021, 1003 není násobkem třinácti. (Vypsali jsme všechna lichá
trojmístná a čtyřmístná čísla s ciferným součtem 4.) Pro větší n se takové
číslo dá vždy najít. Stačí uvažovat číslo 1001 + 10n-4 • 1001. Toto číslo je
dělitelné třinácti (neboť 1001 je dělitelné třinácti), pro n ^ 5 je zároveň
liché (končí jednotkou) a jeho ciferný součet je zřejmě 4.

Jiné řešení. Nejdříve podobně jako v prvním řešení ukážeme, že pro
n — 2 takové číslo existuje a pro n = 1,3,4 neexistuje. Všimněme si teď,
jaké zbytky při dělení třinácti dávají jednotlivé mocniny čísel 1, 10, 102,
103, 104, ... :

číslo: 1 10 102 103 104 105 106 107 108 ...

jeho zbytek: 1 10 9 12 3 4 1 10 9

Vidíme, že zbytek čísla 10n při dělení třinácti závisí jen na tom, jaký je
zbytek čísla n při dělení šesti:

n je tvaru: 6к 6k + 1 6k + 2 6k + 3 6k + 4 6A; + 5
zbytek čísla 10n: 1 410 9 12 3

Pomocí této tabulky najdeme příklady n-ciferných čísel s potřebnou
vlastností pro každé přirozené n ^ 5:

počet číslic
čísla n

dává stejný
zbytek jako

číslo rovné

6к
106fe_1 + 1101 4 + 12 + 9 + 1 = 26100... 01101

(к * 1)
6fc—5

6k + 1

(к* 1)
2 • 106fc + 11 2- 1 + 11 = 13200...011

6fc—2

Ok+ 2

(fc^O)
106fc+1 + 3 ■ 10 + 3 = 13100...03

6fc

ek + 3

(*£ 1)
100... 0101 001 106fc+2 + 101 001 9 + 4 + 12 + 1 = 26

6fc—4

6fc + 4

(*£ 1)
100...010011 106fc+3 + 10011 12 + 3 + 11 = 26

6fc—2

6fc + 5

(kž 0)
100... 0 1 011 106fc+4 + 1011 3+12 + 11 = 26

6к
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Odpověď: Číslo s požadovanou vlastností existuje pro n = 2 a pro
každé n > 5.

A - II - 2

Ukažme, že F leží na přímce BC. Nechť \<$FBA\
|<FJ552| = |<í = 90° - a (obr. 24). Z trojúhelníku FBS2 potom

o. Potom

CDE
a

S2 F
2ak2

'a

AВ

Obr. 24

vyjde I <552^1 = 2a (jinými slovy, velikost tzv. úsekového úhlu tětivy
BF je rovna polovině příslušného středového úhlu BS2F). To znamená,
že |<ASiF| = 180° — 2a. Z věty o obvodovém a středovém úhlu pak
plyne, že \ <%ACF\ = 90° — a, takže \<$FCD\ — a. Protože úhly FCD
a FBA jsou shodné, leží F na přímce BC.

Dále víme, že trojúhelník BAC je pravoúhlý s pravým úhlem při
vrcholu A. Střed jeho kružnice opsané tedy leží na přeponě BC. Pokud
F není středem přepony BC a má-li platit dokazované tvrzení, musí
i střed kružnice opsané trojúhelníku ADE ležet na přímce BC. Protože
DE je jeho strana a přímka S2B je osou této strany, potom vzhledem
к tomu, že bod В je průsečíkem přímek BS2 a BC, musí být právě
on středem kružnice opsané trojúhelníku ADE. Proto stačí dokázat, že
kromě rovnosti \BE\ — \BD\ platí i \BD\ = \BA\.

Spočtěme teď velikost \BA\ (obr. 25),

\BA\ = \/(ri + r2)2 - (r2 - ri)2 = у/АГ1Г2 = 2\Jr\r2.

Spočtěme ještě velikost \BD\ (obr. 26, kde je znázorněna situace při
2ri > r2; situace v opačném případě vypadá analogicky a nemá vliv na
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Г\ + r2

Г2

Obr. 25

další výpočet):

\TD\2 = r\ - (2n - r2)2,
|BB|2 = |T£>|2 + |ГВ|2 = r\ - (2r, - r2)2 + (2r,)2 = 4Г!Г2,
|£D| = 2>Mr2.

Dostali jsme rovnost \BD\ — \BA\, tedy В je středem kružnice opsané
trojúhelníku ADE, a proto bod F i oba středy kružnic leží na přímce BC.

A - II - 3

Nechť ABC je trojúhelník s požadovanými vlastnostmi. Označme S střed
úsečky AB, к kružnici opsanou trojúhelníku ABC, Z průsečík přímky
CS s kružnicí к (různý od C) (obr. 27). Protože ОТ _L CZ, je T středem
tětivy CZ, navíc \SC\ = 3 • \ST\ (T je těžiště), takže \SZ\ — |5T|. Dvo-
jím vyjádřením mocnosti bodu S ke kružnici к (lze samozřejmě použít
i podobnost trojúhelníků AZS a CBS) máme

\SA\ • \SB\ = \SZ\ ■ |SC|,

neboli \SA\2 = i|SC| • \SC\, takže
O

\SC\ = л/3 \SA\.

Bod C leží tedy na kružnici k\ (S; л/З |5A|). Označíme-li Aq, B0 průsečíky
přímky AB s kružnicí k\ a E, F průsečíky osy úsečky AB s kružnicí ki,
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musí být С ф Aq,Bq (jinak by ABC nebyl trojúhelník) а С ф E,F
(jinak by trojúhelník ABC byl rovnostranný a bylo by O = T).

Nechť naopak C je libovolný bod kružnice různý od A0, B0, E a F.
Označme к kružnici opsanou trojúhelníku ABC a Z průsečík kružnice к
s přímkou CS (Z ф C). Z mocnosti bodu S ke kružnici к (opět lze použít
i podobnost trojúhelníků) vyplývá

|SA|2
_ \SA\ _ |SCj

ISCI УЗ - :
\sz\ = Г =|ST|’

tedy T je střed tětivy CZ, a proto je bud’ O = T, nebo ОТ JL CZ.
Případ O = T může nastat jen pro T z osy úsečky AB, tj. CS _L AB,
neboli C G {E, F}, což jsme však vyloučili. Vzniklý trojúhelník ABC
tedy vyhovuje podmínkám úlohy.

Závěr: Hledaným geometrickým místem bodů je kružnice k\ se stře-
dem S a poloměrem \/3|i>ď|) bez bodů A0, B0, E, F.

A - II - 4

Ne. Označme počet náčelníků v prvním výběru к a v druhém l. Postu-
pujme sporem. Předpokládejme, že к Ф l, a přitom obě rozdělení dopadla
dobře. Bez újmy na obecnosti předpokládejme, že l > к (jinak výběry vy-

měníme, zřejmě na jejich pořadí nezáleží). Protože podruhé bylo družin
víc, musí v tomto výběru (podle Dirichletova principu) existovat aspoň
dva náčelníci, kteří byli v prvním výběru ve stejné družině (označme tuto
družinu M). Ani jeden z nich nemohl být náčelníkem M, jinak by mu-
seli být kamarádi a druhé rozdělení by pak nemohlo vyjít dobře. Potom
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ale mají oba společného kamaráda — náčelníka družiny M, proto druhé
rozdělení nemohlo vyjít dobře ani v tomto případě. To je spor s předpo-
kladem к ф1.

А - III - 1

a) Po určení několika prvních členů dané posloupnosti si můžeme
všimnout, že pro malé hodnoty n je rozdíl G(n) — G(n — 1) buď 0, nebo 1.
Toto tvrzení (z kterého už plyne tvrzení a) úlohy) dokážeme matematic-
kou indukcí.

První krok. Pro n = 1 je G(0) = 0, G(l) = 1 — G(G(0)) = 1, tedy
G(l) — G(0) = 1, tj. uvedené tvrzení platí.

Druhý krok. Nechť G(k) — G(k — 1) £ {0,1} pro každé přirozené
к ^ n. Odtud především plyne, že 0 ^ G(k) ^ к pro každé к ^ n,
protože G(0) = 0. Dále je

G(n + 1) - G(n) = 1 + G(G(n - 1)) - G(G(n)).
Je-li G(n — 1) = G(n), je G(G(n — 1)) = G(G(n)), a tedy G(n +1) —

— G(n) - 1.
V opačném případě je G(n) — G(n — 1) + 1, čili G(G(n — 1)) —

— G(G(n)) = G(a) — G(a + 1), kde a = G{n — 1) je nezáporné celé číslo
nepřevyšující n — 1, proto podle indukčního předpokladu platí G(a) —
— G(o + 1) G { — 1,0}. To znamená, že G(n + 1) — G(n) = 1 4* G(a) —
— G(a + 1) € {0,1}. Tím je důkaz indukcí uvedeného tvrzení a zároveň
i důkaz tvrzení (a) úlohy hotov.

b) Postupujme sporem. Předpokládejme, že existuje přirozené číslo k,
pro něž

G{k - 1) = G(k) = G(k + 1 ) = A.
Ze zadání ovšem plyne, že

A = G(k + l) = fc + 1 - G(G(k)) =k + 1 - G{A)
A = G(k) = к - G(G(k - 1)) = к - G{A),

takže

k + 1 = G(A) +A = k,

což je hledaný spor, protože к + 1 ф к.
Dokázali jsme, že přirozené číslo k, pro které by platilo G(k — 1) =

= G(k) = G(k + 1), neexistuje.
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Jiné řešení. (Podle Petra Kaňovského, Brno.) Označme

w =

Pro toto číslo platí ^<w<la,w2+w — 1 = 0. Ukážeme, že platí
G(n) = [nw] (celá část čísla nw). Tvrzení a) i b) je pak již snadným
důsledkem toho, že w > 0 resp. w > |.

Uvažujme libovolné přirozené číslo n a označme pro stručnost

x = nw — [nw]

necelou část čísla nw. Z definice celé části je vidět, že

[(n + l)u?] = [nw; + u>] = [my] + [x + w].

Nyní postupně platí

w[nw] — n -fi [(n + l)w] = w[nw] — n + [nw] + [.T + w] =
— (w + l)[nu?j — n + [ж + u;] =

= (w + l)(my — x) — n + [x -f w] =

= (w2 + w — 1 )n — (w + 1)ж + [x + гс] =

= ~(w + l)x + [x + w].

Odtud vyplývá, že

[(n + 1)гу] — n - (w[nw] + w) + (~(w + l)x + w + [rr + гу]). (1)

Nyní dokážeme, že platí

[— (w + l)x + w + [x + гу]] = 0. (2)

Rozlišme tři případy:
1) Je-li 0 ^ x < 1 — гу, tak [x + w] = 0 a zároveň

~{w + \)x + w 5Í w < 1,

~(w + l)x 4- w > — (w + 1)(1 - w) + u? =

= w2 + w - 1 = 0,

odkud ihned plyne dokazované tvrzení.
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2) Podobně, je-li 1 — w < x < 1, tak [x -I- w] = 1 a zároveň

— (iy + l)x + w + 1 ^ — (w -f 1) + w + 1 = 0,
— (w + l)x + ty + 1 < — (ty + 1)(1 — w) + w + 1 —

— w2 + w = 1.

3) Kdyby bylo x = 1 — w, pak by číslo (n + l)ty -- x + [nw] +w = 1 + [пгу]
bylo celé, a tedy w by muselo být racionální, což není pravda. Tento
případ tedy nemůže nastat.

Tím je důkaz rovnosti (2) proveden.
Ze vztahů (1) a (2) plyne ^

[(n + 1)гу] = n — [([шу] + l) гу].

Definujeme-li tedy posloupnost Gi(n) vztahem

Gi(n) = [(n + 1)гу],

pak vidíme, že posloupnost G\ splňuje rekurentní vztah

Gi(n) = n - Gi(Gi(n — 1)),

tj. stejný rekurentní yztah jako G(n). Navíc platí

Gi(0) = [(0 + 1H = 0,

tedy vidíme že i G(0) = Gi(0).
Dokažme nyní, že libovolná funkce G(n), splňující podmínky v zadání

úlohy, je identicky rovna Gi(n). Důkaz provedeme matematickou indukcí.
1) G(0) = 0 = G^O).
2) Nechť no je libovolné přirozené číslo a nechť pro všechna n < no

platí G(n) = Gi(n) = [(n + 1)гу]. Pak G(n0 — 1) = [пгУо] a protože dále
0 й [пгУо] < no (první nerovnost je zřejmá, druhá plyne pro no < 3
přímým dosazením a pro n0 ^ 3 z n0 - nw0 = (1 — w)n0 > 1), je také
G(G(n0 - 1)) = Gi(Gi(n0 - 1)) a tedy G(n0) = n0 - G(G(n0 - 1)) =
= no — Gi(Gi(no — 1)) = Gi(no).

Vidíme tedy, že funkce G je zadáním jednoznačně určena a musí být
G(n) = [(n + 1)гу], kde w = |(\/5 — 1), pro všechna přirozená čísla n.
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A - III - 2

Nechť V je pevný vnitřní bod trojúhelníku PQR a předpokládejme, že
hledaný čtyřstěn ABCD existuje. Stěny ABD, BCD a CAD (prozatím
neznámého) čtyřstěnu ABCD sklopíme do roviny ABC. Dostaneme tak
síť tohoto čtyřstěnu, ohraničenou lomenou čarou AD1BD2CD3A. Naším
cílem bude vybrat bod D tak, aby trojúhelník D1D2D3 byl ostroúhlý,
obsahoval trojúhelník ABC a aby bod V byl středem kružnice mu opsané.
Platí totiž tvrzení: Je-li S střed kružnice opsané ostroúhlému trojúhelníku
KLM, pak pro každý jeho bod X ф S platí

minflXAj, \XL\,\XM\} < \SI<\ = |SL| = \SM\.

(Toto tvrzení plyne z toho, že celý trojúhelník KLM je pokryt třemi
kruhovými výsečemi o středech if, L, M a poloměru |S7f|, přitom každý
vnitřní bod X ф S trojúhelníku KLM leží uvnitř jedné z nich.)

Potřebujeme tedy, aby přímka AV byla osou úsečky D3D1, přímka
BV osou DiD2 a přímka CV osou D2D3. Musí proto platit

\<DxD2D3\ =k-\<BVC\, \<D2DzD1\=tz-\<CVA\,
\<D3D1D2\ = k-\<AVB\.

Díky tomu, že V E ЛPQR, jsou úhly BVC, CVA a AVB tupé (stačí
uvážit Thaletovy kružnice s průměry BC, CA a AB), takže vnitřní úhly
hledaného trojúhelníku DiD2D3 jsou známé a ostré. Můžeme tedy se-

strojit libovolný trojúhelník D[D2D3 podobný neznámému trojúhelníku
D1D2D3, označit V střed jeho opsané kružnice a na třech polopřímkách
s počátkem V, které procházejí středy stran D3D[, D[D2 a D2D3, se-
strojit (dostatečně blízko od bodu V') po řadě body А', В1 a C tak, aby
АА'В'С' ~ AABC (známe velikosti úhlů V'A'B' a VA'C). Pak lomená
čára A!D[B'D'2C'D'3A' ohraničuje síť některého čtyřstěnu A'B'C'D',
který je podobný hledanému čtyřstěnu ABCD.

A - III - 3

Označme dané podmnožiny Ab A2, ..., Ag. Tvrzení dokážeme indukcí
podle počtu n prvků množiny X. Začneme s případem n = 6. (Pokud
má množina X méně než 6 prvků, doplníme ji na šestiprvkovou přidáním
nových prvků, které nezmění množiny Аг-.) Protože (3) = 20 > 2 • 6,
existuje tříprvková množina Y С X, která se nerovná ani žádné z množin
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Aj, ani žádnému doplňku X — A;. Obarvíme-li prvky Y jednou barvou
a prvky X — Y barvou druhou, dostaneme „správné'4 obarvení.

Nyní předpokládejme, že množina X má aspoň 7 prvků. Pak existuje
dvojice různých prvků G X, které spolu neleží v žádné z množin
A i. (Opravdu, existuje totiž nejvýše 6 • (2) = 18 dvojic prvků, které
patří do některé z množin A;, zatímco všech dvojic prvků z X je aspoň
(2) = 21.) Tuto dvojici prvků и, v „slepíme" do jednoho nového prvku w.
Jinými slovy, pokud množina Аг- obsahuje prvek и nebo u, nahradíme ho
prvkem w. Dostaneme opět šest tříprvkových podmnožin množiny X',
která má o 1 prvek méně než původní množina X. Prvky množiny X' mů-
žeme podle indukčního předpokladu „správně" obarvit; dáme-li prvkům
u, v barvu prvku w a barvy ostatních prvků v X' zachováme, dostaneme
„správné" obarvení množiny X. Tím je dokázán indukční krok, a tedy
i tvrzení úlohy.

A - III - 4

Trojúhelníky ALK a BYL jsou podobné, protože (obr. 28) \^iLAK\ =
= \<YBL\ (\CA\ = \CB\) a (ze zadání)

\КА\
= \Щ

\LA\ \YB[

Odtud \<iALK\ = \<$BYL\. Analogicky z podobnosti trojúhelníků

AC КX

Obr. 28

ALX a BML vyjde |<$.AXL\ = \<$MLB\. Protože však body M, L

78
í



a К leží v přímce, je také \<$.MLB\ = \<$ALK\. Potom \<$LYB\ =
= \<ALK\ = \<BLM\ = \<AXL\. Z rovnosti \<LYB\ = \<AXL\
plyne \<LYC\ + \<LXC\ = 180°, takže body С, X, L, Y leží najedná
kružnici fc. Odtud už vyplývá konstrukce hledané přímky:

1. kružnice к opsaná trojúhelníku CXY, kde \<šXDY\ = 2|<í ABC\,
2. L; L G к П ЛВ,
3. M G BC, \<BLM\ = \<AXL\,
4. X; К G LM П ČÍ.
Správnost konstrukce vyplývá z rozboru. Úloha má vždy právě jedno

řešení.

A - III - 5

Ze vztahu (ii) pro x — у vyplývá f(x2) = f(x ■ x) = (k + 2)f(x). Dvoj-
násobnou aplikací předchozího vztahu dostaneme

f(x4) = f(x2 ■ x2) = (k + 2)f{x2) = (k + 2)2f{x).

Jiným postupem ale dostaneme

/(z4) = f(x ■ x3) = f{x) + f(x3) + kf(x) =

= (k + 1 )f(x) + f{x-x2) =

= (k + l)f(x) + f(x) + f(x2) + kf(x) =

= (2к + 2)f(x) + f(x2) = (3к + 4)f{x).

Nyní stačí najít libovolné x, pro které je f(x) ф 0, tedy například podle
(i) x = 1 995. Porovnáním předchozích dvou vztahů dostaneme podmínku

(k + 2)2/(l 995) = /(19954) = (3к + 4)/(l 995)
(k + 2)2 = ЗА;+ 4,

к G {0,-1}.

Pro к = — 1 dostáváme funkcionální rovnici z domácího kola. Víme, že
jejím obecným řešením je pro x = ... p“n funkce

f{x) = f{pi) + ... + f{pn) - (n - 1)/(1).

Podmínku (i) úlohy můžeme splnit například volbou /(5) = 1 996, f(p) =
= 0 pro všechna prvočísla p/5a/(l)=0.
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Pro к = 0 dostáváme funkcionální rovnici

fM = f(x) + f(y).

Odtud především pro x = у = 1 plyne /(1) = 0. Obecným řešením této
rovnice pak je pro x = .. .p“n funkce

f(x) = atifipi) + ... + anf{pn),

kde f(pi) jsou libovolná celá čísla. Opět stačí zvolit /(5) = 1996 a f(p) =
= 0 pro všechna prvočísla p ф'Ь jako výše.

A - III - 6

Dokážeme, že za uvedených předpokladů je trojúhelník ABC rovno-

stranný. Označme strany a úhly trojúhelníku ABC obvyklým způsobem.
Z rovností

\KL\ = 2Rsin (3, \LM\ = 2i?sin7, | MK | = 2R sin a,

kde R je společný poloměr tří opsaných kružnic, vychází

\KL\ : \LM\ : \MK\ = sin/? : sin7 : siná,

takže AABC ~ ALMK. Proto platí

\KL\ = Л6, \LM\= Ac, \MK\ = \a,

přičemž koeficient podobnosti Л určíme úvahou o obsazích trojúhelníků:
Z rovností -

Sakm = SbLK = ScML = - SaBC

plyne, že Sklm •= \Sabc, takže A2 = |. Napišme kosinové věty pro
trojúhelníky ABC a AKM:

a2 = b2 + c2 — 2bc cos a,
2b c
— • - • cos a.
3 3

Odečteme-li od devítinásobku druhé rovnosti dvojnásobek první, dosta-
neme rovnost a2 = 2b2 — c2. Z dalších dvojic kosinových vět odvodíme
analogicky rovnosti b2 = 2с2 — а2 ас2 = 2a2 — 62, takže a = b = c.

Trojúhelníky AKM, f?L.ří a CMA jsou tedy shodné a mají shodné
i vepsané kružnice.

1 9 /26\2 /c\2
3е =(т) +(з) -2
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Kategorie P

Texty úloh

P - I - 1

Trojúhelníková síť se skládá z rovnostranných trojúhelníků jednotkové
velikosti. Soustavu souřadnic si nyní trochu pozměníme: r-ová osa bude
orientována stejně, jako jsme zvyklí z kartézské soustavy souřadnic, y-ová
osa svírá s x-ovou GOstupňový úhel. Například vrcholy jednoho z jednot-
kových trojúhelníků mají souřadnice (0,0), (1,0), (0,1).

V této síti zadáme iV-úhelník — jeho vrcholy leží ve vrcholech sítě,
jsou navzájem různé, přičemž každé dva sousední vrcholy v iV-úhelníku
mají jednotkovou vzdálenost. iV-úhelník je zadán na vstupu tak, že první
řádek vstupu obsahuje číslo N a dalších N řádků obsahuje souřadnice
vrcholů, přičemž tyto vrcholy jsou zadány postupně pó obvodu.

Úloha. Napište a odlaďte program, který
a) vykreslí tento iV-úhelník na obrazovku,
b) vypíše zprávu o tom, zda je konvexní nebo ne (,/V-úhelník je konvexní,

jestliže úsečky spojující libovolné dva vrcholy leží celé uvnitř, resp. na
hranici iV-úhelníku.).
Poznámka: Minimalizujte paměťovou a časovou složitost algoritmu.

Můžete předpokládat, že vstupní data jsou zadána korektně.

P - I - 2

Pro danou konstantu N (N je prvočíslo, např. 991) máme vyhrazeno
iV-prvkové celočíselné pole P s indexy 0 až N — 1. Prvky pole jsou na
začátku inicializovány na nulu. Do tohoto pole budeme postupně zařazo-
vat L celočíselných hodnot (navzájem různých a různých od nuly), kde
2 < L < N, pomocí procedury Zarad:

procedure Zarad(X:integer);
var i:integer;
begin
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i := (x div 10 + x mod 10) mod N;
while P[i] <> 0 do

i := (i+7) mod N;
P[i] := x;

end;

Tato procedura nejprve ze zařazované hodnoty X vypočítá předpo-
kládanou hodnotu indexu v poli P, a pokud je tento prvek pole již ob-
sazen (je tam nenulová hodnota), postupně hledá nejbližší volnou pozici
v poli (pole je přitom „zacyklené41 — za posledním (N — l)-tým prvkem
následuje nultý). Jestliže je při hledání volného místa nutné postupně
prohlížet následující prvky, budeme tuto situaci nazývat kolize a budeme
počítat počet vzniklých kolizí. Počet kolizí při zařazování j-té hodnoty
budeme označovat К[j] (K[j] bude tedy rovno počtu průchodů cyklem
while při zařazování j-té hodnoty), celkový počet kolizí označíme Ck■

Úloha. Navrhněte algoritmus, který pro daná tři čísla L,Ga Ck najde
takovou vstupní posloupnost hodnot H (délky L), aby celkový počet
kolizí pro tuto posloupnost byl Ck a poslední hodnota byla H[L\ = G,
případně zjistí, že taková posloupnost neexistuje.

P - I - 3

Máme kreslicí zařízení schopné kreslit různé obrázky. Jejich popis však
musí být zadán ve speciálním tvaru (jako znakový řetězec):
• je to posloupnost parametrů uzavřená v ,[‘ a ,]‘ závorkách;
• parametrem je buď číslo nebo opět posloupnost parametrů;
• posloupnost parametrů je vždy sudé délky, přičemž na lichých pozicích

je vždy číslo.
Tuto posloupnost bude kreslicí zařízení interpretovat následovně:

• je-li posloupnost prázdná, nekreslí se nic;
• je-li neprázdná, zřejmě první parametr (Pi) je číslo a druhý (P2) je

buď číslo, nebo opět posloupnost parametrů:
- pokud je P2 číslo, kreslicí pero přejde (se spuštěným perem) v mo-

mentálním směru natočení vzdálenost P\ a potom se otočí o úhel
P2 vpravo (úhel je zadán ve stupních);

- pokud je P2 posloupnost, kreslicí zařízení Pi-krát zopakuje po-

sloupnost P2.
Kreslicí pero je stále natočeno nějakým směrem (na začátku algoritmu

na sever) a podle parametrů posloupnosti buď mění toto natočení, nebo
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se v aktuálním směru pohybuje dopředu nebo dozadu (kreslí čáru) podle
toho, zda je tato vzdálenost kladná nebo záporná.

Například posloupnost ’[4 [100 90] ]J nakreslí čtverec se stra-
nou 100. (Všimněte si, že číselné parametry jsou oddělené mezerou.)

Úloha. Napište a odladte program, který přečte vstupní posloupnost
* zadanou ve tvaru znakového řetězce a zinterpretuje ji na grafické ploše ob-

razovky. Můžete předpokládat, že vstupní posloupnost je zadána korekt-
ně, obsahuje jen celočíselné hodnoty a že řetězec není delší než 255 zna¬
ků.

P - I - 4

D0L systémy
Abecedou nazýváme libovolnou konečnou neprázdnou množinu. Prv-

ky této množiny nazýváme znaky. Konečnou posloupnost znaků z nějaké
abecedy nazýváme slovo. Znaky označujeme zpravidla písmeny ze za-
čátku abecedy (a,6,c,...), slova písmeny z konce abecedy (u,v,w,...)
a abecedy velkými řeckými písmeny (E,T,...).

Délkou slova w rozumíme počet znaků, z nichž se slovo skládá, ozna-

čujeme ji |iu|. Zřetězením slov v = сча^ ... an а, и = bib2 ... bm rozumíme
slovo v * и — aia2 ... anbib-2 ... bm. Množinu všech slov, která se dají vy-
tvořit ze znaků abecedy E, označujeme E*. Tato množina obsahuje také
prázdné slovo, tj. slovo nulové délky, které označujeme e.

. Pravidlem nad abecedou E nazýváme uspořádanou dvojici (a,u), kde
a G E a v E E*. Pravidlo zapisujeme ve tvaru a —> v.

Deterministický Lindermayerův systém bez interakce (D0L systém)
je uspořádaná trojice (E,P, w), kde
• E je abeceda,
• P je množina pravidel, která pro každý znak a E E obsahuje právě

jedno pravidlo nad abecedou E tvaru a —»■ u,
• w je slovo ze E, které nazýváme axiom.

Takovýto D0L systém produkuje posloupnost slov wi,W2,W3,...,
která začíná axiomem a pokračuje vždy slovem, jenž dostaneme z před-
cházejícího slova současným nahrazením všech znaků za slova podle pra-
videi. Tedy
1. W\ = w,
2. jestliže Wi — ai<22 • • • о-m potom iCj+i = ui * U2 * ... * un, kde aj —>

—»■ uj G P pro j = 1,2,..., n.
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Uvědomte si, že pro každý znak máme právě jedno pravidlo, a tedy
právě jedno slovo, kterým btideme tento znak nahrazovat. Posloupnost
produkovaná DOL systémem je proto jednoznačně určena.

Růstovou funkcí DOL systému nazýváme takovou funkci /: N —>• No

(N = {1, 2,...}, N0 = {0,1,2,...}), která pro pořadí slova v posloupnosti
produkované DOL systémem udává délku tohoto slova. Přesněji f(i) —

= Ы-
Příklad:
• {a, b} je abeceda obsahující dva znaky: a a b.
• Délka slova aabab je 5.
• Zřetězením slov ab a aab je slovo ab * aab = abaab.
• Nad touto abecedou můžeme vytvořit nekonečně mnoho slov: e, a, b,

aa, ab, bb, aaa, ...

• Pravidlem je například a —> aa.
• DOL systémem je například ({a, b}, {a —> aa, b -» ab},ab).
• Posloupnost produkovaná tímto systémem je

ab, aaab, aaaaaaab, aaaaaaaaaaaaaaab,...

(Když slovo obsahuje více stejných písmen za sebou, můžeme nahradit
tato písmena jedním písmenem, u kterého uvedeme počet písmen,
která zastupuje. Zkráceně můžeme tedy psát posloupnost tohoto DOL
systému: ab, a3b, a‘b, a15b, ...).

• Růstová funkce tohoto DOL systému je f(n) — 2n.
Poznámka: Při konstrukci DOL systému dáváme přednost takovým

systémům, které mají co nejmenší počet pravidel.
Úloha. Vytvořte DOL systém, jehož růstová funkce je
a) /(n) = 4,
b) /(n) = n,

c) f(n) = 3n + 2,
d) /(n) = n2,
e) f(n) = kn3, kde к je libovolné přirozené číslo.

P - II - 1

Učební text čtěte v úloze P-I-l.
Úloha. Napište program, který spočítá obsah zadaného iV-úhelníku

a vyjádří ho počtem jednotkových trojúhelníků.
Poznámka: Minimalizujte paměťovou a časovou složitost algoritmu.

Můžete předpokládat, že vstupní data jsou zadána korektně.
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P - II - 2

Pro danou konstantu N (N je prvočíslo, např. 991) máme vyhrazeno
iV-prvkové celočíselné pole P s indexy 0 až iV — 1. V tomto poli máme
uloženo M různých kladných čísel (M < N). Neobsazené prvky pole jsou
inicializovány na nulu.

Prvky jsou v poli P uloženy tak, aby bylo možné použít funkci
Vyhledej na zjištění, kde se v poli P nachází prvek X (funkce vrátí polohu
prvku X v poli P, pokud se X v poli nachází, v opačném případě vrátí
hodnotu —1):

function Vyhledej(X:integer):integer;
vax i:integer;
begin

i:=(X div 10 + X mod 10) mod N;
while P[i]>X do

i:=(i+7) mod N;
if P[i]=X then Vyhledej:=i

else Vyhledej:=-l;
end;
int vyhledej(int X) {

int i;
i=(X/10 + X while(P[i]>X) i=(i+7) if(P[i]==X) return(i);
else return(-l); }

Úloha.
a) Napište, jak musí být prvky uloženy v poli P, aby bylo možné к jejich

vyhledávání použít funkci Vyhledej.
b) Napište co nejefektivnější proceduru Zarad, pomocí níž bude možné

zařadit prvek X do pole P tak, aby mohla být к vyhledávání použita
funkce Vyhledej. Předpokládejte, že před použitím procedury Zarad
byly prvky v poli P takto uspořádány a že prvek X se v poli P dosud
nenachází.

P - II - 3

Mějme kreslicí zařízení popsané v úloze P-I-3.
Úloha. Nalezněte a dokažte algoritmus, který pro danou vstupní po-

sloupnost (ve tvaru znakového řetězce) určí, jak nejdále může pero star-
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šího kreslicího zařízení skončit od místa, kde mělo skončit podle zadané
posloupnosti.

P - II - 4

Vytvořte DOL systém (nebo dokažte, že to není možné), jehož růstová
funkce je
a) f(n) = nn,
b) f(n) = n2 ■ 2n.

Studijní text o DOL systémech najdete u zadání úlohy P-I-4.

P - III - 1

Učební text čtěte v úloze P-I-l.

Úloha. Na vstupu je zadán iV-úhelník a M-úhelník. Napište program,

který spočítá obsah jejich průniku a vyjádří ho počtem jednotkových
trojúhelníků.

Poznámka: Minimalizujte paměťovou a časovou složitost algoritmu.
Můžete předpokládat, že vstupní data jsou zadána korektně.

P - III - 2

Pro danou konstantu N (N je prvočíslo větší než 10, např. 991) máme
vyhrazeno iV-prvkové celočíselné pole P s indexy 0 až iV — 1. Prvky pole
jsou na začátku výpočtu inicializovány na nulu. Do tohoto pole budeme
postupně zařazovat různá kladná celá čísla pomocí procedury Zarad:

procedure Zarad(x:integer);
var i:integer;
begin

i := x mod N;
while P [i] <> 0 do

if P[i]>x then
i := (i+7) mod N

else

i := (i+3) mod N;
P [i] := x;

end;
void Zarad(int x) {

int i;
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i = X

while (P [i]!=0)
if (P[i]>x) i = (i+7)
else i = (i+3)

P Ci] = x;

>

Úloha.
a) Napište co nejefektivnější funkci Vyhledej s jedním celočíselným pa-

rametrem x, která zjistí, zda se prvek x nachází v poli P. Pokud ano,
funkce vrátí hodnotu indexu prvku x v poli P. Jestliže číslo x v poli
P není, funkce vrátí hodnotu —1.

b) Rozhodněte, zda je výpočet procedury Zarad v případě, že je v poli
P alespoň jedno volné místo (tj. aspoň jeden prvek pole P má hod-
notu 0), vždy konečný. Odpověď dokažte.

P - III - 3

a) Sestrojte DOL systém s nejvýše dvěma pravidly, jehož růstová funkce
je f(n) = n2, nebo dokažte, že takový systém neexistuje.

b) Sestrojte DOL systém s růstovou funkcí f(n) = |ý°6fc+i(n + 1)J +
+ 1, kde к je počet symbolů abecedy, nebo dokažte, že takový systém
neexistuje.
Poznámka: Zápisem [VJ rozumíme dolní celou část z hodnoty výra-

zu X, tzn. hodnotu výrazu X zaokrouhlenou dolů na nejbližší celé číslo.
Například [4,789J = 4,. |5J = 5.

Studijní text o DOL systémech najdete u zadání úlohy P-I-4.

P - III - 4

Program: LAMPY.PAS / LAMPY.CPP
Vstup: LAMPY. IN ..

Výstup: LAMPY.OUT

Veřejná prostranství ve městě jsou osvětlena N pouličními lampami.
Každá z lamp má jednoznačně přiřazeno číslo od 1 do V. К zapínání
a vypínání veřejného osvětlení slouží v řídicím středisku M přepínačů.
Každý z přepínačů přepne najednou několik lamp. Přepnout lampu zna-
mená zapnout ji, pokud zrovna nesvítí, a vypnout ji, jestliže momen-
tálně svítí. Přepínač číslo i přepíná všechny lampy s čísly od ai do b{,
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tzn. lampy s čísly ležícími v uvedeném intervalu. Můžete předpokládat,
že 0 < M < 100, 0 < N < 100.

Úloha. Napište program, který zjistí, zda je možné zapnout pomocí
přepínačů v řídicím středisku všechny lampy, jsou-li na začátku všechny
lampy vypnuté.

Vstupní soubor: Vstupní soubor obsahuje několik zadání. První řádek
vstupního souboru je tvořen jediným číslem, které udává počet zadání
v souboru. Pro každé zadání obsahuje vstupní soubor blok údajů v tomto
tvaru: Na prvním řádku bloku jsou uvedena čísla N a M, kde N je počet
lamp ve městě a M je počet přepínačů v řídicím středisku. Dalších M
řádků obsahuje pro jednotlivé přepínače vždy dvojici čísel a^, (pro
každý přepínač interval čísel lamp, které se pomocí něho přepnou). Jed-
notlivé bloky údajů jsou ve vstupním souboru odděleny vždy jedním
prázdným řádkem.

Výstupní soubor: Pro každé zadání obsažené ve vstupním souboru
obsahuje výstupní soubor jeden řádek s jednou z následujících zpráv:

pokud je možné rozsvítit všechny lampy pomocí přepínačů„Lze“
v řídicím středisku,

„Nelze“ — jestliže to není možné.
Příklad:

Soubor LAMPY. IN Soubor LAMPY. OUT

Lze
Nelze

2

5 3

1 3
2 5
2 3

10 5

1 9
2 10
3 10

4 10
5 10
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P - III - 5

Program: MANHATAN.PAS / MANHATAN.CPP
Vstup: MANHATAN. IN
Výstup: MANHATAN. OUT

Ve městě Manhatan vedou všechny ulice buď ze severu na jih, nebo
ze západu na východ. Předpokládejte, že se ulice táhnou oběma směry
dostatečně daleko. V průsečíku každých dvou ulic různých směrů je kři-
žovatka.

Křižovatku označíme dvojicí čísel (г, j), jestliže se jedná o křižovatku
v pořadí г-té západovýchodní ulice počítáno ze severu a j-té severojižní
ulice počítáno od západu. Křižovatky jsou tedy očíslovány od (1,1) do
(M, TV), kde TVÍ je počet západovýchoclních ulic а V je počet severojižních
ulic. Můžete předpokládat, že 0 < TVÍ < 100, 0 < TV < 100.

Na některých křižovatkách se pracuje na opravě vozovky, a proto přes
ně není možné přejet. Na křižovatkách (1,1) a (TVÍ, TV) se nepracuje.

Arpád vyjíždí každé ráno z křižovatky (1,1) a potřebuje se dostat do
firmy, která sídlí na opačném konci města, tzn. na křižovatce (TVÍ, TV).

Úloha. Napište program, který zjistí, kolika různými cestami se může
Arpád dostat do své firmy, jestliže pojede vždy jen ve směru na jih
nebo na východ. Program dále vypíše nejmenší počet křižovatek, přes
které se může takovouto cestou do firmy dostat (včetně křižovatek (1,1)
a(M,JV)).

Vstupní soubor: Vstupní soubor obsahuje několik zadání. První řádek
vstupního souboru je tvořen jediným číslem, které udává počet zadání
v souboru. Pro každé zadání obsahuje vstupní soubor blok dat. Na prv-
ním řádku každého bloku jsou uvedena čísla TVÍ a TV, kde TVÍ je počet
východozápadních ulic a TV je počet severojižních ulic. Na dalším řádku
se nachází číslo К — počet křižovatek ve městě, na nichž se opravuje vo-
zovka. Na každém z následujících К řádků jsou uvedena vždy dvě čísla
určující polohu křižovatky, kde se pracuje. Jednotlivé bloky vstupních
údajů jsou odděleny vždy jedním prázdným řádkem.

Výstupní soubor: Pro každé zadání ve vstupním souboru obsahuje
výstupní soubor jeden řádek. Na něm jsou
• buď dvě čísla JaB, kde A je počet možných různých cest а Б je počet

křižovatek na nejkratší z nich (včetně křižovatek (1,1) a (TVÍ, TV)), a to
v případě, že existuje aspoň jedna cesta požadovaného typu,

• nebo zpráva „Cesta neexistuje", jestliže cesta požadovaného typu ne-

existuje.
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Příklad:

Soubor MANHATAN. IN Soubor MANHATAN. OUT

2 2 6
N Cesta neexistuje4 3

2

2 2

3 2

2 4
2

1 2

2 3

\
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Řešení úloh

P - I - 1

a) Nejprve si ukážeme, jak lze přepočítat zadané souřadnice do pravoúhlé
souřadnicové soustavy. Označme (tx,ty) souřadnice v naší trojúhelníkové
soustavě a (kx,ky) souřadnice v pravoúhlé souřadnicové soustavě.

A

kx tx tx

ky

>■

Obr. 29

Z vlastností pravoúhlého trojúhelníku na obr. 29 vyplývá

—
— cos 30°

kx tx
= sin 30°

ty ty

a tedy pro souřadnice (kx,ky) platí:

ky — ~ л/^ty 5 kx — ~̂ ty + tx
Pro účely přepočítání na souřadnice na obrazovce zavedeme následu-

jící proměnné:
• zvětšení к (počet pixelů na obrazovce na jednotku délky)
• souřadnice počátku souřadnicové soustavy na obrazovce (ox,oy)

Ve vzorovém řešení je к konstanta a ox, oy se počítají tak, aby bod
(0,0) ležel ve středu obrazovky.

Shrneme výsledky předcházejících úvah. Bod zadaný v pravoúhlé
soustavě souřadnicemi (kx,ky) se zobrazí na obrazovce na souřadnice
(ox + к • kx, Oy — к ■ ky). Je-li bod zadán v trojúhelníkové soustavě
souřadnicemi (tx,ty), potom jeho souřadnice v pravoúhlé soustavě jsou
ky = |\/3ty, kx = \ty + tx a na obrazovce se tedy zobrazí na souřad-
nice (ox + к ■ tx + k^ty,Oy — k^\f3ty). Jestliže nyní označíme jxx := к,
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jyx '•= jyy ■= — §\/3к dostáváme, že se bod se souřadnicemi (tx,ty)
v trojúhelníkové soustavě zobrazí na obrazovce do bodu

(Ox 4" jxx^x “b jyx^ytOy *f" jyyty)•

b) Jelikož všechny vrcholy našeho iV-úhelníku musí ležet v mřížových
bodech a vzdálenost následujícího vrcholu musí být vždy 1 od před-
cházejícího, přicházejí pro vrchol se souřadnicemi (tx,ty) v úvahu tyto
vrcholy jako následující (odpovídající směry, v nichž vrcholy leží vzhle-
dem к (tx,ty) označme od 0 po 5 v pořadí, v jakém jsou zde vypsány):
(j'X ? ty 4" l) ) ([tx "jf" 1 5 ty ) , (tx H” 11 ty (tx t ty l) 5 (tx 1 ? ty), {tx 1 5 ty ~h l) .

Nechť jsme nyní do vrcholu (tx,ty) přišli ze směru ss a odcházíme
z něho ve směru sn. Vidíme, že pokud sn = ss, potom jsme se v bodě
neotočili, pokud sn = (ss 4- 1) mod 6 nebo sn = (ss + 2) mod 6 potom
jsme se otočili doprava, jinak doleva (případ sn = (ss 4- 3) mod 6 nemůže
nastat).

Budeme obcházet náš iV-úhelník po obvodu (tzn. v pořadí, v jakém
byly zadány jeho vrcholy
zadáno buď ve směru, nebo proti směru hodinových ručiček) a budeme
sledovat, v jakém směru se otáčíme v jednotlivých vrcholech (směr otáčení
je dán menším'z dvou úhlů u vrcholu). Je-li náš V-úhelník konvexní,
potom se zřejmě musíme otáčet stále stejným směrem a naopak, jestliže
konvexní není, musíme se během obcházení otočit aspoň jednou doprava
a aspoň jednou doleva.

Tato jednoduchá úvaha bude základem našeho algoritmu. Obcházíme
postupně iV-úhelník, přičemž když se otočíme doprava, nastavíme pro-
měnnou doprava, když se otočíme doleva, nastavíme proměnnou doleva.
Jestliže jsou na konci obě proměnné nastavené, iV-úhelník není konvexní,
v opačném případě je konvexní.

Časová i paměťová složitost tohoto algoritmu je lineární (0(N)),
správnost vyplývá z výše uvedené úvahy.

připomeňme si, že pořadí bodů může být

P - I - 2

Má-li existovat posloupnost hodnot #[1],..., Я[Т], musí především pla-
tit, že L < N. Dále platí, že když do pole zařazujeme г-tou hodnotu,
počet kolizí K[i\ je nejvýše i — 1. (K[i\ = г — 1 tehdy, pokud dojde
ke kolizi se všemi už zařazenými prvky). Z toho ale vyplývá, že jestliže
Ck >04-l4----4-(L — \) ■= |L(L — 1), posloupnost opět neexistuje.
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(

Označme a ® b := (a + 76) moci N. Vezmeme nyní libovolný index
nějakého prvku v našem poli j. Potom jestliže procházíme prvky j Ф
ф 1, j ф 2,..., j ® N, přejdeme každým prvkem našeho pole právě jednou
(protože N je prvočíslo).

Máme-li v poli obsazeno к prvků s indexy j0, j0 ф 1, j0 ф 2, ..

jo Ф (к — 1), pak pro libovolné K[k + 1], kde K[k +1] G {0,1,, к},
umíme nalézt vhodný prvek H[k + 1] takový, že se zařadí do pole na
index jo Ф k- Označme1 ik+1 := (H[k + 1] div 10 .+ H[k + 1] moci 10)
modiV první index vypočítaný pro prvek H[k + 1] v proceduře Zarad.
Potom když vezmeme

h+i = jo ® (k - K[k + 1]),

tak se nám prvek H[k + 1] zařadí na pozici jo ® k.
Pro libovolný počáteční index j0 a posloupnost К (K[i\ ^ i — 1 pro i =

= 1,2,..., Z/) tedy umíme tímto způsobem nalézt příslušnou posloupnost
prvních indexů jo = i\, i2, • • •, il■

Posloupnost К však není zadána, známe jen její součet Ck. Proto si
ji můžeme zvolit libovolně, pokud možno co nejjednodušším způsobem.
Položme například K[i] := i — 1 pro i = 1,2,... ,m a jestliže m / L
K[m + 1] := Ck — |m(m — 1) а К [i] := 0 pro i = m + 2,..., L, přičemž
m vezmeme největší takové, že |m(/n — 1) ^ Ck- Řešením kvadratické
rovnice lehce zjistíme, že m — [|(l + \J1 + 8Ck)\■

Dále je třeba vyřešit problém, jak zvolit jo tak, aby se při výše po-

psané volbě posloupnosti К první index posledního prvku posloupnosti
H nalezený pomocí vztahu ii = jo Ф {L — 1 — K[L]) skutečně rovnal
hodnotě vypočítané v proceduře Zarad (^[LjdivlO + Я[L]modlO)
mod N). Pro operaci Ф platí a mod iV — (а ф 6) ф (—6), a tedy pokud
íl = jo Ф (L - 1 - K[L]), potom

jo = *o Ф {—{L — 1 — K[L])).

Zbývá určit, jak z hodnoty prvního indexu ij vypočítat hodnotu prvku
posloupnosti H[j]. Je zřejmé, že bude-li mít prvek hodnotu 10ij, určitě
bude jeho index ij. Prvky posloupnosti H však mají být nenulové a na-
vzájem různé. Proto к j-tému prvku ještě připočítáme číslo jN. Kdyby
se takto vypočítaná hodnota náhodou rovnala číslu G, odečteme od něj

1 Viz proceduru Zarad.
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číslo 9 (tím bude H[j] mod 10 = 1, ale hodnota #[j]divl0 klesne o 1,
takže součet se zachová).

Shrňme předcházející úvahy do funkce Prvek (i,j), která pro daný
první index i a pořadové číslo j určí hodnotu H[j]

Funkce Prvek (i,j)
• Jestliže j = L vrať G, jinak
• jestliže Юг + jN = G vrať Юг + jN — 9
• jinak vrať Юг + jN

Na závěr uveďme přehledný zápis celého algoritmu tak, jak byl popsán
výše:
1. Jestliže L > N nebo Ck > \L(L — 1), posloupnost neexistuje, jinak

pokračuj bodem 2.
2. m := [|(l + y/1 + 8Ck)J, podle hodnoty m urči K[L\:

• pokud m — L, K[L\ := L — 1
• pokud m + 1 = L, K[L\ := Ск — \m{m — 1)
• pokud in + 1 < L, K[L] := 0

a jo-= i0 *(-(£-1-A'[i])).
3. K[i\ := Prvek (0, i) pro i = 1,2,..., m
4. jestliže m + 1 < L, potom /v [m + 1] := Prvek (m — Ck +

+ \m(m — 1), m + 1)
5. К [i] := Prvek (jo ф (г — 1), г) pro г = m + 2,..., L

Oasová složitost algoritmu je lineární (0(Ar)), paměťová konstantní
(0(1)), neboť hodnoty К [i] můžeme přímo vypisovat.

P - I - 3

Řešení nepředstavuje prakticky žádné vážnější problémy.
/

P - I - 4

a) Řešením je DOL systém ({a}, {a —У a}, a4).
Tvrzení: V n-tém kroku je tvar slova a4, a tedy f(n) = 4.
DŮKAZ: Pro гг = 1 tvrzení zřejmě platí.
Nechť dále wn = a4. Potom se uplatněním pravidla změní každé pís-

měno a na a, a tedy wn+1 = a4, čímž je tvrzení dokázáno.
b) Řešením je DOL systém ({a, 6}, {a -> o, b -> ab), 6).
Tvrzení: V n-tém kroku je tvar slova an-16, a tedy /(гг) = гг
DŮKAZ: Pro n = 1 tvrzení zřejmě platí.
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Nechť dále wn = an-16. Potom se uplatněním pravidel změní každé
písmeno a na a a písmeno b na ab, a tedy wn+1 = an-1ab = an6, čímž je
tvrzení dokázáno.

c) Řešením je DOL systém ({a, 6}, {a -» a, b -» a36},a4b).
Tvrzení: V n-tém kroku je tvar slova a3n+1b, a tedy /(n) = 3n + 2.
DŮKAZ: Pro n = 1 tvrzení zřejmě platí.
Nechť dále wn = a3n+lb. Potom se uplatněním pravidel změní každé

písmeno a na a a písmeno b na a36, a tedy wn+1 == a3n+1a3b = a3^n+1^+1b,
čímž je tvrzení dokázáno.

d) Řešením je DOL systém ({6, c, d}, {b —У b,c —» bc, d —> bc2d}, d).
Tvrzení: V n-tém kroku je tvar slova c2(n-1)d, a tedy f{n) =

= (n — l)2 + 2(n — 1) + 1 = n2.
DŮKAZ: Pro n = 1 tvrzení zřejmě platí.
Nechť dále wn = c^71-1) d. Potom po uplatnění pravidel bude

c2^n~^bc2d = bn2c2nd, čímž je tvrzení dokázáno.wn+1 =

Poznámka. Ukážeme ještě postup, jak je možné tento DOL systém
sestrojit. Platí:

(n + l)2 — n2 = 2n + 1.
To znamená, že při přechodu od n-tého к (n-f l)-mu slovu musí „přibýt"
2n + l písmenek. Kdybychom tedy našli systém, který má růstovou funkci
/(n) = 2n + 1, potom by stačilo, aby každé jeho písmenko v každém
kroku vygenerovalo nějaké „neutrální" písmenko (tj. písmenko, které se
v dalších krocích mění už jen samo na sebe). Takový stroj ale lehce se-

strojíme: ({c, d}, {c -> c, d -» c2d}, d) — důkaz tu nebudeme dělat, neboť
je naprosto analogický s důkazy předcházejících tvrzení. Potom náš stroj
bude vypadat takto: ({6, c, d}, {b —> b, c —» bc, d —> bc2d}, d).

Tento postup je možné rovněž použít jako důkaz správnosti, v mnoha
případech je však jednodušší vzniklý DOL systém dokázat indukcí (viz
výše). Ve skutečnosti ke konstrukci DOL systému v případě e) byl použit
obdobný postup.e)Řešením je DOL systém ({b, c, d, e,/}, {b -> 6, c —> bde5/, d —>
-> 6d, e —>• bde,f —>• bde6 f},ck).

Tvrzení: Pro n ^ 2 je tvar slova frM™-1)3^fc(3n2-9n+7)efc(6n-7)yfc jejj_
•kož /(1) = fc, je /(n) = fcn3 (k((n— l)3 +3n2 — 9n + 7 + 6n — 7+1) = A:n3 у

pro n ^ 2).
Důkaz: Pro n = lan = 2 tvrzení zřejmě platí.
Nechť tvrzení platí pro nějaké n ^ 2. Potom

Wn = ^(n-l)3rfA:(3n2-9n+7)efc(6n-7) yfc
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a po uplatnění pravidel

^A:(n-l)3^fe(3n2-9n+7)^fc(3n2-9n+7)^A:(6n-7)
^fc(6n—7)gfc(6n—7)^fe^feg6fcyfc
^fcn3^fc(3n2—3n+l)gfc(6n—1) jk

_ ^fcn3^(3(n+l)2-9(n+l)+7)efe(6(n+l)-7) jk

^n+1 —

čímž je tvrzení dokázáno.

P - II - 1

Uvažujme v naší soustavě souřadnic pás trojúhelníků, který je vymezen

ж-ovými souřadnicemi x ai + 1. Vezmeme průnik tohoto pásu s hranicí
našeho n-úhelníku. Každé hraně n-úhelníku uvnitř pásu přiřadíme směr
podle toho, v jakém pořadí byly zadány jejrkrajní body. Dostaneme tak
soustavu hran jednotkové délky, přičemž
• Počet hran je sudý (pokud projdeme přes tento pás doprava, potom

abychom n-úhelník uzavřeli, musíme přes tento pás přejít také doleva
a naopak).

• Je-li směr některé hrany doleva, směr nejbližší nižší a vyšší hrany je
doprava a naopak.

• Nejvyšší a nejnižší hrana vede ve všech pásech (tzn. pro všechna x)
stejným směrem, přičemž nejvyšší hrana vede opačným směrem než
nejnižší hrana.
Plocha průniku pásu a našeho n-úhelníku je zřejmě rovna součtu

ploch ohraničených nejvyšší hranou a druhou nejvyšší hranou, třetí
a čtvrtou nejvyšší hranou, ..., druhou a první nejnižší hranou. Před-
pokládejme nyní, že nejnižší hrana vede doleva. Potom plochu průniku
n-úhelníku a našeho pásu spočítáme tak, že plochu v pásu „pod“ hranou
vedoucí doprava vždy přičítáme a plochu „pod“ hranou vedoucí doleva
odčítáme.

Toto však nemusíme provádět po jednotlivých pásech. Nejprve polo-
žíme plocha := 0. Nechť у je výška aktuálního bodu n-úhelníku. Jestliže
další bod leží napravo dole (relativní souřadnice (1,-1)), připočítáme
к ploše 2y — 1, pokud je napravo (relativní souřadnice (1,0)), přičteme
2y. Jestliže je další bod nalevo nahoru (relativní souřadnice (—1,1)), ode-
čteme od plochy 2y + 1, pokud je nalevo (relativní souřadnice (-1,0)),
odečteme 2у. V ostatních případech (relativní souřadnice (0,1) a (0, —1))
nepřipočítáváme nic, neboť tyto hrany neprotínají žádný pás.
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Co se stane, jestliže byla orientace hran opačná, než jsme předpoklá-
dali? Potom dostaneme záporné číslo a jeho absolutní hodnota je rovna

ploše ír-úhelníku.
Poznámka: V předcházející úvaze jsme předpokládali, že se celý

n-úhelník nachází jen nad osou x. Je však jasné, že algoritmus zůstává
beze změny, i když bude n-úhelník ležet celý nebo částečně pod osou x.

Správnost algoritmu je zřejmá z předcházejících úvah. Časová složi-
tost algoritmu je O(n), paměťová 0(1).

P - II - 2

a) Označme h(x) := (a: mod 10 + x div 10) mod A. Funkce Vyhledej
při hledání prvku x postupně prohlíží prvky pole P s indexy h(x), (h(x) +
+ 7) mod A, (h(x) + 14) mod A, ..., {h(x) + 71) mod A. Skončí, když
nastane jedna z těchto tří možností:
• najde hledaný prvek x
• najde prvek menší než x
• najde prázdné políčko (prvek s hodnotou 0).

Pokud nastala první možnost, prvek se v poli nachází, jinak v poli
není. N ci 7 jsou nesoudělná čísla. Z toho vyplývá, že pro každé i £
G {0,1,..., A — 1} existuje j € {0,1,..., A — 1} takové, že i = (h(x) + 7j)
mod A. V poli je aspoň jedno prázdné políčko (M < A), a proto l bude
vždy menší než A.

Nechť se v poli P prvek x nachází na místě s indexem i. Nechť j £
€ {0,1,..., N — 1} je takové číslo, že i = (h(x) + 7j) mod N. Aby funkce
Vyhledej prvek x našla, musí platit, že prvky s indexy h(x), (h(x)+ 7)
mod A”, (h(x) + 14) mod A, ..., (h(x) 4- 7(j — 1)) mod A budou větší
než x.

b) Pokud do tabulky chceme uložit prvek x, postupujeme opět po

posloupnosti indexů h(x), (h(x) + 7) mod A, (h(x) + 14) mod A, ..

(h(x) + 71) mod A tak dlouho, až najdeme prvek menší než x nebo
prázdné políčko. Jestliže jsme našli prázdné políčko, prvek x tam mů-
žeme uložit a funkce Vyhledej ho jistě najde, neboť před ním bude pro-
hledávat jen větší prvky. Pokud však je na tomto místě prvek s hodno-
tou ух (yx < x), uložíme sem prvek a:. Při hledání prvku yx se předtím
funkce Vyhledej zastavila na indexu (h(x) + 71) mod A, ale tam je nyní
prvek x větší než yx, takže funkce bude pokračovat dále po indexech
(h(x) + 7(1 + 1)) mod A,..., (h(x) + 7lx) mod A. Prvek yx uložíme na
místo (h(x) + 7lx) mod A. Jestliže tam předtím bylo prázdné políčko,

• í
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skončíme, jestliže tam byl prvek y2 (ž/2 < yi), opět postupujeme dále po
indexech (h(x) + 7(li + 1)) mod N,..., (h(x) + 7/2) mod N. Toto opaku-
jeme, dokud nenajdeme prvok у*,, který se již uloží na prázdné políčko.
Na základě tohoto postupu můžeme sestavit proceduru Zarad:

procedure Zarad(X:integer);
var i:integer;
begin

i:=(X mod 10 + X div 10) mod N;
while P[i]<>0 do begin

if P[i]<X then

{i:=h(X)}

{našli jsme menší prvek}
{vymění hodnoty P[i] a X}
{posuneme se dále}

swap(P[i],X);
i:=(i+7) mod N;

end;
P Ci]:=X; {na volné políčko uložíme X}

end;

Procedura Zarad vždy skončí, neboť M < N, a tedy v poli je ně-
jaké políčko Р[г], které je prázdné, a pro i existuje j tak, že {h(x) + 7j)
modiV = i. Proto nejpozději po j průchodech cyklus while skončí. Po
provedení procedury všechny prvky, které v poli P byli, v něm zůstanou
(i když možná na jiných místech) a přibude pouze prvek x. Současně
pro každý index i (0 ^ i < N) platí, že hodnota P[i\ před provedením
procedury Zarad(x) je menší nebo stejná jako hodnota P[i\ po provedení
procedury. Nechť tedy po provedení procedury Zarad(x) spustíme funkci
Vуhledej (y). Mohou nastat tyto možnosti:
• Prvek у se v poli P nenachází. Funkce Vyhledej(y) nemůže nalézt

něco, co v poli P není, a proto vrátí správný výsledek.
• у = x. V tomto případě už z popisu algoritmu vyplývá, že funkce

Vyhledej prvek x najde.
• у Ф x, у se nachází v poli P a jeho poloha se během výpočtu pro-

cedury Zarad(x) nezměnila. Předtím funkce Vyhledej prohledávala
indexy h(y), (h(y) + 7) mod N,..., (h(y) + 71) mod N. To znamená,
že pro každé г, 0 ^ i < /, platilo P[(h(y) + 7i) mod N] > y. Protože
se hodnota žádného prvku z P během provádění Zarad(x) nesnížila,
platí to i nadále a proto Vyhledej(y) bude prohledávat stejné indexy
a úspěšně у najde.

• у Ф x, у se nachází v poli P a jeho poloha se během výpočtu
procedury Zarad(x) změnila, tj. je to jeden z prvků t/i, y2,..., yk-
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Nechť předtím Vyhledej prohledávala indexy h(y),(h(y) -f 7)
mod AT,, (h(y) + 7l) mod N. Ze stejných důvodů jako v předcházejí-
cím případě ani nyní neskončí dříve, ale na místě s indexem (h(y) + 7l)
mod N je nyní prvek větší než у, a proto funkce bude pokračovat dále.
Z popisu algoritmu však vyplývá, že prvek, na kterém se prohledávání
zastaví, je právě hledaný prvek y.

P - II - 3

Celkový posun pera je součtem jednotlivých vektorů určených vstupní
posloupností. Když starší kreslicí zařízení udělá pohyb o jednotku delší
nebo kratší, je to to totéž, jako kdyby se kromě určeného vektoru posu-
nulo ještě o jednotkový vektor ve směru nebo proti směru svého natočení.
Protože sčítání vektorů je komutativní, představme si, že se tyto posuny
o jednotkové vektory provedou všechny až nakonec. Nechť množina A
je množina obsahující ke každému vektoru ze vstupní posloupnosti dva
navzájem opačné jednotkové vektory (ve směru a proti směru tohoto vek-
toru). Naší úlohou tedy je vybrat z množiny A podmnožinu, jejíž součet
je co nejdelší. Vybraná podmnožina může být libovolná (zařízení se sice
vždy posune nejvýše o jeden z dvojice navzájem opačných vektorů, ale
pokud bychom vybrali oba, je to totéž, jako kdybychom nevybrali ani
jeden z nich).

Podmnožina s největším součtem jistě obsahuje z každé dvojice opáč-
ných vektorů právě jeden. To lehce dokážeme sporem: nechť vektor (x, y)
je součtem podmnožiny s největším součtem, která neobsahuje ani jeden
z jednotkových vektorů (xi,yi) a (—xi, —y\). Potom ale jeden z vektorů
(x + x\, у + yi), (x — xi,y — yi) je určitě delší než vektor (x, y). Platí, že
xl+yf = l a jedno z čísel \ + 2(xx\ +yyi), l — 2(xxi+yyi) je určitě klad-
né. Délka vektoru (x + rri, у + y\) je \Jx2 + y2 + x2 -f y\ + 2(жж1 + yyi)
a délka vektoru (x — x\, у — yi) je x2 -t- y2 + x\ -f y\ - 2{xx\ + yyi)-
Jedna z těchto délek je tedy jistě větší než délka vektoru (x,y), která
je rovna \Jx2 4- y2. Proto vektor (x,y) není vektor s největší možnou
délkou. Podobně se dá zdůvodnit, že pokud A obsahuje více stejných
dvojic vektorů, do podmnožiny s největším součtem se vybere z každé
dvojice stejný vektor. ' _

Nyní dokážeme následující větu: Hledané řešení obsahuje všechny vek-
tory z A ležící v jedné polorovině určené některou přímkou vedoucí bodem
(0,0). Jsou-li některé dvojice vektorů rovnoběžné s přímkou, vyberou se

vektory v jednom směru.
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DŮKAZ: Nechť (я, у) je součet podmnožiny s nejdelším součtem, nechť
přímka p je kolmá na (x,y) a prochází bodem (0,0). Nechť (Xi,y\) je
libovolný vektor z poloroviny, v níž se nachází (x, у). Potom úhel vektorů
(zi, Ví) а (z, у) je nejvýše 90 stupňů. Proto délka vektoru (x + xi, у + y\)
je větší než délka (x, у) (podle kosinové věty). Pokud by naše podmnožina
neobsahovala některý z vektorů z této poloroviny, její součet se přidáním
tohoto vektoru tudíž prodlouží, takže by nemohla být hledaným řešením.
Jestliže by naopak obsahovala některý vektor z opačné poloroviny, jeho
ubrání je totéž jako přidání vektoru к němu opačného (který je už z naší
poloroviny), a to opět prodlouží součet.

Nechť ai, a2> • • •, a^n jsou jednotkové vektory z množiny A uspořádané
podle směru (vektor ai+n je opačný к vektoru аг- pro 1 ^ i n). Vezměme
dva sousední vektory z takto setříděné posloupnosti. Poloroviny určené
všemi přímkami procházejícími „mezi“ těmito dvěma vektory obsahují
stejnou podmnožinu vektorů z A, a proto stačí uvažovat jen přímky se

směry vektorů z A. Polorovina určená přímkou ve směru vektoru a; ob-
sáhuje vektory аг-,а;+1,..., ai+n_i, 1 i ^ n. Stačí tedy určit všechny
takovéto součty a vybrat z nich největší. To lze provést pro již setříděnou
posloupnost vektorů v čase 0(n).

Vzhledem к tomu, že směry vektorů určených vstupní posloupností
jsou celé čísla od 0 do 359, můžeme je uspořádat v čase 0(n) přihrádko-
vým tříděním, tj. pro každý ze směrů spočítáme, kolik vektorů je v tomto
směru. Máme-li l jednotkových vektorů téhož směru, můžeme je považo-
vat za jeden vektor délky l. Stačí dokonce použít jen pole od 0 do 179,
neboť vektor se směrem j a vektor к němu opačný se směrem j + 180°
mají stejnou délku.

P - II - 4

a) Dokážeme sporem, že není možné sestrojit požadovaný DOL sys-
tém. Nechť existuje DOL systém s růstovou funkcí nn. Vezmeme к rovné
maximální hodnotě z délek pravých stran pravidel. Z toho vyplývá, že
máme-li v г-tém kroku slovo délky гг, v i + 1-ním kroku může náš DOL
systém vygenerovat slovo délky nejvýše kil. Uvažujme nyní slovo Wk■
Jeho délka je kk. Pro délku slova Wk+i potom musí platit

|wfc+i| < k\wk\ = kkk = kk+1 < (k + l)fc+1,

což je spor, neboť délka slova Wk+i má být (к -I- l)fc+1.
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b) řešením je DOL systém ({&, c, d},{6 -* b2,c -» b2c2,d -4
-» 62c4d2}, dd).

Tvrzení: V n-tém kroku je tvar slova (b(n-1)2c2(n-1)d)2nJ a tedy
/(n) = 2n((n - l)2 + 2(n - 1) + 1) = 2nn2.

DŮKAZ: Pro n = 1 tvrzení zřejmě platí.
Nechť dále wn = Ь2П(<п~1^ c2 2(n-1)<i2 . Potom po uplatnění pravidel

bude wn+\ = (č/71-1)262(n+1)c2^n~l^bc2d — b71*c2nd)2n+1, čímž je tvrzení
dokázáno.

P - III - 1

Uvažujme v naší souřadnicové soustavě vodorovný pás trojúhelníků,
který je vymezen y-ovými souřadnicemi у а, у+1. Jestliže vezmeme stranu
mnohoúhelníku s procházející tímto pásem s koncovými body [xi,y],
[x2, у + 1], jistě platí, že :ri = X2 nebo x\ + 1 = x2. Pokud známe součet
X\ + x2, dokážeme určit x\ a, x2: x\ = LICd + U2)J, xi — \\{%i + ^2)]-
Proto můžeme každou stranu, která není vodorovná, jednoznačně popsat
uspořádanou dvojicí čísel (г,i), kde i = £1 + x2 a j = y. Dvojici (г,i)
budeme nazývat souřadnicemi strany. Mějme stranu s se souřadnicemi
konců [xi,y], [x2,y+l] a stranu s' se souřadnicemi konců [x[, y], [or^y+l],
přičemž strana s je nalevo od strany s'. Potom část pásu ohraničená
stranami s a s' je lichoběžník nebo v krajním případě trojúhelník a jeho
obsah S = (x'-l — xi) + (x'2 — x2) (první sčítanec určuje počet jednot-
kových trojúhelníků, které mají jednu ze svých stran na spodní přímce
pásu, druhý počet těch, které mají jednu ze stran na horní přímce pásu).
Po úpravě dostaneme vztah S = (x[ +x'2) — (x\+x2), což už je vyjádření
přímo pomocí souřadnic stran.

Mějme nyní dva mnohoúhelníky А а В a zkoumejme průnik А, В
a našeho vodorovného pásu. Tento průnik se bude zřejmě skládat z li-
choběžníků (příp. trojúhelníků) ohraničených stranami mnohoúhelníků.
Bod pásu patří do průniku, je-li nalevo od něj lichý počet stran A a záro-
veň lichý počet stran B. Tedy začátkem nějakého takovéhoto lichoběžníku
bude strana, od níž vlevo je sudý počet stran jejího vlastního mnoho-
úhelníku a lichý počet stran druhého mnohoúhelníku. Naopak koncem
takového lichoběžníku bude strana, od níž vlevo je lichý počet stran její
vlastního a lichý počet stran druhého mnohoúhelníku. Strany mnoho-
úhelníků, které procházejí jedním pásem, můžeme setřídit zleva doprava,
tj. podle jejich první souřadnice. Potom jediným průchodem přes utřídě-
nou posloupnost stran jednoduše spočítáme plochu průniku.
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Algoritmus je tedy následující: setřídíme strany obou mnohoúhel-
níků podle pásu, ve kterém se nacházejí (podle jejich druhé souřadnice),
přičemž vodorovné strany můžeme vynechat. Strany téhož pásu setři-
dime zleva doprava (podle první souřadnice). Potom procházíme zároveň
oběma seznamy setříděných stran a hledáme strany, které jsou začátky
nebo konci lichoběžníků, a jejich první souřadnice odpočítáváme nebo
připočítáváme к celkovému součtu.

Zbývá ještě popsat realizaci třídění. Je třeba si uvědomit, že má-li
mnohoúhelník nějaké dva vrcholy s rr-ovými souřadnicemi i a j (i < j),
má také vrcholy s ж-ovými souřadnicemi i +1, i + 2,..., j — 1, neboť délka
každé strany je 1. Rozdíl maximální a minimální x-ové souřadnice mno-
hoúhelníku je tedy nejvýše N. Totéž samozřejmě platí i pro y-ovou sou-
řadnici. Proto na třídění stran použijeme algoritmus Radixsort. Strany
setřídíme nejprve podle první souřadnice a potom podle druhé, přičemž
v obou případech použijeme stabilní a lineární třídění. První souřadnice
stran jsou ale součtem dvou souřadnic vrcholů, takže rozdíl dvou souřad-
nic stran může být i dvojnásobkem rozdílu souřadnic vrcholů.

Díky lineárnímu třídění je paměťová i časová složitost algoritmu
0(N + M), kde N a M jsou počty stran mnohoúhelníků.

P - III - 2

b) Protože 7 a N jsou nesoudělná čísla, existuje l takové, že 71
modN = N — 3 aO ^ 1 < N. Platí, že l < N — 1, neboť kdyby se rovnaly,
muselo by platit (7N — 7) mod N = N — 3, což pro žádné N > 10 zjevně
neplatí.

Vkládejme do prázdného pole P procedurou Zarad postupně prvky
(/ + 2)iV, (/ + l)N,..., AN, 3N, N. Uloží se postupně v tomto pořadí na
místa 0, 7,14,..., N - 3. V poli je nyní obsazeno l + 1 míst, a tedy aspoň
jedno místo je volné. Když nyní zavoláme proceduru Zarad s paramet-
rem 2N, bude proměnná i postupně nabývat hodnot 0, 7,14,..., N — 3,
neboť na pozicích 0,7,14,..., N — 10 jsou uložena čísla větší než 2N.
Ale Р[г] = N, a proto další hodnota indexu bude opět 0. Procedura bude
proto cyklicky nabývat stále tyto hodnoty a tudíž není konečná pro každý
vstup.

a) Mějme funkci Posun, která nám vrátí další hodnotu, jakou by zís-
kal index i v proceduře Zarad (tato hodnota závisí na původní hodnotě i,
na prvku x a prvku Р[г]):
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function Posun(i:integer; x:integer):integer;
begin

if P[i]>x then

posun:=(i+7) mod N
else

posun:=(i+3) mod N;
end;

V určitém stavu pole P chceme vyhledat prvek x. Definujme (neko-
nečnou) posloupnost indexů ho, h\, /12, • •kde ho = x mod N a hi+1 =
= Posun(hi,x).

Mohou nastat tři případy:
1. Prvek x se v poli P nachází. Všimněte si, že procedura Zarad mění

jen hodnoty nulových prvků pole P. Hodnoty na indexech, přes které
přecházela procedura Zarad(x), se tedy nezměnily. Jsou to indexy
ho, hi,..., hk, kde к je nejmenší číslo takové, že P[hk] = x.

2. Prvek x se v poli nenachází a procedura Zarad by ho zařadila na
volné místo P[i]. Při tomto zařazení by procedura prohlédla prvky P
s indexy ho,hi,. ,hk, kde к je nejmenší číslo takové, že P[hk] = 0
(resp. že i = hk)-

3. Prvek x se v poli P nenachází a procedura Zarad pro vstup x neskončí.
Také v tomto případě by procedura prohlédla indexy ho, hi,.... Nechť
к je nejmenší číslo takové, že existuje l < к takové, že hi = hk. Potom
posloupnost {hn} začíná indexy ho, h\,..., ů/_i a potom se už stále
periodicky opakují indexy hi, hi+1,..., hk-i-
Funkce Vyhledej tedy rozpoznává tyto tři případy, v prvním případě

vrátí hk a ve druhých dvou —1. V prvních dvou případech stačí postupně
vypočítávat indexy hn, dokud nenajdeme 0 nebo x. Jestliže ale chceme
zjistit, zda nenastal třetí případ, potřebujeme ověřit, jestli se právě vy-

počítaný index hn už předtím v posloupnosti nevyskytoval. Budeme se

po poli posunovat se dvěma indexy i aj, každý bude postupně nabývat
hodnot posloupnosti hn. Index i ale budeme posouvat „rychleji14. Když
i nabyde hodnoty hn, tak hodnota j bude h[n/2]. V případě, že se in-
dexy v posloupnosti periodicky opakují, po jistém čase bude platit i = j.
V okamžiku, kdy j nabyde poprvé hodnoty hi, i se nachází také někde
v cyklu. Po každém posunu j se vzdálenost i a j zmenší o 1, neboť index
i se mezitím posunul dvakrát, a tak vlastně „dobíhá11 index j. Proto se
index j posune nejvýše к-krát, a jelikož i se posouvá dvakrát tak často,
celkový počet posunů je nejvýše Зк.
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function Vyhledej(x:integer);
var i,j,výsledek:integer;

menit_j:boolean;
begin

výsledek:=0;
i:=x mod N;

j:=i;
menit_j:=false;
while vysledek=0 do

if P[i]=x then

{výsledek ještě neznáme}
{první index}

{dokud neznáme výsledek}
{našli jsme x}

výsledek:=i
else if P[i]=0 then

výsledek:=-l
else begin

i:=posun(i,x);
if menit_j then begin

j:=posun(j,x);
if j=i then výsledek:=-l;

{x v poli není}

{posuneme i}
{je-li třeba, posuneme j}

{i a j se setkaly - cyklus}
end;

menit_j:=not menit_j;
end;

Vyhledej:=vysledek;
end;

P - III - 3

a) Dokážeme sporem, že není možné sestrojit požadovaný DOL sys-
tém. Nechť tedy existuje DOL systém s růstovou funkcí n2. Nechť má
tento DOL systém pouze jedno pravidlo. Potom toto pravidlo musí mít
tvar a —>■ a1 a w\ — a, neboť |iei| = /(1) = 1. Pro W2 platí W2 = á1
a |iu2| = /(2) = 4. Z toho vyplývá, že i = 4. Ale pak pro platí

a*2 a |iu3| = /(3) = 9. Dostáváme tedy, že 9 = i2 = 42 = 16, což jew3 =

spor.
Náš DOL systém musí tedy mít alespoň dvě pravidla. Nechť jsou to

pravidla a -» u, b -» v, kde u, v jsou z {a, 6}*. Bez újmy na obecnosti
můžeme předpokládat, že w\ = a. Potom W2 = и, a tudíž |u| — /(2) = 4.
Nechť slovo и obsahuje к znaků a. Potom ws = ukv4~k a platí, že
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\w3\ = /(3) = 9. Ale současně platí \w^\ = k\u\ + (4 - k)\v\ a \u\ = 4.
Dostáváme tedy rovnici 4к 4- 4|v| — k\v\ = 9. Jestliže za к postupně dosa-
dime všechny možné hodnoty (0,1,2,3,4), dostáváme pro |u| následující
rovnosti: 4|u| = 9, 4 + 4|u| — |v| = 9, 8 + 4|u| — 2|v| = 9, 12 + 4|u| — 3|v| = 9
a 16 + 4|u| - 4|u| = 9. Ani jedna z těchto rovností však nemá nezáporné
celočíselné řešení, a proto DOL systém s požadovanými vlastnostmi nee-
xistuje.

b) DOL systém s požadovanými vlastnostmi neexistuje. Dokážeme to
opět sporem. Nechť tedy existuje DOL systém s fc-prvkovou abecedou
a růstovou funkcí /(n) = L^°gfc+i(n + 1)J +

Nechť m >1. Označme щ nejmenší takové číslo n, pro které f(n) =
= m,an2 největší takovéto číslo. Potom ni = (k + l)m_1 - 1 a n2 = {k +
+ l)m — 2. Tedy všechna slova w s indexem щ, w s indexem ni +1, ..., w
s indexem П2 mají délku m. Jejich počet je П2 — ni +1 = k(k +1)771-1. Ale
různých slov délky m je km a km < k(k + l)m_1. Proto určitě existují
čísla i,l > 0 taková, že Wi = Wí+i. Když ale ze slova W{ vznikne po l
krocích opět Wi, úsek Wí,Wí+i, ... ,wi-1 se bude i dále stále periodicky
opakovat. Tedy DOL systém vyprodukuje nekonečně mnoho slov délky m,
což je spor, neboť takových slov má být П2 — ni + 1.

P - III - 4

Budeme nejprve řešit trochu obecnější úlohu: předpokládejme, že na za-
čátku nemusí být všechny lampy vypnuté. Stav lamp si budeme parna-
tovat v poli l, kde l[i] = true, pokud je i-tá lampa zapnutá a l[i] = false,
jestliže je vypnutá. Řešením této úlohy budeme rozumět takovou pod-
množinu přepínačů, že pokud je všechny přepneme, všechny lampy budou
zapnuté. Pokud N = 0, řešením úlohy je zřejmě prázdná množina. Nechť
tedy N > 0. Mohou nastat dva případy:

1. /[1] = false.
Jestliže žádný interval nezačíná lampou 1, úloha zjevně nemá řešení.
V opačném případě najdeme nejkratší interval, který začíná lampou 1
(nechť jeho konec je b). Změníme všechna l[i] z tohoto intervalu na opačná
a všem intervalům, které začínají lampou 1, změníme začátek na b +
+ 1 (intervaly, které se tím stanou prázdnými, už dále neuvažujeme).
Dostáváme tak novou úlohu pro lampy 2,3,..., N, která má řešení právě
tehdy, má-li řešení původní úloha.

Důkaz: Nechť pozměněná úloha má řešení R. Potom když přepneme
lampy z původní úlohy přepínači z R, budou svítit jen lampy s čísly
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většími než 6. Nechť R obsahuje к intervalů, kterým jsme začátek změnili
z 1 na b + 1. Nechť R' vznikne z R tak, že těmto intervalům změníme
začátek zpět na 1. Jestliže je к liché, každou lampu z intervalu (1,6) jsme
oproti řešení R přepnuli ještě lichý počet krát, tedy zůstane zapnutá.
V tomto případě je tedy i?’ řešením naší původní úlohy. Pokud je к sudé,
lampy z intervalu (1,6) zůstanou vypnuté a proto к R' je třeba ještě
přidat interval (1,6). Naopak, nechť naše původní úloha má řešení R.
Počet intervalů z R, které obsahují lampu 1, je jistě lichý. Když všem
těmto intervalům změníme začátek na 6 + 1 a vyhodíme intervaly nulové
délky, dostaneme řešení změněné úlohy.

2. /[1] = true
Protože lampa 1 už svítí, není třeba, aby se dala nějakým přepínačem
přepnout. Jestliže neexistuje interval, který začíná lampou 1, úloha má
řešení právě tehdy, má-li řešení úloha pro lampy 2,3,,N a stejnou
množinu intervalů. Pokud existuje interval, který začíná lampou 1, opět
z nich vezmeme nejkratší, změníme začátky intervalů stejně jako v před-
chozím případě, ale neměníme hodnoty pole l. Takováto pozměněná úloha
má opět řešení právě tehdy, když má řešení původní úloha.

* Důkaz je obdobný jako v případě, kdy /[1] = true (uvědomte si však,
že počet intervalů, které obsahují lampu 1, musí být tentokrát samo-

zřejmě sudý).
Naším úkolem však není nalézt řešení, ale pouze zjistit, zda nějaké

řešení existuje. Je proto třeba na začátku nastavit všechny prvky pole l na
false a podle uvedených úvah postupovat od první lampy až do poslední,
přičemž modifikujeme pole l a začátky příslušných intervalů. Dostáváme
tak algoritmus s časovou složitostí O(NM) a paměťovou 0(N + M).

P - III - 5

Je důležité uvědomit si, že můžeme jít jen směrem na východ nebo na

jih. Abychom se dostali z křižovatky (1,1) na křižovatku (M, N), musíme
přejít o M—1 ulic na jih a o N—1 ulic na východ. Je jedno, v jakém pořadí
střídáme směry, počet křižovatek, kterými projdeme, je vždy M 4- N — 1.

Počet různých cest také spočítáme jednoduše. Označme a[i,j] počet
různých cest z (1,1) do (i,j). Pokud se křižovatka (i,j) opravuje, po-
ložíme a[i,j] — 0. Na libovolnou křižovatku ležící na východozápadní
ulici číslo 1 (tj. na nejsevernější ulici) se můžeme dostat nejvýše jedním
způsobem, a to tak, že půjdeme stále na východ. Jestliže se však opravuje

I
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vozovka někde mezi touto křižovatkou a křižovatkou (1,1), nemůžeme se
tam dostat vůbec. Totéž platí i pro severojižní ulici číslo 1.

Uvažujme nyní křižovatku (i, j), kde i,j > 1 a tato křižovatka se neo-

pravuje. Na tuto křižovatku můžeme přijít buď z křižovatky (г—1, j), nebo
z křižovatky (i,j — 1). Jestliže tedy známe hodnoty a[i — 1 ,j] a a[i, j — 1],
pak a[i, j] = a[i — 1, j]+a[i,j — 1]. Nazákladě této úvahy můžeme sestrojit
algoritmus, který bude postupně po řádcích vyplňovat pole a. Nakonec
budeme mít v a[M, N] počet různých cest z (1,1) do (M, N). Je-li tento
počet roven 0, žádná taková cesta neexistuje.

Vzhledem к tomu, že musíme vyplnit celou tabulku velikosti M x
x N a pro výpočet hodnoty každého políčka vykonáme konstantní počet
operací, časová složitost algoritmu je O(MN).
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Korespondenční seminář ÚV MO 1995/96

Ani v tomto ročníku matematické olympiády se nepodařilo rozběhnout
korespondenční seminář ÚV MO způsobem obvyklým v dřívějších letech.
Po roce 1990 bohužel ubylo času i ochotných spolupracovníků, a tak se

podařilo rozeslat jen dvě sedmice úloh, které uvádíme dále.
Korespondenční seminář by měl i nadále zůstat součástí péče o ta-

lentované studenty a zejména pak přípravy těch nejlepších na meziná-
rodní matematickou olympiádu. Je to jedna z mála možností, jak naše
úspěšné řešitele zásobovat originálními a obtížnými úlohami z materiálů
jury MMO a z jiných národních olympiád, a zkvalitnit tak jejich indivi-
duální přípravu.

Úlohy korespondenčního semináře1.1Pro libovolná dvě nezáporná celá čísla o, 6 a celé číslo c takové, že
ab ^ c2, existuje přirozené n a celá čísla x\, X2,.. •, xn, у i, г/2, • • • > Уп tak,
že platí

x2i = a’ 5ZУi ~ 6’ 51XiVi = c.

i=l i= 1 i= 1

Dokažte.1.2Označme Ко množinu všech nenulových reálných čísel. Zjistěte, zda
existuje funkce /: Ко —»■ Ко, která současně splňuje následující tři pod-
minky:
a) existuje kladné číslo M takové, že — M ^ f{x) M pro každé x £ K0; •

b) /(1) - 1;
c) pro každé x Ф 0 platí

/(*+^) = /w + (/0)1.3V rovině je dán ostroúhlý trojúhelník ABC. Zvolme na straně BC
body Ai, A2 (A2 mezi A\ a C), na straně AC body Вi, B2 {B2 mezi B\
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а Л) a na straně AB body C\, C2 (C2 mezi C\ а В) tak, aby

I < AA\ A21 = I < AA2A\1 — |< BB\B2\ — I <5.02 .f?i| =

= KCCjCjI = |4CC2C!|.

Přímky AAx, BB\ a CC\ ohraničují jeden trojúhelník, přímky AA2, BB2
a CC2 ohraničují druhý trojúhelník. Dokažte, že šest vrcholů uvedených
trojúhelníků leží na jedné kružnici.

1.4 Nechť к je kladné celé číslo. Dokažte, že existuje nekonečně mnoho
druhých mocnin přirozených čísel, jež jsou tvaru 2kn — 7, kde n je přiro-
zené.

1.5 Nechť N označuje množinu všech přirozených čísel. Dokažte, že exis-
tuje jediná funkce f:N->N taková, že

f(m + f(n)) = n + f(m + 95)
19

pro všechna m a n z N. Jaká je hodnota součtu /(&)?
к—11.6Označme G těžiště daného čtyřstěnu А\А2А^А^ a A[, A'2, A3, A'a

průsečíky polopřímek A\G, A2G, A3G a A4G s opsanou mu kulovou
plochou. Dokažte, že

IGAxI ■ \GA2\• |G4>| • \GAi\ i \GA\\■ \GA'2\ ■ \GA'3\ ■ \GA\\

a

1 1 1 1^1 1 1 1
\GA\\ + \ОЩ + \GA'3\ + \GA't\ = |СЛ,| + |СЛ2| + \GM +

1.7 Najděte všechna přirozená čísla x а у taková, že x + y2 + z3 = xyz,
kde z je největší společný dělitel čísel x a y.

2.1 Nechť Z označuje množinu všech celých čísel. Dokažte, že pro libo-
volná celá čísla A a, В existuje celé číslo C, pro něž je průnik množin
Мг = {x2 -1- Ах + В: x £ Z} a M2 = {2x2 + 2x + C: x 6 1} prázdný.
2.2 Během kongresu, kterého se účastní 12A; vědců, se každý z účastníků
pozdraví právě s ЗА; + 6 kolegy. Přitom pro libovolné dva ze zúčastněných
je počet lidí, kteří se pozdravili s oběma, týž. Kolik lidí se zúčastnilo
kongresu?
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2.3Dokažte, že pro libovolné celé n ^ 3 a libovolná reálná čísla X\,

xn taková, že Xi < Xí+i pro 1 й i n — 1, platíx2,.. • >

xixí > (-»>*•) (- l)xí)
i<j ' i=l / ' j=2 '

n(n — 1)
22.4Nechť a, bac jsou daná kladná reálná čísla. Najděte všechna kladná

reálná čísla x, у a z taková, že

x+y+z=a+b+c

a

4xyz — (a2x + b2y + c2z) = abc.
2.5 Nechť p je liché prvočíslo. Určete všechna přirozená čísla x a y, pro
něž x ^ у, a přitom číslo ~ \fx — Vv Je nezáporné a minimální.
2.6 Zjistěte, zda existuje posloupnost F(l)., F(2), F(3), ... nezáporných
celých čísel, která současně splňuje následující tři podmínky:
a) v posloupnosti se vyskytuje každé z celých čísel 0, 1, 2, ... ;

b) každé kladné celé číslo se v posloupnosti vyskytuje nekonečněkrát;
c) pro každé n ^ 2 platí

F(F(n163)) = F(F(n)) + F(F{361)).2.7Je dán bod O uvnitř konvexního čtyřúhelníku ABCD s obsahem S.
Dále předpokládejme, že K, L, M a N jsou po řadě vnitřní body stran
AB, BC, CD a DA. Jestliže OKBL a OMDN jsou rovnoběžníky, platí
pro obsahy Si a S2 čtyřúhelníků AKON a OLCM nerovnost

y/Š ^ y/Šl +

Dokažte.

Řešení úloh korespondenčního semináře

1.1 Pokud tvrzení úlohy platí pro čísla a, bac, pak platí i pro čísla a, b
а —c. Můžeme tedy předpokládat, že c ^ 0. Protože tvrzení je symetrické
vzhledem к číslům a a 6, můžeme dále předpokládat, že a ^ b.

Protože z nerovnosti ab ^ c2 plyne |(a + b) ^ Vab ^ c, je zároveň
zřejmé, že musí být a ^ c. Tvrzení úlohy dokážeme matematickou indukcí
podle a + b.
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Pokud a -f 6 = 0, tvrzení triviálně platí. Předpokládejme, že tvrzení
platí pro všechny trojice (a, 6, c), v nichž a + 6 ^ m, a uvažujme trojici
(a, 6,c), v níž a + b = m + 1. Pokud je nyní a ^ b ^ c, stačí zvolit
n = a + b — c & vektory x = (aji,rc2, • • • ,xn), У = (УъУ2, • • • ,yn) tak, že

6 —Ca—c

b—ca—c

Nechť nyní c > 6, což znamená, že musí být a > c. Pro trojici (a + b —
— 2c, 6, c — 6) platí (a + 6 — 2c)6 = ab + b2 — 26c ^ c2 + 62 — 26c = (c — 6)2
a zároveň (a+ 6 — 2c) + 6<a<a + 6 = m + l, takže podle indukčního
předpokladu pro trojici (a 4- 6 — 2c, 6, c — 6) existují hledané vektory x,
у a snadno nahlédneme, že vektory x + у, у vyhovují pro trojici (a, 6, c).
Tím je tvrzení úlohy dokázáno.

1.2 Předpokládejme, že taková omezená funkce existuje, a označme S =
= sup f(x). Zřejmě /(2) — /(1 + 1) = 2, tedy S ^ 2. Z vlastností

x£!Ro

suprema plyne, že existuje xo E iRo> pro něž f(xo) ^ §S. Pro takové xq
pak je

f(xo+^) =í{xo)+f&2 = Is+/(i)2’ (1)

f(í0+x°)=fd) + f{x°)2 >

> (2)+ — 5.
18

72
—:S\

7 / 1 \2

Í8s’ СШ 'U(2) tak plyne /(—) < - >Z nerovnosti

a podle (1) je
182

**5(f + Ss)žs(§ +
2 • 72 184

) = ~—S> S.
182 162

To je spor, proto požadovaná funkce / neexistuje.

Jiné řešení. Předpokládejme, že taková omezená funkce existuje,
a označme n nejmenší celé číslo takové, že f(x) ^ \n pro každé x E Ко-
Protože /(2) = 2, musí být n ^ 8.
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Zvolme x G IR o takové, že f(x) > \{n — 1). Potom

«■ '(í) 1
> --

2

a zároveň

Poslední nerovnost je ekvivalentní s nerovností n2 — 6n — 7 <0, která
je splněna jen pro n € (—1,7), což odporuje tomu, že n ^ 8. Hledaná
funkce / tedy neexistuje.

1.3 (Podle Michala Beneše.) Označme po řadě A0, B0, C0 paty výšek
trojúhelníku ABC a F jeho ortocentrum. Dále označme <p = \ *$.A\AAq\,
Кi, 21/1, Mi vrcholy trojúhelníku vymezeného přímkami AAi, BB\, CC\
a /í2, 7/2, M2 vrcholy trojúhelníku vymezeného přímkami уН42, ВН2,
CC2 (obr. 30).

i

Ci Co C2 В

Obr. 30

Z podobností trojúhelníků

ACAq ~ BCBq, ACA2 ~ HCHl

plyne
!£Ěii _

|СЛ2| |AC| sin /3
sin Q:

(1)
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Navíc pro úhly trojúhelníku KiL\Mi platí

\<BKiCx\ = it - (\<BC,K,\ + |<С1В,К1|) =

=-it- (\<BCiKi\ + \<ABBa\ + |<B0BBi|) =
/71 71 \

= *-{-2-4> + -2-a + v) = a,

tj. |<JMi/íTiLi| = a a analogicky |<J/íiLiMi| = /5, |<LiMijKi| =
= 7, takže ze sinové věty v trojúhelníku B\K\C dostaneme \CK\\ =

. Pro-
sin |<Cb42L2|sin \<$CB\Ki\

a podobně \CL2\ = \CA2\= \CBX\ sin /3sin a

tože \<$CBlK1\ = \<CA2L2\, je podle (1) \CKX\ = \CL2\. Pro-
tože ortocentrum V leží na ose rovnoramenného trojúhelníku C\C2C,
je také |V/Ti| = \VL2\. Cyklickou záměnou dostaneme další rovnosti
\VLi \ = |VM2'| a \VMi \ = \VK2\. Teď si buď všimneme toho, že přímky
AA2, BB2, CC2 jsou obrazem odpovídajících přímek AA\, BBi, CC\
v otočení se středem V o úhel к + 2ip, takže trojúhelník K2L2M2 je
v témže otočení obrazem trojúhelníku K\L\Mi a je |VXi| = |Vif2|,
a tudíž také

\VKi\ = \VLi\ = \VM,\ = \VK2\ = \VL2\ = \VM2I;

anebo si uvědomíme, že KiL2 || AB а М\Ь2 || BC, což znamená, že
|<JC2L2X2| =71-/9, takže body Кi, L\, M\ a L2 leží na kružnici.

Jiné řešení. Označme V průsečík výšek trojúhelníku ABC. Využijeme
známou vlastnost ortocentra: obraz bodu V v osové souměrnosti podle
libovolné strany trojúhelníku ABC leží ná kružnici trojúhelníku ABC
opsané. (Označme V druhý průsečík výšky CV s kružnicí к opsanou

trojúhelníku ABC (obr. 31). Protože \<$BAV\ = \<$BCV\ = — 0
a zároveň \*$BCV'\ = |<$£AV'|, jsou body V а, V souměrně sdru-
žené podle osy AB.) To znamená, že kružnice opsané trojúhelníkům
ABV, BCV a CAV mají stejný poloměr jako kružnice opsaná da-
nému trojúhelníku ABC. Označme nyní postupně X, Y, Z vrcholy
trojúhelníku vymezeného přímkami AA\, BB\, CC\ (obr.32). Protože
\<VBX\ = \<B0BB1\ = \<$C0CCi\ = \<VCX\, leží bod X na
kružnici opsané trojúhelníku BCV. Podobně leží bod Y na kružnici
opsané trojúhelníku CAV a bod Z na kružnici opsané trojúhelníku ABV.
Protože každé z tětiv VX, VY, VZ přísluší v odpovídající kružnici
stejně velký obvodový úhel \^CqCC\\ = \<$A0AAi\ = \<$.B0BBi\, je
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Bi

Бо/ х

v;
ZuA\

Yi

Ci Co В

Obr. 32

\VX\ — \VY\ = \VZ\ a bod V je středem kružnice opsané trojúhelníku
XYZ. Analogicky platí, že bod V je středem kružnice opsané trojúhel-
niku vymezenému přímkami AA2, BB2, CC2. Tím je tvrzení úlohy do-
kázáno.

1.4 (Podle Michala Beneše.) Předpokládejme, že nějakou druhou moc-
ninu lze zapsat ve tvaru 2kn — 7, kde n je liché а к ^ 3. Nyní i číslo
(2fc_1 + l)2(2fcn — 7) je druhou mocninou celého čísla a platí pro ně

(2*:-1 + !)2(2kn - 7) = (2 • 2fe_1 + l)(2fcn - 7) =

= - 7 • 2k + 2kn - 7 = -7 (mod 2k+1).
Odtud je vidět, že číslo (2fc_1 + l)2(2fcn — 7) lze zapsat ve tvaru

2lm — 7, kde l € N, / > к a m je liché přirozené číslo. Všimněme si,
že l2 = 1 • 23 — 7. To znamená, že požadovanou vlastnost mají i čísla
к G {1,2,3}, tj. pro každé к G N existují čísla í,m G N, / ^ taková, že
2zm — 7 = 2k(2l~km) — 7 je druhá mocnina přirozeného čísla.

Pokud je ale m2 tvaru 2kn — 7, pak pro každé a G N je také

(2ka + m)2 = 2k(2ka2 + 2am) + m2 =

= 2k{2ka2 -I- 2am + n) — 7.

Tedy ke každému kladnému celému číslu к existuje nekonečně mnoho
čísel, jež jsou druhou mocninou přirozeného čísla a jsou tvaru 2kn — 7
pro n přirozené.
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Jiné řešení. (Podle Tomáše Bárty.) Máme vlastně dokázat, že pro
každé přitozené к existuje nekonečně mnoho přirozených x, pro něž platí
x2 = —7 (mod 2k). Stačí dokázat, že pro každé к existuje jedno takové
Xk, kongruence bude stejná pro celou zbytkovou třídu, tj. pokud y2 = —7
(mod 2fc), pak zároveň

(y 4- 2fcn)2 = y2 + 2 • 2kny + 2k ■ 2kn2 = y2 = -7 (mod 2k).

Ukážeme to matematickou indukcí.
Pro к G {1,2,3} čísla x\ — x? = X3 = 1 splňují požadavek úlohy.

Nechť pro к ^ 3 je x\ = 2kn — 7.
a) Je-li n sudé, pak x\ = 2kn — 7 = 2k+1 ■ |n — 7, takže stačí volit

Xk+l = Xk.

b) Je-li n liché, pak (Xk + 2k~1)2 = x2k + 2 ■ 2k~lXk + 22^-1) = 2kn —
- 7 + 2kxk + 2*-22fc = 2k{n + xk+ 2k~2) - 7. Jistě xk je liché, к ^ 3,
tedy n + Xk + 2k~2 je sudé a Xk+i = Xk + 2fe_1 splňuje požadavek úlohy.
Tím je důkaz hotov.

1.5 Jestliže / je funkce, která splňuje danou funkcionální rovnici, a je
f(m) = /(n) pro nějaká m,n G ftJ, je také

+ /(1 + 95) — /(l + /(m)) — /(l + f{n)) — n + /(1 + 95),m

takže m = n. Funkce / je tedy prostá.
Z dané rovnice dále pro libovolná m, n G M plyne

/(/(m) + /(n)) = n + + 95) =
= n + m + /(95 + 95) — /(95 + f(m + n)).

Protože funkce / je prostá, dostáváme odtud rovnost

f(m) + f(n) = f(m + n) + 95

a speciálně pro m=la libovolné n přirozené

f(n) + /(!) = f{n + 1) + 95. (1)

Z této rovnosti plyne, že posloupnost hodnot /(1),/(2),/(3),... je
aritmetická s diferencí a = /(1) — 95, takže /(n) = an + Ů5, přičemž
zřejmě a > 0 (jinak by / nebyla prostou funkcí z N do N). Dosazením do
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původní rovnice vyjde a2 = 1, takže dané funkcionální rovnici vyhovuje
jedině funkce /(n) = n + 95, o čemž se snadno přesvědčíme dosazením.

Požadovaný součet je

19
19(19+1)£/(*) + 19-95 = 1995.

2
k=i

1.6 Střed koule opsané čtyřstěnu A\A2A^A4 označme S a její poloměr r.
Protože podle věty o mocnosti bodu pro 1 й i ^ 4 platí \GAi\ ■ |GA(| =
= r2 — |G5|2, je první nerovnost ekvivalentní nerovnosti

^IGAtP-IG/bP-IG^P-IG^I2 g r2 _ |GS|2
Ale podle nerovnosti mezi aritmetickým a geometrickým průměrem je

V\GAtf - \GAJř - \GAtf - \GAtf i

á-j(lGArf + \GA2\2 + |GA3p + |GA,P) = r2 - |GSp.
Poslední rovnost (která fyzikům jistě připomene Steinerovu větu) do-

staneme z následující vlastnosti těžiště G čtyřstěnu A1A2A3A4: pro pří-
slušné polohové vektory platí

— (SAi + SA2 + SA3 + SA4).SG =

Je tedy

4

£к?л,12 = £igs + s^I2 =
i= 1 2= 1

44

= 4|G5|2 + ]T \SAi\2 +2GS-J2 SAi =
2=1

= 4|G5|2 + 4r2 + 8G5 • SG =

- 4r2 - 4|G5|2 = 4(r2 - |G5|2).

2=1

Druhá nerovnost úlohy je ekvivalentní nerovnosti

|GAi| + IGA2I + IGA3I + IGA4I ^

- (r2 “ |GS|2)(jGAď + |G42| + |GAj| + |<ЗЛ4|)‘
(1)11
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Podle Cauchyovy nerovnosti je

(E \ga<\ ■A =4 E 1сл<|2 = 16<r2 - igsi2)
'г=1 i= 1

a zároveň

(t'i=l

16 =

Spojením posledních dvou nerovností dostáváme (1).
1.7 Položme у = bz (b € N). Rovnice pak má tvar

x + b2z2 + z3 = xbz2

a proto je x dělitelné dokonce číslem z2. Nechť tedy x = az2 (a € №).
Dostáváme rovnici

a + b2 + z = abz2,
N

kterou budeme řešit jako kvadratickou rovnici s neznámou b. Pro její
kořeny vychází

az2 ± \/a2z4 — 4a — Az
(1)6 =

2

Vidíme, že pod odmocninou odečítáme od druhé mocniny celého čísla
číslo řádově mnohem menší, což znamená, že pro dostatečně velké г bude
výraz pod odmocninou vždy mezi dvěma po sobě jdoucími druhými moc-
ninami celých čísel, takže nezískáme celočíselné řešení b. Ukážeme, že už
pro z ^ 3 platí

(az2)2 > a2z4 — 4(a + z) > (az2 — l)2.

První nerovnost je zřejmá. Druhá nerovnost je ekvivalentní kvadra-
tické nerovnosti 2az2 — Az — (4a + 1) >0, která je splněna pro všechna
z ^ Z2, kde Z2 je větší z obou kořenů příslušné kvadratické rovnice, pro

jejíž diskriminant D platí D = 16 -f 8a(4a + 1) ^ 16a2 + 8a • 5a = 56a2 <
< 64a2. Pro kořen z2 tak vychází

4 \[Ď
Z2 — -—I—-— <1 + 2 — 3.

4a 4a
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Z předchozích úvah vyplývá, že musí být z ú 2. Pro z — 2 je podle (1)

6=4a±'/16a^-4a-8=2a±vi^— -2.

Zřejmě (2a)2 > 4a2 — a — 2 > (2a — l)2 pro každé a > 1. Může být tedy
jedině a = 1, b E {1,3}, a tak dostáváme první dvě řešení.

Pro z = 1 dostaneme dosazením do původní rovnice

x + y2 + 1 = xy,

neboli

(y - l)x = y2 + 1 = (y - 1 ){y + 1) + 2,

tedy číslo у — 1 dělí číslo 2, neboli у E {2,3}. Tak dostáváme další dvě
řešení. Úloze vyhovují trojice

(*, у, z) S {(4,2,2), (4,6,2), (5,2,1), (5,3,1)}.

2.1 Je-li A liché, je jedno z čísel x, ж+А sudé, takže množina Mi obsahuje
jen čísla tvaru x(x + А) + B = В (mod 2), zatímco množina М2 obsahuje
čísla 2x(x + 1) + C = C (mod 2). Aby byl průnik Mi П М2 prázdný, stačí
volit С = В + 1.

Je-li A sudé, obsahuje množina Mi čísla tvaru

A2 A2((*+2) — = q + В - — (mod 4),+ B-

kde q E {0,1} jsou jediné kvadratické zbytky modulo 4. Množina М2
naproti tomu obsahuje jen čísla kongruentní s C (mod 4), takže stačí
volit С = В — ^A2 + 2. Tím je tvrzení úlohy dokázáno.
2.2 Nějakého „význačného" vědce pojmenujme A. Ostatní účastníky
kongresu rozdělíme do množin В a C podle toho, zda se s A pozdra-
vili, anebo ne. V množině В je tedy ЗА: + 6 lidí, zatímco v množině C je
zbývajících 9k — 7 vědců.

Podle zadání jsou počty lidí, se kterými se libovolní dva účastníci
pozdravili zároveň, rovny témuž číslu — označme ho n. Každý z účastníků
vyjma A se tedy musel pozdravit právě s n účastníky z množiny B. To
znamená, že se každý z účastníků patřících do В pozdravil právě s ЗА:+5 —
— n kolegy z C. Dohromady si vědci z В vyměnili právě (ЗА;+6) (ЗА; + 5 — n)
pozdravů s vědci z C. Protože i každý z vědců v C se pozdravil právě
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s n kolegy v B, vyměnili si vědci z C právě n(9k — 7) pozdravů s vědci
z B. Pro celkový počet pozdravů mezi В a C tak dostáváme rovnici

(3к + 6) (ЗА: + 5 - n) = n(9k - 7)

neboli

(3k + 6)(3k + 5) =n(12k-l).
Levá strana bude dělitelná číslem 12к — 1, právě když tímto číslem bude
dělitelný výraz

16(3к + 6) (ЗА: + 5) = 144к2 + 528k + 480 =

= (12к - l)2 + 46(12к - 1) + 525,

tj. právě když 12к — 1 | 525 = 3-7-25. Protože 3 je s číslem 12к — 1
nesoudělné, musí 12A; — 1 dělit 175. Množina všech dělitelů čísla 175 je
{1,5, 7,25,35,175} a z nich pouze 35 je tvaru 12к — 1.

Pokud se takový kongres skutečně sešel, muselo se jej účastnit 36 věd-
ců. Zbývá ukázat, že taková skupina skutečně může existovat. Uspořá-
dejme 36 osob dó čtverce 6 x 6 a rozdělme je ještě na šestice rozlišené
písmeny А, В, C, D, E, F podle následující tabulky:

А В C D E F

F А В C D E

E F А В C D

D E F А В C
C D E F А В
В C D E F A

X

Podmínkám úlohy bude vyhovovat, jestliže se pozdraví právě všichni sto-
jící v témže sloupci, všichni stojící v téže řádce a všichni označení stejným
písmenem.

2.3 Označme (1 ^ iX n — 1)

= Q Vi ~ (n -Оу»уí = 2 хз
j=i+1

a Zi

kde
П—1

у = уi = Yla ~ l)xi'
j=2i=l
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Rozdíl levé a pravé strany dokazované nerovnosti pak můžeme vyjádřit
jako

(2) XJ XiXi ~ (l](n ~ ®)Xť) “ 1)a?i)
/ 4 n—1 n n—1

= (2) Š S ^
' ' i=l j=*+l i=l
/ \ n—1 n—1 n —1

= (2) J2yi~ Yl^n~^Xiy = Y^XiZi
' ^ i=l г=1 г=1

71 — 1

Je tedy potřeba ukázat, že Y2 xízí > 0.
n— 1

Protože (n — г) = ^2 i = Q), je J2 zi — 0- Přitom zn_i =
i—1

= (2)2/11-1 -y= {2)xn
3=2 i=2

mezi čísly z; musí být i záporná. Dále pro 1 ^ г ^ n — 2 máme

г=1
n—1 n—1

2=1i=i
П n

Y2 (j - 1 )xj > (;)i„ - Y2 ti - l)a?n = 0, takže

2*+i n Уi+i n У;«i

n — (г 4- 1) n — i 2/ n — (г + 1) 2/ n — i
34+1 4- • • • + xn%i+2 4-... 4- xn )"

n

n — in — i — 12

n\ rri+2 4-... + ж„ - (n - г - l)xi+í >0,
(n — i — l)(n — i)2

takže
Zn—2
— < Zn-l-

Existuje tedy index к, 1 < к < n — 1, takový, že z* < 0 pro 1 ú i < k,
Zk ^ 0 a Zi > 0 pro к < i ^ n — 1. Je tudíž ZjZi > pro každé i ф к,
takže

2:2Zl
< ... <<

n — 1 n — 2

71— 1

У" XiZ* > Xk Zi — 0,
n—1

i=l 2=1

což jsme potřebovali dokázat.
2.4 Nechť a;, y, z jsou kladná reálná čísla. Druhou rovnici můžeme zapsat
ve tvaru

a2 b2 c2 abc
4 — 1 1 1 .

yz zx rry a:yz
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a b c

—7= > O, yi = -7= > O, z\ — —?= > O, dostaneme
Vyz y/zx yjxy

Položíme-li x\ =

symetrickou rovnici
4 = x\ + y\ + z\ +x1yíz1,

ze které plyne, že každé z kladných čísel xi, yi, z\ je menší než 2. Tato
rovnice jako kvadratická vzhledem к z\ má diskriminant D — (4 — x\) x
x (4 — yl), který vybízí к substituci x\ = 2sinu, 0 < u < |tc, y\ = 2sinu,
0 < v < |ti:. To nám umožňuje předchozí rovnici zapsat jako

4 = 4 sin2 u + 4 sin2 v + z\ + 4 sin u sin v ■ z\,

neboli

(zi + 2 sinu sinu)2 = 4(1 — sin2 u)(l — sin2 u),
\zi +2sinusinu| = |2cosucosu[.

Protože sinu, sinu, cosu, cosu a z\ jsou vesměs kladná čísla, můžeme
odstranit absolutní hodnoty a získat tak vyjádření

Zi = 2(cos u cos u — sin u sin u).
Nyní můžeme vyjádřit čísla a, b, c jako

a = 2 sin u • л/yž, b = 2 sin u • y/zx,
2 (cos u cos u — sin u sin u) y/xy,

takže z dané rovnice x + y + z = a + b + c dostáváme
x + у — 2 cos u cos u • y/xy +

+ z + 2 sin u sin u • y/xy — 2 sin u • yfyz — 2 sin u • y/zx = 0,

c =

neboli

x cos2 u + у cos2 u — 2 cos ucosvy/xy +
+ z + x sin2 v + у sin2 u + 2 sin u sin u • y/xy
— 2 sin u • y/yz — 2 sin u • y/zx =

= (y^řcosu — y/ycosu
Odtud vychází

)2 + (\/xsinu + y^sinu — y/z)2 = 0.

yfz - yfx sin U + yfy sin U = yfx у + y/l/ у =
1 b 1 a

2Vi+ 2 y/z
neboli z = |(a + b). Podobně у = |(c + a) a a: = \{b + c). Trojice
(x,y,z) = (|(6 + c), |(c + a), |(a + 6)) skutečně dané soustavě rovnic
vyhovuje. Lze se o tom přesvědčit dosazením a rutinním výpočtem.
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2.5 Položme

и = y/2p -у/х - л/у,
v = (у/2р -у/х - у/у) (у/2р + у/х + у/у) =2р-х-у- 2 у/ху.

Je jasné, že u ^ 0, právě když v ^ 0, a protože

v = и(2у/2р — и) =2р — (у/2р — и)2,
nabývají oba výrazy nejmenší kladnou hodnotu pro stejná přirozená
čísla x a y. Navíc nemůže být и = 0 (a tedy ani v = 0) pro žádná
dvě přirozená čísla x a y, neboť jinak bychom z rovnosti л/у = л/2p — /х
umocněním dostali у = 2p + x - 2/2px, což znamená, že 2px je druhou
mocninou přirozeného čísla, a protože p je liché prvočíslo, musí být x
dělitelné 2p, tedy x ^ 2p, což předpokládané rovnosti odporuje.

Nechť tedy pro nějaká dvě přirozená čísla x, y, x ú у,\e v = 2p — x —
— y — 2/xy > 0, neboli 2/xy < 2p — x — y. Označme z nejmenší přirozené
číslo větší než 2/xy (tedy z = [2/xy\ + 1). Pro takové z zřejmě bude
platit

2 y/xy < z ^ 2p — x — y.

Protože zároveň и > 0, tedy л/х + л/у < y/2p, je také

2 y/xy й л/х + у/у < у/2р,
2у/ху < z Úp.

Navíc je z2 > 4xy, neboli 4xy ú z2 — 1. Celkem tedy platí
1

v = (2p — x — y) — 2y/xy ^ z - yz2 - 1 = >
Z + л/z2 — 1

= p — y/p2 - 1.
1

^
p + y/p2 - 1

Rovnost zřejmě nastane, právě když bude z = p, z = 2p — x — у
a 4xy = z2 — 1, tedy právě když

p + 1P- 1
x = а у =2 2

Jiné řešení. (Podle Tamáse Vargy, Slovensko.) Dokážeme, že řešením
je vždy dvojice (|(p — 1), |(p + 1)). К tomu stačí ukázat, že pro libovol-
nou jinou dvojici čísel je výraz D = /2p — л/х — л/у větší. To dokážeme
sporem.
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Předpokládejme, že existuje dvojice přirozených čísel (x, у) taková, že

уДр = Vž+Vv> у + у
P- 1

2 ’

2p ^ x + у + 2 л/ху > p + vV-1,
2p — x — у ^ 2y/xy > p + yjp2 — 1 — x — y.

Zřejmě je p + yp2 — 1>2р — 1 > 0 a zároveň 2p — x — у ^ 2^/xy > 0,
takže 2p — 1 — ж — у ^ 0. Dalším umocněním dostaneme po jednoduchých
úpravách nerovnost

Ap(x + y - p) ^ (x - y)2 <2 (p+ \Jp2 - l)(rr + у - p) + 1.
Položíme-li q = x + у — p, je z předchozích nerovností jasné, že q < p
a zároveň q = x + y — p>2p—1 — 2^[xy ^2p—1—ж — y^O, takže у

je přirozené číslo. Dosazením dostáváme

Apq ^ (x - y)2 < 2(p + \Jp2 - 1 )q + 1 < 4pq + 1,
odkud plyne Apq = (ж — y)2. To však není možné, protože p je liché
prvočíslo a q < p-

2.6 Zaveďme posloupnost F(l), F(2),... tak, že F(n) udává počet prvo-
čísel (i s jejich násobností), která dělí n. Je-li tedy

к

» = П#
kde p\,..., pk jsou různá prvočísla a si,..., Sk nezáporná celá čísla, je

к

F(n) = ^2si-
i—1

Podmínka a) je splněna, protože pro každé nezáporné celé к je
F(2k) = k. Je splněna i podmínka b), protože к = F(pk) pro každé
prvočíslo p. Rovnost

F(F(n163)) = F(F(n)) + F(F(361))
z podmínky c) platí, protože pro n ^ 2 je

F(F(n163)) = F(l63F(n)) = 1 + F(F{n)) =
= F(F(n)) + F{2) = F(F(n)) + F(F(361)),

neboť 163 je prvočíslo a 361 = 192. Uvedená posloupnost tedy splňuje
všechny podmínky úlohy.
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2.7 Jestliže bod O leží na úhlopříčce AC, jsou čtyřúhelníky ABCD,
AKON a OLCM podobné. V tomto případě platí rovnost y/Š = yfS[ +
+ VŽi, neboť : S = \AO\2 :\AC\2 a S2 : 5 = \OC\2 : \AC\2.

Pokud bod O na úhlopříčce AC neleží, můžeme předpokládat, že
leží například v trojúhelníku ACD. Veďme bodem O libovolnou přímku
a označme po řadě X, Y její průsečíky s přímkami AD, CD a W, Z
průsečíky s přímkami AB, BC (obr. 33). Prochází-li zmíněná přímka

1ощ \oz\
\OX\ ’ \OY\

vrcholem A, je W = X = A a přitom > 1. Bude-li

naopak přímka procházet vrcholem C, bude Y = Z = C a my do-
= 1. Otáčíme-li tedy touto přímkou kolem\OW\ \oz\

> 1staneme
\ox\ \OY\

středu O, najdeme mezi oběma těmito polohami takovou, v níž platí
\ow\

_ \oz\
\OX\ - \OY\

> 1. V této poloze přímku zafixujeme a označíme po

řadě Ti, T<2, Pi, P2 a Qi, Q2 obsahy rovnoběžníků KBLO, NOMD,
trojúhelníků WKO, OLZ a XON, OYM.

Z podobnosti trojúhelníků WBZ, WKO a, OLZ plyne, že

\wo\ \oz\_
\wz\ \wz\ )Vř\ + Vb = VPi + Ti + Pi(

= VK+ť\Tp2,
neboli Ti = 2\JP\P2. Podobně dostaneme, že T2 = 2y/Q\Q2. Z rovnosti
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. |OWf \ox\2
navíc plyne, ze- =

Qi = kPi a Q2 = kP2 pro vhodné /с, takže můžeme psát

\ow\
_ \ox\

\OZ\ - \OY\
Pl Q1

= —Je tedy
V2

Ti + T2 — 2 y/P\P2 + 2>/Q1Q2 — 2\/Ti -P2 (1 + А:) —

— 2л/(1 + A;)Pi(l + A:)P2 — 2\/(Pi + QiXA + Q2) =

což je ekvivalentní nerovnosti

S = Si + S2 + Г, + T2 ž (v/ŠT + V&)2-
Tím je tvrzení úlohy dokázáno.

/
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Přípravná soustředění před 37. MMO

V průběhu 45. ročníku byla uspořádána dvě výběrová soustředění pro

přípravu na mezinárodní matematickou olympiádu. První soustředění,
které se konalo v dobře známém internátu při gymnáziu v Jevíčku od 24.
do 29. března 1996, bylo zaměřeno na přípravu těch úspěšných řešitelů
II. kola kategorie A, kteří se dle dosavadních výsledků jevili jako perspek-
tivní reprezentanti nejen v tomto, ale i v příštím roce (proto při výběru
byla dána přednost mladším ročníkům). Z 12 pozvaných studentů se bo-
hužel tři omluvili.

Soustředění bylo zaměřeno na řešení obtížných úloh v omezeném čase
(v soutěžních podmínkách). Po odpolední relaxaci byl proveden detailní
rozbor opravených řešení. Úspěšnost jednotlivých studentů ukazuje ná-
sledující tabulka:

Tomáš Brauner
Jana Flašková

Jiří Franta

3B G Smetanova 168, Moravský Krumlov 14,5
15,53 Svobodná chebská škola, Cheb

4 G Komenského 402, Příbram
4C GMK 17. listopadu 526, Bílovec
4C GMK 17. listopadu 526, Bílovec
ЗА G Hellichova, Praha 1

16

David Opěla
Zbyněk Pawlas
Jan Spěvák

41,5
20,5
15,5

Oldřich Stražovský ЗА G Tř. kpt. Jaroše 14, Brno
Jan Štola

11

3D G ZboroVská 45, Praha 5
4A G nábř. Svobody 306, Polička

28

Petr Vodstrčil 27,5

Jednotlivé semináře vedli a úlohy připravili:
dr. Karel Horák (25.3.),
doc. Jaromír Šimša (26. a 28.3.),
dr. Miroslav Engliš (27.3.),
dr. Jaroslav Švrček (29.3.).

Druhé soustředění bylo už určeno pouze vybraným reprezentantům
České republiky na 37. MMO v Bombaji včetně náhradníka a konalo se
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opět v Jevíčku od 9. do 14. června 1996. Výsledky jednotlivých studentů
ukazuje následující tabulka:

4D G Zborovská 45, Praha 5
4D G Zborovská 45, Praha 5
4 G Lesní čtvrť 1364, Zlín
4C GMK 17. listopadu 526, Bílovec 100
ЗА G Hellichova, Praha 1
4A G tř. kpt. Jaroše 14, Brno
3C GMK 17. listopadu 526, Bílovec 81

93Tomáš Bárta
Michal Beneš

Daniel Král’
David Opěla
Jan Spěvák
Robert Špalek
Jan Vybíral

100

89

76

88

Jednotlivé semináře vedli a úlohy připravili:
dr. Karel Horák (10.6.),
dr.' Jaroslav Švrček (11.6. a 12.6.),
Michal Kubeček (student MFF UK, 13.6. a 14.6.).

Úlohy zadané na přípravných soustředěních

1. Je dán trojúhelník ABC, pro jehož těžnice AM a BN platí, že
|<$MAC| = \<$NBC\ = 30°. Dokažte, že trojúhelník ABC je rovno-

stranný.

2. Základnou pravidelného jehlanu je mnohoúhelník s lichým počtem
stran. Dokážete hranám daného jehlanu (každé hraně jeden) přiřadit
orientaci tak, aby součet odpovídajících vektorů o velikosti délek hran
byl nulový?

3. Je dán ostroúhlý trojúhelník ABC. Body P, Q a R mají tu vlastnost,
že paty kolmic z nich spuštěných na strany trojúhelníku ABC leží vesměs
uvnitř těchto stran. Dokažte, že obsah trojúhelníku PQR není větší než
obsah trojúhelníku ABC.

4. Je dán čtverec rozdělený čtvercovou sítí na čtverečky 1 x 1. V uvedeném
čtverci je dáno několik obdélníků, jejichž každá strana leží v přímkách
dané sítě (uvnitř nebo na hranici daného čtverce). Může se stát, že každou
stranou jednotkového čtverce dané čtvercové sítě prochází lichý počet
stran daných obdélníků?

5. Je dán čtyřúhelník ABCD, ve kterém platí \AB\ =■ \AD\ a | < ABC\ —

= |<í ADC\ — 90°. Na stranách ВС a CD jsou dány body F, resp. E
tak, že DFLAE. Dokažte, že je AFLBE.
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6. Je dán čtyřstěn, jehož tělesové výšky se protínají v jednom bodě.
Dokažte, že tento průsečík výšek, pata jedné z výšek a tři body dělící
zbývající tři výšky v poměru 2 : 1 od vrcholu leží na jedné kulové ploše.
7. Uvažujme konvexní mnohoúhelník, který má všechny vnitřní úhly
shodné. Potom alespoň pro dvě jeho strany platí, že jejich délka není
větší než délky sousedních stran. Dokažte.

8. Osa úhlu BAC protne stranu BC trojúhelníku ABC v bodě K.
Přímka jdoucí bodem К rovnoběžně se stranou AC protne těžnici z vr-
cholu A v bodě L. Dokažte, že AK J_ CL.

9. Dokažte, že v každé společnosti S třiceti lidí se najdou dva lidé, kteří
mají v S sudý počet (všech) společných známých. (Vztah „být známý“
je symetrický, mezi sudá čísla patří i nula.)
10. Nechť 5(n) = l1+22-f... + n". Dokažte, že nerovnost

1 1 1 1
+ ... +— >

S(n) S(n 4- 1) S(n + к)nn

platí pro libovolná celá čísla n>lafc^0. (Můžete bez dokazování vyu-
žít poznatek, že posloupnost čísel (1 + ^)n, kde n = 1, 2,..., je rostoucí.)
11. Z malé Fermatovy věty plyne, že pro každé prvočíslo p > 3 je rozdíl
3P_1 — 2P_1 dělitelný číslem p. Dokažte, že číslo n dělí rozdíl 3n_1 — 2
i pro nekonečně mnoho složených čísel n.

12. Do kružnice se středem O a poloměrem 1 je vepsán trojúhelník ABC.
Označme r\, r2, r3 vzdálenosti bodu O od přímek AB, BC, CA. Zjistěte,
jaké největší hodnoty může nabýt součin Г1Г2Г3.

13. Dokažte, že na kružnici se středem v počátku a poloměrem 10lol°
leží aspoň 1010 bodů s celočíselnými souřadnicemi.

14. Dokažte, že existuje takové reálné číslo A, pro něž lze do grafu funkce
у — A sin x vepsat alespoň 1988 navzájem neshodných čtverců. (Vepsaný
čtverec je takový, jehož všechny vrcholy leží na grafu.)
15. V rovině je dán rovnostranný trojúhelník ABC. Zjistěte, ve kterých
bodech X dosahuje funkce

n —1

f(X) = \XA\ + \XB\ - \XC\

svého minima.
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16.Dokažte, že každé celé nezáporné číslo lze jediným způsobem vyjádřit
ve tvaru

{x + y)2 +3x + y
2

kde x, у jsou celá nezáporná čísla.
17. Dokažte, že čísla 1 996n a 1996n + 2n (n ^ 1) začínají vždy stejným
dvojčíslím.
18. Je dán mnohočlen P(x) s celočíselnými koeficienty. Dokažte, že pro
žádná navzájem různá celá čísla a, 6, c nemůže současně platit P(a) = 6,
P(b) — c a P(c) = a.19.V rovině je dáno n bodů A{ (1 ^ г ^ n), z nichž žádné tři neleží na

jedné přímce. Vybarveno je n různých úseček A{Aj, jež jsou označeny ui,
un. Přitom pro libovolné dva indexy i ф j platí: úsečka AiAj je«2, ..

vybarvena, právě když úsečky мг- a Uj mají společný krajní bod. Dokažte,
* í

že z každého bodu A{ vycházejí právě dvě obarvené úsečky.

20. Nechť F{x) = x2 4- x + 1. Dokažte, že součin F(l)F(2) • ... • F(n)
není celým násobkem čísla F(n + 1) pro nekonečně mnoho přirozených
čísel n.

21. Pro libovolná nezáporná reálná čísla a, 6, c dokažte nerovnost

a4 + b4 + c4 + a2bc + b2ac + c2ab ^ 2(a2b2 + a2c2 + b2c2).
22. Do kružnice se středem O je vepsán tětivový čtyřúhelník ABCD
tak, že průsečík M jeho úhlopříček s bodem O nesplývá. Přímka vedená
bodem M kolmo к úsečce OM protíná úsečku AB v bodě P a úsečku
CD v bodě Q. Dokažte, že úsečky AB a CD jsou shodné, právě když
jsou shodné úsečky BP a CQ.
23. Dva rovnostranné trojúhelníky ABC a A'B'C mají společný střed
stran ВС a B'C. Určete poměr \AA'\ : \BB'\.
24. Jsou dána reálná čísla a, 6, c (a2 + b2 +c2 ф 0). Určete všechny funkce
/: IR —>• IR takové, že pro libovolnou trojici reálných čísel x, y, z platí

af(xy + z2) + bf(yz + x2) + cf(zx + y2) = 0.

25. Z pravidelného desetiúhelníku ABCDEFGHIJ o straně délky 1 je
přímkou p oddělen trojúhelník APQ tak, že platí \PA\ + \AQ\ = 1. Určete
součet velikostí úhlů, pod kterými vidíme úsečku PQ z bodů В, C, D,
E, F, G, Я, / a J.
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26. Nechť Q(x) = a;3 + 19a:2 + 96a: + a, kde a je přirozené číslo, ар je dané
prvočíslo. Dokažte, že mezi přirozenými čísly Q(0),Q(1),... ,Q(p — 1)
existují nejvýše tři, která jsou dělitelná p.

27. V rovině jsou dány tři různé body А, В a C. Bodem C prochází
přímka q tak, že součin vzdáleností bodů А а В od přímky q je co nej-
větší. Rozhodněte, zda je přímka q pro libovolnou trojici bodů А, В a C
jednoznačně určena. Proveďte konstrukci přímky q.

28. Dokažte, že aritmetický průměr čísel n sin n° (n = 2,4,6,..., 180) je
cotgl°.

29. Pro každou neprázdnou množinu S reálných čísel označme <r(S) sou-
čet jejích prvků. Pro danou množinu A obsahující n kladných čísel uva-

žujme všechny možné součty <r(S), kde S probíhá neprázdné podmnožiny
množiny A. Dokažte, že tyto součty mohou být rozděleny do n tříd ták,
že v každé z nich je podíl největšího a nejmenšího součtu nejvýše 2.

30. Je dán trojúhelník ABC. Dokažte, že (v rovině trojúhelníku ABC)
existuje přímka i, pro niž má průnik vnitřku trojúhelníku ABC a vnitřku
jeho obrazu А'В'С v osové souměrnosti podle přímky i obsah rovný
aspoň 2/3 obsahu daného trojúhelníku ABC.
31. Konečnou posloupnost (x\,X2,... ,xn) o n prvcích, jejímiž členy jsou
jen 0 nebo 1, nazveme binární posloupnost délky n. Označme an počet
binárních posloupností délky n, jež neobsahují trojici za sebou jdoucích
čísel 0, 1, 0, a&„ označme počet binárních posloupností délky n, jež ne-

obsahují čtveřici za sebou jdoucích čísel 0, 0, 1, 1 nebo 1, 1, 0, 0. Dokažte,
že 6n+i = 2an pro všechna přirozená n.

32. Je dán trojúhelník ABC, uvnitř kterého existuje takový bod P, že
\<PAB\ = 10°, \<PBA\ = 20°, \<PCA\ = 30° a \<PAC\ = 40°.
Dokažte, že trojúhelník ABC je rovnoramenný.

33. Zjistěte, zda existuje podmnožina X množiny přirozených čísel tako-
vá, že pro každé celé číslo n má rovnice a + 2b = n právě jedno řešení
CL, b £ X.

34. Nechť x, y, z jsou kladná čísla vyhovující podmínkám

i^ xy + уz + zx ^ 3.

Určete, jakých hodnot nabývá výraz a) xyz, b) x + у + z.
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35. Nechť ABCD je tětivový čtyřúhelník. Středy kružnic vepsaných troj-
úhelníkům ABC, BCD, CDA, DAB jsou vrcholy pravoúhelníku. Dokaž¬
te.

36. Dokažte, že rovnice
Xх = y3 + z3

má nekonečně mnoho řešení v oboru přirozených čísel.37.V rovině jsou dány tři kružnice, které se navzájem vně dotýkají.
Přímky, které procházejí vždy dvěma středy uvažovaných kružnic, proti-
nají tyto kružnice v bodech A\, A2, A3, Вi, B2, B3 (obr. 34). Dokažte,
že pro libovolný bod X roviny platí

\A3X |2 + \A2X\2 + \A3X\2 = |B,Xp + |B2X|2 + |B3Xp.38.Jestliže nezáporná čísla a, 6, c, p, q, r splňují podmínky

1
P,q,r й 2’

dokažte, že platí 8abc pa + qb + rc, a rozhodněte, kdy nastane rovnost.39.Dokažte, že existuje trojúhelník o stranách a, b, c, právě když platí

a + b + c = p + q + r,

pa2 + qb2 > pqc2,

kde p, q jsou libovolná reálná čísla taková, že p + q = 1.
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40. Kružnice ki a mají vnější dotyk v bodě T a obě se zevnitř dotý-
kají třetí kružnice k. Jedna ze společných vnějších tečen kružnic ki а Л:2
protíná kružnici к v bodech В a C. Jejich společná tečna procházející
bodem T protíná v polorovině BCT kružnici к v bodě A. Dokažte, že
bod T je středem kružnice vepsané trojúhelníku ABC.

41. Určete všechna řešení soustavy rovnic

ax = \y- z\ + y,

ay — \z — x\ + z,

az — \x — y \ + x,

kde a je reálný parametr.

42. Dokažte, že součet velikostí šesti úhlů, pod kterými jsou vidět jednot-
livé hrany daného čtyřstěnu z jeho libovolného vnitřního bodu, je větší
než 540°.

43. Dokažte, že ke každé dvojici přirozených čísel n, к existuje R(n, к)
tak, že máme-li úplný graf stupně R(n, k) obarvený к barvami, lze v něm
najít úplný jednobarevný podgraf stupně n.

44. Množina M v rovině má tu vlastnost, že každé její tři body lze pokrýt
(uzavřeným) kruhem o průměru 1. Dokažte, že celou M lze pokrýt kruhem
o průměru 1.

45. Sestrojte trojúhelník, jsou-li dány délky jeho těžnic.

46. Nalezněte řešení soustavy rovnic

ax +by = —7,
ax2 + by2 = 7,
ax3 + by3 = —37,
ax4 + by4 = 83.

A47.Dokažte, že pro nekonečně mnoho různých n je součet

fc= l

složené číslo.
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48. Dokažte, že číslo [(\/2 + l)n] je sudé, právě když n je liché ([ж]
označuje celou část čísla x).
49. Mějme konečný systém я/ konečných množin. Dokažte, že následující
podmínky jsou ekvivalentní:

(i) existuje prostá funkce /: srf -> U
(ii) pro každý podsystém 98 C szč platí \9S\ ^ |U^|-

50. Zjistěte, jaké největší hodnoty může nabývat výraz

sin a + sin /3 + sin 7

tg(H + tg(§/3) + tg(§7)’

jsou-li a, /3, 7 úhly v trojúhelníku.51.Nalezněte neprohrávající strategii pro následující variantu piškvorek:
vyhrává pět značek v řadě nebo sloupci (ne na diagonále).

133



2. československé střetnutí

ŽILINA, 2.-5. JUNA 1996
Po minuloročnej premiére v Jevíčku v Českej republike sa v tomto ročníku
MO konala medzištátna súťaž medzi družstvami mladých matematikov
po prvýkrát na Slovensku. Celé stretnutie prebiehalo v priestoroch SOU
chemického v Žiline. Organizáciu zabezpečoval doc. RNDr. Vojtech Bá-
lint, CSc., z VŠDS v Žiline.

Úlohou tejto súťaže nie je len porovnanie sil zúčastněných družstiev,
připadne příprava na MMO, jej cielbm, je najma spoznanie sa najlep-
ších riešitelov olympiád z dvoch tradíciami spriaznených krajin. Nakolko
medzi súťažiacimi nie je žiadna jazyková bariéra, celá organizácia po-
dujatia je oproti iným medzinárodným súťažiam značné zjednodušená.
Preto nie je potřebné prekladať zadania či riešenia do iných jazykov.
Po rozdělení bývalého spoločného státu Čechov a Slovákov sa mnoho kon-
taktov přerušilo. Može nás tešiť, že matematickú olympiádu tento vývoj
nepostihol a okrem společných úloh a spolupráce pri zabezpečovaní MO
pretrvávajú kontakty nielen medzi vedeniami olympiád (predovšetkým
Úlohová komisia MO), ale aj medzi riešitelmi.

SúčetMěno Ročník, škola bodyPor.

4 G Zborovská, Praha
4 G V. Okružná, Žilina
3 G Trebišov
3 GJH, Bratislava
4 GMK, Bílovec
4 G Zborovská, Praha
4 G Zlín
4 G Stropkov
4 G Komárno maď.
4 G tř. Kpt. Jaroše, Brno
3 G Hellichova, Praha
2 G V. Okružná, Žilina

Michal Beneš
Ivan Cimrák
Miroslav Dudík
Vladimír Marko
David Opěla
Tomáš Bárta
Daniel Král’

Eugen Kováč
Tamás Varga
Robert Špalek
Jan Spěvák
Viera Růžičková

747777
747777
747777
377776
557777
747747
747737
757717
747727
676717
707717
427026

39
39
383.-5.
38
38

366.

357.
348.-10.
34
34
2911.
2112.
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Opravovanie riešení vždy zabezpečuje domáca strana a na koordi-
nácii hodnotenia sa podiefajú vedúci jednotlivých družstiev. Tento rok
nimi boli doc. RNDr. Vojtech Bálint, CSc., a Richard Kollár zo Sloven-
ska a doc. RNDr. Jaromír Šimša, CSc., z Ceskej republiky. Potešujúcou
skutočnosťou móže byť, že Úlohová komisia MO sa venuje aj tejto súťaži,
a tak boli všetky předložené úlohy povodně. Boli to najma úlohy, ktorých
náročnost’, alebo tematické zameranie překračuje možnosti kategorie A.

, Zoznam súťažiacich aj s výsledkami súťaže je v tabulke. Rovnako ako
v minulom ročníku lepšie obstál tím Ceskej republiky. Budúci ročník
súťaže sa uskutoční v Ceskej republike.

Texty soutěžních úloh1.Nechť Z* označuje množinu všech celých čísel různých od nuly. Do-
kažte, že celé číslo p > 3 je prvočíslo, právě když pro každou dvojici čísel
a, b € Z* právě jedno z čísel

, / p — 1
Ni = a + b — 6ab -\ —

6
N2 = a + b + 6ab + —

6

(J. Šimša)leží v množině Z*.2.Na neprázdné množině M je dána operace *, která každé uspořádané
dvojici prvků (a, b) € M x M přiřadí nějaký prvek c € M, který označu-
jeme c = a* b. Uvažujme operace * s vlastností, že vztahy

(a*b) *b = a a* (a* b) — ba

platí pro libovolné prvky a, b € M.
a) Dokažte, že každá takováto operace je komutativní, tj. pro všechna

a, b G M platí rovnost a * b = b * a.

b) Na kterých konečných množinách M takováto operace existuje?
(J. Šimša, T. Werner)3.Pravidelný čtyřboký jehlan má délku hrany podstavy 2a a délku boční

hrany ay/l7. Uvnitř jehlanu je zvolen bod M. Uvažujme pět jehlanů
podobných danému, které mají hlavní vrchol v bodě M a jejichž podstavy
leží v rovinách stěn daného jehlanu. Dokažte, že součet povrchů těchto
jehlanů je větší nebo rovný jedné pětině povrchu daného jehlanu. Kde je

(P. Leischner)potřeba zvolit bod M, aby nastala rovnost?
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4.Nechť Z označuje množinu všech celých čísel. Rozhodněte, zda existuje
funkce /: Z -> Z taková, že pro každé к = 0,1,2,..., 1 996 a pro každé
m G Z má rovnice f(x) + к ■ x = m aspoň jedno řešení x v oboru celých
čísel. (J. Šimša)
5. Na přímce jsou dány dvě množiny intervalů A a B. Množina A obsahuje
2m — 1 intervalů, kde m G N, přičemž žádné dva intervaly z A nejsou
disjunktní, nemají společný jen krajní bod, a každý interval z A obsahuje
aspoň dva disjunktní intervaly z B. Dokažte, že v В lze najít interval,
který patří aspoň m intervalům z A.
6. Uvnitř stran АС a BC trojúhelníku ABC jsou po řadě zvoleny body E
a D. Označme F průsečík přímek AD a BE. Dokažte, že podíl obsahů
trojúhelníků ABC a ABF splňuje vztah

(P. Hliněný)

\AC | \BC\
\AE\ \BD\ ■

Sabc
Sabf

(P. Leischner)

Řešení úloh

1. Keď je výraz N\ nulový, dostaneme zo zadania rovnost’ p =
= (6a — l)(6fe — 1). Podobné, ak je nulový výraz A^2, dostaneme rovnost’
p = -(6a + 1)(66 + 1).

Najprv dokážeme prvú časť ekvivalencie. Nech je p > 3 prvočíslo.
Rozlišíme dva případy p = 1 (mod 6) ap = —1 (mod 6) (iný případ
zrejme nemože nastat’). V prvom z nich zrejme N2 ^ Z*. Predpokladajme,
že pre niektorú dvojicu a, b G Z* platí aj N1 <£ Z*, čiže N\ = 0. To je
však zrejme možné, len ak je jedno z čísel |6a — 1| alebo \6b — 1| rovné 1
(inak by p nebolo prvočíslom). Preto by muselo byť jedno z čísel a, b
rovné nule, čo však nie je možné. Obdobné dostaneme spor aj v případe
p = — 1 (mod 6).

Teraz predpokladajme, že p > 3 nie je prvočíslo. Okrem prípadov
p = ±1 (mod 6) nemóžeme dostat’ ani N\, ani N2 celé. Potom však májů
všetky delitele čísla p tvar 6k ± 1. Číslo p má teda aspoň jeden z možných
rozkladov:

p = (6c + l)(6ď- 1),p = (6c + l)(6d +1), p = (6c — l)(6d — 1)

kde c a d sú prirodzené čísla. V prvom případe N2 nie je celé a pre
a = —c a b = —d dostáváme Nx = 0,.v druhom případe opat’ iV2 nie je
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celé a Ni = O pre а — c a b = d. Napokon v treťom případe Ni nie je
celé a pre a = c a b = —d dostáváme N2 = 0.

^ V každom případe sme našli dvojicu čísel a, b € Z*, pre ktorú nie je
žiadne z čísel N1, N2 z množiny Z*.

2. a) Podlá prvej identity v zadaní platí [a* (a*b)] *(a*b) = a. Výraz
v hranatej zátvorke je ale podlá druhej identity v zadaní rovný prvku 6,
čiže platí b * (a * b) = a, a teda b * a = b * [b * (a * b)]. Pretože posledný
výraz je podlá druhej identity v zadaní rovný a * b, platí b * a = a * b
a dókaz komutativity je hotový.

b) Prvky lubovofnej n-prvkovej množiny označíme číslami 1, 2,... ,n
a definujeme a*b = c, právě keď n \ (a + b + c). Táto definícia je korektná
(t.j. pre každú dvojicu (a, b) existuje právě jeden taký prvok c) a má
okamžitý dósledok: ak platí a * b = c, potom c*b = aa,a*c = b.
Preto operácia * s požadovanou vlastnósťou existuje na každej konečnej
množině.

3. Všimnime si, že obsah podstavy aj bočnej steny daného ihlana je
rovnaký Si = 4a2. Spojnice bodu M s vrcholmi ihlana rozdelia ihlan na

štyri štvorsteny a jeden štvorboký ihlan. Všetky tieto telesá majú spo-

ločný vrchol M. Súčet ich objemov je objem daného ihlana. Ak označíme
ví (i = 1,..., 5) výšky týchto telies z bodu M, potom

5
1 1

-SiY^yi = 3S1V,
j=i

5

z čoho vyplývá, že vi = v, kde v je výška daného ihlana. Teraz si uve-
í=i

domme, že tieto výšky sú zároveň aj výškami piatich ihlanov podobných
danému zo zadania. Je teda

5

V- v_i
2-^t v
i— 1 i—1

pričom S je povrch daného ihlana, S; sú povrchy piatich vzniknutých
ihlanov a k{ sú ich koeficienty podobnosti s daným ihlanom. Z toho dálej

5

vyplývá, že Yh — vS, čo po umocnění dává
i~ 1

5

s = £si+ Y,
i=1
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Ak dálej použijeme AG-nerovnosť, čiže 2у/SiSj 5Í Si + Sj, dostaneme
5 55

S^’E,Si+4'£iSi = 5'ElSi.
i— 1 i=l

5 1
Teda Si ^ -5. Rovnost’ nastáva, len keď sú všetky ihlany zhodné.

i— 1 ^
Potom je však M stredom gule vpísanej danému ihlanu.

4. Dokážeme, že hládaná funkcia existuje. Po krátkej úvahe možno
nahliadnuť, že stačí nájsť jednoznačné (injektívne) priradenie (k,m) x
a potom definovat’ f(x) = m — kx. Zrejme potom už bude funkcia / spínat’
zadané podmienky.

Položme d = 1 996+1 = 1 997. Podlá vety o delení celých čísel možno
každé číslo x G Z zapísať jediným spósobom v tvare x = md + k, kde
m € Z a kE {0,1,..., d — 1}. Na základe tohoto vyjadrenia (s pevným
d) položme f(x) = m — kx, t.j. f(md+k) = m — k(md+k). Potom každá
rovnica f(x) + kx = m má riešenie (nie nutné jediné) x = md + k.

5. Označme intervaly v množině А ako о:г- = (аг-,Ьг), i = 1,2,..
2m — 1; indexy móžeme zrejme volit’ tak, aby platilo

°1 = a2 = ■ ■ ■ = Й2ш-1-

Nech dálej Ък, к G {m,m + l,...,2m — 1}, je najmenšie z čísel b
bm+1, ..., b-2m-i - Podlá zadania obsahuje interval ak € A dva disjunktně
intervaly z množiny В. Označme ich /3i = (ci,di) a fa = (02,^2). Bez
ujmy na všeobecnosti móžeme předpokládat’, že

ak й ci < di < c2 < d2 ^ bk.

Teraz rozlíšime následujúce případy:
1) di й b{ pre všetky i = 1,2,..., m. Potom ale z (1) aj (3\ C pre

každé i = 1,2,... ,m, a teda (3\ má požadovanú vlastnost’.
2) d\ > bs pre nějaké s G {1,2,... ,m). Vdáka (2) aj C2 > bs. Preto-

že podlá zadania majú každé dva intervaly z A spoločný bod, platí
zároveň bs ^ a; pre všetky i, a teda C2 > a; pre všetky i. Napokon
z definície bk je bk ^ bi pre г G {m, m + 1,..., 2m — 1}. Celkom teda
platí аг- < C2 < d2 ^ bk ^ bi, pre každé г G {m,m + 1,... ,2m — 1},
čiže (32 C «i pre všetky i G {m,m + 1,..., 2m — 1}. Interval /32 má
potom požadovanú vlastnost’.
Tým je dokaž ukončený.

* )

(1)

m}

(2)
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6. Veďme bodom F rovnoběžky so stranami trojuholníka ABC a ich
priesečníky s týmito stranami označme К, L, M, N, O, P (obr. 35).

C

Nj

M,E

D
L

P K\ ВA

Obr. 35 J

Ak ďalej označíme ve, vp vzdialenosti bodov C, F od priamky AB,
potom

\BC\Sabc
_ Vc_

SaBF Vp
(3)IFK\-

Keď teraz použijeme podobnost’ trojuholníkov FLM, PKF a rovnofah-
lost’ úsečiek PM a AC so stredom v В (bod F sa v tejto rovnolahlosti
zobrazí na bod E), dostaneme (rovnolahlosť zachovává poměry dížok
úsečiek)

\LM\
_ \FM\ _ \EC\ _ \AC\

\FK\ ~ \FP\ ~ \AE\ “ \AE\ (4)- 1.

Ďalej platí obdobné

\MC\
_ \FN\ _ \DC| __ \BC\

\FK\ ~ \FK\ ~ \BD\ ~ \BD\ (5)

a podlá (3)
SABC

_ \BC\ _ \BL\ + \LM\ + \MC\
Sabf \FK\

Do poslednej rovnosti dosadíme \BL\ = \FK\ a dížky \LM\, \CM\ vy-
jadrené zo (4) a (5). Tak dostaneme zadaný vztah.

I FK\
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37. mezinárodní matematická olympiáda

Symbol olympiády, která se konala v indické Bombaji od 5. do 17. čer-
vence 1996, představuje zajímavou matematickou úlohu z Bháskarova
spisku Lílávátí (12. stol.), kterou uvádíme ve volném čes-
kém překladu: Páv stojí na vrcholu devět loktů vysokého
podstavce, při jehož úpatí je díra. Ve vzdálenosti trojná-
sobku výšky podstavce vidí hada pohybujícího se směrem
к díře a šikmo se naň vrhne. Řekni mi rychle, v jaké vzdá-
lenosti od díry se oba srazí, pohybují-li se oba stejnou
rychlostí. К jejímu řešení vystačíte s Pythagorovou větou,
jejíž geometrický důkaz naleznete na obrázku zmíněného
podstavce.

Tato mezinárodní matematická olympiáda překonala opět několik re-
kordů. Přitom tentokrát nešlo ani tolik o rekordy v počtu zúčastněných
zemí, který se v posledních letech ustálil kolem sedmdesátky (letošní
MMO se zúčastnilo 426 studentů ze 75 zemí), ale spíš v obtížnosti: jak
vybraných úloh, tak celkových podmínek. Tropická vedra s občasnými
prudkými lijáky počínajícího monzunového období, problémy s dietou
(jeden z našich studentů po celou dobu pobytu v Bombaji téměř nejedl,
dva soutěžící — nikoli naši, i když podle výsledků by to tak mohlo vypa-
dat — vinou žaludečních obtíží soutěž nedokončili) a nekonečné přesuny
autobusy v přecpaném velkoměstě. A posledním smutným rekordem je
výsledné umístění českého družstva v neoficiálním pořadí jednotlivých
zemí.

MUMBAI, INDIA

Z našich nejlépe dopadli Tomáš Bárta spolu s Michalem Benešem
z pražského gymnázia ve Zborovské ulici, kteří získali shodně 21 bodů,
což tentokrát stačilo na II. cenu. S nimi ještě držel krok David Opěla
z bíloveckého Gymnázia Mikuláše Koperníka, který za 18 bodů dostal
cenu III. Zbylí naši tři reprezentanti se už bohužel zařadili do druhé
poloviny účastníků MMO a zůstali tedy bez ceny, i když letos na III. cenu

bylo potřeba pouhých 12 bodů (bylo i hůře: v roce 1971 na 13. MMO
v Žilině stačilo na III. cenu dokonce jen 11 bodů).
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Vlastní soutěž proběhla 10. a 11. července v prostorách Střediska
pro atomový výzkum Bhabha. Organizace soutěže, jakož i podmínky pro

práci jury a koordinaci byly vesměs výborné. Sympatické např. bylo i to,
že se na koordinaci podíleli i bývalí úspěšní indičtí olympionici.

Výsledky našich žáků:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

7 1 6 0 0 7 21 II.Tomáš Bárta,
4. roč. gymnázia
Praha 5, Zborovská'

81.-93. Michal Beneš,
4. roč. gymnázia
Praha 5, Zborovská

111.-120. David Opěla,
4. roč. GMK
Bílovec

216.-226. Robert Špalek,
4. roč. gymnázia
Brno, tř. Kpt. Jaroše

236.-247. Daniel Král’,
4. roč. gymnázia
Zlín

290.-324. Jan Spěvák,
3. roč. gymnázia
Praha 1, Hellichova

81.-93.

II.7 1 6 0 0 7 21

4 1 7 0 0 6 18 III.

1 0 5 3 0 1 10

4 2 1 0 0 1 8

i

2 1110 0 5

Celkem 25 6 26 4 0 22 83

O náročnosti úloh dává obvykle dobrou informaci počet bodů nutných
pro získání příslušné medaile: První cena se udělovala za 28-42 bodů,
II. za 20-27 a III. za 12-19 bodů. Porovnáte-li uvedené bodové hranice

s předešlo 36. MMO v Torontu, zjistíte posun zhruba o 10 bodů dolů.
Na této mezinárodní olympiádě získal plný počet 42 bodů jediný student
Ciprian Manolescu z Rumunska, který se tak stal absolutním vítězem.

Extrémně obtížná byla pátá úloha. Její záludnost spočívala už v tom,
že první slibně vypadající nápad к řešení nevedl... Koneckonců o její
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obtížnosti nejlépe svědčí celkový bodový zisk: 209 bodů, to při 424 sou-
těžících dává průměrný bodový zisk 0,49 — méně než půl bodu!

Trochu nás může mrzet slabý výsledek na hezké druhé úloze. Čtvrtá
úloha snad nebyla tak obtížná, nicméně byla (bez znalosti techniky kva-
dratických zbytků) početně náročnější, což ve spojení s „nedobytnou11
pátou úlohou přispělo к hubenému bodovému zisku. A tak jsme nakonec
druhý den sbírali body jen za šestou úlohu, kde se nakonec i naši dva
nejlepší blýskli velmi pěkným řešením (každý jiným).

Neoficiální pořadí všech zúčastněných zemí s počtem získaných cen
a celkovým bodovým ziskem:

I II III bodyI II III body
Finsko
Švédsko
Moldavsko
Rakousko
JAR

Mongolsko
Slovinsko
Kolumbie

Thajsko
Makedonie

Španělsko
Macao
Dánsko
Brazílie
Srí Lanka
Mexiko
Estonsko 4

Island
Bosna a Hercegovina
Ázerbajdžán
Nizozemsko
Trinidad a Tobago
Irsko

Švýcarsko
Portugalsko
Kazachstán
Maroko
Kuba

Kirgizie
Albánie
Kypr
Indonézie
Chile
Malajsie
Turkménie

Filipíny
Kuvajt

58Rumunsko
USA
Maďarsko
Rusko
Velká Británie
ČLR
Vietnam
Korea
Írán
Německo

Japonsko
Bulharsko
Polsko
Indie
Izrael
Kanada
Slovensko

Ukrajina
Turecko

Tchaj-wan
Bělorusko
Řecko
Austrálie

Jugoslávie
Itálie

Singapur
Hongkong
Česká republika
Argentina
Gruzie

Belgie
Litevsko

Lotyšsko
Chorvatsko
Arménie
Francie

Nový Zéland
Norsko

4 2 187
574 2 185
553 2 1671
541622 3 1
501612 4
491603 2 1
493 1551 1
482 3 151
471 4 1431
441373 1 1
443 1361 1
441 1361 4
441223 3
361181 3 1
341 2 2 114
343 3 111
331082 4
315 1051
302 3 104
273 1002
262 991 1
25951 5
24932 3
238731
212 2 86
208631
194 841
16832 2
15801 3
157821
1475
1168
1066

963
963
861
160

60
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Vedoucím naší výpravy byl dr. Karel Horák z Matematického ústavu
AV CR, pedagogickým vedoucím družstva byl doc. Jaromír Šimša z br-
něnské pobočky téhož ústavu.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Nechť ABCD je obdélníková deska o rozměrech \ AB\ = 20, \BC\ = 12.
Deska je rozdělena na 20 x 12 jednotkových čtverců. Nechť r je dané
kladné celé číslo. Mincí lze táhnout z jednoho čtverce na druhý, právě
když vzdálenost středů obou čtverců je y/ř. Úkolem je najít posloupnost
tahů mincí vedoucí ze čtverce s vrcholem A do čtverce při vrcholu В.
a) Ukažte, že úkol nelze splnit, je-li r dělitelné 2 nebo 3.
b) Dokažte, že je to možné pro r = 73.
c) Lze úkol splnit pro r = 97?
2. Nechť P je bod uvnitř trojúhelníku ABC, pro který platí

(Finsko)

\<APB\ -\<ACB\ = \<APC\ -\<ABC\.

Označme D, E středy kružnic vepsaných trojúhelníkům APB a APC.
Ukažte, že přímky AP, BD a CE procházejí jedním bodem. (Kanada)3.Nechť S = {0,1,2,3,...} označuje množinu všech nezáporných celých
čísel. Najděte všechny funkce / definované na S, jejichž hodnoty jsou v S,
a takové, že

f(m + f(n)) = + f(n) pro všechna m,n € S'.

(Rumunsko)4.Jsou dána kladná celá čísla a, b taková, že obě čísla 15a+166 a 16a—156
jsou druhými mocninami kladných celých čísel. Najděte nejmenší možnou
hodnotu, kterou může nabýt minimum z obou druhých mocnin.

(Rusko)5.Nechť ABCDEF je konvexní šestiúhelník takový, že AB je rovnoběžné
s ED, BC je rovnoběžné s FE a CD je rovnoběžné s AF. Označme Ra,
Rc & Re poloměry kružnic opsaných trojúhelníkům FAB, BCD a DEF
a p obvod daného šestiúhelníku. Dokažte, že

Ra + Rc + Re =

(Arménie)
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6. Nechť n, p, q jsou kladná celá čísla, pro něž n > p + q. Nechť
xo,Xi,... ,xn jsou celá čísla, jež splňují následující podmínky:
*0 £o — Xn — 0,
b) pro každé celé číslo г, 1 ú i ú n, je

buď Xi — Xi-1 = p, nebo Xi — Xi-i = —q.

Ukažte, že existuje dvojice indexů (i,j) taková, že i < j, (i,j) Ф (0, n)
[Francie)a Xi = Xj.

Řešení úloh

1. Je-li r = m2 + n2 rozklad čísla r na součet dvou druhých mocnin
nezáporných celých čísel, můžeme táhnout mincí o m sloupců vodorovně
aon řádků svisle (pokud přitom zůstaneme na desce). Zvolme soustavu
souřadnic tak, aby střed čtverce s vrcholem A ležel v počátku a střed
čtverce s vrcholem В měl souřadnice [19,0]. (Střed čtverce s vrcholem D
pak bude mít souřadnice [0, li].)

a) Je-li r = m2 ± n2 dělitelné dvěma, je jasné, že obě čísla m, n musí
mít stejnou paritu (stejný zbytek mod 2), tj. součet m+n je sudý. Protože
obě souřadnice počátku jsou sudé, není možno se dostat do bodu [19,0],
který má součet souřadnic lichý.

Je-li r = m2 + n2 dělitelné třemi, snadno zjistíme (vzhledem к tomu,
že —1 není kvadratický zbytek mod 3), že musí být m = n = 0 (mod 3).
Proto ani v tomto případě nelze přejít z počátku, jehož obě souřadnice
jsou dělitelné třemi, do bodu [19,0], jehož první souřadnice 19 násobkem
tří není.

b) Protože jediný rozklad čísla r = 73 na součet druhých mocnin je
r = 32 ± 82, máme možnost kombinovat tahy charakterizované vektory
(±3, ±8) a (±8, ±3). Dostaneme tak např. tuto možnou posloupnost polí:
[0,0] —> [3,8] -» [11,5] —» [3,2] —> [0,10] —> [8,7] —» [0,4] —* [8,1] —>

[11,9] ->• [3,6] -> [11,3] [19,0].
Poznámka. К cestě z bodu [0,0] do bodu [19,0] se lze dopracovat

i řešením neurčitých rovnic. Označme a, 6, c, d postupně počet tahů typu
±(8,3), ±(8, —3), ±(3,8) a ±(3, —8) (tj. a označuje počet tahů daných
vektorem (8,3) minus počet tahů odpovídajících vektoru (—8, —3)). Do-
staneme tak dvě neurčité rovnice

8(a + b) + 3(c ± d) = 19, 3(a — b) + 8(c — d) — 0, (1)
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kterým vyhovíme např. tak, že položíme a + b = 2, c + d = 1, a — b =
= —8, c — d = 3, což dohromady dává a = —3, b = 5, c = 2, d = —1.
Tak dostaneme počet tahů odpovídajícího typu, nesmíme však přitom
zapomenout, že nelze opustit desku. Těmto hodnotám vyhovuje shora
uvedená cesta, ale i cesta [0,0] —»• [3,8] ->• [11,5] -» [19,2] -»• [16,10] —>
-> [8,7] -> [0,4] -> [8,1] -+ [11,9] ->• [3,6] -> [11,3] [19,0]. Rovnici
(1) ovšem vyhovují ia = 5, b = 3, c = lad=2s dalšími možnými
cestami.

c) Protože jediný možný rozklad čísla r = 97 na součet dvou druhých
mocnin přirozených čísel je 97 = 42 + 92, musí každý tah odpovídat jed-
nomu z vektorů (±9, ±4), (±4, ±9). Rozdělme množinu A všech možných
pozic na desce,

A = {[i,j] G Z2: 0 ^ i й 19,0 £ j ^ 11},
na dvě disjunktní podmnožiny В a C, kde

В = {[i, j] G Z2: 0 ^ i й 19,4 új й 7}, С = A \ B.
Snadno ověříme, že každý tah typu (±9, ±4) vede z bodu množiny В

do bodu množiny C a obráceně, zatímco tahy typu (±4, ±9) jsou možné
jen pro body z množiny C a vedou zpět do C. Každý z tahů typu (±9, ±4)
mění paritu první soiířadnice, takže na cestu z bodu [0,0] do bodu [19,0]
potřebujeme lichý počet takových tahů. Každý z nich ale vede střídavě
z množiny В do C a zpět; my však máme začít i skončit v množině C,
к čemuž vede jen sudý počet zmíněných tahů. Odtud plyne, že požado-
váná posloupnost tahů pro r = 97 neexistuje.

Jiné řešení části c) (podle Michala Beneše). Jediný možný rozklad
čísla r = 97 je 97 = 42 + 92. Uvažujme orientovaný graf, který spojuje
všechny možné y-ové souřadnice, jež dostaneme při vertikální změně o 4
nebo o 9:

4 8

/
0

\
9 -*—► 5 •+—*-1 -*—►!()-*—► 6 2 -*—*-11-*—*- 7 -*—► 3 '

Protože se máme dostat z vrcholu [0,0] do vrcholu [19,0], je vidět, že
v uvedeném grafu musíme vykonat cestu z uzlu 0 zpět do uzlu 0, tj. mu-
símě provést sudý počet vertikálních změn o 4 i sudý počet vertikálních
změn o 9. Protože ale 19 je liché číslo, nelze je dostat jako kombinaci
sudého počtu devítek a sudého počtu čtyřek.
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2. Sestrojme postupně paty X, Y a Z kolmic z bodu P na strany BC,

CA a AB (obr. 36). Protože čtyřúhelníky PXCY, PYAZ a PZBX jsou
tětivové, je

\<APB\ - \<ACB\ = \<APB\ -(jí- \<XPY\) =

= 2k- (\<APY\ + \<BPX\) -k =

= Tt - (\<AZY\ + \<BZX\) = \<XZY\
a analogicky

\<APC\ -\<ABC\ -\<XYZ\.
Z předpokladů úlohy tedy plyne, že je \<$.XZY\ — |*$XFZ|, a tedy
\XZ\ = \XY\.

Označme dále Q, resp. R průsečíky přímky AP s osou úhlu ABP
resp. ACP. Z vlastností osy úhlu dostáváme rovnosti

í

\AQ\ \AB\ \AR\ \AC\
|QP|“|BP| a |PP|“|CP|'

\AB\
= \AC\

\ВР\ 1СРГAbychom ukázali, že body Q a R splývají, stačí ukázat, že
Pro průměry CP a BP kružnic opsaných tětivovým čtyřúhelníkům

\XY\ \XZ\
a \BP\ =PXCY a PZBX platí \CP\ =

je tudíž ekvivalentní s rovností

Rovnost Q = R
sin/3* sin 7

|AB\ • \XY\
_ \AC| • \XZ\

sin /3sin 7
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která díky rovnosti \XZ\ = \XY\ plyne ze sinové věty pro trojúhelník
ABC.

Jiné řešení. Označme X, Y a Z druhé průsečíky polopřímek AP,
BP a CP s kružnicí к opsanou trojúhelníku ABC. Zřejmě \<$APB\ —

-\<ACB\ = \<APZ\ -\<ACP\ + \<ZPB\ -\<PCB\ = \<$PAC\ +
+ |«PPCj = \<PZX\ + \<PZY\ = \<XZY\ (obr.37). Analogicky
|< APC\ — |<í ABC\ = | XYZ\. Odtud plyne, že předpokládaná rovnost
|<APP| — \<£ACB\ = |<APC| — \ <$ABC\ je ekvivalentní s rovností
\<XZY\ = \<XYZ\, a tedy i s rovností \XZ\ = \XY\.

Protože trojúhelníky APC a ZPX jsou podobné, je

|AP\ • \PC\
_ \AP\ • \PC\\AC\

_ \AP\ _ \PC\
\ZX\ ~ \ZP\ ~ \PX\ ~ \AP\ • IPX\ m

kde m = |AP| • |PAT| = |PP| • \PY\ = \CP\ • \PZ\ je až na znaménkb
velikost mocnosti bodu P ke kružnici A:. Je tedy

\AC\\xz\ = m

\AP\ ■ \PC\
a obdobně

\AB |\XY\ =m \AP\\PB\-
Protože \XZ\ = \XY\, plyne odtud rovnost

\AB | \AC\
\BP\ \CP[
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To znamená, že osy úhlů АВР a ACP dělí úsečku AP ve stejném poměru.
Tím je tvrzení úlohy dokázáno.

Poznámka. Bod P, který vyhovuje předpokladu úlohy, leží na oblouku

Apolloniovy kružnice všech bodů U takových, že
závěru druhého z uvedených řešení.

3. Předpokládejme, že funkce / je řešením úlohy. Dosazením m — n — 0
do dané rovnice dostaneme /(0) = 0 a pro m = 0 dostaneme rovnost
/(/(n)) = f{n) pro všechna n G S. Pokud funkce / není identicky rovna
nule, má tedy vždy nenulový pevný bod (tj. bod, který se zobrazí sám
na sebe). Označme a nejmenší kladný pevný bod funkce /. Pokud a = 1,
dostaneme pro m = 1 rovnost /(l + /(n)) = 1 + /(n), odkud indukcí
snadno plyne, že je /(n) = n pro každé n 6 S.

Předpokládejme dále, že a > 1. Potom zřejmě platí /(2a) — / (/(a) +
+ a) = a + /(a) = 2a a dále opět indukcí f(ka) = ka pro každé к ^ 1.
Ukážeme, že všechny pevné body zobrazení / (a tedy i všechny funkční
hodnoty) jsou tvaru ka pro vhodné celé к ^ 0: Je-li b libovolný pevný
bod funkce /, dostaneme pro jeho podíl q při dělení číslem a a příslušný
zbytek r (0 r < a) rovnost

\UB\ Q
-. Plyne to ze

\UC\

aq + r = b = f(b) = f(aq + r) = f{r -f f(aq)) =
= f(r) + f{aq) = /(r) +aq.

To znamená, že také f(r) = r je pevný bod zobrazení /, a protože r < a,
musí být r = 0. Protože množina {/(n): n 6 S} je množinou pevných
bodů funkce /, plyne odtud speciálně, že f(i) = ща pro každé i < a,

přičemž no = 0 a n; G S. Pro libovolné n G S, které vyjádříme jako
n = ka + i, 0 ^ i < a, pak z dané funkcionální rovnice plyne

/(n) = f(i + ka) — f(i) + ka = П{а + ka = (n* + k)a.

Zbývá ověřit, že funkce / definovaná právě uvedeným předpisem spi-
ňuje danou funkcionální rovnici, ať už jsou čísla n* (1 ^ i < a) v případě
a > 1 zvolena jakkoliv: nechť m = ka + г, n — la + ý, 0 ^ г, / < a. Potom

/(m + /(n)) = /(fca -H + f{la + j)) = f(k + l + nj)a + i) =
= (к + l + nj + n;)a = /(m) + /(те) = /(/(m)) + /(те).
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Odpověď: Dané funkcionální rovnici vyhovují nulová funkce, dále
identická funkce /, pro kterou je /(n) = n pro všechna n G S, a konečně
každá funkce / určená předpisem

f(n) = ( ~ + n;)a>
G S jsou libovolné konstanty.

4. Označme 15a + 166 = r2 a 16a — 156 = s2, kde r,s G N. Odtud
dostáváme

kde a > 1 a ni,n2,.. Tla — 1* ?

r4 + s4 = (152 + 162)(a2 + 62) = 481 (a2 + 62).

Číslo 481 má prvočíselný rozklad 481 = 13-37, musí tedy platit r4+s4 = 0
(mod p) pro p G {13,37}. Nyní využijeme skutečnost, že čtvrtá mocnina
celého čísla nikdy nedává zbytek —1 ani modulo 13, ani modulo 37. To
plyne z malé věty Fermatovy, podle níž pro libovolné prvočíslo p a pro
každé celé z je buď xp~l = 0, nebo xp~1 = 1 (mod p). Kdyby tedy pro

nějaké celé x bylo z4 = — 1 (mod 13), bylo by též z12 = (—l)3 = — 1
(mod 13), a to nemůže nastat; podobně z kongruence z4 = — 1 (mod 37)
pro nějaké celé z plyne z36 = ( — l)9 (mod 37), což rovněž neplatí.

Rovnice r4 -f s4 = 0 (mod p) tedy nemůže mít řešení г ф 0 (mod p),
s ф 0 (mod p) (p G {13,37}), protože pak by pro r' takové, že rr' =
= 1 (mod p) (podle zmíněné malé věty Fermatovy stačí volit r' = rp~2)
platilo —1 = —r4r'4 = s4r'4 = (sr')4 (mod p). Proto musí být r = s = 0
(mod p), neboli p \ r, p \ s, tedy 481 | r, 481 | s, což znamená, že r ^ 481,
s ^ 481. Protože pro r = s = 481 najdeme dvojici a = 481 • 31, b = 481,
je hledané minimum rovno 4812.

Jiné řešení. Stejně jako v předchozím řešení zavedeme čísla ras,

pro něž dostaneme dvě kongruence r4 + s4 = 0 (mod p), neboli r4 = — s4
(mod p), kde p G {13,37}. Kdyby některá z těchto kongruencí měla řešení
r =É 0 (mod p), dostali bychom umocněním na liché číslo \{p — 1) podle
malé věty Fermatovy

= (И) »<p-1) = ( - s4Ů<p-1) = s’-1 = -1 (mod p)
-11 = rp

což není možné. Je tedy r = s = 0 (mod p) a dále postupujeme stejně
jako v předchozím řešení.

Jiné řešení. Označme 15a + 166 = r2 a 16a — 156 = s2, kde r, s G
G N. Sečtením vhodných násobků uvedených dvou rovností dostaneme
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481a = 15r2 + 16s2. Uvažujeme-li tuto rovnici modulo 13, dostaneme
2r2+3s2 =0 (mod 13). Pokud prozkoumáme všechny kvadratické zbytky
modulo 13, zjistíme, že tato možnost může nastat, jen když 131 r a 131 s.
Obdobně probráním všech kvadratických zbytků modulo 37 zjistíme, že
rovnici 481a = 15r2 + 16s2 modulo 37 vyhovují pouze ta r, s, pro něž
37 | r, 37 | s. Závěr je stejný jako v prvém řešení.
5. Označme obvyklým způsobem a, 6, c, d, e а / délky stran daného
šestiúhelníku ABCDEF. Je zřejmé, že šestiúhelník má shodné pro-

tější úhly, a = \<BAF\ = \<ACDE\, (3 = \<ABC\ = \<DEF\
a 7 — \^3BCD\ — \-AEFA\. Opišme šestiúhelníku obdélník PQRS tak,
aby dvě jeho protější strany obsahovaly dvě protější rovnoběžné strany
šestiúhelníku, např. tak, že AP _L BC, AS ± EF, DQ ± BC, DR J_ EF
(obr. 38). V takovém případě je \FB\ ^ |P5| a zároveň \FB\ ^ |QP|,
přičemž |PSj = asin/3 + /siny, \QR\ = csiny + dsin/l. Je tedy také

2\FB\ ^ (d + a) sin /3 + (c + /) sin 7.

Analogicky dostaneme (opíšeme-li obdélník dalšími dvěma způsoby)
' 2\BD\ ^ (b + e) sin (3 + (c + /) sin a,

2|PF| ^ (d + a) sin a + (b + e) sin 7.

Ze sinové věty pro trojúhelníky FAB, BCD a DEF vycházejí rovnosti

|DF|\BD\|FB| Re —Рл =
2 sin (32 sin 72 sin a
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takže

sin/?sin 7
4Ra = (c + /) 4- (d + a) sin a

siná
siná
sin /?

4Rc ^ (6 4- e) + (c +/)sin 7
sin a

sin 7 ’
sin 7

sin/?’4^ (<i -+■ o) 4- (6 4- e)sin /?

Sečtením posledních tří nerovností dostaneme

sin /? sin a

sin a sin /?
sin 7 sin a
t 1—:
sin a sin 7

sin /? sin 7

sin 7 sin /?
^ 2(c4- f-\-d-\-a,-\-b-\-e) = 2p,

4Лд 4- 4- ^ (c 4- /) ^
+ (b + e)(

) 4- (d 4 a) ^ ) +

)*

což jsme chtěli dokázat. Rovnost zřejmě platí, právě když a — /? = 7
a FB _L BC, BD _L AB a DF _L CD, tj. právě když ABCDEF je
pravidelný (stačí si uvědomit, že trojúhelníky FAB, BCD a DEF jsou
rovnoramenné s úhly 30° při základně, takže trojúhelník BDF má nutně
všechny úhly šedesátistupňové).
6- (Podle Michala Beneše.) Předpokládejme, že čísla p a q jsou nesou-
dělná (je-li totiž d jejich největší společný dělitel, lze v úloze čísla p, q, X{
zaměnit po řadě čísly p/d, q/d, Xi/d; protože dle zadání platí nerovnost
n > p + q, platí samozřejmě i nerovnost n > p/d + q/d).

Každý člen X{ lze psát ve tvaru Xi = Sip—tiq, kde celá nezáporná čísla
Si a ti udávají, kolik z čísel x\—xQ,X2~x\, ..., 37—je rovno presp. —g

(takže Si 4- ti = i), pro i = 0 položme s0 = t0 = 0. Dvojice (si? t/) budeme
interpretovat jako mřížové body v rovině se souřadnicovými osami s a t
(budeme předpokládat, že osa s je vodorovná, orientovaná doprava a osa t
svislá, orientovaná vzhůru). Pro každé i jsou mřížové body (s;_i,íi-i)
a (si,ti) sousední, tj. lze je spojit šipkou délky 1 ve směru některé ze

souřadných os. Těchto n šipek vytvoří cestu

Го — {(soAo) ($i, či) -*■ ($2, £2) (sn, tn)}-

(Šipky směřují pouze doprava a nahoru.)
Rovnost Xi = xj nastane právě pro ta г < j, pro která (tj — t/)q =

=■ (Sj — Si)p, neboli (vzhledem к předpokládané nesoudělnosti p a q)
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tj = ti + rp a Sj = Si+rq pro vhodné přirozené r. Tak pro i = 0 a j = n
dostáváme, že sn = Rq a tn = Rp pro vhodné přirozené R. Podle zadání
je n > p -f q, takže z rovností n = sn + tn — R(p 4- q) plyne odhad
R ^ 2. Proto bude úloha vyřešena, prokážeme-li existenci indexů i < j
takových, že sj = Si + q a tj = ti + p.

Připusťme, že takové indexy neexistují. Geometricky to znamená, že
cesta Го nemá společný bod se svým „posunutím"

Г1 = {(s0 + Q,to + p) —■y (si + Ч-, ti + P) ($2 + 9) ř2 + p) -> .. - ->

—>• (sn -h q,tn + p)j.
\

Uvažujme dále mřížové body Ar = (rq,rp) pro r ^ 0. Z našeho před-
pokladu o vzájemné poloze cest Го a Tj především plyne, že na cestě
Г0, jež spojuje body Aq а Лд, neleží bod Ai, počátek cesty Г1. Nechť
tedy cesta Го prochází například „nad“ bodem A\ (kdyby procházela
„pod“ tímto bodem, stačilo by v následující úvaze všude vyměnit „nad“
za ,,pod“). Pak ovšem (díky vzájemné poloze obou cest) leží Г0 „nad“
Г1 v celém společném úseku q ^ s Rq. Z toho, že cesta Го prochází
„nad“ bodem Ar pro některé r = 1,2,..., R — 1 (jak je tomu pro r = 1),
okamžitě plyne, že „posunutá" cesta Г1 prochází „nad" bodem Ar+i
(obr. 39), takže (díky upřesněné vzájemné poloze v úseku q s ^ Rq)

л

Ar
Rp

Г1 : :

V
A\Го

■>
sAq RqQ

Obr. 39

„nad" bodem Лг+1 prochází i cesta Г0. Indukcí zjišťujeme, že Г0 dochází
„nad" bod Ar, což odporuje tomu, že v tomto bodě cesta Г0 končí.

Jiné řešení. (Podle Tomáše Bárty.) Můžeme předpokládat, že p a q

jsou nesoudělná čísla, protože jinak vezmeme p' = , kde
P /

(p,qyQ (P>9)
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(p, q) označuje největší společný dělitel čísel p a q\ zřejmě n > p + q >
>p' + q'.

Bez újmy na obecnosti můžeme dále předpokládat (díky symetrii), že
p > q. Abychom dostali xn — 0, musíme zřejmě kq krát přičíst p a kp krát
odečíst <7, takže n = k(p + q) ^ 2(p + q).

Budeme dále počítat modulo p. Pokud X{ - Xi-\ = p, je Xi = Xí-i

(mod p), a pokud гг* —£í_i = —q, je Xi ф 1 (mod p). V dané posloup-
nosti Xo,X\,... ,xn nyní označme Zj všechny ty indexy, pro které dojde
к odečtení q, tj. dojde ke změně zbytkové třídy modulo p,

0 = x0 = xi = ... = xZl-\ ф xZl (mod p),
= XZ2-1 Ф xZ2 (= -q) (mod p),

(1)
XZi —

(počet indexů zi,Z2,... je právě kp). Zřejmě bude xZp = —pq = жо
(mod p). Předpokládejme dále, že v dané posloupnosti neexistují dvě čísla
splňující podmínky úlohy. V tom případě nemůže být xo й xZp й xz
protože jinak by bylo xZp rovno některému z čísel (1), která dle předpo-
kladu tvoří po sobě jdoucí násobky čísla p, a xZp = 0 (mod p). Je tedy
buď xZp > xZl-i, nebo xZp < xq.

a) Nechť xZp > xzl-\. Odtud plyne xZp+1 > xZ2-\. Je totiž

Xzp+1 ^ xZp - q > xZl-i - q = xZl

1 ““I >

a nemůže být
<xZl < x 3'Z2—lZp+1 zs

protože xZp+1 = — q (mod p) a všechna čísla s touto vlastností mezi xZl
a xZ2-i patří do dané posloupnosti. Snadno ukážeme matematickou in-
dukcí, že je také

i г o,Xzp+i ^ Xzi+1—1

speciálně
xz2p > XZP+1-1 ^ XZp > XZl-i > Xq.

Matematickou indukcí vyjde xZjp > xq pro každé přípustné j > 0, a to
odporuje tomu, že xn = 0.

b) Nechť xZp < xq. Podobně jako v a) odvodíme, že je xZp+1 < xZl
(je totiž

= xZp+i-i ~ q < x0 - q ^ xZl-i - q - xZl,x*P+i
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xZp+i_i = O (mod p) jsou různá odprotože všechna čísla xZp, xZp+\,..
nuly, tedy nutně menší než x0).

Indukcí dále dostaneme, že x

• )

< xZj pro každé j ^ 0 a speciálně
xZ2p < xZp < x0, xZjp < £0 pro každé přípustné j > 0, což opět odporuje
tomu, že xq = 0.

zp+j

/
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Třetí ročník Středoevropské olympiády v informatice

Třetí ročník Středoevťopské olympiády v informatice (CEOI) se ко-
nal ve dnech 9:-13. října 1996 na Slovensku. Účastnilo se ho 27 sou-
těžících ze sedmi zemí Střední Evropy: Chorvatska,
Maďarska, Polska, Rumunska, Slovenska, Slovinska
a České republiky. Soutěž proběhla v prostorách ma-

tematicko-fyzikální fakulty Univerzity Komenského.
Soutěžící z České republiky byli na tuto soutěž

vybráni na základě svých výsledků z celostátního kola 45. ročníku ma-
tematické olympiády v kategorii programování. Nej lepší soutěžící z celo-
státního kola byli nominováni pro 8. ročník Mezinárodní olympiády v in-
formatice (IOI), která se konala v Maďarsku. O výsledcích tohoto našeho
reprezentačního družstva se můžete dočíst na jiném místě této ročenky.
Pro Středoevropskou olympiádu byli do družstva nominováni studenti,
kteří ve školním roce 1996/97 navštěvují poslední ročníky střední školy
a jsou považováni za perspektivní účastníky Mezinárodní olympiády v in-
formatice. Vedoucím družstva byl jmenován doc. RNDr. Václav Sedláček,
CSc., z fakulty informatiky Masarykovy univerzity.

Vlastní soutěž CEOI se svým charakterem maximálním možným způ-
sobem přibližuje к IOI a i v letošním roce se přikročilo к automatickému
hodnocení předložených řešení. Na soutěži řeší každý z účastníků na po-
čítači ve dvou soutěžních dnech vždy po třech soutěžních úlohách. Maxi-
mální bodový zisk tak může činit 200 bodů. Letošní ročník byl charakte-
ristický tím, že organizátoři stanovili například ve srovnání s IOI pro běh
soutěžních úloh na počítači nad testovacími daty nezvykle ostré časové
limity, které v maximální možné míře prověřily efektivitu vypracovaných
řešení.

Na základě počtu dosažených bodů, udělených na základě výsledků
testů softwarových produktů na počítači, udělila mezinárodní jury
2 zlaté medaile (za 182-180 dosažených bodů), 4 stříbrné medaile (za
173-127 bodů) a 7 bronzových medailí (za 122-105 bodů).
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Výsledky soutěžících z České republiky:
17. Věroslav Kaplan, 90 bodů, gymnázium na tř. kpt. Jaroše, Brno,
20. Mikuláš Patočka, 78 bodů, gymnázium na tř. kpt. Jaroše, Brno,
21. Jan Kratochvíl, 64 bodů, gymnázium U libeňského zámku,

Praha 8,
25. Martin Dráb, 41 bodů, gymnázium U libeňského zámku, Praha 8.

Družstvo České republiky nezískalo žádnou medaili. Neoficiální pořadí
zúčastněných zemí ukazuje následující tabulka.

621 5. Česká republika
589 6. Maďarsko
405 7. Slovinsko (3 soutěžící) 177

1. Polsko

2. Slovensko
3. Rumunsko

4. Chorvatsko

273

259

362

Přesto se však ukazuje, že CEOI je velice užitečným střetnutím mladých
programátorů pro jejich odborný růst a družstvo České republiky by na

. ní v příštích ročnících nemělo chybět.
Soutěž byla slovenskými organizátory velmi doře připravena. Slav-

nostní zahájení 3. CEOI se konalo v Primaciálním paláci za účasti čelných
představitelů města, Univerzity Komenského a funkcionářů Slovenskej in-
formatickej spoločnosti, slavnostní vyhlášení výsledků se konalo za účasti
slovenské televize v prostorách konzervatoře.

Příští 4. ročník CEOI se bude konat v červenci 1997 v Polsku. Organi-
zátoři hodlají na tuto soutěž pozvat dále družstva z Ukrajiny a Běloruska
a jako hosty i družstva ze Švédská a USA, která o tuto účast projevila
zájem.
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8. mezinárodní olympiáda v informatice

Na konci července se sjeli nejlepší mladí programátoři z celého světa do
maďarského města Veszprém. Konal
se tam již osmý ročník mezinárodní
olympiády v informatice (IOI — In-
ternational Olympiad in Informa-
tics). Soutěže se zúčastnilo celkem
215 studentů středních škol z 56 ze-

mí. Mezi nimi nechybělo ani české reprezentační družstvo. Naši zemi
zastupovali nejúspěšnější řešitelé celostátního kola 45. ročníku matema-
tické olympiády — kategorie P, a sice Daniel Král’ (gymnázium Zlín, Lesní
čtvrť), Stanislav Mikeš (gymnázium České Budějovice, Jírovcova), Robert
Špalek (gymnázium Brno, tř. kpt. Jaroše) a Tomáš Tichý (gymnázium
Pardubice, Dašická ul.). Vedoucími české delegace byli doc. RNDr.. Vác-
lav Sedláček, CSc., z Fakulty informatiky Masarykovy univerzity v Brně
a RNDr. Pavel Tópfer, CSc., z Matematicko-fyzikální fakulty Univerzity
Karlovy v Praze.

Maďarští organizátoři zvolili pro uspořádání olympiády hezké a po-
klidné město Veszprém ležící nedaleko Balatonu. Všichni účastníci byli
ubytováni v internátech místních škol, vlastní soutěž probíhala v prosto-
rách krásného moderního gymnázia. Stačilo jen rozmístit do tříd několik
stovek nových osobních počítačů — některé přímo pro soutěž, jiné pro
samostatnou práci soutěžících ve volném čase a další pro vedoucí všech
delegací.

Tým odborných pracovníků z maďarských univerzit připravil velmi
pěkné a zajímavé soutěžní úlohy. V každém ze dvou soutěžních dní řešili
účastníci olympiády po třech příkladech. Na svou práci měli vždy pět
hodin času. Požadovaným výsledkem každé úlohy byl odladěný program.
Soutěžící nesniěli používat žádné vlastní pomůcky ani písemné materiály,
к dispozici měli pouze přidělené osobní počítače. Při své práci mohli pou-
žívat programovací jazyky Pascal, C/C++ a Basic. Odevzdané programy

byly plně automaticky testovány pomocí předem připravených tajných
sad testovacích dat. Při testování se sledovala nejen správnost výsledků,

Inkrtiátionál Olympiád
in informdies
National Committee,

У £ 3 Z Т К t М John von Neumann Computer Society
25 July-1 August H-10S4Budapest,Bíthoríu. 16.
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ale také doba výpočtu. Za správný a dostatečně rychlý výpočet programu
s každými testovacími vstupními daty získal řešitel několikabodové oce-
nění. Každý den bylo možné dosáhnout maximálně sta bodů. To se však
v prvním soutěžním dnu nepodařilo nikomu, zatímco ve druhém dnu
soutěže bylo „stobodových řešitelů" více.

Účastníci s nejvyššími bodovými zisky obdrželi na závěr soutěže me-
daile a hodnotné věcné ceny. Krásné medaile vyrobila zvlášť pro tuto
olympiádu světoznámá porcelánka Herend ležící nedaleko Veszprému.
Celkem bylo uděleno 20 zlatých, 36 stříbrných a 52 bronzových medai-
lí. Čeští reprezentanti zakončili své vystoupení na olympiádě tradičně
výborně, všichni čtyři se umístili na medailových místech. Vynikajícím
úspěchem je pak absolutní vítězství Daniela Krála v celé soutěži. Zlatou
medaili a 1. místo získal za plných 196 bodů z 200 možných. Ostatní
tři soutěžící z České republiky obdrželi bronzové medaile s následují-
cím umístěním: Tomáš Tichý 71.-72. místo (133 bodů), Stanislav Mikeš
84.-89. místo (116 bodů) a Robert Špalek 95.-98. místo (111 bodů).

1. Čína
2. Rusko
3. Slovensko
4. Polsko
5. Rumunsko
6. Tchajwan
7. Litva

8. Írán
9. Jugoslávie

10. Korea

11. Thajsko
12. Česká republika
13. Bělorusko
14. Chorvatsko
15. Vietnam
16. Bulharsko

17.-18. Estonsko
Maďarsko

19. Německo

20. Turecko

736 558

709 556

684 535

682 531

652 515

647 507

497611

607 497

575 469

458565

Texty soutěžních úloh

1. Hra (30 bodů)
Dva hráči hrají následující hru. Hrací plán je tvořen řadou kladných

celých čísel. Hráči se pravidelně střídají na tahu. Hráč, který je na tahu, si
vezme číslo buď z levého, nebo z pravého konce řady. Toto číslo je odstra-
něno z hracího plánu. Hra končí ve chvíli, když jsou odebrána z hracího
plánu všechna čísla. První hráč vyhrává, pokud součet jím odebraných
čísel je alespoň roven součtu čísel odebraných druhým hráčem. Druhý
hráč hraje nejlepším možným způsobem. První hráč začíná hru. Pokud
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hrací plán obsahuje na začátku hry sudý počet čísel, potom existuje vy-

hrávající strategie pro prvního hráče.
Napište program, který implementuje vyhrávající strategii prvního

hráče. Odpovědi druhého hráče jsou poskytovány daným počítačovým
programem. Oba hráči spolu komunikují pomocí tří procedur z modulu
Play, který je vám к dispozici. Jsou to procedury StartGame, MyMove
a YourMove. První hráč začíná hru voláním procedury bez parametrů
StartGame. Pokud první hráč svým tahem odebírá číslo z levého konce
dané řady čísel, provede proceduru MyMove (’ L ’). Podobně provedení pro-

cedury MyMove(’R’) oznamuje druhému hráči, že si první hráč vybral
číslo z pravého konce řady. Druhý hráč, tj. počítačový program, provádí
svůj tah okamžitě. První hráč se dozví jeho tah zavoláním procedury
YourMove (C), kde C je znaková proměnná (v jazyce C/C++ volání pro-
cedury zapíšete ve tvaru YourMove(&C)). Hodnotou C je ’L' nebo 'R'
podle toho, zda druhý hráč odebral číslo z levého nebo pravého konce
řady.

Vstupní data. První řádek vstupního souboru INPUT.TXT obsahuje
počáteční velikost N hracího plánu (počet čísel v řadě). Číslo N je sudé
a 2 ^ iV ý 100. Zbývajících N řádků vstupního souboru popisuje hrací
plán zleva doprava. Každý z těchto N řádků obsahuje jedno číslo zadané
řady. Každé číslo je rovno nejvýše 200.

Výstupní data. Po skončení hry zapíše váš program výsledek do vý-
stupního souboru 0UTPUT.TXT. Soubor obsahuje jediný řádek se dvěma
celými čísly. Prvním číslem je součet čísel odebraných prvním hráčem,
druhé číslo je součtem čísel odebraných druhým hráčem. Váš program
musí hru skutečně hrát a výsledek musí odpovídat průběhu hry.

Příklad vstupu a výstupu. Následující obrázek ukazuje vstupní soubor
obsahující počáteční hrací plán a možný výstupní soubor.

0UTPUT.TXTINPUT.TXT

6 15 14
4
7
2
9
5
2
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2. Opracovávání výrobků (30 bodů)
V továrně pracuje výrobní linka. S každým výrobkem je nutno pro-

vést dvě operace: nejprve operaci „A“, potom operaci „B“. Pro každou
z těchto operací je к dispozici několik strojů. Obrázek 40 znázorňuje
uspořádání výrobní linky, která pracuje následujícím způsobem. Stroj
provádějící operaci „A“ vezme výrobek ze vstupní palety, provede s ním
operaci „A“ a umístí výrobek do pomocné palety. Stroj typu „B“ bere
výrobky z pomocné palety, provádí s nimi operaci „B“ a pak je ukládá do
výstupní palety. Všechny stroje mohou pracovat zároveň nezávisle jeden
na druhém, velikost palet není omezena. Stroje mají různé parametry,
pro každý stroj známe jeho dobu opracovávání výrobku.

Obsah vstupní palety:

Stroje typu „A“:
Obsah pomocné palety:
Stroje typu „B“:
Obsah výstupní palety:

□□□□□□□□□□

A2AI

■ ■ ■ ■

B3B1 B2

♦♦♦♦♦♦♦♦♦
Obr. 40

Určete nejkratší čas, ve kterém mohou být dokončeny operace „A“
pro všech N výrobků, je-li opracovávání výrobků zahájeno v čase 0 (pod-
úloha A). Dále vypočtěte minimální čas, který je potřebný pro dokončení
obou operací se všemi N výrobky (podúloha B).

Vstupní data. Soubor INPUT.TXT je tvořen pěti řádky s kladnými ce-

lými čísly. První řádek obsahuje číslo N, které představuje celkový počet
výrobků (1 ^ ^ 1000). Na druhém řádku je uveden počet Mi strojů
typu „A“ (1 ^ Mi 30). Na třetím řádku je Mi kladných celých čísel,
která udávají dobu opracovávání pro jednotlivé stroje typu „A“. Čtvrtý
a pátý řádek obsahují podobně počet M2 strojů typu „B“ (1 ^ M2 30)
a dobu opracovávání pro jednotlivé stroje typu „B“. Dobu opracovávání
výrobku měříme v jednotkách času. Tato doba zahrnuje i čas nezbytný
pro přenos výrobku z palety před opracováním a čas na uložení opraco-
váného výrobku na paletu. Každý z časových údajů je nejméně 1 a nej-
výše 20.

Výstupní data. Výstupní soubor 0UTPUT.TXT je tvořen dvěma řádky.
První řádek obsahuje jedno kladné celé číslo představující řešení pod-
úlohy A. Druhý řádek obsahuje jedno kladné celé číslo
úlohy B.

řešení pod-
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Příklad vstupu a výstupu. Následující obrázek ukazuje možný vstupní
soubor a jemu odpovídající výstupní soubor.

INPUT.TXT OUTPUT.TXT

5 3
2 5
1 1

3

3 1 4

3. Síť škol (40 bodů)
Určitý počet škol je zapojen do počítačové sítě. Školy mají mezi sebou

uzavřeny dohody, podle kterých si zasílají software. Každá škola má se-
znám škol, kterým zasílá software („zásobované školy“). Pokud je škola
В na seznamu škol zásobovaných ze školy A, pak škola A nemusí být
nutně na seznamu škol zásobovaných školou B.

Napište program, který spočítá minimální počet škol, kterým musí
být zaslána kopie nového softwaru, aby byl tento software postupným
předáváním mezi školami na základě uzavřených dohod nakonec rozeslán
na všechny školy v síti (podúloha A).

Dalším úkolem je navrhnout modifikaci dosavadních smluv mezi ško-
lami tak, aby stačilo zaslat nový software na jednu libovolnou školu
a přitom bylo jisté, že se v síti rozšíří na všechny školy. Vypočtěte mini-
mální počet nových smluv, které je třeba uzavřít, aby po zaslání nového
softwaru na jednu libovolnou školu obdržely tento software nakonec po-

stupným šířením v síti všechny školy (podúloha B). Jedna nová smlouva
znamená přidání jedné školy do seznamu zásobovaných škol jedné jiné
školy.

Vstupní data. První řádek vstupního souboru INPUT.TXT obsahuje
jedno celé číslo N, kterým je celkový počet škol v síti (2 ^ 100).
Tyto školy jsou označeny celými kladnými čísly od 1 do N. Každý z ná-
sledujících N řádků obsahuje seznam zásobovaných škol. Řádek číslo г + 1
obsahuje čísla škol zásobovaných školou číslo i. Každý seznam je ukončen
nulou. Pokud škola nezásobuje žádné jiné školy (její seznam zásobovaných
škol je prázdný), pak na příslušném řádku vstupního souboru je pouze
nula.

Výstupní data. Výstupní soubor OUTPUT.TXT je tvořen dvěma řádky.
První řádek obsahuje jedno celé kladné číslo představující řešení pod-
úlohy A. Druhý řádek obsahuje řešení podúlohy B.
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Příklad vstupu a výstupu. Obrázek ukazuje možný vstupní soubor
a jemu odpovídající výstupní soubor.

INPUT.TXT OUTPUT.TXT

5 1

2 4 3 0
4 5 0

2

0

0
1 o

4. Magické čtverce (40 bodů)
Poté, co pan Rubik vynalezl úspěšnou magickou kostku, navrhl také

její rovinnou verzi a nazval ji magické čtverce. Je to obdélník složený
z osmi čtverců stejné velikosti (obr. 41).

2 3 41

8 7 6 5

Obr. 41. — Počáteční konfigurace.

V této úloze budeme uvažovat verzi, v níž jsou čtverce obarveny růz-
nými barvami. Barvy jsou označeny celými čísly od 1 do 8 (obr. 41).
Konfigurace obdélníku je popsána posloupností osmi čísel. Jsou to čísla
barev v tom pořadí, jaké získáme při procházení jednotlivých čtverců
ve směru pohybu hodinových ručiček počínaje v levém horním rohu ob-
délníku. Například konfigurace na obr. 41 je popsána posloupností čísel
(1,2,3,4,5,6, 7,8). Tato konfigurace je zároveň počáteční konfigurací.

Mezi konfiguracemi lze přecházet pomocí tří základních operací ozna-

čených písmeny ’А’, ’В’ a ’C’:
’A’: výměna horního a dolního řádku,
’B’: jednoduchý cyklický posuv celého obdélníku směrem vpravo,
’C’: jednoduchá rotace prostředních čtyř čtverců ve směru pohybu ho-

dinových ručiček.
Všechny konfigurace jsou dosažitelné z počáteční konfigurace prová-

děním těchto tří základních operací. Význam základních operací ukazuje
obr. 42. Čísla vně obdélníku označují pozice jednotlivých čtverců. Jestliže
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čtverec na pozici p obsahuje číslo г, znamená to, že provedením příslušné
operace se čtverec z pozice i přesunul na pozici p.

12 3 412 3 4 12 3 4

В c7 4 2 3 7A 8 6 5 1 1 2 4

74 82 3 5 6 8 6 31 5

8 7 6 5 8 7 6 5 8 7 6 5

Obr. 42. — Základní operace.

Napište program určující posloupnost základních operací, pomocí níž
je počáteční konfigurace z obr. 41 převedena na určenou cílovou konfigu-
raci (podúloha A). Pokud délka nalezené posloupnosti nepřesáhne 300,
získáte další dva body (podúloha B).

Vstupní data. Vstupní soubor INPUT.TXT obsahuje jediný řádek. Na
něm je zapsáno 8 celých kladných čísel popisujících cílovou konfiguraci.

Výstupní data. Na prvním řádku výstupního souboru 0UTPUT.TXT je
zapsána délka L nalezené posloupnosti operací. Dalších L řádků popisuje
nalezenou posloupnost operací. Každý z nich obsahuje na první pozici
vždy jedno z písmen ’А’, ’В’, ’C’ — označení příslušné základní operace.

Pomůcka. V pracovním adresáři úlohy máte к dispozici program
MT00L.EXE, který vám umožní hrát si s magickými čtverci. Zavoláním
programu „mtool input. txt output .txt“ můžete experimentovat s cí- '
lovou konfigurací a s posloupností operací.

Příklad vstupu a výstupu. Následující obrázek ukazuje příklad vstup-
ního a jemu odpovídajícího výstupního souboru.

INPUT.TXT OUTPUT.TXT

26845731 7
В
C
A
В
C
C
В
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5. Nejdelší prefix (40 bodů)
Strukturu některých biologických objektů lze reprezentovat posloup-

ností jejich základních prvků. Tyto prvky budeme označovat velkými
písmeny. Biology zajímá možnost rozkládat dlouhé posloupnosti prvků
na menší. Takové krátké úseky budeme nazývat komponenty. Řekneme, že
posloupnost S může být vytvořena z dané množiny komponent P, jestliže
v množině P existuje takových n komponent Pi, • • • ,pn, jejichž zřetěze-
ním získáme posloupnost S. Zřetězením komponent p\,..., pn rozumíme
jejich spojení v daném pořadí, a to bezprostředně za sebou bez mezer.
Některé komponenty se v tomto zřetězení mohou vyskytnout vícekrát.
Všechny komponenty obsažené v uvažované množině P nemusí být ve
zřetězení použity. Například posloupnost ABABACABAAB může být
vytvořena z množiny komponent {A, AB, BA, CA, BBC}.

Prvních К znaků posloupnosti S tvoří prefix posloupnosti S délky К.
Napište program, který přečte ze vstupu množinu komponent P a po-
sloupnost prvků T. Program spočítá délku nejdelšího prefixu posloup-
nosti T, který může být vytvořen z komponent obsažených v P.

Vstupní data. Vstupní data jsou uložena ve dvou souborech. Soubor
INPUT.TXT popisuje množinu komponent P, soubor DATA.TXT obsahuje
zkoumanou posloupnost T. První řádek souboru INPUT.TXT obsahuje
číslo N, které představuje počet komponent v množině P (1 ^ ^ 100).
Každá komponenta je pak popsána na dvou po sobě jdoucích řádcích.
První z nich udává délku L komponenty (1 L ^ 20), druhý obsahuje
řetězec velkých písmen (z rozmezí od ’A’ do ’Z’) délky L. Všechny zadané
komponenty jsou navzájem různé.

První pozice každého řádku v souboru DATA. TXT obsahuje jedno velké
písmeno. Na posledním řádku tohoto souboru je na první pozici znak
tečka (’.’). Délka posloupnosti T je alespoň 1 a nejvýše 500 000.

Výstupní data. Výstupní soubor 0UTPUT.TXT obsahuje jediné číslo —

délku nejdelšího prefixu posloupnosti T, kterou lze vytvořit z množiny
komponent P.

Příklad vstupu a výstupu. Následující obrázek ukazuje dva vstupní
soubory a jim odpovídající výstupní soubor.

6. Třídění posloupnosti tří hodnot (20 bodů)
Třídění je jedním z nejčastějších úkolů prováděných při výpočtech.

Uvažujme zvláštní problém třídění, kdy klíčové položky ve tříděných zá-
známech mohou nabývat nejvýše tří různých hodnot. Tato situace na-
stane například při třídění držitelů medailí podle druhu získané medaile
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INPUT.TXT DATA.TXT OUTPUT.TXT

A 115
В1
AA
В2

AA В
C3

ABBC
В2
AC A
A2

В A В
C
В

tak, aby držitelé zlatých medailí byli první, po nich následovali držitelé
stříbrných medailí a nakonec držitelé bronzových medailí.

V této úloze budou přípustnými hodnotami klíčů celá čísla 1, 2 a 3.
Požaduje se setřídit záznamy podle hodnot klíčů v neklesajícím pořadí.
Třídění musí být provedeno posloupností operací výměn. Pro každou ope-
raci výměny jsou dána dvě čísla p, q určující pozici ve tříděné posloup-
nosti. Operace výměny spočívá ve vzájemné záměně prvků uložených
v posloupnosti na pozicích p, q.

Je dána posloupnost hodnot klíčů. Napište program, který určuje mi-
nimální počet operací výměny, pomocí nichž lze zadanou posloupnost
setřídit (podúloha A). Dále program nalezne odpovídající posloupnost
operací výměny pro toto třídění (podúloha B).

Vstupní data. První řádek vstupního souboru INPUT.TXT obsahuje
počet záznamů N (1 5í N ú 1000). Každý z následujících N řádků
obsahuje jednu hodnotu klíče.

Výstupní data. První řádek výstupního souboru 0UTPUT.TXT obsa-
huje minimální počet operací výměny L, které zajistí setřídění zadané
posloupnosti (výsledek podúlohy A). Následujících L řádků výstupního
souboru popisuje posloupnost výměn v tom pořadí, v jakém budou pro-

váděny. Na každém z těchto řádků jsou zapsána dvě čísla p, q udávající
pozice vyměňovaných prvků (výsledek podúlohy B). Pozice v posloup-
nosti jsou očíslovány celými čísly od 1 do TV.

Příklad vstupu a výstupu. Následující obrázek ukazuje příklad vstup-
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ního a jemu odpovídajícího výstupního souboru.

INPUT.TXT OUTPUT.TXT

49
2 1 3

4 72

1 9 2
3 5 9

3

3
2
3

1

\
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