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O průběhu 49. ročníku matematické olympiády

Soutěž Matematická olympiáda ve školním roce 1999/2000 pořádaly pro

žáky středních a základních škol Ministerstvo školství, mládeže a tě-
lovýchovy České republiky ve spolupráci s Jednotou českých matema-
tiků a fyziků a Matematickým ústavem Akademie věd ČR. Soutěž řídil
ústřední výbor matematické olympiády (TJV MO) prostřednictvím ob-
lastních a okresních výborů matematické olympiády.

Cílem soutěže je vyhledávání žáků talentovaných v matematice, pro-
bouzení jejich hlubšího zájmu o matematiku a rozvíjení jejich matematic-
kých schopností. Ve školním roce 1999/2000 se uskutečnil její 49. ročník.

V průběhu 49. ročníku MO se konala dvě zasedání UV MO, první dne
14. prosince 1999 v Praze, druhé 10. dubna 2000 na gymnáziu v Bílovci
při celostátním kole kategorie A. Bylo projednáváno hodnocení průběhu
soutěže, zabezpečení celostátních soustředění úspěšných řešitelů MO, pří-
prava na MMO, organizace dalších kol soutěže a v neposlední řadě i další
spolupráce mezi českým a slovenským výborem olympiády.

V organizaci vlastní soutěže nedošlo к žádným podstatným změnám.
Pro žáky středních škol byla soutěž organizována ve čtyřech kategoriích
А, В, С a P. Kategorie A byla určena žákům 3. a 4. ročníků středních škol,
kategorie В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci 1. roč-
níků. Pro žáky všech tříd středních škol byla určena ještě kategorie P,
zaměřená na úlohy z programování a matematické informatiky.

V kategoriích А, В a C má I. kolo dvě části. V první části řeší soutěžící
6 úloh doma nebo v matematických kroužcích a mohou se přitom radit se

svými učiteli, vedoucími kroužků apod. Druhá část má formu klauzurní
práce, v níž řeší žáci tři úlohy v omezeném čase 4 hodin. Řešitelé, kteří
úspěšně projdou prvním kolem, jsou pozváni do druhého (oblastního)
kola soutěže, kde řeší čtyři úlohy opět v limitu čtyř hodin.

V kategoriích A a P se koná ještě třetí, celostátní kolo. Celostátní
kolo 49. ročníku se uskutečnilo ve dnech 9.-12. dubna 2000 (kategorie A)
a 13.-15. dubna 2000 (kategorie P) na Gymnáziu M. Koperníka v Bílovci.
Obě kola byla velmi pečlivě připravena, za což je nutno poděkovat celému
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kolektivu učitelů bíloveckého gymnázia a především pak řediteli školy
Mgr. Václavu Vaňkovi.

Na základě jednotné koordinace úloh II. kola kategorie A bylo к účasti
ve III. kole pozváno 51 nejlepších řešitelů z celé České republiky. Soutěž-
nimi dny byly 10. a 11. duben 2000. Žákům byly tradičně předloženy
v každém z obou dnů vždy 3 úlohy. Na řešení každé trojice úloh měli žáci
rezervovány 4,5 hodiny čistého času a každá úloha byla přitom hodnocena
maximálně 7 body.

V rámci doprovodného programu dostali soutěžící možnost navštívit
ostravské planetárium a po soutěži pak absolvovali výlet do Kopřivnice,
kde si prohlédli nově vybudované muzeum TATRY, a do Štramberku,
kde navštívili dominantu města Trúbu.

Vybraná družstva se zúčastnila mezinárodní matematické olympiády
i mezinárodní olympiády v informatice. Těmto soutěžím je věnována
samostatná kapitola v závěru této ročenky. Přípravě českého družstva
na mezinárodní matematickou olympiádu bylo věnováno soustředění
17.-21. dubna 2000 v Jevíčku.

К matematické olympiádě vedle vlastní soutěže patří i řada doprovod-
ných akcí pro talentované žáky. Z akcí pořádaných oblastními výbory MO
к nim zejména patří semináře pro řešitele MO a instruktáže pro učitele.
Pro nejúspěšnější řešitele oblastních kol MO a korespondenčních semi-
nářů byla pořádána (většinou týdenní) soustředění.

Ústřední výbor MO zajišťoval již tradiční soustředění úspěšných řeši-
telů úloh MO a FO pro žáky nematurujících ročníků. Proběhlo ve dnech
28. května až 9. června 2000 v Jevíčku.

Soutěžní úlohy I. (domácího) kola všech kategorií matematické olym-
piády jsou publikovány v tzv. soutěžních letácích. Úlohy jsou dále
zveřejňovány v časopisech Matematika, fyzika, informatika a Rozhledy
matematicko-fyzikální Na pomoc učitelům jsou pak rozesílány na školy
komentáře к úlohám.

Tímto svazkem, který držíte v ruce, zaplňujeme mezeru v chybějících
ročenkách, jež přestaly v 90. létech v SPN vycházet. Postupně by se
tak měly objevit i ostatní chybějící ročníky (43, 44, 46-48), neboť jejich
těžištěm je zejména velký počet zajímavých a originálních úloh, které
by jinak zůstaly ukryty v soukromých archivech. Těšíme se na váš ohlas
a připomínky. Zároveň vychází i ročenka minulého 53. ročníku MO.

Autoři ročenky jménem Ústředního výboru MO děkují touto cestou
všem organizátorům soutěže, především pak učitelům za jejich oběta-
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vou spolupráci a za péči, kterou věnují svým žákům. Zároveň vyzývají
všechny zájemce o spolupráci při tvorbě zajímavých úloh. Zkuste zažít
pocit radosti z toho, že objevíte svou úlohu i se svým jménem v soutěžním
letáku.

Návrhy na soutěžní úlohy pro kategorie А, В a C laskavě zasílejte na
adresu předsedy úlohové komise MO doc. RNDr. Jaromíra Šimši, CSc.,
MÚ AV CR, Žižkova 22, 61600 Brno. Úlohová komise se schází zpravidla
dvakrát ročně za účasti českých i slovenských kolegů (v tomto ročníku
MO se schůzky konaly 24.-26. listopadu 1999 v Jevíčku a 10.-12. května
2000 v Modré na Slovensku).

Návrhy úloh vhodných pro kategorii P zasílejte na adresu doc. RNDr.
Pavla Topfera, CSc., MFF UK Praha, Malostranské nám. 25, 118 00
Praha 1. Návrhy úloh vhodných pro kategorie Z zasílejte na adresu
doc. Pavla Tlustého, CSc., Pedagogická fakulta Jihočeské univerzity, Je-
ronýmova 10, České Budějovice.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 49. ročníku MO

Kategorie
Oblast Celkem

A В C P
s u s и s и s и s и

Praha
Střední Čechy
Západní Cechy
Liberec
Ústí n. Labem

Východní Cechy
Jihlava
Brno
Zlín
Severní Morava

46 31
118 57

39 29
21 19
24 16
42 26
50 33

108 62
61 26

137 38

90 52
104 26

23 11

89 34
141 47

52 36
46 24
56 26
59 37
39 24

125 75
52 15

286 56

19 19
27 24
11 6

7 7
2 2

244 136
390 154
125 82

91 58
108 57
141 86

143 93
319 190

17 8
26 13
40 23
43 27
65 32
49 11

139 44

11 9
21 21
10 10
14 14

172 62
576 152

CR 646 337 596 247 945 374 122 112 2 309 1070

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 49. ročníku MO

Kategorie
Oblast Celkem

A В C P
s u s и s и s и s и

Praha
Střední Cechy
Západní Cechy
Liberec
Ústí n. Labem

Východní Cechy
Jihlava
Brno
Zlín
Severní Morava

18 7
22 6

6 1

7 0

2 1

123 74
142 41

82 47
55 15
50 14
83 37
81 19

185 83
57 10

152 87

23 14
51 9
29 11
19 1
13 1
26 3
30 2
58 16
23 1
38 20

50 29
26 10
11 5

6 2
13 3
22 9
23 5
32 12
12 1
44 21

32 24
43 16
36 30
23 12

922
35 25
21 11
74 49

7 1
21 6

9 0
14 4

813
56 42

CR 310 78 239 97 1010 427355 226 106 26

U ... počet úspěšných řešitelůS ... počet všech soutěžících
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše prvních deset
úspěšných řešitelů. Označení G znamená gymnázium, M, resp. MF za-
měření studijního oboru 01 Matematika, resp. 02 Matematika a fyzika.

Praha

Kategorie A

1. Pavel Kůs, GChD, Zborovská, Praha 5
2. David Chodounský, GChD, Zborovská, Praha 5
3. Jan Pipek, GJK, Parléřova, Praha 6
4. Jiří Koula, G U Libeň, zámku, Praha 8
5. Filip Jaroš, GChD, Zborovská, Praha 5
6. David Šálek, G Na Vítězné pláni, Praha 4
7. Jan Kulveit, G Ústavní, Praha 8
8. Martin Tancer, GChD, Zborovská, Praha 5

9.-11. Lenka Havrdová, G Písnická, Praha 4
Pavel Milar, G Bernarda Bolzana, V Holešovičkách, Praha 8
František Němec, GChD, Zborovská, Praha 5

Kategorie В

1.-2. Martin Klimeš, G Botičská, Praha 2
Jan Verfl, G Postupická, Praha 4

3. Ondřej Šimek, G U Libeňského zámku, Praha 8
4.-10. Martin Blažek, G Českolipská Praha 9

Josef Cibulka, G Štěpánská Praha 1
Petra Kocábová, G Hellichova Praha 1
Ondřej Kůrka, G Zborovská Praha 5
Alice Mašková, GJK, Parléřova, Praha 6
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Martin Suda, G Na Vítězné pláni, Praha 4
Václav Vlasák, G Korunní Praha 2

Kategorie C

1. Pavel Bažant, GChD, Zborovská, Praha 5
2. Jan Kadlec, GChD, Zborovská, Praha 5

3.-4. Martin Káldy, GChD, Zborovská, Praha 5
Vojtěch Matýska, GChD, Zborovská, Praha 5

5.-7. Jiří Hron, GChD, Zborovská, Praha 5
Martin Popel, G Nad Alejí, Praha 6
Petr Škoda, G Ústavní, Praha 8

8. Miroslav Rada, G Hellichova, Praha 1
9.-11. Jaroslav Kodym, G U Libeňského zámku, Praha 8

Jan Popelka, G Mezi školami, Praha 5
Jakub Šolc, SPŠST Panská 3, Praha 1

Kategorie P1.Roman Krejčík, GChD, Zborovská, Praha 5
2.-3. Martin Beránek, G Ohradní, Praha 4

Pavel Charvát, G Ohradní, Praha 44.Jiří Svoboda, GChD, Zborovská, Praha 5
5.-6. Jan Kadlec, GChD, Zborovská, Praha 5

Matyáš Novák, G Ústavní, Praha 8
7. Václav Jůza, G Špitálská, Praha 9

Střední Čechy

Kategorie A

1. Tomáš Hanzák, G Kladno
2. Ondřej Šerý, G a sport, škola Kladno

3.-4. Pavel Čížek, G Kralupy
Pavel Vališ, G Kralupy

5.-6. Jakub Jeřábek, G Hořovice
Miroslav Pištěk, G Sedlčany
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Kategorie В1.Tomáš Hanzák, G Kladno
2.-3. Martin Doubek, G Kladno

Ondřej Chochola, G Kladno
4.-6. Petr Kavánek, G Čáslav

Marek Pokorný, G Kladno
Jan Skoupý, G Příbram

7.-8. Zdeněk Poledník, G Beroun
Martin Werner, G Čáslav

9.-10. Lucie Koltzsiterová, G Benešov
Oldřich Svoboda, G Kolín VI

Kategorie C

1. Jan Lamač, G Mnichovo Hradiště
2. Pavel Čížek, G Kralupy

3.-4. Martin Kruliš, G Kolín V
Marek Šmíd, G Brandýs nad Labem

5. Thomas Prentis, G Kladno
6. Jiří Hyldebrant, G Vlašim

7.-8. Jiří Paleček, G Kladno
Radka Picková, GJP, Mladá Boleslav

9.-12. Pavel Brom, GJP, Mladá Boleslav
Ondřej Herout, G Nové Strašecí
Miroslav Nulíček, G Čáslav
Petr Procházka, G Čáslav

Kategorie P

1. Pavel Čížek, Dvořákovo GOA, Kralupy
2.-3. Miroslav Pištěk, GOA Sedlčany

Tomáš Vala, Dvořákovo GOA, Kralupy
4.-6. Ondřej Šerý, SpG Kladno-Sítná

Zdeněk Bulan, G Benešov
Jakub Maršík, G Benešov
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Jižní Čechy* • * • • • •

Kategorie A1.Jan Houštěk, G Pelhřimov
2.-3. Tomáš Dolejšek, G České Budějovice, Jírovcova

Tomáš Lusk, G České Budějovice, Jírovcova

Kategorie В

1.-2. Ondřej Břízek, G České Budějovice, Jírovcova
Jan Heyda, G České Budějovice, Jírovcova

3.-5. Inga Domračeva, G České Budějovice, Jírovcova
Richard Chudoba, G České Budějovice, Jírovcova
Jan Pospíchal, G Pelhřimov6.David Pospíšil, G České Budějovice, Jírovcova

7.-10. David Pražák, G České Budějovice, Jírovcova
Martin Sigmund, G České Budějovice, Jírovcova
Věra Bidlová, G České Budějovice, Jírovcova
Jan Švec, SPŠ Písek

Kategorie C

1.-2. Milan Straka, G Strakonice
O. Šedivý, G České Budějovice, Jírovcova

3. Jiří Danihelka, SPŠ Písek
4.-6. Tereza Cvejnová, G Písek

Pavel Kubas, G Jindřichův Hradec
Josef Machač, G Tábor
Jan Šedivý, G Tábor8.Daniel Kratochvíl, G České Budějovice, Jírovcova

9.-11. Kotrba, G Jindřichův Hradec
Radek Mlada, G Pelhřimov
Václav Profant, G Strakonice

Kategorie P

1.-2. Milan Straka, G Strakonice
Tomáš Lusk, G České Budějovice, Jírovcova
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Západní Čechy#####*@*##**#*

Kategorie A

1.-3. Jaromír Dobrý, G Plzeň, Mikulášské nám.
Václav Flaška, Svob. chebská škola, Cheb
Ondřej Suchý, G Plzeň, Mikulášské nám.

4. Jose/ Křišian, G Plzeň, Mikulášské nám.
5. Tomáš Matoušek, G Karlovy Vary

6.-8. Jaromír Chalupský, G Sušice
Ondřej Rucký, G Plzeň, Mikulášské nám.
Martin Setvín, G Plzeň, Mikulášské nám.

9. Petr Matas, G Klatovy
10.—11. Martin Kozák, G Klatovy

Jiří Skála, G Plzeň, Mikulášské nám.

Kategorie В

1. Josef Mládek, 1. G Plzeň
2.-4. Lenka Beranová, G Klatovy

Hana Medová, G Sokolov
Jindřich Poskočil, 3. G Plzeň

5. Zdeňka Kapešová, G Sokolov

Kategorie C

1.-2. Michal Bareš, 1. G Plzeň
Michal Kvíz, 1. G Plzeň

3.-4. Ladislav Lenc, 1. G Plzeň
Jaroslav Svoboda, 1. G Plzeň

5. Martin Jílek, G Domažlice
6.-7. Martina Smitková, 1. G Plzeň

Barbora Vostracká, 1. G Plzeň
8. Pavel Klesá, 1. G Plzeň

9.-10. Hana Kutáková, 1. G Plzeň
David Mareček, 1. G Plzeň
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Kategorie P

1. Ondřej Rucký, 1. G Plzeň

Ústí nad Labem•»«•«•«»•*•***

Kategorie A

1. iVe/čy Vostrá, G Děčín, Komenského nám.

Kategorie В

1.-3. Lukáš Janda, G Teplice, Čs. Dobrovolců
Pavel Šašek, G Ústí nad Labem, Stavbařů
Miroslav Šulc, G Ústí nad Labem, Stavbařů

Kategorie C

1. David Tórók, G Ústí nad Labem, Stavbařů
2.-3. Pavel Daniel, ZŠ Teplice III, Buzulucká

Tomáš Janata, G Most
4.-7. Ladislav Bartoš, G J. Jungmana, Litoměřice

Ondřej Honzl, G Podbořany
Tomáš Kozelek, G Kadaň
Jana Šindelářová, G Kadaň

8. Vít Šípal, G Ústí nad Labem, Jateční
9. Jan Kolařík, G Děčín, Komenského nám.

Kategorie P

1. Ladislav Prošek, G V. Hlavatého, Louny
2. Jan Blyka, G Most

Liberec«»♦#♦«>#»##♦*♦#♦#

Kategorie A

1. Jan Kynčl, GaSG Jilemnice
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Kategorie В

1. Ondřej Melich, G Jablonec, U Balvanu
2. Jiří Sláma, G Liberec, Jeronýmova

Kategorie C

1. Lukáš Bajer, GFXŠ, Liberec
2.-3. Terezie Párysová, GFXŠ, Liberec

Karel Pupík, G dr. Randy, Jablonec
4.-5. Jana Hornová, G Jablonec, U Balvanu

Soňa Charvátová, G dr. Randy, Jablonec
6. Roman Bém, GFXŠ, Liberec

7.-8. Eva Bóhmová, GFXŠ, Liberec
Ondřej Nešpor, GFXŠ, Liberec

9.-12. Pavel Grmela, GFXŠ, Liberec
Zuzana Klápšťová, G Jablonec, U Balvanu
Marek Sobota, G Liberec, Jeronýmova
Vratislav Žabka, G Frýdlant

Kategorie P

1. Martin Nečaský, G I. Olbrachta, Semily

Východní Čechy**•*••*•*•••*

Kategorie A

1. Martin Hroch, SPŠE Dobruška
2.-3. Michal Hroch, GJKT, Hradec Králové

Václav Jára, GJKT, Hradec Králové

Kategorie В

1.-3. Jan Hošek, GJKT, Hradec Králové
Jitka Kůhnová, GJKT, Hradec Králové
Ondřej Pokorný, G Chrudim

4. Martina Kubátová, GJKT, Hradec Králové
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5. Václav Šafář, G Broumov
6. Monika Smídová, G Havlíčkův Brod
7. Pavel Milhl, G Nová Рака

8.-9. Vojtěch Hladík, GJKT, Hradec Králové
Jin Sedlák, SPŠE Pardubice

Kategorie C1.Peír Rezek, G Litomyšl
2.-3. Petr Pošta, G Pardubice

Jan Prachař, G Rychnov n. K.
4.-5. Miroslav Hejna, G Rychnov n. K.

Lenka Matoulková, G Náchod
6. Tomáš Gubanec, GJKT, Hradec Králové

7.-10. Dana Chromíková, G Pardubice, Dašická
Štěpán Krtička, G Náchod
Hana Matoušová, G Litomyšl
Martin Zelenka, GJKT, Hradec Králové

Kategorie P

1. Tomáš Vyskočil, G Lanškroun
2. Roman Носке, G Pardubice, Dašická

Jihlava

Kategorie A

1. Zdeněk Černý, G Zdar nad Sázavou
2. Michaela Sedová, G Jihlava

Kategorie В

1. Vít Urbánek, G Jihlava
2. Jaromír Sír, GVM, Nové Město n. M.
3. Pavel Trnka, G Třebíč
4. Ondřej Kozdas, G Jihlava
5. Michal Musil, G Jihlava
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Kategorie С

1.-3. Josef Janák, G Velké Meziříčí
Jiří Lipovský, G Bystřice nad Pernštejnem
Jaroslav Pazdera, G Jihlava

4.-5. Jana Fabriková, G Velké Meziříčí
Ivo Kubita, GKP, Znojmo

6. Jindřiška Vábková, G Zdar nad Sázavou
7.-9. Miroslav Kaňka, G Třebíč

Vojtěch Mates, G Třebíč
Lukáš Vašek, Biskupské G Zdar nad Sázavou

10. Roman Matoušek, G Zdar nad Sázavou

Kategorie P

1. Petr Adam, G Třebíč

Brno•••*••••••••••••

Kategorie A

1. Jan Herman, G Brno, tř. Kpt. Jaroše
2.-3. Jiří Chaloupka, G Zidlochovice

Tomáš Protivínský, G Brno, tř. Kpt. Jaroše
4.-5. Alexandr Jevsejenko, G Brno, tř. Kpt. Jaroše

Rudolf Stolař, G Brno, tř. Kpt. Jaroše
6.-8. Ondřej Bystrý, G Brno, tř. Kpt. Jaroše

Jiří Cvachovec, G Brno, tř. Kpt. Jaroše
Tomáš Hikl, G Brno, Táborská

9. Jan Trojek, G Břeclav
10.-12. Pavel Dvořák, G Brno, tř. Kpt. Jaroše

Martin Ležatka, G Brno, tř. Kpt. Jaroše
Antonín Pavelka, G Brno, tř. Kpt. Jaroše

Kategorie В

1. Tomáš Protivínský, G Brno, tř. Kpt. Jaroše
2.-3. Petr Dadák, G Brno, Vídeňská
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Miroslav Frost, G Brno, Elgartova
4.-7. Jan Beneš, Biskupské G Brno

Karel Martišek, G Brno, Elgartova
Ema Tomášková, G Brno, tř. Kpt. Jaroše
Martina Vaníková, G Brno, Žižkova

8.-11. Šárka Buršová, G Šlapanice
Vladimír Hloušek, G Boskovice
Pavel Křupa, G Šlapanice
Hana Martinásková, G Brno, tř. Kpt. Jaroše

Kategorie C

1.-2. Sven Dražan, G Brno, tř. Kpt. Jaroše
Marek Krčál, G Brno, tř. Kpt. Jaroše

3. Robert Ganián, G Brno, Pastviny
4.-6. Jan Hladký, G Brno, tř. Kpt. Jaroše

Jan Kuchař, G Brno, tř. Kpt. Jaroše
Veronika Trnková, G Brno, tř. Kpt. Jaroše

7.-10. Lukáš Chvátal, G Brno, Vejrostova
Petra Kohoutková, G Brno, Žižkova
Antonín Pavelka, G Brno, tř. Kpt. Jaroše
Jaroslav Zůda, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Pavel Šimeček, G Brno, tř. Kpt. Jaroše
2. Miloslav Trmač, Biskupské G Brno

3.-4. Jiří Cvachovec, G Brno, tř. Kpt. Jaroše
Marek Sulovský, G Brno, tř. Kpt. Jaroše

5.-6. Václav Fiala, G Brno, tř. Kpt. Jaroše
Martin Vejnár, G Brno, tř. Kpt. Jaroše

Zlín

Kategorie A

1. Zuzana Špiritová, G Uherský Brod
2. Tomáš Potrusil, G Uherské Hradiště
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3.-4. Pavel Kočica, G Uherský Brod
Jan Kodovský, G Zlín, Lesní čtvrť

5. Libor Křižka, G Hodonín
6. Václav Blaha, G Uherský Brod

Kategorie В1.Josef Houser, G Zlín, Lesní čtvrť

Kategorie C

1.-3. Radek Krejčiřík, G Uherské Hradiště
Ludmila Obdržálková, G Uherské Hradiště
Jan Vávrys, GJAK, Uherský Brod

4.-6. Tomáš Kadlec, G Holešov
Jaroslav Kudlička, G Hodonín
Jiří Zámečník, GJAK, Uherský Brod

7.-8. Martin Cetkovský, G Zlín, Lesní čtvrť
Tomáš Dlabaja, G Holešov

9. Petr Fišer, G Kroměříž
10. Ondřej Kunčar, G Kroměříž

Kategorie P

1. Martin Zlomek, G Strážnice
2. Jiří Kazík, G Kunovice

« Severní Morava

Kategorie A

1. Jaroslav Hájek, GMK, Bílovec
2. Martin Holík, GMK, Bílovec
3. Jakub Bystroň, G Karviná

4.-6. Pavel Augustinský, G Havířov, Studentská
Jakub Krchák, GTGM, Vsetín
Jiří Simša, GJW, Prostějov

7.-11. Lucia Jarešová, GJŠ, Přerov
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Martin Kocurek, GTGM, Vsetín
Ondřej Kreml, GMK, Bílovec
Michal Malohlava, GMK, Bílovec
Jan Trčka, GMK, Bílovec

Kategorie В1.Jan Klesnil, GJŠ, Přerov
2.-3. Jaroslav Hájek, GMK, Bílovec

Libor Olšák, GMK, Bílovec
4.-7. Jakub Galgonek, GPB, Frýdek-Místek

Jan Kaluza, GPB, Frýdek-Místek
Lenka Skovroňová, GMK, Bílovec
Jan Zacios, G Ostrava 8-Poruba, Čs. exilu8.Lucia Jarešová, GJŠ, Přerov

9.-11. Jan Dostál, MGO Opava
Miroslav Moser, GMK, Bílovec
Jiří Peinlich, GMK, Bílovec

Kategorie C

1. Václav Cviček, GPB, Frýdek-Místek
2. Martin Kyslinger, G Šternberk
3. Ondřej Májek, ZŠ Opava, Otická

4.-6. Jan Chmelař, G Hranice na Moravě
Veronika Chromčíková, GJŠ, Přerov
Pavel Ludvík, GMK, Bílovec

7.-9. Jitka Halašová, GJW, Prostějov
Eliška Krainová, GMK, Bílovec
Tibor Vansa, Matiční G, Ostrava

10.-12. Pavel Jež, GPB, Frýdek-Místek
Lukáš Perůtka, G Hranice na Moravě
Eva Riedingerová, GJW, Prostějov
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Kategorie P

1. Jakub Bystroň, G Karviná
2. Martin Děcky, GMK, Bílovec
3. Jan Chrastina, G Třinec, Komenského
4. Pavel Petřek, GMK, Bílovec
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Výsledky celostátního kola 49. ročníku MO
kategorie A

Vítězové

1. Jan Houštěk, 7/7, G Pelhřimov
2. Jan Herman, 3/4 (M), G Brno, tř. Kpt. Jaroše
3. Jan Kynčl, 5/6, G Jilemnice
4. Jan Pipek, 7/8, G Praha 6, Parléřova

5.-6. Jaroslav Hájek, 2/4, G M. Koperníka, Bílovec
Ondřej Šerý, 7/8, G a sport, škola Kladno

7. Ondřej Suchý, 6/7, G Plzeň, Mikulášské nám.
8.-10. Josef Křišťan, 6/7, G Plzeň, Mikulášské nám.

Ondřej Rucký, 7/7, G Plzeň, Mikulášské nám.
Rudolf Stolař, 3/4 (M), G Brno, tř. Kpt. Jaroše

11.-12. Jan Kulveit, 1/1, G Praha 8, Ústavní
Tomáš Protivínský, 2/4, (M), G Brno, tř. Kpt. Jaroše

40 b.

37b.

36 b.

32 b.

31b.

31b.

27b.

26b.

26 b.

26 b.

25 b.

25 b.

Další úspěšní řešitelé

13. Martin Tancer, 2/4 (M), G Ch. Dopplera, Praha 5
14.-16. David Chodounský, 3/4 (M), G Ch. Dopplera, Praha 5

Filip Jaroš, 3/4 (M), G Ch. Dopplera, Praha 5
Jiří Koula, 3/4 (P), G Praha 8, U Libeňského zámku

17.-18. Tomáš Matoušek, 7/7, G Karlovy Vary
Pavel Vališ, 3/4, Dvořákovo G, Kralupy nad Vltavou

19.-20. Ondřej Bystrý, 4/4 (M), G Brno, tř. Kpt. Jaroše
Václav Flaška, 7/8, Svobodná chebská škola Cheb

21. Jaromír Dobrý, 1/1, G Plzeň, Mikulášské nám.
22. Ondřej Kreml, 3/4, G M. Koperníka, Bílovec
23. Pavel Augustinský, 1/1, G Havířov
24. František Němec, 3/4 (M), G Ch. Dopplera, Praha 5

23 b.

22 b.

22 b.

22 b.

21b.

21b.

20 b.

20 b.

19 b.

18 b.
17b.

16b.
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Výsledky celostátního kola 49. ročníku MO
kategorie P

Vítězové

1. Ondřej Rucký, 7/7, G Plzeň, Mikulášské nám.
2. Pavel Charvát, 7/7, G Praha 4, Ohradní
3. Jakub Bystrou, 7/7, G Karviná
4. Jin Svoboda, 6/8, G Ch. Dopplera, Praha 5
5. Matyáš Novák, 7/7, G Praha 8, Ústavní
6. Pavel Čížek, 5/8, Dvořákovo G, Kralupy nad Vltavou
7. Václav Jůza, 7/7, G Praha 9, Špitálská

41b.

39 b.

34 b.

33 b.

30 b.
29 b.

26 b.

Další úspěšní řešitelé

8. Miroslav Trmač, 7/8, Biskupské G, Brno
9. Roman Krejčík, 3/4, G Ch. Dopplera, Praha 5

10. Miroslav Pištěk, 7/7, GOA Sedlčany
11. Ondřej Šerý, 7/8, SpG Plzeňská, Kladno
12. Martin Beránek, 6/7, G Praha 4, Ohradní
13. Ladislav Prošek, 7/7, G V. Hlavatého, Louny
14. Zdeněk Bulan, 6/7, G Benešov
15. Martin Vejnár, 3/8, G Brno, tř. Kpt. Jaroše

25 b.

24b.

23 b.

22 b.

21b.

19 b.

18 b.
17b.
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Kategorie С

Texty úloh

C - I - 1

Při dělení jistého přirozeného čísla čísly 19 a 99 vyjdou jako zbytky dvě
prvočísla. Součet obou neúplných podílů se rovná 1 999. Určete dělené
číslo. (J. Šimša)

С - I - 2

Najděte všechny pravoúhlé trojúhelníky, ve kterých spojnice středů ve-

psané a opsané kružnice svírá s přeponou úhel 45 stupňů.
(M. Krállová)

C - I - 3

Zjistěte nej menší přirozená čísla к, pro něž platí jednotlivá tvrzení a),
b) a c): Obsadíme-li figurkami libovolných к polí šachovnice 8x8, pak
budou obsazena některá

a) tři sousední pole některého řádku,
b) tři sousední pole některé šikmé řady,
c) čtyři sousední pole některého řádku nebo sloupce.

Šikmou řadou rozumíme takovou skupinu polí, jejichž úhlopříčky jed-
noho z obou směrů leží na jedné a téže přímce. (J. Šimša)

С - I - 4

Jirka zhotovil papírový model pravidelného čtyřbokého jehlanu ABCDV
s podstavou ABCD. Když pak model podél čtyř hran rozřízl, bylo ho
možno rozvinout (bez překrytí) do roviny. Kolik různých sítí daného
jehlanu tak mohl Jirka dostat? Ukázalo se, že síť, kterou Jirka dostal,
měla tvar (nekonvexního) sedmiúhelníku. Vypočtěte úhel AVB v boční
stěně jehlanu. (P. Leischner)
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С - I - 5

V číselném výrazu

+ 1 + 2 + 3-4-5-6 + 7 + 8 + 9-10- 11- 12 + ...+

+595 + 596 + 597 - 598 - 599 - 600),

ve kterém chybí levá závorka, jsou postupně vypsána všechna přirozená
čísla od 1 do 600; před nimi se pravidelně opakují tři znaménka + a tři
znaménka —. Doplňte levou závorku do výrazu tak, aby vyšel výsle-
dek 378. (P. Cernek)

C - I - 6

Je dán pravidelný šestiúhelník KLMNOP. Sestrojte pravoúhlý trojúhel-
nik ABC s přeponou AB tak, aby jeho vrchol C ležel na úsečce NP, body
M, О, К ležely po řadě na přímkách AB, BC, CA a aby přímka NP
rozdělila trojúhelník ABC na dvě části se stejným obsahem.

(K. Čemeková)

C - S - 1

Najděte nejmenší přirozené číslo k, pro které platí: Vybereme-li libo-
volných к různých čísel z množiny {1,4,7,10,13,..., 1 999}, pak mezi
vybranými existují dvě různá čísla, jejichž součet se rovná 2 000.

(J. Zhouf)

C - S - 2

Čtverec ABCD a obdélník AEFD mají takovou vzájemnou polohu, že
bod В leží na kružnici vepsané trojúhelníku AEF. Vypočtěte poměr
délky a šířky obdélníku AEFD. (J. Šimša)

C - S - 3

Jestliže celé kladné číslo N vydělíme číslem 19 a získaný neúplný podíl
dále vydělíme číslem 99, vyjde nám při druhém dělení stejný neúplný
podíl a stejný zbytek, jako když původní číslo N vydělíme číslem 1 999.
Určete jak nejmenší, tak největší takové číslo N. (J. Šimša)
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С - II - 1

Ze dřeva je vyrobeno šest shodných pravidelných čtyřbokých jehlanů
a krychle. Stěna krychle je shodná s podstavami jehlanů. Určete poměr
povrchu krychle a tělesa, které vznikne slepením podstav jehlanů se stě-
námi krychle, je-li poměr objemů těchto těles 1 : 2. (P. Leischner)

С - II - 2

Milan zapsal za sebe několik prvních přirozených čísel, vynechal při tom
jen čísla 4, 9, 14, 19, 24, 29, ... Pak mezi zapsaná čísla vepsal střídavě
znaky minus a plus, takže dostal výraz

1-2 + 3- 5 + 6- 7 + 8-10 + 11 -12 + 13- 15 + ...

Nakonec ještě vepsal levou závorku za každý znak minus a stejný počet
pravých závorek zapsal až na konec výrazu:

1 - (2 + 3 - (5 + 6 - (7 + 8 - (10 + 11 - (12 + 13 - (15 + ...))))))

Výsledný výraz měl hodnotu 103. Kolik čísel v Milanově výrazu bylo?
(Zjistěte všechny možnosti.) (P. Černek)

C - II - 3

Jaký největší počet figurek je možno rozestavit na jednotlivá pole hrací
desky z obrázku tak, aby v žádné šikmé řadě nebyla figurkami obsazena

žádná tři sousední pole? Nezapomeňte zdůvodnit, proč větší počet figurek
takto rozestavit nelze. (Šikmou řadou rozumíme takovou skupinu polí,
jejichž úhlopříčky jednoho z obou směrů leží na jedné přímce.)

(J. Bábela)
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С - II - 4

V rovině jsou dány body A, L, M takové, že \AL\ = 6,3cm, \AM\ =
= 5,6 cm, \LM\ = 1,8 cm. Sestrojte lichoběžník ABCD, jemuž lze vepsat
kružnici, která se dotýká ramene BC v bodě L a základny CD v bodě M
(body dotyku se základnou AB a ramenem AD lichoběžníku ABCD
nejsou dány). (J. Šimša)
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Řešení úloh

C - I - 1

Obě dělení hledaného čísla N vyjádříme rovnostmi

N — 19a + p a N = 996 + q,

kde a, b jsou příslušné neúplné podíly &p,q příslušné zbytky. Podle zadání
jsou čísla p, q prvočísla, přičemž jako zbytky splňují nerovnosti p < 19
a q < 99. Nezáporná celá čísla a, b jsou dle zadání zase taková, že jejich
součet se rovná číslu 1 999. Proto platí 6= 1 999 —a a z dvojího vyjádření
čísla N,

N — 19a + p = 99 • (1 999 — a) + q,

odvodíme rovnost 118a + {p — q) — 197 901. Protože rozdíl zbytků p — q

je „malé“ číslo, přesněji —99 < p — q < 19, je podle poslední rovnosti
číslo 118a takový násobek čísla 118, jenž leží mezi čísly 197 901 — 19
a 197 901+99. Dělením 197 901 : 118 zjistíme, že 197 901 = 1677-118+15.
Proto nutně platí a = 1 677 (takže 6 = 322) a p — q — 15. Z poslední
rovnosti plyne, že jedno z prvočísel p, q je liché a druhé sudé, tedy q = 2
ар — 17. Zbývá vypočítat hodnotu N:

N = 19 • 1 677 + 17 = 99 ■ 322 + 2 = 31 880.

Poznámka. Můžeme také nejprve odhadnout velikost hledaného čís-
la N, například řešením „přibližné“ rovnice iV/19 + N/99 = 1 999, která
má kořen N = 31 865. Pak pomocí nejbližších násobků čísel 19 a 99
(19 • 1 677 = 31 863, 99 • 322 = 31 878, 19 • 1 678 = 31 882) určíme jediné
možné hodnoty neúplných podílů a, 6 (stačí diskutovat případy N <
< 31 878, 31 878 ^ N < 31 882 a TV ^ 31 882).

Odpověď: Hledané číslo je rovno 31 880.

С - I - 2

Část A. Předpokládejme, že kružnice vepsaná obecnému trojúhelníku
ABC se dotýká stran AB, ВС, AC po řadě v bodech P, Q a R (obr. 1).
Z hodin geometrie žáci ví o souměrnosti obou tečen vedených z daného
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A x P ВУ

Obr. 1

bodu к dané kružnici. Úsečky AP a AR jsou tudíž shodné stejně jako
úsečky BP a BQ a úsečky CQ a CR. Ukážeme, jak lze délky

ж = \AP\ = \AR\ У — \BP\ = \BQ\, z — \CQ\ — \CR\

vyjádřit pomocí délek stran a — \BC\, b = \AC\, c = \AB\. Podle obr. 1
platí

x + у — с, у + z — a, x + z = b,

což je soustava tří lineárních rovnic, z níž snadno plynou užitečné vzorce

a + b — cb+ c — a a + c — b
x — У = z =

22 2

Část B. Nyní předpokládejme, že ABC je pravoúhlý
trojúhelník s přeponou AB. Označme S střed kružnice
vepsané a Q, i? její body dotyku s odvěsnami ВС, AC
(obr. 2). Protože SQCR je pravoúhelník, jehož sou-
sedni strany SQ a SR jsou shodné (mají délku rov-
nou poloměru g kružnice vepsané), jedná se o čtverec
o straně g. Délku úseku z = \CQ\ jsme však vypočetli
v části A. Tak pro poloměr g kružnice vepsané pra-
voúhlému trojúhelníku s odvěsnami a, 6 a přeponou c
dostáváme vzorec

A

В
a + b — c

6 =
2

Část C. Předpokládejme konečně, že ABC je pravoúhlý trojúhelník
s přeponou AB, který splňuje podmínku z textu úlohy. Podle Thale-
tovy věty je střed O kružnice opsané trojúhelníku ABC středem pře-
pony AB. Podle zadání má jeden z úhlů SOA, SOB (kde S je střed
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vepsané kružnice) velikost 45°; nechť je to úhel SOB (obr. 3), jinak pro-
hodíme označení vrcholů A, B. Bod P, v němž se kružnice vepsaná dotýká
strany AB, je pak vnitřním bodem úsečky OB. Podle části A platí vzorec

\BP\ — i (a + c — 6), takže

a + c — b b — a

\OP\ = \OB\ - \BP\ = I 2 2

Vyjádřili jsme délku odvěsny OP pravoúhlého trojúhelníku SOP. Jeho
druhá odvěsna SP má podle části В délku \SP\ = g = |(a + b — c).
Protože však úhel SOP má dle předpokladu velikost 45°, je trojúhelník
SOP rovnoramenný:

\OP\ = |SP|, neboli Ь—^ =
a + b Q

-, neboli 2a — c.
2

Strany pravoúhlého trojúhelníku ABC jsou proto v poměru a : b : c =
= 1 : у/З : 2, takže jeho vnitřní úhly jsou, jak je dobře známo, 30°, 60°
a 90°. Pro úplnost je třeba ještě ukázat, že takový trojúhelník skutečně
požadovanou vlastnost má. To lze provést obrácením předchozího postu-
pu: z rovnosti 2a = c se odvodí rovnost \OP\ = |<SP|, která znamená,
že pravoúhlý trojúhelník SOP je rovnoramenný, takže úhel SOP má
skutečně velikost 45°.

A A

O O
\R

frsp p
S CЯС

Q
вв

Obr. 3 Obr. 4

Stručné řešení podle obr. 4: Úsečka SO svírá s přeponou AB úhel 45°,
právě když \OP\ = |SP|. Protože však \SP\ = \SR\ = \QC\ a |PB| =
= \QB\, je rovnost \OP\ = |5P| ekvivalentní s rovností \OP\ + |PP| =
= \QC\ + \QB\, tedy s rovností \OB\ — \BC\. Podle Thaletovy věty však
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vždy platí \OB\ = |OCj, takže rovnost \OB\ = \BC\ nastane, právě když
je trojúhelník OBC rovnostranný, tedy právě když úhel ABC měří 60°.

Odpověď: Požadovanou vlastnost mají právě ty pravoúhlé trojúhelní-
ky, jejichž ostré vnitřní úhly mají velikost 30° a 60°.

C - I - 3

Danou řadu 11 písmen rozdělíme nejprve zleva doprava na skupiny po

4, 4 a 3 písmenech. Protože nikde za sebou nestojí čtyři písmena B, je
v první skupině čtyř písmen obsaženo aspoň jedno A, totéž platí i o druhé
skupině čtyř písmen. Tak jsme dokázali, že v celé řadě 11 písmen jsou
aspoň dvě A. Mohou to být právě dvě A, jak ukazuje příklad řady BBBA-
BBBABBB. Podruhé rozdělíme celou řadu zleva doprava na skupiny po

3, 3, 3 a 2 písmenech. Protože nikde za sebou nestojí tři písmena A,
je v každé skupině tři sousedních písmen aspoň jedno B. Protože jsme
vyčlenili tři takové (disjunktní) skupiny, jsou v celé řadě aspoň tři pís-
měna B. Jinak řečeno, v celé řadě 11 písmen je nejvýše osm písmen A.
Může to být právě osm A, jak ukazuje příklad řady AABAABAABAA.
Kdybychom řešili obecnější úlohu o řadě N písmen A a B, ve které nikde
za sebou nestojí ani a písmen A, ani b písmen В, o odpovědi na stejnou
otázku by rozhodovala dělení N : a a N : b (se zbytky).

a) Všimněme si, že v každém řádkuje možné obsadit nejvýše šest polí
tak, aby mezi obsazenými nebyla žádná tři sousední pole (stačí rozdělit
všech osm polí řádku na skupiny 3, 3 a 2 sousedních polí a zopakovat
úvahu z předchozího odstavce). Proto lze na celé šachovnici obsadit nej-
výše 8 x 6 = 48 polí tak, aby v žádném řádku nebyla obsazena tři sou-
sedni pole. Jinak řečeno, obsadíme-li libovolných 49 polí, pak obsazena
budou některá tři sousední pole některého řádku. Tento jev nenastane
pro (jediné) obsazení 48 polí, které vidíte na obr. 5, kde jsou obsazená
pole vyznačena šrafováním (zmíněná jedinečnost plyne z toho, že je je-
diné možné obsazení šesti polí v každém řádku). Proto je hledané číslo к
rovno 49.

b) Zkusme postupovat obdobně jako při řešení části a). Vyberme tedy
jeden z obou směrů šikmých řad, například směr „zleva zdola napravo
nahoru" a posuzujme, kolik polí lze obsadit v jednotlivých šikmých řa-
dách vybraného směru tak, aby v žádné z nich nebyla obsazena žádná tři
sousední pole. Počty všech polí v těchto 15 řadách jsou (shora dolů) 1, 2,
3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2 a 1; proto v nich lze požadovaným způsobem
(při požadované podmínce) obsadit po řadě nejvýše 1, 2, 2, 3, 4, 4, 5, 6,
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5, 4, 4, 3, 2, 2 a 1 pole (znovu uplatníme úvahu o disjunktních trojicích
sousedních polí z úvodního odstavce). Proto lze na celé šachovnici obsadit
nejvýše

1 + 2 + 2 + 3 + 4 + 4 + 5 + 6 + 5 + 4 + 44-3 + 2 + 2 + 1 = 48

polí tak, aby nebyla obsazena žádná tři sousední pole žádné šikmé řady
vybraného směru. Obsadíme-li s touto podmínkou v každé z uvažovaných
15 šikmých řad největší možný počet polí vhodným způsobem (v řadách
o 1, 2, 5 a 8 polích je toto „maximální" obsazení jediné, v řadách o 3,
4, 6 a 7 polích nikoliv, zvolme i v nich obsazení z pohledu zleva doprava
typu XXOXXO...), dostaneme na celé šachovnici opět obsazení 48 polí
z obr. 6. Co je důležité: při tomto obsazení také v šikmých řadách dru-
hého směru nejsou nikde obsazena tři sousední pole! Shrňme, co jsme
zjistili:
1. Obsadíme-li na šachovnici libovolných 49 polí, budou mezi nimi tři

sousední pole některé šikmé řady zvoleného směru.
2. Na šachovnici lze obsadit 48 polí tak, aby mezi nimi nebyla žádná tři

sousední pole žádné šikmé řady (jednoho i druhého směru).

m

£1

Obr. 5 Obr. 6

To znamená, že pro část b) úlohy je hledané číslo к rovno 49. Dodejme,
že existují právě čtyři různá obsazení 48 polí zmíněná v (2). Kromě
úplného obsazení šesti sloupců z obr. 5 a obsazení, které je jeho otočením
o 90° (je tedy úplným obsazením šesti řad), je to zajímavé obsazení
z obr. 6 a jeho „zrcadlové překlopení".

Důkaz. Jak víme, při každém obsazení 48 polí zmíněném v (2) musí
být v každé šikmé řadě šachovnice obsazen největší možný počet polí
(výčet těchto maximálních počtů jsme uvedli výše); na obr. 7 jsou zná-
zorněny řady polí délek 1 až 8, šrafováním jsou v nich vyznačena právě
ta pole, která jsou nutně obsazena, je-li v celé řadě jakkoliv obsazen pří-
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slušný maximální počet polí (připomínáme podmínku: obsazena nejsou
žádná tři sousední pole); znovu zopakujme, že všechna obsazená pole
jsou vyznačena pouze v řadách o 1, 2, 5 a 8 polích. Odtud plyne, že při
libovolném obsazení 48 polí zmíněném v (2) je nutně obsazeno 36 polí
vyznačených na obr. 8; dále už je snadné ukázat, že zbývajících 12 obsa-
zených polí je tvořeno dvěma šesticemi polí značených na obr. 8 jednou
z dvojic písmen: AaC, BaC, AaD nebo В a D (obr. 5 odpovídá dvojici
písmen В a D, obr. 6 dvojici AaD).

É

Obr. 9

c) Jako v části b) se zajímáme o skupiny polí dvou směrů, v tomto
případě o řádky a sloupce. Posuzujme například nejdříve, kolik polí lze
obsadit v jednotlivých řádcích tak, aby v žádném z nich nebyla obsa-
zena čtyři sousední pole. Jak zjistíme pomocí rozdělení řádku na dvě
čtveřice sousedních polí, obsazených polí bude v každém řádku nejvýše
šest. Proto lze na celé šachovnici obsadit nejvýše 8 x 6 = 48 polí tak,
aby v žádném řádku nebyla obsazena čtyři sousední pole. Jinak řečeno:
obsadíme-li libovolných 49 polí, pak obsazena budou čtyři sousední pole
některého řádku. (Je zajímavé srovnat tento závěr s obdobným závěrem
z řešení části a), kde jsme se zajímali nikoliv o čtveřice, nýbrž o tro-
jice sousedních polí.) Nyní samozřejmě vzniká otázka, zda je možné na
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šachovnici obsadit 48 polí tak, aby nebyla obsazena čtyři sousední pole
nejen v žádném řádku, ale ani v žádném sloupci. Taková obsazení exis-
tují, dva příklady vidíme na obr. 9 a 10. Proto i v části c) je hledané
číslo к rovno 49. Bez důkazu dodejme ještě popis všech obsazení 48 polí
šachovnice, kdy mezi obsazenými poli nejsou čtyři sousední pole žádného
řádku ani sloupce: Celou šachovnici rozdělíme na čtyři čtvrtiny 4x4,
v jedné z nich, například levé horní části, obsadíme z 16 polí právě 12
tak, aby v ní zůstalo neobsazeno právě jedno pole v každém ze čtyř řádků
i v každém ze čtyř sloupců (to je možné udělat 4-3-2 = 24 způsoby, jeden
z nich, odlišný od způsobů z obr. 9 a 10, je na obr. 11), a toto obsazení
shodně přeneseme vodorovnými a svislými posunutími o čtyři pole do
ostatních tří čtvrtin celé šachovnice.

Odpověď: Hledané číslo к je pro každou z částí a)-c) rovno témuž
číslu 49 (pořadovému číslu tohoto ročníku MO).

С - I - 4

Počet různých sítí daného jehlanu určíme tak, že nejprve všechny možné
sítě nakreslíme. Abychom některou možnost neopomenuli, měli bychom
do výčtu sítí vnést určitý systém. Popíšeme dva přístupy, které takový
systém vytvářejí.

Přistup 1 („od sítě к jehlanu“). Každá síť bude složena z jednoho
čtverce o straně a a čtyř rovnoramenných trojúhelníků o stranách a,

b, b, kde a značí délku podstavné hrany a b délku boční hrany daného
jehlanu ABCDV. Přemýšlejme tedy o tom, jak takový čtverec a čtyři
trojúhelníky „slepit“ podél shodných stran do „celku“ a zda tento celek
skutečně vytvoří síť jehlanu. Je velmi přirozené rozčlenit řešení tohoto
úkolu podle počtu stran čtverce, které budou slepeny (možné počty jsou
1 až 4).
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Přistup 2 („od jehlanu к síti“). Přemýšlejme o tom, jak rozříznout
daný jehlan ABCDV podél čtyř hran, abychom po rozvinutí dostali jeho
síť. (Brzy si při tom uvědomíme jeden obecný poznatek: z každého vr-
cholu tělesa musí vycházet aspoň jedna hrana řezu.) Protože nám jde
o počet různých (tj. po dvou neshodných) sítí, s ohledem na symetrii da-
ného jehlanu není příliš vhodné systematizovat čtveřice hran řezu podle
toho, zda obsahují některé konkrétní hrany (jako např. hrany AB, AV
apod.). Výhodnější je rozdělení těchto čtveřic do skupin podle toho, kolik
hran řezu je v jehlanu podstavných (a kolik bočních).

Protože oba popsané přístupy vedou ke shodné systematizaci (je-li
právě к hran řezu podstavných, je v příslušné síti právě 4 — k stran čtverce
slepeno s trojúhelníky), popíšeme výčet všech sítí jen podle přístupu 2:1.Neleží-li v podstavě ABCD žádná hrana řezu, je jehlan rozříznut

podél všech čtyř bočních hran, příslušná síť je na obr. 12.

2. Předpokládejme, že v podstavě ABCD leží jediná hrana řezu, napři-
klad hrana AD. Z vrcholů В a C musí vycházet nějaké hrany řezu,
mohou to tedy být jedině hrany BV a CV. Tři hrany řezu jsou tedy
AD, BV a CV, s ohledem na symetrii je lhostejno, zda je čtvrtou
hranu řezu AV nebo DV, nechť je to tedy hrana AV jako na obr. 13.

3. Předpokládejme, že v podstavě ABCD leží právě dvě hrany řezu.
Rozlišme, zda jsou to hrany sousední (např. AB a AD), nebo hrany
protější (např. AD a BC)\ pro větší přehlednost oba případy posuďme
v oddělených odstavcích:

(3a) Je-li podstava rozříznuta právě podél hran AB a AD (takže řezem
v podstavě je lomená čára BAD), musí být třetí hranou řezu
hrana CV, čtvrtá hrana řezu je pak jedna z hran AV, BV nebo
DV. S ohledem na symetrii případů, kdy je čtvrtou hranou řezu
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BV nebo DV, uvádíme jen obrázky pro hrany řezu AV (obr. 14)
a BV (obr. 15).

A

(3b) Je-li podstava rozříznuta právě podél hran AD a BC, je třetí
hranou řezu jedna z bočních hran AV, DV a čtvrtou hranou řezu
jedna z bočních hran BV, CV (nemohou to totiž být ani obě
hrany AV, DV, ani obě hrany BV, CV). S ohledem na symetrii
stačí rozlišit jen dva případy: boční hrany řezu jsou buď AV a BV
(obr. 16), nebo AV a CV (obr. 17).

i

4. Předpokládejme, že v podstavě ABCD leží právě tři hrany řezu, na-

příklad hrany AB, BC a CD, takže řezem v podstavě je lomená
čára ABCD. S ohledem na symetrii nyní stačí rozlišit jen dva přípa-
dy: čtvrtá hrana řezu vede do vrcholu V buďto z jednoho z obou
krajních vrcholů zmíněné lomené čáry ABCD, například bodu A
(obr. 18), nebo z jednoho z obou prostředních vrcholů, například
bodu В (obr. 19).
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Obr. 18

Zjistili jsme, že daný jehlan má právě osm různých sítí. (Většina žáků
asi správně všech osm sítí do svých řešení nakreslí, aniž pocítí nutnost
vysvětlovat, proč jiné sítě neexistují. Diskutujme s nimi o této otázce.)

Přejděme nyní к druhé části úlohy, otázce, kdy některá ze sítí daného
jehlanu má tvar nekonvexního sedmiúhelníku. Podle obrázků vidíme, že
každá síť má, obecně vzato, osm vrcholů; jejich počet se sníží na sedm,
právě když se úhel u jednoho z osmi obecných vrcholů „napřímí", tj. bude
mít velikost 180°. Velikosti všech dotyčných úhlů lze snadno vyjádřit
pomocí ca = \KAVB\ a a — \<BAV\\ zjistíme tak, popsaná situace
nastane, jen když jeden z úhlů

2a, a + 90°, 2a+ 90°, 2ca, 3ca nebo 4ca (*)

bude 180°. Položme si nyní poněkud obecnější otázku: Jaké hodnoty a
a ca jsou přípustné, tj. odpovídají nějakému jehlanu ABCDV? Označme
S střed čtverce ABCD a E střed hrany AB (obr. 20), z pravoúhlého

V

I

i

'-yc
a

ВA E

Obr. 20

trojúhelníku EVS plyne, že \EV\ > |.ESj neboli \EV\ > \AE\, proto
pro úhel a v pravoúhlém trojúhelníku AVE platí 45° < a < 90° (pro
a — 45° bychom dostali „zdegenerovaný" jehlan s nulovou výškou, pro
a — 90° „jehlan" s nekonečnou výškou, tedy hranol). Zároveň je jasné,
že pro každé a € (45°, 90°) odpovídající jehlan existuje. Odtud vzhledem
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к rovnosti 2а + со = 180° plyne, že přípustné hodnoty co zaplní interval
(0°,90°). Proto z úhlů (*) mohou být přímé jedině úhly 3a; a 4a;. Pro
o; = 60° mají tvar sedmiúhelníku sítě z obr. 15 a 16, pro co = 45° sítě
z obr. 18 a 19.

Odpověď: Jirka mohl dostat právě osm různých sítí. Úhel AVB měl
velikost 45° nebo 60°.

С - I - 5

Rozdělíme je do pěti etap.
Část A. Podle způsobu opakování znamének rozdělíme daný výraz

(ještě bez obou závorek) na 100 úseků po šesti číslech

+7 + 8 + 9-10-11-12

+13+14+15-16-17-18, ..

+589 + 590 + 591 - 592 - 593 - 594,

+595 + 596 + 597 - 598 - 599 - 600

+1 + 2 + 3 — 4 — 5 — 6

• 7

(říkejme jim dále stručně ,,úseky“). Při výpočtu celého výrazu bude vý-
hodné určovat „dílčí součty“ právě po těchto úsecích: po doplnění chy-
bějící levé závorky se totiž naruší „celistvost" jediného úseku (toho, do
kterého závorku doplníme).

Uložte žákům úkol, aby vypsali čísla toho úseku, který obsahuje dané
číslo x, například x = 24, x — 100, x — 571 apod. Žáci si tak uvědomí,
jaký význam má při tom zbytek při dělení čísla x číslem 6, a tím se při-
praví na to, aby dokázali zapsat čísla v Zc-tém úseku (Zc = 1,2,3,..., 100)
takto:

6k — 5, 6Zc — 4, 6Zc — 3, 6Zc — 2, 6k — 1, Qk.

Část B. Určeme nyní hodnoty výrazů tvořených jednotlivými úseky.
Po několika prvních výpočtech

1 + 2 + 3 — 4 — 5 — 6 = —9, 7 + 8 + 9-10-11-12 =-9

dojdeme к závěru, že pro každý úsek vyjde —9. Ověřme to následujícím
algebraickým postupem, přičemž první číslo úseku označíme písmenem x:

x + (x + l) + (x + 2) — (x + 3) — (x + 4) — (x + 5) — (3x + 3) — (3x + 12) — —9.

(V tomto místě ještě není důležité, že číslo x je tvaru 6k — 5.)
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Část C. Zjistíme nyní možné hodnoty V zkoumaného výrazu v přípa-
dě, kdy chybějící levou závorku vepíšeme před číslo z některého konkrét-
ního úseku, například toho, který obsahuje číslo 100:

.. + *97 +*98 +*99 -*100 -*101 -*102+103 + ... - 600)V = 1 + .

někam sem doplníme závorku

Hvězdičkami jsme označili možná místa pro doplňovanou závorku. Snad-
no určíme, že před číslem 97 je 16 úseků a že za číslem 102 je 83 úseků
(16 + 83 = 99, nezapočítaný stý úsek je tvořen čísly od 97 do 102).
Je zřejmé, že pokud umístíme závorku na místo před číslo 97, 98 nebo
99, tedy za znaménko plus, přispěje do výsledku V všech 100 úseků
číslem —9, takže vyjde V — 100 • (—9) = —900. Umístíme-li závorku
na místo před číslo 100, 101 nebo 102, tedy za znaménko minus, přispěje
16 úseků (před číslem 97) do výsledku V číslem —9, zatímco 83 úseků
(za číslem 102) přispěje číslem —(—9) = 9. Se závorkou před číslem 100
tak vyjde

V = 16 • (-9) + 97 + 98 + 99 - 100 + 101 + 102 + 83 • 9 = 1 000,

se závorkou před číslem 101

V = 16 • (-9) + 97 + 98 + 99 - 100 - 101 + 102 + 83 • 9 - 798,

konečně se závorkou před číslem 102

V = 16 • (-9) + 97 + 98 + 99 - 100 - 101 - 102 + 83 • 9 = 594.

Část D. Konkrétní postup z části C nyní zopakujeme v obecné situaci,
kdy závorku doplníme do /с-tého úseku, na místo některé z hvězdiček:

V = 1 + ... + *[6к — 5] + *[6Zc — 4] + *[6к — 3] —

- *[6k - 2] - *[6к - 1] - *[6k] + ... - 600)

(vyjádření čísel jsme zapsali do hranatých závorek kvůli odlišení od vepi-
sované kulaté závorky). V části C bylo к rovno číslu 17, nyní je to libo-
volné přirozené číslo od 1 do 100 včetně. Před číslem 6k — 5 je zřejmě
(к — 1) úseků a za číslem 6к je (100 — k) úseků. Pokud umístíme zá-
vorku na místo před číslo 6Л: — 5, 6Л: — 4 nebo 6Zc — 3, tedy za znaménko
plus, přispěje do výsledku V všech 100 úseků číslem —9, takže vyjde
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V = 100 • (—9) = —900. Umístíme-li závorku na místo před číslo 6к — 2,
6/c — 1 nebo 6k, tedy za znaménko minus, přispěje prvních (к — 1) úseků
číslem —9, zatímco posledních (100 — k) úseků přispěje číslem —(—9) = 9.
Se závorkou před číslem 6к — 2 tak vyjde

V — (к — 1) ■ (—9) + [6/c — 5] + [6/c — 4] -f [6к — 3] — [6/c — 2] + [6к — 1] +
+ [6/г] + (100 - к) • 9 = 898 + 6к,

se závorkou před číslem 6/c — 1

V = (к - 1) • (-9) + [6/г - 5] + [6/e - 4] + [6к - 3] - [6к - 2] - [6к - 1] +
+ [6/с] + (100 - к) • 9 = 900 - 6к,

konečně se závorkou před číslem 6к

V = (к — 1) • (—9) + [6/с — 5] + [6/с — 4] + [6/с — 3] —

- [6/с - 2] - [6/с - 1] - [6/г] + (100 - к) • 9 = 900 - 18к.

Našli jsme všechny možné hodnoty V zkoumaného výrazu po doplnění
levé závorky.

Část E. Zjistíme nyní všechny případy, kdy výsledek V má hod-
notu 378 ze zadání úlohy. Podle části D stačí řešit rovnice

898 + 6/г = 378, 900 - 6/c = 378, 900 - 18к = 378

v oboru přirozených čísel к od 1 do 100. Řešení má pouze druhá a třetí
rovnice, a to к = 87 resp. к = 29. Hodnotě к — 87 odpovídá umístění
závorky před číslo 6/c — 1 = 521, hodnotě к = 29 odpovídá umístění
závorky před číslo 6/c = 174.

Odpověď: Úloha má dvě řešení; závorku doplníme buďto bezpro-
středně před číslo 521, nebo bezprostředně před číslo 174.

C - I - 6

Jak je tomu u řešení konstrukčních úloh obvyklé, načrtneme nejdříve
do jednoho obrázku daný šestiúhelník KLMNOP i hledaný trojúhel-
nik ABC tak, aby jejich tvar i vzájemná poloha aspoň přibližně odpoví-
daly zadání (obr. 21). Speciální poloha daných bodů К, L, M, N, O, P
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nebude mít na způsob konstrukce trojúhelníku ABC žádný vliv. Proto
je možné к rozboru úlohy využít i takový náčrtek, do kterého nejprve
nakreslíme pravoúhlý trojúhelník ABC, teprve pak na přímkách AB,
BC, CA libovolně vybereme body M, O, K\ konečně výběr bodů N a P
podřídíme pouze tomu, že body N, С, P mají v tomto pořadí ležet na

přímce, jež dělí trojúhelník ABC na dvě části se stejným obsahem; jde
tedy o přímku CS, kde S je střed strany AB.

Z obr. 21 je patrné, že bod C můžeme sestrojit jako průsečík úsečky
NP s Thaletovou kružnicí r nad průměrem OK, neboť úhel OCK je pra-

vý. Jakmile takto nalezneme bod C, sestrojíme přímky a — OC — BC
a b — КС = АС. Všimněme si nyní trojúhelníku SBC. Podle Thaletovy
věty platí |5Cj = \SB\, takže přímka a svírá shodné ostré úhly s přím-
kami PN a AB (tyto úhly jsou vyznačeny na obrázku). Protože přímka
a je již sestrojena a přímka PN je určena zadáním úlohy, má podle před-
chozí věty (prozatím neznámá) přímka c = AB jednoznačně určený směr;
protože má tato přímka c navíc procházet daným bodem M, můžeme ji
nyní sestrojit. Pak už určíme vrcholy А а, В jako průsečíky přímky c

po řadě s přímkami 6 a a. Tím je celý postup konstrukce hotov. Důkaz
správnosti: výsledkem konstrukce je zřejmě pravoúhlý trojúhelník ABC
s přeponou AB, jehož vrchol C leží na úsečce NP a jehož strany BC,
CA, AB leží po řadě na přímkách a, b, c, které procházejí po řadě body
О, К, M; zbývá vysvětlit, proč průsečík S přímky PN s přeponou AB
je jejím středem. To ale plyne z toho, že podle konstrukce má trojúhelník
SBC shodné úhly při vrcholech В a C.
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Ze vzájemné polohy úsečky NP a kružnice r nad průměrem OK
plyne, že pro každý pravidelný šestiúhelník KLMNOP má úloha jediné
řešení.

C - S - 1

Označme M = {1, 4, 7,10,13,..., 1 999} a vypišme všechny součty dvou
různých (to už nebudeme dále zdůrazňovat) čísel z M, které se rovnají
číslu 2 000:

2 000 = 1 + 1 999 = 4+ 1 996 = 7+ 1 993 = ... = 997 + 1 003.

S výjimkou jediného čísla 1 000 vystupuje každé číslo z M v právě jed-
nom součtu (součet 1000 + 1000 se dle zadání neuvažuje). Protože
997 = 1 + 3 • 332, je vypsáno právě 333 součtů. Lze tedy vybrat 334
čísel z M (po jednom z každého vypsaného součtu spolu s číslem 1000,
tedy například čísla 1,4, 7,..., 997,1 000) tak, že součet žádných dvou
vybraných čísel není 2 000. Vybereme-li však libovolných 335 čísel z M,
pak některá dvě vybraná čísla jsou sčítanci jednoho z vypsaných součtů
(zopakujme: vypsaných součtů je 333 a chybí v nich jediné číslo z M).
Proto je к = 335 hledaná hodnota.

C - S - 2

Protože oba pravoúhelníky musí ležet ve stejné polorovině s hraniční
přímkou AD, leží bod В na polopřímce AE. Proto se zmíněná kružnice
dotýká strany AE trojúhelníku AEF právě v bodě B. Body, v nichž
se kružnice dotýká stran EF a FA, označme po řadě G a H (obr. 22).
Označme ještě a = \AB\ = \EF\ a nechť \AE\ = ka, к > 1. Ze sou-
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měrností dvojic tečen ke kružnici plynou rovnosti \AH\ = \AB\ = a,

\EG\ = \EB\ = \AE\ -\AB\ = (k - l)a, \FH\ = \FG\ = |£F| - |£Gj =
= (2 — /г)а, tudíž |AF| = \AH\ + \FH\ = (3 — /г)а. Pythagorova věta pro
trojúhelník AEF tak dává rovnici (3 — к)2 = к2 + 1, jež je po úpravě
lineární a má (jediný) kořen к =

Odpověď: Hledaný poměr je 4 : 3.

C - S - 3

Zmíněná tři dělení zapíšeme rovnostmi N = 19a -f 6, a = 99c + d a iV =
= 1 999c+ d. Odtud vyplývá, že 19(99c + d) + b — 1 999c + d, neboli 18d-f
+ b = 118c. Nejmenší a největší vyhovující N najdeme podle nejmenšího
a největšího možného neúplného podílu c (při dělení čísla N číslem 1 999).
Z rovnosti 18d -f b = 118c plyne především, že c > 0 (kdyby bylo c = 0,
bylo by b — d = 0, tedy i N = 0, ale iV je kladné); pro с = 1 z rovnosti
18d + b — 118 usoudíme, že d = 6 a b — 10 (neboť pro zbytek b při
dělení N : 19 platí 0 6 18). Proto je nejmenší N rovno číslu
1 999 • 1 + 6 = 2 005. Abychom zjistili největší N, poznamenejme nejdříve,
že pro zbytky d a b při děleních a : 99 a N : 19 platí nerovnosti d ú 98
a b ^ 18, z nichž plyne odhad 118c 18 • 98 + 18, odkud c 5í 15. Pro
c = 15 ovšem z rovnosti 18d + b — 118-15 vyplývá, že d — 98 a b — 6,
neboť 0 ^ b S 18 a 118 • 15 = 1 770 = 18 • 98 + 6. Největší N je tudíž
rovno 1 999 • 15 + 98 = 30 083.

Odpověď: Nejmenší vyhovující N je 2 005, největší takové N je 30 083.

C - II - 1

Povrch vzniklého tělesa je tvořen všemi
24 bočními stěnami daných šesti jehlanů.
Označme v výšku těchto jehlanů a a délku
jejich podstavné hrany (jež je shodná s hra-
nou dané krychle). Ze zadání úlohy vyplý-
vá, že objem jednoho jehlanu je šestinou
objemu krychle, tedy \a?v = ^a3, odkud

7?a. Boční stěna jehlanu je rovnoramenný trojúhelník, pro jehož
výšku w z hlavního vrcholu (obr. 23) platí podle Pythagorovy věty rov-
nost w2 — v2 + (ka)2, odkud po dosazení v = |a vychází w — ^>/2a.
Proto je obsah boční stěny jehlanu roven |aw = \y/2a2. Výsledné těleso
má povrch 24krát větší, tedy 6\/2a2, zatímco povrch krychle je 6a2.

/-Ж
1
2 a

Obr. 23

v =
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Odpověď: Poměr povrchů původní krychle a výsledného tělesa je 1 :
: V2-

Poznámka. Za daných předpokladů vznikne slepením těleso, které
bude mít dvanáct shodných stěn (tzv. kosočtverečný dvanáctistěn). Uve-
děné shodné jehlany mají totiž v součtu stejný objem jako daná krychle
a dostaneme je, když krychli rozdělíme na šest shodných jehlanů se spo-

léčným hlavním vrcholem ve středu krychle.

С - II - 2

V daném výrazu odstraníme závorky a čísla sdružíme do čtveřic:

1-2-3 + 5 + 6-7-8 + 10 +
^ ^ v

v V

+ 11 - 12 - 13 + 15 + 16 - 17 - 18 + 20 + ...
V v v v

(poslední skupina je kratší, není-li počet N všech čísel násobkem čtyř).
Čísla v г-té skupině (г = 1,2,...) tvoří výraz (5г—4) — (5г—3) — (5г—2)+5г,
jehož hodnota je zřejmě rovna jedné (nezávisle na indexu i). Proto je
hodnota V celého výrazu v případě N — Ak rovna V — /с, v případě
N — Ak + 1 rovna V — к + (5к +1) = 6/с + 1, v případě N = 4/c + 2
rovna V = к + (5к + 1) — (5к + 2) = fc - 1 a v případě N — 4/c + 3 rovna
V = к + (5к + 1) — (5/с + 2) — (5/с + 3) = —4/c — 4. Snadno se zjistí, kdy
V = 103:

N = 4/c,
TV = 4/c + 1,
N = 4/c+ 2,
iV = 4/c + 3,

V = к = 103,
V = 6k + 1 = 103,
v = к - 1 = 103,

V = -4/c - 4 = 103,

N = 412

N = 69,
N = 418

к = 17,
к = 104,
к <£N.

Odpověď: V Milanově výrazu bylo buď 69, nebo 412, nebo 418 čísel.

C - II - 3

Příklad z obr. 24a ukazuje, že je možno požadovaným způsobem roze-
stavit 16 figurek (obsazená pole jsou označena křížky). Vysvětlíme nyní,
proč více figurek rozestavit nelze. Na obr. 24b vidíte rozdělení všech polí
desky do osmi šikmých řad po třech polích, když pole téže řady-trojice
jsou označena stejným písmenem. Figurkami je možno obsadit nejvýše
dvě pole v každé řadě-trojici (2 pole A, 2 pole 5, ..., 2 pole H), celkem
nejvýše 8 • 2 = 16 polí.
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Tvrzení o tom, že nelze rozestavit více než 16 figurek, zdůvodníme
ještě jinak, postupem obdobným z řešení úlohy domácího kola. Šikmé
řady jednoho směru mají postupně 3, 4, 3, 4, 3, 4, 3 pole, v nich lze obsadit
nejvýše 2, 3, 2, 3, 2, 3, 2 pole. Součet posledních čísel je sice 17, ale kdyby
v každé ze tří uvažovaných řad o 4 polích (řady polí A, polí В a polí C
na obr. 24c) byla obsazena 3 pole, musela by být obsazena všechna krajní
pole těchto tří řad, ta však tvoří dvě šikmé řady-trojice druhého směru
(krajní šikmé řady ABC na obr. 24c).

В AAx x

A ВA E F Вx x

CВ A ВA G F E Hx x X X

E D В CC F G H Ax x X X

D В Ccxx

cx x

ca

Obr. 24

Odpověď: Největší možný počet rozmístěných figurek je 16.

С - II - 4

Označme к vepsanou kružnici, S její střed а К bod dotyku kružnice к se
základnou AB (obr. 25). Protože AB || CD, SK T AB a SM X CD, je

D M C

ЛЬ

s

к

A К В

Obr. 25

KM průměr kružnice k. Proto jsou oba úhly AKM a KLM pravé, bod К
tudíž sestrojíme jako průsečík Thaletovy kružnice r nad průměrem AM
s přímkou p, jež prochází bodem L a je kolmá na LM. Zbytek konstrukce
je snadný: bod S určíme jako střed úsečky KM, sestrojíme kružnici
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к — (5,15.пГ|) a v bodech L a M po řadě její tečny bac. Vrchol В
pak určíme jako průsečík polopřímky AK s přímkou 6, vrchol C jako
průsečík přímek bac, konečně vrchol D sestrojíme jako průsečík přímky c
s tečnou d kružnice к, jež je souměrně sdružená s tečnou AK podle
osy AS. Pro trojúhelník ALM ze zadání má kružnice r s přímkou p

společné dva body, které jsou na obr. 26 označeny K\, K2, proto má
úloha dvě řešení — lichoběžníky AB\C\Di a AB2C2D2.
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Kategorie В

Texty úloh

В - I - 1

Pro která reálná čísla t má funkce f(x) = 5a; + 44 + t\x — 2| — 3|x — t\
(P. Cemek)maximum rovné 0?

В - I - 2

Označme S střed kružnice vepsané libovolnému trojúhelníku ABC. Do-
kažte, že rovnost |ASj • |SS| = |C5| • \AB\ platí, právě když úhel ACB

(J. Svrček)je pravý.

В - I - 3

Určete reálná čísla a, 6, pro která má soustava

x2 + y1 + 2z2 = 16,
2 2

xyz + xy + z —a,

x + у + 2z = b

(J. Bábeta)v oboru reálných čísel právě jedno řešení.

В - I - 4

Jsou dány kružnice к a l s různými poloměry, které se vně dotýkají
v bodě T. Průsečíkem M jejich společných vnějších tečen veďme sečnu s
obou kružnic. Označme X ten z obou průsečíků kružnice к se sečnou s,

který je vzdálenější od bodu M. Podobně označme Y ten z obou prů-
sečíků kružnice l se sečnou s, který je vzdálenější od bodu M. Nechť
P je takový bod, že XTYP je rovnoběžník. Určete množinu bodů P
odpovídajících všem takovým sečnám s. (J. Zhouf)
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В - I - 5

Devítistěn ABCDEFGHV vznikl slepením krychle ABCDEFGH a

pravidelného čtyřbokého jehlanu EFGHV. Na každou stěnu tohoto de-
vítistěnu jsme napsali číslo. Čtyři z napsaných čísel jsou 25, 32, 50 a 57.
Pro každý vrchol devítistěnu ABCDEFGHV sečteme čísla na všech
stěnách, které ho obsahují. Dostaneme tak devět stejných součtů. Určete
zbývajících pět čísel napsaných na stěnách tohoto tělesa.

(К. Černeková)

В - I - 6

Je dán rovnostranný trojúhelník XYZ s těžištěm T a stranou délky 5 cm.

Sestrojte rovnoběžník ABCD s obsahem 8 cm2 a stranou AB délky 2 cm

tak, aby body X, Y, Z, T ležely po řadě na přímkách AB, BC, CD, DA.
(M. Krállová)

В - S - 1

Pro která reálná čísla a, b je funkce

/(x) = a\x 1| + b{x — 3) -f \x — 6| + x — 1

(J. Bábela)omezená?

В - S - 2

Je dána úsečka XZ délky 7 cm a její body S, Y tak, že |JTSj = 2 cm,

\YZ\ = lem. Sestrojte pravoúhlý trojúhelník ABC s přeponou AB tak,
aby bod S byl střed kružnice vepsané trojúhelníku ABC a body X, Y, Z
ležely po řadě na přímkách AC, AB, BC. (.P. Cemek)

В - S - 3

Do výrazu
1-2 + 3- 4 + 5- 6+ ... + 99-100

jsme vepsali několik závorek tak, že nakonec jsou v každé dvojici odpoví-
dajících si závorek právě tři čísla a výraz neobsahuje žádný součin. Kolik
různých výsledků lze takto dostat? (P. Cemek)
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В - II - 1

Zjistěte všechna reálná čísla c, pro která má rovnice

(с2 + c — 8)(x + 2) — 8|rr — c + 2| = c\x + c + 14|

(J. Šimša)nekonečně mnoho řešení v oboru celých čísel.

В - II - 2

Devítistěn vznikl slepením krychle a pravidelného čtyřbokého jehlanu.
Na každé stěně tohoto devítistěnu je napsáno jedno číslo. Jejich součet je
3 003. Pro každou stěnu S uvažovaného devítistěnu sečtěme čísla na všech

stěnách, s nimiž má S společnou právě jednu hranu. Dostaneme tak devět
stejných součtů. Určete všechna čísla napsaná na stěnách devítistěnu.

(К. Čemeková)

В - II - 3

Je dán lichoběžník ABCD1 v němž \AB\ — 8cm a \<ABC\ = 90°. Jeho
obvod je 28 cm. Polokružnice к s průměrem AB se dotýká strany CD.
Vypočtěte délky zbývajících stran daného lichoběžníku, je-li strana AB
jeho
a) základnou,
b) ramenem. (Smutná)

В - II - 4

Je dán obdélník KLMN, \KN\ > \KL\. Sestrojte rovnoramenný troj-
úhelník ABC se základnou AB délky \KL\ tak, aby jeho výška va ob-
sahovala body К, V, výška Vb bod L a výška vc bod M. (Výškami zde
rozumíme přímky.) (K. Čemeková)
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Řešení úloh

В - I - 1

Daná funkce je lineární lomená, protože obsahuje dva výrazy s absolutní
hodnotou, které způsobují, že jejím grafem není přímka, nýbrž lomená
čára. Její definiční obor, množinu IR všech reálných čísel, můžeme v tomto
případě rozdělit na tři disjunktní části podle toho, jak se příslušná abso-
lutní hodnota chová (zdaje výraz v absolutní hodnotě kladný či záporný).
Protože jedna z absolutních hodnot závisí na parametru í, rozlišíme, zda
je t < 2 (případ A), či t ^ 2 (případ B).

A. Nechť t < 2. Množina IR se rozpadne na tři disjunktní intervaly,
IR = (—oo, t) U (t, 2) U (2, oo).

(a) V intervalu (—oo, í) je, jak snadno spočteme, f(x) = (8 — ť)x +
+ 44 — t. Protože za uvedeného předpokladu je 8 — ř > 0, je funkce /
v tomto intervalu rostoucí a nabyde maxima v bodě x — t.

(b) V intervalu (í, 2) je f(x) = (2 — t)x+44+5t. Protože za uvedeného
předpokladu je 2 — t > 0,je funkce / i v tomto intervalu rostoucí a nabyde
maxima v bodě x = 2. Přitom zřejmě platí f(t) < /(2) = 2(2—ř) + 44+5í.

(c) V intervalu (2, oo) je f(x) = (2 + t)x + 44 + í. Tato funkce je pro
2 + t > 0 na tomto intervalu rostoucí a shora neomezená, takže nemůže
mít maximum. Musí tedy nutně být 2 +1 0, tj. t —2, funkce / bude
v intervalu (2, oo) nerostoucí a její hodnota nebude větší než /(2), kterou
jsme spočítali v (b).

Zjistili jsme tedy, že za předpokladu t < 2 nabývá funkce / maxima
jedině pro t ^ —2, přičemž její maximum je /(2) = 2(2 — t) + 44 + 51.
Toto maximum se rovná 0, právě když 2(2 — t) + 44 + 5ť = 0, neboli
t = —16, což je naštěstí číslo, které splňuje podmínku t —2.

B. Nechť t ^ 2. Množina IR se nám rozpadne na tři disjunktní inter-
vály, IR = (—oo,2) U (2,ř) U (t, oo), přičemž „prostřední" interval bude
prázdný pro t — 2 (to však není pro další úvahy podstatné, jinak bychom
mohli tento případ snadno rozebrat samostatně).

V intervalu (—oc,2) je f(x) = (8 — ť)x + 44 — t. Kdyby teď bylo
8 — t < 0, byla by funkce / v tomto intervalu klesající a shora neomezená,
takže by nemohla mít maximum. Proto je 8 — t ^ 0, tj. t 8. Pak ale
je /(2) = 2(8 — t) + 44 — t — 60 — 3t > 0. Odtud hned vidíme, že za
uvedeného předpokladu nemůže funkce / nikdy mít maximum rovné 0.

Z uvedeného rozboru vyplývá, že uvažovaná funkce má maximum
rovné 0 jedině pro t = —16.
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Jiné řešení. Grafem dané funkce / je lomená čára, která se v našem
případě skládá ze dvou polopřímek (pro t = 2), resp. ze dvou polopřímek
a jedné úsečky.

Dále bychom si měli uvědomit, že pokud má takováto funkce maxi-
mum, nabývá ho určitě v některém ze „zlomových“ bodů (tam, kde je
příslušný výraz v absolutní hodnotě nulový). To samozřejmě neznamená,
že funkce nemůže maximum nabýt i v jiných bodech (např. je-li kon-
stantní na některém intervalu).

V našem případě jsou těmito zlomovými body pro x = 2 bod A[2,
54 — 3|ť — 2|], pro

Protože jeden z bodů x = 2, x = t má být bodem maxima funkce /
rovného 0, zjistíme, pro která t je jedna z y-ových souřadnic bodů А а В
nulová (a druhá nekladná).

54 — 3|t — 2| = 0,
|í — 2| = 18,

t — 20 anebo t = —16.

t bod B[t, 5í -f 44 + t\t — 2|].x —

B: 5í + 44 -f t\t — 2| — 0,
t 1> 2 =* t2 + 3í + 44 = 0,

nemá řešení.

t < 2 =► t2 - 7t - 44 = 0.

t = 11 anebo t = —4,
vyhovuje jen t = —4.

A:

Máme tak tři možnosti:

Pro t = 20 je A[2,0], 5[20, 504], což nevyhovuje.
Pro t = —16 je A[2,0], B[—16, —80 + 11 — 16 • 18], zatím vyhovuje.
Pro t — —4 je A[2, 36], B[—4,0], což nevyhovuje.
Zjistili jsme, že úloha má řešení nejvýše pro t — —16, kterému od-

povídá funkce f{x) = bx + 44 — 16|x — 2] — 3|x + 16|. Pro tuto funkci
samozřejmě platí /(2) = 0. Ověřit, že tato hodnota je skutečně maxi-
mem funkce /, můžeme více způsoby. Například tak, že ověříme, že pro
x < —16 je uvedená funkce neklesající (pro x < —16 je f(x) = 2Ax + 60)
a současně pro x > 2 nerostoucí (pro x > 2 je f(x) = — 14x + 28).

В - I - 2

Úhly v obecném trojúhelníku ABC označme obvyklým způsobem, polo-
měr vepsané kružnice označme r a její dotykové body se stranami AB,
BC označme po řadě X, Y (obr. 27).

Úsečky AS a BS jsou stranami trojúhelníku ASB. Jeho obsah P
můžeme vyjádřit dvěma způsoby:

\\AS\v = \\AB\r,P =
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neboť výška na stranu AB tohoto trojúhelníku je r; pro výšku v na
stranu AS přitom platí v — |55| cos ^7, protože vedlejší úhel při vr-
cholu S má velikost ^a + ^/3 = 90° — ^7. Je tedy

7
|ASj • |В5| cos ^ = \AB\r

a následující rovnosti jsou ekvivalentní:

\AS\ • |SS| = |CSj • \AB\,

\AB\r = |C5j • |AS|cos|,
r — |C5| cos

V pravoúhlém trojúhelníku CSY však platí cos ^
nost (1) je ekvivalentní rovnosti

(1)

\CY\ takže rov-

\cs\

r = \CY\,

což znamená, že trojúhelník CSY je rovnoramenný pravoúhlý a ^7 =
= 45°. Je tedy daná rovnost ekvivalentní tomu, že 7 = 90°.

Tím je tvrzení úlohy dokázáno.

Jiné řešení. Napíšeme si daný vztah jako rovnost podílů tak, aby to
byly poměry stran v trojúhelnících, a budeme se snažit použít podobnost
nebo sinovou větu.

V našem případě vyjdeme z rovnosti

ASC a BSC ale podobné nejsou, proto zkusíme sinovou větu:

\AS\ \AB\
\CS\ ~ |Б5| ’

Trojúhelníky
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I AS I sin ^7
|C5| sin|a

. Odtud dostáváme následující ekvivalentní rovnosti:

a v trojúhelníku ASВ zaseV trojúhelníku ASC platí

\AB\
_ sin|<ASB|

sin\BS\

sin ^7 sin|<AS5|
sin ia sin i a

7
sin — = sin \ kASB\,

sin ^ = sin^90° +
(90° +1)7-i = 180° -

2

7 = 90°.

Tím je tvrzení úlohy dokázáno.

Jiné řešení. Zkusíme vypočítat délky úseček AS, BS, CS, AB pomocí
některých prvků trojúhelníku. My si zvolíme úhly trojúhelníku a polo-
měr r.

Zřejmě \CS\ = |AS| - ——, \BS\ = . . a \AB\ =
sin ^7 sin^a sin

= \AX\ + \BX\ — r cotg \ol + r cotg ^{3. Po dosazení dostaneme ekviva-
lentní rovnosti

^■srp = (rcotEf+rcotg^)-^
rr

(3 /3
sin — = cos — • sin —h cos — • sin —

7 a a

2’22 2

(f+S)7
sin — = sin

sin| = sin ^90° -
77

sin — = cos —

2
7

- 1tg —ё
2

7 = 90°.

Tím je tvrzení úlohy dokázáno.
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В - I - 3

Předpokládejme, že soustava má právě jedno řešení x — s, у = t, z = u.
Protože ve všech rovnicích se neznámé x а у vyskytují ve stejném tvaru,
lze vytušit a ověřit, žeix = t, y = saz = u]e řešením dané soustavy.
A protože soustava má jediné řešení, musí být t = s, a tedy x = y. Po
dosazení dostaneme soustavu

x2 + z2 = 8,
+ x2 + z2

x + z = 7^b.

2 _2 (*)X z = a,

Pokud (x, z) je některé řešení této soustavy, je trojice (x, x, z) řešením
původní soustavy. Má-li proto původní soustava jediné řešení, musí ta-
ková být i nová soustava (*). Ta je však opět symetrická vůči neznámým
ха z. Proto bude mít jediné řešení, jen když bude platit x = z.

Po dosazení dostaneme soustavu

x4 + 2x2

\bx =

která má jediné řešení. Podle první rovnice je to buď x = 2 (pak 6 = 8,
a = 24), anebo x - —2 (pak 6 = —8, a - 24).

Těmito úvahami jsme dospěli к následujícímu závěru:
Pokud má daná soustava právě jedno řešení, tak jen pro a = 24, 6 = 8,

a to x = 2, у — 2, z = 2, anebo pro a = 24, 6 = —8, a to x = —2, у = —2,
z = -2.

Ještě musíme ověřit, zda v těchto dvou případech nemá daná soustava
jiné řešení (než to symetrické, které jsme vypočetli nikoli ekvivalentními
úpravami, nýbrž zjednodušováním).

Nechť a = 24, 6 = 8. Po dosazení dostaneme soustavu

x2 + y2 + 2z2 = 16,

xyz2 + xy 4- z2 = 24,
x T у T 2z = 8.

Tato soustava se dá řešit více způsoby. My tu uvedeme dva.

54



a) Vyloučíme neznámé x, у, například tak, že nejprve rovnice upra-
víme:

x2 + y2 — 16 — 2 z2
24- z2
lTI2"’

:r + у = 8 — 2 z.

жу =

Dostáváme tak

24 - z2
(8 - 2z)2 = (x + y)2 = x2 + y2 + 2xy = 16 - 2z2 + 2 • 1 + z2

Po úpravě vychází

3z4 - 16z3 + 28z2 - 16z = 0.

Vzhledem к tomu, že víme, že z = 2 je kořenem této rovnice, můžeme ji
postupně upravit až na tvar

z(z — 2)2(3z — 4) = 0.

Odtud plyne, že je buď z = 0, z = |, anebo z = 2.
Pokud z = 0, dostaneme

X2 + y2 = 16,
xy = 24,

x + у = 8

a snadno se přesvědčíme, že tato soustava nemá řešení (čísla x, у by
musela být kořeny kvadratické rovnice t2 — 8ř + 24 = 0, která má záporný
diskriminant).

Pokud z = I. dostaneme3’

2 i 2 112
X + у = ——

9

xy = 8,
16

X + у = —y
3

a opět se snadno přesvědčíme, že tato soustava nemá řešení.
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Pokud 2 — 2, dostaneme

x2 + у2 = 8,

xy = 4,
ж + у — 4.

Snadno zjistíme, že tato soustava má jediné řešení x = у — 2.
b) Šikovnější přístup využívá jen první a třetí rovnici a nerovnost

mezi kvadratickým a aritmetickým průměrem:

= (^(ж + y + z + z)^j й i (ж2 + у2 + 22 + Z2) = 4.4 - 22

Mezi aritmetickým a kvadratickým průměrem nastane rovnost, právě
když se všechny členy rovnají. Odtud ж = у = z = 2.

Případ a = 24, 6 = —8 posoudíme podobně, i tehdy je řešení jediné.
Odpověď. Daná soustava má jediné řešení pro a — 24, 6 = 8 nebo

a = 24, 6 = —8.

В - I - 4

Označme 5, Z středy obou kružnic fc, I а Л, r jejich poloměry (bez újmy
na obecnosti můžeme předpokládat, že r < R). Označme dále C a D
od T různé průsečíky kružnic l а к s přímkou SZ a Ki, К2, L\, L2 po

řadě dotykové body obou společných vnějších tečen ke kružnicím к a l
(obr. 28).
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Bod M je středem stejnolehlosti h obou kružnic s koeficientem R/r.
Přitom je například h{L\) = K\, h(Z) = S, h{C) = T, h(T) — D, h(Y) =
= X. Odtud plyne, že přímky CY, TX jsou rovnoběžné (h(CY) = TX).
Protože úhel CYT je pravý podle Thaletovy věty, je také \<YTX\ = 90°
{TY je příčka rovnoběžek CY, TX). Rovnoběžník XTYP je tedy vždy
obdélník.

Zároveň je zřejmé, že body C, Y, P leží v přímce a podobně i body
D, X, P leží v přímce. Je tudíž \<CPD\ = 90° a bod P leží na Thaletově
kružnici r nad průměrem CD. Leží na ní i vrcholy P\, P2 rovnoběžníků
K\TL\Pi, K2TL2P2, protože pro ně můžeme zopakovat předchozí úvahu
(jako pro rovnoběžník XTYP).

Nyní už není problém ukázat, že hledanou množinou bodů je větší
z oblouků P1P2 kružnice r vyjma body P\, P2 a, D (neboť body Y tvoří
větší z oblouků LiL2 kružnice l vyjma body T, L\, L2).

Ještě naznačíme hlavní myšlenky jiných dvou přístupů:
a) Abychom odhadli tvar hledané množiny, zvolíme několik význač-

ných poloh přímky XY. Vhodné jsou následující polohy: а) X — K\,
Y = L\ {PT je kolmé na SZ), b) XS a YZ jsou kolmé na SZ (tehdy
vyjde, že pata kolmice z bodu P na SZ leží ve středu J úsečky CD
a \JC\ = \JP\).

Z toho už se dá odhadnout, že bod P leží nejspíš na kružnici se
středem J a poloměrem \{R+ r). Zbývá už jen dokázat (tedy obecně
vypočítat), že vzdálenost \PJ\ je rovna ^(r + R). (Není to lehké.)

b) Pomocí shodných a podobných zobrazení je nejelegantnější násle-
dující postup: Pomocí souřadnic (bod M zvolíme za počátek souřadného
systému) ]e P — X -\-Y — T — Y + h{Y) - T = Y+ (R/r)Y - T = (1 +
+ R/r)Y-T, bod P tedy vznikne z bodu У (a všechny body У tvoří větší
z oblouků L1L2 kružnice l bez bodů T, L\, L2) složením stejnolehlosti
se středem M a koeficientem 1 + R/r a posunutí o vektor TM.

В - I - 5

Protože dva sousední vrcholy leží vždy ve dvou společných stěnách, bu-
deme si všímat především takovýchto dvojic vrcholů.

Vrcholy А а В {В a C) leží ve společných stěnách ABFE a ABCD
{BCGF a BCDA). Proto porovnáním jim přiřazených čísel dostane-
me, že na stěnách ADHE a BCGF (ABFE a CGHD) je stejné číslo.
Označme ho x (у).
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Podobně vrcholy E a F (F a G) leží ve společných stěnách EFBA
a EFV (FGCB a FGV) a navíc už víme, že stěny ADHE a FBCG
(ABFE a GHDC) mají stejná čísla. Proto porovnáním jim přiřazených
čísel dostaneme, že na stěnách HEV a FGV (EFV a GHV) je stejné
číslo. Označme ho z (t, obr. 29).

D C

y G/

x x

/Ё у F\
A В

Obr. 29

Porovnáním čísel příslušných vrcholům A a E (mají společné stěny
EABF a EADH) dále dostaneme, že stěna ABCD má číslo s = z + t.

Nakonec porovnejme vrcholy E а V (mají společné stěny EFV
a HEV). Dostaneme z + t = x + y.

Když to vše shrneme, zjistíme, že jednotlivé stěny jsou nutně očíslo-
vány čísly x (stěny BCGF a DAEH), z (stěny FGV a EHV), s (stěna
ABCD), s — x (stěny ABFE a CDHG), s — z (stěny EFV a GHV).
A snadno se přesvědčíme, že takovéto očíslování má vždy požadovanou
vlastnost (všem vrcholům je přiřazeno číslo 2s).

My známe čtyři různá čísla z devíti čísel x, x, z, z, s, s — x, s — x,
s — z, s — z, tedy čtyři čísla z pěti čísel x, z, s, s — x, s — z.

a) Pokud je neznámé páté číslo s, tvoří známá čísla dvě dvojice se
stejným součtem: x + (s — x) = z + (s — z). Pro daná čísla tak máme
jedinou možnost 25 + 57 = 32 + 50 = 82. Hledaná čísla jsou pak 25, 32,
50, 57 a 82.

b) Není-li páté neznámé číslo s, je jedno známé číslo (a to s) součtem
dalších dvou známých: s = x + (s — x), nebo s = z + (s — z). Pro daná
čísla je jediná možnost: 25 + 32 = 57. Potom je s = 57 a hledanou pětici
tvoří čísla 7, 7, 25, 32 a 50.

Odpověď. Hledaná čísla jsou buď 25, 32, 50, 57 a 82, nebo čísla 7, 7,
25, 32 a 50.
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Ještě naznačíme, jak by mohl vypadat čistě algebraický přístup —

řešením devíti rovnic o deseti neznámých.
Kvůli přehlednosti si musíme dát záležet na označení jednotlivých

čísel napsaných na stěnách. Označme čísla na stěnách ABFE, BCGF,
CDHG, DAEH, EFV, FGV, GHV, HEV a ABCD postupně a\, 02,

a3, 04, 61, 62, 63, 64, c a nechť společný součet na stěnách při každém
vrcholu je s. Dostaneme tak následujících devět rovnic:

(F)al + <22 + + 62 —

«2 + a3 + 62 + 63 = s,

йз + Й4 b ^3 J ^4 = s,

a4 + ai + 64 + 61 = s,

Ul + U2 c = sj

Й2 b a3 b c =

йз b Й4 b c = s,

и4 b" 0,1 Ь c = s,

bi b &2 Ь Ь3 Ь 64 = 5.

(G)
(H)
(E)
(B)
(C)
(D)
(A)
(V)

Porovnáním rovnic (В) a (C) máme a\ = a3. Porovnáním rovnic (D)
a (C) máme <22 = <24.

Pomocí těchto vztahů dále dostaneme: porovnáním rovnic (F) a (G)
vyjde b\ = 63; porovnáním rovnic (G) a (H) vyjde 62 = &4-

To znamená, že pro čísla ai, a2, 6i, 62 а c zůstaly rovnice

al + a2 J h + i>2 -

Oj +fl2 + C= S,

+ &2 = TjS.

Odtud už snadno dostaneme, že c = ai + a2 = 61 + 62 =

В - I - 6

Podstatou řešení jsou následující dvě úlohy:
A. Jsou dány body К, L. Veďte jimi po řadě rovnoběžky к, l, je-li

dána jejich vzdálenost d.
B. Jsou dány body K, L a přímka m. Veďte body K, L po řadě

rovnoběžky к, l, které na přímce m vytínají úsečku dané délky d.
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Řešení úlohy A (obr. 30). Nechť M je pata kolmice vedené z bodu К
na přímku l. V trojúhelníku KLM s pravým úhlem při vrcholu AI známe
vrcholy K, L a délku odvěsny \KM\ — d, vrchol M tedy umíme se-

strojit (jako průsečík Thaletovy kružnice t nad průměrem KL s kruž-
ničí x(K] d)). Potom ML je přímka l.

Pokud bychom požadovali diskusi, víme, že počet řešení závisí na
existenci průsečíku kružnic t a x:

Pokud \KL\ < d, nemá úloha řešení.
Pokud \KL\ — d, má úloha jedno řešení (kolmice na
Pokud \KL\ > d, mají kružnice kat dva průsečíky, takže úloha má

dvě řešení.

KL).

К
к

d I

A
M L

Obr. 30

Řešení úlohy В (obr. 31). Veďme bodem К rovnoběžku n s přím-
kou m a označme M její průsečík s přímkou l. Potom \KM\ = d, takže
konstrukce bodu M je zřejmá. Přímka l je pak určena body L a M.

Pokud bychom požadovali diskusi, snadno zjistíme, že na přímce n

existují dva body M požadovaných vlastností, a počet řešení závisí na

tom, zda M = L.
Pokud současně neplatí, že KL je rovnoběžná s m a \KL\ = d, má

úloha dvě řešení.

Pokud je KL rovnoběžná s m a \KL\ — d, vznikne pro jednu z mož-
ných poloh bodu M v předcházejícím případě nekonečně mnoho řešení
(za přímku l můžeme vzít libovolnou přímku procházející bodem L).

Řešení původní úlohy. Z obsahu rovnoběžníku ABCD a délky stra-
ny AB snadno vypočítáme výšku v na stranu AB: je v = 8 cm2 : 2 cm =
= 4 cm. Odtud plyne, že vzdálenost rovnoběžek AB a CD je 4 cm, při-
čemž známe bod X přímky AB a bod Z přímky CD. Podle úlohy A tedy
umíme sestrojit přímky AB a CD.

V poloze, která je dána, má tato část dvě řešení.
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Když už máme přímku AB, jsou AD a BC dvě neznámé rovnoběžky,
které procházejí danými body T a Y a na (známé) přímce AB vytínají
úsečku dané délky \AB\ — 2 cm. Proto můžeme rovnoběžky AD a BC
sestrojit na základě úlohy B.

Je zřejmé, že speciální poloha daných bodů X, Y, Z a T nemá na

postup řešení vliv, zaručuje nám však snadnou diskusi počtu řešení. Pro
obě polohy přímky AB má úloha v dané situaci dvě řešení. Tím je rov-
noběžník ABCD sestrojen. (Přímkami AB, BC, CD a, AD jsou vrcholy
А, В, C, D určeny.) Úloha má 4 řešení (obr. 32).

CA

C2
B2

Obr. 32

В - S - 1

Uvažovaná funkce / je po částech lineární, proto je omezená na každém
omezeném intervalu. Stačí tedy funkci / vyšetřit zvlášť pro x ^ min(l,b)
a zvlášť pro x ^ max(l, b), kdy mají oba výrazy v absolutních hodnotách
stejné znaménko.

a) Je-li x ^ min(l,6), je

f(x) — a( 1 — x) + b(x — 3) + b — x + x — 1 — (6 — a)x — 26 + а — 1.
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Funkce / bude na tomto intervalu omezená, právě když zde bude kon-
stantní, tj. právě když a — b.

a) Je-li x ^ max(l,6), je

f(x) = a(x — 1) + b(x — 3) + z — b + x — 1 = (a+ 6 + 2)x — a + 46 — 1.

Funkce / bude na tomto intervalu omezená, právě když tu bude kon-
stantní, tj. právě když a + 6 = —2.

Spojením obou podmínek dostáváme, že funkce / bude omezená,
právě když bude omezená na obou uvedených neomezených intervalech,
tj. právě když a = 6 = — 1. Pro funkci f pak dostaneme vyjádření

f(x) = \x + 1| - |x - 1| + 2.

Její graf vidíme na obr. 33.

4
4

2,

O
>

-1 1 x

Obr. 33

В - S - 2

Předpokládejme, že trojúhelník ABC je řešením úlohy. Z daného pořadí
bodů X, 5, Y, Z na jedné přímce a z toho, že bod S je vnitřním bodem
trojúhelníku ABC, vyplývá, že body X a Y jsou vnitřními body přísluš-
ných stran АС a AB, zatímco bod Z musí ležet na polopřímce opačné
к polopřímce BC. Vrchol C neznámého trojúhelníku ABC budeme hle-
dat jen v jedné z polorovin určených přímkou XZ, protože ke každému
řešení existuje řešení souměrně sdružené podle osy XZ.

Vrchol C trojúhelníku ABC je vrcholem pravého úhlu XCZ (obr. 34),
leží tedy na Thaletově kružnici к nad průměrem XZ. Protože bod S je
středem kružnice vepsané trojúhelníku ABC, leží na ose pravého úhlu,
takže |<5CX| = 45° a vrchol C leží zároveň na oblouku kružnice / určené
tětivou SX a obvodovým úhlem 45°. (Vzhledem к uvedené souměrnosti
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stačí uvažovat jen ten ze dvou souměrných oblouků, který leží ve zvolené
polorovině.) Odtud už plyne konstrukce trojúhelníku ABC:
1. sestrojíme kružnici к nad průměrem XZ;
2. v jedné z polorovin určených přímkou XZ sestrojíme vrchol O rovno-

ramenného pravoúhlého trojúhelníku XSO, |<50X| = 90°, a v téže
polorovině narýsujeme oblouk SX kružnice 1(0, |OSj);

3. vrchol C — k(~) SX, С ф X\
4. sestrojíme kružnici x(S;g), kde g je vzdálenost bodu S od přímky

CX (poloměr kružnice vepsané trojúhelníku ABC);
5. bodem Y vedeme tečnu t ke kružnici x tak, aby její bod dotyku ležel

v polorovině opačné к polorovině XZC;
6. vrcholy А, В dostaneme jako průsečíky přímky t s přímkami XC,

resp. ZC.
Z popsané konstrukce je zřejmé, že pro bod S ležící mezi body X

a Z mají kružnice к a l právě jeden průsečík různý od bodu X. Abychom
mohli sestrojit tečnu t, musí bod Y ležet vně kruhu omezeného kružnicí x,

musí tedy být \SY\ ^ g. Aby existoval průsečík tečny t s přímkou XC
uvnitř úhlu XCZ, musí být dokonce \YS\ > |XSj > g. V našem případě
je to splněno a úloha má dvě shodná řešení souměrně sdružená podle
osy XZ.

Úlohu bychom řešili stejně, i kdyby dané body X, S, Y, Z neležely
na jedné přímce.

Poznámka. Bod C můžeme sestrojit i jiným postupem. Protože body
X a. Z leží po řadě na polopřímkách CA a CB, je pravý úhel XCZ
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totožný s pravým úhlem ACB. Osa tohoto úhlu prochází středem S
kružnice vepsané trojúhelníku ABC; zároveň tato osa protne kružnici к
opsanou trojúhelníku XCZ v takovém bodě U ф C, že tětivy XU a UZ
jsou shodné (tyto tětivy jsou totiž z bodu C vidět pod týmž úhlem
(45 stupňů), obr. 34). Proto (aniž známe bod C) můžeme bod U sestrojit
jako střed oblouku XZ kružnice к (oblouky XU a UZ jsou tedy čtvrt-
kružnice). Bod C pak určíme jako průsečík kružnice к s polopřímkou US.

В - S - 3

V daném výrazu se pravidelně střídají plusy a minusy, přičemž lichá čísla
mají znaménko plus a sudá minus. Zřejmě musí každá dvojice odpoví-
dajících si závorek obsahovat právě tři po sobě jdoucí čísla. Umístíme-li
levou závorku mezi plus a příslušné liché číslo, nemají závorky na hodnotu
výrazu žádný vliv. Zajímavý je tedy jen případ, kdy levou závorku dáme
mezi minus a následující sudé číslo, což změní výsledné znaménko dru-
hého a třetího čísla v závorkách. Je-li zmíněné sudé číslo 2k (1 5Í к 5Í 49),
dostaneme místo původního součtu —2k+ (2к + 1) — (2к + 2) = —2k—l
součet — {2k + (2k + l) — (2/c + 2)) = -2k- (2fc + l) + (2k + 2) = -2k+l.
Vidíme tedy, že přidáním jednoho páru závorek popsaným způsobem
zvětšíme celkovou hodnotu výrazu o 2 bez ohledu na to, kterou trojici po
sobě jdoucích čísel začínající sudým číslem zvolíme. Zároveň je jasné, že
takto umístěný pár závorek obsahuje další sudé číslo (kromě čísla 2к ještě
2k + 2), které už nebudeme moci pro umístění závorky využít. (Nebu-
deme tedy zbytečně rozmisťovat závorky před lichá čísla, protože bychom
se zbavili dalšího sudého čísla, před které lze umístit levou z dvojice zá-
vorek, jež by měly vliv na hodnotu daného výrazu.)

Daný výraz obsahuje celkem 50 sudých čísel. Můžeme tedy vybrat
nejvýše 25 dvojic po sobě jdoucích sudých čísel, jež obklopíme závorkami.
Tomu odpovídá 26 různých hodnot daného výrazu s к dvojicemi závorek,
kde 0 ^ к 25. Příslušné hodnoty jsou —50, —48, —46, ..., 4, 2, 0
(nejmenší hodnota je 1 — 2 + 3 — 4 + 5 — 6 + .. . + 99 — 100 = —50, největší
1 - (2 + 3 - 4) + 5 - (6 + 7 - 8) + ... - (98 + 99 - 100) = 0).

В - II - 1

Označíme-li pro dané reálné c

fc(x) = c\x + с + 14| + 8|x — с + 2| — (с2 + c — 8)(x + 2)
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odpovídající po částech lineární funkci, je zřejmé, že rovnice /c(x) =
= 0 bude mít nekonečně mnoho celočíselných řešení, právě když bude
funkce fc identicky rovna nule na některém z nekonečných intervalů
(—00, min(c — 2, —c — 14)) nebo (max(c — 2, —c — 14), 00). Vyšetříme po-

stupně obě možnosti.
a) Nechť x ^ min(c — 2, — c — 14), pro taková x platí

fc(x) = —c(x + c + 14) — 8(x — c + 2) — (с2 + c — 8)(x + 2) =

= —c(2 + c)x — 3c2 — 8c = —c(x(c + 2) + 3c + 8).
Na tomto intervalu bude funkce fc identicky rovna nule, právě když c = 0
(soustava c + 2 = 0, 3c 4-8 = 0 nemá žádné řešení).

b) Nechť x ^ max(c — 2, — c — 14), pro taková x platí

/с(х) = c(x + c + 14) + 8(x — c + 2) — (с2 + c — 8)(x + 2) =

= (16 — c2)x — c2 + 4c + 32.

Na tomto intervalu bude funkce fc identicky rovna nule, právě když bude
současně platit c2 = 16 a c2 — 4c — 32 = 0. Dosazením c2 = 16 do druhé
rovnice vychází c = —4, což je zřejmě jediné řešení obou rovnic.

Závěr. Daná rovnice má v oboru celých čísel nekonečně mnoho řešení,
právě když c = 0 nebo c = —4 (v prvním případě rovnici vyhovují
všechna celá čísla x ú —14, v druhém pak všechna celá čísla x ^ —6).

В - II - 2

Označme А, В, C, D, E, F, G, H vrcholy zmíněné krychle а V vrchol
přilepeného jehlanu (obr. 35). Čísla napsaná na bočních stěnách ABFE,

V

v

G

E

D'j- C
/

/
/

A В

Obr. 35
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BCGF, CDHG, DAEH označme postupně ai, <22, аз а сц, čísla na
bočních stěnách EFV, FGV, GHV a HEV přilepeného jehlanu označme
po řadě &i, 62, 63 a 64, číslo na podstavě ABCD označme c. Dále označme
s uvedený společný součet.

Porovnáním součtů příslušných stěnám EFV a GHV dostaneme rov-
nost a\ — аз, analogicky pro další dvojici stěn vyjde 222 = <24. Porovnáním
součtů příslušných stěnám ABFE a CDHG vyjde b\ — 63 a analogicky
pro další takovou dvojici stěn 62 = 64. Porovnáním součtů příslušných
stěnám CDHG a HEV dostaneme rovnost b 1 = c + <22 a analogicky pro

dvojici stěn DAHE a GHV rovnost 62 = c + ai. Porovnáním součtů
dvou sousedních stěn krychle vychází (22 + 224 + 61 = 221+223 + 62, neboli
2(22 + bi = 2ai + 62, což dosazením z posledních dvou získaných rovností
dává rovnost (22 = ai, a tedy také 62 = 61 = c + ai. Můžeme proto
psát ai = (22 = аз = (24 = a, bi = 62 — 63 = 64 = 6 — a 4- c a z rov-
nosti součtů příslušných podstavě a jedné z bočních stěn krychle vychází
4a — 2a + b + с = За + 2c, takže а = 2c, b = 3c a celkový součet všech
čísel je c-f-4а + 4Ь = 21c. Z rovnice 21c = 3 003 plyne c = 143. Na stěnách
devítistěnu jsou napsána čísla 143, 286 (čtyřikrát) a 429 (čtyřikrát).

Poznámka. Úlohu je možno řešit i vypsáním a následným řešením
soustavy deseti lineárních rovnic pro devět neznámých čísel zapsaných
na stěnách tělesa a desátou neznámou rovnou jednotnému součtu.

В - II - 3

Označme S střed strany AB a T bod dotyku polokružnice к se stra-
nou CD. Jestliže je AB základnou daného lichoběžníku, je CD || AB
a \AB\ + \BC\ + \CT\ = 2\AB\ — 16 cm (obr. 36). Označme A\ kolmý

D x A\ T C

A
d

A S В

Obr. 36

průmět vrcholu A na přímku CD. Protože |TD| + |D^| = 28 cm—16 cm =
= 12 cm > \AA\ \ + \ A\T\ = 8 cm, leží vrchol D na polopřímce TA\ za
bodem A\. Označme velikost |Ai_D| = xcm, \DA\ — dcm. Pro čísla x,
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d dostáváme soustavu rovnic d + x = 8, d2 = x2 + 42 (Pythagorova
věta pro trojúhelník AA\D), kterou snadno upravíme na tvar d + x = 8,
(d — x)(d + x) — 16, tj. d + x = 8, d — x = 2. Soustava má jediné řešení
d = 5, x = 3. Zbývající strany daného lichoběžníku mají tedy velikosti
4 cm, 11 cm a 5 cm.

Je-li AB ramenem daného lichoběžníku ABCD, je AB JL BC || AD
(obr. 37), takže obě základny BC a AD se dotýkají polokružnice к v od-

C

\b~d\

A S В

Obr. 37

povídajících vrcholech В a, A. Označme b shodné úseky tečen z vrcholu C
a d shodné úseky tečen z vrcholu D к polokružnici k. Ze znalosti obvodu
tak dostáváme (v centimetrech) rovnost 28 = 8 + 26+2d neboli b+d = 10.
Z rovnoběžnosti BC || AD plyne \b — d\ — \/(b + d)2 — 82 = 6. Vzhledem
к souměrnosti podle osy dané polokružnice к stačí uvažovat jen jednu
z možností, např. b > d. Soustava b + d — 10, b — d = 6 má jediné řešení
b = 8, d = 2, takže zbývající strany daného lichoběžníku mají v tomto
případě velikosti 8 cm, 10 cm a 2 cm, což platí i v případě b < d.

В - II - 4

Podle zadání známe přímku KN, na níž leží výška va. Protože výška ьь je
souměrně sdružená s va podle osy základny AB hledaného rovnoramen-
ného trojúhelníku ABC, na níž zároveň leží jeho třetí výška vc, pokusíme
se najít průsečík V těchto výšek. Ten má tu vlastnost, že bod L leží na

přímce souměrně sdružené s va = KN podle VM = vc (obr. 38). Jakmile
bod V najdeme, budeme zároveň znát polohu všech tří výšek trojúhel-
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niku ABC, takže až na podobnost můžeme sestrojit i hledaný trojúhelník
ABC.

ВA

vc Э M

Obr. 38

Předpokládejme, že bod V na přímce KN má požadovanou vlastnost
(obr. 39). Ze souměrnosti přímek VL а VN podle VM plyne rovnost
vyznačených úhlů s vrcholem V. Z rovnoběžnosti přímek KN a LM
dostáváme, že stejnou velikost má i úhel LMV, takže trojúhelník MVL
je rovnoramenný se základnou MV. Je tudíž \LV\
najdeme jako průsečík přímky KN s kružnicí k(L; \LM\). Protože dle
předpokladu je \KL\ < \KN\ = \LM\, existují takové průsečíky dva.

\LM\ a bod V

к
V, К N

Va

M

Obr. 39

Nyní dokončíme konstrukci trojúhelníku ABC. Nejprve sestrojíme
pomocný trojúhelník А'В'С', který bude stejnolehlý s hledaným troj-
úhelníkem ABC, a to tak, že na přímce КN libovolně zvolíme bod А' ф V
(na obr. 40 je jako bod A' zvolen daný vrchol K), sestrojíme bod B'
souměrně sdružený s bodem A' podle VM a vrchol C", v němž kol-
mice na B'V vedená bodem A' protne přímku VM. Protože má platit
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\AB\ = \KL\, trojúhelník ABC sestrojíme užitím té stejnolehlosti se
středem V, která známou úsečku A!B' převede na hledanou úsečku AB

dané délky \KL\ (takové stejnolehlosti jsou dvě). Pro každý z možných
bodů V tak bude mít úloha dvě řešení (na obr.40 trojúhelníky A\B\C\
a A2B2C2, na obr. 41 trojúhelníky A3B3C3 a A4B4C4) středově souměrná
podle příslušného průsečíku výšek.

M

Obr. 41
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Kategorie A

Texty úloh

A - I - 1

Nechť P, Q jsou kvadratické trojčleny takové, že tři z kořenů rovnice
P(Q(x)) = 0 jsou čísla —22, 7, 13. Určete čtvrtý kořen této rovnice.

(P. Černek)

A - I - 2

Nechť K, L, M jsou po řadě vnitřní body stran BC, CA, AB daného
trojúhelníku ABC takové, že kružnice vepsané dvojicím trojúhelníků
ABK a CAK, BCL a ABL, CAM a BCM mají vnější dotyk. Pak platí

\BK\ ■ \CL\ ■ \AM\ = \CK\ • \AL\ • \BM\.

(J. Švrček)Dokažte.

A - I - 3

V oboru kladných čísel řešte soustavu

y/xy + y/xž - X = a,

yjyž+ Vyž-y = b,
y/ŽX + y/žý - Z = C,

(R. Horenský)kde a, b, c jsou daná kladná čísla.

A - I - 4

V rovině je dáno 1999 shodných trojúhelníků o obsahu 1, které jsou
obrazy téhož trojúhelníku v různých posunutích. Je-li průnikem všech
daných trojúhelníků množina M, která obsahuje těžiště každého z nich,
je obsah množiny M alespoň Dokažte. (M. Beneš)
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A - I - 5

N taková, že /(n) = 1, je-li n liché, a f(n) = кJe dána funkce /:
pro každé sudé číslo n — 2fcí, kde /с je přirozené číslo a l číslo liché. Určete
největší přirozené číslo n, pro něž platí

f{l) + f(2) + ... + f(n) i 123456.

(S. Trávníček)

A - I - 6

Je dán čtyřboký jehlan ABCDV s podstavou ABCD. Jeho hrany AB,
CD jsou rovnoběžné a roviny ABV a CDV vzájemně kolmé. Označme
P patu výšky z vrcholu V na stranu AB v trojúhelníku ABV a Q patu
výšky z vrcholu V na stranu CD v trojúhelníku CDV. Dokažte nerovnost

\AV\2 + \BV\2 + |CV\2 + \DV\2 ^ |C<?|2 + 2(SABv + SCDv + SPQV),

kde Sxyz značí obsah trojúhelníku XYZ. Zjistěte rovněž, kdy platí rov-
nost. (J. Bábeía)

A - S - 1

Určete, pro která reálná čísla p má soustava rovnic

(x - у)2 =p2,
x3 - y3 = 16

(J. Bábeía)právě jedno řešení v oboru reálných čísel.

A - S - 2

Je dán trojúhelník ABC. Uvnitř jeho stran BC, CA, AB uvažujme po
řadě body К, L, M takové, že úsečky AK, BL, CM se protínají v bodě U.
Jestliže trojúhelníky AMU a KCU mají obsah P a trojúhelníky MBU
a CLU obsah Q, pak P = Q. Dokažte. (J. Švrček)

A - S - 3

Určete nejmenší přirozené číslo k, pro které platí: Vybereme-li libovol-
ných к různých čísel z množiny {1,2,3,...,2000}, pak mezi vybranými
čísly existují dvě, jejichž součet nebo rozdíl je 667. (J. Šimša)
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A - II - 1

Nechť P{x) je kvadratický trojčlen. Určete všechny kořeny rovnice

P{x2 + 4x — 7) — 0,

víte-li, že mezi nimi je číslo 1 a aspoň jeden kořen je dvojnásobný.
(P. Černek)

A - II - 2

Je dán rovnoramenný lichoběžník UVST, v němž 3|ST| < 2\UV\. Se-
strojte rovnoramenný trojúhelník ABC se základnou AB tak, aby body
В, C ležely na přímce VS, bod U na přímce AB a bod T byl těžištěm
trojúhelníku ABC. (P. Černek)

A - II - 3

Dokažte, že pro libovolná kladná čísla a, b platí nerovnost

(J. Šimša)Zjistěte, kdy nastane rovnost.

A - II - 4

Určete všechny konvexní čtyřúhelníky ABCD s následující vlastností:
Uvnitř čtyřúhelníku ABCD existuje bod E takový, že každá přímka,
která prochází tímto bodem a protíná strany AB a CD ve vnitřních
bodech, dělí čtyřúhelník ABCD na dvě části o stejném obsahu. Svou
odpověď zdůvodněte. (P. Černek, J. Švrček)

A - III - 1

Nechť n je přirozené číslo. Dokažte, že součet 4 • З2” + 3 • 42П je dělitelný
třinácti, právě když n je sudé. (J. Šimša)

A - III - 2

Je dán rovnoramenný trojúhelník ABC se základnou AB. Na jeho výšce
CD je zvolen bod P tak, že kružnice vepsané trojúhelníku АВР a čtyř-
úhelníku PECF jsou shodné; přitom bod E je průsečík přímky AP se
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stranou ВС a F průsečík přímky BP se stranou AC. Dokažte, že i kruž¬
nice vepsané trojúhelníkům ADP a BCP jsou shodné.

(J. Simša, K. Horák)

A - III - 3

V rovině je dáno 2 000 shodných trojúhelníků o obsahu 1, které jsou
obrazy téhož trojúhelníku v různých posunutích. Každý z těchto troj-
úhelníků obsahuje těžiště všech zbývajících. Dokažte, že obsah sjednocení
těchto trojúhelníků je menší než Щ-. (P. Calábek)

A - III - 4

Pro které kvadratické funkce / existuje taková kvadratická funkce g,
že kořeny rovnice g(/(x)) = 0 jsou čtyři různé po sobě jdoucí členy
aritmetické posloupnosti a současně i kořeny rovnice f(x)g(x) = 0?

(P. Černek)

A - III - 5

Monika zhotovila papírový model trojbokého jehlanu, jehož podstavou
byl pravoúhlý trojúhelník. Když model rozřízla podél odvěsen podstavy
a podél těžnice jedné ze stěn, vznikl po rozvinutí do roviny čtverec

(P. Leischner)o straně a. Určete objem tohoto jehlanu.

A - III - 6

Najděte všechna čtyřmístná čísla abcd (v desítkové soustavě), pro něž
platí rovnost

abed + 1 = (ac 4- l)(bd + 1).

(J. Zhouf)
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Řešení úloh

A - I - 1

Vzhledem к tomu, že rovnice P(Q(x)) = 0 má reálný kořen, má kva-
dratická rovnice P(x) = 0 dva reálné kořeny ri, r2 (nevylučujeme, že
r\ — r2). Mnohočlen P[Q(x)) lze proto zapsat ve tvaru

P(Q(x)) = a(Q(x) - ri) (Q(x) - r2)
kde a je reálné číslo aýO. Rovnice P(Q(x)) — 0 má podle zadání čtyři
reálné kořeny, proto každá z kvadratických rovnic Q(x) —r\ =0, Q{x) —
— r2 = 0 musí mít dva reálné kořeny. Z Viétových vzorců plyne, že součet
kořenů v obou kvadratických rovnicích je týž, neboť obě rovnice mají
stejný koeficient u lineárního členu. Přitom tři ze čtyř reálných kořenů
obou kvadratických rovnic Q(x) — 74 =0, Q(x) — r2 = 0 jsou dle zadání
čísla —22, 7,13, čtvrtý kořen označme q. Dále mohou nastat tři možnosti:

(i) Jedna z kvadratických rovnic má kořeny —22, 7, druhá má kořeny
13 a q. Pak platí —22 + 7 = 13 + q, tedy q = —28.

(ii) Jedna z kvadratických rovnic má kořeny —22,13, druhá má kořeny
7 a q. Pak platí —22 + 13 = 7 + q, tedy q — —16.

(iii) Jedna z kvadratických rovnic má kořeny 13, 7, druhá má kořeny
—22 a q. Potom však platí 13 + 7 = —22 + q, tedy q — 42.

Je zřejmé, že v každém z případů (i), (ii), (iii) existují příslušné kva-
dratické trojčleny P{x) a Q(x). Má-li mít jedna z kvadratických rovnic
Q(x) — r\ =0, Q(x) — r2 = 0 kořeny —22, 7 a druhá 13, —28, položíme
Q{x) = x2 + 15x, —r 1 = (-22) • 7 = -154, -r2 = 13 • (-28) = -364,
P(x) — (x—154)(ж —364) = 2;2 — 518ж +56056. Obdobně lze postupovat
ve zbývajících případech.

Čtvrtým kořenem rovnice P(Q(x)) = 0 může být kterékoli z čísel
-28, -16, 42.

Jiné řešení. Úvahy o koeficientu u lineárního členu s využitím Viě-
tových vztahů lze nahradit následující úvahou o grafech kvadratických
funkcí.

Protože grafý kvadratických funkcí /1: у = Q(x) — r\ а /2: у =
= Q(x) — r2 mají tutéž osu souměrnosti a přitom existují čtyři reálné
kořeny rovnice P(Q(x)) = 0, jsou tyto kořeny na ose x po dvou stře-
dově souměrné podle průsečíku os souměrnosti grafů obou funkcí /1 a /2
s osou x. Vzhledem к poloze daných tří kořenů na ose x lze dále uvažovat
tři možnosti stejně jako v předcházejícím řešení. Např.
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(i) Střed souměrnosti je — 7,5 = ^(—22 + 7), čtvrtý kořen leží na ose x a je
symetrický s obrazem čísla 13 dle středu souměrnosti v bodě —7,5.
Čtvrtým hledaným kořenem je tudíž číslo —28.
Podobně lze postupovat ve zbylých dvou případech a dospějeme tak

ke stejnému výsledku.

A - I - 2

Uvnitř strany BC trojúhelníku ABC uvažujme bod К takový, že kruž-
nice vepsané trojúhelníkům BKA a CKA mají vnější dotyk v bodě D.
Nechť dále (při obvyklém označení délek stran trojúhelníku ABC) platí
označení podle obr. 42, tj.

\ADb\ = \ADC\ = x, |J3DC| = y, \CDb\ = z, \BK\ = y+u, \CK\ = z+u.

Z předešlého obrázku snadno vidíme, že platí následující soustava
rovnic

у + z = a — 2u,

z + x = 6,
X + у — c.

Jednoduchou úpravou odtud dostáváme 2y + 2u = a — b + c (analogicky
vyjádříme 2z + 2и), a tudíž platí

1
\BK\ = у + u= -(a —b +c) = s — b,

\CK\ - z + u= i(a + b-c) = s — c,
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kde 2s = a + b + c. To značí, že bod К je bodem dotyku kružnice vepsané
trojúhelníku ABC se stranou BC. Pro body LaM platí využitím ana-

logického postupu následující vztahy:

\CL\ — c, \AL\ — s — a, \AM\ — s — a, \BM\ = s — b.— s

Z předešlých rovností již bezprostředně plyne

\BK\ ■ \CL\ ■ \AM\ = (s - a){s - b)(s - с) = |<Ж| • \AL\ ■ \BM\.

Tím je důkaz ukončen.
Poznámka. Úsečky AK, BL, CM vyhovující podmínkám úlohy se

tedy protínají podle Cěvovy věty v jediném bodě G, zvaném Gergonnův
bod daného trojúhelníku ABC.

A - I - 3

Z textu úlohy plyne, že neznámé x, y, z jsou kladná čísla, lze proto danou
soustavu upravit do následujícího tvaru

-y/x + y/ý+y/ž= —

y/x + Vy - y/ž = -7=

V*

V*

Sečteme-li po dvojicích jednotlivé rovnice předešlé soustavy, dostaneme
tak soustavu

b c

~p + —p =Vv V*
c a

л _

a b
^

V* + Vy 2y^’
Dále po snadné úpravě

bVž + cVy = 2 Vxyz,
Cy/x + dy/ž = 2y/xyž,
aVý + bV% = 2^/xyž.
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Odečtením první a třetí, resp. druhé a třetí rovnice poslední soustavy
dále získáme

byjz + (c- a)y/y = by/x,
- a,y/y = (b - c)y/x.

Obě strany první rovnice předešlé soustavy násobíme číslem a, obě strany
druhé rovnice pak násobíme číslem —b. Sečteme-li obě takto upravené
rovnice, obdržíme

a(b + c a)y/ý = b(c + a- b)y/x,

obdobným způsobem dostaneme rovněž

a(b + c — a)y/ž — c(a + b — c)y/x.

Jestliže pro kladná čísla a, b, c platí vztah b + c — a — 0, pak z předešlých
dvou rovnic plyne, že také a + b — c = 0, c + a — b = 0. Potom však
a = b — c = 0, což není možné. Je tudíž b + c— a ^ 0. Z poslední dvojice
rovnic vyjádříme yjy a yjz pomocí yfx následujícím způsobem:

b(c + a — b)
Vv V*,a(b + c- a)

c(a + b c)
yfx.a{b + c - a)

Odtud snadno vidíme, že výrazy b+c — a,c+a — b, a + b — c jsou současně
všechny kladné nebo všechny záporné. Po dosazení yjy a y/z do původní
soustavy rovnic získáme (po úpravách) řešení (x,y,z), kde

a?(b + c — a)
(c + a — b)(a + b — c)

b2(c + a — b)
J

(b + c — a) (a + b
c2(a + b — c)

Z ■ .

(c + a — b)(b + c — a)

c)

Vzhledem к tomu, že jsme к řešení soustavy rovnic dospěli výhradně
ekvivalentními úpravami, není třeba zkoušku provádět.

Soustava má přitom výše uvedené řešení v oboru kladných čísel, právě
když současně platí b + c— a > 0, c + a — b > 0, a + b — c > 0, tj. právě
když kladná čísla a, 6, c jsou délkami stran trojúhelníku.
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A - I - 4

Nechť ASBSCS, kde s 6 {1, 2,..., 1 999}, jsou trojúhelníky vyhovující
podmínkám úlohy. Každý z daných trojúhelníků ASBSCS je průnikem
vždy tří polorovin ASBSCS, BSCSAS a CSASBS, proto je (neprázdná)
množina M průnikem 3 • 1 999 = 5 997 takových polorovin. Vzhledem
к tomu, že poloroviny ASBSCS, kde s G {1, 2,..., 1 999}, se navzájem liší
jen posunutím, je jejich průnikem polorovina AíBíCí, kde i je pevný index
z množiny {1,2,..., 1 999}. Podobně průnikem všech polorovin BSCSAS
je určitá polorovina BjCjAj a průnikem všech polorovin CSASBS je určitá
polorovina CkAkBki kde j, к € {1,2,..., 1 999}.

Množina M je proto průnikem tří výše zmíněných polorovin AíBíCí,
BjCjAj a CkAkBk, M je tedy trojúhelník ABC, kde A je průsečík přímek
AíBí a CkAk, В je průsečík přímek AíBí a BjCj a konečně C je průsečík
přímek BjCj a CkAk. Tento trojúhelník je podobný všem trojúhelníkům
ASBSCS, přičemž pro poměr podobnosti Л platí 0 < A 1. (Případ
A = В = C lze dle textu úlohy vyloučit.)

Vzhledem к tomu, že obsah trojúhelníku ABC je A2, stačí dokázat,
že A ^ A. Označme v výšku z vrcholu Ci na stranu AíBí v trojúhelníku
AíBíCí. Protože přímka AíBí je totožná s přímkou AB, je vzdálenost
těžiště Ti trojúhelníku AíBíCí od přímky AB rovna Podle zadání
obsahuje množina M těžiště všech trojúhelníků ASBSCS, musí tudíž ob-
sahovat těžiště Ti trojúhelníku AíBíCí.

Vzdálenost vrcholu C trojúhelníku ABC od jeho strany AB je tedy
alespoň Porovnáním velikostí výšek z vrcholů Ci a C v podobných
trojúhelnících AíBíCí a ABC dostáváme již přímo žádanou nerovnost
A ^ A, tj. A2 ^ A, což jsme chtěli dokázat.

A - I - 5

Označme

S(n) = /(!) + /(2) + ... + /(n).

Ze zadání plyne 5(1) = 1. Protože f(ri) ^ 1 pro všechna přirozená čísla
n, je 5: N —> N rostoucí funkce. Je-li n přirozené číslo tvaru n = 2k, kde
к je přirozené, určíme součet S(n) následujícím způsobem: Počet lichých
čísel, která nejsou větší než n, je 2fc_1. Každé liché číslo se na součtu
S(n) podílí hodnotou 1. Počet sudých čísel, která nejsou větší než n, je
rovněž 2fc_1, přitom každé sudé číslo se na součtu 5(n) podílí hodnotou
minimálně 1. Je-li navíc toto číslo dělitelné čtyřmi, podílí se na součtu
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další 1. Je-li dále číslo dělitelné osmi, podílí se další 1, atd. (Hodnotu
S(n) tak tvoříme načítáním hodnot 1 „po vrstvách41). Celkem je tedy

2* - 1
+ -2^T

fc—2 к-1к— 1 fc-i5(2*) = 2 + ... + 2 + 1 = 2+ 2 + 2

к—1 к-1
= 2k + 2 -1 = 3-2 - 1.

Nechť p je přirozené číslo, které lze zapsat ve tvaru p = 2ms, kde m

je celé nezáporné číslo a s liché přirozené číslo. Nechť к je přirozené číslo
takové, že p < 2k (tedy m < к), a nechť l je liché přirozené číslo. Pak

f(2kl +p) = f(2kl + 2ms) = f(2m(2k-ml + s)).
Číslo 2*_m/+s je liché, proto f (2Tn(2k~ml+s)) = f(2ms) = f(p). Celkem
tedy dostáváme f(2kl +p) = f(p).

Jsou-li k, m nezáporná celá čísla, к > m, а. I liché číslo, platí podle
předcházejícího odstavce

5(2*/ + 2m) = /(1) + /(2) + ... + /(2*7) + /(2*/ + 1) + /(2*7 + 2) +
+ ... + /(2*7 + 2m) =

= /(1) + /(2) + ... + f{2kl) + /(1) + /(2) + ... + /(2m) =
= S(2kl) + 5(2m).

A odtud již matematickou indukcí lehce dokážeme, že jsou-li k\ > &2 >
> ... > ki nezáporná celá čísla, pak platí

5(2*1 + 2*2 + ... + 2ki) = 5(2*1) + 5(2*2) + ... + 5(2*‘).
- 1 = 5(2fcl) ^Největší nezáporné celé číslo ki takové, že 3 • 2*1

^ 123 456, je k\ = 16. Přitom 5(216) = 98 303.
Největší nezáporné celé číslo takové, že 3 • 2*2

-i

- 1 = 5(2*2) ^
<; 123 456 - 98 303 = 25 153, je k2 = 14. Přitom 5(214) = 24 575.

- 1 = 5(2*3) ^

-i

Největší nezáporné celé číslo k2 takové, že 3 • 2*3
^ 25 153 - 24 575 = 578, je k3 = 8. Přitom 5(28) = 383.

Největší nezáporné celé číslo k4 takové, že 3 ■ 2*4
^ 578 - 383 = 195, je k4 = 7. Přitom 5(27) = 191.

Největší nezáporné celé číslo ks takové, že 3 • 2*5
^ 195 - 191 = 4, je k5 = 1. Přitom 5(2X) = 2.

Největší nezáporné celé číslo ks takové, že 5(2*6) ^ 4 — 2 = 2, je
ks = 0. Přitom 5(2°) = 1.

-i

- 1 = 5(2*4) ^-i

- 1 = 5(2*5) ^-i
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Tedy

5(82 307) = 5(216 + 214 + 28 + 27 + 2 + 1) =

= 5(216) + 5(214) + 5(28) + 5(27) + 5(2) + 5(1)
= 123 455 < 123 456.

Přitom 5(82 308) = 5(82 307) + /(82 308) = 123 455 + 2 = 123 457 >
> 123 456.

Největší přirozené číslo n, pro něž platí 5(n) ^ 123 456, je n — 82 307.
Jiné řešení. Na základě úvahy o načítání hodnot „po vrstvách“ jako

v předešlém řešení zjistíme, že
■ n

5(n) — n + iJ+ + +....
L16 J

Přitom [rj znamená celou část reálného čísla r, což je největší celé číslo,
které není větší než r.

Protože pro každé reálné číslo r platí [rj ^ r, platí též

S(n) = n+ 4 + g

Největší přirozené číslo n, pro něž platí, že |n ^ 123 456, je n — 82 304.
Přitom

2 + 2 l1 + 5 + 3 + "'
3nn n 71

+ ... - = — + П = —
2

82 304 82 304 82 304
5(82 304) = 82 304 + + + + ... +

8 164

82 304 82 304
+ + + ... =

131072
= 82 304 + 20 576 + 10 288 + 5 144 + 2 572 + 1 286 +

65 536

+ 643 + 321 + 160 + 80 + 40 + 20 + 10 + 5 +

+ 2 + l + 0 + 0 + ...=

= 123 452.

Dále

5(82 305) - 5(82 304) + /(82 305) = 123 452 + 1 = 123 453,
5(82 306) = 5(82 305) + /(82 306) = 123 453 + 1 = 123 454,
5(82 307) = 5(82 306) + /(82 307) = 123 454 + 1 - 123 455,
5(82 308) = 5(82 307) + /(82 308) = 123 455 + 2 = 123 457.
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Největší přirozené číslo n, pro něž S(n) 123 456, je tedy n = 82 307.

A - I - 6

Přímka AB je průsečnicí roviny ABV s rovinou podstavy ABCD čtyřbo-
kého jehlanu ABCDV, podobně přímka CD je průsečnicí roviny CDV
s rovinou podstavy ABCD uvažovaného jehlanu. Vzhledem к tomu, že
obě průsečnice jsou dle zadání rovnoběžné, je rovněž průsečnice s rovin
ABV a CDV s nimi rovnoběžná (obr. 43). Rovina kolmá к přímce s,
procházející vrcholem V daného jehlanu, protíná přímky AB, CD po
řadě v bodech P, Q, které jsou patami výšek z vrcholu V po řadě na

strany AB, CD v trojúhelnících ABV, CDV. Roviny ABV a CDV jsou
podle zadání vzájemně kolmé, trojúhelník PQV má proto pravý úhel
u vrcholu V. Pata M výšky z vrcholu V na přeponu PQ je přitom to-
tožná s patou tělesové výšky z vrcholu V jehlanu ABCDV. Pro polohu
bodů PaQna přímce AB, resp. CD, je třeba dále rozlišit tři případy:

(i) Oba body P a Q leží na odpovídajících hranách AB, CD.
(ii) Jeden z bodů P, Q leží na odpovídající hraně, druhý na prodlou-

žení odpovídající hrany.
(iii) Žádný z bodů P, Q neleží na odpovídající hraně.

V
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Obr. 43

Dokážeme dále nerovnost z textu úlohy pro případ (i). Zaveďme ozna-
čení ve shodě s obr. 43, tj.

\AP\ = x, \BP\=y, \CQ\ = z, \DQ\=u, \VP\=p, \VQ\=q.
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Využitím Pythagorovy věty v pravoúhlých trojúhelnících APV, BPV,
CQV, DQV a PQV dostáváme postupně vztahy:

|AV|2 = x2 + p2 \BV\2 = y2+p21 |CV|2 = z2 + q2,
\DV\2 = u2 + q2 \PQ\2 = p2 + q2.

Pro obsahy trojúhelníků ABV, CDV a PQV platí vzorce

ZSabv = (z + y)p, 2Scdv = (z + u)q, 2Spqv — pq.

Dosadíme-li nyní za |AV\2, |PVj2, |CV|2, \DV\2, |PQ|2 a 2Sabv, 2Scdv
ZSpQV do nerovnosti v textu úlohy, dostáváme po snadné úpravě

x2 + y2 + z2 + u2 + p2 + q2 ^ xp + yp + zq + uq + pq.

Nyní dokážeme, že předešlá nerovnost platí pro libovolná nezáporná
reálná čísla x, y, z, и a libovolná kladná čísla p, q. Vynásobením rozdílu
levé a pravé strany této nerovnosti číslem 4 dostáváme po úpravě

(4x2 — 4xp + p2) + (4y2 — 4yp + p2) + (4z2 — 4zq + q2) +
+ (4u2 - 4uq + q2) + 2(p2 - 2pq + q2) =

= (2x - p)2 + (2у - p)2 + (2z - q)2 + (2и - q)2 + 2(p - q)2 ^ 0.

Vzhledem к tomu, že všechny provedené úpravy byly ekvivalentní, platí
též nerovnost uvedená v textu úlohy, což jsme měli dokázat.

Podobně lze postupovat i v případech (ii) a (iii). Odlišné je zde pouze

vyjádření hodnot 2Sabv a 2Scdv-

Rovnost může nastat pouze v případě (i), ve zbylých dvou případech
je vyloučena. V případě (i) přitom rovnost nastává, právě když platí

2x = 2y = 2z = 2u = p = q,

tj. právě když podstavou daného čtyřbokého jehlanu ABCDV je obdélník
ABCD, pata M výšky VM uvažovaného jehlanu je průsečíkem úhlopří-
ček AC a BD v obdélníku ABCD a současně platí

\AB\ : \BC\ : \VM\ = 2 : 2\/2 : y/2.
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A - S - 1

První rovnice je splněna, právě když platí x = у + p nebo x = у — p. Po
dosazení do druhé rovnice dané soustavy dostaneme po úpravě v prvním
případě kvadratickou rovnici

3py2 + 3p2y + p3 - 16 = 0,

v druhém případě pak kvadratickou rovnici

3py2 — 3p2y + p3 + 16 = 0

o neznámé y. Daná soustava rovnic bude mít právě jedno řešení v oboru
reálných čísel, právě když jedna ze dvou předešlých kvadratických rovnic
bude mít jediný (dvojnásobný) kořen a druhá z nich nebude mít žádný
reálný kořen nebo bude mít stejný dvojnásobný kořen jako rovnice první
(můžeme předpokládat, že p ф 0, protože pro p = 0 daná soustava
zřejmě nemá řešení). První kvadratická rovnice má diskriminant D\ —

— 3p(64 — p3), druhá má diskriminant D2 = —3p(64+p3). Hledáme tedy
ta p 7^ 0, pro něž je jedno z čísel D1, D2 rovno nule a druhé záporné
(případ D\ = D2 = 0 pro p ф 0 totiž nenastane).

Je-li = 0, je p — 4 a D2 < 0. Pokud D2 = 0, je p — — 4 a D\ < 0.
Hodnoty p = 4 a p — — 4 jsou tedy jediné, které mají požadovanou
vlastnost.

Daná soustava rovnic má přitom pro obě uvedené hodnoty parametru
p jediné reálné řešení (ж, у) — (2,-2).

Jiné řešení. Z první rovnice máme \x — y\ — |p|, z druhé rovnice
však vidíme, že x3 > y3, což je ekvivalentní s nerovností x > у (je
x3 — y3 = (x — y){x2 -t- xy + y2) a x2 + xy -f y2 > 0 pro libovolná
reálná x, у s výjimkou případu x = у — 0). Je tedy x = у + \p\, \p\ > 0.
Po dosazení do druhé rovnice soustavy (pro jednoduchost pišme q místo
\p\) dostaneme pro у kvadratickou rovnici

3qy2 + 3q2y + q3 — 16 = 0

s diskriminantem D(q) — 3g(64 — q3) = 3g(4 — g)(16 + 4q + q2). Má-li
daná soustava v oboru reálných čísel jediné řešení, je nutně diskriminant
D{q) předešlé rovnice roven 0, tj. musí platit (4 — g)(16 + 4q + q2) = 0
(víme, že q = |p| > 0). Protože pro libovolné reálné q je 16 + 4q + q2 > 0,
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musí být q — \p\ = 4, tj. p — 4 nebo p
že у = —hq = -2ai = i/ + 4 = 2.

Daná soustava rovnic má právě jedno reálné řešení, právě když p = 4
nebo p — —4, a to (x, y) = (2, —2).

—4. Zároveň hned dostáváme,

Jiné řešení. Z první rovnice máme x — у -f q, kde q — p nebo q = —p.
Po dosazení do druhé rovnice soustavy dostaneme pro у kvadratickou
rovnici

3qy2 + 3q2y + q3 - 16 = 0

s diskriminantem D(q) — 3g(64 — q3) — 3q(4 — q)( 16 + 4q + q2). Má-li
daná soustava v oboru reálných čísel jediné řešení, je nutně diskriminant
D(q) předešlé rovnice roven 0, tj. musí platit (4 — g)(16 + 4q + q2) — 0.
Protože pro p = 0 nemá soustava řešení, je q ф 0, navíc pro libovolné
reálné q je 16 + 4q + q2 > 0, takže musí být q = 4, tj. p = 4 nebo p = —4.

Vraťme se znovu na počátek našeho řešení. Zkouškou se snadno pře-
svědčíme, že pro q

(x,y) — (2,-2). Pro q = —4 (po dosazení
rovnice (у — 4)3 — у3 — 16 žádný reálný kořen.

Daná soustava rovnic má právě jedno reálné řešení, právě když p = 4
nebo p = —4, a to (ж, у) = (2, —2).

4 má daná soustava právě jedno reálné řešení
za x = у — 4) však nemá

A - S - 2

Z rovnosti obsahů trojúhelníků AMU a KCU plyne rovnost obsahů
trojúhelníků AMC a AKC. Body К, M mají tedy stejnou vzdálenost
od přímky AC. Odtud plyne, že CA || MK a čtyřúhelník САМК je
tedy lichoběžník. Podobně dokážeme, že čtyřúhelník BCLM je rovněž
lichoběžník, kde BC || LM. Trojúhelníky AML a ABC, resp. BKM
а ВCA jsou tedy stejnolehlé a platí (obr. 44)

\AL\ = kb, \AM\ = kc, \BM\ = (1 - k)c, \BK\ = (1 - k)a

a dále

\CK\ - ka, \CL\ = (1 - k)b, kde к £ (0; 1).

Užitím Cěvovy věty pro trojici úseček AK, BL a CM, které se dle textu
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úlohy protínají v bodě U, dostáváme

(1 — k)a (1 — k)bkc
= 1.

(1 — k)c ka kb

Odtud plyne (1 — k)/k = 1, neboli к = Tyto úsečky jsou tedy těžnice
a jejich průsečík U je těžištěm daného trojúhelníku. Ze shodnosti úseček
AM a BM již plyne rovnost obsahů trojúhelníků AMU a BMU, tedy
rovnost P — Q, což jsme měli dokázat.

Jiné řešení (bez užití Cěvovy věty). Stejně jako v prvním řešení ukáže-
me, že úsečky BC a LM jsou rovnoběžné, takže si navzájem odpovídají
v jisté stejnolehlosti se středem U a zároveň i v jisté stejnolehlosti se
středem A. Označme Кi, K2 po řadě středy obou uvažovaných úseček.
Vzhledem к tomu, že body K\, K2 si odpovídají v obou zmíněných stejno-
lehlostech, leží body A a U (středy obou stejnolehlostí) na přímce K1K2■
Odtud plyne, že střed K\ strany BC leží na přímce AU, je tedy totožný
s bodem К z textu úlohy. Úsečka AK je tudíž těžnicí trojúhelníku ABC.
Podobně dokážeme, že i úsečka BL je těžnicí daného trojúhelníku. Bod
U je tedy jeho těžištěm. Závěr je pak stejný jako v prvním řešení.

A - S - 3

Ukážeme, že hledaným к je číslo 1 001. Rozdělme všechna čísla z množiny
{1,2, 3,..., 2 000} do 1 000 dvojic

{1,666}, {2,665}, {3,664}, ..., {333,334},
{667,1334}, {668,1335}, {669,1336}, ..., {1333,2 000}.
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(Číslo 667 z textu úlohy je rovno součtu čísel každé dvojice v prvním
řádku a rozdílu čísel každé dvojice v druhém řádku. Všimněme si, že
skutečně každé z čísel 1, 2, 3,, 2000 je zastoupeno právě v jedné dvo-
jící.)

Číslo 1 001 má požadovanou vlastnost, protože pokud vybereme li-
bovolně 1001 čísel z množiny {1, 2, 3,..., 2 000}, budou mezi nimi obě
čísla aspoň jedné z uvedených dvojic (máme vybráno 1 001 čísel, ale jen
1000 dvojic). Součet nebo rozdíl čísel v nalezené dvojici je však 667.

Nyní ukážeme, že žádné číslo к й 1 000 požadovanou vlastnost nemá.
Stačí to zřejmě ukázat pro к = 1 000: vybereme-li 1 000 sudých čísel
2,4,6,..., 2 000, je součet i rozdíl libovolných dvou vybraných čísel sudý,
takže se nemůže rovnat lichému číslu 667.

A - II - 1

Označme Q(x) = x2 -f 4x — 7, potom 0 = P(Q(1)) = P(—2). Odtud
plyne, že P(x) = a{x + 2)(x — p), kde a a p jsou reálná čísla, a ^ 0. Je
tedy

P(Q(x)) = a(x2 + 4x — 7 -f 2)(x2 + 4x — 7 — p) =
= a{x — l)(x + 5)(:r2 -f 4x — 7 — p).

To znamená, že kořeny dané rovnice jsou kromě čísel 1 a —5 ještě kořeny
kvadratické rovnice

x2 + 4x — 7 — p = 0.

Protože aspoň jeden z kořenů dané rovnice má být dvojnásobný, je buď
aspoň jedno z čísel 1 a —5 kořenem rovnice (1), nebo má tato rovnice
sama dvojnásobný kořen. Přitom z tvaru rovnice (1) plyne, že součet
jejích kořenů je —4 (číslo opačné ke koeficientu u lineárního členu), takže
tato rovnice má kořen 1, právě když má kořen —5.

Jsou tedy dvě možnosti:
a) Rovnice (1) má dva kořeny 1 a —5 (takže je p = —2) a rovnice

P(Q(x)) = a(x — l)2(x + 5)2 = 0 má dva dvojnásobné kořeny 1 a —5.
b) Rovnice (1) má sama dvojnásobný kořen. Protože součet jejích

kořenů je —4, je dvojnásobným kořenem číslo (—4) : 2 = —2. (V tomto
případě je p = —11 a P(Q(x)) = a(x — l)(x + 5)(x + 2)2 = 0.)

Závěr: Úloha má dvě řešení: daná rovnice má buď dva dvojnásobné
kořeny 1 a —5, nebo má dva jednoduché kořeny 1 a —5 a dvojnásobný
kořen —2.

(1)
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A - II - 2

Označme P střed základny АВ hledaného rovnoramenného trojúhelníku
ABC. Protože vrchol U daného lichoběžníku UVST leží na přímce AB, je
buď U — P, anebo tvoří body T, U, P vrcholy pravoúhlého trojúhelníku
(obr. 45). V obou případech bod P leží na Thaletově kružnici к sestrojené

nad průměrem TU. Označme d vzdálenost vrcholu T daného lichoběžníku
od přímky VS. Vzhledem к tomu, že T je těžištěm trojúhelníku ABC,
má jeho výška z vrcholu A velikost 3d, tudíž bod P leží na přímce p,
která je s přímkou VS rovnoběžná, má od ní vzdálenost |d a leží v po-
lorovině VST. Odtud již plyne konstrukce trojúhelníku ABC:
1. sestrojíme kružnici к s průměrem TU;
2. sestrojíme v polorovině VST přímku p || VS ve vzdálenosti |d od VS;
3. sestrojíme bod P £ к Пр;
4. sestrojíme přímku PBlTP, В G kS;
5. sestrojíme vrcholy A {A £ PB, А ф В, \ AP\ = \PB\) а С (C £ PT(~)

П VS).

Diskuse: Protože dle předpokladu je ST || UV a ||5T| < \UV\, pro-
tne přímka p stranu TU daného lichoběžníku ve vnitřním bodě, bude
tedy sečnou kružnice к a protne ji ve dvou různých bodech P a P'
(obr. 45). Pro každý z nich dostáváme jedno řešení, trojúhelníky ABC
а А'В'С'. Z konstrukce je dále zřejmé, že pokud bude TU _L SV, budou
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oba body P, P' souměrně sdružené podle osy TU, takže dostaneme dva
shodné (souměrně sdružené) trojúhelníky ABC a A'B'C (obr. 46). Obě

souměrně sdružená řešení splynou v jedno v případě, kdy vyjde A = U.
Přitom bude těžiště T trojúhelníku ABC zároveň průsečíkem jeho výšek,
takže výsledný trojúhelník ABC bude rovnostranný (obr. 47). To nasta-
ne, právě když obě ramena daného lichoběžníku jsou navzájem kolmá

a navíc platí 3|5Tj = \UV\, jak plyne z podobnosti trojúhelníků UVQ
a TSQ. V tomto jediném případě má úloha jedno řešení. Ve všech ostat-
nich případech má úloha dvě řešení (která jsou pro TU J_ SV shodná).
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A - II - 3

Umocněním obou stran dané nerovnosti na třetí dostaneme ekvivalentní

nerovnost

3 b b . a b
- ^4 + 2- + 2-

a a ba

a 3 a

U3VU3
neboli

(1)

V předcházející nerovnosti položme x — \/a/b (x > 0). Po vynásobení
obou stran nerovnosti (kladným) číslem x3 a snadné úpravě obdržíme
ekvivalentní nerovnost

x6 — 3a;4 + 4a;3 — 3a;2 + 1^0.

Nejdříve zjistíme, zda rovnice a:6 — 3a:4 + 4x3 — 3a;2 + 1 = 0 nemá ce-

ločíselný kořen. Takový kořen musí dělit absolutní člen, takže jsou jen
dvě možnosti, 1 a —1. Snadno ověříme, že uvedená rovnice má kořen
x = 1, a po dělení dvojčlenem (x — 1) zjistíme, že jde dokonce o kořen
dvojnásobný a že platí rozklad

x6 — 3x4 + 4a:3 — 3a:2 + 1 = (x — l)2(a;4 + 2a;3 + 2a: + 1).

Pro každé x > 0 je x4 + 2a:3 + 2x + 1 > 0. Platí tedy

a;6 — 3a:4 + 4a;3 3a;2 + 1 = (x — l)2(a:4 + 2a;3 + 2a: + 1) ^ 0,

což jsme měli dokázat. Rovnost v předchozí nerovnosti přitom nastává,
právě když x — 1, tj. právě když platí a = b.

Druhé řešení. Užitím nerovnosti mezi aritmetickým a geometrickým
průměrem pro trojici kladných čísel a/b, 1, 1 dostaneme

; + 1 + 1И;
a obdobně

- + 1 + 1 ^ 3A7-.
a
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V obou předchozích nerovnostech nastává rovnost, právě když a = b.
Jejich součtem pak vyjde

a b . 3 a 3 b
- + -+4^- + 3ý-

což je nerovnost (1).
Třetí řešení. Podle nerovnosti mezi mocninnými průměry stupně |

a J dostáváme pro kladná čísla a/6, b/a nerovnost i

^/a/b + УЬЛУ y/ajb+ \/bJa\<
2 2

v níž nastává rovnost, právě když a/6 = 6/a, tj. právě když a — b.
Protože

dostáváme odtud po jednoduché úpravě dokazovanou nerovnost, v níž
nastává rovnost, právě když a — b.

A - II - 4

Nechť E je vnitřním bodem takového konvexního čtyřúhelníku ABCD,
který vyhovuje podmínkám úlohy. Uvažujme přímky X\ Yj, Х2У2 a X3Y3,
které procházejí bodem E a protínají po řadě strany AB a CD v bodech
X\ a Yi, X2 а У2, X3 а У3 (obr. 48). Jestliže všechny tři uvažované

Ur CD У* U2

A Xi x2 x3 в

Obr. 48

1 Viz např. J. Herman, R. Kučera, J. Šimša: Metody řešení matematických úloh I,
str. 174.
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přímky dělí čtyřúhelník ABCD na dvě části o stejném obsahu, rovnají se
i obsahy trojúhelníků EX1X2 a EY\Y3, resp. EX2X3 a EY2Y3. Protože
tyto trojúhelníky mají vždy shodné vnitřní úhly při vrcholu E, plyne
z rovnosti jejich obsahů rovnost

\EXi\-\EX2\~\EYi\-\EY2\

resp.

\EX2\ • \EX3\ = \EY2\ ■ \EY3\.
Z obou předešlých rovností dostáváme

\EX11 \ЕУг\
\EX3\ \EY3\‘

Trojúhelníky EX\X3 a EY\Y3 jsou tedy podobné (podle věty sus) a mají
týž obsah. Jsou proto středově souměrné podle středu E a platí tudíž
X1X3 II Y1Y3. Čtyřúhelník ABCD má tedy nutně rovnoběžné strany AB
a CD.

Naopak každý (konvexní) čtyřúhelník ABCD, v němž platí AB || CD,
vyhovuje podmínkám úlohy. Za bod E pak zvolíme střed úsečky spojující
středy rovnoběžných stran AB a CD; požadovaná vlastnost takového
bodu je zřejmá.

Závěr: Podmínkám úlohy vyhovují právě všechny konvexní čtyřúhel-
niky ABCD, v nichž AB || CD.

A - III - 1

Označme an — 4 • 32” + 3 • 42". Ukážeme nejprve, že pro každé přirozené
číslo n je rozdíl an+2—an dělitelný třinácti. Po úpravách obdržíme rovnost

= 4 • (812" - 32") + 3 • (2562" - 42 *). (1)Q“n-(-2 О'п

Položme ve známém vzorci

Ap-Bp = (A- B)(AP~1 + AP~2B + ... + DP"1),

který platí pro každé přirozené p a pro libovolná dvě reálná čísla А а В,
nejprve p = 2n, .4 = 81, В = За poté p = 2
Protože je 81 - 3 = 78 = 13 • 6 a také 2562 - 42 = (256 - 4)(256 + 4) =
= 252 • 260 = 13 • 20 • 252, jsou oba sčítanci na pravé straně rovnosti (1)

П—1 A = 2562, В = 42.
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an dělitelný 13. Číslo a\čísla dělitelná 13. Je proto také rozdíl an+2
není dělitelné 13, neboť ai = 84 = 13 • 6 + 6, kdežto číslo <22 číslem 13
dělitelné je (<22 = 1 092 = 13 • 84). Užitím principu matematické indukce
již snadno zjistíme, že an je dělitelné 13, právě když n je sudé. Tím je
důkaz hotov.

Jiné řešení. Sestavme tabulku zbytků při dělení čísla an — 4 • 32n +
+ 3 • 42 třinácti.

2 31 4 5n

32'1 9 3 9 3 9

42n 3 9 3 9 3

4-32n 10 12 1210 10

3 • 42" 9 91 1 9

6 0 6 0 6

Zbytky obou čísel tvaru N2 určujeme rekurentně pomocí rovností
дг2~+1 = дг2" . дг2" = (N2ný' protože 32 = 9 a 92 = 81 = 3 (mod 13),
vidíme, že v druhém i třetím řádku tabulky se pravidelně střídá trojka
s devítkou, zbytky čísla an při dělení třinácti se tedy (vzhledem к číslu n)
rovněž opakují s periodou 2. Číslo an je tedy dělitelné třinácti, právě když
n je sudé.

A - III - 2

Protože přímka CD je osou souměrnosti dvou vrcholových úhlů APB
a EPF, leží střed I\ kružnice vepsané trojúhelníku ABP na úsečce DP
a zároveň střed /2 kružnice vepsané čtyřúhelníku PECF leží na úseč-
се CP (obr. 49). Navíc platí \I\P\ = \hP\, neboť obě zmíněné kruž-
nice jsou shodné. Středy 01, O2 kružnic vepsaných trojúhelníkům ADP
a BCP (obr. 50) pak leží po řadě
přímky AI 1 a BI2 jsou osy odpovídajících úhlů DAP а СВР. Z rovnosti
\I\P\ — \EP\ navíc plyne, že trojúhelníky API\ a BPI2 mají stejný
obsah, protože se rovnají i příslušné výšky \AD\ = \BD\.

Označme r1, Г2 poloměry kružnic vepsaných trojúhelníkům ADP
a BCP. Vyjádříme-li pomocí nich oba zmíněné obsahy (S(XYZ) značí

úsečkách AI\, BI2, neboť polo-na
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л D В А D В

Obr. 49 Obr. 50

obsah trojúhelníku XYZ), dostaneme

S(APh) = S(AO\P) + S(OiPh) =

= \\AP\-r1 + 1-\IlP\-r1 = ^(\AP\ + \I1P\),
S{BPI2) = S{B02P) + S{02PI2) -

= \\BP\ ■ r2 + \\hP\ ■ r2 = Ц(\ВР\ + \hP\).
Vzhledem к tomu, že S(APh) = S{BPI2), |/iP| - |/2P| а |ЛР| = \BP\,
plyne odtud r\ = r2, což jsme měli dokázat.

Jiné řešení. Vzhledem к souměrnosti trojúhelníku ABC podle osy CD
stačí ukázat, že se shodují kružnice vepsané trojúhelníkům BDP a BPC.

Vnější společné tečny shodných kružnic vepsaných úhelníkům ABP
a PECF jsou rovnoběžné se střednou CD, tedy kolmé na přímku AB.
Uvažujme tu z nich, která protíná úsečky AD, PF a polopřímku opáč-
nou CB. Tyto průsečíky označme po řadě D', P', C (obr. 51). Ve stejno-
lehlosti, která zobrazí trojúhelník BD'C na trojúhelník BDC, odpoví-
dají trojúhelníkům BD'P' a BP'C trojúhelníky BDP a BPC. Protože
kružnice vepsaná čtyřúhelníku PECF je zároveň vepsána i trojúhelníku
BP'C' a kružnice vepsaná trojúhelníku ABP je zároveň vepsána troj-
úhelníku BD'P' a obě uvedené kružnice jsou dle předpokladu shodné,
jsou shodné i jejich obrazy ve zmíněné stejnolehlosti, tedy kružnice ve-

psané trojúhelníkům BDP a BPC.
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A - III - 3

Nechť trojúhelník ABC o obsahu 1 je vzorem všech 2 000 trojúhelníků
AkBkCk, к E {1,2,..., 2 000}, v různých posunutích. Obsahuje-li každý
z těchto trojúhelníků těžiště všech zbývajících, plyne z řešení úlohy
A-I-4, že průnikem všech těchto trojúhelníků je trojúhelník AqBqCq,
který je podobný trojúhelníku ABC, přičemž jeho strany AqBq, BqCq,
CqAq jsou po řadě rovnoběžné se stranami AB, BC, CA a pro poměr
podobnosti Л navíc platí Л E 1).

Je-li AkBkCk (к E {1,2,..., 2 000}) libovolný z daných trojúhelní-
ků, je trojúhelník AqBqCq jeho částí, proto leží vrchol Ak v poloro-
vině BqCqAo ve vzdálenosti nejvýše va od hraniční přímky BqCq, kde
va je velikost výšky trojúhelníku ABC příslušné vrcholu A. Na druhou
stranu je i vzdálenost strany BkCk od vrcholu Aq nejvýše va. Protože na-
víc trojúhelník AqBqCq obsahuje těžiště všech takovýchto trojúhelníků
AkBkCk, nemůže být vzdálenost strany BkCk od strany BqCq || BkCk
větší než Vzdálenost vrcholu Aq od strany BqCq je Xva, dohro-
mady je tedy vzdálenost obou rovnoběžných přímek BkCk, BqCq nej-
výše min(|, 1 — Л) • va. Vidíme, že všechny dané trojúhelníky leží uvnitř
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pásu omezeného dvěma rovnoběžkami ao || a\ || BqCq (obr. 52), jejichž
vzdálenost od BqCq je va a min(|, 1 — Л) -va. Analogické tvrzení můžeme
vyslovit i pro další dva směry CqAq a AqBq. Sjednocení všech daných
trojúhelníků musí tedy ležet v průniku všech tří odpovídajících pásů.

uq

Obr. 52

Rozlišíme nyní dva případy podle toho, čemu se rovná min(|, 1 — Л).
1. Nechť | A < |. Průnikem odpovídajících tří pásů je šestiúhelník,

který vznikne z trojúhelníku T určeného trojicí přímek (a\,bi,ci) odstra-
něním tří trojúhelníčků Ta, Ть, Tc určených trojicemi přímek (ao,&i,ci),
(ai,6o,ci) a (ai,6i,co). V obr. 53 jsou vyznačeny některé poměrné vzdá-
lenosti vzhledem к \AB\, s jejichž pomocí zjistíme, že trojúhelník T je

i i i
Л

podobný trojúhelníku ABC s poměrem podobnosti 1 + Л a trojúhelníky
Ta, Ть, Tc jsou podobné trojúhelníku ABC s poměrem podobnosti Л—
Z vypočtených poměrů je zároveň zřejmé, že pro Л = | se trojúhelníky
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Та, Тъ, Тс stáhnou do jediného bodu, takže uvedený šestiúhelník se zre-

dukuje na trojúhelník T.
Pro obsah 5(A) vyznačeného útvaru tak pro A < | platí

SW = (1 + A)2 - з(л- i)2 =
= -2A2 + 4A + ? = -2(A-l)2 + ?<| 1 22

9 ~ ~9

2. Nechť | ^ A ^ 1. Průnikem odpovídajících tří pásů je opět šesti-
úhelník (obr. 54), přičemž odpovídající trojúhelník T je podobný troj-

úhelníku ABC s poměrem podobnosti 3
jsou podobné trojúhelníku ABC s poměrem podobnosti 1 — A (v tomto
případě se šestiúhelník zredukuje na trojúhelník T pro A = 1).

Pro obsah 5(A) v tomto případě platí

2A a trojúhelníky Ta, Ть, Tc

5(A) = (3 — 2A)2 - 3(1 - A)2 =
„ AQ 22

6A + 6 = (A — 3)2 — 3 3 = —= A2
9 9

s rovností pro A = |.
Zjistili jsme, že sjednocení všech trojúhelníků AkBkCk (к — 1,

2,..., 2 000) je pro А ф- | částí rovinného útvaru, jehož obsah je menší
než Щ. Pro A = | je pak částí šestiúhelníku s obsahem Strana tohoto
šestiúhelníku, která leží např. na přímce ao, může obsahovat jen konečně
mnoho vrcholů Ai daných trojúhelníků AíBíCí, takže v šestiúhelníku
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určitě najdeme trojúhelníček kladného obsahu, který do uvažovaného
sjednocení nepatří. Obsah sjednocení uvažovaných trojúhelníků je proto
i v tomto případě menší než Щ-. Tím je důkaz hotov.

A - III - 4

0, g(x) = 0 má dva reál-Ze zadání plyne, že každá z rovnic /(x)
né kořeny, přitom všechny čtyři kořeny /obou uvažovaných rovnic jsou
navzájem různé. Označme x\, x% kořepy rovnice f(x) = 0. Platí tedy

a(x — £i)(x — X2), kde a je reálné číslo, a / 0. Číslo x\ je podle
zadání rovněž kořenem rovnice g(/Ůc)) = 0, platí tudíž g(f(x1)) =
= 0) = 0. Odtud vyplývá, že rovnice g(x) — 0 má jeden kořen 0.
Označme b (b ф 0) druhý kořen této rovnice. Je tedy g(x) = cx(x — 6),
kde c je reálné číslo, c ý 0. Čísla 0 a b jsou podle zadání rovněž kořeny
rovnice p(/(x)) = 0:

f(x)

p(/(°)) = c/(°)(/(0) - b) = 0 a g(f{b)) = cf{b)(f(b) - b) = 0.

Jelikož čísla 0 a b nemohou být kořeny rovnice f{x) — 0, plyne odtud
/(0) = m = ь.

Na číselné ose jsou proto jak body 0 a b, tak i body x\ a x2 souměrně
sdružené podle :r-ové souřadnice vrcholu paraboly у — f(x). Čísla 0, 6,
x\ a £2 (tvořící dle zadání aritmetickou posloupnost) mohou tedy být
uspořádána dvěma způsoby:

• Čísla x\ a £2 leží uvnitř intervalu s krajními body 0 a b. Pak £1 = ^6
a £2 = |b (při vhodné volbě indexů), tudíž

, ,/лЧ ( b\ / 2b\ 2al

9
takže b — —

2 a

3\ / 3\ 2
— £ = ax
2а/V aJ

9 9
f(x) = a(x - -x +

2 2a

• Čísla 0 a 6 leží uvnitř intervalu s krajními body £1 a £2. Pak £1 = —b
a £2 = 26 (při vhodné volbě indexů), tudíž

b = /(0) = ab(—2b) = —2ab2,
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1
takže b = — a

2a

f(x) = a(x~é)( 1 2 1
=ax + -x—

1
x —

2aa

Závěr: Úloze vyhovují všechny kvadratické funkce / tvaru

г/ \ 2 99f(x) = ax - -x + —

1 1
f(x) = ax2 + -z -nebo

2a’

kde a je libovolné nenulové reálné číslo.

A - III - 5

Označme ABCD uvažovaný jehlan s podstavou ABC, kde \<ACB\ —

— 90°. Podle textu úlohy byl model rozříznut podél obou odvěsen AC
a BC podstavy a dále podél těžnice z vrcholu D jedné ze stěn BCD,
ACD. Při řezu podél těžnice ve stěně ABD by totiž nebylo možné roz-
vinout model do roviny. Bez újmy na obecnosti předpokládejme dále, že
řez je veden podél těžnice DE ve stěně ACD (obr. 55), kdy po rozvi-
nutí do roviny vznikne útvar s hranicí BCAE2DE1C1B a pravým úhlem
u vrcholu C (obr. 56). Protože tento útvar je čtverec (označme ho C),
jsou úhly AE2D a DE\C\ pravé (žádný z nich nemůže být přímý, neboť
jejich součet je 180°). Proto je těžnice DE trojúhelníku ACD zároveň
jeho výškou a body E1, E2 jsou vrcholy čtverce C.

D

A

E

CВ

Obr. 55
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Kdyby vrcholy Ei a E2 čtverce C byly sousední, z rovnosti |jE'iC'i | =
= \E2A\ a z toho, že C má vrchol C, by plynulo, že C = CE2E\B, a tak
\BC\ = \BE\\, což ale odporuje rovnosti \BC\ = \BC\\ (obr. 57). Tak

D E2Ei

>

A

В C

Obr. 57

jsme (sporem) dokázali, že vrcholy E\ a E2 čtverce C nejsou sousední,
proto к vrcholům C patří (kromě bodů E\, E2 a C) nutně bod D (z úseku
E2DE\ hranice BCAE2DE\C\B).

Popsané body rozdělují hranici čtverce C = CE2DE\ na úseky, jejichž
délky jsou vyznačeny na obr. 56 pomocí výhodného označení x = ^a.
Délky ostatních hran jehlanu spočteme podle Pythagorovy věty:

\DC\ = \DA\ = \J(3a:)2 + (x)2 = xy/lÓ,
\DB\ = yj(За:)2 + (2x)2 = x\/l3, \AB\ — xy/E.

Abychom zjistili objem jehlanu ABCD, potřebujeme určit velikost
jeho tělesové výšky.

Označíme-li F střed hrany AB, vidíme, že hrana AC je kolmá na
rovinu EFD, neboť АС X BC || EF а АС X DE. Rovina EFD je tedy
kolmá na základnu ABC.

Tělesová výška jehlanu je proto výškou (z vrcholu D) trojúhelníku
DEF. Protože DF tvoří těžnici trojúhelníku ABD, ze známého vzorce

pro velikost těžnice dostaneme

2\DF\2 = \DA\2 + \DB\2 - i|AB|2 - yi2,
takže strany trojúhelníku DEF mají délky \DF\ = ^ху/Ш., \DE\ = 3x
a \EF\ — \\BC\ — 7jX. Podle Heronova vzorce je obsah S takového
trojúhelníku roven

5=Т\/(3+5 + ^)(3+3-#)(3+^1-Ю(#+ХЗ) =

= ^V'(7+V4l)(7-v/4T)(5+v/4r)(V4l-5) = X^,
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2S/\EF\ = 2хл/2. Objema tak má jeho výška v z vrcholu D velikost v
V jehlanu ABCD je proto roven

2\[2 o 2\[2 o
x = ——

1 1
V=-.-\AC\-\BC\.v = a .

3 81

Závěr: Objem uvažovaného jehlanu je ~\/2a3.
Poznámka. Ze čtverce lze popsaným způsobem čtyřstěn ABCD po-

žadovaných vlastností vytvořit, když je součet dvou ze tří předpoklá-
daných stěnových úhlů při vrcholu D větší než úhel třetí. Protože je-
jich součet je 90°, stačí ověřit, že každý z těchto tří úhlů je menší než
45°. Nerovnost \KCDB\ < 45° je zřejmá, zbylé dvě nerovnosti jsou
důsledkem výpočtů, podle kterých cos|<^DB|
tg\<CDA\ = tg2\<ClDEx\ = | < 1.

9/\/l30 > \y/2 a

A - III - 6

Rovnost 1 000a 4- 1006 + 10c + d + 1 = (10a + c + 1) (106 + d + 1) lze
upravit na tvar

100a(9 - 6) + 10a(9 - d) + 106(9 - c) + c(9 - d) = 0.

Přitom každý ze čtyř sčítanců na levé straně je nezáporné celé číslo,
proto bude tato rovnost splněna, právě když bude každý z nich roven
nule. Protože je a > 0, musí být 6 = d — 9 a následně i c = 9. V tom
případě rovnici vyhovuje libovolná číslice a, a £ {1,2,..., 9}. Řešením
úlohy jsou tedy právě všechna následující čtyřmístná čísla: 1999, 2 999,
3999, 4999, 5999, 6999, 7999, 8999 a 9999.
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Kategorie P

Texty úloh

P - I - 1

V továrně bude zahájena výroba nového typu výrobku. Výroba je po-

psána přesným technologickým plánem, jenž stanoví, jaké všechny vý-
robní operace je třeba vykonat a jak dlouho každá z těchto operací trvá.
Pro každou výrobní operaci P je dále znám seznam operací, které musí
být provedeny před začátkem operace P (nazveme je předcházející ope-

race).
Majitelé továrny chtějí výrobu zorganizovat tak, aby bylo možné

dokončit první nový výrobek v co nejkratším čase. V továrně lze sou-
časně provádět libovolný počet výrobních operací, každou operaci je však
možné zahájit až po dokončení všech jí předcházejících operací. Jinak
mohou být jednotlivé výrobní operace prováděny v jakémkoliv pořadí.
Můžete předpokládat, že výroba podle zadaného technologického plánu
je možná.

Napište program, který ze vstupního textového souboru TOVARNA.IN
přečte technologický plán výroby nového výrobku a do výstupního tex-
tového souboru TQVARNA. OUT vypíše nejkratší čas, v jakém lze vyrobit
první nový výrobek.

Soubor TOVARNA. IN obsahuje na prvním řádku počet výrobních ope-
raci N (N ^ 100). Na dalších N řádcích se nacházejí informace o jed-
no tlivých výrobních operacích, na г-tém řádku o operaci číslo i. Infor-
mace o každé výrobní operaci se skládá z několika čísel oddělených me-
žerou. První číslo udává, jak dlouho operace trvá, dále následují čísla
předcházejících operací. Řádek je ukončen číslem —1. Pro zhotovení no-
vého výrobku je třeba vykonat všech N zadaných výrobních operací.
Jednotlivé operace je možné provádět v libovolném pořadí, každá ope-
race však může být zahájena až po dokončení všech jí předcházejících
operací.

101



Soubor TOVARNA. OUT bude obsahovat jediný řádek, na kterém bude
zapsán čas, za jak dlouho od zahájení výroby lze dokončit první nový
výrobek.

Přiklad: Soubor TOVARNA.IN Soubor TOVARNA. OUT

74

2 3-1

3 3-1

3 -1

112-1

P - I - 2

Je dána množina A = {ai, a2, аз,..., адг} (N ^ 1), kterou budeme
nazývat abeceda. Prvky abecedy budeme nazývat znaky. Řetězcem nad
abecedou A je konečná posloupnost prvků z množiny A (znaků). Vybraný
podřetězec vznikne z řetězce vynecháním některých jeho znaků, přičemž
pořadí zbývajících znaků řetězce zachováme beze změn. Permutace prvků
množiny A je řetězec, v němž se každý prvek množiny A vyskytuje právě
jednou.

Příklad: Nechť N = 3, A = {a, 6, c}. Potom z řetězce abcabccb můžeme
vytvořit například vybrané podřetězce ab, aac, bbcb, abbb, abc, cab. Z nich
pouze abc a cab jsou permutace množiny A.

Soutěžní úloha. Nalezněte co nej kratší řetězec nad abecedou A =

= {a, 6, c,..., o} (N = 15), který obsahuje všechny permutace prvků
množiny A jako vybrané podřetězce, přičemž každý znak se v něm vy-

skytuje nejvýše iV-krát. Podrobně popište také způsob, jak jste tento
řetězec našli, a přiložte a popište všechny algoritmy a programy, které
jste přitom použili. Výsledný řetězec uložte do souboru RETEZEC.TXT.

Příklad: Například pro abecedu A — {а, 6, c} (N = 3) vyhovuje řetě-
zec acbacab, protože se v něm nacházejí všechny permutace абс, acb, bac,
bca, cab, cba jako vybrané podřetězce. Zároveň je tento řetězec nejkratším
řetězcem nad abecedou A splňujícím tuto podmínku.

P - I - 3

V jisté zemi existuje N politických stran. Každá ze stran má mezi obyva-
telstvem určité preference, přičemž žádné dvě strany nemají stejné prefe-
rence. Agentury pro výzkum veřejného mínění dokážou provést průzkum,
který pro libovolné dvě politické strany umožňuje přesně zjistit, která
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z nich má preference nižší a která vyšší. Tento průzkum je však poměrně
drahý a dá se použít vždy jen pro dvě vybrané politické strany.

Jedna agentura chce zjistit, která ze stran v zemi má nejvyšší a která
nejnižší preference. Bude postupovat tak, že pro různé dvojice stran pro-
vede výše popsaný průzkum veřejného mínění. Chce přitom vykonat co

nejméně průzkumů.
Napište program, který bude řídit činnost agentury. Tento program

nejprve přečte počet stran N (1 100). Strany si pro jednoduchost
očíslujeme čísly 1,2...,TV. Program potom v cyklu vždy vypíše, pro
které dvě strany se má provést průzkum, a následně přečte ze vstupu
výsledek tohoto průzkumu — číslo strany s většími preferencemi. Když
program tímto způsobem získá dostatek údajů potřebných к tomu, aby
určil politické strany s nejvyššími a s nejnižšími preferencemi, vypíše
odpověď a skončí.

Dbejte zejména na to, aby program dal vždy správnou odpověď a aby
použil co nejméně průzkumů. Odhadněte, kolik nejvíce průzkumů může
váš program potřebovat pro N stran.

Přiklad: Uvedeme příklad činnosti programu pro tři strany, přičemž
texty vypisované programem jsou od začátku řádku a odpovědi uživatele
jsou zadány v řádcích začínajících znakem >.

Zadej počet stran:
> 3

Proveď průzkum 1,2
> 2

Proveď průzkum 1,3
> 3

Proveď průzkum 2,3
> 2

Nejvyšší preference má strana 2, nejnižší 1

P - I - 4

Minského registrový stroj
Minského registrový stroj je jednoduché výpočetní zařízení. К dispozici
má několik registrů označených Ro, R\, R2,..., přičemž v každém registru
může být uloženo jedno libovolně velké nezáporné celé číslo.

Minského registrový stroj může mít jeden nebo více vstupů, jejichž
hodnoty jsou na začátku výpočtu uloženy v registrech Ri,..., Rk, kde к
je počet těchto vstupů. Ostatní registry jsou na začátku výpočtu inicia-
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lizovány na hodnotu nula. Po skončení výpočtu Minského registrového
stroje je výsledkem hodnota uložená v registru Ro.

Každý Minského registrový stroj je řízen pevně daným programem.
V programu se mohou vyskytovat tyto příkazy:

t> Zvýšení hodnoty v daném registru o 1.
o Snížení hodnoty v daném registru o 1 (pokud je v registru nula,

hodnota se nezmění).
> Test na nulu zjistí, zda je v daném registru nula.

Registr je určen svým číslem. Číslo registru je v příkazu vždy pevně
zadáno, není tedy možné к určení registru použít obsah jiného registru.

Programy budeme zakreslovat do schémat, přičemž zvýšení hodnoty
registru Ri budeme značit obdélníkem s nápisem Rz++, snížení hodnoty
registru R{ budeme značit obdélníkem s nápisem Ri—, test na nulu v re-

gistru Ri značíme oválem s nápisem Ri?. Začátek programu označujeme
písmenem Z v kroužku a konec programu písmenem К v kroužku (pro-
gram může mít i více konců, ale jen jeden začátek). Jednotlivé příkazy
jsou pospojovány šipkami, které určují tok řízení programu. Z obdélníku
vychází vždy jediná šipka. Z oválu vycházejí dvě šipky, přičemž jedna
z nich je označena nulou (po ní pokračuje výpočet tehdy, když byla
v testovaném registru nula, v opačném případě výpočet sleduje druhou
šipku). Jestliže v programu za sebou následuje několik příkazů zvýšení
nebo snížení, můžeme je napsat pod sebe do jednoho obdélníku.

Příklad: Sestrojte stroj, který bude mít na vstupu čísla ха у (uložená
v registrech R± a R2) a který vypočítá jejich součin x • у (uloží ho do
registru Rq).

Řešení. Stroj řešící tuto úlohu ví-
dime na obrázku. Tento stroj vždy odečte
od registru R\ jedničku а к registru Ro
přičte číslo у (obsah registru R2). To pro-
vádí tak dlouho, dokud v registru R\ není
nula. Číslo у se tedy do registru Rq přičte
celkem ж-krát, takže dostaneme správný
výsledek.

Podívejme se nyní na to, jak se pro-
vádí přičtení čísla у Rq. Opět v cyklu
snižujeme hodnotu registru R2 a zvy-

šujeme hodnotu registru Ro, dokud ne-
máme v registru R2 nulu. Tehdy jsme

Z

Ri-

СД2?Тт-(д1?Р

Rs-
R2++

r2-
R3++
Ro++
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do Ro přidali přesně у. Problém však spočívá v tom, že v registru R2
máme nyní nulu, ale pro další průběh výpočtu tam potřebujeme vložit
zpět hodnotu y. Proto v cyklu kromě snížení R2 a zvýšení Ro ještě zvý-
šíme R3. Tím si zajistíme, že po skončení cyklu máme hodnotu у uloženou
v registru R3. Nyní ji musíme odtamtud přenést zpět do registru R2. To
provedeme v dalším cyklu, v němž současně snižujeme R3 a zvyšujeme
i?2, dokud v i?3 není nula. V tom okamžiku máme v R2 opět původní
hodnotu у a můžeme začít s dalším kolem výpočtu.
Soutěžní úlohy:
a) Sestrojte Minského registrový stroj s jedním vstupem n, který vypo-

čítá číslo 2n.

b) Sestrojte Minského registrový stroj s jedním vstupem n, který vy-
počítá Fibonacciho číslo Fn. Váš stroj přitom může používat pouze

registry R0, R\, R2, Rz-
Fibonacciho čísla jsou definována následujícím vztahem:

jestliže n < 2,
+ Fn_2, jestliže n ^ 2.

1

Fn-1

p - II - 1

Síť

Ve výpočetním středisku mají N počítačů očíslovaných od 1 do N. Počí-
tače jsou navzájem propojeny jednosměrnými spoji. Jestliže je „počítač i
připojen к počítači j“, znamená to, že počítač i může posílat zprávy po-
čítači j (ale ne naopak). Jestliže je počítač i připojen к počítači j, může,
ale nemusí být připojen také počítač j к počítači i. (Žádný počítač není
připojen sám к sobě.)

Do výpočetního střediska nyní koupili nový centrální počítač. Je třeba
zajistit, aby tento nový počítač mohl poslat zprávu všem ostatním počí-
tačům. Musíme ho proto připojit к některým dalším počítačům tak, aby
se z něj dala poslat zpráva libovolnému počítači p buď přímo (tj. cent-
rální počítač je připojen к počítači p), nebo přes několik jiných počítačů
(tj. existují počítače a\, <12, ■ . ., a/~ takové, že centrální počítač je připojen
к počítači ai, pro i = 1,2,... к — 1 je počítač a* připojen к počítači a^+i
a počítač afc je připojen к počítači p). Kvůli úspoře kabelů je přitom
nutné minimalizovat počet počítačů, ke kterým bude nový centrální po-
čítač připojen.
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Soutěžní úloha. Je dán počet počítačů N. Pro každý počítač г (1 ^
ú i ú N) je dán počet počítačů di, к nimž je daný počítač připojen,
a dále je dán seznam těchto počítačů ац,сц2, ■ ■ ■ а^{- Napište program,

který vypíše seznam počítačů, к nimž je třeba připojit nový centrální
počítač tak, aby jejich počet byl minimální. Pokud je možné centrální
počítač připojit více způsoby, vypište libovolný jeden z nich.

výstup:
2,4,7
(Jiné možné řešení je 1,4,7.)

Příklad: vstup:
N = 7

d\ = 1, připojení: 2
c?2 = 2, připojení: 1 5
<Í3 = 1, připojení: 6
сЦ = 2, připojení: 3 6
g?5 = 1, připojení: 3
de — 1, připojení: 5
di — 0, připojení: 0

P - II - 2

Posloupnost
Nechť A = (ai, a2,..., ам) je posloupnost celých čísel. Posloupnost A'
nazveme vybranou podposloupností této posloupnosti, jestliže vznikne
z posloupnosti A vynecháním některých jejích členů, přičemž pořadí
ostatních prvků zachováme. Společná vybraná podposloupnost posloup-
ností А, В je každá taková posloupnost C, která je vybranou podpo-
sloupností obou posloupností A i B.

Příklad: Nechť A = (1,11, 2,1,4, 99), В = (9,4,1, 2, 7,1, 99). Posloup-
nost (1, 2,1,99) je společnou vybranou podposloupností posloupností A,
B. Posloupnost (1, 2,4) je vybranou podposloupností posloupnosti A, ale
není vybranou podposloupností posloupnosti B, takže není ani společnou
vybranou podposloupností A a B.

Soutěžní úloha. Máme dány dvě posloupnosti celých čísel A —

— (ai, 02,..., ам) а В — (&i, 62, • • •, ^лг) s délkami M, resp. N. Tyto
posloupnosti jsou uloženy v polích a [1. . M], resp. b [1. . N], jejichž obsah
není dovoleno měnit. Uvažujme takovou společnou vybranou podposloup-
nost posloupností A a B, ve které součet všech jejích členů je největší
možný. Napište program, který vypíše součet členů takovéto posloupnosti.

Poznámka. Existuje algoritmus, který tuto úlohu řeší v čase úměrném
M • N a paměti, jejíž velikost je úměrná menšímu z čísel M, N.
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Příklad:

vstup:
M = 6, N = 7
A = (1,11, 2,1,4, 99)
В = (9,4,1,2,7,1,99)

výstup:
103

(Vybrané podposloupnosti se součtem 103
existují dvě: 4, 99 a 1,2,1, 99.)

P - II - 3

Volby
V jisté zemi právě skončily volby. Každý volič v nich hlasoval pro jednoho
z navržených kandidátů. Vítězem voleb se stane kandidát, pro kterého
hlasovala nadpoloviční většina voličů. Máte к dispozici výsledky hlaso-
vání jednotlivých voličů a máte co nej rychleji zjistit, který kandidát vy-
hrál volby.

Soutěžní úloha. Voleb se zúčastnilo N voličů očíslovaných od 1 do N
a M kandidátů očíslovaných od 1 do M (někteří kandidáti však nemuseli
získat ani jeden hlas). Výsledky hlasování jsou uloženy v poli a, přičemž
platí, že volič i (1 ^ i N) hlasoval pro kandidáta číslo a*. Obsah tohoto
pole nesmíte měnit.

Napište program, který zjistí, zda existuje kandidát, pro kterého hla-
sovalo více než |iV voličů. Jestliže takový kandidát existuje, program
vypíše jeho číslo, pokud ne, program vypíše, že takový kandidát neexis-
tuje.

Poznámka. Čísla M a N mohou být velmi velká. Snažte se proto, aby
váš program pracoval co nejefektivněji a aby používal co nejméně paměti.

Příklad: vstup: výstup:
Vyhrál kandidát 2.iV = 9

A = {2,3,2,2,3,50 001,3,2,2}
výstup:
Nevyhrál žádný kandidát.

vstup:
N= 10

A = {2,2,1,4,3,2,1,2,100,2}

P - II - 4

Minského registrové stroje

(Oproti domácímu kolu je popis registrového stroje rozšířen o nový druh
příkazu — výpočet hodnoty funkce.)
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Minského registrový stroj je jednoduché výpočetní zařízení. К dis-
pozici má několik registrů označených ičo, Ri, R2, • • přičemž v každém
registru může být uloženo jedno libovolně velké nezáporné celé číslo.

Minského registrový stroj může mít jeden nebo více vstupů, jejichž
hodnoty jsou na začátku výpočtu uloženy v registrech R\,..., Rk, kde к
je počet těchto vstupů. Ostatní registry jsou na začátku výpočtu inicia-
lizovány na hodnotu nula. Po skončení výpočtu Minského registrového
stroje je výsledkem hodnota uložená v registru Rq.

Každý Minského registrový stroj je řízen pevně daným programem.
V programu se mohou vyskytovat tyto příkazy:

o Zvýšení hodnoty v daném registru o 1.
\> Snížení hodnoty v daném registru o 1 (pokud je v registru nula,

hodnota se nezmění).
> Test na nulu zjistí, zda je v daném registru nula.
i> Výpočet hodnoty funkce F. Tento příkaz vezme obsah určeného vstup-

ního registru (označme tuto hodnotu registru jako ж), vypočítá hod-
notu F(x) a uloží ji do určeného výstupního registru. Obsah vstupního
registru po provedení tohoto příkazu není definován (může v něm být
libovolné nezáporné číslo).
Registr je určen svým číslem. Číslo registru je v příkazu vždy pevně

zadáno, není tedy možné к určení registru použít obsah jiného registru.
Programy budeme zakreslovat do schémat, přičemž zvýšení hodnoty

registru Ri budeme značit obdélníkem s nápisem R{++, snížení hodnoty
registru R{ budeme značit obdélníkem s nápisem Ri—, test na nulu
v registru R{ značíme oválem s nápisem Ri?. Příkaz na výpočet funkce F
se vstupním registrem Ri a výstupním registrem Rj značíme obdélníkem
s nápisem Rj <— F(Ri) (vstupní a výstupní registr musí být navzájem
různé).

Začátek programu označujeme písmenem Z v kroužku a konec pro-

gramu písmenem К v kroužku (program může mít i více konců, ale jen
jeden začátek). Jednotlivé příkazy jsou pospojovány šipkami, které určují
tok řízení programu. Z obdélníku vychází vždy jediná šipka. Z oválu vy-

cházejí dvě šipky, přičemž jedna z nich je označena nulou (po ní pokračuje
výpočet tehdy, když byla v testovaném registru nula, v opačném případě
výpočet sleduje druhou šipku). Jestliže v programu za sebou následuje
několik příkazů zvýšení, snížení a výpočtu hodnoty funkce, můžeme je
napsat pod sebe do jednoho obdélníku.

Příklad. Nechť F(x) je předem daná, ale neznámá funkce. Sestrojte
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registrový stroj, který dostane na vstupu jedno číslo n (uložené v regis-
tru R\) a který spočítá součet F(0) + F(l) + ... + Fin — 1) (uloží ho do
registru Rq).

Z

-* R% *— -F(R3)Ri-

(Tyff-j-(Ř^ýi(RŠf-1—(Д®Р
—

ičl++
i?2 —

Ro++i?3++
i?4++

Й-EŠENÍ. Stroj řešící zadanou úlohu vidíme na obrázku. Tento stroj pra-

cuje v cyklu. Při každém průchodu cyklem sníží hodnotu uloženou v re-

gistru R\ o jedničku, vypočítá hodnotu funkce F(R\) a přičte ji к re-

gistru Rq. Budeme potřebovat několik pomocných registrů. Registr R%
bude sloužit jako vstupní registr pro výpočet funkce F. Do tohoto re-

gistru zkopírujeme obsah registru R\ tak, že nejprve „přesypeme“ obsah
registru R\ do registrů R% a R4 a potom zpět obsah R4 do R\. Nyní
můžeme použít příkaz na výpočet funkce F. Výsledek výpočtu funkce se

zapíše do registru i?2- Na dokončení jednoho průchodu cyklem nyní stačí
„přisypat“ obsah Ro do registru Rq a vynulovat registr R3.

Soutěžní úlohy:
a) Nechť F(x) je nějaká předem daná, ale neznámá rostoucí funkce.

(Funkce F je rostoucí, jestliže pro všechna x platí F(x + 1) > F(x).)
Sestrojte registrový stroj s jedním vstupem y, který bude počítat
funkci G[y) inverzní к funkci F. Přesněji řečeno, výsledek výpočtu
registrového stroje G{y) = x, kde x je nejmenší takové nezáporné
celé číslo, pro které platí F{x) ^ y.
Přiklad. Předpokládejme, že F(x) — x2 + 6. Potom pro vstupní hod-
notu у = 5 by měl stroj vypočítat výsledek 0 (protože F(0) ^ 5
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a O je nejmenší nezáporné celé číslo). Pro vstup у = 10 je správným
výstupem 2, pro vstup у — 11 je správná výstupní hodnota 3.

b) Sestrojte Minského registrový stroj s jedním vstupem n, který zjistí,
zda je zápis čísla n ve dvojkové soustavě palindromem. Palindrom je
posloupnost cifer, která je stejná, když se čte zepředu i zezadu (není
povoleno dopisovat nuly na začátek zápisu čísla). Stroj bude na konci
výpočtu obsahovat v registru Ro jedničku v případě, že dvojkový zápis
čísla n je palindrom, nebo nulu v případě, že palindromem není.
Příklad. Zápisy čísel 0ю = O2 nebo 21ю = IOIOI2 ve dvojkové sou-
stavě jsou palindromy, zápisy čísel 10ю = ЮЮ2 а 11ю = ЮП2 pa-

lindromy nejsou.

P - III - 1

Jednosměrky
V centru města je N důležitých křižovatek očíslovaných od 1 do N,
které jsou pospojovány M cestami. Cestou rozumíme asfaltový koberec
spojující dvě konkrétní křižovatky. Mezi libovolnými dvěma křižovatkami
může vést nejvýše jedna cesta. Všechny cesty jsou obousměrné a na
každou křižovatku se lze po těchto cestách dostat ze všech ostatních
křižovatek, tzn. pro libovolnou dvojici křižovatek i a j, i / j, existují
křižovatky ai, 02,..., afc takové, že a\ — i, ak — j a pro i — 1,2,..., к — 1
vede mezi křižovatkami ai a ai+1 cesta. Pro účely této úlohy budeme
křižovatkou označovat i místo, do něhož vede jen jediná cesta (případně
dvě cesty).

V rámci zvyšování dopravní bezpečnosti se městská rada rozhodla co

nejvíce cest „zjednosměrnit“. To znamená, že pokud mezi křižovatkami
i a j existuje cesta, po „zjednosměrnění od i к ju (označujeme i
bude po této cestě povoleno jet z křižovatky i na křižovatku j, ale ne

naopak. Městská rada má jedinou podmínku: z každé křižovatky musí
být možné dojet na všechny ostatní křižovatky při dodržení přikázaného
směru jízdy.

Soutěžní úloha. Je dán počet křižovatek N a počet cest M. Dále je
dáno takových M dvojic křižovatek i ф j, že mezi křižovatkami i
a j vede cesta. Napište program, který vypíše všechny „zjednosměrněné"
cesty a jejich povolený směr jízdy tak, aby byl počet zbývajících obou-
směrných cest minimální. Jestliže existuje více možných řešení, vypište
jedno libovolné z nich.

j)
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Příklad: vstup: N — 8, M = 10
{1,2}
{2,3}
{2,8}
{3,4}
{3,8}
{4,5}
{4,7}
{5,6}
{5,7}
{6,7}

výstup:
2 —4 3

3 —> 8

8 -> 2

4 —> 5

5 —> 6

6^7

7^4

5 —> 7

(Jiným možným řešením je
přesměrovat {5, 7} na 7 —> 5.)

P - III - 2

Volby
V jisté zemi právě skončily volby. Každý volič v nich hlasoval pro jednoho
z navržených kandidátů. Za poslance místního shromáždění jsou zvoleni
všichni kandidáti, pro které hlasovala více než jedna Zc-tina všech voličů.
Všimněte si, že v takovýchto volbách je možné zvolit nejvýše к — 1 кап-
didátů (možná jich ale bude zvoleno méně). Máte к dispozici výsledky
hlasování jednotlivých voličů a máte co nejrychleji zjistit, kteří kandidáti
byli zvoleni do zastupitelstva.

Soutěžní úloha. Voleb se zúčastnilo N voličů očíslovaných od 1 do N
a M (M N) kandidátů očíslovaných od 1 do M (někteří kandidáti
však nemuseli získat ani jeden hlas). Výsledky hlasování jsou uloženy
v poli a, přičemž platí, že volič i (1 ^ i ^ N) hlasoval pro kandidáta
číslo a[i\. Obsah tohoto pole nesmíte měnit. Dále máte dáno číslo к ^ 2
(velmi malé v porovnání s N). Napište program, který vypíše čísla všech
kandidátů, pro něž hlasovalo více než N/к voličů.

Poznámka. Čísla M a N mohou být velmi velká. Snažte se proto,
aby váš program pracoval co nejefektivněji a aby používal co nejméně
paměti.
Příklad 1: vstup: výstup:

Zvoleni jsou kandidáti 1,2.N = 11, = 3, M = 7
A = (1,2,3,2,1,1,7,2,3,2,1)

Příklad 2: vstup: výstup:
Nebyl zvolen žádný kandidát.N = 8, k = 4:M — 4

A = (1,2,3, 3,4,2,4,1)
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P - III - 3

Minského registrové stroje

Definice. (Oproti domácímu kolu se studijní text liší příkladem sestavení
Minského stroje z bloků.)

Minského registrový stroj je jednoduché výpočetní zařízení. К dispo-
zici má několik registrů označených ičo, R\i R2, ■ ■ •, přičemž v každém
registru může být uloženo jedno libovolně velké nezáporné celé číslo.

Minského registrový stroj může mít jeden nebo více vstupů, jejichž
hodnoty jsou na začátku výpočtu uloženy v registrech Ri,..., Rkde к
je počet těchto vstupů. Ostatní registry jsou na začátku výpočtu inicia-
lizovány na hodnotu nula. Po skončení výpočtu Minského registrového
stroje je výsledkem hodnota uložená v registru Rq.

Každý Minského registrový stroj je řízen pevně daným programem.
V programu se mohou vyskytovat tyto příkazy:

o Zvýšení hodnoty v daném registru o 1.
> Snížení hodnoty v daném registru o 1 (pokud je v registru nula,

hodnota se nezmění).
o Test na nulu zjistí, zda je v daném registru nula.

Registr je určen svým číslem. Číslo registru je v příkazu vždy pevně
zadáno, není tedy možné к určení registru použít obsah jiného registru.

Programy budeme zakreslovat do schémat, přičemž zvýšení hodnoty
registru Ri budeme značit obdélníkem s nápisem Ri++, snížení hodnoty
registru Ri budeme značit obdélníkem s nápisem Ri—, test na nulu v re-

gistru Ri značíme oválem s nápisem Ri?. Začátek programu označujeme
písmenem Z v kroužku a konec programu písmenem К v kroužku (pro-
gram může mít i více konců, ale jen jeden začátek). Jednotlivé příkazy
jsou pospojovány šipkami, které určují tok řízení programu. Z obdélníku
vychází vždy jediná šipka. Z oválu vycházejí dvě šipky, přičemž jedna
z nich je označena nulou (po ní pokračuje výpočet tehdy, když byla
v testovaném registru nula, v opačném případě výpočet sleduje druhou
šipku). Jestliže v programu za sebou následuje několik příkazů zvýšení
nebo snížení, můžeme je napsat pod sebe do jednoho obdélníku.

Použití bloků. Při kreslení složitějších schémat se nám může stát,
že některé části potřebujeme použít vícekrát. Abychom se vyhnuli opa-
kovanému kreslení stejných skupin příkazů, budeme je seskupovat do
bloků. Blok je skupina příkazů s jedním určeným počátečním příkazem
a s jednou nebo více výstupními šipkami. Každý blok musíme nejprve de-
finovat, tj. nakreslit příslušnou skupinu příkazů. Definovaný blok potom
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můžeme použít na libovolném místě při kreslení schématu registrového
stroje (případně při definování jiných bloků). Blok značíme obdélníkem
s vepsaným jménem bloku, z tohoto obdélníku vychází příslušný počet
šipek. V definici bloku můžeme některé registry označit proměnnými.
Za tyto proměnné se dosadí konkrétní registry až na místě, kde se blok
použije (v tom případě napíšeme do obdélníku za jméno bloku do závorek
registry, které se mají dosadit za jednotlivé proměnné). Proměnným, za
které nedosadíme žádný registr, se nakonec přiřadí nepoužité registry
(každá kopie proměnné má vlastní registr). Použití bloků nejlépe objasní
příklad.

Úloha: Sestrojte stroj, který bude mít na vstupu číslo n (uložené
v registru R\) a který vypočítá součet druhých mocnin čísel od 0 do n

(výsledný součet uloží do registru Rq).

i1
ADD (x,y)y++

P— u в
p++

A Blok ADD a jeho
schématická značka—(p?j

Qlh o| в
o

ReŠENÍ. Nejprve nadefinujeme blok ADD(x, y), který к registru x přičte
obsah registru у (obsah registru у se
přitom zachová). Tento blok bude po-
užívat jeden pomocný registr p, kte-
rému není explicitně přiřazen žádný
konkrétní registr. Bude mít dvě vý-
stupni šipky: jestliže je v registru у

nula, použije se šipka A, v opačném
případě použijeme šipku B.

Náš registrový stroj bude praco-
vat následovně: К obsahu registru Rq
(který je na začátku nulový) budeme
postupně přičítat n2, (n — l)2,..., l2. V registru R\ bude vždy uloženo
číslo x, jehož druhou mocninu právě přičítáme. Jestliže x = 0, končíme
(větev A bloku ADD(R2, R\)). V opačném případě pomocí ADD(R2, Ri)

©
Ri~ -i

в
ADD(i?2, Ri)

A

ADD(JŽ0, jRi)К

I
r2-
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zkopírujeme obsah R\ do R2 (obsah R2 byl předtím nulový) a pomocí
cyklu a dalšího bloku ADD přičítáme do Ro ж-krát číslo x. (Všimněte
si, že v R2 je po proběhnutí tohoto cyklu opět nula.) Tento postup opa-

kujeme, přičemž snižujeme obsah R\ o jedničku.
Soutěžní úloha. Konečná množina nezáporných celých čísel M —

— {ci, C2,..., cn} se dá jednoznačně zakódovat do jednoho nezáporného
71

celého čísla m takto: m — 2Ci. (V množině se může každý prvek na-
i= 1

cházet nejvýše jednou, tzn. c* 7^ Cj pro i ^ j.) Jestliže si představíme
zápis čísla m ve dvojkové soustavě, potom číslo c patří do množiny M
právě tehdy, když c-tý bit zápisu m je jednička. Bity číslujeme zprava

doleva, tj. nejpravější bit má číslo 0, jeho levý soused číslo 1, atd.
Sestrojte Minského registrový stroj, který dostane na vstupu kód m

nějaké množiny M a číslo s a zjistí, zda lze číslo s vyjádřit jako součet
některých prvků množiny M, tj. zda existuje taková množina M' С M,
že c = s. Číslo m je na začátku výpočtu uloženo v registru R\, číslo

c£M'
s v registru R2. Po skončení výpočtu musí registr Ro obsahovat jedničku
v případě, že s je součtem některých prvků množiny M a nulu v opačném
případě. Součet nula prvků má definitoricky hodnotu nula.

Příklad. Pro hodnoty m = 203 (11001011 v dvojkové soustavě, tzn.
M = {0,1,3,6,7}), s = 10 je správný výsledek 1 (10 = 3 + 7). Pro
m = 203, s = 12 je výsledek 0 (protože 12 nelze získat součtem čísel
vybraných z množiny M). Pro m libovolné, s = 0 je správný výsledek 1.

P - III - 4

Pramen

pramen.pas / pramen.cpp

pramen.in
pramen.out

V jistém lázeňském městečku mají N minerálních pramenů očíslova-
ných 1,2,..., iV. Prameny jsou navzájem pospojovány pěšinami, přičemž
pěšina vede mezi každou dvojicí pramenů. Turisté obvykle chtějí ochutnat
vodu z každého pramenu, ale protože pěšiny nejsou nijak označené, občas
se stane, že některého zbloudilého turistu najdou až ve vedlejší dolině.
Správce lázní se proto rozhodl umístit ke každému pramenu právě jednu
směrovku ukazující na další pramen, a to tak, že turista začínající svou

Program:
Vstup:
Výstup:
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procházku u libovolného pramenu a pokračující ve své cestě podle smě-
rovek obejde postupně všechny prameny.

Správce tedy nechal vyrobit N směrovek s čísly pramenů 1
Dělníci ale příliš nepřemýšleli a rozmístili směrovky к pramenům úplně
náhodně. Tak se stalo, že u každého pramene sice byla umístěna právě
jedna směrovka ukazující к nějakému prameni, ale mohlo se stát, že pokud
vyšel turista od některého pramene, tak se к některým jiným pramenům
vůbec nedostal. Mohlo se dokonce stát, že směrovka u některého pramene
ukazovala nazpět na ten samý pramen, u kterého byla umístěna.

Správce ví, že na dělníky se může spolehnout jen v této jednoduché
operaci: vzájemně zaměnit směrovky u dvou pevně daných pramenů p
a g, tzn. jestliže směrovka u pramene p ukazovala na pramen i a směrovka
u pramene q ukazovala na pramen j, tak po této výměně bude u pramene

p směrovka ukazovat na pramen jau pramene q bude směrovka ukazovat
na pramen i.

Napište program pro správce lázní, který zjistí, jaké výměny směro-
vek mají dělníci provést, aby bylo možné podle směrovek obejít všechny
prameny a aby přitom počet provedených výměn byl nejmenší možný.

Vstupní soubor: Vstupní soubor pramen.in obsahuje na prvním
řádku počet pramenů N (1 30 000). Následuje N čísel (oddělených
mezerami nebo konci řádků), přičemž г-tým z nich je číslo pramene, na

který ukazuje směrovka umístěná u г-tého pramenu.

Výstupní soubor: První řádek výstupního souboru pramen.out ob-
sáhuje minimální počet výměn M, které je třeba provést. Následuje M
řádků popisujících jednotlivé výměny: (i + l)-tý řádek výstupního sou-
boru (1 ^ i ^ N) obsahuje dvě čísla p, q oddělená jednou mezerou,

označující dvojici pramenů, u nichž je třeba vyměnit směrovky. Výměny
se provádějí v uvedeném pořadí.

Příklad.

pramen.in 7 pramen.out 2
5 1 4 6 2 3 7 1 3

7 1

Poznámka. Uvedený výstupní soubor je jedním z možných správných
výstupních souborů.
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P - III - 5

Kina

kina.pas / kina.cpp
kina.in

kina.out

V jisté zemi právě začal Mezinárodní Filmový Festival Umělecké Ki-
nematografie (MFF UK). V zemi je n (1 ^ n 50) měst označených čísly
1,2,..., n. V každém městě je jedno kino. O každém kině je známo, který
film z nabídky filmů MFF UK očíslovaných l,2,...,í(l^t^n)v něm
promítají. Konkrétně, v kině ve městě číslo i promítají každý večer stejný
film číslo /j. Města jsou navzájem pospojována m obousměrnými cesta-
mi. Pro každou cestu с (1 ^ c ^ m) známe čísla měst zc a kc (zc ^ kc),
která tato cesta spojuje, a také známe její délku lc (0 ^ lc ^ 1 000). Mezi
každou dvojicí měst vede nejvýše jedna cesta.

Předpokládejme, že máte rozpis к večerů (0 5= к ^ 1000), přičemž
pro každý večer г (l ^ i ^ k) }e stanoveno číslo filmu pi: který byste
chtěli v ten večer vidět. Některé filmy se v rozpisu mohou vyskytnout
i vícekrát. Abyste mohli večer sledovat naplánovaný film, musíte se během
dne dopravit do některého města (nezáleží na tom do kterého), v němž
tento film uvádějí. Protože neradi cestujete, chtěli byste, aby celková vámi
procestovaná vzdálenost byla co nejmenší. První den ráno se nacházíte
ve městě číslo 1. Při přejíždění z města do města je možné projíždět přes
libovolná jiná města. Z každého města se lze dostat do každého a přeprava
se stihne vždy za jeden den. Nezáleží na tom, ve kterém městě zůstanete
po shlédnutí posledního filmu.

Napište program, který pro každé město přečte číslo promítaného
filmu, dále načte popis jednotlivých cest a rozpis filmů, které chcete
v jednotlivých dnech vidět, a vypíše, ve kterém městě máte jít který
večer do kina, aby vámi procestovaná dráha byla minimální. Dále vypíše
délku této minimální trasy.

Vstupní soubor: Vstupní soubor kina. in obsahuje na prvním řádku
tři čísla n, m, k. Druhý řádek obsahuje n čísel /1, /2, • • •, fn■ Následuje
m řádků popisujících cesty, každý z nich obsahuje trojici čísel zc:kc,lc.
Poslední řádek obsahuje к čísel p\,p2, ■ ■ ■ ,Pk- Každá dvojice po sobě ná-
sledujících čísel v řádku je oddělena jednou mezerou. Můžete předpoklá-
dat, že každý film pi (1 ^ i ^ k), který chcete vidět, se promítá alespoň
v jednom městě.

Program:
Vstup:
Výstup:
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Výstupní soubor: Výstupní soubor kina.out obsahuje na prvním
řádku délku celkově procestované dráhy mezi městy. Druhý řádek po-

pisuje jednu optimální trasu. Obsahuje к čísel (každá dvě po sobě jdoucí
čísla jsou oddělena mezerou), г-té číslo v pořadí označuje město, v němž
byste podle zvolené trasy měli vidět film Pí.

Poznámka. Jestliže výstupní soubor obsahuje správnou minimální dél-
ku, ale buď neobsahuje žádný popis optimální trasy, nebo obsahuje po-

pis trasy, který je chybný, bude řešení hodnoceno jako částečně správné
a získá pro daný vstup poloviční počet bodů.

kina.inPříklad: 6 7 7

2 12 3 14

1 2 13

2 3 7

3 4 5

4 14

15 8

5 3 10

2 6 0

1 2 1 4 3 2 1

kina.out 49

5 3 2 6 4 3 2
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Řešení úloh

P - I - 1

Pro výrobní operaci i označíme jako hi nejkratší čas od spuštění výroby,
v němž může být operace i dokončena. Protože v továrně lze vykonávat
najednou libovolný počet výrobních operací, můžeme výrobu uspořádat
tak, že každá operace i bude skutečně dokončena v čase hi. Na zhotovení
celého výrobku potřebujeme dokončit všechny stanovené výrobní opera-

ce, takže výrobek je možné dokončit nejdříve v čase max{ůi, /12,..., hn}.
Zbývá nám spočítat čas hi. Jestliže výrobní operace i nemá žádné

předcházející operace, můžeme ji okamžitě spustit. Hodnota hi je v ta-
kovem případě přímo rovna délce trvání operace i. Pokud operace i má
nějaké předcházející operace Pi,P2, ■ ■ ■ ,Pk, íe třeba vykonat nejprve tyto
předcházející operace. Výrobní operace i může začít nejdříve v čase, který

., hPk. Když víme, kdy operace i začneje maximem z časů hpi, h
a známe délku jejího trvání, umíme triviálně spočítat, kdy skončí.

Hodnoty hi budeme počítat rekurzívně. Program obsahuje rekurzívní
funkci urci-cas(i), která spočítá hodnotu hi. Pokud operace i nemá před-
chůdce, bude to jednoduše čas jejího trvání. Jestliže operace i má nějaké
předchůdce, spustí se funkce urci^cas pro každého předchůdce operace

г, z takto získaných časů se vezme maximum а к němu se připočítá čas
trvání operace i. Navíc, jakmile vypočítáme hodnotu hi pro nějaké i,
uložíme si ji do pomocného pole. Když později zavoláme funkci urci.cas
pro stejné г znovu, tato funkce už nebude znovu počítat, ale jednoduše
vrátí už vypočítanou hodnotu z pole.

Nejprve dokážeme, že popsaný program vždy skončí. Předpokládej-
me, že bychom počítali nějakou hodnotu hi a při jejím výpočtu bychom
potřebovali vypočítat nějakou hodnotu hj1 pro předcházející operaci j\.
Při výpočtu hj1 bychom potřebovali vypočítat nějakou hodnotu hj2 a tak
bychom se vnořovali hlouběji a hlouběji, až bychom zjistili, že к výpočtu
nějakého hjk potřebujeme znát hi. To by způsobilo nekonečné volání re-
kurze. Takovýto případ však může nastat jedině tehdy, jestliže není možné
vykonat operaci г, protože operace i se může provést až po skončení ji
a ji lze provést až po skončení J2 atd., a jk je možné vykonat až po
skončení i. Dostali jsme tedy cyklus, takže i není možné provést vůbec.
V zadání je však uvedeno, že všechny operace lze provést, takže tento
případ nemůže nastat a náš algoritmus vždy skončí.

p21 • •
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Na závěr zhodnotíme výpočtovou složitost algoritmu. Předpokládej-
me, že pro každou operaci máme seznam předcházejících operací ulo-
žen ve spojovém seznamu. Označme n počet výrobních operací a m cel-
kový počet předcházejících operací pro všechny operace v technologickém
plánu výrobku. V první části algoritmu načítáme a ukládáme potřebné
údaje. Tato část má časovou složitost 0(m + n).

V druhé části algoritmu zavoláme funkci urci_cas(i) pro každé г od 1
do n. V rámci každého takového volání se funkce může ještě dále re-
kurzívně volat. Funkci urci-cas(i) voláme pro každé i jednou z hlavní
části algoritmu a pro každou operaci, pro níž je operace i předchůdcem,
tuto funkci opět zavoláme. Celkem se tedy vykoná m + n volání funkce
urci-cas. Pro každou hodnotu i se ale hodnota urci-cas(i) počítá pouze
jednu a při dalších voláních se jen najde výsledek v poli v konstant-
ním čase. Máme tedy přesně m volání funkce urci^cas, která proběhnou
v konstantním čase. Zbývajících n volání počítá hodnotu. Při volání,
které počítá hodnotu, se projde seznam všech předcházejících operací
a hledá se maximum z časů. Délka takovéhoto volání je tedy úměrná po-
čtu předcházejících operací (pokud zanedbáme čas potřebný na vnořená
rekurzivní volání). Celkový čas všech n volání, která počítají hodnotu,
bude tedy 0(m + n). Všech m + n volání bude také trvat dobu 0(m + n).
Celková časová složitost algoritmu je proto 0(m + n). Paměťová složitost
je rovněž 0(ra + n).

Dvě poznámky na závěr. Pokud bychom vypočítané hodnoty ve funkci
urci-cas neukládali do pole, ale počítali bychom je vždy znovu, dosta-
neme algoritmus s exponenciální časovou složitostí. Všimněte si, že úlohu
je možné jednoduše přetransformovat do teorie grafů — operace budou
představovat vrcholy grafu a hrany (orientované) povedou vždy od ope-
race к jejímu předchůdci. Úkolem je potom nalézt orientovanou cestu
s největším součtem časů ve vrcholech. Algoritmus, který jsme uvedli,
je v grafové terminologii pouze jednoduchou modifikací prohledávání do
hloubky.

program P_I_1;

type ppostupy=“postupy;
postupy=record

postup:integer;
dalsi:ppostupy;

{seznam operací}

end;
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var predpostupy:array[1..100] of ppostupy;
{seznam předcházejících operací pro každou výrobní operaci}

cas.hotovo:array[1..100] of integer;
{cas[i] je čas, kolik trvá operace i,
hotovo [i] je nejnižší čas, kdy může být operace i hotova}

{počet operací}n:integer;

procedure načti;
var t:text;

i,j:integer;
novy:ppostupy;

begin
assign(t,'TOVARNA.IN’);
reset(t);
readln(t,n);
for i:=l to n do begin

read(t,cas[i]);
predpostupy[i]:=nil;
read(t,j);
while j 0—1 do begin

new(novy);
novy".postup:=j;
novy".dalsi:=predpostupy[i];
predpostupy[i]:=novy;
read(t,j);

{načtení počtu operací}

{načtení času jednotlivých operací}
{seznam předcházejících operací}

{vložit operaci j do seznamu}

end;
end;
close(t) ;

end;

function urci_cas(postup:integer):integer;
{vrátí nejmenší čas, v němž může být operace hotova}
var max,kdy:integer;

pom:ppostupy;
begin

if hotovo[postup]=-l then begin
{pokud jsme čas ještě nepočítali, vypočítáme ho

a uložíme do pole „{"hotovo}, jinak neděláme nic}
max:=0;
pom:=predpostupy[postup];
while pomOnil do begin

kdy:=urci_cas(pom“.postup);
if kdy>max then max:=kdy;
pom:=pom".dalsi;

end;
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{max je čas, kdy jsou hotové všechny předcházející operace}
hotovo[postup]:=cas[postup]+max;

end;
urci_cas:=hotovo[postup];

end;

procedure vypočítej ;
var i,max,kdy:integer;

t:text;

begin
for i:=l to n do

hotovo[i]:=-l;
max:=0;
for i:=l to n do begin

kdy:=urci_cas(i);
if kdy>max then max:=kdy;

{inicializace}

{zjistíme, kdy skončí poslední operace}

end;
assign(t,’TOVARNA.OUT');
rewrite(t);
writeln(t,max);
close(t);

end;

begin
načti;

vypočítej;
end.

P - I - 2

Je známo více algoritmů na konstrukci řetězce obsahujícího všechny per-
mutace znaků dané abecedy jako podřetězce. Nejprve uvedeme příklad
jednoduchého algoritmu, který pro ÍV-prvkovou abecedu sestrojí řetězec
délky N2 — N + 1. Potom ukážeme komplikovanější algoritmus, který
sestrojí řetězec délky pouze N2 — 2N + 4 (pro N ^ 3). Není známo,
zda existuje i nějaký kratší řetězec (existuje dolní odhad počtu znaků
takovéhoto řetězce, tento odhad je však nižší než N2 — 2N + 4).

Nejprve si ukážeme jednodušší konstrukci řetězce. Mějme iV-prvkovou
abecedu {<21,02,...,ату}- Řetězec bude tvořen N — 1 úseky tvaru a\ x
x a2 .. .fljv a ukončen bude znakem a\. Například pro abecedu {a, 6, c}
sestrojíme řetězec abcabca. Tento řetězec obsahuje celkem (N — 1) • N +
+ 1 = N2 — N + 1 znaků. Pro N = 15 tedy dostáváme řetězec délky 211.
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Zbývá dokázat, že takto sestrojený řetězec skutečně obsahuje každou
permutaci znaků abecedy jako vybraný podřetězec. Rozdělíme si tedy
řetězec na N — 1 úseků tvaru а2аз ... адг. Mezi každými dvěma těmito
úseky, stejně jako za posledním a před prvním z nich, se nachází znak a\.
Vezměme nyní libovolnou permutaci znaků abecedy. Nejprve z této per-
mutace vynecháme znak a\. Zbytek permutace je jistě vybraným podře-
tězcem našeho řetězce, neboť z každého úseku tvaru а2аз ... адг můžeme
vybrat právě jeden znak tak, abychom z j-tého úseku vybrali j-tý znak
permutace různý od a\.

Nechť je nyní znak a\ umístěn v permutaci na г-tém místě, tzn. před
ním leží i — 1 znaků. Potom z řetězce vybereme v pořadí г-tý výskyt
znaku a\. Před ním se nachází i — 1 úseků tvaru 0203... адг, a tedy
a\ bude i ve vybraném podřetězci na г-tém místě. Dokázali jsme, že
pro libovolnou permutaci znaků abecedy můžeme nalézt takový vybraný
podřetězec našeho řetězce, který se této permutaci rovná.

Nyní si popíšeme jinou, složitější konstrukci. Budeme vytvářet po-

sloupnost řetězců T(l), T(2), T(3),..., přičemž T(N) obsahuje všech N\
permutací N znaků jako podřetězce. Ukážeme si způsob, jak z T(N)
sestrojit T(N + 1) (pro N ^ 3).

Řetězce T( 1), T(2) a T(3) zvolíme pevně: T(l) = a\, T(2) = aia2ai
a T(3) = aia-za2a\a-zaia-2. Jsou to nejkratší možné řetězce pro N — 1,2,3
(to lze snadno dokázat ověřením všech možností).

Mějme nyní abecedu {ai,a2,... , адг}. К řetězci T(N) vytvoříme po-

sloupnost základních bodů. První základní bod řetězce T(N) je index
prvního výskytu znaku a\ v T(N). Pro i > 1 je г-tým základním bodem
index prvního výskytu znaku za (г — l)-ním základním bodem v řetěz-
ci. Například v T(3) = aiasa2aia^aia2 je posloupnost základních bodů
(1,3,5).

Algoritmus pro konstrukci řetězce T(N) z řetězce T(N — 1):
1. Pro každé i = 2,3,...,iV — 1 vsunout těsně před г-tý základní bod

řetězce T(N — 1) znak адг.
2. Na konec takto vzniklého řetězce připojit úsek

а2, аз,, адт_3, адг, аг, адг_1.

Podle prvního bodu algoritmu jsme vložili N — 2 znaků a podle dru-
hého bodu jsme vložili N — 1 znaků. Celkově se tedy řetězec prodloužil
o 2N — 3 znaků. Všechny základní body řetězce T(N — 1) budou i zá-
kladními body řetězce T(N) (jen se posunou kvůli vsouvání znaků адг
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podle bodu 1) a iV-tým základním bodem se stane znak адг přidaný
v bodě 2. Například pro N = 4 dostáváme pomocí tohoto algoritmu
T(4) — а1Яза4С12®1<2'4<^3^,1<^2®4<2'1^3-

Řetězec T(N) sestrojený naším algoritmem (pro N ^ 3) má délku
N2 — 27V+4. Toto tvrzení dokážeme matematickou indukcí. Délka řetězce

T(3) je 7, což je rovno 32 —2-3+4. Předpokládejme nyní, že délka T(N—1)
je (N — l)2 — 2(N — 1) + 4 a dokážeme, že potom délka řetězce T(N) je
N2 — 2N + 4. Řetězec T(N) vznikl přidáním 2N — 3 znaků do řetězce
T(N -1), jeho délka je (N - l)2 - 2(N — 1) + 4 + 2ÍV- 3 = N2 - 2N + 4.
Dokázali jsme tedy, že délka řetězce T(N) je skutečně N2 — 2N + 4.

Nakonec je třeba dokázat, že řetězec T(N) obsahuje všech N\ permu-
tací znaků abecedy jako podřetězce. Tento důkaz je poměrně zdlouhavý,
takže uvedeme jen základní myšlenku. Řetězec T(N) rozdělíme na úseky.
První úsek začíná prvním základním bodem a končí druhým základním
bodem. Pro 2 ^ i ^ N — 1 bude г-tý úsek začínat znakem ai, který je
hned za г-tým základním bodem, a končit znakem a*, který se vyskytuje
poprvé za (г + l)-ním základním bodem.

Matematickou indukcí (vzhledem к N) lze dokázat, že každý z takto
vytvořených úseků obsahuje znaky ai, <22,..., одт a začíná znakem a\.
Řetězec obsahuje N — 1 takovýchto úseků a každý z nich obsahuje právě
jeden základní bod s výjimkou prvního úseku, který obsahuje dva zá-
kladní body. Další vlastností dvou sousedních úseků г-tého a (г + l)-ního
je jejich vzájemné překrytí ve dvou znacích, ato aj a a*.

Nechť má naše permutace znak a\ na г-tém místě. Uvažujme nejprve
případ že г ^ iV — 1. V permutaci vybereme první výskyt znaku a 1

z г-tého úseku řetězce T(N). Z г-tého úseku je možné použít ještě jeden
znak, neboť se v něm vyskytují všechny znaky, a to až za vybraným
znakem ai. Před г-tým úsekem je i — 1 úseků a za ním je N — i —
— 1 úseků. Při výběru jednoho znaku z každého úseku tedy dostaneme
všechny permutace se znakem ai v г-té pozici. Překrytí sousedních úseků
nezpůsobí problémy, protože při výběru znaku a\ z г-tého úseku je možné
všechny ostatní znaky ai ignorovat a další společné znaky se stávají
hraničními prvky úseků. Hraniční prvek je považován za prvek patřící
jen do jednoho úseku.

Zbývá dokázat tvrzení v případě, že <21 je v permutaci na iV-tém místě.
V tomto případě řetězec T(N) rozdělíme na úseky se základními body
jako hraničními body úseků. Počet úseků je N — 1 a každý z nich obsahuje
znaky 01, a2,..., адг. Jestliže na poslední místo vybereme poslední výskyt
znaku oi v řetězci T(N), tento znak nepatří do žádného z výše uvedených

123



úseků. Řetězec T(N) tedy obsahuje všechny permutace se znakem a\ na

posledním místě.
Uvedený algoritmus pro N = 15 dává následující řetězec délky 199:

acdefghijklmnobadefghijklmnocabefghijklmnodacbfghijklmnoead
bcghijklmnofaebcdhijklmnogafbcdeijklmnohagbcdefjklmnoiahbcd
efgklmnojaibcdefghlmnokajbcdefghimnolakbcdefghijnomalbcdefg
hijkonambcdefghijkloan

Na závěr uvádíme program, který řetězec T(15) generuje výše popsa-
ným způsobem.

program P_I_2;
const N=15; {počet prvků abecedy}

abeceda:string=’abcdefghijklmno’; {abeceda řetězce}
{hledaný řetězec}
{indexy základnich bodů}

var T: string;
BB: array[1..N] of integer;
i: integer;
ff: text;

function Dalsi(n: integer; T:string):string;
{funkce dostane řetězec všech permutaci prvnich n-1 prvků

a vráti řetězec všech permutaci prvnich n prvků (n>3)}
var i, j: integer;

TN: string;
begin

TN: =

i:=BB [1] ;

j:=2;

) ) .

{přidání nových prvků před základní body}
while j<n do begin

TN:=TN+copy(T,i,BB[j]-BB[j-1] );
i:=BB [j] ;

j:=j+i;
TN:=TN+abeceda[n];

end;

TN:=TN+copy(T,BB[n-1],length(T));

{přidání prvků na konec řetězce}
for i:=2 to n-3 do TN:=TN+abeceda[i];
TN:=TN+abeceda[n];
TN:=TN+abeceda[l]+abeceda[n-l] ;

{nový základní bod}

{úprava základních bodů}
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{nový základní bod}-
{původní body se posunuly}

BB[n]:=length(TN)-2;
for i:=2 to n-1 do

BB[i]:=BB [i]+i-l;

Další:=TN;
end; {Další}

procedure VytvorT3;
{vytvoří řetězec všech permutací pro tříprvkovou abecedu}
begin

T:=abeceda[l]+abeceda[3]+abeceda[2]+abeceda[l]
+abeceda[3]+abeceda[1]+abeceda[2];

BB [1] : =1; BB[2] :=3; BB[3]:=5;
end;

begin
assign(ff,’P-l-2.TXT’);
rewrite(ff) ;

VytvorT3;
for i:=4 to N do

T:=Dalsi(i,T);
writeln(ff,T);
close(ff) ;

end.

P - I - 3

Tuto úlohu si můžeme představit tak, že máme dáno pole n navzájem
různých čísel a[l], a[2],..., a[n] (preference politických stran) a máme
za úkol nalézt nejmenší a největší prvek tohoto pole, přičemž ale к poli
můžeme přistupovat pouze prostřednictvím funkce pruzkum(i,j), která
nám říká, zdaje a[i] < a[j], nebo a[j] < а [г].

Ukážeme si nejprve řešení pro sudé n. Rozdělíme všechny prvky pole
do dvojic a v každé dvojici prvky porovnáme (pomocí funkce pruzkum).
Prvky se nám rozdělí na dvě podmnožiny
které byly při porovnávání v dvojici větší, a do množiny Y ty, které byly
při porovnávání menší. Je zřejmé, že žádný prvek z množiny X nebude
nejmenším prvkem v poli, neboť existuje aspoň jeden menší prvek (ten,
který s ním byl ve dvojici). Proto při hledání minima stačí hledat mezi
prvky množiny Y. Podobně žádný prvek z Y nebude největším prvkem
pole, a proto stačí maximum hledat mezi prvky množiny X.

do množiny X dáme ty,
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Nejmenší z prvků množiny Y najdeme jednoduše. V proměnné min si
budeme pamatovat nejmenší dosud nalezený prvek. Na začátku to bude
libovolný prvek množiny Y. Potom budeme nejmenší dosud nalezený
prvek porovnávat vždy s dalším a dalším prvkem množiny Y. Pokaždé,
když bude porovnávaný prvek menší než prvek uložený v proměnné min,
stane se on dosud nejmenším nalezeným prvkem (uloží se do proměnné
min). Podobně budeme hledat i největší prvek v množině X.

V případě, že n je liché, budeme postupovat stejným způsobem, jenom
do dvojic rozdělíme jen prvních n — 1 prvků a poslední prvek nakonec
přidáme do množiny X i do množiny Y. V některých případech můžeme
ještě jedno porovnávání ušetřit — pokud se tento poslední prvek stane
nejmenším prvkem množiny Y (a tudíž i nejmenším prvkem celého pole),
pak ho můžeme z množiny X vynechat, neboť jistě nebude současně
největším prvkem. Případ n = 1 ošetříme zvlášť. V tomto případě není
třeba nic porovnávat — jediná strana má současně nejvyšší i nejnižší
preference.

Nyní spočítáme, kolik porovnání v nejhorším případě vykonáme pro
dané n. Je-li n sudé, vznikne nám dvojic. Pro každou dvojici prove-
deme jedno porovnání, abychom zjistili, který prvek je větší. Množiny X
a Y budou mít každá prvků. Pro nalezení minima (nebo maxima)
v množině s x prvky použijeme x — 1 porovnání (do proměnné min ulo-
žíme nejprve první prvek, potom tuto proměnnou postupně porovnáme
se všemi ostatními x — 1 prvky). К nalezení minima v množině Y tedy
potřebujeme \n — 1 porovnání а к nalezení maxima v množině X dalších
\n — 1 porovnaní. Celkový počet porovnání tedy bude

n (n \ (n \ 3n — 4
2 + \2~l) + (2~1) = ~2

Pro liché n budeme mít ^(n — 1) dvojic, takže na začátku vykonáme
\{n— 1) porovnání ve dvojicích. Množiny X a Y však budou mít \{n —

—1) + 1 prvků, takže к nalezení minima nebo maxima z takovéto množiny
potřebujeme \{n — 1) porovnání. Celkový počet provedených porovnání
proto bude

3n — 3n — 1 n — 1 n — 1

2 2 2 2

Došli jsme к závěru, že pro n sudé vykonáme nejvýše |(3n — 4)
porovnání a pro n liché nejvýše |(3n — 3) porovnání. Tento výsledek
lze zapsat i jedním vzorcem s použitím horní celé části a dolní celé části
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takto:
~n~ n

2 - +
2

Na závěr pár slov o implementaci popsaného algoritmu. Množiny X
a Y nebudeme vytvářet na začátku výpočtu celé, ale průběžně. Nejprve
vezmeme první dva prvky v poli, porovnáme je a menší z nich se stane
počáteční hodnotou proměnné mm, zatímco větší bude počáteční hod-
notou proměnné max. Potom budeme brát vždy další a další dvojici,
porovnáme vždy její prvky navzájem, následně menší z nich porovnáme
s proměnnou min (a pokud bude třeba, tak obsah min změníme) a větší
porovnáme s proměnnou max. Pro lichá n je třeba nakonec zvlášť zpraco-
vat poslední prvek. Takto naprogramovaný algoritmus bude mít lineární
časovou složitost (tzn. Oin)) a konstantní paměťovou složitost.

-2.
L 2 J

program P_I_3;
var n,i,min,max,a,b,pom:integer;

procedure pruzkumd ,j : integer; var min, max:integer);
{provede průzkum pro i a j
stranu s menšimi preferencemi vráti v min, s většimi v max}

begin
writeln(’Proveď průzkum ’,i,’,’,j);
write d> ’);
readln(max);
if max=i then min:=j

else min:=i;
end;

begin
writelnd Zadej počet stran:’);
write(’> ’); readln(n);
if n=l then begin

min:=l; max:=l;
{speciální připad}

end

{inicializace - porovnáme prvni pár}else begin
pruzkumd ,2,min,max) ;

end;
i: =3;
while i+l<=n do begin

pruzkumd,i+1 ,a,b) ;

pruzkum(min,a,min,pom); {menši porovnáme s minimem}
pruzkum(max,b,pom,max); {větši s maximem}
i:=i+2;

{ostatni páry}
{porovnáme navzájem}
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end;
if i=n then begin

pruzkum(min,n,min,pom); {porovnáme s min i s max,

pokud je třeba}

{posledni prvek pro liché n}

if minOn then

pruzkum(max,n,pom,max);
end;

writeln(’Nejvyšši preference má strana ’.max,’, nejnižši ',min);
end.

P - I - 4

a) Úkolem bylo sestrojit stroj, který pro vstup n vypočítá číslo 2n.
Číslo n máme uloženo v registru R\. Na začátku výpočtu uložíme do
Ro číslo 1 (tj. 2°). Potom budeme postupovat tak, že v každém kroku
snížíme Л; o 1 a registr Ro vynásobíme 2. To provádíme tak dlouho,
dokud v Ri není 0. Tehdy máme v Rq uloženo hledané číslo 2n.

Zbývá už jen popsat, jak násobíme registr Rq dvěma. Jednou možností
by bylo uložit do některého dalšího registru hodnotu 2 a potom použít
algoritmus násobení uvedený v příkladu ve studijním textu. My však
využijeme trochu zjednodušený algoritmus, který lze použít pouze pro
násobení konstantou. V cyklu budeme po jedné snižovat hodnotu i?o,
dokud neklesne na nulu, a při každém snížení Ro dvakrát zvýšíme o 1
hodnotu registru R2. Po skončení cyklu máme v R2 dvojnásobek hodnoty,
kterou jsme měli původně v Ro. Zbývá už jen přesunout hodnotu z R2
zpět do Ro, což provedeme dalším cyklem, který vždy jednou sníží R2
a zvýší Rq, dokud nebude v R2 nula.

(ЩР
0

Ri-

R2-
Rq++

Ro—
R2++
r2++ I
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b) Úkolem je vypočítat n-té Fibonacciho číslo Fn. Podle definice
— F\ = 1 a Fn — Fn-i + Fn-2 pro n ^ 2. Jestliže si však zavedeme

pomocný člen této posloupnosti F-\ =0, bude platit, že Fn = Fn_i +
+ Fn-2 i pro n = 1, což sníží počet případů, které je třeba v programu

pro Minského stroj speciálně ošetřit.

F0

QF}
0

Ri-

R3—
i?2++

r2-
Rq++

Ro—
i?2++
R3++

J

Náš stroj bude pracovat tak, že v cyklu bude snižovat registr R\
a počítat další člen Fibonacciho posloupnosti, dokud nebude v R\ nula.
Po к průchodech tohoto cyklu bude registr Ro obsahovat Fk a registr R2
bude obsahovat Fk-1. Celkem se provede n průchodů, takže stroj správně
vypočítá hodnotu Fn.

Před prvním prováděním cyklu (tj. po nula průchodech) potřebujeme
mít v registru Rq číslo Fo = 1 a v registru R3 číslo F-\ = 0. Toho
dosáhneme snadno příkazem Ro++.

Zbývá nám prozkoumat, co potřebujeme provádět v těle cyklu. V re-

gistru R0 máme číslo Fk a v registru R2 číslo Fk-\. Chceme dosáhnout
toho, aby v registru Ro bylo Fk+i = Fk+Fk-1, tj. součet registrů Ro a R2,
a v registru R2 aby bylo Fk, tj. číslo, které bylo původně v Ro. Budeme
postupovat tak, že hodnotu v Ro přičítáme к registrům R2 a R3 (a to tak,
že budeme v cyklu Ro snižovat, dokud neklesne na nulu, a pokaždé při
tom zvýšíme R2 a R3). Po skončení této operace máme v Ro nulu, v R2
máme Fk+i a v R3 máme Fk. Potřebujeme nyní ještě obsahy registrů
přemístit tak, abychom do Rq dostali obsah R2 a do R2 obsah R3. To
provedeme opět obvyklým způsobem (dvěma „přesýpacími“ cykly).
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p - II - 1

Jednotlivé počítače nazvime vrcholmi. Z vrchola i do vrchola j nech vedie
hrana právě vtedy, keďje počítač i připojený к počítačů j. Vznikne nám
tak orientovaný graf G. Našou úlohou je vybrať množinu vrcholov M
s minimálnym počtom prvkov takú, že pre lubovofný vrchol v existuje
vrchol и £ M taký, že z и do v vedie cesta (pripúšťame cestu dížky 0,
t.j. и = v).

Množinu vrcholov U, pre ktorú platí, že
1. pre lubovolné dva vrcholy u,v £ U,u ф v existuje cesta z и do v

vedúca len cez vrcholy patriace do U
2. zo žiadneho vrchola w £ G nepatriaceho do U nevedie hrana do

žiadneho vrchola и £ U
nazvime maximálny silné súvislý komponent (MSSK) grafu G (pozná-
měnajme, že vrchol, do ktorého nevedie žiadna hrana tvoří maximálny
silné súvislý komponent). Každé dva rožne MSSK sú disjunktně. Keby
MSSK U a MSSK V (U ф V) neboli disjunktně, potom existuje и, ktorý
patří do obidvoch a vrchol v, ktorý patří do U a nepatří do V (alebo
naopak). Z vrchola v vedie cesta do vrchola u. Na nej niekde musia za
sebou následovat vrchol v', ktorý do V nepatří a vrchol u', ktorý už do
V patří — množina V nemá vlastnost 2 MSSK — spor.

Eahko vidno, že z každého MSSK grafu G musí nějaký vrchol patřit
do množiny M. Zároveň stačí, aby z každého MSSK bol v množině M
jeden lubovofný vrchol.

Budeme ofarbovat vrcholy grafu róznymi farbami. Začnime z lubo-
volného neofarbeného vrchola v a ofarbime farbou / všetky neofarbené
vrcholy (vrátane v), do ktorých existuje cesta z v vedúca cez doteraz
neofarbené vrcholy. Farbenie realizujeme prehladávaním grafu do híbky.
Vrchol v vyhlásime za reprezentanta farby /. Potom si zvolíme dalšiu
farbu / a iný neofarbený vrchol v a opakujeme, kým sa neminú všetky
neofarbené vrcholy. Do každého vrchola zrejme existuje cesta z niekto-
rého z reprezentantov. Niektorí reprezentanti sú však zbytoční: ak do
vrchola ri, reprezentujúceho farbu f\ vedie cesta z vrchola Г2 reprezen-

tujúceho farbu /2, z Г2 sa dá dostat’ do všetkých vrcholov ofarbených
farbou /1, a preto r 1 je zbytočný.

Ako rýchlo zistit, ktorí reprezentanti sú zbytoční? Nech ri je zbytočný
reprezentant. Potom existuje reprezentant rj taký, že z rj vedie do r*
cesta prechádzajúca len cez vrcholy ofarbené farbami fj a fi, pričom
farby na ceste sa nestriedajú, t.j. cesta vedie najprv cez vrcholy farby
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fj a potom cez vrcholy farby fi. Posledný vrchol na tejto ceste ofarbený
farbou fj označme v, prvý vrchol ofarbený fi nech je u. Vrcholy farby
fj boli zrejme ofarbované neskór ako vrcholy farby fi. Preto ak by sme
v okamihu ofarbovania vrchola v věděli, že z vrchola и sa dá dostať
do vrchola r;, velmi lahko by sme přišli na zbytočnosť r*. Preto si pre
každú farbu fi a pre každý vrchol и ofarbený touto farbou spočítáme, či
sa z vrchola и dá dostať do reprezentanta farby fi t.j. vrchola r*. Táto
práca sa dá tiež zveriť rekurzívnej ofarbovacej procedúre. Na závěr třeba
skontrolovať, pre každú hranu, ktorá vedie medzi vrcholmi róznych farieb,
či sa z jej koncového vrchola dá dostať do reprezentanta farby koncového
vrchola. Ak áno, označíme reprezentanta tejto farby ako zbytočného. Táto
kontrola sa dá tiež robiť počas ofarbovania.

Procedúra Prehladaj (v : integer) dostane ako argument číslo vr-

chola, z ktorého má prehladávať. Označme N(v) množinu vrcholov, do
ktorých vedie z v hrana. Před spuštěním procedúry Prehladaj z vr-
chola ri si poznačíme, že z vrchola r* sa dá dostať do reprezentanta r*.
Táto procedúra

> ofarbí vrchol v aktuálnou farbou fi]
> rekurzívně sa zavolá pre všetky vrcholy и E N (v), ktoré ešte nie sú

ofarbené;
o ak existuje vrchol и E N(v) farby fi, z ktorého sa dá dostať do

reprezentanta ri, poznačíme si, že aj z v sa dá dostať do ri]
> ak existuje vrchol и G N(v) ofarbený farbou fj Ф fi a přitom z и

existuje cesta do reprezentanta Tj, poznačíme si, že reprezentant rj
je zbytočný.

Ostává ukázat’, že množina všetkých reprezentantov, ktorí nie sú zby-
toční, tvoří našu hladanú množinu M. Tahko vidno, že do každého zby-
točného reprezentanta r vedie cesta z nějakého reprezentanta, ktorý nie
je zbytočný. Nech to tak nie je. Potom existuje reprezentant r\ taký, že
z r\ vedie do r cesta. Ak by aj ten bol zbytočný, existuje Г2 taký, že z něho
vedie cesta do r\ atď. Buď po nejakom čase prídeme к reprezentantovi,
do ktorého už nič nevedie, alebo sa nám začnú reprezentanti opakovat,
teda nejakí dvaja, ri a rj sa v postupnosti vyskytnú aspoň dvakrát. Jeden
z nich musel byť ofarbovaný skór, nech je to r*. Potom ale z ri vedie do
rj cesta, a preto by mal byť rj ofarbený farbou fi (alebo inou, použitou
skór ako fi) — spor. Z množiny nezbytočných reprezentantov sa teda dá
dostať do fubovolného reprezentanta, a teda aj do lubovolného vrcho-
la. Zároveň žiadni dvaja reprezentanti nemóžu ležať v rovnakom MSSK
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(lebo inak by museli byť ofarbení rovnakou farbou), teda ich je naozaj
minimálny možný počet.

Časová a pamáťová zložitosť: Prehfadávanie každého vrchola je úměr-
né počtu hrán, ktoré z něho vedú. Žiadny vrchol sa neprehfadáva viac
než raz, preto celková časová zložitosť algoritmu je 0(M + N), kde M je
celkový počet hrán v grafe. Pamáťová zložitosť je tiež 0(M + N), pretože
si potřebujeme zapamátať celý graf.

P - II - 2

Riešenie tohoto příkladu používá metodu dynamického programovania.
Označme Ai = a[l], a[2],..., a[i] postupnost utvorenú z prvých i členov
postupnosti a, analogicky Bj = 6[1],..., b[j]. Budeme riešiť všeobecnej-
šiu úlohu: Pre každé i, j, (0 š i š M, 0 ^ j ^ N) vypočítáme, aký
je maximálny súčet vybranej podpostupnosti postupností Ai a Bj. Ti-
eto maximálně súčty si budeme zapisovat’ do tabulky p[0..M,0..N], kde
p[i,j] je súčet maximálnej vybranej podpostupnosti postupností Ai a Bj.
Hladaný maximálny súčet bude teda hodnota p[M, N].

Tabulku p budeme vypíňať po riadkoch s využitím predpočítanej
informácie v predošlom riadku. Riadok p[0] obsahuje samé nuly, pretože
neexistuje vybraná podpostupnosť prázdnej postupnosti. Riadok p[i\ (pre
i > 0) vyplníme podlá riadku p[i — 1] takto: Políčko p[i, 0] je zrejme
nula. Políčko p[i,j] (pre j > 0) vieme vyplnit’ pomocou hodnot p[i —
— 1 ,j], p[i,j — 1] a p[i — l,j — 1]. Ak sa čísla а [г] a b[j] nezhodujú,
každá vybraná podpostupnosť postupností Ai a Bj je zároveň vybranou
podpostupnosťou postupností Ai-i a Bj alebo Ai a Bj-\. Teda v tomto
případe je p[i,j] rovné maximu z čísel p[i — 1, j] a p[i,j — 1]. Ak а [г] =
= b[j], každá vybraná podpostupnosť postupností Ai a Bj je vybranou
podpostupnosťou postupností Ai-\ a Bj alebo Ai a Bj-1, alebo vybranou
podpostupnosťou postupností Ai-i a5j_i s přidaným členom а [г] = b[j].
Pretop[ž,ý] je rovné maximu z číselp[i — 1, j],p[i, j— 1] ар[г—1, j—1]+а[г].

Navrhnutý algoritmus má časovú zložitosť 0(M ■ N). Pamáťová zlo-
žitosť je tiež 0(M ■ N). Kedze každý riadok tabulky p závisí iba na
predchádzajúcom riadku, stačí si památať len posledně dva riadky (pri
počítaní riadku p[i] si památáme predchádzajúci riadok p[i — 1]. V pro-
grame pl značí riadok p[i — 1] a p2 riadok p[i].), pamáťová zložitosť je
0(M + N).
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P - II - 3

Úlohu budeme riešiť v dvoch prechodoch. V prvom přechode nájdeme
kandidáta — prvok, ktorý ako jediný móže mať nadpolovičnú váčšinu.
V druhom přechode len overíme, či sa tento prvok nachádza v poli a viac
ako iAT-krát.

Kandidáta budeme hladať nasledovným spósobom: pre každý prvok k,
ktorý sa v poli a aspoň raz vyskytuje, si budeme počítat’ jeho silu s*,. Na
začiatku položme silu všetkých prvkov rovnú 0. Silu prvkov budeme meniť
takým spósobom, aby v každom okamihu bola nenulová pre nanajvýš
jeden prvok. Tento prvok nazvime kandidátom a označme ho K. Ak majú
všetky prvky silu nulovú, kandidátom je buď prvok a[l] (před začiatkom
výpočtu), alebo prvok, ktorý bol kandidátom v predchádzajúcom kroku.

Pri spracovávaní prvku a[i\ móžu nastat’ tieto situácie:
1. К — a[i], t.j. další spracovávaný hlas patří kandidátovi. Zvýšíme Sk

o 1.

2. К ф а [г], Sk > 0. spracovávaný hlas nepatří kandidátovi, preto zní-
žime sk o 1.

3. К а [г], sk — 0. Zvýšíme silu sa[ť] prvku a [г] o 1. Tým sa prvok a[i\
stane novým kandidátom К.
Tento postup opakujeme, kým nespracujeme všetky prvky póla.
Je zřejmé, že si netřeba památať silu všetkých prvkov, stačí si památať

silu kandidáta a to, ktorý prvok je kandidátom. Na to nám stačia dve
premenné typu integer.
Lemma. Nech sa nějaký prvok К vyskytuje v poli а M-krát, kde M >
> ~N. Potom po spracovaní všetkých prvkov poj,a bude К kandidátom
so silou sk ^ 2M — N > 0.

Označme počet zvýšení sily kandidáta К ako k+, počet znížení jeho
sily к_, počet zvýšení sily 1’ubovol’ného iného kandidáta l+ a počet znížení
sily iných kandidátov í_. Zníženie sily kandidáta К, ako aj zvýšenie sily
iného kandidáta je spósobené jedine výskytom prvku rózneho od К.
Takýchto operácií teda bude najviac N — M. Každý výskyt prvku К
spósobí buď zvýšenie sily K, alebo zníženie sily iného kandidáta (prvky
rožne od К si však móžu znižovať silu aj navzájom), preto týchto operácií
bude najmenej M.

N - M 't к- + l

k++l_^ M,
U -l- > 0.

+ >
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Posledná nerovnosť vyplývá z toho, že počet znížení u žiadneho prvku
nepresiahne počet zvýšení. Po sčítaní nerovností a úpravě dostaneme

4 - L ^ 2M - iV > 0,

a teda po skončení algoritmu má prvok К kladnú silu. To je možné len
tak, že bude na konci kandidátom.

Časová a pamaťová zložitosť: algoritmus vyžaduje dva přechody
polom, každý z nich je v čase O(N). Pamaťová zložitosť je konštantná.

P - II - 4

Časť A. Stroj, riešiaci túto úlohu bude postupné skúšať ako x čísla
0,1,2,... Vypočítá funkčnú hodnotu F(x) v každom z týchto čísel a po-
rovná ju s hodnotou у v registri R\. Ak je váčšia alebo rovná, máme
riešenie, ak nie, zvýšíme hodnotu x o 1 a pokračujeme. V registri Ro
budeme uchovávať hodnotu x, v registri R\ bude hodnota y. Funkčnú
hodnotu F(x) uložíme do registra R2. Registre R2 a R4 slúžia ako po-
mocné registre. Jeden cyklus stroja sa bude skladať z týchto operácií:

> skopírovanie obsahu registra Ro do registra R2, ktorý bude slúžiť ako
vstupný register pre výpočet funkcie F. Najprv presunieme obsah
registra Rq do registrov R2 a R3 (za každé zníženie registra R0 raz
zvýšíme každý z registrov R2 a R3), potom presunieme naspáť obsah
R2 do registra Ro.

D> Použijeme inštrukciu na výpočet funkcie F. R2 je vstupný register,
výsledok sa uloží do výstupného registra R3. Po vykonaní tejto in-
štrukcie je obsah registra R2 nedefinovaný, preto ho musíme vynulo-
vať.

d> Překopírujeme obsah registra R\ do registra R2 za pomoci registra
R4 rovnakou technikou ako v prvom kroku.

> Porovnáme velkosti čísel uložených v registroch R2 а Л3. Postupné
budeme od oboch registrov odpočítávat jednotku, až kým sa nám
jeden z registrov nevynuluje. Ak sa prvý vynuluje register R2 (alebo
sa vynulujú oba registre naraz), znamená to, že у ^ F(x). Kedže
sme hodnoty x skúšali od najmenšieho, je to najmenšie x s touto
vlastnosťou. Hodnota x je prezieravo uložená v registri Ro, takže
možeme skončit’. Ak sa naopak prvý vynuluje register R3, znamená
to, že F(x) < у, a preto musíme pokračovat’ v cykle. Vynulujeme
register R2 a vrátíme sa na začiatok.
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z -+R3 F(R2)

Яо++

Да- R4—
R\++

R3-
Ro++

Ri-
i?2++
i?4++

i?o —

i?2++
i?3++

■ЧДрУ-2—0
№?>Лчд^>|0

Да-R2—
R3—

Cast В. Činnost stroja je založená na jednoduchej myšlienke: vstupné
číslo n si skopírujeme do pomocného registra, vypočítáme číslo, ktoré
vznikne obrátením binárneho zápisu n (označme ho n^). Potom porov-
náme obe tieto čísla. Ak sú rovnaké, odpověď stroja bude 1, v opačnom
případe bude odpověď 0.

Poďme sa na činnost stroja pozrieť trochu bližšie. Najprv obsah re-

gistra Ri, obsahujúceho vstupné číslo n překopírujeme za pomoci re-

gistra R4 do registra R$. Potom budeme v cykle v registri R3 vy-
rábať číslo, ktoré vznikne otočením binárneho zápisu čísla n. Nech
n = 2kbk + 2k~1bk-i +• • . + 2°6o je binárny zápis čísla n. Po i prechodoch
cyklu (0 ^ i к + 1) bude platit’:

Ri = 2k~% + 2

R3 = 2i-1b0 + 2i~1b1 + ... + 2°b

k-i-i bk—i + ... + 20bj,
г-1-

Na začiatku teda R1 = n, R3 — 0. V jednom přechode cyklom najprv
vynásobíme obsah R3 dvorná, potom vydělíme obsah R1 dvoma. Obe ti-
eto operácie sa dajú realizovat’ s jedným pomocným registrom tak, že na
každé zníženie obsahu R3 dvakrát zvýšíme obsah pomocného registra,
resp. na každé dve zníženia R\ raz zvýšíme obsah pomocného regist-
ra. Potom stačí len presypať obsah pomocného registra naspat’ do R3,
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resp. R\. Ak nám pri delení vznikne zvyšok, vieme, že posledná cifra
zápisu Ri bola 1, a preto nastavíme poslednú cifru aj číslu v registri R3
(t.j. připočítáme к R3 jednotku).

Keď je v registri R\ nula, zrejme platí i > к, a teda v R3 je číslo n^-
Posledná vec, ktorú třeba urobit, je porovnat obsah registrov R3 а Л5.
Budeme postupné znižovat obsah oboch registrov o 1, až kým sa jeden
z nich nebude nulový. V případe, že je aj druhý nulový, zvýšíme obsah
registra Rq (lebo n je palindróm). V opačnom případe zanecháme v re-

gistri Rq nulu a skončíme.

Z

rCĚD-1 Rq++- ->

o
Ri-
Л4++
j?5++

R4—
R\ ++

К-5

Дз~
Rz—

<ШУ°
Ri-R3—

R4++
i?4++

R4 —

R3++
r2-
Ri++

I

Ri-
R2++

P - III - 1

Vytvoříme graf G, ktorého vrcholy sú křižovatky a medzi vrcholmi i a, j
vedie hrana právě vtedy, ak sú křižovatky i a j spojené cestou. Hranu,
ktorej odobratie spósobí rozpadnutie grafu na dve časti (komponenty
súvislosti), nazýváme most. Ukážeme, že mosty sú právě tie hrany, ktoré
musia zostať obojsmerné. Zrejme hranu e z vrchola и do v, ktorá je
mostom, nemóžeme orientovat (ak sme ju zorientovali povedzme z и do v,
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nedalo by sa dostať z u do u, pretože e je most). Z algoritmu vyplynie,
že všetky ostatně hrany móžu byť „zjednosmernené“.

Algoritmus je založený na myšlienke prehladávania grafu do híbky.
Prehladávanie do híbky je rekurzívna procedúra s jediným paramet-
rom — vrcholom v. Tento vrchol označíme za už prehladaný a rekurzívně
voláme tú istú procedúru pre všetkých ešte neprehfadaných susedov vr-
chola v. Volajme týchto susedov potomkami vrchola v. Nazvime hlavnou
každú hranu, ktorá vedie z předka do niektorého z jeho potomkov, a hra-
ny, ktoré nie sú hlavné, volajme spatné.

Pre naše účely přiřadíme naviac pri prehladávaní každému vrcholu
v pořadové číslo cv označujúce, kofkáty v celkovom poradí bol vrchol
v prvýkrát objavený. Zároveň každú ešte neorientovanú (obojsmernú)
hranu orientujeme (,,zjednosmerníme“) smerom od vrchola v. Orientáciu
už orientovaných hrán nemeníme.

Ukážeme, ako sa dá tento algoritmus použiť na nájdenie mostov v gra-
fe. Aby sme zistili, či je hrana z и do v most, potřebujeme overiť, či sa dá
dostať z v do и po hranách róznych od hrany (u, v). Ak sa dá, hrana (u, v)
mostom byť nemóže. Naopak, ak sa nedá, hrana (u, v) je most. Kedže
každý most je hlavnou hranou, predpokladajme, že v je potomok u, teda
prehfadávacia procedúra pre v bola spustená v prehladávacej procedúre
pre u. Nech w je vrchol s najmenším číslom cw taký, do ktorého sa dá
dostať z vrchola v po orientovaných hranách.

Ak je hrana (u, v) most, pre každý vrchol w' objavený voláním prehla-
dávacej procedúry z v platí cw> ^ cv. Zároveň žiaden z vrcholov, do
ktorých sa vieme prehladávaním z v dostať (nepoužíváme hlavné, t.j.
už orientované, hrany), nemohol byť v okamihu volania procedúry pre v

objavený. Teda cw ^ cv.

Naopak, predpokladajme, že cv 5Í cw. Označme P množinu prehla-
daných vrcholov tesne před spuštěním procedúry pre v a Q množinu
vrcholov, ktoré objavíme touto procedúrou. Okrem hrany (u,v) nemóže
viesť žiadna hlavná hrana z vrchola z P do vrchola z Q, ani naopak.
(Ak by viedla z P do Q, vrchol v Q by bol už prehladaný před voláním
procedúry, čo je spor. Ak by viedla z Q do P, táto hrana by nemohla byť
hlavná, pretože vedie do už objaveného vrchola — opáť spor.) Ak cv ^ cw,

neexistuje žiadna spatná hrana zQdoP (inak by platilo cv > cw), a teda
neexistuje žiadna hrana medzi P a Q okrem (u,v). Z toho vyplývá, že
hrana (w, v) je most.

Zostáva nám ukázat’, že hrany, ktoré nie sú mostami, sú orientované
vhodné, t.j. že je možné prejsť z každého vrchola do fubovolňého iného
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vrchola dodržujúc orientáciu hrán. Predpokladajme, že graf G nemá mos-

ty. Nech и а г; sú také vrcholy, že cu = 1 a cv — 2. Z predošlého vieme,
že pre hlavnú hranu (u,v), ktorá nie je mostom, platí cv > cw, teda
cw — 1. Teda existuje orientovaný cyklus (postupnost’ vrcholov v\,... ,Vk
taká, že v\ — Vk a pre každé i — 1,..., к — 1 vedie z vrchola vi do Vi+\
orientovaná hrana) prechádzajúci vrcholmi и, v. Označme S množinu
vrcholov z cyklu. Pre množinu S platí, že sa vieme z každého do každého
z jej vrcholov dostat po orientovaných hranách. Ak S obsahuje všetky
vrcholy, ukázali sme, že orientácia grafu vyhovuje. V opačnom případe
nech x je vrchol mimo S taký, že existuje vrchol у v 5, že z у vedie
do x orientovaná hrana. Z x sa dá dostat po orientovaných hranách do
niektorého vrcholu z S, pretože inak by bola hrana (у, x) most. Takže
sa dá dostat aj z x do u, aj z и do x, a teda ak vrchol x přidáme do S,
zostane zachovaná vlastnost, že z každého do každého vrchola v 5 sa dá
dostat. Induktivně móžme přidat’ do S všetky vrcholy, z čoho vyplývá,
že navrhnutá orientácia G je vhodná.

Analogickú argumentáciu možno použit aj keď sa v grafe G mosty na-

chádzajú. Nech G\ je (neorientovaný) graf, ktorý vznikne z G po odobraní
všetkých mostov. Označme C\,..., Ci komponenty súvislosti G\ (z kaž-
dého vrchola v C; sa dá dostat’ do každého vrchola z C* po hranách
z G\, pre i — 1,..., /). Existuje aspoň jeden komponent C*, do ktorého
viedol jediný most. (Ak si zostrojíme graf, v ktorom každému kompo-
nentu zodpovedá jeden vrchol a dva vrcholy sú spojené hranou právě
vtedy, keď medzi zodpovedajúcimi komponentami v G vedie most, tento
graf je súvislý a neobsahuje kružnice, musí to byť teda strom. Každý
strom má aspoň jeden list.) Pre tento komponent možno použit argu-
menty z predchádzajúceho odstavca, Ci z grafu vynechat a induktivně
pokračovat v dokáže pre ostatné Cj.

Implementácia. Pre každý vrchol v je v poli kriz uložený zoznam

jeho susedných vrcholov. Teda každá hrana je v tomto poli uložená dvoj-
násobné a tieto dve kopie na seba navzájom ukazujú pomocou smerníkov
dual. Atribút aktiv hovoří, či sa dá v tom smere po danej hrané pre-
chádzat (využívá sa pri orientovaní, keď povolujeme len jeden z dvoch
možných smerov hrany). Pole sus [v] uchovává počet susedov vrchola v,

pole c [v] obsahuje cv a v poli naj [v] je uložené číslo cw. Najskór porno-
cou procedúry prehladaj podlá vyššie uvedeného algoritmu orientujeme
všetky hrany grafu, pričom mosty úplné vymažeme (obidvom hranám
nastavíme aktiv na false). Potom vypíšeme všetky aktivně hrany.

Pamáťová zložitost algoritmu je 0(M + N) = O(M). Časová zložitost
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je zhodná so zložitosťou prehladávania do híbky, teda tiež 0(M) (po
každej hrané přejdeme právě raz).

P - III - 2

Úlohu budeme riešiť analogicky ako v krajskom kole — v prvom pre-
chodě nájdeme kandidátov a v druhom overíme pre každého z nich, či sa
nachádza v poli a viac ako N/k-krát.

Kandidátov je zjavne najviac к — 1. Budeme ich hfadať následovně:
pre každý prvok p, ktorý sa v poli a aspoň raz vyskytuje, si budeme
počítať jeho silu sp. Na začiatku položme silu všetkých prvkov rovnú 0.
Silu prvkov budeme meniť takým spósobom, aby v každom okamihu bola
nenulová pre nanajvýš к — 1 prvkov. Tieto prvky nazvime kandidátmi
a označme ich Кi,..., Kk-1.

Pri spracovávaní prvku a[i) móžu nastať tieto situácie:
1. 3j: Kj = a[i], t.j. další spracovávaný hlas patří niektorému kandidá-

tovi. Zvýšíme sk3 o 1.
2. V): Kj ф a [i], Vu: sku > 0. Spracovávaný hlas nepatří žiadnemu

kandidátovi, preto znížime každému kandidátovi silu o 1.
3. V): Kj a [i], 3u: sku — 0. Zvýšíme silu s^] prvku a [г] o 1. Preto sa

prvok a[i] stane novým kandidátom Ku.
Tento postup opakujeme, kým nespracujeme všetky prvky роГа.
Je zřejmé, že si netřeba památať silu všetkých prvkov, stačí si památať

sily к — 1 kandidátov a to, ktoré prvky sú kandidátmi. Na to nám stačia
dve polia velkosti О (к).
Lemma. Nech sa nějaký prvok P vyskytuje v poli а M-krát, kde M >
> N/k. Potom po spracovaní všetkých prvkov póla bude P kandidátom
so silou sp > 0.

DÓKAZ. Nazvime operácie 1 a 3 zvýšením a operáciu 2 znížením.
Dokážme najskór, že znížení je najviac N/k. Sporom. Všimnime si, že
sila každého prvku je nezáporné celé číslo, teda súčet sil všetkých prv-
kov je na konci určité nezáporný. Ak by bolo znížení viac ako N/k,
(t.j. aspoň [N/k\ +1) znamenalo by to, že sa celkový súčet sil znížil aspoň
o ([N/k\ + 1) • (к — 1), zatiaf čo sa zvýšil najviac o N — {[N/k\ + 1). To
ale znamená, že súčet sil prvkov na konci je

S < N —

čo je spor, preto je naozaj znížení najviac N/k.
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Všimnime si teraz prvok P. Nech jeho výskyt Л-krát spósobil zníženie,
Б-krát zvýšenie. Opáť sporom. Ukážeme, že sp > 0. Ak by mal prvok P
na konci silu 0, znamenalo by to, že bolo aspoň А + В znížení — A-krát
ho spósobil prvok P, В iných znížení muselo prvku P znížiť silu na 0.
Počet znížení je teda aspoň A + В = M > N/k, čo je spor s vyššie
dokázaným tvrdením, že zvýšení je najviac N/k. Preto má prvok P na
konci nenulová silu. To je možné len tak, že bude na konci kandidátom.

Časová a pamaíová zložitosť: algoritmus vyžaduje dva přechody
polom, každý z nich je v čase Q(kN). Pamáťová zložitosť je 0(k).

P - III - 3

Stroj riešiaci táto úlohu je už poměrně zložitý a velmi ťažko by sa kreslil
naraz, bez toho, aby sme ho rozložili na menšie celky. Predtým ako ho
budeme konstruovat’, si povedzme, ako by sa takýto problém riešil na
normálnom počítači.

Prvé riešenie. Jeden z prístupov by bol backtrackom skúšať všetky
možné podmnožiny množiny M, pre každá vypočítat súčet a overiť či
sa nerovná danému číslu s. Skončili by sme, ak by sme našli podmno-
žinu s vyhovujúcim súčtom, alebo keby sme vyskúšali všetky podmno-
žiny množiny M. Klasické backtrackové riešenie však používá zásobník,
ktorý by sme pomocou registrového stroj a simulovali len s velkou náma-
hou. Pěkný trik, ako vyskúšať všetky podmnožiny množiny M je takýto:
Množina M má kód m. Postupné budeme skúšať všetky také množiny
N, ktorých kód n je menší alebo rovný m. Pre každá takúto množinu
vypočítáme kód prieniku M П N, čo je vlastně logický súčin (AND) po
bitoch čísel man. Niektoré podmnožiny sice vygenerujeme viackrát, ale
to vóbec nevadí. Pre každý prienik (t.j. pre jeho kód m AND n) potom
spočítáme súčet jeho prvkov a skontrolujeme, či sa náhodou nerovná
hladanému súčtu s.

Blok pre bitový logický súčin skonštruujeme podobné ako blok pre

logický súčet (0R, viď. dalej). Na výpočet súčtu prvkov v množině mó-
žeme použit blok SHR(x), ktorý zisťuje hodnotu najnižšieho bitu čísla
v registri x a zároveň register x celočíselné vydělí dvorná (viď. ďalej)
a blok ADD (x, у), definovaný v příklade zo zadania.

Druhé riešenie. Ako vzorové uvádzame iné riešenie, ktoré využívá
myšlienku dynamického programovania. Postupné budeme budovat mno-

žiny súčtov, ktoré sa dajú vytvořit len z к naj menších prvkov množiny M.
Označme tieto množiny Sq, S\,..., Sk a ich kódy si, S2, • • •, s*;. Jediné
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číslo, ktoré sa dá utvořit’ súčtom nula prvkov, je číslo 0. Preto So = {0}
a so = 1. Představme si, že už máme vytvořená množinu Si, a nech
(i + l)-vý najmenší prvok v množině M je p. Ku každému prvku z mno-
žiny Si připočítáme číslo p. Dostaneme tak množinu S', S' = {c + p:
c E Sj}. Kedže každý súčet z prvých i -f 1 prvkov sa dá dosiahnuť buď
s použitím alebo bez použitia prvku p, množina S*+i dostaneme zjed-
notením množin Si a S'. Kód s' množiny S' dostaneme velmi jednodu-
cho: s' = Si • 2P. Zjednotenie množin zase dosiahneme bitovým logickým
súčtom ich kódov, t.j. s^+i = sz0Rs'. Před tým, ako do detailov rozobe-
rieme činnost’ nášho stroja, si definujeme a popíšeme niekolko blokov.

Všetky popisované bloky pre správnu činnost predpokladajú, že
všetky použité pomocné registre sú před vstupom do bloku vynulované.
Před výstupom z bloku sa tieto registre opat’ vynulujú.

Popis blokov.
/ N 0 S N. 0
СлЕРЦ-ЧлЕР- 1

SHL(x)
Ix—

p++

X++

X++

p—

, nO

I
SHR(x)x— p—

X++

/ N 0 СЮ2—1
x—

p++
p—
x++

Blok ADD(x, у) bol popísaný a definovaný v zadaniach.
Blok SHL(rr) vynásobí číslo v registri x dvoma. Potřebuje jeden po-

mocný register p, do ktorého „presype“ obsah registra x, potom obsah
p presýpa do x, pričom za každé zníženie registra p dvakrát zvýši obsah
registra x.

141



Blok SHR(x) celočíselné dělí číslo v registri x dvoma. Má dva výstupy
označené 0 a 1, pričom výstup 0 sa použije, ak bolo číslo v registri x pri
vstupe do bloku párne a výstup 1, ak bolo nepárne. Pracuje podobné ako
blok SHL s tým, že najprv za každé dve zníženia registra x raz zvýšíme
pomocný register a potom presýpame obsah pomocného registra naspat
do x.

Blok 0R(x, y) je najzložitejší. Jeho funkciou je přiřadit do registra x

bitový OR čísel uložených v registroch x а у a zároveň vynulovat regis-
ter y. Budeme to robit podobné ako vo vzorovom riešení krajského kola.
Pomocou blokov SHR odoberieme posledný bit zo zápisu oboch čísel x,

y. Ak je aspoň jeden z odobratých bitov jednotkový, přidáme na koniec
zápisu čísla v pomocnom registri p jednotku (t.j. p vynásobíme dvoma
pomocou bloku SHL a potom к němu připočítáme jednotku), v opačnom
případe přidáme na koniec p nulu (t.j. vynásobíme ho dvoma). Takto sa
nám bude v registri p postupné objavovat bitový súčet čísel x a y, avšak
s bitmi zapísanými v obrátenom poradí. Na koniec teda musíme obsah
registra p otočený zapísat do registra x, čo spravíme opat’ odoberaním
posledného bitu zápisu p a jeho přidáváním na koniec zápisu x. Aby sme

věděli, kotkokrát máme túto operáciu spravit, počítáme si počet platných
bitov registra p v pomocnom registri q.

I

I
SHL(x) 0R(x, y)SHL(p)

I
SHR(p)q++

0 1

SHR(x)

__,0 1—
SHR(y) | ^ [sm(y)

Г 1 J

x++

Ii
q—
I

0 i
p++

J

Nakoniec nám zostáva popísat samotný stroj. Skládá sa z dvoch hlav-
ných cyklov. V prvom cykle sa v registri R3 postupné počítajú kódy mno-
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žín Si, po skončení г-teho cyklu R3 obsahuje kód s*. Zároveň sa v každom
přechode odoberie z množiny M jej najmenší prvok.

Odoberanie prvku sa robí v dvoch menších cykloch spolu s výpočtom
kódu množiny 5'_x, ktorý bude uložený v registri R4. Na začiatku si kód
Si-1 skopírujeme z registra R3 aj do registra R4. V prvom cykle postupné
delíme obsah registra Ri (t.j. kód množiny M) dvorná a obsah registra
R4 naopak násobíme dvoma, pričom si počítáme počet prechodov cyklu
v registri R5. Keď sa nám nepodaří vydělit obsah Ri dvoma bezo zvyšku,
narazili sme na najmenší prvok. V tomto okamihu máme v R4 kód S'_1,
ktorý pomocou bloku OR přidáme к obsahu R3, čím nám v tomto registri
vznikne kód množiny Si. Na závěr v druhom cykle po sebe upraceme,

t.j. vynásobíme obsah R1 takou mocninou dvojky, akou sme ho v pr-
vom cykle vydělili. Všimnite si, že týmto postupom sa nám automaticky
vynuloval najnižší nenulový bit registra R\, t.j. odobrali sme najmenší
prvok množiny M.

Keď z M odoberieme posledný prvok, jej kód uložený v registri R\
sa vynuluje a riadenie přejde do druhého hlavného cyklu. V tomto cykle
overíme, či číslo s uložené v registri R2, patří do množiny, ktorej kód je
uložený v registri R3. Hodnotu R3 stačí s krát vydělit dvoma a potom
zistiť, či posledný bit registra je 1.

C£ SHR(_fí3)R3++
f 0

SHR(R3)ADD(fí4, Ro++

II

©R2-R3++ R5—

SHR(i?i) SHL(jRi)
I0

SHL (R4) [*0R(R3,R4)

P - III - 4

Smerovník pri prameni číslo i nech ukazuje na prameň číslo s[i], pre
1 ^ i ^ N. Hovoříme, že pramene p\,p2, ■ ■ ■ ,Pk tvoria cyklus, ak od
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prameňa p\ ukazuje smerovník к prameňu p2, od pí к рз a tak ďalej, až
od prameňa pk к prameňu p\.

Ak vystartujeme z lubovoíného prameňa p\ a sledujúc smerovníky
prechádzame postupné pramene Р2,Рз,. •po najviac N krokoch sa nám
stane, že prídeme к prameňu Pk+i, pri ktorom sme už boli, t.j. pk+i — Pj
pre nějaké j č к. Kedze smerovník ukazujúci na prameň j bol vyrobený
iba jeden, musí byť budpk = Pj-i, alebo j = 1. Ak je к najmenšie také, že
Pk-i-i = Pj, j č к, potom j — 1, a teda pramene pi,...,Pk tvoria cyklus.
Takýmto spósobom vieme pre každý prameň určit cyklus, do ktorého
patří.

Vzorový program využívá fakt, že ak vyměníme smerovníky pri dvoch
prameňoch, ktoré patria do rovnakého cyklu, tento cyklus sa nám rozdělí
na dva, t.j. počet cyklov sa zvýši o 1. Ak naopak vyměníme smerovníky
pri prameňoch z róznych cyklov, tieto dva cykly sa spoj a do jedného.

Označíme si pramene, ktoré patria do toho istého cyklu ako prameň 1.
Postupné budeme hladať dálšie cykly, ktoré budeme pripájať к cyklu
obsahujúcemu prameň 1. Vždy, keď nájdeme nový cyklus, označíme si
všetky pramene, ktoré doňho patria a zároveň spravíme výměnu smerov-

níkov, ktorou sa tento cyklus připojí к cyklu obsahujúcemu prvý prameň.
Všimnime si, že novovzniknutý cyklus obsahuje právě doposiaf označené
pramene. Ďalší cyklus potom hladáme medzi neoznačenými prameňmi.

Implementácia. Na označovanie prameňov používáme pole s. Prameň
j považujeme za označený, ak s[j] ^ 0. Nový cyklus začínáme hladať
od takého neoznačeného prameňa г, že všetky pramene s číslom menším
ako i sú označené. Prameň i ako reprezentanta nového cyklu označíme
s[i] = —1, ostatné pramene cyklu označíme nulou. Keď pri prechádzaní
cyklom opáť natrafíme na prameň г, cyklus sme uzatvorili. Rovnakým
postupom hladáme ďalší cyklus, pričom vieme, že každý prameň na tomto
cykle má číslo váčšie ako i.

Na závěr vyměníme jeden smerovník z každého cyklu so smerovníkom
pri niektorom prameni z cyklu obsahujúceho prameň 1, t.j. postupné vy-
mieňame smerovník pri prameni 1 so smerovníkmi pri prameňoch ozna-

čených —1 (reprezentanti cyklov). Potřebný počet výměn je o jednotku
menší ako počet cyklov.

Časová a pamáťová zložitosť. Pamáťová zložitosť je zrejme O(N).
Časová zložitosť algoritmu je tiež O(N), pretože s každým prvkom pofa
s pracujeme maximálně trikrát (dvakrát pri hladaní cyklov a na závěr
robíme ešte jeden přechod polom s).
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P - III - 5

Úlohu zo zadania si trochu zjednodušme a venujme sa len podstatě úlohy.
Je jasné, že ak sa z akéhokolVek dóvodu budeme presúvať medzi dvorná
mestami, tak optimálně bude, ak sa medzi nimi budeme presúvať naj-
kratšou možnou cestou. Nech teda ht)j (1 5Í i,j ^ N) označuje dížku
najkratšej cesty medzi mestom i a mestom j. Riešenie podúlohy, ako
zistiť dížky najkratších ciest je uvedené o pár odstavcov nižšie.

Takto zredukovaná úlohu budeme riešiť metodou dynamického pro-

gramovania. Označme Eíj (1 ^ i ^ N, 0 ^ j ^ K) dlžku najkratšej
trasy končiacej v deň j v meste i, takej, že sme viděli filmy pi,p2, • • • ,Pj
a přitom sme posledný film pj viděli v meste i. Ak hodnota Eíj neexistuje
(t.j. neexistuje trasa popísaných vlastností), položíme Eíj — oo.

Hodnoty Eíj budeme postupné počítat z iných skór vypočítaných
hodnot Eíj a z hodnot hij. Začneme zrejme takto: E\p = 0 a Eip = oo
(2 ^ г й N).

Počítajme hodnotu Eíj pre 1 ^ j ^ N. Máme dve možnosti: V meste
i nehrajú film pj. Trasa požadovaných vlastností končiaca v meste i
neexistuje, preto Eíj = oo.

Druhá možnost’ je, že film pj v meste i hrajú. Rozoberme túto
možnost’. Na to, aby sme viděli filmy P\,P2, ■ ■ ■ ,Pj sme museli vidieť
filmy pi,p2) • • • iPj-i- Film Pj-i sme mohli vidieť v nejakom meste s.
Do města s sme sa přitom zrejme dostali najkratšou trasou, končia-
cou v tomto meste. DÍžka tejto trasy je Esj-Z města s do města i
sme takisto museli ísť najkratšou cestou. Teda dížka takejto trasy bude
Esj-i +hSji. Prostým vyskúšaním všetkých možných miest s dostaneme
dížku najkratšej cesty Eíj:

Eíj - min{ESjj-i + hS)i: 1 й s ^ N}.

Najkratšia trasa, potřebná na zhliadnutie všetkých К filmov končí
v nejakom meste i. Stačí nám teda vybrať z dížok trás, ktoré končia
v jednotlivých mestách tú najmenšiu. Pre dížku optimálnej trasy E teda
platí

E :— min-fii^x: 1 ^ i ^ N}.
Ostává nám ešte zistiť, cez ktoré mestá vlastně optimálna trasa vedie.

Označme Dij město, z ktorého sme přišli v deň j do města i, ak by sme
išli po optimálnej trase končiacej v meste i v deň j. Hodnotu Dij budeme
počítať súbežne s hodnotou Eíj. Dij bude vlastně to město s, pre ktoré
bude Esj-i 4- hs,i minimálně.
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Město, v ktorom končí hfadaná optimálna trasa (t.j. také, pre ktoré
je Eí,k minimálně) označme xk- Potom predchádzajúce město na opti-
málnej trase bude xj^-i — DXK:k- Vo všeobecnosti město na optimálnej
trase, z ktorého sme přišli do města z* bude město i = DXij.

Nakoniec venujme pár slov otázke, ako vzdialenosti hij (1 ^ i, j 5ь
5ь N) medzi jednotlivými mestami počítat’. Použijeme štandardný Floyd-
-Warshallov algoritmus. Vstupom tohto algoritmu je matica hij (1 5ь

i,j 5ь N), obsahujúca dížky ciest, spájajúcich jednotlivé dvojice miest
(pre cestu vedúcu medzi mestami i a j s dížkou l položíme hij = hjj —

= l, ak medzi i a j nevedie žiadna cesta, položíme hij — hjj = oo).
Výstupom algoritmu je matica h, v ktorej hij je minimálna vzdialenosť,
ktorú musíme precestovať, aby sme sa dostali z města i do města j.

Algoritmus bude pracovat v N cykloch. Po vykonaní £;-teho cyklu
(О 5ь к 5ь N) bude platit, že hij je dížka najkratšej trasy z města i do
města j, ktorá prechádza len cez mestá s číslom menším alebo rovným
k. Na začiatku (t.j. po vykonaní 0 cyklov) je v hij uložená dížka priamej
trasy bez prechádzania cez iné vrcholy. Pri vykonávaní k-teho cyklu,
dížka trasy hij móže byt buď rovnaká ako v predchádzajúcom cykle (ak
nevyužijeme možnost viest trasu z města i do města j cez město к),
alebo rovná hi^ + hf~j (ak trasu z г do j vedieme cez město k). Vždy si
samozřejmé vyberieme kratšiu možnost.

Implementácia. Dížky ciest načítavame priamo do póla h, v ktorom
aj počítáme vzdialenosti medzi mestami F-W algoritmom. Na výpočet
si nepotřebujeme památať všetky hodnoty Eíj, stačí si pamatať iba
dva stípce pre j a j + 1. To robíme v poli optim, pričom optim[0]
obsahuje hodnoty Eíj pre j párne a optim[1] pre j nepárne. Ak však
chceme zrekonštruovat optimálnu trasu, potřebujeme si památat aspoň
hodnoty Díj. Na tie nám však stačí typ byte. Hodnoty Díj máme
v poli před, ktoré je vo vzorovom programe alokované dynamicky, aj
keď obmedzenia v zadaní dovolovali použit statické pole.

Časová a pamaťová zložitosť. Časová zložitosť celého algoritmu bude
0(N3 + KN2), z toho 0(N3) je Floyd-Warshallov algoritmus. Parná-
tová zložitosť bude 0(N2 + KN), kde 0(N2) památi zaberá matica h
a 0(NK) zaberajú matice E a D.

Poznámka. Existuje algoritmus, ktorý nepotřebuje úvodné predvypo-
čítanie vzdialenosti F-W algoritmom a ktorý na výpočet každého stípca
matice Е používá modifikáciu Dijkstrovho algoritmu. Tento algoritmus
má časovú zložitosť 0(K(M log N)), resp. 0(KN2) (podlá implementá-
cie Dijkstrovho algoritmu) a památovú zložitosť 0(M -f NK).
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Přípravné soustředění před 41. MMO

V průběhu 49. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 17. do 21. dubna 2000 v Jevíčku.
Na soustředění byli pozváni nejlepší řešitelé III. kola kategorie A s při-
hládnutím к výsledkům II. kola. Soustředění bylo zaměřeno na přípravu
reprezentantů a ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

7/7, G Jirsíkova 244, Pelhřimov
3/4, G tř. Kpt. Jaroše 14, Brno
5/6, G Kostelní 259, Jilemnice
7/8, G Parléřova 2/118, Praha 6
2/4, G 17. listopadu 526, Bílovec
6/7, G Mikulášské nám. 23, Plzeň
6/7, G Mikulášské nám. 23, Plzeň
3/4, G tř. Kpt. Jaroše 14, Brno

Jan Houštěk

Jan Herman
Jan Kynčl
Jan Pipek
Jaroslav Hájek
Ondřej Suchý
Josef Křišťan
Rudolf Stolař

91,5
76,5
86,5
61

76

63

58

63

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvem Slovenska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Martin Panák (17.4.),
dr. Jaroslav Švrček (18.4.),
doc. Jaromír Šimša (19.4.),
dr. Pavel Calábek (20.4.),
dr. Karel Horák (21.4.).
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Úlohy zadané na přípravném soustředění

1. Najděte všechna přirozená čísla n taková, že 2n — 1 je násobkem čísla
3 a |(2n — 1) je dělitelem 4m2 + 1 pro nějaké
2. Mějme přirozená s, t a nechť (x, y) je uspořádaná dvojice celých čísel.
Změnou dostaneme z dvojice (x,y) dvojici (x -f t, у — s). Dvojici (x,y)
nazveme dobrou, jestliže po nějakém počtu změn (i nulovém) dostaneme
dvojici soudělných čísel.

a) Rozhodněte, jestli je (s, t) „dobrá“ dvojice.
b) Ukažte, že pro libovolné s a t existují celá x, у taková, že dvojice

(ж, у) není dobrá.
3. Nechť X = {1,2,..., n}, n ^ 2 a nechť Ai, A2,..., А к jsou podmnožiny
množiny X takové, že pro libovolné indexy 1 ^ HĎ2Ď3Ď4 = & platí

m.

|Aťl U Ai2 U Ai3 U Ai41 йп- 2.

Dokažte, že к ^ 2n 2.4.Nechť M, N jsou takové vnitřní body trojúhelníku ABC, pro něž platí
\<MAB\ = \%.NAC\ a \KMBA\ = \^NBC\. Dokažte, že platí

\AM\ • \AN\ \BM\ • |EiV| \CM\ • |CiV|
|ЛБ| • \AC\ + \BA\ ■ \BC\ + \CA\ ■ \CB\ ~ L

IR taková, že platí /(0) = /(1) = 0, vyhovuje pro5.Funkce /: (0; 1)
všechny dvojice u,v různých čísel z intervalu (0,1) podmínce

|/(u) - f(v)I ^ \u-v\.

Dokažte, že pro libovolná a, b G (0,1) platí nerovnost

1
|/(a)-/(b)|g-.

6. Každý bod prostoru je obarven bílou nebo černou barvou. Dokažte,
že (v prostoru) lze vybrat 5 bodů stejné barvy tak, že jeden z nich je
těžištěm čtyřstěnu, jehož vrcholy tvoří zbylé 4 vybrané body.
7. Úhlopříčky konvexního čtyřúhelníku ABCD se protínají v bodě R.
Body P, Q nechť jsou po řadě středy stran AB1 CD. Jestliže je čtyř-
úhelník ABCD tětivový, pak přímky, které jsou kolmé к BD, AC, AD
a procházejí po řadě body P, Q, R, se protínají v jednom bodě. Dokažte.
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8. Nechť A je lichá а В sudá číslice. Dokažte, že pro každé přirozené
číslo n existuje přirozené číslo, které je dělitelné číslem 2n a které nemá
ve svém dekadickém zápise číslice různé od А а В.

9. Najděte nejmenší celé číslo c s vlastností: Splňuje-li nekonstantní mno-
hočlen P(x) s celočíselnými koeficienty podmínku P( 1) = P(2) = 0, pak
aspoň jeden z jeho koeficientů není větší než c.

10. Osa úhlu BAC protne stranu BC trojúhelníku ABC v bodě D. Na
polopřímkách AB a AC jsou vybrány po řadě body M a N tak, že
\<MDA\ = \<ABC\ a\<NDA\ — \<ACB\. Označme P průsečík přímek
AD a MN. Dokažte rovnost |AL>|3 = \AB\ ■ \AC\ • \AP\.

an je roven 1. Dokažte nerovnost11. Součin kladných čísel ai, <2,2,.. * ?

1 11
< 1.+ ...+

n - 1 + an

12. Vrcholy A, B,C ostroúhlého trojúhelníku ABC leží po řadě na stra-
nách BiC\, C\A\ a A\B\ trojúhelníku A\BiC\, přičemž platí podobnost
AA\B\Ci ~ AABC. Dokažte, že průsečíky výšek obou trojúhelníků
mají stejnou vzdálenost od středu kružnice opsané trojúhelníku ABC.
13. Osy AAi, BB\, CC\ úhlů trojúhelníku ABC se protínají v bodě M
(A\, Вi, Ci jsou body stran trojúhelníku ABC).

Dokažte: Jestliže jsou si poloměry kružnic vepsaných do trojúhelníků
MB\A a MC\A rovny a poloměry kružnic vepsaných do trojúhelníků
MC\B a MA\B jsou si také rovny, pak je trojúhelník ABC rovnostranný.

14. Určete všechny reálné polynomy / vyhovující rovnici

n — 1 + ai ' n — 1 + d2

f(x2) = f(x)f{x - 1).

/71! 1 \ 0015.Z Wilsonovy věty je známo, že posloupnost ( )V n + 1 /
nekonečně mnoho celých čísel.

a) Určete všechna přirozená čísla as vlastností, že posloupnost (——-)
\n + a /

obsahuje nekonečně mnoho celých čísel.
b) Určete všechny celočíselné členy této posloupnosti pro a = 2 a a = 5.

№ s následujícími

obsahuje
n=0

16. Rozhodněte, zda existuje rostoucí funkce /: N
vlastnostmi:

/(i) = 2,

/(/H) = /Н + n.

149



17. V rovině je dán trojúhelník A1A2A3 a libovolný bod Po. Položme
Ak+3 — Ak pro к'A 1 a sestrojme posloupnost bodů Po, Pi, P2,... tak, že
pro každé к ^ 1 bude bod Рд, obrazem bodu Pk-i při otočení o úhel 120°
(v záporném smyslu) okolo středu Ak. Jestliže P1998 = Po, je trojúhelník
A1A2A3 rovnostranný. Dokažte.

18. Je dán pravidelný n-úhelník, n ^ 5; označme А а, В dva jeho sousední
vrcholy, O jeho střed. V rovině n-úhelníku se pohybuje trojúhelník XYZ
shodný s trojúhelníkem OAB, a to tak, že nejprve X = O, Y = A, Z = В
a potom Y a Z probíhají oba celý obvod n-úhelníku, přičemž X leží stále
uvnitř n-úhelníku. Určete množinu všech možných poloh vrcholu X.

19. Dvě shodné kružnice k\, Zc2 mají vnější dotyk a současně se zevnitř
dotýkají po řadě stran AD a AB, resp. AB a BC daného čtverce ABCD
(obr. 58). Uvažujme tečny DE, CE po řadě ke kružnicím k\, /c2- Dokažte,
že kružnice vepsaná trojúhelníku CDE je shodná s kružnicemi k\ a k^.20.Nechť AB je průměr a CD tětiva dané kružnice fc, přičemž AB _L
_L CD. Uvažujme dvojici shodných kružnic k\, /c2, které se vně dotýkají
v bodě E ležícím na průměru AB (obr. 59). Dokažte, že trojúhelník BDE
je rovnoramenný.
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6. česko-slovenské střetnutí

MODRA-PlESOK 7.-10. ČERVNA 2000

Dvě šestice úspěšných finalistů matematické olympiády kategorie A vy-

braných pro reprezentaci České a Slovenské republiky na MMO se už
pošesté utkaly ve vzájemném střetnutí, jehož organizace se v tomto roce

ujala Slovenská komisia matematickej olympiády. Spolu se svými vedou-
čími byli reprezentanti pozváni do rekreační Zochovy chaty bratislavské
Iuventy v Modre-Piesok nedaleko Bratislavy. Tam po dva dny řešili dvě
trojice úloh za podmínek obdobných třetímu kolu kategorie A (4,5 hodiny
na tři úlohy). Z našich reprezentantů se bohužel omluvil Jan Houštěk,
kterého v tomto klání nahradil Josef Křišťan. Slovenské mužstvo shodou
okolností vystoupilo rovněž s jedním náhradníkem, Balasze Keszegha na-
hradil Tomáš Kulich.

JménoPořadí Země body Součet

Vladimír Zajac
Miroslava Sotáková
Tomáš Juřík
Katarina Quittnerová
Jan Kynčl
Peter Májek
Jaroslav Hájek
Josef Křišťan
Jan Herman
Tomáš Kulich

Ondřej Suchý
Rudolf Stolař

SYK 772777
771672

722671
710741
703711
710711
711412
604121
700600

700010
000200

200000

371.

SYK2. 30
SYK3. 25

SYK4. 20

CZE5. 19

SYK 176.

CZE7. 16
CZE8. 14

CZE9. 13
SYK10. 8
CZE11.-12. 2

CZE11.-12. 2

Jak je vidět z připojené tabulky, nedopadli tentokrát naši reprezentanti
ve společném měření sil před 41. MMO moc dobře. O nic lépe si nevedli
ani v tradičním volejbalovém střetnutí (prohráli 0:3).

Náš tým doprovázeli RNDr. Jaroslav Svrček, CSc., a Mgr. Pavel Ca-
lábek, Dr., slovenský tým vedli Eugen Kováč a Juraj Fóldes.
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Texty soutěžních úloh1.Dokažte, že pokud kladná reálná čísla a, b, c splňují nerovnost

5abc > a3 + b3 + c3,

pak existuje trojúhelník s délkami stran a, b, c. (MO Bělorusko, 1999)2.Je dán trojúhelník ABC a jemu vepsaná kružnice k. Kružnice ka, къ,
kc protínají ortogonálně kružnici к a úsečky BC, CA, AB jsou (v tomto
pořadí) jejich tětivy. Kružnice ka, къ se znovu protínají v bodě C, kruž-
nice kc, ka v bodě В' a kružnice къ, kc v bodě A!. Dokažte, že poloměr
kružnice opsané trojúhelníku A!B'C' je polovinou poloměru kružnice k.

Poznámka. Říkáme, že dvě kružnice se protínají ortogonálně, jestliže
jsou jejich tečny v každém společném bodě navzájem kolmé.

(jury MMO 1999)3.Dokažte, že přirozené číslo n je mocninou 2, právě když existuje celé
číslo m takové, že 2n — 1 je dělitelem čísla m2 + 9. (jury MMO 1998)4.Nechť P je mnohočlen s celočíselnými koeficienty. Dokažte, že mnoho-
člen Q, kde

Q(x) = P(x*)P(x3)P(x2)P(x) + 1

(E. Kováč)nemá celočíselný kořen.5.Je dán rovnoramenný lichoběžník ABCD se základnami AB a CD.
Kružnice vepsaná trojúhelníku BCD se dotýká strany CD v bodě E.
Nechť F je takový bod na ose úhlu DAC, že přímky EF a CD jsou
navzájem kolmé. Kružnice opsaná trojúhelníku ACF protíná přímku CD
v bodech C a G. Dokažte, že trojúhelník AFG je rovnoramenný.

(USAMO, 1999)6.Každé celé číslo je obarveno jednou z barev červená, modrá, zelená
a bílá. Nechť x а у jsou lichá čísla taková, že |x| Ф \y\. Dokažte, že
existují nějaká dvě celá čísla stejné barvy, jejichž rozdíl nabývá jednu
z hodnot x, y, x + у anebo x — y. (jury MMO 1999)

Řešení úloh

1. Tvrzení dokážeme sporem. Nechť pro nějaká kladná reálná čísla a, b, c

platí daná nerovnost, a přitom trojúhelník s délkami stran a, b, c neexistu-
je. To znamená, že pro čísla a, b, c neplatí aspoň jedna z trojúhelníkových
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nerovností. Bez újmy na obecnosti (daná nerovnost je symetrická) mů-
žeme předpokládat, že c ^ a -f b, neboli c = a + b + x, kde x ^ 0. Po
dosazení dostáváme

5Q,b{cL 4- b 4~ ж) cl 4~ b -b {cl Ь) 4~ 3(<z 4- fe) ж 4* 3{cl 4* Ь)ж 4~ ж

a po úpravě

2a2b 4- 2ab2 > 2a3 4- 263 4- abx 4- 3(a2 4- b2)x 4- 3(a 4- b)ж2 4- ж3.

Protože poslední čtyři členy součtu na pravé straně jsou nezáporné, plyne
odtud 2a2b 4- 2ab2 > 2a3 4- 2b3, což je ekvivalentní nerovnosti (a 4- b) x
x (a —6)2 < 0, která pro kladná čísla a, b zjevně neplatí. Tím jsme dospěli
ke sporu, a tvrzení úlohy je tak dokázáno.

2. Především si uvědomme, že kružnice ki(S\; ri) a ^(S^; r2) se ortogo-
nálně protínají, právě když r2 4-t~2 = li^S^I2. To snadno plyne z Pytha-
gorovy věty pro trojúhelník S1S2X (obr. 60).

Označme nyní V střed kružnice к vepsané trojúhelníku ABC, r její
poloměr D, E, F po řadě její dotykové body se stranami BC, CA, AB
a P, Q, R středy úseček EF, FD, DE (obr. 61). Ukážeme, že body Q
a R leží na kružnici ka.

Z Eukleidovy věty o odvěsně pro trojúhelníky VBD a VCD plyne, že
\VQ\ ■ \VB\ — r2 a \VR\ -\VC\ — r2. To znamená, že body В, C, R, Q leží
na nějaké kružnici se středem Oa a poloměrem ra■ Pro mocnost bodu V
к této kružnici platí |UQ| • |UB| = r2 — \VOa\2 — r2, což znamená,
že kružnice opsaná čtyřúhelníku BCRQ protíná kružnici к ortogonálně.
Body В a C však může procházet nejvýše jedna kružnice, která kruž-
nici к protíná ortogonálně. Kružnice opsaná čtyřúhelníku BCRQ je tedy
kružnice ka.
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Analogicky dokážeme, že body R, P leží na kružnici къ a body P,
Q na kružnici kc. Je tedy A' = P, B' = Q a, C' = R, což znamená,
že poloměr kružnice opsané trojúhelníku А'В'С' je roven polovině polo-
měru kružnice к, která je opsána trojúhelníku DEF (trojúhelník PQR je
obrazem trojúhelníku DEF ve stejnolehlosti se středem V a koeficientem
|). Tím je tvrzení úlohy dokázáno.

Poznámka. To, že body В, С, P, Q leží na kružnici, lze snadno od-
vodit i z rovnosti obvodových úhlů v tětivových čtyřúhelnících VFBD
a VQDR (jsou tětivové podle Thaletovy věty): \<VBD\ — \<VBF\ —

— \<QDV\ — \<QRV\, takže i čtyřúhelník BCRQ je tětivový (obr. 62).
3. Nejprve ukážeme, že pokud 2n — 1 dělí m2 + 9 pro nějaké celé číslo m,

je n mocninou čísla 2.
Pokud n není mocninou dvojky, je dělitelné nějakým lichým číslem

Z ^ 3, a protože 2l — 1 vždy dělí 2n — 1, dělí i m2 + 9. Číslo 2l — 1 dává při
dělení čtyřmi zbytek —1, stejný zbytek musí mít i některý z jeho prvo-

číselných dělitelů, takže existuje prvočíslo p takové, že p = —1 (mod 4)
a zároveň p \ m2 -f 9. Z malé Fermatovy věty tak plyne

mp 1 = (m2)2^p ^ = (—9)2^p ^ = (— l)2^p ^ • 3P 1(modp).1 =

Pro p yé 3 můžeme na pravé straně podle stejného tvrzení dosadit 3P 1 =
= 1 a zároveň (-1)1 = —1, protože prvočíslo p jsme našli tak, že p—1
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není dělitelné čtyřmi, takže exponent \{p — 1) je lichý. Vidíme tedy, že
poslední kongruence vede ke sporu. Pokud ovšem p = 3, je 2/ — 1 dělitelné
třemi, takže 2l = 1 (mod 3), a zároveň pro liché l platí 2l = (—l)ř = — 1
(mod 3), což je opět spor. Tím je první implikace dokázána.

Předpokládejme nyní, že n = 2k. Pro к = 0 i к = 1 tvrzení zřejmě
platí, předpokládejme tedy, že к ^ 2. Potom

2fc~2n - 1 - (2 + 1) (22 + 1) (222 + 1) ... (2 '+!)• (1)

Uvědomme si, že pro a < (3 jsou čísla 22° + 1 а 2213 + 1 nesoudělná.
Pro jejich libovolný společný dělitel d, který je nutně lichý, můžeme totiž
modulo d psát — 1 = 220 = 220'20 a = (22/3)2
je d — 1. Podle tzv. čínské zbytkové věty (čísla 22' + 1 jsou navzájem
nesoudělná) tak existuje přirozené číslo c, které je řešením soustavy kon-
gruencí

= 1, což znamená, že

c = 22 (mod 2

Pro takové c pak dostáváme c2 + 1 = 0 (mod 22*+1 + l) (í G (0,1,...,
к — 2}), takže podle (1) 2n — 1 dělí 9(c2 -f 1) = (3c)2 + 9. Stačí tedy vzít
m = c2.

2l+i
+ 1) l £ {0,1,..., A;-2}.

4. Všimněme si, že pro každé celé číslo n platí n3 = n (mod 3). To snadno
plyne z rozkladu n3 — n = n(n2 — 1) = (n — l)n(n + 1). Je tedy také
n4 = n2 (mod 3) a pro mnohočlen P s celočíselnými koeficienty tak platí
P(n3) = P(n) (mod 3) a P(n4) = P(n2) (mod 3). Pro mnohočlen Q,
který má rovněž celočíselné koeficienty, tak z posledních dvou kongruencí
plyne

Q(n) = (P(n)P(n2))2 + 1 (mod 3).
Protože pro každé celé číslo m platí buď m2 = 0 (mod 3), nebo m2 = 1
(mod 3), vidíme, že kongruence Q(x) = 0 (mod 3) nemá žádné řešení
v oboru celých čísel, tím spíše nemůže mít celočíselné řešení rovnice
Q(x) = 0.

5. Ukážeme, že \FA\ — \FG\. Budeme postupovat odzadu. Na polo-
přímce opačné к DC vezměme bod P tak, že |PP| — |P^4|, a podobně na
polopřímce opačné к CD vezměme bod Q tak, že \CQ\ = \CA\. Pomocí
známých vztahů pro úseky stran trojúhelníku BCD vzhledem к jeho
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vepsané kružnici dostáváme (obr. 63; zároveň využíváme toho, že daný
lichoběžník ABCD je rovnoramenný)

\BD\ + \CD\ - \BC\\PE\ = \PD\ + \DE\ = \DA\ + 2

\BD\ + \CD\ + \BC\
2

\BC\ + \CD\ - \BD\\QE\ = \QC\ + \CE\ = \AC\ + 2

\BC\ + \CD\ + \BD\
2

neboli \PE\ = \QE\. To znamená, že trojúhelník PQF je rovnoramenný
a přímka EF je osou jeho strany PQ.

D /A\C QP
E

A В

Obr. 63

Uvažme nyní kružnici opsanou trojúhelníku AQP. Její střed O leží
na EF, a protože trojúhelníky APD a AQC jsou rovnoramenné, jsou
DO a CO osami úseček AP a AQ (obr. 64). Odtud plyne, že

\<DAO\ = \<DPO\ = \<CQO\ = \<CAO\

bod O tedy leží na ose úhlu CAD, což znamená, že O = F. Z rovnosti úhlů
\<CAF\ = \<CPF\ zároveň vidíme, že body C, A, F, P leží na kružnici,
což znamená, že bod P je druhým průsečíkem přímky CDs kružnicí
opsanou trojúhelníku CAF, je tedy P = G a \FA\ = \FP\ — \FG\, což
jsme měli dokázat.

6. Zřejmě stačí najít celé číslo a takové, že mezi čtyřmi celými čísly a,
a + x, a + y, a + x + y najdeme dvě čísla stejné barvy. To budou ta čísla,
jejichž existenci chceme dokázat.
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Předpokládejme naopak, že existuje obarvení celých čísel takové, že
pro každé celé číslo a mají čísla a, a + x, a + y, a + x + y vesměs různou
barvu, tj. že existuje funkce /: Z
celé číslo a platí

{С, M, Z, B) taková, že pro každé

/({a, a + x, a + у, a + x + y}) = {С, M, Z, B} (1)

(písmeny С, M, Z, В jsme označili uvažované barvy). Ukážeme dále, že
takový předpoklad vede ke sporu.

Uvažujme na množině Z x Z (množině všech mřížových bodů v rovině)
obarvení g: Z x Z —> {С, M, Z, Z?} určené pro všechna г, j £ Z vztahem

y(bý) = /(гх + jy).

Při takovém obarvení g mají ovšem vrcholy libovolného jednotkového
čtverce navzájem různé barvy, vrcholům

+ + + + e Z x z

totiž odpovídají celá čísla

(ix + jy), (ix + jy) + x, (ix + jy) + y, (ix + jy) + x + y,

jež mají podle (1) vesměs různou barvu.
Tato vlastnost jednotkových čtverců už je podstatným omezením pro

existenci takového obarvení. Protože sousední mřížové body (ať v řádku
či v sloupci) nemohou mít stejnou barvu, obsahuje každý řádek (či slou-
pec) buď jen dvě barvy, které se pravidelně střídají, anebo se po sobě
vyskytnou tři vrcholy navzájem různých barev.
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Předpokládejme například, že v nějakém sloupci najdeme tři po sobě
jdoucí vrcholy s navzájem různými barvami; bez újmy na obecnosti nechť

В

to jsou barvy M. Uvážíme-li vrcholy sousedních jednotkových čtverců,
C

zjistíme, že jsou už jednoznačně určeny především barvy obou vrcholů
sousedících s prostředním vrcholem a pak i barvy zbývajících vrcholů
obou sousedních trojic vrcholů:

В CBC BCBCB

ZMZ, ZMZ, MZMZM, ..

C BCB CBCBC

Barvy vrcholů v každém ze tří odpovídajících řádků se tudíž musejí
pravidelně střídat.

Pokud se v některém řádku (či sloupci) pravidelně střídají dvě barvy
(například .. .CMCM ...), musejí se díky uvedené vlastnosti jednotko-
vých čtverců v dalším řádku pravidelně střídat obě zbývající barvy:

CMCMC

BZBZB
CMCMC

ZBZBZ
nebo

A v dalším řádku se zase budou pravidelně střídat první dvě barvy C
a M atd. Vidíme, že se pak v každém řádku pravidelně střídá vždy jedna
z dvojic barev С a M, resp. В a Z, a to tak, že všechny liché řádky
obsahují jednu dvojici barev a všechny sudé řádky druhou dvojici.

Můžeme tedy předpokládat, že např. řádky mají tu vlastnost, že se
v nich pravidelně střídají dvě barvy. Označme С a M barvy bodů (0,0)
a (1,0), takže g(0,0) — С a p(l, 0) = M. Potom g(y, 0) = M (protože
у je liché). Protože i x je liché, musí být g(0,x) 6 {B,Z}. Z rovnosti
g(y, 0) = f(xy) — g(0, x) však dostáváme spor. Tím je existence takového
obarvení vyvrácena a tvrzení úlohy dokázáno.
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41. mezinárodní matematická olympiáda

V pořadí již 41. ročník této mezinárodní soutěže
se konal 13.-25. července 2000 v Korejské republi-
ce. Soutěž proběhla v Taejonu, na půdě jedné z nej-
prestižnějších univerzit v Asii, kterou je poměrně
mladá vysoká škola KAIST (Korea Advanced Insti-
tut of Science and Technology), založená v r. 1971.
Letošního ročníku MMO se zúčastnili 462 soutěžící
z 82 zemí celého světa. Logo olympiády svými dvěma
čtverci symbolizuje uplynulá dvě tisíciletí, taeguk (rozdělený kruh) je tra-
dičním symbolem Koreje (najdeme ho i na korejské státní vlajce). Použité
barvy (modrá, zelená a červená, jejichž kombinací dostaneme všechny
barvy spektra) pak symbolizují krásu a sílu matematiky, základu veškeré
vědy a technologie.

Patronát nad organizací a průběhem 41. ročníku MMO převzal mi-
nisterský předseda Korejské republiky Han Dong Lee, který se osobně
zúčastnil slavnostního zahájení soutěže. Korejští organizátoři připravili
všem účastníkům dobré podmínky pro samotnou soutěž a také zajímavý
doprovodný kulturní a společenský program. Soutěžící měli možnost na-
vštívit korejský skanzen v Yonginu poblíž Suwonu, archeologická naleziště
v Kyóngju a také pavilony světové výstavy EXPO, která se v Taejonu
konala v roce 1993. Ve školském kampusu KAISTu byla po celou dobu
soutěžícím к dispozici všechna sportoviště, plavecký bazén a moderně
vybavená počítačová učebna.

Výběr soutěžících za Českou republiku byl proveden v Jevíčku na
závěrečném soutěžním soustředění osmi nej úspěšnějších účastníků celo-
státního kola. Vybraní soutěžící se pak ještě zúčastnili utkání ve sloven-
ské Modré mezi Českou republikou a Slovenskem, kde soutěžili reprezen-
tanti obou zemí za podmínek podobných soutěži na MMO. Naše druž-
stvo tvořila následující šestice olympioniků: Jaroslav Hájek, z Gymnázia
M. Koperníka v Bílovci, Jan Herman a Rudolf Stolař z Gymnázia na
tř. Kpt. Jaroše v Brně, Jan Houštěk z Gymnázia v Pelhřimově, Jan Kynčl
z Gymnázia v Jilemnici, a Ondřej Suchý z Gymnázia na Mikulášském

IMO
2000
KOREA
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nám. v Plzni. Vedoucím naší výpravy byl dr. Karel Horák z Matema-
tického ústavu Akademie věd v Praze, pedagogickým vedoucím družstva
byl dr. Jaroslav Svrček z Univerzity Palackého v Olomouci. Vedoucí de-
legace přicestoval do hlavního města Koreje Soulu kvůli výběru úloh již
13. července, ostatní čeští účastníci pak o tři dny později.

Dva dny po příletu soutěžících, tedy 18. července se konalo slavnostní
zahájení. Vlastní soutěž proběhla ve dnech 19. a 20. července v pavilonu
univerzitní knihovny KAISTu. Jako obvykle žáci řešili v každém soutěž-
ním dni po třech úlohách. Na každou trojici úloh měli vyhrazeny vždy
4,5 hodiny čistého času a za každou úlohu mohli získat maximálně 7 bodů.

Naše mladé družstvo nezklamalo. Svědčí o tom především zisk jedné
stříbrné medaile Janem Houšťkem a dále tří bronzových medailí oproti
jediné bronzové medaili z předešlé 40. MMO v Rumunsku. Jejich výsledky
jsou uvedeny v následující tabulce:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

Jaroslav Hájek,
2. roč. GMK

Bílovec,
Jan Herman,
3. roč. gymnázia,
Brno, tř. Kpt. Jaroše
Jan Houštěk,
7. roč. gymnázia,
Pelhřimov
Jan Kynčl,
5. roč. gymnázia,
Jilemnice
Rudolf Stolař,
3. roč. gymnázia,
Brno, tř. Kpt. Jaroše
Ondřej Suchý,
6. roč. gymnázia,
Plzeň, Mikulášské nám.

395.-416. 0 0 0 2 0 0 2

7 2 0 2 0 0 11 III.205.-213.

II.7 2 1 7 4 090.-99. 21

7 1 4 2 0 2 16 III.139.-149.

351.-368. 0 1 0 3 0 0 4

7 0 0 2 0 2 11 III.205.-213.

Celkem 28 6 5 18 4 4 65

O náročnosti soutěžních úloh svědčí i nízké hranice pro zisk medailí:
na třetí cenu stačilo 11 bodů, druhá cena se udělovala za 21-30 bodů

160



a první za alespoň 31 bodů. Řešitelů, kteří si z Taejonu odvezli zlatou
medaili, bylo celkem 28. Mezi nimi byli ale čtyři, kteří získali plný počet
42 bodů: Alexandr Ušnic z Běloruska, Zhiwei Yun z Cíny a dva soutěžící
Alexej Pojarkov a Alexandr Gajfullin z Ruska.

Neoficiální pořadí všech zúčastněných zemí s počtem získaných cen
a celkovým bodovým ziskem (případná čísla v závorce upozorňují na nižší
počet reprezentantů):

i li ni body I II III body

CLR
Rusko
USA
Korea
Bulharsko
Vietnam
Bělorusko
Tchaj-wan
Maďarsko
Írán
Izrael
Rumunsko

Ukrajina
Indie

Japonsko
Austrálie
Kanada
Slovensko
Turecko
Arménie
Německo
Velká Británie

Jugoslávie
Kazachstán
Argentina
Moldavsko (5)
JAR
Hongkong
Bosna a Hercegovina 0
Thajsko
Švédsko
Mexiko
Polsko
Chorvatsko
Slovinsko
Gruzie

Singapur
Uzbekistán
Rakousko
Mongolsko
Švýcarsko (4)

česká republika
Makedonie
Kolumbie
Kuba

Lotyšsko
Nizozemsko
Brazílie
Francie
Itálie
Indonézie
Finsko

Belgie
Lucembursko (4)
Maroko
Řecko
Norsko
Estonsko
Trinidad a Tobago
Island
Dánsko
Litva

Nový Zéland
Ázerbájdžán
Kypr
Malajsie (3)
Peru (4)
Španělsko
Irsko

Filipíny (4)
Uruguay (3)
Portugalsko
Srí Lanka (3)
Ekvádor
Albánie (5)
Kirgizie (4)
Macao

Kuvajt (4)
Guatemala
Venezuela (2)
Brunei (2)
Portoriko

6 0 0 218 0 1 3 65
5 1 0 215 0 1 2 63
2 4 0 184 0 0 2 61
3 1723 0 0 o 2 61
2 3 1 169 0 0 3 60
3 2 1 169 0 0 2 60
2 2 2 165 0 0 3 58
2 3 164 0 0 581 3

5 0 156 0 0 3 571
1 4 1 155 0 0 2 54
2 1 3 139 0 0 3 52
0 4 2 139 0 0 2 51
2 2 0 135 0 0 2 51
0 5 1 132 00 1 48

2 31 125 0 0 1 46
3 1221 1 0 0 1 45

1 2 1 112 0 0 421
0 2 3 0 o o111 40
0 373 1 111 0 0 0

20 3 108 0 0 361
1 2 1081 0 0 1 34
0 2 4 96 0 0 0 34
0 1 3 93 0 0 0 32
0 1 4 91 0 0 0 32
0 1 4 88 0 0 2 32
0 32 84 0 0 0 32
0 o 814 0 0 0 29
0 1 2 80 0 0 0 28

0 784 0 0 230
0 3 781 0 0 0 23
0 2 0 77 0 0 0 21

750 31 0 0 0 21
750 21 0 0 0 19

0 0 4 73 170 0 o
o 731 1 0 0 1 16
0 721 0 0 o o 16
o 2 711 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

12
700 0 2 11

0 2 1 68 11
0 0 4 67 8
0 1 2 67 8

Jak je patrno z tabulky zúčastněných států, na prvních místech neo-
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ficiálního pořadí jednotlivých zemí podle celkového bodového zisku se už
tradičně vyskytují Čína, Rusko, Spojené státy, Korea, Bulharsko a Viet-
nam. Naše umístění v druhé polovině této tabulky nás rozhodně nectí.

Slavnostní zakončení 41. MMO se konalo v mezinárodním kulturním
centru státní univerzity Chungnam v Taejonu. Při této příležitosti pozvali
zástupci USA všechny zúčastněné delegace к účasti na dalším ročníku
MMO.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Jsou dány dvě kružnice k\ a /c2, které se protínají v bodech M a N.
Označme l jejich společnou tečnu takovou, že bod M je blíž l než bod N.
Bod dotyku přímky l s k\ označme A a bod dotyku s označme B.
Přímka vedená bodem M rovnoběžně s l protíná kružnici k\ v dalším
bodě C a kružnici &2 v dalším bodě D. Označme dále E průsečík přímek
CA a DB, P průsečík přímek AN a CD a Q průsečík přímek BN a CD.
Dokažte, že \EP\ = \EQ\.
2. Nechť a, b, c jsou kladná reálná čísla taková, že abc — 1. Dokažte, že

(Maďarsko)

(Rusko)3.Nechť n ^ 2 je přirozené číslo. Na počátku je na vodorovné přímce
n blech, ne všechny v témž bodě. Pro kladné reálné číslo Л definujme tah
následujícím způsobem:

vybereme libovolné dvě blechy v bodech A a B, přičemž bod A je
nalevo od bodu B;
blechu z bodu A necháme skočit do bodu C dané přímky napravo
od B, přičemž \BC\/\AB\ — X.

Určete všechny hodnoty Л takové, že pro libovolný bod M na dané přímce
a pro libovolnou počáteční polohu n blech existuje konečná posloupnost
tahů, která přesune všechny blechy na místa napravo od bodu M.

(USA)4.Kouzelník má sto karet očíslovaných od 1 do 100. Vloží je do tří kra-
červené, bílé a modré — tak, aby v každé byla aspoň jedna karta.

Jeden z diváků si vybere dvě ze tří krabic, z každé vytáhne jednu kartu
a oznámí součet čísel na vybraných kartách. Na základě tohoto součtu

bic
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určí kouzelník krabici, z které divák kartu nevytáhl. Kolika způsoby lze
rozdělit všechny karty do krabic, aby kouzelníkův trik vždy fungoval?
(Rozdělení považujeme za různá, pokud se aspoň jedna karta objeví v jiné
krabici.) (Rusko)

5. Rozhodněte, zda existuje kladné celé číslo n takové, že n je dělitelné
přesně 2 000 různými prvočísly a 2n + 1 je dělitelné n. (.Bělorusko)

6. Nechť AHi, BH2, CH2 jsou výšky ostroúhlého trojúhelníku ABC.
Kružnice vepsaná trojúhelníku ABC se po řadě dotýká stran BC, CA,
AB v bodech T\, T2, T2. Označme po řadě l\, l2, I3 přímky souměrně
sdružené s přímkami Н2Нз, H3H1, H\H2 podle os T2T3, T3T1, T\T2.
Dokažte, že přímky /1, l2, I3 určují trojúhelník, jehož vrcholy leží na
kružnici vepsané trojúhelníku ABC. (Rusko)

Řešení úloh

1. Označme К průsečík přímky MN s tečnou l obou kružnic (obr. 65).

Protože bod К leží na chordále obou kružnic, má vůči nim stejnou moc-

nost, tj.

\AK\2 = \KM\ ■ \KN\ = \KB\2.
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Je tedy \AK\ = \KB\, a protože PQ || AB, je díky stejnolehlosti troj-
úhelníků NPQ a NAB také \PM\ = \MQ\. Stačí tedy ukázat, že je
EM 1 PQ.

Protože úsečka CD je rovnoběžná s tečnou AB, půlí oba body dotyku
А, В příslušné oblouky CAM a MBD, takže oba trojúhelníky CMA
a MDB jsou rovnoramenné. Je tedy

\<BAM\ = \<AMC\ = \<ACM\ = \<EAB\,
\<ABM\ = \<BMD\ = \<BDM\ = \<EBA\

(1)

což znamená, že body E a M jsou souměrně sdruženy podle přímky AB.
Je proto EM ± AB, a tedy i EM J_ PQ, což jsme chtěli dokázat.

Jiné řešení. Využijeme zřejmé rovnosti (1) z předchozího řešení.
Přímka CD odděluje body E a N, takže z vlastností obvodových úhlů

v tětivových čtyřúhelnících NDBM a NMAC plynou rovnosti (obr. 66)

\<NBD\ - \<NMD\ - 180° -\<NMC\ = 180° -\<NAC\ = \<NAE\.

To znamená, že také čtyřúhelník ANBE je tětivový. Je tedy

\<ANE\ = \<ABE\ = \<PDE\ a \<BNE\ = \<BAE\ - \<QCE\.
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A tak i čtyřúhelníky PNDE a CNQE jsou tětivové. Navíc zřejmě platí

\<ANC\ = \<AMC\ a \<BND\ = \<BMD\,

takže

\<EQC\ = \<ENC\ = \<END\ = \<EPD\.
Rovnost \<EQC\ — \<EPD\ v trojúhelníku PQE ovšem znamená, že
\EP\ = \EQ\.
2. Danou nerovnost můžeme homogenizovat vhodnou změnou proměn-
ných: Vezměme kladná čísla x, у a 2 tak, aby

2
c — —a =

У z X

(jedna možná volba je např. x = 1, у — l/a & z = l/(ab)). Místo původní
nerovnosti tak dostaneme

x + y) ú xyz.{x -y + z){y - 2 + x)(z

Protože každá dvě z čísel

U = X — у + z, v = у — z + X, w = z — X + у

mají kladný součet, je nejvýše jedno z nich záporné. V takovém případě
je ovšem uvw ^ 0 < xyz a nerovnost triviálně platí.

Předpokládejme tedy, že и ^ 0, v ^ 0, w ^ 0. Potom podle nerovnosti
mezi aritmetickým a geometrickým průměrem platí

/— г ;—T7 ;—\ ^ (x - у + z) + (y - 2 + x)y/UV — y/[X — у + z){y — Z + X) S = X.

Podobně platí i y/vw ^ у a y/wu 'A 2, takže uvw xyz, jak jsme chtěli
dokázat.

Jiné řešení. Protože

1 +
c ~ K1 ~ 5 + a)

je

+ + _b(a2_ (i_ 1) ) < ba2. (1)
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Analogicky platí

c62 a (c - 1 + -

Jestliže jsou levé strany všech tří nerovností (1) a (2) nezáporné,
můžeme nerovnosti (1) a (2) vynásobit a dostaneme, že kvadrát levé
strany je nejvýše roven ba2cb2ac2 = 1, čímž je nerovnost dokázána.

Připusťme, že je některý z činitelů záporný, např. a — 1 + 1/6 <0
(to můžeme dokonce předpokládat bez újmy na obecnosti, protože daná
nerovnost je cyklická). Pak ovšem a < 1 — 1/6 < 1 a 1/6 < 1 — a < 1,
tj. 6 > 1, takže c — 1 + l/a > 0 a 6 — 1 + 1/c > 0 a daná nerovnost je
triviálně splněna. Tím je důkaz hotov.

Jiné řešení. Díky dané podmínce abc = 1 platí

) (a — 1 + ^ ac2. (2)

i (a - 1 + i) + c(b - 1 + i) - 2,
— 1 H—^ + й^с — Ц—^ = 2,
_ i + I) + i,(a _ i + i) = 2.

l(b
-Á‘

Speciálně odtud plyne, že nejvýše jedno z čísel

, 1
— 6 — 1 H—,

1 1
и — a — 1 + 7, v

b

je záporné. Pokud ano, pak daná nerovnost triviálně platí, jak už jsme
ukázali v předchozích řešeních. Pokud и ^ 0, v ^ 0, w ^ 0, máme podle
nerovnosti mezi aritmetickým a geometrickým průměrem

w = c — 1 H—
c a

— и + cv ^ 2
1
-v + aw ^ 2
6

2 = 2 =

a

1
, I b

-w + bu ^ 2\ -wu.2 =

c c

^ c/6, takže (uvw)2 ^ 1. ProtožeJe tedy uv ^ a/c, vw
uvw ^ 0, je důkaz hotov.

Jiné řešení (řešení Jaroslava Hájka, na které přišel po soutěži). Daná
nerovnost je invariantní vůči cyklické permutaci čísel a, 6, c, proto mů-
žeme předpokládat, že je např. a^lac^l, takže platí

= 6/a a wu

(a - l)(c- 1) й 0.
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To lze zapsat jako ас — a + 1 ‘š c, zároveň však je ас — a + 1 = a(c — 1) +
+ 1 ^ 1 > 0, tedy

0<ac — a-f-lísc.

Protože 1 — (bc — c)2 ^ 1, plyne z předchozí nerovnosti nerovnost

(l — (bc — с)2) (ac — a 4-1) ^ c,
neboli

(1 — bc 4- c)(l 4-bc — c)(ac — a 4- 1) ^ c,

(1 — bc + c) + b — 1^ (ac — a 4- 1) ú 1.
Vydělíme-li teď levou stranu poslední nerovnosti číslem abc = 1 tak,
že první závorku vydělíme bc a třetí číslem a, dostaneme dokazovanou
nerovnost.

Poznámka. V každém z uvedených řešení lze snadno nahlédnout, že
rovnost platí, právě když a = b = c — 1.

3. (S využitím myšlenek Jana Kynčla.) Označme Ai,A2,...,An pozice
jednotlivých blech zleva doprava v některém okamžiku a uvažujme sou-
čet s = \AiAn\ + |^2^n| 4- ... + \An-iAn\. Podívejme se, co se sta-
ne, provedeme-li tah pro blechy v bodech Ak, An (1 ^ к < n): do-
staneme tak novou posloupnost bodů A'x, A'2,..., A'n, pro kterou platí
A[ = Ai, A'2 = A2, ..., A!k_x = Ak~i, A'k = Ak+i, A[
A!n = An 4- A(An - Ak), takže \А'пА\\ = \AnAi\ + X\AkAn\ pro i < к
a = \AnAi+i \ 4- X\AkAn\ pro к úi <n. Nové poloze blech odpo-
vídá součet s', přičemž

— Ащn — 1

s' — s — |y4fc.An| 4- (n — l)A|AfcT4n| —

= ((n - 1)A - I)|i4*;i4n|. (1)

Je tedy zřejmé, že pro (n — 1)A ^ 1, neboli A ^ l/(n — 1) se příslušný
součet s nezmenší. Volíme-li tahy tak, že postupně skáče vždy první
blecha zleva za poslední, přesunou se tak pon-1 krocích všechny blechy
za blechu, která byla poslední v počáteční pozici. Protože je vždy

tj. |AiAn| ^ s(0)/(n — 1),s (n — 1) |^4i^4П ?

kde jsme jako s(0) označili odpovídající součet s na začátku, octne se
původně první blecha nejméně o s(0)/(n — 1) dále vpravo. Vidíme, že
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uvedeným postupem se lze se všemi blechami dostat libovolně daleko
(jakmile se jedna blecha octne za nějakým bodem M, dostanou se tam
v dalších krocích i všechny ostatní).

Nechť nyní A < l/(n — 1). Víme již, že při skoku k-té blechy (1 5í к 5í
n — 1) přes poslední se příslušný součet s zmenší o hodnotu (1). Tím

spíš se součet s zmenší skokem z k-té pozice přes l-tou blechu (к < l < n),
i když se tím blecha dostane za poslední. Konečně skokem z k-té pozice
přes l-tou někam vlevo od poslední blechy se příslušný součet s zmenší
přesně o délku skoku, která je (1 + \)\AkAi\.

Vidíme tedy, že pokud se po nějakém skoku vůbec změní poloha
poslední blechy, změní se nejvýše o z 5Í \\AkAn\, zatímco odpovídající
součet se dle (1) sníží alespoň o

(l - (n - l)A)|,4fcAn| ^ (l - (n - l)A)z/A = X0z.

Ovšem tento součet se může celkem snížit nejvýše o hodnotu s(0), kterou
měl na počátku, to znamená, že poloha pravé krajní blechy se nikdy
neposune dále než o s(0)/A.

Odpověď. Úloze vyhovují všechna reálná čísla A ^ l/(n — 1).
4. Ukážeme, že hledaný počet je 12.

Předpokládejme, že máme karty rozmístěny do tří krabic tak, že
kouzelníkův trik funguje. Jsou-li a, b, c, d čtyři různá čísla z množiny
{1,2,..., 100} taková, žea + 6 = c + da karty s čísly a, b, c se nacházejí
v různých krabicích, musí být karta s číslem d ve stejné krabici jako c.

(Tuto základní úvahu využijeme i v dalších řešeních.)
Nechť existuje i takové, že karty s čísly i, i + 1 а г + 2 jsou vesměs

v různých krabicích (označme je po řadě písmeny А, В a C). Protože
i + (г + 3) = (г + 1) + (г + 2), musí být karta s číslem i -f 3 (pokud i 5ь 97)
v krabici A. Vidíme, že tři po sobě jdoucí čísla karet v různých krabicích
určují, v jaké krabici bude karta s následujícím číslem: rozmístění karet do
krabic se cyklicky opakuje. Stejný argument můžeme samozřejmě použít
i opačným směrem. Stačí tedy přiřadit barvy krabic číslům 1, 2 a 3, což
lze učinit šesti způsoby. Dvě karty pak budou ve stejné krabici, právě
když jejich čísla dávají při dělení třemi stejný zbytek. Takové rozdělení
zřejmě vyhovuje, protože součet dvou čísel s různými zbytky modulo 3
dává třetí možný zbytek.

Předpokládejme nyní, že žádná taková trojice po sobě jdoucích čísel ve
třech různých krabicích neexistuje. Označme A krabici, která obsahuje
kartu s číslem 1, a nechť г je nej menší číslo, které v krabici A není,
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nechť je v krabici označené B. Nejmenší číslo ve zbývající třetí krabici C
označme k. Z právě uvedených předpokladů plyne, že je i + 1 < k.

Předpokládejme, že к < 100. Protože i + к = (г — 1) + (к + 1), musí
být к +1 G A. Na druhou stranu z rovnosti i + (k -f 1) — (i + l) + k plyne,
že i + 1 G C, a to odporuje předpokladu, že nejmenší číslo v krabici C
je k. Je tedy к = 100.

Protože (г —1) + 100 = г+ 99, je 99 v krabici B. Ukažme, že v takovém
případě už musejí být v krabici В všechna čísla mezi 1 a 100: Kdyby
nějaké t > 1 bylo v krabici A, muselo by být t — lv krabici C, to však
odporuje předchozímu závěru, neboť t + 99 = {t — 1) + 100.

Dostali jsme tak další obarvení čísel, které rovněž vyhovuje: je-li sou-
čet vybraných čísel nejvýše 100, je zbývající krabice C\ je-li součet 101,
zbývá В, a je-li součet větší než 101, zbývá A. Počet takových obarvení,
resp. uspořádání karet do krabic je opět šest. Tím je úloha vyřešena.

Jiné řešení. Jsou dvě možnosti, jak karty rozmístit do krabic: buď
dáme do stejné krabice vždy všechny karty, jejichž čísla dávají stejný
zbytek při dělení třemi, anebo kartu s číslem 1 dáme do jedné krabice,
kartu s číslem 100 do druhé a zbývající karty s čísly 2,..., 99 do zbylé
krabice. Protože krabice se liší barvou, je v obou případech šest možností
pro výběr příslušných krabic. Snadno ověříme, že obě popsaná rozdělení
karet mají požadované vlastnosti.

Pro n ^ 3 označme Hn tvrzení, že jiné rozdělení n karet do tří krabic,
při němž popsaný trik funguje, neexistuje. Dokážeme Hn matematickou
indukcí. Tvrzení H3 triviálně platí (obě popsaná rozdělení dokonce splý-
vají). Předpokládejme, že Hn platí pro nějaké n ^ 3, a uvažujme n + 1
karet (očíslovaných všemi čísly z množiny {l,2,...,n + l}).

Pokud je karta s číslem n + 1 sama v jedné krabici, zatímco karta
s číslem 1 je v krabici ještě s jinými kartami, označme N součet největších
čísel v obou zbývajících krabicích, takže n + 2 ^ n+(n —1) = 2n—1.
To však znamená, že číslo N můžeme dostat i jako součet z jiné dvojice
krabic: N = (n + 1) + (N — n — 1). Karta s číslem 1 musí tedy být také
samostatně.

Pokud je karta s číslem n +1 v krabici ještě s jiným číslem, dostaneme
po jejím odstranění situaci s n kartami, což nemá na fungování triku vliv.
Podle indukčního předpokladu jsou možná nejvýše dvě různá rozdělení
karet do krabic. Protože (n + 1) + (n — 2) = n + (n — 1), musí být n + 1
v krabici s číslem n — 2. Je-li n karet rozděleno do krabic podle zbytků
modulo 3, bude i karta s číslem n + 1 v odpovídající krabici, protože
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n + 1 = n — 2 (mod 3); pokud je n karet (pro n > 3) rozděleno do krabic
druhým možným způsobem, vyjde nám, že karta s číslem n+1 by musela
být zároveň i v krabici s číslem 1, neboť (n + 1) + 1 = n + 2, což nejde.
Tím je důkaz indukcí hotov: ani pro n + 1 jiné rozdělení karet do krabic,
při němž trik funguje, neexistuje.

Vzhledem к tomu, že krabice jsou rozlišeny třemi barvami, existuje
pro každé z uvedených rozdělení šest permutací barev, takže pro každé
n > 3 existuje 2-6 = 12 různých rozdělení karet, pro něž kouzelníkův
trik funguje.

Jiné řešení. Předpokládejme, že máme karty rozmístěny do tří krabic
tak, že kouzelníkův trik funguje. Karty s čísly 1 a 2 nemohou být ve stejné
krabici: Jestliže je 1,2,..., г — 1 6 A, karta s číslem i > 2 je v krabici В
a j je nejmenší číslo karty v krabici C, musí být karta s číslem j — 1
v krabici В, protože (j — 1) + i = j + (i — 1). To však nejde, protože
součet 1 + j = 2 + (j — 1) nedovoluje určit zbývající krabici.

Pro 1 G A a 2 6 В označme j nejmenší číslo karty v krabici C. Pokud
j — 3, dostáváme rozdělení karet do krabic podle zbytku jejich čísla při
dělení třemi, pro které trik funguje.

Pokud j — 100, plyne z rovnosti 100 + 1 = 99 + 2, že 99 G J5, a z rov-
nosti к + 99 = 100 + (к — 1) pak plyne, že krabice A nemůže obsahovat
žádné к > 1. Dostáváme tak rozdělení karet do krabic, při němž v kra-
biči В budou všechny karty s čísly 2,3,..., 99, což je rozmístění, které
rovněž vyhovuje.

Kdyby však bylo 3 < j < 100, vyjde z rovnosti j + 2 = (j + 1) + 1, že
karta s číslem j + 1 je v A, a z rovnosti j + 3 — (j + 1)+ 2 zas, že karta
s číslem 3 je v krabici C. To je ve sporu s definicí čísla j.

Existují tedy jen dvě různá rozmístění karet do krabic, a protože kra-
biče jsou rozlišeny třemi barvami, je celkem 2 • 6 = 12 různých rozdělení
karet, pro něž kouzelníkův trik funguje.

Jiné řešení. Předpokládejme, že v jedné krabici jsou karty s čísly
v druhé s čísly bi < ... < bn a v třetí s čísly ci < ... < cp,a\ < ... < a

přičemž m^l,n^l,p^l.
m 5

Uvažujme množiny

Q-m T{<2i + b\, Cli + 5 al + Ьп, Cl2 + bn, • •

{6i + Cl, bi + C2, . . . , &l + Cp, 62 + Cp, ..., 6n + Cp},
• • ) Cp T Um}

* 5

{ci + d\, Cl + <22, . . . , Cl -f- a C2 + am? 771 1 •
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které mají postupně m + n — 1, n + p — 1 ap + m-1 různých prvků vždy
uspořádaných do rostoucí posloupnosti. Aby kouzelníkův trik fungoval,
musejí být uvedené tři množiny navzájem disjunktní, přitom dohromady
obsahují 2(m + n + p) — 3 = 197 různých čísel, z nichž nejmenší je aspoň
1 + 2 = 3 a největší nejvýše 100 + 99 = 199, takže jsou to vlastně
všechny možné součty. Jinými slovy to znamená, že pokud trik funguje,
má množina součtů {a* + bj} právě m + n — 1 prvků, množina součtů
{bj + Ck} právě n+p— 1 prvků a množina součtů {ck + di] právě p+m—1
prvků. Bez újmy na obecnosti předpokládejme, že m ^ n ^ p.

Pokud n ^ 2, uvažujme pro 1 ^ i m — 1 dvě množiny

{ai + ř>i, . . . , Cli + b\, <++l + b\, Ог+l + ^21 • ■ • 1 am + b2, • • • i am + bn},
{ai + 6i, . . . , Cli + b\, di + b2, di+\ + Ъ2, • • • 1 dm + &2, . . . , a™ + M'

Obě mají právě m + n — 1 různých prvků uspořádaných do rostoucí
posloupnosti, takže se musejí rovnat, je tudíž

di+i + bi = di + 62 neboli ai+i - di = b2 - bi.
Podobně pro p ^ 2 dostaneme

c*+i — Ci = 62 — bi, l^i^p— 1, — b{ = a2 - ai, 1 ^ г ^ гг — 1.
To znamená, že v každé z krabic, v níž jsou aspoň dvě karty, tvoří
příslušná čísla aritmetickou posloupnost s jednou společnou diferencí
d = d2 — d\. Kdyby bylo d > 3, nemohli bychom všechny karty roz-
místit do tří krabic. Pokud d — 3, musí být karty s čísly 1, 2 a 3 v růz-
ných krabicích a vychází, že obsah jednotlivých krabic tvoří karty s čísly
1,4, 7,..., 100, 2,5, 8,..., 98 a 3,6, 9,..., 99.

Je-li d ^ 2, nemůže se stát, že by část jedné z možných aritmetických
posloupností s diferencí d byla v jedné krabici a část v druhé: jakmile
je Ci — bj — d = d2 — di, je d\ + q = d2 + bj a trik nemůže fungovat.
Vidíme, že pro d = 2 by musela být krabice neobsahující 1 nebo 2 prázdná
a podobně i pro d = 1.

Zůstává ještě možnost n = p = 1, m = 98. Nechť 61 < c\ a označme
d = ci — 61. Kdyby bylo d < 99, pak určitě existují di < dj tak, že dj —
— di = d = ci — 61 a trik by nemohl fungovat. Musí tudíž být c\—b\ = 99,
neboli 6 = 1, ci = 100 av první krabici jsou všechna čísla 2,3,..., 99.
Snadno ověříme, že při takovém uspořádání karet bude kouzelníkův trik
fungovat.

Našli jsme dvě principiálně odlišná rozdělení karet do nerozlišených
krabic, a protože barvy krabic můžeme permutovat šesti způsoby, je počet
různých rozdělení karet celkem 12.
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5. Nejprve ukážeme, že pro každé přirozené a platí

3a | 23° + 1. (1)

Pro a — 1 je 3 I 23 + 1 = 9; předpokládejme, že pro nějaké přirozené к
platí 3fc I 23 +1. Protože

23fc+1 + l = ^23fc + ^ ^22-3fc _ 23fc + ^

stačí ukázat, že výraz v druhé závorce je dělitelný třemi. Je ovšem 22'3 —

— 23* +1 = 1 —(—1) + 1 = 0 (mod 3), takže 3fc+1 | 23k+l + 1 a dle principu
matematické indukce platí (1) pro každé a £ PT

Číslo 23 + 1 může ovšem mít i další dělitele, dokonce libovolný počet
různých prvočinitelů. Najdeme-li tedy a tak, že 23° + 1 má dalších 1 999
různých prvočinitelů 3 < p\ < ... < p1999, bude řešením úlohy například
číslo n = 3apip2 • • • P1999 j které má právě 2 000 různých prvočinitelů a dělí
číslo 2n + 1, neboť dělí jeho dělitele 23 + 1:

23“ + 1 I (23“)pi-pi999 + 1 = 2n + 1.

Ukažme, že číslo 23 + 1 má pro dostatečně velké a dostatečný počet
různých prvočinitelů. Vyjdeme opět z rozkladu

m3 + 1 = (m + l)(m2 m + 1).

Protože je zároveň

m2 — m + 1 = (m + l)(m — 2) H- 3,

je největší společný dělitel čísel m -f 1 a m2 — m + 1 dělitelem čísla 3.
Přitom je-li číslo m + 1 dělitelné třemi, je i m — 2 dělitelné třemi, takže
(m + l)(m — 2) + 3 je dělitelné třemi, ale ne devíti. Pro m > 2 tak musí
mít m2 — m + 1 alespoň jednoho prvočinitele p > 3, který nedělí m + 1.
Z rozkladu

+ 1 = (23°)3 + 1 = (23° + l)(22-3“

proto plyne, že číslo 23 +1 +1 má přinejmenším aspoň jednoho dalšího
prvočinitele, který není dělitelem čísla 23 +1. Pro a > 1999 tak bude
mít číslo 23" + 1 aspoň 2 000 různých prvočinitelů. To je vše, co jsme
potřebovali dokázat.

a+l 23“ + 1)23
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6. Označme V střed vepsané kružnice a Mi, М2, М3 po řadě body sou-
měrné s body Ti, T2, T3 podle příslušných os úhlů AV, BV a CV. Body
Mi, М2, М3 (obr. 67) tudíž leží na kružnici vepsané trojúhelníku ABC.
Ukážeme, že to jsou vrcholy trojúhelníku tvořeného přímkami 11, I2, /3.

S ohledem na symetrii celé situace stačí, když dokážeme, že bod М2
leží na přímce 11. Body T2 a leží vždy v téže polorovině určené přím-
kou BV. Budeme se zabývat pouze případem, kdy vrchol C trojúhel-
niku ABC leží ve stejné polorovině (druhý případ se vyřeší analogicky).
Označme S průsečík polopřímky BV se spojnicí T2T3 a P průsečík polo-

ВA T3

Obr. 68

přímky BV s přímkou l\ (obr. 68). Protože |Ti5| = |Тз5| а |<1/5Тз| =
= \<AT3T2\-i0 = (90°-!<*)-i/3 = i7,je |<VSTi| = |*VCT,| = |7.
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Oba body C i S leží ve stejné polorovině určené VT\, takže čtyřúhelník
VT\CS je tětivový a navíc CS _L BV. To ovšem znamená, že i čtyřúhelník
BCH2S je tětivový. Odtud plynou rovnosti

|<Р5Я2|=7 а |<5Я2Г2| = |.
Z konstrukce bodu P je tak patrné (obr. 69, úhly PST2 a BST3 jsou
vrcholové), že

|<Р5Я2| = 7 = 2|-kPST2|

takže bod P je obrazem bodu Я2 v souměrnosti podle přímky Т2Тз.
Z této souměrnosti navíc vychází, že |<SPT2| = |<5Я2Г2| = Z vlast-
ností střídavých úhlů tudíž plyne, že PT2 || AB a PM2 || BC. Abychom
se tedy ujistili, že bod M2 leží na 11, ukážeme, že l\ je rovnoběžná s BC.
Tím bude důkaz tvrzení úlohy hotov.

C

Нг Ti
PA /

2; V
/ \

Mr /

A T3 В

Obr. 69

Ukážeme nejprve, že přímka /3, která je obrazem přímky ЯхЯ2
v souměrnosti podle osy TjT2, je rovnoběžná se stranou AB daného
trojúhelníku. Pokud je trojúhelník ABC rovnoramenný (a = j3), je
TiT2 II H1H2 II AB a tvrzení je zřejmé. Bez újmy na obecnosti před-
pokládejme, že a > /3. V tom případě (obr. 70) z tětivového čtyřúhelníku
ABH1H2 plyne, že je |<Я1Я2С| = /3, takže H1H2 svírá s přímkou AB
úhel a — fi. Podobně z tětivového čtyřúhelníku TiCT2U (obr. 71) zjistíme,
že |<TiT2Cj — 90° — ^7 = ^(a + j3), takže TiT2 svírá s přímkou AB
úhel a — ^(a + /3) = |(a — (3). Obraz přímky H1H2 v souměrnosti podle
přímky T1T2 svírá tedy s přímkou AB úhel (a — (3) — 2 • |(a — /3) — 0°.
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Podobně zjistíme, že i přímky l\ a I2 jsou rovnoběžné s odpovídajícími
stranami trojúhelníku ABC.

A В

Obr. 70

T3A В

Obr. 71

Jiné řešení. Jak jsme ukázali na závěr předchozího řešení, jsou
přímky /1, I2, h jsou rovnoběžné s odpovídajícími stranami trojúhel-
niku ABC. To ovšem znamená, že existuje stejnolehlost h, která převádí
trojúhelník A'B'C určený přímkami 11, /2, /3 na trojúhelník ABC. Aby-
chom dokázali, že trojúhelník A'B'C je vepsán kružnici vepsané danému
trojúhelníku ABC, musíme ukázat, že obrazem této kružnice ve stejno-
lehlosti h je právě kružnice trojúhelníku ABC opsaná. Přitom je zřejmé,
že příslušný koeficient podobnosti musí být r/R, kde r značí poloměr
vepsané a R poloměr opsané kružnice trojúhelníku ABC.

Označme O střed kružnice opsané trojúhelníku ABC a uvažujme
bod J, který dělí úsečku VO v uvedeném poměru, tj. \VJ\ : \JO\ = r : R,
a stejnolehlost h(J,—r/R). Ukážeme, že trojúhelník A'B'C', který je
obrazem trojúhelníku ABC ve stejnolehlosti h, je trojúhelník tvořený
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přímkami 1i, I2 a I3. Vzhledem к symetrii prvků v trojúhelníku stačí
ukázat, že bod Ti leží na ose souměrnosti přímek H1H2 а A'B', tj. že
vzdálenost bodu Ti od přímky H1H2 je stejná jako od přímky A'B'.
Protože analogicky i vzdálenost bodu T2 od obou přímek А'В' а H1H2
je stejná, bude to znamenat, že přímka A'B' je obrazem přímky H1H2
v souměrnosti podle přímky T1T2, takže I3 = A'B'.

Nejdříve zjistíme vzdálenost obou rovnoběžek AB a A'B'. Protože
vzdálenost bodu O od strany AB je Rcosy, plyne ze stejnolehlosti /г, že
vzdálenost bodu V od strany A'B' je — • Rcosy = r cosy. VzdálenostR
AB a A'B' je tedy r(l + cosy) = 2rcos2 |y.

Vzdálenost bodu Ti od strany AB je (obr. 71) |TiT| sin/3 = 2|TiJ5| x
x sin ti/3cos 2/3 = 2r cos2 i/3, protože |TiT| = |Тз13| = r cotg i/3. Ode-
čtením od vzájemné vzdálenosti přímek AB a A'B' vychází, že vzdálenost
bodu Ti od A'B' je

2Čo 2 72r cos cos rjcosy — cos /3|. (1)2 2

Zbývá spočítat vzdálenost bodu Ti od přímky H\H2- Z tětivového
čtyřúhelníku ABH1H2 (obr. 70) máme \<H2H\C\ = a, takže příslušná
vzdálenost je

|#iTi| siná = IlOííil — IčTTi11 siná = siná 6cos7 — rcotg ^ ,

přičemž b — r(cotg ia + cotg i7), takže

(OL 'y \ 7
IZT1 TiI siná = r siná cosy^cotg — + cotg — J — cotg — =

a 7
= r sin a cotg — cos 7 — cotg — (1 — cos 7) —

a 7
= r sin a cotg — cos 7 — sin a cotg —

a
— r 2 sin —

2 7
• 2 sin

2
7 7

— cos — cotg — cos 7 — 2 sin a cos — sin — =
2 2 2 2 2

= r 2 cos2 — cos 7 — sin a sin 7 =

= r| (1 + cos a) cos 7 — sin a sin y| =

= r|cosy + cos(o! + y)| — r|cosy — cos/3|.

a a

Zjistili jsme, že vzdálenost bodu Ti od přímky H1H2 je stejná jako
vzdálenost (1) téhož bodu od přímky A'B'. Tím je tvrzení úlohy doká-
záno.
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Sedmý ročník Středoevropské olympiády v informatice

Středoevropská olympiáda v informatice (CEOI) je soutěží středoškol-
ských studentů v návrhu a implementaci programů řešících zadané algo-
ritmicky netriviální problémy. CEOI se od roku 1994 koná vždy v některé
ze středoevropských zemí, členů CEOI (ČR, Chorvatsko, Maďarsko, Ně-
mecko, Polsko, Rumunsko, Slovensko, Slovinsko, zcela pasivním členem
zůstává Rakousko). Smyslem založení CEOI bylo podpořit přípravu re-
prezentací středoevropských zemí pro mezinárodní olympiádu v infor-
matice (IOI). Kromě čtyřčlenných týmů členských zemí se na pozvání
pořadatelské země mohou účastnit další týmy, jak domácí, tak zahranič¬
ní.

CEOI je soutěží jednotlivců, pořadí týmů není vyhlašováno. Soutě-
žící řeší ve dvou kolech vždy po třech problémech. Výsledkem musí být
funkční program řešící zadaný problém pro přípustná vstupní data. Veš-
keré vyhodnocení je prováděno automatizovaně, bez subjektivních vlivů.
O bodových hodnoceních jednotlivých úloh rozhoduje scientific commit-
tee daného ročníku soutěže.

Místem konání letošní CEOI byla rumunská Cluj-Napoca. Soutěž pro-
běhla ve dnech 24.-31. srpna 2000. Organizací bylo pověřen Krajský
školní inspektorát Cluj a Univerzita Babes-Bolyai Cluj. Sponzorsky se na
soutěži podílela dlouhá řada firem především z oblasti ITl, generálním
sponzorem byla společnost Computer Press Agora Tirgu Mures. Soutěž-
ním i ubytovacím místem reprezentačních týmů byl hotel Transylvania
Cluj. Letošního ročníku se kromě členských zemí účastnily na pozvání
týmy Nizozemí, Moldávie a USA. Kromě toho Rumunsko využilo svého
práva a přizvalo i své týmy „2“ a „3“.

Reprezentanti pro CEOI se každoročně vybírají podle výsledků ce-
lostátního kola MO kategorie P a to následovně: jako reprezentanti pro
mezinárodní olympiádu v informatice (IOI) se vyberou čtyři nejlepší sou-
těžící, a následující čtyři na výsledkové listině se stanou reprezentanty
ČR na CEOI, pokud mají před sebou ještě alespoň rok studia. Mají tedy
možnost zkušenosti nabyté na CEOI uplatnit v následujícím ročníku IOI.
Tak je naplněn jeden z účelů CEOI, tj. příprava pro IOI.
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Reprezentační týmy jsou vedeny vedoucím a jeho zástupcem (team
leader, deputy leader), kteří zajišťují schválení, resp. výběr soutěžních
úloh a jejich překlad do národního jazyka. Kromě toho překládají zpět
do oficiálního jazyka soutěže, tj. do angličtiny případné dotazy řešitelů a

samozřejmě tvoří organizační zázemí pro soutěžní tým.
Letošního ročníku se jako reprezentanti ČR účastnili:

Martin Beránek z Gymnázia Praha 4, Ohradní
Pavel Čížek z Gymnázia Ch. Dopplera, Praha 5
Roman Krejčík z Gymnázia Ch. Dopplera, Praha 5
Miloslav Trmač z Biskupského gymnázia Brno, Barvičova

Vedoucím týmu byl jmenován RNDr. Tomáš Pitner, Dr., odborný asistent
Fakulty informatiky Masarykovy univerzity v Brně. Roli zástupce ve-
doucího plnila RNDr. Miroslava Kozubíková, učitelka gymnázia na třídě
Kpt. Jaroše 14, Brno

Výsledky české reprezentace na CEOI 2000 bohužel nebyly příliš
uspokojivé. V letošním ročníku nezískal žádný z našich soutěžících me-
daili. Úlohy byly nadprůměrně obtížné a zaměřené do oblastí, které běžná
středoškolská výuka informatiky v žádném případě nepokrývá.
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12. mezinárodní olympiáda v informatice

Tento ročník mezinárodní olympiády v informa-
tice (The International Olympiad in Informatics)
se konal ve dnech 23.-30.9. 2000 v Pekingu v Číně.
Olympiády se zúčastnilo 276 soutěžících ze 70 zemí.
Soutěž IOI získává v celém světě stále větší zájem
a popularitu, počet účastníků se každoročně zvyšu-
je. Ještě před deseti lety v ní soutěžili studenti jenom z asi dvaceti zemí,
pro srovnání loni bylo na IOI 250 soutěžících z 65 zemí.

Olympiáda se konala v konferenčním středisku umístěném v severní
části Pekingu v těsném sousedství hotelů Grand Continental a Catic,
v nichž bylo zajištěno ubytování a stravování všech účastníků. Pro zají-
mavost můžeme uvést, že nedaleko se nachází rozsáhlý sportovní komplex
a že s těmito hotely, konferenčním střediskem a sportovišti se počítá i pro

případ, že bude Číně svěřeno uspořádání letních olympijských her v roce
2008. Celá akce byla organizačně i technicky výborně připravena, vlastní
soutěž i vyhodnocování proběhlo zcela bez závad a bez problémů. Pro
všechny účastníky byl připraven i velmi zajímavý doprovodný program.
Měli jsme možnost navštívit nejvýznamnější historické památky nacháze-
jící se v Pekingu a jeho okolí — náměstí Tian’anmen, areály historických
císařských paláců Forbidden City a Summer Palace, park s chrámy Tem-
pie of Heaven a také slavnou velkou čínskou zeď.

Soutěž byla jako vždy rozdělena do dvou soutěžních dnů, v každém
z nich řešili studenti tři úlohy. Řešení úloh v IOI probíhá u počítačů
podobným způsobem jako v praktické části celostátního kola kategorie P
naší matematické olympiády. Každý soutěžící má přidělen svůj osobní
počítač a na práci v každém soutěžním dnu má к dispozici omezený čas
5 hodin. Soutěžní den je vždy zakončen testováním odevzdaných progra-

mů, při kterém se sleduje nejen správnost výpočtu, ale pomocí časových
limitů také kvalita vytvořených programů (tzn. jejich časové a paměťové
nároky). Pro každou úlohu bylo stanoveno maximální možné ohodnocení
100 bodů, každý soutěžící navíc obdržel v každém ze soutěžních dnů

Beijing • China
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bonus 50 bodů. Celkové pořadí bylo dáno součtem hodnocení všech šesti
úloh a obou bonusů, maximálně tedy bylo možné získat 700 bodů.

Slavnostního zakončení olympiády spojeného s vyhlášením výsledků
a předáním medailí nejlepším řešitelům se zúčastnila celá řada význam-
ných státních představitelů, zástupci čínských odborných informatických
společností a organizací a zástupci sponzorů. Mezinárodní olympiáda
v informatice je výhradně soutěží jednotlivců a žádné oficiální pořadí
družstev v ní podle pravidel IOI není vyhlašováno. Celkem bylo v sou-
těži uděleno 23 zlatých medailí, 47 stříbrných a 69 bronzových medailí.
Počet udělených medailí se stanoví v IOI podle pravidla, že medaili získá
přibližně polovina soutěžících, přičemž zlaté, stříbrné a bronzové medaile
se rozdělují v poměru 1:2:3. Drobné odchylky od tohoto pravidla jsou
způsobeny tím, že více soutěžících může dosáhnout stejného bodového
zisku (udělených medailí pak může být o něco více).

Členové reprezentačního družstva z České republiky byli vybráni na
základě výsledků celostátního kola kategorie P 49. ročníku Matematické
olympiády. Na IOI 2000 nás reprezentovalo družstvo ve složení Jakub
Bystroň (absolvent Gymnázia Karviná), Pavel Charvát (absolvent Gym-
názia Ohradní v Praze 4), Ondřej Rucký (absolvent Gymnázia na Miku-
lášském nám. v Plzni) a Jiří Svoboda (student Gymnázia Ch. Dopplera
v Praze 5). Vzhledem к podzimnímu termínu konání soutěže tři z na-
šich reprezentantů již ukončili své studium na gymnáziu a v současné
době jsou Jakub Bystroň a Pavel Charvát posluchači 1. ročníku oboru
informatika na Matematicko-fyzikální fakultě Univerzity Karlovy v Pra-
ze, Ondřej Rucký nyní studuje v 1. ročníku na Západočeské univerzitě
v Plzni a pouze Jiří Svoboda je nadále studentem gymnázia. Vedením
české delegace byl pověřen místopředseda Ústředního výboru Matema-
tické olympiády pro kategorii P doc. RNDr. Pavel Tópfer, CSc., z Mate-
maticko-fyzikální fakulty Univerzity Karlovy v Praze, druhým vedoucím
byl Daniel Krát z téže fakulty.

V rámci přípravy na soutěž se naši studenti zúčastnili na konci srpna
2000 týdenního přípravného soustředění v Polsku, které bylo společné pro

týmy vybrané na IOI ze Slovenska, z Polska a z České republiky. Soustře-
dění organizačně a finančně zajistili kolegové pečující o programátorskou
olympiádu v Polsku, na odborném programu se podíleli rovným dílem
vedoucí ze všech tří zúčastněných zemí. Naši reprezentanti nebyli letos
tak úspěšní, jako tomu bylo dosud snad ve všech předchozích ročnících
této soutěže. Dosažené výsledky však přesto stále patří v celosvětovém
měřítku mezi nadprůměrné. Pavel Charvát, Jakub Bystroň a Jiří Svo-
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bodá získali bronzové medaile, na Ondřeje Ruckého tentokrát medaile
nezbyla.

Výsledky našich studentů:

79. Pavel Charvát 380 bodů bronzová
102. Jakub Bystroň 320 bodů bronzová
108. Jiří Svoboda 300 bodů bronzová

Ondřej Rucký 210 bodů -

Texty soutěžních úloh

1. Parkoviště

Parkoviště u Velké zdi je tvořeno dlouhou řadou parkovacích míst.
Jeden konec řady budeme považovat za její levý konec a druhý za její
pravý konec. Všechna parkovací místa jsou obsazena. Každý zaparkovaný
vůz je určitého typu, několik různých vozů může být stejného typu. Typy
vozů jsou označeny celými čísly. Několik nudících se dělníků se rozhodlo
přeuspořádat zaparkované vozy podle jejich typů, a to v rostoucím pořadí
zleva doprava. Dělníci chtějí použít následující postup složený z několika
po sobě následujících kroků: v každém kroku vyjedou současně několika
vozy z jejich parkovacích míst a zaparkují je na místa, která se takto
uvolnila. Každý dělník může přeparkovat v jednom kroku nejvýše jeden
vůz. V jednom kroku lze tedy přeparkovat nejvýše tolik vozů, kolik je
dělníků. Aby se příliš nenadřeli, chtějí dělníci svůj záměr uskutečnit bě-
hem co nej menšího počtu kroků.

Nechť N je počet vozů a TV je počet dělníků. Vaším úkolem je vytvořit
program, který na vstupu obdrží popis typů zaparkovaných vozů a na-
lezne způsob, jak vozy přeparkovat během nejvýše \N/(W — 1)] kroků,
kde \N/(W — 1)] je číslo N/(W — 1) zaokrouhlené nahoru na nejbližší
celé číslo. Počet kroků, které jsou potřeba к přeparkování vozů, je vždy
nejvýše \N/(W — 1)].

Podívejme se na následující příklad: Na parkovišti je 10 vozů; jejich
typy jsou označeny čísly 1, 2, 3 a 4. Čtyři dělníci chtějí tyto vozy přepar-
kovat. Původní rozmístění vozů je následující:

2334421131

Minimální možný počet kroků je tři a rozmístění vozů po jednotlivých
krocích může být například následující:
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2114423331 — po prvním kroku,
2112433341 — po druhém kroku,
1112233344 po třetím kroku.

Vstup: Vstupní soubor se jmenuje CAR. IN. Jeho první řádek obsahuje
tři celá čísla. První z nich, V, je počet vozů na parkovišti (2 ú N ^
^ 20 000) a druhé z nich, M, je počet typů vozů (2 ú M 50). Jednotlivé
typy vozů jsou označeny čísly 1 až M. Mezi zaparkovanými vozy se
nachází od každého z těchto typů alespoň jeden. Třetí číslo, W, určuje
počet dělníků, kteří chtějí vozy přeparkovat (2 ^ W ^ M). Na druhém
řádku se nachází N čísel, která určují počáteční rozmístění vozů — i-té
číslo představuje typ г-tého vozu v řadě počítáno zleva doprava.

Výstup: Výstupní soubor se jmenuje CAR.OUT. První řádek výstup-
ního souboru obsahuje jedno celé číslo R, představující počet kroků na-
lezeného řešení úlohy. Následujících R řádků popisuje po řadě jednotlivé
kroky. První číslo, C, na každém z těchto řádků určuje počet vozů pře-
parkovávaných v příslušném kroku. Za tímto číslem následuje dalších
2C celých čísel, která popisují pozice vozů. Parkovací místa jsou očíslo-
vána zleva doprava od 1 do N. První dvojice těchto čísel popisuje přesun
jednoho z vozů: první číslo z dvojice udává pozici vozu před tímto krokem
a druhé po tomto kroku. Další dvojice čísel určuje, jak bude přeparkován
další z vozů, atd. Pokud existuje více možných řešení, vaším úkolem je
nalézt a vypsat jedno libovolné z nich.

Příklady vstupů a výstupů:
CAR.IN

10 4 4

2334421131

CAR.OUT

3

427387283

3 4 9 9 6 6 4

3 1 5 5 10 10 1

Hodnocení. Předpokládejme, že váš program nalezl způsob, jak vozy

přeparkovat v R krocích. Označme si \N/(W — 1)] jako Q. Jestliže nale-
zený postup přesunu vozů nesplňuje zadání úlohy, je příslušný test hod-
nocen 0 body. Jinak je ohodnocen body podle následujících pravidel:

100% bodů
50% bodů
20% bodů

0 % bodů

RÚQ
R — Q -\-1
R — Q + 2
RZQ + 3
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2. Palindromy
Palindromem nazýváme takový znakový řetězec, který je symetrický,

tj. který se čte stejně zleva i zprava. Vytvořte program, jenž pro zadaný
řetězec určí minimální počet znaků, které je nutné do tohoto řetězce
vložit tak, aby se z něj stal palindrom.

Například vložením dvou znaků do řetězce „Ab3bd“ můžeme získat
palindrom „dAb3bAd“ nebo „Adb3bdA“. Vložením méně než dvou znaků
však z tohoto řetězce palindrom nelze vytvořit.

Vstup: Vstupní soubor se jmenuje PALIN.IN. První řádek vstup-
ního souboru obsahuje jedno celé číslo N, délku vstupního řetězce,
3 ^ V ^ 5 000. Druhý řádek obsahuje vstupní řetězec. Řetězec se skládá
z velkých písmen od »A« do »Z«, z malých písmen od »a« do »z« a z číslic
od »0« do »9«. Velká a malá písmena v řetězci představují odlišné znaky.

Výstup: Výstupní soubor se jmenuje PALIN.OUT. První řádek obsa-
huje jedno číslo — nalezený minimální počet znaků, které je do řetězce
třeba vložit.

Příklady vstupů a výstupů: PALIN.IN PALIN.OUT

5 2

АЬЗЬ

3. Střední tvrdost
V rámci jednoho z výzkumných projektů je třeba otestovat N vzorků

materiálů. Vzorky jsou označeny čísly od 1 do N, kde N je liché číslo.
Tvrdost každého ze vzorků lze vyjádřit celým číslem Y (1 ^ Y “š N).
Žádné dva vzorky nemají stejnou tvrdost. Vzorek X je vzorek se střední
tvrdostí, jestliže stejný počet vzorků má tvrdost menší než vzorek X
a stejný počet vzorků má tvrdost větší. Vaším úkolem je vytvořit pro-

gram, který určí vzorek se střední tvrdostí.
Jediný přístroj, který je v laboratoři к dispozici, je schopný určit ze tří

předložených vzorků ten, který má mezi těmito vzorky střední tvrdost.

Popis knihovny. Obdrželi jste knihovnu pojmenovanou device, která
obsahuje následující tři rutiny:

> Rutina GetN musí být zavolána právě jednou, a to na začátku výpočtu;
volá se bez parametrů a její návratovou hodnotou je číslo N.

> Rutina Med3 je volána se třemi parametry, jimiž jsou čísla tří navzá-
jem různých vzorků vložených do přístroje. Její návratová hodnota je
číslo vzorku, který má střední tvrdost mezi předloženými vzorky.

183



c> Rutina Answer musí být zavolána právě jednou, a to na konci vý-
počtu; jejím jediným parametrem je vaším programem určené číslo
vzorku V, tj. číslo vzorku se střední tvrdostí. Zavolání této rutiny
zároveň korektně ukončí výpočet programu.
Knihovna device vytvoří dva soubory: MEDIAN.OUT a MEDIAN.LOG.

První řádek souboru MEDIAN.OUT obsahuje jedno číslo, které je rovno
číslu vzorku předanému vaším programem rutině Answer. Druhý řádek
obsahuje jedno celé číslo představující počet volání rutiny Med3 vaším
programem. Komunikace mezi vaším programem a knihovnou je zazna-
menána v souboru MEDIAN.LOG.

Pokyny pro programátory v jazyce Pascal: Vložte do vašeho programu

následující řádek:
uses device;

Pokyny pro programátory v jazyce C/C+ + : Vložte do vašeho pro-

gramu následující řádek:
#include "device.h"

Dále vytvořte projekt MEDIAN. PRJ a vložte do tohoto projektu sou-

bory MEDIAN.C (MEDIAN.CPP) a DEVICE.OBJ.

Ladění. Komunikaci programu s poskytnutou knihovnou lze ladit ná-
sledujícím způsobem: Vytvoříte textový soubor DEVICE. IN. Tento soubor
by měl obsahovat dva řádky. Na prvním z nich bude uvedeno jedno celé
číslo — počet vzorků N. Druhý řádek obsahuje N celých čísel od 1 do V
ve vámi zvoleném pořadí; г-té z nich představuje tvrdost г-tého vzorku.

Příklad vstupu: DEVICE. IN
5

2 5 4 3 1

Tento soubor DEVICE.IN obsahuje popis následujících pěti vzorků:

Vzorek 1 2 3 4 5

Tvrdost 2 5 4 3 1

Korektní posloupnost komunikace vašeho programu s knihovnou by
mohla vypadat následovně:
1. GetN (v Pascalu) nebo GetNO (v C/C++) — návratová hodnota je 5.
2. Med3( 1,2,3) — návratová hodnota je 3.
3. Med3 (3,4,1) — návratová hodnota je 4.
4. Med3(4,2,5) — návratová hodnota je 4.
5. Answer (4)
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Omezení specifická pro tuto úlohu
t> Počet vzorků N splňuje tyto podmínky: 5 ^ ^ 1 499 a N je liché.
D> Číslo vzorku i splňuje 1 ^ i 'š N.
> Tvrdost vzorku Y splňuje 1 ^ Y fí N; všechny vzorky mají navzájem

různou tvrdost.

> Jméno knihovny v Pascalu: device.tpu
> Deklarace knihovních funkcí a procedur v Pascalu:

function GetN: integer;
function Med3(x, у, z:integer):integer;
procedure Answer(m:integer);

> Jméno knihovny v C/C++: device.h, device.obj (při kompilaci
použijte LARGE memory model)

> Deklarace funkcí v C/C++:
int GetN(void);
int Med3(int x, int y, int z);
void Answer(int m);

o Váš program smí provést nejvýše 7 777 volání funkce Med3 během
jednoho testu.

o Váš program nesmí číst ani zapisovat do žádných souborů.

4. Stavby z kostek
Jednotková krychle je krychle o rozměrech lxlxl taková, že všechny

její rohy mají celočíselné souřadnice x, у a, z. Dvě jednotkové krychle se

dotýkají, pokud mají společnou jednu ze svých stěn. Dvě krychle jsou spo-

jeny, pokud existuje posloupnost jednotkových krychlí taková, že každé
dvě po sobě následující krychle se dotýkají a uvažované krychle jsou
první a poslední v této posloupnosti. Stavbou z kostek rozumíme libo-
volnou množinu jednotkových krychlí takovou, že každé dvě jednotkové
krychle v této množině jsou spojené (obr. 72). Objemem stavby z kos-
tek nazýváme počet jednotkových krychlí, které tato stavba obsahuje.
Kostkou rozumíme množinu nejvýše čtyř navzájem spojených jednotko-
vých krychlí. Existuje 12 různých druhů kostek, které jsou znázorněny
na obr. 73. Kostky kteréhokoliv druhu mohou být použity ve stavbě v li-
bovolném množství a to jakkoliv posunuté a natočené (ne však zrcadlově
převrácené). Barevné odstíny na obou obrázcích jsou použity pouze ke
zvýšení jejich přehlednosti a nemají žádný další význam.

Množinu D kostek lze použít pro vytvoření stavby S’, pokud lze
všechny kostky z množiny D umístit a natočit tak, aby vytvořily přesně
stavbu S a přitom byly navzájem disjunktní (mohou se však dotýkat).
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•и-
Obr. 72. Kůň z kostek Obr. 73. 12 různých druhů kostek

Vytvořte program, který obdrží na vstupu popis všech 12 druhů kos-
tek a stavby S. Program poté určí nejmenší možný počet kostek, které
jsou potřeba к vytvoření stavby S, a dále určí, jaké kostky budou ve
stavbě použity.

Vstup: Ve vstupních souborech se na všechny jednotkové krychle od-
kazujeme pomocí trojice souřadnic x, у a z toho jejich rohu, pro který je
x + у + z nejmenší.

Vstupní soubor, který popisuje jednotlivé druhy kostek, se jmenuje
TYPES. IN. Obsah tohoto souboru je stejný pro všechny testy. Obsahuje
popis 12 druhů kostek; všechny tyto kostky jsou znázorněny na obr. 73.
Popis druhů kostek obsažený v tomto souboru je uspořádán podle čísel
druhů jednotlivých kostek. Každý druh kostek je popsán na několika
řádcích. První řádek popisu jednoho druhu kostky obsahuje jediné celé
číslo 7, které je jeho identifikátorem (1 I ^ 12). Druhý řádek obsahuje
jediné celé číslo V, které představuje objem kostky popisovaného druhu
(1 5Í V ^4). Každý z následujících V řádků pak obsahuje trojici celých
čísel x, у, z, která určují polohu jednotlivých jednotkových krychlí tvo-
řících kostku (1 5Í x, y, z ^ 4).

Vstupní soubor, který popisuje zadanou stavbu z kostek, se jmenuje
BLOCK. IN. Jeho první řádek obsahuje jediné celé číslo V, jež představuje
celkový objem stavby (1 ^ V ^ 50). Každý z následujících V řádků
pak obsahuje trojici celých čísel x, y, z, která určují polohu jednotlivých
jednotkových krychlí tvořících stavbu (1 ^ x,y,z ú 7).

Výstup: Výstupní soubor se jmenuje BLOCK. OUT. První řádek obsa-
huje jediné celé číslo M, které představuje minimální počet kostek, které
jsou potřeba pro vytvoření zadané stavby. Druhý řádek obsahuje M iden-
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tifikátorů druhů kostek, ze kterých je možné stavbu sestavit. Pokud exis-
tuje více optimálních řešení, váš program vypíše právě jedno z nich.

Příklady vstupů a výstupů:
TYPES.IN BLOCK.IN

186 101

2 1 1

4 1 1

2 3 1

4 3 1

2 12

3 12

4 12

12 2

2 2 2

3 2 2

4 2 2

2 3 2

3 3 2

4 3 2

4 2 3

4 2 4

4 2 5

5 2 5

441

2 11

12 1

2 2 1

2 12

111

1 2 1

112

12 2

111

2

2

1 1 1

1 2 1 7 11

43 4

111

12 1

112

113

1 1 1

1 2 1

2 2 1

1 1 2

3

111

12 1

13 1

4 8 12

43 4

111

12 1

13 1

12 2

2 2 1

2 12

12 2

2 2 2

111

12 1

112

5

94

4111

12 1

13 1

14 1

1 2 1

13 1

112

12 2

BLOCK.OUT

5

7 10 2 10 12

Poznámka.

1. Vstupní soubor BLOCK.IN popisuje stavbu koně z obr.72.
2. Jiná přípustná řešení mohou mít ve výstupním souboru na druhém

řádku následující identifikátory druhů kostek:
2 7 10 11 12

2 7 11 11 12

44 7 10 11

44 9 10 11
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5. Poštovní úřady
V jednom nejmenovaném státě se nachází jedna dlouhá rovná dál-

nice s několika vesnicemi podél ní. Do každé vesnice vede jeden výjezd
z dálnice; všechny tyto výjezdy jsou očíslovány celými kladnými čísly.
Číslo výjezdu je rovno jeho vzdálenosti od začátku dálnice. U žádného
z výjezdů neleží dvě různé vesnice. Vzdálenost mezi dvěma vesnicemi
je rovna absolutní hodnotě rozdílu čísel výjezdů, které vedou do těchto
vesnic (zanedbáváme tedy vzdálenost vesnic od dálnice).

V některých z těchto vesnic (ne nutně ve všech) mají být zřízeny
poštovní úřady. Ředitelství pošt chce zřídit poštovní úřady tak, aby sou-
čet dojezdových vzdáleností všech vesnic byl co nejmenší. Dojezdovou
vzdáleností vesnice rozumíme její vzdálenost od poštovního úřadu, který
jekni nejbhzsi.

Vytvořte program, který obdrží na vstupu zadána čísla jednotlivých
výjezdů, u kterých leží vesnice, a počet poštovních úřadů, které plánuje
ředitelství pošt zřídit. Program poté určí minimální možný součet dojez-
dových vzdáleností všech vesnic a nalezne rozmístění poštovních úřadů,
které dosahuje tohoto součtu.

Vstup: Vstupní soubor se jmenuje POST.IN. Jeho první řádek obsa-
huje dvě celá kladná čísla: první z nich, V, představuje počet vesnic podél
dálnice (1 ^ V ^ 300) a druhé z nich, P, představuje počet poštovních
úřadů, které se plánují vybudovat (1 ^ P ^ 30, P 5Í V). Druhý řádek ob-
sáhuje rostoucí posloupnost V celých kladných čísel. Těchto V čísel před-
stavuje čísla výjezdů z dálnice u jednotlivých vesnic. Pro každé z těchto
čísel, označme ho X, platí následující omezení: 1 ^ X 10 000.

Výstup: Výstupní soubor se jmenuje POST. OUT. První řádek obsahuje
jediné celé číslo, které představuje součet dojezdových vzdáleností všech
vesnic pro vámi nalezené řešení. Druhý řádek obsahuje rostoucí posloup-
nost P kladných celých čísel. Tato čísla jsou čísla výjezdů, u kterých
navrhujete zřídit poštovní úřad. Pokud existuje více optimálních řešení,
váš program vypíše právě jedno z nich.

Příklad vstupu:
POST.IN

10 5

1 2 3 6 7 9 11 22 44 50

POST.OUT

9

2 7 22 44 50

Hodnocení. Pokud výstupní soubor nemá formát odpovídající zadání
nebo pokud součet uvedený na prvním řádku neodpovídá řešení uvede-
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ném na druhém řádku, váš program bude v příslušném testu hodnocen
0 body. V opačném případě se počet vámi získaných bodů spočte podle
níže uvedené tabulky následujícím postupem: Označme S součet dojez-
dových vzdáleností všech vesnic pro vámi nalezené řešení а tento
součet pro optimální řešení; váš program bude hodnocen tolika body,
kolik je uvedeno pro odpovídajíc poměr q = S/Smin v druhém řádku
tabulky.

9 — S/Sm-m Počet bodů

q= 1,0
1,0 < q й 1,1
1.1 < q й 1,15

1,15 < q 1,2
1.2 < q й 1,25

1,25 < q ^ 1,3
1.3 < q

10

5

4

3

2

1

0

6. Velké zdi

V jednom nejmenovaném státě bylo zbudováno několik „Velkých zdí“.
Každá z těchto zdí spojuje právě dvě města, žádné dvě zdi se nekříží
a mezi každými dvěma městy vede nejvýše jedna zeď. Stát je takto roz-
dělen na několik oblastí takových, že к přesunu z jedné oblasti do druhé
je třeba projít některým z měst nebo přelézt zeď.

Demonstranti proti ekonomické globalizaci žijí v různých městech,
v každém městě však žije nejvýše jeden z demonstrantů. Občas chtějí
demonstranti uspořádat party nebo demonstraci. Za tímto účelem se po-

třebují všichni sejít v některé z oblastí ohraničených zdmi; z pochopitel-
ných důvodů se však nemohou sejít v žádném z měst. Při své cestě na
kolech na místo srazu nechtějí projet žádným městem, aby je nezadržela
policie, a navíc chtějí přelézat co nejmenší počet zdí (s kolem to není
zrovna nejsnazší).

Během své cesty na místo srazu musí každý z demonstrantů přelézt
několik zdí (možná i žádnou). Demonstranti proto chtějí zvolit takovou
oblast pro setkání, aby součet počtů přelezení zdí uskutečněných všemi
demonstranty byl co nejmenší.

Města jsou označena celými čísly od 1 do N, kde N je počet všech
měst. Očíslované uzly na obr. 74 představují města a úsečky spojující
uzly odpovídají zdem. Předpokládejme, že ve státě žijí tři demonstranti
a ti bydlí ve městech 3, 6 a 9. Nejvýhodnější oblast pro jejich setkání
a příslušné trasy pro jednotlivé demonstranty jsou vyznačeny na obr. 75.
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Demonstranti budou muset přelézt dvě zdi: demonstrant z města 9 musí
přelézt zeď vedoucí mezi městy 2 a 4, demonstrant z města 6 musí přelézt
zeď vedoucí mezi městy 4 a 7.

Vytvořte program, který obdrží na vstupu počet měst, popis oblastí
ohraničených zdmi a seznam měst, kde bydlí demonstranti. Program poté
určí optimální oblast pro setkání demonstrantů a spočítá minimální počet
přelezení zdí uskutečněných dohromady všemi demonstranty při jejich
cestě na místo srazu.

Vstup: Vstupní soubor se jmenuje WALLS. IN. Jeho první řádek obsa-
huje jedno celá kladné číslo M — počet oblastí (2 ú M ^ 200). Druhý
řádek obsahuje jedno celé kladné číslo N ůpočet měst (3 ^ ^ 250).
Třetí řádek obsahuje jedno celé kladné číslo L — počet demonstrantů
(1 ^ L ^ 30, L ^ N). Čtvrtý řádek vstupního souboru obsahuje rostoucí
posloupnost L různých celých kladných čísel — seznam čísel měst, v nichž
žijí demonstranti.

Poté ve vstupním souboru následuje 2M řádků. Každá dvojice po
sobě následujících řádků popisuje jednu z oblastí, tzn. první dva z těchto
řádků popisují první oblast, následující dva řádky popisují druhou oblast,
atd. První řádek v každé dvojici udává počet měst, /, která leží na hranici
příslušné oblasti. Druhý řádek dvojice pak obsahuje posloupnost I celých
kladných čísel, která jsou čísly měst ležících na hranici příslušné oblasti
a která jsou zde uvedena seřazená po směru hodinových ručiček (začátek
této posloupnosti může být zvolen libovolně). Poslední oblast uvedená
v souboru je vnější oblast; v popisu této oblasti jsou města na její hranici
uspořádána proti směru hodinových ručiček (to je jediná výjimka proti
pravidlu o pořadí výpisu měst na hranici oblasti). Pořadí, v jakém jsou
jednotlivé oblasti uvedeny ve vstupním souboru, určuje jejich očíslování,
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tzn. oblast uvedená jako první má číslo 1, oblast uvedená jako druhá má
číslo 2 atd. Povšimněte si, že ve vstupním souboru je uveden popis všech
oblastí včetně „vnější“ oblasti.

Výstup: Výstupní soubor se jmenuje WALLS. OUT. První řádek obsa-
huje jediné celé číslo, které představuje minimální celkový počet přelezení
zdí na cestě demonstrantů na místo srazu. Druhý řádek obsahuje jediné
celé číslo, kterým je pořadové číslo oblasti vybrané к uskuteční srazu de-
monstrantů. Pokud existuje více optimálních řešení, váš program vypíše
právě jedno z nich.

Příklad vstupu: Následující vstupní a výstupní soubor odpovídají pří-
kladu uvedenému v zadání.

WALLS.IN WALLS.OUT

3 210

4 8 6 310

3 3

3 6 9 6 8 7

33

12 3 4 5 8

3 4

7 8 10 913 7

34

2 4 7 3 5 10 8

73

4 6 7 7 9 10 5 4 2 1
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