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O průběhu 51. ročníku matematické olympiády

Padesátý první ročník matematické olympiády měl v podstatě stejný prů-
běh jako ty bezprostředně předcházející ročníky s výjimkou jubilejního
padesátého — padesátka se přeci jen neslaví každý rok.

Pořadateli soutěže Matematická olympiáda jsou Ministerstvo školství,
mládeže a tělovýchovy ČR, Jednota českých matematiků a fyziků a Ma-
tematický ústav Akademie věd ČR. Soutěž řídí Ústřední výbor MO, který
je jmenován na návrh JČMF Ministerstvem školství, mládeže a tělový-
chovy. Ve školním roce 2001-2002 začal výbor pracovat v novém složení
včele s novým předsedou doc. dr. Jaromírem Šimšou, CSc., místopředsedy
dr. Jaroslavem Švrčkem, CSc., doc. dr. Pavlem Tlustým, CSc., a doc. dr.
Pavlem Topferem, CSc. Byli též jmenováni předsedové krajských výborů
MO podle nového státoprávního uspořádání. Seznam všech členů výboru
je připojen na závěr této informace.

ÚV MO se během tohoto ročníku MO sešel dvakrát: v Praze 6. pro-
since 2001 a pak u příležitosti celostátních kol 8. dubna 2002 v Litomyšli.

Padesátý první ročník začal už s předstihem výběrem všech úloh,
který zajišťují tři úlohové komise, jedna pro kategorie А, В, C (střední
školy), druhá pro kategorie Z5-Z9 (základní školy a nižší třídy vícele-
tých gymnázií), třetí pro kategorii P (programování). Úlohy jsou i nadále
připravovány společně se slovenskými kolegy (kupříkladu všechny úlohy
kategorie P tohoto ročníku byly připraveny skupinou studentů a pra-
covníků Matematicko-fyzikální fakulty Univerzity Komenského v Brati-
slavě). Následuje příprava letáků s úlohami I. kola a komentářů к nim.

Celostátní kola kategorií A a P se konala ve východočeské Litomyšli za

výrazné finanční podpory nově ustanoveného Pardubického kraje a města
Litomyšle — nejdříve od 7. do 10. dubna III. kolo kategorie A a po
něm od 10. do 13. dubna III. kolo kategorie P. Organizace závěrečné
části soutěže se ochotně ujalo vedení Gymnázia Aloise Jiráska, v jehož
prostorách se soutěž konala. Oficiální zahájení soutěže proběhlo v neděli
7. dubna 2002 večer v aule pořádající školy za přítomnosti členů ÚV MO,
představitelů města Litomyšle a dalších význačných hostí. Milým zpestře-
ním tohoto setkání byla přednáška RNDr. Jiřího Grygara, CSc., na téma
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Využití matematiky v astronomii, na niž navázalo pozorování hvězdné
oblohy ve školní observatoři (v budově školy).

Pořadatelé zajistili pro soutěžící atraktivní doprovodný program. Žáci
měli možnost absolvovat prohlídku litomyšlského zámku s přilehlým rod-
ným domem B. Smetany v bývalém zámeckém pivovaru, který spolu
s historickým centrem a nově otevřenými klášterními zahradami patří
ke skvostům města (od roku 1999 je na seznamu památek UNESCO).
Velkou zásluhu na úspěšném průběhu celostátních kol mají pracovníci
zmíněného gymnázia, zejména pak jeho ředitel Otakar Karlík a jeho zá-
stupkyně dr. Ludmila Kynclová.

Celostátními koly soutěž v příslušném roce ještě nekončí. Odměnou
pro úspěšné řešitele kategorií В a C z nematuritních ročníků je týdenní
soustředění, které už tradičně proběhlo na internátu při jevíčském gym-
náziu od 28. května do 4. června. Družstva České republiky se pak zú-
častnila mezinárodních soutěží v matematice i informatice. O jejich vý-
sledcích se dočtete v dalších částech této brožury.

Příprava každého ročníku MO je úkolem tJV МО a úlohových komisí.
Matematická olympiáda by však nemohla existovat, kdyby se jí nevěno-
váli učitelky a učitelé, profesorky a profesoři na základních a středních
školách, kteří nad své pracovní povinnosti a bez nároku na odměnu vedou
své žáky к účasti v MO, pomáhají jim překonat první potíže při řešení
úloh I. kola, opravují úlohy. Ústřední výbor MO jim upřímně děkuje za

jejich práci pro matematickou olympiádu.
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Ústřední výbor Matematické olympiády

Předseda:

Doc. RNDr. Jaromír Šimša, CSc., Matematický ústav AV ČR Brno

Místopředsedové:
dr. Jaroslav Švrček, CSc., Přírodovědecká fakulta UP, Olomouc
doc. RNDr. Pavel Tlustý, CSc., PedF Jihočeské univerzity České Budě-

jovice
doc. dr. Pavel Tópfer, CSc., MFF UK Praha

Tajemník:
RNDr. Karel Iíorák, CSc., Matematický ústav AV ČR, Praha

Předsedové krajských výborů MO:
PhDr. Ivan Bušek, Pedagogické centrum Praha
RNDr. Šárka Gergelitsová, Gymnázium Benešov
doc. RNDr. Pavel Tlustý, CSc., PedF Jihočeské univerzity České Budě-

jovice
RNDr. Jiří Potůček, CSc., Pedagog, fakulta Západočeské univerzity Plzeň
Mgr. Josef Hazi, Gymnázium Cheb
Mgr. Pavla Hofmanová, Pedagogická fakulta UJEP Ústí n. L.
RNDr. Věra Voršilková, Gymnázium F. X. Saldy, Liberec
RNDr. Josef Kubát, Gymnázium Pardubice
Mgr. Petr Drahotský, Gymnázium B. Němcové, Hradec Králové
Mgr. Jan Beneš, Gymnázium Jihlava
RNDr. Jiří Herman, PhD., Gymnázium Brno
RNDr. Jan Chudárek, Gymnázium Zlín
doc. RNDr. Vladimír Vlček, CSc., Přírodovědecká fakulta UP, Olomouc
doc. RNDr. Jaroslav Hanči, CSc., Přírodovědecká fakulta OU, Ostrava

Další členové:

Doc. RNDr. Leo Boček, CSc., MFF UK Praha
Prof. RNDr. Miroslav Fiedler, DrSc., Matematický ústav AV ČR Praha
PhDr. Libuše Hozová, Matematický ústav Slezské univerzity Opava
RNDr. Dag Hrubý, Gymnázium Jevíčko
Mgr. Marie Krejčová, Základní škola Jihlava
Mgr. Pavel Leischner, PedF Jihočeské univerzity České Budějovice
Doc. PhDr. Marta Volfová, CSc., Pedagogická fakulta Univerzity Hradec

Králové
RNDr. Jaroslav Zhouf PhD., Pedagogická fakulta UK Praha
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 51. ročníku MO

Kategorie
Oblast Celkem

ВA C P
s и s и s и s и s и

Praha

Středočeský kraj
Jihočeský kraj
Plzeňský kraj
Ústecký kraj
Liberecký kraj
Královéhradecký kraj
Pardubický kraj
kraj Vysočina
Jihomoravský kraj
Zlínský kraj
Olomoucký kraj
Moravskoslezský kraj

51 42
97 42
80 35
37 20
27 21
35 15
23 12
31 24
45 35

146 103
66 37
33 19
80 24

84 50 202 133
114 71
110 55
47 30
61 42
62 47
55 36
49 37
70 50

162 123
77 36
43 17

180 64

17 17
17 15

354 242
333 172
250 119
121 75
117 87
145 96
115 73
121 89
150 109
436 313
196 95
105 50
323 137

105 44
40 25 20 4
34 22 3 3
24 19 5 5
40 26 8 8
32 20 5 5
30 20 11 8
25 18 10 6

74115 13 13
48 17 5 5
26 11 3 3
49 35 14 14

CR 751 429 652 381 1232 741 131 106 2 766 1657

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 51. ročníku MO

Kategorie
Oblast Celkem

ВA C P
S u s и s и s и s и

Praha

Středočeský kraj
Jihočeský kraj
Plzeňský kraj
Ústecký kraj
Liberecký kraj
Královéhradecký kraj
Pardubický kraj
kraj Vysočina
Jihomoravský kraj
Zlínský kraj
Olomoucký kraj
Moravskoslezský kraj

42 14 48 11 126 64
56 20

17 7 233 96
134 34

119 19
71 26

87 12
61 15
73 26
61 15
95 25

313 89
93 19
49 14

187 48

40 4 24 4 14 6
35 1 25 3 55 12 34
19 10 20 2 29 13 3 1

21 19 0 421 11 5 0
1715 4 211 9 8 1

12 5 20 9 36 12 5 0
13 2 29 12

44 19
11 1 8 0

33 144 1 4 1

74 12 7103 11 123 59 13
36 16 2 361 15 5 1
19 3 10 3 17 8 3 0
24 6 35 6 114 33 14 3

CR 728 287412 63 333 58 103 30 1576 438

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uve-
děni všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium, M, resp. MF zaměření studijního oboru 01 Mate-
matika, resp. 02 Matematika a fyzika.

Kraj Praha * *

Kategorie A

1. Martin Tancer, 4.M, G Ch. Dopplera, Praha 5
2. Ondřej Kůrka, 8.M, G Ch. Dopplera, Praha 5
3. Ondřej Čertík, 7.M, G Ch. Dopplera, Praha 5

4.-5. Martin Káldy, 3.M, G Ch. Dopplera, Praha 5
Martin Klimeš, 4. A, G Praha 2, Botičská

6. Josef Cibulka, 4.A, G Praha 1, Štěpánská
7.-8. Martin Dórfler, 8, G Praha 4, Budějovická

Michal Rezanka, 4.M, G Ch. Dopplera, Praha 5
9.-11. Pavel Kocourek, l.M, SPŠST, Praha 1, Panská

Alice Mašková, 4.A, GJK, Parléřova, Praha 2
Jan Verfl, 6, G Praha 4, Postupická

Kategorie В

1.-2. Alexandr Kazda, 2.A, G Praha 6, Nad Alejí
Pavel Kocourek, l.M, SPŠST, Praha 1, Panská

3. Pavel Pokorný, 2.A, GJK, Parléřova, Praha 6
4. Václav Potoček, 2.M, SPŠST, Praha 1, Panská
5. Jan Skampa, sexta, GJK, Praha 6

6.-11. Pavel Daniel, 2.C, G Ch. Dopplera, Praha 5
Tomáš Kachlík, 6.H, G Praha 4, Konstantinova
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Jan Sochna, 2.L, SPŠST, Praha 1, Panská
Mariana Svobodová, sexta, ArcG, Praha 2, Korunní
Petra Simáková, 6.A, G Praha 10, Omská
Jan Zachariáš, 6.H, G Praha 4, Konstantinova

Kategorie C

1.-2. Jan Kropík, 5.M G Ch. Dopplera, Praha 5
Ondřej Kvapilík, 5.M G Ch. Dopplera, Praha 5

3. Petr Čermák, 5.A GJH, Praha 5
4.-5. Jan Lachnitt, l.C G Ch. Dopplera, Praha 5

Josef Stránský, 5.A GJH, Praha 5
6.-8. Viktor Dekoj, 5.A GJN, Praha 3

Martin Dobiáš, l.A SPŠST, Praha 1, Panská
Miroslav Hlaváč, l.C G Ch. Dopplera, Praha 5

9.-10. Michal Preuss, 5.В G Nad Štolou
Petr Sobotka, 5.A GJH, Praha 5

Kategorie P

1. Josef Cibulka, 4.B, Akademické G Praha 1, Štěpánská
2. Jiří Svoboda, 8.M, G Ch. Dopplera, Praha 5
3. Petr Skoda, 6.B, G Praha 8, Ústavní
4. Jan Kadlec, 3.C, G Ch. Dopplera, Praha 5

5.-6. Alexandr Kazda, sexta A, G Praha 6, Nad Alejí
Lukáš Turek, 3.C, G Ch. Dopplera, Praha 5

7. Ondřej Zarevúcky, 2.E, G Praha 6, Arabská

Středočeský kraj

Kategorie A

1.-2. Pavel Čížek, 7.G, G Kralupy nad Vltavou
Martin Doubek, 4.A, G Kladno

3. Tomáš Hanzák, 4.B, G Kladno
4. Ondřej Chochola, 4.A, G Kladno
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Kategorie В1.Martina Říhová, G Kutná Hora
2.-3. Miroslav Frantes, G Benešov

Jan Kotera, G Kralupy nad Vltavou
4. Ondřej Kazík, G dr. J. Pekaře, Mladá Boleslav

Kategorie C

1. Zdeněk Kabát, G Říčany
2. Martina Fišerová, G dr. J. Pekaře, Mladá Boleslav
3. Petr Veselý, G Poděbrady
4. Aneta Jandurová, G Čelákovice

5.-6. Ondřej Haberle, G Poděbrady
David Spousta, G Beroun

7. Lenka Studničná, G Mnichovo Hradiště
8.-12. Šárka Hlušičková, G dr. J. Pekaře, Mladá Boleslav

Roman Rostás, G Čáslav
Michal Veselý, G Český Brod
Eva Vyhnalová, G Benešov
Ondřej Vykouk, G Vlašim

Kategorie P

1. Pavel Čížek, 7.G, Dvořákovo GaOA, Kralupy nad Vltavou
2. Jiří Hyldebrant, VII, G Vlašim

3.-4. Martin Kruliš, VILA, G Kolín
Jan Matějek, 3.A, G Kladno, nám. E. Beneše

5.-6. Jaroslav Havlín, sexta, GOA Sedlčany
Jiří Paleček, 3.A, G Kladno, nám. E. Beneše

Jihočeský kraj • •••••••••••я*

Kategorie A

1. Ondřej Šedivý, 7/7, G České Budějovice, Jírovcova
2. David Pražák, 4M, G České Budějovice, Jírovcova
3. David Pospíšil, 4M, G České Budějovice, Jírovcova
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4.Martin Sikmund, 4M, G České Budějovice, Jírovcova

Kategorie В

1. Zuzana Кozisková, G Tábor
2. Martin Pilát, G České Budějovice, Česká

Kategorie C

1. Vojtěch Prokeš, G České Budějovice, Jírovcova
2. Karel Vácha, G Český Krumlov

3.-4. Vladimír Brablec, G České Budějovice, Česká
Adam Lukáš, G České Budějovice, Jírovcova5.Jana Jelenová, G Milevsko

6.-8. Jakub Kozák, G Jindřichův Hradec
Libor Maškovský, G České Budějovice, Jírovcova
Vladimír Sedlák, G Tábor

9.-15. Michal Dobiáš, G České Budějovice, Česká
Tomáš Ferdan, G Dašice
Štěpánka Králová, G Týn nad Vltavou
Hana Nůsková, G Strakonice
Ingrid Romancová, OAaG Kaplice
Lukáš Tóth, G České Budějovice, Jírovcova
Martin Vobruba, G Vodňany

Kategorie P

1. Jiří Danihelka, A2S, SPŠ Písek
2.-3. Jan Kouba, 3/4, G Český Krumlov

Milan Straka, 3/4, G Strakonice

Plzeňský kraj

Kategorie A

1. Jiří Ajgl, septima M, G Plzeň, Mikulášské nám.
2.-4. Josef Mládek, septima M, G Plzeň, Mikulášské nám.

Libor Pavlíček, oktáva, G L. Pika, Plzeň
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Klára Šteklová, septima M, G Plzeň, Mikulášské nám.
5.-9. Michal Bareš, septima M, G Plzeň, Mikulášské nám.

Šárka Kreuzová, septima M, G Plzeň, Mikulášské nám.
Michal Kvíz, septima M, G Plzeň, Mikulášské nám.
Jaroslav Svoboda, septima M, G Plzeň, Mikulášské nám.
Václav Varvařovský, septima M, G Plzeň, Mikulášské nám.

10. David Mareček, septima M, G Plzeň, Mikulášské nám.

Kategorie В

1.-2. Petr Havránek, sexta M, G Plzeň, Mikulášské nám.
Jan Bartošek, sexta M, G Plzeň, Mikulášské nám.

Kategorie C

1.-2. Pavel Hudák, kvinta, Masarykovo G Plzeň
Alena Křečková, kvinta, G Plzeň, Mikulášské nám.

3. Jan Hostaša, kvinta, G Plzeň, Mikulášské nám.
4. Jakub Bulín, kvinta, G Plzeň, Mikulášské nám.
5. Ondřej Hort, kvinta, G Plzeň, Mikulášské nám.
6. Jiří Pouška, kvinta, G Plzeň, Mikulášské nám.

7.-9. Tomáš Ibehej, kvinta, G Plzeň, Mikulášské nám.
Jan Navrátil, kvinta, G Plzeň, Mikulášské nám.
Jindřich Pragler, kvinta, G Klatovy

10.-12. Jiří Hýsek, kvinta, G Plzeň, Mikulášské nám.
Pavel Paták, kvinta, G Sušice
Vítězslav Pítr, kvinta, G Stříbro

Kategorie P

1. Stanislav Haviar, kvinta A, G Klatovy

Ústecký kraj

Kategorie C

1. Daniel Petřík, G Most
2. Jiří Dvořák, G Roudnice nad Labem
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3. Jan Pospíšil, G Roudnice nad Labem
4. Tereza Kadová, G Teplice

5.-10. Tomáš Franc, G Teplice
Vojtěch Mezera, G V. Hlavatého, Louny
Jan Patera, G Most
Jan Semerád, G Teplice
Jiří Wagner, G Teplice
Miroslav Zelič, G Teplice

Liberecký kraj

Kategorie A1.David Herčík, 8/8, Podještědské G Liberec

Kategorie В

1. Petr Píša, sexta, G Liberec, Jeronýmova
2. Michal Kollert, sexta A, GFXŠ, Liberec
3. Martina Píšová, sexta, GFXŠ, Liberec
4. Jiří Vít, sexta, GFXŠ, Liberec

Kategorie C

1. Martin Otava, 1/4, GFXŠ, Liberec
2.-3. Zuzana Pavlová, 5/8, Gymnázium Frýdlant

Vítězslav Žabka, 5/8, GFXŠ, Liberec
4.-8. Lukáš Ježek, 5/8, GFXŠ, Liberec

Jan Pospíšil, 5/8, G Česká Lípa
Vojtěch Růžička, 5/8, GFXŠ, Liberec
Petr Schlindenbuch, 5/8, G dr. Randy, Jablonec n. N.
Jan Urban, 5/8, GFXŠ, Liberec

9. Jan Sedláček, 5/8, GFXŠ, Liberec

Kategorie P

1. Matěj Skopový, G Česká Lípa
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Královéhradecký kraj# *

Kategorie A

1. Jan Moláček, 2/4M, GJKT, Hradec Králové
2. Jan Prachař, 7/8, GFMP, Rychnov nad Kněžnou
3. Miroslav Hejna, 7/8, GFMP, Rychnov nad Kněžnou

4.-5. Jiří Eliášek, 4/4, G Trutnov
Vadim Omelčenko, 4/4M, GJKT, Hradec Králové

Kategorie В

1. Jan Moláček, 2/4M, GJKT, Hradec Králové
2. Jan Ondruš, 6/8, GFMP, Rychnov nad Kněžnou
3. Zdeněk Váňa, 2/4, GOP, Hronov
4. Matouš Ringel, 6/8, G Broumov
5. Jiří Sebesta, 2/4, G Náchod

6.-7. Zuzana Rozlívková, 4/6, GJKT, Hradec Králové
Jan Schindler, 4/6, GJKT, Hradec Králové

8.-9. Romana Kubátová, 2/4M, GJKT, Hradec Králové
Ivo Machek, 2/4M, GJKT, Hradec Králové

Kategorie C

1. Michal Kopecký, 1/4M, GJKT, Hradec Králové
2. Jan Dostál, 1/4, G Náchod
3. Pavel Lhoták, 3/6, G Dvůr Králové
4. Filip Studnička, 3/6, G B. Němcové, Hradec Králové

5.-9. Kateřina Fišerová, 5/8, G Jičín
Radek Moravec, 3/6, G B. Němcové, Hradec Králové
Jakub Slanina, 1/4M, GJKT, Hradec Králové
Libor Simůnek, 9, ZŠ M. Horákové, Hradec Králové
Lukáš Volák, 1/4, G Dvůr Králové

10. Vojtěch Zelený, 5/8, G Náchod
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Pardubický kraj

Kategorie A

1.-2. Ondřej Pokorný, 4/4, G Chrudim
Petr Pošta, 5/6, G Pardubice, Dašická

Kategorie В

1. Jindřich Flídr, G Lanškroun

Kategorie C

1. Barbora Scholleová, G Pardubice, Dašická
2. Kristýna Stodolová, G Polička
3. Veronika Kvasničková, G Pardubice, Dašická
4. Daniel Piši, SPŠE Pardubice

5.-6. Milena Benešová, G Polička
Markéta Krmelová, G Ústí nad Orlicí

7.-8. Kamil Daněk, G Pardubice, Dašická
Jan Měkota, G Pardubice, Dašická

9.-12. Ramunas Belkauskas, G Pardubice, Dašická
Pavel Kučera, G Pardubice, Dašická
Vít Musil, G Jevíčko
Vojtěch Novotný, G Chrudim

Kraj Vysočina

Kategorie A

1.-2. Hoang Dieu Hung, 4.В, G Telč
Radek Mlada, sexta A, G Pelhřimov

3.-4. Martin Hamrle, 4.A, G Pelhřimov
Josef Kaláb, septima B, G Jihlava

Kategorie В

1. Josef Janák, V6A, G Velké Meziříčí
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Kategorie С

1. Jan Šedo, kvarta A, G Jihlava
2. Jaromír Štohanzl, kvinta, G Havlíčkův Brod
3. Jaroslav Keznikl, kvinta, G Ždar nad Sáz.

4.-6. Jan Fikar, 6, G Humpolec
Jana Kodysová, kvinta, G Telč
Martin Tomec, l.B, G Třebíč

7.-12. Lenka Fridrichová, kvinta, G Pelhřimov
Marcela Jonášová, l.A, G Jihlava
Michaela Krpálková, l.A, G Jihlava
Rostislav Kváš, l.B, G Jihlava
Vojtěch Markvart, l.A, G Pelhřimov
Dagmar Vencálková, kvinta, G Ždar nad Sáz.

Kategorie P1.Martin Hamrle, 4.A, G Pelhřimov, Jirsíkova

Jihomoravský kraj

Kategorie A

1. Tomáš Protivínský, 4.A M, G Brno, tř. Kpt. Jaroše
2. Veronika Trnková, 3.A M, G Brno, tř. Kpt. Jaroše
3. Jaroslav Urbánek, 4.A M, G Brno, tř. Kpt. Jaroše

4.-7. Jana Fabriková, 2.A M, G Brno, tř. Kpt. Jaroše
Jan Hladký, 3.A M, G Brno, tř. Kpt. Jaroše
Vítězslav Kala, 2.A M, G Brno, tř. Kpt. Jaroše
Jaromír Kuběn, 4.ag M, G Brno, tř. Kpt. Jaroše

8.-11. Miroslav Frost, septima A/8, G Brno, Elgartova
Marek Krčál, 3.A M, G Brno, tř. Kpt. Jaroše
Michal Rychnovský, l.A M, G Brno, tř. Kpt. Jaroše
Petr Sušil, septima A/8, G Brno, T. Novákové

Kategorie В

1. Vítězslav Kala, 2.A M, G Brno, tř. Kpt. Jaroše
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2. Jan Novotný, 2.A M, G Brno, tř. Kpt. Jaroše
3. Tomáš Hebelka, sexta, G Brno, Vídeňská

4.-5. Sven Dražan, 2.A M, G Brno, tř. Kpt. Jaroše
Jiří Štěpánek, 2.A M, G Brno, tř. Kpt. Jaroše

6.-8. Jiří Krčál, 2.A M, G Brno, tř. Kpt. Jaroše
Miroslava Plachá, 2.A M, G Brno, tř. Kpt. Jaroše
Tomáš Pospíchal, 2.A M, G Brno, tř. Kpt. Jaroše

9.-12. Jiří Kalina, 2.A M, G Brno, tř. Kpt. Jaroše
Přemysl Oprchal, sexta, G Šlapanice
Alena Robotková, 2.A M, G Brno, tř. Kpt. Jaroše
Pavel Troubil, 2.A M, G Brno, tř. Kpt. Jaroše

Kategorie C

1. Martin Vejnár, l.A M, G Brno, tř. Kpt. Jaroše
2. Ondřej Hotový, l.A M, G Brno, tř. Kpt. Jaroše
3. Václav Zahradník, l.A M, G Brno, tř. Kpt. Jaroše

4.-7. Vojtěch Procházka, l.A M, G Brno, tř. Kpt. Jaroše
Michal Rychnovský, l.A M, G Brno, tř. Kpt. Jaroše
Petr Slovák, l.A M, G Brno, tř. Kpt. Jaroše
Kateřina Trnková, l.B M, G Brno, tř. Kpt. Jaroše

8. Jaromír Kuběn, 4.ag M, G Brno, tř. Kpt. Jaroše
9.-12. Martin Kočí, 4.ag M, G Brno, tř. Kpt. Jaroše

Jakub Macek, l.C, G Hodonín
Jakub Opršal, 4.ag M, G Brno, tř. Kpt. Jaroše
Ondřej Zapletal, kvinta A, G Brno, Křenová

Kategorie P

1. Jiří Štěpánek, 2.A, G Brno, tř. Kpt. Jaroše
2.-3. Sven Dražan, 2.A, G Brno, tř. Kpt. Jaroše

Martin Lopatář, 2.A, G Brno, tř. Kpt. Jaroše
4. Martin Vejnár, l.A, G Brno, tř. Kpt. Jaroše

5.-7. Václav Brožek, septima C, Biskupské G, Brno
Jan Hladký, 3.A, G Brno, tř. Kpt. Jaroše
Pavel Troubil, 2.A, G Brno, tř. Kpt. Jaroše
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Zlínský kraj

Kategorie A

1. Libuše Fárková, G Rožnov pod Radhoštěm
2. Radek Krejčiřík, G Uherské Hradiště

Kategorie В

1.-2. Martin Horáček, G Zlín, Lesní čtvrť
Jan Olšina, G Kroměříž

Kategorie C

1. František Konopecký, G L. Jaroše, Holešov
2. Marek Pechal, G Zlín, Lesní čtvrť

3.-4. Martin Cech, GJAK, Uherský Brod
Jiří Jánoš, GJAK, Uherský Brod

5.-6. Petr Gremlica, G Kroměříž
Martin Komoň, GFP, Valašské Meziříčí

7.-9. Stanislav Basovník, G Kroměříž
Aleš Holub, G Uherské Hradiště
Václav Slimáček, GFP, Valašské Meziříčí

10.-13. Tomáš Bartoň, Masarykovo G, Vsetín
Marek Blahuš, G Uherské Hradiště
Miroslav Blažek, GFP, Valašské Meziříčí
Stanislav Solánský, GFP, Valašské Meziříčí
Jana Tomšů, SPŠ Zlín

Kategorie P

1. Martin Cetkovský, 3.A, G Zlín, Lesní čtvrť
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Olomoucký kraj

Kategorie A

1. Lucia Jarešová, 4.A, GJŠ, Přerov
2. Tomáš Ligurský, 8.A, GJB, Přerov
3. Jan Klesnil, 4.A, GJŠ, Přerov

Kategorie В

1.-2. Jana Hrudíková, VI.C, GJŠ, Přerov
Radim Navrátil, 2.A, GJW, Prostějov

3. Vladimír Veselý, VI.A, G Šumperk

Kategorie C

1. Jan Průša, V.A, GJW, Prostějov
2.-5. Zuzana Dřizgová, V.G, G Lipník nad Bečvou

Jaroslav Fibichr, V.A, G Šternberk
Antonín Sadil, 5.A, G Zábřeh na Moravě
Jana Sedláčková, V.B, GJŠ, Přerov

6.-8. Markéta Krpcová, V.A, GJW, Prostějov
Kammil Samaj, l.A, G Šternberk
Karel Stěpka, l.A, G Olomouc-Hejčín

Moravskoslezský kraj

Kategorie A

1. Jaroslav Hájek, 4.C, GMK, Bílovec
2. Václav Cviček, 5, G P. Bezruce, Frýdek-Místek
3. Pavel Ludvík, 3, GMK, Bílovec
4. JJ&or Olšák, 4, GMK, Bílovec

5.-6. Jakub Gemrot, 3, GMK, Bílovec
Jan Kaluža, 6, G P. Bezruce, Frýdek-Místek
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Kategorie В

1. Tomáš Gavenčiak, 2.C, GMK, Bílovec
2. Marek Radech, G Karviná

3.-6. Tereza Jadviščoková, G P. Bezruce, Frýdek-Místek
Ondřej Májek, GMK, Bílovec
Martin Stachoň, G Ostrava, Cs. exilu
Josef Toman, GMK, Bílovec

Kategorie C

1. Zuzana Safernová, l.C, GMK, Bílovec
2. Jakub Dvorský, l.C, GMK, Bílovec

3.-4. Vojtěch Brtník, 5.B, G Ostrava-Zábřeh
Lukáš Kuna, TIB, SPŠ Moravská Ostrava

5.-9. Veronika Krauzovičová, l.C, GMK, Bílovec
Zuzana Kubeczková, V.A, G Karviná
Milada Lýtková, l.C, GMK, Bílovec
Libor Polčák, 5.A, G Rýmařov
Wí Schuster, IT1, SPŠ a SOU Opava

Kategorie P

1. Tomáš Gavenčiak, 2.C, GMK, Bílovec
2. Vojtěch Skubanič, 2.C, GMK, Bílovec
3. Václav Cviček, G P. Bezruce, Frýdek-Místek
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Výsledky celostátního kola 51. ročníku MO

kategorie A

Vítězové

1. Jaroslav Hájek, 4/4, GMK, Bílovec
2. Jan Moláček, 2/4, GJKT, Hradec Králové
3. Martin Tancer, 4/4, G Ch. Dopplera, Praha 5
4. Jose/ Cibulka, 4/4, G Praha 1, Štěpánská
5. Tomáš Protivínský, 4/4, G Brno, tř. Kpt. Jaroše
6. Vítězslav Kala, 2/4, G Brno, tř. Kpt. Jaroše
7. Ondřej Kůrka, 8/8, G Ch. Dopplera, Praha 5

8.-9. Ondřej Čertík, 7/8, G Ch. Dopplera, Praha 5
Marek Krčál, 3/4, G Brno, tř. Kpt. Jaroše

10.—11. Pavel Čížek, 7/8, GaOA Kralupy nad Vltavou
Pave/ Kocourek, 1/4, SPŠST, Praha 1, Panská

12. Libor Olšák, 4/4, GMK, Bílovec

37b.

35 b.

34 b.

33 b.

32 b.

31b.

23 b.

20 b.

20 b.
19b.

19 b.
18b.

Další úspěšní řešitelé

13. Miroslav Hejna, 7/8, G Rychnov n. Kněžnou
14.-15. Jana Fabriková, 2/4, G Brno, tř. Kpt. Jaroše

Martin Klimeš, 4/4, G Praha 2, Botičská
16.-18. Lucia Jarešová, 4/4, GJŠ, Přerov

Martin Káldy, 3/4, G Ch. Dopplera, Praha 5
Radek Mlada, 6/8, G Pelhřimov, Jirsíkova

19.-22. Tomáš Hanzák, 4/4, G Kladno, nám. dr. E. Beneše
Jaromír Kuběn, 4/8, G Brno, tř. Kpt. Jaroše
Tomáš Ligurský, 8/8, GJB, Přerov
Alice Mašková, 4/4, G Praha 6, Parléřova

23.-26. Pavel Ludvík, 3/4, GMK, Bílovec
Josef Mládek, 7/8, G Plzeň, Mikulášské nám.
Petr Sušil, 7/8, G Brno, T. Novákové
Ondřej Šedivý, 7/7, G České Budějovice, Jírovcova

17b.

16b.

16b.

15 b.

15b.

15b.

14b.

14b.

14b.

14 b.

13b.

13tí.
13 b.

13b.
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Výsledky celostátního kola 51. ročníku MO
kategorie P

Vítězové

1. Josef Cibulka, 4/4, Akademické G Praha 1, Štěpánská
2. Milan Straka, 3/4, G Strakonice
3. Pavel Čížek, 7/8, G a OA Kralupy nad Vltavou
4. Jiří Štěpánek, 6/8, G Brno, tř. Kpt. Jaroše
5. Tomáš Gavenčiak, 2/4, GMK, Bílovec

6.-7. Jan Kadlec, 3/4, G Ch. Dopplera, Praha 5
6.-7. Martin Vejnár, 5/8, G Brno, tř. Kpt. Jaroše

8. Martin Hamrle, 4/4, G Pelhřimov, Jirsíkova

42 b.

39 b.

36 b.

32 b.
27b.

25 b.
25 b.

24 b.

Další úspěšní řešitelé

9. Jiří Danihelka, 3/4, SPŠ Písek
10. Václav Cviček, 5/6, G P. Bezruče, Frýdek-Místek
11. Jiří Paleček, 3/4, G Kladno, nám. E. Beneše

12.-13. Martin Kruliš, 7/8, G Kolín
12.-13. Jiří Svoboda, 8/8, G Ch. Dopplera, Praha 5

14. Lukáš Turek, 3/4, G Ch. Dopplera, Praha 5
15. Petr Škoda, 6/8, G Praha 8, Ústavní

23 b.
21b.

20 b.

19b.

19b.

16b.

15b.
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Kategorie С

Texty úloh

C - I - 1

Dokažte, že existuje jediná číslice c, pro kterou lze najít jediné přirozené
číslo n končící číslicí c a mající tu vlastnost, že číslo 2n + 1 je druhou
mocninou prvočísla. (M. Kobližková)

С - I - 2

Ve čtyřúhelníku ABCD se úhlopříčky protínají v bodě P, úhlopříčka
AC je rozdělena body P, N a M na čtyři shodné úseky (\AP\ = |PiVj =
= \NM\ = \MC\) a úhlopříčka BD je rozdělena body L, К a P na čtyři
shodné úseky (\BL\ = \LK\ = \KP\ = \PD\). Určete poměr obsahů

(J. Zhouf)čtyřúhelníků KLMN a ABCD.

C - I - 3

Určete všechny dvojice (x, у) celých čísel, které jsou řešením nerovnice

ox

у/x + yyjx у
<

(J. Zhouf)

С - I - 4

Josef se vracel z výletu. Nejdříve jel vlakem a pak pokračoval ze za-

stávky na kole. Celá cesta mu trvala přesně 1 hodinu 30 minut a urazil
při ní vzdálenost 60 km. Vlak jel průměrnou rychlostí 50 km/h. Určete,
jak dlouho jel Josef na kole, když jeho rychlost v km/h je vyjádřena
přirozeným číslem stejně jako vzdálenost měřená v km, kterou na kole
ujel. (E. Kováč)
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С - I - 5

Sestrojte rovnoramenný trojúhelník ABC se základnou BC dané délky a,

je-li dán střed P strany AB a bod Q (Q ф P), který je patou výšky
(J. Švrček)z vrcholu B.

C - I - 6

Jistý panovník pozval na oslavu svých narozenin 28 rytířů. Každý z rytířů
měl mezi ostatními právě tři nepřátele.
a) Ukažte, že panovník může rytíře rozesadit ke dvěma stolům tak, aby

každý rytíř seděl u stejného stolu s nejvýše jedním nepřítelem.
b) Ukažte, že v případě libovolného takového rozesazení sedí u každého

stolu nejvýše 16 rytířů.
(Nepřátelství je vzájemný vztah: Je-li A nepřítelem B, je i В nepři-

telem A.) (J. Šimša)

C - S - 1

Do sportovního kroužku chodí 21 chlapců. Na posledních dvou schůzkách
nikdo nechyběl, chlapci se pokaždé rozdělili do tří družstev po sedmi
hráčích. Dokažte, že někteří tři chlapci byli obě schůzky spolu v jednom
družstvu. (,/. Šimša)

C - S - 2

V rovině je dán pravoúhlý trojúhelník ABC takový, že kružnice
к (А; \AC I) protíná přeponu AB v jejím středu S. Dokažte, že kružnice
opsaná trojúhelníku BCS je shodná s kružnicí k. (J. Švrček)

C - S - 3

Určete všechny dvojice prvočísel (p, q) takové, že p > q a číslo p2 — q2 má
nejvýše čtyři dělitele. (P. Calábek)

C - II - 1

Určete počet dvojic (a, b) přirozených čísel (1 š a < b š 86), pro které
je součin ob dělitelný třemi. (J. Zhouf)
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С - II - 2

Nechť kružnice sestrojené nad rameny lichoběžníku jako nad průměry
mají vnější dotyk. Dokažte, že dotykový bod těchto kružnic leží na ose

úhlu, který obě ramena lichoběžníku svírají. (J. Švrček)

C - II - 3

Najděte všechna celá čísla x, pro která jsou obě čísla (ж — 3)2 — 2,
(x — 7)2 + 1 prvočísla. (J. Šimša)

С - II - 4

V rovině jsou dány body С, V, U takové, že \CV\ = 3cm, \VU\ = 3,5 cm
a \CU\ = 4,5 cm. Sestrojte ostroúhlý trojúhelník ABC tak, aby byl V
průsečík jeho výšek a bod U byl souměrně sdružený s bodem A podle
středu kružnice opsané trojúhelníku ABC. (P. Leischner)
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Řešení úloh

C - I - 1

Nechť (liché) číslo 2n + 1 je druhou mocninou prvočísla p, pak p je rov-
něž liché číslo. Ze vztahu p2 = 2n + 1 vyplývá, že n — \{p2 - 1) =
= |(p — l)(p + 1). Sestavme tabulku několika prvních lichých prvočísel
p a jim odpovídajících čísel n:

3 5 7 11 13 17 19 23 29 31 37 41 43P
4 12 24 60 84 144 180 264 420 480 684 840 924n

Číslo n je zřejmě sudé, dokonce je (jak prozrazuje i tabulka pro několik
hodnot p) dělitelné čtyřmi. To je vidět z toho, že součin (p — l)(p + 1)
dvou po sobě jdoucích sudých čísel je vždy dělitelný osmi. Z tabulky navíc
vidíme, že se mezi číslicemi, kterými n končí vícekrát, vyskytují číslice 0
a 4, jen jednou číslice 2, nevyskytují se 6 a 8.

Podívejme se, jakou číslicí končí číslo n v závislosti na číslici a, kterou
končí číslo p. Je-li p = 10к + a, kde к je celé nezáporné číslo a a lichá
číslice, pak pro jednotlivá možná a dostaneme:
• Je-li a = 1, je n = I0k(5k + 1), takže číslo n končí číslicí 0.
• Je-li a — 3, je n = 10k(5k + 4) + 4, takže číslo n končí číslicí 4.
• Je-li a = 5, je n = 10(5A;2 + 5A: + 1) + 2, takže číslo n končí číslicí 2.
• Je-li a = 7, je n — 10(5fc2 + 7k + 2) + 4, takže číslo n končí číslicí 4.
• Je-li a = 9, je n — 10(A; + l)(5fc + 4), takže číslo n končí číslicí 0.

Je-li 2n + 1 druhou mocninou lichého prvočísla (lichého čísla), může
číslo n končit jedině číslicemi 0, 2, 4. Jediným kandidátem na hledanou
číslici tak zůstává 2.

Pokud 2n + 1 je druhou mocninou prvočísla a n končí číslicí 2, prvo-
číslo p se dá vyjádřit ve tvaru 10A; + 5 = 5(2к + 1), je tedy dělitelné pěti.
Jediné prvočíslo, které je dělitelné pěti, je číslo 5.

Hledanou číslicí je tedy c = 2; pro ni existuje jediné přirozené číslo
n = 12, které končí číslicí c, přičemž 2n + l je druhou mocninou prvočísla.

С - I - 2

Trojúhelníky APD a NPK jsou souměrně sdružené podle středu P
(obr. 1), AD a NК jsou tudíž rovnoběžné a \AD\ = |jV.řt|. Z rovnosti pří-
slušných úseček dále plyne, že trojúhelníky KNP, LMP a BCP jsou po-

dobné, proto NK || ML || ВС a navíc \LM\ = 2|JTiV| a \BC\ = 3\KN\.
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Označíme-li s obsah trojúhelníku APD, je obsah trojúhelníku NKP ro-

ven s a obsah trojúhelníku MLP je 4s (má dvakrát větší výšku z vr-
cholu P než trojúhelník NKP z téhož vrcholu a jeho strana ML je
dvakrát větší než strana NK). Obsah lichoběžníku KLMN je proto 3s.

Strana AP trojúhelníku APD je čtyřikrát menší než strana AC troj-
úhelníku ACD, výšky z vrcholu D jsou v obou trojúhelnících stejné,
proto je obsah trojúhelníku ACD roven 4s. Strana PN trojúhelníku
PNК je čtyřikrát menší než stranaylC trojúhelníku ACB, kdežto výška
trojúhelníku PNK z vrcholu К je třikrát menší než výška trojúhelníku
ABC z vrcholu B, proto je obsah trojúhelníku ACB roven 12s. Obsah
čtyřúhelníku ABCD je roven součtu obsahů trojúhelníků ABC a ACD,
tedy 16s.

Poměr obsahů čtyřúhelníků KLMN a ABCD je roven 3 : 16.

C - I - 3

Ze zadání plyne, že x а у jsou nutně přirozená čísla. Vynásobením obou
stran nerovnice kladným číslem y\fx přejdeme к ekvivalentní nerovnici

xy + 6 < 5 y/xy.

Její úpravou dostaneme

(у/xy- ?>){Vxy- 2) < 0,

což platí, právě když 2 < yjxý < 3, neboli 4/x < у < 9/x.
Protože x а у jsou přirozená čísla, z poslední nerovnosti plyne, že

stačí uvažovat jen x < 9. Lehce pak určíme všechny dvojice (x, у) celých
čísel, které jsou řešením poslední nerovnice, a tedy i dané nerovnice, která
je s ní ekvivalentní: (1,5), (1,6), (1,7), (1,8), (2,3), (2,4), (3,2), (4,2),
(5.1), (6,1), (7,1), a (8,1).

28



С - I - 4

Označme v vzdálenost v kilometrech, kterou Josef ujel na kole, a r jeho
rychlost v km/h. Podle zadání jsou r a v přirozená čísla a v < 60. Na
kole jel Josef po dobu v/r h. Vlakem ujel vzdálenost (60 — u)km a tuto
vzdálenost ujel za (60 — u)/50h. Proto podle zadání platí

60 — v v 3
+ - =

50 2r

Tato rovnice je ekvivalentní s rovnicí

50u — 15r — rv = 0,

kterou ještě upravíme na tvar

(50 - r)(v + 15) = 15 • 50 = 2 • 3 • 53.

Odtud plyne, že 50 — r je přirozené číslo menší než 50 a v + 15 přirozené
číslo větší než 15, jež nepřevyšuje 75, a navíc, že součin (50 — r)(v + 15)
je dělitelný číslem 53. Mohou nastat čtyři případy.

• 53 | 50 — r. To není možné, protože 1 ^ 50 — r < 50.
• 52 | 50 — r a 5 | v + 15. Číslo 50 — r je proto rovno 25, odtud r — 25

a v = 15.
• 5 | 50 — r a 52 | v + 15. Číslo u + 15 je tudíž prvkem množiny {25,50},

odtud dopočítáme další dvě možnosti r = 20, v = 10 a r = 35, v = 35.
• 53 | v + 15. To není možné, protože 15 < v + 15 < 75.

Možné časy Josefovy jízdy na kole (v minutách) proto jsou 15-60/25 =
= 36, 10 - 60/20 = 30 a 35 • 60/35 = 60.

Výčtem všech možností jsme zjistili, že pokud Josef cestoval podle
zadání úlohy, pak jel na kole buď 30, nebo 36, anebo 60 minut.

С - I - 5

Úhel BQA je buď pravý, nebo Q — A. Proto bod Q leží na Thaletově
kružnici sestrojené nad průměrem BA. (Na obr. 2 je znázorněn případ
ostroúhlého i tupoúhlého trojúhelníku ABC.) Protože P je střed úsečky
AB, je \PQ\ velikost poloměru této kružnice, proto velikost průměru \AB\
této kružnice je rovna 2\PQ\. Trojúhelník ABC má délku ramene 2\PQ\,
a protože známe velikost základny, je tím jednoznačně určen.
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Odtud již plyne konstrukce. Nejdříve sestrojíme trojúhelník A'B'C
shodný s trojúhelníkem ABC o velikostech stran \A'B'\ — |Л'С'| =
= 2\PQ\ a \B'C'\ = a, který potom přemístíme tak, aby se střed strany
A'B' zobrazil na bod P a pata výšky z vrcholu B' na bod Q. To lze
provést jednoznačně až na osovou souměrnost podle přímky PQ. Pokud
tedy trojúhelník A'B'C existuje, má úloha dvě řešení souměrně sdružená
podle osy PQ.

Diskuse je zřejmá. Trojúhelník ABC lze setrojit právě tehdy, když
lze sestrojit rovnoramenný trojúhelník A!B'C, tj. když a < 4\PQ\ (troj-
úhelníkové nerovnosti), v tomto případě má úloha právě dvě (shodná)
řešení. Navíc pro a < 2\/2\PQ\ bude trojúhelník ABC ostroúhlý, pro
a = 2\/2\PQ\ pravoúhlý a pro 2\/2\PQ\ < a < 4|PQ| tupoúhlý. Důkaz
správnosti plyne z rozboru úlohy.

Jiné řešení. Označme R střed strany BC, ten je zároveň patou výšky
z vrcholu A. Oba body Q a R tedy leží na Thaletově kružnici nad průmě-
rem AB se středem P, proto \PQ\ = \PR\ = \\AB\. Jelikož úhel BQC
je pravý, leží bod Q na Thaletově kružnici nad průměrem BC se stře-
dem P, takže \RQ\ = \\BC\ = |a. Trojúhelník PQR je proto podobný
trojúhelníku ABC (koeficent podobnosti je |).

Při konstrukci nejdříve sestrojíme trojúhelník PQR. Na přímce rov-
noběžné se střední příčkou PR procházející bodem Q najdeme bod
С ф Q tak, aby \RC\ — |a. Body А а, В pak už sestrojíme snadno.

Pro dané body P, Q můžeme sestrojit třetí vrchol R trojúhelníku
PQR dvěma způsoby. Diskuse je tedy stejná jako v předcházejícím řešení.
Důkaz správnosti plyne z rozboru úlohy.
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С - I - 6

a) Rozesaďme v prvním kole rytíře ke stolům libovolným způsobem.
Označme n\ počet nepřátel prvního rytíře u stolu, u kterého sedí, potom
щ 3. Podobně označme П2 Sí 3 počet nepřátel druhého rytíře u stolu,
u kterého sedí, atd. Potom pro „hladinu nepřátelství"

N1 = ni + n2 4- • • • + n28

v prvním kole platí 0 ^ N\ 3 • 28 = 54, přičemž N\ je celé nezáporné
číslo.

Předpokládejme, že existuje rytíř, který sedí u stolu s alespoň dvěma
nepřáteli. Pak ho přesadíme ke druhému stolu. Tím vznikne nové roze-
sazení. Zkoumejme nyní hladinu nepřátelství iV2 po tomto druhém kole.

Pokud přesazený rytíř r seděl původně u jednoho stolu se všemi třemi
nepřáteli a, 6, c, po jeho přesazení se počet nepřátel rytíře r u stolu,
u kterého teď sedí, snížil o 3 na nulu, a počet nepřátel rytířů a, b а c
u téhož stolu se snížil o jednu. Počty nepřátel zbývajících rytířů u jejich
stolů se nezměnily. Tedy N2 = N\ — 6.

Pokud přesazený rytíř r seděl původně u jednoto stolu se dvěma ne-

přáteli a a b a byl přesazen ke stolu s nepřítelem c, po jeho přesazení se

počet nepřátel rytíře r u stolu, u kterého nyní sedí, snížil o 1 ze dvou
na jednoho, počet nepřátel rytířů a a b u jejich stolu se o jedna snížil,
a počet nepřátel rytíře c u stolu, u kterého sedí, se zvýšil o 1. Počty
nepřátel zbývajících rytířů u jejich stolů se nezměnily. V tomto případě
je tedy N2 = N\ — 2.

V obou případech vychází TV2 < N\.
Pokud ještě po tomto kole existuje rytíř, který sedí u jednoho stolu

s alespoň dvěma svými nepřáteli, opět ho požádáme, aby si přesedl к dru-
hému stolu. Pro hladinu nepřátelství N3 po třetím kole bude ze stejných
důvodů jako výše platit N3 < iV2.

Stejným způsobem vytvoříme hladiny nepřátelství N4 > N5 > ... po
dalších kolech.

Protože v každém kole je hladina nepřátelství menší než v přede-
šlém kole, je vyjádřena celým nezáporným číslem a hladina nepřátelství
v prvním kole je nejvýše 54, může se taková situace opakovat nejvýše
čtyřiapadesátkrát. Počet kol musí být tedy konečný a po posledním kole
už neexistuje rytíř, který by seděl u jednoho stolu s alespoň dvěma ne-

přáteli. Tím jsme dokázali část a).
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b) Předpokládejme, že rytíři jsou nyní rozesazeni u stolů А а В tak,
že každý sedí u stejného stolu s nejvýše jedním nepřítelem. Označme гд

počet rytířů u stolu А а гв počet rytířů u stolu B. Platí

га+гв = 28. (1)

Každý z rytířů u stolu A má u stolu В alespoň dva nepřátele a každý
z rytířů stolu В je nepřítelem nejvýše tří rytířů od stolu A, proto pro

počet p těch nepřátelských dvojic, jež sedí u různých stolů, platí

2га = P a p 5Í 3rjg, takže 2га ^ 3гв-

Dosadíme-li do této nerovnice z (1) гв — 28 — гд, dostaneme po úpravě
5гд 84. Vzhledem к tomu, že ra je celé nezáporné číslo, musí platit
va ^ 16. S ohledem na symetrii situace platí analogicky гв S 16- Tím
jsme splnili část b).

V části b) můžeme postupovat také sporem: Kdyby u stolu A sedělo
aspoň 17 rytířů, měli by dohromady u stolu В aspoň 17-2 = 34 nepřátel,
přitom každý rytíř-nepřítel je v tomto čísle započítán nejvýše třikrát.
Protože 3 • 11 < 34, sedí u stolu В aspoň 12 rytířů, dohromady u obou
stolů А а В je pak aspoň 17 + 12 = 29 rytířů, což odporuje zadání.

C - S - 1

Uvažujme chlapce H. Šest jeho spoluhráčů z první schůzky je na druhé
schůzce rozděleno do tří družstev. Pak jsou buď tři z nich v jednom druž-
štvu, nebo jsou v těchto třech družstvech rozděleni po dvou. Chlapec H
je však také členem některého z těchto družstev, a tedy v tomto družstvu
se opět nachází trojice spoluhráčů z první schůzky.

Jiné řešení. Označme A, В, C družstva sestavená na první schůzce,
D, E, F družstva sestavená na druhé schůzce. Podle zařazení do družstev
jsou jednotliví chlapci nejvýše devíti různých typů AD, AE, AF, BD,
BE, BF, CD, CE, CF. Kdyby každého typu byli nejvýše dva chlapci,
bylo by na schůzkách nejvýše 2 • 9 = 18 chlapců, což je spor s tím, že
jich do kroužku chodí 21. Proto alespoň jednoho typu jsou alespoň tři
chlapci, a to je hledaná trojice chlapců.
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С - S - 2

Střed přepony 5 pravoúhlého trojúhelníku ABC je podle Thaletovy věty
středem kružnice opsané tomuto trojúhelníku, platí tedy 1(751 = \AS\ —

= |Б5| (obr. 3). Jelikož body C a 5 leží na kružnici к, platí \AS\ = \AC\,
je proto trojúhelník ASC rovnostranný a velikost úhlu CSB je rovna
120°.

Je-li M střed kružnice opsané trojúhelníku BCS, platí \CM\ =
= \SM\ = \BM\, a protože |C5| = |J3S|, jsou CMS a SMB shodné
rovnoramenné trojúhelníky se základnami CS a BS. Velikost úhlu CSB
je součtem velikostí shodných úhlů CSM a MSB, je proto velikost úhlu
MSB rovna | • 120°
a platí \MS\ = \BS\.

Poloměr kružnice opsané trojúhelníku CSB je roven \MS\ = |B5| =
= |A5|, což je poloměr kružnice k. Kružnice opsaná trojúhelníku BCS
a kružnice к mají stejné poloměry, jsou tedy shodné. Tím je důkaz úkon-
čen.

60°. Trojúhelník MSB je tedy rovnostranný

Poznámka: Po zjištění, že ASC je rovnostranný trojúhelník, je možno
dokončit řešení i takto: je-li D bod souměrně sdružený s bodem A podle
středu (7, je trojúhelník ABC „polovinou'1 rovnostranného trojúhelníku
ABD, takže střed M jeho strany BD má od bodů В, 5, C stejnou vzdá-
lenost rovnou ||уШ|.
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С - S - 3

Číslo 1 má právě jednoho dělitele 1. Určeme dále všechna přirozená
čísla а ф 1, která mají nejvýše čtyři dělitele. Takové číslo a má dva
triviální dělitele 1 a a, proto může mít nejvýše další dva netriviální dě-
litele, takže je dělitelné nejvýše dvěma prvočísly. Je-li číslo a dělitelné
dvěma různými prvočísly p\ ap2, je dělitelné i jejich součinem p!p2,
vzhledem к uspořádání dělitelů čísla a musí tehdy být a = p\P2- Je-li
číslo a dělitelné právě jedním prvočíslem pi, platí a = p\, kde к je při-
rozené číslo. Jeho netriviálními děliteli jsou čísla pi,p2,... ,pj1, proto
к ^ 3.

Nejvýše čtyři dělitele tedy mají pouze číslo 1 a čísla tvaru pi, p2, p\
а P1P2, kde pi а P2 jsou různá prvočísla.

Nechť p > q jsou prvočísla a číslo a = p2 — q2 = (p — q){p + q)
má nejvýše čtyři dělitele. Pak platí 1 = P~q<P + q^a. Rozlišíme
následující případy:
1. p — q = 1. Rozdíl prvočísel p, q je liché číslo, proto jedno z nich je

sudé a druhé se liší o 1. Tedy p = 3, q = 2 a číslo a = 32 — 22 = 5 má
dva dělitele 1 a 5.

2. p — q > 1. Číslo a má právě čtyři různé dělitele 1, p — g, p + <7, a, proto
vzhledem к úvodní úvaze mohou nastat dvě možnosti:

a) p — q je prvočíslo pi a p + q je p2. Pak ovšem pi dělí p2 + pi =
— p + q + {p — q) — 2p, přitom p je prvočíslo, takže Pi = p nebo
Pi = 2. Rovností p — q = Pi je však možnost pi = p vyloučena,
proto musí platit pi —2. Ze soustavy p — q = 2,p + q = A ovšem
plyne <7 = 1, což není prvočíslo.

b) p — q je prvočíslo pi a p + q je prvočíslo P2. Protože P2 > Pi,

je prvočíslo P2 liché. Odtud plyne q — 2, jinak by číslo P2 bylo
součtem dvou lichých prvočísel pag, tedy číslo sudé. Tři prvočísla
pi = p — 2, p a p2 = p + 2 dávají různé zbytky při dělení třemi,
takže jedno z nich je rovno 3. Z p = 3 ovšem plyne pi = 1,
z P2 = 3 zase p = 1, zbývá proto možnost pi = 3, tedy p = 5.
Číslo a — 52 — 22 = 21 má právě čtyři dělitele 1, 3, 7, 21.

Všechny dvojice prvočísel (p, <7) vyhovující zadání úlohy jsou dvojice
(3,2) a (5.2).

Jiné řešení. Vysvětlíme nejdříve, proč q = 2. Připusťme naopak, že
q > 2. Pak obě prvočísla p a, q jsou lichá, takže (p — q) a (p + q) jsou dvě
různá sudá čísla, tudíž jejich součin p2 — q2 je číslo tvaru 4k, kde к ^ 2.
Takové číslo ale má čtyři dělitele 1,2,4 a 4fc, proto se jeho dělitel 2k musí
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rovnat číslu 4. Platí tedy (p -q){p + q) = 8, odkud p- q = 2 a p + q = 4,
takže g = 1, a to je spor. Rovnost q = 2 je dokázána.

Hledáme tedy všechna prvočísla p > 2, pro která má číslo p2 — 4
nejvýše čtyři dělitele. Snadno se přesvědčíme, že vyhovuje p = 3 i p = 5.
V případě p ^ 7 je ovšem jedno z čísel p + 2, p — 2 dělitelné třemi (podle
toho, zda prvočíslo p dává při dělení třemi zbytek 1 nebo 2), takže číslo
p2 — 4 má pět různých dělitelů 1, 3, p - 2, p + 2 a p2 - 4.

Úloze tedy vyhovují dvě dvojice prvočísel (p,q): (3,2) a (5,2).

C - II - 1

Nejprve spočteme, kolik je všech dvojic čísel takových, že 1 ^ a < b ^ 86,
a pak od tohoto počtu odečteme počet těch dvojic, pro něž součin ab není
třemi dělitelný.

Označme C množinu všech přirozených čísel nejvýše rovných 86,

C = {1,2,... ,86}.

Množina C má celkem 86 prvků. Číslo a z ní můžeme vybrat 86 způ-
soby a ke každému takto vybranému číslu a existuje 85 čísel b 6 C
různých od a. Proto počet všech uspořádaných dvojic (a, b) přirozených
čísel (1 5Í a Ф b ^ 86) je roven 86-85. Tuto množinu můžeme rozdělit na
páry uspořádaných dvojic (a, b) а (6, a), proto právě pro polovinu dvojic
platí a < b (druhou polovinu tvoří dvojice, v nichž a > b). Počet všech
dvojic (a, b) přirozených čísel takových, že 1 ^ a < b й 86, je tedy roven

| • 86 • 85 = 3 655. (Je to zároveň počet všech neuspořádaných dvojic
přirozených čísel z množiny C, což je kombinační číslo (826) = 3 655.)

Součin ab je dělitelný třemi, právě když je aspoň jeden z činitelů
a, b dělitelný třemi. Protože mezi čísly z množiny C je právě 28 čísel
dělitelných třemi, je v C právě 86 — 28 = 58 čísel, jež nejsou dělitelná
třemi. Celkem tedy můžeme sestavit | • 58 • 57 = 1 653 dvojic různých
přirozených čísel (a, b) takových, že 1 5Í a < b ^ 86, a přitom součin ab
není dělitelný třemi.

Počet všech dvojic (a, b) přirozených čísel (1 ^ a < b ^ 86), pro které
je součin ab dělitelný třemi, je roven 3 655 — 1 653 = 2 002.

Jiné řešení. Označme A, resp. В množinu všech těch dvojic (a, b) (1 ^
^ a < b ^ 86), ve kterých je číslo a, resp. b dělitelné třemi. Mezi čísly
v množině C = {1,2,... ,86} existuje 28 čísel dělitelných třemi (jsou to
čísla 3,6,9,..., 84). Ke každému číslu a 6 C existuje 86 — a čísel b 6 C
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takových, že a < b. Proto počet všech prvků množiny A je roven

(86 - 3) + (86 - 6) + (86 - 9) + ... + (86 - 84) =

= 28 • 86 - 3 • (1 + 2 + 3 + ... + 28) =

= 28 • 86 - 3 • i ((1 + 28) + (2 + 27) + (3 + 26) + ... + (28 + 1))
= 28 • 86 - 3 • - • 29 • 28 = 2 408 - 1 218 = 1 190.

2

Ke každému číslu 6 G C existuje 6—1 čísel a E C takových, že a < b.
Proto počet všech prvků množiny В je roven

(3 - 1) + (6 - 1) + (9 - 1) + ... + (84 - 1) =

= 3 • (1 + 2 + ... + 28) - 28 = 1 218 - 28 = 1 190.

Průnik množin А а В obsahuje takové dvojice čísel (a, 6), v nichž jsou
obě složky a i 6 dělitelné třemi, přičemž a < b. Těchto dvojic je podle
úvahy z úvodního řešení | • 28 • 27 = 378. Počet prvků sjednocení množin
A a B, tj. počet všech dvojic (a, 6) přirozených čísel (1 ^ a < 6 ^ 86), pro
které je součin ab dělitelný třemi, je roven součtu prvků množin А а В
zmenšený o počet prvků jejich průniku, tj. 1 190 + 1 190 — 378 = 2 002.

С - II - 2

Nechť ABCD je takový lichoběžník se základnami AB a CD (obr. 4).
Označme P střed ramene AD, Q střed ramene ВС а I dotykový bod
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kružnic sestrojených nad rameny jako průměry. Bod P je středem kruž-
nice sestrojené nad ramenem AD, proto jsou úsečky PA a PI shodné
a API je rovnoramenný trojúhelník se základnou AI. Odtud plyne, že
úhly PAI a AIP jsou shodné. Protože bod dotyku dvou kružnic leží
na středné těchto kružnic, je / bodem střední příčky PQ lichoběžníku
ABCD, která je rovnoběžná s jeho základnami. Úhly PIA a IAB jsou
střídavé a mají proto stejnou velikost. Tedy úhly PAI a IAB jsou shodné
a AI je osou úhlu DAB. Bod I leží na ose tohoto úhlu, proto má stejnou
vzdálenost od jeho ramen AD a AB. Podobně se ukáže, že IB je osou
úhlu ABC a bod I má stejnou vzdálenost od přímek AB a BC. Odtud
již plyne, že bod I má stejnou vzdálenost od ramen AD a BC, a leží
proto na ose úhlu, který tato ramena svírají.

C - II - 3

Obě čísla 3 a 7 jsou lichá, proto pro libovolné celé číslo x mají čísla x — 3
a x — 7 (a tedy i čísla (x — 3)2 a (x — 7)2) stejnou paritu. Čísla —2 a 1
mají různou paritu, proto čísla (x — 3)2 — 2, (x — 7)2 + 1 mají různou
paritu, jedno z nich je tedy sudé. Protože jediné sudé prvočíslo je číslo 2,
je jedno z čísel (x — 3)2 — 2, (x — 7)2 + 1 rovno 2.
a) Nechť (x — 3)2 — 2 = 2. Potom (x — 3)2 = 4, tj. x = 5 nebo x = 1.

Pro x = 5 je hodnota výrazu (x — 7)2 + 1 rovna 5, což je prvočíslo,
pro x = 1 je hodnota tohoto výrazu rovna 37, což je také prvočíslo.

b) Nechť (x — 7)2 + 1 = 2. Potom (x — 7)2 = 1, tj. x = 8 nebo x — 6.
Pro x = 8 je hodnota výrazu (x — 3)2 — 2 rovna 23, což je prvočíslo,
pro x = 6 je hodnota tohoto výrazu rovna 7, což je také prvočíslo.
Hledanými celými čísly x jsou všechny prvky množiny {1,5,6,8}.

С - II - 4

Nechť ABC je ostroúhlý trojúhelník, S střed kružnice к jemu opsané
а V průsečík jeho výšek (obr. 5). Nechť U je bod souměrně sdružený
s bodem A podle S. Bod U leží na kružnici к uvnitř toho oblouku BC,
který neobsahuje bod A. Úsečka AU je průměrem kružnice к, proto podle
Thaletovy věty jsou úhly UCA a UBA pravé. Jelikož výška BV je kolmá
na stranu AC trojúhelníku ABC, jsou úsečky BV a UC rovnoběžné.
Z podobného důvodu jsou rovnoběžné i úsečky CV a UB, takže BUCV
je rovnoběžník. Úsečky BC a UV mají tudíž společný střed.
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Odtud již plyne konstrukce. Sestrojíme bod В souměrně sdružený
s bodem C podle středu úsečky UV. Bod A pak určíme jako průsečík
kolmice к přímce BU procházející bodem В a kolmice к přímce CU
procházející bodem C.

Ukažme nyní, že takto sestrojený trojúhelník ABC má všechny poža-
dováné vlastnosti. Bod В je sestrojen tak, že platí BV || UC a CV || UB.
Bod A je sestrojen tak, že platí AB C UB a AC A. UC, což znamená, že
body В a C leží na Thaletově kružnici nad průměrem AU. Body A a U
jsou tudíž souměrně sdružené podle středu této kružnice, která je opsána
trojúhelníku ABC. Ze vztahů AC JL UC a BV || UC plyne BV ± AC,
takže bod V leží na výšce z vrcholu В ke straně AC sestrojeného troj-
úhelníku. Podobně ze vztahů AB _L UB a CV || UB plyne, že bod V
leží na výšce z vrcholu C ke straně AB. Bod V je tedy průsečík výšek
trojúhelníku ABC.

Úloha má za daných podmínek právě jedno řešení.
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Kategorie В

Texty úloh

В - I - 1

Do tabulky 4x4 jsou vepsána kladná reálná čísla tak, že součin v každé
pětici tvaru ^{jP je rovný 1. Zjistěte maximální počet různých čísel zapsa-

ných v tabulce. (P. Černek)

В - I - 2

Určete, kolik čísel můžeme vybrat z množiny {1,2,3,..., 75 599, 75 600}
tak, aby mezi nimi bylo číslo 75 600 a aby pro libovolná dvě vybraná
čísla a, b platilo, že a je dělitelem b nebo b dělitelem a. (Uveďte všechny
možnosti.) (J. Foldes)

В - I - 3

Nechť к je polokružnice sestrojená nad průměrem AB, která leží ve
čtverci ABCD. Uvažujme její tečnu t\ z bodu C (různou od BC)
a označme P její průsečík se stranou AD. Nechť Í2 je společná vnější tečna
polokružnice к a kružnice vepsané trojúhelníku CDP (různá od AD).
Dokažte, že přímky ti a Í2 jsou navzájem kolmé. (J. Švrček)

В - I - 4

Pokud máme n (n ^ 2) přirozených čísel, můžeme s nimi provést následu-
jící operaci: vybereme několik z nich, ale ne všechna a každé z vybraných
čísel nahradíme jejich aritmetickým průměrem. Zjistěte, zda je možno
pro libovolnou počáteční n-tici dostat po konečném počtu kroků všechna
čísla stejná, jestliže se n rovná
a) 2 000, b) 35, c) 3, d) 17. (J. Foldes)
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В - I - 5

Zjistěte, pro která reálná čísla p má soustava

x2y — 2x = p,

y2x -2y = 2p-p2

(P. Černek)právě tři řešení v oboru reálných čísel.

В - I - 6

Je dán rovnostranný trojúhelník MPQ. Najděte množinu vrcholů C
všech trojúhelníků ABC takových, že body P, Q jsou paty výšek z vr-
cholů А, В a bod M je střed strany AB. (J. Šimša)

В - S - 1

Určete reálné číslo p tak, aby rovnice

x2 + 4px + 5p2 + 6p — 16 = 0

měla dva různé kořeny x\, X2 a aby součet x\ + x2 byl co nejmenší.
(J. Šimša)

В - S - 2

Uvnitř stran BC, CA, AB daného ostroúhlého trojúhelníku ABC jsou
po řadě vybrány body X, Y a Z tak, že každému ze čtyřúhelníků ABXY,
BCYZ a CAZX lze opsat kružnici. Dokažte, že body X,Y, Z jsou paty
výšek trojúhelníku ABC. (E. Kováč)

В - S - 3

Na tabuli jsou napsána čísla 1,2,..., 17. Čísla postupně mažeme, a to
tak, že z dosud nesmazaných čísel zvolíme libovolné číslo к a smažeme
všechna ta čísla na tabuli, která dělí k + 17. Dokažte, že opakováním této
procedury se nám nepodaří všechna čísla smazat. (J. Fóldes)

В - II - 1

Najděte všechna přirozená čísla n, která jsou menší než 100 a mají tu
vlastnost, že druhé mocniny čísel 7n + 5a4n+3 končí stejným dvojčíslím.

(J. Šimša)
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В - II - 2

V oboru reálných čísel řešte soustavu rovnic

(.x2 + 1 )(y2 + 1) 4- 24xy = 0

+ 1 = 0.
12ж 12у

x2 + 1 у2 + 1

(J. Šimša)

В - II - 3

Uvnitř stran AB, BC, CD a DA konvexního čtyřúhelníku ABCD jsou po
řadě zvoleny body K, L, M a N. Označme S průsečík přímek KM a LN.
Je-li možno vepsat kružnice čtyřúhelníkům AKSN, BLSK, CMSL
a DNSM, je možno vepsat kružnici i čtyřúhelníku ABCD. Dokažte.

(J. Zhouf)

В - II - 4

Je dáno n nezáporných čísel. Můžeme vybrat libovolná dvě z nich, řek-
němé a a 6, a 6, a zaměnit je čísly 0 a b — a. Dokažte, že opakováním
této operace lze všechna daná čísla změnit na nuly, právě když původní
čísla lze rozdělit do dvou skupin tak, že součty čísel v obou skupinách
jsou stejné. (J. Foldes)
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Řešení úloh

В - I - 1

Označme a, 6, c, d, e, /, g, ň, г čísla vepsaná do levého horního čtverce
3x3 tabulky (obr. 6). Porovnáme-li součiny pro pětice tvaru ^ а Д,
umístěné v této části tabulky, musí platit abcde = bdefg, neboli oc = fg.
Analogicky pro pětice a nám vyjde ahfdi = cigdh, neboli af — cg.
Protože jde vesměs o kladná čísla, plyne z obou rovností / = c a g = a.
Zároveň si uvědomme, že tuto vlastnost (tj. rovnost čísel v protějších
rozích čtverce 3x3) musí mít každý ze čtyř takových čtverců, které
v tabulce existují. To využijeme při dalším doplňování dané tabulky.

b ba c a c

h d h d ii

f /e e 99

Obr. 6

Uvažujme opět umístění ^ v levém horním rohu dané tabulky
psanými čísly a, 6, c, d, e, doplňme další čísla podle právě dokázané
vlastnosti a označme x chybějící číslo v pětici □=§ (obr. 7). Porovnáním
obou shodných součinů dostáváme abcde = abdex, neboli x = c. Kdy-
bychom stejnou úvahu udělali pro pětice polí ^ а §зэ, jež dostaneme
z uvažovaných pětic překlopením podle svislé osy dané tabulky, vyjde
nám analogická rovnost i pro další dvě dvojice polí tabulky (obr. 8).

s ve-

b c

b c

bc

bc

Obr. 8 Obr. 9

Teď už máme tabulku vyplněnou celou až na dvě políčka, do kte-
rých vepíšeme číslo у (obr. 9). Porovnáním součinů v obou vyznačených
pěticích dostáváme abcde — abcdy, neboli у = e. Analogická rovnost
musí ovšem platit i pro druhá dvě centrální pole tabulky ležící na druhé
úhlopříčce, tj. d — a. Stačí, abychom celou úvahu zopakovali pro pětice
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polí, jež vzniknou z uvažovaných pětic překlopením podle svislé osy dané
tabulky.

Všimněme si teď ve vyplněné tabulce pětic polí vyznačených na
obr. 10. Zřejmě musí platit a2bce — obce2, neboli a — e. Vidíme, že ta-
bulka obsahuje nejvýše tři různá čísla a, 6, c (obr. 11), přičemž a3bc = 1.
Nyní zbývá ověřit, že stejný součin a3bc má každá pětice polí tvaru ™,
kterou lze do tabulky umístit. Protože vyplněná tabulka je osově sou-
měrná podle obou úhlopříček, a tedy i středově souměrná, stačí to ověřit
jen pro čtyři možné polohy stejně orientovaných pětic (např. ^ v obvyklé
poloze písmene T).

b c aab ba c e a c e

b ca ab ba e c a e c

bc a ab bc e a c e a

ba c ab be c a e c a

Obr. 10 Obr. 11

Odpověď. V tabulce jsou zapsána nejvýše tři různá kladná čísla a, 6,
c, přičemž a3bc— 1.

В - I - 2

Uvažujme množinu M, která splňuje podmínky ze zadání. Protože M
obsahuje číslo 75 600, musí být aspoň jednoprvková. Dále si všimněme,
že pokud z množiny M odstraníme nějaké číslo а ф 75 600, dostaneme
množinu M'cM, která rovněž splňuje dané podmínky. Ověřme to. Mno-
žina M' i nadále obsahuje číslo 75 600. Jsou-li :r, у libovolná dvě čísla
z množiny M', platí pro ně automaticky, že x \ у nebo у | x, protože to
pro ně platí jako pro prvky množiny M.

Tím jsme vlastně dokázali, že pokud najdeme množinu, která má
m prvků a splňuje podmínky zadání, pak existuje fc-prvková množina
požadovaných vlastností pro libovolné fc, 1 ^ к 5Í m. Stačí tedy najít
vyhovující množinu, která má maximální možný počet prvků.

Je-li a libovolný prvek množiny M, je především a ^ 75 600. Pokud
a < 75 600, musí podle zadání platit, že a | 75 600. Množina M tedy
obsahuje jen dělitele čísla 75 600.

Prvočíselný rozklad čísla 75 600 je 75 600 = 24 • 33 • 52 • 7. Každý dělitel
čísla 75 600 má tedy tvar 2a-3/3-57-7á, kde 0^q^4, 0^/5^3,0^y^

2, 0 5Š 6 1. Každý prvek M je proto charakterizován uspořádanou
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čtveřicí (a,/3,7, <5) odpovídajících exponentů v uvedeném rozkladu na

prvočinitele. Jsou-li p a p' dva různé prvky M a platí-li například p < p\
pak podle zadání musí současně platit a ^ cd, /3 /3', 7 й 7', S ^ <5',
přičemž aspoň jedna nerovnost musí být ostrá (jinak by platilo p = p'),
odkud plyne nerovnost o: + /3 + 7 + 6 < a' + /3' + 7' + V. Protože v našem
případě je0^o: + /34-7 + á^l0, může množina M obsahovat nejvýše
11 prvků. Takovou je např. množina
D = {1, 2, 22, 23,24,24 • 3,24 • 32,24 • З3,24 • З3 • 5,24 • З3 • 52,24 • З3 • 52 • 7}.
Tím jsme dokázali, že z dané množiny můžeme (včetně čísla 75 600) vy-
brat požadovaným způsobem 1, 2,..., 11 prvků.

В - I - 3

Bez újmy na obecnosti předpokládejme, že délka strany čtverce ABCD
je 1. Označme M střed strany AB a U průsečík přímek ři, í2 (obr. 12).
Dále označme l kružnici vepsanou trojúhelníku CDP, S její střed a r

poloměr. Dále nechť Q a R jsou postupně dotykové body přímky t\
s kružnicí l a polokružnicí k. Položme x = \AP\. V řešení využijeme
známý fakt, že vzdálenosti obou dotykových bodů od průsečíku tečen
jsou stejné. Takto například dostáváme

\CP\ = \CR\ + \RP\ = \CB\ + \AP\ = 1 + x.

Řešení provedeme ve třech krocích, přitom každý z nich vyplníme více
způsoby:

1. krok. Výpočet délky x.
2. krok. Výpočet poloměru r.
3. krok. Důkaz kolmosti přímek ti a

(1)
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1. krok, 1. způsob.
Uvažujme pravoúhlý trojúhelník CDP. Délka jeho přepony se podle

(1) rovná 1 + x a délky odvěsen jsou 1 a 1 — x Z Pythagorovy věty tedy
dostáváme

(1 + ж)2 = 12 + (1-х)2.

Řešením této (po úpravě lineární) rovnice je x =

1. krok, 2. způsob.
Označme C bod, který vznikne otočením bodu C okolo středu M

o 90° v kladném směru. Potom bod C leží na přímce p, která je obrazem
přímky BC v uvedeném otočení (obr. 13), přičemž rovnoběžné úsečky

СE a AM mají tutéž délku |. Protože přímka MP je osou úhlu AMR
a přímka MC osou úhlu ВMR, jsou přímky MP a MC navzájem kolmé,
takže bod C leží na přímce MP. Trojúhelníky РАМ' a PEC' jsou tedy
souměrně sdružené podle středu P, a proto x — \AP\ = ||Л.Е| = \.
2. krok, 1. způsob.

Je-li g poloměr kružnice vepsané trojúhelníku se stranami a, 6, c, je
jeho obsah roven |(a + b + c)g. Pro pravoúhlý trojúhelník CDP, v němž
známe délky všech stran, tak dostáváme (připomeňme, že |PCj = 1 +
+ x = |)

||СД| • \DP\
\{\CD\ A \DP\ + \PC\) 4

1
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2. krok, 2. způsob.
Nechť A"B" je obraz úsečky AB v posunutí ve směru polopřímky

СВ o délku | (obr. 14). Označme D' průsečík přímek A"B" a t\. Potom
kružnice, jejíž částí je polokružnice k, je vepsána trojúhelníku D'B"C
a navíc jsou trojúhelníky D'B"C a CDP podobné. Poměr poloměrů je-
jich vepsaných kružnic je tedy roven poměru jejich kratších odvěsen. To
znamená, že | : r = | : |, neboli r = \.

\D C

P

BV2A

A"D' B"

Obr. 14

3. krok, 1. způsob.
Podle 2. kroku víme, že průměr kružnice l je roven poloměru polo-

kružnice k. Proto přímka p (osa úsečky AD) je společnou vnitřní tečnou
polokružnice к a kružnice l (obr. 15). Přitom přímka p je kolmá na přímku
AD, která je jejich vnější společnou tečnou. V osové souměrnosti podle
středné SM obou kružnic je obrazem vnější tečny AD vnější tečna í2
a obrazem vnitřní tečny p vnitřní tečna t\. Jsou tedy navzájem kolmé
i tečny t\ a Í2-

3. krok, 2. způsob.
Označme V průsečík přímky Í2 se stranou CD. Protože délky obou

společných vnějších tečen (pokud je bereme jako úsečky, jejichž kraj-
nimi body jsou dotykové body) polokružnice к a kružnice l jsou stejné,
tj. \AT\ = \A'T'\, dostáváme na základě shodnosti délek tečen z bodu P
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Obr. 15

ke kružnici l a shodnosti délek tečen z bodu U к polokružnici к

\AT\ = \AP\ + \PT\ = \AP\ + \PQ\ = 2\AP\ + \RQ\,
\A'T'\ = \A'U\ + \UT'\ = \RU\ + \UQ\ = \RQ\ + 2\UQ\,

což znamená, že \UQ\ = \AP\ = Dále z rovnosti délek tečen z bodu C
к polokružnici к a kružnici l dostáváme \RQ\ = \CR\ — \CQ\ — \CB\ —
— \CW\ = 1 —| = \. To znamená, že |Př7| = \ = \PD\, takže čtyřúhelník
PUVD je deltoid, a tedy \<$lPUV\ = \<$:PDV\ = 90°, tj. přímky t\ a 12
jsou navzájem kolmé.

Tím je důkaz hotový.

В - I - 4

Rozeberme nejprve případ a), tedy n = 2 000. Vyberme tisíc čísel a pro-
veďme s nimi danou operaci. Potom vezměme zbylých tisíc čísel a rovněž
s nimi proveďme danou operaci. Dostaneme tisíc čísel rovných a a tisíc
čísel rovných b. Pokud a = b, je úloha vyřešena. Pokud а Ф b, tak po-

stupně vybírejme číslo rovné a a číslo rovné b a nahraďme je průměrem
|(a + 6). Takto můžeme vybrat 1000 dvojic a všechna čísla nahradit
číslem I (a + b). Tedy pro n = 2 000 existuje posloupnost kroků, která
převede libovolných 2 000 čísel na stejná čísla.

Případ n — 35 budeme řešit podobně. Vyberme 7 disjunktních pětic
a v každé z nich provedme operaci popsanou výše, přičemž v každé do-
staneme stejná čísla. Z každé nově vytvořené pětice vyberme teď jedno
číslo. Dostaneme 7 čísel, s kterými opět provedeme danou operaci. Podob-
ným způsobem vyberme další sedmice a vytvořme odpovídající průměry.
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Všechny sedmice budou stejné, neboť v každé pětici máme stejná čísla.
Všechna čísla budou tedy stejná. I v tomto případě existuje posloupnost
kroků, která převede libovolných 35 čísel na stejná čísla.

Uvažujme n — 3. Uvažujme trojici čísel (1,1,2). Provádět danou ope-
raci s dvěma jednotkami nemá smysl, takže po prvním kroku, který změní
naši trojici, dostaneme čísla (1, |, |). Znovu jsme dostali dvě čísla stejná,
která se nevyplatí „průměrovat“. Tedy další krok, který změní naši troji-
ci, ji nechá v tvaru (|, |, |). Všimněme si, že po každém kroku je součet
čísel stejný. Dokážeme to i v obecném případě: Označme <21,02,..
daná čísla. Bez újmy na obecnosti proveďme krok s prvními m (m < n)
čísly. Dostaneme čísla

<2l T O2 T • • • T 0Lm

®n

Ol + 02 + • • • + <2m

j \-l i • • • 1 •) * * * ?
mm

m-krát

al T <22 "b • • • V O
—(- am+1 + ... + an — cii + ... + an.Jejich součet je m ■

m

Tím je uvedené tvrzení dokázáno.
Máme-li tedy dostat z čísel (1,1,2) všechna čísla stejná, tak na konci

úprav musíme dostat všechna čísla rovná -dď+1 = |. Všimněme si, že při
postupných krocích se ve jmenovateli čísel objevují jen mocniny čísla 2.
Dokážeme to matematickou indukcí.

V prvním kroku to zřejmě platí. Po к krocích máme tři čísla, která
mají ve jmenovateli jen mocniny čísla 2. V dalším kroku můžeme vybrat
buď jedno číslo, které nám trojici nezmění, anebo dvě čísla. Nahradíme-li
je jejich průměrem, budeme zřejmě dělit číslem 2. A znovu dostaneme
ve jmenovateli jen mocninu dvojky. V každém kroku dostaneme tedy
do jmenovatele jen mocniny dvojky, ale na konci úprav tam máme mít
číslo 3, což je spor. Zjistili jsme, že pro n = 3 neexistuje pro každou trojici
čísel posloupnost kroků, která změní všechna čísla na stejná.

Případ n = 17 dokážeme podobně jako případ n = 3. Ukázali
jsme dříve (pro obecné n), že v každém kroku zůstává zachován sou-
čet čísel. Vezměme tedy nějakou 17-tici přirozených čísel, jejíž součet
není dělitelný 17. Na konci máme dostat 17-tici stejných čísel rovných
<2i + <22 + • • • + <2l7

přičemž tento zlomek je v základním tvaru. V žád-

ném kroku však nedostaneme do jmenovatele číslo 17. Toto tvrzení znovu

dokážeme indukcí. První krok je zřejmý. Po к krocích dostaneme 17-tici
čísel, v jejichž jmenovateli není číslo 17. Z těchto čísel vezměme m < 17

17
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a sečtěme je. Podle indukčního předpokladu dostaneme ve jmenovateli
nejmenší společný násobek jmenovatelů vybraných čísel. Ten podle in-
dukčního předpokladu nebude dělitelný 17. Pokud teď tento součet vy-
dělíme číslem m < 17, nedostaneme ve jmenovateli číslo dělitelné 17.
Tudíž ani po k +1 krocích nedostaneme ve jmenovateli číslo dělitelné 17.
Protože na konci musíme dostat čísla, která mají ve jmenovateli 17, dostá-
váme spor. Pro některé 17-tice přirozených čísel tedy nedokážeme najít
posloupnost kroků, která z nich vytvoří stejná čísla.

В - I - 5

Pokud vynásobíme první rovnici neznámou у a druhou neznámou x, do-
staneme na levé straně obou rovnic x2y2 — 2xy. Porovnáním pravých
stran máme

py = p(2 - p)x. (1)

Pokud p — 0, vypadá daná soustava takto:

x2y — 2x — 0,

y2x -2y = 0,

přičemž po jednoduché úpravě je

x(xy — 2) = 0,
y(xy - 2) = 0.

Vidíme, že soustava má nekonečně mnoho řešení: je jím každá dvojice
(x,y) reálných čísel taková, že xy = 2. (Kromě těchto dvojic je řešením
pouze dvojice x = у — 0.)

Pokud p = 2, dostaneme soustavu

x(xy - 2) = 2,
y{xy - 2) = 0,

která má jediné řešení у = 0, x = — 1.
Vraťme se teď к rovnici (1), přičemž budeme dále předpokládat, že

p £ {0,2}. Rovnici vydělíme číslem p:

у = (2 -p)x. (2)
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Dosazením tohoto vztahu do první z daných rovnic dostáváme (p ф 2)
kubickou rovnici

(2 — p)x3 — 2x — p — 0.

Řešení kubické rovnice obecně není tak jednoduché jako řešení kvad-
ratické rovnice. V našem případě však můžeme uhodnout jeden její kořen
x = — 1. Potom můžeme polynom (2 — p)x3 — 2x — p beze zbytku vydělit
kořenovým činitelem x + 1. Vydělením dostáváme

(3)

(2 - p)x3 — 2x - p = (x + 1) ((2 - p)x2 + (p - 2)x — p).

Stačí tedy vyřešit kvadratickou rovnici

(2 - p)x2 + (p — 2)x - p = 0. (4)

Uvědomme si, že neznámá у je jednoznačně určena neznámou x pomocí
vztahu (2). Má-li tedy mít daná soustava právě tři řešení, musí mít rov-
nice (3) tři navzájem různá řešení. To znamená, že rovnice (4) musí mít
dvě různá řešení, která se navíc nerovnají —1. Budeme zkoumat, kdy je
diskriminant D rovnice (4) kladný. Jednoduchým výpočtem dostáváme

D = (p-2f- 4(2 - p)(-p) = (2 - p)(3p + 2).

Odtud vidíme, že D > 0, právě když p E ( —1,2). Dosazením x = — 1
snadno vidíme, že rovnice (4) má kořen —1 jen pro p — |. Rovnice (3)
má proto tři různá řešení, právě když p E (—1,0) U (0, |) U (|,2).

Obráceně, má-li rovnice (3) tři různá řešení, má tři různá řešení i sou-
stava (2), (3), která je však pro p ф 0 а p Ф 2 ekvivalentní s danou
soustavou.

Odpověď. Daná soustava má v oboru reálných čísel právě tři řešení,
právě když p E ( —|, 0) U (0, |) U (f,2).

Poznámka. Úlohu je možno řešit více způsoby
rovnice vyjádřit neznámou у pomocí x a to dosadit do druhé rovnice,
anebo první rovnici vydělit x a druhou у a získané rovnice odečíst. Oba
tyto způsoby opět vedou na kubickou rovnici (3).

například z první

В - I - 6

Uvažujme trochu obecnější úlohu. Předpokládejme jen, že trojúhelník
MPQ je rovnoramenný se základnou PQ, přičemž \<ď.PMQ\ = p.
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Označme standardně a, (3, 7 vnitřní úhly trojúhelníku ABC. Body P, Q
jsou paty výšek z bodů А, В, takže body А, В, P, Q leží na kružnici se
středem M (jde o Thaletovu kružnici nad průměrem AB). To znamená,
že \MA\ = \MB\ = \MP\ = \MQ\, a tedy trojúhelník AMQ (pokud
А ф Q) je rovnoramenný; analogicky trojúhelník BMP. Potom platí

\<£AMQ\ = 180° - 2|<£MAQ|
|<£PMP| = 180° - 2|<£MPP| \<PCQ\ = 7. (1)

Dále rozeberme několik případů podle toho, zda má být trojúhelník ABC
ostroúhlý, pravoúhlý, anebo tupoúhlý.

Případ 1. Trojúhelník ABC je ostroúhlý (obr. 16). Zřejmě body M
a C leží v opačných polorovinách určených přímkou PQ. Navíc platí
\<MAQ\ = a, |<£MPP| = (3 a \<AMQ\ + ip + |<£BMP| = 180°,
odkud po dosazení (1) dostáváme 7 = 180° — a — (3 = 90° — |<p.

Případ 2. Trojúhelník ABC má při vrcholu A pravý úhel (obr. 17).
Zřejmě body M a C leží v opačných polorovinách určených přím-
kou PQ. Dále A = Q a |<£BMP| = 180° — <p. Z (1) potom vyplývá
(3 — \<AlMBP\ = a tedy 7 = 90° — Pokud je pravý úhel při
vrcholu B, analogicky dostaneme 7 = 90° — \ty.

Případ 3. Trojúhelník ABC má při vrcholu A tupý úhel (obr. 18).
Zřejmě body M a C leží v opačných polorovinách určených přímkou
PQ. Přitom |<£MAQ| = 180° — a, |<£MBP| = (3 a — \*$lAMQ\ +
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+ |<£PMP| = 180°, odkud po dosazení (1) dostáváme 7 = 180° —
— /3 = 90° — Pokud je tupý úhel při vrcholu В, analogicky dostaneme
7 = 90° - \(p.

Případ 4• Trojúhelník ABC má při vrcholu C tupý úhel (obr. 19).
Zřejmě body MaC leží ve stejné polorovině určené přímkou PQ. Dále
z pravoúhlých trojúhelníků ABQ a ABP dostáváme \AřMAQ\
|<£MPP| — /3 a |<£AMQ| 4- |<£PMP| = 180° + <p. Z (1) potom vyplývá
7 = 90° + \<p.

a —

a

Zřejmě trojúhelník ABC nemůže mít při vrcholu C pravý úhel, jinak
by body С, P, Q splynuly. Celkově jsme tedy dostali, že pokud bod C
leží v polorovině opačné к polorovině PQM, je |<£P(7Q| = 90° —

apokud bod C leží v polorovině PQM, je |<£PCQ| = 90° + |</?. Množinou
všech takových bodů C je tedy kružnice, označme ji /с, nad tětivou PQ
s výjimkou bodů P, Q (kde větší oblouk kružnice к je částí množiny
všech bodů X takových, že \^pPXQ\ — 90° — \v).

Obráceně nechť C G k\{P,Q} a MPQ je rovnoramenný trojúhelník
se základnou PQ. Potom si snadno uvědomíme, jako bychom sestrojili
body A, B. Bod A leží na přímce CQ a na přímce, která je kolmá na CP
a prochází bodem P. Analogicky dostaneme bod В. V takovémto troj-
úhelníku ABC budou body P, Q patami výšek z vrcholů A, B. Stačí tedy
dokázat, že M je střed AB. Označme N střed strany AB. Dokážeme, že
M = N.. Označme гр — |<£PiVQ|. Zřejmě bod N leží v polorovině PQM
a je středem kružnice, na které leží body A, P, P, Q, takže trojúhelník
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NPQ je rovnoramenný se základnou PQ. Přitom z výše uvedených úvah
vyplývá, že pokud bod C leží v polorovině opačné к polorovině PQM, je
7 = 90° — a pokud bod C leží v polorovině PQM, je 7 = 90° + \'ф.
To znamená, že ф = ip. Navíc oba body M a iV leží na ose úsečky PQ.
Takže nutně M = N, a tedy M je opravdu střed strany AB.

Odpověď. Hledanou množinou všech vrcholů C je kružnice к s výjim-
kou bodů P, Q. Speciálně pro <p = 60° je к kružnice souměrně sdružená
s kružnicí opsanou trojúhelníku MPQ podle přímky PQ.

Jiné řešení. Uvažujme znovu obecnější úlohu jako v předcházejícím
řešení. Opět si uvědomme, že body A, P, P, Q leží na kružnici se stře-
clem M. Vzhledem к tomu, že M je střed úsečky AB, leží aspoň jeden
z bodů Л, В nutně v polorovině PQM. Bez újmy na obecnosti nechť je to
bod B. Potom z věty o obvodových úhlech vyplývá, že \^pQBP\ = |<p.
Dále

\<£BCQ\ = 90° - \<QBC\ = 90° - \<£QBP\ = 90° - |
Pokud 7 < 90°, leží bod C v polorovině opačné к polorovině PQM a platí
7 = \<^pBCQ\ — 90° — \ip. Pokud 7 > 90°, leží bod C v polorovině PQM
a platí 7 = 180° — \^pBCQ\ — 90° + |tp.

Další postup je už analogický jako v prvním řešení.
Diskusi případů v obou řešeních můžeme částečně obejít. Stačí si

uvědomit několik faktů. Pokud V je průsečíkem výšek v trojúhelníku
ABC, je bod C průsečíkem výšek v trojúhelníku ABV. Proto trojúhelník
ABC má vlastnost ze zadání úlohy, právě když ji má trojúhelník ABC,
kde С = V. Znamená to, že množina vrcholů C všech vyhovujících
trojúhelníků je totožná s množinou jejich průsečíků výšek V. Protože
body С, V leží vždy v opačných polorovinách určených přímkou PQ
a platí |<£PV<3| + \<%.PCQ\ = 180°, stačí najít množinu vrcholů C jen
v jedné ze zmíněných polorovin (jak už víme, je jí kružnicový oblouk),
v druhé polorovině touto množinou pak musí být doplněk toho oblouku
do celé kružnice.

В - s - 1

Pro kořeny 27, 27 dané kvadratické rovnice (pokud existují) platí podle
Viětových vztahů rovnosti

27 + X2 = —4p a 2727 = 5p2 + 6p — 16,
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ze kterých vypočteme zkoumaný součet

x\ + x\ — (xi + x2)2 - 2xlX2 = (-4p)2 - 2(5p2 + 6p- 16) =

= 6p2 - 12p + 32 = 6{p - l)2 + 26.

Odtud plyne nerovnost x\ + x2 ^ 26, přitom rovnost může nastat, jen
když p = 1. Zjistíme proto, zda pro p = 1 má daná rovnice skutečně dvě
různá řešení: jde o rovnici x2 + 4x - 5 = 0 s kořeny xi = — 5 a x2 = 1.
Tím je úloha vyřešena.

Dodejme, že většina řešitelů patrně nejprve zjistí, pro která p má daná
rovnice dva různé kořeny. Protože pro její diskriminant D platí

D — (4p)2 — 4(5p2 + 6p — 16) = —4p2 — 24p + 64 = —4 (p + 8)(p — 2),

jsou taková p právě čísla z intervalu (—8,2).
Odpověď: Maximální hodnota součtu x\ + x\ (rovná 26) odpovídá

jedinému číslu p = 1.

В - S - 2

V tětivovém čtyřúhelníku ABXY označme <p = \<$lAXB\ — \<$:AYB\
velikost obou shodných obvodových úhlů nad společnou tětivou AB
(obr. 20). Podobně označme ф — \ AzBZC\ = \^pBYC\ aw = \<$lCXA\ —

— \*YCZA\ velikosti shodných obvodových úhlů nad tětivami ВС a CA
v tětivových čtyřúhelnících BCYZ a CAZX. Zapíšeme-li postupně rov-
nosti pro každou ze tří dvojic vyznačených sousedních úhlů ve vrcholech
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X, Y a Z, dostaneme pro neznámé velikosti у?, 'ф a w soustavu tří lineár-
nich rovnic

(fi + ф = 71,

+ CO = 71,

W + </> = 71,

která má jediné řešení <p — ф — u> = |ti, jak snadno zjistíme např. odečte-
ním libovolných dvou rovnic a dosazením. Tím je tvrzení úlohy dokázáno.

Poznámka. Jsou-li naopak body X, Y a Z paty výšek trojúhelníku
ABC, jsou čtyřúhelníky ABXY, BCYZ a CAZX tětivové podle Tha-
letový věty.

В - S - 3

Protože pro zvolené číslo к vždy platí 18 к + 17 й 34 a mezi čísly
18,19,..., 34 má každé z čísel 12,13,..., 17 pouze jeden násobek (totiž
dvojnásobek), libovolné číslo m E {12,13,..., 17} smažeme pouze při
volbě jediného čísla к (při kterém к + 17 — 2m). Například číslo 15
smažeme pouze volbou к — 13, číslo 13 pouze volbou к = 9. Ke smazání
obou čísel 15 a 13 tedy musíme někdy vybrat к = 13 a někdy později
к — 9. Pak ale v okamžiku výběru čísla к = 9 je už smazáno jak číslo 10
(smazali jsme ho nejpozději při výběru к = 13), tak číslo 1 (to jsme
smazali hned při prvním výběru). Při žádném dalším výběru už proto
nesmažeme číslo 9, protože číslo к + 17 je dělitelné devíti pouze při vý-
běrech к = 1 а к — 10. Dokázali jsme, že opakováním dané procedury
nelze smazat všechna tři čísla 15, 13 a 9, tím spíše nelze smazat všechna
čísla od 1 do 17.

Jiné řešení. Připusťme, že všechna čísla lze smazat po n výběrech čísla
к (spojených s mazáním všech dělitelů čísla к +17) a že každým výběrem
se něco umaže (jinak je takový výběr zbytečný). Poslední mj. znamená,
že každé číslo je vybráno nejvýše jednou. Zřejmě n > 1 a pro poslední
vybrané číslo kn musí platit kn\(kn + 17), tj. kn = 17 (možnost kn =
= 1 je vyloučena tím, že číslo 1 je smazáno hned při prvním výběru).
Před posledním výběrem jsou na tabuli jen dělitelé čísla 34, tedy kromě
čísla 17 případně číslo 2. Kdyby tam číslo 2 nebylo, muselo by opět platit
kn-1 | (kn-i + 17), což už možné není. Proto nutně kn-i = 2. Taková
volba je ale zbytečná, protože číslo 2 + 17 je prvočíslo.
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В - II - 1

Protože číslo 4n + 3 je liché, musí být liché i číslo 7n + 5, takže číslo n
musí být sudé: n — 2k pro vhodné celé k.

Požadovanou vlastnost lze vyjádřit takto: rozdíl D = (7n + 5)2 —
— (4n + 3)2 je dělitelný číslem 100. S využitím rozkladu

D = ((7n + 5) - {An + 3)) ((7n + 5) + (4n + 3)) = (3n + 2)(lln + 8)

po dosazení n — 2k dostaneme vyjádření D = 4(3к A- l)(llfc + 4). Zajímá
nás tedy, kdy je součin {3k + l)(llfc + 4) dělitelný číslem 25. Oba činitelé
Зк + 1 a llk + 4 nemohou být násobky pěti zároveň, protože pro jejich
největší společný dělitel vychází

nsd(llA; + 4,3fc + l) = nsd(3fc+l,2fc+l) = nsd(2fc + l,fc) = nsd(A;, 1) = 1.

Zjistíme proto, kdy platí 25 | ЗА; + 1 a kdy platí 25 | 11 A; + 4. Z vyjádření

3A; + 1 = 3{k - 8) + 25 a llk + 4 = 11 (A; - 11) + 125

vidíme, že 25 | 3A; + 1, právě když к = 25A + 8, zatímco 25 | 11 A: -P 4, právě
když к = 251 + 11 (písmeno t značí v obou případech celé číslo). Hledaná
čísla n = 2k jsou proto čísla tvarů n = 501 + 16 a n = 501 + 22, v rozmezí
od 1 do 99 jsou to tudíž právě čísla 16, 22, 66 a 72.

Jiné řešení. Nejprve zjistíme poslední číslice čísel (7n + 5)2 a (4n + 3)2
v závislosti na poslední číslici čísla n:

A 70 1 2 3 5 6 8 9n

7n + 5 5 2 9 6 3 0 7 4 1 8

(7n + 5)2 4 95 1 6 0 9 6 1 4

7 9 3 74n + 3 3 1 5 1 5 9

(4n + 3)2 9 9 1 5 1 9 9 1 5 1

(Výpočet celé tabulky se zkrátí na polovinu, když si předem jako v před-
chozím řešení uvědomíme, že n musí být sudé.) Vidíme, že čísla (7n + 5)2
a (4n + 3)2 končí stejnou číslicí, právě když číslo n končí číslicí 2 nebo
6. Každé hledané n < 100 je tedy buď tvaru n = 10a + 2, nebo tvaru
n = 10a + 6, kde a je neznámá číslice. I když by stačilo otestovat všech
2 • 10 = 20 takových čísel n, zvolíme jiný postup.
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(i) Pro n = 10a + 2 platí

(7n + 5)2 = (70a + 19)2 = 4 900a2 + 2 660a + 361
(4n + 3)2 = (40a + ll)2 = 1 600a2 + 880a + 121.

Vidíme, že číslo (7n + 5)2 má na místě desítek stejnou číslici, jakou má
číslo 6a + 6 na místě jednotek; číslo (4n + 3)2 zase má na místě desítek
stejnou číslici, jakou má číslo 8a + 2 na místě jednotek. Hledáme tedy
číslice a, pro které rozdíl (8a + 2) — (6a + 6) = 2(a — 2) končí číslicí nula;
zřejmě to platí pouze pro a = 2 a a = 7, kterým odpovídají řešení n = 22
a n = 72.

(ii) Pro n = 10a + 6 platí

(7n + 5)2 = (70a + 47)2 = 4 900a2 4- 6 580a + 2 209
(4n + 3)2 = (40a + 27)2 = 1 600a2 + 2 160a + 729.

Tentokrát jsou počty desítek v těchto číslech stejné jako počty jednotek
v číslech 8a a 6a + 2. Rozdíl 8a — (6a + 2) = 2 (a — 1) končí číslicí nula
jedině pro a = 1 a a — 6. Odpovídající řešení jsou n = 16 a n = 66.

В - II - 2

Protože pro libovolná reálná čísla ж, у jsou obě čísla (x2 + 1) a (у2 + 1)
nenulová (totiž kladná), můžeme přejít к novým neznámým

x
и = — a v = — ,x2 + 1 y2 + 1

ve kterých má zřejmě původní soustava rovnic tvar

1 + 24uv = 0 a 12и + 12v + 1=0.

Odtud například pro neznámou и snadno dostaneme kvadratickou rovnici

24u2 + 2u — 1 = 0

s kořeny щ = | a U2 = — kterým „symetricky" odpovídají hodnoty
v\ = — | a V2 = |. Protože (kvadratické) rovnice

1 1ts

s2 + 1 6 a t2 + 1 4
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mají řešení
Si,2 = 3 ± y/Š a ti,2 — — 2 ± л/З,

má původní soustava právě osm řešení, a to dvojice tvaru (ar, y) = (3 ±
± V^, —2 ± v/3) а (ж, у) = (—2 ± \/3,3 ± y/Š), kde znaménka jsou kom-
binována libovolně.

В - II - 3

Předpokládejme, že zmíněným čtyřem čtyřúhelníkům lze vepsat kružnice.
Body dotyků těchto kružnic s příslušnými stranami čtyřúhelníků označme

jako na obr. 21. Ze souměrnosti tečen sestrojených z jednoho bodu к téže
kružnici plynou rovnosti

\APi \ = \AP[\, \BP2\ = |BPÍ|, \CP3\ = \CPÍ\, \DPt\ = \DP't\ (1)

a

|SQi| = |sq;i, |sg2| = |s<%|, |sg3| = ISQál, |s<?4| = |sq'|. (2)

Ze souměrnosti společných vnějších tečen dvou kružnic zase plynou rov-
nosti

|PiP2| = IQÍQal, IP2P3I = IQ2Q3I,
UVil = IQsQíl. \ptpl\ = IQ4Q1I-

(3)
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Podle známé poučky lze konvexnímu čtyřúhelníku ABCD vepsat kruž-
nici, právě když délky jeho stran splňují podmínku

\AB\ + \CD\ = \BC\ + \DA\

kterou lze s ohledem na (1) upravit do tvaru

+ \РъК\ = IACÍI + 1ВД1- (4)

Všimněme si, že podle (2) a (3) platí rovnosti

\PiP2\ = \Q'M = |<?;s| + |sg2| = |sq!| + |sq2|,
|ЯгС51 = 1<?20з| = \Q'2S\ + |SQ3| = |SQ2| + |SQ3|,
\PzPÍ\ = Юз<?4| = |03S| + |SQ„| = |SQ3| + |SQ4|,
IAA'1 = IQiOiI = |0is| + ISQíl = \SQ,\ + |SQi|.

Obě strany (4) se tudíž rovnají součtu |5Qi| + |5<5г| + |5(5з| 4- |5Q4|
a důkaz je hotov.

В - II - 4

Poznamenejme nejdříve, že popsanou operaci nemá smysl provádět s dvo-
jicí čísel (a, b) obsahující číslo nulu, neboť taková dvojice se operací ne-
změní.

(i) Předpokládejme nejdříve, že danou skupinu n nezáporných čísel
lze rozdělit na dvě podskupiny А а, В se stejným součtem čísel. Ukažme,
že v tomto případě lze opakováním operace změnit všechna čísla obou
skupin А а В na nuly. Obsahuje-li některá ze skupin A, В aspoň jedno
kladné číslo (jinak jsme hotovi), plyne z rovnosti součtů čísel v obou
skupinách, že kladné číslo existuje v obou z nich. Vyberme tedy kladné
číslo a G A a kladné číslo b G В a proveďme operaci právě s těmito dvěma
čísly. Je-li například a ^ b (v případě a ^ b je úvaha obdobná), změní
se číslo a ve skupině A na nulu a číslo b ve skupině В na číslo b — a,
takže se celkový součet čísel ve skupině A zmenší o a, stejně jako celkový
součet čísel ve skupině B. Proto budou po provedené operaci součty čísel
ve skupinách А а В opět stejné, přitom se celkový počet nul v A U В
zvětší o 1 (pokud bylo а / b) nebo o 2 (pokud bylo а = b). Opakováním
popsané operace s kladnými čísly aeAabeB se proto po konečném
počtu kroků dostaneme do situace, kdy v žádné ze skupin A: В již nebude
kladné číslo.
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(ii) Předpokládejme nyní, že z dané n-tice nezáporných čísel jsme
dostali vhodným opakováním operace n-tici složenou ze samých nul.
Dokažme indukcí, že před provedením každé jednotlivé operace bylo
možné aktuální n-tici čísel rozdělit na dvě podskupiny А а, В se stej-
ným součtem. Před provedením poslední operace musela mít aktuální
n-tice čísel tvar {o, a, 0,0,..., 0}, takže vhodné rozdělení bylo A = {a}
а В = {a, 0,0,..., 0}. Předpokládejme nyní, že po provedení některé
operace s čísly (a, b), a 5Í 6, existovalo rozdělení čísel do podskupin A
a В se stejným součtem, a ukažme, že i před provedením této operace
takové rozdělení existovalo. Jistě můžeme předpokládat, že nová čísla 0
a b — a nepatří do stejné z obou podskupin A a В (jinak přehodíme číslo
0 do druhé podskupiny, což nezmění součty čísel v podskupinách), nechť
tedy například 0 E A a b — а E B. Potom číslo 0 v A zaměníme číslem
a a číslo b — a v В zaměníme číslem b; dostaneme tak vhodné rozdělení
aktuálních čísel před uvažovanou operací.

60



Kategorie A

Texty úloh

A - I - 1

Je-li 5 obsah trojúhelníku o stranách o, b, с a T obsah trojúhelníku
o stranách a + b, b c, c + a, pak platí T ^ 45. Dokažte a zjistěte, kdy
nastane rovnost. (P. Kaňovský)

A - I - 2

V oboru celých čísel x, у řešte rovnici

Os)2 + (у4) 5 = 2xy2 + 51

kde n5 značí násobek pěti nejbližší к číslu n, například (—9)5 = —10.
(P. Černek)

A - I - 3

V daném trojúhelníku ABC protíná osa úhlu ACB stranu AB v bo-
dě К a kružnici opsanou v bodě L (L ^ C). Označme V střed kružnice
vepsané trojúhelníku ABC, 5 střed kružnice opsané trojúhelníku KBV
a Z průsečík přímek AB a SL. Dokažte, že přímka SK je tečnou kružnice
opsané trojúhelníku KLZ. (J. Foldes)
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A - I - 4

Nechť гг ^ 2 je dané přirozené číslo. Pro které hodnoty reálného parame-
tru p má soustava rovnic

= №,

= px3

= PXm

= PX\~2
xn

(J. Švrček)alespoň dvě řešení v oboru reálných čísel?

A - I - 5

Najděte všechny mnohočleny P(x) s reálnými koeficienty, které pro každé
reálné číslo x splňují rovnost

(.x + 1) P{x — 1) + (x — 1) P(x + 1) = 2x P(x).

(.E. Kováč)

A - I - 6

Najděte všechny čtyřstěny, které mají síť tvaru deltoidu a právě čtyři
hrany dané délky a. (Deltoidem rozumíme konvexní čtyřúhelník sou-

měrný podle jediné ze svých úhlopříček; nepatří к nim tedy ani čtverec,
ani kosočtverec.) (P. Leischner)

A - S - 1

V oboru celých čísel x řešte rovnici

3(ж2)5 4- (Зж)5 = (Зх - 2)(x + 2),

kde П5 značí násobek pěti nejbližší číslu n, např. (—3)5 = —5.
(J. Šimša)
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A - S - 2

Označme S střed kružnice vepsané danému trojúhelníku ABC a P, Q
paty kolmic z vrcholu С к přímkám, na kterých leží osy vnitřních úhlů
BAC a ABC. Dokažte, že přímky AB a PQ jsou rovnoběžné.

(J. Švrček)

A - S - 3

Zjistěte, pro která reálná čísla p má soustava rovnic

x2 + 1 = (p + l)x + py - z,

У2 + 1 = (p + l)y + pz - x,

z2 + 1 = (p + 1 )z + px — у

s neznámými x, y, z právě jedno řešení v oboru reálných čísel.
(E. Kováč)

A - II - 1

Dokažte, že pro libovolná čísla a, /3 £ (0, |тч) platí nerovnost

—í— ^ 2 л/tg a + tgfl.
cos a cos (3

Zjistěte rovněž, kdy nastane rovnost.

1

(E. Kováč)

A - II - 2

Najděte všechny dvojice přirozených čísel x a p, pro které platí

x2 = 4y + 3 • n(x, y)

(P. Černek)kde n(x,y) značí nejmenší společný násobek čísel ха у.

А - II - 3

Do kružnice к je vepsán čtyřúhelník ABCD, jehož úhlopříčka BD není
průměrem. Dokažte, že průsečík přímek, jež se kružnice к dotýkají v bo-
dech В a D, leží na přímce AC, právě když platí = \AD\-\BC\.

(E. Kováč)
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A - II - 4

V oboru reálných čísel řešte soustavu rovnic

x2 - 1 = p{y + z),
У2 - 1 =p(z + x),
z2 — 1 — p{x + y)

s neznámými x, y, z a parametrem p. Proveďte diskusi počtu řešení.
(E. Kováč)

A - III - 1

V oboru celých čísel řešte soustavu rovnic

(4z)5 + 7y = 14,
(2j/)6 - (3*)7 = 74,

kde (n)k značí násobek čísla к nejbližší číslu n. (P. Černek)

A - III - 2

Uvažujme libovolný rovnostranný trojúhelník KLM, jehož vrcholy K, L
a M leží po řadě na stranách AB, ВС & CD daného čtverce ABCD.
Najděte množinu středů stran KL všech takových trojúhelníků KLM.

(J. Zhouf)

A - III - 3

Dokažte, že přirozené číslo A je druhou mocninou některého přirozeného
čísla, právě když pro každé přirozené n je aspoň jeden z rozdílů

{A + l)2 - A, (A + 2)2 - A, {A + 3)2 - A, ..., (A + n)2 - A

(P. Kaňovský)dělitelný číslem n.

A - III - 4

Najděte všechny dvojice reálných čísel a, 6, pro které má rovnice

ax2 — 2áx A b
= x

x2 — 1

v oboru reálných čísel právě dvě řešení, přičemž jejich součet je 12.
(P. Černek)
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A - III - 5

V rovině je dán trojúhelník KLM a bod A ležící na polopřímce opačné
к polopřímce KL. Sestrojte pravoúhelník ABCD, jehož vrcholy В, C
a D leží po řadě na přímkách KM, KL a LM. (.P. Calábek)

A - III - 6

Nechť IR+ značí množinu všech kladných reálných čísel. Najděte všechny
funkce f: IR+ —> 1R+ splňující pro libovolná x, у G 1R+ rovnost

/ {xf (y)) = f{xy) + x.

(P. Kaňovský)
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Řešení úloh

A - I - 1

Vyjádření obsahu S obecného trojúhelníku z délek jeho stran a, b, c je
dáno Heronovým vzorcem

a + b + c
S = yjs(s — a)(s - b)(s - c), kde s =

2

Bez označení s pro poloviční obvod je zápis Heronova vzorce poněkud
delší:

^ у/(a + b + č) (b + c - a) (a + c — b) (a + b -S = c)• (1)

Udělejme malou odbočku a všimněme si, jak Heronův vzorec nepřímo
„testuje" známé nerovnosti, které zaručují existenci trojúhelníku: Čísla a,

b, c jsou délkami stran některého trojúhelníku, právě když všichni činitelé
pod odmocninou ve vzorci (1) jsou kladní.

Podle vzorce (1) je obsah T trojúhelníku o stranách a + b, Ъ + с, c + a
roven

1
-

v (2a + 2b + 2c) (2c) (2a) (2c) = yjabc{a + b + c).T =

Dokazovanou nerovnost T ^ 45 tudíž rozepíšeme jako

yjabc{a + b + с) ^ у/(a + b + c)(b + c — a) (a + c — b)(a + b — c);

v ekvivalentní nerovnosti mezi odmocňovanými výrazy zkrátíme činitel
(a + b + č) a dostaneme tak nerovnost

abc ^ (6 + c — a)(a 4- c — 6)(a + 6 — c) (2)

kterou nyní (pro strany a, b, c obecného trojúhelníku) několika způsoby
dokážeme.

Při prvním z nich využijeme zřejmých nerovností

a2 a2 — (b — č)2 = (a — b + c)(a + b — c),
b2 ^ b2 — (c — a)2 = (b — c + a)(b + c — a),
c2 ^ c2 — (a — 6)2 = (c — a + fe)(c + a — 6).

(3)
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Protože jde o tři nerovnosti mezi kladnými výrazy, součin jejich levých
stran není menší než součin jejich pravých stran:

a2b2c2 ^ (b + c — a)2(a + c — b)2(a + b — c)2

odkud po odmocnění dostaneme nerovnost (2). Tím je nerovnost T ^ 45
dokázána. Z našeho postupu rovněž plyne, že rovnost T = 45 nastane,
právě když budou splněny současně tři rovnosti

a2 = a2 - (b — c)2, b2 = b2 — (c — a)2, c2 = c2 — (a — 6)2,

tj. právě když bude platit a = b = c (případ rovnostranného trojúhel-
niku).

Poznamenejme, že důkazu (2) jsme dosáhli vynásobením tří analo-
gických nerovností (3). První z nich po odmocnění obou stran získá tvar
nerovnosti mezi aritmetickým a geometrickým průměrem (kladných) čísel
и = a + b — с a v = a — b + c:

(a + b — c) + (a — b + c) ^ y/(a + b- c)(a - b + c),a =
2

Využít takovou AG-nerovnost vás možná napadne, když dokazovanou
nerovnost (2) přepíšete z původních proměnných a, 6, c do nových pro-
měnných

u = a + b — c> 0, v = a — b + c> 0, w = —a + b + c > 0.

Protože o = |(u + u), b — 7}(u + w) а z — |(u + гс), přejde nerovnost (2)
v nerovnost

(u + v)(u + w)(v + w) ^ (2')

a souvislost s AG-nerovnostmi

u T v v /—

у- ^ V wu,
u + w v w

> Wvw
2 ~

je nasnadě. Dokázat transformovanou nerovnost (2') můžeme ovšem i uži-
tím jediné AG-nerovnosti: po roznásobení levé strany (2') a zřejmé úpravě
dostaneme

u2v + u2w + v2u + v2w + w2u + w2v
> uvw

6
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což je ďG-nerovnost pro skupinu šesti členů

u2v, u2w: v2u, v2w, w2u, w2v,

neboť jejich geometrický průměr je roven

л/u2v • u2w • v2u ■ v2w • w2u ■ W2V = uvw.

Na závěr uveďme ještě jeden algebraický důkaz nerovnosti (2). S ohle-
dem na symetrii předpokládejme, že a min{6, c}, položme x = b—a ^ 0,
у — c — й ž 0 a přepišme nerovnost (2) jako nerovnost pro mnohočlen
proměnné a s koeficienty závislými na x a y:

abc — (b + c — a) (a + c — b)(a + b — c) —

= a(a + x)(a + у) — (a + x + y)(a + у — x)(a + x — y) =

= a[a2 + a(x + y) + xy] - [a + (x + y)][a2 - (x - y)2] =

= [a3 + a2(x + y) + axy] —

- [a3 + a2(x + y)~ a(x - y)2 - {x + y)(x - y)2] =

= a[xy + (x- y)2] + (x + y)(x - y)2.

Poslední výraz je (vzhledem к tomu, že a > 0, x ^ 0, у ^ 0) zřejmě
nezáporný, přičemž nule se rovná, právě když platí xy = 0 а, x — у = 0,
neboli x = у = 0.

A - I - 2

Nechť dvojice celých čísel x, у vyhovuje dané rovnici. Protože součet
(Ж5)2 + (г/4)б je dělitelný pěti, dává číslo 2xy2 při dělení pěti zbytek
4, tj. 5 | (2xy2 — 4). Číslo у proto není dělitelné pěti, takže platí buď
у = 5k ± 1, nebo у = 5A; ± 2, kde 5k = у$. Obě možnosti teď posoudíme
odděleně.

Případ у = 5k ± 1. Protože y2 — 25k2 ± 10к + 1, platí 5 | {у2 — 1),
a proto z podmínky 5 | (2xy2 — 4) plyne 5 | (2x — 4) = 2{x — 2), tedy
x = 5n + 2, kde 5n = x^. Z podmínky 5 | (у2 — 1) plyne rovněž 5 | (у4 — 1),
neboli (у4)б = у4 — 1, tudíž daná rovnice získává tvar

(5n)2 + (у4 - 1) = 2 • (5n + 2) • y2 -b 51.
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Postupnými úpravami dostaneme

10ny2 + 25n2) — 4y2 — 52,

(:У2 - 5n)2 - 4y2 = 52,
(:У2 - 5n - 2y)(y2 -5n + 2y) = 52.

(y4

(1)

Na levé straně poslední rovnice je součin dvou celých čísel lišících se
o 4y, tedy o násobek čtyř; protože 52 = 22 • 13, stojí na levé straně
(1) součin čísel 2 a 26, nebo součin čísel —2 a —26. Tak či onak platí
|4y| — 26 — 2 = 24, odkud у = ±6, takže menší z obou činitelů v (1)
je roven 62 — 5n — 12 = 24 — 5n. Zatímco rovnice 24 — 5n = 2 žádné
celočíselné řešení n nemá, rovnice 24 — bn — —26 má řešení n = 10,
kterému odpovídá x = 5 • 10 + 2 = 52. Podmínku у — Ък±\ tedy splňují
právě dvě řešení dané rovnice: (x,y) — (52,6) a (x,y) = (52, —6).

Případ у = Ък ± 2. Protože y2 = 25k2 ± 20к T 4, platí 5 | (y2 + 1),
a proto z podmínky 5 | (2xy2 — 4) plyne 5 | (—2x — 4) = — 2(x + 2),
tedy x = 5n — 2, kde 5n = x$. Z podmínky 5 | (y2 + 1) plyne rovněž
5 | (yA — 1), neboli (у4)б = yA — 1, tudíž daná rovnice získává tvar

(5n)2 + (у4 - 1) = 2 • (5n -2)-y2 + 51.

Postupnými úpravami dostaneme

(y4 — 10ny2 + 25n2) + 4y2 = 52,

(y2 — 5n)2 + 4y2 = 52. (2)

Oba sčítanci v levé straně poslední rovnice jsou nezáporní, takže nepře-
vyšují číslo 52 z pravé strany. Z nerovnosti 4y2 5Í 52 plyne y2 ^ 13,
což s ohledem na podmínku у = 5k ± 2 znamená, že buď у — ±2, nebo
у = ±3. Je-li у = ±2, je rovnice (2) splněna, právě když (4 — 5n)2 = 36,
což nastane pro jediné celé číslo n = 2, kterému odpovídá x = 5-2 — 2 = 8.
Je-li у = ±3, přejde (2) v rovnici (9 — 5n)2 = 16 s jediným celočíselným
kořenem n — 1, kterému odpovídá x = 5• 1 — 2 = 3. Podmínku у = 5k±2
tedy splňují právě čtyři řešení (x,y) dané rovnice: dvojice (8,2), (8, —2),
(3.3) a (3,-3).

Odpověď. Daná rovnice má v oboru celých čísel celkem šest řešení
(x,y): dvojice (52,6), (52,-6). (8,2), (8,-2), (3,3) а (3.-3).1
1 Doporučujeme provést zkoušku, i když není nutnou součástí takto podaného řešení.
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Poznámka. Pro každé celé 2 je číslo z$ rovno jednomu z čísel z — 2,
z — 1, z, z + 1 nebo z + 2 (tomu z nich, které je násobkem pěti). Danou
úlohu by bylo možné proto řešit tak, že bychom danou rovnici posoudili
v jednotlivých případech x — 5n + r а у — 5k + q, kde čísla r a q probíhají
(navzájem nezávisle) množinu {—2, —1,0,1,2}. Taková diskuse by ovšem
byla zdlouhavá, výše podané řešení je jejím promyšleným zkrácením.

Uvědomme si, že při našem postupu jsme nejdříve vyloučili případ
q = 0 a poté jsme již rozlišili pouze případy q = ±1 a q = ±2. Bylo to
umožněno tím, že číslo у2 má při dělení pěti zbytek nezávislý na zna-
ménku čísla q a že podle tohoto zbytku lze z dané rovnice jednoznačně
určit obdobný zbytek čísla x, tedy hodnotu r.

Poslední „trik", který jsme při řešení uplatnili, spočíval v tom, že
jsme do dané rovnice nedosazovali vyjádření у — 5k ± 1 resp. у — Ък ±
± 2, čímž se nám poněkud zjednodušil zápis příslušných rovnic (1) a (2).
Dodejme ještě, že algebraické úpravy dané rovnice vedoucí к rovnicím (1)
a (2) patří při řešení rovnic v oboru celých čísel к těm nejobvyklejším
postupům.

A - I - 3

Kružnice opsané trojúhelníkům ABC, KBV a KLZ označme po řadě
k, ki a &2 (obr. 22). Naší úlohou je dokázat, že přímka SK je tečnou
kružnice к tomu stačí vysvětlit, proč jsou shodné úhly SKZ a KLZ,
vyznačené na obr. 22 obloučky. Kromě toho ovšem musíme zdůvodnit,
proč body L a S vždy leží v opačných polorovinách s hraniční přím-
kou AB (jak je tomu v případě našeho obrázku).

Střed V kružnice vepsané je vždy vnitřním bodem trojúhelníku ABC,
neboť je průsečíkem os jeho vnitřních úhlů. Proto je bod V vnitřním
bodem úsečky CK, zatímco bod L leží na jejím prodloužení za bod K.
Body V a L proto leží v opačných polorovinách s hraniční přímkou AB.
Označíme-li jako obvykle a, /?, 7 velikosti vnitřních úhlů trojúhelníku
ABC, má trojúhelník BCV u vrcholů В a C vnitřní úhly velikostí |/3
a takže pro jeho vnější úhel při vrcholu V platí

\SkBVK\ = < 90°.

Úhel BVK je tudíž ostrý, a proto střed S kružnice £7 leží ve stejné
polorovině s hraniční přímkou ВК jako bod V, což spolu s předchozím
tvrzením o poloze bodů V a L znamená, že body L a S skutečně leží
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v opačných polorovinách s hraniční přímkou AB, jak jsme potřebovali
ověřit. Podle věty o obvodových a středových úhlech v kružnici k\ platí

\<$BSK\ = 2\^BVK\=(3 + 1,

z rovnoramenného trojúhelníku BKS tudíž plyne

\<SKZ\ = \-£SKB\ = 1(180° - \<BSK\) = 1(180° - 0 - 7) = \a.
Zbývá nám proto dokázat, že také úhel KLZ má velikost |a. Provedeme
to dvěma nezávislými postupy.

Při prvním z nich nejprve určíme velikost úhlu LBV. Protože
\<$:LBA\ = |<£LCA| = (obvodové úhly v kružnici к) a \<^ABV\ =
= \f3, vzhledem к vzájemné poloze úseček LV a AB můžeme psát

\<$:LBV\ = \<£LBA\ + \^ABV\ = i(/3 + j).

Již dříve jsme zjistili, že takovou velikost má i úhel BVK (neboli úhel
BVL), a tak je trojúhelník BVL rovnoramenný: \BL\ = \VL\. Zároveň
ovšem platí |I?Sj = \VS\, takže oba body L a S leží na ose úsečky BV
(čtyřúhelník BLVS je tedy deltoid, případně kosočtverec nebo čtverec).
Odtud plyne, že úsečky BV a SL jsou navzájem kolmé, úhel KLZ je
proto doplňkový к úhlu BVK:

\<£KLZ\ - 90° - \*£BVK\ = 90° - |(/3 + 7) = |q.
Tím je tvrzení úlohy dokázáno.
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Při druhém způsobu určení velikosti úhlu KLZ si nejdříve všimneme,
že platí \<$:BLK\ = \<^BLC\ = \*$:BAC\ = a (obvodové úhly v kruž-
nici k), což spolu s dříve odvozenou rovností \<$:BSK\ = /3 + 7 znamená,
že ve čtyřúhelníku BLKS je součet vnitřních úhlů u protějších vrcholů L
a 5 roven 180°, jedná se proto o čtyřúhelník, kterému lze opsat kružnici.
V ní jsou KBS a KLS shodné obvodové úhly nad tětivou KS, a proto
platí

\<£KLZ\ = \<£KLS\ = \SkKBS\ = §a
(připomínáme, že BKS je rovnoramenný trojúhelník s úhly |a: při zá-
kladně BK).

A - I - 4

Protože daná soustava je velmi složitá a patrně neexistuje postup, jak
v konečném algebraickém tvaru vyjádřit všechna její řešení, budeme jed-
nak přemýšlet o podmínkách řešitelnosti této soustavy, jednak hledat
některá její speciální řešení.

Všimněme si nejdříve, že daná soustava nemá žádné řešení pro hod-
notu p = 0, protože hodnoty levých stran rovnic jsou kladná čísla. Také
druhé zjištění, které nyní uvedeme, je zřejmé: n-tice čísel (xi, x25..., xn)
je řešením dané soustavy s hodnotou parametru p, právě když n-tice
opačných čísel (—xi, — x2, ■ ■ ■, — xn) je řešením dané soustavy s opačnou
hodnotou parametru —p. Hodnoty levých i pravých stran všech rovnic
soustavy se totiž při změně všech hodnot X{ — Xi ap4 —p nezmění,
protože pro libovolná i/Oa p platí

(-*)4 + (é)?=*4 + i
Daná soustava s hodnotou parametru p má tedy právě tolik řešení, kolik
jich má daná soustava s hodnotou parametru —p. Budeme proto hledat
pouze všechna kladná čísla p, pro která má daná soustava aspoň dvě
řešení (a v odpovědi к nim připojíme všechna opačná čísla —p.)

Až do závěru řešení budeme tedy uvažovat jen kladné hodnoty para-
metru p dané soustavy. Z kladnosti jejích levých stran plyne, že také
všechny pravé strany pxi musí být kladné, a proto (s ohledem na

předpoklad p > 0) musí platit x* > 0 pro každé i. Libovolné řešení
(xi,x2,. • • ,xn) dané soustavy je tedy sestaveno z n kladných čísel.

Předpokládejme nyní, že pro dané p > 0 nějaké řešení (xi, x2,..., xn)
dané soustavy existuje, a všech n rovnic mezi sebou vynásobme. Pro

a {—p){—x)=px.
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kladná čísla x\, x2, ■ ■ ■, xn tak dostaneme rovnost

+ Л 4 + -o (i)= pnx 1X2 ...xn.4 J "

Každý činitel na levé straně odhadneme zdola podle známé nerovnosti

*? ^2

и + v ^ 2yJvřo,

která platí pro libovolná kladná čísla и an, přičemž rovnost nastane,
právě když и — v (je to v podstatě nerovnost mezi aritmetickým a geo-
metrickým průměrem čísel и a v, plynoucí snadno ze zřejmé nerovnosti
(y/u — y/v)2 ^ 0). Proto pro každý index i platí

Důsledkem rovnosti (1) je tudíž nerovnost

\xí\ ■ 2\Í2 • 2V2. (2)= Xi

(xi2\/2) (x22v/2) ... (xn2\/2) ^ pnx\x2 ■. (3)•

ze které po krácení (kladným) součinem a:ix2 ... xn dostaneme podmínku
na číslo p ve tvaru

pn ^ (2\/2)n, neboli p ^ 2л/2.

Zformulujme, co jsme právě zjistili: má-li daná soustava pro pevné p > 0
alespoň jedno řešení, pak pro toto číslo p platí odhad p ^ 2\/2.

Pro „krajní“ hodnotu p — 2yf2 nyní danou soustavu úplně vyřešíme,
tj. najdeme všechna její řešení. Je-li (xi, x2,...,xn) libovolné řešení dané
soustavy s hodnotou p = 2\f2, pak podle úvah z předchozího odstavce
nastane v nerovnosti (3) rovnost, což je možné jedině tak, že rovnosti
nastanou ve všech násobených nerovnostech (2). Proto tehdy pro každý
index i platí

neboli x\ = 2, tj. Xi = л/2.*?

Pro hodnotu p = 2\[2 má tedy daná soustava jediné (!) řešení

{xi,x2, ...,xn)= (v^2, v^2, • • •, Щ.
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Z výsledků předchozích dvou odstavců plyne: má-li daná soustava pro

pevné p > 0 alespoň dvě řešení, pak pro toto číslo p platí ostrá nerovnost
p > 2\/2. Najdeme-li proto dvě řešení dané soustavy s libovolnou hod-
notou parametru p > 2\f2, budeme znát odpověď na otázku ze zadání
úlohy. Zmíněná dvě řešení budeme hledat mezi n-ticemi (х\,х2,... ,xn)
složenými z n stejných čísel; taková n-tice (x, x,..., x) je zřejmě řešením
dané soustavy, právě když je číslo x řešením (jediné) rovnice

*4 + Д. neboli x6 — px3 + 2 = 0.= Px,x2

Poslední rovnice je kvadratická vzhledem к neznámé у = x3 a má v oboru
reálných čísel у dvě různá řešení

p± yV - 8
У1,2 = 2

pro každou z námi uvažovaných hodnot p > 2y/2, neboť pro ně platí
p2 — 8 > 0. Pro každé takové p má tedy původní soustava dvě řešení

(ж1,...,х„) = (^/j/Г,..., ýyí) a (x!,...,xn) = (^,..., ýýž).

(Nevylučujeme, že kromě těchto řešení tehdy existují i řešení jiná, totiž
taková, že Xi Ф Xj pro některá i j- j.)

Odpověď. Všechny hledané hodnoty p tvoří množinu (—oo; — 2>/2) U
U (2\/2; oo).

A - I - 5

Dvěma odlišnými postupy ukážeme, že vyhovující mnohočleny jsou právě
mnohočleny tvaru P(x) = ах3 — ax + d, kde a a d jsou libovolná reálná
čísla. Při prvním postupu uplatníme metodu, která je užitečná i při řešení
mnoha jiných úloh o mnohočlenech; říká se jí metoda neurčitých koefi-
cientů. Jako obvykle budeme členy mnohočlenů zapisovat v sestupném
pořadí podle mocnin proměnné x\ pomocí prvních koeficientů hledaného
mnohočlenu

71 — 1 71 — 2
+ dxn~3 + ...P(x) — axn + bx (1)+ cx

vyjádříme první koeficienty obou stran dané rovnice a pak je porovná-
me. Zápisem (1) jsme naznačili, že budeme skutečně počítat s prvními
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čtyřmi koeficienty mnohočlenu P(x). Ukáže se totiž, že výpočty s menším
počtem koeficientů к vyřešení úlohy nestačí. Abychom pro mnohočleny
stupně nejvýše 3 nemuseli provádět další samostatné výpočty, nebudeme
prozatím předpokládat, že koeficient a u mocniny xn v zápisu (1) je různý
od nuly.

Najdeme nejdříve první členy mnohočlenu P(x — 1):

P(x — 1) = a{x — l)n + b{x — 1)
= a{xn-(n1)xn

+ b(x
+ c(X

= axn + [-(?)a + b]:rn
+ [-(>+rč)b-(nČ)c + d]x^ + ...

Obdobným výpočtem zjistíme, že

P{x + 1) = axn + a + 6] xn 1 + [(2)а V (7111) ^ H- c] xn 2 +
+ [(>+ CV)& + (ni 2)c + d\x

Nyní můžeme určit první členy mnohočlenu (x+l)P(x — l) + (x — l)P(x+
+ 1), totiž členy s mocninami xn+1, xn, хп~л
předem, abychom při následujícím výpočtu zbytečně nevypisovali členy
s nižšími mocninami x):

+ c(x — l)n 2 + d(x — 1)
+ G)*n-2-G)*n-3+ •••) +

(„-1)3:„-2+(»-1)x
(п“2)жп_3 + ...) + d[xn~3 —

+ [(;)«-("г‘)‘+Ф

n—1 n—3
+ ... =

-1

n—371—1

n—2

-1 ti—2
+

n—3 + ...

n—2 (vypsali jsme jea x

(x + 1 )P(x — 1) + (x - 1 )P(x + 1) =
— xP(x — 1) + P(x — 1) + xP(x + 1) — P(x + 1) =

n+l + [~(i)a + Ч®" + [(J)a - (nx *)& + c\xn 1 +
+ [~(з)а+ (П21)Ь~ (ni 2)c + d]xn~2 + ...+
+ axn + [-(J)a + blx4-1 + [Q)a - (^b + c]xn-2 + ... +

+ [(”)a + b]xn + [g)a + (71)b + c]xn~1 +
n—2

= ax

n+l+ ax

+ [(з)а+ (П21)6+ (nJ2)c + d]x
-axn - [(?)а + б]жп

2axn+1 + 2bxn + [2(£)a - 2(”)a+ 2c]x
+ [2(V)b - 2(nr1)6 + 2ФП~2 + • • •

+ ... -

[(;)»+(т)‘+Ф-i 71 — 2

n—1
+

Našli jsme první členy levé strany dané rovnice. Vypsat první členy její
pravé strany je snadné:

2xP(x) = 2axn+1 + 2bxn + 2cxn~l + 2dxn~2 + ....
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Vidíme, že první dva členové levé strany se shodují s prvními dvěma členy
pravé strany, ať je mnohočlen P{x) vybrán jakkoliv. Třetí a čtvrté členy
se již obecně neshodují a jejich rovnosti jsou vyjádřeny podmínkami

П)а + 2с=2с a 2
9 ^ - 2 1 Лб + 2d = 2d,

n
2 a — 2

2 1

ze kterých po rozepsání kombinačních čísel dostaneme rovnice tvaru
n(n — 3)a = 0 a (n — l)(n — 4)b = О.2 V případě n > 3 tedy musí
platit a = 0, což znamená, že se můžeme omezit pouze na případ n — 3.
Tehdy je první rovnice splněna pro každé a 6 IR, zatímco z druhé rovnice
pak plyne 6 = 0. Hledaný mnohočlen P(x) je proto nutně tvaru

P(x) = ax3 + cx + d (2)

a po dosazení libovolného takového mnohočlenu do obou stran dané rov-

nice dostaneme dva mnohočleny, které se shodují v prvních členech s moc-
ninami x4, x3, x2 ах1. Zbývá tedy porovnat poslední (absolutní) členy
obou mnohočlenů

(x + l)P(x — 1) + (x — l)P(x + 1) a 2xP(x).

Místo algebraického výpočtu využijeme obvyklý obrat, který je založen
na tomto zřejmém tvrzení: absolutní člen mnohočlenu p je jeho hodnota
p(0) v bodě 0. V našem případě proto zjistíme, kdy platí rovnost P(—1) —
- P(l) = 0 • P(0), tedy podle (2)

(-a с T d) — (q. T c 4* dj — 0.

Je to zřejmě právě tehdy, když c = —a. Proto jsou řešeními úlohy právě
mnohočleny tvaru P(x) = ax3 - ax + d, kde a, d jsou libovolná reálná
čísla.

Jiné řešení. Využijeme postup, který se používá při řešení funkcio-
nálních rovnic. Získáváme při něm významné informace o neznámých
funkcích tak, že do rovnic, které hledané funkce splňují, opakovaně dosa-
zujeme vhodně vybrané hodnoty proměnných.3 Nechť je tedy P libovolný

2 Všimněte si, že rovnice pro koeficient b se liší od rovnice pro koeficient a pouze
tím, že je v ní číslo n zaměněno číslem n — 1. Koeficient b totiž převezme roli
„vedoucího11 koeficientu a, když v zápise (1) vynecháme první člen součtu (čímž
snížíme stupeň n o jedničku).

3 To jsme ostatně učinili již v závěru „algebraického" řešení, kdy к určení absolutního
členu jsme do mnohočlenu dosadili hodnotu x = 0.
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mnohočlen splňující v proměnné x £ IR danou rovnici. Dosadíme-li do ní
nejprve hodnotu x = 1 a pak hodnotu x = — 1, dostaneme rovnosti

2 • -P(O) + 0 • P{2) = 2 • P(l) a 0 • P(—2) — 2 • P(0) = —2 • P(—1)

ze kterých plyne, že P(l) = P(0) = P(—1). Označíme-li proto P(0) = d,
má rovnice P(x) = d kořeny ж = 0, a: = 1 a x = -1. Existuje tudíž
mnohočlen Q(ar) takový, že P(x) — x(x — l)(x+l)Q(x)+d. Toto vyjádření
dosadíme do dané rovnice, abychom zjistili, jaké podmínky musí splňovat
mnohočlen Q(x) a koeficient d:

2 )Q(x — 1) + d(x + 1) +(x + \)x{x — l)(:r
4-(re — l)(x + l)x(x + 2 )Q(x + 1) + d(x — 1) =

= 2x2(x — 1)(ж + 1)Q(íc) + 2dx.

Členy s koeficientem d se v poslední rovnici navzájem zruší a zbylé členy
je možné zkrátit společným činitelem x{x — 1)(ж +1). Získáme tak rovnici

(3)(x - 2)Q(x - 1) + (x + 2)Q(x + 1) = 2xQ(x)

pro neznámý mnohočlen Q{x). Ze způsobu odvození plyne, že rovnice (3)
platí pro každé x G IR, které je různé od 0, 1 a —1; protože však obě
strany (3) jsou mnohočleny proměnné ж, které mají stejnou hodnotu
pro nekonečně mnoho čísel ж, musí jít o mnohočleny totožné, a proto
rovnost (3) platí i pro x £ {0,1, —1}.

Protože a(x — 2) + a(x + 2) = 2ax1 rovnici (3) splňuje každý konstantní
mnohočlen Q(x) — a. Původní rovnici proto vyhovuje každý mnohočlen

1)(ж + l)a + d = ax3 — ax + d (a, d £ IR).P(x) = x(x

Jiné vyhovující mnohočleny P(x) neexistují, pokud ukážeme, že každý
mnohočlen Q(x) splňující rovnici (3) je konstantní. Nechť je tedy Q(x)
libovolný takový mnohočlen; označme Q{2) — a a dosaďme do rovnice (3)
hodnotu x = 2. Dostaneme

0-Q(l)+4Q(3)=4Q(2), odkud Q(3) = Q(2) = a.

Nyní volbou x = 3 v rovnici (3) získáme rovnost

6(3(3) - Q(2) 6a — a

Q{2) + 5Q(4) = 6Q(3), odkud Q(4) —
= a.

5 5

77



Dále volbou x = 4 zjistíme, že Q(5) = a, atd. Dokažme proto indukcí,
že Q(n) = a pro každé celé n ^ 2. Platí-li pro nějaké n rovnosti Q(n) =
= Q(n+1) = a (jak je tomu pro n = 2), pak volbou ж = 7г+1 v rovnici (3)
dostaneme

2(n + l)Q(n + 1) — (n - l)Q(n)Q(n + 2) —
n + 3

2(n + l)a — (n - l)a
= a.

n + 3

Důkaz indukcí je hotov. Zjistili jsme, že rovnost Q(x) = a platí pro
nekonečně mnoho čísel x, což je možné, jedině když Q(x) — a pro každé
x (kdyby byl Q mnohočlen některého stupně N > 0, měla by rovnice
Q(x) = a nejvýše N kořenů). Celé řešení je tím ukončeno.

A - I - 6

V první (podstatnější) části řešení najdeme všechny čtyřstěny, které mají
síť tvaru deltoidu; poté již poměrně snadno zjistíme, které z nalezených
čtyřstěnů mají právě čtyři shodné hrany.

Uvažujme proto libovolný čtyřstěn ABCD a popišme délky jeho hran
písmeny a;, y, z, n, v, w podle obr. 23. Všechny
sítě čtyřstěnu ABCD rozdělíme do dvou sku-
pin. Do první z nich zařadíme ty sítě, v nichž
některá stěna čtyřstěnu sousedí s třemi ostat-
nimi stěnami; do druhé skupiny budou pat-
řit ostatní sítě, v nichž každá stěna sousedí
s nejvýše dvěma stěnami. Protože jsme ozna-
čení vrcholů čtyřstěnu předem nijak neupřeš- A
nili, budeme dále uvažovat jen po jedné síti
z každé z obou skupin, totiž sítě znázorněné
na obr. 24 a 25. Zabývejme se každou z nich
samostatně.

Síť na obr. 24 je (obecně vzato) šestiúhelníkem AD^BDiCD^, o čtyř-
úhelník půjde jedině tehdy, když dva z jeho úhlů u vrcholů А, В, C
budou přímé (tj. budou mít velikost 180°). Je totiž jasné, že přímý úhel
nemůže být u žádného z vrcholů Di, ZU, D3. S ohledem na již zmíněnou
libovůli značení předpokládejme, že přímé jsou úhly D2AD3 a D3BD\
(vyznačené na obr. 24). Naše síť je tehdy čtyřúhelníkem D2D3DiC, jehož
strany mají (v pořadí, v jakém za sebou cyklicky následují) délky 2w, 2v,

D

w

и v

C

X

z

В

Obr. 23
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w a w. Je-li tento čtyřúhelník deltoid (a ne kosočtverec), musí zřejmě
platit и = v а 2u ф w (obr. 26a). Z osové souměrnosti podle přímky D$C
pak zjišťujeme, že platí у — x\ čtyřstěn s „deltoidní“ sítí z obr. 26a vidíte
na obr. 26b. Je to čtyřstěn souměrný podle roviny souměrnosti hrany
AB. Dodejme, že kromě nerovnosti 2и ф w musí platit rovněž nerovnost
z < w, která plyne z vlastnosti střední příčky AB trojúhelníku D1D2D3
a trojúhelníkové nerovnosti pro rovnoramenný trojúhelník CD1D2'.

2z = 2\AB\ = \DiD2\ < \D\C\ + \D2C\ = 2w.

Síť z obr. 25 je (obecně vzato) šestiúhelníkem AD\BCBiDz, o čtyř-
úhelník půjde jen v těch případech, kdy právě dva z jeho úhlů při vr-
cholech А, В, C, D2 budou přímé (takové totiž nemohou být úhly při
vrcholech D\ aBi). S ohledem na libovůli značení stačí uvažovat jen tři
následující případy.
a) Přímé úhly и vrcholů A a D2- Síť je čtyřúhelník B\D\BC, jehož strany

mají v pořadí délky 2и + v, v, x, x. Zřejmě nejde o deltoid, neboť
2u + v ф v.

b) Přímé úhly и vrcholů A a C. Síť je čtyřúhelník D2D1 BB\, jehož strany
mají v pořadí délky 2w, v, 2x, v. Protože dvojice protějších stran má
tutéž délku v, nejde o deltoid.

c) Přímé úhly и vrcholů A a B. Síť je čtyřúhelník D2D\CBi, jehož strany
mají v pořadí délky 2u, x + v, ж, v. Jde-li o deltoid, pak s ohledem na
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Dз ии В

Obr. 26а

nerovnost х + v > х musí platit 2u = x + vax = v, tedy x = и = v.
V trojúhelníku D2D1C je úsečka AB střední příčkou (obr. 27a), takže
platí w = = 2| AE?| = 2z. Příslušný čtyřstěn vidíte na obr. 27b.
Shrňme výsledky našich dosavadních úvah: Pouze dva typy čtyřstěnů

(obr. 26b a 27b) mají síť tvaru deltoidu. Naším úkolem je nyní zjistit, kdy
tyto čtyřstěny mají právě čtyři shodné hrany (dané délky a). Zabývejme
se nejdříve čtyřstěnem z obr. 26b, jehož hrany mají délky x, x, z, u, u, w.

Předpokládejme tedy, že právě čtyři z nich jsou rovny a, které to jsou?
Předně musí platit x = o, jinak by muselo platit a = z = и = w, což je
ale ve sporu s nerovností z < w, odvozenou výše. Protože jsou vyloučeny
i rovnosti z = к a u = к; (v obou případech by délku a mělo pět hran
čtyřstěnu ABCD), musí platit и = а. V případě x = и je ovšem čtyř-
úhelník AD3BC kosočtverec; z rovnoběžnosti přímek АС a D3B plyne
rovnost souhlasných úhlů CAD2 a BD^A. Rovnoramenné trojúhelníky
CAD2 a BD3A jsou tehdy shodné podle věty sus, takže I-D2CI — \AB\,
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neboli z — w, což je opět spor.4 Žádný čtyřstěn z obr. 26b proto není
řešením naší úlohy. Přejděme nyní к druhému typu čtyřstěnů a předpo-
kládejme, že právě čtyři z hran některého čtyřstěnu ABCD z obr. 27b
mají délku a. Protože tři jeho hrany mají délku x, musí platit x — a;
která (jediná) z ostatních délek y, z, 2z je rovna а? V síti na obr. 27a
z trojúhelníku B\CD2 plyne x + x > 2z, tedy x > z. V téže síti má
trojúhelník Л-ВС tupý vnitřní úhel u vrcholu B, neboť jeho vnější úhel
ABDi je vnitřním úhlem při základně AB rovnoramenného trojúhelníku
ABD\, takže je nutně ostrý. Proto je nejdelší stranou trojúhelníku ABC
strana AC, což zapíšeme takto: у > тах{ж,2:}. Dohromady dostáváme
у > x > z, s ohledem na rovnost x — a proto nezbývá, než aby platilo
2z = a. Nalezenými podmínkami je již čtyřstěn ABCD jednoznačně (až
na shodnost) určen. Délku у poslední hrany AC vypočteme jako těžnici
ke straně D\D2 trojúhelníku CD\D2 o stranách 2a, 2a, a. Vyjde nám
у — |а\/б. Řešením naší úlohy je jediný čtyřstěn z obr. 28a, jeho síť tvaru
deltoidu je na obr. 28b.

Odpověď. Hledaný čtyřstěn je jediný: jeho tři hrany délky a vycházejí
z jednoho vrcholu, hrany protilehlé stěny mají délku а, |a, |a\/6- Jedna
ze sítí tohoto čtyřstěnu má tvar deltoidu o stranách a, a, 2a, 2a.5

A - S - 1

Podle zbytku při dělení čísla x číslem 5 můžeme rozlišit pět případů:
(i) x — 5k, (ii) x = 5k + l, (iii) x = 5k-\-2, (iv) x = 5fc + 3 a (v) x = 5fc + 4

4 V případě w = z má „deltoidní“ síť z obr. 26a přímý úhel u vrcholu C, takže nejde
o deltoid, ale o trojúhelník.

5 Doporučujeme řešitelům, aby takový deltoid vystřihli z papíru a pak model čtyř-
stěnu složili.
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(к značí libovolné celé číslo). Protože ale levá strana rovnice je zřejmě
násobkem pěti pro každé celé x, musí být násobkem pěti aspoň jeden
z činitelů За; — 2, x + 2 pravé strany. Číslo 3a; — 2 je dělitelné pěti pouze

pro x = 5k + 4, číslo x + 2 pouze pro x = 5k + 3. Proto stačí rozebrat
případy (iv) a (v) (L značí levou a P pravou stranu dané rovnice):

(iv) Pro x — 5k + 3 platí x2 = 25k2 + 30/c4-9, (a;2)s = 25k2 + 30& +10,
За: = 15A; + 9, (3rr)5 = 15к + 10, L = 75k2 4- 105Jfe + 40 a P = 75k2 +
+ 110/г+ 35, takže z L = P vychází к = 1, čemuž odpovídá a; = 5 + 3 = 8.

(v) Pro x — 5k + 4 platí a;2 = 25к2 + 40A: + 16, (x2)s = 25k2 +
+ 40fc + 15, 3a; = 15к + 12, (3x)5 = 15к + 10, L = 75k2 + 135Л; + 55
a P = 75к2 + 140A: + 60, takže z L = P vychází к = — 1, čemuž odpovídá
x = -5 + 4= -1.

Odpověď: Daná rovnice má právě dvě celočíselná řešení, a to a; = -1
a x — 8.

A - S - 2

Označme jako obvykle a, (3, 7 vnitřní úhly trojúhelníku ABC. Protože
platí (obr. 29)

\<£ASC\ = 180° -\A:SAC\ - |<£Sčh4| = 180° - | | = 90° + ^
je úhel ASC tupý, takže bod P leží na polopřímce opačné к polopřímce
SA. Obdobně zdůvodníme, že bod Q leží na polopřímce opačné к polo-
přímce SB. Přímky AB a PQ jsou rovnoběžné, právě když střídavé

A В

Obr. 29
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úhly BAP a APQ jsou shodné. Vzhledem к tomu, že |<£PAP| = —

a \<$:APQ\ = |<£SPQ|, stačí ukázat, že |<£SPQ| = Protože body P
a Q leží na Thaletově kružnici nad průměrem CS, je úhel SPQ shodný
s úhlem SCQ (obvodové úhly nad tětivou SQ zmíněné kružnice). Velikost
úhlu SCQ snadno vyjádříme z trojúhelníků BCS a BCQ:

l<řSCQ| = \^BCQ\ - KBCS| = (90° - f) - 1 = \.
což jsme potřebovali ukázat.

Jiné řešení. Označme Pi, Q\ odpovídající průsečíky polopřímek CP
a CQ s přímkou AB (obr. 30, pořadí bodů A, S, P a bodů B, S, Q na
obou osách bylo vysvětleno v prvním řešení). Výška AP trojúhelníku
P\CA leží na ose AS jeho vnitřního úhlu PiAC, takže jde o rovno-

ramenný trojúhelník, který má základnu P\C se středem P. Obdobně
pomocí rovnoramenného trojúhelníku Q\CB zdůvodníme, že bod Q je
středem úsečky Q\C. Úsečka PQ je tedy střední příčkou trojúhelníku
P1Q1C, takže je rovnoběžná s přímkou AB.

Q1 A В Pi

Obr. 30

A - S - 3

Všimněme si, že rovnice dané soustavy se mezi sebou liší jen cyk-
lickou záměnou neznámých x, у & z. Má-li proto soustava za řešení
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trojici čísel (x,y,z) — {xo,yo,zo), jsou jejími řešeními rovněž trojice
(x, у, z) = (y0, zo, x0) a trojice (x, y, z) = (z0, rr0, y0). Je-li řešení soustavy
(při pevném p) jediné, musí být uvedené trojice shodné, musí tedy platit

~ Уо — Z0. Trojice (хо,жо,жо) je zřejmě řešení dané soustavy, právě
když je číslo x = xq řešením rovnice x2 + 1 = 2px. Pro každé hledané
p proto musí mít poslední rovnice jediné řešení, takže její diskriminant
D = 4p2 — 4 musí být nulový. Odtud vychází, že nutně p = ±1.

Nyní ukážeme, že pro p=ljex = y = z = l skutečně jediné řešení
původní soustavy tří rovnic a že totéž platí i v případě p = — 1 o jejím
řešení x = у = z = —1. Porovnáme-li součet levých stran se součtem
pravých stran soustavy, zjistíme, že její libovolné řešení (x,y,z) splňuje
též rovnici

x2 + y2 + z2 + 3 = 2p(x + у + z)
ze které úpravou dostaneme

{x - p)2 + (y - p)2 + (z- p)2 = 3(p2 - 1). (1)

Pro obě hodnoty p — ±1 platí ovšem p2 — 1 = 0, takže tehdy se součet
nezáporných čísel (x — p)2, (y — p)2 a (z — p)2 rovná nule. To je možné,
jedině když x = у = z = p.

Odpověď: Hledané hodnoty p jsou dvě: p = 1 ap = —1.

Jiné řešení. Stejně jako v prvním řešením získáme sečtením tří daných
rovnic rovnici (1). Z ní vyplývá tento závěr: má-li soustava při daném p

aspoň jedno řešení (ж, у, z) v oboru reálných čísel, pak platí nerovnost
p2 ^ 1, neboli |p| ^ 1. Je-li ovšem |p| > 1, můžeme snadno vypsat dvě
různá řešení zkoumané soustavy, totiž trojice {xi,x\,xi) a (#2,£2,#2),
kde xit2 jsou kořeny rovnice x2 + 1 — 2px (jejíž diskriminant je díky
předpokladu |p| > 1 kladný). Proto nám zbývá posoudit pouze hodnoty
p = ±1, pro které však z rovnice (1) okamžitě plyne: má-li původní
soustava vůbec nějaké řešení, je jím trojice (x,y,z) = (p,p,p). Triviální
zkouška dosazením ukazuje, že jde skutečně o řešení (pro p = 1 jakož
i pro p = —1).

A - II - 1

Protože pro libovolná q,/3 g (O, |h) platí

sin a cos /3 + cos a sin (3
_ sin(o + (3) 1

< (1)tg a + tg (3 =
cos a cos (3 cos a cos (3 cos a cos (3
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stačí místo nerovnosti ze zadání úlohy dokázat nerovnost

1 11
> 2 (2)

cos a cos (3cos Pcos a

To je ale snadné, neboť po převedení odmocniny z pravé strany na levou
dostaneme po úpravě „na čtverec“ zřejmou nerovnost

2
1 1

> 0. (2')
\JCOS Cť л/cosp

Tím je celý důkaz hotov. Dodejme, že nerovnost (2) též plyne z ne-
rovnosti mezi aritmetickým a geometrickým průměrem (kladných) čísel

1
a -.

cos p
Rovnost v dokázané nerovnosti nastane, právě když nastanou rovnosti

v obou nerovnostech (1) a (2'). To lze zřejmě vyjádřit podmínkami

1

cos a

1 1
sin(a H- /5) — 1 а

COS Pcos a

které jsou pro nějaká cr, /3 G (0, splněny, právě když a + P =
a a = P, neboli a — P —

A - II - 2

Protože číslo x je dělitelem obou čísel n(x,y) a x2, plyne z dané rovnice,
že číslo x také dělí číslo 4y. Číslo 4у je tedy společný násobek čísel x
а у, takže jejich nejmenší společný násobek n(x,y) je dělitelem čísla 4у
(a zároveň násobkem čísla y). Číslo n(x, y) je tudíž rovno jednomu z čísel
y, 2у nebo 4y. Tyto tři případy, jež se pro přirozené у navzájem vylučují,
nyní posoudíme odděleně.

(i) n(x,y) — y. Platí у = kx pro vhodné přirozené k. Dosazením do
rovnice dostaneme x2 = 4kx -f 3kx, odkud x = 7к, a proto у = 7к2.
Protože n(7k,7k2) = 7k2 pro každé к, je odpovídající dvojice (x, y) =
= (7k,7k2) skutečně řešení.

(ii) n(x,y) = 2y. Platí 2у = kx pro vhodné liché к (pro к sudé
dostaneme, že x dělí y, což je případ (i)). Dosazením do rovnice dostaneme
x2 = 2kx + 3kx, odkud x — 5fc, a proto 2y — 5&2. To je spor s tím, že к
je liché.
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(iii) n(x, у) = 4у. Platí 4у = kx pro vhodné liché к (pro к sudé dosta-
neme, že x dělí у nebo 2y, což vede na případ (i) nebo (ii)). Dosazením do
rovnice dostaneme x2 = kx + 3kx, odkud x — 4к, a proto у = к2. Protože
n(4k, к2) = 4k2 pro každé liché k, je odpovídající dvojice (x,y) — (4k, к2)
skutečně řešení.

Odpověď: Hledaných dvojic (x, у) je nekonečně mnoho; jsou to jed-
nak dvojice (7k,7k2), kde к je libovolné přirozené číslo, jednak dvojice
(4k,k2), kde к je libovolné liché přirozené číslo.

Jiné řešení. Označme d největší společný dělitel hledaných čísel x a y.
Potom x = dxi а у — dyi, kde x\ a yi jsou nesoudělná přirozená čísla,
a n(x,y) = dxiyi. Po dosazení do dané rovnice dostaneme d2x\ = 4dyi +
+ 3dxiyi, což po krácení číslem d přepíšeme do tvaru

xi{dxi - 3yi) = 4y\. (1)

Přirozené číslo 4yi je tedy násobkem čísla x\. Čísla x\ a y\ jsou ale
nesoudělná, tudíž číslo x\ je dělitelem čísla 4, a proto x\ E {1, 2,4}.

Je-li x\ = 1, pak z (1) vychází d — 7yi, takže x = dx\ = 7yi а у =
= dy\ = 7y\. Dvojice čísel x — 7k а у = 7k2 je řešením původní rovnice
pro každé &.

Je-li rci = 2, pak podle (1) platí 2d = 5yi, takže číslo y\ je sudé stejně
jako číslo xi, což odporuje jejich předpokládané nesoudělnosti.

Je-li xi = 4, pak z (1) vychází d = yi, takže x = dx i = 4d а у =
= dyi — d2. Čísla xi = 4 a yi = d jsou ovšem nesoudělná, jenom když
je d liché číslo. Pro každé takové d je dvojice x = 4d а у = d2 řešením
původní rovnice.

A - II - 3

Protože úsečka BD není průměrem kružnice к, její tečny v bodech В a D
nejsou rovnoběžné, takže se protínají v bodě, který označíme G.

(i) Předpokládejme, že bod G leží na přímce AC, například na polo-
přímce opačné к CA (obr. 31). (Leží-li bod G na polopřímce opačné к АС,
vyměníme označení vrcholů A a C, které nic nemění na rovnosti, kterou
máme dokázat.) Trojúhelníky ABG a BCG se shodují jak ve vnitřních
úhlech u společného vrcholu G, tak ve vnitřních úhlech BAG a CBG (po-
dle věty o obvodovém a úsekovém úhlu pro tětivu BC kružnice k). Proto
jsou tyto trojúhelníky podobné, tudíž platí \AB\ : \BC\ = \GB\ : |GC|.
Analogická úměra \AD\ : \CD\ = \GD\ : \GC\ plyne z podobných
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trojúhelníků ADG a DCG. Porovnáme-li obě úměry a přihlédneme-li
к rovnosti \GB\ = \GD\ (úseky tečen z bodu G ke kružnici к), zjis-
time, že platí |AB| : |J5C| = \AD\ : \CD\, odkud již plyne rovnost
|AB| • \CD\ = |AD| • |БС|.

(ii) Předpokládejme nyní, že platí rovnost \AB\ • |CD| = \AD\ ■ \BC\
a že bod G leží ve stejné polorovině s hraniční přímkou BD jako bod C
(jinak opět vyměníme označení bodů A a C, které přímka BD oddělu-
je.) Pak polopřímka GC protíná kružnici к ve dvou bodech, v bodě C
a v bodě, který označíme A! (obr. 32). Pro čtyřúhelník A'BCD můžeme

použít tvrzení dokázané v části (i), dostaneme tak rovnost \ A'B\ ■ \CD\ —

— \A'D\ ■ \BC\. Porovnáním s rovností \AB\ ■ \CD\ — \AD\ ■ \BC\ zjistíme,
že platí \ A'B\ : \AB\ — \A'D\ : \AD\. Tato úměra spolu se shodností úhlů
BA'D a BAD (obvodové úhly nad tětivou BD kružnice k) znamená, že
trojúhelníky BA'D a BAD jsou podobné podle věty sus. Protože však
straně BD odpovídá strana BD, jde o shodné trojúhelníky (ležící ve
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stejné polorovině s hraniční přímkou BD), tudíž body A a A' splývají.
Bod G proto leží na přímce AC.

A - II - 4

Odečtením prvních dvou rovnic soustavy dostaneme

x2 - y2 — p(y — x), neboli (x - y){x + у + p) = 0.

Odtud plyne, že aspoň jeden z činitelů (x — у) a (x + у + p) je roven

nule, takže číslo у je rovno x nebo —p — x. Obdobně odečtením první
a třetí rovnice soustavy zjistíme, že rovněž z G {x, —p — ж}. Dohromady
to znamená, že každé řešení (x,y,z) dané soustavy je (až na pořadí)
trojice tvaru (и, и, и) nebo (u, u, —p — u).

(i) Trojice (и, и, и) je řešením, právě když číslo и splňuje rovnici и2 —
— 1 = 2pu. Její úpravou dostaneme (u — p)2 = p2 + 1, odkud je vidět, že
pro každé reálné p existují dvě různá čísla и a jsou rovna p ± \Jp2 + 1.
Jim odpovídají první dvě řešení původní soustavy

= P + VP2 + 1 a x2 = У2 = 22 = p - y/p2 + 1. (1)Xí =Vi = z 1

(ii) Hledejme nyní všechna řešení soustavy tvaru (u, u, —p—u). Snadno
si uvědomíme, že trojice čísel (u, и, —p — и) (v jakémkoliv pořadí) je
řešením původní soustavy, právě když číslo и současně vyhovuje dvěma
rovnicím

и2 — 1 = p(u —p — u) a (—p — и)2 — 1 = p(u + u).

Je zřejmé, že každá z těchto rovnic je ekvivalentní s rovnicí и2 = 1 —

— p2. Vidíme, že v případě |p| > 1 číslo и neexistuje, v případě |p| = 1
platí и = 0, konečně v případě \p\ < 1 existují dvě čísla и a jsou rovna

±\/l — p2. Odpovídající řešení původní soustavy jsou dvě trojice čísel

хз=Уз = V1 ~P2

x4 — УА — -\/l-p2
a z3 = -p- y/l -p2,
a Z4 — p T \Jl - p2,

(2)

a dále všechny jejich permutace

(x5,y5,z5) = (x3,z3,x3)i (x6,y6,z6) = (xa,z4,xa),
(x7,y7,z7) = (г3,гг3,ж3), (ж8, y8, z8) = (г4, ж4, rr4).

(3)
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(Vzorce (2) a (3) můžeme použít i v případě |p| = 1, musíme však mít
na paměti, že poskytují jen tři různá řešení, neboť třetí řešení splývá se

čtvrtým, páté s šestým a sedmé s osmým.) Nyní ještě posoudíme, kdy
některá řešení uvedená v (2) a (3) splývají s řešeními uvedenými v (1).
Taková situace nastane, pokud platí \p\ 1 a je splněna některá z rovnic

—p — \J\ — p2 respektive — \J\ — p2 = —p + \/l - p2.

Snadným výpočtem zjistíme, že první rovnice má jediné řešení p = —7=V5
(pro takové p třetí, páté a sedmé řešení splývají s prvním řešením) a že

2
—7= (pro takové p čtvrté, šesté a osmé

V1 - P2

druhá rovnice má jediné řešení p =

řešení splývají s druhým řešením).
Odpověď: Všechna řešení (Xi,yi,Zi) dané soustavy rovnic jsou po-

psána vzorci (1), (2) a (3). Je-li |p| > 1, existují právě dvě různá řešení
2

(s indexy i — 1,2). Je-li |p| < 1 а \p\ Ф -7=

y/5

existuje právě osm různých

2
řešení (s indexy i = 1,2,...,8). Je-li |p| = 1 nebo |p| = —-=, existuje

v 5
právě pět různých řešení (s indexy i = 1,2,3,5, 7 pro hodnoty p = 1,

2 2 .

— a s indexy i = 1,2,4,6,8 pro p = —7=).
v 5

У5

v = -T p =
У5

A - III - 1

Z první rovnice dané soustavy plyne, že číslo 7y —14 = 7(y —2) je dělitelné
pěti, takže у — 5s + 2 pro vhodné celé s. Potom platí 2у = 10s + 4,
a proto (2y)5 = 10s + 5. Po dosazení do soustavy dostaneme dvojici
rovnic (4ж)б + 35s = 0 a 10s — (Зх)? = 69. Odečteme-li od dvojnásobku
první rovnice sedminásobek druhé rovnice, vyloučíme neznámou s a pro
neznámou x tak dostaneme rovnici 2(4x)s + 7(3x)y = —483. Protože
funkce F(t) = 2(4í)5 + 7(3í)7 je v celočíselné proměnné t neklesající
a platí F(—18) - -532, F(-17) = -483 a F(-16) = -473, má naše
rovnice F(x) = —483 jediné řešení x = —17. Z rovnice (4x)s + 35s = 0
pak plyne s — 2, takže у = 12. Zkoušku pro dvojici (x,y) — (—17,12)
provedeme snadno dosazením.

Daná soustava má jediné řešení (x,y) — (—17,12).
Jiné řešení. Pro každé celé číslo t zřejmě platí nerovnosti t — 2 ^

= (£)б ^ И2 a í —3 ^ (í)7 ^ t + 3. Podle nich dostaneme z dané
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soustavy rovnic soustavu nerovnic

12 ^ 4x + 7y ^ 16,
69 ^ 2y — 3z ^ 79.

Z této soustavy vyloučíme například neznámou x: pro výraz 3(4а; + 7у) +
+ 4(2у — Зж), který se rovná 29y, tak dostaneme odhady

29y ^ 3-16 + 4-79 = 364 a 29y ^ 3 • 12 + 4 • 69 = 312.

Z nerovností 312 ^ 29у ^ 364 ovšem plyne у G {11,12}. Z první rovnice
původní soustavy pro у = 11 vychází (4ж)5 = —63, což není násobek
pěti, zatímco pro у = 12 vychází (4ж)5 = -70, odkud -72 ^ Ax 5Í -68,
takže x G {-18,-17}. Nutně tedy platí у = 12; po dosazení do druhé
rovnice soustavy zjistíme, že tato rovnice je splněna pro x = —17, ne
však pro x = —18. Jediným řešením je tedy dvojice (x,y) = (—17,12).

A - III - 2

Označme 5 střed strany KL libovolného z uvažovaných trojúhelníků
KLM (obr. 33). Protože oba úhly LCM a LSM jsou pravé, je čtyřúhel-
nik CMSL tětivový, a proto platí |<£MCS| = |<£М£5| = 60°. Bod S
tudíž leží na fixní úsečce CE, jejíž krajní bod E € AB je dán rovností
\<$:ECD\ — 60°. Ukážeme, že hledanou množinou všech středů S je jistá
úsečka mezi body Ca£, která je určena podmínkami S G CE,

(i) |7lSj ^ \BS\ a (ii) \^:CBS\ ^ 45°.

Z těchto podmínek zřejmě plyne, že se jedná o úsečku FG, kde F je vrchol
rovnostranného trojúhelníku CDF a G je ten bod strany CF, který leží
na úhlopříčce BD, obr. 34. Z bodů úsečky CE totiž podmínku (i) splňují
právě body úsečky CF, podmínku (ii) právě body úsečky EG.

Zmíněné tvrzení dokážeme tak, že uvnitř úsečky CE zvolíme libovolný
bod S a pokusíme se rekonstruovat vyhovující trojúhelník KLM, jehož
strana KL má střed ve zvoleném bodě S. Zjistíme, že takový trojúhel-
nik KLM existuje, právě když bod S splňuje obě podmínky (i) a (ii).
Vraťme se znovu к obr. 33. Protože úhel КBL je pravý, jsou podle Tha-
letový věty všechny tři úsečky S/é, SB a SL shodné. Proto podle bodu
S lze body К, L určit jako průsečíky úseček AB resp. BC s kružnicí
o středu S a poloměru \SB\. Takový průsečík К (К ф В) existuje,
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právě když platí podmínka (i), průsečík L (L / B) existuje, právě když
platí nerovnost \BS\ |C5|, neboli \<$:BCS\ 5í \<£CBS\. Protože však
\<£BCS\ = 30°, je poslední nerovnost zaručena silnější podmínkou (ii),
jejíž nutnost se vyjeví za chvíli. Známe-li již body К a L, můžeme určit
bod M jako průsečík strany CD s osou úsečky KL. Předpokládejme, že
takový průsečík M existuje; sestrojený rovnoramenný trojúhelník KLM
je pak skutečně rovnostranný, neboť čtyřúhelník CMSL je tětivový (úhly
u vrcholů CaS jsou pravé), a proto platí |<£MLSj = |<£MCS| — 60°.
Zbývá proto posoudit, kdy existuje průsečík úsečky CD s osou úsečky
KL, tedy kdy body C, D leží v opačných polorovinách určených zrnině-
nou osou, jež jsou popsány nerovnicemi \KX\ ^ \LX\ a \KX\ ^ \LX\.
Protože platí \KC\ ^ \BC\ a \BC\ 'Z \LC\, tedy \KC\ í> \LC\, je naším
úkolem zjistit, kdy je splněna nerovnost \KD\ ^ \LD\. Z pravoúhlých
trojúhelníků KDA a LDC usoudíme, že poslední nerovnost platí, právě
když \AK\ ^ \LC\, neboli \KB\ ^ \LB\, neboli \<$:BLK\ ^ 45°. Úhel
BLK je ale shodný s úhlem CBS (víme totiž, že \SB\ = |SX|), a tak
dostáváme podmínku (ii). Důkaz je hotov.

A - III - 3

(i) Předpokládejme nejprve, že A = d2 pro některé přirozené d. Pak pro
každé j — 1,2,..., n platí

(čl + j)2 — A — (d2 + j)2 — d2 — (d2 — d + j)(d2 + d + j)\
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protože jedno z n po sobě jdoucích čísel (d2 — d + j), kde j — 1,2,..., n,

je dělitelné číslem n, je číslem n dělitelné i příslušné číslo (A + j)2 — A.
(ii) Předpokládejme nyní, že číslo A není druhou mocninou žádného

přirozeného čísla. V rozkladu čísla A na prvočinitele se pak některé pr-
vočíslo p vyskytuje v lichém počtu exemplářů, tedy p

pro vhodné přirozené k. Ukažme, že například číslo n = p2k nemá vlast-
nost z textu úlohy. Připusťme naopak, že pro některé j = 1,2,...,p2fc
je rozdíl (A + j)2 — A dělitelný číslem p2k. Čísla (A + j)2 a A pak dá-
vají stejné zbytky při dělení číslem p2k, a tedy i při dělení číslem p
Protože číslo A je dělitelné číslem p
i o číslu (A + j)2. To je ale spor, neboť (A + j)2 je druhá mocnina přiro-
zeného čísla.

2fc—1 I A a p2k \ A

2k — l

2k — l
ne však číslem p2k, platí totéž

A - III - 4

Po vynásobení obou stran rovnice výrazem x2 — 1 (který je roven nule,
právě když x £ { — 1,1}) a po převedení všech členů na jednu stranu
dostaneme kubickou rovnici

x3 — ax2 + 23x — 6 = 0. (1)

Jak dobře víme, každá kubická rovnice s reálnými koeficienty má v oboru
reálných čísel buď jeden, nebo tři kořeny (počítáme-li je s přihlédnutím
к jejich násobnosti). Protože obě řešení původní rovnice jsou kořeny rov-
nice (1), musí mít tato rovnice tři reálné kořeny. Pro tato čísla x\, x2,

X3 a pro koeficienty rovnice (1) platí známé Viětovy vzorce

x\ + x2 + x3 — a,

xix2 + X1X3 + X2X3 = 23,

X1X2X3 = b.
(2)

Abychom se dále vyhnuli některým zkouškám, připomeňme známý fakt,
že každé řešení soustavy rovnic (2) je tvořeno trojicí kořenů rovnice (1),
všechna řešení (2) jsou tedy permutace téže trojice čísel.

Předpoklad o dvou řešeních původní rovnice znamená, že buď právě
jeden z kořenů x\, X2, X3 patří do množiny { — 1,1} a ostatní dva kořeny
jsou různé, nebo je jeden z kořenů X2, X3 dvojnásobný a žádný z nich
do množiny { — 1,1} nepatří. Řešení původní rovnice lze proto označit
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s a 12 — s tak, že nastane jedna z následujících možností: (xi, £2, #3) =
= (—1,5,12 —s), (xi,x2,x3) = (l,s, 12-s), nebo (xi,x2,x3) = (s,s,12-
— s); vždy přitom platí s £ { —1,1,6,11,13}. Vyjmenované možnosti teď
jednotlivě posoudíme.(i)(xi,X2,x3) = (—1,5,12-s). Soustava (2) má po dosazení a úpravě
tvar

s2 — 12s — 35 = 0, b =-5(12 -5).a — 11

Druhá rovnice má dva kořeny s — 5 a s = 7, kterým podle třetí rovnice
odpovídá stejná hodnota b = —35. Dvojice (a,b) = (11, —35) je řešením
úlohy.(ii)(xi,X2,x3) = (1, s, 12 — s). Soustava (2) má po dosazení a úpravě
tvar

a = 13, s2 — 12s + 11=0, b = s(12 — s).

Druhá rovnice má kořeny s = las = ll, které však patří к nepřípustným
hodnotám s (viz výše).(iii){x\, X2, x3) = (s, 5,12 — s). Soustava (2) má po dosazení a úpravě
tvar

b = s2(12 — s).s2 - 24s + 23 = 0й — s 4" 12

Druhá rovnice má kořeny s = 1 a s = 23. Hodnota s — 1 je nepřípustná,
hodnotě 5 — 23 podle první a třetí rovnice odpovídají hodnoty a = 35
a b — —11 • 232 = —5 819. Dvojice (a, b) = (35, —5 819) je řešením úlohy.

Hledané dvojice (a, b) jsou dvojice (11, —35) а (35, —5 819).

A - III - 5

Předpokládejme, že ABCD je hledaný pravoúhelník, a označme A'B'C'D1
jeho obraz v posunutí o vektor BA (obr. 35, B' = A). Bod A! leží na
přímce souměrně sdružené s přímkou KM podle středu A — odpovídající
průsečíky této přímky s přímkami LK a LM označme К' a M'. Protože
úhlopříčka AC hledaného pravoúhelníku leží na přímce KL, je úhlopříčka
A'C' posunutého obdélníku A'B'C'D' s KL rovnoběžná. Ve stejnoleh-
losti se středem M', která převádí bod A' do bodu K' (a bod C — D do
bodu L) odpovídá pravoúhlému trojúhelníku A'AC trojúhelník K'A"L.
Bod A" už dovedeme sestrojit, protože leží na Thaletově kružnici nad
průměrem K'L a na přímce M'A. Nyní již snadno sestrojíme hledaný
pravoúhelník ABCD: nejprve určíme body A' a C — D, které jsou ob-
rázy bodů K' a L ve stejnolehlosti se středem M\ jež převádí bod A"
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do bodu Л, a к nim doplníme vrcholy В a C jako obrazy bodů В' — А,
С = D v posunutí o vektor A'A = AB.

Protože bod A leží uvnitř úsečky K'L a M' ф A, protíná přímka M'A
Thaletovu kružnici nad průměrem K'L vždy ve dvou bodech. Je-li A"
jeden z průsečíků uvedené Thaletovy kružnice s přímkou М'А a M' ф
Ф A", určují body A, A" hledanou stejnolehlost se středem M'. Pokud
tedy bod M" neleží na kružnici s průměrem K'L, má úloha dvě různá
řešení ABCD, A\BiC\Di (obr. 36). V opačném případě má úloha pouze

jedno řešení.

A - III - 6

Dosadíme-li do dané rovnice za x hodnotu f(x), dostaneme rovnici

f(f{z)f(y)) = f(f(x)y) + f{x)

ze které vyjádříme f(f(x)y) = f(f(x)f(y)) — f(x). Jiné vyjádření téhož
výrazu f(f(x)y) dostaneme, když v původní rovnici vyměníme navzájem

94



hodnoty x а, у, vyjde nám f(f{x)y) = f(yx) + y. Porovnáním obou
vyjádření tak dostaneme rovnici

f(f{x)f{y)) = f(yx) +У + f(x)

jejíž levá strana se nezmění, vyměníme-li navzájem hodnoty x a y. Stej-
nou vlastnost musí proto mít i pravá strana této rovnice, takže musí
platit

f(yx) +y + f(x) = f(xy) +x + f{y), neboli у + f(x) = x + f(y).

Další zřejmou úpravou dostáváme rovnici f(x) —x = f(y) — у, která musí
být splněna pro libovolná x,y 6 1R+. Znamená to, že funkce x f(x) — x

je na množině [R+ konstantní, tedy hledaná funkce / musí být tvaru
f(x) = x + c pro vhodné číslo c. Po dosazení tohoto předpisu do obou
stran původní rovnice

f(xf{y)) = xf{y) + с = x{y + с) + c = xy + cx + c

f(xy) + x = (xy + c) + x = xy + x + c

zjišťujeme, že vyhovuje jedině c = 1. Hledaná funkce / je tudíž jediná
a je určena vzorcem f(x) = x + 1.
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Kategorie P

Texty úloh

P - I - 1

Matice

Je dána čtvercová matice A o rozměrech n x n, jejíž prvky jsou nuly
a jedničky. Pojmem řádková resp. sloupcová výměna budeme označo-
vat vzájemnou záměnu libovolných dvou řádků, resp. libovolných dvou
sloupců matice. Bude nás zajímat, zdaje možné posloupností řádkových
a sloupcových výměn převést danou matici A na takovou matici, která
má na hlavní diagonále pouze jedničky (hlavní diagonálu tvoří prvkv
Л[1,1],Л[2,2],...,Л[п,п]).

V mnoha aplikacích (např. při řešení soustav lineárních rovnic) je vý-
hodné danou matici transformovat na ekvivalentní matici tak, aby hlavní
diagonála obsahovala „velké“ prvky. V této úloze vlastně nuly reprezen-

tují „malé“ a jedničky „velké“ prvky matice.
Soutěžní úloha. Navrhněte co nejefektivnější algoritmus, který pře-

vede zadanou čtvercovou matici pomocí řádkových a sloupcových výměn
na matici, která má na hlavní diagonále samé jedničky, příp. zjistí, že to
není možné.

Příklad 1: Matice A:

0 10 1

110 1

110 0

0 0 10

Matici je možné transformovat
a potom první a čtvrtý sloupec.

Příklad 2: Matice A:

0 10

110

110

Výsledek:
110 0

110 1

0 0 10

0 10 1
— stačí vyměnit třetí a čtvrtý řádek

Výsledek:
Matici není možné transformovat
do požadovaného tvaru.
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P - I - 2

Robot

Ve výzkumném ústavu potrubí a rour vyvinuli nový druh robota urče-
ného na čištění teplovodních potrubí. Robot se soustavou potrubí pohy-
buje podle předem stanoveného plánu. Technologie čištění vyžaduje, aby
robot prošel každou trubkou v soustavě dvakrát (nezáleží na tom, jakým
směrem) — při prvním průchodu provádí chemické čištění a při druhém
mechanické dočišťování. Robot může vlézt do trubky z kteréhokoliv kon-
ce, ale jakmile do ní vstoupí, musí ji už celou projít.

Soustava potrubí se skládá z n uzlů očíslovaných od 1 do n, mezi nimiž
vede m teplovodních trubek očíslovaných od 1 do m. Každá trubka vede
mezi dvojicí uzlů a nemá žádné odbočky ani větvení. Mezi každou dvojicí
uzlů vede nejvýše jedna trubka. Soustava potrubí je souvislá, tj. robot
se trubkami může dostat na libovolné místo soustavy. Robot začíná svou

práci v uzlu číslo 1 a po skončení čištění se musí opět do tohoto uzlu
vrátit.

Soutěžní úloha. Napište program, který umožní plánovat trasu čis-
ticího robota. Program přečte ze vstupního souboru popis soustavy po-
trubí a zjistí, zda existuje trasa robota, která začíná i končí v uzlu číslo 1
a prochází každou trubkou právě dvakrát. Pokud taková trasa existuje,
program ji vypíše.

Formát vstupu: První řádek vstupního souboru robot. in obsahuje
dvě kladná celá čísla n a m (n ^ 100), oddělená jednou mezerou. Každý
z následujících m řádků popisuje jednu trubku. Obsahuje vždy dvě kladná
celá čísla oddělená mezerou — čísla koncových uzlů této trubky.

Příklad: robot. in robot.out

13541542415315 6

1 3

1 4

1 5

2 4

3 5

4 5

Formát výstupu: Výstupní soubor robot. out je tvořen jediným řád-
kem, který obsahuje 2m + 1 čísel uzlů oddělených mezerami. Jsou to čísla
uzlů v pořadí, v jakém je má robot navštívit během svého čištění. První
a poslední číslo na řádku musí být 1. V případě, že neexistuje trasa, která
prochází každou trubkou právě dvakrát, výstupní soubor bude obsaho-
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vat jediný řádek se slovem NE. Pokud existuje více vhodných tras, vypište
jednu libovolnou z nich.

P - I - 3

Přímka

V rovině je dáno 2n bodů, z toho n je bílých a n černých. Spravedlivá
přímka je taková přímka, která

> prochází bodem [0,0],
> neprochází žádným černým ani bílým bodem,
> rozděluje rovinu na dvě poloroviny, přičemž v jedné z těchto polo-

rovin je stejný počet bílých bodů jako ve druhé polorovině černých,
a naopak.
Soutěžní úloha. Napište program, který ze vstupního souboru

přímka.in přečte souřadnice bílých a černých bodů a do souboru
přímka.out vypíše jednu spravedlivou přímku.

Můžete předpokládat, že žádné tři zadané body neleží najedná přímce
a že bod [0,0] neleží na žádné přímce určené dvěma zadanými body.
Všechny zadané body mají celočíselné souřadnice.

Formát vstupu: První řádek vstupního souboru přímka.in obsahuje
jediné číslo n. Každý z následujících 2n řádků obsahuje souřadnice jed-
noho zadaného bodu oddělené mezerou. Prvních n bodů je bílých, dalších
n bodů je černých.

Formát výstupu: Výstupní soubor přímka. out je tvořen jediným řád-
kem, který obsahuje souřadnice jednoho libovolného bodu různého od
[0,0], jímž nalezená spravedlivá přímka prochází. Souřadnice jsou od sebe
odděleny jednou mezerou. Pokud spravedlivá přímka pro zadanou mno-
žinu bodů neexistuje, výstupní soubor bude obsahovat jediný řádek se
slovem NE.

Příklad: přímka. in
2

0 1

2 -1

-1 -1

-1 2

přímka.out
2 1

Jiné správné řešení:
-1.0 2.9
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Návod. Nechť Ai = [xi,yi], A2 = [ar2,3/2] a A3 = [x3,y3] jsou body
v rovině. Jestliže je hodnota výrazu (x2 — x\) (y3 — y\) — (x3 — rri) (y2 — y\)
kladná, bod A3 leží nalevo od polopřímky A\A2. Jestliže je tato hodnota
záporná, potom leží napravo, a pokud je tato hodnota nulová, bod A3
leží na přímce A\A2.

P - I - 4

Komparátorové sítě

Komparátorové sítě se využívají při návrhu paralelních algoritmů. Mohou
se také snadno realizovat pomocí elektronických obvodů. Komparátor je
jednoduché zařízení, které obdrží na vstupu dvě čísla, porovná je, na
vrchním ze svých výstupů vrátí menší z těchto dvou čísel a na spodním
větší z nich. Z komparátorů lze sestavovat složitější obvody, kterým bu-
deme říkat komparátorové sítě.

Komparátorová síť je tvořena n vodorovně uspořádanými vodiči,
které jsou na několika místech propojeny pomocí komparátorů. Kom-
parátory jsou uspořádány do vrstev, které odpovídají jednotlivým kro-
kům výpočtu. Na začátku výpočtu (v kroku 0) síť dostane na vstupu
n čísel. Po skončení kroku к — 1 se výstupy z kroku к — 1 přenesou
vodiči na komparátory ve vrstvě k. Komparátor ve vrstvě к spojuje
vždy dva vodiče (nemusí to ovšem být sousední vodiče). Jestliže je na

spodním z nich menší hodnota než na vrchním, vymění tyto hodno-
ty, v opačném případě je nechá beze změny. V jedné vrstvě může být
umístěno i více komparátorů (jejich výpočet probíhá najednou, para-

lelně), ale v jedné vrstvě může jeden vodič vstupovat nejvýše do jed-
noho komparátorů. Po skončení celého výpočtu jsou na výstupech sítě
tatáž čísla jako na jejích vstupech, pouze může být zaměněno jejich po-
řadí.

Graficky se vodiče zobrazují jako vodorovné čáry, komparátory jako
svislé spojnice svých vstupních vodičů. Komparátory umístěné v jedné
vrstvě se kreslí svisle nad sebe, případně do několika sousedních sloup-
ců. Jednotlivé vrstvy sítě oddělujeme svislou čárkovanou čarou. Výpočet
komparátorové sítě probíhá zleva doprava.

Při návrhu sítí se snažíme sestrojit je tak, aby doba výpočtu byla co

nejmenší, tj. aby síť měla co nejméně vrstev. Druhým kritériem hodnocení
kvality sítě je počet použitých komparátorů (na tomto počtu může záviset
například výrobní cena sítě).
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Příklad 1:
4. ;3 1
I_

T i1 li3 T2
-2- I:2 Ti2 l331 :4 j:4 4

♦

• , é • 4 . •

♦

-4- 4- 4-

Uvažujme nejlevější síť na obrázku. Tato síť dostane čtyři vstupy
a vrátí je uspořádané od nejmenšího к největšímu. Po prvních dvou
krocích výpočtu bude nej menší vstup buď na prvním, nebo na druhém
vodiči a největší vstup na třetím nebo na čtvrtém. Další dva kroky umístí
nejmenší a největší hodnotu na své místo a v posledním kroku se správně
uspořádají hodnoty na druhém a třetím vodiči. Všimněte si, že první
a druhý komparátor (stejně jako třetí a čtvrtý) je možné sloučit do jedné
vrstvy, aniž by se tím změnil výsledek výpočtu. Výsledná rychlejší síť
je na prostředním obrázku. Pravý obrázek ukazuje průběh výpočtu pro

vstup 4, 1, 2, 3.
Příklad 2: Sestrojte komparátorovou síť, která na vstupu obdrží n

čísel a na výstupu umístí nejmenší z těchto čísel na první vodič. Na
pořadí ostatních čísel nezáleží. Můžete předpokládat, že n je mocnina
dvou.

Řešení. Síť sestrojíme rekurzívně. Označme Sn síť, která úlohu řeší pro
n vstupů. Jestliže n = 1, Sn nebude obsahovat žádný komparátor, neboť
máme jen jediný vstup. Předpokládejme tedy, zen > 1. Vstupy rozdělíme
na dvě poloviny — horní a dolní. Na každou polovinu vstupů aplikujeme
síť Sn/2. Tyto dvě sítě poloviční velikosti mohou pracovat paralelně. Po
skončení jejich výpočtu budeme mít na vodiči číslo 1 nejmenší hodnotu
z horní poloviny vstupů a na vodiči číslo |n +1 nejmenší hodnotu z dolní
poloviny. Nyní proto stačí přidat jeden komparátor mezi vodiče 1 a \n +1
a dostaneme celkové minimum na prvním vodiči. Síť Sn se tedy skládá
ze dvou sítí Sn/2 a z jednoho dalšího komparátoru. Konstrukce sítě Sn
je znázorněna na následujícím obrázku vlevo, vpravo je příklad výsledné
sítě pro n = 8.

n

Sn/2nJ
n

I ^n/2
HJ
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Všimněte si, že hloubka rekurze je log2 n, neboť velikost vstupu se
v každém rekurzívním kroku sníží na polovinu. Každá úroveň rekurze
přidá do výsledné sítě jednu vrstvu, takže síť Sn má log2 n vrstev. Počet
použitých komparátorů je v poslední vrstvě 1, v každé další vrstvě od-
zadu se vždy zdvojnásobí. Nechť počet vstupů je n — 2k. Potom počet
použitých komparátorů je 1 + 2 + 4 + ... + 2k~l =2k — l= n — l (součet
geometrické posloupnosti). Získali jsme tedy síť, která má O(logn) vrstev
a používá 0(n) komparátorů.

Soutěžní úlohy, a) Napište program, který bude simulovat výpočet
komparátorové sítě. Program dostane ve vstupním souboru popis zkou-
mané komparátorové sítě a hodnoty jejích vstupů. Přesný tvar popisu
komparátorové sítě si sami navrhněte a popište ho. Program by měl
spočítat výsledky výpočtu komparátorové sítě a také by měl umožňo-
vat graficky nebo semigraficky zobrazovat průběh výpočtu sítě. V řešení
uveďte také příklady vstupu a výstupu svého programu.

b) Na vstupu je dáno n — 1 čísel seřazených od nejmenšího po největší
(prvních n—1 vstupů). Poslední vstup obsahuje libovolné číslo. Navrhněte
komparátorovou síť, která zatřídí poslední číslo do této posloupnosti na

správné místo podle velikosti (tj. na výstupu bude všech n čísel uspořá-
dáno od nejmenšího к největšímu). Můžete předpokládat, že n je mocnina
dvou. Pokuste se navrhnout co nejrychlejší síť.

P - II - 1

Matice

Uvažujme matici A o rozměrech m x n, která obsahuje pouze nuly
a jedničky. Orámovaným obdélníkem budeme nazývat takovou podmatici,
která má aspoň dva řádky, aspoň dva sloupce a jejíž první a poslední řá-
dek, stejně jako první a poslední sloupec, obsahují samé jedničky. Uvnitř
obdélníka mohou být libovolné prvky.

Soutěžní úloha. Navrhněte algoritmus, který v dané matici A najde
největší orámovaný obdélník. Velikost orámovaného obdélníka s i řádky
a j sloupci je rovna i-j (tj. hledáme orámovaný obdélník, pro který bude
součin i ■ j největší možný). Pokud existuje více takových obdélníků,
stačí nalézt jeden libovolný z nich. Můžete předpokládat, že aspoň jeden
orámovaný obdélník se v matici A nachází.
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Příklad: Vstup: Výstup:
Největší orámovaný ob-
dělník má rozměry 6x9
a jeho levý horní roh je
ve 4. řádku a 5. sloupci.

m = 11, n = 24
000000000000000000000000

001111100000000001100000

001100111111111111111110

001011111111111111111110

001010100000100011100000

001111100100100011100000

000010001100100111111000

000010000000100100101000

010011111111100100001000

001000000000000111111000

000000000000000000000000

P - II - 2

Robot

Výzkumný ústav potrubí a rour má nový problém, tentokrát se soustavou
orientovaných trubek. Pro vyčištění této soustavy je zapotřebí, aby čisticí
robot prošel každou trubkou právě jednou. Soustava je orientovaná, což
znamená, že pro každou trubku je předepsán směr, kterým musí robot
trubkou projít. S vynaložením velkého úsilí se programátorům výzkum-
ného ústavu podařilo napsat program, který pro danou soustavu trubek
najde jednu možnou trasu čisticího robota, nebo zjistí, že taková trasa
neexistuje. Někdy je ovšem užitečné vědět, zda existuje více různých tras
čištění (střídáním čisticích tras je totiž možné snížit opotřebení robota
v zatáčkách).

Soustava potrubí je složena z n uzlů očíslovaných 1,..., n, mezi nimiž
vede m jednosměrných trubek očíslovaných 1,,m. Každá trubka vede
mezi dvojicí navzájem různých uzlů a nemá žádné odbočky nebo větvení.
Z každého uzlu vede do každého jiného uzlu nejvýše jedna trubka. Pro
tuto soustavu je zaručeno, že existuje trasa robota, která začíná i končí
v uzlu 1 a projde každou trubkou právě jednou (v souladu se stanovenou
orientací trubky). Pracovníci výzkumného ústavu navíc pomocí svého
programu jednu takovouto trasu našli a tato trasa je vám к dispozici.
Vaším úkolem je zjistit, zda existuje ještě jiná trasa začínající i končící ve
vrcholu 1, která projde každou trubkou právě jednou. Tuto trasu nemusíte
vypisovat, stačí, když váš program odpoví ano/ne.
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Vstup:
n = 5, m = 6
trubky:

Příklad. Vstup:
n — 5, m — 7
trubky:

1 21 2

2 31 5

3 12 3

3 43 1

4 53 4

5 34 1

trasa: 1 2 3 4 5 3 1

Výstup:
Neexistuje jiná trasa.

5 3

trasa: 12341531

Výstup:
Existuje jiná trasa.
Poznámka. 12315341 je pří-
klad jiné trasy.

P - II - 3

Učitel

Ve třídě sedí učitel a dává pozor na n žáků, kteří píšou písemku. Učitel
se po většinu času dívá jedním směrem. Tento směr budeme nazývat
základní směr. Jakmile však učitel zaslechne odněkud podezřelé zvuky,
rychle se otočí, aby viděl, co se děje. Úkolem je zvolit základní směr tak,
aby úhel, o který se musí otočit, byl co nejmenší. Jelikož к různým žákům
je třeba natočení o různý úhel, chceme minimalizovat průměrný úhel.

Soutěžní úloha. Na vstupu je dáno číslo n a souřadnice n bodů v ro-
vině [xi,yi\, [х2,У2[хп,Уп]- Každý bod určuje polohu jednoho žáka
ve třídě. Učitel sedí v bodě [0,0]. Můžete předpokládat, že bod [0,0] neleží
na žádné přímce určené dvěma zadanými body.

V základním směru je učitel otočen směrem к nějakému bodu [x,y].
Když zaslechne vyrušovat žáka i, otočí se směrem к bodu [xi,yi]. Otáčí se
buď po směru hodinových ručiček, nebo proti směru hodinových ručiček,
podle toho, kterým směrem je úhel otočení menší (tj. pro každého žáka
je úhel otočení nejvýše 180°).

Průměrný úhel otočení je aritmetický průměr úhlů otočení pro všech
n bodů. Úkolem je zvolit takový bod [x, y] určující základní směr, aby
průměrný úhel otočení byl nejmenší možný.
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Pomůcka: Můžete předpokládat, že máte к dispozici funkci uhel(x, у),
která vrátí úhel otočení učitele mezi bodem [1,0] a bodem [x,y] měřeno
proti směru pohybu hodinových ručiček (tj. úhel mezi 0° a 360°).

Příklad,:

Vstup:
n = 4, body: [-1,1], [0, -3], [-2, -2], [2,0]
Výstup:
Základní směr je směrem к bodu [-1,-2].
Poznámka. Průměrný úhel otočení je 67,5°.
Správných řešení existuje více, například také
bod [—2, —2] (žák 3).

- •

■ •

- -o- -

P - II - 4

Komparátorové sítě

(Definice komparátorové sítě je obsažena v textu úlohy P-I-4.)
Soutěžní úlohy, a) Na následujícím obrázku je nakreslena kompará-

torová síť se šesti vstupy. Nalezněte vstupní data (tj. šestici čísel), která
tato síť nesetřídí (neuspořádá je podle velikosti). Zobrazte také průběh
výpočtu sítě pro tato vstupní data.

b) V komparátorové síti uvedené v části a) se nachází komparátor, po

jehož odstranění bude síť správně třídit libovolnou vstupní posloupnost
šesti čísel. Určete tento komparátor a vysvětlete, proč po jeho odstranění
síť správně třídí.

c) Na vstupu komparátorové sítě je 2n navzájem různých čísel. Čísla
na prvních n vstupech jsou seřazena od nejmenšího po největší a čísla
na druhých n vstupech jsou také seřazena od nejmenšího po největší.
Navrhněte komparátorovou síť, která na prvních n výstupech vrátí n

nejmenších čísel (v libovolném pořadí) a na druhých n výstupech vrátí
n největších čísel (v libovolném pořadí). Snažte se, aby vaše síť byla co

nej rychlejší.
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Příklad, n = 3, vstupy 1, 4, 5, 2, 3, 6. Na výstupu první tři vodiče
obsahují čísla 1, 2, 3 v libovolném pořadí a druhé tři vodiče obsahují čísla
4, 5, 6 v libovolném pořadí. Například 2, 3, 1, 6, 5, 4 je správný výstup.

P - lil - 1

Je dána matice Asm řádky a n sloupci. Každý její prvek aij (první sou-
řadnice indexu je číslo řádku a druhá je číslo sloupce) je buď celé kladné
číslo, nebo takzvaný žolík. Žolík budeme označovat znakem *. Chceme
přerovnat prvky matice tak, aby každý řádek matice tvořil neklesající
posloupnost, tj. aby pro každé г, 1 ^ i 5Í m, platilo:

ai,l = ai,2 = • • • = di,n “ Ог,п-1

Za žolíky lze do matice dosadit libovolná celá čísla. Tedy například řádek
(1, *, 4, *) je neklesající, neboť za žolíky je možné dosadit třeba čísla 2 a 5.
Naopak řádek (5, *,*,4) není neklesající, protože neexistují žádná celá
čísla xay, která by splňovala podmínky 5 x ^ у ^ 4. Při vyměňování
prvků matice jsme omezeni tím, že můžeme mezi sebou zaměnit vždy
pouze takové prvky, které jsou umístěny ve stejném sloupci.

Soutěžní úloha. Navrhněte program, který pro zadanou matici A roz-

hodné, zda je možné přerovnat její prvky v rámci každého sloupce tak,
aby všechny řádky výsledné matice byly neklesající. V kladném případě
program jednu z možných výsledných matic vypíše.

Příklad:

Vstup:
m = 4, n = 4

1 10 8 12

* 9 10 *

8 * 11 10

12 * * 10

Výstup:
Ano. Jedno možné přeuspořádání prvků je:

1 * 8 10

12 * * *

* 10 11 12

8 9 10 10

Výstup:
Prvky nelze přeuspořádat.

Vstup:
?n = 3, n = 4
* * * *

* * * *

4 3 2 1
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P - III - 2

V jednom lyžařském středisku pořádají závody ve sjezdu. Organizátoři
závodů se snaží, aby trasa při každém závodu byla trochu jiná. Na svahu
je trvale vyznačeno N orientačních bodů, jejichž polohu není možné mě-
nit. Trasa pak prochází některými z uvedených orientačních bodů a spi-
ňuje následující podmínky:

> Trasa začíná v nejvýše položeném orientačním bodě a končí v nejníže
položeném orientačním bodě.

> Trasa mezi každými dvěma po sobě následujícími orientačními body
vede po přímce.

> Nadmořská výška orientačních bodů trasy na svahu ostře klesá.
> V žádném orientačním bodě nemění trasa svůj směr o více než o 45°.

Vaším úkolem je určit počet vyhovujících tras pro závody.
Soutěžní úloha. Na vstupu je dán počet orientačních bodů N a dvo-

jice čísel (#1,2/1), (£2,2/2), • • • » {xn,Vn), které popisují polohu jednotli-
vých orientačních bodů na svahu. Svah si představujeme jako obdélník,
který se svažuje shora dolů. Číslo X{ je vzdálenost г-tého orientačního
bodu od levého okraje svahu a yi je jeho vzdálenost od dolního okraje,
tj. čím větší je y-ová souřadnice bodu, tím větší má tento bod nadmořskou
výšku.

Navrhněte program, který zjistí počet vyhovujících tras na zadaném
lyžařském svahu. Můžete předpokládat, že žádné dva orientační body
nemají stejnou y-ovou souřadnici a že žádné tři orientační body neleží
na jedné přímce.

Pomůcka: Ve svém programu můžete používat funkci uhel(x, y), která
vrátí velikost úhlu mezi bodem (#, у) a #-ovou osou, tj. určí úhel, o který
je třeba otočit kolem bodu (0,0) proti směru hodinových ručiček polo-
přímku vycházející z bodu (0,0) a procházející bodem (1,0) tak, aby tato
polopřímka po otočení procházela bodem (#,y). Funkce vrací výsledný
úhel ve stupních, tj. jako číslo z intervalu (0,360).

Příklad. Vstup: N = 6, orientační body:
MV:' *(2.5), (2,2). (5,4). (0,3), (0,1), (1,0)

- *4Výstup: Existují 3 vyhovující trasy.
Poznámka. Vyhovující trasy jsou: 3

(2.5).(0.3),(0.1),(1,0)
(2.5),(2,2),(1,0)(2.5), (1,0)

2 ♦

!<►

04—♦ : : Ť->b
0 1 2 3 4 5
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P - III - 3

(Definice komparátorové sítě je obsažena v textu úlohy P-I-4.)
Soutěžní úloha. Je dána jedna konkrétní permutace čísel 1,2,..., n,

tj. taková posloupnost čísel oi, 02,..., an, ve které se každé z čísel
1,2vyskytuje právě jednou. Máme zaručeno, že naše kompará-
torová síť bude mít n vodičů a na vstupu bude г-tý vodič obsahovat
číslo di■ Úlohou je navrhnout takovou komparátorovou síť, která tento
konkrétní vstup utřídí (navržená síť tedy nemusí třídit žádný jiný vstup).

Protože navržená komparátorová síť bude obecně různá pro různé
permutace, je vaším úkolem vytvořit algoritmus, který navrhne kon-
krétní komparátorovou síť pro zadané číslo n a zadanou posloupnost
čísel ai, a2,.. -, an. Navrženou síť vypište jako posloupnost komparátorů
podle jejich výskytu v jednotlivých vrstvách zleva doprava; jednotlivé
komparátory udávejte jako dvojici vodičů, které do nich vstupují.

Vámi vytvořený algoritmus musí pracovat v čase, který je polyno-
miální v n. Snažte se, aby síť, kterou váš algoritmus navrhne, měla co

nejméně vrstev (a pokud možno i malý počet komparátorů). Existuje
efektivní algoritmus, který pro zadanou permutaci nalezne síť s O(n)
komparátory a s O(logn) vrstvami.

Příklad:

Vstup:
n = 4, ai = 2, й2 = 3,аз = 1,й4 = 4.
Výstup:
Vstup je možné utřídit například pomocí sítě:
První vrstva: komparátor (1,3)
Druhá vrstva: komparátor (2,3)

2
f q 1

3 2

1i
4 4

3

4

p - mi - 4

roury.pas / roury.c / roury.cpp

roury.in
roury.out

Ve výzkumném ústavu potrubí a rour mají opět nový problém. Do-
stali zakázku od Vodáren a kanalizací města Blatislavy, kde je potřeba
pročistit městskou kanalizaci od nánosů bláta. Postup při čištění trubek
od bláta je jednoduchý: Čistící robot musí projít každou trubkou právě
jednou; kdyby robot prošel již vyčištěnou trubkou, hrozilo by nebezpe-
čí, že jeho silné čistící prostředky tuto trubku poškodí. Robot může do

Program:
Vstupní soubor:
Výstupní soubor:
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trubky vstoupit z jejího libovolného konce; pokud však již do trubky
vstoupí, musí ji celou projít.

Pracovníci výzkumného ústavu si rychle uvědomili, že za těchto pod-
mínek se může stát, že jeden robot na vyčištění celé městské kanalizace
nebude stačit. Doporučili tedy do kanalizace poslat více robotů najednou
a naprogramovat je tak, aby dohromady pročistili celou kanalizaci.

Nový typ čistícího robota ale není zrovna levný, a proto je potřeba
navrhnout takový postup, aby celá kanalizace byla vyčištěna pomocí co

nejmenšího počtu robotů. A to je už úkol pro vás.
Kanalizační síť je tvořena n uzly očíslovanými od 1 do n, mezi kterými

vede m trubek. Každá trubka spojuje dvojici uzlů a nemá žádné odbočky,
ani se nikde nevětví. Mezi každou dvojicí uzlů vede nejvýše jedna trubka.

Soutěžní úloha. Vytvořte program, který pomůže naplánovat trasy
pro čistící roboty. Program načte popis kanalizační sítě, určí minimální
počet robotů postačující pro vyčištění celé sítě a navrhne jejich trasy tak,
aby každou trubkou prošel právě jeden z nich právě jednou.

Formát vstupu: První řádek vstupního souboru roury. in obsahuje
dvě kladná celá čísla: počet uzlů n (1 ^ n 500) a počet trubek m,
oddělená mezerou. Každý z následujících m řádků popisuje jednu trubku;
obsahuje vždy dvě čísla oddělená mezerou, což jsou čísla koncových uzlů
trubky.

Formát výstupu: Na prvním řádku výstupního souboru roury.out
bude zapsáno jediné celé číslo R — nejmenší počet robotů, který posta-
čuje к vyčištění kanalizační sítě. Následuje R řádků, z nichž г-tý popisuje
trasu г-tého robota. Pokud г-tý robot začíná čistící proces v uzlu ai,
odtud pokračuje trubkou do uzlu <22, pak do аз, atd. až skončí v uzlu a*,,

potom příslušný řádek výstupního souboru obsahuje к čísel ai, 02,..., ak

(v tomto pořadí) oddělená od sebe vždy jednou mezerou.

Soubor roury.out:Příklad. Soubor roury. in:
8 8 3

2 1 3 5 4 1

4 6 5

1 2

1 3

8 71 4

3 5

4 5

4 6

5 6

7 8
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Jestliže existuje více optimálních řešení, váš program má za úkol na-
lézt a vypsat právě jedno z nich.

P - III - 5

kameny.pas / kameny.c / kameny.cpp
kameny.in
kameny.out

Program:
Vstupní soubor:
Výstupní soubor:

Uvažujme následující hru pro jednoho hráče. Hrací plán je tvořen К
políčky uspořádanými do jedné řady. Na začátku hry je na tomto plánu
umístěno několik hracích kamenů (na každém políčku leží nejvýše jeden
kámen). Je zadána tzv. cílová pozice, tj. rozestavení kamenů, kterého je
třeba dosáhnout. V jednom tahu můžeme táhnout kamenem z políčka
p tak, že jím přeskočíme kámen ležící na sousedním políčku. Přesněji:
Pokud je na sousedním políčku napravo (nalevo) od políčka p kámen
a následující políčko tímto směrem je volné, lze kámen z políčka p přesu-
nout na volné políčko a přeskočený kámen odstranit z hracího plánu. Jak
již bylo řečeno, úkolem je dosáhnout pomocí těchto tahů cílové pozice.
Pokud ze zadané pozice lze cílové pozice dosáhnout, říkáme, že zadaná
pozice je vyhrávající.

Například, pokud pozice vlevo na následujícím obrázku je cílová, pak
v prostředním sloupci je jedna z vyhrávajících pozic vzhledem к této
cílové pozici (s uvedením příslušné posloupnosti tahů, kterými lze cílové
pozice dosáhnout). Naopak pozice v pravé části obrázku není vyhrávající,
neboť v ní lze na začátku táhnout jen prostředním ze tří kamenů a tím
se dostaneme do pozice se dvěma kameny oddělenými dvěma prázdnými
políčky, ze které již nelze dál pokračovat ve hře.

cílová pozice vyhrávající pozice nevyhrávající pozice
• • •

Soutěžní úloha. Vytvořte program, který přečte dvě celá čísla К a N
a cílovou pozici a vypíše počet různých vyhrávajících pozic tvořených
nejvýše N kameny.
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Formát vstupu: Vstupní soubor kameny. in bude obsahovat na prvním
řádku dvě celá čísla К а N oddělená jednou mezerou. Na druhém řádku
souboru bude zadána cílová pozice jako posloupnost К nul a jedniček od-
dělených mezerami, kde jednička představuje políčko obsazené kamenem
a nula prázdné políčko. Můžete předpokládat, že platí 1 ^ ^ К 100.

Formát výstupu: Výstupní soubor kameny. out bude obsahovat jedno
celé číslo, které udává počet vyhrávajících pozic tvořených nejvýše N
kameny. Můžete předpokládat, že toto číslo nepřesáhne 10 000.

Soubor kameny.out:Příklad. Soubor kameny, in:
6 3

0 0 110 0
Soubor kameny. in:

3

Soubor kameny. out:
108 5

10000001
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Řešení úloh

P - I - 1

Úlohu nejprve převedeme do terminologie teorie grafů. Bipartitní graf
je takový graf, ve kterém můžeme vrcholy rozdělit do dvou disjunkt-
nich množin R a S tak, aby každá hrana grafu spojovala některý vrchol
z množiny R s některým vrcholem z množiny S. Čtvercovou matici A nul
a jedniček rozměrů n x n můžeme chápat jako reprezentaci bipartitního
grafu G s 2n vrcholy, kde vrcholy ГЫ2,. • .rn odpovídají řádkům a vr-

choly si, S2,..., sn sloupcům matice. Vrcholy г* a Sj jsou spojeny hranou
právě tehdy, když prvek A[i, j] = 1. Hranu mezi r; a Sj budeme značit
(ri,8j).

Řekneme, že bipartitní graf má perfektní párování, jestliže se jeho
vrcholy dají uspořádat do dvojic tak, že v každé dvojici je jeden vrchol
z množiny R a jeden vrchol z množiny S a tyto dva vrcholy jsou spojeny
hranou. Každý vrchol grafu se přitom musí nacházet právě v jedné tako-
véto dvojici.

Ukážeme, že jestliže bipartitní graf G má perfektní párování, potom
v naší matici A lze přerovnat řádky a sloupce takovým způsobem, aby
na hlavní diagonále byly samé jedničky. Pokud párování obsahuje dvo-
jice (r^j, SjJ, (ri2, Sj2),..., (r{n , Sjn), pak stačí řádky uspořádat v pořadí

... An a sloupce v pořadí ji, j-z, ■ ■ ■ ,jn- Označme takto přerovná-
nou matici A'. Platí A'[k,k] = A[ik,jk\- Jelikož mezi vrcholy rz-fc a Sjk
v grafu G vede hrana, platí A[ik,jk\ = 1, a proto matice A' má na hlavní
diagonále samé jedničky.

Naopak, pokud lze matici A přerovnat tak, aby měla na hlavní dia-
gonále samé jedničky, pak v grafu G existuje perfektní párování. Nechť
v přerovnané matici A' jsou řádky v pořadí i\, «2,..., in a sloupce v po-
řadí j\, j2i ■ ■ ■ ,jn■ Víme, že pro všechna к platí А1 [к, &] = 1, a proto také
A[ik,jk\ = 1. Proto v grafu G dvojice (r^, sh), (ria, sj2(rin, sjn)
tvoří perfektní párování. Dokázali jsme tedy následující tvrzení:

Matici A je možné transformovat na tvar se samými jedničkami na
hlavní diagonále právě tehdy, když existuje perfektní párování v grafu G.

Jestliže tedy chceme zjistit, jak zadanou matici A přetransformovat
na tvar se samými jedničkami na hlavní diagonále, nalezneme nejprve
perfektní párování v bipartitním grafu G. Pokud perfektní párování exis-
tuje, přerovnáme řádky a sloupce matice podle postupu uvedeného výše.
Pokud takové párování neexistuje, matici nelze transformovat do poža-
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dováného tvaru. Jediným problémem v tuto chvíli zůstává, jak nalézt
perfektní párování bipartitního grafu.

Připomeňme si, že v perfektním párování jsou v každé dvojici vrcholy
spojeny hranou. Proto můžeme perfektní párování chápat také jako mno-
žinu hran M takovou, že každý vrchol grafu je koncovým vrcholem právě
jedné hrany z M. Podobně můžeme definovat párování jako množinu hran
M takovou, že každý vrchol grafu je koncovým vrcholem nejvýše jedné
hrany z M. To znamená, že v párování, které není perfektní, nemusí být
každý vrchol zařazen do některé dvojice. Ukážeme si nyní algoritmus, jak
nalézt v bipartitním grafu maximální párování, tj. párování s nejvyšším
možným počtem hran.

Maximální párování budeme hledat postupně. Začneme s prázdným
párováním M = 0 a v každém kroku zvýšíme počet párovacích hran o jed-
na. Když se nám v některém kroku nepodaří zvýšit počet hran v párování,
prohlásíme aktuální nalezené párování za maximální a výpočet ukončíme.

Počet hran v párování budeme zvyšovat pomocí takzvaných zlepšují-
cích cest. Uvažujme libovolné pevně zvolené párování M. Alternující cesta
pro párování M je posloupnost vrcholů , r;2, Sj2,..., Г{к, Sjk, která
začíná řádkovým vrcholem, končí sloupcovým vrcholem, každá dvojice
po sobě jdoucích vrcholů je spojena hranou a střídají se párovací a ne-

párovací hrany, přičemž první hrana (r^, Sj1) je nepárovací. Zlepšující
cesta je alternující cesta, která začíná i končí nespárovaným vrcholem.

Všimněte si, že zlepšující cesta P — T‘i1,Sj1,ri2,Sj2,... ,rik,Sjk se
skládá z к — 1 párovacích а к nepárovacích hran. Mějme tedy párování
M a zlepšující cestu P. Jestliže všechny párovací hrany v P změníme
na nepárovací a naopak, dostaneme nové párování M', které má o jednu
hranu více (uvědomte si, že M' skutečně splňuje podmínky párování).

(plné čáry jsou párovací, čárkované čáry jsou nepárovací)
Dokážeme nyní, že naším postupem vždy dostaneme maximální pá-

rování, tzn. že vždy existuje zlepšující cesta pro párování, které není ma-
ximální.

Tvrzení. Jestliže párování M není maximální, existuje pro něj zlepšující
cesta v G.
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DŮKAZ TVRZENÍ. Nechť M je párování, které není maximální. Jelikož
M není maximální, musí existovat nějaké párování M', které obsahuje více
hran než M. Hrany patřící do M, ale nepatřící do M', nazveme modré,
zatímco hrany patřící do M' a ne do M nazveme červené. Protože |M'| >
> | M |, červených hran je více než modrých.

Uvažujme graf G' tvořený všemi modrými a červenými hranami.
Každý vrchol v G' sousedí s nejvýše jednou modrou a jednou červe-
nou hranou. Každá komponenta souvislosti grafu G' proto musí být buď
kružnice, nebo cesta, přičemž na každé kružnici i cestě se střídají červené
a modré hrany. To znamená, že každá kružnice obsahuje stejný počet
modrých a červených hran, počty červených a modrých hran na každé
cestě se liší nejvýše o 1. Protože červených hran je více než modrých,
musí existovat komponenta P, která obsahuje více červených hran než
modrých. Tato komponenta musí být cestou, která začíná i končí červe-
nou hranou. Cesta P tedy obsahuje lichý počet hran. Z toho vyplývá,
že jeden z jejích konců musí být řádkovým vrcholem (nazveme ho r*)
a druhý sloupcovým vrcholem (nazveme ho sj). Jelikož r* resp. Sj je
nespárovaný řádkový resp. sloupcový vrchol a každá druhá hrana patří
do párování M, musí být P zlepšující cesta pro M.

Implementace algoritmu. Graf G reprezentujeme samotnou maticí,
tj. dvojrozměrným polem A. Pro každý vrchol гг- (sj) si budeme v poli
par_r (par_s) pamatovat, zda je spárovaný s nějakým vrcholem a po-
kud ano, číslo tohoto vrcholu. Začneme se všemi vrcholy nespárovaný-
mi. Funkce Zlepši hledá zlepšující cestu a když ji najde, použije ji na

zlepšení stávajícího párování. Hledání zlepšující cesty budeme realizovat
prohledáváním do šířky ze všech vrcholů r;, které ještě nejsou spárované.
Jakmile najdeme nějakou alternující cestu do nespárovaného vrcholu Sj,
prohledávání ukončíme. V tomto okamžiku je třeba projít po nalezené
cestě z Sj zpět do r; a změnit párovací hrany na nepárovací a naopak,
což znamená aktualizování záznamů v polích par_r (par_s) pro všechny
vrcholy na nalezené cestě. Funkce Zlepši bude volána opakovaně v cyklu
tak dlouho, dokud bude možné zvyšovat počet hran v párování. Podaří-li
se vylepšit párování ň krát, máme nalezeno perfektní párování, které
použijeme na přerovnání matice do požadovaného tvaru. V opačném pří-
pádě program podá zprávu o tom, že se zadaná matice uspořádat nedá.
Efektivita. Každé volání funkce Zlepši potřebuje čas 0(n2), celkově se

provede nejvýše n volání této funkce, což dává celkovou časovou složitost
0(n3). Na uložení matice A potřebujeme paměť 0(n2).
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P - I - 2

Úlohu nejprve převedeme do terminologie teorie grafů. Uzly nacháze-
jící se v naší soustavě potrubí budeme nazývat vrcholy, trubky nazveme
hranami a celou soustavu potrubí nazveme grafem. Posloupnost vrcholů
a hran grafu vo, ei, vi, ег, -.., Vk-i, е*,, Vk označíme jako sled, jestliže
každá hrana e; spojuje vrcholy Vi-i a Ví. Pokud navíc v0 — Vk, tento
sled nazveme uzavřeným. V řeči teorie grafů je naším úkolem v daném
souvislém grafu G nalézt uzavřený sled, který projde každou hranou grafu
právě dvakrát.

Ukážeme si algoritmus, který v libovolném souvislém grafu najde sled
požadovaných vlastností. Tento algoritmus tedy bude zároveň důkazem,
že trasa pro robota vždy existuje. Řešení je založeno na prohledávání
grafu do hloubky. O každém vrcholu si budeme pamatovat, zda jsme ho
již během prohledávání někdy navštívili. Pro každý navštívený vrchol v
nechť rodic[u] označuje vrchol, z něhož robot do v poprvé přišel. Vrchol
rodic[u] je rodičem vrcholu v, naopak vrchol v nazveme potomkem vr-
cholu rodic[n]. Pro vrchol 1 není rodic[l] definován.

Prohledávání do hloubky začíná ve vrcholu 1 a probíhá takto:

1. Označ aktuální vrchol v jako navštívený.
2. Postupně kontroluj všechny hrany vedoucí z v a vždy, když najdeš

hranu, která vede do dosud nenavštíveného vrcholu u, projdi robotem
do vrcholu и a pokračuj rekurzívně v prohledávání z и (v se stane
rodičem vrcholu и).

3. Když jsou všechny hrany vedoucí z v zkontrolovány auýl, vrať se
do vrcholu rodic[n] (a pokračuj v kontrolování jeho hran). Jestliže
v = 1, skonči.

Uvažujme množinu hran, po nichž robot poprvé přišel do nějakého
vrcholu. Jsou to právě hrany (rodic[u],v) pro ty vrcholy u, pro které
je rodicfn] definováno. Tyto hrany nazveme stromové (nazývají se tak
proto, že tvoří souvislý acyklický graf, tzv. strom). Každou stromovou
hranou (u,n), kde и je rodičem v, projde robot‘bři prohledávání právě
dvakrát — nejprve z vrcholu и poprvé navštíví vrchol v a podruhé při
návratu z vrcholu v do vrcholu u. Při prohledávání robot nikdy neprojde
po žádné nestromové hraně. Jelikož náš graf G je souvislý, robot při pro-
hledávání navštíví všechny vrcholy. Kdyby totiž existoval nenavštívený
vrchol, musel by existovat takový navštívený vrchol и a nenavštívený
vrchol v, že и a v jsou spojeny hranou. To však není možné, neboť al-

114



goritmus prohledávání se z vrcholu и do rodic[u] nevrátí, dokud nejsou
všechny sousední vrcholy vrcholu и navštíveny.

Podle dosud popsaného prohledávání do hloubky tedy robot navštíví
každý vrchol a projde každou stromovou hranou právě dvakrát. Zbývá
rozhodnout, kdy a jak bude robot procházet nestromové hrany. Během
prohledávání lze snadno detekovat všechny nestromové hrany. Jestliže
se robot nachází ve vrcholu и a kontroluje hranu (u,u), tato hrana je
nestromová tehdy, pokud vrchol v již byl navštíven а и není rodičem
v ani v není rodičem u. Když robot nacházející se ve vrcholu и narazí
na nestromovou hranu (u,t>), může příslušnou trubku vyčistit tak, že jí
projde z vrcholu и do v a zpět.

Implementace algoritmu. Prohledávání do hloubky můžeme snadno im-
plementovat rekurzívní procedurou. Jelikož rekurze si pro aktuální vrchol
automaticky pamatuje svého rodiče, není třeba explicitně udržovat zá-
známy rodicŘ]. Graf lze v programu reprezentovat maticí velikosti nxn,
z čehož vyplývá časová i paměťová složitost programu 0{n2). Při použití
efektivnější reprezentace hran spojovým seznamem je možné dosáhnout
časové i paměťové složitosti 0(m + n), kde m je počet hran grafu, ovšem
za cenu o něco komplikovanějšího programu.

P - I - 3

Dokážeme nejprve, že spravedlivá přímka vždy existuje. Uvažujme libo-
volnou orientovanou přímku vedoucí bodem [0,0]. Nechť x je rozdíl počtu
bílých bodů nalevo a černých bodů napravo od ní. Jestliže je x rovno nu-

le, přímka je spravedlivá. Pokud ne, budeme přímkou otáčet kolem bodu
[0,0]. Vždy, když přímka projde přes bílý nebo černý bod, hodnota x se
sníží nebo zvýší o jedna. Když přímku otočíme přesně o 180°, naše sle-
dováná hodnota se změnila z počátečního x na —x (neboť všechny body,
které byly původně nalevo, jsou nyní napravo od přímky a naopak). To
znamená, že hodnota musela být aspoň při jedné poloze přímky nulová.
V této poloze byla přímka spravedlivá.

Řekneme, že bod В leží nalevo od bodu A, jestliže je nalevo od orien-
tované přímky vedoucí z bodu [0,0] do A. Základem algoritmu je násle-
dující pozorování. Uvažujme nějakou spravedlivou přímku p. Nechť A je
první bod, na který narazíme, pokud budeme přímkou p otáčet ve směru
hodinových ručiček kolem bodu [0,0]. Bod A a všechny body, které leží
od něj napravo, se nacházejí v jedné polorovině určené přímkou p. Body,
které jsou od A nalevo, leží ve druhé polorovině. Vidíme, že nezáleží na
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konkrétní poloze přímky p, rozdělení bodů je určeno polohou „hranič-
ního“ bodu A.

Stačí tedy uvažovat každý ze zadaných bodů jako kandidáta na bod A,
spočítat počet bílých a počet černých bodů nalevo a napravo od něj
a zkontrolovat, zda tyto počty splňují podmínky spravedlivé přímky.
Když najdeme úspěšného kandidáta, spravedlivou přímku sestrojíme tak,
že přímku vedoucí z [0,0] tímto bodem trochu pootočíme kolem bodu
[0,0] proti směru hodinových ručiček tak, abychom s ní při tomto otá-
čení nepřešli přes žádný jiný bod. To lze provést například tak, že určíme
první bod Ar, přes který bychom při takovémto otáčení přímkou přešli,
a výslednou přímku vedeme středem mezi kandidátem A a bodem X.
Popsaný algoritmus má časovou složitost 0(n2), neboť pro každého kan-
didáta zjišťujeme polohu každého bodu vzhledem к tomuto kandidá-
tovi.

Algoritmus lze ještě zefektivnit tím, že si všechny bílé a černé body
nejprve setřídíme podle jejich pořadí ve směru hodinových ručiček kolem
bodu [0,0]. Kandidáty na hraniční bod A pak budeme zkoušet v tomto
utříděném pořadí. Kdykoliv budeme přecházet od kandidáta i — 1 ke
kandidátovi г, nemusíme již pro každý bod znovu zjišťovat, zda leží od
bodu г nalevo nebo napravo, neboť mnoho bodů zůstane v původní po-
lorovině. Budeme si proto v každém kroku udržovat informaci o počtu
bílých a černých bodů ležících v pravé polorovině a index j, který ukazuje
na poslední bod v pravé polorovině ve směru hodinových ručiček. Když
se přesuneme na kandidáta i, stačí bod i — 1 přemístit do levé poloroviny
(tj. odebrat ho z počtu bodů příslušné barvy, které jsou v pravé polo-
rovině) a potom posouvat index j ve směru hodinových ručiček, dokud
nenajdeme první bod, který leží nalevo od bodu i. Všechny body, přes
které jsme s indexem j přešli, se přesunou z levé poloroviny do pravé
a je proto třeba připočítat je к zaznamenanému počtu bodů příslušné
barvy. Pokud při posouvání bodu j dojdeme na konec pole, budeme po-
kračovat cyklicky opět od začátku. Nesmíme zapomenout ošetřit okrajové
případy, když například všechny body leží od bodu j nalevo nebo napra¬
vo.

Utřídit body ve směru hodinových ručiček můžeme v čase 0(n log n)
některým ze standardních třídicích algoritmů, pouze namísto běžného
porovnávání hodnot si musíme napsat funkci, jež pro dva body určí, který
z nich má větší úhel. Pro první bod musíme projít všechny ostatní body
a zjistit, které leží vlevo a které vpravo (v čase 0(n)). Pro každý další bod
už jen budeme posouvat indexy i a j a sledovat pouze body, přes které

116



přecházíme. Přes každý bod přejdeme každým indexem nejvýše jednou,
takže celkový čas posouvání pro všechny kandidátské body dohromady
bude 0(n). Výsledná časová složitost algoritmu bude proto 0(n log n)
a paměťová složitost 0(n).

P - I - 4

Část a. Vstupní soubor může mít například následující formát (váš pro-

gram samozřejmě může používat jiný formát vstupních dat). Na prvním
řádku souboru je zadán počet vodičů a počet komparátorů v síti, na
druhém řádku jsou uvedeny jednotlivé vstupy sítě v pořadí od vrchního
vodiče po spodní a zbývající řádky obsahují popis sítě. Každý kompará-
tor je určen dvěma čísly zapsanými na jednom řádku. Tato čísla udávají
vrchní a spodní vodič, které jsou spojené příslušným komparátorem. Vo-
diče v síti jsou očíslovány shora dolů počínaje jedničkou. Komparátory
jsou uvedeny v pořadí zleva doprava, jednotlivé vrstvy sítě se oddělují
řádkem obsahujícím dvě nuly.

Program může pro jednoduchost zobrazovat výpočet sítě semigrafic-
ky. Nejprve přečte vstupní údaje, přičemž informace o všech komparáto-
rech a oddělovačích vrstev uloží do jednoho pole. Potom bude vykreslovat
síť postupně zleva doprava. Pokaždé, když program nakreslí kompará-
tor, odsimuluje jeho činnost na aktuálním stavu vodičů. To znamená, že
porovná příslušné dvě hodnoty v poli a pokud jsou v opačném pořadí,
vymění je. Po ukončení každé vrstvy (tj. vždy, když v seznamu kompará-
torů narazíme na oddělovač vrstev) program vypíše aktuální stav hodnot
na všech vodičích.

Jediný problém, který je třeba vyřešit, spočívá v umístění jednotli-
vých komparátorů téže vrstvy do sloupců pod sebe tak, aby se žádné
dva komparátory v jednom sloupci nepřekrývaly. Program si proto bude
pamatovat, které z vodičů jsou v aktuálním sloupci už obsazeny kompará-
torem. Jestliže se další komparátor překrývá s některým komparátorem
zakresleným v aktuálním sloupci, založíme nový sloupec a komparátor
umístíme do nového sloupce.

Celková časová složitost takto navrženého programu je úměrná velí-
kosti nakresleného obrázku, tj. 0(nk), kde n je počet vodičů а к je počet
sloupců, v nichž jsou komparátory zobrazeny.

Na závěr uvedeme pro ilustraci příklad vstupu a výstupu programu

napsaného podle výše uvedeného popisu (jedná se o komparátorovou síť
ze studijního textu):
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Vstup: Výstup:
4—* •3—*—1 14 5 1 2

I
4 12 3 3 4 1 *—1—*—3—*—2

1 4 O O
2— | —*—2—*—2—*—3

2 3 2 3

O O O O 3—* 4—*—4 4

Část b. Komparátorovou síť sestrojíme rekurzívně. Označme Sn síť,
která úlohu řeší pro n vstupů. Síť Si neobsahuje žádný komparátor, neboť
máme jen jeden vstup a ten je jistě setříděn. Předpokládejme, že n > 1.
První vrstva sítě obsahuje pouze jediný komparátor umístěný mezi vodiči
n a |n. Potom rozdělíme n vodičů na dvě poloviny — horní a dolní —
a na každou polovinu vodičů použijeme síť S\n. Tyto dvě podsítě budou
pracovat paralelně.

Konstrukce sítě Sn je zobrazena na následujícím obrázku vlevo,
vpravo je příklad výsledné sítě pro n = 8.

n

Sin
21_
П

Sin2

Ukážeme si, proč takto sestavená síť řeší zadanou úlohu. Postupujeme
indukcí podle počtu vodičů. Označme vstupní hodnoty sítě xi,X2,..

(umístěny na vodičích v pořadí shora dolů). Mohou nastat dva případy
podle toho, zdaje xn menší nebo větší než xin. Předpokládejme nejprve,
že xn ^ x\n- V takovém případě komparátor v první vrstvě nevymění
vstupní hodnoty. Protože xn ^ xin, prvek xn patří v uspořádaném po-
řadí na některý z dolní poloviny vodičů. („Dolní“ polovinou vodičů bu-
deme rozumět vodiče se vstupními hodnotami £in+1 až xn, tj. vodiče,
které na schématu komparátorové sítě kreslíme v dolní polovině obrázku.)

Po prvním kroku výpočtu tedy platí, že horní polovina je celá utříděna
a obsahuje |n nejmenších prvků ze vstupu. Dolní polovina je utříděna
s případnou výjimkou posledního prvku a obsahuje |n největších prvků.
Vstupy obou podsítí Sín tudíž splňují podmínku ze zadání, že všechny
hodnoty kromě poslední mají být na vstupu utříděny (to nevylučuje pří-
pad, že také poslední hodnota bude utříděna). Na výstupu proto budou

xn• ?
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podle indukčního předpokladu obě poloviny v setříděném pořadí. Jeli-
kož už po prvním kroku každá polovina obsahovala správné prvky, bude
správně uspořádána i celá posloupnost.

Druhý případ nastane, jestliže xn < x\n. V této situaci kompará-
tor v první vrstvě vymění hodnoty obou těchto vodičů. Víme, že xn

patří někam do horní poloviny prvků a dostane se na nejspodnější vodič
horní poloviny. Naopak, poslední prvek z horní poloviny, tj. xin, patří
ve skutečnosti do dolní poloviny (při třídění je „vytlačen" prvkem xn).
Prvek Xín se však prvním komparátorem dostane na nejspodnější vo-
dič, tj. do dolní poloviny. Podobně jako v předchozím případě i nyní tedy
máme po prvním kroku v každé polovině ty prvky, které tam v setříděném
pořadí patří. Obě poloviny jsou navíc setříděny s případnou výjimkou
svého nej spodnějšího prvku. Po aplikování podsítí S in proto opět podle
indukčního předpokladu dostaneme dvě utříděné poloviny, které společně
vytvoří celou správně uspořádanou posloupnost.

Hloubka rekurze je v naší konstrukci log2 n, neboť každá úroveň re-
kurze sníží počet vodičů na polovinu. V každé úrovni rekurze přidáme do
sítě jednu vrstvu, celkový počet vrstev je tedy také roven log2 n.

První vrstva obsahuje jeden komparátor, v každé další vrstvě se počet
komparátorů zdvojnásobí. Nechť počet vstupů je n = 2k. Potom počet
použitých komparátorů je roven 14-2 + 4 + ... + 2k~1 = 2k — 1 = n — 1
(součet geometrické řady). Naše síť má tedy O(logn) vrstev a používá
0(n) komparátorů.

P - II - 1

Každého asi napadne triviální řešení
dělníky. Obdélník je určen dvojicí protilehlých vrcholů, polohu každého
vrcholu můžeme zvolit mn způsoby. V každém zvoleném obdélníku pro-

jdeme po jeho obvodě a ověříme, zda všechny jeho obvodové prvky jsou
jedničky. Tento jednoduchý algoritmus pracuje v čase 0((mn)2(m + n)).

Popsaný algoritmus můžeme vylepšit tím, že zrychlíme ověřování, zda
je zvolený obdélník orámovaný. Nechť h[i,j] označuje délku maximál-
ního souvislého úseku jedniček ve sloupci nad prvkem (г, j), počítáno
včetně tohoto prvku. Přesněji řečeno, h[i, j] = d je takové číslo, že platí
A[i,j] = A[i — 1, j] = ... = A[i — d + l,j] = 1 a zároveň buď d = г,
nebo A[i — d,j] = 0. Všimněte si, že když A[i,j] = 0, podle této definice
je také h[i,j] = 0. Podobně nechť l[i,j] označuje délku maximálního
souvislého úseku jedniček v řádku nalevo od prvku (г, j), včetně prvku

vyzkoušet všechny možné ob-
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(г, j). Hodnoty h[i,j] a l[i, j] si můžeme vypočítat napřed pro všechny
prvky matice. Pro každý prvek zvlášť dokážeme zjistit délku úseku jed-
niček nalevo a nahoru od něho v čase 0(m + n). Celkem máme mn

prvků, takže tento předvýpočet polí h a l snadno implementujeme v čase
0(mn{m + n)). Můžeme ho však ještě urychlit. Jestliže totiž A[i,j] — 0,
víme, že také h[i,j] = 0. Jestliže A[i,j] = 1, počet jedniček v souvislém
úseku nad prvkem (г, j) je o 1 větší než počet jedniček v úseku nad prv-
kem (г — 1, j), tj. h[i,j] = h[i — 1, j] + 1. Stačí nám tedy počítat hodnoty
h po sloupcích shora dolů a při jednom průchodu maticí A v čase 0{mn)
získáme všech mn hodnot h[i,j].

Předpokládejme nyní, že chceme zjistit, zdaje obdélník s levým hor-
ním rohem (гг, ji) a pravým dolním rohem (*2,^2) orámovaný. Obdélník
má dolní hranu ze samých jedniček právě tehdy, když úsek jedniček na-
levo od prvku {12,32) má délku aspoň J2 — ji + 1. Podobně ověříme, zda
úsek nalevo od prvku («1,^2) (horní hrana) má délku aspoň — ji + 1
a zda úseky nahoru od prvků h,ji a 12, j2 (levá a pravá hrana) mají
délku aspoň i? — ii + 1. Pomocí polí l a h tedy dokážeme v konstantním
čase zjistit, zda je daný obdélník orámovaný. Opět vyzkoušíme všechny
možnosti umístění levého horního a pravého dolního rohu, pro každý
obdélník zjistíme, jestli je orámovaný, a z orámovaných vybereme ten
s největší plochou. Tento algoritmus potřebuje 0(mn) času na přípravu
pomocných polí a 0((mn)2) času na průchod všemi obdélníky. Celkový
čas výpočtu je tedy 0{{mn)2).

Existuje ale ještě rychlejší řešení úlohy. Pro každou dvojici řádků ii <
< i2 určíme největší orámovaný obdélník, jehož horní hrana leží v řádku
ii a dolní hrana v řádku г'2. Uvažujme dvojici pevně zvolených řádků i 1

a Í2- Sloupec j nazveme okrajovým, jestliže v úseku mezi řádky ii а г'2
(včetně) obsahuje samé jedničky. Všimněte si, že sloupec j je okrajový
právě tehdy, když h[Í2, j] ^ h — h + 1- Sloupec j nazveme jedničkovým,
pokud v řádcích г'х a 12 obsahuje jedničku. Sloupec, který obsahuje nulu
alespoň v jednom z těchto dvou řádků, nazveme nulovým.

Každý orámovaný obdélník s vodorovnými hranami ležícími v řádcích
ii а г'2 odpovídá úseku od sloupce ji do sloupce jý pro nějaká ji < j2
taková, že ji a j2 jsou okrajové sloupce a sloupce ji + 1,..., j2 — 1
jsou jedničkové. Uvažujme maximální úsek po sobě jdoucích jedničko-
vých sloupců (pojmem maximální rozumíme, že se nedá rozšířit, tj. na
obou koncích sousedí buď s nulovým sloupcem, nebo s okrajem matice).
Jestliže tento úsek neobsahuje aspoň dva okrajové sloupce, zjevně ne-
může obsahovat ani žádný orámovaný obdélník. Jestliže obsahuje aspoň

120



dva okrajové sloupce, potom největší orámovaný obdélník v daném úseku
je určen nejlevějším a nejpravějším okrajovým sloupcem daného úseku.
К nalezení největšího orámovaného obdélníka v pásu mezi řádky i\ a
nám tedy stačí v každém maximálním jedničkovém úseku určit nejle-
vější a nejpravější okrajový sloupec. Toho lze snadno dosáhnout v čase
0(n). Musíme vyzkoušet všechny dvojice řádků, celková časová složitost
je proto 0(m2n).

P - II - 2

Úlohu převedeme do řeči teorie grafů. Soustava potrubí tvoří jednoduchý
orientovaný graf bez násobných hran a smyček. Uzly představují vrcholy
tohoto grafu a trubky jsou jeho orientované hrany. Počet hran vstu-
pujících do vrcholu grafu nazýváme vstupním stupněm tohoto vrcholu
a počet vycházejících hran jeho výstupním stupněm. V našem grafu se

vstupní a výstupní stupeň každého vrcholu sobě rovnají. Číslo, jemuž se

rovnají, budeme také označovat jako počet průchodů vrcholem.
Uvažujme nejprve, co by se stalo, kdyby některý vrchol v měl počet

průchodů větší než 2. Trasa robota zadaná na vstupu by takovým vr-
cholem v procházela alespoň třikrát. Nechť X je úsek trasy mezi prvním
a druhým příchodem do v a Y úsek mezi druhým a třetím příchodem.
Snadno nyní sestrojíme novou trasu robota. Až do prvního příchodu do
v se jde podle původní trasy zadané na vstupu. Po příchodu do v půjde
robot nejprve úsek Y (čímž se vrátí do v), potom úsek X (čímž se opět
vrátí do v) a dále dokončí svoji cestu podle původní zadané trasy. Jinými
slovy, oproti trase zadané na vstupu jsme jen vyměnili pořadí úseků X
a Y. Tím jsme ale sestrojili odlišnou trasu. Nemá-li tedy žádná jiná trasa
existovat, musí mít nutně každý vrchol počet průchodů 1 nebo 2.

Mějme nyní takový graf a v něm vyznačenou trasu, která začíná
i končí ve vrcholu 1 a prochází každou hranou právě jednou. Pokud tento
graf neobsahuje žádné hrany, trasa je zjevně jediná (prázdná trasa). Jest-
liže náš graf nějaké hrany má, půjdeme po vyznačené trase, dokud se na
ní poprvé nějaký vrchol и nezopakuje. To určitě dříve či později nasta-
ne. Všimněte si úseku cesty mezi prvním a druhým příchodem do « —

označme tento úsek U. Má-li některý vrchol úseku U (jiný než и) počet
průchodů 2, znamená to, že se tento vrchol ještě někdy na trase vyskytne.
Označme si symbolem v první takový vrchol. Tento vrchol rozdělí U na
dvě části — část od и do v označme U\ a část od v do и označme U2. Část
trasy od druhého příchodu robota do vrcholu и do jeho druhého příchodu
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do v označme V. Naše trasa tedy vypadá následovně: Robot přijde do u,

projde po řadě úseky t/1? t/2, V a poté zbytek trasy. V takovém případě
však existuje i jiná trasa: Robot stejně jako předtím přijde do it, projde
postupně úseky V, U2, U\ a zbytek trasy pak projde stejně jako v původní
trase.

Z provedené úvahy vyplývá, že nemá-li existovat žádná jiná trasa,
musí mít všechny vrcholy úseku U (kromě u) počet průchodů 1. Úsek U
bude tedy tvořit ucho nad vrcholem u.

Jestliže hrany tvořící ucho z grafu odstraníme, nezměníme tím počet
tras existujících v grafu. (Každá trasa v grafu totiž vypadá následovně:
Robot nějakým způsobem přijde do vrcholu u, potom projde ucho a na-
konec nějak projde zbytek grafu. Když hrany tvořící ucho odstraníme,
ke každé trase v původním grafu najdeme odpovídající trasu v novém
grafu tak, že z ní odstraníme hrany ucha.) Tím ale dostaneme graf s méně
hranami, na němž můžeme tento postup zopakovat. Jestliže se nám takto
podaří postupně odstranit všechny hrany z grafu, znamená to, že i pů-
vodní graf měl jen jednu možnou trasu. Naopak, pokud v některém kroku
zjistíme, že v právě zpracovávaném grafu existuje více tras, znamená to,
že také náš původní graf obsahoval více tras.

Předchozí rozbor je již návodem, jak sestrojit algoritmus řešící tuto
úlohu. Pro každý vrchol si budeme pamatovat počet průchodů. Má-li
některý vrchol počet průchodů větší než 2, ohlásíme, že existuje jiná
trasa a výpočet ihned ukončíme. V opačném případě začneme postupně
číst ze vstupu zadanou trasu robota a budeme si pamatovat, přes které
vrcholy jsme již prošli. Když se nám některý vrchol v zopakuje, podíváme
se, zda některý vrchol mezi oběma příchody do v nemá počet průchodů 2.
Pokud takový vrchol najdeme, ohlásíme, že existuje jiná trasa a ukončíme
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výpočet. Pokud ne, odstraníme tyto vrcholy z trasy a pokračujeme dále.
(Všimněte si, že si vůbec nepotřebujeme pamatovat graf a měnit ho.)
Když výpočet ukončíme s prázdnou trasou, ohlásíme, že žádná jiná trasa
neexistuje.

Správnost tohoto algoritmu vyplývá z výše uvedeného popisu. Zbývá
odvodit jeho časovou složitost. Nechť má náš graf N vrcholů a M hran.
Jestliže z některého vrcholu vycházejí alespoň tři hrany, jakmile první
takový vrchol najdeme, můžeme výpočet ukončit. V tomto případě je
časová složitost algoritmu O (AT). (Pokud bychom dočetli ze vstupu celý
graf a až potom kontrolovali počty průchodů přes vrcholy, zhoršila by se
časová složitost na 0(M + N).) V opačném případě z každého vrcholu
vycházejí nejvýše dvě hrany, proto M = O(N). (Tedy náš graf má jen
lineárně mnoho hran v závislosti na počtu vrcholů.) Proto také počet hran
trasy je O(N), neboť v trase je každá hrana obsažena právě jednou. Každý
vrchol na trase nejvýše jednou načteme, nejvýše jednou se během výpočtu
algoritmu podíváme na počet průchodů přes něj a nejvýše jednou ho
z trasy vyřadíme. To znamená, že (při vhodné implementaci) bude také
v tomto případě časová složitost popsaného algoritmu O(N).

P - II - 3

Jestliže se učitel otáčí ze svého základního směru к nějakému žákovi
proti směru hodinových ručiček, řekneme, že tento žák je nalevo. Jestliže
se otáčí po směru hodinových ručiček, žák je napravo.

Nejprve dokážeme, že vždy existuje řešení, v němž je učitel otočen
směrem к nějakému žákovi. Představme si přímku, která prochází bo-
dem [0,0] a určuje základní směr. Otočme nyní tuto přímku kolem bodu
[0,0] doleva o malý úhel a tak, aby žádný žák, který byl nalevo, nepřešel
na pravou stranu, a naopak. Takovýmto natočením přímky úhly otočení
všech žáků nalevo klesnou o o a úhly otočení všech žáků napravo vzrostou
o a. Pokud je tedy nalevo více žáků, průměrný úhel otočení se zmenší,
pokud je nalevo méně žáků, průměrný úhel se zvětší a pokud je na obou
stranách stejně žáků, průměrný úhel se nezmění. Jestliže přímka určující
nejlepší základní směr neprochází žádným bodem, alespoň jedním smě-
rem ji můžeme trochu natočit, aniž by průměrný úhel vzrostl. S otáčením
přímky přestaneme, jakmile přímka narazí na první bod.

Zbývá vyřešit případ, že přímka sice prochází některým bodem, ale
učitel se dívá opačným směrem, tj. je otočen zády к tomuto žákovi.
Taková situace ale nikdy není optimálním řešením. Předpokládejme, že
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napravo je alespoň tolik žáků jako nalevo. Když otočíme přímku kousek
doprava, všem napravo a žákovi za zády učitele klesne úhel otočení, takže
celkově se průměrný úhel otočení zlepší. Když je naopak nalevo více žáků,
průměrný úhel se zlepší natočením přímky doleva.

Tím jsme dokázali, že stačí zkoumat jen n základních směrů, v nichž je
učitel otočen směrem к některému žákovi. Pro každou z těchto n možností

spočítáme průměrný úhel otočení a vybereme nejlepší. Jestliže budeme
počítat průměrný úhel otočení pro každý směr zvlášť, dostaneme algo-
ritmus s časovou složitostí 0(n2). My si však ukážeme lepší algoritmus
s časovou složitostí O(nlogn).

Nechť ai je úhel, který s osou x svírá polopřímka vedoucí z bodu [0,0]
к žákovi i (tj. úhel, který vypočítáme funkcí uhel(ay, ?/;)). Uvědomte si,
jaký je vlastně úhel otočení mezi učitelem obráceným čelem к žákovi и
a mezi žákem i. Musíme uvažovat čtyři případy:

d> Žák i je nalevo a ai > au- Úhel otočení je cn; — au-
> Žák i je nalevo a ct; < au- Úhel otočení je ay — au + 360°.
> Žák i je napravo а ay < au- Úhel otočení je au — a{.
> Žák i je napravo a a* > au- Úhel otočení je au — ai + 360°.

Chceme-li určit průměrný úhel otočení, potřebujeme sečíst úhly oto-
čení všech žáků. Sčítáním dostaneme následující výraz:

E ^ ^ Qíj — L • au + P ■ au + N • 360°а{ -

žák i
je nalevo

žák i
je napravo

kde L je počet žáků nalevo, P je počet žáků napravo а X je počet žáků,
kteří jsou nalevo s úhlem menším než au nebo napravo s úhlem větším
než au-

Součet úhlů otočení tedy umíme spočítat v konstantním čase, jestliže
známe součet hodnot аг- pro žáky nalevo a napravo a jestliže známe počty
L, P, X.

Náš algoritmus si nejprve utřídí body podle úhlu ai (tj. proti směru
hodinových ručiček). Potom si pro každé i spočítá součet úhlů ay- pro
prvních i bodů v utříděném pořadí a tato čísla uloží do pole (3 (tj, (3i =
= a\ + аг + ... + a^. Všimněte si, že (3i = ai -f fii-i, takže při průchodu
setříděným polem s hodnotami úhlů ai zleva doprava dokážeme spočítat
všechny hodnoty (3i v lineárním čase. Když nyní budeme chtít určit součet
úhlů v úseku od г-tého po j-tého žáka, stačí spočítat (3j — /3i-\.

Po této inicializaci budeme postupně zkoumat všechny možné zá-
kladní směry v tom pořadí, v jakém se nacházejí v setříděném poli. Nechť
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U je žák, který určuje základní směr. Pro každé U si najdeme posledního
žáka l, který je nalevo. Všichni žáci mezi U a l (včetně /) jsou nalevo,
ostatní žáci jsou napravo. Někdy máme l < U, v takovém případě jsou
nalevo žáci Č7 + I,...,nal,...,/. Podobně žáci napravo buď tvoří jeden,
nebo dva souvislé úseky v utříděném poli. Známe-li U a /, můžeme použít
pole (5 к tomu, abychom v konstantním čase zjistili součet úhlů cti pro

žáky nalevo a napravo, neboť to jsou součty jednoho nebo dvou souvis-
lých úseků v poli a. Počty žáků nalevo a napravo (LaP) také lehce
spočítáme. Určení hodnoty X se zdá trochu těžší, ale není — žák i má
a i menší než au tehdy, když je i menší než U (neboť pole je setříděné
podle a). Pokud tedy známe indexy U a /, dokážeme snadno spočítat
součet (a průměr) úhlů otočení v konstantním čase.

Zbývá už jen vyřešit problém, jak efektivně nalézt hodnotu /, tj. index
posledního prvku ležícího vlevo od U. Pro U = 1 jednoduše začneme
s l — 1 a budeme zvyšovat /, dokud nenajdeme poslední prvek, který je
nalevo. Pro každou další hodnotu U využijeme fakt, že l z předcházejícího
kroku je nyní určitě nalevo. Začneme proto od předcházející hodnoty l
a budeme l zvyšovat, dokud nenajdeme první bod vpravo (když přijdeme
na konec pole, pokračujeme v něm cyklicky zase od začátku). Index l
tímto způsobem během celého výpočtu oběhne pole pouze dvakrát, takže
celková složitost hledání posledního prvku vlevo je 0(n).

Výsledná časová složitost algoritmu je 0(n\ogn), neboť třídění pra-

cuje v čase O(nlogn), hodnoty pole /3 dokážeme spočítat v čase O(n),
celkový čas otáčení indexu l je 0(n) a výpočet součtu úhlů otočení je
konstantní projeden směr, tj. 0(n) pro všechny směry.

V ukázkovém programu jsme kvůli úspoře místa nahradili O(nlogn)
třídění kvadratickým. Použili jsme také pole délky 2n, v němž se každý
bod nachází dvakrát, což zjednodušuje výpočty (není třeba uvažovat,
že poslední bod vlevo bude mít index menší než U — v případě potřeby
jednoduše pokračujeme s hledáním indexu l dále za n a využíváme druhé
kopie bodů v poli). Při implementaci je nutné dbát na to, aby program

správně ošetřil různé okrajové případy, například, když všechny body leží
nalevo nebo napravo od U.

P - li - 4

a) Správnou odpovědí je například vstup 6,5,4, 3, 2,1 (ale také mnoho
jiných vstupů). Pro vstup 6, 5,4,3, 2,1 výpočet komparátorové sítě pro-
bíhá následovně:
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b) Je třeba odstranit komparátor vyznačený šipkou na předcházejí-
cím obrázku (jediné správné řešení). Dokážeme, že po odstranění tohoto
komparátoru síť třídí. V prvních třech vrstvách se minimum dostane na

první vodič a maximum na poslední vodič. To můžeme dokázat následu-
jícím způsobem. Po první vrstvě je minimum na některém z vodičů 1,
3 nebo 5. Po druhé vrstvě je na vodiči 1 nebo 5 a po třetí vrstvě je
určitě na vodiči 1. Podobně maximum je po první vrstvě na vodiči 2, 4
nebo 6, po druhé vrstvě na vodiči 2 nebo 6 a po třetí vrstvě musí být na
vodiči 6.

První a poslední vodič tedy po třetí vrstvě obsahují správné hodnoty.
Další tři vrstvy setřídí prostřední čtyři vodiče. Čtvrtá vrstva umístí mi-
nimum z druhého a třetího vodiče na druhý vodič. Podobně pátý vodič
obsahuje maximum ze čtvrtého a pátého vodiče. Pátá vrstva původní sítě
se vynechává. V šesté vrstvě porovnáme mezi sebou maxima a minima
z předcházejícího kroku, tj. po této vrstvě už druhý vodič obsahuje mi-
nimum a pátý vodič maximum ze zbývajících čtyř prvků. Zbývá dotřídit
prostřední dva vodiče, což provede komparátor v poslední vrstvě.

c) Označme Xi číslo na vstupu i. Dokážeme nejprve následující pozo-
rování: pro každé i 5Í n jedno z čísel Xi a X2n-i+i patří mezi n nejmenších
čísel a druhé mezi n největších. Předpokládejme, že obě čísla Xi a X2n-i+1

patří mezi n nejmenších čísel. Potom čísla £i,£2, • • • ,£í-i patří také
mezi n nejmenších čísel, neboť jsou menší než X{. Podobně také čísla
xn+\, xn+2)..., X2n-i patří mezi n nejmenších čísel, neboť jsou menší než
X2n-i+i ■ To znamená, že jsme celkově nalezli i + (2n — i + l—n) = n + 1
čísel, která patří mezi n nejmenších, což je spor. Alespoň jedno z čísel Xi
a X2n-i+i musí tedy patřit mezi n největších čísel.

Předpokládejme nyní, že obě čísla Xi a X2n-i+\ patří mezi n největších
čísel. Potom э1с take čísla ? Xí-^-2 ?... 5 x^i a X2n—i-f-2 ^ ^2n—í-i-з > • •«^ X2n

patří mezi n největších čísel, neboť jsou větší než Xi nebo X2n-i+i ■ Celkem
jsme tedy nalezli (n — i + 1) + (2n — 2n + г) = n + 1 čísel, která patří
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mezi n největších, což je spor. Proto obě čísla nemohou zároveň patřit
ani mezi n největších.

Dokázali jsme, že jedno z čísel Xi a x^n-i+i patří do horní poloviny
výstupů a druhé do dolní. Do horní patří to z nich, které je menší. Stačí
je tedy porovnat jedním komparátorem a každé z nich se tím dostane
do správné poloviny výstupů. Toto provedeme pro každou dvojici X{
a X2n-i+\ pro i = 1,2,... ,n. Výsledná síť bude mít n/2 komparátorů
v jediné vrstvě. Příklad takové sítě pro 8 vstupů (n = 4) ukazuje obrázek.

P - III - 1

Nejdříve si zavedeme několik pojmů, které nám usnadní vyjadřování
při řešení této úlohy. Jestliže A je matice, pak A; bude označovat její
г-tý sloupec. Signatura prvku aij matice A je rovna hodnotě prvku a^j,
pokud aij je číslo. Když je žolík, pak jeho signaturou rozumíme
nejmenší číslo, které lze za žolík na pozici aij dosadit tak, aby г-tý řádek
matice A tvořil neklesající posloupnost. Pokud tedy a^j je žolík, pak
jeho signatura je rovna největšímu z čísel mezi prvky a^i,..., a;,j_i;
když mezi těmito prvky není žádné číslo, je signatura a^j rovna nule.
Signatura sloupce matice je utříděná, jestliže posloupnost signatur jeho
prvků od prvního po poslední řádek je neklesající.

Po zbytek řešení je A pevně zadaná matice z naší úlohy. Předpoklá-
dejme na chvíli, že máme dány sloupce A'x,..., A!k, které jsou přerovná-
ním prvků ve sloupcích Ax,..., Ak matice A. Matici A* budeme nazývat
rozšířením sloupců A[,..., A'k, pokud jsou splněny následující podmínky:

t> matice A* má stejné rozměry jako matice A,
> г-tý sloupec matice A* je přerovnáním г-tého sloupce matice A,
o do matice A* lze za žolíky doplnit celá čísla tak, aby každý její řádek

tvořil neklesající posloupnost a
> prvních к sloupců matice A* jsou sloupce Ax,..., A'k.

Navrhneme algoritmus, o kterém později ukážeme, že řeší naši úlo-
hu. Algoritmus bude postupně přerovnávat sloupce matice A od prvního
po poslední. Předpokládejme, že už jsme přerovnali prvních к sloupců
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a že jsme tedy již nalezli A[,..., A'k, navíc předpokládejme, že signatura
každého ze sloupců ,..., je utříděná. Popíšeme, jak přerovnáme
další sloupec, tj. jak.nalezneme A'k+1. Prvky sloupce A'k+1 budeme volit
v pořadí zdola nahoru: Za prvek a[ k+1 zvolíme největší dosud nepoužité
číslo ze sloupce Ak+i, které je alespoň tak velké jako signatura prvku а\ к.

Pokud takové číslo neexistuje, zvolíme jako prvek а\ к+1 žolík. Pokud již
sloupec Ak+i neobsahuje žádné nepoužité žolíky, prohlásíme, že sloupce
matice Л nelze přerovnat. Povšimněte si, že když jsme úspěšně vytvořili
sloupec A'k+1, pak jeho signatura je utříděná.

Důkaz správnosti. Je jasné, že pokud se našemu algoritmu podařilo
přerovnat všechny sloupce matice Л, potom výsledná matice je řešením
úlohy. Zbývá ukázat, že když náš algoritmus nenalezl přerovnání sloupců
matice Л, pak žádné přerovnání sloupců matice Л úlohu neřeší. К tomu
si nejprve dokážeme dvě pomocná tvrzení:

Tvrzení 1. Nechť A[,..., A'k jsou přerovnáníprvních к sloupců matice A,
jejichž signatury jsou utříděné. Nechť A'k+1 je přerovnání (к + l)-ního
sloupce matice A, které nalezl náš algoritmus. Pokud existuje rozšíření
sloupců A[,..., A'k, pak existuje i rozšíření sloupců A\,..., A'k, A'k+1.

Důkaz. Předpokládejme, že existuje rozšíření A* sloupců A[,..., A'k.
pak tvrzení platí z triviál-Pokud se (fc + l)-ní sloupec Л* shoduje s A\

nich důvodů. Předpokládejme tedy, že sloupce Ak+1 a A’k+1 jsou různé.
Nechť j je číslo nejspodnějšího řádku, kde se tyto sloupce liší. Můžeme

předpokládat, že A* je mezi všemi rozšířeními sloupců A[,..., A'k to, pro
které je j nejmenší, tj. A*k
dva případy:

fc+i’

se liší od A', co nejvýše. Mohou nastatk+lk+l

> a'- fc+1 = * (ďjk+1 je tedy číslo). Potom ale náš algoritmus měl jako
je totiž z tri-zvolit některé číslo ze sloupce Ak+p. Číslo a*-a'- j,k+1

viálních důvodů větší nebo rovno signatuře prvku aj+ a tedy, když
algoritmus volil prvek a!-
číslo, které bylo větší nebo rovno signatuře prvku a'- k.

je číslo (a*j fe+1 je buď jiné číslo, nebo žolík). Sloupec Л£+1
obsahuje číslo a'-
řádku. Platí tedy a*

j,k+1

existovalo ve sloupci Ak+\ nepoužitéj,k+l i

o a'-j,k+l
na jiném než j-tém řádku; buď i číslo tohotoj,k+l

= a'- a i < j.j,k+1
Vyměňme nyní řádky i a j ve sloupcích fc + 1 až n v matici Л*;

i,k+l

označme A** výslednou matici. Dokážeme, že A** je také rozšíření
.., A'k. Toto je ale ve sporu s volbou A* jako rozšíření sloupců
.., A'k takového, že se sloupce Л£+1 a A'k+1 shodovaly na co

nejvíce pozicích zdola.

A,
Алi) •
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Když dosadíme za prvky matice A* jejich signatury, budou všechny
řádky neklesající. Dosadine ty samé hodnoty za odpovídající žolíky
v matici A** (tj. hodnoty z i-tého řádku do ý-tého a naopak). Je-
diné dvě dvojice prvků, kde by podmínka monotonie mohla být po

výměně porušena, jsou prvky v A;-tém a (k + l)-ním sloupci v г-tém
nebo v j-tém řádku. Protože ale sloupec A'k je utříděný, je signatura
prvku a\ k menší nebo rovna signatuře prvku a!- k a tedy г-tý řádek
je neklesající. Prvek a* k+1 = a'- fc+1 je číslo a signatura a*- k = a*j*k je
menší nebo rovna číslu a* = a*j*k+1 - Tedy i j-tý řádek je neklesá-г, fc-f-1

jící.
Tvrzení 2. Nechť jsou dána přerovnání A[, A2,..., A'k prvních к sloupců
matice A a nechť je signatura sloupce Ak utříděná. Pokud se našemu a1-
goritmu nepodaří vytvořit sloupec A'k+1, pak neexistuje rozšíření sloupců
A[, A'2,..., Ak.

Důkaz. Označme j řádek, na kterém se náš algoritmus zastavil. Mezi
dosud nepoužitými prvky sloupce Ak+i tedy nejsou již žádné žolíky
a všechna jeho čísla jsou menší než signatura a!- k. To ale znamená, že slou-
pec Ak+\ obsahuje pouze m—j (m je počet řádků matice A) žolíků a čísel,
jež jsou větší nebo rovna signatuře prvku a'-k. Pokud ale existuje roz-
šíření A* sloupců A[, A'2,.. ., A'k, pak všechny prvky a*
jsou buď žolík, nebo čísla větší nebo rovna signatuře prvku a'- k (číslo

v г-tém řádku je větší nebo rovno signatuře a[ k a sloupec A'k
je utříděný). Potom ale sloupec Ak obsahuje alespoň m — j -f 1 žolíků
a čísel, která jsou větší nebo rovna signatuře prvku a'- k, což jak víme
není pravda.

Pomocí těchto dvou tvrzení již snadno dokážeme správnost našeho
algoritmu. Pokud pro 0 sloupců existuje rozšíření, pak podle Tvrzení 2
nalezne náš algoritmus sloupec A\ a pro něj též existuje rozšíření ten-
tokrát podle Tvrzení 1. Nyní podle Tvrzení 2 nalezne náš algoritmus
sloupec A2 a pro sloupce A[,A2 existuje rozšíření podle Tvrzení 1, atd.
Pokud tedy existuje řešení, náš algoritmus ho nalezne.

Odhad časové a paměťové složitosti: Nechť vstupní matice A má n

sloupců a m řádků. Na setřídění čísel v každém z n sloupců potřebujeme
čas 0(mlogm). Zbylé operace již můžeme vykonat v čase 0(m) (pro
jeden sloupec). Celková časová složitost algoritmu je tedy 0{nmlogгтг).
Paměťová složitost je 0(mn).

j,k+1 ’ • • то,fc+1

a*г,fc+1
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P - III - 2

Úlohu budeme řešit pomocí dynamického programování. Trasu, která
splňuje všechny podmínky kladené na vyhovující trasy s výjimkou pod-
minky, že musí končit v nejníže položeném orientačním bodě, budeme
nazývat částečná trasa. Náš program bude počítat počet částečných tras,
které končí v jednotlivých orientačních bodech.

Nejdříve si popíšeme algoritmus, který pracuje v čase 0(N3), kde
N je počet orientačních bodů. Utřídíme orientační body sestupně podle
jejich nadmořské výšky a očíslujeme je v získaném pořadí od 1 do N. Pro
i,j (1 ^ i < j ^ N) bude hodnota a[i,j] určovat počet částečných tras,
které mají i jako předposlední orientační bod a končí v bodě j. Pro i — 1
bude a[i,j] = 1, protože trasa z orientačního bodu 1 do orientačního
bodu j je právě jedna. Předpokládejme, že jsme již spočítali hodnoty
a[i',j'] pro j1 < j a chceme spočítat hodnoty а[г, j] pro 1 ^ i ^ N.
Pokud má uvažovaná částečná trasa končit úsekem i, j, musí do bodu i
přijít z bodu к (s nadmořskou výškou větší než je výška bodu i) tako-
vého, že úhel otočení ze směru ki do směru ij je nejvýše 45°. Označme
S(i,j) množinu všech takových bodů k. Potom hodnota a[i,j] je určena
následujícím vzorečkem:

a[i,j]= ^2 °[M-
kes(i,j)

Algoritmus pracující v kubickém čase lze nyní již snadno sestrojit.
Úvodní setřídění orientačních bodů dle nadmořských výšek lze provést
v čase 0(N log N). Hodnoty a[i,j] budeme počítat podle rostoucí hod-
noty indexu i. Pro každou z 0(N2) dvojic г a j existuje pouze O(N)
čísel к — otestování, zda к G S(i,j) provedeme pomocí funkce uhel ze
zadání úlohy. Počet hledaných tras pak určíme jako součet hodnot a[j, N]
přes všechna ý, 1 ^ j < N. Náš algoritmus zjevně pracuje v čase 0(N3)
a v prostoru 0(N2).

Právě sestrojený algoritmus ještě dále zrychlíme pomocí podobného
triku, jaký jsme použili již v minulých kolech. Pro bod i setřídíme body
к,к < г, podle směrů ki ve směru hodinových ručiček, a též body j, j > г,

podle směrů ij. Pro každé j > i, je množina S(i,j) tvořena souvislým
úsekem bodů к, к < i, v právě zavedeném uspořádání
a p(i,j) jsou krajní body tohoto souvislého úseku (předpokládejme, že je
neprázdný). Pro pevný bod i budeme к а[г, j] přičítat součet hodnot od
a[l(i, j),i] do a\p(i,j),i\, kde j (j > i) budeme procházet v pořadí podle

nechť l(i, j)
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výše uvedeného uspořádání. Jak se směr ij postupně natáčí, hodnoty
a p(i,j) se postupně mění (ale stále stejným směrem). Hodnotu

součtu prvků mezi a[l(i,j),i\ a a[p(i,j),i\ si můžeme pamatovat v po-
mocné proměnné a při změně nebo p(i,j) ji patřičně upravit. Na
výpočet v pevném bodě i takto budeme potřebovat kromě úvodního tří-
dění čas O(N).

Třídění podle směrů (úhlů) spotřebuje v každém z N bodů čas
0(N log N). Výsledná časová složitost našeho algoritmu tedy bude
0(N2 logN) a paměťová bude 0(N2). Při implementaci algoritmu je
třeba dávat pozor na několik okrajových případů, zejména na již výše
zmiňovaný případ, že množina S(i,j) je prázdná. Kvůli úspoře místa
bylo ve vzorovém programu použito kvadratického třídícího algoritmu
namísto optimálního algoritmu pracujícího v čase 0(N log N).

P - III - 3

Nejdříve si předvedeme jednodušší řešení, které pro každou permu-
taci vytvoří síť s O(logn) vrstvami a 0(n log n) komparátory. Později
toto řešení vylepšíme, aby používalo pouze 0(ň) komparátorů. Časová
složitost obou algoritmů bude O(nlogn).

Nechť permutace na vstupu je A = ai, <22,..., an a zvolme к := [п/2J
(|ycj je dolní celá část čísla x). Po průchodu první vrstvou budou na

prvních к vodičích čísla 1,2,..., A; (ne nutně setříděná) a na zbylých
n — к vodičích čísla к + l,k + 2,... ,n (opět ne nutně setříděná). První
vrstva bude vypadat následovně: Nechť S1 je množina vodičů z horní
poloviny, na kterých jsou čísla z dolní poloviny, tj. S1 = {i: i 5Í к & a* >
> к}. Podobně S2 bude množina vodičů patřících do dolní poloviny, na

kterých jsou čísla z horní poloviny, tj. S2 = {i '■ i > к & щ ^ к}. Zřejmě
|Si| = IS21- Pomocí komparátorů spojíme dvojice vodičů, z nichž vždy
jeden je z množiny S\ a druhý 52- Takto vytvoříme první vrstvu sítě a je
zřejmé, že tato vrstva má požadovanou vlastnost.

Nyní rozdělíme n vodičů na dvě skupiny: horních к vodičů a dolních
n — к vodičů. Právě popsaný postup zopakujeme na každé z těchto dvou
skupin zvlášť a takto vytvoříme druhou vrstvu. Na vodičích z každé čtvr-
tiny budou čísla z této čtvrtiny. Takto budeme pokračovat, dokud v každé
části, na které máme vodiče rozděleny, nezbude jediný vodič. Počet vrs-
tev takto vytvořené sítě bude O(logn) (velikosti částí se zmenší v každé
vrstvě na polovinu) a počet komparátorů této sítě bude O(nlogn).
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Dále si popíšeme konstrukci s O(n) komparátory. Ta funguje podob-
ně, ale dvojice vodičů z množin Si a S2 vybereme šikovnějším způso-
bem. Permutaci si můžeme představit jako orientovaný graf na vrcho-
lech 1,... ,n, kde z vrcholu i vede právě jedna hrana, a to do vrcholu
аг-. Zjevně z každého vrcholu vychází právě jedna hrana a právě jedna
hrana do něj vchází. Cykly v takto vytvořeném grafu budeme nazý-
vat cykly permutace. Např. permutace (7, 5,4,1,2,6,8,3) má 3 cykly:
(1 —У 7 —У 8 —У 3 —У 4 —у 1), (2 —у 5 —У 2), (6 —у 6).

V naší komparátorové síti bychom chtěli přesunout číslo z vodiče г na
vodič си. Protože čísla i a a; jsou ve stejném cyklu, je zbytečné pomocí
komparátorů spojovat vodiče z různých cyklů permutace A. Na začátku
v lineárním čase proto rozdělíme permutaci na její cykly a v každém
z nich budeme řešit úlohu samostatně. Může se ale samozřejmě stát, že
permutace je tvořena jen jedním cyklem a tímto dělením na menší úlohy
si tedy nepomůžeme.

Zvolme jeden pevný cyklus (:ci —У X2 -> xi —У x\) per-
mutace A a nechť к := |_//2J (k bude mít opět roli „poloviny" délky
cyklu). Nejmenších к čísel tohoto cyklu budeme nadále nazývat malá
čísla a zbylých n — к čísel budeme nazývat velká čísla. Např. pro cyklus
(1—»7->8-»3->4—У 1) je к — 2, čísla 1 a 3 jsou malá a čísla 4, 7 a 8
jsou velká.

Podívejme se na souvislé úseky velkých a malých čísel v našem cyklu;
souvislý úsek může pokračovat i z xi do xi. Nechť xi je poslední číslo
v některém z úseků velkých čísel; za X{ tedy následuje úsek malých čísel
a nechť Xj je poslední číslo v tomto úseku.

Vodič Xi obsahuje číslo aXi, které je malé, a naopak vodič Xj obsahuje
číslo aXj, které je velké. Kdybychom spojili X{-tý a Xj-tý vodič kompará-
torem, dojde к výměně, protože vodič s malým číslem xi obsahuje velké
číslo aXi a naopak vodič s velkým číslem Xj obsahuje malé číslo aXj.

Pro každý souvislý úsek velkých čísel takto vytvoříme komparátor,
který spojí vodič odpovídající poslednímu číslu tohoto úseku s vodičem,
který odpovídá poslednímu číslu následujícího úseku malých čísel. V na-
šem příkladu (l->7—>■ 8 -> 3 -* 4 —у 1) čísla 7 a 8 tvoří první souvislý
úsek velkých čísel a 3 následující úsek malých čísel. Do sítě tedy přidáme
komparátor mezi vodiče 8 a 3. Další souvislý úsek velkých čísel je tvořen
číslem 4 a úsek malých čísel pouze číslem 1. Do naší sítě tedy přidáme
komparátor mezi vodiče 1 a 4.

Takto vytvoříme komparátory první vrstvy. Po průchodu první vrst-
vou se původní velký cyklus rozpadne na několik menších. Každý souvislý
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úsek malých čísel bude tvořit samostatný cyklus, naopak všechna velká
čísla budou obsažena v jednom cyklu (nakreslete si obrázek!). Pokud
jsme použili p komparátorů, vytvoříme z původního jednoho cyklu p+1
nových cyklů. Nyní obdobným postupem nalezneme cykly permutace po

průchodu prvním cyklem a vytvoříme druhou vrstvu. Skončíme, když
všechny cykly jsou jednoprvkové. Protože každý komparátor „přidá“ je-
den cyklus, bude mít výsledná síť nejvýše n — 1 komparátorů. Každá
vrstva zmenší velikost největšího cyklu zhruba na polovinu, počet vrstev
je proto logaritmický v n.

Výše popsaný algoritmus může každou z O(logn) vrstev vytvořit
v čase 0(n): Nejdříve v čase 0(n) rozložíme permutaci na cykly. To lze
udělat tak, že si vytvoříme pomocné pole velikosti n, které na začátku
vynulujeme. Vezmeme nejmenší číslo i takové, že г-tý prvek tohoto pole
je stále nulový, a nalezneme jeho cyklus, tj. procházíme posloupnost i,
Oi, aai atd., dokud se nevrátíme zpět do i. Všem číslům této posloup-
nosti uložíme do pomocného pole číslo i. Na konci bude pomocné pole
obsahovat pro každý prvek číslo nejmenšího prvku v jeho cyklu. Když
jsme nalezly všechny cykly, spočítáme si jejich velikosti a rozdělíme čísla
v nich na velká a malá. Tu je třeba postupovat opatrně
(rychle) určit hranici, která oddělí velká a malá čísla v jednom cyklu.
Jednou z možností je použít lineární algoritmus na hledání mediánu.
Jednodušší řešení je následující: Budeme procházet naše pomocné pole
od nejmenšího indexu к největšímu
čísla označovat jako malá, dokud nenavštívíme polovinu jeho prvků (pro
každý cyklus máme zvláštní čítač, kolik jeho prvků jsme již navštívili)
a pak prvky tohoto cyklu budeme označovat jako velká. Tento průchod,
na který spotřebujeme čas O(n), nám naráz rozdělí čísla ve všech cyklech
na velká a malá. Po vytvoření nové vrstvy nesmíme zapomenout spočítat,
jak se nám změnila naše permutace po průchodu touto vrstvou.

musíme totiž

u každého cyklu budeme jeho

P - III - 4

Úlohu si nejdříve přeformulujeme do řeči teorie grafů. Uzly kanalizační
sítě budeme nazývat vrcholy, potrubí vedoucí mezi nimi hrany a celá ka-
nalizační síť pak pro nás bude graf. Sledem budeme rozumět posloupnost
ne nutně různých vrcholů a hran vo, e\, v\, ,..., Vk-iek, Vk takovou, že
hrana e* spojuje vrcholy пг-_i a V{. Sled nazveme tahem, pokud se v něm
žádná hrana nevyskytuje dvakrát.
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Naše úloha tedy požaduje nalézt v zadaném grafu G nejmenší mno-
žinu tahů takovou, že každá hrana je obsažena v právě jednom z nich.
Pokud si představíme náš graf G jako obrázek, chceme ho nakreslit co

nejmenším počtem tahů.
Nejdříve si uvědomíme několik jednoduchých skutečností. Pokud je

graf nesouvislý, můžeme úlohu řešit pro každou jeho komponentu souvis-
losti zvlášť. Připomeňme si, že komponenta souvislosti grafu je maximální
množina vrcholů taková, že mezi každými dvěma z nich vede sled. Graf je
souvislý, pokud je tvořen jedinou komponentou souvislosti. Nadále tedy
stačí řešit případ, že zadaný graf je souvislý. Stupeň vrcholu grafu je
počet hran, které z něho vycházejí. Součet stupňů všech vrcholů grafu je
sudý, neboť každá hrana tento součet zvýší o dva (u každého ze svých
dvou konců o jedna). Protože součet stupňů všech vrcholů je sudý, má
každý graf sudý počet vrcholů lichého stupně. Nechť tedy náš graf má 2к
vrcholů lichého stupně.

V každém z těchto 2к vrcholů alespoň jeden z hledaných tahů končí
nebo začíná. Nechť w je vrchol lichého stupně, kde žádný tah ani nezačíná,
ani nekončí. Každý tah musí obsahovat sudý (třeba i nulový) počet hran
vycházejících z vrcholu w a protože všechny tahy dohromady obsahují
každou hranu grafu právě jednou, musí být stupeň vrcholu w sudý, což
není. Potom ale libovolné řešení musí obsahovat alespoň к tahů (pro
к — 0 alespoň jeden tah).

Nejprve vyřešíme případ, že všechny vrcholy grafu mají sudé stupně,
tj. к = 0. Obecný případ s nenulovým к vyřešíme později. Pro к — 0 do-
kážeme, že existuje uzavřený tah obsahující všechny hrany. Připomeňme
si, že tah je uzavřený, pokud začíná a končí ve stejném vrcholu. Vez-
měme nejdelší tah v našem grafu, tj. ten, co obsahuje co nejvíce hran.
Takový tah je zřejmě uzavřený: Kdyby nebyl, pak by z jeho posledního
vrcholu, označme ho w, vycházel lichý počet hran obsažených v našem
tahu, ale protože stupeň w je sudý, existovala by i nepoužitá hrana vy-

cházející z vrcholu w a náš tah by šel prodloužit. Tedy nejdelší tah je
nutně uzavřený. Pokud tento tah neobsahuje všechny hrany, pak existuje
vrchol ic, ze kterého vychází jak hrana, která je obsažena v našem tahu,
tak i hrana, která není v našem tahu (uvědomme si, že graf je souvislý).
Protože náš tah je uzavřený, můžeme předpokládat, že w je jeho první
a zároveň poslední vrchol a tento tah lze potom prodloužit přidáním,
nepoužité hrany, která vede z vrcholu w. Právě jsme tedy ukázali, že
nejdelší tah v souvislém grafu, jehož všechny stupně jsou sudé, obsahuje
každou hranu právě jednou (jinak by šel prodloužit).
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Zpět к našemu problému: Jak nakreslit souvislý graf s 2к vrcholy
lichého stupně pomocí к tahů? Přidejme do našeho grafu к hran, které
budou spojovat dvojice vrcholů lichého stupně. Takto vytvořený graf je
souvislý a všechny jeho vrcholy mají sudé stupně. Existuje v něm tedy
tah, který obsahuje každou hranu právě jednou. Pokud z tohoto tahu
vynecháme к přidaných hran, pak se nám rozpadne na к tahů — sestrojili
jsme tedy hledaných к tahů.

Zbývá vyřešit jediný úkol
jehož všechny stupně jsou sudé. Zbývající operace, tj. rozložit graf na

komponenty souvislosti a přidat hrany mezi vrcholy lichého stupně,
jistě zvládneme v lineárním čase v počtu vrcholů a hran. Algoritmus
bude postupně přidávat hrany do vytvářeného tahu v grafu; jeho já-
drem bude rekurzivní procedura vytvor_tah. Začneme vytvářet tah ve
vrcholu v, dokud nepřijdeme do vrcholu, z něhož už nevede žádná ne-

použitá hrana. Protože stupně všech vrcholů jsou sudé, musí být tímto
vrcholem opět vrchol v. Máme tedy nějaký uzavřený tah. Pokud exis-
tuje vrchol u, jehož všechny hrany jsme ještě nepoužili, zavoláme pro

něj proceduru vytvor_tah. Takto nalezneme tah, který prochází vrcho-
lem и a obsahuje pouze dosud nepoužité hrany. Vrchol и nyní nemá
žádné nepoužité hrany a nově nalezený tah spojíme s původním tahem.
Takto pokračujeme, dokud existuje vrchol u, jehož některá hrana je перо-
užitá.

efektivně nalézt uzavřený tah v grafu

Nyní к samotné implementaci výše popsaného algoritmu. V programu
budeme mít pro každý vrchol uložen seznam jeho hran a ukazatel do
tohoto seznamu na takovou hranu, že všechny hrany před ní jsou již po-
užité. Pokud budeme potřebovat najít dosud nepoužitou hranu, budeme
tento ukazatel posunovat v seznamu, dokud takovou hranu nenalezneme.
Pokud jsou všechny hrany použité, ukazatel se posune až na konec sezná-
mu. Takto u každého vrcholu spotřebujeme dohromady čas úměrný jeho
stupni, a tedy celkově čas 0(m) pro všechny vrcholy dohromady. Samotné
tahy budeme reprezentovat jako seznamy hran — to nám umožní tahy
nejen rychle vytvářet, ale i spojovat. Náš algoritmus tedy nejdříve nalezne
počáteční tah, např. z prvního vrcholu. Potom budeme procházet vrcholy
na tomto tahu, dokud nenarazíme na první vrchol s nějakou dosud перо-
užitou hranou. Zavoláme na tento vrchol proceduru vytvor_tah a spo-

jíme tah, který tato procedura nalezne, s původním tahem. Všimněte si,
že při vhodné implementaci procedury vytvor_tah nebude již třeba pro

vrcholy na přidávaném tahu kontrolovat, zda jsou všechny jejich hrany
použity (pokud to zkontroluje sama volaná procedura vytvor„tah). Cel-
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ková časová a paměťová složitost našeho algoritmu tedy bude O(m), kde
m je počet hran.

Kvůli zjednodušení vzorového programu náš program nespojuje vr-

choly lichého stupně jen v rámci jedné komponenty
nebude mít vliv na počet nalezených tahů.

to ale zřejmě

P - III - 5

Myšlenka řešení této úlohy je velmi jednoduchá. Vygenerujeme po-

stupně všechny pozice s nejvýše N kameny, ze kterých se dá cílová pozice
dosáhnout. Budeme si pamatovat všechny již vygenerované pozice a kdy-
koliv vygenerujeme nějakou další, nejdříve si zkontrolujeme, zda již mezi
dříve vytvořenými pozicemi náhodou není. Není-li tomu tak, zapamatu-
jeme si ji a zvýšíme počítadlo vyhrávajících pozic s nejvýše N kameny
o jedničku.

Pozice budeme generovat v pořadí od cílové pozice. Pokud posledním
tahem byl skok doprava z políčka i na políčko i + 2, pak jsou nyní políčka i
a i + 1 prázdná a naopak políčko i + 2 obsahuje hrací kámen. Pozice, ze

kterých se dá dostat do pozice p skokem doprava, jsou právě ty, které
vzniknou záměnou řetězce 001 v popisu pozice p řetězcem 110 (předsta-
vujeme si, že pozice je popsána posloupností nul a jedniček, kde nula
reprezentuje prázdné políčko a jednička reprezentuje obsazené políčko).
Podobně ty pozice, ze kterých se dá dostat do p skokem doleva, jsou právě
ty, které vzniknou záměnou řetězce 100 řetězcem 011.

Výše popsaným postupem můžeme tedy pro pozici p vygenerovat
všechny pozice, ze kterých se lze do p dostat jedním tahem. Popíšeme
si proceduru generuj, která pro zadanou pozici p vygeneruje všechny
pozice, ze kterých se dá do pozice p dostat. Výše uvedeným postupem tato
procedura bude vytvářet pozice q, z nichž se dá přejít do p jedním tahem.
Pokud q ještě nebyla nalezena, označíme q jako nalezenou a rekurzivně na
ni zavoláme proceduru generuj. Potřebujeme umět rychle ověřovat, zda
již pozice q byla někdy dříve vygenerována. Vhodných datových struktur
je několik, např. hašovací tabulky, různé varianty vyhledávacích stromů
atd. My použijeme datovou strukturu nazývanou trie.

Trie je datová struktura na uchovávání řetězců nad konečnou abe-
cedou, v našem případě to budou řetězce nul a jedniček. Trie je tvo-
řena stromem, kde každý vrchol má nejvýše tolik synů, jaká je velikost
abecedy, tj. v našem případě nejvýše dva syny. Cesty od kořene stromu
odpovídají řetězcům nad abecedou. V našem případě to bude tak, že
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pokud i-tá hrana cesty vede do levého syna, je г-tý znak řetězce 0, a po-
kud vede do pravého syna je tento znak 1. Každý vrchol w ve stromě
obsahuje ukazatele na své syny (pokud nějaké má) a jeden bit udávající,
zda řetězec, kterému tento vrchol odpovídá, byl do trie vložen či nikoliv.
Na začátku je trie tvořena pouze kořenem, jehož bit je nastaven na nulu.
Slovo do trie vložíme tak, že jdeme po hranách odpovídajících znakům
vkládaného slova a pokud už nemůžeme z nějakého vrcholu dále pokra-
čovat, jednoduše vytvoříme nový vrchol, připojíme ho jako syna tohoto
vrcholu a pokračujeme do něj. Až nalezneme vrchol odpovídající celému
vkládanému slovu, nastavíme jeho bit na jedničku. Vyhledávání řetězce
je stejně jednoduché: Z kořene se opět necháme navigovat pomocí znaků
hledaného řetězce. Pokud už dále nemůžeme pokračovat, pak hledaný
řetězec ve stromě není. Jinak jsme nalezli vrchol, který odpovídá vyhle-
dávanému řetězci, a podle jeho bitu poznáme, zda je řetězec ve stromě
obsažen nebo není. Poznamenejme, že existují i chytřejší implementace
této datové struktury než ta, kterou jsme si zde právě popsali.

Časová a paměťová složitost našeho programu závisí na počtu P
hledaných pozic. Pro každou z nich vytvoříme v našem stromě nejvýše
К uzlů — prostorová složitost algoritmu je tedy nejvýše O(PK). Navíc
pro každou z nich musíme vygenerovat všech nejvýše 2k—4 jejich přímých
předchůdců a pro každého z těchto předchůdců otestovat v čase 0(K),
zda je v trie již obsažen. Celková časová složitost algoritmu tedy bude
0{PK2).
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Přípravná soustředění před 43. MMO

V průběhu 51. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 22. do 26. dubna 2002 v Kostelci nad
Černými lesy nedaleko Prahy. Na základě výsledků II. a III. kola na ně
bylo pozváno 9 kandidátů na reprezentaci.

Soustředění bylo zaměřeno na řešení obtížných úloh v omezeném čase
(v soutěžních podmínkách). Po odpolední relaxaci byl proveden detailní
rozbor opravených řešení. Úspěšnost jednotlivých studentů ukazuje ná-
sledující tabulka:

4/4, GMK, BílovecJaroslav Hájek
Tomáš Protivínský 4/4, G Brno, tř. Kpt. Jaroše

88,5
84,5

4/4, G Ch. Dopplera, Praha 5 81
2/4, GJKT, Hradec Králové 75
4/4, G Praha 1, Štěpánská 69
2/4, G Brno, tř. Kpt. Jaroše 61
8/8, G Ch. Dopplera, Praha 5 54
3/4, G Brno, tř. Kpt. Jaroše 46,5
1/4, SPŠST, Praha 1, Panská 43,5

Martin Tancer

Jan Moláček

Josef Cibulka

Vítězslav Kala

Ondřej Kůrka
Marek Krčál
Pavel Kocourek

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo vybráno šest reprezentantů a jeden
náhradník. Stejné družstvo nás reprezentovalo i na již tradičním střetnutí
s družstvem Slovenska, к němuž se od loňska přidalo i družstvo Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (22.4.),
dr. Pavel Calábek (23.4.),
dr. Karel Horák (24.4.),
dr. Jaroslav Švrček (25.4.),
a doc. Jaromír Šimša (26.4.).
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Úlohy zadané na přípravném soustředění1.Najděte všechny funkce f: N -^ N takové, že

f{f(n))=n a /(/(n + 2)+ 2) = n

pro všechny hodnoty celočíselné proměnné na/(0) = l.

2. Rovnoramenný trojúhelník ABC se základnou AB má úhel 80° při
vrcholu C. Bod D leží uvnitř tohoto trojúhelníku tak, že velikost úhlu
DAB je 10° a velikost úhlu DBA je 20°. Určete velikost úhlu ACD.

3. Nechť n je počet uspořádaných pětic (01,02,03,04,05) přirozených
čísel, která splňují rovnost

11111
= 1.

Oi 02 O3 04 05

Je n číslo sudé, nebo liché?4.Je dána tabulka se 7 x 7 čtvercovými poli. Dokažte, že lze v tabulce
umístit jedno monomino I tak, že ostatních 48 polí nelze pokrýt jedním
trominem II a 15 trominy III.

□
tromino II tromino IIImonomino I

5. Nechť p(x) je polynom s celočíselnými koeficienty. Posloupnost xo,xi,

X2, ■ ■ ■ je definována následovně:
(i) x0 = 0,
(ii) xn = p(xn-i) pro všechna přirozená n.

Jestliže existuje přirozené číslo n tak, že xn = 0, pak buď X\ = 0,
nebo X2 — 0. Dokažte.

6. Pro přirozené číslo xq definujme posloupnosti {xn}, {г/п}, {zn} násle-
dujícím předpisem:
(i) y0 = 4 a z0 = 1.
(ii) Jestliže xn je sudé pro n ±1 0, pak xn+\ = |xn, yn+1 = 2yn a zn+1 =

— Zn-

(iii) Jestliže xn je liché pro n A 0, pak xn+i —xn- \yn - zn, yn+1
a Zn-if.. 1 — zn J- Уп-

— Уп
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7. Přirozené číslo £0 nazveme dobré právě tehdy, když existuje n ^ 1
tak, že xn = 0. Kolik existuje dobrých čísel menších nebo rovných číslu
2 002?

8. Nechť X je konečná množina. Označme E(X) množinu všech podmno-
žin množiny X, které obsahují sudý počet prvků. Nechť reálná funkce /
definovaná na E(X) má následující vlastnosti:
(i) existuje D G E(X) tak, že f(D) > 2 002,
(ii) pro každé dvě disjunktní množiny А, В G E(X) platí f(A U B) —

= f(A) + f(B)~ 2002.
Dokažte, že X můžeme rozdělit na dvě disjunktní podmnožiny P a Q

takové, že f(S) > 2 002 pro každou neprázdnou množinu S G E(P)
a f(T) 5Í 2 002 pro každou T G E(Q).
9. Nechť /: IR -> IR je spojitá funkce a nechť existují čísla a a b (0 < a, b <
< |) tak, že f(f(x)) = af(x) 4- bx pro všechna reálná čísla x. Dokažte,
že existuje reálná konstanta к taková, že f(x) = kx pro všechna reálná
čísla x.

10. Je dán čtyřstěn ABCD, označme E kolmý průmět vrcholu D do
roviny ABC. Dokažte, že následující dvě tvrzení jsou ekvivalentní:

(i) C — E nebo СЕ || AB;
(ii) pro každý bod M hrany CD platí rovnost

\CM\2 \CM\2-•S2{ABD)+ ^1 S\ABC).S2(ABM) = \CD\ \CD\2

(Zde S(XYZ) označuje obsah trojúhelníku XYZ.)11.Dokažte, že existuje nekonečně mnoho čtveřic (x,y,z,t) přirozených
čísel, jejichž největší společný dělitel je 1 a pro něž zároveň platí

x3 + y3 + z2 — ř4.12.Nechť P1P2 ■ ■. Pn je konvexní mnohoúhelník v rovině takový, že ke
každé dvojici jeho vrcholů Pí, Pj existuje jiný jeho vrchol, ze kterého je
úsečku P{Pj vidět pod úhlem 60°. Dokažte, že n — 3.13.Určete všechny dvojice (x,y), resp. (u,v) celých čísel, které vyhovují
rovnicím

(x + l)2 + (x + 2)2 + ... + (x 4- 2001)2 = y2,
u3 4- (u 4- l)3 + (и + 2)3 + ... + (u + 7)3 = v3.

a)
b)
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14. Stranám АС а ВС ostroúhlého trojúhelníku ABC jsou vně připsány
pravoúhelníky ACPQ a BKLC o stejném obsahu. Dokažte, že střed
úsečky PL, bod C a střed kružnice opsané trojúhelníku ABC leží na
téže přímce.

15. Nechť к je kružnice opsaná trojúhelníku ABC. Body M, N nechť
jsou po řadě středy oblouků BC, CA а X je daným bodem oblouku
AB kružnice k. Kružnice opsaná trojúhelníku XS1S2, kde S1, S2 jsou
po řadě středy kružnic vepsaných trojúhelníkům XAC, XBC, se protíná
s kružnicí к (kromě bodu X) ještě v dalším bodě P.
a) Dokažte, že trojúhelníky PNS\ a PMS2 jsou podobné.
b) Najděte množinu všech bodů P.

16. Určete, kolik pořadí ai,a2,...,an čísel 1,2, ...,n má tu vlast-
nost, že pro každý index г (1 ú i 'A n) platí buď a* = 1, nebo
cii > min{ai_i, tti+i}, kde ao a an+1 značí libovolná čísla větší než (dané)
číslo n.

17. Najděte největší reálné číslo p, pro které platí následující tvrzení:
Má-li mnohočlen f(x) = x3 4-ax2 + bx + c tři nezáporné kořeny (počítané
s ohledem na jejich násobnost), pak pro každé nezáporné číslo x platí
f(x) ^p-{x-a)3.
18. Určete největší přirozené číslo TV, pro které platí: Je-li na kružnici
zvoleno 21 různých bodů, pak alespoň N úseček spojujících zvolené body
jsou tětivy se středovým úhlem nejvýše 120°.

19. Určete nejmenší počet polí, které je nutné označit na čtvercové ša-
chovnici 10 x 10, aby žádná čtyři z neoznačených polí nebyla rohovými
poli některé podšachovnice p x q, kde 1 < p ^ 10 a 1 < q ^ 10.
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Mezinárodní střetnutí česko-polsko-slovenské

ZWARDOŇ, 17.-18. ČERVNA 2002
V rámci závěrečné přípravy před MMO se uskutečnilo již podruhé pří-
pravné střetnutí mezi týmy České republiky, Polska a Slovenska. Jednot-
livé země reprezentovala vždy šestice účastníků, kteří si vybojovali ve

svých zemích letenky na 43. MMO do skotského Glasgowa.
Soutěž se uskutečnila v termínu 17.-18.6. 2002 v krásném pro-

středí polských Beskyd, a to v příhraničním horském středisku Zwardoú.
Všechna tři reprezentační družstva přicestovala na místo konání již v ne-
děli 16.6. 2002. Organizace a průběh soutěže zůstal zachován z předešlých
ročníků — je přizpůsoben stylu III. kola naší МО a podmínkám na MMO.
Soutěžícím byly ve dvou dnech předloženy dvě trojice soutěžních úloh,
přitom za každou z úloh mohli získat nejvýše 7 bodů, tj. celkově (stejně
jako na MMO) 42 body. Na každou trojici úloh měli soutěžící vyhrazeno
4,5 hodiny.

Země bodyPořadí Jméno Součet

SYKKatarina Quitnerová
Wojciech Czerwiňski
Marcin Pilipczuk
Josef Cibulka
Peter Bella
Jaroslav Hájek
Jaroslaw Wrona
Radovan Bauer
Pawel Parys
Marek Tesař
Martin Tancer
Tomáš Protivínský
Roman Lomowski
Jan Moláček
Michal Burger
Michal Jóžwikowski
Vítězslav Kala

Andrej Osuský

767777
675776
677771
645772

766730
675730
677700
575730
676700
675610
676301
607710
205770

207702
307701
602700
505101

600000

1. 41

POL2. 38
POL3. 35
CZE4. 31
SYK 295.

CZE6. 28
POL7.-8. 27
SYK 27
POL9. 26
SYK10. 25
CZE11. 23
CZE12.-13. 21

POL 21
CZE14.-15. 18
SYK 18
POL16. 15

CZE17. 12
SYK18. 6
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Úlohy pro letošní soutěž vybrali polští organizátoři, a to především
z vlastních zdrojů, jejich koordinaci prováděla mezinárodní jury, kterou
tvořili dr. Marcin Kuczma a mgr. Andrzej Mqkowski z Polska, doc. Oliver
Ralík a Vladimír Marko ze Slovenska a dr. Jaroslav Švrček a dr. Jaroslav

Zhouf za Českou republiku. Na zdárném průběhu celé soutěže se dále
významně podíleli polští kolegové dr. Józef Kalinowski a dr. Jerzy Bed-
narczuk.

Texty soutěžních úloh1.Nechť a, b jsou různá reálná čísla a k, m přirozená čísla, pro něž
platí k + m = n^.3, k~š 2m a m ú 2k. Uvažujme posloupnosti
(xi,x2, ■ . . ,xn), které vyhovují následujícím podmínkám:

к členů posloupnosti se rovná a; přitom x\ — a;
m členů posloupnosti se rovná 6; přitom xn = 6;
žádné tři po sobě jdoucí členy nejsou stejné.

Určete všechny možné hodnoty součtu

XnX\X2 + X\X2X2, + • • • + Xn-2Xn-lXn + Xn-\XnX\.2.Je dán trojúhelník ABC, jehož obsah je 5 a pro jehož délky stran
\BC\ = a, |Cb4| = 6, \AB\ = c platí a ^ b ^ c. Určete největší reálné
číslo и a nejmenší reálné číslo v tak, aby pro každý vnitřní bod P troj-
úhelníku ABC byla splněna nerovnost

и й \PD\ + \PE\ + \PF\ й v,

kde .D, E, F jsou po řadě průsečíky přímek AP, BP, CP s protějšími
stranami daného trojúhelníku.

(Hodnoty u, v vyjádřete pomocí daných veličin a, 6, с a S.)

3. Nechť S = {1,2, ...,n}, kde n je dané přirozené číslo. Určete počet
všech funkcí /: S -» S takových, že pro každé x G S platí x+f4(x) = n+l.

Poznámka. Symbol /4 značí čtvrtou iteraci, tj. f4(x) = f{f(f{f{x)))).
4. Nechť n > 1 je přirozené číslo a p prvočíslo takové, že n je dělitelem
čísla p — 1 a současně p je dělitelem čísla n3 — 1. Dokažte, že Ap - 3 je
druhou mocninou přirozeného čísla.

5. Nechť O značí střed kružnice opsané ostroúhlému trojúhelníku ABC.
Body P, Q nechť jsou po řadě takovými body jeho stran АС, BC, pro
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něž současně platí

\AP\ \BC\
\PQ\ \AB\

\BQ\ \AC |
|PQ| \AB\'

a

Dokažte, že body O, P, Q a C leží na téže kružnici.

6. Nechť n ^ 2 je sudé přirozené číslo. Uvažujme polynomy tvaru

-iP(x) — xn + an-\xn + ... + а,\х + 1

s reálnými koeficienty, které mají aspoň jeden reálný kořen. Určete
nejmenší možnou hodnotu součtu a\ + ... + a2n_

Řešení úloh

1. Uvažujme posloupnost (rci,..., xn~i, xn), která vyhovuje podmínkám
úlohy. Pro libovolné její tři po sobě jdoucí členy x, у, г existuje taková
jejich permutace (x,y,z), pro kterou platí buď (x,y,z) = (a,a, 6), nebo
(x, у, z) = (a, 6, b). V obou těchto případech je xyz = ab(x + y + z — a — b).
Položme ještě xq = xn a, xn+i = :ri. Potom pro hledaný součet platí

П / П

'^Xi-íXiXi+i — abi 3 У^Жг
г=1 к

+ 6)^ = ((2к — т)а + (2т — k)b)ab.— п(а

Nyní ukážeme, že pro libovolná dvě přirozená čísla к, m, jež vyho-
vují daným podmínkám, existuje aspoň jedna posloupnost (xi,..., xn)
splňující požadované podmínky. Nechť např. 2m ^ к ^ m (v případě
2к m к budeme postupovat analogicky) a uvažujme posloupnost
3m trojic (a, a, 6) napsaných v řadě za sebou, tj. posloupnost

(a, a, 6, a, a, 6,..., a, a, 6).

Tato posloupnost obsahuje 2m čísel a a m čísel 6. Jestliže vyškrtneme
např. v prvních 2m — к trojicích (a, a, 6) vždy jedno a, dostaneme po-

sloupnost o n = k + m prvcích, která zřejmě vyhovuje podmínkám úlohy.
Závěr: Pro všechny posloupnosti, které vyhovují podmínkám úlohy,

je hodnota uvažovaného součtu vždy ((2к — m)a + (2m — k)b)ab.
2. Uvažujme libovolný vnitřní bod P trojúhelníku ABC a body D, U,
F podle zadání. Označme obsahy trojúhelníků PBC, PCA, PAB po
řadě Sa, Sb, Sc. Z podmínek úlohy plyne 25a U a ■ \PD\ A c ■ \PD\,
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2Sb ^ b ■ \PE\ ^ c • \PE\ a 2SC С c ■ \PF\. Platí tedy následující dolní
odhad

2(S„ + Sb + Sc) 25
\PD\ + |P£| + \PF\ ^ — = vc

c (

kde vc značí velikost výšky z vrcholu C v trojúhelníku ABC.
Uvažujeme-li nyní bod P této výšky libovolně blízko vrcholu C, vi-

dime, že i hodnota součtu \PD\ + \PE\ + \PF\ se libovolně přibližovat
délce výšky vc. Největší hodnota u, která vyhovuje podmínkám úlohy, je
tudíž и = vc = 2S/c.

Nyní stanovíme horní odhad uvažovaného součtu. Předně si uvědom-
me, že úsečka AB (délky c) je nejdelší (jedna z nejdelších) mezi všemi
úsečkami, jejímiž krajními body jsou některé dva body trojúhelníku ABC
(speciálně pak má větší velikost než každá z úseček AD, BE, CF). Platí
proto

Sa \PD\ , \PD\
S \AD\ = c

tj. |PD|gc2i5 '

Analogicky pak

Sb Sc
\PE\ ú c-f \PF\ ^ ca

S 's

Součtem všech tří nerovností obdržíme

\PD\ + \PE\ + |PF| š с (у + у + y) = c.

Zvolíme-li nyní bod P (uvnitř trojúhelníku ABC) libovolně blízko
vrcholu A tak, aby velikost úhlu PAB byla libovolně malá, snadno
nahlédneme, že i hodnota uvažovaného součtu se bude libovolně bií-
žit délce c strany AB. S ohledem na získaný horní odhad pro součet
\PD\ + \PE\ + |PF\ je tedy nejmenší hodnota v vyhovující podmínkám
úlohy v — c.

3. Pro každé x G S označme x* = n + 1 — x, kde pro zobrazení x h-> x*
platí x** = x. Nechť /: S —> S je funkce vyhovující podmínkám úlohy.
Protože f4(x) = x*, je f8(x) = x. Z podmínek úlohy plyne, že funkce /
je prostá, a tudíž bijektivní (jedná se tedy o permutaci na množině S).
Množinu S lze proto rozložit na cykly, jejichž délky jsou dělitelé čísla 8.
Jestliže xq náleží cyklu délky 4, 2 nebo 1, pak xq — f4(xo) — Xq, je tudíž
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x0 = |(n + 1). To je možné pouze pro lichá n, pak ale všechny prvky
uvažovaného cyklu musí být rovny xq. Odtud plyne, že S je sjednocením
několika disjunktních cyklů délky 8, eventuálně navíc obsahuje izolovaný
prvek xq. Platí tedy n = 8m nebo n = 8m + 1, kde m je přirozené číslo.

Uvažujme nejprve n = 8m. Označme A = {l,...,4m} а В =
= (4m + 1,..., 8ra}. Uvažujme nyní určitý cyklus délky 8, a označme C
množinu jeho prvků. Pak А П C je čtyřprvková množina а В П C je její
*-obraz. Naopak, pro každou čtveřici 1 ^a<b<c<d^ 4m lze
vytvořit množinu C = {a, 6, c, d, d*, c*, &*, a*}, jejíž prvky tvoří cyklus
délky 8. Dále určíme, kolika způsoby lze vytvořit takový cyklus délky 8
na množině C. Nechť /(a) = w, pak w může být libovolný prvek množiny
C s výjimkou prvků a a. a* (šest možností); dále nechť /(го) = г, pak z
může být libovolný prvek C s výjimkou prvků a, a*, го, го* (čtyři mož-
nosti); konečně f(z) může být libovolný prvek C s výjimkou prvků a, a*,
го, го*, г а 2* (dvě možnosti). Zbytek cyklu je pak již určen. Celkově tak
máme 6 • 4 • 2 = 48 možností.

Každé funkci / daných vlastností tak lze jednoznačně přiřadit rozklad
4m-prvkové množiny A na m čtveřic. Spočítáme, kolik takových rozkladů
existuje. Množina A má (4™) různých čtyřprvkových podmnožin, první
čtveřici rozkladu můžeme tedy vybrat (4™) způsoby, druhou {4™~4) způ-
soby atd., celkem tak máme

(4m)!4ra 4m — 4 12' '8'
4!m4 4 4 4

možností. Protože nezáleží na pořadí, v jakém m čtveřic rozkladu vybí-
ráme, je vždy m! rozkladů stejných. Celkem tedy existuje

(4m)!
(4!)mm!

různých rozkladů množiny Апаш (neuspořádaných) čtveřic. Každou ta-
kovou čtveřici prvků množiny A doplníme odpovídajícími *-obrazy z mno-

žiny B. Získáme tak jeden z možných cyklů délky 8. Na každém takovém
cyklu můžeme funkci / definovat 48 způsoby, pro daný rozklad tak exis-
tuje celkem 48m (2 • 4!)m možností, jak definovat funkci /. Celkový
počet funkcí / vyhovujících podmínkám úlohy je tedy

(4m)!
_ 2m(4m)!

(4!)mm!(2 • 4!)m • m!
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V případě n = 8m+l je nutno uvažovat izolovaně prvek xq = |(n+l)
a na množině S \ {жо} můžeme postupovat analogicky jako v případě
n — 8m (se stejným výsledkem).

Pokud n ф 0,1 (mod 8), žádná funkce / vyhovující podmínkám úlohy
neexistuje.

4. Podle zadání je p — 1 ^ n, neboli p ^ n +1. Protože p je dělitelem čísla
n3 —1 = (?r-l)(n2+n+l), je nutně dělitelem n2+n+l, tj. n2+n+l = mp,
kde m je přirozené číslo. Proto je mp = 1 (mod n) a podle předpokladu
úlohy i p = 1 (mod n). Z obou předchozích kongruencí plyne m = 1
(mod n). Platí tedy m = kn + 1 a p = In + 1, kde к a l ^ 1 jsou
nezáporná celá čísla, takže n2 + n + 1 = mp = (kn + 1 )(ln + 1) a po

úpravě n(l — kl) — к +1 — 1 ^ 0. Poslední rovnosti a nerovnosti vyhovuje
pouze к — 0. Odtud plyne m = 1 ,p = n2+n+1, atudíž Ap—3 = (2n+l)2.

Tím je důkaz ukončen.

5. Uvažujme obvyklé označení úhlů v trojúhelníku ABC. Nechť platí
např. a ^ (3. Uvažujme trojúhelník QPD, který je vně připsán straně QP
čtyřúhelníku ABQP a je podobný trojúhelníku ABC. Pak platí (obr. 37)

РЩ \BC\ \QD | MCI
\PQ I \ABi\PQ\ \AB\
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Z daných podmínek plyne \PD\ = \PA\ a \QB\ = \QD\. Na základě
předpokladu a^. (3 dále máme

\AP\
_ \PD\ _ \BC\ .

\Щ ~ 1W\ ~ \AC\ =
> 1, tj. \AP\ г IBQI.

V trojúhelníku CPQ tedy platí \CP\ \CQ\ a také

180° - 7
|<CQP| g ^a = \<DQP\2

180° - 7
i-^cpoi § 2 ^P=HDPQ\.

Z obou posledních nerovností je patrné, že Z) je vnitřním bodem konvex-
ního úhlu BCX, kde X leží na polopřímce AC za bodem C.

Označme nyní velikosti vnitřních úhlů při základnách rovnoramen-

ných trojúhelníků ADP a BDQ po řadě ра ф. Velikosti vnitřních úhlů ve

čtyřúhelníků ABDP mají pak po řadě velikosti а, (3+ф, 7+ф а 180° —2p.
Protože jejich součet je 360°, platí p — ф, a tedy \<ípADB\ = 7. Bod D
leží tudíž na oblouku BC kružnice opsané trojúhelníku ABC. Vzhledem
к tomu, že oba trojúhelníky ADP a BDQ jsou rovnoramenné (se zá-
kladnami AD a BD), jsou přímky OP a OQ osami stran AD a BD
trojúhelníku ABD. Protože střed O kružnice opsané trojúhelníku ABC
je jeho vnitřním bodem, plyne odtud bezprostředně

\<POQ\ = 180° - \^ADB\ = 180° - \<PDQ\ = 180° - 7.

Platí proto \<pPCQ\ + \<^.POQ\ = 180°, což znamená, že body O, P, C
a Q tedy leží na téže kružnici.

Zcela analogicky lze provést důkaz v případě, kdy a ^ (3.
Tím je úloha vyřešena.

6. Nechť и je reálný kořen rovnice P(x) = 0. Její úpravou a dále pak
využitím Cauchyho nerovnosti obdržíme

/ ri—1 \ 2 n—1 n —1

' г—1 г— 1 i—1

(■un + l)2 = (1)

Položíme-li n = 2m au2 = w, je

2m — 1 m — 171—1

E“2i= E wi wm + (wm + l)J2 wi■ (2)
2—12=1 2=1
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Vzhledem к tomu, že pro libovolné i G {1,2,..., m— .1} platí nerovnost
— 1) ^ 0, plyne odtud po snadné úpravěЫ ~ !)(«>m — i

i m—i ^wm + 1.w + w

Součtem všech těchto nerovností pro 1 ^ i ^ m — 1 dostaneme

m—1

2 ^ wl й (m — l)(wm + 1).
7= 1

Z nerovnosti (wm - l)2 ^ 0 dále plyne wm ^ + l)2. Dosazením
získaných nerovností do (2) obdržíme odhad

71—1
(»m +1)2 m_I(^ + i) = {L_i(wn + i)2£-2íá + (wm + 1) •4

7=1

který využijeme v (1). Po úpravě pak ihned vyjde

n — 1 .

£>?> — ,П - 1
7=1

S ohledem na použité nerovnosti zde nastává rovnost, právě když
— pro všechna г G« = 1 a ai = ... = an_i, tj. právě když =

6 {1,2,..
n — 1

n — 1).* 5
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43. mezinárodní matematická olympiáda

V pořadí již 43. ročník této prestižní mezinárodní soutěže uspořádal Uni-
ted Kingdom Mathematics Trust ve Skotsku
v městě Glasgow na University of Strathclyde
v době od 19. do 30. července 2002.

V posledních ročnících MMO byl téměř
vždy vytvořen nový rekord v počtu zúčast-
něných zemí. Nejinak tomu bylo i letos, kdy
se soutěže zúčastnilo 84 zemí, což je o jednu
více než loni. Každou zemi reprezentuje vždy
nejvýše šest soutěžících; letos jich bylo cel-
kem 485.

Výběr soutěžících za Českou republiku byl proveden v Kostelci nad
Černými lesy na závěrečném soutěžním soustředění prvních devíti vítězů
celostátního kola. Vybraní soutěžící se pak ještě zúčastnili trojutkání
v polském Zwardoni mezi Českou republikou, Slovenskem a Polskem,
kde soutěžili reprezentanti zúčastněných zemí za podmínek podobných
jako při soutěži na MMO. Po této přípravě odjela do Skotska tato šes-
tice soutěžících: Josef Cibulka z Gymnázia Štěpánská v Praze, Jaroslav
Hájek i Gymnázia M. Koperníka v Bílovci, Vítězslav Kala z Gymnázia
na tř. Kpt. Jaroše v Brně, Jan Moláček z Gymnázia J. K. Tyla v Hradci
Králové, Tomáš Protivínský z Gymnázia na tř. Kpt. Jaroše v Brně a Mar-
tin Tancer z Gymnázia Ch. Dopplera v Praze. Vedoucím české delegace
byl doc. RNDr. Jaromír Šimša, CSc., z Masarykovy Univerzity v Brně,
zástupcem vedoucího byl RNDr. Jaroslav Zhouf Ph.D., z Pedagogické
fakulty UK v Praze. Vedoucí delegace přicestoval do Skotska kvůli vý-
běru úloh již 19. července, ostatní čeští účastníci pak o tři dny později.

Druhý den po příletu soutěžících do Glasgowa se konalo v Barony Hall
(v katedrále přebudované na univerzitní aulu) slavnostní zahájení. Další
dva dny, tj. 24. a 25. 7., proběhla vlastní soutěž ve výstavním komplexu
nedaleko Glasgow Science Centre. Každý z těchto dnů řešili soutěžící
trojici úloh po dobu 4,5 hodiny. Za každou úlohu mohli získat maximálně
7 bodů.

UK
IMO
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O náročnosti soutěžních úloh svědčí i nízké hranice pro zisk medailí:
na bronzovou medaili stačilo 14 bodů, na stříbrnou 23 a na zlatou 29
z možného počtu 42 bodů. Všichni tři naši loňští olympionici si zřetelně
v celkovém pořadí polepšili. V neoficiálním pořadí zemí podle celkového
počtu bodů družstva jsme spolu se Slovenskem dokonce poskočili o rov-

ných dvacet míst
středoevropští rivalové. Výsledky našich jsou uvedeny v následující ta-
bulce:

až na to, že tentokrát vyššího součtu dosáhli naši

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

99.-116. Josef Cibulka,
4. roč. gymnázia
Štěpánská 22, Praha 1

86.-98. Jaroslav Hájek,
4. roč. GMK

Bílovec

233.-248. Vítězslav Kala,
2. roč. gymnázia
Brno, tř. Kpt. Jaroše

145.-159. Jan Moláček,
2. roč. GJKT

Hradec Králové

191.-200. Tomáš Protivínský,
4. roč. gymnázia
Brno, tř. Kpt. Jaroše

160.-167. Martin Tancer,
4. roč. G. Ch. Dopplera
Praha 5

6 6 0 3 7 1 23 II.

7 7 1 7 2 0 24 II.

6 0 0 6 1 0 13

7 7 0 4 2 0 20 III.

7 0 0 7 2 0 16 III.

3 7 17 10 19 III.

Celkem 36 27 2 34 15 1 115

Žádný bod neztratili jen tři soutěžící: Yunhao Fu s Botongem Wangem
z Číny a Andrej Chaliavin z Ruska.

Jak je patrno z tabulky zúčastněných států, v neoficiálním hodnocení
jednotlivých zemí podle celkového bodového zisku dopadly nejlépe (jak
už je pomalu tradicí) Čína, Rusko a Spojené státy.
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I II III body I II III body
Clr
Rusko

Makedonie
Norsko
Chorvatsko
Mexiko
Řecko
Moldavsko
Švédsko
Uzbekistán
Peru

Belgie
Venezuela
Nizozemsko
Dánsko
Macao
Rakousko
Slovinsko
Turkmenistán

Španělsko
Švýcarsko
Bosna a Hercegovina 0 0 1
Maroko
Indonézie

Ázerbájdžán
Island
Arménie

Kypr
Malajsie
Albánie
Irsko
Trinidad a Tobago
Tunisko

Filipíny
Kirgizie
Portoriko
Srí Lanka

Portugalsko
Lucembursko

Paraguay
Guatemala
Ekvádor

Kuvajt
Uruguay

6 0 0
6 0 0
4 1 0
3 2 1
3 1 2
1 5 0
1 4 1
2 3 1
1 3 2
2 1 2
0 4 2
1 3 1
1 2 3
1 2 3
1 1 4
1 3 1
0 3 3
0 3 3
0 2 3
1 3 0
0 1 5
0 4 1
0 2 2
1 2 2
0 2 4
1 2 1
0 2 2
0 2 3
0 1 5
0 2 2
0 0 5
0 1 3
0 0 5
0 0 2
0 0 3
1 0 0
0 0 3
0 0 3
0 0 2
0 2 0
0 1 2
0 1 2

212 0 1 1
1 0 1
0 0 2
0 0 3
0 0 2
0 0 2
0 0 2
0 0 0
0 0 2
0 0 1
0 1 1
0 0 1
0 0 0
0 0 3
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

73
204 72

USA 171 70
Bulharsko
Vietnam
Korea

Tchaj-wan
Rumunsko
Indie
Německo
Írán
Kanada
Maďarsko
Bělorusko
Turecko

Japonsko
Kazachstán
Izrael
Francie

Ukrajina
Brazílie
Polsko

Thajsko
Hongkong
Slovensko
Austrálie
Velká Británie
Česká republika
Jugoslávie
Singapur
Argentina
JAR
Itálie
Gruzie
Mongolsko
Nový Zéland
Kolumbie
Finsko
Kuba
Estonsko

Lotyšsko
Litva

167 67
166 62
163 60
161 60
157 60
156 59
144 58
143 58
142 55
142 53
135 50
135 50
133 46
133 45
130 44
127 44
124 42
123 0 0 1 39
123 0 0 1

0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

38
123 37
120 36
119 33
117 29
116 26
115 25
114 25
112 22

96 22
90 18
88 17
84 17
82 16
82 15
81 12
79 11
78 4
75 3
75 2
74 1
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť n je přirozené číslo a nechť T je množina všech bodů (x,y)

v rovině, kde x а у jsou celá nezáporná čísla a x + у < n. Každý bod
z množiny T je obarven buď červeně, nebo modře. Je-li bod (x, у) čer-
vený, jsou červené i všechny body (x\y') E T, pro které platí x' x
& у' й y. Definujme X-množinu jako množinu n modrých bodů mají-
cích různé x-ové souřadnice a F-množinu jako množinu n modrých bodů
majících různé y-ové souřadnice. Dokažte, že počet X-množin je roven

počtu F-množin. (Kolumbie)2.Nechť BC je průměr kružnice Г se středem O. Bod A leží na kružnici
Г tak, že 0° < \<%.AOB\ < 120°. Nechť D je střed toho oblouku AB, na
kterém neleží bod C. Přímka vedená bodem O rovnoběžně s DA protne
přímku AC v bodě J. Osa úsečky OA protne kružnici Г v bodech E a F.
Dokažte, že bod J je střed kružnice vepsané trojúhelníku CEF.

(Korea)3.Najděte všechny dvojice přirozených čísel m,n ^ 3 takové, že existuje
nekonečně mnoho přirozených čísel a, pro která je

am 4- a - 1

an + a2 — 1

(Rumunsko)4.Nechť n je přirozené číslo větší než 1. Všechny kladné dělitele čísla n
označíme d\, d,2,..., ť4, kde

celé číslo.

1 = di < d,2 < ... < dk — n.

Položme D = d\d2 + d2d3 + ... + d^-idk-
(a) Dokažte, že D < n2.
(b) Určete všechna n, pro která je číslo D dělitelem čísla n2.

(Rumunsko)5.Nechť IR značí množinu všech reálných čísel. Najděte všechny funkce
f: U U takové, že

(/(s) + f{z)) (f(y) + f(t)) = f(xy - zt) + f(xt + уz)

(Indie)pro libovolná x, y,z,t € IR.
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6. V rovině jsou dány kružnice Г^Гг,... ,ГП o poloměru 1, kde n ^ 3.
Jejich středy označme po řadě Oi, O2, •. •, On. Předpokládejme, že každá
přímka protíná nejvýše dvě z daných kružnic. Dokažte, že

{n - l)rc
\OiOj\ ~ 4

1
E <

(Ukrajina)

Řešení úloh

1. Pro každé i — 0,1,...,n označme jako a* (resp. bi) počet mod-
rých bodů s x-ovou (resp. y-ovou) souřadnicí rovnou číslu i. Protože
Jí-množina je každá množina modrých bodů, jejichž x-ové souřadnice
jsou čísla 0,1 ,...,n — 1 (každé právě jednou), je počet všech Jř-množin
roven součinu aoai... an_ 1; podobně počet všech У-množin je roven sou-
činu 6061... 6n-i- Naší úlohou je dokázat rovnost

aoai... fln-i — bobi ... 6n_i. (1)

Ukážeme, že na obou stranách (1) stojí dva stejné soubory činitelů,
které se mohou lišit jen pořadím, což budeme zapisovat jako rovnost
neuspořádaných n-tic

[ao, ai,..., an_i] — [60, &i, • • •, bn-1]. (2)

Rovnost (2) dokážeme matematickou indukcí podle čísla n.
Představme si, že body z T jsou rozděleny do skupin na jednotli-

vých přímkách x + у = к (0 ^ к ^ n — 1). Je-li n = 1, je vše jasné:
tehdy totiž platí buď ao = bo = 1, nebo ao = 60 = 0 (podle toho,
zda je bod (0,0) modrý, nebo červený). Předpokládejme nyní, že n > 1.
Je-li červený některý bod (u,v) na „krajní“ přímce x + у = n — 1, mů-
žeme použít indukční předpoklad pro množiny mřížových bodů ležících
v trojúhelnících Ti а T2 z obr. 38 (ostatní body z T leží ve vybarveném
obdélníku6 a jsou všechny jako bod (u, v) červené): pro množinu T1 platí
rovnost u-tic [ao, ai,..., au_i] = [bv+i, bv+2, • • •, bn-i], pro množinu T2

6 Rovná-li se některé z čísel u, v nule, je jeden z trojúhelníků Ti, T2 prázdná množina
a vybarvený obdélník degeneruje v úsečku.
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Obr. 38

zase rovnost v-tic [au+i, au+2,..., an_i] = [bo, b\,..., 6„_i]; protože na-
víc au = bv = 0, je rovnost (2) dokázána.

Jsou-li naopak na přímce x + y = n — 1 pouze modré body, odstraníme
je z množiny T a pro redukovanou množinu T' = {(x,y) E T: x + у <
< n — 1} využijeme indukční předpoklad: přiřadíme-li množině T' čísla
a', b[ (0 ^ i n—2) stejně, jako jsme dříve přiřadili čísla a^, bi množině T,
jsou (n —l)-tice [aó, a'1?..., a'n_2] a [6q, 6'l5..., b'n_2] shodné; s ohledem na
modré body na přímce x + y — n— 1 ovšem máme = a' + 1 a bi = b[ +1
(0 ^ i ^ n - 2) а к tomu ještě an_i = 6n_i = 1, takže rovnost (2) platí
i v tomto případě. Důkaz indukcí je ukončen a úloha je vyřešena.

Popišme nyní elegantní způsob, jakým rovnost (2) dokázal náš sou-
těžící J. Hájek.

Jiné řešení. Protože všechna čísla a bj leží v množině {0,1,..., n},
stačí dokázat, že pro každý její prvek к je počet indexů i s vlastností
di = к roven počtu indexů j s vlastností bj = k. Z podmínky úlohy
zřejmě plyne, že libovolný bod (i,j) € T je modrý, právě když spolu
s ním jsou modré i všechny body z T nad ním a vpravo od něj. Proto
počet indexů i s vlastností аг = к dostaneme, když od počtu pk modrých
bodů na přímce x + у = n — к odečteme počet Pk+i modrých bodů na

přímce x + y — n — (к + 1); přitom klademe po = n a pn+i = 0, abychom
„ošetřili" i krajní hodnoty к = 0 a к = n. Témuž rozdílu pk — Рк+i je
ovšem roven i počet indexů j s vlastností bj = k. Tím jsme dokázali
rovnost (2), a tedy i tvrzení úlohy.
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Jako třetí řešení uvedeme postup, kterým soutěžící T. Protivínský
dokázal rovnost součinů (1), aniž využil rovnost (2). Všechny červené
body z T (pokud vůbec existují, jinak je (1) triviálně splněna) zřejmě
vyplní sjednocení několika (řekněme q) obdélníků 0 ^ x "š щ, 0 у ^ Ví,

jejichž (červené!) pravé horní vrcholy (Uí,Ví) (1 ^ i ^ q) očíslujeme tak,
aby platilo 0^ui<U2<...<íig^n-lan-l^?Ji > v2 >
> ... > vq ^ 1 (obr.39). Pokud některý bod (Uí,Ví) leží na přímce
x + у = n — 1, platí aUi = bVi = 0, takže součiny na obou stranách (1)
jsou nulové. Proto dále předpokládejme, že щ + Ví < n — 1 pro každé
i € {1,2,..., g} (odtud mj. plyne, že uq < n— 1 a v\ < n—1). Nyní snadno
vyjádříme (kladné!) počty di v jednotlivých intervalech 0 5Í i щ,
u\ < i ^ u2, uq < i ^ n — 1 jako počty bodů z T, které leží nad
horní stranou příslušného „červeného14 obdélníku:

аг — n — 1 — i — v\ (0 ^ г ^ Mi),
1 — г — v2 (ux < i ^ m2),Cli = n

Cli=n — l — i — Vq (uq-1 < г ^ Uq),
Oj — n — 1 — г + 1 (м9 < i ^ n — 1).

neboli

(us < г ^ us+i, 0 ^ s ^ q),

kde navíc klademe щ = Vq+i — —1, vq — uq+1 = n — 1. Dostáváme tak
n—1 q Ws+i q /

Па‘ = П II (n-1“i“«s+i) = n7~:
г=0 s=0 í=its + l s=0 '

kde jsme využili toho, že každý součin c(c+l)(c+2)... (c+d) několika po
sobě jdoucích přirozených čísel je roven podílu faktoriálů (c-fd)!/(c—1)!,
přičemž 0! = 1. Promyslete sami podle obr. 39, jaký geometrický význam
mají hodnoty с = n — 1 — ws+i — vs+i a c + d = n — 2 — us — us+i.

Podobně pro čísla bj platí analogické vyjádření

bj = n - 1 - j - us (vs+1 < j ^ vs, 0 ^ s ^ g),
takže jejich součin je roven

n—l q vs q, ..

ib=n n (n-i-j-u.)=n((n~_22~-T-:+)1'-j=0 s=0 j=va+1 +1 «=0 ^ ^

ai = n — 1 — г — us+i

2 -us- ма+1)!
2 - ms+i - us+i)!’
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Vidíme, že nalezená „faktoriálová“ vyjádření obou součinů z (1) se liší
pouze ve jmenovatelích, a to o činitele (n — 2 — us — vs)\ pro s — 0
a s = q + 1, které jsou však oba rovny 0! = 1. Důkaz rovnosti (1) je tak
dokončen.

2. Důkaz bude proveden, když ukážeme, že bod J leží jednak na ose úhlu
ECF, jednak na ose úhlu EFC.

Úsečky AE a AF mají délku rovnou poloměru r kružnice Г, neboť
jsou souměrně sdružené s jejími průměry OE a OF (obr. 40). Ze shodnosti
tětiv AE a AF plyne shodnost obvodových úhlů ECA a FCA, proto
bod A, a tedy i bod J, leží na ose úhlu ECF.

Podle Thaletovy věty je úhel BAC nad průměrem BC pravý, a pro-
tože OD je osa úsečky AD, je OD || AJ, což spolu s OJ || DA znamená,
že OJAD je rovnoběžník. Proto \AJ\ — \OD\ — r, což spolu s rovností
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\AE\ = \AF\ = r znamená, že trojúhelník JFA je rovnoramenný. Ze
shodnosti úhlů JFA a AJF pak plyne

|<fc JFE\ = |<řJFA| - \*£EFA\ = \^:AJF\ - \<£ECA\ =

= \<£AJF\ -|<£ JCF| = \<£JFC\.

To znamená, že bod J leží na ose úhlu EFC.
V první rovnosti právě provedeného odvození jsme využili toho, že

bod J je vnitřním bodem trojúhelníku CEF. To zaručuje podmínka
\^AOB\ < 120°, neboť pak leží bod D uvnitř oblouku EA (trojúhel-
nik EOA je rovnostranný), tedy „nad“ osou EF úhlopříčky OA rovnoběž-
niku OJAD, takže jeho protější vrchol J leží v polorovině EFO = EFC.
(Jak snadno zjistíme, pro bod A takový, že \ *$lAOB\ = 120°, vyjde J = C
a pro \<$:AOB\ > 120° padne už bod J dokonce vně kruhu omezeného
kružnicí Г.)

Jiné řešení. Stejně jako v předchozím řešení zjistíme, že bod J leží
na ose úhlu ECF a že OJAD je rovnoběžník. Ze souměrnosti podle
EF navíc plyne \AE\ = \OE\ = \OA\, takže AEO a AFO jsou shodné
rovnostranné trojúhelníky, tj. \<J:EOF\ = 120°. Odtud jednak plyne, že
úhel ECF má velikost 60°, jednak vidíme, že body O a J leží na kružnici
Г' = {A-,\AO\) (obr. 41), jejíž tětivě EF přísluší obvodový úhel 120°.

Je-li I střed kružnice vepsané trojúhelníku CEF, leží, jak už víme, na

polopřímce CA. Pro velikost úhlu EIF pak máme

\<£EIF\ = 180° - §|<£C£F| - ||<£CF£| = 90° + \\^ECF\ = 120°

což znamená, že i bod I leží na kružnici Г'. Ta však protíná úsečku AC
v jediném bodě, proto J — I.
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Zajímavou obměnu uvedeného řešení podal náš soutěžící J. Hájek,
který využil pomocnou kružnici Г' se středem v bodě A a poloměrem
shodným s poloměrem r kružnice Г (obr. 42) a následující planimetrické

C
O

Obr. 42

tvrzení: Je-li Г kružnice opsaná trojúhelníku bod CEF a bod A střed toho
jejího oblouku EF, na kterém neleží vrchol C, pak vrcholy E, F, střed
kružnice vepsané a střed kružnice připsané straně EF trojúhelníku CEF
leží na téže kružnici se středem v bodě A.

V naší úloze z podmínky \^pAOB\ < 120° plyne, že \AC\ > r, takže
kružnice Г' protne úsečku AC v některém vnitřním bodě, který ozna-
číme I. Protože kružnice Г' prochází body E, F a polopřímka CA je
osou úhlu ECF, je podle zmíněného tvrzení bod I středem kružnice ve-

psané trojúhelníku CEF. Stačí tedy ukázat, že bod / splývá s bodem J
ze zadání úlohy. К tomu si všimneme, úsečky AI a DO mají stejnou
délku r a jsou obě kolmé к přímce AB (úhel BAC je obvodový úhel nad
průměrem BC kružnice Г, přímka OD je osou souměrnosti úsečky AB).
To znamená, že ADOI je rovnoběžník, tudíž 1 je ten bod přímky AC,
pro který platí DA || О/, a proto I — J.

3. Předpokládejme, že dvojice přirozených čísel (m, n) má požadovanou
vlastnost. Zřejmě platí m > n, v případě m ^ n by totiž pro každé a > 1
platilo

am + a - 1
0 < < 1.

an + a2 — 1

Při dělení mnohočlenu F(x) = xm + x — 1 mnohočlenem G(x) = xn +
+ x2 — 1 najdeme mnohočleny Q, R s celočíselnými koeficienty splňující
rovnost F(x) — Q(x)G(x) + R(x), přičemž stupeň mnohočlenu R je menší
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než stupeň G — to znamená, že

R{x)
(1)-» 0 pro x —у oo

G(x)

zároveň však z rovnosti

F(a) R(a)
— Q(a) +

G(a) G(a)

podle podmínky úlohy plyne, že podíl R(a)/G(a) je celé číslo pro neko-
nečně mnoho přirozených čísel a. To vzhledem к (1) znamená, že jen pro

konečný počet z nich je R(a)/G{d) /0, takže mnohočlen R má nekonečně
mnoho kořenů, je tudíž nulový: R(x) = 0 pro každé x. Označíme-li nyní
к = m — n > 0, pak z vyjádření

xn+k + x - 1 -xk+2 + xk + x — 1F(x)
= xk +Q(x) = (2)

xn + x2 — 1G(x) Xn + X2 — 1

vyplývá, že mnohočlen G(x) = xn + x2 — 1 dělí mnohočlen — xk+2 +xk +
4- x — 1, který lze rozložit na součin (1 — x) (xk+1 + xk — 1). Protože G( 1) =
= 1/0, mnohočlen G(x) dělí dokonce mnohočlen H{x) = xk+1 +xk — 1,
mezi jejich stupni tudíž platí vztah n ^ k+l. Z nerovností G(0) = — 1 < 0
a G(l) = 1 > 0 usoudíme, že G(s) = 0 pro některé reálné číslo s G (0,1).
Potom ovšem rovněž H(s) = 0, takže sn + s2 — 1 = sk+1 + sk — 1, neboli
sn — sk+1 — sk — s2. Levá strana poslední rovnosti je nezáporná (platí
totiž 0<s<lan^Hl), takže podle pravé strany musí být к 5= 2.
Podle zadání úlohy však platí n ^ 3, tudíž z nerovností n ^ k+l а к ^ 2
vychází n = 3afc = 2, odkud m = n + к = 5. Dvojice (m, n) — (5,3) má
skutečně požadovanou vlastnost:

x5 + x - 1
= x2 — x + l.

x3 + x2 — 1

Poznámka. Podané řešení vypadá zdánlivě jednoduše. Rozhodujícím
obratem je „částečné" vydělení (2), bez něhož bychom následným postu-
pem došli к rovnosti sn+A: + s = sn + s2, jejíž rozbor (původní autorské
řešení) je velmi náročný.7
7 Úpravu (2) a její účinnost objevil ještě před vlastní soutěží vedoucí bulharské dele-

gace Sava Grozdev. Nezměnilo to však nic na názoru poroty, že úloha je nejobtížnější
z celé vybrané šestice. Výsledky soutěžících (nejen našich) to pak potvrdily.
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4. a) Patří-li číslo d, к dělitelům čísla n, patří к nim i číslo n/d. Proto je
rostoucí k-tice dělitelů n/dk^n/dk
к-ticí (všech!) dělitelů d\, d2, • • •, dk- S ohledem na zřejmé nerovnosti к й
^ n a dj ^ j tudíž platí

.., n/di shodná s původní rostoucí-i 5 •

D — d\d2 + d2d% + • • • + dk-idk —

n n n n n
+ "' + ď~2'ď~l

n

dk dk-i dk-i dk-2
2 ( 1= n —

1
— ) ^dk — l dk '

+ ...+
cři d2 d2d2

1 1 1

^ЧТ-2 + 2^ + - +
2/ 1 1 1

_ п V1 2 + 2 3

< n2.

)(n - 1 )n
1

;)=n — 1
1

n

b) Ukážeme, že číslo D dělí číslo n, právě když n je prvočíslo. Je-li n

prvočíslo, pak к = 2, d\ = 1, d2 = n & D = 1 • n = n, což je skutečně
dělitel čísla n2.

Předpokládejme dále, že číslo n je složené, a označme p jeho nejmenší
prvočíselný dělitel. Potom platí к > 2 a dk-1 = n/p, odkud dostáváme

n2TI
D = d\d2 + d2d2 + ... + dk-idk > dk-idk — —

■ n = —

PV

což dohromady s dokázanou částí a) vede к odhadu n2/p < D < n2.
Odtud již plyne, že D nedělí n2, neboť číslo n2/p je po číslu n2 druhý
největší dělitel čísla n2.
5. Snadno ověříme, že mezi funkce splňující danou funkcionální rovnici
patří funkce určené vzorci fi{x) — 0, f2(x) = | a f2(x) = x2. Ukážeme,
že žádná jiná funkce / požadovanou vlastnost nemá.

Dosazením x = у = z = Odo dané rovnice dostaneme 2/(0) (/(0) +
+ /(£)) — 2/(0) pro každé t. Speciálně pro t — 0 vychází 4/(0)2 =
= 2/(0), takže buď /(0) = 0, nebo /(0) = |. V případě /(0) = | podle
předchozího platí | + f(t) = 1, a tedy /(ř) = | pro každé t.

Předpokládejme nyní, že /(0) = 0. Volbou z — t — 0 v dané rovnici
dostaneme f(xy) = f{x)f(y) pro libovolná ж, у. Takovou funkci / nazý-
váme multiplikativní. Speciálně platí /(1) = /(l)2, takže buď /(1) = 0,
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nebo /(1) = 1. V případě /(1) = 0 ovšem f(x) = f(x-1) = f(x)-f( 1) = 0,
tj. /(x) =0 pro každé x.

Zbývá tedy prozkoumat případ, kdy /(0) = 0 a /(1) = 1. Dosadíme-li
x = 0 а у = t — 1 do (1), dostaneme 2f(z) — f(—z) + f(z), tedy
f(z) = f(—z) pro každé г, to znamená, že / je sudá funkce. Ukážeme-li
proto dále, že f(x) — x2 pro každé x > 0, bude stejný vzorec platit pro
každé reálné číslo x. Položíme-li v dané rovnici у = z = t = 1, dostaneme
pro každé x rovnost

2{f{x) + 1) = f(x - 1) + f(x + 1)

ze které lze vypočítat hodnotu f(x+l), známe-li hodnoty f(x) a f(x — 1).
Tímto postupem lze rutinní indukcí ověřit, že f(n) = n2 pro každé přiro-
zené číslo n (jak je tomu pro n = 0 a n = 1). Odtud už s ohledem na to, že
/ je multiplikativní, poměrně snadno vyplývá, že rovnost f(x) = x2 platí
pro každé kladné racionální číslo x. Skutečně, ke každému takovému x

existuje přirozené n takové, že číslo nx je přirozené; jak už víme, rovnosti
f(n) = n2 a f(nx) = (nx)2 platí, v jejich důsledku dostáváme

n2x2 = (nx)2 = f (nx) = f(n)f(x) = n2f(x),

odkud f(x) — x2. Poslední rovnost bude platit i pro kladná iracionální
čísla x, když ukážeme, že funkce / je na intervalu (0, oo) neklesající.
Všimněme si předně, že pro každé reálné x platí f(x) — /(\/př[)2 ^ 0;
proto má funkce / pouze nezáporné hodnoty. Je-li 0 < v < u, pak

f(v) = f(^v)2 = (f(y/v) + O)2 ^ (f(y/v) + f(Vu-v))2 = f(u)

kde poslední rovnost plyne z dané rovnice volbou x = t = y/v а у = г =
= у/и — v. Ukázali jsme, že / je skutečně na intervalu (0, oo) neklesající
a celý důkaz je hotov.

6. Důkaz, který uvedeme, patří vedoucímu kolumbijské delegace F. Ar-
dilovi a je podstatně jednodušší než původní autorské řešení.

Poznamenejme nejprve, že žádné dvě z daných kružnic nemají spo-

léčný bod, neboť společným bodem dvou kružnic Г;, Tj by bylo možno
vést přímku, která protíná libovolnou třetí kružnici Г^.

Uvažujme nyní konvexní obal rovinné množiny, která je sjednocením
dané n-tice kružnic. Hranice tohoto obalu se skládá z několika úseků
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společných vnějších tečen dvojic daných kružnic a několika jejich ob-
louků (obr. 43). Příslušný oblouk kružnice Г; označíme Г;о a jeho velikost

Г20Г10 Or) Ti Г2 'O2 &20
OL 10

.03)
Г4

\ / 04 \\l /К I

\УЩоу
Г40

Obr. 43

v radiánech ctio-8 Protože zkoumaná hranice je hladká uzavřená křivka,
zřejmě platí rovnost

(1)Qdo + 020 + ano — 2ti.

Dále budeme potřebovat tuto vlastnost každého oblouku Г;0: je-li T libo-
volný vnitřní bod oblouku Г ;o, pak tečna ke kružnici Г ; s bodem dotyku T
nemá společný bod s žádnou další kružnicí Fj, j ф i.

Vyberme nyní libovolné dvě dané kružnice Г;, Tj a na první z nich,
kružnici Гг-, uvažujme body T s touto vlastností: tečna ke kružnici Г;
s bodem dotyku T má aspoň jeden společný bod s kružnicí Гj. Všechny
takové body T vyplní na kružnici Гг- dva shodné oblouky Г^- а Г^-, jejichž
krajní body jsou body dotyku společných tečen dané dvojice kružnic
(obr. 44). Pro velikost otij těchto oblouků podle obrázku platí

1 1 sin Olij
< ^ii (2)odkudsin aij — h\OiOj\ 2 ’\OiO}\ 2

neboť siná < a pro každé a G (0, |rc).
Podle předchozího popisu jsme na každé kružnici Г; vyčlenili 2n — 1

oblouků: oblouk ri0 a (n — 1) párů oblouků Г^- а ГР, kde j G
G {l,2,...,n} \ {г}. Podle zadání úlohy žádné dva z těchto (2n — 1)

Má-li kružnice Г; s hranicí obalu společný nejvýše jeden bod, položíme Fjo = 0
a ctio — 0.
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Obr. 44

oblouků nemají společný vnitřní bod, takže pro součet jejich velikostí
platí odhad

aio + 2 ct{j ^ 2ti,

který spolu s (2) vede к nerovnosti

1 1TI

E \OiOj\ < 2 4 Qi0

pro každé i = 1,2,... , n. Sečteme-li těchto n nerovností, pak s ohledem
na vztah (1) a zřejmé rovnosti \OiOj \ = \OjO{\ dostaneme

TT 1 ^
<n'2~4 Е““

(гг - 1)тс1
2 E \OiOj\ 2

i— 1íúi<jún

odkud po dělení dvěma vychází kýžená nerovnost.
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Devátý ročník Středoevropské olympiády v informatice

Ve dnech 30. června až 6. července 2002 proběhla ve slovenských Košicích
Středoevropská olympiáda v informatice (Central European Olympiad in
Informatics, CEOI 2002). Vedoucím české reprezentace byl RNDr. Tomáš
Pitner, Dr., z Masarykovy univerzity v Brně, Fakulty informatiky. Úloha
zástupce vedoucího týmu byla svěřena Mgr. Danielu Královi z Univerzity
Karlovy v Praze, Matematicko-fyzikální fakulty.

Soutěž probíhala regulérně podle pravidel CEOI za maximální pod-
póry především slovenského ministerstva školství, ale též složek místní
a regionální veřejné správy (město Košice, Košický kraj), vysokých
škol (zejména UPJŠ Košice a UK Bratislava) a odborných sdružení —

zejména Slovenská informatická spoločnosť. Vlastní soutěž se konala na

půdě Ústavu informatiky PřF UPJŠ Košice. Hmotné i personální zabez-
pečení akce bylo na velmi vysoké úrovni.

Stejně jako v minulém roce bylo při vlastní soutěži (po vzoru IOI)
používáno modernizované vývojové a testovací prostředí. Soutěžící pra-
covali v prostředích Windows 98 nebo Linux s překladači GNU C++
(gcc) a Free Pascal s vývojovým prostředím RHIDE. Novinkou letošní
CEOI bylo použití webového systému pro zasílání řešení к vyhodnocení.
Vyhodnocení se provádělo plně automaticky „testovačem“ běžícím v OS
Debian Linux pomocí předem připravených sad testovacích dat.

Reprezentační tým ČR tvořili (v abecedním pořadí): Jiří Danihelka
ze SPŠ Čapkova v Písku; Tomáš Gavenčiak z Gymnázia Mikuláše Ко-
perníka v Bílovci; Jan Kadlec z Gymnázia Ch. Dopplera v Praze a Milan
Straka z Gymnázia Strakonice.

Milan Straka obsadil v celkovém pořadí 9. místo (270 bodů z 600 mož-
ných) a získal stříbrnou medaili, Jan Kadlec získal s 250 body bronzovou
medaili (13. místo). Tomáš Gavenčiak skončil na prvním nemedailovém
(21.) místě s 200 body. Celkově soutěžili 42 studenti, mezi něž se rozdělilo
18 medailí (3 zlaté, 6 stříbrných a 9 bronzových). Celkově lze konsta-
tovat, že výsledky na CEOI 2002 byly pro ČR příznivější než v roce
minulém. Rozhodnutím mezinárodního výboru CEOI bylo pořadatelem
CEOI v roce 2003 určeno Německo, olympiáda se uskuteční v Můnsteru.
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14. mezinárodní olympiáda v informatice

Ve dnech 18.-25.8. 2002 se v Korejské republice konal
14. ročník mezinárodní olympiády v informatice IOI
2002 (International Olympiad in Informatics). Sou-
těž IOI je pořádána pod záštitou UNESCO a patří wrmi^anpifU*wbmi»iín

. Г , , „ j „. , , ... , vf ,, YOIMG-IN KOREA
mezi mezinárodni predmetove olympiády stredoskola-
ků. Její ohlas ve světě v posledních letech stále roste a každoročně se zvy-

suje počet zúčastněných zemí. Letošního ročníku se zúčastnilo 276 sou-

těžících ze 72 zemí celého světa, z dalších pěti zemí přijeli pozorovatelé
seznámit se s průběhem olympiády a s úmyslem zúčastnit se dalšího
ročníku soutěže.

Mezinárodní olympiády v informatice se pravidelně účastní i repre-
zentační družstvo České republiky tvořené nejlepšími řešiteli celostátního
kola Matematické olympiády — kategorie P (programování). Letošní re-

prezentační družstvo pro IOI 2002 bylo vybráno na základě výsledků
celostátního kola kategorie P 51. ročníku MO. Družstvo mělo následující
složení: Josef Cibulka (absolvent Gymnázia v Praze 1, Štěpánská), Pavel
Čížek (student Gymnázia v Kralupech nad Vltavou), Milan Straka (stu-
dent Gymnázia ve Strakonicích) a Jiří Štěpánek (student Gymnázia na
tř. Kpt. Jaroše v Brně). Vedením družstva byli pověřeni doc. Pavel Top-
fer a Jan Kára, oba z Matematicko-fyzikální fakulty Univerzity Karlovy
v Praze.

Naše šestičlenná delegace odlétala z Prahy v sobotu 17.8. 2002 v od-
poledních hodinách přes Amsterdam do Soulu, kde jsme přistáli v neděli
18. 8. krátce před polednem na mezinárodním letišti Incheon. Tam nás již
očekávali místní pořadatelé a pomocí autobusů nás přepravili na místo
konání olympiády — do areálu Kyung Нее University ve městě Yong-In.
Tamní areál univerzity je poměrně rozsáhlý a bylo v něm zajištěno vše
potřebné pro průběh soutěže. Byli jsme ubytováni na studentských kole-
jích, stravování zajišťovala místní studentská jídelna, v sálech univerzitní
knihovny byly připraveny prostory pro vlastní soutěž i pro práci jury a or-

ganizátorů. Součástí univerzitního celku byla celá řada sportovišť, která
byla ve volném čase к dispozici i účastníkům informatické olympiády.

&
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Místní multimediální centrum zase všem účastníkům nabízelo nepřetr-
žitý bezplatný přístup к počítačům а к Internetu.

Stejně jako v minulých letech byla vlastní soutěž rozdělena do dvou
soutěžních dnů, v každém z nich řešili soutěžící na počítačích tři úlo-
hy. Úlohy zadané v letošním ročníku byly algoritmicky velmi obtížné,
v soutěži se objevily také některé netradiční formy úloh (interaktivní
úloha, úloha s otevřeným vstupem). Podle loni přijatého modelu měli stu-
denti pro svou práci к dispozici alternativně operační systémy Windows
a Linux, takže každý mohl pracovat v takovém prostředí, které lépe zná
a na které je zvyklý. Výsledné programy bylo možné psát v programová-
cích jazycích Pascal, C nebo C++, používaly se překladače Free Pascal
a GNU C/C++, vývojové prostředí RHIDE. Svá řešení úloh soutěžící
odevzdávali к vyhodnocení prostřednictvím nově vyvinutého webového
rozhraní. Vyhodnocení se provádělo plně automaticky pomocí předem
připravených sad testovacích dat. Různá kvalita navržených algoritmů
byla bodově odlišena na základě zvolených časových limitů.

Za řešení každé úlohy bylo možné získat maximálně 100 bodů, sku-
tečně dosažený průměrný bodový zisk z jedné úlohy byl však mnohem
nižší a pohyboval se jenom kolem 20 bodů. I to svědčí o mimořádné nároč-
nosti letošní soutěže. Mezi 276 účastníků bylo rozděleno celkem 23 zlatých
medailí (mají obdobný význam jako I. cena v MMO a jsou určeny pro

nejlepší přibližně 1/12 účastníků), 47 stříbrných medailí (obdoba II. ceny
v MMO, určeny pro další 1/6 účastníků) a 68 bronzových medailí (od-
povídají III. ceně na MMO, získá ji přibližně 1/4 účastníků). Některou
z medailí má podle regulí IOI dostat nejvýše polovina soutěžících. Letos
bylo uděleno celkem 138 medailí, tzn. medaili obdržela přesně polovina
ze studentů soutěžících v IOI.

Výsledky našich studentů:

20. Josef Cibulka 307 bodů
119. Pavel Čížek 160 bodů

120 bodů

84 bodů

zlatá medaile

bronzová medaile
Milan Straka
Jiří Štěpánek

Výkony našich studentů v soutěži byly poměrně dobré a jejich vý-
sledky nás řadí kolem 20. místa v celkovém pořadí. Olympiáda IOI je
ovšem výhradně soutěží jednotlivců a oficiální výsledky družstev se zde
vůbec nevyhlašují (neexistuje ani žádná metodika, jak je určovat — zda
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podle počtu získaných bodů, medailí nebo třeba pořadí). Velkým úspě-
chem našeho družstva je zejména zisk zlaté medaile Josefa Cibulky, dru-
hým českým úspěšným řešitelem byl Pavel Čížek s bronzovou medailí.
Zbývající dva naši studenti zůstali tentokrát bez medailového ocenění,
pořadatelé nevydali ani kompletní výsledkovou listinu s pořadím neúspěš-
ných řešitelů.

Příští, jubilejní 15. ročník mezinárodní olympiády v informatice IOI
2003 se bude konat ve dnech 16.-23.8. 2003 v USA na univerzitě Wis-
consin-Parkside. Američtí pořadatelé příštího ročníku olympiády během
jednání probíhajících v Koreji pozvali všechny zúčastněné země к účasti
na IOI 2003. Mezinárodní výbor IOI na svém jednání také potvrdil, že
další budoucí ročníky IOI budou hostit po řadě Řecko (2004), Polsko
(2005) a Mexiko (2006).

Texty soutěžních úloh

1. Zlobivá žába

V Koreji je žába cheonggaeguri pověstná svou zlobivostí. Svou pověst
si zcela zaslouží, protože v noci skáče přes rýžová políčka a ušlapává
rostlinky. Když ráno uvidíte, které rostlinky jsou pošlapané, rádi byste
zjistili, která žába vám způsobila nejvíce škody. Žába vždy skáče přes
rýžové políčko po přímce a všechny její skoky jsou stejně dlouhé (obr. 45).
Různé žáby mohou skákat různě dlouhými skoky a v různých směrech.

Na vašem rýžovém políčku jsou rostliny vysázeny na průsečících čtver-
cové sítě, jak ukazuje obr. 46. Každá žába skáče přes celé políčko, tj. za-
číná i končí vně políčka, jak ukazuje obr. 47.

Přes políčko může skákat hodně žab. Každá žába při každém svém
skoku dopadne na nějakou rostlinku, kterou tím ušlápne (obr. 48). Uvě-
domte si, že na jednu rostlinku může během noci doskočit několik žab.
Čáry představující cestu žáby, které vidíte na obr. 48, samozřejmě na

políčku nejsou vidět. Situaci, kterou ráno uvidíte, ukazuje obr. 49.
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1 2 3 4 5 6 7
2 -X- —b
2

3'-
4

Obr 49

Z obr. 49 pak můžete zrekonstruovat všechny možné cesty, po kterých
mohly žáby skákat přes vaše políčko. Zajímají vás pouze cesty těch žab,
které vám pošlapaly alespoň tři rostlinky. Takové cesty nazveme žabí.
V našem příkladě na obr. 48 jsou žabí všechny vyznačené cesty a také
některé další cesty. Svislá cesta prvním sloupcem by mohla být cestou
nějaké žáby se skokem délky čtyři, ale obsahuje pouze dvě ušlápnuté rošt-
linky, a proto se o ni nezajímáme. Diagonální cesta obsahující rostlinky
v řadě 2 sloupci 3, řadě 3 sloupci 4 a řadě 6 sloupci 7 má sice tři rostlinky,
ale ne v pravidelných vzdálenostech od sebe, a proto to nemůže být žabí
cesta. Uvědomte si, že na přímce určené žabí cestou mohou ležet i ně-
jaké další ušlápnuté rostlinky (například rostlinka na souřadnicích (2,6)
na vodorovné cestě po řádce 2 v obrázku 4). Navíc ne každá ušlápnutá
rostlinka musí být součástí nějaké žabí cesty.

Napište program, který ze všech možných žabích cest vybere tu, na
níž žába ušlápla nejvíce rostlinek (tj. způsobila největší škodu na úrodě
rýže). Na obr. 49 by to byla cesta po řadě 6 a výsledkem by bylo číslo 7.

Vstup. Váš program musí číst data ze standardního vstupu. První
řádek obsahuje dvě celá čísla R a C určující počet řádků a sloupců na
vašem rýžovém políčku, 1 ^ R, C 5 000. Druhý řádek obsahuje jediné
celé číslo N — počet ušlápnutých rostlinek, 3 žk N ^ 5 000. Každý ze

zbývajících N řádků obsahuje dvě celá čísla oddělená jednou mezerou,
která představují číslo řádku a číslo sloupce ušlápnuté rostlinky (obě
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čísla jsou alespoň 1 a nejvýše R, resp. C). Každá ušlápnutá rostlinka je
uvedena na vstupu právě jednou.

Výstup. Váš program musí vypisovat výsledek na standardní výstup.
Výstup obsahuje jeden řádek s jediným celým číslem. Toto číslo určuje
počet ušlápnutých rostlinek na té žabí cestě, která způsobila největší
škody. Pokud neexistuje žádná žabí cesta, výstupem bude číslo 0.

Příklady vstupů a výstupů.
Příklad 1: Vstup Příklad 2: Vstup

(příklad z obr. 49): (příklad z obr. 50):
6 7 6 7

14 18

2 1 1 1

6 6 6 2

4 2 3 5

2 5 1 5

2 6 4 7

2 7 1 2

3 4 1 4

6 1 1 6

6 2 1 7

2 3 2 1

6 3 2 3

2 66 4

6 5 4 2

6 7 4 4

Výstup: 7 4 5

5 4

5 5

6 6

Výstup: 4

1 2 3 4 5 6 7

imi3
4
5

#é6

Obr. 50
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Hodnocení. Pokud váš program odpoví správně v časovém limitu,
získáte za daný testovací vstup plný počet bodů, jinak za tento vstup
získáte 0 bodů.

2. Rozdělená Utopie
Nádherná země Utopie byla kdysi zasažena válkou. Po válce byla

země rozdělena na čtyři oblasti podle poledníku (severo-jižně) a podle
rovnoběžky (východo-západně). Průsečík těchto hraničních čar byl ozna-
čen souřadnicemi (0,0). Všechny čtyři oblasti se pojmenovaly Utopie,
ale časem se zavedlo označení Utopie 1 (severovýchodní oblast), 2 (se-
verozápadní), 3 (jihozápadní), 4 (jihovýchodní). Bod v každé z oblastí
má jednoznačné souřadnice, jimiž jsou vzdálenost na východ a na sever
od bodu (0,0). Tyto souřadnice mohou být záporné. Body v Utopii 2
se tedy označují dvojicí souřadnic (záporná, kladná), v Utopii 3 dvojicí
souřadnic (záporná, záporná), v Utopii 4 (kladná, záporná) a v Utopii 1
dvojicí kladných čísel (obr. 51).

Utopia 2
(-,+)

Utopia 1
(+.+)

(0,0)

Utopia 3 Utopia 4
(+,-)

Velkým problémem bylo, že obyvatelé nesměli přejíždět hranice. Na-
štěstí Pat a Mat (bývalí účastníci IOI) sestrojili teleport. Stroj se spouští
zadáním kódových čísel, přičemž každé z nich může být použito pouze

jednou. Vaším úkolem je řídit teleport z výchozí pozice (0,0) po oblastech
Utopie v daném pořadí. Nezáleží na tom, v kterém místě dané oblasti
přistanete.

Máte tedy dáno N čísel oblastí, v nichž musíte postupně přistát. Může
být požadováno, abyste přistáli vícekrát za sebou v téže oblasti. Po opuš-
tění výchozího bodu (0,0) nesmíte nikdy přistát na hranici.

Dále máte dáno 2N kódových čísel, která můžete použít pro řízení
teleportu. Úkolem je vytvořit z nich N párů a před každé číslo umístit
znaménko 4- nebo —. Nacházíte-li se v bodě o souřadnicích (x,y) a pou-
žijete kódový pár (+u, —v), budete teleportováni do bodu o souřadnicích
(x + u,y - v). Zadaných 2N čísel můžete použít v libovolném pořadí
a každé z nich buď se znaménkem +, nebo —.
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Máte-li například dána kódová čísla 7, 5,6,1,3, 2,4,8 a máte řídit te-
leport postupně do oblastí číslo 4,1, 2,1, výsledná posloupnost kódových
párů může obsahovat (+7,-1), (—5,+2), (—4,+3), (+8,+6). Tato po-

sloupnost vás postupně přenese do bodů (7, —1), (2,1), (—2,4) a (6,10).
Tyto body se nacházejí po řadě v oblastech Utopie 4, Utopie 1, Utopie 2
a Utopie 1.

Úkol. Je dáno 2N navzájem různých kódových čísel a posloupnost
N čísel oblastí, ve kterých máte přistát. Sestrojte z daných čísel takovou
posloupnost kódových dvojic, která řídí teleport po oblastech dle zada-
něho pořadí.

Vstup. Váš program musí číst vstupní data ze standardního vstupu.
První řádek obsahuje kladné celé číslo N, 1 ^ ^ 10 000. Druhý řádek
obsahuje 2N různých celých kódových čísel (1 ^ kódové číslo 5= 100 000)
oddělených jednou mezerou. Poslední řádek obsahuje posloupnost N čísel
oblastí, z nichž každé je 1, 2, 3 nebo 4.

Výstup. Váš program musí vypsat výsledek na standardní výstup.
Výstup se skládá z N řádků. Každý z nich obsahuje dvojici kódových
čísel, každé kódové číslo je opatřeno znaménkem. Mezi znaménkem a čís-
lem nesmí být mezera, ale čísla na řádku musí být oddělena jednou me-
žerou.

Pokud existuje více řešení, váš program může vypsat jedno libovolné
z nich. Jestliže žádné řešení neexistuje, program vypíše jediné číslo 0.

Příklady vstupů a výstupů.
Příklad 1: Vstup: Příklad 2: Vstup:

4 4

75613248

4 12 1

25417863

4 2 2 1

Výstup:
+7 -1

-5 +2

-4 +3

+8 +6

Výstup:
+3 -2

-4 +5

-6 +1

+8 +7

3. XOR-ová komprese
Vytváříte aplikaci pro mobilní telefon s černobílou obrazovkou. Na

obrazovce se x-ové souřadnice bodů číslují od 1 zleva doprava a y-ové
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souřadnice od 1 shora dolů, jak ukazuje obr. 52. Ve vaší aplikaci potřebu-
jete na obrazovku kreslit různé obrazce různých velikostí. Abyste obrazce
nemuseli ukládat, chcete je vytvářet pomocí grafické knihovny v telefo-
nu. Můžete předpokládat, že na počátku kreslení jsou všechny body na
obrazovce bílé. Jediná operace, kterou grafická knihovna podporuje, je
XOR(L,R, T,B). Tato operace invertuje všechny body v obdélníku s levým
horním rohem na souřadnicích (L,T) a pravým dolním rohem (R,B). L
zde znamená levý okraj, R pravý, T horní а В dolní.

Například aplikováním operace XOR(2,4,2,6) na prázdnou obra-
zovku získáme obrazec z obr. 53. Aplikováním XDR(3,6,4,7) na obrazec
z obr 1 dostaneme obrazec z obr. 54 a aplikováním X0R(1,3,3,5) na
obrazec z obr 2 získáme obrazec z obr. 54.

1 2 3 4 5 6 7

Máte danou sadu černobílých obrazců, které chceme vykreslovat na
obrazovce telefonu. Vaším úkolem je vytvořit každý z těchto obrazců z po-
čáteční bílé obrazovky pomocí co nejméně operací XOR. Obrazce dosta-
nete popsány ve vstupních souborech. Odevzdat máte příslušné výstupní
soubory s parametry pro operace XOR, nikoliv program!

Vstup. Dostanete deset vstupních textových souborů nazvaných
xorl. in až xor 10. in. Každý vstupní soubor má následující tvar. První
řádek vstupního souboru obsahuje jedno celé číslo V, 5 ^ 2 000.
Číslo N určuje počet řádků a sloupců obrazce. Zbývající řádky vstupního
souboru reprezentují jednotlivé řady obrazce shora dolů. Řádek obsahuje
vždy N celých čísel určujících zleva doprava body na obrazovce. Každé
z těchto čísel je buď 0, nebo 1, přičemž 0 představuje bílý bod a 1 černý
bod.

Výstup. Odevzdejte deset výstupních souborů odpovídajících daným
vstupním souborům. Velikost každého výstupního souboru musí být
menší než 1 megabyte.
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První řádek výstupního souboru obsahuje text
#FILE xor I

kde I je číslo odpovídajícího vstupního souboru. Druhý řádek obsahuje
celé číslo К — počet volání operace XOR. Následuje přesně К řádků
popisujících jednotlivá volání operace XOR od prvního po poslední. Každý
z těchto К řádků je tvořen čtyřmi celými čísly — parametry operace XOR
v pořadí L,R,T,B.

Příklad vstupu a výstupu:
xorO.in xorO.out

#FILE xor 07

0 0 0 0 0 0 0

0 1110 0 0

1 0 0 1 0 0 0

10 10 110

10 10 110

0 10 0 110

0 0 11110

3

2 4 2 6

3 6 4 7

13 3 5

Hodnocení. Jestliže
> volání XOR uvedená ve výstupním souboru nevytvářejí požadovaný

obrazec, nebo
o počet volání XOR ve výstupním souboru není roven К, nebo
> počet volání XOR К je větší než 40 000, nebo
> výstupní soubor obsahuje volání XOR s parametry L > R nebo T > B,

nebo
t> výstupní soubor obsahuje volání XOR s nekladným parametrem, nebo
> výstupní soubor obsahuje volání XOR s parametrem větším než N,

pak dostanete za tento vstup 0 bodů. Jinak bude vaše hodnocení určeno
vzorcem

NejmenšíDosaženýPočet VoláníZe VšechSoutěžících
1 + 9-

VášPočetVolání

Počet bodů za jeden vstup je zaokrouhlen na jedno desetinné místo.
Celkové hodnocení úlohy je zaokrouhleno na celé číslo.

Pokud například odešlete řešení se 121 voláními operace XOR a vaše
řešení pro tato vstupní data je nejlepší v soutěži, získáte za něj 10 bodů.
Pokud by nejlepší odeslané řešení používalo pouze 98 volání XOR, za vaše
řešení se 121 voláními dostanete 1 + 9 • 98/121 (= 8,289...), což bude
zaokrouhleno na 8,3 bodů.
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4. Plánování dávek

Na počítači je třeba zpracovat posloupnost N úloh. Úlohy jsou očís-
lovány v pořadí od 1 do N. Úlohy je třeba rozdělit do jedné nebo více
dávek, přičemž každá dávka se skládá z po sobě jdoucích úloh dané po-

sloupnosti. Zpracování dávek začíná v čase 0. Dávky jsou zpracovávány
po sobě v následujícím pořadí: Pokud dávka b obsahuje úlohy s menšími
čísly než dávka c, je zpracována dříve. Úlohy jedné dávky jsou zpraco-

vávány postupně, ale výstup úloh je zobrazen až po zpracování všech
úloh v dávce. To znamená, že výstup úlohy j je zobrazen až v okamžiku
ukončení zpracovávání dávky obsahující úlohu j.

Na začátku zpracování každé dávky potřebuje počítač čas S. Pro
každou úlohu i je zadán cenový koeficient F{ a čas Ti potřebný ke zpra-
cování úlohy. Pokud tedy dávka obsahuje úlohy x,x + 1, ..у — l,y
a její zpracování začíná v čase í, potom čas vypsání výstupu každé
úlohy v dávce je t + S + (Tx + Tx+i + ... + Ty-1 + Ty). Nezapomeň-
te, že počítač vypisuje výsledky až v okamžiku zpracování všech úloh
v dávce. Pokud čas vypsání výstupu úlohy г je Oi, pak cena zpraco-
vání této úlohy je O i ■ F{. Předpokládejme, že máme 5 úloh, 5 = 1,
(Ti,T2,Tz,T4,T5) = (1,3,4,2,1) a (Fi, F2, F3, F4, F5) = (3,2,3,3,4).
Pokud úlohy rozdělíme do tří dávek {1,2}, {3}, {4,5}, potom časy jejich
výstupů budou (Oi, 02, O3,04,05) = (5,5,10,14,14) a ceny zpracování
jednotlivých úloh budou po řadě (15,10,30,42,56). Celková cena je rovna
součtu cen zpracování všech úloh. V našem příkladě při zvoleném rozdě-
lení úloh do dávek je to 153.

Napište program, který pro daný čas S a posloupnost úloh s jejich
dobami zpracování a cenovými koeficienty nalezne rozdělení úloh do dá-
vek s minimální celkovou cenou.

Vstup. Váš program musí číst vstupní data ze standardního vstu-
pu. První řádek obsahuje počet úloh N, 1 й N ^ 10 000. Druhý řá-
dek obsahuje čas S (celé číslo, 0 S 5Í 50). Následujících N řádků
obsahuje informace o úlohách 1,2,...,N v daném pořadí. Na každém
z těchto řádků je uvedeno celé číslo Ti, 1 ^ 7} ^ 100 (doba zpraco-
vání úlohy) a za ním celé číslo Fi, 1 ^ Fj ^ 100 (cenový koeficient
úlohy).

Výstup. Váš program musí vypsat výsledek na standardní výstup.
Výstup je tvořen jediným řádkem obsahujícím jedno celé číslo: minimální
možnou celkovou cenu zpracování.
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Příklady vstupů a výstupů.
Příklad 1: Vstup: Příklad 2: Vstup:

2 5

50 1

100 100

100 100

1 3

3 2

4 3
Výstup:
45000

2 3

1 4

Výstup:
153

Příklad 2 je příkladem ze zadání úlohy.

Poznámka. Pro žádný testovací vstup celková cena pro libovolné roz-
dělení úloh do dávek nepřekročí 231 — 1.

Hodnocení. Pokud váš program vypíše správnou odpověď ve stáno-
veném časovém limitu, získáte za daná vstupní data plný počet bodů,
jinak za tato vstupní data získáte 0 bodů.

5. Autobusové zastávky
Ve městě Yong-In se chystají vytvořit autobusovou síť s N zastávka-

mi. Yong-In je moderní město, a tak jeho mapa vypadá jako čtvercová síť,
v níž všechny čtverce mají stejnou velikost. Každá autobusová zastávka
je umístěna v průsečíku dvou ulic. Dvě zastávky budou zvoleny jako
přestupní (označme je H\ a #2). Přestupní zastávky budou navzájem
propojeny expresní autobusovou linkou. Každá ze zbývajících N — 2 za-
stávek bude přímo spojena s právě jednou z přestupních zastávek, nebude
ale propojena s žádnou nepřestupní zastávkou.

Vzdálenost mezi dvěma zastávkami je rovna délce nejkratší možné
cesty po ulicích města. To znamená, že pokud souřadnice zastávky ozna-
číme (x, у), kde x je ж-ová souřadnice а у je y-ová souřadnice, pak vzdále-
nost mezi dvěma zastávkami (xi, y\) a (£2,2/2) Je rovna l^i — X2I + I2/1 —2/21-
Jsou-li zastávky А а, В spojeny se stejnou přestupní zastávkou H1, pak
vzdálenost zastávek А а, В je rovna součtu vzdáleností z A do Hi a z H\
do B. Jestliže jsou zastávky А а, В spojeny s různými přestupními za-

stávkami, např. A je spojena s Hx а В je spojena s #2, potom vzdálenost
zastávek А а В je rovna součtu vzdáleností z A do H\, z #1 do #2 a z Я2
do B.
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Plánovací oddělení Yong-Inské radnice chce zajistit, aby se každý ob-
čan města dostal do libovolného bodu ve městě co nejrychleji. Proto
plánovači chtějí zvolit dvě přestupní zastávky a napojení ostatních za-
stávek na ně takovým způsobem, aby vzdálenost dvou nejvzdálenějších
zastávek ve vzniklé autobusové síti byla co možná nej menší.

Napište program, který spočte nejmenší možnou vzdálenost dvou nej-
vzdálenějších zastávek v Yong-Inu přes všechny možné volby dvou pře-
stupních zastávek a napojení ostatních zastávek na ně.

Vstup. Váš program musí číst vstupní data ze standardního vstupu.
První řádek obsahuje jedno kladné celé číslo N, 2 5Š N 500, což je
počet všech autobusových zastávek. Každý ze zbylých N řádků vstupu
obsahuje souřadnice jedné ze zastávek, nejprve ж-ovou a poté y-ovou. Obě
souřadnice jsou kladná celá čísla ^ 5 000. Žádné dvě autobusové zastávky
neleží na stejné křižovatce.

Výstup. Váš program musí vypsat výsledek na standardní výstup.
Výstup je tvořen jedním řádkem s jedním kladným celým číslem — mi-
nimální možnou vzdáleností dvou nej vzdálenějších zastávek.

Příklady vstupů a výstupů.
Příklad 1: Vstup: Příklad 2: Vstup:

6 7

1 7 7 9

16 6

12 4

10 9

5 3

4 4 1 1

1 1 7 2

11 1 15 6

17 7
Výstup:

Výstup:20

25

Obrázek 55 ukazuje autobusovou síť pro vstupní data z příkladu 1.
Jsou-li v příkladu 1 zastávky 3 a 4 zvoleny jako přestupní, pak největší
vzdálenost je buď mezi zastávkami 2 a 5, nebo mezi zastávkami 2 a 1.
Lepší volba přestupních zastávek není možná, takže správná odpověď
je 20.

Obrázek 56 ukazuje situaci pro data z příkladu 2. Jsou-li zastávky
5 a 6 zvoleny jako přestupní, potom jsou nejvzdálenějšími zastávkami
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zastávky 2 а 7. Neexistuje lepší volba přestupních stanic, a proto 25 je
výsledkem úlohy.

Hodnocení. Pokud váš program vypíše správnou odpověď ve stáno-
veném časovém limitu, získáte za daná vstupní data plný počet bodů,
jinak za tato vstupní data získáte 0 bodů.

6. Dvě tyče
Tyčí nazveme buď vodorovnou, nebo svislou řadu alespoň dvou polí-

ček čtvercové sítě. Dvě tyče (jedna vodorovná a jedna svislá) jsou umis-
těny v síti N x N. Na obr. 57 jsou tyto tyče vyznačeny znaky X. Tyče
mohou ale nemusí mít stejnou délku, mohou také mít společné políčko.
Pokud nějaké políčko může ležet v jedné nebo obou tyčích (jako je tomu
na obr. 57 u políčka (4,4)), tak situaci chápeme vždy tak, že leží v obou
tyčích. Svislá tyč na obr. 57 tedy končí na políčku (4,4), a ne na políčku
(5,4). Políčko (4,4) je koncem svislé tyče a zároveň vnitřním bodem vo-
dorovné tyče.

dc.

i i
123456789

1

2
3a

XXXX X X4
X5

'

X6
X7
Xb —>8
X9

Obr. 57
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Na počátku nevíte, kde tyče jsou, a tak máte napsat program, který
je nalezne. Vodorovnou tyč označme RODÍ a svislou ROD2. Každé po-
líčko je reprezentováno dvojicí řádek/sloupec (r, c). Políčko v horním
levém rohu čtvercové sítě má souřadnice (1,1). Každá tyč je popsána
dvojicí svých koncových políček ((ri, ci), (гг, C2)). Na obr. 57 popíšeme
tyč RODÍ dvojicí ((4,3), (4,8)) a tyč ROD2 dvojicí ((4,4), (9,4)).

V této úloze musíte pro vstup a výstup použít speciální knihov-
nu. Rozměry čtvercové sítě (číslo N) získáte voláním knihovní funkce
gridsize. Tuto funkci musí váš program zavolat na začátku výpočtu pro
každá testovací data. Pro nalezení polohy tyčí můžete používat pouze kni-
hovní funkci rect (a,b, c,d), která zkoumá obdélníkovou oblast sítě vy-
mezenou souřadnicemi [a, b\ x [c, d\ (dejte pozor na význam jednotlivých
parametrů — viz šedivou oblast na obr. 57), kde a ú b a c ^ d. [Nenechte
se zmást tím, že grafická knihovna jednoho nejmenovaného mobilního
telefonu používá odlišný souřadný systém.] Pokud se ve zkoumaném ob-
dělníku nachází alespoň jeden znak X (tj. část nějaké tyče), funkce rect
vrátí 1; jinak vrátí 0. V příkladu na obr.57 by volání rect(3,8,3,6)
vrátilo hodnotu 1. Vaším úkolem je napsat program, který určí přesnou
pozici obou tyčí pomocí omezeného počtu volání funkce rect.

Výsledek předáte voláním další knihovní funkce report (n,ci, гг,C2,

Pi, Qi,P2, <72) j kde tyč RODÍ je reprezentována dvojicí ((ri, ci), (гг, C2))
a tyč ROD2 je reprezentována dvojicí ((pi, <?i), (рг,42))- Volání funkce
report ukončí váš program. Uvědomte si, že RODÍ je vodorovná tyč
a ROD2 svislá tyč, (ri,ci) je levý konec vodorovné tyče RODÍ, (pi,qi)
je horní konec svislé tyče ROD2. Platí tedy r\ = Г2, C\ < C2, p\ < P2
a qi = q2- Pokud parametry volání funkce report neodpovídají těmto
podmínkám, bude na standardní výstup vypsáno chybové hlášení.

Omezení.
> Vstup můžete obdržet pouze pomocí knihovních funkcí gridsize

a rect.

> N splňuje podmínky 5 ^ ^ 10 000.
t> Pro každá testovací data můžete funkci rect zavolat nejvýše 400krát.

Pokud váš program zavolá funkci rect vícekrát, bude ukončen.
o Váš program musí volat funkci rect více než jednou a funkci report

právě jednou.
> Když je funkce rect volána s nekorektními parametry (např. zkou-

maný obdélník přesahuje rozměry čtvercové sítě), je váš program
ukončen.
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E> Váš program nesmí přistupovat к žádným souborům a nesmí používat
standardní vstup a výstup.

Knihovny. Máte к dispozici následující knihovny:
FreePascal (prectlib.ppu, prectlib.o)

function gridsize : Longlnt;
function rect(a,b,c,d : Longlnt) : Longlnt;
procedure report(rl, cl, r2, c2, pl, ql, p2, q2 :

Longlnt);
Do vašeho programu rods. pas vložte příkaz

uses prectlib;
Program přeložte pomocí

fpc -So -02 -XS rods.pas
Program prodstool.pas ukazuje příklad použití této knihovny.

GNU C/C++ (crectlib.h, crectlib.o)
int gridsize();
int rect(int a, int b, int c, int d);
void report(int rl, int cl, int r2, int c2,

int pl, int ql, int p2, int q2);
Do svého programu rods. c vložte direktivu

#include "crectlib.h"

Program přeložte pomocí
gcc -02 -static rods.c crectlib.o -lm
g++ -02 -static rods.cpp crectlib.o -lm

Program crodstool. c ukazuje příklad použití této knihovny.

C/C++ v RHIDE
Nezapomeňte nastavit Option—>Linker na crectlib.o.

Testování. Abyste mohli testovat svůj program s knihovnou, musíte
vytvořit textový soubor rods . in. Soubor musí obsahovat tři řádky. První
řádek obsahuje jedno celé číslo N — rozměr čtvercové sítě. Druhý řádek
obsahuje souřadnice koncových bodů tyče RODÍ, r\, c\, Г2, C2, kde (r\, c\)
je levý konec tyče. Třetí řádek obsahuje analogicky souřadnice koncových
bodů tyče ROD2, pi, P2, (fc, kde {p\,qi) je horní konec tyče.

Po ukončení vašeho programu voláním funkce report dostanete vý-
stupni soubor rods . out. Soubor obsahuje počet volání funkce rect a sou-
řadnice konců tyče, které jste předali funkci report. Pokud během výpo-
čtu nastala nějaká chyba při volání knihovních funkcí, soubor rods .out
bude obsahovat příslušné chybové hlášení.

180



Dialog mezi vaším programem a knihovnou je zaznamenáván do sou-
boru rods. log. Tento soubor obsahuje posloupnost volaní funkce rect
ve tvaru „k : rect (a, 6, c, d) = ansíl. Záznam znamená, že při Až-tém
volání rect (a, 6, c, d) byla vrácena hodnota ans.

Příklad souborů pro testování.
rods.in rods.out

209

4 3 4 8

4 4 9 4

4 3 4 8

4 4 9 4

Hodnocení. Pokud váš program poruší některé z výše uvedených ome-
zení (např. vykoná více než 400 volání funkce rect) nebo dá chybný
výsledek, tak pro tato testovací data bude hodnocen 0 body.

Pokud je výsledek správný, hodnocení závisí na počtu provedených
volání funkce rect. Pokud bylo pro tato vstupní data provedeno nejvýše
100 volání, získáte 5 bodů. Pokud program provedl 101 až 200 volání, do-
stanete 3 body. Je-li počet provedených volání mezi 201 a 400, dostanete
1 bod.
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