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O průběhu 56. ročníku matematické olympiády

56. ročník Matematické olympiády proběhl v České republice ve školním
roce 2006/07. Stejně jako v předešlých letech bylo hlavním pořádáte-
lem této soutěže Ministerstvo školství, mládeže a tělovýchovy CR, dále
.Jednota českých matematiků a fyziků a Matematický ústav Akademie
věd CR. Výkonný orgán soutěže
i v tomto ročníku ve stejném složení. Předsedou ÚK MO byl doc. RNDr.
Jaromír Šimša, CSc., funkce místopředsedů pak zastávali RNDr. Jaroslav
Švrček, CSc. (pro kategorie А, В a C), prof. RNDr. Pavel Tlustý, CSc.
(pro kategorie Z9-Z5) a doc. RNDr. Pavel Tópfer, CSc. (pro kategorii P).
Tajemníkem ÚK MO byl RNDr. Karel Horák, CSc.

Přípravu a definitivní výběr soutěžních úloh pro kategorie А, В a C
již tradičně zajišťují dvě společné česko-slovenské úlohové komise (jedna
pro kategorie А, В a C a jedna pro kategorie Z5-Z9), které na svých
pravidelných jednáních (dvakrát ročně) dotvářejí s ročním předstihem
definitivní podobu všech soutěžních úloh. Garanty výběru úloh pro stře-
doškolské kategorie 56. ročníku MO byli: RNDr. Jaroslav Švrček, CSc.
(pro kategorii A), doc. RNDr. Pavel Novotný, CSc. (pro kategorii B)
a RNDr. Pavel Leischner, Ph.D. (pro kategorii C).

Při přípravě soutěžních úloh MO kategorie P se pravidelně střídají
pracovníci Matematicko-fyzikální fakulty Univerzity Karlovy v Praze
a Fakulty matematiky, fyziky a informatiky Univerzity Komenského
v Bratislavě. Tentokrát byli na řadě pracovníci a studenti z Matematicko-
-fyzikální fakulty Univerzity Karlovy v Praze, kteří se pak postarali
i o opravu a vyhodnocení odevzdaných řešení.

Ústřední (III.) kola kategorií A a P se konala od 18. do 24. března
2007 ve Zlíně. Organizátorem závěrečné části soutěže v obou kategoriích
bylo (na základě pověření ÚK MO) Gymnázium Zlín-Lesní čtvrť, a to ve

spolupráci se zlínskou pobočkou JÚMF. Organizátoři připravili výborné
podmínky pro vlastní soutěž. Ubytování téměř všech soutěžících a členů
ÚK MO ve zlínském hotelu Baltaci bylo rovněž na vysoké úrovni. Vlastní
soutěž se konala v prostorách zlínského gymnázia v Lesní čtvrti. Záštitu

Ústřední komise MO pracoval
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nad zdárným průběhem celé akce převzali mj. Mgr. Tomáš Zatloukal, po-
slanec Evropského parlamentu, PaedDr. Zdeněk Janalík, senátor Senátu
Parlamentu ČR, Mgr. Tomáš Ulehla, poslanec Poslanecké sněmovny Par-
lamentu ČR, Libor Lukáš, hejtman Zlínského kraje, prof. Ing. Petr Sáhá,
CSc., rektor Univerzity Tomáše Bati ve Zlíně, Mgr. Josef Slovák, ná-
městek hejtmana Zlínského kraje pro oblast školství, mládeže a sportu,
Mgr. Hynek Steska, náměstek primátorky statutárního města Zlína, člen
Rady Zlínského kraje odpovědný za informatiku a prof. Ing. Vladimír
Vašek, CSc., děkan Fakulty informatiky Univerzity Tomáše Bati.

Slavnostní zahájení soutěže v kategorii A se uskutečnilo v prostorách
FAI UTB v neděli 18. 3. 2007 za přítomnosti zástupce MŠMT ČR Ing.
Jaroslava Froulíka, vedoucího pobočky Matematického ústavu AV ČR
v Brně doc. RNDr. Jiřího Vanžury, CSc., a dále všech výše uvedených
garantů ústředního kola MO.

Přes nepřízeň počasí se organizátorům podařilo zajistit pro soutěžící
i pro ÚK MO zajímavý doprovodný program. Pondělní odpoledne bylo
zahájeno návštěvou Baťovy vily s přednáškou o historii Baťovy rodiny.
Poté byli všichni účastníci soutěže přijati na Krajském úřadě ve Zlí-
ně. Protože krajský úřad sídlí v původní administrativní budově Baťovy
továrny, měli všichni možnost prohlédnout si tuto historickou budovu
(tzv. mrakodrap) včetně vyhlídkové terasy a dobové pracovny Tomáše
Bati v jednom z výtahů. Úterní odpoledne — po skončení soutěže —

absolvovali soutěžící prohlídku kulturních a historických památek města
Zlína spojenou s krátkou vycházkou do blízkého okolí.

Slavnostní vyhlášení výsledků v kategorii A a předání cen nejlepším
soutěžícím se uskutečnilo ve středu 21. 3. 2007 v obřadní síni radnice

města Zlín za přítomnosti představitelů města a dalších institucí. Euro-
poslanec Tomáš Zatloukal na závěr odměnil tři nejlepší soutěžící týden-
ním zájezdem do zemí Beneluxu spojeným s návštěvou sídla Evropské
unie v Bruselu.

Ústřední kolo kategorie P se konalo následně od 21. do 24. 3. 2007.
Soutěžními dny byly čtvrtek 22. 3. a pátek 23. 3. 2007. Doprovodný pro-

gram pro účastníky kategorie P byl připraven v podobném duchu jako
pro účastníky kategorie A.

Závěrem této části zprávy vyslovujeme upřimné poděkování všem or-

ganizátorům III. kola 56. ročníku MO v kategoriích A i P, především
pak řediteli Gymnázia Zlín-Lesní čtvrť RNDr. Janu Chudárkovi a jeho
statutárnímu zástupci Mgr. Pavlu Simkovičovi — za pečlivě připravenou
organizaci i zdárný průběh obou ústředních kol soutěže.
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Ihned po ukončení ústředního kola MO v kategorii A byli všichni
vítězové pozváni к výběrovému soustředění před 48. mezinárodní mate-
matickou olympiádou, které se uskutečnilo 1.-5. dubna 2007 již tradičně
v Kostelci nad Černými lesy. Podrobnou informaci o tomto soustředění
najdete ve druhé části této publikace.

Ústřední komise MO se během tohoto soutěžního ročníku sešla dva-

krát, a to v prosinci 2006 na Pedagogické fakultě UK v Praze a dále
u příležitosti ústředního kola kategorie A (19. 3. 2007) ve Zlíně.

V závěru 56. ročníku MO a na počátku nového soutěžního ročníku
se konala soustředění nejlepších řešitelů MO v jednotlivých věkových ka-
tegoriích (v Jevíčku pro nej lepší řešitele v kategoriích В a C v červnu
2007 a v Janských Lázních pro nejlepší řešitele kategorie A v září 2007).
Dále proběhla již zaběhnutá příprava našeho reprezentačního družstva
před nadcházející 48. MMO ve Vietnamu, a to na týdenním společném
česko-slovenském setkání v Uherském Hradišti (17.-22. 6. 2007), kterou
podobně jako v předchozím roce iniciovala brněnská Společnost Otakara
Borůvky. Počátkem bezprostředně následujícího týdne (24.-27. 6. 2007)
se české družstvo pro 48. MMO ještě zúčastnilo mezinárodního příprav-
něho trojstřetnutí česko-polsko-slovenského, které se tentokrát konalo na

Gymnáziu M. Koperníka v Bílovci.
V září 2007 se v Rakousku poprvé uskutečnila Středoevropská mate-

matická olympiáda, jíž se zúčastnilo i šestičlenné družstvo českých olym-
pijských nadějí.

Závěrem této stručné zprávy si Ústřední komise MO dovoluje poděko-
vat všem učitelům, odborným a vědeckým pracovníkům, kteří se podíleli
na zdárném průběhu 56. ročníku MO. ÚK MO si přitom nesmírně váží
práce všech pedagogických pracovníků, kteří se mnohokrát ve svém vol-
něm čase věnovali přípravě našich mladých matematických talentů na
všech typech škol.
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Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 56. ročníku MO ve Zlíně

Dámy a pánové, vážení hosté, milí soutěžící,

za necelý měsíc, přesněji 15. dubna, uplyne 300 let od narození švý-
carského matematika, fyzika a astronoma Leonharda Eulera. Dovolte mi,
abych ve svém vystoupení několika poznámkami vzpomenul tuto pro-

slulou, dle mnohých největší postavu celé historie matematiky. Nebudu
zde uvádět Eulerův životopis a ucelený přehled jeho díla, které najdete
v mnoha encyklopediích. Místo toho uvedu jen pár zajímavostí, při kte-
rých se doufám nebudete nudit. Snad se jejich podání v částečně odleh-
čené podobě bude hodit к našemu setkání více než akademicky suchý,
fakty nabitý projev pronesený se zachmuřenou vážností. Myslím si, že
to bude lépe odpovídat duchu Matematické olympiády, ušlechtilé zábavě
pro mladé lidi, kteří se rozhodli ve sportovním duchu změřit sílu svých
nápadů a myšlenek.

Cím vším se Leonhard Euler zabýval? I když se za chvíli omezím
pouze na dvě malé ukázky z teorie čísel, nemohu pominout, že Eulerovo
dílo mělo a má vliv na téměř vše, čím novověká matematika žila a žije.
Uvedu jen pár srozumitelných příkladů.

Obrázky uzlů a jejich spojnic, které lze nakreslit jedním tahem, na-

zýváme eulerovskými grafy. Přirozené logaritmy mají za základ Eulerovo
číslo. Komplexní jednotky nejvýhodněji zapisujeme v Eulerově tvaru.
Počty stěn, hran a vrcholů každého konvexního mnohostěnu vyhovují
Eulerově rovnosti. Libovolný trojúhelník má svou Eulerovu přímku, na
které leží průsečík výšek, střed kružnice opsané a těžiště trojiihelníku. Po-
čet čísel, která jsou nesoudělná s daným číslem, vyjadřujeme Eulerovou
funkcí. Eulerovo jméno nese i základní rovnice variačního počtu.

Za největší Eulerův úspěch však mnozí považují jeho objev jedné
diferenciální rovnice pro matematickou fyziku, které neříkáme Eulerova
patrně jen proto, že má obsahově výstižný název vlnová rovnice. Euler
se skutečně nezabýval pouze „čistou“ matematikou. Mnoho času věnoval
výpočtům drah planet a pohybu Měsíce, balistice, kartografii a námořní
navigaci, projevům magnetismu a otázkám konstrukce lodí. Tento výčet
hesel к Eulerově dílu už jen doplním zmínkou o třech značkách, které
Euler zavedl a které tak dobře ujaly: protáhlé „S“ jako znak integrálu,
řecké к pro Ludolfovo číslo a ležatá osmička označující nekonečno.
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Někteří účastníci si možná zítra ráno postesknou, že při ústředním
kole MO nebudou moci používat kalkulačky. Z Eulerova dětství se tra-
duje, že v jedné bezesné noci vypočetl v hlavě první až šestou mocninu
každého z první sta přirozených čísel a těchto 600 čísel natrvalo uložil
do své paměti. V ní měl až do své smrti uloženu rovněž celou Homérovu
Iliadu a z jejího vydání, které používal na gymnáziu, byl schopen uvést
první a poslední verš každé jednotlivé stránky. Jednou také rozřešil při
mezi dvěma studenty, jejichž výsledky náročných písemných výpočtů se

lišily na padesátém desetinném místě; Euler rovnou příslušnou spornou
číslici vypočetl jen tak v hlavě. Výjimečná paměť umožnila Eulerovi po-
kračovat v práci se stejnou intenzitou i v situaci, kdy 15 let před svou
smrtí zcela oslepl. Prostým diktováním pak připravil do tisku 355 nových
pojednání, které vycházely v prvním vydání ještě 50 let po jeho smrti.

Nyní už přejdu ke slíbené teorii čísel. Euler jako první dokázal tak-
zvanou velkou Fermatovu větu pro exponent rovný číslu 3. Ukázal tedy,
že neexistují přirozená čísla a, b, c, která by vyhovovala rovnici

a3 + b3 = c3.

Důležitější než samotný výsledek byla metoda důkazu, kterou Euler no-

vátorsky založil na výpočtech s tehdy neobvyklými čísly tvaru

a -f- by/—3.

Euler neřešil otázku, zda odmocniny ze záporných čísel mají nějaký prak-
tický smysl. Podstatné pro něj bylo, že výpočty s takovými čísly se řídí
stejnými zákony jako výpočty s čísly obvyklými, takže i jejich závěry by
měly mít stejnou logickou průkaznost.

Obraťme však naši pozornost na čísla poněkud obvyklejší, kterým
říkáme prvočísla. Euler ověřil, že к nim patří na svou dobu rekordně
velké prvočíslo 2 147 483 647. Dostaneme ho, když do vzorce

Mp = 2p - 1

dosadíme p — 31. Prvočísla tohoto tvaru nazýváme Mersennova na po-
čest francouzského matematika a teologa Marina Mersenna, který zemřel
60 let před Eulerovým narozením. Přítomní soutěžící si jistě rychle uvě-
domí, že číslo Mp může být prvočíslo, jen když přirozené číslo p v expo-
nentu je samo prvočíslo. Před Eulerem bylo známo, že Mp je prvočíslo
pro všechna prvočísla p od p = 2 do p = 19 s výjimkou p — 11 a že ani
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AÍ23 není prvočíslo. Byl to právě Euler, který svými výpočty ověřil, že
další kandidát, číslo M29, je rovněž složené a že teprve M31 je po M19
opět prvočíslo.

Přesuňme se z 18. století do současnosti. Nejnovější „prvočíselnou14
událost jsme zaznamenali v den, kdy pro vás, milí soutěžící, začal tento
školní rok. Ano, 4. září 2006 bylo ohlášeno nové největší známé pr-
vočíslo. Je jím v pořadí 44. Mersennovo prvočíslo Mp s exponentem
p — 32 582 657, jehož desítkový zápis vám ani nepřečtu, ani neukážu,
protože má přibližně 9,8 miliónů číslic. Místo toho Vám však předsta-
vím nesrovnatelně menší, avšak kuriózní prvočíslo, které má 16 číslic,
konkrétně 8 devítek, 7 nul a 1 jedničku:

9 999 999 900 000 001.

Podívejme se na obecnější číslo složené z n devítek, n — 1 nul a jedné
jedničky:

99... 9 00... 01.

n n— 1

O takovém čísle je známo, že je prvočíslo nejen pro n — 8, ale i pro
n = 2,4,6. Pro n — 1,3, 5, 7,9 jde o číslo složené, bohužel je tomu tak
i pro n = 10, takže pravidelné střídaní složených čísel a prvočísel končí
v první desítce hodnot n. Navíc žádné prvočíslo nenajdeme ani v druhé
desítce těchto čísel. To zní trochu smutně, ale odpovídá to rozumnému
očekávání odborníků, kteří něco o problémech prvočísel vědí.

Nebuďte smutní, milí soutěžící, ani vy, když se vám zítra či pozítří
nepodaří všechno spočítat. My, pracovníci Ústřední komise MO, také
očekáváme, že ne všichni vyřešíte všechny úlohy. Do obou soutěžních
dopolední vám všem však přejeme co nejvíce dobrých nápadů a štěstí.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 56. ročníku MO

Kategorie
Kraj Celkem

A В C P
s и s и s и s и s и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

81 59 95 69
50 11
37 22

214 166
123 59

78 66
87 48
23 20
56 41
52 32
69 31
40 32
63 39

184 114
82 57
53 25

138 87

17 17
9 7
4 4

10 8
0 0
0 0

13 13
5 5
3 3

15 7
8 8
4 4
0 0

25 22

407 311
71 22 253 99
46 27
46 20

165 119
45 20 188 96

18 12 18 8 59 40
26 18
44 13

1645 127 75
38 11
40 14

147 69
29 21 71143
32 24 15 9 90 68
58 42

129 73
96 33
32 20
48 35

48 21
98 43
88 10
32 13
79 28

184 109
419 238
270 104
117 58
290 172

ČR 756 419 728 295 1 262 817 113 98 2 859 1629

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 56. ročníku MO

Kategorie
Kraj Celkem

A В C P
s и s и s и s и s и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

1753 9 33 20 90 24 6 193 59
89 17

110 24
91 23

40 12

7 722 1 11 49 8 1
27 57223 9 9 4 3
20 17 47 112 8 7 2
12 81 6 20 5 0 0
16 2 15 3 36 2 0 67 70
13 2 9 304 6 13 1 65 13

67 23
66 20
92 17

231 63
74 19
57 13

160 37

21 14 9 274 8 5 2
24 2 9 6 31 10 2 2
38 3 5 718 29 6 3
73 107 25

27 11
9 43 26 8 3

33 4 10 3 14
720 2 13 4 24 0 0

17 7835 6 28 8 19 6

CR 407 50 250 127 652 140 1402 34793 30

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Michal Rolínek, G J. Keplera, Praha 6
2. Lukáš Malina, G Cli. Dopplera, Praha 5
3. Jindřich Held, G Ch. Dopplera, Praha 5
4. Matěj Peterka, G Praha 6, Nad Alejí

5.-6. Li Mang, G Ch. Dopplera, Praha 5
Adam Ráž, G Praha 4, Budějovická

7.-8 Šárka Gregorová, G Praha 6, Nad Alejí
Dominik Mokriš, G J. Keplera, Praha 6

9. Anna Lemberková, G Praha 8, Ústavní

Kategorie В

1. Li Mang, G Ch. Dopplera, Praha 5
2. Josef Tkadlec, G J. Keplera, Praha 6
3. Karel Pajskr, G J. Keplera, Praha 6
4. Matouš Kloda, G J. Keplera, Praha 6

5.-6. Vít Humpál, G Ch. Dopplera, Praha 5
Karolína Rezková, G Praha 10, Voděradská

7. Nguyen Van Nhan, G Praha 6, Nad Alejí
8. Petr Skála, G Praha 9, Litoměřická
9. Tomáš Kozák, G Praha 5, Nad Kavalírkou

10.-12. Michael Hakl, G Ch. Dopplera, Praha 5
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Vojtěch Kovařík, G J. Nerudy, Praha 1
Zuzana Tlapáková, G Praha 5, Nad Kavalírkou

Kategorie C

1. Petr Ryšavý, G J. Heyrovského, Praha 5
2. Radek Marciňa, G Ch. Dopplera, Praha 5
3. Adam Dominec, G J. Seiferta, Praha 9
4. Miroslav Olšák, G Buďánka, Praha 5
5. David Votava, G Praha 9, Chodovická
6. Petr Petras, G Buďánka, Praha 5

7.-9. Jan Bílek, G Praha 4, Na Vítězné pláni
Michal Soucha, G Praha 10, Voděradská
Ling Truong Nga, G Ch. Dopplera, Praha 5

10.—11. Vlastimil Dort, G Praha 9, Špitálská
Petr Sedláček, G Ch. Dopplera, Praha 5

Kategorie P

1. Jakub Balhar, G J. Nerudy, Praha 1
2. Pavel John, G Praha 6, Arabská

3.-4. Martin Pokorný, G Praha 6, Arabská
Roman Smrž, G E. Krásnohorské, Praha 4

5. Matěj Korvas, G J. Seiferta, Praha 9
6. Tomáš Křen, G Ch. Dopplera, Praha 5

Středočeský kraj • *• •Ф #

Kategorie A

1. Lenka Slavíková, G Mnichovo Hradiště

Kategorie В

1.-2. Magdaléna Dudíková, G Dobříš
Martin Jedlička, G Benešov

3.-4. Jiří Brunner, GJP Mladá Boleslav
Jan Sosnovec, G Mnichovo Hradiště
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5.-7. Ondřej Masopust, G Slaný
Karel Mikeš, G Kolín
Karel Mudra, G Benešov

Kategorie C

1. Petr Čermák, G Kladno
2. Kateřina Štěpánková, G Kladno
3. Kateřina Vetešníková, GJP Mělník

4.-5. Jana Břízová, GJP Poděbrady
Tomáš Filípek, G Říčany

6.-8. Jakub Melezínek, GJP Poděbrady
Tomáš Plechatý, G VBT Slaný
Jitka Pohořelá, G pod Svatou Horou, Příbram

Kategorie P1.Tomáš Přasličák, GOA Sedlčany

Jihočeský kraj

Kategorie A

1. Radim Hošek, G České Budějovice, Jírovcova
2. Jan Matějka, G České Budějovice, Jírovcova
3. Libor Peltan, G České Budějovice, Česká

Kategorie В

1. Jan Matějka, G České Budějovice, Jírovcova
2.-3. Helena Pučelíková, G Milevsko

Martina Vaváčková, G P.d.C. Tábor4.Ondřej beder, G České Budějovice, Česká
5.-6. Tereza Nedvědová, G České Budějovice, Jírovcova

Petr Urban, G, Jírovcova
7.-8. Jan Čanda, Biskupské G České Budějovice

Ladislava Frčková, G Strakonice
9. Pavel Veselý, G Strakonice
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Kategorie С

1. Adam Juraszek, G České Budějovice, Jírovcova
2. Jan Moravec, G Český Krumlov
3. František Steinhauser, G Dačice
4. Denisa Bernardová, G České Budějovice, Jírovcova

5.-6. Petr Doležal, G České Budějovice, Jírovcova
Petr Procházka, G Písek

7. Marek Sýkora, G Prachatice
8.-9. Tereza Hrubešová, G Český Krumlov

Nikola Kozmová, G Strakonice

Kategorie P

1. Josef Pihera, G Strakonice
2. Libor Peltan, G České Budějovice, Česká
3. Roman Říha, G Prachatice

Plzeňský kraj ••••••••••••••

Kategorie A

1. Tomáš Roskovec, Masarykovo G Plzeň
2. Vladislav Richter, G Plzeň, Mikulášské nám.

Kategorie В

1. Van Minh Nguyen, G Tachov
2.-3. David Čertík, G Plzeň, Mikulášské nám.

Jakub Krauz, Masarykovo G Plzeň
4. Radim Bufka, G Plzeň, Mikulášské nám.
5. Dana Křepinská, G Plzeň, Mikulášské nám.

6.-8. Jiří Fcršt, Masarykovo G Plzeň
Jan Rourek, G L. Pika, Plzeň
Petr Suma, G Plzeň, Mikulášské nám.
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Kategorie С

1. Jakub Klemsa, G Klatovy
2. Ha Dilc Trung, Masarykovo G Plzeň
3. Karel Wagner, G Plzeň, Mikulášské nám.
4. Martin Skala, G Plzeň, Mikulášské nám.
5. Jakub Mandik, G Klatovy
6. Karel Kovářík, G Klatovy
7. Lukáš Chlad, G Plzeň, Mikulášské nám.
8. Martin Holeček, G Plzeň, Mikulášské nám.

9.-11. Jiří Keresteš, SPŠE Plzeň
Petra Vahalová, Gymnázium Plasy
Vladimír Svígler, G Plzeň, Mikulášské nám.

Kategorie P

1. Roman Diba, VOŠ a SPŠE Plzeň
2. Zuzana Burešová, Masarykovo G, Plzeň

Karlovarský kraj

Kategorie A

1. Štěpán Masák, První české G Karlovy Vary

Kategorie В

1. Viktor Lóffelmann, G Mariánské Lázně
2. Martin Kvěš, G Sokolov

3,- 4. Jan Chromý, Svobodná chebská škola
Jakub Papež, Svobodná chebská škola

5. Tomáš Nguyen, Svobodná chebská škola
6. Jan Kozák, První české G Karlovy Vary

Kategorie C

1.-2. Josef Hazi, G Cheb
Lukáš Jarosil, G Sokolov
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3. Martin Mašek, G Sokolov
4.-5. Tomáš Hnídek, G Sokolov

Tomáš Horák, Svobodná chebská škola

Ústecký kraj

Kategorie A

1. Jan Čapek, G Duchcov, Masarykova
2. Martin Obr, Státní G Chomutov

Kategorie В

1.-2. Le Sy Tuan, SPS Teplice
Libor Vytlačil, G Roudnice nad Labem

3. Václav Palík, G Ústí nad Labem, Jateční
4. Marcela Hóferová, G V. Hlavatého, Louny

Kategorie C

1. Petr Linert, G Most, Os. armády
2. Ondřej Fibigr, G Lovosice

Liberecký kraj# # ##$#«»#*#####*

Kategorie A

1. Hana Bendová, G Česká Lípa
2. Tomáš Kobrle, G Jilemnice

Kategorie В

1.-2. Vojtěch Duchoslav, G Česká Lípa
Klára Holková, G F. X. Saldy, Liberec

3. Daniela Cvejnová, G F. X. Saldy, Liberec
4. Jakub Štefela, G F. X. Saldy, Liberec
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Kategorie С

1. Matěj Ondrušek, G Česká Lípa
2. Jakub Vondra, G Turnov
3. Ondřej Kunc, G Turnov

4.-6. Kateřina Grygoryeva, G Česká Lípa
Matouš Pilnáček, Podještědské G, Liberec
Magdaléna Radová, G Česká Lípa

Kategorie P1.Michal Minařík, G F. X. Saldy, Liberec

Královéhradecký kraj

Kategorie A

1. Pavel Kuchyňa, G B. Němcové, Hradec Králové
2.-3. Tomáš Feige, G B. Němcové, Hradec Králové

Martin Michálek, G J.K. Tyla, Hradec Králové
4. Alena Peterová, G Dobruška

Kategorie В

1. Miroslav Miletín, G B. Němcové, Hradec Králové
2. Martin Šubr, G Nový Bydžov
3. Vít Hanousek, G Trutnov
4. Jan Lochman, G Nový Bydžov
5. Vladimír Lambert, JG Náchod
6. Hana Šustková, G Trutnov

7.-8. Jan Dundálek, JG Náchod
Tomáš Zelenka, G B. Němcové, Hradec Králové

9. Ondřej Heneberk, G B. Němcové, Hradec Králové

Kategorie C

1.-2. Peír Pařízek, G B. Němcové, Hradec Králové
Martin Vojtíšek, G B. Němcové, Hradec Králové
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3.-4. Veronika Milerská, G В. Němcové, Hradec Králové
Tomáš Rubín, G B. Němcové, Hradec Králové

5.-7. Tomáš Adámek, G B. Němcové, Hradec Králové
Michal Bilanský, LG Jičín
Petr Kučera, G J. K. Tyla, Hradec Králové

8. Jan Štika, G a SDOŠ Úpice

Kategorie P

1. Jakub Kaplan, G J.K. Tyla, Hradec Králové
2. Lukáš Lánský, G J.K. Tyla, Hradec Králové

Pardubický kraj

Kategorie A

1. Marek Scholle, G Pardubice, Dašická
2. Pavel Klavík, GJR Chrudim

Kategorie В

1.-2. Adam Bartoš, G Hlinsko
Filip Petrásek, G Polička

3. Jan Resler, G Lanškroun
4. Matěj Hývl, G Přelouč

5.-6. Edita Dvořáková, G Ústí nad Orlicí
Ondřej Klejch, G Litomyšl

Kategorie C

1. Filip Tlustoš, G Pardubice, Dašická
2. Jakub Stodola, G Polička

3.-5. Stanislav Jeřábek, G Vysoké Mýto
Ludmila Johnová, G Ústí nad Orlicí
Tereza Moravcová, G Lanškroun

6. Tomáš Kučera, G Hlinsko
7. Jan Krys, G Chrudim
8. Martin Porteš, G Svitavy
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9.-10. Martina Stodolová, G Svitavy
Jakub Vojtěch, G Holice

Kategorie P

1. Pavel Klavík, GJR Chrudim
2. Marek Scholle, G Pardubice, Dašická

Kraj Vysočina ««•♦в»#*****»#

Kategorie A

1. Mirek Dočekal, G Jihlava
2. Jan Máca, G Třebíč
3. Michal Kozák, G Jihlava

Kategorie В

1. Michal Koutný, G Třebíč
2. Hana Wurzelová, GVM, Nové Město na Moravě
3. Jiří Seba, G Jihlava

4.-5. Zuzka Hernová, G Pelhřimov
Zuzana Vacková, G Jihlava

Kategorie C

1. Jan Nevoral, G Jihlava
2. Ondřej Šalanda, G Žďár nad Sázavou
3. Jaromír Karmazín, G Velké Meziříčí
4. Jiří Hladík, G Žďár nad Sázavou
5. Kateřina Ježová, G Žďár nad Sázavou
6. Věra Mojžíšová, G Humpolec

Kategorie P

1. Petr Kratochvíl, G Světlá nad Sázavou
2. Ondřej Piálek, G Třebíč
3. Filip Děchtěrenko, G Jihlava
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Jihomoravský kraj

Kategorie A

1. Zbyněk Konečný, G Brno, tř. Kpt. Jaroše
2. Jana Medková, G Brno, Křenová

3.-6. Jan Komínek, G Brno, tř. Kpt. Jaroše
Filip Rozbořil, G Boskovice
Samuel Říha, G Brno, tř. Kpt. Jaroše
Hana Sormová, G Brno, tř. Kpt. Jaroše

7. Jiří Řihák, G Brno, tř. Kpt. Jaroše
8.-9. Tomáš Jelínek, G Brno, tř. Kpt. Jaroše

Lukáš Mařica, G Brno, tř. Kpt. Jaroše

Kategorie В

1. Samuel Říha, G Brno, tř. Kpt. Jaroše
2. Jan Kvarda, G Brno, tř. Kpt. Jaroše

3.-5. Gabriel Harangi, G Brno, tř. Kpt. Jaroše
Dušan Jakub, G Brno, Barvičova
Helena Paschkeová, G Brno, T. Novákové

6. Jiří Marek, G Brno, tř. Kpt. Jaroše
7.-11. Pavel Čadek, G Brno, tř. Kpt. Jaroše

Lenka Franců, G Brno, tř. Kpt. Jaroše
Zuzana Komárková, G Brno, tř. Kpt. Jaroše
Tomáš Petrák, G Brno, tř. Kpt. Jaroše
Alexander Slávik, G Brno, T. Novákové

Kategorie C

1. David Klaška, G Brno, tř. Kpt. Jaroše
2.-3. Michal Horák, G Brno, tř. Kpt. Jaroše

Bohuslav Zrnek, G Brno, tř. Kpt. Jaroše
4. Adam Zemek, G Brno, tř. Kpt. Jaroše
5. Helena Valouchová, G Brno, tř. Kpt. Jaroše
6. Petr Neuwirth, G Šlapanice

7.-11. František Fiala, G Brno, tř. Kpt. Jaroše
Jaromír Kala, G Brno, tř. Kpt. Jaroše
Tomáš Lamser, G Brno, tř. Kpt. Jaroše
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Marek Le Xuan, G Brno, tř. Kpt. Jaroše
Roman Lelek, G Brno, tř. Kpt. Jaroše

Kategorie P

1. Ondřej Bouda, G Brno, tř. Kpt. Jaroše
2. Martin Veškrna, G Brno, Vídeňská
3. Michal Novák, G Brno, tř. Kpt. Jaroše

Zlínský kraj

Kategorie A

1.-2. Josef Ondřej, G Rožnov pod Radhoštěm
Jan Vaňhara, G L. Jaroše, Holešov

3.-4. Jan Doleček, G Kroměříž
Petr Vévoda, G Jana Pivečky, Slavičín

Kategorie В

1. Jan Vaňhara, G L. Jaroše, Holešov
2. Jan Vala, G F. Palackého, Valašské Meziříčí
3. Alžběta Pechová, SPŠS Vsetín

Kategorie C

1. Roman Štěpánek, G J. A. Komenského Uherský Brod
2.-3. Josef Ondřej, G Rožnov pod Radhoštěm

Terezie Šišáková, G J. A. Komenského, Uherský Brod
4. Štěpán Poláček, G F. Palackého, Valašské Meziříčí
5. Veronika Písková, G J. A. Komenského, Uherský Brod
6. Jan Kotik, G Zlín-Lesní čtvrť

7.-9. Jana Fojtů, G Valašské Klobouky
Kateřina Márová, G Zlín-Lesní čtvrť
Antonín Štěpán, G F. Palackého, Valašské Meziříčí

10.-11. Radka Kadlčíková, G J. A. Komenského, Uherský Brod
Marek Václavík, MG Vsetín
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Kategorie P

1. Michal Pavelčík, G J. A. Komenského, Uherský Brod

Olomoucký kraj

Kategorie A

1. Anežka Faltýnková, G J. Škody, Přerov
2. Tomáš Javůrek, G Jeseník

Kategorie В

1. Jana Faltýnková, G Prostějov, Komenského
2. Michaela Adamusová, G Šternberk
3. Vit Musil, G Šumperk
4. Tomáš Matuška, G Kojetín

Kategorie C

1. Tran Thanh Tung, G J. Škody, Přerov
2. Martin Broušek, G J. Škody, Přerov
3. Petr Kučera, G J. Wolkera, Prostějov

4.-5. Jan Kubelka, G Uničov
Lukáš Langer, G Hranice

6.-7. Vojtěch Miloš, G Hranice
Tamara Skokánková, G Olomouc-Hejčín

Moravskoslezský kraj

Kategorie A

1. Pavel Motloch, G P. Bezruce, Frýdek-Místek
2. Miroslav Klimoš, G M. Koperníka, Bílovec
3. Tomáš Jeziorský, G M. Koperníka, Bílovec
4. Tomáš Princ, Wichterlovo G, Ostrava-Poruba

5.-6. Jan Karličky, G Frýdlant nad Ostravicí
Tomáš Toufar, G M. Koperníka, Bílovec
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Kategorie В

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2. Hana Bílková, G Frenštát pod Radhoštěm
3. Lucie Mohelníková, G M. Koperníka, Bílovec
4. Jan Kusý, G M. Koperníka, Bílovec
5. Petr Kaděra, G P. Bezruce, Frýdek-Místek

6.-7. Tomáš Horák, Wichterlovo G, Ostrava-Poruba
Eliška Nekvapilová, G M. Koperníka, Bílovec

8.-9. Pavel Motloch, G P. Bezruce, Frýdek-Místek
Žaneta Murasová, G Frenštát pod Radhoštěm

10.-13. Jitka Novotná, G M. Koperníka, Bílovec
Jiří Tuza, G M. Koperníka, Bílovec
Jolanta Wantula, G M. Koperníka, Bílovec
Vojtěch Zwardoň, G Karviná

Kategorie C

1. Martin Mrovec, Wichterlovo G, Ostrava-Poruba
2. Simona Domesová, G M. Koperníka, Bílovec
3. Miroslav Raška, Wichterlovo G, Ostrava-Poruba
4. Daniela Mořkovská, G P. Bezruce, Frýdek-Místek
5. Radka Luňáčková, Wichterlovo G, Ostrava-Poruba
6. Lenka Sloufová, Wichterlovo G, Ostrava-Poruba

7.-8. Jan Legerský, G Hrabůvka
Michal Zátopek, G Hrabůvka

Kategorie P

1. Pavel Motloch, G P. Bezruče, Frýdek-Místek
2. Miroslav Klimoš, G M. Koperníka, Bílovec
3. Tomáš Toufar, G M. Koperníka, Bílovec

4.-5. Petr Dluhoš, Mendelovo G, Opava
Libor Plucnar, G P. Bezruče, Frýdek-Místek

6. Martin Milata, G Ostrava-Slezská Ostrava
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Výsledky ústředního kola 56. ročníku MO
kategorie A

Vítězové

1. Michal Rolínek, 8/8, J. Keplera, Praha 6
2. Miroslav Klimoš, 2/4, G M. Koperníka, Bílovec
3. Jiří Řihák, 4/4, G Brno, tř. Kpt. Jaroše

4.-5. Zbyněk Konečný, 4/4, G Brno, tř. Kpt. Jaroše
Hana Sormová, 2/4, G Brno, tř. Kpt. Jaroše

6. Samuel Říha, 2/4, G Brno, tř. Kpt. Jaroše
7.-8. Anežka Faltýnková, 4/4, J. Škody, Přerov

Lenka Slavíková, 4/4, G Mnichov® Hradiště
9. Pavel Motloch, 6/6, P. Bezruce, Frýdek-Místek

10. Tomáš Javůrek, 8/8, G Jeseník

34 b.

28 b.
27 b.

24 b.

24 b.

22 b.
21b.

21b.

19b.

18 b.

Další úspěšní řešitelé

11.-13. Hana Bendová, 8/8, G Česká Lípa
Tomáš Jeziorský, 4/4, G M. Koperníka, Bílovec
Jan Máca, 7/8, G Třebíč

14. Alena Peterová, 7/8, G Dobruška
15. Šárka Gregorová, 8/8, G Praha 6, Nad Alejí

16.-21. Radim Hošek, 8/8, G České Budějovice, Jírovcova
Tomáš Kobrle, 4/4, G Jilemnice
Lukáš Malina, 4/4, G Ch. Dopplera, Praha 5
Matěj Peterka, 7/8, G Praha 6, Nad Alejí
Tomáš Toufar, 3/4, G M. Koperníka, Bílovec
Jan Vaňhara, 6/8, L. Jaroše, Holešov

22.-23. Pavel Kuchyňa, 6/6, G B. Němcové, Hradec Králové
Marek Scholle, 8/8, G Pardubice, Dašická

16 b.

16 b.

16 b.

15b.

14 b.

13b.

13b.

13 b.

13b.

13 b.

13 b.

11b.

11b.
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Výsledky ústředního kola 56. ročníku MO
kategorie P

Vítězové

1. Josef Pihera, 8/8, G Strakonice
2. Pavel Klavík, 8/8, G J. Ressla, Chrudim
3. Roman Smrž, 7/8, G E. Krásnohorské, Praha
4. Miroslav Klimoš, 2/4, G M. Koperníka, Bílovec
5. Lukáš Lánský, 3/4, G J. K. Tyla, Hradec Králové
6. Pavel Motloch, 6/6, G P. Bezruce, Frýdek-Místek

51b.

41b.

32 b.

30 b.

18 b.

17b.

Další úspěšní řešitelé

7. Jakub Kaplan, 3/4, G J. K. Tyla, Hradec Králové
8. Martin Pokorný, 4/4, G Praha 6, Arabská
9. Martin Milata, 8/8, G Ostrava, Hladnovská

10. Libor Peltan, 7/8, G České Budějovice, Česká
11. Ondřej Piálek, 4/4, G Třebíč
12. Petr Dluhoš, 8/8, Mendelovo G Opava
13. Petr Kratochvíl, 4/4, G Světlá nad Sázavou
14. Pavel John, 4/4, G Praha 6, Arabská
15. Marek Scholle, 8/8, G Pardubice, Dašická

16 b.

15b.

14 b.
13b.
12b.

11b.

9 b.

8 b.

7b.
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Kategorie С

Texty úloh

C - I - 1

Určete všechny dvojice (a, b) přirozených čísel, pro něž platí

a 4- 5 Vb — b + 5 y/a.

(Jaroslav Švrček)

С - I - 2

Najděte všechny trojúhelníky, které lze rozřezat na lichoběžníky se stra-
námi délek 1 cm, 1 cm, 1 cm a 2 cm. (Ján Mazák)

C - I - 3

Najděte všechna přirozená čísla, jejichž zápis neobsahuje nulu a má násle-
dující vlastnost: vynecháme-li v něm libovolnou číslici, dostaneme číslo,

(Jaromír Šimša)které je dělitelem původního čísla.

С - I - 4

Je dán lichoběžník ABCD se základnami AB a CD. Označme E střed

strany AB, F střed úsečky DE a G průsečík úseček BD a CE. Vyjádřete
obsah lichoběžníku ABCD pomocí jeho výšky v a délky d úsečky FG za

předpokladu, že body A, F, C leží v přímce. (Ján Mazák)

С - I - 5

Zjistěte, pro které přirozené číslo n je podíl
33 000

(n — 4)(n + 1)

(Eva Řídká)a) co největší, b) co nejmenší přirozené číslo.
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С - I - 6

Je dán ostroúhlý trojúhelník ABC, v němž D je pata výšky z vrcholu C
a V průsečík výšek. Dokažte, že \AD\ ■ \BD\ = \AB\ ■ \ VD\, právě když

(Jaroslav Zhouf)\CD\ = \AB\.

C - S - 1

Určete počet všech čtyřmístných přirozených čísel, která jsou dělitelná
šesti a v jejichž zápisu se vyskytují právě dvě jedničky.

(Pavel Leischner)

C - S - 2

Je dána kružnice к se středem S, která je opsána pravidelnému šesti-
úhelníku ABCDEF. Tečna v bodě A ke kružnici к protne přímku SB
v bodě К a tečna v bodě В protne přímku SC v bodě L. Dokažte, že
čtyřúhelníku KLCB lze opsat kružnici, která je shodná s kružnicí k.

(Jaroslav Zhouf)

C - S - 3

Určete všechny dvojice (a, b) přirozených čísel, jejichž rozdíl a — b je
pátou mocninou některého prvočísla a pro něž platí a — 4y/b = b + 4\fa.

(Jaroslav Svrček)

C - II - 1

V rovině jsou dány dva různé body L, M a kružnice k. Sestrojte trojúhel-
nik ABC co největšího obsahu tak, aby jeho vrchol C ležel na kružnici k,
bod L byl středem strany AC a bod M středem strany BC.

(Pavel Leischner)

С - II - 2

Nechť p, q, r jsou přirozená čísla, pro něž platí p + r^Jp + q + q — 2 007.
a) Určete, jakých hodnot může nabývat součet p + q + r.

b) Určete počet všech trojic (p,q,r) přirozených čísel, které vyhovují
(Jaroslav Svrček)dané rovnici.

28



С - II - 3

Rovnoramennému lichoběžníku ABCD se základnami AB, CD lze ve-

psát kružnici se středem O. Určete obsah S lichoběžníku, jsou-li dány
(Pavel Leischner)délky úseček OB a OC.

С - II - 4

Určete největší dvojmístné číslo к s následující vlastností: existuje při-
rozené číslo N, z něhož po škrtnutí první číslice zleva dostaneme číslo
k-krát menší. (Po vyškrtnutí číslice může zápis čísla začínat jednou či
několika nulami.) К určenému číslu к pak najděte nejmenší vyhovující

(Jaromír Šimša)číslo N.
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Řešení úloh

C - I - 1

Substitucí m = у/a, n — yfb převedeme rovnici na tvar m2 — n2 —
— 5(m — n) = 0, odkud pomocí vzorce pro rozdíl čtverců dostaneme
(m — n)(m + n — 5) = 0. Je tedy m — n — 0 nebo m + n = 5.

V prvním případě po zpětné substituci zjistíme, že úloze vyhovují
všechny dvojice přirozených čísel a, b, pro něž platí b = a. Ve druhém
dostáváme \/a + \/b = 5. Je tedy 1 ^ у/a, yfb ú 4, proto stačí postupně
dosazovat a = 1,2,...,16 do vztahu

6 = (5 — yfa)2 (1)

a zjišťovat, zda je odpovídající číslo b přirozené.
Daná rovnice se nemění záměnou neznámých a, b. Můžeme tedy před-

pokládat a ^ fe, což spolu s rovností \/a + \/b = 5 znamená, že л/а ^ 2,5.
Odtud a ^ 6,25. Proto se stačí při dosazování omezit jen na hodnoty
a = 1, 2,..., 6 a zbylá řešení určit záměnou čísel a, b v nalezených dvo-
jících.

Vtipnější postup spočívá v umocnění závorky na pravé straně vzta-
hu (1) a následné úpravě na tvar

- = vs,
25 + a -

(2)
10

z něhož je zřejmé, že číslo a (a vzhledem к symetrii dané rovnice i číslo b)
je druhou mocninou přirozeného čísla. (V opačném případě by na levé
straně rovnosti (2) bylo číslo racionální, kdežto na pravé číslo iracionální.)
Pak je i levá strana vztahu (2) přirozené číslo menší než pět. Odtud plyne,
že rozdíl a — b je lichý násobek pěti. Za předpokladu a < b je tedy buď
(a, b) = (4,9), nebo (a, 6) = (1,16). Další dvě řešení vzniknou záměnou
čísel a, b.

Závěr. Dané rovnici vyhovují jen dvojice (a, b) — (1,16), (4,9), (9,4),
(16,1) a všechny dvojice (a, a), kde a je libovolné přirozené číslo.

С - I - 2

Lichoběžníky se stranami délek 1 cm, 1 cm, 1 cm a 2 cm jsou všechny na-

vzájem shodné a skládají se ze tří rovnostranných trojúhelníků (obr. la).
(Základny každého lichoběžníku mají dvě různé délky, v našem případě
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a

a

Obr. lbObr. la

to musí být 2 cm a 1 cm.) Budeme je nazývat základní lichoběžníky. Rov-
nostranný trojúhelník s délkou strany 1 cm nazveme základní trojúhelník.

Vidíme, že každý z hledaných trojúhelníků lze rozřezat na konečný po-
čet základních trojúhelníků. Proto jsou velikosti jeho vnitřních úhlů ná-
sobky šedesáti stupňů. Vnitřní úhly každého trojúhelníku jsou tři a součet
jejich velikostí je 180°, má tedy smysl hledat jen trojúhelníky rovnostran-
né. Z podmínky rozřezání na konečný počet základních trojúhelníků dále
plyne, že délka strany hledaného trojúhelníku vyjádřená v centimetrech
je přirozené číslo. Označíme-li ji a, lze náš trojúhelník rozřezat právě
na a2 základních trojúhelníků. To lze odvodit například z podílu jeho
obsahu Sa = |a2\/3 a obsahu Si = |\/3 základního trojúhelníku. Obec-
nejí platí: dva trojúhelníky, které jsou podobné s koeficientem k, mají
obsahy v poměru k2.

Jiné odvození počtu základních trojúhelníků v rovnostranném troj-
úhelníku se stranou a cm plyne z doplnění trojúhelníku na kosočtverec
podle obr. lb, kde bylo zvoleno a

rovnostranných trojúhelníků se stranou délky a cm. Lze jej tedy rozřezat
na a2 kosočtverců (jeden je zobrazen v pravé dolní části obrázku), z nichž
každý je složen ze dvou základních trojúhelníků a kterým rovněž budeme
říkat základní. Odtud plyne, že rovnostranný trojúhelník obsahuje stejný
počet základních trojúhelníků, jako jemu příslušný kosočtverec obsahuje
základních kosočtverců.

Zjistili jsme, že každý z hledaných trojúhelníků je rovnostranný se
stranou délky a cm (a £ №) a že je složen z a2 základních trojúhelníků.
Protože každý základní lichoběžník obsahuje právě tři základní trojúhel-
niky, musí být číslo a2, a tedy i číslo a dělitelné třemi. Z obr. 2 pak
plyne, že každý rovnostranný trojúhelník se stranou délky 3n (cm), kde
n = 1, 2,..., lze rozřezat na základní lichoběžníky.

3. Kosočtverec je složen ze dvou
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3 3 3

Obr. 2

Závěr. Podmínkám úlohy vyhovují jen rovnostranné trojúhelníky
s délkou strany a = 3n, kde n je přirozené číslo.

C - I - 3

Hledané číslo n obsahuje aspoň dvě číslice. Zapišme je ve tvaru n =
= 10a + b, kde a je číslo, jež vznikne škrtnutím poslední číslice b čísla n.
Podle zadání platí a | 10a -f b. Odtud a | b. Uvážíme-li navíc, že b ф 0,
musí být a jednomístné číslo, takže n je dvojmístné s nenulovými číslicemi
a, b, přičemž b ~ ka, к € РУ.

Škrtneme-li číslici a v čísle n, zůstane číslo b, které musí dělit původní
číslo n — 10a + b, z čehož postupně dostáváme b | 10a, ka | 10a, к | 10
a odtud к € {1,2, 5}. Dosazením do b = ka dostaneme tři možné případy
6 = a, b — 2a a b — 5a a v každém z nich snadno určíme vyhovující
dvojice číslic a, b. Tak zjistíme, jak musejí hledaná čísla n = 10a + b
vypadat.

Závěr. Řešením úlohy jsou čísla: 11,12,15, 22, 24, 33, 36, 44, 48, 55, 66,
77, 88 a 99; Zkouškou se přesvědčíme, že všechna vyhovují podmínkám
úlohy.

С - I - 4

Podle zadání jsou úhly EFD a AFC přímé, takže platí (obr. 3)

\<CDF\ — |<AEF\ (úhly střídavé),
\KCFD\ = \^AFE\ (úhly vrcholové).

Navíc bod F půlí úsečku DE, proto \DF\ — \EF\ a trojúhelníky
CDF a AEF jsou shodné podle věty usu. Odtud plyne \CD\
což spolu s rovností |AE\
dvě shodné a rovnoběžné úsečky. To znamená, že čtyřúhelník EBCD je

\AE\
\EB\ vede к závěru, že EB a DC jsou
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Obr. 3

rovnoběžník. Průsečík G jeho úhlopříček proto půlí každou z nich. Body
F a G jsou středy stran АС, ЕС trojúhelníku AEC, takže úsečka FG je
jeho střední příčkou a \ AE\ — 2|FGj. Platí proto:

\AB\ =2\AE\ =4d a \CD\ = \AE\ = 2d.

Obsah lichoběžníku ABCD je S = |(|AB| + \CD\)v — 3dv.

С - I - 5

Platí 33 000 = 1 ■ 2 • 2 • 2 • 3 • 5 • 5 • 5 • 11 a (n + 1) - (n - 4) = 5. Protože
pro každé přirozené n je hodnota n + 1 kladná, daný podíl je kladný, jen
když je kladná i hodnota n — 4, odtud п'Е 5.

a) Pro každé přirozené n ^ 5 platí n-4^1an + 1^6, proto je
největší hodnota daného podílu rovna 33 000 : (1-6) = 5 500 a dosáhneme
ji pro n = 5.

b) Při hledání nejmenšího podílu označme jako a, b čísla n + 1, n — 4
v pořadí, které teprve upřesníme. Předpokládejme nejprve, že rozklad
čísla ab na součin prvočinitelů obsahuje prvočísla 11 a 5. Pak jsou a, b po
sobě jdoucí násobky pěti a právě jedno z nich, dejme tomu a, je násobkem
čísla 55.

Uvažujme nejprve a — 55. Ze dvou možných hodnot b = 50 a b = 60
vybereme tu větší (abychom dostali menší hodnotu zkoumaného podílu).
Hodnotě b = 60 z rovnosti n + 1 = 60 (nebo rovnosti n —4 = 55) odpovídá
n = 59 a zkoumaný podíl je pak roven číslu 10.

Pro a — 110 (resp. a = 165) není číslo 33 000 dělitelné žádným ze
sousedních násobků pěti, tedy čísly 105 a 115 (resp. 160 a 170).

Pro další (větší) násobky a čísla 55 dostáváme ab ^ 215-220 > 33 000.
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Neobsahuje-li rozklad čísla ab na součin prvočinitelů prvočíslo 11 nebo
prvočíslo 5, je zkoumaný podíl (za předpokladu, že je celočíselný) děli-
telný číslem 11 resp. číslem 125, takže je to číslo větší než hodnota 10,
kterou jsme nalezli dříve.

Závěr. Největší hodnota daného podílu je 5 500 pro n = 5 a nejmenší
je 10 pro n = 59.

C - I - 6

Při označení podle obr. 4 platí:

<CDB | = 90°,
\<VAD\ = \<BAE\ = 90° -(3= \<BCD\.

\<ADV\

A D В

Obr. 4

Jsou tedy trojúhelníky ADV a CDB podobné podle věty uu. Z této
podobnosti plyne

\AD\
_ \VD\

\CD\ ~ \BD\
a odtud \AD\ • \BD\ = \CD\ ■ \VD\. Zdůrazněme, že tato rovnost platí
pro každý ostroúhlý trojúhelník ABC. Vztah \ AD\ ■ \BD\ = \ AB\ • \ VD\
ze zadání úlohy tedy platí, právě když \CD\ — \AB\.

C - S - 1

Aby číslo bylo dělitelné šesti, musí být sudé a mít ciferný součet dělitelný
třemi. Označme tedy b číslici na místě jednotek (ta musí být sudá, b 6
£ {0.2,4,6,8})
prvních třech místech čtyřmístného čísla, jež splňuje požadavky úlohy.

tu číslici, která je spolu s číslicemi 1, 1 (o / 1) naa a
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Aby byl součet číslic a -j- 1 + 1 + 6 takového čísla dělitelný třemi, musí
číslo a + b dávat při dělení třemi zbytek 1. Pro b G {0,6} tak máme pro a
možnosti a G {4,7} (а ф 1), pro b G {2,8} je a G {2,5,8} a konečně
pro b = 4 je a G {0,3,6, 9}. Pro každé zvolené b a odpovídající a / 0
jsou zřejmě tři možnosti, jak číslice 1, 1 a a na prvních třech místech
uspořádat, to je dohromady (2 • 2 + 2 • 3 + 3) • 3 = 39 možností, pro a — 0
(když 6 = 4) pak jsou jen dvě možnosti (číslice nula nemůže být první
číslicí čtyřmístného čísla).

Celkem existuje 41 čtyřmístných přirozených čísel, jež splňují pod-
minky úlohy.

C - S - 2

Tečna ke kružnici к v bodě A je kolmá na průměr AD, a tedy i na
stranu BC daného šestiúhelníku (obr. 5). Zároveň přímky SB a AB sví-
rají s BC šedesátistupňový úhel, takže jsou souměrně sdružené podle
osy BC. Bod К je tudíž souměrně sdružený s bodem A podle osy BC.

Podobně tečna BL je kolmá na BS, takže svírá s přímkou BC úhel 30°
stejně jako přímka BD. Přímka BL je tudíž souměrně sdružená s přímkou
BD podle osy BC. Také přímky SC a CD jsou souměrně sdružené dle
osy BC, takže bod L je podle téže osy souměrně sdružený s bodem D.

Dostali jsem tak, že čtyřúhelník KLCB je souměrně sdružený s li-
choběžníkem ADCB, kterému je opsána kružnice k. Vrcholy čtyřúhel-
niku KLCB proto leží na kružnici souměrně sdružené s kružnicí к podle
osy BC. Tím je tvrzení úlohy dokázáno.
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С - S - 3

Z rovnosti a — 4yfb — b + 4\/a plyne rovnost a — b = 4(y/a + Vb) ■ Protože
a — b — (yfa — yfb) {yfa + yfb), dostáváme po vydělení kladným číslem
yfa + Vb rovnost

Va — Vb = 4, (1)

neboli

Va — Vb 4- 4. (2)

Jejím umocněním vyjde a — b + 16 + 8yfb. Protože číslo r = 8yfb musí
být celé, je yfb racionální odmocnina přirozeného čísla, takže b = n2
pro vhodné přirozené číslo n. Z rovnosti (2) tak máme a = (n + 4)2
a a — b — (n + 4)2 — n2 = 23(n + 2). Číslo a — b je tudíž pátou mocninou
prvočísla, jen když n + 2 = 22 neboli n = 2.

Jedinou vyhovující dvojicí (a, b) je dvojice (36,4).

Poznámka. Když si po odvození vztahu (1) uvědomíme, že v závorce
na pravé straně rovnosti a — b = 4(\/a + yfb) je kladné racionální, a tedy
přirozené číslo, vidíme, že musí platit a — b = 25. Pro odmocniny yfa, yfb
tak dostaneme soustavu dvou rovnic

Va + Vb — 8,

Va — Vb — 4,

jejichž sečtením vyjde yfa = 6 a odečtením yfb = 2.

C - II - 1

Při rozboru uvažme libovolný trojúhelník ABC s vrcholem C na kruž-
nici к, jehož strany АС, BC mají středy po řadě v bodech L, M (obr. 6).
Protože LM je střední příčkou takového trojúhelníku, je jeho obsah roven

čtyřnásobku obsahu trojúhelníku LMC. Tento trojúhelník má pevnou
stranu LM, takže jeho obsah je největší, právě když je největší jeho výška
z vrcholu C, tedy vzdálenost d bodu C od přímky p určené body L, M.
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Dodejme, že místo srovnání obsahů trojúhelníků ABC a LMC do-
jdeme ke stejné podmínce také takto: trojúhelník ABC má stranu AB
pevné délky c = 2\LM\ a výšku vc — 2d. Proto je jeho obsah \cvc roven
2\LM\ ■ d, takže je největší možný, když je taková vzdálenost d.

Pro který bod Cek je vzdálenost d největší? Veďme bodem C
přímku t rovnoběžnou s přímkou p. Je-li vzdálenost d největší možná,
musí celá kružnice к ležet ve stejné polorovině s hraniční přímkou t jako
přímka p (volbou bodu Cek uvnitř opačné poloroviny bychom vzdále-
nost d zvětšili). Přímka t je proto nutně tečnou kružnice к (rovnoběžnou
s danou přímkou p) a bod C je jejím dotykovým bodem.

Odtud již plyne konstrukce: bod C určíme jako ten ze dvou průsečíků
kružnice к s kolmicí na přímku p vedenou středem S kružnice k, který
má od přímky p větší vzdálenost (mají-li ji oba průsečíky stejnou, vybe-
reme kterýkoliv z nich). Body А, В pak sestrojíme jako obrazy bodu C
v souměrnosti podle středu L, resp. M.

Diskuse: Tečny kružnice к rovnoběžné s přímkou LM mají od této
přímky dvě různé vzdálenosti, právě když střed S kružnice к na přímce
LM neleží; tehdy má úloha jediné řešení. V opačném případě, kdy střed
S na přímce LM leží, má úloha dvě řešení.

С - II - 2

a) Splňují-li přirozená čísla p, q, r danou rovnici, dostaneme z ní vyjádření

2 007 — p — q
Vp + q =
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takže číslo yjp + q je racionální, a tedy celé (odmocnina z přirozeného
čísla je totiž buď číslo celé, nebo číslo iracionální). Proto z rovností

2 007 = p + ry/p + q + q = {p + q) + ry/p + q — y/p + q(y/p + q + r)

dostáváme rozklad čísla 2 007 na dva celočíselné činitele y/p + q
a VP + 4 + r> Pro které zřejmě platí

i < Vp + q < Vp + q + r ■

Z rozkladu na prvočinitele 2 007 = 32 • 223 tudíž vidíme, že jsou možné
pouze dva případy, které přehledně zapíšeme do tabulky:

y/P + q y/p + q + r p + q + rp + q r
9 666

81 214

6753 669 <==>•

9 223 295

Možné hodnoty součtu p + q + r tedy jsou pouze dvě čísla: 675 a 295.
(Konkrétní trojice (p, q, r), které to prokazují, nebudeme uvádět, protože
rovnou určíme v části b) jejich počet.)

b) Rovnost p + q + r = 675 nastane, právě když bude trojice (p, q, r)
splňovat podmínky p + q = 9ar = 666; takových trojic je právě tolik co

dvojic (p, q), pro něž p + q = 9, tedy 8.
Rovnost p + q + r = 295 nastane, právě když bude trojice (p,q,r)

splňovat podmínky p + g = 81ar = 214; takových trojic je právě tolik
co dvojic (p, q), pro něž p + q = 81, tedy 80.

C - II - 3

Označme postupně К, L, M, N body dotyku vepsané kružnice po řadě
se stranami AB, BC, CD, DA (obr. 7). Protože ABCD je rovnoramenný
lichoběžník, jeho vnitřní úhly u vrcholů А, В, C, D mají po řadě velikosti
q, a, 180° — a a 180° —a. Úsečky OA, OB, OC, OD ležící na osách těchto
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úhlů proto spolu se čtyřmi navzájem shodnými úsečkami OK, OL, OM,
ON rozdělují celý lichoběžník na osm pravoúhlých trojúhelníků, které se

shodují v jedné odvěsně a mají ostré vnitřní úhly a 90° — \oc. Těchto
osm trojúhelníků lze tudíž rozdělit do dvou čtveřic shodných troj úhel-
níků: jednu z nich tvoří trojúhelníky OAK, OAN, OBK, OBL a dru-
hou trojúhelníky OCL, OCM, ODM a ODN. Odtud plyne, že obsah
S lichoběžníku ABCD je roven čtyřnásobku součtu obsahů trojúhelníků
OBL a OCL, tedy čtyřnásobku obsahu trojúhelníku OBC. Podle vnitř-
nich úhlů u vrcholů В a C vidíme, že trojúhelník OBC je pravoúhlý
s odvěsnami OB a OC, takže má obsah \\OB\ • \OC\ a hledaný celkový
obsah S je tudíž S = 2\OB\ ■ \OC\.

Poznámka. Je-li O střed kružnice vepsané tečnovému čtyřúhelníku
ABCD, je snadné ukázat, že jeho obsah je roven dvojnásobku součtu
obsahů trojúhelníků OAB a OCD stejně jako trojúhelníků OBC a ODA.
Poslední dva trojúhelníky jsou u našeho rovnoramenného lichoběžníku
ABCD shodné.

Jiné řešení. Pro výšku v a strany a, b, c, d lichoběžníku ABCD s ve-

psanou kružnicí k(0,r) platí rovnosti r = 2r a a + с = I) + á. Z první
z nich plyne, že střed O leží na střední příčce lichoběžníku, jejíž délka
^(a + c) je podle druhé rovnosti rovna ^(b + d). V našem případě ovšem
platí b = d, takže střední příčka je shodná s oběma rameny a bod O
je jejím středem, neboť rovnoramenný lichoběžník je osově souměrný.
Dohromady dostáváme, že bod O leží na kružnici sestrojené nad průmě-
rem BC, a proto je OBC pravoúhlý trojúhelník o obsahu \\OB\ ■ \OC\.
Jeho výška na přeponu BC je však poloměrem r vepsané kružnice k,
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tudíž obsah trojúhelníku OBC je rovněž roven ■ r. Porovnáním obou
vyjádření dostaneme rovnost \OB\ ■ \OC\ — b ■ r. Pro hledaný obsah S
našeho lichoběžníku proto platí

a + c
-■v = b-2r = 2-\OB\-\OC\.S =

С - II - 4

Libovolné (ra + l)-místné přirozené číslo N s první číslicí c má vyjádření
N = c ■ 10m + x, kde x je právě to číslo, které dostaneme z čísla N po
škrtnutí první číslice c. Podle zadání má platit N — c-10m+x = kx neboli
c- 10m = (k — l)x. Číslo к — 1 tedy musí být dělitelem čísla c- 10m, které
má ovšem pouze jednomístné prvočinitele: prvočísla 2, 5 a prvočinitele
z rozkladu číslice c. Budeme proto postupně testovat na prvočinitele čísla
к — 1 pro největší dvojmístná k:
о к = 99: к — 1 = 98 = 2 • 72 nevyhovuje, neboť 72 \ c ■ 10m.
о к — 98: к — 1 = 97 nevyhovuje, neboť 97 je dvojmístné prvočíslo.
> к = 97: к — 1 = 96 = 25 • 3 vyhovuje, neboť například 25 • 3 | c ■ 10m

pro c — 3 a m — 5; abychom dostali menší N, můžeme ovšem zvolit
menší m = 4ac = 3- 2 = 6 (jiné c pro m = 4 nevyhovuje). Pro m ^ 3
už vztah 25 • 3 | c • 10w neplatí pro žádnou nenulovou číslici c.
Hledané největší dvojmístné к je tedy 97. Podle předchozí diskuse

určíme nejmenší vyhovující N, kterému odpovídá m = 4, c — 6 a x =
= 6 • 104 : 96 - 625, takže N = 6 ■ 104 + 625 = 60 625.

Odpověď: Hledané к je rovno 97 a nejmenší vyhovující N je 60 625.
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Kategorie В

Texty úloh

В - I - 1

Najděte všechny dvojice (a, b) celých čísel, jež vyhovují rovnici

a2 + 7ab + 662 + 5a + 46 + 3 = 0.

(Pavel Novotný)

В - I - 2

Je dána kružnice к s průměrem AB. К libovolnému bodu Y kružnice k,
Y Ф A, sestrojme na polopřímce AY bod X, pro který platí \AX\ = \YB\.
Určete množinu všech takových bodů X. (Pavel Leischner)

В - I - 3

Najděte nejmenší přirozené číslo к takové, že každá A:-prvková množina
trojmístných po dvou nesoudělných čísel obsahuje aspoň jedno prvočíslo.

(Pavel Novotný)

В - I - 4

V libovolném trojúhelníku ABC označme T těžiště, D střed strany AC
a E střed strany BC. Najděte všechny pravoúhlé trojúhelníky ABC s pře-
ponou AB, pro něž je čtyřúhelník CDTE tečnový. (Ján Mazák)

В - I - 5

Najděte všechny dvojice (p, q) reálných čísel takové, že mnohočlen x2 +
+ px + q je dělitelem mnohočlenu ж4 + px2 + q. (Jozef Moravčík)
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В - I - 6

Je dána úsečka AAq a přímka p. Sestrojte trojúhelník s vrcholem A a výš-
kou AAq, jehož těžiště a střed kružnice opsané leží na přímce p.

(Eva Řídká)

В - S - 1

Určete všechny dvojice reálných čísel a a 6, pro něž je mnohočlen x4 4-
4- ax2 4- b dělitelný mnohočlenem x2 + bx + a. (Jaromír Šimša)

В - S - 2

V trojúhelníku ABC označme D střed strany ВС, E střed strany АС a T
těžiště. Je-li strana BC delší než strana AC, má kružnice vepsaná troj-
úhelníku BDT menší poloměr než kružnice vepsaná trojúhelníku ATE.
Dokažte. (Pavel Novotný)

В - S - 3

Najděte nejmenší přirozené číslo n, pro které je podíl

n2 4- 15n
33 000

(Jaromír Šimša)přirozené číslo.

В - II - 1

Určete reálná čísla a, 6, c tak, aby mnohočlen x4+ax2+bx+c byl dělitelný
mnohočlenem x2 4- x + 1 a přitom součet a2 4- b2 4- c2 byl co nejmenší.

(Jaromír Šimša)

В - II - 2

Je dán trojúhelník ABC se stranou BC délky 22 cm a stranou AC délky
19 cm, jehož těžnice ta, tb jsou navzájem kolmé. Vypočítejte délku strany

(Pavel Novotný)AB.

В - II - 3

Přirozené číslo nazveme vlnitým, pokud pro každé tři po sobě jdoucí
číslice a, b, c jeho desítkového zápisu platí (a — b)(b — c) < 0. Dokažte,
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že z číslic 0,1,...,9 je možno sestavit více než 25 000 desetimístných
vlnitých čísel, která obsahují všechny číslice od nuly do devítky (číslice 0

(.Jaromír Šimša)nemůže být na prvním místě).

В - II - 4

Je dán ostroúhlý trojúhelník ABC. Pro libovolný bod L jeho strany AB
označme К, M paty kolmic z bodu L na strany АС, BC. Zjistěte, pro
kterou polohu bodu L je úsečka KM nejkratší. (Jaroslav Svrček)
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Řešení úloh

В - I - 1

Rovnici řešíme jako kvadratickou s neznámou a a parametrem 6. Její
diskriminant je

D = (7b + 5)2 - 4(662 + 46 + 3) = 2562 + 546 + 13

a kořeny
7b — 5 ± y/Ď

al,2 = 2

Jsou-li a i b celá čísla, musí být i \/rD = ±(2a + 76 + 5) celé číslo. Můžeme
tedy psát

D = 25 b2 + 546+13 = c2,

kde c je celé nezáporné. Rovnici

2562 + 546 + 13 - c2 = 0

opět řešíme jako kvadratickou. Její kořeny jsou

27 ± V272 - 25 • 13 + 25c2
61; 2 = 25

Jsou-li 6 a c celá čísla, musí být \J404 + 25c2 druhou mocninou nějakého
celého nezáporného čísla d. Pro celá nezáporná čísla c, d tedy platí d2 —

- 25c2 = 404 čili

(d + 5c) (d — 5c) = 404.

Rozdíl (d + 5c) — (d — 5c) = 10c je sudý, takže čísla d + 5c a d — 5c mají
stejnou paritu. Navíc pro nezáporné c je d + 5c ^ d — 5c a d + 5c ^ 0,
takže z rozkladů čísla 404 na součin dvou celých čísel vyhovuje jediný,
a to

d + 5c = 202 d — 5c = 2.

Odtud d = 102, c = 20. Z kořenů

, -27 ±d
bl'2 =
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je celým číslem jenom 6 = 3. Potom
-7b - 5 ± c

0-1,2 = 2

tedy ai = -3 a a2 = -23.
Dané rovnici vyhovují dvě dvojice čísel (a, b), a to (—3, 3) а (—23, 3).
Jiné řešení. Trojčlen a2 + 7ab + 662 = (a 4- 6) (a + 66) se dá rozložit na

součin. Pokusme se na součin rozložit i výraz a2 + 7ab + 6b2 -f 5a + 46 + c,
kde c je vhodná konstanta. Rozklad bude mít tvar

a2 + 7ab -f 662 + 5a + 46 + c = (a + 6 + re) (a + 66 + y).

Po roznásobení pravé strany a porovnání koeficientů u a a 6 dostaneme

ж + у = 5, 6ж + у = 4,

neboli
261

х = — У ~
5 5

takže vyjde
26

с = xy — —
25

Danou rovnici tak můžeme postupně upravit na tvar

a2 + 7a6 + 662 + 5a + 46 — —3
25’25

(a + í,_i)(a + 6b+|í) 101

25 ’

(5a + 56 — l)(5a -f 306 + 26) - 101.

1 (mod 5) a 5a + 306 + 26 = 1 (mod 5), vyho-Protože 5a + 56 — 1 =

vují ze čtyř vyjádření čísla —101 ve tvaru součinu dvou celých čísel jen
následující dvě:

5a + 56 — 1 = —1, 5a + 306 + 26 = 101, a tedy a = —3, 6 = 3;
5a + 56 — 1 = —101, 5a + 306 + 26 = 1, a tedy a = —23, 6 = 3.

В - I - 2

Jestliže Y = B, potom X
procházející bodem A a kolmou na AB a C ten bod přímky p le-

\AB\ (obr. 8). Po-
\BY\. Úhel AYB je podle Thaletovy věty

A. Nechť Y j- B. Označme p přímku

žící v polorovině ABY, pro nějž platí \AC\
dle zadání platí |TX|
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pravý, proto \<ABY\ — 90° — \<YAB\ = \<CAX\. Trojúhelníky
ABY a CAX jsou tedy shodné podle věty sus. Odtud vyplývá, že
|<CXA| = \<AYB\
nad průměrem AC.

Nechť naopak X je libovolný vnitřní bod této půlkružnice a Y prů-
sečík přímky AX s kružnicí к (Y Ф AP). Trojúhelníky CAX a ABY jsou
shodné podle věty usu, a proto \AX\
hledané množiny.

Hledanou množinou všech bodů X je sjednocení dvou půlkružnic nad
průměry AC\ а AC2 ležících v téže polorovině jako bod В; C\ а C2 jsou
body ležící na kolmici vedené bodem А к přímce AB, přičemž \AC\\ =
= |^4C*21 = \AB\ (obr. 9). Bod A do hledané množiny patří, body C\ а C2
nikoliv.

90°. Bod X proto leží na Thaletově půlkružnici

\BY\. Bod X tedy patří do

C

P

Y

X

A В

к

Obr. 8

В - I - 3

Ke konstrukci množiny po dvou nesoudělných trojmístných složených čí-
sel s velkým počtem prvků můžeme využít toho, že mocniny dvou různých
prvočísel jsou nesoudělné. Množina

(27,35,53,73, ll2,132,172,192, 232, 292,312}
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obsahuje 11 po dvou nesoudělných trojmístných čísel a není v ní žádné
prvočíslo. Pro další prvočíslo 37 už platí 372 > 1 000, takže každé složené
trojmístné číslo je dělitelné aspoň jedním prvočíslem menším než 37.

Dokážeme, že každá aspoň dvanáctiprvková množina po dvou nesou-

dělných trojmístných čísel už obsahuje prvočíslo. Množinu všech slože-
ných trojmístných čísel lze rozdělit na 11 podmnožin A2, A3, A5, A7, Ац,
А\з, An, v4i9, A23, A29, A31, kde Ai obsahuje ta čísla, jejichž nejmenším
prvočinitelem je číslo i. Každá dvě různá čísla z téže množiny Ai jsou
soudělná. Nechť množina В trojmístných po dvou nesoudělných čísel má
aspoň 12 prvků. Kdyby v В byla pouze složená čísla, podle Dirichletova
principu by В obsahovala dvě čísla z téže množiny Ai] tato čísla by ale
byla soudělná. Proto množina В musí obsahovat aspoň jedno prvočíslo.

Hledané nejmenší číslo к je tedy 12.

В - I - 4

Konvexní čtyřúhelník je tečnový, právě když součty délek jeho protileh-
lých stran jsou stejné.

A

D

В CE

Obr. 10

V pravoúhlém trojúhelníku ABC s přeponou AB označme a = \BC\
b — \AC\ (obr. 10). Podle Pythagorovy věty platí

\BD\ = У|ВС|2 + |СГ>р = у/а2 + (1)2 \AE\ = +

Protože těžiště trojúhelníku dělí těžnici v poměru 1 : 2, je

i|5D| = i^ + (l)2, 1
\TD\ \TE\ = -\AE\

Čtyřúhelník CDTE je tečnový, právě když \CD\ + \TE\ — \EC\ + \TD\,
tedy právě když
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Je-li a = b, rovnost zřejmě platí.
Je-li a > b, je a2 + \b2 > b2 -f |a2, takže

Podobně je-li a < b, je

hlf^Wi >

Čtyřúhelník CDTE je tedy tečnový, právě když je trojúhelník ABC
rovnoramenný.

Jiné řešení. Označíme-li běžným způsobem a, b, c strany daného troj-
úhelníku a ta, tb, tc délky jeho těžnic, bude čtyřúhelník CDTE tečnový,
právě když

11 1, 1
-a +-íb = -6+-ía neboli (1)

Ukážeme, že uvedená rovnost platí, právě když a — b.
V libovolném trojúhelníku ABC totiž platí

a < b, právě když ta> tb- (2)

To je zřejmé z toho, že těžiště T uvažovaného trojúhelníku leží ve

stejné polorovině určené osou strany AB jako vrchol C (obr. 11), přičemž
\TA\ = §í„, \TB\ = §4.

A В

Obr. 11
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Je-li a — b, rovnost (1) platí. Naopak je-li např. a < b, je podle (1)
a (2)

0 > i (a - b) = i(ía - tb) > o

což nelze. Proto a = b.

Čtyřúhelník CDTE je tečnový, právě když je (pravoúhlý) trojúhelník
ABC rovnoramenný.

В - I - 5

Dělením mnohočlenu x4 + px2 + q mnohočlenem x2 + px + q zjistíme, že
platí

x4 + px2 + q — (x2 + px + q) {x2 — px + p2 + p — q) +
+ (2pq - p3 - p2)x + q — p2q - pq + q2.

Mnohočlen x2 +px + q je dělitelem mnohočlenu x4 +px2 + q, právě když
je zbytek (2pq — p3 — p2)x + q — p2q — pq + q2 nulový mnohočlen, tedy
právě když platí současně

2pq — p3 — p2 — p{2q — p2 — p) = 0

q - p2q - pq + q2 = q(l - p2 - p + q) = 0.

Je-li p — 0, potom q — 0 nebo q = —1.
Je-li q = 0, potom p = 0 nebo p = — 1.
Je-li p ф 0 i q ф 0, potom musí platit 2q—p2—p = 0 a 1— p2 —p+q = 0.

Z druhé rovnice vyjádříme q — p2 + p — 1. Po dosazení do první rovnice
máme 2p2 + 2p — 2 — p2 — p — p2 -\- p — 2 — (p + 2)(p — 1) = 0a odtud
p = 1, q = 1 nebo p = —2, q = 1.

Vyhovuje tedy pět dvojic (p,q), a to (0,0), (0,-1), (-1,0), (1,1),
(-2,1).

Jiné řešení. Mnohočlen x2+px+q je dělitelem mnohočlenu x4+px2jt-q,
právě když existují taková reálná čísla a a b, že

x4 + px2 + q = (x2 + px + q)(x2 + ax + b) =

= x4 + (a + p)a;3 + (6 + ap + g)a;2 + (6p + ag)x + 6g.
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Porovnáním koeficientů dostaneme podmínky
a + p — 0,

b + ap + q = p,

bp + aq = 0,

bq = q.

Jestliže q = 0, potom podle (3) p = 0 nebo 6 = 0. Dosazením 6 = 0
do (2) s využitím (1) dostaneme —p2 = p, takže kromě p = 0 vyhovuje
i p = —1.

Jestliže q ф 0, vyplývá ze (4) 6 = 1. Vztahy (3) a (1) potom dávají
p — pq = 0, tedy p = 0 nebo q — 1. V prvním případě musí být podle (2)
q = —1, ve druhém 1— p2 + 1 = p a odtud p = 1 nebo p = —2.

Vyhovuje tedy pět dvojic (p,q), a to (0,0), (0,-1), (-1,0), (1,1),
(-2,1).

(1)
(2)
(3)
(4)

В - I - 6

Předpokládejme, že ABC je hledaným trojúhelníkem. Jeho strana BC
leží na přímce q, která prochází bodem Aq a je kolmá na úsečku AAq.
Na této přímce leží i střed D strany BC. Těžiště T je obrazem bodu D
ve stejnolehlosti se středem A a koeficientem leží proto na přímce q
která je obrazem přímky q ve zmíněné stejnolehlosti. Střed S opsané
kružnice leží na ose o strany BC čili na přímce, která prochází bodem D
a je rovnoběžná s úsečkou AAq (obr. 12).
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Konstrukce: Bodem Ao vedeme přímku q kolmou na úsečku AAq.
Sestrojíme obraz q' přímky q ve stejnolehlosti se středem A a koefi-
cientem |. Označíme T průsečík přímky q' s přímkou p a D průsečík
přímky AT s přímkou q. Bodem D vedeme rovnoběžku o s AAq a její
průsečík s přímkou p označíme S. Průsečíky kružnice к se středem S
a poloměrem \SA\ s přímkou q jsou vrcholy В a C hledaného trojúhel-
niku.

Důkaz: Úsečka AAo je kolmá na stranu BC, je to tedy výška troj-
úhelníku ABC. Bod S ležící na přímce p je středem kružnice opsané
trojúhelníku ABC. Ze shodnosti trojúhelníků BDS a CDS (Ssu) vyplý-
vá, že D je střed strany BC. Proto je AD těžnice a T těžiště trojúhelníku
ABC (platí totiž \AT\ = l\AD\).

Diskuse: Není-li přímka p rovnoběžná s úsečkou AAq ani na ni kolmá,
jsou body T a S jednoznačně určeny. V tom případě má úloha právě jedno
řešení (až na označení bodů В a C), pokud kružnice к protíná přímku q ve
dvou různých bodech; neprotíná-li к přímku p ve dvou různých bodech,
nemá úloha řešení.

Je-li úsečka AAq částí přímky p, není bod 5 jednoznačně určen; vy-

hovují všechny rovnoramenné trojúhelníky se základnou BC, která má
střed v bodě Aq. Je-li úsečka AAo rovnoběžná s přímkou p, ale neleží na

ní, nemá úloha řešení.
Je-li přímka p kolmá na úsečku AAq, má úloha řešení pouze tehdy,

jsou-li přímky q' a p totožné. To nastane, jestliže přímka p protíná úsečku
AAq v bodě V, pro nějž platí \AV\ — 2|AoV|. V takovém případě můžeme
bod T zvolit na p kdekoliv a úloha má nekonečně mnoho řešení.

В - S - 1

Vydělením mnohočlenu x4 + ax2 + b mnohočlenem x2 + bx + a zjistíme,
že

x4 + ax2 + b — (x2 + bx + a)(x2
Mnohočlen x4 -\-ax2+6 je dělitelný mnohočlenem x2+bx+a, právě když je
zbytek (ab—b3)x+(b—ab2) nulový mnohočlen, tedy ab—b3 = 6(a —62) = 0
a současně b—ab2 — 6(1 — ab) = 0. Je-li 6 = 0, jsou obě podmínky splněny.
Pro 6 ^ 0 musí platit a — b2 = 0 a 1 — ab — 0. Odtud a — b2, 1 — 63 = 0,
a tedy a = 6 = 1.

Závěr: Mnohočlen x4 + ax2 + 6 je dělitelný mnohočlenem x2 + bx + a

právě tehdy, je-li 6 = 0 (a a libovolné) nebo a = 6 = 1.

bx + 62) -f (ab — b3)x + (6 — ab2).
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Jiné řešení. Mnohočlen x4 + ax2 + b je dělitelný mnohočlenem x2 +
+ bx + a, právě když existují taková reálná čísla p, q, že x4 + ax2 + b =
= (x2 + bx + a)(x2 + px + q). Roznásobením a porovnáním koeficientů
dostaneme soustavu rovnic

p + b = 0, q + bp -f a = a, ap + bq = 0, aq = 6.

—bp — b2, dosazením doZ první rovnice vyjádříme p = —6 a z druhé g
třetí a čtvrté máme —ab + b3 = 0, a62 = 6. Řešení dokončíme stejně jako
v předchozím případě.

В - S - 2

Poloměr kružnice vepsané trojúhelníku je podílem jeho obsahu a polo-
vičního obvodu.

Trojúhelníky ADE a BDE mají zřejmě stejný obsah, protože mají
společnou stranu DE a shodnou výšku na ni (AB je rovnoběžné s DE).
Stejný obsah tedy mají i trojúhelníky ATE a BDT, protože obsahy obou
trojúhelníků se od obsahu zmíněných trojúhelníků liší právě o obsah „spo-
lečného“ trojúhelníku DET (obr. 13).

Označme p osu úsečky AB. Je-li strana BC delší než strana AC, leží
bod C v téže polorovině s hraniční přímkou p jako bod A. Proto v této
polorovině leží i těžiště T. Jeho vzdálenost od bodu A rovná |ta je tedy
menší než jeho vzdálenost od bodu В rovná 11^. To znamená, že ta < tb-
Trojúhelník ATE má obvod o\ = ^b + ^tb + |ta, trojúhelník BDT má
obvod 02 = \a + |ía + |tb- Z nerovností b < a a ta < tb proto vyplývá

i(a-b) + Í(R-ía) > 0,02 — 0\ —

neboli oi <02-
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Trojúhelníky AET a BDT mají stejný obsah a první z nich má menší
obvod, proto má kružnice vepsaná trojúhelníku AET větší poloměr než
kružnice vepsaná trojúhelníku BDT.

В - S - 3

Číslo n2 -f 15n = n(n + 15) má být dělitelné číslem 33 000 = 23 • 3 •
• 53 • 11. Kdyby nebylo n dělitelné třemi, nebylo by třemi dělitelné ani
číslo n + 15, a tedy ani součin n{n + 15). Ze stejného důvodu musí být
n dělitelné pěti, a tedy i patnácti. Pišme proto n = 15/c. Aby bylo číslo
n(n+15) = 152/c(/c+1) dělitelné číslem 8-3-53-ll, musí být součin k(k+1)
dvou po sobě jdoucích přirozených čísel dělitelný osmi, pěti a jedenácti.
Jeden z činitelů к, к +1 musí být dělitelný aspoň dvěma z těchto tří čísel,
takže musí být dělitelný některým z čísel 40, 55, 88. Nejmenším takovým
číslem je 40. Jedenácti však není dělitelné ani číslo 40, ani žádný z jeho
sousedů 39, 41. Dalším kandidátem je číslo 55, součin čísel 5 a 11. Je
dělitelný osmi některý z jeho sousedů? Ano, větší z nich, takže součin
55 • 56 je dělitelný osmi, pěti i jedenácti; máme tedy к = 55. Hledané
nejmenší číslo je tudíž n — 15к = 825.

В - II - 1

Dělením mnohočlenu x4 + ax2 + bx + c mnohočlenem x2 + x + 1 zjistíme,
že platí

x4 + ax2 + bx + c — (x2 + x + l)(x2 — x + a) + (b — a + l)x + (c — a).

Mnohočlen x4 + ax2 + bx + c je dělitelný mnohočlenem x2 + x + 1,
právě když je zbytek při dělení nulový mnohočlen, tedy b — a + 1 = 0
a současně c — a = 0; odtud b = a — 1, c = a.

Potom

a2 -f b2 + с2 = a2 + (a — l)2 + a2 = 3a2 — 2a + 1 = 3 ^ + -•

Tento výraz má nejmenší hodnotu pro a = snadno dopočítáme
b = a — 1 = — |, c

Jiné řešení. Mnohočlen x4 + ax2 + bx + c je dělitelný mnohočlenem
x2 + x + 1, právě když existují reálná čísla p, q, pro něž

a — i
3 •

x4 + ax2 + bx + c — (x2 + x + l)(x2 + px + q).
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Roznásobením pravé strany a porovnáním odpovídajících koeficientů do-
staneme čtyři rovnice p + 1 = 0, g + p + 1 = a, q + p = b, q = c. Z nich
vyjádříme p = —1, q = a, c=a,b = a — la pokračujeme jako v prvním
řešení.

В - II - 2

Označme D střed strany АС, E střed strany ВС a T těžiště trojúhel-
niku ABC (obr. 14). Označíme-li dále 3x a 3у délky těžnic ta a tb, máme

A В

Obr. 14

\AT\ — 2x, \ET\ = x, \BT\ = 2y, \DT\ — y. Ze zadání plyne, že trojúhel-
niky ATD, BET, ABT jsou pravoúhlé, takže podle Pythagorovy věty
platí

(2x)2 + y2 = (t)2

(2xf + (lyf = c2.

Sečtením prvních dvou rovnic dostaneme 5(ж2 + у2) = |(a2 + b2) a po
dosazení do třetí rovnice máme c2 = 4(x2 +y2) = i(a2 +62). Numericky
pak vzhledem к tomu, že ^(222 + 192) = 169, vychází c = 13 cm.
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В - II - 3

Číslice 0,1, 2, 3 а 4 nazvěme malé (zkráceně m), číslice 5, 6, 7, 8 a 9 naopak
velké (zkráceně v). Pravidelným střídáním malých a velkých číslic vždy
vznikne vlnité číslo.

Čísel tvaru vmvmvmvmvm je (5!)2, čísel tvaru mvmvmvmvmv je
4-4!-5!. Těch vlnitých čísel, která vzniknou pravidelným střídáním malých
a velkých číslic, je tedy 5!(5! + 4 • 4!) = 5! • 4! • (5 + 4) = 120 -24-9 =
= 25 920 > 25 000.

Poznámka. Všech desetimístných vlnitých čísel s vesměs různými čís-
licemi je 93 106.

В - II - 4

Protože jsou úhly LKC a LMC pravé, leží body К a M na Thaletově
kružnici nad průměrem CL (obr. 15). Podle věty o obvodovém úhlu pří-

A L В

Obr. 15

sluší tětivě KM středový úhel velikosti 2y, proto \KM\
(v pravoúhlém trojúhelníku КPS, kde P je střed úsečky KM a S střed
úsečky CL, je totiž \KS\ = \\CL\,\<KSP\ = 7). Úsečka KM je tedy
nejkratší, právě když je nejkratší úsečka CL; to nastává právě tehdy, je-li
L pata výšky z vrcholu C na stranu AB.

\CL\ siny
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Kategorie A

Texty úloh

A - I - 1

V oboru reálných čísel řešte rovnici

4x4 - I2x3 - 7x2 + 22x + 14 = 0,

víte-li, že má čtyři různé reálné kořeny, přičemž součet dvou z nich je
(Jaromír Simsa)roven číslu 1.

A - I - 2

Kružnice vepsaná danému trojúhelníku ABC se dotýká stran BC, CA,
AB po řadě v bodech К, L, M. Označme P průsečík osy vnitřního úhlu
při vrcholu C s přímkou MK. Dokažte, že přímky AP a LK jsou rovno-
běžné. (Peter Novotný)

A - I - 3

Jsou-li x, у, 2 reálná čísla z intervalu (—1,1} splňující podmínku xy -f
-f уz -f zx = 1, pak platí

6ý/(l - x2)(l - y2)(l — z2) ^ 1 + (x + у + z)2.

(Jaroslav Švrček)Dokažte a zjistěte, kdy nastane rovnost.

A - I - 4

Určete, pro která přirozená čísla n je možno množinu M = {1,2,..., n}
rozdělit a) na dvě, b) na tři navzájem disjunktní podmnožiny o stejném
počtu prvků tak, aby každá z nich obsahovala také aritmetický průměr
všech svých prvků. (Peter Novotný)

56



A - I - 5

V rovině je dána kružnice к se středem S a bod А Ф S. Určete množinu
středů kružnic opsaných všem trojúhelníkům ABC, jejichž strana BC je
průměrem kružnice k. (Jiří Dula)

A - I - 6

Z takové, že pro všechna celá čísla x, уUrčete všechny funkce /: Z
platí

f{f(x) +y) = x + f(y + 2 006).

(Petr Kaňovský)

A - S - 1

Určete všechna reálná čísla s, pro něž má rovnice

4x4 — 20x3 + sx2 + 22x — 2 = 0

čtyři různé reálné kořeny, přičemž součin dvou z nich je roven číslu —2.
(Jaromír Šimša)

A - S - 2

Uvažujme množinu {1,2,4,5,8,10,16,20,32,40,80,160} a všechny její
tříprvkové podmnožiny. Rozhodněte, zda je více těch, které mají součin
svých prvků větší než 2 006, nebo těch, které mají součin svých prvků
menší než 2 006. (Peter Novotný)

A - S - 3

Je dán lichoběžník ABCD s pravým úhlem při vrcholu A a základnou
AB, v němž platí \AB\ > \CD\ ^ \DA\. Označme S průsečík os jeho
vnitřních úhlů při vrcholech А, В a T průsečík os vnitřních úhlů při
vrcholech C, D. Podobně označme U, V průsečíky os vnitřních úhlů při
vrcholech A, D, resp. В, C.
a) Ukažte, že přímky UV a AB jsou rovnoběžné.
b) Dokažte, že průsečík E polopřímky DT s přímkou AB a body S, T, В

(Jaroslav Svrček, Pavel Calábek)leží na téže kružnici.
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A — 11 — 1

Zjistěte, jaký je nejmenší možný obsah trojúhelníku ABC, jehož výšky
vyhovují nerovnostem va ^ 3 cm, Vb ^ 4 cm, vc A 5 cm.

(Pavel Novotný)

A - II - 2

Nechť a, b jsou reálná čísla. Má-li rovnice

x4 — 4x3 + 4x2 + ax + b = 0

dva různé reálné kořeny takové, že jejich součet se rovná jejich součinu,
pak platí a + b > 0 a přitom daná rovnice nemá žádné jiné reálné kořeny.
Dokažte. (Jaromír Šimša)

A - II - 3

Nechť M je libovolný vnitřní bod přepony AB pravoúhlého trojúhelníku
ABC. Označme S, Si, S2 středy kružnic opsaných po řadě trojúhelníkům
ABC, AMC, BMC.
a) Dokažte, že body M, C, S\, S2 a S leží na téže kružnici.
b) Pro kterou polohu bodu M má tato kružnice nejmenší poloměr?

(Jaroslav Švrček)

A - II - 4

Nechť p, q (p < q) jsou daná přirozená čísla. Určete nejmenší přirozené
číslo m s vlastností: Součet všech zlomků v základním tvaru, které mají
jmenovatel m a jejichž hodnoty leží v otevřeném intervalu (p, q), je aspoň

(Vojtech Bálint)56(g2 — p2).

A - III - 1

Na některé pole čtvercové šachovnice n x n (n 'A 2) postavíme figurku
a pak s ní táhneme střídavě „šikmo“ a „přímow. „Šikmo“ znamená na

pole, které má s předchozím společný právě jeden bod. „Přímo“ znamená
na sousední pole, které má s předchozím společnou stranu. Určete všechna
n, pro něž existuje výchozí pole a posloupnost tahů začínající „šikmo"
tak, že figurka projde celou šachovnici a na každém poli se octne právě
jednou. [Peter Novotný)
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A - III - 2

V tětivovém čtyřúhelníku ABCD označme L, M středy kružnic vepsa-

ných po řadě trojúhelníkům BCA, BCD. Dále označme R průsečík kol-
mic vedených z bodů L a M po řadě na přímky AC a BD. Dokažte, že

(Pavel Leischner)trojúhelník LMR je rovnoramenný.

A - III - 3

Označme РУ množinu všech přirozených čísel a uvažujme všechny funkce
f: N -* N takové, že pro libovolná x, у £ f^J platí

f(xf(y)) = yf(x)-

(Pavel Calábek)Určete nejmenší možnou hodnotu /(2 007).

A - III - 4

Množina M obsahuje všechna přirozená čísla od 1 do 2 007 včetně a má
následující vlastnost: Je-li číslo n prvkem množiny M, leží v M všechny
členy aritmetické posloupnosti s prvním členem n a diferencí n + 1. Roz-
hodněte, zda množina M musí obsahovat všechna přirozená čísla větší
než určité číslo m. (Jaromír Šimša)

A - III - 5

Je dán ostroúhlý trojúhelník ABC takový, že \AC\ Ф \BC\. Uvnitř jeho
stran ВС a AC uvažujme body Da£, pro něž je ABDE tětivový čtyř-
úhelník. Průsečík jeho úhlopříček AD a BE označme P. Jsou-li přímky
CP a AB navzájem kolmé, pak P je průsečíkem výšek trojúhelníku ABC.
Dokažte. (Ján Mazák)

A - III - 6

Určete všechny uspořádané trojice (x,y,z) navzájem různých reálných
čísel, které vyhovují množinové rovnici

x — у у — z z — x

y — z'z — х'х — у
{x,y,z} =

(Jaromír Simša)
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Řešení úloh

A - I - 1

Označme hledané kořeny x\, x2, x3, x4 tak, aby platilo x\ + x2 = 1.
Potom

4x4 — 12x3 — 7x2 + 22x + 14 = 4(x — xi)(x — x2)(x — x3)(x x4).

Porovnáním koeficientů u odpovídajících mocnin x dostaneme známé
Viétovy vztahy

(1)X1+X2+ x3 + x4 = 3,

7
(2)X\X2 + X1X3 + X:X4 + X2x3 + X2x4 + Ж3Ж4 = — 4’

11
(3)X\X2X3 + XiX2X4 + X\X3X4 + X2x3x4 — -

2
7

(4)XiX2X3X4 =
2

Protože x\ +x2 = 1, z (1) plyne x3+x4 = 2. Rovnice (2) a (3) přepíšeme
do tvaru

7
(xi + X2)(x3 + x4) + 2:10:2 + X3x4 — —-4’

11
(2:1 + x2)x3x4 + (x3 + x4)xix2

což po dosazení hodnot x\ + x2 — 1 a 2:3 + x4 = 2 dává
2

15
2:1X2 + X3X4 = -

4 ’
11

2xix2 + X3X4 - ——.

Z této soustavy dvou lineárních rovnic již snadno dostaneme

7
X3X4 — —2.xix2 = -

4

Všimněme si, že pro tyto hodnoty součinů X1X2 a X3X4 je splněna
i rovnice (4), kterou jsme dosud nevyužili. Z podmínek xi + X2 = 1,
X1X2 = — I vyplývá, že xi a x2 jsou kořeny kvadratické rovnice

x2-x-l tedy xij2 = i ± V2.
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Podobně z podmínek £3 + X4 = 2 а Ж3Ж4 = —2 dostaneme

1 ±\/3.•£3,4 =

Zkoušku nalezených kořenů není třeba provádět, protože je splněna,
jak jsme zdůraznili, celá soustava rovnic (1) až (4).

Závěr. Daná rovnice má kořeny ^ + \/2, i — \/2, 1 + л/З, 1 — \/3.
Jiné řešení. Z podmínek úlohy plyne, že levá strana rovnice je souči-

nem mnohočlenů

x2 — x + p 4x2 -f qx + r,a

kde p, q ar jsou reálná čísla. Po jejich vynásobení a porovnání koehcientů
u odpovídajících mocnin x dostaneme soustavu čtyř rovnic o třech ne-

známých
q- 4 = -12

4p - q + r = -7,

pq — r = 22,

pr = 14.

První tři rovnice mají jediné řešení r = —8, p = — | a q = —8, které
vyhovuje i čtvrté rovnici. Platí tedy rozklad

= ^x2 — x — - j (4ж2 — 8x — 8).4x4 - 12a;3 - 7x2 + 22a; + 14

Rovnice x2 — x — I = 0 má kořeny \ ± y/2, rovnice 4a;2 — 8a; — 8 = 0 má
kořeny 1 ± л/З-

A - I - 2

Označme к kružnici vepsanou trojúhelníku ABC a S její střed. Velikosti
vnitřních úhlů trojúhelníku ABC označme obvyklým způsobem a, /3, 7.
Protože body K, L jsou souměrně sdruženy podle osy vnitřního úhlu
při vrcholu C, jsou přímky KL а CP na sebe kolmé a platí \<LPC\ =
= \<KPC\ (obr. 16).
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Vyjádříme-li velikosti vnitřních úhlů při základnách KM a LK v rov-

noramenných trojúhelnících KMB a LKC, dostaneme \kMKB\ =
= 90° — |/3, |<LXC'| = 90° — Z přímosti úhlu BKC tak plyne
\^MKL\ = 90° — ^a. Analogicky vyjde \kKLM\ = 90° — ^/3, \%.LMK\ =
= 90° - fy.

Protože \<KPC\ + ^-f = \<BKP\ — 90° — ^/3, dostaneme pro velikost
souměrně sdružených úhlů LPC а КPC rovnost

/3 + 7 a
\<LPC\ = \<KPC\ = 90° 2 2

Kružnice к vepsaná trojúhelníku ABC je současně kružnicí opsanou

trojúhelníku KLM, který je, jak jsme zjistili výpočtem jeho úhlů, ostro-
úhlý. Její střed S je proto vnitřním bodem tohoto trojúhelníku, a tedy
i vnitřním bodem úsečky CP. Protože

\<LPC\ = \<LPS\ = \<LAS\ = I
je APSL tětivový čtyřúhelník. Vzhledem к tomu, že úhel ALS je pravý,
je i úhel APS pravý (přímky АР a CP jsou na sebe kolmé), a proto jsou
přímky KL a AP rovnoběžné. Tím je důkaz hotov.

Poznámka. Protože kružnice к je opsaná trojúhelníku KLM, mů-
žeme jeho vnitřní úhly snadno vyjádřit z příslušných středových úhlů:
\%.KSL\ = 180° — 7, takže \kKML\ — 90° — ^7 atd.

A - I - 3

Pro libovolná reálná čísla x,y,z E (—1,1) platí 1 — x2 ^ 0, 1
^ 0, 1 — z1 ^ 0. Užitím nerovnosti mezi aritmetickým a geometrickým

V2 ^
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průměrem pro trojici nezáporných reálných čísel 1 — x2, 1 — y2, i — z2
tak dostaneme

(1 - X2) + (1 - y2) + (1 - z2)y(l-x2)(l-i,2)(1-Z2)š 3

3 — (x2 + y2 + z2)
3

takže

ж2)(1 — y2)(l — z2) ^ 6 — 2(x2 + y2 + z2).
Vyhovují-li reálná čísla x,y,z £ (—1,1) podmínce xy + yz + zx = 1,

ukážeme, že splňují také nerovnost

бУа (1)

6 — 2(x2 + y2 + z2) ^ 1 + (x + у + z)2. (2)

Pravou stranu této nerovnosti upravíme na tvar

1 + x2 + y2 + Z2 + 2 (xy + yz + zx) = 3 + {x2 + y2 + z2)

což po dosazení do (2) vede к ekvivalentní nerovnosti

x2 + y2 + z2 ^ 1.

Její platnost ověříme snadno. Stačí totiž dokázat, že pro reálná čísla x,

y, z, která vyhovují podmínkám úlohy, platí nerovnost

x2 + y2 + z2 ^ xy + уz + zx,

což je však ekvivalentní nerovnosti

yf + (y-zf + (z-xÝZ 0,(x

která platí pro všechna reálná čísla x, y, z.

Závěr. Nerovnost, kterou jsme měli dokázat, vyplývá z dokázaných
nerovností (1) a (2). Rovnost v ní přitom nastane, právě když nastane
současně v obou zmíněných nerovnostech. To nastane, právě když x =
— у — z, což s ohledem na podmínku xy + уz + zx = 1 dává pouze
dvě možnosti x — у — z = ±|\/3, pro něž v dokázané nerovnosti platí
rovnost.
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A - I - 4

a) Označme A a В hledané podmnožiny. Protože obě mají stejný počet
prvků, je počet prvků množiny M nutně sudý. Je tedy n — 2k, kde к je
vhodné přirozené číslo.

Pro n — 4 neexistuje rozklad množiny M = {1,2, 3,4} na dvě pod-
množiny daných vlastností, protože aritmetický průměr libovolných dvou
různých čísel z množiny M se nemůže rovnat žádnému z těchto čísel. Se-
strojme vyhovující rozklad množiny M pro několik prvních sudých čísel n

(aritmetický průměr prvků podmnožin vyznačíme polotučně):
A = {1}
rozklad neexistuje
A = {1.2.3}
A = {2,3.4.7}
A = {1.2,3,4, 5}
A ={1,2,3,4,6, 8}

Nyní ukážeme, že hledaný rozklad množiny M existuje pro libovolné
n — 2k takové, že к ф 2.

Pro lichá čísla к vyhovuje například rozklad množiny M na podmno¬

В = {2}

в = {4,5,6}
В = {1,5,6,8}
В = {6,7,8,9,10}
В = {5,7,9,10,11,12}

žiny
А = {1,2,...,Л}

Součet všech prvků množiny A je \k(k -f- 1), jejich aritmetický průměr je
|(/c + 1), což je přirozené číslo. Jelikož 1 ^ + 1) ^ k, je aritmetický
průměr všech prvků množiny A prvkem množiny A. Podobně aritmetický
průměr |(3к + 1) všech prvků množiny В je prvkem množiny B.

Pro к — 4 jsme existenci rozkladu ukázali v tabulce, pro sudá čísla
к ^ 6 vyhovuje například rozklad množiny M na podmnožiny

В = {k + l,k + 2,...,2k}.

A = {l,2,...,fc —2,fc, |(3/c-2)} В = M\ A.

Platí к < J(3к — 2) ^ 2k а ^(3k — 2) je přirozené číslo. Množina A tedy
obsahuje к přirozených čísel z množiny M. Součet všech prvků množiny
A je

1+2+.. . + (k—2)+k+^(3k—2) — —2)(fc—1) —(— /с —(— (3/c—2) = ^k(k-Ь2).

Jejich aritmetický průměr je ~{k -f 2), což je přirozené číslo. Jelikož 1 Sí
^ \{k + 2) ^ к 2, je aritmetický průměr všech prvků množiny A
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prvkem množiny A. Obdobně ukážeme, že aritmetický průměr |к všech
prvků množiny В je prvkem množiny B.

Poznámka. Pro к sudé nevyhovuje například rozklad množiny M na

podmnožiny

A = {l,2,...,k- l,f/e} В = M \ A,

protože průměr |к všech prvků množiny В je prvkem množiny A. Vyho-
vuje však rozklad jiného druhu

A — {1,3,..., к — 1} U {£:, /с + 4} U {/c + 5, /с + 7,..., 2/c — I},
В — {2,4,... ,k — 2}U{fc + l,fc + 2,fc + 3}U{/c + 6,/c + 8,..., 2k}

a to dokonce i pro hodnotu к — 4, kdy v pravých stranách těchto rovností
„chybějí“ třetí skupiny prvků, jež mají obecně po \{k — 4) prvcích. Počet
prvků takové množiny A je roven ^k + 2 + — 4) = k, jejich součet je
roven

к2 {к — 4) (3к + 4)
= k2~ + (2k + i) + 4

takže jejich průměr je číslo ke A. Součet všech к prvků množiny В je
roven

(k — 2)k (k -4)(3fc + 6)
= k2+ (3к + 6) + -2к

4 4

takže jejich průměr je číslo к — 2 £ В.

b) Označme А, В a C hledané podmnožiny množiny M. Protože
všechny mají stejný počet prvků, je číslo n nutně dělitelné třemi, je tedy
tvaru n — 3k, kde к je vhodné přirozené číslo. Pro součet s všech prvků
množiny M platí s = |3/c(3A; + l). Součet tří aritmetických průměrů všech
prvků jednotlivých množin А, В a C je pak roven s/k, tedy |(3/c + 1).
Tento součet musí být podle podmínek úlohy přirozené číslo, proto je к
nutně liché.

Pro čísla n = 3k, kde к je liché, ukážeme, že zadání vyhovuje například
rozklad množiny M na podmnožiny

A = {1, 2,..., k], B = {k + l,k + 2,...,2k}
a C = {2fc + l,2fc + 2,...,3fc}.

Součet všech prvků A je |k(k + 1), jejich aritmetický průměr je roven
+ 1), což je přirozené číslo. Jelikož 1 ^ к + 1) k, je aritmetický
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průměr všech prvků množiny A prvkem množiny A. Podobně ukážeme,
že aritmetický průměr |(3k + 1) všech prvků množiny В je prvkem mno-
žiny В a aritmetický průměr ^(5k +1) všech prvků množiny C je prvkem
množiny C.

Závěr. Podmínkám úlohy v případě a) vyhovují všechna sudá čísla n
různá od 4, v případě b) všechna lichá čísla n dělitelná třemi.

A - I - 5

Poloměr dané kružnice к označme r. Leží-li bod A na kružnici /с, je bod S
středem kružnice opsané každého z uvažovaných trojúhelníků ABC a hle-
danou množinou je jednobodová množina {S'}. Dále rozlišíme dva pří-
pády:

a) Nechť |AS| > r. Uvažujme nejprve rovnorarnenný trojúhelník ABC
se základnou BC, který vyhovuje podmínkám úlohy. Střed O kružnice
jemu opsané je vnitřním bodem úsečky AS a přitom platí \AO\ = \BO\ —

= \co\.
Nyní ukážeme, že hledanou množinou O středů kružnic opsaných

všem trojúhelníkům ABC, které vyhovují podmínkám úlohy, je přímka p,
která je kolmá к AS a prochází bodem O (obr. 17).

Uvažujme libovolný trojúhelník AB'C, kde B'C je průměr kruž-
nice /с, a označme O' průsečík osy jeho strany B'C s přímkou p, takže

na ose B'C'). Podle Pythagorovy věty\0'B'\ \0'C'\ (bod O' leží
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v pravoúhlém trojúhelníku CCS platí

\0'B'\ = \0'C'\ = ^\0'S\2 -f r2 = y/\00'\2+ \OS\2+r2.

Pro velikost úsečky O'A přitom máme

\0'A\ = y/\AO |2 + \00'\2 = V\BO\2 + 100'\2 =

= ^\OS\2+r2 + \00'\2.

Odtud \0'A\ = \0'B'| = \0'C'\, tudíž bod O' je středem kružnice opsané
trojúhelníku AB'C a podle konstrukce leží na přímce p.

Naopak, pro libovolný bod O1 přímky p lze sestrojit průměr B'C
kružnice k, který je kolmý к přímce 0'S. Z předchozích úvah vyplývá,
že \CA\ = \0'B'\ = \0'C'\, takže jsme našli trojúhelník AB'C požado-
váných vlastností, jehož kružnice opsaná má střed O'.

b) Nechť |ASj < г. V tomto případě lze postupovat analogicky.
Střed O je zde vnitřním bodem polopřímky opačné к polopřímce SA.
Dojdeme přitom ke stejnému výsledku jako v případě a).

Závěr. Není-li A bodem kružnice k, je hledanou množinou 0 přímka p,
která je kolmá к AS a současně prochází středem O kružnice opsané rov-
noramennému trojúhelníku ABC se základnou BC, která je průměrem
kružnice к kolmým na AS. Je-li A je bodem kružnice k, je O = {5}.

Jiné řešení. Pro daný bod A, který neleží na kružnici k, uvažujme
trojúhelník ABC daných vlastností. Označme l kružnici opsanou troj-
íihelníku ABC (obr. 18). Protože bod S je středem společné tětivy BC
kružnic к a l, protne kružnice l polopřímku opačnou к polopřímce SA
ve vnitřním bodě, který označíme A'. Pro mocnost mi(S) bodu S ke
kružnici l přitom platí

2
- —lAS'l • \A'S\mi(S) = —|Б5| • |C5| (1)= —r

kde r je poloměr kružnice k. Odtud plyne, že vzdálenost |A'.Sj, a tedy
i poloha bodu A' na polopřímce opačné к SA jsou jednoznačně určeny
polohou bodu A. Pro všechny trojúhelníky ABC vyhovující podmínkám
úlohy je tedy AA' pevná úsečka. Kružnice opsané všem uvažovaným troj-
úhelníkům ABC proto mají společnou tětivu AA', takže jejich středy leží
na ose p úsečky AA'. V případě, kdy ABC je rovnoramenný trojúhelník
se základnou BC, je úsečka AA' průměrem kružnice l a její střed O je
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současně středem úsečky AA!. Přímka p prochází tímto bodem O kolmo
к přímce AS.

Naopak, ke každému bodu O' přímky p najdeme trojúhelník ABC
požadovaných vlastností, který má střed opsané kružnice v bodě O'. Stačí
sestrojit průměr BC kružnice k, který je kolmý к přímce O'S. Pro pevně
uvažované body A, A! a S jsme tak sestrojili body В, C, pro něž platí
vztah (1). To znamená, že body А, В, C a A! leží na téže kružnici /.
Vzhledem к tomu, že bod O' je průsečíkem os tětiv AA! а ВC této
kružnice, které nejsou rovnoběžné, je bod O' středem kružnice l, tedy
středem kružnice opsané trojúhelníku ABC.

A - I - 6

Nechť / je libovolná funkce požadovaných vlastností. Dosadíme-li do da-
ného vztahu postupně у = 0 а у = 1, dostaneme rovnosti

/(/(x)) = x + /(2006), resp. f(f(x) + l) = x + /(2007) (1)
a jejich odečtením

f(f(x) + 1) - f(f(x)) = /(2 007) - /(2 006).
Poslední vztah lze zjednodušeně zapsat jako

f(z + 1) - f(z) = /(2 007) - /(2 006) (2)
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pro každé takové 2 G Z, které patří do oboru hodnot funkce /. Tímto obo-
rem je ovšem celá množina 1, jak hned vidíme z kterékoli z rovností (1).

Rovnost (2) platná pro každé 2 G T znamená, že funkce / na Z je
(oboustranně nekonečná) aritmetická posloupnost, takže její předpis musí
být tvaru f(z) = az + b s vhodnými konstantami a, b G IR. Jejich možné
hodnoty zjistíme, když dosadíme do obou stran rovnosti ze zadání:

/(/(z) + V) = a(f{x) + y) + b = a2x + ay + ab + b,
x + f(y + 2 006) = x + a(y + 2 006) + Ь = х + ау + 2 006a + b.

Takové dva výrazy mají tutéž hodnotu pro všechna x, у G 2, právě když
zároveň platí a2 = 1 a 2 006a = ab, neboli a = ±1 a b = 2 006. Řešením
úlohy jsou tedy jediné dvě funkce určené předpisy

/1 (x) = x T 2 006 а /2(2;) = —x + 2 006.

A - S - 1

Předpokládejme, že číslo s vyhovuje zadání úlohy, a označme kořeny x\

x2i s3, x4 dané rovnice tak, aby platilo

(0)2:1X2 — — 2.

Z rozkladu na kořenové činitele

4x4 — 20x3 + sx2 + 22x 2 = 4(x xi)(x - x2){x - хз)(х - x4)

po roznásobení a porovnání koeficientů u stejných mocnin x dostaneme
Vietovy vztahy

(1)X1 + x2 + x3 + x4 = 5,
s

(2)X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4 = -4’
11

(3)X1X2X3 + X1X2X4 + X1X3X4 + X2X3X4 = —
2

1
(4)XiX2X3X4 = -

2

Z rovností (0) a (4) ihned plyne

1
S3S4 = -■

4
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Z rovnosti (3) upravené do tvaru

11
{x\ + X2)x3X4 + (x3 + X4)xiX2 2

vychází po dosazení hodnot xix2 а x3.x4 rovnice

111
-(xi + x2) - 2(x3 + x4) = - —

která spolu s rovnicí (1) tvoří soustavu dvou lineárních rovnic pro ne-
známé součty x\ + x2 a x3 -f x4. Snadným výpočtem zjistíme, že řešením
této soustavy je dvojice hodnot

X\ + x2 — 2 a x3 + x4 = 3.

Dosadíme-li vše zjištěné do rovnosti (2) upravené do tvaru

$

XiX2 + (xi + x2) (x3 + X4) + Х3Х4 = -

zjistíme, že nutně s — 17.
Nyní musíme provést zkoušku: z rovností

x\ + x2 — 2 a x\x2 — —2

vyplývá, že čísla Xi;2 jsoti kořeny kvadratické rovnice

x2 — 2x — 2 = 0, tedy x\)2 l±\/3; (5)

z rovností
1

жз + x4 = 3 a x3x4 -- -
■1

zase plyne, že čísla x3)4 jsou kořeny kvadratické rovnice

1 3
7 = 0, tedy x3,4 = -±y/2.x2 — Зх H—
4 (6)

Vidíme, že xit2,3,4 jsou skutečně čtyři navzájem různá reálná čísla,
která splňují soustavu rovnic (1)—(4) pro hodnotu s = 17, takže to jsou
kořeny rovnice ze zadání. Zdůrazněme, že zadáním úlohy nebylo tyto
kořeny vypočítat. Nestačilo by ovšem jen ověřit, že každá z kvadratických
rovnic v (5) a (6) má dva různé reálné kořeny (to nastane, právě když
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jejich diskriminanty jsou kladná čísla), kromě toho by bylo nutné ještě
ukázat, že tyto dvě rovnice nemají společný kořen.

Hledané číslo s je jediné a má hodnotu s = 17.

Jiné řešení. Označme x\$ ty kořeny dané rovnice, pro něž má platit
X\X2 = —2. Mnohočlen z levé strany rovnice je dělitelný mnohočlenem
(x — x\){x — X2), tedy mnohočlenem tvaru x2+px — 2 (kdep = —x\ — x2),
platí tudíž rozklad

4x4 — 20x3 4- sx2 + 22x — 2 {x2 -f px — 2)(4x2 + qx -f r).

Roznásobením a porovnáním koeficientů u stejných mocnin x dostaneme
soustavu

—20 = 4p + g, s = — 8+pq + r, 22 = —2qpr, —2 — —2r.

Ze čtvrté rovnice máme r = 1, po dosazení do třetí 22 = —2q + p, což
spolu s první rovnicí dává p = —2 a q — —12. Ze zbylé (druhé) rovnice
pak určíme hodnotu s — 17. Víme, že pro ni má mnohočlen ze zadané
rovnice rozklad

4x4 - 20.T3 + 17x2 + 22x - 2 = (x2 - 2x - 2)(4x2 - 12x + 1)

zbývá provést zkoušku (stejně jako při prvním postupu).

A - S - 2

Uvažovaná množina je množinou právě všech (přirozených) dělitelů
čísla 160 = 25 • 5. Její prvky můžeme sdružit do dvojic tak, aby součin
čísel v každé dvojici byl roven číslu 160:

1 • 160 = 2 • 80 = 4 • 40 = 5 • 32 = 8 • 20 = 10 • 16.

To znamená, že je-li A — {a, b, c} trojice navzájem různých dělitelů
čísla 160, je i A' — {160/a, 160/6,160/c} trojice navzájem různých děli-
telů čísla 160.

Součin abc prvků trojice A se dá vyjádřit ve tvaru

2k5l, kde к e {0,1,2,..., 14}, l e {0,1, 2, 3} (1)

(číslo 160 má jen dva dělitele, jež jsou násobkem 25, proto se v rozkladu
součinu abc nemůže objevit 215). Není těžké zjistit, že největší přirozené
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číslo tvaru (1), které je menší než 2 006, je číslo 2 000 = 24 • 53 a nejmenší
přirozené číslo, které je tvaru (1) a je větší než 2 006, je číslo 2 048 = 211
(samo číslo 2 006 tvaru (1) není). Přitom 2 000 • 2 048 = 1603.

Je-li tedy součin prvků trojice A menší než 2 006, je nutně abc ^
2 000 a součin 1603/(a6c) prvků odpovídající trojice A' je nejméně

1603/2 000 = 2 048. Naopak, je-li součin prvků trojice A větší než číslo
2 006, je abc ^ 2 048 a součin prvků trojice A1 je nejvýše 1603/2 048 =
= 2 000. Jinými slovy tříprvkových podmnožin se součinem prvků menším
než 2 006 je právě tolik jako tříprvkových podmnožin se součinem prvků
větším než 2 006.

A - S - 3

Bod U jako průsečík os vnitřních úhlů při vrcholech A a D daného li-
choběžníku má stejnou vzdálenost od stran AB, AD a zároveň i od stran
AD, DC. To znamená, že má stejnou vzdálenost od obou základen AB,
CD lichoběžníku ABCD. Podobně i bod V, který je průsečíkem os úhlů
při vrcholech В a C, má od obou základen stejnou vzdálenost. Jsou tedy
přímky UV a AB rovnoběžné. Tím je vyřešena část a).

Protože součet vnitřních úhlů jak při vrcholech A a D, tak při vr-
cholech В a C je 180°, je součet úhlů přilehlých straně AD trojúhelníku
ADU roven 90° stejně jako součet úhlů přilehlých straně BC trojúhel-
niku BCV. To znamená, že oba uvedené trojúhelníky jsou pravoúhlé
(s pravým úhlem při vrcholu U, resp. V, obr. 19). Čtyřúhelník UTVS
je tedy tětivový (z předpokladu úlohy \AB\ > \CD\ ^ \DA\ plyne, že
polopřímky AU a CV se neprotínají, body S a T proto leží v opačných
polorovinách určených přímkou UV a body U, T, V, S leží na kružnici
v uvedeném pořadí).

D C

A В

Obr. 19
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Jak už víme, jsou přímky UV, AB a CD rovnoběžné, je tedy
\kVUT = \<CDT\ — 45°. Z rovnosti obvodových úhlů nad stranou TV
tětivového čtyřúhelníku UTVS tak plyne |<V5T| = \<VUT\ = 45°.
To je zároveň i velikost obvodového úhlu TSB příslušného tětivě ТВ
kružnice opsané trojúhelníku STB (obr. 20). Zbývá ukázat, že na téže

CD

E ВA

Obr. 20

kružnici leží i bod E. To je zřejmé, pokud E = T. V opačném případě
stačí zjistit, že velikost úhlu TEB je 180° — 45° nebo 45° podle toho,
zda přímka ВТ body 5, E odděluje či nikoli, což okamžitě plyne z toho,
že přímka DT svírá se základnou AB úhel 45° (obr. 20 a 21). Tím je
vyřešena část b).

D CS

\Uy У/
\
\
\
\

—вEX)A

T

Obr. 21

А - II - 1

Označme a, b, с velikosti stran trojúhelníku ABC. Pro jeho výšku Vb platí
nerovnost

c^vb
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neboť Vb je délka nejkratší úsečky spojující vrchol В s bodem přímky AC.
Pro obsah S trojúhelníku ABC tak platí:

^ CVc ^ VhVr . o
S — —- > — > 10cm2.

2

Pokud existuje trojúhelník ABC vyhovující podmínkám úlohy, jehož
obsah je právě 10 cm2, potom v obou nerovnostech S — \cvc A \vbvc ^
^ 10 cm2 nastává rovnost. Vychází tedy c = Vb = 4cm a současně vc =
= 5 cm. Z první rovnosti plyne, že takový trojúhelník musí být pravoúhlý
s pravým úhlem při vrcholu A. Pro délku jeho odvěsny AC pak platí
b = vc — 5 cm a délka a jeho přepony BC je rovna \/44cni. Ze vzorce
S = |ava pro jeho výšku va plyne

2 S 20
cm > 3 cm.va = —

л/41

Pravoúhlý trojúhelník ABC s odvěsnami b — 5 cm a c = 4 cm tedy
vyhovuje podmínkám úlohy.

Nejmenší možný obsah trojúhelníku ABC, jehož výšky vyhovují pod-
mínkám úlohy, je 10cm2.

A - II - 2

Předpokládejme, že rovnice

x4 — 4x3 + 4x2 4- ax + b — 0 (1)

má dva různé reálné kořeny X\ a X2, pro které platí x\ + ж2 = X\X2 = p.
Potom mnohočlen na její levé straně je dělitelný kvadratickým trojčlenem
(x — x\)(x — X2) — x2 — px + p, a má tudíž rozklad

x4 — 4ж3 + 4.T2 + ax + b = (ж2 — px + p)(x2 + rx + s),

kde ras jsou reálná čísla. Roznásobením výrazu na pravé straně poslední
rovnosti a porovnáním koeficientů u jednotlivých mocnin ж mnohočlenů
na obou stranách dostaneme

(2)—4 = -p + r,

4 = p + s — pr,

a = —ps + pr,

b = ps.

(3)
(4)
(5)
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Ze vztahu (2) plyne
(6)v — p — 4.

Dosazením za r do vztahu (3) dostaneme

(7)s = 4 - p + p(p - 4) = (p - 4)(p - 1).

Jelikož kvadratická rovnice x2 — px + p — 0 má dva různé reálné kořeny
X\ a X2, je její diskriminant kladné číslo, takže

p2 — 4p > 0. (8)

Sečteme-li rovnice (4) a (5) a dosadíme za r podle (6), vyjde podle před-
chozího vztahu

a + b = pr = p(p — 4) = p2 — Ap > 0

což jsme chtěli dokázat.
Pro diskriminant D rovnice

x2 + rx + s = 0

podle vztahů (6), (7) a (8) platí

D = r2 — 4s = (p — 4)2 — 4(p — 4)(p— 1) 3p(p —4) = —3(p2 —4p) < 0.

Rovnice tudíž nemá reálné kořeny. Daná rovnice (1) proto nemá jiné
reálné kořeny než x\ a x^-

A - II - 3

a) Označme po řadě a a /5 velikosti vnitřních úhlů při vrcholech А а В
uvažovaného pravoúhlého trojúhelníku ABC. Ze vztahu mezi obvodovým
a středovým úhlem pro společnou tětivu CM kružnic k\ а &2 opsaných
po řadě trojúhelníkům AMC a BMC plyne (obr. 22)

\<MS\C\ + \<MS2C\ = 2a + 2(3 = 180°.

Čtyřúhelník CS\MS2 je tudíž tětivový. Protože body M a C jsou sou-
měrně sdružené podle osy úsečky CM, na níž současně leží středná SJSý
kružnic кг a k2, platí dále

\<SiMS2\ = |<5iC52| = 90°.
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Kružnice opsaná čtyřúhelníku CS1MS2 je tedy Thaletovou kružnicí se-

strojenou nad průměrem SiS2■ Body S a S\ však současně leží na ose

odvěsny AC, podobně body S a S2 leží na ose odvěsny BC uvažovaného
trojúhelníku. Je tedy
Thaletově kružnici opsané čtyřúhelníku CS\M62. (Je-li M = S, platí
toto tvrzení triviálně.) Tím je dokázána část a) úlohy.

90°, a bod S proto leží rovněž na

A 'S' M В

Obr. 22

b) Pro poloměr r kružnice (s tětivou CS) nalezené v části a) zřejmě
platí 2r A |C5| s rovností, právě když je CS její průměr. Protože kružnice
s průměrem CS prochází středy obou odvěsen АС, BC, rovnost 2r =
= ICSj nastane, právě když bod S\ je střed AC a S2 je střed BC (bod
S\ leží na ose odvěsny AC a bod S2 na ose odvěsny BC), což zřejmě
odpovídá volbě bodu M jako paty výšky z vrcholu C na přeponu AB.

Jiné řešení, a) Označme P\ a P2 po řadě středy úseček AM a BM
(obr. 23). Protože ve stejnolehlosti se středem M a koeficientem | se
úsečka AB zobrazí na úsečku P1P2, zobrazí se střed S úsečky AB na

C

S2

1 /

j
v
!\ 1

A
A Pi s Q M P2 в

Obr. 23
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střed Q úsečky P1P2 a zároveň jakožto obraz bodu S ve zmíněné stejno-
lehlosti je bod Q středem úsečky MS. Body Pi, P2 jsou kolmé průměty
bodů S1, S2 na přeponu AB, takže bod Q je kolmým průmětem středu O
kružnice sestrojené nad průměrem S1S2. Podle Thaletovy věty 11a této
kružnici zřejmě leží bod S, protože přímky SiS a S2S jakožto osy na-

vzájem kolmých odvěsen АС a BC svírají pravý úhel. Ze souměrnosti
uvedené kružnice podle přímky OQ pak plyne, že na ní leží i bod M,
a tedy i bod C (ze souměrnosti podle přímky SiS2)- Tím je část a)
dokázána.

b) Pro úsečku S1S2 a její kolmý průmět P1P2 platí = IA-P2I =
= ^\AB\. Kružnice opsaná čtyřúhelníku CS1MS2 má proto nejmenší
průměr ^|AB|, právě když S1S2 || AB, což vzhledem ke kolmosti úseč-
ky CM a její osy S1S2 nastane, právě když M je patou výšky z vrcho-
lu C v trojúhelníku ABC. (Poloměr r této kružnice má pak velikost
r = \\AB\.)

Jiné řešení, a) Uvažujme podobné zobrazení složené z otočení kolem
středu C o orientovaný (pravý) úhel ACB a ze stejnolehlosti se středem C
a koeficientem rovným poměru \BC\ : \AC\. Toto zobrazení převede body
А, В a M po řadě do bodů В, В' a M', přičemž BC je výška na přeponu
AB' pravoúhlého trojúhelníku ABB' a bod M' leží na jeho odvěsně BB'
(obr. 24). Podle shodných úhlů AMC a BM'C (nebo též podle pravých

B'

M'

A S M В

Obr. 24

úhlů MCM' a MBM') vidíme, že kružnice opsaná trojúhelníku BMC
je opsána i trojúhelníku BM'C, takže její střed S2 je obrazem bodu S1
v uvažovaném podobném zobrazení (to převádí trojúhelník AMC právě
na trojúhelník BM'C). To znamená, že úhel S1CS2 je pravý, takže je
pravý i úhel S1MS2 (neboť přímka S1S2 je osou úsečky CM). Konečně
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pravý je i úhel S1SS2 (neboť jeho ramena leží na osách navzájem kolmých
odvěsen АС a BC), takže všechny tři body С, M, S leží na Thaletově
kružnici sestrojené nad průměrem S1S2.

Tím je dokázána část a) úlohy. Část b) vyřešíme stejně jako v prvním
řešení.

A - II - 4

Ukážeme, že nejmenší m je 113 (nezávisle na hodnotách p, q). Zřejmě je
m > 1. Pro libovolná přirozená čísla c < d a m > 1 označme Sm(c,d)
součet všech zlomků v základním tvaru, které leží v otevřeném intervalu
(c, ď) a jejichž jmenovatel je m. Pak platí nerovnost

2
Sm(c, c + 1) -j ^ H I + ...+ ( c +

. m — 1

V°+~T

m — 1

rn m

= (m

v níž rovnost nastane, právě když všechna čísla 1, 2,..., m — 1 jsou ne-
soudělná s m, tj. právě když m je prvočíslo.

Pro daná přirozená čísla p, q a m > 1 platí

Sm{Pi я) — Sm{PiP + 1) + Sm(p + 1,p + 2) + ... + >5m(g — 1, <?) =

. . . m — 1 \

i)(p +1) + —y~ )((m - l)p+ —+ ((< + ...m —

+ ((^-1)(9-1) + ^-^)
(q-p)ip + q-1)

+ {m- 1)^ =
(m - l)(g2 -

-- (m — 1)

= (™-1)-Ц-^(Р + 9-1 + 1) =

2

p2)
2

tedy
(m — l)(g2 p2)Sm{p,q) č (9)2

Rovnost ve vztahu (9) přitom nastane, právě když m je prvočíslo. Podle
zadání však platí

sm(p,q) ^ 56(g2
S ohledem na vztah (9) vidíme, že nutně platí \{m — 1) ^ 56, tj. m ^ 113.
Vzhledem к tomu, že číslo 113 je prvočíslo, je nejmenší hledané číslo
m = 113.
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Jiné řešení. Součet všech zlomků, které mají jmenovatel m, nejsou celá
čísla a leží v intervalu (p, q), můžeme také určit jako rozdíl součtu všech
zlomků se jmenovatelem m ležících v uzavřeném intervalu (p, q) a součtu
všech přirozených čísel z tohoto intervalu. Pro uvažovaný rozdíl d pak
platí

qm q
J

<*= E E*m
j=p

Menšence i menšitele v uvažovaném rozdílu lze určit jako součty členů
aritmetických posloupností. Pro součet prvních n členů aritmetické po-

sloupnosti (ai) využijeme známý vztah

j=pm

fli + «2 + • ■ • + an — + an).

Pro hledaný rozdíl d tak dostáváme:

d= \{jp + q){{q~p)m + l) - \{p + q){q~p+ 1) =
= \{v + q)[({q -p)™ +1) -(q-p +1)] = - i)(?2 -p2)-

Dále budeme postupovat stejně jako v předchozím řešení.

A - III - 1

Nejprve ukážeme, že úloha má řešení pro libovolné sudé n. Postavíme-li
figurku např. na kterékoliv rohové pole šachovnice n x n, projdeme celou
šachovnici po sousedních blocích typu 2 x n způsobem naznačeným na
obr. 25 pro n — 8. Posloupnosti tahů zde odpovídá posloupnost na sebe
navazujících orientovaných úseček. Zcela analogicky lze postupovat pro
každé sudé n.

AA AA

В В В

А А А А

В В В

А А А А

В В В

АА А А

Obr. 26
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Nyní ukážeme, že pro žádné n ^ 3 liché nelze šachovnici projít poža-
dováným způsobem. Důkaz provedeme sporem. Připusťme, že pro určité
liché n na šachovnici nxn existuje posloupnost tahů vyhovující podmiň-
kám úlohy. Všechna její pole obarvíme podobně jako běžnou šachovnici
8 x 8, a to tak, že rohová pole budou černá (podobně jako na obr. 26
pro n = 7). Dále všechna černá pole označíme písmeny А а В tak, aby
žádná dvě černá pole mající společný právě jeden bod (vrchol) nebyla
označena týmž písmenem. Budou-li rohová (černá) pole označena např.
písmenem A, bude zřejmě počet polí Aon větší než počet polí B.

Pole šachovnice, která ňgurka požadovaným způsobem projde, označ-
me postupně 1,2,3, ...,n2 a k-tý tah zápisem к f—> к + 1. Je-li pole
s číslem 1 černé, jsou černá právě pole s čísly 1, 2, 5,6,9,10,...; přitom
každý (šikmý) tah 1 i—> 2, 5 i—>• 6, 9 i—> 10, ... spojuje černá pole označená
různými písmeny, takže se celkové počty polí А а В liší nejvýše o 1, což
odporuje zjištěnému rozdílu. Ke stejnému sporu dojdeme i v případě,
kdy je pole s číslem 1 bílé, takže černá jsou právě pole s čísly 3,4,7, 8,
11,12,... spojená (šikmými) tahy 3 i—> 4, 7 i—> 8, 11 i—► 12, ...

Tím je úloha vyřešena, jejímu zadání vyhovují všechna sudá n ^ 2.

A - III - 2

Průsečík os vnitřních úhlů při vrcholech A, D v trojúhelnících BCA,
BCD označme H (obr. 27). Jak známo, je bod H středem příslušného ob-
louku BC kružnice к opsané čtyřúhelníku ABCD (oblouku, který neob-
sáhuje vrcholy A a D). Označme e = \<BAH\ = \<CAH\ = \<BDH\ —

= \<CDH\ = \<CBH\ a <p= \<ABL\ = \<CBL\. Pak platí

\<BLH\ = \<BAL\ + \<ABL\ = e + у = \<LBH\.

Trojúhelník HLB je tudíž rovnoramenný se základnou LB, takže \HB\ =
= \HL\. Analogicky je i \HC\ = \HM\. A protože \HB\ = \HC\, je
rovněž \HL\ — \HM\, takže trojúhelník HML je rovnoramenný a platí
\<HLM\ = \<HML\.

Označme ještě P kolmý průmět bodu L na přímku AC a Q kolmý
průmět bodu M na přímku BD (uvažovaný bod R je tak průsečíkem
přímek LP a MQ). Protože pravoúhlé trojúhelníky APL a DQM se

shodují v úhlech při vrcholech JaD, jsou shodné i úhly PLA a QMD
při vrcholech L a M. Odtud a z rovnosti \<P[LM\ = \<HML\ tak vy-
plývá rovnost \<PLM\ — \<QML\. To znamená, že trojúhelník LMR
je rovnoramenný, jak jsme měli dokázat.
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A - III - 3

Uvažujme libovolnou funkci / požadovaných vlastností. Nejprve ukáže-
me, že je prostá. Jestliže f(yi) = f(y2), pak pro všechna přirozená čísla
x platí

Vif(x) = f(xf(yi)) = f(xf(y2)) = y2Í(x)
a poněvadž f{x) je přirozené číslo, plyne odtud y\ — y2, což znamená,
že funkce / je prostá.

Volbou x — 1 v dané rovnici dostaneme = yf( 1), což pro
у — 1 dává /(/(!)) =/(l). Protože / je prostá, plyne odtud

Л 1) = 1 (1)

takže pro všechna přirozená čísla у navíc platí

/(/Ы) = У- (2)

Z právě odvozeného vztahu zároveň plyne, že oborem hodnot funkce f
je celá množina N. Můžeme tedy pro libovolné přirozené číslo z najít y,
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pro něž у = f(z) a zároveň f{y) = z, takže podle vztahu ze zadání pak
platí

f{xz) = f(x(f{y)) = yf{x) = f(z)fO).
Odtud lze matematickou indukcí snadno odvodit, že pro všechna přiro-
zená čísla n, x\,x2,,xn platí

(3)f(xix2 ...xn) = f(xi)f(x2) ■ ■ ■ f(xn)-

Ukážeme, že obraz f(p) libovolného prvočísla p je také prvočíslo. Před-
pokládejme, že f(p) = ab, kde a, b jsou přirozená čísla různá od jedné.
Podle (2) a (3) platí

P = f{f(p)) = f{ab) = f(a)f(b).

Protože funkce / je prostá a /(1) = 1, platí /(a) > 1, f(b) > 1, což
odporuje předpokladu, že p je prvočíslo.

Jelikož 2 007 = 32 • 223 je rozklad čísla 2 007
neme podle (3)

prvočinitele, dosta-na

/(2007) = /2(3)/{223)
kde obě čísla /(3) a /(223) jsou prvočísla. Jestliže /(3) = 2, potom
podle (2) platí /(2) = 3 a nejmenší možná hodnota /(223) je 5, takže
/(2 007) ^ 20. Pokud /(3) — 3, nejmenší možná hodnota /(223) je 2
a platí /(2 007) ^ 18. Snadno vidíme, že pro každou jinou volbu hodnot
/(3) a /(223) platí /(2 007) ^ 18.

Ukážeme, že existuje funkce vyhovující zadání, pro kterou platí
/(2 007) = 18. Definujme funkci / následujícím způsobem: Pro libovolné
přirozené číslo x, které zapíšeme jako x = 2k223mq, kde kam jsou celá
nezáporná čísla a q je přirozené číslo nesoudělné s čísly 2 a 223, zadáme
hodnotu f{x) vztahem

f(2k223mq) = 2W223kq.

Pak platí /(2 007) = /(223 • 32) = 2 • 32 = 18. Ověříme, že tato funkce
/ má požadovanou vlastnost. Nechť x = 2kl223miqi а у — 2k‘2223rn2q2
jsou libovolná přirozená čísla zapsaná výše uvedeným způsobem. Potom

f(xf(y)) = / (2fcl 223mi qi f (2^2 223m2 <72)) = /(2'“+m2223m'+'t2</1<ft) =
= 2k2+rni 223m2+kl qiq2
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a současně

yf{x) = 2fca 2237712 д2 /(2fcl 223mi gi) = 2fc2+mi223W2+fclg1g2-
Závěr. Nejmenší možná hodnota čísla /(2 007) je 18.
Poznámka. Z výše uvedeného řešení vyplývá, že každá funkce /, která

vyhovuje dané funkcionální rovnici, je určena nějakou bijekcí <p množiny
prvočísel na sebe, která pro každé prvočíslo p splňuje rovnost <p(<p{p)) =
—

p, a to předpisem

/(i) = i.

•••*) = ■ • ^(Pm)*",
kde pi jsou navzájem různá prvočísla a ki nezáporná celá čísla. Každá
bijekce ip uvedené vlastnosti rozkládá množinu prvočísel na sjednocení
jednoprvkových a dvouprvkových navzájem disjunktních množin tako-
vých, že pro každou z nich tvaru {p} platí ip(p) = p a pro každou z nich
tvaru {pi,P2} platí p>(pi) = P2, p(p2) — Pi- Naopak každý takový rozklad
určuje vyhovující bijekcí cp.

A - III - 4

Ukážeme, že uvedený závěr obecně neplatí. Jako protipříklad zvolíme
množinu

M = I^J\{a:a + lje prvočíslo větší než 2 008},
která zřejmě obsahuje všechna čísla od 1 do 2 007. Přitom aritmetická
posloupnost (an)^_ s prvním členem ai = n £ M a diferencí d = n + 1
má obecný člen tvaru

a/c — ai + (k — 1 )d — n + (k — l)(n + 1) — (n + l)k — 1,

odkud plyne, že číslo + 1 = (n + l)k není prvočíslo pro žádný index
к > 1, takže aleží v M pro každý index к (ať už a*, ^ 2 007, nebo
ад, ^ 2 008). Protože prvočísel je nekonečně mnoho, je nekonečně mnoho
i přirozených čísel, která ve zvolené množině M neleží.

Jiné řešení. Každá vyhovující množina M musí obsahovat všechny
členy 2 007 aritmetických posloupností s prvním členem к a diferencí
к + 1, kde k^ 2 007:

(1,3,5,...), A2 = (2,5,8,...), ..

A2 007 = (2007,4015,6023,...).

A i — • 5
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Zřejmě množina hodnot A*, = {k, 2k + 1, 3/c + 2,...} posloupnosti Ak je
pro každé к tvořena všemi přirozenými čísly tvaru i(k A 1) + к s celým
nezáporným i.

Vysvětlíme, proč

M — A1UA2U...UA2 007

je nejmenší množina požadované vlastnosti. Ukážeme totiž, že pokud
n e Ak pro některá čísla n а к, pak An C ANechť tedy n G Afc a ra G An.
Pak platí n = i(k + 1) + к a m = j(n -f 1) + n pro vhodná celá nezáporná
i a j, odkud m — j(i + l)(k + 1) + i(k + 1) + к — (ji + j + i)(k + 1) + /с,
což znamená, že m G Ад,.

Existuje však nekonečně mnoho přirozených čísel, která v sestrojené
„minimální“ vyhovující množině M neleží; jsou to například všechny ná-
sobky čísla 2 008!.

A - III - 5

Označme ip = \<BAD\ а ф = \kABE\ (obr. 28). Z rovnosti obvodových
úhlů \<AEB\ — \<ADB\ v tětivovém čtyřúhelníku ABDE tak při ob-

A C0 У Вx

Obr. 28

vyklém značení úhlů v trojúhelníku ABC plyne

a + ф = (3 + p.

Označme Co patu výšky z vrcholu C, vc velikost výšky CCo a x, y, p
velikosti příslušných úseků ACq, BCo, PCq (obr. 28), takže

p . p
tg ¥> = -, tg ф=-

(1)

Vc Vc
(2)tga=—, tgP

x x У
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Pokud bod P není průsečík výšek (tj. úhel a + ф není pravý), můžeme
podle (1) psát

tg(a + ф) = tg(/? + </?),
což podle známého vzorce pro tangens součtu po dosazení z (2) dává
(využíváme rovnost tg a tg ф = tgfltgp, která z (2) navíc plyne)

Vc P
_ P

X у у X

neboli

(p-vc)(x-y) =0.
Protože vzhledem к daným předpokladům je p < vc а x ф у, nemůže
poslední rovnost platit. Je tedy a + ф = 90° a bod P je průsečíkem
výšek, což jsme chtěli dokázat.

Jiné řešení. Označme к kružnici opsanou tětivovému čtyřúhelníku
ABDE a uvažme ještě kružnice l a m opsané trojúhelníkům ВЕС a ADC
(obr. 29). Protože tětiva BE kružnice / protíná tětivu AD kružnice m

v bodě P, mají kružnice l, m kromě bodu C ještě další průsečík, který
označíme M. Z uvedené konstrukce vyplývá, že bod P leží uvnitř každé
ze tří uvažovaných kružnic a má к nim stejnou mocnost (je to jejich
potenční bod), proto bod P leží uvnitř úsečky CM.

Z rovnosti obvodových úhlů nad tětivou BC kružnice / plyne
\KBMC\ — \%.BEC\ = 180° — \kAEB\ a analogicky \<AMC\ =
= \<ADC\ — 180° — \<ADB\, což vzhledem к rovnosti obvodových
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úhlů \<AEB\ = \<ADB\ nad tětivou AB kružnice к znamená, že

\<BMC\ = \<AMC\.

Označme N patu výšky z vrcholu C trojúhelníku ABC. Pokud M Ф N,
znamená poslední rovnost, že pravoúhlé trojúhelníky BNM a ANM jsou
shodné, což ovšem odporuje předpokladu \ AC\ 7= \BC\. Je proto M = N,
\<ADC\ = \<BMC\ = \^AMC\ — 90° a bod P je tak průsečíkem výšek
trojúhelníku ABC, což jsme chtěli dokázat.

A - III - 6

Jsou-li x, y, z tři navzájem různá reálná čísla, pak hodnoty

z — xx-y У ~ z
(1)v = w =и =

z — XУ ~ z x-y

jsou zřejmě čísla různá od 0 a
vlastnost tedy musí mít i hodnoty x,y, z z každé hledané trojice. Budeme
proto neustále předpokládat, že platí vztahy

1 a jejich součin je roven 1. Stejnou

x,y,z E U \ {0, -1}, (2)x ф У + z ± x, xyz = 1.

Protože daná množinová rovnice je pro uspořádané trojice (x,y, z),
(z,x,y) a (y, z,rr) stejná, budeme kromě (2) předpokládat, že platí x >
> max{y, 2}, a rozlišíme dva případy podle toho, zda у > z, nebo z >
> y. Zaveďme ještě označení intervalů I\ — (0, 00), /2 (-1,0), h

(-00, -1).
Případ x > у > z. Pro zlomky (1) zřejmě platí и £ ij, v G /2 a w G /3,

takže и > v > w. Daná množinová rovnice proto může být splněna jedině
tak, že к = г, г = у а ш = z. Po dosazení zlomků (1) a snadné úpravě
dojdeme к rovnicím

(3)xy + у — yz + z — zx + x, kde x e 11, у G /2, zel3-

Podle podmínky xyz = 1 z (2) můžeme do rovnice xy + у = zx + x za
člen zx dosadit 1/y a rovnici dále upravit:

—b x =Ф- x(y — 1) = -—^
У У

1 + У 1
xy + y = =b x = — =* У = -

1 + xУ
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(Využili jsme toho, že s ohledem na у G /2 platí уф 1.) Z posledního
vzorce plyne, že hodnota prvního výrazu v soustavě (3) je rovna — 1,
takže z rovnosti druhého výrazu —1 máme

1 + x11
2 = —

11 + У x
1 -

1 + X

pak ovšem i třetí výraz v (3) je roven —1. Proto každé řešení naší úlohy
(ve zkoumaném případě, kdy x > у > z) je tvaru

1 1 + t
(x,y,z) = (t, (4)1 + t t

kde í 6 /1 je libovolné (protože platí (3), zkouška není nutná). Z uve-
děného postupu rovněž plyne, že volbou t G /2 (resp. t G /3) ve
vzorci (4) dostaneme všechna řešení naší úlohy s vlastností z > x > у

(resp. у > z > x), takže při výpisu všech řešení v závěrečné odpovědi
není nutné uvádět cyklické permutace trojic ze vzorce (4).

Případ x > z > y. Pro zlomky (1) tentokrát platí и 6 /3, v G /1
a w G /2, takže v > w > и, a daná množinová rovnice je tudíž splněna,
právě když u = y,v = x& w = z. Po dosazení zlomků z (1) dojdeme
к soustavě

x-y = y{y~z), y - z = x(z-x), z-x = z(x-y). (5)

Sečtením těchto tří rovnic dostaneme

0 = y(y-z)+ x(z - x) + z(x -y) = (y x)(x + y - 2z),

odkud vzhledem к x ф у plyne 2 = 4(x + y). Po dosazení zpět do (5)
snadno zjistíme (opět s ohledem na x ф у), že vyhovuje pouze x = 1,
у ~ —2a2 = — 4. Stejnou trojicí čísel je tvořeno (jediné) řešení úlohy
s vlastností у > x > 2, jakož i (jediné) řešení, pro něž 2 > у > x.

Odpověď: Řešením úlohy jsou všechny uspořádané trojice (4), kde
t G IR \ {0, — 1}, a tři trojice (x, y, 2) tvaru

1 1 1
1,-2,-- 1,-

2

87



Poznámka. Vypíšeme-li všech šest možných soustav odpovídajících
dané množinové rovnici, dostaneme kromě soustav (3) a (5) ještě soustavy

y-z = y(z- x),
у - z = z(z
y-z = z(z-x)
у - z = x(z - x)

První dvě vzniknou ze soustavy (5) cyklickou záměnou proměnných,
takže je lze řešit týmž postupem jako (5). Sečtením všech tří rovnic
v každé ze dvou zbývajících soustav dostaneme tutéž rovnici

x2 +y2 + z2 = xy + уz + zx neboli (x — y)2 + (y — z)2 + (z — x)2 = 0,
která má jediné řešení x = у — z, což nejsou navzájem různá čísla.

Jiné řešení. Jsou-li x, y, z tři navzájem různá reálná čísla, pak hodnoty
z — x

x-y = z(y- z),
x-y = x(y- z),
x-y = y{y- z),
x — у — z (у

x(x - y)\
z-x — y{x- y);
z — x — x(x — y);
z x = y{x y).

z — X —

x)

z)

X - у у - z
(1)U — w —V —

z — X x-yУ - Z

jsou zřejmě různé od čísel 0 a — 1 a platí mezi nimi vztahy

v = f(u) f(v) a u = f(w) (2)w —

1
kde f je lineární lomená funkce daná předpisem f(t) = —

číme se o tom přímým výpočtem:

. Přesvěd-
1 + t

1 1 У — z У ~ z
fiu) =

—

v;
(x-y) + {y z) z1 + и X-y — X

1 +
У - z

z důvodu cykličnosti platí i zbývající dva vztahy v (2).
Uvedený poznatek znamená, že každé řešení úlohy je pro vhodné t €

£ U \ {0, — 1} buďto uspořádaná trojice tvaru
1 1 +t

1 + ť t~(•x,y,z) = = (t, (3)

nebo uspořádaná trojice tvaru
1 + t 1

(x, y, z) = = (t, (4)1 + t

Zbývá provést zkoušku: snadno se přesvědčíme, že zatímco trojice
tvaru (3) je řešením pro každé t G (R \ {0, —1}, trojice tvaru (4) vyhovují
pouze pro t — 1, t — — 2 a í = - |a jsou to cyklické permutace těchto
tří hodnot.

t
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Kategorie P

Texty úloh

P - I - 1

Pizza kolem

Marco se rozhodl, ze zužitkuje své kulinářské i cyklistické dovednosti
a založí si firmu pro výrobu a rozvoz pizzy. Firmu plánuje provozovat
tak, že vždy nejdříve bude shromažďovat objednávky, a když jich bude
dostatek, tak pizzy upeče, sedne na kolo a rozveze je zákazníkům. Protože
Marco je lepší cyklista než kuchař, tak zatím ve své nabídce plánuje
pouze jeden druh pizzy. Aby se ale odlišil od konkurence, tak přijímá
objednávky i na šestinové části pizzy. Lze si u něj objednat například
1/6, 4/6 nebo 15/6 pizzy. Navíc, jako speciální službu zákazníkům, chce
Marco pizzy pro každého zákazníka dodat co nejméně rozřezané (aby si
zákazník sám mohl rozhodnout, jak si dále pizzu rozdělí). Proto například
4/6 pizzy chce dodat jako jeden kus příslušné velikosti a 15/6 chce dodat
jako 2 celé pizzy а к nim jednu polovinu pizzy (Marco chce také dodat co
nejvíce pizz vcelku, takže uspokojení této objednávky třemi kusy velikosti
5/6 nepřipadá v úvahu).

Až když Marco všude rozdal letáky propagující jeho novou firmu, tak
si uvědomil, že díky jeho speciální službě zákazníkům není jednoduché
zkombinovat objednávky tak, aby mu moc kusů pizzy nezbylo. Obrátil
se proto na vás, abyste mu napsali program, který by mu s problémem
pomohl. Pro zaěátek by mu stačil program, který na vstupu dostane
objednávky a na výstup vypíše, kolik pizz má Marco napéct.

Formát vstupu: Na prvním řádku vstupního souboru pizza, in se
nachází celé číslo N, 1 5Í N 10 000 — počet objednávek. Ve vstupním
souboru pak následuje N řádků. Každý řádek popisuje jednu objednávku
a obsahuje jedno celé číslo с, 1 5Í c 5Í 100, které je počet objednaných
šestin pizzy.

Formát výstupu: Výstupní soubor pizza.out bude obsahovat jedno
celé číslo p, které značí nejmenší možný počet pizz, které je třeba upéct,
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aby šlo splnit všechny objednávky a byla dodržena speciální služba zá-
kazníkům.

Přiklad 1:

pizza.in pizza.out
3 2

(z jedné pizzy lze například uříznout dva kusy
o velikosti 2/6 a z druhé pizzy se uřízne kus
velký 3/6)

2

2

3

Přiklad 2:

pizza.outpizza.in
33

(kvůli požadavku na dodání co nejméně rozřeza-
ných kousků pizzy je třeba pro každou objed-
návku upéct celou pizzu)

4

5

3

P - I - 2

Zasypané město

Archeolog Bedřich Hrozný zkoumá nově nalezené zasypané město v pouš-
ti. Jako první krok se rozhodl, že pomocí sonaru určí, kolik místností měly
všechny domy ve městě dohromady.

Kus pouště, kde město leželo, si Bedřich pokryl čtvercovou sítí o roz-
měrech M x N. Se sonarem postupně projel všechny řádky takto vytvo-
řené čtvercové sítě a svá měření si zaznamenal. Pro jednoduchost před-
pokládal, že pod každým polem této sítě se nachází buď kamení, nebo
písek. Na základě získaných dat by rád určil, kolik místností (souvislých
oblastí písku) v zasypaném městě bylo.

Soutěžní úloha. Na vstupu je dán popis zasypaného města, které si
představujeme jako čtvercovou síť o rozměrech M x N. Políčka čtvercové
sítě jsou popsána po řádcích od horního ke spodnímu a na jednotlivých
řádcích postupně zleva doprava. Bedřich si svá měření zapsal pomocí
dvojic čísel, kde první číslo znamená počet políček s pískem a druhé
počet políček s kamením. Data získaná ze sonaru tedy tvoří К dvojic
nezáporných čísel (p,q). Dvojice (p,q) reprezentuje, že z následujících
p + q políček je prvních p políček tvořeno jen pískem a zbylých q políček
je tvořeno kamením. Každý úsek takovýchto p + q políček leží pouze
v jednom řádku čtvercové sítě, tj. žádná dvojice (p, q) neodpovídá úseku
políček na dvou či více řádcích.
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Vaším úkolem je spočítat počet místností v zasypaném městě. Míst-
ností se rozumí souvislá oblast písku, která už v žádném směru nejde
zvětšit. Dvě políčka čtvercové sítě považujeme za sousední, pokud mají
společnou hranu, nikoliv jen vrchol.

Formát vstupu: Na prvním řádku souboru město, in se nacházejí tři
nezáporná čísla M, N а К — počet řádků a sloupců čtvercové sítě města
a počet dvojic, které popisují její obsah. Je známo, že M i N jsou menší
než 50 000 a že К je menší než 1000 000 000. Každý z dalších К řádků
obsahuje dvě nezáporná čísla p a g, kde p je počet políček zasypaných
pískem a q je počet políček, pod kterými jsou kameny. Políčka jsou po-

psána po řádcích od horního řádku sítě, na jednotlivých řádcích zleva
doprava. Navíc žádná dvojice (p,q) nepopisuje políčka obsažená na více
řádcích.

Pokud se Vám nepodaří vyřešit úlohy s výše popsanými omezeními
na M, N & K, předpokládejte, že každé M a N jsou nejvýše 500 а К je
nejvýše 100 000.

Formát výstupu: Jediný řádek souboru město.out by mělo tvořit je-
diné nezáporné číslo — počet místností v zasypaném městě. Všimněte si,
že pokud pod všemi políčky je jen kamení, bude toto číslo rovno nule.

Příklad:

město.in město.out

4 4 7 3

0 4

2 1

1 0

0 2

ПППППППП11
2 mil■ А Щ В0 1

пп□□ нпдш3 о с
□ □з

Zasypané město
■ kamení
□ písek

Zasypané město,
jak ho vidí sonar

Místnosti

zasypaného města
označené А, В, C.
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P - I - 3

Okružní jízda
Ve Stínové Praze je komplikovaný dopravní systém. Tvoří ho křižovatky,
navzájem propojené ulicemi, ale na rozdíl od reálné Prahy může do jedné
křižovatky vést libovolný počet ulic. Zajisté chápete, že řízení dopravy
ve Stínové Praze je velmi složité a často dochází к nehodám. Radní ve
Stínové Praze se rozhodli zlepšit dopravní situaci. Nejprve ze všech ulic
udělali jednosměrky, a to tak, že do každé křižovatky vchází alespoň jedna
ulice a z každé křižovatky vychází alespoň jedna ulice. Pak navíc na každé
křižovatce zakázali jednu možnost odbočení (tedy před touto změnou se
křižovatka, do níž vede к ulic a z níž vede l ulic, dala projet kl způsoby;
nyní je možné ji projet jen kl — 1 způsoby). Stínoví Pražané si ale začali
stěžovat, že se nedokážou dostat z domu do práce či naopak. Aby podobná
tvrzení vyvrátili, rozhodli se radní dokázat, že se dá z každé ulice dostat
do každé jiné. Dělat to pro každou dvojici ulic zvlášť by bylo pracné, proto
chtějí nalézt „okružní jízdu“ — tj. cyklickou posloupnost ulic takovou, že
všechna odbočení v ní jsou povolená, nikde se v ní nejede v protisměru
a každá ulice se v ní vyskytuje právě jednou. Všimněte si, že taková
posloupnost nemusí existovat: např. pokud existuje křižovatka, do které
vede méně ulic, než kolik z ní vychází.

Formát vstupu: Na prvním řádku vstupního souboru okruh, in jsou
dvě přirozená čísla пат, udávající počet křižovatek a počet ulic ve
Stínové Praze. Křižovatky jsou očíslovány přirozenými čísly od 1 do n.

Následujících m řádků popisuje ulice. Na každém z nich je dvojice čísel и
a v (1 ^ u, v ^ n), znamenající, že z křižovatky и vede jednosměrná ulice
do křižovatky v. Mezi dvěma křižovatkami může vést v každém směru
nejvýše jedna ulice. Dále následuje n řádků, г-tý z nich popisuje, jaké
odbočení je zakázáno na г-té křižovatce. Jsou-li na г-tém řádku čísla и
a v (1 ^ u, v ^ n), pak jedeme-li po ulici z и do г, nesmíme odbočit do
ulice z i do v.

Formát výstupu: Do výstupního souboru okruh, out vypište posloup-
nost čísel v\, V2, ■ ■ •, Vm (1 vi ^ n pro každé г) takovou, že:

o z Ví do Vi+1 (pro 1 S i = m) vede ulice,
> jedeme-li ulicí z do Vi+1, je povoleno odbočit do ulice z do

vi+2 (pro 1 ^ i ^ m), a
t> každá ulice je použita, tj. existuje-li ulice z и do v, pak existuje i tak,

že Ví = и a Vi+1 = v.

Indexy počítáme cyklicky, tj. vm+i — a vm+2 = v2- Pokud existuje
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více takových posloupností, vypište libovolnou z nich. Pokud taková po-

sloupnost neexistuje, vypište řetězec „Okružní jízda neexistuje.
okruh.out (jeden ze správných vý-

stupů)
12342413

Přiklad 1: okruh.in

4 8

1 2

2 3

3 1

3 4

1 3

4 2

2 4

4 1

4 2

1 4

2 1

3 1

Příklad 2\

okruh.in okruh.out

Okruzni jizda neexistuje.3 3

1 2

2 3

3 1

3 2

1 3

2 1

P - I - 4

Grafomat

Grafem nazveme libovolnou konečnou množinu V vrcholů grafu spolu
s množinou E hran, což jsou neuspořádané dvojice vrcholů. Žádné dva
vrcholy nejsou spojeny více hranami, žádná hrana nespojuje vrchol se
sebou samým.

К-graf budeme říkat takovému grafu, ve kterém s každým vrcholem
sousedí právě К hran a konce těchto hran jsou očíslovány přirozenými
čísly od 1 do K. Oba konce jedné hrany přitom mohou být očíslovány růz-
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ně. Pokud budeme hovořit o hranách vycházejících z nějakého vrcholu v,
budeme zmiňovat místní čísla hran (to jsou čísla konce, kterým je v)
a čísla protější (to jsou ta zbývající). Pro každý vrchol jsou místní čísla
všech jeho hran navzájem různá. Následující obrázek ukazuje příklad
2-grafu a 3-grafu:

1 2 2
2 2

3 3
1 2 Уз 3V
2 1 2 1

3 3
2 1 2

2 1 2

Ohodnocením grafu nazveme přiřazení prvků nějaké konečné množiny
vrcholům grafu — tedy například rozdělení vrcholů na černé a bílé nebo
označení vrcholů čísly od 1 do 5.

Grafomat je zařízení pro automatické řešení grafových úloh. Jeho
vstupem je libovolný K-graf G spolu s jeho ohodnocením; výstupem
je nějaké další ohodnocení téhož grafu. Samotný výpočet je vykonáván
automaty umístěnými v jednotlivých vrcholech grafu. Každý automat
má svou paměť a řídí se programem. Programy všech automatů jsou
identické, zatímco paměť má každý automat svoji a mimo to ještě může
nahlížet do pamětí svých grafových sousedů.

Paměť automatu je tvořena konečným množstvím proměnných, které
si můžeme představit jako pascalské proměnné typu interval. Obsahují
tedy přirozená čísla v nějakém pevném rozsahu, který nezávisí na velikosti
vstupu. Mimo to je také možné používat pole intervalových proměnných,
jejichž indexy jsou opět z pevných intervalů. Žádné jiné typy proměnných
(neomezeně velká čísla, ukazatele, ...) použít nelze.

Zvláštní roli hrají proměnné x a y. Proměnná x na počátku výpočtu
obsahuje vstupní ohodnocení toho vrcholu grafu, ke kterému patří, hod-
nota proměnné у na konci výpočtu určí výstupní ohodnocení vrcholu.
Všechny proměnné s výjimkou proměnné x mají svou počáteční hodnotu
pevně určenu. Deklarace proměnných vypadá například takto:

{ číslo od 1 do 5, na počátku vstup >
{ číslo od 1 do 5, na počátku 3,

na konci výstup >
z: array [1..2] of 3..4 = (3, 4); { pole dvou čísel >

var x: 1..5;

у: 1..5 = 3;
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Řídící program automatu si můžeme představit jako pascalský pro-

gram, v němž si zakážeme používat rekurzi a který bude manipulovat
pouze s proměnnými v paměti automatu a případně i automatů soused-
nich. Na své vlastní proměnné se automat odkazuje jejich jmény, jako
by to byly obyčejné pascalské globální proměnné, na proměnné sousedů
pak konstrukcí S[i].p. Zde i je celočíselný výraz s hodnotou 1... K, jenž
značí, o kolikátého souseda se jedná, tedy místní číslo hrany, kterou je
soused připojen; p je jméno libovolné proměnné. Proměnné sousedů je
možné pouze číst.

Aby mohl program dávat do souvislostí své hrany s hranami svých
sousedů, má к dispozici ještě proměnné P[l],..., P[K], které jsou pevně
nastaveny tak, že P[i] obsahuje protější číslo hrany s místním číslem i.
Výraz 5[г].5[Р[г]].ж je tedy totéž jako samotné x. (Pozor, zatímco druhé
S je odkaz na proměnnou patřící sousedovi, proměnná P v indexu je opět
místní.)

Výpočet grafomatu probíhá v taktech, a to následovně: V nultém
taktu se proměnné všech automatů nastaví na počáteční hodnoty a pro-
měnné x na vstupní ohodnocení jednotlivých vrcholů. V každém dalším
taktu se pak vždy jednou spustí program každého automatu, přičemž
proměnné svých sousedů vidí program ve stavu, v jakém byly na začátku
taktu. Ačkoliv tedy jednotlivé automaty běží současně, nemůže se stát,
že by jeden četl z proměnné, do které právě druhý zapisuje.

Výpočet pokračuje tak dlouho, dokud v nějakém taktu všechny auto-
maty neprovedou příkaz stop. Pak se výpočet zastaví a z proměnných у

grafomat přečte výstupní ohodnocení grafu. Pokud příkaz stop provedou
jen některé automaty, výpočet pokračuje, a to i na těchto automatech.
Struktura grafu, jakož i obsah proměnných P zůstává po celou dobu
výpočtu konstantní.

Za časovou složitost výpočtu budeme považovat počet taktů, které
uběhnou do zastavení. Nijak tedy nezávisí na rychlosti programů jednot-
livých automatů. Podobně jako u časové složitosti klasických algoritmů
nebudeme hledět na multiplikativní konstanty a bude nás zajímat pouze

asymptotické chování složitosti, tedy zda je lineární, kvadratická, atd.
Případy, kdy výpočet neskončí, nebudeme připouštět, pro úplnost ale
dodejme, že tehdy se nutně musí hodnoty proměnných periodicky opa-
kovat.

Příklad 1: Je dán 3-graf a v něm vyznačen jeden vrchol v, a to tak, že
jeho proměnná x bude inicializována jedničkou, zatímco všem ostatním
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vrcholům nulou. Napište program pro grafomat, který označí všechny
vrcholy z vrcholu v dosažitelné po hranách, a to tak, že jejich proměnná у
bude na konci výpočtu rovna jedné, zatímco u nedosažitelných vrcholů
bude nulová.

Řešení: Inspirujeme se prohledáváním grafu do šířky. V každém taktu
se každý vrchol podívá, zda některý z jeho sousedů je již označen a po-
kud ano, také se sám označí. Pokud se označení nezmění, vrchol voláním
stop souhlasí se zastavením. Průběh výpočtu tedy bude vypadat tak, že
v 2-tém taktu budou označeny ty vrcholy, jejichž vzdálenost od v je menší
nebo rovna i. Výpočet zastaví, jakmile se hodnoty proměnných přesta-
nou měnit, tj. po nejvýše N taktech. Proto je časová složitost našeho
programu lineární v počtu vrcholů (na rozdíl od klasického průchodu
do šířky nezávisí na počtu hran).

Program vypadá následovně:
{ byl vrchol označen ve vstupu? }
{je označen teď? >
{ předchozí stav }

var x: 0..1;

y: 0..1 = 0;
prev: 0..1 = 0;
i: 1..3;

begin
prev := y;
if x=l then у := 1;
for i := 1 to 3 do

{ zapamatujeme si, jestli už byl označen }
{ přeneseme označení ze vstupu }
{ podívejme se na všechny sousedy }

if S[i].y <> 0 then { je-li i-tý soused označen, }
{ označ i sebe sama }

if у = prev then stop; { pokud se nic nemění,
můžeme končit }

У := 1;

end.

Příklad 2: Mějme 2-graf složený z jediného cyklu sudé délky (tj. z vr-
cholů očíslovaných 0... N — 1, přičemž vrchol i je spojen hranou ozna-
čenou 1 s vrcholem (i + 1) mod N a hranou označenou 2 s vrcholem
(г — 1) mod N] příklad takového grafu pro N = 6 najdete na obrázku
na začátku tohoto textu). V tomto grafu je vyznačen jeden vrchol v.
Napište program pro grafomat, který označí vrchol protilehlý к v, tedy
vrchol s číslem (v + N/2) mod N.

Řešení: Vyšleme „signál“ putující z vrcholu v ve směru jedničkových
hran rychlostí 1 vrchol za takt a druhý signál putující stejnou rychlostí
opačným směrem. Jakmile nějaký vrchol zjistí, že do něj přišly oba sig-
nály, označí se a signály již dál nepředává.
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{ vstupní značka u vrcholu >var x: 0..1;

{ výstupní značka >у: 0 1 - 0;
1, г: 0..1 =0; {už tímto vrcholem prošel signál

doleva a doprava? }
begin

{ začínáme posílat }
begin x:=0;l:=l;r:=l; end

else if (S [2] . 1=1) and (S[l].r=l) then
{ signály se v tomto vrcholu potkaly >

if x=l then

begin у := 1; stop; end
else if (S[2].1=1) and (1=0) then 1 := 1

{ předáme signál doleva }
else if (S[l].r=l) and (r=0) then r := 1

{ předáme signál doprava }
{ nic se neděje => můžeme končit }else stop;

end.

Soutěžní úloha. Napište program pro grafomat, který v zadaném 3-
grafu s vyznačenými dvěma vrcholy nalezne nejkratší cestu vedoucí mezi
nimi a vyznačí vrcholy ležící na této cestě. Můžete předpokládat, že cesta
vždy existuje. Pokud je nejkratších cest více, vyberte si libovolnou z nich.

Vstup bude tvořen proměnnou x, která bude v prvním ze zadaných
vrcholů rovna jedné, v druhém dvěma a ve všech ostatních vrcholech
nulová.

Výstupem programu bude proměnná у ve vrcholech nejkratší cesty
jedničková, jinde nulová.

Pokuste se nalézt takový program, jehož časová složitost bude záviset
pouze na délce sestrojené cesty a ne na velikosti celého grafu.

P - II - 1

Zasypané město

Archeolog Bedřich Hrozný již s vaší pomocí zmapoval zasypané měs-
to, které objevil. Nyní by rád započal s vykopávacími pracemi. Požádal
o pomoc místní univerzitu, která mu dala к dispozici N studentů prvního
a N studentů druhého ročníku. Každý ze studentů, které má к dispozici,
studuje jednu z následující tří specializací: starověká historie, středověká
historie nebo archeologie. Bedřich Hrozný by rád rozdělil studenty do N
dvojic tak, aby v každé dvojici byl jeden student prvního a jeden student

97



druhého ročníku. Navíc chce, aby studenti v každé dvojici měli různé
specializace, a tak se jejich znalosti vzájemně doplňovaly.

Pokuste se najít řešení, jehož časová složitost je co nejmenší, pokud
odhlédnete od času potřebného na načtení vstupu.

Formát vstupu: Vstupní soubor se jmenuje město.in. Jeho první řá-
dek obsahuje číslo N, které udává počet studentů prvního (a druhého)
ročníku. Každý ze zbývajících 2N řádků obsahuje jedno číslo a řetězec
starověk, středověk nebo archeologie, které udávají ročník a spéci-
alizaci jednotlivých studentů. Číslo a řetězec jsou vždy odděleny jednou
mezerou.

Formát výstupu: Výstupní soubor se jmenuje město.out. Pokud
studenty nelze rozdělit do dvojic dle požadavků Bedřicha Hrozného,
výstupní soubor obsahuje jediný řádek s textem „Studenty nelze
rozdělit do dvojic.“. V opačném případě soubor obsahuje N řádků,
z nichž každý obsahuje dva řetězce, které jsou starověk, středověk
a archeologie. Tyto řetězce jsou odděleny jednou mezerou a udávají
specializace studentů prvního a druhého ročníku (v tomto pořadí) v jed-
notlivých dvojicích.

Příklad:

město.in město.out

3 starověk středověk

starověk archeologie
středověk starověk

1 starověk

1 starověk

2 archeologie
1 středověk

2 středověk

2 starověk

P - II - 2

Okružní jízda
Z domácího kola si zajisté vzpomínáte na Stínovou Prahu a její problémy
s dopravou. Přesto si ale její popis připomeneme. Stínovou Prahu tvoří
křižovatky, navzájem propojené ulicemi. Na rozdíl od reálné Prahy může
do jedné křižovatky vést libovolný počet ulic větší než tři. Na začátku
letošního ročníku se radní rozhodli zvýšit bezpečnost dopravy následu-
jícím způsobem: Nejprve ze všech ulic udělali jednosměrky, a to tak,
že do každé křižovatky vchází stejný počet ulic, jaký z ní vychází. Pak
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navíc na každé křižovatce zakázali jednu možnost odbočení (tedy před
touto změnou se křižovatka, do níž a z níž vedlo к ulic, dala projet k2
způsoby; po změně to bylo možné jen к2 — 1 způsoby). Přes odpor Stí-
nových Pražanů se tuto vyhlášku podařilo prosadit a dnes dorazily ze
statistického úřadu první výsledky: počet dopravních nehod se zdvojná-
sobil.

Na krizové poradě se radní rozhodli pro nový pokus: zruší se jedno-
směrky (každou ulici tedy lze projet oběma směry), zato se na každé
křižovatce zakáží tři možnosti odbočení. Zákaz je také „obousměrný^
tj. je-li zakázáno na dané křižovatce odbočit z a-té ulice do 6-té ulice,
je také zakázáno odbočit z 6-té ulice do a-té ulice. Křižovatku t ulic lze
tedy projet t(t — 1) — 6 způsoby. Vzhledem к historii Stínové Prahy je t
vždy sudé a t ^ 4.

Aby se radní tentokrát vyhnuli fámám o autech duchů, donekonečna
jezdících v ulicích Stínové Prahy bez možnosti dosáhnout cíle, požádali
vás opět o nalezení „okružní jízdy“ — cyklické posloupnosti ulic takové,
že všechna odbočení v ní jsou povolená a každá ulice se v ní vyskytuje
právě jednou.

Formát vstupu: Na prvním řádku vstupního souboru okruh, in jsou
dvě přirozená čísla n a m, která udávají počet křižovatek a počet ulic ve
Stínové Praze. Křižovatky jsou očíslovány přirozenými čísly od 1 do n.

Následujících m řádků popisuje ulice. Na každém z nich je dvojice čísel
и a v (1 ^ u,v ^ n), znamenající, že mezi křižovatkami и a v vede ulice.
Mezi dvěma křižovatkami může vést nejvýše jedna ulice. Dále následuje n

řádků, г-tý z nich popisuje, jaká odbočení jsou zakázána na г-té křižovatce
a obsahuje šest přirozených čísel. Pokud jsou na něm čísla щ, v\, г>2,

ггз а г>з (1 ^ Uj,Vj ^ n), říkají, že jedeme-li po ulici z Uj-té křižovatky,
1 ú j ^ 3, na г-tou křižovatku, nesmíme odbočit do ulice vedoucí к Vj-té
křižovatce, a naopak, přijíždíme-li z Vj-té křižovatky, nesmíme pokračovat
směrem к u^-té.

Formát výstupu: Do výstupního souboru okruh.out vypište posloup-
nost čísel vi, V2, • ■ •, vm (1 ^ Ví ú n pro každé i) takovou, že:

t> z Vj do Vi+1 (pro 1 5Í i ^ mý vede ulice,
o jedeme-li ulicí mezi u^-tou a Ui+i-tou křižovatkou, je povoleno odbočit

do ulice mezi Ui+i-tou a u*+2-tou křižovatkou, 1 i ^ m, a
o každá ulice je projeta právě jednou, tj. existuje-li ulice mezi гг-tou

a u-tou křižovatkou, pak existuje i takové, že vi — и a Vi+1 = v nebo
Ví = v a Vi+1 = u.

Indexy počítáme cyklicky, tj. vm+1 = v\ a um+2 — V2- Pokud existuje
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více takových posloupností, vypište libovolnou z nich. Pokud taková po-

sloupnost neexistuje, vypište řetězec „Okružní jízda neexistuje

Příklad:

okruh.in okruh.out

5 10 1245235134

(jeden ze správných výstupů)1 2

2 3

3 4

4 5
/

5 1 I

V

1 3
v

2 4 \

I
/3 5

/

4 1
I

5 2 \
\

522345

131534

242145

352315

411234
Obrázek města z příkladu.

Čárkované čáry označují zakázaná odbočení.

P - II - 3

Pizza kolem

Marcova firma Pizza kolem slaví díky vaší pomoci v minulém kole olym-
piády velký úspěch. Marco se proto rozhodl firmu rozšířit. Plánuje mít
několik poboček na hranici města a obrátil se na vás, abyste mu pomohli
rozhodnout, kde by bylo nej lepší nové pobočky otevřít.

Pro jednoduchost si budeme hranici města představovat jako kruž-
nici, kterou rozdělíme na N stejně dlouhých úseků. Marco ví, kolik jeho
zákazníků v každém z těchto úseků žije. Mimo to je nutné, aby vždy celý
úsek byl přiřazen téže pizzerii Marcovy firmy a aby úseky přiřazené jedné
pizzerii následovaly po sobě. Jedna pizzerie dokáže obsloužit К zákaz-
níků, takže je nutné, aby součet zákazníků v úsecích přiřazených jedné
pizzerii byl nejvýše К. Marco by byl rád, kdyby náklady na rozšíření
jeho firmy byly co nejnižší, a proto chce pokrýt všechny úseky kružnice
co nejmenším počtem pizzerií.
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Formát vstupu: Jméno vstupního souboru je pizza. in. První řádek
obsahuje dvě celá kladná čísla N a K, která udávají počet úseků, na které
je kružnice (hranice města) rozdělena, a počet zákazníků, které dokáže
jedna pizzerie obsloužit. Každý z následujících N řádků obsahuje jedno
celé číslo Ai, i — 1,..., N, které udává, kolik zákazníků žije v г-tém úseku
kružnice. Můžete předpokládat, že 1 Ai ^ К pro všechna i = 1,..., N.

Formát výstupu: Jméno výstupního souboru je pizza.out. První řá-
dek obsahuje číslo M, které udává minimální počet pizzerií, které musí
Marco otevřít. Každý z následujících M řádků obsahuje dvě čísla Si
a Tj, г = 1,..., M, určující úseky, které budou pokryty г-tou pizzerií.
Pokud 1 ^ Si Ti ^ M, pak г-tá pizzerie bude obsluhovat úseky
Sí,Sí + l,...,Tj. Pokud 1 ^ Ti < Si ^ M, pak bude tato pizzerie
obsluhovat úseky Ti,Ti + 1, ... , Si. Oblasti, které jsou obsluhovány jed-
notlivými pizzeriemi, musí být navzájem disjunktní a každý úsek musí
být obsluhován některou z pizzerií. Navíc součet počtů zákazníků, kteří
žijí v úsecích obsluhovaných jednou pizzerií, musí být nejvýše K.

Příklad:

pizza.in
7 11

pizza.out
4

4 6 1

4 2 3

7 4 4

6 5 5

6

4

2

P - II - 4

Grafomat na lovu

Definice grafomatu je uvedena v textu úlohy P-I-4.
Soutěžní úloha. Král Lamželezo XXVI. tuze rád organizoval lovy. Pří-

čilo se mu ale zabíjení čehokoliv živého, ať už to byla zvířata nebo ne-
šikovní honci navzájem, a tak si pořídil robotické lovce a posílal je lovit
mechanickou zvěř. Lovci pokaždé utvořili kruhovou formaci okolo nory,

každý lovec se propojil s oběma sousedními a ledva si libovolný z nich
všiml, že zvíře vystrčilo anténky, předal zprávu ostatním a všichni naráz
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vypálili. Vaším úkolem je napsat program pro grafomat, který bude lovce
řídit. Můžete předpokládat, že zvíře zahlédne vždy jen jediný z lovců.

Mějme 2-graf složený z jediného cyklu sudé délky, tj. z vrcholů očís-
lovaných od 0 do N — 1, přičemž vrchol i je spojen hranou označenou 1
s vrcholem (ž + l) mod N a hranou označenou 2 s vrcholem (г — 1) mod N
(tedy stejně, jako na prvním obrázku ve studijním textu). Váš program se
má chovat následovně: pokud dostane x = 0 ve všech vrcholech, ihned se
zastaví s у — 0 (lovci nic nevidí, a proto nestřílí); pokud dostane v jednom
vrcholu x = 1 a v ostatních x — 0, má se po nějakém konečném počtu
kroků zastavit s у = 1 ve všech vrcholech, přičemž ve všech předchozích
krocích musí být у nulové (jeden lovec zvěř zahlédl, takže po čase všichni
současně vystřelí). Pro ostatní kombinace vstupů se program může chovat
libovolně.

Pokud vám to pomůže, můžete předpokládat, že počet vrcholů grafu je
v nějakém vhodném tvaru (třeba mocnina dvojky, druhá mocnina apod.).

P - III - 1

Pizza vrací úder

Rozmach Marcovy firmy narazil na konec roku, přesněji řečeno na daňové
přiznání. Během rozvážení pizz a zřizování nových poboček Marco neměl
čas zabývat se účetnictvím a nyní s úděsem zjistil, že si u svých zběžných
poznámek zapomněl zapsat, co jsou příjmy a co výdaje. Nicméně nezpa-

nikařil, vzpomněl si na příběhy, které vykládal jeho dědeček (bývalý kápo
italské mafie), a jal se účetní záznamy doplnit (zfalšovat).

Aby výsledek vypadal co nej důvěryhodněji, rozhodl se použít čísla
ze svých poznámek a pouze si u nich zvolit, které jsou příjmy a které
výdaje. Navíc se rozhodl, že když falšovat, tak pořádně. Rád by vypadal
jako úspěšný obchodník, a tedy nekončil ve ztrátě. Na druhou stranu,
chce platit co nejmenší daně, tedy jeho zisk by měl být co nejmenší. Při
řešení tohoto nelehkého úkolu by mu mohlo pomoci to, že velikosti čísel
v jeho poznámkách jsou podstatně menší než jejich počet.

Soutěžní úloha. Je dáno n přirozených čísel ai,...,an z rozsahu 1
až k] hodnota к je typicky řádově menší než n. Vaším úkolem je nalézt
čísla S{ E {+1, —1} taková, že součet z = siai + S2^2 + ... + snan je
nezáporný a zároveň nejmenší možný. Např. pro п = /с = 4аа.; = г pro
i = 1,2, 3,4 je optimální řešení sj = S4 = +1 a S2 = S3 = — 1 s velikostí
součtu z — 0.
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P - III - 2

Obdélník

V rovině je dáno n vesměs různých bodů B\,..., Bn. Vaším úkolem je
navrhnout algoritmus, který nalezne obdélník A1A2A3A4, jehož vrcholy
jsou některé ze zadaných bodů, tj. A\ — Bi pro nějaké г, 1 ^ i ^ n,

analogicky pro A2, A3 а Л4, a počet bodů Вi ležících uvnitř obdélníku
A1A2A3A4 je maximální možný. Navíc se požaduje, aby hrany obdélníku
A1A2A3A4 byly rovnoběžné s osami, tj. x-ové souřadnice vrcholů A\ a A4
a vrcholů A2 a A3 byly stejné a rovněž y-ové souřadnice vrcholů A\ а A2
a vrcholů A3 а A4 byly stejné. Body, které leží na hranách obdélníku
A1A2A3A4, považujeme za body ležící uvnitř obdélníku. Pokud zadané
body netvoří žádný obdélník A1A2A3A4, který by vyhovoval podmínkám
zadání, program vypíše vhodnou zprávu.

Jedno z možných zadání a příklad řešení (v tomto případě jediného
optimálního) jsou na obr. 30. Je zde n = 7 bodů se souřadnicemi [1,1],
[2,1], [4,1], [1,3], [4,3], [2,5] a [3,5]. Optimálním řešením je obdélník
s rohy [1,1], [4,1], [4,3] a [1,3], který obsahuje pět bodů.

У
[2,5] [3,5]Л

[1,3] [4,3]
r

[1,1] [2,1] [4Д]li 4

x

Obr. 30
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P - III - 3

Grafomat a šamani

Na indiánské vesnice kmene Grafomatonů se zvolna snáší soumrak.
Příštího dne začne největší ze slavností tohoto léta, na níž se sejdou
všichni členové kmene. Indiáni se v tichém očekávání chystají ulehnout
do svých teepee, pouze šamani postávají u signálních ohňů a pilně vysí-
lají kouřové signály do sousedních vesnic. Rituál totiž vyžaduje, aby lidé
z právě poloviny vesnic přišli pomalováni červeně a z druhé poloviny ze-
leně. Jen šamani vědí, jak se na tom dokáží domluvit — možných signálů
je totiž pomálu ň každá vesnice vidí jen na tři sousední. Jak to mohou
dělat? Jak? ...

Když jste se ze sna probudili, napadlo vás, že indiánské domlouvání
docela přesně odpovídá této úloze pro grafomat:

Soutěžní úloha. Napište program pro grafomat, který v zadaném
3-grafu s jedním označeným vrcholem označí právě polovinu vrcholů
a skončí. Předpokládejte, že graf je souvislý (z každého vrcholu jde po hra-
nách dojít do každého) a že má sudý počet vrcholů, takže rozdělení na po-

loviny je vždy možné. (Sudý počet vrcholů mají ve skutečnosti všechny
3-grafy, ale to zde nebudeme dokazovat.)

Vstup bude tvořen proměnnou x, která bude v označeném vrcholu
rovna jedné a všude jinde nulová.

Výstupem programu bude proměnná y, nulová v právě polovině vr-
cholů a jedničková ve zbývajících.

Nápověda: Zkuste si nejdříve rozmyslet, jak by se úloha dala řešit,
pokud by namísto obecného 3-grafu byl zadán strom (tj. souvislý graf
bez cyklů).

Definice grafomatu je uvedena v textu úlohy P-I-4. Nadto si dovolu-
jeme připomenout, že počet stavů každého automatu musí být konečný,
takže nelze používat proměnné, jejichž rozsah hodnot závisí na velikosti
vstupu.

P - III - 4

Policie zasahuje

policie.pas / policie.c / policie.cpp
policie.in
policie.out

Program:
Vstup:
Výstup:
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I v tomto kole se na vás radní Stínové Prahy obracejí s dalším, ještě
naléhavějším, problémem. Ve městě se totiž usídlila mafie a její řádění
překročilo únosnou mez. Proto byla městská policie pověřena učinit řá-
dění mafie přítrž. Jak už to ale bývá, není dostatek důkazů o činnosti ma-

fie, a tak se policisté rozhodli nějakou dobu sledovat, jak se mafiáni mezi
sebou stýkají. Mafiáni jsou však prohnaní a nechodí jen po ulicích, ale
využívají ke svým přesunům i kanalizační systém města. Do kanalizace
je tedy třeba rozestavit policejní hlídky tak, aby bylo zamezeno tajným
kontaktům mezi mafiány. Přesněji, je potřeba, aby na každé cestě mezi
domy dvou mafiánů byla alespoň jedna policejní hlídka.

Tento nelehký úkol naštěstí zjednodušuje fakt, že kanalizačním systé-
mem Stínové Prahy lze mezi každými dvěma domy projít právě jedním
způsobem. Takže pokud se má mafián dostat kanalizací z jednoho místa
na druhé, má jen jedinou možnost, kudy kanalizací projít (pokud nechce
jít žádným místem dvakrát). Speciálně to tedy znamená, že kanalizace
má „acyklickou" strukturu a je souvislá, jako např. kanalizační systém
na obrázku.

Vaším úkolem je napsat program, který pro daný popis kanalizačního
systému a seznam domů ve vlastnictví mafiánů určí minimální počet
hlídek, které je nutné do kanalizačního systému rozmístit tak, aby na
každé cestě mezi dvěma domy mafiánů byla alespoň jedna hlídka. Hlídky
lze umísťovat pouze do míst větvení, tj. hlídka nemůže být umístěna
uprostřed stoky. Speciálně hlídka, která je umístěna ve větvení, kam je
napojen dům některého z mafiánů, odděluje tento dům od všech ostatních
domů.

Vstup-. Na prvním řádku vstupního souboru policie. in jsou dvě celá
čísla n (3 ií n ^ 100 000) ap (2 ^ p < n) oddělená jednou mezerou. Číslo
n udává počet větvení v kanalizačním systému — větvením rozumíme buď
slepý konec nějaké stoky (napojený na dům, který ale nemusí patřit ma-

fiánovi) nebo křižovatku, ze které vedou alespoň dvě stoky. Kanalizační
systém města je pak tvořen n — 1 stokami, z nichž každá spojuje dvě
větvení. Číslo p udává počet domů, které jsou ve vlastnictví mafiánů.

Větvení v kanalizaci jsou očíslována přirozenými čísly od 1 do n.

Domy jsou do kanalizace připojeny jen v místech větvení. Na každém
z následujících n — 1 řádků vstupního souboru jsou dvě celá čísla a bi
(1 údi,bi ^ n), která určují větvení spojená г-tou stokou.

Posledních p řádků vstupního souboru obsahuje vždy jedno celé číslo
od 1 do n. Tato čísla jsou navzájem různá a určují čísla větvení v kana-
lizaci, kam jsou napojeny domy mafiánů.
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Výstup: Váš program má do výstupního souboru policie. out vypsat
nejmenší možný počet míst, která je třeba obsadit hlídkou, aby na cestě
mezi každými dvěma domy mafiánů byla alespoň jedna hlídka.

Příklad:

policie.outpolicie.in
28 5

1 2

(Hlídky je možné umístit
na větvení s čísly 1 a 5.)

1 3

1 4

1 5

5 6

5 7

7 8

2

3

4

6

7

P - III - 5

Rybka

rybka.pas / rybka.c / rybka.cpp
rybka.in
rybka.out

Za horkých bezmračných letních dní se voda v rybníce Blaťáku někdy
skoro vaří. Slunce nemilosrdně žhne a malé rybky se spěchají skrýt do
hlubších a chladnějších částí rybníka. Jen rybka Julka se opozdila za
ostatními a už skoro umdlévá.

Taková choulostivá malá rybka, jako je Julka, snáší jen určitý rozsah
teplot, řekněme t\ až t2 (včetně krajních hodnot). Ráno mají různé části
rybníka různou teplotu a jakmile vyjde slunce, všechny části rybníka se

ohřívají stejně rychle, a to o 1 stupeň za 1 časovou jednotku. Rybník
Blaťák je obdélníkový a je rozdělen na m x n stejně velkých čtvercových
polí. Pole na pozici [i,j] má ráno teplotu T[i, j] stupňů (1 ^ i m,
1 j ^ n). Julka je ráno na pozici [Jx, Jy\ a potřebovala by se dostat
do bezpečí na pozici [Cx, Cy\. Julka se za každou časovou jednotku posune

Program:
Vstup:
Výstup:
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na jedno ze čtyř přes hranu sousedících čtvercových polí nebo zůstane
stát. Pak se vždy teplota všech polí zvýší o 1 stupeň.

Samozřejmě se rybička cestou nesmí přehřát ani nachladit, tj. pole,
kde se Julka vyskytuje, musí mít teplotu T, ti 5Í T ^ t2. Tato teplota
musí být dodržena jak v okamžiku, když Julka na pole vplouvá, tak když
jej opouští (mezi čímž se teplota zvýšila alespoň o 1 stupeň). Výjimku
tvoří jen cílové pole, na které smí vplout nezávisle na jeho teplotě a tím
se dostat do bezpečí. Rybka Julka nesmí samozřejmě na své cestě opustit
rybník.

Napište program, který dostane na vstupu Julčin teplotní rozsah
(ti,Í2) (0 t\ < Í2 = 106), velikost Blaťáku m x n (l 'š m,n ^ 1000),
počáteční a cílovou pozici Julky [Jx,Jy\ a [Cx,Cy\ (1 ^ JX,CX
^ m, 1 ^ Jy,Cy ú n) a počáteční teplotu každého pole rybníka T[i,j]
(0 й T[i,j] ^ 106) a najde pro naši malou rybku cestu do bezpečí re-
spektující teplotní omezení či zjistí, že taková cesta neexistuje. Nalezená
cesta má být nejrychlejší možná, tj. má trvat co nejméně časových jed-
notek. Pokud existuje více nej rychlejších cest, program může vypsat li-
bovolnou z nich. Můžete předpokládat, že všechny teploty 11, Í2 a T[i,j]
jsou celá čísla. Navíc také můžete předpokládat, že rybka je na počátku
v poli s teplotou pro ni přijatelnou a že počáteční pole je různé od cílo-
vého.

Vstup: Na prvním řádku vstupního souboru rybka, in jsou čtyři celá
čísla m, n, 11 a Í2 oddělená mezerami, na druhém řádku jsou pak sou-
řadnice Jx, Jy, Cx a Cy. Všechna čísla m, n, íi, Í2> ďx, Jy, Cx a Cy
splňují výše uvedená omezení. Rybník Blaťák je orientován tak, že pole
se souřadnicemi [i,j\ sousedí severní hranou s polem se souřadnicemi
[i,j — 1], jižní hranou s polem se souřadnicemi [i,j + 1], západní hranou
s polem [i — l,j] a východní hranou s polem [i + l,j]. Posledních n řádků
vstupního souboru popisuje počáteční teploty jednotlivých částí rybníka,

řádku j + 2 se tedy nacházejí čísla T[l,j],T[2, j],T[3,j],... ,T[m, j]
vzájemně oddělená mezerami.

Výstup: Do souboru rybka.out vypište Julčinu cestu jako posloup-
nost pokynů pro pohyb rybky oddělených mezerami. Pokyn je buď jeden
znak S, J, V nebo Z, který určuje směr pohybu rybky, nebo kladné číslo
udávající počet časových jednotek, po které se rybka nepohybuje. Jed-
notlivé pokyny jsou odděleny jednou mezerou. Výstupní soubor nesmí
obsahovat dvě čísla za sebou a poslední pokyn, který obsahuje, musí
být pokynem к pohybu rybky. V případě, že cesta neexistuje, vypište do
výstupního souboru řádek s textem „Chudák Julka! “.

na
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Příklad:

rybka.in
3 4 10 20

2 2 3 4

9 7 13

0 18 15

1 15 19

2 3 0

rybka.in
3 2 20 30

113 1

25 13 25

27 24 О

rybka, out (jedna z více možností)
VS1ZZ5JJJVV

rybka.out
Chudák Julka!
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Kategorie Z5

Texty úloh

Z5 - I - 1

Šestiúhelník a pětiúhelník mají společnou stranu se dvěma vrcholy. Doplň
do všech vrcholů obou obrazců (obr. 31) čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 tak,

aby součet čísel v šestiúhelníku i v pětiúhelníku byl 24. Každé číslo použij
{L. Hozová)právě jednou. Stačí, když najdeš jedno řešení.

Z5 - I - 2

Cyklistického závodu Tour de Lhota se zúčastnila šestičlenná družstva.
V prvních deseti etapách závod nikdo nevzdal. V jedenácté etapě po
hromadném pádu odstoupilo 17 cyklistů a v každé další etapě pak jich
odstoupilo vždy o 3 méně než v předešlé etapě. Do cíle závěrečné 15. etapy
dojelo 53 cyklistů. Kolik družstev se zúčastnilo závodu? (Š. Ptáčkova)

Z5 - I - 3

Cvičená blecha Hopsalka stála na hodinách na čísle 12. Hrála s Vaškem
takovou hru: Vašek házel kostkou. Kolik ok mu padlo, o tolik čísel po-
skočila. Po prvním hodu skočila po směru chodu hodinových ručiček, po
druhém hodu proti směru hodinových ručiček a po třetím hodu opět po
směru hodinových ručiček. Víme, že Vaškovi padla oka 2, 5 a 6, ale ne-
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víme, v jakém pořadí. Na která čísla mohla Hopsalka doskočit po třetím
(L. Hozová)skoku?

Z5 - I - 4

Pomocí číslic 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 a pomocí dvou desetinných čárek
utvoř dvě desetinná čísla tak, aby jejich součet byl co nejmenší. Najdi
všechny možnosti. (Každou číslici použij právě jednou.) (S. Bednářová)

Z5 - I - 5

Sedm trpaslíků sbíralo hříbky. V košíčkách měli 34, 19, 50, 44, 31, 28
a 37 hříbků. Sněhurka chtěla stejný počet hříbků na polévku jako na
smažení i jako na usušení. Jak rozdělili trpaslíci své košíčky do tří skupin
tak, aby počet hříbků v každé skupině byl stejný? (Trpaslíci nesměli
hříbky z košíčků vytahovat.) (3. Ptáčková)

Z5 - I - 6

Lucka vystřihovala ze čtverečkovaného papíru číslice 2, 0, 0, 7 tak, jak je
naznačeno na obr. 32. Urči obsah vystřižených číslic, je-li strana čtverečku
sítě dlouhá 4 cm. (M. Raabová)

Z5 - II - 1

Děvčata sbírala víčka od PET-láhví. Šárka jich nasbírala 20, Světlana 29,
Marta 31, Maruška 49 a Monika 51. Každá z dívek nasypala všechna svá
nasbíraná víčka buď do modré, nebo do červené krabice. Pavlík při počí-
tání víček zjistil, že v modré krabici je dvakrát více víček než v červené.
Které z dívek nasypaly svá víčka do modré a které do červené krabice?

(L. Hozová)
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Z5 - II - 2

Na obr. 33 jsou znázorněny tři vzájemně se překrývající čtverce. Zjisti
jejich obsahy, jestliže víš, že současně platí:

> strana největšího čtverce je o 1 mm delší než strana prostředního
a o 2 mm delší než strana nejmenšího z nich,

o společná část největšího a prostředního čtverce je čtverec s obsahem
100 mm2,

> společná část prostředního a nejmenšího čtverce je čtverec s obsahem
64 mm2.

Obr. 33

(S. Bednářová)(Nemá význam měřit, obrázek je nepřesný.)

Z5 - II - 3

Na zahrádce vyrostlo čtyřikrát více kedluben než brokolic a třikrát více
ředkviček než kedluben. Celková hmotnost brokolic byla 5 kg. Kolik kusů
zeleniny vyrostlo na zahrádce, jestliže každá brokolice vážila 250 g? (Jiná
zelenina tam nerostla.) (L. Černíček)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Lukáš natíral laťkový plot. Každých 10 minut natřel 8 latěk. Jeho mladší
bratr Ondra mu chvilku pomáhal, takže byl Lukáš hotov o čtvrt hodiny
dříve, než předpokládal. Jak dlouho mu Ondra pomáhal, když natřel
každých 7 minut 4 laťky? (M. Raabová)

Z6 - I - 2

Hvězda na obr. 34 je rozdělena dvěma úsečkami na tři díly. Zjisti obsah
každého z nich. (L. Šimůnek)

1 dm

Obr. 34

Z6 - I - 3

Vícemístné číslo se nazývá optimistické, jestliže jeho číslice zleva doprava
rostou. Jestliže číslice čísla zleva doprava klesají, říkáme, že je to číslo
pesimistické. Součet sedmimístného pesimistického a sedmimístného op-
timistického čísla složených z týchž číslic je 11 001 000. Které číslice jsme

(S. Bednářová)použili na zápis těchto dvou čísel?
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Z6 - I - 4

Ze Smutňan do Veselíkova vedou tři cesty. Ta, která je na mapě (obr. 35)
vyznačena plnou čarou, měří 40 km, nejvyšší povolená rychlost je na ní

(Vesel íkovoj

Г"

r
(Smutňany)

Obr. 35

80 km/h a vybírá se na ní mýtné 50 Kč. Čárkovaná cesta je dlouhá 35 km,
nejvyšší povolená rychlost je na ní 60 km/h a mýtné je 150 Kč. Na teč-
kované cestě, která je dlouhá 45 km, se vybírá mýtné 100 Kč a nejvyšší
povolená rychlost je 100 km/h. Strýček Uspěchaný a tetička Spořivá se
chtějí dostat ze Smutňan do Veselíkova, strýček co nejdříve, tetička co

nejlevněji. Oba si zavolali taxi, jehož řidiči si účtují 15 Kč za kilometr
cesty a zaplacení mýtného.
1. Kterou cestu má vybrat taxikář strýčka Uspěchaného?
2. Kterou cestu má vybrat taxikář tetičky Spořivé?
3. O kolik minut bude kratší cesta strýčka Uspěchaného v porovnání

s cestou tetičky?
4. O kolik korun zaplatí strýček víc než tetička? (5. Bednářová)

Z6 - I - 5

Naše třída plánovala turistický výlet. Jednotlivé skupiny myslely, že jeho
délka bude 28, 16, 32, 37 a 15 kilometrů. Spletly se ale o 5, 7, 8, 9 a
14 kilometrů. Jak dlouhý byl výlet? (M. Volfová)

Z6 - I - 6

Ze shodných čtverců a rovnoramenných trojúhelníků jsme složili (bez
překrývání) útvar znázorněný na obr. 36. Zjisti velikosti vnitřních úhlů
těchto rovnoramenných trojúhelníků. (S. Bednářová)
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Z6 - II - 1

Ze tří shodných šedivých trojúhelníků a tří shodných čtverců jsme složili
(bez překrývání) útvar znázorněný na obrázku. V jeho středu se nachází
trojúhelníkový otvor s obsahem 2cm2.
a) Zjisti velikost vnitřních úhlů šedivého trojúhelníku.
b) Jaký je obsah šedivé plochy na obr. 37? (S. Bednářová)

Obr. 37

Z6 - II - 2

Čtvrtina žáků třídy jsou neplavci. Polovina neplavců se přihlásila do pla-
veckého kurzu. Čtyři neplavci se do kurzu nepřihlásili. Kolik žáků ve třídě
umí plavat a kolik je celkem ve třídě žáků? (S. Bodláková)

Z6 - II - 3

Vícemístné číslo se nazývá optimistické, pokud jeho číslice zleva doprava
rostou. Pokud číslice čísla zleva doprava klesají, říkáme, že je to číslo
pesimistické. Najdi všechna optimistická čísla, pro která současně platí:

t> aritmetický průměr číslic daného čísla je 7,
t> pokud v tomto čísle vyměníme první číslici s poslední, dostaneme

pesimistické číslo. (S. Bednářová)
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Kategorie Z7

Texty úloh

Z7 - I - 1

Jana narýsovala šestiúhelník. Délky všech stran vyjádřené v centimetrech
jsou celá čísla. Potom si uvědomila, že každé dvě jeho sousední strany jsou
na sebe kolmé. Narýsuj, jak mohl vypadat Janin šestiúhelník, je-li jeho
obvod 16 cm a jeho obsah 12 cm2. (M. Dillingerová)

Z7 - I - 2

Rozděl obdélník na obrázku na co nejmenší počet tvarově stejných částí
tak, aby každá z nich obsahovala jen taková čísla, která dávají po dělení
třemi navzájem různé zbytky. Pozor, řezat se smí jen po čárách sítě!

14 32

43 102 11 90

722 18 301

35 99 29

12 62

(S. Bednářová)

Z7 - I - 3

Urči počet zlomků, jejichž hodnota je celým násobkem tří a čitatel i jme-
novatel jsou trojmístná přirozená čísla. (L. Šimůnek)

Z7 - I - 4

Dědeček nesl do mlýna pytel zrní. Najednou mu začala zrníčka z pytle
vypadávat a za dědečkem zůstávala cestička značená jednotlivými zrníč-
ky. Tři ptáčci si toho všimli a začali jednotlivá zrníčka zobat. První zobal
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zrníčka zelený ptáček, a to tak, že sezobal každé čtvrté zrnko ležící na
zemi. Potom přiletěl zobat červený ptáček a sezobl každé páté na zemi
ležící zrnko. Nakonec slétl na cestičku modrý ptáček a sezobal každé
třetí na zemi ležící zrníčko. Kolik zrníček dědeček ztratil, jestliže ptáčci
sezobali dohromady 79 zrníček? (M. Dillingerová)

Z7 - I - 5

Aspoň trojmístné číslo s navzájem různými ciframi, jehož žádné tři za
sebou jdoucí číslice a, b, c nesplňují ani a < b < c, ani a > b > c, se

nazývá vlnité. Napiš
a) největší vlnité číslo, které není dělitelné 3,
b) největší vlnité číslo dělitelné 150. (S. Bednářová)

Z7 - I - 6

Osmiboký kolmý hranol načrtnutý na obr. 38 vznikl slepením tří kvádrů.
Zjisti objem a povrch tohoto hranolu, pokud víš, že mezi osmi jeho boč-
nimi stěnami jsou čtyři dvojice shodných stěn, a znáš délky vyznačených
hran (obrázek je nepřesný, nevyplatí se měřit). (S. Bednářová)

1 cm

8 cm

Obr. 38

Z7 - II - 1

V letním táboře je 50 dětí. Šestina dívek a osmina chlapců neumí plavat.
Plavat umí 43 dětí. Kolik dívek je v táboře? (S. Bodláková)

Z7 - II - 2

Martin, Tomáš a Jirka tipovali výsledek příkladu:

2,4 - 1,5 • 3,6 : 2 =
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Jejich průměrný tip se od správného výsledku lišil o 0,4. Tomáš tipoval
— 1,2 a Jirka 1,7. Zjisti, které číslo tipoval Martin, pokud víš, že nejhorší
tip se od správného výsledku lišil o 2. (S. Bednářová)

Z7 - II - 3

Z krychle s povrchem 384 cm2 jsme vyřízli kvádr se čtvercovou podstavou
tak, jak je vidět na obr. 39. Objem takto vzniklého osmibokého hranolu
je roven třem čtvrtinám objemu původní krychle. Vypočítejte povrch
hranolu. (S. Bednářová)

Obr. 39
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Kategorie Z8

Texty úloh

Z8 - I - 1

Z číslic 1, 2,..., 9 jsme vytvořili tři smíšená čísla aK Potom jsme tato tři
čísla správně sečetli. Jaký nejmenší součet jsme mohli dostat? (Každou
číslici jsme použili právě jednou.) (S. Bednářová)

Z8 - I - 2

Král si nechal nalít plnou číši vína. Pětinu vína z ní upil. Pak si nechal
číši dolít vodou a upil čtvrtinu obsahu. Opět mu číši dolili vodou a král
z ní upil třetinu. Páže mu zase číši dolilo vodou. Kolik procent čistého
vína zbylo ve sklenici? (M. Krejčová)

Z8 - I - 3

Je dán pravidelný devítiúhelník ABCDEFGHI. Vypočítejte velikost
úhlu, který svírají přímky DG a BE. (M. Raabová, M. Krejčová)

Z8 - I - 4

Žáci postavili z malých kostek pyramidu podobnou té na obr. 40, měla
však více pater. Pyramida, svého druhu nej-
větší na světě, stála od té doby na dvoře
školy a pršelo na ni. Po čase se musely
všechny kostky, na které pršelo, tedy ty
na povrchu, vyměnit. Vyměnilo se celkem
2 025 kostek. Kolik měla pyramida pater?

(L. Šimůnek)

,<£=7|

A
A

Obr. 40
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Z8 - I - 5

Je dáno čtyřmístné číslo. Přičteme к němu takové čtyřmístné číslo, které
je napsáno číslicemi prvního čísla, ale v opačném pořadí. Kterými čísly

(L. Hozová)je vždy dělitelný tento součet?

Z8 - I - 6

Výška rovnoramenného trojúhelníku ABC dělí jeho obsah v poměru 1 : 3.
Určete obsah a obvod trojúhelníku ABC, je-li \AC\ = \BC\ a \AB\ —

= \/32cm. (L. Hozová)

Z8 - II - 1

Myslím si zlomek. Jeho čitatel je o 35 menší než jmenovatel. Součet myš-
leného zlomku a téhož zlomku v základním tvaru je j|. Který zlomek si
myslím? (S. Bednářová)

Z8 - II - 2

V pohádkovém údolí žili trojhlaví a šestihlaví draci. Dohromady měli
117 hlav a 108 nohou. Každý drak má 4 nohy. Zjistěte, kolik tam žilo
trojhlavých a kolik šestihlavých draků. (S. Bodláková)

Z8 - II - 3

Z krychlí jsme postavili stavbu podobnou té na obr. 41, avšak místo čtyř
pater jich měla dvacet pět. Pak jsme všechny vnější stěny stavby natřeli
barvou. Svislé stěny byly červené a vodorovné stěny byly modré. (Stavba
stojí na zemi, podstavu jsme tedy nenatírali.)
a) Kolikrát více jsme spotřebovali červené barvy než modré?
b) Kolik stěn krychliček jsme dohromady obarvili? (L. Šimůnek)

/ 7 71

7
7

7
7

Obr. 41 pohled zepředu pohled zezadu
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Kategorie Z9

Texty úloh

Z9 - I - 1

Kolik šestimístných přirozených čísel má tu vlastnost, že součin jejich
číslic je 750? (P. Tlustý)

Z9 - I - 2

Vyplňte správnými výrazy prázdná pole ve sčítací pyramidě na obr. 42.
Ve správně vyplněné sčítací pyramidě se v každém poli (kromě těch ze

spodního patra) nachází součet výrazů, které jsou napsány ve dvou polích
těsně pod ním. (S. Bednářová)

| ~4rc

Ьх — 1

Obr. 42

Z9 - I - 3

Do kružnice s poloměrem 2 cm je vepsán pravidelný šestiúhelník
ABCDEF. Přímky FE a CD se protínají v bodě M. Určete délku
úsečky AM. (M. Volfová)

Z9 - I - 4

Matematické soutěže se zúčastnilo 142 žáků. Ne každý však odevzdal
třetí úlohu. Když nakonec autor soutěže zpracovával statistiku, zapsal
si, že odevzdané třetí úlohy ohodnotil průměrně 3,9 bodu (zaokrouhleno
na desetiny) a každý soutěžící dostal za třetí úlohu průměrně 2,7 bodu
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(zaokrouhleno na desetiny). Kolik žáků mohlo odevzdat třetí úlohu? Udě-
loval se pouze celý počet bodů, za neodevzdanou úlohu bylo 0 bodů.

(L. Šimůnek)

Z9 - I - 5

Trojúhelník REZ s obsahem 84cm2 (|RE\ = 14cm, \ZE\ = 15 cm) jsme
dvěma přímými řezy rozdělili na tři části a z těch jsme složili (bez pře-
krývání) obdélník. Jaké rozměry mohl obdélník mít? Najděte všechny
možnosti. (5. Bednářová)

Z9 - I - 6

Dokažte, že číslo

(1 • 3 • 5 • 7 ■ ... • 2003 • 2005) + (2 ■ 4 • 6 • 8 • ... • 2004 • 2006)

je dělitelné číslem 20074. (.P. Tlustý)

Z9 - II - 1

V součinové pyramidě se v každém poli (kromě těch ze spodního patra)
nachází součin výrazů, které jsou napsány ve dvou polích těsně pod ním.
Doplňte do prázdných polí v součinové pyramidě na obr. 43 chybějící vý-
rázy. Snažte se psát výrazy v co nejjednodušším tvaru a uveďte, v jakém
pořadí jste je doplňovali (i/O). (.S'. Bednářová)

9x4—36x2

3x
x-f 2

7^

Obr. 43

Z9 - II - 2

Na obr. 44 vidíte bazén s dlouhým schodem při jedné jeho stěně. Prázdný
bazén jsme začali napouštět přívodem s neměnným průtokem a sledovali
jsme výšku hladiny. Za 8 min hladina vystoupila do výšky 20 cm a zatím
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ještě nebyla na úrovni schodu. Po 23 min napouštění se hladina nacházela
ve výšce 55 cm a schod již byl nějakou dobu pod hladinou. Po 35,5 min
napouštění byl bazén naplněn do výšky 80 cm. V jaké výšce h ode dna
bazénu se nachází schod? (L. Šimůnek)

Z9 - II - 3

Nováková, Vaňková a Sudková vyhrály štafetu a kromě diplomů do-
staly i bonboniéru, kterou hned po závodech sluply. Kdyby snědla Petra
o 3 bonbóny více, snědla by jich právě tolik, co Míša s Janou dohromady.
A kdyby si Jana pochutnala ještě na sedmi bonbónech, také by jich měla
tolik, co druhé dvě dohromady. Ještě víme, že počet bonbónů, které snědla
Vaňková, je dělitelný třemi a že Sudková si smlsla na sedmi bonbónech.
Jak se děvčata jmenovala? Kolik bonbónů snědla každá z nich?

(M. Volfová)

Z9 - II - 4

Je dán obdélník KLMN, kde \KL\ = 6cm a \ML\ — 4cm. Vypočtěte
obvody všech rovnoramenných trojúhelníků KLX, jestliže bod X leží na

(M. Dillingerová)straně MN.

Z9 - III - 1

Pavel si zvolil dvě přirozená čísla a, b (a b) a vypočítal rozdíl jejich
druhých mocnin. Vyšlo mu 2 007. Které dvojice čísel si mohl Pavel zvolit?

(P. Tlustý)

Z9 - III - 2

V laboratoři na polici stojí uzavřená skleněná nádoba ve tvaru kvádru.
Nachází se v ní 2,4 litru destilované vody, avšak objem nádoby je větší.
Voda sahá do výšky 16 cm. Když kvádrovou nádobu postavíme na jinou
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její stěnu, bude hladina ve výšce 10 cm. Kdybychom ji postavili ještě na

jinou stěnu, voda by sahala jen do výšky 9,6 cm. Určete rozměry nádoby.
(L. Simůnek)

Z9 - III - 3

Přečtěte si výsledky ankety konané v Peci pod Sněžkou, při níž bylo
osloveno 1 240 lidí:

„V existenci Krakonoše věří 46 % dotázaných (zaokrouhleno na celé
číslo), 31% v jeho existenci nevěří (zaokrouhleno na celé číslo). Ostatní
dotazovaní odmítli na tuto otázku jakkoli reagovat/4
a) Kolik nejméně lidí mohlo v anketě odpovědět, že věří v existenci Kra-

konoše?

b) Kolik nejvíce lidí mohlo odmítnout na
konkrétní počty, nikoli procenta.

anketu odpovědět? Uveďte
(L. Simůnek)

Z9 - III - 4

Na obr. 45 jsou znázorněny tři shodné, navzájem se překrývající rovno-
stranně trojúhelníky. Určete obsah každého z nich, když víte, že současně
platí:

> Průnikem trojúhelníku T\ a trojúhelníku T2 je rovnostranný trojúhel-
nik s obsahem л/3 cm2.

> Průnikem trojúhelníku T2 a trojúhelníku T3 je rovnostranný trojúhel-
nik s obsahem |\/3cm2.

[> Průnikem trojúhelníku Tj a trojúhelníku T3 je rovnostranný trojúhel-
(S. Bednářová)nik s obsahem \ \/3 cm2.

Obr. 45
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Přípravné soustředění před 48. MMO

V průběhu 56. ročníku se konalo výběrové soustředění bezprostředně
po skončeném celostátním kole kategorie A, a to od 1. do 5. dubna 2007
v Kostelci nad Černými lesy nedaleko Prahy. Na soustředění bylo pozváno
9 nejlepších řešitelů III. kola kategorie A s výjimkou Pavla Motlocha,
který se rozhodl dát přednost účasti na mezinárodní fyzikální olympiádě.
Spustředění bylo zaměřeno na přípravu reprezentantů a posloužilo ke
konečné nominaci šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

8/8 GJK Praha 6
4/4 G Brno, tř. Kpt. Jaroše 60
2/4 GMK Bílovec
4/4 G Mnichovo Hradiště
4/4 G Brno, tř. Kpt. Jaroše 47,5
2/4 G Brno, tř. Kpt. Jaroše 47,5
2/4 G Brno, tř. Kpt. Jaroše 44,5

Michal Rolínek

Zbyněk Konečný
Miroslav Klimoš

Lenka Slavíková
Jiří Řihák
Hana Šormová
Samuel Říha
Anežka Faltýnková 4/4 GJŠ Přerov

8/8 G Jeseník

70

54,5
48,5

42,5
Tomáš Javůrek 38,5

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo prvních šest vybráno do reprezen-
tačního družstva a sedmý byl určen jako náhradník. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (1.4.),
dr. Karel Horák (2.4.),
dr. Pavel Calábek (3.4.),
dr. Jaroslav Švrček (4.4.)
a doc. Jaromír Šimša (5.4.)
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Úlohy zadané na přípravném soustředění1.V oboru přirozených čísel řešte rovnici

X у z

2X + 2у ~ 22

2. Nechť p je prvočíslo, n je přirozené číslo a q je přirozený dělitel čísla
(n + l)p — np. Dokažte, že číslo q — 1 je dělitelné číslem p.

3. Reálná čísla a, b, c, d, e, / jsou taková, že platí

a-]-b-\-c-\-d-\-e-\-f — 0,
a2 + b2 + c2 + d2 + e2 + f2 = 6.

Dokažte, že platí nerovnost

1
abodef 5í -.4.V konvexním šestiúhelníku ABCDEF platí rovnosti

\AD\ = \BC\ + \EF\, \BE\ = \FA\ + \CD\ a \CF\ = \DE\ + \AB\.

Dokažte, že platí
\AB\

_ \CD\ _ \EF\
Jde\ ~ JfaJ ~ \Щ'

5. V trojúhelníku ABC, jehož strany vyhovují rovnosti \AB\ + \BC\ =
= 3|ЛС|, označme V střed jeho vepsané kružnice a D a E body, v nichž se
vepsaná kružnice postupně dotýká stran AB, BC. Jsou-li К a L obrazy
bodů D a E ve středové souměrnosti se středem V, je čtyřúhelník ACKL
je tětivový. Dokažte.

6. Nalezněte všechna přirozená čísla n > 1, pro něž existuje jediné při-
rozené číslo a A n\ takové, že an + 1 je dělitelné číslem n\.

7. V ostroúhlém trojúhelníku ABC, jehož strany AB a AC jsou různě
dlouhé, označme H průsečík výšek a M střed strany BC. Na straně AB
zvolme bod D a na straně AC bod E tak, že \AE\ = \AD\ a body D,
H, E leží v přímce. Dokažte, že HM je kolmá na společnou sečnu kružnic
opsaných trojúhelníkům ABC a ADE.

125



8.Nechť n je přirozené číslo, n ^ 2 a a\, a-2,..., an+1 kladná reálná čísla
taková, že

&2 ^1 — &3 &2 — • • • — ~ 0.

Dokažte, že platí nerovnost

1
^ 77- 1 4" П2<7п-(-1

Zjistěte dále, kdy nastává rovnost.

1 1

Q-lQ-2®n®n+l9.Určete všechny funkce /: [R
а у platí

IR takové, že pro všechna reálná čísla x

f(x + y) + f(x)f(y) = f(xy) + f(x) + f(y) + :ту.10.Nechť ABC je pravoúhlý trojúhelník s pravým úhlem při vrcholu C.
Na stranách AB a BC jsou zvoleny body M a N tak, že platí

\CN\ \AC\
\NB\ \BC\

MN II AC.a

Označme O průsečík přímek CM & AN. Na úsečce ON zvolme bod К
tak, že platí \MO\ + \OK\ — \KN\. Označme dále T průsečík kolmice
к přímce ON procházející bodem К s osou úhlu ABC. Dokažte, že úhel
MTB je pravý.

11. V rovině je dán pravidelný třicetiúhelník A1A2 .. .A30. Dokažte, že
jeho úhlopříčky A\A\g, А3Л24 a se protínají ve společném bodě.

12. Určete, jakých celočíselných hodnot může nabývat výraz

O + У + z)2
xyz

jsou-li x,y,z přirozená čísla.

13. Nechť O je střed kružnice к opsané trojúhelníku ABC a AD její
průměr. Označme P průsečík tečny ke kružnici к sestrojené v bodě D
a přímky BC. Dále nechť M, N jsou průsečíky přímky PO po řadě se
stranami АС, AB. Dokažte, že |OM| = |OiV|.
14. Určete počet všech pořadí číslic od 1 do 9, jako například 172863945,
ve kterých číslice od 1 do 5 stojí zleva doprava v rostoucím pořadí, za-
tímco číslice od 1 do 6 nikoliv. Výsledek zapište jedním číslem, ne výra-
zem.
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15. Deset gangsterů stojí na rovné louce tak, že jejich vzdálenosti jsou
navzájem různé. Ve stejný okamžik každý z gangsterů vystřelí na nej-
bližšího z devíti ostatních a zasáhne ho. Určete nejmenší možný počet
zasažených gangsterů.

16. Najděte všechny dvojice přirozených čísel x a y, pro které platí

x + y2 + z3 = xyz,

kde г je největší společný dělitel čísel x a y.17.Ke kružnici opsané libovolnému ostroúhlému trojúhelníku ABC se-

strojíme tečny s body dotyku В, C a jejich průsečík označíme T. Dále
označíme jako P průsečík přímek AT, ВС a jako Q střed úsečky AP.
Najděte poměr a : b : c délek stran trojúhelníku ABC, při kterém má
úhel ABQ největší možnou velikost.
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Mezinárodní střetnutí česko-polsko-slovenské

V rámci závěrečné přípravy před MMO se uskutečnilo již čtvrté meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 48. MMO v Hanoji.

Soutěž se uskutečnila od 24. do 27. června 2007 v severomoravském

Bílovci. Všechna tři reprezentační družstva přicestovala na místo konání
již v neděli večer 24. 6. Organizace a průběh soutěže zůstal zachován
z předešlých ročníků
mínkám na MMO. Soutěžícím byly ve dvou dnech předloženy dvě trojice
soutěžních úloh, přitom za každou z nich mohli získat nejvýše 7 bodů,
celkově tedy (stejně jako na MMO) 42 body. Na každou trojici ťiloh měli
soutěžící vyhrazeno 4,5 hodiny.

je přizpůsoben stylu III. kola naší МО a pod-

Pořadí Jméno Země Body Součet

Maciej Gawron
Karol Zebrowski

Wojciech Zaremba
Jacek Jendrej
Piotr Dobel
Tomasz Kobos
Miroslav Klimoš
Michal Rolínek

Zbyněk Konečný
Ondřej Mikuláš
Michal Szabados
Vladislav Ujházi
Tomáš Rusin
Tomáš Kocák
Lenka Slavíková
Hana Šormová
Michal Spišiak
Jiří Řihák

POL 777730

775730
674171
772710
334650

775010
722710
722710

712710
072710
673010

074110
225110

072010
402220

302030

112210

002100

1. 31

POL2. 29

POL3. 26

POL4. 24

POL5. 21

POL6. 20

CZE7.-8. 19

CZE 19

CZE9. 18

SVK 1710.-11.
SVK 17
SVK12. 13
SVK13. 11

SVK14.-15. 10

CZE 10

CZE 816.

SVK17. 7

CZE18. 3

128



Návrh všech šesti úloh (a jejich vzorová řešení) připravili členové úlo-
hové komise z České republiky — dr. Jaroslav Svrček a doc. Jaromír
Šimša. Úlohy koordinovala mezinárodní komise ve složení Jaromír Šimša,
Jaroslav Švrček a Karel Horák za Českou republiku, Pavol Novotný a Ján
Mazák za Slovensko a Waldemar Pompě a Adam Osqkowski za Polsko.

Texty soutěžních úloh1.Najděte všechny mnohočleny P s reálnými koeficienty, pro něž rovnost

P(x2) = P(x)‘P(x + 2)

(Pavel Calábek)platí pro libovolné reálné číslo ж.

2. Nechť ai = 02 = 1 a afc+2 — Ufc+i +afc Pro každé к EN (Fibonacciova
posloupnost). Dokažte, že pro každé přirozené číslo m existuje takový
index к, pro nějž je číslo aj. — a*, — 2 dělitelné číslem m.

3. Nechť /с je kružnice opsaná takovému konvexnímu čtyřúhelníku
ABCD, že polopřímky ЛЛ a CP se protínají v bodě P, pro který platí
\CD\2 = \AD\ • \ED\. Označme F (P Ф A) průsečík kružnice к s přímkou
procházející bodem A a kolmou na ED. Dokažte, že pak platí: Úsečky AD
a CF jsou shodné, právě když střed kružnice l opsané trojúhelníku ABE

(Jaroslav Švrček)
4. Dokažte, že pro každé reálné číslo p ^ 1 lze z množiny reálných čísel x

splňujících nerovnosti

(Ján Mazák)

leží na přímce ED.

1\2
p<x < (2 + Wp+-

vybrat čtyři navzájem různá přirozená čísla a, b, c, d, pro něž platí rovnost
(Jaromír Simša)ab — cd.5.Zjistěte, pro která

n E {3 900, 3 901, 3 902,3 903,3 904, 3 905,3 906,3 907, 3 908, 3 909}

lze množinu {1, 2,3,..., n} rozdělit na disjunktní trojice tak, aby v každé
trojici se jedno číslo rovnalo součtu ostatních dvou čísel.

(Peter Novotný)
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6. Nechť ABCD je konvexní čtyřúhelník. Kružnice procházející body A
a D má vnější dotyk s kružnicí procházející body В a C ve vnitřním
bodě P uvažovaného čtyřúhelníku. Předpokládejme, že

\<PAB\ + \<PDC\ ^ 90° a \<PBA\ + \<PCD\ <, 90°.

Dokažte, že pak platí \ AB\ + \CD\ A \BC\ + \ AD\. ( Waldemar Pompě)

Řešení úloh

1. Konstantní mnohočlen P(x) — c vyhovuje, právě když c = c2, mno-
hočleny P(x) = 0 a P(x) = 1 jsou tedy řešením úlohy.

Ukažme nyní, že jediný vyhovující mnohočlen P kladného stupně n

je tvaru P(x) = (x — l)n. Uvedený mnohočlen je vzhledem к identitě
(ж2 — l)n = (ж — 1)п(ж + l)n zřejmě řešením pro každé n ^ 1.

Je-li axn (а ф 0) vedoucí člen mnohočlenu P(x) kladného stupně n,
je ax2n vedoucí člen mnohočlenu P(x2) a a2x2n vedoucí člen mnohočlenu
Р(ж)Р(ж + 2). Pokud P vyhovuje dané rovnosti, dostáváme porovnáním
příslušných členů a = a2, tedy a — 1. Proto lze mnohočlen P zapsat
ve tvaru P(x) — (x — l)n + Q(x), kde Q je buď nulový mnohočlen,
anebo nenulový mnohočlen stupně k, kde ovšem 0 ^ к < n. Porovnáním
mnohočlenů

P(x2) = (x2 - 1)” + <3(x2),
P{x)P{x + 2) = ((ж - l)n + Q(x)) ((ж + l)n + Q{X + 2))

obdržíme (po roznásobení a zrušení mocniny (ж2 — l)n na obou stranách)
rovnost

Q(x2) — (ж — l)nQ(x + 2) + (ж + 1)п<5(ж) + Q(x)Q(x + 2).

Vidíme, že nulový mnohočlen Q vztah splňuje. Pro nenulový mnohočlen
Q stupně к < n je ovšem Q(ж2) mnohočlen stupně 2/c, zatímco na pravé
straně odvozeného vztahu je mnohočlen stupně n -f к (jeho vedoucí člen
je 2bxn+k, je-li bxk vedoucí člen mnohočlenu Q(x)). Protože 2к < n + k,
nemůže uvedená rovnost platit.

Odpověď. Úloze vyhovují konstantní mnohočleny P(x) = 0 a P(x) = 1
a pro každé n přirozené mnohočlen P(x) — (ж — l)n.
2. Všechny kongruence a zbytkové třídy jsou podle daného modulu m.
Žádanou kongruenci — 2 = 0 získáme jako důsledek jednodušší
kongruence a= —1.
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Posloupnost zbytkových tříd čísel ak má následující vlastnost: zbyt-
kové třídy libovolných dvou po sobě jdoucích členů ak, a/c+i jednoznačně
určují zbytkové třídy jak všech následujících členů a* (i > fc+1), tak všech
předchozích členů а* (г < к). Odtud obvyklým postupem, založeným na
tom, že všech uspořádaných dvojic zbytkových tříd je m2, tedy konečný
počet, plyne, že posloupnost zbytkových tříd čísel a* je periodická, a to
hned od svého prvního členu. Existuje tedy číslo p > 0 (závislé na daném
modulu m) takové, že a* = ai+p pro každý index i. Není-li m — 1 (pro
ně je tvrzení úlohy triviální), je zřejmě p > 1. Protože a\ = <22 = 1, platí
rovněž ap+1 = ap+2 = 1> odkud ap = 0 a ap_i = — 1, takže můžeme vzít
к = p — 1 a důkaz je hotov.

3. Zřejmě je DF průměrem kružnice к. Nejprve ukážeme, že za daných
podmínek nemůže bod C ležet v polorovině DFA.

Pokud body В, C leží na části DA oblouku DAF (obr. 46), jsou
zřejmě úhly DCB a DBA tupé, proto \DC\ < \DB\ < \DA\ < \DE\,
takže rovnost \CD\2 — \AD\ ■ \ED\ nemůže platit. Pro body В, C na
části AF oblouku DAF (obr. 47) je úhel BAE ostrý a pro úhel DBE
platí \<DBE\ = 180° — \<DBC\ E 90°, nemůže tedy případný další
průsečík B' polopřímky DB s kružnicí l ležet za bodem В (úsekový
úhel příslušný tětivě BE kružnice l je totiž roven úhlu BAE, a ten je
ostrý). Proto \DC\ > \DB\ ^ \DB'\. Rovnost \CD\2 = \AD\ • \ED\
nemůže tedy platit, protože pro mocnost bodu D ke kružnici l platí
\AD\ ■ \ED\ = \DB\ ■ \DB'\ < \DC\2.

Jestliže tedy bod C neleží v polorovině FDA, je \FC\ = |£)Л|, právě
když DAFC je pravoúhelník, tj. právě když CA je průměr kružnice к, což
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je ekvivalentní tomu, že úhel CBA je pravý, a to je ekvivalentní tomu,
že trojúhelník AEB je pravoúhlý s pravým úhlem při vrcholu В, neboli
střed kružnice opsané trojúhelníku AEB je středem úsečky AE.

4. Čísla a = (к — 1 )k, b — (к + 1 )fc, с = (к — 1 )(k + 1), d = k2 zřejmě
splňují rovnost ab = cd a nerovnosti a < c < d < b pro každé к > 1.
Nechť tedy fc je nejmenší přirozené číslo, pro které platí p < a neboli
p < (к — 1 )k (při zadaném p). Ukažme, že pro takové к pak platí b =
= (к + 1 )k ^ p + 4 + 2л/4p + 1, což je zřejmě číslo o 4 menší než horní
mez intervalu ze zadání, takže tím bude řešení úlohy úplné.

Podle výběru čísla к platí p ^ (k — 2)(k — l). Řešením této kvadratické
nerovnice dostaneme odhad

k<-
1

2 + yP+i'
ze kterého již plyne

b = (k + i)ks (l + ^jp+l)(l + \Jp + \) =
=

T + 4\/p+ \ + {p+ \) =р + 4 + 2\ДрП
5. Z možnosti rozdělení na disjunktní trojice plyne 3 | n. V každé trojici
{a, 6, a + 6} je součet 2(a + 6), tedy sudé číslo, proto musí být sudý
i součet všech čísel od 1 do n, součin n(n + 1) musí tedy být dělitelný
čtyřmi. Celkem máme, že číslo n musí být tvaru 12к nebo 12/c + 3, čemuž
z daných čísel vyhovují pouze n = 3 900 a n — 3 903.

V dalším odstavci popíšeme konstrukci, jak z vyhovujícího rozkladu
pro dané n = к vytvořit vyhovující rozklady pro n — 4k a n = 4k + 3.
To nám zaručí, že rozklady pro n — 3 900 i n = 3 903 existují, a to díky
sestupné posloupnosti

3 900 -> 975 -> 243 60 -> 15 3

(místo 3 900 lze začít i číslem 3 903) a díky triviálnímu rozkladu pro n — 3
(z něhož postupně sestrojíme rozklady pro n — 15, n = 60 atd. až pro
n = 3 900 resp. n = 3 903).

Z vyhovujícího rozkladu množiny {1, 2,..., k} nejprve vyrobíme vy-
hovující rozklad množiny prvních к sudých čísel {2,4, ...,2k} (prostě
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všechna čísla ve všech trojicích výchozího rozkladu vynásobíme dvěma).
V případě n = 4k pak zbylá čísla

{1, 3, 5,..., 2k — 1, 2k + 1, 2k + 2,..., 4k — 1,4k}

rozdělíme do к trojic {2j — 1, ЗА; — j + 1,3k + j}, kde j — 1, 2,..., k.
Vidíte je ve sloupcích tabulky

... 2k — 3 2k - 1

3k — 1 3k — 2 ... 2k + 2 2k + 1
3k + 1 3k + 2 3k + 3 ... 4k — 1

51 3

3к
4k

V případě n — 4k + 3 zbylá čísla

{1,3,5,..., 2к — 1, 2к -)-1, 2к -f- 2,..., 4к -|- 2,4k -(- 3}

rozdělíme do k+1 trojic {2j — 1,3k+3—j, 3k+j+2}, kde j — 1,2,..., k+1
tvořených sloupci tabulky

5 ... 2k — 1 2k + l\
З/с + 2 3k + 1 3k ... 2k + 3 2k + 2 .

З/с + 3 ЗА:+ 4 ЗА;+ 5 ... 4k + 2 4k + 3 /

1 3

Tím je důkaz toho, že čísla n — 3 900 a n — 3 903 vyhovují, hotov.

6. Je-li P společný bod zmíněných kružnic, plyne z věty o obvodových
a úsekových úhlech, že je zároveň i bodem dotyku, právě když (obr. 48)

\<ADP\ + \<BCP\ = \<APB\. (1)
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Uvažujme kružnice Zci, к2 opsané trojúhelníkům АВР a CDP
a označme Q případný další průsečík obou kružnic (obr. 49). Protože
bod A leží vně kružnice BCP, je \<BCP\ + \<BAP\ < 180°. Proto
bod C leží vně kružnice k\. Analogicky leží i bod D vně této kružnice.
Odtud plyne, že body P a Q leží na témže oblouku CD kružnice къ-

Analogicky body P a Q leží na témže oblouku AB kružnice k\. Bod Q
tudíž leží buď uvnitř úhlu BPC, nebo uvnitř úhlu APD. Bez újmy na
obecnosti předpokládejme, že bod Q leží uvnitř úhlu BPC (obr. 49).
V takovém případě podle předpokladu úlohy platí

\<AQD\ = \<PQA\ + \<PQD\ = \<PBA\ + \<PCD\ C 90°. (2)

Protože bod Q leží na částech oblouků AB i CD uvnitř úhlu BPC,
leží bod Q dokonce uvnitř trojúhelníku BPC, tedy i uvnitř čtyřúhelníku
ABCD.

Z vlastností protějších a vedlejších úhlů tětivových čtyřúhelníků
APQB a DPQC (obr. 49) plyne

\<BQC\ = \<PAB\ + \<PDC\

takže podle předpokladu úlohy

(3)\<BQC\ й 90°.

Protože je navíc \<PCQ\ = \<PDQ\, dostáváme podle (1)

\<ADQ\ + \<BCQ\ = \<ADP\ + \<PDQ\ + \<BCP\ - \<PCQ\ -
= \<ADP\ + \<BCP\ = \<APB\.
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A protože také \<APB\ = \<AQB\, vychází

\<ADQ\ + \<BCQ\ = \<AQB\.

To ovšem znamená, jak už víme z úvodní úvahy, že kružnice BCQ a DAQ
se dotýkají v bodě Q (obr. 50).

Uvažujme nyní polokruhy sestrojené nad stranami BC a DA „do-
vnitř“ čtyřúhelníku ABCD. Protože úhly AQD a BQC nejsou tupé, leží
každý z obou polokruhů celý uvnitř odpovídajícího kruhu příslušného
kružnici BQC, resp. AQD; a protože se obě kružnice dotýkají vně, mají
i oba polokruhy sestrojené nad stranami BC a DA nejvýše jeden společný
bod (tj. nepřekrývají se). Označíme-li M a N středy stran BC a DA,
plyne odtud nerovnost \MN\ ^ ^(\BC\ + \DA\).

Na druhou stranu zřejmě platí MN = ^(BA + CD), takže \MN\ ^
^ Tj(\AB\ + \CD\). Odtud vychází dokazovaná nerovnost \AB \ + \CD\ ^
^ \BC\ + \DA\.
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48. mezinárodní matematická olympiáda

V třetí dekádě července 2007 se sjelo
do vietnamské Hanoje 520 středoškol-
ských studentů z 93 zemí celého světa
na další ročník nejprestižnější soutěže
jednotlivců v řešení matematických
úloh.

Logotypu této mezinárodní olym-
piády dominuje symbol místa konání
48. MMO, hlavního města Hanoje
(jde o chrám literatury, první viet-
namskou univerzitu založenou v roce 1076) uprostřed dvou kolmic sym-
bolizujících matematickou soustavu souřadnic a zároveň zeměpisný po-
ledník s rovnoběžkou.

Obě křivky pak dodávají logotypu mocné vnitřní pnutí, které symbol
Hanoje obklopuje. Na jedné straně tak představují společné směřování,
spojení, solidaritu a přátelství mladých lidí na MMO, na straně druhé
vytvářejí představu plamene symbolizujícího odkrytý talent a tvořivost
mládí, jež může matematiku využít к naplňování vznešených cílů lidstva.

Vietnamští organizátoři se na celý průběh akce připravili velmi dobře
a nachystali soutěžícím a jejich vedoucím velmi zajímavý program na ce-
lou dobu pobytu. S podporou státních orgánů zajistili všem účastníkům
komfortní hotelové ubytování a výtečné stravování, regulérní podmínky
pro oba soutěžní dny i následnou náročnou práci hodnotících porot. Ко-
ordinační týmy tvořili velmi erudovaní matematici — učitelé mnoha míst-
nich vysokých škol a vědeckých ústavů. Pro chvíle odpočinku byl připra-
ven bohatý program, takže všichni účastníci měli možnost poznat nejen
pamětihodnosti hlavního města Hanoje a přírodní krásy přímořského le-
toviska Ha Long, ale seznámit se při jedné exkurzi rovněž s technologií
výroby hedvábí. Význam soutěže byl umocněn přítomností vietnamského
premiéra Nguyen Tan Dunga na slavnostním zahájení v předvečer prv-
ního soutěžního dne. O týden později předával zlaté medaile nejlepším
soutěžícím osobně prezident VSR Nguyen Minh Triet.

IMO 2007
HANOI-VIETNAM
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Vedoucím družstva ČR byl doc. RNDr. Jaromír Šimša, CSc., z Ma-
sarykovy univerzity v Brně. Naše šestičlenné soutěžní družstvo, které
doprovázel RNDr. Jaroslav Svrček, CSc., z Univerzity Palackého v Olo-
mouci, bylo jmenováno na základě výsledků ústředního kola 56. ročníku
MO ve Zlíně a následného týdenního výběrového soustředění v Kostelci
nad Černými lesy. Tvořili je Miroslav Klimoš z 2. ročníku Gymnázia
Mikuláše Koperníka v Bílovci, Michal Rolínek ze 4. ročníku Gymnázia
Johanna Keplera v Praze 6, Lenka Slavíková ze 4. ročníku Gymnázia
v Mnichově Hradišti a trojice studentů z Gymnázia na tř. Kpt. Jaroše
v Brně: Zbyněk Konečný a Jiří Řihák ze 4. ročníku a Hana Šormová
z 2. ročníku.

Soutěžící jednotlivci jako obvykle řešili ve dvou půldnech vždy tři
soutěžní úlohy po dobu 4,5 hodiny; za každou ze šesti úloh mohli zís-
kat nejvýše 7 bodů. Výběr soutěžních úloh nebyl pro porotu složenou
z vedoucích jednotlivých zemí ani letos jednoduchý. V současnosti proží-
vají různé národní i nadnárodní matematické soutěže velký rozmach; je
proto stále obtížnější posoudit, které z navrhovaných přibližně 30 úloh
jsou dostatečně původní a nepodobné těm, které už na nějaké soutěži
kdy byly. Diskuse o těchto otázkách jednání poroty znesnadňují a časově
protahují. Také snaha poroty zařadit do výsledné šestice dvě extrémně
náročné úlohy, které by určily vítěze celého klání, letos nevedla к příliš
šťastnému řešení. Z celého pole účastníků třetí úlohu vyřešili pouze tři
a šestou úlohu pouze čtyři soutěžící! Proto si mnozí vedoucí kladli otáz-
ku: mělo smysl naplnit třetinu zadání soutěže pro 520 účastníků úlohami,
které 515 účastníků nemělo vůbec šanci vyřešit? Po soutěži se navíc uká-
žalo, že šestá úloha ani tolik originální nebyla, protože se přesně kryla
s obsahem jednoho článku, který v roce 1993 vyšel v European Journal
of Combinatorics. Pro nás je ovšem potěšitelné, že po deseti letech byla
do soutěže vybrána česká úloha. Jejím autorem je Marek Pechal, držitel
bronzové medaile z předloňské 46. MMO v Mexiku.

Absolutním vítězem 48. MMO se stal Konstantin Matvejev z Ruska,
který získal 37 bodů ze 42 možných. Zařadil se tak do čela 39 nej lepších
soutěžících, kterým byly za zisk nejméně 29 bodů uděleny zlaté medaile.
Stříbrné medaile si z Hanoje odvezli 83 účastníci ohodnocení alespoň
21 bodem. Na bronzovou medaili letos stačilo 14 bodů; potěšilo nás, že
mezi 131 držiteli tohoto kovu je i pět reprezentantů České republiky
(Konečný, Klimoš, Slavíková, Rolínek a Řihák). Ani šestá naše soutěžící
Šormová nevyšla úplně naprázdno, když spolu se 148 dalšími soutěžícími
bez medailí získala čestné uznání za úplné vyřešení jedné ze šesti sou-
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těžních úloh. Podrobné výsledky našich soutěžících ukazuje následující
tabulka:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

197.-225. Miroslav Klimoš

171.-196. Zbyněk Konečný
226.-253. Michal Rolínek
226.-253. Jiří Řihák
197.-225. Lenka Slavíková

365.-401. Hana Šormová

7 0 0 6 2 0 15 III.

7 0 0 7 2 0 16 III.

7 0 0 6 1 0 14 III.
7 0 0 7 0 0 14 III.

6 0 0 7 2 0 15 III.

010700 8 HM

Celkem 34 1 0 40 7 0 82

Pro srovnání uvádíme i tabulku s výsledky slovenských reprezentantů,
kteří sice získali o jednu medaili méně, v celkovém bodovém součtu nás
však o čtyři body předstihli:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

197.-225. Samuel Hapák
226.-253. Ondřej Mikuláš
161.-170. Tomáš Rusin
322.-343. Michal Spišiak
123.-132. Michal Szabados
322.-343. Vladislav Ujházi

7 1 0 7 0 0 15 III.

6 0 0 6 2 0 14 III.

3 7 0 6 1 0 17 III.
7 1 0 0 2 0 10 HM

6 7 0 7 0 0 20 III.

0 1 0 7 2 0 10 HM

Celkem 29 17 0 33 7 0 86

S radostí můžeme konstatovat, že naše družstvo podalo na 48. MMO
lepší výkon, než se očekával podle výsledků přípravných soustředě-
ní. V neoficiálním žebříčku zúčastněných států, které uvádíme tabulce
na další straně, nám náš výsledek oproti loňské MMO přinesl skok
o 10 míst nahoru (případná čísla v závorce uvádějí nižší počet repre-
zentantů než obvyklých 6). Za povšimnutí stojí, že s výjimkou Polska
a Švýcarska podala nečekaně vyrovnaný výkon družstva všech ostatních
států, které se pak v září 2007 zúčastnily prvního ročníku Středoevropské
matematické olympiády (kromě Polska a Švýcarska to bylo pořádající
Rakousko, dále pak Slovensko, Slovinsko, Chorvatsko a Česká republika,
o účasti v dalších ročnících uvažují i představitelé Německa a Maďarska).
Věříme, že nová soutěž vždy na počátku školního roku bude pro její per-
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spektivní účastníky dobrým stimulem к intenzívní celoroční přípravě na

následující celosvětovou matematickou olympiádu.
I II III body I II III body

Rusko
CLR
Korea
Vietnam
USA

Japonsko
Ukrajina
KLDR
Bulharsko

Tchaj-wan
Rumunsko

Hongkong
Írán
Thajsko
Německo
Maďarsko
Turecko
Polsko
Bělorusko
Moldavsko
Itálie
Austrálie
Srbsko
Brazílie
Indie
Gruzie
Kanada
Kazachstán
Velká Británie
Kolumbie
Litva
Peru
Řecko
Mongolsko
Uzbekistán

Singapur
Mexiko
Slovensko
Slovinsko
Česká republika
Švédsko
Rakousko
Francie
Norsko

Belgie
Chorvatsko

Argentina

Arménie
Macao
Izrael

Nový Zéland
Ázerbájdžán
Bosna- a Hercegovina
Indonézie
Makedonie
Nizozemsko
Estonsko
Albánie

Švýcarsko
Lotyšsko
Finsko

Portugalsko
Irsko
Turkmenistán
Dánsko

Španělsko
Kirgizie (5)
JAR
Kypr
Trinidad a Tobago
Tádžikistán
Kostarika (5)
Island
Ekvádor
Lucembursko (3)
Malajsie
Salvádor (4)
Pákistán

Paraguay (4)
Bangladéš (5)
Maroko
Kambodža (4)
Srí Lanka

Filipíny
Nigérie
Mongolsko (3)
Kuba (1)
Lichtenštejnsko (2)
Venezuela (3)
Portoriko (3)
Saudská Arábie
Chile (4)
Bolívie (2)

730 15 1 0 184 1
732 0 181 0 1 14
710 0 32 4 0

3 3 0
168

710 0 3168
0 0 3 692 3 1 155

2 4 0 154 0 1 0 69
3 1 2 154 0 1 0 69

0 0 0 3 681 4 151
0 0 652 3 1 149 1
0 0 1
0 0 1
0 0 1
0 0 0

642 3 1 149
591 4 1

0 5 1
146

59143
583 2 1431

0 1 0 553 2 1331
0 0 1
0 0 1
0 0 0
0 0 1

0 0 2
0 0 1

521 3 1 132
510 5 0 129
511 2 2 124

2 2 122 501

1 1 4 119 48
0 3 2 118 43
1 1 3 116 0 0 0 42
0 1 4 110 0 0 0 41

1071 0 4 0 0 0 39
0 2 3 106 370 0 1
0 3 0 103 0 0 1 36
1 1 1 102 0 0 0

0 0 1
35

0 1 3 98 34
0 1 3 95 0 0 1 34

01 3 95 0 0 341
0 1 3 93 0 0 0 34
1 0 2 92 0 0 1

0 0 0
0 0 0

32
0 1 2 91 32
0 1
0 2

3 89 31
1 88 0 0 0 28

0 1 3 88 0 0 0 26
0 0 5
0 0 4
0 0 4
0 0 5
0 0 5
0 0 4

87 0 0 0 25
86 0 0 0 21
86 0 0 0 20
85 0 0 o 17
82 0 0 1 16
81 0 0 1 14

0 1 3 80 0 0 0 14
791 0 2 70 0 0

0 791 1 0 0 o 5
780 0 3

0 0 2
0 0 0 4

76 0 0 0 2
750 1 1
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Jsou dána reálná čísla ai, a2,..., an. Pro každé i (1 5Í i C n) definujme

di — max{aj : 1 = j = i} ~ min{aj : i C j C n}.

Nechť
d = max{di: 1 5Í i C n}.

(a) Dokažte, že pro libovolná reálná čísla x\ C X2 C ... C xn platí
nerovnost

max{|xj — ai\ : 1 C. i iC n} —. (*)

(b) Ukažte, že existují reálná čísla x\ C X2 C ... ^ xn, pro něž v (*)
nastane rovnost. {Nový Zéland)2.Uvažujme pět bodů А, В, C, D, E takových, že ABCD je rovnoběžník

a čtyřúhelník BCED je tětivový. Přímka l prochází bodem A, přičemž
protíná úsečku DC v jejím vnitřním bodě F a přímku BC v bodě G.
Předpokládejme, že platí \EF\ = \EG\ = l-ECj. Dokažte, že přímka l je
osou úhlu DAB. (Lucembursko)3.Někteří účastníci matematické soutěže jsou přátelé. Přátelství je vzá-
jemné. Skupinu soutěžících nazveme klika, jsou-li každí dva z nich přátelé.
(Speciálně libovolná skupina složená z méně než dvou soutěžících je kli-
ka.) Počet členů kliky nazveme jejím rozměrem.

Víme, že největší rozměr kliky složené z účastníků soutěže je sudé
číslo. Dokažte, že všechny soutěžící je možno rozesadit do dvou místností
tak, aby největší rozměr kliky v jedné místnosti se rovnal největšímu
rozměru kliky v druhé místnosti. {Rusko)4.Osa úhlu BCA trojúhelníku ABC protíná jeho opsanou kružnici
v bodě R různém od bodu C, osu strany BC v bodě P a osu strany AC
v bodě Q. Střed strany BC označme К a střed strany AC označme L.
Dokažte, že obsahy trojúhelníků RPK a RQL se rovnají.

{Česká republika)
5. Kladná celá čísla a, b jsou taková, že číslo (4a2 — l)2 je dělitelné 4ab—1.
Dokažte, že a = b.

6. Nechť n je kladné celé číslo. Uvažujme množinu

(Velká Británie)

S = {{x,y,z) \ x,t/,ze{0,l,...,n}, x + y + z> 0}
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složenou z (n + l)3 — 1 bodů třírozměrného prostoru. Určete nejmenší
možný počet rovin, jejichž sjednocení obsahuje všechny body z S, neob-

(Nizozemsko)sáhuje však bod (0,0,0).

Řešení soutěžních úloh

1. Každé z čísel d\, g^, ..., dn, a tedy i jejich maximum d se rovná rozdílu
některých dvou členů posloupnosti ai,a2,... ,an. Existují proto indexy
p, q takové, že p q a d = ap — aq. (Tyto indexy nejsou obecně určeny
jednoznačně, např. pro neklesající posloupnost (a*) je zřejmě d — 0 a rov-
nost ap — aq může splňovat více dvojic členů takové posloupnosti.)

CLp

Xq

XЛурd

aq

V Q

Obr. 51

Nechť x\ ^ X2 ^ ^ xn jsou libovolná reálná čísla. К důkazu
části (a) stačí pracovat s hodnotami xp, xq (obr. 51). Máme totiž xq^.x
a tedy

pí

Xp) (Xg — (^P ^9) *^p) ^ ^p Q'Q —

Proto platí aspoň jedna z nerovností ap — xp ^ ~d, xq — aq ^ odkud
dostáváme

max{|x; — аг\: 1 ^ i ^ n} ^ тах{|жр — ap|, |ж9 — ag|} >
U max{ap — xp,xq — M ž £

Tím je dokázána část (a).
Položme nyní

rr/e = maxj сц — —: 1 ^ i ^ Zej pro 1 ^ к ^ n.

Taková posloupnost je zřejmě neklesající, x\ ^ x^ ^ ^ xn. Ukážeme,
že pro takto zvolené hodnoty Xi platí

max{|xj — a,i \: 1 ^ i ‘š n} = ^
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Protože x\ jsme zvolili tak, že |xi — a\ \ = |d, stačí ukázat, že pro každé
i = 2,..., n je |xí — <2j| ^ |d.

Přímo z definice hodnoty Xi plyne Xj — a* ^ — ^d, ukážeme tedy, že
pro libovolné i je také X{ — a* ^ |d. Je-li j ^ i nejmenší index, pro který
Xj = xi: je buďý = 1, nebo j ^ 2 a zároveň Xj_i < Xj. V obou případech
zřejmě platí Xj = a^- — \d. Máme tedy

d
Xi — xj — aj 2'

Z definice hodnoty d samozřejmě plyne, že aj — a* 5í d. Celkem tudíž
platí

d d d
m S d = -.

2 2 2

n platí — |d ^ Xi — ai |d, tedy

Xi — ai — aj — —

Ukázali jsme, že pro každé г = 1,2,..
opravdu |xj — ai| ^ ^d.

Jiné řešení. Kdyby pro některou neklesající posloupnost (x*) bylo
max{|xi — <2i|: 1 ^ i ^ n} < Jd, dostali bychom pro každé г, 1 ^ i ^ n,
nerovnost Xi — ^d < ai < x^ + |d, neboli

* ?

di < (xí + - (Xi - = d.

To odporuje definici čísla d.
Označme pro každé i, 1 ^ i n,

Mi = maxjaj : 1 ^ ^ г} a mj = min-fa., : г ^ ^ n}.

Obě posloupnosti (rrii) i (Mi) jsou zřejmě neklesající, přičemž ra* ^ 5Í
5í Mi. Položme nyní Xj = |(rrii + Mi), výsledná posloupnost je rovněž
neklesající, a protože di — Mi — rrii, platí

di rrii — Mi Mi — rrii di
—

Xi — Mi ú Xi — ai ^ Xi — rrii —
2 2 2 2

Je tudíž

max{|xi — <2i|; 1 ^ i 5Í n} max : 1 ^ i ^ n j = ^
A protože jsme už dokázali opačnou nerovnost pro libovolnou neklesající
posloupnost (xj), musí pro takto zvolenou posloupnost platit rovnost.
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2. Zřejmě stačí ukázat, že \CF\ = |CG|, protože z rovnosti souhlas-
ných a střídavých úhlů příslušných příčce l rovnoběžek AD, BG (obr. 52)
dostaneme \<BAG\ = \<CFG\ = |<CGF| = |<CGA| = |<ZMG|.

I
G

N

C

/5A

Obr. 52

Předpokládejme naopak, že je např. |CF| < |С(7|. Označme M
a AT středy úseček CF a CG. Zřejmě pak platí také \MF\ < \NC\,
\ME\ > \NE\ (pravoúhlé trojúhelníky FME a CNE mají shodnou pře-
ponu), a protože pravoúhlé trojúhelníky DEM a BEN jsou podobné
(to plyne z rovnosti obvodových úhlů nad tětivou ЕС kružnice к opsané
čtyřúhelníku BCED), je také \DM\ > \BN\ a \DF\ = \DM\ - \MF\ >
> \BN\ - |NC\ = \BC\ = \DA\. Trojúhelníky ADF a GCF jsou po-
dobné, takže poslední nerovnost \DF\ > \DA\ je ekvivalentní nerovnosti
\CF\ > \CG\. To je opačná nerovnost, než jakou jsme předpokládali.

Začneme-li naopak s opačnou nerovností, dojdeme samozřejmě na-

prosto stejným postupem opět ke sporu. Tím je dokázána rovnost
\CF\ = |CG\, a tedy i tvrzení úlohy.

Jiné řešení. Označme postupně S, M, N středy úseček CA, CF, CG.
Tyto tři body zřejmě leží na přímce p, jež je obrazem přímky l ve stejno-
lehlosti se středem C a koeficientem | (obr. 53). Úsečky EM, EN jsou
výškami rovnoramenných trojúhelníků EFC, ECG, jsou tedy kolmé na

odpovídající přímky CD, BC. Takže přímka p je Simsonovou přímkou1
bodu E a trojúhelníku BCD.

Věta o Simsonově přímce říká, že v jedné přímce leží paty tří kolmic spuštěných
z libovolného bodu Q kružnice opsané danému trojúhelníku XYZ na přímky jeho
stran; uvedená přímka se nazývá Simsonova přímka bodu Q a trojúhelníku XYZ.
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Úhlopříčky rovnoběžníku se půlí, proto je bod S středem úsečky BD,
a protože leží na Simsonově přímce p, musí být zároveň patou kolmice
z bodu E na stranu BD. Bod E je tak nutně středem oblouku BD
kružnice opsané tětivovému čtyřúhelníku BCED a platí \ED\ = \EB\.

Z obvodových úhlů nad tětivou ED plyne \<DBE\ = \<DCE\, takže
rovnoramenné trojúhelníky DBE, FCE jsou podobné (jejich ramena
ЕВ, ЕС svírají se základnami DB, FC shodné úhly, obr. 54). V otočení

okolo bodu E o úhel p = \<DEB\ — \<FEC\ se bod D zobrazí na В a F
C, proto |DF\ = \BC\. Zároveň však \BC\ — \AD\, odkud vyplývá,

že trojúhelník AFD je rovnoramenný. Odtud opět využitím shodnosti
na
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střídavých úhlů snadno dostaneme, že \<DAF\ = \<DFA\ = \<FAB\,
tedy přímka / je opravdu osou úhlu DAB.

Poznámka. К důkazu tvrzení o Simsonově přímce stačí využít vlast-
nosti obvodových úhlů. Při daném označení ukažme, že bod S, v němž
přímka MN protíná stranu BD trojúhelníku BCD, je patou kolmice
z bodu E opsané kružnice na tuto stranu, tj. že úhel ESВ je pravý: Z rov-
nosti obvodových úhlů nad tětivou DE plyne, že \<DBE\ = \<DCE\.
Navíc \<DCE\ = \<MCE\ — \<SNE\, neboť body M, C, N, E leží
na Thaletově kružnici. To ale znamená, že i body S, В, N, E leží na

(Thaletově) kružnici s průměrem EB.
Jiné řešení. Z podobnosti trojúhelníků ADF a GCF plyne

\FC\ \CG\
_ \CG\

\Щ - \Щ ~ \всу

Existuje proto spirální podobnost, která zobrazí úsečku DC na úsečku
BG, přičemž bod F přejde do bodu C a střed M úsečky FC do středu N
úsečky CG. Úhel přímek DC a BG určuje úhel příslušného otočení, ví-
dime tedy, že střed uvedené spirální podobnosti musí ležet na kružnici
opsané trojúhelníku DBC (úsečku DB je z něj vidět pod úhlem \ kDCB\)
a také na kružnici opsané trojúhelníku MCN (i úsečku MN je z něj vidět
pod úhlem \ KDCB\ = 180° — |<MCiV|). Společným bodem (různým od
bodu C) obou kružnic je právě bod E, a protože \EM\
o shodnost, takže je také \DC\ — \BG\. Je tudíž i \AB\ — \BG| a odtud,
jak už víme, snadno plyne, že přímka l je osou úhlu BAD.

3. Uvedeme algoritmus, jak rozdělit účastníky do místností. Dvě míst-
nosti, do nichž budeme účastníky rozdělovat, označme A a B. Začneme
s určitým rozdělením, které budeme postupně upravovat posíláním účast-
níků z jedné místnosti do druhé. Během algoritmu budeme označovat A,
В i množiny účastníků, kteří právě jsou v daných místnostech, a c(A),
c(B) velikost největší kliky v příslušné místnosti.

\EN\, jde

1. krok. Nechť 2m je rozměr největší kliky a M je jedna z klik s tímto
rozměrem, tj. |M| = 2m. Začneme tím, že všechny soutěžící z M dáme
do místnosti A a všechny ostatní do místnosti B. Zřejmě platí c(A) =
= |M| ^ c{B).

2. krok. Dokud je c(A) > c(B), posíláme účastníky po jednom z A
do В (obr. 55). (Je-li c(A) > c(B), místnost A určitě není prázdná.)
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A В

ВПМАпМ
О о

о °
о- о о

о оо
о

Obr. 55

Po každém přesunu se с(А) zmenší о 1 а с(В) se nejvýše о 1 zvětší. Po
konečném počtu přesunů tak dosáhneme toho, že c(A) ^ c(.B), a zároveň
bude c(B) ^ c(A) + 1, protože dosud záporný rozdíl c(B) — c(A) nemůže
vzrůst o více než o 2. Pokud je nyní c(A) = c(B), náš postup úspěšně
skončil.

Pokud c(B) = c(A) + 1, budeme pokračovat dalším krokem. Zatím
je stále ještě А С M klika, proto c(A) = \A\, a dokonce platí |A| ^ m
protože kdyby bylo c(A) — \A\ 'Am — 1, bylo by c(B) ^ \BnM\ ^ m +1,
a tudíž i c(B) — c(A) ^ (m + 1) — (m — 1) = 2.

3. krok. Označme к = c(Á), takže c(B) = к + 1 a podle předchozí
úvahy platí к a zároveň \B П M\ A m.

Nechť C je některá klika v В, pro kterou platí |Cj = к + 1. Pokud
existuje účastník x E (В П M) \ C (obr. 56), tak ho pošleme zpět do
místnosti А. V ní teď bude к + 1 členů M, takže c(A) = к + 1, přičemž
velikost kliky C v В se nezmenšila, tudíž c(B) — к + 1 = c(A) a náš
algoritmus úspěšně končí.

A В

В П M o OАГ\ M

O c
o

°
O Oo o

o o

Obr. 56

Pokud pro žádnou kliku C velikosti k +1 takového účastníka x v (В П
П M) \ C nenajdeme, znamená to, že v místnosti В obsahuje každá klika
s rozměrem к + 1 jako podmnožinu celý průnik В П M.
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4. krok. Dokud je c(B) = k + 1, volíme některou kliku С С В velikosti
fc-t-la pošleme jednoho člena z C\M do místnosti A (obr. 57). (Množina
C\M nemůže být prázdná, protože \C\ = к + 1 > m ^ \B П M|.)

A В

cАПМ В DM
о

о
о ° о

о о о о
оо о

Obr. 57

Pokaždé, když pošleme jednoho účastníka z В do A, zmenší se c(B)
nejvýše o 1. Nakonec tak dosáhneme toho, že c(B) = k. Přitom v míst-
nosti A máme kliku А П M velikosti \A П M\ = k, takže c(A) A. k.
Ukážeme, že v A už není klika s větším rozměrem a že jsme tím pádem
hotovi.

Nechť Q je libovolná klika v A. Dokážeme, že \Q\ к. V místnosti A,
a tedy i v množině Q mohou být dva typy účastníků:

> Členové M; protože M je klika, jsou to přátelé všech členů В П M.
> Účastníci, které jsme do A poslali ve 4. kroku; každý z nich byl v klice,

která obsahovala В П M, proto je přítelem všech členů В П M.
Všichni členové Q jsou tedy přátelé všech členů В П M (obr. 58), navíc

A В

АПМ
В Г) M

О X....О”: О
„ -—г.

ОО

О
О''—-;; **■' :: г;::::::::: ет»*0

■

Ч У
О*-—:*
о оQ

Obr. 58

množiny Q а В П М samotné jsou kliky, takže i jejich sjednocení Q U
U(Bn M) je klika. A protože M je klika s největším rozměrem, máme

\M\ ž IQ и (Б n M)I = \Q\ + \B n M| - \Q\ + \M\ -\An M|,

odkud \Q\ ^\AnM\ = k.
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Nakonec jsme tedy i po 4. kroku dostali rovnost c(A) — c(B). Tím je
tvrzení úlohy dokázáno.

4. Pokud je \AC\ — \BC\, je trojúhelník ABC rovnoramenný a souměrný
podle osy úhlu při vrcholu C, je tedy P — Q a není co dokazovat. Před-
pokládejme proto (samozřejmě bez újmy na obecnosti), že \ AC\ < \BC\.

Protože CR je osa úhlu, jsou pravoúhlé trojúhelníky QLC a PKC
podobné (obr. 59). Kromě jiného to znamená rovnost úhlů |<CQL| —

= |<PQO| = |<QPO|, takže trojúhelník QPO je rovnoramenný a platí
\PO\ = \QO\. Ze zmíněné podobnosti pak ještě plyne

Vzhledem к rovnosti úhlů RPK a RQL tak pro obsahy uvažovaných
trojúhelníků dostáváme

S(RPK)
_ |sin|<PPP| • \RP\ ■ \PK\ _ \RP\ ■ \PC\ _

S(RQL) ~ i sin \<RQL\ • \RQ\ • \QL\ ~ \RQ\ ■ \QC\ ~ ’

neboť tětiva CR je zřejmě souměrná podle stejné osy jako rovnoramenný
trojúhelník QPO, takže je |PP| = |QC| a |PC| = |PQ|. Tím je rovnost
S(RPK) = S(RQL) dokázána.
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Jiné řešení. Podobně jako v prvním řešení budeme rovnou předpoklá-
dat, že \AC\ < \BC\. Označme 7 velikost vnitřního úhlu při vrcholu C.
Z pravoúhlých trojúhelníků QLC a PKC (obr. 60) plyne, že

\<CQL\ = \<CPK\ = Í7,

takže trojúhelník QPO je rovnoramenný s úhlem velikosti 7 při hlavním
vrcholu O. Středový úhel stejné velikosti zřejmě přísluší i shodným těti-
vám AR a BR opsané kružnice (tětivy jsou shodné, protože CR je osou
úhlu ACB). Uvažujme proto otočení se středem O o úhel 7. V něm se
bod A zobrazí do bodu R, bod R do bodu В a bod Q do bodu P. Uve-
děné otočení tak převádí trojúhelník ARQ na trojúhelník RBP (obr. 61),
oba trojúhelníky jsou tudíž shodné a mají stejné obsahy. Nyní si stačí
uvědomit, že

S(ARQ) = 2S(RQL) a S{RBP) = 2S(RPK),

protože vzdálenosti vrcholů А а В od přímky CR jsou rovny dvojnásob-
kům vzdáleností odpovídajících středů L а К stran АС a BC od téže
přímky.

Jiné řešení. Jak jsme zjistili už v prvním řešení, procházejí středem O
opsané kružnice jak osy KP, LQ stran BC, resp. AC, tak i osa o tě-
tivy CR (obr. 62). Průsečíky osy o s přímkami АС, BC označme po řadě
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U а V. Z vlastnosti osy úsečky plyne \CU\ = \RU\ a \CV\ = \RV|. Platí
i \CU\ = \CV\, neboť v trojúhelníku CUV je strana UV kolmá к
úhlu při vrcholu C, kterou je polopřímka CR. Čtyřúhelník CURV je
tedy kosočtverec nebo čtverec. V osové souměrnosti podle přímky UV
tak přejde dvojice rovnoběžek CU, RV v dvojici rovnoběžek RU, CV;
přímka LQ jdoucí samodružným bodem O kolmo к první dvojici přímek

ose

proto přejde v přímku jdoucí bodem O kolmo к druhé dvojici přímek,
tedy v přímku KP. Tato přímka tudíž protne přímku RU v bodě M,
který je souměrně sdružený s bodem L. Ze stejného důvodu jsou souměrně
sdružené i body P, Q (a samozřejmě i body C, R), takže jsou souměrně
sdružené i trojúhelníky CPM a RQL. Ještě si povšimněme dvojice troj-
úhelníků MRC, MRK; také ty mají stejný obsah, neboť CK
Platí tedy

MR.

S(PRK) = S(MRK) - S(MRP) = S(MRC) - S(MRP) =

= S(MPC) = S(RQL).

Tím je důkaz hotov.

5. Jestliže (4a2 — l)2 je dělitelné číslem 4ab — 1, je jím dělitelný i výraz

(4a2 - l)2 - 2(4a2 - l)(4ab - 1) + (4ab - l)2 =

= ((4a2 — 1) — (4ab — l))2 — (4a)2(a — b)2.
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A protože čísla 4a a 4a6 — 1 jsou nesoudělná, dostáváme, že (a — b)2 je
rovněž dělitelné číslem 4ab — 1. To znamená, že

(a — b)2 = m(4ab — 1) (1)

pro vhodné přirozené číslo m. Pro m — 0 dostáváme a — b. Ukážeme,
že pro libovolné m > 0 rovnici (1) žádná dvojice přirozených čísel a, b
nevyhovuje.

Předpokládejme naopak, že takové dvojice čísel a, b existují, a vy-
berme mezi nimi dvojici (a0,&o) s nejmenším b0. Protože vztahu (1) zá-
roveň vyhovuje i symetrická dvojice (6o,ao), plyne odtud bo < ao.

Vztah (1) pro а = ao, b = bo nyní přepíšeme do tvaru

ац — (2 + 4m)b0a0 + (62 + m) = 0, (2)

z něhož vidíme, že přirozené číslo x\ = ao vyhovuje kvadratické rovnici

x2 — (2 + 4m)6o-'£ + (6q + m) — 0

s celočíselnými koeficienty. Proto i její druhý kořen X2 = (bl + m)/ao > 0,
který dostaneme z Viětova vztahu, je přirozený. Zřejmě tedy i dvojice
(60,^2) vyhovuje rovnosti (1), takže vzhledem к volbě čísla bo platí X2 >
> bo neboli m > aobo — = 6o(flo — bo). Dosazením čísel a0, b0 do (1)
tak máme

(a0 - b0)2 > Ь0(а0 - Ь0)(4а0Ьо - 1),
odkud za uvedených předpokladů vychází nerovnost 4< 1, což nemůže
pro žádné přirozené číslo bo platit.

Jiné řešení. Z podmínky 4ab — 1 | (4а2 — l)2 a rovnosti pro rozdíl
čtverců

b2(4a2 - l)2 (a — b)2 = a(4a& — l)(4a26 + a — 2b)

plyne
4ab — 1 I (a — b)2.

Připusťme, že nalezený vztah splňuje nějaká dvojice (a, b) přirozených
čísel s vlastností а ф b. S ohledem na symetrii vztahu (1) můžeme před-
pokládat, že а > b. Pak rovnost (a — b)2 = m(4ab — 1), kde m je vhodné
přirozené číslo, přepíšeme do tvaru

(3)

(a — b — 2mb)2 = 4m2b2 + 4mb2 — m
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z něhož plyne, že 4m2b2 + 4mb2 — m = t2 pro vhodné celé číslo t > 2mb,
neboť 4mb2 — m > 0. S ohledem na t2 < 4m?b2 + 4mb2 < (2m6 + 6)2
však musí zároveň být í < 2mb + 6, dohromady tedy t = 2mb + b — s,
kde celé číslo s splňuje nerovnosti

0 < s < b (< a). (4)

Rovnost 4m2b2 + 4mb2 — m — (2mb + b — s)2 upravíme do tvaru

*)2, odkud 46s — 1 | (6 — s)2.m(4bs — 1) = (b

Dvojice (b,s) proto splňuje stejně jako výchozí dvojice (a, b) vztah (3).
Podle (4) je ovšem nová dvojice (6, s) v každé z obou složek menší než
původní dvojice (a, b). Protože složky uvažovaných dvojic jsou přirozená
čísla, můžeme celou proceduru zmenšování složek zopakovat pouze něko-
likrát; po určitém počtu kroků proto dojdeme ke dvojici různých přiro-
zených čísel, к níž už není možné proceduru uplatnit, a to je spor. Žádná
dvojice různých přirozených čísel splňující vztah (3) proto neexistuje.2
6. Nejmenší možný počet rovin je 3n. Snadno najdeme 3n rovin, jež
dané podmínky splňují. Můžeme například vzít roviny s rovnicemi x = i,
у — г, 2 = i pro i = 1,2,...,n anebo roviny s rovnicemi x + у + z = к
pro к = 1,2,..., 3n. Ukážeme, že méně než 3n rovin nestačí.

Nejprve dokážeme následující tvrzení:
Nechť P = P(xi,...,Xk) je nenulový mnohočlen к proměnných.

Jestliže P(0,...,0) 7^ 0 a zároveň P{x= 0 pro libovolná
x\,..., Xk € {0,1,..., n} taková, že x\ + ... + Xk > 0, je st P ^ kn, kde
st P označuje stupeň mnohočlenu P, tj. exponent nejvyšší mocniny x ve

výrazu P(x,..., x).
Tvrzení dokážeme matematickou indukcí vzhledem к počtu proměn-

ných k. Pro к — 1 je jeho platnost zřejmá: jestliže nenulový mnoho-
člen jedné proměnné má n kořenů (v našem případě jsou kořeny P čísla
1, 2,..., n), má stupeň aspoň n.

Předpokládejme, že tvrzení platí pro к = m. Dokážeme, že potom
platí i pro к = m + 1. Kvůli přehlednosti označme у = xm+i. Jestliže P
chápeme jako mnohočlen proměnné у, můžeme ho vydělit mnohočlenem

2 O objevu klíčového vztahu dělitelnosti (1) a skutečnosti, že 1 za druhým řešením
se skrývá manipulace s kořeny kvadratické rovnice (2) z prvního řešení se dočtete
v článku Jaromíra Šimši v Rozhledech matematicko-fyzikálních 83 (2008), č. 1,
str. 14.
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Q(y) = у [у — 1)... (у — п). Přitom jako zbytek dostaneme mnohočlen P.
Přesněji,

P(x1,...,xm,y) = Q(y) ■ S(x1,...,xm,y) + R(xi,...,xm,y),
kde sty R й n (tj. stupeň zbytku P, pokud ho chápeme jako mnohočlen
jedné proměnné y, je menší než stupeň mnohočlenu Q). Protože Q(y) =
= 0 pro у = 0,1,... ,n, máme P(xb..., xm, y) = P(x\,..., xm, y) pro
libovolná X\,, xm,y G {0,1,..., n}, neboli R splňuje podmínky našeho
tvrzení. Zřejmě st R ^ st P, stačí tedy dokázat, že st P ^ (m + l)n.

Rozepišme R podle mocnin y:
П— 1Хт)У Rn— 1 (*^T) • • хт)УR(xi, . . . , Xrn, y') R-n 11 ■ ■ + ...+• )• ?

+ Po 1) • • • j 2- m ) •

xm) můžeme použít indukčníUkážeme, že na mnohočlen Rn(xi,.,
předpoklad.

Uvažujme mnohočlen T(y) = P(0,... ,0, у) stupně nejvýše n. Tento
mnohočlen má n kořenů у = 1,2,...,n. Na druhé straně T není kon-
stantní nulový mnohočlen, neboť T(0) ф 0. Je tedy stT — na jeho
vedoucí koeficient Pn(0,..., 0) je nenulový.

• ?

am G {0,1,..., n}, kde oi + ... +Vezmeme-li libovolná čísla a\,..

+ am > 0, a dosadíme X{ = cii do P(xi,..., xm,y), dostaneme mnohočlen
proměnné y. Tento mnohočlen je nulový ve všech bodech у — 0,1,..., n

(tj. má aspoň n + 1 kořenů) a má stupeň nejvýše n. Proto musí být
nulový, neboli P;(ai,..., am) = 0 pro všechna i = 0,1,..., n. Speciálně

• ?

Rn (0> 1, • • am) — 0.
Mnohočlen Rn(xi,..

• ?

xm) tak splňuje předpoklady našeho tvrzení
a podle indukčního předpokladu dostáváme st Rn ^ mn, pročež

* ?

st P ^ st P ^ st Rn + n ^ (m + l)n.
Teď už řešení snadno dokončíme. Předpokládejme, že máme N rovin

pokrývajících všechny body z S, ale neobsahujících bod (0,0,0). Nechť
rovnice těchto rovin jsou + biy + C{Z + = 0 (pro i = 1,2,..., N).
Uvažujme mnohočlen

P(x, y, z) = (aix + biy + C\z + di)(a2x + b2y + c2z + d2)...
(адгх + bj\ry + cjssz + div),

jehož stupeň je zřejmě N. Tento mnohočlen pro libovolné (xo,yoj2o) €
G S splňuje rovnost P(xo, yo, zq) = 0 a zároveň P(0, 0,0) ф 0. Podle
dokázaného tvrzení je tedy N — st P ^ 3n.
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1. středoevropská matematická olympiáda

Z podnětu organizačního výboru rakouské
matematické olympiády (ÓMO) byly v bé-
hem 47. mezinárodní matematické olym-
piády ve Slovinsku delegace devíti středo-
evropských zemí (Švýcarska, Rakouska, Ně-
mecka, Slovinska, Chorvatska, České repub-
liky, Slovenska, Polska a Maďarska) sezná-
měny s návrhem vytvořit pro matematicky
talentované středoškoláky uvedených zemí
novou soutěž. Snahou iniciátorů vzniku sou-

EUROPEAN

EISENSTADT
AUSTRIA 2007

těže bylo umožnit dalším studentům zemí
střední Evropy porovnat své znalosti z matematiky v mezinárodním mě-
řítku. Na tomto jednání byly také předběžně stanoveny cíle a pravidla
této nové mezinárodní soutěže. Iniciátoři jejího vzniku přitom vycházeli
z pravidel dvojstranné mezinárodní matematické soutěže středoškoláků
„Polsko - Rakousko", která existovala až do roku 2006 plných 29 let.

První ročník Středoevropské matematické olympiády (MEMO —

Middle European Mathematical Olympiad) se uskutečnil 20.-26. září
2007 v rakouském Eisenstadtu — hlavním městě spolkové země Bur-
genland. Soutěže se však v jejím prvním ročníku zúčastnilo pouze sedm
(z devíti) středoevropských zemí (soutěže se nezúčastnilo Německo a Ma-
ďarsko).

Každou zemi mělo právo reprezentovat šest soutěžících, kteří se ne-
zúčastnili uplynulé MMO ve Vietnamu a ve školním roce 2007/08 byli
studenty středních škol. Úvodního ročníku soutěže se nakonec zúčastnilo
40 studentů (slovinské družstvo přicestovalo do Eisenstadtu pouze se
čtyřmi účastníky).

Ústřední komise české MO vybrala pro Středoevropskou matema-
tickou olympiádu šestici středoškoláků sestavenou z vítězů, resp. těch
úspěšných řešitelů ústředního kola 56. ročníku MO kategorie A, kteří
splňovali podmínky soutěže. České reprezentační družstvo tak v abeced-
ním pořadí tvořili tito soutěžící: Jan Máca (G v Třebíči), Matěj Pe-
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těrka (G v Praze 6, Nad Alejí), Alena Peterová (G Dobruška), Samuel
Říha (G v Brně, tř. Kpt. Jaroše), Tomáš Toufar (GMK v Bílovci) a Jan
Vaňhara (GLJ v Holešově). Vedoucím české delegace a jejím zástupcem
v jury byl RNDr. Jaroslav Švrček, CSc., z Přírodovědecké fakulty UP
v Olomouci, jeho zástupcem a pedagogickým vedoucím byl Mgr. Martin
Panák, Ph.D., z brněnského pobočky Matematického ústavu AV ČR.

Vlastní soutěž se konala ve dvou soutěžních dnech, a to v sobotu
22. září (soutěž jednotlivců) a v neděli 23. září (soutěž družstev). Po oba
soutěžní dny řešili jednotlivci, resp. reprezentační družstva po 4 úlohách,
na jejichž vypracování byl vždy vyhrazen čas 5 hodin. Každá úloha byla
přitom hodnocena (podle předem schváleného systému hodnocení) celo-
číselným počtem bodů v rozpětí 0-8 bodů.

Podobně jako na MMO měly jednotlivé země možnost zaslat s jis-
tým časovým předstihem organizačnímu výboru návrhy úloh pro soutěž.
Z nich pak mezinárodní jury vybrala dvě čtveřice úloh, jednu pro soutěž
jednotlivců a druhou pro soutěž družstev. Mezi vybranými soutěžními
úlohami byly také dvě české úlohy. Jedna z nich byla použita v sou-
těži jednotlivců (autor Marek Pechal) a druhá v soutěži družstev (autor
doc. RNDr. Jaromír Šimša, CSc.).

Koordinace žákovských řešení probíhala stejným způsobem jako na
MMO. Na závěrečném jednání jury (24. září) byly stanoveny hranice pro
udělení zlatých, stříbrných a bronzových medaili a dále bylo potvrzeno
oficiální pořadí v soutěži družstev. O tom, že úlohy v 1. ročníku sou-
těže byly poměrně náročné, svědčí i poměrně nízké hranice pro udělení
medailí v soutěži jednotlivců. Pro zlatou medaili bylo stanoveno bodové
rozpětí 23-32 bodů, pro stříbrnou 13-22 bodů a pro bronzovou medaili
8-12 bodů. Celkově byly uděleny 2 zlaté, 8 stříbrných a 10 bronzových
medailí. Nejlepšího výsledku v soutěži jednotlivců přitom dosáhla Joanna
Bogdanowicz z Polska. Výsledky našich žáků byly následující:

Body za úlohu Body Cena
12 3 4Umístění

26.-29. Jan Máca

30.-32. Matěj Peterka
26.-29. Alena Peterová

14.-16. Samuel Říha
17.-19. Tomáš Toufar

39.-40. Jan Vaňhara

10 13

0 2 11

0 0 0 5

0 3 0 7

0 0 8 1

0 0 0 0

5
4

5

10 bronz

9 bronz

0

Celkem 1 5 10 16 33
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O něco lépe si vedli naši soutěžící v soutěži družstev. Díky dobře pro-

myšlené strategii řešení všech čtyř úloh obsadili po zásluze pěkné 3. místo
a domů si tak všichni přivezli bronzové medaile. Lépe dopadlo Polsko
s celkovým ziskem 31 bodů (ze 32 možných) a Chorvatsko s 25 body.
Družstva na 3.-5. místě dosáhla shodně zisku 21 bodů, ale české druž-
stvo (jako jediné z nich) vyřešilo bezchybně — bez ztráty bodu — dvě
soutěžní úlohy (2. a 3.), proto v konečném pořadí obsadilo 3. příčku
před Slovenskem a Rakouskem. Celkové výsledky soutěže družstev jsou
uvedeny v následující tabulce.

Body za úlohu Body
12 3 4

Cena

Umístění

1. Polsko

2. Chorvatsko

3. Česká republika
4. Slovensko

5. Rakousko
6. Švýcarsko
7. Slovinsko

zlato

stříbro

bronz

8 7 8 8

8 6 8 3

3 8 8 2

3 7 8 3

6 4 8 3

3 3 8 5

3 6 6 3

31

25

21

21

21

19

18

Pro soutěžící a ostatní účastníky 1. středoevropské MO připravili po-
řadatelé na poslední dva dny jednodenní výlety, a to к Neziderskému
jezeru (Neusiedler See) a do Vídně, kde si účastníci soutěže měli možnost
prohlédnout pamětihodnosti hlavního města Rakouska.

Slavnostní zakončení soutěže se konalo za přítomnosti zástupců poli-
tického života země Burgenland a ministerstva školství Rakouska v kon-
gresovém sále hotelu Ohr v Eisenstadtu. Předseda mezinárodní jury
1. středoevropské matematické olympiády Univ. Prof. Dr. Gerd Baron
předal všem oceněným medaile a rovněž poděkoval předsedovi organi-
začního výboru 1. středoevropské MO Mag. Thomasi Miihlgassnerovi,
který se výrazným způsobem zasloužil o zdárný průběh celé soutěže.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

Soutěž jednotlivců
1. Nechť a, 6, c, d jsou kladná reálná čísla splňující rovnost a+b+c+d — 4.
Dokažte, že

a2bc + b2cd + c2da + d2ab č 4.

(Švýcarsko)
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2. Je dáno к sad míčů (k je celé číslo větší než 1). Každá sada obsahuje
n míčů, které jsou označeny čísly 1,2,... ,n. Každý míč obarvíme jednou
ze dvou barev (bílou nebo černou) tak, že
a) míče označené stejným číslem mají stejnou barvu,
b) žádná (k + l)-prvková množina míčů, které jsou označeny (ne nutně

různými) čísly ai, <22,..., a^+i tak, že platí a\ + <22 + ... + ak = a/c+i,
není jednobarevná.
V závislosti na к určete největší možné číslo n, pro něž takové obarvení

míčů existuje.

3. Je dána kružnice к a čtyři menší kružnice к\, &2, a ^4 se středy po
řadě Oi, O2, O3 а O4, jež leží na kružnici k. Pro i = 1,2,3,4 se kružnice
ki a ki+1 (£5 — k\) protínají ve dvou bodech Ai a Bi, přičemž body Ai
leží na kružnici k. Předpokládejme že body Oi, A\, O2, A2, O3, A3, O4,
A\ jsou navzájem různé a leží na kružnici к v tomto pořadí. Dokažte, že

(Švýcarsko)

(Slovinsko)

B1B2.B3.B4 je pravoúhelník.4.Určete všechny dvojice (x, у) kladných celých čísel, která vyhovují
rovnici

x\ + y\ = xv.

(Česká republika)

Soutěž družstev5.Nechť a, b, c, d jsou libovolná reálná čísla z uzavřeného intervalu (h; 2),
která vyhovují podmínce abcd — 1. Určete největší možnou hodnotu
výrazu

(а+Ж'>+;:)(с+5)( a)'
(Česká republika)

6. Pro libovolnou množinu P pěti bodů v rovině (v obecné poloze)
označme a(P) počet všech ostroúhlých trojúhelníků s vrcholy v mno-
žíně P. Určete největší možnou hodnotu a(P).

(Pět bodů v rovině je v obecné poloze, jestliže žádné tři z nich neleží
na téže přímce.)
7. Označme s(T) součet délek všech hran čtyřstěnu T. Uvažujme všechny
čtyřstěny, jejichž délky hran jsou navzájem různá kladná celá čísla, při-
čemž jedno z nich je 2 a jedno 3. Takové čtyřstěny budeme nazývat
MEMO-čtyřstěny.

(Švýcarsko)
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a) Určete všechna kladná celá čísla n, pro něž existuje MEMO-čtyřstěn
T s vlastností s(T) = n.

b) Určete počet navzájem různých MEMO-čtyřstěnů T, pro něž platí
s(T) = 2 007.
Dva čtyřstěny považujeme za různé, jestliže jeden nelze převést na

druhý pomocí složení souměrností podle roviny, posunutí nebo otočení.
(Není nutno dokazovat, že dotyčné čtyřstěny nejsou degenerované,

tj. že mají kladný objem.)
8. Určete všechna kladná celá čísla к s vlastností: existuje celé číslo a

takové, že (a + к)3 — a3 je násobkem čísla 2 007.

(Rakousko)

(Rakousko)

Řešení úloh

1. Nechť je nerostoucí uspořádání prvků uvažované
množiny {a,b, c, d] kladných reálných čísel, jež vyhovují dané podmínce
a + b + c+d — 4. Protože pqrs = abcd = 1, je také pqr ^ pqs éí prs ^ qrs.
Užitím permutačni nerovnosti3 tak dostaneme

a2bc + b2cd + c2da + d2ab = a ■ abc + b • bed + c • eda + d • dab 5ь

p ■ pqr + q • pqs + r ■ prs -f s ■ qrs = (pq + rs)(pr + qs).

Dvojím užitím nerovnosti mezi aritmetickým a geometrickým průměrem
kladných reálných čísel p, q, r, s dále obdržíme

pq + rs + pr + qs\2 1, .

J = ^((P + s)(g + r)) b
1 /ci b c d\^

(pq + rs)(pr + qs) й ^ 2
1 (p + s + q + r\4< - = 4,-

4 2 24

což jsme chtěli dokázat.

Jiné řešení. Levou stranu dokazované nerovnosti upravíme na tvar

a2bc + b2cd + c2da + d2ab = ac(ab + cd) + bd(bc + ad) (1)

a všimneme si, že se nezmění pro žádnou cyklickou permutaci uspořádané
čtveřice (a, b, c, d). Můžeme tedy bez újmy na obecnosti předpokládat, že

3 Jsou-li xi íš X2 5 ... 5 in, !/1 = У2 ^ = Уп dvě posloupnosti reálných čísel,
platí pro libovolné uspořádání z\, Z2, ■.., zn čísel yi, yi, ■ ■ ■, yn nerovnost x\z\ +
+ • • ■ + Xnzn ú Xiyi + ... 4- xnyn.
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a ^ c. Podobně lze předpokládat, že 6 ^ d: pokud by totiž platilo b ^
^ d, dostaneme cyklickou záměnou uspořádané čtveřice (a, 6, c, d) čtveřici
(a', 6', c', ď) = (d, a, 6, c), v níž a' = d ^ 6 — с' a současně b' = a ^ c = ď.

Pro а ^ саб ^ d platí (a — c)(b — d) ^ 0. Tato nerovnost je ekvivaletní
s nerovností

ab + cd ^ bc 4- ad.

Pomocí této nerovnosti a užitím nerovnosti mezi aritmetickým a geo-

metrickým průměrem dvojice kladných reálných čísel odhadneme pravou
stranu rovnosti (1) následujícím způsobem:

ac(ab + cd) + bd(bc + ad) ^
^ ac(ab + cd) + bd(ab 4- cd) — (ab + cd)(ac + bd) ^

(ab -f cd) + (ac + bd) \ 2 / (a + d)(b + c) \ 2< <
2 2

^ (a + 6 + c + d)2 \< = 4.
2

Tím je požadovaná nerovnost dokázána.

2. Bez újmy na obecnosti můžeme předpokládat, že míče označené čís-
lem 1 mají bílou barvu. Předpokládejme nejprve, že míče označené čís-
lem 2 jsou černé. Protože

1 + 1 + ... + 1 = к
v v

к

mají případné míče označené číslem к podle podmínky b) černou barvu.
Z analogických důvodů jsou případné míče označené číslem 2к bílé, neboť

2 + 2 + ... + 2 = 2k.
к

Případné míče označené číslem к + 1 jsou pak podle podmínky b) černé,
neboť

(к + 1) + 1 + ... + 1 — 2k.
k-1

Vzhledem к tomu, že

1 + ... + 1+2к = 3k - 1 = 2 + ... + 2 +(k + 1)
к— 1 k-1
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nemohou být míče označené číslem 3/c — 1 obarveny ani jednou z obou
barev (bílou nebo černou). Odtud n ^ 3Zc — 2.

Předpokládejme nyní, že míče označené číslem 2 mají bílou barvu.
Z rovností

1 + 1 + ... + 1 + 1 — Zc,
l + l + ... + l + 2 = Zc + l,
l + l + ... + 2 + 2 = Zc + 2,

1 + 2 + ... + 2 + 2 = 2Zc — 1,
2 + 2 + ... + 2 + 2 — 2 Zc

vyplývá, že případné míče označené čísly Zc, Zc + 1,..., 2/c jsou černé. Z rov-
nosti

Zc + Zc + ... + Zc = Zc2
к

dále plyne, že případné míče označené čísly Zc2 jsou bílé. Protože však
1 + ... + 1 +k2 — /с2 + к — 1 = к + (Zc + 1) + ... + (Zc + 1),

k-1 k-1

nemohou mít míče označené číslem Zc2 + Zc — 1 ani černou, ani bílou barvu.
Je tudíž n 5Í Zc2 + к — 2.

Protože Zc2 + Zc — 2 ^ 3Zc — 2 (nerovnost je ekvivaletní s nerovností
Zc2 — 2Zc = Zc(Zc — 2) ^ 0), vidíme, že uvažované sady mohou obsahovat
nejvýše к2 + к — 2 míčů.

Nyní ukážeme, že pro n = к2 + к — 2 má к sad n míčů, v nichž míče
s čísly k, Zc +1,..., к2 — 1 jsou černé a ostatní bílé (bílých míčů je aspoň Zc),
požadované vlastnosti:

Součet čísel na libovolných к černých míčích je aspoň Zc + Zc + ... +
+ Zc = Zc2 > Zc2 — 1, takže množina černých míčů splňuje podmínku b).

Uvažujme nyní součet čísel na libovolných Zc bílých míčích. Jsou-li na
nich pouze čísla menší než Zc, je jejich součet aspoň Zc a zároveň nejvýše

(Zc — 1) + (Zc — 1) + ... + (Zc — 1) = Zc2 — Zc < Zc2.
Je-li však aspoň na jednom z Zc bílých míčů číslo alespoň Zc2, je jejich
součet roven nejméně

Zc2 + 1 + 1 + ... + 1 — Zc2 + Zc — 1 + ti.

Proto i libovolná množina Zc bílých míčů splňuje podmínku b).
Pro libovolné Zc > 1 je řešením úlohy číslo n Zc2 + Zc — 2.
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3. Označme O střed kružnice к а а; = \<OíOAí\ = \<OíOAí-i \ velikosti
středových úhlů příslušných tětivám OzAi (i — 1,2,3,4, Ao — A4). Pro
jejich součet zřejmě platí a\ + ct2 + «3 + «4 = 180°.

Nejprve ukážeme, že úsečky О1О3 a О2О4 (jejich průsečík označme S)
jsou navzájem kolmé. To plyne z rovnosti (obr. 63)

OL\ + 0-2 аз + 0:4
I О3О21 + |<04020з| — 2

= 90°
2

kterou dostaneme z odpovídajících středových úhlů. Trojúhelník O2O3S
je tudíž pravoúhlý.

Nyní ukážeme, že B1B2 || О1О3. Vzhledem к tomu, že |O2-S11 =
= \02B2\, stačí ukázat, že přímka О2О4 je osou úhlu B1O2B2. Ze sou-
měnosti kružnic к i, &2 dle středné О1О2 ovšem plyne

|<0402-Bi| — I ^.О4O2011 — |<Si020i| =

= \KO4O2O1
cti T OÍ4 Oi\ OÍ4

2~ ~ T‘

Úplně stejně ukážeme (vlastně jen prohodíme role kružnic ki a к3), že
také |<040252| = ^«4, a tedy B1B2 || О1О3. Podobně dostaneme, že
B2B3 У О2О4, B3B4 II О1О3 a B4B1 К О2О4. Tím je důkaz uzavřen.

|<j4i020i| = 2
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4. Předně si všimněme, že pro každou hledanou dvojici přirozených čísel
x, у platí xy = x\ + y\ ^ 2, z čehož plyne x ^ 2.

Uvažujme nejprve případ a:
čísla г/, která vyhovují rovnici 2 + y! = 2y. Z té plyne, že y! je sudé,
proto r/ ^ 2 a 2 + y\ = 2y je dělitelné 4, což znamená, že y\ dává při
dělení 4 zbytek 2. Může tedy být jedině у £ {2, 3}. Vzhledem к tomu, že
2! + 2! = 22 a 2! + 3! = 23, jsou (2,2) a (2,3) dvojice přirozených čísel,
jež dané rovnici vyhovují.

Nyní uvažujme případ x ^ 3. Číslo ж — 1 je dělitelem čísla ж!, není
však dělitelem čísla xy, neboť čísla ж — 1 а ж jsou nesoudělná. Ze zadání
tak plyne, že ж — 1 nemůže být dělitelem čísla y\, proto у ^ ж — 2.

Pro jakákoli přirozená čísla у < x přitom platí

2. Hledáme tedy všechna přirozená

ж! +y\ = y\(l + x... (у + 1)),
což nemůže být mocnina přirozeného čísla ж s přirozeným mocnitelem,
protože činitel v závorce na pravé straně je přirozené číslo větší než 1,
které je s číslem ж nesoudělné.

Závěr. Daná rovnice má právě dvě řešení (ж,y) v oboru přirozených
čísel, a to (2,2) a (2,3).
5. Vzhledem к podmínce abcd 1 platí

(■ab + 1 ){bc + l)(cd + 1 )(da + 1)
abcd

— (2 + ab -f- cd) (2 + bc + da) —

4 + 2 {ab + bc + cd + da) + (a2bd + b2ca + c2bd + d2ac)
(a + c)(6 + d) a2bd + b2ca -f c2bd + d2ac

= 4 + 2

+(И)'= 4 + 2

Uvažujme nyní funkci /(ж) = ж + 1/ж = /(l/ж), která je rostoucí na
intervalu (l;oo). Vzhledem к tomu, že a, 6, c, d £ (^;2), a s ohledem
na tvar posledního součtu dostáváme pro daný součin odhad

(°+1) (b + s) (c+(c + s) =4 + 21(2)2 + 2/(4)
přičemž této největší hodnoty nabývá např. pro a/c = b/d = 4. Volbou
a = 6 = 2ac = d= ^je pak splněna jak předešlá podmínka, tak
i podmínka abcd = 1 ze zadání úlohy.
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Největší možná hodnota daného výrazu je tedy 4 + 2(2 + ^)2 +
+ 2(4 + |) = 25. Maximální hodnoty lze přitom dosáhnout pro násle-
dující čtveřice (a, b1 c, d) reálných čísel: (2, 2, |), (2
a (|> 2,2).

Poznámka. Nejmenší možná hodnota uvažovaného výrazu je přitom
4 + 2-22+ 2- 2 = 16. Tato hodnota je dosažena pro a — c a b = d, kde
ab = 1, tj. pro každou čtveřici (a, b, c, d) = (t, 1/t, t, 1/t), kde t E ; 2).
6. Libovolných pět bodů (v obecné poloze) vytvoří v rovině deset troj-
úhelníků. Ukážeme, že aspoň tři z nich nejsou ostroúhlé.

Uvažujme nejprve libovolné čtyři ze zvolené pětice bodů v rovině.
Mezi všemi trojúhelníky, které tvoří uvažovaná čtveřice bodů, je vždy
aspoň jeden, který není ostroúhlý. Pokud uvažované čtyři body jsou vr-

choly konvexního čtyřúhelníku, má aspoň jeden z vnitřních úhlů takového
čtyřúhelníku velikost aspoň 90°. Trojúhelník určený rameny tohoto úhlu
očividně není ostroúhlý.

V opačném případě, kdy jeden z uvažovaných čtyř bodů leží uvnitř
trojúhelníku s vrcholy ve zbývajících třech bodech, existují dokonce dva
trojúhelníky, jež nejsou ostroúhlé. Zřejmě nejvýše jeden ze tří úhlů, jejichž
společným vrcholem je vnitřní bod tohoto trojúhelníku, má velikost menší
než 90°. Zbylým dvěma pak odpovídají dva tupoúhlé trojúhelníky.

Protože v libovolné čtveřici bodů v rovině lze vždy najít aspoň tři,
jež tvoří trojúhelník, který není ostroúhlý, platí totéž i pro pět navzájem
různých bodů roviny. Zvolme jednu takovou trojici bodů a uvažme čtve-
řici bodů, která jeden z nich neobsahuje. Mezi nimi zase existuje trojice
bodů, jež tvoří trojúhelník, který není ostroúhlý. Obě nalezené trojice
mají společný aspoň jeden vrchol (nikoliv však všechny tři). Uvažujme
konečně čtyřúhelník, jehož vrcholy tvoří čtveřice bodů bez vrcholu, který
je oběma nalezeným neostroúhlým trojúhelníkům společný. Tři jeho vr-

choly tvoří vrcholy dalšího (třetího) trojúhelníku, který není ostroúhlý
a od předešlých dvou se liší přinejmenším jedním vrcholem.

Nakonec ukážeme, že v rovině existuje pětice bodů, jež tvoří právě
sedm ostroúhlých trojúhelníků. Zvolme v kartézské soustavě souřadnic
např. body A[0; —1], B[3; 0], C[1; 3], D[—1; 3] a E[—3; 0]. Tato pětice bodů
tvoří vrcholy konvexního pětiúhelníku ABCDE, který je osově souměrný
podle osy strany CD. Trojúhelníky ABE, BCD a CDE jsou tupoúhlé,
zatímco všechny ostatní trojúhelníky jsou ostroúhlé. Trojúhelník ACD
zřejmě ostroúhlý je, a využijeme-li souměrnosti uvedeného pětiúhelní-
ku, stačí ukázat, že i trojúhelníky АСЕ (s nejdelší stranou CE), ADE

2), (|,2,2, i)1 1
> 2 ’ 2 ’
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(s nejdelší stranou AD) a BDE (s nedelší stranou BE) jsou ostroúlilé,
tj. stačí ukázat, že úhly EAC, DEA a BDE proti nejdelším stranám
odpovídajících trojúhelníků jsou ostré. Podle kosinové věty tak stačí do-
kázat následující tři nerovnosti

\EA\2 + \AC\2 > \CE\2,
\DE\2 + \EA\2 > \AD\2,
\BD\2 + \DE\2 > \BE\2,

které snadno ověříme výpočtem:

\EA\2 + \AC\2 = (32 + l2) + (l2 + 42) - 27 > 25 = 42 + 32 = \CE\2,
\DE\2 + \EA\2 = (22 + 32) + (32 + l2) = 23 > 17 = l2 + 42 = \AD\2,
\BD\2 + \DE\2 = (42 + 32) + (22 + 32) = 38 > 36 = 62 + O2 = \BE\2.

Největší možná hodnota funkce a je tedy a({A, В, C, D, E}) — 7.
7. Pokud některá ze stěn uvažovaného čtyřstěnu obsahuje hranu délky 2,
liší se délky obou zbývajících hran této stěny (podle trojúhelníkové ne-

rovnosti) o 1. Protože hrana délky 2 je společná dvěma stěnám čtyřstěnu,
plyne odtud, že množina délek všech šesti hran uvažovaného čtyřstěnu
obsahuje dvě (různé) dvojice po sobě jdoucích přirozených čísel.

Pokud některá ze stěn uvažovaného čtyřstěnu obsahuje hranu délky 3,
liší se délky obou zbývajících hran o 1 nebo o 2.

Uvažujme nejprve případ, kdy obě hrany délek 2 a 3 leží v téže stěně
čtyřstěnu. Z předchozích úvah plyne, že délka třetí hrany této stěny je 4
a délky tří zbývajících hran tohoto čtyřstěnu můžeme označit jako a, a + 1
a b, kde a a b jsou přirozená čísla, a E 5. Ze všech čtyř trojúhelníkových
nerovností, které pro stěny se společnou hranou délky b můžeme sestavit,
vychází, že číslo b může nabývat jen některou z hodnot a — 2, a — 1, a + 2
nebo a + 3. Označme vrcholy zkoumaného čtyřstěnu А, В, C, D tak, aby
bylo \AB\ = 2, \BC\ = 3 a \CA\ — 4. Pro délky zbývajících tří hran se
společným vrcholem D tak máme následující možnosti: A) a, a + 1, a + 2,

2, a, a -f 1, C) a, a + 1, a + 3, D) a — 1, a, a + 1, přičemž poslední
možnost D) je zřejmě ekvivalentní možnosti A).

A) a, a + 1, a + 2. Jak jsme již. zmínili v úvodu, musí být délky hran
AD, BD dvě po sobě jdoucí přirozená čísla, proto volbou délky hrany AD
jako a či a + 2 jsou už délky zbývajích dvou hran určeny jednoznačně,
jen pro \AD\ = a + 1 dostaneme dvě možnosti. Celkem tedy pro každé

В) a
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a ^ 5 dostaneme čtyři různé MEMO-čtyřstěny T se součtem s(T) = 3a +
+ 12 ^ 27, přičemž s(T) = 0 (mod 3) (tento poznatek se nám bude hodit
v závěru řešení úlohy).

B) a — 2, a, a + 1. V tomto případě je možné (s ohledem na úvodní
pozorování) jediné uspořádání délek hran, a to \AD\ = a + 1, \BD\ — a,

\CD\ = a — 2, a — 2^5 neboli a ^ 7, a pro takový MEMO-čtyřstěn T
vychází součet s(T) = 3a + 8 ^ 29, přičemž s(T) = 2 (mod 3).

C) a, a + 1, a + 3. I v tomto případě dostáváme jedinou možnost, a to
\AD\ — a, \BD\ = a + 1 a \CD\ = a + 3, a ^ 5, s odpovídajícím součtem
s(T) = 3a + 13 ^ 28, přičemž s{T) = 1 (mod 3).

Zjistili jsme, že pro libovolné n ^ 27 dokážeme sestrojit MEMO-
-čtyřstěn, jehož jedna stěna má hrany délek 2, 3 a 4 a zbylé tři hrany
určíme podle toho, jaký zbytek při dělení třemi dává číslo n; podle to-
hoto zbytku zvolíme jednu z možností A), B) nebo C) a hodnotu čísla a

tak, aby bylo s(T) — n.
Pokud hrany délek 2 a 3 neleží v téže stěně uvažovaného čtyřstěnu,

leží na mimoběžných hranách. Vzhledem к podmínce o velikostech hran
ve dvou stěnách se společnou hranou délky 2 musí být délky hran v jedné
z těchto stěn a a a + 1, ve druhé pak b a b + 1, kde a a b jsou vhodná
přirozené čísla (obě větší než 3). Bez újmy na obecnosti můžeme před-
pokládat, že b > a, což s ohledem na podmínku o délkách hran ve stěně
s hranou délky 3 znamená, že b = a + 2 (nemůže být b = a + 1, protože
ve čtyřstěnu by existovaly dvě hrany téže délky). Zbývající hrany uvažo-
váného čtyřstěnu mají tudíž délky a, a + 1, a + 2, a + 3, a ^ 4. Zvolíme-li
označení vrcholů tak, aby \AB\ = 2, |ACj — a a \BC\ — a + 1, vyjde pro
zbylé hrany \CD\ = 3, \ AD\ = a + 2 a \BD\ — a + 3. Existuje proto jediný
typ MEMO-čtyřstěnu T, pro jehož součet s(T) platí s(T) = 4a+ 11 ^ 27,
přičemž s{T) = 3 (mod 4).

Zjistili jsme, že pro každé n ^ 27, které dává při dělení čtyřmi zby-
tek 3, dovedeme najít ještě jeden (odlišný) MEMO-čtyřstěn T se součtem
s(T) = n.

Nyní dovedeme odpovědět i na otázku b) úlohy. Protože číslo 2 007 =
= 32 • 223 je dělitelné třemi a zároveň dává při dělení čtyřmi zbytek 3,
existuje celkem 4+1 = 5 MEMO-čtyřstěnů T s vlastností s(T) = 2007.
(Čtyři z nich odpovídají možnosti A z úvodního rozboru a mají kromě
stěny s hranami 2, 3, 4 hrany délek 665, 666, 667 a pátý čtyřstěn má
kromě mimoběžných hran délek 2 a 3 hrany délek 501, 502, 503 a 504.)

Závěr. Dané úloze vyhovují všechna přirozená čísla n ^ 27 a existuje
právě pět MEMO-čtyřstěnů T s vlastností s(T) = 2 007.
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8. Předně si uvědomme, že 2 007 = 9 • 223, kde 223 je prvočíslo. Daný
výraz upravme na tvar

(a + /с)3 — a3 = 3ak(a -f к) + /с3,

z něhož je zřejmé, že pro dělitelnost číslem 2 007 je nutné, aby číslo к bylo
dělitelné třemi. V takovém případě je ovšem uvažovaný rozdíl zároveň
dělitelný i devíti.

Nyní ukážeme, že pro každé к tvaru к — 3га, kde ra je libovolné
přirozené číslo, existuje celé číslo a takové, že daný rozdíl je dělitelný
prvočíslem 223. Protože

(a + к)3 — a3 = 9m(a2 + 3am + 3m2),

stačí pro libovolné přirozené m najít a tak, že a2 + 3am + 3m2 je děli-
telné 223.

Pro dané ra uvažujme výraz

4(a2 + 3am + 3m2) = (2a + 3m)2 + 3m2.

Čísla 4 a 223 jsou nesoudělná, budeme proto hledat b takové, že

b2 + 3m2 = 0 (mod 223) (1)

(protože 223 je prvočíslo, snadno pak к nalezenému číslu b určíme hledané
číslo a tím, že vyřešíme kongruenci b = 2a -f 3m (mod 223)). К tomu
účelu využijeme následující rozklad čísla 223 = 196 + 27 = 142 + 3 • 32.
Z uvedeného rozkladu plyne, že je

142m2n2 + 3m2 • 32n2 -- (14mn)2 + 3m2 • (3n)2 = 0 (mod 223).

Zvolíme-li nyní přirozené číslo n tak, že 3n = 1 (mod 223), vidíme, že
pro b = 14nm skutečně platí (1).

Tím jsme dokázali, že požadovanou vlastnost mají právě všechna
kladná celá čísla к dělitelná třemi.
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14. středoevropská olympiáda v informatice

Středoevropská olympiáda v informatice
CEOI (Central European Olympiad in
Informatics) je mladší a menší variantou
celosvětové programátorské olympiády
středoškoláků. Účastní se jí pravidelně
čtyřčlenná družstva reprezentující sedm
zemí regionu střední Evropy — družstva
z České republiky, Chorvatska, Maďar-
ska, Německa, Polska, Rumunska a Slovenska. Těchto sedm zemí se také
víceméně pravidelně střídá v jejím pořádání. Letos přišla řada opět na
Českou republiku, a tak v pořadí 14. ročník Středoevropské olympiády
v informatice se konal ve dnech 1.-7. 7. 2007 v Brně.

Na zajištění soutěže se podílely dvě skupiny organizátorů. První
z nich byla tvořena pracovníky Fakulty informatiky Masarykovy uni-
verzity v Brně v čele s proděkanem fakulty RNDr. Tomášem Pitnerem,
Ph.D. Tato brněnská skupina se starala o organizační stránku celé akce —

zajistila ubytování a stravování na kolejích univerzity i prostory pro sou-
těž v počítačových učebnách Fakulty informatiky, připravila výlety a další
doprovodný program, zorganizovala celý průběh týdenního pobytu dele-
gací v Brně, přípravu tištěných i webových prezentací soutěže a mnoho
další potřebných věcí. V průběhu akce pomohly také studentky brněn-
ského gymnázia na tř. Kpt. Jaroše, které působily po celý týden v roli
průvodkyň jednotlivých soutěžních týmů.

Druhá skupina organizátorů pocházela z Matematicko-fyzikální fa-
kulty Univerzity Karlovy v Praze a tvořila tzv. scientific committee sou-
těže v čele s předsedou výboru RNDr. Danielem Králem, Ph.D. Členové
pražské skupiny předem připravili soutěžní úlohy i testovací data, soft-
warové prostředí pro vlastní soutěž i pro následné vyhodnocení úloh,
na místě při soutěži pak koordinovali upřesnění formulací úloh podle
požadavků vedoucích jednotlivých družstev a prováděli hodnocení ode-
vzdaných řešení. Obě pracovní skupiny organizátorů odvedly výbornou
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práci a dokonale se podělily o všechny úkoly, takže soutěž proběhla zcela
bez závad а к plné spokojenosti všech zahraničních delegací.

Olympiády se zúčastnilo sedm čtyřčlenných soutěžních družstev re-

prezentujících jednotlivé členské země CEOI, mimo soutěž dále druhé
družstvo České republiky tvořené mladšími studenty a také dva místní
studenti z Brna. Účast mladších soutěžících z pořádající země bývá na
CEOI obvyklá, dává více studentům příležitost získat cenné mezinárodní
zkušenosti, aniž by to znatelněji zvýšilo finanční náklady akce. Tito do-
máčí soutěžící pozvaní navíc se samozřejmě nezahrnují do výsledného
pořadí. Obě česká družstva byla vybrána na základě výsledků naší vr-
cholné národní programátorské soutěže, tedy podle výsledků ústředního
kola 56. ročníku Matematické olympiády — kategorie P (programování).

Souběžně s hlavní soutěží CEOI probíhala také on-line soutěž po In-
ternetu, do níž se mohl zapojit kterýkoliv zájemce z celého světa. Konala
se ve stejném čase a se stejnými úlohami jako vlastní olympiáda. Také
tato soutěž měla velký ohlas, zúčastnilo se jí více než dvě stovky soutě-
žících, nejvíce z Asie. Úroveň řešení odevzdaných v on-line soutěži byla
srovnatelná s kvalitou řešení samotné olympiády CEOI.

Soutěž probíhala ve dvou soutěžních dnech, v každém z nich účastníci
řešili tři úlohy. Vytvořené programy se testují pomocí předem přípravě-
ných vstupních dat, přičemž úspěšnost výpočtu je vázána i na dodržení
stanovených časových limitů. Různě velká vstupní data použitá při jed-
notlivých testech a nastavené časové limity umožňují odlišit vedle správ-
nosti výpočtu také efektivitu zvoleného algoritmu. Program založený na

pomalém algoritmu stihne vykonat celý výpočet pouze pro malá vstupní
data a je tak ohodnocen jen částečným počtem bodů, zatímco algoritmy
rychlé zpracují v časovém limitu i rozsáhlé vstupy a získají vyšší ohod-
nocení.

V rámci doprovodného programu měli všichni účastníci CEOI příleži-
tost seznámit se s městem Brnem a jeho okolím. Hned první den se konala
půldenní prohlídka města v průvodcem, mezi oběma soutěžními dny na-
vštívili účastníci zámek Lednice, v závěru pak druhý celodenní výlet vedl
do oblasti Moravského krasu s prohlídkou Punkevní jeskyně a propasti
Macocha. Zajímavá byla i večerní návštěva planetária a hvězdárny na
Kraví hoře. Vyvrcholením doprovodného programu pak byl závěrečný
společenský večer po vyhlášení výsledků obohacený o vystoupení kouzel-
nika.

Za každou z šesti soutěžních úloh bylo možné získat až 100 bodů.
Vzhledem к náročnosti soutěžních úloh však skutečně dosaženým maxi-
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mem v soutěži bylo pouze 475 bodů. Nejlepších 15 řešitelů s více než
polovinou dosažitelných bodů obdrželo medaili za úspěšné vyřešení úloh
olympiády. Celkem byly uděleny dvě zlaté, pět stříbrných a osm bronzo-
vých medailí. Výrazně nejúspěšnějším družstvem letošního ročníku CEOI
se stalo Německo, které získalo jednu zlatou a tři stříbrné medaile. Rovněž
absolutní vítěz soutěže byl členem německého družstva. Naši reprezen-
tanti získali jednu stříbrnou medaili, Slovensko pouze jednu bronzovou.

Výsledky českých reprezentantů na CEOI 2007:

5. Josef Pihera, G Strakonice
22. Roman Smrž, G E. Krásnohorské, Praha
27. Miroslav Klimoš, G M. Koperníka, Bílovec
28. Pavel Klavík, G J. Ressla, Chrudim

394 bodů

210 bodů
163 bodů

159 bodů

stříbro

Naše druhé družstvo se účastnilo CEOI mimo soutěž a do oficiálního

výsledného pořadí nebylo zařazeno. Jeho členové dosáhli těchto výsledků:

176 bodů

129 bodů
86 bodů

72 bodů

Lukáš Lánský, G J. K. Tyla, Hradec Králové
Libor Peltan, G České Budějovice, Česká
Libor Plucnar, G P. Bezruče, Frýdek-Místek
Jakub Kaplan, G J. K. Tyla, Hradec Králové

Celkovou výsledkovou listinu, znění soutěžních úloh i mnoho dalších
informací o soutěži naleznete na Internetu na adrese

http://www.fi.muni.cz/ceoi/.

Příští, 15. ročník Středoevropské olympiády v informatice uspořádá
Německo, místem konání bude město Drážďany. Přesný termín nebyl do-
sud stanoven, přesto již v Brně pozval vedoucí německé delegace všechny
ostatní členské země к účasti na CEOI 2008. Hostitelem následujícího
ročníku soutěže CEOI 2009 bude Rumunsko.
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19. mezinárodní olympiáda v informatice

Ve dnech 15.-22. 8. 2007 se konal v chorvatském

hlavním městě Zagreb 19. ročník Mezinárodní olym-
piády v informatice (IOI 2007 — International
Olympiad in Informatics). Soutěže se zúčastnilo
285 studentů ze 77 zemí celého světa. Většina zemí

využila možnosti vyslat na IOI maximální povolený
počet čtyři soutěžící, z několika nových účastnických
zemí přijela reprezentace menší.

Reprezentační družstvo České republiky bylo se-
staveno na základě výsledků dosažených soutěžícími v ústředním kole
56. ročníku Matematické olympiády — kategorie P (programování). Naše
družstvo pro IOI 2007 mělo následující složení:

Pavel Klavík, absolvent Gymnázia J. Ressla v Chrudimi,
Miroslav Klimoš, student Gymnázia M. Koperníka v Bílovci,
Josef Pihera, absolvent Gymnázia ve Strakonicích,
Roman Smrž, student Gymnázia E. Krásnohorské v Praze.

Vedoucími české delegace byli jmenováni doc. RNDr. Pavel Tópfer,
CSc., a Bc. Petr Škoda, oba z Matematicko-fyzikální fakulty Univerzity
Karlovy v Praze. Vedle této oficiální šestičlenné delegace se 19. me-
zinárodní olympiády v informatice zúčastnil z České republiky ještě
Mgr. Martin Mareš, rovněž pracovník MFF UK v Praze, a to z titulu
své funkce člena Mezinárodního vědeckého výboru IOI.

Naši studenti měli možnost připravit se na soutěž nejen samostat-
ným studiem, ale zúčastnili se i dvou přípravných akcí. V červnu jsme
pro vybrané reprezentanty z České republiky, Polska a Slovenska uspořá-
dali na Matematicko-fyzikální fakultě UK v Praze tradiční týdenní spo-
léčné česko-polsko-slovenské přípravné soustředění před IOI (CPSPC —

Czech-Polish-Slovak Preparation Camp). Na začátku července jsme pak
využili skutečnosti, že jsme letos byli pořadateli 14. ročníku Středoev-
ropské olympiády v informatice (CEOI — Central European Olympiad
in Informatics) a že jsme na ni mohli jakožto pořádající země pozvat dvě

CROATIA 2007
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soutěžní družstva. Vedle obvyklé účasti našeho „druhého” reprezentač-
ního družstva složeného z vybraných mladších studentů (nematurantů)
jsme proto na CEOI 2007 do Brna pozvali i naše hlavní reprezentační
družstvo připravující se v té době na účast v IOI 2007.

Hlavním pořadatelem letošní mezinárodní olympiády v informatice
byla Chorvatská informatická společnost, záštitu nad akcí převzal osobně
prezident Chorvatské republiky Mr. Stjepan Mesič. Na uspořádání se
finančně podílelo Ministerstvo vědy, školství a sportu Chorvatské repub-
liky a také mnozí sponzoři. Ubytování a stravování účastníků bylo zajiš-
těno v prostorách studentských kolejí Univerzity v Zagrebu, na stejném
místě probíhala také všechna jednání mezinárodní jury, vedoucích dele-
gací a rovněž překlady soutěžních úloh do národních jazyků. Prostory pro
vlastní soutěž, pro slavnostní zahájení a zakončení akce poskytl magistrát
města Zagreb v halách místního veletržního areálu.

Vlastní soutěž byla jako obvykle rozdělena do dvou soutěžních dnů,
v každém z nich studenti řešili tři soutěžní úlohy a na práci měli vyme-
zen čas 5 hodin. Každý soutěžící pracuje na přiděleném osobním počítači
s nainstalovaným soutěžním prostředím, které umožňuje vyvíjet a tes-
tovat programy a odesílat je к vyhodnocení. Výsledné programy jsou
testovány pomocí připravené sady testovacích dat a se stanovenými ča-
sovými limity. Tím je zajištěna nejen kontrola správnosti výsledků, ale
pomocí časových limitů se také odliší kvalita použitého algoritmu. Při
testování každé úlohy se používají sady testovacích dat různé velikos-
ti, takže teoreticky správné řešení založené na neefektivním algoritmu
zvládne dokončit výpočet pouze pro některé, menší testy. Takové řešení
je potom ohodnoceno částečným počtem bodů.

Pořadatelé olympiády letos připravili soutěžní úlohy velmi pečlivě,
takže celý proces přípravy úloh, upřesnění jejich formulací a překladu
zadání úloh do národních jazyků večer před soutěží probíhal velmi rychle.
Soutěžící měli jen minimum dotazů к zadání úloh a neobjevily se ani
žádné oprávněné protesty proti hodnocení. Soutěžní úlohy byly dobře
navrženy, byly věcně zajímavé, jejich obtížnost byla přiměřená úrovni
této soutěže.

Pro všechny účastníky IOI připravují pořadatelé vždy také dopro-
vodný program. Na IOI v Chorvatsku jsme se zúčastnili celodenního vý-
letu do národního parku Plitvická jezera, vedle toho se všem nabízela
možnost ve volných chvílích si prohlédnout město Zagreb, navštěvovat
místní sportoviště a podnikat turistické výlety do blízkých hor v okolí
města.

171



Večer před odjezdem se konalo slavnostní zakončení soutěže spojené
s vyhlášením výsledků. Každá ze soutěžních úloh byla hodnocena maxi-
málně 100 body, takže celkově bylo teoreticky možné získat až 600 bo-
dů. To se ovšem vzhledem к náročnosti úloh nikomu nepodařilo, celkový
vítěz dosáhl výsledku 574 bodů. Podle pravidel IOI obdrží na závěr sou-
těže lepší polovina účastníků některou z medailí, přičemž zlaté, stříbrné
a bronzové medaile se udělují přibližně v poměru 1:2:3 (pochopitelně
s ohledem na to, aby soutěžící se stejným bodovým ziskem získali stejnou
medaili). Letos bylo uděleno 25 zlatých, 48 stříbrných a 69 bronzových
medailí.

Reprezentanti České republiky byli na letošní olympiádě velmi úspěš-
ní, získali jsme tři stříbrné a jednu bronzovou medaili. Výsledky našich
soutěžících:

42. Josef Pihera

53. Miroslav Klimoš

58. Roman Smrž

77. Pavel Klavík

333 bodů
316 bodů

310 bodů

277 bodů

stříbrná medaile

stříbrná medaile
stříbrná medaile

bronzová medaile

Mezinárodní olympiáda v informatice je soutěží jednotlivců, žádné
oficiální pořadí zemí se neurčuje. Z hlediska počtu a kvality získaných
medailí bychom se v hodnocení národních delegací umístili přibližně ко-
lem pěkného 15. místa z celkového počtu 77 zúčastněných zemí. Patříme
tak do nejlepší čtvrtiny zemí, jejichž všichni reprezentanti obdrželi někte-
rou z medailí. Nejúspěšnějšími zeměmi letos byla Čína (4 zlaté medaile)
a Rusko (3 zlaté a 1 stříbrná). Celkovým vítězem se stal reprezentant
Polska, druhé a třetí místo obsadili Číňané. Soutěžícím ze Slovenska se
tentokrát vedlo o něco hůře než nám, získali v soutěži dvě stříbrné a jednu
bronzovou medaili.

Veškeré informace o soutěži, texty soutěžních úloh i podrobné vý-
sledky všech účastníků lze nalézt na Internetu na adrese

http://www.hsin.hr/ioi2007/.

Následující, v pořadí 20. ročník IOI se bude konat v srpnu 2008
v Egyptě. Tamní organizátoři již nyní předběžně pozvali všechny země
zúčastněné na IOI v Chorvatsku к účasti v příštím ročníku soutěže. Byla
již stanovena i místa konání několika dalších ročníků IOI: 2009 Bulharsko,
2010 Kanada, 2011 Thajsko.
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Texty soutěžních úloh

1. Alieni

Roman je bohatý farmář a jeho políčko trávy (ano, není to jen oby-
čejná tráva) se rozrostlo do slušných rozměrů. Tím se stalo příležitostí pro
Romanova kamaráda Myrega, aby předvedl své znalosti mimozemských
civilizací a jejich vzorů ze slehlé trávy. Poslední dobou ho zaujaly krásy
Chorvatska, a tak se rozhodl, že vytvoří v poli vzor podobný výsostnému
znaku Chorvatska, což je šachovnice 5x5 se 13 červenými a 12 bílými
poli (obr. 64).

■
■ 1

Obr. 64. Šachovnice, která je částí chorvatského výsostného znaku.

Romanovo pole je rozděleno na NxN políček. Políčko v levém dolním
rohu označíme souřadnicemi (1,1) a políčko v pravém horním rohu má
souřadnice (N,N).

Myreg se rozhodl, že zválí pouze trávu na červených čtvercích šachov-
nice a zbytek trávy nechá netknutý (přeci jen, kdyby se o tom Roman
dozvěděl...). Protože je ale Romanovo pole hodně veliké a Myreg chtěl,
aby jeho vzor byl vidět, zvolil si liché přirozené číslo M ž 3 a zválel
trávu tak, že jeden čtverec šachovnice odpovídá ploše MxM políček
v Romanově poli. Celá šachovnice se přitom vejde do pole (obr. 65).

Jakmile však Myreg dokončil svoji práci (dělal ji samozřejmě za tmy),
překvapil ho náhlý hlas.

„Co tu hledáš, Myregu!" ozval se policista Pepa, kterého Myreg dobře
znal.

„Nic, jen se procházím/' bránil se Myreg, ale Pepa mu vůbec nevěřil.
„Jestli zase ničíš Romanovu úrodu svými hloupými vzory, tak uvidíš!"

„To jsem nebyl já, to byli ALIENI," snažil se Myreg zachránit, co se
dalo. Pepa se už ale dal na prohlídku pole. Bohužel jeho baterka mu moc
dlouho nevydrží a tak ji může zapnout vždy jen na chvíli, aby zjistil,
jestli políčko, na kterém se právě nachází, je slehlé nebo ne.
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Obr. 65. Příklad Romanova pole a Myregova vzoru pro N = 19 a M = 3. Slehlá
políčka jsou označena šedě. Střed vzoru má souřadnice (12,9) a je označen černou
tečkou.

Pepa našel jedno políčko se slehlou trávou a potřebuje najít prostřední
políčko celého Myregova obrazce, aby dokázal, že je to jeho výtvor. Neví
ale, jakou zvolil Myreg hodnotu M velikosti čtverce šachovnice.

Úloha\ Napište program, který pro danou velikost N Romanova pole
(15 N 5Í 2 000 000 000), souřadnice jednoho políčka slehlé trávy
(Xo,lo) a s využitím možnosti zjistit stav trávy na políčku najde sou-
řadnice prostředního políčka Myregova obrazce.

Pepova baterka ale může být použita maximálně 300krát v jednom
běhu programu.

Interakce: Tato úloha je interaktivní. Váš program posílá na stan-
dardní výstup příkazy, kde má Pepa rozsvítit baterku, a čte odpovědi ze
standardního vstupu.

> Na začátku program načte ze standardního vstupu tři celá čísla N,
Xo a Yq oddělená jednou mezerou. Číslo N je velikost Romanova pole
a (Vo, Vo) jsou souřadnice jednoho ze slehlých políček.

> Pokud chcete prozkoumat pomocí baterky políčko na souřadnicích
(V, Y), vypište na standardní výstup řádek ve tvaru „examine X Y“.
Pokud nejsou souřadnice (V, Y) uvnitř Romanova pole (podmínky
15bV5b_/Val5bV 5ь N nejsou splněny) nebo pokud použijete
baterku více než 300krát, váš program dostane 0 bodů za tento tes-
tovací vstup.

o Po použití baterky obdržíte na standardním vstupu jeden řádek ob-
sáhující slovo „true“, pokud je tráva na políčku (V, Y) slehlá, jinak
obdržíte řádek se slovem „false“.

> Po nalezení prostředního políčka vypište na standardní výstup řádek
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ve tvaru „solution Xc Yc“, kde (Xc,Yc) jsou souřadnice prostřed-
ního políčka. Běh vašeho programu bude poté automaticky ukončen.
Aby interakce probíhala správně, program musí nechat vypsat data

z bufferu na standardní výstup (flush) po každém zápisu na standardní
výstup; vzorový kód pro každý jazyk je к dispozici.

Vzorové kódy: Vzorové kódy pro všechy tři programovací jazyky jsou
к dispozici ke stažení na stránce „Tasks" soutěžního prostředí. Účelem
vzorového kódu je ukázat, jak probíhá interakce; není to správné řešení
úlohy.

Hodnocení: V testovacích datech odpovídajících ohodnocení 40 body
bude hodnota M nejvýše 100.

Pro každý testovací vstup existuje jediné správné řešení nezávislé na

tom, jaké otázky pokládá váš program.

Příklad: V následujícím příkladu jsou příkazy zapsány v levém sloup-
ci, na každém řádku jeden. Odpovědi jsou zapsány v pravém sloupci pří-
slušného řádku.

vstup (odpověď)
19 7 4

True

False

False

True

výstup (příkaz)

examine 11 2

examine 2 5

examine 9 14

examine 18 3

solution 12 9

Testování: V průběhu soutěže máte tři možnosti, jak otestovat svoje
řešení.

První možností je simulovat odpovědi manuálně.
Druhou možností je napsat si program, který simuluje odpovědi.

Abyste připojili své řešení úlohy к tomuto programu, použijte program

„connect", který je к dispozici ke stažení v soutěžním prostředí. Program
se používá příkazem /connect. /solution, /device" z konzole (místo
„solution" a „device" uveďte jména vašich programů). Další parametry
příkazu budou předány dále simulačnímu programu.

Třetí možností je použít funkci TEST ve vyhodnocovacím systému,
kde si můžete otestovat svoje řešení na libovolných testovacích datech.
Při použití této funkce je velikost N omezena hodnotou 100.

Testovací data musí obsahovat tyto tři řádky:
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> První řádek obsahuje velikost Romanova pole N a velikost čtverce
v šachovnici M;

t> Druhý řádek obsahuje souřadnice Xo a Y0 jednoho slehlého políčka,
které budou předány vašemu programu;

> Třetí řádek obsahuje souřadnice Xc a Yc středu šachovnice.
Vyhodnocovací systém vám poskytne podrobný popis výpočtu zahr-

nující chybové zprávy, pokud:
> N nevyhovuje omezením;
t> M není liché přirozené číslo rovné nebo větší než 3;
t> Obrazec se nevejde do Romanova pole;
o Tráva na políčku (Vo, Vo) není slehlá.

Následuje příklad správných vstupních dat pro testovací funkci. Pří-
klad odpovídá obr. 65.

19 3

7 4

12 9

Korektní vstup pro testovací funkci.

2. Plachty
Pirát Pavel si staví novou loď. Loď má N stěžňů rozdělených na úseky

jednotkové délky — výška stěžně je rovna počtu jeho úseků. Každý stě-
žeň je vybaven několika plachtami, každá plachta je umístěna v právě
jednom úseku stěžně. Plachty mohou být na stěžni rozmístěny libovolně,
ale v každém úseku může být nejvýše jedna z nich.

Různá rozmístění plachet mají ve větru různou účinnost. К plachtám
umístěným před jinými plachtami ve stejné výšce se dostává méně větru
a jsou proto méně účinné. Pro každou plachtu definujeme její ztráty jako
celkový počet plachet umístěných na stěžních ve stejné výšce za touto
plachtou. Pojmy „před“ a „za“ jsou vztaženy к orientaci lodi: na obr. 66
„před“ znamená vlevo a „za“ znamená vpravo.

Celkové ztráty rozmístění plachet jsou rovny součtu ztrát všech pla-
chet na lodi.

Úloha: Napište program, který dostane výšky jednotlivých stěžňů
a počty plachet na každém z nich a určí nejmenši možné celkové ztráty
rozmístění těchto plachet.

Vstup: První řádek vstupu obsahuje celé číslo N (2 ^ 100 000,
počet stěžňů na lodi. Každý z následujících N řádků obsahuje dvě celá
čísla H а К (1 ^ H ^ 100 000, 1 ^ К ^ H), výšku a počet plachet
odpovídajícím stěžni. Stěžně jsou uvedeny v pořadí od přídě к zádi.

na
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Obr. 66. Loď má 6 stěžňů, jejich výšky jsou 3, 5, 4, 2, 4 a 3 odpředu (zleva na obrázku)
dozadu. Rozmístění plachet má celkové ztráty 10. Ztráty jednotlivých plachet jsou
uvedeny uvnitř plachet.

příď

Výstup: Na výstupu je jedno celé číslo určující minimální možné cel-
kové ztráty plachet.

Poznámka. Při výpočtu používejte 64bitový celočíselný typ (long
long v C/C++, int64 v Pascalu).

Hodnocení: V testovacích datech odpovídajících ohodnocení 25 body
bude celkový možný počet rozmístění plachet roven nejvýše 1000 000.

Příklad: vstup
6

3 2

5 3

4 1

2 1

4 3

3 2

výstup
10

Tento příklad odpovídá obr. 66.

3. Povodeň

V roce 1964 zasáhla město Záhřeb katastrofická povodeň. Mnoho bu-
dov bylo zcela zničeno, když voda strhla jejich zdi. V této úloze dostanete
zjednodušený model města před povodní a máte určit, které zdi zůstanou
stát po povodni.
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Model je tvořen N body v rovině a W zdmi. Každá zeď spojuje dvojici
zadaných bodů a neprochází žádným jiným bodem. Model má následující
vlastnosti:

o Žádné dvě zdi se neprotínají ani nepřekrývají, mohou se však dotýkat
svými koncovými body.

> Každá zeď je rovnoběžná buď se svislou, nebo s vodorovnou souřad-
nicovou osou.

Na začátku je všude sucho. V čase nula začne voda zaplavovat vnější
oblast (tzn. prostor, který není uvnitř zdí). Přesně po hodině se pod
tlakem vody zboří každá zeď, která měla na jedné své straně vodu a na
druhé vzduch. Voda pak zaplaví další oblast, jež není zcela ohraničena
zdmi. Tím se mohou objevit nové zdi s vodou na jedné a vzduchem na
druhé straně. Po další hodině tyto zdi také spadnou a záplava pokračuje
dále. Tento proces se opakuje tak dlouho, dokud voda nezaplaví celé
město.

Následující obr. 67 ukazuje příklad průběhu záplavy.

Stav v čase nula. Šedé
čtverečky představují za-

plavenou oblast, bílé su-
chou (vzduch).

Stav po dvou hodinách.
Voda zaplavila celé město
a zůstaly stát 4 zdi.

Stav po jedné hodině.

Obr. 67

Úloha: Napište program, který dostane souřadnice N bodů a popis
W zdí spojujících tyto body, a určí, které zdi zůstanou stát po povodni.

Vstup: První řádek vstupu obsahuje celé číslo N (2 й N ^ 100 000),
počet bodů v rovině.

Každý z následujících N řádků obsahuje dvě celá čísla X, Y (obě mezi
0 a 1000 000, včetně), souřadnice jednotlivých bodů. Body jsou očíslovány
od 1 do N v pořadí, ve kterém jsou zadány na vstupu. Žádné dva body
neleží na stejných souřadnicích.

Další řádek vstupu obsahuje celé číslo W (1 5Í W 2IV), počet zdí.
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Každý z následujících W řádků obsahuje dvě různá celá čísla А, В
(1^A^N,1 = B = N) určující, že před povodní stála ve městě zeď
spojující body A a B. Zdi jsou očíslovány od 1 do W v pořadí, ve kterém
jsou zadány na vstupu.

Výstup: První řádek výstupu bude obsahovat jedno celé číslo K, po-
čet zdí, které zůstanou stát po povodni. Na následujících К řádcích budou
zapsány indexy těchto zdí, každý na samostatném řádku. Na jejich pořadí
nezáleží.

Hodnocení: V testovacích datech odpovídajících ohodnocení 40 body
budou souřadnice všech bodů v rozmezí od 0 do 500.

V těchto testovacích datech a v testovacích datech ohodnocených dalšími
15 body bude N nejvýše 500.

Podrobné informace o výsledcích testování
Během soutěže si můžete zvolit nejvýše 10 odevzdaných řešení této

úlohy, která pak budou (co možná nejdříve) vyhodonocena na části ofi-
ciálních testovacích dat. Po vyhodnocení budete mít к dispozici přehled
výsledků tohoto testování ve vašem soutěžním prostředí.

Příklad:

výstupvstup
15 4

1 1 6

8 1 15

4 2 16

7 2 17

2 3

4 3

6 3

2 5

4 5

6 5

4 6

7 6

1 8

4 8

8 8

17

1 2

2 15
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15 14

14 13

13 1

14 11

11 12

12 4

4 3

3 6

6 5

5 8

8 9

9 11

9 10

10 7

7 6

Tento příklad odpovídá situaci na obr. 67.

4. Horníci

Ve dvou dolech pracují skupiny horníků. Těžba uhlí je velmi namá-
havá, a tak horníci potřebují stále jíst (podobně jako programátoři). Po-
každé, když do dolu přivezou nějaké jídlo, horníci vytěží jisté množství
uhlí. Horníkům vozí tři druhy jídla: maso, fazole a brambory. Při každé
dodávce však přivezou pouze jeden druh jídla.

Horníci (stejně jako programátoři) mají rádi pestrou stravu. Čím je
jejich strava rozmanitější, tím více pracují (narozdíl od programátorů).
Přesněji řečeno, jakmile dorazí nová dodávka jídla, množství vytěženého
uhlí závisí na této dodávce jídla a na dvou předchozích (nebo na méně,
pokud ještě tolik dodávek nedostali):

i> Pokud byly všechny dodávky stejného druhu, horníci následně vytěží
jeden vozík uhlí.

t> Pokud se v uvažovaných dodávkách vyskytovaly dva druhy jídla, hor-
níci následně vytěží dva vozíky uhlí.

o Pokud obsahovala každá dodávka jiný druh jídla, horníci následně
vytěží tři vozíky uhlí.
Předem známe druhy všech dodávek jídla a pořadí, v němž budou

odeslány do dolů. O každé dodávce jídla můžeme rozhodnout, do kterého
dolu bude doručena. Tím můžeme ovlivnit celkové množství vytěženého
uhlí. Jednotlivé dodávky jídla není možné dělit, každá musí být doručena
vcelku do jednoho nebo druhého dolu.
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Oba doly nemusí dostat stejný počet dodávek jídla (dokonce je dovo-
léno poslat všechno jídlo do jednoho dolu).

Úloha: Dostanete druhy dodávaného jídla v pořadí, v jakém budou do
dolů poslány. Napište program, který určí co největší množství uhlí které
může být při vhodném rozdělení dodávek jídla mezi oba doly dohromady
vytěženo.

Vstup: První řádek vstupu obsahuje jedno celé číslo TV (1 ^ ^
^ 100 000) — počet dodávek jídla.

Druhý řádek je tvořen řetězcem N znaků, představujících druhy jed-
notlivých dodávek v pořadí, v jakém byly do dolů odeslány. Každý znak
bude jedním z velkých písmen »M« (pro maso), »F« (pro fazole) nebo »B«
(pro brambory).

Výstup: Na výstupu bude jedno celé číslo — největší možné celkové
množství uhlí, které může být vytěženo.

Hodnocení: V testovacích datech odpovídajících ohodnocení 45 body
bude počet dodávek N nejvýše 20.

Podrobné informace o výsledcích testování
Během soutěže si můžete zvolit nejvýše 10 odevzdaných řešení této

úlohy, která pak budou (co možná nejdříve) vyhodonocena na části ofi-
ciálních testovacích dat. Po vyhodnocení budete mít к dispozici přehled
výsledků tohoto testování ve vašem soutěžním prostředí.

Příklady:
vstup vstup
6 16

MMBMBBBBMMMMMBMB

výstup
MBMFFB

výstup
12 29

V levém příkladu můžeme rozdělit dodávky jídla do dolů v pořadí:
důl 1, důl 1, důl 2, důl 2, důl 1, důl 2. V dolech budou postupně vytěženy
1, 2, 1, 2, 3 a 3 vozíky uhlí, tzn. celkem 12 vozíků. Tohoto výsledku lze
dosáhnout i jinými způsoby.

5. Žvížátka
Pavel a Pepa si hrají s plyšovými zvířátky. Nejprve si zvolí jeden ze tří

hracích plánů znázorněných na obr. 68. Každý hrací plán je tvořen políčky
(na obrázku jsou zobrazena jako kolečka) uspořádanými do jedno-, dvou-
nebo trojrozměrné mřížky.
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Hrací plán 2

Obr. 68

Hrací plán 3Hrací plán 1

Pavel umístí N zvířátek na políčka hracího plánu.
Vzdálenost dvou políček je nejmenší počet tahů, které musí zvířátko

provést, aby se dostalo z jednoho políčka na druhé. Jedním tahem se
může zvířátko přesunout vždy na některé sousední políčko (na obrázku
jsou sousední políčka spojena čarou).

Dvě zvířátka si spolu mohou povídat, pokud je vzdálenost jejich polí-
ček nejvýše D. Úkolem Pepy je spočítat, kolik párů zvířátek je umístěno
tak, že si zvířátka tvořící pár mohou spolu povídat.

Úloha: Napište program, který dostane typ hracího plánu, umístění
zvířátek a číslo D a nalezne požadovaný počet párů.

Vstup: První řádek vstupu obsahuje čtyři celá čísla v tomto pořadí:
> Typ hracího plánu 5 (1 ^ 5 ^ 3);
> Počet zvířátek N (1 100 000);
t> Maximální vzdálenost D, na kterou si zvířátka mohou povídat (1 ^

SDS 100 000 000);
> Velikost hracího plánu M (maximální hodnota souřadnice, která se

může objevit na vstupu):
m> Pro 5 = 1 bude M nejvýše 75 000 000.
и> Pro В — 2 bude M nejvýše 75 000.
k> Pro 5 = 3 bude M nejvýše 75.
Každý z následujících N řádků obsahuje 5 celých čísel oddělených

mezerami — souřadnice jednotlivých zvířátek. Všechny souřadnice budou
v rozmezí 1 až M (včetně).

Na jednom políčku může být více zvířátek.

Výstup: Výstup tvoří jedno celé číslo — počet párů zvířátek, která si
spolu mohou povídat.

Poznámka. Při výpočtu používejte 64bitový celočíselný typ (long
long v C/C++, int64 v Pascalu).
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Hodnocení: V testovacích datech odpovídajících ohodnocení 30 body
bude počet zvířátek N nejvýše 1 000.

Pro každý hrací plán navíc platí, že program, který vyřeší úspěšně
všechny testovací vstupy na tomto plánu, získá alespoň 30 bodů.

Příklady:
vstup
1 6 5 100

vstup
2 5 4 10

vstup
3 8 10 20

10 10 10

10 10 20

10 20 10

10 20 20

20 10 10

20 10 20

20 20 10

20 20 20

výstup

5 225

7 250

50 8 4

6 510

20 4 4

výstup23

výstup 8

4

12

Vysvětlení levého příkladu. Předpokládejme, že zvířátka jsou očíslo-
vanána od 1 do 6 v pořadí, ve kterém jsou uvedena na vstupu. Výsledné
čtyři páry jsou:

> 1-5 (vzdálenost 5)
i> 1-6 (vzdálenost 2)
> 2-3 (vzdálenost 0)
t> 5-6 (vzdálenost 3)

Vysvětlení prostředního příkladu. Výsledných osm párů je:
[> 1-2 (vzdálenost 2)
> 1-4 (vzdálenost 4)
> 1-5 (vzdálenost 3)
> 2-3 (vzdálenost 3)
t> 2-4 (vzdálenost 4)
t> 3-4 (vzdálenost 3)
o 3-5 (vzdálenost 4)
> 4-5 (vzdálenost 3)

6. Trénink

Mirek a Roman se připravují na výroční cyklistický maratón dvojic
kolem Chorvatska. Potřebují si proto zvolit tréninkovou trasu.

Máme N měst a M silnic mezi nimi. Každá silnice spojuje dvě města
a lze jí projet oběma směry. Přesně N— 1 z těchto silnic je asfaltových,

183



zatímco ostatní silnice jsou nezpevněné. Silniční síť byla naštěstí navržena
tak, že každá dvojice měst je propojena cestou tvořenou pouze asfalto-
vými silnicemi. Jinými slovy řečeno, N měst a N — 1 asfaltových silnic
tvoří stromovou strukturu.

Navíc platí, že každé město je koncovým bodem nejvýše deseti silnic.
Tréninková trasa začíná v nějakém městě, prochází některými silni-

cemi a končí ve stejném městě, kde začala. Mirek a Roman by při tréninku
rádi viděli nová místa, a proto zavedli pravidlo, že žádným městem ani
žádnou silnicí neprojedou dvakrát. Tréninková trasa může začínat ve
kterémkoliv městě a nemusí procházet všemi městy.

Ve dvojici cyklistů jede vždy jeden vpředu a rozráží tak vzduch tomu
druhému. Proto je jízda vpředu těžší a cyklisté se na této pozici pra-
videlně střídají. Mirek a Roman se chtějí střídat při průjezdu každým
městem. Aby byl pro oba trénink stejně náročný, chtějí zvolit trasu tvo-
řenou sudým počtem silnic.

Soupeři Mirka a Romana se rozhodli zablokovat některé nezpevněné
silnice, aby Mirek s Romanem nemohli nalézt žádnou tréninkovou trasu
podle výše uvedených požadavků. Pro každou nezpevněnou silnici je za-
dána cena (kladné celé číslo), která představuje poplatek za zablokování
silnice. Je zakázáno blokovat asfaltové silnice.

Úloha: Napište program, který dostane popis sítě měst a silnic a určí
nejnižší možnou celkovou cenu potřebnou na zablokování silnic takovým
způsobem, aby neexistovala žádná tréninková trasa vyhovující uvedeným
podmínkám.

Vstup: První řádek vstupu obsahuje dvě celá čísla N a M (2 Si N
^ 1 000, N 5Í 1 M 5Í 5 000), počet měst a celkový počet silnic.

Na každém z následujících M řádků jsou tři celá čísla А, В a C
(lž^AžjN,lžfBtfN,0žjCjš 10 000), popisující vždy jednu silnici.
Čísla А а. В jsou různá a určují města spojená touto silnicí. Pokud je C
rovno 0, jedná se o asfaltovou silnici, jinak jde o silnici nezpevněnou a C
určuje cenu zablokování této silnice.

Každé město je koncovým bodem nejvýše deseti silnic. Žádné dvě
silnice nespojují stejnou dvojici měst.

Výstup: Výstupem programu bude jedno celé číslo — nej menší možná
celková cena popsaná v zadání úlohy.

Hodnocení: V testovacích datech odpovídajících ohodnocení 30 body
tvoří asfaltové silnice přímou cestu (tj. žádné město není koncovým bo-
dem pro více než dvě asfaltové cesty).
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Podrobné informace o výsledcích testování
Během soutěže si můžete zvolit nejvýše 10 odevzdaných řešení této

úlohy, která pak budou (co možná nejdříve) vyhodnocena na části ofi-
ciálních testovacích dat. Po vyhodnocení budete mít к dispozici přehled
výsledků tohoto testování ve vašem soutěžním prostředí.

Příklady.
Vstup
5 8

2 1 0

3 2 0

4 3 0

5 4 0

13 2

3 5 2

2 4 5

2 5 1

výstup

vstup
9 14

12 0

13 0

2 3 14

2 6 15

3 4 0

3 5 0

3 6 12

3 7 13

4 6 10

5 6 0

5 7 0

5 8 0

6 9 11

8 9 0
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Obr. 69. Silniční síť z prvního příkladu. Asfaltové silnice jsou
vyznačeny tučně.
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Obr. 70. Mirek a Roman mají pět možných tréninkových tras. Pokud jsou zablokovány
silnice 1-3, 3-5 a 2-5, potom nemohou použít ani jednu z těchto pěti tras. Cena
zablokování těchto tří silnic je 5. Je také možné zablokovat pouze dvě silnice, 2-4
a 2-5, ale cena je v takovém případě 6, tedy vyšší.
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