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O průběhu 54. ročníku matematické olympiády

Hlavními pořadateli 54. ročníku matematické olympiády, který se usku-
tečnil ve školním roce 2004/05, byly podobně jako v letech předešlých Mi-
nisterstvo školství, mládeže a tělovýchovy CR, Jednota českých matema-
tiků a fyziků a Matematický ústav akademie věd CR. Organizaci soutěže
zabezpečil Ústřední výbor MO, v jehož čele stál předseda doc. RNDr.
Jaromír Šimša, CSc., a místopředsedové RNDr. Jaroslav Švrček, CSc.
(pro kategorie А, В, C), doc. RNDr. Pavel Tlustý, CSc. (pro kategorie Z)
a doc. RNDr. Pavel Tópfer, CSc. (pro kategorii P). Funkci tajemníka ÚV
MO vykonával RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
MO jsou Ústředním výborem MO pověřeny dvě úlohové komise (jedna
pro kategorie А, В a C, druhá pro kategorie Z). Obě komise se scházejí
pravidelně dvakrát ročně (vždy v listopadu a v květnu) tak, aby ve spolu-
práci se slovenskými kolegy zabezpečily s ročním předstihem výběr úloh
pro další ročník MO v České republice a na Slovensku. Garanty výběru
úloh v kategoriích А, В, C byli v tomto ročníku soutěže doc. RNDr.
Jaromír Šimša, CSc., doc. RNDr. Pavel Novotný, CSc., a doc. RNDr.
Leo Boček, CSc.

Letáky s úlohami I. kola 54. ročníku MO byly včas distribuovány do
škol, rovněž komentáře к řešení úloh I. kola se včas a v potřebném počtu
dostaly na jednotlivé školy.

Ústřední kolo 54. ročníku matematické olympiády v kategoriích A a P
se uskutečnilo 3.-9. dubna 2005 v Benešově. Organizací obou závěrečných
kol soutěže bylo Ústředním výborem MO pověřeno Gymnázium Benešov,
které ve spolupráci s KV MO Středočeského kraje a městem Benešov
vytvořilo pro soutěž výborné podmínky.

Na základě jednotné koordinace úloh II. (krajského) kola bylo po-
zváno к účasti ve III. kole kategorie A 42 nejlepších řešitelů a v ka-
tegorii P 30 nejlepších řešitelů z celé České republiky. Soutěžními dny
pro kategorii A byly 4. a 5. duben 2005, kdy žáci řešili tradičně vždy
3 soutěžní úlohy. Na řešení každé trojice úloh měli vyhrazeny 4,5 hodiny
čistého času a přitom každá úloha byla hodnocena maximálně 7 body.
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Soutěžními dny III. kola v kategorii P byly 7. a 8. duben 2005. První
soutěžní den řešili soutěžící 4 úlohy teoretické, celý druhý soutěžní den
byl vyhrazen řešení páté, praktické úlohy.

Slavnostní zahájení III. kola v kategorii A se konalo v neděli 3. dubna
ve starobylé aule benešovského gymnázia za přítomnosti PaedDr. Jaro-
slava Mullnera, náměstka ministryně školství, mládeže a tělovýchovy CR,
RNDr. Antonína Sochora, DrSc., ředitele Matematického ústavu AV CR,
zástupců města Benešov a dalších významných představitelů společen-
ského života. Vlastní soutěž se pak konala (s výjimkou praktické úlohy
v kategorii P) v konferenčním sále hotelu Hláska ve Zlenicích poblíž Be-
nešova, kde byli všichni účastníci obou kategorií A i P také po celou dobu
soutěže ubytováni.

Pro volný čas soutěžících zajistili pořadatelé hodnotný program. Po
prvním soutěžním dopoledni byl pro všechny účastníky zajištěn autobu-
sový zájezd do CHKO Velký Blaník, kde měli všichni soutěžící možnost
vystoupit také na rozhlednu, která je postavena na vrcholu významné
české hory Blaník. Odpoledne druhého soutěžního dne bylo věnováno ná-
vštěvě blízkého zámku Konopiště. V rámci soutěže kategorie A proběhla
navíc v prostorách benešovského gymnázia prezentace softwaru firmy El-
kan podporovaného programem MATHEMATICA.

Vyhlášení výsledků soutěže proběhlo pro kategorii A ve středu
6. dubna 2005 a pro kategorii P v sobotu 9. dubna 2005 opět v aule be-
nešovského gymnázia. Díky sponzorům si nejlepší soutěžící odvezli domů
z Benešova pěkné ceny. O hladký průběh III. kola v obou kategoriích se
zasloužili velkou měrou rovněž učitelé Gymnázia Benešov v čele s ředite-
lem školy Mgr. Zdeňkem Zahradníčkem.

Cenu profesora Zelinky za originální řešení ve výši 5 000 Kč, kterou již
potřetí věnoval Igor Puzanov, absolvent bývalého matematického gym-
názia W. Piecka v Praze, získal Zbyněk Konečný z 2. ročníku Gymnázia
Brno na třídě Kpt. Jaroše za řešení první úlohy celostátního kola.

Všichni vítězové kategorie A byli pozváni к výběrovému soustředění
před 46. MMO, které se uskutečnilo 18.-22.4. 2005 v Bílovci na místním
Gymnáziu M. Koperníka. Závěrem tohoto soustředění bylo na podkladě
dosažených výsledků vybráno šestičlenné družstvo, které reprezentovalo
naši republiku na 46. MMO v Mexiku. Podrobnou informaci o 46. mezi-
národní matematické olympiádě a o 17. mezinárodní olympiádě v infor-
matice najdete na konci této ročenky.

Ústřední výbor MO se během tohoto soutěžního ročníku sešel na dvou
pravidelných jednáních, a to 10. prosince 2004 v Praze a 4. dubna 2005
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v Benešově u příležitosti konání III. kola kategorií A a P. Na obou za-
sedáních byly kromě pravidelných bodů programu řešeny také některé
zásadní otázky týkající se především nového organizačního řádu mate-
matické olympiády.

Pro nejlepší řešitele krajských kol v kategoriích В a C uspořádal ÚV
MO od 31. května do 7. června 2005 odborné soustředění v Jevíčku,
kterého se zúčastnilo 40 žáků ze všech krajů republiky. Lektorsky se na
tomto soustředění podíleli doc. Boček, doc. Calda, doc. Šimša, dr. Dula,
dr. Hrubý a dr. Švrček.

Podobně pro nejlepší řešitele kategorie A uspořádal ÚV MO od 11.
do 17. září 2005 v Janských Lázních přípravné soustředění, kterého se
zúčastnilo celkem 23 pozvaných soutěžících. Zaměstnání a přednášky zde
vedli členové ÚV MO — doc. Šimša, dr. Švrček, dr. Horák, dr. Zhouf
a dr. Leischner.

Ústřední výbor matematické olympiády si dovoluje závěrem upřímně
poděkovat všem zapojeným učitelům matematiky a informatiky na střed-
nich i základních školách v celé CR za jejich poctivou a mnohdy nádše-
neckou práci s našimi mladými matematickými a informatickými talenty.
Bez jejich pomoci si chod nejstarší předmětové soutěže v České republice
lze jen stěží představit. Zvláštní poděkování patří pražské firmě Elkan,
která se výraznou finanční podporou zasloužila o vytištění této ročenky.

Tato ročenka se od předchozích ročenek poněkud odlišuje svým obsa-
hem: nenajdete v ní podrobná řešení úloh kategorie P (ty najdou vážní
zájemci na internetové adrese http://mff.cuni.cz), zato se v ní objevují
zadání všech úloh kategorií Z (také bez řešení, protože i ta v případě po-
třeby najdete na webových stránkách MO). Chceme tak do ročenky MO
vrátit mnoho zajímavých úloh. Úlohy ze zhruba desetiletého období, kdy
se tyto úlohy v ročenkách neobjevovaly, najdete ve sbírce, kterou chystá
nakladatelství Prometheus.

Významným oceněním našich úspěšných olympioniků se už tradičně
stává Praemium Bohemiae, které vždy 4. prosince uděluje na zámku Sych-
rov Nadace B. Jana Horáčka Českému ráji. V tomto roce byli mezi oceně-
nými ve studentské kategorii František Konopecký (30 000 Kč za zlatou
medaili na 46. MMO) Pavel Kocourek a Jaromír Kuběn (15 000 Kč za
stříbrnou medaili na 46. MMO), Jakub Opršal a Marek Pechal (10 000 Kč
za bronzovou medaili na 46. MMO), Ondřej Bílka a Daniel Marek
(10 000 Kč za bronzovou medaili na 17. IOI).
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Projev předsedy Ústředního výboru MO
při slavnostním zahájení ústředního kola 54. ročníku MO v Benešově

Dámy a pánové, vážení hosté, milí soutěžící

dovolte, abych vás pozdravil jménem týmu lidí, který soutěž Matema-
tická olympiáda nejen řídí, ale také (nebo spíše především) připravuje její
úlohy. Hledání nových úloh nám působí zvláštní potěšení, při kterém se
znovu a znovu přesvědčujeme, jak je naše královna věd rozmanitá a svou

přesnou konstrukcí a neúprosnou logikou půvabná. Na důkaz toho, jak
je v dnešní době matematika stále živá a otevřená novým otázkám, teď
uvedu jeden významný výsledek matematického výzkumu získaný v mi-
nulém roce 2004.

Jak si jistě uvědomíte, letošní letopočet 2005 není prvočíslo, je totiž
součinem prvočísel 5 a 401. Mezi tato prvočísla můžeme vložit další dvě
prvočísla, totiž 137 a 269, která s nimi vytvoří čtyřčlennou aritmetickou
posloupnost

5, 137, 269, 401.

Skutečně, každé následující číslo je vždy o 132 větší než číslo předchozí.
Podobné prvočíselné aritmetické posloupnosti jsou přirozeně tím ku-

rióznější, čím více mají členů. Delší příklad se zastoupením prvočísel 5
a 401 neexistuje. Kdyby se psal rok 2089, kterého se věřím někteří z pří-
tomných dožijí, ukázal bych vám rovnou desatero prvočísel, kde každé
následující číslo je o 210 větší než číslo předchozí:

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2 089.

Všimněte si prosím, že zmíněná diference 210 je rovna součinu 2 krát 3
krát 5 krát 7, tj. součinu všech prvočísel menších než 10. Věřím, že každý
z přítomných soutěžících by rychle dokázal, že takovým součinem je dě-
litelná diference každé desetičlenné prvočíselné aritmetické posloupnosti
a že neexistuje žádná nekonečná prvočíselná aritmetická posloupnost.

Poslední fakt okamžitě vyvolá v mysli matematika otázku, jak dlouhé
aritmetické posloupnosti mohou prvočísla vytvářet. Od roku 1995 ma-
tematikové díky výkonným počítačům znají aritmetickou posloupnost
tvořenou 22 prvočísly. Loňského roku byla odhalena taková posloupnost
23 prvočísel (která jsou mimochodem 14-, 15- a 16-místná). To však není
za loňský rok to hlavní. 8. dubna 2004 vystavili matematikové Ben Green
a Terence Tao na Internet preprint článku, ve kterém dokázali, že existují
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aritmetické prvočíselné posloupnosti libovolné délky. I když tedy žádnou
takovou posloupnost, která má více než 23 členů, neznáme, máme již
jistotu, že takové příklady existují. Je to krásný příklad situace, kterou
se matematika významně odlišuje od jiných přírodních věd.

Ani zmíněný výsledek neuzavírá problematiku prvočíselných aritme-
tických posloupností definitivně. Můžeme se například ptát, jak dlouhé
mohou být aritmetické posloupnosti po sobě následujících prvočísel, jako
je například prvočíselné kvarteto

251, 257, 263, 269.

Jaká je odpověď na tuto otázku, zatím nevíme. Známe však již desatero
po sobě jdoucích prvočísel, která tvoří aritmetickou posloupnost (jejíž
diference je mimochodem rovna přímo číslu 210). Zápis těchto prvočísel
vám ale nyní neukáži, každé z nich má totiž v desítkové soustavě 93 číslic.

Chtěl bych ještě dodat, že oba matematikové Green a Tao jsou mladší
třiceti let a že druhý z nich třikrát soutěžil v australském družstvu na
Mezinárodní matematické olympiádě. Bylo to v letech 1986, 1987 a 1988,
když mu bylo 11 až 13 let a kdy získal postupně bronzovou, stříbrnou
a zlatou medaili.

Milí mladí přátelé, snad toho příliš neprozradím, když řeknu, že i na
vás v příštích dvou dnech čeká jedna úloha o aritmetických posloupnos-
těch. Při řešení nejen této úlohy, ale i pěti ostatních soutěžních úloh vám
přeji hodně úspěchů.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 54. ročníku MO

Kategorie
Kraj Celkem

A В C P
s и s и s и s и s и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

126 63 87 38
87 39
51 35

143 78
85 31
66 49
42 34
19 13
52 29
44 14
43 29
39 25
75 45

171 103
93 64
52 32
60 45

37014 14 193
71 40
68 39
27 23

19 14 262 124
6 6 191 129

34 19 5 793 108
13 10 12 6 0 0 44 29
35 29 49 20 0 0 136 78
47 13
34 19

62 20 10 5710 163
37 25 7 771214

34 21 1728 10 10 73111
61 43 45 32 20 10 201 130

190 96 111 49 16 488 264
300 132

16

75124 38 22 8 8
32 14 48 16 1 1 133 63

17542 24 50 29 23 23 121

CR 904 472 776 367 984 591 139 119 2 803 1549

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 54. ročníku MO
Kategorie

Kraj Celkem
В C PA

US U s s и s и s и

Praha
Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

1756 34 69 32 173 68
123 23
119 32
76 31

14 14 5

40 3 39 6 31 10 13 4
37 3 32 12 44 15 26

34 2221 5 18 3 3 1
10 3 6 2 13 04 0 29 9
24 72 22

52 15
74 31
71 23

113 43
231 80
111 39
57 25

121 48

3 20 5 28 14 0 0
13 104 15 4 14 5 2

719 23 28 149 4 1
720 16 4 25 8 10 4

2540 11 6 40 20 8 6
45 25 29 1290 21 84 5

37 273 21 3 45 8 6
614 6 13 29 13 1 0

29 10 45 25 23 224 11

CR 445 104 336 109 529 238 112 38 1422 489

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha«►•••*••****•••*

Kategorie A

1. Pavel Kocourek, SPŠST, Praha 1, Panská
2. Mikuláš Peksa, G Ch. Dopplera, Praha 5

3.-4. Jan Drašnar, G J. Keplera, Praha 6
Miroslav Hlaváč, G Ch. Dopplera, Praha 5

5.-6. Petr Čermák, G J. Heyrovského, Praha 5
Tomáš Hejda, G Ch. Dopplera, Praha 5

7. Radek Žlebčík, G Ch. Dopplera, Praha 5
8. Jan Lachnitt, G Ch. Dopplera, Praha 5

9.-11. Miroslav Kolář, G Praha 4, Na Vítězné pláni
Ondřej Prikryl, G Praha 1, Truhlářská
František Sedlák, G E. Krásnohorské Praha 4

Kategorie В

1. Jan Jelínek, G Praha 4, Konstantinova
Lukáš Malina, G Ch. Dopplera, Praha 5
Jakub Mrva, G J. Heyrovského, Praha 54.Jindřich Held, G Ch. Dopplera, Praha 5

5.-7. Jan Přech, G Praha 7, Nad Štolou
Adam Ráž, G Praha 4, Budějovická
Michal Rolínek, G J. Keplera, Praha 6

8.-9. Michal Jex, G J. Heyrovského, Praha 5
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Hoang Tran Minh, G Ch. Dopplera, Praha 5
10. Šárka Gregorová, G Praha 6, Nad Alejí

Kategorie С

1.-2. Tomáš Hřebejk, G Praha 4, Písnická
Alena Skálová, G Praha 4, Na Vítězné pláni

3. Hoang Vo Viet, G Praha 4, Na Vítězné pláni
4. Lukáš Drápal, G Ch. Dopplera, Praha 5

5.-7. Erik Demer, G Praha 5, Nad Kavalírkou
Marek Maška, SPŠST, Praha 1, Panská
Martina Mazurová, G Praha 9, Chodovická

8. Petr Janouch, G Praha 8, Ústavní
9.-10. Marie Hamplová, G Praha 8, Ústavní

Eliška Šabartová, G Praha 5, Nad Kavalírkou

Kategorie P

1. Daniel Marek, G Ch. Dopplera, Praha 5
2. Roman Smrž, G E. Krásnohorské Praha 4
3. Petr Soběslavský, G J. Heyrovského, Praha 5
4. Pavel Kocourek, SPŠST, Praha 1, Panská
5. David Holaň, G Praha 10, Voděradská

Středočeský kraj »*<*#»###*%**<*#

Kategorie A

1. Richard Řezníček, G Český Brod
2. Václav Gergelits, G Benešov
3. Petr Balek, GJB Beroun

Kategorie В

1. Petr Fojtů, G Benešov
2. Lenka Slavíková, G Mnichovo Hradiště

3.-4. Miloš Broulík, G Mladá Boleslav
Petr Stratil, Sport. G a G Kladno
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5. Stanislav Vávra, G Vlašim
6. Rudolf Rosa, G Kladno, nám. E. Beneše

Kategorie С

1.-2. Tomáš Gergelits, G Benešov
Josef Miiller, G dr. J. Pekaře, Mladá Boleslav3.Matouš Macháček, G Bíčany

4.-5. Lucie Pokorná, G Slaný
Tomáš Vorel, G Benešov

6. Ota Kukral, G dr. J. Pekaře, Mladá Boleslav
7. Pavla Balíková, G Příbram
8. Lukáš Beran, G Benešov

9.-10. Kristina Labudová, GJO Kutná Hora
Helena Zrůstová, G Kolín

Kategorie P

1. Martin Zrcek, G Benešov
2. Jan Procházka, Dvořákovo G a OA, Kralupy nad Vltavou

3.-4. Miroslav Kratochvíl, G a SPedŠ Čáslav
Lukáš Mach, Sport. G a G Kladno

Jihočeský kraj **•••••»*»«•««

Kategorie A

1 Jan Kuchař, G PdeC Tábor
2.-3. Jiří Blažek, G JVJ České Budějovice

Karel Vácha, G Český Krumlov

Kategorie В

1. Radim Hošek, G České Budějovice, Jírovcova
2.-4. Miloš Chaloupka, G PdeC Tábor

Adam Kabela, G České Budějovice, Jírovcova
Martina Urbanová, G České Budějovice, Jírovcova5.Michal Pavelka, G Strakonice
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6. Jiří Blažek, G JVJ České Budějovice
7.-8. Karel Chuchel, G České Budějovice, Jírovcova

Zdeněk Vošta, G České Budějovice, Jírovcova
9. Josef Pihera, G Strakonice

10.—11. Jan Broulím, SPŠ a VOŠ Písek
Jan Junek, G České Budějovice, Jírovcova

Kategorie C

1. Libor Peltan, G České Budějovice, Česká
2. František Batysta, G JVJ České Budějovice
3. Karolína Mašková, G Soběslav
4. Petr Petrouš, G České Budějovice, Jírovcova
5. Lukáš Mareš, G České Budějovice, Jírovcova
6. Jan Hermann, G Český Krumlov

7.-9. Michal Kuna, G JVJ České Budějovice
Luděk Mika, G Strakonice
Matěj Novotný, G VN Jindřichův Hradec

10.—11. Michal Kuneš, G Strakonice
Magdaléna Zoubková, G PdeC Tábor

Kategorie P

1. Josef Pihera, G Strakonice
2. Jiří Václavík, G Strakonice

Plzeňský kraj

Kategorie A

1. Pavel Paták, G Sušice
2.-3. Stanislav Haviar, G Klatovy

Ondřej Hort, G Plzeň, Mikulášské nám.
4.-5. Jakub Bulín, G Plzeň, Mikulášské nám.

Daniel Soutner, G L. Pika, Plzeň
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Kategorie В

1. Růžena Janoutová, G Plzeň, Mikulášské nám.
2. Kryštof Touška, G Klatovy
3. Petra Nožičková, G Plzeň, Mikulášské nám.

Kategorie C

1. Vlastimil Retka, SPŠ elektro, Plzeň
2. Milan Hajžman, G Plzeň, Mikulášské nám.
3. Tran Thu Trang, G Plzeň, Mikulášské nám.

4.-8. Martin Cábal, G Plzeň, Mikulášské nám.
Tomáš Cechura, G Plzeň, Mikulášské nám.
Jindřich Havlík, G Plzeň, Mikulášské nám.
Van Mingh Nguyen, G Tachov
Jana Stemerová, G Stříbro

9. Miroslav Vomáčka, G Plzeň, Mikulášské nám.
10.-14. Daniela Čábalová, G Plzeň, Mikulášské nám.

Daniel Duda, G L. Pika, Plzeň
Josef Michálek, G Plzeň, Mikulášské nám.
Jan Skach, G Plzeň, Mikulášské nám.
Helena Talánová, G Rokycany

Kategorie P

1. Jan Bulánek, G J. Vrchlického, Klatovy

Karlovarský kraj

Kategorie A

1. Petr Žáček, Svobodná chebská škola
2.-3. Eva Černohorská, První české G Karlovy Vary

Štěpán Trojánek, G Cheb
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Kategorie В

1. Štěpán Masák, První české G Karlovy Vary
2. Radek Hájek, G Cheb

Kategorie C

1. Marek Pospíšil, G Cheb
2. Jaroslav Žák, První české G Karlovy Vary
3. Lukáš Vítovec, První české G Karlovy Vary
4. Jan Matička , G Cheb
5. Jakub Vanik, G Cheb

Ústecký kraj

Kategorie A

1. Daniel Petřík, G Most, Os. armády
2.-3. Martin Fiala, G Teplice, Os. Dobrovolců

Michaela Tichá, G Chomutov, Mostecká

Kategorie В

1. Martin Obr, G Chomutov, Mostecká
2.-3. Daniel Šimsa, G J. Jungmanna, Litoměřice

Cao Bien Thug, G Ústí nad Labem, Stavbařů
4. Pavel Eger, G Litvínov, Studentská
5. Martin Černý, SPŠ a VOŠ, Chomutov

Kategorie C

1. J. Šťovíček, G Teplice, Os. Dobrovolců
2. Jan Čapek, G Duchcov

3.-4. Jan Mudruňka, G Ústí nad Labem, Stavbařů
Martin Šerg, G Podbořany

5.-7. M. Korec, G Teplice, Os. Dobrovolců
Nicole Mertinová, G Ústí nad Labem, Stavbařů
Pavla Cimrová, G Roudnice nad Labem
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8. Jiří Mudruňka, G Ústí nad Labem, Stavbařů
9.-12. T. Kozák, G Teplice, Cs. Dobrovolců

Tomáš Pajma, G Most, Cs. armády
Jan Tran, G Podbořany
Martin Žižka, G Roudnice nad Labem

13. Kateřina Gotfriedová, G V. Hlavatého Louny
14. Eliška Černá, G Lovosice

Liberecký kraj

Kategorie A

1. Ondřej Soroka, G F. X. Saldy, Liberec
2. Vítězslav Žabka, G F. X. Saldy, Liberec

3.-4. Tomáš Jakoubek, G a SPeGS Liberec, Jeronýmova
Lukáš Ježek, G F. X. Saldy, Liberec

Kategorie В

1. Hana Bendová, G Česká Lípa
2. Tomáš Kobrle, G Jilemnice
3. Martin Černý, G Jilemnice
4. Tomáš Holman, G Dr. Randy, Jablonec n. N.

Kategorie C

1. Vít Jakimiv, SPŠSE, Liberec
2.-3. Robert Brunetto, SPSSE, Liberec

Michal Smrha, G Dr. Randy, Jablonec n. N.
4. Pavel Beran, G Jablonec, U Balvanu
5. Tomáš Nácovský, G a SPeGŠ Liberec, Jeronýmova

Kategorie P

1. Michal Vaner, G Turnov
2. Jan Hrnčíř, G F. X. Saldy, Liberec
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Královéhradecký kraj

Kategorie A

1.-2. Kateřina Fišerová, LG Jičín
Jana Kašparová, G B. Němcové, Hradec Králové

3. Radek Moravec, G B. Němcové, Hradec Králové
4. Michal Svagerka, G J.K. Tyla, Hradec Králové

5.-6. Aleš Balcar, G B. Němcové, Hradec Králové
Jan Marek, G B. Němcové, Hradec Králové

7. Jan Bednář, COP Hronov

Kategorie В

1.-2. Pavel Kuchyňa, G B. Němcové, Hradec Králové
Martin Petr, G J.K. Tyla, Hradec Králové

3. Adam Polák, G J. K. Tyla, Hradec Králové
4. Jana Zaydlarová, G Dvůr Králové
5. Marek Buday, G B. Němcové, Hradec Králové
6. Jiří Cabal, SPŠ Dvůr Králové
7. Michal Čapek, G J.K. Tyla, Hradec Králové

8.-9. Jakub Dundálek, JG Náchod
Lukáš Novotný, G J.K. Tyla, Hradec Králové

Kategorie C

1. Jiří Řičař, G J.K. Tyla, Hradec Králové
2. Lukáš Lánský, G J.K. Tyla, Hradec Králové

3.-4. Karel Jára, JG Náchod
Jakub Zajíc, G J.K. Tyla, Hradec Králové

5. Petr Polák, JG Náchod
6. Martina Zajícová, JG Náchod

7.-8. Jakub Kaplan, G J.K. Tyla, Hradec Králové
Petr Kubizňák, G Dvůr Králové9.Martin Michálek, G J.K. Tyla, Hradec Králové

10.-11. Jiří Maršík, G J.K. Tyla, Hradec Králové
Adriana Šmídová, G J.K. Tyla, Hradec Králové
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Kategorie P1.Oto Petřík, G Vrchlabí

Pardubický kraj»•»•*•«»<>«••••

Kategorie A

1. Vojtěch Novotný, G Chrudim
2. Barbara Scholleová, G Pardubice, Dašická

3.-4. Miroslav Klimoš, G Lanškroun
Marek Scholle, G Pardubice, Dašická

5. Tereza Klimošová, G Lanškroun
6. Jakub Kutilek, G Pardubice, Dašická
7. Kristýna Stodolová, G Polička

Kategorie В

1. Marek Scholle, G Pardubice, Dašická
2. Lubomír Štěpánek, G Pardubice, Dašická
3. Lucie Pekařová, G Litomyšl
4. Tomáš Popelář, G Žamberk

Kategorie C

1. František Kalibán, G Litomyšl
2.-3. Miroslav Klimoš, G Lanškroun

Martin Schmid, G Česká Třebová
4.-5. David Hesoun, G Polička

Matěj Soukup, G Česká Třebová
6. Petra Širůčková, G Polička
7. Tereza Junková, G Polička
8. Martin Basovník, G Polička

Kategorie P

1. Miroslav Klimoš, G Lanškroun
2. Martin Dobroucký, G Moravská Třebová
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3. Marek Scholle, G Pardubice, Dašická
4. Tereza Klimošová, G Lanškroun

Kraj Vysočina ##«**»«*
* # # il #

Kategorie A

1. Ondřej Křivánek, G Třebíč
2. Tomáš Jedlička, G Třebíč
3. Aleš Ráda, G Pelhřimov

4.-5. Hana Dohnalová, HG Havlíčkův Brod
Michaela Krpálková, G Jihlava

6. Martin Kohout, G Třebíč
7.-11. Ondřej Hoferek, G Zdar nad Sázavou

Rostislav Kváš, G Jihlava
Karel Lavička, G Jihlava
Martin Tomec, G Třebíč
Ladislav Zvoník, G Zdar nad Sázavou

Kategorie В

1. Mirek Dočekal, G Jihlava
2. Dana Dohnalová, HG Havlíčkův Brod
3. Miloslav Sobotka, G Zdar nad Sázavou
4. Petr Kratochvíl, G Světlá nad Sázavou
5. Tomáš Herceg, G Třebíč
6. Jan Korbel, G Jihlava

Kategorie C

1. Matěj Klusáček, G Třebíč
2.-3. Jan Máca, G Třebíč

Michal Kozák, G Jihlava
4. Tomáš Pejchal, G Zdar nad Sázavou

5.-6. Anna Nedělčevová, G Pelhřimov
Ladislav Robotka, G Velké Meziříčí

7.-10. Karel Barták, G Ledeč nad Sázavou
Jiří Matlák, G Jihlava
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Jan Rosecký, G Žďár nad Sázavou
Darina Součková, GOB a SOŠ Telč

Kategorie P1.Zbyněk Fait, G Žďár nad Sázavou
2.-3. Martin Tomec, G Třebíč

Václav Vacek, G Třebíč4.Petr Kratochvíl, G Světlá nad Sázavou
5.-6. Tomáš Herceg, G Třebíč

Martin Jonáš, SPŠ Jihlava

Jihomoravský kraj

Kategorie A

1. Jakub Opršal, G Brno, tř. Kpt. Jaroše
2. Jaromír Kuběn, G Brno, tř. Kpt. Jaroše

3.-4. Zbyněk Konečný, G Brno, tř. Kpt. Jaroše
Martin Vejnár, G Brno, tř. Kpt. Jaroše

5.-6. Alexandr Píchá, G Brno, tř. Kpt. Jaroše
Michal Rychnovský, G Brno, tř. Kpt. Jaroše

7.-8. Martin Křivánek, G Brno, tř. Kpt. Jaroše
Jan Uhlík, G Brno, tř. Kpt. Jaroše

9.-11. Miloš Minařík, SPŠs Brno, Sokolská
Vojtěch Říha, G Brno, tř. Kpt. Jaroše
Jiří Zelinka, G Brno, tř. Kpt. Jaroše

Kategorie В

1. Jiří Řihák, G Brno, tř. Kpt. Jaroše
2. Zbyněk Konečný, G Brno, tř. Kpt. Jaroše
3. Martin Chvátal, G Brno, tř. Kpt. Jaroše

4.-5. Ondřej Budík, G Brno, tř. Kpt. Jaroše
Lucie Fabriková, G Brno, tř. Kpt. Jaroše6.Karel Otto, G Brno, tř. Kpt. Jaroše

7.-8. Hana Jirků, G Brno, T. Novákové
Petr Velan, G Brno, tř. Kpt. Jaroše
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9.-11. Ondřej Bouda, G Brno, tř. Kpt. Jaroše
Tomáš Jelínek, G Brno, tř. Kpt. Jaroše
Jan Komínek, G Brno, tř. Kpt. Jaroše

Kategorie C

1.-3. Petr Fiala, G Brno, tř. Kpt. Jaroše
Vojtěch Robotka, G Brno, tř. Kpt. Jaroše
Jaroslav Šmíd, G Brno, tř. Kpt. Jaroše

4. Jaroslav Novotný, G Brno, tř. Kpt. Jaroše
5. Jan Kovář, G Brno, tř. Kpt. Jaroše
6. Václav Plíhal, G Brno, Barvičova

7.-8. Jan Báča, G Brno, tř. Kpt. Jaroše
Pavel Urbánek, G Brno, Vídeňská

9.-16. Jan Brandejs, G Brno, tř. Kpt. Jaroše
Vojtěch Ivičič, GML Brno, Žižkova
Jakub Knoflíček, G Kyjov
Adam Kolář, G Kyjov
Jan Kotrla, G Brno, tř. Kpt. Jaroše
Tomáš Orsava, G Brno, tř. Kpt. Jaroše
Adam Říha, G Brno, tř. Kpt. Jaroše
Martin Skalský, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Martin Vejnár, G Brno, tř. Kpt. Jaroše
2. Jan Rygl, G Brno, tř. Kpt. Jaroše

3.-4. Jiří Appl, G Brno, Vejrostova
Martin Hradil, G Brno, Vejrostova

5. Jiří Zelinka, G Brno, tř. Kpt. Jaroše

Zlínský kraj

Kategorie A

1. Marek Pechal, G Zlín, Lesní čtvrť
2. Aleš Holub, G Uherské Hradiště
2. František Konopecký, G L. Jaroše, Holešov
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3. Stanislav Basovník, G Kroměříž
4. Pavel Šalom, G Rožnov pod Radhoštem
5. Ondra Bilka, G Zlín, Lesní čtvrť
6. Jiří Machálek, G L. Jaroše, Holešov
7. Michal Čudmák, G L. Jaroše, Holešov
7. Václav Slimáček, GFP, Valašské Meziříčí
8. Petra Klimentová, GFP, Valašské Meziříčí
8. Zbyněk Savara, G Uherský Brod
8. Jan Váňa, G Zlín, Lesní čtvrť

Kategorie В

1. Hana Bosáková, GFP, Valašské Meziříčí
2. Petr Dlabaja, G L. Jaroše, Holešov
3. Josef Žíla, G Zlín, Lesní čtvrť
4. Petr Haloda, G Uherské Hradiště
5. Michal Krajňanský, G Zlín, Lesní čtvrť
6. Jan Horáček, G Zlín, Lesní čtvrť

Kategorie C1.Martina Rosíková, G Zlín, Lesní čtvrť
2.-4. Filip Bártek, G Rožnov pod Radhoštem

Petra Papežíková, G L. Jaroše, Holešov
Alžběta Pechová, GaOA Valašské Klobouky

5. Magdaléna Beníčková, G Uherský Brod
6.-10. Petr Maňák, MG Vsetín

Tomáš Smetka, G L. Jaroše, Holešov
Jiří Václavík, MG Vsetín
Petr Vévoda, G Jana Pivečky, Slavičín
Martin Zapletal, G L. Jaroše, Holešov

Kategorie P

1.-2. Jan Pele, G Uherský Brod
Ondřej Bílka, G Zlín, Lesní čtvrť

3. Stanislav Basovník, G Kroměříž
4. Martin Koníček, G Uherský Brod
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5. Marek Blahuš, G Uherské Hradiště
6. Pavel Křupala, G Zlín, Lesní čtvrť

Olomoucký kraj

Kategorie A1.Matěj Pilát, SGO, Olomouc
2.-3. Jiří Horký, G J. Škody, Přerov

Tomáš Javůrek, G Jeseník
4.-5. Zdeněk Černohouz, SGO, Olomouc

Anežka Faltýnková, G J. Škody, Přerov
6. Zuzana Dřízgová, G Lipník nad Bečvou

Kategorie В

1. Anežka Faltýnková, G J. Škody, Přerov
2. Tomáš Javůrek, G Jeseník
3. Markéta Paloncýová, G Šumperk
4. Ondřej Klabal, G J. Wolkera, Prostějov
5. Petr Hošek, G Zábřeh
6. Jakub Zouhar, SGO, Olomouc

Kategorie C

1. Jan Havlíček, G Zábřeh
2. Petr Kunc, G Uničov

3.-4. Lukáš Bednařík, SGO, Olomouc
Eva Rolincová, G Hranice

5. Dita Přikrylová, G J. Škody, Přerov
6. Martin Juřen, G Kojetín

7.-8. Michal Havrila, G Jeseník
Pavla Kosová, G Šternberk

9.-10. Jan Macháček, G Jeseník
Martin Šefl, G Uničov
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Moravskoslezský kraj

Kategorie A

1. Zuzana Safernová, G M. Koperníka, Bílovec
2. Jaroslav Hanči, G M. Koperníka, Bílovec
3. Josef Žabenský, G M. Koperníka, Bílovec
4. Jakub Dvorský, G M. Koperníka, Bílovec

5.-6. Adam Kubetta, G M. Koperníka, Bílovec
Vít Orava, G M. Koperníka, Bílovec

7.-8. Michael Kučera, G M. Koperníka, Bílovec
Pavel Motloch, G P. Bezruce, Frýdek-Místek

9.-11. Miloslav Holík, G M. Koperníka, Bílovec
Cyril Hrubiš, G M. Koperníka, Bílovec
Tomáš Javůrek, G Jeseník

Kategorie В1.Miroslav Štufka, G M. Koperníka, Bílovec
2.-3. Petr Dluhoš, Mendelovo G Opava

Pavel Motloch, G P. Bezruce, Frýdek-Místek
4. Tomáš Jeziorský, G M. Koperníka, Bílovec

5.-6. Jakub Hromádka, G Frýdlant n. O.
Lukáš Merta, G Frenštát pod Radhoštěm

7. Petr Slovák, G P. Bezruce, Frýdek-Místek
8. Vít Orava, G M. Koperníka, Bílovec

9.-10. Tomáš Princ, G Ostrava, Cs. exilu
Jan Šebetovský, VOŠ, SOŠ a SOU Kopřivnice

Kategorie C

1.-2. Tomáš Toufar, G M. Koperníka, Bílovec
Daniel Vopalecký, G Ostrava, F. Hajdy3.Petr Cheng Sirui, Matiční G Ostrava

4.-5. Klára Krejčičková, Matiční G Ostrava
Jan Ohnheiser, SPŠE Ostrava, Křižíkova

6.-7. Václav Mařák, G Ostrava, Cs. exilu
Libor Smejkal, Mendelovo G Opava

8. Matěj Štěpánek, G P. Bezruče, Frýdek-Místek
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9.-12. Jiří Haraším, G M. Koperníka, Bílovec
Tomáš Racek, G M. Koperníka, Bílovec
Martin Sieber, G Orlová
Silvestr Tkáč, G Frenštát pod Radhoštěm

Kategorie P

1. Pavel Motloch, G P. Bezruče, Frýdek-Místek
2. Cyril Hrubiš, G M. Koperníka, Bílovec
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Výsledky celostátního kola 54. ročníku MO
kategorie A

Vítězové

1. František Konopecký, 8/8, G L. Jaroše, Holešov
2.-3. Ondřej Bílka, 3/4, G Zlín, Lesní čtvrť

Marek Pechal, 7/8, G Zlín, Lesní čtvrť
4. Jakub Opršal, 3/4, G Brno, tř. Kpt. Jaroše
5. Marek Scholle, 6/8, G Pardubice, Dašická

6.-7. Jaroslav Haněl, 3/4, G M. Koperníka, Bílovec
Jaromír Kuběn, 3/4, G Brno, tř. Kpt. Jaroše

8. Michal Švagerka, 4/4, G J.K. Tyla, Hradec Králové
9.-10. Pavel Kocourek, 4/4, SPŠST Praha 1, Panská

Martin Křivánek, 3/4, G Brno, tř. Kpt. Jaroše

31b.

28 b.

28 b.

27b.
26 b.

25 b.

25 b.

21b.

19b.
19b.

Další úspěšní řešitelé

11. Mikuláš Peksa, 4/4, G Ch. Dopplera, Praha 5
12. Zbyněk Konečný, 2/4, G Brno, tř. Kpt. Jaroše

13.-14. Stanislav Basovník, 8/8, G Kroměříž
Alexandr Píchá, 3/4, G Brno, tř. Kpt. Jaroše

15.-19. Jan Drašnar, 8/8, G J. Keplera, Praha 6
Aleš Holub, 8/8, G Uherské Hradiště
Pavel Paták, 8/8, G Sušice
Michal Rychnovský, 4/4, G Brno, tř. Kpt. Jaroše
Pavel Salom, 7/8, G Rožnov pod Radhoštěm

18b.

17b.

16 b.

16 b.

15b.

15b.
15b.

15b.

15b.
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Výsledky celostátního kola 54. ročníku MO
kategorie P

Vítězové

1. Zbyněk Falt, 8/8, G Žďár nad Sázavou
2. Jan Bulánek, 8/8, G J. Vrchlického, Klatovy
3. Ondřej Bílka, 3/4, G Zlín, Lesní čtvrť
4. Daniel Marek, 3/4, G Ch. Dopplera, Praha
5. Jan Pele, 3/4, G J. A. Komenského, Uherský Brod

6.-7. Roman Smrž, 5/8, G E. Krásnohorské, Praha
Michal Vaner, 7/8, G Jana Palacha, Turnov

47 b.

46 b.

44 b.

41b.

39b.

33 b.

33 b.

Další úspěšní řešitelé

8.-9. Stanislav Basovník, 8/8, G Kroměříž
Martin Vejnár, 8/8, G Brno, tř. Kpt. Jaroše

10. Josef Pihera, 6/8, G Strakonice
11.-12. Martin Dobroucký, 8/8, G Moravská Třebová

Cyril Hrubiš, 3/4, G M. Koperníka, Bílovec
13. Miroslav Klimoš, 4/8, G Lanškroun
14. Pavel Kocourek, 4/4, SPŠST Praha 1, Panská
15. Pavel Motloch, 4/6, G P. Bezruce, Frýdek-Místek

29 b.

29 b.

28 b.

26 b.

26 b.

24b.

23b.

22 b.
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Kategorie С

Texty úloh

C - I - 1

Nechť a, b, c, d jsou taková reálná čísla, že a + d — 6+c. Dokažte nerovnost

(a — b)(c — d) + (a — c)(b — d) + (d — a)(b — c) ^ 0.

(E. Kováč)

С - I - 2

Zjistěte, pro která přirozená čísla n (n ^ 2) je možno z množiny {1,2,...,
n — 1} vybrat navzájem různá sudá čísla tak, aby jejich součet byl děli-
telný číslem n. (J. Zhouf)

C - I - 3

V libovolném konvexním čtyřúhelníku ABCD označme E střed stra-
ny ВС a F střed strany AD. Dokažte, že trojúhelníky AED a BFC
mají stejný obsah, právě když jsou strany AB a CD rovnoběžné.

(J. Simša)

С - I - 4

Tři čtyřmístná čísla к, l, m jsou stejného tvaru ABAB (tj. číslice na
místě jednotek je stejná jako číslice na místě stovek a číslice na místě
desítek je stejná jako číslice na místě tisíců). Číslo l má číslici na místě
jednotek o 2 větší a číslici na místě desítek o 1 menší než číslo k. Číslo m.

je součtem čísel к a l a je dělitelné devíti. Určete všechna taková čísla k.
(T. Joska)
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С - I - 5

Určete počet všech trojic dvojmístných přirozených čísel a, b, c, jejichž
součin abc má zápis, ve kterém jsou všechny číslice stejné. Trojice lišící
se pouze pořadím čísel považujeme za stejné, tj. započítáváme je pouze

jednou. (J. Šimša)

C - I - 6

V trojúhelníku ABC se stranou BC délky 2 cm je bod К středem
strany AB. Body LaM rozdělují stranu AC na tři shodné úsečky. Troj-
úhelník KLM je rovnoramenný a pravoúhlý. Určete délky stran AB, AC

(P. Leischner)všech takových trojúhelníků ABC.

C - S - 1

Najděte všechny trojice celých čísel x, y, z, pro které platí

x + yz = 2 005,

у + xz — 2 006.

(J. Šimša)

C - S - 2

Pro která přirozená čísla n lze z množiny {n, n + 1, n + 2,..., n2} vybrat
čtyři navzájem různá čísla a, 6, c, d tak, že platí ab = cd? (J. Šimša)

C - S - 3

Je dána úsečka AB. Sestrojte bod C tak, aby se obsah trojúhelníku ABC
■ rovnal 1/8 obsahu S čtverce o straně AB a součet obsahů čtverců o stra-

nách АС a BC se rovnal S. (A. Jančařík)

C - II - 1

Určete číslice x, y, z tak, aby platila rovnost

x + y
= z,yx,

z

kde z,yx značí číslo složené ze 2 jednotek, у desetin a x setin.
(J. Zhouf)
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С - II - 2

Ke každému přirozenému číslu n > 2 najděte aspoň jednu dvojici různých

přirozených čísel p, q tak, aby číslo — bylo aritmetickým průměrem čísel

(L. Boček)
n

1 1
- a

V Q

C - II - 3

Libovolným vnitřním bodem P úhlopříčky AC daného obdélníku ABCD
jsou vedeny rovnoběžky s jeho stranami, které protínají úsečky AB, BC,
CD a DA po řadě v bodech К, L, M a N. Dokažte, že
a) přímky LM a KN jsou rovnoběžky,
b) vzdálenost rovnoběžek LM a KN je konstantní (nezávisí na volbě

bodu P),
c) pro obvod o čtyřúhelníku KLMN platí nerovnost o ^ 2\AC\.

(J. Svrček)

С - II - 4

Popište konstrukci lichoběžníku ABCD se základnami AB a CD, kte-
rému je možno opsat kružnici s poloměrem r = 5 cm, je-li dána vzdálenost
d = 2 cm jejího středu od průsečíku úhlopříček a \<BAC\ = 70°.

(E. Kováč)
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Řešení úloh

C - I - 1

Vyjádříme-li z rovnosti v předpokladu např. d — b + c — a a dosadíme-li
tuto hodnotu do levé strany dokazované nerovnosti, postupně dostaneme:

(a — b)(a — b) + (a — c)(a — c) + (b + c — 2a) (b — c) =

— a2 — 2ab + b2 + a2 — 2ac + c2 -f b2 -f bc — 2ab —6c — c2 + 2ac =

= 2a2 — 4a6 -f 2 b2 = 2 (a2 — 2ab + b2) = 2(a — 5)2.
Tento výraz je nezáporný pro všechna reálná čísla a, 6, čímž je daná
nerovnost dokázána.

Jiné řešení. Nejprve ponecháme podmínku a + d = b + c stranou
a ukážeme, že výraz z levé strany dokazované nerovnosti lze upravit na
součin. První část výrazu, součin (a — b)(c — d), je roven nule v případech,
kdy a — b nebo c = d\ druhá část výrazu, součet (a — c)(b — d) + (d —
— a)(b — c), má rovněž v obou případech a = b, c = d nulovou hodnotu,
takže musí být dělitelný součinem (a — b)(c — d). Přesvědčíme se o tom
roznásobením a následným postupným vytýkáním:

(a — c)(b — d) + {d
= (ab — bc — ad, + cd) + (bd — ab — cd + a.c) =

= (—bc + bd) + (—ad + ac) = —b(c — d) + a(c — d) =

= (a — b)(c — d).

a)(b — c) —

Dokazovaná nerovnost má proto tvar

2(a — b)(c — d) ^ 0,

do kterého nyní dosadíme c — d = a — b. Dostaneme tak nerovnost

2(a-b)2 ;> 0,

která platí pro všechna reálná čísla a, b. Tím je daná nerovnost dokázána.

С - I - 2

Je-li n sudé a v dané množině jsou sudá čísla 2 ап —2, přičemž 2 < n — 2,
je jejich součet 2 + (n — 2) = n dělitelný číslem n. Z podmínky 2 < n — 2
tedy plyne, že všechna sudá čísla n > 4 vyhovují podmínce úlohy.
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Z množin {1} (pro n = 2) a {1,2,3} (pro n = 4) zřejmě nelze poža-
dováný výběr provést.

Je-li n liché, můžeme pro n > 1 z dané množiny analogicky vybrat
tři sudá čísla 4, n — 3, n — 1, přičemž 4<n — 3<n — 1, se součtem
4 + (n — 3) + (n — 1) = 2n, který je dělitelný číslem n.

Z množin {1, 2} (pro n = 3), {1,2, 3,4} (pro n = 5) a {1, 2, 3,4,5, 6}
(pro n — 7) zřejmě nelze vybrat ani dvě, ani tři různá sudá čísla s poža-
dovánou vlastností.

Podmínce úlohy vyhovují číslo n = 6a všechna přirozená čísla n ^ 8.

C - I - 3

Příčka EF daného čtyřúhelníku ABCD je v každém z trojúhelníků AED
i BFC těžnicí (obr. 1), což znamená, že pro jejich obsahy platí

S(AED) = 2S(FED) = 2S{FEA),
S(BFC) = 2S{FEC) - 2S{FEB).

(1)

Oba trojúhelníky FED, FEC mají společnou stranu FE a jejich
obsahy jsou stejné, právě když CD || FE. Podobně i trojúhelníky FEA,
FEB mají společnou stranu FE a jejich obsahy jsou stejné, právě když
AB II FE. Proto mají-li trojúhelníky AED a BFC stejný obsah, je
CD || FE a AB || FE, tedy AB || CD.

Je-li obráceně AB || CD, je střední příčka EF lichoběžníku ABCD
rovnoběžná s oběma základnami AB a CD, takže dle předchozí úvahy
S(FED) = S(FEC) a podle (1) také S(AED) = S{BFC). Tím je
tvrzení úlohy dokázáno.
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С - I - 4

Aby bylo číslo m = CDCD dělitelné devíti, musí být součet 2(C + D)
jeho číslic dělitelný devíti, tudíž i součet C + D musí být dělitelný devíti,
neboli číslo CD musí být dělitelné devíti.

Má-li číslo к číslice А, В, А, В, má číslo l číslice A — 1, В + 2, A — 1,
В + 2. Jelikož číslo В + (В + 2) = 2В + 2 je sudé, je číslice D čísla
m — к + l sudá. Proto připadají vzhledem к dělitelnosti devíti v úvahu
jen tato čísla m: 1818, 3 636, 5 454, 7 272, 9 090. Protože číslice C je
všech případech lichá a součet číslic A + (A — 1) = 2A — 1 je rovněž lichý,
nemůže být В + (В + 2) > 10, tedy В + (В 4- 2) = D а А + (А — 1) — С.
Odtud už snadno určíme odpovídající číslice C, Da čísla /с, l zapíšeme
do následující tabulky:

ve

72721818 3 636 9 0905 454m

к 1313 2 222 3131 4040 neexistuje
l 0 505 1414 2 323 3 232 neexistuje

Číslo 0505 není čtyřmístné, proto jsou řešením úlohy pouze čísla к £
£ {2222,3131,4040}

С - I - 5

Pro dvojmístná čísla a, b, c je součin abc číslo čtyřmístné, nebo pětimístné,
nebo šestimístné. Jsou-li proto všechny číslice čísla abc rovny téže číslici
/с, platí jedna z rovností abc — k-1111, abc = k-11111 či abc = k-111 111,
ke {1,2,...,9}.

Čísla 1111 = 11-101 a 11-111 = 41-271 mají ovšem ve svém rozkladu
trojmístná prvočísla, takže nemohou být součinem dvojmístných čísel.
Zbývá proto jediná možnost:

abc = к ■ 111 111 = к ■ 3 • 7 • 11 ■ 13 • 37.

Podívejme se, jak mohou být prvočísla 3, 7, 11, 13, 37 rozdělena do
jednotlivých činitelů a, b, c. Protože součiny 37 • 3 а 3 • 7 • 11 jsou větší
než 100, musí být prvočíslo 37 samo jako jeden činitel a zbylá čtyři prvo-
čísla 3, 7, 11, 13 musí být rozdělena do dvojic. Jelikož i součin 11 • 13 je
větší než 100, připadají do úvahy pouze rozdělení na činitele 3-11, 7-13
a 37, nebo na činitele 3 • 13, 7 ■ 11 a 37. К těmto činitelům ještě připojíme
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možné činitele z rozkladu číslice к a dostaneme řešení dvou typů:

a = 33fci, b = 91, c = 37/c2, kde k\ G {1,2, 3}, /c2 G (1, 2),
a = 39/ci, 6 = 77, c = 37/c2, kde G {1, 2}, k-2 G {1, 2},

Hledaný počet trojic čísel a, 6, c je tedy 3 • 2 + 2 • 2 = 10.

C - I - 6

Body L а M na straně AC zvolíme tak, aby \AM\ = |ML| = |LCj.
Těžnice XO trojúhelníku KLM je střední příčkou trojúhelníku ABC,
platí tedy \KO\ = ^|í?Cj, |ЛС| = 6|MO| a |AB| = 2|A/sT|. Rozlišíme tři
možnosti:

(a) Nechť \KL\ = \KM\ (obr. 2). Pak je \<MKL\ = \<MOK\ = 90°
a \MO\ = \KO\. Z Pythagorovy věty pro trojúhelník AKO plyne

A К В

Obr. 2

\AK\ = V(3|MO|)2 + \KO\2 = y/lO\KO\2 = VTÓ\KO\ = ±VTo\BC\
takže

\AB\ = 2\AK\ = VlÓ\BC\ = 2 л/То
\AC\ = 6|MO| = 6\KO\ = 3\BC\ = 6cm.

(b) Nechť \ML\ = \MK\ (obr.3). Pak je \<KML\ = 90° a \ AM\ =

cm

C

В

Obr.3
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= I ML I = \MK\ = 21 МО I. Z Pythagorovy věty pro trojúhelník КМО
plyne

\К0\ = V/|MO|2 + (2|MO|)2 = %/5|М0|,
takže

|ЛС| = 6|МО| = i=|BC| = ^
Z Pythagorovy věty pro trojúhelník AKM plyne

\AK\ = у/|ЛМ|2 + |М^|2 - ч/2|М#| = 2л/2|МО| =

= 2-^\ко\ = Ш\ВС\,

cm.

takže

|ABj = 2\AK\ = Ъ^т = íL°5 5

(c) Nechť |ML| = \KL\ (obr.4). Pak je |<MLLT| = 90°. Je tedy
\KL\ = \ML\ = 2\LO\ = 2\MO\ a \AL\ = \AM\ + \ML\ = 4|MO|.

cm.

A К В

Obr. 4

Z Pythagorovy věty pro trojúhelník KLO tak plyne

\KO\ = \J\LO\2 + (2|LO|)2 = Vb\LO\,

takže

\AC\ = 6|MO| - 6|LO| = ~^=\BC\ = ^
V5 5

Z Pythagorovy věty pro trojúhelník AKL plyne

\AK\ = \/pIpTiТкр = \/(4|LO|)2 + (2|LO|)2 =

= 2\/5|LO| = 2|tfO| = |LC| = 2 cm,

cm.

takže

\AB\ = 2\AK\ = 2\BC\ = 4 cm.
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С - S - 1

Odečtením první rovnice od druhé dostaneme

(x - y)(z - 1) = 1

odkud plyne, že buď platí x — у = z — 1 = 1, nebo x — у = z — 1 = —1.
V prvním případě je2 = 2,y = z — lapo dosazení do kterékoli

z původních rovnic určíme x = 669, takže у — 668.
Ve druhém případě je 2 = 0, у = x + l, takže x = 2 005 а у = 2 006.
Řešením jsou dvě trojice x = 669, у = 668, 2 = 2 a x = 2 005,

у — 2 006, 2 = 0.

Jiné řešení. Z první rovnice vyjádříme

x — 2 005 — уz

a tuto hodnotu dosadíme do druhé rovnice, kterou upravíme:

у -f 2 0052 — yz2 = 2 006,

y{\ - z2) = 2 005(1 - z) + 1.

Z dané soustavy je zřejmé, že nemůže být 2 = 1, takže můžeme psát

1
y{ 1 + 2) = 2 005 + 1 - 2

Levá strana poslední rovnosti je celá, proto musí být celá i pravá strana.
Této podmínce vyhovuje jedině 2 = 0 a 2 = 2.

Stejně jako v předchozím řešení dosazením do kterékoli rovnice pů-
vodní soustavy dopočteme x = 669, у = 668 pro 2 = 2 a x = 2 005,
у = 2 006 pro 2 = 0.

C - S - 2

Pro n = 1 a n = 2 má daná množina méně než čtyři prvky.
Jelikož pro každé přirozené číslo n platí

n(2n + 2) = 2n(n + 1)

mohli bychom zvolit a = n, b = 2n + 2, c = 2n, d = n + 1. Tato čísla
jsou vzájemně různá pro každé n > 1, neboť pro taková n platí n < n +
+ 1 < 2n < 2n + 2. Ještě zbývá ověřit, pro která čísla n je 2?г + 2 ^ n2,
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aby takto zvolená čtyři čísla a, 6, c, d byla z dané množiny. Je vidět,
že tato poslední nerovnost platí pro každé n > 2, neboť je ekvivalentní
s nerovností 3 ^ (n — l)2.

Můžeme tedy shrnout, že požadovaná čísla a,b,c,d lze z dané množiny
vybrat pro každé přirozené číslo n > 2.

Jiné řešení. Pro n — 1 a n = 2 má daná množina méně než čtyři
prvky.

Jelikož pro každé přirozené číslo n platí

n • 6n = 2n • 3n,

mohli bychom zvolit a — n, b = 6n, c = 2n, d — 3n. Tato čísla jsou
vzájemně různá pro každé n, neboť n < 2n < 3n < 6n. Ještě zbývá
ověřit, pro která čísla n je 6n й n2, aby zvolená čtyři čísla a, b, c, d
byla z dané množiny. Je vidět, že tato poslední nerovnost platí pro každé
n > 5.

Pro n — 3 vybereme a = 3, 6 = 8, c = 6, d = 4 (viz předchozí řešení),
pro n — 4 vybereme a = 4, 6 = 10, c = 8, d = 5 (viz předchozí řešení),
nebo a = 5,6 = 12,c = 6,d = 10 (viz následující poznámku), pro n = 5
vybereme a = 5, 6 = 12, c = 10, d = 6 (viz předchozí řešení).

Můžeme tedy shrnout, že požadovaná čísla a, 6, c, d lze z dané množiny
vybrat pro každé přirozené číslo n > 2.

Poznámka. Čtveřic vzájemně různých čísel a, 6, c, d, která splňují
dané podmínky, je mnoho. Pokaždé je ale třeba u takové čtveřice určit,
od kterého nej menšího čísla n dané podmínky platí, a pro zbylá přirozená
čísla n je třeba určit konkrétní hodnoty čísel a, 6, c, d.

Tak např. je možné volit a — n, b — 3n + 3, c — 3n, d — n + 1 pro
n > 3, nebo a = n+l,6=2n + 4, c — 2 (n + 1), d = n + 2 pro n> 3 (viz
druhé řešení pro n = 4) apod.

C - S - 3

Podmínka, že obsah trojúhelníku ABC se má rovnat | obsahu S čtverce
o straně AB, znamená, že výška trojúhelníku ABC na stranu AB má
délku ||Л5|, takže bod C musí ležet na jedné ze dvou rovnoběžek s přím-
kou AB vzdálených od přímky AB.

Podmínka, že součet obsahů čtverců o stranách АС a BC se má
rovnat obsahu čtverce o straně AB, znamená podle Pythagorovy věty
pro trojúhelník ABC, že je tento trojúhelník pravoúhlý s přeponou AB,
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takže bod C musí ležet na kružnici se středem ve středu přepony AB
a poloměrem h\AB\.

Konstrukce bodu C je tedy jednoduchá. Obě zmíněné rovnoběžky
zřejmě protnou kružnici nad průměrem AB ve čtyřech bodech (obr. 5).
Vzhledem к tomu, že se jedná o polohovou úlohu, má úloha čtyři řešení.

C - II - 1

Danou rovnost pro z ^ 0 postupně upravíme:

x + y
= 2, yx,

X + y у X
= z + — H ,

10 100’
100(:r + y) = (lOOz + 10у + x) • z.

Jelikož x, y, z jsou číslice, platí nerovnosti 100 • (9 + 9) ^ 100(x + у)
a (lOOz + 10у -f x) ■ z ^ IOO2 • z, odkud plyne 18 ^ z2. To znamená, že
může být jedině z = 1, nebo z — 2, nebo z = 3, nebo z = 4 (hodnota
z = 0 není přípustná).

Pro z = 1 má daná rovnost tvar

100(2: + y) = 100 + 10у + x,

99x + 90у — 100.

Úvahou o dělitelnosti třemi či devíti zjistíme, že poslední rovnice nemá
žádné celočíselné řešení. Proto nemůže být z = 1.
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Pro 2 = 2 má daná rovnost tvar

100(:r + y) = (200 + 10у + x) • 2,
492: + 40у = 200.

Úvahou o dělitelnosti deseti zjistíme, že může být jedině x = 0. Pak je
у = 5, takže v tomto případě splňují danou rovnost číslice x — 0, у — 5,
г = 2.

Pro 2 = 3 má daná rovnost tvar

100(2: + y) = (300 4- 10у 4- 2:) • 3
97x + 70y = 900.

Úvahou o dělitelnosti deseti zjistíme, že může být jedině x = 0. Pak ale
neexistuje žádné celé у splňující rovnost 70y = 900. Proto nemůže být
2 = 3.

Pro 2 = 4 má daná rovnost tvar

100(2: 4■ y) = (400 + 10у + x) ■ 4,
24ж 4- 15у = 400.

Úvahou o dělitelnosti třemi zjistíme, že poslední rovnice nemá žádné
celočíselné řešení. Proto nemůže být 2 = 4.

Daná rovnost je splněna jedině pro x — 0, у = 5, 2 = 2. Skutečně
0 + 5

platí —-— = 2,50.

С - II - 2

К libovolně zvolenému přirozenému číslu n > 2 hledáme příklad různých
přirozených čísel p, q závislých na čísle n tak, aby platilo

l
= 1/1 1\

n 2\p qJ
Po úpravách má tato rovnost tvar

2pq = n(p-\-q), neboli p(2q — n) — nq.

Jelikož stačí nalézt jedinou dvojici čísel p, q, je možné ji hledat zkoušením
několika jednoduchých možností v poslední rovnici.
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Zkusme položit 2q — n= 1. Získáme tak q — |(n + l)ap = ^n(n +1).
Tato čísla jsou přirozená a vzájemně různá pro libovolné liché číslo n > 2.

Dále zkusme položit 2q — n — 2. Získáme tak q = ^(n + 2) a, p —
= \n{n + 2). Tato čísla jsou přirozená a vzájemně různá pro libovolné
sudé číslo n > 2.

Můžeme tedy pro liché číslo n > 2 položit q — ^(?г+1) ap= |п(?г-Ы)
a pro sudé číslo n > 2 zas q — b(n + 2) a p — \n(n + 2).

C - II - 3a)AC a BD jsou úhlopříčky obdélníku ABCD, proto jsou úhly ABD
a BAC shodné. AP a KN jsou úhlopříčky pravoúhelníku AKPN, proto
jsou úhly AKN, KAP a APN shodné (obr. 6). PC a LM jsou úhlopříčky
pravoúhelníku PLCM, proto jsou úhly PLM a LPC shodné. Úhly APN
a LPC jsou shodné (vrcholové úhly), proto jsou shodné i úhly AKN,
PLM a ABD, přímky LM a KN jsou tudíž rovnoběžné s úhlopříčkou
BD daného obdélníku, a jsou tedy rovnoběžné navzájem.

b) Jsou-li X a Y průsečíky přímek LM a KN s úhlopříčkou AC, je
\XY\ = \XP\ + \PY\ = \\CP\ + Í\PA\ = i(|CP| + \PA\) = \\CA\.
Úsečka XY má tedy délku nezávislou na poloze bodu P. Podle a) svírá
přímka XY s přímkami KN a LM stejný úhel jako s přímkou BD, takže
tento úhel rovněž nezávisí na poloze bodu P. Proto je i vzdálenost přímek
LM a KN nezávislá na poloze bodu P (a je jednozačně určena velikostí
|ХУ| a úhlem MXP, přičemž \<MXP\ = 2\<ABD\).

c) KL a BP jsou úhlopříčky pravoúhelníku КВLP, jsou proto shod-
né. Podobně jsou MN a PD shodné úhlopříčky pravoúhelníku NPMD,
LM a PC shodné úhlopříčky pravoúhelníku PLCM a NK a AP shodné
úhlopříčky pravoúhelníku AKPN. Pro obvod čtyřúhelníku KLMN tak
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platí
о = \KL\ + \LM\ + \MN\ + \NK\ =

= {\KL\ + \MN\) + (\LM\ + \NK\) =

= (\BP\ + \PD\) + (\PC\ + \AP\) ž \BD\ + \AC\ = 2\AC\
kde jsme pro trojici bodů B, D, P využili trojúhelníkovou nerovnost
\BP\ + \PD\ Z \BD\.

Jiné řešení části b). Čtyřúhelník KLMN je podle části a) lichoběž-
nik (anebo případně rovnoběžník, který můžeme považovat za speciální
případ lichoběžníku) se základnami KN a LM. Naší úlohou je ukázat, že
jeho výška nezávisí na volbě bodu P. Strany a úhlopříčky čtyřúhelníku
KLMN dělí obdélník ABCD na čtyři dvojice shodných trojúhelníků,
z čehož plyne, že obsah KLMN je polovinou obsahu ABCD. Dále sou-
čet délek základen KN a, LM je roven součtu délek úseček AP a PC,
tedy délce úsečky AC. Lichoběžník KLMN má tedy konstantní obsah
a konstantní součet délek základen, má tedy i konstantní výšku.

С - II - 4

Všimněme si lichoběžníku ABCD, jemuž lze opsat kružnici. Přímka
jdoucí jejím středem S kolmo к oběma základnám AB a CD je osou
souměrnosti obou tětiv AB a CD, tedy i osou souměrnosti celého li-
choběžníku ABCD. Jeho ramena AD a BC jsou tudíž shodná a průsečík
P úhlopříček AC a BD leží též na ose úseček AB a CD. Jelikož je podle
zadání \<BAC\ — 70°, je |<APSj = 20° (obr. 7).
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Popis konstrukce: Sestrojíme úsečku SP, kde \SP\ — d — 2 cm,
a kružnici k(S; 5 cm). Bodem P vedeme polopřímky PX a PY tak, aby
l-KS'PXI = |<5РУ| = 20°. Průsečíky polopřímek PX a PY s kružnicí
к jsou body A a B. Potom průsečíky vnitřků polopřímek АР a BP
s kružnicí к jsou body C a D.

Úloha má jediné řešení.
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Kategorie В

Texty úloh

В - I - 1

Určete všechny dvojice (a, 6) reálných čísel, pro které má každá z rovnic

x2 -f ax -f b = 0, x2 -(- (2a 4- 1)ж -f- 2b -f 1 — 0

dva různé reálné kořeny, přičemž kořeny druhé rovnice jsou převrácené
hodnoty kořenů první rovnice. (E. Kováč)

В - I - 2

Je dán rovnoběžník ABCD. Přímka vedená bodem D protíná úsečku
AC v bodě G, úsečku BC v bodě F a polopřímku AB v bodě E tak, že
trojúhelníky BEF a CGF mají stejný obsah. Určete poměr \AG\ : \GC\.

(T. Juřík)

В - I - 3

Na stole leží к hromádek o 1, 2,3,..., к kamenech, kde к Tč. 3. V každém
kroku vybereme tři libovolné hromádky na stole, sloučíme je do jedné
a přidáme к ní jeden kámen, který na stole dosud neležel. Jestliže po
několika krocích vznikne jediná hromádka, není výsledný počet kamenů
dělitelný třemi. Dokažte. (J. Zhouf)

В - I - 4

Označme V průsečík výšek a S střed kružnice opsané trojúhelníku ABC,
který není rovnostranný. Pokud má úhel při vrcholu C velikost 60°, je
osa úhlu ACB osou úsečky VS. Dokažte. (J. Zhouf)
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В - I - 5

V oboru reálných čísel řešte rovnici

5|xJ - 7
x + 4 7 [xj — 5 ’

x

kde [xj označuje největší celé číslo, jež nepřevyšuje číslo x (tzv. dolní
celou část reálného čísla x). (J. Aimsa)

В - I - 6

Do kružnice к o poloměru r jsou vepsány dvě kružnice k\, /02 o polo-
měru ^r, jež se vzájemně dotýkají. Kružnice l se vně dotýká kružnic Ari,
/с2 a s kružnicí к má vnitřní dotyk. Kružnice m má vnější dotyk s kruž-
nicemi /с2 a / a vnitřní dotyk s kružnicí k. Vypočtěte poloměry kružnic l
a m. (L. Boček)

В - S - 1

Na stole leží 54 hromádky o 1, 2, 3, ..., 54 kamenech. V každém kroku
vybereme libovolnou hromádku, řekněme о к kamenech, a odebereme ji
celou ze stolu spolu s к kameny z každé té hromádky, ve které je aspoň
к kamenů. Například po prvním kroku, při kterém vybereme hromádku
o 52 kamenech, zůstanou na stole hromádky ol,2,3,...,51,la2 kame-
nech. Předpokládejme, že po určitém počtu kroků zůstane na stole jediná
hromádka. Zdůvodněte, kolik kamenů v ní může být. (J. Šimša)

В - S - 2

Nechť ABC je pravoúhlý trojúhelník se stranami a < b < c. Označme
Q střed odvěsny ВС a S střed přepony AB. Průsečík osy úsečky AB
s odvěsnou CA označme R. Dokažte, že \RQ\ — |i?Sj, právě když

a2 :b2 :c2 = 1:2:3.

(J. Svrček)
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В - S - 3

V oboru reálných čísel řešte rovnici

klX

1 - kl ’1 — X

kde [aj označuje největší celé číslo, jež nepřevyšuje číslo a. (J. Šimša)

В - II - 1

Kružnice ki o poloměru 1 má vnější dotyk s kružnicí k2 o poloměru 2.
Každá z kružnic ki, k2 má vnitřní dotyk s kružnicí /с3 o poloměru 3.
Vypočítejte poloměr kružnice k, která má s kružnicemi k\, k2 vnější dotyk
a s kružnicí k^ vnitřní dotyk. (P. Novotný)

В - II - 2

Na jedné internetové stránce probíhá hlasování o nejlepšího hokejistu
světa posledního desetiletí. Počet hlasů pro jednotlivé hráče je uváděn
po zaokrouhlení v celých procentech. Po Mirkově hlasování pro Jaromíra
Jágra se jeho zisk 7% nezměnil. Kolik nejméně lidí včetně Mirka hlaso-
válo? Předpokládáme, že každý účastník ankety hlasoval právě jednou,
a to pro jediného hráče. (M. Panák)

В - II - 3

Nechť ABC je ostroúhlý trojúhelník. Označme К a L paty výšek z vr-
cholů А а В, M střed strany AB а V průsečík výšek trojúhelníku ABC.
Dokažte, že osa úhlu KML prochází středem úsečky VC. (J. Švrček)

В - II - 4

Najděte všechny trojice reálných čísel x, y, z, pro které platí

2004
[x\ - у = 2 ■ [y\ - z = 3 ■ [z\ - x = 2005’

kde [aj označuje největší celé číslo, jež nepřevyšuje číslo a. (J. Šimša)
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Řešení úloh

В - I - 1

Nechť xi, x2 jsou kořeny první rovnice. Potom

X i x2 = 6,

a protože druhá rovnice má kořeny 1/xi a l/x2, platí

1 = —(2a + 1),
X\ x2

Je tedy \ = 26+1, což vede na kvadratickou rovnici 262 + 6 — 1 =
6

která má kořeny 6 = —1 a 6 = ^.
Pro 6 = — 1 máme

x\ + x2 = -a,

1 1
— = 26+ 1.

xi x2

0,

/o , i N _ 1 , 1 Xl+X2
— (2a +1) — 1 —

X\ x2 XiX2

což je pro neznámou a lineární rovnice s řešením a = —

Obdobně pro 6 = i dostáváme —(2a + 1) = —2a, tato rovnice však
nemá řešení. Zkouškou (je třeba ověřit, že kořeny jsou reálné) se přesvěd-
číme, že dvojice a = — — — lje (jediným) řešením úlohy.

—a

-1’

В - I - 2

Z obr. 8 je vidět, že trojúhelníky AGD a CGF jsou podobné podle věty

D C

Ix V.
G I

I6 // F iz I I
I I

A Вa E

Obr. 8

uu. Příslušný poměr podobnosti к je roven hledanému poměru \AG\ :
: \GC\. Označíme-li proto 6 = \AD\, x — \DG\ а у — \CG\, platí \GF\ —
— x/k a \CF\ = b/k, odkud

\FB\ = \BC\-\FB\ = b-± = (k-l)í
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a

|DF| = \DG\ + \GF\ = i + i = (fc + 1)~.

Z podobnosti trojúhelníků BEF ~ CDF dostáváme

|DF| • |£F|k2-l\EF\ — ■ x.

\CF\ к

Z rovnosti obsahů trojúhelníků BEF a CGF vyplývá

\FB\ ■ \FE\ = \FC\ ■ \FG\

odkud po dosazení vyjde

к-1 fc2-l
ТГ'Ь'^Г

b x
■ X =

/с /г'

Je tedy к3 — к2 — к + 1 = 1, a protože к ф 0, dostáváme pro hledané к
kvadratickou rovnici к2 — к — 1 = 0. Úloze vyhovuje její kladný kořen
к — (l + \/5).

Jiné řešení. Označme \AG\ — z, \GC\ — y. Protože trojúhelníky BEF
a CGF mají stejný obsah, mají stejný obsah i trojúhelníky GBE a GBC.
Proto platí ЕС || BG. Z podobnosti trojúhelníků ABG ~ AEC, DFC ~
~ EFB, CFE ~ BFG a AEC ~ ABG postupně plyne

г
_ |Л<3| _ |A£| _ |DC| _ |FCj _ |CE| _ \AC\

у ~ jGČ\ ~ ]ВЩ ~ \BĚ\ ~ \BF\ ~ \BG\ ~ ]ÁG\
z + у

Z výsledné rovnosti zjy = 1 Fy/z dostáváme

2\2

У У

a protože z/y > 0, je
2 l + Vb

2У

В - I - 3

V každém kroku se počet hromádek zmenší o dvě. Aby vznikla jedna
hromádka, musí být na začátku lichý počet hromádek, tedy к = 2m + 1.
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Na zmenšení počtu hromádek o 2m je třeba m kroků. Při každém přibude
jeden kamen, a proto je výsledný počet kamenů

(2m + 1) (2777 + 2)
P — 1 -b 2 + 3 + . . . + (2777 —p 1) —(— 777

= 27772 + 4777 + 1.

+ 777 =
2

Číslo 777 má jeden ze tvarů m = 377, m = 3n + 1, 777 = З77 + 2. V prvním
případě je p = 18t72+12t74-1 = 3(6t72+2t7) + 1, ve druhém 18т72+24п+7 =
= 3(6т72+8т7+2) + l ave třetím p = 18т72 +36n+17 — 3(6772 + 12t7+5) + 2.
Žádné z těchto čísel není dělitelné třemi.

Poznámka. Stačí ověřit, že p není dělitelné třemi pro 777 = 0, 777 = 1
a 777 = 2 [návodná úloha 1].

В - I - 4

Nechť například \AC\ < \BC\. Předpokládejme nejprve, že trojúhel-
nik ABC je ostroúhlý. Označme D střed strany ВС a P patu výšky
z vrcholu В na stranu AC (obr. 9). Platí \CP\ ~ |£?C|-cos 60° = ^\BC\ =
= \CD\, \<CPV\ = \<CDS\ - 90°, \<CVP\ = \<CAB\ = \<CSD\
(obvodový úhel a polovina středového). Ze shodnosti trojúhelníků CPV
a CDS vyplývá \CV\ = |CS|, \<PCV\ = \<DCS\. Trojúhelník VSC je
tedy rovnoramenný, a osa úhlu ACB je tak i osou úhlu VCS a současně
osou strany VS.

Je-li trojúhelník ABC pravoúhlý (obr. 10), je trojúhelník VSC rov-
nostranný a osa úhlu VCS je i osou strany VS.

Je-li trojúhelník ABC tupoúhlý, dokážeme tvrzení úlohy stejně jako
v případě ostroúhlého trojúhelníku s tím rozdílem, že bude \^CVP\ =
= \<CSD\ = 180° - \<CAB\.

A В V = A В

Obr. 9 Obr. 10
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В - I - 5

Každé reálné číslo z můžeme zapsat ve tvaru x = [x\ + {z}, kde [zj je celá
část a {z} tzv. zlomková část čísla z. Zřejmě platí 0 {z} < 1, přičemž
{z} = 0, právě když z je celé. Odtud vyplývá, že [zj = x < [zj + 1,
přičemž rovnost [zj = z platí, právě když z je celé; tyto nerovnosti často
používáme při řešení úloh s celou částí. Označíme-li [zj = к, dostaneme
z dané rovnice po odstranění zlomku a roznásobení

7kx — 5z = bkx + 20к — 7x — 28

a odtud
10к - 14

(1)z =
к + 1

Protože к — [zj, musí platit

10fc- 14
к < <k + 1.

к + 1

Každou z nerovnic vyřešíme samostatně:

k(k + 1) - (lOfc - 14) _(k- 7){k - 2)
к + 1

(к + l)2 - (lOJfc - 14)
_ (k- 3)(k - 5)

0 > к G (—oo, —1) U (2, 7);к + 1

к G (—1, 3) U (5, oo).0 <
к + 1 к + 1

Protože к je celé, máme к G {2,6,7}. Rovnice má tedy tři řešení, která
dostaneme dosazením do vztahu (1): x\ — 2, Z2 = 4^, Z3 = 7.

В - I - 6

Označme 5, А, В, C, D středy kružnic к, /ci, &2, /, m a z, у poloměry
kružnic l a m. Bod C leží na přímce, která prochází bodem S a je kolmá na
AB (obr. 11). Z pravoúhlého trojúhelníku BCS máme podle Pythagorovy
věty

Gj+i) =(D+(r-i)2
a odtud z = |r. Označme P, Q paty kolmic z bodu D na přímky AB a SC

= |5P|, v — IS'QI. Jestliže и ф ^r, je BPD pravoúhlý trojúhelník
a podle Pythagorovy věty
а и

(“-D2-v2 + (1)
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Tato rovnice platí i v případě и — \

Podobně z pravoúhlého trojúhelníku QCD (jestliže Q ^ C) anebo
porovnáním protilehlých stran obdélníku (jestliže Q — C) dostaneme

(s+!/)2 = (-f)*u2 + (2)

Navíc z pravoúhlého trojúhelníku SPD máme

(r — у)2 = u2 + v2. (3)

Odečtením rovnic (3) a (2) dostaneme |r2 — |ry = |vr, tedy v =
— 2y. Podobně odečtením rovnic (3) a (1) vyjde r2 — 3ry = ur a odtud
и — r — 3y. Dosazením do (3) a úpravou postupně dostaneme

r —

(r - у)2 = (r - 3y)2 + (r - 2y)2,
r2 — 8ry + 12y2 = 0,

(r - 6y)(r - 2y) = 0.

Odtud plyne, že у = nebo у — |r. Poloměr má kružnice k\, poloměr
kružnice m znázorněná na obr. 11. Každá z těchto dvou kružnic se

dotýká kružnic к, &2 a / požadovaným způsobem.
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В - S - 1

Pokud v každém kroku zvolíme hromádku s největším počtem kame-
nů, budeme postupně odebírat hromádky s 54, 53, 52, ... kameny a po
53. kroku zůstane na stole jediná hromádka s jedním kamenem.

Dokážeme, že při libovolném postupu zůstane v poslední hromádce
jediný kamen. Ukážeme totiž, že po každém kroku, po němž na stole zbývá
aspoň jedna hromádka, tvoří počty kamenů v jednotlivých hromádkách
vždy celou množinu {1,2,... ,n} pro vhodné přirozené n (nevylučujeme
ovšem, že к některým číslům existuje více hromádek s týmž počtem ka-
menů). To tedy znamená, že je vždy na stole aspoň jedna hromádka
s právě jedním kamenem.

Na začátku tvoří počty kamenů v hromádkách množinu {1,2,..., 54}.
Předpokládejme, že po určitém počtu kroků tvoří počty kamenů v jed-
notlivých hromádkách množinu {l,2,...,n} (n ^ 2). Zvolíme-li nyní
hromádku s n kameny nebo hromádku s jedním kamenem, budou v dal-
ším kroku počty kamenů v hromádkách tvořit množinu {l,2,...,n—1}.
Pokud zvolíme hromádku s m kameny, kde m ^ {l,n}, budou počty
kamenů v dalším kroku tvořit množinu {l,2,...,m — 1} U {1,2,..
n — m} = {1,2,...,p), kde p = max{m — 1 , n — m}. Tím je tvrzení
o počtu kamenů v jednotlivých hromádkách dokázáno.

Odpověď. Poslední hromádka bude bez ohledu na zvolený postup vždy
obsahovat jediný kamen.

• 7

В - S - 2

Podle Pythagorovy věty je v pravoúhlém trojúhelníku rovnost a2 : b2 =
= 1:2 splněna, právě když b2 : c2 = 2 : 3. Stačí tedy dokázat požadova-
nou ekvivalenci jen pro jednu z rovností a2 : b2 = 1 : 2, b2 : c2 = 2 : 3.

Trojúhelníky ASR a ACB (obr. 12) mají společný úhel při vrcholu A
a shodují se v pravých úhlech ASR a ACB, takže jsou podobné (uu).
Odtud vyplývá rovnost

\AR\
_ \AB\

]Щ ~ ]AČ\'
neboli

c2\AB\ ■ \AS\
x = \AR\ — (1)2b'\ЛС\

\AS\2 = x2- |c2 a |i?,Q|2 =Podle Pythagorovy věty je \RS\2 = \AR\2
= \QC\2 + \CR\2 = \a2 + (b-x)2 = ^a2+b2 — 2bx-\-x2, takže \RQ\ = \RS\
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právě když i a2 + |c2 + b2 — 2bx, což po dosazení z (1) a a2 = c2 — b2
po úpravě dává |62 = ^c2, neboli b2 : c2 = 2:3. Tím je požadovaná
ekvivalence dokázána.

В
\
\
\

S\Q \ \
\ \ bc/\

\\ /
\\ /
v

AС У R x

Obr. 12

Jiné řešení. Podle Pythagorovy věty je (obr. 12) \BR\2 = \BC\2 +
+ |Cfí|2 = a2 + y2, IfíSl2 = \BR\2 - |BS|2 = a2 + y2 - \c2, \RQ\2 =
— |QC|2 + |Ci?|2 = |a2 + y2. Rovnost \RQ\ = IRS'! tedy platí, právě když
a2 + y2 — \c2 — i a2 + y2, neboli 3a2 = с2. V pravoúhlém trojúhelníku
je tato rovnost ekvivalentní s rovností 362 = 2c2, neboli a2 : b2 : c2 = 1 :
: 2 : 3.

Jiné řešení. Označme T střed strany AC (obr. 13). Protože \QC\ =
= |5T| a \<QCR\ = |<5TR| = 90°, jsou trojúhelníky QCR a STR
shodné, právě když \RQ\ = |i?S| a zároveň právě když \RC\ = \RT\.

В

SQ \

\
\ /
\ /

к\ /
\/

AC R T

Obr. 13

Rovnost \RQ\ = |R5| je tedy ekvivalentní s tím, že bod R je střed
úsečky CT, tj. x — \RA\ — \b. Z podobnosti trojúhelníků ABC ~ ARS
máme (stejně jako v prvním řešení)

c2
x =

2b'
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takže \RQ\ = | RS\, právě když

36 c2
T = 26’

neboli 362 = 2c2.

V pravoúhlém trojúhelníku je to dle Pythagorovy věty ekvivalentní s rov-
ností 3a2 = c2, neboli a2 : 62 : c2 = 1 : 2 : 3.

В - S - 3

|xj 1X

je celé číslo, proto i

znamená, že 1 — [xj 6 { — 1,1}, neboli |_xj G {0,2}.
Nechť [xj = 0. Potom 0^x< 1 a daná rovnice má tvar

Výraz — 1 je celé, což
i - M 1 - I*J1 — x

X
= 0,

1 — X

X
takže je splněna, právě když 0 5Í

1 — x

klad 1 — x > 0 ekvivalentní s nerovnostmi 0 ^ x < V tomto případě
dané rovnici vyhovují všechna x z intervalu (0, |).

Nechť [x\ =2. Potom 2 ^ x < 3 a daná rovnice má tvar

< 1, což je s ohledem na předpo-

x
= -2,

1 — x

X
takže je splněna, právě když — 2 < —1, což je s ohledem na

1 — x

předpoklad 2 x (takže 1 — x < 0) ekvivalentní s nerovnostmi —2 +
+ 2x^x>—1 + x, neboli x^2. V tomto případě dané rovnici vyhovují
všechna x z intervalu (2,3).

Závěr. Všechna řešení dané rovnice tvoří množinu (0, |) U (2,3).

В - II - 1

Protože se součet průměrů kružnic ki a rovná průměru kružnice /сз,
leží jejich středy Si, S2 a 63 v přímce. Existují dvě shodné kružnice, které
splňují podmínky úlohy, a jsou souměrně sdružené podle přímky
Označme к jednu z nich (obr. 14), S její střed a r odpovídající poloměr.
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Pro velikosti stran trojúhelníku 51525 platí: |5i5| = 1 + r, |525| =
= 2+r, |5i521 = 3 a 15.351 = 3 — r. Pro bod 53 zároveň platí, že |535i| = 2
a 153521 = 1. Označíme-li P pravoúhlý průmět bodu 5 na přímku 5i52
(obr. 15) a x = |5iP|, у = |5P|, můžeme podle Pythagorovy věty psát

(1 + r)2 = x2 + y2,
(2 -f r)2 = (3 — x)2 + y2,
(3 — r)2 = (2 — x)2 + y2-

Odečtením první rovnice od druhé dostaneme 3 + 2r = 9 — 6a; neboli
2r = 6 — 6x, odečtením první od třetí 8 — 8r = 4 — 4x neboli 2r = 1 + x.
Porovnáním obou důsledků vyjde rovnice 6 — 6x = 1 -f x, odkud x =

r = 3 — Зх — I.7'

Si x P 53 522 — x 1

Obr. 15
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Poznámka. Se znalostí kosinové věty se obejdeme bez pomocného
bodu P: stačí napsat kosinové věty pro trojúhelníky S1S3S a S1S2S.
Dostaneme tak dvě rovnice

(3 — r)2 = 4 + (1 + r)2 — 2 • 2(1 + r) cosca,

(2 + r)2 = 9 + (1 + r)2 — 2 • 3(1 4- r) cosca,

kde u> — |<S,2S'i5'|. Po úpravě a vyjádření (1 + r) costa z obou rovnic
dostaneme pro r rovnici 2r — 1 = 1 — |r, z níž plyne r =

В - II - 2

Označme p počet účastníků ankety včetně Mirka a j počet hlasů pro

Jágra. Na celých 7% se zaokrouhlí čísla z intervalu (6,5%; 7,5%) neboli
(0,065; 0,075). Před Mirkovým hlasováním měl Jágr j — 1 hlasů a po něm
j hlasů. Musí proto platit

3~1 J
0,065 <; - < 0,075, 0,065 <; -

1 p
< 0,075.

P-

i -1 3Protože z nerovnosti 0 < j < p plyne < -, stačí řešit dvě nerovnice
P -1 V

3-1 j
0,065 <; (i)a - < 0,075.

P ~ 1 V

První z nich je ekvivalentní s nerovnicí 0,065p — 0,065 +1 ^ j a druhá
s nerovnicí j < 0,075p, proto musí platit 0,065p + 0,935 < 0,075p, odkud
plyne p > 93,5. Protože p je celé číslo, dostáváme p ^ 94. Musíme ovšem
ještě zjistit, pro které nejmenší p ^ 94 existuje celé číslo j, jež vyhovuje
nerovnicím (1). Z podmínky p ^ 94 dostaneme j ^ 0,065 • 94 + 0,935 =
= 7,045, a tudíž j ^ 8. Z nerovnice j < 0,075p pak máme p > neboli
p ^ 107. Protože 0,065 ■ 107 + 0,935 < 8, je dvojice j — 8, p = 107 řešením
soustavy (1), takže p = 107 je nejmenší možný počet lidí, kteří v anketě
hlasovali.

Jiné řešení. Nerovnice 0,065p + 0,935 j < 0,075p, ekvivalentní ne-
rovnicím (1), upravíme na tvar

j - 0,935
<p<

0,075 ~ 0,065
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což dává podmínku 0,065j < 0,075j — 0,075-0,935, neboli j > 7,5 0,935 >
> 7, takže j ^ 8. Z nerovnosti p > j/0,075 tak dostáváme nerovnost
p ^ 107. Nyní stačí ověřit, že p = 107 vyhovuje pro j — 8 i druhé

8 - 0,935
podmínce, tj. že platí 107 5Í

0,065

В - II - 3

Označme S střed úsečky CV (obr. 16). Body К a L leží na Thaletově
kružnici s průměrem AB, takže \ML\ = \MK\. Body К a L zároveň leží
i na Thaletově kružnici s průměrem CV, takže \SL\ = \SK\. Trojúhelníky
SLM a SKM jsou tudíž shodné (sss), takže \$:SML\ = \kSMK\, neboli
osa úhlu LMK prochází středem S úsečky VC.

В - II - 4

Danou soustavu rovnic přepíšeme ekvivalentně do tvaru

у =[x\ - a,

z = 2[y\-a,
x — 2>[_z\ —a,

kde jsme jako a označili číslo z intervalu (0,1). Ze soustavy (1)
plynou postupně rovnosti

(1)

[y\ = [x\ - 1,

W = 2Ы — 1 = 2k| - 3,
|_z] = 3[zJ — 1 = 6[:rJ — 10.
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Z poslední rovnice dostáváme [ij = 2 a ze zbylých dvou rovnic dále
dopočítáme [y\ = [z\ = 1. Dosazením do (1) tak máme x = 3 — =
= 2 + 2óč5 , у = 2 — 2005 — 1 + 2005 a 2 — 2 — — 1 + 2005 • ^У§1а necelá
čísla ж, у a, z, která mají právě takové celé části, jaké jsme dosazovali do
pravých stran rovností (1). Tak jsme zároveň provedli zkoušku (kterou
lze ovšem provést i přímým dosazením do původní soustavy). Uvedená
trojice je (jediným) řešením dané úlohy.
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Kategorie A

Texty úloh

A - I - 1

Neprázdnou množinu přirozených čísel nazveme malou, když má méně
prvků, než je její nejmenší prvek. Určete počet všech malých množin M,
které jsou podmnožinami množiny {1, 2, 3,..., 100} a mají tuto vlast-
nost: patří-li do M dvě různá čísla x a y, patří do M rovněž číslo \x — y\.

(J. Fóldes)

A - I - 2

Nechť M je libovolný vnitřní bod kratšího oblouku CD kružnice opsané
čtverci ABCD. Označme P, R průsečíky přímky AM po řadě s úsečkami
BD, CD a podobně Q, S průsečíky přímky BM s úsečkami AC, DC.
Dokažte, že přímky PS a QR jsou navzájem kolmé. (J. Svrček)

A - I - 3

Nechť к je libovolné přirozené číslo. Uvažujme dvojice (a, b) celých čísel,
pro něž mají kvadratické rovnice

x2 — 2ax + 6 = 0, у2 + 2ay + 6 = 0

reálné kořeny (ne nutně různé), které lze označit X\^, resp. г/12 v takovém
pořadí, že platí rovnost X\y\ — х^уъ — 4к.a)Pro dané к určete největší možnou hodnotu 6 ze všech takových dvojic

(a, 6).
b) Pro к = 2 004 určete počet všech takových dvojic (a, 6).
c) Pro dané к vypočtěte součet čísel 6 ze všech takových dvojic (a, 6),

přičemž každé číslo 6 se přičítá tolikrát, v kolika dvojicích (a, 6) vy-
stupuje. (E. Kováč)
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A - ! - 4

Dané aritmetické posloupnosti i a mají stejný první člen
a následující vlastnost: existuje index к (к > 1), pro který platí rovnosti

^-^ = 53, xl-i ~ Ук-i = 78, x2k+1 - y2k+1 = 27.

(V. Bálint)Najděte všechny takové indexy k.

A - I - 5

V lichoběžníku ABCD (AB || CD) platí \AB\ = 2\CD\. Označme E
střed ramene BC. Dokažte, že rovnost \AB\ = \BC\ platí, právě když

(R. Horenský)čtyřúhelník AECD je tečnový.

A - I - 6

Najděte všechny funkce /: (0, +oo) —> (0, +oo), které vyhovují současně
následujícím třem podmínkám:
a) Pro libovolná nezáporná reálná čísla x, у taková, že x + у > 0, platí

rovnost

b) /(1) = 0;
c) f(x) > 0 pro libovolné x > 1. (P. Calábek)

A - S - 1

Určete počet všech nekonečných aritmetických posloupností celých čísel,
které mají mezi svými prvními deseti členy obě čísla 1 a 2 005.

(V. Bálint, J. Šimša)

A - S - 2

V rovnoběžníku ABCD platí \AB\ > \BC\, Označme К, L, M a N po
řadě body dotyku kružnic vepsaných trojúhelníkům ACD, BCD, ABC
a ABD s příslušnou úhlopříčkou AC, resp. BD. Dokažte, že KLMN je
obdélník. (P. Horenský)
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A - S - 3

Zjistěte, pro která přirozená čísla к má soustava nerovnic

k(k — 2) ^ (^k + -^jx ^ k\k + 3)
s neznámou x a parametrem к právě (k+ l)2 řešení v oboru celých čísel.

(J. Šimša)

A - II - 1

Je-li součin kladných reálných čísel a, b, c roven 1, platí nerovnost

b >5.a c

(a -f- 1)(6 + l) (b + 1)(c -f- 1) (c l)(n + 1) 4

(J. Šimša)Dokažte a zjistěte, kdy nastane rovnost.

A - II - 2

V oboru celých čísel řešte soustavu rovnic

x(y + z + 1) = y2 + z2 - 5,

y(z + x + 1) = z2 + x2 - 5,
z(x + у + 1) = x2 + у2 — 5.

(J. Šimša)

A - II - 3

V rovině je dán rovnoramenný trojúhelník KLM se základnou KL. Uva-
žujme libovolné dvě kružnice kal, které mají vnější dotyk a které se

dotýkají přímek KM a LM po řadě v bodech К a L. Určete množinu
dotykových bodů T všech takových kružnic kal. (J. Švrček)

A - II - 4

Najděte všechny dvojice přirozených čísel, jejichž součet má poslední čís-
liči 3, rozdíl je prvočíslo a součin je druhou mocninou přirozeného čísla.

(J. Fóldes)
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A - III - 1

Uvažujme libovolné aritmetické posloupnosti reálných čísel (xí)^1
a , které mají stejný první člen a splňují pro některé к > 1 rovnosti

•^k—lVk—l — 42, ХкУк — 30 a £fc-|-\Ук-\-\ — 16-

Najděte všechny takové posloupnosti, pro které je index к největší možný.
(J. Simša)

A - III - 2

Zjistěte, pro která m existuje právě 215 podmnožin X množiny {1,2,
3,..., 47} s vlastností: číslo m je nejmenší prvek množiny X a pro každé

(R. Kučera)x E X platí buď x + m E X, nebo x + m > 47.

A - III - 3

V lichoběžníku ABCD (AB || CD) označme E střed ramene BC. Jsou-li
oba čtyřúhelníky ABED a AECD tečnové, splňují délky stran lichoběž-
niku ABCD označené obvyklým způsobem rovnosti

\+d 1 1 3
1 —

a c
a + c = a

b'

Dokažte. (R. Horenský)

A - III - 4

V rovině je dán ostroúhlý trojúhelník AKL. Uvažujme libovolný právo-
úhelník ABCD, který je trojúhelníku AKL opsán tak, že bod К leží
na straně BC a bod L leží na straně CD. Určete množinu průsečíků S
úhlopříček AC, BD všech takových pravoúhelníků ABCD. (J. Simša)

A - III - 5

Dokažte, že pro libovolná reálná čísla p, q, r, s za podmínek q ф — 1
as / -1 platí: Kvadratické rovnice

x2 + px + q = 0, x2 + rx + s = 0
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mají v oboru reálných čísel společný kořen a jejich další kořeny jsou na-

vzájem převrácená čísla, právě když koeficienty p, q, r, s splňují rovnosti

pr = (q -fi l)(s + 1) a p(q+ l)s = r(s + l)q.

(Dvojnásobný kořen kvadratické rovnice počítáme dvakrát.)
(J. Šimša)

A - III - 6

Rozhodněte, zda pro každé pořadí čísel 1, 2,3,..., 15 lze tato čísla zapsat
nejvýše čtyřmi různými barvami tak, aby všechna čísla stejné barvy tvo-
řila v daném pořadí monotonní (tj. rostoucí nebo klesající) posloupnost.
(Jednočlenná posloupnost je monotonní.) (J. Šimša)
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Řešení úloh

A - I - 1

Zjistíme nejprve, jak vypadají všechny konečné neprázdné množiny M
přirozených čísel s (klíčovou) vlastností ze závěru zadání. Teprve poté
posoudíme, které z těchto množin jsou malé, a určíme počet těch z nich,
které jsou sestaveny z čísel od 1 do 100.

Nechť M je tedy libovolná konečná neprázdná množina přirozených
čísel s vlastností: je-li Max^, pak i \x—y\ E M. Předpokládejme,
že M má právě к prvků, a uspořádejme je podle velikosti od nejmenšího
čísla po největší:

X\ < X2 < X3 < . . . < Xk-

V případě к = 1 splňuje množina M = {xi} danou vlastnost triviálně,
předpokládejme proto dále, že к > 1. Pak číslo X2 — X\ = |x2 — x\ | podle
posuzované vlastnosti patří do M a je menší než X2, takže se musí rovnat
číslu x\. Z rovnosti X2 — xi = x\ dostáváme X2 = 2x\. Analogicky platí:
čísla хз — X2, хз — xi jsou dvě čísla z M, jež jsou menší než X3, přitom
x3-x2 < X3 — x\, takže musí platit X3 — X2 = X\ а X3 — x\ = X2, což spolu
s dokázanou rovností X2 = 2x\ vede к závěru, že X3 = xi + X2 = 3xi.
Ve stejných úvahách můžeme pokračovat a získat rovnosti X4 = 4xi, ..

Xfc = kxi. Formálně lze tyto rovnosti dokázat indukcí: platí-li rovnost
xn — nx 1 pro některé n, 1 ^ n < k, pak úvahou o n číslech

* 5

Xn-}-l Xn <C Xn^.\ X 1 < . . . <C Xn_)_i X\n —

která podle posuzované vlastnosti patří do M a jsou menší než xn+i,
docházíme к závěru, že xn+i — xn = xi, odkud xn+i = xn + xi = nx 1 +
+ xi = (n + l)xi. Důkaz indukcí je hotov. Označíme-li xi = m, plyne
z našich úvah, že zkoumaná k-prvková množina M má nutně tvar

M = {m, 2m, 3m,..., km}. (1)

Na druhou stranu je zřejmé, že taková množina M má požadovanou vlast-
nost, ať jsou přirozená čísla mak vybrána jakkoliv.

Množina M zapsaná v (1) má к prvků, přičemž nejmenší z nich je
číslo m. Podle zadání úlohy je taková množina malá, právě když platí
nerovnost к < m. Zároveň je jasné, že taková množina M je podmno-
žinou množiny (1,2,3,..., 100}, právě když platí nerovnost km ^ 100.
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Naší úlohou je tedy najít počet všech dvojic přirozených čísel k, m, pro
něž platí к < m a km ^ 100. Jak je při řešení obdobných kombinatoric-
kých úloh obvyklé, hledaný počet určíme, když vyhovující dvojice (k,m)
vhodně rozdělíme do menších skupin a určíme počty dvojic v jednotli-
výcli skupinách. V naší úloze se nabízí jednak rozdělení do skupin dvojic
(к, m) se stejnou hodnotou /с, jednak rozdělení do skupin dvojic (/c, m) se
stejnou hodnotou m. (To odpovídá tomu, že původní objekty (množiny
M vyhovující úloze) rozdělíme do skupin buď podle počtu jejich prvků,
nebo podle velikosti jejich nejmenších prvků.)

Uveďme zde oba výpočty. К tomu označme p(k), q{m) počty vyho-
vujících dvojic (/c,m) s daným k, resp. daným m. Uvědomme si, že z ne-
rovností к < m a km ^ 100 plynou odhady l^fc^9a2^m^ 100,
které signalizují, že výpočet pomocí hodnot p(k) bude méně pracný než
výpočet pomocí hodnot q{m).

Při pevném к jsou vyhovující čísla m určena nerovnostmi к + 1 fs
5í m 100/к. Dosazením jednotlivých hodnot к zjistíme, že p( 1) = 99,
P(2) = 48, p(3) = 30, p(4) = 21, p(5) = 15, p(6) = 10, p(7) = 7, p(8) = 4
a p(9) = 2. Hledaný celkový počet je tedy roven

99 + 48 + 30 + 21 + 15 + 10 + 7 + 4 + 2 = 236.

Naopak při pevném m je číslo к omezeno takto: 1 ^ к ^ min{??r — 1,
100/?n}. Odtud vypočteme, že q(2) = 1, q(3) = 2, q(4) = 3,..., q(9) = 8,
9(10) = 9(11) = 9, 9(12) = 8, 9(13) = 9(H) = 7, 9(15) = 9(16) = 6,
9(17) = ... = 9(20) = 5, 9(21) = ... = 9(25) = 4, 9(26) = ... = 9(33) =
= 3, <j(34) = ... = q{50) = 2, q(51) = ... = q( 100) = 1. Hledaný počet
je tedy roven

l + 2 + ... + 8 + 2- 9 + 8 + 2- 7 + 2- 6 + 4- 5 + 5- 4 + 8- 3 + 17-2 + 50= 236.

Při výpočtu jednotlivých hodnot q{m) je výhodné si uvědomit, že
pro každé přirozené m ú 10 platí nerovnost m— 1 < 100/m, zatímco pro
každé m ^ 11 platí opačná nerovnost m — 1 > 100/m.

A - I - 2

Označme O střed daného čtverce ABDC (obr. 17). Protože bod M leží
na zmíněném oblouku, má úhel AMВ velikost rovnou polovině velikosti
středového (pravého) úhlu АОВ, tedy 45°. Protože stejnou velikost má
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ve čtverci ABCD úhel BDC, je pod úhlem 45° z bodů D, M vidět
tutéž úsečku PS. Protože navíc oba body D, M leží ve stejné polorovině
s hranicí PS, je PSMD tětivový čtyřúhelník. Jeho vnitřní úhel DMS
je pravý (bod M totiž leží na Thaletově kružnici nad průměrem BD),
takže je pravý i vnitřní úhel DPS. Tak jsme dokázali, že PS J_ BD. Zcela
obdobně se ukáže, že QR T AC. Z posledních dvou vztahů již plyne, že
PS .LQR (neboť AC 1 BD).

A - I - 3

Úpravou rovnic „doplněním na čtverce11

a)2 = a2 — b,

(nebo přímým užitím známého vzorce s diskriminantem) zjišťujeme, že
dané rovnice mají v oboru К kořeny, právě když celá čísla a, b splňují
podmínku a2 — b ^ 0; tyto kořeny pak tvoří dvojice

(;у + a)2 = a2 — b(x (1)

{xi, X2} = {a + у/a2 — b, a — уa2 — b},
Í2/1,У2} = {-a+ Va2 -b, -a - у/a2 - b}.

Nyní stojíme před otázkou, jak efektivně (tj. bez stereotypního
opakování obdobných výpočtů) určit všechny čtyři hodnoty výrazu
V = xiyi — Х2У2, který lze zapsat poněkud neurčitě jako

(a ± \Jo? — b) (—a ± \/a2 — 6) — (a ± у/a2 — b) (—a ± yja2 — 6),

66



kde při prvním a třetím výskytu znaku ±, stejně jako při druhém a čtvr-
tém, vybíráme navzájem opačná znaménka. Naznačíme tři možné přístu-
py. (Celá diskuse bude sice delší, než kdybychom vypsali výpočet všech
čtyř různých výrazů, ale o to nám v komentáři nejde.)

(i) Zvolíme-li pevně označení x\, X2, yi, У2, stačí vypočítat dvě hod-
noty Vi = xiyi — Х2У2, V2 = Х1У2 — Х2У1, ostatní dvě hodnoty jsou к nim
opačná čísla V3 = Х2У2 — Х1У1 — — V\ a V4 = Х2У\—Х\У2 — —V2. Oddělený
výpočet obou hodnot V\, V2 však není nezbytný, jak hned uvidíme.

(ii) Výběr znamének pro čísla x\ a y\ lze zapsat ve tvaru xi = a -f
+ £л/а2 — b a yi = — a-f бл/a2 — 6, kde koeficienty e a 6 jsou čísla z mno-

žiny { — 1,1}. Pak X2 = а — £yjа2 — 6, У2 = —а — S\/a2 — b a stačí pro-
vést jediný výpočet s obecnými e, á (pro stručnost zápisu označíme ještě
c = \/a2 — b):

Х\У\ — Х2У2 = {а + £с)(—а + 6с) — (а — ес)(—а — ác) =

= (—а2 — гас + бас + £0с2) — (—а2 + еас — <5ас + £<5с2) =
= — 2а(е — 6)с.

Protože £ — 6 nabývá hodnot —2, 0 a 2, hodnoty výrazu V = x\y\ — Ж2У2

jsou právě čísla 4ауа2 —6, 0 a —4а\/а2 — b.(iii)Výběr znamének pro čísla x\ a y\ můžeme vyřešit zápisy x\ =
= а 4- и a yi = —а + u, kde и a v jsou reálná čísla splňující rovnosti
u2 = u2 = a2 — 6. (Dodejme, že čísla jsou vlastně základy druhých
mocnin v rovnicích (1), nebo též čísla £\/a2 — b, á\/a2 — b z předchozího
odstavce.) Potom platí X2 = а — и, У2 = —a — v a

V = xiyi — Х2У2 = (а + u)(—а + v) — (a — u)(—a — v) — —2a(u — u).

Protože hodnoty и — v za podmínky u2 = v2 — a2 — b jsou —2\Ja2 — b, 0
a 2\/a2 — b, docházíme ke stejnému závěru jako v (ii).

Po výpočtu hodnot výrazu V zjišťujeme, že rovnost х\у\ — Х2У2 —

— 4к nastane, právě když 4к 6 {—4а\/а2 — 6,0,4аVa2 — 6}. Protože к je
přirozené číslo, je а ф 0 a poslední podmínka je ekvivalentní s rovností

к = |а|\/а2 — Ь. (2)

která je rozkladem čísla к na součin dvou činitelů, jež musejí být rovněž
přirozená čísla. (Číslo \Ja2 — b je rovno zlomku k/\a\, takže je to číslo
racionální, a tudíž číslo celé.) Proto můžeme všechna celočíselná řešení
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(a, 6) rovnice (2) snadno popsat: vezmeme libovolný rozklad к -

■ n daného čísla к na dva (kladné) činitele m, n a z rovností |a|
a \/a2 — b = n snadno určíme obč vyhovující dvojice (a, b):

i 2 2b — m — n .

rn ■

m

(3)a — ±ra

Nyní již máme všechno připraveno к řešení otázek původní úlohy.
Část a). Protože pro činitele m, n z libovolného rozkladu к = m ■ n

platí m ^ к a n ^ 1, plyne ze vzorce (3) odhad b č rn2 — 1, přitom
rovnost nastane, když zvolíme m = к a n = 1. Pro dané к je tedy
největší hodnota b rovna b

Část b). Pro к = 2 004 existuje právě 12 uspořádaných dvojic (m,n),
pro něž 2 004 = m ■ n, neboť všech rozkladů čísla 2 004 na dva činitele
(nehledíme-li na jejich pořadí) je právě šest: 1 • 2 004 = 2-1 002 = 3 •
• 668 = 4 ■ 551 = 6 • 334 = 12 • 167. Protože můžeme dvěma způsoby
volit znaménko čísla a ve vzorci (3), hledaný počet dvojic (a, b) je roven
dvojnásobku počtu dvojic (m,n), tedy číslu 2 • 12 = 24.

Část c). Naším úkolem je určit součet čísel b z dvojic (a, b) určených
vzorci (3), probíhají-li dvojice (m,n) všechny rozklady к = m- n daného
čísla k. Je-li m = n, platí podle (3) 6 = 0, proto můžeme uvažovat jen
takové dvojice činitelů (m,n), ve kterých m ^ n, a sdružit je do párů
(m, ?г) a (n,m). Protože v každém páru pro součet příslušných hodnot 6
platí (rn2 — n2) + (n2 — m2) — 0 (jak pro jednu, tak pro druhou volbu
znaménka čísla a), je hledaný součet čísel 6 ze všech uvažovaných dvojic
(a, 6) roven nule (pro každé pevné k).

= к2 - 1.max

A - I - 4

Označme c, d diference první, resp. druhé z daných aritmetických po-

sloupností. Protože podle zadání platí y\ = xi, mají členy obou posloup-
ností obecné vyjádření

— x\ + (г — l)c a yi = X\ + (г — 1 )d

pro každý index i. Rozdíl x2 — y2 lze proto upravit do tvaru

A ~ Ví = (A + 2xi(i - l)c + (г - l)2c2) -
— (x2 + 2xi(i — 1 )d + (г — l)2d2) =

= 2x\(i — l)(c — d) 4- (г — l)2(c2 — d2).
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Pro index к podle zadání úlohy platí soustava rovnic

53 = 2x\ (k — l)(c — d) + (к — 1 )2(c2 — d2),
78 = 2xi{k -2)(c-d) + (k - 2)2(c2 - d2),
27 = 2x\k(c — d) + k2(c2

(1)
(2)

d2). (3)

Tyto rovnice či jejich násobky teď vhodně navzájem sečteme. Abychom
se zbavili členů s xi, odečteme od dvojnásobku rovnice (1) součet rovnic
(2) a (3), neboť u členu 2xi(c — d) pak zůstane koeficient 2(k — 1) — (k —

-2 + k) = 0. Protože 2-53-(78+ 27) = 1 a 2(k-l)2 - (k-2)2-k2 = -2,
dostaneme zmíněnou kombinací jednoduchou rovnici 1 = —2(c2 — d2), ze
které určíme c2 — d2 = — i. To dosadíme do rovnic (2) a (3), které tak
přejdou do tvaru

78 = 2xi(k - 2)(c -d)-^{k- 2)2
27 = 2x\k(c — d) — -^A:2.

(2')

(3')

Členů s x\ se opět zbavíme, když od A;-násobku rovnice (2') odečteme
(к — 2)-násobek rovnice (3;); získanou rovnici s neznámou к pak vyřešíme:

-1-(k-2f-k+1-e-(k-2),
51к + 54 = — — 4A:2 + 4A;) + - (A:3 — 2k2),

0 = k2 - 53A: - 54,
0 = (k + 1)(A: - 54).

78k - 27{k - 2)

Protože index к je přirozené číslo, platí nutně к = 54. Tím je úloha
vyřešena.

Dodejme, že zadání úlohy nevyžaduje zkoumat, zda pro nalezenou
(jedinou) hodnotu indexu к dvojice posloupností splňujících podmínky
úlohy existuje. Pro zajímavost uveďme, že takových dvojic posloupností
je dokonce nekonečně mnoho; je nutné a stačí, aby jejich společný první
člen xi a diference c, d splňovaly podmínky c2 — d? = —4 axi(c-íí) = .

Plyne to snadno z kterékoliv z rovnic (1)—(3) po dosazení hodnot к = 54
a c2 — d? = — 4, přesvědčete se sami.
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A - I - 5

Označme obvyklým způsobem a, b, c, d délky stran daného lichoběžníku.
Podle zadání platí rovnost a — 2c, jež znamená, že základna CD je
střední příčkou trojúhelníku ABF, kde F je průsečík ramen ВС a AD
prodloužených za vrchol C resp. D (obr. 18). Proto též platí \CF\ = b
a \DF\ = d.

V první části řešení předpokládejme, že \AB\ = \BC\ neboli 2c — b
(obr. 19). Pak \CF\ = b — 2c a \EB\ = \EC\ = ^b = c, takže trojúhelníky
ABE a FCD (jež jsou na obr. 19 vybarveny) jsou shodné podle věty sus

(jejich strany délek 2c a c svírají souhlasné úhly, vyťaté přímkou BC
mezi rovnoběžkami AB a CD). Ze shodnosti třetích stran AE a, FD pak
plyne rovnost \AE\ = d. Tak přicházíme к závěru, že strany čtyřúhelníku
AECD mají délky d, c, c, d; jde tudíž o tečnový čtyřúhelník (dokonce
deltoid, případně kosočtverec).

i \
i \

/ ' и\b
\

d
i
i

i \
i \

cD C

d b

A а = 2c В A В A В2c 2c

Obr. 18 Obr. 19 Obr. 20

V druhé části řešení předpokládejme, že čtyřúhelník AECD je teč-
nový, takže podle známé věty pro délky jeho stran platí rovnost \AE\ +
+ \CD\ — \EC\ + |v4D|, neboli x + c — ^b + d, kde x = \AE\ (obr. 20).
Odtud vyjádříme délku x, se kterou budeme dále pracovat, ve tvaru

b
- — c + d.

Všimněme si nyní, že úsečky CD, АС a AE dělí trojúhelník ABF na čtyři
trojúhelníky téhož obsahu. (Podrobněji: z \AD\ = \DF\, \BC\ — \CF\

(1)x =

70



a IBE\ = \EC\ plyne řetězec rovností Sadc — Scdf — \Sacf =
= \Sabc — Sabe = Sace-) Proto pro obsahy čtyřúhelníku AECD
a trojúhelníku AEF platí úměra Saecd '■ Saef = 2:3. Tyto dva
mnohoúhelníky však mají společnou vepsanou kružnici, takže ve stejném
poměru 2 : 3 musí být i jejich obvody (připomeňme, že obsah mnoho-
úhelníku s obvodem o a vepsanou kružnicí o poloměru g je roven \o • g).
Protože tyto obvody mají vyjádření

36b

2 + c + d, OAEF = X + — + 2d,

platí úměra (x + ^b + c + d) : (x + §b + 2d) — 2 : 3, ze které snadno
vyjádříme neznámou x jako

oaecd —x +

36
(2)—— 3c + d.x =

Porovnáním (1) a (2) dostaneme rovnost 6 = 2c, neboli b = a. Tím je
rovnost \AB\ — \BC\ dokázána.

Jiné řešení. (Pavel Novotný) Připomeňme nejdříve vyjádření délek
těžnic trojúhelníku pomocí délek jeho stran: v obecném trojúhelníku
ABC při obvyklém označení platí vzorec

4t2c — 2a? -f 262 — c2. (1)

Odvození (1) je snadné: stačí sečíst rovnosti

/ 1 \ 2
= (-cj +tc+ct62 — ctc cos ca, a2 c cos a;

které platí podle kosinové věty pro trojúhelníky ACC\ a BCCi, kde C\
je střed strany AB a u> = \^.AC\C\ (obr. 21).

A Iе Cl
Obr. 21

В
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V daném lichoběžníku ABCD (v němž platí a — 2c) uvažujme kromě
středu E ramene BC ještě střed S základny AB a označme x

= \AC\ (obr. 22). Protože |ASj = \SB\ = |a = c, je ASCD rovno-
\AE |

а и

běžník, tudíž |CSj = d. Nyní podle vzorců (1) vyjádříme délky těžnic
AE a CS trojúhelníku ABC:

4x2 2u2 + 2(2c)2 — b2 a Ad2 = 2u2 + 262 - (2c)2.

Vzájemným odečtením těchto rovnic vyloučíme veličinu и a dostaneme

4(x2 — d2) = 3(4c2 — b2), neboli 4(x — d)(x + d) — 3(2c — b)(2c + b).

Odtud plyne, že znaménko rozdílu x — d je vždy stejné jako znaménko
rozdílu 2c— b. Ukažme, že z tohoto poznatku plyne celé řešení naší úlohy.
Použijeme к tomu známé kritérium pro tečnové čtyřúhelníky: čtyřúhelník
AECD je tečnový, právě když se rovnají oba součty délek jeho protileh-
lých stran, tj. právě když x + c — d + ^b.

Je-li b = 2c, pak podle našeho poznatku x = d, a tedy AECD je
deltoid (případně kosočtverec). (Rovnost x + c = d + \b tehdy platí
dokonce „sčítanec po sčítanci“.)

Je-li b > 2c, pak podle našeho poznatku x < d, a tedy x + c < d+\b,
takže čtyřúhelník AECD není tečnový.

Je-li b < 2c, pak podle našeho poznatku x > d, a tedy x + c>d+|6,
takže čtyřúhelník AECD není tečnový.

Další řešení. V lichoběžníku ABCD, v němž platí a — 2c, uvažujme
kromě středu E ramene BC a průsečíku F prodloužených ramen BC,
AD ještě průsečík G přímek AE, CD (obr. 23). Snadno vysvětlíme, že
úsečky EF a DG jsou těžnice trojúhelníku AFG (a bod C jeho těžiště).

72



A В2c

Obr. 23

Platí-li rovnost b — 2c, jsou tyto těžnice shodné, a proto je trojúhelník
AFG rovnoramenný se základnou FG, tudíž AECD je deltoid (nebo
kosočtverec). Lze-li naopak čtyřúhelníku AECD vepsat kružnici, je tato
kružnice vepsána i oběma trojúhelníkům AEF a ADG, jež mají shodné
obsahy (totiž rovné vždy polovině obsahu trojúhelníku AFG). Pak se
ovšem musí rovnat i jejich obvody, což pro délku x
rovnici

\AE\ = \EG\ dává

36
T 2d — 2x -\- 3c T dx +

ze které vychází vyjádření neznámé x ve tvaru (2) z prvního řešení. Stejně
jako tam pak dojdeme к rovnosti 6 = 2c.

Nad obrázkem 23 lze uvažovat i takto: čtyřúhelník AECD bude teč-
nový, právě když splynou kružnice vepsané trojúhelníkům AEF a ADG.
Tyto trojúhelníky mají totožná ramena vnitřních úhlů při společném
vrcholu A, takže jejich vepsané kružnice splynou, právě když budou mít
shodné poloměry. To je však ekvivalentní s tím, že oba trojúhelníky mají
stejný obvod (vždy totiž mají stejný obsah). Protože společná část hranic
trojúhelníků AEF a ADG je tvořena lomenou čarou EAD, rovnají se je-
jich obvody, právě když platí rovnost \DF\ + \FE\ = \DG\ + \GE\. Protože
DE || FG, je z úvahy o elipse s ohnisky D, E jasné, že odvozená rovnost
nastane, právě když úsečky DE a FG mají společnou osu souměrnosti
(a AECD je pak deltoid, případně kosočtverec).
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A - I - 6

Předpokládejme, že /: (0, +оо) —> (0, +оо) je libovolná z hledaných funk-
cí. Dosadíme-li do dané rovnice hodnotu у = la číslo x ^ 0 ponecháme
libovolné, dostaneme

/(*/(l»/(D = /(ífl)
Vzhledem к tomu, že /(1) = 0 podle podmínky b), poslední rovnost
znamená, že

f(—-—) = 0 pro každé x ^ 0.
\x + 1 /

Vidíme, že funkce / nabývá hodnoty nula ve všech bodech definičního
X

s vhodným x ^ 0. Každý
x -t- 1

takový zlomek jistě leží v intervalu (0,1), naopak pro každé reálné číslo
X

nezáporné řešení x =
x + 1

Zjištěný poznatek spolu s podmínkou c) ze zadání úlohy vede к zá-
věru, že rovnost f(t) = 0 platí, právě když t 6 (0,1). Abychom určili
(kladnou) hodnotu f(t) pro pevné t > 1, uvážíme dvě rovnice s takovým
parametrem t a neznámou x, totiž rovnice

oboru, které lze vyjádřit ve tvaru zlomku

t 6 (0,1) zřejmě má rovnice t =
1 - t

a

Protože podle zadání úlohy se levé strany obou rovnic rovnají (zvolme
у = t v dané funkcionální rovnici) a f(t) > 0, musí mít obě rovnice
stejné množiny řešení. Pro první z nich je tato množina určena soustavou
nerovnic 0 ^ x f(t) ^ 1, takže tvoří interval ^0, druhá rovnice je

xt
ekvivalentní se soustavou nerovnic 0 <

x + t > 0) tvoří interval ^0
Z totožnosti obou intervalů plyne rovnost

5Í 1, jejíž řešení (s ohledem
x +1

t
na ’

t - 1

t - 11 t
neboli f(t) —

/(i) t - 1 t

Našli jsme hodnotu f(t) pro každé t > 1. Můžeme tedy shrnout, že
hledaná funkce / musí mít tvar

(o <; t й 1),

- (t> i).

0

f(0 = < t -

t
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Nyní ještě ukážeme, že funkce / určená posledním předpisem má
skutečně vlastnost a) ze zadání úlohy (vlastnosti b) a c) jsou zřejmé).
Rovnosti obou stran

L = f(xf{y))f{y), P =

dané funkcionální rovnice dokážeme v každém ze čtyř případů rozlišených
xy

podle možných hodnot proměnné у a zlomku
x + y

(ii) o < у ^ 1,

(iv) у > 1 a

(i) у = 0 (a a; > 0),

x + y

xy
(iii) у > 1 a > 1.

x + y

= 0, takže rovněžPřípad (i). Z у = 0 plyne f(y) = 0 a

f(—---Л = 0, tudíž L = P = 0.Vx + у )
Případ (ii). Z 0 < у ^ 1 plyne ^ < 1, takže opět L — P = 0.

x + y

Případ (iii). Z у > 1 a ^ 1 plyne a: ^
x + y у 1

platí nerovnost x f{y) ^ 1, tudíž opět L — P — 0.
xy у

> 1 plyne x >
1/ -1

x + y

takže s ohledem na

hodnotu /(y) = -— 1
Případ (iv). Z у > 1 a

na hodnotu /(y) = ——- platí nerovnost x f(y) > 1, tudíž

^il-i

, takže s ohledem
x + y

x ■

У ~ 1 xy — x — уУL -

У - 1 У xyX •

У
xy

- 1
£ + У xy — x — уp =

xy xy
x + y

Rovnost L = P je tak dokázána ve všech případech.

A - S - 1

Posuďme otázku, pro které celočíselné aritmetické posloupnosti (a*)^
existují indexy i,j £ {1,2,..., 10} takové, že = 1 a aj = 2005. Zdů-
razněme, že taková dvojice indexů (z, j), pokud vůbec existuje, je jediná,
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neboť v nekonstantní aritmetické posloupnosti se každé číslo vyskytuje
nejvýše jednou.

Předpokládejme, že zmíněné indexy i a j známe, a pomocí nich vyjá-
dřeme první člen a\ a diferenci d dotyčné posloupnosti. Protože obecný
člen aritmetické posloupnosti má vyjádření = a\ + (k—l)d, dostáváme
soustavu rovnic

CLi — ci\ + (i — l)d - 1 aj — ai + (j — 1 )d — 2 005,a

kterou snadno vyřešíme vzhledem к neznámým a i, d:

2 004(г - 1)2 004
d = a ai = 1 —

3 - i j ~ i

Takové hodnoty a i, d jsou celá čísla, právě když je přirozené číslo |j — i\
dělitelem čísla 2 004, takže |j — i\ musí být jedno z čísel 1, 2, 3, 4 nebo 6
(z podmínky i,j G {1,2,..., 10} totiž plyne |j — г| < 10 a číslo 2004 jiné
jednomístné dělitele nemá). Hledaný počet posloupností je proto roven

počtu dvojic indexů (г, j) vybraných z množiny {1,2,..., 10}, pro které
platí |j — i\ G {1, 2, 3, 4, 6}. Takových dvojic (г, j) je po řadě 2 • 9, 2 • 8,
2 • 7, 2 • 6 a 2 • 4, takže všech posloupností je 18 + 16 + 14 + 12 + 8 = 68.

A - S - 2

Rovnoběžník ABCD je útvar středově souměrný podle průsečíku S úhlo-
příček AC, BD (obr. 24). Proto jsou podle středu S souměrně sdružené
trojúhelníky ACD a CAB, tudíž i jejich kružnice vepsané a odpovídající

D C

JV M.

s
к

L

вA

Obr. 24

si body dotyku К a M. Totéž platí i o dvojici bodů L a N. Docházíme
tak к závěru, že KLMN je rovnoběžník. (Možnosti К = M — S nebo
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L = N == S jsou vyloučeny podmínkou \AB\ > \BC\, jež zaručuje, že
zmíněné trojúhelníky nejsou rovnoramenné se základnou AC nebo BD,
takže se vepsané kružnice nedotýkají těchto stran v jejich středu.)

Provedená úvaha o středové souměrnosti však nestačí к důkazu toho,
že rovnoběžník KLMN je obdélník, tj. že má shodné úhlopříčky KM
a LN. К tomu budeme muset provést výpočet založený na známých
vzorcích, které vyjadřují vzdálenosti vrcholů obecného trojúhelníku od
bodů dotyku kružnice vepsané pomocí délek stran tohoto trojúhelníku
(obr. 25):

\EF\ + \EG\ - \FG\
x = \ER\ — \EQ\ = 2

\FG\ + \FE\ - \EG\
у = \FP\ = \FR\ = 2

\GF\ + \GE\ - \EF\
= \GP\ = \GQ\ = 2

Připomeňme, že tyto vzorce plynou ze soustavy rovnic

x + y=\EF\, у + z — \FG\, x + z — \EG\.

Vraťme se к naší úloze a v daném čtyřúhelníku ABCD označme ještě
délky a = \AB\ = \CD\, b = \BC\ = \AD\, e = \AC\ а / = \BD\. Podle
vzorců uvedených vedle obr. 2 platí rovnosti

e + b — a f + b - a
\AK\ = 2 = \CM\ 2\BL\a

Z předpokladu úlohy a > b proto plyne \AK\ < \e = \AS\, takže bod К
leží mezi body A a S a má od středu S vzdálenost

\I<S\ = \AS\ -\AK\ = |
Obdobně vyjde, že body L, M, N leží po řadě na úsečkách BS, CS, DS
a platí rovnosti \LS\ = \MS\ = lAT^I = |(a—b). To dohromady znamená,
že čtyřúhelník KLMN má shodné úhlopříčky, které se navzájem půlí; je
to tedy obdélník. (Kdyby to byl čtverec, muselo by platit KM X LN,
tedy АС X BD, což je ve sporu s tím, že a ý b.)

e + b — a a — b

2 2
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Dodejme, že v předchozím odstavci jsme podali úplné řešení, které
nevyžaduje úvahy o středové souměrnosti z úvodního odstavce.

A - S - 3

Po vydělení (kladným) číslem к + ^ a úpravě zlomků dostaneme ekviva-
lentní soustavu nerovnic

k2(k - 2) /c3(/c -f 3)
k2 + 1 ‘

< x < (1)k2 + 1

Abychom určili, mezi kterými celými čísly leží oba zlomky z (1), vydělíme
nejprve (se zbytkem) mnohočleny z jejich čitatelů mnohočlenem ze jme-
novatele:

(,к3 - 2к2) : (к2 + 1) = к - 2
(/с4 + ЗА;3) ; (к2 + 1) = к2 4- ЗА — 1, zbytek — 3/c + 1.

zbytek — к + 2,

Oba výsledky dělení dosadíme do (1):

к — 3/с - 1
2 — ——— ^ х < /с2 + 3/с — 1

кг + 1
(2)/с -

/с2 + 1

Pokud pro „zbytkové členy“ z obou krajních výrazů budou platit nerov-
nosti

. k-2
°- WTi

budou řešeními soustavy (1) právě ta celá x, pro která platí /с — 2 ^ x ^
5í k2 + 3/c — 2. Takových ж je

3/c - 1
< 1 (3)< 1 0 <a

к2 + 1

(/c2 + 3/c - 2) - (k - 2) + 1 = (/с + l)2,

což je právě počet uvedený v zadání úlohy.
Snadno vysvětlíme, že nerovnosti (3) platí pro každé к ^ 2. Tehdy

totiž máme 05=/c — 2</c + l </c2 + l, odkud plyne levá část (3). Pravá
část (3) je zřejmá pro každé к ^ 3 (neboť tehdy 0 < 3/c — 1^/c2 — 1<
< /с2 -hi); pro к — 2 platí 3/c—1 = 5 =/с2+ 1, takže v (3) úplně napravo
nastane rovnost.

Ještě je nutné zjistit, zda požadovanou vlastnost nemá i „zbylé“ při-
rozené číslo к — 1; pro ně však má soustava (1) tvar — \ ^ x ú 2, takže
má v celých číslech právě tři řešení, což je méně než (1 -f l)2 = 4.
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Závěr: Hledaná к jsou všechna přirozená čísla větší než 1.
Poznámka. Přesný počet celých čísel x, jež leží v intervalu (1), nelze

určit z pouhé délky tohoto intervalu, neboť ani tato délka, ani žádný z

krajních bodů intervalu není celé číslo. Není těžké ověřit ekvivalentními
úpravami, že pro délku intervalu (1) při každém к > 2 platí nerovnosti

k3(k + 3) k2(k — 2)
к2 + 1 k2 -f 1

(fc + l)2-l< <(/; + i)2. (4)

Z nich ovšem plyne pouze, že počet celých čísel v intervalu (1) je roven
buď číslu (к + l)2 — 1, nebo číslu (к + l)2. К přesnému určení tohoto
počtu se zdá být nezbytné určit nejmenší celé číslo (k — 2) a největší celé
číslo (к2 + 3/c — 2), která v daném intervalu leží.

A - II - 1

Po vynásobení kladným číslem 4(a + l)(b + l)(c + 1) postupnými ekvi-
valentními úpravami dostaneme:

4a(c+ 1) -f 4b(a +1) + 4c(b+ 1) ^ 3(a + 1 )(b + l)(c + 1),
4(ac + c) + 4(a6 + 6) + 4(6c + c) ^ 3(ab + a + b+ l)(c+ 1),

4(ab + ac + bc 4- a + b + c) ^ 3(a6c + ab + ac + bc + a + b + c + 1),
ab + ac + bc+a + b+cíl 3(abc + 1).

Protože abc = 1, dostaneme po dosazení do pravé strany poslední nerov-
nosti nerovnost

ab + ac + bc + a + b + c > 6.

Dosadíme-li ještě do levé strany ab = -
c

nerovnost

(1)
1' 1

,
— a bc = —, dostaneme
o a

ac —

(a+i) + (6+i) + (c+-) že.
která platí, neboť hodnota každé závorky v levé straně je alespoň 2.
Pro každé t > 0 je totiž splněna nerovnost t + t~1 ^ 2, v níž nastane
rovnost, právě když t = 1. (Tento známý fakt lze zdůvodnit např. úpravou
nerovnosti (\/ř — Vt~1)2 ^ 0, nebo se lze odvolat na nerovnost mezi
aritmetickým a geometrickým průměrem dvou navzájem převrácených
čísel.) Zároveň vidíme, že rovnost v nerovnosti (1), a tedy i v nerovnosti
z textu úlohy nastane, právě když platí a = b = c = 1. Tím je řešení celé
úlohy ukončeno.
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Dodejme, že za předpokladu abc — 1 nerovnost (1) plyne přímo z ne-
rovnosti mezi aritmetickým a geometrickým průměrem šestice čísel ab,
ac, bc, a, b, c:

ab + ac + bc a -\- b c
Vabc = 1.^ v/ab ■ ac ■ bc ■ a ■ b ■ c

6

A - II - 2

Odečteme-li od první rovnice rovnici druhou, dostaneme postupnými
úpravami:

(xxy + xz + x) - (yz + xy + y) — (y 2 + z2 - 5) - (22 + x2 - 5),
(x - y)z + X - у = (y - x)(y + X),

(x - y)(x + y + z + 1) = 0.

Analogicky odvodíme rovnosti

(y — z)(x + y + 2 + l) = 0 a (x — z){x + у -f z + 1) = 0. (1)

Ve všech třech odvozených rovnicích vystupuje činitel x + у + z + 1.
Rozlišíme proto, zda je roven nule, či nikoliv.

A. Nechť x + у + z + l = 0. Pak můžeme původní soustavu rovnic
zapsat takto:

x ■ (-x) = y2 + 22 - 5, у • (-у) = z2 + x2 - 5,
z ■ (—z) — x2 + y2 — 5.

Vidíme, že celá soustava je ekvivalentní s jedinou rovnicí x2 +y2 + z2 = 5,
která (vzhledem к nezápornosti druhých mocnin) má v oboru celých čí-
sel pouze taková řešení, že trojice (ж2,у2,22) je (až na pořadí) trojice
(4,1,0), takže (x,y,z) je permutace některé z trojic (±2, ±1,0). Zna-
ménka čísel x, y, 2 snadno určíme z podmínky ж±у±2±1 = 0: vy-

hovuje jedině trojice (—2,1,0) a libovolná její permutace. V případě A
tedy dostáváme právě šest řešení dané soustavy.

B. Nechť rr±y±z±l ф 0. Pak z rovnic odvozených v úvodu ře-
šení vyplývá, že platí x = у = z. Tehdy rovnice dané soustavy splývají
v jedinou rovnici x(2x ± 1) = 2x2 — 5, které vyhovuje pouze x = —5.
V případě В tedy máme jediné řešení x = у = z — — 5.
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Dodejme, že v první části řešení jsme mohli rovněž původní soustavu
rovnic upravit do tvaru

2 , 2 i 2
ar + у + г 5 = х(ж + у + 2 + 1) =

= у{х + У + 2 + 1) =

= z(x + у + z + 1).
(2)

Odtud opět dostáváme, že platí buď x + у + z + 1 = 0, nebo x — у — z.

Odpověď: Soustava má sedm řešení: trojici (—5,—5,—5), trojici
(—2,1,0) a její libovolnou permutaci.

A - II - 3

Ukážeme, že hledanou množinu tvoří body /(aLa dále vnitřní body
oblouku KL kružnice m(M, \MK\) a oblouku K'L' středově souměrně
sdruženého s obloukem KL podle středu M (obr. 26).

Dokažme nejdříve, že přímka MT (obr. 27) je (vnitřní) společnou teč-
nou kružnic /га/. Připusťme, že přímka MT protne kružnici к v bodech
T, T\ a kružnici l v bodech T, T2. Pro mocnosti bodu M (je to bod tečny,
proto leží ve vnější oblasti každé z obou kružnic к a /) к oběma kružnicím
platí

\MT\ ■ \MTi\ = \MK\2 - \ML\2 = \MT\ ■ \MT2\
odkud \MT\ \ — \MT2\. Protože oba body 7\, T2 leží 11a téže polopřímce
MT, plyne odtud T\ =T2. Obě kružnice к a / však mají společný jediný
bod, takže Ti = T2 = T. Proto je MT společná tečna obou kružnic
a navíc |MT| = \MK\ = |ML|, bod T tedy leží na kružnici m(M, \MK\).

81



Protože přímka MT obě kružnice odděluje, neleží body К a L uvnitř
téže poloroviny určené přímkou MT, přímka MT protíná stranu KL
trojúhelníku KLM, a proto bod T leží na jednom z kratších oblouků
KL, K'L' kružnice m.

Je-li naopak T libovolný vnitřní bod jednoho z těchto oblouků
(obr. 28), leží sousední konvexní úhly KMT a LMT na opačných stra-
nách společného ramene MT. Z rovností \MK\ = \MT\ a |MT| = |MT|
pak plyne, že do zmíněných úhlů lze vepsat kružnice tak, aby se dotkly
ramen příslušného úhlu v bodech К a T, resp. L a T. To jsou vyhovující
kružnice к, l s dotykovým bodem T.

V
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Je-li T = К, vyhovuje libovolná kružnice к dotýkající se přímky MK
v bodě К a ležící v polorovině MKL' a kružnice l dotýkající se ramen
úhlu КML v bodech К a L (ta je určena jednoznačně). Analogicky
sestrojíme vyhovující kružnice к a l pro bod T — L.

Bod K' ani bod L' do hledané množiny patřit nemohou, protože K'
leží na tečně KM к libovolné z kružnic к a analogicky bod L' leží na
tečně LM к libovolné z kružnic l.

A - II - 4

Označme x а у hledaná čísla, přičemž x > y. Protože p = x—y je prvočíslo
a pro největší společný dělitel d čísel x а у platí d \ (x — y) neboli d \ p,

je buď d = p, nebo d — 1.
Kdyby platilo d = p, měli bychom y = kpax = y + p — (k + l)p

pro vhodné přirozené к, takže součin xy by se rovnal číslu k(k + 1 )p2.
To ale není druhá mocnina přirozeného čísla (dále stručněji „čtverec")
pro žádné k, neboť číslo k(k -f 1) není nikdy čtverec.1 Musí proto být
d — 1, takže čísla x а у jsou nesoudělná. Jejich součin xy je pak čtverec
jedině v případě, kdy oba činitelé jsou čtverce, tedy x — и2 а у — v2 pro
vhodná u, v G N, и > v, odkud p — x — y — (u — v)(u + v). Takový rozklad
prvočísla p na součin má jediné možné činitele u — v = lau-\-v = p.
Odtud snadno plynou rovnosti и — |(p+l) a v = \(p — 1), z nichž pro
součet s = x 4- у získáme vyjádření

5 = X + у = и2 + v2

Dekadický zápis čísla s podle zadání končí číslicí 3, takže zápis čísla p2 + l
(rovného číslu 2s) končí číslicí 6. Zápis čísla p2 proto končí číslicí 5, je
tedy násobkem pěti, což nastane jedině pro prvočíslo p = 5. Dosazením
této hodnoty do odvozených vzorců dostaneme и = 3, v = 2, x — 9
а у = 4. Zkouška je triviální: 9 — 4 = 5, 9 + 4 = 13, 9 • 4 = 62.

Odpověď: Podmínkám úlohy vyhovuje jediná dvojice čísel 9 a 4.

1 Platí totiž k2 < k(k + l) < (fc+1)2, takže číslo A;(fc+1) leží mezi dvěma sousedními
čtverci. Jiné vysvětlení lze založit na tom, že čísla k, Zc+1 jsou navzájem nesoudělná,
takže by obě musela být čtverci lišícími se o 1. Takové čtverce však neexistují.
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A - III - 1

Označme c, resp. d diference hledaných posloupností, takže z vyjádření
Xi = xi + (i — 1 )c a yi = x\ + (i — 1 )d pak dostaneme pro každé i rovnost

XíUí = x\ + (i — l)xi (c + d) + (г — l)2cd.

Budeme se tedy zabývat otázkou, kdy pro některý index к > 1 platí
soustava rovnic

x2 + (k — 2)x\(c + d) + (k — 2 )2cd = 42,
xí + (k — l)xi (c + d) + (к — 1 )2cd = 30,

x\ + kx i (c + d) + k2cd = 16.

(1)
(2)
(3)

Odečteme-li od dvojnásobku rovnice (2) součet rovnic (1) a (3), dosta-
neme po úpravě rovnost cd = —1. Odečteme-li od rovnice (3) rovnici (2),
obdržíme vztah

x\ (c + d) + (2к — 1 )cd = —14,

z něhož po dosazení hodnoty cd—— 1 dojdeme к rovnosti

x’i (c + d) = 2k — 15. (4)

Dosazením tohoto výsledku do rovnice (3) dostaneme vztah

x\ + к{2к — 15) — к2 = 16,

ze kterého vyjádříme x2 jako kvadratickou funkci indexu к:

x\ = 16 - k(2k - 15) + k2 = 16 + 15/c - k2 = (Ze + 1)(16 - /г).

Protože ж2 ^ 0 а к > 1, plyne z posledního vzorce odhad к ^ 16.
V případě к = 16 ovšem vychází si = 0 a rovnost (4) pak přejde do
tvaru 0(c + d) = 2, což není možné. Pro к — 15 dostaneme x2 = 16,
takže x\ = ±4. Pro X\ = 4 (а к = 15) z (4) plyne c + d = 4p, což spolu
s rovností cd = — 1 vede к závěru, že {c, d} = {4, — To znamená, že
obě posloupnosti jsou (až na pořadí) určeny vzorci:

г

pro každé i. (5)Xi = 4 + (г - 1)4 a yi — 4
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Pro takovou dvojici posloupností skutečně platí

£142/14 = 56 • | = 42 Х15У15 = 60 • \ — 30 a xi6yi6 = 64 • \ - 16.

Podobně pro druhou možnou hodnotu x\ — — 4 dostaneme posloupnosti
jejichž členy jsou opačné ke členům posloupností (5), tedy posloupnosti

i- 1
—4 — (г — 1)4 a y* = -4 4 (6)pro každé г.Хг =

Odpověď. Největší hodnota indexu к je 15 a všechny vyhovující po-

sloupnosti jsou (až na možnou záměnu pořadí ve dvojici) určeny vztahy
(5) a (6).

Jiné řešení. (Podle Zbyňka Konečného.) Uvažujme posloupnost z* =
= Xiyi. Protože je to kvadratická posloupnost, je příslušná diferenční
posloupnost Ví — Zi+1 — Zi aritmetická, přičemž z rovností

Zk-1 = 42, zk = 30, zfc+1 = 16

plyne rk_i = —12 a rk = —14. Aritmetická posloupnost (r*) má proto
diferenci —2, takže rk+i = —16 a zk+2 = 0- Využijeme-li opakovaně vztah
rk~i = rk + 2г, dostaneme

zk-И = Xfc + Zk — Xfc + + Zfc+i = ... =

= Xfc + Гк-\ + • • • + T'fc-H + zk_ 14 =

= — 14 — 12 — — 2 + 0 + 2 + ...+ 12-1-14 + =

— 14)

takže je z\^—14 1 — 16 & take 2^—15 — —14 ^k—15 — 16 16 — 0.
Pro n > 15 je tedy rk_n > 0 a zk-n < 0. Vidíme, že členy posloupnosti
(zí) jsou nezáporné právě jen pro indexy i £ {k — 15, к — 14,..., к — 1},
a protože z\ — х\у\ — x\ ^ 0, musí být 1 ^ к — 15, neboli к ^ 16.

Pro к — 16 je ovšem podle předchozích výpočtů z\ = zk~ 15 = 0,
takže také x\ — y\ — 0. Zároveň je z\g = zk+2 = 0, což znamená, že
jedna z aritmetických posloupností (гг*), (у*) je nulová. To není možné,
protože pak by byla nulová i posloupnost (z*).

Pro к — 15 je Zi = 16, takže xi = ±4. Protože Zn = Zfc+2 = 0, je
Xi7 = 0 nebo У17 = 0. Vzhledem к symetrii daných podmínek můžeme
předpokládat, že je xn = 0. Označíme-li c, resp. d diference hledaných
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posloupností, pak pro x\ = —4 vyjde c = pro xi = 4 vyjde c =
= — Z rovnosti X’i5?/i5 = 30 pak v prvním případě dostaneme d — —4,
v druhém d = 4. Je tedy

4+i(?:-l) а уг —4 — 4(г — 1) pro každé гXi — -

nebo

i(i-l)4V ’
a t/í = 4 + 4(г — 1) pro každé г.Xi = 4 -

Snadno ověříme, že obě dvojice posloupností splňují podmínky úlohy.
Největší hodnota indexu к je tedy к — 15 a krkomě uvedených posloup-
ností mu odpovídají i další dvě dvojice vzniklé záměnou (Xi) a (yi).

A - III - 2

Nejprve v závislosti na daném čísle m (l 'š m "š 47) vyjádříme, kolik
množin X popsané vlastnosti má nejmenší prvek rovný zvolenému číslu m.
К tomu vydělíme číslo 47 číslem m se zbytkem,

(q ^ 1, 0 r < m),47 = qm + r

m — l—r
a ukážeme, že existuje právě (q+ l)rq
menším prvkem m. Protože každá taková množina X je podmnožina mno-

žiny

vyhovujících množin X s nej-

Tm = {m,m + 1,... ,47}
rozdělíme množinu Tm na nejvýše m skupin čísel tak, aby se čísla
v téže skupině navzájem lišila o násobky čísla m: dostaneme tak předně
<7-prvkovou skupinu

P0 = {m,2m,...,gra},
v případě r > 0 dalších r skupin o q prvcích

Pi = {m + г, 2m -j- г,..., qm + г} (1 5Í i ^ r)

v případě r < m 1 a q > 1 pak ještě m — r — 1 skupin o q — 1 prvcích

Pi = {m 4- i, 2m + г,..., (q — 1 )m + г} (r + 1 ^ г ú m — 1).

Obecně lze říci, že každá skupina Pi je tvořena právě těmi čísly z Tm,
která při dělení číslem m dávají zbytek г; jak jsme uvedli, některé z těchto
m skupin Pq, ..., Pm-i mohou být prázdné.
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Množina X C Tm — Po U Pi U ... U P?n-i s nejmenším prvkem m

zřejmě má požadovanou vlastnost, právě když obsahuje celou skupinu Po
a zároveň pro každé i G {1,2, — 1} buď neobsahuje žádný prvek
z Рг, nebo obsahuje všechny prvky z Рг od jistého prvku počínaje. Tak
pro každou z r skupin Pi,...,Pr máme q + 1 možností, zatímco pro
každou z m — r — 1 skupin Pr+i,..., P
prvky pro X. Protože tyto výběry můžeme kombinovat nezávisle, je počet
množin X skutečně roven číslu (q + 1 )rq
r = 0, r — m — 1 nebo q = 1, kdy některé ze skupin Рг jsou prázdné.)

Nyní zjistíme, kdy pro neúplný podíl q a zbytek r z rovnosti 47 =
= qm + r platí

máme q možností, jak vybratm — 1

m— 1 — r. (Platí to i pro případy

— 1— Г
= 215. (*)(q + i)rqm

V případě q = 1 dostáváme z (*) rovnici 2Г = 215, odkud r = 15,
a z rovnosti 47 — m + r pak vychází m — 32.

V případě q > 1 musí být v rovnici (*) jedna z mocnin (q + l)r,
rovna 215 a druhá rovna jedné, tedy musí mít nulový exponent.

Proberme nyní možné hodnoty q > lv rostoucím pořadí a u každé z nich
otestujme, zda příslušné řešení rovnice (*) splňuje podmínku 47 = qm+r:

a) g = 21, m - 1 - r = 15 a r = 0. Pak m — 16 a qm + r = 32 —

nevyhovuje.
b) q — 23 — 1, r = 5 a m — 1— r = 0. Pak m — 6 a qm -\- r — 47 —

vyhovuje.
c) g = 23, ?n — 1 — r = 5 a r = 0. Pak m = 6 a qm + r = 48 —

nevyhovuje.
Z podmínky 47 = qm + r plyne, že největší možné hodnoty q jsou

47 (pro m = 1) a 23 (pro m = 2). Zbylé možnosti (g = 25 — 1, q = 25,
q = 215 — 1, g = 215) už proto není nutné detailně rozebírat.

Odpověď. Hledané hodnoty m jsou dvě: m = 6 a m = 32.

m —1 —r

q

A - III - 3

Označme гг = |AE|, у = |.D.Ej a doplňme lichoběžník ABCD
běžník AXYD tak, aby bod E byl průsečíkem jeho úhlopříček AY a DX
(obr. 29). Zřejmě platí \AX\ — \DY\ = a -f c, \ÁY\ = 2x a |£)X| = 2y.

Označme g\ (resp. Q2) poloměr kružnice vepsané tečnovému čtyřúhel-
niku ABED (resp. AECD), jež je zároveň vepsána i trojúhelníku AXD
(resp. AYD). Pro délky stran těchto čtyřúhelníků podle známého kritéria

na rovno-
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л а В Xс

Obr. 29

platí rovnosti

Ь2+Л =a + y = c + x,

neboli

(1)a + у — c -f x,

takže oba čtyřúhelníky mají týž obvod. Trojúhelníky AXD a AYD mají
zase týž obsah (rovný \Saxyd, tedy rovný Sabcd)- Poměr Qi : Q2 se
proto rovná jak poměru obsahů Sabed • Saecd, tak poměru obvodů
°ayd '■ oaxd (ty jsme zapsali v opačném pořadí než příslušné polo-
měry). Oba tyto poměry nyní vyjádříme a pak porovnáme (v značí výšku
lichoběžníku ABCD):

Sabed
_ Sabcd — Sqde _ + c)v — \c • \v _ 2a + c

Saecd Sabcd ~ Sabe \{a + c)v - \a ■ \v a + 2c
2x -)- (a T с) T d

oaxd 2y+(a + c) + ď
Spolu s (1) tak pro neznámé x, у dostáváme soustavu lineárních rovnic

2a + с 2x + a + c + d

oayd

x — у — a — c,
2у a c da + 2c

jež má za podmínky a/c (zaručené tím, že ABCD je hchoběžník) jediné
řešení

3a + c — d a + 3c — d
(2)x = a У =

2 2

Dosazením (2) do rovnosti (1) dostaneme první dokazovaný vztah 3(a +
+ c) = b + 3d. S jeho pomocí lze (2) přepsat do tvaru

b b
x = a+ -

o
У = c+a

6
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S tímto vyjádřením délek x, у využijeme kosinové věty pro trojúhelníky
ABE, CDE к výpočtu kosinu úhlu ABE resp. DCE\

fl2 + (5b)2 ~ (a + g6)2 26 1
cos \kABE\

2a ■ |6 39a

°2 + db)2 - (c + gb)2 26 1
cos I^DCE1! =

2c- ^6 9c 3

Protože se úhly ABE a DCE doplňují do 180°, je součet jejich kosinů
roven nule:

26 1 26 1
= 0.+

9a 3 9c 3

Odtud již snadnou úpravou dostaneme druhý dokazovaný vztah
1 1 3
—I— —

a c 6'

A - III - 4

Označme K\ střed strany AL a L\ střed strany AK. Ukážeme, že hle-
danou množinou bodů S je oblouk MN, který je částí polokružnice se-

strojené nad průměrem K\L\ v polorovině opačné к polorovině K\L\A,
přitom krajní body M, N zmíněného oblouku jsou určeny podmínkami
ML\ _L AK a NK\ ± AL (obr. 30).
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Protože průsečík S úhlopříček AC, BD je středem úsečky AC, mno-
žinu všech bodů S dostaneme, když nejprve určíme množinu vrcholů C
a tu pak zobrazíme ve stejnolehlosti se středem A a koeficientem Pro-
tože je úhel KCL pravý (nemůže být ani C — K, ani C — L) a přímka
KL body A a C odděluje, leží bod C na polokružnici r sestrojené nad
průměrem KLv polorovině opačné к polorovině KLA. Které body С E r

jsou skutečně vrcholy vyhovujících pravoúhelníků ABCD1 Zřejmě právě
ty, pro něž polopřímky CK a CL protnou analogicky sestrojené polo-
kružnice nad průměry AK resp. AL (v bodech, které budou vrcholy В
resp. D). Jsou to body oblouku PQ C r, jehož krajní body P, Q jsou
určeny podmínkami PK ± AK a QL ± AL. Hledaná množina bodů S je
proto obrazem oblouku PQ ve zmíněné stejnolehlosti, takže to je skutečně
oblouk MN popsaný v úvodu řešení (body M, N jsou obrazy bodů P
a Q, neboť bod L\ je obrazem bodu К a bod K\ je obrazem bodu L).

A - III - 5

V první části řešení předpokládejme, že první z daných kvadratických
rovnic má kořeny u, v a druhá z nich má kořeny u, v-1. Pak platí vzorce

1 1
P = -(u + v) (1)u H— ir — — s — и ■ -q = uv,

v

Po jejich dosazení do jednotlivých stran rovností, jež máme dokázat
dostaneme

(u + v)(uv + 1)(u + v)(u+ i jpr =
v

(uv + l)(u + v)(uv + i) + l)(<?+ l)(s+ 1) =
v

(u + v)(uv + l)u11

(■и + v)(uv + 1) • — =
v

p(q+l)s =
v

(uv + l)(u + v)ur(. + l)<í = -(« + Í)(í + l) ■ uv — —

v

takže vidíme, že skutečně platí rovnosti

pr = (q + l)(s + 1) a p(q + l)s = r(s + l)q.
Všimněme si ještě, že rovněž platí rovnosti

(2)

. . и

(u + v) ■ -
v u + vVps

== и a ~

ии
s + 1 5+1- + 1 - + 1

V v

které nám napovídají, jak postupovat při důkazu obrácené implikace.
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V druhé části řešení předpokládejme, že čísla/), g, r, s splňují rovnosti
(2) a navíc platí q ф — las^-1. Z první rovnosti (2) pak plyne p ф 0
ar^O, takže rovnosti (2) lze upravit do tvaru

q +1 ps rqV (3)a
s + 1 9 + 1s + 1 r

Definujme reálná čísla и, v pomocí vzorců

Pps (4)и = — a v = —

s + 1s + 1

Pak platí w/Oa podle (4) lze rovněž psát

9 + 1rq
(5)и — — a v — —

9+1 r

Ověříme-li, že tato čísla u, v splňují všechny čtyři vztahy (1), bude to
znamenat, že (u,v) a (u,u-1) jsou dvojice kořenů kvadratických rovnic
z textu úlohy a řešení úlohy bude u konce. Podle (4) a (5) je ale prověrka
vztahů (1) snadná:

Vs ■ P
s + 1 s + 1

-rq -(9+1)
_

9 + 1'

— (u + v) = = p,

uv =

Ю- rg r
= U

9 + 1 9 + 1
1 —ps

и ■ —

s + 1v p

A - III - 6

Ukážeme, že požadovaným způsobem nelze obarvit patnáctici čísel

5,4,3,2,1,9,8,7,6,12,11,10,14,13, 15 ,

Y V' V*

I II III IV V

pod níž jsme vyznačili rozdělení na pět skupin sousedních čísel (tvořících
klesající posloupnosti).

Připusťme, že uvedenou patnáctici jsme zapsali čtyřmi barvami tak,
že čísla se stejnou barvou tvoří monotonní posloupnosti. Ve skupině I
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je pět čísel, dvě z nich proto mají stejnou barvu; protože tvoří klesající
posloupnost, barvu těchto dvou čísel nemá žádné z čísel skupin II až V.
V nich jsou tedy pouze čísla tří barev; barvu dvou čísel ze skupiny II
nemá žádné z čísel skupin III až V, ve kterých jsou tedy pouze čísla dvou
barev. Ještě jedním opakováním předchozí úvahy zjistíme, čísla 14, 13
a 15 ze skupin IV a V jsou jedné barvy, a to je spor.

Poznámka. Příklad v uvedeném řešení lze snadným způsobem zobec-
nit a dokázat tak následující negativní tvrzení: Splňují-li přirozená čísla
к & N rovnost

N — l + 2 + 3 + ... + /c +(£; + !)

pak к barev nestačí к tomu, abychom jimi zapsali členy jakékoliv po-

sloupnosti sestavené z N různých celých čísel, mají-li čísla kterékoliv
barvy tvořit monotonní posloupnost. Bez důkazu dodejme, že к barev
к požadovanému úkolu stačí, platí-li nerovnost

N <C 1 + 2 + 3 + .., + /c+(/c + l).
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Kategorie P

Texty úloh

P - I - 1

Prádelna

a to ve velkém. Jednou v noci,Bořivoj se rozhodl, že začne podnikat
poté co upadl v koupelně, dostal skvělý nápad: otevře si prádelnu. Každý,
kdo přijde, si bude moci za malý obnos půjčit pračku, pokud bude nějaká
volná, a vypere si své prádlo. Ihned se tedy zeptal svých přátel, zda by
chtěli jeho prádelnu navštěvovat, a zjistil, že zájem je opravdu veliký.
Brzy ani nevěděl, kolik praček bude vůbec potřebovat, aby se dostalo
na všechny zákazníky. A proto se rozhodl obrátit se na vás s prosbou
o pomoc.

Soutěžní úloha. Na vstupu dostanete počet zakázek, které Bořivoj
na jeden konkrétní den obdržel. U každé zakázky víte čas příchodu zá-
kazníka a dobu, na jakou si chce pronajmout jednu pračku. Požadavky
zákazníků nejsou uvedeny v žádném konkrétním pořadí.

Vaším úkolem je zjistit, kolik nejméně praček bude Bořivoj potřebo-
vat, aby si každý zákazník mohl pronajmout pračku na celou požadova-
nou dobu od svého příchodu. Kromě minimálního počtu praček musíte
pro Bořivoje vytvořit ještě seznam, podle kterého bude posílat zákazníky
к volným pračkám.

Formát vstupu: První řádka textového souboru prádelna, in obsa-
huje jediné přirozené číslo N ^ 10 000
řádek obsahuje informace o jednotlivých zákaznících: na г-té z těchto
řádek je uveden čas Ti, kdy chce zákazník přijít, a doba Т/, na kterou si
chce pronajmout pračku. Můžete předpokládat, že Ti а Т/ jsou celá čísla
od 1 do 1000 000 000.

Formát výstupu: První řádka textového souboru prádelna, out obsa-
huje jediné číslo P — nejmenší možný počet praček, s nimiž může Bořivoj
obsloužit všechny zákazníky. Dalších N řádek bude obsahovat N čísel a i

počet zákazníků. Dalších N
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až a^v, přičemž a; je číslo pračky, kterou má použít г-tý zákazník. Před-
pokládejte, že pračky budou očíslovány od 1 do P.

prádelna.inPříklad: prádelna.out
34

1000 1000

1900 900

1500 700

2000 500

2

1

3

2

P - I - 2

Závody
Letos se po několika letech opět konají slavné závody švábů. Závody
probíhají na pečlivě připravené překážkové dráze obsahující takové zá-
ludnosti, jako je třeba mistička s cukrem. Švábí závodníci jsou na trať
vypouštěni v minutových intervalech a aby je bylo možno v cíli rozeznat,
má každý závodník к sobě připevněnu cedulku s minutou startu (první
šváb má tedy číslo nula, druhý jedna, atd.). Organizátory závodu by
zajímalo, jak moc se švábi během tréninkového běhu promíchali. Pokud
by se totiž promíchali hodně, bylo by třeba prodloužit intervaly mezi
jednotlivými závodníky, aby se při běhu tolik neovlivňovali. Jako míra
promíchanosti závodníků byl stanoven počet dvojic závodníků, kteří do-
běhli do cíle v opačném pořadí, než v jakém vyběhli na trať. Spočítat
míru promíchanosti pro dané pořadí švábů v cíli je již úloha pro vás.

Váš program dostane na vstupu počet švábů N a pořadí, v jakém
švábi doběhli do cíle (tedy nějakou permutaci čísel 0,..., N — 1). Na vý-
stup má váš program vypsat míru promíchanosti závodníků.

Formát vstupu: Vstupní textový soubor závody. in obsahuje dva řád-
ky. Na prvním řádku je uvedeno jedno celé číslo N, 1 5í N ií 30 000. Na
druhém řádku je N různých celých čísel z intervalu 0,..., N — 1 odděle-
ných jednou mezerou.

Formát výstupu: Výstupní textový soubor závody.out obsahuje je-
diný řádek s jedním celým číslem — počtem dvojic závodníků, kteří do-
běhli v opačném pořadí, než v jakém vystartovali,

závody.inPříklad: závody.out
5 3

1 0 4 2 3
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P - I - 3

Fylogenetika

Fylogenetika je obor biologie zabývající se rozpoznáváním vývojových
vztahů mezi organismy. Často používanou metodou je srovnávání gene-
tického kódu. V této úloze se budeme zabývat výrazně zjednodušenou
variantou tohoto problému.

Genetický kód budeme mít uložen jako řetězec skládající se z písmen
,A‘, ,C‘, ,G‘ a ,T‘. Budeme předpokládat, že vývoj nového druhu probíhá
tak, že se na začátek nebo na konec genetického kódu připojí nové geny —

to je samozřejmě pouze idealizace (čti: úplný nesmysl). Dostanete za-
dán genetický kód několika organismů, vaším úkolem je nalézt mezi nimi
všechny dvojice předek — potomek, tj. takové, že genetický kód předka
je souvislým podřetězcem genetického kódu potomka.

Formát vstupu: Vstupní textový soubor fylogen. in obsahuje několik
řetězců složených z písmen ,A‘, ,C‘, ,G‘ a ,T‘, reprezentujících genetické
kódy jednotlivých organismů. Organismy jsou očíslovány 1,2,... ,n; na
г-tém řádku se nachází kód г-tého organismu. Můžete předpokládat, že
řetězců je nejvýše 50, každý z nich má nejvýše 50 znaků a žádné dva
řetězce nejsou stejné.

Formát výstupu: Výstupní textový soubor fylogen.out tvoří seznam
všech dvojic předek — potomek. Každá řádka výstupního souboru popi-
suje jednu z těchto dvojic a sestává z čísla předka následovaného číslem
potomka. Dvojice mohou být uvedeny v libovolném pořadí, nesmějí se
však opakovat.

Příklad: Pro vstup
ATAT

CATATG

CATATGA

CATATGG

je jedním z možných správných řešení výstup
1 2

1 3

1 4

2 3

2 4
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P - I - 4

ALIK

Aritmeticko-logický integerový kalkulátor (zkráceně Alik) je počítací
stroj pracující s VF-bitovými celými čísly v rozsahu 0 až 2W — 1 včetně;
kdykoliv budeme hovořit o číslech, půjde o tato čísla. Budeme je obvykle
zapisovat ve dvojkové soustavě polotučnými číslicemi a vždy si na za-
čátek dvojkového zápisu doplníme příslušný počet nul, aby číslic (bitů)
bylo právě W. Většinou také nebudeme rozlišovat mezi číslem a jeho
dvojkovým zápisem, takže г-tým bitem čísla budeme rozumět г-tý bit
jeho dvojkového zápisu (bity číslujeme zprava doleva od 0 do W — 1).

Paměť stroje je tvořena 26 registry pojmenovanými a až 2. Každý
registr vždy obsahuje jedno číslo.

ALIK se řídí programem, což je posloupnost přiřazovacích příkazů
typu registr := výraz, přičemž výraz může obsahovat konstanty (čísla
zapsaná ve dvojkové soustavě), registry, závorky a následující operátory
(řecká písmena značí podvýrazy, v pravém sloupci jsou priority operá-
torů):

sečte čísla a a (3. Pokud je výsledek větší než 2W — 1,
číslice vyšších řádů odřízne. Jinými slovy, počítá součet
modulo 2W.
odečte od čísla a číslo (3. Pokud je a < (3, spočte 2W +
+ a — /3, čili rozdíl modulo 2W.
spočte bitovou negaci čísla a, což je číslo, jehož г-tý bit
je 0 právě tehdy, je-li г-tý bit čísla a roven 1, a naopak,
bitové operace: and, or a xor. Vyhodnocují se tak, že
se г-tý bit výsledku spočte z г-tého bitu čísla a a г-tého
bitu čísla (3 podle následujících tabulek:

<y + /5 4

a - (3 4

9a

а Л (3
Q V (3
a® (3

8

7

7

ovo-o

0 V 1 = 1

1 VO = 1

1 V 1 = 1

000 = 0

001 = 1
100 = 1

10 1 = 0

0Л0 = 0

0 Л 1 = o

1 Л o = o

1Л1 = 1

a. « (3 posune číslo a o (3 bitů doleva, čili doplní na jeho ко-
пес (3 nul a odřízne prvních f3 bitů, aby byl výsledek
opět W-bitový.

2
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a»/? posune číslo а о /3 bitů doprava, čili doplní na jeho
začátek /3 nul a odřízne posledních (3 bitů, aby byl vý-
sledek opět VP-bitový.

Pokud závorky neurčí jinak, vyhodnocují se operátory s vyšší pri-
oritou před operátory s nižší prioritou. V rámci stejné priority se pak
vyhodnocuje zleva doprava (s výjimkou operátoru -i, který je unární,
a tudíž se musí vyhodnocovat zprava doleva).

Příklad 0 (jak fungují operátory; zde máme W — 4):
zde zafungují priority operátorů
nejvyšší bit výsledku 10011 se již
oříznul

odčítáme modulo 16 = 10000

takto funguje and
takto or

a takto xor

jak vyrobit pomocí « posloupnost
jedniček
jak získat z čehokoliv samé
jedničky

Výpočet probíhá takto: Nejprve se do registru x nastaví vstup (to je
vždy jedno číslo) a do ostatních registrů nuly. Poté se provedou všechny
příkazy v pořadí, v jakém jsou v programu uvedeny, přičemž vždy se

nejprve vyhodnotí výraz na pravé straně a teprve poté se jeho výsledek
uloží do registru, takže uvnitř výrazu je ještě možné pracovat s původní
hodnotou registru. Po dokončení posledního příkazu se hodnota v regis-
tru у interpretuje jako výsledek výpočtu. Hodnoty v ostatních registrech
mohou být libovolné.

Často budeme potřebovat, aby program mohl pracovat s většími čís-
ly, než je číslo na vstupu, takže budeme rozlišovat velikost vstupu N
(tj. počet bitů potřebných к zápisu vstupní hodnoty) a velikost W re-
gistrů a mezivýsledků, kterou si při psaní programu sami určíme. Po-
kud bychom ovšem povolili exponenciálně velká čísla (tedy W = 2N),
mohli bychom cokoliv spočíst v konstantním čase — stačilo by do jedné
dlouhatánské konstanty uvedené v programu zakódovat všechny možné
výsledky programu pro všechny hodnoty vstupu. Tak dlouhé registry lze
však stěží považovat za realistické, proto přijměme omezení, že W musí
být polynomiální ve velikosti vstupu, čili že existuje konstanta к taková,
že pro každé N je W ^ Nk.

2

a + b/\c + d = (a -f (6 Л c)) -|- cí
0101 + 1110 = 0011

0001 - 1111 - 0010

0101 Л 0011 = 0001

0101 V 0011 = 0111

0101 0 0011 = 0110

(1 « 11) - 1 = 1000 - 1 = 0111

a V -i a = 1111
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Ne vždy si ovšem vystačíme s jedním programem, který funguje pro

všechny velikosti vstupu — mnohdy potřebujeme podle N měnit hodnoty
pomocných konstant v programu, někdy také nějakou operaci opakovat
vícekrát v závislosti na velikosti vstupu. Povolíme si tedy programy zapi-
sovat obecněji, a to tak, že uvedeme seznam pravidel, jež nám pro každé N
vytvoří program, který počítá správně pro všechny vstupy velikosti N.
[Formálně bychom tato pravidla mohli zavést třeba jako programy v ně-
jakém klasickém programovacím jazyce. My si ale formalismus odpustíme
a budeme je popisovat slovně.]

Při řešení úloh budeme chtít, aby časová složitost vygenerovaných
programů, tedy jejich délka v závislosti na N, byla co nejmenší. Mezi
stejně rychlými programy je pak lepší ten, který si vystačí s kratšími
čísly, čili s menším W (to je analogie prostorové složitosti). Podobně
jako u klasických programů ovšem budeme v obou případech přehlížet
multiplikativní konstanty.

Přiklad 1: Sestrojte program pro Alik, který dostane na vstupu nenu-
lové číslo a vrátí výsledek 1 právě tehdy, je-li toto číslo mocninou dvojky,
jinak vrátí nulu.

6,EŠENÍ. Nejdříve si všimněme, že mocniny dvojky jsou právě čísla,
která obsahují právě jeden jedničkový bit. Sledujme chování následujícího
jednoduchého programu.

Zmiňme ale ještě konvence, které budeme používat při psaní všech
ukázkových programů: V levém sloupci naleznete jednotlivé příkazy,
v pravém sloupci obecný tvar spočítané hodnoty pro libovolné N. Pokud
se nějaká číslice nebo skupina číslic opakuje vícekrát, značíme opakování
exponentem, tedy O8 je osm nul, (Ol)3 je zkratka za 010101. Řeckými
písmeny značíme blíže neurčené skupiny bitů.

x - olO1

a = 0:01

b = oOO^

i
a := x — 1

b x Л a

Číslo v registru a se od x vždy liší tím, že nejpravější 1 se změní na 0
a všechny 0 vpravo od ní se změní na 1. Proto b = x Л a se musí od x lišit
právě přepsáním nejpravější 1 na 0. (To proto, že bity vlevo od této 1
jsou stále stejné а о Л o = o, zatímco ve zbytku čísla se vždy anduje
0 s 1, což dá nulu.) A jelikož mocniny dvojky jsou právě čísla, v je-
jichž dvojkovém zápisu je právě jedna 1, spočte náš program v b nulu
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právě tehdy, je-li x mocninou dvojky (nebo nulou, což jsme si ale zaká-
žali).

Zbývá tedy vyřešit, jak z nuly udělat požadovanou jedničku a z nenuly
nulu. К tomu si zavedeme operaci r := if(s,t, u), která bude realizovat
podmínku: pokud s ^ 0, přiřadí r := t, jinak r := u. Provedeme to
jednoduchým trikem: rozšíříme si registry o jeden pomocný bit vlevo,
nastavíme v r tento bit na jedničku a sledujeme, zda se zmenšením vznik-
lého čísla o jedničku tento bit změní na nulu nebo ne:

v s V 10N
v := v — 1

v := v A 10^
v := v » iV

v := v — 1

r := (u A v) V (t A v)

v = ls

v = Ir' (je-li r/0), jinak 01N
v = 10N nebo 00^

0^1 nebo 0N0
v = 0N+1 nebo lN+1
r — t nebo и

v =

Stačí tedy na konec našeho programu přidat

У := if (b, 0,1) у = 0 nebo 1

a máme program, který rozpoznává mocniny dvojky v konstantním čase
a používá к tomu čísla o N + 1 = O(N) bitech.

Ještě si ukažme, jak bude probíhat výpočet pro dva konkrétní 8-bitové
vstupy (tehdy je iV = 8 a W = 9):

x - 001011000 ж = 000100000

a = 001010111 a — 000011111

b = 001010000 b= 000000000

v = 101010000 v = 100000000

v = 101001111 v = 011111111

v = 100000000 v = 000000000

v - 000000001 v = 000000000

v = 000000000 v = 111111111

у = 000000000 у = 000000001

а x — 1

b :— x А а

v := bV 100000000

v := v — 1

v := v A 100000000

v := v » 8

u := v — 1

у := (000000001Лv)V
V (000000000 A ~>v)

Příklad 2: Sestrojte program pro AblK, který spočte binární paritu
vstupního čísla, čili vrátí 0 nebo 1 podle toho, zda je v tomto čísle sudý
nebo lichý počet jedničkových bitů.
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ŘEŠENÍ. Binární parita P(x) čísla z = zjv-i • • • %\Xq je podle definice
rovna xq ® xi ® ... ® xjv-i- Jelikož operace ® je asociativní (a ® (/3 ®
ф 7) = (a ® /3) ® 7) a komutativní (a ® /3 — /3 ® a), můžeme tento
vztah pro N = 2k (to opět můžeme bez újmy na obecnosti předpokládat)
přeuspořádat na

P(x) = (Xq ® XN/2) ® (Xi ® XN/2+l) ® . . . ® (^jV/2-1 ® ЗД-l),
což je ovšem parita čísla vzniklého vyxorováním horní a dolní poloviny
čísla x. Takže výpočet parity iV-bitového čísla můžeme na konstantní
počet příkazů převést na výpočet parity ^N-bitového čísla, ten zase na
výpočet parity JTV-bitového čísla atd., až po log2 ./V krocích na paritu
1-bitového čísla, která je ovšem rovna číslu samému.

Paritu tedy vypočteme na logaritmický počet příkazů pracujících
s jV-bitovými čísly takto:

p := x » J-ZV
q := x A 1N/2
x := p © q

p — horních JjV bitů X

q = dolních t^N bitů x
x — |iV-bitové číslo s paritou

jako původní x

x := (z ^>> |iV) ® (x A x — ^A^-bitové... (můžeme psát zkráceně)

x := (z » 1) © (z Л 1)
У z

z = 1-bitové...

у = z (už jen zkopírovat výsledek)
Náš programovací jazyk samozřejmě žádné celé části čísel a podobné
operace nemá, ale to vůbec nevadí, protože je vždy používáme jen na

podvýrazy závisící pouze na N, takže je v programu můžeme pro každé N
uvést jako konstanty. Například pro N = 8 bude výpočet probíhat takto:

z = 00110110

p x 4
q := x A 1111
z := p © q

z:=(z»2)©(zA 11)
z := (z » 1) © (z Л 1)
У := z

Soutěžní úlohy.
a) Sestrojte program pro AblK, jehož výsledkem bude počet jedničko-

vých bitů ve dvojkovém zápisu čísla na vstupu.

0011

0110

0101z = •

00z =

0z =

у = 00000000
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b) Sestrojte program pro Alik, který к zadanému číslu x spočte nejbližší
větší číslo, v jehož dvojkovém zápisu je stejný počet jedniček jako
v zápisu x. Pokud takové číslo neexistuje, výsledek může být libovolný.

P - II - 1

Prádelní salón

Z Bořivoje se stal díky vaší pomoci úspěšný podnikatel a jeho klientela
zahrnuje i bohatší a malichernější zákazníky. Pokud totiž nějaký zákaz-
nik uvidí dva různé zákazníky používat stejnou pračku, nebude už tuto
prádelnu dále navštěvovat: „No považte, přece nelze prát prádlo s lidmi,
kteří nemají na to, aby si zaplatili pračku sami pro sebe!“

Soutěžní úloha. Na vstupu dostanete N ú 10 000 — počet zákazníků,
kteří navštíví Bořivojovu prádelnu během jednoho dne. U každého zá-
kazníka je zadán čas jeho příchodu a doba, na jakou si chce pronajmout
pračku (obojí jsou celá čísla mezi 1 a 1 000 000 000). Požadavky zákazníků
nejsou uvedeny v žádném konkrétním pořadí.

Vaším úkolem je zjistit, kolik nejméně praček Bořivoj potřebuje, aby
všichni jeho zákazníci byli zcela spokojeni. Zákazník bude spokojen, po-
kud si bude moci pronajmout pračku od okamžiku příchodu na dobu,
kterou požaduje (je samozřejmé, že jednu pračku nemohou používat dva
různí zákazníci současně), a navíc během doby, kdy bude prát, nebude
žádnou pračku využívat více zákazníků po sobě.

Kromě určení minimálního počtu praček musíte pro Bořivoje vytvořit
ještě seznam, podle kterého bude posílat zákazníky к volným pračkám.

Příklad: Pro 5 zákazníků, jejichž příchody a doby praní jsou
1000 1000

3000 2000

4500 500

1500 500

2000 2000

jsou potřeba alespoň 3 pračky a přiřazení praček zákazníkům například
takové:

zákazník 1 bude u pračky 2
zákazník 2 bude u pračky 3
zákazník 3 bude u pračky 1
zákazník 4 bude u pračky 3
zákazník 5 bude u pračky 2
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Všimněte si, že zákazníci 3 a 5 nemohou dostat stejnou pračku, protože
by je viděl zákazník 2 pracovat u stejné pračky.

P - II - 2

Zakázané rozdíly
Mějme dáno celé kladné číslo N, N ^ 2, a soustavu podmínek tvaru
Xi — Xj ф dij, kde x\, ..., ждг+i jsou proměnné, a^j jsou celá čísla mezi
0 a N — 1 a pro každou dvojici indexů г a j, lúi < j ^ + 1 soustava
obsahuje právě jednu podmínku.

Soustavu budeme řešit modulo modulo zadané číslo N, tj. všechny
aritmetické operace jsou prováděny modulo N. Připomeňme si, že vý-
sledkem aritmetické operace provedené modulo N je zbytek po dělení
původního výsledku číslem N, např. (2 + 3) mod 4 = 1, (2 — 3) mod 4 = 3,
(3 ■ 2) mod 5 = 1, (3 • 4) mod 6 = 0, atd. Všimněte si zejména způsobu
počítání, pokud je původní výsledek operace záporný.

Nalezněte algoritmus, který pro zadané N a čísla ctij zjistí, zda za-
daná soustava podmínek má řešení, tzn. zda existují čísla ..., ггдг+1 E
E {0,..., N — 1} taková, že rozdíl Xj — X{ — aij není dělitelný N pro
žádné i & j, 1 ^ i < j ^ N + 1. Pokud má soustava řešení, algoritmus
musí také libovolné její řešení nalézt a vypsat.

Příklad 1: Pro N = 3, máme zadány následující podmínky:

Х1-Х2Ф 1,

X\ Ж3 ф 2,
Xi Ж4 ф 2,

12-^3/ 2,

22-24/ 1,
X3 — X4 / 0.

Soustava má řešení, např. xi — X2 = x\ — 2 a X3 — 1.
Příklad 2\ Pro N — 2, máme zadány následující podmínky:

xi - x2 ф 1,

21-23/ 0,
X2- ХЗ Ф 1.

Pokud x\ — 0, pak X2 = 0 podle první podmínky a X3 = 1 podle
druhé podmínky. Potom ale třetí podmínka není splněna. Podobně pokud
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x\ — 1, X2 musí být rovno 0 a £3 rovno 1 a třetí podmínka opět není
splněna. Zadaná soustava podmínek tedy nemá řešení.

P - II - 3

Redundantní redundance

Úřad pro potírání redundantních repetic (zřízený Komisí pro likvidaci
redundantních úřadů) se zabývá odstraňováním zbytečně opakovaných
dokumentů v archivech. Procházení archivů je samozřejmě velmi nudná
práce, která odvádí úředníky od jiných, mnohem zajímavějších a jistě
i prospěšnějších využití jejich pracovního času. Velmi by je proto potěšilo,
kdybyste pro ně napsali program řešící následující úlohu:

Je dáno přirozené číslo к a nějaký znakový řetězec T. Určete sou-

vislý podřetězec délky /г, který se v T nejvíce opakuje, a také počet jeho
výskytů R. Jednotlivé výskyty tohoto řetězce se mohou částečně překrý-
vat. V případě, že existuje více řetězců, které se opakují R-krát, vypište
jeden libovolný z nich.

Příklad: Pro vstup abababa а к — 3 je nejčastějším řetězcem aba
opakující se 3krát.

P - II - 4

ALÍK

Definici stroje Alik naleznete ve studijním textu za touto úlohou. Od do-
mácího kola se liší tím, že přibyly operace násobení, dělení a zbytku
po dělení a Příklad 3 na tyto operace.

Soutěžní úloha. Sestrojte program pro AblK, který к zadanému
číslu x — xjv-i • • • nalezne zrcadlové číslo у — xoxi ... хдт-i, tj. čís-
lo, jehož dvojkový zápis vznikne zapsáním N-bitového dvojkového zápisu
čísla x (včetně případných počátečních nul) pozpátku.

Studijní text. Aritmeticko-logický integerový kalkulátor (zkráceně
Alik) je počítací stroj pracující s VP-bitovými celými čísly v rozsahu
0 až 2W — 1 včetně; kdykoliv budeme hovořit o číslech, půjde o tato čísla.
Budeme je obvykle zapisovat ve dvojkové soustavě polotučnými číslicemi
a vždy si na začátek dvojkového zápisu doplníme příslušný počet nul, aby
číslic (bitů) bylo právě W. Většinou také nebudeme rozlišovat mezi číslem
a jeho dvojkovým zápisem, takže г-tým bitem čísla budeme rozumět г-tý
bit jeho dvojkového zápisu (bity číslujeme zprava doleva od 0 do W — 1).
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Paměť stroje je tvořena 26 registry pojmenovanými a až 2. Každý
registr vždy obsahuje jedno číslo.

Alik se řídí programem, což je posloupnost přiřazovacích příkazů
typu registr := výraz, přičemž výraz může obsahovat konstanty (čísla
zapsaná ve dvojkové soustavě), registry, závorky a následující operátory
(řecká písmena značí podvýrazy, v pravém sloupci jsou priority operá-
torů):

sečte čísla a a /3. Pokud je výsledek větší než 2W — 1,
číslice vyšších řádů odřízne. Jinými slovy, počítá součet
modulo 2W.
odečte od čísla a číslo (3. Pokud je a < (3, spočte 2W +
+ ol — (3, čili rozdíl modulo 2W.
vynásobí dvě čísla, výsledek opět modulo 2W.
vydělí číslo a číslem (3; dělení nulou dá vždy výsledek 0.
vrátí zbytek po dělení čísla a číslem /3, čili a — /3 *

(a / (3)] pokud je (3 = 0, je výsledek roven a.

spočte bitovou negaci čísla a, což je číslo, jehož г-tý bit
je 0 právě tehdy, je-li г-tý bit čísla a roven 1, a naopak,
bitové operace: and, or a xor. Vyhodnocují se tak, že
se г-tý bit výsledku spočte z г-tého bitu čísla a a г-tého
bitu čísla (3 podle následujících tabulek:

a + /3 4

a — (3 4

a* (3 6

a/(3 6

a%(3 6

9-1 a

a f\ (3
a V (3
а ф /3

8

7

7

0Л0 - 0

0Л1 = 0

1 АО = 0

1 AI = 1

0 VO = о

o v 1 = 1

1 V о = 1

1 v 1 = 1

0 0 0-0

001 = 1
100 = 1
101 = 0

posune číslo a o /3 bitů doleva, čili doplní na jeho ко-
пес (3 nul a odřízne prvních (3 bitů, aby byl výsledek
opět VP-bitový.
posune číslo a o (3 bitů doprava, čili doplní na jeho
začátek (3 nul a odřízne posledních (3 bitů, aby byl vý-
sledek opět JP-bitový.

a<£/3 2

a » (3 2

Pokud závorky neurčí jinak, vyhodnocují se operátory s vyšší pri-
oritou před operátory s nižší prioritou. V rámci stejné priority se pak
vyhodnocuje zleva doprava (s výjimkou operátoru který je unární,
a tudíž se musí vyhodnocovat zprava doleva).
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Příklad O (jak fungují operátory; zde máme W = 4):

a + b Л c + d = (a + (5 Л c)) + d zde zafungují priority operátorů
nejvyšší bit výsledku 10011 se již
oříznul

odčítáme modulo 16 = 10000

takto funguje and
takto or

a takto xor

(1 <<< 11) — 1 = 1000 — 1 = 0111 jak vyrobit pomocí « posloupnost
jedniček
jak získat z čehokoliv samé
jedničky

Výpočet probíhá takto: Nejprve se do registru x nastaví vstup (to je
vždy jedno číslo) a do ostatních registrů nuly. Poté se provedou všechny
příkazy v pořadí, v jakém jsou v programu uvedeny, přičemž vždy se

nejprve vyhodnotí výraz na pravé straně a teprve poté se jeho výsledek
uloží do registru, takže uvnitř výrazu je ještě možné pracovat s původní
hodnotou registru. Po dokončení posledního příkazu se hodnota v regis-
tru у interpretuje jako výsledek výpočtu. Hodnoty v ostatních registrech
mohou být libovolné.

Často budeme potřebovat, aby program mohl pracovat s většími čís-
ly, než je číslo na vstupu, takže budeme rozlišovat velikost vstupu N
(tj. počet bitů potřebných к zápisu vstupní hodnoty) a velikost W re-
gistrů a mezivýsledků, kterou si při psaní programu sami určíme. Po-
kud bychom ovšem povolili exponenciálně velká čísla (tedy W = 2N),
mohli bychom cokoliv spočíst v konstantním čase — stačilo by do jedné
dlouhatánské konstanty uvedené v programu zakódovat všechny možné
výsledky programu pro všechny hodnoty vstupu. Tak dlouhé registry lze
však stěží považovat za realistické, proto přijměme omezení, že W musí
být polynomiální ve velikosti vstupu, čili že existuje konstanta к taková,
že pro každé ./V je W ^ Nk.

Ne vždy si ovšem vystačíme s jedním programem, který funguje pro

všechny velikosti vstupu — mnohdy potřebujeme podle N měnit hodnoty
pomocných konstant v programu, někdy také nějakou operaci opakovat
vícekrát v závislosti na velikosti vstupu. Povolíme si tedy programy zapi-
sovat obecněji, a to tak, že uvedeme seznam pravidel, jež nám pro každé N
vytvoří program, který počítá správně pro všechny vstupy velikosti N.
[Formálně bychom tato pravidla mohli zavést třeba jako programy v ně-

0101 + 1110 = 0011

0001 - 1111 = 0010

0101 Л 0011 = 0001

0101 V 0011 - 0111

0101 0 0011 = 0110

aV -i a = 1111
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jakém klasickém programovacím jazyce. My si ale formalismus odpustíme
a budeme je popisovat slovně.]

Při řešení úloh budeme chtít, aby časová složitost vygenerovaných
programů, tedy jejich délka v závislosti na N, byla co nejmenší. Mezi
stejně rychlými programy je pak lepší ten, který si vystačí s kratšími
čísly, čili s menším W (to je analogie prostorové složitosti). Podobně
jako u klasických programů ovšem budeme v obou případech přehlížet
multiplikativní konstanty.

Příklad 1: Sestrojte program pro AblK, který dostane na vstupu nenu-
lové číslo a vrátí výsledek 1 právě tehdy, je-li toto číslo mocninou dvojky,
jinak vrátí nulu.

ŘEŠENÍ. Nejdříve si všimněme, že mocniny dvojky jsou právě čísla,
která obsahují právě jeden jedničkový bit. Sledujme chování následujícího
jednoduchého programu.

Zmiňme ale ještě konvence, které budeme používat při psaní všech
ukázkových programů: V levém sloupci naleznete jednotlivé příkazy,
v pravém sloupci obecný tvar spočítané hodnoty pro libovolné N. Pokud
se nějaká číslice nebo skupina číslic opakuje vícekrát, značíme opakování
exponentem, tedy O8 je osm nul, (Ol)3 je zkratka za 010101. Řeckými
písmeny značíme blíže neurčené skupiny bitů.

x = alQ1

a — <а01г

b = a00i
a := x — 1

b : = x Л a

Číslo v registru a se od ж vždy liší tím, že nejpravější 1 se změní na 0
a všechny 0 vpravo od ní se změní na 1. Proto b — xAa se musí od x lišit
právě přepsáním nejpravější 1 na 0. (To proto, že bity vlevo od této 1
jsou stále stejné а а Л a — a, zatímco ve zbytku čísla se vždy anduje
0 s 1, což dá nulu.) A jelikož mocniny dvojky jsou právě čísla, v je-
jichž dvojkovém zápisu je právě jedna 1, spočte náš program v b nulu
právě tehdy, je-li x mocninou dvojky (nebo nulou, což jsme si ale zaká-
žali).

Zbývá tedy vyřešit, jak z nuly udělat požadovanou jedničku a z nenuly
nulu. К tomu si zavedeme operaci r := if(s,t,u), která bude realizovat
podmínku: pokud s / 0, přiřadí r := í, jinak r u. Provedeme to
jednoduchým trikem: rozšíříme si registry o jeden pomocný bit vlevo,
nastavíme v r tento bit na jedničku a sledujeme, zda se zmenšením vznik-
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lého čísla o jedničku tento bit změní na nulu nebo ne:

v := s V 10^
v := v — 1

v := v Л 10^
v := v >>> N

v := v — 1

r := (u Л v) V (t Л ->u)

v = ls

ti = Ir' (je-li г ф 0), jinak 01^
v — 10 N nebo 00^
v = 0N1 nebo 0^0
v = nebo 1^+1
r — t nebo и

Stačí tedy na konec našeho programu přidat

у := if (6,0,1) у = 0 nebo 1

a máme program, který rozpoznává mocniny dvojky v konstantním čase
a používá к tomu čísla o]V + l = O(N) bitech.

Ještě si ukažme, jak bude probíhat výpočet pro dva konkrétní 8-bitové
vstupy (tehdy je N = 8 a W = 9):

ж = 001011000 ж = 000100000

а = 001010111 а — 000011111

b = 001010000 b= 000000000

v = 101010000 v = 100000000

v = 101001111 v = 011111111

v = 100000000 v = 000000000

v = 000000001 v = 000000000

v = 000000000 v = 111111111

у = 000000000 у = 000000001

а := ж — 1

b := х А а

v := ЬV 100000000

v := v — 1

v := v Л 100000000

v v ^>> 8

V V — 1

у := (000000001 Л v)V
V (000000000Л -.v)

Přiklad 2: Sestrojte program pro ALIK, který spočte binární paritu
vstupního čísla, čili vrátí 0 nebo 1 podle toho, zda je v tomto čísle sudý
nebo lichý počet jedničkových bitů.

flEŠENÍ. Binární parita P(x) čísla ж = ждг_1 ... жхжо je podle definice
rovna жо ® жх ® ... ® ждг-i. Jelikož operace ® je asociativní (a ® (/3 ®
® 7) = (a ® /3) ф 7) a komutativní (a ® /3 — /3 ® a), můžeme tento
vztah pro N = 2k (to opět můžeme bez újmy na obecnosti předpokládat)
přeuspořádat na

P{x) = (ж0 ® xN/2) ® (Ж1 ® xN/2+i) ® .. • Ф (xn/2— 1 ® x^v-i),
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což je ovšem parita čísla vzniklého vyxorováním horní a dolní poloviny
čísla x. Takže výpočet parity TV-bitového čísla můžeme na konstantní
počet příkazů převést na výpočet parity ^TV-bitového čísla, ten zase na
výpočet parity ^TV-bitového čísla atd., až po log2 TV krocích na paritu
1-bitového čísla, která je ovšem rovna číslu samému.

Paritu tedy vypočteme na logaritmický počet příkazů pracujících
s TV-bitovými čísly takto:

p x » |TV
x A 1N/2

x := p ® q

p — horních |TV bitů x
q = dolních \TV bitů x
x — iTV-bitové číslo s paritou

jako původní x

x := (x |TV) ®(iA i^/4) x = |TV-bitové... (můžeme psát zkráceně)

q :=

x := (x » 1) ф (x A 1)
У := x

x = 1-bitové...

у = x (už jen zkopírovat výsledek)

Náš programovací jazyk samozřejmě žádné celé části čísel a podobné
operace nemá, ale to vůbec nevadí, protože je vždy používáme jen na

podvýrazy závisící pouze na TV, takže je v programu můžeme pro každé TV
uvést jako konstanty. Například pro TV = 8 bude výpočet probíhat takto:

x = 00110110

•• 0011p x 4
q x A 1111
x := p 0 q

x := (x ;$> 2) 0 (x A 11)
x := (x » 1) 0 (x A 1)
У := x

p =

■-0110

•• 0101

q =

X —

00x =

0x =

у = 00000000

Příklad 3: Ve vzorovém řešení úlohy P-I-4 b) jsme potřebovali přesu-
nout posloupnost jedniček na konec čísla, tedy číslo tvaru 0llJ0fc převést
na 0l0ňfc. To je pomocí dělení možné provést v konstantním čase třeba
takto:

x = 0*lJ’0fc
a = 0ťlJ'_100fc (viz Příklad 1)
b = 0i04_110fc
b = 0ť0fclJ’

a:=xA(x-l)
b := x ® a

у x / b
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Zde jsme využili toho, že dělení mocninou dvojky je možné použít jako
bitový posun doprava, ovšem zadaný místo počtu bitů, o které se má
posouvat, číslem majícím 1 na pozici, která se má po posunu objevit
úplně vpravo.

P - III - 1

Náhrdelníky
K. O. Lektor je sběratel náhrdelníků. Náhrdelníky se liší počtem, pořadím
a druhy použitých drahokamů. Jeho finanční zdroje nejsou neomezené,
proto by se chtěl vyhnout tomu, aby kupoval více kusů stejného typu ná-
hrdelníku. Vymyslel tedy kódování, které funguje takto: každému druhu
drahokamů přiřadil písmeno abecedy a tyto kódy zapsal v pořadí, v jakém
se nacházejí na náhrdelníku, počínaje libovolným z nich. Dále si pořídil
stroj, který pro zadaný kód zjistí, zda již má příslušný náhrdelník ve
sbírce.

Obchodníci s náhrdelníky si samozřejmě rychle povšimli slabiny to-
hoto systému
změnil a K. O. Lektor si tak nakoupil několik duplikátů
náhrdelník ABCA si koupil i jako AABC a ACBA. Chtěl by tedy svůj stroj
vylepšit tak, aby tuto situaci rozeznal. Napište program implementující
toto vylepšení.

Program dostane na vstupu několik kódů náhrdelníků x\,...,xn

(1 ^ ^ 1000 000) a měl by pro každý z nich vypsat, zda si ho má
K. O. Lektor koupit nebo ne tak, aby získal každý typ náhrdelníků právě
jednou. Pokud je náhrdelník xy různý od všech náhrdelníků x\,..., Xi-\

(včetně rotací a zrcadlení), program odpoví „Kup to“, v opačném případě
odpoví „Podvod“.

Program může využívat starý stroj jako „černou skříňku“, která si
pamatuje množinu kódů náhrdelníků (na počátku práce množinu prázd-
nou) a je schopna do této množiny kódy přidávat (zavoláním procedury
Přidej) a zjišťovat, jestli stroj již nějaký kód zná (zavoláním funkce
UzMam, která vrací true (1 v C), pokud někdy předtím byla zavolána
procedura Přidej pro stejný kód):

int UzMam (const char *kod);
void Přidej (const char *kod);
function UzMam (var kod:string):boolean; { v Pascalu >
procedure Přidej (var kod:string);

pokud náhrdelník pootočili, případně obrátili, kód se

například

/* v C */
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К. О. Lektor má na váš program následující požadavky: Paměťová slo-
žitost nesmí záviset na počtu testovaných náhrdelníků. Časová složitost
by měla být co nejnižší, přičemž volání funkce starého stroje počítáme
jako operace běžící v lineárním čase. Ze dvou programů o stejné časové
složitosti pak považuje za lepší ten, který funkce starého stroje volá mé-
někrát.

Příklad: V levém sloupci je vstup, v pravém jediný správný výstup:
Kup to
Podvod

Podvod

ABCA

ACBA

AABC

P - III - 2

Mosty

Magické observatoře (MO) nedávno otevřely nový areál v Horních Mok-
řadech. Podnebí v Horních Mokřadech je bohužel poměrně deštivé, a tak
se vedení MO rozhodlo, že propojí všechny budovy v areálu nadzemními
krytými mosty. Vedení MO samozřejmě chce, aby si dodatečné stavební
úpravy vyžádaly co nejmenší náklady. Proto požaduje, aby celková délka
mostů, které propojí budovy v areálu, byla co nejmenší. Navíc, kvůli
vlivu energetických zón v okolí Horních Mokřad, musí všechny mosty
vést severojižně.

Vaším úkolem je vytvořit algoritmus, který pro zadanou mapu areálu
MO navrhne nejlepší možné propojení budov severojižními mosty. Pokud
všechny budovy nelze navzájem propojit, pak algoritmus vypíše vhodnou
zprávu.

Na vstupu algoritmus obdrží mapu areálu MO jako čtvercovou síť o N
řádcích a M sloupcích. Budovy v areálu jsou reprezentovány znaky x,
volná prostranství tečkami. Budova je maximální oblast tvořená po-

líčky x, která se mezi sebou dotýkají hranami. Vaším úkolem je navrhnout
propojení budov severojižními (na mapě svislými) mosty tak, aby mezi
každými dvěma budovami existovala cesta používající pouze políček x
a mostů: Mezi dvěma políčky x lze přejít, pokud sousedí hranou, mosty
lze používat pouze v severojižním směru, tj. seshora dolů nebo zdola
nahoru v jejich směru na mapě.

Při (popisu) řešení této úlohy se soustřeďte na efektivní nalezení op-
timálního propojení mezi budovami a zdůvodnění správnosti navrženého
algoritmu.
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Příklad, 1: Pro M = 8 а N = 5

uvažme následující mapu areálu:
..xxxxx.

Příklad 2: Pro M — 6 a iV = 5

uvažme následující mapu areálu:
xxxxxx

x. . . .x

x.xx.x

x. . . .x

xxxxxx

Areál je tvořen dvěma budovami
а к jejich propojení stačí vybudo-
vat jeden most délky 1:

xxxxxx

x. | . .x

x.xx.x

x. . . .x

xxxxxx

x

...x...x

.x.x....

.XXX..XX

Areál je tvořen čtyřmi budovami
(na následujícím obrázku jsou je-
jich políčka označena čísly 1 až 4;
všimněte si, že políčka s čísly 1 a 2
tvoří dvě různé budovy):

..11111.

2

...3...2

.3.3....

.333..44

Optimální řešení úlohy pro zada-
nou mapuje propojit dvojici budov
1 a 3 mostem délky jedna, dvojici
budov 2 a 4 rovněž mostem délky
jedna a budovy 1 a 4 mostem délky

Příklad 3: Pro M = 5 a N = 4

uvažme následující mapu areálu:
xxx. .

xxx. .

. . .xx

Areál je tvořen třemi budovami.
Protože budovu v pravém dolním
rohu nelze spojit s žádnou jinou
budovou mostem, všechny budovy
nelze vzájemně propojit.

tři:

. .11111.

... I .. I 2

...3..|2

.3.3..||

.333..44

Protože mosty lze používat pouze

severojižně, nemůžeme z mostu
spojujícího budovy 1 a 4 přejít
do budovy 2 a je třeba vybudovat
i most mezi budovami 2 a 4.
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P - III - 3

ALÍK

Sestrojte program pro stroj AblK, který spočte dvojkový logaritmus za-
daného nenulového čísla x, tedy pozici nejlevější jedničky v x. Pozice bitů
rostou zprava doleva, nejnižší řád je na pozici 0.

Příklad: Dvojkový logaritmus dvojkového čísla 00110001 je 5, loga-
ritmus z 00000001 je 0.

P - III - 4

Zaklínadla

magie.pas / magie.c / magie.cpp
magie.in
magie.out

Při výzkumu vlivu přesmyček na magická zaklínadla se podařilo do-
kázat, že výměna takových dvou sousedních písmen v zaklínadle, která se

nevyskytují v (anglické) abecedě těsně vedle sebe, nemá vliv na magický
účinek zaklínadla. Například místo oblíbeného abraka lze stejně dobře
použít arbaka, ale nikoliv již baraka. Samozřejmě lze sousední písmena
v zaklínadle prohazovat vícekrát, takže z abraka lze postupně odvodit
následující (stejně účinná) zaklínadla:

Program:
Vstup:
Výstup:

abraka arbaka —* rabaka

rakbaa ——> rkabaa

rabkaa

krabaa.

Povšimněte si, že pořadí výměn sousedních písmen v zaklínadle můžeme
otočit, a tedy ze zaklínadla krabaa lze též získat původní abraka.

Dvě zaklínadla nazveme ekvivalentní, jestliže je lze mezi sebou pře-
vést posloupností výměn dvou sousedních písmen, která se nevyskytují
v abecedě těsně vedle sebe. Například zaklínadla abraka a krabaa jsou
ekvivalentní, ale zaklínadla dabra a badar ne.

Soutěžní úloha. Napište program, který pro zadané dvojice zaklínadel
určí, zda jsou či nejsou ekvivalentní.

Vstup: Vstupní soubor magie, in obsahuje několik bloků, z nichž
každý odpovídá jedné dvojici zaklínadel. Obě zaklínadla v jednom bloku
mají vždy stejný počet písmen N, 1 ^ ^ 1000 000, který je uve-
den na prvním řádku každého bloku. Následuje N řádků, z nichž každý
obsahuje dvě malá písmena anglické abecedy (tzn. znaky z rozmezí

112



a... z), která jsou oddělená jednou mezerou. První znak na г-tém z těchto
řádků je г-tý znak prvního zaklínadla, druhý znak je г-tý znak druhého
zaklínadla. Vstupní soubor je ukončen řádkem, který obsahuje jediné
číslo 0.

Výstup: Výstupní soubor magie. out obsahuje pro každý blok vstup-
ního souboru jeden řádek. Tento řádek obsahuje slovo „ekvivalentní14,
pokud jsou zadaná zaklínadla ekvivalentní, a slovo „neekvivalentní44,
pokud nejsou. Řádky musí být vypsány v pořadí, v jakém se jim odpo-
vídající bloky vyskytují v souboru magie . in.

Příklad:

Soubor magie. in Soubor magie. out
ekvivalentní

neekvivalentní

6

а к

b r

r a

a b

к a

a a

5

d b

a a

b d

r a

a r

0

P - III - 5

Asfaltéři

asfalt.pas / asfalt.c / asfalt.cpp
asfalt.in

asfalt.out

Ve Viácii si občané již dlouho stěžovali na nekvalitní silnice. Když si
jednou i vrchní cestář při cestě do práce v kočáře vyrazil zub, rozhodl se
к radikální akci. Doslechl se, že v sousední zemi začali na cesty používat
novinku zvanou asfalt, a myšlenka na vyasfaltování všech silnic ve Viácii
byla na světě. A jak si vrchní cestář usmyslel, tak se i stalo. Při realizaci
nápadu se ale nižší cestáři museli potýkat s nemilým problémem: asfalt se

Program:
Vstup:
Výstup:
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do Viácie dovážel v ohromných barelech, ve kterých bylo asfaltu tak ako-
rát na dvě cesty (byly to opravdu ohromné barely). Potíž byla v tom, že
jakmile se barel narazil a asfalt z něj začal vytékat, nedal se už proud as-
faltu ničím zastavit a bylo tedy nutné vyasfaltovat najednou dvě na sebe
navazující cesty. Jenže jak rozvrhnout asfaltování, aby cestáři neskončili
ve městě s poloplným barelem a se všemi cestami vedoucími do města
už vyasfaltovanými? Důsledky zalití náměstí a několika přilehlých čtvrtí
do asfaltu by byly pro cestáře jistě nemilé... Rozhodli se proto přizvat
к problému vás, jakožto na asfalt vzaté odborníky.

Soutěžní úloha. Napište program, který pro zadané propojení měst
cestami rozhodne, zda je možno cesty podle popsaných pravidel vyas-

faltovat, a pokud ano, vypíše jednu z možností, jak rozvrhnout, která
dvojice cest bude asfaltována ze kterého barelu.

Vstup: Na prvním řádku vstupního souboru asfalt. in se nacházejí
dvě celá čísla N a M oddělená mezerou, 1 ^ ^ 10 000, 1 š M ^

40 000 — počet měst a počet cest ve Viácii. Dále ve vstupním souboru
následuje M řádků popisujících jednotlivé cesty. Každý řádek obsahuje
dvě celá čísla А а В oddělená mezerou — čísla měst (města číslujeme od
jedné do N), mezi kterými cesta vede. Předpokládejte, že mezi každými
dvěma městy se lze po cestách dostat (pokud ne přímo, tak přes jiná
města).

Výstup: Výstupní soubor asfalt. out bude buď obsahovat jediný řá-
dek s textem „Cesty nelze vyasfaltovat. “, pokud neexistuje způsob,
jak vyasfaltovat všechny cesty a neskončit s poloplným barelem v ně-
jakém městě, nebo bude obsahovat M/2 řádků s popisem postupu as-
faltování. Každý řádek postupu bude popisovat využití jednoho barelu
s asfaltem. Bude obsahovat tři celá čísla oddělená mezerou — číslo města,
ve kterém má asfaltování začít, číslo města, do kterého se má pokračovat
a číslo města, ve kterém má asfaltování skončit. Každá cesta musí být
vyasfaltována právě jednou.

Přiklad 1:

Soubor asfalt. in

3 3

1 2

2 3

3 1

Soubor asfalt. out

Cesty nelze vyasfaltovat.
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Příklad 2:

Soubor asfalt. in

5 8

Soubor asfalt. out

5 1 4

5 4 3

4 2 3

3 1 2

1 5

1 4

1 3

1 2

3 2

3 4

4 5

4 2
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Kategorie Z5

Texty úloh

Z5 - I - 1

Vendelín zavřel do bedny všechna dvoumístná čísla, která při dělení pěti
dávají zbytek 3, avšak na jedno z nich zapomněl. Když čísla v bedně
správně sečetl, dostal součet 911. Na které číslo zapomněl?

(L. Hozová)

Z5 - I - 2

Andulka a Maruška měly sraz přesně v 17.30 před kinem. Andulka si
myslela, že jí jdou hodinky o 4 minuty napřed, ale ve skutečnosti se jí
zpožďovaly o 8 minut. Maruška si myslela, že se jí hodinky o 8 minut
zpožďují, ale šly jí o 4 minuty napřed. Kdy která z dívek přišla na sraz,

jestliže si obě myslely, že přišly přesně v 17.30? (5. Ptáčkova)

Z5 - I - 3

Tři princové šli na mnohohlavého draka. První princ mu levou rukou usekl
polovinu hlav a pravou rukou ještě další dvě. Totéž udělali se zbylými
hlavami druhý a pak i třetí princ. Potom drak padl bezhlavý na zem. Na
kolikahlavého draka se princové vydali? (S. Ptáčkova,)

Z5 - I - 4

Na obr. 31 je mnohoúhelník složený z jedenácti stejných čtverečků.
a) Zjisti jeho obvod, jestliže víš, že jeden malý čtvereček má obvod 20 cm.

b) Které dva čtverečky mnohoúhelníku je nutno ubrat, aby vznikl nový
mnohoúhelník s co největším obvodem? Namaluj alespoň jedno řešení.

(S. Bednářová)
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Obr. 31

Z5 - I - 5

Hrací kostka má puntíky rozmístěny tak, že jejich součet na protilehlých
stěnách je vždy 7. Kostka na obr. 32 stojí na stěně s jedním puntíkem,
takže na podložce zanechá otisk „1“. Když převalíme kostku doprava
na stěnu se dvěma puntíky, zanechá na podložce otisk „2“. Když pak
převalíme kostku směrem к sobě, zanechá otisk „3“. Při tomto valení
dostaneme stopu na obr. 33. Součet čísel této stopy je 6. Jestliže výchozí
postavení kostky je na obr. 32,
a) jaký bude součet na stopě na obr. 34?
b) Jak bude vypadat stopa, na níž je součet 22? (L. Hozová)

1

21•f1 #1
3

Obr. 32 Obr. 33 Obr. 34

Z5 - I - 6

Ivanka si staví z kostek komíny. Všechny kostky jsou stejné a mají roz-

měry 1 cm, 1 cm a 2 cm. Teď postavila jednopatrový dutý komín z pěti
kostek na ploše 12 cm2 (obr. 35). Rozhodla se ale, že postaví dutý komín
na ploše 36 cm2 z 260 takových kostek. Jaký nejvyšší komín mohla po-

stavit, jestliže jí žádná kostka nezbyla a komín byl nahoře rovný?
(3. Ptáčkova)
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Obr. 35

Z5 - II - 1

Karel měl sčítat všechna dvojmístná čísla, která po dělení deseti dávají
zbytek, který se dá beze zbytku dělit pěti. Jedno z čísel však omylem za-

počítal třikrát, takže mu vyšel součet 1 035. Které číslo započetl třikrát?
(S. Bednářová)

Z5 - II - 2

Krteček si začal razit nový tunel. Nejdříve tunel vedl 5 metrů na sever,

potom 23 dm na západ, 150 cm na jih, 37 dm na západ, 620 cm na jih,
53 cm na východ a 27 dm na sever. Kolik centimetrů mu ještě zbývá

(M. Dillingerová)vykopat, aby se dostal na začátek tunelu?

Z5 - II - 3

Z čísla 9 876 543 210 vyškrtni co nejmenší počet číslic tak, aby na místě
desítek byla číslice třikrát menší než na místě tisíců a na místě jednotek
byla číslice o tři menší než na místě stovek. Najdi všechna řešení.

(S. Bodláková)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Kladné desetinné číslo nazveme vyvážené, jestliže je součet číslic leží-
cích před desetinnou čárkou roven součtu číslic za desetinnou čárkou.
Např. číslo 25,133 je vyvážené. Napiš a) nejmenší, b) největší vyvážené
číslo, jehož žádné dvě číslice nejsou stejné. (S. Bednářová)

Z6 - I - 2

Obdélník jsme rozdělili na tři trojúhelníky jako na obr. 36. Odměřili jsme
všechny vnitřní úhly v těchto trojúhelnících a získali následující hodnoty:
20°, 30°, 30°, 40°, 50°, 60°, 90°, 90° a 130°. Dopiš je na správná místa
v obrázku. (Pozor, obrázek může být nepřesný, nevyplatí se měřit.)

(,S. Bednářová)

Z6 - I - 3

V zemi „Císelkovo“ žijí jen přirozená čísla. Muži a chlapci jsou sudá čísla,
ženy a dívky jsou lichá čísla. Manželé mají hned po svatbě děti, a to
všechna čísla, která dělí jejich součin beze zbytku. Kterého nápadníka
z čísel 2, 8, 14 si má vybrat slečna Sedmička, jestliže chce mít
a) co nejvíce dětí,
b) stejný počet dcer jako synů? (M. Dillingerová)
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Z6 - I - 4

Na kartičce mám napsáno sudé čtyřmístné číslo. Rozstřihnu ji tak, že
získám dvě dvoumístná čísla, jejichž součin je 2 562. Které čtyřmístné
číslo jsem měla na kartičce? (M. Raabová)

Z6 - I - 5

Na obr. 37 je mnohoúhelník složený z jedenácti stejných čtverečků.
a) Zjisti jeho obvod, jestliže víš, že jeden malý čtvereček má obvod 2 cm.

b) Které dva čtverečky mnohoúhelníku je nutno přemístit, aby vznikl
nový mnohoúhelník s co největším obvodem? (S. Bednářová)

Obr. 37

Z6 - I - 6

V Petříkově, Boříkově a Tomíkově žije celkem 6 000 obyvatel. V každé
z těchto tří vesnic připadá v průměru na 20 obyvatel 1 pes a na 30 oby-
vatel 1 kočka. V Petříkově a Boříkově žije celkem 234 psů, v Boříkově
a Tomíkově žije celkem 92 koček. Kolik obyvatel mají jednotlivé vesnice?

(Š. Ptáčková)

Z6 - II - 1

Desetinné číslo nazveme vyvážené, jestliže je součet číslic ležících před
desetinnou čárkou roven součtu číslic za desetinnou čárkou. Např. číslo
25,133 je vyvážené. V každém z čísel 497 365,198043 a 197352,598062
škrtni několik číslic tak, aby vzniklo a) co největší vyvážené číslo, b) vy-
vážené číslo s co největším počtem číslic. (S. Bednářová)

Z6 - II - 2

Obdélník jsme rozdělili na čtyři trojúhelníky jako na obr. 38. Odměřili
jsme všechny vnitřní úhly v těchto trojúhelnících a získali následující
hodnoty: 15°, 20°, 20°, 50°, 55°, 70°, 75°, 75°, 90°, 90°, 130° a ještě jednu
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hodnotu, kterou jsme zapomněli zapsat. Zjisti chybějící hodnotu a napiš,
o který úhel se jedná, pokud víš, že úsečka BE je delší než úsečka FC.
(Pozor, obrázek může být nepřesný, nevyplatí se měřit.)

(S. Bednářová)

Z6 - II - 3

Když v pekárně napečou koláčky, rozdělí je do balíčku po 6 a po 12 ku-
šech. Z prodeje šestikusového balíčku mají zisk 4 Kč a z prodeje dvanác-
tikusového balíčku 9 Kč. Kolik nejvíce a kolik nejméně koláčků může být
na jednom pekáči, pokud zisk z jejich prodeje je 219 Kč?

(M. Dillingerová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Dlouhý, Široký a Bystrozraký změřili svou výšku. Zjistili, že Dlouhý je
dvakrát vyšší než Široký, výška Bystrozrakého představuje dvě třetiny
výšky Dlouhého, ale přitom je o 44 cm vyšší než Široký. Zjisti, jak vysoký

(M. Dillingerová)je Dlouhý, Široký i Bystrozraký.

Z7 - I - 2

Je dáno pětimístné číslo dělitelné třemi. Vyškrtnu-li z něj číslice na li-
chých místech, dostanu dvoumístné číslo. Toto číslo je 67krát menší než
číslo získané z původního pětimístného čísla vyškrtnutím číslic na sudých
místech. Zjisti, jaké bylo původní pětimístné číslo. (M. Raabová)

Z7 - I - 3

V zemi „Číselkovo" žijí jen přirozená čísla. Muži a chlapci jsou sudá čísla,
ženy a dívky jsou lichá čísla. Manželé mají hned po svatbě děti, a to
všechna čísla, která dělí jejich součin beze zbytku. Kterého nápadníka
z čísel 2, 16, 28, 46 si má vybrat slečna Devítka, jestliže chce mít
a) co nejvíce dětí,
b) stejný počet dcer jako synů? (M. Dillingerová)

Z7 - I - 4

Kamilka při kreslení obdélníků ve čtvercové síti narazila na takovouto
zajímavou dvojici: Obdélník s rozměry 6 cm a 4 cm a čtverec se stranou
délky 4 cm. Nejdříve zakreslila do sítě obdélník a pak čtverec (obr. 39).
S údivem ve svém obrázku objevila, že obsah nezakryté části obdélníku
je roven obsahu čtverce a že nezakrytá část obvodu obdélníku je rovna
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celému obvodu čtverce. Mezi následujícími obdélníky najdi všechny dvo¬
jice, které mají obě vlastnosti Kamilčiných obdélníků: 3x9, 4x9, 4x6

(M. Dillingerová)a 5 x 7 (v centimetrech).

Z7 - I - 5

Myška Hryzalka našla cihlu sýra. První den snědla druhý den j zbytku,
třetí den | zbytku a čtvrtý den | zbytku. Pak už z cihly zůstala jen
krychle s povrchem 150cm2. Jaký objem měla původní cihla sýra?

(M. Dillingerová)

Z7 - I - 6

Archeologové vykopali papyrus se zvláštní tabulkou s výřezem ve tvaru
„obráceného Z“ (obr. 40). Jde zřejmě o talisman. Měl zajímavou vlast-
nost: zakroužkujeme-li libovolných pět čísel tak, aby v každém sloupci
i řádku bylo zakroužkované právě jedno, a těchto pět čísel sečteme, do-
staneme vždy stejný součet. Pokus se zrekonstruovat tento talisman, tzn.
doplň čísla na prázdná místa. (S. Bednářová)

Obr. 40
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Z7 - II - 1

V zemi „Císelkovo“ žijí jen přirozená čísla. Muži a chlapci jsou sudá
čísla, ženy a dívky jsou lichá čísla. Manželé mají ihned po svatbě děti,
a to všechna čísla, která dělí jejich součin beze zbytku. Součet hodnot
všech dětí manželů Kvádříkových je 28. Otec Kvádřík má nižší hodnotu
než aspoň jeden ze synů. Určete hodnoty pana a paní Kvádříkových.

(M. Dillingerová)

Z7 - II - 2

Kolik malých krychliček, z nichž každá má povrch 54cm2, potřebujeme
(M. Krejčová)postavení velké krychle s povrchem 864 cm2?na

Z7 - II - 3

Máme čtyři nádoby. V prvních třech je voda, čtvrtá je prázdná. Ve druhé
je dvakrát více vody než v první a ve třetí je dvakrát více vody než ve
druhé. Do čtvrté nádoby přelejeme polovinu vody z první nádoby, třetinu
vody ze druhé nádoby a čtvrtinu vody ze třetí nádoby. Ve čtvrté nádobě
máme nyní 26 litrů vody. Kolik vody je dohromady ve všech nádobách?

(M. Raabová)
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Kategorie Z8

Texty úloh

Z8 - I - 1

Pořadové číslo dne v měsíci je smutné, protože v jistém roce nebylo ani
jednou nedělí. Jaké číslo to bylo a na který den v týdnu připadl v tom
roce Nový rok? (M. Volfová)

Z8 - I - 2

Slimák lezl po čtvercové síti a zanechal za sebou stopu (obr. 41). Čísla
pod sítí a vedle ní udávají počet navštívených čtverečků v daném řádku či
sloupci. Na obr. 42 určete dráhu slimáka, víte-li, že nikdy nevlezl dvakrát
do stejného čtverečku a že nikdy nelezl šikmo. (£. Ptáčkova)

1 3 2

Obr. 41

Z8 - I - 3

O lichoběžníku LÍCH {LI || CH) víme, že LCLHI, \<ILC\ = \<IHC\
a aritmetický průměr délek jeho základen je 8 cm. Vypočítejte obsah

{S. Bednářová)tohoto lichoběžníku.
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Z8 - I - 4

Kolik je mezi čísly 1,2,3,..., 999,1000 takových, která nejsou dělitelná
(M. Volfová)žádným z čísel 2, 3, 4, 5?

Z8 - I - 5

Alenka sestavovala „hlemýždí ulitu“ z rovnoramenných pravoúhlých troj-
úhelníků jako na obr. 43. Použila к tomu co nejvíc trojúhelníků, ale žádné
dva se nepřekrývaly.
a) Z kolika trojúhelníků byla ulita sestavena?
b) Jaký je obsah největšího trojúhelníku, je-li odvěsna nejmenšího z nich

dlouhá 1 cm? (M. Raabová)

Obr. 43

Z8 - I - 6

Archeologové vykopali papyrus se zvláštní tabulkou s výřezem ve tvaru
„obráceného Z“ (obr. 44). Jde zřejmě o talisman. Měl zajímavou vlast-
nost: zakroužkujeme-li libovolných pět čísel tak, aby v každém sloupci
i řádku bylo zakroužkováno právě jedno, a těchto pět čísel sečteme, do-
staneme vždy stejný součet. Pokuste se zrekonstruovat tento talisman,
tzn. doplňte čísla na prázdná místa. (S. Bednářová)

Obr. 44
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Z8 - II - 1

Je dán rovnostranný trojúhelník o straně 4 cm (obr. 45). Určete obsah
tmavé části a také, kolik procent plochy původního trojúhelníku zaujímá
tmavá část? (P. Tlustý)

31

Obr. 45

Z8 - II - 2

V domácím úkolu na výpočet hodnoty výrazu

2-3 + 4- 5 + 6- 7 + 8- 9 + 10 =

Radek zapomněl napsat dvoje závorky, takže mu při správném počítání
vyšel výsledek o 18 větší, než by získal, kdyby měl zapsané i závorky.
Doplň dvěma způsoby závorky a napiš, jaké číslo Radkovi vyšlo a jaké
mu mělo vyjít. (M. Dillingerová)

Z8 - II - 3

Během prvních jedenácti dnů odpovědělo na anketní otázku 700 lidí.
Každý z nich vybral právě jednu ze tří nabízených možností. Poměr
četností jednotlivých odpovědí byl 4 : 7 : 14. Dvanáctý den se ankety
zúčastnilo ještě několik lidí, čímž se poměr četností odpovědí změnil na
6 : 9 : 16. Kolik nejméně lidí muselo odpovídat na anketu dvanáctý den?

(L. Šimůnek)
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Kategorie Z9

Texty úloh

Z9 - I - 1

Dvoumístné číslo se nazývá exkluzivní, jestliže má následující vlastnost:
číslice exkluzivního čísla navzájem vynásobíme, po přičtení součtu všech
číslic exkluzivního čísla к předchozímu výsledku získáme toto exkluzivní
číslo. Například 79 je exkluzivní, neboť 79 = 7 • 9 + (7 + 9). Najděte
všechna exkluzivní čísla. (P. Tlustý)

Z9 - I - 2

Uvnitř pravidelného šestiúhelníku o straně délky 2\/3cm se pohybuje
kruh o průměru 1 cm tak, že se stále dotýká obvodu pravidelného šestiú-
helníku (obr. 46). Vypočítejte obsah té části šestiúhelníku, která nemůže

(M. Dillingerová)být nikdy překryta pohybujícím se kruhem.

Obr. 46

Z9 - I - 3

Kolika způsoby lze vybrat sedm čísel z množiny (1,2,..., 8, 9} tak, aby
jejich součet byl dělitelný třemi? (.P. Tlustý)
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Z9 - I - 4

Jsou dány kruh a čtverec se stejným obsahem. Do daného kruhu vepíšeme
čtverec, do daného čtverce vepíšeme kruh. Který z vepsaných obrazců má
větší obsah? (M. Volfová)

Z9 - I - 5

Pan Sudý měl sudý počet oveček, pan Lichý lichý počet oveček. Počet
všech oveček dohromady tvořil trojmístné číslo, které mělo všechny číslice
stejné. Každé ovečce pana Sudého se narodily tři ovečky, každé ovečce
pana Lichého dvě ovečky. Jednoho dne však vlk zadávil tři ovečky panu
Sudému. Teď má pan Sudý stejně velké stádo jako pan Lichý. Kolik oveček
měl původně každý z chovatelů? (L. Hozová)

Z9 - I - 6

Pět dětí postupně říká: „Včera bylo pondělí.“ „Dnes je čtvrtek.“ „Po-
zítří bude pátek.“ „Zítra bude sobota.“ „Předevčírem bylo úterý. “ Pokud
byste věděli, kolik z dětí lhalo, hned by bylo jasné, který je den. Který je
tedy den? {Š. Ptáčková)

Z9 - II - 1

Princ Zrychlený pozval princeznu Zpomalenou na svůj hrad. Když dlouho
nešla, vydal se jí naproti. Po dvou dnech putování ji potkal v jedné pětině
její cesty. Spolu už pokračovali v cestě dvakrát rychleji, než když cestovala
princezna sama. Na princův hrad dorazili druhou sobotu od vzájemného
setkání. Který den se potkali, jestliže princezna vyrazila ze svého hradu

(M. Dillingerová)v pátek?

Z9 - II - 2

Uvnitř čtverce o straně 4 cm se pohybuje kruh s průměrem 1 cm tak, že se
stále dotýká obvodu čtverce (obr. 47). Vypočítejte obsah té části čtverce,
která nemůže být nikdy překryta pohybujícím se kruhem.

(M. Dillingerová)
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Obr. 47

Z9 - II - 3

Do okresního kola postoupili Petr, Mojmír, Karel a Eva. Ve škole pak
sdělili:

Eva: „Z naší čtveřice jsem nebyla ani první, ani poslední.“
Mojmír: „Nebyl jsem z naší čtveřice poslední.“
Karel: „Byl jsem z nás první.“
Petr: „Já jsem byl z naší čtveřice poslední.“
Tři mluvili pravdu, jeden lhal. Kdo z nich byl v okresním kole nejlepší?

(M. Volfová)

Z9 - II - 4

Uklízečka stírala schodiště v mrakodrapu. Aby jí práce lépe ubíhala, po-
čítala umyté schody. V době, kdy měla umytu přesně polovinu schodů,
si udělala přestávku. Za chvíli se dala znovu do práce a chtěla také po-
kračovat v počítání schodů. Když ale vzpomínala na počet již umytých
schodů, dopustila se omylu. Správné trojciferné číslo „přečetla“ odzadu,
čímž vzniklo číslo nižší, a počítala od tohoto čísla. Po setření všech schodů
došla к číslu 746. Kolik schodů mohla umýt ve skutečnosti?

(L. Šimůnek)

Z9 - III - 1

Přirozené dvojmístné číslo N strašně závidělo svému kamarádovi,
dvojmístnému desetinnému číslu X, jeho desetinnou čárku. Tak mu X
tu svou darovalo. Číslo N si ji vložilo mezi své dvě číslice a vůbec mu

nevadilo, že je teď o 567 desetin menší, než bylo předtím. Také X bylo
spokojené, protože teď bylo na číselné ose svému příteli N dvakrát blíž
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než předtím. Zjistěte, o kterých dvou číslech iV a X je tato příhoda.
(S. Bednářová)

Z9 - III - 2

Uvnitř rovnostranného trojúhelníku se stranou délky 4\/3cm se pohy-
buje kruh s průměrem lem tak, že se stále dotýká obvodu trojúhelníku
(obr. 48). Vypočítejte obsah té části trojúhelníku, která nemůže být nikdy

(M. Dillingerová)překryta pohybujícím se kruhem.

Obr. 48

Z9 - III - 3

Maminka připravila na oslavu Jirkových narozenin pomerančový džus
tak, že smíchala 1 litr 100% džusu s | litru 30% džusu. Jirka si odlil do
skleničky a ochutnal. Protože má radši slabší koncentraci, dolil připravený
džus na původní množství. Výsledný džus měl koncentraci 61,2%, a to
mu vyhovovalo. Jaké množství džusu si Jirka odlil do skleničky?

(M. Raabová)

Z9 - III - 4

Je dán trojúhelník. Jestliže jeho nejdelší stranu zkrátíme o třetinu její dél-
ky, nejkratší stranu zdvojnásobíme a zbývající stranu zmenšíme o 2 cm,
dostaneme trojúhelník shodný s původním trojúhelníkem. Jaké jsou roz-

měry tohoto trojúhelníku? (M. Raabová)
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Přípravná soustředění před 46. MMO

V průběhu 54. ročníku se konalo výběrové soustředění pro přípravu na
mezinárodní matematickou olympiádu bezprostředně po skončeném ce-
lostátním kole kategorie A, a to od 18. do 22. dubna 2005 v Bílovci. Na
soustředění bylo pozváno všech 10 vítězů III. kola kategorie A. Soustře-
dění bylo zaměřeno na přípravu reprezentantů a ke konečné nominaci
šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

8/8, GLJ Holešov
3/4, G Zlín, Lesní čtvrť
7/8, G Zlín, Lesní čtvrť
3/4, G Brno, tř. Kpt. Jaroše
6/8, G Pardubice
3/4, GMK Bílovec
3/4, G Brno, tř. Kpt. Jaroše
4/4, GJKT Hradec Králové
4/4, SPŠST Praha 1, Panská
3/4, G Brno, tř. Kpt. Jaroše

František Konopecký
Ondřej Bílka
Marek Pechal

Jakub Opršal
Marek Scholle

Jaroslav Haněl
Jaromír Kuběn

Michal Švagerka
Pavel Kocourek

Martin Křivánek

82

56,5
72,5
58

49

60

75,5
47

63

47

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (18.4.),
dr. Pavel Calábek (20.4.),
dr. Jaroslav Svrček (19.4. a 21.4.)
a doc. Jaromír Šimša (22.4.).
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Úlohy zadané na přípravném soustředění
1. Funkce / z oboru celých čísel do oboru celých čísel splňuje zároveň
tyto podmínky:

1) f{f(n)) = n pro všechna celá čísla n,

2) f{f(n + 2) + 2) = n pro všechna celá čísla n,
3) ДО) = 1.

Určete /(2005).
2. Dokažte, že pro každá čtyři kladná reálná čísla a, b, c, d platí

\fab -f \fcd {/(a + b + c)(b + c + d).

3. V sázkové kanceláři se přijímají sázky na šest zápasů, v nichž může
dojít buď к výhře domácích, nebo к výhře hostů, nebo к nerozhodnému
výsledku. Každá sázka je na všech šest zápasů. Jaký nejmenší počet sázek
je možné zvolit, aby mezi nimi jistě byla sázka, v níž jsou výsledky všech
šesti zápasů nesprávné?
4. Je dán trojúhelník ABC, který není rovnoramenný. Středy kružnic
mu vepsané a opsané označme po řadě / a O. Vně připsaná kružnice se
středem Ia se dotýká strany BC v bodě A\ a polopřímek AB a AC po
řadě v bodech A2 a A3. Bod I'a je souměrný s bodem Ia podle přímky
A2A3. Dokažte, že přímka OIa dělí úsečku A\I'a na dvě poloviny.
5. Množina přirozených čísel 1,2,..., 5n je disjunktním způsobem roz-
dělena na dvě podmnožiny. Dokažte, že v těchto podmnožinách existuje
aspoň n dvojic (z, у), kde x > y, tak, že číslo x — y patří téže podmnožině
jako čísla x a y.

6. Střed I kružnice vepsané tečnovému čtyřúhelníku ABCD a středy
jeho úhlopříček AC a BD leží na téže přímce. Dokažte.
7. V rovině je dán pravidelný n-úhelník A\A2 ... An (n ^ 3). Určete po-
čet všech navzájem neshodných trojúhelníků, jejichž vrcholy jsou totožné
s některými třemi vrcholy daného n-úhelníku.
8. Na kružnici o jsou dány čtyři body, které po řadě označíme А, В, C, D
(tj. ABCD je konvexní tětivový čtyřúhelník). Uvnitř kruhu ohraničeného
kružnicí o je dán bod S tak, že

\<SAD\ = \<SCB\ \<SDA\ = \<SBC\.
Osa úhlu ASB protíná kružnici o v bodech P a Q. Dokažte, že S je střed
úsečky PQ.
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9. Nechť n je přirozené číslo. Do čtvercové tabulky 2n x 2n je vepsáno
4n2 reálných čísel jejichž součet je 0 (na každém poli tabulky je právě
jedno číslo). Absolutní hodnota každého z těchto čísel není větší než 1.
Dokažte, že existuje řada tabulky (tj. řádek nebo sloupec) taková, že
absolutní hodnota součtu jejích prvků není větší než n.

10. Nechť je množina kladných reálných čísel. Ukažte, že existuje
právě jedna funkce /: —■> !R+ taková, že pro všechna x £ IR+ platí

/(/(z)) = 6x - f{x).

11. Najděte alespoň jeden mnohočlen / s reálnými koeficienty takový,
že /(0) = 1 a pro všechna přirozená čísla n je součet druhých mocnin
všech koeficientů mnohočlenu fn{x) roven součtu druhých mocnin všech
koeficientů mnohočlenu (3x2 + 7x + 2)n.
12. Nechť n je přirozené číslo, n ^ 3. Dokažte, že součet třetích mocnin
všech přirozených čísel menších než n a nesoudělných s n je dělitelný
číslem n.

13. Nechť D značí střed strany BC v trojúhelníku ABC. Určete velikost
vnitřního úhlu při vrcholu C v tomto trojúhelníku, víte-li, že platí

\<DAC\ = 15°.\<BAD\ = \<ACB\14.Dokažte, že pro libovolná kladná reálná čísla platí nerovnost

1 1 31
>

a(l + b) ' 6(1 + c) c(l + a) 1 + abc

Zjistěte, kdy platí rovnost.

15. Stranám AC a BC ostroúhlého trojúhelníku ABC jsou zvnějšku při-
psány pravoúhelníky ACPQ a BKLC, které mají shodné obsahy. Do-
kažte, že střed úsečky PL, vrchol C a střed kružnice opsané trojúhelníku
ABC leží na téže přímce.

16. Funkce / a g z IR do IR splňují pro libovolná x, у G IR rovnici

f(x + g(y)) = 2x + y + 5.

Vyjádřete hodnotu výrazu g[x 4- f(y)) bez neznámých hodnot / a g.
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17.Rozhodněte, zda existuje osm přirozených čísel takových, že

у y/ait ~ Vak ~ 1 = 2.
fc=i

18. Na tabuli je v jedné řadě zapsáno 54 znaků „minus“. Dva hráči A
а В se střídají v tazích (první tah má hráč А). V každém tahu vybere
hráč jeden nebo dva sousední znaky „minus“ a změní ho, resp. je na

„plus“. (Znaky „minus“ například v trojici —+ — nejsou sousední.) Vítězí
ten hráč, který změní poslední „minus" na „plus“. Navrhněte jednomu
z hráčů vítěznou strategii.

19. Na poličce je v jedné řadě všech 100 dílů sebraných spisů Lva Tolsté-
ho. V libovolném kroku smíme vybrat dva díly, jeden s lichým číslem
a druhý se sudým číslem, a navzájem vyměnit jejich místa v dané řadě.
Určete nejmenší počet takových kroků, které stačí к tomu, abychom li-
bovolné původní pořadí dílů změnili na „správné" rostoucí pořadí dílů
od čísla 1 po číslo 100 (zleva doprava).
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Mezinárodní střetnutí česko-polsko-slovenské

Zwardoň, 20.-22. ČERVNA 2005
V rámci závěrečné přípravy před MMO se uskutečnilo již páté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 46. MMO v Méridě.

Soutěž se uskutečnila ve Zwardoni v polské části Beskyd, takže to ne-

bylo příliš daleko ani pro naše, ani pro slovenské reprezentanty. Všechna
tři družstva přicestovala na místo konání již v neděli večer 19. června.
Organizace a průběh soutěže zůstal zachován z předešlých ročníků — je
přizpůsoben stylu III. kola naší МО a podmínkám na MMO. Soutěžícím
byly ve dvou dnech předloženy dvě trojice soutěžních úloh, přitom za
každou z úloh mohli získat nejvýše 7 bodů, tj. celkově (stejně jako na

MMO) 42 body. Na každou trojici úloh měli soutěžící vyhrazeno 4,5 ho-
diny.

Pořadí Jméno Země body Součet

Michal Pilipczuk
František Simančík
Michal Burger
Pavel Kocourek
Tomasz Kulczyňski
Tomasz Warszawski
František Konopecký
Marek Pechal

Ondřej Budáč
Jaromír Kuběn
Jozef Bodnár

Wojciech Smietanka
Nadbor Drozd
Jakub Závodný
Jakub Opršal
Peter Černo
Piotr Achinger
Jaroslav Haněl

POL 72776

61277
71275
07725
72075
61247

07073
01574
02077
0 7 2 0 7
31275

61700
01074
02271
01270
02200

01260

00030

1. 36

SYK2. 30

SYK3. 29

CZE4.-5. 28

POL 28
POL 276.

CZE7.-8. 24

CZE 24

SYK9. 23

CZE10. 22

SYK11.-12. 20

POL 20

POL13.-14. 19

SYK 19

CZE 1715.

SYK16. 11

POL17. 10

CZE18. 4
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Hodnocení vyřešených úloh koordinovala mezinárodní komise ve slo-
žení Jaromír Šimša, Jaroslav Švrček a Karel Horák za Českou republiku,
Peter Novotný a Ján Mazák za Slovensko a Waldemar Pompě a Adam
Osqkowski za Polsko.

Polští organizátoři připravili kromě obvyklé soutěže ještě soutěž druž-
stev, tzv. Matematický souboj, který proběhl ve středu 22. června po vy-
hlášení výsledků soutěže jednotlivců. Nebojovali přitom proti sobě jed-
notlivá národní družstva, ale všech 18 účastníků se rozdělilo do dvou
skupin, jež stály proti sobě. V každé skupině byli studenti ze všech tří
zemí. Cílem bylo vyřešit co nejvíce z následujících 11 úloh a v rámci sku-
piny si vzájemně vysvětlit řešení tak, aby je libovolný zástupce skupiny
(určený soupeřem) mohl co nejlépe prezentovat dle předem stanovených
pravidel.

Kvůli souboji se střetnutí o jeden den protáhlo, a tak naši účastníci
odcestovali až ve čtvrtek 23. června ráno. V dalším roce se společné
přípravné střetnutí uskuteční na Slovensku.

Mecz matematyczny

1. Dokažte, že existuje nekonečně mnoho přirozených čísel n takových,
že všechna prvočísla, která dělí číslo n2 + 1, jsou menší než n.

2. Rozhodněte, zda existují přirozená čísla ж, у, zi, Z2,..., 22005 taková,
že pro к = 1,2,3 platí

Xk + yk — Z i + Z2 P ... + 22005-3.Nechť p a q — p-f 2 jsou prvočísla. Dokažte, že největší společný dělitel
čísel pq — p a qp — q je větší než 2p3.

nn •n."n"4. Dokažte, že pro každé přirozené číslo n je rozdíl n
číslem 547.

dělitelný-nn

5. Označme P, Q, R, S, T, U po řadě středy úhlopříček AC, BD,
CE, DF, EA, FB konvexního šestiúhelníku ABCDEF. Dokažte, že ob-
sah šestiúhelníku ABCDEF je čtyřikrát větší než obsah šestiúhelníku
PQRSTU.

6. V rovině je dán konvexní šestiúhelník. Každá ze tří úseček spojujících
středy jeho protilehlých stran dělí daný šestiúhelník na dva pětiúhelníky
o stejném obsahu. Dokažte, tyto tři úsečky mají společný bod.
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7. Je dána kružnice и se středem O a poloměrem 1. Uvažujme všechny
čtverce ABCD, jejichž vrcholy А а, В leží na kružnici ш. Jakou největší
velikost může mít úsečka OC?

8. Dokažte, že pro libovolná kladná reálná čísla a, 6, c platí nerovnost

/ 9a(g + b) 3

у 2(a + 6 + с)2 + У
9. Určete všechna přirozená čísla n ^ 2 s následující vlastností: Pro
všechna celá čísla a\, <12, аз,..., an_b která nejsou dělitelná číslem n,

existují indexy 1 ^ i\ < i-i < г3 < ... < ik ^ n — 1 takové, že číslo

aťl + Ui2 J- а»з + • • • + flifc ~ 1

66c
< 4.

(а + Ь)(а + 6 + с)

je dělitelné n.

10. Matematická společnost má posoudit správnost důkazu Velké věty
Fermatovy. Po jeho prostudování členové společnosti hlasují. Každý její
člen učiní seriózní rozhodnutí se stejnou pravděpodobností p E (^Д)-
Rozhodnutí všech členů jsou nezávislá. Pokud většina členu společnosti
rozhodne, že důkaz je správný, společnost považuje důkaz za správný.
V případě, že počet členů společnosti je sudý a právě polovina z nich dala
svůj hlas ve prospěch správnosti důkazu Velké věty Fermatovy, rozhodne
o správnosti důkazu los pomocí mince.

V závislosti na p stanovte, která ze společností učiní s větší pravděpo-
dobností správné rozhodnutí o bezchybnosti důkazu — společnost, která
má 2 005 členů, nebo společnost, která má 2 006 členů?
11. Dokažte, že pro všechna kladná reálná čísla a, 6, c, d, e platí nerovnost

6 dа c e
< 2.

e + a + b а + 6 + с ' b + c + d ' c + d + e ' d + e + a

Texty soutěžních úloh
1. Nechť n je dané přirozené číslo. Určete všechny n-tice (xj, X2,..

nezáporných reálných čísel, které vyhovují soustavě rovnic

Xi + x\ + X3 + ... + xjj = n,

Xn)• ?

n(n + 1)
X\ + 2X2 + 3x3 + ... + uxn —

2

2. Dokažte, že střed O kružnice opsané, střed / kružnice vepsané a průse-
čík P úhlopříček libovolného dvojstředového čtyřúhelníku leží v přímce.
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3. Určete všechna přirozená čísla n ČI 3, pro něž lze mnohočlen
П— 1

+ 2xn~2 + 6P(x) = xn — 3x

vyjádřit jako součin dvou mnohočlenů, z nichž každý je aspoň prvního
stupně a oba mají celočíselné koeficienty.
4. Devíti osobám (А, В, C, D, E, F, G, H a /) rozdáme ?г označených
míčků. Kolika způsoby je možno míčky rozdat za podmínky, že A dostane
stejný počet míčků jako osoby В, C, D, E dohromady?
5. Nechť ABCD je konvexní čtyřúhelník. Určete množinu všech jeho
vnitřních bodů P, pro něž platí

SpAB ■ SpcD = SpBC ■ BpDAi

kde symbol Sxyz značí obsah trojúhelníku XYZ.6.Určete všechny dvojice (x, у) celých čísel, které vyhovují rovnici

y(x + y) — x3 — 7x2 + llx — 3.

Řešení soutěžních úloh

1. Předpokládejme, že čísla Xi,X2, ■ ■ ■ ,xn splňují dané rovnice. Potom

0 = xi x2 ~Ь x3 -f-... -j- x^
- (xi + 2x2 + 3x3 + ... + nxn - \n(n + 1)) =

= {x\ - 2x2 + 2 — 1) + (x| - 3x3 + 3 - 1) + ... + (x£ - nxn + n - 1).
Přitom výrazy v závorkách jsou nezáporné. Pro к 2 a x ^ 0 je totiž
podle nerovnosti mezi aritmetickým a geometrickým průměrem

xk + к — l = xfc + l + l + ... + l^/c - = kx

s rovností, právě když x = 1. Dostáváme tak X2 = x3 = ... — xn = 1
a z první rovnice x\ = 1. Snadno ověříme, že uvedená n-tice je (jediným)
řešením.

2. (Podle Michala Burgera, Slovensko.) Označme А', В', C", D' po řadě
další průsečíky polopřímek AI, BI, Cl, Dl s kružnicí /с opsanou čtyřúhel-
niku ABCD (obr. 49). Protože přímky AI, BI, Cl, Dl jsou osy odpo-
vídajících úhlů čtyřúhelníku ABCD, tvoří úsečky A'C a B'D' průměry
kružnice к a jejich průsečíkem je střed O. Zřejmě jsou trojúhelníky ICA
a IA'C podobné. Navíc tato podobnost zobrazuje střed S\ úsečky AC
do středu O úsečky A!C' (obr. 49).

— n —
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Označme Pi průsečík přímek Ol a АС a Q\ průsečík přímek Sil
a A'C'. Z podobnosti trojúhelníků IS\A ~ IOC plyne rovnost úhlů
IS\A a IOC', takže čtyřúhelník Q1OS1P1 je tětivový. Protože prů-
měr B'D' kružnice к je kolmý na tětivu AC, je také P\Q\ kolmé na

A'C, jinými slovy S\ a Q\ jsou kolmé průměty bodu P\ na průměry
B'D' a A'C kružnice k.

Označme analogicky S2 střed úsečky BD, P2 průsečík přímek Ol
a BD a Q2 průsečík přímek S2I a B'D'. Úplně stejně zjistíme, že Q2 a S2
jsou kolmé průměty bodu P2 na průměry B'D' a A'C kružnice k. Body
P\ i P2 leží na přímce Ol, ze zřejmé podobnosti pravoúhlých trojúhelníků
OS1P1 ~ OQ2P2 a OQ1P1 ~ OS2P2 (obr. 50) plyne, že Q\Si || S2Q2-
Bod / ovšem leží na obou rovnoběžných přímkách! Uvedené trojúhelníky
jsou tudíž shodné a P\ = P2 a je to právě průsečík P přímek AC, BD.
Tím je tvrzení úlohy dokázáno.

Jiné řešení. (Podle Františka Simančíka, Slovensko.) Stejně jako v pře-
dešlém řešení označme A', B', C, D' po řadě další průsečíky polopřímek
AI, BI, Cl, Dl s kružnicí к opsanou čtyřúhelníku ABCD. Z mocnosti
bodu / ke kružnici к máme

|P4| • \IA'\ = \IB\ • \IB'\ = \IC\ • \IC'\ = \ID\ ■ \ID'\.

Existuje tedy kruhová inverze se středem I, která po složení se středovou
souměrností podle téhož středu / zobrazí body А, В, C, D po řadě na
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body A!, В', С, Z)'. Označme P' obraz bodu P v tomto složeném zobra-
zení x. Protože přímky PI a P'I jsou totožné, stačí ukázat, že body О, I
a P' leží v přímce. Zobrazení x zřejmě zobrazí přímku AC na kružnici k\
procházející body A',C', I a přímku BD na kružnici k2 procházející body
B', D', I (obr. 51). Bod P' je tudíž druhým průsečíkem kružnic k\, k2
(různým od bodu /).

Přímka P'I je chordálou kružnic k\, k2. Stačí tedy ukázat, že bod O
má к oběma kružnicím k\, k2 stejnou mocnost. Ovšem už v prvním řešení
jsme ukázali, že A'C a B'D' jsou průměry kružnice k, takže její střed O
leží na na chordále kružnic k, k\ i na chordále kružnic k, k2. Jinými slovy
bod O má stejnou mocnost ke všem třem kružnicím к, к i a k2. Tím je
tvrzení úlohy dokázáno.

Jiné řešení. Označme E, F, G, H po řadě další průsečíky polopří-
mek AI, BI, Cl, Dl s kružnicí к opsanou čtyřúhelníku ABCD. Pro-
tože přímky AI, BI, Cl, Dl jsou osy odpovídajících úhlů čtyřúhelníku
ABCD, tvoří úsečky EG a FH průměry kružnice к, takže se protínají
v bodě O.

Nyní využijeme Pascalovu větu, která říká, že pokud leží vrcholy da-
ného šestiúhelníku (šestiúhelníkem zde rozumíme libovolnou uzavřenou
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lomenou čáru se šesti vrcholy) na kružnici a dvojice přímek, na nichž leží
protější strany šestiúhelníku (to jsou strany, jež spolu ani nesousedí, ani
nemají společnou sousední stranu), se protínají, pak tyto průsečíky leží
v přímce.

Označme X průsečík přímek CH a BE (obr. 52). Z Pascalovy věty pro
šestiúhelník ACHDBE plyne, že body P, X a I leží v přímce. Podobně
z Pascalovy věty pro šestiúhelník GCHFBE plyne, že body /, X a O
leží v přímce. Leží tedy v přímce i body O, / a P, jak jsme chtěli dokázat.

3. Snadno ověříme, že pro n = 3 platí

ж3 — Зж2 + 2x -f 6 = (ж + 1)(ж2 — 4x + 6).

Kdyby pro n = 4 bylo

x4 — Зж3 + 2ж2 4- 6 = (ж2 + аж + b) (ж2 + сж + d),

porovnáním koeficientů bychom dostali

ac + b + d = 2 bd — 6.a + c — —3

Z první rovnosti vyplývá, že a a c mají různou paritu. Proto z druhé
rovnosti plyne, že b a d mají stejnou paritu. To je ve sporu s třetí rovností.
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Předpokládejme dále, že n ^ 5 a že existuje rozklad

(1)P{x) = A(x)B(x)

kde

fc-iA(x) — dkxk + ak-\x

B(x) = bn_kxn~k + bn-k-ix

+ • • • 4" d\X + <2o?

+ ... + b\x + 6q,к— 1

jsou mnohočleny s celočíselnými koeficienty a dk = 6n-fc = ±1. Bez
újmy na obecnosti můžeme předpokládat, že к й [п/2J < n — 2 (protože
n ^ 5). Porovnáním koeficientů na obou stranách (1) získáme rovnosti

d0b0 = 6,

aobi + ai60 = 0,

d0bk + ai6fc_i + ... + dk-\b\ + dkbo — 0.

Nyní dokážeme indukcí, že do dělí ai, 02,..., a*,. Předpokládejme, že
toto tvrzení platí pro ai,a2,,d[. Protože

0 — ao(aofo/+i + d\bi + ... + a/61 + ai+ibo)
= Oq6/+i + dQdibi + ... + a0a/6i + 6aí+1,

je
6a/+i = —(ац6/+1 + dQdibi + ... + a0a/6i).

Všechny sčítance na pravé straně jsou dělitelné členem ajj, proto i levá
strana je jím dělitelná a nutně ao | a/+1. Protože však ад, = ±1, dostáváme
do = ±1. Bez újmy na obecnosti můžeme předpokládat, že ao = 1; potom
60 = 6.

Stejné argumenty nyní zopakujeme i pro koeficienty mnohočlenu B.
Dostaneme, že 60 = 6 dělí 61,62,..., 6п_з (pro l > n — к případně polo-
žíme 6/ =0). Dostaneme tak spor (6п_д, = ±1) s výjimkou případu, kdy
n — к > n — 3. Zůstali tak dva případy.

Případ к — 2. Porovnáním koeficientů při mocnině xn~2 v (1) máme

aobn-2 + aibn-3 + a2bn-4 — 2.
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Už víme, že na levé straně jsou kromě prvního všechny členy dělitelné
šesti, tj. jsou sudé, zatímco první člen je roven ±1. Tím dostáváme spor.

Případ к — 1. Úloha se tak zjednodušuje na nalezení celočíselných
kořenů mnohočlenu P; snadno však nahlédneme, že pro n sudé takové
kořeny neexistují, zatímco pro n liché je vždy P(—1) = 0.

Podmínky úlohy tedy splňují právě jen lichá čísla n.

Jiné řešení. (Podle Pavla Kocourka.) Pro n liché je zřejmé, že P(—1) =
= 0, mnohočlen P se tedy dá vyjádřit jako součin dvou mnohočlenů.
Zároveň z vyjádření

n—2 (:x2 — 3x + 2) + 6 = xn 2(x — l)(x — 2) + 6P(x) — X

vidíme, že pro n sudé nabývá mnohočlen P vně intervalu (1, 2) jen klad-
ných hodnot, takže nemůže mít žádné celočíselné kořeny.

Předpokládejme tedy, že pro n sudé lze mnohočlen P rozložit na sou-
čin dvou mnohočlenů P = AB, kde

A(x) = a0 + a\x + ... + ak~\x

B(x) = b0 + b\x + ... + bn_fc-\x

jsou mnohočleny s celočíselnými koeficienty a2^Hn-2. Zřejmě musí
platit aobo = б а akbn~k = 1.

Bez újmy na obecnosti můžeme předpokládat, že ao je sudé a bo li-
ché. Pro j 6 (0,1,... ,n — 2} jsou koeficienty mnohočlenu P u xi sudé.
Dostáváme tak postupně:

fc-i
+ akxk,

+ b„-kx"-kk—1

aib0 + a0bi

«2^0 + (aifei + a0b2)

=$■ a\ je sudé,
=Ф> a2 je sudé,

afcb0 + (ak-ibi + ... + a0bk) ak je sudé,

takže koeficienty ao, a\,..., ak mnohočlenu A jsou vesměs sudé. Koefi-
cient u x

П— 1 mnohočlenu P je lichý, je tudíž liché i číslo

a-n-ibo + (an-2bi + ... + aobn_i),

to ovšem znamená, že stupeň mnohočlenu A je aspoň n — 1, takže В
musí být lineární mnohočlen. Jak už víme, takový rozklad pro sudé n

neexistuje.
Podmínky úlohy tedy splňují právě jen lichá čísla n.
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4. Uvažujme mnohočlen

= (x2 + 4x + 4)n =

= (x2 + X + X + X + X+1 + 1 + 1 + 1)
(x2 + X + X + X + X+1 + 1 + 1 + 1)...
(x2 -f-X + X + X + X+ l + l + l + l),

(x + 2)2n

po jehož roznásobení dostaneme 9n sčítanců. Ukážeme, že je vzájemně
jednoznačná korespondence mezi koeficientem u xn a počtem způsobů
rozdělení míčků.

Předpokládejme, že máme požadované rozdělení. Jestliže k-tý míček
dostal A, vybereme x2 z k-té závorky. Dostal-li ho В, C, D nebo E, vybe-
reme z k-té závorky první, druhou, třetí nebo čtvrtou jedničku. Podobně
pro F, G, H, I vybereme z k-té závorky první, druhé, třetí nebo čtvrté x.

Vynásobíme-li nyní vybrané činitele, vidíme, že výsledek se rovná xn,
právě když A dostal stejný počet míčků jako В, C, D a E dohromady.

Počet rozdělení, který nás zajímá, je tedy roven koeficientu u xn
v mnohočlenu (x + 2)2n, což je

2n
■ T.

n

Jiné řešení. Jestliže osoba A dostane к míčků, můžeme je vybrat (£)
způsoby, ze zbylých n — k míčků můžeme způsoby vybrat к míčků
pro osoby В, C, D a F, přičemž máme 4k možností, jak mezi ně míčky
rozdělit. Nakonec máme 4n~2k možností, jak rozdat zbylé míčky osobám
F, G, H, /. Protože všechny uvedené možnosti jsou navzájem nezávislé,
dostáváme pro dané к

n — kn
^k^n — 2k

к к

možností, jak míčky rozdat tak, že A dostane právě к míčků. Protože
musí být 2k ^ n, bude celkový počet možností roven součtu

[n/2j / \ / i \

-Ш:) 2ks (1)
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Spočtěme koeficient u členu xn mnohočlenu

P{x) = (4 + (4x + x2))n = Y, 4k(4x + x2)n~k
к-0

n — k

= Y4kHx2j(4x) n — k—j

k=0 3=0

Tento koeficient dostaneme pro 2j +(n — k — j) — n, tj. pro j = /с ^ n — k,
takže koeficient u жп v mnohočlenu P je právě součet (1), který nás
zajímá. Je však zároveň

j=0

xj22n~jP(x) = (x2 + 4x + 4)n = (x + 2)

koeficient u xn v mnohočlenu P je tedy (2^)2n. To je hledaný počet
rozdělení.

Jiné řešení. Jak jsme zjistili v předchozím řešení, je hledaný počet
rozdělení roven součtu (1), který můžeme vzhledem к rovnosti 4k4n~2k —
= 2n2n~2k upravit na tvar

n—2ks

Suma v předchozí rovnosti je ovšem počet možností, jak rozdat n míčků
čtyřem osobám А, В, C, D tak, aby jich A i В dostali stejně (stačí
téměř doslovně zopakovat úvahy vedoucí ke vzorci (1)). Zbývá tedy výře-
šit poněkud jednodušší úlohu. To provedeme následující kombinatorickou
úvahou:

Uvažme dvě řady n polí (očíslovaných 1 ažn), každá dvojice polí nad
sebou reprezentuje jednu z rozdělovaných kuliček. Z těchto 2n polí vybe-
reme n, která nějak označíme, a tomuto výběru jednoznačně přiřadíme
rozdělení kuliček čtyřem osobám následujícím způsobem: A dostane ku-
ličku j, jsou-li vybrána obě pole s číslem j, В dostane kuličku s číslem j,
není-li vybráno žádné z polí toho čísla, C dostane příslušnou kuličku, je-li
vybráno právě jen horní pole toho čísla, a konečně D dostane příslušnou
kuličku, je-li vybráno právě jen dolní pole.
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Protože celkový počet označených i neoznačených polí příslušných
kuličkám rozdaným В a C je stejný, je stejný i počet označených a neo-

značených polí, podle nichž rozdáváme kuličky osobám А а В. Každé ku-
ličce (dvěma označeným polím), kterou dostane A, tak odpovídá kulička
(dvojice neoznačených polí), kterou dostane B. Počet kuliček rozdělených
osobám А а В je tedy stejný.

Je zřejmé, že každému rozdělení kuliček obráceně odpovídá nějaký
výběr n polí. Přitom ke každému výběru к polí v horní řadě, který mů-
žeme provést (£) způsoby, máme (n™fc) možností, jak vybrat zbývajících
n — к polí v druhé řadě. To dává dohromady

fc=o

možností, takže hledaný počet S je (2™)2n.
5. Pokud P leží na některé z úhlopříček, řekněme na AC, tak

Spab
Spbc \PC\ Spcd ’

požadovaná rovnost tedy platí. Dokážeme, že pro body P ležící uvnitř
čtyřúhelníku ABCD mimo úhlopříčky daná rovnost neplatí.

Označme O průsečík úhlopříček a bez újmy na obecnosti předpoklá-
dejme, že P leží uvnitř trojúhelníku ABO (obr. 53). Označme ještě Q

\AP | SPDA

c

D

Q
R

Q ""
P

A В

Obr. 53

průsečík přímek BP a AC a R průsečík přímek DP a AC. Snadno pak
odvodíme rovnosti

\AQ\SPAB
Spbc

Protože Q R, zkoumaná rovnost nemůže platit.

\AR\SPDA
a

I QC\ I RC[Spcd
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Odpověď. Hledanou množinou bodů P jsou vnitřní body úhlopříček
AC a BD.

6. Vynásobením uvažované rovnice čtyřmi a jednoduchou úpravou do-
staneme ekvivalentní rovnici

(2у + x)2 = 4x’3 — 27x2 + 44x — 12 =

= (x — 2)(4x2 — 19x + 6) =

= {x- 2)((x - 2)(4x - 11) - 16).
Výraz na pravé straně musí být čtverec. Proto x — 2 — ks2 pro nějaké
к S {-2,-1,1,2}
lichou mocninou prvočísla p, pak musí p dělit i (ж — 2)(4ж — 11) — 16,
takže p | 16 a p = 2).

Rozebereme tři případy.
1. Nechť к — ±2. Z (1) plyne, že 4x2 — 19z -f 6 = ±2u2 pro nějaké

celé číslo a, odkud úpravou dostaneme

(8x - 19)2 - 265 = ±32a2.
Tuto rovnost ovšem nesplňují žádná dvě celá čísla x, u, protože levá
strana může dát při dělení pěti zbytek 0, 1 nebo 4, zatímco pravá strana
zbytek 0, 2 nebo 3. Jedinou možností tak je zbytek 0, v takovém případě
by však pravá strana byla dělitelná číslem 25, ale levá ne.

2. Nechť к — 1. Potom 4x2 — 19x 4- 6 = u2 pro nějaké celé číslo u,
odkud po vynásobení šestnácti a po úpravě dostaneme

265 = (8ж - 19)2 - 16a2 - (8x - 19 - 4a)(8:r - 19 + 4a).
Snadno ověříme, že x = 6 je jediná možnost, pro niž dostaneme vyhovující
řešení původní rovnice (stačí zvážit všechny možné rozklady čísla 265 =
= 1 • 265 = 5 • 53 = ... a uvážit skutečnost, že x — 2 = s2). Po dosazení
do (1) tak získáme dvojice (6, 3) a (6, —9).

3. Nechť к = — 1. Podobně jako v předchozím případě máme 4x2 —

— 19x + 6 = —a2, odkud

(1)

£ N (pokud je totiž číslo x — 2 dělitelné právě jena s

265 = {8x - 19)2 4- (4a)2,
takže a ^ 4. Ověříme všechny možnosti. Pro a = 0,1, 2 nezískáme žádné
řešení. Pro a = 3 dostaneme (8x — 19)2 = 121 = 112, odkud x = 1;
získáme tak dvojice (1,1), (1, —2). Nakonec pro и — 4 máme (8x—19)2 =
= 9 = 32, tj. x = 2, odkud získáme dvojici (2, —1).

Danou rovnost splňují dvojice (6,3), (6, —9), (1,1), (1, —2) a (2, —1).
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46. mezinárodní matematická olympiáda

ť

Mérida, hlavní město mexického státu Yucatán, který se rozkládá na

stejnojmenném poloostrově, hostila ve dnech 8.-19. července 2005 účast-
niky každoročního klání nejlepších matematických talentů mezi studenty
středních škol. Sjeli se tam v rekordním počtu 513 soutěžících z 91 zemí
celého světa.

Přípravu a zdárný průběh celé akce zajišťovali organizátoři z řad
členů Mexické matematické společnosti za podpory mexického minister-
štva školství, vlády státu Yucatán, tamních univerzit a desítek sponzorů.
Nashromážděné finanční prostředky umožnily ubytovat všechny soutěží-
cí, vedoucí družstev i členy výborů a hodnotících komisí v areálu luxus-
nich hotelů nedaleko centra yucatánské metropole, založené španělskými
dobyvateli roku 1542 na místě mayského města Tihó. Mexičtí hostitelé
připravili výborné podmínky pro vlastní soutěž i zajímavý doprovodný
program, jehož vrcholem byl celodenní výlet ke zříceninám mayského
města Chichén Itzá. Závěr olympiády mírně narušil příchod hurikánu
Emily, který však nakonec Méridu minul zhruba o 80 km a v samotném
městě se projevil jen silnějším větrem.

Vedoucím českého družstva byl RNDr. Karel Horák, CSc., z Matema-
tického ústavu Akademie věd v Praze. Soutěžní družstvo, které dopro-
vázel pedagogický vedoucí doc. RNDr. Jaromír Šimša, CSc., z Přírodo-
vědecké fakulty Masarykovy univerzity v Brně, bylo jmenováno na zá-
kládě výsledků ústředního kola 54. ročníku MO v Benešově a následného
týdenního soustředění v Bílovci. Tvořili je Jaroslav Hanči z 3. ročníku
Gymnázia Mikuláše Koperníka v Bílovci, Pavel Kocourek ze 4. ročníku
SPŠ ST v Panské ulici v Praze, František Konopecký z 8. ročníku Gym-
názia Holešov, Jaromír Kuběn a Jakub Opršal z 3. ročníku Gymnázia na
tř. Kpt. Jaroše v Brně a Marek Pechal ze 7. ročníku Gymnázia v Lesní
čtvrti ve Zlíně.

Soutěžící jako obvykle řešili ve dvou půldnech vždy tři soutěžní úlohy
po dobu 4,5 hodiny; za každou ze šesti úloh mohli získat nejvýše 7 bo-
dů. Po následných opravách a koordinacích vyšlo najevo, že letos žádná
soutěžní úloha nebyla extrémně obtížná

Ш

16 soutěžících totiž dosáhlo
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maxima 42 bodů. Dostali pochopitelně zlaté medaile spolu s dalšími
26 soutěžícími, kteří získali alespoň 35 bodů. Mezi nimi ovšem vynikl
moldavský reprezentant Iurie Boreico, který získal zvláštní cenu za origi-
nální řešení třetí úlohy (viz dále). Kromě 42 zlatých medailí bylo uděleno
79 stříbrných medailí (za zisk 23-34 bodů) a 127 bronzových medailí
(za zisk 12-22 bodů). Naši reprezentanti podali nečekaně dobrý výkon
a vybojovali pět medailí, přičemž František Konopecký získal zlatou. Bez
ocenění se tak vrátil domů pouze Jaroslav Hanči.

Je to bezesporu nejlepší výkon českého družstva na mezinárodní ma-
tematické olympiádě za posledních osm let, neboť předchozí zlatou me-
daili jsme získali na 38. MMO (tehdy jsme dosáhli i stejného počtu bodů):

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

340.-354. Jaroslav Hanči

72.-88. Pavel Kocourek

29.-34. František Konopecký
57.-64. Jaromír Kuběn

156.-174. Jakub Opršal
122.-130. Marek Pechal

2 0 0 1 2 0 5

7 7 0 7 7 0 28 II.

7 7 7 7 7 1 36 I.

7 7 0 7 7 2 30 II.

7 7 0 2 2 0 18 III.
7 7 0 1 7 0 22 III.

Celkem 37 35 7 25 32 3 139

Pro srovnání uveďme i výsledky slovenských reprezentantů, kteří získali
jen o pár bodů méně:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

114.-121. Jozef Bodnár

108.-113. Ondřej Budáč
65.-71. Michal Burger

191.-206. Peter Černo
108.-113. František Simančík

207.-224. Jakub Závodný

7 7 0 7 0 2 23 II.
7 1 0 7 7 2 24 II.

1 7 0 7 7 7 29 II.

6 1 0 7 2 0 16 III.

0 7 1 7 7 2 24 II.
7 1 0 7 0 0 15 III.

Celkem 28 24 1 42 23 13 131

Tvrzení o českém úspěchu dokládá naše umístění v níže uvedeném
neoficiálním pořadí družstev, ve kterém nám v posledních letech obvykle
patřilo místo ve třetí, a někdy i ve čtvrté desítce. V mexické Méridě jsme
však obsadili 16. místo před takovými státy, jako jsou Hong-Kong, Ka-
nada, Polsko či Austrálie, ve kterých se výchově matematických talentů
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věnují — ve srovnání s Českou republikou
především objemem institucionálních prostředků, které jsou na tuto péči
vyčleňovány. (Případná čísla v závorce upozorňují na nižší počet repre-

zentantů.)

s větší intenzitou, danou

i li ni body I II III body

ČLR
USA
Rusko
Írán
Korea
Rumunsko
Tchaj-wan
J aponsko
Maďarsko
Ukrajina
Bulharsko
Německo
Velká Británie

Singapur
Vietnam
Česká republika
Hongkong
Bělorusko
Kanada
Slovensko
Moldavsko
Turecko

Thajsko
Itálie
Austrálie
Izrael
Kazachstán
Kolumbie
Polsko
Peru
Mexiko
Francie
Arménie
Brazílie
Chorvatsko
Indie
Gruzie
Nový Zéland
Srbsko a Černá Hora 0

Belgie
Rakousko
Indonézie
Švýcarsko
Dánsko
Estonsko

Argentina

Lotyšsko
Nizozemsko

Ázerbájdžán
Řecko
Irsko
Kuba (4)
Litva
Makedonie
Bosna a Hercegovina
Finsko
Slovinsko

Kirgizie
Španělsko
Albánie
Švédsko
Jihoafrická republika
Macao
Norsko
Kostarika

Uruguay (5)
Srí Lanka

Filipíny
Portugalsko
Salvador
Island
Maroko
Turkmenistán (3)
Ekvádor
Malajsie
Venezuela (2)
Kypr
Trinidad a Tobago
Paraguay
Pákistán
Tunisko (3)
Portoriko
Guatemala (3)
Lichtenštejnsko (3)
Bangladéš
Kuvajt (5)
Lucembursko (2)
Saudská Arábie (5)
Tádžikistán (3)
Mozambik (5)
Bolívie (2)

0 0 2
0 0 2
0 0 2
0 0 2
0 10
0 0 3
0 0 1
0 0 2
0 0 2
0 0 2
0 1 0
0 0 2
0 0 1
0 10
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

625 1 o 235
2 213 624 0
2 0 212 594

201 582 4 0
553 3 0 200
544 1911 1
533 2 1 190

3 2 188 501

2 181 493 1
2 2 2 181 49

1732 3 1 49
3 21 163 46
3 2 1591 46

0 4 2 145 44
0 3 3 143 42
1 2 2 139 39
1 3 1 138 38
1 3 1 136 38

371 2 2 132
370 4 2 131

2 2 130 321
0 4 301 130
0 4
0 2

2 128 27
1204 25
1170 0 6 23

0 2 3 113 18
0 2 3 112 18
0 2 2 105 17
0 1 5 105 15
0 0 6

0 4
0 4
0 5

104 15
0 91 14
0 83 13
0 82 12
1 0 1 82 11
0 21 82 9
0 1 1 81 8
0 0 4 80 6

770 1 2 4
0 753 3

0 741 1 3
0 o
o o

742 3
703 3

0 1 1 70 3
0 0 4
0 0 3

69 2
68 0

0 1 2 65

Hostitelskými zeměmi příštích olympiád budou Slovinsko a Vietnam.
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. Na stranách rovnostranného trojúhelníku ABC je zvoleno šest bodů:
body A i, A2 na straně BC, body B\, B2 na straně CA a body C\, C2
na straně AB, přičemž tyto body tvoří vrcholy konvexního šestiúhelníku
A\ A2B1B2C1C2 se stranami téže délky. Dokažte, že přímky A\B2, B1C2

(Rumunsko)
2. Nechť ai, a2,... je posloupnost celých čísel s nekonečným počtem klad-
ných členů a s nekonečným počtem záporných členů. Předpokládejme, že
pro každé přirozené číslo n čísla a 1, a2,..., an po dělení číslem n dávají
n různých zbytků. Dokažte, že každé celé číslo se v posloupnosti vyskytuje
právě jednou.

3. Nechť x, у a z jsou kladná reálná čísla taková, že xyz ^ 1. Dokažte,

а C1A2 mají společný bod.

(Nizozemsko)

že
x5 — x2 У5 - У2 z5 — z2

> 0.
x5 + y2 + z2 y5 + z2 -f x2 Z5 + X2 + y2

(Korea)4.Uvažujme posloupnost a1,02,... definovanou vztahem

an = 2n + 3n + 6n —1 (n — 1,2,...).

Určete všechna kladná celá čísla, která jsou nesoudělná s každým členem
uvažované posloupnosti.5.Je dán konvexní čtyřúhelník ABCD se stejně dlouhými a různoběž-
nými stranami BC a AD. Nechť bod E leží uvnitř strany BC a bod F
uvnitř strany AD, přičemž \BE\ = \DF\. Přímky AC a BD se protínají
v bodě P, přímky BD a EF v bodě Q, přímky EF a AC v bodě R.
Uvažujme všechny trojúhelníky PQR určené měnícími se body E a F.
Ukažte, že kružnice opsané těmto trojúhelníkům mají společný bod různý

(Polsko)

(Polsko)

od P.6.V matematické soutěži dostali soutěžící 6 úloh. Každou dvojici úloh
vyřešilo více než | soutěžících. Všech 6 úloh nevyřešil nikdo. Dokažte, že
právě 5 úloh vyřešili aspoň dva soutěžící. (Rumunsko)
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Řešení soutěžních úloh

1. Označme P vnitřní bod trojúhelníku ABC takový, že trojúhel-
nik A\A2P je rovnostranný (obr. 54). Zřejmě pak je A\P || C1C2
a \A\P\ — IC1C2I, takže A1PC1C2 je kosočtverec. Podobně i A2PB2Bi je

A C2 В

Obr. 54

kosočtverec. Označme a velikost úhlu B2B1A2, (3 velikost úhlu B1A2A1
a 7 velikost úhlu CiC2Ai. Protože velikost úhlu při vrcholu C v troj-
úhelníku A2CB1 je 60°, je a + /3 ~ 240°, navíc je také \%.B2PA2\ = a
a \<C\PA\\ = 7. Je tedy

a + 7 = 360° - (\<ClPB2\ + \<AlPA2\) = 240°
takže (3 = 7. Podobně = (3. Trojúhelníky AiA2B\, BiB2C\
а C1C2A1 jsou tudíž shodné a trojúhelník A\B\C\ je rovnostranný. To
znamená, že přímky А\В2, B\C2 a C\A2 jsou osy jeho stran B\C\, C1A1
a A\B\. Tím je tvrzení dokázáno.

Jiné řešení. (Podle Jakuba Závodného, Slovensko.) Označme vnitřní
úhly při základnách rovnoramenných trojúhelníků C\BiB2, A1C1C2,
B1A1A2 postupně a, f3, 7 (obr. 55). Dopočítáním úhlů do 180° při
vrcholu C2, v trojúhelníku C2BA\ a v rovnoramenném trojúhelníku
A2C2A1 postupně dostaneme

\<BC2Ai\ = 2/5, |<C2^iP| - 120° - 2/3, \<C2A2A1\ = 60° - /5.

Podobně

\<CA2B1\ = 27, \<А2ВгС\ = 120° - 27, |<PiA2P2| = 60° - 7.
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Proto

|*Bi4iC,1| - 180° - (120° - 2(3) - /3 - 7 = 60° + /3 - 7,

|<Б2А2С2| = 180° - 27 - (60° - 7) - (60° - /?) = 60° + (3 - 7,

takže |<j3iAiCi| = |<j92A2C2|. Stejným způsobem odvodíme i rovnosti

|*CiSu4i| — |<С2.В2у42| MiCiBiI — |<A2C2£2|.

Trojúhelníky А1Б1С1 а A2B2C2 jsou tedy podobné. Uvažujme (jedno-
značně určené) podobné zobrazení, které zobrazí první z trojúhelníků na
druhý. Uvedenou podobnost lze dostat složením otočení kolem středu S
o úhel 7? a stejnolehlosti s týmž středem S a koeficientem к (používáme
známé tvrzení, že takový rozklad podobnosti existuje).

A Ci C2 В

Obr. 56

Trojúhelníky SA\ Л2, SB1B2, SC\C2 jsou navzájem podobné, protože
při vrcholu S mají stejný úhel (obr. 56) a navíc |éb42| : \SAi\ = |5£?2| :
: \SBi\ = \SC2\ : |5Ci| = k. Podle zadání je však |AiA2| - \BiB2\ =
= |CiC2|, takže uvedené trojúhelníky jsou shodné a mají shodné výšky
z vrcholu S. Odtud plyne, že bod S má stejnou vzdálenost od všech stran
trojúhelníku ABC, takže to musí být střed jeho vepsané kružnice (středy
připsaných kružnic snadno vyloučíme). Z odvozené shodnosti plyne rov-
něž |5Ai| = \SB\ \ — l-SCil, a protože trojúhelník ABC je rovnostranný
(se středem 5), je díky symetrii rovnostranný i trojúhelník A\BiC\.

Nyní už dokážeme požadované tvrzení. Čtyřúhelník C\A\B\B2 je del-
toid (|CiAi| = \A\B\\ a \B\B2\ = \B2C\\), takže jeho úhlopříčka A1B2
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je zároveň osou úsečky B\C\. Podobně je B1C2 osou úsečky C\A\ &C1A2
osou úsečky A\B\. Vidíme, že dané tři přímky jsou osami stran trojúhel-
niku A\B\C\, proto se protínají v jednom bodě.

Jiné řešení. (Podle Ondřeje Budáče, Slovensko.) Označme a délku
strany šestiúhelníku A1A2B1B2C1C2 a položme \AB\ — a — m. Dále
pišme \AC\ \ — x, |£?Ai| = y, \CB\ \ — 2, takže \BC2\ —

— m-y, \AB2\ =

X, \CA2\ =m —

2 (obr. 57).m —

C2 m- x В

Z kosinové věty pro trojúhelníky AC1B2 а BA1C2 (je cos 60° = |)
dostaneme

a2 =x2 + (m- z)2 - x(m - z) - y2 + (m - x)2
a po jednoduché úpravě

y(m - x)

m(—2z + x + y) = (y - z)(y + z + x).
Zcela analogicky (z kosinové věty pro trojúhelníky AC\B2 а CB\ A2, nebo
využijeme cyklickou záměnu) dostaneme i rovnost

(x - y)(x + у + z) = m(—2y + z + x).
Po vynásobení obou rovností, zkrácení nenulových činitelů m a (x+y+z),
roznásobení a dalších úpravách obdržíme

(z ~ y)(-22 + x + y) = (y - z)(-2y + 2 + x),
x2 — y2 — 2zx + 2yz — —2y2 — 22 + xy + 3yz — zx,

x2 + y2 + 22 = xy + yz + zx,
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přičemž poslední rovnost je ekvivalentní rovnosti

(x - у)2 + (y- z)2 + {z - x)2 - 0.

Nutně tedy x — у = z, takže trojúhelník A\B\C\ je rovnostranný (díky
symetrii). Důkaz tvrzení úlohy dokončíme stejně jako v předchozím ře-
šení.

Jiné řešení. Uvažujme šest vektorů

и = 6261, и' — C1C2, v = C2A\, v1 = АгА2, w = A2B\, w' = B\B2,

jež mají všechny stejnou délku a v součtu dávají nulový vektor. Protože
zřejmě i součet vektorů u', v', w1 je nulový vektor, platí totéž i pro vektory
и, v, w, takže и + v = — ил

Ovšem dva vektory stejné délky dávají v součtu vektor téže délky
jedině tehdy, když svírají úhel 120°. To znamená, že přímky B2C\,
C2A\, A2B\ určují rovnostranný trojúhelník. Jak snadno nahlédneme,
znamená to, že strany tohoto trojúhelníku protínají odpovídající dvě
strany daného trojúhelníku pod stejnými úhly, takže „rohové“ trojúhel-
niky AC\B2, BA\C2 a CB\A2 jsou podobné, ba dokonce vzhledem к rov-
nostem \B2C\ \ — |C*2^i| — \A2B\ \ shodné. Daný trojúhelník i šestiúhel-
nik jsou tedy invariantní vůči otočení o 120° kolem středu O trojúhelníku
ABC. Odtud mimo jiné plyne i rovnost úhlů

\KB2CiC2\ = \-kC2A\A2 \<AiA2B\\ = \<BiB2Ci\,

tudíž B\C2 je osou šestiúhelníku A\A2B\B2CiC2 a prochází středem O.
Podobně procházejí středem O i další dvě přímky A\B2 a C\A2.

2. Žádné číslo se v uvažované posloupnosti nemůže vyskytnout dvakrát.
Kdyby totiž pro i < j bylo a* = a^, pro každé n ^ j by mezi čísly
ai,a2,...,an byla čísla a;, a,j, která dávají při dělení n stejný zbytek.
Navíc pro každé přirozené číslo n je rozdíl libovolných dvou čísel mezi
čísly ai,<22,... ,an nejvýše n — 1: jinak bychom totiž našli dvě čísla a*,

aj taková, že i < j ^ n ^ |а» — a,j\ = m, což znamená, že mezi čísly
am by byla dvě se stejným zbytkem při dělení číslem m.

Uvažujme množinu M = {ai, a2,..., an} pro libovolné přirozené n.
Je-li c nejmenší a d největší číslo z M, z předešlého odstavce vyplývá, že
d—c ^ n— 1 (všechny prvky množiny M jsou různé) a zároveň d—c ‘A n— 1

аьа2,.. • ?
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(protože c, d e M). Je tedy nutně d-c = n—la množinu M tvoří všechna
celá čísla mezi c a d.

Nechť x je libovolné celé číslo. Protože uvažovaná posloupnost má
nekonečně mnoho kladných i záporných členů a všechny její členy jsou
navzájem různé, existuje index i, pro který сц < x, a zároveň index j,
pro který x < aj. Pro n = max{ž,ý} jsou tak mezi čísly ai,a,2,..., an
kromě jiných i všechna celá čísla mezi a* a aj, tudíž i číslo x.

3. Odečtením jedničky od každého ze zlomků dané nerovnosti dostaneme
ekvivalentní nerovnost

x2 + y2 + z2 x2 + y2 4- z2 x2 + y2 + z2
x5 + y2 + z2 y5 -f z2 + x2 z5 + x2 4- y2 —

Z Cauchyovy-Schwarzovy nerovnosti pro trojice (x5/2,y,z) a (y1//2z1//2,
y, z) a podmínky xyz ^ 1 dostaneme

(a:5 -1- y2 + z2)(yz + y2 + z2) ^ (x5//2(yz)1/2 + y2 + z2)2 ^
^(x2+y2 + z2)2,

< 3. (1)

takže pro zlomky z (1) máme odhad

i2 + y2 + z2 < yz + y2 + z2
X5 + y2 + Z2 ~ X2 + y2 + z2

Analogické nerovnosti platí i pro další dva zlomky, proto

yz 4- y2 + z2 zx + z2 + x2
x2 + y2 + z2 x2 + y2 -f z2

yz + zx + xy

x2 + y2 + z2

xy + z2 -f y2
a:2 + y2 + z2 —

<

^2 + ^3,

což jsme chtěli dokázat. (Podobně jako v jednom z řešení první úlohy
jsme využili známou nerovnost yz + zx + xy^x2-\-y2 + z2, která platí
pro libovolná reálná čísla.)

Jiné řešení. (Podle Iurie Boreica, Moldavsko, na 46. MMO oceněno
zvláštní cenou.) Protože

x5 — x2 x5 — x2 x2(x2 + z2)(x3 — l)2
x5 + y2 + z2 x3(x2 + y2 + z2) х3(хъ + у2 + z2){x2 -f у2 + z2) =

> 0
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(a podobná nerovnost platí i pro zlomky, jež dostaneme cyklickou zámě-
nou proměnných), stačí místo dané nerovnosti dokázat silnější nerovnost

x5 — x2 У5 - У2 z5 - z2
ž o, (i)x3(x2 + y2 -f Z2) ' y3(x2 -f y2 -f z2) Г Z3(x2 + y2 + z2)

která je ekvivalentní s nerovností

1
-~+y2--+z2-

1
x2 > 0.

x2 + y2 + z2

Z podmínky xyz ^ 1 plyne 1/х ^ уz, l/y й zx, l/z й xy, pro výraz
v závorce proto platí

2

x2 - - + y2 --+ z2 -- či x2 + y2 + z2 — xy — уz — zx =
У z

=
5 [(x - y)2 + (y - z)2 + (z - x)2] ^ 0.

Tím je nerovnost (1) dokázaná.
Jiné řešení. (Podle Františka Konopeckého.)
1. Redukce případu xyz > 1 na případ xyz — 1. Je-li xyz > 1, je

x = кх\, у = ky i, z = kz\, kde к > la x\y\Zi — 1.

Pro zlomky z dokazované nerovnosti

x5 — x2 У5 - У2 z5 - z2
> 0

x5 + y2 + z2 y5 + z2 -f X2 Z5 + X2 + y2

platí
ju3~5 _ „2/v Jb ^

X5 -t- y2 + z2 k3xl + yj + z\ = xf + y\ + z\ ’
neboť pro kladná čísla А, В, C, D

x5 — x2
>

Ak3 - В А-В (к3 - l)(AD + ВС)
Ck3 + D ~ C + D ~ {Ck3 + D){C + D)

> 0.

Stačí tedy danou nerovnost dokázat pro čísla xi, y\, z\, jež splňují rovnost
xiyizi = 1.

2. Předpokládejme, že xyz = 1, a dokazovanou nerovnost

x5 — x2 У5 - У2 z5-z2
> 0

x5 -f y2 -f z2 y5 + z2 + x2 z5 + x2 -f y2
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vynásobme součinem (kladných) jmenovatelů. Pak pro funkci

F(x, y, z) = (x5 - x2)(x2 4- y5 + z2)(x2 + y2 + z5)

máme dokázat nerovnost

F{x, y, z) + F(y, z, x) 4- F(z, x, y) ^ 0.

Po pracném roznásobení a úpravě (vyjde 54 členů, po sečtení se
„zruší“ 12 členů typu x7y2, členy se záporným znaménkem převedeme
z levé strany na pravou) dostaneme:

x9 + 2x7y5 + 2x7z5 + 2x5y7 + 3x5y5z5 +

+ x5y2z2 + 2x5z7 + x2y5z2 + x2y2z5 +

+ y9 + 2y7z5 + 2y5z7 + z9 ^
x6 + x5y5z2 + x5y4 4- x5y2z5 + x5z4 + x4y5 +

4- x4y2 + X4z5 + x4z2 + x2y5z5 + xV +

+ 3X2y2Z2 + X224 + y6 + y524 +

+ y4z5 + y4z2 + y2z4 + Z6

(1)

Podtržené členy jsou rovny 1. Dále na levé straně máme

x9 4- x5y2z2 = x9 + x3 ^ 2 Vx9 ■ x3 = 2x6

a na pravé straně podle uv 4- uw + vw ^ u2 + v2 + w2

x5y5z2 + x5yV + x2y5z5 = x3y3 4- x323 4- y3z3
^ x6 +y6 + z6.

Proto stačí dokázat nerovnost

2(x7y5 + x5y7 + ...) ^
^ (х5гу4 + x4y5 4- ...) + (x4y2 4- x2y4 + ...).

Homogenizujme členy na společný stupeň 12:

xby4 = x5y4 ■ xyz = x6y3z,
4 2

= xV • (xyz)2 — x6y4z2.X у
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Dostaneme tak homogenní nerovnost

2{x7yb + ...) ^ (x6y5z + ...) + {x6y4z2 + ...).

Ta už plyne z toho, že pro libovolná x, y, z > 0 máme dle tzv. Muirhea-
dovy nerovnosti

(*-V + . . .) 2 (Xег/Z + ...) 2 (zV*2 + ...)■

Vysvětlíme ještě, proč platí předchozí nerovnost, pomocí rozkladu
rozdílů zastoupených výrazů:

x\y7 + Z7 - y6z - z6y) + ... = x5(y6 - z6)(y - z) + ... ^ 0,

což dokazuje levou nerovnost, pravou nerovnost nejdříve zkrátíme výra-
zem xyz do tvaru

{x5y4 + ...) ^ (x5y3z + ...)

a pak podobně rozložíme:

x5(y4 + z4 - y3z - z3y) + • • . 5(y3 - z3)(y- z) + ... £0.= X

Poznámka. V souvislosti s právě uvedeným řešením připomeňme dvě
užitečné nerovnosti. Pro n-tici a = (ai,... ,an) kladných reálných čísel
a nezáporná čísla x\,... ,xn zaveďme označení

Ta{x\,..., xn) = ...Уп"»

kde sčítáme přes všechny permutace (yi,..., yn) čísel x\,..., xn. O dvou
n-ticích o: = (ai,..., an) a /3 — (6i,..., 6n) navíc řekneme, že a majoři-
zuje /3, jestliže ai + ... -f an = bi + ... + bn a zároveň všechny částečné
součty splňují nerovnosti a\ + ... + aj ^ b\ -f ... + bj (1 ú j ^ n — 1).

Jestliže a majorizuje /3, pak platí

Ta(xi,... ,xn) ^ Tp(xi,... ,xn)

s rovností, právě když x\ — X2 — •.. = xn (Muirheadova nerovnost).
Jestliže Л а у jsou nezáporná reálná čísla, pak platí

-Da-|-2/x,0,0 (xi , X21 Ж3) T (^1, X2, X3) ^ 23Гд-)-д(*^1) X21 X3)
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s rovností, právě když X\ — ж2 = X3 nebo x\ = X2 a X3 = 0 nebo X\ — Ж3
a x’2 = 0 nebo ж2 — Ж3 a x\ = 0 (Schurova nerovnost).

Dokazovanou nerovnost (1) v předchozím řešení tak můžeme zapsat
(pro jednoduchost vynecháme všude trojice proměnných (x,y,z)) jako

Tg,o,0 + 2T750 + ^5,2,2 = T6,0,0 + Тб,5,2 + Тбдо + T4,2,0

a její platnost teď plyne z následujících (zřejmých) nerovností (využíváme
rovnost xyz =1):

Tg,o,o + T5,2,2 = 2T7,2,o (Schur),
T7,2,0 ^ Т7ДД = Te,o,o,
Tr,2,0 ^ T5 31 = T4,2,o,

T7,5,0 ^ Тб,5,2j
T7,5,o ^ Тб,5,1 = T5,4,o-

4. Ukážeme, že každé prvočíslo p má v dané posloupnosti svůj násobek.
Protože čí2 = 48 je násobkem dvou i tří, stačí uvažovat p > 3. V takovém
případě dostáváme z malé věty Fermatovy (modulo p)

2p-i = 1, 3P 1 = 1, a tedy 6P 1 = 1.

Odtud

6ap_2 = 6 • 2P~2 + 6 • 3P“2 + 6 • 6P“2 - 6 =

+ 2 • 3P_1 + 6P-1 -1
= 3 • 2P -6 = 3 + 2 + l- 6 = 0.

Číslo 6ap_2 je tedy dělitelné p, a protože p > 3, je i číslo ap_2 násobkem
prvočísla p.

Jediné kladné číslo, které je nesoudělné se všemi členy dané posloup-
nosti, je tedy 1.

Jiné řešení. Protože an — 2n + 3n + 6n — ln, má daná posloupnost
charakteristický mnohočlen q s kořeny 2, 3, 6 a 1, tj.

q(A) = (A - 2)(A - 3)(A - 6)(A - 1) = A4 - 12A3 + 47A2 - 72A + 36.

To znamená, že daná posloupnost splňuje následující rekurentní vztah

®n+4 — 12ап+з 47aTl+2 + 72čin_|_i 36o.n (1)
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pro libovolné přirozené n. Daná posloupnost je tudíž pro libovolné prvo-
číslo p od jistého členu počínaje periodická modulo p. Je-li p prvočíslo
nesoudělné s koeficientem 36 (p ^ {2,3}) u členu an, můžeme rekurenci
„obrátit" a počítat členy posloupnosti „zpět". Posloupnost čísel modulo
takové prvočíslo p je tedy periodická celá. Snadno ovšem nahlédneme, že
rekurentnímu vztahu (1) vyhovují i celočíselné členy ao = 2 a a_i = 0,
takže mezi členy dané posloupnosti musí existovat čísla dělitelná prvo-
číslem p.

Protože <22 = 48, je 1 jediné kladné číslo, které je nesoudělné se všemi
členy dané posloupnosti.

5. (Podle Františka Simančíka, Slovensko.) Uvažujme kružnice opsané
trojúhelníkům BCP a ADP. Předpokládejme, že se v bodě P dotýkají
a že jejich společná tečna v tomto bodě protíná stranu CD v bodě X
(obr. 58). Z rovnosti obvodových a úsekových úhlů příslušných tětivám

DP a CP plynou rovnosti \kDAP\ — \<DPX\ а \кСВР\ — \kCPX\.
Protože vedlejší úhel CPD trojúhelníku APD je roven součtu jeho úhlů
při vrcholech A a D, vidíme, že \kADP\ = \š^CPX\ = \šlCBP\. To
znamená, že strany ВС a AD jsou rovnoběžné, což odporuje zadání úlohy.
Uvažované kružnice se proto nedotýkají, a mají tak kromě bodu Р ještě
další průsečík, který označíme O.

Protože \BC\ = \AD\ a \<BPC\ = \<APD\, mají obě kružnice stejné
poloměry a obvodové úhly příslušné společné tětivě PO mají stejnou
velikost (obr. 59). Odtud vyplývá, že trojúhelníky CAO a BDO jsou
rovnoramenné, takže \OA\ = |OC|, \OB\ — \OD\. Trojúhelníky OAD
a OCB jsou proto shodné podle věty sss, a protože \EC\ — \AF\, jsou
shodné i trojúhelníky OAF a OCE. Odtud \%.AOF\ = |<COE\, takže
j<FOE\ — \<AOC\ a rovnoramenné trojúhelníky FOE a AOC jsou
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podobné. Proto \$:OFE\ = \kOAC\ — \<OAR\ a čtyřúhelník AORF je
tětivový (obr. 60).

Označme \<ADB\ = a, \<DFE\ = /3. V tětivovém čtyřúhelníku
AORF máme \<AOR\ = 180° — \ $:AFR\ = /3. V tětivovém čtyřúhelníku
AOPD zase \kAOP\ = 180° — a, tj.

\<ROP\ = 180° — a — /3.

Zároveň však z trojúhelníku FQD máme

\<RQP\ = 180° — a — /3.

Odtud |<Ж)Р| = \<RQP\ a čtyřúhelník PROQ je tětivový (obr. 61).
Bod O proto leží na kružnici opsané trojúhelníku PQR. Protože poloha
bodu O na volbě bodů P, F nezávisí, je úloha vyřešena.

A В

Obr. 61
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6. Označme n počet soutěžících a N počet všech vyřešených dvojic úloh
(pokud soutěžící vyřešil r úloh, započítáme do N číslo (!,)). Každou
z 15 dvojic vyřešilo více než | soutěžících, tj. aspoň |(2?г+1) soutěžících,
proto

2n + 1
N> 15- (1)= 6?г + 3.

5

Předpokládejme, že právě 5 úloh vyřešilo к účastníků. Každý z nich
vyřešil 10 dvojic úloh, zatímco každý z ostatních n — k účastníků vyřešil
nejvýše 6 dvojic úloh, takže

N 5ь 10к + 6(n — k) — 6n + 4k.

Z uvedených dvou odhadů je zřejmé, že к ^ 1. Kdyby navíc nebylo
|(2n + 1) celé číslo, vyřešilo by každou dvojici úloh aspoň |(2?г + 2)
účastníků a první odhad by měl tvar N ^ б?г + 6, což dává nerovnost
fc^2, takže bychom byli hotovi. Podobně pokud by některý z účastníků
vyřešil méně než 4 úlohy, tj. vyřešil by nejvýše 3 dvojice úloh, měl by
druhý odhad tvar N 5ь 6?г -f 4k — 3, a to spolu s (1) opět dává nerovnost
к > 2.

Zbývá tedy vyloučit případ, kdy je 2n+l dělitelné pěti, jeden účastník
(nazvěme ho vítěz) vyřešil 5 úloh a každý jiný vyřešil právě 4 úlohy.
Předpokládejme, že taková situace nastala. Je tedy N = 10 + 6(?г — 1) =
= 6n + 4 (vítěz vyřešil 10 dvojic a zbylí účastníci po 6 dvojicích úloh).
Vzhledem к předpokládané hodnotě N a odhadu (1) existuje právě jedna
dvojice úloh (nazvěme ji speciální), kterou vyřešilo právě |(2n + 1) + 1
účastníků, zatímco každou ze zbylých 14 dvojic vyřešilo právě |(2n+ 1)
účastníků.

Nazvěme úlohu, kterou vítěz nevyřešil, těžkou. Označme M počet vy-

řešených dvojic úloh, z nichž jedna je těžká. Pro každou z pěti dvojic
obsahujících těžkou úlohu máme bud’ |(2n + 1), nebo \{2n + 1) + 1
účastníků, kteří obě úlohy z dvojice vyřešili. Takže M = 2n + 1 nebo
M = 2n + 2 (druhá možnost nastane, pokud speciální dvojice obsahuje
těžkou úlohu). Na druhé straně, pokud těžkou úlohu vyřešilo m účastníků,
je M — 3m, protože každý z nich vyřešil kromě těžké úlohy právě 3 další.
Dohromady tak dostáváme, že 2n + 1 nebo 2n + 2 je dělitelné třemi,
neboli že (modulo 3) 2?г -f 1 = 0 nebo 2n -f 1 = 2.

Zvolme nyní libovolnou úlohu u, která není těžká a není ani ve spe-
dální dvojici (takové úlohy jsou aspoň tři). Označme L počet vyřešených
dvojic úloh, z nichž jedna je u. Zřejmě L = 2n + 1 (každou z pěti dvo-
jic úloh obsahujících и vyřešilo právě \{2n + 1) účastníků). Na druhé
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straně pokud úlohu и kromě vítěze vyřešilo ještě l dalších účastníků, je
L — 31 + 4 (vítěz kromě и vyřešil 4 další úlohy, tj. vyřešil 4 dvojice
obsahující u, ostatních l vyřešilo 3 dvojice obsahující u). Dostáváme tak
2n + 1 = 1 (mod 3), což odporuje předchozím dvěma možnostem. Tím
je tvrzení úlohy dokázáno.
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Dvanáctý ročník Středoevropské olympiády v informatice

Hostitelem dvanácté středoevropské olympiády v informatice CEOI 2005
bylo Maďarsko. Soutěž se uskutečnila ve dnech 28. 7.-4.8. 2005 na Gym-
náziu Árpáda Vezéra v Sárospataku. Olympiáda probíhala v době prázd-
nin, takže na soutěž, zahajovací ceremoniál i část doprovodného pro-

gramu mohly být využity počítačové laboratoře a ostatní volné prostory
gymnázia. Slavnostní ukončovací ceremoniál se konal na sárospatackém
hradě. Ubytování a stravování bylo zajištěno v hotelu nedaleko školy.

Olympiáda byla skvěle připravena po stránce organizační, po stránce
počítačového vybavení i z hlediska kvality přípravy soutěžních úloh.
V každém ze dvou soutěžních dní studenti řešili u počítačů tři náročné
příklady. Se svými počítači i soutěžním prostředím se přitom všichni
mohli seznámit den před vlastní soutěží, kdy probíhalo tréninkové před-
kolo. Při soutěži bylo možné programovat v některém z programovacích
jazyků Pascal, C nebo C++, každý si mohl zvolit podle svých zkušeností
pracovní prostředí operačního systému Windows nebo Linux. O oba uve-
děné systémy byl mezi účastníky přibližně stejný zájem. Současně s kla-
sickou soutěží probíhala i soutěž po Internetu pro veřejnost.

К testování a hodnocení vytvořených programů se na CEOI již něko-
lik let používá automatický vyhodnocovací systém testující programy na

připravené sadě vstupních dat. Všechny prováděné testy mají dobu vý-
počtu omezenu předem známým časovým limitem a jednotlivá testovací
vstupní data mají různou velikost a různou složitost, což dohromady
umožňuje bodově rozlišit programy podle kvality použitého algoritmu.
Za každou úlohu šlo získat maximálně 100 bodů, nejčastěji bylo zadáno
20 sad testovacích dat po 5 bodech. U některých úloh bylo navíc možné
vyřešit i polovinu zadání (například při hledání optimálního uspořádání
předmětů vypsat pouze cenu optima a již ne konkrétní uspořádání) a zís-
kat za takové řešení část bodů.

Dvanácté středoevropské olympiády v informatice se zúčastnilo
52 soutěžících studentů z 12 zemí střední Evropy. Z Maďarska se účastnily
dva týmy, z nichž tým gymnázia v Sárospataku se do celkových výsledků
nezapočítával; z ostatních států se účastnil vždy jeden tým. Českou
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republiku reprezentovalo čtyřčlenné družstvo ve složení Michal Vaner
(student Gymnázia Jana Palacha v Turnově), Josef Pihera (student
Gymnázia ve Strakonicích), Roman Smrž (student Gymnázia E. Krás-
nohorské v Praze) a Cyril Hrubíš (student Gymnázia M. Koperníka
v Bílovci). Naši soutěžící byli vybráni na základě výsledků dosažených
v celostátním kole 54. ročníku kategorie P Matematické olympiády. Ve-
děním družstva byli pověřeni Mgr. Martin Mareš a Milan Straka, oba
z Matematicko-fýzikální fakulty Univerzity Karlovy v Praze.

Na středoevropské olympiádě v informatice se udělují ocenění podle
podobného klíče, jaký se používá například na mezinárodní olympiádě
v informatice. Nejvýše polovina soutěžících obdrží některou z medailí,
přičemž zlaté, stříbrné a bronzové medaile se dělí přibližně v poměru
1:2:3. Na letošní CEOI 2005 bylo rozděleno celkem 25 medailí, z toho
4 zlaté, 8 stříbrných a 13 bronzových. O čtyři zlaté medaile se letos ne-
tradičně podělily pouze dva státy — Rumunsko (1. místo) a Polsko (2. až
4. místo).

Naši studenti letos nezískali žádnou medaili, což je částečně způsobeno
tím, že na středoevropskou olympiádu jsou vysíláni mladí studenti, aby
získali zkušenosti, které v následujících letech mohou zúročit na olympi-
ádě mezinárodní. Slovenská reprezentace získala jen tři bronzové medaile.
Následující tabulka shrnuje výsledky všech českých studentů v soutěži:

29. Michal Vaner 133 bodů

30. Josef Pihera

37. Roman Smrž
46. Cyril Hrubiš

122 bodů

65 bodů

12 bodů

Příští, v pořadí třináctá středoevropská olympiáda v informatice
CEOI 2006 se uskuteční v chorvatském městě Vrsaru uprostřed července
2006.
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17. mezinárodní olympiáda v informatice

V pořadí 17. ročník mezinárodní olympiády v in-
formatice (IOI — International Olympiad in Infor-
matics) se konal v Polsku ve dnech 18.-25.8. 2005.
Místem konání bylo město Nowy S3.cz, které se na-
chází na samém jihu Polska nedaleko slovenských
hranic. Celá soutěž probíhala v prostorách první polské soukromé vysoké
školy WSB-NLU (Wyžsza Szkola Biznesu — National Louis University),
v blízkých kolejích školy bylo zajištěno i ubytování všech účastníků. Or-
ganizátoři ovšem byli většinou pracovníky varšavské university.

Letošní olympiády se zúčastnilo 276 soutěžících ze 72 zemí celého
světa, další čtyři země vyslaly své pozorovatele s cílem seznámit se s prů-
během soutěže a zúčastnit se jí aktivně v příštím roce. Každé družstvo je
tvořeno čtyřmi soutěžícími studenty a je doprovázeno dvěma pedagogic-
kými pracovníky jako vedoucími. Českou republiku letos reprezentovalo
družstvo ve složení:

Nowy Sqcz, Poland 2005
The 17-th International Olympiad in Informatics

Ondřej Bílka, student Gymnázia ve Zlíně, Lesní čtvrť,
Jan Buldnek, absolvent Gymnázia J. Vrchlického v Klatovech,
Zbyněk Falt, absolvent Gymnázia ve Zdaru nad Sázavou,
Daniel Marek, student Gymnázia Ch. Dopplera v Praze 5.

Naši soutěžící byli vybráni na základě svých výsledků dosažených
v celostátním kole kategorie P 54. ročníku matematické olympiády. Ve-
doučím české delegace byl jmenován doc. RNDr. Pavel Tópfer, CSc.,
z Matematicko-íyzikální fakulty Univerzity Karlovy v Praze, druhým ve-
doučím byl Mgr. Zdeněk Dvořák, rovněž z MFF UK v Praze.

Vlastní soutěž IOI probíhá vždy ve dvou soutěžních dnech, v každém
z nich soutěžící řeší po dobu pěti hodin tři zadané úlohy. Každý účastník
má pro svoji práci přidělen osobní počítač s nainstalovanými překladači
programovacích jazyků Pascal, C a C++ a s interaktivním webovým
rozhraním pro komunikaci soutěžícího s řídicím a vyhodnocovacím sys-
témem soutěže. To umožňuje zálohovat data, tisknout výpisy programů,
ověřovat správnost chování programu a zejména pak předávat vytvořené
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programy na vyhodnocení. Všechny soutěžní úlohy jsou algoritmického
charakteru a je nutné dovést je až do podoby kompletního odladěného
programu, podobně jako je tomu třeba i v praktické části celostátního
kola kategorie P naší matematické olympiády.

Odevzdané programy jsou vždy po skončení soutěžního dne automa-
ticky testovány pomocí předem připravené sady testovacích dat, aby se
ověřila jejich správnost. Důležitou součástí těchto testů jsou časové limity.
Je pevně stanoveno, jak nejdéle může program počítat pro každá vstupní
data. Tímto způsobem se mezi správně fungujícími programy ještě rozliší,
na jak dobrém algoritmu je který program založen. Některá vstupní data
zadávaná při testování jsou malá, takže výpočet s nimi stihne v časovém
limitu i pomalejší algoritmus, naopak jiná vstupní data jsou rozsáhlá
a včas je zvládne zpracovat jedině program využívající dostatečně efek-
tivní algoritmus.

Vedle samotné soutěže byl pro všechny účastníky IOI 2005 připraven
i zajímavý doprovodný program. Jeho součástí byl celodenní výlet do
Krakowa a do známých solných dolů v městě Wieliczka, druhý výlet
mířil do Národního parku Pieniny a zahrnoval i dvouhodinovou plavbu
na pltích po řece Dunajec.

Letošní soutěžní úlohy byly algoritmicky zajímavé, byly dobře zvolené
a pečlivě připravené. Nalézt opravdu dobré efektivní řešení bylo většinou
poměrně obtížné, většina úloh však umožňovala získat částečné bodové
ohodnocení i za méně efektivní algoritmus, jehož návrh tak náročný ne-

byl. Bodová ohodnocení získaná v soutěži se tak velmi dobře rozložila
téměř v celé škále od nuly do plného počtu bodů. Za každou úlohu bylo
možné získat maximálně 100 bodů, tj. celkově v soutěži 600 bodů. Hned
čtyřem studentům (dva z Cíny, po jednom z USA a Ukrajiny) se podařilo
vyřešit všech šest soutěžních úloh zcela bezchybně a získali plný počet
600 bodů.

Na základě dosažených výsledků se na IOI udělují mediale tak, že
nejvýše polovina účastníků obdrží některou z medailí, přičemž počet
zlatých, stříbrných a bronzových medialí je v rámci možností přibližně
v poměru 1:2:3. Letos bylo uděleno 24 zlatých medailí (soutěžícím,
kteří dosáhli alespoň 496 bodů), 47 stříbrných medailí (za zisk alespoň
393 bodů) a 67 bronzových medailí (pro ty, kdo v soutěži získali mini-
málně 275 bodů). O medaile se podělili zástupci 57 zemí ze 72 zúčastně-
ných. Našim studentům se tentokrát vedlo o něco hůře než v minulých
letech, v soutěži získali jen dvě bronzové medaile.
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Výsledky našich studentů:

82. Daniel Marek 375 bodů

112. Ondřej Bílka 316 bodů
Jan Bulánek 233 bodů

Zbyněk Falt 203 bodů

bronzová medaile

bronzová medaile

Mezinárodní olympiáda v informatice je soutěží jednotlivců, takže
žádné oficiální pořadí národních družstev se v ní nevyhlašuje. Není ani
stanoveno, zda by se mělo určovat podle součtu dosažených bodů, součtu
umístění nebo třeba podle počtu získaných medailí. Podle kterékoliv zvo-
lené metodiky výpočtu by se Česká republika umístila kolem 30.-35. mís-
ta, tzn. někde ke konci lepší poloviny zúčastněných zemí. Nejúspěšnějšími
zeměmi letošního ročníku IOI byly po řadě Čína, USA a Slovensko, jejichž
všichni čtyři soutěžící získali zlaté medaile. Další místa v pořadí první
desítky by obsadily Thajsko, Ukrajina, Korea, Rusko, Polsko, Kanada
a Izrael.

Příští, osmnáctý ročník soutěže IOI se bude konat v druhé polovině
srpna 2006 v Mexiku. Uskuteční se ve městě Mérida v naprosto stejném
místě, kde úspěšně proběhla 46. mezinárodní matematická olympiáda,
o níž se dočtete na předchozích stránkách.

Texty soutěžních úloh

1. Hory
V Horském zábavním parku si pořídili zbrusu novou horskou dráhu.

Její trať se skládá z n kolejnic spojených na koncích. Začátek první ко-
lejnice je upevněn ve výšce 0. Bajtazar, operátor horské dráhy, může
změnit sklon libovolného souvislého úseku kolejnic a tak upravit trasu
horské dráhy. Sklon ostatních kolejnic se přitom nemění, takže se musí
změnit výška, v níž se nacházejí kolejnice následující po úseku, jehož
sklon Bajtazar upravil. Tak se zajistí, že se trať nepřeruší a její začátek
zůstane ve výšce 0. Na obrázcích na druhé straně vidíte dva příklady
úpravy horské dráhy.

Na trať vyjíždí vůz s energií dostatečnou na vystoupání do výšky h.
Vůz tedy pokračuje v jízdě tak dlouho, dokud jeho výška nepřesáhne h
nebo dokud nedojede na konec dráhy. Je zadán seznam všech jízd a úprav
dráhy v průběhu jednoho dne. Určete pro každou jízdu, kolik kolejí vůz
projel, než se zastavil.
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Stav horské dráhy je reprezentován posloupností di,...,dn změn
výšky. Číslo d{ představuje rozdíl výšek začátku a konce г-té kolejnice
v centimetrech. Pokud je vůz na konci (i — l)-ní kolejnice ve výšce
h centimetrů, pak po projetí г-té kolejnice je ve výšce h + di centi-
metrů.

Na začátku dne je horská dráha rovná, a tedy di — 0 pro všechna i.
Během dne probíhají v libovolném pořadí úpravy dráhy a jízdy. Každá
úprava dráhy je popsána jako trojice celých čísel a, b a D. Po provedení
této úpravy je di = D pro všechna i taková, že a ^ i 5Š 6, zatímco sklon
ostatních kolejnic (tedy di pro г mimo tento interval) se nemění.

Každá jízda je popsána jedním celým číslem h
které může vůz dosáhnout.

největší výškou,

Úloha:

Napište program, který:
> Načte ze standardního vstupu posloupnost úprav dráhy a jízd.
t> Pro každou jízdu určí na základě aktuální konfigurace trati počet

projetých kolejnic.
o Vypíše odpovědi na standardní výstup.

Vstup: První řádek vstupu obsahuje jedno kladné celé číslo n — počet
kolejnic, 1 n ^ 1 000 000 000. Následující řádky obsahují úpravy dráhy
a jízdy v pořadí, ve kterém nastaly během dne. Na posledním řádku
vstupu je ukončovací značka. Každý řádek obsahuje jednu z těchto mož-
ností:

> Úprava dráhy — písmeno I, a trojici celých čísel a, b, D, vše oddě-
léno vždy jednou mezerou (1 a ^ b гг, —1000 000 000 5Í D ^
^ 1000 000 000).

t> Jízda — písmeno Q, a jedno celé číslo h (0 ^ h 1000 000 000)
oddělené jednou mezerou.

> Koncová značka písmeno E, označuje konec vstupních dat.
Výška všech částí dráhy je v libovolném okamžiku v intervalu

[0,1000 000 000] centimetrů. Vstup obsahuje nejvýše 100 000 řádků. Pro
50 % vstupních dat platí, že 1 ?г ^ 20 000 a že vstup má nejvýše 1000
řádků.

Výstup: V pořadí г-tý řádek výstupu obsahuje jedno celé číslo
počet kolejnic, které vůz projel při г-té jízdě.
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Příklad vstupu a výstupu:

44

Q 1 1

114 2 O

q 3 3
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Obr. 62. Vzhled trati ze vzorového příkladu na začátku a po každé úpravě. Čísla na
ose x představují čísla jednotlivých kolejnic. Čísla na ose у a čísla nad tečkami označují
výšku. Čísla nad úsečkami označují změny výšky.
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2. Posloupnost
Mějme neklesající posloupnost celých čísel si,...,sn+i (s* ^ s^+i

pro 1 5$ i ^ n). Posloupnost definovanou pro 1 5Í i ^ n
předpisem 777.* = i(s* + Si+i) nazveme průměrovou posloupností pro po-
sloupnost si,..., sn+i. Například posloupnost 1,5, 2, 3 je průměrovou
posloupností pro posloupnost 1, 2, 2, 4. Členy průměrové posloupnosti
nemusí být obecně celá čísla. V této úloze se však budeme zabývat jen
průměrovými posloupnostmi tvořenými pouze celými čísly.

Je zadána neklesající posloupnost n celých čísel 777-1,... ,mn. Určete
počet různých neklesajících posloupností si,..., sn+i tvořených n+1 ce-

lými čísly tak, aby daná posloupnost ttt-i, ..., mn byla jejich průměrovou
posloupností.

Úloha:

Napište program, který:
t> Načte ze standardního vstupu neklesající posloupnost 777-1, ■ •

lých čísel.
> Určí počet neklesajících posloupností, pro které je 7771,..

měrovou posloupností,
o Vypíše tento počet na standardní výstup.

777,n ce-* )

777.n prů-• 5

Vstup: První řádek vstupu obsahuje obsahuje jedno celé číslo n

(2 ^ гг ^ 5 000 000). Následujících n řádků obsahuje posloupnost
777n. Hodnota 777j (0 ^ 777,i ^ 1000 000 000) je zadána na řádku7771, . .

číslo г -f 1. Alespoň pro 50% vstupních dat navíc platí n й 1000
* >

a 777; 5í 20 000.

Výstup: Program vypíše na standardní výstup právě jedno celé
číslo — počet neklesajících celočíselných posloupností, pro něž je po-

sloupnost zadaná na vstupu posloupností průměrovou.

Příklad vstupu a výstupu:
3 4

2

5

9

Existují totiž právě čtyři neklesající celočíselné posloupnosti, pro které
je 2, 5, 9 průměrovou posloupností. Tyto posloupnosti jsou:

> 2, 2, 8, 10
> 0, 4, 6, 12

1.3,7, и
-1, 5, 5, 13
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3. Zahrada

Bajtazar má nejkrásnější zahradu v Bajticích. Vysadil si tam n růží,
které mu v létě nádherně rozkvetly. Bajtazar začal podnikat v zábavním
průmyslu, a proto už nemá dost času na to, aby se staral o všechny
růže. Chtěl by si najmout dva zahradníky, kteří by mu pomáhali. Každý
z těchto zahradníků by se staral o jednu obdélníkovou část zahrady. Aby
se zahradníci nehádali, obě části musí být disjunktní a každá z nich musí
obsahovat právě к růží.

Bajtazar také chce tyto obdélníkové oblasti oplotit, ale má málo pe-

něz, takže chce, aby ploty byly co nejkratší. Vaším úkolem je pomoci
Bajtazaroví vybrat nejvhodnější umístění těchto oblastí.

Zahrada má tvar obdélníka l metrů dlouhého a w metrů širokého.

Je rozdělena na l ■ w čtverců o velikosti lxl metr. Zvolíme si systém
souřadnic s osami rovnoběžnými se stranami zahrady. Všechny čtverce
jsou označeny celočíselnými souřadnicemi (x, у) takovými, že 1 ^ x ^ l
a 1 ^ у 5Í w. Každý čtverec může obsahovat libovolný počet růží.

Hledané obdélníkové oblasti musí mít strany rovnoběžné se stranami
zahrady a čtverce v jejich rozích musí mít celočíselné souřadnice. Pro
1 ^ li ^ l2 l a 1 5Í w\ ^ w2 ^ w obdélníková oblast s rohy (h,wi),
{h,w2), {h,wi) a (l2,w2):

\> obsahuje čtverce se souřadnicemi (x,y) takovými, že 11 x l2
a wi S У й w2, а

o má obvod 2(l2 — l\ + 1) + 2(w2 — w\ + 1).
Obě obdélníkové oblasti musí být navzájem disjunktní, tzn. nemohou

obsahovat tentýž čtverec. Mohou mít společný okraj nebo jeho část, ale
i v takovém případě musí být každá oblast ohraničena vlastním plotem.

Úloha:

Napište program, který:
o Načte ze standardního vstupu rozměry zahrady, počet růží a jejich

umístění v zahradě, a počet růží, které musí být v každé obdélníkové
oblasti.

t> Určí dvě obdélníkové oblasti tak, aby součet jejich obvodů byl co

nej menší, a zároveň aby splňovaly ostatní podmínky.
o Vypíše na standardní výstup součet jejich obvodů, nebo slovo NO,

pokud takové dvě oblasti neexistují.

Vstup: První řádek vstupu obsahuje obsahuje dvě celá čísla l a w
délku a šířku zahrady.(1 ^ /, w ^ 250) oddělená jednou

Druhý řádek obsahuje dvě celá čísla n а к (2 ^ n ^ 5 000, 1 ú к 5í \n)
mezerou
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počet růží v zahradě a počet růží, které byoddělená jednou mezerou

měly být v každé obdélníkové oblasti. Následujících n řádků obsahuje
souřadnice růží, na každém z nich je uvedeno umístění jedné růže. ftádek
(ž + 2)-hý obsahuje dvě celá čísla li, Wi (1 ^ li й l, 1 ^ ^ w) oddělená
jednou mezerou — souřadnice čtverce obsahujícího г-tou růží. V každém
čtverci se může nacházet více růží. Pro 50 % vstupních dat platí l,w ^ 40.

Výstup: Program vypíše na standardní výstup právě jedno celé
nejmenší možný součet obvodů dvou disjunktních obdélníkových

oblastí, z nichž každá obsahuje právě к růží, nebo slovo NO, pokud takové
oblasti neexistují.

Příklad vstupu a výstupu:
6 5

7 3

3 4

3 3

6 1

číslo

22

1 1

5 5

5 5

3 1

5

4

3

2

1

1 2 3 4 5 6

Obr. 63.

4. Narozeniny
Bajtazar má dnes narozeniny. Na oslavě jeho narozenin se sešlo n dětí

(včetně Bajtazara). Děti jsou označeny čísly od 1 do n. Bajtazarovi rodiče
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připravili velký kulatý stůl a kolem něj rozmístili n židlí. Každé dítě se

po příchodu hned posadí к tomuto stolu. Dítě číslo 1 si sedne na jednu
z židlí. Dítě číslo dvě se posadí hned vedle dítěte číslo 1, po jeho levé
ruce. Dítě číslo 3 si sedne nalevo od dítěte číslo 2, atd., až nakonec dítě
číslo n se posadí na poslední volnou židli mezi dětmi číslo 1 a n — 1.

Bajtazarovi rodiče vědí, že některé děti zlobí, pokud sedí příliš blízko
u sebe. Proto chtějí přesadit děti v jiném pořadí. Toto pořadí je po-

psáno permutací pi,p2> • • • -,Pn (РьР2> • • • ,Pn jsou navzájem různá celá
čísla od 1 do n) -

Pi (pro г = 2,3,..
číslo pn má sedět mezi dětmi číslo pn-i a p\. Všimněte si, že dítě číslo
Pi může sedět jak nalevo, tak napravo od dítěte pn.

Všechny děti už ale dorazily a posadily se ke stolu. Aby děti seděly
podle představ Bajtazarových rodičů, musí se každé dítě přesunout o ně-
jaký počet míst doleva či doprava. Rodiče musí pro každé dítě určit,
kam se má přemístit - tj. musí určit směr pohybu (doleva nebo doprava)
a vzdálenost (počet míst). Na smluvený signál všechny děti vstanou, do-
jdou na určené místo a znovu si sednou.

Každý si asi uvědomil, že po vydání signálu nastane naprostý chaos.
Míra chaosu je určena největší vzdáleností, o jakou se musí některé z dětí
posunout. Děti mohou být přesazeny různými způsoby. Rodiče se rozhodli
vybrat z nich ten, jehož míra chaosu je co nejmenší. Pomozte jim nalézt
takový způsob přesazení dětí.

dítě číslo p\ má sedět mezi dětmi číslo pn ap2, dítě
n — 1) má sedět mezi dětmi číslo Pi-\ a Pi+i, a dítě• ?

Úloha:

Napište program, který:
t> načte ze standardního vstupu počet dětí a permutaci popisující po-

žadované pořadí dětí u stolu,
c> určí nejmenší možné m takové, že existuje způsob přesazení dětí, při

kterém se každé dítě posune nejvýše o m míst,
o vypíše výsledek na standardní výstup.

Vstup: První řádek standardního vstupu obsahuje jedno celé číslo n

(1 ^ n ^ 1 000 000). Druhý řádek obsahuje n celých čísel pi,p2, ■ ■ ■ ,Pn
oddělených vždy jednou mezerou. Čísla pi,p2, ■ ■ ■ ,Pn tvoří permutací
množiny {1, 2,..., n}, která popisuje požadované pořadí dětí u stolu.
Pro 50 % vstupních dat navíc platí, že гг ^ 1 000.

Výstup: Program vypíše na standardní výstup právě jedno celé
číslo — nejmenší možnou míru chaosu m.
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Příklad vstupu a výstupu:
26

3 4 5 1 2 6

Obr. 64. Na levém obrázku je znázorněno počáteční rozmístění dětí. Prostřední obrázek
ukazuje výsledek následujícího přesazování: děti číslo 1 a 2 se posunou o jedno místo,
děti číslo 3 a 5 se posunou o dvě místa, a děti číslo 4 a 6 zůstanou na svém původním
místě. Toto rozesazení splňuje podmínky zadání, neboť dítě 3 sedí mezi dětmi 6 a 4,
4 sedí mezi 3 a 5, 5 sedí mezi 4 a 1, 1 sedí mezi 5 a 2, 2 sedí mezi 1 a 6, a 6 sedí mezi
2 a 3. Existuje ještě jedno možné konečné rozmístění dětí, znázorněné na obrázku
vpravo. V obou případech se žádné z dětí neposune o víc než o dvě místa.

5. Hra s obdélníkem

Alice a Bajtazar hrají následující hru. Mají obdélník o rozměrech
x x y, kde x а у jsou kladná celá čísla. Hráči se pravidelně střídají na
tahu. Tah spočívá v rozdělení obdélníka na dvě obdélníkové části jedním
svislým nebo vodorovným řezem. Výsledné obdélníky musí mít kladné
celočíselné rozměry.

T ■

i

i i
i

2 > —i +

i i
i

1 --i + 1--
i i

Л Л Л

1 2 3

Obr. 65. Možné řezy v obdélníku
o rozměrech 4x3.

Menší ze vzniklých obdélníků je odstraněn a zbývající z nich je předán
druhému hráči. Je-li obdélník rozdělen přesně na stejné poloviny, pak je
odstraněna jedna z nich. Hráč, který dostane obdélník o rozměrech lxl
prohrál, protože nemůže provést tah.
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Alice v této hře neustále prohrává. Napište program, který jí proti
Bajtazarovi pomůže vyhrát. Program musí používat speciální knihovnu,
pomocí které bude hru hrát. Knihovna poskytuje funkce dimensions ()
a dimension_y (), které vrací rozměry obdélníka. Počáteční rozměry ob-
dělníka jsou celá čísla mezi 1 a 100 000 000. Alespoň jeden z rozměrů je
větší než 1. Pro 50% vstupních dat rozměry navíc nepřekročí 25.

Knihovna dále obsahuje proceduru cut(dir, position), jejímž za-
voláním váš program provede tah. Parametry dir a position popi-
sují směr a umístění řezu. Parametr dir musí nabývat jedné z hodnot
vertical nebo horizontal. Pokud dir = vertical, pak je řez veden
svisle, parametr position určuje x-ovou souřadnici řezu (viz obrázek
nahoře) a musí splňovat podmínku 1 position ú dimensionsQ — 1.
Pokud dir = horizontal, pak je řez vodorovný, parametr position
určuje y-ovou souřadnici řezu a musí splňovat 1 ^ position ^
^ dimension_y() — 1.

Váš program bude hrát za prvního z hráčů — musí rozdělit počáteční
obdélník. Když program zavolá proceduru cut, jeho tah je zaznamenán
a řízení je předáno soupeři. Poté, co táhne soupeř, se řízení vrátí vašemu
programu. Funkce dimensions() a dimension_y() budou vracet roz-

měry obdélníka po provedení vašeho i soupeřova tahu. Váš program bude
ukončen poté, co vyhraje, prohraje, nebo provede neplatný tah (tj. zavolá
proceduru cut s chybnou hodnotou parametrů). Ukončení proběhne au-
tomaticky, váš program by tedy měl hrát tak dlouho, dokud je to možné.
Můžete předpokládat, že pro každý z testovacích vstupů existuje vyhrá-
vající strategie pro váš program.

Váš program nesmí číst z žádného souboru, ani zapisovat do žádného
souboru, nesmí používat standardní vstup a výstup, a nesmí se pokusit
měnit obsah paměti, která mu nepatří. Porušení kteréhokoliv z těchto
pravidel může vést к diskvalifikaci.

6. Řeky
V Bajtánském království mají mnoho lesů a řek. Malé řeky se vlévají

do větších, a nakonec se všechny řeky spojí v jeden mohutný tok, který
u Bajtic ústí do moře.

V Bajtánii je n dřevorubeckých osad, ležících poblíž řek. V Bajticích
se nachází Ústřední dřevařský závod, který zpracovává stromy, poražené
v celém království. Stromy se dopravují do Bajtic po řekách. Doprava
je však příliš drahá, a proto se král rozhodl nechat postavit к dalších
dřevařských závodů v některých osadách. Stromy pak nebude nutné do-
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pravovat až do Bajtic, ale bude možné zpracovat je v nejbližším závodě
po proudu řeky. Stromy poražené poblíž osady s dřevařským závodem se

po řece nebudou dopravovat vůbec. Je třeba podotknout, že bajtánské
řeky se nerozvětvují, a z každé osady se tedy dá dostat právě jedním
způsobem po proudu řeky do Bajtic.

Královští úředníci spočítali, kolik stromů se porazí u každé osady
za rok. Máte rozhodnout, kde postavit dřevařské závody tak, aby cel-
ková cena za dopravu stromů po řece byla co nejmenší. Doprava jednoho
stromu po řece stojí jeden cent za kilometr.

Úloha:

Napište program, který:
t> načte ze standardního vstupu počet osad, počet stromů poražených

za rok u každé z nich, počet nově budovaných dřevařských závodů
a popis řek,

t> určí nejmenší možnou cenu za dopravu stromů po řekách po postavení
nových dřevařských závodů, a

o vypíše výsledek na standardní výstup.

Vstup: První řádek vstupu obsahuje dvě celá čísla oddělená mezerou:
n — počet osad různých od Bajtic (2 ^ n ^ 100), а к — počet nových
dřevařských závodů, které se mají vybudovat (1 ^ к ^ 50 а к ^ n).
Osady jsou očíslovány 1,2,..., n, Bajtice jsou označeny číslem 0.

Každý z n následujících řádků obsahuje tři celá čísla, oddělená vždy
jednou mezerou. Řádek г + 1 obsahuje:

> wi — počet stromů poražených u osady číslo i za rok (0 ^ Wi ^
^ 10 000),

> V{ — číslo první osady (nebo 0, pokud jsou to Bajtice) po proudu
řeky od osady číslo i (0 5Í vi ^ n),

> di — vzdálenost (v kilometrech) po proudu řeky od osady číslo i do
osady Vi (1 di ú 10 000).
Celková cena za dopravu všech stromů do Bajtic za rok nepřesáhne

2 000 000 000 centů.

Pro 50% vstupních dat navíc platí, že n ^ 20.

Výstup: Program vypíše na standardní výstup právě jedno celé
nejmenší možnou cenu za dopravu stromů po řekách (v centech).číslo
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Příklad vstupu a výstupu:
4 2 4

10 1

1 1 10

10 2 5

12 3

Obr. 66. Obrázek odpovídá vstupním datům z příkladu. Čísla osad jsou uvnitř krouž-
ků. Čísla pod kroužky udávají počet stromů poražených poblíž osad. Čísla nad šipkami
udávají délky řek. Dřevařské závody je třeba postavit v osadách číslo 2 a 3.
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