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O průběhu 50. ročníku matematické olympiády

50. ročník matematické olympiády měl v podstatě stejnýJubilejní
průběh jako ty bezprostředně předcházející ročníky. I ten 50. začal už
s předstihem výběrem všech úloh, který zajišťují tři úlohové komise,
jedna pro kategorie А, В, C (střední školy), druhá pro kategorie Z5-Z9
(základní školy a nižší třídy víceletých gymnázií), třetí pro kategorii P
(programování). Následuje příprava letáků s úlohami I. kola a komen-
tářů к nim. Komentáře, to jsou texty pro učitele, které obsahují nejen
řešení všech úloh I. kola, ale též návodné úlohy, kterými může učitel
žákům pomoci najít řešení soutěžních úloh MO. Není možné zde uvést
všechny pracovníky, kteří se podíleli na přípravě 50. ročníku MO. Uveďme
pouze důležitou informaci, že úlohy připravujeme společně se slovenskými
kolegy, tedy „federálně". Z české strany se na přípravě nejvíce podíleli
doc. dr. J. Šimša, CSc., dr. K. Horák, CSc., doc. dr. P. Topfer, CSc.,
dr. L. Hozová, doc. dr. M. Volfová, CSc., Mgr. P. Leischner, Mgr. M. Krej-
čová, doc. dr. L. Boček, CSc., a další.

Pořadateli soutěže Matematická olympiáda jsou Ministerstvo škol-
ství, mládeže a tělovýchovy ČR, Jednota českých matematiků a fyziků
a Matematický ústav Akademie věd ČR. Soutěž řídí Ústřední výbor MO,
který je jmenován na návrh JČMF Ministerstvem školství, mládeže a tě-
lovýchovy. Ve školním roce 2000-2001 řešil ÚV MO hlavně přípravu ter-
mínů příštího ročníku MO, přípravu soustředění úspěšných řešitelů a pří-
právu celostátních kol. V této věci nám velmi pomohla Střední průmys-
lová škola sdělovací techniky v Praze, která se ujala organizace III. kol
MO kategorií A a P, a dále Fakulta tělesné výchovy a sportu, která
nám pronajala prostory pro vlastní soutěž i ubytování soutěžících. Delší
zasedání ÚV MO se konalo 4. dubna 2001 při zakončení celostátního
kola MO kategorie A. Jeho první část měla slavnostní ráz, konala se
v Karolinu. Členy ÚV MO, hosty i soutěžící přivítal rektor Univerzity
Karlovy prof. ing. Ivan Wilhelm, CSc. Další projevy přednesli ředitel
odboru MŠMT dr. Karel Tomek, ředitel MÚ AV doc. dr. Karel Segeth,
CSc., předseda JČMF prof. dr. Jaroslav Kurzweil, DrSc., děkan MFF UK
prof. dr. Ivan Netuka, DrSc., ředitelka SPŠST ing. M. Plocková a další
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hosté. Matematický ústav AV věnoval každému účastníku celostátního
kola MO kategorie A knihu S. Singha „Velká Fermatova věta", soutěžící
v kategorii P odměnil knihami zase Ústav informatiky AV ČR. Zástupce
MŠMT dr. Tomek předal děkovný dopis pana ministra řadě učitelů a dal-
ších pracovníků, kteří se dlouhodobě věnovali práci v MO. Další pracov-
níci obdrželi děkovný dopis od ÚV JČMF. Předseda ÚV MO poděkoval
oběma ústavům Akademie věd za knižní dary pro soutěžící, a Střední
průmyslové škole sdělovací techniky za práci při zajištění celostátních
kol MO. Matematicko-fyzikální fakultě poděkoval za vydání brožurky
„Padesát let Matematické olympiády", kterou fakulta věnovala všem sou-
těžícím i pracovníkům v MO. Dík patří i všem sponzorům, kterými byly
ČEZ, Společnost SuSe, Česká pojišťovna, Český rozhlas, Precheza Pře-
rov, Česká vědecko-technická společnost a Společnost O. Borůvky. Po-
sledně jmenovaná věnovala Matematické olympiádě vedle knižních darů
i podstatnou finanční částku, která nám umožnila vydat tuto ročenku.
První tři soutěžící v každé kategorii obdrželi odměnu od MŠMT ve formě
knižních poukázek, všechny ostatní ceny věnovali úspěšným řešitelům
sponzoři. Hlavním bodem druhé části zasedání ÚV MO bylo vypracování
návrhu na složení ÚV MO pro další čtyřleté funkční období. Vypraco-
váný návrh byl schválen ÚV JČMF i MŠMT, takže od 51. ročníku MO je
předsedou ÚV MO doc. dr. J. Šimša, CSc., místopředsedy dr. J. Švrček,
CSc., doc. dr. P. Tlustý, CSc., a doc. dr. P. Topfer, CSc., jednatelem
dr. K. Horák, CSc. Byli též jmenováni předsedové krajských výborů MO
podle nového státoprávního uspořádání.

Celostátními koly MO soutěž v příslušném roce vlastně nekončí. Druž-
štva České republiky se pak ještě účastní mezinárodních soutěží v mate-
matice a informatice. O výsledcích našich účastníků se dočtete v dalších
částech této brožurky.

Příprava každého ročníku MO je úkolem ÚV MO a úlohových komisí.
Matematická olympiáda by však nemohla existovat, kdyby se jí nevěno-
váli učitelky a učitelé, profesorky a profesoři na základních a středních
školách, kteří nad své pracovní povinnosti a bez nároku na odměnu vedou
své žáky к účasti v MO, pomáhají jim překonat první potíže při řešení
úloh I. kola, opravují úlohy. ÚV MO jim upřímně děkuje za jejich práci
pro MO.

Dosavadní ÚV MO skončil 50. ročníkem MO své funkční období. Byl
jmenován v roce 1997 na čtyřleté funkční období ve složení:
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Předseda:

Doc. RNDr. Leo Boček, CSc., MFF UK Praha
Místopředsedové:
Doc. RNDr. Jaromír Šimša, CSc., Matematický ústav AV ČR Brno
Doc. RNDr. Václav Sedláček, CSc., Fakulta informatiky MU Brno
RNDr. Jiří Binder, CSc., Pedagogická fakulta UK Praha
Tajemníci:
RNDr. Karel Horák, CSc., Matematický ústav AV ČR, Praha
Doc. RNDr. Pavel Topfer, CSc., MFF UK Praha
Mgr. Monika Barešová, Dr., Matematický ústav AV ČR Praha
Zástupce MŠMT ČR: Mgr. Vlasta Marková
Další členové:
Prof. RNDr. Miroslav Fiedler, DrSc., MÚ AV ČR Praha
PhDr. Libuše Hozová, Matematický ústav Slezské univerzity Opava
RNDr. Dag Hrubý, Gymnázium Jevíčko
Prof. RNDr. Milan Koman, CSc., Pedagogická fakulta UK Praha
Doc. RNDr. Jan Kratochvíl, CSc., MFF UK Praha
Mgr. Marie Krejčová, Základní škola Jihlava
Mgr. Pavel Leischner, Pedagogická fakulta Jihočeské univerzity České

Budějovice
RNDr. Jaroslav Švrček, CSc., Přírodovědecká fakulta UP Olomouc
Doc. PhDr. Marta Volfová, CSc., Pedagogická fakulta Univerzity Hradec

Králové

RNDr. Antonín Vrba, CSc., Pedagogická fakulta UK Praha
RNDr. Jaroslav Zhouf, Gymnázium Praha
Předsedové regionálních výborů MO:
PhDr. Ivan Bušek, Pedagogické centrum Praha
RNDr. Šárka Gergelitsová, Gymnázium Benešov
Doc. RNDr. Pavel Tlustý, CSc., Pedagogická fakulta Jihočeské univerzity

České Budějovice
RNDr. Jiří Potůček, CSc., Pedagog, fakulta Západočeské univerzity Plzeň
Mgr. Pavla Hofmanová, Pedagogická fakulta UJEP Ústí n. L.
Prof. RNDr. Bohdan Zelinka, DrSc., Pedagogická fakulta Technické uni-

verzity Liberec
RNDr. Jan Žižka, Gymnázium Přelouč
Mgr. Jan Beneš, Gymnázium Jihlava
RNDr. Jiří Herman, Dr., Gymnázium Brno
RNDr. Jan Chudárek, Gymnázium Zlín
Doc. RNDr. Vladimír Vlček, CSc., Přírodovědecká fakulta Olomouc
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V průběhu funkčního období požádali o uvolnění z funkce člena ÚV
MO v souvislosti s přechodem na jiné zaměstnání doc. Sedláček a dr. Bin-
der, jejich povinnosti převzali tajemníci doc. Topfer a dr. Barešová. Se
změnami na MŠMT vystřídal Mgr. Markovou dr. Václav Muller.

Přejeme novému ÚV MO hodně úspěchů a matematické olympiádě
mnoho úspěšných účastníků po celou dobu aspoň padesáti dalších roční¬
ků.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 50. ročníku MO
Kategorie

CelkemOblast
CA В P

s и s s и s иs и и

65 37
104 33

55 28
35 28
22 7

4 3
39 26

101 50
42 33
76 31

167 45

54 14
91 39
61 27
39 22
36 20
31 27
26 18
95 38
27 18
33 10

197 32

82 57
111 54
97 45
52 33
24 11
42 29
89 62

173 122
52 35
46 20

267 65

19 19
26 25

220 127
332 151
213 100
132 89

84 40
79 61

154 106
369 210
131 93
160 66
657 168

Praha
Střední Čechy
Jižní Čechy
Západní Čechy
Liberec
Ústí n. Labem

Východní Čechy
Brno
Jihlava
Zlín
Severní Morava

6 6
2 2
2 2

10 7
5 5

26 26

ČR 2531 1211710 321 690 265 1035 533 96 92

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 50. ročníku MO
Kategorie

CelkemOblast
CA В P

S s и s иs и s и и

36 22
34 4
22 2
28 8

8 4
7 2

24 9
45 10
31 7
27 2
45 13

54 38
48 16
40 18
31 17
23 7
11 4
52 24

110 55

19 12
25 9

120 75
141 47

84 30
85 40
42 14
37 14
93 38

190 74
85 18
62 27

168 54

Praha
Střední Čechy
Jižní Čechy
Západní Čechy
Liberec
Ústí n. Labem

Východní Čechy
Brno
Jihlava
Zlín
Severní Morava

11 3
34 18
22 10
20 14

7 3
17 6
17 5
35 9
15 2
11 7
32 6

6 1
4 0
2 2

33 9 6 0
5 3

26 3
19 15
65 32

ČR 307 83 221 83 1 107 431486 235 93 30

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Výsledky celostátního kola 50. ročníku MO
kategorie A

Vítězové

1.-2. Jan Herman, 4/4, G tř. Kpt. Jaroše 14, Brno
Martin Tancer, 3/4, G Ch. Dopplera, Praha 5

3. Josef Křišťan, 7/7, G Mikulášské nám. 23, Plzeň
4.-5. Tomáš Protivínský, 3/4, G tř. Kpt. Jaroše 14, Brno

Ondřej Suchý, 7/7, G Mikulášské nám. 23, Plzeň
6.-7. Martin Káldy, 2/4, G Ch. Dopplera, Praha 5

Marek Sulovský, 4/4, G tř. Kpt. Jaroše 14, Brno
8. Jan Kynčl, 6/6, G Kostelní 259, Jilemnice
9. Jiří Koula, 4/4, G U Libeňského zámku 1, Praha 8

10.—11. Pavel Čížek, 2/4, G a OA, Kralupy n. Vit.
Jaroslav Hájek, 3/4, GMK, Bílovec

41b.

41b.

39 b.

36 b.

36 b.

33 b.

33 b.

31b.

29 b.

28 b.

28 b.

Další úspěšní řešitelé

12.-13. Marek Krčál, 2/4, G tř. Kpt. Jaroše 14, Brno
Ondřej Kreml, 4/4, GMK, Bílovec

14. Ondřej Kůrka, 7/8, G Ch. Dopplera, Praha 5
15. Václav Flaška, 8/8 Svob. cheb. škola, Cheb

16.-17. Pavel Kůs, 4/4, G Ch. Dopplera, Praha 5
Rudolf Stolař, 4/4, G tř. Kpt. Jaroše 14, Brno

18.-19. Petr Jelínek, 8/8, G Parléřova 2/118, Praha 6
David Šálek, 6/6, G Na Vítězné pláni 1160, Praha 4

20.-21. Tomáš Hanzák, 3/4, G nám. Dr. E. Beneše 1573, Kladno 22 b.
Martin Sikora, 4/4, GMK, Bílovec

22.-26. Petr Gotz, 4/4, GMK, Bílovec
Martin Holík, 4/4, GMK, Bílovec
Martin Motl, 4/4, GMK, Bílovec
Ondřej Šerý, 8/8, G a sport, škola, Kladno
Pavel Valíš, 4/4, G a OA, Kralupy n. Vit.

27b.

27b.

26 b.

25 b.

24 b.

24 b.

23 b.

23 b.

22 b.

20 b.

20b.

20 b.

20 b.

20 b.
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Výsledky celostátního kola 50. ročníku MO
kategorie P

Vítězové

1. Pavel Čížek, 6/8, Dvořákovo G a OA, Kralupy n. Vit.
2. Miloslav Trmač, 8/8, Biskupské G, Brno
3. Roman Krejčík, 4/4, G Ch. Dopplera, Praha 5
4. Marek Sulovský, 7/7, G Brno, tř. Kpt. Jaroše
5. Eva Ondráčková, 7/7, G Tišnov
6. Jiří Danihelka, 2/4, SPŠ Čapkova, Písek
7. Jiří Svoboda, 7/8, G Ch. Dopplera, Praha 5
8. Jiří Fink, 4/4, SPŠE Ječná, Praha 2

33 b.

31b.
29 b.
28 b.

25 b.

22 b.

20 b.

19b.

Další úspěšní řešitelé

9. Petr Matas, 7/7, G Klatovy, Národních mučedníků
10.-11. Martin Beránek, 7/7, G Praha 4, Ohradní

Robert Poch, 4/4, SPŠST Panská, Praha 1
12. Jiří Koula, 4/4, G Praha 8, U Libeňského zámku

13.-16. Jose/ Cibulka, 3/4, Akademické G, Praha 1, Štěpánská
Martin Hamrle, 3/4, G Pelhřimov, Jirsíkova
Jiří Štěpánek, 5/8, G Brno, tř. Kpt. Jaroše
Ondřej Zajíček, 4/4, SPŠS Chrudim

17 b.

16b.

16b.

15 b.

13b.
13b.
13b.

13b.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie je uvedeno nejvýše prvních deset řeši-
telů. Označení G znamená gymnázium, M, resp. MF zaměření studijního
oboru 01 Matematika, resp. 02 Matematika a fyzika.

Praha

Kategorie A

1.-2. František Havlůj, 7.E, G Sladkovského nám., Praha 3
Ondřej Kůrka, 7.M, GChD, Zborovská, Praha 5

3. David Šálek, 6.C, G Na Vít. pláni, Praha 4
4.-7. Lenka Havrdová, VII, G Písnická, Praha 4

Petr Jelínek, VIII, GJK, Parléřova, Praha 6
Martin Káldy, 2.C, GChD, Zborovská, Praha 5
Václav Vlasák, 6.A, Arcibiskup. G Korunní, Praha 2

8.-9. David Chodounský, 4.C, GChD, Zborovská, Praha 5
Martin Tancer, 3.C, GChD, Zborovská, Praha 5

10.-12. Martin Klimeš, 3.A, G Botičská, Praha 2
Jiří Koula, 4.E, G U Libeň, zámku, Praha 8
Pavel Kůs, 4.C, GChD, Zborovská, Praha 5

Kategorie В

1. Martin Káldy, 2.C, GChD, Zborovská, Praha 5
2. Ondřej Čertík, 6.M, GChD, Zborovská, Praha 5
3. Jan Kadlec, 2.C, GChD, Zborovská, Praha 5
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Kategorie С1.Alexandr Kazda, 5.A, G Nad Alejí, Praha 6
2.-4. Václav Potoček, l.M, SPŠST Panská, Praha 1

Daniel Balaš, l.E, G Arabská, Praha 6
Peír Škoda, 5.B, G Ústavní, Praha 8

5.-7. Michal Rameš, l.L, SPŠST Panská, Praha 1
Alena Drábková, 3.A, G Na Vítězné pláni, Praha 4
David Navara, l.C, G Zborovská, Praha 5

8. Martin Pastrňák, l.M, SPŠST Panská, Praha 1
9.-13. Lenka Homolková, V.B, Akad. G Korunní, Praha 2

Mariana Svobodová, V.B, Akad. G Korunní, Praha 2
Jiří Kukačka, T.A, G Postupická, Praha 4
Vojtěch Křesala, V.B, G Parléřova, Praha 6
Štefan Alakša, V.B, G Parléřova, Praha 6

Kategorie P

1. Jiří Svoboda, 7.M, GChD, Zborovská, Praha 5
2.-3. Martin Beránek, VII, G Ohradní, Praha 4
2.-3. Robert Poch, 4.K, SPŠST Panská 3, Praha 1

4. Jiří Koula, 4.E, G U Libeňského zámku, Praha 8
5. Jiří Fink, P4a, SPŠE Ječná, Praha 2
6. Roman Krejčík, 4.C, GChD, Zborovská, Praha 5
7. Jose/ Cibulka, 3.B, Akademické G, Štěpánská, Praha 1
8. Dan Lessner, 2/4, G Bernarda Bolzana, V Holešovičkách, Praha
9. František Havlůj, 7/7, G Sladkovského nám., Praha 310.Martin Hinner, 4.G, G Arabská, Praha

Střední Cechy

Kategorie A

1. Ondřej Šerý, 8.C (8), G a sport, škola Kladno
2. Tomáš Hanzák, 3.B (4), G Kladno
3. Páve/ Va/is, 4.A (4), G Kralupy

4.-5. Pavel Čížek, 6. (8), G Kralupy
Irena Váňová, 4.G (4), G Sedlčany
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6.-8. Tomáš Petr, 7. A (7), G Benešov
Martin Doubek, 3.A (4), G Kladno
Oto Havle, 4.A (4), G Kladno

9. Ondřej Chochola, 3.A (4), G Kladno

Kategorie В

1. Jon Lamač, G Mnichovo Hradiště
2. Pavel Čížek, G Kralupy

3.-4. Jiň Paleček, G Kladno
Pavel Brom, G Mladá Boleslav

5. Martina Vermachová, G a sport, škola Kladno
6. Marek Šmíd, G Brandýs

Kategorie C

1. Jakub Vilhelm, G Beroun
2. Jan Kotera, G Kralupy
3. Ondřej Šindelář, G Kralupy

4.-5. Eva Patáková, G Dobříš
Petr Bílý, G Slaný

6. Jan Mejsnar, G Mladá Boleslav
7.-9. Barbora Řezáčová, G Beroun

Jan Váňa, G Kutná Hora
Lenka Prchalová, G Kutná Hora

10.-15. Jaroslav Kuneš, G Benešov
Miroslav Frantes, G Benešov
Michal Kašpar, G Kolín
Stanislava Strachová, G Poděbrady
Kateřina Průchová, G Příbram
Jan Procházka, GJP, Mladá Boleslav

Kategorie P

1. Pavel Čížek, 6.G, Dvořákovo G a OA, Benešov
2.-4. Jiří Šofka, VII, GOA Benešov

Zdeněk Bulan, VILA, G Benešov, Husova
Jakub Maršík, VII.B, G Benešov, Husova5.Pavel Šafrata, VII.B, G Benešov, Wagnerovo nám.
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6. Jiří Paleček, 2.A, G Benešov, nám. E. Beneše

Jižní Čechy

Kategorie A1.Jan Hejda, G České Budějovice, Jírovcova
2.-3. Tomáš Dolejšek, G České Budějovice, Jírovcova

Radek Mlada, G Pelhřimov
4.-5. Richard Chudoba, G České Budějovice, Jírovcova

Dana Bartošová, G J. Hradec

Kategorie В

1. Jan Kouba, G Č. Krumlov
2. Jiří Danielka, SPŠ Písek
3. Milan Straka, G Strakonice

Kategorie C

1.-2. Radek Mlada, G Pelhřimov
Martin Hadrava, G Soběslav3.Ondřej Prašnička, G České Budějovice, Jírovcova

4.-5. Kare/ Princ, G České Budějovice, Jírovcova
Jan Šmrha, G Pelhřimov

6.-8. Jiří Bernas, SPŠ Písek
Barbora Hošková, G České Budějovice, Jírovcova
Zdeněk Tichý, G Pelhřimov

9.-11. Martin Pilát, G České Budějovice, Česká
Miroslav Janíček, G Tábor
Jakub Rada, G České Budějovice, Česká

Kategorie P

1. Martin Hamrle, G Pelhřimov
2. Jiří Danihelka, A2S, SPŠ Písek
3. Tomáš Lusk, 4.B, G České Budějovice, Jírovcova
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Západní Čechy

Kategorie A

1. Martin Setvín, septima M, 1. G Plzeň
2. Ondřej Suchý, septima M, 1. G Plzeň

3.-4. Václav Flaška, oktáva, Svob. chebská škola, Cheb
Josef Křišťan, septima M, 1. G Plzeň

5. Martin Hrba, septima M, G Sušice
6. David Mareček, sexta M, 1. G Plzeň

7.-8. Jiří Ajgl, sexta M, 1. G Plzeň
Pavel Křeček, septima M, 1. G Plzeň

Kategorie В

1. Klára Šteklová, sexta, 1. G Plzeň
2. Josef Mládek, sexta, 1. G Plzeň
3. Barbora Vostracká, sexta, 1. G Plzeň

4.-6. Luboš Matásek, sexta, 1. G Plzeň
Michal Bareš, sexta, 1. G Plzeň
Jiří Ajgl, sexta, 1. G Plzeň

7.-8. Jiří Reitspies, sexta, 1. G Plzeň
Jaroslav Svoboda, sexta, 1. G Plzeň

9. Ladislav Lenc, sexta, 1. G Plzeň
10.—11. David Mareček, sexta, 1. G Plzeň

Michal Kvíz, sexta, 1. G Plzeň

Kategorie C

1.-2. Petr Cvachovec, kvinta, 1. G Plzeň
Petr Havránek, kvinta, 1. G Plzeň

3. Petra Flajtingrová, kvinta, Masarykovo G, Plzeň
4. Jaroslav Nunvář, l.r., G Ostrov n. Ohří

5.-6. Jan Bartošek, kvinta, 1. G Plzeň
Jari Fazekaš, l.r., ISŠTE Sokolov

7. Zdeňka Fartáková, kvinta, G Sušice
8.-11. Jiří Kohout, kvinta, 1. G Plzeň

Tereza Naarová, kvinta, 1. G Plzeň
Ludmila Schwarzová, kvinta, 1. G Plzeň
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Petr Stupka, Masarykovo G, Plzeň

Kategorie P1.Petr Matas, septima B, G Klatovy

Liberec

Kategorie A1.Martin Vitouš, 7/8, G Liberec, Partyzánská

Kategorie В

l. Karel Pupík, sexta B, GaSG, Jilemnice

Kategorie C

1. Marek Křiklán, 1B, GFXŠ, Liberec
2. Jana Divišová, kvinta, G Mimoň
3. Michal Kollert, kvinta A, GFXŠ, Liberec
4. Jan Breuer, AI, SPŠSE, Liberec
5. Martin Svoboda, kvinta A, GFXŠ, Liberec
6. Lenka Sikolová, kvinta A, GaSG, Jilemnice
7. Miroslav Kloz, kvinta B, GFXŠ, Liberec
8. Jiří Schejbal, kvinta A, G Turnov
9. Jan Jebavý, kvinta B, G Turnov10.Veronika Zrníková, kvinta B, GFXŠ, Liberec

Ústí nad Labem

Kategorie A

1. Miroslav Sulc, sexta, G Ústí nad Labem, Stavbařů
2. Jan Ondřich, 3.E, SPŠ Ústí nad Labem
3. Jiří Binder, V7A, G Ústí nad Labem, Jateční
4. Lucie Plechová, 7F, G Teplice, Čs. Dobrovolců
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Kategorie В

1.-2. Nelly Vostrá, kvinta C, G Děčín, Komenského nám.
Vít Šípal, 6.B, G Ústí nad Labem, Jateční

3. Tomáš Kozelek, sexta, G Kadaň

Kategorie C

1. Jaromír Pufler, G Teplice, Čs. Dobrovolců
2. Jan Veselý, G Teplice, Čs. Dobrovolců
3. Martin Suchan, G V. Hlavatého, Louny

4.-5. Lenka Sarnová, G Most
Jakub Strnad, SPŠ Chomutov

6.-9. Petr Thiir, G Chomutov
Jan Rusňák, G Chomutov
Miroslav Řehoř, G Teplice, Čs. Dobrovolců
Marek Hilovský, G Děčín, Komenského nám.

10.-11. Marek Bartes, G Teplice, Čs. Dobrovolců
Jana Ferencová, G Ústí nad Labem, Stavbařů

Kategorie P

1. Bohumír Kubík, 3.C, G Rumburk

Východní Čechy

Kategorie A

1. Miroslav Hejna, G Rychnov n. K.
2. Ladislav Benda, GJKT, Hradec Králové

3-4. Jan Hošek, GJKT, Hradec Králové
Jan Prachař, G Rychnov n. K.

5.-7. Václav Jára, GJKT, Hradec Králové
Jan Nožka, G Lanškroun
Jiří Eliášek, G Trutnov

8.-9. Miloš Doubek, GJKT, Hradec Králové
Martin Kabrhel, G Litomyšl
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Kategorie В1.Petr Pošta, G Pardubice, Dašická
2.-3. Jan Prachař, G Rychnov n. K.

Dana Chromíková, G Pardubice, Dašická
4.-5. Miroslav Hejna, G Rychnov n. K.

Petr Rezek, G Litomyšl

Kategorie C

1. Jan Moláček, GJKT, Hradec Králové
2.-3. Romana Kubátová, GJKT, Hradec Králové

Jan Ondruš, G Rychnov n. K.
4. Jan Zelený, G Náchod
5. Jindřich Šedek, G Náchod
6. Pečr Vo/ír, GJKT, Hradec Králové
7. Pavel Kladivo, G Polička
8. Martin Holeček, G Náchod

9.-10. Jan Langr, G Jaroměř
Eva Jílková, G B. Němcové, Hradec Králové

Kategorie P

1. Ondřej Zajíček, 4/4, SPŠS Chrudim
2. Roman Носке, 6/6, G Pardubice, Dašická
3. Jakub Durovec, 6/6, G Pardubice, Dašická

Brno

Kategorie A

1.-3. Marek Krčál, 2.A M, G Brno, tř. Kpt. Jaroše
Eva Ondráčková, septima A/7, G Tišnov
Tomáš Protivínský, 3.A M, G Brno, tř. Kpt. Jaroše

4.-5. Jan Herman, 4.A M, G Brno, tř. Kpt. Jaroše
Marek Sulovský, 4.A M, G Brno, tř. Kpt. Jaroše

6. Rudolf Stolař, 4.A M, G Brno, tř. Kpt. Jaroše
7.-8. Miroslav Frost, sextima A/7, G Brno, Elgartova

Jan Trojek, 4.C, G Břeclav
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9.-10. Jakub Chaloupka, septima A/7, G Brno, Křenová
Vítězslav Kala, l.A M, G Brno, tř. Kpt. Jaroše

Kategorie В1.Jan Hladký, 2.A M, G Brno, tř. Kpt. Jaroše
2.-3. Veronika Trnková, 2.A M, G Brno, tř. Kpt. Jaroše

Jiří Vláčil, 2.A M, G Brno, tř. Kpt. Jaroše
4.-5. Jan Orava, sexta A, G Kyjov

Jan Zahradník, 2.A M, G Brno, tř. Kpt. Jaroše
6.-7. Robert Ganian, sexta B, G Brno-Komín

Antonín Pavelka, 2.A M, G Brno, tř. Kpt. Jaroše
8. Helena Grulichová, sexta B, G Břeclav
9. Alena Šimečková, sexta A, G Kyjov

Kategorie C

1.-8. Alena Drášilová, l.A M, G Brno, tř. Kpt. Jaroše
Sven Dražan, l.A M, G Brno, tř. Kpt. Jaroše
Tomáš Gregorovič, kvinta, G Šlapanice
Tomáš Hebelka, kvinta, G Brno, Vídeňská
Peřr Chalupa, l.A M, G Brno, tř. Kpt. Jaroše
Jan Novotný, l.A M, G Brno, tř. Kpt. Jaroše
Alena Robotková, l.A M, G Brno, tř. Kpt. Jaroše
Michal Rychnovský, 4.ag M, G Brno, tř. Kpt. Jaroše

9. Pavel Troubil, l.A M, G Brno, tř. Kpt. Jaroše
10.-13. Jiří Hutárek, 4.ag M, G Brno, tř. Kpt. Jaroše

Vítězslav Kala, l.A M, G Brno, tř. Kpt. Jaroše
Jan Křetínský, kvinta B, G Brno, Žižkova
Martin Vejnár, 4.ag M, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Miloslav Trmač, oktáva B, Biskupské G Brno
2. Marek Sulovský, 4.A, G Brno, tř. Kpt. Jaroše
3. Roman Margold, 4.A, G Brno, tř. Kpt. Jaroše

4.-6. Eva Ondráčková, septima A, G Tišnov
Jiří Štěpánek, l.A, G Brno, tř. Kpt. Jaroše
Pavel Troubil, l.A, G Brno, tř. Kpt. Jaroše
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7. Jan Herman, 4.A, G Brno, tř. Kpt. Jaroše
8. Martin Vejnár, 4.ag, G Brno, tř. Kpt. Jaroše
9. Jan Franců, 4.A, G Brno, tř. Kpt. Jaroše

Jihlava

Kategorie A1.Zdeněk Černý, 4.A, G Žďár nad Sázavou
2.-3. Pavel Janda, septima, G Telč

Martin Koláček, 4.C, G Třebíč4.Jaromír Šír, 3.C, G Nové Město na M.
5.-7. Jiří Lipovský, sexta, G Bystřice nad Pern.

Josef Novák, V7A, G Velké Meziříčí
Leoš Přikryl, 4.C, G Jihlava

Kategorie В

1.-2. Martin Hána, sexta, G Žďár nad Sázavou
Jiří Lipovský, sexta, G Bystřice n. P.

Kategorie C

1. Josef Janák, V5.A, G Velké Meziříčí
2. Michal Holub, l.B, G Třebíč
3. Dominik Macáš, kvinta, G Bystřice nad Pern.

4.-5. Michal Janků, l.D, G Znojmo
Aleš Povalač, l.B, G Třebíč

6.-7. Luděk Gregor, l.B, G Nové Město na M.
Karel Veselý, l.D, G Znojmo

8.-9. Jan Dočekal, l.D, G Znojmo
Petra Mácová, kvinta D, G Telč

Kategorie P

1. Jaroslav Tykal, 4.C, G Jihlava
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Zlín

Kategorie A

1. Pavel Kočica, G Uherský Brod
2. Radek Vitovják, SPŠ Zlín

Kategorie В

1. Radovan Polanský, GJAK, Uherský Brod
2. Pavel Češka, SPŠ Zlín
3. Radek Krejčiřík, G Uherské Hradiště
4. Kamil Langer, G Otrokovice

5.-6. Ondřej Kunčar, G Kroměříž
Jan Vavrys, GJAK, Uherský Brod7.Martin Cetkovský, G Zlín, Lesní čtvrť

Kategorie C

1.-5. Kristina Čapková, GJAK, Uherský Brod
Martin Dungl, G Kroměříž
František Konopecký, G Holešov
Adam Kosík, G Uherské Hradiště
Milan Pečena, G Zlín, Lesní čtvrť

6.-7. Přemysl Habáň, G Uherské Hradiště
Jan Olšina, G Kroměříž

8. Stanislav Sigmund, G Kroměříž
9. Michal Hurbiš, GJAK, Uherský Brod

10.-15. Milan Cellar, G Hodonín
Martin Horáček, G Zlín, Lesní čtvrť
Monika Hradilová, G Holešov
Michal Krejčí, GJAK, Uherský Brod
Petr Audeía, G Zlín TGM
Uíí Kutálek, G Uherské Hradiště

'
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Severní Morava

Kategorie A1.Jaroslav Hájek, 3.C, GMK, Bílovec
2.-5. Ondřej Kreml, 4.C, GMK, Bílovec

Patrik Hudec, 4.C, GMK, Bílovec
Martin Holík, 4.C, GMK, Bílovec
Nartin Sikora, 4.C, GMK, Bílovec

6.-7. Peír Gotz, 4.C, GMK, Bílovec
Martin Motl, j.D, GMK, Bílovec

8.-9. Lucia Jarešová, 3.A, GJŠ, Přerov
Marek Klus, 4.A, pol. G, Český Téšín

10. Minh На, 4.C, GMK, Bílovec

Kategorie В

1. Václav Cviček, 4.A, GPB, Frýdek-Místek
2. Pavel Ludvík, 2.C, GMK, Bílovec
3. Tomáš Staněk, VI.A, G Ostrava, Volgogradská

4.-5. Marek Schmidt, VI.D, G Karviná
Michal Straka, 6.A, GJW, Prostějov

6. Václav Mácha, 2.C, GMK, Bílovec

Kategorie C

1. Jana Hrudíková, V.C, GJŠ, Přerov
2. Tomáš Gavenčiak, l.C, GMK, Bílovec

3.-5. Jan Matoušek, 5.C, GJW, Prostějov
Michal Tkadlec, V.B, GJŠ, Přerov
Pavel Paloncý, l.A, G Šumperk

6. Zuzana Králová, V.B, G Ostrava Hrabůvka
7. Matěj Hořínek, 5.A, MOG, Bruntál

8.-9. Ondřej Májek, l.C, GMK, Bílovec
Michal Kliment, V.B, G Orlová-Lutyně

10.-13. Aleš Havel, V.A, G Frenštát p. Radh.
Tomáš Babinec, V.A G Frenštát p. Radh.
Zdeněk Jahn, 3A/6, RG Prostějov, Studentská
Veronika Sáňková, l.A, G Hranice nad Mor.
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Kategorie P

1. Michal Malohlava, 4.D, GMK, Bílovec
2. Tomáš Gavenčiak, 4.D, GMK, Bílovec
3. Norbert Požár, 8.A, MOG, Bruntál
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Kategorie С

Texty úloh

C - i - 1

Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n2
je shodné s číslem n. (J. Zhouf)

С - I - 2

Sestrojte lichoběžník, jsou-li dány délky 9 cm a 12 cm jeho úhlopříček,
délka 8 cm střední příčky a vzdálenost 2 cm středů úhlopříček.

(E. Kováč)

C - I - 3

Najděte všechny dvojice přirozených čísel a, 6, pro které platí

n(a, b) + D(a, b) = 63,

kde n(a,b) značí nejmenší společný násobek a D(a,b) největší společný
dělitel čísel a, b. (L. Boček)

С - I - 4

Dokažte, že pro délky a, 6, c stran libovolného trojúhelníku platí

(a2 + b2)c2 — (a2 — b2)2 < 2.
abc2

Pro které trojúhelníky nastane v předchozím vztahu rovnost?
(J. Šimša)

С - I - 5

Třicet maturantů jednoho gymnázia si podalo přihlášku к dalšímu studiu
na některou ze šesti fakult Českého vysokého učení technického. Využili
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možnost podat více přihlášek, a tak polovina žáků podala přihlášku aspoň
na tři fakulty, třetina si podala přihlášku na více než tři fakulty. Na fa-
kultu architektury se s ohledem na talentovou přijímací zkoušku nehlásil
nikdo. Dokažte, že na některou ze zbývajících pěti fakult se přihlásilo
méně než dvacet studentů. (P. Hliněný)

C - I - 6

Do dané kružnice s poloměrem r vepište lichoběžník ABCD s kratší
základnou CD a průsečíkem úhlopříček E tak, aby platilo \BC\ = \CD\
a \AE\ = r. (P. Leischner)

C - S - 1

Najděte všechny trojice a, 6, c přirozených čísel,j>ro které současně platí

n(ab, c) — 28, n(bc, a) = 29, n(ca, b) = 211

kde n(x, у) značí nejmenší společný násobek přirozených čísel x a y.

{P. Černek)

C - S - 2

V rovině je dán čtverec ABCD. Kružnice к prochází body А, В a dotýká
se přímky CD. Označme M (M ф В) průsečík kružnice к a strany BC.
Určete poměr \CM\ : \BM\. (J. Švrček)

C - S - 3

Pro která dvojmístná čísla n je číslo n3 — n dělitelné stem? (J. Zhouf)

C - II - 1

Najděte všechny dvojice přirozených čísel a, 6, pro které platí

a + b + D(a, b) 4- n(a, b) = 50,

kde D(a,b) značí největší společný dělitel a n(a, b) nejmenší společný
násobek přirozených čísel a, b. (J. Šimša)
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С - II - 2

Kružnice k(S, г) а 1(0, R) se vně dotýkají v bodě T. Jejich společná tečna
v bodě T protíná jejich vnější společnou tečnu v bodě M. Dokažte, že
trojúhelník SOM je pravoúhlý, a vyjádřete jeho obsah pomocí poloměrů

(P. Leischner)r, R daných kružnic.

C - II - 3

Najděte všechny dvojice kladných čísel x, у, které jsou řešením soustavy
rovnic

x ■ ую = 195,6,

У ■ xio = 241,7.

Zápis zio značí číslo, které vznikne zaokrouhlením čísla z na desítky.
(S. Bednářová)

С - II - 4

Sestrojte trojúhelník ABC takový, že výška a těžnice z vrcholu C dělí
těžnici z vrcholu A na tři shodné úsečky, je-li dána délka strany AB
a velikost výšky z vrcholu C. (J. Fóldes)
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Řešení úloh

C - I - 1

Budeme hledat nejdříve ta čísla n, pro která je poslední číslice čísla n2
totožná s poslední číslicí čísla n. V tom případě se musí poslední číslice
čísla n rovnat některé z číslic 0, 1, 5 nebo 6.

Vezměme například 6 a označme 6, a předcházející číslice čísla n, tedy
n = 1006 + 10a + 6, n2 = 10 00062 + 2 000a6 + 1 2006 + 100a2 4- 120a + 36.
Tato dvě čísla se shodují v posledním dvojčíslí právě tehdy, jestliže se
20a + 36 rovná 10a + 6 až na celý násobek čísla 100, tedy 10a + 30 má
být násobek 100, což platí pouze pro a = 7. Je tedy n = 1006 + 76,
n2 = 1000062 + 15 2006+ 5 776. Tato dvě čísla se shodují v posledních
třech číslicích, právě když se 2006 + 776 rovná 1006 + 76 až na násobek
čísla 1 000, to znamená, že 6 + 7 má být celý násobek čísla 10, proto
6 = 3. Jedním řešením je číslo n = 376. Podobně bychom dostali další
řešení n = 625, zatímco předpoklad, že poslední číslice je 0 nebo 1, nevede
к cíli.

Výhodnější je ale postup založený na dělitelnosti — dvě čísla se sho-
dují v posledních třech číslicích, právě když je jejich rozdíl dělitelný číslem
1 000. V našem případě má být číslo n2 - n = n(n — 1) dělitelné číslem
1 000 = 23 • 53. Čísla n a n — 1 jsou nesoudělná a menší než 1 000, proto
musí být jedno dělitelné číslem 125 a druhé osmi.

První možnost je tedy: n je lichým násobkem 125, takže se rovná
některému z čísel 125, 375, 625, 875, a současně je n — 1 násobek osmi,
proto n = 625.

Druhá možnost: n je násobek 8 (tedy sudé) a n — 1 lichý násobek 125,
proto n = 376, neboť z čísel 126, 376, 626, 876 je pouze číslo 376 násobek
osmi.

Poznámka. Při tomto postupu hraje významnou roh nesoudělnost
dvou čísel. Připomeňte si pojem největšího společného dělitele čísel a,
6 a ověřte, že ten dělí také každé číslo tvaru ka + /6, kde к, l jsou celá.
Existují-li tedy celá fc, l tak, že ka + Ib = 1, jsou čísla a, 6 nesoudělná.
Je-li d největší společný dělitel čísel a, 6, je a = dp, b = dq, kde p, q jsou
nesoudělná a číslo n = dpq je nejmenším společným násobkem čísel a, 6.
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С - I - 2

Zvolme označení podle obr. 1, KP je střední příčka v trojúhelníku ACD,

D Cc

ик

А а В Е

Obr. 1

proto \КР\ = \\DC|, obdobně \QL\ = \\DC\, \PL\ = \\AB\, takže
\PQ\ = |(a — c) = 2 cm. Protože \KL\ = |(a 4- c) = 8cm, je a =
= 10 cm, c = 6 cm. Nejdříve sestrojíme trojúhelník AEC podle věty
sss, na úsečce .Ai? pak bod B, jím vedeme rovnoběžku s CE. Ta protne
přímku vedenou bodem C rovnoběžně s AE v bodě D.

C - I - 3

Využijeme to, co jsme uvedli v závěru řešení 1. úlohy. Je a = Dp, b =
= Dq, n = Dpq, kde D je největší společný dělitel, n nejmenší společný
násobek čísel a, 6 a čísla p, q jsou nesoudělná. Podle textu úlohy má
platit D( 1 +pq) = 63, takže máme tyto možnosti (bez újmy na obecnosti
předpokládáme, že а й b):

D pq (p,q) (a, 6)
1 62 (1,62), (2,31) (1,62), (2,31)
3 20 (1,20), (4,5) (3,60), (12,15)
7 8 (1,8)
9 6 (1,6), (2,3) (9,54), (18,27)

(21,42)

(7,56)

21 2 (1,2)

Úloha má 8 řešení, nerozlišujeme-li pořadí čísel a, b.
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С - I - 4

Uvedenou nerovnost upravíme na ekvivalentní tvar

0 ^ (o2 — b2)2 — (a2 — 2ab + b2)c2
tj-

0 (a — b)2 • [(a + b)2 — c2].

Protože a+b > c, platí tato nerovnost pro délky libovolného trojúhelníku,
rovnost nastane, právě když a = b, tedy pro rovnoramenné trojúhelníky
se základnou c.

С - I - 5

Nejdříve odhadneme, kolik přihlášek celkem maturanti podali. Polovina,
tj. 15 studentů, podala jednu nebo dvě přihlášky. Z druhé poloviny podalo
10 studentů aspoň 4, tedy 4 nebo 5 přihlášek, a zbývajících pět studentů
podalo přihlášku právě na tři fakulty. Celkem podali nejvýše 15-2 + 5-3+
+ 10 • 5 = 95 přihlášek. Proto nemohli podat na každou fakultu aspoň
20 přihlášek, to by jich muselo být aspoň 100.

Následující rozpis pro případ ukazuje situaci, kdy na každou z pěti
fakult bylo podáno právě 19 přihlášek: A znamená, že žák v příslušném
sloupci podal přihlášku na fakultu uvedenou v řádku, znak - znamená,
že přihlášku nepodal. Studenti jsou rozděleni do tří skupin, první je slo-
žena z 15 studentů, kteří podali dvě přihlášky. Následuje skupina pěti
studentů s třemi přihláškami, třetí skupina má 10 členů, z nichž každý
podal 5 přihlášek:

student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. fakulta: AAAAAA - - -

- A A A A A A2. fakulta

3. fakulta

4. fakulta

5. fakulta: A A A

AAAAAA

AAAAAA
A A A

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30student1.fakulta AAA - - AAAAAAAAAA
AAA-AAAAAAAAAA
-AAAAAAAAAAAAA
- - AAAAAAAAAAAA

2. fakulta -

3. fakulta -

4. fakulta A

5. fakulta AA - - AAAAAAAAAAA
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С - I - 6

Předpokládejme, že jsme již lichoběžník sestrojili (obr. 2), přímka SE je

nutně jeho osou souměrnosti. Označíme-li a velikost úhlu ACD, mají
stejnou velikost i úhly BDC, ABD a CAB, jak plyne ze souměrnosti
lichoběžníku podle přímky SE a z rovnoběžnosti přímek CD a AB. Pro-
tože \BC\ = \CD\, je trojúhelník BCD rovnoramenný, a proto se a rov-
nají i velikosti úhlů CBD a CAD. A protože \ AE\ = |ASj a AB je kolmá
na SE, rovnají se a také velikosti úhlů SAB a SBA. Z rovnoramenného
trojúhelníku ASD plyne, že úhly SAD a SDA mají velikost 3a, velikost
úhlu SDB je 2a (trojúhelník SDB je také rovnoramenný). Z trojúhelníku
ACD pak plyne, že 8a = 180°, a = 22,5°. Tím už je dána konstrukce:
zvolíme na dané kružnici libovolně bod A, jím vedeme přímku p svírající
s přímkou AS úhel 2a = 45°, p protne kružnici к v bodě C různém
od A. Na úsečce AC zvolíme bod E, \AE\ = r. Body В, D sestrojíme
jako body souměrně sdružené к bodům A, C podle přímky SE. Jiná volba
bodu A by vedla pouze к řešení, které by vzniklo otočením řešení již se-

strojeného. Podobně volba druhé přímky vedené bodem A pod úhlem 45°
s přímkou AS vede к řešení souměrně sdruženému к sestrojenému podle
přímky AS.

C - S - 1

Jsou-li čísla a, b, c řešením úlohy, jsou to dělitelé mocnin dvou, a tedy
sama mocniny čísla 2, a = 2r,b = 2s, c = 2ť, kde r, s, t jsou celá
nezáporná čísla. Z rovnosti n(ab, c) = 28 plyne, že čísla t, r + s se rovnají
nejvýše 8, přičemž aspoň jedno z nich se rovná 8. Podobně se čísla s + t, r
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rovnají nejvýše devíti a aspoň jedno z nich je rovno devíti. Dále se jedno
z čísel r + t, 5 rovná 11a žádné z nich není větší než 11. Nemůže však
platit s = 11, protože s + t й 9, takže r + t = 11. Nemůže být r = 9,
neboť má platit r 4- s ^ 8. Proto s + t = 9. Dále máme dvě možnosti:

1) t = 8, odkud r = 3, s = 1, a — 23, b — 2, c = 28,
2) r + s = 8, odkud plyne t = 6, r = 5, s = 3, tedy a = 25, b = 23,

c = 26.
Úloha má dvě řešení.

C - S - 2

Protože střed kružnice к leží na ose strany AB, která je zároveň osou
i protější strany CD, dotýká se kružnice к úsečky CD v jejím středu S
(obr.3). Protože úhel ABM je pravý, je AM průměrem kružnice k,

S cD

x

M

к

A В

Obr.3

a proto je pravý i úhel ASM. Odtud plyne, že \<$DSA\ = 90° —
— | < CSM\ = | < SMC|, proto jsou trojúhelníky SMC a ASD podobné,
takže \CM\ : |CS| = \DS\ : \DA\. Označíme-li a = \DA\ a x = \CM\, je
x : |a = : a, tedy x = \a. Proto \CM\ : \BM\ = 1:3.

Dodejme, že rovnost x = |a lze odvodit i z Pythagorovy věty pro
trojúhelníky AMВ, AMS:

\AB\2 + \BM\2 = \AM\2 = |ASj2 + \SM\2
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takže

a2 + (a- x)2 = (a2 + (§a)2) + ((|a)2 + x2)
odkud po úpravě

x = \a.

Poznámka. Známe-li pojem mocnosti bodu ke kružnici, můžeme na-

psát \CM\ ■ \CB\ = |CSj2, odkud ihned plyne \CM\ = \a.

C - S - 3

Je-li číslo n3 — n = n(n — l)(n + 1) dělitelné číslem 100 = 22 • 52, musí
být jedno z čísel n — 1, n, n + 1 dělitelné číslem 25, protože ze tří po
sobě jdoucích čísel může být nejvýše jedno dělitelné pěti. Dále musí být
buď číslo n dělitelné čtyřmi (čísla n — 1, n + 1 jsou pak lichá), nebo musí
být číslo n liché (čísla n — 1, n + 1 jsou sudá a jejich součin je dělitelný
čtyřmi). Máme tedy tyto možnosti:
n = 25 vyhovuje, neboť je liché,
n — 75 vyhovuje, neboť je liché,
n = 50 nevyhovuje, neboť je sudé, ale není dělitelné čtyřmi,
n — 1 = 25, n — 26 nevyhovuje, neboť je sudé, ale není dělitelné čtyřmi,
n — 1 = 50, n = 51 vyhovuje, neboť je liché,
n — 1 = 75, n = 76 vyhovuje, neboť je dělitelné čtyřmi,
n -f 1 = 25, n — 24 vyhovuje, neboť je dělitelné čtyřmi,
n + 1 = 50, n = 49 vyhovuje, neboť je liché,
n + 1 = 75, n = 74 nevyhovuje, neboť je sudé, ale není dělitelné čtyřmi,
n + 1 = 100, n = 99 vyhovuje, neboť je liché.

Úloha má sedm řešení.

C - II - 1

Položme a = Dk, b = Dl, kde D = D(a,b) je největší společný dělitel
čísel a, b, takže čísla к, l jsou nesoudělná. Je pak n = n{a, b) = Dkl a má
platit D(k + / + 1 + kl) = 50, tedy (1 + fc)(l + l)D = 50. Najdeme proto
všechny rozklady čísla 50 na součin tří přirozených čísel D, 1 + к, 1 + l,
z nichž poslední dvě jsou větší než 1. Bez újmy na obecnosti můžeme
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předpokládat, že a ^ 6, tj. к ^ /. Dostaneme tak tyto možnosti:

D 1 + к 1 +1 к l ba

1 2 25 1 24 1 24

1 5 10 4 9 4 9

5 2 5 4 5 201

Pro D = 2 dostaneme к = l = 4, ale fc, l mají být nesoudělná.
Pro D — 10, 25 nebo 50 dostaneme к = 0, což nevede к žádnému

řešení.

Úloha má šest řešení: {a, 6} = {1,24}, {a, b} = {4,9}, {a, b} = {5, 20}.

С - II - 2

Označme A', L body dotyku té společné tečny obou kružnic, na které leží
také bod M a která je různá od společné tečny v bodě T (obr. 4). Ze sou-
měrnosti podle přímky MS plyne shodnost úhlů KMS a TMS a ze sou-
měrnosti podle přímky OM plyne shodnost úhlů LMO a TMO. Součet
těchto čtyř úhlů je 180°, proto | <SMO\ = \ <SMT\ + \ <lTMO\ = 90°.
Tím je vyřešena první část úlohy.

Užitím Pythagorovy věty pro trojúhelníky SOM, STM a OTM do-
staneme pro výšku v = \TM\ trojúhelníku SOM rovnost

(r + R)2 = (r2 + v2) + (R2 + v2),

odkud v2 = Rr. (Tento vztah plyne i přímo z Eukleidovy věty pro troj-
úhelník SOM.)
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Obsah trojúhelníku SOM je tedy \{R + r)\fŘř.

C - II - 3

Jsou-li x, у řešením, musí být x ^ 5 а у ^ 5, jinak by se nebo ую
rovnalo nule. Protože ую ^ 10, je x = 195,6 : ую ^ 19,56, takže xw se
rovná 10 nebo 20. V prvním případě je у = 24,17, ую = 20 a x = 9,78,
v druhém případě je у = 12,085, ую = 10 а x = 19,56. Úloha má právě
dvě řešení:

{x, y) = (19,56; 12,085) a (x, y) = (9,78; 24,17).

С - II - 4

Předpokládejme, že trojúhelník ABC splňuje podmínky úlohy. Označme
S střed strany ВС, M střed strany AB, T těžiště trojúhelníku, P patu
výšky vedené bodem С, К průsečík těžnice AS a výšky CP. Protože
těžiště T dělí úsečku AS v poměru 2 : 1, tj. platí \AT\ = 2|TSj, musí být
bod К středem úsečky AT (obr. 5). Z rovnosti \ AK\ = \KT\ = |TSj navíc
plyne, že \AP\ = \PU\ = \UV\, kde 17, V jsou kolmé průměty bodů T, S
na přímku AB. Jelikož S je střed strany BC, je V střed úsečky PB. Proto
\AP\ = ^\AB\. Odtud již plyne konstrukce: Sestrojíme úsečku AB dané
délky, na ní bod P tak, aby \AP\ = ^\AB\. Bodem P vedeme kolmici
к ЛВ, na ni naneseme od bodu P danou výšku a dostaneme tak bod C,
a tím i trojúhelník ABC.

A U M VP В

Obr. 5

Důkaz správnosti konstrukce. V sestrojeném trojúhelníku ABC uva-

žujme těžnice CM a AS, těžiště T a průsečík К úseček AS, CP. Označme
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U, V kolmé průměty bodů T, S do přímky AB. Protože \CT\ = 2\TM\,
je \PU\ = 2\UM\, a proto \PU\ - \\PM\. Označíme-li c = \AB\, je
\AP\ = 1c, \PV\ = \(\AB\ - \AP\) = §c, \PM\ = |c - |c = ic,
\PU\ = \\PM\ = \c a |[/y| = IPV4 - \PU\ = \c. Protože \AP\ =
= |Př7| = \UV\, je také \AK\ = \KT\ = |T5|. Tím je správnost kon-
strukce dokázána.
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Kategorie В

Texty úloh

В - I - 1

Řešte v oboru kladných čísel soustavu rovnic

3x + y\o = 598,6,
xio + 2у = 723,4,

v níž x\o a ?/io označují po řadě čísla x а у zaokrouhlená na desítky.
(S. Bednářová)

В - I - 2

Na povrchu krychle ABCDEFGH je sestrojena lomená čára složená ze

čtyř shodných úseček ve stěnách ABFE, BCGF, CDHG a GHEF, která
vychází z vrcholu A a končí ve vrcholu E. Určete, v jakém poměru dělí
tato lomená čára hranu CG. (J. Zhouf)

В - I - 3

Do každého pole čtvercové tabulky nxn vepíšeme jedno z čísel 1,2,..., n

tak, aby v každém řádku i v každém sloupci byla buď všechna čísla stejná,
nebo všechna různá. Příkladem pro n = 5 je následující tabulka

45 1 2 3

3 3 3 33

4 1 2 5 3

2 41 5 3

4 1 3

Označme S součet všech čísel tabulky. Kolik různých hodnot S pro dané n

existuje? (J. Šimša)

37



В - I - 4

Nechť к je kružnice opsaná trojúhelníku ABC, D je průsečík těžnice na
stranu AB s kružnicí k. Tečny ke kružnici к v bodech А, В, C, D vytvářejí
čtyřúhelník PQRS. Zjistěte, pro které trojúhelníky ABC je čtyřúhelník
PQRS tětivový. (J. Fóldes)

В - I - 5

Určete všechny polynomy P, které pro každé reálné číslo x splňují rovnost

P(2x) = 8P(x) + (x — 2)2.

(P. Černek)

В - I - 6

Sestrojte trojúhelník ABC s obsahem 18 cm2 a následující vlastností:
obvod každého pravoúhelníku KLMN, jehož vrcholy JT, L leží na úseč-
ce BC a body M, N po řadě na úsečkách AC, AB, je roven třem pětinám
obvodu trojúhelníku ABC. (S. Bednářová)

В - S - 1

Najděte všechna trojmístná čísla n, jejichž druhá mocnina končí stejným
trojčíslím jako druhá mocnina čísla 3n — 2. (J. Šimša)

В - S - 2

Je dán tětivový čtyřúhelník ABCD. Označme E průsečík přímek BC
a AD. Leží-li průsečík úhlopříček AC a BD na ose úhlu AEB, je troj-
úhelník ABE rovnoramenný. Dokažte. (E. Kováč)

В - S - 3

Určete mnohočleny P a Q takové, že pro všechna reálná čísla x platí

Q(x2) = {x + l)4 - ж(Р(ж))2.
(P. Černek)
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В - II - 1

Určete všechna reálná čísla p taková, že pro libovolná kladná čísla x, у

platí nerovnost
x3 + py3

^ xy.
х + У

(J. Bábela)

В - II - 2

Je dán trojúhelník ABC. Sestrojte rovnoběžník KLMN tak, aby jeho
vrcholy К a L ležely na straně AB, vrchol M na straně BC, vrchol N na
straně АС a aby trojúhelníky AKN, LBM a NMC měly stejné obsahy.

(J. Šimša)

В - II - 3

Určete všechna přirozená čísla n, pro která je podíl

(n2)io
(nio)2

celé číslo. Zápis zw značí číslo, které vznikne zaokrouhlením čísla 2 na

(S. Bednářová)desítky.

В - II - 4

Najděte všechny ostroúhlé trojúhelníky ABC, jejichž těžiště T splývá
s průsečíkem výšek trojúhelníku PQR, přičemž body P, Q, R jsou po řadě
průsečíky polopřímek opačných к polopřímkám ТА, ТВ, TC s kružnicí
opsanou trojúhelníku ABC. (J. Fóldes)
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Řešení úloh

В - I - 1

Nechť

x = гею + m, у = ую + n, —5 ^ m, n ^ 5,
a = Зжю + ую, & = % + 2ую-

(1)
(2)

Čísla a, b jsou násobky deseti a původní soustavu rovnic můžeme přepsat
ve tvaru

(3)b = 723,4 - 2n.

Čísla m, n jsou z intervalu (—5,5), proto a G {590,600,610} a 6 G
G {720,730}. Dále ze (2) dostáváme

xio = |(2a - 6)

a = 598,6 — 3m,

Ую = |(36 - a). (4)

Vidíme, že čísla 2a — b а 36 — a musejí být dělitelná padesáti, a proto při-
cházejí v úvahu jen dvojice [a, b] = [590, 730], [a, b] = [610,720]. Nalezené
hodnoty čísel a, b postupně dosadíme do (4) a (3). Pomocí (1) určíme x
a y:

V prvním případě je ii0 = 90, ую = 320, m = ||, n = —3,3, x =
= = 92,86 а у = 316,7, ve druhém xw = 100, ую = 310, m = —3,8,
n = 1,7, x = 96,2 а у = 311,7.

В - I - 2

Označme К, L, M body dané lomené čáry, jež po řadě leží na úseč-
kách BF, CG, GH. Délku hrany krychle položme rovnu jedné a patu
kolmice z bodu К na hranu CG označme P (obr. 6). Pravoúhlé troj-
úhelníky АКБ, KLP a EMH se shodují v přeponách AK, KL a EM
a v jednotkových odvěsnách AB, KP a EH. Jsou tedy podle věty Ssu
shodné a platí |BK\ = \LP\ = \MH\ = u. Z pravoúhlých trojúhel-
níků LMG a ABK (\GL\ = 1 — 2u, \GM\ = 1 — u) vyjádříme pomocí
Pythagorovy věty druhé mocniny délek jejich přepon a porovnáme je:
1 + it2 = (1 — и)2 + (1 — 2u)2.

Rovnice má jediný kořen menší než 1: и = |(3 — \/5). Poměr \CL\ :
: \LG\ = 2u : (1 — 2u) = |(\/5 — l) je roven poměru zlatého řezu.

Pro polohu bodu L na hraně CG je ještě jedna možnost, znázorněná
na stejné části sítě krychle na obr. 7. Zřejmě jsou pak body CaL totožné
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Obr. 6 Obr. 7

= \BK\ = \GM\ = \MH\ = §, přičemž poměr \CL\ : \LG\ vyjdeа и

nulový.

В - I - 3

Podle způsobu obsazení řádků rozdělíme všechny zkoumané tabulky do
tří skupin:

(а) V žádném řádku tabulky není n stejných čísel. Sčítáním čísel po
řádcích v této situaci zjistíme, že

S = n(l + 2 + ... + n) = ^n2(n + !)• (5)

(b) V právě jednom řádku tabulky je n stejných čísel а. V každém
z ostatních řádků jsou čísla 1, 2, ..., n, takže S = na+ (n — 1)(1 + 2 +
+ ... + n) a po úpravě

1
5 — na +-n(n2 — 1), a G {1,2,... ,n}. (6)

(с) V některém řádku tabulky je n stejných čísel b a v jiném n stejných
čísel c. Pokud je b = c, vyskytuje se číslo c v každém sloupci aspoň
dvakrát, a tedy právě n-krát. V tom případě platí

S = n2c, c G {1,2, ...,n}. (7)

Pokud jsou 6, c různá čísla, jsou i v každém sloupci tabulky dvě různá
čísla, a tedy jsou v něm všechna čísla navzájem různá. Sčítáním po sloup-
cích zjistíme, že součet S má hodnotu (5).
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Dosazením daného n a postupně všech možných hodnot čísel a, c do
vztahů (5), (6) a (7) dostaneme celkem 2n + 1 součtů, z toho n součtů
typu (6) je navzájem různých a n součtů typu (7) je navzájem různých.
Musíme tedy ještě vyšetřit, zda není možná pro nějaké hodnoty čísel a,
c rovnost součtů (5) а (6), nebo (5) а (7), nebo (6) а (7).

V prvém případě z rovnice \n2{n + 1) = na + \n{n2 — 1) zjistíme, že
rovnost nastane pro a = |(n + 1), to znamená, jen když n je liché.

Ve druhém případě dojdeme analogicky к závěru, že (5) a (7) se rov-

nají opět jen pro n liché a c— |(n -f 1).
Ve třetím případě upravíme rovnici na + \n{n2 — 1) = n2c na

tvar 2a — 1 = n(2c — n), z něhož plyne, že pokud taková dvě čísla
a, c e {1,2,..., гг.} existují, je číslo n nutně liché a číslo 2a — 1 je jeho
násobkem. Je však 2a — 1 ^ 2n — 1, proto může být jedině 2a — 1 = n
a 2c — n = 1. Odtud a = |(n + 1) = c.

Shrnutím všech tří situací můžeme konstatovat, že pro n sudé je všech
2n + 1 součtů S různých, kdežto pro n liché se mezi těmito součty vy-

skytují právě tři stejné.
Odpověď: Součet S všech čísel tabulky nabývá buď 2n + 1 hodnot

(když n je sudé), nebo 2n — 1 hodnot (když n je liché).

В - I - 4

Nechť O je střed kružnice opsané trojúhelníku ABC. Při označení podle
obr. 8 jsou úhly РАО a PDO pravé a velikost středového úhlu AOD
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je dvojnásobkem velikosti příslušného obvodového úhlu ACD. Ve čtyř-
úhelníku APDO je tedy \<$APD\ = 180° — 2\<$ACD\. Analogicky
\<$BRC\ = 180° — 2\<$.BAC\. Čtyřúhelník PQRS je tětivový, právě když
\<SPQ\ + \<SRQ\ = 180°, tj. 180° - 2\^ACD\ + 180° - 2\^BAC\ =
= 180°. Odtud vychází pro to, aby čtyřúhelník PQRS byl tětivový, nutná
a postačující podmínka \ <$ACD\ + \ <$BAC\ — 90°. Při označení podle
obr. 8 to znamená \<$.ACE\ + \ <AEAC\ — 90°, tj. těžnice CE je kolmá
na AB, jak je vidět z trojúhelníku АСЕ. Je tedy \AC\ = \BC\, protože
trojúhelníky AEC а ВЕС jsou shodné podle věty sus.

Závěr: Čtyřúhelník PQRS je tětivový jen tehdy, je-li trojúhelník
ABC rovnoramenný se základnou AB.

В - I - 5

Stupeň polynomu P je aspoň dva. Nechť nejprve P(x) = ax2 + bx + c.
Dosazením tohoto vyjádření do vztahu v zadání dostáváme

4аж2 + 2bx + с = (8a 4- l)x2 + (86 — A)x + 8c + 4.

Porovnáním koeficientů u stejných mocnin x na levé a pravé straně do-
staneme 4a = 8a + 1, 26 = 86 — 4 a c = 8c + 4. Odtud а = — 6 = |,
c =

4
7'

Je-li dále stupeň n polynomu P větší než dva, zjistíme analogicky, že
jeho člen anxn s nejvyšší mocninou x splňuje vztah 2nan = 8an, tedy
n — 3, přičemž an ф 0 je libovolné. Koeficienty mnohočlenu P u mocnin
rr2, xl a x° vyjdou stejně jako v předchozí situaci.

Závěr: Úloze vyhovují všechny mnohočleny P(x) = ax3 — \x2 + \x— |,
kde a je libovolné reálné číslo.

В - I - 6

Uvažujme dva pravoúhelníky KLMN, KiL\M\Ni vepsané do trojúhel-
niku ABC uvedeným způsobem. Nechť \KL\ < |KiLi|. Označme Z
průsečík rovnoběžky s AC vedené bodem N s úsečkou N\M\, Q patu
výšky z vrcholu A na stranu BC a X, Y průsečíky hranice pravoúhel-
niku KLMN s úsečkou Ni Mi (obr. 9). Obvody obou pravoúhelníků jsou
si rovny, právě když |AfiAj -f |FMi| = |A^A|. To je ekvivalentní s pod-
mínkou \NX\ = \NiZ\, neboť \XZ\ = |FMi|. Trojúhelníky BCA, NiZN
i NMA si jsou podobné, proto a = va. A protože S = a • |va = 18 cm2,
plyne odtud rovnost a = va = 6 cm.

43



В Кг К QLLiC

Obr. 9

Obvod pravoúhelníku KLMN je 2|NM\ + 2\KN\ = 2\AR\ + 2\RQ\ =
= 2va = 2a = 12 cm. Obvod 2s trojúhelníku ABC je proto | • 12 cm =
= 20 cm. Odtud b + c = 2s — a = 14 cm.

Máme tedy sestrojit trojúhelník ABC, je-li dáno a, va, b + c.
Uvedeme několik postupů řešení.

1. možnost: Snadno vypočteme s = 10 (cm), s — a = 4, s — b = 10 — 6,
s — c — b — 4. Po dosazení do Heronova vzorce pro obsah trojúhelníku
ABC dostaneme -y/40 • (10 — 6) • (6 — 4) = 18, což vede po úpravě na
kvadratickou rovnici 1062 — 1406 -f 481 = 0. Jejím řešením obdržíme

3 3
7 -=, c = 7+-=.

уть уш
6 = 7+-1= nebo 6 =

vlo’ c
Obě řešení vyhovují a snadno je ze známých délek stran sestrojíme. Délku
d = 3/-\/T0 nalezneme eukleidovsky jako čtvrtou geometrickou úměrnou
tak, že vztah přepíšeme na tvar d : 1=3: y/lO. Nejdříve ovšem sestro-
jíme \/To např. pomocí Eukleidovy věty o výšce.

2. možnost: Nechť k(0,r) je kružnice vepsaná trojúhelníku ABC a T
její bod dotyku se stranou AC (obr. 10). Pravoúhlý trojúhelník AOT mů-
žeme sestrojit, neboť známe délky jeho odvěsen \ AT\ = x = s — a = 4 cm,

\TO\ = r = S/s = 1,8 cm, dále kružnici k(0,r) a nad přeponou АО
ještě jeden pravoúhlý trojúhelník s odvěsnou AE délky va — r = 4,2 cm.

(Tento trojúhelník zřejmě existuje — výpočtem délky přepony trojúhel-
niku AOT pomocí Pythagorovy věty lze ověřit, že \AO\ > va — r.)
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Úsečku AE doplníme podle obrázku na úsečku AQ délky va. Kolmice
na AQ v bodě Q je přímka t. Její průsečíky s tečnami z bodu A ke
kružnici к jsou hledané vrcholy В, C. Úloha má dvě řešení. Vzhledem
к jednoznačně sestrojenému trojúhelníku AOT nalezneme sice konstrukcí
pomocí Thaletovy věty dva trojúhelníky
AOE а АОEi, každý z výsledných troj-
úhelníků ABkCk (к = 1,2,3,4) se však
v souhlasně označených prvcích shoduje
s některým z překrývajících se trojúhel-
níků AB1C1, AB2C2 na obr. 10.

Q Ci =B2C2 — вi t в c

Obr. 10 Obr. 11

3. možnost: Úsečka CU na obr. 11 má délku b + c. Trojúhelník UBA
je tedy rovnoramenný se základnou UB, a proto \ <$BUC\ = Tento
úhel umíme sestrojit podle předchozího postupu, neboť je to úhel OAT
na obr. 10. Sestrojíme tedy nejprve trojúhelník CUB, ve kterém známe
\BC\, \CU\ a \<$CUB\. Bod A je pak průsečík úsečky CU s osou
strany BU. Konstrukce vede opět na dvě řešení.

В - s - 1

Jestliže číslo n vyhovuje podmínce úlohy, existuje přirozené číslo к takové,
že

(3n - 2)2 - n2 = 1 OOOfc.
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Levou stranu uvedené rovnosti rozložíme na součin podle vzorce pro roz-
díl čtverců a po snadné úpravě dostaneme

(2n - 1 ){n - 1) = 250к = 2 • 53 • к.

Čísla 2n — 1 a n — 1 jsou nesoudělná (je 2n — 1 = 2(n — 1) 4-1),
přitom první z nich je liché, takže druhé musí být sudé. Hledáme
tedy lichá trojmístná čísla n taková, že buď n — 1 je násobkem 250,
nebo 2n — 1 je lichým násobkem čísla 125. V prvním případě dosta-
neme n E {251,501,751} a ve druhém vidíme, že musí být 2n —
- 1 € {375,625,875,1 125,1375,1625,1 875}, tedy (protože n je liché)
n E {313,563,813}. Celkem má úloha uvedených šest řešení.

В - S - 2

Označme F průsečík úhlopříček AC a BD (obr. 12). Jestliže je přím-
ka EF osou úhlu AEB, jsou úhly AEF a BEF shodné. Navíc jsou

shodné i úhly EAF a EBF, neboť jsou to obvodové úhly příslušné téže
tětivě CD. Trojúhelníky AFE a BFE se shodují ve společné straně EF,
jsou tedy shodné podle věty usu, \AE\ = \BE\, a trojúhelník ABE je
tudíž rovnoramenný.
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В - S - 3

Předpokládejme, že P je mnohočlen stupně n. Cleny polynomu Q(x2)
obsahují jen sudé mocniny x a polynom x-P2(x) je lichého stupně 2n + l.
Protože má platit Q(x2) = (x 4- l)4 - x ■ P2(x)) vidíme, že nemůže být
2n 4-1 > 4. Je tedy n^la

P(x) — ax + b, Q(x2) = (x + l)4 - x{ax 4- b)2. (1)

Po úpravě dostaneme Q(x2) = ж4 + (4 — a2)x3 + (6 — 2ab)x2 + (4 — b2)x+l.
Koeficienty při lichých mocninách x jsou rovny nule, proto a,b € {-2,2}
a Q(x2) — x4 4- (6 — 2ab)x2 + 1. Dosazením každé ze čtyř možných dvojic
čísel a, b do (1) nalezneme všechna čtyři řešení úlohy:

P(x) = 2x + 2 a Q(x) = x2 — 2x + 1,
P{x) = 2x — 2 a Q(x) = x2 + Ых + 1,
P{x) = —2x 4- 2 a Q(x) = x2 + Ых + 1,
P(x) = —2x — 2 a Q(x) — x2 — 2x + 1.

В - II - 1

Nerovnost je pro kladná x, у zřejmě ekvivalentní se vztahem

y2{py - x) - x2(y - x) ^ 0.

Je-li p ^ 1, dostáváme

y2(py - x) - x2(y -x)^ y2(y - x) - x2(y - x) = (x + y)(y - x)2 ^ 0.

Je-li však p < 1, neplatí daná nerovnost například pro x = у = 1.
Závěr: Daná nerovnost je splněna pro každá dvě kladná čísla x, y,

právě když p ^ 1.
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В - II - 2

Předpokládejme, že rovnoběžník KLMN má požadované vlastnosti.
V posunutí o vektor ЛШ (obr. 13) je obrazem trojúhelníku AKN troj-

C

n

N/<x\ x (P\m

m

(3a a

А У К D L У В

Obr. 13

úhelník DLM. Vzniklý trojúhelník DBM má mít (dle zadání) dvakrát
větší obsah než trojúhelník NMC a je tomuto trojúhelníku podobný
(věta uu). Koeficient к podobnosti, která převádí trojúhelník DBM na

trojúhelník NMC, je odmocninou z podílu obsahů těchto trojúhelníků
a zároveň podílem délek libovolných dvou v podobnosti si odpovídají-

\BM\cích úseček: к = y/2 = Z podmínky rovnosti obsahů trojúhelníků\MC[
LBM, DLM a AKN, jejichž výšky na strany LB, DL a AK jsou shodné,
navíc plyne \LB\ = \DL\ = \AK\.

Odtud plyne konstrukce: Na úsečce BC sestrojíme bod M tak, aby
\BM\ : \MC\ = y/2 : 1. Rovnoběžka s přímkou AC vedená bodem M
protne úsečku AB v bodě D. Vrchol N nalezneme jako průsečík úsečky
AC s přímkou, která prochází bodem M rovnoběžně s AB. Bod L sestro-
jíme jako střed úsečky DB, bod К je pak obrazem bodu L v posunutí
o vektor MN.

Výsledkem konstrukce je rovnoběžník KLMN (jediný pro každý troj-
úhelník ABC), o němž se snadno přesvědčíme, že má požadované vlast-
nosti.

Jiné řešení. Z rovností obsahů trojúhelníků AKN a LBM se shod-
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nými výškami na strany AK a LB plyne shodnost těchto stran. Označme
(obr. 13) \AB\ = c, \NM\ = \KL\ = x, \BM\ = m a |MC| = n
a |LB| = \ AK\ = y; zřejmě c = 2y + x, takže у = |(c — x). Trojúhelníky
NMC a LBM mají stejné obsahy, je tedy ^xnsin/3 = \ym sin (3 neboli
xn = ym. Po dosazení za у a úpravě máme

x(m + 2n) = mc. (1)

Z podobnosti trojúhelníků NMC a ABC plyne úměra x : c = n :
: (m + n) neboli

(2)nc = x(m + n)
takže z rovnosti součinu levých a součinu pravých stran vztahů (1) a (2)
dostaneme m = n>/2, tj

podobně jako v předchozím řešení.

\BM\
n = \/2. Odtud vyplývá konstrukce= m :'

\MC\

В - II - 3

a n = 10k+r, kde к je celé nezáporné a r je poslední
{n io)2

číslice čísla n, tj. r 6 {0,1,2,..., 9}. Zřejmě je m celé pro všechna n, která
mají r = 0 a A: > 0. Pokud je к = 0 a r G {1,2,3,4}, není zlomek m
definován.

Nechť je к > 0 a r e {1,2}. Pak
není celé číslo.

Pro fc>0ar = 3 platí m =

Položme m --

100k2 + 20kr
= 1 + — cožm =

100A;2 5к

I00k2 + 60к + 10 6k + 1
. Čitatel= 1 +

100P ЮР
posledního zlomku není na rozdíl od jmenovatele dělitelný deseti, tedy m
není celé číslo.

ЮОР + 80A; + 20 4k + 1
. OdtudJe-li к > 0 a r = 4, máme m —

= 1 +
100P

4k + 1
_ 4fc + 1 4k + 1 _ 1

5P {4k + k)k < (4A: + l)k к’

5P

m = 2 pro /c = 1. Pro A: > 1 je

a tak m nemůže být celé číslo.
Je-li konečně r G {5,6, 7,8,9}, dostáváme

ÍOOP + 20kr + (r2)io ^ 100A:2 + 200A; + 100 _

100(fc+ l)2 < 100(A: +1)2 “ ‘
m =

Závěr: m je celé číslo pro všechna přirozená čísla n, jejichž dekadický
zápis končí číslicí 0, a pro n = 14.
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В - II - 4

Pravoúhlé trojúhelníky LRP a KQP na obr. 14 jsou podobné, protože

mají společný ostrý úhel při vrcholu P. Využijeme-li navíc, že obvo-
dové úhly příslušné témuž oblouku jsou shodné, dostáváme \<iCAP\ =
= \<CRP\ = \<LRP\ = \<KQP\ = \<BQP\ = \<BAP\. Bod E je
střed úsečky BC, tětivy CP a BP příslušné shodným obvodovým úhlům
ACP a BAP jsou shodné. Trojúhelník CEP je tedy shodný s trojúhel-
níkem ВЕР podle věty sss, tudíž úhly AEB а ВЕР stejně jako úhly
AEB a AEC jsou shodné (a pravé). Odtud plyne i shodnost trojúhelníků
AEC a AEB podle věty sus. Je tedy \AC\ = \AB\. Analogicky zjistíme,
že \AB\ = \BC\.

Závěr: Daným podmínkám vyhovují jen rovnostranné trojúhelníky
ABC.

Poznámka. Rovnost \CP\ = \BP\ lze dokázat i jinak, například na
základě poznatku, že obrazy ortocentra v souměrnostech podle stran troj-
úhelníku leží na kružnici trojúhelníku opsané. Těžiště T trojúhelníku
ABC je zároveň ortocentrem trojúhelníku PQR. Proto jsou obrazem
úsečky TP v osových souměrnostech podle přímek PQ a PR po řadě
úsečky CP a BP, které jsou tudíž shodné.
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Kategorie A

Texty úloh

A - I - 1

V urně jsou jen bílé a černé kuličky, jejichž počet zaokrouhlen na stovky
je 1 000. Pravděpodobnost vytažení dvou černých kuliček je o větší
než pravděpodobnost vytažení dvou bílých kuliček. Kolik bílých a kolik
černých kuliček je v urně? (Pravděpodobnost vytažení kterékoli kuličky
je stejná.) (P. Černek)

A - I - 2

Nechť ai, d2 jsou přirozená čísla a nechť pro každé přirozené n ^ 2 je
číslo on+1 o 1 větší než největší lichý dělitel součtu an + an_i. Dokažte,
že posloupnost 01,02,03,... je od určitého členu počínaje periodická.
Najděte všechny takové posloupnosti, jež jsou periodické už od prvního
členu. (J. Bábela)

A - I - 3

V rovině je dán ostroúhlý trojúhelník ABC. Paty výšek z vrcholů A,
В označme po řadě Ai, B\. Tečny kružnice opsané trojúhelníku CA\B\
sestrojené v bodech A\, B\ se protínají v bodě M. Dokažte, že kružnice
opsané trojúhelníkům AMВx, BMA\, CA\B\ procházejí jedním bodem.

(J. Švrček)
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A - I - 4

V oboru reálných čísel řešte soustavu nerovnic

sin x + cos у ^ >/2,
sin у + cos z ^ y/2,
sin 2 + COS X ^ V2.

(J. Švrček)

A - I - 5

Najděte všechny funkce /: IR -» IR takové, že pro všechna reálná čísla x,

у platí
x2 + У2 + 2Джу) = /(x + y) • (/(x) + f(y)).

(E. Kováč)

A - I - 6

Sestrojte lichoběžník ABCD, jsou-li dány délky jeho ramen \BC\ =
= 4,5 cm, \DA\ = 3cm a velikost 75° úhlu, který svírají přímky BC
a AD, platí-li navíc \AB\ ■ \CD\ = \AC\2. (E. Kováč)

A - S - 1

Najděte všechna reálná čísla p, pro která má soustava nerovnic

25 + 2x2 13y + 10z — p,

25 + 3y2 6z + lOx,
25 + 4^2 ^ 6x + 5y 4- p

(J. Švrček)s neznámými x, y, z řešení v oboru reálných čísel.

A - S - 2

Je dán lichoběžník ABCD se základnou AB délky a, v němž oba úhly
ABC, ADВ jsou pravé. Na straně AB leží bod M tak, že úsečka MD
je kolmá na АС a úsečka MC je kolmá na BD. Určete délky ostatních
stran lichoběžníku. (J. Zhouf)
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A - S - 3

Najděte všechna čtyřmístná čísla abcd, která jsou dělitelná každým
z dvojmístných čísel ab, bc, cd, jejichž číslice a, 6, c, d jsou liché a ne

všechny stejné. (J. Šimša)

A - II - 1

Najděte nejmenší čtyřmístné číslo n, pro něž má soustava

x3 +y3 + y2x + x2y = n,

x2 + y2 + x + y = n+ l

(J. Zhouf)pouze celočíselná řešení.

A - II - 2

Určete všechna reálná čísla saí, pro která je grafem funkce

x2 — 4x + s
f{x) = t\x — 1| + x + 7

(P. Černek)lomená čára složená ze dvou polopřímek.

A - II - 3

Je dána kružnice k(S,r) a na ní body M, N takové, že úhel MSN je
ostrý. Libovolným bodem X menšího z oblouků MN veďme rovnoběžku
s přímkou MS a označme Y její průsečík s úsečkou SN. Sestrojte takový
bod X, pro který je obsah trojúhelníku SXY maximální. (P. Černek)

A - II - 4

Určete všechny funkce /: IR —> IR takové, že pro všechna reálná čísla x
а у platí

f(x2 + f{y)) ={x- y)2 ■ f{x + y).

(P. Calábek)
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A - III - 1

Určete všechny mnohočleny P takové, že pro všechna reálná čísla x platí

(P(z))2 + P{-x) = P{x2) + P{x).

(P. Calábek)

A - III - 2

V rovině je dán trojúhelník PQX, kde \PQ\ = 3cm, \PX\ = 2,6 cm,

\QX\ = 3,8cm. Sestrojte pravoúhlý trojúhelník ABC tak, aby se jemu
vepsaná kružnice dotýkala přepony AB v bodě P, odvěsny BC v bodě Q
a aby bod X ležel na přímce AC. (J. Šimša)

A - III - 3

Najděte všechny trojice reálných čísel a, 6, c, pro které je množinou řešení
nerovnice

\/2x2 + ax + b > x

s neznámou x množina (—oo, 0) U (1, oo).

— c

(P. Černek)

A - III - 4

V jistém jazyce je n písmen. Skupina písmen (napsaných za sebou) je
slovo, právě když se mezi žádnými dvěma stejnými písmeny nenacházejí
dvě stejná písmena. Určete počet všech slov maximální délky.

(К. Černeková)

A - III - 5

Z papíru byl vystřižen rovnoramenný lichoběžník C1AB2C2 s kratší zá-
kladnou B2C2. Patu kolmice ze středu D ramena C1C2 na základnu AC\
označíme B\. Po přehnutí papíru podél úseček DB\, AD a AC2 se body
Ci, C2 přemístily v prostoru do jednoho bodu C a body В i, B2 do
bodu B. Vznikl tak model čtyřstěnu ABCD s objemem 64cm3. Určete

(P. Leischner)délky stran původního lichoběžníku.
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A - III - 6

Jsou dána přirozená čísla ai,a2,...,an a funkce /: Z —>■ IR taková, že
f(x) = 1 pro každé celé x < 0 a

f{x) = 1 - f(x - ai) f{x - a2)... f(x - an) (1)

pro každé celé x ^ 0. Dokažte, že existují přirozená čísla s a t taková, že
pro každé celé x > s platí f(x + t) = f{x). (P. Kaňovský)
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Řešení úloh

A - I - 1

Nechť je v urně n kuliček, z toho 6 bílých (a n — b černých). Potom
pravděpodobnost vytažení dvou bílých kuliček je rovna podílu

b

b(b- 1)
n(n — 1) ’

2

n

2

zatímco pravděpodobnost vytažení dvou černých kuliček podílu

n — b

(n — b)(n — b — 1)2

n(n - 1)n

2

Podle zadání úlohy platí rovnost

(n — 6)(n — b — 1) Kb-l)
|

n(n — 1) 43’
17

71 (n - 1)

kterou lze algebraickými úpravami zjednodušit do tvaru 436 = 13n (pro
n £ {0,1} jde o ekvivalentní rovnice). Odtud vzhledem к nesoudělnosti
čísel 13 a 43 plyne, že přirozená čísla паб jsou tvaru n = 43к a 6 = 13k,
kde к je vhodné přirozené číslo. Podle zadání pro číslo n platí odhady
950 ún< 1050, z nichž zjistíme, že к £ {23,24}. Pro к = 23 vychází
n = 989 a 6 = 299 (tehdy n — b = 690), zatímco hodnotě к = 24 odpovídá
n = 1 032 a 6 = 312 (tehdy n — 6 = 720).

Odpověď: Úloha má dvě řešení — v urně je buď 299 bílých a 690 čer-
ných, nebo 312 bílých a 720 černých kuliček.

A - I - 2

Zvolíme-li přirozená čísla ai, 02 libovolně, jsou všechny následující členy
аз, a4, ... zkoumané posloupnosti jednoznačně určeny rekurentním před-
písem

an+i — 1 + (ап + а )* (n = 2,3,...), (1)n — 1
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kde a* značí největší lichý dělitel přirozeného čísla a. Vypočtěmě pro
několik „počátečních41 dvojic ai, as tolik prvních členů an, ze kterých
už bude jasné, kde začíná a jak vypadá perioda dotyčné posloupnosti.1
Několik příkladů uvádíme v následující tabulce.

a i a2 as <24 a§ a§ a7 a% ад аю .

1 1 2 4 4 2 4 4 2
214664664
124424424
132622222
222222222
312442442
146646646
236 10 24424
326222222
416882622

4

6
4
2
2

4
6
4

2

2

(Pro větší hodnoty ai, 02 se perioda často objeví „později44, jak ukazuje
příklad posloupnosti 30,31,62,94,40,68,28,4,2,4,4,2,...)

Posloupnost vytvořená podle předpisu (1) je od jistého členu, řekněme
on, periodická, právě když existuje takový index m, že platí

(2)777/ ^ 77, CL-jn — Cln & ®m+l —

Vlastní řešení úlohy zahájíme tak, že dokážeme čtyři tvrzení (TI) až
(T4), která platí pro každou zkoumanou posloupnost {an} a která lze
vypozorovat z příkladů uvedených v tabulce.

(TI) Číslo an je sudé pro každé n ^ 3.
Důkaz (TI) je triviální: protože je číslo a* liché pro každé a, je pravá

strana rovnosti v (1) sudá.
(T2) Nerovnost an ^ max{an_i,an_2} platí pro každé n ^ 5.
Důkaz (T2): Protože pro sudé a platí a* 5Í |a a pro každé n ^ 5 jsou

podle (TI) obě čísla an_ 1, an_2 sudá, platí pro takové n odhad

-1+ an-2
— 1 + (fln-i + an-2)* = 1 4—~ ^ 1 + max{on_i, an_2}2

1 Je téměř nemyslitelné řešit takové neobvyklé úlohy bez podobného úvodního expe-
rimentování. Proto experimenty patří к výzkumu v matematice stejně jako v jiných
přírodních vědách.
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(neboť aritmetický průměr dvou čísel nepřevyšuje větší z nich). Zjistili
jsme, že sudé číslo an nepřevyšuje liché číslo 1 + max{an_i,an_2}, tudíž
nepřevyšuje ani číslo o 1 menší, číslo max{a„_i,an_2}.

Z dokázaného tvrzení (T2) plyne, že každá zkoumaná posloupnost
{an} má největší člen (a ten se navíc rovná jednomu z čísel ai, аг, аз, сц).
Ukažme, jak snadno již odtud plyne tvrzení o periodičnosti posloupnosti
{an}: značí-li M její největší člen, je každá z nekonečně mnoha dvojic
(an,an+i) (n = 1,2,3,...) rovna jedné z M2 dvojic (a,b), kde a,6 £
£ {1,2, ...,M}. Proto existují dva různé indexy, řekněme n < m, pro
které platí (an,an+i) = (am,am+i), tj. podmínka (2). Pak ovšem indukcí
z (1) plyne, že an+k = am+k pro každé к ^ 0. Proto je posloupnost {an}
periodická. První část úlohy je tak vyřešena.

Zdůrazněme ještě, že tvrzení (T2) neznamená, že posloupnost {an}
je od některého členu nerostoucí (vyvracejí to příklady z naší tabulky).
Platí ale:

(T3) Existuje index no (závislý na posloupnosti {an}) takový, že pro
každé n ^ no platí rovnost max{an_i, an_2} = max{an,o

Důkaz (T3): Položme bn = max{an,an_i} pro každé n ^ 4. Podle
(T2) pro každé n ^ 5 platí an ^ 6n_ 1, což spolu s triviální rovností
an-1 ^ 6n_i vede к závěru, že bn 5í án-i- Posloupnost přirozených čísel
64, 65, be, .. .je tedy nerostoucí, proto je od jistého členu, řekněme bn
konstantní. Důkaz (T3) je hotov.

(T4) Pro každé n ^ no, kde uq je index z (T3), platí implikace: jestliže
an ^ у pak cín — 2.

Důkaz (T4): Pokud an > an+1 pro některé n ^ щ, pak an ^ an+i +2
podle (TI) a z rovnosti max{an+i, an} = max{an+2,an+i} obsažené
v (T3) vyplývá, že an = an+2, což podle (1) znamená, že an = 1 + (an +
+ an+i)*. Číslo an — 1 je tedy dělitelem (většího) čísla an + an+i, a tak
platí nerovnost an + an+1 ^ 2(ап — 1), odkud an ^ an+1 + 2. Protože
platí i obrácená nerovnost (viz výše), je důkaz (T4) ukončen.

S pomocí tvrzení (T3) a (T4) teď dokončíme řešení úlohy. (Ukáže
se, že všechny možné periodické skupiny členů lze vyčíst z naší tabulky.)
Uvažujme i nadále libovolnou zkoumanou posloupnost {an} a jí příslušný
index no z (T3). Mohou nastat dva případy:

(i) nerovnost an ^ an+1 platí pro každé n ^ no,

(ii) pro některé n ^ no platí an > an+1.

i}-n—

O ’
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V případě (i) z (T3) plyne indukcí, že an = ano pro každé n ^ щ.
Možnou hodnotu c = ano najdeme podle (1) z rovnosti с = 1 + (2c)*.
Protože (2c)* = c*, dostáváme c* = c — 1. Číslo c — 1 je však dělitelem
čísla c zřejmě jen pro c = 2. Zkoumaná posloupnost je tedy tvaru

(3)ai i a2i • • • i an0—h 2,2,2,...

V případě (ii) z nerovnosti an > an+1 podle (T4) plyne an = 2d
a an+1 = 2d — 2 pro vhodné celé d > 1 (připomeňme, že an je sudé podle
(TI)). Podle předpisu (1) pak dostáváme

an+2 = 1 + {2d + 2d - 2)* = 1 + (2d - 1) = 2d,
an+3 = l + (2d-2 + 2d)* = 1 + (2d - 1) = 2d,
an+4 = 1 + (2d+ 2d)* = 1 + d*.

Pro d > 1 ovšem platí 2d>l + d^l + d*,a tak an+3 > an+4. To opět
podle (T4) znamená, že an+3 — an+4 = 2, neboli (2d) — (1 + d*) = 2,
odkud 2d — 3 — d* ^ d, takže d ^ 3. V případě d = 2 je zkoumaná
posloupnost tvaru

(4)Ui, П2> • • • > ®n—1 j 4,2,4,4,2,4,4, 2,.. * 7

zatímco pro d = 3 má tvar

(5)on-i, 6,4,6,6,4,6,6,4,...ai, a2,.. * ?

Dokázali jsme, že každá posloupnost ze zadání úlohy je jednoho z tvarů
(3), (4), (5). Odtud již plyne, že periodické od prvního členu jsou právě
ty posloupnosti, které mají dvojici prvních členů (ai,a2) rovnu jedné ze
sedmi dvojic (2,2), (2,4), (4,2), (4,4), (4,6), (6,4) a (6,6).

A - I - 3

Označme к kružnici opsanou trojúhelníku CA\Bi. V první části řešení
ukážeme, že bod M z textu úlohy je středem strany AB. Protože troj-
úhelník ABC je ostroúhlý, leží paty Ai, B\ příslušných výšek uvnitř
odpovídajících stran. S ohledem na symetrii dané situace stačí uvažovat
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jen tečnu t ke kružnici к sestrojenou v bodě A\, označit X její průsečík
s přímkou AB a dokázat rovnost \AX\ = \BX\ (obr. 15).

Označme ještě Y libovolný vnitřní bod polopřímky opačné к polo-
přímce A\X. Protože jsou oba úhly AA\B a BB\A pravé, je čtyřúhel-
nik ABA\B\ tětivový, a tak platí \<$ABiAi\ = 180° — \<$ABAi\ =
= 180° — /3, kde jako obvykle (3 = \<$ABC\. Proto má obvodový úhel
A\B\C v kružnici к nad tětivou A\C velikost \-QAiB\C\ — 180° —
— \<$.ABiAi\ = 180° — (180° — (3) = (3, stejnou velikost má i pří-
slušný úsekový úhel YA\C? Protože úhly XAiB a YA\C jsou vrcho-
lově, dohromady dostáváme \*$.XA\B\ = \^.YA\C\ = \<$AiBiC\ = /3
(tyto shodné úhly jsou na obr. 15 vyznačeny obloučky). Zároveň platí
i\<£XAiA\ = \<$.XAAi\ = 90°—/3. Zjistili jsme, že tečna t protne přímku
AB v takovém bodě X, pro který jsou trojúhelníky BA\X a A\ AX rov-

noramenné, tj. \BX\ = |AiJ\T| — \AX\.
Dokázali jsme, že bod M (průsečík tečen ke kružnici к s body dotyku

Ai a fíi) splývá se středem strany AB. Označme nyní ki a kružnice
opsané po řadě trojúhelníkům AMB\ a BMA\ a Si, S2 jejich středy
(obr. 16). Jedním průsečíkem kružnic k\ a &2 je bod M, druhý průsečík
označme N. Protože body Si, S2 leží v polorovině ABC, leží v ní i bod N,
neboť je souměrně sdružený s M podle středné SiS2. Naší úlohou je
dokázat, že bod N leží na jedné kružnici s body A\, B\ a C.

2 К pojmu úsekového úhlu a jeho shodnosti s obvodovým úhlem viz S. Horák: Kruž-
nice, ŠMM 16, MF, Praha 1966, str. 3-7.
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Jak už víme, je trojúhelník BA\M rovnoramenný, a protože

\<BB1M\ = 90° -a<(3 = \<BAiM\

(tato nerovnost je ekvivalentní tomu, že 7 < 90°), leží bod B\ vně kruž-
nice k2 ■ To znamená, že kružnice к2 musí protínat kružnici k\ v tom jejím
oblouku nad tětivou MB1, který odpovídá obvodovému úhlu 180° — a.

Analogicky zjistíme, že bod A\ leží vně kružnice k\, takže průsečík N
leží na oblouku kružnice k2 příslušného tětivě MA\ a obvodovému úhlu
180° - /3. Protože zároveň

\<iBiNM\ + \<$AiNM\ = (180° - a) + (180° - P) =

= 360° ~(a + 0) = 180° + 7 > 180°,

musí bod N ležet uvnitř trojúhelníku A\B\M (přímka A\B\ tedy od-
děluje body C a TV). Protože a + /3 + 7 = 180° (kde 7 = |<í AiCBi\),
plyne odtud, že ve čtyřúhelníku A\CB\N je součet vnitřních úhlů u pro-

tilehlých vrcholů C a N roven 180°, a tak je tento čtyřúhelník skutečně
tětivový.

A - I - 4

Sečtením všech tří daných nerovnic dostaneme nerovnost

(sin X + cos x) -I- (sin у + cos у) + (sin Z + COS z) ^ 3V2. (1)
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Na druhou stranu pro každé reálné číslo t platí3

(|sinť+|cos() =
\fl ( sin t cos ^ + cos t sin ^ ]

v 4 4J

sin t 4- cos t = y/2

(2)

\/2sin [t + ^j й \/2,
neboť sin (t 4- |ti) ^ 1; přitom rovnost v druhém řádku (2) nastane,
právě když ř + iji = |к + 2kn, neboli t = ^n + 2кт: pro některé celé číslo
k. Sečtením tří odhadů (2) pro t = x,t = yat = z dostaneme nerovnost

(sin x 4- cos x) 4- (sin у 4- cos y) 4- (sin z 4- cos z) 5Í 3\/2.

Zdůrazněme, že nerovnost (3) platí pro libovolnou trojici reálných čísel
(x,y,z), zatímco opačná nerovnost (1) platí pro každé řešení původní
soustavy. Tak zjišťujeme, že nerovnost (1) může být splněna jedině jako
rovnost, což se podle předchozího stane, právě když čísla x, y, z budou
tvaru

(3)

^ + 2A:itc, у — ~ 2&2тс, z = ^ 4- 2fc37t (fci, k2, k3 6 Z).x —

Dosazením do původní soustavy se snadno přesvědčíme, že každá taková
trojice čísel (x,y,z) je skutečně řešením, platí pro ni totiž

V2
sin X = cos x = sin у = cos у = sin z = cos z = ——

(Zmínka o zkoušce byla nutná, protože nerovnost (1) je pouze důsled-
kem zadané soustavy: nemohli jsme vyloučit, že pro některou trojici čísel
(x,y,z) platí (1), avšak neplatí některá ze tří původních nerovností.)

Poznámka. Nerovnost (2) můžeme snadno získat z nerovnosti mezi
aritmetickým a kvadratickým průměrem:

sin2 t 4- cos2 t
= V2.sin t 4- cos t ^ |sin 11 4- |cos í| й 2 2

3 Provedeme úpravu, kterou běžně používáme při řešení rovnic typu asint4úcost =
= c. Jiná možnost je použít nerovnost mezi aritmetickým a kvadratickým průmě-
rem, viz poznámku na konci řešení.

62



К řešení úlohy lze místo (1) využít i jiných důsledků dané soustavy.
Přepišme například první z daných nerovnic do tvaru siná; ^ \/2 — cosy.

Platí-li tato nerovnost, platí i umocněná nerovnost sin2 x ^ (\/2—cosy)2,
neboť y/2 — cos у > 0 pro každé у 6 IR. Sečtením tří nerovností

)2, sin2 г ^ (V2y)2, sin2 у ^ (V2- \2
COS X)sin2 X ^ [y/2 - cos zcos

dostaneme po úpravách nerovnost

)2 4- (l - \/2cosy)2 + (l - v^cosz)2,0 ^ (1 - y/2 cosx

ze které už plyne vše potřebné.

Řešení úlohy můžeme zahájit ještě jedním způsobem. Umocněme nej-
dříve každou ze tří daných nerovnic na druhou (jde o důsledkovou úpra-
vu, neboť menší [pravá] strana nerovnice je kladná) a pak je sečtěme. Po
snadné úpravě vyjde nerovnost

2 sin x cos у + 2 sin у cos z + 2sin z cos x ^ 3.

O obecné platnosti opačné nerovnosti se přesvědčíme tak, že každý ze
tří členů na levé straně odhadneme shora pomocí „klasické11 nerovnosti
2uv ^ u2 + v2 (jež je ostrá v případě и Ф v):

2 sin x cos у + 2 sin у cos z + 2 sin z cos x ^
й (sin2 x + cos2 y) + (sin2 у + cos2 z) + (sin2 2 + cos2 x) = 3.

(Tak odvodíme nutné podmínky sin x = cos y, sin у = cos z, sin z = cos x,
za kterých je řešení původní soustavy již triviální úlohou.)

A - I - 5

Vypíšeme přehled všech výsledků dosazení, které budeme dále potřebovat
(písmeno a značí libovolné reálné číslo):

/(0) = (/(O))2,
a2 + 2/(0) = /(a) • (/(a) + /(0)),
a2 + /(a2) = /(a) • /(2a),

2a2 + 2/(-a2) = /(0) • (/(a) + /(-a)),
1 = /(1) - (/(2) - 1).

(Dl) x = 0, у = 0:
(D2) x = 0, у = a:

(D3) x = a, у = a:

(D4) x = a, у = —a:

(D5) x — 1, у — 1:
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Z (Dl) plyne, že číslo /(0) je řešením rovnice t = t2, je to tedy číslo
t = 0 nebo t — 1. Diskutujme obě možnosti odděleně.

(i) Případ /(0) = 0. Dosadíme-li /(0) = 0 do (D2), dostaneme
a2 = (/(a))2, odkud /(a) — a nebo /(a) = —a pro každé a G IR.
Zdůrazněme, že zatím nevíme, zda pro všechna x platí stejný z obou
předpisů f(x) = x resp. /(x) = —x (víme jen, že existuje A C R tak, že
f(x) = x pro každé x G A a f(x) = —x pro každé x £ IR \ A).

Ukažme nejprve, že předpis f(x) = x platí pro všechna nekladná x:
dosadíme-li /(0) = 0 do (D4), dostaneme rovnost /(—a2) = —a2, takže
f(x) = x pro všechna ta reálná čísla £, která se dají zapsat ve tvaru x =
= —a2 s vhodným a G IR, a to jsou všechna nekladná x. Nyní zdůvodníme,
proč f(x) = x rovněž pro všechna kladná x: kdyby totiž pro některé а Ф 0
neplatilo /(a2) = a2, platilo by podle předchozího odstavce /(a2) = —a2,
a tak bychom podle (D3) měli /(a)/(2a) = 0, což je ale ve sporu s tím,
že obě čísla /(o) a /(2a) jsou nenulová (jsou to čísla ±a resp. ±2a,
předpoklad ale byl, že а Ф 0). Tím je dokázáno, že f(x)=x pro každé
x. Dosazením se snadno ověří, že taková funkce je skutečně řešením naší
úlohy.

(ii) Případ /(0) = 1. Po dosazení /(0) = 1 do (D2) dostaneme pro
hodnotu /(a) kvadratickou rovnici (/(a))2 + /(a) — a2 — 2 = 0. Jejím
řešením zjistíme, že

-1 + \/4a2 + 9 -1 - v^a2 + 9
/(o) e pro každé a € IR.

2 2

Speciálně pro a — 1 a pro a = 2 vychází

-i + УТз -1 - v^Tš
/(1)6 a /(2) 6 {2,-3}.22

odkud plyne, že číslo /(1) je iracionální, zatímco číslo /(2) —1 je racionální
a různé od nuly. Proto je součin /(1) • (/(2) — l) iracionální, což je ve sporu
s (D5). Hledaná funkce / splňující podmínku /(0) = 1 tudíž neexistuje.

Odpověď: Danou funkcionální rovnici splňuje jediná funkce /: IR —> IR,
a to funkce určená předpisem f(x) — x pro každé x G IR.
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A - I - 6

Rovnost ze zadání přepišme jako \AB\ : \CA\ = \AC\ : \CD\. Tato úměra
spolu s rovností střídavých úhlů BAC a ACD (obr. 17) znamená, že

ВA

Obr. 17

trojúhelníky BAC a ACD jsou podobné podle věty sus. Protože strany
ВС a AD si v této podobnosti odpovídají a podle zadání platí \BC\ :
: \AD\ =3:2, platí rovněž \AB\ : |Ch4| = 3 : 2 a \AC\ : \CD\ =3:2.
Vynásobením posledních dvou rovností dostaneme \AB\ : \CD\ = 9:4,
takže základna AB lichoběžníku ABCD je delší než základna CD. Proto
se protínají polopřímky AD a BC, jejich průsečík označme X. Podle
zadání má úhel CXD velikost 75° nebo 105°.

Trojúhelníky ABX a DCX jsou podobné podle věty uu a podle před-
chozího platí \AB\ = \\DC\, proto rovněž \AX\ = \\DX\. Dosadíme-li

\AX\ součet \AD\ + \DX\, vyjde \DX\ = ||AD| = 2,4cm. Ana-
logicky \CX\ = \\BC\ = 3,6cm.

Konstrukce:
1. Trojúhelník CDX: \DX\ = 2,4cm, \CX\ = 3,6cm, \<DXC\ G

G {75°, 105°},
2. bod A: A leží na polopřímce opačné к DX, \AD\ = 3cm,
3. bod В: В leží na polopřímce opačné к CX, \BC\ = 4,5 cm.

sem za

Nyní je třeba ukázat, že takto sestrojený čtyřúhelník ABCD má
všechny požadované vlastnosti (tj. provést důkaz správnosti konstrukce).
Předně body 2 a 3 konstrukce zaručují, že strany BC a AD mají pře-
depsané délky. Podle bodu 1 svírají přímky BC a AD předepsaný úhel
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a platí

\AX\ = \AD\ + \DX\ = 5,4cm a \BX\ = \BC\ + \CX\ = 8,1 cm,

a tak je poměr |AX| : |J9X| roven 2 : 3 stejně jako poměr \DX\ : \CX\.
Trojúhelníky ABX a DCX jsou tudíž stejnolehlé, proto jsou úsečky AB
a CD rovnoběžné. Tak jsme ověřili, že ABCD je lichoběžník se základ-
námi AB, CD. Z rovnosti poměrů \AX\ : \BX\ = 2:3= \CX\ : \AX\
plyne podobnost trojúhelníků ABX a CAX (se společným úhlem při
vrcholu X), takže úhly ABX a CAX (neboli úhly ABC a CAD) jsou
shodné. Protože jsou shodné rovněž (střídavé) úhly BAC a ACD, podle
věty uu zjišťujeme, že jsou podobné trojúhelníky ABC a CAD. Proto
platí \AB\ : \CA\ = \AC\ : \CD\, tudíž \AB\ ■ \CD\ = \AC\2. (Poslední
rovnost lze dokázat také tak, že délky úseček AB, CD a AC vyjádříme
podle kosinové věty pro trojúhelníky ABX, CDX resp. ACX.) Všechny
požadované vlastnosti sestrojeného čtyřúhelníku ABCD jsou tak ověře¬
ny-

Druhé řešení. Zadaná rovnost \AB\ • \CD\ = \AC\2 evokuje otázku,
zda nelze úlohu řešit pomocí známého tvrzení o mocnosti bodu ke kruž-
nici. Ukažme, že je tomu skutečně tak.

Předpokládejme nejprve, že \ AB\ > \CD\ a označme X průsečík polo-
přímek AD a BC. Vhodným bodem E základny AB doplňme trojúhelník
ACD na rovnoběžník AECD (obr. 18).4 Všimněme si, že v trojúhelníku
ВСЕ známe délky stran BC, EC (|EC\ = \AD\) a velikost úhlu ВСЕ

4 To je dosti obvyklý obrat v situaci, kdy jsou dány délky ramen lichoběžníku a úhel,
který tato ramena svírají.
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(\<$BCE\ = I <$.CXDI). Opišme tomuto trojúhelníku kružnici a označme
ji k. Protože \AE\ = \CD\, lze zadanou rovnost \AB\ • \CD\ = \AC\2 za-
psát jako \AB\ ■ \AE\ — |ACj2. To znamená, že přímka AC je tečnou
ke kružnici k. Tím je rozbor případu \AB\ > \CD\ ukončen. V případě
\AB\ < \CD\ stačí v rozboru provést dvě změny: bod X je průsečíkem
polopřímek DA a CB, bod E leží na polopřímce opačné к BA (nikoliv
na základně AB).

Konstrukce:
1. Trojúhelník ВСЕ: \BC\ = 4,5cm, \EC\ = 3cm, \<BCE\ G

G {75°, 105°},
2. kružnice к opsaná trojúhelníku ВСЕ,
3. tečna t ke kružnici к v bodě C,
4. bod A: A G BE П í,
5. bod D: AECD je rovnoběžník.

(Protože dle zadání platí \BC\ > \EC\, padne bod A při konstrukci
podle bodu 4 na polopřímku opačnou к ЕВ. Bod E bude tedy náležet
úsečce AB, takže nastane případ \AB\ > \CD\.)

Při důkazu správnosti konstrukce opět využijeme mocnost bodu ke
kružnici (v opačném „směru", než tomu bylo v rozboru): protože je
přímka AC tečnou kružnice fc, platí rovnost \ AB\ • \ AE\ = |ЛС|2. Zbytek
důkazu je triviální.

A - S - 1

Sečtením všech tří nerovnic dostaneme nerovnost

75 4- 2a:2 4- 3y2 + 4z1 ^ 16a: + 18y + 16z,

z níž po „doplnění na druhé mocniny" vychází

2(x - 4)2 + 3(у - 3)2 + 4(z - 2)2 ^ 0.

Tato nerovnost, jež je důsledkem dané soustavy nerovnic, zřejmě platí
jedině tehdy, když jsou základy všech tří dvojmocí na levé straně nerov-
nosti rovny nule, tedy když x = 4, у = 3, z = 2. Daná soustava má
proto (při zvoleném p) nejvýše jedno řešení, a to právě vypsanou trojici
čísel. Zjistíme nyní, pro kterou hodnotu parametru p se skutečně jedná
o řešení. Po dosazení hodnot x = 4, у = 3, 2 = 2 do dané soustavy
dostaneme trojici nerovností

57 ^ 59 — p, 52 ^ 52, 41 ^ 39 + p.
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Z první nerovnosti vychází podmínka p ^ 2, ze třetí podmínka p ^ 2.
Číslo p = 2 je tedy jediná hodnota p, pro kterou má daná soustava
v oboru reálných čísel řešení.

A - S - 2

Úsečky MC a AD jsou rovnoběžné (obě jsou totiž kolmé к úsečce BD,
obr. 19); protože jsou rovnoběžné i úsečky AM a DC, je čtyřúhelník

D C

bxJ

A M a- x Вx

Obr. 19

AMCD rovnoběžník. Je to dokonce kosočtverec, neboť jeho úhlopříčky
jsou dle zadání navzájem kolmé. Označme proto x = \CD\ — \DA\ =
= \AM\ = \MC\, zřejmě a > x. Pak \MB\ = a — x a ze shodnosti sou-
hlasných úhlů DAM а CMВ plyne podobnost pravoúhlých trojúhelníků
ABD a MCB, takže platí úměra \AD\ : \AB\ = \MB\ : \MC\, neboli
x : a = (a — x) : x. Odtud pro neznámou délku x vychází kvadratická

л/5 - 1
rovnice x2 + ax — a2 =0, která má jediné kladné řešení x —

Tak jsme vypočetli (shodné) délky základny CD & ramena AD daného
lichoběžníku; zbývá určit délku ramena BC. Podle Pythagorovy věty pro

trojúhelník CMВ dostáváme

a.
2

\BC\ = yJ\MC\2 - \MB\2 = yjX2 - (a - x)2 = y/a{2x - a) =

= ayjy/5-2,
neboť 2x — a = a(V5 — 2).
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A - S - 3

Z vyjádření abed = 100 • ab + cd plyne, že podmínky dělitelnosti
čísly ab a cd jsou splněny, právě když cd | 100 • ab a ab \ cd,
tedy právě když cd = к ■ ab, kde přirozené číslo к je některý děli-
tel čísla 100. Protože obě čísla ab a cd jsou dle zadání lichá a dvoj-
ciferná, plyne odtud, že buď к — 1, nebo к = 5. Rozlišíme oba
případy, přitom s ohledem na vyjádření abed = 10 • bc + (1000a +
+ d) budeme místo podmínky be \ abed zkoumat ekvivalentní pod-
minku

bc | (1000a + d).

(Tato úprava není nutná, jen poněkud zjednodušuje další zápisy.)
a) Je-li cd = ab, platí с = a a, d = b, takže podmínka (P) se zapíše ve

tvaru (106 + a) | (1000a + b). Protože

(P)

1000 • (106 + a) - (1000a + 6) = 9999 • 6 = 11 • 9 • 101 • 6

а 101 je prvočíslo (tudíž je s číslem 106 +a nesoudělné), dostáváme ekvi-
valentní podmínku (106 + a) | (11-96). Odtud s ohledem na zřejmou
nerovnost 106 + a > 96 plyne, že číslo 106 + a má číslo 11 ve svém
rozkladu na prvočinitele. Podmínka 11 | (106 + a) je však splněna, jen
když se číslice a a 6 rovnají, pak by však z rovnosti cd = ab vyplývalo,
že číslo abed má všechny číslice stejné. O takových číslech podle zadání
úlohy neuvažujeme.

b) Z rovnosti cd = 5 • ab ihned určíme (liché) cifry a = 1 a d = 5,
po jejich dosazení po úpravě vyjde rovnost 6 = 2c — 9, takže jsou tři
možnosti:

c = 5 a 6 = 1 c=7a6=5 c = 9 a 6 = 9.

Podmínka (P) má nyní tvar bc | 1 005, z čísel 15, 57 a 99 je však pouze
číslo 15 dělitelem čísla 1 005 (1 005 = 3 • 5 • 67), proto nutně 6 = 1 a c = 5.

Odpověď: Hledané číslo je jediné, a to 1155.

A - II - 1

Předpokládejme, že parametr n je přirozené číslo, a řešme danou soustavu
v oboru reálných čísel. Levá strana první rovnice je rovna (x2 +y2)(x+y),
a tak pro čísla s = x + ya,t = x2+y2 platí t-s = nat + s = n + l.
Čísla s, t jsou tedy kořeny kvadratické rovnice w2 — {n + l)w + n = 0.
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Z rozkladu w2 — (n + l)w + n = (w — n)(w — 1) vidíme, že {s,t} = {l,n}.
Dvojice (x, у) je tedy řešením původní soustavy, právě když je řešením
jedné ze soustav

x + y = 1
2 , 2

ж +y

X + у = n,

x2 + y2 = 1.
(1)nebo

= n

V prvním případě jsou čísla ж, у kořeny kvadratické rovnice z2 4- (1 —
— z)2 = n. Jejím řešením dostaneme

í 1 + y/2n - 1 1 - \/2n - 1
Ry} = (2)2 2

Podobně z druhé soustavy v (1) plyne, že čísla x, у jsou kořeny kvad-
ratické rovnice z2 + (n — z)2 — 1. Její diskriminant D = 4(2 — n2) je
nezáporný jedině pro n = 1 (připomeňme, že n je přirozené), pak jsou
ovšem obě soustavy v (1) totožné, takže žádné další řešení kromě (2)
neexistuje.

Zjistili jsme, že pro každé přirozené číslo n jsou všechna řešení pů-
vodní soustavy v oboru reálných čísel popsána vztahem (2). Jsou to celá
čísla, právě když je hodnota 2n — 1 druhou mocninou (lichého) přiroze-
ného čísla. Je-li číslo n čtyřmístné, pak n ^ 1 000, a tak 2n — 1 ^ 1 999.
Protože 442 = 1 936 a 452 = 2 025, hledané číslo n určíme z rovnice
2n — 1 = 2 025. Zřejmě n = 1 013.

Poznamenejme, že v první části řešení můžeme postupovat i takto: do
první rovnice (x2 + y2)(x + y) = n lze dosadit za první činitel vyjádření
x2 + у2 = n + 1 — (x + y) z druhé rovnice. Tak získáme pro neznámou
s = x + y kvadratickou rovnici (n -f 1 — s)s = n, jejíž kořeny jsou si — 1
a S2 = n.

A - II - 2

Předpokládejme, že s a t jsou (pevná) čísla požadované vlastnosti. Graf
funkce / je sjednocením grafů funkcí Д a /2, které jsou určeny vzorci

x2 — Ax + s x2 — 4x + s
fi(x) = h(x) = (1)

(1 — ť)x + (t + 7) (t + l):r + (7 — ť)

a mají definiční obory D(f\) = (—00,1), D(/2) = (1, 00) (polopřímky bez
jakýchkoliv vyloučených bodů, neboť hodnota f(x) dle popisu grafu /
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existuje pro každé я £ IR). Čísla sat určíme z podmínky, že grafy funkcí
/1 a /2 jsou polopřímky (takže jde o lineární funkce). Zřejmě platí t Ф ±1
(jinak by graf jedné z funkcí /1, /2 byl částí paraboly), proto můžeme
lineární funkce ze jmenovatelů zlomků v (1) zapsat ve tvaru

t + 7
(1 - ť)x + (t + 7) = (1 - t)(x - xi) (2a)kde x\ =

t - 1

a
t — 7

(2b)(t + l)x + (7 — t) = (t + l)(x — x2), kde x2 = t + 1

Výhodu těchto rozkladů oceníme při vyjadřování podmínky, že obě
funkce /1 a /2 jsou lineární. Předtím však poznamenejme, že hodno-
ta fi{x) existuje pro každé i^la hodnota /2 (x) pro každé x ^ 1, právě
když čísla x\, x2 z rozkladů (2) splňují podmínku

(3)x2 < 1 < X\.

Vzorce (1) určují lineární funkce /1 a /2, právě když je kvadratický mno-
hočlen x2—4x+s dělitelný (beze zbytku) každým z lineárních mnohočlenů
(x — xi) a (x — x2). Protože však podle (3) platí X\ ф x2, lze podmínku
z předchozí věty vyjádřit rovností mnohočlenů

x2 — 4x + s = (x — x\)(x — x2). (4)

Poznamenejme, že za podmínky (4) budou předpisy pro funkce /1, f2
tvaru

a f2(x) = -fi(x) = \
- x2 - Xi

t + 1-1

podmínka (3) zaručí, že polopřímky, které jsou grafy /1 a /2, neleží na téže
přímce (kdyby ležely, nebyla by grafem / lomená čára): osu x totiž protne
jak polopřímka у = fi(x) (v bodě [2:2,0]), tak i polopřímka у = f2{x)
(v bodě [2:1,0]).

Podmínka (4) je s ohledem na (2) ekvivalentní s dvojicí rovnic

t + 7 t - 7
_ t2 - 49

t - 1 ' t + 1 “ ť2 - 1

t + 7 t- 7
t — 1 t 1

4 = a s =

ze kterých určíme neznámé hodnoty saí. Úpravou první rovnice vyjde
t2 = 9, možné hodnoty t jsou tedy ±3; podle druhé rovnice jim odpovídá
stejná hodnota s = —5. Je-li t = 3, platí podle (2) 2:1 = 5 a 2:2 = — 1
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(podmínka (3) je tehdy splněna), je-li t = —3, pak x\ = — 1 a x2 =
= 5 (podmínka (3) splněna není). Řešením úlohy je tedy jediná dvojice
(s,f) = (-5,3).

Přestože jsme celé řešení vedli tak, že zkouška nutná není, proveďme
ji jak pro dvojici (s,t) = (—5,3), tak pro dvojici (s,t) = (-5,-3). Pro
první dvojici vychází

' (x + 1)(ж - 5)
-2(x-5)

3|ж — 1| + ж + 7 (x + 1)(ж — 5) x — 5
, 4(:r + l)

x + 1
(x й 1)x2 — 4x — 5 2

/0*0 =

{x ^ 1),4

takže opravdu jde o řešení (obr. 20a); dvojici (s,t) = (—5, —3) odpovídá
funkce

(x + l)(x — 5)
_ x — 5

4(x + 1)
(x + 1)(ж — 5) x + 1

-2{x - 5)

(-1 Ф x ^ 1)x2 — 4x — 5 4
f(x) =

—3|x — 1| + x + 7
2 (5#ж^1),

jejímž grafem je lomená čára bez dvou bodů (obr. 20b), takže dvojici
(s, t) = (—5, —3) nelze považovat za řešení.

У У
лм

1 -1 1

Obr. 20а Obr. 20b

Poznámka. Podmínku linearity obou funkcí Д a /2 (aniž zavedeme
čísla x\, X2) můžeme vyjádřit i takto: mnohočlen x2 — 4x -f s je dělitelný
jak mnohočlenem (1 — ť)x + (ř + 7), tak i mnohočlenem (t + l)x + (7 — t),
je tedy dělitelný i jejich součinem, tudíž platí rovnost mnohočlenů

((1 - t)x + (t + 7)) ((t + l)x + (7 - t)) = (1 - t2)(x2 - 4x + s)
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(koeficient (1 — ť2) se zjistí porovnáním kvadratických členů). Tento
závěr je však korektní, jen když jsou oba lineární mnohočleny nesou-

dělné; v našem řešení je tato nesoudělnost zaručena podmínkou (3).
Soudělným mnohočlenům ze jmenovatelů zlomků v (1) odpovídá „řešení“
(s,t) = (-77,0) s příslušnou funkcí

x2 -4x- 77
= x — 11 (x € R, x ф —7)f(x) =

x + 7

jejíž graf (obr. 20c) je sice složen ze dvou polopřímek, ale jejich společný
počátek do grafu / nepatří (navíc tyto polopřímky svírají přímý úhel,
takže jejich sjednocení není lomená čára).

A - II - 3

Ve všech řešeních značíme u> — |<MSiVj.
Řešení 1. Z rovnoběžnosti přímek SM a XY plyne rovnost | < 5KX| =

= ti — oj (obr. 21). Proto se všechny uvažované trojúhelníky SXY shodují
nejen v délce strany SX (rovné poloměru r kružnice k) ale i ve velikosti
protilehlého vnitřního úhlu SYX. Kružnice opsané všem trojúhelníkům
SXY mají tedy týž poloměr R (rovný r/(2sinw)), a bod Y leží vždy
na tom jejich oblouku, ze kterého je tětiva SX délky r vidět pod úhlem
7T — uj. Výška v ke straně SX trojúhelníku SYX tudíž zřejmě nepřevyšuje
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výšku kruhové úseče z obr. 22, přitom je rovna této výšce, právě když platí
\SY\ = \XY\. Proto má ze všech trojúhelníků SXY největší obsah právě
ten, který má shodné strany SY a XY. Jeho vnitřní úhel a u vrcholu S
je shodný s vnitřním úhlem u vrcholu X, a tak platí 2a + (n — uj) = x,
odkud o: = což znamená, že polopřímka SX je osou úhlu MSN.
Průsečík této osy s kružnicí к proto určuje hledaný bod X.

Dodejme, že maximální výšku v trojúhelníku SXY ke straně SX lze
určit i jiným postupem (bez úvah o kruhové úseči): označíme-li Yq patu
výšky z vrcholu Y, a = |<$Х5У| a /3 = |<$SW|, potom platí

v ■ cotg a + v ■ cotg/? — |SY0| + \XY0\ = l-SVI = r,

odkud s ohledem na to, že a + (3 = oj a že funkce cotg je v intervalu
(0, |ti) konvexní, vychází odhad

r
< r rv

cotg a + cotg P = 2 cotg 2±£ 2 cotg f
r U)

2tg2'

Řešení 2. Označme p = \XY\ a q — |aSY"|. Podle kosinové věty pro
trojúhelník SXY platí r2 = p2 +q2 + 2pq • cos uj, neboť | <X SYX\ = тс —uj.

Vypsanou rovnost upravíme do tvaru r2 = (p — q)2 + 2pq(l + coso;),
z něhož už snadno odhadneme velikost součinu pq shora:

r2 ~ (p ~ q)2 <

2(l + cosw) :::z2(l^-cosa^),
přitom rovnost nastane, právě když p = q. To je i podmínka, za které je
obsah \pq sin uj trojúhelníku SXY maximální. Došli jsme tak ke stejnému
závěru jako při prvním řešení.

r2
pq =
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Řešení 3. Vyjádřeme obsah trojúhelníku SXY jako funkci úhlu a. =
= |<X5iVj a zjistěme její největší hodnotu v intervalu 0 < a < u. Při
označení z obr.23 platí \XZ\ = |5V|sino: = rsina; protože |<SW| =

M
S

Obr. 23

= тс — и a |<5IT| = uj —a, ze sinové věty pro trojúhelník SXY vychází

sin(u — a) sin(u — a)
—

r .\SY\ = |5X| • sinu

Pro obsah P trojúhelníku SXY tak dostáváme vyjádření

|ST| • \XZ\ r2 sinasin(u — a) r2 (cos(2a — u) — cosu)
4 sin и

(využili jsme vzorec 2 sin x sin у = cos(x — y) — cos(x + у) pro x = a
а у = и — a). Proto pro hodnotu P platí horní odhad

г2 и
= Ttg2

sinu

p =
2 2 sinu

r2(l — cosu)P <
4 sin и

přitom rovnost nastane právě v případě, kdy cos(2a — u) = 1, což je
v naší situaci splněno jedině pro a = |u (z nerovností 0 < a < и totiž
plyne odhad |2q — u| < u).

A - II - 4

Předpokládejme, že / je libovolná z hledaných funkcí. Všimněme si, že
levá strana dané rovnice je sudá funkce proměnné x. Při záměně čísla x

opačným číslem —x se proto nezmění ani hodnota pravé strany rovnice:

(x - y)2 ■ f{x + y) = (-X -- y)2 ■ f{-x + у)
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neboli

(x - уf ■ f{x + y) = (x + y)2 ■ f(y - x).

Dosaďme sem při libovolném í £ R hodnoty x = \{t — 1) а у = |(f 4- 1),
které jsou zvoleny tak, aby platilo x + y = ta,y — x = l. Dostaneme
vztah f(t) = t2 • /(1) pro každé t € IR. Funkce / je tedy nutně tvaru
f(x) = cx2, přitom neznámý koeficient c zjistíme tak, že dosadíme do
rovnosti ze zadání (a tak vlastně současně provedeme i zkoušku): rovnice
c(x2+cy2)2 = (x — у)2-c(x + у)2 je ekvivalentní s rovnicí c(c4- l)y2(2x2 +
+ (c — 1 )y2) — 0, jež je splněna pro libovolná x a y, právě když c — 0
nebo c — —1 (např. dosazení x — у — 1 vede к podmínce c(c + l)2 = 0,
takže nutně c € {0, —1}).

Úloha má právě dvě řešení: nulovou funkci fi(x) = 0a funkci /2 (x) =
= —x2.

A - III - 1

Je-li mnohočlen P konstantní, tedy P(x) = a, pak číslo a splňuje dle
zadání podmínku a2 + a = a+a, takže a = 0 nebo o = 1. Oba mnohočleny
P{x) = 0a P(x) = 1 jsou řešením úlohy.

Je-li stupeň n mnohočlenu P kladný, pak P(x) = axn + Q(x), kde a je
číslo různé od nuly a Q je mnohočlen stupně nejvýše n — 1. Porovnáme-li
v rovnosti

[axn + Q{x))2 -1- a(-x)n -I- Q(—x) = ax2n + Q(x2) 4- axn + Q(x) (1)

koeficienty u nejvyšší mocniny x2n, dostaneme podmínku o2 = a, ze které
plyne a = 1 (připomeňme, že a ф 0). Rovnost (1) po dosazení hodnoty
a = 1 upravíme do ekvivalentního tvaru

2xnQ(x) + (Q(x))2 - Q(x2) = [1 - (-l)n]xn + Q(x) - Q(-x). (2)

Připusťme, že mnohočlen Q má kladný stupeň к (к < n). Pak na levé
straně (2) stojí mnohočlen stupně alespoň n + fc, což je sporu s tím, že
na pravé straně (2) je mnohočlen stupně nejvýše n. Proto je Q konstantní
mnohočlen, tedy Q(x) = b pro vhodné číslo b. Po dosazení do (2) dostá-
váme podmínku 2bxn + b2 — b = [1 — (—l)n]xn, která je splněna pro
každé x, právě když 26 =1 — (—l)n a zároveň b2 — b = 0. Pro sudé n

vychází jedině b = 0 (takže P{x) = xn), pro liché n vyjde b = 1 (takže
P(x) = xn 4-1).
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Odpověď: Hledané mnohočleny jsou konstanty 0 a 1, jednočleny x2,
x4, x6, ... a dvojčleny x + l,x3 + l,x5-l-l, ...

Jiné řešení. Přičteme-li P(—x) к oběma stranám dané rovnosti, do-
staneme rovnost (P(x))2 + 2P(—x) = P(x2) 4- P(x) + P{—x), na jejíž
pravé straně je sudá funkce proměnné x. Proto je sudá i funkce na levé
straně: pro každé x platí (P(x))2 + 2P(—x) = (P(—x))2 -f 2P(x), neboli

(P(x) - P(—x)) • (P(x) + P(-x) - 2) - 0.

Jeden z obou činitelů na levé straně poslední rovnosti je tedy nu-

lový mnohočlen. Pokud platí identicky P(x) - P(—x) = 0, redukuje
se rovnost ze zadání úlohy na (P(x)) = P(x2); pokud platí iden-
ticky P(x) 4- P(—x) —2 = 0, pak pro mnohočlen Q definovaný rovností
<5(x) = P(x) — 1 platí Q(-x) = —Q(x) a dosazením a snadnou úpravou
zjistíme, že rovnost ze zadání přejde do tvaru (Q(x)) = Q(x2).

Shrneme-li tedy oba případy, zjistíme, že v každém z nich máme určit
mnohočlen R, který je sudou nebo lichou funkcí a splňuje pro každé x
rovnost (P(x)) = P(x2). Hledejme taková R nejdříve mezi jednočleny:
po dosazení P(x) = axn zjistíme, že je buď a = 0, nebo a = lanž0
libovolné. Připusťme, že R není jednočlen, tedy P(x) = axn + bxk + 5(x),
kde a, b jsou čísla různá od nuly, n > к a S je nulový mnohočlen nebo
mnohočlen stupně nejvýše к — 1. Porovnáme-li v rovnosti

(axn -I- bxk 4- S(x)) ■ (axn + bxk 4- S(x)) = ax2n + bx2k + S(x)

koeficienty členů s mocninou xn+k, dostaneme rovnost 2ab = 0, která je
ve sporu s tím, že а Ф 0 a b ф 0. Proto podmínku (P(x)) = P(x2)
splňují pouze mnohočleny R rovné 0, 1, x, x2, x3, ...

A - III - 2

Označme ještě R bod dotyku s odvěsnou AC a S střed zmíněné kružnice
(obr. 24). Protože SQCR je čtverec a bod S leží na ose o úsečky PQ, leží
bod C na přímce o', která je obrazem osy o v otočení kol bodu Q o pravý
úhel. Vrchol C proto sestrojíme jako průsečík přímky o' s Thaletovou
kružnicí r nad průměrem QX. Zbytek konstrukce je zřejmý.
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Úloha má (pro dané body P,Q,X) jediné řešení. I když osu o můžeme
kol bodu Q otočit o pravý úhel dvěma způsoby, jedna z otočených pří-
mek o" kružnici r vůbec neprotne; druhá z nich má s kružnicí r sice dva
společné body, ale jednomu z nich odpovídá takový trojúhelník ABC,
že místo kružnice vepsané má požadované vlastnosti kružnice připsaná
přeponě AB (bod Q jejího dotyku s přímkou BC neleží na odvěsně BC,
ale na jejím prodloužení za vrchol В).

A - III - 3

Označme (*) danou nerovnici а К = (—oo,0)u(l,oo) příslušnou množinu
(všech) řešení. Z toho, že 0 patří do K, plyne pro b podmínka b ^ 0 a
zároveň Vb > —c. Kdyby však platilo b > 0, byl by výraz y/2x2 + ax + b
definován v některém okolí bodu x = 0 a z (ostré) nerovnosti (*) pro
x = 0 by plynula její platnost i pro malá kladná čísla x, což je ve sporu
s tvarem množiny K. Proto musí být b = 0 a z nerovnosti Vb > — c plyne
podmínka c > 0.

Protože y/2x2 + ax + b = y/x(2x + a) a protože množina К obsahuje
všechna čísla x > 1, platí pro taková x nerovnost 2x + a ^ 0, která
znamená, že a ^ —2. Protože 1 ^ K, nerovnost yj2 + a > 1 — c neplatí,
její levá strana však má díky nerovnosti a ^ — 2 smysl. Proto naopak
platí \J2 + a ^ 1 — c, odkud plyne podmínka cú 1. Kdyby platila ostrá
nerovnost л/2 + a < 1 — c, nerovnost yjx{2x 4- a) < x — c by byla splněna
nejen pro x = 1, ale také pro x = 1 + e s dostatečně malým e > 0, což
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je ve sporu s tím, že 1 + e £ K. To znamená, že \J2 + a = 1 - c, odkud
a = (1 — c)2 — 2 = c2 — 2c — 1.

Shrňme výsledky našich úvah: zjistili jsme, že každá vyhovující trojice
čísel (a, 6, c) je nutně tvaru (c2 - 2c-1,0, c), kde 0 < c ^ 1. Ukažme nyní,
že obráceně každá trojice popsaného tvaru má požadované vlastnosti.
Řešme proto v oboru reálných čísel nerovnici

y/x(2x + a) > x — c, (1)

pro pevně zvolené c £ (0,1) a odpovídající a = c2 — 2c — 1.
Z nerovností 0 < с ^ 1 a vyjádření a = (1 — c)2 — 2 plyne, že —2 ^ a <

< — 1. Pro každé x ^ 0 tudíž platí 2x + a < 0, takže levá strana (1) má
smysl a je nezáporná, zatímco pravá strana (1) je pro takové x záporná
(neboť x - c ^ — c < 0). Proto celý interval (—oo,0) patří do množiny
řešení (1). Nepatří tam však žádné číslo x z intervalu (0,-|a), neboť
pro ně nemá smysl levá strana (1). Zbývá tedy vyřešit nerovnici (1) na
intervalu (—|a, oo). Zdůvodníme předtím, že pro krajní bod — |a platí
odhady c ^ — |a ^ 1. Skutečně, horní odhad okamžitě plyne z toho, že
a ^ —2, dolní odhad se snadno odvodí ze zřejmé nerovnosti c2 ^ 1:

1
= -^(c2 - 2c- 1) = c + i(l -c2) ^ c.

—

2°

Pro každé x £ (— |a, oo) platí tedy x ^ c, a proto jsou obě strany nerov-
nice (1) nezáporné. Po umocnění obou stran na druhou a snadné úpravě
dostaneme ekvivalentní nerovnici x2 + (a + 2c)x — c2 >0. Odtud po
dosazení a = c2 — 2c— 1 vychází nerovnice (x — l)(x + c2) > 0, která platí
pro právě ta (kladná) čísla x £ ( —|a, oo), která jsou větší než 1 (zopa-
kujme, že — |ай 1). Tím je dokázáno, že množinou řešení nerovnice (1)
je skutečně množina К ze zadání úlohy.

Odpověď: Hledané trojice jsou (a, 6, c) = (c2 — 2c — 1,0, c), kde c je
libovolné číslo z intervalu (0,1).

A - III - 4

V žádném slově zřejmě nemohou být čtyři stejná písmena. Maximální
možná délka slova uvažovaného jazyka je tedy 3n (skupina n trojic stej-
ných písmen za sebou je zřejmě slovo). Zároveň je jasné, že pro n = 1
existuje jediné slovo délky 3.

Nechť n > 2.
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1. Každé slovo začíná dvěma stejnými písmeny. Kdyby tomu tak ne-

bylo, měli bychom slovo AB ... A... A ... začínající dvojicí různých pís-
men A, B. Další písmeno В se však nemůže vyskytovat mezi prvním
a druhým písmenem A (jedno už tam je), ani za třetím písmenem A (dvě
A by byla mezi dvěma B). Obě zbývající písmena В by tedy musela být
mezi druhým a třetím písmenem A, což také není možné.

2. Vypustíme-li ze slova maximální délky 3n tři stejná písmena, do-
staneme v jazyce s n — 1 písmeny opět slovo maximální délky 3 (n — 1).

Počet slov maximální délky v jazyce s n písmeny označme pn. Zjis-
time, kolik je slov maximální délky začínajících zvoleným písmenem A.
Každé takové slovo začíná dvěma písmeny A, takže třetí písmeno je buď
opět A (takových slov je zřejmě tolik, kolik je slov maximální délky ob-
sáhujících n — 1 písmen, tj. pn-i), nebo písmeno В ф A. Protože po

vypuštění všech písmen A dostaneme opět slovo (a to musí začínat, jak
už víme, dvěma stejnými písmeny), musí původní slovo začínat skupinou
AABAB (možnost AABB ... A zřejmě nepřichází v úvahu). Takových
slov je opět pn-1- Celkem je tedy 2pn_i slov maximální délky začínají-
cích zvoleným písmenem A. To znamená, že pn = 2npn-i, odkud snadno
plyne, že

pn = 2n 1n\pi = 2

Nalezený vzorec vyhovuje i pro n = 1.

71—1 n!.

A - III - 5

Z rovnosti úseček, jež v popsané síti odpovídají týmž hranám výsledného
čtyřstěnu ABCD, dostáváme, že |Ař?i| = |AB2| = \AB\ = 6, |BiCi| =
= I.B2C2I — \BC\ = c. Označme S střed úsečky AB\ a B3 patu kolmice
z bodu D na přímku B2C2 (obr. 25). Trojúhelníky BiC\D a B3C2D jsou
středově souměrné podle bodu D, proto IB3C2I = \B\Ci\ — c. Protože
lichoběžník C1AB2C2 je rovnoramenný, je rovnoramenný i trojúhelník
B1AB2 (vzhledem к předchozím rovnostem je dokonce rovnostranný),

obdélníku B1SB2B2 tak plyne \b = |£?iS| = \B2B3\ — 2c, takžea z

b = 4c.

Nyní si už jen uvědomíme, že sestavený čtyřstěn ABCD bude mít dvě
pravoúhlé stěny CDB a ADB s pravými úhly při vrcholu В (obr. 26),
což znamená, že hrana BD bude kolmá ke stěně ABC. Přitom výška v

trojúhelníku ABC (neboli trojúhelníku AB2C2) na stranu BC je zároveň
výškou B2S rovnostranného trojúhelníku B1AB2, takže v = |\/3b a zá-
roveň \BD\ = \B\D\ = \v. Objem V čtyřstěnu ABCD tedy spočteme
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jako

l-S(ABC)\BD\ = ^S(AB2C2) ■ |t> =
i i 1 2
- • — • —0•V =

3 4 4

1 1 1
- • -cv •V = 2V3 2

1

takže b = \/642 cm = 16 cm.

A - III - 6

Matematickou indukcí nejprve dokážeme, že všechny hodnoty f(x) leží
v dvouprvkové množině M = {0,1}. Tvrzení f(x) G M totiž platí pro
každé x < 0; je-li celé číslo x ^ 0 takové, že f(y) G M pro každé celé
у < x, pak v M leží každé z n čísel f{x — ai) (i = 1,2,...,n), a tedy
i jejich součin, podle (1) tedy i číslo f(x). Důkaz indukcí je hotov.

Označme nyní A = max{al5 a2,..., an}. Pak všechna čísla x — ai

(■i = 1,2,..., n) leží mezi A čísly x — 1, ж — 2, ..., x — A. Podle (1) to
znamená, že platí-li pro některá nezáporná čísla рад následujících A
rovností

/(P-1) = /(9-1), f(P~2) = /(9-2), f(p- A) = f{q- A), (2)

platí rovněž rovnost f(p) = f(q); matematickou indukcí lze pak ověřit
rovnost f(p + r) — f(q + r) pro každé celé r ^ 0. Dokážeme-li proto
existenci přirozených čísel p a q, p < q, pro něž platí soustava rovností
(2), bude tvrzení z textu úlohy platit pro čísla s = pat = q — p.
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Podmínku (2) lze vyjádřit jako rovnost dvou uspořádaných Л-tic

[f(P ~ 1), f{P -2/(p - A)} = [f(q - 1), f(q - 2),..., f{q - A)]

které jsou, jak již víme, sestaveny výhradně z čísel 0 a 1. Ze dvou různých
prvků lze ale sestavit pouze 2A různých Л-tic, takže například v násle-
dující skupině Л-tic

{[/(z - 1), f(x - 2),..., f(x - A)]: x = 0,1,..., 2A}

jsou některé dvě Л-tice stejné. Tím je důkaz tvrzení úlohy hotov.
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Kategorie P

Texty úloh

P - I - 1

Binární strom je struktura tvořená jednotlivými uzly. Jeden z uzlů je vý-
značný — říkáme mu kořen. Každý z uzlů buď nemá žádného následníka
(pak se nazývá list), nebo má právě dva následníky (další uzly stromu).
Hloubkou uzlu rozumíme jeho vzdálenost od kořene stromu. Uvědomte
si, že kořen může být i listem
vrcholem hloubky 0. Příklad binárního stromu si můžete prohlédnout na

následujícím obrázku:

pak je binární strom tvořen jediným

kořen

uzly hloubky 1

uzly hloubky 2

uzly hloubky 3

Abychom mohli binární stromy jednoduše popisovat, zavedeme si ná-
sledující kódování: k-tý řádek kódování (pro Л; = 0,1,2...) popisuje právě
uzly hloubky к v pořadí zleva doprava. Uzel binárního stromu, který není
listem, budeme v našem kódování zobrazovat znakem U, listy budeme
označovat znakem L. Binární strom z předchozího obrázku tedy bude
zakódován jako:

U

UU

LULL

LL

Soutěžní úloha. Je dán počet listů N (N й 10 000) a jejich hloubky
v binárním stromě (nějakých N přirozených čísel). Napište program,
který sestaví strom se zadanými hloubkami listů a ten vypíše v našem kó-
dování. Jestliže vstupním datům vyhovuje více různých binárních stromů,
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program vypíše libovolný jeden z nich. Pokud vyhovující strom neexis-
tuje, program o tom vypíše zprávu.

Formát vstupu: První řádek vstupního souboru stromy.in obsahuje
jediné číslo N (počet listů). Druhý řádek obsahuje N čísel
listů hledaného stromu.

Formát výstupu: Výstupní soubor stromy.out bude obsahovat kó-
dování nalezeného stromu ve výše uvedeném formátu, případně zprávu
,0dpovidajici strom neexistuje/.

Příklad 1: stromy. in

hloubky

stromy.out
4 U

2 3 13 UL

LU

LL

Příklad 2: stromy, in stromy.out
Odpovidajici strom neexistuje.3

1 1 2

P - I - 2

Na království krále Mírumila III. zaútočila nepřátelská vojska a podařilo
se jim obsadit několik měst. Král nyní potřebuje dát svému generálovi
příkaz к protiútoku (bez příkazu přeci generál nemůže bojovat). Generál
však momentálně provádí inspekci vojsk v jiném městě. Je proto třeba
vyslat posla, který příkaz co nejrychleji doručí. Příkaz ovšem v žádném
případě nesmí padnout do rukou nepřítele! Proto se posel musí neustále
držet co nejdále od nepřítelem obsazených měst. Vaším úkolem je návrh-
nout pro posla co nejlepší trasu.

Soutěžní úloha. Program dostane na vstupu zadaný počet měst N
(1 й N й 100). Jednotlivá města budeme označovat čísly 1... N. Dále je
na vstupu uveden počet cest M (1 5Í M ^ 10 000) a seznam těchto
cest vedoucích mezi městy. Každá cesta je určena dvojicí čísel měst,
která spojuje. Cesty se kříží pouze ve městech a je možno se po nich
dostat z libovolného města do libovolného (případně přes města jiná).
Další údaj К zadaný na vstupu určuje počet měst obsazených nepříte-
lem, následuje seznam obsazených měst. Nakonec program dostane číslo
města, odkud vyráží posel, a číslo města, kde se zdržuje generál. Váš pro-

gram má nalézt trasu, jejíž vzdálenost od měst obsazených nepřítelem
je maximální. Pokud existuje takových tras více, program určí libovol-
nou nejkratší z nich. Vzdálenost měst А а В počítáme jako minimální
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počet cest, po kterých musíme projít, abychom se dostali z města A do
města B. Vzdálenost trasy od města A je pak nejmenší ze vzdáleností
města A od jednotlivých měst ležících na uvažované trase. Vzdáleností
trasy od obsazených měst rozumíme nejmenší ze vzdáleností mezi trasou
a některým z obsazených měst nebo nulu, pokud některé město na trase
samé je obsazeno.

Formát vstupu: První řádek vstupního souboru posel, in obsahuje
čísla N (počet měst) a M (počet cest). Po něm následuje M řádků,
z nichž každý obsahuje popis jedné cesty. Cesta je popsána dvojicí čísel
koncových měst. Následuje řádek s číslem К (počet obsazených měst)
a za ním К řádků s čísly obsazených měst. Poslední řádek vstupního
souboru obsahuje číslo města, odkud vyjíždí posel, a číslo města, kde dlí
generál.

Formát výstupu: Výstupem programu v souboru posel. out jsou čísla
měst na nejlepší nalezené trase uvedená v pořadí, v jakém jimi má posel
projíždět. Všechna čísla měst jsou zapsána na jediném řádku výstupního
souboru a jsou oddělena mezerami.

Příklad: posel.in
10 12

posel.out
1 9 10 5

1 2

2 3

3 4

4 5

2 5

1 6

6 7

7 8

8 5

1 9

9 10

10 5

1

3

1 5

P - I - 3

Skupina přátel se rozhodla, že v létě podniknou společný výlet na ко-
lech. Většina zvolené trasy však vede přírodní rezervací, a proto mohou
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nocovat pouze v kempech. Kempy, ve kterých na svém výletě přespí, ještě
nevybrali.

Celková délka naplánované trasy je L (1 L й 1 000 000 000). Maxi-
mální vzdálenost, kterou naši přátelé mohou urazit za jeden den, je К,
tj. ve dvou po sobě následujících dnech musí přespat v kempech vzdále-
ných nejvýše о К. Na naplánované trase se nachází celkem N kempů
(0 ^ ^ 10 000); г'-tý kemp je ve vzdálenosti li od začátku jejich
výletu a cena za přespání v něm je с* (1 ^ c* ^ 20 000). Čísla L,
.řé, li a Ci jsou celá kladná; všechna li jsou navzájem různá a platí
0 < h < l2 < ... < In < L.

Vaším úkolem je rozhodnout, zda skupina může naplánovanou trasu
projet. Pokud lze trasu takto projet, pak určete, ve kterých kempech mají
přespat tak, aby:

a) jejich výlet trval co nejmenší počet dní.
b) celková cena za přespání v kempech byla co nejmenší.

Úlohy a) a b) řešte zvlášť; v případě, že jednu z těchto úloh neumíte
vyřešit, řešte pouze druhou z nich.

Formát vstupu: Vstupní soubor se jmenuje výlet. in. Na prvním
řádku jsou čísla L, К a N oddělená mezerou. Na dalších N řádcích
následují dvojice čísel li a Ci oddělených mezerou, postupně pro i — 1
až i = N.

Formát výstupu: Výstupní soubor se jmenuje vylet-a.out pro úlo-
hu a) a vylet-b.out pro úlohu b). Na prvním řádku je věta ,Trasu
nelze projet.1, pokud výlet nelze uskutečnit tak, aby naši přátelé ni-
kdy neujeli za den vzdálenost větší než К. V opačném případě první
řádek obsahuje dvě čísla
čet kempů, ve kterých skupina přespí, druhé z nich, C, je cena, kte-
rou za přespání v těchto kempech zaplatí. Druhý řádek souboru obsa-
huje M mezerou oddělených čísel kempů, v nichž naši přátelé budou
nocovat. Kempy jsou číslovány od jedné. Pokud je M = 0, nemusí
být druhý řádek vůbec uveden. V případě, že existuje více řešení spi-
ňujících podmínku a) nebo b), program může vypsat libovolné jedno
z nich.

M a C. První z nich, M (0 M), je po-

Příklad 1: výlet. in
15 10 2

2 11

4 12

vylet-a.out, vylet-b.out
Trasu nelze projet.
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Příklad 2: vylet. in
8 10 1

7 11

vylet-a.out, vylet-b.out
0 0

Příklad 3\ vy let. in
25 5 9

vylet-a.out
4 32

2 4 6 8

vylet-b.out
5 16

1 3 5 7 84 2

5 8

8 2

10 8

12 2

15 8

16 2

20 8

24 2

P - I - 4

Nejprve několik definic: Dlaždice jsou stejně velké čtverce s obarvenými
hranami. Konkrétnímu přiřazení barev hranám dlaždice budeme říkat
typ dlaždice a budeme jej zapisovat jako uspořádanou čtveřici (Z,p, h,d)
udávající barvu v pořadí levé, pravé, horní a dolní hrany. Abychom si
usnadnili práci, budeme barvy označovat různými symboly — písmeny,
čísly apod. Dlaždice typu (1,2,3,4) bude tedy vypadat následovně:

Prostor, který budeme dláždit (budeme mu říkat zeď), má tvar obdélníku
o velikosti mxn (ra i n jsou přirozená čísla; jednotkou délky budiž délka
hrany dlaždice). Strany obdélníku jsou rozděleny na úseky jednotkové
délky a každému úseku je opět přiřazena barva. Naším cílem je pokrýt
zeď dlaždicemi tak, aby v každém z m • n jednotkových čtverců zdi byla
umístěna právě jedna dlaždice, sousední dlaždice se dotýkaly vždy hra-
námi téže barvy a rovněž krajní dlaždice přiléhaly к okraji zdi vždy
hranou takové barvy, jakou má i příslušný úsek okraje zdi. Dlaždice není
povoleno otáčet.
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Příklad:

zeď s obarvením stran správné vydláždění chybné vydláždění

Pomocí dláždění můžeme snadno řešit úlohy, jejichž výsledkem je
buďto odpověď ANO, nebo NE: sestavíme vhodnou množinu typů dlaždic
(ta je pro daný problém pevná — nezávisí na vstupu), vezmeme vhodně
velkou zeď, její horní okraj obarvíme podle vstupu našeho problému,
ostatní okraje ponecháme'jednobarevné a budeme se ptát, zda je tuto
zeď možno vydláždit či nikoliv. Přitom chceme, aby tento výsledek byl
shodný s řešením naší úlohy.

Abychom se nemuseli zabývat tím, jak přesně velkou zeď máme zvolit
pro ten či onen vstup úlohy, budeme šířku zdi volit vždy stejnou, jako
je délka vstupu (horní okraj tedy bude celý zaplněn vstupem), zatímco
výšku zdi použijeme nejmenší, pro níž existuje vydláždění s použitím naší
sady dlaždic.

Když tento způsob počítání srovnáme s klasickým programováním,
zjistíme, že zvolená sada dlaždic tvoří v našem modelu něco podobného
programu a potřebná výška zdi vzdáleně odpovídá době běhu výpočtu —

budeme se proto snažit, aby u našich řešení byla co nejmenší.
Formálně řečeno, dlaždicový program je uspořádaná čtveřice

D = (T,/o,Po, do)

kde Г je konečná množina typů dlaždic {(/i,Pi, ůi, di),... ,(4,Pfc, ůfc, d*,)}
a lo, po a do jsou okrajové barvy. Rozhodovací úlohou P(x) rozumíme
úlohu zjistit, zda vstup x (konečná posloupnost symbolů, resp. barev
z předem určené konečné množiny) má požadovanou vlastnost P. Říká-
me, že dlaždicový program řeší rozhodovací úlohu P(x), jestliže platí,
že P(x) = ANO právě tehdy, když existuje v > 0 takové, že je možno
vydláždit dlaždicemi typů obsažených v množině T zeď velikosti |rrr| x v
s horní hranou obarvenou vstupem x a levou, pravou a dolní hranou
obarvenou po řadě barvami /o, po a do- Od každého typu je možno
použít libovolně mnoho dlaždic. Složitostí programu D pro daný vstup
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x nazveme nejmenší v, pro něž to je možné; pokud takové neexistuje,
a tedy P(x) = NE, definujeme složitost jako nulovou. Složitost programu

je funkce délky vstupu n, jejíž hodnota udává maximum ze složitostí
programu pro jednotlivé vstupy této délky.

Příklad: Zkusme nyní zkonstruovat dlaždicový program, který bude
ověřovat, zda je daná posloupnost tvořená přirozenými čísly ..

(0 ^ Xi ú 9) neklesající. Použijeme dlaždice následujících typů:
xn• )

X
o ; 0 й i й x й 9, г

levý okraj obarvíme barvou 0, pravý o, dolní barvou • a tvrdíme, že tento
program řeší danou úlohu se složitostí 0(1). To je ovšem třeba dokázat.

Především si ověříme, že každá zeď, kterou je možno vydláždit dlaž-
dicemi typů z množiny T, má jednotkovou výšku. To jasně plyne z toho,
že spodní hrana každé dlaždice má barvu •, která se nevyskytuje na
žádné horní hraně. Z téhož důvodu se dlaždice mající na své pravé hraně
barvu o musí vyskytovat těsně u pravého okraje zdi a nikde jinde. Každé
korektní dláždění proto musí vypadat takto:

což je ovšem možné právě tehdy, když 0 ^ x\ ^ x^ ^ ^ xn-i = xn,

tedy když posloupnost na vstupu je neklesající.

Soutěžní úlohy.
a) Sestrojte dlaždicový program, který o dané posloupnosti nul a jed-

niček zjistí, zdaje dvojkovým zápisem nějakého přirozeného čísla dělitel-
ného pěti.

b) Sestrojte dlaždicový program, který o dané posloupnosti přiro-
zených čísel xi,...,xn (0 ^ Xi ^ 9) rozhodne, je-li nekonstantní (to
jest vydláždění existuje právě tehdy, když existují indexy i, j takové, že
Xi ф Xj).
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p - II - 1

Pepík našel na půdě u babičky krabici s dřevěnými tyčkami. Začal si
s nimi hrát a sestavovat z nich trojúhelníky různých tvarů. Uviděl ho
jeho tatínek a začalo ho zajímat, kolik různých trojúhelníků lze z těchto
tyček sestavit. Vaším úkolem je pomoci mu s nalezením odpovědi na tuto
otázku.

Váš program na vstupu obdrží celé číslo N (počet tyček) a dále N
navzájem různých kladných čísel d\ až (délky tyček). Úkolem vašeho
programu je určit počet trojic i < j < к takových, že čísla d{, dj a dk
splňují trojúhelníkovou nerovnost, tj. di < dj + dk, dj < di + dk a dk <
< di + dj.

Příklad. Pro N = 5 a d\ = 5.5, = 1.5, d3 = 2.0, d4 = 2.5, d5 = 7.5
váš program odpoví číslem 2, neboť trojúhelník lze sestavit pouze z trojice
tyček o délkách d\, d± a cfe a dále z trojice o délkách GČ2, d3 a d4. Všimněte
si, že trojice tyček o délkách d\, d$ a d^ netvoří trojúhelník.

P - II - 2

Společnost pro Rovnoprávnost robotů a lidí se snaží vyvinout robota,
který by se mohl sám pohybovat v místnosti s překážkami. Bohužel této
společnosti chybí softwarový expert a proto se rozhodla, že vás požádá
o pomoc.

Robot se má pohybovat v obdélníkové místnosti, na jejíž podlaze je
nakreslena čtvercová síť. Na některých políčkách v místnosti jsou po-

staveny překážky
vstoupit. Robot se bude po místnosti pohybovat pouze rovnoběžně s ně-
kterou ze stěn. Společnost však trpí i nedostatkem schopných techniků,
a tak jsou možnosti pohybu robota po místnosti značně limitovány. Ro-
bot rozpoznává celkem tři příkazy: Krok, Doleva a Doprava. Při obdržení
příkazu Krok se robot přesune na sousední políčko v tom směru, ve kte-
rém je právě natočen. Při obdržení příkazu Doleva se otočí o 90 stupňů
doleva a při obdržení Doprava se otočí o 90 stupňů doprava.

Vaším úkolem je vytvořit program, který jako vstup dostane rozměry
čtvercové sítě na podlaze místnosti (M a N), souřadnice políčka, na kte-
rém se robot právě nachází, a souřadnice políčka, na které se má robot
přesunout. Souřadnice políček číslujeme od 1, první souřadnice udává
řádek, druhá sloupec. Levý horní roh místnosti má souřadnice [1,1] (viz
příklad níže). Každý z následujících M řádků obsahuje N čísel 0 nebo

na tato políčka nesmí robot během svého pohybu
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1. Je-li j-té číslo na г-tém řádku 1, pak na políčku se souřadnicemi [i,j]
je překážka, pokud je toto číslo 0, pak se na políčku se souřadnicemi
[i,j] překážka nenachází. Úkolem je nalézt a vypsat posloupnost příkazů,
podle nichž robot dojde z počátečního políčka na cílové. Věc má však
ještě jeden háček: Provedení příkazů Doleva a Doprava je časově velmi
náročné a vámi vytvořená posloupnost instrukcí pro pohyb robota v míst-
nosti by měla obsahovat co nej menší počet těchto dvou příkazů. Počet
příkazů Krok může být libovolný. Počáteční natočení robota si můžete
zvolit. V případě, že robot nemůže přejít z počátečního na cílové políčko,
vypište vhodnou zprávu.

Příklad. Představme si místnost se čtvercovou sítí 4 x 8 z následujícího
obrázku:

O O Oo
oo o

os c

Úkolem je přesunout robota z políčka označeného S (o souřadnicích [4,1])
na políčko označené C (o souřadnicích [4,8]). Vstup vašeho programu by
tedy vypadal následovně:

4 8

4 1

4 8

00000000

01111100

0 1 0 0 0 1 1 0

00010000

Optimální program pro přesun robota je následující (počáteční nato-
čení robota je nahoru):

Krok Krok Krok Doprava Krok Krok Krok Krok Krok
Krok Krok Doprava Krok Krok Krok

Při této cestě robot udělá 13 kroků a dvakrát se otočí; všimněte si též
existence cesty s 9 kroky a 4 otočeními — tato cesta je sice kratší, ale
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podle zadání úlohy není optimální, neboť se během ní robot musí otočit
vícekrát.

P - II - 3

Malému Pepíčkovi se jednoho dne dostaly do ruky nůžky. A protože byl
Pepíček tvořivý po tatínkovi, jenž byl moderním malířem, rozhodl se

vylepšit jeden jeho obraz ve tvaru konvexního n-úhelníku. Vybral si dva
vrcholy tohoto n-úhelníku a obraz přestřihl po spojnici těchto dvou vr-
cholů. Pak si na jedné ze vzniklých částí opět vybral dva vrcholy a část
opět přestřihl. Když si takto Pepíček chvilku hrál, přistihl ho tatínek,
nůžek ho nekompromisně zbavil a začal zachraňovat, co se dá. Po chvilce
zjistil, že obraz dohromady už nesloží. Rozhodl se tedy, že alespoň nalezne
zbylou část s největším počtem vrcholů a tu vystaví na své nadcházející
výstavě jako miniaturu. A právě s hledáním mu máte pomoci vy.

Navrhněte co nejefektivnější algoritmus, který dostane na vstupu po-
čet vrcholů původního obrazu n, počet Pepíčkových střihů к a popis
jednotlivých střihů a na základě těchto údajů určí počet vrcholů té zbylé
části, která jich má nejvíce. Každý střih je popsán dvojicí čísel (a-i, ),
což jsou čísla vrcholů v původním n-úhelníku, mezi kterými Pepíček střih
vedl. Vrcholy n-úhelníku jsou číslovány po obvodu po řadě čísly od 1 do n.
Snažte se, aby časová ani paměťová složitost vašeho řešení nezávisela na

počtu vrcholů obrazu.
Příklad. Pro n = 10, к = 3 a střihy (1,8), (7,5) a (4,2) má největší

část 6 vrcholů.

P - II - 4

(Definice dlaždicových programů je stejná jako v úloze P-I-4, pouze pří-
klad jejich použití je složitější a ukazuje, jak je možno využívat více řádků
dlaždic.)

Příklad. Zkonstruujme dlaždicový program, který bude ověřovat, zda
je daná posloupnost tvořená přirozenými čísly xi,...,xn (0 ^ X{ ^ 9)
vyvážená, tzn. zda obsahuje stejný počet sudých a lichých čísel.

Myšlenka našeho řešení je velice jednoduchá: sestrojíme sadu dlaž-
die, která bude umožňovat právě taková vydláždění, v nichž v každém
řádku přepíšeme právě jedno sudé a jedno liché číslo na •. Dolní okraj
zdi obarvíme též barvou •. Jelikož obarvení spodního okraje je vyvá-
ženě a vydláždění každého řádku vyváženost zachovává, pak jakákoliv
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vstupní posloupnost, pro kterou vydláždění existuje, je opravdu vyváže-
ná. A naopak: pokud máme vyváženou posloupnost, pak snadno ověříme,
že vydláždění existuje: vybereme si libovolné sudé a libovolné liché číslo
(z vyváženosti víme, že v posloupnosti taková dvojice je), ta jedním řád-
kem dlaždic přepíšeme na • a toto opakujeme tak dlouho (n/2-krát),
dokud nebudou všechna čísla přepsána. Pokud se nám tedy podaří ta-
kový dlaždicový program sestrojit, bude zadanou úlohu řešit se složitostí
0(n).

Hledaný program může vypadat například následovně:

x £ {0,... ,9, •}, s £ {0,2,4,6,8}, l £ {1,3,5, 7,9}

levý okraj obarvíme barvou A, pravý barvou В a dolní barvou •. Z těchto
dlaždic je možno konstruovat výhradně řádky typu

kde xi je sudé a Xk liché, případně

pro Xi liché a Xk sudé. To jsou přesně řádky, jaké jsme potřebovali.
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Soutěžní úloha. Sestrojte dlaždicový program, který o dané posloup-
nosti přirozených čísel xi,X2, ■ ■ ■ ,xn (0 ^ Xi ú 9) rozhodne, zdaje sy-

metrická, tj. zda xi = xn, X2 = xn-i, .. Xi — Xn—{-j-i, . . Xn=X\.• 4 • ?

P - III - 1

Pan Kašparov byl náruživý hráč šachů. Protože ale často postrádal vhod-
ného protihráče a hrát sám proti sobě ho už nebavilo (vždy si odhalil
všechny léčky), vymyslel si následující hru: Na šachovnici o rozměrech
N x N je třeba rozmístit N věží tak, aby se vzájemně neohrožovaly.
Aby hra nebyla příliš jednoduchá, pro každou věž je určen obdélník, do
kterého se věž musí umístit.

Vaším úkolem je navrhnout algoritmus, který bude tuto hru hrát.
Na vstupu dostane rozměr šachovnice a počet věží N a dále popis N
obdélníků. Jeden obdélník je popsán čtveřicí čísel Ax, Ay, Bx, By, 1 ú
ú Ax ú Bx ú N, 1 ^ Ay ^ By ^ N, kde Ax, Ay jsou souřadnice levého
horního rohu obdélníku a Bx, By jsou souřadnice pravého dolního rohu
obdélníku. Řádky číslujeme od 1 do V shora dolů a sloupce od 1 do A
zleva doprava. Na výstup pak algoritmus vypíše souřadnice jednotlivých
rozmístěných věží, nebo zprávu, že rozmístění dle pravidel hry neexistuje.
Pokud existuje více různých řešení, stačí najít jedno libovolné z nich.

Příklad 1: N = 4

1111

4 4 4 4

113 3

3 2 4 4

Rozmístění věží může být:
(1,1), (4,4), (2,2), (3,3).

Příklad 2: N = 3

113 1

2 13 1

2 2 3 3

Rozmístění věží neexistuje.

P - III - 2

Napište program, který na vstupu obdrží přirozené číslo N a nalezne
nejmenší takové přirozené číslo ж, že x je dělitelné číslem N a zároveň
dekadický zápis čísla x je tvořen pouze ciframi nula a jedna. V případě, že
takové číslo x neexistuje, vypíše váš program vhodnou zprávu. Například
pro N = 6 je hledaným číslem x číslo 1110.
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P - 111 - 3

(Definice dlaždicových programů je stejná jako v úloze P--I-4, pouze navíc
vysvětluje, jak lze dlaždicové programy používat к výpočtu funkcí a uvádí
příklad tohoto použití.)

Dlaždicové programy je možno používat nejen к řešení rozhodo-
vacích problémů, ale také к výpočtu hodnot funkcí. Výpočet funkce
/(x) totiž můžeme snadno převést na rozhodovací problém P(x,y) =
= „je у = /(x)?“, o kterém budeme vědět, že pro každé x bude P(x,y)
splněno pro právě jednu hodnotu y. Navíc můžeme dlaždicovému pro-

gramu x i у zadat jako jeden vstup tak, že barvy dlaždic nebudou odpo-
vídat hodnotám, nýbrž jejich uspořádaným dvojicím.

Příklad. Zkonstruujme dlaždicový program, který pro každé číslo
zapsané ve dvojkové soustavě spočte dvojkový zápis tohoto čísla vy-
děleného třemi (předpokládejme, že je dělitelné beze zbytku). Jinými
slovy máme o dané posloupnosti dvojic (xi,yi),..., (xn,yn) zjistit, zda
{yii • • • •> Уп) — 3 {%1, • • • , %n)•

Řešení založíme na tradičním algoritmu na písemné dělení (ten je
na použité číselné soustavě nezávislý): zvolíme zq = 0 a spočteme
postupně pro všechna к hodnoty Zk = (2zk-i 4- Xk) mod За yk =
= [|(2zfc_i + Xk)J. Nyní dokážeme indukcí, že pro každé к je

(Xi ,...,Zfc) = 3 • (yi,...,yk) + Zk.

Pro к — 0 rovnost platí. Platí-li pro к — 1, pak pro к dostaneme:

(xi,... ,xk) = 2 • (xi,... ,xfc_i) +xk =

= 2 • (3 • <3/1, -. •, Ук-i) + Zk-1) + Xk =

= 3 • 2 • <3/1,.. .,yk-1) + 2zk-i + xk =

= 3 • 2 • (yi,..., yk-1) + 3yk + zk =

= 3 • <3/1, — , 3/fc) -h jzffc.

Nyní si stačí zvolit následující sadu dlaždic:

{ ; x, у G {0,1}, a G {0,1, 2}, b = (2a + x) mod 3,T =

i(2a + x) j,У =

levý a pravý okraj budou mít barvu 0, spodní barvu •.
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Z těchto dlaždic je možno konstruovat výhradně jednořádková vy-
dláždění (• není barvou horního okraje žádné dlaždice), v nichž má k-tá
dlaždice na svém okraji Zk a pro (хк,Ук) na jejím horním okraji platí
Ук = [|(22/c_i +£fc)J. Jinými slovy tato vydláždění odpovídají přesně
hodnotám spočteným naším algoritmem, tedy i požadovanému výsledku.
Tím je problém vyřešen.

Soutěžní úloha. Sestrojte dlaždicový program, který bude uspořádá-
vat posloupnosti nul a jedniček vzestupně, to znamená, že na posloupnost
dvojic nul a jedniček (x\, yi),..., (xn,yn) odpoví ano právě tehdy, pokud
y\,..., yn je posloupnost vzniklá vzestupným uspořádáním posloupnosti

xn, tzn. y\ ^ ... ú yn a posloupnosti x а у obsahují tytéž prvky,xu..

nanejvýš v jiném pořadí.
* 1

Příklad. Na posloupnost (1,0), (0,0), (0,0), (1,1), (0,1), (1,1) pro-

gram odpoví ano, na (1,1), (0,0) ne, na (1,0), (1,1) taktéž ne.

P - III - 4

FORMAT.PAS / FORMAT.С / FORMAT.CPP
FORMAT.IN

FORMAT.OUT

Program:
Vstup:
Výstup:

Pro textový editor potřebujeme napsat program sloužící к formáto-
vání textu. Editor pracuje ve znakovém režimu s neproporcionálním pís-
mem. Všechny znaky tedy mají stejnou šířku a také mezera má pevnou
šířku stejnou jako každý jiný znak. Rovněž pomocné symboly obsažené
v textu (jako jsou interpunkční znaménka, závorky či uvozovky) se zpra-
covávají stejně jako jakékoliv jiné znaky. Editor je poměrně jednoduchý,
takže dělení slov nepřipouští. Program budeme používat vždy к formá-
tování jednoho odstavce textu.

Pro potřeby formátování rozumíme slovem každou souvislou posloup-
nost nemezerových znaků, která je na obou koncích ukončena mezerou
nebo začátkem či koncem řádku. Pomocné symboly obsažené v textu jsou
tedy součástí těch slov, od nichž nejsou odděleny mezerou.

Cílem formátování textu je vhodné rozložení slov na jednotlivé řádky
tak, aby byl celý text zarovnán „do bloku“ (tzn. к levému i pravému
okraji) při zadané šířce řádku. Přitom mezery mezi slovy musí být co
možná nejmenší a v textu co nej rovnoměrněji rozloženy. Tyto obecné
požadavky si nyní upřesníme: Velikosti mezer mezi slovy na témže řádku
(kromě posledního řádku odstavce) se mohou lišit maximálně o 1, před
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prvním a za posledním slovem na řádku nesmí být mezera. Pokud je
na řádku pouze jedno slovo, je rozložení mezer libovolné. Na posledním
řádku odstavce musí být slova oddělena právě jednou mezerou a před
prvním slovem nesmí být mezera.

Splňuje-li text tyto závazné požadavky, potom kvalitu zformátování
odstavce hodnotíme trestnými body. Ohodnocení odstavce je součtem
ohodnocení jednotlivých řádků. Ohodnocení jednoho řádku je dáno vý-
sledkem funkce F((Width), (Chars), (Words), (Last)), kde (Width) je
šířka stránky (tj. počet znaků na řádce zformátovaného textu včetně
všech mezer), (Chars) je počet nemezerových znaků na řádce, (Words)
je počet slov na řádce a (Last) značí, zda se ohodnocuje poslední řádek
odstavce či nikoliv.

Ohodnocovací funkce F zapsaná v programovací jazyce C vypadá
následovně:

int F(int Width, int Chars, int Words, int Last)
{
int Spaces = Width - Chars - Words +1; /* Počet zbytečných mezer */
int BasePen = LINEPENALTY; /* Základní trestné body za řádek */

if (Spaces < 0)
return INFTYPEN;

if (Last)

/* Nevejde se text na řádek? */

/* Poslední řádek? */
{

if (4*(Chars + Words -1) <= Width) /* Je poslední řádek moc krátký? */
BasePen += SMALLLINEPEN;

return BasePen;
>
if (Words == 1)

BasePen += SINGLEWORDPEN;
return Spaces * Spaces + BasePen;

/* Pouze jedno slovo na řádku? */

/* Ohodnocení celého řádku */
}

V Pascalu je zápis funkce F obdobný:

function F(Width, Chars, Words: Integer; Last: Boolean): Integer;
var

{ Počet zbytečných mezer na řádku }
{ Základní trestné body za řádek }

Spaces : Integer;
BasePen : Integer;

begin
BasePen := LINEPENALTY;
Spaces := Width - Chars - Words + 1;
if Spaces < 0 then

F := INFTYPEN
{ Nevejdou se slova na řádek? >

{ Ohodnocujeme poslední řádek? }
if 4*(Chars + Words - 1) <= Width then { Je řádek moc krátký? }

Inc(BasePen, SMALLLINEPEN);
F := BasePen;

else if Last then begin
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end

else begin
if Words = 1 then { Je jen jedno slovo na řádku? }

Inc(BasePen, SINGLEWORDPEN);
F := Spaces * Spaces + BasePen; { Spočteme výsledné ohodnocení }

end;
end;

Hodnoty konstant jsou:
LINEPENALTY = 10

SMALLLINEPEN = 5

SINGLEWORDPEN = 20

INFTYPEN = 30 000

Vaším úkolem je zformátovat odstavec textu při zadané šířce řádku co

nejkvalitněji, tzn. splnit všechny závazné požadavky kladené na formá-
tování a přitom dosáhnout co nejnižšího ohodnocení odstavce trestnými
body podle funkce F.

Vstup: Ve vstupním souboru FORMAT. IN je na prvním řádku zadána
požadovaná šířka stránky po zformátování. Na dalších řádcích se nachází
text odstavce určený ke zformátování. Můžete předpokládat, že žádný
z těchto řádků není delší než 100 znaků, na začátku ani na konci žádného
řádku není mezera a mezi jednotlivými slovy na řádku je vždy právě
jedna mezera. Vstupní soubor nebude delší než 10 000 znaků (počítáno
včetně mezer mezi slovy).

Výstup: Do výstupního souboru FORMAT.OUT zapište zadaný text
odstavce zformátovaný co nejkvalitněji podle výše uvedených zásad
(tj. s nejnižší možnou hodnotou ohodnocovací funkce).

Příklad.
FORMAT.IN
40

Each section in this document will have the string "<section>" at the
right-hand side of the section title. Each subsection will have
"<subsection>" at the right-hand side. These strings are meant to make
it easier to search through the document.

FORMAT.OUT (jedno z možných řešení; symbol ‘u’ označuje mezeru)
EachuusectionuuinuuthisUudocumentuuuwill
haveuutheuustringuu"<section>"uuat
right-handusideuofuutheuusectionuutitle.
Eachusubsectionuwilluhaveu"<subsection>"
atutheuright-handuuside.uuTheseuustrings
areumeantutoumakeuitUL,easieruutouusearch
throughutheudocument.

theUUU
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P - III - 5

OKRUŽNÍ.PAS / OKRUŽNÍ.C / OKRUŽNÍ.CPP
OKRUŽNÍ.IN

OKRUŽNÍ.OUT

Program:
Vstup:
Výstup:

Ve městě Turiststadt začal vzkvétat turistický ruch. Aby podpořili
jeho další rozkvět, rozhodli se moudří radní založit společnost City-tour.
Posláním této společnosti je provozovat ve městě několik vyhlídkových
okružních autobusových linek. Vaším úkolem je vytvořit program, který
navrhne trasy vyhlídkových autobusových linek městem podle požadavků
radních, popřípadě zjistí, že autobusové linky nelze dle jejich požadavků
vytvořit.

Město je tvořeno křižovatkami, které jsou navzájem spojeny ulicemi.
Každá ulice spojuje právě dvě křižovatky. Dvě stejné křižovatky mohou
být spojeny více různými ulicemi. Křižovatkou rozumíme i místo, do kte-
rého vede jen jedna nebo dvě ulice. Radní kladou na plánované trasy
autobusových linek následující požadavky: Aby si turisté mohli poho-
dlně prohlédnout každou ulici ve městě a přitom se zbytečně neplýtvalo
náklady na provoz autobusových linek, musí každou ulicí projíždět právě
jedna autobusová linka. Žádná z linek nesmí projet některou z křižovatek
více než jednou. Trasy linek musí být navrženy tak, aby první a poslední
křižovatka na trase byla stejná — jinak by se linky provozované touto
společností daly jen stěží nazývat okružní.

Vstup: První řádek vstupního souboru OKRUŽNÍ. IN obsahuje dvě čísla
oddělená mezerou — počet křižovatek (A", 1 ^ ^ 120) a počet ulic
(M). Křižovatky jsou očíslovány čísly od 1 do N. Následujících M řádků
vstupního souboru obsahuje popis jednotlivých ulic ve městě: Každý
z těchto řádků obsahuje dvě čísla představující čísla křižovatek, které
příslušná ulice spojuje. První číslo na každém z těchto řádků je menší
než druhé z nich. Tyto řádky jsou v souboru setříděny podle prvního čís-
la; v případě, že se shoduje více ulic v prvním čísle, jsou setříděny podle
druhého čísla. Můžete předpokládat, že počet různých ulic spojujících
dvě stejné křižovatky je nejvýše 200.

Výstup: Výstupní soubor OKRUŽNÍ. OUT obsahuje tolik řádků, kolik má
společnost provozovat autobusových linek. Každý řádek obsahuje popis
právě jedné autobusové linky. Trasa autobusové linky je popsána jako po-

sloupnost čísel křižovatek, kterými linka projíždí. První a poslední číslo
uvedené na řádku je tedy stejné (linka začíná a končí na stejné křižo-
vatce). Jednotlivá čísla jsou na každém řádku oddělena právě jednou
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mezerou. Pokud nelze trasy linek navrhnout tak, aby vyhovovaly pod-
mínkám ze zadání úlohy, potom výstupní soubor obsahuje jediný řádek
se slovem „Nelze“.

Příklad 1.

Vstupní soubor OKRUŽNÍ.IN:
5 12

Příklad 2.

Vstupní soubor OKRUŽNÍ. IN:
3 4

1 2 1 2

1 2 1 2

1 2 1 3

1 2 2 3

Výstupní soubor OKRUŽNÍ. OUT:
Nelze

1 3

1 3

2 3

2 5

3 4

3 5

3 5

4 5

Výstupní soubor OKRUŽNÍ. OUT:
12 3 1

2 12

3 4 5 3

2 5 3 1 2
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Řešení úloh

P - I - 1

Je jasné, že za každé dva uzly hloubky К, К > 0 musí existovat je-
den uzel hloubky К — 1, který není listem
pod nějaký uzel „zavěsit". Protože navíc pod každý uzel můžeme zavěsit
pouze žádný nebo dva uzly, musí být počet uzlů hloubky К sudý. Výše
uvedená pozorování nám již dávají návod na sestrojení algoritmu. Pro
každou hloubku si budeme pamatovat počet listů a počet ostatních uzlů.
Budeme postupovat od uzlů s největší hloubkou. Pro každou hloubku Zí,
К > 0 zkontrolujeme, zda je počet uzlů v ní sudý. Pokud není, strom
neexistuje. Pokud je počet uzlů sudý, za každé dva uzly umístěné ve
stromu na dané hloubce přidáme do předchozí hloubky jeden uzel. Když
se takto dostaneme až к uzlům hloubky 0, stačí ověřit, jestli v této hloubce
leží právě jeden uzel, jak je vyžadováno v definici binárního stromu. Po-
kud není, strom neexistuje. To plyne z toho, že pokud neexistuje uzel
hloubky 0, nebyl dán žádný list, a tedy strom nemůže mít žádné uzly. To
je ale ve sporu s požadavkem, že každý strom musí mít alespoň kořen.
Pokud je uzlů hloubky 0 naopak více, strom neexistuje, protože všechny
uzly, které jsme přidávali, byly vynucené a každý strom s danými počty
listů tedy musí mít na jednotlivých hloubkách alespoň tolik uzlů jako náš
strom. Pokud existuje právě jeden uzel hloubky 0, snadno již ze spočí-
taných počtů listů a ostatních uzlů v jednotlivých hloubkách vytvoříme
požadovaný zápis stromu. Jednoduše vypíšeme tolik L, kolik je počet
listů dané hloubky, a tolik U, kolik je počet ostatních uzlů dané hloubky.
Algoritmus má časovou i paměťovou složitost O(N). Program je přímou
implementací algoritmu.

každé dva uzly musíme

P - I - 2

Algoritmus řešící tuto úlohu se dá rozdělit do tří fází. V první fázi se pro
každé město spočítá, jaká je jeho vzdálenost od nepřítelem obsazených
měst (ve smyslu definice uvedené v zadání). Ve druhé fázi se zjistí, jakou
maximální vzdálenost od nepřátelských měst dokážeme udržet při cestě
z počátečního do cílového města. Ve třetí fázi pak nalezneme nejkratší
z tras vedoucích z počátečního do cílového města, které udržují spočtenou
vzdálenost.
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První fáze: Vzdálenost od obsazených měst budeme hledat pomocí
prohledávání do šířky. U každého města si budeme udržovat informaci,
zda jsme v něm již byli (na počátku bude nastaveno právě u všech obsa-
zených měst) a jeho vzdálenost od nepřítele. Pro města obsazená nepříte-
lem bude tato vzdálenost rovna 0. Dále si budeme udržovat frontu měst

ke zpracování, do které na začátku uložíme všechna nepřátelská města.
V každém kroku výpočtu vždy vezmeme jedno město z fronty a u všech
jeho sousedů, ve kterých jsme dosud nebyli, nastavíme vzdálenost o jedna
větší, než je vzdálenost vybraného města. U všech těchto sousedů také
označíme, že jsme v nich už byli, a přidáme je na konec fronty. První
fáze výpočtu končí, když se vyprázdní fronta. Tehdy jsme prošli všechna
města a určili jsme vzdálenost každého z nich od nepřítele.

Druhá fáze: V této fázi si budeme udržovat front hned několik, pro
každou vzdálenost od nepřátelských měst jednu. Dále si pro každé město
budeme zaznamenávat, zda jsme v něm už byli. Také si budeme parna-
tovat dosud největší nalezenou vzdálenost, kterou dokážeme udržet od
nepřítele. Na začátku nastavíme udržitelnou vzdálenost od nepřítele na
hodnotu vzdálenosti královského města od nepřítele a toto město vložíme
do fronty pro příslušnou vzdálenost. U tohoto města také nastavíme,
že jsme v něm už byli. Výpočet probíhá tak, že postupně vyzvedáváme
města z fronty pro aktuální udržitelnou vzdálenost, dokud se tato fronta
nevyprázdní. Když se fronta vyprázdní, snížíme udržitelnou vzdálenost
o jedna a opět začneme vybírat města z příslušné fronty. Vždy, když
vezmeme nějaké město z fronty, projdeme všechny jeho sousedy, u dosud
nenavštívených z nich nastavíme příznak, že už jsme je nenavštívili, a při-
dáme je do fronty — jestliže je vzdálenost takového města od nepřátel-
ských měst větší, než je aktuální udržitelná vzdálenost, přidáme vrchol do
fronty odpovídající aktuální udržitelné vzdálenosti, jinak město přidáme
do fronty odpovídající jeho vzdálenosti od nepřátelských měst. Druhá
fáze končí, jakmile vybereme z fronty cílové město. Aktuální udržitelná
vzdálenost je pak výslednou udržitelnou vzdáleností.

Třetí fáze: Tato fáze představuje opět prosté prohledávání do šíř-
ky. Pro každé město si pamatujeme, zda jsme v něm již byli, a pokud
ano, zaznamenáme si také město, ze kterého jsme do něj přišli. Opět
používáme frontu na dosud nezpracovaná města. Na začátku vložíme do
fronty cílové město. U něj nastavíme, že jsme v něm již byli, a jako jeho
předchůdce nastavíme je samé. V každém kroku výpočtu pak vezmeme

jedno město z fronty a projdeme všechny jeho sousedy. Každého souse-

da, kterého jsme dosud nenavštívili a jehož vzdálenost od nepřátelských
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měst je větší nebo rovna výsledné udržitelné vzdálenosti, označíme jako
navštíveného a přidáme ho na konec fronty. Také u něj jako město, ze
kterého jsme přišli, nastavíme právě vybrané město. Prohledávání končí
ve chvíli, když je z fronty vyzvednuto počáteční (královské) město. Poté
už jenom projdeme cestu z počátečního do cílového města (to je velmi
snadné díky odkazům na města, odkud jsme do nich při prohledávání
přišli) a cestu vypíšeme.

Algoritmus má časovou složitost 0(M + N), kde M je počet cest a N
je počet měst.

Správnost algoritmu budeme ukazovat opět po fázích. To, že algorit-
mus spočte správně vzdálenosti od nepřátelských měst v první fázi, plyne
& následujícího: Na počátku mají všechny vrcholy se vzdáleností nula tuto
vzdálenost přiřazenu. V okamžiku, kdy jsou zpracovány všechny vrcholy
vzdálenosti nula, prošli jsme všechny jejich sousedy, přiřadili jsme jim
vzdálenost jedna a zařadili je do fronty. Protože jiné vrcholy vzdálenost
jedna mít nemohou, je vzdálenost jedna přiřazena právě všem správ-
ným vrcholům. Tuto úvahu lze snadno zobecnit pro libovolnou vzdále-
nost D. Prohledávání tedy skutečně určí vzdálenosti od nepřátelských
měst správně.

Ve druhé fázi se správně spočítá maximální udržitelná vzdálenost od
obsazených měst. Sledujeme v ní totiž souběžně všechny možné trasy
vedoucí z počátečního města tak dlouho, dokud dokážeme udržet vzdále-
nost počátečního města (výsledná vzdálenost od nepřítele zřejmě nemůže
být větší než vzdálenost počátečního města). Když už neexistuje město
s dostatečně velkou vzdáleností, do kterého bychom mohli jít, snížíme
udržitelnou vzdálenost o jedna. Všechny vrcholy se vzdáleností o jedna
nižší, do kterých se dokážeme dostat přes vrcholy s dosavadní udržitel-
nou vzdáleností, máme již připraveny v příslušné frontě a začneme tedy
prohledávat z nich. Protože udržitelnou vzdálenost snižujeme až když
jsme se již dostali všude, kam to bylo možné, její výsledná hodnota bude
zřejmě nejvyšší možná.

To, že ve třetí fázi nalezneme nejkratší trasu s danou vzdáleností, je
zřejmé. Provádíme totiž jednoduché prohledávání do šířky s tím, že ig-
norujeme města s příliš malou vzdáleností od nepřítele. Nalezneme tedy
určitě trasu s dostatečnou vzdáleností od nepřítele. Skutečnost, že to bude
trasa nejkratší možná, plyne z vlastností prohledávání do šířky uvedených
v první části důkazu. Program je přímou implementací uvedeného algo-
ritmu.
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P - I - 3

Řešení úlohy rozdělíme na několik částí — nejprve zformulujeme nutné
a postačující podmínky pro to, aby skupina mohla projet trasu dle pod-
mínek v zadání úlohy, poté vyřešíme úlohu a) a nakonec nalezneme řešení
úlohy b).

Plánovanou trasu lze projet právě tehdy, když tato trasa není delší
než vzdálenost, kterou skupina urazí za den, tj. L S К, anebo když jsou
splněny zároveň všechny čtyři následující podmínky:
1. Na trase je alespoň jeden kemp.
2. Vzdálenost prvního kempu od začátku trasy je nejvýše К, tj. l\ S K.
3. Vzdálenost libovolných dvou po sobě následujících kempů není větší

než К, tj. — h S К pro 1 S i S N — 1.
4. Vzdálenost posledního kempu od konce trasy je nejvýše K, tj. L -

-lN SK.
Nutnost všech uvedených podmínek je zřejmá; pokud jsou tyto podmínky
splněny, pak plán cesty, ve kterém skupina bude cestovat N +1 dní a г-tý
den přespí v г-tém kempu, splňuje podmínky ze zadání úlohy.

Nyní vyřešíme úlohu a). Na chvíli si představme, že jsme každému
kempu přiřadili číslo di, které udává, kolikátý den nejdříve můžeme do
tohoto kempu dorazit. Číslo di přiřazené kempu г zřejmě splňuje jednu
z následujících dvou podmínek:
1. Je di = 1 a li S К — do kempu lze dorazit hned první den.
2. Existuje j < i takové, že U — lj S К a dj = di — 1 (do г-tého kempu

dorazíme tak, že den před tím přespíme v ý-tém kempu), ale neexistuje
j < i takové, že U — lj S К a dj < di — 1 (jinak by bylo možné do
ý-tého kempu dorazit již dříve).

Podle těchto podmínek by bylo možné spočítat všechna di v čase O(N),
náš program však di počítat nebude. Plán cesty splňující podmínku a) by
mohl vypadat například tak, že h-tý den skupina přespí v г-tém kempu,
pokud di — h a di+\ = h+1; skupina navíc přespí v iV-tém kempu, pokud
plán cesty bez tohoto kempu nesplňuje podmínku omezující maximální
vzdálenost, kterou lze urazit za jeden den. Budeme přímo vytvářet tako-
výto plán cesty — pokud dosud vytvořený plán cesty končí kempem ve
vzdálenosti l od začátku výletu a L — l > К (nelze bez přespání dora-
zit na konec trasy), pak další den skupina přespí v г-tém kempu, pokud
li — l S К а г je maximální s touto vlastností. Vytvořit program pracující
podle právě popsaného postupu je triviální; časová složitost algoritmu je
O(N).
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Dále vyřešíme úlohu b). Každému kempu přiřadíme číslo e*, které
udává, kolik by cyklisté museli zaplatit za přespání na cestě z г-tého
kempu na konec výletu (počítáno včetně poplatku za přespání v г-tém
kempu). Čísla e* náš algoritmus spočítá postupně pro i = N až i = 1;
kromě těchto čísel, si pro každý z kempů uložíme informaci, do kterého
následujícího kempu se z něj máme vydat, abychom za noclehy zaplatili
optimální cenu ег-. Čísla e* lze spočítat podle následujícího předpisu:
1. Pokud Ь-U ^ K, potom e* = сг-; z г-tého kempu lze dorazit na konec

trasy během jednoho dne.
2. Pokud L — li > К, potom ei = mirij(ci + ej) = Ci + minjej, kde se

minimum počítá přes všechna j > i taková, že lj — k ^ K\ to j, pro
které se nabývá minima, určuje pořadí kempu, ve kterém přespíme
ten den, kdy vyjedeme z г-tého kempu.
První den, pokud L > К, přespíme v kempu s číslem i s minimálním

ej, pro který platí li ^ K. Jak bude algoritmus pracovat je nyní již
jasné. Zbývá ještě určit, jak rychle lze najít j, které minimalizuje vztah
v druhém bodě.

К rychlému nalezení indexu j, použijeme datovou strukturu, která
se nazývá halda. Halda je datová struktura, která umožňuje v konstant-
ním čase určit nejmenší z prvků v haldě; prvek do haldy přidat nebo
vyjmout nejmenší prvek umí v čase logaritmickém v počtu prvků obsa-
žených v haldě. V haldě si budeme udržovat čísla kempů setříděná podle
hodnot e*; na začátku budeme mít v haldě navíc konec trasy, jehož hod-
notu budeme považovat za rovnu nule (bude nejmenším prvkem haldy).
Nalezení vhodného j bude probíhat následovně: Zjistíme, zda nejmenší
prvek haldy je od г-tého kempu vzdálený nejvýše о К
nalezli jsme příslušné j, v opačném případě z haldy odstraníme tento
prvek a celý postup zopakujeme. Poté do haldy přiřadíme г-tý kemp.
Za předpokladu logaritmického času přidání prvku do haldy a vyjmutí
nejmenšího prvku z haldy je celková doba běhu algoritmu 0(N log N).

Haldu budeme reprezentovat v poli. Bude-li v haldě n prvků, pak její
prvky budou uloženy v poli na pozicích s čísly 0 až n — 1. Pro prvek x
s indexem к budeme prvky na pozicích 2к + 1 a 2k -f 2 nazývat syny
prvku x a prvek x budeme nazývat otcem těchto prvků. Všimněte si,
že každý prvek, mimo prvku na pozici 0, má právě jednoho otce. Při
práci s haldou budeme dodržovat následující invariant: Každý prvek je
větší než jeho otec. Nejmenším prvkem v haldě je proto prvek na nulté
pozici; zjištění nejmenšího prvku haldy lze tedy provést v konstantním
čase. Přidání prvku do haldy bude probíhat následovně: Je-li v haldě n

pokud ano,
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prvků, pak nový prvek umístíme na pozici n; pokud je jeho otec větší,
vyměníme přidávaný prvek s jeho otcem a celý postup opakujeme tak
dlouho, dokud nový prvek není nultým prvkem nebo jeho otec není menší
než on. V každém kroku se index nového prvku v poli zmenší alespoň na

polovinu a tedy se po logaritmicky mnoha krocích zastavíme. Odebrání
prvku z haldy bude probíhat podobně: Je-li v haldě n prvků, pak nejmenší
prvek haldy nahradíme prvkem z (n—l)-té pozice; tento prvek porovnáme
s oběma jeho syny a popřípadě ho zaměníme s menším z obou jeho synů.
Skončíme, pokud je tento prvek menší než oba jeho synové. Protože se
v každém kroku posuneme na prvek s alespoň dvojnásobným indexem,
odebrání nejmenšího prvku z haldy bude trvat čas logaritmický v počtu
prvků v haldě.

P - I - 4

a) Mějme zadáno nějaké dvojkové číslo (xi,... ,#n), o němž máme
rozhodnout, zdaje dělitelné pěti. Sestrojíme sadu dlaždic, jíž bude možno
vydláždit pouze zeď o jednom řádku, a to tak, aby barva pravé hrany г-té
dlaždice (tu budeme značit pí) odpovídala zbytku po dělení dvojkového
čísla (rci,... ,Xi) pěti. Když navíc zvolíme barvu pravého okraje zdi tak,
aby odpovídala zbytku 0, půjde zeď vydláždit právě tehdy, je-li zadané
číslo dělitelné pěti, a to je přesně to, co potřebujeme.

Použijeme dlaždice následujících typů:

xj>\z ;0^ж^4,0^y^l,z = (2x + y) mod 5 i ,
T =

levý i pravý okraj budou mít barvu 0 a dolní okraj barvu •. Jelikož
barva • se nevyskytuje na horní hraně žádné dlaždice, musí být každé
korektní vydláždění tvořeno jediným řádkem. Zbývá dokázat, že barvy
pravých hran dlaždic odpovídají zbytkům, což učiníme indukcí:

> Pi = (xi) = (xi) mod 5 (existuje právě jedna dlaždice, která může
být na prvním políčku — ta, která má na levém okraji nulu a na
horním okraji xi).

> Je-li pi = (xi,... ,X{) mod 5, může být na i -f 1-ním políčku pouze
jediná dlaždice (mající na levém okraji рг- a na horním okraji
Xi+1) a její pravý okraj má barvu pj+i = (2pi -I- Xí+i) mod 5 =
= (2((xi,..., Xi) mod 5) + X{+1) mod 5 = (2 (rri,..., Xi) 4- xi+i) mod
5 = (xi,..., Xi+i) mod 5.
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Z toho plyne, že popsaný dlaždicový program řeší zadanou úlohu se slo-
žitostí 0(1).

b) Použijeme následující typy dlaždic:
x

LXx ;0^x<;9V,t> „levé“ dlaždice

xjkíi ; О ^x,y ^ 9,x ф у> „pravé“ dlaždice

xX X

o „opakovači" dlaždice < LXX , KXR , у/Су ; O ú x, у ^ 9 >.

Levý okraj zdi obarvíme barvou L, pravý barvou R a spodní barvou •.
Jelikož barva • se nevyskytuje na horní hraně žádné dlaždice, musí být
každé korektní vydláždění tvořeno jediným řádkem.

Z toho, jak jsme si typy dlaždic nadefinovali, ihned plyne, že každé
vydláždění zdi musí vypadat takto:

Xi-\-1

Xj-l

(zleva doprava: nejprve [možno i prázdná] posloupnost dlaždic opakují-
cích L, pak jedna levá dlaždice, následuje opět několik opakovačích dlaž-
die, jedna pravá dlaždice a případně opakování R). Takové vydláždění je
ovšem korektní právě tehdy, bylo-li možné nalézt indexy i a j takové, že
Xi Ф Xj (díky definici barev hran pravé dlaždice), takže náš dlaždicový
program řeší zadanou úlohu se složitostí 0(1).

Poznámka. Naše řešení využívá toho, že dlaždicové programy jsou
nedeterministické (to znamená, že nemají pevně definovaný průběh vý-
počtu a místo toho připouštějí více různých výpočtů s tím, že odpovědí
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programu je ANO, pokud existuje alespoň jeden korektní výpočet) a že
nám nedeterminismus „uhodne" polohu nějakých dvou různých prvků
vstupní posloupnosti.

P - II - 1

Předpokládejme, že máme délky dřevěných tyček setříděny podle veli-
kosti, tj. d\ < o?2 < ... < cIn. Potom trojice indexů i < j < к určuje
tyčky tvořící trojúhelník právě tehdy, pokud dk < di + dj. Zbývající dvě
trojúhelníkové nerovnosti jsou totiž splněny triviálně, neboť di,dj < dk-
Pro libovolnou dvojici indexů i < j označme symbolem l(i,j) největší
číslo к takové, že dk < di + dj; speciálně tedy platí l(i,j) ^ j. Zvolenou
dvojici indexů i < j lze doplnit na trojici i < j < к určující trojúhelník
právě těmi к, pro která platí j < к 'š Pro pevnou dvojici indexů i
a j tedy existuje právě l(i,j) — j takových k, že tyčky s indexy i < j < к
tvoří trojúhelník. К určení počtu trojúhelníků proto stačí spočítat hod-
noty l(i, j) pro všechna i < j a sečíst výrazy l(i,j) — j.

Z definice l(i,j) plyne, že N = l(i,N) ^ l(i,N — 1) ^ l(i,N — 2) ^
^ ... ^ /(i, i 4- 1). Náš program bude pracovat následovně: Pro každé i
spočteme hodnoty Z (г, N — 1), / (г, N — 2),..., / (г, г + l) a současně budeme
počítat součet (/(г, N — 1) — (N —1)) + .. . + (/(г, г + 1) — (г + l)), který před-
stavuje počet trojúhelníků, jejichž nejkratší strana má délku d{. Hodnotu
l(i,j) spočítáme tak, že hodnotu l(i,j + 1) budeme zmenšovat o jedničku
tak dlouho, dokud ^ di + dj. Protože celkový počet zmenšení o jed-
ničku během výpočtu hodnot /(г, N—l),l(i, N—2),..., Z (г, г+l) je nejvýše
N — 2, je doba výpočtu pro jedno pevné i lineární v N. Celková doba
výpočtu pro všech N — 2 možných hodnot i je tedy 0(N2). V tomtéž čase
můžeme provést i úvodní setřídění zadaných délek tyček, a tedy časová
složitost našeho algoritmu je 0(N2) a paměťová pak O(N).

{ р-н-i }program trojúhelníky;
const MAXN=1000;
var N:word; { počet tyček }

T:longint; { počet trojúhelníků }
i, j,k:word;
d:array[1..MAXN] of real; { délky tyček >
e:real;

begin
read(N);
for i:=1 to N do read(d[i]);
for i:=l to N-l do { setřídíme délky tyček }
for j:=i+l to N do
if d[i]>d[j] then
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begin
e:=d[i] ; d[i]:=d[j]; d[j]:=e

end;
T:=0;
for i:=l to N-2 do { i - nejkratší tyčka z trojice }
begin
j:=N-l; k:=N; { j - druhá nejkratší tyčka z trojice }
repeat
while (j<k) and (d[k]>=d[i]+d[j]) do { podmínku (j<k) lze vypustit }
dec(k); { hledáme nejdelší tyčku do trojice }

T:=T+k-j;
dec(j);

until j=i;
end;

writeln(T);
end.

P - II - 2

Nejprve si rozmysleme, jak bychom zadanou úlohu řešili, kdybychom
chtěli najít nejkratší cestu robota mezi dvěma zadanými políčky. Algo-
ritmus pro řešení této úlohy je znám pod názvem prohledávaní do šířky
nebo též algoritmus vlny. Každému políčku v průběhu výpočtu přiřadíme
číslo, jež udává minimální počet kroků, které robot potřebuje к přemís-
tění z počátečního políčka na uvažované políčko. Algoritmus pracuje ve
fázích. Nejprve počátečnímu políčku přiřadí nulu. V г-té fázi přiřadí číslo
i všem políčkům, která sousedí s nějakým políčkem, kterému bylo přiřa-
zeno číslo г — la kterým jsme dosud žádné číslo nepřiřadili. Je zřejmé, že
takto přiřazená čísla určují minimální počet kroků potřebný к přemístění
robota z počátečního políčka.

Nyní si rozmyslíme, jak lze tento algoritmus modifikovat tak, aby řešil
úlohu ze zadání. V г-té fázi nebudeme číslovat políčka ve vzdálenosti г

kroků, ale políčka, na které se lze přesunout cestou s г změnami smě-
ru. Přesněji v г-té fázi budeme číslovat ta políčka, která leží ve stejném
řádku nebo sloupci jako některé políčko s číslem г-l a nejsou od něj
v tomto řádku či sloupci oddělena překážkou. Správnost tohoto algo-
ritmu je zřejmá. Zbývá domyslet detaily jeho implementace. Políčka si
budeme uchovávat v poli tak, že políčka se stejným číslem budou tvo-
řit souvislé úseky a políčka s nižším číslem budou předcházet políčkům
s vyšším číslem. Pokud přijdeme v průběhu fáze na dosud neočíslované
políčko, zařadíme ho na konec pole. V průběhu algoritmu vyjmeme vždy
první nezpracované políčko z pole a prohledáme jeho řádek a sloupec.
Pole, se kterým se pracuje právě popsaným způsobem, se obvykle nazývá

109



fronta — políčka se stavějí na konec fronty a čekají, až na ně přijde řada
(budou zpracována). Nechť M a TV jsou rozměry čtvercové sítě, potom
zpracování každého z M x N políček vyžaduje čas 0(M + N). Celková
časová složitost našeho algoritmu by tedy byla 0(M2N + MN2).

Čas potřebný к výpočtu však lze ještě zlepšit. Jeden a tentýž sou-

vislý úsek v řádku bez překážek je totiž prohledáván několikrát — pro
každé políčko z tohoto souvislého úseku jednou. Přitom by ale stačilo
prohledat ho jenom z toho políčka, na které přijdeme nejdříve. Proto
si budeme u každého políčka pamatovat, zda jsme prohledali souvislý
úsek řádku (sloupce) bez překážek, ve kterém se toto políčko nachází.
Před prohledáváním řádku (sloupce) otestujeme tento příznak a pokud
jsme již příslušný souvislý úsek prohledali, tak vyjmeme ke zpracování
další políčko z fronty. Všimněte si, že pro každé políčko je třeba udržovat
dva příznaky — jeden pro souvislý úsek bez překážek v řádku a jeden
pro úsek ve sloupci. Celkový čas strávený načítáním vstupních dat, prací
s frontou a výpisem řešení je zřejmě O(MN). Zbývá stanovit čas potřebný
к prohledávání řádků a sloupců. Každý souvislý úsek bez překážek je pro-
hledán právě jednou a součet délek všech souvislých úseků bez překážek
je určitě nejvýše MN (tolik je totiž políček ve čtvercové síti). Prohledání
jednoho souvislého úseku lze snadno provést v čase lineárním v jeho délce
a tedy i celková časová složitost našeho algoritmu je 0(MN); paměťová
složitost je též O(MN).

{ P-II-2 >
{ maximální rozměry čtvercové sítě v místnosti }

program robot;
const MAX=20;
type poličko = record

x,y : word;
end;

var sirka, vyska: word; { rozměry místnosti }
překážky: array[1..MAX,1..MAX] of boolean;
{ rozložení překážek v místnosti }

navstiveno, svisle, vodorovné: array[1..MAX,1..MAX] of boolean;
{ indikátory navštívení políček v místnosti }

predchozi: array[1..MAX,1..MAX] of poličko;
{ předchozí políčko na optimální cestě >

start, cil: poličko;
{ počáteční a cílové políčko }

fronta: array[1..MAX+MAX] of poličko;
zpracováno, vefroňte: word;
{ fronta prohledávání do šířky }

x, y: word; { pomocné proměnné }
i: integer;

procedure vypiš( x, y: word);
var xO, yO: word;

к: integer;
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begin
xO:=predchozi[x,y].x; { předchozí políčko na optimální cestě >
yO:=predchozi[x,у].у;
if ( xO = předchozí[xO,yO].x ) and ( yO = předchozí[xO,yO].у ) then

begin
{ Jsme na počátečním políčku ... }
if xO < x then

write(’Program pro robota (počáteční natočení DOLŮ):’);
if xO > x then

write(’Program pro robota (počáteční natočení NAHORU):’);
if yO < у then

write(’Program pro robota (počáteční natočení DOPRAVA):’);
if yO > у then

write(’Program pro robota (počáteční natočení DOLEVA):’);
end

else

begin
{ Nejprve vypíšeme předchozí políčko a potom směr našeho otočení }
vypis(xO.yO);
k:=(x-xO)*(yO-predchozi[xO,yO].y)-(xO-predchozi[xO,yO].x)*(y-yO);
if к > 0 then write(’ <D0PRAVA>’);
if к < 0 then write(’ <D0LEVA>’);

end;
k:=x+y-xO-yO; { Spočítáme počet kroků, které je třeba udělat }
if к < 0 then k:=-k;
while к > 0 do

begin
write(’ <KR0K>’);
dec(k)

end

end;
begin

{ Načteme rozměry sítě, překážky, počáteční a cílové políčko >
readln(vyska,sirka);
readln(start.x,start.y);
readln(cil.x,cil.y);
for x:= 1 to vyska do

for y:= 1 to sirka do
begin

read(i);
překážky[x,y]:=(i=l);

navštíveno[x,y]:=false;
svisle[x,y]:=false;
vodorovné [x,y]:=false;

end;
{ Test na shodu počátečního a cílového políčka }
if ( start.x = cil.x ) and ( start.у = cil.у ) then

begin
writeln(’Počáteční a cílové políčko jsou stejné.’);
halt;

end;
{ Inicializace prohledávání do šířky }
zpracováno:=0;
vefroňte:=1;
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fronta[l]:=start;
navštíveno[start.x,start.y]:=true;
předchozí[start.x,start.y]:=start;
{ Cyklus prohledávání do šířky }
while ( zpracováno < vefronte ) do

begin
inc(zpracováno);
x:=fronta[zpracováno].x;
у:=fronta[zpracováno].y;
if not vodorovné[x,y] then

begin
{ Projedeme síť vodorovně ( řádek ) }

vodorovné[x,y]:=true;
i :=1;

while ( y+i <= sirka ) and not ( překážky[x,y+i] ) do
begin

vodorovné[x,y+i]:=true;
if not navstiveno[x,y+i] then

begin
navštíveno [x,y+i]:=true;
předchozí[x,y+i]:=fronta[zpracováno] ;
inc(vefronte);
fronta[vefronte].x:=x;
fronta[vefronte].y:=y+i;

end;
inc(i);

end;
i:=-l;

while ( y+i >= 1 ) and not ( překážky[x,y+i] ) do
begin

vodorovné[x,y+i]:=true;
if not navstiveno[x,y+i] then

begin
navštíveno[x,y+i]:=true;
předchozí[x,y+i]:=fronta[zpracováno];
inc(vefronte);
fronta[vefronte].x:=x;
fronta[vefronte].y:=y+i;

end;
dec(i);

end;
end;

if not svisle[x,у] then
begin

{ Projedeme síť svisle ( sloupeček ) }
svisle[x,y]:=true;
i :=1;

while ( x+i <= vyska ) and not ( překážky[x+i,y] ) do
begin

svisle [x+i,у]:=true;
if not navštíveno[x+i,y] then

begin
navštíveno[x+i,у]:=true;
předchozí[x+i,y]:=fronta[zpracováno];
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inc(vefronte);
fronta[vefroňte].x:=x+i;
fronta[vefronte].y:=y;

end;
inc(i);

end;
i:=-l;

while ( x+i >= 1 ) and not ( překážky[x+i,y] ) do
begin

svisle[x+i,у] :=true;
if not navstiveno[x+i,y] then

begin
navstiveno[x+i,y]:=true;
predchozi[x+i,y]:=fronta[zpracováno] ;
inc(vefroňte);
fronta[vefronte].x:=x+i;
fronta[vefroňte].y:=y;

end;
dec(i);

end;
end;

end;
if not navstiveno[cil.x,cil.y] then

begin
{ Na cílové políčko se nelze dostat ... }
writeln(’Cesta z počátečního na cílové políčko neexistuje.’);
halt

end;
{ A vypíšeme nalezenou cestu ... }
vypis(cil.x.cil.y);
writeln;

end.

P - II - 3

Úlohu si nejdříve lehce přeformulujeme. Obraz je vlastně nějaký konvexní
n-úhelník a střihy jsou neprotínající se tětivy tohoto mnohoúhelníku.
Úkolem je nalézt mnohoúhelník s největším počtem vrcholů, ve kterém
neleží žádná tětiva (nadále budeme tento mnohoúhelník označovat jako
„největší mnohoúhelník41).

Algoritmus nejdříve upraví popis každé tětivy tak, aby počáteční vr-
chol tětivy měl menší číslo než vrchol koncový. Pak všechny tětivy setřídí.
Při třídění se porovnává nejdříve číslo počátečního vrcholu. Pokud je
u více tětiv stejné, bere se obrácené pořadí čísel jejich koncových vrcholů
(tedy (1,2) < (2,3), ale (1,2) > (1,3)). Po setřídění začne algoritmus
hledat největší mnohoúhelník. Algoritmus při hledání využívá toho, že
v každém mnohoúhelníku (až na jeden) existuje právě jedna tětiva „pře-
mosťující44 stranu (l,n). Problematickým mnohoúhelníkem je ten, který
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stranu (l,n) obsahuje. Problémy s tímto mnohoúhelníkem řešíme tak,
že uvažujeme pomocnou tětivu (l,n). „Přemosťující“ tětiva bude mít
ze všech tětiv a stran mnohoúhelníku nejmenší počáteční číslo vrcholu
a největší koncové číslo vrcholu. (Kdyby měla nějaká tětiva větší kon-
cové i počáteční číslo vrcholu, musela by „přemosťující" tětivu někde
protnout. Stejně tak pokud by byla obě čísla vrcholů menší. Pokud by
bylo počáteční číslo menší a koncové větší, nebyla by zase naše tětiva
„přemosťující".) Také platí, že každá tětiva je „přemosťující" pro právě
jeden mnohoúhelník (mnohoúhelník ohraničený tětivou (i,j) bude obsa-
hovat vrcholy г, j a ještě nějaké vrcholy z i.. .j, obr. 27).

3 4

2 5
Přemosťující tětiva
pro 4, 5, 6, 7

1 6

710

9 8

Obr. 27

A nyní již к hledání největšího mnohoúhelníku. To má následující
ideu: Algoritmus postupně prochází vrcholy n-úhelníku od 1 do n. Udr-
žuje si přitom zásobník, v němž jsou uloženy tětivy, u kterých prošel
jejich počátečním vrcholem, ale dosud ne jejich koncovým vrcholem.
Jsou to tedy „přemosťující" tětivy pro dosud neuzavřené mnohoúhelníky.
U každé tětivy na zásobníku si také udržuje dosud napočítaný počet vr-
cholů pro mnohoúhelník omezený danou tětivou. Protože aktuální vrchol
vždy patří к mnohoúhelníku omezenému nejpozději začínající „přemos-
ťující" tětivou, stačí vždy upravovat jen počet vrcholů u tětivy na vrcholu
zásobníku.

Konkrétní implementace hledání: Vždy když se v algoritmu posu-
neme do dalšího vrcholu, odebereme ze zásobníku tětivy, které v tomto
vrcholu končí. Prošli jsme totiž všechny vrcholy, které mohly ležet v mno-
hoúhelnících ohraničených těmito tětivami. К těmto tětivám už tedy byly
spočítány počty vrcholů v jimi ohraničených mnohoúhelnících, a tak stačí
podle těchto hodnot upravit dosud nalezené maximum. Při každém ode-
brání tětivy ze zásobníku algoritmus přičte jedna к počtu vrcholů u tětivy
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na vrcholu zásobníku, protože do příslušného mnohoúhelníku se dostal
i aktuální vrchol. Pak přidá všechny tětivy začínající v daném vrcholu
do zásobníku. Počty vrcholů u nových tětiv nastavuje na jedna, protože
se musí započítat aktuální vrchol. Díky setřídění tětiv stačí pouze tětivy
po řadě odebírat z pole, dokud je jejich počáteční vrchol shodný s aktu-
álním. Setřídění také zajistí, že z tětiv začínajících v aktuálním vrcholu
budou ty, které skončí později, vloženy do zásobníku dříve. Když jsou
přidány všechny tětivy začínající v aktuálním vrcholu, přičte se к tětivě
na vrcholu zásobníku jedna za vrchol, do kterého se algoritmus přesouvá.

Právě uvedený algoritmus můžeme ještě zrychlit. Stačí si uvědomit, že
je zbytečné posouvat se po obvodu pouze po jednom vrcholu. Stačí nám
vlastně jen obejít vrcholy, ve kterých nějaká tětiva začíná nebo končí.
To, o kolik se máme posunout, snadno zjistíme jako minimum z konce
tětivy na vrcholu zásobníku a počátku první dosud nezařazené tětivy.
Získáme tak algoritmus s časovou složitostí 0(k\ogk). Cas 0(k\ogk)
totiž strávíme tříděním. Samotný průchod n-úhelníkem nám zabere pouze

O(k), protože každou tětivu pouze jednou přidáme na zásobník a jednou
ji z něj odebereme. Počty vrcholů upravujeme dohromady pouze 2A:-krát.
Správnost algoritmu byla ukázána v popisu.

program Pepik; { P-II-3 >
const

MAXK = 100;
type

Cut = record

a, b : Integer;
end;

CutA = Array[1..MAXK] of cut;
var

{Počet vrcholů; Počet střihů}
{Popis jednotlivých střihů}

n, к : Integer;
с : CutA;

{Načte vstup}
procedure Readlnp;
var

i, tmp : Integer;
begin

Write(’Zadejte počet vrcholu a počet střihu: ’);
Read(n, k);
Write(’Zadejte jednotlivé střihy: ’);
{Načte popis střihu}
for i := 1 to к do begin

Read(c[i].a, c[i].b);
{První číslo bude menší}
if c[i].a > c[i].b then begin

tmp := c[i].a;
c[i].a := c[i].b;
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c [i].b := tmp;
end;

end;
{Přidáme pomocnou tětivu}
lne(k);
c [k] . a : = 1;
c [k] . b : = n;

end;

{Porovná dva střihy}
function CmpCut(a, b : cut) : Shortlnt;
begin

if (a.a < b.a) or ((a.a = b.a) and (a.b > b.b)) then

CmpCut := -1
else if (a.a = b.a) and (a.b = b.b) then

CmpCut := 0
else

CmpCut := 1;
end;

{Setřídí pole se střihy QuickSortem}
procedure SortCut(d, u : Integer);
var

{Pivot}m, tmp : cut;
i, j : Integer;

begin
m := c[(d+u) div 2]; {Vybereme pivota}
i := d; j := u;
while i <= j do begin

{Nalezneme prvky ve špatných částech}
while CmpCut(c[i], m) = -1 do

Inc(i);
while CmpCut(c[j], m) = 1 do

Dec(j);
if i <= j then begin

{Zaměníme prvky ve špatných částech}
tmp := c[i];
c[i] := c[j] ;
c[j] := tmp;
Inc(i);
Dec(j);

end;
end;
if i < u then {Je co třídit v pravé části?}

SortCut(i, u);
if d < j then {Je co třídit v levé části?}

SortCut(d, j);
end;

{Nalezne největší mnohoúhelník}
function FindMax(n, d, u : Integer) : Integer;
var

StackC : Array[1..MAXK] of Integer;
StackN : Array[1..MAXK] of Integer;
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AV, SP, AChord, Max : Integer;
begin

SP := 0;
AV := c[1].a;
AChord := 1;
Max := 0;
while True do begin

{Končí tu nějaký mnohoúhelník?}
while (SP > 0) and (c[StackC[SP]].b = AV) do begin

if StackN[SP] > Max then {Je největší?}
Max := StackN[SP];

Dec(SP);
if SP > 0 then

Inc(StackN[SP]); {Přidáme vrchol za právě ukončenou tětivu}
end;
if AV = n then

break;
{Začíná zde nějaký mnohoúhelník?}
while (AChord <= k) and (AV = c[AChord].a) do begin

Inc(SP);
StackC[SP] := AChord;
StackN[SP] := 1;
lne(AChord);

{Už jsme prošli celý mnohoúhelník?}

end;
{Začíná dříve nějaká tětiva, než končí jiná?}
if (AChord <= k) and (c[AChord].a < c[StackC[SP]].b) then begin

Inc(StackN[SP], c[AChord].a - AV);
AV := c[AChord].a;

end

else begin {Nějaká tětiva nejdříve končí}
Inc(StackN[SP], c[StackC[SP]].b - AV);
AV := c[StackC[SP]].b;

end;
end;
FindMax := Max;

end;

begin
Readlnp;
SortCut(l, k); {Setřídíme pole se střihy}
{Nalezne největší část a vypíše ji}
WriteLn(’Nejvetsi cast ma ’, FindMax(n, 1, k), ’ vrcholu.’);

{Načte vstup}

end.

P - II - 4

Využijeme jednoduchého pozorování:
> Posloupnost x\,..., xn je symetrická právě tehdy, když x\ = xn a po-

sloupnost X2, • • •, xn-i je symetrická.
t> Jednoprvková i prázdná posloupnost jsou vždy symetrické.
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Sestrojíme dlaždicový program, který bude připouštět právě taková
vydláždění, v nichž každý řádek ověří rovnost krajních prvků posloup-
nosti a odstraní je (přepíše na barvu •), přičemž poslední řádek akceptuje
buďto prázdnou, nebo jednoprvkovou posloupnost. Takový program od-
povídá ANO právě na symetrické vstupní posloupnosti: pokud je posloup-
nost ... ,xn symetrická, první řádek z ní odstraní x\ a xn, druhý X2
a xn-i atd. až poslední řádek akceptuje buďto prostřední prvek původní
posloupnosti (měla-li lichou délku), nebo prázdnou posloupnost (byla-li
její délka sudá). A opačně: Pokud program posloupnost akceptuje, pak
podle prvního řádku je x\ = xn, podle druhého X2 = xn-\ atd., tudíž je
zadaná posloupnost symetrická. Proto náš program řeší zadanou úlohu
se složitostí 0(n).

Abychom dosáhli tohoto cíle, použijeme následující sadu dlaždic:

xx

x , x/sB , ВУ(В , ÁXB ; 0 5Š x, у й 9T =

levý okraj zdi barvy A, pravý barvy В a dolní barvy •.

Každý korektně vydlážděný řádek musí vypadat buďto takto:
Xi+l

1

Xj-1

Xj-1

(to odpovídá kontrole a odstranění krajních prvků posloupnosti), anebo
takto:

В

(takový řádek akceptuje libovolnou jednoprvkovou posloupnost; posloup-
nost prázdná — taková, jejíž všechny prvky již byly přepsány na • — je
akceptována přímo dolním okrajem zdi).
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Poznámka. Oasové složitosti lepší než lineární již není možno dosáh-
nout. Idea důkazu: Z definice vydláždění víme, že zeď sudé šířky je možno
vydláždit právě tehdy, je-li možno vydláždit její levou polovinu i její
pravou polovinu tak, aby v každém řádku měly dlaždice, jimiž se tyto
poloviny dotýkají, stejnou barvu společné hrany (těmto hranám budeme
říkat prostřední sloupec). Pro každý začátek posloupnosti x\,..., xn/2
ovšem existuje právě jedno doplnění prvky xn/2+i,..., xn takové, že

xn je symetrická posloupnost. Kdyby nějakým dvěma různým za-Ж1,.. • 1

xn/2 а ух,..., ynj2 odpovídalo stejné obarvení středníhočátkům x\,..

sloupce, pak by po doplnění prvky xn/2,..., X\ vydláždění pravé poloviny
existovalo buď pro oba začátky, nebo pro žádný (závisí totiž pouze na

* 7

pravé polovině vstupu a středním sloupci), přestože pro první začátek má
existovat a pro druhý nikoliv. Proto různých obarvení středního sloupce
(těch je bh, kde b je počet barev vyskytujících se v programu a h
maximální výška zdi, tedy složitost programu) musí být minimálně tolik,
kolik je možných začátků posloupnosti (1(W2), a tak musí být

„.M.h S log, ÍO"'2 2

To znamená, že složitost libovolného dlaždicového programu řešícího naši
úlohu musí být alespoň lineární.

P - III - 1

Nejdříve je třeba si uvědomit, že jednotlivé souřadnice pozic věží je možno
volit nezávisle na sobě. To platí proto, že volba sloupce nijak neomezí roz-
sah řádek, ve kterém může být věž umístěna. Můžeme tedy nejdříve pro
každou věž zvolit sloupec, ve kterém se bude nacházet, a pak pro každou
věž zvolit řádek. Převedli jsme tak původní úlohu do jednoho rozměru.
Jednotlivé obdélníky se promítnou na intervaly a v každém intervalu
chceme nalézt číslo i (umístění věže) takové, aby se čísla žádných dvou
intervalů neshodovala.

Čísla budeme hledat následujícím způsobem: Budeme postupně pro-
cházet čísla od 1 do N a budeme si udržovat informaci, které intervaly
obsahují dané číslo a ještě nemají žádné číslo přiděleno. Z těchto intervalů
vybereme ten, který končí nejdříve, a přidělíme mu aktuální číslo. Pokud
vybraný interval již neobsahuje přidělované číslo (skončil dříve), úloha
nemá řešení. Přímá implementace této myšlenky je samozřejmě možná,
ale pomalá (0(N2)). My implementaci zrychlíme následujícím způsobem:
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Abychom mohli rychle upravovat informace o tom, které intervaly obsa-
hují dané číslo, setřídíme si je nejdříve vzestupně podle jejich počátku.
Abychom byli dále schopni rychle nalézt interval, který končí nejdříve,
budeme si intervaly obsahující dané číslo uchovávat v haldě srovnané
podle konců intervalů. Přidělování čísel tedy ve vylepšené implementaci
probíhá následovně: Procházíme všechna čísla od 1 do N. Pro každé
číslo přidáme do haldy všechny intervaly začínající na daném čísle. Pak
z haldy (pokud je neprázdná) odebereme minimum (tj. nejdříve končící
interval) a přidělíme mu aktuální číslo. Pokud interval již neobsahuje ak-
tuální číslo, řekneme, že požadované rozestavení věží neexistuje. S těmito
vylepšeními má algoritmus časovou složitost 0(N • logiV) a paměťovou
složitost O(N).

Nechť máme nějaké korektní rozestavení věží R. Indukcí dokážeme,
že toto rozestavení lze upravit na takové, jaké navrhne náš algoritmus,
a tím tedy ukážeme, že náš algQritmus nalezne korektní rozestavení věží.

> Počátek indukce: Nechť C je nejmenší číslo, které náš algoritmus chce
přidělit nějakému (vlastně prvnímu) intervalu I. Z chování našeho al-
goritmu je zřejmé, že v žádném rozestavení se nižší číslo vyskytovat
nemůže. Pokud se v R nevyskytuje ani číslo C, můžeme R upravit
tak, že I dáme číslo C. Tím jistě získáme korektní rozestavení, které
navíc má pro první interval I přiděleno stejné číslo, jaké by navrhl
náš algoritmus. Pokud je v i? číslo C již přiděleno nějakému inter-
válu J, můžeme snadno intervalu J přidělit číslo přidělené intervalu
I a intervalu I přiřadit C. Protože interval I končil dříve než interval
J, jistě máme opět korektní rozestavení.

> Indukční krok: Z indukčního předpokladu víme, že existuje rozestave-
ní, které se shoduje s rozestavením navrhovaným naším algoritmem
v prvních к číslech. Chceme ukázat, že existuje rozestavení, které se

shoduje v prvních A: +1 číslech. Protože myšlenka důkazu je naprosto
stejná jako v počátku indukce, necháváme tuto část důkazu na čte-
náři.

Program je přímou implementací algoritmu. Halda je implementována
v poli, kde prvek na pozici i má syny na pozicích 2i a 2i + 1.

{p-iii-i}program Veze;
const

MAXN = 100;
type

{Popis jednoho intervalu}
Int = record

{Počátek a konec intervalu}s, e : Integer;
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{Číslo věže, které interval patří}n : Integer;
end;

{Popis jednoho bodu}
Point = array [1..2] of Integer;
{Popis jednoho obdélníku}
Rectangle = record

{Levý horní a pravý dolní roh}a, b : Point;
end;

{Intervaly v jedné souřadnici}
IntList = array[1..MAXN] of Int;
CmpProc = function(А, В : Int) : Shortlnt;

var

N : Integer; {Počet vezi}
Rec : Array[1..MAXN] of Rectangle;
T : Array[1..MAXN] of Point;

{Obdélníky}
{Umístění věží}

{Načte vstup}
procedure Readlnp;
var

i : Integer;
begin

Write(’Počet vezi: ’);
Read(N);
WriteLnC’Souřadnice obdelniku:’);
for i := 1 to N do

Read(Rec[i] .a[l] , Rec [i], a [2], Rec[i].b[l], Rec [i] .b[2]);
end;

{Přidá interval do haldy}
procedure AddHeap(var N: Integer; var H: IntList; I: Int; Cmp: CmpProc);
var

A : Integer;
Tmp : Int;

begin
Inc(N);
H[N] := I;
A := N;
while A O 1 do begin {Nejsme na vrcholu}

if Cmp(H[A], H[A div 2]) O -1 then
break;

{Zaměníme prvky, aby byla podmínka splněna}
Tmp := H[A];
H[A] := H[A div 2] ;

H[A div 2] := Tmp;
A := A div 2; {Posun o úroveň výše}

{Je splněna podmínka haldy?}

end;
end;

{Odebere z haldy minimum}
procedure

GetHeapMin(var N: Integer; var H: IntList; Cmp: CmpProc; var Res: Int);
var

A, M : Integer;
Tmp : Int;
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begin
Res := H[l] ;

H[l] := H[N] ;

Dec(N);
A := 1;
while A * 2 < N do begin

{Nalezneme menšího ze synů}
if Cmp(H[A*2], H[A*2+1]) = -1 then

M := A*2

{Nejsme na dně?}

else

M := A*2+l;
if Cmp(H[M], H[A]) O -1 then {Podmínka haldy splněna?}

break;
{Zaměníme prvky, aby byla podmínka splněna}
Tmp := H[M];
H[M] := H[A] ;

H[A] := Tmp;
A := M; {Posun o úroveň níže}

end;
end;

{Porovná dva intervaly podle počátku}
function Cmplnt(a, b : Int) : Shortlnt; far;
begin

if (a.s < b.s) or ((a.s = b.s) and (a.e < b.e)) then

Cmplnt := -1
else if (a.s = b.s) and (a.e = b.e) then

Cmplnt := 0
else

Cmplnt := 1;
end;

{Setřídí pole intervalů}
procedure SortInts(var A : IntList);
var

C, i : Integer;
H : IntList;

begin
C := 0;
for i := 1 to N do

AddHeap(C, H, A[i] , Cmplnt);
for i := 1 to N do

GetHeapMin(C, H, Cmplnt, A[i]);
end;

{Srovná intervaly podle konce}
function CmpBack(a, b : Int) : Shortlnt; far;
begin

if a.e < b.e then

CmpBack := -1
else if a.e = b.e then

CmpBack := 0
else

CmpBack := 1;
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end;

{Spočte jednu souřadnici pro každou věž}
function CountCoord(c : Integer) : Boolean;
var

Ints : IntList; {Intervaly}
i, a : Integer;
Actlnts : IntList;
ActlntsN : Integer;
Tmp : Int;

begin
{Vytvoří pole intervalů z obdélníku}
for i := 1 to N do begin

Ints[i].s := Rec[i].a[c];
Ints[i].e := Rec[i].b[c];
Ints[i].n := i;

{Halda intervalů к uplatnění}
{Počet intervalů v haldě}

end;
Sortlnts(Ints); {Setřídí intervaly}
{Určí souřadnici věží}
ActlntsN := 0;
a := 1;
for i := 1 to N do begin

{Přidá do haldy všechny intervaly začínající na aktuální pozici}
while (a <= N) and (Ints[a].s = i) do begin

AddHeap(ActIntsN, Actlnts, Ints[a], CmpBack);
Inc(a);

end;
if ActlntsN > 0 then begin

{Vybereme nejdříve končící interval}
GetHeapMin(ActlntsN, Actlnts, CmpBack, Tmp);
if Tmp.e < i then begin {Už skončil?}

CountCoord := False;
Exit;

end;
T[Tmp.n][c] := i;

end;
end;
CountCoord := True;

end;

{Vytiskne souřadnice věží}
procedure Print;
var

i : Integer;
begin

WriteLn(’Souřadnice vezi jsou:’);
for i := 1 to N do

WriteLn(T[i] [1] , ’ ’, T[i][2]);
end;

begin
Readlnp;
if CountCoord(l) and CountCoord(2) then

{Načte vstup}

{Určí souřadnice věží - vešly se?}

123



Print
else

WriteLn(’Rozmístěni vezi neexistuje.’);
end.

P - III - 2

Nejprve ukážeme, že pro každé přirozené číslo N existuje přirozené číslo
x, jehož ciframi jsou pouze číslice 0 a 1 a které je dělitelné číslem N.
Označme x\ =1, £2 = 11, Ж3 = 111 atd. Dále označme jako m* číslo Xi
modiV. Čísla ггц mohou nabývat pouze hodnot od 0 do N — 1 a proto
alespoň dvě z čísel mi až га^+1 musí být stejná — nechť např. тг- = rrij
(i < j). Potom ale číslo Xj — X{ je dělitelné číslem N, neboť (Xj — Xi)
modiV = rrtj — rrii = 0. Ciframi čísla Xj - X{ jsou zřejmě pouze číslice 0
ala tedy číslo Xj — Xi splňuje podmínky ze zadání úlohy.

Nadále budeme uvažovat pouze ta čísla, jejichž dekadický zápis je
tvořen pouze číslicemi 0 a 1. Předchůdcem čísla x nazveme číslo x div 10,
tedy číslo x bez své poslední cifry; naopak následníky čísla x nazveme
čísla lOx a 10:r + l, tedy ta čísla, která lze vytvořit přidáním jedné cifry na
konec čísla x. Číslo x budeme nazývat minimálním číslem pro zbytek 2,

jestliže a; mod TV = 2, v dekadickém zápisu čísla x se vyskytují pouze
číslice 0 a 1 а ж je nejmenší číslo s těmito vlastnostmi. Nyní si dokážeme
jednoduché lemma:
Lemma. Nechťx je minimální číslo pro zbytek z, nechťx' je předchůdcem
x; označme z' = x1 mod N. Potom x' je minimální číslo pro zbytek z'.

Důkaz. Postupujme sporem, tedy předpokládejme, že x' není mi-
nimální číslo pro zbytek 2', tj. že existuje číslo x" < x' takové, že x"
mod N = x' mod N. Nechť c je poslední cifra čísla x. Protože (Kkr' 4- c)
mod N = z a x' mod N = x" modiV, musí nutně platit i (10x" + c)
mod N — z. Ale potom by číslo x = 10x' + c nemohlo být minimální číslo
pro zbytek z, neboť číslo 10x" + c má požadované vlastnosti a je menší —

tedy nemůže existovat x" a tedy x’ je minimální číslo pro zbytek z1.
Toto lemma nám dává návod, jak počítat minimální čísla pro různé

zbytky. Pro daný zbytek 2 lze spočítat minimální číslo x tak, že budeme
postupně testovat v rostoucím pořadí následníky minimálních čísel pro
ostatní zbytky a první následník у nějakého minimálního čísla, pro kte-
rého platí у mod N = z je zřejmě hledané minimální číslo pro zbytek 2.

Tímto postupem lze vygenerovat minimální čísla pro všechny zbytky,
pro které existují: Položme l\ = 1 a pokud už známe h,.. .,h, položme
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4+1 rovno nejmenšímu následníkovi některého z čísel 4,..., 4 takovému,
že 4+1 modiV je různý od všech 4 mod A/” pro 1 i й к. Z předchozích
úvah ale vyplývá, že jednotlivá čísla 4 jsou minimální čísla pro zbytky
z; = 4 moáN. Navíc podle prvního odstavce je jedno z čísel Zi rovno
nule.

Náš algoritmus bude pracovat přesně podle výše uvedeného popisu.
V poli fronta si budeme pamatovat hodnoty Zi a na m-té pozici v poli
předchozí si budeme pamatovat zbytek předchůdce od minimálního čísla
pro zbytek m — z hodnot v tomto poli jsme schopni jednoduše zkonstru-
ovát minimální číslo pro zadaný zbytek. Postupně budeme brát hodnoty
Zi z pole fronta, spočítáme (10*Z{) modiV a (10*ž; + 1) modiV a pokud
jsme dosud nenašli číslo, jehož zbytek by byla jedna z těchto hodnot, tak
tento zbytek přidáme na konec pole fronta a příslušně zmodifikujeme
pole předchozí. Časová a paměťová složitost algoritmu je zřejmě O(N).

program nulajed; { P-III-2 }
const MAXN=1000;
var N:word; { zadané číslo N }

předchozí:array[0..MAXN-i] of integer;
{ zbytek předchůdce minimálního čísla s daným zbytkem

Hodnoty se zvláštním významem:
-2 ... dosud nenalezeno minimální číslo pro tento zbytek
-1 ... nemá předchůdce (číslo 1)
>

fronta:array[0..MAXN-1] of word;
{ fronta použitá pro generování minimálních čísel >

ukazatel:word;
{ právě zpracovávaný prvek v poli fronta >

vefroňte:word;
{ počet prvků v poli fronta }
procedure přidej(puvodni,novy:word);
begin { přidá minimální prvek pro zbytek novy do fronty;

jeho předchůdce je minimální pro zbytek původní }
if predchozi[novy]0-2 then exit;
fronta[vefroňte]:=novy;
inc(vefroňte);
predchozi[novy]:=puvodni;

end;
procedure vypiš(p:word);
begin { vypíše číslo se zadaným zbytkem }
if predchozi[p]>=0 then
begin
vypiš(predchozi [p]);
if (10*predchozi[p]) mod N=p then write(O) else write(l)

end

else

write(l)
end;
begin
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readln(N); { načteme číslo N a inicializujeme pole predchozi }
for ukazatel:=0 to N-l do predchozi[ukazatel]:=-2;
fronta[0]:=1 mod N;
predchozi[fronta[0]]:=-l;
ukazatel:=0; vefronte:=l;
while (predchozi[0]=-2) do
begin { generujeme čísla s různými zbytky... }
přidej(fronta[ukazatel],(10*fronta[ukazatel]) mod N);
přidej(fronta[ukazatel],(10*fronta[ukazatel]+l) mod N);
inc(ukazatel);

end;
vypis(O); { vypíšeme výsledek a odřádkujeme }
writeln

end.

P - III - 3

Abychom nemuseli vše popisovat zbytečně složitě, zaveďme si jedno-
duché značení: Posloupnosti budou vždy složeny jen z nul a jedniček
a všechny budou mít n prvků. Budeme je značit tučnými písmeny a je-
jich prvky písmeny s indexy, tedy například x je posloupnost obsahující
prvky xi,...,xn. Počtu jedniček v posloupnosti x budeme říkat její váha
a značit JJx.

Posloupnost у je setříděním posloupnosti x právě tehdy, když platí
současně následující dvě podmínky:
1. yi ú yn (je to neklesající posloupnost)
2. jjy = jjx (x а у obsahují stejný počet jedniček a jelikož mají stejnou

délku, tak i stejný počet nul, čili se navzájem liší pouze pořadím
prvků)
Zabývejme se nejprve tím, jak ověřit druhou podmínku. Mohli bychom

postupovat podobně, jako u příkladu v zadání oblastního kola: v každém
řádku vydláždění odstranit po jedné jedničce z obou posloupností, a to
opakovat tak dlouho, až obě posloupnosti budou obsahovat pouze nuly,
což snadno ověříme barvou spodního okraje zdi. Tím úlohu vyřešíme s li-
neární složitostí, což ovšem, jak si ukážeme, není optimální. U myšlenky
postupného „zjednodušování" testovaných posloupností však zůstaneme:
Tvrzení, jjx = Jjy <=> jjx mod 2 = jjy mod 2 Л jjx = jjy, kde x je posloup-
nost, která vznikne z posloupnosti x přepsáním každé druhé jedničky na
nulu (to jest přepsáním první jedničky, ponecháním druhé, přepsáním
třetí, ponecháním čtvrté atd.).

Důkaz. Pokud jjx = {ty, pak jistě jjx mod 2 = jjy mod 2, ale jelikož
jjx = [jjx/2j (v x zbyla právě polovina jedniček z x, případná lichá jed-
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nička na konci byla odstraněna), musí platit i jjx = #ý. A naopak: pokud
JJx = #ý, mohou se posloupnosti x а у lišit pouze případnou lichou po-
slední jedničkou, což ovšem není možné, protože váhy jjx a fly jsou buďto
obě liché, nebo obě sudé.

Vytvořme nejprve dlaždicový podprogram, který pro danou posloup-
nost x zadanou barvami horního okraje spočte x na okraji dolním
a tfx mod 2 na okraji pravém (v tom smyslu, že vydláždění bude existovat
právě tehdy, když barvy těchto okrajů splňují dané podmínky, a toto vy-
dláždění bude mít jediný řádek), předpokládaje, že levý okraj má barvu 0.
К tomu nám poslouží následující množina typů dlaždic:

0
To = < 0 0

o

Označíme-li si Z{ barvu pravé hrany a yi barvu dolní hrany г-té dlaždice
vydlážděného řádku (zq budiž barva levé hrany první dlaždice, tedy barva
levého okraje zdi, což je 0), snadno ukážeme, že:

mod 2 ... Indukcí: pro i = 0 platí, pro i > 0 je
í

4=u 7
> Zi

Zi = (zí-i + Xk) mod 2 =

^ mod 2 +
i

( Xk ) m0<^
'A:=l 7

mod 2 =

> уi = 1 <==> Xi = 1 Л Zi-1 = 1, jinými slovy právě tehdy, je-li Xi

jednička, před níž byl lichý počet jedniček, čili jednička sudá — právě
ta, která se má objevit v x.

Zkombinujme nyní dva takové programy tak, aby pracovaly současně:
jeden s posloupností x a druhý s у (posloupnosti jsou kódovány dvojicemi
(£г,Уг)), počítaly stejně kódované posloupnosti x a ý a rovněž zbytky
Jjx mod 2 a {ty mod 2. К tomu nám stačí sestrojit množinu T\ obsahující
„součiny11 dvojic dlaždic z množiny To, to znamená pro každé dvě dlaždice

c
A = a а В —b

d

z Tq do Ti přidat dlaždici
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kde ae, bf, cg a dh jsou uspořádané dvojice barev. Existuje-li vydláž-
dění řádku, který má na horní hraně dvojice (жьух), -.., (xn,yn), na
dolní hraně (xi,ýi),..., (xn,ýn), na levé (0,0) a na pravé (zx,zy), dlaž-
dicemi typů z množiny Ti, musí díky tomu, jak jsme si tyto typy na-

definovali, existovat i vydláždění řádku s horní hranou x\,... ,xn, dolní
xi,..., xn, levou 0 a pravou zx, jakož i řádku s horní hranou yi,..., yn,
dolní ý\,...ýn, levou 0 a pravou zy dlaždicemi typů To. A opačně —

existují-li tato dvě vydláždění, existuje i jejich složení sestavené z typů
z množiny Ti. Proto zx = flx mod 2, zy = fly mod 2 a spodní hrana
opravdu obsahuje dvojice prvků posloupností x a ý.

My ovšem potřebujeme akceptovat právě ta vydláždění, u nichž zx =
= zy, tedy s pravým okrajem jak (0,0), tak (1,1), ale máme к dispozici
pouze jedinou barvu pravého okraje zdi. Proto rozšíříme množinu Ti na

T2 tak, že ke každému typu dlaždice z Ti tvaru

přidáme do T2 typ

kde P je barva pravého okraje, která se neshoduje s žádnou jinou bar-
vou. Jelikož se tato dlaždice může vyskytnout výhradně těsně u pra-
vého okraje (žádná dlaždice totiž nemá levou hranu barvy P, na kterou
bychom mohli navázat), odpovídají korektní vydláždění pomocí této roz-
šířené sady dlaždic právě těm vydlážděním pomocí původní sady, u nichž
je zx — zy.

Zbývá nám ještě přidat test vzestupnosti posloupnosti y, což vyřešíme
přidáním dlaždic typů

x G {0, l},x = „tučná verze“ x >,

kde 00, 01, 10 a 11 jsou barvy dvojic kódujících zadané posloupnosti x

ay a 00, 01, 10 a 11 analogické kódy používané všemi ostatními dosud
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nadefinovanými dlaždicemi. Tím z T'2 vznikne množina typů T, o které
tvrdíme, že použita s barvou levého okraje 0, barvou pravého P a barvou
dolního okraje 00, řeší zadanou úlohu se složitostí 0(log n), což také ihned
dokážeme:

> První řádek vydláždění musí obsahovat výhradně dlaždice typů Tz,
protože žádné jiné neobsahují na svých horních hranách barvy, jimiž
je kódován vstup. Jak jsme již ukázali v příkladu v zadání domácího
kola, typy Tz zajišťují neklesání posloupnosti y. Navíc spodní okraj
tohoto řádku předává níže obě vstupní posloupnosti, pouze jinak kó-
dováné.

> Všechny ostatní řádky obsahují pouze dlaždice typů T2, přičemž
každý řádek přepíše posloupnosti а у; zadané na svém horním
okraji na Xj+i = x; a y^+i = ýj a ověří, zda flx; mod 2 = fly* mod 2.
Pokud tfx = fly, pak po maximálně [log2 n] takových řádcích bu-
dou obě posloupnosti zredukovány na samé nuly, což odpovídá
barvě dolního řádku, čili vydláždění celé zdi existuje a má hloubku
й 1 + l’log2 n]; pokud #x ф Цу? vydláždění nemůže existovat, protože
alespoň v jednom kroku by j\xí mod 2 nebylo rovno fly* mod 2 (viz
Tvrzení výše).
Poznámka. Lepší hloubky než fž(logn) již není možno dosáhnout. To

můžeme zdůvodnit podobně, jako jsme v předchozím kole dokazovali,
že pro ověření symetrie posloupnosti potřebujeme hloubku minimálně
lineární. Opět budeme počítat možná obarvení středního sloupce — ten-
tokráte si uvědomíme, že tato obarvení musí být rozdílná pro každé dva
různé počty jedniček v x\,..., xn/2 — pokud jsou jedničky pouze mezi
těmito prvky a a?n/2+1,... ,xn jsou všechny nulové, musí setříděná po-
sloupnost у obsahovat naopak ve své levé polovině samé nuly a v polovině
pravé stejný počet jedniček, jako má x v polovině levé. Možných počtů
jedniček mezi x\,..., xn/2 je n/2 + 1, možných obarvení středního sloupce
^ bh, kde b je počet barev použitých v našem dlaždicovém programu (to
je nějaká konstanta) a h je jeho složitost = výška středního sloupce.
Z toho dostaneme:

bh^n/2 + 1 =» bh> n/2 h > logb n - log6 2 h — f}(n).

P - III - 4

Řešení této úlohy je založeno na dynamickém programování. Pro každé
slovo si budeme pamatovat, kde nejlépe zalomit předchozí řádek, když
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toto slovo bude na konci řádku. Také si budeme pamatovat celkový počet
trestných bodů textu při tomto zalomení. Když spočítáme nejlepší žalo-
mění pro poslední slovo, můžeme ze zapamatovaných informací snadno
zrekonstruovat, jak celý text zalámat. Z informací u posledního slova zjis-
time, za kterým slovem měl být zalomen předposlední řádek. Z informací
u posledního slova na předposledním řádku zjistíme, kde měl být zalomen
předpředposlední řádek atd. Když víme, kde měly být jednotlivé řádky
zalámány, stačí již jen správně doplnit mezi vypisovaná slova mezery.
To uděláme tak, že pokud máme umístit M mezer mezi 5+1 slov, tak
vytvoříme M mod 5 oddělení slov s (M div 5) + 1 mezerami a 5 — (M
mod 5) oddělení s M div S mezerami. Tím se zjevně žádná dvě oddělení
slov neliší o více jak jednu mezeru a počet mezer na řádce je také správný.
Formátování posledního řádku a řádku s jedním slovem jsou triviální.

A nyní již к zajímavé části algoritmu. Jak rychle spočítat, kde nej-
lépe zalomit předchozí řádek, když bude aktuální slovo na konci řádku?
Tuto informaci budeme postupně počítat od prvního slova. U prvního
slova nastavíme počet trestných bodů i místo zalomení na nula. Když
máme spočteny hodnoty pro prvních N slov, začneme je počítat pro
slovo N + 1-ní. Jdeme od iV-tého slova směrem к začátku textu. Pro
každé slovo si spočteme počet trestných bodů za řádek, který začíná za
ním a končí ЛГ + 1-vým slovem (pokud je iV+l-ní slovo posledním v textu,
bude jím ukončovaná řádka řádkou poslední, a tak hodnotící funkci in-
formujeme, že hodnotí poslední řádku). К tomuto počtu trestných bodů
ještě přičteme trestné body za předchozí text (ty máme již spočteny
a uloženy u slova, za kterým jsme se rozhodli řádek zlomit) a zjistíme,
zda jsme získali pro N + 1-ní slovo text s menším počtem trestných
bodů. Pokud ano, zapamatujeme si počet bodů pro tento text a místo
zalomení. Když už je poslední řádek moc dlouhý (hodnotící funkce nám
vrátila oo), tak víme, že už lepší zalomení nenajdeme. Prošli jsme už
totiž všechna možná zalomení předposledního řádku a vybrali z nich to
nejlepší. Můžeme tedy počítat hodnoty pro další slovo. Algoritmus má
časovou složitost 0(T+W-L), kde T je délka textu, W je počet slov a L je
délka řádku. Paměťová složitost algoritmu je 0(T). Správnost algoritmu
plyne z popisu.

Program je přímou implementací algoritmu:

♦include <stdio.h>
♦include <stdlib.h>

♦define INPUT "format.in"
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«define OUTPUT "format.out"

#define TEXTLEN 10000 /* Maximální délka textu */
#define MAXWORDS 5000 /* Maximální počet slov v textu */
#define MAXLINELEN 100 /* Maximální délka vstupní radky */
#define MAXLINES 5000 /* Maximální počet radek ve výstupu */

«define LINEPENALTY 10 /* Cena radky */
«define LASTLINESMALLPEN 3 /* Cena za malý poslední radek */
«define SINGLEWORDPEN 20 /* Penalta za jedno slovo na radku */
«define INFTYPEN 30000 /* Nekonečna penalta */

typedef unsigned long price_t;

int Width; /* Sirka radku */
char Text[TEXTLEN]; /* Text načteny ze souboru */
int Words[MAXWORDS]; /* Text rozsekaný na slova */
int WCnt; /* Počet slov */
price_t WrapPrice[MAXWORDS];

/* Ohodnoceni textu, pokud zalomíme za timto slovem */
int WrapPos[MAXWORDS];

/* Pozice, kde jsme zalomili, když jsme přidávali toto slovo */

/* Ohodnotí radek */
int LinePrice(int WordLen, int Words, int Last)
{

int Pts = Width - WordLen - Words + 1;
int Base = LINEPENALTY;

if (Pts < 0)
return INFTYPEN;

if (Last)
return LINEPENALTY + (((WordLen+Words-1)*4 < Width) ?

LASTLINESMALLPEN : 0);
if (Words == 1)

Base += SINGLEWORDPEN;
return Pts * Pts + Base;

>

/* Načte vstup a rozdeli ho na slova */
void Processlnput(void)
{

FILE *In;
char Buf[MAXLINELEN]; /* Buffer na radku */
int i, TPos = 0, WPos = 0; /* ; Pozice v bufferu na text ;

Cislo aktuálního slova */
int SWPos =0; /* Pozice počátku slova */

if (! (In = fopenUNPUT, "r")))

puts("Can’t open input file.");
exit(1);

>
/* Načteme délku radku */
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fgets(Buf, MAXLINELEN, In);
sscanf (Buf, '"/.d", feWidth);

while (fgets(Buf, MAXLINELEN, In))
{

for (i = 0; Buf[i] != ’XO’; i++, TPos++)
{

if (Buf [i] == J \n1)
Buf[i] = ’ >;

Text[TPos] = Buf [i];
if (Buf [i] == > >)
{

Words[WPos++] = TPos - SWPos;
SWPos = TPos + 1;

>
>

>
fclose(In);
WCnt = WPos;

>

void FindBestSep(void)
i

int i, j;
price_t Min, Price;

/* Minimalni dosazené ohodnoceni; Cena aktualniho zlomu */
int WordsLen, MinPos;

/* Celková délka slov na rádce; Pozice minimalniho zalomeni */

WrapPrice[0] = 0;
WrapPos [0] = 0;

for (i = 0; i < WCnt; i++) /* Postupné přidáváme jednotlivá slova */
{

Min = INFTYPEN;
MinPos = 0;
WordsLen = 0;
for (j = i; j >= 0; j—) /* Vyzkousime všechna mozna zalomeni */
{

WordsLen += Words[j];
Price = LinePrice(WordsLen, i - j + 1, i == WCnt - 1);
if (Price == INFTYPEN) /* Uz jsem překročili velikost radku? */

break;
Price += WrapPricetj];
if (Price < Min)

Min = Price;
MinPos = j;

>
>
WrapPrice[i+1] = Min;
WrapPos[i+1] = MinPos;

>
>
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/* Vytiskne dalsi slovo */
void PrintWord(FILE *0ut)
{

static int WPos = 0; /* Pozice slova к vypsáni */
int WStart;

for (WStart = WPos; Text[WPos] != ’ ’; WPos++);
fwrite(Text + WStart, 1, WPos - WStart, Out);
WPos++;

>

/* Vytiskne radku */
void PrintLine(FILE *0ut, int First, int Cnt)
{

int i, j;
int Len = 0, TotSpc;
int Spc; /* Počet mezer v aktualni mezeře */

/* Počet znaku na rádce; Celkový počet mezer */

/* Spočteme počet znaku ve slovech */
for (i = 0; i < Cnt; i++)

Len += Words[First+i];
TotSpc = Width - Len;
if (Cnt == 1) /* Jedno slovo? */
i

for (j =0; j < TotSpc; j++)
fputc(’ ’, Out);

}
else

for (i = 0; i < Cnt-1; i++)

PrintWord(Out); /* Vytiskne dalsi slovo */
/* Spočteme a vytiskneme potřebný počet mezer */
Spc = TotSpc / (Cnt - 1) + (i < TotSpc */, (Cnt-1));
for (j = 0; j < Spc; j++)

fputc(’ ’, Out);
}

PrintWord(Out); /* Jeste vytiskneme posledni slovo */
fputc(’\n’, Out);

>

/* Vypiseme nejlepsi výsledek */
void PrintBestText(void)

FILE *0ut;
int Lines = 0, ActWord;

/* Počet radek výsledného textu; Aktualni slovo */
int LB[MAXLINES], i; /* Pozice jednotlivých zalomeni */

/* Zjistime pozice jednotlivých zalomeni */
for (ActWord = WCnt; ActWord > 0; Lines++, ActWord = WrapPos[ActWord])

LB [Lines] = ActWord;
LB[Lines] = 0;
if (!(Out = fopen(OUTPUT, "w")))
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{
puts("Can’t open output file.");
exit (1);

>
/* Necháme vytisknout radku */
for (i = Lines - 1; i > 0; i—)

PrintLine(Out, LB[i+l], LB[i] - LB[i+l]);

/* Ted jeste vytiskneme posledni radku */
for (i = LB[1] ; i < LB[0] - 1; i++)

PrintWord(Out);
fputc(’ ’, Out);

}
PrintWord(Out);
fputc(’\n’, Out);

fclose(Out);
>

int main(void)
{

Processlnput(); /* Načte vstup a rozdeli ho na slova */
FindBestSepO; /* Nalezneme nejlepsi rozděleni na radky */
PrintBestText(); /* Výpise text podle spočtených zalomeni */
return 0;

}

P - III - 5

Nejprve si rozmysleme, že platí následující tvrzení: Trasy linek městem
lze navrhnout právě tehdy, pokud ze všech křižovatek vychází sudý počet
ulic. Kdybychom si trasy jednotlivých linek vyznačili různými barvami
v plánu města, potom by každá z nich tvořila cyklus. Každá ulice by
měla jednoznačně určenu svou barvu. Pokud si trasy linek zakreslíme
do mapy, bude z každé křižovatky vycházet buď žádná nebo právě dvě
ulice od jedné určité barvy
žovatkou neprochází, a dvě, pokud ano; více ulic stejné barvy nemůže
z křižovatky vycházet, neboť každá linka projíždí křižovatkou nejvýše
jedenkrát. Obarvení ulic v mapě tedy „páruje11 ulice vycházející z kři-
žovatky a tudíž počet ulic vycházejících z jedné křižovatky musí být
sudý.

žádná, pokud trasa příslušné barvy kři-

Nyní si naopak rozmysleme, že pokud z každé křižovatky vychází
sudý počet ulic, potom lze navrhnout trasy linek tak, aby splňovaly po-

žadavky zadání úlohy. Postupně obarvujme ulice ve městě tak, aby ulice
stejné barvy tvořily cyklus (tj. odpovídaly nějaké autobusové lince). Uli-
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ce, které jsme již obarvili, nebudeme nadále považovat za součást města;
tím zmenšíme počet ulic vycházejících z jedné křižovatky o sudé číslo
(o nulu nebo o dvě), takže počet ulic vycházejících z každé křižovatky
bude stále sudý. Vyberme si nějakou křižovatku ve městě a označme si
ji na mapě (položme do ní kamínek); vydejme se z této křižovatky po
libovolné (dosud neobarvené) cestě a položme do křižovatky, do které
jsme dorazili, kamínek. Z každé křižovatky lze vždy pokračovat alespoň
jednou ulicí — do křižovatky jsme po jedné ulici přišli, a protože počet
neobarvených ulic, které z ní vedou, je sudý, musí z ní vést tedy alespoň
dvě neobarvené ulice — tou druhou můžeme pokračovat. Skončíme, po-
kud bychom na nějakou křižovatku měli položit druhý kamínek — tehdy
jsme našli cyklus z ulic a tento cyklus obarvíme nějakou dosud nepou-
žitou barvou (a prohlásíme ho za novou autobusovou linku). Kamínky
odstraníme z mapy a celý proces opakujeme tak dlouho, dokud mapa
města obsahuje nějaké neobarvené ulice.

Předchozí důkaz nám dává návod к vytvoření algoritmu, který řeší
zadanou úlohu. Nejprve ověříme, zda z některé křižovatky vychází lichý
počet ulic; je-li tomu tak, potom rovnou vypíšeme „Nelze“. V opačném
případě začneme aplikovat postup z minulého odstavce; kamínky samo-

zřejmě nahradíme nastavováním vhodného příznaku v programu. Pokud
nalezneme cyklus, příslušné ulice z mapy rovnou vymažeme a cyklus vy-

píšeme na výstup. Abychom ušetřili čas, ponecháme v mapě „kamínky"
na křižovatkách, které jsou mezi výchozí křižovatkou a křižovatkou, kam
jsme měli položit dva kamínky; na tyto křižovatky bychom mohli položit
kamínky i ve městě, ve kterém by byl vynechán právě nalezený cyk-
lus. Pokládání kamínků budeme realizovat jednoduchou rekurzivní funk-
cí. Zbývá vyřešit, jak právě obarvené ulice rychle odstraňovat z mapy
města uložené v paměti počítače. Ulice spojující dvě stejné křižovatky
si budeme pamatovat jako jednu ulici s uvedením počtu ulic, které ve-
dou paralelně s touto ulicí (tj. spojují dvě stejné křižovatky). Ulice si
uložíme do dvojrozměrného pole; jeden jeho index bude představovat
číslo křižovatky a jeho druhý index bude představovat pořadové číslo
ulice vycházející z dané křižovatky. Rozměry tohoto pole tedy budou
počet křižovatek x maximální počet ulic vycházejících z jedné křižovat-
ky. U každé křižovatky jsou uvedeny všechny ulice, které z ní vycházejí.
U každé ulice si pamatujeme, kam vede, kolik ulic s ní vede paralelně
a index do pole určující, kde jsou informace o této ulici rovněž uloženy
u křižovatky na jejím opačném konci. Příslušnou ulici vymažeme jedno-
duše tak, že upravíme informace o ní u obou křižovatek, které spojuje, což
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lze provést v konstantním čase, neboť si pamatujeme její index u druhé
křižovatky.

Paměťové i časové nároky našeho algoritmu jsou 0(N 4- M), kde N je
počet křižovatek ve městě a M je počet ulic ve městě. Paměťové nároky
algoritmu lze reprezentací pouze jedné z paralelních hran (viz minulý
odstavec) snížit na 0(iV + Я), kde H je maximální počet ulic, z nichž
žádné dvě nejsou paralelní.
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Přípravná soustředění před 42. MMO

V průběhu 50. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 9. do 13. dubna 2001 v Jevíčku. Na
základě výsledků II. a III. kola bylo na ně pozváno 10 kandidátů na

reprezentaci.
Soustředění bylo zaměřeno na řešení obtížných úloh v omezeném čase

(v soutěžních podmínkách). Po odpolední relaxaci byl proveden detailní
rozbor opravených řešení. Úspěšnost jednotlivých studentů ukazuje ná-
sledující tabulka:

4/4, G Brno, tř. Kpt. Jaroše 14 73
3/4, G Ch. Dopplera, Praha 5 72,5
7/7, G Plzeň, Mikulášské nám. 64,5
3/4, G Brno, tř. Kpt. Jaroše 14 70
7/7, G Plzeň, Mikulášské nám. 69
2/4, G Ch. Dopplera, Praha 5 59,5
4/4, G Brno, tř. Kpt. Jaroše 14 59,5
6/6, G Jilemnice
2/4, G a OA Kralupy n. Vit. 47
3/4, GMK, Bílovec

Jan Herman
Martin Tancer

Josef Křišťan
Tomáš Protivínský
Ondřej Suchý
Martin Káldy
Marek Sulovský
Jan Kynčl
Pavel Čížek
Jaroslav Hájek

70,5

68

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo vybráno šest reprezentantů a jeden
náhradník. Ti pak byli ještě pozváni na přípravné soustředění, které se
konalo opět v Jevíčku v týdnu od 29. května do 1. června a bylo věnováno
nejen řešení úloh, ale i rozšíření znalostí našich olympioniků.

Jednotlivé semináře vedli a úlohy připravili:
dr. Karel Horák (9.4.),
dr. Jaroslav Švrček (10.4.).
dr. Martin Panák a dr. Pavel Calábek (11.4.)
a doc. Jaromír Šimša (12. a 13.4.).
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Úlohy zadané na přípravném soustředění
1. V rovině s kartézskou soustavou souřadnic je dán konvexní pětiúhelník
ABCDE, jehož vrcholy mají celočíselné souřadnice. Dokažte, že uvnitř
nebo na hranici pětiúhelníku A\B\ C\D\Ei (obr. 28) leží aspoň jeden bod
s celočíselnými souřadnicemi.
2. Je dán čtyřúhelník ABCD s vepsa-
nou kružnicí w. Jeho strany AB & CD
leží na různoběžkách, které se protínají
v bodě O. Označme uj\ kružnici, jež se

dotýká strany BC v bodě К a pro-
dloužení stran AB a CD, а u>2 kruž-
nici, jež se dotýká strany AD v bodě L
a prodloužení stran AB a, CD. Jestliže
body О, К, L leží v přímce, potom leží
v přímce i střed kružnice co a středy
stran BC a AD.

3. V rovině je dán konvexní n-úhelník
P1P2 • ■ ■ Pn- Jestliže pro jeho dva libo-
volné vrcholy Pí, Pj existuje vrchol da-
ného mnohoúhelníku, z něhož je úsečka
PiPj vidět pod úhlem 60°, potom n = 3. Dokažte.
4. Nechť I značí střed kružnice vepsané trojúhelníku ABC, středy stran
AB, AC označme po řadě C\, B\. Nechť přímky IC1 a AC se protínají
v bodě B2 a přímky IB\ a AB se protínají v bodě C2. Stanovte velikost
úhlu CAB, jsou-li rovny obsahy trojúhelníků ABC а ЛВ2С2.
5. Sestrojte čtyřúhelník ABCD, jsou-li dány délky a, b, c, d jeho stran
a délka m spojnice středů stran AB a, CD.
6. Nechť D, E, F jsou po řadě vnitřní body stran BC, CA, AB troj-
úhelníku ABC a r nechť značí poloměr kružnice jemu opsané. Dokažte,
že platí nerovnost

\AB\ + \BC\ + \CA\1 11
(\DE\ + \EF\ + \FD\) ^

\AD\ \BE\ \CF\ r

7. Kružnice vepsaná čtyřúhelníku ABCD se dotýká jeho stran DA, AB,
BC, CD po řadě v bodech К, L, M, N. Nechť k\, k-2, ks, к± jsou kruž-
nice vepsané po řadě trojúhelníkům AKL, BLM, CMN, DNK. Uva-
žujme společné vnější tečny ke dvojicím kružnic (k\, A^), №2,^3), (^3, fc4),
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(&4, &i) různé od stran čtyřúhelníku ABCD. Dokažte, že úhlopříčky čtyř-
úhelníku, jehož strany leží na těchto společných vnějších tečnách, jsou
navzájem kolmé.

8. Existuje rozklad množiny celých čísel na tři disjunktní podmnožiny
takový, že pro libovolné celé číslo n leží čísla n, n — 50 a n + 187 vždy
v různých podmnožinách?

9. Buď {an}^_1 nekonečná posloupnost přirozených čísel taková, že
v rozkladu libovolného jejího členu na prvočísla se objevuje nejvýše
2 001 čísel (každé prvočíslo počítáme tolikrát, v jaké mocnině dělí daný
člen). Dokažte, že z posloupnosti {an}^?_1 lze vybrat podposloupnost

takovou, že největší společný dělitel libovolných dvou jejích členů
(bi,bj) je vždy totéž číslo.
10. Nechť a, a + d, a + 2d,... je nekonečná aritmetická posloupnost. Do-
kažte, že obsahuje-li nějaké druhé mocniny přirozených čísel, tak alespoň
jedna z nich je menší než a + 2dy/a -I- d2.
11. Nechť A = {1, 2,..., m + n}, kde m, n jsou přirozená čísla, a nechť
funkce /: A -> A je definována následujícím způsobem:

m=i+i pro г = 1,2,.. m — l,m + l,...,m + n-1

f(m + n) = m + 1.

* ?

/M = i a

a) Dokažte: Nechť man jsou lichá čísla, pak existuje funkce g: A —> A
taková, že pro všechna a G A platí g(g(a)) = /(a).

b) Dokažte: Nechť m je sudé číslo, pak m = n, právě když existuje funkce
g: A —у A taková, že pro všechna a£ A platí g(g(a)) = f(a).12.Ukažte, že pro libovolné celé číslo n existuje právě jeden polynom

Q s koeficienty z množiny {0,1,2,3,4, 5,6, 7,8,9} takový, že Q(—2) =
= Q{-5) = n.

13. Určete všechny funkce /: IR -> IR takové, že f(x + yf{x)) = f(x) +
+ xf(y) pro všechna reálná čísla x a y.

14. Dokažte, že pro libovolná čísla a, 6, c z intervalu (0,1) platí nerovnost

2(a3 + b3 + c3) ^ 3 + a2b + b2c + c2a.15.Hráči А а, В hrají pro předem zvolené přirozené číslo n tako-
vou hru. Začíná hráč A, který napíše libovolnou číslici z množiny
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M = {1,2,3,4,5,6}. К ní hráč В připíše opět číslici z M, к ní zase při-
píše hráč A číslici z M atd., až vznikne 2n-místné číslo. Je-li toto číslo
násobkem devíti, vyhrává hráč В; v opačném případě vyhrává hráč A.
Který z hráčů má (v závislosti na čísle n) zaručenu výhru?16.Najděte všechny dvojice celých čísel x a y, pro které platí

x3 + x2y 4- xy2 + y3 = 8(x2 + xy + y2 + 1).

17. Dokažte, že existuje rostoucí nekonečná aritmetická posloupnost se-
stavená pouze z těch přirozených čísel, která nelze pro žádné к < 10
zapsat jako součet к druhých mocnin lichých celých čísel.

18. Množinu všech složených lichých přirozených čísel menších než 100
zapište jako sjednocení tří (nikoliv nutně disjunktních) aritmetických po-

sloupností.

19. Doplňte celá čísla а;, b{ v rovnici

а3п -I- b3
0,412 -(- 64

ain + 61
a2n + b2

2n1

n + lln

tak, aby vzniklá rovnost platila pro každé přirozené číslo n.

20. Napište aspoň jednoho dělitele d čísla N = 4545 + 5454 splňujícího
odhady 2545 < d < N.

21. Z písmen А, В je sestaveno libovolné slovo délky n, ve kterém je právě
m slabik BA (2m ^ n). Počet všech těchto slov zapište kombinačním
číslem (^), kde N а К jsou mnohočleny proměnných n am.
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Mezinárodní střetnutí česko-slovensko-poiské

BÍLOVEC, 14.-15. ČERVNA 2001
V rámci přípravy na 42. MMO se uskutečnilo již sedmé tradiční střet-
nutí českého a slovenského reprezentačního výběru. Tentokrát se poprvé
soutěže zúčastnilo i polské reprezentační družstvo.

Soutěž se uskutečnila v termínu 14. -16.6. 2001 na půdě Gymná-
zia Mikuláše Koperníka v Bílovci. Všechna zúčastněná družstva dorazila
do místa konání soutěže již ve středu 13. června. Organizace a průběh
soutěže zůstal zachován z předešlých ročníků. Soutěžící tedy (podobně
jako na MMO) řešili ve dvou soutěžních dnech (14. a 15. června) po
třech úlohách. Za každou z nich mohli získat nejvýše 7 bodů, celkově
tedy maximálně 42 body. Na jejich řešení měli žáci každý soutěžní den
rezervováno (stejně jako na MMO) 4,5 hodiny čistého času.

Pořadí Jméno Země body Součet

Michal Adamaszek
Karol Cwalina
Katarina Quittnerová
Radovan Bauer
Jan Kynčl
Jaroslaw Wrona
Jaroslav Hájek
Roman Lomowski
Pawel Walter
Jana Szolgayová
Martin Tancer
Tomáš Kulich
Peter Bella
Aleksander ZabLocki
Jan Herman
Robert Lukoťka
Tomáš Protivínský
Ondřej Suchý

POL 777773
775577
772777
777724
727774
776563
772771
770773
656563
777620
747713
347760
375144

732660
040773
011773
122623
002711

38
POL 38

SYK3. 37
SYK4.-6. 34
CZE 34
POL 34

7.-9. CZE 31
POL 31
POL 31
SYK10.-11. 29
CZE 29
SYK12. 27

13.-14. SYK 24
POL 24

CZE15. 21

SYK16. 19
17. CZE 16

CZE18. 11
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili členové
úlohové komise z České republiky — dr. Jaroslav Švrček a doc. Jaro-
mír Šimša. Úlohy koordinovala mezinárodní komise ve složení Jaromír
Šimša, Jaroslav Švrček, Pavel Calábek za Českou republiku, Eugen Kováč
a Juraj Fóldes za Slovensko a Marcin Kuczma, Józef Kalinowski a Rafal
Lochowski za Polsko. Jak je vidět z připojené tabulky, nejlépe si v 7. roč-
niku soutěže vedl polský reprezentační výběr. Celkové výsledky také na-

značily, že od našich olympioniků nelze za necelý měsíc na 42. MMO
bohužel očekávat výraznější úspěch. Tato prognóza se skutečně potvrdí-
la.

V příštím roce se uskuteční 8. mezinárodní střetnutí MO (CZE -

POL - SVK) na základě pozvání polského družstva počátkem června
v horském příhraničním středisku Zwardoň.

Texty soutěžních úloh1.Dokažte, že pro libovolná kladná čísla ai,a2,..
nerovnost

an (n ^ 2) platí* )

(ai + l)(a2 + !)••• fan + 1) = (aia2 + 1)(а|аз + 1) • • • (a2nai + !)•

2. Trojúhelník ABC má ostré vnitřní úhly při vrcholech A a B. Nad stra-
námi АС a BC jsou trojúhelníku vně připsány rovnoramenné trojúhel-
niky ACD а ВСЕ se základnami АС a BC tak, že |< ADC\ = |< ABC\
a současně | <$BEC\ — \*$.BAC\. Označme S střed kružnice opsané troj-
úhelníku ABC. Dokažte, že délka lomené čáry DSE je rovna obvodu
trojúhelníku ABC, právě když je úhel ACB pravý.

3. Pro libovolná přirozená čísla n, к splňující podmínku \n < к š |n
najděte nejmenší počet polí, která lze obsadit na čtvercové šachovnici
n x n tak, aby v žádném řádku ani v žádném sloupci šachovnice neexis-
tovalo к volných (tj. neobsazených) sousedních polí.
4. V rovině jsou dány body А, В (А ф В). V této rovině uvažujme libo-
volný trojúhelník ABC s vlastností: Uvnitř jeho stran BC, CA existují
po řadě body D, E, pro něž platí

\BD\
_ \CE\ _ 1

\BC\ ~ \CA\ ~ 3’
(ii) body A, R, D, E leží (v tomto pořadí) na téže kružnici.

Určete množinu průsečíků přímek AD a BE pro všechny trojúhelníky
ABC s danou vlastností.

(i)
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5. Určete všechny funkce /: IR -» IR vyhovující rovnici

f{x2 + y) + f(f{x) - y) = 2f(f(x)) + 2y2
pro všechna я, у G IR.
6. V prostoru je dána kartézská soustava souřadnic. Každý bod s celo-
číselnými souřadnicemi nazveme mřížovým. Obarvěme 2 000 mřížových
bodů modře a jiných 2 000 mřížových bodů červeně tak, aby žádné dvě
modročervené úsečky neměly společný vnitřní bod. (Úsečku nazýváme
modročervenou, pokud je jeden její krajní bod obarven modře a druhý
červeně.) Uvažujme nejmenší kvádr s hranami rovnoběžnými s osami sou-

řadnic, který obsahuje všechny obarvené body.
a) Dokažte, že kvádr obsahuje alespoň 500 000 mřížových bodů.
b) Udejte příklad popsaného obarvení, kdy uvažovaný kvádr obsahuje

nejvýše 8000 000 mřížových bodů.

Řešení úloh

1. Tvrzení dokážeme užitím principu matematické indukce vzhledem
к přirozenému číslu n.

(i) Pro n = 2 dostáváme postupně

(al + l) (a2 + l) = {ala2 + l) (®2al + l) 5

"h Clf T Й2 1 = ^1^2 Й2Й2 T ОчО,2 "1* ú
a2(ai - a2) + a\(a2 - ai) ^ 0,

(a2 - al)(ai - a2) ^ 0,
(oi - a2)2(ai + a2) ^ 0.

Poslední nerovnost zřejmě platí pro libovolná kladná čísla a\, a2. Protože
všechny použité úpravy byly ekvivalentní, platí i daná nerovnost pro
n = 2.

(ii) Předpokládejme nyní, že nerovnost z textu úlohy platí pro určité
n ^ 2. Dokážeme platnost nerovnosti i pro n + 1. Nerovnost

(ai + l) • • • (an + l) (an+i + !) =

^ (a2a2 + 1) ... (a2an+i + l) (a2+1ai + l)
bude (za uvedeného předpokladu) platit, bude-li splněna podmínka

{anan+1 + l) (fln+iai + l)
an+i+1 = a^ai + 1
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Pomocí ekvivalentních úprav zjistíme, kdy je uvedená podmínka splněna.
Postupně tak obdržíme

(an+i + l) (anai + l) = {anan+1 + l) [а2п+1а\ 4- l) ,

an+ianai + anai + <4+i + 1 = an+ian«i + dn+ial 4- a2n+1a! 4-1,
an(ai — an+1) + an+i(an+i — Gi) ^ 0,

(®n+l ®l)(^n+l ^n)(®n+1 d" fln) " 0.

Poslední nerovnost obecně neplatí. Zadaná nerovnost je však cyklická,
tj. nezmění se, jestliže n-tici kladných čísel (fti, Й2,..., an) zaměníme li-
bovolnou z n-tic

0>n 5 )) (o3, Й4,.. ®m®l,02)> •••) (fln > Ol, 1 • • • i Йп—1 )•(й2, Йз, . . * )* ?

Lze tudíž danou (n 4- l)-tici (й1, й2, ..., an+1) předem cyklicky pozměnit
tak, aby číslo an+1 bylo maximální ze všech n 4-1 čísel сц. Potom jsou obě
čísla an+i - fli a fln+i — йп nezáporná, a proto platí i poslední nerovnost.

Tím je důkaz nerovnosti matematickou indukcí ukončen.

2. Uvažujme obvyklé označení délek stran a velikostí vnitřních úhlů
v trojúhelníku ABC, r nechť značí poloměr jeho opsané kružnice. Dále
nechť G je střed strany AC a D' bod souměrně sdružený s bodem D podle
osy AC. Protože |< AD'C\ — \<£ABC\, leží bod D' na kružnici opsané
trojúhelníku ABC, tj. \SD’\ = r, a tudíž \GD\ = \GD'\ = |SG| + r.

Odtud dostaneme \SD\ = |5G| 4- \GD\ = 2|5G| + r = r(2cos/3 4-1).
Analogicky \SE\ = r(2cosct 4-1). Délka lomené čáry DSE je tedy

|SD| 4- |S£j = 2r(cos a 4- cos (3 + 1)

zatímco obvod trojúhelníku ABC je 2r(sina 4- sin(3 + siny).
Zjistíme dále, za jakých podmínek platí rovnost

cos a + cos (3 4- 1 — sin a 4- sin /3 4- sin 7.

Tu postupně upravíme následujícím způsobem:

a+P a-p
— 4-smy,

-sinD-

o + P a- p
+ 1 = 2 sin2 cos coscos

2 22

-P 1
—— cos —

2 V 2(cosi~sini) ^ a
= 2 cos —
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tj.
/ 7 'y\ /7 7 си
lC0S 2 ~ SÍn 2 J (,COS2"SÍn2“2COS“2

Je-li 7 = 90°, je poslední rovnost splněna. Je-li však 7 ф 90°, lze rovnost
upravit ekvivalentně na tvar cos ^7 — sin ^7 = 2 cos |(o — /5), což je však
ve sporu s odhady

-/3
= 0.

-/3(2 + i) < ^ = 2cos"
7 7t O -

- < 2 cos —-

4 2
7

= V2cos — — sin —

2 2

(pro ostré úhly a, /3 totiž zřejmě platí ||(a — (5)\ < |rc).
Tím je důkaz ukončen.

cos

3. Ukážeme, že hledaný nejmenší počet polí je roven číslu 4(n — k). Čísla
n, к splňující podmínku z textu zadání budou v celém textu pevná; každé
obsazení několika polí šachovnice nxn s požadovanou vlastností nazveme

„dobrým“. (Dobré je například obsazení všech n2 polí.)
Popišme nejdříve dobré obsazení 4(n - к) polí. Jednotlivé řádky ša-

chovnice označme postupně čísly i = 0,1,... ,n — 1, stejně tak sloupce
čísly j = 0,1,... , n — 1 a obsaďme právě ta pole, jejichž souřadnice (г, j)
splňují i + j = к — 1 (mod к). Toto obsazení je zřejmě dobré a je tvořeno
jednak к poli, pro která i + j = к — 1, jednak 2n — 2к poli, pro která
i +j = 2k — 1, a konečně 2n - 3к poli, pro která i+j = 3k — 1 (v případě
к = |n pole třetího druhu chybí, tehdy ovšem 2n — 3k = 0), což je celkem
к + (2n — 2k) + (2n — ЗА:) = 4(n — k) polí.

V druhé části řešení ukážeme, že každé dobré obsazení je tvořeno
alespoň 4(n — k) poli. К tomuto účelu vyčleníme na dané šachovnici nxn
čtyři nepřekrývající se obdélníky A, В, C, D o rozměrech к x (n — k),
jak vidíme na obr. 29.

n — кк

n — к А
В к

к D
п — кС

п — к к

Obr. 29
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Při libovolném dobrém obsazení celé šachovnice musí být obsazeno
aspoň jedno pole v každém z (n — k) řádků polí obdélníku A, takže
v obdélníku A je celkem obsazeno alespoň (n — k) polí. Obdobnou úvahou
o sloupcích v В, řádcích vCa sloupcích v D zjistíme, že rovněž v každém
z obdélníků В, C, D je obsazeno alespoň (n — к) polí. Proto je na celé
šachovnici obsazeno alespoň 4(n — к) polí, což jsme chtěli dokázat.

4. Délky stran uvažovaného trojúhelníku ABC označme obvyklým způ-
sobem a, b, c.

Vzhledem к tomu, že body A, B, D, E leží na téže kružnici, platí
(obr.30) \<$ADC\ = \<$BEC\. Trojúhelníky ADC а ВЕС jsou tudíž
podobné, z čehož vyplývá

§a hb\DC\
= \CE\

\CA\ \CB\
_ 3

Snadnou úpravou odtud dostáváme b : a = \J2 : 1. Vrchol C trojúhelníku
ABC dané vlastnosti leží tedy na Apolloniově kružnici к (se středem na

přímce AB).
Označme dále M průsečík přímek AD a BE, F průsečík přímky CM

se stranou AB a \AF\ — x. Z Cévovy věty vyplývá

\AF\ \BD\ \CE\
\FB\ ' \DC\ ' \EA\ c-x 2 2

1 1x
- = 1.
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Z poslední rovnosti již bezprostředně plyne x = |c, tj. přímka CM pro-
tíná stranu AB v pevném vnitřním bodě F, pro který platí | AF| : \FB\ =
= 4:1.

Užitím Van Aubelovy věty pro ceviány AD, BE a CF, které se pro-

tínají v bodě M, dostáváme dále

\CM\
_ \CD\ \CE\ 2

\MF\ ~ \DB\ + \EA\ 1
= - + l = í a tedy \FM\:\FC\ = 2:7.

Uvažujme nyní stejnolehlost h(F, |). Ta zobrazuje vrchol C trojúhel-
niku ABC dané vlastnosti na průsečík M přímek AD a BE a Apolloniovu
kružnici к na kružnici l, jejíž střed leží rovněž na přímce AB (obr. 31).
Hledaná množina průsečíků M přímek AD a BE leží tedy na kružnici l.

Ukažme naopak, že ke každému bodu M kružnice l (z níž jsou vyňaty
dva body ležící na přímce AB) existuje bod Cek, který je vrcholem
trojúhelníku ABC s danou vlastností. Ukažme tedy, že uvnitř jeho stran
BC, CA existují po řadě body D, E vyhovující podmínkám (i), (ii).
Ke každému bodu M kružnice l existuje bod Cek tak, že platí C =
= Uvnitř stran BC, CA trojúhelníku ABC existují po řadě
body D, E vyhovující podmínce (i). Ukážeme, že tyto dva body vyhovují
také podmínce (ii). Stačí ověřit, že platí cos | < ADC\ = cos \<$BEC\. To
lze např. využitím kosinové věty pro trojúhelníky ADC а ВЕС. Zde
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využijeme vztah b : a = y/2 : 1. Při výpočtu délek úseček AD, resp. BE
opět využijeme kosinovou větu v trojúhelníku ABC (a to pro vyjádření
cos \<ŠBCA\).

Závěr: Hledanou množinou M průsečíků přímek AD a BE všech troj-
úhelníků s vlastností danou v textu úlohy je tedy kružnice l, která je
obrazem kružnice к ve stejnolehlosti h(F, |) a z níž jsou vyňaty dva
body (jejího průměru) ležící na přímce AB.
5. Ukážeme, že jediné řešení je funkce f(x) = x2. Položme nejprve у =
= f(x) a dále у = —x2. Porovnáním výsledků, které dostaneme těmito
speciálními volbami, dostaneme |/(x)| = x2 a také /(0) = 0. Volbou
x = 0 dále obdržíme f{y) + f(—y) = 2y2. Jak už ale víme, je nutně f(y) ^
^ у2 a současně f{—y) ^ y2 • Obě předchozí nerovnosti však přecházejí
s ohledem na podmínku f{y) + f(—y) = 2y2 v rovnosti, a to pro každé
у e R.

Zkouškou se přesvědčíme, že řešením dané funkcionální rovnice je
funkce f(x) = x2 (x G IR).
6. a) Nejprve nahlédneme, že žádné dvě modročervené úsečky nesmějí
mít stejný (orientovaný) směr. V opačném případě by jejich koncové
body tvořily vrcholy lichoběžníku (nebo rovnoběžníku) s modročerve-
nými úhlopříčkami majícími společný vnitřní bod (platí to i v případě,
kdy čtyřúhelník degeneruje v úsečku).

Dále si uvědomme, že všechny dvojice mřížových bodů v uvažovaném
kvádru o rozměrech a, 6, c určují nejvýše 8(a + 1)(& + l)(c -I-1) směrů.

Je-li totiž uvažovaný kvádr v kartézské souřadné soustavě Oxyz po-

psán nerovnostmi

x0 ^ x ^ x0 + а, Уо й У = Уо + b, z0 š z ^ z0 + с,

je každý zmíněný směr určen vektorem (u, v, w), kde u, v, w jsou celá čísla
splňující nerovnosti |u| ^ a, |u| й 6, |го| c. Všech takových vektorů je
právě (2a + 1)(26 + l)(2c -I-1), což je méně než 8(a -t-1)(6 + l)(c + 1).

Daných 2 000 modrých a 2 000 červených bodů určuje 4 000 000 mod-
ročervených úseček, z nichž žádné dvě nemohou mít stejný směr. Je tedy
4 000 000 ^ 8(a + l)(6+l)(c+l), neboli (a + 1)(Ь+l)(c+1) ^ 500 000.
Tím jsme hotovi s důkazem části a), neboť (a + 1)(6 + l)(c + 1) je počet
mřížových bodů tohoto kvádru.

b) Vezměme kvádr o rozměrech 1 999 x 1 999 x 1 s vrcholy v bo-
dech [0,0,0], [0,0,1], [1999,0,0], [0,1999,0], [1999,0,1], [0,1999,1],
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[1 999,1999,0], [1 999,1999,1]. Modře nyní obarvíme všech 2 000 mřížo-
vých bodů na hraně o vrcholech [0,0,0] a [1999,0,0], červeně pak všech
2 000 mřížových bodů na hraně o vrcholech [0,0,1] a [0,1999,1]. Pro-
tože tyto hrany (na nichž leží modré, resp. červené body) jsou mimoběž-
né, žádné dvě různé modročervené úsečky nemají společný vnitřní bod.
Kvádr přitom obsahuje právě 8 000 000 mřížových bodů.
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42. mezinárodní matematická olympiáda

Tato každoroční soutěž středoškoláků v řešení matematických úloh se

prvních 21 let své existence konala vždy v ně-
které evropské zemi. Teprve v roce 1981 opus-
tila starý kontinent a zamířila do Washingto-
nu, hlavního města USA, kde její 22. ročník
uspořádala vědecká společnost The Mathe-
matical Association of America. Po dvaceti

letech se soutěž vrátila téměř na stejné místo,
když se hlavním dějištěm 42. ročníku MMO
v červenci 2001 stal areál Univerzity George
Masona, vzdálený od centra Washingtonu asi
30 km (v roce 1981 to byla Univerzita Georgetown, ke které se dostanete
po 20 minutách chůze od Bílého domu). Během dvou desetiletí se sice ne-
změnila ani náplň soutěže (ve dvou dnech řeší jednotliví účastníci vždy tři
úlohy po dobu 4,5 hodin), ani vyhodnocení dosažených výsledků (podle
bodového zisku za všech šest soutěžních úloh získává nejlepší dvanáctina
soutěžících zlaté medaile, další šestina stříbrné a další třetina bronzové
medaile), významně však vzrostl rozsah celé akce: zatímco v roce 1981
se soutěže zúčastnilo 185 žáků z 27 zemí, v roce 2001 už to bylo 473 žáků
z 83 zemí. Šestici našich soutěžících v roce 2001 tvořili Jaroslav Hájek
(GMK Bílovec), Jan Herman (G Brno, tř. Kpt. Jaroše), Jan Kynčl (G Ji-
lemnice), Tomáš Protivínský (G Brno, tř. Kpt. Jaroše), Ondřej Suchý (G
Plzeň, Mikulášské nám.) a Martin Tancer (G Ch. Dopplera Praha). Ve-
doučím delegace České republiky byl doc. RNDr. Jaromír Šimša, CSc.
(MÚ AV ČR Brno), družstvo doprovázel RNDr. Jaroslav Švrček, CSc.
(PřF UP Olomouc).

Mezinárodní porota 42. MMO, tvořená vedoucími delegací jednotli-
vých zemí, zahájila svou práci pod předsednictvím známého amerického
matematika R. Grahama 2. července 2001, den před příletem soutěží-
cích. Úkolem poroty bylo vybrat šestici soutěžních úloh a připravit jejich
znění v jazycích zúčastněných zemí. Jak se mnozí vedoucí před vlastní
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soutěží (konané 8. a 9. července) vyjádřili, vybraná šestice úloh byla ne-

obvykle náročná. Přesto náš vedoucí věřil, že první a čtvrtá úloha budou
českým soutěžícím vyhovovat a že většině z nich přinesou bodové zisky
zaručující alespoň bronzové medaile. Nestalo se tak к našemu velkému
zklamání, které nerozptýlil ani obdobný „výpadok" slovenského družstva,
jež v přípravě na soutěž vykazovalo lepší výsledky. Museli jsme se spoko-
jit se ziskem dvou bronzových medailí Jana Kynčla a Martina Tancera.
Kromě toho získali Jaroslav Hájek a Tomáš Protivínský čestné uznání,
které se uděluje těm soutěžícím, kteří sice nedosáhli na žádnou z medailí,
ale přitom za některou z úloh dostali plný počet sedmi bodů. Výsledky
našich soutěžících najdete v přiložené tabulce.

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

243.-261. Jaroslav Hájek,
3. roč. GMK
Bílovec

327.-346. Jan Herman,
4. roč. gymnázia
Brno, tř. Kpt. Jaroše

7 0 0 3 0 0 10

52 0 0 2 1 0

148.-163. Jan Kynčl,
6. roč. gymnázia
Jilemnice

243.-261. Tomáš Protivínský,
3. roč. gymnázia
Brno, tř. Kpt. Jaroše

398.-428. Ondřej Suchý,
4. roč. gymnázia
Plzeň, Mikulášské nám.

181.-198. Martin Tancer,
3. roč. G. Ch. Dopplera
Praha 5

7 0 0 2 7 0 16 III.

0 7 0 1 2 0 10

0 0 0 0 2 0 2

3 0 7 2 2 0 14 III.

Celkem 19 7 7 10 14 0 57

O náročnosti soutěžních úloh svědčí i nízké hranice pro zisk medailí:
na bronzovou medaili stačilo 11 bodů, na stříbrnou 20 a na zlatou 30
z možného počtu 42 bodů. Žádný bod neztratili jen čtyři soutěžící: Liang
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Xao s Zhiquiang Zangem z činy a Reid Barton s Gabrielem Carrollem
z USA. Jak je patrno z tabulky zúčastněných států, v neoficiálním hodno-
cení jednotlivých zemí podle celkového bodového zisku dopadly nejlépe
(jak už je tradicí) Čína, Rusko a Spojené státy.

I II III body i и ni body

ČLR
Rusko
USA
Bulharsko
Korea
Kazachstán
Indie

Ukrajina
Tchaj-wan
Vietnam
Turecko
Bělorusko
J aponsko
Německo
Rumunsko
Brazílie
Izrael
Irán
Hongkong
Polsko
Maďarsko

Argentina
Thajsko
Kanada
Austrálie
Kuba
Uzbekistán
Francie

Singapur
Řecko
Jugoslávie
Mongolsko
Velká Británie

Kypr
Chorvatsko
JAR
Estonsko
Gruzie

Lotyšsko
Moldavsko
Peru
Kolumbie

Makedonie

Nový Zéland
Česká republika
Itálie
Mexiko
Slovensko
Venezuela
Norsko
Bosna a Hercegovina 0 11
Maroko
Arménie
Nizozemsko
Rakousko
Litva

Švýcarsko
Španělsko
Indonézie

Malajsie
Trinidad a Tobago
Tunisko
Finsko
Irsko
Macao
Turkmenistán
Slovinsko

Belgie
Dánsko
Švédsko
Srí Lanka
Albánie

Ázerbájdžán
Island

Filipíny
Guatemala

Uruguay
Portugalsko
Kirgizie
Lucembursko

Kuvajt
Paraguay
Ekvádor

6 0 0
5 10
4 2 0
3 3 0
3 3 0
4 1 0
2 2 2
15 0
1 5 0
14 0
1 3 2
1 2 3
1 3 2
1 3 1
1 2 2
0 4 2
1 2 1
0 2 4
0 2 4
0 3 1
0 2 3
0 3 2
0 2 2
1 0 4
1 0 4
1 1 3
0 1 3
0 2 3
0 1 4
0 1 3
0 1 3
0 2 2
0 1 3
0 0 4
0 1 2
0 1 3
0 1 3
0 1 3
0 1 2
0 2 1
0 0 4
0 0 4

225 0 0 2
0 1 1
0 0 2
0 0 2
0 0 2
0 0 2
0 1 1
0 1 1

59
196 58
196 57
185 56
185 56
168 54
148 53
143 48
141 47
139 0 0 1 45
136 0 0 2

0 0 2
0 0 1
0 0 1
0 0 2
0 0 1
0 1 0
0 0 0
0 0 2
0 0 1
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

44
135 42
134 41
131 39
129 38
120 37
113 36
111 36
107 36
107 36
104 32
103 32
103 32
100 29
97 27
92 25
91 25
88 25
87 21
86 20
79 19
79 18
79 16
78 12
76 8
75 6
72 5
71 4
71 3
70 2
67 0
64

Velkým překvapením je nevídaný úspěch Kazachstánu, jehož soutě-
žící se na olympiádu pečlivě připravovali během měsíčního internátního
soustředění pod vedením pozvaného petrohradského matematika S. Ruk-
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šina. Najdeme v budoucnu prostředky a časové možnosti pro obdobnou
intenzívní přípravu i u nás?

Poděkování ovšem patří přerovskému podniku PRECHEZA, a.s.,
a společnosti AUTO NISSAN Kobliha v Přerově za jednotné oblečení
celého českého družstva.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť O je střed kružnice opsané ostroúhlému trojúhelníku ABC.

Bod P strany BC je patou výšky z vrcholu A. Předpokládejme, že
\<BCA\ ^ \<ABC\ + 30°. Dokažte, že \<CAB\ + \ <COP\ < 90°.

(Korea)2.Dokažte, že nerovnost

ba c
> 1

y/a2 + 86c \Jb2 + 8ca л/с2 -f Sab

platí pro všechna kladná reálná čísla a, 6, c. (Korea)
3. Matematické soutěže se zúčastnilo 21 dívek a 21 chlapců. Každý soutě-
žící vyřešil nejvýše šest úloh. Pro každou dívku a každého chlapce existuje
alespoň jedna úloha, kterou vyřešili oba současně. Dokažte, že existuje
úloha, kterou vyřešili alespoň tři dívky a alespoň tři chlapci. (Německo)
4. Nechť n je liché číslo větší než 1 a nechť ki, ..., kn jsou daná
celá čísla. Pro každou z n! permutací a = (ai, a?,..., an) množiny
{l,2,...,n} označme

S(a) = kjaj.
i=l

Dokažte, že existují dvě permutace b a c, b ф c, pro které je číslo n!
(Kanada)

5. V trojúhelníku ABC osa úhlu BAC protíná stranu BC v bodě P, osa
úhlu ABC protíná stranu AC v bodě Q. Je známo, že | < BAC\ = 60° a že
\AB\ + |PP| = \ AQ\ + \QB\. Jaké jsou možné velikosti úhlů trojúhelníku
ABC?

6. Nechť pro celá čísla a, b, c, d platí a>b>c>d> 0. Předpokládejme,

dělitelem S(b) — S(c).

(Izrael)

že

ac + bd= (b + d + a — c)(b + d — a + c).
Dokažte, že ab + cd není prvočíslo. (Bulharsko)
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Řešení úloh

1. (Podle Jana Kynčla.) Označme vnitřní úhly v trojúhelníku ABC
obvyklým způsobem a, /?, 7. Podle předpokladu platí 7 — (3 ^ 30°,
tj. sin(7 — (3) ^ Bez újmy na obecnosti předpokládejme, že kružnice
opsaná uvažovanému trojúhelníku ABC má poloměr r — 1. Protože troj-
úhelník ABC je ostroúhlý, je bod P (pata výšky z vrcholu A) vnitřním
bodem strany BC, jejíž střed označíme S.

Z obr. 32 je patrné, že dokazovaná nerovnost \<ACOP\ < 90° — a je
ekvivalentní s nerovností \CP\ < \OP\, neboť ze vztahu mezi středovým
a obvodovým úhlem plyne |<í50C| = a, takže \ <$BCO\ — 90° — a. Pro
velikost tětivy AC s obvodovým úhlem (3 platí \AC\ = 2sin/? a podobně
|CSj = siná. Pomocí těchto vztahů snadno vyjádříme délky úseček CP
a OP. Platí totiž \CP\ — \ AC\ cosy = 2sin/?cos7. Aplikací Pythagorovy
věty na pravoúhlý trojúhelník POS obdržíme konečně

\OP\ = yysiim^-Ysin^cosTp+cos^a.

Zbývá tedy dokázat, že pro libovolné vnitřní úhly a, /?, 7 ostroúhlého
trojúhelníku ABC platí nerovnost

yj(sin a - 2 sin /3 cos y)2 + cos2 a > 2 sin /3 cos 7.

Protože pravá strana této nerovnosti je kladné číslo, přejdeme (po umoc-
nění obou stran nerovnosti na druhou) к ekvivalentní nerovnosti

(sin2 a — 4 sin a sin (3 cos 7 + 4 sin2 (3 cos2 7) + cos2 a > 4 sin2 /3 cos2 7.
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Po její úpravě zjistíme, že je třeba dokázat nerovnost

1 - 4 sin a sin (3 cos 7 > 0.

Užitím vztahu 2 sin /3 cos 7 = sin(/3 + 7) + sin(/3 — 7) = sin a + sin((3 — 7)
však vidíme, že postupně platí

1 — 4 sin o: sin (3 cos 7 = 1 — 2 sin a (sin a + sin(/3 — 7)) =
= 1-2 sin2 a — 2 sin a sin(/3 — 7) ^
^ 1 — 2 sin2 a + siná = (1 4- 2 sin a) (1 — siná) > 0,

neboť pro každý ostrý úhel a platí současně 1 + 2 sin a > 0 а 1 — sin o: > 0.
Tím je důkaz ukončen.

Jiné řešení. Stejně jako v předchozím řešení vyjdeme z toho, že do-
kazovaná nerovnost \<Š.COP\ < 90° — a je ekvivalentní s nerovností
\CP\ < \OP\. Ukážeme, že pro bod X, v němž výška AP protíná po-
loměr OC kružnice opsané, platí \OX\ ^ ||OC|, neboli \OX\ ^ |CX|,
což dává

\CP\ < \CX\ <, \OX\ < \OP\
a tím jsme s důkazem hotovi.

Platí totiž (obr. 33)

|<XCULP| = \<BAP\ - \<BAO\ = (90° — (3) - (90° -7) = 7 - (3 ^ 30°
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a protože sin(7 — /3) ^ |, je

IQO'I ^ \ox\ \oxI
\OA\ = \OA\ \OC\

1
- ^ sin(7 - P) =

neboli \OX\ ^ ||OC|, což jsme potřebovali dokázat.
2. Má-li některé reálné číslo p tu vlastnost, že pro libovolná kladná a, 6,
c platí nerovnost

a
> ap

Va2 + 86c = ap + 6p + cp ’ (1)

je tvrzení úlohy nasnadě: stačí pak totiž sečíst nerovnost (1) s nerov-
nostmi

— >
д/62 -f 8ca

bp c
> cpa

Vc2 + 8ab = cP + aP + bP'6P + cp + aP

Uvažujme prozatím obecné p a všimněme si, že z nerovností mezi arit-
metickými a geometrickými průměry skupin čísel {6P, cp} a {ap, ap, 6P, cp}
plyne

(ap + 6P + cp)2 - (ap)2 = (6P + cp)(ap + ap + bp + cp) ^
^ 2(6рср)з • 4(apap6pcp)* = 8a^p(6c)4p.

Odtud po přičtení členu (op)2 získáme odhad

(ap + 6P + cp)2 ^ 8a2 (6c) 4p + (ap)2 a5p - (aip + 8(6c)íp),

ve kterém nyní zvolíme p = |. Dostaneme

(a5 + 63 + c5)2 ^ аз (a2 + 86c)

odkud je již zřejmé, že nerovnost (1) pro zvolené p platí.

Jiné řešení. (Podle Tomáše Protivínského.) Předně si uvědomme, že
daná nerovnost je homogenní. Vyhovuje-li totiž dané nerovnosti trojice
(a, 6,c) kladných čísel, vyhovuje jí rovněž každá trojice (ka,kb,kc), kde
к je libovolné kladné číslo. Bez újmy na obecnosti lze tedy předpoklá-
dat, že platí abc = 1. Na základě tohoto předpokladu ji můžeme dále
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upravit a užitím nerovnosti mezi aritmetickým a geometrickým průmě-
rem dvojice kladných čísel odhadnout např. první sčítanec na levé straně
nerovnosti následujícím způsobem:

1aa

у/a2 + 8bc yja2 + 8/a y/l -f 8/a3
1 2

>

2 11

2 1 4- 2b2c2 ’4
2 + -=■ 1 + -r

a2 a2

Podobně pro zbylé dva sčítance dostaneme odhady

b 1
a c > 1

\Jc2 + 8ab — 1 + 2a2b2
>

Vb2 + 8ca 1 + 2c2a2

Jejich součtem pak dostáváme nerovnost

ba c
>

Va2 + 8bc \fb2 + 8ca л/с2 + 8ab
1 1 1

>
-

1 + 2b2c2 ' 1 + 2c2a2 1 + 2a2b2 '

Ukážeme-li nyní, že pro libovolná kladná čísla a, b, c (abc = 1) je splněna
nerovnost

1 1 1
> 1

1 + 2b2c2 1 + 2c2a2 ' 1 + 2a2b2 ~

jsme s důkazem hotovi.
Uvedeme-li nejprve levou stranu poslední nerovnosti na společného

jmenovatele, dostaneme po několika zjednodušujících úpravách (za vyu-
žití podmínky abc = 1) ekvivalentní nerovnost

аЧ2 + b2c2 + c2a2 > 3.

Užijeme-li nyní opět nerovnost mezi aritmetickým a geometrickým prů-
měrem pro trojici kladných čísel a262, 62c2, c2a2, dostaneme

a2b2 + b2c2 + c2a2 ^ 3v^a464c4 = 3,
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v níž rovnost nastává, právě když a2b2 = b2c2 = c2a2, tedy pro a = b =
= c (= 1).

Tím je důkaz nerovnosti ukončen.

Jiné řešení. (Podle T. Laffeye, vedoucího irské delegace.) I když pů-
jde o řešení, které je ve srovnáním s autorským řešením poněkud delší,
oceníme na něm to, že je méně trikové. Jeho prvním krokem je úprava,
kterou běžně používáme při počítání s homogenními výrazy. Protože platí

ba c

y/a2 + 8bc Vb2 + 8ca \Jc2 + 8ab
1 1 1

bc abca
1 + 8—r 1 + 8— 1 + 8 —

a2 b2 c2

zavedeme nové proměnné

bc abca

y = ¥ z = —

c2

splňující podmínku xyz = 1 a ukážeme, že pro taková kladná čísla x, у,
2 platí

1 1 1
> 1.

VI + 8x VI + 8y VI+ 8z -

Označíme ještě и = л/l + 8x, v = VI + 8y, w = Vl + 8z a dokazovanou
nerovnost

- + i + bl
и v v

upravíme zřejmým způsobem na tvar (uv + vw + wu)2 ^ (uvw)2. Obě
strany poslední nerovnosti nyní vyjádříme takto:

1

(uv + vw + wu)2 =

— (uv)2 + (vw)2 + (wu)2 + 2uvw(u + v + w) =

= 3 + 1б(ж + у + z) + 64 (xy + xz + yz) + 2uvw(u + v + w),
(uvw)2 = (1 + 8a:)(l + 8y)(l + 8y) =

= 1 + 8(ж + у + z) + 64 (xy + xz + yz) + 512.

Náš úkol se proto zřejmě redukuje na důkaz nerovnosti

4(x + у + z) + uvw(u + v + w) ^ 255.
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Protože xyz = 1, platí (x + у + z) ^ 3{xyz)* = 3 a také xy + xz +
I

+ yz ^ 3((rryz)2)3 = 3. S pomocí AG-nerovnosti odhadneme i výraz
uvw(u + v + w):

uvw(u + v + w) ^ uvw ■ 3(uvw)ž = 3{u2v2w
= 3((1 + &r)(l + 8y)(l + 8z))^ =

= 3(l + 8(ж + у + z) + 64(:ry + xz + yz) + 512)3 ^
^ 3(1 + 8 • 3 + 82 • 3 + 83)5 =

= 3 [(1 + 8)3] ^ =3-81 = 243.

2)«

Sečtením obou odhadů dostaneme nerovnost, kterou jsme potřebovali
dokázat.

3. (Podle Martina Tancera.) Soutěžní úlohy budeme značit písmenem p,
soutěžící dívky písmenem g, soutěžící chlapce písmenem b. Trojici {g,p, b)
nazveme spojením, pokud úlohu p vyřešili dívka g i chlapec b. Řekne-
me, že spojení (g,p,b) je G-vyhovující (resp. Б-vyhovující), pokud byla
příslušná úloha p vyřešena alespoň třemi dívkami (resp. alespoň třemi
chlapci). Naším cílem je úvahou o počtu N všech spojení ukázat, že ně-
které spojení je jak G-vyhovující, tak i Б-vyhovující.

Protože pro každé g a každé b existuje alespoň jedno spojení (g, *, 6),
je pro každé g počet všech spojení (g, *, *) roven 21 + n(g), kde n{g) je
vhodné nezáporné celé číslo. Celkový počet N všech spojení je pak dán
vzorcem

N = 53(21 + n(p)) = 441 4- 53 n(#)

(využili jsme toho, že počty chlapců i dívek se rovnají 21).
Připusťme nyní, že některá dívka g vyřešila šest (různých) úloh pí

a že přitom žádné z příslušných spojení (g,pi, *) není Б-vyhovující, tedy
že existují (při pevném i) vždy nejvýše dvě spojení (g,Pi,*). Protože
dívka g dle zadání žádnou další úlohu nevyřešila, je pak tato dívka za-

stoupena v nejvýše 2 • 6 = 12 spojeních, a to je spor, protože každá
z dívek je zastoupena nejméně v 21 spojeních. Tak jsme zdůvodnili, že
každá dívka g vyřešila nejvýše pět úloh pi takových, že žádné ze spojení
(g,Pii *) není Б-vyhovující. Znamená to, že počet spojení (g, *, *), která
nejsou Б-vyhovující, nepřevyšuje číslo 10. Odtud pro každé g plyne, že
počet těch spojení (5,*,*), která jsou naopak Б-vyhovující, je alespoň
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21 + n(g) — 10, tedy alespoň 11 + n(g). Sečteme-li tyto odhady přes
všechna g, zjistíme, že počet všech B-vyhovujících spojení je alespoň

£(H + n(g)) = 231 + £n(9) =N- 210.
9 9

Úplně stejně zdůvodníme, že počet všech G-vyhovujících spojení je
alespoň N—210. Kdyby tudíž žádné spojení nebylo současně Б-vyhovující
i G-vyhovující, musela by platit nerovnost

N ^ (N — 210) + (N - 210), neboli N^ 420.

To ale není možné, neboť N ^ 441. Důkaz je ukončen.
4. Tvrzení úlohy dokážeme sporem, a to úvahou o součtu všech čí-
sel 5(a).1 Označme zmíněný součet písmenem 5:

S = £S(a).
Připusťme tedy, že žádný z rozdílů 5(6) — 5(c) není násobkem čísla n!,
takže každé z n! čísel 5(a) dává při dělení číslem n\ jiný zbytek. Všech
možných zbytků je ale právě n!, proto je každý ze zbytků 0,1,2,..., n! — 1
zastoupen mezi zbytky čísel 5(a) právě jednou. Znamená to, že součet 5
všech čísel 5(a) dává při dělení číslem n\ stejný zbytek jako součet

5* = 0 + 1 + 2 + ... + (n! — 1) = n\ ■

Součet 5 lze však vypočítat přímo: protože pro libovolná i,j G
G {1, 2,..., n} existuje právě (n — 1)! permutací a s vlastností a* = j, je
koeficient čísla ki v součtu 5 roven (n — l)!-(l + 2 + .. . + n) = n!-|(n + 1),
takže platí rovnost

T-x>5 = n! •

i= 1

72 -(- 1
Protože číslo n je dle předpokladu liché, je zlomek —-— celé číslo, takže

vyjádřená hodnota 5 je násobkem čísla n\. Pro žádné 72 > 1 však zlo-
72! — 1

— z vyjádření čísla S* nemá sudý čitatel, takže součet 5* nenímek

násobkem čísla 72!. Čísla 5 a S* tedy dávají při dělení číslem 72! různé
zbytky, což je kýžený spor.

S politováním konstatujeme, že uvažovat o tomto součtu nenapadlo žádného našeho
soutěžícího. Nikdo z nich tuto úlohu, patrně nejjednodušší z celé soutěžní šestice,
nevyřešil.
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5. Uvažujme obvyklé značení vnitřních úhlů trojúhelníku ABC. Podle
zadání je tedy a = 60°. Na polopřímce AB (obr. 34) sestrojme bod P'
za bodem В tak, že platí |PP| = |PP'|, neboli \AP'\ = \AB\ + \BP\.

ВA F

Obr. 34

Trojúhelník BP'P je tedy rovnoramenný s vnitřními úhly při základ-
ně P'P velikosti \(3. Na polopřímce AQ uvažujme podobně bod P", pro
který platí \QP"\ = \QB\, neboli \AP"\ = \AQ\ + \QB\. Trojúhelník
QBP" je tedy rovněž rovnoramenný a pro jeho úhly platí \<$QP"B\ =
= \<$QBP"\ = ^/3. Protože platí

\AP'\ = \AB\ + \BP\ = \AQ\ + \QB\ = \AP"l

je i trojúhelník АР'P" rovnoramenný, a dokonce rovnostranný, neboť
jeden z jeho úhlů má velikost 60°. Protože bod P leží na ose AP úhlu při
jeho vrcholu A, platí |-PF| = |PP"| a zároveň |<$ AP"P| = |< AP'P| =
= i/3. A protože |<$AP"P| = |<gP"P| = \ <QP"B\ = \(3, leží body
В, P a P" v přímce, proto je bod P" totožný s vrcholem C trojúhelníku
ABC.

Protože trojúhelník BCQ je rovnoramenný, platí

P
x = 7 = 120° - 0,
2

tudíž (3 = 80° a 7 = 40°.

Závěr: Velikosti vnitřních úhlů trojúhelníku ABC jsou tedy a = 60°
/3 = 80° a 7 = 40°.
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6. Tvrzení úlohy dokážeme sporem. Připusťme tedy, že za podmínek
úlohy je číslo p = ab + cd prvočíslo. Rovnost ze zadání nejprve upravíme:

ac + bd = (6 + d)2 — (a — c)2,
ac + bd = b2 + 2 bd + d2 — a2 + 2ac — c2

a2 — ac + c2 = b2 + bd + d2.

Všechny způsoby řešení, které známe, jsou založeny na objevení po-

znatku, že číslo b2 + bd + b2 je násobkem prvočísla p, a to s využitím
některé rovnosti typu r(b2 + bd + d2) = ps, kde ras jsou přirozená čísla,
přičemž číslo r je buď samo menší než p, nebo je součinem čísel menších
než p. Uveďme tři takové rovnosti

(ac + bd)(b2 + bd + d2) = p(ad + 6c),
(6 — c)(b + c)(62 + bd + d2) = p(ab — cd — 6c),

(a — d)(a + d)(b2 + bd + d2) = p(ab — cd + ad)

a dokažme například první z nich. Platí

(ac + bd)(b2 + bd + d2) = ac(b2 + bd + d2) + bd(a2 — ac + c2) —

= ab2c -(- abcd + acd2 + a2 bd — abcd + bc2d =

= ab ■ bc -1- cd ■ ad + ab ■ ad + cd ■ bc =

= (ab + cd) (ad + bc) — p(ad + bc).

Z dokázané rovnosti plyne, že prvočíslo p dělí alespoň jedno z přirozených
čísel ac + bd, 62 + bd + d2. První z nich však dělit nemůže, neboť

p — (ас -I- bd) = (ab + cd) — (ac + bd) = (a — d)(b — c) > 0

(připomeňme, že a > 6 > c > d). Platí tedy p\ (b2 + bd+d2). Z nerovností
bd < b2 < ab a d2 < cd ovšem plyne

62 + bd -f d2 < ab + ab + cd < 2(ab + cd) = 2p,

tudíž nutně 62 + bd + d2 = p. Odtud plyne, že čísla 6, d jsou nesoudělná.
Rovnost 62 T bdT d2 = ab + cd lze upravit do tvaru (b + d — a)b= d(c — d),
z něhož vzhledem к nesoudělnosti čísel 6, d plyne, že přirozené číslo c — d
je násobkem čísla 6. To je však nemožné, neboť c — d < c < b. Tvrzení
úlohy je tím dokázáno.
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Osmý ročník Středoevropské olympiády v informatice

Ve dnech 10.-17. srpna 2001 proběhla v maďarském Zalaegerszegu Stře-
doevropská olympiáda v informatice (Central European Olympiad in In-
formatics, CEOI 2001).

Vedoucím české reprezentace byl jmenován RNDr. Tomáš Pitner, Dr.,
z Masarykovy univerzity v Brně, Fakulty informatiky. Úloha zástupce
vedoucího týmu byla svěřena Danielu Královi z Matematicko-fyzikální
fakulty Univerzity Karlovy v Praze.

Soutěž probíhala regulérně podle pravidel CEOI za maximální pod-
póry především maďarského ministerstva školství, ale též složek místní
a regionální veřejné správy (město Zalaegerszeg, kraj Žala) a John von
Neumann Computer Society. Vlastní soutěž se konala na Zrínyi Miklós
Gymnáziu Zalaegerszeg. Hmotné i personální zabezpečení akce bylo na
velmi vysoké úrovni.

Novinkou letošního ročníku CEOI byla (po vzoru IOI) zásadní mo-
dernizace prostředí, v němž studenti při soutěži pracovali a v němž také
byly jejich výsledky vyhodnocovány. Namísto dosud užívaných kompilá-
torů Turbo Pascal a Borland C/C++ a jejich integrovaného vývojového
prostředí bylo poprvé při soutěži použito třicetidvoubitových překladačů
GNU C++ a Free Pascal s vývojovým prostředím RHIDE. Soutěžící vyví-
jeli a ladili svá díla pod systémem Windows, vyhodnocení probíhalo pod
operačním systémem Linux. Vyhodnocení se provádělo plně automaticky
pomocí předem připravených sad testovacích dat.

Reprezentační tým CR tvořili (v abecedním pořadí): Josef Cibulka
z Akademického gymnázia Štěpánská, Praha; Jiří Danihelka ze SPŠ
Čapkova, Písek; Martin Hamrle z Gymnázia Pelhřimov a Jiří Štěpánek
z Gymnázia Brno, tř. Kpt. Jaroše.

Josef Cibulka a Jiří Danihelka získali bronzové medaile, přičemž cel-
kově se naši reprezentanti umístili (viz přiložená kopie výsledkové listiny)
na 18., 19., 35. a 46. místě z celkového počtu 49 hodnocených soutěžících.

Celkově lze konstatovat, že výsledky na CEOI 2001 byly pro ČR pří-
znivější než v roce minulém.
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Rozhodnutím mezinárodního výboru CEOI bylo pořadatelem CEOI
v roce 2002 určeno Slovinsko s tím, že pokud se CEOI nebude moci
uskutečnit tam, je náhradním místem CEOI 2002 Slovenská republika.
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13. mezinárodní olympiáda v informatice

V pořadí třináctý ročník mezinárodní olympiády v informatice IOI 2001
(International Olympiad in Informatics) se ко-
nal ve dnech 14.-21. 7. 2001 ve městě Tampere
ve Finsku. Soutěž IOI je pořádána pod záštitou
UNESCO a je nejmladší mezinárodní předmě-
tovou olympiádou středoškoláků. Její ohlas ve
světě však v posledních letech stále narůstá
a každoročně se zvyšuje počet zúčastněných
zemí. Letos stoupl jejich počet na 74 a oče-
kává se, že v příštím roce jich bude již kolem
osmdesáti.

Reprezentační družstvo České Republiky
pro IOI 2001 bylo vybráno na základě vý-
sledků celostátního kola jubilejního 50. ročníku
Matematické olympiády — kategorie P. Druž-

stvo mělo následující složení: Pavel Čížek (student gymnázia v Kralu-
pech nad Vltavou), Roman Krejčík (absolvent gymnázia Ch. Dopplera
v Praze 5), Marek Sulovský (absolvent gymnázia na tř. Kpt. Jaroše
v Brně) a Miloslav Trmač (absolvent Biskupského gymnázia v Brně).
Vedením družstva byli pověřeni doc. Pavel Topfer a Mgr. Martin Mareš,
oba z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Stejně jako v minulých letech byla vlastní soutěž rozdělena do dvou
soutěžních dnů, v každém z nich řešili soutěžící tři úlohy. Letošní soutěžní
úlohy byly algoritmicky mimořádně obtížné, v soutěži se objevily také
některé netradiční formy úloh. К nim patřily interaktivní úlohy, v nichž
program nemá к dispozici všechna vstupní data najednou, ale dostává
je postupně a musí na ně průběžně reagovat (typickým příkladem je
program hrající nějakou hru a reagující na tahy protivníka). Jinou ne-
tradiční úlohou byla tzv. úloha s otevřeným vstupem, v níž se netestoval
vytvořený program, ale ověřovala se správnost výsledků, kterých program
dosáhl pro předem známá vstupní data. Velkou novinkou letošního roč-
niku IOI byla zásadní modernizace prostředí, v němž studenti při soutěži
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pracovali a v němž také byly jejich výsledky vyhodnocovány. Namísto
dosud v IOI užívaných DOSovských kompilátorů Turbo Pascal a Bor-
land C/C++ a jejich integrovaného vývojového prostředí byl poprvé při
soutěži použit operační systém Linux, překladače Free Pascal a GNU
C/C++, vývojové prostředí RHIDE. Alternativně bylo možné praco-
vat také pod operačním systémem Windows. Svá řešení úloh soutěžící
odevzdávali к vyhodnocení prostřednictvím nově vyvinutého webového
rozhraní. Vyhodnocení se provádělo plně automaticky pomocí předem
připravených sad testovacích dat. Různá kvalita navržených algoritmů
byla odlišena na základě dosti přísně nastavených časových limitů.

Mezi 272 účastníků bylo rozděleno 23 zlatých, 45 stříbrných a 68 bron-
zových medailí. Některou z medailí tak podle regulí IOI získala přibližně
polovina soutěžících. Výkony našich studentů v soutěži byly poměrně
dobré a jejich výsledky nás řadí kolem 20. místa v celkovém pořadí.
Olympiáda IOI je ovšem výhradně soutěží jednotlivců a oficiální výsledky
družstev se zde vůbec nevyhlašují (neexistuje ani žádná metodika, jak je
určovat — zda podle počtu získaných bodů, medailí nebo třeba pořadí).
Nejúspěšnějšími zeměmi v letošní IOI byly Slovensko a Singapur se dvěma
zlatými a dvěma stříbrnými medailemi, naši získali jednu stříbrnou a dvě
bronzové medaile.

Výsledky našich studentů:

36. Pavel Čížek
85. Miloslav Trmač

100. Marek Sulovský 197 bodů
150. Roman Krejčík 127 bodů

344 bodů
237 bodů

stříbrná medaile
bronzová medaile

bronzová medaile

Příští 14. ročník mezinárodní olympiády v informatice IOI 2002 se
bude konat ve dnech 18.-25.8. 2002, jeho hostitelem bude Korea. Sou-
těž bude probíhat na univerzitě Kyung Нее ve městě Young-in, asi 40 km
jižně od hlavního města Soulu. Korejští pořadatelé příštího ročníku olym-
piády během jednání probíhajících ve Finsku pozvali všechny zúčastněné
země к účasti na IOI 2002. Mezinárodní výbor IOI také rozhodl, že další
budoucí ročníky IOI budou hostit po řadě USA (2003), Řecko (2004)
a Polsko (2005).
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Texty soutěžních úloh

1. Mobilní telefony
Síť mobilních telefonů čtvrté generace v oblasti poblíž Tampere pra-

cuje takto: celá oblast je rozdělena na čtverce tvořící matici 5x5. Řádky
a sloupce matice jsou číslovány od 0 do 5 — 1. V každém čtverci je umis-
těna jedna základnová stanice. Počet aktivních mobilních telefonů na-

cházejících se v jednotlivých čtvercích se mění, jak se jednotlivé telefony
pohybují mezi čtverci, případně se vypínají a zapínají. Každá základnová
stanice čas od času oznamuje hlavní ústředně, jak se počet telefonů v je-
jím čtverci změnil oproti předchozímu ohlášenému stavu.

Napište program pro ústřednu, který bude tyto zprávy přijímat a
na základě těchto informací odpovídat na dotazy, jaký je právě počet
aktivních telefonů na zadaném území obdélníkového tvaru.

Vstup a výstup. Program čte vstupní data ve formě celých čísel
ze svého standardního vstupu a zapisuje výsledky opět ve formě celých
čísel do svého standardního výstupu. Vstup má následující tvar: každý
řádek obsahuje jeden příkaz, první číslo na řádku určuje typ příkazu,
zbývající čísla jsou jeho parametry.

Příkaz Parametry Význam
S Inicializuje matici tak, že její velikost bude 5x5

a bude obsahovat samé nuly. Tento příkaz bude
použit právě jednou, a to jako první v celém
vstupu.

0

X Y A Přičte А к počtu aktivních telefonů ve čtverci1

A může být jak kladné, tak záporné.
LBRT Dotaz na celkový počet aktivních telefonů

ve všech čtvercích (X, Y) takových, že L й X й
^ Я, В ^ У ^ T.
Ukončí program. Tento příkaz bude použit právě
jednou, a to jako poslední v celém vstupu.

2

3

Parametry příkazů budou vždy korektní, není důvod je jakkoliv kon-
trolovat. Pokud bude A záporné, můžete předpokládat, že počet aktivních
telefonů v daném čtverci nikdy neklesne pod nulu. Čtverce jsou indexo-
vány od nuly, tzn. pro matici velikosti 4x4 bude О^Х^ЗаО^У ^ 3.

167



Program nijak neodpovídá na vstupní řádky s příkazy 0, 1, ani 3.
Po každém řádku s příkazem 2 program vypíše na výstup jeden řádek
obsahující jedno celé číslo, které je odpovědí na daný dotaz.

Návod к programování vstupu a výstupu. Používáte-li ke komunikaci
standardní prostředky jazyka, postupujte podle následujících příkladů.
V těchto příkladech integerová proměnná last obsahuje poslední číslo
načtené ze vstupu a integerová proměnná answer odpověď vašeho pro-

gramu.

Programujete-li v C++ a používáte iostreams, čtěte vstup a zapi-
sujte výstup následovně:

cin>>last;
cout «answer«endl<<f lush;

Programujete-li v C nebo C++ a používáte scanf a printf, postupujte
takto:

scanf ("7,d" , &last);
printf ("'/.d\n", answer); ff lush(stdout);

Programujete-li v Pascalu, použijte:
Read(last); ... Readln;
Writeln(answer);

Příklad

stdin stdout vysvětlení

Vytvoří prázdnou matici velikosti 4x4.
Zvýšení hodnoty na (1,2) o 3.
Dotaz na celkový počet v obdélníku 0 ^ X ^2,
0 ^ Y ^ 2.
Odpověď na dotaz.
Zvýšení hodnoty na (1,1) o 2.
Snížení hodnoty na (1,2) o 1.
Dotaz na celkový počet v obdélníku 1 ^ X ^ 2,
i s; Y ^ 3.
Odpověď na dotaz.
Ukončení programu.

0 4

112 3

2 0 0 2 2

3

1112

112-1

2 112 3

4

3

Omezení

Velikost matice

Všechny hodnoty ve čtvercích
po celou dobu výpočtu

S x S 1 x 1 ^ S x S ^ 1 024 x 1024
0 < V < 215 - 1 = 32 767V
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—215 < A < 215 - 1ЛZměny počtu aktivních
telefonů

Počet příkazů na vstupu
Maximální počet telefonů

v celé matici

Z 20 vstupů zadaných při testování úlohy jich 16 bude používat matici
velikosti nejvýše 512 x 512.

U 3 ^ U ^ 60 002
M M = 230

2. Pětadvacetština

Tajné zprávy, které si posílá Děda Mráz se svými pomocníčky, jsou ob¬
vykle psány ve zvláštním jazyce, kterému říkají pětadvacetština, možná
právě proto, že se zapisuje v 25-znakové abecedě. Tato abeceda je po-
dobná latince s jednou jedinou výjimkou: chybí v ní písmeno Z. Abeceda
tedy obsahuje 25 písmen latinky od A do Y ve stejném pořadí. Každé slovo
25-štiny je tvořeno právě 25 různými písmeny. Slovo si můžeme zapsat
po řádcích do tabulky 5x5 — např. slovo ADJPTBEKQUCGLRVFINSWHMOXY
se zapíše takto:

A D J P T

В E К Q U
C G L R V

F I N S W

H M 0 X Y

Přípustná slova 25-štiny jsou právě ta, u nichž jsou písmena v každém
řádku i v každém sloupci tabulky uspořádána vzestupně. Tedy slovo
ADJPTBEKQUCGLRVFINSWHMOXY je přípustné, zatímco slovo ADJPTBEGQUC-
KLRVFINSWHMOXY (liší se prohozením písmen G a K) přípustné není (vze-
stupně pořadí písmen je porušeno ve druhém i třetím sloupci).

Děda Mráz má slovník, který obsahuje právě všechna přípustná
slova 25-štiny uspořádaná vzestupně (lexikograficky). Slova ve slovníku
jsou očíslována pořadovými čísly od 1. Např. slovo ABCDEFGHIJKLMNO-
PQRSTUVWXY má číslo 1 a slovo ABCDEFGHIJKLMNOPQRSUTVWXY (TaU pro-

hozena) má číslo 2.
Slovník je však veliký, převeliký. Napište proto program, který bude

umět nalézt ke slovu jeho pořadové číslo a naopak pro zadané pořadové
číslo vypsat, kterému slovu toto číslo náleží. Slov ve slovníku určitě není
více než 231.

Vstup. Vstupní soubor se jmenuje twofive.in a je tvořen vždy
dvěma řádky. První řádek obsahuje jediný znak — W nebo N. Pokud je
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to W, pak druhý řádek obsahuje jedno přípustné slovo 25-štiny (tj. řetězec
o 25 znacích); pokud je na prvním řádku N, potom druhý řádek obsahuje
pořadové číslo nějakého přípustného slova 25-štiny.

Výstup. Výstupní soubor se jmenuje twof ive. out a je jednořádkový.
Pokud druhý řádek vstupního souboru obsahoval slovo 25-štiny, obsahuje
výstupní soubor pořadové číslo tohoto slova. Jestliže druhý řádek vstup-
ního souboru obsahoval pořadové číslo, potom je obsahem výstupního
souboru odpovídající slovo 25-štiny.

Příklady vstupu a výstupu
twofive.in

W

ABCDEFGHIJKLMNOPQRSUTVWXY
twofive.out

2

twofive.in

N

2

twofive.out

ABCDEFGHIJKLMNOPQRSUTVWXY

3. Gameska

Byla jednou jedna hra pro dva hráče, která se hrála na kruhové desce
se sedmi jamkami rozmístěnými podél jejího okraje. Mimo to, každý
z hráčů má svůj bank. Hra začíná náhodným rozmístěním dvaceti kuliček
do jamek tak, že v každé jamce budou nejméně 2 a nejvýše 4 kuličky. Oba
hráči se v tazích pravidelně střídají. Hráč na tahu si zvolí nějakou ne-

prázdnou jamku, vezme z ní do ruky všechny kuličky a dokud mu nějaké
kuličky v ruce zbývají, obchází jamky jednu po druhé ve směru hodino-
vých ručiček počínaje jamkou bezprostředně následující po té, kterou si
vybral. Přitom provádí následující akce:

> Má-li v ruce více než jednu kuličku: Pokud jamka, u které stojí, již ob-
sáhuje 5 kuliček, vezme si z ní jednu kuličku do svého banku. V opáč-
ném případě jednu kuličku ze své ruky do jamky vloží.

> Má-li v ruce jedinou kuličku: Pokud jamka, u které stojí, obsahuje
nejméně 1 a nejvýše 4 kuličky, pak všechny kuličky z jamky i tu, kte-
rou drží v ruce, přesune do svého banku. V opačném případě (jamka
je prázdná nebo s pěti kuličkami) vloží kuličku, kterou drží v ruce,
do soupeřova banku.
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Hra končí, jakmile se všechny jamky vyprázdní. Zvítězí hráč, který má
v banku více kuliček.

Pro hráče, který táhne jako první, vždy existuje vítězná strategie.
Napište program, který hraje tuto hru jako první hráč a ve hře zvítězí.
Protihráč použitý při testování hraje optimálně, tzn. jakmile může, vy-

hraje.
Vstup a výstup. Program čte vstupní data ze standardního vstupu

a zapisuje výsledky do standardního výstupu. Váš program je hráč 1,
soupeř je hráč 2. Nejprve musí váš program načíst jeden řádek se 7 celými
čísly pi,..., p7, což jsou počáteční počty kuliček v jednotlivých jamkách.
Jamky na desce jsou očíslovány od 1 do 7 ve směru hodinových ručiček.

Hra poté začíná s tímto obsahem jamek a prázdnými banky obou
hráčů. Váš program hraje následovně:

> Je-li váš program na tahu, vypíše číslo jamky, kterou si zvolil pro svůj
tah.

> Je-li na tahu soupeř, váš program načte číslo jamky, kterou si soupeř
zvolil (tj. té, u které soupeř svůj tah začíná odebráním kuliček).
Pomůcka. Máte к dispozici program (pod Linuxem ioiwari2, pod

Windows ioiwari2.exe), který z jednoho počátečního rozložení kuliček
do jamek hraje hru optimálně jako hráč 2. Po spuštění vypíše na svůj
standardní výstup první řádek očekávaný vaším programem; na tomto
řádku je popsáno počáteční rozložení kuliček ve tvaru 4 3 2 4 2 3 2.

Poté program hru hraje, ze svého vstupu čte tahy prvního hráče
a do svého výstupu na ně odpovídá tahy svými, přičemž celý dialog
ukládá do souboru ioiwari.out. Můžete si například ioiwari2 spustit
v jednom okně a váš program v druhém a tahy mezi okny přenášet ručně.

Návod к programování vstupu a výstupu. Používáte-li ke komunikaci
standardní prostředky jazyka, postupujte podle následujících příkladů.
V těchto příkladech integerová proměnná last obsahuje poslední číslo
načtené ze vstupu a integerová proměnná mymove obsahuje váš tah.

Programujete-li v C++ a používáte iostreams, čtěte vstup a zapi-
sujte výstup následovně:

cout<<mymove<<endl<<flush;
cin>>last;

Programujete-li v C nebo C++ a používáte scanf a printf, postupujte
takto:

printf (M'/td\n" , mymove); ff lush(stdout);
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scanf ("°/,d" , &last);

Programujete-li v Pascalu, použijte:

Writeln(mymove);
Readln(last);
Příklad. Následující tabulka ukazuje jeden z možných průběhů hry

o šesti tazích:

Obsah jamek a banků po provedení tahu
1. 2. 3. 4. 5. 6. 7.

4 3 2 4 2 3 2

4 0 3 5 0 3 2

4 0 0 4 1 4 0

4 0 0 4 0 0 0

0 0 0 0 1 1 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

Hodnocení. Při testování váš program za každou vyhranou hru získá
4 body, za každou remízu 2 body a za prohrané hry 0 bodů.

Bankl Bank2

Začátek hry
Tah 1. hráče: 2

Tah 2. hráče: 3

Tah 1. hráče: 5

Tah 2. hráče: 4

Tah 1. hráče: 5

Tah 2. hráče: 7

0 0

3 0

3 4

48

8 9

10 9

11 9

4. Dvojšifra
Nový šifrovací algoritmus AES (Advanced Encryption Standard) pra-

cuje se třemi bloky velikosti 128 bitů. Pro daný blok zprávy p (původní
text) a blok klíče к spočte šifrovací funkce E tohoto algoritmu blok c

(zašifrovaný text):
c = E(p, k).

Standard AES rovněž definuje dešifrovací funkci D, která je inverzní к E:

D(E(p,k),k)=p, E(D(c,k),k) = c.

Šifru AES je možné zdvojit, čímž vznikne šifra Double AES používající
dva nezávislé klíče кi a k2. Double AES zprávu nejprve zašifruje po-
mocí k\ a výsledek ještě pomocí k2:

c2 - E(E(p,ki),k2).

Vaším úkolem je zjistit klíče k\ a k2 pro některé konkrétní zprávy
zašifrované algoritmem Double AES. Vždy dostanete jak původní text p,
tak odpovídající zašifrovaný text c2. Navíc víte, že nenulové bity se v obou
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klíčích (k\ i k2) mohou vyskytovat pouze v nejvyšších 4 • s bitech bloku;
ostatní bity obou klíčů jsou nulové. Parametr s je součástí vstupu.

Máte к dispozici knihovnu implementující funkce E a D (šifrovací
a dešifrovací algoritmus AES).

Odevzdáváte nalezené klíče, nikoliv programy!

Vstup. Máte připraveny soubory double 1. in až double 10. in, každý
z nich obsahuje jedno konkrétní zadání pro tuto úlohu. Každý vstupní
soubor sestává ze tří řádků. Na prvním z nich je celé číslo s, na druhém
blok p původního textu a na třetím blok c2 získaný z p zašifrováním
algoritmem Double AES. Oba bloky jsou zapsány jako znakové řetězce,
každý z nich je tvořen 32 hexadecimálními ciframi (,0‘ až ,9‘, ,A‘ až ,F‘).
Všechna zadání jsou řešitelná.

Součástí knihovny jsou rovněž funkce pro převod bloků do jejich he-
xadecimálního zápisu a zpět.

Výstup. Vaším úkolem je odevzdat (submitovat) 10 výstupních sou-
borů odpovídajících jednotlivým vstupním souborům. Každý z těchto
souborů bude obsahovat tři řádky: Na prvním řádku bude text

#FILE double i

kde i značí číslo příslušného vstupního souboru. Na řádku druhém bude
klíč k\ a na třetím klíč k2 takové, že c2 = E(E(p,ki),k2). Oba klíče
budou opět zapsány jako řetězce 32 hexadecimálních číslic. Pokud má
úloha více řešení, uveďte libovolné jedno z nich.

Příklad. V tomto příkladu použijeme vstupní soubor číslo 0.
doubleO.in

1

00112233445566778899AABBCCDDEEFF

6323B4A5BC16C479ED6D94F5B58FF0C2

Možný výstupní soubor:
#FILE double 0

A0000000000000000000000000000000

70000000000000000000000000000000

Knihovna. К dispozici je knihovna implementující algoritmy AES
jak pro FreePascal (Linux: aeslibp.p, aeslibp.ppu, aeslibp.o; Win-
dows: aeslibp.p, aeslibp.ppw, aeslibp.ow), tak pro GNU C/C++ (Linux
i Windows: aeslibc.h, aeslibc.o) a příklady použití těchto knihoven
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(aestoolp.pas resp. aestoolc.c). Interface obou knihoven je popsán
v následujících řádcích.
type

HexStr = String [ 32 ]; {only ’О’.-’Э’, ’A’.-’F’ }
Block = array [ 0..15 ] of Byte; {128 bits }

procedure HexStrToBlock ( const hs: HexStr; var b: Block );
procedure BlockToHexStr ( const b: Block; var hs: HexStr );
procedure Encrypt ( const p, k: Block; var c: Block );

{c = E(p,k) >
procedure Decrypt ( const c, k: Block; var p: Block );

{p = D(c,k) >

typedef char HexStr[33]; /* ’O’..'9’, ’A’.-’F’, ’O’-terminated */
typedef unsigned char Block[16]; /* 128 bits */

void hexstr2block ( const HexStr hs, /* out-param */ Block b );
void block2hexstr ( const Block b, /* out-param */ HexStr hs );
void encrypt ( const Block p, const Block k, /* out-param */ Block c );

/* c = E(p,k) */
void decrypt ( const Block c, const Block k, /* out-param */ Block p );

/* p = D(c,k) */

Omezení. Počet s použitých hexadecimálních číslic klíčů je vždy ales-
poň 1 a nejvýše 5.

Nápověda. Existuje řešení, které libovolné zadání s tímto omezením
na velikost s vyřeší do 10 sekund.

5. Skladiště

Jistá nejmenovaná finská technologická společnost má veliké obdélní-
kové skladiště, jehož jedinými dvěma zaměstnanci jsou skladník a ředitel
skladiště. Stranám skladiště budeme říkat (po směru hodinových ručiček)
levá, horní, pravá a dolní. Celá plocha skladiště je rozdělena na stejně
velké čtverce, které jsou uspořádány do řad a sloupců. Hady jsou číslo-
vány shora dolů přirozenými čísly 1, 2, ... ; sloupce zleva doprava opět
1,2,...

Ve skladišti jsou umístěny kontejnery označené jednoznačnými iden-
tifikačními čísly. Každý kontejner zaujímá plochu jednoho čtverce. Skla-
diště je tak velké, že celkový počet všech kontejnerů je menší než počet
řad i než počet sloupců. Ze skladiště se žádné kontejnery neodvážejí,
pouze čas od času přibyde nový.

Skladník umisťuje nové kontejnery následovně, aby si usnadnil jejich
pozdější vyhledávání podle identifikačních čísel: Předpokládejme, že nově
umisťovaný kontejner má identifikační číslo k. Skladník prochází první
řadu zleva a hledá první kontejner s identifikačním číslem větším než k.
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Pokud tam žádný takový kontejner není, umístí nový kontejner na konec
této řady (hned za dosud poslední kontejner). Pokud takový kontejner l
najde, pak na jeho místo uloží kontejner к a kontejner / vloží do ná-
sledující řady stejným způsobem. Takto postupuje tak dlouho, až uloží
nějaký kontejner za poslední kontejner v některé řadě nebo na první
místo v dosud prázdné řadě.

Kdyby do prázdného skladiště přivezli postupně kontejnery 3, 4, 9, 2,
5, 1, jejich rozmístění ve skladišti by bylo následující:

14 5

2 9

3

Jednoho dne přišel ředitel skladiště za svým jediným podřízeným. Zde
je část jejich rozhovoru:

Ředitel: Přivezli kontejner 5 dříve než kontejner 4?
Skladník: Ne, pane řediteli, to se nemohlo stát!
Ředitel: ó, vy dokážete podle rozmístění kontejnerů ve skladišti

určit, v jakém pořadí je přivezli?
Skladník: No, ... částečně. Tak například kontejnery, které tu

máme teď, mohli přivézt v pořadí 3, 2, 1, 4, 9, 5 nebo
také 3, 2, 1, 9, 4, 5 nebo čtrnácti dalšími způsoby.

(Ředitel, poněkud zmaten, opouští scénu.)

Vaším úkolem je napsat program, který na základě rozmístění kontej-
nerů ve skladišti určí všechna možná pořadí, v jakých mohly být do skla-
diště přidávány.

Vstup. Vstupní soubor se jmenuje depot. in. První řádek obsahuje
jediné celé číslo R: číslo poslední řady skladiště, ve které je uložen alespoň
jeden kontejner. Následujících R řádků souboru popisuje, které kontej-
nery jsou uloženy v prvních R řadách skladiště. Každý z těchto řádků
začíná celým číslem M (počet kontejnerů v příslušné řadě), za ním ná-
sleduje M dalších celých čísel, což jsou identifikační čísla jednotlivých
kontejnerů postupně zleva doprava. Všechna identifikační čísla kontej-
nerů jsou z rozmezí od 1 do 50 včetně. Celkem není ve skladišti více než
13 kontejnerů.

Výstup. Výstupní soubor se jmenuje depot.out a každý jeho řádek
popisuje jedno z možných pořadí přivážení kontejnerů do skladiště. Každé
pořadí je popsáno iV-ticí identifikačních čísel, kde N je celkový počet
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kontejnerů přivezených do skladiště. Každé z možných pořadí musí být
uvedeno právě jednou.

Příklad 1 Příklad 2

depot.in depot.in
3 2

3 14 5

2 2 9

2 12

1 3

1 3 depot.out
3 1 2

1 3 2
depot.out
3 2 1 4 9 5

3 2 1 9 4 5

3 4 2 1 9 5

3 2 4 1 9 5

3 2 9 1 4 5

3 9 2 1 4 5

3 4 2 9 1 5

3 4 9 2 1 5

3 2 4 9 1 5

3 2 9 4 1 5

3 9 2 4 1 5

3 4 2 9 5 1

3 4 9 2 5 1

3 2 4 9 5 1

3 2 9 4 5 1

3 9 2 4 5 1

Hodnocení. Pokud výstupní soubor obsahuje nějaké chybné pořadí
nebo je prázdný, za tento test nedostanete žádný bod. V opačném případě
je počet bodů za test určen takto: Jestliže výstupní soubor obsahuje
všechna možná pořadí a každé z nich právě jednou, získáte 4 body; pokud
obsahuje alespoň polovinu z možných pořadí a každé právě jednou, získáte
2 body; jestliže obsahuje méně než polovinu možných pořadí nebo se

nějaké pořadí opakuje, obdržíte 1 bod.

6. Hra

Hru hrají dva hráči na hracím plánu tvořeném soustavou N políček
(očíslovaných od 1 do N), mezi nimiž vedou šipky. Každé políčko patří
jednomu z hráčů, kterému budeme říkat vlastník tohoto políčka. Navíc
je každému políčku přiřazeno jedno kladné celé číslo (hodnota políčka),
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přičemž hodnoty všech políček jsou navzájem různé. Políčko číslo 1 je
určeno jako startovní.

Hra se hraje takto: Na začátku mají oba hráči skóre 0 a na startovním
políčku leží kamínek. Hráči kamínek v průběhu hry přemisťují mezi po-

líčky; to políčko, na kterém kamínek právě leží, budeme značit c. Každý
tah provádí vlastník políčka c. Tah sestává z následujících operací:

> Pokud je hodnota políčka c větší než současné skóre vlastníka po-
líčka c, stává se hodnota políčka c novým skóre vlastníka. Pokud není
větší, žádné skóre se nemění.

> Poté vlastník políčka c vybere jednu z šipek vycházejících z tohoto
políčka a kamínek přesune na políčko, kam tato šipka vede. (Jestliže
cílové políčko tahu patří témuž hráči, bude příští tah provádět opět
on.)

Jakmile se kamínek vrátí na startovní políčko, hra končí a vítězí ten hráč,
jehož skóre je vyšší.

O hracím plánu je známo, že:
> Z každého políčka vede vždy alespoň jedna šipka.
o Každé políčko p je dosažitelné ze startovního políčka, tzn. existuje

posloupnost na sebe navazujících šipek, která vede ze startovního po-
líčka do p.

> Po konečném počtu tahů se při jakékoliv hře dostane kamínek opět
na startovní políčko (tzn. hra vždy skončí).

Napište program, který bude hru hrát a pokaždé vyhraje. Soupeř použitý
při vyhodnocování hraje optimálně, tzn. když může, vyhraje.

Vstup a výstup. Program čte vstupní data ze standardního vstupu
a zapisuje výsledky do standardního výstupu. Váš program je hráč 1,
soupeř je hráč 2. Nejprve musí váš program načíst popis hracího plánu.
První řádek tohoto popisu obsahuje jediné celé čislo: počet políček N
(1 ^ 1000). Každý z následujících N řádků obsahuje N celých čísel,
j-té číslo na г-tém z těchto řádků je 1, jestliže z políčka i vede šipka
na políčko j, v opačném případě je zde uvedena 0. Další řádek vstupu
obsahuje N celých čísel — určení vlastníka jednotlivých políček (každé
z nich je 1 nebo 2). Následuje opět řádek s N celými čísly — hodnoty
jednotlivých políček, všechny v rozsahu 1 až V a všechny navzájem různé.

Váš program po načtení popisu hracího plánu hraje následovně:
> Je-li váš program na tahu, vypíše číslo políčka, na které se jeho tahem

přesune kamínek.
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t> Je-li na tahu soupeř, váš program načte číslo políčka, na které se
kamínek přesunul po soupeřově tahu.

Při testování budou voleny vždy takové hrací plány, na nichž může hráč 1
vyhrát (ať už hru začíná či nikoliv).

Příklad. Hrací plán je vyobrazen na obr. 35. Políčka označená krouž-
kem patří hráči 1, políčka označená čtverečkem hráči 2. Hodnoty políček
jsou zapsány v kroužcích a čtverečcích, čísla políček jsou uvedena u jejich
vnějšího okraje.

1 4

Hra může probíhat například takto:

stdin stdout vysvětlení

N4

Šipky z políčka 1
Šipky z políčka 2
Šipky z políčka 3
Šipky z políčka 4
Vlastníci políček
Hodnoty políček
Tah hráče 1

Tah hráče 1

Tah hráče 2 na startovní políčko

0 10 0

0 0 11

0 0 0 1

10 0 0

112 2

13 4 2

2

4

konec hry.

Po skončení této hry má hráč 1 skóre 3 a hráč 2 skóre 2. Hráč 1 tedy
zvítězil.

1

Návod к programování vstupu a výstupu. Používáte-li ke komunikaci
standardní prostředky jazyka, postupujte podle následujících příkladů.
V těchto příkladech integerová proměnná target obsahuje číslo políčka
s kamínkem.
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Programujete-li v C++ a používáte iostreams, čtěte vstup a zapi-
sujte výstup následovně:

cin>>target;
cout<<target<<endl<<flush;

Programujete-li v C nebo C++ a používáte scanf a printf, postupujte
takto:

scanf ("7,d" , &target);
printf ("°/,d\n" , target); ff lush(stdout) ;

Programujete-li v Pascalu, použijte:
Readln(target);
Writeln(target);
Pomůcka. Máte к dispozici program (pod Linuxem score2, pod Win-

dows score2.exe), který si ze souboru score.in přečte popis hracího
plánu (ve stejném formátu jako má mít vstup vašeho programu) a poté
hraje hru jako hráč 2, přičemž jeho výstup odpovídá přesně vstupu va-
šeho programu a naopak. Své tahy tento program volí náhodně.

Hodnocení. Pro každou z testovaných her získáte plný počet bodů,
pokud váš program vyhraje, jinak žádné body. Při vyhodnocování každé
hry váš program nejprve hraje s testovacím programem, časový limit je
přitom o 1 sekundu vyšší, než je uvedeno v zadání. Průběh hry je zazna-
menán. Poté je váš program spuštěn znovu, vstup dostane přesměrovaný
ze souboru a je změřena skutečná doba jeho běhu (časový limit podle
zadání), přičemž výstup programu musí přesně odpovídat výstupu při
prvním testování.
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