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O průběhu 53. ročníku matematické olympiády

Hlavními pořadateli 53. ročníku matematické olympiády, který se usku-
tečnil ve školním roce 2003/04, byly podobně jako v letech předešlých
Ministerstvo školství, mládeže a tělovýchovy ČR, Jednota českých ma-

tematiků a fyziků a Matematický ústav akademie věd ČR. Organizací
soutěže byl pověřen Ústřední výbor MO, jehož předsedou je doc. RNDr.
Jaromír Šimša, CSc. Garanci za chod soutěže v kategoriích А, В, C, Z
a P pak přebírají příslušní místopředsedové ÚV MO, a to RNDr. Jaroslav
Švrček, CSc., doc. RNDr. Pavel Tlustý, CSc., a doc. RNDr. Pavel Tópfer,
CSc. Funkci tajemníka ÚV MO vykonával i v tomto ročníku soutěže
RNDr. Karel Horák, CSc.

Stejně jako v předešlých letech jsou výběrem úloh pro jednotlivá kola
matematické olympiády v jednotlivých kategoriích pověřeny dvě úlohové
komise jedna pro kategorie А, В a C, druhá pro kategorie Z. Obě
komise připravují úlohy s ročním předstihem a členové pověření garancí
nad jednotlivými kategoriemi v jednotlivých ročnících soutěže připravují
tOž komentáře к úlohám I. kola. V průběhu 53. ročníku MO byli ga-

ranty jednotlivých kategorií RNDr. Jaroslav Švrček, CSc. (kategorie A),
doc. RNDr. Pavel Novotný, CSc. (kategorie В) a RNDr. Jaroslav Zhouf,
Ph.D. (kategorie C).

Obě komise se scházejí pravidelně dvakrát během školního roku, a to
vždy v listopadu a v květnu. Úlohy všech kol kategorie P připravili pro
tento ročník soutěže připravil tým pracovníků z MFF UK pod vedením
doc. Topfera.

Na rozdíl od předešlého, 52. ročníku MO bylo zajištění všech kol sou-
těže provedeno s velkým časovým předstihem, takže v průběhu 53. roč-
niku se nevyskytly téměř žádné komplikace. Oba letáky i komentáře
к úlohám I. kola se dostaly do škol včas. Učitelé matematiky měli
navíc možnost seznámit se se zadáním úloh I. kola 53. ročníku MO

ještě před zahájením nového školního roku prostřednictvím časopisu
Matematika-fyzika-informatika, na jehož stránkách vždy v posledních
dvou číslech jednotlivých ročníků vycházejí texty úloh I. kola pro nad-
cházející ročník MO.
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Ústřední výbor matematické olympiády se sešel během tohoto roč-
niku na dvou jednodenních zasedáních, a to 12. prosince 2003 v Praze
a podruhé tradičně u příležitosti celostátního kola kategorií A a P —

29. března 2004 v Přerově. Na obou zasedáních byly kromě pravidelných
bodů programu řešeny i některé otázky týkající se především průběhu
příštích ročníků matematické olympiády.

Celostátní III. kolo 53. ročníku matematické olympiády v katego-
riích A a P se uskutečnilo 28. března-3. dubna 2004 v Přerově. Ústřední
výbor MO pověřil organizací III. kola Gymnázium Jakuba Škody v Přero-
vě. Vedení školy ve spolupráci s Přírodovědeckou fakultou Univerzity Pa-
lackého v Olomouci, olomouckou pobočkou JCMF a představiteli města
Přerov vytvořilo pro soutěž mimořádně kvalitní podmínky. Všichni sou-
těžící (43 v kategorii A, 30 v kategorii P) a pozvaní hosté byli ubyto-
váni v luxusním hotelu Jana, v jehož konferenčních sálech se uskutečnilo
III. kolo kategorie A, teoretická část III. kola kategorie P a také zasedání
ÚVMO. Praktická část III. kola kategorie P pak proběhla ve speciali-
zovaných učebnách nedalekého Gymnázia J. Škody. Zejména soutěžícím
tak byly připraveny pro vlastní soutěž takřka ideální podmínky. O mimo-
řádně zdařilý průběh celého III. kola soutěže se postaral také organizační
tým učitelů matematiky Gymnázia Jakuba Škody v Přerově pod vedením
ředitele školy Mgr. Jana Rašky.

Oficiální zahájení soutěže proběhlo v neděli 28. března 2004 v prosto-
rách starobylé auly gymnázia Jakuba Škody za přítomnosti prof. RNDr.
Lubomíra Dvořáka, CSc., děkana PřF UP v Olomouci, prof. RNDr. Karla
Segetha, CSc., ředitele MÚ AV CR, doc. RNDr. Jiřího Vanžury, CSc.,
Jindřicha Valoucha, starosty města Přerova, a dalších významných před-
stavitelů společenského života Olomouckého kraje a města Přerova.

Pořadatelé zajistili pro účastníky obou III. kol v kategorii A i P hod-
notný doprovodný program. Soutěžící obou kategorií navštívili přerovské
Muzeum J. A. Komenského, které se pyšní především ojedinělou sbírkou
učebnic a učebních předmětů již z doŠ Rakouska-Uherska, a to až po ne-

příliš vzdálenou minulost. Vždy druhý soutěžní den odpoledne absolvovali
soutěžící autobusový zájezd do blízkého okolí. Účastnící kategorie A měli
možnost navštívit zámek a zámecký park v nedaleké Kroměříži, který
sloužil jako letní sídlo olomouckých arcibiskupů, a rozsáhlou zříceninu
hradu Helfstýn. Soutěžící kategorie P pak absolvovali polodenní zájezd
za památkami města Olomouce spojený s návštěvou blízkého Svatého
Kopečku. V rámci III. kola proběhla pro účastníky soutěže na hostitel-
ském gymnáziu zajímavá prezentace matematického softwaru MATHE-
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MATICA americké firmy Wolfram Research, kterou u nás zastupuje praž-
ská firma Elkan.

Cenu profesora Zelinky za originální řešení ve výši 5 000 Kč, kterou již
podruhé věnoval Igor Puzanov, absolvent bývalého matematického gym-
názia W. Piecka v Praze, získal Martin Selecký z Gymnázia B. Němcové
v Hradci Králové za hezké a originální řešení páté úlohy celostátního ко-
la. Zvláštní cenu děkana PřF UP v Olomouci za jediné bezchybné řešení
nejobtížnější praktické úlohy III. kola v kategorii P získal Jiří Štěpánek
z Gymnázia v Brně na tř. Kpt. Jaroše.

Hned v následujícím týdnu 5.-9. dubna proběhlo v Kostelci nad Cer-
nými lesy výběrové soustředění členů českého reprezentačního družstva
před 45. MMO. Na toto soustředění bylo pozváno všech devět vítězů
III. kola kategorie A. Na základě jejich výsledků na tomto soustředění
a ve II. a III. kole bylo šest nejlepších vybráno do českého reprezentačního
družstva pro 45. MMO. Podrobnou informaci o 45. mezinárodní mate-
matické olympiádě a o 16. mezinárodní olympiádě v informatice najdete
v příslušných kapitolách této ročenky.

Pro nejlepší řešitele krajských kol v kategoriích В a C uspořádal ÚV
MO od 1. do 8. června tradiční soustředění v Jevíčku. Zúčastnilo se ho

40 žáků z celé republiky. Podobně pro nej lepší řešitele kategorie A uspo-
řádal ÚV MO v Janských Lázních 12.-18. září soustředění širšího výběru
žáků před 46. MMO.

Ústřední výbor matematické olympiády v České republice si dovoluje
na tomto místě poděkovat všem sponzorům za poskytnutí hodnotných
cen pro nej lepší řešitele III. kola v kategoriích A a P, především pak
přerovské firmě Emos a pražské firmě Elkan. ÚV MO dále děkuje přerov-
ským akciovým společnostem Emos a Hanácká kyselka a pražské akciové
společnosti Tezas za jejich podporu v souvislosti se zajištěním jednotného
oblečení členů českého reprezentačního družstva na 45. MMO. Poděko-
vání patří též pražské firmě Elkan, která se výraznou finanční podporou
zasloužila o vytištění této ročenky.

Významným oceněním našich úspěšných olympioniků se už tradičně
stává Praemium Bohemias, které vždy 4. prosince uděluje Nadace B. Jana
Horáčka Českému ráji. V tomto roce byli mezi oceněnými ve studentské
kategorii František Konopecký a Jan Moláček (25 000 Kč za stříbrnou
medaili na 45. MMO), Daniel Marek a Petr Škoda (25 000 Kč za stříbr-
nou medaili na 16. IOI), Vítězslav Kala a Jaromír Kuběn (15 000 Kč za
bronzovou medaili na 45. MMO)
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Projev předsedy Ústředního výboru MO
při slavnostním zahájení ústředního kola 53. ročníku MO v Přerově

Dámy a pánové, vážení hosté, milí soutěžící,

úkolem organizátorů každého soutěžního zápolení je připravit pro jeho
účastníky vhodné a důstojné podmínky, které v případě sportovních sou-
těží zahrnují regulérní hřiště s vhodným vybavením a tým spravedlivých
rozhodčích. Pro naši matematickou olympiádu potřebujeme místo spor-
tovního náčiní pěkné, dostatečně původní a neotřelé úlohy, na kterých
si vy, mladí soutěžící, vyzkoušíte svoje znalosti, důvtip a tvůrčí invenci.
Věřím, že vám řešení takových úloh přináší mnoho radosti a vzrušení,
byť z malých, ale překvapivých a krásných objevů. Tak se už na střední
škole přesvědčujete, že matematika je nevyčerpatelně rozmanitá a živoucí
vědecká disciplína, ve které je stále mnoho prostoru pro další bádání.

Jsem velmi rád, že poslední slova mohu potvrdit oznámením nového
významného výsledku, který byl při loňském ústředním kole pouhou hy-
potézou, třebaže starou více než 150 let. Čísla 8 a 9 jsou jedinou dvojicí
po sobě jdoucích přirozených čísel, která jsou obě mocninami přiroze-
ných čísel. Číslo 8 je třetí mocninou čísla 2, číslo 9 je druhou mocninou
čísla 3. V roce 2003 švýcarský matematik rumunského původu Předa
Mihdilescu dokázal, že neexistuje žádná jiná dvojice po sobě jdoucích
čísel, z nichž každé by bylo druhou, třetí, pátou nebo vyšší (asi víte, proč
jsem vynechal čtvrtou) mocninou přirozeného čísla. Znamená to tedy, že
rovnice ab — cd — 1 má jediné řešení v oboru přirozených čísel a, b, c, d,
předpokládáme-li, že6>lad>l.

Milí soutěžící, zítra a pozítří vám předložíme úlohy, které nebudete
řešit desítky let, měsíců či dnů, ale pouze několik hodin. Budete tedy
bojovat nejen s obtížnými zadáními, ale i s časem. Přeji vám všem, abyste
obstáli co nejlépe. Ústřední kolo 53. ročníku MO prohlašuji za zahájené.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 53. ročníku MO
Kategorie

CelkemKraj C PВA
US U U S U SS U S

475 228Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

177 115
118 85

95 60
193 61

15 14
68 47
85 68
78 60
49 34

100 80
139 121
93 46
54 46

108 93

19 16
18 17

151 54
105 36

75 35
47 12

128 43
99 41 340 179

230 12327 555 1
286 9043 3 314

317 6130 9 15 1 1
993 3 15545 30

64 27
52 31
26 18
55 41

188 103
80 38
46 24
32 12

39 19
8 8 192 11135 8

172 11234 8 615
108 7619 8 525

37 10 220 16850 15
16 16 424 28581 45

75 6 6 254 11121
852 2 14543 13

220 15760 32 20 20

CR 996 470 782 341 1372 930 3 282 1855132 114

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 53. ročníku MO

Kategorie
CelkemKraj В C PA

U S u s и s и s иs

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

54 25 43 9 101 44 16 11 214 89
170 43
123 34

86 33

77 27 1735 5 5 641
2735 3 5 60 25 1 1

11 4 14 4 58 24 3 1
7 2 5 0 31 99 2 14 1

30 2 0 39 8 3 0 88 10
72 19

110 35
72 22

134 29
259 87
110 42

83 18
157 37

16
27 0 8 2 29 13 8 4

231 10 14 59 21 6 2
18 3 33 1216 4 5 3

7 70 17
107 36

735 22 2 3
97 31 39 11 16 9
37 279 21 3 46 6 3

1324 2 3 44 12 2 1
7 32 8 93 1712 20 5

CR 453 111 315 59 830 288 1709 507111 49

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Alexandr Kazda, G Praha 6, Nad Alejí
2. Pavel Kocourek, SPŠST, Praha 1, Panská
3. Jan Martinek, G Ch. Dopplera, Praha 5

4.-11. Václav Potoček, SPŠST, Praha 1, Panská
Martin Doležal, G Praha 10, Omská
Jan Drašnar, G J. Keplera, Praha 6
Miroslav Hlaváč, G Ch. Dopplera, Praha 5
Martin Chudoba, G J. Heyrovského, Praha 5
Ondřej Kvapilík, G Ch. Dopplera, Praha 5
Mikuláš Peksa, G Ch. Dopplera, Praha 5
Jan Škampa, G J. Keplera, Praha 6

Kategorie В

1. Daniel Marek, G Ch. Dopplera, Praha 5
2.-3. Tomáš Hejda, G Ch. Dopplera, Praha 5

Radek Žlebčík, G Ch. Dopplera, Praha 5
4. Ondřej Fremund, G J. Nerudy, Praha 1

5.-6. Vojtěch Horký, G Praha 6, Nad Alejí
Adam Přenosil, G Praha 3, Sladkovského nám.

7. Jan Papež, G Praha 8, Ústavní
8.-9. Josef Brechler, G Ch. Dopplera, Praha 5

Jan Vemer, G Praha 9, Špitálská
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Kategorie С

1. Šárka Gregorová, G Praha 6, Nad Alejí
2. Lukáš Malina, G Ch. Dopplera, Praha 5

3.-4. Michal Jex, G J. Heyrovského, Praha 5
Tomáš Křen, G Ch. Dopplera, Praha 5

5.-6. Michal Rolínek, G J. Keplera, Praha 6
Jm Vackář, G Praha 8, Ústavní

7. Tomáš Bělka, G Praha 10, Voděradská
8. Tomáš Tintěra, G Ch. Dopplera, Praha 5

9.-11. Pavel Brožek, G Praha 4, Písnická
Alena Kubíková, G Praha 8, Ústavní
Jakub Mrva, G J. Heyrovského, Praha 5

Kategorie P

1. Daniel Marek, G Ch. Dopplera, Praha 5
2. Petr Škoda, G Praha 8, Ústavní
3. Daniel Balaš, G Praha 6, Arabská
4. Ján Zahomadský, G Ch. Dopplera, Praha 5
5. David Matoušek, G Ch. Dopplera, Praha 5
6. Zdeněk Sojka, SPŠST, Praha 1, Panská
7. Roman Smrž, G Praha 4, Ohradní

8.-9. Martin Bosák, SPŠST, Praha 1, Panská
Tomáš Petříček, G Praha 6, Arabská

10.—11. Martina Tomisová, G Ch. Dopplera, Praha 5
Petr Soběslavský, G J. Heyrovského, Praha 5

Středočeský kraj•••••••••••••

Kategorie A

1.-2. Jindřich Soukup, G Kladno, nám. E. Beneše
Benjamin Vejnar, G Nymburk

3.-5. Martin Kozák, G Český Brod
Michal Richter, GaSPgŠ Čáslav
Jan Váňa, GJO Kutná Hora
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Kategorie В

1. Lukáš Herman, G dr. J. Pekaře, Mladá Boleslav
2. Karolína Chmielová, G Benešov

3.-4. Václav Gergelits, G Benešov
Marek Scholz, G Neratovice

Kategorie C

1. Václav Sámal, G Říčany
2. Eva Myšáková, G Kolín
3. Petr Fojtů, G Benešov
4. Rudolf Rosa, G Kladno, nám. E. Beneše
5. Jiří Spále, G Sedlčany

6.-7. Tomáš Hubálek, G Kralupy
Jindřich Libovický, G Kladno, nám. E. Beneše

8.-9. Pavel Beščec, G Beroun
Michal Holub, G Beroun

10.-11. Miloš Broulík, G Mladá Boleslav
Tomáš Tesař, G Příbram

Kategorie P

1. Petr Švec, G Beroun
2. Jaroslav Havlín, GOA Sedlčany
3. Miroslav Frantes, G Benešov
4. Miroslav Kratochvíl, G a SPedŠ Čáslav
5. Petr Вalek, G Beroun
6. Vojtěch Zehnálek, G Benešov

Jihočeský kraj **•*«*••••••90

Kategorie A

1.-2. Lubomír Krčmář, G České Budějovice, Jírovcova
Martin Pilát, G České Budějovice, Česká

3. Jiří Václavík, G Strakonice
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Kategorie В

1. Eliška Lehečková, G České Budějovice, Česká
2. Jiří Kníže, G Strakonice

3.-4. Zuzana Bainová, G České Budějovice, Jírovcova
Tomáš Trnka, G České Budějovice, Jírovcova

5. Vojtěch Dušek, G České Budějovice, Jírovcova

Kategorie C

1. Adam Kabela, G České Budějovice, Jírovcova
2. Radim Hošek, G České Budějovice, Jírovcova
3. Jiří Blažek, ZŠ Nerudova, České Budějovice

4.-5. Martin Houštecký, G České Budějovice, Česká
Josef Spak, G České Budějovice, Jírovcova

6.-8. Karel Chuchel, G České Budějovice, Jírovcova
Jaroslav Icha, G České Budějovice, Jírovcova
Jakub Loučky, G Písek

9.-11. Tomáš Kouba, G Český Krumlov
Josef Pihera, G Strakonice
Martina Urbanová, G České Budějovice, Jírovcova

Kategorie P1.Vladimír Čunát, G České Budějovice, Jírovcova

Plzeňský kraj

Kategorie A

1. Pavel Paták, G Sušice
2. Martina Ullrichová, G Plzeň, Mikulášské nám.
3. Petr Cvachovec, G Plzeň, Mikulášské nám.
4. Jiří Kohout, G Plzeň, Mikulášské nám.

Kategorie В

1. Marie Dostálová, G Stříbro
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2.-3. Vojtěch Kolomičenko, G Plzeň, Mikulášské nám.
Vladimír Sirotek, G L. Pika, Plzeň4.Jan Šípek, G L. Pika, Plzeň

Kategorie C

1.-2. Tereza Hlaváčová, G Plzeň, Mikulášské nám.
Dora Horáková, G Plzeň, Mikulášské nám.

3.-4. Štěpán Kropík, SPŠ elektro, Plzeň
Stanislav Šimek, SPŠ elektro, Plzeň5.Jana Horová, G Plzeň, Mikulášské nám.

6.-9. Marek Engelthaler, SPŠ elektro, Plzeň
Lubomír Jurečka, SPŠ elektro, Plzeň
Jan Sedlák, SPŠ elektro, Plzeň
Radek Vozák, G Plzeň, Mikulášské nám.

10.-15. Veronika Binderová, G Plzeň, Mikulášské nám.
Daniela Krupičková, G Plzeň, Mikulášské nám.
Petra Nožičková, G Plzeň, Mikulášské nám.
Kryštof Touška, G Klatovy
Jan Václavík, G Plzeň, Mikulášské nám.
Michal Vahala, G Plasy

Kategorie P

1. Jan Bulánek, G J. Vrchlického, Klatovy

Karlovarský kraj

Kategorie A

1. Eva Černohorská, První české G Karlovy Vary
2. Petr Dohnal, G Sokolov

Kategorie В

1. Petr Žáček, SCHŠ Cheb
2. Eva Černohorská, První české G Karlovy Vary
3. Vladimír Hanzlík, První české G Karlovy Vary
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Kategorie С

1. Štěpán Masák, První české G Karlovy Vary
2. Radek Hájek, G Cheb
3. Kateřina Humplíková, První české G Karlovy Vary
4. Tomáš Beňák, První české G Karlovy Vary
5. Jakub Korselt, G Aš

Ústecký kraj # * # »

Kategorie A

1. Tomáš Franc, G Teplice, Čs. Dobrovolců
2. Vojtěch Kaiser, G Ústí nad Labem, Stavbařů

Kategorie C

1.-2. Petr Sýkora, G Děčín, Komenského nám.
Jaroslav Vosáhlo, G Ústí nad Labem, Stavbařů

3. Pavel Eger, G TGM Litvínov
4. Martin Obr, G Chomutov

5.-6. Jan Řezníček, G Lovosice
Petr Tříletý, G Děčín, Komenského nám.

7. Michal Merganič, G Duchcov
8. Daniel Šimsa, G J. Jungmanna, Litoměřice

Liberecký kraj

Kategorie A

1. Petr Píša, G a SPeGŠ Liberec, Jeronýmova
2. Michal Kollert, GFXŠ, Liberec

3.-4. Lukáš Ježek, GFXŠ, Liberec
Miroslav Kloz, GFXŠ, Liberec
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Kategorie В

1. Jan Hrnčíř, GFXŠ, Liberec
2. Michal Vaner, G Turnov

Kategorie C

1. Václav Koucký, G Tanvald
2. Petr Pavlů, SPŠSE, Liberec
3. Veronika Počerová, GFXŠ, Liberec

4.-5. Tomáš Kobrle, G Jilemnice
Lukáš Nykrýn, G Jablonec, U Balvanu

6. Hana Schaabová, G Dr. Randy, Jablonec n. N.
7.-10. Michal Haniš, G Frýdlant

Antonín Hoskovec, G Jablonec, U Balvanu
Jakub Chmelař, GFXŠ, Liberec
Veronika Mužíčková, G Dr. Randy, Jablonec n. N.

Kategorie P

1. Michal Vaner, G Turnov
2. Jin Schejbal, G Turnov

3.-4. Michal Tuláček, G Liberec, Jeronýmova
Jan Kolomazník, G Turnov

Královéhradecký kraj

Kategorie A

1. Jan Moláček, GJKT, Hradec Králové
2. Martin Selecký, G B. Němcové, Hradec Králové
3. Radek Moravec, G B. Němcové, Hradec Králové
4. Ivo Machek, GJKT, Hradec Králové

Jan Marek, G B. Němcové, Hradec Králové
6. Michal Černohorský, G B. Němcové, Hradec Králové

Jan Ondruš, GFMP, Rychnov nad Kněžnou
Filip Studnička, G B. Němcové, Hradec Králové
Libor Šimůnek, GJKT, Hradec Králové
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Pavel Špryňar, G В. Němcové, Hradec Králové

Kategorie В

1. Jan Voltr, GJKT, Hradec Králové
2. Vendula UChytilová, GJKT, Hradec Králové

Kategorie C1.Pavel Kuchyňa, G B. Němcové, Hradec Králové
Martin Petr, GJKT, Hradec Králové

3. Jakub Dundálek, JG Náchod
4. Miloslav Jára, JG Náchod

Pavlína Krátošková, G B. Němcové, Hradec Králové
6. Marek Buday, G B. Němcové, Hradec Králové

Matěj Kouba, G Hostinné
8. Kateřina Mudroňová, GJKT, Hradec Králové

Jaroslav Štěrba, GJKT, Hradec Králové
10. Adam Martinek, GJKT, Hradec Králové

Kategorie P

1. Oto Petřík, G Vrchlabí
2. Petr Šťovík, GJKT, Hradec Králové

Pardubický kraj

Kategorie A

1. Tereza Klimošová, G Lanškroun
2. Bára Scholleová, G Pardubice, Dašická

3.-4. Vojtěch Novotný, G Chrudim
Marek Scholle, G Pardubice, Dašická

Kategorie В

1. Tereza Klimošová, G Lanškroun
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2. Helena Sediváková, G Pardubice, Dašická
3. Kristýna Stodolová, G Polička

Kategorie C

1. Marek Scholle, G Pardubice, Dašická
2. Jiří Hajný, G Chrudim
3. Jiří Havran, G Polička
4. Kristýna Hrdinová, G Žamberk
5. Eva Dobešová, G Jevíčko

6.-7. Lenka Baloušková, G Pardubice, Dašická
Michal Leno, G Vysoké Mýto

8.-10. Miroslav Klimoš, G Lanškroun
Z. Mudruňková, G Pardubice, Dašická
Lubomír Štěpánek, G Pardubice, Dašická

Kategorie P

1. Martin Dobroucký, G Moravská Třebová
2. Jindřich Flídr, G Lanškroun
3. Petr Paščenko, G Pardubice, Dašická

Kraj Vysočina

Kategorie A

1. Ondřej Křivánek, G Třebíč
2. Zdeněk Tichý, G Pelhřimov

3.-4. Luděk Gregor, GVM Nové Město na Moravě
Dominik Macáš, G Bystřice nad Pern.

5.-7. Josef Janák, G Velké Meziříčí
Petr Pravlovský, G Jihlava
Klára Sevčíková, G Jihlava

Kategorie В

1. Ondřej Hoferek, G Žďár nad Sázavou
2. Karel Lavička, G Jihlava

18



Kategorie С1.Mirek Dočekal, G Jihlava
2.-3. Helena Dvořáková, G Třebíč

Tomáš Herceg, G Třebíč
4. Barbora Stohanzlová, HG Havlíčkův Brod

5.-8. Dana Dohnalová, HG Havlíčkův Brod
Milan Dvořák, GVM Nové Město na Moravě
Jana Gajdošíková, G Třebíč
Jan Korbel, G Jihlava

9. Miloslav Sobotka, G Žďár nad Sázavou
10.-12. František Horák, G Velké Meziříčí
10.-12. Rostislav Stříž, GVM Nové Město na Moravě
10.-12. Karel Trojan, G Jihlava

Kategorie P

1.-2. Petr Baudiš, G Ad Fontes, Jihlava
Martin Tomec, G Třebíč3.Martin Jonáš, SPŠ Jihlava

Jihomoravský kraj

Kategorie A

1. Vítězslav Kala, G Brno, tř. Kpt. Jaroše
2.-3. Jaromír Kuběn, G Brno, tř. Kpt. Jaroše

Alexandr Píchá, G Brno, tř. Kpt. Jaroše4.Tomáš Hebelka, G Brno, Vídeňská
5.-6. Jan Křetínský, GML Brno, Žižkova

Jan Novotný, G Brno, tř. Kpt. Jaroše
7.-8. Jana Fabriková, G Brno, tř. Kpt. Jaroše

Pavel Troubil, G Brno, tř. Kpt. Jaroše
9.-10. Sven Dražan, G Brno, tř. Kpt. Jaroše

Jiří Krčál, G Brno, tř. Kpt. Jaroše
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Kategorie В

1.-2. Jaromír Kuběn, G Brno, tř. Kpt. Jaroše
Vojtěch Říha, G Brno, tř. Kpt. Jaroše

3. Alexandr Píchá, G Brno, tř. Kpt. Jaroše
4. Jakub Opršal, G Brno, tř. Kpt. Jaroše5.' Jin Zelinka, G Brno, tř. Kpt. Jaroše
6. Jan G Brno, tř. Kpt. Jaroše
7. Martin Křivánek, G Brno, tř. Kpt. Jaroše

8.-9. Martin Kočí, G Brno, tř. Kpt. Jaroše
Jakub Pracný, G Brno, tř. Kpt. Jaroše

10. Pavlína Novotná, G Kyjov

Kategorie C

1.-2. Petr Buršík, G Brno, tř. Kpt. Jaroše
Zbyněk Konečný, G Brno, tř. Kpt. Jaroše

3. Lucie Fabriková, G Brno, tř. Kpt. Jaroše
4. Jiří Řihák, G Brno, tř. Kpt. Jaroše
5. Petr Velan, G Brno, tř. Kpt. Jaroše
6. Petr Fiala, G Brno, tř. Kpt. Jaroše

7.-9. Petra Burešová, G Brno, tř. Kpt. Jaroše
Tomáš Jelínek, G Brno, tř. Kpt. Jaroše
Lenka Košařová, G Brno, tř. Kpt. Jaroše

10.-11. Jan Komínek, G Brno, tř. Kpt. Jaroše
Jan Kovář, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Jiří Štěpánek, G Brno, tř. Kpt. Jaroše
2. Martin Vejnár, G Brno, tř. Kpt. Jaroše

3.-4. Martin Křivánek, G Brno, tř. Kpt. Jaroše
Pavel Troubil, G Brno, tř. Kpt. Jaroše

5. Kryštof Hoder, G Brno, tř. Kpt. Jaroše
6. Jana Fabriková, G Brno, tř. Kpt. Jaroše
7. Jiří Zelinka, G Brno, tř. Kpt. Jaroše
8. Martin Lopatář, G Brno, tř. Kpt. Jaroše
9. Jiří Appl, G Brno, Vejroštová
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Zlínský kraj• •«•••••••••••V

Kategorie A

1. Marek Pechal, G Zlín, Lesní čtvrť
2. Stanislav Basovník, G Kroměříž
3. František Konopecký, G L. Jaroše, Holešov

4.-5. Martin Dungl, G Kroměříž
Milan Procházka, SPŠE, Rožnov pod Radhoštěm

6.-8. Aleš Holub, G Uherské Hradiště
Jan Olšina, G Kroměříž
Milan Pečena, G Zlín, Lesní čtvrť

9. Pavel Šalom, G Rožnov pod Radhoštem

Kategorie В

1. Pavel Šalom, G Rožnov pod Radhoštem
2. Jan Váňa, G Zlín, Lesní čtvrť
3. Lukáš Strnad, G Kroměříž

Kategorie C1.Petr Dlabaja, G L. Jaroše, Holešov
2.-4. Jan Blizňák, GFP, Valašské Meziříčí

Martin Tesař, G Zlín, Lesní čtvrť
Jan Urban, G Zlín, Lesní čtvrť

5. Iva Pobořilová, GFP, Valašské Meziříčí
6. Martina Stehnová, G L. Jaroše, Holešov

7.-11. Hana Bosáková, GFP, Valašské Meziříčí
Tomáš Ehrlich, G L. Jaroše, Holešov
Tereza Pechová, GaOA Valašské Klobouky
Roman Stachoň, G Kroměříž
Daniela Veselá, G Zlín, Lesní čtvrť

Kategorie P

1. Ondřej Bílka, G Zlín, Lesní čtvrť
2. Stanislav Basovník, G Kroměříž
3. Jan Zimmermann, G Zlín, Lesní čtvrť
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Olomoucký kraj

Kategorie A

1. Jana Hrudíková, GJŠ, Přerov
2. Jana Sedláčková, GJŠ, Přerov

Kategorie В

1. Jan Šrámek, GJŠ, Přerov
2.-3. Marek Snyrch, SGO, Olomouc

Zdeněk Cernohouz, SGO, Olomouc

Kategorie C

1. Anežka Faltýnková, GJŠ, Přerov
2. Veronika Kuncová, G Uničov

3.-4. Jakub Zouhar, SGO, Olomouc
Jakub Križan, GJW, Prostějov

5. Simona Macháčová, GJŠ, Přerov
6.-12. Martin Faltičko, SGO, Olomouc

Tomáš Javůrek, G Jeseník
Ondřej Klabal, GJW, Prostějov
Markéta Paloncýová, G Šumperk
Martin Poklop, SGO, Olomouc
Jan Sluše, SPŠS, Olomouc
Jakub Suchý, G Šumperk

Kategorie P

1. Jan Matoušek, GJW, Prostějov

Moravskoslezský kraj

Kategorie A

1. Tomáš Gavenčiak, GMK, Bílovec
2. Jaroslav Hanči, GMK, Bílovec
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3.Jan Uhlík, GMK, Bílovec
4.-5. Pavel Motloch, G P. Bezruce, Frýdek-Místek

Vojtěch Skubanič, GMK, Bílovec
6.-7. Zuzana Safemová, GMK, Bílovec

Josef Toman, GMK, Bílovec

Kategorie В

1. Hanči Jaroslav, GMK, Bílovec
2. Kubetta Adam, GMK, Bílovec
3. Uhlík Jan, GMK, Bílovec
4. Motloch Pavel, G P. Bezruče, Frýdek-Místek

5.-6. Kunčar Jiří, GMK, Bílovec
Zajac Vít, G Bruntál

7. Žabenský Josef, GMK, Bílovec
8. Stambachr Jakub, G Ostrava-Poruba, Čs. exilu

Kategorie C

1.-2. Sebetovský Jan, SOŠ, Kopřivnice
Stufka Miroslav, GMK, Bílovec

3.-4. Kuchař Martin, G Karviná, Mírová
Zedník Lukáš, G Martinská čtvrť5.Slovák Petr, G P. Bezruče, Frýdek-Místek

6.-7. Hadamčík Lukáš, Mendelovo G
Princ Tomáš, G Ostrava-Poruba, Cs. exilu

8.-11. Jeziorský Tomáš, GMK, Bílovec
Koval Jakub, G Karviná, Mírová
Tomala Jiří, GMK, Bílovec
Zezula Adam, G P. Bezruče, Frýdek-Místek

Kategorie P

1. Tomáš Gavenčiak, GMK, Bílovec
2. Pavel Motloch, G P. Bezruče, Frýdek-Místek
3. Ondřej Májek, GMK, Bílovec
4. Michal Šenkýř, GMK, Bílovec
5. Vilém Šustr, GMK, Bílovec
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Výsledky celostátního kola 53. ročníku MO

kategorie A

Vítězové

1.-2. Alexandr Kazda, 8/8, G Praha 6, Nad Alejí
Pavel Kocourek, 3/4, SPŠST, Praha 1, Panská

3.-5. František Konopecký, 7/8, GLJ Holešov
Jaromír Kuběn, 2/4, G Brno, tř. Kpt. Jaroše
Jan Moláček, 4/4, GJKT, Hradec Králové

6. Vítězslav Kala, 4/4, G Brno, tř. Kpt. Jaroše
7.-9. dnen Dražan, 4/4, G Brno, tř. Kpt. Jaroše

Tomáš Gavenčiak, 4/4, GMK Bílovec
Marek Pechal, 6/8, G Zlín, Lesní čtvrť

42 b.

42 b.

41b.

41b.

41b.

39 b.

38 b.

38 b.

38 b.

Další úspěšní řešitelé

10.—11. Jana Fabriková, 4/4, G Brno, tř. Kpt. Jaroše
Jan Křetínský, 8/8, GML Brno, Žižkova

12.-13. Jakub Opršal, 2/4, G Brno, tř. Kpt. Jaroše
Michal Rychnovský, 3/4, G Brno, tř. Kpt. Jaroše

14.-15. Stanislav Basovník, 7/8, G Kroměříž, Masarykovo nám.
Jan Uhlík, 2/4, GMK Bílovec

16.-17. Tomáš Hebelka, 8/8, G Brno, Vídeňská
Alexandr Píchá, 2/4, G Brno, tř. Kpt. Jaroše

18. Ondřej Křivánek, 7/8, G Třebíč, Masarykovo nám.
19.-21. Tereza Klimošová, 8/8, G Lanškroun

Ivo Machek, 4/4, GJKT, Hradec Králové
Radek Moravec, 5/6, GBN, Hradec Králové

30 b.

30 b.

28 b.

28 b.

23 b.

23 b.
22 b.

22 b.

19 b.

18b.

18b.

18b.
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Výsledky celostátního kola 53. ročníku MO
kategorie P

Vítězové

1. Daniel Marek, 2/4, G Ch. Dopplera, Praha
2. Martin Vejnár, 3/4, G Brno, tř. Kpt. Jaroše

3.-5. Jindřich Flídr, 8/8, G Lanškroun
Kryštof Hoder, 4/4, G Brno, tř. Kpt. Jaroše
Petr Škoda, 8/8, G Praha, Ústavní

6.-7. Tomáš Gavenčiak, 4/4, G M. Koperníka, Bílovec
David Matoušek, 8/8, G Ch. Dopplera, Praha 5

36 b.

35 b.

33 b.

33 b.

33 b.

30 b.

30 b.

Další úspěšní řešitelé

8.-9. Ondřej Májek, 4/4, G M. Koperníka, Bílovec
Oto Petřík, 6/8, G Vrchlabí

10. Martin Dobroucký, 7/8, G Moravská Třebová
11.-12. Ondřej Bílka, 2/4, G Zlín, Lesní čtvrť

Pavel Troubil, 4/4, G Brno, tř. Kpt. Jaroše
13.-14. Zdeněk Sojka, 4/4, SPŠST, Praha 1, Panská

Jiří Štěpánek, 4/4, G Brno, tř. Kpt. Jaroše

29 b.

29 b.

28 b.

26b.

26 b.

24 b.

24 b.
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Kategorie С

Texty úloh

C - I - 1

Dokažte, že pro každé přirozené číslo n, které je větší než 3 a není dě-
litelné třemi, platí: Šachovnici n x n lze rozřezat na jeden čtverec lxl
a obdélníky 3x1. (J. Zhouf)

С - I - 2

Je dán obdélník ABCD. Nechť přímky p a q, které procházejí vrcholem A,
protínají polokružnice vně připsané stranám ВС a CD daného obdélníku
po řadě v bodech KaL(B^K^C^L^D) a rovněž strany BC
a CD po řadě v bodech P a Q tak, že trojúhelník ABP má stejný obsah
jako trojúhelník KCP a zároveň trojúhelník AQD má stejný obsah jako
trojúhelník CLQ. Dokažte, že body K, L, C leží na téže přímce.

(J. Švrček)

C - I - 3

Žák měl vypočítat příklad X ■ Y : Z, kde X je dvojmístné číslo,
Y trojmístné číslo a Z trojmístné číslo s číslicí 2 na místě jednotek.
Výsledkem příkladu mělo být přirozené číslo. Žák však tečku přehlédl
a součin X ■ Y chápal jako pětimístné číslo. Získal tak sedmkrát větší
výsledek, než měl vyjít. Jaký příklad měl žák počítat? (P. Cemek)

С - I - 4

Nechť P je libovolný vnitřní bod rovnostranného trojúhelníku ABC. Uva-
žujme obrazy К, L a M bodu P v osových souměrnostech s osami AB,
BC a CA. Určete množinu všech bodů P takových, že trojúhelník KLM
je rovnoramenný. (J. Zhouf)
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С - I - 5

Přirozené číslo nazveme magickým, právě když je lze rozložit na součet
dvou trojmístných čísel zapsaných stejnými číslicemi, ale v opačném po-
řadí. Například číslo 1413 je magické, neboť platí 1413 = 756 + 657;
nejmenší magické číslo je 202.
a) Určete počet všech magických čísel.
b) Ukažte, že součet všech magických čísel je roven 187 000. (J. Šimša)

C - I - 6

Ze všech čtyřúhelníků, jež lze vepsat do kružnice o daném poloměru r
a které mají dvě strany dané délky m, určete ten, který má největší obsah.

(P. Leischner)

C - S - 1

Určete počet všech trojmístných čísel, která jsou devatenáctkrát větší
než součet jejich číslic. (J. Šimša)

C - S - 2

Je dán čtverec o straně délky 5 cm. Mezi všemi čtyřúhelníky, které leží
v tomto čtverci tak, že dvě jejich strany mají délku 2 cm a leží na hranici
čtverce, určete všechny ty, které mají maximální obsah. (P. Leischner)

C - S - 3

Dlaždičky A složené ze tří jednotkových čtverců mají tvar cB, dlaždičky В
složené ze čtyř jednotkových čtverců mají tvar db. Kolik dlaždiček jednot-
livých typů potřebujeme na vydlaždičkování čtverce o straně 6 jednotek?
Pro každý možný počet dlaždiček uveďte příklad takového pokrytí.

(J. Fóldes)

C - II - 1

V rovině je dán obdélník ABCD, kde \AB\ = a < b = \BC\. Na jeho
straně BC existuje bod К a na straně CD bod L tak, že daný obdélník
je úsečkami AK, KL a LA rozdělen na čtyři navzájem podobné trojúhel-
niky. Určete hodnotu poměru a : b. (J. Svrček)
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С - II - 2

Najděte všechny trojice prvočísel p, q a r, pro které platí

14 51
_ 65

P Q r

(P. Novotný)

C - II - 3

Do kružnice o poloměru r — 6 vepište osmiúhelník ABCDEFGH, jehož
strany AB, CD, EF a GH mají po řadě délky 3, 4, 5 a 6 a strany BC,

(P. Novotný)DE, FG a HA jsou shodné.

С - II - 4

Žáci měli vypočítat příklad x + у ■ z pro trojmístné číslo x a dvojmístná
čísla у a z. Martin umí násobit a sčítat čísla zapsaná v desítkové soustavě,
zapomněl však na pravidlo o přednosti násobení před sčítáním. Proto mu
sice vyšlo zajímavé číslo, které se čte stejně zleva doprava jako zprava

doleva, správný výsledek byl ale o 2004 menší. Určete čísla x, у a z.

(J. Simša)
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Řešení úloh

C - I - 1

Budeme-li přemýšlet, jak navrhovat postupy řezání šachovnic velkých
rozměrů, jistě nás napadne myšlenka, že na obdélníky 3 x 1 lze rozřezat
každý „pás“ šachovnice tvořený třemi sousedními řádky nebo sloupci.
Takové pásy se proto vyplatí od šachovnice opakovaně odřezávat (dokud
je to možné), a tak zmenšovat její rozměry o násobky tří. Proto bude pro
naši úlohu o šachovnici n x n výhodné rozlišit, zda dané číslo n > 3 dává
při dělení třemi zbytek 1, anebo zbytek 2 (zbytek 0 je zadáním vyloučen).
Každý z těchto případů prozkoumáme odděleně.

Případ, n — Sk T 1 • Nejprve z šachovnice (3k+ 1) x (3A;-f 1) odřežeme
pás prvních 3к sloupců, tedy obdélník (Зк + l) x ЗА;, který pak rozřežeme
(po trojicích sloupců) na к pásů (3к + 1) x 3 a každý z nich konečně
rozřežeme na ЗА; + 1 obdélníků 1 x 3. Z původní šachovnice nám pak
zůstane nerozřezán poslední sloupec; protože má ЗА: + 1 polí, snadno
ho rozřežeme na jeden čtverec 1 x 1 a A: obdélníků 3x1. Na obr. 1 je
znázorněno výsledné rozřezání šachovnice 7x7 (počáteční odřezání pásu
7 x 6 je vyznačeno šipkami, zbylý sloupec je šedý). Ze stejného obrázku
nahlédneme i způsob řešení pro n = 4.

■0,

Obr. 1

Případ n = ЗА;+ 2. Kdybychom šachovnici (ЗА;+ 2) x (Sk+ 2) důsledně
„ořezávali'1 postupem z úvodu řešení, dostali bychom (po oddělení dvou
pásů (ЗА; + 2) x ЗА; а ЗА; x 2) jako zbytek šachovnici 2x2, kterou však
není možné rozřezat požadovaným způsobem (na díly 1 x 1 a 3 x 1). To
je možné provést až s „následující" šachovnicí 5 x 5, jak vidíme na obr. 2.

Zbývá popsat, jak každou větší šachovnici (ЗА;+ 2) x (ЗА;+ 2) řezáním
zredukovat na právě posouzený čtverec 5x5. Nejprve oddělíme pás (3A: +
-f 2) x (ЗА; — 3) tvořený prvními (к — 1) trojicemi sloupců šachovnice;
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Obr. 2 Obr. 3

ze zbylé šachovnice (3к + 2) x 5 pak oddělíme pás (3к — 3) x 5 tvořený
jejími posledními (к— 1) trojicemi řádků, z původní šachovnice pak zbude
kýžený čtverec 5 x 5 v pravém horním rohu (šedý na obr. 3 pro šachovnici
8 x 8).

Dodejme, že při řešení dané úlohy jsme nebrali v úvahu obarvení polí
šachovnice. Barvy polí se uplatňují v jiných situacích, zejména tehdy,
když potřebujeme dokázat, že rozřezání šachovnice na díly předepsaného
tvaru není možné (doplňující úlohy 4 a 5).

С - I - 2

Trojúhelníky АВР a KCP mají podle zadání stejné obsahy; připojíme-li
ke každému z nich trojúhelník ACP (obr. 4), usoudíme, že stejné obsahy
mají i trojúhelníky ABC a AKC. Protože strana AC je oběma těmto
trojúhelníkům společná, obě к ní příslušné výšky musí být shodné. Body
В а К tudíž mají stejnou vzdálenost od přímky AC (a leží ve stejné
polorovině touto přímkou určené). To znamená, že ВК || AC. Podle
Thaletovy věty ovšem platí ВК РСК, takže platí rovněž АС X CK.

L

CaD
/

/

/

P К
/

A В

Obr. 4
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Podobně z rovnosti obsahů trojúhelníků AQD, CLQ a kolmosti pří-
mek CL a DL odvodíme, že AC _L CL. Dohromady to znamená, že úhel
KCL je složen ze dvou pravých úhlů ACK a ACL. Body К a L tudíž
leží na přímce, která prochází bodem C kolmo к úhlopříčce AC.

C - I - 3

Protože Y je trojmístné číslo, pětimístné číslo se zápisem XY je číslo
1 000X + V. Žák tedy počítal příklad (1 000X +Y) : Z a podle textu úlohy
mu v porovnání s původním příkladem vyšel sedmkrát větší výsledek,
tedy

1 000X + Y
= 7.^1

Z 'z

Odtud po násobení číslem Z dostaneme rovnici 1 000A + Y — 7XY
kterou vyřešíme vzhledem к neznámé Y:

1000X
Y =

7X — 1 ’

Pro která X je poslední zlomek celočíselný? Jinak vyjádřeno: kdy je
číslo 1 000X dělitelné číslem IX — 1? Protože čísla X а IX — 1 jsou
nesoudělná (nesoudělná jsou totiž dvě po sobě jdoucí čísla IX — 1 а 7X),
hledáme ta X, pro která číslo 7X — 1 dělí číslo 1000. Abychom nemuseli
vypisovat všechny dělitele čísla 1 000, uvědomíme si, že X je dvojmístné,
tudíž 69 7X — 1 692. Rozložme proto číslo 1000 všemi způsoby
na součin dvou činitelů tak, aby jeden (řekněme první) z činitelů byl
z intervalu (69,692):

1 000 = 500 • 2 = 250 • 4 = 200 • 5 = 125 • 8 = 100 ■ 10.

Z rovnic

7X — 1 = 500, 7X -1 = 250, 7X-1 = 200, 7X-1 = 125, 7X-l = 100

má jedině rovnice 7X — 1 = 125 celočíselné řešení X — 18, pro něž vychází
Y = 1 000X/(7X - 1) = 1 000 • 18/125 = 144.

Nyní určíme neznámé číslo Z. Využijeme к tomu podmínku úlohy, že
hodnota výrazu X Y : Z je přirozené číslo. Protože X = 18 a Y = 144,
jedná se o číslo 18 • 144 : Z, tedy číslo 25 ■ 34 : Z. Takové číslo je celé,
právě když má číslo Z rozklad na prvočinitele tvaru 2a36, kde 0 5Í a 5í 5
a 0 ^ ř) ^ 4. Exponenty a, b najdeme z podmínky, že číslo Z = 2a3b je
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podle zadání trojmístné a na místě jednotek má číslici 2. Protože 34 =

= 81 a 25 • 3 = 96, musí být a ^ 1 a b ^ 2. Všechna čísla 2a36, kde
a £ {1, 2, 3, 4, 5} a b £ {2,3,4}, teď vypíšeme do tabulky:

Kg 1 2 3 4 5

18 36 72 144 288

54 108 216 432 864
162 324 648 1296 2 592

2

3

4

Z vypočtených čísel mají požadovanou vlastnost pouze čísla Z = 432 =
= 2433 a Z = 162 = 2X34.

Odpověď: Úloha má dvě řešení. Žák měl počítat buď příklad 18 • 144 :
: 432, nebo příklad 18 ■ 144 : 162.

Jiné řešení. Jako v prvním řešení odvodíme vyjádření

1000A
Y =

7X — 1 ’

tentokrát však získaný zlomek upravíme částečným vydělením čísla 1 000
číslem 7. Na základě rovnosti 1 000 = 7 • 143 — 1 dostáváme

1000X 143(7X - 1) + 143 - X
7X — 1

143 - X
Y = = 143 +

7X — 17X-1

Aby bylo Y celé, musí být poslední zlomek (143 — X)/(7X — 1) celočíselný.
Protože číslo X je dvojmístné, náš zlomek splňuje odhady

143 - 99 143 - X 143 - 10
< <

7-10-1'7X - 17-99-1

Levý zlomek je roven 44/692, pravý je roven 133/69, takže jediná možná
celočíselná hodnota prostředního zlomku je rovna 1. Musí tedy být Y =
= 144. Rovnice

143 -X
= 1

7X - 1

pak má jediné řešení X = 18. Dále už postupujeme jako v prvním řešení.

Další řešení. Dříve získanou rovnici 1 000X + Y — 7XY upravíme do
součinového tvaru Y = X • (7Y — 1 000). Musí proto platit 7Y — 1 000 > 0,
odkud

у>шю > 142, neboli Y > 143.
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Číslo X je dvojmístné, proto z rovnosti У = X ■ (7Y — 1 000) vychází
odhad

10 000
Y Y- 10 • (7Y — 1 000), neboli Y < 145.

69

Dohromady dostáváme, že číslo Y je rovno jednomu z čísel 143 nebo 144.
Rovnice 143 = X • (7 • 143 — 1 000) má řešení X = 143, což ovšem není
dvojmístné číslo; rovnice 144 = X• (7-144—1 000) má řešení X = 18. Tak
jsme znovu ukázali, že X = 18 a Y = 144; číslo Z určíme jako v prvním
řešení.

С - I - 4

Označme a = \%.BAP\, 0° < a < 60° (obr. 5). Protože úhly BAP a BAK

jsou souměrně sdružené podle osy AB, platí rovněž \<BAK\ = a. Pro-
tože \<CAP\ = \<CAB\ — \<BAP\ — 60° — a, ze souměrnosti podle
osy CA plyne rovnost \<CAM\ = 60° — a. Pro velikost úhlu KAM
tudíž platí

\<KAM\ = \<BAK\ + \<BAC\ + \<CAM\ = a + 60° + (60°-a) = 120°.

Ze souměrností podle os AB a CA rovněž plynou rovnosti \AK\ = \AP\ =
= \ AM\. Proto je trojúhelník KAM rovnoramenný a jeho úhel při hlav-
ním vrcholu A má velikost 120°. Podobně se zdůvodní, proč i trojúhelníky
LBK a MCL jsou rovnoramenné a jejich vnitřní úhly při hlavních vr-
cholech В a C mají velikost 120°.
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Při posuzování podmínky, že trojúhelník KLM je rovnoramenný, mu-
símě rozlišit, které z jeho stran KL: LM, MK jsou shodné. S ohledem na

symetrii rozebereme podrobně pouze případ, kdy \KL\ = \MK\. Z po-
dobných rovnoramenných trojúhelníků KAM a LBK vyplývá, že jejich
základny MK а КL jsou shodné, právě když jsou shodná jejich ramena
AK a BK. Zapišme to pomocí délek úseček: rovnost \KL\ = \MK\ pla-
ti, právě když platí rovnost \AK\ = \BK\, neboli rovnost \AP\ = \BP\.
Poslední rovnost ovšem nastane, právě když bod P leží na ose strany
AB. Obdobně se zjistí podmínky ekvivalentní rovnostem \MK\ — \LM\
a \KL\ = \LM\.

Odpověď: Trojúhelník KLM je rovnoramenný, právě když bod P leží
na aspoň jedné z os stran daného rovnostranného trojúhelníku ABC.
Hledaná množina je proto sjednocením tří úseček - výšek trojúhelníku
ABC (bez jejich krajních bodů).

С - I - 5

Na příkladu čísla 1 413 vidíme, že někdy není snadné poznat, zda dané
trojmístné či čtyřmístné číslo je magické či nikoliv. Podíváme se proto
nejdříve, jak se magické číslo x vyjádří pomocí číslic těch trojmístných
čísel abc a cba, jejichž je součtem:

x — abc + cba — (100a + 10b + c) 4- (100c + 10b + a) = 101(a + c) + 20b.

Vidíme, že číslo x je určeno číslicemi a, b, c tak, že závisí jen na b a na
součtu a + c. Znamená to, že různé trojice číslic a, b, c mohou určovat
totéž magické číslo x (nemyslíme tím pouze trojice lišící se vzájemnou
výměnou číslic a a c). Je-li např. a + c = 14 ab = 9, najdeme tři různá
vyjádření magického čísla 1 594:

1 594 = 599 + 995 = 698 + 896 = 797 4- 797.

Existují ještě jiná „magická“ vyjádření čísla 1 594? Vše závisí na tom,
zda jsou rovnicí 1 594 = 101s + 20b hodnoty součtu číslic s = a + c
a číslice b jednoznačně určeny. Z rovnice ihned vidíme, že číslo s končí
číslicí 4, takže s = 4 nebo s = 14 (jiné hodnoty součtu s = a 4- c nejsou
číslicemi a, c dosažitelné). Zatímco hodnotě s = 14 odpovídá (jak dobře
víme) hodnota b = 9, pro s = 4 dostaneme rovnici 1 594 = 404 4- 20b,
která nemá celočíselné řešení.
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Poučeni uvedeným příkladem, pokusíme se stanovit počet magických
čísel jako počet čísel tvaru x — 101s + 206, kde číslo s (rovné součtu číslic
a a c, jež jsou nenulové) probíhá množinu (2, 3,4,, 18}, zatímco číslice
b probíhá (nezávisle na součtu s) množinu (0,1,2,..., 9}. Protože číslo s
nabývá celkem 17 různých hodnot a číslo b celkem 10 různých hodnot, je
počet všech dvojic (s, b), které můžeme do vzorce x = 101s + 206 dosadit,
roven číslu 17-10 = 170. Ukážeme-li nyní, že po dosazení libovolných dvou
různých dvojic (si, b\) a (s2, 62) dostaneme dvě různá magická čísla

x\ = lOlsi + 20bi a X2 = IOIS2 + 2О62,

bude to znamenat, že počet všech hodnot x (tedy počet všech magických
čísel) je rovněž roven číslu 170.

Připusťme, že pro některé dvojice (s\,bi) a («2,62) platí x\ = x^-
Rovnost lOlsi -f 206i = IOIS2 + 20&2 upravíme do tvaru 101(si — s2) =
= 20(62 — 61), z něhož vzhledem к nesoudělnosti čísel 20 a 101 vyplývá,
že číslo 62 — 61 je násobkem čísla 101. Musí jít přitom o nulový násobek,
neboť |&2 — 611 9 (61 a 62 jsou číslice!). Platí tedy 62 — 61 =0, takže
rovněž si — S2 = 0, což dohromady znamená, že dvojice (si, 61) a (S2,62)
jsou stejné. Jen v tomto případě je tedy rovnost x\ = X2 možná.

Součet všech magických čísel (tedy čísel tvaru x — 101s-f 206) určíme
výhodně, když čísla nejprve uspořádáme do obdélníkového schématu (po-
dle stejných hodnot s do řádků a podle stejných hodnot 6 do sloupců)

101-2 + 20-0
101-3 + 20-0
101-4 + 20-0

101-2 + 20-1
101-3 + 20-1
101-4 + 20-1

101-2 + 20-2 .

101-3 + 20-2 .

101-4 + 20-2 .

101-2 + 20-9
101-3 + 20-9
101-4 + 20-9

101-17 + 20-0 101-17 + 20-1 101-17 + 20-2 .

101-18 + 20-0 101-18 + 20-1 101-18 + 20-2 ... 101-18 + 20-9

a pak čísla sečteme buď po sloupcích, nebo po řádcích. Rozhodneme se

pro sčítání po sloupcích, přitom budeme brát v úvahu, o kolik se čísla
uvažovaného sloupce liší od příslušných čísel prvního sloupce. Součet čísel
v prvním sloupci je

101-17 + 20-9

101-(2 + 3+ ... + 18) = 101-170,
ve druhém sloupci je součet 101 • 170 + 17-20-1, ve třetím 101 • 170 +
+ 17-20-2, atd. až v posledním (desátém) sloupci je součet čísel roven
101 • 170 + 17-20-9. Součet všech magických čísel je tedy roven

10 • 101 • 170 + 17 • 20 • (1 + 2 + ... + 9) = 187000.
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С - I - 6

V celém řešení budeme předpokládat, že dané délky m a r splňují nerov-
nost m < 2r, jinak žádný čtyřúhelník požadovaných vlastností neexis-
tuje. Strany délky m každého takového čtyřúhelníku jsou totiž tětivami
kružnice o poloměru r a nejvýše jedna z nich může být jejím průmě-
rem.

Zkoumané čtyřúhelníky rozdělíme do dvou skupin podle toho, zda
jsou jejich strany dané délky m sousední, nebo protilehlé.

Libovolný čtyřúhelník z první skupiny označíme ABCD tak, aby pla-
Úhlopříčka rozdělí tento tětivový čtyřúhelník na

dva trojúhelníky ABC a ACD (obr. 6), přitom je jasné, že první z nich,
tilo \AB\ = \BC\ — m.

D t

trojúhelník ABC, je poloměrem r opsané kružnice к a délkou m dvou
jeho stran určen (až na shodnost) jednoznačně, takže má pevně určený
obsah. Proto bude obsah takového čtyřúhelníku ABCD maximální, právě
když bude maximální obsah trojúhelníku ACD. Tento trojúhelník má
určenou délku strany AC, takže jeho obsah bude maximální, právě když
bude maximální jeho výška vи z vrcholu D. Při pevné poloze trojúhel-
niku ABC bod D probíhá ten oblouk AC kružnice к, jenž neobsahuje
bod B, takže výška vd je zřejmě největší, právě když bod D je středem
tohoto oblouku, leží tedy (stejně jako bod В) na ose úsečky AC. (Tvr-
zení zdůvodníme pomocí tečny t ke kružnici k, jež prochází nalezeným
bodem D rovnoběžně s přímkou AC, obr. 6). Tak docházíme к závěru,
že v první skupině má maximální obsah ten čtyřúhelník, který je deltoid
(je-li m J ryj2), respektive čtverec (je-li m — ryj2).
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Přejděme nyní ke čtyřúhelníkům druhé skupiny. Libovolný z nich
označme ABCD tak, aby platilo \AB\ = \CD\ = m (obr. 7).

o
/

Obr. 7

Obrázek ukazuje, jak к takovému čtyřúhelníku ABCD sestrojit po-

mocný čtyřúhelník ABCD, který má stejný obsah jako ABCD, je ve-

psán do téže kružnice к a má sousední strany AB a BC dané délky m.
Konstrukci teď popíšeme a zmíněné vlastnosti čtyřúhelníku ABCD po-
drobně zdůvodníme. Bod C sestrojíme jako obraz bodu C v souměr-
nosti podle osy o úsečky BD\ protože je kružnice к souměrná podle osy
každé své tětivy, platí C G k. Trojúhelníky BCD a DC'В jsou souměrně
sdružené podle osy o, takže mají stejný obsah, tudíž stejný obsah mají
i čtyřúhelníky ABCD a ABCD. Ze zmíněné souměrnosti rovněž ply-
nou rovnosti \CD\ = \BC\ a \BC\ = \DC\, takže čtyřúhelníky ABCD
a ABCD se liší pouze „prohozením“ dvou sousedních stran. Tím jsou po-
třebné vlastnosti čtyřúhelníku ABCD zdůvodněny. Jak už víme z před-
chozího odstavce, čtyřúhelník ABCD má největší možný obsah, právě
když platí rovnost \C'D\ = \AD\, kterou můžeme přepsat jako rovnost
\BC\ = \AD\. Ta nastane, právě když je Čtyřúhelník ABCD rovnoběžník
(neboť od počátku předpokládáme, že \AB\ = \CD\). Každý rovnoběžník
vepsaný do kružnice je ale pravoúhelník (součet protilehlých vnitřních
úhlů tětivového čtyřúhelníku je 180°, takové úhly jsou ale v případě rov-
noběžníku shodné, a tedy pravé). Shrňme výsledek tohoto odstavce: ve
druhé skupině čtyřúhelníků má maximální obsah ten čtyřúhelník, který
je obdélník (je-li m / ryj2), respektive čtverec (je-li m = ry/2).

Celkový závěr: Hledané čtyřúhelníky s maximálním obsahem tvoří
v případě m < 2r, m J ry/2, dvě skupiny: skupinu shodných deltoidů
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S

Obr. 8

a skupinu shodných obdélníků; v případě m — гу/2 jsou všechny hledané
čtyřúhelníky shodné čtverce (obr. 8). (V případě m ^ 2r je množina
uvažovaných čtyřúhelníků prázdná.)

C - S - 1

Trojmístné číslo se zápisem abc má požadovanou vlastnost, právě když
jeho číslice a, 6, c splňují rovnost

100a + 106 + c = 19(a 4- 6 + c)
Protože Ď^9acý9, platí nerovnost 6 + 2c 27. Z rovnosti 9a = 6 + 2c
proto plyne odhad а 3, takže platí a E {1,2,3} (číslice a = 0 není na
začátku zápisu povolena). Pro a = 1 dostáváme rovnici 9 = 6 + 2c, ze
které plyne c 5Í 4; pro každé takové с E {0,1,2, 3,4} je číslice 6 určena
rovností 6 = 9 — 2c. Proto s číslicí a — 1 existuje právě 5 vyhovujících
čísel. Právě tolik je i vyhovujících čísel s číslicí a = 2: z rovnice 18 = 6+2c
totiž plyne с E {5, 6, 7,8, 9} a 6 = 18 — 2c. Konečně pro a — 3 z rovnice
27 = 6 + 2c plyne b — c — 9. Hledaný počet čísel je tedy 5 + 5 + 1 = 11.

Jiné řešení. Součet číslic libovolného trojmístného čísla nepřevyšuje
číslo 27, jehož devatenáctinásobek je 513. Proto každé vyhovující číslo
nepřevyšuje 513, takže součet jeho číslic je nejvýše 4 + 9 + 9 = 22. Protože
nejmenší trojmístný násobek čísla 19 je číslo 114 = 19-6, bude úloha
vyřešena, když zjistíme, kolik čísel tvaru 19s, kde s E {6, 7,8,..., 22},
má součet číslic rovný právě číslu s. Rutinní prověrkou zjistíme, že ze

zmíněných 17 čísel vyhovují právě čísla 114, 133, 152, 171, 190, 209, 228,
247, 266, 285 a 399. Těchto čísel je 11.

neboli 9a — b + 2c.

C - S - 2

Čtyřúhelník EFGH můžeme do daného čtverce ABCD umístit třemi
způsoby:
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1.Dvě strany délky 2 cm leží na protilehlých stranách daného čtverce
(obr. 9). Obsah každého takového čtyřúhelníku (rovnoběžníku) je S = 5 •
■ 2 cm2 = 10 cm2.

CD

В

Obr. 9 Obr. 102.Obě strany délky 2 cm leží na sousedních stranách daného čtverce
a přitom jsou protilehlými stranami čtyřúhelníku EFGH (obr. 10). Ob-
sah takového čtyřúhelníku je

\\EF\ ■ \AG\ + l-\GH\ ■ \AE\ = i • 2cm -\AG\ + \ • 2cm ■ \AE\ й
^ (5 + (5 — 2)) cm2 = 8cm2 < 10 cm2.

S =3.Obě strany délky 2 cm leží na sousedních stranách daného čtverce
a přitom jsou sousedními stranami čtyřúhelníku EFGH (obr. 11). Ozna-

C

В

číme-li po řadě x а у vzdálenosti bodu G od stran AB a AD (tedy
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výšku trojúhelníku EFG na stranu EF a výšku trojúhelníku EHG na
stranu EH), je obsah takového čtyřúhelníku

\\EF\-x+\\AH\-yi2l- ■ 2 ■ 5 = 10 cm2.5 =

Přitom rovnost nastane, právě když x = у = 5 cm, tj. právě když G — C.
Závěr: Největší možný obsah (10cm2) mají všechny rovnoběžníky,

jejichž dvě strany délky 2 cm leží na protějších stranách daného čtverce,
a čtyři deltoidy, jejichž jedna úhlopříčka je zároveň úhlopříčkou daného
čtverce.

C - S - 3

Předpokládejme, že čtverec o straně 6 jednotek je vydlaždičkován a dlaž-
dičkami A a 6 dlaždičkami В (nevylučujeme případ, že a = 0 nebo 6 = 0).
Pro obsah vydlaždičkované plochy pak platí rovnost 36 = 3a+46, ze které
plyne, že číslo a je násobkem čtyř (a číslo 6 násobkem tří). Proto má rov-
nice 36 = 3a + 46 v oboru celých nezáporných čísel za řešení pouze tyto
dvojice (a, 6): (0,9), (4,6), (8,3) а (12,0). Posoudíme dále, zda pro jed-
notlivé dvojice (a, 6) je příslušné vydlaždičkování daného čtverce možné.
(i) 9 dlaždiček B. Vysvětlíme, proč takové vydlaždičkování neexistuje.

Obarvěme jednotkové čtverečky celého čtverce jako obvyklou šachov-
nici; získáme 18 černých a 18 bílých „polí“. Každá dlaždička В pokrývá
tři pole jedné barvy a jedno pole druhé barvy. Připusťme, že celý čtve-
rec pokrývá 9 dlaždiček B, přitom právě x z nich má tu vlastnost, že
pokrývají po 3 černých polích, takže 9 — x z nich má tu vlastnost, že
pokrývají po 1 černém poli. Pro celkový počet černých polí pak platí
rovnost 18 = 3x + (9 — x), odkud x = 9/2, což je spor.

(ii) 4 dlaždičky A a 6 dlaždiček B. Možné řešení vidíte na obr. 12.
(iii) 8 dlaždiček A a 3 dlaždičky B. Možné řešení vidíte na obr. 13.
(iv) 12 dlaždiček A. Možné řešení vidíte na obr. 14.
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Poznámka. Uveďme ještě jiný argument, proč nelze devíti dlaždič-
kami В vyplnit uvažovaný čtverec. Dlaždička, která pokrývá rohové pole,
může být umístěna (až na souměrnost podle úhlopříčky čtverce) jediným
způsobem, např. tak jako dlaždička В v levém dolním rohu čtverce na
obr. 13, pak ale dlaždička B, která v takovém případě pokrývá druhé pole
zleva v dolní řadě, musí být v poloze jako na obrázku. Poslední dvě pole
dolní řady pak už jednou ani dvěma dlaždičkami В pokrýt nelze.

C - II - 1

\<BAK\, (3 =V pravoúhlém trojúhelníku ABK označme a
— \kAKB\ — 90° — a (obr. 15). Stejné vnitřní úhly 90°, a, /3 mají

i trojúhelníky AKL a ADL, neboť jsou dle zadání trojúhelníku ABK
podobné. Všimněme si jejich (ostrých) úhlů u společného vrcholu A.
Protože \<KAD\ — 90° — a = /3, jsou oba úhly KAL a LAD menší
než /3, takže se rovnají úhlu a. Pravý úhel BAD je tedy polopřím-
kami AK, AL rozdělen na tři shodné úhly velikosti cn, odkud a = 30°
(a (3 = 60°). Z pravoúhlých trojúhelníků ADL a ABK pak vyplývá, že
\AK\ = \AB\/cos 30° = 2a/\/3 a \AL\ = |уШ|/cos30° = 2b/y/k. Odtud
s ohledem na podmínku a < b plyne nerovnost \AK\ < \AL\, tudíž přepo-
nou v trojúhelníku AKL je AL (delší z obou stran AK, AL). Pro poměr
délek odvěsny AK a přepony AL pak platí cos 30° = \AK\ : \AL\ = a :b,
takže а : b = \/3 : 2.

Úlohu lze řešit mnoha obměněnými postupy, například rozlišit dva
případy, kdy trojúhelník KAL má pravý úhel při vrcholu К respektive L,
a v každém z nich vyjádřit vnitřní úhly všech čtyř podobných trojúhel-
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níků (ve druhém případě pak ale vyjde a : b — 2 : л/З > 1, což odporuje
zadání úlohy).

С - II - 2

Všimněme si nejdříve, že pro čitatele zlomků z dané rovnice platí vztah
14 + 51 = 65. Proto je řešením každá trojice stejných prvočísel p — q =
= r a navíc pro libovolné řešení platí: jsou-li některá dvě z čísel p, q, r

stejná, je stejné i třetí číslo. Budeme tedy dále předpokládat, že prvočísla
p, q, r splňující danou rovnici jsou navzájem různá (a tedy navzájem
nesoudělná).

Po vynásobení rovnice součinem pqr dostaneme
14qr + 51pr = 65pq,

odkud vzhledem ke zmíněné nesoudělnosti plyne

p | 14 = 2-7, q | 51 = 3 • 17 a r | 65 = 5 • 13.
To znamená, že p G {2,7}, q G {3,17} a r G {5,13}. Nyní můžeme
sestavit a do rovnice dosadit všech osm možných trojic (p,q,r); zjistíme
tak, že vyhovuje jedině trojice (7,17,13).

Prověrku dosazováním můžeme zkrátit tak, že vyloučíme kteroukoliv
z hodnot p = 2, q = 3, resp. r — 5. Například po dosazení r — 5 dostaneme
po vydělení pěti rovnici l4q-\-5lp = 13pq, která nemá celočíselné řešení p
ani pro q = 3 (14 + 17p = 13p), ani pro q — 17 (14 + 3p = 13p). Jiná
možnost: z rovnice lAqr + 51pr — 65pq plyne 2p(q — r) — 7(2qr + 7pr —
— 9pq), takže součin p(q — r) je dělitelný sedmi. Protože však q G {3,17}
a r G {5,13} (viz výše), není rozdíl q — r dělitelný sedmi, proto je sedmi
dělitelné číslo p. Podobně lze zdůvodnit, proč 17 | q a 13 | r.

Jiné řešení. Z dané rovnice vyjádříme r pomocí p a q:
5 • 13 • p ■ q

51р+14д 51p + I4q
V posledním zlomku jsme zvýraznili rozklad čitatele na (čtyři) prvočini-
tele. Takový zlomek bude roven některému prvočíslu r, právě když jeho
jmenovatel bude součinem tří prvočinitelů z čitatele (jiné krácení zlomku
není možné). Hledáme tedy situace, kdy platí některý z případů:

51p + 14g = 5 • 13 • p a r = q,

51p + 14q = 5 • 13 ■ q a r — p,

51p + 14q = 5 ■ p ■ q a r = 13,

5lp + 14q = 13 • p ■ q a r — 5.

65pq
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Snadnou úpravou rovnic zjistíme, že první dva případy nastanou pouze
v situaci, kdy p = q (tehdy ovšem rovněž p = r). Poslední dva případy
vedou к vyjádřením

3•17-p
13p- 14’

3-17-p
resp. q =4 =

bp — 14

ze kterých analogickou úvahou o krácení zlomků (případ p = q již mů-
žeme vynechat) s přihlédnutím к zřejmým nerovnostem 5p — 14 < 17p
a 13p — 14 < 17p dostaneme rovnice

bp — 14 = 3p, resp. 13p — 14 = 3p.

První rovnice má řešení p — 7 (kterému odpovídá q = 17 a r = 13),
druhá rovnice celočíselné řešení nemá.

Odpověď: Všechna řešení (p, g,r) jsou trojice (p,p,p), kde p je libo-
volné prvočíslo, a trojice (7,17,13).

C - II - 3

Rozbor: Kromě hledaného osmiúhelníku ABCDEFGH uvážíme ještě
pomocný osmiúhelník KLMNOPQR, který je rovněž vepsán do kružnice
o poloměru r = 6 a jehož strany splňují podmínky: \KL\ = 3, \LM\ = 4,
\MN\ = 5, \NO\ = 6, \OP\ = \PQ\ = \QR\ = \RK\ (obr. 16). Označ-

me S, resp. T střed kružnice s vepsaným osmiúhelníkem ABCDEFGH,
resp. KLMNOPQR. Podle věty sss platí shodnosti AABS ~ AKLT,
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ACDS ~ ALMT, AEFS ~ AMNT, AGHS ~ ANОТ, a proto jsou
shodné středové úhly ASВ a KTL, CSD a LTM, ESF a MTN, GSH
a NTО. Dále podle věty sss jsou shodné trojúhelníky BCS, DES, FGS
a HAS, stejně jako trojúhelníky OPT, PQT, QRT a RKT. Ze shodnosti
jejich úhlů při hlavním vrcholu S, resp. T proto plyne

= i(360° - \<ASB\ - \<CSD\ - \<ESF\ - \<GSH\) =

= i(360° -\<KTL\ - \<LTM\ - \<MTN\ - \<NTO\) =

= \<OTP\.

\<BSC\

Využili jsme toho, že středy S a T jsou vnitřními body obou osmi-
úhelníků (tudíž součet všech osmi středových úhlů je v obou případech
360°), neboť v opačném případě by jeden z osmi středových úhlů byl ro-
ven součtu sedmi ostatních; musel by to být úhel příslušný tětivě délky 6,
ten je však zřejmě menší než součet úhlů příslušných tětivám délek 3, 4
a 5. Trojúhelníky BCS а ОРТ jsou proto shodné podle věty sus, tudíž
čtveřice shodných stran obou osmiúhelníků mají jednu společnou dél-
ku. Dokážeme-li proto sestrojit pomocný osmiúhelník KLMNOPQR, je
konstrukce osmiúhelníku ABCDEFGH nasnadě.

Konstrukce: Na libovolné kružnici t(T; 6) sestrojíme v jednom směru
body K,L,M,N a O tak, aby \KL\ = 3, \LM\ = 4, \MN\ = 5 a |7VO| -
= 6. Úhel КТО (ten, který neobsahuje body L, M, N) pak rozdělíme na

čtyři shodné díly: nejprve sestrojíme průsečík Q kružnice t s osou úhlu
КТО, pak průsečíky P, R kružnice t s osami úhlů OTQ resp. QTK.
Poté přistoupíme ke konstrukci hledaného osmiúhelníku ABCDEFGH:
na kružnici k(S, 6) zvolíme bod A a pak na ní v jednom směru sestrojíme
postupně body В, C, ..., H tak, aby \AB\ = 3, \BC\ — \OP\, \CD\ = 4,
\DE\ = \OP\, \EF\ = 5, |FG| = \OP\, \GH\ = 6.

Důkaz správnosti: Ze shodnosti sedmi dvojic trojúhelníků AABS ~
~ AKLT, ABCS ~ АОРТ, ..., AGHS ~ ANOT plyne shod-
nost úhlů HSA a RTK, a tedy i shodnost osmé dvojice trojúhelníků
AHAS ~ ARKT. Proto mají délky stran sestrojeného osmiúhelníku
ABCDEFGH (shodné se stranami KLMNOPQR) všechny potřebné
vlastnosti.

Poznámka. O osmiúhelníku KLMNOPQR jsme nemuseli v celém
řešení vůbec mluvit a vést úvahy takto: úhly shodné se středovými úhly
ASB, CSD, ESF, GSH dokážeme sestrojit, pro společnou velikost co
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shodných středových úhlů BSC, DSE, FSG a HSA pak platí rovnice

(1)4cj + \<ASB\ + \<CSD\ + \<ESF\ + \<GSH\ = 360°

kterou lze snadno konstrukčně vyřešit; osmiúhelník KLMNOPQR je
ovšem к tomuto účelu ideální pomůckou.

С - II - 4

Martin vypočítal hodnotu (x + y)z místo x + yz, takže podle zadání platí

(x + y)z — (x + уz) — 2 004, neboli x ■ (z — 1) = 2 004 — 12 • 167,

přičemž 167je prvočíslo. Činitele iaz-1 určíme, když si uvědomíme, že
z je dvojmístné číslo, takže 9 5Í z — 1 ^ 98. Vidíme, že nutně z — 1 = 12
a x — 167, odkud z — 13. Martin tedy vypočítal číslo V = (167 + y) • 13.
Číslo V je tedy čtyřmístné, a poněvadž se čte odpředu stejně jako odzadu,
má tvar abba = 1 001a +1106. Protože 1 001 = 13-77, musí platit rovnost
(167 + y) • 13 = 13 • 77a + 1106, z níž plyne, že číslice 6 je dělitelná
třinácti, takže 6 = 0. Po dosazení dostaneme (po dělení třinácti) rovnost
167 + у = 77a, která s ohledem na nerovnosti 10 ^ у ^ 99 znamená, že
číslice a se rovná 3, tudíž у — 64.

V druhé části řešení jsme mohli postupovat rovněž následovně. Pro
číslo V = (167 + y) ■ 13 vycházejí z nerovností 10 ^ у ^ 99 odhady 2 301 5Í
^ V 3 458. Zjistíme proto, která z čísel 2662, kde 6 £ {3,4,5, 6, 7,8, 9},
a čísel 3663, kde 6 £ {0,1,2, 3, 4}, jsou dělitelná třinácti. I když lze těchto
dvanáct čísel rychle otestovat na kalkulačce, udělejme to obecně jejich
částečným vydělením třinácti:

2662 = 2 002 + 1106 = 13 • (154 + 86) + 66,
3Ш = 3 003 + 1106 = 13 • (231 + 86) + 66.

Vidíme, že vyhovuje jedině číslo 3663 pro 6 = 0, kdy 167 + у = 231, takže
у = 64.

Odpověď: Žáci měli počítat příklad 167 + 64-13, tedy x — 167, у = 64
a z = 13.
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Kategorie В

Texty úloh

В - I - 1

Každou z hvězdiček na místě jednotek čísel ve výrazu

777 777 777 77* 555 555 555 554

777 777 777 77* ~ 555 555 555 559

nahraďte nějakou číslicí tak, aby výraz nabyl co nej menší hodnoty.
(J. Šimša)

В - I - 2

V rovnoramenném lichoběžníku ABCD platí \BC\ — \CD\ = \DA\
a \<DAB\ = \<ABC\ — 36°. Na základně AB je dán bod К tak, že
\AK\ = |AD|. Dokažte, že kružnice opsané trojúhelníkům AKD a KBC
mají vnější dotyk. (J. Zhouf)

В - I - 3

V oboru reálných čísel řešte rovnici

x\x\ — 5x + 7 = 0,

kde [xj znamená dolní celou část čísla x, tedy největší celé číslo k, pro
něž platí к x. (Například [л/2\ = 1 a [—3,1] = —4.) (E. Kováč)

В - I - 4

Číslo an vznikne tak, že za sebe napíšeme prvních n po sobě jdoucích
přirozených čísel, například <213 = 12 345 678 910111213. Určete, kolik
čísel dělitelných 24 se nachází mezi čísly a\, 02, ■. ■, <210 000 • (P. Cemek)
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В - I - 5

Je dána přímka p a mimo ni bod A. Sestrojte lichoběžník ABCD s mi-
nimálním obsahem a ramenem BC na přímce p tak, aby \BC\ = \AC\ a

průsečík E jeho úhlopříček splňoval vztah \BE\ = 3|DD|.
(P. Leischner)

В - I - 6

Určete všechna přirozená čísla M dělitelná 240, pro která má rovnice
M — NSN(x, у) s neznámými x а у právě 1 001 řešení v oboru přirozených
čísel. (Symbol NSN(:r,y) značí nejmenší společný násobek čísel x а у.)

(P. Cemek)

В - S - 1

Zjistěte, kolik řešení má v oboru reálných čísel rovnice

i i xhr HL J 2 004
x =

kde |_xj označuje největší celé číslo, které nepřevyšuje číslo x.

(J. Šimša)

В - S - 2

Uveďte příklad množiny M dvojmístných čísel, jež má maximální počet
prvků a přitom splňuje obě následující podmínky:
(i) Každá dvě čísla z M jsou nesoudělná.
(ii) Změníme-li pořadí číslic libovolného čísla z M, dostaneme opět číslo

z množiny M. (J. Fóldes)

В - S - 3

Je dán lichoběžník ABCD s ostrými úhly při základně AB. Na ní existuje
bod E takový, že kružnice opsané trojúhelníkům AED a EBC mají vnější
dotyk. Dokažte, že bod E leží na kružnici opsané trojúhelníku CDU, kde
V je průsečík přímek AD a BC. (P. Horenský)

В - II - 1

Číslo an vznikne tak, že za sebe zapíšeme prvních n druhých mocnin po
sobě jdoucích přirozených čísel. Např. an = 149 162 536 496 481 100121.
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Zjistěte, kolik čísel dělitelných dvanácti je mezi čísly ai,a2,.. ^100ooo-

(P. Černek)
* 5

В - II - 2

Najděte všechny kvadratické trojčleny ax2 + bx + c takové, že pokud
libovolný z koeficientů a, b, c zvětšíme o 1, dostaneme nový kvadratický
trojčlen, který bude mít dvojnásobný kořen. (E. Kováč)

В - II - 3

Pro dané přirozené číslo n řešte v oboru kladných reálných čísel rovnici

[хл/n2 — lj = nx — 1.

(Symbol |_rj označuje největší celé číslo, jež nepřevyšuje číslo r.)
(J. Šimša)

В - II - 4

Je dán ostroúhlý trojúhelník VВA. Sestrojte tečnový čtyřúhelník ABCD
s minimálním obsahem tak, aby jeho vrcholy C a D ležely po řadě na

polopřímkách opačných к polopřímkám BV a AV. (P. Leischner)
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Řešení úloh

В - I - 1

Označme x а у číslice, které doplníme do čitatele, resp. jmenovatele
prvního zlomku. Protože celý výraz v absolutní hodnotě budeme al-
gebraicky upravovat, kvůli přehlednějším zápisům zavedeme označení
N — 111111111110. Jednotlivá čísla z daného výrazu pak mají vyjá-
dření:

777 777 777 77x = 7N + x,

777 777 777 77y = 7N + y,

555 555 555 554 = 5N + 4,
555 555 555 559 = 5N + 9.

Zkoumaný výraz pak lze zapsat a upravit následujícím způsobem:

|(7N + x){5N + 9) - (5N + 4)(7N + y)\7N + x 5N + 4

(7N + y)(5N + 9)7N + y 5N + 9

| (35A^2 + 5xN + 63N + 9x) — (35iV2 + 5yN + 28N + 4y)|
(7N + y)(bN + 9)

\5 ■ (7 — у + x) ■ N + 9x — 4y\
(7N + y)(5N -f 9)

Označme ještě čitatele a jmenovatele získaného zlomku:

C = |5 • (7 — у + x) ■ N + 9x — 4y\ a J — (7N + y)(5N 4- 9).

Budeme-li za x, у dosazovat různé dvojice číslic, jmenovatel J bude na-

bývat pouze deseti různých hodnot v rozmezí

(7N + 0)(5iV + 9) <í J <í (77V + 9)(bN + 9).

Podívejme se nyní, jak velkých či malých hodnot bude nabývat čitatel C.
Protože číslo 9x — 4у je nejvýše dvojmístné, zatímco číslo N dvanácti-
místné, řád čitatele C bude záviset na tom, zda bude činitel (7 — y + z)
roven nule či nikoli. Proto tyto dvě možnosti posoudíme odděleně.

A. Případ 7 — у + x — 0. Tehdy platí у — x + 7 a zkoumaný čitatel C
je tvaru

C = |5 • 0 • N + (9x - 4y)\ = \9x - 4(x + 7)| = \5x - 28|.

49



Jelikož číslice у (rovná x + 7) je nejvýše 9, je číslice x rovna 0, nebo 1,
nebo 2, takže výraz \Ъх — 281 se rovná 28, nebo 23, nebo 18. Nejmenší
hodnota čitatele C je tudíž rovna 18 a dosáhneme ji jedině pro x = 2
а у = 9. Šťastnou „shodou okolností" má zrovna pro у — 9 jmenovatel J
největší hodnotu, takže

C 18
min

(7iV + 9)(5iV + 9)'J

B. Případ 7—y+x ф 0. Ukažme, že hodnoty čitatele C (tudíž i hodnoty
zlomku C/J) jsou v tomto případě „obrovské" ve srovnání s případem A.
Z nerovnosti 7 — у + x ф 0 plyne odhad \7 — у + x\ ф 1 (číslo 7 — y + x
je celé), tudíž máme

C = |5-(7—y+x)-N+9x—4y\ ф 5-|7—y+x\-N— |9ж—4y\ ф 57V— |9rr—4y\.

Protože x а у jsou číslice, platí zřejmě |9x — 4y\ ф 81. Z posledního
odhadu C a maximální hodnoty J proto plyne nerovnost

C 5N — 81

J - (7ЛГ + 9)(5N + 9) ’

Poslední zlomek je „mnohokrát" větší než zlomek v závěru případu A, ne-
boť oba zlomky mají stejný jmenovatel, zatímco srovnání čitatelů zřejmě
dopadá takto: 5iV —81 18 (nerovnost 5N — 81 > 18 platí již od hodnoty
N = 20).

Závěr: Do čitatele doplníme číslici x — 2, do jmenovatele číslici у = 9.

В - I - 2

V rovnoramenném trojúhelníku AKD známe úhel DAK proti zá-
kladně KD. Můžeme dopočítat zbylé dva úhly při základně (obr. 17):
\<ADK\ = \<AKD\ = i(180° - \<DAK\) = 72°. Čtyřúhelník AKCD
má protější strany AK a CD shodné a rovnoběžné, takže se jedná
o rovnoběžník, tudíž přímky КС a AD jsou rovnoběžné. Úhly DAK
а СКВ jsou tedy souhlasné a úhly СКВ a KCD střídavé, proto
\<CKB\ = \<KCD\ = 36°. Úhel DKC doplňuje úhly AKD а СКВ do
přímého úhlu, jeho velikost je tedy \^DKC\ — 180° — 36° — 72° = 72°.
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Na polopřímce opačné к polopřímce KD zvolme bod L tak, že
\KL\ = |AD|. Potom\<LKB\ = \<AKD\ = 72° a\<CKL\ = \<LKB\+
+ \<CKB\ — 108°. Dopočítáním úhlů v lichoběžníku ABCD dostáváme
\<BCD\ — ^(360° — 2 • 36°) = 144° a můžeme vyjádřit velikost úhlu
BCK: \<BCK\ = \<BCD\ - \<KCD\ = 144° - 36° = 108°. Nyní již
víme, že \KL\ — \CB\ a \<LKC\ = \<KCB\, což znamená, že LBCK je
rovnoramenný lichoběžník, a lze mu tedy opsat kružnici (shodnou s kruž-
ničí opsanou trojúhelníku KBC). Dále můžeme z lichoběžníku LBCK
dopočítat \<KLB\ = |(360° — 2 • 108°) = 72° = \<KDA\. Z této
nosti plyne, že AD || BL, takže trojúhelníky ADK a BLK jsou vzájemně
stejnolehlé podle středu K. Stejnolehlé jsou potom i kružnice jim opsané.
Protože obě procházejí středem К zmíněné stejnolehlosti, mají v tomto
bodě vnější dotyk.

rov-

Jiné řešení. Stejně jako v prvním řešení zjistíme, že \AKD\ = 72°.
Čtyřúhelník AKCD je rovnoběžník (obr. 18), takže |CK\ = |AD|. Z
nosti \CK\ = \BC\ v trojúhelníku KBC usoudíme, že \kCKB\ =
= \KKBC\ = 36°. Proto na základně CD existuje bod X tak, že
\AKX\ - 108° (a \<BKX\ - 72°). Pak \<DKX\ = \<AKX\ -
- \<AKD\ = 108° - 72° = 36°, a tedy \<DKX\ - \<DAK\, takže
úhel DKX je úsekovým úhlem příslušným oblouku DAK v kružnici
opsané trojúhelníku AKD, to znamená, že přímka KX je její tečnou.
Podobně \<CKX\ = \<BKX\-\<BKC\ = 72° —36° = 36° = \<KBC\,
takže KX je i tečnou ke kružnici opsané trojúhelníku KBC. Kružnice
opsané trojúhelníkům AKD a KBC mají tedy společnou tečnu KX

rov-
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procházející společným bodem К. Obě kružnice se tudíž v tomto bodě
dotýkají.

В - I - 3

Označme к = [xj, tedy x = k + a, 0 a < 1. Daná rovnice má potom

tvar (к + ot)k — 5(к 4- o) + 7 = 0. Odtud a —

celá čísla к, pro která platí

к2 — Ък -f 7
. Hledáme tedy

5 — к

к2 — Ък -f 7
0 < (*)< 1.

5 — к

Každou z těchto nerovností vyšetříme odděleně. Protože kvadratický troj-
člen к2 — Ък + 7 má záporný diskriminant, platí к2 — Ък + 7 ^ 0 pro každé
к £ R, takže levá nerovnost v (*) platí, právě když 5 — к > 0, neboli
к < 5. Vyřešme pravou nerovnici:

к2 — Бк + 7
< 1

5 — к

к2 — Ък 4- 7 — (5 — к)
<0,

5 — к

к2 — 4/с + 2
<0,

5 -к

(/с-2 - у/2)(/с-2 + у/2)
< 0.

5 — к
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Podle polohy čísel 2 — \/2, 2 + \/2 a 5 na číselné ose zjistíme, že poslední
nerovnost platí, právě když к E (2 — л/2, 2 + \/2) U (5, oo). Nerovnosti (*)
tedy platí současně, právě když к E (2 — y/2,2 + л/2). Této podmínce
vyhovují pouze tři celá čísla к E {1,2,3}. Pro к = 1 dopočteme a = |,
pro к = 2 vyjde a = | a pro /с = 3 je a = Celkem dostáváme tři řešení

_ 7

Jiné řešení. Jako v prvním řešení označíme к = {xj a z rovnice kx —
7

— 5x + 7 = 0 vyjádříme x ve tvaru x = Nyní hledáme celá čísla
5 — к

7
к, pro která platí к ^ < к + 1. Obě nerovnice jsou splněny jedině

5 — к

pro celá к E {1,2,3}, kterým odpovídají kořeny x E {|,|,|}-

_ 7 7
3+ ^2 ^33’ 2 •4 ’

В - I - 4

Přirozené číslo je dělitelné číslem 24, právě když je dělitelné současně
(navzájem nesoudělnými) čísly 3 a 8. Pro ciferný součet přirozeného
čísla к zaveďme označení S(k). Číslo an je dělitelné třemi, právě když
je třemi dělitelný jeho ciferný součet, tedy číslo 5(1) + 5(2) + ... 4- 5(n).
Zbytek po dělení třemi tohoto součtu závisí pouze na zbytcích (po dě-
lení třemi) jednotlivých sčítanců S{k). Protože při dělení třemi dává
číslo S(k) stejný zbytek jako číslo к (viz návodnou úlohu 1), dávají čísla
5(1), 5(4), 5(7),... zbytek 1, čísla 5(2), 5(5), 5(8),... zbytek 2 a čísla
5(3), 5(6), 5(9),... zbytek 0. Proto například číslo 5(ai4), tedy součet
5(1) + 5(2) + ... + 5(14), dává při dělení třemi stejný zbytek jako součet

(1 + 2 + 0) + (1 + 2 + 0) + (1 + 2 + 0) + (1 + 2 + 0) + 1 + 2.

Podle uzávorkovaných trojic snadno vidíme, že tento součet je dělitelný
třemi. Protože obecně součet S(3k — 2) + S(3k — 1) + S(3k) je dělitelný
třemi pro každé přirozené k, můžeme obdobným způsobem uzávorkovat
každý součet

5(l) + 5(2) + ... + 5(n)
a zjistit, že jeho zbytek při dělení třemi

> je roven 1, je-li n = 3k — 2;
o je roven 0, je-li n — 3k — 1 nebo n = 3k.

Čísla an tedy budou dělitelná třemi, právě když n bude tvaru 3к nebo
3k - 1 (k = 1,2,...).

Nyní rozeberme, kdy budou čísla an navíc dělitelná osmi. Přirozené
číslo je dělitelné osmi, právě když je dělitelné osmi poslední trojčíslí jeho
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zápisu v desítkové soustavě. Naše úvahy budou tedy záviset na počtu
číslic čísla n:

o Alespoň trojmístná n. Pro taková n je tedy an dělitelné osmi, právě
když je dělitelné osmi číslo n.
Protože se zbytky čísel an po dělení třemi opakují po třech, zbytky
po dělení osmi po osmi číslech an, budou se zbytky po dělení čís-
lem 24 opakovat po nej menším společném násobku těchto period,
tedy po dvaceti čtyřech. Pro trojmístná n snadno zjistíme, že pod-
mince v úloze vyhovují čísla tvaru 104 + 24к a 120 + 24к (n musí
být dělitelné osmi a dávat zbytek dva nebo nula po dělení třemi). Do
10 000 máme 413 čísel tvaru 104 + 24к (413 = [^(10 000 — 104)J + 1)
a 412 čísel tvaru 120 + 24k.

t> Dvojmístná n. Aby bylo číslo an dělitelné osmi, musí být děli-
telné čtyřmi. O dělitelnosti čtyřmi rozhoduje poslední dvojčíslí, takže
čtyřmi budou dělitelná právě všechna ta an, pro která je n dělitelné
čtyřmi. Číslo n—1 je pak liché, tedy i an_i je číslo liché a číslo 100an_i
dává zbytek čtyři po dělení osmi. Potom číslo an = 100an_i + n bude
dělitelné osmi, právě když n bude také dávat zbytek čtyři po dělení
osmi, bude tedy tvaru 8k + 4. Spolu s podmínkou na dělitelnost třemi
dostáváme, že vyhovující dvojmístná čísla n mají (stejně jako výše)
periodu 24 a jsou tvaru n = 12 + 24к a n = 20 + 24к, к 6 {0,1, 2,3}.
Do sta to máme 4 + 4 = 8 čísel.

> Jednomístná n. Snadno zjistíme, že ze všech sudých čísel an pro n ^ 8
vyhovuje pouze а§ = 123 456.
Celkem vyhovuje 834 čísel.

В - I - 5

Předpokládejme, že ABCD je hledaný lichoběžník a K, L jsou paty kol-
mic z vrcholů В, D na přímku AC (obr. 19). Z podobnosti pravoúhlých
trojúhelníků BKE a DLE plyne, že délky stran BK a DL, tedy od-
věšen ve zmíněných trojúhelnících, jsou ve stejném poměru jako délky
jejich přepon BE a DE, tedy 3:1. ВК a DL jsou však i výšky v troj-
úhelnících ABC a ACD, a to na společnou stranu AC. Obsahy těchto
trojúhelníků jsou tedy také v poměru 3:1, takže obsah lichoběžníku
ABCD je roven |P, kde P je obsah rovnoramenného trojúhelníku ABC.
Výška tohoto trojúhelníku z bodu A na stranu BC je dána (vzdálenost
bodu A od přímky p). Obsah trojúhelníku ABC bude tedy minimální,
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bude-li minimální délka strany BC, tedy i AC, tedy když úsečka AC
bude kolmá na p.

A В

Obr. 19

Konstrukce. Nejprve sestrojíme bod C (pata kolmice z A na p). Vr-
chol В nalezneme jako průsečík přímky p s kružnicí k(C, \ AC\) (dvě mož-
nosti). Vrchol D je průsečíkem přímky m, vedené bodem C rovnoběžně
s AB, a přímky n rovnoběžné s AC ve vzdálenosti ^\BC\ od vrcholu В
uvnitř poloroviny opačné к ACB.

Úloha má celkem dvě řešení souměrně sdružená podle přímky АС _L p

(obr. 20).
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В - I - 6

Nejprve ukažme, že pro číslo M s prvočíselným rozkladem M — Yl Pí
i= 1

(pí jsou různá prvočísla) je počet řešení rovnice NSN(x,y) = M roven
71

[] (2Ci + 1). Vskutku, každé řešení (x,y) dané rovnice má tu vlastnost,
že libovolné prvočíslo pi (i = 1,... , n) dělí alespoň jedno z čísel x а у

(a to nejvýše v takové mocnině, v jaké dělí M) a žádná jiná prvočísla
П 71

už ani x, ani у nedělí; x а у jsou tedy tvaru x = П PT •> V ~ П Po

Ci

i— 1

1 = 1 1=1

n. Čísla x а у tak jedno-ai: bi £ 14), a navíc max(ai, bi) — Ci, i = 1,..
značně určují n-tice čísel clí a &í a obráceně jsou jimi jednoznačně určena.

* ?

Všechna řešení dané rovnice jsou tedy popsána dvojicemi n-tic přiroze-
ných čísel takových, že na г-té pozici je v obou n-ticích číslo z množiny
{0,... ,с^} a alespoň v jedné z nich se přímo rovná Ci. Takových n-tic

je Yi (2°i + 1): Dvě n-tice čísel (ai, й2, ..., an) a (6i, 62,..., bn) můžeme
i= 1

uvážit jako n dvojic čísel (ai, b\), (<22, b2), ..., (an, 6n). Libovolná dvojice
(di, bi) může nezávisle nabývat (2cí + 1) různých hodnot (0, a), (1, cY), ..

(cí~ 1, с^), (с^, с^), (cí, Ci — 1), ..., (cí, 1), (cí, 0). Podle kombinatorického
pravidla součinu dostáváme výše uvedený počet.

Prvočíselný rozklad čísla 1001 je 7 • 11 • 13. Aby měla daná rovnice
právě 1 001 řešení, musí exponenty Ci z prvočíselného rozkladu čísla M
(obsahujícího dle zadání nejméně tři prvočísla, a to 2, 3 a 5) vyhovovat
rovnici (2cí + 1) = 7-11-13. V prvočíselném rozkladu čísla M tedy

i= 1

musí být zastoupena právě tři prvočísla, a to v mocninách |(7 — 1) = 3,
|(11 — 1) = 5 a |(13 — 1) = 6. Protože M má být dělitelné číslem
240 = 24 • 3 • 5, tedy prvočísly 2, 3 a 5 v odpovídajících mocninách, jsou
jediné možné volby pro M čísla 25 • З3 • 56, 25 • 36 • 53, 26 • 35 • 53, 26 • З3 • 55.

• ?

В - s - 1

Předpokládejme na okamžik, že celé číslo к = [xj známe, dosaďme je do
rovnice jako „parametr11 a získanou rovnici vyřešme:

7 x
x = к 4 ,

2 004’
2 004x = 2 004к + x,

2 004к
x —

2 003
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Budeme-li do posledního vzorce dosazovat jednotlivá celá čísla k, bude
příslušné x skutečně řešením zkoumané rovnice, bude-li se jeho celá část
rovnat právě číslu k, budou-li tedy platit nerovnosti

2 004к
к < < к + 1.

2 003

Zjistíme, která celá к vyhovují oběma nerovnostem. Levá nerovnost je
ekvivalentní s nerovností к ^ 0, pravá nerovnost s nerovností к < 2 003.
Hledaná к jsou tedy právě hodnoty к £ {0,1,..., 2 002}, každá z nich
určuje jediné řešení x, takže všech řešení x zadané rovnice je právě 2 003.
Dodejme, že vyhovující к lze určit rovněž úpravou odvozeného vzorce do
tvaru

. k
— к .

2003’

z něhož je vidět, že číslo к je celou částí čísla x, právě když platí nerovnosti

2 004к
x =

2 003

к
0 < < 1, neboli 0 < к < 2 003.~

2 003

Jiné řešení. Protože pro každé reálné x platí |xj ^ x ^ [x\ + 1,
porovnáním se zadanou rovnicí dodejme к zjištění, že každé řešení x
musí splňovat nerovnosti

0 < < 1, neboli 0 < x < 2 004.~

2 004

Číslo x splňující poslední nerovnosti bude řešením zkoumané rovnice,
právě když hodnota x

X

2 bude celočíselná. Protože platí
2 003xx

x —

2004 2 004

lze poslední podmínku vyslovit takto: číslo 2 003x je celočíselným násob-
kem čísla 2 004. To s ohledem na nerovnosti 0^ 2 003x < 2 003 • 2 004
znamená, že číslo 2 003x je rovno některému z čísel

0 • 2 004, 1 • 2 004, 2 • 2 004, ..., 2 002 • 2 004,

takže zkoumaná rovnice má právě 2 003 řešení

0-2004 1-2004 2-2004

2 003 ’ 2 003

2 002 • 2 004

2 003 ’ ' ‘
* ?

2 003
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В - S - 2

Kvůli podmínce (i) může být v množině M nejvýše jedno z čísel 11,22,
33,..., 99 zapsaných dvěma stejnými číslicemi, která jsou vesměs děli-
telná jedenácti. Kvůli podmínce (ii) a dělitelnosti dvěma tam zas nesmí
být žádné číslo zapsané dvěma různými sudými číslicemi; s jednou sudou
číslicí může být v M nejvýše jedna dvojice čísel a6, ba.

Zbývá posoudit, kolik může množina M obsahovat dvojic čísel ab, ba
zapsaných dvěma různými lichými číslicemi a a b. Žádné z těchto čísel
nesmí být dělitelné třemi (je-li číslo ab dělitelné třemi, je takové i číslo 6a),
proto v úvahu připadá pouze sedm dvojic takových čísel: (13,31), (17, 71),
(19, 91), (35, 53), (37, 73), (59, 95) a (79,97). Kvůli dělitelnosti pěti, sedmi
a devatenácti však může být v M pouze jedna z dvojic (19,91), (35,53)
a (59, 95), tedy nejvýše pět ze všech sedmi vypsaných dvojic.

Celkově zjišťujeme, že množina M obsahuje nejvýše 1 + 2 + 2- 5 = 13
čísel. Příkladem třináctiprvkové množiny je

M = {11, 23, 32,13,31,17, 71, 35, 53, 37, 73, 79, 97}.

(Existují i jiné příklady, naše úvahy však ukazují, že každá třináctiprv-
ková množina M musí obsahovat čísla 13, 31, 17, 71, 37, 73, 79, 97 a jednu
z dvojic (35,53) nebo (59,95); dvojice (19,91) je vyloučena, neboť číslo
91 je násobkem čísla 13.)

В - S - 3

Označme a a /3 po řadě vnitřní úhly při vrcholech А а В (obr. 21). Во-
dem E prochází společná tečna obou uvažovaných kružnic, úhel DEC
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je tedy součtem úsekových úhlů příslušných tětivě DE v jedné kružnici
(s obvodovým úhlem a) a tětivě ЕС v druhé kružnici (s obvodovým
úhlem (3). Jeho velikost je tudíž a + /3. A protože velikost úhlu CVD je
180° — (a + /3), zjišťujeme, že ve čtyřúhelníku CVDE se úhly u protějších
vrcholů E а V doplňují do 180°. To, jak víme, znamená, že CVDE je tě-
tivový čtyřúhelník, tj. bod E leží na kružnici opsané trojúhelníku CDV.

В - II - 1

Jak víme, každé přirozené číslo к dává při dělení třemi stejný zbytek
jako číslo S(k) rovné součtu číslic původního čísla k. Číslo an proto dává
při dělení třemi stejný zbytek jako součet 5(12) + 5(22) + ... + S(n2),
tedy rovněž jako součet l2 + 22 + ... + n2. Dvěma způsoby ukážeme, že
poslední součet je dělitelný třemi, právě když číslo n je tvaru 9к — 5,
9/c — 1 nebo 9k, kde к je přirozené číslo.

Při prvním způsobu využijeme známý vzorec

n(n + l)(2n + 1)l2 + 22 + ... + n2 = (1)6

z něhož plyne, že zkoumaný součet je dělitelný třemi, právě když je součin
n(n + l)(2n + 1) dělitelný devíti. Protože čísla n, n + 1 a 2n + 1 jsou
navzájem nesoudělná, hledáme právě ta n, pro která je dělitelné devíti
jedno z čísel n, n+ 1 nebo 2n+ 1, a to jsou po řadě čísla tvaru 9к, 9Л: — 1,
9A; — 5.

Druhý způsob je založen na pozorování, že zbytky čísel l2, 22, 32, 42,
52, ... při dělení třemi jsou 1,1,0,1,1, 0,..., tedy opakují se s periodou 3.
Skutečně, čísla (к + З)2 а к2 dávají stejný zbytek při dělení třemi, neboť
jejich rozdíl je číslo 3(2к + 3), což je násobek tří. Sčítáním uvedených
zbytků dostaneme postupně zbytky prvních devíti součtů (1): 1, 2, 2, 0, 1,
1, 2, 0, 0; poté se zbytky dalších součtů (1) začnou periodicky opakovat.
(Plyne to z toho, že předchozí součet devíti čísel dává nulový zbytek
a zároveň je počet sčítanců násobkem periody 3 sčítaných zbytků.)

Víme již, která čísla an jsou dělitelná třemi; posoudíme nyní snazší
otázku, která an jsou dělitelná čtyřmi. Ukažme, že to jsou všechna an se

sudým n > 2 (a žádná jiná). Číslo an s lichým n je totiž liché, číslo 02 se
rovná 14 a číslo an se sudým n > 2 končí stejným dvojčíslím jako číslo n2,
takže je takové an (stejně jako zmíněné dvojčíslí) dělitelné čtyřmi.

Spojíme-li výsledky o dělitelnosti třemi a čtyřmi dohromady, dojdeme
к zjištění, že číslo an je dělitelné dvanácti, právě když je číslo n jednoho
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10 nebo 18/c, kde к je libovolné přirozené číslo.z tvarů 18/c — 14, 18/c
Protože 100 000 = 5 556x 18 —8, je mezi přirozenými čísly od 1 do 100 000
právě 5 556 čísel 18/c —14, 5 556 čísel 18/c —10 a 5 555 čísel 18/c, dohromady
je to 16 667 čísel.

В - II - 2

Pro koeficient a musí platit а/0аа / —1, aby všechny uvažované troj-
členy byly skutečně kvadratické trojčleny. Jak víme, kvadratický trojčlen
má dvojnásobný kořen, právě když je jeho diskriminant nulový. Sestavme
proto diskriminanty všech tří trojčlenů se zvětšenými koeficienty:

(a + l)x2 + bc + c má diskriminant D\ = b2 — 4(a + l)c,
ax2 + (b + l)x + c má diskriminant D2 — (b + l)2 — 4ac,
ax2 + bx + (c + 1) má diskriminant D3 = b2 — 4a(c + 1).

Hledáme tedy reálná čísla a, b, c, pro která platí a^O, а / -1 afii =
= D2 — D3 — 0.

Z rovnosti D a, takže D2 = (b + l)2 — 4a2 = (b +D3 plyne c

-Ы — 2a)(6 4-1 + 2a); rovnost D2 — 0 pak znamená, že platí b — ±2a — 1,
a proto Di — (±2a —l)2 —4(a-f l)a = 4a2=f 4a+1 — 4a2 — 4a = l=f 4a —4a,
tudíž Di = —8a + 1 nebo D1 = 1. Proto z rovnosti D1 = 0 plyne
a — 1/8, b = 2a — 1 = —3/4 а c — a — 1/8 (zkouška je snadná, není však
nutná, naším postupem totiž máme zaručeny rovnosti D1 = D3, D2 — 0
a Di 0).

Odpověď: Úloze vyhovuje jediný trojčlen |x2 — |x + |.

.

В - II - 3

Kladné číslo x je řešením rovnice s daným n, právě když je číslo nx

přirozené a jsou splněny nerovnosti

— 1 S хл/п2 — 1 < nx.nx

Pravá nerovnost je splněna pro každé x > 0, neboť zřejmě platí
\Jn2 — 1 < Vn2 = n. Zbývá tedy vyřešit levou nerovnici (vzhledem к ne-
známé x). Po jednoduché úpravě dostáváme

x(n - Vn2 -1) ái,
= n + yn2 — 1.

1
X <

n — yn2 — 1
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y/n2 — 1 je kladný a v součinu se sdru-Využili jsme toho, že výraz n

ženým výrazem n + \Jn2 — l dává číslo 1. Po vynásobení obou stran
odvozené nerovnosti číslem n dostaneme pro přirozené číslo к = nx ekvi-
valentní podmínku

k^n2 + ny/ri2 - 1,

která je splněna právě pro к E {1,2,..., 2n2 — 1}, neboť pro druhý sčí-
tanec z pravé strany poslední nerovnosti zřejmě platí celočíselné odhady

n2 — 1 ^ ny/n2 — 1 < n2
(znovu využíváme pouze nerovnost y/n2 — 1 < n). Všechna řešení dané
rovnice jsou tvaru x = к/n a tvoří tak množinu zlomků

2n2 - 11 2
* • 5

n n n

В - II - 4

Kružnice vepsaná hledanému čtyřúhelníku je kružnicí к připsanou
straně AB trojúhelníku BAV. Ten ze dvou průsečíků osy úhlu AVB
s kružnicí k, který je dál od vrcholu V, označme T (obr. 22). Hledané
body C a D nalezneme jako průsečíky tečny t v bodě T ke kružnici к po
řadě s přímkami VB, VA. Dokažme, že takto sestrojený čtyřúhelník má
ze všech čtyřúhelníků vyhovujících podmínkám úlohy nejmenší obsah.

Označme C, D' vrcholy jiného tečnového čtyřúhelníku s vepsanou
kružnicí к (přímka C'D' je tečnou kružnice k). Bez újmy na obecnosti mů-
žeme předpokládat, že průsečík M tečen t a CD' leží uvnitř úsečky TC.
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To znamená, že platí \MD\ > \MC\ (obr. 22). Označme C" a D" odpo-
vídající paty kolmic spuštěných z bodů C a D' na přímku í; bod C"
leží uvnitř úsečky MC a D" na polopřímce MD vně úsečky MD, takže
\MC"\ < \MC\ < \MD\ < | MD"\ a z podobnosti pravoúhlých trojúhel-
níků MCC" a MD'D" plyne \C'C"\ < \D'D"\. Trojúhelník DMD' má
tudíž větší obsah než trojúhelník CMC'. Rozdíl jejich obsahů je však
roven rozdílu obsahů čtyřúhelníků ABCD' a ABCD, tedy obsah čtyř-
úhelníku ABCD' je větší než obsah čtyřúhelníku ABCD.

Jiné řešení. Stejně jako v prvním řešení označme C, D průsečíky
tečny t připsané kružnice к s rameny úhlu VB, VA. Jsou-li C, D' vrcholy
jiného tečnového čtyřúhelníku s vepsanou kružnicí k, platí pro obsahy
tečnových čtyřúhelníků ABCD a ABCD'

S(ABCD) = S(VCD) - S{VAB),
S(ABC'D') = S(VC'D') - S(VAB).

Stačí tedy ukázat, že pro libovolnou takovou tečnu CD', která není kolmá
na osu úhlu AVB, platí S(VC'D') > S(VCD). To je však zřejmé z obr. 23
(oba šedé trojúhelníky mají díky středové souměrnosti stejný obsah a při-
tom S(yC'D') > S(VCiDi) > S(VCD)).

Jiné řešení. Obsah tečnového čtyřúhelníku ABCD, jehož vepsaná
kružnice má poloměr r, je S = \r{\AB\ + \BC\ + \CD\ + \DA\) —
— ^r(2\AB\ + 2\CD\) = r(\AB\ + \CD\). Obsah tečnového čtyřúhelníku
ABCD splňujícího podmínky úlohy bude tedy nejmenší, právě když bude
nejkratší úsečka CD.
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Uvažujme kružnici připsanou straně CD' trojúhelníku VCD'
(obr. 24). Z vlastností tečen postupně nahlédneme, že je \T\C\ — ^\CD\,

\T2C"\ — \\C"D"\ a také \C'D'\ = |TjT2|. Poslední rovnost plyne ze
známých vlastností vepsané a připsané kružnice, totiž že jejich body
dotyku na společnou stranu jsou souměrně sdružené podle středu strany;
důkaz ovšem vyžaduje trochu počítání:

|TiT2| = \TXC'\ + \CT2\ = \T[C'\ + \C'T'\ = \T{T'\ + 2\T'C'l
\UiU2\ = ICD'l + \D'U2\ = \T[D'\ + \D'T'\ = \T{T'\ + 2\T{D'\.

Ze souměrnosti podle osy úhlu AVB plyne \T\T2\ = \U\U2\, takže
\T'C'\ = \T{D'\. Je tedy \C'D'\ = \T{T'\ + 2\ЦС'\ = \ТгТ2\.

Protože obě kružnice jsou odděleny společnou tečnou CD', nemohou
se dotýkat, takže \CD\ < \C"D"\, neboli \CT\\ < |С"Г2|- To znamená,
že je

\CD\ = 2\TXC\ < \TXC\ + \C"T2\ < ITJTbl = \C'D'l
což jsme chtěli dokázat.
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Kategorie A

Texty úloh

A - I - 1

Určete všechny dvojice (p, q) reálných čísel takové, že rovnice x2 + px +
+ q = 0 má řešení v oboru reálných čísel, přičemž platí: Je-li t kořenem
této rovnice, je |21 — 151 rovněž jejím kořenem. (P. Čemek)

A - I - 2

V rovině daného čtverce KLMN určete množinu všech bodů P, pro něž
(J. Svrček)jsou úhly NPK, KPL a LPM shodné.

A - I - 3

Pro libovolné přirozené číslo n sestavme z písmen А, В všechna možná
„slova“ délky n. Rozdělme je do dvou skupin Sn a Ln podle toho, zda
je v daném slově sudý, resp. lichý počet „slabik“ BA (za sudý povážu-
jeme i počet 0). Například slova BABВВBA a AAAAAAB patří obě do
skupiny Sý, slova AABBABB a BA BAABA patří obě do skupiny Ly.
Určete, pro která n mají skupiny Sn a Ln stejný počet prvků.

(J. Šimša)

A - I - 4

Určete nejmenší reálné číslo p takové, že nerovnost

\Jí2 -f 1 + \/22 + 1 + \/з2 + 1 + ... + \Jn2 -f 1 ^ 2П(П p)
(S. Trávniček)platí pro každé přirozené číslo n.

A - I - 5

Nechť ABCD je tětivový čtyřúhelník, jehož vnitřní úhel při vrcholu В
má velikost 60°.
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a) Jestliže \BC\ = \CD\, рак platí \CD\ + \DA\ = \AB\. Dokažte.
b) Rozhodněte, zda platí opačná implikace. (E. Kováč)

A - I - 6

V oboru reálných čísel řešte soustavu rovnic

2 1 1z2 = - +
o 1 1 2 1x2 = - + y2 = ~ + ~

Z X

1

2 X У4

(J. Simša)

A - S - 1

Nechť P(x) — ax2 + bx+c je kvadratický trojčlen s nezápornými reálnými
koeficienty. Dokažte, že pro libovolné kladné číslo x platí

p(*)-pQ aw»2
(E. Kováč)

A - S - 2

Určete, jakou největší délku může mít úhlopříčka CE konvexního pěti-
úhelníku ABODE, jehož strana AB má délku 6 cm, vnitřní úhly při
vrcholech С a E jsou pravé a úhel ADВ má velikost 120°. (P. Čemek)

A - S - 3

V oboru reálných čísel řešte soustavu rovnic

x2 + 2yz = 6(y + z - 2),
y2 + 2zx = 6 (z + x — 2),
z2 + 2xy = 6(x -fy — 2).

(J. Simša)

A - II - 1

Určete počet všech pětimístných palindromů, které jsou dělitelné čís-
lem 37. (Palindromem nazýváme číslo, jehož zápis v desítkové soustavě
se čte zepředu stejně jako zezadu.) (J. Simša)
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A - II - 2

Pro libovolné přirozené číslo n sestavme z písmen А а В všechna možná
„slova“ délky n a označme pn počet těch z nich, která neobsahují ani
trojici AAA po sobě jdoucích písmen A, ani dvojici ВВ po sobě jdoucích
písmen B. Určete, pro která přirozená čísla n platí, že obě čísla pn apn+\

(R. Kučera)jsou sudá.

A - II - 3

Nechť К je libovolný vnitřní bod strany AB daného trojúhelníku ABC.
Přímka CK protíná kružnici opsanou trojúhelníku ABC v bodě L (L ф
Ф C). Označme ki kružnici opsanou trojúhelníku AKL a &2 kružnici
opsanou trojúhelníku BKL.
a) Dokažte, že přímka AC je tečna kružnice k\, právě když přímka BC

je tečna kružnice &2.
b) Předpokládejme, že přímka AC je sečna kružnice k\. Nechť P (P ф A)

je průsečík přímky AC s kružnicí k\ a Q (Q ф В) průsečík přímky BC
s kružnicí &2. Dokažte, že bod К leží na úsečce PQ.

(J. Simša, J. Zhouf)

A - II - 4

Nechť К, L, M jsou po řadě průsečíky os vnitřních úhlů a, (3, 7 při
vrcholech А, В, C daného trojúhelníku ABC s protějšími stranami BC,
CA, AB. Dokažte, že platí nerovnost

\BC\cos“ + ]£čimsĚ + m.coss>3
\AK\ 2 + \BL\ 2 + \CM\ 2 = '

1

(J. Svrček)

A - III - 1

Určete všechny trojice (x, у, z) reálných čísel, pro něž platí

8 8 z2-A}.x2 + y2 + z2 5Í 6 + min|x2 v
У4

(J. Svrček)
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A - III - 2

Pro libovolné přirozené číslo n sestavme z písmen А а В všechna možná
„slova“ délky n a označme pn počet těch z nich, která neobsahují ani
čtveřici AAAA po sobě jdoucích písmen A, ani trojici BBB po sobě
jdoucích písmen B. Určete hodnotu výrazu

P2004 — P2002 — P1999

P2001 +P2000

(R. Kučera)

A - III - 3

V rovině je dána kružnice к a 121 jejích sečen pi,pz,... ,pi2i- Uvnitř této
kružnice je na každé přímce pi dán bod Ai. Dokažte, že na kružnici к
existuje bod X takový, že úsečka AiX svírá s přímkou pi úhel menší
než 21° pro nejméně 29 různých indexů i. (J. Šimša)

A - III - 4

Zjistěte, pro která přirozená čísla n je součet

1! + 2! +'“+ n!

(E. Kováč)číslo celé.

A - III - 5

Nechť L je libovolný vnitřní bod kratšího oblouku CD kružnice opsané
čtverci ABCD. Označme К průsečík přímek AL a CD, M průsečík pří-
mek AD a CL a N průsečík přímek MK a BC. Dokažte, že body B, L,

(J. Svrček)M, N leží na téže kružnici.

A - III - 6

Nechť R+ značí množinu všech kladných reálných čísel. Určete všechny
funkce /: IR+ —» (R+, které pro libovolná kladná čísla x, у splňují rovnost

z2(/(z) + f{y)) = (x + y)f(f{x)y).

(P. Kaňovský)
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Řešení úloh

A - I - 1

Nechť t, s jsou reálné kořeny dané kvadratické rovnice. Uvažujme nejprve
případ, kdy uvažovaná kvadratická rovnice má dvojnásobný (reálný) ко-
řen. Platí tedy t = s a přitom podle podmínek úlohy t — \2t — 151. Pro
t ^ Щ- dostáváme rovnici t = 2t—15 s řešením t = 15 a pro t < Щ- rovnici
t = — (2í—15) s řešením t = 5. Jim odpovídající kvadratické rovnice mají
tvar (x — 5)2 = x2 — lOx -f 25 = 0 a (x — 15)2 = x2 — 30x + 225 = 0.

Uvažujme nyní případ, kdy uvažovaná kvadratická rovnice má dva
různé reálné kořeny t, s. Rozlišíme tři případy.

> t — |2í — 151 a současně s = |2s — 151. Řešení obou rovnic (viz výše)
tvoří dvojici {t,s} = {5,15}. Odpovídající kvadratická rovnice má
tvar (x — 5)(x — 15) — x2 — 20x + 75 = 0.

> t — |2s — 151 a současně s = |2t — 151. Řešením čtyř soustav rovnic

t = ±(2s — 15), s = ±(2í — 15)

(jež odpovídají různým volbám znamének) dostaneme dvojice (s,ť)
rovné (15,15), (5,5), (3,9) a (9,3), z nichž pouze poslední dvě vy-

hovují původní soustavě a podmínce s ф t. Dodejme, že soustavu
rovnic t = |2s — 151 as = |2ř — 151 lze rovněž řešit graficky
v rovině Ostj do které zakreslíme obě lomené čáry t — |2s — 151
a s = |2t — 151 (obr. 25). Dvojicím (3, 9) a (9, 3) odpovídá kvadratická
rovnice (x — 3)(x — 9) = x2 — 12x + 27 = 0.

л

15

rt = |2s - 151
9

15

5 -

o 1 13—1
s = |2í- 15|

O 3 5 159 1 s

Obr. 25

t> t = |2í — 151 = |2s — 151. Jak už víme, rovnice t — \2t — 151 má
řešení t — 5 a t = 15. Pro t = 5 z rovnice 5 = |2s — 151 plyne s = 5

68



nebo s — 10, pro t = 15 z rovnice 15 = |2s — 151 plyne s = 0 nebo
s = 15. S ohledem na podmínku s ф t tak dostáváme dvě řešení
(í, s) = (5,10) a (í, s) = (15,0). Těmto řešením pak odpovídají po
řadě dvě kvadratické rovnice (x — 5)(x — 10) = x2 — 15x -f- 50 = 0
a (x — 15)x = x2 — 15x = 0.
Závěr: Dané úloze vyhovuje šest dvojic (p, q) reálných čísel, a to dvo-

jice (-10,25), (-30,225), (-20,75), (-12,27), (-15,50) a (-15,0).

A - I - 2

Označme P hledanou množinu bodů a S střed čtverce KLMN. Zřejmě
5 G P (obr. 26).

Dále určíme všechny hledané body P (P ^ S), které leží uvnitř pásu
omezeného rovnoběžkami KN a LM. Ukážeme, že každý takový bod P
leží v polorovině opačné к polorovině MNK. Pro každý bod P uvažova-
ného pásu, který leží v polorovině opačné к polorovině KLM, platí totiž
\<KPL\ > \<KPN\, neboť polopřímka PN leží v úhlu KPL. Podobně
zjistíme, že žádný bod čtverce KLMN kromě jeho středu S nemá danou
vlastnost.

N M

К L

Obr. 26

Leží-li tedy hledaný bod P ve vyšrafované oblasti na obr. 26, jsou
přímky PK a PL podle zadání osami úhlů NPL a KPM. Proto v troj-
úhelníku LPN osa PK úhlu NPL protíná kružnici opsanou tomuto troj-
úhelníku (kromě bodu P) v bodě ležícím na ose strany NL. Tímto bodem
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je ovšem vrchol К čtverce KLMN. Body P, N, К, L tedy leží na téže
kružnici, kterou je kružnice opsaná čtverci KLMN. (Analogický výsle-
dek obdržíme, uvažujeme-li osu PL úhlu KPM.) Bod P proto leží na
kratším oblouku l = MN kružnice opsané čtverci KLMN. Naopak pro

každý bod P £ l platí podle věty o obvodových úhlech (pro shodné tětivy
NK, KL, LM)

\<NPK\ = \<KPL\ = \<LPM\ = 45°.

Tím je hledání bodů P v pásu mezi rovnoběžkami KM a LM ukončeno.
Dále snadno nahlédneme, že libovolný vnitřní bod P každé z polopří-

mek opačných к polopřímkám KM, LN, MK, NL má danou vlastnost.
Ukážeme, že žádný další bod roviny čtverce KLMN uvedenou vlastnost
nemá. Stačí se přitom díky symetrii omezit na jednu z polorovin vyta-
tých osou o strany KL daného čtverce. Protože jsme již vyšetřili celý pás
omezený rovnoběžkami KN a LM, lze (bez újmy na obecnosti) zkoumat
jen body poloroviny opačné к polorovině LMN. Přímky KL, MN, LM,
KM a, LN dělí tuto polorovinu na pět částí (obr. 27), přitom žádný bod
přímek KL, LM a MN danou vlastnost očividně nemá.

o

MN 1

III

Xs
°p

LК

IV

v

Obr. 27
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Ukážeme, že žádný vnitřní bod každé z oblastí I-V roviny čtverce
KLMN není prvkem množiny P. Jestliže P je vnitřním bodem oblasti I,
evidentně platí \-kKPL\ > |<LPM| (obr. 27). Je-li P vnitřním bodem
libovolné z oblastí II nebo III, platí naopak \<KPL\ < \%.LPN\. Pro
libovolný vnitřní bod oblasti IV zase platí \<NPK\ > \<KPL\ a pro
libovolný vnitřní bod P oblasti V platí naopak \<NPK\ < \%.KPL\.
Ve všech pěti uvažovaných případech jsme se však vždy dostali do roz-

póru s podmínkami úlohy.
Tím jsme prozkoumali všechny body roviny čtverce KLMN.

Závěr: Hledaná množina bodů P se skládá ze všech vnitřních bodů
kratšího oblouku MN kružnice opsané danému čtverci KLMN, ze všech
vnitřních bodů polopřímek opačných к polopřímkám KM, LN, MK
a NL a ze středu S daného čtverce (obr. 28).

•5

К L

Obr. 28

A - I - 3

Skupinu Sn rozdělme na dvě části (SA)n a (SB)n podle toho, zda slovo
skupiny Sn končí písmenem A, resp. B. Skupinu Ln rozdělme analogicky
na dvě části (LA)n a (LB)n podle toho, zda slovo skupiny Ln končí
písmenem A, resp. B. Označme dále sn, ln, (sA)n, (sB)n, (lA)n, (lB)n
po řadě počty prvků skupin Sn, Ln, (SA)n, (SB)n, (LA)n, (LB)n. Pro
každé přirozené číslo n pak podle našeho rozdělení platí

sn — (s-í4)n + (SJ5)
ln = (lA)n + (lB)n.

П 1

(1)
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Každé slovo ze skupiny (SA)n+i vznikne tak, že připíšeme písmeno A
buď na konec slova ze skupiny (SA)n, nebo na konec slova ze skupiny
(.LB)n. Platí proto

(sA)n+i — (sA)n -f (lB)n.

Analogicky platí rovněž vztahy

(sB)n+1 = {sA)n + (sB)n,
{lA)n+i — (sB)n + (lA)n,
(lB)n+1 = (lA)n + (lB)n.

(2)

Pro n — 1 mají skupiny následující tvar

0, (LB), =0,(SA), = {A}, (SB), = {В}, (LA)i

a tedy (sA)i = (sP?)i = 1 а (IA), — (IB)i = 0.
Předpokládejme, že pro určité přirozené číslo к obsahují skupiny

(SA)k a (SB)к stejný počet prvků, který označíme p, a zároveň sku-
piny (LA)k a (LB)k mají stejný počet prvků, který označíme q. Navíc
předpokládejme, že platí p ф q, jak je tomu v případě к = 1, kdy p — 1
a q — 0. Do následující tabulky zapišme počty prvků ve skupinách pro
číslan — k,k + l,k + 2,k + 3,k + 4. Přitom pro výpočty hodnot užijeme
vztahy (1) a (2).

к + 4к /c-pl к + 2 к 3n

(sA)n p P + q P + 3g
p 2p 3p + g
q p + q 3p + g

<7 2q p + 3g

2p + 6g 6p + 10g
4p + 4g 6p + 10g
6p + 2g Юр 4- 6g
4p -Ь 4g Юр + 6g

(s-B)n
(lÁ)n
(lB)n

4p 4-4g 6p + 10g 12p+20g
20p + 12g

2p 3p + g

2g p + 3g 4p 4- 4g Юр -f 6gln

Z tabulky lze vyčíst několik poznatků. Protože p ^ g, platí rovněž 2p ф
Ф 2g, 3p + g 7^ p + 3g a 6p + lOg ф Юр + 6g. Vidíme, že Sk ф h,
^fc+i Ф ^fc+i; s/c+2 = &к+з 7^ ^fc+з a ze skupiny (5,A)fc+4 a (SB)k-\-4
obsahují opět stejný počet prvků a skupiny (LA)k+4 a (LB)k+л opět
stejný počet prvků, přitom tyto počty jsou navzájem různé.

Užitím matematické indukce usoudíme, že uvedená tabulka má
všechny zmíněné vlastnosti pro každé к = 4m+l, kde m je celé nezáporné
číslo, takže rovnost sn = ln platí, právě když n = к + 2 = 4m + 3.
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Závěr: Skupiny Sn a Ln mají stejný počet prvků, právě když n —

— 4m + 3, kde m je celé nezáporné číslo.
Jiné řešení. Ze vztahů (1) a (2) plynou pro každé n ^ 2 rovnosti

sn+l = (54l)n4-i + (sB)n+1 = (s7l)n + (lB)n + sn =

— 2sn 4- (IB'jn (s5)n = 2sn -|- ln—i =

— 2sn 2sn_i 4- l-ri—i 4” Sn—i .

Svorkou označený součet je roven počtu všech slov délky n — 1, tedy
číslu 2

rekurentní rovnici

П—1
. Znamená to, že posloupnost zkoumaných čísel {sn} splňuje

П— 1 (n — 2, 3,...), (3)Sn-\-i — 2^72—i "t- 2

jež (spolu s počátečními hodnotami si — 0, S2 — 1) umožňuje postupný
výpočet všech hodnot sn. Podle teorie rekurentních rovnic se dá najít
řešení takové úlohy v explicitním tvaru

it(n - 1)П —1

(%/2)n—1
sn — 2 cos

4
П— 1

z něhož plyne, že zkoumaná rovnost sn = 2
čísla n, jež jsou tvaru 4m + 3. Bez znalosti této teorie se obejdeme tak-
to: vypočteme pomocí (3) několik prvních hodnot sn a zapíšeme je do
tabulky, kam pro porovnání uvedeme i příslušné hodnoty 2
sn — 2

nastane právě pro ta

71— 1
a rozdíl

П —1 .

71 2 3 6 84 5 9 10 11n

0 10 20 36 641 4 120 240 496 1024sn

2n~i 1 2 4 8 16 32 64 128 256 512 1024
гг — 1

sn 2 0-1 -1 2 4 0 -8 -16 -16 04

Tak přijdeme к hypotéze, že hledaná n jsou tvaru 4m + 3, a objevíme
rovněž vlastnosti diferencí sn — 2
dvou). Pokusíme se proto najít závislost mezi čísly sn+4 a sn. Podle (3)
postupně určíme

^n+2 — 2sn+i 2sn -f- 2 ,

sn+3 — 2sn+2 ~ 2sn+i + 2n+1 = 2(2sn+i — 2sn + 2n) — 2sn+i + 2n+1 =

— 2«St2,_j_i 45^ ~f~ 2

■S/i+4 — 2sn4.3 2sn_)_2 4-2 —

= 2(2sn+1 - 4sn + 2n+2) - 2(2sn+1 - 2sn + 2n) + 2n+2 =

= —4sn + 2n+3 - 2n+1 + 2n+2 = —4sn + 2n+3 + 2n+1,

71 — 1 (jsou to až na znaménka mocniny

n+2

73



neboli

s„+4-2’*+3 = -4(sn-2"-1).
Z posledního vztahu okamžitě plyne, že rovnost sn+4 — 2n+3 platí, právě
když sn — 2n_1. Protože z hodnot n = 1,2, 3,4 poslední rovnost platí
pouze pro n = 3, je hypotéza o tom, že hledaná n jsou právě čísla tvaru
n — 4m + 3, dokázána.

A - I - 4

Pro n — 1 má daná nerovnost tvar

\/2 5Í -f 1), neboli p ^ 2>/2 — 1.

Označme p\ = 2\/2 — 1. Zjistili jsme, že žádné číslo p menší než p\

požadovanou vlastnost nemá. Číslo p\ je tedy hledané číslo, pokud uká-
žeme, že pro každé n ^ 1 platí

\/l2 + 1 + \/22 + 1 + \/з2 + 1 + ... + \/n2 + 1 ^ ^n(n + Pí)- (1)

Důkaz provedeme matematickou indukcí.
(i) Pro n = 1 je nerovnost (1) splněna díky způsobu, jakým jsme číslo p\

určili.

(ii) Předpokládejme, že nerovnost (1) platí pro určité přirozené číslo n,
a ukážeme, že platí i pro přirozené číslo n+ 1. Nechť tedy

F(n) = \/l2 + 1 + \/22 + 1 + \/з2 + 1 + ... + v^TT ^

^ -n(n + pi).
(2)

Protože

F(n + 1) = F(n) + л/ (тт. + l)2 + 1,

platí podle indukčního předpokladu (2) a definice p\

F(n + 1) ^ \n{n + 2^ — l) + V(n + l)2 + 1- (3)

Nyní dokážeme nerovnost

Ín(n + 2\/2 — l) + л/(гг_Р1)2 + 1 = ^(п + 1)(п+1 + 2л/2 —l). (4)
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Její úpravou dostaneme nerovnost s ní ekvivalentní

y/{n + l)2 + 1 ^ та + л/2,

o jejíž platnosti se snadno přesvědčíme po umocnění obou stran na
druhou:

(n + \/2)2 = n2 + 2л/2n + 2 > n2 + 2n + 2 = (n + l)2 + 1.

Podle (3) a (4) platí

F{n + 1) ^ i(n + 1)(та + 1 + 2\/2 — l) = i (та + 1) (та + 1 +pi)

což je nerovnost (1) pro hodnotu n + 1.
Závěr: Hledaným reálným číslem je číslo p = 2\/2 — 1.

A - I - 5

Nejprve zvažme, jak může takový tětivový čtyřúhelník ABCD s sede-
sátistupňovým úhlem při vrcholu В a se shodnými stranami ВС a CD
vypadat. Označme к kružnici, jež je čtyřúhelníku ABCD opsána. Protože
\<ABC\ — 60°, je už určena velikost úhlopříčky AC, která je tětivou od-
povídající obvodovému úhlu 60°. Vrchol D pak musí být vnitřním bodem
kratšího oblouku AC kružnice к (v polorovině opačné к АСВ) a vrchol В
je obrazem bodu D v souměrnosti podle přímky SC (obr. 29), kde S je
střed kružnice k.

C

i\\
1' \
1 \ '1

\ \

\ \
В

■

■

■

■ \\■

\S>■

к■
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\У

\

У-, \
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Obr. 29
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|C.DI, jsou obvodové úhly ВАС
a CAD příslušné shodným tětivám shodné. Vidíme tedy, že polopřímky
AD a AB jsou souměrně sdruženy dle osy AC. Označme X obraz bodu D
v této souměrnosti (obr. 29). Bod X zřejmě leží uvnitř strany AB (obraz
kratšího oblouku AC leží celý ve vnitřní oblasti kružnice к), a protože

|BCj, je trojúhelník XBC rovnoramenný. Trojúhelník
XBC je dokonce rovnostranný, protože velikost jeho úhlu při vrcholu В je
60°. Je proto \BX\ = |BCj = |CD|. Ze souměrnosti navíc plyne \DA\ =
= |XA|, takže |CD| 4- \DA\ = \BX\ + \XA\ — \AB\, což je požadovaná
rovnost.

b) Snadno nahlédneme, že opačná implikace neplatí. Stačí vzít ta-
kový čtyřúhelník ABCD, který splňuje předpoklady úlohy, a zároveň
v něm platí |CD| 7^ \DA\ (takový určitě existuje, jak jsme naznačili
hned v úvodu řešení). Prohodíme-li nyní strany CD a DA, tj. nahra-
díme-li vrchol D vrcholem D' souměrně sdruženým s vrcholem D podle
osy úhlopříčky AC (obr. 30), dostaneme tětivový čtyřúhelník ABCD'
s šedesátistupňovým úhlem při vrcholu B, který bude i nadále splňovat
rovnost \CD'\ + \D'A\ — \DA\ + \CD\ = |AB|, ale bude v něm platit
\BC\ = \CD\ = \D'A\ ф |D'Cj.

Protože dle předpokladu \BC\

\CX\ = \CD\

Jiné řešení. Uvažujme sinovou větu v následujícím tvaru, který plyne
z věty o obvodových úhlech: Je-li R poloměr kružnice opsané trojúhelníku
ABC, je siná = \ajR, kde
rovnosti, dostaneme odtud snadno běžné znění sinové věty ze školních
učebnic.)

Označíme-li nyní (p obvodový úhel příslušný shodným tětivám BC
a CD (0° < (p < 60°), snadno zjistíme, že tětivě DA přísluší obvodový

|BCj. (Doplníme-li cyklicky další dvěa —
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úhel 60° — ip a tětivě AB obvodový úhel 120° — <p (obr. 31). Dokazovaná
rovnost je pak dle sinové věty ekvivalentní rovnosti

sin p + sin(60° — p) — sin(120° — p).

Protože sin(120° — p) = sin(60° + p), je uvedená rovnost (po jednoduché
úpravě) ekvivalentní rovnosti

sin p = 2 cos 60° sin p,

která triviálně platí.
Stejně jako v předchozím řešení si uvědomíme, že rovnost \CD\ +

+ \DA\ = \AB\ zůstane zachována, i když v daném čtyřúhelníku vy-
měníme obě strany CD г DA. Nový čtyřúhelník zůstane tětivový, ve-
likost jeho vnitřního úhlu při vrcholu В se nezmění, ale místo rovnosti
|J3Cj = \CD\ bude splněna rovnost \BC\ — \DA\.

Jiné řešení. Označme délky stran čtyřúhelníku ABCD, který splňuje
podmínky úlohy, obvyklým způsobem a, b, c, d. Protože vnitřní úhly při
vrcholech В a D mají velikost 60°, resp. 120°, z kosinové věty pro troj-
úhelníky ABC a CDA plyne dvojím vyjádřením hodnoty |ACj2 rovnost

a2 + b2 — ab — c2 + d2 + cd. (6)

a) Jestliže b = c, lze z rovnosti (6) postupně odvodit:

a2 -\- c2 — ac — c2 + d2 + cd,
a2 — d2 = ac+ cd,

(a — d) (a + d) = c(a + d),
a — d = c.

Rovnost a = c + d, kterou jsme měli dokázat, tedy platí.

b) Jestliže platí a = c + d, dostaneme po dosazení za a do rovnosti (6)

(c + d)2 + b2 — (c -f d)b — c2 + d2 + cd.

Odtud po úpravě obdržíme vztah (6 — c)(b — d) — 0, z něhož plyne, že
platí b = c nebo b = d. Opačná implikace tedy obecně neplatí.

77



A - I - 6

Jsou-li čísla x, у, z řešením dané soustavy, zřejmě platí xyz ф 0. Vyná-
sobme proto jednotlivé rovnice činiteli уz, zx resp. xy a v oboru nenulo-
vých reálných čísel řešme ekvivalentní soustavu rovnic

x2yz — у + z xy2z — x + 2, xyz2 = x + y. (1)

Sečtením levých a pravých stran této soustavy rovnic získáme po úpravě
rovnici

(xyz — 2)(x + у + z) = 0.

Odtud vidíme, že platí xyz — 2 nebo x + у + 2 = 0.
o Nechť xyz = 2. Po dosazení za součin xyz v soustavě (1) dostaneme

2x — у + z 2y = x + 2, 2z — x + y,

což je ekvivalentní se soustavou

3x = x + y + z, 3y = x + y + z, 3z = x + y + z.

Odtud plyne x — у — z. S ohledem na podmínku xyz = 2 dostáváme
\/2. Zkouškou ověříme, že trojice (v^, \/2, \/2) je

skutečně řešení soustavy (1), a tedy i původní soustavy rovnic.
t> Nechť x + у + z = 0. Z první rovnice soustavy (1) plyne x2yz = —x,

odkud s ohledem na podmínku x ф 0 dostaneme xyz — — 1. Ověřme,
že každá trojice nenulových reálných čísel (x, у, z) splňující soustavu
dvou rovnic

X = у = z

(2)X + у + 2 = 0, xyz = — 1

je řešením původní soustavy. Z rovností (2) totiž plyne

1 1 у + z
- + - =

—x
= x2

— 1/xУ z yz

(s ohledem na symetrii zadané soustavy stačilo ověřit jednu rovnici).
Soustava rovnic (2) má v oboru nenulových reálných čísel nekonečně

mnoho řešení, která získáme například tak, že jednu proměnnou (např. z)
zvolíme jako parametr. Tím dostaneme soustavu

1
X + у = —2, ХУ = -

2
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Po dosazení za x z první rovnice do druhé dostaneme

1
(y + z)y = -,

z

tedy
2 1

у +yz (3)= 0.
z

Jedná se o kvadratickou rovnici s neznámou у a parametrem z. Její diskri-
minant je roven D = z2 + 4/z. Nutnou a postačující podmínkou к tomu,
aby tato rovnice měla reálné kořeny, je nerovnost D ěl 0. Vyřešením
nerovnice (z3 + 4)/z ^ 0 dostaneme pro parametr z podmínku

zG (—oo, — v^4) U (0, oo). (4)

Za podmínky (4) má kvadratická rovnice (3) kořeny

-z + л/z2 + 4/z -z - л/z2 + 4/z
Уi = а у2 =

2 2

kterým podle vztahu x — —y — z odpovídají hodnoty

-z - y/z2 + 4/z -z + yjz2 + 4/z
Zi = a £2 =

2 2

přitom pouze v případě z = — v^4 platí (x\,y\) = (х2,г/г)-
Závěr: Daná soustava má řešení x — у — z — \/2. Všechna ostatní

řešení jsou trojice (x, y, z) tvaru

— z± /z2 + 4/z —z=Fa/z2 + 4/z
z(x,y,z) = 2 2

kde z je libovolné číslo splňující podmínku (4).

A - S - 1

Protože P(x) je kvadratický trojčlen s nezápornými koeficienty, je nutně
a > 0.

Nechť x je libovolné kladné reálné číslo a n přirozené. Protože

2
1

0 ^ ( \/x™ -2,
xn
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platí

4г^2>xn
xn + (1)

přitom rovnost nastává, právě když y/x™ — I/y/x™, tj. když x = 1.
Protože čísla a&, bc a ca jsou podle předpokladů úlohy nezáporná,

užitím nerovnosti (1) dále platí

P^‘Pil) =(ax2 + bx + c)(a^+bl+c) =
= a2 + b2 + c2

^ a2 + b2 + c2 + 2ab + 2bc 4- 2ca — (a + b + c)2 — (P(l))2.

+ ab(x H—j + bc(x H—^ + ca(^ 2 1X2 + -7Г >
X2

Rovnost nastává, právě když x = 1, nebo ab = bc — ca = 0, což s ohledem
na podmínku a > 0 dává b = c = 0.

Pro libovolné kladné reálné číslo x tedy platí

í>W-p0ž(p(i))2
přičemž rovnost nastává právě tehdy, je-li x = 1 nebo b — c — 0.

Poznámka. Úlohu lze řešit také užitím Cauchyovy nerovnosti:

P^'P(Í) =(ax2 + bx + c)(a^2+bl+c) =

((Vaz)2 + (Vfa)2 + (л/З)2) ((^J + + (v^)2 2
2

^ ^y/ax ■ + Vbx ■ \J~—- + Xc-V~c
X

= (a+6 + c)2 = (P(l)f.

A - S - 2

Nechť ABCDE je libovolný konvexní pětiúhelník s uvažovanými vlast-
nostmi. Označme P, R po řadě středy stran AD, BD trojúhelníku ABD
(obr. 32). Pak bude

\CR\=l-\BD\, |P£| = i|AD|, (1)\РЩ = \\AB\
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protože PR je střední příčka trojúhelníku ABD a protože v pravoúhlém
trojúhelníku je střed přepony zároveň středem jeho opsané kružnice
(Thaletova věta).

D

120°

Erf^-
P К

PQ

A В

Obr. 32

Z trojúhelníkové nerovnosti je zřejmé, že pro délku úhlopříčky CE
platí

\CE\ O \CR\ + \RP\ + \PE\ = s,

kde délka s lomené čáry CRPE je podle (1) zároveň rovna polovině
obvodu trojúhelníku ABD.

Dále zkoumejme, kdy bude mít trojúhelník ABD daných vlastností
(|AJ3| = 6cm, \<ADB\ = 120°) největší obvod. Označíme-li a a /3
(obr. 32) velikosti vnitřních úhlů při vrcholech А а. В trojúhelníku ABD
(a + /3 — 60°), dostaneme ze sinové věty v trojúhelníku ABD

sin/?
sin 120°

siná
\AD\ = \AB\\BD\ = \AB\

sin 120°

Sečtením obou předchozích rovností vyjde
sin a + sin (3

\AD\ + \BD\ = \AB\ sin 120°

sin 30°
= 2|Л5| cos

sin 120°

přičemž rovnost v poslední nerovnosti nastává, právě když cos | (a — (3) =
= 1, tj. pro a = (3 = 30°. Trojúhelník ABD má tedy největší obvod,
právě když je rovnoramenný a jeho úhly při základně AB mají veli-
kost 30°. Vzhledem к tomu, že \ AB\ = 6 cm, platí pro libovolný pětiúhel-
nik ABODE požadovaných vlastností

= \(\AB\ + \AD\ + \BD\) й l-\AB\ (l + 2^) =
= (3 + 2\/3)

\CE\ й s

cm.
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Přitom pro uvažovaný pětiúhelník ABODE v situaci, kdy je troj-
úhelník ABD rovnoramenný a vrcholy С, E leží na přímce RP, skutečně
platí \CE\ = (3 + 2y/3)

Největší délka úhlopříčky CE pětiúhelníku ABODE vyhovujícího
podmínkám úlohy je tedy (3 + 2y/Š)

Poznámka. V druhé části řešení jsme (pro konkrétní hodnotu oj =
= 120°) ukázali, že trojúhelník ABD s danou stranou AB a daným
úhlem oj při vrcholu D má největší obvod, právě když je rovnoramenný
se základnou AB. To plyne i z následující úvahy:

Bod D probíhá oblouk, z něhož je úsečku AB vidět pod úhlem oj.
Na polopřímce opačné к DA (obr. 33) sestrojme bod К tak, aby \DB\ =
= \DK\. Z rovnoramenného trojúhelníku BDK plyne, že \<AKB\ =
= \oj. Bod К proto leží na oblouku, z něhož je úsečku AB vidět pod
úhlem Délka \AK\ = \AD\ + \BD\ bude tudíž největší, právě když
bude úsečka AK průměrem AK* zmíněného oblouku; tehdy je bod D
středem D* příslušné kružnice, takže platí \AD*\ = \BD*\ = \D*K*\.

cm.

cm.

A В

Obr. 33

A - S - 3

Odečtením první rovnice dané soustavy od druhé dostaneme rovnici

y2 — x2 + 2zx — 2yz = 6 (z + x — 2) — 6 (y + z — 2),
kterou upravíme na tvar

(x — y){x -f- у — 2z + 6) = 0.
Podobně odečtením první rovnice soustavy od třetí dostaneme

{x — z){x + z — 2y + 6) = 0.
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Daná soustava je proto ekvivalentní se soustavou rovnic

x2 + 2yz — 6 (y + z — 2) — 0,
(x - y)(x + у - 2z + 6) = 0,
(x — z)(x + 2 — 2y + 6) = 0.

(2)

Vzhledem ke druhé a třetí rovnici této soustavy je možno rozlišit čtyři
případy.

1. Nechť (x — У = 0) Л (x — z — 0). Pak x = у = z a dosazením za, у a, z
do první rovnice soustavy (2) dostaneme rovnici

3x2 - 12x + 12 = 0,

která má dvojnásobný reálný kořen x = 2. Proto trojice (x, y, z) —

— (2, 2,2) je v tomto případě jediným řešením dané soustavy.
2. Nechť (x — у — 0) Л (x + z — 2y -1- 6 = 0). Pak y = xaz = x — 6.

Dosazením do první rovnice soustavy (2) dostaneme po úpravě rovnici

3x2 - 24x + 48 = 0,

která má dvojnásobný reálný kořen x = 4. Proto trojice (x, y, z) =
= (4,4, —2) je v tomto případě jediným řešením dané soustavy.

3. Nechť (x+y — 2z + 6 = 0)A(x —z — 0). Podobně jako v předcházejícím
případě dostaneme jediné řešení (x, y, z) = (4, —2,4).

4. Nechť (x + у — 2z + 6 = 0) Л (x + -z — 2y + 6 = 0). Odečtením
druhé rovnice od první dostaneme, že 3y — 3z = 0, tedy у = z.
Z prvního předpokladu tak máme у = x + 6. Dosazením do první
rovnice soustavy (2) dostaneme po úpravě rovnici

3x2 + 12x +12 = 0,

která má dvojnásobný reálný kořen x = — 2. Proto trojice (x, y, z) =
= (—2,4,4) je v tomto případě jediným řešením dané soustavy.

Daná soustava má v oboru reálných čísel čtyři řešení (x, y, z), kterými
jsou trojice (2, 2,2), (4,4, -2), (4, -2,4) a (-2,4,4).

Poznámka. Pokud si všimneme, že sečtením všech tří rovnic dané
soustavy dostaneme po úpravě

(x + у + z - 6)2 = 0,
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pak např. z podmínky 2 + a:-2?/ + 6 = 0 přímo plyne у = 4, což před-
cházející úvahy zjednoduší.

A - II - 1

Každý pětimístný palindrom p se dá zapsat ve tvaru p

6, c jsou číslice v desítkové soustavě, aýO. Z vyjádření
abcba, kde a,

p= 10 001a + 1 0106 + 100c = 37(270a + 276 + 3c) + ll(a + 6 - c)

plyne, že p je dělitelné číslem 37, právě když je číslem 37 dělitelné číslo
a + 6 — c. Vzhledem к tomu, že a, 6, c jsou číslice (а ф 0), je — 8 51 a + 6 —
— c ^ 18. Proto je číslo a + 6 — c dělitelné 37, právě když a + 6 — c = 0,
neboli c = a + 6. Číslice a, 6 tedy musejí splňovat podmínku a + 6 5Í 9.

Ke každému a 6 {1, 2, 3,..., 9} lze číslici 6 zvolit 10 — a způsoby tak,
aby platilo a + 6 ^ 9 (6 6 {0,1, 2,..., 9 — a}). Číslice c je pak určena
jednoznačně jako součet a + 6. Palindromů s číslicí a = 1 je proto 9,
palindromů s číslicí a — 2 je 8 atd.; konečně pro číslici a = 9 existuje
právě jeden palindrom.

Počet všech pětimístných palindromů, které jsou dělitelné číslem 37,
je tedy

9 + 8 + 7 + . .. + 1 = 45.

A - II - 2

Počet vyhovujících slov délky n ^ 2, která končí dvojicemi písmen AA,
AB, BA označme postupně (aa)n, (a6)n, (6a)n; počet vyhovujících slov
délky n ^ 1, která končí písmenem A, resp. jB, označme an, resp. 6n. Pro
všechna přirozená čísla n ^ 2 platí:

an — (aa)n + (6a)n,
bn — (a6)n,
Pri = ~Ь — (CLCL^n (Ьа)п 4" (ab)n.

Existují právě dvě vyhovující slova délky jedna, a to slova Л a B,
a právě tři vyhovující slova délky dva, a to slova AA, ZM, proto
«i = 6i = 1, pi = 2, (аа)г = (a6)2 = (6a)2 = 1, a2 = 2, 62 = 1, p2 = 3.
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Každé vyhovující slovo délky n ^ 3, které končí dvojicí písmen AA,
dostaneme tak, že připíšeme písmeno A na konec slova délky n — 1 kon-
čícího dvojicí BA. Proto platí

— (ba)n—\.

Analogicky zjistíme, že pro každé n ^ 3 platí rovněž vztahy

(ba)n = (a6)n_ i,

(ab)n = (aa)n_i + (ba) n — 1 •

Protože nás zajímá pouze parita přirozeného čísla pn a výrazů, pomocí
kterých ho počítáme, můžeme na základě uvedených rovností sestavit
tabulku ze symbolů S a L, jimž odpovídají sudá resp. lichá čísla. Dosta-
neme

123456789n

LLLSSLSĚL
LLSSLSLÍL

(aa)n
(ba)n Ш

m s s l s l l тш(ab)n
LSSLSLLLSan

LLSSLSLLLbn
S L S L L Lis SÍLPn

Tato tabulka je nutně periodická, protože existuje jen osm různých uspo-

řádaných trojic písmen S a L, takže nejdéle po osmi sloupcích se vzhle-
dem к dokázané rekurenci začnou hodnoty posloupností ((aa)n), ((ba)n),
((ab)n) opakovat. Hodnoty posloupností (an), (6n), (pn) jsou z nich odvo-
zeny, takže se začnou opakovat rovněž. Z tabulky vidíme, že její perioda
je 7 (první dva shodné sloupce jsou pro n = 2an = 9).A protože v pří-
slušném úseku tabulky je dvojice sousedních sudých čísel ^7, p$ jediná,
jsou obě čísla pn a pn+i sudá, právě když je číslo n dělitelné sedmi.

Poznámky. Z výše uvedených vztahů můžeme odvodit rekurentní rov-
nice pro čísla an a bn. Pro všechna přirozená čísla n ^ 4 platí

d-n — (aa)n “b (ba)n — {boi')
= (ab)n-2 + (ab)

+ (ab)n-i —

— bn—2 “t” bn — i,

bn — (cáb)n — (au)n_i T (ba)n—i — ®n—i-

71—1

n — 1

Tyto rovnice také můžeme odvodit následující úvahou. Vyhovující slovo
končící písmenem A má koncovku BA nebo BAA, počet slov prvního
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typu je fon_i, slov druhého typu je 6n-2- Vyhovující slovo končící pišme-
nem В má nutně koncovku AB a těchto slov je an_i.

Ze vztahů uvedených v předchozím odstavci se dá odvodit rekurentní
rovnice přímo pro čísla pn. Pro každé п'А 4 totiž platí

— ^n —1 bn—2 ®n—2 d~ dn_3,

^n ~~ &n— 1 — ^n—2 ~b bn—3-

Vzhledem к tomu, že pn — an + bn, dostaneme sečtením těchto vztahů
rovnici

Pn — Pn—2 Pn—3)

kterou můžeme odvodit i takto: Každé vyhovující slovo délky n má právě
jednu z koncovek ABAA, ABA, BAB, BAAB, přitom koncovky ЛБЛ
a BAB má právě pn_2 slov, zatímco koncovky ABAA a BAAB má právě
Pn—3 slov.

A - II - 3

а) V tětivovém čtyřúhelníku ALBC platí
a /3 — \-KABC\ = |<ALC| (obr. 34). Z rovnosti obvodového a příslušného
úsekového úhlu pro tětivu AK v kružnici Zci vyplývá, že přímka AC je

\<BAC\ = \<BLC\a =
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tečnou ke kružnici Ay, právě když platí \%.CAK\ = \-kALK\, tj. právě
když a = /3. Z analogických důvodů je přímka BC tečnou ke kružnici
právě když /3 — a. Přímka AC je proto tečnou ke kružnici k\, právě když
přímka BC je tečnou ke kružnici k2, což jsme chtěli dokázat.

\<BAC\ = \<BLK\ a (3 =b) Podle části a) víme, že platí a
= \кАВСI = \<ALK\. Bez újmy na obecnosti můžeme předpokládat,
že platí a < (3. Tečna v bodě A ke kružnici k\ svírá s tětivou AK úse-
kový úhel /3 > a, proto leží bod P na polopřímce AC, zatímco bod Q
leží analogicky na polopřímce opačné к BC. Z tětivových čtyřúhelníků
ALKP a BQLK plynou rovnosti \-кКРС\ = /3 a |%.BQK\ = a (obr. 34).
Trojúhelníky APK a QBK se proto shodují ve dvou úhlech (u vrcholů A,
Q а P, B). Shodují se tedy i v úhlu při společném vrcholu K:

\<AKP\ = \<BKQ\ {= (3 — a).

Odtud plyne, že body P, К, Q leží na téže přímce. Tím je tvrzení části b)
dokázáno.

Poznámka. Dokázali jsme vlastně následující tvrzení: Je-li trojúhelník
ABC rovnoramenný s rameny AC, BC, dotýkají se obě ramena odpo-
vídajících kružnic k\ a /c2 ye vrcholech A a B] není-li rovnoramenný,
protínají jeho strany AC a BC odpovídající kružnice k\ a k2 v dalších
bodech P a Q (P 7^ A, Q ф B), přičemž jejich spojnice PQ prochází
daným bodem K.

A - II - 4

Užitím sinové věty v trojúhelnících BKA a CKA dostaneme

sinfI BK\ \CK\ sinf
a

\AK\ \AK\sin (3 siny

Sečtením obou předešlých rovností vyjde

\BC\
= \BK\ \CK\

\AK\ \AK\ \AK\
1 1

- sin —

2 \sin(3 ' siny

Vynásobíme-li obě strany poslední rovnosti výrazem 2cosf, obdržíme
po úpravě

JBC |
\AK\ 2

1 1
(1)cos — = sin a

sin /3 sin у J
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Cyklickou záměnou získáme další dvě analogické rovnosti

COS ^ = sin P ^ 1 1
(2)

siny sin a J ’\BL\

2m 1 17
(3)cos — = sin 7

sin a ' sin /3 J '
Sečtením rovností (1), (2) a (3) dostaneme po dělení dvěma rovnost

\CM\

mcos°+mcosE+ \AB\
2 + \BL\ 2 + \CM\

7
cos — =

\AK\
1 /sin a sin/?
2 ýsin/? siná

1 /sin (3 siny
2 l siny sin/3

1 í Siny Sin O!
2 \sino! siny

Vzhledem к tomu, že sin a, sin/?, siny jsou kladná čísla, můžeme každý
ze tří výrazů v závorkách na pravé straně poslední rovnosti odhadnout
zdola číslem dvě (využíváme známou nerovnost а/Ь+6/а ^ 2, která je pro
libovolná kladná čísla a, b ekvivalentní se zřejmou nerovností (a — b)2 ^
^ 0). Odtud plyne požadovaná nerovnost a důkaz je hotov.

+ - + -

A - III - 1

Vyhovuje-li nějaká trojice (x,y,z) E IR3 (xyz ф 0) podmínkám úlohy, je
řešením následující soustavy nerovnic

x2 + y2 + z2 'š G + x2 —

8 8

JI + у2 + z2 й 6,
4+z2S6,У4

X2 + У2 + -^4 й 6.X4

Sečtením všech tří nerovnic této soustavy dostaneme nerovnici

x4 ’
8

x2 +X2 + y2 + z2 ^ 6 + y2 tj.УА ’
8

X2 + У2 + z2 й 6 + z2 7Z4

М?+га+Ф188 8
-x + У2 + У2—т+Х2+Х2

X4

Výrazy v každé ze tří závorek na levé straně lze odhadnout užitím ne-
rovnosti mezi aritmetickým a geometrickým průměrem trojice kladných
čísel. Obdržíme tak postupně

+
У4

2М?+*2+Ф8 2
+ У + у

У4
|_ ф2 -f- X218 > +

X4

Í з 8> 3 \ — ■ х2 ■ X2 + 3 ř —г ■ у2 ■ у2 + 3 — • z2 ■ z2 = 18.
У4 z4X4
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Odtud plyne, že v každé ze tří použitých nerovností mezi aritmetickým
a geometrickým průměrem nastává rovnost, takže příslušná trojice čísel
má vždy tři stejné složky. Musí tedy současně platit

88 8
= x2

z4x4 У4

tj-
x6 = y6 — z6 = 8.

Z poslední podmínky bezprostředně plyne

(x,y,z)=(e1у/2,£2у/2,£зу/2), kde £ {-1; 1} pro i = 1, 2, 3. (1)

Vzhledem к užité důsledkové úpravě je nutno provést zkoušku, po-
mocí níž zjistíme, že všech 8 trojic reálných čísel určených vztahem (1)
vyhovuje podmínkám úlohy.

Jiné řešení. Nechť trojice (x, y, z) £ IR3 (xyz ф 0) je řešením dané
úlohy. Označme

A — min{x2, y2, z2} > 0.

Potom platí

8 8 8 8
min < x2 — -j,y2x4

= A лг

A2'У4 z4

Proto též

2
+ y2 + z2 ^ 6 + min |x2 8 8

A + A + A 5Š x
z4

= 6 + A- —r
A2'

Po úpravě dostaneme nerovnost, jejíž pravou stranu odhadneme užitím
nerovnosti mezi aritmetickým a geometrickým průměrem:

8
6^A + A+^^3^JA-A- — -6.

To znamená, že ve všech užitých nerovnostech musí nastat rovnost, proto

2 = A = x2 = y2 = z2.
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Zkouškou opět ověříme, že všechny trojice určené vztahem (1) jsou
řešením zadané nerovnice.

A - III - 2

Počet vyhovujících slov délky n, která končí písmenem A, resp. B,
označme an, resp. bn. Platí

(1)Pn — ®n b* bn.

Nechť n ^ 4. Vyhovující slovo končící písmenem A má jednu z kon-
druhéhocovek BA, BAA, nebo BAAA. Počet slov'prvního typu je bn

typu fen-2, třetího typu fen-3- Proto
-i)

(2)— fen—i ~t~ fen—2 V fen—3 •

Podobně pro n ^ 3 má vyhovující slovo končící písmenem В jednu
z koncovek AB, ABB, tudíž

(3)bn = a

Nechť dále n'A 6; každé z čísel bi ve vztahu (2) vyjádřeme pomocí (3)
dostaneme tak

i + an-2-n —

&п — fen—i + fen—2 "b fen—3 —

— (^n—2 “4~ —3) "4" (j-^n — 3 d'n—4) ”4“ (^71—4 “4“ — 5) ““

— cl ji 2 I 2an 3 I 2an ^ | 5*

(4)

Podobně dostaneme

bn — ®n—1 “I” &n—2 —

— (bn-2 + fen-3 + fen-4) + (fen-3 + fen—4 + fen-б) =

— —2 "4“ 2bn—3 + 2677,—4 + —5*

(5)

Sečtením vztahů (4) a (5) dostaneme dle (1)

Pn — Pn — 2 *4” 2Pn — 3 + ^Pn—4 "4“ Pn — 5*

Proto pro libovolné přirozené číslo n ^ 6 platí

Pn Pn—2 Pn—5
= 2,

Pn — 3 ~b Pn—4

tudíž zadaný zlomek má hodnotu 2 i pro n = 2 004.
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A - III - 3

Pro libovolné г, 1 ^ i й 121, označme množinu všech bodů X
kružnice к, pro něž úsečka AiX svírá s odpovídající přímkou pi úhel
velikosti menší než £ = 21°. Množina M; je zřejmě tvořena dvěma
oblouky XíYí a U\Vi (obr. 35). Oběma uvažovaným obloukům kruž-
nice к odpovídá dvojice středových úhlů XíSYí a UíSVí, kde S je
střed dané kružnice k. Ukážeme, že pro každé i € {1,2,..., 121} platí
|<XiSY;| + \<UiSVi\ = 4e = 84°.

V trojúhelníku AYYíUí je součet velikostí vnitřních úhlů při vrcholech
Yi a Ui roven velikosti vedlejšího úhlu při vrcholu Ai, tj. 2e. Avšak součet
obou uvažovaných vnitřních úhlů v trojúhelníku AíYíUí je roven součtu
obvodových úhlů odpovídajících obloukům XjYi a ČAU- Ze vztahu mezi
obvodovým a středovým úhlem dostáváme

\<XíSYí\ + | <UíSVí\ = 2-2e = 4e = 84°.

Celkově tak 121 uvažovaným tětivám pi a jejich bodům Ai odpovídá
121 dvojic oblouků XYYí a UíVí kružnice к s celkovou obloukovou dél-
kou 121 • 84° = 10 164°. Pokud každý bod X kružnice к náleží nejvýše
28 množinám M^, musí být uvedený součet všech obloukových délek nej-
výše roven 28 • 360° = 10 080°, což neplatí. Proto existuje aspoň jeden
bod kružnice k, který náleží současně aspoň 29 množinám M^, což jsme
měli dokázat.
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Poznámka. Že oběma obloukům XíYí a UiVi odpovídá dohromady
středový úhel 4e, nahlédneme snadno i z obr. 36, neboť oblouky U[Yi
a UiVi jsou shodné.

A - III - 4

Pro n — 1, 2, 3 je daný součet roven celým číslům 1, 3, resp. 5. Předpo-
kládejme proto dále, že n > 3. Jednoduchou úpravou dostaneme

Í! + 2!+'" + (n — 2)! (n — 1)! n!
n(n — 1) • ... • 2 + n(n — 1) • ... • 3 + ... + n(n — 1) + n + 1

(n- 1)!

Je-li poslední zlomek celé číslo, je nutně číslo n — 1 dělitelem jeho čitatele.
Proto je číslo n — 1 dělitelem čísla n+ 1. Protože největší společný dělitel
dvou čísel je dělitelem i jejich rozdílu, je největší společný dělitel čísel
n — 1 a n + 1 dělitelem čísla 2, takže n — 1 G {1,2}, což je ve sporu
s předpokladem n > 3.

Daný součet je celé číslo pro přirozená čísla n z množiny {1,2,3}.

A - III - 5

Úhlopříčka AC je průměrem kružnice opsané čtverci ABCD, takže podle
Thaletovy věty je úhel ALC pravý (obr. 37). Bod К je tak průsečíkem
výšek CD a AL v trojúhelníku ACM, takže i přímka MK je kolmá
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АС a protíná stranu ВС daného čtverce v jejím vnitřním bodě N,na

neboť MK || DB.

Tvrzení lze úlohy dokázat několika způsoby.
1. Čtyřúhelníky BCLD a KLMD jsou tětivové, proto podle věty

o obvodových úhlech postupně platí

\<NBL\ = \<CBL\ = \<CDL\ = \<KDL\ = \<KML\ = \<NML\.
Protože body BaM leží v téže polorovině vyťaté přímkou NL, leží body
В, L, M, N na téže kružnici.

2. Protože MN || DB, je \<MNC\ — 45°, rovněž úhel BLC nad
tětivou BC kružnice к má velikost 45° (obr. 38), je tedy |<BLM| =
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= \<BNM\ = 135°. Body L a N zřejmě leží v téže polorovině vyťaté
přímkou MB, proto leží body В, L, M, N na téže kružnici.

3. (Oceněné řešení Martina Seleckého.) Ukážeme, že osy úseček BN,
MN a LM se protínají v jednom bodě. Označme X, Y a Z středy těchto
úseček (obr. 39). Osa úsečky BN je zřejmě rovnoběžná s AB. Z rovnosti
obvodových úhlů \<DAL\ = \<DCL\ nad tětivou DL kružnice opsané

danému čtverci plyne, že trojúhelníky DAK a DCM jsou shodné (usu),
takže \MD\ = \DK\. Trojúhelník MDK je tedy pravoúhlý rovnoramen-

ný, takže \<DMN\ = 45°, neboli MN || BD. To znamená, že osa úsečky
MN je rovnoběžná s přímkou SA. Konečně úhel CLA je pravý úhel nad
průměrem AC kružnice opsané danému čtverci, takže osa úsečky LM
je rovnoběžná s КA. Označme P\, P2 průsečíky os úseček NB a MN
s úhlopříčkou BD а P3 průsečík osy úsečky LM s přímkou MN (obr. 39),
přitom zřejmě je P3 středem úsečky KM. Protože \MD\ ~ |T5j — |iVB|,
je také |PPi| = IPP2I = \КРз\ (stačí si uvědomit shodnost příslušných
pravoúhlých rovnoramenných trojúhelníků BNP\ = SYP2 = DKP3).
Zjistili jsme, že osy úseček BN, MN a LM dostaneme po řadě rov-

noběžným posunutím přímek BA, SA а КA o vektor BP\, a protože
uvedené přímky mají společný bod A, je společným bodem všech tří os

bod, který dostaneme posunutím bodu A o týž vektor.
4. Označme P patu výšky z vrcholu M na stranu АС a uvažujme

čtyřúhelníky ABNP, APKD a DKLM (obr. 40). Podle Thaletovy věty
jsou všechny tři čtyřúhelníky tětivové. Vrchol C daného čtverce ABCD
leží vně každé ze tří kružnic opsaných uvažovaným tětivovým čtyřúhel-
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níkům, takže užitím věty o mocnosti bodu C ke kružnicím opsaným po
řadě čtyřúhelníkům ABNP, APKD, DKLM obdržíme následující tři
rovnosti

\CN\ • \CB\ = \CP\ ■ \CA\,
\CP\ ■ \CA\ — \CK\ ■ \CD\,
\CK\ • \CD\ = \CL\ • \CM\,

z nichž bezprostředně vyplývá rovnost

\CN\ ■ \CB\ = \CL\ ■ \CM\.

Odtud již plyne, že body B, L, M, N leží na téže kružnici.

A - III - 6

Nechť / je libovolná z hledaných funkcí. Označme /(1) = p, vzhledem
к podmínkám úlohy platí p > 0.

V daném vztahu položme x — 1, у = 1. Po úpravě dostaneme

V = /(p)- (1)

V daném vztahu dále položme x = p, у — 1. Potom

P2{f{p)+P) = (P+ l)/(/(p))
a podle (1) vyjde

2p3 = (p + l)p.
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1Tato algebraická rovnice má tři reálné kořeny
vyhovující podmínce p > 0 je p — 1, tedy

0, 1. Jediný kořen2’

/(1) = 1- (2)

Nechť t je libovolné kladné reálné číslo. V daném vztahu položme
x = 1, у — t, takže vzhledem к (2) dostaneme

1 + f(ť) — (1 + č)/(0-

Odtud po úpravě

m = (3)

Dosazením snadno ověříme, že funkce f(t) = 1/t vyhovuje rovnici ze
zadání.

Funkce určená vztahem (3) je jediné řešení dané úlohy.
Jiné řešení. Předpokládejme, že existuje funkce daných vlastností,

a libovolnou z takových funkcí označme /.
Nechť t je libovolné kladné reálné číslo. V daném vztahu položme

x = t, у = t. Po úpravě dostaneme

tf{t) = f{tf(t)).
Odtud plyne, že množina P = {p € R+ : p = f(p)} pevných bodů funk-
ce / je neprázdná, protože pro každé kladné reálné číslo t je tf(t) £ P.

Předpokládejme, že množina P obsahuje alespoň dvě různá čísla,
a označme je a a 6. V daném vztahu položme x = а, у = b, dostaneme
tak

o2 (/(a) + f{b)) = (a + 6)/(/(a)6),
a protože a = /(a), /(a) + f(b) = a + b ф 0, vyjde po úpravě

a2 = f{ab). (1)

Položíme-li naopak x = 6, у = a, dostaneme obdobně

b2 = f{ab). (2)

Protože a a 6 jsou kladná čísla, plyne ze vztahů (1) a (2) rovnost a = b,
což je spor s předpokladem, že množina P obsahuje dvě různá čísla. Mno-
žina P tedy obsahuje jediné číslo p {p £ IR+). Z předcházejících vztahů
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vyplývá, že pro každé kladné reálné číslo t platí tf(t) = p, proto je
funkce / nutně tvaru

f(t) = ?•t
Dosadíme-li tento předpis do původního vztahu, dostaneme pro všechna
x,y e Ш+

což po úpravě dává p — 1.
Funkce / daná pro všechna kladná reálná čísla t předpisem

m = \t
je tedy jediná funkce, která vyhovuje zadání.
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Kategorie P

Texty úloh

P - I - 1

Síť

Firma Připojse poskytovala svým zákazníkům velmi spolehlivé připojení
na Internet. Vybudovala si pro tento účel svou vlastní datovou síť spo-

jující několik největších měst v zemi. Síť se skládá z uzlů umístěných ve
městech a z linek, které vedou mezi městy. Každá linka spojuje některé
dva uzly. Síť měla tu vlastnost, že v případě přerušení jedné libovolné
linky zůstala plně funkční, tzn. zbývající linky zajišťovaly propojení mezi
každými dvěma městy.

Nedávno se firma rozhodla rozšířit své služby i pro zákazníky v dalších
městech. Zřídila proto řadu nových linek, pomocí nichž byla tato města
připojena к již existující síti. Nyní by ve firmě potřebovali vědět, zda
je jejich síť stále ještě dostatečně spolehlivá, tj. zda i nadále existuje
možnost spojení mezi každými dvěma městy i v případě výpadku jedné
libovolné linky.

Soutěžní úloha. Napište program, který přečte ze vstupu seznam uzlů
a linek tvořících síť a zjistí, zda má síť tu vlastnost, že pokud se libo-
volná jedna linka přeruší, všechna města v síti mohou mezi sebou nadále
komunikovat pomocí zbývajících linek.

Formát vstupu: První řádek vstupního textového souboru sit. in ob-
sáhuje dvě kladná celá čísla n a m, kde n je počet měst propojených v síti
a m je počet linek (n ^ 100). Pro jednoduchost jsou města označena čísly
1,2,..., n. Na každém z následujících m řádků vstupního souboru jsou
zapsána dvě čísla, která určují města spojená linkou.

Můžete předpokládat, že je možné prostřednictvím existujících linek
komunikovat mezi každými dvěma městy v síti a že žádné dvě linky
nespojují stejnou dvojici měst.

Formát výstupu: Výstupní textový soubor sit.out obsahuje jediný
řádek, na němž je zapsáno slovo „ANO“, jestliže lze v síti zadané na
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vstupu komunikovat mezi libovolnými dvěma městy i po přerušení libo-
volné jedné linky, a slovo „NE“, pokud síť tuto vlastnost nemá.

Přiklad 2:

sit.in

4 4

1 2

2 3

3 1

3 4

Příklad 1:

sit.in sit.out

ANO

sit.out

5 6 NE

(Pokud se přeruší linka
mezi městy 3 a 4, tato
města spolu nebudou
moci komunikovat.)

1 2

2 3

3 1

3 4

4 5

2 5

P - I - 2

AttoSoft

Vašek si založil maličkou programátorskou firmu, kterou nazval příznačně
AttoSoft.1 Nedávno se mu konečně podařilo získat prvního klienta. Ten
mu dal za úkol napsat N jednoduchých programů.

Vašek je však líný sám programovat, a proto si na tuto práci najal
N programátorů. Když ráno všichni přišli do práce, ukázalo se, že každý
z nich umí naprogramovat pouze jeden z potřebných programů. Naštěstí
každý z požadovaných programů uměl někdo z nich naprogramovat, takže
se mohli pustit do práce. Objevil se však další problém. Firma AttoSoft
vlastní pouze jeden počítač a na něm může v jednom okamžiku pracovat
jen jeden programátor.

Vašek si uvědomil, že je důležité zvolit správné pořadí, v němž budou
jednotliví programátoři pracovat u počítače. Podle podepsané smlouvy
totiž programátory neplatí za vykonanou práci. Každého programátora
platí za čas, který uplyne od začátku práce na celé zakázce až do oka-
mžiku, kdy tento programátor dokončí svůj program. Vašek o každém
z programátorů ví, kolik mu musí zaplatit za jednu hodinu a jak dlouho
mu napsání jeho programu bude trvat. Pomozte mu zjistit, v jakém pořadí
má poslat programátory pracovat na počítači, aby jim dohromady mohl
zaplatit co nejméně.

Příklad. Mějme tři programátory A, J5, C. Programátor A chce 100 Kč
za hodinu a na svůj program potřebuje 2 hodiny. В dostane 20 Kč za ho-

-6 -9 piko je 10 12, femto je 10 15, atto je 10 18.1 Mikro je 10 , nano je 10

99



dinu a potřebuje na práci 5 hodin času. Programátor C požaduje 500 Kč
za hodinu a bude pracovat 20 hodin.

Pokud by programovali v pořadí А, В, C, musel by Vašek zaplatit
programátorovi A za 2 hodiny, programátorovi В za, 1 hodin a progra-
mátorovi C za, 27 hodin, což by ho přišlo celkově na 13 840 Kč. Jest-
liže budou programovat v pořadí С, В, A, bude to Vaška stát jenom
500 x 20 + 20 x 25 + 100 x 27 = 13 200 Kč, takže toto pořadí je výhod-
nější. (Ale není to ještě nejlepší možné řešení.)

Soutěžní úloha. Napište program, který přečte ze vstupu počet pro-

gramátorů, jejich hodinové mzdy a časy potřebné na jejich práci a spo-

čítá, v jakém pořadí má Vašek nechat programátory pracovat, aby jim
dohromady zaplatil nejmenší možnou částku. Má-li úloha více různých
řešení, program najde a vypíše jedno libovolné z nich.

Formát vstupu: První řádek vstupního souboru attosoft.in obsa-
huje jedno kladné celé číslo N (1 ^ N 5í 10 000), které udává počet
programátorů. Následuje dalších N řádků; ž-tý z nich obsahuje dvě celá
čísla m„ ti (0 < mi, ti 30 000), kde mi je hodinová mzda z-tého pro-

gramátora a ti je čas v hodinách, který z-tý programátor potřebuje na

napsání svého programu.
Formát výstupu: Výstupní textový soubor attosoft.out obsahuje

N řádků. Na j-tém z nich je zapsáno jedno celé číslo z rozmezí od 1
do V — číslo programátora, který bude programovat jako j-tý v pořadí.

Příklad: attosoft.in attosoft.out

13

3100 2

20 5

500 20

2

(Vašek zaplatí 11 740 Kč.)

P - I - 3

Součty
Je dáno pole A[1..N] celých čísel. Napište program, který bude umět co
nej rychleji provádět následující příkazy:

o změň hodnotu A[x\ na y,
o vypiš součet prvků A[x\ + A[x + 1] + ... + A[y\.

Váš program si na začátku výpočtu může pole A v rozumném čase
vhodně předzpracovat.

Formát vstupu: Vstupní textový soubor součty, in obsahuje pře-
dem neznámý počet řádků. Na prvním řádku souboru je uvedeno je-
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dine celé číslo N (1 ^ 2 000). Druhý řádek obsahuje původní hod-
noty uložené v poli A
(0 ^ cii й 1000 000).

Vstupní soubor pokračuje několika řádky s příkazy, z nichž každý má
některý z následujících tvarů:

celá čísla 02,..., адг oddělená mezerami

1 x у (1 ^ x ^ N, 0 ^ у ^ 1 000 000)
2xy(l1^x‘Ay^N)

změň hodnotu A[x] na у
vypiš hodnotu A[x] + ... + A[y\

Vstup je ukončen řádkem obsahujícím jediné číslo 0.
Formát výstupu: Program musí vykonat všechny příkazy v pořadí,

ve kterém jsou uvedeny na vstupu. Pro každý příkaz na vypsání součtu
nějakých prvků pole musí do výstupního souboru součty.out zapsat
jeden řádek obsahující jedno celé číslo — součet příslušných prvků pole A
v daném okamžiku.

Příklad: součty. in součty.out
2614

14311311314111

2 1 14

2 3 6

12 0

2 3 6

1 3 0

2 3 6

8

8

5

0

P - I - 4

Registrový počítač
V této úloze se budeme zabývat registrovými počítači. Registr je něco
podobného jako proměnná. V registru může být uloženo libovolně velké
nezáporné celé číslo. Na rozdíl od proměnných, které mezi sebou můžeme
sčítat, odčítat a násobit, s registrem lze provádět jen tři jednoduché ope-
race: zvětšit jeho obsah o 1, zmenšit jeho obsah o 1 (pokud se pokusíme
zmenšit obsah registru obsahujícího hodnotu 0, zůstane v něm 0) a oteš-
tovat registr, zdaje v něm 0. Na začátku výpočtu jsou ve všech registrech
nuly.

Registrový počítač může používat neomezený počet registrů označe-
ných Ro, Ri, i?2 atd. Vedle registrů má к dispozici ještě konečně velkou
pomocnou paměť.
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Program pro registrový počítač budeme zapisovat v jazyce velmi po-
dobném programovacímu jazyku Pascal. Programovací jazyk registrového
počítače bude oproti Pascalu rozšířen například o příkazy pro práci s re-

gistry, naopak některé příkazy z Pascalu v něm budou zakázány.
Registrový počítač bude řešit úlohy následujícího typu: počítač do-

stane na vstupu zadáno slovo (řetězec písmen) a po nějakém čase od-
poví, zda je toto slovo správné nebo špatné. Aby nám mohl odpovědět,
zavedeme do programovacího jazyka speciální příkazy Accept a Reject.
Jakmile se během výpočtu vykoná příkaz Accept, vstupní slovo je správné
a výpočet končí. Jestliže se provede příkaz Reject, slovo je špatné a výpo-
čet končí. Pokud se výpočet zacyklí nebo pokud skončí, aniž by se provedl
příkaz Accept nebo Reject, zadané vstupní slovo je rovněž špatné.

Příkaz „přičti 1 к obsahu registru R“ budeme značit Inc(R), „odečti 1
od obsahu registru R“ budeme značit Dec(R). Výraz Zero(R) je pravdivý,
jestliže je v registru R nula, v opačném případě je nepravdivý. Na začátku
výpočtu jsou ve všech registrech nuly.

V každém programu můžeme použít jen konečně mnoho registrů.
Kromě nich můžeme použít už jen konstantní počet pomocných proměn-
ných typu byte2 (nemůžeme tedy používat pole!) a jednu speciální pro-
měnnou vstup typu char. Obsah proměnné vstup lze měnit pouze prove-
denim příkazu Read(vstup). Jestliže počítač ještě nedočetl vstupní slovo,
příkaz Read(vstup) z něj přečte jedno další písmeno a uloží ho do pro-
měnné vstup. Pokud počítač již vstupní slovo dočetl, příkaz Read{ystup)
uloží do proměnné vstup speciální znak $.

Jelikož registrový počítač má kromě registrů jen konečně mnoho pa-

měti, nemůže si dovolit používat rekurzi (neměl by si kde pamatovat
návratové adresy). My pro jistotu úplně zakážeme definovat a používat
v programu procedury a funkce. Zakázáno je i volání všech standardních
procedur a funkcí jazyka Pascal. V aritmetických výrazech lze použí-
vat pouze proměnné (tedy ne registry!), celočíselné konstanty, celočíselné
operátory +, -, *, div, mod a závorky. V podmínkách se mohou použí-
vat výrazy Zero(Ri), běžné relační operátory (<, <=, ...), logické spojky
a závorky.

Z klíčových slov jazyka Pascal jsou tedy v programovacím jazyku
registrového počítače povolena pouze následující: var, begin, end, if,
then, else, case, of, while, do, repeat, until, for, to, downto, div,
mod, and, or, not a xor.

2 Taková proměnná obsahuje jedno celé číslo z rozmezí od 0 do 255.
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Přiklad 1. Napište program pro registrový počítač, který bude řešit
následující úlohu. Na vstupu je zadán řetězec písmen a, b, c. Nechť a

označuje počet těch písmen a ve vstupním řetězci, za kterými už není
žádné c. Podobně nechť /3 je počet b, za nimiž není žádné c. Počítač má
vstupní řetězec označit za správný právě tehdy, když a = (3.

Řešení. V registru R± si budeme pamatovat aktuální hodnotu a, v re-

gistru i?2 hodnotu /3. Pokaždé, když přečteme ze vstupu písmeno c, oba
registry vynulujeme. Na konci výpočtu jednoduše porovnáme hodnoty
uložené v registrech. Rozmyslete si, že by stačilo použít jen jeden registr
(v němž bychom měli hodnotu a — (3).
var vstup:char;
begin

Read(vstup);
while (vstup<>’$J) do begin

if (vstup=,a’) then Inc(Ri);
if (vstup=’b’) then Inc(R2);
if (vstup=’c’) then begin

while not Zero(Ri) do Dec(Ri);
while not Zero(R2) do Dec(R2);

end;

Read(vstup);
end;
while not Zero(Ri) do begin

Dec(Ri);
if (Zero(R2)) then Reject;
Dec(R2);

end;
if Zero(R2) then Accept;

end.

Příklad 2. Napište program pro registrový počítač, který bude řešit
následující úlohu. Na vstupu bude zadán řetězec písmen a. Počítač ho
označí za správný právě tehdy, když je jeho délka mocninou tří.

Řešení. Přečteme vstupní slovo, přičemž si do Ri uložíme jeho dél-
ku. Potřebujeme zjistit, zda je to mocnina tří. Uloženou hodnotu proto
budeme dělit třemi, dokud to půjde. Jestliže nakonec dostaneme podíl 0
a zbytek 1, původní číslo bylo mocninou tří, jinak nebylo.
var vstup:char;

zbytek:byte;
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begin
Read(vstup);
while (vstupO’S’) do begin Inc(Ri); Read(vstup); end;
if Zero(Ri) then Reject;
while true do begin

zbytek:=0;
while not Zero(Ri) do begin

Dec(Ri);
zbytek:=(zbytek+1) mod 3;
if (zbytek=0) then Inc(R2);

end;
if (Zero(R2) and (zbytek=l)) then Accept;
if (zbytek<>0) then Reject;
while not Zero(R2) do begin Dec(R2); Inc(Ri); end;

end;
end.

Soutěžní úloha. Napište program pro registrový počítač, který bude
řešit následující úlohu. Vstupem programu bude řetězec písmen a, b, c,
d. Počítač ho označí jako správný právě tehdy, jestliže obsahuje nejvíce
písmen a (tzn. počet písmen a obsažených ve vstupním slově je větší
než počet písmen b, zároveň počet písmen a je větší než počet písmen c
a zároveň také počet písmen a je větší než počet písmen d).

Například vstupní slovo baacd je tedy správné, zatímco vstupní slovo
baacdbb je špatné (neboť obsahuje více písmen b než a) a ani vstup ac
není správný (neboť písmen a a c je v něm stejný počet).

Základním kritériem hodnocení kvality navrženého programu bude po-
čet registrů, které program používá. Pokuste se napsat program, kterému
jich stačí co nejméně. Druhým kritériem pak bude doba výpočtu progra-
mu.

P - II - 1

Síť

Firma Truhlík a syn má ve městě N budov a chce všechny svoje budovy
propojit počítačovou sítí. Vedení firmy rozhodlo, že pro К (1 ^ К fí N)
budov zakoupí vysokorychlostní připojení na Internet. Kromě toho mezi
některými dvojicemi budov vybudují propojení optickým kabelem.

Dvě budovy se nacházejí v téže komponentě sítě, pokud lze mezi nimi
komunikovat pomocí optických kabelů (buď mají přímé spojení, nebo
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jsou spojeny nepřímo přes několik jiných budov). Aby bylo možné ко-
munikovat mezi dvěma budovami ležícími v různých komponentách sítě,
musí každá z těchto komponent obsahovat aspoň jeden počítač připojený
na Internet.

Soutěžní úloha. Na vstupu jsou dána čísla N а К a pro každou dvojici
budov jedno kladné celé číslo
který by propojil tuto dvojici budov. Navrhněte efektivní algoritmus, jenž
určí, kterých К budov se má připojit na Internet a které dvojice budov
se mají propojit optickým kabelem tak, aby mezi každými dvěma budo-
vámi bylo možné komunikovat a přitom aby celková cena vybudovaných
optických kabelů byla co nejmenší.

Příklad:

Vstup:
N = 4, К = 2
Ceny spojení:
(1,2): 100(1.3): 10(1.4): 100(1.5): 300(2.3): 100(2.4): 10(2.5): 300(3.4): 47(3.5): 27(4.5): 74

cena za vybudování optického kabelu,

Výstup:
Na Internet připojíme budovy 1 a 2,
kabelem spojíme dvojice budov (1,3), (2,4) a (3, 5).
Cena kabelů bude 47.

P - II - 2

AttoSoft

Vaškova programátorská firma AttoSoft je známa z úlohy P-I-2. Vaškovi
se nyní podařilo získat druhého klienta. Ten mu dal opět za úkol napro-

gramovat N jednoduchých programů.
Vašek chce tentokrát ušetřit ještě více, a proto místo programátorů

zaměstnal N studentů, na každý program jednoho studenta. Firma Atto-
Soft vlastní stále jen jeden počítač a na něm může v každém okamžiku
pracovat jen jeden student. Hlavní problém ale spočívá v tom, že studenti
mohou pracovat jen ve volných chvílích mezi přednáškami.
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Student i potřebuje pí hodin času na napsání přiděleného programu,

přijde do firmy v čase s* a musí odejít nejpozději v čase ti. Svůj program
nemusí psát najednou, může občas práci přerušit a počítač uvolnit jiným
studentům.

Soutěžní úloha. Napište program, jenž určí, kdy má počítač používat
který student, aby všichni stihli napsat své programy zajeden den, nebo
zjistí, že to není možné.

Příklad 1:

Vstup:
N = 3

P\ = 1, si = 3, ti = 4
P2 = 2, s2 = 2, t2 = 5
Рз = 5, s3 = 1, t3 = 10
Příklad 2:

Vstup:
N = 2

Pi — 200, si = 300, ti = 500
P2 = 200, S2 — 400, Í2 = 600

Výstup:
Student 1 pracuje od 3 do 4.
Student 2 pracuje od 2 do 3 a od 4

do 5.

Student 3 pracuje od 5 do 10.

Výstup:
Nelze.

P - II - 3

Bageta
Kleofáš dostal dnes ráno hlad a rozhodl se připravit si obloženou bagetu
se sýrem. Bagetu si můžeme představit jako úsečku dlouhou N cm, nebo
přesněji jako uzavřený interval (0,iV). Každý kousek sýra tvoří rovněž
uzavřený interval celočíselné délky. Jelikož Kleofáš je pedant, pokládá na

bagetu kousky sýra tak, aby souřadnice jejich začátků i konců byla celá
čísla. Kleofáš by chtěl, aby bageta byla pokryta sýrem přesně podle jeho
představ. Na to ale potřebuje jednoduchý počítačový program, který by
mu pomohl.

Soutěžní úloha. Na vstupu je dána velikost bagety N (N je celé číslo,
1 5Í N Si 106). Následuje P příkazů (1 P ^ 109), přičemž každý z nich
má jeden z následujících možných tvarů:

PŘIDEJ a b Kleofáš přidal kousek sýra sahající od a do b.
KOLIK c Program vypíše zprávu, kolik kusů sýra leží na pozici c.

Váš program musí zpracovávat příkazy v pořadí, v jakém jsou uvedeny
na vstupu. Pro každý příkaz KOLIK vypište jedno číslo počet dosud
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položených kusů sýra, které leží nad souřadnicí c. (Jelikož kousky sýra
jsou uzavřené intervaly, počítají se i ty kousky, pro něž je c souřadnice
jejich začátku nebo konce.)

Vstup:
N = 20

PŘIDEJ 1 10

PŘIDEJ 6 12

KOLIK 5

KOLIK 6

PŘIDEJ 4 14

KOLIK 5

KOLIK 16

Výstup:Příklad:

1

2

2

0

P - II - 4

Registrový počítač
V této úloze se budeme zabývat tzv. dvousměrnými registrovými počí-
tači. Od registrových počítačů z úlohy P-I-4 se liší tím, že se při čtení
vstupního slova dovedou vracet zpět. Oproti původní definici registro-
vých počítačů nyní proměnná vstup vždy obsahuje hodnotu aktuálního
písmene ze vstupu. Na začátku výpočtu je aktuálním písmenem první
písmeno zadané na vstupu. Polohu aktuálního písmene můžeme v pro-

gramu změnit provedením příkazů Left (aktuálním se stane předcházející
písmeno) a Right (aktuálním se stane následující písmeno). Pokud by se
po provedení jednoho z těchto příkazů mělo aktuální písmeno nacházet
mimo zadané vstupní slovo, proměnná vstup bude obsahovat speciální
znak $. (Můžeme si představovat, že před i za vstupním slovem je za-
psáno dostatečně mnoho znaků $.)

Příklad 1. Napište program pro dvousměrný registrový počítač, který
bude řešit následující úlohu: Na vstupu bude zadán řetězec písmen a,

b, c. Nechť a označuje počet písmen a ve vstupním řetězci, (3 nechť je
počet bay počet c. Počítač má vstupní řetězec označit za správný právě
tehdy, když a — (3 = 7.

Řešení. Projdeme vstupní slovo zleva doprava a v registrech Ri a R2
si přitom spočítáme hodnoty a a /3. Když vstupní slovo dočteme, porov-
náme obsahy obou registrů. Vrátíme se na začátek, při druhém průchodu
vstupním slovem spočítáme v R± a R2 hodnoty (3 a 7 a opět je porov-
náme. Rozmyslete si, že by stačilo použít jediný registr, v němž bychom
měli hodnotu a — /3, resp. (3 — 7.
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var vstup: char;
begin

while (vstupO’S’) do begin
if (vstup=’a’) then Inc(Ri);
if (vstup=,bJ) then Inc(R,2);
Right;

end;
while not Zero(Ri) do begin

Dec(Ri); if Zero(R2) then Reject else Dec(R2);
end;
if not Zero(R2) then Reject;
{ bylo stejně 5a5 a Jb’, vrátime se na začátek >
Left; while (vstupO’S’) do Left;
Right;

while (vstupO’S’) do begin
if (vstup^’b’) then Inc(Ri);
if (vstup=,cO then Inc(R2);
Right;

end;
while not Zero(Ri) do begin

Dec(Ri); if Zero(R2) then Reject else Dec(R2);
end;
if Zero(R2) then Accept;

end.

Příklad 2. Napište program pro dvousměrný registrový počítač, který
bude řešit následující úlohu: Na vstupu bude zadán řetězec písmen a.
Počítač ho označí za správný právě tehdy, když je jeho délka mocninou
tří.

Řešení. Řešení bude vypadat stejně jako na jednosměrném registro-
vém počítači. Projdeme vstupním slovem zleva doprava, přičemž si do
registru Ri uložíme délku tohoto slova. Potřebujeme zjistit, zda je to
mocnina tří. Uloženou hodnotu proto budeme dělit třemi, dokud to pů-
jde. Jestliže nakonec dostaneme podíl 0 a zbytek 1, původní číslo bylo
mocninou tří, jinak nebylo.

var vstup: char;
zbytek: byte;

begin
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while (vstupO'S’) do begin Inc(Ri); Right; end;
if Zero(Ri) then Reject;
while true do begin

zbytek:=0;
while not Zero(Ri) do begin

Dec(Ri);
zbytek:=(zbytek+1) mod 3;
if (zbytek=0) then Inc(R2);

end;
if (Zero(R2) and (zbytek=l)) then Accept;
if (zbytekoO) then Reject;
while not Zero(R2) do begin Dec(R2); Inc(Ri); end;

end;
end.

Soutěžní úloha. Napište program pro dvousměrný registrový počítač,
který bude řešit následující úlohu:

Vstupem programu bude řetězec písmen a, b, c, d. Počítač ho označí
jako správný právě tehdy, jestliže je to palindrom, tzn. je stejný při
čtení zepředu i zezadu. Formálně řečeno: slovo а^аз... an_i<2n je palin-
drom, jestliže a\ — an, a2 — an_b ..., a|_n/2j = apn/2]. Tedy například
vstupy bacab a dd jsou palindromy, zatímco vstupy baacdbb a bacabdccc
nejsou.

P - III - 1

Agenti
Jistá nejmenovaná tajná společnost má N agentů. Z důvodu utajení může
každý agent vydávat rozkazy jen několika dalším agentům. Agent, který
dostane rozkaz, pošle tento rozkaz všem agentům, jimž může vydávat
rozkazy. Šéfem společnosti je takový agent, který když vydá rozkaz, tak ho
časem dostanou všichni agenti. (Společnost může mít i více šéfů, případně
nemusí mít žádného šéfa.)

Soutěžní úloha. Na vstupu je dán počet agentů N. Agenti jsou ozna-
čeni čísly od 7 (přesněji 007) do N + 6. Pro každého agenta je také dán
seznam agentů, kterým může vydat rozkaz. Navrhněte efektivní algo-
ritmus, který určí šéfa tajné společnosti (pokud jich existuje více, stačí
nalézt jednoho libovolného z nich) nebo zjistí, že tajná společnost žád-
ného šéfa nemá.
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Příklad 1:

Vstup:
N-3

Agent 7 rozkazuje agentovi 8.
Agent 8 rozkazuje agentovi 9.
Agent 9 rozkazuje agentovi 7.
Příklad 2:

Vstup:
N = 4

Agent 7 nerozkazuje nikomu.
Agent 8 nerozkazuje nikomu.
Agent 9 rozkazuje agentům 7 a 8.
Agent 10 rozkazuje agentům 7 a 8.

Výstup:
Šéfem je agent 7.

Výstup:
Žádný agent není šéfem.

P - III - 2

Teploty

Meteorologická stanice měří každou minutu teplotu vzduchu. Meteorolo-
gové by potřebovali program, který by jim v každém okamžiku sděloval,
jaká nejnižší teplota byla naměřena během posledních К minut. Vaším
úkolem bude napsat tento program.

Na vstupu je dáno číslo K, následuje posloupnost naměřených teplot
ukončená hodnotou —1 000. Váš program musí po přečtení každé teploty
ihned vypsat nejnižší z posledních К načtených teplot (resp. nejnižší ze
všech načtených teplot, jestliže jich dosud bylo méně než К).

Vstup:
К = 3

teploty:

Výstup:Příklad:

9,09,0
4,74,7
4,75,3
2,12,1
2,19,0
2,19,8

17,0 9,0
9,59,5

-1000
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P - III - 3

Registrový počítač
V této úloze se budeme zabývat tzv. jednosměrnými registrovými poěí-
tači stejnými jako v úloze P-I-4 (tam je obsažena i jejich definice).

Soutěžní úloha, a) Nechť R je řetězec tvořený písmeny a, b, с, A, B,
C. Označme m(R) řetězec tvořený malými písmeny obsaženými v R (ve
stejném pořadí, v jakém se vyskytují v R). Analogicky označme v(R)
řetězec tvořený velkými písmeny v R. Řetězec upcase(R) dostaneme z R
tak, že nahradíme všechna malá písmena odpovídajícími velkými pišme-
ny.

Např. jestliže R = aaAcB, potom m(R) — aac, v(R) = AB
a upcase(R) = AAACB.

Napište program pro jednosměrný registrový počítač, který bude ře-
šit následující úlohu: Na vstupu dostane řetězec R tvořený písmeny
a, b, с, А, В, C. Počítač ho má označit za správný právě tehdy, když
upcase(m(R)) = v(R). (Vyjádřeno slovně: když velká písmena obsažená
v R tvoří „stejné“ slovo jako malá.)

Například vstupní řetězce aA, Aa a abAcBaCABb jsou tedy správné,
zatímco řetězce aa, BcbC a acACa jsou špatné.

Váš program může použit libovolný konečný počet registrů, hodnotí
se jen jeho správnost. Pokud si myslíte, že takový program neexistuje,
dokažte to.

b) Dokažte, že pro libovolnou úlohu platí: Jestliže umíme sestrojit
program pro registrový počítač, který řeší danou úlohu pomocí tří regis-
trů, potom dokážeme sestrojit také program, který tuto úlohu řeší pomocí
dvou registrů.

Jinými slovy: Ukažte postup, kterým lze libovolný existující program

používající tři registry přepsat na ekvivalentní program, jenž potřebuje
pouze dva registry. Nezapomeňte zdůvodnit správnost svého postupu.

p - III - 4

Psíci

Program:
Vstup:
Výstup:

psici.pas / psici.c / psici.cpp
psici.in
psici.out
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„Tak, a teď budete skákat vždycky, když zapískám. A každý jinak!“
rozkázal Konrád svým dvěma psíkům. Chudáci malí, musí teď oba po-
skakovat po louce tak dlouho, dokud se oba současně neschovají.

Svět je nekonečná šestiúhelníková síť. Políčka tvořící svět jsou očís-
lována přirozenými čísly počínaje od 1 po spirále. Louku tvoří prvních
N políček světa. Na obrázku je příklad louky pro N'= 26:

Na louce stojí naši dva psíci na políčkách Si, ST Skrýš pro prvního
psíka je na políčku Ti, pro druhého na políčku T%. Na M políčkách louky
rostou bodláky a psíci tam za žádnou cenu neskočí.

Na jedno písknutí přeskočí každý psík na libovolné sousední polič-
ко, pokud na něm nerostou bodláky. Oba psíci nemohou nikdy skočit
současně stejným směrem a nemohou také oba dopadnout najednou na

stejné políčko. Při každém písknutí musí každý z nich přeskočit na jiné
políčko (i kdyby už stál ve své skrýši).

Vaším úkolem je zjistit, na kolik nejméně písknutí se mohou oba psíci
dostat současně do svých skrýší.

Vstup: Ve vstupním souboru psici.in následuje po sobě popis ně-
kolika (maximálně pěti) problémů. Každý problém má na svém prvním
řádku dvě čísla N (2 ú N 500), M (0 M N — 2), na druhém řádku
čísla políček S\, Ti, S2, T2 (v uvedeném pořadí, 1 ^ Si,T\, A2,T2 ^ N).
Následuje dalších M řádků s čísly políček, kde rostou bodláky. Vstupní
soubor je ukončen řádkem obsahujícím dvě nuly (M = N = 0).

Můžete předpokládat, že vždy S\ ф S2, Ti ф T2 a že na políčkách
S1, S2 nejsou bodláky. Na políčkách Tj nebo T2 bodláky být mohou —

v takovém případě však úloha jistě nemá řešení.
Výstup: Do výstupního souboru psici.out zapište pro každý pro-

blém jeden řádek s nejmenším počtem písknutí, po němž mohou oba psíci
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současně stát ve svých skrýších. Pokud není možné tohoto výsledného
stavu dosáhnout, vypište do výstupního souboru místo počtu písknutí
řádek se slovem „nelze".

Příklad:

Vstupní soubor psici . in
11 0

3 10 6 7

11 1

3 10 6 7

Výstupní soubor psici . out
2

3

nelze

1

10 2

3 10 7 8

2

9

0 0

P - III - 5

AttoSoft

attosoft.pas / attosoft.c / attosoft.cpp
attosoft.in

attosoft.out

Programátorské firmě AttoSoft se podařilo získat dalšího klienta,
který potřebuje naprogramovat N programů. Vaškovi a jeho programá-
torům se však do práce moc nechtělo, a tak když přišel termín odevzdání,
programy ještě stále nebyly hotové. Vašek se lekl a začal studovat smlou-
vu, kterou se zákazníkem podepsal.

Ve smlouvě byl pro každý program uveden vzorec, podle kterého se

počítá pokuta za opožděné odevzdání programu v závislosti na délce
zdržení. Naštěstí není třeba zaplatit součet pokut za všechny opožděné
programy, ale jen nejvyšší pokutu ze všech. Vašek se proto nyní snaží
naplánovat práci na programech tak, aby zaplatil co možná nejnižší po-
kutu. Stejně jako dříve má i nyní к dispozici jen jeden počítač, a proto
není možné pracovat na více programech najednou. Započatou práci na

programu není možné přerušit.3

Program:
Vstup:
Výstup:

3 Šikovnější z vás si po přečtení zbytku zadání uvědomí, že i kdyby se to smělo, stejně
by se to nevyplatilo.
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Soutěžní úloha. Na vstupu je pro každý z nedokončených programů
uveden vzorec na výpočet pokuty a údaj, kolik dní práce je zapotřebí na

jeho dokončení. Napište program, který určí rozvrh na dokončení progra-

mů, při němž Vašek zaplatí nejmenší pokutu. Vzorec na výpočet pokuty
má tvar polynomu nejvýše třetího stupně ax3 + bx2 + cx + d, ve kterém
jsou koeficienty a, b, c, d celočíselné nezáporné a x je počet dní, o něž se
odevzdání programu opozdilo.

Vstup: První řádek vstupního souboru attosoft. in obsahuje kladné
celé číslo N (1 5í N ^ 5 000)
i-tý z nich obsahuje pět celých čísel li, a*, bi, C{, di (1 5ь U 5ь 100, 0 5ь
^ a,i,bi,Ci,di 5 000) kde U je počet dní potřebný na dokončení г-tého
programu a a*, N, jsou koeficienty vzorce na výpočet pokuty. Můžete
předpokládat, že za 100 000 dní se stihnou napsat všechny programy.

Výstup: Výstupní soubor attosoft. out obsahuje N čísel oddělených
mezerami nebo konci řádků. Tato čísla představují čísla jednotlivých pro-

gramů v pořadí, v němž je třeba programy dokončit, aby byla pokuta
nejmenší možná. Pokud má úloha více řešení, vypište jedno libovolné
z nich.

počet programů. Následuje N řádků,

Příklad:

Vstupní soubor attosoft. in Výstupní soubor attosoft. out
3 1

310 1 0 0 0

3 0 0 0 10

1 0 0 5 0

Zde pokuta za program číslo 1 dokončený po deseti dnech je 103 =
= 1 000, za program číslo 2 dokončený po 14 dnech je pokuta 10 a za

program číslo 3 dokončený po 11 dnech je 5-11 = 55. Vašek tedy zaplatí
pokutu 1 000.

2
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Řešení úloh

P - I - 1

Na úvod pár slov pro ty, kdo dosud neměli příležitost seznámit se ales-
poň se základy teorie grafů. V našem chápání je graf tvořen několika
body, které budeme nazývat vrcholy grafu, některé dvojice bodů jsou
spojeny čárami, kterým budeme říkat hrany grafu. Formálněji řečeno,
(neorientovaný) graf je dvojice G = (V,E), kde V je množina vrcholů
a E C í{x,y}: x,y € V} je množina neuspořádaných dvojic vrcholů,
tj. hran. Právě takový graf máme v naší úloze zadán na vstupu — města
v zemi představují vrcholy grafu a linky jsou hrany vedoucí mezi nimi.

Řekneme, že graf je souvislý, jestliže se dá po jeho hranách přejít
z libovolného vrcholu do libovolného jiného. Podle zadání naší úlohy je
graf zadaný na vstupu souvislý. Máme zjistit, zda odstranění některé
hrany souvislost grafu poruší. Hranu s touto vlastností nazýváme most.

Jakým způsobem můžeme zjistit, zdaje zkoumaný graf souvislý? Exis-
tuje na to více různých algoritmů. Nejčastějšímu algoritmu řešícímu tento
problém se říká obarvování vrcholů nebo také prohledáváni grafu. Zá-
kladní myšlenka algoritmu je následující. Začneme v nějakém (libovolně
zvoleném) vrcholu grafu a postupně obarvujeme všechny vrcholy, kam se
dokážeme po hranách grafu dostat. Když už není možné obarvit žádný
další vrchol, stačí se podívat, zda jsou obarveny všechny vrcholy gra-
fu. Vrcholy je samozřejmě třeba obarvovat systematicky tak, abychom
žádný z dostupných vrcholů nevynechali. Můžeme postupovat například
prohledáváním do hloubky.

Prohledávání do hloubky je podobné postupu, jakým člověk zkoumá
neznámé město. Začneme tím, že se postavíme do nějakého vrcholu
a obarvíme ho. Nadále budeme barvit všechny vrcholy i hrany grafu,
které navštívíme. Jestliže z vrcholu, kde právě jsme, vede nějaká ještě
nepoužitá (tj. neobarvená) hrana, vydáme se po ní. Pokud přijdeme do
dosud nenavštíveného (tj. neobarveného) vrcholu, obarvíme ho a rekur-
živně zavoláme prohledávání z něj (tedy opět se snažíme najít nepoužitou
hranu, atd.). Když přijdeme do již navštíveného, a tedy obarveného vr-

cholu, okamžitě se vrátíme po té hraně, kterou jsme do něj přišli. Jsme-li
ve vrcholu, z něhož vedou samé obarvené hrany, vrátíme se zpět tou
hranou, po které jsme do vrcholu přišli poprvé. Až se tímto způsobem
budeme chtít vracet z vrcholu, kde jsme začínali, prohledávání končí.
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Popsaným postupem projdeme právě dvakrát (tam a zpět) po každé
z hran, к nimž se dokážeme dostat, a navštívíme všechny vrcholy, ke
kterým lze dojít z počátečního vrcholu. Algoritmus je tedy korektní a jeho
časová složitost je 0(M + N). Algoritmus je možné snadno rekurzívně
implementovat, jak dokládá program uvedený na konci tohoto řešení.

Nejjednodušším řešením zadané úlohy by bylo postupně vyzkoušet
odstranit každou jednotlivou hranu z grafu a vždy se podívat, zda je
výsledný graf ještě stále souvislý. Takové řešení by mělo časovou složí-

pro každou hranu potřebujeme spustit jednotost 0(M • (M + N))
prohledávání.

Ukážeme si však jiný algoritmus, který úlohu vyřeší v čase 0(M + N)
(tedy s optimální časovou složitostí) a vyhledá přitom v grafu všechny
mosty. Tento algoritmus je drobnou modifikací prohledávání do hloubky.
Dříve než vysvětlíme samotné řešení, seznámíme se s několika potřebnými
vlastnostmi prohledávání do hloubky. Začneme tedy s prohledáváním do
hloubky v našem souvislém grafu. Všimněte si těch hran grafu, jimiž
jsme během prohledávání přišli do dosud nenavštíveného vrcholu. Tako-
vých hran je přesně N — 1 (jedna pro každý vrchol grafu kromě toho,
ve kterém jsme začínali s prohledáváním). Graf jimi tvořený je strom, ne-
boť je souvislý a neobsahuje kružnice. Tento strom budeme nazývat DFS
strom (DFS = depth-first search = prohledávání do hloubky). Vrchol,
z něhož jsme graf začínali prohledávat, nazveme kořenem DFS stromu.
Z každého jiného vrcholu x vede po stromových hranách (tj. po hranách
DFS stromu) do kořene právě jedna cesta. Vrcholy ležící na této cestě
budeme nazývat předky vrcholu x, zatímco o vrcholu x budeme říkat, že
je jejich potomkem. Speciálně každý vrchol je sám sobě předkem i po-
tomkem. Všichni potomci vrcholu x a stromové hrany vedoucí mezi nimi
tvoří podstrom s kořenem x.

Ostatní hrany mohou být teoreticky dvou typů. Jestliže hrana spo-

juje vrchol s nějakým jeho předkem nebo potomkem, budeme ji nazývat
zpětná, ostatní hrany nazveme příčné. Nechť uv je hrana, která není stro-
mová. Všimněte si podstromů s kořeny u, v. Jsou dvě možnosti — pokud
je jeden z nich podgrafem druhého, hrana uv je zpětná, jinak musí být
tyto podstromy disjunktní a hrana uv je příčná. V DFS stromu však
žádné příčné hrany nemohou být. To snadno zdůvodníme sporem. Nechť
uv je příčná hrana. Bez újmy na obecnosti můžeme předpokládat, že
během prohledávání jsme do и přišli dříve než do v. Všimněte si nyní
okamžiku, kdy se při prohledávání chceme vrátit z vrcholu и zpět. Je-li
uv příčná hrana, nesměli jsme dosud vrchol v navštívit (jinak by v byl
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potomkem и a hrana uv by byla zpětná). Vrchol v je tedy dosud nena-

vštívený soused vrcholu u, proto bychom se z и ještě neměli vracet zpět,
ale měli bychom se vydat do v, což je spor.

Všechny hrany grafu tedy můžeme rozdělit na stromové a zpětné. Je
zřejmé, že leží-li hrana na nějaké kružnici (cyklu), po jejím odstranění
graf zůstane souvislý. Každá zpětná hrana uv leží na kružnici tvořené
hranou uv a cestou z и do v po hranách DFS stromu. Mosty se proto
mohou nacházet jen mezi stromovými hranami. Každý most rozděluje
graf na dvě části, přičemž v jedné z nich se nachází kořen DFS stromu.

Představte si, že náš graf zavěsíme za kořen. Nyní se vydáme z ко-
řene dolů po stromových hranách. Uvažujme jednu konkrétní stromovou
hranu uv, kde и je vrchol ležící blíže ke kořeni než v. Kdy je hrana uv
mostem? Tehdy, když ji nedokážeme obejít. Jinými slovy řečeno když se
z podstromu s kořenem v nemůžeme dostat do vrcholu и (nebo ekviva-
lentně: do и nebo libovolného jeho předka) bez použití hrany uv.

Budeme tedy chtít pro každou hranu uv určit, zda existuje cesta z v
do и nebo do nějakého jeho předka, která nepoužívá hranu uv. Hledejme
takovou cestu, která používá nejmenší počet zpětných hran a ze všech
takových cest je nejkratší. Co o ní umíme říci? Její poslední hrana bude
určitě zpětná, neboť po stromových hranách se do vrcholu и či nad и
nedostaneme. Všechny její vrcholy kromě posledního budou ležet v pod-
stromu s kořenem v, protože jakmile se dostaneme nad u, skončíme. Do
všech vrcholů ležících v podstromu s kořenem v se ale jistě můžeme do-
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stát z v stromovými hranami. Ukázali jsme tedy, že pokud nějaká hledaná
cesta existuje, pak existuje i taková, při níž jdeme nejprve několika stro-
movými hranami a potom jednou zpětnou hranou. Stačí nám proto pro
každou stromovou hranu v grafu ověřit, zda existuje takováto cesta. Jak
to uděláme?

Během prohledávání budeme číslovat vrcholy v pořadí, v jakém do
nich budeme poprvé vstupovat. Číslo vrcholu x označíme num{x). Je
zřejmé, že všechny vrcholy ležící v podstromu s kořenem и mají číslo větší
než num(u). Na druhé straně všichni předci vrcholu и mají číslo menší
než num(u). Kdybychom pro v znali nejmenší číslo vrcholu, do kterého
se můžeme dostat bez použití hrany uv (což musí být předek vrcholu v,
neboť příčné hrany neexistují), měli bychom vyhráno
mostem právě tehdy, když je toto číslo větší než num(u). Ukázali jsme si
ale, že nám stačí uvažovat cesty, které vedou nejprve několika stromovými
hranami „dolů“ a potom jednou zpětnou hranou „nahoru“. Budeme si
tedy pro každý vrchol přímo během prohledávání počítat nejmenší číslo
vrcholu, do kterého se z něj dokážeme dostat takovouto cestou.

Tím máme algoritmus řešení úlohy téměř hotov, zbývá už jen celý
postup shrnout. Budeme prohledávat zkoumaný graf do hloubky a zá-
roveň si pro každý vrchol x budeme počítat dvě čísla: num(x) (kolikátý
navštívený vrchol to je) a up{x) = min{rmm(y):do у vede z x cesta výše
uvedeného tvaru}. Jak vypočítat num(x) je zřejmé. Hodnota up{x) je
rovna minimu z num(x), ze všech hodnot up(xi) pro syny vrcholu raze
všech hodnot num(yi) vrcholů, do nichž vede z x zpětná hrana. Hodnotu
up(x) tedy umíme spočítat v okamžiku, kdy se při prohledávání vracíme
z vrcholu x. V tomto okamžiku dokážeme také rozhodnout o hraně ve-

doučí z vrcholu x do jeho otce y, zdaje mostem — stačí porovnat hodnoty
up(x) a num(y) (resp. up(x) a num(x)).
program Sit;
var G : array[1..100,1..100] of integer; {graf}
deg,num,up: array[1..100] of integer; {stupně vrcholů a obě čisla pro ně}
visited : array[1..100] of boolean;
N,M,C : integer;
ok : boolean;

hrana uv je

{byl jsem už v tomto vrcholu?}
{počet vrcholů, hran, navštívených vrcholů}

procedure Load;
var i,x,y : integer;
begin

read(N,M); fillchar(deg,sizeof(deg),0);
for i:=l to M do begin

read(x,y);
inc(deg[x]); G[x][deg[x]]:=y;
inc(deg[y]); G [y][deg[y]]:=x;
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end;
end;

procedure DFS(v,parent : integer);
var i : integer;
begin

visited[v]:=true;
nm[v]:=C; up[v]:=C; inc(C); { nastavime obě čisla ve vrcholu }
for i:=1 to deg [v] do if not visited[G[v][i]] then begin

DFS(G[v] [i],v);
if up[G[v][i]]<up[v] then up[v]:=up[G[v][i]];

end else begin { zpětná hrana }
if G[v] [i]Oparent then

if num[G[v] [i]]<up[v] then up [v] : =num[G [v] [i] ] ;
end;
if num[v]=up[v] then ok:=false; { hrana v-parent je most }

end;

begin
Load;
fillchar(visited,sizeof(visited),0); C:=l; ok:=true;
DFS(l.l);
if ok then writeln(’ANO’) else writeln(’NEJ);

end.

P - I - 2

Uvažujme libovolné pořadí, v němž budou programátoři pracovat, a po-

dívejme se na dva po sobě napsané programy — nechť jsou to programy
i a j. Napsání programu budeme nadále označovat jako událost. První
z našich událostí, tedy i, začne v čase To, bude trvat po dobu ti a Vašek
za ni proto zaplatí částku (To + U) • m;. Druhá událost, j, začne v čase
To + ti (tzn. ihned po skončení události г) a bude stát (To + U + tj) ■ rrij —
každého programátora platíme nejen za dobu, kdy pracuje, ale od úplného
začátku.

Po sečtení zjistíme, že když se obě uvažované události vykonají v po-
řadí i,j, Vašek za ně bude muset zaplatit částku Síj = To • (m* + rrij) +
~j~ t>i * Tíli “f" (ti ~f" tj) * TTTji •

Co by se stalo, kdybychom zaměnili pořadí událostí i a j? Podobně
jako v předchozím případě můžeme spočítat, kolik bude muset Vašek
zaplatit za tyto dvě události. Za první z nich (tedy j) to bude (To + tj)-m.j
a za druhou (To + tj + ti) ■ rrii, což dohromady činí Sjj = Tq ■ (nii + m,j) +
+ tj ■ rrij + (tj + ti) ■ mi.

Porovnejme nyní tyto dva výsledky. Označme si pro jednoduchost
jejich společnou část A Tq ■ (rrii + mj) + ti ■ mi + tj • mj. Po snadných
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úpravách dostáváme:

U tjSíj ~ A + тг ■ rrij ■ — Sjti = A + mi ■ nrij ■ .
mi

Zajímá nás, která z těchto hodnot je menší, ale to je zjevně ta, která
má menší poměr tk/mk- To tedy znamená, že pokud ti jmi > tj/mj,
výměnou pořadí těchto událostí dosáhneme nižší výsledné částky. (Je
zřejmé, že záměna pořadí dvou po sobě následujících událostí neovlivní
částku, kterou zaplatíme ostatním programátorům.)

Z uvedených úvah vyplývá, že pokud v nějakém pořadí událostí na-

jdeme dvě po sobě jdoucí takové, že první z nich má větší poměr tk/mk
než druhá, jejich vzájemnou výměnou získáme nové pořadí událostí, které
je levnější. Optimální pořadí událostí bude proto takové, v němž jsou po-

měry tk/mk uspořádány od nejmenšího po největší.
Samotný program je potom už velmi jednoduchý — stačí události

utřídit vzestupně podle poměru tk/mk, což dokážeme provést v průměr-
ném čase 0(n • logn) například algoritmem QuickSort.
program AttoSoft;
type Tprg = record

m,t,idx: integer;
tm: real;
end;

var N,i: integer;
prg: array[1..10000] of Tprg;
sum,t: integer;

procedure QSort(l,r: integer);
var у: Tprg;

x: real;
i,j: integer;

begin
i:=l; j:=r; x:=prg[(l+r) div 2].tm;
repeat
while prg[i].tm<x do inc(i);
while x<prg[j].tm do dec(j);
if i<=j then
begin

y:=prg[i]; prg[i] :=prg[j] ; prg[j]:=y;
inc(i); dec(j);

end;
until i>j;

if Kj then QSort(l, j);
if i<r then QSort(i, r);

end;
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begin
assign(input,’attosoft.in’); reset(input);
assign(output,’attosoft.out’); rewrite(output);

read(N);
for i:=l to N do

begin
read(prg[i].m, prg[i].t);
prg[i].idx:=i;
prg[i].tm:=prg[i].t/prg[i] .m;

end;

QSort(1,N);

for i:=l to N do writeln(prg[i].idx);

{Výsledná částka:
sum:=0; T:=0;
for i:=l to N do

begin
sum:=sum+(T+prg[i] .t)*prg[i] .m;
T:=T+prg [i].t;

end;
writeln(’Výsledná částka: ’.sum);
>

close(input); close(output);
end.

P - I - 3

Pro zjednodušení dalších úvah zvětšíme nejprve pole A tak, aby jeho
velikost byla rovna nejbližší vyšší mocnině dvou. Tím se pole A prodlouží
maximálně na dvojnásobek původní délky, takže tato úprava neovlivní
časovou složitost výsledného algoritmu. Nadále tedy předpokládejme, že
prodloužené pole má délku N = 2K.

Představme si, že nad polem A vybudujeme úplný binární strom.
Jeho listy budou odpovídat jednotlivým prvkům pole A, každý vyšší
vrchol tohoto stromu odpovídá nějakému intervalu v poli A (přesněji
řečeno odpovídá prvkům pole určeným listy z jeho podstromu). V každém
vrcholu stromu si budeme pamatovat součet čísel v příslušném intervalu
pole. Tuto datovou strukturu budeme nazývat intervalový strom.

V nejspodnější vrstvě našeho stromu se nachází N vrcholů, v předchá-
zející vyšší vrstvě jich je N/2, ve třetí odspodu N/4, atd. V celém stromě
je tedy 2N — 1 vrcholů, proto budeme potřebovat na jeho uložení paměť
velikosti 0(AT) (čti: lineární). V průběhu předzpracovaní pole A musíme
tuto paměť naplnit, proto na předzpracování bude zapotřebí čas fl(N)
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(čti: aspoň lineární). Snadno zjistíme, že v lineárním čase dokážeme náš
strom skutečně vytvořit — stačí ho zaplňovat po vrstvách zdola nahoru.

Co se stane s naším stromem, když změníme hodnotu prvku A[j]l
Musíme změnit zapamatované hodnoty pro všechny intervaly, v nichž je
změněný prvek pole obsažen. Ty ale odpovídají právě vrcholům inter-
valového stromu ležícím na cestě z j-tého listu do kořene. Je jich tedy
К + 1 = O(logiV). Změnit hodnotu v poli A tudíž dokážeme v logarit-
mickém čase.

o I o ;

Zbývá ukázat, jak lze pomocí intervalového stromu odpovídat na

otázky ze zadání. Řešme nejprve jednodušší úlohu: Jakou hodnotu má
součet S(x) = A[1] + ... + A[x]l Začneme v kořeni našeho stromu. Mohou
nastat dvě možnosti: Jestliže interval od 1 do ж leží celý v levém podstro-
mu, zavoláme rekurzívní výpočet pro levého syna. Pokud ne, tak tento
interval zabírá celý levý podstrom a ještě část pravého. Vezmeme proto
součet všech prvků pole odpovídajících levému podstromu (ten máme
spočítaný v levém synovi) a zavoláme rekurzívní výpočet pro pravého
syna a zbytek intervalu.

Takto postupně v našem stromu procházíme dolů po cestě od kořene
do x-tého listu, přitom na každé úrovni vykonáme jen konstantní počet
operací. Proto pro libovolné x dokážeme hodnotu S{x) spočítat v čase
0(log N). To je ale vše, co potřebujeme vědět, neboť A[x\ + ... + A[y\ =
= S(y) — S(x — 1) (dodefinujeme S(0) — 0).

Pomocí intervalového stromu tedy dokážeme každý příkaz ze zadání
úlohy zpracovat v logaritmickém čase. Naše řešení potřebuje lineární pa-
měť a lineární čas na předzpracování.

Nejjednodušší implementací intervalového stromu je uložit ho v jed-
nom poli podobně jako haldu. Kořen stromu bude umístěn v poli na

pozici 1, synové vrcholu x jsou na pozicích 2x a 2x + 1. Prvky původního
pole A odpovídají listům stromu a začínají v poli na pozici N. V praxi
se někdy paměťová složitost snižuje na polovinu tím, že si ukládáme jen
součty v levých synech, implementace je potom ale o něco náročnější.
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program Součty;

var T : array[1..10000] of longint; { strom }
oldN,N,prikaz,i : longint;
x,y : longint;
pom : longint;

function Součet(délka, kořen, interval : longint) : longint;
{délka - délka intervalu, jehož součet počítáme
kořen - kořen podstromu, ve kterém počítáme
interval - délka intervalu odpovídajícího kořenu

(abychom ji nemuseli počítat)}

■ begin
if delka=0 then begin Součet:=0; exit; end;
if interval=l then begin Součet:=T[kořen]; exit; end;
if delka<=(interval div 2)

then Součet:=Soucet(délka,2*koren,interval div 2)
else Součet:=T[2*koren]+

Součet(délka-(interval div 2),2*koren+l,interval div 2);
end;

begin
fillchar(T,sizeof(T),0);
read(oldN);
N:=l; while N<oldN do N:=N*2; { upravíme velikost pole }
for i:=l to oldN do read(T[N+i-1]);
for i:=N-l downto 1 do T[i]:=T[2*i]+T[2*i+l];
read(prikaz);
while prikaz>0 do begin

if prikaz=l then begin
{ měníme hodnotu }
read(x,y); i:=x+N-l; pom:=y-T[i];
while i>=l do begin Inc(T[i],pom); i:=i div 2; end;

end else begin
{ počítáme součet }
read(x,y);
writeln(Součet(у,1,N)-Součet(x-1,1,N));

end;
read(prikaz);

end;
end.

P - I - 4

Nejjednodušším řešením je použít čtyři registry a v každém si počítat
počet písmen jednoho typu. Když dočteme slovo, v Ro máme počet pře-
čtených písmen a, v Ri počet b, atd. Nyní budeme najednou zmenšovat
hodnoty ve všech čtyřech registrech. Accept zavoláme právě tehdy, když
registr R0 zůstane nejdéle nenulový.
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Počet použitých registrů lze snadno snížit na tři: Nechť jsme dosud
přečetli a písmen a, (3 písmen b, 7 písmen c a <5 písmen d. V registrech si
budeme ukládat absolutní hodnoty výrazů a — (3, a — 7, a — S, ve třech
proměnných si budeme pamatovat jejich znaménka (např. 0, pokud je
v příslušném registru nula, 1, pokud tam je kladné číslo, a 255, když je
záporné.) V každém okamžiku výpočtu pak dokážeme snadno určit, zda
bylo dosud na vstupu písmen a nejvíce
jsou všechny tři zapamatované hodnoty kladné (tzn. všechna tři jejich
znaménka rovna 1).

Naše řešení bude potřebovat jen dva registry. Je možné ukázat
(v tomto vzorovém řešení to ale neuděláme), že jeden registr na vyřešení
této úlohy nestačí. Naše řešení bude tudíž vzhledem к počtu registrů
optimální.

V průběhu výpočtu si v Rq budeme pamatovat číslo 2a3f3517s, re-

gistr R\ budeme používat pouze na pomocné výpočty. Když například
přečteme ze vstupu jako další písmeno 6, pomocí registru R\ vynáso-
bíme obsah registru Rq třemi. Po dočtení vstupu potřebujeme porovnat
hodnoty a, (3, 7 a 6. Podobně jako v prvním řešení je budeme najed-
nou zmenšovat (což v tomto případě znamená dělit obsah Ro vhodným
číslem) a akceptujeme právě tehdy, když nám na konci zůstane kladná
mocnina 2.

Samotný program je sice trochu delší, ale je jen přímočarou imple-
mentací uvedené myšlenky.
var c:char;

d,e,f:byte;

to platí právě tehdy, když

begin
{ čteme vstup a kódujeme do RO, kolik v něm čeho je }
Inc(RO);
Read(c);
while c<>’$’ do begin

case c of

’a’: d:=2;
’b’: d:=3;
’c’: d:=5;
’d’: d: =7;
end;

while not Zero(RO) do begin { R1 := RO * d, RO := 0 }
Dec(RO);
for e:=l to d do Inc(Rl);

end;
{ RO := Rl, R1 := 0 >while not Zero(Rl) do begin

Dec(Rl);
Inc(RO);

end;
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Read(c);
end;

{ v každé iteraci z RO odebereme jedno "a" }■
{ a po jednom z dosud zbývajicich ostatnich pismen }
while true do begin

e : = 0;
while not Zero(RO) do begin

Dec(RO);
e := (e+1) mod 210;

if e=0 then Inc(Rl);
end;

d : = 1;

{ e := RO mod 210, R1 := RO div 210, RO := 0 >
{ (210 = 2*3*5*7) >

{ zjistime, čím vším bylo RO ještě dělitelné }
{ ale stači, když budeme testovat e misto RO }

if e mod 2=0 then d := d*2

if e mod 3=0 then d := d*3

if e mod 5=0 then d := d*5

if e mod 7=0 then d := d*7

{ už zbývaji jen a-čka, což je dobré }if d=2 then Accept;
if e mod 2 <> 0 then Reject;

{ a-čka došla, ale zbyla jiná pismena => špatné }
while not Zero(Rl) do begin { V R0 má být původni R0 div d, což získáme!

Dec(Rl);
for f := 1 to 210 div d do Inc(RO);

{ tak, že nejprve spočteme (210 div d) * R1 ... }

end;
for f := 1 to e div d do Inc(RO);

{ ... a pak přičteme e div d; R1 máme nulové }
end;

end.

P ~ II ~ 1

Zadanou úlohu si převedeme do řeči teorie grafů. Budovy firmy předsta-
vují vrcholy našeho grafu, hrany grafu odpovídají možným propojením
optickým kabelem. Úlohu vyřešíme nejprve pro případ К — 1. V tomto
případě je naším úkolem vybrat takovou množinu hran, aby všechny vr-

choly byly navzájem propojeny (ne nutně přímo). Taková množina hran
se nazývá kostra grafu, a jelikož chceme, aby součet cen hran v kostře byl
co nejmenší, řešíme problém hledání minimální kostry.

Rozmyslete si, že minimální kostra grafu neobsahuje žádný cyklus —

kdyby totiž nějaký obsahovala, mohli bychom jeho libovolnou hranu od-
stranit. Na druhé straně když do minimální kostry přidáme libovolnou
hranu, vznikne nám cyklus, neboť vrcholy, mezi nimiž vede přidaná hra-
na, byly už spojeny pomocí nějakých hran kostry.

Hledání minimální kostry (Primův algoritmus). Algoritmus je žalo-
žen na následující myšlence. Vrcholy grafu rozdělíme na dvě skupiny: na

připojené a nepřipojené. Na začátku algoritmu zvolíme libovolný vrchol
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a prohlásíme ho za připojený, ostatní vrcholy jsou zatím nepřipojené.
V každém kroku algoritmu připojíme jeden vrchol к dosud vytvořené
síti následujícím způsobem. Najdeme nejkratší hranu spojující připojený
a nepřipojený vrchol. Tuto hranu přidáme do sítě a její druhý konec se
stane připojeným vrcholem. Skončíme ve chvíli, když jsou všechny vr-

choly připojeny.
Aby byl algoritmus efektivní, potřebujeme umět rychle nalézt nej-

kratší hranu spojující připojený a nepřipojený vrchol. To zařídíme tak,
že pro každý dosud nepřipojený vrchol si budeme pamatovat, ze kterého
připojeného vrcholu к němu vede nejkratší hrana. Pokaždé, když přidáme
к připojeným vrcholům další vrchol, musíme si informaci o nejbližších při-
pojených vrcholech aktualizovat. Projdeme všechny nepřipojené vrcholy
a pokud je nově připojovaný vrchol bližší, naši informaci změníme.

Skutečnost, že výsledná množina hran tvoří kostru, je zřejmá. Je však
třeba dokázat, že je tato kostra minimální. Představme si libovolnou mi-
nimální kostru (dále ji budeme označovat MK) a porovnávejme ji s vý-
sledkem našeho algoritmu (dále VNA).

Jestliže MK a VNA jsou shodné, VNA je minimální kostra. Před-
pokládejme tedy, že MK a VNA nejsou shodné. Nechť T) je množina
připojených vrcholů po г-tém kroku našeho algoritmu. Seřadíme hrany
ve VNA podle toho, jak jsme je přidávali, a najdeme první hranu, která
se vyskytuje ve VNA, ale není obsažena v MK. Nechť tato hrana byla
přidána v kroku i + 1 a nechť spojuje vrchol и £ Ti a vrchol v ф Ti.

Přidejme hranu (u, v) do MK. Tím vznikne v MK cyklus, který začíná
v Ti, přejde po hraně (u, v) ven z Ti a potom se vrátí nějakou cestou zpět
do Ti (obr. 41). Na této cestě musí existovat aspoň jedna hrana (u',v'),
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Obr. 41. Přidáním hrany (u,v) vznikne v MK cyklus, který začíná v Ti, přejde po
hraně (u,v) ven z Ti a. potom se vrátí nějakou cestou zpět do Ti.

která má jeden konec v Ti a druhý konec mimo Ti. Cena této hrany musí
být aspoň taková, jako je cena hrany (u,v). V opačném případě by si
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náš algoritmus v kroku i + 1 musel vybrat hranu (u',v') namísto hrany
(u,v). Proto pokud hranu odebereme z MK a přidáme tam místo
ní hranu (u,v), cena MK se nezvýší. Nemůže se však ani snížit, neboť MK
je minimální. Upravená MK bude tedy nadále minimální kostrou v grafu.
Navíc VNA a MK se nyní shodují v prvních i + 1 hranách. Stejným
způsobem postupně přeměníme MK na VNA, přičemž nezvýšíme její
cenu, takže VNA musí být také minimální kostrou.

Řešení pro obecné K. Dosud jsme předpokládali К = 1. Jestliže
К > 1, nemusíme hranami pospojovat všechny vrcholy. Ke komunikaci
totiž můžeme využít také Internet. Stačí, když se naše síť bude skládat
z К souvislých částí, v každé z těchto souvislých částí vybereme jeden
vrchol, který připojíme na Internet, a tak bude moci komunikovat každý
vrchol s každým.

Takovouto síť můžeme získat například odebráním К — 1 nejdražších
hran z minimální kostry MK. Tím se nám totiž MK rozpadne právě na К
souvislých částí. Jediným problémem je ukázat, že toto řešení je skutečně
nejlevnější možné.

Označme tedy symbolem P množinu К — 1 nej dražších hran kostry
MK. Jejich odebráním z MK dostaneme množinu hran Q, která se skládá
z К souvislých částí. Nechť existuje levnější množina hran T, která rovněž
tvoří síť složenou z К souvislých částí.

Budeme uvažovat graf tvořený kostrou MK a hranami z množiny T.
Jelikož už MK je souvislá, tento graf je jistě souvislý. Proto lze zvolit
několik hran z MK, jimiž se dají jednotlivé komponenty T pospojovat.
Každá přidaná hrana spojí dvě komponenty do jedné větší, takže stačí
přidat К — 1 hran. Množinu těchto přidaných hran označíme symbolem S.

Všimněte si následujících dvou skutečností:
> Množina hran S určitě není dražší než P, neboť obě obsahují К — 1

hran z kostry MK, ale P jsme vybrali tak, aby obsahovala nejdražší
hrany.

> Podle našeho předpokladu množina hran T je levnější než množina
hran Q.

Z toho ale vyplývá, že kostra S U T je levnější než MK — P U Q, což je
spor s tím, že MK je minimální kostra. Tím jsme ukázali, že к vyřešení
úlohy stačí z MK odebrat К — 1 nejdražších hran.

Časová složitost. Při hledání minimální kostry se v každém kroku
přidá jeden vrchol do množiny připojených, vykoná se tedy celkem N — 1
kroků. V každém kroku nejprve v čase O(N) najdeme nejkratší hranu
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spojující připojený a nepřipojený vrchol. Potom aktualizujeme informaci
o nejbližším připojeném vrcholu pro všechny dosud nepřipojené vrcholy.
Tato aktualizace představuje opět provedení O(N) operací. Celková ča-
sová složitost je proto kvadratická, tj. 0(N2).

Z výsledné minimální kostry potom potřebujeme odebrat К — 1 nej-
dražších hran. To můžeme udělat tak, že hrany kostry setřídíme. Třídění
lze provést v čase 0(N log N), v tomto případě nám ovšem stačí použít
jednoduché třídění pracující v čase 0(N2). Celková časová složitost je
0(N2).
program Sit_P_II_l;
const

maxn = 1000;
nekonečno = 10000;

var

N,K: integer; { počet budov, počet komponent }
a: array[1..maxn,1..maxn] of integer; { ceny spojení >
sit: array[1..maxn,1..2] of integer; { seznam hran výsledné sítě }

procedure nacti_vstup;
var

i,j: integer;
begin

write(’Počet budov N:’); readln(N);
write(’Počet internetových připojení K:’); readln(K);
for i:=l to N do

for j:=i+l to N do begin
write(’Cena (’,ij; readln(a[i,j] );
a[j , i] :=a[i, j] ;

end;
end; {nacti_vstup}

procedure minimalni_kostra;
{najde minimální kostru a uloží její hrany do pole sit>
var

připojené: array[1..maxn] of boolean;
nej: array[1..maxn] of integer;
i,j: integer;
min, nejlepsi: integer;

begin
{na začátku je jenom vrchol 1 připojený}-
připojene[l]:=true;
for i:=2 to N do begin

{v poli nej si budeme pro každý dosud nepřipojený vrchol
udržovat nejbližší připojený vrchol}

připojené[i]:=false;
nej[i]:=1;

end;

for i:=1 to N-l do begin
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{najdeme nejkratší hranu, která spojuje
připojený a nepřipojený vrchol}

min:=nekonecno;
for j:=1 to N do begin

if not připojene[j] then begin
if a[j,nej[j]]<min then begin

nejlepsi:=j; min:=a[j,nej[j]]
end;

end;
end;

{nalezený vrchol připojíme}
připojené[nej lepši]:=true;
{spojení (nejlepsi,nej[nejlepsi] ) patří do sítě}
sit [i,1]:=nejlepši; sit [i,2]:=nej[nejlepši];

{přepočítáme pole nej: pro každý vrchol zjistíme, zda právě
připojený vrchol nezkrátí jeho vzdálenost к připojeným vrcholům}
for j:=l to N do begin

if not připojené[j] then begin
if a[j,nej[j]]>a[j.nejlepsi] then nej[j]:=nejlepsi;

end;
end;

end;
end; {minimalni_kostra}

procedure utrid_hrany_site;
{setřídí hrany sítě od nejlevnější po nejdražší}
var

i,j,k,min: integer;
begin

for i:=l to N-l do begin
min:=i;
for j:=i+l to N-l do begin

if a[sit[j,1],sit[j,2]]<a[sit[min,1],sit[min,2]] then
min:=j;

end;
k:=sit[min,1]; sit [min,1]:=sit[i,1] ; sit[i,l]:=k;
k:=sit[min,2]; sit [min,2]:=sit[i,2] ; sit[i,2]:=k;

end;
end; {utrid_hrany_site}

procedure vypis_vysledek;
{vypíše výsledné hrany sítě}
var

i: integer;
begin

writeln(’Je třeba vybudovat spojení mezi následujícími budovami:’);
for i:=l to N-K do begin

writeln(’(’,sit[i,1],’,’,sit [i,2],’) ’) ;

end;
end; {vypis_vysledek}

begin
nacti_vstup;
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minimalni_kostra;
utrid_hrany_site;
vypis_vysledek;

end.

P - II - 2

Uvažujme, který ze studentů má pracovat u počítače v daném okamžiku
t. Zřejmě to musí být jeden z těch studentů, kteří už přišli do firmy,
ale ještě nedokončili svůj program. O těchto studentech řekneme, že jsou
aktivní v čase t. Dokážeme, že v optimálním řešení vždy můžeme poslat
pracovat na počítači toho z aktivních studentů, který musí odejít nejdříve
(nechť je to student a). Kdyby totiž existoval rozvrh, ve kterém v čase
t pracuje nějaký jiný student 6, pak se student a musí dostat к počítači
ještě v čase ť někdy mezi t a časem odchodu ta. Student b však odchází
v čase tb ^ ta. Proto můžeme sestrojit nový rozvrh, v němž necháme
studenta a chvíli pracovat na počítači v čase t a stejně dlouhou dobu
potom necháme studenta b pracovat na počítači v čase ť. Jestliže byl
původní rozvrh správný, je správný i takto modifikovaný rozvrh, neboť
každý pracuje stejně dlouho jako v původním rozvrhu a každý pracuje
před svým odchodem.

Dokázali jsme, že v každém okamžiku může pracovat ten z aktivních
studentů, který musí nejdříve odejít. Kdy tedy může dojít ke změně ob-
sazení počítače? Buď tehdy, když přijde nový student a potřebuje odejít
dříve, než student právě pracující (v tom případě se vystřídají u počí-
tače), nebo když nějaký student dokončí svůj program a uvolní počítač.

Náš algoritmus bude sestrojovat rozvrh obsazení počítače postupně
od začátku do konce. Studenty seřadíme podle času jejich příchodu
a u každého si zaznamenáme, jak dlouho ještě potřebuje pracovat. Bu-
deme si také udržovat množinu aktivních studentů. V každém kroku algo-
ritmu najdeme nejbližší událost, jež může ovlivnit rozvrh. Touto událostí
je buď příchod studenta nebo ukončení práce právě pracujícího studenta.
V obou případech zaktualizujeme datové struktury a potom najdeme ak-
tivního studenta s nejbližším odchodem a přidělíme mu počítač. Pokud
tento student již nemá dost času na dokončení svého programu, oznámí-
me, že všechny programy nelze dokončit. Správnost tohoto tvrzení přímo
vyplývá z důkazu uvedeného výše.

Seřazení studentů je možné provést v čase 0(N log N). Počet událostí
je 2N, neboť každý student jednou přijde a jednou dokončí program. Při
každé události potřebujeme najít aktivního studenta s nej menším časem
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odchodu. Kdybychom kvůli tomu vždy procházeli všechny aktivní stu-
denty, dostali bychom algoritmus s časovou složitostí 0(N2). Algoritmus
se však dá zefektivnit, jestliže uložíme aktivní studenty do haldy uspo-
řádané podle času jejich odchodu. V takovém případě zpracování jedné
události trvá jen O(logiV)
když někdo dokončil práci, z haldy ho odstraníme. Poté se podíváme
na minimum v haldě — studenta, který bude od této chvíle pracovat
u počítače. Celková časová složitost algoritmu s použitím haldy je tedy
pouze O(NlogN).

když někdo přišel, vložíme ho do haldy,

program AttoSoft_P_II_2;
type student =

record

příchod, odchod, zbyva: integer;
end;

const Nekonečno = 10000;

var A: array [1..1000] of student;
N: integer;
Halda: array [1..1000] of integer;
Halda_N: integer;

{ pole studentů }
{ počet studentů }
{ halda podle času odchodu }
{ počet studentů v haldě }

procedure trid;
begin

{ vynechána kvůli úspoře místa }
end; { trid }

procedure vloz_do_haldy(student: integer);
var i, rodič, tmp: integer;
begin

-( vlož studenta na konec haldy a posouvej ho nahoru У
Halda_N := Halda_N + 1;
Halda[Halda_N] := student;
i := Halda_N;
while i>l do begin

rodič := i div 2;
if A [Halda[i]].odchod < A[Halda[rodič]].odchod then begin

tmp := Halda[i];
Halda[i] := Halda[rodič];
Halda[rodič] := tmp;

end;
i := rodič;

end;
end; -[ vloz_do_haldy }

procedure vyber_z_haldy;
var i, dite, tmp: integer;
begin

{ první prvek nahraď posledním a posouvej ho dolů }
Halda[1] := Halda[Halda_N];
Halda_N := Halda_N - 1;
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i := 1;
while i*2<=Halda_N do begin

dite := i*2;
if (i*2+l<=Halda_N)

and (A[Halda[i*2+l]].odchod < A[Halda[dite]].odchod) then begin
dite := i*2+l;

end;
if A[Halda[i]].odchod > A [Halda[dite]].odchod then begin

tmp := Halda[i];
Halda[i] := Halda[dite] ;

Halda[dite] := tmp;
end;
i := dite;

end;
end; { vyber_z_haldy }

procedure nacti;
var i: integer;
begin

readln(N);
for i := 1 to N do begin

readln(A[i].prichod, A[i].odchod, A[i].zbyva);
end;

end; { nacti }

function min(a,b: integer): integer;
begin

if a<b then min := a

else min := b;
end; { min ]■

{ kdo právě pracuje a kdy skončí }
{ aktuální a předcházející událost }
{ index do pole A }

var Pracuje, Skonči: integer;
Stary_cas, Novy_cas: integer;
i: integer;

begin
{ načti studenty do pole A }
■[ zarážka }

■[ seřaď prvky pole A podle položky "prichod" }
-[ nikdo nepracuje }

nacti;
A[N+1].prichod := Nekonečno;
trid;
Pracuje := -1;
Skonči := Nekonečno;
Halda_N := 0;
i := 1;
Stary_cas := 0;
while (i <= N) or (i = N+l) and (Pracuje > 0) do begin

{ Najdi novou událost }
Novy_cas := min(A[i].prichod, Skonči);
writeln(’Čas ’,Novy_cas);
{ Pokud někdo pracoval u počítače, vyhoď ho }
if Pracuje > 0 then begin

writeln(Novy_cas, ’: student ’, Pracuje, ’ od počítače.’);
A [Pracuje].zbyva := A [Pracuje].zbyva - (Novy_cas - Stary_cas);
if A[Pracuje].zbyva = 0 then vyber_z_haldy;

-( inicializace haldy }

end;
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{ Jestliže událostí je příchod, }
{ vlož do haldy a jdi na další příchod }
if (i <= N) and (A[i].příchod < Skonči) then begin

vloz_do_haldy(i) ;
i := i+1;

end;

{ Najdi nového studenta к počítači }
if Halda_N > 0 then begin

Pracuje := Halda[1];
Skonči := Novy_cas + A[Pracuje].zbyva;
if Skonči > A[Pracuje].odchod then begin

writelnC’Rozvrh neexistuje!’);
exit;

end;
writeln(Novy_cas, ’: student ’, Pracuje, ’ к počítači.’);

end

else begin
Pracuje := -1;
Skonči := Nekonečno;

end;
Stary_cas := Novy_cas;

end;
end.

P - II - 3

Na příkaz KOLIK c musí náš program odpovídat, v kolika dosud zadaných
intervalech c leží. Na úvod uvedeme dvě triviální řešení. První je žalo-
ženo na tom, že si budeme jednoduše pamatovat všechny dosud zadané
intervaly a při každém příkazu KOLIK je všechny projdeme. Paměťová
složitost tohoto řešení je O(P), časová v nejhorším případě až 0(P2).
(Příkaz PŘIDEJ dokážeme zpracovat v čase 0(1), ale na KOLIK potřebu-
jeme v nejhorším případě až 0(P).) Trochu lepší řešení využívá pomocné
pole velikosti N +1, v němž si pro každou celočíselnou pozici budeme pa-
matovat počet intervalů, které ji obsahují. Jeden interval přidáme v čase
O(N), na otázku odpovíme v čase 0(1). Výsledná časová složitost tohoto
algoritmu je 0(N ■ P), paměťová O(N).

Uvědomte si, co vlastně potřebujeme zjistit, když nám přijde příkaz
KOLIK c. Potřebujeme určit S — počet intervalů, které začínají na pozici
^ca končí na pozici ^ c. Nechť Z{x) je počet intervalů, které začínají na

pozici 5Í x, a K(x) je počet intervalů, které končí na pozici £= x. Potom
S = Z(c) — K(c— 1). (Intervaly, které končí před c, jsou započteny v Z(c)
i v K(c— 1), a proto je do S nezapočítáváme.) Stačilo by nám tedy umět
rychle zjišťovat hodnoty Z[x) a K(x).
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V řešení úlohy budeme využívat myšlenku z úlohy P-I-3 — datovou
strukturu, kterou jsme nazvali intervalový strom.4 Připomeňme si, o co
šlo: Představte si, že nad polem A (jehož délku N jsme zvětšili na nejbližší
mocninu dvou) vybudujeme úplný binární strom. Jeho listy budou od-
povídat jednotlivým prvkům pole A, každý vyšší vrchol tohoto stromu
bude odpovídat nějakému intervalu v poli A (přesněji bude odpovídat
prvkům určeným listy z jeho podstromu). V každém vrcholu stromu si
budeme pamatovat součet čísel v příslušném intervalu pole. Změnit hod-
notu v poli A (a příslušně upravit součty ve vrcholech stromu) dokážeme
v čase O(logiV), zjistit součet libovolného intervalu v poli A dokážeme
rovněž v čase O (log AT).

Z(c) je vlastně součet počtů intervalů začínajících na pozicích 0,1,
2,..., c. Budeme mít pole, ve kterém si tyto počty budeme pamatovat,
a nad ním vybudovaný intervalový strom. Každé přidání intervalu změní
jednu hodnotu v poli, tuto změnu dokážeme uskutečnit v čase O(logiV).
Analogicky budeme používat druhé pole (a druhý intervalový strom) pro

počty intervalů, které na jednotlivých pozicích končí. Pomocí těchto dato-
vých struktur dokážeme každou hodnotu Z а К spočítat v čase O (log N).

Detailnější popis obou operací s intervalovým stromem a jeho imple-
mentaci v poli najdete v řešeních P-I-3. Časová složitost našeho vzo-
rového řešení je 0(P log N) a paměťová O(N). Všimněte si, že by nám
stačilo udržovat jedno pole. Přidání intervalu (a, b) by znamenalo např.
zvýšení hodnoty na pozici a a snížení hodnoty na pozici b + 1.

program Bageta_P_II_3;
var ZZ,KK: array[0..2100000] of longint; { stromy pro Z а К }

N,oldN,a,b,c,kde: longint;
přikaž,pom: char;

function

Soucet(var T: array of longint; délka, kořen, interval: longint): longint;

4 Neplést si s intervaly ze zadání!
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{T - pole, v němž počítáme součty (všimněte si: "var T", ne "T" - proč?)
délka - délka intervalu, jehož součet počítáme
kořen - kořen podstromu, ve kterém ho počítáme
interval - délka intervalu odpovídajícího kořenu
(abychom ji nemuseli počítat)}

begin
if (delka=0) then begin Součet:=0; exit; end;
if (interval=l) then begin Součet:=T[kořen]; exit; end;
if (delka<=(interval div 2))

then Součet:=Soucet(T.delka,2*koren,interval div 2)
else Součet:=T[2*koren]+Soucet(T.delka-(interval div 2),

2*koren+1,interval div 2);
end;

begin
fillchar(ZZ,sizeof(ZZ),0);
fillchar(KK,sizeof(KK),0);
readln(oldN); N:=l; while (N<oldN+l) do N:=N*2; {upravíme velikost pole}

while not eof do begin
read(prikaz); pom:=prikaz; while (pom<>’ ’) do read(pom);
if (prikaz=’P’) then begin

readln(a,b);
kde:=a+N; while (kde>=l) do begin Inc(ZZ[kde]); kde:=kde div 2; end;
kde:=b+N; while (kde>=l) do begin Inc(KK[kde]); kde:=kde div 2; end;

end else begin
readln(c) ;

writeln(Soucet(ZZ,c+l,1,N) - Součet(KK,c,1,N));
end;

end;
end.

P - II - 4

Představte si, že bychom kromě registrů měli к dispozici ještě jeden zá-
sohník5. Potom bychom již úlohu dokázali snadno vyřešit: Procházíme
vstupním slovem zleva doprava a přečtená písmena vkládáme do zásobní-
ku. Až potom budeme ze zásobníku písmena odebírat, budeme je dostávat
v opačném pořadí, než v jakém byla do zásobníku vložena. Vrátíme se

proto na začátek slova a budeme porovnávat, zda je slovo stejné odpředu
jako odzadu. Vždy přečteme jedno písmeno ze vstupu, vyzvedneme jedno
písmeno ze zásobníku a porovnáme je. Skončíme, když někdy dostaneme
dvě různá písmena (slovo je špatné) nebo když dočteme celé vstupní slovo
(slovo je správné).

Kdybychom tedy měli к dispozici zásobník, máme úlohu vyřešenou.
Zásobník si však dokážeme simulovat v jednom registru (s pomocí dru-
5 Zásobník je datová struktura, která podporuje operace „vlož prvek“ a „odeber

naposledy vložený prvek“.
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liého)! Jak na to? Písmena a, b, c, d budou odpovídat číslicím 1, 2, 3,
4. Číslo uložené v registru R\ bude představovat obsah zásobníku —

když ho zapíšeme v poziční soustavě o základu 5, jednotlivé cifry bu-
dou představovat hodnoty vložené do zásobníku (cifra na místě jedno-
tek bude naposledy vložená hodnota). Například když do prázdného
zásobníku vložíme postupně písmena a, c, b, a, bude v R\ hodnota
ax53+cx52+ 6x5 + a = 1x53 + 3x52 + 2x5 + 1 = 125 + 75 + 10+1 -211.

Jak ale s takovýmto registrem-zásobníkem pracovat? Vložit novou
hodnotu x je jednoduché — pomocí registru R2 vynásobíme obsah R\
pěti a potom ho ж-krát zvětšíme o 1. Vyzvednout naposledy vloženou
hodnotu také není těžké — je to přesně opačná operace. Vydělíme obsah
registru R\ pěti, zbytek po dělení je naposledy vložená hodnota, podíl
(který dostaneme v R2) je nový obsah zásobníku bez této hodnoty.

Máme tedy funkční řešení úlohy, které potřebuje dva registry. Poku-
símě se však nalézt řešení ještě lepší. Jen s jedním registrem se nám už
nepodaří simulovat zásobník a musíme proto vymyslet něco jiného.

Nejprve trochu terminologie: aktuální písmeno se bude v našem ře-
šení pohybovat sem a tam po vstupním slově. Kvůli názornosti místo
„aktuální je г-té písmeno vstupního slova“, resp. „přesuneme aktuální pís-
měno doleva/doprava“ budeme říkat „stojíme na pozici г“, resp. „jdeme
doleva/doprava“. Délku vstupního slova budeme značit n.

Představte si, že stojíme na pozici г (přičemž ale i si nijak nepamatuje-
me, v R1 je nula). Chtěli bychom písmeno na této pozici porovnat s jemu
odpovídajícím písmenem na pozici n + 1 — г. Náš program ovšem nezná
n ani i. Jak na to? Písmeno na naší pozici si zapamatujeme v proměnné.
Nyní si zjistíme i. Jdeme doleva, dokud nepřijdeme na začátek vstupního
slova, a zvyšujeme R\. Odpovídající písmeno je г-té od konce. Není tedy
těžké dojít к němu — přejdeme na konec slova, potom zmenšujeme R\
a jdeme doleva, dokud v Ri není nula. Písmena porovnáme, a jsou-li
různá, končíme. Jinak se potřebujeme vrátit zpět na pozici, kde jsme za-
čínali. К tomu použijeme úplně stejný postup: Cestou doprava spočítáme
v registru R\ potřebný počet kroků, přesuneme se na začátek slova a vy-
konáme stejný počet kroků směrem doprava. Tím jsme se dostali do stejné
situace, v níž jsme začínali, jen máme porovnané aktuální písmeno s jemu
odpovídajícím písmenem. Celý tento postup budeme nazývat porovnání.

Chtěli bychom postupně porovnat všechny navzájem si příslušející
dvojice písmen. To ale není problém. Začínáme na prvním písmenu
vstupu a provedeme porovnám. Pokud není první písmeno stejné jako po-

slední, skončili jsme, jinak pokračujeme. Přesuneme se doprava (na druhé
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písmeno) a vykonáme další porovnání. Takto pokračujeme tak dlouho,
dokud neporovnáme n-té písmeno s prvním (a nezjistíme, že právě po-
rovnané písmeno bylo již posledním písmenem vstupního slova).
var vstup: char;

písmeno: byte;
begin

while (vstup<>’$’) do begin
{ v Ri máme nulu, začínáme porovnání }

if (vstup=,a’) then písmeno:=1;
if (vstup=’b’) then písmeno:=2;
if (vstup=,c’) then písmeno:=3;
if (vstup=’ď) then písmeno: =4;

{ spočítáme, kde jsme }
while (vstup<>’$’) do begin Inc(fíi); Left; end;

{ přejdeme na pravý konec }
Right;
while (vstup<>’$’) do Right;

{ přejdeme na odpovídající pozici }
while not Zero(/?i) do begin Dec(íži); Left; end;

-C kontrola }
if (pismeno=l) and (vstupO’a’) then Reject;
if (pismeno=2) and (vstupO’b*) then Reject;
if (pismeno=3) and (vstupO’c’) then Reject;
if (pismeno=4) and (vstupO’d*) then Reject;

{ návrat zpět }
while (vstup<>’$’) do begin Inc(fíi); Right; end;
Left;
while (vstup<>’$’) do Left;
while not Zero(i?i) do begin Dec(/?i); Right; end;

{ posun na další písmeno, které je třeba zkontrolovat }
Right;

end;
Accept; { všechno správně }

end.

P - III - 1

TJlohu si můžeme reprezentovat pomocí orientovaného grafu. Agenti před-
stavují vrcholy grafu. Skutečnost, že agent a může vydat rozkaz agen-
tovi b, vyjádříme orientovanou hranou (a,b). Naším úkolem je nalézt
v tomto grafu vrchol, z něhož se můžeme dostat do všech ostatních vr-
cholů.

Začneme prohledáváním grafu do hloubky z libovolného zvoleného
vrcholu. Jestliže při tomto prohledávání navštívíme všechny vrcholy, na-
šli jsme šéfa — je jím vrchol, kterým jsme prohledávání začali. V opáč-
ném případě pokračujeme tak, že zahájíme nové prohledávání do hloubky
v jednom z vrcholů, které jsme dosud nenavštívili (dříve navštívené vr-
choly grafu přitom necháme označené jako navštívené). To opakujeme
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tak dlouho, dokud nenavštívíme všechny vrcholy našeho grafu. Nechť
je vrchol, v němž jsme zahájili poslední prohledávání.
Tvrzení. Má-li náš graf aspoň jednoho šéfa, potom vrchol r je šéfem.

DŮKAZ. Předpokládejme, že náš graf má šéfa a že vrchol r není šéfem.
Nechť je šéfem vrchol s. Musíme uvažovat dvě možnosti:

> Vrchol s byl navštíven při posledním prohledávání. To by ale zna-

menalo, že se do tohoto vrcholu můžeme dostat z vrcholu r (neboť
vrchol r je počátkem posledního prohledávání), tudíž se můžeme do-
stát z vrcholu r do libovolného jiného vrcholu grafu přes s, což je však
v rozporu s naším předpokladem, že r není šéfem,

o Vrchol s byl navštíven dříve než při posledním prohledávání. Jelikož
se však z vrcholu s dá dojít do libovolného vrcholu, museli bychom
také vrchol r navštívit ve stejném prohledávání jako s, takže vrchol r
nemůže být začátkem posledního prohledávání.

Zbývá tedy už jen ověřit (opět prohledáváním do hloubky), zda r je
skutečně šéfem grafu; v opačném případě graf nemá žádného šéfa. Časová
složitost celého algoritmu je 0(M -f N), kde N je počet vrcholů a M je
počet hran grafu.

program Agenti;

const MAXM = 10000;
MAXN = 100;

Г

var rozkazuje: array [1..MAXM] of integer;
ind_od, ind_do: array [1..MAXN] of integer;
•[agent i+6 rozkazuje agentům rozkazuje [ind_od[i] ].. .

rozkazuj e[ind_do[i]]>
N: integer;
navstiven: array [1..MAXN] of boolean;

procedure Načti;
var i,M,agent: integer;
begin

write(’Počet agentů:’); readln(N);

M:=0;
for i:=l to N do begin

write(’Agent ’,i+6,’ rozkazuje: (ukonči -1)’);
ind_od[i]:=M+1;
read(agent);
while (agent>0) do begin

M:=M+1;
rozkazuj e[M]:=agent-6;
read(agent);

end;
ind_do[i]:=M;
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end;
end; {procedure Nacti}

procedure Prohledej(i: integer);
var j: integer;
begin

if not navstiven[i] then begin
navstiven[i]:=true;
for j:=ind_od[i] to ind_do[i] do begin

Prohledej(rozkazuj e[j ] );
end;

end;
end; {procedure Prohledej}

var i,posledni: integer;
je_sef: boolean;

begin
Nacti;
for i:=l to N do navstiven[i]:=false;
for i:=l to N do begin

if not navstiven[i] then begin
posledni:=i;
Prohledej(i);

end;
end;

for i:=l to N do navstiven[i]:=false;
Prohledej(posledni);

j e_sef:=true;
for i:=l to N do je_sef:=je_sef and navstiven[i];

if je_sef then
writeln(’Šéfem je agent posledni+6)

else

writelnC’Žádný agent neni šéfem’);
end. {program Agenti}

P - III - 2

Snadno sestrojíme řešení, které potřebuje čas 0(K) na zpracování jedné
hodnoty ze vstupu. Stačí si v cyklicky přepisovaném poli pamatovat po-
sledních К vstupních hodnot. Pokaždé, když přečteme další číslo ze vstu-
pu, pole jednoduše projdeme a vypíšeme nejmenší z hodnot uložených
v poli.

Vzorové řešení vystačí s časem 0(log К) na zpracování jednoho čísla.
Představme si, že bychom si aktuálních К hodnot udržovali v haldě.
Novou hodnotu do této haldy lehce přidáme v čase 0(\ogK). Předtím,
než vypíšeme minimum (které je uloženo v kořeni haldy), potřebujeme
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však ještě z haldy odstranit nejstarší hodnotu. Jak ale máme vědět, která
z nich to je?

Pomůžeme si tím, že hodnoty, které nám budou přicházet, vložíme
nejen do haldy, ale také do fronty. Mezi těmito dvěma datovými struktu-
rami si budeme udržovat vzájemné odkazy, abychom v každém okamžiku
dokázali o každém prvku fronty říci, kde je v haldě, a naopak.

Když tedy přijde nová hodnota, vložíme ji do haldy a na konec fronty.
Následně ze začátku fronty odstraníme nejstarší hodnotu, pomocí odkazu
ji najdeme v haldě a odstraníme ji také odtamtud. Nyní už jen vypíšeme
hodnotu uloženou v kořeni haldy.

Obě operace s haldou mají časovou složitost 0(\ogK), zbývající ope-
race dokážeme provést v konstantním čase. Paměť spotřebovaná haldou
i frontou je O(K).
#include <stdio.h>

#define MAXK 100047
#define INFTY lelO

#define SWAP(x,y) pom=(x); (x)=(y); (y)=pom

typedef struct { double val; int ptr; У tZaznam;
// ze zadáníint K;

tZaznam H[MAXK],Q[MAXK]; // halda a fronta
// začátek frontyint qs;

tZaznam pom;

void init(void) { // naplníme haldu i frontu "nekonečně" velkými hodnotami
int i;
qs=0; H[0],val=-10000;
for (i=0;i<K;i++)
{ Q[i].val=H[i+l].val=INFTY; Q [i].ptr=i+l; H [i+1].ptr=i; >

>
void bubbleup(int idx) { // bublej prvkem nahoru v haldě

int next=idx,pl,p2;
if (H[idx/2].val > H[idx].val) next=idx/2;
if (next!=idx) {

pl=H[idx].ptr; p2=H[next].ptr;
SWAP(H[idx],H[next] );
q [pl].ptr=next; Q [p2].ptr=idx;
bubbleup(next);

>
>
void bubbledown(int idx) { // bublej prvkem dolů v haldě

int next=idx,pl,p2;
if (2*idx<=K)
if (2*idx+l<=K) if (H[2*idx+1].val < H[next].val) next=2*idx+l;
if (next!=idx) -[

pl=H[idx].ptr; p2=H[next].ptr;
SWAP (H [idx] ,H [next] ) ;

Q [pl].ptr=next; Q [p2].ptr=idx;
bubbledown(next);

if (H[2*idx ].val < H[next].val) next=2*idx;
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}
}

int main(void) {
int delptr;
double x;

scanf("'/,d ",&K); init();
while (1) {

scanf("'/,lf ",&x); if (x==-1000) break;
delptr=Q[qs].ptr; // najdeme hodnotu, kterou je třeba vymazat z haldy
H [delptr].val=H[K] .val; H [delptr].ptr=H[K].ptr; Q [H [K].ptr].ptr=delptr;
К—; bubbledown(delptr); bubbleup(delptr); K++;

// smažeme a upravíme haldu
Q [qs].val=H[K].val=x; Q[qs].ptr=K; H[K].ptr=qs; bubbleup(K); // vložíme
qs=(qs+l)’/,K;
printf ("7.g\n" ,H[1] .val) ;

>
return 0;

>

P - III - 3

a) Na úvod si připomeňme, že v řešení krajského kola jste se mohli
kromě jiného dočíst, jak lze pomocí dvou počítadel simulovat zásobník.
Pro jistotu si zopakujeme, jak na to:

Zásobník si můžeme simulovat v jednom registru (s pomocí druhého).
Písmena a, b, c budou odpovídat číslům 1, 2, 3. Číslo uložené v registru R\
bude představovat náš zásobník — když ho zapíšeme v poziční soustavě
o základu 4, jednotlivé cifry budou představovat vložené hodnoty (cifra
na místě jednotek bude naposledy vložená hodnota). Například když do
prázdného zásobníku vložíme postupně písmena a, c, b, a, bude v R\
hodnota ax43 + cx42+bx4 + a= lx 43 + 3x 42 + 2x4+1 = 64 +

+ 48 + 8 + 1 = 121.
Jak ale s takovýmto registrem-zásobníkem pracovat? Vložit novou

hodnotu x je jednoduché — pomocí registru R2 vynásobíme obsah R\
čtyřmi a potom ho rr-krát zvětšíme o 1. Rovněž odebrání naposledy vlo-
žené hodnoty není těžké — je to přesně opačná operace. Vydělíme obsah
registru Ri čtyřmi. Zbytek po dělení je naposledy vložená hodnota, podíl
(který dostaneme v R2) je obsah zásobníku bez této hodnoty.

Nyní můžeme již přikročit к řešení zadané úlohy. Jednou možností je
simulovat (pomocí dvou zásobníků) frontu, v níž si udržujeme ta písmena,
jejichž pár jsme ještě neviděli. Toto řešení je poměrně komplikované a jeho
základní myšlenka spočívá v tom, že přicházející písmena vkládáme do
prvního zásobníku, písmena na kontrolu vybíráme z druhého zásobníku
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a vždy, když se nám druhý zásobník vyprázdni, do něj přesypeme obsah
prvního zásobníku.

Ukážeme si raději jednodušší řešení. Budeme opět používat dva zá-
sobníky. Do prvního budeme vkládat všechna přicházející malá písmena
(jako hodnoty 1, 2, 3), do druhého velká (také jako hodnoty 1, 2, 3). Po
dočtení vstupního slova jednoduše porovnáme obsahy obou zásobníků.
Vstupní slovo bylo správné právě tehdy, je-li jejich obsah stejný. To již
snadno ověříme.

var vstup: char;
i,co: byte;

begin
Read(vstup);
while vstup<>’$’ do begin

if vstup>=,a’ then begin
if vstup=,a’ then co:=l;
if vstup=’b’ then со:=2;
if vstupme' then co:=3;
while not Zero(fíi) do

begin Dec(i?i); for i:=l to 4 do Inc(i?o); end;
while not Zero(fío) do begin Dec(ito); Inc(i?i); end;
while co>0 do begin Inc(/?i); co:=co-l; end;

end else begin
if vstup=’A’ then co:=l;
if vstup^B* then со: =2;
if vstup=,C’ then co:=3;
while not Zero(T?2) do

begin Dec(i?2); for i:=l to 4 do Inc(i?o); end;
while not Zero(i?o) do begin Dec(i?o); Inc(i?2); end;
while co>0 do begin Inc(i?2); co:=co-l; end;

end;
Read(vstup);

end;
while not Zero(fíj) and not Zero(i?2) do begin Dec(i?i); Dec(i?2)l end;
if Zero(/?i) and Zero(i?2) then Accept;

end.

b) Pro zvýšení přehlednosti označíme původní registry R2, R3
a nové registry Q1, Q2.

Použijeme myšlenku, kterou známe již z řešení úlohy P-I-4. Zakódu-
jeme obsah všech tří registrů do jediného, druhý registr budeme používat
jako pomocný při práci s prvním. Místo tří registrů s obsahem a, b, c bu-
deme mít tedy jeden registr Q1 s obsahem 2a3b5c. Při simulování každé
operace použijeme Q2 jako pomocný registr. Na začátku i po provedení
každé operace v něm bude uložena nula.

Operaci lne (Rx) v původním programu nahradíme tím, že obsah no-
vého registru Q\ vynásobíme 2, 3, resp. 5. Podobně příkaz Dec(Rx) na-
hradíme příslušným dělením.
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Nahradit podmínku Zero (Rx) bude trochu komplikovanější. Během
vyhodnocování nějaké složené podmínky totiž nemůžeme provádět ope-
race s registry — zjistit, zda je v Rx nula, tedy musíme před vyhodno-
cením příslušné podmínky. Navíc drobné problémy způsobí skutečnost,
že tato podmínka se může vyskytovat i v podmínce pro příkaz while,
kde bude vyhodnocována při každé iteraci (nejen před prvním voláním
while), a že v jedné podmínce můžeme testovat více proměnných.

Definujme si „makro“ (kus výpočtu) SpocitejZ, které bude fungovat
následovně: Pro každý registr Rx nastaví proměnnou zx tak, aby v ní
byla kladná hodnota právě tehdy, je-li v Rx nula, jinak bude zx = 0.
Výpočet makra začne tím, že obsah Q\ vydělíme příslušným prvočíslem,
přičemž si (v proměnné zx) zapamatujeme zbytek, který jsme dostali při
tomto dělení. Vrátíme obsah Q\ do původního stavu. Jestliže obsah Q\
byl dělitelný příslušným prvočíslem (tedy neplatí Zero (Rx)), bude v zx

nula, jinak tam bude kladný zbytek. Výraz Zero(Rx) má tedy v tomto
okamžiku stejnou pravdivostní hodnotu jako výraz (zx > 0).

Každý příkaz „if P then příkazy,“ nahradíme makrem SpocitejZ
a příkazem „if P' then příkazykde podmínka P' vznikla z P tak,
že jsme v ní místo všech výskytů výrazu Zero (Rx) dali výraz (zx > 0).

Každý příkaz „while P do příkazy; “ nahradíme voláním makra
SpocitejZ před cyklem a na konci každé iterace, tedy následujícím kusem
výpočtu: „SpocitejZ) while P' do begin příkazy, SpocitejZ; end;“

Nová „makra“ Inc, Dec (jimiž nahradíme každý výskyt těchto pří-
kazů v původním programu) a SpocitejZ (na simulaci Zero) budou tedy
vypadat následovně:
var x,y,zi,Z2,Z3,i: byte;
lnové proměnné, které nebyly v původním programu}

{ lne (Rx) x je v proměnné x, předpokládáme, že Q2 = 0 }
if x=l then у:=2 else if x=2 then y:=3 else y:=5;
{vynásobíme obsah Q\ číslem у}
while not Zero(Qi) do begin

Dec(Qi) ;
for i:=l to у do Inc(Q2);

end;
while not Zero(Q2) do begin

Dec (Q2 ) ; Inc(Qi);
end;

{ Dec (Rx) -— x je v proměnné x, předpokládáme, že Q2 = 0 }
if x=l then y:=2 else if x=2 then y:=3 else y:=5;
z:=0;
{vydělíme obsah Q\ číslem у}
while not Zero(Qi) do begin

143



Dec(Qi);
if Zero(Qi) then begin z:=l; break; end; {v Rx byla nula>
for i:=l to y-1 do DecCQi);
Inc (Q2);

end;
if z=l then begin

{obnovíme původní stav Q\ - nic se nemění}
while not Zero(Q2) do begin

Dec(Q2); for i:=l to у do Inc(Qi);
end;
Inc(Qi) ;

end else begin
{přesuneme do Qi podíl}
while not Zero(Q2) do begin

Dec(Q2); Inc(Qi);
end;

end;

{ SpočítejZ — předpokládáme, že Q2 = 0 }
{nejdříve chceme spočítat z\, čili budeme dělit dvěma}
y:=2;
{vydělíme obsah Q\ číslem y}
zi:=0;
while not Zero(Qi) do begin

Dec(Qi) ;
z\:=zi+l;
if zi=y then begin zi:=0; IncCČD); end;

end;
{vrátíme zpět původní hodnotu do Q1}
while not Zero(Q2) do begin

Dec(Q2); for i:=l to у do Inc(Qi);
end;
for i:=l to z\ do Inc(Qi);
{a v proměnné z\ máme hledaný zbytek}
{opakujeme totéž pro Z2, y:=3 a Z3, y:=5}

Dva důležité detaily, kterých jste si mohli povšimnout:
1. Nesmíme zapomenout ošetřit situaci, že registr Ri obsahuje nulu.

V tom případě i po provedení Dec {Ri) musí v Ri (podle definice)
zůstat nula.

2. Když jsme při simulování příkazů /nc, Dec a Zero potřebovali použít
proměnné, muselo se jednat o nové proměnné, které se dosud v pro-

gramu nevyskytovaly. (Co kdyby například původní program obsa-
hoval část „for i: =1 to 3 do Inc{Ri)u a my bychom při simulaci
Inc{R\) použili proměnnou i?) Volných jmen pro nové proměnné
máme к dispozici nekonečně mnoho, lehce tedy najdeme nějaké ne-

použité.
Snadno nahlédneme, že když tímto způsobem upravíme libovolný pro-

gram, bude upravený program ekvivalentní s původním tj. bude dá-
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vat pro každý vstup stejný výstup jako původní program. Přitom pokud
původní program používal tři registry, upravený program už používá jen
dva.

Uvědomte si, že aplikováním tohoto postupu na program používající
к > 3 registrů dostaneme program používající к — 1 registrů. Proto platí
poměrně překvapivý výsledek: К libovolné úloze, kterou dokážeme řešit
na registrovém počítači, existuje program, jemuž na její řešení stačí dva
registry.

P - III - 4

Na poskakování psíků se můžeme dívat jako na hru. Stav hry lze jedno-
značně popsat pozicí obou psíků. Skok psíků představuje tah. Když oba
psíci skočí, změní stav hry. Povolené stavy hry budou ty, které odpovídají
povoleným pozicím psíků. Pro každý stav hry budeme zkoumat, kolika
tahy se do něho dá dostat z počátečního stavu (když jsou oba psíci na
výchozích místech). Tento počet tahů budeme označovat jako vzdálenost
daného stavu.

Vzdálenost počátečního stavu je 0. Všechny stavy, do nichž se lze
z něho dostat jedním tahem, budou ve vzdálenosti 1. Nyní projdeme
všechny stavy ve vzdálenosti 1 a hledáme, do kterých nových stavů se
z nich dostaneme — ty budou zjevně ve vzdálenosti 2. Takto můžeme
analogicky pokračovat pro stavy ve vzdálenosti 3,4,... Skončíme, když
najdeme koncový stav (oba psíci jsou na svých cílových místech), nebo
když už nenajdeme žádný nový stav. Tato technika prohledávání stavů
se nazývá prohledávání do šířky.

Otázkou zůstává, jak pro každý stav určit, do kterých dalších (sou-
sedních) stavů se z něho lze dostat jedním tahem. Pomohlo by nám,
kdybychom uměli pro každé políčko na louce určit čísla jeho sousedů.
Sousední stavy bychom potom určili snadno. Ze všech možných pohybů
oběma psíky 6 směry (36 možností) vyškrtáme skákání stejným směrem,
skákání na bodláky, skok některého psíka mimo louku a současný skok
obou psíků na totéž políčko.

Abychom našli sousední políčka snadněji, ukážeme si, jak se dá šes-
tiúhelníkový plán louky reprezentovat v obyčejném dvojrozměrném poli.
Na políčku 1 si zvolíme dva směry. Jeden určuje rostoucí směr první sou-

řadnice, druhý směr druhé souřadnice. Takto jsme přiřadili každému po-
líčku souřadnice x, у, kterým odpovídají indexy v obyčejném dvojrozměr-
ném poli. V dvojrozměrném poli je už nalezení sousedů lehké. Konkrétně
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při naší volbě souřadnicových os budou mít sousedi políčka (x, y) souřad-
nice (x,y + l), (rr — 1,2/), (x-l,y-l), (x,y- 1), (x+l,y) a (x+l,y+l).

Jak zjistíme pro políčko s číslem к jeho souřadnice? Všimněte si,
že spirálu můžeme rozložit na vrstvy šestiúhelníkového tvaru. Nejprve
určíme, na kolikáté vrstvě spirály se к nachází, potom stranu na této
vrstvě, pozici políčka na straně a je to.

Nultá vrstva spirály obsahuje 1 políčko, г-tá vrstva pak 6г, jelikož
každá vrstva má 6 stran a na každé straně je i políček. Celkový počet

V

políček ve spirálách 0 ... v je tedy 1 + ^ 6г = Зг>2 + 3v + 1.
г= 1

A jak zjistíme, kde se nachází políčko к? Nejdříve spočteme vrstvu —

najdeme kladné řešení rovnice к = Зг>2 + Зг> + 1 a zaokrouhlíme ho nahoru.
a trochu\ 4" \J~ П j ■ (JednoduššíPo vyřešení dostaneme v =

pomalejší postup: zvyšujeme v, dokud počet políček nedosáhne k.)
Když už víme vrstvu u, kde se políčko nachází, pořadové číslo políčka

ve vrstvě (číslováno od 0) dopočítáme snadno: odečteme od к celkový
počet políček na dřívějších vrstvách a ještě 1. Na vrstvě v má každá
strana v políček, rozdíl tedy stačí vydělit v. Číslo strany s bude podíl,
pozice na straně p bude zbytek po tomto dělení.

Již umíme pro dané políčko к spočítat jeho vrstvu v, stranu s a pozici
na straně p. Z těchto hodnot dostaneme souřadnice podle následující
tabulky (platí pro v ^ 1):

s x У

0 +u — 1 — p +v
-1 -P1 — 1 — p

-1 -p2 -v

3 —v + 1 + p
4 +1 + p
5 +v

—v

-v + 1 +p
+ 1 + p
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Implementace: Stav hry je jednoznačně reprezentován souřadnicemi
xi, г/i, X2, ?/2 obou psíků. Při prohledávání do šířky si pamatujeme seznam

stavů, které jsme již dosáhli, ale ještě jsme z nich nezkoušeli prohledávat
nové vrcholy. К tomu nám poslouží fronta. Dále potřebujeme umět pro

každý stav rychle zjistit, zda jsme ho ještě neviděli, už viděli, nebo zda
se do něj nedá jít (bodláky). К tomu používáme čtyřrozměrné pole, kde
je to přímo zapsáno. (Přesně totéž se dalo reprezentovat dvojrozměrným
polem, které bychom indexovali původními souřadnicemi. Navíc bychom
ale potřebovali umět ze souřadnic určit původní číslo políčka.)

Abychom nemuseli při prohledávání do šířky stále kontrolovat, zda se
nedostaneme ven z louky, postavíme okolo celé louky bodláky. Zakážeme
také stavy, v nichž by byli oba psíci na stejném místě.

Prohledáváme prostor velikosti řádově 0(N2), kde N je velikost louky.
Časová i paměťová složitost prohledávání je lineární vzhledem к velikosti
tohoto prostoru, tedy 0(N2).
program Psici;
const

{max. chyba vzniklá v reálných číslech}
{největší možná vrstva (i se zarážkou)}

EPS = 1.0E-6;
MAX_V = 16;
MAX_STAVU = MAX_V*MAX_V*MAX_V*MAX_V;

{největší možný počet skoků}
{počet směrů, jimiž se mohou psíci hýbat}

INF = 299999;
MAX.SMER = 6;

type
TSour = record x,y : integer; end; {souřadnice jednoho psíka}
TStav = record pl, p2 : TSour; end; {souřadnice dvou psíků}
{prostor pro 2 psíky: [xl,yl,x2,y2] říká, zda tam mohou být}
TMrizka = array [-MAX.V..MAX_V,-MAX_V..MAX_V,

-MAX_V.,MAX_V,-MAX_V..MAX_V] of integer;

function dekVrstvu(k: integer): integer; {číslo vrstvy, kde se к nachází}
begin

dekVrstvu:= trunc(0.5 + sqrt(k/3.0 - 1.0/12.0 - EPS) );
end;

function zakVrstvu(v: integer): integer; {poslední prvek na dané vrstvě}
begin

zakVrstvu:= 3*v*v - 3*v +1;
end;

function dekóduj(к: integer): TSour; {Dekóduj číslo políčka na souřadnice}
var v, pv, s, ps: integer;

sour: TSour;
begin

if k=l then begin {pro k=l (vrstva 0) naše vzorce nefungují}
sour.x:= 0;
sour.y:= 0;

end else begin
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v:= dekVrstvu(k);
pv: = к
s:= pv div v; {strana šestiúhelníka, kde se pv nachází}
ps:= pv mod v; {pozice na střeme šestiúhelníka}

(3*v*v - 3*v + 1); {pozice ve vrstvě}

case s of

0: begin sour.x:= +v-l-ps; sour.y:= +v
1: begin sour.x:= -1-ps; sour.y:= +v-l-ps
2: begin sour.x:= -v ; sour.y:= -1-ps
3: begin sour.x:= -v+l+ps; sour.y:= -v
4: begin sour.x:= +l+ps; sour.y:= -v+l+ps
5: begin sour.x:= +v ; sour.y:= +l+ps
else writeln(’Velká chyba v dekóduj’);
end;

end;
end;
end;
end;
end;
end;

end;
dekóduj:=sour;

end;

var

n, m, si, tl, s2, t2: integer; {vstup}
v; integer; {max. použitá vrstva pro dané n}
A: TMrizka; {prohledávaný prostor}
F: array [0..MAX_STAVU] of TStav; {fronta}

{zakáže všechny situace, kde se nachází bodlák na daném místě}
procedure přidejBodlák(b: TSour);
var x, y: integer;
begin

for x:= -v to v do for y:= -v to v do begin
A[x, y, b.x, b.y]:= INF;
A[b.x, b.y, x, y]:= INF;

{2. psík stojí na bodláku}
{1. psík stojí na bodláku}

end;
end;

{vyčistí celý prohledávaný prostor}
procedure inicializace;
var xl, yl, x2, y2, i, last: integer;
begin

{vyčištění prostoru}
for xl:= -v to v do for yl:= -v to v do

for x2:= -v to v do for y2:= -v to v do
A[xl, yl, x2, y2]:= -1;

{zarážky při okrajích - přidáme umělé bodláky}
last:= zakVrstvu(v+l);
for i:=n+l to last do přidejBodlák(dekóduj(i));
{zakážeme být oběma psíkům na stejném místě}
for xl:= -v to v do for yl:= -v to v do A[xl, yl, xl, yl]:= INF;

end;

{posunutí souřadnice daným směrem}
function pohyb(a: TSour; s: integer): TSour;
const směr: array [1..MAX_SMER] of TSour = (

(x: 0; у: 1), (x:-l; y: 0), (x:-l; y:-l),
(x: 0; у:-1), (x: 1; y: 0), (x: 1; у: 1) );

begin
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a.x: = a.x+smer[s].x; a.y:= a.y+smer[s].y; pohyb:=a;
end;

function pracuj: integer;
{prohledáváni prostoru, kde se mohou psici nacházet)-
var

{pozice prvniho prvku ve frontě}
{pozice za poslednim prvkem ve frontě = volné misto}

zac: integer;
kon: integer;
i, j, vzd: integer;
pl, p2, ql, q2: TSour;
ptl, pt2: TSour; {dekódované pozice skrýši pro psiky}

begin
zac:=0; kon:=l; {přidáme počátek do fronty}
pl:= dekóduj(sl);
p2:= dekóduj(s2);
F[zac].pl:= pl; F[zac].p2:= p2;
A[pl.x, pl.y, p2.x, p2.y]: = 0; {začináme ve vzdálenosti 0}

ptl:=dekoduj(tl); pt2:=dekoduj(t2);

while zacOkon do begin
{vybereme stav z fronty a najdeme к němu vzdálenost}
pl:=F[zac].pl; p2:=F[zac].p2;
vzd:= A[pl.x, pl.y, p2.x, p2.y);
inc(zac);

{zkoušíme všechny kombinace směrů, kam mohou skákat}
for i:=1 to MAX_SMER do for j:=l to MAX_SMER do begin

if i=j then continue; {nemohou skákat stejně}

{nové pozice psiků}
ql:= pohyb(pl, i); q2:= pohyb(p2, j);

{již navštívená pozice resp. zarážka ?}
if A[ql.x, ql.y, q2.x, q2.y] >= 0 then continue;

{nově objevený stav -> přidáme do fronty}
A[ql.x, ql.y, q2.x, q2.y]:= vzd+1;
F [kon].pl:=ql; F [kon].p2:=q2;
inc(kon);

{našli jsme koncový stav?}
if (ptl.x=ql.x) and (ptl.y=ql.y) and (pt2.x=q2.x) and (pt2.y=q2.y)

then begin pracuj:=vzd+l; exit; end;
end;

end;
pracuj:= -1;

end;

var x, i: integer;
begin

while true do begin
read(n, m);
if (n=0) and (m=0) then break;
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v:= dekVrstvu(n);
inicializace();

read(sl, tl, s2, t2);
for i:=l to m do begin read(x); přidejBodlák(dekóduj(x)); end;
if (sl=tl) and (s2=t2) then x:=0 {speciální případ} else x:=pracuj;
if x>=0 then writeln(x) else writeln(’nelze’);

end;
end.

P - III - 5

N

Označme S = ^ b počet dní, které AttoSoft potřebuje na dokončení
i— 1

všech programů. Poslední program tedy dokončíme po S dnech.
Pro každý program spočítáme pokutu, kterou bychom za něj zaplatili,

kdybychom ho dokončili až po S dnech. Program s nejmenší takovou
pokutou zařadíme do rozvrhu jako poslední. Je-li to program číslo г,

zbývá nám naplánovat všechny zbývající programy na prvních S — U
dní, což provedeme stejným způsobem (tzn. opět vybereme jako poslední
program s nejnižší pokutou po S — li dnech, atd.)

Správnost uvedeného algoritmu dokážeme indukcí vzhledem к počtu
programů, které potřebujeme dokončit. Pokud je třeba dokončit jeden
program, existuje jen jediný možný rozvrh, a náš algoritmus tedy funguje
jistě správně.

Nechť tedy počet programů, které je třeba dokončit, je N a nechť
pro libovolný menší počet programů náš algoritmus funguje správně.
Označme G řešení získané naším algoritmem (v tomto řešení je posledním
programem program číslo i). Nechť existuje jiné, levnější řešení O, které
končí programem číslo j. Jestliže i — j, pak rozdíl mezi G a O musí být
v pořadí prvních N — 1 programů. Podle indukčního předpokladu však
toto pořadí v řešení G je optimální, proto řešení O nemůže být levnější.

V opačném případě vytvoříme nový rozvrh O' následujícím způso-
bem. Nechť rozvrh O dokončuje programy v pořadí oi, 02? • • • > одг a nechť
Ok — i. Podle rozvrhu O' dokončíme programy v následujícím pořadí:
01,02,..., Ok-1, Ok+1,..., ojv, г. Všimněte si, že řešení O' je nejvýše tak
drahé, jako řešení O. Pokuta za programy Ok+u ..., одг je totiž nižší než
v řešení O, neboť je dokončíme dříve (pokuta roste s počtem dní po

termínu). Navíc pokuta za program i dokončený po S dnech určitě ne-
přesahuje pokutu za program одг dokončený po S dnech, jelikož program
г jsme vybrali tak, aby tato pokuta byla nejmenší možná.
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Řešení O' ale nemůže být levnější než řešení G (platí tu stejný argu-
ment, jako v předchozím případě). Proto ani řešení O nemůže být levnější
než G. Dokázali jsme, že žádné levnější řešení než G neexistuje, řešení
určené naším algoritmem je tedy optimální.

V každém kroku algoritmu musíme spočítat příslušnou pokutu pro

každý program, který jsme dosud nezařadili do rozvrhu. Proto časová
složitost algoritmu je 0(N2).

Při výpočtu si ještě musíme dávat pozor na to, že pokuta může být
až 5 000 • 100 0003 + 5 000 • 100 0002 + ... + 5 000, tedy přibližně 5 • 1018,
a tak velké číslo se již nevejde do longintu a nemůžeme si dovolit použít
ani typ real, jelikož potřebujeme i u tak velkých čísel rozlišovat rozdíly
na řádu jednotek. Většina překladačů naštěstí nabízí 64bitový celočíselný
typ — v Turbo Pascalu je to typ comp, ve Free Pascalu například typ
Q Word.
program Attosoft;

const MAXN = 10000;

var a,b,c,d,l: array [1..MAXN] of longint;
použité: array [1..MAXN] of boolean;
N,S: longint;

function Cena(prog:integer; den: comp): comp;
begin

cena:=((a[prog]*den+b[prog])*den+c[prog])*den+d[prog];
end; {function Cena}

procedure Nacti;
var i: integer;
begin

readln(N);
S: =0;
for i:=l to N do begin

readln(l [i],a[i],b[i],c[i] ,d[i] );
S:=S+1 [i];

end;
end; {procedure Nacti)-

procedure Spocitej_rozvrh(d: longint);
var minprog: integer;

min.cc: comp;
i: integer;

begin
{najdi nepoužitý program, který má nejnižši pokutu po d dnech}
minprog:=-l;
for i:=1 to N do begin

if not použité[i] then begin
cc:=Cena(i,d);
if (minprog=-l) or (ccCmin) then begin
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min:=cc;
minprog:=i;

end;
end;

end;

if minprog>-l then begin
{označ program jako použitý}
použité[minprog]:=true;
{sestav zbytek rozvrhu}
Spocitej_rozvrh(d-l[minprog]);
{vypiš posledni program na konci rozvrhu}
writeln(minprog);

end;
end; {procedure Spocitej_rozvrh}

var i:integer;

begin
Načti;
for i:=l to N do použité[i]:=false;
Spocitej_rozvrh(S);

end.
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Přípravná soustředění před 45. MMO

V průběhu 53. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 5. do 9. dubna 2004 v Kostelci nad
Černými lesy nedaleko Prahy. Na soustředění bylo pozváno 9 nejlepších
řešitelů III. kola kategorie A. Soustředění bylo zaměřeno na přípravu
reprezentantů a ke konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

4/4 G Brno, tř. Kpt. Jaroše 14
4/4 GJKT, Hradec Králové
6/8 G Zlín, Lesní čtvrť 1364
2/4 G Brno, tř. Kpt. Jaroše 14
7/8 GLJ Holešov, Palackého 524
8/8 G Praha 6, Nad Alejí
3/4 SPŠST Praha 1, Panská
4/4 GMK Bílovec
4/4 G Brno, tř. Kpt. Jaroše 14

Vítězslav Kala

Jan Moláček

Marek Pechal

Jaromír Kuběn

František Konopecký
Alexandr Kazda
Pavel Kocourek

Tomáš Gavenčiak

Sven Dražan

90

90

87,5
85,5
84,5
84

82

80,5
67

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (5.4.),
dr. Karel Horák (6.4.),
dr. Pavel Calábek (7.4.),
dr. Jaroslav Švrček (8.4.)
a doc. Jaromír Šimša (9.4.).
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Úlohy zadané na přípravném soustředění

1. Na stole leží n ^ 3 listů papíru, které jsou očíslovány od 1 do n.
Pak jsou listy libovolně rozděleny na dvě hromádky (jedna hromádka
může být prázdná) a hledáme v aspoň jedné hromádce právě dva listy,
jejichž čísla dávají v součtu druhou mocninu nějakého přirozeného čísla.
Dokažte, že

a) když je n ^ 15, pak takové dva listy mohou být vždy nalezeny,
b) když je n < 14, pak takové dva listy nemusejí být nutně nalezeny.

2. Najděte všechna přirozená čísla n taková, že zároveň platí
(a) n má právě šest různých dělitelů 1, di, cfa, n,

(b) 1 + n = 5(di + c?2 + о?з + g?4 ).
3. Nechť ABCD je tečnový čtyřúhelník. Průsečík přímek AB a CD
označme E, průsečík přímek DA a BC označme F. (Nechť В leží mezi
А а, Е, C leží mezi D a E, A leží mezi D a F, В leží mezi C a F.) Středy
kružnic vepsaných trojúhelníkům AFB, ВЕС a ABC označme postupně
/i, /2 a /3. Průsečíky přímky /1/3 s přímkami EA a ED označme К a L,
průsečíky přímky /2/3 s přímkami FC a FD označme M a, N. Dokažte,
že platí \EK\ = |FL|, právě když platí |FM| = |FAT|.
4. Dokažte, že

71 — 1
n

E < 4
(n — /c)2fc -1

fc=i

pro každé přirozené číslo n ^ 2.

5. V rovině jsou dány dvě kružnice k\, F2 s poloměry ri, Г2 (r 1 < Г2),
jež se vně dotýkají. Jejich společná tečna ti se dotýká ki v bodě А а /гг
v bodě D. Označme £2 druhou tečnu kružnice /ci rovnoběžnou s t\ a F, F
její průsečíky s kružnicí k^. Jestliže polopřímka z bodu D protne protne
přímku £2 v bodě В a kružnici &2 v bodě C, je £1 tečnou kružnice opsané
trojúhelníku ABC. Dokažte.

6. Uvažujme abecedu {a, 6, c, d} a slova složená z n písmen této abecedy.
Slovo považujeme za složité, jestliže obsahuje dvě stejné skupiny písmen
za sebou (např. caab nebo cababdc jsou složitá slova, ale slovo abcab není).
Slovo, které není složité, nazveme jednoduché. Dokažte, že jednoduchých
slov složených z n písmen je více než 2n.

7. V daném trojúhelníku ABC označme O střed opsané а V střed ve-

psané kružnice. Dále označme К a M body dotyku připsané kružnice u>a,
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která leží v úhlu BAC a strany BC se dotýká v bodě N. Jestliže střed
P úsečky KM leží na opsané kružnici trojúhelníku ABC, leží body O,
V a N v přímce. Dokažte.8.Nechť IR je množina všech reálných čísel. Určete všechny funkce f,g:

R takové, že pro všechna reálná čísla x, у platíR

/0е) - f{y) = (x - y)g(x + у).9.Určete počet všech nekonečných posloupností 01,02,03,... čísel +1
a —1, které vyhovují současně podmínkám:
(i) Pro všechna přirozená čísla m, n platí

(ii) V každé trojici po sobě jdoucích členů (an, an+i, an+2) se vyskytuje
současně jak číslo +1, tak číslo —1.10.Určete všechny funkce /: (1, +00) —> (1, +00) takové, že pro všechna

reálná čísla x, у > 1 a pro všechna kladná reálná čísla m, n platí

f(xmyn)šf(x)^f(y)^.11.Určete všechna přirozená čísla n mající tuto vlastnost: Nechť p je
mnohočlen s celočíselnými koeficienty takový, že 0 ^ p(k) ^ n pro к =
= 0,1, 2,..., n + 1, potom platí

P(0) = P(l) = PÍ2) = ... =p(n+ 1) = 0.

12. Nechť I je středem kružnice vepsané danému trojúhelníku ABC.
Uvažujme kružnici se středem v bodě /, která protíná strany BC, CA,
AB po řadě vždy ve dvou vnitřních bodech D a P, E a Q, F a R.
Nechť dále dvojice úseček EF a QR, FD a RP, DE a PQ se protínají
po řadě v bodech S, T, U. Dokažte, že kružnice opsané trojúhelníkům
FRT, DPU a EQS procházejí společným bodem.

13. Dokažte, že každém tětivovém čtyřúhelníku ABCD platí nerovnost

\\AC\ — \BD\\ < \\AB\ - |CD||.

Určete, kdy nastane rovnost.
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14. V obdélníku o rozměrech 20 x 25 je umístěno 120 jednotkových čtver-
ců. Dokažte, že v tomto obdélníku existuje kružnice o poloměru h, která
neprotíná žádný z jednotkových čtverců.

15. Čísla x — 2004 а у — 2004 jsou druhé mocniny dvou po sobě jdoucích
celých čísel. Určete největší možnou hodnotu největšího společného děli-
tele čísel x a y.

16. Určete nejmenší hodnotu výrazu x2 + 4ху + Ay2 + 2z2, kde x,y,z jsou
kladná reálná čísla splňující podmínku xyz = 32.

17. Rovnoběžník ABCD má vnitřní úhel 60° u vrcholu A. Označme O

střed kružnice opsané trojúhelníku ABD a předpokládejme, že polo-
přímka АО protne osu vnějšího úhlu při vrcholu C rovnoběžníku v bodě
К ф C. Najděte možné hodnoty poměru \AO\ : \OK\.
18. Určete nejmenší přirozené číslo n, pro které platí: Z libovolné n-tice
navzájem různých celých čísel lze vybrat čtyři různá čísla a, 6, c, d, pro
která je číslo a + b — c — d dělitelné dvaceti.

19. Šachovnice (n — 1) x (n — 1) má (n — l)2 čtvercových polí, která
mají dohromady n2 vrcholů. Kolika způsoby lze těchto n2 bodů obarvit
červenou a modrou barvou tak, aby každé pole mělo dva modré a dva
červené vrcholy?
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Mezinárodní střetnutí česko-polsko-slovenské

BÍLOVEC, 21.-22. ČERVNA 2004
V rámci závěrečné přípravy před MMO se uskutečnilo již čtvrté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 45. MMO v Athénách.

Soutěž se uskutečnila v termínu 21.-22.6. 2004 v severomoravském
Bílovci. Všechna tři reprezentační družstva přicestovala na místo konání
již v neděli večer 20. 6. 2004. Organizace a průběh soutěže zůstal zachován
z předešlých ročníků — je přizpůsoben stylu III. kola naší МО a pod-
mínkám na MMO. Soutěžícím byly ve dvou dnech předloženy dvě trojice
soutěžních úloh, přitom za každou z úloh mohli získat nejvýše 7 bodů,
tj. celkově (stejně jako na MMO) 42 body. Na každou trojici úloh měli
soutěžící vyhrazeno 4,5 hodiny.

Pořadí Jméno Země body Součet

Mateusz Michalek
Vítězslav Kala
František Simančík
Kamil Duszenko
lomas Vana

František Konopecký
Jaromír Kuběn
Jan Moláček
Alexandr Kazda
Marek Pechal
Michal Pilipczuk
Andrzej Grzesik
Ondřej Budáč
Hana Budáčová
Peter Černo
Piotr Danilewski
Jakub Kallas
Jozef Bodnár

POL 676775

671777
761777
670777
571777
570777

770717
701777
370477
610577
401777

570713
401663

201716
500217
000706
000217
301203

1. 38

CZE2.-3. 35

SYK 35
POL4.-5. 34
SYK 34
CZE6. 33

CZE7.-8. 29
CZE 29

CZE9. 28

CZE10.-11. 26

POL 26

POL12. 23
SYK13. 20

SYK14. 17
SYK15. 15

POL16. 13

POL17. 10

SYK18. 9
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili členové úlo-
hové komise z České republiky — dr. Jaroslav Švrček a doc. Jaromír
Šimša. Úlohy koordinovala mezinárodní komise ve složení Jaromír Šimša,
Jaroslav Švrček a Karel Horák za Českou republiku, Pavol Novotný a Ján
Mazák za Slovensko a Waldemar Pompě a Adam Osqkowski za Polsko.

Texty soutěžních úloh1.Dokažte, že reálná čísla p, g, r splňují podmínku

p4(q - r)2 + 2p2(g + r) + 1 = p4,

právě když kvadratické rovnice

x2 + px + q = 0, у2 ~ РУ + r = 0

mají reálné kořeny (ne nutně různé), které lze označit x\^ resp. y\^
v takovém pořadí, že platí rovnost х\у\ — Х2У2 — 1-

2. Dokažte, že pro každé přirozené číslo к existuje nejvýše konečně mnoho
takových trojic navzájem různých prvočísel p, g, r, pro něž je číslo qr — к
násobkem p, číslo pr — к násobkem g a současně číslo pq — k násobkem r.

3. Uvnitř tětivového čtyřúhelníku ABCD je dán bod P tak, že platí

(J. Šimša)

\<BPC\ = \<BAP\ + \<PDC\.

Označme E, F1 G paty kolmic z bodu P po řadě na přímky AB, AD
a DC. Dokažte, že trojúhelník FEG je podobný trojúhelníku PBC.

(Toshio Seimiya)
4. V oboru reálných čísel řešte soustavu rovnic

У i
- + 1, -

1 1x
= - + 1.— —Ь 1,

zxyz .r Уxy

(J. Foldes)
5. Uvnitř stran AB, 5C, CA daného trojúhelníku ABC jsou zvoleny po

řadě body I\, L, M tak, že platí

\AK\ \BL\
_ \CM\

\KB\ ~ JLČ\ ~ \MA\ ’
Dokažte, že trojúhelníky УШС a KLM mají společný průsečík výšek,
právě když je trojúhelník ABC rovnostranný. (P. Cernek)
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6. Na stole leží к hromádek o 1, 2,..., к kamenech, kde к ^ 3. V prvním
kroku vybereme tři libovolné hromádky na stole, sloučíme je do jedné
a z této nové hromádky odstraníme jeden kámen (pryč ze stolu). Ve
druhém kroku opět sloučíme některé tři hromádky do jedné a pak z ní
odebereme dva kameny. Obecně v г-tém kroku sloučíme libovolné tři hro-
mádky, ve kterých je dohromady více než i kamenů, do jedné hromádky
a pak z ní i kamenů odstraníme. Předpokládejme, že po několika krocích
zůstane na stole jediná hromádka, v níž je p kamenů. Dokažte, že číslo p

je úplný kvadrát, právě když obě čísla 2k + 2 a 3/c+1 jsou úplné kvadráty.
Dále pak najděte nej menší /с, pro které je číslo p úplný kvadrát.

(R. Kučera)

Řešení úloh

1. Předpokládejme, že uvažované kořeny obou daných rovnic splňují rov-
nost x\y\ — Х2У2 = 1- Podle známého vzorce je

-p±I< p± L
(1)

kde reálná čísla К, L splňují rovnosti К2 = p2 — 4q a L2 = p2 — Ar (číslům
К, L přiřadíme znaménka podle očíslování kořenů). Potom

(~p + K)(p + L) - (-p - K){p - L)
_ p{K - L)1 = Х1У1 - Х2У2 =

4 2

odkud py^O&K — L = 2/p. Dosadíme-li to do rovnosti

(.К + ЩК -L) = K2-L2 = (p2 - 4q) - (p2 4r) = 4(r — q),

vyjde nám К + L = 2p(r — q). Ze získaných vyjádření čísel К + L а К — L
dostaneme К = 1 /р — p(q — r), po umocnění К2 = 1/p2 — 2{q — r) +
+ p2(q — r)2. Porovnáme-li to s rovností К2 = p2 — 4g, obdržíme po
snadné úpravě požadovanou podmínku

p4(q - r)2 + 2p2{q -f r) + 1 = p4,

Předpokládejme naopak, že platí rovnice (2). Pak zřejmě p ф 0. Rov-
nici upravíme dvěma obdobnými způsoby do tvarů

p4{r — q)2 + 2p2{r — q) + 1 = p4 — 4p2q

(2)

a

p4(q - r)2 -f 2p2(q - r) + 1 = p4 4p2r\
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odtud po vydělení číslem p2 zjišťujeme, že diskriminanty uvažovaných
kvadratických rovnic mají vyjádření

p2(r - q) + 1 \2 p2(q - r) + 1\2p2 — 4q = a p2 — 4r =
P

takže to jsou nezáporná čísla a příslušné (reálné) kořeny mají tvar (1),
kde

p2(r - q) + 1
cl

p2(q - r) + 1К = L=-
V P

Znaménka čísel К a L jsme zvolili tak, aby vyšlo (viz důkaz 1. implikace)

p2(r — q) + 1 p2(q - r) + 1p(K-L) _p
= 1.Х\У\ - X2y2 -

2 2 P V

2. Navzájem různá prvočísla p, q, r vyhovují podmínkám úlohy, právě
když číslo pq + qr + rp — к je dělitelné každým z čísel p, q, r, neboli
jejich součinem pqr. Rovnost pq + qr + rp — к = n ■ pqr pro vhodné
celé n přepišme do tvaru к — pq + qr + rp — n ■ pqr. Je-li n ^ 0, plyne
z poslední rovnosti, že max{pq,pr, qr} ^ к; pak ovšem každé z prvočísel
p, q, r je nejvýše ^k a takových trojic je konečný počet. Je-li n ^ 1,
dostáváme odhad к ^ pq + qr + rp — pqr. Zřejmě můžeme předpokládat,
že 2 ^ p < q < r.

Kdyby bylo r ^ 7, dostali bychom

111 .111,
= - + - + --n^- + - + --l<0,
pqr 237

pq + qr + rp — npgr

což nejde. Může tedy být jedině r = 5, g — 3ap = 2.

3. Označme к kružnici opsanou čtyřúhelníku ABCD a. k\, k2 kružnice
opsané trojúhelníkům PAB, PCD. Uvnitř úhlu ВPC uvažujme takovou
polopřímku PT, pro niž platí \<BPT\ = \<BAP\. Podle zadání pak platí
(obr. 42)

\<CPT\ = \<BPC\ - \<BPT\ = \<BPC\ - \<BAP\ = \<PDC\.

Přímka PT je tudíž společnou vnitřní tečnou obou kružnic k\ a k2.
Uvažujme nejprve případ, kdy strany AB a CD uvažovaného těti-

vového čtyřúhelníku nejsou rovnoběžné. Vzhledem к tomu, že úsečky
AB a CD jsou společnými tětivami odpovídajících dvojic kružnic k\,
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к а /с2, /г, existuje jediný bod Q, který má stejnou mocnost ke všem třem
kružnicím k, k\ a /c2 - Tímto bodem Q je společný bod všech tří přímek
(chordál) AB, CD a PT. Bez újmy na obecnosti předpokládejme, že
bod Q leží na polopřímce BA za bodem A (obr. 42).

Podle Thaletovy věty jsou zřejmě čtyřúhelníky AEPF, FPGD
a QEPG tětivové. Z rovností příslušných obvodových úhlů tak plyne

\<FEG\ = \<FEP\ - \<GEP\ = \<FAP\ - \<GQP\ =

= \<DAP\ - \<DQP\ = |<QÍM| - i<QPA|,

neboť úhly při vrcholech A, P a úhly při vrcholech D, Q v nekonvex-
ním čtyřúhelníku APQD dávají stejný součet: |<DžlP| 4- |«5РЛ| =
= + \kDQP\. Pro úsekový úhel QPA navíc platí \KQPA\ —
— \<PBA\, takže

\<FEG\ = \<QDA\ - \<QPA\ = \<QDA\ - \<PBA\ -
= \<QBC\ - \<PBA\ = \<PBC\.

Analogicky dokážeme, že je \<FGE\ = \<PCB\. Trojúhelníky FEG
a PBC se tedy shodují ve dvou vnitřních úhlech a jsou podobné (uu).

Jsou-li přímky AB a CD rovnoběžné, je ABCD rovnoramenný li-
choběžník se základnami AB a CD. Odtud plyne, že body P, P, G leží
na ose souměrnosti lichoběžníku ABCD a trojúhelníky APD а ВPC
jsou shodné. Jak snadno plyne z vlastností obvodových úhlů tětivových
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čtyřúhelníků AEPF a FPGD, jsou trojúhelníky EFG a APD podobné
(je \<FEG\ — \kPAD\ a \<EGF\ = \-KADP\). Odtud již plyne podob-
nost trojúhelníků FEG a PBC. Tím je důkaz ukončen.

Poznámka. V předvedeném řešení jsme potřebovali ukázat, že se troj-
úhelníky FEG a PBC shodují ve dvou úhlech. Rovnost úhlů \kEFG\ =
= \<BPC\ plyne téměř okamžitě z rovností příslušných obvodových úhlů
v tětivových čtyřúhelnících AEPF, FPGD.

4. Z tvaru rovnic plyne podmínka xyz 7^ 0. Dvě z čísel x, у, 2 musejí mít
stejné znaménko, pak je kladná pravá strana rovnice, ve které jsou tato
dvě čísla v podílu, proto je kladná i příslušná levá strana, takže zbývající
z čísel x, y, z má totéž znaménko jako prvá dvě. Platí tedy buď x,y,z > 0,
nebo x,y,z < 0.

Zabývejme se pouze prvním případem, druhý se totiž převede na

první změnou řešení (x,y,z) na řešení (—x,—y,—z). První dvě rovnice
soustavy vynásobme výrazem xyz a odečtěme je, po úpravě dostaneme

x = y[x2 — yz). Je-li trojice (x,y,z) řešením, jsou řešeními i trojice
(■y,z,x) a (z,x,y), které dostaneme cyklickou záměnou. Proto můžeme
předpokládat, že x = max{i, y, z}. Potom z — х'АОа.х2 — yz^.0 (neza-
pomeňme, že x,y,z > 0), takže z rovnosti z — x = y{x2 — уz) a podmínky
у > 0 plyne z — x = x2 — yz = 0, což znamená x — у — z. Máme tedy
jedinou rovnici 1/x2 = 1 + 1, která má (jediný) kladný kořen x = |\/2.

Odpověď. Soustava má právě dvě řešení x — у — z — ± |\/2.
5. Bod V roviny trojúhelníku ABC je průsečíkem jeho výšek, právě když
platí zároveň AV _L ВС a BV F AC, neboli AV BC — 0 а В V ■ AC — 0.
Po dosazení BC = BV—CV, AC — AV —С V a snadné úpravě dostaneme
ekvivalentní podmínku ve formě rovnosti skalárních součinů

z —

(1)AV В V = В V ■ C l/ = CV AV.

Naším úkolem je tedy zjistit, kdy platí soustava (1) zároveň s obdobnou
soustavou

(2)KV ■ LV = LV ■ MV = MV ■ KV,

která vyjadřuje, že bod V je průsečíkem výšek trojúhelníku KLM. Vyjá-
dříme vektory z (2) jako lineární kombinace vektorů z (1). Podle zadání
existuje číslo Л, 0 < Л < 1, pro které platí

AK — Л AB, BL — X ВС, CM = X CA.
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Dosadíme-li do první rovnosti AK — AV — К V a AB — AV — В V, dosta-
neme po úpravě první z rovností

KV = (1- X)AV + XBV, LV = (1 - X)BV + XCV,
MV = (1 - X)CV + \AV\

druhé dvě rovnosti odvodíme analogicky. Odtud vynásobením dostaneme

KV LV = (1 - X)2AV • BV + A(1 - X)AV • CV + A(1 - A)BV2 =

= (1 — A)s + A(1 — X)BV2,

kde písmeno 5 označuje společnou hodnotu součinů z (1). Analogicky
platí

KVMV = (1-A)s+A(l-A)A1/2 a LV MV = (1-X)s+X(l-X)BV2.

Vidíme, že soustava (2) je ekvivalentní se soustavou rovností

A(1 - X)AV2 = A(1 - X)BV2 = A(1 - A)Cl/2,

která je s ohledem na A(1 — A) ^ 0 splněna, právě když \AV\ = \BV\ =
= |CV|. Tato podmínka znamená, že průsečík výšek V trojúhelníku ABC
splývá se středem kružnice opsané. To nastane, právě když je trojúhelník
ABC rovnostranný.

Jiné řešení. Je-li trojúhelník ABC rovnostranný, označme O střed
jeho kružnice opsané. Při jedné z rotací o 120° kolem bodu O platí A *-4

L h M i—> К, neboť například body
K, resp. L dělí ve stejném poměru úsečku AB, resp. úsečku BC, jež je
obrazem první úsečky ve zmíněné rotaci. To znamená, že i trojúhelník
KLM je rovnostranný a bod O je středem (a tedy i průsečíkem výšek)
obou trojúhelníků ABC a KLM.

Jestliže ABC není rovnostranný trojúhelník, je střed O jeho opsané
kružnice různý od těžiště T. Snadno ukážeme, že bod T = ^(A +B+C) je
těžištěm i trojúhelníku KLM: podle zadání totiž existuje číslo A G (0,1)
tak, že

В C i—> A a rovněž К

К = ХА + (1 - А)В, L = ХВ + (1 - А)С, М = ХС + (1 - А)А,

odkud okamžitě plyne rovnost ^(K + L + M) = |(А + В + С).
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Připusťme, že trojúhelníky ABC a KLM mají kromě těžiště T spo-
léčné i ortocentrum, které označíme H. Podle známé věty leží body H,
T, O v uvedeném pořadí na jedné přímce (zvané Eulerova přímka troj-
úhelníku ABC), přičemž platí \HT\ : \TO\
je tedy těžištěm a ortocentrem jednoznačně určen; úvahou o Eulerově
přímce trojúhelníku KLM tak zjišťujeme, že bod O je nejen středem
kružnice opsané trojúhelníku ABC, ale i středem kružnice opsané troj-
úhelníku KLM. Body K, L, M mají proto stejnou vzdálenost od bodu O,
takže mají i stejnou mocnost ke kružnici opsané trojúhelníku ABC. Tyto
mocnosti se rovnají veličinám

2:1. Střed kružnice opsané

-\AK\ • \BK\ = -p{l - p)\AB\2,
-\BL\-\CL\ = -p(l-p)\BC\2,

-\CM\ ■ \AM\ = -p{l -p)\AC\2,

jejichž porovnáním dostaneme rovnosti \AB\
X ^ {0,1}). To je ve sporu s předpokladem, že trojúhelník ABC není
rovnostranný.

\BC\ = \CA\ (neboť

6. Po i provedených krocích bude na stole к — 2i hromádek; zůstane-li
proto nakonec na stole jediná hromádka, bylo číslo к liché a celkový počet
kroků byl \{k— 1). Rozlišíme, zda číslo к dává při dělení čtyřmi zbytek 1,
nebo zbytek 3.

Případ к = 4c + 1. Na začátku leží na stole 1 + ... + к — \k{k + 1) =
= (4c + l)(2c + 1) kamenů, ve všech 2c krocích odstraníme celkem 1 +
+ ... + 2c — c(2c +1) kamenů, takže počet kamenů v poslední hromádce
bude

p — (4c + l)(2c +1) — c(2c T 1) — (2c -f- l)(3c + 1).
Čísla 2c+l a 3c+l jsou ovšem nesoudělná, takže p je úplný kvadrát, právě
když jsou úplné kvadráty obě čísla 2c 4-1 a 3c + 1, tedy právě když jsou
úplné kvadráty jejich čtyřnásobky 4(2c+1) = 2k 4- 2 a 4(3c+ 1) = Sk + l.

Případ к = 4c + 3. Na začátku leží na stole 1 + ... + к = \k(k + 1) =
= 2(c + l)(4c + 3) kamenů, ve všech 2c + 1 krocích odstraníme celkem
l + ... + (2c+l) = (c+l)(2c+l) kamenů, takže počet kamenů v poslední
hromádce bude

p = 2(c + l)(4c + 3) - (c + l)(2c + 1) = (c + l)(6c + 5).

Kdyby bylo číslo p úplný kvadrát, musela by být úplnými kvadráty obě
nesoudělná čísla c + 1 a 6c+ 5. Ukažme, že to není možné: připusťme
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existenci přirozených čísel x, у takových, že с + 1 = x2 a 6c + 5 = y2.
Z rovnosti 6x2 — у2 = 1 plyne, že číslo у je liché, tudíž číslo y2 dává
při dělení osmi zbytek 1. Číslo 6x2 pak při dělení osmi dává zbytek 2,
odkud plyne, že číslo 3x2 při dělení čtyřmi dává zbytek 1, což není možné.
V případě к = 4c + 3 tedy p nikdy není úplný kvadrát, stejně jako není
úplný kvadrát ani číslo Зк + 1 = 12c + 10 (sudé číslo, jež není dělitelné
čtyřmi).

Najdeme nyní nejmenší číslo к = 4c+1, c ^ 1, pro které jsou obě čísla
2c + 1 а Зс + 1 úplné kvadráty. Z rovností 2c + 1 = x2 а Зс + 1 = y2 pro
vhodná celá x,y > 1 plyne 3x2 — 2y2 — 1, takže x je liché, číslo 2y2 pak
při dělení čtyřmi dává zbytek 2, takže i у je liché. Položme x — 2a -f 1,
у = 2b -f 1 (a, b celá kladná) a dosaďme do rovnosti 3x2 — 2y2 = 1. Po
úpravě dostaneme vztah 3a(a + l) = 26(6+ 1), kam postupně dosazujeme
přirozená čísla a = 1,2,.... Najdeme tak rychle nejmenší vyhovující a = 4
a 6 = 5, kterým odpovídají x = 9, у = 11, c = 40 а к — 161.
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45. mezinárodní matematická olympiáda

-

.

_

INTERNATIONAL
MATHEMATICAL OLYMPIAD

Zhruba měsíc před zahájením letních
olympijských her se v době od 4. do
18. července 2004 uskutečnil v hlav-

ním městě Kecka Athénách i 45. roč-

nik mezinárodní matematické olympiá-
dy. Olympiády se tentokrát zúčastnilo 486 studentů z 85 zemí (každou
zemi reprezentuje vždy nejvýše šest soutěžících).

Výběr soutěžících za Českou republiku byl proveden v Kostelci nad
Černými lesy na závěrečném soutěžním soustředění devíti nej úspěšnějších
účastníků ústředního kola kategorie A. Vybraní reprezentanti se pak ještě
zúčastnili troj utkání v severomoravském Bílovci mezi Českou republikou,
Polskem a Slovenskem, kde soutěžili reprezentanti zúčastněných zemí za

podmínek podobných jako při soutěži na MMO. Po této přípravě od-
jela do Athén tato šestice soutěžících: Vítězslav Kala a Jaromír Kuběn
z Gymnázia na tř. Kpt. Jaroše v Brně, František Konopecký z Gymnázia
Holešov, Jan Moláček z Gymnázia J.K. Tyla v Hradci Králové a Ma-
rek Pechal z Gymnázia ve Zlíně, Lesní čtvrť. Vedoucím české delegace
byl RNDr. Karel Horák, CSc., z Matematického ústavu Akademie věd
v Praze, jeho zástupcem a pedagogickým vedoucím byl RNDr. Jaroslav
Švrček, CSc., z Univerzity Palackého v Olomouci.

Mezinárodní jury složená z vedoucích jednotlivých zúčastněných zemí
strávila prvních šest dnů výběrem úloh a přípravou jejich textů v národ-
nich jazycích v Delfách. Den po příletu soutěžících se konalo slavnostní
zahájení v athénském Paláci kultury (Megaro Mousikis). Vlastní soutěž
pak proběhla v pondělí a v úterý 12. a 13. července ve dvou velkých
sálech Matematického ústavu Athénské univerzity. Každý z těchto dnů
řešili soutěžící trojici úloh po dobu 4,5 hodiny. Za každou úlohu mohli
získat maximálně 7 bodů.

Kromě vlastní soutěže byl pro studenty připraven další zajímavý pro-

gram: mimo prohlídku starověkých Athén s Akropolí po soutěži všichni
účastníci během celodenního výletu navštívili slavné Mykény, přímořské
městečko Nauplios a antický amfiteátr v Epidauru.

HELLAS 2004
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Výsledky našich jsou uvedeny v následující tabulce:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

143.-158. Vítězslav Kala

351.-366. Alexandr Kazda

93.-100. František Konopecký
124.-142. Jaromír Kuběn

113.-123. Jan Moláček

382.-395. Marek Pechal

6 6 0 6 3 1 22 III.

0 5 0 3 0 0 8

7 2 1 7 7 2 26 II.

6 3 0 7 7 0 23 III.

7 3 0 7 6 1 24 II.

2 2 0 0 2 0 6

Celkem 28 21 1 30 25 4 109

Jak je z tabulky vidět, z našich si nejlépe vedli František Konopecký
z Gymnázia Holešov a Jan Moláček z Gymnázia v Hradci Králové. Ten
zopakoval svůj úspěch z předchozí MMO a opět přivezl stříbrnou medai-
li. Nezklamali ani maturant Vítězslav Kala, který oproti předešlé MMO
získal dvojnásobný počet bodů, a student teprve 2. ročníku Jaromír Ku-
ben, oba z Gymnázia na tř. Kpt. Jaroše v Brně. Stříbro jim uteklo jen
o chloupek.

O náročnosti soutěžních úloh zpravidla svědčí hranice pro zisk me-

dailí, případně počet absolutních vítězů: na bronzovou medaili tentokrát
stačilo 16 bodů, stříbro se udělovalo za 24-31 bodů a zlato za alespoň
32 z možného počtu 42 bodů. Plný počet bodů získali čtyři soutěžící:
Kanaďan Jacob Tsimerman, Maďar Bela Andras Racz a dva soutěžící
Ruska Andrej Badzjan a Michail Dubašinskij.

Jak dopadli naši slovenští kolegové, je nejlépe vidět z následující ta-
bulky. Za pozornost stojí zejména bezchybný výkon slovenského družstva
v první úloze, která byla opravdu nejlehčí, a nás může jen mrzet, že jsme
za ni získali o 14 bodů méně.

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

244.-263. Jozef Bodnár

113.-123. Ondřej Budáč
244.-263. Hana Budáčová
244.-263. Peter Černo
101.-112. František Simančík
101.-112. Tomáš Váňa

7 2 0 1 4 1 15 HM
7 2 2 7 6 0 24 II.

7 1 3 1 3 0 15 HM
7 0 0 7 1 0 15 HM
7 4 1 7 3 3 25 II.

7 5 0 7 6 0 25 II.

Celkem 42 14 6 30 23 4 119
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I II III body I II III body
Clr
USA
Rusko
Vietnam
Bulharsko

Tchaj-wan
Maďarsko
Japonsko
Írán
Rumunsko

Ukrajina
Korea
Bělorusko
Indie
Izrael
Polsko
Moldavsko
Singapur
Mongolsko
Velká Británie
Brazílie
Kanada
Kazachstán
Srbsko a Černá Hora
Německo
řtecko
Austrálie
Gruzie
Kolumbie

Hongkong
Slovensko
Turecko
Jihoafrická republika
Česká republika
Thajsko
Arménie
Mexiko
Francie

Argentina
Chorvatsko
Maroko

Belgie
Macao

Estonsko
Uzbekistán
Švédsko
Ázerbájdžán
Makedonie
Itálie
Slovinsko
Litva

Kirgizie
Lotyšsko
Indonézie
Albánie

Španělsko
Švýcarsko
Nový Zéland
Norsko
Rakousko
Nizozemsko
Turkmenistán
Finsko

Kypr
Peru (3)
Irsko

Uruguay
Dánsko
Portoriko (5)
Bosna a Hercegovina
Lucembursko (3)
Island

Malajsie
Srí Lanka
Tunisko

6 0 0
5 1 0
4 1 1
4 2 0
3 3 0
3 3 0
2 3 1
2 4 0
1 5 0
1 4 1
1 5 0
2 2 2
0 4 2
0 4 2
1 1 4
2 1 1
2 0 4
0 3 3
0 3 2
1 1 4
0 2 4
1 0 3
2 0 2
0 2 3
0 3 1
0 2 3
1 1 2
0 0 5
0 2 2
0 2 2
0 3 0

0 2 3
0 3 1
0 2 2
0 0 4
0 0 4
0 0 3
0 0 4
1 0 2
0 0 3
0 0 3
0 1 2
0 0 2

220 0 0 2
0 0 3
0 0 3
0 1 0
0 0 1
0 0 2
0 0 2
0 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 2
0 0 2
0 0 0
0 0 1
0 0 0
0 0 2
0 0 1
0 0 1
0 0 2
0 0 1

0 0 0
0 0 1
0 1 o
0 0 0
0 1 o
0 0 0
0 0 1
0 0 0

0 0 0
Trinidad a Tobago (5) 0 0 0

0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

85
212 79
205 75
196 72
194 71
190 69
187 69
182 65
178 63
176 63
174 61
166 57
154 57
151 57
147 56
142 55
140 55
139 53
135 52
134 49
132 49
132 49
132 48
132 47
130 46
126 43
125 40
123 36
122 35
120 34
119 33
118 31
110 29

Portugalsko
Kuba (1)
Filipíny (5)
Venezuela (2)
Ekvádor

109 26
1799

98 16
96 15
94 14

Mozambik (3)
Paraguay (3)
Kuvajt
Saudská Arábie

92 13
89 13
88 5
86 4
86

Jak je patrno z tabulky zúčastněných států, na čelných místech se
žádné překvapení nekonalo. Naše i slovenské družstvo se opět nedostalo
ani do třetí desítky, o moc lépe se zato vedlo Polákům. (Případná čísla
v závorce upozorňují na nižší počet reprezentantů.)
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť ABC je ostroúhlý trojúhelník, v němž \AB\ Ф \AC\. Kruž-

nice nad průměrem BC protíná strany AB a AC po řadě v bodech M
a N. Označme O střed strany BC. Osy úhlů BAC a MON se protínají
v bodě R. Dokažte, že kružnice opsané trojúhelníkům BMR a CNR
procházejí společným bodem ležícím na straně BC. (Rumunsko)2.Najděte všechny mnohočleny P(x) s reálnými koeficienty, jež splňují
rovnost

P(a — b) + P{b — c) -f P(c — a) — 2 P(a + b + c)
[Korea)3.Nazvěme dlaždicí obrazec vytvořený ze šesti jednotkových čtverců

jako na obrázku

pro všechna reálná čísla a, b, c taková, že ab + bc + ca = 0.

anebo libovolný obrazec vzniklý jeho otočením či souměrností. Určete
všechny pravoúhelníky m x n, které lze dlaždicemi pokrýt tak, že

> pravoúhelník je pokryt bez mezer a překrytí;
> žádná část dlaždice nepokrývá plochu vně pravoúhelníku.

(Estonsko)4.Nechť n ^ 3 je celé číslo. Nechť t\, Í2, • • •, tn jsou kladná reálná čísla
taková, že

n2 + 1 > (t\ + Í2 + ... + tn) ^—b ... + -— )•
1 i)

Ukažte, že U, tj, tk jsou délky stran trojúhelníku pro všechna i, j, /с, kde
(Korea)5.V konvexním čtyřúhelníku ABCD úhlopříčka BD nepůlí ani jeden

z úhlů ABC, CDA. Bod P leží uvnitř ABCD a splňuje rovnosti

l'ši<j<k'An.

\<PBC\ = \<DBA\ a \<PDC\ = \<BDA\.

Dokažte, že ABCD je tětivový, právě když \AP\ = \CP\. (Polsko)6.Přirozené číslo nazveme pruhované, jestliže každé dvě sousední číslice
v jeho desítkovém zápise mají různou paritu. Najděte všechna přirozená
čísla n taková, že n má pruhovaný násobek. (Írán)
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Řešení úloh

1. Označme S střed úsečky MN a P průsečík osy úhlu BAC se stra-
nou BC. Protože trojúhelníky AMN a ACB jsou podobné (to plyne
z vlastností tětivového čtyřúhelníku BCNM), přičemž těžnici AS odpo-
vídá těžnice АО, je \<BAO\ — |<CASj (obr. 43), takže osa úhlu BAC
je zároveň i osou úhlu OAS. Proto

\RS\ |ASj
\Щ ~ \AO\‘

Z uvedené podobnosti dále plyne

\AS\
_ |MN\ _ \MS\ _ \MS\

\ÁO\ ~ \BC\ ~ \BO\ ~ \MO\:
což spolu s předchozí rovností znamená, že MR je osou úhlu OMS.

В O P C

Obr. 43

Označme vnitřní úhly trojúhelníku ABC obvyklým způsobem. Pro-
tože \OM\ = |OjB|, tedy \<BMO\ = /3, a protože \<AMN\ = \<BCA\ =
= 7, vychází velikost úhlu OMN jako a. Je tudíž \^BMR\ = /3 + =
— \kCPA\. Dostali jsme, že čtyřúhelník BPRM je tětivový. Analogicky
je tětivový i čtyřúhelník CPRN. Je tedy bod P € BC společným bodem
obou kružnic opsaných trojúhelníkům BMR a CNR, což jsme měli do-
kázat.

Jiné řešení. (Podle Františka Konopeckého.) Protože body M a N leží
na kružnici se středem O, je \OM\ = |OiV|. Trojúhelník AINO jé tedy
rovnoramenný a osa jeho úhlu MON je zároveň osou úsečky MN. Bod R,
který je průsečíkem osy úhlu AIAN s osou protější strany MN trojúhel-
niku AA1N, leží proto na kružnici trojúhelníku AAIN opsané. Přitom
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obě osy splynou, jen když \AM\
\AB\ Ф \AC\ nelze, neboť z vlastností tětivového čtyřúhelníku BCNM
snadno plyne, že trojúhelníky AMN a ACB jsou podobné (shodují se
ve dvou úhlech).

Z mocnosti bodu A ke kružnici s průměrem BC plyne, že bod A
má stejnou mocnost i к oběma kružnicím opsaným trojúhelníkům BMR
a CNR (obr. 44). Označíme-li P druhý společný bod těchto dvou kružnic
(jedním je bod R), musí bod A ležet na jejich společné sečně PR (to je
právě množina všech bodů, jež mají к oběma kružnicím stejnou mocnost).
Abychom ukázali, že bod P leží na straně BC, spočteme velikost úhlu
BPC z tětivových čtyřúhelníků BPRM a CPRN:

\AN\, což vzhledem к předpokladu

\<BPC\ = \<BPR\ + \<CPR\ = \<AMR\ + \<ANR\ = 180°,

neboť AMR a ANR jsou protější úhly tětivového čtyřúhelníku AMRN.
Tím je tvrzení úlohy dokázáno.

В CP

Obr. 45

Jiné řešení. Stejně jako v předchozím řešení ukážeme nejprve, že
bod R leží na kružnici opsané trojúhelníku AMN. Označme dále P ten
bod strany BC, v němž ji protne osa AR úhlu BAC (obr. 45). Protože
čtyřúhelník AMRN je tětivový, je \<ARM\ — \<ANM\ = \kABC\,
což znamená, že i čtyřúhelník BPRM je tětivový. Analogicky ukážeme,
že i čtyřúhelník PCNR je tětivový. Bod P na úsečce BC je pak ovšem
průsečíkem kružnic opsaných trojúhelníkům BMR a CNR, jak jsme měli
dokázat.

Poznámky. V předchozích dvou řešeních jsme nijak nevyužili, že střed
kružnice opsané čtyřúhelníku BCNM je zároveň středem strany BC.
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Tvrzení ve skutečnosti platí pro libovolnou kružnici s tětivou BC, pokud
není opsána trojúhelníku ABC (pak by bylo M — N — A = R). Uvedená
situace je vlastně speciálním případem tzv. Miquelovy věty, když zajeden
z bodů zvolíme průsečík osy úhlu s protější stranou: Je-li na každé straně
daného trojúhelníku zvolen bod, tři kružnice určené dvojicemi bodů na
sousedních stranách a jejich společným vrcholem mají společný bod.

Pokud ovšem předpokládáme, že střed O kružnice opsané čtyřúhel-
niku BCNM je středem strany BC, vyplývá z prvního řešení, že uva-

žovaný bod R je středem kružnice vepsané trojúhelníku MNO. V tom
případě jsou body M a N patami výšek trojúhelníku ABC. Kružnice nad
průměrem АН, kde H je průsečík obou výšek, je tedy kružnicí opsanou

trojúhelníku AMN (obr. 46). Paty výšek, středy stran a středy spojnic

průsečíku výšek s vrcholy leží na tzv. kružnici devíti hodů daného troj-
úhelníku. Pro trojúhelník ABC jsou čtyřmi z těchto devíti bodů body M,
N, O a střed E úsečky АН, a protože \EM\ — \EN\, je to zároveň střed
příslušného oblouku MN kružnice opsané trojúhelníku MNO. Ten má
však tu vlastnost, že leží jednak na ose úhlu MON, jednak má od středu
kružnice vepsané trojúhelníku MNO stejnou vzdálenost jako od obou
vrcholů M, N (tuto vlastnost hezky využívá např. řešení 2. úlohy na
43. MMO, viz ročenku 51. ročníku MO), tj. leží na kružnici opsané troj-
úhelníku AMN. Jak už víme, tímto bodem je bod R.
2. (Podle Alexandra Kazdy.) Ukážeme, že řešením jsou jen mnohočleny
P(x) = a\x2 + а2X4 pro libovolná reálná au a cn2-

Nechť mnohočlen P splňuje podmínky úlohy. Je-li a = 6 = 0, je
ab + bc + ca = 0 pro každé reálné číslo c. Dostáváme proto

P(0 - 0) + P(0 - c) + P(c - 0) = 2P(0 + 0 + c)
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neboli

P(0) + P(—c) = P(c)

pro libovolné reálné c. Dosazením c — 0 dostaneme P{0)
P(c) = P(—c) pro všechna reálná c. Mnohočlen P je tudíž sudá funkce
a musí být tvaru

P(x) = anx2n + an_ ix

0, takže

+ • • • 4- a\x2, ai,...,on G IR, an ф 0.

Ukážeme nyní, že stupeň mnohočlenu P je nejvýše 4.
Rovnost ab+bc+ca = 0 je homogenní, proto ji s trojicí (a, 6, c) splňuje

i každá trojice (ta, tb, tc) pro libovolné reálné t. Protože ab + bc + ca =
— a6+(a + 6)c, vidíme, že pro a + 6 = 1, c = — a6 je a6 + 6c + ca = 0, takže
pro libovolná reálná čísla s a t uvedenou rovnost splňuje i trojice a = st,
b = (1 — s)t, c = — ab = (s2 — s)t. Dosazením této trojice do rovnosti ze
zadání dostaneme pro všechna reálná saí rovnost

2n—2

P ((2s — l)í) + P ((1 — s2)í) + P ((s2 — 2s)č) = 2P ((s2 — s + l)í) .

Pro pevné s ji můžeme považovat za rovnost mnohočlenů v proměnné t.
Porovnáním vedoucích koeficientů (u mocnin t2n) na obou stranách do-
stáváme pro všechna reálná s rovnost

(2s - l)2n + (1 - s2)2n + (s2

Porovnejme nyní koeficienty u mocnin s

lynomické věty mnohočlen

2s)2n = 2(s2 — s + l)2n. (1)
4n—2

. Na pravé straně je dle po-

(2n)!2 E (-l)js2i+j
i\j\ (2n-i- j)\i+j^2n

přičemž 2i + j — 4n — 2 jedině pro j = 0, i = 2n — 1 a pro j = 2,
i = 2n — 2 (j musí být sudé a z podmínky i + j ^ 2n díky rovnosti
i = (2i + j) — (i + j) plyne i ^ 2n — 2, tudíž j ú 2). Zmíněná mocnina
má tedy na pravé straně koeficient

2n 2n
= 4n2 4- 2n,2 +

1 2

zatímco na levé straně rovnosti (1) dostaneme podle binomické věty koe-
ficient

pro n — 1,

pro nP. 2.

2n 2n2n
24n — 2 +

8n2 — 6n2-2n 1 2
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1, a pro n ^ 2 dostá-Vidíme, že rovnosti obou koeficientů vyhovuje n
váme rovnici 4n(n — 2) = 0, které vyhovuje n = 2. Podmínkám úlohy tak
mohou vyhovět jedině mnohočleny tvaru P(x) = a.\x2 + a2X4 pro reálná
ai a «2-

Nyní ukážeme, že každý mnohočlen uvedeného tvaru splňuje pod-
minky úlohy. Abychom to ověřili, uvědomme si nejdříve, že libovolná
lineární kombinace dvou mnohočlenů, jež splňují podmínky úlohy, je rov-
něž splňuje. Stačí to tedy ověřit pro mnohočleny x2 ах4.

To, že vyhovuje rr2, vyplývá z rovnosti

(a — b)2 + (b — c)2 + (c — a)2 — 2(a -f b + c)2 = —6(a6 + bc + ca).

Ověřme požadovanou rovnost i pro jednočlen x4. Nechť ab + bc + ca = 0
a položme p = a — b, q = b — с а r = c — a. Při ověřování x2 jsme vlastně
ukázali, že

p2 + q2 + r2 = 2(a + b + c)2.
Protože p + q + r = 0, postupně dostaneme:

pq + qr + rp = -1 (p2 + q2 + r2) —

(РУ)2 + (Qr)2 + (rp)2 = (pq + qr + rp)2
takže

(a + b + c)2,
2pqr(p + q + r) — (a + 6 + c)4

p4 + g4 + r4 = (p2 + g2 + r2)2 - 2 ((pq)2 + (qr)2 + (rp)2) — 2(a + b -f c)4,
což je požadovaná rovnost.

Jiné řešení. Vraťme se к rovnosti (1) předchozího řešení. Volbou s =
= -2 vyjde 52n + 32n + 82n = 2 • 72n, takže 82n < 2 • 72n. Ale už pro
n = 3 platí 82n > 2 • 72n (82'3 = 262 144 > 235 298 = 2 • 72'3), tím spíš to
platí pro n > 3. Takže n ú 2, což znamená, že P(x) = aix2 + a^x4 pro
reálná Oí\ a oí2- Zbývá jen ověřit, že všechny mnohočleny tohoto tvaru
úloze vyhovují, což učiníme stejně jako v předchozím řešení.

Jiné řešení. Pro každé reálné t splňuje trojice (a, 6,c) = (6t, 3í, — 2t)
podmínku ab + bc + ca — 0. Dosazením do dané rovnosti dostáváme

P(St) + P(5t) + P(~8t) = 2P(7t).

Pokud tedy P(x) — anxn + ... + aix + ao, platí nutně pro každé i
= 0,1, 2,... rovnost

(3* + 5ť + (-8)ť -2-7ť) ať = 0.
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Výraz v závorkách je záporný pro lichá i a kladný pro i = 0 a pro
všechna sudá i ^ 6. Jen pro i = 2až = 4je výraz nulový. Proto musí
být P(x) — a\x2 + o?2X4 pro reálná a\ a «2- Zbývá jen ověřit, že všechny
mnohočleny tohoto tvaru úloze vyhovují, což učiníme stejně jako v prv-
ním řešení.

Jiné řešení. (Podle Tony Zhanga.) Jak jsme už zjistili v úvodu prvního
řešení, je hledaný mnohočlen P sudá funkce s nulovým absolutním čle-
nem, je tedy tvaru P(x) = x2 f(x2) pro vhodný mnohočlen /. Ukážeme,
že jeho stupeň je nejvýše 1.

Daná podmínka má pro mnohočlen / tvar

(a - b)2f ((a - b)2) + (6 - c)2/((6 - c)2) +
+ (c - a)2/((c - a)2) = 2(a + b + c)2 /((a + 6 + c)2).

Mezi čísly a, b, c, jež splňují rovnost ab+bc+ca — 0, najdeme taková, pro
něž bude a—b = b—c, tj. a+c = 26, takže 0 = (a+c)6+ca — 262+(26—a)a.
Z této kvadratické rovnice vyjde a = 6±6\/3, takže do (2) můžeme dosadit
a = (1 — л/3)6 а с = (1 + >/3)6 a dostaneme

662/(362) + 1262/(1262) = 1862/ (962),

(2)

což můžeme přepsat jako

12í>2(/(1262) - /(9b2)) = 662(/(9í,2) - Д362)),
anebo pro 6^0 jako

/(12b2) - /(9b2)
_ /(9b2)-/(3b2) (3)662362

Protože 362 je libovolné kladné číslo, platí podle (3) pro každé reálné
x > 0 rovnost

/(4a:) - f(Zx) f(3x) - f(x) (4)2xx

Obě strany (4) jsou (po zkrácení) mnohočleny proměnné x, takže musí jít
o stejné mnohočleny. Je-li mnohočlen / stupně к ^ 1 s vedoucím členem
axk, jsou obě strany (4) mnohočleny stupně к — ls vedoucími členy

a(4k - 3k)x a{3k - 1)
x

k-1fc-i
resp.

Porovnáním těchto členů s ohledem naa/0 dostaneme po úpravě rov-
nici 2 • 4fc = 3fc+1 — 1, která je splněna pouze pro к — 1, neboť pro k^.2
máme 2 • 4k > 3fc+1, jak snadno ověříme indukcí. Mnohočlen / je tudíž
nejvýše lineární, f(x) = a\ + a^rr a P(x) = x2f(x2) = а\х2 + а2X4.
Zbývá jen ověřit, že všechny mnohočleny tohoto tvaru úloze vyhovují,
což učiníme stejně jako v prvním řešení.
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3. Předpokládejme, že pravoúhelník mxn je pokryt dlaždicemi dle zadá-
ní. Ke každé dlaždici v pokrytí přísluší jedno čtvercové pole pravoúhelní-
ku, které dlaždice nepokrývá, které je však zároveň ze tří stran obklopeno
jejími čtverci. Takové pole označíme jako „vnitřní pole“ dlaždice. Zřejmě
tedy ke každé dlaždici A v pokrytí můžeme přiřadit dlaždici B, která
pokrývá „vnitřní pole" dlaždice A. Jsou jen dvě možnosti (až na otočení
a souměrnost), jak takto dlaždici В к dlaždici A přiložit (obr. 47); v obou
případech dlaždice A „recipročně" pokrývá vnitřní pole dlaždice B. To
znamená, že v pokrytí jsou všechny dlaždice jednoznačně rozděleny do
dvojic, z nichž každá vytváří buď obdélník 3x4, nebo nekonvexní osmi-
úhelník znázorněný na obr. 47 vpravo. Daný pravoúhelník lze tedy dláždi-
cemi pokrýt, právě když ho lze pokrýt dvojútvary složenými z 12 čtverců
na obr. 47.

A

В

Obr. 47

Dále je vidět, že žádná ze stran daného pravoúhelníku nemůže mít
délku 1, 2 či 5 čtverců (řádek či sloupec podél takové strany pravoúhel-
niku nedokážeme žádným způsobem pokrýt).

Naopak je zřejmé, že jen pomocí obdélníků 3x4 dokážeme pokrýt
každý pravoúhelník 3a x 46, speciálně tedy i pravoúhelník 12c x 3 a 12c x
x 4. A protože každé číslo d ^ 6 lze napsat jako součet několika trojek
a několika čtyřek, lze pokrýt i každý pravoúhelník 12c x d, pokud d ^
^ {1,2,5}. Ukážeme, že tím jsou všechny možné pravoúhelníky, jež lze
danými dlaždicemi pokrýt, vyčerpány.

Jestliže pravoúhelník mxn je pokryt dvojútvary složenými z 12 čtver-
ců, je jeho obsah mn dělitelný dvanácti. Naším jediným úkolem je do-
kázat, že aspoň jedno z čísel m, n musí být dělitelné čtyřmi. Předpoklá-
dejme, že tomu tak není. Protože mn je dělitelné 4, jsou obě čísla m,
n sudá. Ukážeme-li, že počet dvojútvarů v pokrytí musí být sudý, bude
součin mn dělitelný dvaceti čtyřmi, což odporuje předpokladu, že ani
jedno z čísel m, n není čtyřmi dělitelné.

První způsob. Označme v pravoúhelníku čtvercová pole každého čtvr-
tého sloupce a každého čtvrtého řádku jednotkami, přičemž na pole v prů-
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sečíku označených řádků a sloupců místo dvou jednotek napíšeme dvojku
(obr. 48 pro m — n = 18, řádky počítáme odspodu jako u šachovnice).
Protože počet řádků i sloupců pravoúhelníku je sudý, je součet všech čísel
v něm sudý. Na druhé straně obdélník 3x4 pokryje čísla se součtem 3
nebo 7, zatímco osmiúhelníkový útvar z obr. 47 pokryje čísla se součtem 5
nebo 7. To znamená, že počet všech dvoj útvarů v pokrytí je sudý.

Druhý způsob. Místo čísel obarvíme čtvercová pole v každém čtvrtém
sloupci a v každém čtvrtém řádku, přičemž společná pole v jejich průse-
číku ponecháme neobarvená (obr. 49). Jestliže m — Ai + 2, n = Aj + 2,
bude celkový počet tmavých polí i(3j 4- 2) 4- j(3i 4- 2) = 2(3ij 4- i + j),
což je sudé číslo. Zároveň není těžké se přesvědčit, že každý dvojútvar
pokryje 3 nebo 5 obarvených čtverců. Jejich počet proto musí být sudý.

Obr. 50

Třetí způsob. Dvojútvary v poloze na obr. 50 můžeme charakterizovat
následujícím způsobem: V každém ze čtyř řádků jsou tři čtverce a v kaž-
dém sloupci je sudý počet čtverců. Jestliže v daném pravoúhelníku obar-
víme každý čtvrtý řádek (obr. 51), bude počet obarvených čtverců sudý.
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Přitom dvojútvary z obr. 50 (v této poloze) pokryjí každý právě tři obar-
vené čtverce, zatímco dvojútvary, jež z nich vzniknou otočením o 90°,
jich díky uvedené charakterizaci pokryjí sudý počet. Počet dvojútvarů
z obr. 50 v daném pokrytí je tedy sudý. Podobně obarvíme-li v daném
pravoúhelníku každý čtvrtý sloupec, zjistíme, že i počet dvojútvarů, jež
vzniknou z těch na obr. 50 otočením o 90°, je sudý.

Obr. 51

Jiné řešení. Předpokládejme, že existuje pokrytí pravoúhelníku m x n,
kde m = n = 2 (mod 4). Pomocí několika různých obarvení ukážeme, že
počet všech osmiúhelníkových dvojútvarů musí být sudý i lichý zároveň,
což samozřejmě nelze.

Uvažujme dvě různá obarvení daného pravoúhelníku (obr. 52), v nichž
jsou střídavě obarveny obdélníky 2x1, přičemž druhé obarvení se od
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prvého liší jen „posunutím-1 o jeden sloupec doprava. V každém z nich
je stejný počet tmavých i světlých polí (počet řádků je sudý). Zatímco
každý z obdélníků 3x4 pokryje čtyři tmavá a čtyři světlá pole, pro
osmiúhelníkové dvojútvary to vždy neplatí. Záleží totiž na jejich poloze
vůči zvolenému obarvení. Podívejme se na ně jako na čtverce 4 x 4, z nichž
jsme odřízli dva protější rohy 2x1 (orientované stejně jako obdélníky
zmíněného obarvení). Oba odříznuté obdélníky zřejmě odkrývají stejně
obarvená pole (obr. 53), proto v případě, že mají všechna čtyři pole stej-
nou barvu, bude se počet tmavých a světlých polí pokrytých takovým
dvojútvarem lišit o čtyři. Počet útvarů, které vykazují tuto asymetrii
v jednom obarvení, musí tedy být sudý. Totéž platí pro dvojútvary, které
vykáží stejnou asymetrii v „posunutém“ obarvení (obě množiny jsou
zjevně disjunktní!). Podobně i počet dvojútvarů orientovaných „svisle14,
tj. s odříznutými obdélníky 1 x 2, je sudý (použijeme analogické obarvení,
v němž jsou střídavě obarveny „svislé44 obdélníky 1x2).

Obr. 53

Obarvěme nyní daný pravoúhelník podle obr. 54. Počet tmavých polí
je v něm lichý, přitom každý obdélník 3x4 pokryje dvě nebo čtyři tmavá
pole, tj. sudý počet, zatímco osmiúhelníkové dvojútvary pokryjí vždy tři
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tmavá pole. Odtud ovšem plyne, že jejich celkový počet musí být lichý.
Došli jsme ke sporu.

Poznámka. Tato úloha byla z šestice úloh nej obtížnější. Jedním z dů-
vodů bylo patrně i to, že obvyklý argument s vhodným obarvením polí
pravoúhelníku sice funguje, ale jak ukazují předvedená řešení, jeden způ-
sob obarvení často nestačí. Přestože hledaná množina je totožná s mno-
žinou všech pravoúhelníků, jež lze pokrýt pouze obdélníky 3x4, není
pravda, že by neexistovala pokrytí využívající osmiúhelníkový dvojútvar
(obr. 55).

Obr. 55

4. Vzhledem к symetrii stačí ukázat, že za daných předpokladů platí t\ <
< Í2 + Č3- Podle nerovnosti mezi aritmetickým a geometrickým průměrem
je

Č3 y/t2Í3
+ — ^ 2 pro všechna i, j.

tj ti

Úpravou pravé strany dané nerovnosti tak dostáváme

1
Í2 + Í3 = 2у/Ш, (1)- + —

Í2
U

£ (5+!)-1

n2 + 1 > П +

) + 4(í2 + í3) +— П + t\ (- b
2

1 (h + k)>
\tj ti) ~EÍ3

1 ^i<j^n
(ij)/( 1.2),(1,3)

Vtphti n

^ n + 2 + 2 + 2
VW3
2 9

— 2d T — P ti

2ti

-4,
a
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kde jsme označili a = t\/y/t^t^. Z poslední úpravy vychází nerovnost

11
0 > 2й -P — — 5 — —(2a2 — 5a -P 2)

a a
-(2a - l)(a - 2)
a

odkud plyne a < 2. Je tedy £1 = ay/t^iš < 2>/£2^3 = £2 + £3 (ještě jednou
jsme využili druhou nerovnost v (1)), což jsme chtěli dokázat.

Jiné řešení. (Podle Avne Smeetse z Belgie, který získal stříbrnou me-

daili.) Dokážeme tvrzení sporem, a to nejprve pro n — 3. Podle známé
nerovnosti mezi aritmetickým a harmonickým průměrem

a -P b ^ 2
2~~ = T—I

i + I>
a 6 a + b

4
neboli

- + T
ba

pro tři kladná čísla a 11, b — £2, c — t3 platí

4c a -p b
(a + 6+c)(I + i + i)ž(a+6+c)(-lřj 5 +

a + b c

takže pokud předpokládáme, že c ^ a -p 5, je podle nerovnosti mezi arit-
metickým a geometrickým průměrem

~ + l + z) = 5+5y
c4 a -p 6

(a-pb + c)(iV a
^5 + 5=10. (2)(a -p 6)4 c

To odporuje dané nerovnosti (pro n = 3 je n2 -f 1 = 10), takže kladná
čísla a, b а c splňují trojúhelníkovou nerovnost c < a -P 6.

Pro n ^ 4 označme a = 6 = Í2> c = £3, S' = £г» T = ^ l/£*
г^4 г^4

a předpokládejme opět, že c ^ a -p b. Součin na pravé straně dané nerov-
nosti můžeme pak vyjádřit jako

P - (a + 6 + c) (i + 1 + i) + S(i + i + i) + T(a + 6 + c) + ST.
Podle Cauchyovy nerovnosti je ST ^ (n — 3)2, podle nerovnosti mezi
aritmetickým a geometrickým průměrem a podle (2) pak je

S(í + í + í)+:r(a + í'+c)ž2\/'ST(“ + '' + C)(a+í + s) =

^ 2(n - 3)л/10 > 6(n - 3).
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To dohromady dává

P ^ 10 + 2(n - 3)\/Í0 + (n - 3)2 = n2 + 1,

což opět odporuje dané nerovnosti.

Poznámka. Z předchozího výpočtu je vidět, že místo n2 + 1 mohl být
na levé straně předpokládané nerovnosti i výraz

3)2= (n-3+x/lO)2,10 + 2\/Í0(n - 3) -f (n

který je větší než n2 + 1 pro každé n ^ 4 (pro n — 3 se oba výrazy
rovnají).

5. Protože vymezení bodu P je symetrické vůči vrcholům В a D, mů-
žeme bez újmy na obecnosti předpokládat, že bod P leží v trojúhelníku
ACD. Podobně i podmínka rovnosti příslušných úhlů charakterizující
bod P je symetrická vůči vrcholům A a C (\-KPBC\ = \š:DBA\, právě
když \<PBA\ = \<DBC\). Můžeme tedy předpokládat, že bod P leží
v trojúhelníku BCD.

Předpokládejme nejprve, že čtyřúhelník ABCD je tětivový a označ-
me K1 L průsečíky úhlopříčky AC s polopřímkami PB a DP (obr. 56).
Z rovnosti příslušných obvodových úhlů nad tětivami AB a AD plyne, že
trojúhelníky DAB, DLC а СКВ jsou podobné. Z rovnosti vnějších úhlů
při vrcholech L а К posledních dvou uvedených trojúhelníků dostáváme,
že trojúhelník PKL je rovnoramenný, takže \PK\ = \PL\.
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Trojúhelníky ADL, BDC jsou také podobné: zřejmě se shodují v úhlu
při společném vrcholu D a v obvodových úhlech nad tětivou CD. Využi-
tím podobností ADL ~ BDC a DAB ~ СКВ pak můžeme psát

|AL| |ЛР|
_ |C7Ú|

|ŠČf ~ \BĎ\ ~ \BC\ ’

takže |ЛТ| = |CX|. To spolu s rovností \PK\ = \PL\ dává \AP\ = \CP\.
Obráceně nechť \AP\ — \CP\. Sestrojme kružnici opsanou troj úhel-

niku BCP a označme X, Y další průsečíky této kružnice s polopřímkami
DC a DP (obr. 57). Protože BCXP je tětivový, je \<PXD\ — |<P£?Cj,
takže trojúhelníky PDX a ADB jsou podobné. Z této podobnosti navíc
plyne spirální podobnost trojúhelníků ADP ~ BDX. Nakonec z rovnosti
obvodových úhlů nad tětivou PX dostáváme podobnost DPC ~ DXY.
Využitím posledních dvou podobností pak máme

\AP\ \DP\ \PC\
\BX\ ~ \DX\ ~ \XY\

takže \BX\ = |W|. V uvažované kružnici jsme našli shodné tětivy se
společným krajním bodem V). Tětivě BX přísluší obvodový úhel BCD,
a protože ve zvolené konfiguraci je \KBCD\ < \j£.YCD\, shoduje se s ob-
vodovým úhlem XPY nad tětivou YX, který je vnějším úhlem při vr-
cholu P trojúhelníku PDX shodným s vnějším úhlem při vrcholu A
trojúhelníku ADB. Platí tedy \Y.BCD\ = 180° — \<BAD\ a čtyřúhelník
ABCD je tětivový, jak jsme chtěli dokázat.
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Jiné řešení. (Podle Františka Konopeckého.) Vzhledem к tomu, že
úhlopříčka BD není osou ani jednoho z vnitřních úhlů ABC, CDA, shod-
nosti úhlů určující polohu bodu P znamenají, že bod P nemůže ležet na

úhlopříčce BD.
Předpokládejme nejprve, že ABCD je tětivový. Označme В' a D'

průsečíky opsané mu kružnice s polopřímkami opačnými к PD, resp.
к PB. Shodnost úhlů ABD a PBC (obr. 58) tak znamená shodnost pří-
slušných oblouků AD a CD'. Podobně se shodují i oblouky AB a CB'.
To ale znamená, že bod B' je obrazem bodu В a bod D' obrazem bodu D
v osové souměrnosti podle osy o úsečky АС. V této osové souměrnosti je
tak úsečka BD' obrazem úsečky B'D, a jejich průsečík P proto leží na

úhlopříčky AC. Tudíž \AP\ — \CP\.ose

Obráceně nechť \AP\ — \CP\. Uvažujme kružnici к opsanou troj-
úhelníku ABD a označme В' a D' její průsečíky s polopřímkami opáč-
nými к PD, resp. к PB (obr. 59). Ze shodnosti obvodových úhlů nad
tětivou BB' resp. DD' vyplývá, že trojúhelníky BPD a B'PD' jsou
podobné podle věty uu. Zmíněné shodnosti navíc znamenají, že i troju-
helniky BDC a B'D'A se shodují ve dvojicích úhlů při stranách BD
a B'D', takže jsou podobné se stejným poměrem podobnosti jako troj-
úhelníky BPD a B'PD'. A protože v této podobnosti si odpovídají dvě
shodné úsečky CP a AP, jedná se o shodnost (snadno nahlédneme, že se

jedná o osovou souměrnost). Tato shodnost převádí kružnici к opsanou
trojúhelníku ABD na sebe, proto bod C, který je obrazem bodu A, leží
rovněž na této kružnici, a čtyřúhelník ABCD je tedy tětivový.
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Jiné řešení. Dokážeme obrácenou implikaci trochu jinak než v před-
chozím řešení. Předpokládejme, že \AP\ = \CP\ a označme k\ kružnici
opsanou trojúhelníku ABD a kružnici opsanou trojúhelníku BCD.
Označme dále B, Ď průsečíky polopřímek DP a BP s kružnicí k\ a B',
D' s kružnicí /с2 (obr. 60). Z rovnosti úhlů \<PBC\ — \kDBA\ plyne, že

příslušné oblouky DA kružnice k\ a D'C kružnice k2 mají stejnou délku
v obloukové míře, a podobně díky rovnosti \^PDC\ = \-KBDA\ mají
stejnou délku i oblouky AB kružnice k\ a B'C kružnice /?2- Existuje tedy
nepřímá podobnost /, jež zobrazuje kružnici k\ na /c2, přičemž bodům
D, А, В v této podobnosti postupně odpovídají body D', С а В' a dále
bodům B, Ď pak body В a D (i odpovídající oblouky BB, B'B a DĎ,
DD' mají očividně stejnou obloukovou míru). Protože bod P je průse-
číkem přímek BD a BD, zobrazí se podobností / na průsečík přímek
B'D a BD', což je opět bod P. A protože \AP\ — |CP\ = \f(A)f(P)\, je
poměr podobnosti / roven 1, takže je také \PB'\ — \f(P)f(B)\ — \PB\
a podobně i \PB\ — \PB\. Body В' а В tak nutně splývají a kružnice
ku k<2 jsou totožné.

Jiné řešení. Označme po řadě E, F, G, H kolmé průměty bodu P na

jednotlivé strany AB, BC, CD a DA daného čtyřúhelníku. Čtyřúhelník
EBFP je zřejmě tětivový, takže \<BEF\ — \-KBPF\. Označíme-li S
průsečík příčky EF s úhlopříčkou BD (obr. 61), vidíme, že trojúhelníky
EBS, PBF jsou podobné, neboť dle předpokladu \-KEBS\ = \$:FBP\.
To znamená, že \<BSE\ = \<BFP\ — 90°, neboli příčka EF je kolmá
na úhlopříčku BD. Analogicky zjistíme, že i příčka GH je kolmá na BD.
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Označíme-li В' střed úsečky PB a D' střed úsečky PD, bude B'D'
střední příčkou trojúhelníku BPD, takže úsečka B'D' je stejně jako
úsečka BD kolmá na obě příčky EF a GH. Body В' a D' jsou ovšem
zároveň středy příslušných Thaletových kružnic nad průměry PB a PD,
takže B'D' je osou obou příček EF i GH, EFGH je tudíž rovnoramenný
lichoběžník se základnami EF, GH. Z dalších dvou tětivových čtyřúhel-
níků EAHP a FCGP tak dostáváme následující rovnosti:

\AP\ ■ sin\<BAD\ = \EH\ = \FG\ = \CP\ ■ sin\<BCD\.

Rovnost \AP\ = \CP\ je tudíž ekvivalentní rovnosti sin|<jBAD| =
= sin|<BCZ)|. Vzhledem к podmínkám úlohy nemůže bod P ležet na

úhlopříčce BD. Označíme-li pro jednoduchost a a 7 úhly při vrcholech
A, C a ip, ф oba úhly vystupující v definici bodu P (obr. 62), dostáváme
pro velikost úhlu BPD ve čtyřúhelníku BCDP

\<BPD\ = \<CPB\ + \<CPD\ = 360° - 7 - (ip + ф) =

= 180° -7 +a.

Vidíme tedy, že za daných předpokladů nemůže být a = 7, takže rovnost
\AP\ — \GP\ je ekvivalentní rovnosti a + 7 = 180°, což je ekvivalentní
tomu, že čtyřúhelník ABCD je tětivový.

6. Pruhovaných čísel je mnoho, obecně je však těžko dokážeme popsat
tak, aby bylo vidět, čím jsou dělitelná. Zaměřme se proto na poměrně úz-
kou skupinu pruhovaných čísel obsahujících jen nuly a jedničky, o nichž
dokážeme zjistit víc. Přesněji řečeno, budeme se snažit pro dané číslo n
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vytvořit pruhované číslo tvaru Sk = 1010...101, kde к je počet jedni-
ček v jeho desítkovém zápisu, které bude násobkem n. Mezi pruhová-
nými čísly si, S2, ■ ■ ■, sn+i najdeme díky Dirichletovu principu určitě dvě
různá, která dávají při dělení číslem n stejný zbytek, takže jejich rozdíl
je násobkem n. Přitom pro к > l je

= 1010 .. 101 - 1010 .101 = 1010 .10100 . 00 = sk-i • 102í.Sk - si

k — l jedniček 21 nulк jedniček l jedniček

Pro každé n umíme tedy najít к a l tak, že n \ Sk-i • 102/. Pokud je číslo n
s číslem 10 nesoudělné, tak dokonce n | Sk-i, tudíž n má pruhovaný
násobek.

Vidíme, že problém je s čísly n, která jsou sudá nebo dělitelná pěti.
Pro ně musíme pruhované násobky hledat v jiném tvaru.

Pokusme se je nejprve najít pro čísla n, jež jsou mocninou čísla 5, tj.
pro čísla n = 5a. Pro malé hodnoty a snadno nacházíme, že čísla

5, 25 = 52, 125 = 53, 8 125 = 13 • 54, 78 125 = 25 • 55 (1)

jsou pruhované násobky mocnin 51, 52, 53, 54 a 55. Pro větší a vytvoříme
pruhovaný násobek čísla 5a indukcí. Předpokládejme, že máme pruho-
váný násobek Ak čísla 5fc, který má к číslic, přičemž první zleva může
být i nula, což nijak nevadí, naopak je to pro náš postup výhodné, když
nemusíme tuto „zbytečnou“ číslici brát do úvahy při rozhodování o pru-
hovanosti daného čísla, a vytvořme pruhovaný násobek čísla 5k+1 tak, že
na začátek Ak připíšeme nějakou vhodnou číslici. Je-li tedy

Ak = akak-\ .. .ai = 5k ■ d, d 6 N, ax, a2, ■.., ak G {0,1, 2,..., 9},

takový pruhovaný násobek, připojením číslice ak+i na jeho začátek do-
staneme

Ak+i — cik+iAk — flfc+i • 10fc + А к — 10fcafc+i -(- 5 kd — 5fc(2 kak+i + d).

Aby Ak+1 bylo pruhované a zároveň násobek 5fc+1, stačí ak+i zvolit tak,
aby mělo opačnou paritu než ak a aby 2kak+i + d bylo dělitelné pěti.
To zřejmě jde vždy, protože pro volbu ак+i máme 5 různých možností
(podle parity první číslice čísla Ak buď číslice 1, 3, 5, 7, 9, anebo 0, 2,
4, 6, 8) a pro každou z nich dává číslice ak+1, a tedy i číslo 2kak+i + d
jiný zbytek při dělení pěti (čísla 2k a 5 jsou nesoudělná). Jeden z těch
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zbytků tedy musí být nulový a v tom případě je 2kak+i +d pěti dělitelné.
Ukázali jsme, že všechny mocniny pěti mají pruhované násobky. Přitom
z uvedeného postupu vyplývá, že pro dané n = 5a umíme pruhovaný
násobek vytvořit tak, aby měl sudý počet číslic (včetně případné nuly na

začátku) a končil číslicí 5.
Věnujme se teď mocninám čísla dvě. Opět ukážeme, že pro každé

n = 2^ existuje jeho pruhovaný násobek. Postup bude obdobný jako
při mocninách pěti, budeme však přidávat až dvě číslice a na vytvářená
čísla budeme klást přísnější požadavky. Přesněji, dokážeme, že pro každé
přirozené к existuje (2k— l)-ciferné pruhované číslo Bk, které je dělitelné
číslem 22fc_1, ale není dělitelné číslem 22fc a jehož všechny sudé číslice jsou
dvojky. Pro první krok indukce máme pruhovaná čísla

Bi=2, B2 = 232 = 23 • 29, Б3 = 27 232 = 25 • 851

B4 — 2 127 232 = 27 • 16 619.

Předpokládejme tedy, že máme pruhované číslo

2fc-lВк = Ь2к-\Ь2к-2 • • • b\ = 2
d G N liché , b2i G {1, 3, 5, 7} a &2i-i = 2 pro 1 ^ i ^ к

■ d,

(protože Вк je pruhované a sudé, je i číslice b2k~\ sudá). Chceme najít
(dvojmístné) číslo b = 2b2k (b2k G {1, 3, 5, 7}) tak, aby

2fc—12fc—1 b + 22k~ld = 22k-l{b2k~lb + d)Bk+i — bBk = b ■ 10 + Bk —10

bylo dělitelné číslem 22k+1, ale nebylo dělitelné číslem 22fc+2. Potřebujeme
tedy, aby 52k~1b+d bylo dělitelné čtyřmi, ale nebylo dělitelné osmi. Podle
předpokladu je d liché, dává tedy při dělení osmi jeden ze zbytků 1, 3,
5 nebo 7. Za b proto stačí zvolit jedno z čísel 21, 23, 25 anebo 27 tak,
aby 52k~1b dávalo při dělení osmi takový zbytek, který po přičtení d dá
zbytek 4 (tj. dává-li d zbytek 1, volíme b tak, aby 52fc_16 dávalo zbytek 3,
dává-li 3, chceme zbytek 1, pro zbytek 5 zbytek 7 a pro zbytek 7 zbytek 5).
Protože 52fc_1 je nesoudělné s 8 a čísla 21, 23, 25 a 27 dávají při dělení
osmi různé liché zbytky, dostaneme pro jednu z hodnot b G {21,23, 25,27}
při dělení čísla 52fc-16 osmi potřebný zbytek. Našli jsme tedy pruhované
násobky i pro mocniny dvou. Přitom když před Bk připíšeme libovolnou
lichou číslici, dostaneme pruhované číslo, které je rovněž násobkem 2
protože Вк má 2k — 1 číslic (přičítáme 6-10
n — 2@ najít pruhované číslo, které má sudý počet číslic.

2fc — 1

2fc —1 ). Umíme tedy ke každému
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Takto vyzbrojeni můžeme přejít к obecnému případu, kdy n — 5a ■

•2^ ■ m, přičemž m není dělitelné dvěma ani pěti. Pro a = /3 = 0 jsme už
úlohu vyřešili (číslo n má pruhovaný násobek z nul a jedniček).

Uvažujme případ, kdy /5 = 0. Číslo 5a má pruhovaný násobek
se sudým počtem číslic, označme ho M. Zřejmě i číslo

Sk = MM ...M
к čísel M

je pruhovaným násobkem 5a. Stejnou úvahou jako na začátku najdeme
к a l tak, že m | Sk-i ■ Pak je Sk-i pruhovaným násobkem n.

Úplně stejně najdeme pruhovaný násobek n i v případě, kdy a = 0.
Je-li /3 — laa^l, stačí к číslu Sk-i, které jsme našli pro n = 5“ -m,

připsat zprava nulu. Dostaneme pruhované číslo (M, a tedy i Sk-i končilo
číslicí 5), které bude násobkem dvou i čísla 5a • m, tj. bude násobkem
5a • 21 • m.

Zůstal případ, kdy /Зк2аа^1. V takovém případě je ale n = 5a •

•213 -m násobkem čísla 20, jehož každý násobek končí některým z dvojčíslí
00, 20, 40, 60, 80, takže není nikdy pruhovaný.

Odpověď. Hledanými čísly jsou všechna čísla, která nejsou násobkem
čísla 20.

Jiné řešení. (Podle Tiankai Liu (USA), který získal zlatou medaili.)
Protože každý násobek 20 končí dvěma sudými číslicemi, nemohou mezi
hledaná čísla patřit násobky 20. Ukážeme, že každé jiné přirozené číslo má
pruhovaný násobek. Protože dělitel takového čísla má stejnou vlastnost,
můžeme dále předpokládat, že n je sudé.

Nejprve ukážeme, že pro čísla n tvaru n — 2a nebo n = 2 ■ 5a (a ^ 1)
existuje pruhovaný násobek X(n), který má n číslic. Položme (pro n

sudé)
10n+1 - 10

M = = 101010...10.
v v99

n číslic

To je zřejmě pruhované číslo a pruhované bude i číslo

к

M + ^2 ei- 10*
г=0

kde ei jsou sudé číslice а к n — 1. Navíc poměrně snadno ověříme, že
podle toho, zda bylo n — 2Q nebo 2 • 5a, dokážeme vybrat posloupnost
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číslic eo, ei,..., en_i £ {O, 2, 4, 6, 8} tak, že pro každé к ^ n — 1 je výše
uvedené číslo dělitelné číslem 2fc+2 2 ■ 5fc+1.resp.

Krátce naznačíme, jak lze při výběru vhodných číslic e* postupovat
např. pro n = 2 ■ 5a (zajímá nás samozřejmě jen dělitelnost číslem 5fc+1,
protože se jedná vesměs o čísla sudá). Protože čísla 0, 2, 4, 6, 8 tvoří
úplnou soustavu zbytků modulo 5, snadno určíme во tak, aby bylo M +
+ eo = 0 (mod 5); to znamená, že modulo 52 dává M + eo některý ze

zbytků 0, 5, 10, 15, 20. Z čísel 0, 2, 4, 6, 8, jež dávají modulo 5 všechny
možné zbytky 0, 1, 2, 3 a 4, tedy dokážeme vybrat e\ tak, že číslo 10ei
bude mít modulo 52 zbytek opačný, tj. M + eo + 10ei = 0 (mod 52). A tak
pokračujeme dále. Podobně postupujeme i pro n — 2Q, kde samozřejmě
vystačíme s volbou e* £ {0, 2}.

Speciálně tedy umíme pro každé uvažované n najít číslice eo,

e\,..., en_i £ {0,2, 4, 6,8} tak, že číslo

71—1

X(n) = M+^eť- 10*
i=0

bude pruhované a n-místné.
Je-li n obecně sudé číslo, které není dělitelné dvaceti, můžeme je za-

psát ve tvaru n'm, kde n' — 2a nebo n' = 2 • 5a, přičemž m je nesoudělné
s 10. Vezměme N ^ n' takové, že 10^ = 1 (mod m) (takové N existuje,
protože 10^™) = 1 (mod m), kde je tzv. Eulerova funkce, takže pro
dané m za N stačí vzít dostatečně velký násobek čísla ip(m)). Nechť

102m7V+i _ 10
• 10n' + X(rí) = 101010... 10 X(n').v

^

M =

99
2mN číslic

Protože existuje к £ {0,1, 2,..
číslo6

m — 1}, pro něž M = —2к (mod m), je* 5

к

X(n) = M + J2 2-10
TVi

1=1

nejen pruhované, ale i dělitelné m a samozřejmě i číslem n', neboť jak
n' — 2a, tak i n’ — 2 • 5“ dělí 10a, takže dělí i 10n a 10^. Takto zvolené
X(n) je tedy hledaným pruhovaným násobkem čísla n.

Méně zkušeného čtenáře upozorňujeme, že při prázdné množině sčítacích indexů
považujeme příslušnou sumu za nulu; taková situace v následující formuli nastane
pro к — 0, kdy skutečně nepotřebujeme nic přidávat.
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Jedenáctý ročník Středoevropské olympiády v informatice

Hostitelem jedenácté Středoevropské olympiády v informatice CEOI
2004 bylo Polsko. Soutěž se uskutečnila ve dnech 12.-18. 7. 2004 na Uni-
verzitě informačních technologií a managementu v Rzeszowě. Olympiáda
probíhala v době prázdnin, takže na soutěž mohly být využity univerzitní
počítačové laboratoře a na zahajovací a závěrečný ceremoniál i na prů-
běžná jednání volné posluchárny. Ubytování a stravování bylo zajištěno
v hotelu nedaleko univerzity.

Olympiáda byla skvěle připravena po stránce organizační, po stránce
počítačového vybavení i z hlediska kvality přípravy soutěžních úloh.
V každém ze dvou soutěžních dní studenti řešili u počítačů tři náročné
příklady. Se svými počítači i soutěžním prostředím se přitom všichni
mohli seznámit den před vlastní soutěží, kdy probíhalo tréninkové před-
kolo. Při soutěži bylo možné programovat v některém z programovacích
jazyků Pascal, C nebo C-f+, každý si mohl zvolit podle svých zkušeností
pracovní prostředí operačních systémů Windows nebo Linux. O oba uve-
děné systémy byl mezi účastníky přibližně stejný zájem. Současně s kla-
sickou soutěží probíhala i soutěž po Internetu pro veřejnost.

К testování a hodnocení vytvořených programů se na CEOI již něko-
lik let používá automatický vyhodnocovací systém testující programy na

připravené sadě vstupních dat. Všechny prováděné testy mají dobu vý-
počtu omezenu předem známým časovým limitem a jednotlivá testovací
vstupní data mají různou velikost a různou složitost, což dohromady
umožňuje bodově rozlišit programy podle kvality použitého algoritmu.
Za každou úlohu šlo získat maximálně 100 bodů, nejčastěji bylo zadáno
10 sad testovacích dat po 10 bodech. Některé sady se skládaly z několika
vstupů, což umožňovalo vyloučit jednoduchá řešení, která vždy vypíší
stejnou odpověď.

Jedenácté středoevropské olympiády v informatice se zúčastnilo
40 soutěžících studentů z 8 zemí střední Evropy. Z Polska se účastnily
tři týmy, z nichž se ale do celkových výsledků započítával pouze jeden,
z ostatních států se účastnil vždy jeden tým. Českou republiku repre-
zentovalo čtyřčlenné družstvo ve složení Ondřej Bílka (student gymnázia
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Lesní čtvrť ve Zlíně), Jan Bulánek (student gymnázia J. Vrchlického
v Klatovech), Martin Dobroučky (student gymnázia v Moravské Třebové)
a Daniel Marek (student gymnázia Ch. Dopplera v Praze). Naši soutěžící
byli vybráni na základě výsledků dosažených v celostátním kole 53. roč-
niku Matematické olympiády - kategorie P (programování). Soutěže se
měl původně místo Jana Bulánka účastnit Oto Petřík, který ovšem před
soutěží onemocněl. Jan Bulánek byl proto pozván jako první náhradník.
Vedením družstva byli pověřeni Mgr. Jan Kára a Milan Straka, oba
z Matematicko-fyzikální fakulty Univerzity Karlovy v Praze.

Na středoevropské olympiádě v informatice se udělují ocenění podle
podobného klíče, jaký se používá například na mezinárodní olympiádě
v informatice. Nejvýše polovina soutěžících obdrží některou z medailí,
přičemž zlaté, stříbrné a bronzové medaile se dělí přibližně v poměru
1:2:3. Na letošní CEOI 2004 bylo rozděleno celkem 19 medailí, z toho
4 zlaté, 5 stříbrných a 10 bronzových. O čtyři zlaté medaile se letos ne-
tradičně podělily pouze dva státy - Chorvatsko (1. a 3. místo) a Polsko
(2. a 4. místo).

Naši studenti letos získali pouze jednu bronzovou medaili, což je čás-
tečně způsobeno tím, že na středoevropskou olympiádu jsou vysíláni
mladí studenti, aby získali zkušenosti, které v následujících letech mohou
zúročit na olympiádě mezinárodní. Také slovenská reprezentace získala
jen dvě bronzové medaile. Následující tabulka shrnuje výsledky všech
českých studentů v soutěži:

19. Daniel Marek

29.-33. Ondřej Bílka
29.-33. Jan Bulánek

29.-33. Martin Dobroucký

107 bodů

60 bodů

60 bodů

60 bodů

bronzová

Příští, v pořadí dvanáctá, středoevropská olympiáda v informatice
CEOI 2005 se uskuteční ve městě Sarospatak v Maďarsku v první polo-
vině července 2005.
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16. mezinárodní olympiáda v informatice

Ve dnech 11.-18.9. 2004 se konala v Athénách
v Řecku 16. mezinárodní olympiáda v informatice
IOI 2004 (International Olympiad in Informatics).
Soutěže se zúčastnilo 300 studentů ze 77 zemí ce-

lého světa. Česká národní delegace byla sestavena
na základě výsledků celostátního kola 53. ročníku
Matematické olympiády v kategorii P (programování). Naše družstvo
mělo následující složení:

Tomáš Gavenčiak, absolvent gymnázia M. Koperníka v Bílovci,
Daniel Marek, student gymnázia Ch. Dopplera v Praze 5,
Petr Skoda, absolvent gymnázia v Praze 8, Ústavní,
Martin Vejnár, student gymnázia na tř. Kpt. Jaroše v Brně.

ш ms -

Vedoucími české delegace byli doc. RNDr. Pavel Tópfer, CSc. a Mgr. Mar-
tin Mareš, oba z Univerzity Karlovy v Praze, Matematicko-fýzikální fa-
kulty.

Zvláštností letošního ročníku Mezinárodní olympiády v informatice
byla její přímá návaznost na sportovní letní olympijské hry. Soutěž se
konala jen asi dva týdny po skončení olympijských her v objektu nově
vybudovaném jako dočasné sídlo sportovních novinářů v těsném soused-
ství hlavního olympijského stadionu. Ihned po skončení IOI v Athénách
pro změnu začínala paralympiáda tělesně postižených sportovců.

Mezinárodní olympiáda v informatice byla organizátory výborně za-

jištěna. Po stránce odborné připravili pořadatelé soutěže kvalitní úlohy
přiměřené obtížnosti, z hlediska celkového pobytu pak vhodným způso-
bem doplnili odborný program dvěma zajímavými výlety pro všechny
účastníky
Akropolis, po skončení soutěže pak celodenní plavba lodí mezi řeckými
ostrovy.

Vlastní soutěž probíhala jako vždy ve dvou soutěžních dnech. V kaž-
dém z nich dostali studenti zadány vždy tři soutěžní úlohy a na jejich
vyřešení 5 hodin času. Po tuto dobu mohli pracovat na přiděleném osob-
ním počítači vybaveném základním systémovým prostředím a překladači

mezi oběma soutěžními dny se konal půldenní výlet na
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programovacích jazyků Pascal, C a C++. Cílem každé úlohy je zvládnout
zadaný problém algoritmicky a navržený algoritmus pak také naprogra-
movat. Vytvořené programy se testují pomocí předem připravené sady
vstupních dat, takže práce musí být skutečně dovedena až do podoby
spolehlivě odladěného programu. Všechny testy jsou navíc vázány na

předem známé časové limity. Tím je zajištěno, že program založený na
méně efektivním algoritmu stihne včas doběhnout jen pro malá vstupní
data, zatímco při výpočtu s velkými daty je běh programu předčasně
přerušen, aniž by se program dobral к výsledku a jeho autor obdržel za

příslušný test body. Jednotlivá testovací data (zpravidla se používá 20 sad
dat hodnocených po 5 bodech) se liší ve své velikosti i složitosti, takže
teoreticky správný, ale pomalý program získá ve výsledném hodnocení
jen část z celkového dosažitelného množství bodů.

Za každou z šesti soutěžních úloh bylo možné získat nejvýše 100 bo-
dů, celkově tedy až 600 bodů. Skutečné bodové zisky většiny účastníků
byly ale samozřejmě výrazně nižší. Podle počtu dosažených bodů bylo
stanoveno výsledné pořadí. Lepší polovina účastníků olympiády byla oce-
něna medailemi, přičemž zlaté, stříbrné a bronzové medaile se rozdělují
přibližně v poměru 1:2:3. Celkem bylo letos uděleno 26 zlatých, 49 stři-
brných a 71 bronzových medailí.

Naši studenti se podobně jako v minulých letech umístili mezi úspěš-
nějšími týmy, i když dosažené výsledky jsou letos o něco horší než loni:

67.-72. Petr Škoda
73.-75. Daniel Marek

Martin Vejnár
Tomáš Gavenčiak

370 bodů

365 bodů

220 bodů

145 bodů

stříbrná medaile

stříbrná medaile

Mezinárodní olympiáda v informatice je soutěží jednotlivců a žádné
oficiální pořadí zúčastněných zemí se v ní nevyhlašuje. Podle dosažených
výsledků bychom se však řadili přibližně na 25.-30. místo v celkovém
pořadí zemí. Nejúspěšnějšími zeměmi byly letos Čína a Rusko se čtyřmi
zlatými medailemi, další v pořadí jsou USA, Polsko, Irán, Rumunsko,
Bulharsko, Slovensko, Lotyšsko a Tchaj-wan.

Příští, v pořadí již 17. mezinárodní olympiáda v informatice IOI 2005
se uskuteční v polském městě Nowy Sacz nedaleko Krakowa ve dnech
18.-25.8. 2005.
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Texty soutěžních úloh

1. Polygon
Polygon, čili též mnohoúhelník jistě všichni znáte. Ujasněme si jen,

že za jeho body považujeme jak body ležící na hranici, tak body uvnitř.
Polygon je konvexní právě tehdy, když pro libovolné dva jeho body X
a Y platí, že všechny body úsečky XY jsou součástí polygonu. Každý
polygon v této úloze bude konvexní, bude mít alespoň dva vrcholy, při-
čemž všechny jeho vrcholy budou navzájem různé a budou mít celočíselné
souřadnice. Žádné tři vrcholy polygonu neleží na jedné přímce.

Minkowského součet polygonů А а В se skládá ze všech bodů ve
tvaru (xi + x2, у i + У2), kde (xb yx) je bod polygonu A a (x2,y2) je
bod polygonu В. Laskavý, ale trpělivý čtenář si může snadno dokázat, že
Minkowského součet dvou polygonů je opět polygon. Následující obrázek
ukazuje příklad dvou trojúhelníků a jejich součtu:

a

AA

+

-> -> >

My se zaměříme na inverzní operaci к Minkowského součtu. Pro za-

daný polygon P budeme hledat dva polygony А а В takové, že:
> P je Minkowského součtem polygonů А а В,
o A má 2 až 4 vrcholy, čili je to buďto úsečka (2 vrcholy), trojúhelník

(3 vrcholy), nebo čtyřúhelník (4 vrcholy),
o A má největší možný počet vrcholů, čili:

h> A musí být čtyřúhelník, pokud to je možné;
m> jinak to musí být trojúhelník;
I» když není možné ani to, musí to být úsečka.
Je zřejmé, že ani A, ani В nemůže být roven P, neboť druhý sčítanec

by musel být bod, což není polygon.
Dostanete několik vstupních souborů, z nichž každý obsahuje popis

jednoho polygonu P. Pro každý vstupní soubor nalezněte polygony A
а В podle pravidel uvedených výše a vytvořte výstupní soubor s popisem
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polygonů A sl В. Pro každý vstupní soubor bude řešení existovat. Pokud
existuje více řešení, popište libovolné jedno z nich.

Neodevzdávejte žádný program, pouze výstupní soubory.

Vstup: Dostanete 10 vstupních souborů pojmenovaných postupně
polygonl.in až polygonlO. in, přičemž číslo na konci jména souboru
je číslo vstupu. Každý vstupní soubor vypadá následovně. První řádek
obsahuje jediné celé číslo N: počet vrcholů zadaného polygonu. Násle-
dujících N řádků popisuje jednotlivé vrcholy polygonu v pořadí proti
směru hodinových ručiček. (/ + l)-ní řádek (pro 1 ^ I ^ N) se skládá
ze dvou nezáporných celých čísel X/ a Yj oddělených jednou mezerou,
která udávají x-ovou a y-ovou souřadnici I-tého vrcholu polygonu.

Výstup: Odevzdejte 10 výstupních souborů odpovídajících jednotli-
vým vstupním souborům. Každý z těchto výstupních souborů bude obsa-
hovat popis polygonů А а В pro příslušný vstupní polygon. Tento popis
musí začínat řádkem ve tvaru:

#FILE polygon I

kde celé číslo / (1 ^ ^ 10) je pořadové číslo vstupního souboru.
Zbytek výstupního souboru je v podobném tvaru, jako soubor vstup-

ní. Druhý řádek obsahuje jedno celé číslo Na- počet vrcholů polygonu A
(2 ^ Na S 4). Následuje Na řádků popisujících jednotlivé vrcholy póly-
gonu A v pořadí proti směru hodinových ručiček. (/ + 2)-hý řádek (pro
1 ^ I ^ Na) obsahuje dvě celá čísla X a Y oddělená jednou mezerou,
což jsou souřadnice I-tého vrcholu polygonu A.

(Na + 3)-tí řádek pak obsahuje jediné celé číslo Nb počet vrcholů
polygonu В (2 5í Nb)- Následujících Nb řádků popisuje vrcholy póly-
gonu В v pořadí proti směru hodinových ručiček. (Na + J + 3)-tí řádek
(pro 1 5Í J Nb) obsahuje dvě celá čísla X a Y oddělená jednou meze-
rou, což jsou souřadnice J-tého vrcholu polygonu B.

Přiklad vstupu a výstupu:
polygonO.in A
5

0 1

0 0

2 0

2 1

1 2
>-
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Pro tento vstupní soubor jsou správně oba následující výstupní sou-

bory (viz též obrázky). V obou případech je A trojúhelník a nemůže to
být čtyřúhelník.

#FILE polygon 0
3

0 0

2 0 ЛA
1 1

2

0 1

0 0 >■ >-

#FILE polygon 0
3

0 0

2 0

1 1 лЛ

3

0 1

0 0

1 0 •>>■

2.Artemis

Zeus obdaroval bohyni lovu Artemis obdélníkovým územím, aby tam
mohla vysadit les. Jelikož Zeus byl tak trochu pedant, levý okraj území
byl rovnoběžný s y-ovou souřadnou osou a dolní okraj s x-ovou osou,

přičemž levý dolní roh byl v bodě (0,0). Navíc Artemidě dovolil stromy
sázet pouze do bodů s celočíselnými souřadnicemi. Artemis se snažila,
aby její les vypadal alespoň trochu přirozeně, a proto stromy sázela tak,
aby žádné dva neměly stejnou x-ovou ani y-ovou souřadnici.

Jednoho dne si Zeus usmyslil, že pro něj Artemis musí porazit několik
stromů, a to následovně:
1. musí jich být poraženo alespoň T,
2. musí být poraženy právě všechny stromy v nějakém obdélníku,
3. strany obdélníka musí být rovnoběžné se souřadnými osami,
4. v protilehlých vrcholech obdélníka musí růst stromy a ty budou také

poraženy.
Artemis má ale stromy moc ráda, takže chce tyto podmínky splnit

a přitom porazit co možná nejméně stromů. Vás požádala, abyste napsali
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program, který pro zadané rozmístění stromů a minimální počet stromů
к poražení T nalezne příslušný obdélník, kde se má porážet.

Vstup: Vstupní soubor se jmenuje artemis . in. Jeho první řádek ob-
sáhuje jediné celé číslo N: počet stromů v lese. Druhý řádek obsahuje
rovněž jediné celé číslo T: minimální počet stromů, které mají být po-

raženy. Následujících N řádků popisuje polohy jednotlivých stromů: na
každém z nich jsou dvě celá čísla X a Y, která představují rr-ovou a y-ovou
souřadnici příslušného stromu.

Výstup: Výstupní soubor se jmenuje artemis. out. Je tvořen jediným
řádkem, na němž jsou dvě celá čísla I a J oddělená jednou mezerou.

Říkají, že Artemis má kácet stromy v obdélníku, v jehož protilehlých
vrcholech jsou stromy s čísly / a J (popsané na řádcích / +2aJ + 2ve
vstupním souboru). Na pořadí stromů I, J ve výstupu nezáleží. Pro každá
vstupní data existuje alespoň jedno řešení, pokud jich je více, vypište
jedno libovolné z nich.

Příklad vstupu a výstupu:
artemis.in artemis.out

1 23

2

1 1

2 3

5 6

Omezení: Pro všechny vstupy platí: 1 < N ú 20 000, 0 5Í X, Y ^
64 000 a 1 < T ^ N. Navíc v 50 % vstupů je 1 < N < 5 000.

3. Hermes

I řečtí bohové jdou s dobou. Nedávno se z vrcholu Olympu přestě-
hovali do velkoměsta s pravoúhlou sítí ulic rovnoběžných se souřadnými
osami. Ulice mají celočíselné souřadnice a pro každé celé číslo existuje
svislá i vodorovná ulice s tímto číslem. Dvojice celých čísel pak určují
křižovatky ulic. Horké letní dny bohové tráví v kavárnách umístěných
právě na těchto křižovatkách. Posel bohů Hermes dostal za úkol doručit
odpočívajícím bohům světelné signály. Může se při tom pohybovat pouze
ulicemi města. Každý signál je určen jedinému bohovi, ale nevadí, když
ho spatří i někteří z ostatních bohů.

Hermes dostane souřadnice jednotlivých kaváren v pořadí, v jakém do
nich mají být signály doručeny. Svou cestu začne v bodě (0,0). Bohové
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signály vidí na libovolnou vzdálenost, ale pouze podél ulic. Má-li tedy
Hermes doručit signál bohovi do kavárny na křižovatce (X;, Yí), stačí mu
dostat se do libovolného bodu na téže vodorovné ulici (s y-ovou souřad-
ničí Yi) nebo na téže svislé ulici (s x-ovou souřadnicí Xi). Když odešle
poslední signál, jeho mise končí.

Napište program, který dostane zadanou posloupnost souřadnic kři-
žovatek a nalezne délku nejkratší cesty, při níž Hermes doručí všechny
signály.

Vstup: Vstupní soubor se jmenuje hermes .in. Jeho první řádek obsa-
huje jediné celé číslo N: počet signálů к doručení. Následujících N řádků
obsahuje souřadnice N křižovatek, na které mají být jednotlivé signály
doručeny. Pořadí řádků odpovídá pořadí doručování. Na každém z těchto
N řádků se nacházejí dvě celá čísla: nejprve x-ová a pak y-ová souřadnice
příslušné křižovatky.

Výstup: Výstupní soubor se jmenuje hermes.out. Obsahuje jediný
řádek s jedním celým číslem: minimální vzdáleností, kterou musí Hermes
urazit, aby doručil všechny signály.

Přiklad vstupu a výstupu:
hermes.in hermes.out

5 11

8 3

7 -7

8 1

-2 1

6 -5

Omezení: Ve všech vstupech je 1 5Í N ú 20 000, —1000 ^ Xí,Yí ^
5í 1 000. Mimo to je v 50 % vstupů 1 5Í N ^ 80.

4. Empodia
Starověký matematik a filosof Pythagoras věřil, že pravá podstata

tohoto světa je matematická. Současní biologové také občas kráčejí v jeho
stopách. Mimo jiné studují vlastnosti biosekvencí To jsou posloupnosti
M celých čísel, které:

> obsahují každé z čísel 0,1,..., M — 1,
o začínají nulou a končí číslem M — 1,
> neobsahují žádný prvek E bezprostředně následovaný prvkem E + l.

Souvislým podposloupnostem biosekvencí se říká segmenty. Ohřáni-
čený interval (dále již jen interval) je takový segment, který obsahuje
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všechna celá čísla z rozmezí od hodnoty prvního prvku tohoto segmentu
do hodnoty posledního prvku segmentu. Navíc první prvek musí být nej-
menším prvkem segmentu a poslední prvek největším. První a poslední
prvek musí být různé. Interval, který neobsahuje žádný kratší interval,
se nazývá empodio.

Kupříkladu biosekvence (0. 3, 5, 4, 6, 2,1, 7) je sama o sobě interval.
Jelikož ale obsahuje segment (3, 5,4, 6), který je také intervalem, není celá
tato biosekvence empodio. Interval (3, 5,4, 6) již empodio je, jelikož žádný
kratší interval neobsahuje. Žádná jiná empodia v uvažované biosekvenci
nejsou.

Napište program, který pro danou biosekvenci vypíše všechna empo-
dia v ní obsažená.

Vstup: Vstupní soubor se jmenuje empodia. in. Jeho první řádek ob-
sáhuje jediné celé číslo M: počet čísel ve vstupní biosekvenci. Následují-
cích M řádků obsahuje jednotlivé prvky biosekvence, což jsou celá čísla
v pořadí, jak po sobě v biosekvenci následují.

Výstup: Výstupní soubor se jmenuje empodia.out. Na jeho prvním
řádku je jediné celé číslo H: počet empodií vyskytujících se ve vstupní
biosekvenci. Následuje H řádků popisujících jednotlivá empodia v pořadí
určeném tím, kde v biosekvenci začínají. Každý z těchto řádků obsahuje
dvě celá čísla А а, В (v tomto pořadí) oddělená jednou mezerou, kde A je
pořadové číslo prvního prvku empodia v biosekvenci а В pořadové číslo
posledního prvku empodia.

Příklad vstupu a výstupu:
empodia.in empodia.out
8 1

2 50

3

5

4

6

2

1

7

Omezení: Ve všech vstupech mimo jednoho je 1 ^ M ^ 60 000. V jed-
nom vstupu je 1000 000 ^ M ^ 1 100 000. Mimo to, v 50% vstupů je
M < 2 600.
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5. Sedlák

Byl jednou jeden sedlák. Měl několikero polí lemovaných cypřišovými
stromy (inu, řecký sedlák). Na každém ze svých dalších pozemků vysázel
ještě jednu samostatnou alej, tvořenou jednou řadou cypřišů. Jak kolem
polí, tak v alejích ovšem mezi každými dvěma sousedními cypřiši stojí
ještě jeden olivovník. Jiné cypřiše ani olivovníky už naštěstí nemá.

Roky plynuly a život starého sedláka se zvolna chýlil ke konci. Jednoho
dne si zavolal svého nejstaršího syna a pravil: „Dám ti libovolných Q
cypřišů, které si vybereš, a s nimi dostaneš i každý olivovník, který sousedí
se dvěma tebou vybranými cypřiši.“ Z každého pole a každé aleje si syn
může vybrat libovolnou kombinaci cypřišů. Miluje ovšem olivy, a proto si
chce vybrat takových Q cypřišů, aby s nimi získal co nejvíce olivovníků.1.pole: 13 cypřišů 2. pole: 4 cypřiše 3. pole: 8 cypřišů

1. alej: 4 cypřiše2.alej: 8 cypřišů3.alej: 6 cypřišů
Obr. 63. Příklad rozmístění cypřišů. Olivovníky nejsou zobrazeny.

V příkladě vyobrazeném na obr. 63 si má syn vybrat Q — 17 cypřišů.
Aby získal co nejvíce olivovníků, vybere si všechny cypřiše na 1. a 2. poli
a dostane s nimi 17 olivovníků.

Napište program, který na základě čísla Q a údajů o polích a alejích
spočte maximální možný počet olivovníků, které může syn získat.

Vstup-. Vstupní soubor se jmenuje farmer, in. Jeho první řádek ob-
sáhuje tři celá čísla Q, M a K. Číslo Q udává počet cypřišů, které si syn
má vybrat, M určuje počet sedlákových polí а К počet alejí. Na druhém
řádku je M celých čísel Ni, N2, ■ ■ ■, Nm, kde N1 určuje počet cypřišů na
J-tém poli. Třetí řádek obsahuje К celých čísel Ri, R2,..., Rk, přičemž
Rj udává počet cypřišů v J-té aleji.
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Výstup: Výstupní soubor se jmenuje farmer.out. Obsahuje jediný
řádek s jediným celým číslem, které udává maximální počet olivovníků,
jež může syn získat.

Přiklad vstupu a výstupu:
farmer.in

17 3 3

13 4 8

4 8 6

farmer.out

17

Omezení: Ve všech vstupech je 0 ^ Q ^ 150 000, 0 ^ M ^ 2 000,
0 й К S 2 000, 3 ^ Nt <; 150, 3 й N2 й 150, ..., 3 й NM й 150,
2 ^ Ri ^ 150, 2 Я2 = 150, ..., 2 ^ Rk ^ 150. Celkový počet všech
cypřišů je alespoň Q. Mimo to, v 50% vstupů je Q 5Í 1 500.

6. Phidias

Slavný řecký sochař Phidias (u nás od nepaměti známý spíše pod
jménem Feidias) se chystá stvořit další z divů světa. Proto potřebuje
obdélníkové desky z mramoru o velikostech W\ x Hi, x #2, • • • , Wn x
X Ядг.

Před pár dny Phidias připadl na velký obdélníkový blok mramoru.
Rozhodl se ho rozřezat, aby získal desky požadovaných velikostí. Jakýkoli
kus mramoru (ať už to je původní blok nebo části z něj nařezané) může
přeříznout svisle nebo vodorovně na dvě obdélníkové části s celočíselnou
šířkou i výškou, přičemž řez musí vždy být rovný a vést od jednoho
okraje к druhému. Nijak jinak řezat nelze a ani není možné nařezané
kusy slepovat к sobě. A jelikož povrch mramoru má kresbu, nelze kusy
ani otáčet: pokud Phidias uřízne část o rozměrech A x B, nemůže ji použít
jako desku velikosti В x A, leda že by bylo A — B. Od každé požadované
velikosti může vyrobit libovolný, třeba i nulový počet desek.

Odpadem jsou ty desky, které po provedení všech řezů nemají žádnou
z požadovaných velikostí. Phidias by rád věděl, jak má svůj blok rozřezat,
aby se do odpadu dostalo co nejméně mramoru.

Například na níže uvedeném obrázku máme blok o šířce 21 a výšce 11.
Potřebujeme desky o velikostech 10x4, 6 x 2, 7 x 5 a 15x 10. Tehdy je
nejmenší možná plocha odpadu 10 a obr. 64 ukazuje jedno možné rozře-
zání s tímto množstvím odpadu.

Vaším úkolem je napsat program, který pro zadanou velikost původ-
ního bloku a požadované velikosti desek spočte nejmenší možnou plochu
odpadu.
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10 x 4 10 x

6x2 6x2 6x2

7x5 7x5 7x5

Obr. 64

Vstup: Vstupní soubor se jmenuje phidias. in. Jeho první řádek ob-
sáhuje dvě celá čísla: nejprve W, šířku původního bloku, a následně H,
jeho výšku. Druhý řádek obsahuje jediné celé číslo N: počet požado-
váných velikostí desek. Na následujících N řádcích jsou popsány jed-
notlivé požadované velikosti desek. Na každém z těchto řádků jsou dvě
celá čísla udávající příslušnou velikost: šířka Wi následovaná výškou Hi
{1йгй N).

Výstup: Výstupní soubor se jmenuje phidias.out. Obsahuje jediné
celé číslo: minimální možnou plochu odpadu.

Příklad vstupu a výstupu:
phidias.in
21 11

phidias.out
10

4

10 4

6 2

7 5

15 10

Omezení: Ve všech vstupech je 1 ^ W 51 600, 1 ^ H ^ 600, 0 <
< N 51 200, 1 ^ Wi 5Í W a 1 5Í Hi ^ H. Navíc 50 % vstupů má W V 20,
H < 20 a N < 5.
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