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O priabéhu 45. ro¢niku matematické olympiady

Soutéz Matematickd olympidda ve Skolnim roce 1995/96 pofadaly pro
zéky stfednich a zékladnich 8kol Ministerstvo Skolstvi, mladeze a té-
lovychovy CR ve spolupraci s Jednotou &eskych matematikil a fyzikd
a Matematickym tustavem AV CR. SoutéZ fidil Gstfedni vybor matema-
tické olympiady (UV MO) prosttednictvim oblastnich a okresnich vybort
matematické olympiady.

Cilem souté&Ze je vyhledavani zaki talentovanych v matematice, pro-
bouzeni jejich hlubSiho zadjmu o matematiku a rozvijeni jejich matema-
tickych schopnosti. Ve $kolnim roce 1995/96 se uskutecnil jeji 45. ro¢nik.

Usttedni vybor MO pracoval ve slozeni, v némz byl jmenovan Minis-
terstvem Skolstvi CR v roce 1989. Pfedsedou UV MO byl doc. dr. Leo Bo-
éek, CSc., z MFF UK v Praze, tajemniky byli dr. Karel Hordk, CSc.,z MU
AV CR v Praze a dr. JiF Binder, CSc., z PF UK v Praze.

V pribéhu 45. roéniku MO se konala dvé zasedani UV MO, prvni
dne 5. prosince 1995 v Praze, druhé 22.-23. dubna 1996 v Bilovci pii
celostatnim kole kategorie A. Na programu bylo hodnoceni priib&hu sou-
t&%e, zabezpefeni celostatnich soustfedéni tspésnych resiteli MO vietné

vsoustfedéni pro pfipravu na MMO, korespondenéni seminaf UV MO a or-
ganizace dalsich kol soutéZe. Jako vidy se diskutovalo o vhodnosti né-
kterych soutéznich tiloh MO. '

V organizaci vlastni soutéZe nedoslo k Zadnym zménam. Pro Zaky
zékladnich kol byla soutéz rozdélena do péti kategorii Z4, 75, 76, Z7
a Z8, které byly urCeny postupné zakum 4. az 8. ro¢niku. Podrobnosti
mohou najit zdjemci v brozurce 45. roénik MO na zdkladnich $koldch,
jejiz vydani se pripravuje.

Pro zaky stiednich $kol byla soutéz organizovana ve ¢tyfech katego-
riich A, B, C a P. Kategorie A byla uréena zadktim 3. a 4. ro¢nikt stfednich
skol, kategorie B byla pro zaky 2. ro¢nikt a v kategorii C soutézili Zaci
1. ro¢nikid. Pro zaky vSech tfid stfednich kol byla urlena jesté katego-
rie P, zaméfend na tlohy z programovani a matematické informatiky.

V kategoriich A, B a C ma I. kolo dvé ¢asti. V prvni ¢asti fesi soutézici
6 tloh samostatné doma a mohou se pripadné i poradit se svymi uditeli,
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vedoucimi krouzkd apod. Druhd ¢ast ma formu klauzurni préace, v niz fesi
z4ci tti Glohy v omezeném case 4 hodin. ReSitelé, ktefi iispsné projdou
prvnim kolem, jsou pozvani do druhého (oblastniho) kola soutéze, kde
Tesi Ctyfi tlohy opét v limitu ¢tyf hodin.

V kategoriich A a P se kond jeSté tieti, celostatni kolo. V ném je
vlastni soutéz rozdélena do dvou dni. V kategorii A fesi soutézici kazdy
den tii Glohy v Casovém limitu ¢tyfi hodiny, v kategorii P ve stejném
limitu vzdy dvé ulohy.

Celostatni kolo 45. ro¢niku se uskutecnilo v Bilovci ve dnech 22. az
25. dubna 1996 (kategorie A) a 25.-28. dubna 1996 (kategorie P). Na za-
bezpeceni soutéze véetné bohatého doprovodného programu pro soutézici
i ¢leny UV MO se obétavé podileli élenové oblastniho viboru MO Se-
verni Moravy, pracovnici matematickych kateder pfirodovédecké fakulty
Palackého univerzity v Olomouci a zejména profesorfi a pedagogicky sbor
gymnézia MikuldSe Kopernika v Bilovci.

Vybrana druZstva se zi¢astnila mezindrodni matematické olympiady
i mezinarodni olympiddy v informatice. Témto soutézim je vénovana sa-
mostatna kapitola v zavéru této rocenky.

K matematické olympiadé vedle vlastni soutéze patii i fada doprovod-
nych akci pro talentované zaky. Z akci poradanych oblastnimi vybory MO
k nim zejména patii seminare pro fesitele MO a instruktaze pro uditele.
Pro nejuspésnéjsi resitele oblastnich kol MO a korespondenénich semi-
nart byla pofddana (vétSinou tydenni) soustiedéni.

Usttedni vibor MO zajistoval t¥i soustfedéni. Pro zaky nematuruji-
cich ro¢niki to bylo jiz tradi¢ni soustfedéni nékolika desitek Gspésnych
resitelt aloh MO a FO. Probéhlo ve dnech 10.-21. 6. 1996 v Jevic¢ku. Dalsi
dvé soustiedéni byla vénovana pripravé ceského druzstva na mezinarodni
matematickou olympiddu a konala se opét v Jevicku, a to pro 15 nejlep-
Sich fesitel II. kola kategorie A v tydnu od 24. do 29. bfezna jesté pred
celostatnim kolem, druhé pak uz jen pro vybrany tym 6 reprezentanti
a 2 ndhradnikd od 9. do 14. ¢ervna 1996.

Soutézni Glohy I. (doméciho) kola vSech kategorii matematické olym-
piady jsou publikovany v tzv. soutéznich letacich. Ulohy jsou dale zve-
fejhovany v Casopisech Matematika, fyzika, informatika a Rozhledy ma-
tematicko-fyzikdlni. Na: pomoc uéitelim jsou pak rozesilany na skoly ko-
mentare k Gloham.

Ulohy pro jednotliva kola soutéze piipravuje jiz ¢tvrty rok tlohova
komise pod vedenim doc. RNDr. Jaromira Simsi, CSc., z pobocky MU AV
CR v Brné. Komise se schazi dvakrat roéné na podzim a na jafe, tentokrat
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se tlohové seminére konaly v Bratislavé a v Jevicku. V komisi pracuje
zhruba 16 &lent z Cech i Slovenska (tilohy obou narodnich olympiad jsou
vybirdny i zadavany spoletné). V tomto ro¢niku zodpovidali za vybér
iloh pro jednotlivé katégorie RNDr. Pavol Cernek, CSc., z Bratislavy
(kategorie A), doc. RNDr. Antonin Vrba, CSc., z Prahy (kategorie B)
a RNDr. Jaroslav Zhouf z Prahy (kategorie C). Autory jednotlivych aloh
uvadime za jejich texty.

Autofi ro¢enky jménem Ustfedniho vyboru MO i jménem tlohové
komise dékuji touto cestou vSem organizdtorim soutéze, predevsim pak
uditelim za jejich obétavou praci a za péci, kterou vénuji svym zakim.
Zaroven vyzyvaji vSechny zajemce o spolupraci pfi tvorbé zajimavych —
predevsim ptvodnich — tloh.

Zkuste zazit pocit radosti z toho, objevite-li svou tlohu i se svym
jménem v soutéznim letadku nebo v této rocence.

Navrhy na soutézni ulohy pro kategorie A, B a C laskavé zasilejte na
adresu predsedy &eské tllohové komise doc. RNDr. Jaromira Simsi, CSc.,
MU AV CR, Zizkova 22, 61600 Brno. Navrhy tloh vhodnych pro kate-
gorii P zasilejte na adresu doc. RNDr. Pavla Topfera, MFF UK Praha,
Malostranské nam. 25, 11800 Praha 1.



Tabulka 1

Poéty Zaki stfednich $kol soutéZzicich v I. kole 45. roéniku MO

Kategorie 4
Oblast A B c P Celkem
S U S U S U S U S U
Praha 64 32| 51 25|124 60| 26 26| 265 143
Stfedni Cechy 94 33| 83 -2271145 70| 13 6] 335 131
Jizni Cechy 71 41| 52 36105 64 228 141
Zapadni Cechy 41 29| 37 26| 71 54 9 9 158 118
Liberec 31 11| 18 5| 30 10 5 5 84 31
Usti n. Labem
Vychodni Cechy 25 25 48 36| 28 15| 31 25 132 101
Brno 88 41| 43 36| 84 63 215 140
Jihlava 36 19| 38 20| 47 29| 12 8 133 76
Zlin 16 4| 30 14| 19 16 4 2 69 36
Severni Morava 81 31102 401|193 81| 23 23 399 175
CR 547 266 | 502 260 | 846 462 | 123 104 | 2018 1092
Tabulka 2
Pocty zaki stfednich $kol soutéZicich v II. kole 45. roéniku MO
Kategorie
Oblast A B C P Celkem
S U S U| S U S U| S U
Praha 30 23 24 12 49 24 26 10 | 129 69
St¥edni Cechy 29 8 19 6 67 7 6 3|121 24
Jizni Cechy 28 9 23 12 44 14 95 35
Zapadni Cechy 29 11 25 13 50 26 8 2| 112 52
Liberec 10 4 5 2 9 5 5 2 29 13
Usti n. Labem )
Vychodni Cechy 23 7 31 11 11 5 24 7 89 30
Brno 40 25 30 15 51 22 121 62
Jihlava 16 7 16 4 26 10 8 6 66 27
| Zlin 4 1 13 2| .14 6 2 1 33 10
Severni Morava 31 17 40 20 81 29 22 7 |1714 73
CR 240 112 | 226 97 | 402 148 | 101 38 | 969 395

S ... poet vSech soutéZicich

U ... polet uspé&Snych Fesiteld




Vysledky celostatniho kola 45. roéniku MO
kategorie A

v

Vitézové
1. David Opéla, 4.r. GMK Bilovec 34b.
2. Tomd$ Barta, 4.r. G Zborovska, Praha 32b.
3. Jan Spévik, 3.r. G Hellichova, Praha 29b.
4. Michal Benes, 4.r. G Zborovska, Praha 28 b.
5.-6. Daniel Krdl, 4.r. G Zlin 26 b.
Robert Spalek, 4.r. G ti. Kpt. Jarose, Brno 26b.
7.-9. Tomds Brauner, 3.r. G Moravsky Krumlov 23 b.
Petr Vilim, 4.r. GMK Bilovec ) . 23b.
Jan Vybiral, 3.r. GMK Bilovec 22b.
10.-11. Karel Vyborny, 4.xr. G Zborovska, Praha 21b.
Petr Vodstréil, 4.r. G Policka 21b.

s v

Dalsi uspésni resitelé

12.-13. Roman Zerika, 4.r. G Jirovcova, C. Bud&jovice = 20b.
Pavel Strnad, 5.r. GFXS Liberec 20b.

14. Zbynék Pawlas, 4.r. GMK Bilovec 17b.
15.-17. Petr Pudldk, 3.x. G Zborovska, Praha 15b.
Jana Flaskovd, 3.r. Svob. cheb. Skola, Cheb 15b.

Petr Skovrori, 4.r. GMK Bilovec 15b.

18.-20. Jan Stola, 3.r. G Zborovska, Praha 14b.
Radek Peldnek, 2.r. G ti. Kpt. Jarose, Brno 14b.

Jiti Benedikt, 4.r. G Mikulasské nam., Plzen 14b.

21. Karel Zikmund, 4.r. G Jihlava 13b.



10.-13.

14.
15.-16.
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Vysledky celostatniho kola 45. roéniku MO
kategorie P

-

Vitézové

. Daniel Kril, 4 G Zlin
. Stanislav Mikes, 4 G Jirovcova, Ceské Budéjovice
. Michal Benes, 4 G Zborovska, Praha

Tomas Tichy, 4 G Dasicka, Pardubice

. Robert Spalek, 4 G t¥. Kpt. JaroSe, Brno
. Jan Vodicka, 4 G Zborovska, Praha
. Tomds Miiller, 4 G J. Pekaie, Mlada Boleslav

Mikulds Patocka, 3 G Kpt. JaroSe, Brno

vy s v

Dalsi ispésni resitelé

. Pavel Jelinek, 4 G Mikulasské nam., Plzen

Vlastimil Janda, 5 G Humpolec

Véroslav Kaplan, 3 G tf. Kpt. Jarose, Brno
Petr Vilim, 4 GMK Bilovec

Roman Zenka, 4 G Jirovcova, Ceské Budéjovice

Ales Privétivy, G Dasicka, Pardubice

Jan Brezina, 3 G F.X. Saldy, Liberec
Karel Zikmund, 4 G Jihlava

48b.
38b.
37b.
37b.
35b.
33b.
32b.
32b.

30b.
29b.
29b.
29b.
29b.
28b.
27b.
27b.



Nejuspésnéjsi Fesitelé II. kola MO
v kategoriich A, B,Ca P

Z kazdého kraje a z kazdé kategorie je uvedeno nejvySe prvnich de-
set FeSiteld. Oznaceni G znamena gymnazium, M, resp. MF zaméfeni
studijniho oboru 01 Matematika, resp. 02 Matematika a fyzika.

Praha

Kategorie A

1.-3. Jan Spévik, 3A, G Hellichova
Petr Pudldk, 3A M, G Zborovska
Karel Vyborny, 4A, G Zborovska
4.-5. Martin Rumlena, 3D M, G Zborovska
Jan Stola, 3D M, G Zborovska
6. Michal Benes, 4D M, G Zborovska
7.-9. Ondrej Demel, 3A, G Zborovska
Milan Hladik, 3D M, G Zborovska
Mikulds Vejlupek, 4D M, G Zborovska
10.-12. Anna Jancarikovd, 4C, G Zborovska
Petr Janecek, 4D 'M, G Zborovska
Jiri Vanek, 4D M, G Zborovska

Kategorie B

. Libor Barto, 2A, G Hellichova

. Filip Matéjka, 2C, G Zborovska

. JiFi Lhotsky, 2C, G Zborovska

. Zdenék Michl, 2C, G Zborovska

. Michaela Horinovd, 2C, G Zborovska
Jan Maly, 2A, G Sladkovského

. Jan Petr, 2C, G Zborovska

8. Michal Mackanic, 2A, G Litoméficka

DB W N =

EN]
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9.-10

12

. Ondrej Hromddka, 2C, G Parléfova
Jan Kdra, 2C, G U libefiského zamku

Kategorie C
. Marek Ctrndct, V., G Budanka, Voctaiova

Jiri Domldtil, 1C, G Zborovska
Robert Kildy, 2C, G Zborovska

. Markéta Havlickovd, V., G Budanka, Voctafova

Alezandr Kdra, 2C, G Hellichova

. Jaroslav Hlinka, 1C, G Zborovska
. Martin Diensbier, 1C, G Zborovska

Filip Lané, 1C, G Zborovska

. Jan Stuchl, 1C, G Zborovska

. Jan Taz, 1C, G Zborovska

Kategorie P

. Michal Benes, 4D, G Zborovska

. Jan Stola, 3D, G Zborovska

. Lukds$ Neterda, 3D, G U libefiského zamku
. Jan Vodicka, 4D, G Zborovska

. Tomds Ostatnicky, 4D, G Zborovska

Stiedni Cechy

Kategorie A

. Jiri Franta, G Pribram

. Vladimir Pilny, G Cesky Brod
Petr Sedlicek, G BeneSov
Ji¥i Srain, G Beroun

. Jit Lukavsky, Sport. $kola a G Kladno

. Tomds Miiller, G Mlad4 Boleslav

. Milena Svobodovd, Sport. Skola a G Kladno
Matous Jirdk, G Riany



=W N =

b
]
o
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Kategorie B

. Jan Stovicek, 2A, G Kladno

. Petr Zima, 2A, G Kladno

. Lucie Henzlovd, 2, G Cesky Brod

. Jakub Komas, V, G Vlasim .

. Michal Cervenka, 2C, G Kutna Hora

Pavel Surynek, 2A, G Vlasim

Kategorie C

. Jaroslav Cerny, 1A, G Mlada Boleslav
. Jan Handk, IV, G Slany

Michaela Novd, IV, G Horfovice

. Jaroslav Kopsa, IV.C, G Kladno

Tomds Hora, IV, G Slany
Lubos Lipinsky, IV.B, G Beroun
antis“ek Janousek, 3B, G Kladno

Kategorie P -

. Tomds$ Miiller, 4A, G Mlada Boleslav
. Jiri Srain, kvinta, G Beroun
. Radan Base, 4C, G BeneSov

Jizni Cechy

Kategorie A

. Markéta Elisovd, 4, G, Jirovcova, C. Budéjovice

Roman Zerika, 4, G, Jirovcova, C. Bud&jovice

. Martin Hadrdvek, 4, G, Jirovcova, C. Bud&jovice
. Kldra Bezpalcovd, 3, G, Jirovcova, C. Budéjovice

Miroslav Siman, 3, G, Jirovcova, C. Budéjovice

. M. Houda, 4, G Tabor
. Viclav Porod, 3, G Tyn nad Vltavou
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Kategorie B

1.-2. Rostislav Dolezal, G, Jirovcova, C. Bud&jovice
Jan Trdvnicek, G, Jirovcova, C. Bud&jovice

. Jana Koubovskd, G, Strakonice
. Prantisek Danék, SPSS Tabor
Radim Bruzek, G Tabor
. Jan Kali3, G Sobéslav
. Petr Pekdrek, G, Jirovcova, C. Budé&jovice
. Miroslav Bulicek, G Humpolec
. Jan Ehrlich, Biskupské G C. Budgjovice
10.-13. Jirt Cajthaml, G Tabor

Michal Codl, G Cesky Krumlov

Petr Kostka, G Pelhfimov

© 0 NO U W

Kategorie C

1. Jan Housték, G Pelhfimov
2. Jan Cepeldk, G Cesky Krumlov
3. Jaroslav Trnka, G Pelhfimov
4. Ales Krajnik, G Pelhfimov
5. Helena Kunstovd, G Pelhfimov
6.-7. Kamila Pacovskad, G Tabor
Jan Vida, G Jindfichtiv Hradec
8.-10. Miloslav Brada, G Tabor
Viadimir Faltus, G, Jirovcova, C. Budéjovice
‘ Jiri Ortman, G, Jirovcova, C. Budé&jovice -

Kategorie P

1. Roman Zeiika, 4A, G Jirovcova, C. Budéjovice
. Jan Hubicka, 4A, G Jirovcova, C. Bud&jovice
3. Stanislav Mikes, 4A, G Jirovcova, C. Budgjovice

NV

Zapadni Cechy

Kategorie A
1. Jana Flaskovd, 4M, 1. G Plzen

14



10.

10.-11.

. Jir'i Benedikt, 3, Svobodna chebska $kola, Cheb

Tomds Pesek, 3M, 1. G Plzen

. Michal Kréma, 4MF, 1. G Plzen

Martin Moravec, 3, Svobodné chebska Skola, Cheb

. Tomds Ebelendr, sexta, Masarykovo G Plzen
. Zdenék Slovan, 3M, 1. G Plzen

Tomds Suda, 4, G Klatovy
Lukds Smahel, 4M, 1. G Plzen
Michal JeZek, 4M, 1. G Plzen

Kategorie B

. Karel Kold7, kvinta, G SuSice

. Jan Snaidauf, kvinta, 1. G Plzei
. Jan Jezek, 2, G Rokycany

. Tomas Kubat, 2, G DomaZzlice

Martin Strelec, kvinta, 1. G Plzen

. David Legat, 2, G Karlovy Vary
. Michal Hazi, sexta, G Cheb

Stanislav Kasnyg, kvinta, G Cheb
Jan Taus, 2MF, 1. G Plzen
Josef Becvdf, 2MF, 1. G Plzen
Ondrej Cerny, 2, G Rokycany

Kategorie C

. Lubos Dostdl, kvinta, G St¥ibro

Michal Havlena, kvarta, G Karlovy Vary

. Michal Belihar, kvarta, 2. G Plzen
. Dana Steklovd, 1, 1. G Plzeir

Lenka Zdeborovd, 1, 1. G Plzen

. Michaela Simandlovd, kvarta, 1. G Plzen

Jan Sroub, 1, 1. G Plzen
David Stépdnek, 1, 1. G Plzen

. Petr Bohm, kvarta, Svobodna chebska $kola, Cheb

Katerina Dolejsova, kvarta, 3. G Plzen

15



Kategorie P

. Pavel Jelinek, 4, 1. G Plzen

2. Dalibor Smid, 4, 1. G Plzen

W N

16

. Michal JezZek, 4M, 1. G Plzen

Liberec

Kategorie A

. Petr Strnad, 5, GFXS, Liberec

. Pavel Strnad, 5, GFXS, Liberec
. Michal Celler, 4, GFXS, Liberec
. Jan Brezina, 3, GFXS, Liberec

K avtegorie B

. Petr Just, GFXS, Liberec
. Viclav Klimpl, GFXS, Liberec

Kategorie C

. Jan Vrsovsky, GFXS, Liberec
. Jakub Vidner, G Frydlant
. Lukd$ HluzZe, G Tanvald

Jakub Stanék, SPSSE Liberec

. Lukd$ Cerman, G Cesk4 Lipa
. Soria Kvochovd, G Jablonec n. N.
. Zbynék Dolejsi, GFXS, Liberec

Kategorie P

. Jan Bfezina, 3D, GFXS, Liberec

Usti nad Labem

Kategorie A

. Zuzana Pokornd, G T.G. Masaryka, Litvinov
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Kategorie P

. Pavel Rydvan, G Kadah

Vychodni Cechy

Kategorie A

. Petr Vodstréil, 4A, G Policka

. Tomds Tichy, 4D, G Pardubice
. Pavel Prihoda, 3A, G J.K. Tyla, Hradec Krélové
. Martin Klima, 6A, G Havl. Brod.

. Jan Fdtor, 3A, G J.K. Tyla, Hradec Krélové
. Ales Krdl, 4A, G J.K. Tyla, Hradec Krélové

Petr Luner, 6A, G Moravska Trebové

Kategorie B

. Martin Klima, 6A, G Havl. Brod.

Jan Némecek, G Ceska Trebova

. Petr Paluska, G J.K. Tyla, Hradec Krilové

Irena Hejlovd, G Lanskroun

. Jakub Oma, G Turnov
. Jiri Vejnar, G Pardubice

Jakub Kase, G Usti nad Orlici
Karel Vanicek, G B. Némcové, Hradec Kralové

. Zdenék Korda, G B. Némcové, Hradec Kralové

Kategorie C

. Jan Krejcik, G Pardubice

. Miroslav Kaspar, SPSE Pardubice

. Tomds Jelinek, G J. K. Tyla, Hradec Kralové
. Premysl Volf, G J.K. Tyla, Hradec Kralové

. Pavla Doubkovd, G Pardubice

. Katerina Rousovd, G Dvir Krélové n. L.
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‘ Kategorie P

. Tomds Tichy, G Pardubice

2. Ale$ Privétivy, G Pardubice

18

. Robert Chocholous, G J.K. Tyla, Hradec Kralové

Brno

Kategorie A

. Tomas Brauner, 3B, G Moravsky Krumlov
. Jan Pesl, 4A M, G Brno, t¥. Kpt. Jarose
. Oldrich StraZovsky, 3A M, G Brno, ti. Kpt. Jarose

Robert Spalek, 4A M, G Brno, ti. Kpt. Jarose

. Radek Pelinek, 2A M, G Brno, ti. Kpt. Jarose
. Pavel Moravec, 1A M, G Brno, tf. Kpt. JaroSe

Pavel Smerk, 3A, G Brno, Videnska

. Jaroslav Jansky, 1A M, G Brno, tf. Kpt. Jarose
. Pavel Klang, 4A M, G Brno, tf. Kpt. Jarose

Véclav Linkov, 3A M, G Brno, ti. Kpt. Jarose
Jiri Mikuldsek, 3A M, G Brno, tf. Kpt. JaroSe
Mikulds Patocka, 3A M, G Brno, tf. Kpt. Jarose

Kategorie B

. Martin Ondracek, VC, G Kyjov

Pavel Podbrdsky, 2A M, G Brno, tf. Kpt. Jarose

. Radek Peldnek, 2A M, G Brno, tf. Kpt. Jarose

Petr Simecek, 2A M, G Brno, ti. Kpt. Jarose

. Tomas Hanzl, 2A M, G Brno, ti. Kpt. Jarose
 Pavlina Vatekovd, 2A M, G Brno, ti. Kpt. Jarose
. Ivana Vafekovd, 2A M, G Brno, t¥. Kpt. Jarose

. Roman Roznik, 2A M, G Brno, tf. Kpt. Jarose

. Zdenék Daniel, 2A M, G Brno, tf. Kpt. Jarose

. Martin Jezek, 2A M, G Brno, tf. Kpt. JaroSe

Vit Novdcek, 2B MF, G Brno, tf. Kpt. Jarose
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- Kategorie C

. Eva BureSovd, 1A M, G Brno, tf. Kpt. Jarose

Martin Viséor, 1A M, G Brno, tf. Kpt. Jarose

. Lukd$ Vokrinek, 1A M, G Brno, tf. Kpt. Jarose
. David Holec, 1A M, G Brno, tf. Kpt. Jaroge

Pavel Moravec, 1A M, G Brno, t¥. Kpt. Jarose

. Michaela Hrnéifova, 1A M, G Brno, tf. Kpt. JaroSe

Petr Liska, 1A M, G Brno, tf. Kpt. JaroSe
Ondrej Pribyla, 1A M, G Brno, ti. Kpt. JaroSe

. Alerander Jevsejenko, 1A M, G Brno, tf. Kpt. Jarose
. Jan Holeéek, 1A M, G Brno, t¥. Kpt. Jarose

Kategorie P

. Robert Spalek, 4A M, G Brno, tf. Kpt. Jaroge

. Mikuld$ Patocka, 3A M, G Brno, ti. Kpt. Jarose
. Véroslav Kaplan, 3A M, G Brno, tf. Kpt. JaroSe
. Roman Kozubik, 4A M, G Brno, tf. Kpt. JaroSe

Helena Kupkovd, 4A M, G Brno, tf. Kpt. JaroSe

———— Jihlava

Kategorie A

. Karel Zikmund, 4B, G Jihlava
. Vojtéch Mindrik, 4B, G Jihlava
. Markéta Hladkd, 6G, G TYebi¢
. Ondrej Caha, sexta, G Jihlava

Michal Janda, 4C, G Zd4r nad Sézavou

. Martin Cerngj, 4A, G Zd4r nad Sazavou
. Tomas Karban, 4B, G Jihlava

Kategorie B -

. Zdenék Charvdt, 2B, G Jihlava
. Jirt Banszel, 5G, G T¥ebi¢

Martin Zitka, kv, G Zd4r nad Sazavou

. Karel Volny, 5G, G T¥ebic
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Kategorie C

. Zdenék Dvotik, IVA, G Nové Mésto nad Metuji
. Robert Vicha, 1A, G Jihlava

. Jaroslav Hulin, 4G, G T¥ebi¢

Sabina Richterovd, 4A, SPgS a G Znojmo

. Marta Smolikovd, 1A, G Jihlava

20

. Hana Bartuskovd, 4G, G T¥ebic

Karel Hladky, 1B, G T¥ebié
Ondrej Hudec, 4G, G Tiebic

Kategorie P

. Tomas Karban, 4B, G Jihlava
. Jind¥ich Makovicka, 3B, G Tel¢
. Karel Zikmund, 4G, G Jihlava

Ales Povolny, 4C, G T¥ebié¢

. Jaroslav Abraham, 6G, G T¥ebi¢

Karel Volng, 2B, G Ttebi¢

Zlin

Kategorie A

. Daniel Krdl, 4, G Zlin

Kategorie B

. Michal Jarosek, G Hodonin

Zuzana Martinkovd, G StraZnice

. Tomds Cehel, G Uhersky Brod
. Milan Mahdal, G Uhersky Brod

Dagmar Markovd, G Hodonin

Jindriska Sobdriovd, G Uhersky Brod
. Zdenék Picha, G Uherské Hradi$té

- Martin Piskula, G Straznice



10.

N

Petr Stanik, G Uhersky Brod
Marek Omelka, G Uherské Hradisté

Kategorie C

v~

. Alena Vranikovd, G Kromériz

Josef Zlomek, G Straznice

. Jaromir Zajicek, G Straznice
. Marek Machalik, G Uhersky Brod
. Jakub Fizel, G Uhersky Brod

Vit Marek, G Holesov

. Alena Dokulilovd, G Zlin
. Lukds Foltyn, G Zlin

Jiri Hofman, G StraZnice
Ondrej Krejcit, G Uhersky Brod

Kategorie P

. Daniel Krdl, G Zlin
. Josef Zlomek, G Straznice
. Zbynék Uher, G Uhersky Brod

Severni Morava

Kategorie A

. David Opéla, 4C, GMK Bilovec

Petr Vilim, 4C, GMK Bilovec

. Zbynék Pawlas, 4C, GMK Bilovec

. Jan Vybiral, 3C, GMK Bilovec

. Petr Skovroti, 4C, GMK Bilovec

. Dominik Michdlek, 3B, G Komenského, Jesenik

Pavel Skalicky, 4D, Slovan. G, tf. J. z Pod., Olomouc"

. Ales Benda, 3C, GMK Bilovec

Petr Hodan, 3C, GMK Bilovec

. Premysl Jedlicka, 4E, Mendelovo G, Opava

Tomds Kasl, 4C, GMK Bilovec
David Kubdnek, 3B, G J. Skody, Pierov
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9.-11.

Antonin Navrdtil, 3C, GMK Bilovec
Josef Spacek, 4C, GMK Bilovec

Kategorie B

. Petr Kolovrat, 2C, GMK Bilovec
. Adam Ptasnik, 2C, GMK Bilovec

Martin Tréka, 2C, GMK Bilovec
Ladislav Sobr, 6A, G Jesenik

. Filip Svrcek, 2B, G J. Skody, Pferov
. Premysl Concka, 2A, Mendelovo G, Opava
. Hue Do thi, 2C, GMK Bilovec

Viadimir Sisma, 2C, GMK Bilovec

Roman Lukds, 5B, GJW, Prostéjov

Daniel Pravda, 5D, G 17. listopadu, Orlova-Lutyné
Petr Taborsky, 4B, G Roznov pod Radho$tém

Kategorie C

. Petr Tomcik, 1A, Mati¢ni G, Ostrava,
. Ondrej Baldrman, 4A, G Havifov 1, Komenského
. Veronika Vilaskovd, 1C, GMK Bilovec

Martin Zdréhal, 4A, G'J. Skody, Pierov

. Jan Haskovec, 4, Mati¢ni G, Ostrava
. Tomds$ Beranek, 3A/6, redl. G, Prost&jov, Studentska

Radomir Chabiniok, 1C, GMK Bilovec
Radek Kubis, 1C, GMK Bilovec

Dusan Precechtél, 4, Mati¢ni G, Ostrava
Roman Siméik, 1A F, Slovanské G, Olomouc

Kategorie P

. Petr Vilim, 4C, GMK Bilovec

2. David Opéla, 4C, GMK Bilovec

22

. Miroslav Hebkyj, 4A, G Cesky T&in



Kategorie C

Texty tloh -

cC-1-1

V rovnostranném trojihelniku ABC o strané délky a ozna¢me K, L, M
po fadé stfedy stran AB, BC, C' A. Uvnitf nebo na obvodu trojtihelniku
ABC je zvolen bod S. Dokazte, Ze plati rovnost

|ASP + BSI? + |CSP? = |KS +|LSP” + |MS[? + 3o

(J. Zhouf)

C-1-2
Rozhodnéte, zda lze mnozZinu &sel 1, 2, ..., 1995 rozdélit na dvé skupiny
tak, aby v prvni skupiné bylo
a) dvakrat, - b) tfikrét, c) &tyfikrat

vice ¢isel nez ve druhé skupiné a aby soutty €isel v obou skupihéch byly
stejné. (J. Zhouf)

C~1-3
Sestrojte lichobéznik ABCD (AB || CD) s pravym thlem pfi vrcholu A,
je-li |[AC| = 5cm, |[BD| = 7cm a uhlopficka AC déli obsah lichob&zniku
na dvé ¢4sti v poméru 2 : 1. (J. Svrcek)

cC-1-4

Urcete vSechny dvojice z, y pfirozenych &isel, pro které souéasné plati:
a) 2100 < zy < 2500,

b) 0,85 < g <09,
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c) podil Z+i je celodiselny. (J. Zhouf)
C-1-5

Urcete vSechna Ctyfciferna Cisla A, kterd maji pro kazdé k = 2, 3,4, ...,9

tuto vlastnost: VepiSeme-li cifru k¥ mezi prostfedni cifry éisla A, dosta-

neme péticiferné ¢islo, jez je nasobkem Cisla k. (J. Simsa)
C-1-6

Urcete délku prepony pravouhlého trojihelniku, znéate-li polomér r kruz-
nice vepsané a polomér R kruZnice pfipsané k pfeponé tohoto trojithel-
niku (tj. kruZnice, kterd se dotyka zvnéjsku piepony a prodlouZeni obou

odvésen trojihelniku.) (P. Leischner)
C-S-1

Rozlozte vSemi moznymi zptsoby ¢islo 1996 na soulet nékolika (asponi

dvou) po sobé jdoucich pfirozenych &isel. (J. Zhouf)
C-S-2

Uvnitf rovnostranného trojihelniku ABC je dédn bod D, jimZ jsou po-
stupné vedeny rovnobézky KL, MN, PQ se stranami AB, BC, C A jako
na obrazku. Bod D je zvolen tak, Ze vznikly Sestithelnik QM LPNK
m34 pravé thly pii vrcholech M a N. Urcete pomér obsahi Sestithelniku

QMLPNK a trojahelniku ABC (obr.1). (J. Zhouf)
c
N -
P
K D L
N
A Q M B
Obr. 1
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C-S-3
Urcete vSechna péticifernd ¢isla A s vlastnosti: ZapiSeme-li za sebe (zleva
doprava) zbytky, které dava ¢islo A pfi déleni Cisly 2, 3,4, 5 a 6, dostaneme
opét vychozi &islo A. (J. Simsa)

C-1-1

Zjistéte, pro ktera prirozena Cisla n je mozno rozdélit mnozinu éisel 1,
2, ..., n na dvé skupiny tak, aby v prvni skupiné bylo tfikrat vice éisel
nez ve druhé a aby soucty Cisel v obou skupinédch byly stejné.

(R. Kolldr)

C-1n-2
Urclete vSechny body S daného ¢tverce ABC D, pro které plati

|SA|-|SC| =|SB|-|SD].

(J. Zhouf)
cC-1n-3
Najdéte nejmensi péticiferné ¢islo abede, jehoZ viechny Cislice jsou nenu-
lové a které je délitelné kazdym z Cisel e, de, cde, bede. (J. Zhouf)
C-1n-4

V poloroviné ABM sestrojte kruznice k; a ko, které se dotykaji pfim-
ky AB po fadé v danych bodech A a B, dotykaji se vné v néjakém bodé T
a jejich spole¢na te¢na v tomto bodé prochéazi danym bodem M.

: (J. Svrcek)
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Reseni tloh

C=d~=1

Oznatme P, Q, R paty kolmic vedenj’tch z bodu S ke strandm AB, BC,
CA (obr.2) a déle oznaéme

|ISP|=p, |SQ|=4q, |SR|=r,
|AP| =u, |BQ|=v, |CR|=w.

c

Obr. 2 ' Obr.3
Plati

|AS|*> + |BS|® +|CS|)? =
= (u? +p?) + (v + %) + (w? +1?),
|KS|? +|LS|?> + |MS|? =
2 2 g 2
= (=40 +7+ (0= b +a+ (w—Ja) 47 =
= +p?+0’ + @ +wl+r? —a(u+v+w)+ 3a’

Abychom dokézali platfnost dané rovnosti, staci, kdyz dokdZeme, Ze plati
—a(u+v+w)=—%a2, tj. u+v+w=3a

Bodem S vedeme rovnobézky IF, EH, GD se st_rariami AB, BC, CA
trojahelniku ABC (obr. 3). Oznaéme

|AD| =|GC| = |HI| ==, |DE|=|BF|=|IA|=y,
|EB| = |FG| = |CH| = 2.
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Porovname-li obrazky 1 a 2, miZzeme psat
utv+w= (z+3y)+ (y+32)+ (2 +32) =
= %(w+y+z) =3a

coz jsme chtéli dokdzat. Vyuzili jsme toho, ze z +y + 2z = a.

Jinym zptisobem zapsané FeSeni (obr. 2, obr. 3):
|AS|? + |BS|* +|CS|* =
2 2
=(e+3y) +(Fy) +
2 2 2
+(y+32) +(F2) +(z+32) +(Pa) =
=2(z® +y* + 2%) + oy + yz + 2z,
|KS|* +|LS|? + |MS|* + 3a® =
2 2
= (c+iy-1a) +(Ly) +(u+3z-1a) + (L) +
. 2
+(z4+3z-3a) + (%gx) +3d? =
=2(22+y* +22) +ay+yz+zz+ 3a® - 3a® + 3a® =
=2(®+y*+22) +ay+yz+2z
(vyuzili jsme toho, Ze z + y + z = a). Vidime, Ze dokazovana rovnost
skutecné plati. ’

Pozndmka. V obréazcich je bod S zakreslen uvniti trojihelniku ABC),
vSechny vypo¢ty jsou vSak v pofadku i v pfipadé, Ze bod S leZi na obvodu
tohoto trojihelniku.

C=1=2
Nejprve si pfipravime dva rozklady:
1995=3-5-7-19, (1)
14+2+...+1995= 1995;996 o 3'5‘7'1322-499 +
=2-3-5-7-19-499. )

a) Rozdéleni do skupin existuje, neni vSak jednozna¢né, uvedeme jen
jednu moznost. Prvni dvé tfetiny ¢isel od 1 do 1995 maji soucet

1330-1331
1+2+...+1330=—2—-=665-1331,

27



zbyvajici tfetina (obsahujici 665 Cisel) méa soucet
665
1331 4...4+1995 = —2—(1995+ 1331) = 665 - 1663.

Druhy soucet je vétsi o 332 -665 = 166 - 1 330, proto vyménime 166 Cisel,
které se lisi 0 665. V prvni skupiné pak budou napft. ¢isla

1, 2, ..., 1164, 1830, 1831, ..., 1995,
ve druhé skupiné ¢isla
1165, 1166, ..., 1330, 1331, ..., 1829.

b) Mnozinu nelze rozdglit, protoze &slo 1 995 neni délitelné Ctyrmi.
c¢) Prvni &tyfi pétiny ¢&isel od 1 do 1995 maji soudet

1+2+...+1596=%;59_7:1597.798,

zbyvajici pétina (obsahujici 399 &isel) mé soudet

399 - (1597 + 1995)
2

15897+ ...+1995 =

= 893 - 798.

Jelikoz soucet &tyt pétin nejmensich &isel je v8tsi neZ soudet jedné pétlny
nejvétSich Cisel, nelze podminky tGlohy splnit.

C-1-3

Jelikoz obsahy trojahelniki ABC a CDA jsou v poméru 2 : 1 (ob-
sah trojahelniku ABC je vét$i neZz obsah trojihelniku CDA, nebot
[BD| > |AC|), a protoZe tyto trojuhelniky maji stejnou vysku |DA|,
plati |AB| = 2|CD|. Proto téz |BC| = |AC| = |A’C| = e (obr. 4).

Konstrukce:

usetka BA', |BA’| = 2e, kde e = 5¢cm, bod C ve stfedu tsecky BA',
kruZnice k s primérem A'C),

kruznice I(B; f), kde f = 7cm,

bod D € kN,

bod A tak, aby D byl stfed AA’.
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Uloha ma4 jediné feSeni.

Obr. 4

Ulohu je té% moZno FeSit pomoci vypoétu. Pro trojahelniky ABD
a ACD muZeme napsat Pythagorovu vétu (obr. 4):

2 + (29)% = f* = 49,
22 +y? = e® = 25.

Z této soustavy ziskime z = /17, y = 21/2. Konstrukce je pak ziejma
z obr. 4.

C-1-4

Nejprve uréime vSechny dvojice z, y, které spliiuji podminky a) a b),
vyfeSenim soustavy nerovnic

2100 < zy < 2500, 1)
0,85y < x < 0,9y. (2)

Jestlize nerovnice (2) vynasobime ¢&islem y, dostaneme
0,85y% < zy < 0,9y>. (3)
Porovnanim nerovnic (1) a (3) zjistime, ze 0,85y> < 2500 a ziroven
2100 < 0,992, odkud 48 < y < 55. ‘
JestliZze nerovnice (2) vynasobime €islem z, dostaneme
0,852y < x2 < 0,9zy. (4)
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2
Porovnénim nerovnic (1) a (4) zjistime, Ze '(% < 2500 a zaroven 2100 <
z? ’
—— odkud 42 48. ‘
< 0,85’ odku <x <48
Ziskali jsme 30 moznych dvojic z, y. Jelikoz neslo o ekvivalentni Gpra-
vy, je pro tyto dvojice nutné ovéfit vSechny tfi podminky. Podmince a)
nevyhovuje dvojigé 47, 54. Po ovéfeni podminky b) zbude 11 dvojic z, y:
43, 49; 43, 50; 44, 49; 44, 50; 44, 51; 45, 51; 45, 52; 46, 52; 46, 53; 46, 54;
47, 53. Z nich podminku c) spliiuje jedina dvojice: z = 45, y = 51.
- 2
Jiné feleni. Oznadime-li k = zfi p -z— = :—Jri =1- =5
Odtud a z podminky b) zjistime, Ze pro celé &islo k plati 13 < k < 18.

. x . o . . . .
Proto je zlomek 5 roven jednomu ze zlomki (zapsany jsou v zdkladnim

tvaru) \
6 B 7 15 8 1
715 8 177 9 19

Nyni zbyva posoudit, které z téchto zlomk lze rozsifit prirozenym ¢islem
z :
n na zlomek 5 tak, aby byla splnéna podminka a). Nap¥. pro prvni zlomek

je = 6n, y = Th a podminka ma tvar 2100 < 42n? < 2500, Zadné n ji
vSak nespliiuje. Analogicky vyzkousime ostatni zlomky. Uloha m4 jediné
feSeni x = 45, y = 51.

C-1-5

Je-li A = pgrs ciferny zapis hledaného ¢éisla, pak Cislo s vepsanou cifrou
k muZeme rozloZit na soucet

pgkrs = pqgOrs + k - 100.

Protoze druhy scitanec je délitelny Cislem k, 1ze vlastnost Cisla A vyjadrit

takto: Péticiferné &islo B se zapisem B = pqOrs je délitelné kazdym z &isel

2,3,4,...,9, neboli kazdjm z &sel 40, 9 a 7. Cislo B je nasobkem &ty-

Ficeti, pravé kdyZ je ndsobkem &tyficeti dvojéisli 73, tj. 7s € {00, 40, 80}.

Rozli$ime jednotlivé pfipady.

a) rs = 00. Cislo B = pq000 je délitelné &isly 9 a 7 jediné v pifpads
pq = 63. Dostavame prvni feSeni A = 6 300.

b) rs = 40. Cislo B = pq040 je délitelné deviti, pravé kdyzZ p+¢q =5
nebo p + q¢ = 14. V prvnim piipadé

B =1000(10p + 5 — p) + 40 = 7(1 285p + 720) + 5p,
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coZ nenf nasobek sedmi pkro #4dnou cifru p £ 5. V druhém pripadé
B =1000(10p + 14 — p) + 40 = 7(1285p + 2005) + 5(p + 1),

coz je nasobek sedmi jediné pro p = 6. Tehdy ¢ = 8 a A = 6 840.

c¢) rs = 80. Cislo B = pq080 je délitelné deviti, pravé kdyz p+ ¢ = 1
nebo p+q = 10. V prvnim pfipadé B = 10080, coZ je ndsobek sedmi,
takZe mame feSeni A = 1080. V druhém pripadé

B =1000(10p + 10 — p) + 80 = 7(1285p + 1440) + 5p,

coz je nasobek sedmi jediné pro p = 7. Tehdy ¢ = 3 a A = 7 380.
Odpovéd’: Hledan4 ¢isla A jsou 1080, 6300, 6840 a 7 380.

C-1-6
Pro trojahelnik ABC (obr. 5) plati jednak

V. A b L ¢

a+b+c=(|BK|+r)+ (|JAL|+7)+c=
=|BM|+IAM|¥2r+c=c+2r+c=2c+2r,
jednak
a+b+c=|BC|+|AC| + |AU| + |BU| =
= (|BC| + |BT)) + (JAC| + |AV|) = 2R.

Porovnanim obou rovnosti dostaneme ¢ = R —r.
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€C-S5-1

Uvazujme zv1ast nejprve lichy, potom sudy pod&et s¢itanct.
Pro lichy podet s¢itanci poZadovaného rozkladu musi platit

1996 = (s —k)+ (s — (k= 1)) +...+
+(s—1)+s+(s+1)+...+(s+k),

kde s je prostfedni séitanec, a séitanci je 2k + 1, k£ 2 1. Pfitom musi byt
s > k. Soucet upravime na tvar-

22.499 = 1996 = (2k + 1)s,

odkud vychazi jediné 2k+1 = 499, s = 4, coz dava k = 249. Tento pfipad
neni feSenim, protoze vyslo s < k.
Pro sudy pocet s¢itanci musi platit analogicky

22.499=199%6=(s—k)+...+(s—1)+s+(s+1)+...+
+(s+k)+(s+k+1)=
=02k+2)s+(k+1)=(k+1)(2s+1),
kde s, s+1 jsou prostfedni séitance, k g'o a s > k. Odtud vychazi jediné

25 +1=499, k+1 =4, coz david s =249, k = 3.
Tedy jediny rozklad ¢isla 1996 na poZadovany soucet je

1996 = 246 + 247 4 248 + 249 + 250 + 251 + 252 + 253.

Jiné YeSeni (pro sudy i lichy podet sétanct najednou). Hledany roz-
klad mé tvar ‘

1996 =p+(p+1)+...+(p+k) =
k(k+1)  (k+1)(2p+k)
2.0 2 )

7=(k+1)p+

kde p je prvni s¢itanec; s¢itanct je k+1, k 2> 1. Musi tedy platit 23 - 499 =
= (k+1)(2p + k).

Je-li k sudé, mize byt jedin€ k + 1 = 499, tj. k = 498 a p < 0, coZ
neni mozné. . '
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Je-li k liché, miZe byt jediné k + 1 = 8, tj. k = 7, p = 246, coz dava
jediné mozné feSeni
1996 = 246 + 247 + 248 + 249 + 250 + 251 + 252 + 253.

C-§-2

Trojtahelnik PCN je pravothly a | PCN| = 60°, proto |[CN| : |CP| =
=1:2 (obr.6). Analogicky platii |MB|:|BL|=1:2.

c
N .
P
K D L
B
A Q M B
Obr. 6

Jelikoz |[NC| = |PD| = |PL| (trojahelnik LPD je rovnostranny), je
|CP|: |PL|:|LB|=2:1:2
a obdobné
|AQ| : |QM|:|MB|=2:2:1.
Je tedy
|[AQ| = |AK| = |KQ| = |LB| = |PC| = §|AB],
|MB| = |NC| = %|AB|.

Trojahelnik AQK je rovnostranny a spojenim trojihelniki PCN
a LBM shodnymi stranami NP a ML dostaneme trojihelnik shodny
s trojahelnikem AQK. Pro pfisluSné obsahy proto plati

S(QMLPNK) = S(ABC) — 2S(AQK) =
= 314B|- 3V3|AB| -2 5 - §|4B] - 3V3- }|4B| =

_11v3 "

T 100 B,

S(QMLPNK)  £5V3|AB? _ 7
S(ABC) — 1y3|AB]z " 25
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C-S-3
Cislo A je nutné liché (jeho prvni &islice nemiize byt 0, takZe je 1), proto

pii déleni Sesti dava zbytek 1, 3 nebo 5 (a tedy pfi déleni tfemi dava po
fadé zbytek 1, 0 nebo 2). Proto mé zapis &isla A jeden z tvari

11#x1, 10%%3, 12x%x5,
které je mozno s ohledem na déleni péti upfesnit na

11%11, 1033, 12x05.
S ohledem na déleni ¢tyfmi je tedy A rovno jednomu z Eisel

11311, 10133, 12105.
Zbyva ovéfit (napf. pomoci ciferného souétu), zda zbytek pfi déleni tfemi
skute¢né odpovidd druhé Eislici zleva. Zjistime, Ze tomu tak je pouze
u prvniho disla.

Odpovéd’: Hledané é&islo A je jediné: 11 311.

C-t-1

Cislo n musi byt délitelné &tyimi, nebot je étyifnisobkem poétu prvki
druhé skupiny. Jestlize do této skupiny zahrneme nejvétsi Cisla, bude
jejich soucet

Sz=(3~g_+1)+;..+(3.z_’+%)=
2
:%.3.%+%_%,(%+1);7n3ﬁ;4n‘

V prvni (pocetné&jsi) skupiné bude pak soucet ¢isel

9In2 + 12n

n 1 n n
Sl‘1+2+“‘+3'2_§'3'1'(3'_“)_ =

4

JelikoZ pro kazdé n € N je S; > Sa, neexistuje pfirozené ¢islo n, které
by spliiovalo podminky tlohy.
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cC-1n-2

Oznalme a velikost strany ctverce ABCD, x vzdélenost bodu S od stra-
ny AD a y vzdélenost bodu S od strany AB. Ze vztahu |SA|-|SC| =
=|SB| - |SD| plyne

Vel +yV(a-2)? +(a—y)’ =
=V(e-2?+y?Va? + (a-y).

Umocnénim na druhou, roznisobenim a pfevedenim na jednu stranu do-
staneme

a’(4ry — 2ax — 2ay + a®) = 0,
a*(2z —a)(2y —a) = 0.

a
2
leZi na spojnici stfedi stran AB, C D nebo na spojnici stfed stran AD,
BC'. Snadno se presvédéime, Ze vSechny takovéto body S spliiuji rovnost
|SA|-|SC| = |SB|-|SD|.

Odtud z = = nebo y = g. Této podmince vyhovuji vechny body, které

cC-un-3

Plati
abcde = a - 10* + bede = a - 2* - 5* + bede.

Aby bylo &slo abede délitelné Eislem bede, musi jim byt délitelné i &slo
a:2*.5% Protoze je e # 0, musi byt bede lichy délitel ¢isla a - 5% (&islo
a - 2* neni ¢tytciferné ani pro a = 9).

Pokud @ = 1, a = 2 nebo a = 4, neexistuje zadny takovy délitel.
(Nejvétsi pripadny délitel je 5* = 625, ktery ale neni &tyiciferny.)

Pokud a = 3, ptfipadd v tvahu pouze délitel 3 - 5* = 1875. Cislo
abcde = 31875 ale neni délitelné &islem 875.

Pokud a = 5, pfipad4 v tivahu pouze délitel 5° = 3 125. Cislo abede =
= 53125 je skutecné délitelné &isly 125, 25 i1 5. (Pfipady a > 5 jiz neni
nutné diskutovat.)

Hledané &islo je abede = 53125.

Pozndmka. Ostatni péticifernd ¢isla s danou vlastnosti jsou 91125,
91875, 95625.
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C-Nl-4

Oznalme S prusecik uvazované teény obou hledanych kruZnic s pfim-
kou AB. Z vlastnosti tefen ke kruZnici plyne, Ze je |SA| = |ST| = |SB|
(obr.7), takZze bod S je stfedem tasetky AB. Odtud jiz snadno plyne
konstrukce.

A

:5"'___'__-__7

Obr. 7

Nejprve sestrojime stied S Gise¢ky AB, pak najdeme bod T' na polo-
pfimce SM takovy, ze |ST| = |SA|. Stfed S; hledané kruzZnice k; najdeme
jako prisecik kolmice k pfimce AB v bodé A a kolmice k pfimce SM
v bodé T'. Podobné sestrojime i stfed Sy kruznice ky. Sestrojené kruznice
ki a kafejmé maji vSechny poZadované vlastnosti.

Uloha m4 vidy jedno feSeni.
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Kategorie B

Texty tloh

B-1-1

Zjistéte, pro ktera realna Cisla p ma rovnice
3 2 —
> +pr°+2pxr=3p+1
tfi rizné redlné kofeny 1, T2 a T3 takové, Ze 172 = z3. (J. Simsa)

B~ +~2
V roving je dn trojihelnik ABC, v kterém | BAC| = 105°, | < ABC| =
= 55° a |AB| = 6 cm. Na strané BC sestrojte body X,Y (|[BX| < |BY)
a na strané AC body M, N (JAM| < |AN|) tak, aby &tyithelniky
ABXM a MXY N byly tétivové a kruznice jim opsané mély stejny po-
lomé&r jako kruZnice opsané trojihelniku NYC. (P. Cernek)

B-1-3

Zvolime-li libovolné 11 raznych dvojcifernych ¢isel, vzdy z nich lze vy-
brat dvé skupiny C¢isel, které maji stejny pocet prvki, neobsahuji Zadny
spoletny prvek a déavaji stejny soucet. Dokazte. (A. Vrba)

B-1-4
Cislo 2n* 4+ n® + 50 je délitelné Sesti pravé pro ta piirozena &sla n, pro

ktera je Cislo 2 - 4™ 4 3™ + 50 délitelné tfinacti. Dokazte. (J. Simsa)

B-1-5

Je dan trojboky jehlan ABCYV, jehoz podstavou je rovnostranny troj-
uhelnik ABC s délkou strany a. Piimky AV, BV a CV maji od roviny
podstavy stejnou odchylku 45°. Urcete polomér koule, kterd se dotyka
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jak roviny ABC v bodé A, tak pfimky V B. (Odchylkou pfimky od roviny
rozumime thel, ktery piimka svird se svym kolmym primétem do této
roviny.) (R. Kollar)

B-1-6

Umistéte v roviné 7 navzajem ruznych bodu a 7 navzajem raznych piimek
tak, aby kazdymi dvéma z téchto bodu prochéazela jedna z téchto primek
a aby se kazdé dvé z téchto primek protinaly v jednom z téchto bod.

Provedte diskusi. (P. Hlinény)
B-S-1 X
e Ny . #
Najdéte vSechna.piirozena &isla n, pro ktera plati: Cislo 199...96 je
délitelné tiinActi. (A. Vrba, J. Sim$a)
B~-S§S~-2

Do kruznice je vepsan ¢tverec ABCD. Libovdln)'fm bodem M tuhlopticky
AC je vedena tétiva K L rovnobézna se stranou AB. Dokaite, ze

|[KM|* + |ML|*> = |ABJ.
(P. Leischner)
B-S-3
Najdéte 1996 navzajem rtznych celych ¢isel aj, az, ..., aigge tak, aby

mezi soucty viech jejich dvojic a; +a; (1 £i < j < 1996) bylo
a) co nejvice ruznych Cisel,

b) co nejméné raznych Eisel. ' (R. Kolldr)
B-1-1

Najdéte vSechna pfirozend ¢isla n, pro kterd je ¢islo 5™ — 3™ + 2 délitelné

sedmi. (A. Vrba, J. Sim$a)
B-Il-2

Body dotyku teen vedenych z bodu V ke kruZnici £ ozname A, B.
Sestrojte se¢nu kruznice k tak, aby prochézela bodem V a kruznici k
protinala v bodech C, D, kde |AC| = |BD|. (J. Svrcek)
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B-1-3

Dokazte, %e rovnice 3 — 199622 + rz — 1995 = 0 m4 pro kazdy realny
koeficient r nanejvys jeden celociselny koren. (A. Vrba)

B-1-4

Trojboky jehlan ABCV ma podstavu ABC (|AB| = 8cm, |AC| =
= |BC| = 5cm), jeho bo¢ni stény maji od roviny podstavy odchylku 45°
a pata P jeho vysky spusténé z vrcholu V' lezi uvnitf podstavy. Vypoctéte
velikost vysky V P. (Odchylkou dvou rovin rozumime odchylku p¥imek,
které lezi v téchto rovinach a jsou kolmé na jejich prisecnici.) :

' (P. Leischner)
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Reseni dloh

B-1-1

Vyuzijeme vztahii mezi kofeny a koeficienty mnohoé¢lenu, tzv. Vietovych
vzorcd. Podle nich je

1+ 22+ 23 = —p,
T1%T2 + 2123 + T2T3 = 2p,
T1T2x3 = 3p+ 1.

Dosadime-li do druhého vztahu za z;z2 = 22, dostaneme
2p = x§ + 2123 + Tox3 = x3(%1 + T2 + 73) = —px3,

a protoze p = 0 zfejmé nevyhovuje, je 3 = —2.
Déle plati
_ T1Tax3 _ 3p+1

T3 -2

4=.’L‘§:(L'1(L'2 )
\

odkud p = —3. Jen pro‘toto p tedy muze dand rovnice vyhovovat danym
podminkdm. Dosadime-li do Viétovych vzorci za z3 a za p, dopolteme
zbyvajici FeSeni 1 = 4, o = 1 a pfesvédlime se, Ze je tomu opravdu tak.

B-1-2

Ulohu vyfesime pro obecny trojthelnik.

k3

Obr. 8

Rozbor: Piedpokladejme, Ze je tiloha vyreSena (obr.8). Protoze NY
je tétiva spole¢na kruZnicim k;, k2, které maji stejny polomér, a body X,
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C lezi v opa¢nych polorovindch urenych pfimkou NY, je |INXY| =
= |4NCY| = =|<ACB|. Podobné |IMAX| = |AMNX| = 2y (je
totiz | IMNX| = |INXC|+ |ANCX|).

Konstrukce: Nejprve sestrojime na tseCce BC bod X tak, aby
|ACAX| = 2v. Déle sestrojime na usecce AC bod N tak, aby
|XCXN| = 7. Body M,Y miZzeme ziskat analogicky (vyjdeme z bodu
B) nebo jako priseciky kruznic urfenych trojicemi bodi A4, B, X a X,
M, N se stranami AC, BC.

Diikaz spravnosti konstrukce plyne z toho, Ze kruZnice prochazejici
body A, B, X, M, resp. M, X, N,Y maji spole¢nou tétivu M X a shodné
obvodové uhly MAX, MNX. Maji tedy stejny polomér. Analogicky pro
kruznice ko, k.

Diskuse: Bod X lze popsanym zptsobem sestrojit, pravé kdyz 2y < a,
a bod M, pravé kdyz 2y < 3. Body N, Y lze pak sestrojit vidy. Nutna
a postacujici podminka feSitelnosti tilohy je sou¢asna platnost podminek
27y < a, 2y < f. (Uloha mtiZe tedy mit feSeni, jen kdyZ v < 36°.) V nasem
pripadé a = 105°, B = 55°, v = 20° jsou podminky splnény.

Yews

pozaduje sestrojit k kruznic stejného poloméru umisténych analogicky
jako v tloze pro k = 3. Obvodové ahly budou po sobé nasledovat v po-
sloupnosti v, 2v, 3v, ..., (k—1)7.

B-1-3

Dejme tomu, Ze dvé mnoziny Cisel maji stejny pocet prvki a davaji stejny
soufet. Vynechame-li z nich vSechny spoleéné prvky, dostaneme mnoziny,
které neztratily uvedené dvé vlastnosti a navic jesté neobsahuji Zadny
spole¢ny prvek.

Jedenactiprvkova mnozina obsahuje (') k-prvkovych podmnozin
a toto ¢islo je nejvétsi pro k = 5 a k = 6: (151) = (161) = 462. Pfitom
soulty péti rtiznych dvojcifernych ¢isel mohou nabyvat jen 421 hodnot
0od114+124...4+15=65do 95+ 96 + ...+ 99 = 485. Dvé pétiprvkové
podmnoziny se stejnym souctem tedy existuji pro kazdou jedenéctiprv-
kovou mnozinu dvojcifernych éisel.

Pozndmka. Kromé elementarni kombinatoriky je v tloze vyuZit
tzv. Dirichletiv princip: Necht K > k. At rozdélime K kraliki do k
krélikaren jakkoliv, vZdy budou v nékteré kralikarné alesponi dva kralici.
V naSem pfipadé jsou ,kralici“ pétiprvkové mnoziny a ,kralikarny“ &isla
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65, ..., 485. Obecnéji: Je-li K > nk, bude v nékteré kralikarné vice nez
n kralikd. '
B-1-4

Sestavime tabulku zbytkd pfi déleni &isel A = 2n* + n3 + 50 Sesti v z4-
vislosti na zbytku ¢isla n (zbytek pfi déleni Cisla A Sesti totiz zavisi jen
na zbytku pfi déleni &isla n Sesti): e

n n?2 nd nt 20t 2nt4nd® A=2n'4+nd+50
0O 0 0 O 0 0 2
1 1 1 1 2 3 5
2 4 2 4 2 4 0
3 3 3 3 0 3 5
4 4 4 4 2 0 2
5 1 5 1 2 1 3

Z tabulky vidime, Ze ¢islo A je ndsobkem Sesti, pravé kdyz ¢islo n dava pri
déleni Sesti zbytek rovny 2, tj. je rovno jednomu z éisel 2, 8, 14, 20, ... .
Nyni sestavime tabulku zbytki pfi déleni nékolika prvnich Cisel B =
= 2-4™+3" 450 tfinacti. (Na rozdil od vyrazu A, ktery je mnohoc¢lenem,
se ve vyrazu B vyskytuje proménna n i v exponentu. Nelze proto Fici,
ze zbytek pfi déleni Cisla B tfinacti zavisi na zbytku pri déleni Cisla n
tfinacti. Az pii sestavovani tabulky se ukaze, s jakou periodou se zbytky
opakuji.) - ~

9.4n. 2.47 43" B =12.4"4+3" +50

n 3" 4"

0 1 1 2 3 1
1 3 4 8 11 9
2 9 3 6 2 0
3 1 12 11 12 10
4 3 9 5 8 6
5 9 10 7 3 1
6 1 2 3 1

B

Dalsi vypoéty uz nemusime provadét. Vidime totiz, Zze zbytky mocnin
3™ a 4™ se vzhledem k éislu n opakuji se spole¢nou periodou rovnou
Sesti (u mocnin 3™ existuje dokonce men3i perioda rovna tfem). Proto
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o wrs

i posloupnost zbytki ¢isel B ma periodu 6. Navie je z tabulky patrno, Ze
B je nasobkem tfinacti, pravé kdyz Cislo n dava pii déleni Sesti zbytek 2,
tj. je rovno jednomu z Cisel 2, 8, 14, 20, ... .

Pozndmka: Periodicitu v posloupnosti zbytki pifi déleni mocnin a*

¢islem d presné&ji postihuji Fermatova a Eulerova véta. Podle Fermatovy
vty je v pfipadé, kdy d je prvocislo, délka periody rovna nékterému
“déliteli &isla d — 1.

B-1-5

Situaci znazoriuje obr.9, v némz T je bod dotyku teény BV, O je stred

koule, |AB| = |BC| = |AC| = 2|AD| = a, R kolmy primét bodu T

do roviny ABC, |BT| = |BA| = a (tetny), |TR| = |BR| = iav2.

Hledany polomér r vypocteme z pravouhlého lichobézniku ARTO, je-

hoz stranu |AR| vypoéteme z pravouhlého trojuhelniku ADR, ve kte-

rém znéme |AD| = la, |DR| = |BD| —|BR| = }aV3 — 1av2. Vyjde
|ARJ? = —é—az(B - \/6), r= %a(Q\/i— \/5)

T

Obr: 9

B-1-6

Budeme mluvit jen o umistovanych bodech a piimkach. Ze 7 bodt lze
utvorit 21 dvojic a ty lezi na 7 pfimkach. Mohou tedy nastat jen dva
pripady: ;

(1) Na kazdé ptimce lezi pravé 3 dvojice bodd, tj. pravé 3 body.
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(2) Na nékteré z primek lezi vice nez 3 dvojice bodt, tj. vice nez
3 body.

Pokusme se nejprve vytvorit konfiguraci 7 bodt a 7 pfimek typu (1):
Zvolme primku a na ni tfi body 1, 2, 3. Déle zvolime bod 4 — ten musi
leZet mimo p¥imku 12 (obr. 10). Sestrojime pfimky 14, 24 a 34. Na pfimce

(a) uvnit¥ tsecky 24,

(b) uvnitf polopfimky opa¢né k 42,

(c) uvnitf polopfimky opaéné k 24.

C

Ay

A B

Obr. 10 " Obr.11

Doplnime pfimky 15 a 35 a jejich priseCiky s pfimkami 14, resp. 34.
V ptipadech (a), (b) dojdeme vzdy ke konfiguraci jako na obr.11. V pii-
padé (c) miZe jeSt& nastat n&kolik riznych situaci podle toho, kam padne
prusecik primek 15, 34 a prusecik pfimek 35, 14, vzdy vSak vedou ke kon-
figuraci jako na obr. 12.

C

|~~~
AT

Obr. 12

Do kazdé z téchto dvou konfiguraci obsahujici 7 bodd a 6 primek
zbyva doplnit sedmou piimku tak, aby prochazela pravé tfemi body.
Kazdy z bodt A, B, C, D je jiz spojen s kazdym ze Sesti ostatnich bodi,
sedmd pfimka tedy musi prochéazet tfemi body neoznacenymi pismeny.
Ty vSak nelezi v pfimce, takze zZadn4 konfigurace typu (1) neexistuje.
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Ptistoupime k vytvofeni konfigurace typu (2). Vyjdeme od pfimky p,
na niZ lezi 4 body. Viech 7 bodi na ni leZet nemiZe (to bychom neméli
7 riznych pfimek), zvolme tedy péty bod mimo tuto pfimku (obr.13).
Kdyby dalsi bod lezel mimo pfimku p, urc¢oval by spolu s pfedchozimi
body 3 nebo 5 pfimek, coZ neni mozné.

Obr. 13 Obr. 14

Zbyvajici dva body tedy lezi také na piimce p. Uloze \;yhovuje jedingé
konfigurace z obr. 14.

Poznamka. Cely diikkaz muzeme provést i dudlnim zptsobem: v textu
vSude vzajemné vyménime pfimky a body, priseéiky pfimek a spojnice
bodi.

B-§-1
Vzhledem k tomu, Ze 199...96 = 2(10"+! — 2), jé toto cislo délitelné
N e

tfinacti, pravé kdyz 10™+! d4va pii déleni t¥inacti zbytek 2. P¥i déleni
Gisel 1, 10, 100, ... tfinacti vSak dostavame zbytky 1, 10, 9, 12, 3, 4,
1, ... (dale se zbytky periodicky opakuji). Zadné z danych &isel tedy
neni délitelné tfinacti.

Jiné feSeni. Délime-li ¢islo 199. .. 9 tfindcti obvyklym zptisobem, sepi-
sujeme postupné zbytky 6, 4, 10, 5,7, 1, 6, ... (dale se zbytky periodicky
opakuji). Posledni krok pfi déleni &isla 1999...6 tfinacti spociva tedy
v tom, Ze tfindcti vydélime nékteré z Cisel 66, 46, 106, 56, 76 nebo 16.
Z4dné z nich viak neni délitelné tiinacti beze zbytku.
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B-S-2
Bodem M vedme jest& tétivu K'L’ | BC (obr.15). Ziejmé je |[KD| =

LI
D c
K oL L
A B
K

Obr. 15

= |LC| = |L'C|, takze |KL'| = |DC| (tisetka DC je obraz usetky KL’
v oto&eni kolem stfedu kruZnice). Je tedy

|AB|? = |CD)? = |KL'|* = |KM|?> + |ML'|? =
= |KM|* +|MLJ2

B-S-3

Existuje pravé 5’—(32_—1) dvojic indexd i, k takovych, e 1 < i < k <
n(n — 1)
2
ruznych soultd a; + ax. Na druhé strané, je-li a; < a3 < ... < an, je
a +ax < ay+a3 < ...<a+a, <azx+a, < ... < Q-1 + ayp,
a tedy mezi soucty a; + ax je vidy alespon 2n — 3 riznych souctd. Krajni
moznosti nastavaji napf. pro nasledujici n-tice Cisel

a) 2, 2%, 2%, 2%
b) 1,2,3,...,n.
V naSem pfipadé je n = 1996.

< n.'Pro z4dnych n &sel a;, az, ..., a, neexistuje tedy vice nez
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B-1l-1
Sestavime tabulku zbytkd pfi délen &isel 3", 5™, 5™ — 3™ + 2 sedmi:

n 01 23 45 6
3" 1 326 4 51
5" 1546 2 31
5" =37+ 2 2 4 4200 2

(Sestice zbytki ve vSech tfech fadcich se dale periodicky opakuji.)

Vidime, Ze hledana pfirozena ¢isla n jsou pravé ta, kterd pii déleni
Sesti davaji zbytek 4 nebo 5, tj. ¢isla tvaru n = 6k +4 an = 6k + 5,
k=0,1,2,....

B-11-2

Rozbor (obr. 16): Je-li |[AC| = | BD|, plati pro odpovidajici obvodové thly
|XBAD| = |<XADC)|. Déle je |ACAB| = |4 CDB|, takie |ACAD| =
= | X ADB] a pro pfisludné tétivy je |CD| = |AB].

Obr. 16 Obr. 17

Konstrukce 1 (obr.17): Sestrojime kruZznici k', kterd je soustfednd
s kruznici k a dotyka se tétivy AB. Hledand se¢na kruZnice k je te¢nou
kruznice k' vedenou z bodu V.

Konstrukce 2 (obr.18): Hledanou seénu prochézejici bodem V do-
staneme jako obraz pfimky AB ve vhodném otoleni kolem stfedu S
kruznice k: Sestrojime kruznici se stfedem S a polomérem |SV'|, jeji pri-
setiky s pfimkou AB oznaéime W, W’. Uhel otoceni je pak WSV,
resp. IW'SV a | SVC| =90° — |[IWSV]|.
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Obr. 18

Konstrukce 3: Vyuzijeme mocnost bodu V ke kruZnici k. Predpokla—
dejme, Ze |VC| < |V D|, potom je (obr. 19)

VAP = vl - VD] = [VC|(VC| + [CD]) =
= |VC|(JVC| + |AB]).

Sestrojime pravouhly trojthelnik A’B'V’ s odvésnami |A’B'| = |AB],
|A'V'| = |AV|. Stfed strany A’'B’ oznalme S a priseéiky kruZnice
(S,|SV’|) s pfimkou A'B’ oznatme T, U tak, aby |TA'| < |[UA’|. Pak
je [TA'| =|VC|.

14
|AV|

N - S
T |VC| A’ |aB| B' |vC| U

Obr. 19
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DUKAz. Podle Eukleidovy véty o vyice je

(V'A'? = |TA'| - |A'U| = |TA'|(|A'B'| + |B'U|) =
=|TA'|(|A'B'| +|T4')),

tj.
[VAP? = |TA'|(|TA| + |ABY). |

Pro |V C| > |V D| postupujeme obdobné. Pitom zjistime, Ze v tomto
pripadé vyjde |VC| = |[UA'|.

Konstrukce 4 (podle prof. Mdlka z gymnézia Kyjov): Usecky AB
a CD jsou soumérné sdruzené podle nékteré primky, jez prochdazi stie-
dem S kruznice k. Obraz W bodu V' v prislusné osové soumérnosti na-
jdeme jako priiselik pfimky AB s kruznici o stfedu S a poloméru |SV|.
Body C a D pak sestrojime jako obrazy bodu A a B v osové soumérnosti
podle osy usecky VW.

Uloha ma vzdy dvé feSeni.

B-11-3

Pripustme, Ze pro nékteré ¢islo r ma dand rovnice dva celociselné ko-
feny a, b. Déleni levé strany rovnice mnoho¢lenem (z — a)(z — b) vyjde
beze zbytku a vysledny podil bude tvaru x — ¢ pro vhodné reédlné éislo c.
Cislo ¢ musi byt oviem celé, nebot a + b+ ¢ = 1996. Vsechna tfi &isla a,
b, ¢ nemohou byt licha, kdyZ je jejich soucet sudy. Jejich souéin je vak
liché ¢islo 1995, coz neni mozné. Rovnice mize mit tedy nanejvys jeden
celodiselny kofen.

B-1-4

Oznafme U patu vySky z vrcholu V ve sténé ABV. Protoze VULAB
a VP1AB, je pfimka AB kolmé na rovinu VU P, takze je také PU LAB.
Je tedy | A VUP| = 45° a trojahelnik VU P je pravothly a rovnoramenny
s rameny VU, VP, takie v = |VP| = |PU|. Zopakujeme-li stejnou
Gvahu i pro boéni stény BCV a CAV, zjistime, %e bod P je stfedem
kruZnice vepsané podstavé ABC a velikost v vysky V P jeji polomér.
Ulohu jsme tak pievedli na vypodet poloméru kruznice vepsané troj-
tthelniku ABC' (obr. 20). Z pravothlého trojthelniku CUB dostaneme
|CU| = 3 a v pravothlém trojihelniku PT'C' pak méme |[CT| = 1 (je
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|CT| = |CA| — |AT| = [CA| — |AU)), |PT| = v a |CP| = 3 — v, odkud
14+9? = (3 -v)?, takze v = 3. '
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Kategorie A

Texty tloh '

A-1-1

Sloupce Sachovnice 8 x 8 oznafme zleva doprava Cisly 1,2,...,8, fadky
ozname stejnymi ¢isly zdola nahoru. Do kazdého policka zapiSeme soucet
Cisel prislusného radku a sloupce. Vybereme 8 poli tak, aby zadna dvé
z nich nebyla ani ve stejném radku, ani ve stejném sloupci. Jaky je

a) nejvétsi mozny soulet,

b) nejvétsi mozny soucin,

¢) nejmensi mozny soucet druhych mocnin

&isel na vybranych polich? ‘ (J. Zhouf)

A-1-2
Na strandch AB, BC a CA daného trojihelnika ABC jsou zvoleny po
fadé body K, L a M tak, Ze plati
|AK| |BL| |CM]| <1
[AB| T 1BC| ~ [cA <"
Dokazte, ze pokud je trojuhelnik K'LM rovnostranny, pak je rovno-
stranny i trojuhelnik ABC. (J. Simsa)

0<

Posloupnost prirozenych &isel a3, as, as, ... spliuje pro kazdé prirozené
n 2 1 t¥i rovnosti:
an + Q2n = A3p,
ap + a3n—1 = A2n + A2pn—1,
an + Q3n+1 = Q2n + A2n 1.
Pritom vime, ze vSechny Ctyfi Cleny ai, a4, a;7 a as; jsou prvodisla.

DokaZte rovnost aiggs = a2000- (J. Simsa)
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A-1-4
Dokazte, Ze pokud pro pfirozena {isla a, b je i islo

a+1l b+1
+
b a

pfirozené, pak pro nejvétsi spoleny délitel D ¢isel a, b plati nerovnost
D £ va+ b. MitiZe nastat rovnost v pfipadé, ze D < a < b?
(prevzatd iloha)

A-1-5
Najdéte vSechny funkce f: N — Z spliaujici pro kazda z,y € N rovnost

f(zy) = f(z) + f(v) - f(D(z,y)),

kde D(z,y) znadi nejvétsi spoleény délitel ¢isel z, y, vite-li, Ze plati f(p) =

= p pro kazdé prvocislo p. (P. Hlinény)
| A-1-6 |
V prostoru je dan trojahelnik ABC se stranami |AB| = |AC)| = 10cm
a |BC| = 12cm. Najdéte mnozinu vSech bodd D, pro které spojnice
stfedu O koule opsané ¢tyfsténu ABCD s tézistém T tohoto Ctyfsténu
je primka kolmé na rovinu ADT. (P. Leischner)
A-S-1
Najdéte vSechny dvojice celych Cisel a, b takovych, Ze obé ¢isla
a+1 b+1 a®” ¥
+ 5 — + —
b a b a
jsou cela. (R.Kolldr)
A-S-2
Najdéte nejvétsi redlné &islo g, pro které nerovnost 2™ 2 1 + ng™ plati
pro kazdé pfirozené ¢islo n 2 2. (J.Simsa)
A-S§-3

Popiste konstrukei rovnoramenného trojihelniku ABC se zékladnou AB,
pro ktery plati |OA| = 9cm a |OB| = 3cm, kde O je stfed kruznice
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piipsané strané BC trojthelniku ABC (tj. kruznice, kterd se vné dotyka

strany BC a prodlouZeni stran AB a AC). (A.Vrba)
CA-1-1

‘ Urcete, pro ktera prirozend ¢isla n existuje liché n-ciferné ¢islo, které je

délitelné t¥inacti a mé ciferny soucet rovny Ctyrem. (J. Simsa)
A-11-2

Dané jsou dvé kruZnice ki(S1,71) a ka(Sa,72), 11 < 7o, které se vné
dotykaji v bodé F. Necht t je jejich spoletna vnéjsi tecna, jeji body
dotyku s kruznicemi ky, ks oznaéme po fadé A, B. Vedme ted jinou te¢nu
ke kruZnici k; rovnobéZznou s piimkou ¢. Jeji dotykovy bod s kruznici k;
ozna¢me C a priseciky s kruznici ks oznac¢me D, E. Dokazte, ze bod F'
a stfedy kruznic opsanych trojuhelnikim ABC a ADE lezi na jedné
piimce. (M. Niepel)

A-11-3

V roviné je déna flse(:ka AB. Najdéte véechny body C’ této roviny takové

vvew

0#T,OT 1CT. (M. Englzs)

A-11-4

Déti se v tadbore délily do druzin nasledujicim zpisobem: Vedouci uréil
mezi détmi nékolik nacelnikl. Kazdy nacelnik si pak do své druziny vzal
viechny své kamarady z tédbora (kamaradstvi je vzajemné). Kupodivu
to vyslo dobre, tedy tak, Ze se nacelnici nemuseli o zZadné dité héadat,
zadné dité nezbylo a zadni dva nafelnici nebyli kamaradi. Podruhé uréil
vedouci jiny pocet nacelnikii. Mohlo rozdéleni déti popsanym zpiisobem

opét dopadnout dobre? - (P. Hlinény)
A-1lll-1
Jestlize pro posloupnost (G (n))zozo celych &isel plati .
G(0) =0,

Gn)=n-G(G(n-1)) (n=1,23,...),
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potom

a) pro kazdé prirozené &islo k je G(k) 2 G(k — 1);

b) neexistuje pfirozené ¢islo k takové, ze G(k — 1) = G(k) = G(k + 1).
Dokazte. (M. Englis)

A-11-2

V prostoru je dan ostrothly trojihelnik ABC s vyskami AP, BQ a CR.
Dokazte, ze pro kazdy vnitini bod V trojahelniku PQR existuje ctyistén
ABCD takovy, ze bod V mé ze vSech bodu stény ABC nejvétsi vzdale-
nost (po povrchu &étyisténu) od bodu D. (P. Cernek, J. Simsa)

A-11-3

Je dano Sest tiiprvkovych podmnozin koneéné mnoziny X. Dokazte, ze
prvky mnoziny X je mozno obarvit dvéma barvami tak, aby zadna ze Sesti
danych podmnozin nebyla jednobarevna, tj. neméla vSechny tfi prvky
stejné barvy. (P. Hlinény)

A-1lI1-4

Je dan ostry thel XCY a na jeho ramenech CX, CY po fadé body A
a B tak, ze |CX| < |CA| = |CB| < |CY|. Popiste konstrukci piimky,
kterad protina rameno C' X a usecky AB, BC po radé v bodech K, L a M
tak, Ze plati .

|KA|-|YB|=|XA|-|MB|=|LA|-|LB| #0.
(P. Cernek)

A-1lI1-5

Pro ktera celé &isla k existuje funkce f: N — 7 spliaujici

(i) £(1995) = 1996, .

(i) f(zy) = f(x)+ f(y) + k- f(D(z,y)) pro viechna piirozena &isla z, y?
D(z,y) -oznacuje nejvétsi spolecny délitel ¢isel z, y. (P. Hlinény)
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A-1l1-6

Na stranidch AB, BC a C A daného trojihelniku ABC jsou dany po fadé
body K, L a M tak, Ze plati

|AK| _|BL| _|cM| 1

|AB| ~ |BC| |C4] 3

Jsou-li kruznice opsané trojihelnikim AKX M, BLK a C M L shodné, jsou
shodné i kruznice témto tiem trojahelnikiim vepsané. Dokazte.
(J. Simsa)
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Reseni tloh

A-1-1

a) Ukazeme, Ze celkovy soulet vybranych ¢&isel nezdvisi na zplisobu
jejich vybéru. Kazdé éislo v tabulce je souétem &isla fadku a sloupce,
v ném? je zapsano, proto je celkovy soucet ¢isel roven souctu ¢isel sloupct

- plus soucet ¢isel fadk’, v nichZz jsou zapsana. Protoze z kazdého sloupce
a z kazdého fadku vybirdme pravé jedno ¢islo, bude celkovy soucet vzdy
roven souctu ¢isel vSech sloupci plus soucet ¢isel vSech radki. Oba soucty -
jsou v8ak rovny souctu prirozenych ¢isel 1,2,...,8, proto je soucet vy-
branych ¢isel roven

1+2+...+8+1+2+...+48=T72,

a tento soucet nezavisi na zpisobu vybéru &isel, je to tedy i soudet ma-
ximalni.

b) Oznaéme a; &islo fadku, v ném?z je &islo vybrané z prvého sloupce.
Podobné ozna¢me ay cislo fadku, v némz je Cislo vybrané z druhého
sloupce. Takto pro i € {1,2,...,8} oznafime q; ¢islo fddku, v némz je
Cislo vybrané z i-tého sloupce. Soucin vybranych ¢isel je pak roven

(I+a1)(2+az2) ...~ (8+as), (1)

kde aq,...,as je néjakd permutace ¢isel 1,2, ...,8. Maximélni hodnotu -
tohoto vyrazu muzeme uréit vice zpusoby.

Protoze mame jen kone¢ny pocet moznosti vybéru ¢isel ay,as, ..., as,
maximum uvaZovaného vyrazu ziejmé existuje. Ukazeme, Ze soucin (1)
je maximadlni, jestlize a; > az > a3 > ... > ag,nebolia; =8,a2 =7, ...,
ag = 1. Necht naptiklad a; < a; pro ¢ < j. Soufin ostatnich vyrazd
k+ay se nezméni, vyménime-li navzdjem a; a a;. DokaZeme, Ze takovouto
vymeénou se zvétsi hodnota (i + a;)(j + a;), a tedy i celkovy soudin:

(i +ai)(j +a;) < (J + ai)(i + a;),
ij +ta; + ja; + a;a; < ji+ ja; +ia; + a;a;,
jla; — a;) +i(a; —a;) <0,
(t—j)(aj —a;) <0.
Ale i —j < 0 a zérovei a; —a; >0, tJ zdménou Cisel a; a a; se hodnota

vyrazu zvétsila, proto vzrostl i cely soucin. Dany vyraz bude tudiz ma-
ximalni pro a; =8, a3 =7, ..., ag = 1, kdy je roven 9%.
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Jiny postup. Protoze &isla ¢ + a; (i = 1,2,...,8) jsou nezaporni,
muiZeme pouzit nerovnost mezi aritmetickym a geometrickym primérem
této osmice Cisel:

V(01+1)(a2+2)-...-(a8+8)g
cla+)+(a2+2)+... +(ag+8)

= 8

Ale z Casti a) uz vime, Ze soufet (ay + 1) + (a2 +2) + ... + (ag + 8) je
roven 72 pro kazdy vybér Cisel a;. Proto plati:

8
(a1+1)(a2+2>-...-<a8+8>§(%) ~ 8,

ProtoZe rovnost v této nerovnosti nastava, pravé kdyz je v8ech osm ¢isel
stejnych, bude souéin nejvétsi proa; +1=as+2=... =ag+8 = 7;,—2. To
vSak nastane jen pro a; = 8, as = 7, ...,ag = 1. Uvazovany soucin je pak
roven 98. Maximalni soucin vybranych &sel dostaneme proto v piipadé,
ze vybereme Cisla na uhlopficce vedouci z levého horniho do pravého
dolniho rohu.
c) Pouzijeme stejné oznaceni jako v &asti b). Minimalizujeme hodnotu
vyrazu
(a1 +1)2 4 (a2 +2)% + ...+ (ag + 8)2. 2)

Po roznéasobeni (2) dostaneme
al+al+...+ai+12+22+...+8 +2(a; +2az + ... + 8ag).

ProtoZze soudet af + a3 + ...+ a3 + 1% + 2% + ... 4 82 nezévisi na pofadi

ai,as,...,as, potfebujeme minimalizovat vyraz a; +2a2+3a3+. ..+ 8as.
O tom, Ze tento vyraz je nejmensi pravé proa; =8, a3 =7, ..., a3 =1,

se miizeme presvédéit vice zplisoby. Mizeme napt. pouzit CebySevovu
nerovnost, anebo podobné tvahy jako v ¢asti b) 1. postupu:

Staci uvazit, Ze pokud neni a3 > ay > ... > ag, musi pro néjaké
i,j € {1,2,...,8} platit a; > a; a zdroveh i > j. Vyménou hodnot a;
a a; vSak dostaneme

ia; +ja; > ja; +ia;,
(7 —i)(a; —a;) >0,
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neboli A

la; + oot jaj+...+ia;+ ...+ 8ag >
>1a1+...+ja,-+...+iaj+...+8a8,

a proto takovato volba nemize byt nejlepsi. Je tedy
(a1 +1)% + (a2 +2)* +... + (ag + 8)? 2 648,
priCemz rovnost nastane jen proa; =8, a; =7, ...,ag = 1.

Jiny postup. Z nerovnosti mezi kvadratickym a aritmetickym primé-
rem pro Céisla a; + l,as +2,...,as + 8 dostdvame, Ze
(a1 +1)2+(a2+2)2+...(a8+8)2 S
8» —
N ((a1+1)+(a2+2)+...+(ag+8))2_81

8
(a1 +1)2 + (ag +2)% + ... (ag + 8)? > 648,

kde rovnost nastane, jen kdyZz se budou rovnat ¢isla a; + 1, as + 2, ...,
ag + 8, neboli proa; =8,a; =7, ..., ag = 1 stejné jako v ¢asti b).

A-1-2
Vzhledem k dané rovnosti poméri

|AK| _|BL| _|CM| 1
|AB| ~ |BC|  |CA| ~ k+1

(k > 0), mtZeme zavést nésledujici oznaleni: |AK| = z, |KB| = kz,
|BL| =y, |LC| = ky, |CM| = z, M A| = kz (obr. 21). :

0< <1

Obr. 21
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Poﬁiijeme dvakrat kosinovou vétu:
|BC)? = MBP+MCFamAMMCM%m
|KM|? = |AK|* + |AM|? — 2|AK||AM|cos a
a vyloudime cos .. Pouzitim zavedeného oznadeni dostaneme
IMK|? = 22(1 — k) + v?k + 2*(k* = k);
analogicky
|KLP=y%1—ky+£k+x%H—kx
|LM|? = 2%(1 — k) + 2%k + y*(k* — k).
Protoze |M K| = |K L|, musi platit
22(1 — k%) + y%(2k — 1) + 2%(k® — 2k) = 0. (1)
Podobné z rovnosti |KL| = |[LM|, |[LM| = |M K| vyjde
y?(1— k%) + 2°(2k = 1) + 2 (K* — 2k) = 0, ()
22(1 — k%) + 22(2k — 1) + y2(k® — 2k) = 0. (3)

2

Vyloucenim z? z rovnic (1) a (2) dostaneme

(@® -y )(K* —k+1)* =0.

Protoze rovnice k? — k+1 = 0 nema Zadny realny koten a z,y > 0, plyne
odtud, Ze x = y. Analogicky z rovnic (2) a (3) dostaneme y = z. Je tedy
r=y=zatudizi|AB| = |BC| = |CA|.

Jiné fefeni. Oznalme obsahy trojihelniki MAK, KBL, LCM
a ABC po tadé S4, Sg, Sc a S. Potom

1 .
Sa= E -kz-sina =
1 k
== 2-(k+1)m-(k+l)z-sina=—k—25
2 (k+1) (k+1)
Analogicky je
k k
B c

=" g S = B,
k+12 " k+1)2
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tj. Sa = Sp = Sc. ProtoZe trojuhelniky MAK, K BL, LC M majf stejny
obsah a |M K| = |KL| = |LM|, maji shodné vysky na strany MK, KL,
LM.

Vedme body A, B, C po fadé rovnob&zky XY, Y Z, ZX s pfimkami
MK, KL,LM.Piedevsim trojihelnik XY Z je rovnostranny (nebot troj-
thelnik K LM je rovnostranny). Z predchazejiciho vyplyva, ze body K,
L, M jsou stejné vzdalené od prislusnych stran trojihelniku XY Z, a lezi
tedy na osach pfislusnych hli. Proto miizeme zavést nasledujici oznaceni -

_ (osa thlu rozdéluje protilehlou stranu trojthelniku v poméru pfilehlych
stran):

|AY|=s, |YB| = ks, |BZ| =t,
|ZC| =kt, |CX| =u, |XA| = ku.

Z rovnosti | XY | =Y Z| = lZX| pak plyne, ze ku + s = ks +t — kt + u.

Resenim této soustavy dostaneme s = t = u. Trojihelniky AY B, BZC,
CX A jsou tedy shodné (podle véty sus) a |[AB| = |BC| = |CA|.

Jiné x"é§eni. Zvolme na stranach KL, LM, M K po fadé body D, E,
F tak, aby platilo

ILD| _|ME| |KF| |AK| _
|DK| ~|EL| ~ |[FM| |KB|

m.

Protoze trojuhelnik K LM je rovnostranny, je rovnostranny i trojuhelnik
DEF. Necht da, dk, dy, dp, di jsou postupné vzdélenosti boda A, K,
M, D, E od pfimky BC. Z danych poméri pak vyplyva, ze

1 m
= d dy = d

de = Lo dv= e da
m 1

dp = = ———dy.

p=oyde dB= oo du

Odtud plyne, ze dp = dg = (m_1)2 dy, takze ED a BC jsou rovnobéz-
m+ '

né. Analogicky se dokéze, Ze i dvojice EF,CA a F D, AB jsou rovhobé&zné.
Trojahelnik ABC je tedy rovnostranny.
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A-1-3

PrepiSeme-li dané rekurentni vztahy na tvar

azn = Qpn + A2y,
A3n+1 = A2n + A2n41 — Qn,

A3n—1 = A2n + G2p—1 — Qn,

vidime, Ze dand posloupnost je jednozna¢né urcend svymi prvnimi dvéma
¢leny. Necht a; =7, as = s. PHimym vypoc¢tem dostaneme
y

a3 =r1+s, a5 =1+2s, ay =71+3s, ...,

a7 =1r+8s, ..., apy =7+ 10s, ...,

ag =28, ag =3s, ag =4s, ..., a4 =7Ts, ...

Protoze a;4 = 7s je prvocislo, musi byt s = 1, a protoze ¢isla a; =
=7, a7 =1 +8s, as; = r + 10s jsou prvodisla, ktera davaji p¥i déleni
tfemi ruzné zbytky, je jedno z nich délitelné tremi, takze r = 3. Nyni
miizeme (i kdyz ponékud zdlouhavé) pokratovat v postupném pouZivani
rekurentnich vztaht az do vypoétu a;j 995, a2 000-

Lepsi ovSem je vSimnout si po vypoctu nékolika prvnich ¢lentt dané
posloupnosti, Ze patrné pro kazdé pfirozené k plati

azk4+1 =1+ ks,
azi = ks;
diky jiZ zminéné jednoznacnosti staci oveérit, ze kazda takto definovana
posloupnost spliiuje rekurentni vztahy ze zadani.
a) n je sudé tvaru n = 2k:
an + Qgn = ok + agr, = ks + 2ks = 3ks,
azn = agr = 3ks,
Gn + a3n—1 = @2k + as—1 =ks+7r+ 3k —1)s =

=r+ (4k — 1)s,
asy, + a2n>._1 = Qqx + Q411 = 2ks +7r + (2’6 - 1)8 =
=r+ (4k — 1)s,

Qn + A3n41 = Q2 + ak+1 = ks + 1 + 3ks = r + 4ks,
Qon + Aont1 = Qqk + Qg1 = 2ks + 1 + 2ks = r + 4ks.
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b) n je liché tvaru n = 2k + 1:

An + Q2n = Q2p41 + Agpr2 =T+ ks + (2k + 1)s =
=r+ (3k +1)s,
a3n = agr4+3 =T + (3k + 1)s,
Qn + A3n—1 = Q2k41 + Gkt2 =T + ks + (3k + 1)s =

=r+ (4k + 1)s,
Qon + Qon—1 = Qg2 + Gqpyp1 = 2k + 1)s+ 7+ 2ks =
=r+ (4k + 1)s,
an + A3n41 = Qok+1 + Akta =7 + ks + (3k + 2)s =
=7+ (4k + 2)s,

Q2p, + Q2pt1 = Qqp42 + Qqpt3 =
=2k+1)s+r+(2k+1)s =1+ (4k + 2)s.

Potom pro r = 3 a s = 1 dostavame aj g95 = 3 + 997 = 1000 = a5 ggo-

A-1-4
Po jednoduché tpravé dostaneme, Ze
a+1 b+1 a?>+b*+a+b
+ = )
b a ab

Protoze D je nejvétsi spolecny délitel ¢isel a, b, mizeme psit a = Da;
a b= Dby, kde a;, b; jsou nesoudélna piirozena &isla. Vyraz (1) méa po
vykraceni tvar

-

Da? + Db? + a1 + by @
Da1 b1 ’
Aby vyraz (2) byl pfirozené &islo, musi byt Citatel délitelny jmenovatelem,
a tedy i vSemi jeho déliteli. Proto musi byt Citatel délitelny D,

D | Da? + Db? +a; + b;.
Cislo D ziejmé déli &isla Da? a Db?, proto musi platit
D|ay +b;. (3)
Protoze &isla ay, by, D jsou pfirozend a plati (3), musi zarovenn byt
D <a; +by, (4)
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coZ po prendsobeni D (D > 0) dava
D?<a+b.
Po odmocnéni (obé strany jsou kladné) vychézi, Ze
D<Va+b. (5)

Jesté musime zjistit, zda nékdy nastane v (5) rovnost. Ta ziejmé
nastane, pravé kdyz nastane rovnost v nerovnosti (4). Proto musi byt
D = a; + b;. Aby byla zaroven splﬁéna podminka D < a < b, musi platit
1 < ay < b;. Volme proto a; = 2 a by = 5. Potom musi byt D = 2+5=7, -
neboli a = Da; = 14 a b = Db, = 35. Snadno se presvédéime, Ze v tomto
ptipadé rovnost (5) skuteéné nastane.

Poindmka. MiZeme postupovat také tak, Ze na zalatku zavedeme
substituci @ = a1 D, b = by D a po obdobnych tivahach dojdeme k tvrzeni
D? | a+ b, coz po odmocnéni dava (5).

A-1-5

Predevsim si vSimnéme, Ze pro nesoudélna ¢isla x, y plati

fzy) = F@) + £@) — FQO).

Proto pro prvociselny rozklad n = p{*p3?...p% &sla n (p1,p2,--.,Pm
jsou rizna prvodisla a a;, s, ..., a,, jsou pfirozend ¢&isla) dostavame, Zze
f(n) = fp") + f(52)+ ...+ f(p%) — (m — 1) f(1). Dale opakovanym
pouzitim dané rovnosti zjistime, Ze f(p*) = f(p* 1) = ... = f(p) = p
pro prvocislo p a libovolné prirozené ¢islo a. Odtud vyplyva, Ze plati

fn)=pr+pa+...+pm—(m—=1)f(1), n=p"py>...p5".

Dokazme jesté uvedené tvrzeni podrobnéji:

Nejdiive dokdzeme matematickou indukei podle a, Ze pro prvodislo p
plati f(p*) = f(p) =p.

Pruni krok. Pro a = 1 plyne tvrzeni pfimo ze zadani.

Druhy krok. Necht tvrzeni plati pro a 2 1, potom

f@*t) = f(0*) + f(p) — F(D®,p)) = F(™).
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Odtud podle indukéniho predpokladu plyne, Ze je také -

f@*th) = f(p*) = f(p) =p.

Dale dokéZeme, Ze pokud n = p{*p5?...p%" je prvoliselny rozklad
Cislan 2 2, je

f(n) = f@I'ps*...pp) =p1+p2+ ...+ pm — (m—1)f(1).

Tvrzeni dokdZeme opét indukci, tentokrat podle po¢tu m prvoéiselnych
délitela cisla n.

Pruni krok. Pro m = 1 dostavame predchozi tvrzeni, které jsme pravé
dokézali.

Druhy krok. Necht tvrzeni plati pro m 2 1. Potom plati

e ps? i) = f7 P32 - por) + foid') -
— f (D1 pe” - P Pais)) -
Protoze ale D(p{'p3? ...p%m, pomt') = 1, ma dle indukéniho piedpo-
1 P2 m m+1
kladu predchazejici rovnost tvar

@ ps? P =P D2+ P —
= (m=1f(1) +pm1 — f(1) =
=p1+...+Pmy1 —mf(1). (1)
Jesté zbyva ukazat, ze takto definovana funkce f vyhovuje dané pod-
mince pro libovolnou hodnotu f(1). Necht a a b jsou pfirozend {isla.

Oznaéme ¢ = D(a,b) a necht c = pi* ...pj" je jeho prvodiselny rozklad.
Prvociselny rozklad ¢isla a ma pak ziejmé tvar

— P § nt1 Bmts
o= pft gt P
a podobneé ¢islo b bude mit prvociselny rozklad
g SR m g Yin41 m
b=p*...plerm )

Zaroven vime, Ze prvocisla p1,...,Pm, q1,---,9s @ T1,...,T¢ jSOU DAVZA-
jem riznd. Proto rozklad ¢isla a - b na prvocinitele je '

_ B+ v+ Ym Bmt1 B Ym+1 Yen 4t
a-b=p? oo B /AR s SESIRRE L7 8
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" Podminka ze zadéni fika, Ze
fa-b) = f(a) + f(b) - f(D(a,b)). ()
Spoéitejme tyto hodnoty pro funkci definovanou pomoci (1):

fl@=p+. ...+ Ppmt+q+...+¢ —(m+s-1)f(1),
fO=pr+...+pm+ri+...+r.—(m+t-1)f(Q),
fla-b)=pr+...4Pm+a+...+g+r+...+r;—
—(m+s+t-1)f(1),
Cfl)=pt. A pm = (m=1)f(1).

Snadno nahlédneme, Ze po dosazeni téchto hodnot do (2) dostaneme
identitu (je$té je pot¥eba si uvédomit, Ze v8echny tyto tivahy jsou korektni
i v pfipadé m = 0, s = 0, t = 0). Funkce f defirovana pomoci (1) je tedy
jedinym feenim dané tlohy pro libovolnou hodnotu f(1).

A-1-6

" Oznaéme L a K stiedy hran BC a AD, X a'Y kolmé priméty bodd T
a O do roviny ABC a Z tézisté trojihelnika ABC (obr. 22).

Obr. 22

V dal$im budeme vyuZivat nésledujici vlastnosti CtyTsténu:
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> body A, T, D, K, L lezi v téZe roving, kterou oznatime § (K = 1(A+
+D), L = 5(B+C),T jestied KL, T = 3(K+L) = }(A+B+C+D)),

> body O, T, X, Y leii v téze roviné, kterou oznacéime «,

> Y je stfed kruznice opsané trojihelniku ABC,

> T le#i ve &tvrtiné usecky ZD (Z = 2(A+ B +C));
navic plati, Ze pfimka je kolm4 na rovinu, prévé kdyz je kolmé na dvé
jeji riznobézné primky (a tato p¥imka je pak kolmé na vSechny pfimky
roviny).

Pfedev$im musime vylouéit ptipad O = T, kdy OT neurduje piimku.

a) Protoze OT je kolma na rovinu 4, je OT kolmé na KL, a tedy
|OL| = |OK]|. To znamen4, Ze oba rovnoramenné trojihelniky OBC
a OAD jsou shodné, takze |AD| = |BC| = 12cm. Bod D proto lezi na
kulové plose I' se stfedem A a polomérem 12 cm.

Naopak, lezi-li bod D na I', je |AD| = |BC| = 12cm. Potom |OL| =
= |OK], a tedy OT je kolmé na KL.

b) Protoze T'X je kolmé na AL (T X je kolm4 na rovinu ABC) a OT
je kolma na AL (OT je kolm4 na rovinu d), je AL je kolma na a. Rovina «
je ale jednozna¢né urlend body A, B, C' (prochazi bodem Y a je kolma
na AL). Ozna¢me (3 rovinu, kterd vznikne z roviny « ve stejnolehlosti se
stfedem Z a koeficientem 4. Ta je rovnéz jednozna¢né uréend body A, B,
C (je kolmé na AL a prochazi bodem S, ktery vznikne z bodu Y zminénou
stejnolehlosti) a lezi v ni bod D. Naopak, lezi-li bod D v roviné 3, snadno
nahlédneme, Ze body X, Y, T, O lezi v roviné «, kter4 je kolmé na AL.
Proto TO je kolméa na AL.

Piipad O = T nastane, pravé kdyZ je D.S kolma na rovinu ABC (DS
odpovid4 ve zminéné stejnolehlosti iseéce TY = OY).

Mnozina bodt D je tedy kruZnice (bez &tyF bodi tvoricich vrcholy
&tverce, dva z nich jsou body roviny ABC), kterd je prunikem kulové
plochy I' a roviny 3.

Jiné FeSeni. Pfedeviim |AL| = 8 cm. Zavedme soufadnicovy systém
‘s potatkem v bod8 L tak, ze BC je osa z (B = (—6,0,0), C = (6,0,0))
a AL je osa y (A = (0,8,0)). Necht D = (z,y,2).
Z podobnosti trojihelniki BLA a Y NA (N je stited AB) dostaneme
|AY| = 6,25. Potom Y = (0;1,75;0) a O = (0;1,75; a),

A+B+C+D x Yy z
— = (32437

Protoze OT je kolma na AL, je OT - AL = 0. Odtud dostaneme"
y = —1. ProtoZze OT je kolméa na LD, je OT - LD = 0. Odtud vyjde

T =
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2% + 2% = 4az (vyuzivame toho, 7e y = —1). Déle z rovnosti |OA| =
= |OD| dostaneme 222 +22? —4za = 63. (Vyuzili jsme toho, ze y = —1.)
Z poslednich dvou rovnostf plyne z? + 22 = 63. Soufadnice bodu D tedy
spliwji podminky y = —1 a x2 + 22 = 63.

A-S-1

Nejprve oba 'vyrazy upravime:

a+1 b+1 _ a®+a+b+b

b + a ab ’ 1)
a2 ¥ B+ )
Bew " wr @)

Protoze obé &isla (1), (2) jsou celd, musi byt a? + a+b? +bia® +b°
délitelné ¢islem b. To znamend, ze musi byt také

bla®>+a a bl|a® (3)

(oznafeni z | y znamend, ze Cislo  déli ¢islo y). Nyni lze snadno ukézat,

ze odtud plyne i b | a. Uvedeme tfi rizné zpusoby:

1) Z (3) plyne, ze b déli i ¢islo a® — (a — 1)(a® + a) = a, takze b| a.

2) Z b|a® plyne, ze kazdy prvocinitel &isla b je také prvocinitelem &isla a.
Proto jsou ¢isla b a (a + 1) nesoudélnd, takze z b| a(a + 1) plyne b|a.

3) Jestlize b déli a® + a, déli jisté i jeho a-nasobek a® + a%. Celé &islo b
tedy déli zaroven a® 4 a2 i a®. Déli proto i jejich rozdil a®. My uz ale
vime, Ze b déli-i a® + a, proto déli i &islo a® + a — a® = a, tedy b|a. -
Protoze oba uvazované vyrazy jsou symetrické vzhledem k a a b,

plati zaroven i a | b. Odtud plyne rovnost |a| = |b]. Nyni mohou nastat

dvé moznosti:

1) Pro a = b mizeme dané vyrazy zfejmé upravit po fadé na tvar
2(%:—1) a 2a. Vzhledem k tomu, Ze Cisla a a a + 1 jsou nesoudélné,
plati a | 2 (prvy vyraz musi byt celoiselny). Dostdvame ¢tyfi FeSent
a=be {-2,-1,1,2}.

2) Pro a = —b se dané vyrazy rovnaji po fadé —2 a 0. V tomto pripadé
tedy dostavame nekone¢né mnoho feSeni a = —b = t, kde t je libovolné
nenulové celé &islo.
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A-S-2

Pro n = 2 ma4 platit nerovnost 4 > 1+ 2¢?, odtud vyplyva horni odhad
pro &islo ¢q: ¢ £ \/—%_ = %6. Dokazeme matematickou indukci, ze cislo
q= 52@ mé pozadovanou vlastnost.

1. krok: Vzhledem k volbé ¢isla ¢ v dané nerovnosti plati pro n = 2
rovnost. \ :
2. krok: Necht nerovnost plati pro n = k > 2, neboli 2% > 1 + k¢*.
Potom

2F+1 = 2. 9% > 2 4 2kg*.

Ziejmé staci dokazat, Ze plati
2+ 2kq* 214 (k+ 1)g*?,

neboli 1 > ¢*[(k + 1)g — 2k]. Posledni nerovnost ale plati, protoze pro
g= jeq< %<2, takie ¢* > 0, zatimco vyraz v hranaté zévorce je
zaporny:

(k+1)g—2k=k(g—2)+q<2(q—2)+g=3¢g-4<0.

Zkoumand nerovnost tedy platii pron =k + 1. Tim je dikaz matema-
tickou indukci hotov.
Odpovéd: Hledané nejvétsi ¢ je rovno islu @.

A-S-3
Oznaéme X bod dotyku kruZnice pfipsané strané BC s primkou AB
(obr.23). Protoze AO je osa Ghlu CAB a BO je osa uhlu CBX, je
|XOAB| = 1a (|XCAB| = |XABC| = a), |XOBX| = $(180° —
— a) = 90° — Ja. Na polopfimce BX zvolme bod Y, Y # B, tak, aby
|BX| = |XY]|. Potom v trojihelniku AY O plati:
|AO| =9 cm, |0Y| = |OB| = 3cm,
|<AOY| =180° — |XOAB| — |4 XYO| =

=180° — 5;- —|XXBO| = 90°.
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Obr. 23

Odtud vyplyva konstrukce:

. AAY O; podle véty sus: |AO| = 9cm, |OY| = 3cm, |XAO0Y| = 90°,
.X; X e AY, 0X L AY,

. B; B € AX, |XB| = |XY]|,

. AD; |9 BAD| = 2|<BAO|, D € BO,

. BE; |4ABE| = 2|4BAO|, E € 40,

.C; C € ADN BE.

D Ut s W N

Pozndmka. MiZeme postupovat i jinak. Nejprve vyjadiime vSechny
potfebné ihly pomoci Ghlu o a déle lze pokracovat napiiklad takto:

a) pouZitim sinové véty v trojihelniku ABO zjistime, Ze tg fo = %,

b) z podobnosti trojihelniki AXO ~ OX B zjistime, ze

BX| _1(__a_|0X]
ox| ~3\7 %2 T jax| )"

Potom miuze sestrojit trojihelnik BXO nebo AXO. Pfipadnd mi-
Zeme pomoci Pythagorovy véty vypocitat

|AX]| = 271\{)E, AB| = 241\(/)E

a pak sestrojit prislusné vyrazy.

A-11-1

Pro n = 1 takové &islo samoziejmé neexistuje, pro n = 2 je prikladem
takového ¢isla ¢islo 13. Pron = 3 a n = 4 takové ¢isla neexistuji, protoze
zadné z ¢&isel 301, 211, 121, 103 ani zadné z &isel 3001, 2101, 2011, 1201,
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1111, 1021, 1003 neni ndsobkem tfinacti. (Vypsali jsme vSechna lich4
trojmistna a ¢tyfmistnd ¢isla s cifernym souétem 4.) Pro vétsi n se takové
Cislo d4 vzdy najit. Staci uvazovat ¢islo 1001+ 10™~%-1001. Toto &islo je
délitelné tfinacti (nebot 1001 je délitelné t¥indcti), pro n = 5 je zéroveh
liché (konéi jednotkou) a jeho ciferny soudet je zfejmé 4.

Jiné feseni. Nejdfive podobné jako v prvnim reSeni ukazeme, Ze pro
n = 2 takové &islo existuje a pro n = 1,3, 4 neexistuje. Viimnéme si ted,
jaké zbytky pti déleni t¥inacti davaji jednotlivé mocniny ¢&isel 1, 10, 102,
10%, 104, ... :

¢islo: 1 10 102 10% 10* 10° 10 107 108
jeho zbytek: -1 10 9 12 3 4 1 10 9
Vidime, Ze zbytek ¢isla 10™ p¥i déleni tfindcti zavisi jen na tom, jaky je
zbytek ¢isla n pti déleni Sesti:
n je tvaru: 6k 6k+1 6k+2 6k+3 6k+4 6k+5
zbytek ¢isla 10™: 1 10 9 12 3 4
Pomoci této tabulky najdeme piiklady n-cifernych ¢isel s potfebnou

vlastnosti pro kazdé p¥irozené n 2 5:

pocet Cislic dava stejny

Esla n cls i zbytek jako
on 100...01101 105141101 4+1249+1=26
(kg]_) Ny ! .

6k—5 B
okl 200...011 2+10%F 411 2-1+11=13
(k21) ——

6k—2
6k.+2 100...03 108k+1 4+ 3 . 10+3=13
(k20) Sl

6k

6k +3 100...0101001 10%%*2 + 101001 9+4+12+1=26
(k21) et

6k—4 P ¥
i 100...010011 105%+3 1+ 10011 1243+11=26
(k21) e——

6k—2
e 100...01011 10%%*+* £+ 1011 3+12+411 =26
(k20) ——

6k
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Odpovéd: Cislo s pozadovanou vlastnosti existuje pro n = 2 a pro
kazdé n 2 5.
A-1l1-2

Ukazme, 7e F lezi na piimce BC. Necht |<FBA| = o. Potom
| XFBS,| = | X BFS;| = 90° — a (obr. 24). Z trojihelniku FBS; potom

E /\ D C
o
S. F k1
k2 2 2a Sl
. o .
B A

Obr. 24

vyjde |XBS2F| = 2a (jinymi slovy, velikost tzv. sekového thlu tétivy
BF je rovna poloviné piislusného stfedového thlu BS;F'). To znamena,
ze |XAS F| = 180° — 2a. Z véty o obvodovém a stiedovém whlu pak
plyne, ze |XACF| = 90° — a, takze | < FCD| = a. Protoze thly FCD
a FBA jsou shodné, lezi F' na pfimce BC.

Déle vime, Ze trojihelnik BAC je pravouhly s pravym tdhlem pfi
vrcholu A. Stied jeho kruZnice opsané tedy lezi na preponé BC. Pokud
F neni stfedem prepony BC a ma-li platit dokazované tvrzeni, musi
i stfed kruznice opsané trojuhelniku ADE lezet na pfimce BC. Protoze
DE je jeho strana a pfimka S2B je osou této strany, potom vzhledem
k tomu, 7e bod B je priisetikem piimek BS, a BC, musi byt pravé
on stiedem kruznice opsané trojuhelniku ADE. Proto sta¢i dokazat, Ze
kromé rovnosti |BE| = |BD| plati i |BD| = |BA].

Spo¢téme ted velikost |BA| (obr. 25),

|BA| = \/(r1 +12)2 — (12 — 11)2 = VAriry = 2v/r175.

Spoctéme jesté velikost |BD)| (obr. 26, kde je zndzornéna situace pfi
2r1 > ro; situace v opacném pripadé vypada analogicky a nemd vliv na
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1271 —7a|
T2 T2
T+ T2
T2
T2
1
B
Obr. 25 Obr. 26

dalsi vypocet):
ITD[2 =72 - (2r; — )2, .
|BD|> = |TD|?> + |TB|? =72 — (2r1 — r2)% + (2r1)? = 4ry79,
IBD] = 2\/ ?‘17‘2.

Dostali jsme rovnost |BD| = |BA|, tedy B je stfedem kruznice opsané
trojihelniku ADE, a proto bod F' i oba stiedy kruznic lezi na piimce BC'.

A-11-3

Necht ABC je trojthelnik s pozadovanymi vlastnostmi. Ozna¢me S stied
usecky AB, k kruznici opsanou trojuhelniku ABC, Z pruseéik piimky
CS s kruznici k (rizny od C) (obr.27). Protoze OT L CZ, je T stfedem
tétivy CZ, navic |SC| = 3-|ST| (T je t8zisté), takze |SZ| = |ST|. Dvo-
jim vyjadfenim mocnosti bodu S ke kruznici k (lze samoziejmé pouzit
i podobnost trojihelniki AZS a CBS) mame

ISA|-|SB| = |SZ] - |SC],
neboli [SA|? = %ISC| -|8C|, takze

|SC| = V3|SA.

Bod C lezi tedy na kruznici k1 (S;v/3|SA|). Oznalime-li Ay, By priiseciky
pfimky AB s kruZnici k; a E, F prusetiky osy tusecky AB s kruznici &,
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musi byt C # Ao, By (jinak by ABC nebyl trojahelnik) a C # E, F
_(jinak by trojihelnik ABC byl rovnostranny a bylo by O =T').

C

Z

Obr. 27
Necht naopak C je libovolny bod kruznice k; rizny od A, By, E a F.
Ozna¢me k kruznici opsanou trojuhelniku ABC a Z prusecik kruznice k
s pfimkou C'S (Z # C'). Z mocnosti bodu S ke kruznici k (opét lze pouzit
i podobnost trojihelniki) vyplyva

ISAZ _|SA] _ |SC]|
Iscl — v3 3

tedy T je stied tétivy CZ, a proto je bud O = T, nebo OT L CZ.
Pripad O = T miiZe nastat jen pro T z osy usecky AB, tj. CS L AB,
neboli C' € {E, F}, coz jsme viak vylou¢ili. Vznikly trojihelnik ABC
tedy vyhovuje podminkam tlohy.

152] = = |1,

Zdver: Hledanym geometrickym mistem bodi je kruznice k; se stie-
dem S a polomérem /3 |SA|) bez bodt Ay, By, E, F.

A-1l-4

Ne. Ozna¢me pocet nacelnikti v prvnim vybéru k£ a v druhém [. Postu-
pujme sporem. Pfedpoklddejme, ze k # [, a pritom obé rozdéleni dopadla
dobre. Bez (jmy na obecnosti predpokladejme, Ze | > k (jinak vybéry vy-
ménime, zfejmé na jejich poradi nezalezi). Protoze podruhé bylo druZin
vic, musi v tomto vybéru (podle Dirichletova principu) existovat aspon
dva nécelnici, ktefi byli v prvnim vybéru ve stejné druziné (oznalme tuto
druzinu M). Ani jeden z nich nemohl byt nacelnikem M, jinak by mu-
seli byt kamaréddi a druhé rozdéleni by pak nemohlo vyjit dobre. Potom
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ale maji oba spole¢ného kamardda — nécelnika druziny M, proto druhé
rozdéleni nemohlo vyjit dobfe ani v tomto p¥ipad&. To je spor s piedpo-
kladem k # .

A-1ll-1

a) Po ureni nékolika prvnich ¢leni dané posloupnosti si mizeme
vsimnout, Ze pro malé hodnoty n je rozdil G(n) — G(n—1) bud 0, nebo 1.
Toto tvrzeni (z kterého uZ plyne tvrzem a) tlohy) dokidZeme matematic-
kou indukci.

Pruni krok. Pro n = 1 je G(0) = 0, G(1) = 1 — G(G(0)) = 1, tedy
G(1) — G(0) = 1, tj. uvedené tvrzeni plati. '

Druhy’ krok. Necht G(k) — G(k — 1) € {0,1} pro kazdé pfirozené
k < n. Odtud pfedevsim plyne, ze 0 £ G(k) £ k pro kazdé k < n,
protoze G(0) = 0. Dale je

G(n+1)—Gn) =1+G(G(n - 1)) — G(G(n)).

Je-li G(n —=1) = G(n), je G(G(n—1)) = G(G(n)), a tedy G(n+1) —
-G(n) =

V opatném pifpadé je G(n) = G(n — 1) + 1, &ili G(G(n — 1)) —
—G(G(n)) = G(a) — G(a+ 1), kde a = G(n — 1) je nezéporné celé &islo
neprevysujici n — 1, proto podle indukéniho piedpokladu plati G(a) —
—G(a+1) € {-1,0}. To znameni, ze G(n + 1) — G(n) = 1+ G(a) —
—G(a+1) € {0,1}. Tim je dikaz indukci uvedeného tvrzeni a zaroven
i dtikaz tvrzeni (a) tlohy hotov.

b) Postupujme sporem. Predpokladejme Ze existuje prirozené ¢islo k,

pro néz
G(k—1)=G(k) =Gk +1) = A.

Ze zadéani ovSem plyne, zZe
A=Gk+1)=k+1-G(G(k)) =k+1-G(A),
A=G(k)=k—-G(G(k-1)) =k - G(A),

takze
k+1=G(A)+ A=k,

coz je hledany spor, protoze k + 1 # k. :
Dokézali jsme, Ze pfirozené &islo k, pro které by platilo G(k — 1) =
= G(k) = G(k + 1), neexistuje.
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Jiné fedeni. (Podle Petra Kafiovského, Brno.) Oznaéme

Pro toto &slo plati § < w < 1 a w? + w — 1 = 0. UkdZeme, Ze plati

G(n) = [nw] (celd Cast ¢isla nw). Tvrzeni a) i b) je pak jiz snadnym
disledkem toho, ze w > 0 resp. w > %
Uvazujme libovolné prirozené ¢islo n a ozna¢me pro stru¢nost
T = nw — [nw]
necelou ¢ast ¢isla nw. Z definice celé casti je vidét, ze
[(n + 1)w] = [nw + w] = [nw] + [z + w].
Nyni postupné plati

wlnw] — n + [(n + Dw] = wlnw] — n + [nw] + [r + w] =
=(w+)[nhw]—-n+[z+w]= _
=(w+1)(nw-2)-n+[z+w]=
=w+w-1)n-(w+z+[z+w] =
=—(w+ 1)z + [z + w).

Odtud vyplyva, ze
[(n+ Dw] =n — (wnw] +w) + (—(w+ Dz +w+ [z +w]). (1)
Nyni dokazeme, ze plati
[~(w+ 1)z +w + [z +w]] =0. (@)

Rozlisme t¥i pripady:
1) Je-li 0 £z < 1—w, tak [z + w] = 0 a zéroven

—(w+zr+wsw<]l,
—(w+z+w> —(w+1)(1-w)+w=
=w’+w-1=0,

odkud ihned plyne dokazované tvrzeni.
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2) Podobné, je-li1 —w < z < 1, tak [z + w] = 1 a zaroven

—(w+)z+w+12—-(w+1)+w+1=0,
—(wH+D)z+w+l< —(w+)(1l-w)+w+1=

=w?+w=1.

3) Kdyby bylo = 1—w, pak by ¢islo (n+1)w = 2+ [nw]+w = 1+ [nw]
bylo celé, a tedy w by muselo byt racionalni, coz neni pravda. Tento
pfipad tedy nemtZe nastat. ’

Tim je dikaz rovnosti (2) proveden.

Ze vztahu (1) a (2) plyne

[(n + 1)w] = n — [([nw] + 1)w].
Definujeme-li tedy poslm;pnost G1(n) vztahem
Gi1(n) = [(n + Dw],
pak vidime, Ze posloupnost -, spliiuje rekurentni vztah
Gi(n) =n - G1(G1(n - 1)),
tj. stejny rekurentni yztah jako G(n). Navic plati
G1(0) = [(0+ Dw] =0,

tedy vidime Ze i G(0) = G;(0).

DokaZme nyni, Ze libovolna funkce G(n), spliwyjici podminky v zadani
ulohy, je identicky rovna G (n). Dikaz provedeme matematickou indukei.

1) G(0) = 0 = G1(0).

2) Necht ng je libovolné pfirozené ¢islo a necht pro vSechna n < ng.
plati G(n) = G1(n) = [(n + 1)w]. Pak G(ng — 1) = [nwo] a protoze dale
0 £ [rwo] < ng (prvni nerovnost je zfejmd, druha plyne pro no < 3
pfimym dosazenim a pro ng 2 3 z ng — nwy = (1 —w)ny > 1), je také
G(G(no — 1)) = G1(Gi(no — 1)) a tedy G(no) = no — G(G(no — 1)) =
=np — G1(G1(no — 1)) = Gi1(no)-

Vidime tedy, Ze funkce G je zadanim jednoznac¢né urcena a musi byt
G(n) = [(n + 1)w], kde w = 1(v/5 — 1), pro viechna piirozen4 &sla n.
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A-1Il-2

Necht V' je pevny vnitini bod trojihelniku PQR a predpokladejme, Ze
hledany étyfstén ABCD existuje. Stény ABD, BCD a CAD (prozatim
neznamého) ¢tyrsténu ABCD sklopime do roviny ABC'. Dostaneme tak
sit tohoto ¢ty¥sténu, ohranicenou lomenou ¢arou ADy; BDyC D3 A. NaSim
cilem bude vybrat bod D tak, aby trojihelnik D; Dy D3 byl ostrothly,
obsahoval trojihelnik ABC' a aby bod V' byl stfedem kruznice mu opsané.
Plati totiz tvrzeni: Je-li S stred kruznice opsané ostrouhlému trojiuhelniku
KLM, pak pro kazdy jeho bod X # S plati

min{|XK|,|XL|,|XM|} < |SK| = |SL| = |SM|.

(Toto tvrzeni plyne z toho, Ze cely trojuhelnik K LM je pokryt tfemi
kruhovymi vysefemi o stfedech K, L, M a poloméru |SK]|, pfitom kazdy
vnitini bod X # S trojahelniku K LM lezi uvnitf jedné z nich.)

Potfebujeme tedy, aby prfimka AV byla osou tusecky D3D;, pfimka
BV osou DyDs a pfimka C'V osou DyD3. Musi proto platit

I{D1D2D3’ =T - |4BVC|, |§D2D3D1l =N - |<ICVA|,
|XD3DyDy| = 1t — | XAVB|.

Diky tomu, ze V € APQR, jsou uhly BVC, CVA a AVB tupé (staci
uvazit Thaletovy kruZnice s pruméry BC, CA a AB), takZe vnitini ahly
hledaného trojihelniku D; D3 D3 jsou znamé a ostré. Muzeme tedy se-
strojit libovolny trojihelnik D} D) D4 podobny nezndmému trojihelniku
DD, D3, oznacit V' stfed jeho opsané kruznice a na tfech polopfimkéch
s po¢atkem V', které prochazeji stfedy stran D3D’, Di D} a D}Dj, se-
strojit (dostate¢né blizko od bodu V') po fadé body A’, B’ a C’' tak, aby
AA'B'C" ~ AABC (zname velikosti Ghld V' A’B’ a V' A’C"). Pak lomené
cara A'D{B'D,C'D3 A’ ohranicuje sit nékterého Ctyfsténu A'B'C'D’,
ktery je podobny hledanému &étyisténu ABCD.

A-1l1-3

Ozna¢me dané podmnoziny Ay, Ag, ..., Ag. Tvrzeni dokdZeme indukeci
podle po¢tu n prvki mnoziny X. Zacneme s piipadem n = 6. (Pokud
mé mnozina X méné nez 6 prvki, doplnime ji na Sestiprvkovou pfidanim
novych prvki, které nezméni mnoziny A;.) Protoze (5) = 20 > 2 -6,
existuje tfiprvkova mnozina Y C X, kterd se nerovna ani zadné z mnozin
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A;, ani zddnému doplitku X — A;. Obarvime-li prvky Y jednou barvou
a prvky X — Y barvou druhou, dostaneme ,,spravné“ obarveni.

Nyni predpoklddejme, Ze mnoZina X ma aspon 7 prvki. Pak existuje
dvojice riznych prvkd u,v € X, které spolu nelezi v zidné z mnoZin
A;. (Opravdu, existuje totiz nejvyse 6 - (3) = 18 dvojic prvki, které
patii do nékteré z mnozin A;, zatimco vSech dvojic prvkl z X je aspon
(7) = 21.) Tuto dvojici prvki u, v ,slepime* do jednoho nového prvku w.
Jinymi slovy, pokud mnozina A; obsahuje prvek u nebo v, nahradime ho
prvkem w. Dostaneme opét Sest t¥iprvkovych-podmnoZin mnoziny X',
kterd mé o 1 prvek méné nez pivodni mnozina X. Prvky mnoziny X' ma-
zeme podle induké¢niho pfedpokladu ,spravné“ obarvit; ddme-li prvkim
u, v barvu prvku w a barvy ostatnich prvki v X’ zachovdme, dostaneme
»Spravné“ obarveni mnoziny X. Tim je dokazan indukéni krok, a tedy
i tvrzeni dlohy.

A-11-4

Trojihelniky ALK a BY' L jsou podobné, protoze (obr. 28) |XLAK| =
= |XYBL| (|CA| = |CB]) a (ze zadéni)

|[KA| _ |LB|
LAl VB[
~ Odtud |¥ALK| = |XBYL|. Analogicky z podobnosti trojihelniki
Y
B
L
c X A K
Obr. 28

ALX a BML vyjde |XAXL| = | MLB|. Protoze vSak body M, L

78



a K lezi v pfimce, je také |AMLB| = |XALK|. Potom [XLYB| =
= |XALK| = |XBLM| = |XAXL|. Z rovnosti |XLYB| = |IAXL|
plyne |XLYC| + | LXC| = 180°, takZe body C, X, L, Y lezi na jedné
kruznici k. Odtud uz vyplyva konstrukce hledané primky:

1. kruZznice k opsana trojihelniku CXY, kde | ¥ XDY| = 2| X ABC|,

2.L; Le kN AB,

3.4BLM; M € BC, |<BLM| = |3 AXL,

4. KK e LMNCA.
Spravnost konstrukce vyplyva z rozboru. Uloha mé vidy pravé jedno
feSeni.
A-1l1-5

Ze vztahu (i) pro z = y vyplyva f(z?) = f(z - z) = (k + 2)f(z). Dvoj-
néisobnou aplikaci pfedchoziho vztahu dostaneme

f(2%) = f(a?-22) = (k+2)f(2?) = (k +2)2f(a).
Jinym postupem ale dostaneme
f(w_4)= f(z-2°) = fx) + f(2°) + kf(a) =
= (k+1)f(2) + f(z-2*) =
= (k+1)f(2) + f(z) + f(=*) + kf(z) =
= (2k +2) f(z) + f(2*) = 3k + 4) f(2).

Nyni staéi najit libovolné z, pro které je f(z) # 0, tedy qapx‘iklad podle
(i) x = 1995. Porovnanim predchozich dvou vztahti dostaneme podminku

(k +2)2£(1995) = f(1995*) = (3k + 4) f(1995),
(k+2)? =3k + 4,
k € {0,-1}.

Pro k = —1 dostavame funkcionalni rovnici z domaciho kola. Vime, Ze
jejim obecnym feSenim je pro z = pi* ... p%" funkce

fl@)=f)+...+ f(pn) = (n = 1)f(1).

Podminku (i) Glohy miZeme splnit naptiklad volbou f(5) = 1996, f (p)
=0 pro v8echna prvodéisla p # 5 a f(1) = 0. .
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~ Pro k = 0 dostavame funkcionalni rovnici

flzy) = f(z) + f(y)-
Odtud piedevsim pro z = y = 1 plyne f(1) = 0. Obecnym FeSenim této

rovnice pak je pro z = p{* ... p%" funkce
f(@) =1 f(p1) + ...+ anf(pn),
kde f(p;) jsou libovolna celé &isla. Opét staki zvolit f(5) =1996 a f(p) =
= 0 pro viechna prvoéisla p #5 jako vyge.
A-1ll1-6

Dokazeme, Ze za uvedenych pfedpokladi je trojt’xhelrﬁk ABC rovno-
stranny. Oznalme strany a thly trojihelniku ABC obvyklym zptsobem.
Z rovnosti

|KL| = 2Rsinf3, |LM|=2Rsiny, |MK|=2Rsina,
kde R jé spole¢ny polomér tii opsanych kruznic, vychézi
|KL|:|LM]|: |MKI - §in,3 :siny : sina,
takze AABC ~ ALMK. Proto plati
|KL| = Ab, |LM|=MXc, |MK|=\a

pfiemZ koeficient podobnosti A uréime ivahou o obsazich trojihelniki:
Z rovnosti

y 2

Saxkm = SBLk = ScmL = 5 SaBc

‘plyne, Ze Skrm = 3 SaBc, takie A? = . NapiSme kosinové véty pro
trojahelniky ABC a AKM:

a? =b% + % — 2bccosa,

2 2 ,

%az = (%b) + (g—) S L BN

Odecteme-li od devitindsobku druhé rovnosti dvojnasobek prvni, dosta-

~ neme rovnost a? = 2b% — c2. Z dalSich dvojic kosinovych v&t odvodime

analogicky rovnosti %> = 2c? — a? a ¢? = 2a? — b?, taklea=b=c.
Trojahelniky AKM, BLK a CM A jsou tedy shodné a maji shodné

i vepsané kruZznice.
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Kategorie P

Texty ﬁloh

P-1-1

Trojthelnikova sit se sklddd z rovnostrannych trojahelniki jednotkové

velikosti. Soustavu soufadnic si nyni trochu pozménime: z-ova osa bude

orientovana stejné, jako jsme zvykli z kartézské soustavy soutradnic, y-ova
osa svira s z-ovou 60stupnovy thel. Napiiklad vrcholy jednoho z jednot-

kovych trojihelniki maji soufadnice (0,0), (1,0), (0,1).

V této siti zadame N-tthelnik — jeho vrcholy lezi ve vrcholech sité,
jsou navzajem razné, pricemz kazdé dva sousedni vrcholy v N-tthelniku
maji jednotkovou vzdalenost. N-thelnik je zadan na vstupu tak, Zze prvni
fadek vstupu obsahuje ¢islo N a dalSich N fadka obsahuje soutradnice
vrcholt, pficemz tyto vrcholy jsou zadany postupné po obvodu.

Uloha. Napiste a odladte program, ktery
a) vykresli tento N-thelnik na obrazovku,

b) vypiSe zpravu o tom, zda je konvexni nebo ne (N-thelnik je konvexni,
jestlize tsecky spojujici libovolné dva vrcholy lezi celé uvnit¥, resp. na
hranici N-thelniku.).

Pozndmka: Minimalizujte pamétovou a ¢asovou slozitost algoritmu.
Muizete predpokladat, zZe vstupni data jsou zadana korektné.

P-1-2

Pro danou konstantu N (N je prvocislo, napt. 991) méme vyhrazeno
N-prvkové celociselné pole P s indexy 0 az N — 1. Prvky pole jsou na
zaCatku inicializovany na nulu. Do tohoto pole budeme postupné zafazo-
vat L celodiselnych hodnot (navzdjem rtznych a riiznych od nuly), kde
2 < L < N, pomoci procedury Zarad:

procedure Zarad(X:integer);
var i:integer;

begin
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i := (x div 10 + x mod 10) mod N;
while P[i] <> 0 do
i := (i+7) mod N;
P[i] := x;
end;

Tato procedura nejprve ze zarazované hodnoty X vypocita predpo-
klddanou hodnotu indexu v poli P, a pokud je tento prvek pole jiz ob-
sazen (je tam nenulovd hodnota), postupné hleda nejblizsi volnou pozici
v poli (pole je pfitom ,zacyklené* — za poslednim (N — 1)-tym prvkem
nasleduje nulty). Jestlize je pfi hledani volného mista nutné postupné
prohlizet néasledujici prvky, budeme tuto situaci nazyvat kolize a budeme
pocitat pocet vzniklych kolizi. Pocet kolizi pfi zafazovani j-té hodnoty
budeme oznacovat K[j] (K[j] bude tedy rovno po¢tu prichodi cyklem
while pfi zafazovani j-té hodnoty), celkovy pocet kolizi oznacime Cg.

Uloha. Navrhnéte algoritmus, ktery pro dana tii &isla L, G a Ck najde
takovou vstupni posloupnost hodnot H (délky L), aby celkovy pocet
kolizi pro tuto posloupnost byl Ck a posledni hodnota byla H[L] = G,
pripadné zjisti, ze takova posloupnost neexistuje.

P-1-3

Mame kreslici zarizeni schopné kreslit rizné obrazky. Jejich popis vSak
musi byt zadan ve specidlnim tvaru (jako znakovy fetézec):
e je to posloupnost parametrii uzaviend v ,[* a ,)° zavorkach;
e parametrem je bud ¢islo nebo opét posloupnost parametri;
e posloupnost parametra je vzdy sudé délky, pricemz na lichych pozicich
je vzdy Ccislo.
Tuto posloupnost bude kreslici zatrizeni interpretovat nasledovné:
 je-1i posloupnost prazdnd, nekresli se nic;
je-li neprazdna, ziejmé prvni parametr (P;) je ¢islo a druhy (P) je
bud ¢islo, nebo opét posloupnost parametri:
— pokud je P, ¢islo, kreslici pero prejde (se spusténym perem) v mo-
mentalnim sméru natoceni vzdélenost P; a potom se oto¢i o uhel
P, vpravo (ahel je zadan ve stupnich);
— pokud je P, posloupnost, kreslici zafizeni P;-krat zopakuje po-
sloupnost Ps.
Kreslici pero je stale nato¢eno néjakym smérem (na za¢atku algoritmu
na sever) a podle parametri posloupnosti bud méni toto natoceni, nebo
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se v aktudlnim sméru pohybuje dopredu nebo dozadu (kresli ¢aru) podle
toho, zda je tato vzdélenost kladna nebo zéporna.

Napriklad posloupnost ’[4[100 9011’ nakresli ¢tverec se stra-
nou 100. (Vsimnéte si, ze Ciselné parametry jsou oddélené mezerou.)

Uloha. Napiste a odladte program, ktery precte vstupni posloupnost
zadanou ve tvaru znakového fetézce a zinterpretuje ji na grafické plose ob-
razovky. MzZete predpokladat, Ze vstupni posloupnost je zadana korekt-
né, obsahuje jen celociselné hodnoty a ze retézec neni delsi nez 255 zna-
k.

P-1-4

DOL systémy

Abecedou nazyvame libovolnou kone¢nou neprazdnou mnozinu. Prv-
ky této mnoziny nazyvame znaky. Konecnou posloupnost znakt z néjaké
abecedy nazyvame slovo. Znaky oznacujeme zpravidla pismeny ze za-
Catku abecedy (a,b,c,...), slova pismeny z konce abecedy (u,v,w,...)
a abecedy velkymi feckymi pismeny (Z,T,...).

Délkou slova w rozumime pocet znakt, z nichz se slovo sklada, ozna-
Cujeme ji |w|. Zietézenim slov v = a1as ... a, au = byby ... b, rozumime
slovo v *u = a1z ...apbyby ... by. Mnozinu vsech slov, kterd se daji vy-
tvofit ze znakil abecedy ¥, oznatujeme ¥*. Tato mnozina obsahuje také
prazdné slovo, tj. slovo nulové délky, které oznacujeme &. .

Pravidlem nad abecedou ¥ nazyvame usporadanou dvojici (a,v), kde
a € ¥ av € L. Pravidlo zapisujeme ve tvaru a — v. :

Deterministicky Lindermayertv systém bez interakce (DOL systém)
je usporadand trojice (X, P,w), kde

e Y je abeceda,
e P je mnozina pravidel, kterd pro kazdy znak a € ¥ obsahuje pravé

jedno pravidlo nad abecedou ¥ tvaru a — u,

e w je slovo ze ¥, které nazyvame axiom.

Takovyto DOL systém produkuje posloupnost slov wy,ws,ws,.. .,
ktera zac¢ina axiomem a pokracuje vzdy slovem, jenz dostaneme z pired-
chézejiciho slova souc¢asnym nahrazenim vSech znaki za slova podle pra-
© videl. Tedy
1. w; =w,

2. jestlize w; = ai1az . ..a,, potom wiy1 = uy * U * ... * Uy, kde a; —

—wu; € Pproj=1,2,...,n.
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Uvédomte si, ze pro kazdy znak mame pravé jedno pravidlo, a tedy -
pravé jedno slovo, kterym budeme tento znak nahrazovat. Posloupnost
produkovana DOL systémem je proto jednozna¢né uréena. )

Riistovou funkei DOL systému nazyvame takovou funkci f: N — Ny
(N=1{1,2,...},Ng = {0,1,2,...}), kterd pro poradi slova v posloupnosti
produkované DOL systémem udava délku tohoto slova. Presnéji f(i) =
= |w1|

Priklad:

{a, b} je abeceda obsahujici{ dva znaky: a a b.

e Délka slova aabab je 5.

e Zietézenim slov ab a aab je slovo ab * aab = abaab.

e Nad touto abecedou muzeme vytvorit nekone¢né mnoho slov: ¢, a, b,
aa, ab, bb, aaa, ...

Pravidlem je napfiklad a — aa.

e DOL systémem je napiiklad ({a,b},{a — aa,b — ab},ab).

e Posloupnost produkovana timto systémem je

ab, aaab, aaaaaaab, aaaaaaaaaaaaaaab, . . .

(Kdyz slovo obsahuje vice stejnych pismen za sebou, mizeme nahradit
tato pismena jednim pismenem, u kterého uvedeme pocet pismen,
ktera zastupuje. Zkracené muzeme tedy psat posloupnost tohoto DOL
systému: ab, a®b, a’b, a*®b, ...).
e Riistova funkce tohoto DOL systému je f(n) = 2™.
Poznamka: Pii konstrukci DOL systému dévame prednost takovym
systémum, které maji co nejmensi pocet pravidel.
Uloha. Vytvoite DOL systém, jehoz riistova funkce je

a‘) f(n) - 41

b) f(n) =n,

c) f(n) =3n+2,

d) f(n) =n?

e) f(n) = kn?, kde k je libovolné pfirozené &islo

P-1l-1

Ucebni text ¢téte v tloze P-I-1.

Uloha. Napiste program, ktery spocitd obsah zadaného N-uhelniku
a vyjadii ho poctem jednotkovych trojuhelnika.

Pozndamka: Minimalizujte pamétovou a Casovou slozitost algoritmu.
Muzete predpokladat, ze vstupni data jsou zadana korektné.
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P-1-2

Pro danou konstantu N (N je prvodislo, napt. 991) méme vyhrazeno
N-prvkové celotiselné pole P s indexy 0 az N — 1. V tomto poli mame
ulozeno M riiznych kladnych ¢&isel (M < N). Neobsazené prvky pole jsou
inicializovany na nulu.

Prvky jsou v poli P uloZeny tak, aby bylo moZné pouzit funkci
Vyhledej na zjisténi, kde se v poli P nachézi prvek X (funkce vrati polohu
prvku X v poli P, pokud se X v poli nachazi, v opaéném ptipadé vrati
hodnotu —1):

function Vyhledej(X:integer):integer;
var i:integer;
begin
i:=(X div 10 + X mod 10) mod N;
while P[i]>X do
i:=(i+7) mod N;
if P[i]=X then Vyhledej:=i
else Vyhledej:=-1;
end;
int vyhledej(int X) {
int i;
i=(X/10 + X while(P[i]>X) i=(i+7) if(P[i]==X) return(i);
else return(-1); }

Uloha.

a) NapiSte, jak musi byt prvky uloZeny v poli P, aby bylo mozné k jejich
vyhledavani pouzit funkci Vyhlede;.

b) Napiste co nejefektivnéjsi proceduru Zarad, pomoci niz bude mozné
zaradit prvek X do pole P tak, aby mohla byt k vyhleddvani pouZita
funkce Vyhledej. Predpokladejte, Ze pred pouzitim procedury Zarad
byly prvky v poli P takto usporadéany a ze prvek X se v poli P dosud
nenachézi.

P-11-3

Méjme kreslici zarizeni popsané v tloze P-I-3.
Uloha. Naleznéte a dokazte algoritmus, ktery pro danou vstupni po-
sloupnost (ve tvaru znakového fetézce) uréi, jak nejdéle miZe pero star-
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§iho kresliciho zafizeni skoncit od mista, kde mé&lo skon¢it podle zadané
posloupnosti.

P-11-4

Vytvorte DOL systém (nebo dokaZte, Ze to neni mozné), jehoz ristova
funkce je
a) f(n) =n",
b) f(n) =n?-2".
Studijni text o DOL systémech najdete u zadani tlohy P-I-4.

P-1Il-1

Ucebni text ¢téte v uloze P-I-1.

Uloha. Na vstupu je zadan N-thelnik a M-thelnik. NapiSte program,
ktery spocitd obsah jejich priuniku a vyjadii ho poctem jednotkovych
trojuhelnik. b

Poznamka: Minimalizujte pamétovou a Casovou slozitost algoritmu.
Mizete predpokladat, ze vstupni data jsou zadana korektné.

P—-1ll-2

Pro danou konstantu N (N je prvocislo vétsi nez 10, napt. 991) mame
vyhrazeno N-prvkové celo¢iselné pole P s'indexy 0 az N — 1. Prvky pole
jsou na za¢atku vypoétu inicializovany na nulu. Do tohoto pole budeme
postupné zafazovat rizna kladna celd ¢isla pomoci procedury Zarad:

procedure Zarad(x:integer);
var i:integer;
begin
i := X mod N;
while P[i] <> 0 do
if P[i]>x then
i := (i+7) mod N

else
i := (i+3) mod N;
P[i] := x;
end;
void Zarad(int x) {
int i;
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i=x
while (P[i]!=0)
if (P[il>x) i = (i+7)
else i = (i+3)
P[i] = x;
}

Uloha.

a) Napiste co nejefektivnéjsi funkci Vyhledej s jednim celoéiselnym pa-
rametrem z, kterd zjisti, zda se prvek x nachézi v poli P. Pokud ano,
‘funkce vrati hodnotu indexu prvku z v poli P. Jestlize &islo z v poli
P neni, funkce vrati hodnotu —1.

b) Rozhodnéte, zda je vypoclet procedury Zarad v ptipadé, zZe je v poli
P alespon jedno volné misto (tj. aspon jeden prvek pole P ma hod-
notu 0), vzdy kone¢ny. Odpovéd dokazte.

P-1I1-3

a) Sestrojte DOL systém s nejvySe dvéma pravidly, jehoz riistova funkce
je f(n) = n?, nebo dokaZte, Ze takovy systém neexistuje.

‘b) Sestrojte DOL systém s ristovou funkei f(n) = |log,q(n + 1)) +
+1, kde k je pocet symbolt abecedy, nebo dokazte, ze takovy systém
neexistuje.

Pozndmka: Zapisem | X | rozumime dolni celou ¢ast z hodnoty vyra-
zu X, tzn. hodnotu vyrazu X zaokrouhlenou dold na nejblizsi celé ¢islo.
Napiiklad |4,789] =4, |5] = 5. _

Studijni text o DOL systémech najdete u zadani alohy P-I-4.

P-1l-4

Program: LAMPY.PAS / LAMPY.CPP
Vstup: LAMPY. IN
Vystup: LAMPY.0OUT

Verejnd prostranstvi ve mésté jsou osvétlena N pouli¢nimi lampami.
Kazd4 z lamp m4 jednoznaéné piifazeno &islo od 1 do N. K zapinani
a vypinani vefejného osvétleni slouzi v fidicim stiedisku M prepinaci.
Kazdy z prepinact prepne najednou nékolik lamp. Pfepnout lampu zna-
mena zapnout ji, pokud zrovna nesviti, a vypnout ji, jestliZe momen-
talné sviti. Prepinac ¢islo ¢ prepind vSechny lampy s ¢isly od a; do b;,
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tzn. lampy s Cisly lezicimi v uvedeném intervalu. MuzZete predpokladat,
7e 0 < M < 100, 0 < N < 100.

Uloha. Napiste program, ktery zjisti, zda je mozné zapnout pomoci
prepinaci v Hdicim stfedisku vSechny lampy, jsou-li na zac¢itku vSechny
lampy vypnuté.

Vstupni soubor: Vstupni soubor obsahuje nékolik zadani. Prvni fadek
vstupniho souboru je tvofen jedinym &slem, které udava pocet zadani
v souboru. Pro kazdé zadani obsahuje vstupni soubor blok idaji v tomto
tvaru: Na prvnim fddku bloku jsou uvedena ¢isla N a M, kde N je pocet
lamp ve mésté a M je pocet prepinact v rfidicim stiedisku. Dalsich M
radkt obsahuje pro jednotlivé pfepinace vzdy dvojici ¢isel a;, b; (pro
kazdy prepinaé interval ¢isel lamp, které se pomoci ného pfepnou). Jed-
notlivé bloky tdaji jsou ve vstupnim souboru oddéleny vzdy jednim
prazdnym Fadkem.

Vystupni soubor: Pro kazdé zadani obsaZené ve vstupnim souboru
obsahuje vystupni soubor jeden fadek s jednou z nasledujicich zprav:

,Lze* — pokud je mozné rozsvitit vSechny lampy pomoci prepinaci
v tidicim stfedisku,

,Nelze“ — jestlize to neni mozné.

Priklad:

Soubor LAMPY.IN - | Soubor LAMPY.QUT

Lze
Nelze

DN N O N
W Ut ww

10
10
10
10

Gl LW N ==
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P-Il1-5

Program: MANHATAN.PAS / MANHATAN.CPP
Vstup: MANHATAN . IN
Vystup: MANHATAN . OUT

Ve mésté Manhatan vedou v8echny ulice bud ze severu na jih, nebo
ze zdpadu na vychod. Predpoklddejte, Ze se ulice tdhnou obéma sméry
dostatec¢né daleko. V priuseciku kazdych dvou ulic riznych sméru je kii-
#ovatka.

Kfizovatku ozna¢ime dvojici ¢isel (i, 7), jestlize se jednd o kiizovatku
v poradi i-té zépadovychodni ulice pocitano ze severu a j-té severojizni
ulice poéitano od zapadu. K¥iZzovatky jsou tedy odislovany od (1,1) do
(M, N), kde M je pocet zdpadovychodnich ulic a N je pocet severojiznich
ulic. Muzete predpokladat, ze 0 < M < 100, 0 < N < 100.

Na nékterych krizovatkach se pracuje na opravé vozovky, a proto pres
né neni mozné prejet. Na kiizovatkich (1,1) a (M, N) se nepracuje.

Arpéad vyjizdi kazdé rano z kiizovatky (1,1) a pot¥ebuje se dostat do
firmy, kterd sidli na opa¢ném konci mésta, tzn. na ktizovatce (M, N).

Uloha. Napiste program, ktery zjisti, kolika riznjmi cestami se miize
Arpad dostat do své firmy, jestlize pojede vzdy jen ve sméru na jih
nebo na vychod. Program dale vypiSe nejmensi pocet kiizovatek, pres
které se mize takovouto cestou do firmy dostat (v¢etné kiizovatek (1,1)
a (M,N)).

Vstupni soubor: Vstupni soubor obsahuje nékolik zadani. Prvni fadek
vstupniho souboru je tvofen jedinym &slem, které udéva pocet zadani
v souboru. Pro kazdé zadani obsahuje vstupni soubor blok dat. Na prv-
nim rfadku kazdého bloku jsou uvedena cisla MaN , kde M je pocet
vychodozapadnich ulic a N je pocet severojiznich ulic. Na dalsim radku
se nachazi ¢islo K — pocet kfizovatek ve mésté, na nichz se opravuje vo-
zovka. Na kazdém z nésledujicich K radki jsou uvedena vzdy dvé cisla
urcujici polohu kfizovatky, kde se pracuje. Jednotlivé bloky vstupnich
udaju jsou oddéleny vzdy jednim prazdnym fadkem.

Vystupni soubor: Pro kazdé zadani ve vstupnim souboru obsahuje
vystupni soubor jeden fadek. Na ném jsou

e bud dvé ¢isla A a B, kde A je po¢et moznych riznych cest a B je pocet
k¥izovatek na nejkratsi z nich (véetné kfizovatek (1,1) a (M, N)), a to

v pripadé, ze existuje aspon jedna cesta pozadovaného typu,

e nebo zprava ,,Cesta neexistuje“, jestlize cesta pozadovaného typu ne-
existuje.
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Piiklad:

Soubor MANHATAN. IN

Soubor MANHATAN . OUT

W NN N

[SCRE NG V)

26
Cesta neexistuje




Reseni tloh

P-1-1

a) Nejprve si ukdzeme, jak 1ze prepocitat zadané souradnice do pravoihlé
soufadnicové soustavy. Oznalme (t.,t,) soufadnice v nasi trojihelnikové
soustavé a (kz, ky) soufadnice v pravohlé soufadnicové soustavé.

A
ke —ts [
t
k|
60 o
Obr. 29

Z vlastnosti pravothlého trojihelniku na obr. 29 vyplyva

>~

ke, —t
Y =c0s30°, —=—= =sin30°,
ty ty

atedy pro souradnice (kz, ky) plati:

1 1
k, = 5\/§t,,, ke =Sty +te
Pro cely prepoc¢itani na souradnice na obrazovce zavedeme nasledu-
jici proménné: ,
e zvétSeni k (pocet pixeld na obrazovce na jednotku délky)
e soufadnice po¢atku soufadnicové soustavy na obrazovce (o, 0y)

Ve vzorovém feSeni je k konstanta a o, o, se pocitaji tak, aby bod
(0,0) lezel ve stiedu obrazovky.

Shrneme vysledky predchéazejicich tvah. Bod zadany v pravouhlé
soustavé soufadnicemi (k,,k,) se zobrazi na obrazovce na soufadnice
(0g + k - kz,0y — k - ky). Je-li bod zaddn v trojihelnikové soustavé
soufadnicemi (tz,t,), potom jeho soufadnice v pravouhlé soustavé jsou
ky = %\/gty, ks = %ty + t, a na obrazovce se tedy zobrazi na soufad-
nice (0, + k -tz + kity,0, — k3V/3t,). Jestlize nyni oznacime j,, := k,
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Jye = 3k, jyy := =13k dostavame, Ze se bod se souFadnicemi (ts,t,)
v trojuhelnikové soustavé zobrazi na obrazovce do bodu

(0 + Jeaty + Jyzty, Oy + Jyyty)-

b) JelikoZ vSechny vrcholy naseho N-thelniku musi lezet v m¥iZovych
bodech a vzdalenost nésledujiciho vrcholu musi byt vidy 1 od pred-
chézejiciho, prichazeji pro vrchol se souradnicemi (¢.,t,) v Gvahu tyto
vrcholy jako nésledujici (odpovidajici sméry, v nichz vrcholy lezi vzhle-
dem k (t;,t,) ozna¢me od 0 po 5 v pofadi, v jakém jsou zde vypsany):
(tz,ty+1), (2 +1,t,), ((z+1,8,-1), (tz,t,—1), (2 —1,2y), ((z—1,t,+1).

Necht jsme nyni do vrcholu (¢,,t,) pfisli ze sméru s; a odchdzime
z ného ve sméru s,. Vidime, Ze pokud s, = s, potom jsme se v bodé
neoto¢ili, pokud s, = (s, + 1) mod 6 nebo s, = (s; + 2) mod 6 potom
jsme se otocili doprava, jinak doleva (pfipad s, = (ss +3) mod 6 nemize
nastat).

Budeme obchézet n48 N-uhelnik po obvodu (tzn. v potadi, v jakém
byly zadany jeho vrcholy — pripomenme si, Ze poradi bodd mize byt
zadano bud ve sméru, nebo proti sméru hodinovych ruéi¢ek) a budeme
sledovat, v jakém sméru se ota¢ime v jednotlivych vrcholech (smér otaceni
je dan menSim'z dvou hli u vrcholu). Je-li nd§ N-uhelnik konvexni,
potom se ziejmé musime otacet stile stejnym smérem a naopak, jestlize

'konvexni neni, musime se béhem obchazeni oto¢it aspon jednou doprava
a aspon jednou doleva.

Tato jednoducha tvaha bude zakladem naseho algoritmu. Obchéazime
postupné N-uhelnik, pficemz kdyZ se otofime doprava, nastavime pro-
ménnou doprava, kdyz se oto¢ime doleva, nastavime proménnou doleva.
JestliZe jsou na konci obé proménné nastavené, N-thelnik neni konvexni,
v opa¢ném piipadé je konvexni.

Casova i pamétova slozitost tohoto algoritmu je linedrni (O(N)),

, spravnost vyplyva z vySe uvedené vahy.

P-1-2

Ma4-li existovat posloupnost hodnot H([1],..., H[L], musi pfedev§im pla-
tit, Ze L < N. Daéle plati, Zze kdyZ do pole zafazujeme i-tou hodnotu,
pocet kolizi K[i] je nejvySe ¢ — 1. (K[i] = i — 1 tehdy, pokud dojde
ke kolizi se vSemi uZz zafazenymi prvky). Z toho ale vyplyva, Ze jestlize
Ck >0+1+---+ (L —1)=3L(L - 1), posloupnost opét neexistuje.
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Oznaéme a @ b := (a + 7b) mod N. Vezmeme nyni libovolny index
néjakého prvku v naSem poli j. Potom jestlize prochdzime prvky j @
D1,jD2,...,jD N, prejdeme kazdym prvkem naseho pole pravé jednou
(protoze N je prvocislo). '

Méme-li v poli obsazeno k prvku s indexy jo, jo ® 1, jo ® 2, ...,
jo ® (k — 1), pak pro libovolné K[k + 1], kde K[k + 1] € {0,1,...,k},
umime nalézt vhodny prvek H[k + 1] takovy, Ze se zafadi do pole na
index jo ® k. Oznaéme! ixy; = (H[k + 1]div10 + H[k + 1] mod 10)
mod N prvni index vypotitany pro prvek H[k + 1] v procedute Zarad.
Potom kdyz vezmeme

k1 = Jo ® (k — K[k +1]),

tak se nam prvek H[k + 1] zaradi na pozici jo & k.

Pro libovolny pocéateéni index jo a posloupnost K (K[i] £ i—1proi =
=1,2,...,L) tedy umime timto zptisobem nalézt ptislusnou posloupnost
prvnich indext jo = i1,42,...,1L.

“Posloupnost K vsak neni zadana, zname jen jeji soucet Ck. Proto si
ji muzeme zvolit libovolné, pokud mozno co nejjednodussim zptisobem.
Polozme napiiklad K[i] := ¢ =1 pro¢ = 1,2,...,m a jestlize m # L
Km+1]:=Cx —im(m—-1)aK[i]:=0proi=m+2,...,L, pficemz
m vezmeme nejvétdi takové, ze gm(m — 1) £ Ck. ReSenim kvadratické
rovnice lehce zjistime, ze m = | (1 + 1+ 8Ck)|.

Déle je tfeba vyresit problém, jak zvolit jo tak, aby se pii vySe po-
psané volbé posloupnosti I prvni index posledniho prvku posloupnosti
H nalezeny pomoci vztahu i;, = jo ® (L — 1 — K[L]) skutein& rovnal
hodnoté vypocitané v proceduie Zarad ((H[L]div10 + H[L] mod 10)
mod N). Pro operaci @ plati a mod N = (a ® b) & (-b), a tedy pokud
i =jo® (L —1— KI[L]), potom

Jo =10 ® (—(L —1— K[L)])).

Zbyva urcit, jak z hodnoty prvniho indexu i j vypocitat hodnotu prvku
posloupnosti H[j]. Je zfejmé, ze bude-li mit prvek hodnotu 10i;, uréité
bude jeho index i;. Prvky posloupnosti H v8ak maji byt nenulové a na-
vzajem ruzné. Proto k j-tému prvku jesté pfipocitame ¢islo jN. Kdyby
‘se takto vypoéitana hodnota ndhodou rovnala &slu G, ode¢teme od néj

1 Viz proceduru Zarad.
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¢islo 9 (tim bude H[j] mod 10 = 1, ale hodnota H[j]div 10 klesne o 1,
takze soucet se zachovd). ‘

Shriime piedchazejici avahy do funkce Prvek (i,j), kterd pro dany
prvni index 7 a poradové ¢islo j uréi hodnotu H L;]

Funkce Prvek (i,7)
o Jestlize j = L vrat G, jinak
e jestlize 10i + jN = G vrat 10i + jN — 9
e jinak vrat 10i + jN
Na zavér uvedme prehledny zapis celého algoritmu tak, jak byl popsan
vyse:
1. Jestlize L > N nebo Cx > $L(L — 1), posloupnost neexistuje, jinak
pokracuj bodem 2. :
2. m:= |1(1+ T +8Ck)]|, podle hodnoty m uréi K[L]:
e pokud m=L,K[L]:=L -1
e pokud m+1=L,K[L] := Cx — $m(m — 1)
e pokud m+1<L,K[L]:=0
a jo =19 ® (—(L — 1 - K[L])).
3. K[i] :== Prvek (0,i) proi =1,2,...,m
4. jestlize m + 1 < L, potom K[m + 1] := Prvek(m — Cx +
+ tm(m —1),m+1)
5. K[i] := Prvek (jo® (i —1),i) proi=m+2,...,L
Casova slozitost algoritmu je linedrni (O(N)), pamétova konstantni
(O(1)), nebot hodnoty K[i] miizeme piimo vypisovat.

P-1-3

Reseni nepfedstavuje prakticky z4dné vaznéjsi problémy.

P-1-4

a) ReSenim je DOL systém ({a},{a — a},a?).

Tvrzeni: V n-tém kroku je tvar slova a?, a tedy f(n) = 4.

DUKAZ: Pro n = 1 tvrzeni zfejmé plati.

Necht déle w,, = a*. Potom se uplatnénim pravidla zméni kazdé pis-
meno a na a, a tedy w,4; = a*, &m7 je tvrzeni dokdzéano.

b) Resenim je DOL systém ({a, b}, {a — a,b — ab},b).

Tvrzeni: V n-tém kroku je tvar slova a™7 b, a tedy f(n) =n

DUKAZ: Pro n = 1 tvrzeni zfejmé plati.
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Necht déle w,, = a™'b. Potom se uplatnénim pravidel zméni kazdé
pismeno a na a a pismeno b na ab, a tedy w,4+; = a" lab = a"b, &mz je
tvrzeni dokazano. )

c) ReSenim je DOL systém ({a;, b}, {a = a,b — a®b}, a’b)

Turzeni: V n-tém kroku je tvar slova a®**1b, a tedy f(n) = 3n + 2.

DUKAZ: Pro n = 1 tvrzeni zfejmé plati.

Necht déle w,, = a®**'b. Potom se uplatnénim pravidel zméni kazdé
pismeno a na a a pismeno b na a®b, a tedy w,41 = a®*t1adh = 3"+,
¢imz je tvrzeni dokazano.

d) Resenim je DOL systém ({b,c,d}, {b — b,c = bc,d — bc*d}, d).

Turzeni: V n-tém kroku je tvar slova b("~ 1y? cHn- 1)d a tedy f(n) =
=(Mn-12+2(n-1)+1=n2

DUKAZ: Pro n = 1 tvrzeni zfejmé plati.

Necht dale w, = b(*~D?c2(n=1 4 Potom po uplatnéni pravidel bude
Wny1 = bp(n—1)%p2tn—1) 2(n—1)pc2 4 = pn* ¢2nd, ¢m7 je tvrzeni dokdzano.

Poznamka. Ukazeme je$té postup, jak je mozné tento DOL systém

sestrojit. Plati: )

(n+1)?-n?*=2n+1.

To znamené, 7e pii prechodu od n-tého k (n+1)-mu slovu musi ,,p¥ibyt“
2n+1 pismenek. Kdybychom tedy nasli systém, ktery ma rastovou funkci
f(n) = 2n + 1, potom by stacilo, aby kazdé jeho pismenko v kazdém
kroku vygenerovalo né&jaké ,neutralni“ pismenko (tj. pismenko, které se
v dalsich krocich méni uz jen samo na sebe). Takovy stroj ale lehce se-
strojime: ({c,d},{c = ¢,d = ¢*d},d) — diikaz tu nebudeme délat, nebot
je naprosto analogicky s dikazy predchézejicich tvrzeni. Potom nas stroj
bude vypadat takto: ({b,¢c,d},{b — b,c = bc,d — bc?d},d).

Tento postup je mozné rovnéz pouzit jako dikaz spravnosti, v mnoha
pripadech je vSak jednodus$si vznikly DOL systém dokézat indukei (viz
vySe). Ve skutecnosti ke konstrukci DOL systému v pfipadé e) byl pouZit
obdobny postup.

e) Resenim je DOL systém ({b,c,d,e, f},{b = b,c — bde’f,d =
— bd, e — bde, f — bdeS f},c*).

Turzeni: Pro n 2 2 je tvar slova b*(n—1)° gk(3n*—0n+7) gk(6n=7) ¢k o).
‘koz f(1) = k, je f(n) = kn® (k(n—1)3+3n2 —9n+7+6n—7+1) = kn®
pron 2 2).

DUKAZ: Pron =1 a n = 2 tvrzeni zfejmé plati.

Necht tvrzeni plati pro n&jaké n = 2. Potom

Wy, = bk(n—1)3dk(3n2—9n+7)ek(sn-7)fk
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a po uplatnéni pravidel

— bk(n—1)3bk(3n2—-9n+7)dk(3n2—9n+7)bk(6n—7)
dk(sn—7)ek(6n—7)bkdkeekfk —

e bkn3dk(3n2—3n+l)ek(6n—1)fk =

Wn41

— pFn’ dk(3(n+1)2—-9(n+1)+7)ek(6(n+1)—7)fk

¢imz je tvrzeni dokadzano.

P-1-1

Uvazujme v nasi soustavé soutfadnic pas trojuhelniki, ktery je vymezen
z-ovymi soufadnicemi x a  + 1. Vezmeme prinik tohoto pasu s hranici
naSeho n-uhelniku. Kazdé hrané n-thelniku uvniti pasu priradime smér
podle toho, v jakém poradi byly zadany jeji-krajni body. Dostaneme tak
soustavu hran jednotkové délky, pricemz

e Pocet hran je sudy (pokud projdeme pies tento pas doprava, potom
abychom n-thelnik uzavreli, musime pres tento pas prejit také doleva
a naopak).

e Je-li smér nékteré hrany doleva, smér nejblizsi nizsi a vyssi hrany je
doprava a naopak.

e Nejvyssi a nejnizsi hrana vede ve vSech pasech (tzn. pro vSechna z)
stejnym smérem, pri¢emz nejvyssi hrana vede opaénym smérem nez
nejnizsi hrana.

Plocha priniku pasu a naSeho n-thelniku je zfejmé rovna souctu
ploch ohranienych nejvy$§i hranou a druhou nejvyssi hranou, tfeti
a Ctvrtou nejvyssi hranou, ..., druhou a prvni nejnizsi hranou. Pred-
pokladejme nyni, Ze nejnizs$i hrana vede doleva. Potom plochu priniku
n-uhelniku a naseho pasu spocitame tak, Ze plochu 'y pasu ,pod“ hranou
vedouci doprava vzdy pii¢itdme a plochu ,,pod“ hranou vedouci doleva
odcitame.

Toto vSak nemusime provadét po jednotlivych pasech. Nejprve polo-
zime plocha := 0. Necht y je vySka aktudlniho bodu n-thelniku. Jestlize
dalsi bod lezi napravo dole (relativni soufadnice (1,—1)), pfipo¢itame
k plose 2y — 1, pokud je napravo (relativni souradnice (1,0)), pfi¢teme
2y. JestliZe je dalsi bod nalevo nahoru (relativni soufadnice (—1,1)), ode-
¢teme od plochy 2y + 1, pokud je nalevo (relativni souradnice (—1,0)),
ode¢teme 2y. V ostatnich piipadech (relativni souradnice (0,1) a (0, —1))

s vz

nepfipocitavame nic, nebot tyto hrany neprotinaji Zadny pas.
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Co se stane, jestlize byla orientace hran opatné, nez jsme predpokla-
dali? Potom dostaneme zaporné &slo a jeho absolutni hodnota je rovna
plose n-thelniku.

Pozndmka: V predchazejici uvaze jsme predpokladali, ze se cely
n-thelnik nachazi jen nad osou z. Je vSak jasné, ze algoritmus zlstava
beze zmény, i kdyz bude n-thelnik lezet cely nebo ¢asteéné pod osou z.

Spravnost algoritmu je ziejma z predchazejicich Gvah. Casova slozi-
tost algoritmu je O(n), pamétova O(1).

P—-11-2

a) Oznalme h(z) := (z mod 10 + z div10) mod N. Funkce Vyhledej
pfi hledani prvku z postupné prohlizi prvky pole P s indexy h(x),-(h(z)+
+ 7) mod N, (h(z) + 14) mod N, ..., (h(z) + 7l) mod N. Skonéi, kdyz
nastane jedna z téchto tii moznosti:

e najde hledany prvek z
e najde prvek mensi nez «
e najde prazdné policko (prvek s hodnotou 0).

Pokud nastala prvni moZnost, prvek se v poli nachézi, jinak v poli
neni. N a 7 jsou nesoudélna ¢isla. Z toho vyplyva, Zze pro kazdé i €
€ {0,1,...,N—1} existuje j € {0,1,..., N —1} takové, ze i = (h(z)+77)
mod N. V poli je aspon jedno prazdné policko (M < N), a proto [ bude
vzdy mensi nez N. '

Necht se v poli P prvek z nachdzi na misté s indexem i. Necht j €
€ {0,1,...,N —1} je takové Cislo, ze i = (h(z) + 7j) mod N. Aby funkce
Vyhledej prvek z nasla, musi platit, ze prvky s indexy h(z), (h(z) + 7)
mod N, (h(z) + 14) mod N, ..., (h(z) + 7(j — 1)) mod N budou vétsi
nez x.

b) Pokud do tabulky chceme ulozit prvek z, postupujeme opét po
posloupnosti indexd h(z), (h(z) + 7) mod N, (h(z) + 14) mod N, ...,
(h(z) + 7l) mod N tak dlouho, az najdeme prvek mensi nez z nebo
prazdné policko. Jestlize jsme nasli prazdné policko, prvek z tam mu-
zeme ulozit a funkce Vyhledej ho jisté najde, nebot pred nim bude pro-
hledavat jen vétsi prvky. Pokud vSak je na tomto misté prvek s hodno-
tou y; (y1 < ), ulozime sem prvek z. Pti hleddni prvku y; se pfedtim
funkce Vyhledej zastavila na indexu (h(z) + 7l) mod N, ale tam je nyni
prvek z vétsi nez y;, takze funkce bude pokracovat dale po indexech
(h(z) + 7(1 + 1)) mod N, ..., (h(z) + 7l;) mod N. Prvek y; uloZime na
misto (h(z) + 7l;) mod N. Jestlize tam pfedtim bylo prazdné policko,
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skoncime, jestlize tam byl prvek y» (y2 < 1), opét postupujeme déle po
indexech (h(z) + 7(l; + 1)) mod N, . .., (h(z) + 7l3) mod N. Toto opaku-
jeme, dokud nenajdeme prvok y;, ktery se jiz ulozi na prazdné policko.
Na zéakladé tohoto postupu miZeme sestavit proceduru Zarad:

procedure Zarad(X:integer);
var i:integer;

begin
i:=(X mod 10 + X div 10) mod N; {i:=h(X)}
while P[i]<>0 do begin
if P[i]<X then {nasli jsme mensi prvek}
swap(P[1],X); {vymé&ni hodnoty P[i] a X}
i:=(i+7) mod N; {posuneme se dale}
end;
P[i]:=X; - {na volné poli&ko uloZime X}

end;

Procedura Zarad vzdy skonci, nebot M < N, a tedy v pbli je né-

jaké policko P[i], které je prazdné, a pro i existuje j tak, ze (h(x) + 77)
mod N = i. Proto nejpozdéji po j prichodech cyklus while skonéi. Po
provedeni procedury vSechny prvky, které v poli P byli, v ném ztstanou
(i kdyZ moZna na jinych mistech) a pribude pouze prvek z. Soudasné
pro kazdy index ¢ (0 < ¢ < N) plati, Ze hodnota P[i] pfed provedenim
procedury Zarad(z) je men3i nebo stejné jako hodnota P[i] po provedeni
procedury. Necht tedy po provedeni procedury Zarad (z) spustime funkci
Vyhledej(y). Mohou nastat tyto moznosti:
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Prvek y se v poli P nenachazi. Funkce Vyhledej(y) nemize nalézt
néco, co v poli P neni, a proto vrati spravny vysledek.

y = z. V tomto pifipadé uz z popisu algoritmu vyplyva, ze funkce
Vyhledej prvek x najde.

y # x, y se nachazi v poli P a jeho poloha se béhem vypoctu pro-
cedury Zarad(z) nezménila. Pfedtim funkce Vyhledej prohleddvala
indexy h(y), (h(y) + 7) mod N, ..., (h(y) + 7l) mod N. To znamena,
ze pro kazdé i, 0 < i < [, platilo P[(h(y) + 7i) mod N] > y. Protoze

se hodnota zadného prvku z P béhem provadéni Zarad(z) nesnizila,

plati to i nadale a proto Vyhledej(y) bude prohledavat stejné indexy
a uspésné y najde.

y # x, y se nachdzi v poli P a jeho poloha se béhem vypoctu
procedury Zarad(z) zménila, tj. je to jeden z prvkia yi1,v2,...,Yk-



Necht predtim Vyhledej prohledavala indexy h(y),(h(y) + 7)
mod N, ..., (h(y)+7l) mod N. Ze stejnych divodi jako v predchazeji-
cim piipadé ani nyni neskonéi dfive, ale na misté s indexem (h(y)+71)
mod N je nyni prvek vétsi nez y, a proto funkce bude pokracovat dale.
Z popisu algoritmu vSak vyplyva, Ze prvek, na kterém se prohledavani
zastavi, je pravé hledany prvek y.

P-1-3

Celkovy posun pera je souctem jednotlivych vektort urcenych vstupni
posloupnosti. Kdyz starsi kreslici zafizeni udéla pohyb o jednotku delsi
nebo kratsi, je to to totéz, jako kdyby se kromé urceného vektoru posu-
nulo je$té o jednotkovy vektor ve sméru nebo proti sméru svého natoceni.
Protoze s¢itani vektort je komutativni, predstavme si, Ze se tyto posuny
o jednotkové vektory provedou vSechny az nakonec. Necht mnozina A
je mnozina obsahujici ke kazdému vektoru ze vstupni posloupnosti dva
navzajem opalné jednotkové vektory (ve sméru a proti sméru tohoto vek-
toru). Nasi tlohou tedy je vybrat z mnoziny A podmnozinu, jejiz soucet
je co nejdelsi. Vybrana podmnozina muzZe byt libovolna (zafizeni se sice
vzdy posune nejvyse o jeden z dvojice navzdjem opacnych vektord, ale
pokud bychom vybrali oba, je to totéz, jako kdybychom nevybrali ani
jeden z nich).

Podmnozina s nejvétsim souctem jisté obsahuje z kazdé dvojice opac-
nych vektori pravé jeden. To lehce dokdzeme sporem: necht vektor (z,y)
je souc¢tem podmnoziny s nejvétsim souctem, kterd neobsahuje ani jeden
z jednotkovych vektori (z1,y1) a (=1, —y1). Potom ale jeden z vektort
(z+z1,y+11), (z— 21,y — y1) je urCité delsi nez vektor (z,y). Plati, Ze
2?2 +y? =1 ajedno z &isel 1+2(zx1 +yy1), 1 —2(zx; +yy;) je urdité klad-
né. Délka vektoru (z + z1,y +v1) je /22 + 42 + 23 + y? + 2(zz, + yy1)
a délka vektoru (z — 1,y — 1) je V22 +y2 + 27 + 4 — 2(zx1 + yy1).
Jedna z téchto délek je tedy jisté vétsi nez délka vektoru (z,y), kterd
je rovna /z2 + y2. Proto vektor (z,y) neni vektor s nejvétsi moznou
délkou. Podobné se da zduvodnit, Ze pokud A obsahuje vice stejnych
dvojic vektord, do podmnoziny s nejvétsim souctem se vybere z kazdé
dvojice stejny vektor. )

Nyni dokdzeme néasledujici vétu: Hledané feSeni obsahuje viechny vek-
tory z A lezici v jedné poloroviné urcené nékterou pfimkou vedouci bodem
(0,0). Jsou-li nékteré dvojice vektort rovnobézné s pfimkou, vyberou se
vektory v jednom sméru.
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DUKAZ: Necht (z,y) je soufet podmnoziny s nejdelsim souctem, necht
piimka p je kolmd na (z,y) a prochdzi bodem (0,0). Necht (z1,¥) je
libovolny vektor z poloroviny, v niZ se nachézi (z,y). Potom thel vektort
(z1,¥1) a (z,y) je nejvyse 90 stuphi. Proto délka vektoru (z + 1,y +v1)
je vétsi nez délka (z,y) (podle kosinové véty). Pokud by nase podmnoZina
neobsahovala néktery z vektort z této poloroviny, jeji soucet se pfidanim
tohoto vektoru tudiz prodlouZi, takZe by nemohla byt hledanym feSenim.
Jestlize by naopak obsahovala néktery vektor z opa¢né poloroviny, jeho
ubréni je totéz jako pridani vektoru k nému opa¢ného (ktery je uZ z nasi
poloroviny), a to opét prodlouZi soucet.

Necht a1, az, . .., as, jsou jednotkové vektory z mnoziny A usporadané
podle sméru (vektor a; 4, je opalny k vektoru a; pro1 £ ¢ £ n). Vezméme
dva sousedni vektory z takto setfidéné posloupnosti. Poloroviny uréené
vSemi primkami prochdzejicimi ,mezi“ témito dvéma vektory obsahuji
stejnpu podmnozinu vektord z A, a proto sta¢i uvazovat jen pfimky se
sméry vektort z A. Polorovina uréend pfimkou ve sméru vektoru a; ob-
sahuje vektory a;,@iy1,...,0i+n—1, 1 £ i < n. Stadi tedy uréit viechny.
takovéto soucty a vybrat z nich nejvétsi. To lze provést pro jii setfidénou
posloupnost vektort v ¢ase O(n).

Vzhledem k tomu, Ze sméry vektord uréenych vstupni posloupnosti
jsou celé ¢isla od 0 do 359, miZzeme je usporddat v ¢ase O(n) prihradko-
vym tfidénim, tj. pro kazdy ze smért spocitame, kolik vektori je v tomto
sméru. Mame-li | jednotkovych vektort téhoZz sméru, mizeme je povazo-
vat za jeden vektor délky [. Stac¢i dokonce pouZit jen pole od 0 do 179,
nebot vektor se smérem j a vektor k nému opaény se smérem j + 180°
maji stejnou délku.

P-1l-4

a) DokéZeme sporem, Ze neni moZné sestrojit pozadovany DOL sys-
tém. Necht existuje DOL systém s riistovou funkci n™. Vezmeme k rovné
maximalni hodnoté z délek pravych stran pravidel. Z toho vyplyva, Ze
méame-li v i-tém kroku slovo délky i, v i + 1-nim kroku mtize na§ DOL
systém vygenerovat slovo délky nejvyse ki. Uvazujme nyni slovo wy.
Jeho délka je k*. Pro délku slova wy; potom musi platit

lw 1] < klwe| = kE* = E¥ < (K + 1),

coZ je spor, nebof délka slova wg41 ma byt (k + 1)k+1,
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b) feSenim je DOL systém ({b,c,d},{b — b*c — b’ d —
- B2}, dd). ~

Turzeni: V n-tém kroku je tvar slova (b(»~D°c2(n=Dg)2" 4 tedy
f(n) =2"((n—1)2+2(n — 1) + 1) = 2"n2.

DUKAZ: Pro n = 1 tvrzeni zfejmé plati.

Necht déle w, = b2"(n—1)°2"2(n=1) 42" Potom po uplatnéni pravidel
bude w,4 = (b("—1)2b2("+1)c2("_1)bc2d = b"zc2"d)2"+1, &mz je tvrzeni
dokazano.

P-1Il-1

UvaZujme v na$i soufadnicové soustavé vodorovny pas trojuhelnika,
ktery je vymezen y-ovymi souradnicemi y a y+1. Jestlize vezmeme stranu
mnohothelniku s prochdzejici timto pasem s koncovymi body [z1,y],
[z2,y + 1], jisté plati, Ze £1 = x2 nebo z; + 1 = x5. Pokud zname soudet
Ty + T2, dokdZeme urdit 1 a 2a: T1 = [%(ml +z3)], Ty = [%(wl + z2)].
Proto muZzeme kazdou stranu, kterd neni vodorovna, jednoznacné popsat
usporadanou dvojici ¢isel (¢,7), kde ¢ = z; + 22 a j = y. Dvojici (¢, 5)
budeme nazyvat souradnicemi strany. Méjme stranu s se souradnicemi
koncti [z1,y], [z2,y+1] astranu s’ se soufadnicemi konct [z, y], [z4, y+1],
pficem?Z strana s je nalevo od strany s’. Potom &4st pasu ohranifena
stranami s a s’ je lichob&znik nebo v krajnim p¥ipadé trojiahelnik a jeho
obsah S = (2] — z1) + (2, — 2) (prvni s¢itanec uréuje pocet jednot-
kovych trojahelniki, které maji jednu ze svych stran na spodni pfimce
pasu, druhy pocet téch, které maji jednu ze stran na horni pfimce pasu).
Po tpravé dostaneme vztah S = (2} + %) — (21 + z2), coz uZ je vyjadieni
pfimo pomoci soufadnic stran.

Méjme nyni dva mnohouhelniky A a B a zkoumejme prinik A, B
a naSeho vodorovného péasu. Tento prunik se bude ziejmé skladat z li-
chobé&znikt (pfip. trojuhelnikd) ohranifenych stranami mnohothelnik.
Bod pésu patii do priniku, je-li nalevo od néj lichy pocet stran A a zaro-
ven lichy pocet stran B. Tedy zacatkem néjakého takovéhoto lichob&Zniku
bude strana, od niz vlevo je sudy pocet stran jejiho vlastniho mnoho-
thelniku a lichy pocet stran druhého mnohotihelniku. Naopak koncem
takového lichobézniku bude strana, od niz vlevo je lichy pocet stran jeji
vlastniho a lichy pocet stran druhého mnohothelniku. Strany mnoho-
thelnikd, které prochézeji jednim pasem, mizeme setfidit zleva doprava,
tj. podle jejich prvni souradnice. Potom jedinym priichodem pres utiidé-
nou posloupnost stran jednoduse spoé¢itdme plochu priniku.

101



Algoritmus je tedy nésledujici: setfidime strany obou mnohothel-
nikd podle pasu, ve kterém se nachazeji (podle jejich druhé souradnice),
pfiCemz vodorovné strany mitizeme vynechat. Strany téhoZ pésu setii-
dime zleva doprava (podle prvni soufadnice). Potom prochézime zaroven
obéma seznamy setfidénych stran a hledame strany, které jsou zacatky
nebo konci lichobézniki, a jejich prvni soutfadnice odpocitdvdme nebo
pripo¢itavame k celkovému souctu.
mnohothelnik néjaké dva vrcholy s z-ovymi soufadnicemi i a j (7 < j),
maé také vrcholy s z-ovymi soufadnicemi i+1,7+2,...,7—1, nebot délka
kazdé strany je 1. Rozdil maximélni a minimdlni z-ové soufadnice mno-
hotihelniku je tedy nejvyse N. Totéz samoziejmé plati i pro y-ovou sou-
fadnici. Proto na tfidéni stran pouzijeme algoritmus Radixsort. Strany
setfidime nejprve podle prvni souradnice a potom podle druhé, pii¢emz
v obou piipadech pouZijeme stabilni a linedrni tfidéni. Prvni soufadnice
stran jsou ale sou¢tem dvou soufadnic vrchold, takze rozdil dvou soufad-
nic stran miize byt i dvojnasobkem rozdilu souradnic vrcholi.

Diky linedrnimu tfidéni je pamétova i Casova slozitost algoritmu
O(N + M), kde N a M jsou polty stran mnohothelniki.

.

P-1lIl-2

b) Protoze 7 a N jsou nesoudé&lné ¢isla, existuje [ takové, Ze 7l
modN =N-3a0<1!< N.Plati,2e l < N —1, nebot kdyby se rovnaly,
muselo by platit (7N —7) mod N = N — 3, coZ pro zddné N > 10 zjevné
neplati.

Vkladejme do prazdného pole P procedurou Zarad postupné prvky
(l+2)N,(l+1)N,...,4N,3N,N. Ulozi se postupné v tomto poradi na
mista 0,7,14,..., N — 3. V poli je nyni obsazeno [ + 1 mist, a tedy aspon
jedno misto je volné. Kdyz nyni zavolame proceduru Zarad s paramet-
rem 2N, bude proménnd i postupné nabyvat hodnot 0,7,14,..., N — 3,
nebot na pozicich 0,7,14,..., N — 10 jsou uloZena Cisla vétsi nez 2NV.
Ale P[i] = N, a proto daldi hodnota indexu bude opét 0. Procedura bude
proto cyklicky nabyvat stale tyto hodnoty a tudiz neni kone¢na pro kazdy
vstup.

a) Mé&me funkci Posun, kterd ndm vrati dalsi hodnotu, jakou by zis-
kal index ¢ v proceduie Zarad (tato hodnota zavisi na ptivodni hodnoté 7,
na prvku z a prvku P[i]):
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function Posun(i:integer; x:integer) :integer;
begin
if P[i]>x then
posun:=(i+7) mod N
else
posun:=(i+3) mod N;
end; )

V urditém stavu pole P chceme vyhledat prvek z. Definujme (neko-
ne¢nou) posloupnost indext ho, h1, b2, ..., kde hp = s mod N a hi4q =
= Posun(h;, z).

Mohou nastat tii pripady:

1. Prvek z se v poli P nachéazi. VSimnéte si, Ze procedura Zarad méni-
jen hodnoty nulovych prvkt pole P. Hodnoty na indexech, pres které
prechdzela procedura Zarad(z), se tedy nezménily. Jsou to indexy
ho,h1, ..., h, kde k je nejmensi &islo takové, ze Plhi] = z.

2. Prvek z se v poli nenachédzi a procedura Zarad by ho zaradila na
volné misto P[i]. P¥i tomto zafazeni by procedura prohlédla prvky P -
s indexy ho, b, ..., hi, kde k je nejmensi ¢islo takové, ze P[hi] = 0
(resp. ze i = hg).

3. Prvek z se v poli P nenachdzi a procedura Zarad pro vstup x neskonéi.
Také v tomto pripadé by procedura prohlédla indexy ho, hq, . ... Necht
k je nejmensi Cislo takové, ze existuje | < k takové, ze h; = hy. Potom
posloupnost {h,} zalind indexy hg,hq,...,hi—1 a potom se uZ stéle
periodicky opakuji indexy h;, hyy1,-.., hr—1.

Funkce Vyhledej tedy rozpoznava tyto tii piipady, v prvnim pfipadé
vrati hy a ve druhych dvou —1. V prvnich dvou piipadech staéi postupné
vypocitavat indexy h,, dokud nenajdeme 0 nebo x. Jestlize ale chceme
zjistit, zda nenastal tfeti pripad, potiebujeme ovéfit, jestli se pravé vy-
pocitany index h, uz predtim v posloupnosti nevyskytoval. Budeme se
po poli posunovat se dvéma indexy i a j, kazdy bude postupné nabyvat
hodnot posloupnosti h,. Index ¢ ale budeme posouvat ,rychleji“. Kdyz
i nabyde hodnoty hn, tak hodnota j bude hf, . V piipadé, zZe se in-
dexy v posloupnosti periodicky opakuji, po jistém case bude platit i = j
V okamziku, kdy j nabyde poprvé hodnoty h;, i se nachézi také nékde
v cyklu. Po kazdém posunu j se vzdélenost i a j zmensi o 1, nebot index
i se mezitim posunul dvakrat, a tak vlastné ,dobihd“ index j. Proto se
index j posune nejvyse k-krat, a jelikoz ¢ se posouva dvakrat tak casto,
celkovy pocet posunt je nejvyse 3k. ‘
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function Vyhledej(x:integer);
var i,j,vysledek:integer;
menit_j:boolean;

begin
vysledek:=0; {vysledek jeit& nezname}
i:=x mod N; {prvni index}
ji=i;
menit;j:=false;
while vysledek=0 do {dokud nezname vysledek}
if P[il=x then {nasli jsme x}
vysledek:=i
else if P[i]=0 then {x v poli neni}
vysledek:=-1
else begin
i:=posun(i,x); {posuneme i}

if menit_j then begin {je-1li t¥eba, posuneme j}
j:=posun(j,x);
if j=1i then vysledek:=-1;
{i a j se setkaly - cyklus}

end;
menit_j:=not menit_j;
end;
Vyhledej:=vysledek;

end;

P-11-3

a) DokaZeme sporem, Ze neni mozné sestrojit pozadovany DOL sys-
tém. Necht tedy existuje DOL systém s ristovou funkei n2. Necht ma
tento DOL systém pouze jedno pravidlo. Potom toto pravidlo musi mit
tvar @ — a’ a w; =.a, nebot |w;| = f(1) = 1. Pro wy plati wy = a’
a |lwe| = f(2) = 4. Z toho vyplyva, ze ¢ = 4. Ale pak pro ws plati
ws =a" a|ws| = f(3) = 9. Dostavame tedy, ze 9 = i2 = 42 = 16, co je
spor.

Nas DOL systém musi tedy mit alespoii dvé pravidla. Necht jsou to
pravidla @ — u, b — v, kde u, v jsou z {a,b}*. Bez Gjmy na obecnosti
miizeme predpokladat, ze wi = a. Potom wy = u, a tudiz |u| = f(2) = 4.

Necht slovo u obsahuje k znakd a. Potom ws = ufv?~* a plati, ze
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lws| = f(3) = 9. Ale soucasné plati |ws| = klu| + (4 — k)|v| a lu| = 4.
Dostévame tedy rovnici 4k + 4|v| — k|v| = 9. Jestlize za k postupné dosa-
dime v3echny mozné hodnoty (0,1,2,3,4), dostdvame pro |v| nésledujici
rovnosti: 4jv| = 9, 4+4v| —|v| = 9, 8+4|v|—2|v| = 9, 12+4|v|-3Jv| =9
a 16 + 4|v| — 4|v| = 9. Ani jedna z téchto rovnosti vSak nemé nezdporné
celodiselné feSeni, a proto DOL systém s pozadovanymi vlastnostmi nee-
xistuje.

b) DOL systém s pozadovanymi vlastnostmi neexistuje. DokdZeme to
opét sporem. Necht tedy existuje DOL systém s k-prvkovou abecedou
a ristovou funkei f(n) = |logg,(n+1)] + 1.

Necht m >-1. Ozna¢me n; nejmensi takové ¢éislo n, pro které f(n) =
= m, a ny nejvétsi takovéto &islo. Potom ny = (k+1)™ "' —1an, = (k+
+1)™ —2. Tedy v8echna slova w s indexem n;, w s indexem nq +1, ..., w
s indexem n, maji délku m. Jejich pocet je no —ny +1 = k(k+1)™"1. Ale
rznych slov délky m je k™ a k™ < k(k + 1)™~!. Proto ur¢ité existuji
¢isla 7,0 > 0 takova, ze w; = w;4;. Kdyz ale ze slova w; vznikne po [
krocich opét w;, Gsek w;, w;41,...,w;—1 se bude i dale stale periodicky
opakovat. Tedy DOL systém vyprodukuje nekone¢né mnoho slov délky m,
coz je spor, nebot takovych slov ma byt ny —ny + 1.

P—1ll-4

¢atku nemusi byt vSechny lampy vypnuté. Stav lamp si budeme pama-
tovat v poli I, kde [[i] = true, pokud je i-t4 lampa zapnutd a I[i] = false,
jestlize je vypnuté. Reenim této tilohy budeme rozumét takovou pod-
mnozinu prepinact, Ze pokud je vSechny pfepneme, viechny lampy budou
zapnuté. Pokud N = 0, feSenim tlohy je zfejmé prazdna mnozina. Necht
tedy N > 0. Mohou nastat. dva piipady:

1. {[1] = false. )
Jestlize zadny interval neza¢ind lampou 1, tloha zjevné nemd feSeni.
V opa¢éném pripadé najdeme nejkrat$i interval, ktery zacind lampou 1
(necht jeho konec je b). Zménime vSechna [[i] z tohoto intervalu na opa¢né
a vSem intervalim, které zacinaji lampou 1, zménime zacitek na b +
+ 1 (intervaly, které se tim stanou prazdnymi, uz déle neuvazujeme).
Dostévame tak novou tlohu pro lampy 2,3, ..., N, kterd m4 feSeni pravé
tehdy, ma-li feSeni pivodni tGloha.

DUKAZ: Necht pozménéna tloha m4 feSeni R. Potom kdyZ prepneme
lampy z ptvodni tlohy prepinaci z R, budou svitit jen lampy s &isly
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vétSimi nez b. Necht R obsahuje k intervali, kterym jsme zacatek zménili
z 1 na b+ 1. Necht R’ vznikne z R tak, Ze témto intervalim zménime
zaCatek zp&t na 1. JestliZe je k liché, kazdou lampu z intervalu (1,b) jsme
oproti reSeni R prepnuli jeSté lichy poclet krat, tedy zlstane zapnuta.
V tomto pfipadé je tedy R’ feSenim nasi ptivodni Glohy. Pokud je k sudé,
lampy z intervalu (1,b) zistanou vypnuté a proto k R’ je tfeba jesté
pridat interval (1,b). Naopak, necht naSe piivodni Gloha mé feseni R.
Pocet intervalt z R, které obsahuji lampu 1, je jisté lichy. Kdyz viem
témto intervalim zménime zacatek na b+ 1 a vyhodime intervaly nulové
délky, dostaneme feSeni zménéné tlohy.

2. l[1] = true
Protoze lampa 1 uz sviti, neni tieba, aby se dala n&jakym piepinacem
prepnout. Jestlize neexistuje interval, ktery zac¢ina lampou 1, tloha mé
feSeni pravé tehdy, ma-li feSeni tiloha pro lampy 2,3,...,N a stejnou
mnozinu intervali. Pokud existuje interval, ktery za¢ina lampou 1, opét
z nich vezmeme nejkratsi, zménime zacatky intervald stejné jako v pred-
chozim pripadé, ale neménime hodnoty pole [. Takovato pozménénd tiloha
ma opét reSeni pravé tehdy, kdyz ma reSeni puvodni tloha.

DUKAZ je obdobny jako v p¥ipadé, kdy /[1] = true (uvédomte si v3ak,
ze pocet intervali, které obsahuji lampu 1, musi byt tentokrat samo-
ziejmé sudy). -

Nasim tkolem vSak neni nalézt feSeni, ale pouze zjistit, zda n&jaké
feSeni existuje. Je proto tfeba na za¢atku nastavit vSechny prvky pole [ na
false a podle uvedenych tivah postupovat od prvni lampy az do posledni,
pricemz modifikujeme pole [ a zacatky pfislusnych intervali. Dostavame
tak algoritmus s ¢asovou slozitosti O(N M) a pamétovou O(N + M).

P-1I-5

Je dtlezité uvédomit si, ze mizeme jit jen smérem na vychod nebo na
jih. Abychom se dostali z kfizovatky (1, 1) na kfizovatku (M, N), musime
prejit o M —1 ulic na jih a o N—1 ulic na vychod. Je jedno, v jakém poradi
stfidame sméry, pocet krizovatek, kterymi projdeme, je vidy M + N — 1.

- Pocet riiznych cest také spoitame jednoduse. Oznacme ali, j] pocet
riiznych cest z (1,1) do (Z,7). Pokud se kfizovatka (z,j) opravuje, po-
lozime a[i,j] = 0. Na libovolnou kfizovatku lezici na vychodozapadni
ulici ¢islo 1 (tj. na nejseverné&jsi ulici) se mizeme dostat nejvyse jednim -
zpusobem, a to tak, Ze pijdeme stale na vychod. Jestlize se vSak opravuje
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vozovka nékde mezi touto kfizovatkou a kfizovatkou (1,1), nemizeme se
tam dostat vibec. Totéz plati i pro severojizni ulici ¢islo 1.

UvaZujme nyni kiiZzovatku (¢, j), kde ¢,7 > 1 a tato kiizovatka se neo-
pravuje. Na tuto kiizovatku miZeme pfijit bud z kfizovatky (:—1, j), nebo
z kfizovatky (¢, j —1). Jestlize tedy zndme hodnoty a[i—1,j] a a[i,j — 1],
pak a[i, j] = a[i—1, j]+ali, j—1]. Na zdkladé& této Gvahy miZeme sestrojit
algoritmus, ktery bude postupné po Fadcich vyplhovat pole a. Nakonec
budeme mit v a[M, N] polet riznych cest z (1,1) do (M, N). Je-li tento
pocet roven 0, zadna takova cesta neexistuje.

Vzhledem k tomu, Ze musime vyplnit celou tabulku vehkostl M x
x N a pro vypocet hodnoty kazdého poli¢ka vykoname konstantni pocet
operaci, Casova slozitost algoritmu je O(MN).

107



Korespondenéni seminai UV MO 1995/96

Ani v tomto ro¢niku matematické olympiddy se nepodarilo rozbéhnout
korespondenéni semina¥ UV MO zptisobem obvyklym v dfivéjréich letech.
Po roce 1990 bohuzel ubylo ¢asu i ochotnych spolupracovniki, a tak se
podafilo rozeslat jen dvé sedmice tloh, které uvadime déle.

Koresponden¢ni seminar by mél i nadale ziistat soucasti péce o ta-
lentované studenty a zejména pak pripravy téch nejlep$ich na mezina-
rodni matematickou olympiddu. Je to jedna z mala mozZnosti, jak nase
uspésné resitele zasobovat originalnimi a obtiznymi tlohami z materialt
jury MMO a z jinych narodnich olympiad, a zkvalitnit tak jejich indivi-
duélni pripravu.

Ulohy korespondenéniho seminaie

1.1 Pro libovolnd dvé nezaporna celé Cisla a, b a celé Cislo ¢ takové, ze
ab 2 c?, existuje pfirozené n a celd &isla x1, T2, ..., Tn, Y1, Y2, - - -, Yn tak,

ze plati
n n n

Yoai=a, Y yi=b Y mwi=c

Dokazte.

1.2 Oznaéme Ro mnozinu vSech nenulovych redlnych éisel. Zjistéte, zda
existuje funkce f: Rop — Rp, kterd soucasné spliiuje nasledujici tfi pod-
minky:

a) existuje kladné ¢islo M takové, ze —M < f(z) £ M pro kazdé z € Ro;
b) f(1)=1;

c¢) pro kazdé x # 0 plati

(o) = s+ (1)

1.3 V roviné je dén ostrouhly trojihelnik ABC. Zvolme na strané¢ BC
body A;, Az (A3 mezi A; a C), na strané AC body By, By (B2 mezi By
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a A) a na strané AB body C;, Cy (C2 mezi C; a B) tak, aby

|XAA 1 Az| = | X AA2A1| = |ABB1Ba| = |4 BB2B,| =

Piimky AA;, BB; a CC; ohranicuji jeden trojahelnik, pifimky AA,, BB,
a CCy ohrani¢uji druhy trojihelnik. Dokazte, Ze Sest vrcholi uvedenych
trojuhelniki lezi na jedné kruznici.

1.4 Necht k je kladné celé ¢islo. Dokazte, Ze existuje nekone¢né mnoho
druhych mocnin pfirozenych &sel, jez jsou tvaru 2*n — 7, kde n je pfiro-
zeneé.

1.5 Necht N oznacuje mnozinu vSech pfirozenych &isel. DokaZte, Ze exis-
tuje jediné funkce f: N — N takovd, ze

f(m+ f(n)) =n+ f(m+95)

19
pro viechna m a n z N. Jak4 je hodnota souétu >, f(k)?
k=1

1.6 Oznaéme G tézisté daného Ctyisténu A; A, AzAs a A, A, A, Al
prﬁsééiky poloptimek A;G, A;G, A3G a A4G s opsanou mu kulovou
plochou. Dokazte, ze

|GA1] - |GA2| - |GAs| - |GAs| S |GAy| - |GAg| - |GA| - |GAY

a

STt U g I SRS SIS LTI WA
IGAY| ~ IGA|  |IGA5]  |GAY| T IGAL|  |GAs|  |GAs|  |GA

1.7 Najdéte vSechna pfirozend &isla z a y takova, Ze x + y2 + 2% = zyz,
kde z je nejvétsi spolecny délitel cisel z a y.

2.1 Necht Z oznaéuje mnozinu viech celych &isel. Dokazte, Ze pro libo-
volna celd ¢isla A a B existuje celé ¢islo C, pro néz je prinik mnoZin
M; ={2?+ Az +B: 2 € Z} aM, = {222 + 22 + C: x € Z} prazdny.

2.2 Béhem kongresu, kterého se G€astni 12k védcti, se kazdy z G¢astniki
pozdravi pravé s 3k + 6 kolegy. P¥itom pro libovolné dva ze za¢astnénych
je pocet lidi, ktefi se pozdravili s ob&ma, tyz. Kolik lidi se za&astnilo
kongresu?
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2.3 DokazZte, Ze pro libovolné celé n = 3 a libovolna redlna cisla zq,

To,..., T, takova, Ze x; < ;4 pro 1 £ i < n— 1, plati
n(n — 1) — -
MU Sy > (Z(n - i)z (Z(j - mj).
i<j i=1 j=2

2.4 Necht a, b a ¢ jsou dana kladnéa realna c1sla Najdéte vSechna kladna
realnd Cisla x, y a z takova, Ze

r+y+z=a+b+c

4zyz — (a®z + b%y + c*z) = abe.

2.5 Necht p je liché prvoéislo. Uréete vSechna pfirozena ¢isla z a y, pro
néz ¢ < y, a pfitom &islo /2p — /T — /¥ je nezdporné a minimAlni.

2.6 Zjistéte, zda existuje posloupnost F(1), F((2), F(3), ... nezapornych
celych ¢isel, kterd soucasné spliiuje nasledujici tfi podmniinky:

a) v posloupnosti se vyskytuje kazdé z celych &isel 0, 1, 2, ... ;

b) kazdé kladné celé ¢islo se v posloupnosti vyskytuje nekoneénékrat;
c¢) pro kazdé n = 2 plati

F(E@'®)) = F(F(n)) + F(F(361)).

2.7 Je dan bod O uvnitf konvexniho ¢tyfuhelniku ABCD s obsahem S.
Dale predpokladejme, ze K, L, M a N jsou po radé vnitini body stran
AB, BC,CD a DA. Jestlize OKBL a OMDN jsou rovnobézniky, plati
pro obsahy S; a Sy Ctyithelniki AKON a OLCM nerovnost

V52 V5 + V5.

Dokazte.

Reseni tloh korespondenéniho seminare

1.1 Pokud tvrzeni tlohy plati pro &sla a, b a ¢, pak plati i pro &isla a, b
a —c. Miizeme tedy piedpokladat, %e ¢ Z 0. Protoze tvrzeni je symetrické
vzhledem k &slim a a b, miZeme dale pfedpokladat, ze a > b.

Protoze z nerovnosti ab = c? plyne —(a +b) 2 Vab 2 ¢, je zéroven
zfejmé, Ze musi byt a 2 c¢. Tvrzeni ilohy dokdzeme matematickou indukei
podle a + b. ‘
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Pokud a + b = 0, tvrzeni trividlné plati. Pfedpokladejme, zZe tvrzeni
plati pro vSechny trojice (a,b,c), v nichz a + b < m, a uvazujme trojici
(a,b,c), v niz a + b = m + 1. Pokud je nyni a 2 b 2 ¢, stai zvolit
n=a+b—cavektory x = (z1,%2,...,2Zn), ¥ = (y1,Y2,-- -, Un) tak, ze

x=(1,1,...,1,1,1,...,1,0,0,...,0),

—— ———— ——
a—c c b—c

y=(0,0,...,0,1,1,...,1,1,1,...,1).

M e N e i,
a—c c b—c

Necht nyni ¢ > b, coZ znamen4, Ze musi byt a > c. Pro trojici (a+b—
—2¢,b,c—b) plati (a +b—2c)b = ab+ b* — 2bc = ¢ + b% — 2bc = (c — b)?
a zéroven (a+b—2c)+b<a<a+b=m+1, takze podle indukéniho
predpokladu pro trojici (a + b — 2¢, b, ¢ — b) existuji hledané vektory x,
y a snadno nahlédneme, 7ze vektory x + y, y vyhovuji pro trojici (a, b, c).
Tim je tvrzeni Glohy dokézano.

1.2 Predpoklddejme, Ze takova omezena funkce existuje, a ozna¢me S =

= sup f(z). Ziejm& f(2) = f(1 + 1) = 2, tedy S 2 2. Z vlastnosti
z€ER

suprema plyne, Ze existuje zo € Ro, pro néz f(zo) 2 %S. Pro takové zg

pak je

oot g)=fe+s() 235+5(5). ®
$(o+ad) = 1(50) + flao 2
21(2) +55° 2 £(5) + 355 2)

1 7 1\2 72
n o < _ weqe . > 2
Z nerovnosti (2) tak plyne f(fvo) < 185’ ¢ili f(x ) 2 I S,
a podle (1) je

s25(0r fpo) 2 s(+ 5E) - s

To je spor, proto pozadovand funkce f neexistuje.

Jiné feSeni. Predpoklddejme, Ze takovd omezend funkce existuje,
a oznatme n nejmensi celé ¢islo takové, ze f(z) < ln pro kazdé x € Ry.
Protoze f(2) = 2, musi byt n 2 8.
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Zvolme z € Ry takové, 7e f(z) > 1(n —1). Potom

8 = sler 2)-rer<h 0 1(2)>-)

X

a zaroven

(7 <s@r=1(+1) 1) < {5

Posledni nerovnost je ekvivalentni s nerovnosti n? — 6n —7 < 0, kterd
je splnéna jen pro n € (—1,7), coz odporuje tomu, ze n 2 8. Hledana
funkce f tedy neexistuje. '

1.3 (Podle Michala Benese.) Oznaéme po fadé Ao, By, Co paty vySek
trojihelniku ABC a V' jeho ortocentrum. Dale oznaéme ¢ = |L A1 AAo|,
Ky, Ly, M; vrcholy trojahelniku vymezeného p¥imkami AA,, BBy, CCy
a Ky, Lo, My vrcholy trojuihelniku vymezeného pfimkami AA;, BB,
CC5 (obr. 30).

Z podobnosti trojihelniki
ACAyg ~ BCBy, ACA; ~ BCB;

plyne
|CB,| _|BC| _ sina 1)
|CAs| — |AC| — sinp’
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Navic pro thly trojihelniku K, Ly M; plati
IﬁBchll =7n-—- (|<IBCIK1| + |<IC1BK1|) —

= (n +7t a+)—a
=T D) "4 ) Y| =

Il

tj. I§M1K1L1| = o a analogicky |<):K1L1M1| = B, i4L1M1K1|
= 1, takZe ze sinové véty v trojihelniku B; K;C dostaneme |C K|

= |cBy | RIECBK | L odobng [CLy| = |y T30 Lal b,
sina sin 3

toze |ACB1K1| = |ICAzL,y|, je podle (1) |CK;| = |CLs|. Pro-
toze ortocentrum V' lezi na ose rovnoramenného trojuhelniku C;CyC),
je také |VK;| = |V Ly|. Cyklickou zaménou dostaneme dalsi rovnosti
|[VLi| = |V M| a|VM;| = |VKj,|. Ted si bud vSimneme toho, Ze p¥imky
AA,y, BBs, CCy jsou obrazem odpovidajicich primek AA;, BB;, CC,
v otoceni se stfedem V o thel 1 + 2¢p, takZe trojuhelnik KoL, M, je
v témZze otoleni obrazem trojthelniku KL M; a je |[VKi| = |VK,|,
a tudiz také

ll

[VKy|=|VLi| = |VMi| = |VKs| =|VLs| = |VM,|;

anebo si uveédomime, ze K;Ls || AB a M1Ly || BC, coz znamen4, Ze
| X CyLy Ky =t — 3, takZe body K1, L1, My a Ly lezi na kruZnici.

Jiné FesSeni. Ozna¢me V priisecik vysek trojihelniku ABC. Vyuzijeme
znadmou vlastnost ortocentra: obraz bodu V' v osové soumérnosti podle
libovolné strany trojihelniku ABC' lezi na kruZznici trojihelniku ABC
opsané. (Oznafme V' druhy prusecik vysky CV s kruznici k opsanou
trojahelniku ABC (obr.31). Protoze |IBAV| = |[IBCV| = in -
a zaroven |XBCV'| = |XBAV’|, jsou body V a V' soumérné sdru-
7ené podle osy AB.) To znamend, Ze kruznice opsané trojihelnikiim
ABV, BCV a CAV maji stejny polomér jako kruZnice opsand da-
nému trojihelniku ABC. Oznafme nyni postupné X, Y, Z vrcholy
trojihelniku vymezeného piimkami AA;, BB;, CC; (obr.32). Protoze
|<VBX| = |¥BoBB:| = |4CoCCy| = |XVCX]|, lezi bod X na
kruZnici opsané trojihelniku BCV. Podobné lezi bod Y na kruZnici
opsané trojuhelniku C AV a bod Z na kruznici opsané trojihelniku ABV .
Protoze kazdé z tétiv VX, VY, VZ piislusi v odpovidajici kruznici
stejné velky obvodovy thel |XCoCC| = |XAgAA;| = |XByBB|, je
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Obr. 31

[VX| =|VY| =|VZ| abod V je stfedem kruZnice opsané trojihelniku
XY Z. Analogicky plati, Ze bod V je stfedem kruZnice opsané trojthel-
niku vymezenému piimkami AAs, BBy, CCs. Tim je tvrzeni tlohy do-
kazano. :

1.4 (Podle Michala Benese.) Piedpokladejme, Ze n&jakou druhou moc-
ninu lze zapsat ve tvaru 2*n — 7, kde n je liché a k > 3. Nyni i &slo
(2¥=1 +1)%(2*n — 7) je druhou mocninou celého &isla a plati pro né

21+ 1)2@2*n -7 =(2-2*1+1)2n-7)=

—7-2% 4 2%n— 7= —7 (mod 25+1).

I

I

Odtud je vidét, ze &islo (2571 + 1)2(2Fn — 7) lze zapsat ve tvaru
2!m —7,kde !l € N, > k a m je liché pfirozené &islo. VSimnéme si,
7e 12 = 1-2% — 7. To znamen4, %e pozadovanou vlastnost maji i &isla
k € {1,2,3}, tj. pro kazdé k € N existuji ¢isla [,m € N, I 2 k, takova, Ze
2'm — 7 = 2F(2!=F¥m) — 7 je druh& mocnina ptirozeného &isla.

Pokud je ale m? tvaru 2¥n — 7, pak pro kazdé a € N je také

(2ka 4+ m)? = 2¥(2%a? + 2am) + m? =
=2F(2%a® + 2am +n) - 7.
Tedy ke kazdému kladnému celému &slu k existuje nekoneéné mnoho

&isel, jez jsou druhou mocninou pfirozeného &isla a jsou tvaru 2kn — 7
pro n prirozené. :
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Jiné feleni. (Podle Tomdse Bdrty.) Mame vlastné dokéazat, ze pro
kazdé prirozené k existuje nekonecné mnoho pfirozenych z, pro néz plati
—7 (mod 2¥). Sta¢i dokazat, Ze pro kazdé k existuje jedno takové
Tk, kongruence bude stejna pro celou zbytkovou t¥idu, tj. pokud y? = —
(mod 2*), pak zaroveti

(y+2Fn)? =42 +2-2%ny + 2% - 2%n? = 42 = —7 (mod 2*).

Ukazeme to matematickou indukeci.

Prok € {1,2,3} ¢islaz) = 23 =23 =1 SPIHUJI pozadavek tlohy.

Necht pro k 2 3 je 22 —2"n—7
a) Je-li n sudé, pak 22 = 2Fn — 7 = 251 . 1n — 7 takze staéi volit
Tr4+1 = Tk-

b) Je-li n liché, pak (zy, +2571)% = 22 + 2.2k~ 1g; +22(k=1) = 2kp _
— T+ 2kzy + 2F722% = 2F(n + 2 + 2F2) — 7. Jist& xx je liché, k = 3,
tedy n + zx + 282 je sudé a zx41 = zx + 251 spliuje pozadavek tlohy.
Tim je dikaz hotov.

1.5 Jestlize f je funkce, kterd spliiuje danou funkcionélni rovnici, a je
f(m) = f(n) pro néjakd m,n € N, je také

m+ f(1495) = f(1{rf(m)) =f(1+ f(n)) =n+ f(1+95),

takze m = n. Funkce f je tedy prosta.
Z dané rovnice dale pro libovolna m,n € N plyne

F(Fm) + f(n)) = n + F(f(m) +95) =
=n+m+ f(95+95) = £(95 + f(m + n)).

Protoze funkce f je prosté, dostavame odtud rovnost
f(m) + f(n) = f(m +n) +95
a specialné pro m = 1 a libovolné n pfirozené
f(n) + (1) = f(n +1) +95. (1)
Z této rovnosti plyne, Ze posloupnost hodnot f(1), f(2), f(3),... je
aritmetickd s diferenci a = f(1) — 95, takze f(n) = an + 95, pri¢emz

zfejmé a > 0 (jinak by f nebyla prostou funkci z N do N). Dosazenim do
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pivodni rovnice vyjde a? = 1, takZe dané funkcionélni rovnici vyhovuje
jediné funkce f(n) =n + 95, o ¢emz se snadno piesvédlime dosazenim.
Pozadovany soucet je

Zf(k)=w'+19-95:1995.

1.6 Stied koule opsané &tyrsténu A; A; Az A4 oznalme S a jeji polomér 7.
Protoze podle véty o mocnosti bodu pro 1 £ i < 4 plati |GA;| - |GAL| =
=r? — |GS|?, je prvni nerovnost ekvivalentni nerovnosti

VIGAL2 - |GAs? - |GAs|? - |GA4? £ 72 — |GS|%.

Ale podle nerovnosti mezi aritmetickym a geometrickym primeérem je

VIGAL? - |GAL? - |GA |2 - [GAs? <
1
< 7(GALP +1GA | + |G A +|GA4) =17 - |GSI*.

’

Posledni rovnost (kterd fyzikéim jisté pfipomene Steinerovu vétu) do-

Yy

staneme z nasledujici vlastnosti t&zi§té G Ctyfsténu Ay A3 A3 Ays: pro pii-
slusné polohové vektory plati

56 = E(SAI + SA; + SA; + SA,).

Je tedy

4 4

D IGA? = ) |GS + SA* =

i=1 i=1

4 4
=4|GS*+ > |SA:* +265- ) SA; =

=1 =1
=4|GS|* + 4 + 8GS - SG =
=4r? — 4|GS|? = 4(r* - |GS|?).

Druhéa nerovnost tlohy je ekvivalentni nerovnosti

|GA1| + |GAz| + |GAs3| + |GA4| £

1 1 1 1 (1)
< (r* - |GSP? + + + :
< " = 1650 (fgy *+ foaa) * T * 16Au)
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Podle Cauchyo?y nerovnosti je

4 2 4
(Tioad 1) <43 l6af 166" - GsP)

=1 =1

a zaroven

(Z \/E:TMYSZ'GA'EWAI'

=1

Spojenim poslednich dvou nerovnosti dostavame (1).

1.7 Polozme y = bz (b € N). Rovnice pak ma tvar
z + b22% 4 23 = xb2?,

a proto je = délitelné dokonce &islem 22. Necht fedy r = az? (a € N).
Dostavame rovnici .
a+ b2 4 z = abz?,

kterou budeme feSit jako kvadratickou rovnici s neznamou b. Pro jeji
koreny vychazi
' az? £ va2z% — 4a — 42

b= 5 : (1)

Vidime, Ze pod odmocninou odec¢itdime od druhé mocniny celého &isla
¢islo faAdové mnohem mensi, coZ znamena, ze pro dostateéné velké z bude
vyraz pod odmocninou vzdy mezi dvéma po sobé jdoucimi druhymi moc-
ninami celych ¢isel, takze neziskdme celociselné reseni b. Ukazeme, Ze uz
pro z 2 3 plati

(az?)? > a%2* —4(a + 2) > (az? —1)%

Prvni nerovnost je ziejma. Druhd nerovnost je ekvivalentni kvadra-
tické nerovnosti 2az? — 4z — (4a + 1) > 0, ktera je splnéna pro viechna
2 2 z9, kde z5 je v&tsi z obou kofentd pfislusné kvadratické rovnice, pro
jejiz diskriminant D plati D = 16 +8a(4a+1) < 16a® + 8a - 5a = 5642 <
< 64a?. Pro kofen z, tak vychézi

4 VD
- Za=—+—<14+2=3.
4a 4q
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Z predchozich tvah vyplyva, Ze musi byt z < 2. Pro z = 2 je podle (1)

_4a++16a? — 4a -8
- 2

=2a++4a?2 —-a-2.

Ziejm& (2a)? > 4a® — a — 2 > (2a — 1)? pro kazdé a > 1. Muze byt tedy
jediné a = 1, b € {1, 3}, a tak dostavame prvni dvé feSeni.
Pro z = 1 dostaneme dosazenim do pivodni rovnice

z+y’ +1=uy,
neboli
-Nz=9y"+1=(y-1Dy+1)+2,

tedy ¢islo y — 1 déli &islo 2, neboli y € {2,3}. Tak dostdvame dalsi dvé
feSeni. Uloze vyhovuji trojice

(z,9,2) € {(4,2,2),(4,6,2),(5,2,1),(5,3,1) }.

2.1 Je-1li A liché, je jedno z €isel x, x+ A sudé, takZe mnoZina M; obsahuje
jen ¢isla tvaru z(z+ A) + B = B (mod 2), zatimco mnozina My obsahuje
¢isla 2z(x + 1)+ C = C (mod 2). Aby byl priinik My N M2 prazdny, staci
volit C = B + 1.

Je-li A sudé, obsahuje mnozina M; &isla tvaru

AN2 A? A?
(x+5) B—T—q+B——(mod4)
kde ¢ € {0,1} jsou jediné kvadratické zbytky modulo 4. MnoZina M,
naproti tomu obsahuje jen &isla kongruentni s C' (mod 4), takZe stali
volit C = B — %A2 + 2. Tim je tvrzeni Glohy dokézano.

2.2 Négjakého ,vyznacného“ védce pojmenujme A. Ostatni Gcastniky
kongresu rozdélime do mnoZin B a C podle toho, zda se s A pozdra-
vili, anebo ne. V mnoziné B je tedy 3k + 6 lidi, zatimco v mnoziné C je
zbyvajicich 9k — 7 védct. _
Podle zadéani jsou pocty lidi, se kterymi se libovolni dva ucastn1c1
pozdravili zaroven, rovny témuz ¢islu — ozna¢me ho n. Kazdy z Gi¢astniki
vyjma A se tedy musel pozdravit pravé s n Géastniky z mnoziny B. To
znamena, Ze se kazdy z Gcastnikd patficich do B pozdravil pravé s 3k+5—
—n kolegy z C. Dohromady si védci z B vyménili pravé (3k+6)(3k+5—n)
pozdravl: s védci z C. Protoze i kazdy z védct v C se pozdravil pravé
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s n kolegy v B, vyménili si védci z C pravé n(9k — 7) pozdravi s védci
z B. Pro celkovy poéet pozdravii mezi B a C tak dostdvame rovnici

3k +6)(3k + 5 —n) = n(9% — 7),

neboli
(3k +6)(3k + 5) =n(12k — 1).

Leva strana bude délitelna ¢islem 12k — 1, pravé kdyz timto ¢islem bude
délitelny vyraz

16(3k + 6)(3k + 5) = 144k + 528k + 480 =
= (12k — 1)® + 46(12k — 1) + 525,

tj. pravé kdyz 12k — 1| 525 = 3 - 7 - 25. ProtoZe 3 je s ¢islem 12k — 1
nesoudélné, musi 12k — 1 délit 175. Mnozina vSech déliteli ¢isla 175 je
{1,5,7,25,35,175} a z nich pouze 35 je tvaru 12k — 1.

Pokud se takovy kongres skute¢né sesel, muselo se jej icastnit 36 véd-
cli. Zbyva ukézat, Ze takova skupina skute¢né mize existovat. Uspora-
dejme 36 osob do Ctverce 6 x 6 a rozdélme je jeSté na Sestice rozlisené
pismeny A, B, C, D, E, F podle nésledujici tabulky:

ABCDEF,
FABCDE
EFABCD
DEFABC
CDEFAB
BCDETFA

Podminkam tlohy bude vyhovovat, jestlize se pozdravi pravé vsichni sto-
jici v témze sloupci, vSichni stojici v téZe fadce a vSichni oznadeni stejnym
pismenem.

2.3 Oznaéme (1£i<n-—1)

Yi = E T; a z= (g)yi—(n-i)y,
j=i+1
kde

n

n—1
y=Y vi=y (j-aj
i=1

=2
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Rozdil levé a pravé strany dokazované nerovnosti pak mizeme vyjadrit
jako

(’;) Y wiz; - (ni(n - i)zi> <i(j = 1)xj) =

i<j i=1 =3
n n—1 n n—1
=(5) 2 2w - Y=
i=1 j=i+1 i=1
'n n—1 n—1 n—1
~(5) T o= o= s
1=1 =1 =1
n—1
Je tedy potieba ukazat, ze Y z;z; > 0.
=1 .
n—1 ;—1 n—1
Protoze Y (n—1i) = Y i = (3),je . 2z = 0. Pfitom 2z, =
i=1 =1 =1

= (Z)yn-—l —Yy= (g)xn - 2:2(] = 1)]"3' > (;)-Tn - 22(.7 - l)xn =0, takze
j= j=
mezi Cisly z; musi byt i zdpornd. Déle pro 1 £ 7 < n — 2 mame

Zi+1 _ % ': n Yit1 _[(n Yi _
n—(i+1) n-—1 2)n—(i+1) 2)n—i

_ (’I’L) ($i+2+...+xn _.’I)i+1+...+l’n) _

2 n—1—1 n—1
n\ Tiga+...+Tp —(n—=17— 1)z
= - - > 0,
2 (n—i—-1)(n—1)
takze 5 5 :
1 2 n—2
ses < Zp-—1-
el el g Al

Existuje tedy index k, 1 < k < n — 1, takovy, Ze z; < 0 pro 1 £ i <k,
zr$0az >0prok<i<n-—1. Jetudiz xz;2; > xk2; pro kazdé i # k,

takze
n—1 n—1
E TiZi > Tk E z; =0,
=1 =1

coz jsme potfebovali dokazat.

2.4 Necht z, y, z'jsou kladna reélnd ¢isla. Druhou rovnici mizeme zapsat

ve tvaru 7
a b2 2 abe

yz 2x  TY TYZ
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: : . a b c
Polozime-li 21 = — > 0, y; = T > 0, 23 = — > 0, dostaneme

Vyz Vzz vy

symetrickou rovnici ‘
4=a+yi +2 +apa,

ze které plyne, Ze kazdé z kladnych &isel x1, y1, 21 je mensi nez 2. Tato
rovnice jako kvadratick4 vzhledem k z; m4 diskriminant D = (4 — z%) x
X (4—y}), ktery vybizi k substituci ; = 2sinu, 0 < u < im,y; = 2sinv,
0<v< %n. To ndm umoznuje predchozi rovnici zapsat jako

4 = 4sin® u 4 4sin® v 4 22 + 4sinusinv - 2,
neboli

(21 + 2sinusinv)? = 4(1 — sin® u)(1 — sinv),
|21 + 2sinusinv| = |2 cos u cos v).

Protoze sinwu, sinwv, cosu, cosv a z; jsou vesmeés kladné ¢isla, miZeme
odstranit absolutni hodnoty a ziskat tak vyjadreni

z1 = 2(cosu cosv — sinusinv).
Nyni mazeme vyjadrit ¢isla a, b, ¢ jako
a=2sinu-\/yz, b=2sinv-/zz,
c:2(cosucosv—sinusinv)\/;—,
takZe z dané rovnice x +y + z = a + b + ¢ dostavame
x+y-2cosucosv-\/5§+
+z+2sinusinv-\/x_y—2sinﬁ- yz — 2sinv - \/zx =0,
neboli
x cos® v + y cos® u — 2 cosu cos v\/Ty +
+z'+xsin2v+ysin2u+23inusinv~\/x——
— 2sinu - \/yz — 2sinv - \/zz =
= (vzcosv — /ycosu)® + (y/zsinv + y/ysinu — vz) =o.
Odtud vychéazi
\/_=\/Esinv+ ysinuz\/:—c_yé+\/§%=
10 1l a
= §W+§W,
neboli z = (a + b). Podobné y = 1(c+a) az = (b + c). Trojice

(z,y,2) = (3(b+¢),2(c+a),3(a+1b)) skutetnd dané soustavé rovnic
vyhovuje. Lze se o tom presvédéit dosazenim a rutinnim vypocétem.
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2.5 Polozme

w= VI - Va- Vi
v= (VI = /o~ Vi) (VI + Vo + Vi) =20 -3 -y - 2/ap.

Je jasné, Zze u 2 0, pravé kdyz v 2 0, a protoze

v=u(2 ‘2p.—u) =2 — (\/2_1)—“)2,

nabyvaji oba vyrazy nejmensi kladnou hodnotu pro stejnd prirozena
¢isla  a y. Navic nemize byt u = 0 (a tedy ani v = 0) pro zadna
dvé& pfirozen4 {isla z a y, nebot jinak bychom z rovnosti /y = v/2p— /=
umocnénim dostali y = 2p + z — 2+/2pzx, coz znamena, Ze 2pz je druhou
mocninou prirozeného &isla, a protoZze p je liché prvoéislo, musi byt x
délitelné 2p, tedy = 2 2p, coZz predpoklddané rovnosti odporuje.

Necht tedy pro n&jaka dvé pfirozend éisla z, y; r S y,jev=2p—1 —
—y—2y/zy > 0, neboli 2,/zy < 2p— 1z —y. Oznalme z nejmensi pfirozené
Cislo vétsi nez 2\/zy (tedy z = |2y/zy| + 1). Pro takové z zfejmé& bude

platit
2/zy<z<2p—z—1y.
ProtoZe zéroveir u > 0, tedy /= + y < v/2p, je také

2/zy < o+ \y < /2,
2y/zy <z < p.

Navic je 22 > 4zy, neboli 4zy < 22 — 1. Celkem tedy plati

1
v—(?p—x—y)—zx/x_y;z—\/ = +\/__

1
> —_ = — 2 1
= p p .
p+vp? -1
Rovnost zfejmé nastane, pravé kdyz bude z=p,z=2p—zT—y
a dxy = 22 — 1, tedy pravé kdyz
p—1 p+1

r = ) a y=——2—-

Jiné feseni. (Podle Tamdse Vargy, Slovensko.) DokaZeme, Ze feSenim
je vzdy dvojice ((p— 1), 2(p + 1)). K tomu sta&i ukézat, Ze pro libovol-
nou jinou dvojici ¢isel je vyraz D = 1/2p — /T — \/y v&t3i. To dokaZeme
sporem.
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Predpokladejme, Ze existuje dvojice pFirozenych ¢&isel (z,y) takova, ze

N RV Y Py Ay LR

2z +y+2yTy>p+p:—1,
p-z-y22/zy>p+V/pP-l-z-y

Ziejmé je p+/p? —1>2p—1> 0 a zdroveh 2p — z —y = 2y/zy > 0,
takZze 2p—1—z —y 2 0. Dal$im umocnénim dostaneme po jednoduchych
apravach nerovnost

Pplet+y-p S @-y’ <20p+VPP-1)(z+y-p +1.
Polozime-li ¢ = = + y — p, je z predchozich nerovnosti jasné, ze ¢ < p
azdroveh =z +y—p>2p—1—-2y/zy22p—1—2 —y 20, takZe ¢
je prirozené ¢islo. Dosazenim dostavame

dpgq < (x-9y)?< 2(p+ Vp?— 1)q+1 <4pg+1,

odkud plyne 4pg = (z — y)2. To vSak neni moZné, protoze p je liché
prvodislo a ¢ < p. :

2.6 Zavedme posloupnost F (1), F(2),... tak, Zze F(n) udava polet prvo-
¢isel (i s jejich nasobnosti), ktera déli n. Je-li tedy

k
Si
n=[I»,
=1

kde p1,...,pr jsou riznd prvocisla a s, ..., Sk nezdporna celd ¢isla, je

k
= E Si.
i=1

Podminka a) je splnéna, protoze pro kazdé nezéporné celé k je
F(2F) = k. Je splnéna i podminka b), protoze k = F( k) pro kazdé
prvocislo p. Rovnost

F(F(n'®®)) = F(F(n)) + F(F(361))
z podminky c) plati, protoze pro n = 2 je
F(F(n'%)) = F(163F(n)) = 1+ F(F(n)) =
= F(F(n)) + F(2) = F(F(n)) + F(F(361)),
nebot 163 je prvoéislo a 361 = 192. Uveden4 posloupnost tedy spliiuje
vSechny podminky tlohy.
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2.7 Jestlize bod O lezi na uhlopfi¢ce AC, jsou &tyfuhelniky ABCD,
AKON a OLCM podobné. V tomto pripadé plati rovnost \/_5 =S +
+1/Ss, nebot S; : S = |AO|? : |AC|* a S5 : S = |OC|? : |AC|2.

Pokud bod O na tuhlopfiéce AC neleZi, miZzeme piedpokladat, Ze
lezi naptiklad v trojihelniku ACD. Vedme bodem O libovolnou p¥imku
a ozna¢me po fadé X, Y jeji priseciky s pfimkami AD, CD a W, Z
priseciky s pfimkami AB, BC (obr.33). Prochazi-li zminénd pifimka

jow|  |0Z]|

vrcholem A, je W = X = A a pfitom TO—_X_[ =.1 W > 1. Bude-li

Obr. 33

naopak piimka prochazet vrcholem C, bude ¥ = Z = C a my do-
|oOW| |0Z]
> 1, ——
|0X]| |OY|
stfedu O, najdeme mezi obéma témito polohami takovou, v niz plati
[owW|  |0Z]
|OX| |0Y|
fadé Ty, Ty, P, P, a Q;, Q2 obsahy rovnobézniki K BLO, NOMD,
trojuhelnikit WKO, OLZ a XON, OY M.
Z podobnosti trojahelniki WBZ, WKO a OLZ plyne, ze

wo| . |oz
VP + /P, = P1+VT1+P2(:WZ{+ﬁ)=

=\/P1 +T1+P2,

neboli 71 = 2/ P, P;. Podobné dostaneme, ze T> = 2v/Q1Q2. Z rovnosti

staneme

= 1. Otac¢ime-li tedy touto pfimkou kolem

> 1. V této poloze pfimku zafixujeme a oznacime po
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|jow| _ |0X] P |OW]? _|OXP? @
|0z| — |0Y]| P, |0Z]2  |OY[?

Q1 = kP, a Q3 = kP, pro vhodné k, takze mtizeme psat

Ty + Ty = 2¢/PP + 2/Q1Q2 = 2/ P P2(1 + k) =
=21 +k)P(1+k)P=2/(Pi + Q1) (P2 + Q2) 2
z SIS2)

coz je ekvivalentni nerovnosti
S=5+85+Ti+T: 2 (VS +VS)".

Tim je tvrzeni tlohy dokazéano.

navic plyne, ze — = Q_ Je tedy
2
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Pripravna soustredéni pred 37. MMO

V pribéhu 45. ro¢niku byla usporfddina dvé vybérova soustfedéni pro
piipravu na mezindrodni matematickou olympiddu. Prvni soustiedéni,
které se konalo v dobfe znamém internatu pfi gymnéaziu v Jevicku od 24.
do 29. bfezna 1996, bylo zaméfeno na pfipravu téch Gsp&Snych feSitelti
II. kola kategorie A, ktefi se dle dosavadnich vysledki jevili jako perspek-
tivni reprezentanti nejen v tomto, ale i v pfistim roce (proto pfi vybéru
byla ddna pfednost mlad$im roéniktim). Z 12 pozvanych studentt se bo-
huzel tfi omluvili.

Soustfedéni bylo zaméfeno na feSeni obtiznych tloh v omezeném case
(v soutéznich podminkéch). Po odpoledni relaxaci byl proveden detailni
rozbor oprayenych feeni. Usp&$nost jednotlivych studentt ukazuje na-
sledujici tabulka: '

Toméas Brauner 3B G Smetanova 168, Moravsky Krumlov 14,5
Jana Flaskova 3 Svobodna chebska skola, Cheb 15,5
Jir{ Franta 4 G Komenského 402, Piibram 16
David Opéla 4C GMK 17. listopadu 526, Bilovec 41,5
Zbynék Pawlas 4C GMK 17. listopadu 526, Bilovec 20,5
Jan Spévak 3A G Hellichova, Praha 1 - 15,5
Oldrich Strazovsky 3A G TY. kpt. Jarose 14, Brno 11
Jan Stola 3D G Zborovska 45, Praha 5 28
Petr Vodstréil 4A G nabt. Svobody 306, Policka 27,5

Jednotlivé seminare vedli a Glohy pfipravili:
dr. Karel Hordk (25.3.),

doc. Jaromir Simsa (26. a 28.3.),

dr. Miroslav Englis (27.3.),

dr. Jaroslav Svréek (29.3.).

Druhé soustiedéni bylo uz urfeno pouze vybranym reprezentantiim
Ceské republiky na 37. MMO v Bombaji vEetné nahradnika a konalo se
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opét v Jevicku od 9. do 14. Cervna 1996. Vysledky jednotlivych studentt
ukazuje nasledujici tabulka:

Tomas Barta 4D G Zborovska 45, Praha 5 93
Michal Benes 4D G Zborovska 45, Praha 5 100
Daniel Kral 4 G Lesni ¢tvrt 1364, Zlin 89
David Opéla 4C GMK 17. listopadu 526, Bilovec 100
Jan Spévak 3A G Hellichova, Praha 1 76
Robert Spalek 4A G ti. kpt. Jarose 14, Brno 88

Jan Vybiral 3C GMK 17. listopadu 526, Bilovec 81

Jednotlivé seminare vedli a lohy pfipravili:

dr. Karel Horak (10.6.),

dr. Jaroslav Suréek (11.6. a 12.6.),

Michal Kubeéek (student MFF UK, 13.6. a 14.6.).

Ulohy zadané na piipravnych soustiedénich

1. Je dan trojahelnik ABC, pro jehoz téznice AM a BN plati, Ze
|XMAC| = | NBC| = 30°. Dokazte, ze trojihelnik ABC je rovno-
stranny.

2. Zékladnou pravidelného jehlanu je mnohothelnik s lichym poétem
stran. DokéZete hrandm daného jehlanu (kazdé hrané jeden) pfifadit
orientaci tak, aby soucet odpovidajicich vektort o velikosti délek hran
byl nulovy?

3. Je dan ostrouhly trojuhelnik ABC. Body P, @ a R maji tu vlastnost,
Ze paty kolmic z nich spusténych na strany trojihelniku ABC lezi vesmés
uvnitt téchto stran. Dokazte, Ze obsah trojahelniku PQR neni v&tsi nez
obsah trojahelniku ABC'.

4. Je dan ctverec rozdéleny ¢tvercovou siti na ¢tverecky 1x1. V uvedeném
¢tverci je dano nékolik obdélniku, jejichz kazda strana leZi v pfimkéach
dané sité (uvnitf nebo na hranici daného &tverce). MiiZe se stét, ze kazdou
stranou jednotkového ¢tverce dané Ctvercové sité prochézi lichy podet
stran danych obdélnika?

5. Je dan ¢tyrahelnik ABC D, ve kterém plati |AB| = |AD| a |XABC| =
= |XADC| = 90°. Na strandch BC a CD jsou dany body F, resp. E
tak, ze DF LLAE. Dokazte, ze je AF L BE.
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6. Je dan Ctyistén, jehoz télesové vysky se protinaji v jednom bods.
Dokazte, ze tento prusefik vysek, pata jedné z vysek a t¥i body délici
zbyvajici tii vysky v poméru 2 : 1 od vrcholu leZi na jedné kulové plose.

7. Uvazujme konvexni mnohouhelnik, ktery ma vSechny vnitini hly
shodné. Potom alesponi pro dvé jeho strany plati, Ze jejich délka neni
vétsi nez délky sousednich stran. DokaZte.

8. Osa tthlu BAC protne stranu BC trojihelniku ABC v bodé K.
Piimka jdouci bodem K rovnobéZné se stranou AC protne t&Znici z vr-
cholu A v bodé L. Dokazte, 7e AK 1 CL.

9. Dokazte, Ze v kazdé spole¢nosti S triceti lidi se najdou dva lidé, kteri
maji v S-sudy poclet (vSech) spoleénych znamych. (Vztah ,byt znamy
je symetricky, mezi suda ¢isla pat¥i i nula.).

10. Necht S(n) = 1! + 22 + ... + n™. DokaZte, Ze nerovnost

LS Y. I 1.7
n® "~ Sn)  Snh+1) 7 Sh+k)

plati pro libovolna celd ¢islan > 1 a k = 0. (MizZete bez dokazovani vyu-
zit poznatek, Ze posloupnost &isel (1 + ;11-)", kden =1,2,..., je rostouci.)

11. Z malé Fermatovy véty plyne, Ze pro kazdé prvocislo p > 3 je rozdil
3p~1 —27~1 dglitelny &islem p. Dokaite, Ze &islo n déli rozdil 3»~1 —2n~1
i pro nekone¢né mnoho slozenych ¢isel n.

12. Do kruZnice se stfedem O a polomérem 1 je vepsan trojahelnik ABC.
Oznalme ry, ro, r3 vzdalenosti bodu O od pfimek AB, BC C A. Zjistéte,
Jake nejvétsi hodnoty mize nabyt soudin ryrars.

. 10
13. Dokazte, Ze na kruznici se stiedem v pocatku a polomérem 10°
lezi asponr 10'° bodi s celo¢iselnymi soufadnicemi.

14. Dokazte, ze existuje takové redlné ¢islo A, pro néz lze do grafu funkce
y = Asinz vepsat alesponi 1988 navzajem neshodnych ¢tverci. (Vepsany
Ctverec je takovy, jehoZ vSechny vrcholy lezi na grafu.)

15. V roving je dan rovnostranny trojihelnik ABC. Zjistéte, ve kterych
bodech X dosahuje funkce

f(X)=|XA|+|XB| - |XC|
svého minima.
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16. Dokazte, ze kazdé celé nezaporné ¢islo 1ze jedinym zptisobem vyjadrit

ve tvaru
(z+y)?+3z+y

2 )

kde z, y jsou celd nezaporna &isla.

17. DokaZte, ze ¢isla 1996™ a 1996™ + 2™ (n = 1) zadinaji vzdy stejnym
dvojéislim. ' \ \
18. Je din mnohotlen P(z) s celo¢iselnymi koeficienty. Dokazte, Ze pro

74dn4 navzdjem rizna celd Cisla a, b, c nemize soucasné platit P(a) = b,
P(b)=ca P(c) =a. ‘

19. V roviné je dano n bodi A; (1 £ i £ n), z nichz Zadné tii nelezi na
jedné primce. Vybarveno je n rtznych tsec¢ek A;A;, jez jsou oznaceny uy,
U2, ..., Up. PFitom pro libovolné dva indexy ¢ # j plati: Gsecka A;A; je
vybarvena, pravé kdyz Gsetky u; a u; maji spoleény krajni bod. Dokazte,
ze z kazdého bodu A; vychazeji pravé dvé obarvené tsecky.
20. Necht F(z) = 2% + x + 1. Dokaite, 7e soucin F(1)F(2) -...- F(n)
neni celym nasobkem ¢isla F'(n + 1) pro nekoneéné mnoho pfirozenych
Cisel n. ‘
21. Pro libovolna nezaporna realna ¢isla a, b, ¢ dokazte nerovnost

a* + b* + ¢ + a’be + bPac+ c*ab 2 2(a’b? + a®c? + b2 ).
22. Do kruznice se stfedem O je vepsan tétivovy Ctyfthelnik ABCD
tak, ze prusecik M jeho thlopri¢ek.s bodem O nesplyva. Pfimka vedena
bodem M kolmo k tsecce OM protind tsecku AB v bodé P a tsecku
CD v bodé Q. Dokazte, ze tsecky AB a CD jsou shodné, pravé kdyz
jsou shodné tsecky BP a CQ.
23. Dva rovnostranné trojiahelniky ABC a A'B'C' maji spolecny stred
stran BC' a B'C’. Urcete pomér |AA’| : |BB'|.
24. Jsou dana reédlnd &isla a, b, ¢ (a? +b% +c? # 0). Uréete viechny funkce
f: R — R takové, ze pro libovolnou trojici redlnych &isel z, y, z plati

af(zy + 2%) + bf(yz + 2) + cf (zz + y?) = 0.

25. Z pravidelného desetitthelniku ABCDEFGHIJ o strané délky 1 je
primkou p oddélen trojuhelnik APQ tak, ze plati |PA|+|AQ| = 1. Urcete
soucet velikosti thld, pod kterymi vidime tsecku PQ z bodu B, C, D,
E, F,G,H, Ial.
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26. Necht Q(x) = 2% +192% +962 +a, kde a je pfirozené &islo, a p je dané
prvoéislo. Dokazte, Ze mezi pfirozenymi ¢isly Q(0),Q(1),...,Q(p — 1)
existuji nejvyse t¥i, kterd jsou délitelna p. :

27. V roviné jsou dany tii rizné body A, B a C. Bodem C' prochazi
primka ¢ tak, Ze sou€in vzdalenosti bodi A a B od primky ¢ je co nej-
vétsi. Rozhodnéte, zda je primka g pro libovolnou trojici bodi A, B a C
jednozna¢né urcena. Provedte konstrukei pfimky g.

28. Dokazte, ze aritmeticky pramér ¢isel nsinn® (n =2,4,6,...,180) je
cotg 1°. '

29. Pro kazdou neprazdnou mnozinu S reélnych &isel oznaéme o (S) sou-
Cet jejich prvki. Pro danou mnozinu A obsahujici n kladnych ¢isel uva-
zujme vSechny mozné sou¢ty o(S), kde S probiha neprazdné podmnoZiny
mnoziny A. Dokazte, Ze tyto soucty mohou byt rozdéleny do n tiid tak,
ze v kazdé z nich je podil nejvétsiho a nejmensiho souctu nejvyse 2.

30. Je dan trojuhelnik ABC. DokaZte, Ze (v roviné trojihelniku ABC)
existuje pfimka ¢, pro niz ma prunik vnittku trojihelniku ABC a vnitrku
jeho obrazu A’B’'C’ v osové soumérnosti podle piimky £ obsah rovny
asponi 2/3 obsahu daného trojahelniku ABC.

31. Koneénou posloupnost (z1, 2, ..., Z,) o n prvcich, jejimiz ¢leny jsou
jen 0 nebo 1, nazveme bindrni posloupnost délky n. Oznacme a,, pocet
bindrnich posloupnosti délky n, jez neobsahuji trojici za sebou jdoucich
¢isel 0, 1, 0, a b, ozna¢me pocet binarnich posloupnosti délky n, jez ne-
obsahuji ¢tvefici za sebou jdoucich ¢isel 0, 0, 1, 1 nebo 1, 1, 0, 0. Dokazte,
ze bn+1 = 2a, pro vSechna piirozend n.

32. Je dan trojuhelnik ABC, uvniti kterého existuje takovy bod P, Ze
|XPAB| = 10°, |XPBA| = 20°, |XPCA| = 30° a |[XPAC| = 40°.
Dokazte, ze trojihelnik ABC je rovnoramenny.

33. Zjistéte, zda existuje podmnozina X mnoziny piirozenych ¢isel tako-
va, ze pro kazdé celé Cislo n mé rovnice a + 2b = n pravé jedno TeSeni
a,be X

34. Necht z, y, z jsou kladna ¢isla vyhovujici podminkam

1
§§azy+yz+z;v§3.

Urcete, jakych hodnot nabyva vyraz a) zyz, b) x +y + 2.
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35. Necht ABCD je tétivovy Ctyithelnik. Stfedy kruznic vepsanych troj-
thelnikim ABC, BCD,CDA, DAB jsou vrcholy pravothelniku. Dokaz-
te.

36. Dokazte, Ze rovnice
% = y3 + 23
m4 nekoneéné mnoho feSeni v oboru pfirozenych &isel.

37. V roviné jsou dany tii kruznice, které se navzajem vné dotykaji.
Primky, které prochazeji vzdy dvéma stfedy uvazovanych kruznic, proti-
_naji tyto kruznice v bodech Ay, Az, A3, By, By, B3 (obr 34). Dokazte,
ze pro libovolny bod X roviny plati

|A1 X2 + A2 X|? + |A3X|? = |B1 X|? + |Bo X |2 + | Bs X |2

B,

Al A2

" B3

As

Obr. 34

38. Jestlize nezaporns &isla a, b, ¢, p, q, r spliuji podminky

1
atb+c=p+q+r, p,q,r~§

dokazte, ze plati 8abc < pa + gb+ rc, a rozhodnéte, kdy nastane rovnost.

39. Dokazte, Ze existuje trojihelnik o stranach a, b, ¢, pravé kdyZ plati
pa’ + qb® > pgc?,
kde p, ¢ jsou libovolna realné cisla takova, ze p +q = 1.
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40. KruZnice k; a ks maji vn&jsi dotyk v bod& T a obé se zevniti doty-
kaji t¥eti kruznice k. Jedna ze spolednych vnéjsich tecen kruznic k; a ko
protina kruznici k v bodech B a C. Jejich spole¢nd te¢na prochazejici
bodem T protind v poloroviné BCT kruZnici k v bodé A. Dokazte, Ze

bod T je stiedem kruZnice vepsané trojihelniku-ABC.

41. Urcete vSechna FeSeni soustavy rovnic

afL':Iy—'Zl'*'y,
ay = |z —z| + z,

az =z —y| +z,

kde a je redlny parametr.

42. Dokazte, Ze soulet velikosti Sesti thlii, pod kterymi jsou vidét jednot-
livé hrany daného étyfsténu z jeho libovolného vnitfniho bodu, je vétsi
nez 540°.

43. Dokazte, Ze ke kazdé dvojici pfirozenych &isel n, k existuje R(n, k)
tak, Ze mame-li Gplny graf stupné R(n, k) obarveny k barvami, lze v ném
najit Gplny jednobarevny podgraf stupné n.

44. Mnozina M v roviné ma tu vlastnost, Ze kazdé jeji tfi body lze pokryt
(uzavienym) kruhem o priméru 1. DokaZte, Ze celou M lze pokryt kruhem
o priméru 1.

45. Sestrojte trojuhelnik, jsou-li dany délky jeho téznic.

46. Naleznéte TFeSeni soustavy rovnic

ax +by =-7,
ax® +by* =7,
az® + by® = 37,
az* + by* = 83.

47. Dokazte, ze pro nekone¢né mnoho riznych n je soucet

Sk
k=1

sloZzené ¢islo.
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48. Dokaite, ze &islo [(v2 + 1)"] je sudé, pravé kdyz n je liché ([z]
oznacuje celou ¢ast ¢isla z).
49. Méjme konecny systém &7 kone¢nych mnozin. Dokazte, Ze nasledujici
podminky jsou ekvivalentni:
(i) existuje prostd funkce f: & — |J &
(i) pro kazdy podsystém & C o plati | 8| < | B|.

50. Zjistéte, jaké nejvétsi hodnoty miize nabyvat vyraz

sina + sin 8 + sin vy
tg(3a) +tg(38) + tg(37)’

jsou-li a, B, v thly v trojihelniku.

51. Naleznéte neprohravajici strategii pro nésledujici variantu piskvorek:
vyhrava pét znacek v fadé nebo sloupci (ne na diagonéle).
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2. Ceskoslovenské stretnuti

ZILINA, 2.-5. JONA 1996

Po minuloroénej premiére v Jevicku v Ceskej republike sa v tomto roéniku
MO konala medzi$tatna sutaz medzi druzstvami mladych matematikov
po prvykrat na Slovensku. Celé stretnutie prebiehalo v priestoroch SOU
chemického v Ziline. Organizéciu zabezpecoval doc. RNDr. Vojtech Bd-
lint, CSc., z VSDS v Ziline.

Ulohou tejto stitaze nie je len porovnanie sil zGi¢astnenych druzstiev,
pripadne priprava na MMO, jej cielom, je najmi spoznanie sa najlep-
_Sich riesitelov olympiad z dvoch tradiciami spriaznenych krajin. Nakolko
medzi sGtaZziacimi nie je ziadna jazykova bariéra, cela orga,hizécia po-
dujatia je oproti inym medzinidrodnym sataZiam zna¢ne zjednoduSena.
Preto nie je potrebné prekladat zadania ¢i rieSenia do inych jazykov.
Po rozdeleni byvalého spoloéného §t4atu Cechov a Slovakov sa mnoho kon-
taktov prerusilo. Mo6ze nés tesit, Ze matematick olympiddu tento vyvoj
nepostihol a okrem spolo¢nych tloh a spoluprace pri zabezpefovani MO
pretrvavaji kontakty nielen medzi vedeniami olympiad (predovSetkym
Ulohové komisia MO), ale aj medzi rieSitelmi.

Por. | Meno Roénik, skola body |Sucet

1.-2. | Michal Bene$ 4 G Zborovska, Praha TATTTT | 39
Ivan Cimrak 4 G V. Okruzn4, Zilina |[747777| 39

3.-5. | Miroslav Dudik |3 G Trebigov 747777 | 38
Vladimir Marko | 3 GJH, Bratislava 377776 | 38

David Opéla 4 GMK, Bilovec 557777 | 38

6. | Tom4s Barta 4 G Zborovska, Praha 747747 | 36
7. | Daniel Kral 4 G Zlin 747737 | 35
8.-10. | Eugen Kovac 4 G Stropkov 757717 | 34
Tamas Varga 4 G Komaérno mad. TATT27 | 34
Robert Spalek |4 G tf. Kpt. JaroSe, Brno [676717 | 34

11. | Jan Spévak 3 G Hellichova, Praha 707717 29
12. |Viera Ruzitkova |2 G V. Okruzn4, Zilina 427026 | 21
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Opravovanie rieSeni vzdy zabezpeCuje doméaca strana a na koordi-
nécii hodnotenia sa podielaji veduci jednotlivych druzstiev. Tento rok
nimi boli doc. RNDr. Vojtech Bdlint, CSc., a Richard Kolldr zo Sloven-
ska a doc. RNDr. Jaromir Simsa, CSc., z Ceskej republiky. Potesujicou
skuto¢nostou moze byt, ze Ulohova komisia MO sa venuje aj tejto sitazi,
a tak boli vSetky predlozené tlohy povodné. Boli to najmi alohy, ktorych
naro¢nost, alebo tematické zameranie prekracuje moznosti kategérie A.
Zoznam sutfaziacich aj s vysledkami sttfaze je v tabulke. Rovnako ako
v minulom roéniku lepsie obstal tim Ceskej republiky. Budici ro¢nik
stfaze sa uskutoéni v Ceskej republike.

Texty soutéZnich tloh

1. Necht 7* oznacuje mnozinu vSech celych ¢isel riaznych od nuly. Do-
kazte, Ze celé Cislo p > 3 je prvodislo, pravé kdyz pro kazdou dvojici ¢isel
a,b € 7* pravé jedno z Cisel

-1 1
N1=a+b—6ab+pT, N2=a+b+6ab+1~?—;g—
lezi v mnozing Z*. (J. Simsa)

2. Na neprdzdné mnoziné M je dana operace x, ktera kazdé usporadané
dvojici prvki (a,b) € M x M pfifadi néjaky prvek ¢ € M, ktery oznalu-
jeme ¢ = a x b. Uvazujme operace * s vlastnosti, ze vztahy

(axb)xb=a a ax(axb)=»b

plati pro libovolné prvky a,b € M.
a) Dokazte, ze kazda takovato operace je komutativni, tj. pro vSechna
a,b € M plati rovnost a xb = b * a.
b) Na kterych koneénych mnozindch M takovato operace existuje?
(J. Simsa, T. Werner)

3. Pravidelny ¢tyfboky jehlan méa délku hrany podstavy 2a a délku boé¢ni
hrany a+/17. Uvnit¥ jehlanu je zvolen bod M. Uvazujme pét jehlani
podobnych danému, které maji hlavni vrchol v bodé M a jejichz podstavy
lezi v rovinach stén daného jehlanu. Dokazte, Ze soufet povrchi téchto
jehland je vétsi nebo rovny jedné pétiné povrchu daného jehlanu. Kde je
potieba zvolit bod M, aby nastala rovnost? (P. Leischner)
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4. Necht Z oznaduje mnoZzinu vSech celych ¢éisel. Rozhodnéte, zda existuje
funkce f: Z — Z takové, ze pro kazdé k = 0,1,2,...,1996 a pro kazdé
m € Z ma rovnice f(x) + k- = m aspoi jedno feSeni x v oboru celych
¢isel. (J. Simsa)

5. Na primce jsou dany dvé mnoziny interval A a B. MnoZina A obsahuje
2m — 1 intervald, kde m € N, pfi¢emz zadné dva intervaly z A nejsou
disjunktni, nemaji spole¢ny jen krajni bod, a kazdy interval z A obsahuje
asponi dva disjunktni intervaly z B. DokaZte, ze v B lze najit interval,
ktery patii aspoii m intervalim z A. (P. Hlinény)

6. Uvnitf stran AC a BC trojahelniku ABC jsou po fadé zvoleny body E
a D. Oznacme F prusetik pfimek AD a BE. Dokazte, Ze podil obsahi
trojuhelniki ABC a ABF splhuje vztah

Saso _ |AC|  |BC|
Sisr _ |AE| " |BD|

1.
(P. Leischner)
Reseni tiloh

1. Ked je vyraz N; nulovy, dostaneme zo zadania rovnost p =
= (6a — 1)(6b — 1). Podobne, ak je nulovy vyraz N, dostaneme rovnost
p=—(6a+1)(6b+1).

Najprv dokdzeme prvu Cast ekvivalencie. Nech je p > 3 prvodislo.
Rozlisime dva pripady p = 1 (mod 6) a p'= —1 (mod 6) (iny pripad
zrejme nemoze nastat). V prvom z nich zrejme N, ¢ Z*. Predpokladajme,
ze pre niektora dvojicu a,b € Z* plati aj N, ¢ Z*, ¢ize N, = 0. To je
v8ak zrejme mozné, len ak je jedno z &isel |6a — 1| alebo |6b — 1| rovné 1
(inak by p nebolo prvoéislom). Preto by muselo byt jedno z &isel a, b
rovné nule, ¢o vSak nie je mozné. Obdobne dostaneme spor aj v pripade
p = —1 (mod 6).

Teraz predpokladajme, Ze p > 3 nie je prvocislo. Okrem pripadov
p = £1 (mod 6) nemdzeme dostat ani Ny, ani N» celé. Potom vSak maji
vietky delitele &isla p tvar 6k+1. Cislo p m4 teda aspoi jeden z moznych
rozkladov:

p=(6c+1)(6d+1), p=(6c—1)(6d—1), p=(6c+1)(6d—1),

kde ¢ a d st prirodzené ¢isla. V prvom pripade N» nie je celé a pre
a = —c a b= —d dostdvame N; = 0,.v druhom pripade opdt N nie je
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celé a Ny = 0 pre a = c a b = d. Napokon v treom pripade N; nie je
celé a pre a = c a b = —d dostavame Ny = 0.

V kazdom pripade sme nasli dvojicu ¢isel a,b € Z*, pre ktort nie je
ziadne z ¢isel Ny, No z mnoZiny Z*.

2. a) Podla prvej identity v zadani plati [a* (a*b)]* (a*b) = a. Vyraz
v hranatej zatvorke je ale podla druhej identity v zadani rovny prvku b,
Cize plati b* (ax b) = a, a teda bxa = b*[b* (a*b)]. PretoZe posledny
vyraz je podla druhej identity v zadani rovny a x b, plati bxa = a * b
a dokaz komutativity je hotovy.

b) Prvky lubovolnej n-prvkovej mnoziny ozna¢ime ¢islami 1,2,...,n
a definujeme axb = ¢, prave ked n| (a+ b+ c). Tato definicia je korektna
(t.j. pre kazda dvojicu (a,b) existuje prave jeden taky prvok c) a ma
okamzity dosledok: ak plati a * b = ¢, potom cxb = a a a*xc = b.
Preto operécia * s pozadovanou vlastnostou existuje na kazdej konecnej
mnozine.

3. Vsimnime si, Ze obsah podstavy aj bo¢nej steny daného ihlana je
rovnaky S; = 4a?. Spojnice bodu M s vrcholmi ihlana rozdelia ihlan na
Styri Stvorsteny a jeden Stvorboky ihlan. VSetky tieto telesd maja spo-
loény vrchol M. Stéet ich objemov je objem daného ihlana. Ak oznadime
v; (1 =1,...,5) vysky tychto telies z bodu M, potom

1, o 1
351 ;’Ul’ = —?;Slv,

z ¢oho vyplyva ze Z v; = v, kde v je vySka daného ihlana. Teraz si uve-

1=

 domme, Ze tieto vysky su zaroven aj vyskami pla‘clch ihlanov podobnych

danému zo zadania. Je teda

pricom S je povrch daného ihlana, S; st povrchy piatich vzniknutych
ihlanov a k; st ich koeficienty podobnosti s danym ihlanom. Z toho dalej

5
vyplyva, ze 3 /S; = /S, & po umocneni dava
i=1

5
S=)"Si+ Y, 2/585;
=1

15i<ji<5
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Ak dalej pouzijeme AG-nerovnost, ¢ize 2,/5;S; < S; + S;, dostaneme
5 5 5
SEY Si+4) Si=5% S
i=1 =1 i=1

5 1 '

Teda ) S; 2 gS . Rovnost nastava, len ked st vSetky ihlany zhodné.
=1

Potom je vSak M stredom gule vpisanej danému ihlanu.

4. Dokézeme, ze hladand funkcia existuje. Po kratkej ivahe mozno
nahliadnut, Ze sta¢i najst jednozna¢né (injektivne) priradenie (k,m) — x
a potom definovat f(z) = m—kz. Zrejme potom uz bude funkcia f splhat
zadané podmienky. .

Polozme d = 1996+ 1 = 1997. Podla vety o deleni celych ¢isel mozno
kazdé ¢islo x € Z zapisat jedinym spbésobom v tvare x = md + k, kde
me€ Zake{0,1,...,d—1}. Na zéklade tohoto vyjadrenia (s pevnym
d) polozme f(z) = m—kz,t.j. f(md+k) = m—k(md+k). Potom kazda
rovnica f(z) + kx = m mé rieSenie (nie nutne jediné) z = md + k.

5. Ozna¢me intervaly v mnoZine A ako «; = (a;,b;), i = 1,2,...,
2m — 1; indexy moéZeme zrejme volit tak, aby platilo

a1 Sazs... Sam-- (1)

Nech dalej bi, k£ € {m,m + 1,...,2m — 1}, je najmenSie z Cisel b,
bm+1, - - -, bam—1. Podla zadania obsahuje interval o, € A dva disjunktné
intervaly z mnoziny B. Oznaéme ich 8; = (c1,d1) a B2 = (ca,d2). Bez
ujmy na vSeobecnosti méZzeme predpokladat, Ze

ak§01<d1<62<d2§bkl (2)

Teraz rozlisime nasledujtce pripady:

1) dy £ b; pre vietky i = 1,2,...,m. Potom ale z (1) aj 3; C a; pre
kazdé i = 1,2,...,m, a teda §; ma poZadovani vlastnost.

2) d; > bs pre nejaké s € {1,2,...,m}. Vdaka (2) aj co > bs. Preto-
7e podla zadania maja kazdé dva intervaly z A spoloény bod, plati
zdroveii b, 2 a; pre vSetky i, a teda co > a; pre vietky i. Napokon
z definicie by, je by S b; prei € {m,m+1,...,2m — 1}. Celkom teda
plati a; < ¢ < dy £ by, < b;, pre kazdé i € {m,m +1,...,2m — 1},
ize B2 C a; pre vietky i € {m,m +1,...,2m — 1}. Interval > mé
potom pozadovan vlastnost.

Tym je dokaz ukondeny.
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6. Vedme bodom F rovnobezky so stranami trojuholnika ABC' a ich
prieseéniky s tymito stranami ozna¢me K, L, M, N, O, P (obr. 35).’

A /P K\ _ B
Obr. 35

Ak dalej oznaéime v, vy vzdialenosti bodov C, F od priamky AB,
potom
Sasc _vc _ |BC| (3)
SABF (2 IFK| ’

Ked teraz pouzijeme podobnost trojuholnikov FLM, PKF a rovnolah-
lost tsetiek PM a AC so stredom v B (bod F sa v tejto rovnolahlosti
zobrazi na bod E), dostaneme (rovnolahlost zachoviva pomery dizok
useciek) '

|ILM| |FM| |EC| |AC]|

" |FK| ~ |FP| ~— |AE| _ |AE| L (4)
Dalej plati obdobne
|Mc| _|FN| _|DC| _ |BC| : : )

|FK| ~ |FK|  |BD| |BD|

a podla (3)

Sapc _ |BC| _|BL|+|LM|+|MC|
Sapr  |FK]| |FK]| :

Do poslednej rovnosti dosadime |BL| = |FK| a dlzky |LM|, |CM| vy-
jadrené zo (4) a (5). Tak dostaneme zadany vztah.
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37. mezindarodni matematicka olympiada

Symbol olympiddy, ktera se konala v indické Bombaji od 5. do 17. Cer-
vence 1996, predstavuje zajimavou matematickou ulohu z Bhaskarova
spisku Lildvdti (12. stol.), kterou uvadime ve volném ces- e

kém prekladu: Pav stoji na vrcholu devét lokti vysokého > ﬂ '\{;
podstavce, pri jehoZ ipati je dira. Ve vzddlenosti trojnd- § Zno, §
sobku vysky podstavce vidi hada pohybujiciho se smérem g Z §
k dire a sikmo se nan vrhne. Rekni mi rychle, v jaké vzdd- & s
lenosti od diry se oba srazi, pohybuji-li se oba stejnou E ﬁ
rychlosti. K jejimu FeSeni vystalite s Pythagorovou vétou,

e v waqut

jejiz geometricky dikaz naleznete na obrazku zminéného
podstavce.

Tato mezinarodni matematicka olympidda prekonala opét nékolik re-
kordt. Pfitom tentokrat neslo ani tolik o rekordy v poétu ziastnénych
zemi, ktery se v poslednich letech ustalil kolem sedmdesdtky (letoSni
MMO se zGlastnilo 426 studentt ze 75 zemi), ale spi§ v obtiznosti: jak
vybranych tloh, tak celkovych podminek. Tropickd vedra s obcasnymi
prudkymi lijaky pocinajiciho monzunového obdobi, problémy s dietou
(jeden z naSich studentti po celou dobu pobytu v Bombaji téméf nejed],
dva soutézici — nikoli nasi, i kdyz podle vysledkt by to tak mohlo vypa-

“dat — vinou Zalude¢nich obtizi soutéz nedokon¢ili) a nekoneéné presuny
autobusy v precpaném velkomésté. A poslednim smutnym rekordem je
vysledné umisténi ¢eského druZstva v neoficidlnim poradi jednotlivych
zemi.

Z nasich nejlépe dopadli Tomds Bdrta spolu s Michalem Benesem
z prazského gymnazia ve Zborovské ulici, ktefi ziskali shodné 21 bodt,
coz tentokrat stacilo na II. cenu. S nimi jeSté drzel krok David Opéla
z biloveckého Gymnazia MikulaSe Kopernika, ktery za 18 boda dostal
cenu III. Zbyli naSi tfi reprezentanti se uz bohuzel zaradili do druhé
poloviny Géastnikd MMO a zistali tedy bez ceny, i kdyz letos na III. cenu
bylo potfeba pouhych 12 bodi (bylo i hiife: v roce 1971 na 13. MMO
v Ziliné stagilo na III. cenu dokonce jen 11 bodi).

—_MUMBAL INDIA__
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Vlastni soutéz probéhla 10. a 11. Cervence v prostorach Strediska
pro atomovy vyzkum Bhabha. Organizace soutéZe, jakoZ i podminky pro
préaci jury a koordinaci byly vesmés vyborné. Sympatické napf. bylo i to,
Ze se na koordinaci podileli i byvali ispéSni indi¢ti olympionici.

Vysledky nasich zaku:

Body za dlohu Body Cena
Umisténi 123456

81.-93. Tomés Barta, 716 007 21 II.
4. ro€. gymnézia
Praha 5, Zborovska’

81.-93. Michal Benes, 716 007 21 IL.
4. ro¢. gymnéazia
Praha 5, Zborovska

111.-120. David Opéla, 4 17 0v 0 6 18 IIL.

4. roé. GMK
Bilovec
216.-226. Robert Spalek, 105301 10

4. ro¢. gymnézia
Brno, tf. Kpt. Jarose

236.-247. Daniel Kral, 4 21001 8
4. ro¢. gymnéazia
Zlin ' r

290.-324. Jan Spévak, 211100 5

3. ro¢. gymnéazia
Praha 1, Hellichova

Celkem 25 626 4 022 83

O néroé¢nosti tloh dava obvykle dobrou informaci po¢et bodd nutnych
pro ziskani pfisluSné medaile: Prvni cena se udélovala za 28-42 bodd,
II. za 20-27 a III. za 12-19 bodd. Porovnate-li uvedené bodové hranice
s predeslo 36. MMO v Torontu, zjistite posun zhruba o 10 bodid dold.
Na této mezinarodni olympiddé ziskal plny pocet 42 bodt jediny student
Ciprian Manolescu z Rumunska, ktery se tak stal absolutnim vitézem.

Extrémné obtiZna byla p4ta tloha. Jeji zdludnost spoéivala uz v tom,
ze prvni slibné vypadajici ndpad k feSeni nevedl... Koneckoncl o jeji
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obtiZnosti nejlépe svédéi celkovy bodovy zisk: 209 bodi, to pii 424 sou-
t&zicich dava pramérny bodovy zisk 0,49 — méné nez pil bodu!

Trochu nés miize mrzet slaby vysledek na hezké druhé tloze. Ctvrta
tloha snad nebyla tak obtiZzné, nicméné byla (bez znalosti techniky kva-
dratickych zbytkti) poletné naro¢néjsi, coz ve spojeni s ,nedobytnou“
patou tlohou pfispélo k hubenému bodovému zisku. A tak jsme nakonec
druhy den sbirali body jen za Sestou tlohu, kde se nakonec i nasi dva
nejlepsi blyskli velmi péknym feSenim (kazdy jinym).

Neoficidlni pofadi v8ech zicastnénych zemi s poétem ziskanych cen

a celkovym bodovym ziskem:

I II III body II III body

Rumunsko 4 2 - 187 Finsko - = 58
USA 4 2 - 185  Svédsko - - 57
Madarsko 3 2 1 167 Moldavsko - - 55
Rusko 2 3 1 162 Rakousko - - 54
Velka Britanie 2 4 - 161 JAR - - 50
CLR 3 2 1 160 Mongolsko - - 49
Vietnam 3 1 1 155 Slovinsko - - 49
Korea 2 3 - 151 Kolumbie - - 48
fran 1 4 1 143 Thajsko - - 47
Némecko 3 1 1 137 Makedonie - - 44
Japonsko 1 3.1 136 Spanélsko - - 44
Bulharsko 1 4 1 136 Macao - - 44
Polsko - 3 3 122 Dansko - - 44
Indie 1 3 1 118 Brazilie - = 36
Izrael 1 2 2 114 Sri Lanka - - 34
Kanada - 3 3 111 Mexiko -~ = 34
Slovensko - 2 4 108 Estonsko - - 33
Ukrajina 1 - 5 105 Island - - 31
Turecko - 2 3 104 Bosna a Hercegovina - - 30
Tchaj-wan - 2 3 100 Agzerbajdzan - - 27
Bélorusko 1 1. . 2 99  Nizozemsko - - 26
Recko - 1 5 95  Trinidad a Tobago" = = 25
Austrélie - 2 3 93 Irsko - - 24
Jugoslavie -1 3 87  Svycarsko - - 23
Italie - 2.2 86 Portugalsko - - 21
Singapur 1 - 3 86 Kazachstan - - 20
Hongkong - 1 4 84  Maroko = 19
Ceskd republika - 2 2 83 Kuba - (= 16
Argentina 1 3 80 Kirgizie - - 15
Gruzie 1. = "2 78 Albanie - = 15
Belgie -.= = 75 Kypr = - 14
Litevsko - .= = 68 Indonézie - = 11
Lotyssko = - - 66 Chile - = 10
Chorvatsko - - - 63 Malajsie - - 9
Arménie == = 63 Turkménie = oA 9
Francie SR 61 Filipiny = 8
Novy Zéland - == 60 Kuvajt - - = 1
Norsko - =, - 60
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Vedoucim nasi vypravy byl dr. Karel Hordk z Matematického Gstavu
AV CR, pedagogickym vedoucim druzstva byl doc. Jaromir Simsa z br-
nénské pobocky téhoz tstavu.

Texty soutéZnich uloh
(v zavorce je uvedena zemé, kterd lohu navrhla)

1. Necht ABCD je obdélnikova deska o rozmérech |AB| = 20, |BC| = 12.
Deska je rozdélena na 20 x 12 jednotkovych ¢tverci. Necht r je dané
kladné celé éislo. Minci lze tdhnout z jednoho Ctverce na druhy, pravé
kdyz vzdalenost stfedit obou &tverct je /7. Ukolem je najit posloupnost
tahtt minci vedouci ze ¢tverce s vrcholem A do ¢tverce pti vrcholu B.

a) Ukaizte, ze ukol nelze splnit, je-li r délitelné 2 nebo 3.

b) Dokazte, Ze je to mozné pro r = 73.

c) Lze tkol splnit pro r = 977 (Finsko)

2. Necht P je bod uvnitf trojuhelniku ABC, pro ktery plati

|XAPB| - |XACB| = |XAPC| - | ABC|.
Ozna¢me D, E stfedy kruznic vepsanych trojuihelnikim APB a APC.
Ukaizte, ze pfi_mky AP, BD a CE prochézeji jednim bodem. (Kanada)

3. Necht S ={0,1,2,3,...} oznauje mnozinu viech nezapornych celych
¢isel. Najdéte viechny funkce f definované na S, jejichz hodnoty jsou v S,
a takové, ze

f(m+ f(n)) = f(f(m)) + f(n) pro véechna m,n € S:

(Rumunsko)

4. Jsou d4na kladna cel4 &isla a, b takova, Ze obé& &isla 15a+16b a 16a—15b
jsou druhymi mocninami kladnych celych ¢isel. Najdéte nejmensi moznou
hodnotu, kterou mize nabyt minimum z obou druhych mocnin.

' (Rusko)

5. Necht ABCDEF je konvexni Sestitihelnik takovy, ze AB je rovnob&zné
s ED, BC jerovnobézné s FE a CD je rovnobézné s AF. Oznaéme Ry ,
R¢ a R poloméry kruznic opsanych trojuhelnikim FAB, BCD a DEF
a p obvod daného Sestithelniku. Dokazte, Ze

RA+R0+REZ§.

(Armeénie)
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6. Necht n, p, q jsou kladni celad &sla, pro néz n > p + ¢. Necht
T, %1, ---,ZTy jsou celd Cisla, jeZ spliuji nasledujici podminky:

a) zg =z, =0

b) pro kazdé celé ¢islo i, 1 £ i S n, je

bud z; —x;-7 =p, nebo z; —x;_1 = —q.
Ukazte, ze existuje dvojice indexu (4, j) takova, ze i < 7, (4,7) # (0,n)
ax; =zj. (Francie)

Reseni tloh

- 1. Je-li » = m? + n? rozklad é&isla r na soucet dvou druhych mocnin
nezapornych celych &isel, miizeme tdhnout minci o m sloupcii vodorovné
a o n fadku svisle (pokud pfitom ztistaneme na desce). Zvolme soustavu
souradnic tak, aby stifed ¢tverce s vrcholem A lezel v pocatku a stied
¢tverce s vrcholem B mél soufadnice [19,0]. (Stfed ¢tverce s vrcholem D
pak bude mit soufadnice [0, 11].)

a) Je-li r = m? 4 n? délitelné dvéma, je jasné, Ze obé &isla m, n musi
mit stejnou paritu (stejny zbytek mod 2), tj. soucet m+n je sudy. Protoze
obé souradnice po¢atku jsou sudé, neni mozno se dostat do bodu [19, 0],
ktery méa soucet souradnic lichy.

Je-li r = m? + n? délitelné t¥emi, snadno zjistime (vzhledem k tomu,
Ze —1 neni kvadraticky zbytek mod 3), Ze musi byt m =n =0 (mod 3).
Proto ani v tomto pfipadé nelze piejit z pocatku, jehoz obé souradnice
jsou délitelné tfemi, do bodu [19, 0], jehoZ prvni soufadnice 19 ndsobkem
t¥{ neni.

b) Protoze jediny rozklad éisla r = 73 na souéet druhych mocnin je
r = 32 + 82, mame moznost kombinovat tahy charakterizované vektory
(£3, £8) a (8, +3). Dostaneme tak napf. tuto moznou posloupnost poli:
[0,0] — [3,8] — [11,5] — [3,2] — [0,10] — [8,7] — [0,4] — [8,1] —
— [11,9] = [3,6] — [11,3] — [19,0].

Poznamka. K cesté z bodu [0,0] do bodu [19,0] se lze dopracovat
i feSenim neur¢itych rovnic. Oznacme a, b, ¢, d postupné pocet tahi typu
- +(8,3), £(8,-3), £(3,8) a +£(3,—8) (tj. a oznacuje pocet taht danych
vektorem (8,3) minus podet tahi odpovidajicich vektoru (—8, —3)). Do-
staneme tak dvé neurcité rovnice

8(a+b)+3(c+d) =19, 3(a—b)+8(c—d) =0, (1)
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kterym vyhovime napt. tak, Ze polozime a+b=2,c+d=1,a—-b =
= -8, ¢ —d = 3, coz dohromady davi a = -3, b =5,¢c=2,d = —1.
Tak dostaneme pocet taht odpovidajiciho typu, nesmime vSak pfitom
zapomenout, Ze nelze opustit desku. Témto hodnotdm vyhovuje shora
uveden4 cesta, ale i cesta [0,0] — [3,8] — [11,5] — [19,2] — [16,10] —
— [8,7] = [0,4] — [8,1] — [11,9] — [3,6] — [11,3] — [19,0]. Rovnici
(1) oviem vyhovujiia = 5,b=3,c=1ad = 2 s dalsimi moznymi
cestami. :

c) Protoze jediny mozny rozklad ¢isla r = 97 na soucet dvou druhych
mocnin pfirozenych &isel je 97 = 4% + 92, musi kazdy tah odpovidat jed-
nomu z vektort (£9, £4), (£4, £9). Rozdélme mnozinu A vSech moznych
pozic na desce, :

A={li,jle7?:0<i<19,0< <11},
na dvé disjunktni podmnoziny B a C, kde
B={[i,j]€7?:0<i<19,4<j<7}, C=A\B.

Snadno ovéfime, ze kazdy tah typu (£9,+4) vede z bodu mnoziny B
do bodu mnoZiny C a obricend, zatimco tahy typu (+4, +9) jsou mozné
jen pro body z mnoziny C a vedou zpét do C. Kazdy z tahi typu (£9, +4)
méni paritu prvni sodfadnice, takZe na cestu z bodu [0, 0] do bodu [19, 0]
potiebujeme lichy pocet takovych tahi. Kazdy z nich ale vede stfidavé
z mnoziny B do C a zpét; my vSak mame zacit i skoncit v mnoziné C,
k ¢emuz vede jen sudy poCet zminénych tah. Odtud plyne, Ze pozado-
vana posloupnost taht pro r = 97 neexistuje.

Jiné FeSeni Casti c) (podle Michala Benese). Jediny mozny rozklad
Cisla r = 97 je 97 = 42 + 92, Uvazujme orientovany graf, ktery spojuje
vSechny mozné y-ové souradnice, jez dostaneme pri vertikdlni zméné o 4
nebo o 9: ‘

4 <38

il

0

Protoze se mame dostat z vrcholu [0,0] do vrcholu [19,0], je vid&t, ze
v uvedeném grafu musime vykonat cestu z uzlu 0 zpét do uzlu 0, tj. mu-
sime provést sudy pocet vertikdlnich zmén o 4 i sudy pocet vertikalnich
zmén o 9. Protoze ale 19 je liché ¢islo, nelze je dostat jako kombinaci
sudého poétu devitek a sudého poctu ctyrek.
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2. Sestrojme postupné paty X, Y a Z kolmic z bodu P na strany BC,

Obr. 36

CA a AB (obr. 36). ProtoZe ¢tyfahelniky PXCY, PYAZ a PZBX jsou
tétivové, je
|XAPB| - |<XACB| = |<APB| - (n — | XPY]|) =
=2n—- (|XAPY|+|XBPX|) - n=
=n—(|XAZY |+ |IBZX|) = |2 XZY|
a analogicky
|<APC| - |XABC|=|XXYZ|.
Z predpokladi dlohy tedy plyne, Ze Je |XXZY| = |2 XY Z|, a tedy
|XZ| =|XY]|.
Oznafme déle Q, resp. R priseciky piimky AP s osou uhlu ABP,
resp. ACP. Z vlastnosti osy thlu dostdvame rovnosti
4Q _|AB|  |AR| _|AC|
lQP|  |BP| |RP|  |CP|

|AB| |AC|
|BP| |CP|'
Pro priméry CP a BP kruznic opsanych tétivovym ctyiahelnikim

XY XZ
PXCY a PZBX plati |CP| = l l a |BP| = u Rovnost Q@ = R
sin 7y sin 3
je tudiz ekvivalentni s rovnosti
|AB| - |XY| _ |AC|-|XZ]
sin vy - sin 3

Abychom ukézali, Ze body @ a R splyvaji, staci ukazat, ze ———

K
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ktera diky rovnosti |XZ| = |XY| plyne ze sinové véty pro trojihelnik
ABC.

Jiné feSeni. Oznac¢me X, Y a Z druhé pruseliky polopfimek AP,
BP a CP s kruznici k opsanou trojihelniku ABC. Ziejmé | X APB| —
—|XACB| =|XAPZ| - |4 ACP|+|XZPB| - |XPCB| = |XPAC| +
+ |XPBC| = |IPZX|+ |XPZY| = |XXZY| (obr.37). Analogicky
| XAPC|—-|¥X ABC| = | XY Z|. Odtud plyne, 7e pfedpokladan4 rovnost
|XAPB| — |XACB| = |XAPC| — |XABC] je ekvivalentni s rovnosti
|XXZY|=|xXYZ| atedy is rovnosti |[XZ| = |[XY].

Obr. 37

Protoze trojihelniky APC a ZPX jsou podobné, je
|AC| _|AP| |PC| _ |AP|-|PC| _ |AP|-|PC|
|ZX| ~ |ZP|  |PX| |AP|-|PX| m ’
kde m = |AP|- |PX| = |BP| - |PY| = |CP|-|PZ| je az na znaménko
velikost mocnosti bodu P ke kruznici k. Je tedy
|AC|
|AP| - |PC]|

|XZ|=m
a obdobné :
|AB|
|AP|-|PB|
Protoze | X Z| = |XY|, plyne odtud rovnost
|AB| _ |AC|
|BP| ~ |CP|

|XY|=m
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To znamend, Ze osy thld ABP a AC P déli isecku AP ve stejném poméru.
Tim je tvrzeni tlohy dokazano.

Pozndmka. Bod P, ktery vyhovuje predpokladu tlohy, 1ez1 na oblouku
UB| _

C] b Plyne to ze

Apolloniovy kruznice vSech bodt U takovych, ze ——

zavéru druhého z uvedenych feSeni.

3. Piedpokladdejme, Ze funkce f je feSenim tlohy. Dosazenim m = n = 0
do dané rovnice dostaneme f(0) = 0 a pro m-= 0 dostaneme rovnost
f(f(n)) = f(n) pro viechna n € S. Pokud funkce f neni identicky rovna
nule, ma tedy vzdy nenulovy pevny bod (tj. bod, ktery se zobrazi sdm
na sebe). Ozna¢me a nejmensi kladny pevny bod funkce f. Pokud a =1,
dostaneme pro m = 1 rovnost f(1 + f(n)) = 1+ f(n), odkud indukci
snadno plyne, Ze je f(n) = n pro kazdé n € S.

Pfedpokladejme dale, Ze a > 1. Potom ziejmé plati f(2a) = f (f(a)+
+a) = a+ f(a) = 2a a dale opét indukei f(ka) = ka pro kazdé k 2 1.
Ukéazeme, Ze viechny pevné body zobrazeni f (a tedy i v8echny funkéni
hodnoty) jsou tvaru ka pro vhodné celé k£ = 0: Je-li b libovolny pevny
bod funkce f, dostaneme pro jeho podil ¢ pti d&leni &slem a a p¥islusny
zbytek r (0 £ r < a) rovnost

ag+r=b=f(b) = flag+7) = f(r + f(aq) =
= 1(r) + f(ag) = £(r) + aq.

To znamena, Ze také f(r) = r je pevny bod zobrazeni f, a protbie r<a,
musi byt r = 0. ProtoZze mnoZina {f(n): n € S} je mnozinou pevnych
bodi funkce f, plyne odtud specidlng, Ze f(i) = n;a pro kazdé i < a,
;’)fiéemi ng = 0 a n; € S. Pro libovolné n € S, které vyjadiime jako
n=ka+1i, 0 L1i< a, pak z dané funkcionalni rovnice plyne

f(n) = f(i + ka) = f(i) + ka = n;a + ka = (n; + k)a.
Zbyva ovérit, ze funkce f definovana pravé uvedenym predpisem spl-

nuje danou funkcionalni rovnici, at uz jsou &sla.n; (1 £ 7 < a) v pfipadé
a > 1 zvolena jakkoliv: nech m = ka+i,n =la+j,0 £ i,j < a. Potom

f(m+f(n) = f(ka+i+ fla+3)) = f(k+1+nj)a+i) =
=(k+l+nj+ni)a:f(m)+f(n)_—. ( )
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Odpovéd: Dané funkciondlni rovnici vyhovuji nulova funkce, dale
identick4 funkce f, pro kterou je f(n) = n pro vSechna n € S, a kone¢né
kazda funkce f urcend predpisem

for= (2] +n.

kdea>1any,ng,...,ne_1 €S jsou libovolné konstanty.

4. Oznatme 15a + 16b = 12 a 16a — 15b = s2, kde r,s € N. Odtud
dostavame

rt + s* = (152 4 16%)(a® + b?) = 481(a® + b?).

Cislo 481 m4 prvoéiselny rozklad 481 = 13-37, musi tedy platit r*+s* = 0
(mod p) pro p € {13,37}. Nyni vyuzijeme skutenost, Ze ¢tvrta mocnina
celého cisla nikdy nedavéa zbytek —1 ani modulo 13, ani modulo 37. To
plyne z malé véty Fermatovy, podle niz pro libovolné pryocislo p a pro
kazdé celé = je bud zP~! = 0, nebo zP~! = 1 (mod p). Kdyby tedy pro
né&jaké celé z bylo 2* = —1 (mod 13), bylo by téz z'? = (-1)3 = -1
(mod 13), a to nemtiZe nastat; podobné z kongruence z* = —1 (mod 37)
pro né&jaké celé z plyne 236 = (—1)° (mod 37), coz rovnéz neplati.

Rovnice r* + s* =0 (mod p) tedy nemtze mit feSeni r # 0 (mod p),
s #£ 0 (mod p) (p € {13,37}), protoze pak by pro r’ takové, ze rr' =
=1 (mod p) (podle zmin&né malé véty Fermatovy staci volit ' = rP=2)
platilo =1 = —r*r"* = s*"* = (sr')* (mod p). Proto musi byt r = s =0
(mod p), neboli p|7, p|s, tedy 481 | r, 481 | s, coz znamena, 7e r = 481,
s 2 481. Protoze pro r = s = 481 najdeme dvojici a = 481 - 31, b = 481,
je hledané minimum rovno 4812.

Jiné FeSeni. Stejné jako v predchozim feSeni zavedeme Cisla r a s,
pro né dostaneme dvé kongruence r* + s* = 0 (mod p), neboli r* = —s*
(mod p), kde p € {13, 37}. Kdyby néktera z téchto kongruenci méla feSeni
r # 0 (mod p), dostali bychom umocnénim na liché &islo (p — 1) podle
malé véty Fermatovy

|

1= r’i“l = (r“)%(p_l) = (- 54)%(”"1) = —sP"1 = —1 (mod p),

I

coz neni mozné. Je tedy r = s=0 (mod p) a déle postupujeme stejnd
jako v pfedchozim feSeni.

Jiné feSeni. Oznaéme 15a + 16b = 72 a 16a — 15b = s%, kde r,s €
€ N. Se¢tenim vhodnych nasobki uvedenych dvou rovnosti dostaneme
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- 481a = 15r? + 1652, Uvazujeme-li tuto rovnici modulo 13, dostaneme
2r2+3s%2 = 0 (mod 13). Pokud prozkouméame viechny kvadratické zbytky
modulo 13, zjistime, Ze tato moznost miiZe nastat, jen kdyz 13|r a 13]s.
Obdobné probranim v8ech kvadratickych zbytkt modulo 37 zjistime, ze
rovnici 481a = 15r? + 1652 modulo 37 vyhovuji pouze ta r, s, pro néz
37| r, 37| s. Zavér je stejny jako v prvém reSeni.

5. Ozna¢me obvyklym zptsobem a, b, ¢, d, e a f délky stran daného
Sestitthelniku ABCDEF. Je zfejmé, Ze Sestithelnik méa shodné pro-
t&j§l uhly, « = |I<BAF| = |JXCDE|, B = |XABC| = |<DEF)|
ay = |ABCD| = | EFA|. Opidme Sestitthelniku obdélnik PQRS tak,
aby dvé jeho protéjsi strany obsahovaly dvé protéjsi rovnobézné strany
Sestitthelniku, napft. tak, ze AP 1. BC, AS L EF,DQ 1. BC,DR 1 EF
(obr.38). V takovém piipadé je |F'B| 2 |PS| a zéroven |FB| 2 |QR|,
pficemz |PS| = asinf + fsinv, |QR| = csiny + dsin . Je tedy také

2|FB| 2 (d+a)sinf + (c+ f)siny.
Analogicky dostaneme (opiSeme-li obdélnik dalsimi dyéma zpusoby)

+ 2|BD|z (b+e)sinf+ (c+ f)sina,
2|DF| 2 (d+a)sina + (b+ e)sinn.

Obr. 38

Ze sinové véty pro trojuhelniky FAB, BCD a DEF vychazeji rovnosti

CFB _|BD| . _ IDE|
A~ 2sina’ ¢ 2siny’ E~= 9sinp’
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takze

sin 7y sin 3
> —t
ARAZ (c+ )t +(d+a)
sin ﬂ sin a
4Rc 2 (b+e)m7 (C+f%m7’
sin « sin 7y
4Rp 2 (d+a%nﬂ+4b+e%mﬂ.

Sectenim poslednich t¥i nerovnosti dostaneme

sin sin a sin sin a
L+ 222) 4 (d+a)(3 L )
sin « sm vy sin av s1n I}
sin sin
+b+e)( b 8 1) 2
siny  sinf
22(c+ f+d+a+b+e)=2p,

4R4+4Ro +Rp 2 (c+ ) (32

coZ jsme chtéli dokdzat. Rovnost zfejmé plati, pravé kdyz a = = ~
a FB 1 BC, BD L AB a DF 1 CD, tj. pravé kdyz ABCDEF je
pravidelny (stali si uvédomit, ze trojihelniky FAB, BCD a DEF jsou
rovnoramenné s thly 30° pri zakladné, takze trojihelnik BDF méa nutné
viechny thly Sedesatistupiiové).

6. (Podle Michala Benese.) Predpoklddejme, Ze Cisla p a ¢ jsou nesou-
déln4 (je-li totiz d jejich nejvétsi spolecny délitel, Ize v tloze &isla p, q, x;
zaménit po fadé ¢isly p/d, ¢/d, z;/d; protoze dle zadani plati nerovnost
n > p + ¢, plati samoziejmé i nerovnost n > p/d + ¢/d).

Kazdy Clen z; 1ze psat ve tvaru z; = s;p—t;q, kde cela nezéporn4 &isla
s; at; udavaji, kolik z &isel z; —xg, Ta—T1, ..., T;—T;_1 je TOVNO presp. —q
(takze s; +t; = i), pro ¢ = 0 poloZme sy = to = 0. Dvojice (s;,t;) budeme
interpretovat jako mrizové body v roviné se souradnicovymi osami s a ¢
(budeme predpokladat, Ze osa s je vodorovna, orientovana doprava a osa t
svisl4, orientovana vzhiru). Pro kazdé ¢ jsou miizové body (s;—1,%i—1)
a (si,t;) sousedni, tj. 1ze je spojit Sipkou délky 1 ve sméru né&které ze
soufadnych os. Téchto n Sipek vytvori cestu

To = {(s0,to) = (51,81) = (83,82) = - = (5ms£)}-

(Sipky sméfuji pouze doprava a nahoru.)
Rovnost x; = z; nastane pravé pro ta i < j, pro kterd (t; — t;)q =
= (s; — s;)p, neboli (vzhledem k predpoklddané nesoudélnosti p a q)
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t; =t;+rpas; = s;+rq pro vhodné prirozené r. Tak pro i\= Daj=n
dost4avame, Ze s,, = Rq a t, = Rp pro vhodné pfirozené R. Podle zadani
je n > p+ q, takze z rovnosti n = s, +t, = R(p + q) plyne odhad
R = 2. Proto bude uloha vyfeSena, prokdZzeme-li existenci indext i < j
takovych, Ze s; = s; +qat; =t; +p. '

Pripustme, Ze takové indexy neexistuji. Geometricky to znamena, Ze
cesta I'g nemé spolecny bod se svym ,posunutim*

Iy ={(so+qto+p) = (s1+qti+p) = (s2+qta+p) = ... >
- (Sn+Q7tn +p)}"

Uvazujme dale mfizové body A, = (rq,rp) pro r 2 0. Z naseho pied-
pokladu o vzajemné poloze cest I'y a I'y predeviim plyne, Ze na cesté
Lo, jez spojuje body Ao a Ag, nelezi bod A;, poCatek cesty I';. Necht
tedy cesta I'g prochazi napiiklad ,nad“ bodem Ay (kdyby prochézela
,pod“ timto bodem, stadilo by v néasledujici Gvaze vSude vyménit ,nad“
za ,pod“). Pak oviem (diky vzdjemné poloze obou cest) lezi Iy ,nad*
I'; v celém spoletném tseku ¢ £ s £ Rq. Z toho, Ze cesta 'y prochazi
- ,nad“ bodem A, pro nékteré r =1,2,..., R—1 (jak je tomu pror = 1),
okamzité plyne, Ze ,posunutd“ cesta I'; prochizi ,nad“ bodem Arp
(obr. 39), takZe (diky upfesnéné vzajemné poloze v seku ¢ £ s < Rq)

1]

L
Ar
R ——
p I,
4 Iy Ay
AO q Rq ~s
Obr. 39

ynad“ bodem A,;; prochézi i cesta I'g. Indukei zjistujeme, Ze I'g dochézi
,nad“ bod Ag, coz odporuje tomu, Ze v tomto bodé cesta I'g kon¢i.

Jiné feseni. (Podle Tomdse Bdrty.) Muzeme predpokladat, ze p a ¢

P q
, kde
(p,q (p,9)

jsou nesoudélna isla, protoZe jinak vezmeme p’ = 7 q =
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(p, q) oznaluje nejvétsi spoleény délitel Cisel p a ¢; zfejmé n > p+ ¢ >
>p+q. ‘ :

Bez Gjmy na obecnosti mizeme déale predpokladat (diky symetrii), ze
p > q. Abychom dostali z,, = 0, musime ziejmé kqkrat pricist p a kpkrat
odetist q, takZe n = k(p+ q) 2 2(p + q)-

Budeme dale pocitat modulo p. Pokud z; — ;-1 = p, je z; = x;—
(mod p), a pokud z; —x;_1 = —q, je ; Z ;_1 (mod p). V dané posloup-
nosti o, Z1,...,%, nyni ozname z; vSechny ty indexy, pro které dojde
k odecteni g, tj. dojde ke zméné zbytkové tiidy modulo.p,

O=zp=21=...=2;-1 # T, (mod p), (1)
Ty =0 = Zpp1 Z Tz (= —¢q) (mod p),
(pocet indexti z1,22,... je pravé kp). Zrejmé bude z., = —pg = xo

(mod p). Pfedpokladejme déle, ze v dané posloupnosti neexistuji dvé ¢isla
spliiujici podminky tlohy. V tom piipadé nemuze byt zo < z,, < 7,1,
protoze jinak by bylo z,, rovno nékterému z &isel (1), kterd dle predpo-
kladu tvofi po sobé jdouci ndsobky ¢&isla p, a x., = 0 (mod p). Je tedy
bud z,, > z,-1, nebo z,, < xo.

a) Necht Tz, > Tz -1. Odtud plyne z., , > x.,_1. Je totiz

Tzpt1 e Tzp =4 > Tzy-1 — =T

a nemuze byt
Tz < Tzpt1 § Tzo—-1,
protoze x.,,, = —q (mod p) a viechna &isla s touto vlastnosti mezi z.,
a x,,_1 patii do dané posloupnosti. Snadno ukdzeme matematickou in-
dukci, ze je také
xzp_” > zz,-.H-—lv .7 g Oa

specialné

Drte o iyl B W i Moyl o Tl
Matematickou indukei vyjde x.;, > zo pro kazdé piipustné j > 0, a to
odporuje tomu, ze z,, = 0.

b) Necht z., < zo. Podobné jako v a) odvodime, Ze je z.,,, < z,
(je totiz

Zopps =Tyl —C<T0— ¢S T5y-1 — Q= X5y,
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protoze vSechna &isla z.,,%.,41,...,%2,,,~1 = 0 (mod p) jsou riznd od
nuly, tedy nutné mensi nez zo).

Indukci déle dostaneme, Ze x,,; < ; pro kazdé j 2 0 a specidlné
Tz, < Tz, < To, T;, < To pro kazdé piipustné j > 0, coz opét odporuje
tomu, ze zo = 0.
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Treti ro¢nik Stredoevropské olympiady v informatice

Treti ro¢nik Stfedoevropské olympiddy v informatice (CEOI) se ko-
nal ve dnech 9.-13. fijna 1996 na Slovensku. Utastnilo se ho 27 sou-
tézicich ze sedmi zemi Stfedni Evropy: Chorvatska, :
Madarska, Polska, Rumunska, Slovenska, Slovinska
a Ceské republiky. SoutéZ probéhla v prostorach ma-
tematicko-fyzikalni fakulty Univerzity Komenského.

Soutézici z Ceské republiky byli na tuto soutéz
vybréani na zakladé svych vysledkt z celostatniho kola 45. ro¢niku ma-
tematické olympiddy v kategorii programovani. Nejlepsi soutézici z celo-
statniho kola byli nominovani pro 8. ro¢nik Mezinarodni olympiddy v in-
formatice (IOI), ktera se konala v Madarsku. O vysledcich tohoto naseho
reprezentacniho druZstva se muzete docist na jiném misté této rocenky.
Pro Stredoevropskou olympiddu byli do druzstva nominovani studenti,
ktefi ve Skolnim roce 1996/97 navstévuji posledni ro¢niky st¥edni skoly
a jsou povazovani za perspektivni acastniky Mezinarodni olympiddy v in-
formatice. Vedoucim druzstva byl jmenovan doc. RNDr. Viclav Sedldcek,
CSc., z fakulty informatiky Masarykovy univerzity.

Vlastni soutéz CEOI se svym charakterem maximalnim moznym zpi-
sobem priblizuje k IOI a i v leto$nim roce se prikrocilo k automatickému
hodnoceni predlozenych feSeni. Na soutézi resi kazdy z Gcastnik na po-
¢itaci ve dvou soutéznich dnech vzdy po tfech soutéznich tilohéch. Maxi-
malni bodovy zisk tak mtize ¢init 200 bodu. Letos$ni ro¢nik byl charakte-
risticky tim, Ze organizatori stanovili napiiklad ve srovnani s IOI pro béh
soutéznich dloh na pocitaci nad testovacimi daty nezvykle ostré ¢asové
limity, které v maximalni mozné mire provérily efektivitu vypracovanych
reSeni.

Na zédkladé poctu dosazenych bodi, udélenych na zékladé vysledki
testi softwarovych produktti na pocitaci, udélila mezinirodni jury
2 zlaté medaile (za 182-180 dosazenych bodi), 4 st¥ibrné medaile (za
173-127 bodi) a 7 bronzovych medaili (za 122-105 bodi).
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Vysledky soutézicich z Ceské republiky:
17. Veroslav Kaplan, 90 bodli, gymnézium na tf. kpt. JaroSe, Brno,
20. Mikulds Patocka, 78 bodi, gymnazium na tf. kpt. JaroSe, Brno,
21. Jan Kratochvil, 64 bodl, gymnazium U libenského zamku,
Praha 8, '
25. Martin Drab, 41 bodi, gymnazium U libeniského zamku, Praha 8.

Druzstvo Ceské republiky neziskalo zadnou medaili. Neoficialni poradi
zucastnénych zemi ukazuje nasledujici tabulka.

1. Polsko 621 5. Ceska republika 273
2. Slovensko 589 6. Madarsko 259
3. Rumunsko 405 7. Slovinsko (3 soutézici) 177
4. Chorvatsko 362

Presto se vSak ukazuje, ze CEOI je velice uziteCnym stfetnutim mladych
programaétorti pro jejich odborny riist a druzstvo Ceské republiky by na
. ni v pristich ro¢nicich nemélo chybét.

Soutéz byla slovenskymi organizatory velmi dofe piipravena. Slav-
nostni zahdjeni 3. CEOI se konalo v Primacialnim palaci za ¢asti ¢elnych
predstaviteli mésta, Univerzity Komenského a funkcionari Slovenskej in-
formatickej spolo¢nosti, slavnostni vyhlaseni vysledk se konalo za tcasti
slovenské televize v prostorach konzervatore.

Pristi 4. roénik CEOI se bude konat v ¢ervenci 1997 v Polsku. Organi-
zatori hodlaji na tuto soutéz pozvat dale druzstva z Ukrajiny a Béloruska
a jako hosty i druzstva ze Svédska a USA, ktera o tuto tiast projevila
zdjem.
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8. mezindrodni olympidda v informatice

Na konci &ervence se sjeli nejlepsi mladi programétofi z celého svéta do
madarského mésta Veszprém. Konal
se tam jiz osmy ro¢nik mezinarodni
olympiady v informatice (IOI — In-
ternational Olympiad in Informa-
tics). Soutéze se zucastnilo celkem
215 studentt stfednich kol z 56 ze-
mi. Mezi nimi nechybé&lo ani Ceské reprezentani druzstvo. Na$i zemi
zastupovali nejaspésnéjsi resitelé celostatniho kola 45. roniku matema-
tické olympiady — kategorie P, a sice Daniel Kral (gymnazium Zlin, Lesni
&tvrt), Stanislav Mikes (gymnazium Ceské Budgjovice, Jirovcova), Robert
Spalek (gymnazium Brno, tf. kpt. Jarose) a Tomas Tichy (gymnazium
Pardubice, Dasick4 ul.). Vedoucimi eské delegace byli doc. RNDr.. Vic-
lav Sedldcek, CSc., z Fakulty informatiky Masarykovy univerzity v Brné
a RNDr. Pavel Topfer, CSc., z Matematicko-fyzikalni fakulty Univerzity
Karlovy v Praze.

Madarsti organizatofi zvolili pro usporddani olympiddy hezké a po-
klidné mésto Veszprém lezici nedaleko Balatonu. VSichni Géastnici byli
ubytovani v interndtech mistnich Skol, vlastni soutéz probihala v prosto-
rach krasného moderniho gymnézia. Stacilo jen rozmistit do tiid nékolik
stovek novych osobnich poéita¢i — nékteré pfimo pro soutéz, jiné pro
samostatnou praci soutézicich ve volném &ase a dalsi pro vedouci viech
delegaci.

Tym odbornych pracovnik z madarskych univerzit pfipravil velmi
pékné a zajimavé soutézni tlohy. V. kazdém ze dvou soutéZnich dni fefili
acastnici olyfnpié,dy po tfech prikladech. Na svou praci méli vzdy pét
hodin &asu. Pozadovanym vysledkem kazdé tilohy byl odladény program.
Soutézici nesméli pouzivat z4dné vlastni pomticky ani pisemné materiély,
k dispozici méli pouze pridélené osobni pocitace. Pfi své praci mohli pou-
Zivat programovaci jazyky Pascal, C/C++ a Basic. Odevzdané programy
byly plné automaticky testovany pomoci piredem pfipravenych tajnych
sad testovacich dat. Pri testovani se sledovala nejen spravnost vysledki,

Internationdl Olympiad
in Informatics

National Committee,
VEZZPREM Johnvon Neumann Computer Society
25 July-1 August  H-1054 Budapest, Bithori u. 16.
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ale také doba vypoétu. Za spravny a dostatetné rychly vypocet programu
s kazdymi testovacimi vstupnimi daty ziskal FeSitel nékolikabodové oce-
néni. Kazdy den bylo mozné dosdhnout maximélné sta bodd. To se vSak
v prvnim soutéZnim dnu nepodafilo nikomu, zatimco ve druhém dnu
soutéze bylo ,stobodovych resiteli“ vice.

Utastnici s nejvys$imi bodovymi zisky obdrZeli na z4vér soutdze me-
daile a hodnotné vécné ceny. Krasné medaile vyrobila zvlast pro tuto
olympiddu svétoznama porcelanka Herend lezici nedaleko Veszprému. -
Celkem bylo udéleno 20 zlatych, 36 stfibrnych a 52 bronzovych medai-
li. Cesti reprezentanti zakonéili své vystoupeni na olympiadé tradi¢né
vyborné, vSichni ¢tyfi se umistili na medailovych mistech. Vynikajicim
uspéchem je pak absolutni vitézstvi Daniela Krdila v celé soutézi. Zlatou
medaili a 1. misto ziskal za plnych 196 bodd z 200 moznych. Ostatni
t¥i soutézici z Ceské republiky obdrZeli bronzové medaile s nasleduji-
cim umisténim: Tomds$ Tichy 71.-72. misto (133 bodi), Stanislav Mikes
84.-89. misto (116 bodt) a Robert Spalek 95.-98. misto (111 bodi). ‘

1. Cina 736 11. Thajsko 558
2. Rusko 709 12. Ceska republika 556
3. Slovensko 684 13. Bélorusko 535
4. Polsko . 682 14. Chorvatsko 531
5. Rumunsko 652 15. Vietnam 515
6. Tchajwan 647 16. Bulharsko 507
7. Litva 611 17.-18. Estonsko 497
8. Irén 607 Madarsko 497
9. Jugoslavie 575 19. Némecko 469
10. Korea . 565 20. Turecko 458

Texty soutéZnich tloh

1. Hra (30 bodt)

Dva hraci hraji nésledujici hru. Hraci plan je tvofen fadou kladnych
celych ¢isel. Hradi se pravidelné stfidaji na tahu. Hrag, ktery je na tahu, si
vezme Cislo bud z levého, nebo z pravého konce Fady. Toto €islo je odstra-
néno z hraciho planu. Hra konéi ve chvili, kdyZ jsou odebrana z hraciho
planu vSechna ¢isla. Prvni hra¢ vyhrava, pokud soucet jim odebranych
Cisel je alesponi roven souctu ¢isel odebranych druhym hracem. Druhy
hraé hraje nejlep$im moZnym zpisobem. Prvni hra¢ za¢ina hru. Pokud
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hraci plan obsahuje na zaC4tku hry sudy pocet Cisel, potom existuje vy-
hréavajici strategie pro prvniho hréace.

Napiste program, ktery implementuje vyhravajici strategii prvniho
hrace. Odpovédi druhého hrace jsou poskytovany danym pocitacovym-
programem. Oba hraci spolu komunikuji pomoci tfi procedur z modulu
Play, ktery je vam k dispozici. Jsou to procedury StartGame, MyMove
a YourMove. Prvni hra¢ za¢ind hru voldnim procedury bez parametra
StartGame. Pokud prvni hra¢ svym tahem odebira ¢islo z levého konce
dané fady ¢isel, provede proceduru MyMove (’L’). Podobné provedeni pro-
cedury MyMove(’R’) oznamuje druhému hraci, Ze si prvni hra¢ vybral
¢islo z pravého konce fady. Druhy hrag, tj. podita¢ovy program, provadi
svij tah okamzité. Prvni hra¢ se dozvi jeho tah zavolanim procedury
YourMove (C), kde C' je znakova proménni (v jazyce C/C++ volani pro-
cedury zapiSete ve tvaru YourMove (&C)). Hodnotou C je ’L’ nebo 'R’
podle toho, zda druhy hra¢ odebral ¢islo z levého nebo pravého konce
rady.

Vstupni data. Prvni fddek vstupniho souboru INPUT.TXT obsahuje
pocateéni velikost N hraciho planu (podet &isel v fadé). Cislo N je sudé
a 2 < N £ 100. Zbyvajicich N fadkt vstupniho souboru popisuje hraci
plan zleva doprava. Kazdy z téchto N radka obsahuje jedno ¢islo zadané
fady. Kazdé cislo je rovno nejvyse 200.

Vystupni data. Po skonceni hry zapiSe vas program vysledek do vy-
stupniho souboru OUTPUT.TXT. Soubor obsahuje jediny fadek se dvéma
celymi isly. Prvnim Cislem je soucet ¢isel odebranych prvnim hracem,
druhé &islo je souctem ¢isel odebranych druhym hraem. V&3 program
musi hru skutec¢né hrat a vysledek musi odpovidat pribéhu hry.

Piiklad vstupu a vystupu. Nasledujici obrazek ukazuje vstupni soubor
obsahujici po¢ateéni hraci plan a mozny vystupni soubor.

INPUT.TXT OUTPUT. TXT
15 14

N UTLO NSO
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2. Opracovavani vyrobki (30 bodi)

V tovarné pfacuje vyrobni linka. S kazdym vyrobkem je nutno pro-
vést dvé operace: nejprve operaci ,A“, potom operaci ,B“. Pro kazdou
z téchto operaci je k dispozici nékolik stroji. Obrazek 40 znézornuje
uspofadani vyrobni linky, kterd pracuje nasledujicim zpisobem. Stroj
provadéjici operaci ,A“ vezme vjrobek ze vstupni palety, provede s nim
operaci ,A“ a umisti vyrobek do pomocné palety. Stroj typu ,,B“ bere
vyrobky z pomocné palety, provadi s nimi operaci ,,B“ a pak je uklada do
vystupni palety. VSechny stroje mohou pracovat zaroven nezavisle jeden
na druhém, velikost palet neni omezena. Stroje maji rtizné parametry,
pro kazdy stroj znadme jeho dobu opracovavani vyrobku.

Obsah vstupni palety: Oooooooooo

: Stroje typu ,,A“:

Obsah pomocné palety: EEERN

Stroje typu ,B“: [B1]| [B2| |[B3]

Obsah vystupni palety: I XXX EX XXX
Obr. 40

Urcete nejkratsi ¢as, ve kterém mohou byt dokonéeny operace ,A“
pro viech N vyrobkd, je-li opracovavani vyrobki zahdjeno v ¢ase 0 (pod-
uloha A). Déle vypo¢téte minimdlni ¢as, ktery je potfebny pro dokonceni
obou operaci se viemi N vyrobky (podialoha B).

Vstupni data. Soubor INPUT.TXT je tvoren péti fadky s kladnymi ce-
lymi ¢isly. Prvni fadek obsahuje ¢islo IV, které predstavuje celkovy pocet
vyrobkt (1 £ N £ 1000). Na druhém fadku je uveden pocet M; stroju
typu ,A“ (1 £ M; < 30). Na tietim faddku je M; kladnych celych ¢isel,
ktera udavaji dobu opracovavani pro jednotlivé stroje typu ,A“. Ctvrty
a paty faddek obsahuji podobné& pocet M strojt typu ,B¢ (1 £ M, < 30)
a dobu opracovavani pro jednotlivé stroje typu ,,B“. Dobu opracovavani
vyrobku méfime v jednotkach ¢asu. Tato doba zahrnuje i Cas nezbytny
pro pienos vyrobku z palety pfed opracovanim a cas na uloZeni opraco-
vaného vyrobku na paletu. Kazdy z ¢asovych tdaji je nejméné 1 a nej-
vyse 20.

Vystupni data. Vystupni soubor OUTPUT . TXT je tvoren dvéma fadky.
Prvni fadek obsahuje jedno kladné celé ¢islo predstavujici fesSeni pod-
tlohy A. Druhy fadek obsahuje jedno kladné celé ¢islo — reSeni pod-
alohy B.
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Priklad vstupu a vystupu. Nasledujici obrazek ukazuje mozny vstupni
soubor a jemu odpovidajici vystupni soubor.

INPUT.TXT OUTPUT. TXT
) 3

2 5

11

3

314

3. Sit gkol (40 bodt)

Urdity potet $kol je zapojen do poéitacové sité. Skoly maji mezi sebou
uzavieny dohody, podle kterych si zasilaji software. Kazda skola ma se-
znam $kol, kterym zasild software (,zadsobované $koly“). Pokud je $kola
B na seznamu Skol zasobovanych ze sSkoly A, pak Skola A nemusi byt
nutné na seznamu $kol zasobovanych skolou B.

NapiSte program, ktery spoc¢itd minimalni pocet Skol, kterym musi
byt zaslana kopie nového softwaru, aby byl tento software postupnym
predavanim mezi Skolami na zakladé uzavienych dohod nakonec rozeslan
na vSechny Skoly v siti (podiloha A).

Dal$im tkolem je navrhnout modifikaci dosavadnich smluv mezi §ko-
lami tak, aby stacilo zaslat novy software na jednu libovolnou $kolu
a pritom bylo jisté, Ze se v siti rozsifi na vSechny Skoly. Vypoctéte mini-
malni pocet novych smluv, které je tfeba uzavrit, aby po zaslani nového
softwaru na jednu libovolnou $kolu obdrzely tento software nakonec po-
stupnym $ifenim v siti vSechny Skoly (podiloha B). Jedna nova smlouva
znamend pridani jedné Skoly do seznamu zasobovanych kol jedné jiné
skoly. .

- Vstupni data. Prvni fadek vstupniho souboru INPUT.TXT obsahuje
jedno celé ¢éislo N, kterym je celkovy pocet skol v siti (2 £ N < 100).
Tyto skoly jsou oznaceny celymi kladnymi ¢isly od 1 do N. Kazdy z na-
sledujicich N fadki obsahuje seznam zasobovanych §kol. Radek ¢islo i +1
obsahuje ¢isla $kol zasobovanych $kolou ¢islo 7. Kazdy seznam je ukoncen
nulou. Pokud $kola nezasobuje zadné jiné skoly (jeji seznam zasobovanych
skol je prazdny), pak na prislusném radku vstupniho souboru je pouze
nula.

Vystupni data. Vystupni soubor OUTPUT . TXT je tvoren dvéma fadky.
Prvni radek obsahuje jedno celé kladné ¢islo predstavujici feSeni pod-
alohy A. Druhy radek obsahuje feSeni podilohy B.
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Priklad vstupu a vystupu. Obrazek ukazuje moZny vstupni soubor
a jemu odpovidajici vystupni soubor.

INPUT.TXT OUTPUT . TXT
5 1

2430 2

450

0

0

10

4. Magické ¢tverce (40 bodi)

Poté, co pan Rubik vynalezl Gspésnou magickou kostku, navrhl také
jeji rovinnou verzi a nazval ji magické Ctverce. Je to obdélnik slozeny
z osmi Ctverci stejné velikosti (obr. 41).

Obr. 41. — Pocatecni konfigurace.

V této tloze budeme uvazovat verzi, v niz jsou ¢tverce obarveny ruz-
nymi barvami. Barvy jsou oznaleny celymi ¢éisly od 1 do 8 (obr.41).
Konfigurace obdélniku je popséna posloupnosti osmi ¢isel. Jsou to ¢isla
barev v tom poradi, jaké ziskdme pri prochéazeni jednotlivych ¢tverct
ve sméru pohybu hodinovych rucicek pocinaje v levém hornim rohu ob-
délniku. Naptiklad konfigurace na obr.41 je popsana posloupnosti ¢isel
(1,2,3,4,5,6,7,8). Tato konfigurace je zaroven pocate¢ni konfiguraci.

Mezi konfiguracemi lze prechazet pomoci tii zakladnich operaci ozna-
¢enych pismeny ’A’, 'B’ a ’C’:

"A’: vyména horniho a dolniho fadku,

'B’: jednoduchy cyklicky posuv celého obdélniku smérem vpravo,

’C’: jednoduché rotace prostfednich ¢tyt ctverct ve sméru pohybu ho-
dinovych rucicéek.

Vsechny konfigurace jsou dosazitelné z pocateéni konfigurace prova-
dénim téchto tii zdkladnich operaci. Vyznam zakladnich operaci ukazuje
obr. 42. Cisla vné obdélniku oznacuji pozice jednotlivych &tverct. Jestlize
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¢tverec na pozici p obsahuje ¢islo i, znamena to, Ze provedenim prislugné
operace se ¢tverec z pozice ¢ presunul na pozici p.

1

2 3 4 1 2 3 4 1 2 3 4

Al 8|17 |61|5 Bl4|1]2)|3 Cl1(7]|2]4
1121314 518|716 613]5

8 7 6 5 8 7 6 5 7 6 5

Obr. 42. — Zakladni operace.

NapiSte program urcujici posloupnost zakladnich operaci, pomoci niz
je pocatecni konfigurace z obr. 41 prevedena na urcenou cilovou konfigu-
raci (podiloha A). Pokud délka nalezené posloupnosti nepiesdhne 300,
ziskate dalsi dva body (podialoha B).

Vstupni data. Vstupni soubor INPUT.TXT obsahuje jediny radek. Na
ném je zapsano 8 celych kladnych ¢isel popisujicich cilovou konfiguraci.

Vystupni data. Na prvnim fadku vystupniho souboru OUTPUT. TXT je
zapsana délka L nalezené posloupnosti operaci. Dalsich L fadka popisuje
nalezenou posloupnost operaci. Kazdy z nich obsahuje na prvni pozici
vzdy jedno z pismen ’A’, 'B’, ’C’ — oznaceni piislusné zékladni operace.

Pomiicka. V pracovnim adresari ulohy méte k dispozici program
MTOOL.EXE, ktery vdm umozni hrat si s magickymi ¢tverci. Zavoldnim
programu ,mtool input.txt output.txt® mizete experimentovat s ci-
lovou konfiguraci a s posloupnosti operaci.

Priklad vstupu a vystupu. Néasledujici obrazek ukazuje piiklad vstup-
niho a jemu odpovidajiciho vystupniho souboru.

INPUT.TXT OUTPUT.TXT
26845731 7

B

C

A

B

C

C

B
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5. Nejdelsi prefix (40 bodu)

Strukturu nékterych biologickych objektu lze reprezentovat posloup-
nosti jejich zakladnich prvka. Tyto prvky budeme oznacovat velkymi
pismeny. Biology zajima moznost rozklddat dlouhé posloupnosti prvki
na mensi. Takové kratké useky budeme nazjvat komponenty. Rekneme, ze
posloupnost S mize byt vytvorena z dané mnoziny komponent P, jestlize
v mnoziné P existuje takovych n komponent p1,...,p,, jejichz zietéze-
nim ziskdme posloupnost S. Zietézenim komponent py, ..., p, rozumime
jejich spojeni v daném poradi, a to bezprostfedné za sebou bez mezer.
Nékteré komponenty se v tomto zretézeni mohou vyskytnout vicekrat.
VsSechny komponenty obsazené v uvazované mnoziné P nemusi byt ve
zietézeni pouzity. Napiiklad posloupnost ABABACABAAB muze byt
vytvofena z mnoziny komponent {A, AB, BA,CA, BBC}.

Prvnich K znaku posloupnosti S tvori prefix posloupnosti S délky K.
Napiste program, ktery bfe(:te ze vstupu mnozinu komponent P a po-
sloupnost prvka 7. Program spoéita délku nejdelsitho prefixu posloup-
nosti 7', ktery miiZze byt vytvoren z komponent obsazenych v P.

Vstupni data. Vstupni data jsou uloZena ve dvou souborech. Soubor
INPUT.TXT popisuje mnozinu komponent P, soubor DATA.TXT obsahuje
zkoumanou posloupnost 7. Prvni faddek souboru INPUT.TXT obsahuje
Cislo N, které piedstavuje pocet komponent v mnoziné P (1 £ N < 100).
Kazda komponenta je pak popsana na dvou po sobé jdoucich radcich.
Prvni z nich udava délku L komponenty (1 £ L £ 20), druhy obsahuje
fetézec velkych pismen (z rozmezi od ’A’ do ’Z’) délky L. VSechny zadané
komponenty jsou navzajem ruzné.

Prvni pozice kazdého fadku v souboru DATA . TXT obsahuje jedno velké
pismeno. Na poslednim fadku tohoto souboru je na prvni pozici znak
teCka (’.”). Délka posloupnosti 7' je alespon 1 a nejvyse 500 000.

Vystupni data. Vystupni soubor OUTPUT . TXT obsahuje jediné ¢islo —
délku nejdelsiho prefixu posloupnosti 7', kterou lze vytvorit z mnoziny
komponent P. :

Piiklad vstupu a vystupu. Nésledujici obrazek ukazuje dva vstupni
soubory a jim odpovidajici vystupni soubor.

6. Tridéni posloupnosti tii hodnot (20 bodi)

Tridéni je jednim z nejlastéjsich tkoli provadénych pii vypoctech.
UvaZzujme zvlastni problém t¥idéni, kdy klicové polozky ve tridénych za-
znamech mohou nabyvat nejvySe tii riznych hodnot. Tato situace na-
stane napfriklad pii t¥idéni drZiteli medaili podle druhu ziskané medaile
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INPUT.TXT DATA.TXT OUTPUT. TXT
5 A 11
1 B
A A
2 B
AB A
3 C
BBC A
2 B
CA A
2 \ A
BA B
C
B

tak, aby drzitelé zlatych medaili byli prvni, po nich nésledovali drzitelé
stfibrnych medaili a nakonec drzitelé bronzovych medaili.

V této uloze budou pripustnymi hodnotami klica celd ¢isla 1, 2 a 3.
Pozaduje se setfidit zaznamy podle hodnot kli¢i v neklesajicim poradi.
Tridéni musi byt provedeno posloupnosti operaci vymén. Pro kazdou ope-
raci vymény jsou dana dvé ¢isla p, ¢ urcujici pozici ve tiidéné posloup-
nosti. Operace vymény spoCivd ve vzajemné zaméné prvka ulozenych
v posloupnosti na pozicich p, q.

Je dana posloupnost hodnot kli¢t. NapiSte program, ktery urcuje mi-
nimalni pocet operaci vymény, pomoci nichz lze zadanou posloupnost
setfidit (podialoha A). Déle program nalezne odpovidajici posloupnost
operaci vymény pro toto t¥idéni (podtloha B).

Vstupni data. Prvni rfadek vstupniho souboru INPUT.TXT obsahuje
pofet zaznamii N (1 £ N £ 1000). Kazdy z nésledujicich N fadkd
obsahuje jednu hodnotu klice.

Vystupni data. Prvni fadek vystupniho souboru OUTPUT.TXT obsa-
huje minimalni pocet operaci vymény L, které zajisti setfidéni zadané
posloupnosti (vysledek podalohy A). Néasledujicich L fadkd vystupniho
souboru popisuje posloupnost vymén v tom poradi, v jakém budou pro-
vadény. Na kazdém z téchto radka jsou zapsana dvé Cisla p, ¢ udavajici
pozice vyméhovanych prvki (vysledek podilohy B). Pozice v posloup-
nosti jsou ocislovany celymi ¢isly od 1 do V.

Piiklad vstupu a vystupu. Néasledujici obrazek ukazuje priklad vstup-
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niho a jemu odpovidajiciho vystupniho souboru.
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