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O průběhu 57. ročníku matematické olympiády

Ve školním roce 2007/08 se uskutečnil v České republice již 57. ročník
matematické olympiády. Hlavním pořadatelem soutěže bylo již tradičně
Ministerstvo školství, mládeže a tělovýchovy CR, dále Jednota českých
matematiků a fyziků a Matematický ústav akademie věd ČR. Chod sou-
těže zajišťovala stejně jako v předešlých ročnících soutěže Ústřední ко-
mise MO (ÚK MO), jejímž předsedou byl doc. RNDr. Jaromír Šimša,
CSc.

Funkce místopředsedů ÚK MO vykonávali: RNDr. Jaroslav Švrcek,
CSc. (pro kategorie А, В, C), Mgr. Vojtěch Žádník, Ph.D. (pro kategorie
Z9-Z5) a doc. RNDr. Pavel Tópfer, CSc. (pro kategorii P), tajemníkem
ÚK MO byl RNDr. Karel Horák, CSc.

Přípravou a výběrem úloh pro jednotlivé kategorie a soutěžní kola
byly pověřeny Ústřední komisí MO dvě úlohové komise (jedna pro ka-
tegorie А, В, C a druhá pro kategorie Z9-Z5). Obě komise se sešly na
svých pracovních seminářích dvakrát ročně (v listopadu 2007 a v květnu
2008). Ve spolupráci se slovenskými kolegy zabezpečují obě komise s více
než ročním předstihem výběr úloh pro další ročník MO v České republice
a na Slovensku. Garanty výběru úloh v kategoriích А, В, C byli v tomto
ročníku soutěže po řadě doc. RNDr. Jaromír Šimša, CSc., doc. RNDr.
Pavel Novotný, CSc., a RNDr. Pavel Leischner, Ph.D.

Průběh 57. ročníku soutěže byl standardní. Letáky s úlohami а ко-
mentáře к řešením úloh I. kola 57. ročníku MO byly pro všechny katego-
rie soutěže dodány včas. Krajská (II.) kola v jednotlivých kategoriích se
uskutečnila ve stanovených termínech: 22. 1. 2008 v kategorii A, 1. 4. 2008
v kategoriích В a C a 15. 1. 2008 v kategorii P. Celkové počty účastníků
v jednotlivých krajích každé z uvedených kategorií jsou uvedeny v tabul-
kách, které tvoří přílohu této zprávy.

Ústřední (III.) kola 57. ročníku matematické olympiády v katego-
riích A a P se konala v termínu 9.-15. března 2008 v Českých Budě-
jovicích. Organizací obou závěrečných kol soutěže bylo Ústřední komisí
MO pověřeno Gymnázium v Českých Budějovicích v Jírovcově ulici. Ve-
dění školy připravilo ve spolupráci s Krajskou komisí MO Jihočeského

5



kraje a pobočkou JCMF v Českých Budějovicích a za účinné podpory
krajského města České Budějovice velmi dobré podmínky pro vlastní
soutěž. Mimořádný dík za zdařilý průběh ústředního kola soutěže patří
především hlavním organizátorům ústředního kola — Mgr. Radku Tr-
čovi, předsedovi Krajské komise MO Jihočeského kraje, a dále řediteli
Gymnázia na Jírovcově ulici — RNDr. Karlu Lichtenbergovi, CSc.

Na základě jednotné koordinace oprav úloh krajského kola bylo
к účasti v ústředním kole kategorie A pozváno 49 nejlepších řešitelů
(podle pravidel soutěže je do celostátního kola zváno nejvýše 50 řeši-
telů), v kategorii P bylo pozváno к účasti v ústředním kole 30 nej lepších
řešitelů krajských kol. Všichni účastníci soutěže byli ubytování v Domově
mládeže v městské části Adamov.

Soutěžními dny pro kategorii A byly 10. a 11. březen 2008, v nichž sou-
těžící řešili tradičně po třech soutěžních úlohách; na řešení každé trojice
úloh měli přitom vyhrazeny vždy 4,5 hodiny čistého času a každá úloha
byla hodnocena maximálně 7 body (s celočíselnými bodovými zisky).
Soutěžními dny ústředního kola v kategorii P byly 13. a 14. březen 2008.
První soutěžní den řešili soutěžící tři úlohy teoretické, celý druhý sou-
těžní den byl vyhrazen tradičně řešení dvou praktických úloh. Za každou
teoretickou úlohu mohli soutěžící získat maximálně 10 bodů, za řešení
každé praktické úlohy pak maximálně 15 bodů — celkově tedy maxi-
málně 60 bodů. Na přípravě soutěžních úloh v kategorii P se podíleli
pracovníci Katedry matematické informatiky Matematicko-fyzikální fa-
kulty Univerzity Karlovy v Praze.

Slavnostní zahájení ústředního kola v kategorii A se uskutečnilo v ne-
děli 9. března v koncertní síni Otakara Jeremiáše v Českých Budějovicích
za účasti zástupců magistrátu města České Budějovice, Jihočeské univer-
žity v Českých Budějovicích a nejvýznamnějších sponzorů akce, mezi něž
patřila především společnost CEZ a Komerční banka v Českých Budějo-
vících. Vlastní soutěž v obou kategoriích proběhla v učebnách pořádající
školy — gymnázia na Jírovcově ulici.

Pořadatelé ústředního kola zajistili pro soutěžící také zajímavý dopro-
vodný program. Odpoledne po prvním soutěžním dni absolvovali všichni
soutěžící kategorie A prohlídku zámku Hluboká nad Vltavou. Na odpo-
ledne po druhém soutěžním byla připravena exkurze do pivovaru Budvar.
Podobný charakter měl i doprovodný program pro účastníky ústředního
kola v kategorii P.

Vyhlášení výsledků soutěže v kategorii A se uskutečnilo ve středu
12. března 2008 v obřadní síni radnice v Českých Budějovicích, v kate-
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gorii P pak v sobotu 15. 3. 2008 v aule pořadatelské školy. Ceny vítězům
a úspěšným řešitelům ústředního kola v obou kategoriích předal ředitel
Gymnázia České Budějovice v Jírovcově ulici dr. Lichtenberg, zástupci
tJK МО a města České Budějovice. Všichni vítězové a úspěšní řešitelé
ústředního kola si přitom domů odvezli kromě příslušných diplomů také
hodnotné věcné ceny.

Devět z deseti vítězů soutěže v kategorii A bylo pozváno к vý-
běrovému soustředění před 49. mezinárodní matematickou olympiádou
(MMO). Ta se uskutečnila v červenci 2008 ve španělském Madridu.
Kromě toho bylo vybráno také družstvo pro 2. ročník Středoevropské ma-
tematické olympiády (MEMO), který se konal počátkem září 2008 v Olo-
mouci. Družstvo pro tuto mezinárodní soutěž tvořila šestice úspěšných
řešitelů ústředního kola kategorie A, kteří se nezúčastnili 49. MMO ve

Španělsku. Počátkem července 2008 se konal v Drážďanech za české účasti
také 15. ročník Středoevropské olympiády v informatice (CEOI) a zhruba
o měsíc později se české reprezentační družstvo zúčastnilo již 20. ročníku
Mezinárodní olympiády v informatice (IOI) v egyptské Káhiře.

Ústřední komise MO se během 57. ročníku soutěže sešla na dvou pra-

videlných jednáních, a to 12. prosince 2007 v Matematickém ústavu AV
CR v Praze a dále 10. března 2008 v Českých Budějovicích u příležitosti
konání ústředního kola MO.

Pro nej lepší řešitele krajských kol v kategoriích В a C uspořádala
Ústřední komise MO v prvním červnovém týdnu 2008 tradiční sou-
středění v Jevíčku, jehož se zúčastnilo 40 nejlepších řešitelů krajských
kol v kategoriích В i C. Lektorsky se na tomto soustředění podíleli
doc. Boček, doc. Calda, doc. Šimša, dr. Dula, dr. Švrček, dr. Leischner
a dr. Hrubý. Pro nejlepší řešitele kategorie A (všichni ti, kteří se kva-
lifikovali do ústředního kola kategorie A a přitom ještě nenastoupili do
maturitního ročníku) uspořádala ÚK MO v polovině září 2008 tradiční
soustředění v Janských Lázních, jehož se zúčastnilo 20 pozvaných žáků.
Zaměstnání a přednášky na něm vedli: doc. Šimša, dr. Švrček, dr. Horák,
Mgr. Panák, dr. Calábek a dr. Zhouf.

Ústřední komise MO děkuje všem zainteresovaným učitelům matema-
tiky a informatiky na středních i základních školách, zejména pak těm
kteří se významnou měrou podíleli na rozvoji nejvýraznějších matema-
tických a informatických talentů v České republice.
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Projev předsedy Ústřední komise MO
při slavnostním zahájení ústředního kola 57. ročníku MO

v Českých Budějovicích

Dámy a pánové, vážení hosté, milí soutěžící,
spolu s Vámi prožívám slavnostní atmosféru těchto chvil. Doufám, že

ji příliš nenaruším svým pracovně zaměřeným vystoupením, ve kterém,
jak jinak, vyřeším jednu úlohu. Snad se nebude nudit nikdo z přítomných,
když úloha bude mít takovéto zadání.

Matematik M. zvolil dvě nesoudělná pětimístná čísla m, n a na své
kalkulačce zadal podíl m : n. Na jejím desetimístném displeji se objevilo:

о.зозгоо8
Určete čísla man, která M. zvolil.

Oprávněně můžete zapochybovat, zda má smysl se takovou kuriózní
hádankou, která zřejmě nemá žádný praktický význam, vůbec zabývat.
Vzdělanější skeptici mohou namítnout, že ani z matematického hlediska
není popsaná situace nijak zajímavá. Běžný počítač s vhodně napsaným
programem totiž hledaná pětimístná čísla odhalí ve zlomku vteřiny (na
obyčejné kalkulačce by podobné testování trvalo nejspíše několik hodin,
možná i dnů). Na takovou výhradu odpovím protiotázkou: proč i к sou-

časným disciplínám sportovní olympiády patří tolik oblíbené běžecké dis-
ciplíny a cyklistika, když máme motorky, auta nebo dokonce letadla?
Berme proto postavenou úlohu jako ušlechtilou výzvu našemu intelektu
a pokusme se ji vyřešit bez užití počítačových programů.

Úloha je snad zadána správně česky (slovo display může být mužského
i ženského rodu), podívejme se na její obsah. Nikoho z přítomných snad
neudiví, že je možné mezi sebou dělit i čísla, která jsou nesoudělná. Na-
opak mnozí si asi povšimnuli, že výsledek dělení se na kalkulačce zobrazil
jako dnešní datum. Nejde o náhodu, M. se totiž s kalkulačkou chystal na
dnešní cestu do Českých Budějovic a jsem rád, že je tady přítomen.

Méně nápadnou okolností, kterou M. v první chvíli ani nezpozoroval,
je skutečnost, že na desetimístném displeji se objevil pouze osmimístný
výsledek. Musím na M. prozradit, že v používání kalkulačky není velký
odborník. Přestože například ví, že kalkulačka má jednoduchou paměť,
nedovede M. do ní žádné mezivýsledky uložit, natož je později vyvolat;
paměť na kalkulačce mu zkrátka neslouží. Teprve při posuzované úloze
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se M. ujistil, že displej kalkulačky má 10 míst, a že tudíž v zobrazeném
výsledku došlo к záhadnému výpadku dvou číslic.

Nejednalo by se samozřejmě o žádnou záhadu, kdyby byl zobrazený
výsledek přesnou hodnotou zadaného podílu. V tom případě by ovšem
platily přesné rovnosti

23 • 23 • 191 • 2579 032 008m
— = 0,903 200 8 = 27 • 57

1 129 001
107n

23 • 191 • 257

24 • 57 1250 000

Poslední zlomek zapsaný sedmimístnými čísly je však v základním
tvaru, takže se nemůže přesně rovnat podílu dvou pětimístných čísel.
Z tohoto rozporu plyne závěr, že zobrazená hodnota byla pouze přibližná
a že přesná hodnota má desetinný zápis

— = 0,903 200 800

Zdánlivá záhada je tak vyřešena: poslední dvě vypsané nuly se na kal-
kulačce — patrně z úsporných důvodů — nezobrazily! Dodejme, že nad
danou úlohou M. zjistil i další podrobnosti o své kalkulačce — že totiž
pracuje při interních výpočtech s přesnějšími hodnotami, než které na

displeji zobrazuje a že tyto hodnoty nejsou při zobrazování zaokrouhlo-
vány, nýbrž jejich dekadické zápisy jsou na desátém platném místě prostě
„useknuty'1, což nám pro přesnost praktických výpočtů většinou bohatě
stačí.

Vraťme se však к samotné úloze, kterou máme řešit. Abyste lépe
pochopili postup, kterým se к oběma neznámým pětimístným číslům
dobereme, vyřeším nejprve méně pracný úkol téhož druhu: najdeme
dvojmístná čísla m, n s poměrem m : n daným kalkulačkou v podobě
desetinného čísla

324 13133 1
Nejprve v zadaném čísle vyčleníme celou část, abychom vyjádřili, ко-

likrát je menší jmenovatel n ve větším čitateli m obsažen:

— = 2,241 379 31 = 2 + 0,241 379 31.
и

(Od tohoto místa jsou rovnítka znaky přibližných rovností na kalkulačce.)
Hledejme zlomek rovný zbylému desetinnému číslu menšímu než 1. Tento
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zlomek bude mít čitatel menší než jmenovatel. Zjistíme proto tentokrát,
kolikrát je čitatel obsažen ve jmenovateli. Dosáhneme toho tím, že vy-

počteme převrácenou hodnotu daného čísla a pak v něm opět vyčleníme
celou část:

1
= 4,142 857143 = 4 + 0,142 857 143.

0,241379 31

Pro zbylé desetinné číslo menší než 1 postup zopakujeme ještě jednou:

1
= 7 (hurá!).

0,142 857143

Máme vyhráno, zbývá zapsat celý výpočet jedním výrazem a určit jeho
hodnotu:

1 65m
- =2 +

1 29n

4+7
Hledaná čísla jsou tedy m = 65 a n = 29.

Nyní již víme, co nás čeká při řešení původní úlohy, netušíme jen, po
kolika krocích celý výpočet skončí:

///
— = 0,903 200 8,
и

1
= 1,107173 51 = 1 + 0,107173 51

0,903 200 8
1

= 9,330 663 911 = 9 + 0,330 663 911
0,107173 51

1
= 3,024 218 75 = 3 + 0,024 218 75

0,330 663 911
1

= 41,290 322 58 = 41 + 0,290 322 58,
0,024 218 75

1
= 3,444 444 444 = 3 + 0,444 444 444,

0,290 322 58
1

= 2,25 = 2 + 0,25,
0,444 444 444

1
= 4.

0,25

10



Výsledkem je, nelekněte se prosím, obrovitý zlomek

1m

1n
1 +

1
9 +

1
3 +

1
41 +

1
3 +

1
2 + i

kterému v matematice říkáme řetězový a který stručněji zapisujeme tak¬
to:

ТП
- = [0,1,9,3,41,3,2,4].
n

Jeho hodnotu určíme postupným výpočtem „odspodu nahoru11:

. 1 92+
4 ~ 4

31
_ 3 871

1280 ~ 1280

0 4 31
3+9“T

9 1280
41 + — =

31 31

3 871
_ 39 990

36119 ~ 36119

1280
_ 36119

3 871 “ 3 871

m 36119

3 + 9 + 1 +

39 990n

Pomocí výpočtů několika převrácených čísel na kalkulačce jsme tedy
poměrně rychle zjistili, že matematik M. mohl dělit číslo 36119 číslem
39 990. Na počítači s přesnější aritmetikou vyjde hodnota jejich podílu
jako číslo se zápisem

36119
= 0,903 200800 200 050.. * )

39 990

přitom podtržením vyznačujeme číslice zobrazené na kalkulačce.
Přítomní mladí soutěžící jistě cítí, že podané řešení úlohy není úplné.

Měli bychom ještě zdůvodnit, že nalezená čísla jsou jediná, která mohl
M. zvolit, že tedy žádná jiná pětimístná čísla man nemají podíl zapsaný
na kalkulačce dnešním datem. Museli bychom toho vědět o řetězových
zlomcích více, abychom našli další zlomky s hodnotami blízkými danému
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desetinnému číslu, pět nejbližších podílů pětimístných čísel vám teď od
nejmenšího po největší vypíši:

44 274mi
= 0,903 200 799 689 916 ...,

49 019

80 393
ni

m2
= 0,903 200 799 919109.. • )

n2 89 009
36119m3

= 0,903 200 800 200 050.. * ?

n3 39 990
64 083ТП4

= 0,903 200 800 552 493...
70 951

27 964
П4

m5
= 0,903 200 801 007719 ...

30 961n5

Vidíte, že posuzovaná úloha má dvě řešení, zapsaná jako třetí a čtvrtý
zlomek. M. tedy určitě počítal jeden ze dvou podílů

36119:39990 nebo 64 083:70 951.

Na závěr bych chtěl alespoň trochu poodhalit krásu konstrukce uve-

děných řetězových zlomků

44 274mi
= [0,1,9,3,41,3,2,5]49 019

80 393
ni

m2
= [0,1,9,3,41,3,2,4,2]89 009

36119
n2

m3
= [0,1,9,3,41,3,2,4],39 990

64 083
пз
m4

= [0,1,9,3,41,3,2,3,2]70 951
27964

П4

m5
= [0,1,9,3,41,3,2,3].30 961n5

Všimněte si například, jak jednoduše lze druhý zlomek sestavit z prvního
a třetího zlomku:

80 393 = 44 274 + 36119,
89 009 - 49 019 + 39 990.

Obecně pro naše zlomky platí

rm
_ mi_ 1 + mi+i

ni-1 + ni+iЩ
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Další pozoruhodné rovnosti mezi dvojicemi sousedních zlomků je už ob-
tížnější numericky ověřit, proto rovnou vypíšu jejich obecné vyjádření

rrii ■ Щ-i - m;_i • щ = 1.

Tím naše krátká exkurze do říše řetězových zlomků končí. Vrátím se
к soutěži, která nás všechny dnes do Českých Budějovic přivedla, a po-

přeji vám účastníkům jménem pracovníků Ústřední komise MO hodně
zdaru při řešení pondělních i úterních úloh. V zadání jedné z nich na-

jdete sice ne datum, avšak alespoň aktuální letopočet. Jsme zvědavi, jak
si s ní i s ostatními pěti úlohami bez kalkulačky a počítače poradíte, tě-
šíme se na vaše řešení. Prohlašuji ústřední kolo 57. ročníku Matematické
olympiády za zahájené.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 57. ročníku MO

Kategorie
Kraj Celkem

A В C P
s u s и s и s и s и

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

57 44
77 23
51 31
34 17

93 82
74 29
67 39
55 21
32 17
18 16

112 95
130 70
107 79

62 41

271 229
288 128
229 153
159 83

62 34

98 61
156 73
131 71
120 95
200 112
391 258
214 112

9 8
7 6
4 4
8 4
0 0
2 2

10 10
4 3
5 5

15 8
6 6
4 4
1 1

15 11

15 8 15 9
26 15
45 18
43 19
32 24
44 18

108 64
69 25
16 12
69 32

52 28
77 36
48 27
53 41
75 54

142 98
81 52
49 28

124 80

24 9
36 22
30 25
66 32

135 90
60 31
34 26
54 38

67100
262 161

CR 778 477 1 127 738 90 72686 350 2 681 1637

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 57. ročníku MO

Kategorie
Kraj Celkem

В C PA
S U S U S U S U S U

Praha

Středočeský
Jihočeský
Plzeňský
Karlovarský
Ústecký
Liberecký
Královéhradecký
Pardubický
Vysočina
Jihomoravský
Zlínský
Olomoucký
Moravskoslezský

72 43
60 10
77 12
39 18

9 3
28 5
34 6
27 17
39 14
49 13
94 25
26 18
28 12
71 27

50 16
27 1
36 4
21 4
17 1
16 2

9 1
22 4
25 2
26 8
81 15
29 2
24 2
38 5

34 16
23 5
28 8
17 7

8 1
15 2
14 6
19 10
19 6
18 6
55 12
16 6
12 6
31 9

8 4
5 2
4 3
4 3
0 0
2 1

10 1
3 3
5 1
7 3
6 5
3 0
1 0

11 4

164 79
115 18
145 27

81 32
34 5
61 10
67 14
71 34
88 23

100 30
236 57

74 26
65 20

151 45

CR 421 67 309 100 653 223 69 30 1452 420

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Josef Tkadlec, G J. Keplera, Praha 6
2. Jakub Marian, G Praha 9, Litoměřická
3. Tomáš Hřebejk, G Praha 4, Písnická
4. Jakub Tópfer, G J. Keplera, Praha 6
5. Radek Marciňa, G Ch. Dopplera, Praha 5
6. Alena Skálová, G Praha 4, Na Vítězné pláni

7.-9. Matěj Peterka, G Praha 6, Nad Alejí
Jiří Vančura, SPŠST, Praha 1, Panská
Matěj Veselský, G J. Keplera, Praha 6

10.-13. Van Nhan Nguyen, G Praha 6, Nad Alejí
Vladimír Novotný, G Praha 4, Na Vítězné pláni
Tomáš Pavlík, G J. Keplera, Praha 6
Martin Výška, G Praha 6, Nad Alejí

Kategorie В

1. Jáchym Sýkora, G Ch. Dopplera, Praha 5
2.-3. Vlastimil Dort, G Špitálská, Praha 9

Kateřina Honzáková, G J. Keplera, Praha 6
4.-5. Miroslav Olšák, G Buďánka, Praha 5

Radek Marciňa, G Ch. Dopplera, Praha 5
6.-7. Jan Bílek, G Praha 4, Na Vítězné pláni

Petr Ryšavý, G J. Heyrovského, Praha 5
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8. Tomáš Novák, G Praha 9, Špitálská
9.-11. Tomáš Vítek, G Praha 6, Arabská

Petr Sedláček, G Ch. Dopplera, Praha 5
Pavel Taufer, Akad. G Praha 2, Korunní

Kategorie C

1.-5. Tadeáš Dohnal, G Ch. Dopplera, Praha 5
Marek Goldstein, G Praha 5, Nad Kavalírkou
Joel Jančařík, G Buďánka, Praha 5
Matěj Petrouš, G Ch. Dopplera, Praha 5
Daniel Šafka, G J. Keplera, Praha 6

6. Jakub Zika, G Praha 6, Nad Alejí
7. Daniel Samek, Akad. G Praha 2, Štěpánská

8.-12. Pavel Černý, G Praha 10, Voděradská
Vít Henych, G Praha 6, Nad Alejí
Jiří Kučera, G Ch. Dopplera, Praha 5
Michal Soucha, G Praha 10, Voděradská
Hoang Van Tru, SPŠE Praha 1, Ječná

Kategorie P

1. Roman Smrž, G E. Krásnohorské Praha 4
2. František Hejl, G J. Nerudy, Praha 1
3. Jiří Setnička, G Cakovice
4. Petr Malý, G K. Sladkovského, Praha 3

Středočeský kraj

Kategorie A

1. Tomáš Gergelits, G Benešov

Kategorie В

1. Petr Čermák, G Kladno
2. Kateřina Štěpánková, G Kladno
3. Adéla Zajíčková, G Příbram
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4. Tomáš Král, G Vlašim
5. Martin Rouček, G Kladno

Kategorie C

1. Jiří Stránský, G Kralupy
2. Karolína Kopecká, G Beroun
3. Vilém Plaček, G SPedŠ Čáslav
4. John Plechatý, G Slaný

5.-7. Ondřej Brajer, G Hořovice
Tomáš Martínek, G Vlašim
Jana Martínková, G Vlašim

8.-10. Helena Brandejská, G J. Ortena, Kutná Hora
Kristian Holan, G Nymburk
Ondřej Ježek, G Příbram

Kategorie P

1. Lukáš Beran, G Benešov
2. Petr Sloup, G F. Palackého, Neratovice

Jihočeský kraj

Kategorie A

1.-2. Jan Matějka, G České Budějovice, Jírovcova
Libor Peltan, G České Budějovice, Česká

3. Jan Hermann, G Český Krumlov
4. Martin Pecka, G V. Nováka Jindřichův Hradec

Kategorie В

1. Adam Juraszek, G České Budějovice, Jírovcova
2. Martina Vaváčková, G P. de Coubertina, Tábor
3. Denisa Bernardová, G České Budějovice, Jírovcova
4. Tereza Hrubešová, G Český Krumlov
5. Jan Moravec, G Český Krumlov
6. František Steinhauser, G Dačice
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7. Petr Procházka, G Písek
8. Pavel Jan, G Kaplice

Kategorie C

1. David Krška, G J. V. Jirsíka, České Budějovice
2. Pavel Dupal, G České Budějovice, Jírovcova

3.-4. Filip Matzner, G J. V. Jirsíka, České Budějovice
Iveta Selepová, G P. de Coubertina, Tábor

5.-7. Lenka Hobizalová, G České Budějovice, Česká
Daniel Slunečko, G České Budějovice, Jírovcova
Josef Válek, G Třeboň

8. Josef Janoušek, G P. de Coubertina, Tábor
9.-11. Josef Kolář, G České Budějovice, Jírovcova

Lukáš Mojžíš, G České Budějovice, Jírovcova
Filip Šochman, G Vimperk

Kategorie P

1. Jan Matějka, G České Budějovice, Jírovcova
2. Libor Peltan, G České Budějovice, Česká
3. Roman Říha, G Prachatice

Plzeňský kraj

Kategorie A1.Van Minh Nguyen, G Tachov
2.-4. Michal Bugoš, G Plzeň, Mikulášské nám.

Jindřich Havlík, G Plzeň, Mikulášské nám.
Václav Vondrášek, G J. Vrchlického, Klatovy

Kategorie В

1. Jakub Klemsa, G J. Vrchlického, Klatovy
2. Lukáš Chlad, G Plzeň, Mikulášské nám.
3. Jan Laksar, G Plzeň, Mikulášské nám.
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4.-5. Trung Ha Due, Masarykovo G, Plzeň
Vladimir Švígler, G Plzeň, Mikulášské nám.

6. Karel Tesař, SPŠE Plzeň
7. Karel Kovařík, G J. Vrchlického, Klatovy

Kategorie C1.Filip Hlásek, G Plzeň, Mikulášské nám.
2.-3. Martin Bucháček, G L. Pika, Plzeň

Michaela Kochmanová, G Plzeň, Mikulášské nám.
4. Jakub Suchý, G Plzeň, Mikulášské nám.
5. Marek Mukenšnabl, G Plzeň, Mikulášské nám.

6.-7. Hynek Kasl, G Plzeň, Mikulášské nám.
Filip Štědronský, G Plzeň, Mikulášské nám.

8.-10. Jan Ambrož, G J. Vrchlického, Klatovy
Jiří Němeček, G Plzeň, Mikulášské nám.
Jan Škoda, G Plzeň, Mikulášské nám.

Kategorie P

1. Filip Hlásek, G Plzeň, Mikulášské nám.
2. Roman Diba, VOŠ a SPŠE Plzeň
3. Martin Holeček, G Plzeň, Mikulášské nám.

Karlovarský kraj

Kategorie A

1. Lukáš Ledvina, První české G, Karlovy Vary

Kategorie В

1. Tomáš Horák, Svobodná chebská škola, Cheb

Kategorie C

1. Josef Hazi, G Cheb
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2.-3. Roman Schindler, První české G, Karlovy Vary
Due Mink Tran, G Cheb

Ústecký kraj

Kategorie A

1. Jan Čapek, G Duchcov
2. Libor Vytlačil, G Roudnice nad Labem

Kategorie В

1.-2. Kateřina Pastirčáková, G Most, Čs. armády
Libor Vytlačil, G Dr. V. Smejkala, Ústí nad Labem

Kategorie C

1. David Kubon, G Teplice, Cs. Dobrovolců
2. Klára Vlčková, G Děčín, Komenského nám.

3.-5. Michal Mojzík, SPŠ a VOŠ Chomutov
David Verner, G V. Hlavatého, Louny
Martin Zukerstein, G Lovosice

Kategorie P

1. Milan Rybář, G J. Jungmanna, Litoměřice

Liberecký kraj ##############

Kategorie A

1. Martin Černý, G Jilemnice

Kategorie В

1.-2. Vendulka Haiblíková, G Jablonec, U Balvanu
Matěj Ondrušek, G Česká Lípa
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3.-4. Lukáš Beran, G F. X. Saldy, Liberec
Simona Macková, G F. X. Saldy, Liberec

5.-6. Ondřej Henych, G Liberec, Jeronýmova
Kateřina Šimůnková, G Semily

Kategorie C

1. Jakub Hrnčíř, G F. X. Saldy, Liberec
2. Jakub Petr, G F. X. Saldy, Liberec
3. Petra Skrbková, G Dr. Randy, Jablonec nad Nisou
4. Jiří Erhart, G F. X. Saldy, Liberec

5.-6. Matěj Hudec, G Liberec, Jeronýmova
Zdeněk Šubčík, G Dr. Randy, Jablonec nad Nisou

Kategorie P1.Martin Preisler, G F. X. Saldy, Liberec

Královéhradecký kraj

Kategorie A

1. Martin Michálek, G J. K. Tyla, Hradec Králové
2. Martin Šubr, G Nový Bydžov
3. Alena Peterová, G Dobruška
4. Jan Bednář, G Trutnov

Kategorie В

1. Petr Pařízek, G B. Němcové, Hradec Králové
2.-3. Tomáš Rubín, G B. Němcové, Hradec Králové

Martin Vojtíšek, G B. Němcové, Hradec Králové
4. Patrik Macej, G B. Němcové, Hradec Králové
5. Veronika Milerská, G B. Němcové, Hradec Králové
6. Jan Voborník, Jiráskovo G, Náchod
7. Aleš Hanuš, G B. Němcové, Hradec Králové
8. Michal Bilanský, Lepařovo G, Jičín
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9.-10. Václav Hrnčíř, Jiráskovo G, Náchod
Jakub Lelek, G Broumov

Kategorie C

1. Anna Chejnovská, G B. Němcové, Hradec Králové
2. Jan Klazar, G B. Němcové, Hradec Králové

3.-4. Kateřina Medková, Biskupské G B. Balbína, Hradec Králové
Radek Papež, Jiráskovo G, Náchod

5.-6. Jan Fišer, Lepařovo G, Jičín
Jan Šimbera, Jiráskovo G, Náchod

7. Jakub Valtar, Jiráskovo G, Náchod
8. Alena Bušáková, G Trutnov

9.-10. Vojtěch Jírovec, G B. Němcové, Hradec Králové
Anetta Sternwaldová, Biskupské G B. Balbína, Hradec Králové

Kategorie P

1. Jakub Kaplan, G J. K. Tyla, Hradec Králové
2. Lukáš Lánský, G J.K. Tyla, Hradec Králové
3. Jiří Maršík, G J. K. Tyla, Hradec Králové

Pardubický kraj

Kategorie A

1. František Kalibán, G Litomyšl
2. Adam Bartoš, G К. V. Raise, Hlinsko

Kategorie В

1. David Vondrák, G Pardubice, Dašická
2. Jan Krys, G Chrudim
3. Jakub Stodola, G Polička
4. Filip Beran, G Pardubice, Dašická

5.-6. Martin Chladil, G Jevíčko
Karel Kalecký, G Holice
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Kategorie С

1. Martin Laštovička, G Pardubice, Dašická
2. Filip Lux, G Žamberk

3.-5. Zuzana Jedličková, G Lanškroun
Miroslav Koblížek, G Žamberk
Jakub Lněnička, G Pardubice, Dašická6.Tomáš Felcman, G Žamberk

7.-8. Michal Hodas, G Ústí nad Orlicí
Tomáš Klejch, G Litomyšl

9. Tereza Soukupová, G Česká Třebová
10.—11. Milan Beneš, G Litomyšl

Jan Novotný, G Pardubice, Dašická
12.-14. Petr Kouba, G Pardubice, Dašická

Ondřej Tobek, G Litomyšl
Johana Vrbacká, G Pardubice, Dašická

Kategorie P

1. David Vondrák, G Pardubice, Dašická

Kraj Vysočina »

Kategorie A

1. Matěj Klusáček, G Třebíč
2.-5. Martin Hyrš, Havlíčkovo G, Havlíčkův Brod

Michal Kozák, G Jihlava
Jan Máca, G Třebíč
Jan Nevoral, G Jihlava

6. Jakub Menšík, G Třebíč
7. Marek Nečada, G Jihlava
8. Tomáš Pejchal, G Žďár nad Sázavou

Kategorie В

1. Jan Nevoral, G Jihlava
2. Jaromír Karmazín, G Velké Meziříčí
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3. Michal Čermák, G Chotěboř
4. Ondřej Šalanda, G Žďár nad Sázavou

5.-7. Jiří Hladík, G Žďár nad Sázavou
Kateřina Semrádová, G Světlá nad Sázavou
Jindřich Vítek, G Jihlava

Kategorie C1.Petr Louša, Havlíčkovo G, Havlíčkův Brod
2.-4. Radka Janoušová, G Bystřice nad Pernštejnem

Magdalena Kodetová, G Jihlava
Petra Staňková, G Jihlava

5. Kristýna Krejčířová, GOB a SOŠ Telč
6. Tomáš Dobrovolný, G Jihlava

7.-9. Radim Cajzl, G V. Makovského, Nové Město na Moravě
Tereza Hovorková, G Pelhřimov
Jiří Kůrka, G Třebíč

10. Dalimil Fišar, G Žďár nad Sázavou

Kategorie P

1. Vojtěch Tůma, G Jihlava
2. Marek Nečada, G Jihlava
3. Michal Koutný, G Třebíč

Jihomoravský kraj

Kategorie A

1. Samuel Říha, G Brno, tř. Kpt. Jaroše
2. David Klaška, G Brno, tř. Kpt. Jaroše

3.-4. Jan Kovář, G Brno, tř. Kpt. Jaroše
Jiří Marek, G Brno, tř. Kpt. Jaroše

5. Vojtěch Robotka, G Brno, tř. Kpt. Jaroše
6.-7. Petr Fiala, G Brno, tř. Kpt. Jaroše

Zuzana Komárkově, G Brno, tř. Kpt. Jaroše8.Hana Šormová, G Brno, tř. Kpt. Jaroše
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9. Alexandr Slávik, G Brno, T. Novákové
10. Jan Brandejs, G Brno, tř. Kpt. Jaroše

Kategorie В

1. David Klaška, G Brno, tř. Kpt. Jaroše
2. Bohuslav Zrnek, G Brno, tř. Kpt. Jaroše
3. Jaromír Kala, G Brno, tř. Kpt. Jaroše
4. Tomáš Lamser, G Brno, tř. Kpt. Jaroše
5. Jana Veselá, G Brno, Lerchova

6.-8. Luboš Pajtina, G Brno, tř. Kpt. Jaroše
Helena Valouchová, G Brno, tř. Kpt. Jaroše
Adam Zemek, G Brno, tř. Kpt. Jaroše

9.-12. Roman Lelek, G Brno, tř. Kpt. Jaroše
Alena Lososová, G Brno, tř. Kpt. Jaroše
Richard Pánek, G Brno, tř. Kpt. Jaroše
Ondřej Pleskot, G Brno, tř. Kpt. Jaroše

Kategorie C1.Aleš Dostál, G Blansko
2.-5. Hynek Jemelík, G Brno, tř. Kpt. Jaroše

Gabriela Kubíčková, G Brno, Lerchova
Tomáš Pokorný, G Brno, tř. Kpt. Jaroše
Jan Sopoušek, G Brno, T. Novákové

6. Dominik Velan, G Brno, tř. Kpt. Jaroše
7.-10. František Fiala, G Brno, tř. Kpt. Jaroše

David Formánek, G Brno, tř. Kpt. Jaroše
Marek Vlašín, G Brno, Vídeňská
Zuzana Žufanová, G Brno, Vídeňská

Kategorie P

1. Hynek Jemelík, G Brno, tř. Kpt. Jaroše
2. David Klaška, G Brno, tř. Kpt. Jaroše
3. Radim Janalík, G Brno, Vídeňská
4. Radek Hrbáček, G Brno, T. Novákové
5. Marek Bryša, G Brno, tř. Kpt. Jaroše
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Zlínský kraj• * *

Kategorie A

1. Josef Ondřej, G Rožnov pod Radhoštěm
2. Jan Vaňhara, G L. Jaroše, Holešov

Kategorie В

1. Josef Ondřej, G Rožnov pod Radhoštěm
2. Jan Kotik, G Zlín, Lesní čtvrť
3. Štěpán Poláček, G F. Palackého, Valašské Meziříčí

4.-5. Martina Suchánková, G Uherské Hradiště
Antonín Štěpán, G F. Palackého, Valašské Meziříčí

6. Lukáš Ptáček, G J. A. Komenského Uherský Brod

Kategorie C

1. Matěj Kocián, G Zlín, Lesní čtvrť
2.-3. Markéta Michálková, G Rožnov pod Radhoštěm

Josef Svoboda, G Rožnov pod Radhoštěm
4. Petr Pecha, SPŠS Vsetín
5. David Svoboda, G Zlín, Lesní čtvrť
6. Zuzana Kluková, G Uherské Hradiště

7.-8. Tomáš Nesvadba, G Zlín, Lesní čtvrť
Martina Švehláková, G Kroměříž

9.-11. Eliška Dostálková, G Uherské Hradiště
Michal Skalský, Masarykovo G, Vsetín
Markéta Švehláková, G Kroměříž

Olomoucký kraj

Kategorie A

1. Jana Faltýnková, G Prostějov, Komenského
2. Lucie Kadrmanová, G Jeseník
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Kategorie В

1. Vojtěch Miloš, G Hranice
2. Lukáš Langer, G Hranice
3. Karel Kraus, G Hranice
4. Jakub Šebesta, G Šumperk

5.-6. Petr Kučera, G J. Wolkera, Prostějov
Tamara Skokánková, G Olomouc-Hejčín

Kategorie C1.Věra Kumová, G J. Škody, Přerov
2.-3. Jan Kostečky, VOŠ a SPŠ Šumperk

Marie Kročová, G J. Škody, Přerov
4. Karel Beneš, G Kojetín

5.-6. Dominik Lachman, G Olomouc-Hejčín
Daniel Navrátil, G J. Škody, Přerov

7. Pavel Francírek, G Kojetín
8. Daniel Frýbort, Cyrilometodějské G Prostějov

9.-10. Petra Macigová, G Hranice
Jan Tvrdík, Cyrilometodějské G Prostějov

Moravskoslezský kraj

Kategorie A

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2. Lucie Mohelníková, G M. Koperníka, Bílovec

3.-5. Hana Bílková, G Frenštát pod Radhoštěm
Tomáš Vejpustek, Wichterlovo G, Ostrava-Poruba
Tomáš Toufar, G M. Koperníka, Bílovec

6.-7. Jan Ohnheiser, SŠE Frenštát pod Radhoštěm
Jan Ptáčník, G Hladnov, Slezská Ostrava

8. Matúš Kopf, Mendelovo G, Opava
9. Jitka Novotná, G M. Koperníka, Bílovec10.Helena Švihlová, G P. Bezruce, Frýdek-Místek
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Kategorie В1.Simona Domesová, G M. Koperníka, Bílovec
2.-3. Matúš Kopf, Mendelovo G, Opava

Jan Legerský, G Ostrava-Hrabůvka
4.-5. Radka Luňáčková, Wichterlovo G, Ostrava-Poruba

Miroslav Raška, Wichterlovo G, Ostrava-Poruba
6.-8. Martin Mrovec, Wichterlovo G, Ostrava-Poruba

Jan Samiec, G Český Těšín
Lenka Šloufová, Wichterlovo G, Ostrava-Poruba

9. Marek Vavrečka, Wichterlovo G, Ostrava-Poruba

Kategorie C

1. Lukáš Folwarczny, G Havířov, Komenského
2.-6. Jiří Biolek, G P. Bezruce, Frýdek-Místek

Petr Heinz, G Hladnov, Slezská Ostrava
Eva Klabusayová, Wichterlovo G, Ostrava-Poruba
Lucie Martinková, G P. Bezruce, Frýdek-Místek
Jakub Solovský, G M. Koperníka, Bílovec

7.-8. Ondřej Bouchala, G Havířov, Komenského
Ondřej Vejpustek, Wichterlovo G, Ostrava-Poruba

9.-10. Vendula Maulerová, G P. Bezruče, Frýdek-Místek
Jakub Štoček, G Havířov, Studentská

Kategorie P

1. Miroslav Klimoš, G M. Koperníka, Bílovec
2. Tomáš Toufar, G M. Koperníka, Bílovec
3. Libor Plucnar, G P. Bezruče, Frýdek-Místek
4. Jan Košcák, Mendelovo G, Opava
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Výsledky ústředního kola 57. ročníku MO
kategorie A

Vítězové

1. Josef Tkadlec, 7/8 G J. Keplera, Praha 6
2. Miroslav Klimoš, 3/4 G M. Koperníka, Bílovec
3. David Klaška, 2/4 G Brno, tř. Kpt. Jaroše
4. Alena Peterová, 8/8 G Dobruška

5.-7. Van Nhan Nguyen, 7/8 G Praha 6, Nad Alejí
Samuel Říha, 3/4 G Brno, tř. Kpt. Jaroše
Jakub Tópfer, 7/8 G J. Keplera, Praha 6

8. Van Minh Nguyen, 5/6 G Tachov
9.-11. Tomáš Hřebejk, 8/8 G Praha 4, Písnická

Jan Matějka, 7/8 G České Budějovice, Jírovcova
Alena Skálová, 6/6 G Praha 4, Na Vítězné Pláni

42 b.

33 b.

30 b.

26 b.

24 b.

24 b.

24 b.

23 b.

22 b.

22 b.

22 b.

Další úspěšní řešitelé

12.-13. Petr Fiala, 4/4 G Brno, tř. Kpt. Jaroše
Tomáš Pavlík, 7/8 G J. Keplera, Praha 6

14. Jiří Marek, 3/4 G Brno, tř. Kpt. Jaroše
15.-16. Hana Šormová, 3/4 G Brno, tř. Kpt. Jaroše

Jan Vaňhara, 7/8 G L. Jaroše, Holešov
17.-18. Libor Máca, 8/8 G Třebíč

Libor Peltan, 8/8 G České Budějovice, Česká
19.-20. Jakub Menšík, 4/4 G Třebíč

Marek Nečada, 8/8 G Jihlava
21.-22. Alexander Slávik, 7/8 G Brno, Terezy Novákové

Martin Výška, 7/8 G Praha 6, Nad Alejí
23. Jiří Vančura, 3/4 SPŠ ST Praha 1, Panská
24. Martin Michálek, 4/4 G J. K. Tyla, Hradec Králové

21b.

21b.

20 b.
19 b.

19 b.

18 b.

18b.

17b.

17b.

16 b.

16 b.

15b.

14 b.
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Výsledky ústředního kola 57. ročníku MO
kategorie P

Vítězové

1. Miroslav Klimoš, 3/4 G M. Koperníka, Bílovec
2. Roman Smrž, 8/8 G E. Krásnohorské, Praha
3. David Klaška, 6/8 G Brno, tř. Kpt. Jaroše
4. Jan Matějka, 7/8 G České Budějovice, Jírovcova
5. Vojtěch Tůma, 8/8 G Jihlava
6. Tomáš Toufar, 4/4 G M. Koperníka, Bílovec
7. Jiří Maršík, 4/4 G J.K. Tyla, Hradec Králové

46 b.

41b.

36 b.

29 b.

25 b.

23 b.

22 b.

Další úspěšní řešitelé

8.-9. František Hejl, 5/6 G Jana Nerudy, Praha
Lukáš Lánský, 4/4 G J.K. Tyla, Hradec Králové

10. Jakub Kaplan, 4/4 G J.K. Tyla, Hradec Králové
11. Libor Plucnar, 5/6 G P. Bezruce, Frýdek-Místek
12. Roman Diba, 4/4 VOŠ a SPŠE Plzeň

13.-14. Hynek Jemelík, 1/4 G tř. Kpt. Jaroše, Brno
Marek Nečada, 8/8 G Jihlava

15.-16. Lukáš Beran, 8/8 G Benešov
Radim Janalík, 3/4 G Brno, Vídeňská

19 b.

19b.

17b.

16 b.

15 b.

13b.

13 b.

12b.

12 b.
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Kategorie С

Texty úloh

C - I - 1

Určete nejmenší přirozené číslo n, pro něž i čísla y/2n, л/Зп, \/5n jsou
(Jaroslav Švrček)přirozená.

С - I - 2

Čtyřúhelníku ABCD je vepsána kružnice se středem S. Určete rozdíl
\<ASD\ -\<CSD\, jestliže \<ASB\ -\<BSC\ = 40°.

(Jaromír Šimša)

C - I - 3

Máme určitý počet krabiček a určitý počet kuliček. Dáme-li do každé
krabičky právě jednu kuličku, zbyde nám n kuliček. Když však dáme
právě n krabiček stranou, můžeme všechny kuličky rozmístit tak, aby
jich v každé zbývající krabičce bylo právě n. Kolik máme krabiček a kolik
kuliček? (Vojtech Bálint)

С - I - 4
2V2

Tangram je skládačka, kterou lze vyrobit z pa-

píru rozřezáním vystřiženého čtverce na sedm
dílů podle čar vyznačených na obrázku. Před-
pokládejme, že délka strany čtverce je 2л/2ст.
Rozhodněte, zda lze z dílů tangramu složit:
a) obdélník 2cm x 4cm,
b) obdélník \/2cm x 4л/2ст.

V2

л/2

y/2 \pí(Pavel Leischner)
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С - I - 5

Ve skupině n lidí (n ^ 4) se někteří znají. Vztah „znát se“ je vzájemný:
jestliže osoba A zná osobu В, pak také В zná A a nazýváme je dvojicí
známých.a)Jestliže mezi každými čtyřmi osobami jsou aspoň čtyři dvojice zná-

mých, pak každé dvě osoby, které se neznají, mají společného známé-
ho. Dokažte.

b) Zjistěte, pro která n ^ 4 existuje skupina osob, v níž jsou mezi kaž-
dými čtyřmi osobami aspoň tři dvojice známých a současně se některé
dvě osoby neznají ani nemají společného známého.

c) Rozhodněte, zda ve skupině šesti osob mohou být v každé čtveřici
právě tři dvojice známých a právě tři dvojice neznámých.

(Ján Mazák)

C - I - 6

Klárka měla na papíru napsáno trojmístné číslo. Když ho správně vyná-
sobila devíti, dostala čtyřmístné číslo, jež začínalo touž číslicí jako číslo
původní, prostřední dvě číslice se rovnaly a poslední číslice byla součtem
číslic původního čísla. Které čtyřmístné číslo mohla Klárka dostat?

(Peter Novotný)

C - S - 1

Najděte všechny dvojice přirozených čísel a, b větších než 1 tak, aby
jejich součet i součin byly mocniny prvočísel (s kladnými celočíselnými
mocniteli). (Ján Mazák)

C-S-2

V daném rovnoběžníku ABCD je bod E střed strany ВС a bod F leží
uvnitř strany AB. Obsah trojúhelníku AFD je 15 cm2 a obsah trojúhel-
niku FBE je 14 cm2. Určete obsah čtyřúhelníku FECD.

(Peter Novotný)

C - S - 3

Ve skupině šesti lidí existuje právě 11 dvojic známých. Vztah „znát se“
je vzájemný, tzn. jestliže osoba A zná osobu Б, pak také В zná A. Pokud
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se kdokoli ze skupiny dozví nějakou zprávu, řekne ji všem svým známým.
Dokažte, že se tímto způsobem zprávu dozví nakonec všichni.

(Vojtech Bálint)

C - II - 1

Trojúhelník ABC splňuje při obvyklém značení délek stran podmínku
a "zL b ú c. Vepsaná kružnice se dotýká stran AB, ВС a AC po řadě
v bodech K, L a M. Dokažte, že z úseček AK, BL a CM lze sestrojit
trojúhelník, právě když platí b + с < 3a. (Jaroslav Švrček)

С - II - 2

Klárka udělala chybu při písemném násobení dvou dvojmístných čísel,
a tak jí vyšlo číslo o 400 menší, než byl správný výsledek. Pro kontrolu
vydělila číslo, které dostala, menším z násobených čísel. Tentokrát počí-
tala správně a vyšel jí neúplný podíl 67 a zbytek 56. Která čísla Klárka

(Jaromír Šimša)násobila?

C - II - 3

Dokažte, že pokud ve skupině šesti osob existuje aspoň deset dvojic zná-
mých, pak v ní lze nalézt tři osoby, které se znají navzájem. Vztah „znát
se“ je vzájemný, tzn. jestliže osoba A zná osobu B, pak také В zná A.
Ukažte, že taková trojice existovat nemusí, jestliže ve skupině šesti osob
je méně než deset dvojic známých. (Vojtech Bálint)

С - II - 4

Najděte všechny trojice celých čísel x, y, z, pro něž platí

x + ул/3 + zy/l = у + zyfb + xy/l.

(Ján Mazák)
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Řešení úloh

C - I - 1

Vysvětlíme, proč prvočíselný rozklad hledaného čísla musí obsahovat jen
vhodné mocniny prvočísel 2, 3 a 5. Každé případné další prvočíslo by se
v rozkladu čísla n muselo vyskytovat v mocnině, jejíž mocnitel je dělitelný
dvěma, třemi i pěti zároveň (viz návodnou úlohu 1). Po vyškrtnutí tako-
vého prvočísla by se číslo n zmenšilo a zkoumané odmocniny by přitom
zůstaly celočíselné.

Položme proto n — 2a365c, kde a, b, c jsou přirozená čísla. Čísla {/3n
a \/5n jsou celá, proto je exponent a násobkem tří a pěti. Také y/2n je celé
číslo, proto musí být číslo a liché. Je tedy lichým násobkem patnácti: a e
£ {15,45,75,...}. Analogicky je mocnitel b takový násobek deseti, který
při dělení třemi dává zbytek 2: b 6 {20,50,80,...}. Číslo c je pak tím
násobkem šesti, který při dělení pěti dává zbytek 4: c € {24, 54,84,...}.
Z podmínky, že n je nejmenší, nakonec plyne n = 215320524.

Přesvědčíme se ještě, že dané odmocniny jsou přirozená čísla:

y/2n = 28310512 {/3n = 253758, \/5n = 233255.

Závěr: n = 215320524.

С - I - 2

Paty kolmic ze středu S vepsané kružnice ke stranám AB, BC, CD
a DA označme po řadě písmeny К, L, M a N (obr. 1). Pravoúhlé troj-

D
N

A

a

Ma J
P P C

К L

В

Obr. 1
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úhelníky ASK a ASN jsou shodné podle věty Ssu. Mají totiž společnou
přeponu AS a shodné odvěsny SK a SX, jejichž délka je rovna polo-
měru vepsané kružnice. Ze shodnosti těchto trojúhelníků plyne jednak
známé tvrzení o délkách tečen (|Aiý| = |AiV|), jednak shodnost úhlů
ASК a ASN, jejichž společnou velikost označíme a:

\<ASK\ = \<ASN\ = a.

Analogicky zjistíme shodnost trojúhelníků SBK a SBL, dále pak
SCL a SCM, nakonec SDM a SDN. Na základě uvedených shodností
zjistíme, že lze položit

\<BSK\ = \<BSL\ = /3, \<CSL\ = \<CSM\ = 7,

|<XSM| = \<DSN\ =8.

Odtud a z obr. 1 pak plyne

\<ASD\ - |<CSX| = (a + S) - (7 + 5) = a - 7 =

= (a + 0) - (7 + P) = \<ASB\ - \<BSC\ = 40°.

Závěr: |<ASX| - |<CSX| = 40°.

C - I - 3

Označíme-li x počet krabiček а у počet kuliček, vede zadání na soustavu
rovnic

(x - n) ■ n — у

s neznámými x, у a n z oboru přirozených čísel. Vyloučením neznámé у
dostaneme rovnici x + n = (x — n) ■ n, která nemá řešení pro n = 1. Pro
n > 2 dostaneme

(1)X + n = у a

n2 + n 2
— n + 2 +x =

n — 1 71 — 1

odkud vidíme, že (přirozené) číslo n — 1 musí být dělitelem čísla 2. Tedy
n G {2,3}. Přípustné hodnoty n dosadíme do (1) a soustavu vyřešíme
(lze též využít poslední vztah). Pro n = 2 dostaneme x = 6, у — 8 a pro
n = 3 určíme x = 6 а у = 9.

Zkouška: Mějme šest krabiček a osm kuliček. Když do každé krabičky
dáme právě jednu kuličku, zbyde n — 2 kuliček. Když však odebereme
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dvě krabičky, můžeme do zbývajících čtyř rozdělit kuličky právě po dvou.
Podmínky úlohy jsou tedy splněny. Pro šest krabiček a devět kuliček
provedeme zkoušku stejně snadno.

Závěr: Buď máme šest krabiček a osm kuliček, nebo šest krabiček
a devět kuliček.

С - I - 4

a) Obdélník složit lze (obr. 2).

b) Celková délka „iracionálních'4 stran všech dílů tangramu je
10\/2cm. Je tedy rovna obvodu obdélníku, který máme složit.

Pro celá nezáporná čísla a, 6, c, d platí, že Délku úsečky lze vyjádřit
ve tvaru a + by/2 a současně ve tvaru c + dy/2, právě když a — c a b — d.
Rovnost a + by/2 = c + dy/2 je totiž ekvivalentní se vztahem a — c =
— (d — b)y/2, jehož levá strana je celé číslo, zatímco pravá strana je pro
d / b iracionální. Rovnost nastává, jen když platí a = c a b = d.

Vidíme tedy, že všechny „iracionální" strany dílů tangramu musejí
být umístěny na hranici skládaného obdélníku. To však není možné, ne-
bot protilehlé „iracionální" strany kosodélníkového dílu mají vzdálenost
menší než 1 cm, kdežto nejmenší vzdálenost protilehlých stran obdélníku
je y/2cm.

Závěr: Obdélník 2 cm x 4 cm lze z tangramu složit, ale obdélník
y/2 cm x 4\/2 cm složit nelze.

С - I - 5

a) Označme А, В dvě osoby, jež se neznají, a přidejme к nim libovolné
další dvě osoby X a Y. Kdyby ani osoba X, ani osoba Y nebyla společným
známým osob A a B, měli bychom ze všech šesti dvojic ve čtveřici ABXY
aspoň tři dvojice neznámých: dvojici AB, dvojici AX nebo BX a dvojici
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AY nebo BY. Dvojice známých ve čtveřici ABXY by tak byly nejvýše
tři, což odporuje předpokladu ze zadání části a). Tím je část a) dokázána.

b) Skupina požadovaných vlastností existuje pro všechna n ^ 4. Jako
příklad stačí zvolit skupinu, v níž se osoba A nezná s nikým a ostatní
se znají navzájem. Pak existuje dokonce n — 1 dvojic osob, které se ani
neznají, ani nemají společného známého, a mezi každými čtyřmi osobami
jsou aspoň tři dvojice známých.

c) Budeme předpokládat, že šestice osob s popsanou vlastností existu-
je. Využijeme grafických znázornění, v nichž osoby zakreslíme jako body.
Plnou (resp. čárkovanou) úsečkou, kterou některé dva z těchto bodů spo-
jíme, vyznačíme dvojici známých (resp. dvojici neznámých).

Z každého bodu grafického znázornění skupiny šesti osob vychází
právě pět úseček. Podle Dirichletova principu jsou proto aspoň tři úseč-
ky, jež vycházejí z téhož bodu, stejného typu (jsou buď čárkované, nebo
plné). Označme body А, В, C, D, E a F tak, aby byly téhož typu úsečky
AB, АС a AD, a předpokládejme nejprve, že označují dvojice známých.
Ve čtveřici ABCD jsou však podle předpokladu právě tři dvojice ne-

známých, a proto je trojúhelník BCD v grafickém znázornění zakreslen
čárkovaně. Ve čtveřici BCDE pak úsečky EB, EC, ED nutně představují
dvojice známých (obr. 3). Odtud plyne, že ve čtveřici ABDE jsou aspoň
čtyři dvojice známých, které na obr. 3 znázorňují úsečky AB, AD, EB
a ED, což odporuje našemu předpokladu. Případ, kdy úsečky AB, AC
a AD představují dvojice neznámých, vede ke sporu analogicky (v před-
chozích úvahách stačí zaměnit vztahy znát se a neznát se a samozřejmě
i čárkované a nečárkované úsečky).

E D

F

Závěr části c)\ Neexistuje skupina šesti osob, která má v každé své
čtveřici právě tři dvojice známých a právě tři dvojice neznámých.
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С - I - 6

Hledejme původní číslo x = 100a +106 + c, jehož číslice jsou a, 6, c. Čísli-
ci, která se vyskytuje na prostředních dvou místech výsledného součinu,
označme d. Ze zadání plyne:

9(100a -f- 106 -)- c) — 1 000a -f- 100d -{-10d -j- (a -f- 6 -4- c), (1)

přičemž výraz v poslední závorce představuje číslici shodnou s poslední
číslicí součinu 9c. To ovšem znamená, že nemůže být c ^ 5: pro takové c
totiž končí číslo 9c číslicí nepřevyšující 5, a protože a / 0, platí naopak
a + 6 + c>c^5.

Také zřejmě je с ^ 0 (v opačném případě by platilo a — b — c — x —

= 0). Ostatní možnosti vyšetříme sestavením následující tabulky.

a + b + c a + 69cc

1 9 9 8

2 18 8 6

27 73 4

4 36 6 2

Tabulka 1

Rovnost (1) lze přepsat na tvar

100(6 - a - d) = lOd + a + 116 - 8c. (2)

Hodnota pravé strany je aspoň —72 a menší než 200, neboť každé z čísel a,

6, c, d je nejvýše rovno devíti. Je tedy buď b — a — d = 0, nebo b — a — d = 1.
V prvním případě po substituci d = 6 — a upravíme vztah (2) na tvar

8c = 3(76 —3a), z nějž vidíme, že c je násobkem tří. Z tabulky 1 pak plyne
c = 3,a = 4 — 6, což po dosazení do rovnice 8c = 3(76 — 3a) vede к řešení
a = 6 = 2, c = 3. Původní číslo je tedy x = 223 a jeho devítinásobek
9x - 2 007.

Ve druhém případě dosadíme d = 6 — a — 1 do (2) a zjistíme, že
8c + 110 = 3(76 — 3a). Výraz 8c-f 110 je tudíž dělitelný třemi, proto číslo
c dává při dělení třemi zbytek 2. Dosazením jediných možných hodnot
c = 2a6 = 6- ado poslední rovnice zjistíme, že a = 0, což odporuje
tomu, že číslo x = 100a + 106 + c je trojmístné.

Závěr: Klárka obdržela čtyřmístné číslo 2 007.
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Poznámka. Tabulka 1 nabízí jednodušší, ale numericky pracnější po-

stup přímého dosazování všech přípustných hodnot čísel a, b, c do rov-
nice (1). Počet všech možností lze omezit na deset odhadem 6 ^ a, který
zjistíme pomocí vhodné úpravy vztahu (1)
ftešení uvádíme v tabulce 2.

například na tvar (2).

2 3 2 3 2 11 4 1 1a

b 7 6 5 4 5 4 3 3 2 1

21 1 1 1 2 2 3 3 4c

2178 11979x 1539 2 349 3159 3 969 2 0071368 2 988 1026

Tabulka 2

C - S - 1

Z podmínky pro součin plyne, že a i b jsou mocninami téhož prvočísla p:
a — pr, b — ps, kde r, s jsou celá kladná čísla. Kdyby bylo p liché, byl by
součet a + b dělitelný kromě čísla p i číslem 2, takže by nebyl mocninou
prvočísla. Je-li p — 2 a r < s, je součet a + b = 2r(l + 25_r) opět číslo
sudé dělitelné lichým číslem větším než 1, není tudíž mocninou prvočísla.
Analogicky dojdeme ke stejnému závěru i v případě, kdy r > s. Zbývá
proto jediná možnost: a = b — 2r, kde r je celé kladné číslo. Zkouška
a + b — 2r + 2r = 2r+1 a ab = 22r potvrzuje, že řešením jsou všechny
dvojice (a, b) = (2r,2r), kde r je celé kladné číslo.

C - S - 2

Označme v vzdálenost bodu C od přímky AB, a — \AB\ a x = \AF\.
Pro obsahy trojúhelníků AFD a FBE (obr. 4) platí: Safd = •
= 15, Sfbe = f (a — x) • = 14. Odtud xv — 30, av — xv — 56.

v —

D C

v

A

Obr. 4
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Sečtením obou rovnic nalezneme obsah rovnoběžníku ABCD: Sabcd —

= av = 86 cm2. Obsah čtyřúhelníku FECD je tedy Sfecd — Sabcd —
— (Safd + Sfbe) = 57 cm2.

Jiné řešení. Trojúhelníky BEF a ECF mají stejnou výšku z vr-
cholu F a shodné základny BE а ЕС. Proto jsou obsahy obou trojúhel-
níků stejné. Z obr. 5 vidíme, že obsah trojúhelníku CDF je polovinou

CD

Si + 2S2
s2 Je

Sx
S2

A F В

Obr. 5

obsahu rovnoběžníku ABCD (oba útvary mají společnou základnu CD
a stejnou výšku), druhou polovinu tvoří součet obsahů trojúhelníků AFD
a BCF. Odtud Sfecd — Secf + Scdf — Secf + (Safd + Sbcf) —

= Safd + 3Sfbe = 57 cm2.
Jiné řešení. Do rovnoběžníku přikreslíme úsečky FG a EH rovno-

běžné se stranami ВС a AB tak, jak znázorňuje obr. 6. Rovnoběžníky

D G C

S2

E

F ВA

Obr. 6

AFGD a FBEH jsou svými úhlopříčkami DF a EF rozděleny na

dvojice shodných trojúhelníků. Je tedy Sqdf
a Shfe — Sbef = 14cm2. Ze shodnosti rovnoběžníků HECG a FBEH
navíc snadno nahlédneme, že všechny čtyři trojúhelníky FBE, EHF,
HEC a CGH jsou shodné, takže obsah čtyřúhelníku FECD je Safd +
+ 3Sfbe = 57 cm2.

Safd — 15 cm2
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С - S - 3

Jednotlivé osoby označíme písmeny А, В, C, D, E a F. Aspoň jedna
z nich (označme ji A) má aspoň čtyři známé (pokud by měla každá osoba
nejvýše tři známé, bylo by známých dvojic méně než deset). Kdyby měla
dokonce pět známých, dozví se zprávu od každého ve skupině a může ji
komukoli ve skupině sdělit.

Pokud má osoba A právě čtyři známé, například osoby В, C, D a E,
existuje ve skupině osob A, В, C, D, E nejvýše 10 známostí (obr. 7, dvo-
jice známých znázorňují úsečky), a tak se osoba F musí znát s některou
osobou X E {5, C, D, E}. Možnost šíření zprávy od libovolné osoby ke
kterékoli jiné snadno ověříme podle obr. 8.

Jiné řešení. Znázornění kterékoli množiny právě jedenácti dvojic zná-
mých ve skupině šesti osob obdržíme odstraněním čtyř z patnácti hran
úplného grafu (obr. 9, v něm z každého uzlu vychází právě pět hran). Po
odstranění pouze čtyř hran z grafu na obr. 9 musí tedy z každého vrcholu
vycházet aspoň jedna hrana. Ve skupině tedy neexistuje člověk, který by

nikoho neznal. Aby se proto zpráva nemohla od některé z osob rozšířit ke
všem ostatním, musela by v příslušném grafu existovat buď aspoň jedna
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oddělená dvojice, nebo dvě oddělené trojice, v nichž se osoby znají na-

vzájem. V žádné z těchto situací však počet dvojic známých nepřevyšuje
sedm, jak vidíme z obr. 10. Tím je tvrzení úlohy dokázáno.

Obr. 10

C - II - 1

\AM\, у = \BL\ = \BK\, z = \CM\ = \CL\Označme x = \AK\
(obr. 11) shodné úseky tečen z jednotlivých vrcholů trojúhelníku к ve-

A К Вx У

Obr. 11

psané kružnici. Zřejmě platí:

(1)a = у + z, b = z + x, c — x + y.

Z uvedených rovností vidíme, že daná podmínka

(2)b + с < 3a

je ekvivalentní nerovnosti
(3)x < у + 2,
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což je nutná podmínka existence trojúhelníku se stranami délek x, у a z.
Dosazením z (1) do podmínek b ^ с а а й b zjistíme, že 2 ^ у а у ^ x.

To znamená, že další dvě trojúhelníkové nerovnosti у < z + x & z < x + y

jsou automaticky splněny, takže nerovnost (3), a tím i (2) je podmínkou
postačující. Tím je tvrzení úlohy dokázáno.

С - II - 2

Označme x menší а у větší z násobených čísel. Podle zadání platí xy —
— 400 = 67a; + 56, neboli

x(y — 67) == 456. (1)

Číslo x je tedy dvojmístný dělitel čísla 456 = 23 • 3 ■ 19. Ze zadání navíc
plyne, že číslo x je větší než příslušný zbytek 56. Nejmenší takové x je
x — 3 • 19 = 57. Pro každý další takový dělitel platí x ^ 4 • 19 = 76
at/ - 67 2 • 3 = 6, takže у ^ 73 < x, což odporuje zvolenému označení
x < y. Je tedy x = 57 а у = 75. Snadno ověříme, že tato čísla vyhovují
zadání úlohy.

Závěr. Klárka násobila čísla 57 a 75.

C - II - 3

Nazvěme A osobu (případně jednu z osob), která má v dané skupině
nejvíce známých, a tento počet známých označme n. Zřejmě je n ^ 5.

Je-li n = 5, existuje mezi zbývajícími osobami aspoň pět dalších dvojic
známých. Kterákoliv z těchto dvojic pak tvoří s osobou A trojici známých.

Je-li n = 4, existuje osoba B, která se s Л nezná, a ta má rovněž
nejvýše čtyři známé. Proto se mezi známými osoby A vyskytují aspoň
dvě dvojice známých. Osoba A s jednou z těchto dvojic tvoří opět trojici
známých.

Situace n ú 3 nemůže nastat, protože celkový počet dvojic známých
ve skupině je pak nejvýše J • 6n ^ 9.

Příklad skupiny šesti osob s devíti dvojicemi, ale s žádnou trojicí
známých je znázorněn grafem na obr. 12. V něm body А, В, C, D, E a F
představují jednotlivé osoby a dvojice známých jsou vyznačeny úsečka-
mi. Přitom žádné tři z úseček netvoří trojúhelník. Pokud je ve skupině
méně než devět dvojic známých, sestrojíme vhodný příklad odstraněním
příslušného počtu úseček z obr. 12 (přitom určitě žádný trojúhelník ne-

vznikne).
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Jiné řešení. Je-li v šestici osob aspoň 10 dvojic známých, je v ní nej-
výše 5 dvojic neznámých, neboť všech dvojic je právě 15. Budeme proto
naopak předpokládat, že se v každé trojici najde dvojice neznámých, a do-
kážeme, že v celé šestici je takových dvojic alespoň 6. Za uvedeného před-
pokladu můžeme označení osob zvolit tak, aby v trojicích ABC a DEF
byly dvojice neznámých AB a DE. Pak další čtyři různé dvojice nezná-
mých najdeme (po jedné) v trojicích ACD, AEF, BCE, BDF (každá
dvojice se vyskytuje nejvýše v jedné z uvedených čtyř trojic a žádná
z těchto trojic neobsahuje ani dvojici AB, ani dvojici DE\ jinými slovy
(obr. 13) libovolné dva z uvedených trojúhelníků mají společný nejvýše
jeden vrchol, tedy žádnou stranu).

Příklad pro menší počet dvojic známých sestrojíme stejně jako v před-
chozím řešení.

С - II - 4

Rovnici přepíšeme na tvar

x — y — (z - y)V3 + (ж - z)V7

a umocníme. Po jednoduché úpravě dostaneme

z)2 = 2(ж — z) (z — y)V21.(ж - у)2 - 3(z - у)2 - 7(ж (1)

Pro ж ф z а у 2 nemůže rovnost (1) platit, protože její pravá strana
je v takovém případě číslo iracionální, kdežto levá je číslo celé. Rovnost
tedy může nastat, jen když ж = z nebo у = z.
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V prvním případě po dosazení x = z do původní rovnice dostaneme
z — У — \/3(z — у). Odtud z — у — x.

Ve druhém případě, kdy у — z, dojdeme analogicky к témuž výsledku.
Závěr. Řešením dané rovnice jsou všechny trojice (x, y, z) = (к, к, к),

kde к je libovolné celé číslo.
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Kategorie В

Texty úloh

В - I - 1

Najděte všechna přirozená čísla /с, pro něž je zápis čísla Qk • 72007 k v de-
sítkové soustavě zakončen dvojčíslím a) 02; b) 04. (Eva Řídká)

В - I - 2

V pásu mezi rovnoběžkami p, q jsou dány dva různé body M a N. Se-
strojte kosočtverec nebo čtverec, jehož dvě protější strany leží na přím-
kách рада body M а N leží po jednom na zbývajících dvou stranách.

(Jaromír Šimša)

В - I - 3

Jsou-li ха у reálná čísla, pro něž platí x3 + p3 2, potom x + у Sí 2.
Dokažte. (Ján Mazák)

В - I - 4

Najděte všechny pravoúhlé trojúhelníky s délkami stran a, b, c a délkami
těžnic ta, tb, tc, pro něž platí a + ta = b + h- Uvažujte oba případy, kdy
AB je a) přepona, b) odvěsna. (Pavel Novotný)

В - I - 5

Určete všechny dvojice a, b reálných čísel, pro něž má každá z kvadratic-
kých rovnic

ax2 + 2bx + 1 = 0, bx2 + 2ax + 1 = 0

dva různé reálné kořeny, přičemž právě jeden z nich je oběma rovnicím
(Jaroslav Švrček)společný.
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В - I - 6

Obdélník 2 005 x 2 007 je rozdělen na černé a bílé jednotkové čtverečky.
Dokažte, že pak pro jednu z barev (černou nebo bílou) existuje více než
95 800 pravoúhelníků (složených z jednotkových čtverečků), jež se navzá-
jem nepřekrývají a jejichž rohová políčka mají vesměs zvolenou barvu,
přičemž každá z jejich stran obsahuje aspoň dva čtverečky.

(Pavel Leischner)

В - S - 1

Jestliže libovolné prvočíslo vydělíme třiceti, bude zbytkem číslo 1 nebo
prvočíslo. Dokažte. (Vojtech Bálint)

В - S - 2

Určete všechny dvojice (a, b) reálných čísel, pro něž mají rovnice

x2 + (3a + b)x -f 4a = 0, x2 + (3b + a)x + 46 = 0

(,Jaroslav Švrček)společný reálný kořen.

В - S - 3

V rovině jsou dány dvě rovnoběžky p a q, bod A na přímce p a bod M
ležící uvnitř pásu mezi přímkami p &q. Sestrojte kosočtverec nebo čtverec
ABCD tak, aby strana AB ležela na přímce p, strana CD na přímce q
a aby úhlopříčka BD procházela bodem M. (Jaromír Simša)

В - II - 1

Uvažujme dvě kvadratické rovnice

x2 — ax — b = 0, x2 — bx — a — 0

s reálnými parametry a, b. Zjistěte, jaké nejmenší a jaké největší hodnoty
může nabývat součet a + b, existuje-li právě jedno reálné číslo x, které
současně vyhovuje oběma rovnicím. Určete dále všechny dvojice (a, b)
reálných parametrů, pro něž uvažovaný součet těchto hodnot nabývá.

(Jaroslav Švrček)
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В - II - 2

V trojúhelníku ABC má úhel a velikost 20°. Vypočítejte velikosti úhlů
/3 a 7, platí-li rovnost a + 2va = b + 2гv (Pavel Novotný)

В - II - 3

V rovině je dán rovnoběžník ABCD, jehož úhlopříčka BD je kolmá ke
straně AD. Označme M (M ф A) průsečík přímky AC s kružnicí o prů-
měru AD. Dokažte, že osa úsečky BM prochází středem strany CD.

(Jaroslav Švrček)

В - II - 4

Hokejový turnaj se hraje systémem „každý s každým“. V průběhu turnaje
se každá dvojice družstev střetne právě jednou. Turnaj se odehrává po

jednotlivých kolech. Při sudém počtu družstev sehraje každé v jednom
kole jeden zápas, při lichém počtu má v každém kole jedno z družstev
volno. Za remízu dostane každý ze soupeřů po jednom bodu. Pokud zápas
neskončí remízou, dostane vítěz dva body, poražený nezíská žádný bod.
O pořadí v tabulce rozhoduje především počet bodů, při rovnosti bodů
pak skóre. Po odehrání několika kol neměla žádná dvojice družstev stejný
počet bodů. Dokažte, že v tom případě už poslední v tabulce ztratil naději
na celkové vítězství. Úlohu řešte pro turnaj
a) deseti družstev,
b) jedenácti družstev. (Martin Panák)

48



Řešení úloh

В - I - 1

Opakovaným násobením číslem 6 zjistíme, že poslední dvojčíslí mocnin
6fc pro к = 1, 2,3,... jsou postupně

(1)06,36,16,96, 76, 56,36,16,96, 76, 56,...

opakují se tedy od druhého členu s periodou délky 5. Podobně opakova-
ným násobením číslem 7 zjistíme, že poslední dvojčíslí mocnin 7m pro
m — 1, 2,3,... jsou postupně

(2)07,49,43,01,07,49,43,01,.. • )

opakují se tedy již od prvního členu s periodou délky 4.
a) Protože každá mocnina šesti je zakončena číslicí 6, bude číslo 6fc •

• 72007~fc zakončeno dvojkou, jedině když bude číslo 72007_fc zakončeno
dvojčíslím 07 (jiné dvojčíslí z (2) nevyhovuje). Násobením čísly 6, 36,
16, 96, 76 a 56 ovšem zjistíme, že číslo 6k ■ 72007~k může mít v takovém
případě na předposledním místě jen některou z číslic 1, 3, 4, 5, 7, 9.
Zakončení dvojčíslím 02 proto není možné.

b) Protože každá mocnina šesti je zakončena číslicí 6, bude číslo
6k • 72007“fc zakončeno čtyřkou, právě když 72007~k bude zakončeno dvoj-
číslím 49 (jiné dvojčíslí z (2) nevyhovuje). Násobením všemi různými
čísly z (1) zjistíme, že 6k ■ 72007~k je zakončeno dvojčíslím 04, jedině když
6fc končí dvojčíslím 96. Číslo Qk končí na 96, právě když je mocnitel к
tvaru к — 4 +5a; číslo 72007-fc končí na 49, právě když příslušný mocnitel
má tvar 2 007 — к — 2 + 46. Dosazením к = 4 + 5a dostaneme rovnici
2 007 — 4 — 5a = 2 + 46, kde a a b jsou celá nezáporná čísla. Z ní vychází

2 001 - 5a a — 1
b = = 500 — a —

4 4

Aby bylo b celé, musí být a — 1 dělitelné čtyřmi, tedy a = 4c + 1; potom
b = 499 — 5c, к = 9 + 20c. Mocnitel 2 007 — к rovný 1 998 — 20c nemůže
být záporný, proto c ^ 99.

Číslo 6k ■ 72007~k je zakončeno dvojčíslím 04, právě když je číslo к
tvaru к = 9 + 20c, kde с E {0,1, 2,..., 99}.

Poznámka. Rovnice tvaru ax + by — c, kde a, 6, c jsou daná celá čísla
a x, у celočíselné neznámé, se nazývá lineární diofantická rovnice o dvou
neznámých.
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В - I - 2

V kosočtverci (čtverci) jsou vzdálenosti protilehlých stran stejné. Naším
úkolem je tedy vést body M a N rovnoběžky, jejichž vzdálenost je rovna
vzdálenosti d rovnoběžek p a q. Pata P kolmice z bodu M ke straně
hledaného kosočtverce procházející bodem N leží na Thaletově kružnici
nad průměrem MN a má od bodu M vzdálenost d (obr. 14). Odtud plyne
konstrukce:

\

Obr. 14

Sestrojíme Thaletovu kružnici к nad průměrem MN a kružnici l se
středem M, jejíž poloměr je roven vzdálenosti d přímek p a q. Označíme
P průsečík kružnic к a l. Na přímce PN leží jedna ze stran hledaného
(koso)čtverce. Protilehlá strana prochází bodem M a je s přímkou PN
rovnoběžná.

Vzniklý rovnoběžník je skutečně kosočtverec nebo čtverec, neboť ze
shodnosti výšek vyplývá shodnost stran.

Diskuse: Existence řešení je podmíněna existencí bodu P. Zřejmě pak
nemůže být NP || q, protože by to znamenalo, že je \MP\ < d, takže rov-
noběžky procházející body M, N vždy vytnou požadovaný rovnoběžník.
Je-li \MN\ > d, mají kružnice к a l dva různé průsečíky P\ ф P2 (obr. 15),
takže úloha má dvě řešení. Je-li \MN\ — oř, potom P = iV; stranu koso-
čtverce procházející bodem N sestrojíme jako kolmici na MN a úloha
má jen jedno řešení. V případě \MN\ < d nemá úloha řešení.

В - I - 3

Tvrzení dokážeme sporem. Připusťme, že platí x+y > 2. Potom у > 2—x,
takže у3 > (2 — x)3, neboť funkce s — t3 je v proměnné t rostoucí v celém
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oboru reálných čísel. Proto platí

x3 + y3 > x3 + (2 - x)3 = 8 - 12a; + 6x2 = 6{x -l)2 +2^2.

To je ve sporu s předpokladem. Tím je tvrzení dokázáno.

Jiné řešení. Dvojčlen x3 + y3 rozložíme na součin (x + y)(x2 —xy + y2).
Kdyby platilo x + у > 2, pak bychom pro druhý činitel x2 — xy + y2 měli
odhad

x2 - xy + y2 = i (a; + y)2 + 5(x - y)2 > 1.

Pro výraz x3 + y3 by pak platilo

x3 + y3 = (x + y){x2 — xy + y2) > 2 ■ 1 = 2.

To je opět ve sporu s předpokladem. Tím je tvrzení dokázáno.

В - I - 4

a) Nechť a i b jsou odvěsny (obr. 16). Potom podle Pythagorovy věty

A

\b

I6
В \a i

2a

Obr. 16
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platí

hta

takže podmínka a + ta = b + tb má tvar

a +

Protože z nerovnosti a > b vyplývá (viz závěrečnou poznámku) tb > ta
jsou následující úpravy ekvivalentní:

2a — 2b — у/4a2 + b2 — у/4b2 + a2,
4a2 — 8ab + 4b2 = 5a2 + 5b2 — 2 yj (4a2 + b2)(4b2 + a2)

2\/4a4 + 17a262 + 4b4 = a2 + 8ab + b2,
16a4 + 68a262 + 16b4 = a4 + 16a3b + 66a262 + 16ab3 + b4,

15a4 — 16a3b + 2 a2b2 — 16ab3 + 15b4 = 0.

Mnohočlen na levé straně poslední rovnice je zřejmě dělitelný dvoj-
členem a — b (pro a = b je totiž roven nule). Dělením zjistíme, že výsledný
mnohočlen třetího stupně má opět stejnou vlastnost, takže po opakova-
něm dělení převedeme zkoumanou rovnici do součinového tvaru

(a — b)2(15a2 + 14ab + 15b2) = 0.

Poslední rovnost platí, právě když a = b, protože 15a2 + 14ab + 15b2 > 0
pro každou dvojici reálných čísel a, b.

V případě a) můžeme postupovat i následovně: Odečtením rovností

dostaneme

t\~t\ = ^(b2 - a2).
Na obou stranách poslední rovnice jsou rozdíly druhých mocnin. Pře-
vedeme je na součiny a pak využijeme danou rovnost a + ta — b + tb
upravenou do tvaru ta — tb — b — a:

3
(ta ~ tb)(ta + tb) = ~(b - a)(b + a),

3
(b - a)(ta + tb) = -(b - a)(a + b).
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Kdyby bylo а ф b, vyjde ta + tb = |(a + b); to spolu s rovností
ta — tb — b — a dává ta — — |a, tedy ía < 6, což odporuje tomu, že ta
je přepona a b odvěsna téhož pravoúhlého trojúhelníku (obr. 16). Proto
musí platit rovnost a — b.

b) Nechť např. a je přepona (je-li přepona b, stačí strany a, b v ná-
sledujícím textu navzájem vyměnit). Potom z Thaletovy a Pythagorovy
věty plyne

tb =ta ~
2

a rovnost ze zadání má tedy tvar

>i=b+f^W
Protože přepona a je delší než odvěsna b, tedy a > b, jsou následující
úpravy ekvivalentní:

3a - 2b = \]4a2 - 362,
9a2 — 12ab + 4b2 = 4a2 — 362,
5a2 - 12ab + 7b2 = 0,

(a — 6) (5a — 7b) = 0,
5a - 7b = 0.

Závěr: Rovnost a + ta = b + tb platí pro pravoúhlé rovnoramenné
trojúhelníky s odvěsnami a — b a pro pravoúhlé trojúhelníky, které mají
strany v poměru 5 : \/24 : 7, a přitom nejkratší z nich je (třetí) strana c.

Poznámka. Těžnice obecného trojúhelníku (ať je pravoúhlý či nikoliv)
mají stejnou vlastnost jako jeho výšky: ke kratší straně směřuje delší
těžnice. Odtud plyne, že rovnost a + 4 = b + ta platí, právě když a — b.
[Nerovnosti mezi stranami a, b a mezi částmi těžnic |ta, |íf, porovnáme
na základě toho, že vrchol C i těžiště T trojúhelníku ABC leží ve stejné
polorovině vyťaté osou strany AB.}

В - I - 5

Ze zadání vyplývá, že a 7^ 0, b 7^ 0 (rovnice by nebyly kvadratické)
a a 7^ b (rovnice by byly totožné, a pokud by měly dva reálné kořeny,
byly by oba společné).
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Označme xq společný kořen obou rovnic, takže

axg + 26xq + 1 = 0, bx% + 2axg + 1 = 0.

Odečtením obou rovnic dostaneme

(a - 6)(x§ - 2x0) xq (a — b)(xo — 2) = 0.

Protože а ф b а 0 zřejmě kořenem daných rovnic není, musí být společným
kořenem číslo xo = 2. Dosazením do daných rovnic tak dostaneme jedinou
podmínku 4a + 46 + 1 = 0, neboli

1

4

Diskriminant druhé z daných rovnic je pak 4a2 — 4b — 4a2 + 4a +
+ 1 = (2a + l)2, takže rovnice má dva různé reálné kořeny pro libovolné
а ф — Podobně diskriminant první z daných rovnic je 462 — 4a =
= 462 + 46+1 = (26 + l)2. Rovnice má tedy dva různé reálné kořeny pro
libovolné 6 ф — | neboli а ф

Z uvedených předpokladů však zároveň plyne, že musí být а ф — |
^ (a Ф b).(b Ф 0) a a

|), kde a £ IR \ { —
_ iZávěr\ Vyhovují všechny dvojice (a, —a

i)-
•i ’

В - I - 6

Budeme hledat obdélník co nejmenšího obsahu, v němž musí být obsa-
žen pravoúhelník, který má všechna rohová políčka stejné barvy. Šířka 2
nestačí (při libovolné délce by například mohl být jeden celý řádek černý
a druhý bílý). Uvažujme tedy obdélník šířky 3. Jeho sloupce mohou být
obarveny osmi způsoby (obr. 17):

___

.

_

+ +.

1 2 3 4 5 6 7 8

Obr. 17

Je-li obdélník složen jen ze šesti sloupců 2 až 7, nemá žádný právo-
úhelník s rozměry většími než 1 v něm obsažený všechna rohová políčka
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téže barvy. Uvedených šest sloupců totiž představuje všechny možnosti,
jak obarvit sloupec složený ze tří políček dvěma barvami, aby nebyl jed-
nobarevný (jednobarevné jsou pak zbývající dva sloupce 1 a 8). Kdyby
v takovém obdélníku existoval pravoúhelník s rohovými políčky téže bar-
vy, byly by příslušné sloupce stejné.

Má-li však obdélník šířky 3 délku aspoň 7, jsou v něm buď dva stejné
sloupce, nebo v něm je některý z jednobarevných sloupců (1 a 8). V pří-
pádě dvou stejných sloupců je existence pravoúhelníku se stejně obarve-
nými rohovými políčky zřejmá. Nejsou-li žádné dva sloupce stejné, ale je
tam jednobarevný sloupec barvy A, musí v obdélníku být i sloupec, jehož
dvě políčka mají barvu A. Tento sloupec a jednobarevný sloupec barvy A
vymezují pravoúhelník, jehož všechna rohová políčka mají barvu A.

Daný obdélník 2 005 x 2 007 nyní rozdělíme na dvě části 2 002 x 2 007
a 3 x 2 007. Protože 2 002 = 7 • 286, 2 007 = 3 ■ 669, skládá se první
část z 286 • 669 nepřekrývajících se obdélníků 7 x 3. V druhé části
je ještě dalších 286 obdélníků 7x3. Obdélníků 7 x 3 je tedy celkem
286 • 669 + 286 = 286 • 670 = 191 620. V každém z nich je obsažen aspoň
jeden pravoúhelník, který má všechna rohová políčka stejné barvy. Pro
nejméně polovinu takto nalezených obdélníků, tedy pro alespoň 95 810 je
pak barva rohových polí stejná.

В - S - 1

Libovolné prvočíslo p lze napsat ve tvaru p — 30a + z, kde a je celé
nezáporné a z, 1 z ^ 29, je zbytek při dělení čísla p třiceti (je-li p
prvočíslo, můžeme nulový zbytek vyloučit).

Jestliže p je prvočíslo menší než 30, je zřejmě z = p také prvočíslo.
Předpokládejme tedy, že p je prvočíslo větší než 30, takže a ^ 1.

Připusťme, že zbytek z není ani číslo 1, ani prvočíslo, a označme q jeho
nejmenší prvočíselný dělitel. Zřejmě platí q2 ú z < 30 < 72, odkud q < 7
neboli q E {2,3,5}. Protože číslo 30 je dělitelné dvěma, třemi i pěti, je
dělitelné prvočíslem g, takže i číslo p = 30a + z je prvočíslem q dělitelné.
Nemůže to tudíž být prvočíslo.

Jiné řešení. Vyjádřeme číslo p ve tvaru p — 30a + z. Kdyby bylo
zbytkem z některé z čísel 0,4,6,8,10,12,14,16,18,20, 22, 24, 26, 28, bylo
by p sudé a přitom větší než 2, takže by nebylo prvočíslem. Kdyby bylo
zbytkem některé z čísel 9, 15, 21, 27, bylo by p dělitelné třemi a přitom
větší než 3 a nemohlo by být prvočíslem. Konečně při zbytku 25 by bylo
p dělitelné pěti a přitom větší než 5, takže ani pak by to nebylo prvočíslo.
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Stručněji řečeno: Protože každé složené číslo menší než 30 je soudělné
s 30, je zbytkem prvočísla p při dělení třiceti jednotka nebo prvočíslo.

В - S - 2

Je-li xq společný kořen obou rovnic, platí

xl + (3a + b)xo + 4a = 0, xjj + (36 + a)xo + 46 = 0.

Odečtením těchto rovností dostaneme (2a — 26)xg + 4(a — 6) = 0, což po
úpravě dává (a — 6)(xo + 2) = 0.

Rozebereme dvě možnosti:

Číslo xg = —2 je společným kořenem obou rovnic, dosazením do kte-
rékoli z nich dostaneme 4 — 2a — 26 = 0, tedy 6 = 2 — a. Pro takové 6
mají obě rovnice při libovolné hodnotě parametru a společný kořen —2.

Jestliže a = 6, mají obě dané rovnice stejný tvar x2 + 4ax + 4a =
= 0. Aspoň jeden kořen (samozřejmě společný) existuje, právě když je
diskriminant 16a2 — 16a nezáporný, tedy právě když a £ (0,1).

Závěr: Dané rovnice mají aspoň jeden společný kořen pro všechny
dvojice tvaru (a, 2 — a), kde a je libovolné, a pro všechny dvojice (a, a),
kde a ^ (0,1).

В - S - 3

Ze shodnosti trojúhelníků ABM a CBM (sus) vyplývá \CM\ = |AM|;
bod C proto musí ležet na kružnici se středem M a poloměrem \AM\
(obr. 18). Úhlopříčky (koso)čtverce jsou na sebe kolmé, proto body В
a D leží na kolmici vedené bodem M na přímku AC.

D C
■iF

q

й

A В V

Obr. 18

Konstrukce: Sestrojíme kružnici к se středem M a poloměrem |AM|.
Průsečík této kružnice s přímkou q je bod C. Bodem M vedeme kolmici
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na přímku AC. Její průsečíky s přímkami p a q jsou body В a D (obr. 19).
Sestrojený čtyřúhelník má zřejmě všechny požadované vlastnosti.

D2

A B\ B2V

Obr. 19

Diskuse: Je-li vzdálenost bodu M od přímky q větší než jeho vzdá-
lenost od bodu A, nemá kružnice к s přímkou q společný bod a úloha
nemá řešení.

Má-li bod M stejnou vzdálenost od přímky q jako od bodu A, má
kružnice к s přímkou q jediný společný bod C. Pokud zároveň bod M
neleží na ose pásu mezi rovnoběžkami p a q, není přímka AC kolmá
na p, proto kolmice vedená bodem M na přímku AC není s přímkou p
rovnoběžná a úloha má jedno řešení; pokud ale bod M leží na ose pásu
(je to tedy průsečík osy pásu s kolmicí к přímce p vedenou bodem A),
nemá úloha řešení.

Je-li vzdálenost bodu M od přímky q menší než jeho vzdálenost od
bodu A, protíná kružnice к přímku q ve dvou bodech. Pokud bod M leží
na ose pásu mezi rovnoběžkami p a q, leží jeden z průsečíků na kolmici
vedené bodem A na přímku p a úloha má jedno řešení; neleží-li M na
ose pásu, má úloha dvě řešení.

Jiné řešení. Průsečík S úhlopříček (koso)čtverce ABCD musí ležet
na ose pásu mezi rovnoběžkami pag.

Leží-li bod M na ose pásu, musí platit S = M; bod C je potom
průsečík přímek AS a q, В a D jsou průsečíky kolmice к přímce AC
vedené bodem M s přímkami p a q. Je-li přitom AM J_ p, nemá úloha
řešení, jinak má jedno řešení.

Neleží-li M na ose pásu, je úhel ASM pravý. Proto je bod S průsečí-
kem osy pásu s Thaletovou kružnicí nad průměrem AM. Body С, B, D
potom najdeme stejně jako v předchozím řešení. Podle počtu společných
bodů osy pásu a Thaletovy kružnice má potom úloha dvě řešení, jedno
řešení nebo nemá žádné řešení.
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Jiné řešení. Bod M leží na ose úhlu ADC, proto má od přímek AD
a q stejnou vzdálenost. Přímka AD je tedy tečnou kružnice, která má
střed M a dotýká se přímky q.

Konstrukce: Sestrojíme kružnici h se středem M, která se dotýká
přímky q. Vrchol D hledaného (koso)čtverce je průsečík přímky q s tečnou
kružnice h procházející bodem A. Body В aC potom už najdeme snadno.

Diskuse: Má-li bod M od bodu A menší vzdálenost než od přímky q,

neprochází bodem A žádná tečna kružnice h a úloha nemá řešení.
Má-li bod M od bodu A stejnou vzdálenost jako od přímky q, leží

bod A na kružnici h a prochází jím jedna tečna této kružnice. Pokud
přitom bod M leží na ose pásu mezi rovnoběžkami p a q, je touto tečnou
přímka p, která přímku q neprotíná, a úloha nemá řešení. Pokud ale
bod M na ose pásu neleží, tečna je s přímkou q různoběžná a úloha má
jedno řešení.

Má-li bod M od bodu A větší vzdálenost než od přímky q, existují
dvě tečny kružnice h procházející bodem A. Pokud přitom bod M leží
na ose pásu, je jednou z tečen přímka p a úloha má jedno řešení; pokud
bod M na ose pásu neleží, jsou obě tečny s q různoběžné a úloha má dvě
řešení.

В - II - 1

Odečtením obou daných rovnic dostaneme rovnost (b — a)x + a — b — 0
neboli (6 — a)(x — 1) = 0, odtud plyne b — a nebo x — 1.

Jestliže b — a, mají obě rovnice tvar x2 — ах — a = 0. Právě jedno
řešení existuje, právě když je diskriminant a2 + 4a nulový. To platí pro
a = 0 a pro a = —4. Protože b = a, má součet a + b v prvém případě
hodnotu 0 a ve druhém případě hodnotu —8.

Jestliže x — 1, dostaneme z daných rovnic a + b = 1, tedy b = 1 — a.
Rovnice potom mají tvar

x2 — ах + a — 1 = 0 a x2 + (a — l)x — a = 0.

První má kořeny 1 a a — 1, druhá kořeny 1 a —a. Právě jedno společné
řešení tak dostaneme vždy s výjimkou případu, kdy a — 1 = —a neboli
a = i, kdy jsou společná řešení dvě.

Závěr. Nejmenší hodnota součtu a + b je —8 a je dosažena pro a —

— b = —4. Největší hodnota součtu a + b je 1; této hodnoty je dosaženo
pro všechny dvojice (a, 1 — a), kde a ф - je libovolné reálné číslo.
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В - II - 2

Z vyjádření výšek pomocí úhlu 7, tj. va = b sin 7 a Vb — a sin 7, dostaneme
dosazením do předpokládaného vztahu rovnost a+ 26 sin 7 = 6 +2a sin 7,
která platí, právě když (a — b)( 1 — 2sin7) = 0.

Jestliže a — b, vychází /3 — a — 20°, takže 7 = 140°.
Jinak musí být sin 7 = J, takže 7 = 30° nebo 7 = 150°; úhel (3 v obou

případech dopočítáme jako (3 = 180° — a — 7.
Úloha má tři řešení: (3 — 20° a 7 = 140°, /3 = 130° a 7 = 30°, (3 — 10°

a 7 = 150°.

Jiné řešení. Dvojím vyjádřením obsahu trojúhelníku ABC dostaneme
rovnost ava = bvb. Hodnoty ve dvojicích a, 2va a 6, 2ví, mají tedy stejné
součiny a podle zadání i stejné součty, takže to jsou dvojice kořenů téže
kvadratické rovnice, proto {a, 2va} — (6, 2Vb}. V případě va = Vb je a — b,
a tedy a = /?, případ a = 2Vb nastane, právě když má 7 velikost 30 nebo
150 stupňů.

Poznámka. Úvahu o zmíněné kvadratické rovnici lze samozřejmě na-
hradit i přímým dosazením b = a + 2va — 2Vb do rovnosti ava = bv^, po

úpravě vyjde (a - 2vb){va - vb) =0.

В - II - 3

Podle Thaletovy věty je úhel AMD pravý, proto je i úhel DMC pravý
(obr. 20). Strany ВС a AD jsou rovnoběžné, proto je úhlopříčka BD
kolmá i ke straně BC. Body M а В tedy leží na Thaletově kružnici
s průměrem CD. Mají proto od středu úsečky CD stejnou vzdálenost,
takže zmiňovaný střed leží na ose úsečky MB.
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В - II - 4

a) Turnaj se skládá z devíti kol. Má-li každé družstvo jiný počet bodů,
musí mít první v tabulce aspoň o 9 bodů víc než poslední. Na zisk devíti
bodů je nezbytné sehrát aspoň pět zápasů; to znamená, že už muselo
proběhnout aspoň 5 kol, takže do konce turnaje zbývají nejvýše čtyři
kola. V nich může poslední v tabulce získat maximálně 8 bodů, a prvního
už nemůže dostihnout.

b) V turnaji proběhne 11 kol (každé družstvo desetkrát hraje a jednou
má volno). Má-li každé družstvo jiný počet bodů, muselo už být uděleno
aspoň 0 + 1 + 2 + .. . + 10 = 55 bodů. V jednom kole se odehraje 5 zápasů,
takže se rozdělí 5 • 2 = 10 bodů. Proto už muselo být odehráno aspoň
6 kol a do konce jich zbývá nejvýše pět.

Kdyby byl mezi některými sousedy v tabulce větší rozdíl než jedno-
bodový, měl by první aspoň o 11 bodů víc než poslední a ve zbývají-
cích nejvýše pěti kolech by jím nemohl být dostižen. Připusťme tedy,
že rozdíly mezi sousedy v tabulce jsou pouze jednobodové. Má-li po-
slední 6 bodů (zřejmě 0 ^ b < 11), je celkový počet udělených bodů
b + (6 + 1) + (6 + 2) + ... + (6 + 10) = 116 + 55. К tomu bylo potřeba
odehrát к = -pj (116 + 55) = 6 + 5 + -h(6 + 5) kol. Počet odehraných kol
je celé číslo, proto 10 | 6 + 5. Odtud vyplývá 6 = 5, a tedy к — 11. To
znamená, že jsou odehrána všechna kola a poslední místo v tabulce je
definitivní.

Jiné řešení části b). Stejně jako v prvním řešení dokážeme, že už
muselo proběhnout aspoň 6 kol. Mezi prvním a posledním v tabulce je
aspoň desetibodový rozdíl. Kdyby proběhlo kol aspoň 7, zbývala by do
konce nejvýš 4 kola a v nich by nemohl poslední nejméně desetibodový
náskok prvního vyrovnat. Předpokládejme tedy, že proběhlo přesně 6 kol,
takže bylo rozděleno právě 60 bodů. Kdyby měl poslední v tabulce aspoň
jeden bod, byl by celkový počet udělených bodů alespoň 1 + 2 + 3 +
+ ... + 11 = 66 > 60. Poslední tedy musel být bez bodu. Potom ale
první musel mít více než 10 bodů, protože v opačném případě by byl
bodový zisk všech družstev 0 + 1 + 2 + ... + 10 = 55 < 60. Měl tedy
první před posledním aspoň jedenáctibodový náskok, který už poslední
ve zbývajících pěti kolech nemůže vyrovnat.
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Kategorie A

Texty úloh

A - I - 1

Najděte všechny trojice reálných čísel a, b, c s vlastností: Každá z rovnic

x3 -)- (o. -f-1 -f- (6 3-j- (c 2) = 0,
x^ (ft -(- -|- (b -f- l):r -f- (c -f- 3) — 0,
x^ -|- (ci -f- 3)ж^ (6 d- 2)x + (c + 1) =0

má v oboru reálných čísel tři různé kořeny, celkem je to však pouze pět
různých čísel. (Jaromír Šimša)

A - I - 2

V rovině je dána úsečka AV a ostrý úhel velikosti a. Určete množinu
středů kružnic opsaných všem těm trojúhelníkům ABC s vnitřním úhlem
a při vrcholu A, jejichž výšky se protínají v bodě V. (Pavel Leischner)

A - I - 3

Množinu M tvoří 2n různých kladných reálných čísel, kde n ^ 2. Uva-
žujme n obdélníků, jejichž rozměry jsou čísla z M, přičemž každý prvek
z M je použit právě jednou. Určete, jaké rozměry mají tyto obdélníky,
je-li součet jejich obsahů
a) největší možný; b) nej menší možný. (Jaroslav Švrček)

A - I - 4

Určete počet konečných rostoucích posloupností přirozených čísel
ai, ft2, • • •, ftfc všech možných délek k, pro které platí fti = 1, сц | ft^+i pro

(Martin Panák)i = 1,2,..., к — 1 a ftfc = 969 969.
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A - I - 5

Je dána kružnice к, bod O, který na ní neleží, a přímka p, která ji nepro-
tíná. Uvažujme libovolnou kružnici /, která má vnější dotyk s kružnicí к
a dotýká se i přímky p. Příslušné body dotyku označme A a B. Pokud
body О, А, В neleží v přímce, sestrojíme kružnici m opsanou trojúhel-
niku OAB. Dokažte, že všechny takové kružnice m procházejí společným
bodem různým od bodu O, anebo se dotýkají téže přímky.

(Ján Mazák)

A - I - 6

Dokažte, že pro každé přirozené číslo n existuje celé číslo a, 1 < a < 5n
takové, že platí 5n | a3 — a + 1. (Ján Mazák)

A - S - 1

V oboru reálných čísel řešte soustavu rovnic

z2 - у = z2,
У2 x2,— z —

z2 = У2-— X

(Ján Mazák)

A - S - 2

Podstavy hranolu tvoří dva shodné konvexní n-úhelníky. Počet v vrcholů
tohoto tělesa, počet s jeho stěnových úhlopříček a počet t jeho tělesových
úhlopříček tvoří v jistém pořadí první tři členy aritmetické posloupnosti.
Pro která n to platí? (Poznámka: Stěnami hranolu rozumíme boční
stěny i podstavy. Tělesová úhlopříčka je úsečka, jež spojuje dva vrcholy
hranolu, které neleží v téže stěně.) (Vojtech Bálint)

A - S - 3

V rovině je dán úhel XSY a kružnice к o středu S. Uvažujme libovolný
trojúhelník ABC s vepsanou kružnicí k, jehož vrcholy А а, В leží po řadě
na polopřímkách SX a SY. Určete množinu vrcholů C všech takových

(Jaromír Šimša)trojúhelníků ABC.
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A - II - 1

Nechť n je dané přirozené číslo větší než 1. Najděte všechny dvojice celých
čísel s a ř, pro které rovnice

xn + src - 2 007 = 0,

mají v oboru reálných čísel aspoň jeden společný kořen.

xn +tx- 2 008 = 0

(Jaromír Simša)

A - II - 2

V rovině jsou dány dvě kružnice ki, k2 o různých poloměrech, které mají
vnější dotyk v bodě T. Uvažujme libovolné dva body A £ k\ а В G &2,
oba různé od bodu T a vybrané tak, že úhel ATВ je pravý.
a) Dokažte, že všechny uvažované přímky AB procházejí týmž bodem.
b) Najděte množinu středů všech takových úseček AB. (Ján Mazák)

A - II - 3

Pole tabulky nxn, kde п'А 3, jsou střídavě černá a bílá jako na obyčejné
šachovnici, přičemž pole v levém horním rohu je černé. Bílá pole budeme
barvit načerno následujícím postupem. V jednom kroku vybereme libo-
volný obdélník 2x3 nebo 3 x 2, ve kterém jsou ještě tři bílá pole, a tato
tři pole začerníme. Pro která n můžeme po určitém počtu kroků začernit
celou tabulku? (Peter Novotný)

A - II - 4

Nechť M je libovolný vnitřní bod polokružnice к se středem S a prů-
měrem AB. Označme кд kružnici vepsanou kruhové výseči ASM a

кв kružnici vepsanou kruhové výseči BSM. Dokažte, že kružnice кд
a kg leží v opačných polorovinách vyťatých některou přímkou kolmou
к úsečce AB. (Kružnice vepsaná kruhové výseči se dotýká obou ramen
i hraničního oblouku.) (Jaroslav Svrček)

A - III - 1

V oboru reálných čísel řešte soustavu rovnic

x + y2 = y3,
у + x2 = x3.

(Jaroslav Svrček)
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A - III - 2

Jsou dány dvě kružnice &i(*Si;ri) a Přičemž ISýS^I > r\ + Г2.
Uvažujme libovolný trojúhelník ABC s vrcholem A na kružnici ki a vr-

choly 5, C na kružnici &2 zvolenými tak, že obě přímky AB, AC jsou
tečnami kružnice /02- Najděte
a) množinu středů kružnic vepsaných,
b) množinu průsečíků výšek

všech takových trojúhelníků ABC. (Tomáš Juřík)

A - III - 3

Zjistěte, pro která celá kladná čísla a, b je hodnota podílu

b2 + db + a + b — 1
a2 + ab + 1

(Martin Panák)rovna celému číslu.

A - III - 4

Rovnost

2 008 = 1 111 + 666 + 99 + 88 + 44

je rozkladem čísla 2 008 na součet několika navzájem různých vícemíst-
ných čísel, z nichž každé je zapsáno stejnými číslicemi. Najděte
a) aspoň jeden takový rozklad čísla 8 002,
b) všechny takové rozklady čísla 8 002, které mají co nejmenší počet

sčítanců (na jejich pořadí nebereme zřetel). (Jaromír Šimša)

A - III - 5

Karel v jistý okamžik na svých přesně jdoucích hodinkách zjistil, že konec
velké ručičky, konec malé ručičky a vhodný bod na kružnici ciferníku
tvoří vrcholy rovnostranného trojúhelníku. Než tento jev nastal podruhé,
uplynula doba t. Najděte největší možné t pro dané hodinky v závislosti
na poměru к délek obou ručiček (Л: > 1), když poloměr kružnice ciferníku
je shodný s délkou velké ručičky. (Jaromír Šimša)
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A - III - 6

Určete největší reálné číslo p a nejmenší reálné číslo q, pro něž nerovnosti

a + íb
V < <q

ь + ta

platí v libovolném trojúhelníku ABC se stranami a, b a těžnicemi ta, tb.
(Pavel Novotný)
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Řešení úloh

A - I - 1

Předpokládejme, že čísla a, b, c mají požadovanou vlastnost. Všimneme
si nejdříve, že každé dvě z daných rovnic musejí mít společný kořen, jinak
by měly dohromady šest různých kořenů.

Společné kořeny dvou z daných tří kubických rovnic, které pro potřeby
řešení očíslujeme (1), (2) a (3), jsou kořeny kvadratických rovnic, které
dostaneme jejich odečtením. Vypišme všechny tři „rozdílové“ rovnice,
které nezávisejí na parametrech а, Ь, c (to je řešitelsky pozitivní zjištění),
a rozložme rovnou jejich levé strany na kořenové činitele:

x2 — 2x + 1 = (x — l)2 = 0,
2x2 — x — 1 = (2x + l)(x — 1) = 0,

x2 + x — 2 = (x — l)(x + 2) = 0.

(2)-(l)
(3)-(i)
(3)-(2)

Vidíme, že rovnice (1) a (2) mají jediný společný kořen x — 1, takže mají
dohromady právě pět různých kořenů. Proto musí být každý z kořenů
rovnice (3) kořenem aspoň jedné z rovnic (1) nebo (2). Z uvedených
rozkladů plyne, že číslo x = 1 je rovněž kořenem rovnice (3).

Vysvětleme, proč ostatní dva kořeny rovnice (3) nemohou být zároveň
i kořeny jedné z rovnic (1) nebo (2). V opačném případě by jedna z rovnic
(1), (2) měla s rovnicí (3) stejnou trojici kořenů, a proto by musely mít
stejné koeficienty nejen u kubického členu. To však neplatí, neboť pro
libovolnou hodnotu parametru c jsou čísla c+1, c + 2, c + 3 (tj. absolutní
členy rovnic) vesměs různá.

Rovnice (3) má tedy kromě kořenu x = 1 ještě jeden společný kořen
s rovnicí (1) a jeden společný kořen s rovnicí (2); podle rozkladů (3)—(1)
a (3)-(2) vidíme, že se jedná o čísla x
rovnice (3) má proto rozklad

— b a x = —2. Levá strana

3 o 3
-x x — 1.

Odtud porovnáním s koeficienty zapsanými v (3) již dostaneme a
b — — |, c = —2.

Z našeho postupu plyne, že pro nalezené hodnoty a, 6, c má rovnice (3)
trojici kořenů 1, — \ a —2, že čísla 1, — \ jsou kořeny rovnice (1) a že čísla
1, —2 jsou kořeny rovnice (2). Musíme se ještě přesvědčit, že třetí kořeny

2 ’
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rovnic (1) a (2) jsou další dvě (různá) čísla. Tyto třetí kořeny můžeme
výhodně najít pomocí Viětových vztahů. Protože součin tří kořenů rov-
nice (1) je číslo opačné к absolutnímu členu c + 2 rovnému nule, je číslo
nula třetí kořen rovnice (1). Podobně součin tří kořenů rovnice (2) je
roven —1, takže třetí kořen je číslo x = X.

Závěr. Jediným řešením úlohy jsou čísla a — — |, b — — X, c— —2.

A - I - 2

Nejprve dokažme jedno obecně užitečné tvrzení o průsečíku V výšek
libovolného ostroúhlého trojúhelníku ABC. Označme V průsečík přímky
obsahující výšku CCq s kružnicí opsanou trojúhelníku ABC (obr. 21).
Pravoúhlé trojúhelníky CqVA a AqVC jsou podobné (shodují se ještě

v úhlu při vrcholu V), proto \<BAAo\ = \<BCCq\. Úhly BCC0 а VAB
jsou shodné obvodové úhly nad obloukem V'B, takže body V а V jsou
souměrně sdruženy podle přímky AB.

Označíme-li úhly v trojúhelníku ABC obvyklým způsobem, bude
\<ACV'\ — \kACCq\ = 90° — a, takže pro délku úsečky AV díky uvedené
souměrnosti dostaneme

\AV\ — | AV'\ = 2rsin(90° — a) = 2rcosa,
kde r je velikost poloměru kružnice к opsané trojúhelníku ABC (a záro-
veň i trojúhelníku AVC). Stejný vzorec (1) platí pro trojúhelník ABC
s ostrým vnitřním úhlem a při vrcholu A i v případě, kdy jeden z ostat-
nich dvou vnitřních úhlů (např. u vrcholu B) je pravý nebo tupý (obr. 22).
Celou úvahu můžeme zopakovat slovo od slova.

(1)
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Nyní se už pustíme do řešení soutěžní úlohy se zadanými body A,
V a danou velikostí ostrého úhlu a. Vzorec (1) nás přivádí к závěru, že
kružnice opsané všem uvažovaným trojúhelníkům ABC budou mít týž
poloměr

\AV\ (2)r =

2 cos a

tudíž jejich středy O budou mít od daného bodu A pevnou, právě urče-
nou vzdálenost r. Je ovšem zapotřebí určit, jakou část kružnice l(A,r)
středy O vyplní; jistě to bude množina souměrná podle přímky AV, ne-
boť souměrnost s osou AV převádí vyhovující trojúhelník na vyhovující
trojúhelník. S tímto cílem vyjádříme velikost úhlu VАО pomocí vnitřních
úhlů /3 = \^ABC\ a 7 = \<ACB\. Budeme přitom předpokládat, že platí

^ 7 (v opačném případě lze od samého počátku označení vrcholů B,
C navzájem vyměnit).

Předpokládejme nejprve, že /3 < 90°, takže trojúhelník ABC je
ostroúhlý a můžeme opět pracovat s obr. 21. Z rovnoramenného troj-
úhelníku ABO s vnitřním úhlem 2y při hlavním vrcholu O vidíme,
že \-KBAO\ — 90° — 7, z pravoúhlého trojúhelníku BAAq zase plyne
\$:BAV\ = 90° — (3. Vzhledem к tomu, že oba body О, V leží v polo-
rovině ABC, dostáváme pro úhel VАО vyjádření

\<VAO\ = \<BAO\ - \<BAV\ = (90° - 7) - (90° - (3) - (3 - 7

(připomeňme, že /3 ^ 7).
V případě (3 ^ 90° podle obr. 22 podobně zjistíme, že \<BAO\ =

— 90° — 7 a \<BAV\ = (3 — 90°, tudíž

\<VAO\ = \<BAO\ + \<BAV\ = (90° - 7) + ((3 - 90°) = f3 - 7.
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Vidíme, že |<VAO| = /3 — 7 bez ohledu na to, zda je trojúhelník ABC
ostroúhlý, pravoúhlý nebo tupoúhlý.

Nyní už snadno dokončíme řešení úlohy: z odvozené velikosti úhlu
VАО plyne odhad

|<V40| = j3 — 7 < /3 + 7 = 180° — a,

takže bod O leží uvnitř oblouku kružnice l(A,r) určeného nerovností

\<VAO\ < 180° - a.

Zvolíme-li naopak úhel e, 0° e < 180° — a, snadno vypočteme, jakou
velikost musí mít vnitřní úhly /3 a 7, aby platilo |<V40| = e:

180° — ot -\- £ 180° — a — e

(3 = 7 =
2 2

Vepíšeme-li tedy do jakékoliv kružnice o poloměru r ze vzorce (2) po-
mocný trojúhelník A'B'C s daným úhlem a při vrcholu A! a vypočte-
nými úhly /3, 7 při vrcholech B', resp. C, pro jeho ortocentrum V
a střed O' opsané kružnice budou splněny rovnosti |^4'V'| = \AV\
a \<V'A'0'\ = e. Ve shodném zobrazení, které převede úsečku А'V
na úsečku AV, pak trojúhelník A'B'C' přejde ve vyhovující trojúhelník
ABC, jehož střed O opsané kružnice bude ležet na kružnici l a vyhovovat
rovnosti \<VAO\ = e.

Závěr. Hledanou množinou středů O opsaných kružnic je oblouk
kružnice o středu A a poloměru r = ||AV|/coso: určený nerovností
\<VAO\ < 180° — a (krajní body tohoto oblouku tedy do výsledné mno-
žiny nepatří, obr. 23).
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A - I - 3

Věnujme se nejdříve nejjednodušší situaci, kdy n = 2. Danou množinu M
tak tvoří čtyři kladná čísla, která označíme podle velikosti

ai < <i2 < <23 < <24.

Máme pouze tři možnosti, jak požadovaným způsobem sestavit dvojici
obdélníků. Vypišme na třech řádcích jejich rozměry:

ai x 02 а аз x <2,4,

aj x аз a Й2 x a4

ai x Й4 a Й2 x аз

a ukažme, že součty obsahů těchto obdélníků jsou v uvedeném pořadí
klesající, tj. že platí

(1)<3.1 <3.2 T <23(24 > ахаз + 0204 > 0,10,4 -f- 0203.

Místo dvou snadných důkazů (proveďte sami) poznamenejme, že obě ne-
rovnosti jsou téhož typu a lze je zdůvodnit obecným pravidlem

(2)a < b, c < d ac -f bd > ad + bc,

jež platí pro libovolnou čtveřici reálných čísel a, b, c, d, díky rovnosti

(ас + bd) — (ad + bc) = (b — a) (d — c).

Skutečně, levou nerovnost z (1) dostaneme z pravidla (2) volbou

a — a\, b = 04, c = 02, d = a% (platí ai < 04 a 02 < 03),

pravou nerovnost pak volbou

d — a4 (platí ai <02 a 03 <04).b = a2,a = ai, с = a3

Tím je úloha v případě n = 2 vyřešena. Tato zkušenost nás jistě přivede
к odhadu výsledku pro obecné n ^ 2:

Jsou-li 0\ < 02 < ... < 02n prvky dané množiny M, pak největší
sumární obsah má jediná n-tice obdélníků s rozměry Oi x 02, 03 x a4, ..

a2n-i x a2n] nejmenší sumární obsah má jediná n-tice obdélníků s roz-

měry oi x a2n, 0,2 x «2п-ь • • On x an+1.
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К důkazu prvního závěru předpokládejme, že vyhovující n-tice obdél-
níků je sestavena tak, že čísla ai, a2 nejsou rozměry téhož obdélníku. Pak
v takové n-tici jsou obdélníky ai x clí a x a.,-, kde i,j > 2. Zaměňme je
obdélníky ai XGi2 a a; xa^. Dostaneme (jinou) vyhovující n-tici obdélníků,
která bude mít oproti původní n-tici větší sumární obsah, neboť platí

&1&2 T CLiClj > Q-iCLi Q,2CLj

a to opět díky pravidlu (2) pro čísla ai < aj a a2 < a*. Z této úvahy
plyne: největší sumární obsah může mít jen taková n-tice uvažovaných
obdélníků, mezi nimiž je obdélník ai x a2. Tento obdélník můžeme tedy
dát stranou a uvažovat úlohu o nejmenším obsahu pro redukovanou mno-
žinu M' o 2n — 2 prvcích a3 < <24 < ... < a2n■ Opakováním předchozího
postupu vytvoříme obdélník аз x <24 a provedeme další redukci množiny
atd. (formálně můžeme využít matematickou indukci). Hypotéza o sou-
stavě obdélníků s největším sumárním obsahem je tak dokázána.

Zcela obdobně dokážeme závěr o soustavě s nejmenším sumárním ob-
sáhem. Nejsou-li ai, a2n rozměry téhož obdélníku, jsou mezi uvažovanými
obdélníky flixaja aj xa2n (kde 1 < i, j < 2n), které zaměníme obdélníky
a i x d2n a cii x čímž se sumární obsah obdélníků zmenší, neboť platí

CL\ & i ~f“ CLjCL2n ^1^271 CLiClj»

podle pravidla (2) pro čísla a\ < aj a < a2n• Nejmenší sumární
obsah proto může mít jen taková vyhovující n-tice obdélníků, mezi ni-
miž je obdélník a 1 x агп- Tento obdélník dáme stranou a uvažujeme
úlohu o nejmenším obsahu pro redukovanou množinu M' o 2n — 2 prvcích
&2 < CL3 < ... < a2n-i- Vše ostatní je už zbytečné opakovat.

A - I - 4

Ze zadání úlohy plyne, že všechny členy uvažovaných posloupností budou
děliteli jejich posledního členu, rovnému číslu 969 969. Najdeme proto
nejprve rozklad tohoto čísla na prvočinitele:

(1)969 969 = 3 • 7 • 11 ■ 13 • 17 • 19.

Nyní již snadno můžeme vytvářet příklady vyhovujících posloupností růz-
ných délek. Vypišme kupříkladu tu nejkratší, jednu z nejdelších a ještě
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jednu další:
(<21,0,2) = (1,969 969),

(01,02,03,04,05,06,07) = (1,13,91,1729,5187,57 057,969 969),
(01,02,03,04) = (1,21,4 641,88179,969 969).

(Zkontrolujte uvedené příklady výpočtem podílů ai+i/ai pro všechna
přípustná i).

Experimentováním s konkrétními posloupnostmi dojdeme к poznání
jejich společných vlastností, které je plně charakterizují:

Libovolný člen o* každé vyhovující posloupnosti ai, 02,..., o*, je sou-
činem několika (v případě i = 1 žádného, v případě i — к všech) z šesti
různých prvočísel z rozkladu (1), přitom (v případě i < k) člen Oj+i má
kromě všech činitelů členu аг ještě alespoň jednoho nového činitele navíc
(posloupnost má být rostoucí!). Naopak, každá taková konečná posloup-
nost je vyhovující.

Z uvedeného vyplývá způsob, jak „úsporně" zadat každou vyhovující
posloupnost; stačí jen uvést, jak se noví činitelé postupně objevují, tj.
zadat posloupnost podílů

&2 a3 a4

ai' ’ аз

do jejichž rozkladů na prvočinitele je šest prvočísel z (1) rozděleno (v kaž-
dém aspoň jedno). Proto je hledaný počet vyhovujících posloupností ro-
ven počtu rozdělení šesti daných prvočísel do jedné nebo několika očís-
lovaných neprázdných skupin (odpovídajících prvočinitelům podílů (2),
takže na pořadí prvočísel ve skupině nezáleží). Slovo „očíslovaných" zna-

mená, že na pořadí skupin záleží. Například pro rozdělení do dvou sku-
pin {3,11,19}, {7,13,17} dostaneme podle toho, v jakém pořadí obě
skupiny vezmeme, dvě vyhovující posloupnosti (1 ,u,uv) a (1 ,v,uv), kde
u = 3-11 -19 au = 7- 13- 17.

Dospěli jsme tak ke kombinatorické úloze určení hodnoty P(6), kde
P(n) značí počet rozdělení n-prvkové množiny X do libovolného po-
čtu očíslovaných neprázdných podmnožin X\, X2, X3,.... Není schůdné
hodnotu P(6) vypočítat přímo, zato bude možné hodnoty P(n) počítat
postupně pro n — 1, n — 2, atd. až po potřebné n = 6. Takovému způ-
sobu výpočtu říkáme rekurentní V naší úloze bude výpočet založen na
rekurentní rovnici

a/c—1 ak
(2)• * 7

a/c-2 afc_i

(^) p(n — 1) + (2) p(n — 2) +.. Ui)p«+iP(n) = • +

platné pro každé n ^ 2, jak nyní ukážeme.
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Všechna uvažovaná rozdělení n-prvkové množiny X rozdělíme do n

skupin podle počtu j prvků první podmnožiny X\ (1 j ^ n). První

podmnožinu X\ o j prvcích lze vybrat právě ^ způsoby, právě P(n—j)
způsoby pak lze zbylou množinu X' — X \ X\ rozdělit na neprázdné
očíslované podmnožiny X2, X3, X4,... (Platí to i v případě j = n, když
položíme P(0) = 1, neboť už není co rozdělovat.) Podle pravidla součinu
je proto počet všech rozdělení původní množiny X s první množinou X\
o j prvcích roven

poslední člen 1 odpovídá hodnotě j = n, dokázán.
Ze zřejmé hodnoty P( 1) = 1 opakovaným užitím vzorce (3) vypoč-

teme další hodnoty P(2) = 3, P(3) = 13, P(4) = 75, P(5) = 541 a

P(6) =4 683.
Závěr. Existuje právě 4 683 vyhovujících posloupností.

P(n — j). Tím je vzorec (3), na jehož pravé straně

A - I - 5

Jedna z vyhovujících kružnic l je znázorněna na obr. 24. Bod A vnější-
ho dotyku kružnic к, l je jejich (vnitřním) středem stejnolehlosti, v níž
tečně p kružnice l odpovídá s ní rovnoběžná tečna p' kružnice k. Její bod
dotyku M s kružnicí к leží na ose q kružnice k, která je kolmá na přímku p.
Přitom ze dvou průsečíků M, N přímky q s kružnicí к je bod M ten
vzdálenější od přímky p, neboť úsečka spojující stejnolehlé body dotyku
M а В protíná kružnici к v bodě A (středu příslušné stejnolehlosti).
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Bod M tedy na volbě kružnice l nezávisí. Body A G к а В 6 p

pochopitelně ano, ukažme však, že jejich vzájemná poloha na polopřímce
s počátkem M je vázána podmínkou

\MA\ ■ \MB\ = \MN\ ■ \MP\, (1)
kde P je průsečík kolmic p a q. To jednoduše plyne z podobnosti

\MA\ : \MN\ = \MP\ : \MB\

pravoúhlých trojúhelníků AMN, PMB. Vztah (1) lze rovněž zdůvodnit
pomocí mocnosti bodu M ke kružnici sestrojené nad průměrem NB (jež
prochází body P, A podle Thaletovy věty).

Teprve nyní vstoupí do našich úvah daný bod O. Na obr. 24 je kruž-
nice l vybrána tak, že odpovídající přímka AB bodem O neprochází,
takže existuje kružnice m opsaná trojúhelníku OAB. Podle zadání platí
О ^ /с, a tedy О ф M, takže je určena polopřímka MO, která kromě
bodu O bude mít s kružnicí m společný ještě jeden bod, který ozna-
číme R (v případě, kdy MO je tečna kružnice m, položíme R = O).1
Dvojím vyjádřením mocnosti bodu M ke kružnici m pak dostaneme

\MA\ ■ \MB\ = \MO\ ■ \MR\
odkud porovnáním s (1) zjistíme, že úsečka MR má délku

\MN\ ■ \MP\\MR\ = \MO\
která zřejmě nezávisí na volbě kružnice l. Protože bod R navíc leží na

pevné polopřímce MO, je v případě |MP| |MO| bod R společným
bodem všech kružnic m (R ф O), v případě |MP| = |MO| je přímka
MO jejich společná tečna. Tím je řešení úlohy u konce.

A - I - 6

Začneme poněkud obšírněji případem n — 1. Najdeme všechna celá čísla
a s vlastností 5 | a3 — a + 1. Nejprve sestavíme tabulku hodnot r3 — r + 1
pro všechny možné zbytky r při dělení pěti, tedy pro r 6 {0,1,2,3,4}:

0 1 2 3 4r

r3 — r + 1 1 1 7 25 61

1 Zdůrazněme, že vzhledem ke vzájemné poloze bodů M, Л, В leží bod M ve vnější
oblasti každé kružnice procházející body A, B, tedy i kružnice m. Polopřímka
MO tedy má s kružnicí m, není-li její tečnou, společné skutečně dva různé body.
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Pro ostatní celá čísla a už hodnoty a3 — a + 1 počítat nemusíme. Je-li
totiž r zbytek čísla a při dělení pěti, tedy a = bq + r pro vhodné celé q,

pak čísla a3 — a +1 ar3 — r +1 dávají při dělení pěti stejný zbytek, neboť
jejich rozdíl

(a3 - a + 1) - (r3 - r + 1) = (a3 - r3) - (a - r) -

= (a — r)(a2 + ar + r2 — 1)

je dělitelný číslem a — r = 5g, je tedy násobkem pěti.2 Z uvedené tabulky
vidíme, že pro celé a platí 5 | a3 — a + 1, právě když a = 5q + 3.

Zadanou úlohu vyřešíme tak, že indukcí vzhledem к číslu n dokážeme
existenci celého čísla an z intervalu (1, 5n), jež vyhovuje podmínce, že 5n
dělí a3 — an + 1. Pro n = 1 podle prvního odstavce dokazované tvrzení
splňuje (v intervalu (1,5)!) jediné číslo ai = 3.

V druhém indukčním kroku předpokládejme, že pro některé přirozené
к známe číslo ak z; intervalu (l,5fc) s vlastností 5fc | d\ — dk + 1, a na
základě znalosti a*, sestrojme vyhovující číslo ak+i- Zbytkem čísla a\ —
— a*, + 1 při dělení číslem 5fc+1 musí být číslo dělitelné 5fc, tedy jedno
z čísel

3 • 5fc, 4 • 5fc.0, 5\ 2 • 5k
Zapišme proto tento zbytek ve tvaru r • 5fc, kde r £ (0,1,2,3,4}, a hle-
dejme číslo ak+i ve tvaru dk+1 = a*, + s • 5fc pro vhodné s £ {0,1, 2,3,4}.
(Je ihned jasné, že v případě r = 0 můžeme vzít ak+i = a^, tedy s = 0).
I když hodnotu s vybereme až za chvíli, z podmínky 1 < a*, < 5k a nerov-
ností ak ^ Ufc+i ^ а/с-М-Б^ už nyní plyne, že podmínka 1 < dk+i < 5fc+1
bude splněna (ať dopadne výběr s jakkoliv). Pro číslo dk+1 zvoleného
tvaru dostáváme

(ид, + s ■ 5fc) — (dk + s • 5fc) + 1a3 ~ flfc+i + 1
5fc+1

d\ + 3a2s • 5fc + Sdks252k + s353fc - dk - s ■ 5k + 1
_

5/C+1

(dl - ak + l) - r • 5fc (3a2 — l) s -f

5fc+1

= 3afcs25fc-1 +s352fc—1

5/C + 1 5

Hodnota posledního součtu bude celočíselná, budou-li takové oba zá-
věrečné zlomky. První z nich tuto vlastnost má díky tomu, jak jsme

2 Stejně snadno se dokáže obecnější užitečný poznatek: pro libovolný mnohočlen F
s celočíselnými koeficienty a libovolná celá a, b je rozdíl F(a) — F(b) celočíselným
násobkem rozdílu a — b.
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zavedli číslo r £ {0,1,2,3,4}. Proto je zapotřebí jen najít takové
s £ {0,1,2,3,4}, aby i druhý zlomek byl celočíselný, tedy aby číslo
(3a\ — l) s + r bylo dělitelné pěti. Jistě stačí ukázat, že pět čísel

Ф) = (3a\ - 1) s + r, kde s £ {0,1, 2, 3,4},

dává při dělení pěti navzájem různé zbytky (jeden z nich pak bude nula).
Kdyby tomu tak nebylo, platilo by 5 | c(s) — c(s') pro některá dvě různá
s, s' £ {0,1, 2, 3,4}; z vyjádření

c(s) - c(s') = (3a2k - 1) (s - s')

bychom pak usoudili, že číslo 3a2 — 1 je dělitelné pěti. Vztah 5 | За2 — 1
však neplatí pro žádné celé a; podle úvah z prvního odstavce se stačí
o tom přesvědčit pro pět hodnot a £ {0,1, 2,3,4}:

0 2 3 41

3a2 - 1 -1 2 11 26 47

Tím je celý důkaz matematickou indukcí ukončen. Pro zajímavost
dodejme, že jsme schopni snadno vysvětlit, že naše číslo 3a| — 1 dává při
dělení pěti vždy zbytek 1 (takže v případě r / 0 vyhovuje s = 5 — r).
Skutečně, vzhledem к tomu, že к ^ 1, z podmínky 5k \ a\ — + 1
plyne 5 | a\ — + 1, což je podle prvního odstavce splněno, právě když
ад, = 5k + 3; číslo 3a2 — 1 tudíž při dělení pěti dává stejný zbytek jako
číslo 3 • 32 - 1 = 26.

A - S - 1

Sečtením všech tří rovnic po zrušení kvadratických členů dostaneme

(1)x + у 4- z = 0.

Odtud vyjádříme 2 = —x — у a dosadíme do první rovnice soustavy.
Obdržíme x2 — у — (—x — y)2, což po úpravě dá rovnici y(2x + y + l) = 0.
Rozlišíme proto, který z obou činitelů na její levé straně je roven nule.

V případě у — 0 z rovnice (1) obdržíme 2 = —x a po dosazení y,
z do původní soustavy dostaneme pro neznámou x jedinou podmínku
x(x — 1) = 0, kterou splňuje pouze i = 0aa: = l. Jim odpovídají řešení
(.x,y,z) tvaru (0,0,0) a (1,0,—1).
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V případě, kdy 2x + у + 1 = O neboli у = — 2x — 1, z (1) máme
2 = —x — y — x + 1. Po dosazení y, z do původní soustavy dostaneme pro
neznámou x jedinou podmínku x(x + 1) = 0, kterou splňují pouze x = 0
a x = —1. Jim odpovídají řešení (x, y, z) tvaru (0, —1,1) a (—1,1,0).

Závěr\ Daná soustava má právě čtyři řešení (x,y,z): trojice (0,0,0),
(1,0,-1), (0,-1,1} a (-1,1,0).

Jiné řešení. Sečtením dvou prvních rovnic dané soustavy eliminujeme
neznámou x a dostaneme rovnici y2 — z2 — у + z, kterou lze zapsat
v součinovém tvaru

(2){y + z)(y - z - 1) = 0.

Rozlišíme opět, který ze dvou činitelů v poslední rovnici se rovná nule.
V případě у + z = 0 ze třetí rovnice dané soustavy vyjde x — 0

a z prvních dvou rovnic po dosazení x = 0 & z = —у dostaneme pro
neznámou у jedinou podmínku y(y + 1) = 0, tedy у — 0 nebo у = —1.
Odpovídající řešení (x,y,z) jsou (0,0,0) a (0,—1,1).

V případě, kdy у — z — 1 — 0 neboli г = у — 1, obdržíme ze třetí
rovnice soustavy x = z2 — у2 = (у — l)2 — y2 — 1 — 2y. Dosazením x, z
dostaneme pro neznámou у jedinou podmínku y(y — 1) = 0, tedy у = 0
nebo у = 1. Odpovídající řešení (2, у, z) jsou (1,0, —1) a (—1,1,0).

A - S - 2

Každý n-boký hranol má právě n vrcholů v každé ze svých podstav,
takže platí v = 2n. Z každého vrcholu vychází n — 3 úhlopříček ležících
v podstavě a dvě úhlopříčky ležící v bočních stěnách, celkem je to n — 1
stěnových úhlopříček. Z 2n vrcholů tedy vychází 2n(n — 1) stěnových
úhlopříček, každá z nich je však započítána dvakrát, proto s — n(n — 1).
Podobně určíme počet t tělesových úhlopříček: z každého vrcholu jich
vychází n — 3 (do všech vrcholů druhé podstavy s výjimkou těch tří vr-

cholů, se kterými je daný vrchol spojen hranou nebo úhlopříčkou v boční
stěně), proto t = 2n(n — 3) : 2 = n(n — 3).

Hledáme ta celá n ěl 3, pro něž čísla

v — 2n, s = n(n — 1) a t = n(n — 3)

tvoří ve vhodném pořadí trojici x, y, z s vlastností у — x = 2 — у neboli
у = |(x + 2). Snadným dosazením zjistíme, že pro n = 3 jde o nevyho-
vující trojici čísel 6, 6, 0, zatímco pro n — 4 vychází vyhovující trojice 8,
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12, 4 (platí 8 = ^(4 + 12)). Pro libovolné n ^ 5 máme n — l>n — 3^2,
odkud po násobení číslem n dostaneme s > t It v, takže požadovaná rov-
nost s aritmetickým průměrem musí být tvaru t — |(v + s). Po dosazení
dostáváme rovnici

2n + n(n — 1)n(n — 3) = 2

s jediným přípustným kořenem n = 7 (kořen n = 0 nemá reálný smysl).
Závěr: Vyhovují jedině n = 4 a n = 7.

A - S - 3

Označme r poloměr dané kružnice к a w velikost daného (konvexního)
úhlu XSY. V libovolném vyhovujícím trojúhelníku ABC označme ob-
vyklým způsobem vnitřní úhly. V trojúhelníku ABS platí (obr. 25)

SL±l= Ж + 1,
2 2

w = \<ASB\ = 180° - \<SAB\ -\<SBA\ = 180° -

odkud plyne, že hledaná množina je prázdná, pokud tu 5Í 90° nebo сo —

— 180°, a že všechny vyhovující trojúhelníky ABC mají vnitřní úhel 7,

pro jehož velikost platí

7 = 2tj- 180°.
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Z pravoúhlého trojúhelníku CST, kde T je bod dotyku kružnice к se
stranou AC (obr. 25), vyjádříme délku přepony SC vztahem

\ST\
\SC\ = sin^y sin(a; — 90°) ’

Bod C tak leží na kružnici k\ o středu S a poloměru 77 = r/ sin(u; — 90°).
Stejně jako úhel ASВ jsou i úhly ASC a BSC (neboli úhly XSC

a YSC) tupé, neboť

|<ASCj = 90° + ^ a |<£SCj=90° + |.
Dohromady tak dostáváme, že bod C je vnitřním bodem oblouku KL
kružnice k\, který leží vně daného úhlu XSY a jehož krajní body K, L
jsou určeny pravými úhly XSK a YSL (obr. 26).

(1)

Vybereme-li naopak libovolný vnitřní bod C oblouku KL, polopřímky
SX, SY a SC rozdělí rovinu na tři tupé úhly, přičemž polopřímka CS
oddělí body X a Y. Z rovnosti |5Cj = 77 plyne, že tečna z bodu C ke
kružnici к sestrojená v polorovině CSX svírá s polopřímkou CS ostrý
úhel u> — 90°, takže protne polopřímku SX v bodě, který označíme A.
Analogicky tečna z bodu C ke kružnici к sestrojená v polorovině CSY
protne polopřímku SY v bodě, který označíme B.

Zvolme nyní hodnoty a, /3, 7 tak, aby to — 90° = ^7, \<CSK\ = |/3,
\<CSL\ = |a, potom z plného úhlu u vrcholu S vyplývá

OL + /3
= 180° — u> = 90° — ^ neboli a + /3 + 7 = 180°.2
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Jak snadno spočteme, tečna z nalezeného bodu A ke kružnici к souměrně
sdružená s tečnou AC podle přímky SX protíná polopřímku CS pod úh-
lem + а, a podobně vyjde, že analogická tečna z nalezeného bodu В
protne tutéž polopřímku pod úhlem + (3. Součet obou uvedených úhlů
je však 180°, proto jsou obě tečny ke kružnici к rovnoběžné, a tedy to-
tožné (oba příslušné body dotyku musejí totiž ležet uvnitř konvexního
úhlu XSY). Nalezený trojúhelník ABC má proto požadované vlastnosti.

A - II - 1

Vyjádřením členu xn z obou rovnic

xn = 2 007 - sx, xn — 2 008 — tx

dostaneme po porovnání rovnici 2 007 — sx = 2 008 — tx, podle které
společný kořen x může existovat jen v případě s/ía musí být tvaru
x — l/(í — s). Takové x je skutečně kořenem obou původních rovnic,
právě když je kořenem jedné z nich; po dosazení např. do první rovnice
dostaneme po úpravě ekvivalentní podmínku

(t - s)n_1 • (s - 2 007(í - s)) = -1.

Protože oba činitelé na levé straně jsou celá čísla, musí to být čísla 1
a —1 v některém pořadí, takže podle prvního činitele musí rovněž platit
t — s — ±1.

a) Je-li t — s = 1, pak nalezená podmínka má tvar s —2 007(í — s) — — 1.
Dvojice rovnic pro neznámé hodnoty s, t

s — 2 007(ř — s) = -1t — s = 1

má jediné řešení 5 = 2 006 a t = 2 007. (Společný kořen je x

b) Je-li t — s — —1, pak s — 2 007(í — s) = (—l)n, odkud podobně jako
v případě a) nalezneme řešení s = (—l)n — 2 007 a t = (—l)n — 2 008.
(Společný kořen je x = —1.)

Závěr: Podmínce úlohy vyhovují právě dvě dvojice

1-)

(5, t) = (2 006,2 007) a (s,t) = ((-l)n - 2 007, (-l)n - 2 008).
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A - II - 2

a) Na obr. 27 jsou zakresleny průměry CT, DT daných kružnic
k\(«Si, ), resp. ^2(52^2) a jedna dvojice vyhovujících bodů A, B. Pro-

tože středná S1S2 a na ni kolmá společná tečna obou kružnic v bodě T
rozdělují rovinu na čtyři kvadranty, je zřejmé, že oba body A, B, které
s bodem T tvoří pravý úhel (a musejí proto ležet v sousedních kvadran-
těch), leží v téže polorovině určené přímkou S1S2■

Z Thaletovy věty plyne, že CA _L AT TTB _L BD, takže АС || ВТ
BD. Proto podle věty uu platí AACT ~ ABTD, odkud

\AC\ : \BT\ = \CT\ : \TD\ = r\ : r^. Je-li např. r\ > Г2, pak přímka AB
protne polopřímku CT v takovém bodě H, že platí \CH\ : \TH\ = r\ : r2

(z podobných trojúhelníků ACH a BTH). Díky této úměře je bod H spo-
léčný všem uvažovaným přímkám AB. Stejnou úvahu provedeme i v pří-
pádě 7*1 < Г2 (možnost r\ = Г2 je zadáním úlohy vyloučena). Tím je
tvrzení a) dokázáno.

Dodejme, že po zjištěních АС || ВТ a AT || BD jsme se mohli rovnou
odvolat na školské poznatky o stejnolehlosti dvou kružnic. V případě
7*1 7^ r2 totiž vždy existuje vnější střed H stejnolehlosti kružnic h\, /02,
v níž tětivy AC, AT kružnice k\ musí přejít v rovnoběžné tětivy ВТ,
resp. BD kružnice /02, neboť krajní body С, T prvních dvou tětiv přejdou
v krajní body T, resp. D druhých dvou tětiv. Proto bod A přejde do
bodu B, takže přímka AB prochází vnějším středem H.

a AT

b) Označme M střed úsečky AB (obr. 1) a využijme znovu vztahy
CA _L AT _L ТВ _L BD. Úsečky S\M a S2M jsou střední příčky li-
choběžníků CTBA, resp. DTAB, takže platí S\M || ТВ _L AT || S2M,
tedy úhel S1MS2 je pravý. Bod M proto leží na Thaletově kružnici nad
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průměrem S1S2 a je různý od bodů S1 a S2 (úsečka AB střednou S1S2
neprotne).

Obráceně, je-li M libovolný bod nalezené Thaletovy kružnice různý
od 5i, S2 a sestrojíme-li tětivu TA kružnice k\ kolmou к úsečce S\M
a tětivu ТВ kružnice kolmou к úsečce S2M (obr. 28), bude úhel ATВ
stejně jako úhel S1MS2 pravý a přímky S\M, S2M budou osami úseček
TA, resp. ТВ. Budou tudíž platit rovnosti \MA\ = \MT\ = \MB\, takže
bod M bude středem kružnice opsané pravoúhlému trojúhelníku TAB,
bude tedy středem jeho přepony AB.

Hledanou množinou středů úseček AB je kružnice nad průměrem
S1S2 s vyloučenými body S1, S2.

A - II - 3

V jednom kroku začerníme právě tři pole, proto musí být celkový počet
bílých polí dané tabulky dělitelný třemi. Pro sudé n je tento počet roven

\n2 (černých i bílých polí je totiž stejný počet), pro liché n je počet
bílých polí roven \{n2 — 1) (černých polí je o 1 více než bílých). Číslo
•|n2, resp. \{n2 — 1) je násobkem tří, právě když n = 6/c, resp. n = 6/c i 1
pro vhodné celé k.

Nyní ukážeme, že pro všechna čísla n uvedených tvarů je začernění
celé tabulky možné. Pro n = 6k je to nasnadě, neboť celou tabulku
můžeme rozdělit na obdélníky 2 x 3 a v každém z nich provést začernění.
Všimněme si, že stejný postup lze uplatnit i v každém obdélníku, jehož
jeden rozměr je dělitelný dvěma a druhý třemi.

Pro čísla n — 6/cil popíšeme začernění pomocí matematické indukce.
Pro nejmenší čísla n = 5 a n = 7 vidíte na obr. 29 obdélníky 2x3
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a 3 x 2 v příslušných tabulkách, ve kterých provedeme začernění (pro lepší

n — 7

n = 5

Obr. 29

přehled je z původního šachovnicového obarvení začerněno jen středové,
obdélníky nepokryté pole). Ve druhém indukčním kroku stačí ukázat,
že lze-li začernit celou tabulku n x n pro některé liché n, lze udělat
totéž i s tabulkou (n + 6) x (n + 6). Postup je jasný z obr. 30: nejprve
začerníme „středovou1* tabulku n x n (ta má černá rohová pole) a pak
začerníme každý ze čtyř vyznačených obdélníků o rozměrech (n 4-3) x 3
nebo 3 x (n + 3). (To je možné podle závěru předchozího odstavce, neboť
pro liché n je číslo n + 3 dělitelné dvěma.)

n + 33

3

n

n + 3
n n

n + 3

n

3

n + 3 3

Obr. 30

Závěr: Celou tabulku můžeme začernit, právě když je číslo n tvaru
6k, 6k + 1 nebo 6k — 1 pro nějaké celé k.
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A - II - 4

Podle obr. 31 zaveďme označení kA{SA,rA), кв(8в, гв), ТА G АВПкА,
Тв £ AS П кв, <р — ^\<ASM\. Protože polopřímky SSa, SSb jsou
osami vedlejších úhlů ASM a BSM, je úhel SaSSb pravý a platí p> —

= \<ASSa\ = \<SSbTb\.

ВA TA S TB

Obr. 31

Přímka s požadovanou vlastností existuje, právě když kolmé průměty
kružnic ка, кв na přímku AB mají nejvýše jeden společný bod. Těmito
průměty jsou úsečky se středy TA, Тв a jejich délky jsou 2rA а 2гд, takže
podmínka z předchozí věty je ekvivalentní nerovnosti

\TATB\ ^ rA+rB■ (1)

Označme ještě r poloměr polokružnice к. Pak |55д| = r — ra, IS-SbI =
= г — гв a z pravoúhlých trojúhelníků SASTA, SbSTb plynou vyjádření

га = (r - rA) sin </?, \TAS\ = (r - rA) cos p>,

гв — (r ~ гв) cos <p, \TBS\ = (r - rB) sin v?,

z nichž snadným výpočtem dostaneme

r sin <p rcosp>
\TAS\ =rA =

1 + sin (p
r sin ip

1 + sin p>
r cos <p \TBS\ =rB =

1 + cos p> ’ 1 + cos p>
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Protože \ТАТв\ = \TAS\ + \TbS\, můžeme čtyři poslední vztahy dosadit
do zkoumané nerovnosti (1) a tu dále ekvivalentně upravovat:

r siny?r siny? r cos <pr cos (f >
1 + sin ip ' 1 + cos ip 1 + sin (p 1 + cos ip

cos </?(l + cos ip) + sin (p( 1 + sin <p) ^ sin <p{l + cos (p) + cos </?( 1 + sin <p)
1^2 sin (p cos ip,

sin2</? ^ 1.

Poslední nerovnost zřejmě platí, takže platí i nerovnost (1) a úloha je
vyřešena.

Jiné řešení. Bez újmy na obecnosti budeme předpokládat, že pro

poloměry obou kružnic platí гА<гв (pro shodné kružnice ка, кв je
tvrzení úlohy triviální), což je ekvivalentní nerovnosti \SSa\ > I^bI-
Protože polopřímky SSa, SSb jsou osami vedlejších úhlů ASM a BSM,
je úhel SaSSb pravý (obr. 32). V pravoúhlém trojúhelníku SaSSb pro
úhel proti delší odvěsně SAS tudíž platí |<5,4«S'#51 > 45° a naopak

< 45°. To navíc znamená, že i úhel SaSA, který je menší než
úhel SbSaS (neboť rA < гв), je menší než 45°, neboli úhel ASM je ostrý.

Označme N průsečík středné SaSb obou kružnic s tečnou SM a se-

strojme druhou vnitřní společnou tečnu S'N (obr. 32), kde S' je bod,
v němž zmíněná tečna protne úsečku AS (obě tečny jsou souměrně sdru-
ženy podle středné SaSb)- Její dotykový bod s kružnicí кв označme T
a bod dotyku téže kružnice s první tečnou SM označme U.

Zaměřme se teď na trojúhelník S'SN, který má u vrcholu S úhel
shodný s úhlem ASM, jenž je, jak jsme již zdůvodnili, ostrý. Ukážeme
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nyní, že také úhel u vrcholu S' je ostrý. Ze zřejmé shodnosti dvojic úhlů
S'NS, TSbU a S'SN, TbSbU (jejich ramena jsou navzájem kolmá) pro
součet úhlů u vrcholu S a N zkoumaného trojúhelníku S'SN totiž plyne

\<S'NS\ + \<S'SN\ = \<TSBU\ + \<TBSBU\ = 2\<SASBS\ > 90°.

To znamená, že přímka obsahující výšku z vrcholu N v trojúhelníku
S'SN má požadovanou vlastnost: odděluje obě kružnice kA, kB a je
kolmá na AB.

A - III - 1

Odečtením první rovnice od druhé dostaneme

(x3-y3)-(x2-
(x - y)(x2 + xy + y2

Druhý činitel je kladný pro jakákoliv reálná čísla x a y, neboť

x2 + xy + y2 - x - у + 1 = \{x + y)2 + \{x - l)2 + \(y - l)2

y2) + (x-y) = 0,
— x — у + 1) = 0.

a základy všech tří druhých mocnin nemohou být rovny nule současně.
Proto pro každé řešení (x, y) dané soustavy musí platit x — у = 0 neboli
у = x, což redukuje soustavu na jedinou rovnici x + x2 — x3 s kořeny
x\ = 0 a .t2,3 = |(1 ± л/5)-

Řešeními jsou právě tři dvojice (x,y), kde у — x € {0, i(l + \/5),
5(1 _ V5)}.

Jiné řešení. Vyjádření у = x3 — x2 z druhé rovnice dosadíme do
rovnice první. Dostaneme rovnici x + (x3 — x2)2 = (x3 — x2)3, po úpravě

x9 — 3x8 + 3x7 — 2x6 + 2x5 — x4 — x = 0.

To je sice rovnice 9. stupně, ale pomůže nám taková úvaha: případu x = у

odpovídá jediná rovnice x + x2 = x3, proto získaný mnohočlen stupně 9
musí být dělitelný mnohočlenem x3—x2—x. Vydělením přejdeme к rovnici
v součinovém tvaru

(x3 2
- x)(x6 - 2x5 + 2x4 - 2x3 + 2x2 x + 1) = 0.— x

Druhý činitel je však kladný pro jakékoliv reálné číslo x, neboť

x6 — 2x5 + 2x4 — 2x3 + 2x2 — x +1 = (x3 x2)2 + (x2 x)2 + (x-|)2 + |.
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První složka x každého řešení (x, y) proto musí splňovat rovnici x3 — x2 —
— x = 0. Zbytek řešení je nasnadě.

Jiné řešení. Ještě jedním způsobem dokážeme, že x = y. Připusťme,
že existuje řešení s vlastností x > у (opačný případ je symetrický). Pak
z rovností x = у3 — у2 а у = x3 — x2 plyne у3 — у2 > у a x3 — x2 < x,

tedy P(y) > 0 a P[x) < 0, kde P je mnohočlen P(x) = x3 — x2 — x
s rozkladem P(x) = x{x — x2)(x — 2:3), přitom x2 = |(1 + л/5) > 0
a 13 — J(1 — л/5) < 0. Nerovnosti P(y) > 0 a P{x) < 0 znamenají,
že platí у G (хз,0) U (2:2,00) a x G (—00,2:3) U (0,2:2), což s ohledem na
x > у lze upřesnit na у G (2:3, 0) a x G (0,2:2). Přímo z у < 0 ovšem plyne
nerovnost y3 — y2 < 0, tedy x < 0, což je ve sporu s tím, že x G (0,2r2).

Jiné řešení. Opět dokážeme sporem, že x = y. Připusťme, že existuje
řešení s vlastností x > у (opačný případ je symetrický). Taková čísla x,
у jsou zřejmě nenulová (z x = 0 plyne у = 0 a naopak), takže splňují
jednu z podmínek x>y>0,x>0>y nebo 0 > x > y.

Je-li x > у > 0, pak z vyjádření x = y2(y — 1) plyne у > 1, takže
x2 > у2 > 1 a zároveň x — 1 > у — 1. Vynásobením těchto nerovností
dostaneme x2{x — 1) > y2{y — 1) neboli у > x, a to je spor.

Je-li x > 0 > у, pak у3 < 0 a y2 > 0, takže y3 — y2 < 0 neboli x < 0,
což je opět spor. A konečně je-li 0 > x > y, pak x3 > y3 a, x2 < y2, takže
x3 — x2 > y3 — y2 neboli у > x, a to je i tentokrát spor.

A - III - 2

a) Bod A může být na kružnici k\ vybrán libovolně, body В a C
jsou pak nutně body dotyku obou polopřímek s počátkem A, které jsou
tečné ke kružnici k2 (obr. 33). Vzhledem к jejich symetrii je ABC rovno-
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ramenný trojúhelník souměrný podle přímky AST Středem kružnice
jemu vepsané je průsečík S úsečky AS2 s kružnicí Tento bod S totiž
leží nejen na ose úhlu BAC, ale také na osách obou (souměrně sdruže-
ných) úhlů ABC a ACB, protože podle věty o obvodovém a úsekovém
úhlu platí \<ACS\ = \<CBS\
ceně, zvolíme-li na kružnici libovolně bod S tak, aby polopřímka S2S
proťala kružnici ki v aspoň jednom bodě, který označíme A a ke kterému
sestrojíme podle první věty řešení vyhovující trojúhelník ABC, bude po-
dle předchozích úvah bod S středem kružnice vepsané právě takovému
trojúhelníku ABC. Hledanou množinou je tedy množina průsečíků kruž-
nice k2 se všemi úsečkami S2A, kde bod A probíhá celou kružnici k\. Je
to zřejmě kratší z obou oblouků (včetně krajních bodů) kružnice k2, které
na ní vytínají obě polopřímky s počátkem S2,jež se dotýkají kružnice k\.

b) Dokážeme, že hledanou množinou je kružnice, která je obrazem
kružnice A^ ve stejnolehlosti se středem S2 a kladným koeficientem

symetrie \$:CBS\ — \%.BCS\. Obrá-a ze

2r\A -

|SiS2p-r-f
Vysvětlíme totiž, proč ortocentrum V každého uvažovaného trojúhel-
niku ABC, jež z důvodu osové souměrnosti leží na polopřímce S2A (díky
ostrým úhlům ABC, ACB leží body A, V ve stejné polorovině s hra-
ničí BC), je ve zmíněné stejnolehlosti obrazem druhého průsečíku Q
polopřímky S2A s kružnicí k\, který — stejně jako první průsečík A —

probíhá celou kružnici k\ (v případě, kdy se polopřímka S2 A dotýká kruž-
nice k\, klademe Q — A). Potřebný vztah IS2V] : IS2QI — A dostaneme
vydělením rovností

|S2A| • |S2Q| = |SiS2|2 -r2 a ||S2y| • |S2j4| = r2

které nyní zdůvodníme (a tak bude celý důkaz hotov).
První rovnost vyjadřuje (kladnou) mocnost bodu S2 ke kružnici k±.

Druhá rovnost plyne z Eukleidovy věty o odvěsně S2B pravoúhlého troj-
úhelníku S2BA, protože střed P úsečky BC je nejen patou výšky z vr-
cholu A, ale také středem kosočtverce CS2BV, tudíž

r22 = |S2B|2 = \S2P\ ■ |S2A| = i|s2^| ■ |S2A|.

Poznámka. Střed P úsečky BC je zřejmě obrazem bodu A v kruhové
inverzi i dle kružnice k2, zatímco odpovídající průsečík výšek V troj-
úhelníku ABC je zas obrazem bodu P ve stejnolehlosti x(-Sl2,2). Protože
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obrazem kružnice k\, která určitě neprochází bodem S2, je v uvedené
kruhové inverzi kružnice, je hledanou množinou kružnice, která je obra-
zem kružnice k\ ve složeném zobrazení 1 o x.

A - III - 3

Ukážeme, že všechny vyhovující dvojice (a, 6) jsou tvaru (1,6), kde 6 je
libovolné celé kladné číslo.

Označme X = a2 + ab + 1 = a(a + 6) + 1 a Y = 62+a6 + a-|-6—1 =
= (6 + l)(a + 6) — 1. Dělí-li číslo X číslo Y, dělí i číslo

(6 + 1)X - aY = (6 + l)[a(a + 6) + 1] - a[(6 + l)(a + 6) - 1] =

= a + 6 + 1,

které tudíž jako kladný násobek čísla X splňuje nerovnost

a -f- 6 -f- 1 ^ X — 0? ab -f-1.

Odtud po zrušení jednotek a dělení číslem a + 6 dostaneme 1 ^ a, tedy
nutně a — 1.

Naopak, je-li a = 1, je X = Ь + 2 a Y = 62 + 26 = 6(6 + 2), takže
X I Y platí.

A - III - 4

a) Příkladem hledaného rozkladu je rovnost

8 002 = 3 333 + 999 + 888 + 777 + 666 + 555 + 333 + 99 + 88 + 77 +

+ 66 + 55 + 44 + 22.

V druhé části ukážeme, že je to jediný vyhovující rozklad čísla 2 008 na 14
sčítanců a že žádný takový rozklad na menší počet sčítanců neexistuje.

b) Číslo tvaru aaaa, resp. aaa, resp. aa je a-násobkem čísla 1111,
resp. 111, resp. 11. Proto každý uvažovaný rozklad čísla 8 002 můžeme
po částečném sečtení („stejnomístných“ sčítanců) zapsat ve tvaru

8002 = 1 lllk + 111/ + lim.

kde k, /, m jsou celá nezáporná čísla nepřevyšující hodnotu součtu 1 +
+ 2 +... + 9 = 45 (neboť sčítaná „stejnomístná“ čísla mají být navzájem
různá).
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Uvedenou rovnost přepíšeme do tvaru

8002 = 727 • 11 + 5 = ll(101fc + 10l + m) + l

727 = 101/c + 10/ + m +
l - 5

11

Odtud vychází (s ohledem na / 45), že / = 11 g + 5, kde g € {0,1, 2, 3}.
Dostáváme tak rovnost

677 = 101 • 6 + 71 = 101 (/c + q) + lOg + m,

z níž zřejmě plyne k + q = 6 a 10g + ra = 71. Tato soustava má za daných
podmínek jediné řešení g = 3, к = 3 a m = 41. Pro / tak vychází l — 38.

К vytvoření hledaného rozkladu zbývá rozložit nalezená čísla к, /, m
na součet jednoho či několika různých jednomístných sčítanců. Vzhledem
к tomu, že na výběr máme právě devět sčítanců 9+8+7+6+5+4+3+2+ 1
se součtem 45, bude zřejmě jednodušší vypsat rozklady pro k, 45 — /
a 45 — m (rozklady čísel / a m pak dostaneme vynecháním nalezených
sčítanců ze součtu 1 + 2 + ... + 9):

k = 3 = 1 + 2,
45 — / = 7 = l+ 6 = l + 2 + 4 = 2 + 5 = 3 + 4,

45 — m = 4= l + 3.

Našli jsme všech 2-5-2 možných rozkladů čísla 8002, jež mají poža-
dováné vlastnosti a z nichž každý má alespoň 1+6 + 7 = 14 sčítanců,
přičemž rozklad na 14 sčítanců je jediný a byl uveden v řešení části a).

A - lil - 5

Ukážeme, že hledané největší t je rovno 4/11 hod nezávisle na poměru к
délek ručiček.

Označme c kružnici ciferníku, S její střed a M konec malé ručičky
(obr. 34). Vysvětlíme nejprve, proč při pevné poloze bodu M existují
právě dva rovnostranné trojúhelníky MXY s vrcholy X,Y na kružnici c.
Protože přímka SM musí být osou tětivy XY, a tedy i osou úhlu XMY,
svírají obě přímky MX, MY s přímkou SM úhel 30°. Proto je troj-
úhelník MXY totožný s jedním z rovnostranných trojúhelníků MViV2,
MV3V4 sestrojených na obr. 34.
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Body Vi rozdělují kružnici c na čtyři oblouky. Obloukům V2V3 a V4V1
příslušejí obvodové úhly V2V4V3, V1V3V4 velikosti 60°. Proto podle věty
o obvodovém a středovém úhlu platí první dvě z rovností

\<V2SV3\ = \<V4SV!\ = 120° a |<V1(S'V2| + \<V3SV4\ = 120°

třetí rovnost je jejich důsledkem (dopočítáním podle plného úhlu u vr-
cholu S). Plyne z ní, že oba středové úhly Vi-SV2, V3SV4 jsou menší
než 120°.

Můžeme si představit, že malá ručička hodinek je nehybná a velká
ručička se kolem středu S otáčí úhlovou rychlostí (360 — 30)° = 330° za
hodinu. Jak jsme zjistili, zkoumaný jev nastane, právě když konec V velké
ručičky splyne s jedním ze čtyř bodů Vb Mezi dvěma po sobě jdoucími
jevy se proto velká ručička otočí o úhel, který má ve dvou případech
velikost 120° a ve zbylých dvou případech velikosti |<V’iS'V_2| a I^V^SV^I,
které jsou menší než 120° (a závisí na poměru к). Nejdelší doba t je tedy
na poměru к nezávislá a je rovna 120/330 hod.

A - III - 6

Ukážeme, že hledaná čísla jsou p=l/4ag = 4. Stačí pouze zdůvodnit,
ze q — 4 (pak totiž p — 1/4, neboť záměna stran a, b mění hodnotu
zkoumaného zlomku na převrácené číslo).
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Podle trojúhelníkových nerovností platí

< 6 + ta a + ^6.
První nerovnost vynásobíme dvěma, druhou třemi a pak je sečteme:

a + tb < (26 + 2ía) + (2řa + |6) — ^6 + 4ítt < 4(6 + ía).

Požadovanou vlastnost má tedy každé číslo q ^ 4; ukážeme ještě, že
ji nemá žádné číslo q < 4. К tomu uvážíme rovnoramenný trojúhelník
ABC, ve kterém a = с = 1 а 6 € (0,2) (takový trojúhelník existuje pro
libovolné 6 z uvedeného intervalu). Z obecných vzorců

262 + 2c2 - a2 2a2 + 2c2 — 62í2 =La ll =4 4

dostaneme ta — \yj\ + 262 a tb = |\/4 — 62, odkud

а + tb 2 + \/4 — 62
6 + řa “ 26 +Vl + 262='

Poslední zlomek může být pro malé kladné 6 libovolně blízký číslu 4.
Vysvětlíme to takto: zvolíme-li £ > 0, pak pro všechna dostatečně malá
kladná 6 současně platí

\/4 — 62 > 2 — e, 26 < £ a \/l + 262 < 1 + £,

takže
a + tb 4 — £

6 + ta 1 + 2£

a je snadné vybrat £ > 0 tak, aby byl poslední zlomek větší než jakékoliv
předem zvolené q menší než 4. Stačí, aby platilo

4-q
£ <

1 + 2 q
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Kategorie P

Texty úloh

P - I - 1

O zdánlivém kopci
Franta a Pepík se chystali na výlet. Vymysleli si trasu, kudy spolu půjdou,
potom každý vytáhnul svoji mapu a začal si v ní trasu prohlížet. Některé
body, kterými trasa vedla, měly v mapách vyznačenu nadmořskou výšku.

„To je zajímavé," řekl po chvíli Franta. „Když se dívám jen na nad-
mořské výšky bodů, kterými budeme procházet, vypadá to, že půjdeme
jenom přes jeden kopec — nejprve nahoru a potom dolů."

„Ale kdepak, to není pravda," podivil se Pepík.
Za chvíli zjistili, kde vzniknul problém: měli různě přesné mapy. Ně-

které nadmořské výšky bodů, které byly na Pepíkově mapě vyznačeny,
na Frantově mapě chyběly.

Soutěžní úloha. Napište program, který dostane na vstupu seznam

nadmořských výšek z Pepíkovy mapy a zjistí, kolik nejvýše z nich může
být vyznačeno i na Frantově mapě.

Formát vstupu: První řádek vstupu obsahuje jedno celé číslo N
počet těch bodů na trase výletu, které mají{1 S N S 100 000)

na Pepíkově mapě vyznačenou nadmořskou výšku. Další řádky obsahují
celkem N celých čísel z rozsahu 1 až 1 000 000 000 — nadmořské výšky
těchto bodů (v nějakých vám neznámých jednotkách). Výšky jsou uve-
deny v pořadí, jak po sobě následují na trase výletu.

Formát výstupu: Výstupem bude jediné celé číslo К — největší počet
nadmořských výšek z Pepíkovy mapy, které mohly být vyznačeny i na
Frantově mapě.

Jestliže ai,..., ак jsou výšky vyznačené na Frantově mapě, pak musí
splňovat následující podmínku: pro nějaké i z množiny {1,... ,K} musí
platit Vj e {1,..., i — 1}: a,j < dj+\ a zároveň Vj € {г,..., К — 1}:
CLj CLj _j_ 2 •
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Příklad:

. výstup:vstup:
912

112 247 211 209 244

350 470 510 312 215

117 217

Jedna možnost, jak mohly vypadat
nadmořské výšky na Frantově mapě:
112, 211, 244, 350, 470, 510, 312, 215, 117

P - I - 2

Rezervace místenek

„V horách se našlo zlato!“ šeptali si lidé v širokém okolí už několik týd-
nů. Ti s dobrodružnější povahou si už balili věci a mířili přímo do hor,
do legendami opředené oblasti zvané Horní Klondík.

Když ale Horní Klondík zaplavila vlna nových zlatokopů, nastal neče-
kaný problém. Jediný místní vláček, který v Klondíku měli, byl najednou
tak přecpaný, že se do něj polovina zájemců ani nevešla. A nedivte se,
že zlatokopa, který se žene za co nejvýhodnější parcelou, něco takového
pořádně rozzlobí.

Když už se zdálo, že zanedlouho dojde na každé železniční stanici
ke krveprolití, dostali železničáři spásonosný nápad. Budou na vláček
prodávat místenky.

Soutěžní úloha. Napište program, který bude zpracovávat rezervace
míst na jednu jízdu vlaku. Trať vlaku má N +1 stanic, které si očíslujeme
od 0 do A v pořadí, jak na trati leží. Ve vlaku je M míst, takže mezi
každou dvojicí po sobě následujících stanic může jet vlakem nejvýše M
zlatokopů.

Váš program musí postupně zpracovat několik požadavků na rezer-
vaci míst. Každý požadavek je tvaru „x lidí chce jet ze stanice у do
stanice zP Pokud je ještě na každém úseku trati mezi stanicemi у a. z
ve vlaku aspoň x míst volných, váš program takovýto požadavek přijme,
v opačném případě ho odmítne.

Formát vstupu: První řádek vstupu obsahuje tři celá čísla N, M a P
(1 5ří N, M, P žj 100 000) — počet úseků trati, počet míst ve vlaku a počet
požadavků na rezervaci.

Následuje P řádků, každý z nich popisuje jeden požadavek na rezer-
vaci v pořadí, v jakém byly tyto požadavky zadány. Přesněji, г-tý z těchto
řádků obsahuje tři celá čísla Xi, уi, Z{ oddělená mezerami (1 ^ Xi M,
0 ~ Pí < zi = Af). Význam těchto hodnot byl popsán výše.
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Formát výstupu: Pro každý požadavek vypište na výstup jeden řádek
a na něm buď řetězec přijat, jestliže příslušný požadavek bylo ještě
možné splnit, nebo řetězec odmítnut, pokud už ve vlaku nebylo dost
volných míst.

Příklad:

vstup:
4 6 621 4

2 13

3 2 4

3 1 2

6 0 1

4 3 4

Po přijetí prvních dvou požadavků víme, že v úsecích mezi stanicemi 1
a 2 a mezi stanicemi 2 a 3 zůstanou už jen dvě volná místa. Proto musíme
odmítnout následující dvě trojčlenné skupiny, které chtějí cestovat i na
těchto úsecích tratě. Poslední dva požadavky opět můžeme splnit. U prv-
ního z nich je to zřejmé, u druhého nám ve stanici 3 vystoupí dostatek
lidí na to, aby se na poslední úsek trati uvolnila přesně potřebná čtyři
místa.

výstup:
přijat
přijat
odmítnut

odmítnut

přijat
přijat

P - I - 3

Fibonacciho soustava

Fibonacciho posloupnost vypadá následovně:

0,1,1,2,3,5,8,13,21,34,55,89,...

Sestrojíme ji tak, že prvními dvěma členy posloupnosti jsou 0 a 1 a každý
následující člen posloupnosti je součtem dvou předcházejících. Matema-
ticky zapsáno:

Fq - 0,

*i = l,

Fn+2 = Fn+1 + Fri

Podívejme se nyní na to, jak fungují poziční číselné soustavy. Poziční
číselná soustava je určena dvěma údaji: množinou používaných cifer a po-

sloupností, která pro každou pozici v zápisu čísla udává hodnotu, jíž se

příslušná cifra násobí.

(Vn Sý 0).
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Například naše desítková soustava používá množinu cifer {0,1,
2, ...,9} a jednotlivé pozice v čísle mají hodnoty (zprava doleva) 1,
10, 100, 1000, ...

Fibonacciho číselná soustava je poziční číselná soustava, která po-
užívá pouze cifry 0 a 1 a v níž jsou hodnoty jednotlivých pozic po-

stupně rovny členům Fibonacciho posloupnosti (počínaje číslem F2 = 1).
Tedy například zápis 10011 ve Fibonacciho soustavě představuje číslo
l-8 + 0-5 + 0-3 + l-2 + l-l = ll.

Na rozdíl od běžných číselných soustav ve Fibonacciho soustavě ne-

mají některá čísla jednoznačný zápis. Například také zápis 10100 před-
stavuje číslo 11.

Soutěžní úloha.

a) (3 body) Zápis čísla ve Fibonacciho soustavě nazveme pěkný, jestliže
se v něm nikde nevyskytují dvě po sobě jdoucí jedničky. Dokažte, že
každé přirozené číslo má ve Fibonacciho soustavě právě jeden pěkný
zápis. Napište program, který ze vstupu přečte přirozené číslo N a vy-

píše jeho pěkný zápis.
b) (7 bodů) Napište program, který pro daná к, А а В spočítá, kolik

čísel z množiny {A, A + 1,..., B} má ve svém pěkném zápisu právě
к jedniček.
Formát vstupu: V části a) je na vstupu jediné přirozené číslo Af (1 5jí

й N S 1000 000 000).
V části b) jsou na vstupu tři přirozená čísla к, А а В (1 ^ к ^ 30,

1 ^ a < в <; íooooooooo).
Formát výstupu: V části a) vypište na jeden řádek řetězec nul a jed-

niček, který představuje pěkný zápis čísla N.
V části b) vypište jedno celé číslo — počet čísel ze zadaného intervalu,

která mají ve svém pěkném zápisu právě к jedniček.
Příklady pro část a):
vstup 1: výstup 1:

1010011

výstup 2:
1010001000000000100010010

vstup 2:
174591

Příklady pro část b):
vstup 1:
1 4 13

(Pro к = 1 je výstupem počet Fibonacciho čísel v daném rozsahu.
V zadaném rozsahu leží Fibonacciho čísla 5, 8 a 13.)

výstup 1:
3
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výstup 2:vstup 2:
2 4 13

vstup 3:
10 102000 103000

6

výstup 3:
86

P - I - 4

Překládači stroje
V tomto ročníku olympiády budeme pracovat s překládacími stroji.
Ve studijním textu uvedeném za zadáním úlohy jsou tyto stroje popsány.

Soutěžní úloha.

a) (1 bod) Všimněte si překládačích strojů fiaCz příkladů ve studijním
textu. Tyto dva stroje zjevně provádějí překlad „opačnými směry“.
Mohli bychom proto očekávat, že platí následující tvrzení:
Nechť M je libovolná (třeba i nekonečná) množina, jejímiž prvky jsou
nějaké řetězce písmen a, e a, i. Potom C(B(M)) = M. Slovně popsáno:
Když vezmeme množinu M, přeložíme ji pomocí stroje В a výsledek
přeložíme pomocí C, dostaneme původní množinu.
Pokud toto tvrzení skutečně platí, dokažte ho. Pokud ne, najděte
protipříklad.

b) (1 bod) Totéž jako v předcházející části, jen M obsahuje řetězce tvo-
řené znaky - a • a zajímá nás, zda musí platit B(C(M)) = M.

c) (3 body) Řekneme, že řetězec je zajímavý, jestliže obsahuje pouze

písmena a a b, přičemž písmen a je dvojnásobný počet než písmen
b. Nechť X je množina všech zajímavých řetězců. Tedy například
aaabab £ X, ale baba £ X.
Nechť Y je množina všech řetězců, které obsahují nejprve několik
písmen a a za nimi trojnásobné množství písmen b. Tedy například
abbb £ Y, ale aaabab ^ Y.
Sestrojte překládači stroj, který přeloží X na Y.

d) (5 bodů) Na začátku máme množinu Mi, jež obsahuje všechny takové
řetězce tvořené z písmen a, 6, které obsahují stejný počet písmen a

jako b. Tedy například abbbaa £ Mi, ale aabab ^ M\.
Nové množiny můžeme sestrojovat následujícími operacemi:

> překladem nějaké již sestrojené množiny nějakým strojem (mů-
žeme použít pokaždé jiný stroj),

> sjednocením dvou již sestrojených množin,
o průnikem dvou již sestrojených množin.
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Provedením co nejmenšího počtu operací sestrojte množinu G, která
obsahuje právě všechny řetězce, v nichž je nejprve několik písmen a,

potom stejný počet písemen b, a nakonec stejný počet písmen c. Tedy
například aabbcc £ G, ale abcc ^ G, a ani bac G.

Překládači stroj přijímá na vstupu řetězec znaků. Tento řetězec po-

stupně čte a podle předem zvolené soustavy pravidel (tedy podle svého
programu) občas nějaké znaky zapíše na výstup. Když stroj zpracuje celý
vstupní řetězec a úspěšně ukončí svůj výpočet, vezmeme řetězec znaků
zapsaný na výstup a nazveme ho překladem vstupního řetězce.

Výpočet stroje nemusí být jednoznačně určen. Jinými slovy, soustava
pravidel může někdy stroji umožnit, aby se rozhodl o dalším postupu
výpočtu. V takovém případě se může stát, že některý řetězec bude mít
více různých překladů.

Naopak, může se stát, že v určité situaci se podle daných pravidel
nebude moci v překladu pokračovat vůbec. V takovém případě se může
stát, že některý řetězec nebude mít vůbec žádný překlad.

Formálnější definice překládacího stroje. Každý překládači stroj pra-

cuje nad nějakou předem zvolenou konečnou množinou znaků. Tuto mno-
žinu znaků budeme nazývat abeceda a značit E. V soutěžních úlohách
bude vždy E známa ze zadání úlohy. Abeceda nebude nikdy obsahovat
znak $, ten budeme používat к označení konce vstupního řetězce.

Stroj si může během překladu řetězce pamatovat informaci konečné
velikosti. Formálně tuto skutečnost definujeme tak, že stroj se v každém
okamžiku překladu nachází v jednom z konečně mnoha stavů. Nutnou
součástí programu překládacího stroje je tedy nějaká konečná množina
stavů, v nichž se stroj může nacházet. Tuto množinu označíme K. Kromě
samotné množiny stavů je také třeba uvést, ve kterém stavu se stroj
nachází na začátku každého překladu. Tento stav nazveme počáteční stav.

Program stroje se skládá z konečného počtu překladových pravidel.
Každé pravidlo má tvar čtveřice (p, u, v, q), kde p,q 6 К jsou nějaké dva
stavy a u,v jsou nějaké dva řetězce znaků z abecedy E.

Stavy p a q mohou být i stejné. Řetězec и může být tvořen jediným
znakem S. Řetězce и a, v mohou být i stejné. Některý z těchto řetězců
může být případně prázdný. Aby se program lépe četl, budeme místo
prázdného řetězce psát symbol e.

Překladové pravidlo má následující význam: „Když je stroj právě ve
stavu p a dosud nepřečtená část vstupu začíná řetězcem u, může stroj
tento řetězec ze vstupu přečíst, na výstup zapsat řetězec v a změnit
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svůj stav na q.“ Všimněte si, že pravidlo tvaru (p,£,v, q) můžeme použít
vždy, když se stroj nachází ve stavu p, bez ohledu na to, jaké znaky ještě
zůstávají na vstupu.

Ještě potřebujeme stanovit, kdy překlad úspěšně skončil. V první řadě
budeme požadovat, aby překládači stroj přečetl celý vstupný řetězec.
Kromě toho umožníme stroji „odpovědět“, zda se mu překlad podařil
nebo ne. To zařídíme tak, že některé stavy stroje označíme jako koncové
stavy. Množinu všech koncových stavů budeme značit F.

Formální definice překládacího stroje. Překládači stroj je uspořádaná
pětice (К, X, P, qo, F), kde X а К jsou konečné množiny, go £ К, F С К
a P je konečná množina překladových pravidel popsaných výše. Přesněji,
nechť X* je množina všech řetězců tvořených znaky ze X, potom P je
konečná podmnožina množiny К x (X* U {$}) x X* x К.

(Pro každé q € К budeme množinu pravidel, jejichž první složkou
je q, nazývat „překladová pravidla ze stavu g“.)

Chceme-li definovat konkrétní překládači stroj, musíme uvést všech
pět výše uvedených objektů.

Když už máme definován konkrétní stroj A = (К, X, P, qo, F), mů-
žeme určit, jak tento stroj překládá konkrétní řetězec. Uvedeme nejprve
formální definici a potom ji slovně vysvětlíme.

Množina platných překladů řetězce и překládacím strojem A je:

A(u) = ju 3n ^ 03(pi,ubui,ri),..., (pn,u
(Vi G {1,..., n - 1} : Vi = pi+1) A pi = q0 A rn E F A

A 3k ^ 0: U\U2 ... un = и A V\V2 ... vn = v |.

^ni Tn) € P •n 4

к

Definice stanoví, kdy je řetězec v překladem řetězce u. Vysvětlíme si
slovně význam jednotlivých řádků definice:

t> První řádek říká, že aby se dalo и přeložit na v, musí existovat nějaká
posloupnost překladových pravidel, kterou při tomto překladu použi-
jeme. Další dva řádky popisují, jak tato posloupnost musí vypadat,

o Druhý řádek zabezpečuje, aby stavy v použitých pravidlech byly
správné: První pravidlo musí být pravidlem z počátečního stavu,
každé další pravidlo musí být pravidlem z toho stavu, do něhož se

stroj dostal použitím předcházejícího pravidla.
Navíc stav, v němž se bude stroj nacházet po skončení výpočtu, musí
být koncový.
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> Poslední řádek popisuje řetězce, které stroj při použití dotyčných pře-
kládových pravidel čte a zapisuje.
Řetězec, který při použití těchto pravidel stroj přečte ze vstupu, musí
být skutečně zadaným řetězcem u, případné může být zprava doplněn
vhodným počtem znaků $.
Řetězec, který stroj zapíše na výstup, musí být přesně řetězcem v.

К čemu budeme používat překládači stroje? Překládači stroje nám
budou sloužit к získání překladu jedné množiny řetězců na jinou množinu
řetězců. Jestliže A je překládači stroj a M C £* nějaká množina řetězců,
potom překlad množiny M strojem A je množina

A(M) = U A(n).
ием

Jinými slovy, výslednou množinu A(M) sestrojíme tak, že vezmeme

všechny řetězce z M a pro každý z nich přidáme do A(M) všechny jeho
platné překlady.

Přiklad 1: Mějme abecedu £ = {0,..., 9}. Nechť M je množina všech
řetězců, které představují zápisy kladných celých čísel v desítkové sou-
stavě. Sestrojíme překládači stroj A, pro který bude platit, že překladem
této množiny M bude množina zápisů všech kladných celých čísel, která
jsou dělitelná třemi.

ŘEŠENÍ. Nejjednodušší bude prostě vybrat z M ta čísla, která jsou
dělitelná třemi. Náš překládači stroj bude kopírovat cifry ze vstupu na

výstup, přičemž si bude pomocí stavu pamatovat, jaký zbytek po dělení
třemi dává dosud přečtené (a zapsané) číslo. Nachází-li se po dočtení
vstupu ve stavu odpovídajícím zbytku 0, přejde do koncového stavu.

Formálně A bude pětice (К, E, P, 0, F), kde К — {0,1, 2, end}, F =
= {end} a překladová pravidla vypadají následovně:

P — {(Х,У,У,2) | x £ {0,1,2} Л у € £ Л
U {(0, $, £, end)}.

(Юх + у) mod 3} U2 —

Příklad 2: Mějme abecedu £ = (a, e,z,*,-}. Sestrojíme překládači
stroj Б, pro který bude platit, že překladem libovolné množiny M, která
obsahuje pouze řetězce z písmen а, e а г, bude množina stejných řetězců
zapsaných v morseovce (bez oddělovačů mezi znaky). Zápisy našich pís-
men v morseovce vypadají následovně: a je • -, e je • a i je
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Například množinu M = {ae,eea,ia} by náš stroj měl přeložit na
množinu {•-•,•••-}. (Všimněte si, že řetězce eea a ia mají v morseovce
bez oddělovačů stejný zápis.)

ReŠENÍ. Překládači stroj В bude číst vstupní řetězec po znacích
a vždy zapíše na výstup kód přečteného znaku.

Formálně В bude pětice (K, E, P, (v), F), kde К = {T}, F
a překladová pravidla vypadají takto:

P = {(9, a, . 9), (9, e, 9), (9, г, 9)}.

Všimněte si, že nepotřebujeme nijak zvlášť kontrolovat, zda jsme na
konci vstupu. Během celého překladu je totiž stroj v koncovém stavu,
takže jakmile přečte poslední znak ze vstupu, bude vytvořený překlad
platný.

Příklad 3\ Mějme abecedu E = {а,е,г,*,-}. Sestrojíme překládači
stroj C, pro který bude platit, že překladem libovolné množiny M, která
obsahuje pouze řetězce tvořené znaky • a - , bude množina všech řetězců
z písmen a, e a i, jejichž zápisy v morseovce (bez oddělovačů mezi znaky)
jsou obsaženy v množině M. Například množinu M ~ {•-•,•••-} by
náš stroj měl přeložit na {ае,ееа,га}.

Ř.EŠENÍ. Našemu překládacímu stroji dáme možnost rozhodnout se
v každém okamžiku překladu, že bude číst kód nějakého písmena a zapíše
na výstup toto písmeno. Potom každé možnosti, jak lze rozdělit vstupní
řetězec na kódy písmen, bude odpovídat jeden platný překlad.

Formálně C bude pětice (К, E, P, <0, F), kde К = {<>}, F = {<0}
a překladová pravidla vypadají následovně:

^={«>,•-,0,0), (0,*,e,0), (0, г, 0)}-

Ukážeme si, jak mohl probíhat překlad řetězců z výše uvedené mno-

žiny M. Existují tyto tři možnosti:
> (0, • —, a, 0), (0, •, e, 0)
> «>,••,b0), (<>,• -,a,0)
o (0,»,e,0), (0,«,e,0), (0, »-,a,0)

Kdybychom zkusili pro libovolný vstupní řetězec z M použít pře-
kládová pravidla v jiném pořadí - např. pro vstup • • • - použít třikrát
pravidlo (<0>, •, e, 0) - nepodaří se nám dočíst vstupní řetězec až do konce.

Příklad 4: Mějme abecedu E = {а,Ь, c}. Nechť množina X obsahuje
právě všechny řetězce, v nichž je obsažen stejný počet znaků a a b. Tedy
například abbccac €ř X, ale cbaa ^ X.
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Nechť množina Y obsahuje právě všechny řetězce, které neobsahují
žádné a, neobsahují podřetězec bc, a písmen c je dvakrát více než pís-
men b. Tedy například ccccbb 6 Y, ale cccbcb $ Y a acacba ^ Y.

Sestrojíme překládači stroj D, který přeloží X na Y.
ŘEŠENÍ. Budeme překládat jenom některé vhodné řetězce z mno-

žiny X. Budou to ty řetězce, které neobsahují žádné c a všechna a v nich
předcházejí všem znakům b. Takovýto řetězec přeložíme tak, že nejprve
každé a přepíšeme па cc, a potom zkopírujeme na výstup všechna b. Tedy
například překladem slova aabb bude slovo ccccbb.

Formálně D bude pětice (K, £, P, čti-a, F), kde К = {čti-a, čti-b},
F — {čti-b} a překladová pravidla vypadají takto:

P = {(čti-a, a, cc, čti-a), (čti-a, e,£, čti-b), (čti-b, 6,6, čti-b)}.

Proč tento překládači stroj funguje? Když vstupní řetězec obsahuje
nějaké písmeno c, při jeho překládání se u prvního výskytu c náš stroj
zastaví. Proto takové řetězce nemají žádný platný překlad. Podobně ne-

mají platný překlad řetězce, v nichž není dodrženo pořadí písmen a a b.
Po přečtení nějaké posloupnosti písmen a přejde stroj pomocí druhého
pravidla do stavu čti-b, a pokud se poté ještě objeví na vstupu a, stroj
se zastaví.

Platné překlady tedy existují skutečně pouze pro slova výše popsa-
ného tvaru. Je zjevné, že překladem každého z nich získáme nějaký řetězec
z Y, takže D(X) С У. Naopak, vybereme-li si libovolné slovo z Y, snadno
najdeme slovo z X, které se na něj přeloží. Proto také Y C D(X), takže
Y = D{X).

P - II - 1

Parkování kočárů

Král Kazimír vdává dceru. U takové slávy (a tolika jídla zdarma) nemůže
chybět žádný šlechtic z okolí. A jak tak šlechtici jedou ve svých kočárech
na svatbu, vůbec netuší, kolik starostí sluhům krále Kazimíra způsobí při
řešení následujícího problému.

Všechny kočáry je třeba zaparkovat, a to ne jen tak nahodile. Kočáry
musí stát v řadách za sebou a těchto řad musí být co nejméně, aby královi
neponičily trávník.

Dvorní etiketa káže, že až se budou hosté rozjíždět ze svatby domů,
musí odjíždět seřazeni podle důležitosti, nejdůležitější host jako poslední.
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To ovšem ještě není všechno. Kočáry, které jsou zaparkovány v jedné
řadě, musí samozřejmě odjíždět v pořadí, ve kterém stojí. Aby se předešlo
srážkám kočárů, sluhové je navíc chtějí zaparkovat tak, aby po skončení
svatby odjela vždy celá jedna řada kočárů, až potom začala odjíždět další
řada atd.

Soutěžní úloha. Sluhové přesně znají pořadí, v němž budou přijíždět
hosté na svatbu, a znají také důležitost každého nich. Když parkují kočár,
mohou ho zaparkovat na začátek nebo na konec libovolné již existující
řady kočárů, případně ho mohou postavit do nové řady. Sluhové musí
zaparkovat jednotlivé kočáry v tom pořadí, jak hosté přijíždějí.

Vaším úkolem je určit nejmenší počet řad, který stačí к tomu, aby po

správném zaparkování mohly kočáry odjíždět ve stanoveném pořadí.
Formát vstupu: Vstup začíná celým číslem N (1 ^ ^ 100 000),

které určuje počet hostů. Následuje N různých kladných celých čísel di
(1 údiýý 109), která určují důležitost hostů v pořadí, v jakém přijíždějí
(větší číslo představuje důležitějšího hosta).

Formát výstupu: Výstup je tvořen jediným řádkem, který obsahuje
jedno celé číslo představující nejmenší možný počet řad pro zaparkování
kočárů.

Příklady:
Vstup: Výstup:
10 1

10 9 11 12 13 8 14 7 6 100

V tomto případě stačí držet se pravidla „kočáry méně důležité než 10
jdou na začátek řady, ostatní na konec11.

Vstup: Výstup:
6 2

12 17 9 23 16 14

Jedním možným řešením je zaparkovat kočáry 12 a 17 do různých
řad, a pak kočár 9 postavit před kočár 12, kočár 23 za kočár 17, kočár 16
před kočár 17 a nakonec kočár 14 před kočár 16.

Vstup: Výstup:
12 6

132547698 11 10 12

V jediném optimálním řešení budou po zaparkování řady: (1 2), (3 4),
(5 6), (7 8), (9 10) a (11 12).
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P - II - 2

Dluhopisy

Kleofáš nedávno zdědil po své bohaté tetičce Anastázii hromadu peněz.
Nevěděl však co s nimi, a proto se rozhodl investovat je do dluhopisů.
Od vás si chce nechat poradit, jak by měl svou investici optimálně spra-
vovat.

Pro jednoduchost budeme předpokládat následující skutečnosti:
> Každý typ dluhopisu má svoji pevnou cenu, stejnou při koupi i pro-

ději.
> Každý typ dluhopisu má pevně daný roční výnos, který se vyplácí

vždy na konci roku.
> Je možné nakoupit libovolné množství každého typu dluhopisu.

Uvažujme například následující situaci: Banka nabízí dva typy dlu-
hopisů: Dluhopisy za 4 000 korun s ročním výnosem 400 a dluhopisy za
3 000 korun s ročním výnosem 250. Má-li Kleofáš 10 000 korun, nejlepší,
co s nimi může udělat, je koupit dva dluhopisy po 3 000 a jeden za 4 000,
čímž získá roční výnos 900 korun. Po dvou letech obdrží Kleofáš dvakrát
výnosy a bude mít celkově kapitál 11800 korun. V tomto okamžiku se
mu vyplatí jeden dluhopis za 3 000 korun prodat a místo něj si koupit
dluhopis za 4 000. Po třetím roce bude jeho kapitál roven 12 850 ко-
runám.

Soutěžní úloha. Napište program, který přečte ze vstupu Kleofášův
počáteční kapitál, ceny a výnosy nabízených dluhopisů a počet roků, na
které chce Kleofáš investovat, a spočítá, kolik nejvíce peněz může Kleofáš
mít po uplynutí daného počtu roků.

Formát vstupu: Na prvním řádku vstupu je jedno celé číslo К (1 ^
5Í К ^ 1000 000), které udává Kleofášův počáteční kapitál. Na druhém
řádku je uveden počet typů nabízených dluhopisů D (1 D 5Í 100).
Na třetím řádku je D dvojic celých čísel c* a které představují ceny
a výnosy jednotlivých dluhopisů (0 < c* 109, 0 ^ Ví ^ q/IO, q je
vždy násobkem T = 1000). Na posledním řádku vstupu je uveden počet
roků R (1 5Í R ^ 40).

Oasovou složitost svého algoritmu vyjádřete pomocí K, D, T a R.
Navrhněte algoritmus, který pro hodnoty К, D, T a R z výše uvedených
rozsahů bude co nejrychlejší.

Formát výstupu: Výstupem programu je jediné číslo, které určuje ma-
ximální hodnotu Kleofášova kapitálu po R letech obchodování s dluho-
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pisy. Můžete předpokládat, že se tato hodnota vejde do běžné celočíselné
proměnné.

Příklady:
Vstup:
10000

Výstup:
14050

2

4000 400 3000 250

4

Příklad ze zadání úlohy. Ve čtvrtém roce bude Kleofáš vlastnit 3 dlu-
hopisy po 4 000, čímž vydělá dalších 1 200.

Vstup:
100000

Výstup:
112001

3

103000 9001 47000 7 83000 100

31

Kleofáš koupí jeden dluhopis za 83 000. Tím za 30 let získá 3 000 ко-
run. Na poslední rok si konečně může koupit první dluhopis za 103 000.
V posledním roce tedy vydělá dalších 9 001.

Vstup:
100000

Výstup:
166014

3

103000 9001 47000 7 83000 100

37

Pokračování z předchozího příkladu. Po roce 36 Kleofáš dokoupí dlu-
hopis za 47000, takže v posledním roce získá o 7 korun více.

P - II - 3

Piskvorkový turnaj
Silvestr se rozhodl, že uspořádá programátorský turnaj v piškvorkách.
Požádal tedy své přátele, aby vytvořili programy pro hraní piškvorek,
které se turnaje zúčastní. Silvestrovi přátelé na jeho výzvu rychle zarea-

govali, a tak velký turnaj může začít.
Pravidla turnaje určil Silvestr velmi jednoduše: v každém kole se ná-

hodně vylosují dva programy, které vzájemně sehrají partii, a program,

který prohraje, z turnaje nadobro vypadne.
Den před turnajem však Silvestra přemohla zvědavost a zkusil pustit

některé dvojice programů proti sobě. Poté si však uvědomil, že se tímto
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svým počínáním připravil o velkou část překvapení spojenou s turnajem.
Protože všechny programy jsou deterministické (tj. nepoužívají náhod-
nost), dopadne souboj každých dvou programů vždy stejně. Silvestr už
tedy ví, že některé programy turnaj nemohou vyhrát. Pro jednoduchost
předpokládáme, že to, který program v dvojici začne souboj, výsledek
souboje těchto dvou programů neovlivní.

Soutěžní úloha. Pro dané výsledky soubojů některých dvojic pro-

gramů určete, které programy mohou v turnaji ještě zvítězit.

Formát vstupu: Na prvním řádku vstupu je jedno celé číslo N (1 ^
^ ^ 100 000), které určuje počet programů přihlášených do turnaje.
Programy jsou očíslovány od 1 do N.

Následuje N řádků, které popisují výsledky zápasů, které Silvestr již
zná; г-tý z těchto řádků začíná číslem di, které určuje počet programů
poražených г-tým programem ve vzájemných soubojích. Tento řádek pak
obsahuje di čísel programů, které г-tý program porazil. Těchto di čísel je
seřazeno podle velikosti od nejmenšího po největší.

Označme počet zápasů d\ + ... + djv, které Silvestr den před turna-
jem spustil, jako M. Můžete předpokládat, že platí 0 ^ M 5Í 1000 000.
Také můžete předpokládat korektnost vstupu, tedy speciálně, že pokud
program x porazil program y, pak program у neporazil program x.

Formát výstupu: Výstupem programu je jediný řádek, na kterém bu-
dou uvedena čísla všech programů, které mohou v turnaji zvítězit.

Příklady:

Vstup: Výstup:
13 44

2 2 3

0

1 2

1 2

Do turnaje jsou přihlášeny 4 programy. Program 1 v souboji porazí
programy 2 a 3, programy 3 a 4 porazí program 2. Program 2 tedy pro-

hraje souboj s libovolným jiným programem, a tak určitě nemůže turnaj
vyhrát.

Ostatní programy v turnaji však zvítězit mohou. Jako příklad si před-
veďme, jak může v turnaji zvítězit program 3: nejdříve program 3 vyřadí
program 2, pak program 4 vyřadí program 1 a nakonec program 3 vyřadí
program 4.
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Vstup: Výstup:
1 2 3 4 55

2 2 3

O

1 2

1 2

O

Tentokrát může zvítězit libovolný z programů 1, 2, 3, 4 a 5. Např. pro-

gram 2 může zvítězit následovně: nejdříve program 3 porazí program 4,
pak program 5 postupně vyřadí programy 3 a 1 a nakonec program 2
vyřadí program 5.

P - II - 4

Překládači stroje

Studijní text je stejný jako v úloze P-I-4.
Soutěžní úloha.

a) (6 bodů) Nechť Mi je množina tvořená všemi řetězci písmen а a b,
které obsahují stejný počet písmen а a b. Tedy např. abbbaa E Mi,
avšak aabab £ M\.
Nové množiny můžeme sestrojit následujícími operacemi:

o překladem již sestrojené množiny pomocí překládacího stroje (lze po-
užít jiné překládači stroje při různých překladech),

> sjednocením dvou již sestrojených množin, nebo
> průnikem dvou již sestrojených množin.

Pomocí co nej menšího počtu výše popsaných operaci sestrojte mno-
žinu G, která obsahuje právě všechny řetězce písmen a, b а c, které
obsahují stejné množství písmen a jako písmen b a také jako písmen c.

Tedy například aabbcc E G, bac E G, ale abcc ^ G.
b) (4 body) Množina X obsahuje zápisy kladných celých čísel v desítkové

soustavě, v nichž se vyskytuje stejný počet číslic 1 a 2. Tedy například
1122 E X, 21231 E X, 47 E X, ale 112 £ X a 031221 £ X (zápis
kladného čísla nemůže začínat číslicí 0).
Množina Y obsahuje zápisy v desítkové soustavě těch kladných čísel,
která jsou dělitelná 7. Tedy například 140 E Y, 7707 E Y, ale 47 ^ Y
a 07 £ Y.
Sestrojte překládači stroj, který přeloží množinu X na množinu Y,
anebo dokažte, že takový překládači stroj neexistuje.
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p - III - 1

Karpaty

Už zanedlouho si splníte svůj velký cestovatelský sen a vydáte se na vy-
touženou pouť přes celé Vnější Karpaty. Vše máte dobře naplánováno —

začnete v Beskydech a budete pokračovat přes Slovensko, Polsko a Ukra-
jinu až do Rumunska, odkud už se chcete vrátit skrze civilizaci. Cestou
máte v úmyslu vystoupit na co nejvíce hor, kolem kterých pojedete, ale
jak se znáte, tak jakmile vystoupíte na nějakou horu, už se vám nebude
chtít na žádnou stejně vysokou nebo dokonce nižší.

V rámci pečlivého plánování jste si vypsali výšky všech hor v tom
pořadí, v jakém kolem nich budete projíždět a přemýšlíte, na které z hor
budete chtít vystoupit, abyste vystoupili během své cesty na co největší
počet hor.

Po krátkém zamyšlení jste si uvědomili, že těch nejdelších posloup-
ností hor takových, že jejich výšky striktně rostou, může být i více. Místo
výčtu všech možností byste si raději u každé hory poznačili, zda ji navští-
víte určitě (tedy pokud je v každé nejdelší posloupnosti hor, kde výšky
hor rostou), zda ji můžete navštívit, nebo ji určitě nenavštívíte, pokud
chcete vystoupat na co největší počet hor.

Soutěžní úloha. Pro zadanou posloupnost celých kladných čísel určete,
která ze zadaných čísel leží v každé nejdelší rostoucí podposloupnosti,
v nějaké nejdelší rostoucí podposloupnosti a v žádné nejdelší rostoucí
podposloupnosti.

Formát vstupu: Vstup je tvořen dvěma řádky. Na prvním řádku je
jedno celé číslo N, které určuje počet hor na vaší cestě. Druhý řádek pak
obsahuje N celých kladných čísel v\ ... vn, která udávají výšku hor.

Formát výstupu: Výstup je tvořen jedním řádkem s N slovy odděle-
nými jednou mezerou. Slova ve výstupu jsou ‘musím’, ‘mohu’ a ‘nemohu’
podle toho, zda na danou horu musíte, můžete nebo nemůžete vystoupat,
pokud chcete během své cesty zdolat co největší počet hor tak, aby jejich
výšky postupně rostly.

Příklad:

Vstup
9

321456187

Výstup
mohu mohu mohu musím musím musím nemohu mohu mohu
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Nejdelší posloupnost rostoucích hor zde má délku 5 a z první trojice
a poslední dvojice vždy obsahuje právě jeden prvek.

P - III - 2

Velechrám

Oslavy 75. narozenin královny Šeherezády se blíží a v paláci se to jen
hemží. Vyměňují se tapisérie, pokládají se nové koberce a přemalovávají
se obrazy. Radní se rozhodli, že královnu překvapí novou duhovou výzdo-
bou velechrámu. Chtějí nechat natřít sloupy v chrámu různými barvami,
aby z toho jen oči přecházely. Aby byl výsledný dojem co nejlepší, je tře-
ba, aby v žádné řadě sloupů neměly dva sloupy stejnou barvu. Královská
pokladna však není bezedná, a proto je třeba nakoupit co nejméně druhů
barev. Proto si vás zavolali na pomoc.

Soutěžní úloha. Velechrám si lze představit jako šachovnici o velikosti
N x N. Na čtvercových polích stojí M sloupů, tj. ne na všech polích
stojí sloup. Žádné dva sloupy nestojí na stejném poli. Vaším úkolem je
obarvit tyto sloupy co nejmenším počtem К barev tak, aby žádné dva
sloupy ve stejném řádku nebo sloupci neměly stejnou barvu.

Formát vstupu: Na prvním řádku dostanete dvě přirozená čísla N
a M, velikost šachovnice 1 ^ N 5= 500 a počet sloupů 0 ^ M N2.

Následuje M řádků popisujících polohu sloupů. Na г-tém z nich na-

jdete dvě celá čísla Ri a Si, řádek 1 ^ Ri ^ N a sloupec 1 5Í Si ^ N
pole, na kterém stojí г-tý sloup.

Formát výstupu: První řádek výstupu obsahuje minimální počet
К barev. Na následujících M řádků vypište barvy sloupů. Na г-tý z
těchto řádků napište číslo barvy B{, 1 ^ Вi Sj К, kterou má být obarven
г-tý sloup. Optimálních obarvení bude zřejmě více (barvy lze například
mezi sebou libovolně permutovat), vypište proto libovolné z nich.

Příklady:

Vstup: Výstup:
3 4 2

1 1 1

1 3 2

3 3 1

3 1 2

Sloupy leží ve vrcholech čtverce. Protilehlé sloupy dostanou stejnou
barvu.
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Výstup:Vstup:
34 8

11 1

21 3

31 4

22 1

33 3

34 1

24 2

14 3

P - III - 3

Překládači stroje
Studijní text je stejný jako v úloze P-I-4.

Uvažme následující množiny A, B, C a D řetězců. Množina A obsa-
huje všechny dobře uzávorkované řetězce znaků ‘)\ ‘ [\ 4’ a
Množinu A lze rekurzivně nadefinovat následujícím způsobem: A obsa-
huje prázdný řetězec £ a všechny řetězce tvaru (ai... a^), [op ... а/с] а

{ai ... см/М, kde ai,..., otk jsou nějaké řetězce v A již obsažené. Množina
A tedy obsahuje řetězce (([{}])) a (() () O {}), ale neobsahuje ani je-
den z řetězců ([)] a (()))(.

Množiny В a C jsou množiny řetězců nad dvojpísmennou abecedou
{a,b}. Množina В obsahuje řetězce nejprve tvořené n ^ 0 písmeny a a
pak alespoň 2n písmeny b. Množina C obsahuje ty řetězce, které jsou
tvořeny stejným počtem písmen a a b. Např. aabbbbb £ В a abba £ C,
ale aaabbbb В, bbba ^ В a ababb ^ C.

Množina D je tvořena těmi řetězci, které nejprve obsahují n ^ 0
písmen a, pak n písmen b a nakonec n písmen c. Tedy, aaabbbccc £ D,
ale aababbbccc ^ D a bbbaaaccc ^ D.

Soutěžní úloha.

a) (2 body) Navrhněte překládači stroj, který přeloží množinu A na mno-
žinu B.

b) (3 body) Nalezněte množinu řetězců E nad abecedou {a, b} a pře-
kládací stroje Mi a М2 takové, že stroj M1 přeloží množinu E na
množinu A a stroj М2 přeloží množinu E na množinu D-.

c) (5 bodů) Sestrojte překládači stroj, který přeloží množinu A na mno-
žinu C. Nezapomeňte, že nutnou součástí řešení je i důkaz, že vámi
navržený překládači stroj přeloží množinu A právě na množinu C.
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P - III - 4

Sbírka čísel

sbírka.pas / sbírka.c / sbírka.cpp
sbírka.in

sbírka.out

Program:
Vstup:
Výstup:

Pan Pterodaktylos je sběratelem. Vášnivým a takříkajíc univerzál-
ním. Sbírá úplně všechno: známky, motýly, známky s obrázky motýlů, ba
dokonce i všechna přirozená čísla. Těch má několik zvláště vydařených
sbírek.

Každá sbírka čísel je určena parametry В a D a obsahuje všechna
nezáporná celá čísla, která se dají zapsat v soustavě o základu В pomocí
nejvýše D číslic.1 Tato čísla jsou ve sbírce seřazena důmyslným způ-
sobem: nejprve vzestupně podle svého ciferného součtu a uvnitř každé
skupiny se stejným ciferným součtem pak vzestupně podle hodnoty čísel.
Například sbírka označená parametry В — 3, D = 2 obsahuje nejvýše
dvouciferná čísla v trojkové soustavě, a to v následujícím pořadí: 0; 1,
10; 2, 11, 20; 12, 21; 22 (středníkem jsou odděleny bloky čísel se stejným
ciferným součtem).

Pro větší hodnoty В a Z) je taková sbírka dosti rozsáhlá. Pokud pan

Pterodaktylos chce ze sbírky vytáhnout k-té číslo v pořadí, čeká ho ob-
vykle dlouhá cesta mezi kilometry regálů, než se к němu dostane. Vás na-

padlo, že to vůbec není potřeba — když víte, že sbírka obsahuje opravdu
všechna čísla, lze k-té číslo v pořadí snadno spočítat.

Úloha. Napište program, který dostane parametry В a D sbírky čísel
a číslo к a odpoví k-tým číslem ve sbírce.

Vstup: Vstupní soubor sbírka, in obsahuje jediný řádek, na němž
jsou zapsána tři čísla oddělená mezerami: základ soustavy В (2 ^ В ^
^ 10), délka čísla D (1 ^ D 22 30) a pořadí hledaného čísla (1 ís к 22

1018). Můžete se spolehnout na to, že všechna čísla ve sbírce jsou menší
než 1018.

Výstup: Výstupní soubor sbírka, out obsahuje jediný řádek a na něm
k-té číslo sbírky zapsané v soustavě o základu В. Nevýznamné nuly na za-
čátku čísla nevypisujte.

1 Připomeňme, že zápis Xfc_i . .. xo, x* £ {0В — 1}, v soustavě o základu В
к-i

představuje číslo ^2 xiBl.
i — 0
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Příklad 1:

sbírka.out

11 (viz příklad sbírky výše)
sbírka.in

3 2 5

Příklad 2:

sbírka.in

10 15 999999999999998

sbírka.out

999999999999989

P - III - 5

Strouhání mrkve

mrkev.pas / mrkev.c / mrkev.cpp
mrkev.in

mrkev.out

Jak zajíček Hopsálek stárnul, začaly mu padat zuby. Dostal sice pěk-
nou zubní protézu, ale už si nemohl pochutnávat na své oblíbené mrkvi.
Rozhodl se tedy, že začne provozovat továrnu na strouhání mrkve. Do
továrny pak může přijít zaječí důchodce a mrkev mu tam nastrouhají,
aby si na ní mohl pochutnat i v pokročilém věku.

Hopsálek plánuje, že továrna bude fungovat na směny. Každá směna
bude trvat přesně M minut a směny budou následovat bezprostředně
jedna za druhou. První směna musí začít v jedné z prvních M minut
provozu.

Továrna pracuje jenom tehdy, když do ní přijde nějaký (za)ječící dů-
chodce. Pokud víme, že v průběhu celé směny nepřijde ani jeden, můžeme
směnu zrušit a tím ušetřit.

Úloha. Zjistili jste přesně, v jakých minutách budou do továrny chodit
mrkvechtiví důchodci. Mrkev stihnou zaměstnanci továrny nastrouhat
ještě v té minutě, kdy ji zákazník přinesl. Vaším úkolem je zjistit, kterou
z prvních M minut má začít první směna, aby bylo směn, ve kterých se
v továrně pracuje, co nejméně.

Vstup: Na prvním řádku vstupního souboru mrkev, in jsou dvě me-
žerou oddělená přirozená čísla M a N (1 ^ M, N 5Í 1000 000). M je
délka trvání každé směny v minutách, N je počet zaječích seniorů, kteří
si přijdou nechat nastrouhat mrkev. Na druhém řádku je mezerou oddě-
lených N přirozených čísel z\ < < ... < zpj

zaječích zákazníků. Všechna z* splňují M < Zi < 2 000 000 000 a minuty
jsou číslovány od jedné.

Program:
Vstup:
Výstup:

čísla minut příchodů
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Výstup: Na první řádek výstupního souboru mrkev. out vypište jedno
přirozené číslo S — nejmenší počet směn, ve kterých se musí v továrně
pracovat, tj. těch, které nebudou zrušeny. Na druhý řádek vypište, kte-
rou minutou musí začínat první směna, aby bylo třeba pracovat jenom
S směn. Pokud je možností více, vypište všechny v rostoucím pořadí
oddělené právě jednou mezerou.

Příklad 1:

Vstup
5 4

7 8 14 16 24

Šedivou barvou jsou označeny příchody zaječích stařešinů. Spodní dva
řádky znázorňují dvě optimální řešení, černé jsou směny, ve kterých se
v továrně pracuje.

Výstup
,1,2, 3,4, 5, 6 7,8,9 .10,11,12,13,14.15,16.17.18,19,20

2 r-n СГЭ

Příklad 2:

Vstup Výstup
5 4 3

7 9 14 17 1 2 3 4 5

V této situaci jsou všechny možné začátky stejně dobré. Nezapomeňte
na to, že je musíte vypsat setříděné.
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Kategorie Z5

Texty úloh

Z5 - I - 1

Kuchyňský stůl má tvar obdélníku o rozměrech 90 cm x 140 cm. Chceme
na něj ušít ubrus tak, aby na všech okrajích stolu přesahoval stejně.
a) Kolik látky šířky 140 cm je třeba koupit, abychom již nemuseli látku

stříhat?

b) Kolik centimetrů bude tento ubrus na každé straně přesahovat?
(Světlana Bednářová)

Z5 - I - 2

Doplň na prázdné cihličky pyramidy z obr. 35 chybějící čísla tak, aby
platilo: na každé cihličce (kromě spodní řady) je napsané číslo, které
se rovná polovině součtu čísel napsaných na dvou sousedních cihličkách
z nižšího řádku. (Světlana Bednářová)

170

142

110 436

Obr. 35

Z5 - I - 3

Ve školce mají stavebnici ze stejně velkých molitanových kvádrů. Délky
jejich hran v centimetrech jsou celá čísla. Když děti chtějí postavit věž,
položí všechny kvádry na sebe tak, aby na sobě ležely stejnými stěnami
a aby v žádném patře nebyly dva kvádry vedle sebe. Takto se jim po-
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stupně podařilo postavit tři různě vysoké věže. První měla výšku 120 cm,
druhá 130 cm a třetí 150 cm. Kolik kvádrů mohly děti ve školce mít?

(Světlana Bednářová)

Z5 - I - 4

Trojčata právě oslavila své třetí narozeniny. Za pět let bude součet jejich
věků roven dnešnímu stáří jejich matky. Kolik let bude jejich matce za

(Marie Krejčová)pět let?

Z5 - I - 5

Číslo se nazývá mazané, jestliže počínaje od jeho třetí číslice zleva platí:
Každá jeho číslice je součtem všech číslic ležících nalevo od něj.
a) Uveď dvě největší mazaná čísla.
b) Kolik je všech čtyřmístných mazaných čísel? (Světlana Bednářová)

Z5 - I - 6

Doplň do prázdných políček přirozená čísla od 1 do 16 (každé číslo můžeš
použít jen jednou) tak, aby platily matematické vztahy:

+ 8

: 7

(.Miroslava Smitková)

Z5 - II - 1

Polovina dětí 5.A chodí na taneční kroužek. Dívky chodí všechny
a z 18 chlapců chodí jedna třetina.
a) Kolik dětí chodí do 5.A?
b) Kolik dívek chodí do 5.A? (Marta Volfová)
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Z5 - II - 2

Marek sečetl čtyři po sobě jdoucí dvojmístná čísla a výsledek zaokrouh-
lil na desítky. Jirka vzal stejná čísla, nejdříve je zaokrouhlil na desítky
a potom je sečetl. Jeho výsledek byl o deset větší než Markův. Která čísla
chlapci sčítali, když jejich výsledky byly menší než 100? Najděte všechna
možná řešení. (Monika Dillingerová)

Z5 - II - 3

Maminka šije utěrky z látky šíře 120 cm. Hotová utěrka má rozměry
60 cm x 38 cm. Při stříhání látky je potřeba počítat 2 cm na každém okraji
na začištění. Kolik nejméně centimetrů látky musí maminka koupit, aby
z ní mohla ušít 10 utěrek? (.Monika Dillingerová)
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Kategorie Z6

Texty úloh

Z6 - I - 1

Jirka koupil dvě čokolády v obchodě naproti škole. Michal si koupil stejné
dvě čokolády v obchodě za školou a Ivan si koupil jednu takovou čokoládu,
ale ve školním bufetu. Potom zjistili, že průměrně je vyšla jedna čokoláda
na 19,70 Kč. Cena zakoupených čokolád je o 6 Kč vyšší, než kdyby chlapci
nakoupili všech 5 čokolád v obchodě naproti škole, a o 6,50 Kč nižší, než
kdyby nakupovali jen v obchodě za školou. Za kolik korun prodávají
čokoládu v jednotlivých obchodech? (Monika Dillingerová)

Z6 - I - 2

Michal měl barevné nálepky dvou druhů ve tvaru pravoúhlých rovno-

ramenných trojúhelníků. První nálepka měla ramena délky 5 cm, těch
bylo 9. Druhá měla nejdelší stranu dlouhou 10 cm a těchto nálepek
bylo 17. Kolik nálepek prvního druhu si má Michal ještě dokoupit, aby
všemi svými nálepkami mohl oblepit (pokrýt) stěny krychle s hranou

(Monika Dillingerová)délky 10 cm?

Z6 - I - 3

V rovině mají ležet body А, В, C, D tak, aby platilo: \AB\ — 7cm,
\BC\ — 8cm, \CD\ = 5 cm a \DA\ = 9 cm.

a) Urči největší možnou vzdálenost bodů А а, C.
b) Urči nejmenší možnou vzdálenost bodů A a C. (Libor Simůnek)

Z6 - I - 4

Při chudokrevnosti se doporučuje pít směs šťávy z mrkve a červené řepy.
Červená řepa však má tvořit pouze 1/5 z objemu nápoje. Ze dvou kilo-
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gramů mrkve získáme v odšťavňovači 7,5 dl šťávy. Z jednoho kilogramu
červené řepy získáme 6 dl šťávy.
a) Jaké množství mrkve potřebujeme na 250 gramů červené řepy, aby-

chom získali správně namíchanou směs šťávy?
b) Jaké množství šťávy takto získáme? (Světlana Bednářová)

Z6 - I - 5

ftekne-li mimozemšťan v rozhovoru o Vánocích „haf quin lina", znamená
to „velké zlaté hvězdy"; když „kari lina mejk“, znamená to „blikavá zlatá
kolečka"; když „esca haf kari", znamená to „červená velká kolečka". Jak
se řekne „blikavé hvězdy"? (Zapiš svou úvahu.) (Marta Volfová)

Z6 - I - 6

Z čísel 532 a 179 vyškrtni dohromady dvě číslice, aby součin takto vznik-
(Monika Dillingerová)lých čísel byl co největší.

Z6 - II - 1

Na zahradě pana Kozla kvetlo několik třešní. Na každé třešni seděli tři
špačci a ještě jeden seděl na plotě. Pes pana Kozla je vyplašil a špačci
uletěli. Za chvilku se všichni vrátili a usadili se na třešně. Třešeň, pod
kterou spal pes, zůstala prázdná, na každé z ostatních se usadili čtyři
špačci. Kolik třešní má pan Kozel a kolik bylo na zahradě špačků?

(Libuše Hozová)

Z6 - II - 2

Je dán trojúhelník ABC takový, že pata P kolmice z bodu C na

přímku AB leží uvnitř úsečky AB. Z bodu P jsou vedeny kolmice p, q na

přímky АС a BC (v uvedeném pořadí). Označme S průsečík přímky BC
a přímky q, T průsečík přímky АС a přímky p. Vypočítej velikost úhlu
ACB, pokud víš, že \<APT\ -f \<BPS\ = 20°. (Monika Dillingerová)

Z6 - II - 3

Na obr. 36 je zaokrouhlovací sčítací pyramida. Do každé cihly (kromě
těch z nejspodnějšího řádku) patří součet čísel napsaných na dvou s ní
sousedících cihlách z nižšího řádku, ovšem patřičně zaokrouhlený: součty
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1100 1800

1070440

188 451

Obr. 36

ve druhém řádku odspodu zaokrouhlujeme na desítky, ve třetím na stovky
a v nejvyšším čtvrtém na tisíce. Doplňte do prázdných cihel pyramidy

(Monika Dillingerová)největší možná celá čísla.
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Kategorie Z7

Texty úloh

Z7 - I - 1

Číslo je trochu nešťastné, je-li násobkem čísla 13. Číslo, které je násobkem
čísla 17, se nazývá trochu usměvavé. Kolik existuje čísel mezi přirozenými
čísly od 1 do 1000 000, která nekončí nulou ani pětkou a jsou přitom

(Marta Volfová)zároveň trochu nešťastná a trochu usměvavá?

Z7 - I - 2

Vláda země Tramtárie se rozhodla, že své území rozdělí do šesti okresů.
Vybrala proto šest nejvýznamnějších měst a každému chce přiřadit okres
podle následujícího klíče: každé místo v zemi patří do okresu toho města,
které je danému místu nejblíže. Překreslete si ve vhodném měřítku mapu
Tramtárie (obr. 37) a narýsujte do ní hranice okresů. (Okresní města jsou
označena písmeny A-F, silná čára značí hranice Tramtárie. Pomyslná
čtvercová síť má pouze usnadňovat orientaci v mapě a nijak neovlivňuje
hranice okresů!) {Libor Šimůnek)
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Z7 - I - 3

Ve 12 hodin stála na parkovišti česká, německá a francouzská auta, a to
v poměru 9 : 4 (česká ku německým) a 2 : 3 (německá ku francouzským).
Během hodiny odjelo jedenáct a přijelo pět českých aut, odjelo jedno
a přijelo jedenáct německých aut a odjela tři a přijelo šest francouzských
aut. Jaký je poměr českých, německých a francouzských aut ve 13.00 na

parkovišti, když ve 12.00 tam bylo dvanáct francouzských aut?
(Šárka Ptáčkova)

Z7 - I - 4

Úsečky AM, BM, CM a DM uspořádané jako na obr. 38 mají stejnou
délku. Úhly, které svírají, mají velikosti 20°, 20°, 50°, 50°, 70° a a. Jaká
je velikost úhlu, který svírají přímky AB a CD? (Obrázek je nepřesný,
nevyplatí se měřit.) (Michaela Raabová)

Z7 - I - 5

Políčka na šachovnici 4x4 vybarvi 4 barvami a vepiš do nich 4 písmena
J, A, R, O tak, aby v každém řádku i každém sloupci byly zastoupeny
všechny barvy i všechna písmena. (Každé políčko bude obsahovat právě
jedno písmeno a bude vybarveno jednou barvou. Každé písmeno musí být
vybarveno postupně všemi barvami a také každá barva musí vystřídat
všechna písmena.) Najdi aspoň jedno řešení. (Marta Volfová)

Z7 - I - 6

Na papíře je napsáno několik bezprostředně po sobě jdoucích přirozených
čísel. Je mezi nimi 12 násobků čísla 5 a 10 násobků čísla 7.
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a) Kolik přirozených čísel je na papíře napsáno?
b) Najdi jednu řadu čísel, která odpovídá těmto podmínkám.

(Libor Simůnek)

Z7 - II - 1

Máme rovnoběžník ABCD (\AB\ Ф \BC\) s vnitřním úhlem 72°
cholu A. Jedním vrcholem tohoto rovnoběžníku vedeme dvě přímky, které
rovnoběžník rozdělují na tři rovnoramenné trojúhelníky. Určete velikosti
vnitřních úhlů těchto trojúhelníků.

u vr-

(Libuše Hozová)

Z7 - II - 2

Král Líného království vydal v neděli 1. dubna 2007 dekret, kterým vy-
řadil ze všech následujících týdnů pátky. Od té doby v jeho království
následuje vždy po čtvrtku sobota a týden má jen šest dní. Který den
v týdnu připadne v Líném království na 9. dubna 2008? (Nezapomeňte,

(.Libor Šimůnek)že rok 2008 je přestupný!)

Z7 - II - 3

U Nováků napekli svatební koláče. Čtvrtinu zavezli příbuzným na Mo-
ravu, šestinu rozdali kolegům v práci a devítinu dali sousedům. Kdyby
jim zůstalo o tři koláče více, byla by to polovina původního počtu. Kolik
koláčů napekli? (Marta Volfová)
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Kategorie Z8

Texty úloh

Z8 - I - 1

Najděte všechna čtyřmístná čísla dělitelná třemi, která po vynásobení
číslem 17 dávají součin končící trojčíslím 519. (Libuše Hozovd)

Z8 - I - 2

Najděte všechny trojice přirozených čísel menších než 10, jejichž součin
(.Libuše Hozová)je sedminásobkem jejich součtu.

Z8 - I - 3

Jano si koupil sedmimílové boty. Jeho kamarád Honza z Cech si kou-
pil létající koberec. Potom se oba dva zúčastnili pohádkového dvanácti-
hodinového závodu. Během závodu měli hlad, a tak se oba dva zastavili
na jídlo. Oběma zabrala přestávka na jídlo jednu hodinu. Kdyby se Honza
nezastavil po cestě na vepřo-knedlo-zelo, předběhl by Jana o 51 kilome-
trů. Kdyby se Jano nestavil na bryndzové halušky, předběhl by Honzu
o 28 kilometrů. Jak daleko od sebe by skončili, kdyby nejedl ani jeden

(Monika Dillingerová)z nich? Kdo z nich by byl první?

Z8 - I - 4

V Tramtárii mají pět lékařských fakult, z nichž každá může přijmout do
prvního ročníku 200 studentů. Přijímací zkoušky na jednotlivé fakulty
se konají v různé dny, proto si studenti mohou podat přihlášku na více
škol. Ptali jsme se na jednotlivých fakultách, kolik dostali přihlášek pro
rok 2007/08. Získali jsme tyto odpovědi:
1. fakulta: „Dostali jsme pětkrát více přihlášek, než kolik jsme měli vol-

ných míst.“
2. fakulta: „U nás počet uchazečů převyšoval kapacitu o 320%.“

123



3. fakulta: „Na naši fakultu se hlásilo o 510 uchazečů více, než kolik jsme
mohli přijmout.“

4. fakulta: „U nás na každé volné místo připadly v průměru 3 přihlášky.“
5. fakulta: „K nám se hlásilo o tři čtvrtiny zájemců více, než kolik jsme

měli míst.“

V akademickém roce 2007/08 nakonec na lékařské fakulty nastoupilo
do 1. ročníku 1 000 studentů. Ze statistik vyplývá, že zájemce o studium
medicíny podal na lékařské fakulty průměrně 2,5 přihlášky. Kolik zájemců

(Libor Simůnek)se nedostalo na žádnou z fakult?

Z8 - I - 5

Pan Poleno s panem Střepinou vyráběli nové domovní dveře o velikosti
3m2. Rám dveří tvaru obdélníku, jeho úhlopříčky a dvě další příčky,
které spojovaly dva vrcholy obdélníku se středy protilehlých stran, byly
z kovových tyčí. Pan Poleno vyplnil dřevem čtyři tmavé části dveří a pan

Střepina zbývající části dveří zasklil (obr. 39). Kolik metrů čtverečních
dřeva potřeboval pan Poleno na výplň dveří? (Libuše Hozová)

Z8 - I - 6

Uprostřed náměstí v Kocourkově je čtvercový travnatý záhon. Kocour-
kovští zjistili, že zapomněli udělat chodník. Proto na něj z každého okraje
záhonu ubrali 2 metry. Před položením zámkové dlažby a písku pod ní
bylo třeba pod celou plochu chodníku vykopat půl metru hluboký výkop.
Odkopáním trávy a hlíny se záhon zmenšil o 1 200 m2.
a) Vypočtěte obsah plochy zbylého travnatého záhonu.
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b) Kolik m3 písku je pod dlažbou, jestliže povrch dlažby je v rovině
s travnatým záhonem a výška dlaždice je 8 cm?

(Miroslava Smitková)

Z8 - II - 1

Tým chce v sezóně vyhrát 3Д všech svých zápasů. V první třetině z nich
však vyhrál jen 55 % zápasů.
a) Kolik procent zbývajících zápasů by musel tým vyhrát, aby dosáhl

zamýšleného cíle?
b) Kdyby tým vyhrál všechny zbývající zápasy, kolik procent svých zá-

pasů by v celé sezóně vyhrál? (Marta Volfová)

Z8 - II - 2

Jakou část obsahu nerovnoramenného lichoběžníku KLMN (KL || MN)
tvoří obsah trojúhelníku ABC, kde A je střed základny KL, В je střed
základny MN a C je střed ramene KN? (Libuše Hozová)

Z8 - II - 3

Aby přirozené číslo přinášelo Liborovi štěstí, musí být jeho druhá moc-
nina dělitelná čísly sedm, osm, devět i deset. Najděte všechna přirozená
čísla menší než 1 000, která Liborovi přinášejí štěstí. (Libor Simůnek)
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Kategorie Z9

Texty úloh

Z9 - I - 1

Najděte všechna čtyřmístná čísla končící číslicí 9, která jsou dělitelná
každou svou číslicí. (Pavel Tlustý)

Z9 - I - 2

Petr se ptal babičky, kolik je dědečkovi let. Babička mu odpověděla takto:
„To víš, už dávno nám není padesát, ale zase nám ještě není osmdesát
let. Když vynásobíš součet mého a dědečkova věku jejich rozdílem а к vý-
sledku přičteš oba naše věky, dostaneš 492.“ „Aha,“ řekl po chvíli Petr,
„tak to je dědečkovi...“ Kolik let je Petrovu dědečkovi, víte-li, že je starší
než Petrova babička? (Michaela Raabová)

Z9 - I - 3

Středem rotačního válce s podstavou o poloměru r a výškou v byl vyvrtán
válcový otvor. Objem takto vzniklého „dutého válce“ je poloviční než
objem válce původního. Vyjádřete tloušťku stěny dutého válce pomocí r.

(Marie Krejčová)

r

^ l- -1^
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Z9 - I - 4

Minulou divadelní sezónu se prodávaly vstupenky za jednotnou cenu
160 Kč. Pro letošní sezónu se sedadla rozdělila do dvou kategorií. Místa
I. kategorie stojí 180 Kč, místa II. kategorie 155 Kč. Pokud jsou všechna
sedadla v sále rozprodána, je celková tržba stejná jako při vyprodaném
představení loni. Ředitel divadla však není s tímto rozdělením spokojen,
a pro příští sezónu plánuje změnu: z nejméně atraktivních míst současné
II. kategorie vytvoří novou III. kategorii. Aby se tržba za vyprodaný sál
nezměnila, rozhodl, že vstupenky budou stát 180 Kč (I. kategorie), 160 Kč
(II. kategorie) a 130 Kč (III. kategorie). V jakém poměru budou příští

(Libor Šimůnek)sezónu počty sedadel jednotlivých kategorií?

Z9 - I - 5

Jirka koupil dvě čokolády v obchodě naproti škole. Michal si koupil stejné
dvě čokolády v obchodě za školou a Ivan si koupil jednu takovou čokoládu,
ale ve školním bufetu. Cena zakoupených čokolád je o 6 Kč vyšší, než
kdyby chlapci nakoupili všech 5 čokolád v obchodě naproti škole, a je
o 6,50 Kč nižší, než kdyby nakupovali jen v obchodě za školou. Ve školním
bufetu prodávají čokoládu za 19,50 Kč. Kolik zaplatili kluci za všech pět
čokolád dohromady? Kolik stojí jedna čokoláda v obchodě za školou?

(Monika Dillingerová)

Z9 - I - 6

V rovině je dán čtyřúhelník ABCD. Sestrojte bod К, který je vrcholem
rovnoběžníku BCDK, a bod L, který je vrcholem rovnoběžníku CDAL.
Ukažte, že přímka КL prochází středem strany AB daného čtyřúhelníku

(Jaroslav Švrček)ABCD.

Z9 - II - 1

Bára si napsala dvě různá celá čísla. Potom je (ve stejném pořadí) sečet-
la, odečetla, vynásobila a vydělila. Dostala čtyři výsledky, jejichž součet
byl —100. Když vynechala výsledek sčítání a sečetla zbývající tři výsled-
ky, dostala také součet —100. Jaká čísla mohla Bára původně napsat?

(Šárka Černíčková)
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Z9 - II - 2

Z krychliček o hraně 1 cm jsme postavili kvádr. Kdybychom z kvádru
odebrali jeden sloupec, zbytek stavby by se skládal z 602 krychliček.
Pokud bychom místo toho odebrali jeden řádek horní vrstvy, zůstala by
nám stavba z 605 krychliček. Jaké má kvádr rozměry? (Libor Šimůnek)

Z9 - II - 3

Je dán čtverec ABCD o straně délky a a úsečka KL délky 5a tak, že
A = К a strana AB leží na úsečce KL. Čtverec ABCD se „kutálením“
(otáčením kolem pravého dolního rohu čtverce o 90°) pohybuje po úsečce
KL tak dlouho, než strana AB opět splyne s částí úsečky KL {B = L).
a) Narýsujte, jak se bude pohybovat bod S, který je středem strany AB.
b) Určete délku křivky, kterou bod S při pohybu opsal.

(Marta Volfová)

Z9 - II - 4

Severských závodů psích spřežení se zúčastnilo dohromady celkem
315 dvojspřeží a trojspřeží. Do cíle dorazilo ve stanoveném limitu 60%
všech dvojspřeží a | všech trojspřeží, takže do cíle dorazila včas přesně
polovina všech psů. Kolik dvojspřeží a kolik trojspřeží závodilo?

(Lubomír Cerníček)

Z9 - III - 1

Ve Lhotě volili starostu. Kandidovali dva občané: Ing. Schopný a jeho
manželka Dr. Schopná. V obci byly tři volební místnosti. V první i druhé
místnosti dostala více hlasů Dr. Schopná. V první byl poměr hlasů 7 : 5,
ve druhé 5 : 3. Ve třetí volební místnosti byl poměr hlasů 3 : 7 ve pro-

spěch Ing. Schopného. Volby nakonec skončily nerozhodně, oba kandidáti
totiž získali stejný počet hlasů. V jakém poměru byly počty odevzdaných
platných hlasovacích lístků v jednotlivých volebních místnostech, víme-li,
že v první a druhé místnosti odevzdal platný hlas stejný počet lidí?

(Libor Šimůnek)

Z9 - III - 2

Je dán rovnoramenný lichoběžník ABCD {AB || CD), kde \AB\ > \CD\.
Bodem A se dají vést dvě přímky tak, aby rozdělily lichoběžník na tři
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rovnoramenné trojúhelníky. Určete velikosti úhlů lichoběžníku ABCD.
(Libuše Hozová)

Z9 - III - 3

Najděte všechna kladná celá čísla x, y, pro která platí:

l+x + y-\-xy = 2 008.

(Libuše Hozová)

Z9 - III - 4

Je dán čtverec ABCD o straně délky a a obdélník KLMN o stranách
délek \KL\ = За a \LM\ = a. Na počátku je čtverec ABCD umístěn tak,
že A — N a strana AB leží na straně NM. Čtverec ABCD se otáče-

ním kolem svých vrcholů pohybuje jedním směrem po obvodu obdélníku
KLMN (obr. 40) tak dlouho, než se opět dostane do původní polohy.

D C

M
N = A

T В

К

Obr. 40

a) Narýsujte dráhu, po níž se bude pohybovat bod T, který je středem
strany AB.

b) Určete obsah plochy ohraničené křivkou, kterou opisuje bod T.
(Monika Dillingerová)

129



Přípravné soustředění před 49. MMO

Výběrové soustředění pro přípravu na mezinárodní matematickou olym-
piádu proběhlo od 7.-11. dubna 2008 v Kostelci nad Černými lesy. Na
soustředění bylo pozváno 11 nej lepších řešitelů III. kola. Soustředění bylo
zaměřeno na přípravu reprezentantů a posloužilo ke konečné nominaci
šestičlenného družstva.

Úspěšnost jednotlivých studentů ukazuje následující tabulka:

7/8 GJK Praha 6, Parléřova
3/4 GMK Bílovec, 17. listopadu
3/4 G Brno, tř. Kpt. Jaroše
2/4 G Brno, tř. Kpt. Jaroše
8/8 G Praha 4, Písnická
7/8 GJK Praha 6, Parléřova
7/8 G České Budějovice, Jírovcova 53,5
6/6 G Praha 4, Na Vítězné Pláni
8/8 G Dobruška
7/8 G Praha 6, Nad Alejí
5/6 G Tachov

Josef Tkadlec

Miroslav Klimoš
Samuel Piha
David Klaška
Tomáš Hřebejk
Jakub Tópfer
Jan Matějka
Alena Skálová
Alena Peterová

Van Nhan Nguyen
Van Minh Nguyen

90,5
77

68

63,5
58

56

51,5
50,5
43

38

Na základě uvedených výsledků, v nichž jsou započítány i výsledky
oblastního a celostátního kola, bylo tedy vybráno reprezentační družstvo.
Z první šestice se omluvil David Klaška, takže ho nahradil sedmý Jan
Matějka a náhradnicí se tak stala osmá Alena Skálová. Toto družstvo nás
reprezentovalo i na již tradičním střetnutí s družstvy Slovenska a Polska.

Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Zhouf (7.4.),
dr. Karel Horák (8.4.),
dr. Martin Panák (9.4.),
dr. Jaroslav Švrček (10.4.)
a doc. Jaromír Šimša (11.4.).
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Úlohy zadané na přípravném soustředění

1. Adam a Bořek hrají hru na neohraničeném čtverečkovaném papíru.
Adam vždy vyznačí čtverec 2x2 nebo 3 x 3 a Bořek v něm začerní jeden
čtvereček. Zakreslované čtverce se mohou překrývat, ale nesmějí to být
ty samé, které již jednou byly vyznačeny, a také začerňovaný čtvereček
musí být pokaždé jiný. Bořek vyhraje, jestliže se mu podaří udělat aspoň
20 tahů, jinak vyhrává Adam. Kdo vyhraje při bezchybné hře?

2. Je dán ostroúhlý trojúhelník ABC. Bod P leží na oblouku AVB, kde
V je průsečík výšek trojúhelníku ABC. Přímky АР, BP protnou strany
ВС, AC postupně v bodech Q, R. Najděte množinu středů úseček QR.

3. Je dáno přirozené číslo n > 6. Uvažujme všechna přirozená čísla z ote-
vřeného intervalu (n(n — 1); n2), která jsou nesoudělná s číslem n(n — 1).
Dokažte, že největší společný dělitel všech těchto čísel je 1.

4. Dokažte, že pro každé přirozené číslo n^la libovolná kladná reálná
čísla X\, X2,xn platí nerovnost

(1 + £Ci)(l + Xi +X2)...(1 +Xi +X2 + ... +Xn) ^ y/{n+ l)n+1y/XiX2...XП ■

5. Jsou dány dvě kružnice к i, &2, jež se protínají v bodech A a B.
Označme PQ a RS úseky jejich společných tečen (body P, R leží na k\,
body Q, S na к%) a W další průsečík kružnice s polopřímkou RB.
Určete poměr \RB\/\BW\, jestliže RB || PQ.
6. Označme postupně A i, B\, C\ body dotyku kružnice vepsané troj-
úhelníku ABC se stranami BC, CA, AB. Další průsečík úsečky AA\
s vepsanou kružnicí označme Q. Průsečíky přímek A\C\ a A\B\ s přím-
koup procházející vrcholem A rovnoběžně s BC označme P a, R. Dokažte,
že úhly PQR a B\QC\ mají stejnou velikost.

7. Ve čtverci 300 x 300 je n čtverečků začerněno tak, že žádné tři černé
čtverečky netvoří „roh“ (trojici sousedních čtverečků uspořádaných do
tvaru L), a přitom začerněním libovolného bílého čtverečku už nějaký
černý roh vznikne. Najděte nejmenší možné n.

8. V trojúhelníku ABC označme Aq, B0 průsečíky příslušných os vnitř-
nich úhlů při vrcholech А а В s kružnicí trojúhelníku opsanou a A\, B\
průsečíky obou os s odpovídajícími stranami BC a CA. Průsečík přímek
AqBq a A\B\ označme P. Dokažte, že spojnice bodu P se středem kruž-
nice vepsané trojúhelníku ABC je rovnoběžná se stranou AB.
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9. Máme rovnoramenné váhy a sadu n +1 závaží, jejichž hmotnosti v un-
cích jsou celá kladná čísla a jejichž úhrnná hmotnost je 2n uncí. Závaží po

jednom umísťujeme od nejtěžšího po nejlehčí na váhy tak, že je položíme
vždy na tu misku, na které jsou závaží o menší celkové hmotnosti. Pokud
v některém kroku (třeba na počátku) jsou váhy v rovnováze, vybereme
misku libovolně. Dokažte, že po umístění všech závaží budou váhy v rov-
nováze.

10. Nechť x, y, z jsou nezáporná reálná čísla splňující rovnost x + у +
+ z + xyz — 4. Dokažte, že

x + y-\-z^.xy + yz + zx.

11. Jsou dány dvě různoběžky p a q protínající se v bodě P. Pro libovolný
bod O nap (mimo bod P) uvažme kružnici k\ se středem O, která se

dotýká přímky q, a dále kružnici &2, která se dotýká přímek p, q i kruž-
nice ki. Nalezněte množinu všech bodů dotyku takových kružnic k\ a^.
12. Uvažujme trojúhelník ABC, v němž (při obvyklém označení velikostí
vnitřních úhlů) je (3 > 7. Označme E střed kružnice připsané straně BC
uvažovaného trojúhelníku. Nechť M a N jsou po řadě takové body stran
AB a AC, že EM je osou úhlu AEB a N osou úhlu AEC. Dokažte větu:
Protínají-li se přímky MN a BC v bodě L, pak platí

\<BEL\ + \<CEL\ = 180°.13.Jsou dána dvě celá čísla m, n taková, že 0 m "A 2n. Dokažte, že
číslo

22n+2 _j_ _|_ -j^

je druhou mocninou nějakého přirozeného čísla, právě když m — n.

14. V rovině je dán trojúhelník ABC, v němž \AB\ < \BC\. Uvažujme
takový bod D jeho strany AC, pro který platí \ AB\ = \BD\. Kružnice ve-
psaná trojúhelníku ABC se dotýká jeho stran AB a AC po řadě v bodech
К a L. Označme J střed kružnice vepsané trojúhelníku BCD. Dokažte,
že přímka KL prochází středem úsečky AJ.
15. Pro každé přirozené n určete všechny mnohočleny tvaru

n\ xn + an_ixn_1 + ... -f a\X + (—l)n(n -f 1 )n
s celočíselnými koeficienty ai, 02,..., an_ 1, které mají n různých reálných
kořenů xi,X2,... ,xn splňujících nerovnosti к ^ x^ ^ к + 1 pro všechna
к = 1,2,... ,n.
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16. Daný trojúhelník A1A2A3 není pravoúhlý a kružnice k\(Oi,ri),
^2(^2, Г2), k3(03,r3) mají následující vlastnosti:
(i) A2, A3 G k\, Ai,A3 G /c2> £ ^3)
(ii) kružnice /сз má vnitřní dotyk s každou z kružnic k±, &2> které samy

mají vnější dotyk.
Za předpokladu, že trojúhelníky A1A2A3 а О1О2О3 jsou podobné

(pořadí odpovídajících si vrcholů není známo), vypočtěte jejich vnitřní
úhly a zapište je ve stupních.

17. Vypište vzorcem alespoň 398 dvojic trojmístných celých kladných
čísel a, b, pro něž je součet y/a2 — 2 0086 + \Jb2 + 2 008a celočíselný.

18. Pro daná celá m, n větší než 1 uvažujme šestiúhelník ABCDEF
s vrcholy Л[0,0], B[m, 0], C[m, n], D[m — 1, n], E[m — 1,1], F[0,1] roz-
dělený nam + n-1 jednotkových čtverců s vrcholy v mřížových bodech.
Najděte počet cest z A do C po hranicích zmíněných čtverců, které kaž-
dým bodem procházejí nejvýše jedenkrát. (Výsledek musí být uveden
v nejjednodušším tvaru.)
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Mezinárodní střetnutí česko-polsko-slovenské

V rámci závěrečné přípravy před MMO se uskutečnilo již osmé meziná-
rodní střetnutí mezi týmy České republiky, Polska a Slovenska. Jednotlivé
země reprezentovala šestice účastníků, kteří si vybojovali ve svých zemích
postup na 49. MMO v Madridu.

Soutěž se uskutečnila 23.-25. 6. 2008 v polské Zwardoni. Všechna tři
reprezentační družstva přicestovala na místo konání již v neděli večer
22. 6. 2008. Organizace a průběh soutěže zůstal zachován z předešlých
ročníků — je přizpůsoben stylu III. kola naší МО a podmínkám na MMO.
Soutěžícím byly ve dvou dnech předloženy dvě trojice soutěžních úloh,
přitom za každou z úloh mohli získat nejvýše 7 bodů, tj. celkově (stejně
jako na MMO) 42 body. Na každou trojici úloh měli soutěžící vyhrazeno
4,5 hodiny.

Pořadí Jméno Země body Součet

Jakub Očwieja
Karol Zebrowski

Szymon Majewski
Jakub Konieczny
Jacek Jendrej
Radoslaw Вurny
Josef Tkadlec
Michal Spišiak
Vladislav Ujházi
Miroslav Klimoš
Miroslav Baláž
Jan Matějka
Samuel Říha
Tomáš Kocák

Filip Sládek
Albert Herencsár
Tomáš Hřebejk
Jakub Topfer

POL 777776

777775

277777

706717

077715
407770

700771
007704

073700
070702
007503
070701
070710

201710
002710
000700

000700
000700

1. 41

POL2. 40

POL 373.

POL4. 28
POL5. 27
POL6. 25

7. CZE 22
SVK8. 18

SVK9. 17
CZE10. 16

SVK11.-13. 15

CZE 15

CZE 15

SVK14. 11

SVK15. 10

SVK16.-18. 7

CZE 7

CZE 7
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Návrh všech šesti úloh (a jejich vzorová řešení) připravili kolegové
z Polské republiky, řešení úloh koordinovala mezinárodní komise ve slo-
žení Jaromír Šimša, Jaroslav Švrček a Karel Horák za Českou republiku,
Pavol Novotný, Peter Novotný a Erika Trojáková za Slovensko a Walde-
mar Pompě, Jerzy Bednarczuk a Andrzej Grzesik za Polsko.

Texty soutěžních úloh1.Určete všechny trojice (x,y, z) kladných reálných čísel, které vyhovují
soustavě rovnic

2x3 = 2y(x2 + 1) — l(z2 + 1),
2У4 = 3z(p2 + 1) - 2(ж2 + 1),
2z5 = 4x(z2 + 1) - 3(y2 + 1).

(Adam Osekowski)2.Je dán konvexní šestiúhelník ABCDEF se shodnými vnitřními úhly
při vrcholech A,C a E,v němž platí \ AB\ = \BC\, \CD\ = \DE\ a \EF\ =
= \FA\. Dokažte, že se přímky AD, BE a CF protínají ve společném

(Waldemar Pompě)bodě.3.Určete všechna prvočísla p, pro něž je součet
2 2

p
+ p

2 +'1 i>- 1

dělitelný číslem p3. (Jaroslavu Wróblewski)4.Dokažte, že existuje přirozené číslo n takové, že pro libovolné celé
číslo к nemá číslo к2 + к + n žádného prvočíselného dělitele menšího než

(Jaroslavu Wróblewski)2 008.5.V rovině je dán pravidelný pětiúhelník ABODE. Určete nejmenší hod-
notu výrazu

\PA\ + \PB\
\PC\ + \PD\ + \PE\

kde P je libovolný bod roviny daného pětiúhelníku.
(Waldemar Pompě)6.Najděte všechny trojice (k,m,n) přirozených čísel s následující vlast-

ností: Čtverec se stranou délky m je možno rozřezat na několik právo-
úhelníků o rozměrech 1 x к a právě jeden čtverec se stranou délky n.

(Jaroslaw Wróblewski)
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Řešení úloh

1. Předpokládejme, že trojice (x,y, z) kladných reálných čísel je řešením
dané soustavy. Rozebereme tři případy podle toho, které z čísel x, y,
z je nejmenší. Ukáže se, že v každém z těchto případů stačí uvažovat
jen jednu rovnici soustavy. Vícekrát použijeme známou nerovnost mezi
aritmetickým a geometrickým průměrem n-tice kladných reálných čísel
(v našem případě bude n £ {2,3,4}), v níž platí rovnost, právě když je
všech n čísel stejných.

Je-li x ^ y, z ^ y, platí zřejmě nerovnosti

2x3 4- (z2 + 1) ^ 2yx2 + (z2 4-1) ^ 2yx2 + 2z ^ 2yx2 +2у — 2y[x2 + 1),

tedy 2x3 ^ 2y(x2 + 1) — (z2 + 1). Přitom rovnost nastává jen v případě,
kdy 2x3 = 2yx2, z1 +1 = 2z a 2z = 2y, tedy x = y,z = laz = y. Těmto
podmínkám, a tedy i první rovnici soustavy vyhovuje jedině trojice x =
= у = z = 1. Snadno ověříme, že tato trojice splňuje i zbylé dvě rovnice.

Je-li x ^ z, у ^ z, dostáváme

2y4 + 2(x2 + 1) ^ 2y4 + 2 ■ 2x — (у4 + у4 4- x) + 3x ^
= (у4 + y2-z2 + z) + 3z ^ 3 ^/y6z3 + 3z = 3z(y2 4-1)

tedy 2y4 ^ 3z(y2 + 1) — 2(x2 4-1). Rovnost nastává jedině v případě, kdy
jsou splněny podmínky x — 1, у4 = y2z2, x — z а у4 — у2z1 = z. Tomu,
a tedy i druhé rovnici soustavy vyhovuje jedině trojice :r = у = z = 1.

Je-li у ^ x, z ^ x, máme podobně jako v předešlém případě

2z5 4- 3(y2 + 1) ^ 2z5 + 3 • 2y = (z5 -f 25 4- у 4- y) + 4y ^
^ (z5 4- z3x2 + x 4- x) 4- 4x ^
^ 4 Уz8x4 + 4x = 4x(z2 4- 1),

tedy 2z5 ^ 4x(z2 4- 1) — 3(y2 4- 1). Rovnost dostaneme jen při dodržení
podmínek у = 1, z5 = z3x2, у = x a z5 = z3x2 = x. Třetí rovnice
soustavy je tedy splněna jedině pro trojici x — у — z — 1.

Jediným řešením soustavy je trojice (1,1,1).
2. Označme v trojúhelníku АСЕ1 velikosti vnitřních úhlů při vrcholech
А, С, E postupně a, 7, e. Trojúhelníky ACB, CED, EAF jsou podle
zadání rovnoramenné. Označme velikosti jejich vnitřních úhlů při základ-
nách postupně /3, 5, (obr. 41). Tvrzení dokážeme použitím Cěvovy věty.
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Proto ještě označme P, Q, R průsečíky přímek AD, CF, EB postupně
se stranami СЕ, EA, AC trojúhelníku АСЕ.

Ze sinové věty v trojúhelníku ABR máme

\BR\-sm\<ABE\\AR\
_ \BR\ tedy \AR\ = (1)sin\<ABE\ s'm/3 sin (5

Ze sinové věty v trojúhelníku ABE máme

|AE\ ■ sin(a + /3)\AE | \BE\ tedy sm\<ABE\ —sin | KABE\ sin(a +/3) ’ \BE\

Dosazením do (1) dostáváme

|ВЯ| • \AE\ ■ sin{a + f3)\AR\ = \BE\ ■ sin(3

Zřejmě analogicky (ze sinových vět v trojúhelnících CBR a CBE) mů-
žeme odvodit

\BR\-\CE .sin(7 + /?)\CR\ = |BE\ ■ sin (3
Proto

\AR\ \AE\ • sm(a + P)
}Щ ~ |C£|-sin(7 + /3)'
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Opět analogicky lze vyjádřit poměry

\CP\
_ \CA\ • sin(7 + S) \EQ\ _ \EC\ • sin(£ + ф)

\EP\ ~ \EA\ ■ sin(£ + S) a ]Щ ~ \AC\ • sin (a + ф)'

Odtud

\AR\ \CP\ \EQ\ sin (a +/?) sin(7 + S) sin(£ + ip)
| CR\ | EP\ \AQ\ sin(7 + (3) sin(e + S) sin(o; + ф) (2)

Podle zadání však platí íp + a + P — P + j + 5 — 5 + e + (p. Proto

a + /3 = E + S, j + 5 = a + (p, £ + c/? = 7 + /3

a součin (2) je rovný 1. Podle Cěvovy věty se tak přímky AD, BE a CF
protínají v jednom bodě.

Jiné řešení. Označme P průsečík os vnitřních úhlů daného šesti-
úhelníku při vrcholech В a D (obr. 42). Dokážeme, že šestiúhelníku
ABCDEF lze vepsat kružnici, jejímž středem je bod P. Dané tvrzení
pak plyne z Brianchonovy věty. i

E

F
D

P.

/Р
/

''aA

В

Obr. 42

Z rovnosti \AB\ = |BC\ plyne, že trojúhelníky АВР а СВР jsou
shodné podle věty sus. Proto \<BAP\ = \<BCP\ = a. Obdobně jsou
shodné i trojúhelníky CDP a EDP, tj. \<DCP\ = \<DEP\ — /5.

1 Uvedená věta říká, že jestliže se strany šestiúhelníku ABCDEF dotýkají téže
kuželosečky, protínají se přímky AD, BE a CF v jednom bodě.
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Z uvedených shodností navíc máme \AP\
dohromady se zadanou rovností \AF\ — \EF\ dostáváme podle věty sss
shodnost trojúhelníků AFP a EFP. Proto osa vnitřního úhlu při vr-
cholu F prochází bodem P a \<FAP\ = \%.FEP\ = 7.

Rovnosti \%.FAB\ = \<BCD\ = \<DEF\ jsou ekvivalentní s rov-
nostmi 7 + а = а + /? = /5 + 7, z nichž triviálně vyplývá a = /3 = 7.
Proto i osy vnitřních úhlů při vrcholech А, С a E procházejí bodem P
a šestiúhelníku ABCDEF lze vepsat kružnici se středem P.

3. Nechť M = {1,2,... ,p — 1} je množina všech nenulových zbytků při
dělení p. Pro každé к € M je kombinační číslo

\CP\ = \EP\, odkud

p\P

k\(p — k)\к

dělitelné prvočíslem p, neboť všechny činitele součinu k\(p — k)\ ve jme-
novateli jsou menší než p (a tedy s p nesoudělné), zatímco čitatel p\
zřejmě prvočíslem p dělitelný je. Každý ze sčítanců součtu v zadání je
tedy dělitelný číslem p2 a naší úlohou je zjistit, pro která prvočísla p je
součet

1 / \2 -1 / \21 (P\ , 1 ÍP\
P2 \1

1 PS= -r (1)+ -s- • + -7Г

p2 p2 \p — 1

dělitelný p.
Pro každé к G M zkoumejme, jaký dává přirozené číslo

2
(Р-1)! Y

k\(p — k)\J
1 P

(2)ak ~

f \k
zbytek při dělení p. Protože pro libovolné i platí p — i = — i (mod p), je

(P ~ kV- = (P ~ k) {P ~ (k + 1)) • • • (p - (p -1)) =

= (—1 )p~kk(k + 1)... (p — 1) (mod p).

Úpravou vztahu (2) tak dostáváme

((P-1)!)2 = ak(k\(v - k)íf = afc(*!(-l y~kk(k + 1)... (p - l))2 =
= ak ■ k2((p - l)!)2 (mod p).

Tuto kongruenci můžeme vydělit výrazem ((p — 1)!)2, který je nesoudělný
s p. Tedy

1 = ak ■ k2 (mod p). (3)
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Jak víme, ke každému zbytku к E M existuje právě jeden zbytek Zk G M
takový, že Zk ■ к = 1 (mod p); jestliže navíc k, l G M jsou různé, tak i Zk,
zi jsou různé.2 Množina M' = {21,22,..., zp_i} má tedy stejně prvků
jako množina M, a protože M'cM, nutně M' = M.

Z definice prvku Zk dostáváme 1 = l2 = {zк ■ к)2 = z2 ■ к2 (mod p).
Dohromady s (3) potom • k2 = z2 • к2 (mod p) a po vydělení к2 máme
ак = z2 (mod p). Pro zbytek součtu (1) tedy platí

S = cii + <22 + ... + &p— 1 = z2 + Z2 + ... + Zp—i —

= l2 + 22 + ... + (p - l)2 = \p{jp - l)(2p - 1) (mod p)

(využili jsme dokázanou rovnost {zi, Z2,...,zp_i} — {1,2,...,p — 1}
a známý vzorec pro součet druhých mocnin). Snadno přímým dosazením
ověříme, že výraz ^p(p—l)(2p—l) není prop = 2,3 násobkem p. Naopak,
každé prvočíslo p ^ 5 je nesoudělné s číslem 6, je tedy p dělitelem čísla
V - g(p~ l)(2p- 1).

Daný součet je dělitelný číslem p3 pro všechna prvočísla větší než 5.

4. Uvažujme prvočíslo p a podívejme se, jaký zbytek při dělení p může
dávat číslo k2 + k. Na to stačí za к postupně dosadit čísla 0,l,...,p — 1,
dále se už budou zbytky periodicky opakovat. Pro p = 2,3,5,7 tak do-
staneme zbytky uvedené v tabulce:

0 1 2 3 4 5 6

2 0 0

0 2 0

0 2 12 0

0 2 6 5 6 2 0

3

5

7

Vidíme, že v uvedených posloupnostech se některé zbytky neobjevují.
Například pro p = 2 nedává k2 + k nikdy zbytek 1, pro p — 3 nedostaneme
zbytek 1, pro p = 5 zbytek 3 ani 4 atd. Abychom to dokázali pro obecné p,
stačí ověřit, že některý zbytek se v této konečné posloupnosti objeví aspoň
dvakrát. Počet různých zbytků je totiž p a délka posloupnosti je rovněž p,

proto jakmile se v posloupnosti nějaký zbytek zopakuje, nebude už v ní
dost místa pro všechny možné zbytky.

2 Existence zbytku Zfc vyplývá z existence celých čísel a, b takových, že ak + bp = 1.
Jednoznačnost je zřejmá: jestliže 1 = • к = z'k • к (mod p), pak vydělením к
máme (mod p). Různost triviálně vyplývá z jednoznačnosti a z vlastnosti
zZk — k: jestliže zk — zj, tak к - zZk - zZl - l.
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Opakujícím se zbytkem je například 0, platí totiž

O2 + 0 = 0 (mod p) i (p — l)2 + (p — 1) = p2 — p = 0 (mod p)

takže zbytek 0 dostaneme pro к = 0 i pro к = p — 1.
Nechť {p\,P2, • • • ,Pm} je množina všech prvočísel menších než 2 008.

Pro každé j = 1,2,..
prvočíslem pj, pro který к2 + к ф rPj (mod pj) pro všechna celá čísla к
(už jsme dokázali, že takový zbytek existuje). Abychom vyhověli zadání,
stačí zvolit n, které splňuje soustavu kongruencí

označme rPj libovolný ze zbytků při dělením* 1

n = — rpi (mod pi)
rP2 (modp2)n -

n = -rPm (mod pm)

potom totiž к2 + к + n = к2 + к — rpj ф 0 (mod pj) pro všechna
j = 1,2Existence požadovaného n už přímo vyplývá z čínské
zbytkové věty3, protože prvočísla pi,P2, • • ■ ,Pm jsou navzájem nesou-
dělná.

5. Bez újmy na obecnosti předpokládejme, že pravidelný pětiúhelník
ABCDE má délku strany 1. Potom každá z jeho úhlopříček má délku4

1 + Vb
и =

2

3 Podle ní pro navzájem nesoudělná čísla qi,, qm a libovolná celá čísla a i,..., am
existuje celé číslo x splňující

x = ai (mod qi), x = a2 (mod дг), ..., x = om (mod gm).

Tuto větu lze jednoduše dokázat přímou konstrukcí x: První kongruencí splňuje
x = kqi +a\ pro libovolné celé k. Jestliže za к dosadíme postupně 0,1,..., <72 — 1,
pro x dostaneme g2 různých zbytků při dělení g2 a jeden z nich, k'qi + cu, bude
tudíž roven a2. Abychom tedy splnili i druhou kongruencí, stačí zvolit x = (к' +
+Zg2)gi+ai pro libovolné celé l. Za l dosadíme postupně 0,1,..., <73 — 1, dostaneme
<73 různých zbytků při dělení <73, jeden z nich bude roven аз, atd.

4 Délku úhlopříčky и pravidelného pětiúhelníku ABCDE se stranou délky 1 lze
jednoduše vypočítat například z podobnosti rovnoramenných trojúhelníků CAB
a DEX, kde X je průsečík úhlopříček AD a ЕС. Čtyřúhelník ABCX je totiž
kosočtverec, takže \EX\ — и — 1, a tedy (u — 1) : 1 = 1 : u.
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Použitím Ptolemaiovy nerovnosti5 pro čtyřúhelníky APBE, APBD,
APBC (obr. 43), resp. příslušné čtveřice bodů, pokud body v uvedeném
pořadí netvoří čtyřúhelníky, dostáváme

\PA\ ■ и + \PB\ ■ 1 í> 1 • \PE\,
\PA\ -u+ \PB\ -и ^ 1 ■ \PD\,
\PA\ ■ 1 + \PB\ ■ u^. 1 ■ \PC\.

(1)

Sečtením těchto nerovností už získáváme dolní odhad pro výraz ze zadání:

{\PA\ + \PB\) • (2и + 1) ^ \PC\ + \PD\ + \PE\,

odkud
\PA\ + \PB\

\PC\ + \PD\ + \PE\ = 2u + l
1

> (2)

E

Přitom rovnost ve všech nerovnostech v (1), a tedy i ve (2) platí,
právě když jsou čtyřúhelníky APBE, APBD, APBC tětivové (připouští
se i možnost P = A, resp. P = В), tj. jestliže bod P leží na kratším

5 Jestliže X, Y, Z, W jsou libovolné čtyři body v rovině, pak podle Ptolemaiovy
nerovnosti platí |XY| ■ \ZW\ + \YZ\- \WX\ ^ \XZ\ ■ |YWj, přičemž rovnost podle
Ptolemaiovy věty nastane, právě když body X, Y, Z, W leží (v tomto pořadí) na
téže kružnici. Je-li XYZW čtyřúhelník, říká Ptolemaiova nerovnost (resp. věta),
že součet součinů délek protilehlých stran není menší než součin délek úhlopříček,
přičemž rovnost nastane, právě když je čtyřúhelník XYZW tětivový.

142



oblouku AB kružnice opsané pětiúhelníku ABCDE (obr. 44). Nejmenší
možná hodnota zadaného výrazu je proto

1 11
л/5 — 2.

2u + l 2-±(l + \/5) + l >/5 + 2

6. Zřejmě každý pravoúhelník, jehož aspoň jedna strana má délku, která
je násobkem k, se dá rozdělit na pravoúhelníky rozměrů 1 x k. Pokusme se

tedy rozdělit čtverec mxmna jeden čtverec nxn a několik pravoúhelníků
s uvedenou vlastností. Samozřejmě má smysl zabývat se jen případem
m > n.

n+r m — n — r

Вm — n* Fm — n — r<

E •m — r

n

An< Cn+r*

}rDn

n r m — rm — n

Obr. 45

Jestliže к \ m — n, můžeme čtverec m x m rozdělit tak, jak je znázor-
něno na obr. 45, oba pravoúhelníky А, В totiž mají jednu stranu délky
m — n, která je násobkem fc.

Jestliže k\m + nan + r^m, kde r je zbytek, který dává číslo m po
dělení k, dá se čtverec m x m rozdělit jako na obr. 46. Pravoúhelníky D, E
mají jednu stranu délky m — r, která je násobkem k. Podmínka к \ m + n
zabezpečuje, že násobkem к je i číslo n + r, tj. délka jedné se stran v pra-
voúhelnících C, F. Díky nerovnosti n + r 5í m mají pravoúhelníky E, F
stranu nezáporné délky m — n — r, uvedené rozdělení je tedy vskutku
možné (strany délky 0 jsou povoleny, v takovém případě na pokrytí de-
generovaného pravoúhelníku rozměrů 0 x l prostě nepotřebujeme žádný
pravoúhelník 1 x fc).

Aby trojice (k,m,n), kde m ^ n, vyhovovala zadání, stačí, aby byla
splněna aspoň jedna z podmínek
(a) к | m — n;

(b) fc|m + na současně n + r ^ m, kde r je zbytek, jenž dává číslo m

při dělení číslem k.

Obr. 46
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Ukážeme, že tyto podmínky jsou zároveň i nutné. Nejdříve dokážeme,
že jestliže pro trojici (fc,m, n), v níž m > n, existuje vyhovující rozdě-
lení, pak n + r ^ m (to při m > n triviálně platí, jakmile je splněna
podmínka (a), nemusíme tedy rozlišovat dva případy). Předpokládejme
proto sporem, že máme vyhovující rozdělení, a přitom n + r > m. Bez
újmy na obecnosti předpokládejme, že se čtverec n x n nedotýká spodní
strany čtverce m x m (obr. 47). Protože m — n < r < k, všechny jed-
notkové čtverečky dotýkající se průmětu čtverce n x n na, spodní stranu
čtverce m x m (na obr. 47 znázorněné šedou barvou) musejí být pokryty
„ležícími" pravoúhelníky 1 x к (tj. takovými, které mají delší stranu rov-
noběžnou se spodní stranou čtverce m x m); „stojící" pravoúhelníky 1 x к
je nemohou pokrývat, protože by zasahovaly do čtverce n x n.

>n
m

k{
< m — n< r < кi — — -i — -i-- -i— —

i lil
i i j i

Obr. 47

Nechť p je počet „ležících" pravoúhelníků 1 x к pokrývajících zrnině-
ných n šedých jednotkových čtverečků. Protože tyto pravoúhelníky po-

krývají jen čtverečky při spodní straně čtverce m x m a zároveň pokrývají
minimálně n šedých jednotkových čtverečků, platí n ^ pk ^ m. Spolu
s nerovností n + r > m dostáváme

m — r < pk ^ m,

což je ve sporu s tím, že r je zbytek čísla m při dělení číslem к (mezi čísly
m — r a m nemůže ležet žádný násobek čísla k).

Zbývá dokázat, že к
je následující. Do každého jednotkového čtverečku napíšeme jedno číslo.
Přitom celé očíslování uděláme tak, aby v každém pravoúhelníku 1 x к
byl součet čísel roven 0. To znamená, že v každém vyhovujícím rozdělení
bude muset být součet všech čísel ve čtverci m x m stejný jako součet
čísel v menším čtverci n x n. Porovnáním obou součtů stanovíme nutné

podmínky pro к, m a n.

m — n anebo к m + n. Hlavní myšlenka
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ImA
Z2Z3

Z

лъ 1 = 2° = Zk
►

O Re

Zk 1

Obr. 48

Výhodné bude očíslování pomocí komplexních čísel. Označme z =
= cos(2тх/к) + isin(2K/fc). Číslo z je tedy k-tá komplexní odmocnina
z čísla 1 s nejmenším úhlem (obr. 48). Přitom

zk - 1 0fc-iZ° + z1 + . . . + 2 (1)- 0.
z — 1 z — 1

Očíslujme čtverečky tak, jak je naznačeno na obr. 49, tj. jestliže čtverec
mxmje umístěn do prvního kvadrantu souřadnicové soustavy s vrcholem
v počátku, tak do čtverečku, jehož levý dolní vrchol má souřadnice (x, y),
napíšeme číslo zx+y:

z2m~4 z2rn—3 z2rn — 2

z2m-4 £2m—3

z3 z2тп—4

z2 z3

z1 z2 z3

z° z1 z2 z3

Obr. 49

Uvažujme libovolný pravoúhelník lxfc. Nq^hť v jeho čtverečku s nej-
menší x-ovou (jestliže se jedná o „ležící" pravoúhelník), resp. nejmenší
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y-ovou (jestliže je to „stojící1' pravoúhelník) je napsáno číslo z1. Potom
součet všech čísel v něm napsaných je (s využitím (1))

z‘ + z,+ 1 + ... + zt+k~1 = z‘(z° + z1 + ... + z
к-1 ) = 0,

takové očíslování tedy splňuje požadovanou podmínku.
Součet čísel v libovolném čtverci n x n, jehož levý dolní čtvereček má

číslo z1, je roven (sčítáme po jednotlivých řádcích)

+ . • • + zt+n) + ... +
t+n— 1

t+1t+n— 1(z* + . . • + Z ) + (*
t+2n-2 ) =+ (*

t+n— 1

+ ■ ■ • + Z

)(2° + Z1 + . . . + Zn~X) =
- 1\2

= (zť + zť+1 + . . . + Z

= zt(z° + z1 + ... + zn-1)2 = zt( z — 1

Tento vztah můžeme použít i na výpočet součtu v celém čtverci m x m.
Ten má v levém dolním čtverečku číslo z° = 1, takže součet čísel v něm
je (zw - 1 )2/(z - l)2.

Jestliže tedy máme vyhovující rozdělení, přičemž v levém dolním čtve-
rečku čtverce n x n je napsáno číslo z*, musí platit

(т^г)2 - (í^)2
Aby se dvě komplexní čísla rovnala, musejí se rovnat i jejich absolutní
hodnoty. Důsledkovými úpravami předešlé rovnosti (využívajíce zřejmý
vztah \z\ = 1) tak postupně dostáváme

- 1\2 zm - 1\2

2 — 1 2—1
'

"~l|2
=

[2 — 1|2 |z-l|2
\zn — 1|2 = \zm — 1|2,

|2П — 1| = |2m — 11 •

Nechť r, s jsou zbytky, které dávají m, n při dělení číslem k. Protože
zk = 1, zřejmě zm = zr a zn = 2s. Pro která čísla r, s G {0,1,..., к — 1}
mají komplexní čísla zr — 1, zs — 1 stejnou absolutní hodnotu? První
možností samozřejmě je r^= s. V takovém případě dávají man stejný
zbytek při dělení k, takže к \ m—n. Zabývejme se dále jen případem r 7^ s.
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Čísla zr, zs leží v komplexní rovině na jednotkové kružnici se středem v 0
(obr. 48), tudíž zr — 1, zs — 1 leží na jednotkové kružnici se středem v — 1.
Aby měla dvě různá čísla na této kružnici stejnou absolutní hodnotu,
musejí být stejně vzdálená od 0, což zřejmě nastane jedině v případě, kdy
zr — 1, zs — 1 jsou navzájem komplexně sdružená, tj. jestliže r + s — к
(obr. 50). V tomto případě tedy к \ m + n.

ImA
zr — 1 /

^0-1 Re

Obr. 50

Poznámka. Uvedenou metodou číslování polí čtvercové sítě komplex-
nimi jednotkami je možno také (či dokonce především) dokázat následu-
jící pozoruhodný výsledek: lze-li pravoúhelník m x n rozdělit na několik
dílů 1 x fc, pak к \ m nebo к \ n.
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49. mezinárodní matematická olympiáda

Ф
Hlavními organizátory 49. mezinárod-
ní matematické olympiády, která se
konala od 10. do 22. července v hlav-
ním městě Španělska Madridu, bylo
španělské Ministerstvo školství a so-
ciální politiky a Královská matema-
tická společnost Španělska.

Organizátoři připravili pro práci mezinárodní jury, jejímž hlavním
úkolem je vybrat z připravených návrhů šestici soutěžních úloh, vynikající
podmínky v kouzelném městečku San Ildefonso-La Granja v srdci Kas-
tílie nedaleko Segovii (asi 80 km severozápadně od Madridu). Příjemnou
nadmořskou výšku v blízkosti královského paláce a nádherných zahrad
jsme dvojnásob ocenili po přesunu do rozpálených ulic Madridu, kam se
mezitím sjel rekordní počet 535 soutěžících z 97 zemí celého světa (spolu
s pozorovateli z Beninu a Sýrie a zástupci Pákistánu, jejichž studenti zů-
stali letos bohužel doma, když jim španělská ambasáda neposkytla včas
víza, dosáhl počet formálně zúčastněných zemí stovky).

Letošní olympiádu zahájila cirkusová show za zvuků Fučíkova Vjezdu
gladiátorů. Úvodní hrozba moderátora, že „dnes se spojí cirkusový svět
se světem matematiky“ snad našla naplnění jen během úvodního dehlé
s národními vlajkami.

České družstvo, které bylo vybráno na základě výsledků ústředního
kola 57. ročníku MO v Českých Budějovicích a následné týdenní pří-
pravý v Kostelci nad Černými lesy, tvořili Tomáš Hřebejk z 8. ročníku
Gymnázia v Praze 4, Miroslav Klimoš z 3. ročníku Gymnázia Mikuláše
Koperníka v Bílovci, Jan Matějka ze 7. ročníku Gymnázia v Českých
Budějovicích v Jírovcově ulici, Samuel Říha ze 3. ročníku Gymnázia na
tř. Kpt. Jaroše v Brně, Josef Tkadlec a Jakub Tópfer, oba ze 7. ročníku
Gymnázia Jana Keplera v Praze 6. Vedoucím družstva byl RNDr. Karel
Horák, CSc., z Matematického ústavu Akademie věd v Praze a studenty
doprovázel Mgr. Martin Panák, Ph.D., z Přírodovědecké fakulty Masa-
rykovy univerzity v Brně.

MADRID
49* INTERNATIONAL
MATHEMATICAL
OLYMPIAD
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Vlastní soutěž se odehrála v jedné obrovské aule 16. a 17. července,
kdy soutěžící jako obvykle řešili vždy po trojici soutěžních úloh. Na to
měli pokaždé vyhrazeno přesně 4,5 hodiny; za každou ze šesti úloh mohli
získat nejvýše 7 bodů.

Naši reprezentanti podali standardní výkon (až na jednoho vyřešili
všichni nejlehčí první úlohu a skoro stejně dobře se vypořádali i s druhou
z lehčích úloh — úlohou čtvrtou). Jediný, kdo si v každém soutěžním dnu
poradil se dvěma úlohami, byl Miroslav Klimoš, který tak po bronzu ze
48. MMO rozšířil svou sbírku o stříbrnou medaili. Další medaili pro náš
tým získal Josef Tkadlec, od něhož jsme však po vítězství v ústředním
kole čekali trochu víc. Výsledky našich jsou shrnuty v následující tabulce:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

424.-447. Tomáš Hřebejk
64.-70. Miroslav Klimoš

268.-283. Jan Matějka
368.-391. Samuel Říha
212.-237. Josef Tkadlec
268.-283. Jakub Topfer

1 0 0 4 0 0 5

7 7 0 7 7 0 28 II.

7 2 0 4 1 0 14 HM
700100 8 HM

7 10 6 11 16 III.
7 0 0 7 0 0 14 HM

Celkem 36 10 0 29 9 1 85

Další tři naši studenti se museli spokojit pouze se základním oceněním,
kterým je tzv. Honorary mention a které se uděluje studentům bez me-
daile za úplné vyřešení alespoň jedné z nelehké šestice soutěžních úloh;
jejich obtížnost si konečně můžete ověřit sami. Pro srovnání uveďme i vý-
sledky slovenských reprezentantů, kteří získali jen o pár bodů méně:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

407.-423. Miroslav Baláž

346.-367. Albert Herencsár
284.-296. Tomáš Kocák

238.-267. Filip Sládek
199.-211. Michal Spišiak
212.-237. Vladislav Ujházi

62 0 0 4 0 0

5 0 0 4 0 0

7 10 4 10 13

7 1 0 7 0 0 15

7 2 0 7 1 0 17

5 4 0 7 0 0 16

9

HM

III.
III.

III.

Celkem 33 8 0 33 2 0 76

Počet získaných cen a celkový bodový zisk jednotlivých zemí vyčtete
z připojené tabulky (čísla v závorce označují nižší počet reprezentantů):
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I II III body I II III body
CLR
Rusko
USA
Korea
Írán
Thajsko
KLDR
Turecko

Tchaj-wan
Maďarsko
Japonsko
Vietnam
Polsko
Bulharsko

Ukrajina
Brazílie
Peru
Rumunsko
Austrálie
Německo
Srbsko
Kanada
Velká Británie
Itálie
Kazachstán
Bělorusko
Izrael

Hongkong
Mongolsko
Francie
Indie

Singapur
Nizozemsko
Uzbekistán
Litva
Indonézie
Mexiko
Chorvatsko

Argentina
Česká republika
Řecko
Gruzie

Španělsko
JAR
Kolumbie
Slovensko
Turkmenistán

Ázerbájdžán
Moldavsko

Bosna a Hercegovina
Slovinsko

Švýcarsko
Švédsko
Dánsko
Kostarika

Malajsie
Rakousko
Norsko

Belgie
Makedonie
Lucembursko (5)
Tádžikistán

Lotyšsko
Macao
Maroko
Arménie

Portugalsko
Albánie
Chile (3)
Irsko

Kypr
Nový Zéland
Estonsko
Finsko

Bangladéš (4)
Island (5)
Salvador (4)
Srí Lanka
Kirgizie (5)
Trinidad a Tobago
Kuba (1)
Ekvádor
Kambodža
Černá hora (3)
Paraguay (4)
Filipíny (3)
Uruguay (5)
Tunisko (4)
Honduras (2)
Guatemala (4)
Lichtenštejnsko (2)
Venezuela (2)
Portoriko (3)
Saudská Arábie
Bolívie (5)
SAE (4)
Kuvajt (5)

2175 1 0 0 0 3
0 0 2

68
6 0 0
4 2 0
4 2 0
15 0

199 68
190 0 1 1 68
188 0 1 0 67
181 0 2 0 66
1752 3 1 0 0 2 65

2 4 0 173 0 1 0 65
1703 1 2 0 0 1 63

2 4 0 168 0 01 62
2 3 1 165 0 1 1 61
2 3 1 163 0 0 2

0 2
61

2 2 2 159 0 60
2 3 1571 0 0 1 60
2 31 154 0 1 0 58
2 2 2 153 0 0 2 58
0 5 1 152 0 0 1 58
1 3 2 141 0 0 0

0 2
56

0 4 2 141 0 55
0 5 1 140 0 0 1 53
1 2 3 139 0 1 1 49
1 3 0

2 4
4 2

139 0 0 0 45
0 135 0 0 1

0 0
42

0 133 0 42
0 3 3 132 0 0 1 41
1 2 3 128 0 0 1

0 0
40

0 3 2 125 0 33
1 1 2 120 0 0 1

0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 1
0 1
0 0
0 o
o o
0 1
o o
o o
o o
o o
o o
o o
o o

31
107o 3 1 o 31

o 2 1 106 o 29
0 1 4 104 0 28
0 0 5 103 0 28
0 1 3 98 0 27
0 2 2

0 4
94 0 26

0 94 0 25
0 1 2 92 0 24
0 1 2 88 0 24
0 871 1 0 23
0 0 3 86 0 22
0 1 3 85 0 20
0 1 1 85 0 17
0 0 2

0 5
0 3

85 0 16
0 84 0 16
0 82 0 16
0 791 0 0 9
0 2 0
0 0 3
0 0 4
0 0 3

77 0 8
76 0 5
76 0 5
74 0 3

0 o 741

V neoficiálním pořadí všech zúčastněných zemí jsme jen taktak obhá-
jih pozici v první čtyřicítce (spolu s Argentinou a Řeckem jsme se podělili
o 39.-41. příčku).
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Vynikající organizace se projevila i v bohaté náplni volného času jak
studentů, tak jejich vedoucích. O tom svědčí zejména výlety do Segovii
(která se kromě jiného může pochlubit i zbytky nádherného římského
akvaduktu), El Escorialu a Toleda, v Aranjuez návštěva kulturního ve-
čera s vynikající představitelkou tradičního flamenca Mercedes Ruiz, pro

studenty pak navíc možnost navštívit v Madridu světoznámou galerii
Prado a dlouhá řada soutěží a aktivit.

Slavnostního zakončení olympiády v aule Univerzity Carlose III. se
mimo jiné zúčastnilo i Jeho královské veličenstvo princ Felipe de Asturias
se svou chotí princeznou Letiziou. Spolu s dalšími představiteli rozdali
celkem 267 medailí všem, kteří v nelehkém klání získali alespoň 15 bo-
dů. Mezi nimi bylo 100 studentů, kteří za 22-30 bodů získali stříbrnou
medaili, a 47 nej úspěšnějších, kteří za zisk alespoň 31 bodu byli oceněni
medailí zlatou. Mezi nimi vynikli tři Cíňani Xiaosheng Mu, Dongyi Wei
(oba ČLR) a Alex Zhai (USA), kteří bezchybně vyřešili všech šest úloh.

O maximální počet 42 bodů banální chybou v řešení druhé úlohy
přišel Maďar László Miklós Lovász, který tak s 39 body skončil až na
4. místě. Úloha měla dvě části a chyba byla, že se mladý Lovász v té
druhé části věnoval úplně jiným problémům, než bylo třeba; přitom sta-
čilo poznamenat, že požadovanou vlastnost už vlastně dokázal v první
části. Dodejme, že jeho otec László Lovász, který je dnes prezidentem Me-
zinárodní matematické unie (IMU), získal v letech 1963-1966 na MMO
nejprve stříbrnou a poté ještě tři zlaté medaile.

Hostitelskými zeměmi příštích olympiád budou Německo (jubilejní
50. ročník), Kazachstán a Holandsko.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

1. V ostroúhlém trojúhelníku ABC označme H průsečík výšek. Kruž-
nice se středem ve středu strany BC procházející bodem H protíná
přímku BC v bodech A\ a A2. Podobně kružnice se středem ve středu
strany CA procházející bodem H protíná přímku CA v bodech B\ a B2
a kružnice se středem ve středu strany AB procházející bodem Я protíná
přímku AB v bodech C\ a C2. Ukažte, že body Ai, A2, B1, B2, CJ, C2
leží na jedné kružnici. (Rusko)
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2.(a) Dokažte, že

x2 У2 z2
2*12 +2 + (У - 1) (г-1)(x- 1)

pro všechna reálná čísla x, y, z různá od 1 a splňující rovnost xyz — 1.
(b) Dokažte, že v uvedené nerovnosti platí rovnost pro nekonečně

mnoho trojic racionálních čísel x, y, z různých od 1 a splňujících rovnost
xyz — 1.

3. Dokažte, že existuje nekonečně mnoho kladných celých čísel n, pro něž
má číslo n2 + 1 prvočinitel větší než 2n + \/2n.
4. Najděte všechny funkce /: (0,oo) —> (0, oo) takové, že

(Rakousko)

(Litevsko)

(.f(w))2 + (/0е))2 w2 + x2
f{y2) + f(z2) y2 + 22

pro všechna kladná reálná čísla w, x, y, z splňující rovnost wx = yz.

[Jižní Korea)
5. Nechť пак jsou kladná celá čísla, pro něž je к — n nezáporné sudé
číslo. Je dáno 2n lamp označených čísly 1,2,..., 2n, přičemž každá z nich
může být zapnutá či vypnutá. Na počátku jsou všechny lampy vypnuté.
Uvažujme posloupnosti kroků: v každém kroku jednu z lamp přepneme
(vypnutou zapneme či zapnutou vypneme).

Označme N počet všech takových posloupností к kroků, jež vedou do
stavu, kdy všechny lampy 1 až n jsou zapnuté a všechny lampy n + 1
až 2n vypnuté.

Označme M počet všech takových posloupností к kroků, jež vedou
do stavu, kdy všechny lampy 1 až n jsou zapnuté a všechny lampy n + 1
až 2n vypnuté, přičemž žádná z lamp n +1 až 2n nebyla nikdy zapnutá.

(Francie)
6. Nechť ABCD je konvexní čtyřúhelník, v němž \BA\ ф \BC\. Označme
u>i a u>2 kružnice vepsané trojúhelníkům ABC a ADC. Předpokládejme,
že existuje kružnice u>, jež se dotýká polopřímky BA za bodem A, polo-
přímky BC za bodem C a zároveň i obou přímek AD a CD. Dokažte,
že společné vnější tečny kružnic u>i a u>2 se protínají v bodě kružnice co.

[Rusko)

Určete podíl N/M.
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Řešení úloh

1. Osy úseček A1A2, B\B2, C1C2 jsou zároveň osami stran BC, CA, AB,
takže se protínají v bodě O, jenž je středem kružnice opsané trojúhelníku
ABC. Proto je O jediný bod, jenž může být středem požadované kružnice.

Označme strany a úhly v trojúhelníku standardním způsobem. Dále
nechť r = \OA\ značí velikost poloměru opsané kružnice, Cq střed stra-
ny AB a P patu výšky z vrcholu С (obr. 51). Dokážeme, že všech šest
bodů ze zadání má od bodu O stejnou vzdálenost. Použitím Pythagorovy
věty ve vícero trojúhelnících nejprve vyjádříme délku úsečky OC\ pomocí
jiných délek v trojúhelníku.

A Cx ВP C0 C2

Obr. 51

Z pravoúhlých trojúhelníků OCxCq, Co HP,1 OACq, HAP máme

|OC,|2 = ICiCol3 + |OCo|2,
|ЯС0|2 = |tfP|2 + \PC0\\
|OC„|2 = r2-(lc)2,
\HP\2 - \AH\2 -\AP\2.

(1)
(2)
(3)
(4)

Protože podle zadání |CiCb| = \HCq\, dosazením (2) a (3) do (1) a ná-
sledným dosazením ze (4) dostáváme

lOCýl2 = |ЯР|2 + |РС0|2+г2-(4С)2 = \AH\2-\AP\2 + \PC0\2+r2-\c2.
Bez ohledu na to, zda bod P leží na úsečce ACq či na úsečce CqB, platí

jPCo|2 = |ic- \AP\f = (\c-\AP\f = íc2 - c\AP\ + \AP\2.
Jestliže P = Cq, není CqHP trojúhelník, ale rovnost (2) i tak triviálně platí.
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Dosazením do předchozí rovnosti tak dostaneme

IOCjI2 = \AH\2 -\AP\2 + (ic2 - c\AP\ + \AP\2) +r2~ \c2 =
= \AH\2 + r2 — c\AP\.

Konečně pro délku výšky máme (z pravoúhlého trojúhelníku CAP)
\AP\ = b cos a, takže

\OCi |2 = \AH\2 + r2 — cb cos a.

Analogicky (jen vyměníme úlohu vrcholů В a C) dostaneme

IOB2I2 = |АЯ|2 + r2 — bccosa,

takže lOCil = |Oi?21 ■ Analogicky odvodíme i rovnosti |OAi| = IOC2I
a \OBi\ = IOA2I. Dohromady s triviálními rovnostmi |OAi| = IOA2I,
|05i| = \OB2\1 |OCi| = IOC2I dostáváme

\ОАг\ = \ОАг\ = jOBjl = \OB2\ = IOCjI = |OC2|

tedy body Ai, A2, B\, B2, C1, C2 leží na jedné kružnici se středem O.
Jiné řešení. Označme středy stran BC, CA, AB postupně Aq, Bq, Cq

a kružnice zmíněné v zadání se středy v těchto bodech označme postupně
ka, кь, kc. Úsečka AqBq, střední příčka trojúhelníku ABC, je spojnicí
středů kružnic ka, кь. Protože je rovnoběžná se stranou AB, je kolmá
к výšce na stranu AB. A protože bod H je průsečíkem obou kružnic, je
přímka CH jejich chordálou2 (obr. 52).

2 Chordála dvou nesoustředných kružnic je množina bodů, které mají к oběma
kružnicím stejnou mocnost. Je to vždy přímka kolmá na střednou (spojnici jejich
středů) a obsahuje jejich případné průsečíky.
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Protože bod C leží na chordále kružnic ka, кь, má к oběma kruž-
ničím stejnou mocnost, takže \CA\\ • \САъ\
bod C leží zároveň vně či uvnitř obou kružnic. To znamená, že uve-

děné čtyři body A\, A2, В i, B2 leží na jedné kružnici. Střed této
kružnice přitom musí být průsečíkem os úseček A1A2, B1B2, což je
zřejmě střed O kružnice opsané danému trojúhelníku ABC. Odtud máme
\OA\\ = \OA2\ = \OBi\ = IOB21• Úplně stejně dokážeme (BH je choř-
dálou kružnic ka, kc) rovnosti \OA\\ = \OA2\ = \OC\\ = IOC2I, odkud
plyne, že body A\, A2, B\, B2, C\, C2 leží na jedné kružnici se středem O.

Jiné řešení. Jak už víme, jediným kandidátem na střed hledané kruž-
nice je střed O kružnice opsané trojúhelníku ABC. Stačí tedy pro libo-
volný z bodů Ai, A2, B\, B2, C\, C2 ukázat, že jeho vzdálenost od prů-
sečíku výšek na volbě bodu nezávisí.

Označme středy stran BC, CA, AB postupně Ao, Во, Cq. Podobně
jako v prvním řešení vyjdeme z rovností

|Ctfi| • \CB2\. Navíc

|OCí I2 = \CiCo\2 + IOC0I2 = ItfCol2 + |OCo|2.

Označíme-li N střed úsečky OH, platí dále

|tfC0|2 + |OC0|2 = \\OH |2 + 2|tfC0|2.
To jsme jen zapsali známý vztah délek stran trojúhelníku HCoO a jeho
těžnice C0N.3 Nyní si stačí uvědomit, že střed N úsečky OH je středem
kružnice opsané trojúhelníku AqBqCq (je to tzv. kružnice devíti bodů),
která má poloměr rovný polovině poloměru r kružnice opsané trojúhel-
niku ABC, jak snadno plyne ze stejnolehlosti obou trojúhelníků podle
jejich společného těžiště. Spojením uvedených rovností tak dostáváme
|OCi|2 = i(|Otf |2 + r2). Odtud je už zřejmé, že všech šest uvažovaných
bodů leží na kružnici se středem O a poloměrem ^(|Otf |2 + r2).

Jiné řešení. Zvolíme-li střed O kružnice opsané trojúhelníku ABC za

počátek souřadnicového systému a označíme jedním písmenem X odpo-
vídající vektor OX, platí H = A + В + C (ve stejnolehlosti se středem
v těžišti T daného trojúhelníku, která převádí ABC na AqBqCq, od-
povídá totiž ortocentru tf bod O, takže je H — T — 2(7 — 0) neboli

3 Rovnost snadno plyne z kosinové věty a je ekvivalentní s jinou známou rovností
2(a2 +b2) = e2 + /2, která platí pro rovnoběžník se stranami a, b a úhlopříčkami
e, /•
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H = 37 — 20 = 37). Zároveň také jeA-A = B- B = C- C = r2, kde
r označuje poloměr kružnice opsané trojúhelníku ABC. Pro bod C0 tak
máme

ICoCjI2 + |OCo|2 = |HC0|2 + 10 Co |2 =
A + B\ (—)ÍA+B + C

A + B
= (a + b + c +

2

(^) ■ (^)+

1 1
= -{A + B) • (A + В) + C • С + C ■ (A + В) + -(A + B) • {A + B) =

= i(2A ■ A + 2B • В + 4C • С + 4A В + 4B С + 4C ■ A) =

= 2r2 + AB + BC + CA,

přičemž součinem ■ zde přirozeně rozumíme skalární součin příslušných
vektorů. Ze symetrie posledního výrazu vidíme, že všechny body A\, A2,
В i, T?2, C1, C2 mají od bodu O stejnou vzdálenost, takže leží na jedné
kružnici.

2. a) Zaveďme substituci
x

У -1

2
= a, = c,

x — 1 2 - 1

tj.
ba c

x = У = z —

b- 1a — 1 c — 1

Chceme dokázat nerovnost a2 + b2 + с2 ^ 1 pro libovolná reálná čísla
a,b,cý 1 splňující rovnost

ba c

(1)= 1,
a — 1 6 — 1 c — 1

která je přepsáním podmínky xyz = 1. Ekvivalentními úpravami z (1)
postupně dostáváme

abc — (a — 1)(6 — l)(c — 1)
a6 + 6c + ca = a + 6 + c— 1,

(a + 6 + c)2 — (a2 + 62 + c2) = 2(a + 6 + c — 1),
(a + 6 + c)2 — 2 (a + 6 + c) = a2 + 62 + c2 — 2,

(a + 6 + c — l)2 = a2 + 62 + c2 — 1. (2)
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Levá strana poslední rovnosti je vždy nezáporná, proto opravdu platí
a2 + b2 + c2 ^ 1.

b) Abychom našli dokonce všechny trojice racionálních čísel x, y, z
různých od 1, jež splňují vztah xyz = 1 a pro něž v zadané nerovnosti
platí rovnost, stačí najít trojice racionálních čísel a,b,c ф 1, jež splňují
jak (1) (což navíc znamená, že jsou nenulová), tak i rovnost a2 + b2 +
+ c2 = 1, a použít uvedenou substituci (zachovávající racionálnost) na

výpočet x, у, 2. Přitom první z rovností jsme ekvivalentně upravili na
tvar (2). V oboru racionálních čísel různých od 0 a 1 tedy řešíme soustavu

(a + b + c — l)2 = a2 + b2 + c2 — 1,
a2 + b2 + с2 = 1,

která je zřejmě ekvivalentní se soustavou

a2 + 62+c2 = a + 6 + c= l.

Vyjádřením c— 1 — a — ba dosazením do rovnice a2 + b2 + с2 = 1 tak
dostáváme jedinou rovnici

a2 + b2 + ab — a — 6 = 0.

Jsou-li nyní a, b £ {0,1} racionální čísla, je racionální i Л = b/a.
Dosazením b — \a do poslední rovnice dostáváme

a2(l + А2 + Л) — a(l + A) = 0,

a protože а/0аЛ2 + Л + 1>0 pro každé Л, vychází

1 + Л
a~

1 + A + A2’

Našli jsme tak všechna racionální řešení uvažované soustavy, kterých je
nekonečně mnoho, neboť žádná ze tří nalezených racionálních funkcí A
nenabývá jen konečně mnoha hodnot. Vyloučit musíme jediné dvě hod-
noty A G { — 1,0}, jež vedou к nežádoucím hodnotám 0, 1 čísel a, b, c.

Jestliže se vrátíme к původním proměnným x, у, 2, dostaneme po

jednoduché úpravě trojice

A +A2 A
b = c = —

1 + A + A2 '1 + A + A2

1 + A A
у = —A(1 + A)x = — 2

(1 + A)2A2 ’

důkaz je však úplný i bez tohoto vyjádření, neboť různým trojicím (a, 6, c)
zřejmě odpovídají různé trojice (x, у, z), takže i jich je nekonečně mnoho.
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Jiné řešení. Protože čísla x, y, z jsou různá od 1, můžeme položit
x = a + l, y = b + l, z = c+l (abc ф 0). Je tedy

z2 У2 z2 (a +1)2 (6 + 1)2 (c+1)2V =
2 + 2 + (2-1)2 a2 b2(x - 1) У-1) c2

= 3 + 2(i + i + i) 1 1 1
+ -77 =+ 7fl+V2 c2

2(ab + bc + ca) (ab + bc + ca)2 — 2abc(a 4- b + c)
= 3 +

(abc)2abc

Označíme-li o + b + c = p, ab + bc + ca = g, abc
právě když p 4- q + r = 0. Protože r^O, můžeme pokračovat

г ф 0, máme xyz = 1

t r „ 2g g2 — 2r»У = 3 + — 4- = 3+?« + p)2r Vr /
-25 =

r2 ГГ

= (l)*+ii+6=(i+2)\1Z1\r/ v \r /

g + r
= 3 +— + 2

rr r

Tím je požadovaná nerovnost dokázána. Zároveň vidíme, že rovnost na-

stává, právě když g = —2r a p + g + r = 0.
Najděme (podobně jako v prvním řešení) všechny trojice nenulových

racionálních čísel a, 6, c, které vyhovují soustavě posledních dvou rovnic,
jež můžeme přepsat do tvaru

111
b 7—I — —2,

1 1 1
~T + 7 I — 1-
ab bc cab ca

Vytkneme-li ze dvou zlomků druhé rovnice činitel 1/c, dostaneme v zá-
vorce součet l/a +1/6, za který dosadíme jeho vyjádření z první rovnice.
Dostaneme tak

— 4— • (—2 1=1 neboliab с V c /

1 1

a b

Pomocí neznámé c tak máme vyjádřen jak součet, tak i součin zlomků
l/a а 1/6, tato dvě racionální čísla jsou tudíž kořeny t\^ kvadratické
rovnice

t2+(2+i)ř+(1 + i)2 = 0.

Její diskriminant

(2 + I)2-4(1 + i)T 4c 4- 3

c2
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proto musí být druhou mocninou racionálního čísla, takže pro vhodné
racionální Ц musí platit

/i2 + 3
4c + 3 = —/r2, odkud c —

4

Po dosazení takového parametru c do odvozené kvadratické rovnice
určíme oba její racionální kořeny 11,2 (rutinní výpočet podle známého
vzorce přeskočíme) a rovnou zapíšeme příslušné hodnoty a a b (v jednom
z pořadí, na kterém ostatně díky symetrii úlohy tolik nezáleží):

/i2 + 3
(+W

Racionální číslo /i jako parametr nalezeného popisu všech vyhovujících
trojic (a, 6, c) zřejmě může nabývat jakékoliv hodnoty s výjimkou /i =
= ±1. Vrátíme-li se к původním proměnným x = a + 1, у = 6+1,
z = c + 1, obdržíme kýžené vzorce pro všechny hledané trojice (až na
možnou záměnu x a y) ve tvaru

p2 + 31
a =

(m-i)2 £211

í-V
_ 2Ql.-1)

y
Ou + 1)2’ 2

Snadno se můžeme přesvědčit, že parametry Л a \i z obou podaných řešení
popisují stejnou vyhovující trojici, platí-li Л = —2/(/z + 1) (podmínka
\x ф 1 odpovídá podmínce Л ф —1).
3. Nechť N je libovolné sudé přirozené číslo a p některý prvočinitel čísla
N2 + 1. Označme z zbytek čísla N při dělení prvočíslem p (zřejmě 0 <
< z < p). Potom máme

2(/r + 1)
x = —

Q^-i)2 4

z2 = N2 = — 1 (mod p) (p — z)2 = z2 = — 1 (mod p).
Vezměme za n menší z dvojice čísel z, p — z. Platí tedy 0 < n < p/2 (p je
liché prvočíslo) a zároveň p | n2 + 1. Navíc

a též

(p — 2n)2 = 4n2 = —4 (mod p),
a protože (p — 2n)2 > 0, dostáváme (p — 2n)2 ф.р — 4. Pro prvočísla p ф 5
tak po odmocnění a úpravě máme

p — 2пф. yjp — 4,
p ^ 2n + \Jp — 4.

Je-li dokonce p > 20, je фр — 4 > 4 a z (1) plyne p > 2n+4 neboli p — 4 >
> 2n. Je tedy фр — 4 > \/2n a dosazením do (1) dostáváme požadovanou
nerovnost p > 2n + \Í2n.

(1)
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Ukázali jsme, že pro každé prvočíslo p > 20, к němuž existuje takové
číslo N, že p | N2 + 1 (tedy pro každé prvočíslo, mezi jehož kvadratické
zbytky patří —1) existuje číslo n s požadovanou vlastností. Kdyby bylo
takových n jen konečně mnoho, muselo by existovat jen konečně mnoho
popsaných prvočísel, z p | n2 + 1 totiž plyne p 5Í n2 + 1. Avšak prvočísel
s kvadratickým zbytkem —1 je nekonečně mnoho. Důkazem tohoto zná-
mého tvrzení zakončíme řešení úlohy.

Nechť M je libovolné přirozené číslo. Potom libovolné prvočíslo p,
které je dělitelem čísla (M!)2 + 1, má mezi svými kvadratickými zbytky
číslo —1. Zároveň p > M, neboť zřejmě žádné z čísel 2,3,...,M není
dělitelem čísla (M!)2 + 1. Ke každému M tedy existuje prvočíslo p > M
s požadovanou vlastností. Takových prvočísel je proto nekonečně mnoho.

Poznámky. Každé prvočíslo tvaru 4k + 1 má mezi svými kvadratic-
kými zbytky číslo —1. Naopak —1 není kvadratickým zbytkem žádného
prvočísla tvaru 4к + 3. Prvočísel tvaru 4k + 1 je nekonečně mnoho.

První tvrzení plyne z Wilsonovy věty: pro každé (liché) prvočíslo p

platí (p — 1)! -f 1 =0 (mod p). A protože i(p — г) = —г2 (mod p), máme

(p-1)! = (-1)2(p 1}((^)!) = —1 (mod p)
což ukazuje, že pro p = 4k + 1 je —1 kvadratickým zbytkem. Kdyby
naopak pro p = 4/c + 3 existovalo x, že x2 = —1, dostali bychom
xp~l — (x2)^-1) = (—l)é(p_1) — — 1, což odporuje malé Fermatově
větě. A konečně jsou-li pi,P2, • • • ,Pn prvočísla dávající zbytek 1 (mod 4),
je prvočinitel p čísla (piP2 .. .pn)2 + 1 od prvočísel pi,p2,... ,pn různý,
a protože má mezi kvadratickými zbytky —1, musí být podle předchozího
jedině tvaru 4k + 1.

4. Předpokládejme, že funkce / vyhovuje zadání. Budeme za w, x, у, z
dosazovat různé čtveřice kladných čísel splňující wx — yz a stanovovat
tak podmínky, které musí / splňovat a jež budeme dále používat.

Po dosazení w = x = y = z = l máme /(1)2//(1) — 1, tedy /(1) = 1.
Vezměme libovolné t > 0 a dosaďme w — t, x = la.y = z — \ft.
S využitím /(1) = 1 postupnými úpravami dostáváme

/(í)2 + 1
_ t2 + 1

21 '

tf(t)2 + t = t2f(t) + f(t)
-t) = f(t) -t,

(/(*)“*)(*/(*) -1) = 0.

2№
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Pro každé t > 0 proto platí buď /(£) = t, anebo f(t) — l/t. Přímým
dosazením do zadání snadno ověříme, že obě funkce

a f(t) = - pro všechna t > 0 (1)f(t) = t pro všechna t > 0 t

vyhovují (první funkce zřejmě vyhovuje, v případě druhé stačí provést
triviální úpravu a použít podmínku wx = уz). Ukážeme, že žádná jiná
funkce podmínky zadání nesplňuje, tj. že / nemůže pro některé t ф 1
nabývat hodnotu t a pro nějaké jiné t hodnotu 1/ť.

Předpokládejme, že / není ani jedna z funkcí (1). Tedy pro nějaká
a > 0, 6 > 0 platí /(a) ^ a a /(6) Ф 1/b. Podle odvozených podmínek
potom nutně /(a) = l/a, /(6) = b. Dosazením w = a, x = ba,y = z —

= \fab do dané rovnosti po úpravě dostáváme

a? + b2a 2 + b2
2 f(ab) 2ab

ab(a 2 -f b2) (2)f(ab) = a2 + b2

Víme, že f(ab) = ab nebo f(ab) = l/аб. Jestliže f(ab) — ab, je podle (2)
a~2 +b2 — a2 +b2, odkud a = 1. Avšak /(1) = 1, což odporuje předpo-
kladu f(a) Ф a. Podobně jestliže f(ab) = 1/ab, z (2) máme

a2b2(a~2 -f b2) = a2 + b2, b2 + a2b4 = a2 + b2,

odkud b4 = 1, tj. 6=1, což odporuje předpokladu /(6) ^ 1/6.
Dvě funkce (1) jsou tedy jediné funkce, jež vyhovují zadání.
Jiné řešení. Předpokládejme, že funkce f vyhovuje zadání, a položme

s, x — t, у — z — у/si. Pro libovolná kladná čísla s, t tak dostaneme

s2 4-t2
/(S)2 + /(í)2 = /(Sí)—-t_.

Pro s — t — 1 odtud snadno plyne /(1) = 1 a pro s — l/t pak vyjde

tedy

w —

(3)

/(í)2+=í2+
i

(4)ř2

Konečně dosazením s = 1 do (3) dostaneme

t2 + 1
fit? - № + i = o,t
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což je stejná kvadratická rovnice pro f(t), jakou jsme dostali v předcho-
zim řešení. Vidíme tedy, že pro každé t > 0 platí buď f(t) = t, anebo
f(t) — 1 /t.

Označme A = {a: /(a) = a} а В = {b: f(b) = 1/6}. Zřejmě АП В =
= {1} a A U В = (0, оо). Ze vztahů (3) а (4) však navíc plyne, že obě
množiny A i В jsou uzavřeny vzhledem к operacím násobení a převrácené
hodnoty. Jsou-li nyní a G A, 6 G В taková, že а ф 1, 6 -ф 1, nemůže být
ani ab G A (jinak by bylo 6 = a~l ■ ab G A), ani ab G В (bylo by
a = ab ■ 6_1 G B). Odtud plyne, že jedna z množin А, В je nutně triviální
(rovna {1}), zatímco druhá je rovna

Jediné dvě funkce, jež vyhovují zadání, jsou funkce (1).
5. Posloupnosti к kroků, které vedou do stavu popsaného v zadání (lam-
py od 1 po n zapnuté, lampy od n-fl po 2n vypnuté), nazvěme vyhovující
Vyhovující posloupnosti, v nichž navíc ani jednou nezapneme žádnou
z lamp od n + 1 po 2n, nazvěme speciální Máme tedy N vyhovujících
posloupností, z nichž M je speciálních.

V každé vyhovující posloupnosti je každá z lamp 1,... ,n na konci
zapnutá, takže celkový počet jejích přepnutí je lichý. Naopak každá z lamp
n + 1,..., 2n je na konci vypnutá, takže počet jejích přepnutí je sudý.

Zřejmě M > 0, tj. existuje aspoň jedna speciální posloupnost (stačí
jednou zapnout každou z lamp od 1 po n a potom zvolit jednu z nich
a přepnout ji {k — n)-krát, což je podle zadání sudé číslo).

Nechť V je libovolná speciální posloupnost. Zvolme kteroukoli lam-
pu l, kde 1 ^ l ^ n. Označme ki celkový počet přepnutí lampy l (jak
už jsme zmínili, je ki liché). Vyberme mezi nimi libovolnou podmno-
žinu obsahující sudý počet přepnutí a nahraďme každé z nich přepnutím
lampy n + l. To můžeme udělat 2kl~l způsoby, protože každá ki-prvková
množina má 12kl = 2kl~1 podmnožin se sudou mohutností (zřejmě má
každá množina stejný počet podmnožin se sudou i s lichou mohutností).

Uvedené změny přepnutí můžeme udělat nezávisle s každou lampou
pro l G (1,..., n). Protože k\ + ... + kn = k, je celkový počet různých
posloupností, které dostaneme,

(0, oo).

2&1 — i e 2^2 —i . . 2— i nk—n

V každé vytvořené posloupnosti je počet přepnutí každé z lamp od n + l
do 2n sudý a počet přepnutí každé z lamp od 1 do n lichý, jedná se proto
o vyhovující posloupnost. Z každé speciální posloupnosti V umíme tudíž
takto vytvořit 2k~n vyhovujících posloupností.
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Zřejmě každou vyhovující posloupnost Q můžeme vytvořit popsaným
způsobem. Stačí každé přepnutí lampy l (l > n) nacházející se v Q nahra-
dít přepnutím lampy l — n. Ve výsledné posloupnosti V nebudou lampy
od n + 1 do 2n přepnuty ani jednou. Protože v Q byl počet přepnutí
každé lampy l (/ > n) sudý, bude počet přepnutí každé lampy l {l ú n)
v V lichý, tj. posloupnost V bude speciální. Jestliže nyní postup obrátíme
a vrátíme příslušná přepnutí zpět к lampám od n + 1 do 2n, dostaneme
posloupnost Q. Přitom obrácený postup změny V na Q probíhá přesně
tak, jak jsme popsali výše.

Našli jsme zobrazení z množiny vyhovujících posloupností do množiny
speciálních posloupností, přičemž vzor každé speciální posloupnosti při
tomto zobrazení obsahuje 2fc_n vyhovujících posloupností. Proto N/M —
_ 2 k—n

6. Označme dotykové body kružnice ui a přímek BA, BC, CD, AD po-

stupně К, L, M, N (obr. 53). Pro strany daného čtyřúhelníku platí

\AB\ + \AD\ = (\BK\ -\AK\) + (\AN\ - \DN\),
\CB\ + \CD\ = (\BL\ - \CL\) + {\CM\ - \DM\).

Přitom z rovnosti úseků příslušných tečen ke kružnici u> plyne \BK\ =
— \BL\, \DN\ = \DM\, \AK\ = \AN\ a \CL\ — \CM\, což po dosazení
do předchozích dvou rovností dává \AB\ + \AD\ = \CB\ + \CD\.

L

и

N
C

Л

M

в
к А

Obr. 53

Označme P a Q odpovídající body, v nichž se vepsané kružnice cj1; n>2

dotýkají strany AC. Podle známých vzorců pro délky úseků mezi vrcholy
trojúhelníku a dotykovými body stran a vepsané kružnice vychází

\AP\ = \(\AC\ + \AB\ - |SC|), \CQ\ = 1(|ЛС| + \CD\ -\AD\).
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což vzhledem к dokázané rovnosti \AB\ + \AD\ = \CB\ + |CD\ dává
rovnost \AP\ = \CQ\.

Jak známo, body dotyku vepsané a připsané kružnice jsou souměrně
sdruženy podle středu odpovídající strany. Proto je bod Q zároveň i bo-
dem dotyku kružnice připsané ke straně AC trojúhelníku ABC (obr. 54).
Přitom ve stejnolehlosti se středem В, v níž se tato připsaná kružnice
zobrazí na kružnici u>\, je obrazem bodu Q bod P', v němž má kruž-
nice u>i další tečnu rovnoběžnou s tečnou AC. Zřejmě je PP' průměrem
kružnice uji kolmým na AC a body В, P', Q leží v přímce.

Analogicky je bod P bodem dotyku kružnice připsané ke straně AC
trojúhelníku ADC. Navíc P ф Q, neboť \AB\ ^ \BC\. Je-li QQ' prů-
měr kružnice u>2 (kolmý na úhlopříčku AC), leží body D, Q', P rovněž
v přímce.

Uvažujme průměr kružnice ш, jenž je kolmý na AC, a označme T
ten z jeho krajních bodů, který je blíže přímce AC. Ve stejnolehlosti
se středem В, která zobrazuje uj\ na lo, se bod P' zobrazí do bodu T.
Podobně ve stejnolehlosti se středem D, která zobrazuje u>2 na u, se zas
bod Q' zobrazí do bodu T. To znamená, že bod T je průsečíkem přímek
P'Q a PQ1. Protože PP' || QQ', kružnice a>i, u>2 s průměry PP', QQ'
jsou stejnolehlé se středem T. Protože bod T neleží na společné vnitřní
tečně AC obou kružnic, je T jejich vnějším středem stejnolehlosti, takže je
zároveň průsečíkem vnějších tečen kružnic uo\, 0^2, což jsme chtěli dokázat.
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2. středoevropská matematická olympiáda

EUROPEAN

Druhý ročník Středoevropské matematické
olympiády se uskutečnil 4.-10. září 2008
v Olomouci pod záštitou rektora Univerzity
Palackého prof. RNDr. Lubomíra Dvořáka,
CSc. Soutěž probíhala v prostorách Příro-
dovědecké fakulty Univerzity Palackého a
zúčastnili se jí 52 studenti středních škol
z devíti zemí. Každá země mohla vyslat nej-
výše šest soutěžících, kteří se nezúčastnili
uplynulé MMO ve Španělsku a v počínajícím školním roce 2008/09 ještě
zůstávali studenty středních škol.

Organizací tohoto ročníku Středoevropské olympiády byl Ústřední ко-
misí MO pověřen RNDr. Jaroslav Švrček, CSc., z Přírodovědecké fakulty
Univerzity Palackého v Olomouci, který celou soutěž jako předseda orga-
nizačního výboru řídil. Přípravu a užší výběr úloh z došlých návrhů vzal
na svá bedra doc. RNDr. Jaromír Šimša, CSc., přičemž definitivní výběr
dvou čtveřic úloh pro soutěže jednotlivců i družstev odsouhlasila meziná-
rodní jury (složená z vedoucích zúčastněných zemí) ještě před zahájením
olympiády elektronickou cestou. Jednání mezinárodní jury během sou-
těže pak řídil a moderoval RNDr. Karel Horák, CSc. Mezi vybranými
soutěžními úlohami byla také jedna česká úloha, jejímž autorem byl bý-
valý úspěšný olympionik Marek Pechal.

Ústřední komise MO vybrala pro Středoevropskou matematickou
olympiádu šestici středoškoláků sestavenou z úspěšných řešitelů ústřed-
ního kola 57. ročníku MO kategorie A, kteří splňovali podmínky soutě-
že. České reprezentační družstvo tak v abecedním pořadí tvořili: David
Klaška (G Brno, tř. Kpt. Jaroše), Jiří Marek (G Brno, tř. Kpt. Jaroše),
Van Nhan Nguyen (G Praha 6, Nad Alejí) Tomáš Pavlík (G Jana Keple-
ra, Praha), Hana Šormová (G Brno, tř. Kpt. Jaroše) a Jan Vaňhara
(G L. Jaroše v Holešově). Vedoucím české delegace a jejím zástupcem
v jury byl Mgr. Martin Panák, Ph.D., z Přírodovědecké fakulty Masary-
kovy univerzity v Brně.
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Vlastní soutěž se konala ve dvou soutěžních dnech, a to v sobotu
6. září (soutěž jednotlivců) a v neděli 7. září (soutěž družstev). Po oba
soutěžní dny řešili jednotlivci, resp. reprezentační družstva po 4 úlohách,
na jejichž vypracování byl vždy vyhrazen čas 5 hodin. Každá úloha byla
přitom hodnocena (podle předem schváleného systému hodnocení) celo-
číselným počtem bodů v rozpětí od 0 do 8.

Koordinace žákovských řešení probíhala stejným způsobem jako na
MMO. Na závěrečném jednání jury 8. září byly stanoveny hranice pro
udělení zlatých, stříbrných a bronzových medaili a dále bylo potvrzeno
oficiální pořadí v soutěži družstev. Vzhledem к tomu, že pět soutěžících
Bertram Arnold z Německa, András Éles, Dániel Nagy a Gergely Szúcs
z Maďarska a Jakub Očwieja z Polska získalo v soutěži jednotlivců plný
počet bodů, bylo o osudu připravených zlatých medailí rozhodnuto. Stři-
brné medaile se pak udělovaly za 11-24 bodů a bronzové za 16-23 bodů.

Zisk jedné stříbrné a jedné bronzové našimi účastníky sice nevypadá
zle, ale jejich celkové výsledky a zejména pak výsledek v soutěži družstev
nás příliš nepotěšily. Jako jednotlivci naši soutěžící dopadli takto:

Body za úlohu Body Cena
12 3 4Umístění

11.-16. David Klaška
37.-38. Jiří Marek

45.-47. Van Nhan Nguyen
24. Tomáš Pavlík

45.-47. Hana Šormová
44. Jan Vaňhara

stříbro8 8 0 8 24

5 8 0 0 13

4 10 0

3 1 8 7 19

5 0 0 0

0 7 0 0

HM

5

bronz

5

7

Celkem 25 23 8 15 71

Přehled výsledků všech zemí v soutěži jednotlivců je v druhé tabulce.
Země jsou v ní seřazeny podle součtu bodů celého družstva podobně jako
při neoficiálním pořadí zemí na MMO (číslo v závorce označuje menší
počet účastníků).

I II III body I II III body
Maďarsko
Polsko
Německo
Slovensko

Švýcarsko

171 Rakousko
170 Česká republika
134 Chorvatsko
105 Slovinsko (4)

3 3 0
1 4 1
1 3 1
0 0 2
0 0 3

0 0 3
0 1 1
0 0 3
0 0 0

86
73
69

25
89

V soutěži družstev získaly prvenství současně týmy Maďarska, Polska
a Německa s plným bodovým ziskem. Tato tři družstva byla o třídu lepší
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než ostatní. Vzhledem к tomu, že tak byly rozděleny tři zlaté medaile,
stříbrná ani bronzová se už neudělovaly. Český tým skončil se ziskem
22 bodů na 7. místě, což představuje ve srovnání s minulým ročníkem, kdy
naše družstvo skončilo na 3. místě, výrazné zhoršení (na první olympiádě
ovšem chyběli Němci i Maďaři). Celkové výsledky soutěže družstev jsou
uvedeny v následující tabulce.

Body za úlohu Body Cena
12 3 4Umístění

1.-3. Maďarsko
Německo
Polsko

4. Rakousko

5. Slovensko

6. Švýcarsko
7. Česká republika
8. Chorvatsko
9. Slovinsko

zlato

zlato

zlato

8 8 8 8 32

8 8 8 8 32

8 8 8 8 32

8 2 8 8 26

6 3 8 8 25

5 3 8 8 24

8 6 0 8 22

3 2 8 8 21

3 2 4 0 9

Organizátoři připravili bohatý průvodní program. Během svého po-

bytu se soutěžící seznámili s pamětihodnostmi Olomouce a blízkého okolí
(v pátek navštívili Svatý Kopeček, v pondělí byl pro všechny výlet s pro-
hlídkou zámku a zahrad v Kroměříži a v úterý si mohli účastníci pro-
hládnout Javoříčské jeskyně a hrad Bouzov).

Slavnostní zakončení soutěže spojené s oceněním nejlepších jednot-
livců a družstev se uskutečnilo v reprezentativních prostorách Konviktu
Univerzity Palackého v Olomouci za přítomnosti rektora prof. RNDr. Lu-
bomíra Dvořáka, CSc., pověřených zástupců Ministerstva školství a dal-
ších významných představitelů Univerzity Palackého.

Třetí ročník MEMO se bude konat v Polsku v září 2009.

Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)

Soutěž jednotlivců

1. Buď (an)^=1 posloupnost přirozených čísel taková, že an < an+\
pro všechna n ^ 1. Předpokládejme, že pro libovolnou čtveřici indexů
(г, j, k, /), kde 1 ^ i < j ^ к < l a i + l
ai + ai > aj + aUrčete nejmenší možnou hodnotu členu агоов-

j + k, platí ostrá nerovnost

(Rakousko)
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2. Uvažujme šachovnici nxn, kde n > 1 je přirozené číslo. Kolika způsoby
na ni můžeme rozmístit 2n — 2 identických kamenů (každý kámen leží
na jiném poli) tak, že žádné dva kameny neleží na stejné diagonále?
(Dva kameny leží na stejné diagonále, jestliže přímka spojující středy
odpovídajících polí je rovnoběžná s některou z úhlopříček šachovnice.)

(Švýcarsko)
3. Je dán rovnoramenný trojúhelník ABC s rameny ВС a AC. Kružnice
mu vepsaná se dotýká stran AB a BC po řadě v bodech D a E. Přímka
různá od AE a procházející bodem A protíná kružnici vepsanou v bodech
FaG. Přímka AB pak protíná přímky EF a EG po řadě v bodech К

(Maďarsko)a L. Dokažte, že \DK\ = \DL\.4.Najděte všechna celá čísla к taková, že čísla 4n + 1 a kn + 1 jsou
nesoudělná pro libovolné celé n. (Maďarsko)

Soutěž družstev5.Nechť IR značí množinu všech reálných čísel. Nalezněte všechny funkce
/: IR —> IR takové, že

xf(x + xy) = xf(x) + f(x2)f(y)

(,Švýcarsko)6.Buď n ^ 2 přirozené číslo. Na tabuli je napsáno n čísel. V každém
kroku vybereme na tabuli dvě čísla a každé z nich nahradíme jejich souč-
tem. Určete všechna n, pro která vždy můžeme po konečném počtu kroků

(Slovensko)

pro všechna x,y £ IR.

dostat n stejných čísel.7.Je dán ostroúhlý trojúhelník ABC a body E, D tak, že body В
a E leží v opačných polorovinách určených přímkou AC a bod D leží
uvnitř úsečky AE. Dále nechť \<ADB\ = \%.CDE\, \<BAD\ = \<ECD\
a |^ACB\ — \kEBA\. Dokažte, že body В, С a E leží v přímce.

(Slovinsko)8.Jestliže je součet kladných dělitelů kladného celého čísla n mocninou
čísla 2 s celočíselným mocnitelem, pak je i jejich počet mocninou čísla 2
s celočíselným mocnitelem. Dokažte. (Česká republika)
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Řešení úloh

1. (Podle Jaromíra Šimši.) Podle zadání pro každé n^la čtveřici in-
dexů (n, n + 1, n + 1, n + 2) platí

2 ®n+l = (®n+l ®n) d* !•

Protože a2 — ai ^ 1, jednoduchým použitím matematické indukce dostá-
váme an+\ — anětn pro n ^ 1. Je tedy an+1 ^ n + an. Odtud s využitím
nerovnosti ai ^ 1 opět triviální matematickou indukcí odvodíme nerov-
nost

an = \{n2 — n + 2).
Přitom posloupnost an = |(n2 — n + 2) podmínky zadání splňuje.

Nerovnost ai + ai > aj + a*, je totiž pro ni (při rovnosti i + l = j + k)
ekvivalentní s nerovností i2 +12 > j2 + к2, která po substituci i — d — y,
l = d + y, j = d — x, k = d + x (kde 0 ^ x < y) přejde ve zřejmou
nerovnost 2d2 -f 2y2 > 2d2 + 2x2.

Závěr. Nejmenší možná hodnota čísla 02008 je 5 (2 0082 — 2 008 + 2) =
= 2 015 029.

2. Množinu к políček umístěných od jednoho okraje šachovnice po druhý
ve směru některé úhlopříčky (přičemž 1 ^ к 5Í n) nazývejme /c-diagonála.
Počet disjunktních diagonál v jednom směru je 2n — 1 (obr. 55), mezi
2n — 2 zvolenými políčky však nemohou být najednou obě políčka na 1-
-diagonálách (protože ty jsou obě součástí n-diagonály ve druhém směru).
Proto na každé fc-diagonále pro к > 1 musí být zvoleno právě jedno
políčko a právě dvě políčka musejí být zvolena v rozích (ne však v těch
protilehlých).

Uvažujme množinu P všech takových dvojic (z,v), že 2 je zvolené
políčko a v je volné (tedy nezvolené) políčko na téže diagonále jako 2.
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Na šachovnici je právě n2 — 2n + 2 volných políček, přičemž dvě z nich
jsou rohová. Každé ze zbylých n2 — 2n volných políček v leží na dvou
Á;-diagonálách pro /с > 1, existují к němu proto právě dvě políčka z

taková, že (z, v) £ P. Celkový počet p dvojic v množině P je tedy

p - 2 (n2 2n) + 2 = 2n2 — 4n + 2 (1)

přičemž +2 je příspěvek dvou volných rohových políček (každé z nich má
jediné příslušné zvolené políčko v protilehlém rohu).

Jestliže zvolené políčko z leží na průniku /ci-diagonály a ^-diagonály
pro /ci,/c2 > 1, je počet volných políček v takových, že (z, v) £ P
k\ + — 2. Totéž platí i pro rohová políčka, pro která {k\, = {1, n}.
Zřejmě pro každé zvolené políčko 2 platí k\+k2 ^ n-f1, přičemž rovnost
nastane, právě když se políčko nalézá na kraji šachovnice. Počet takových
volných políček v, že (z, v) £ P, je tedy aspoň n — 1. Odtud

roven

p P (2n — 2)(n — 1) = 2n2 — 4n + 2.

Podle (1) víme, že v předešlé nerovnosti platí rovnost, proto všechna
zvolená políčka musejí ležet na kraji šachovnice.

Jestliže zvolíme libovolná políčka (třeba i žádné) z první řady ša-
chovnice, zbylá okrajová políčka (ležící mimo první řadu), která musíme
zvolit, jsou jednoznačně určena. Pro rohová políčka je to zřejmé, pro

zbylá políčka stačí pro každé к = 2,3,..., n—1 uvažovat obdélník tvořený
dvěma /с-diagonálami v jednom směru a (n+1 — A;)-diagonálami v druhém
směru (v každém takovém obdélníku musejí být mezi zvolenými políčky
dva protilehlé rohy, obr. 56). Celkový počet různých výběrů políček je
tedy stejný jako počet různých podmnožin n-prvkové množiny (tvořené
políčky první řady), tedy 2n.

X X

/ X X X X

/
_

/ X X X X

/ z X X X XX

z z XX X X

\ z X X X X XвУv
,

. X

Obr. 56 Obr. 57
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Jiné řešení. (Podle Bernda Mulanského, Německo.) Dva různé směry
diagonál označme A a B. Z úvodu prvého řešení víme, že na každé
/с-diagonále pro к > 1 je zvoleno právě jedno políčko a právě dvě políčka
jsou zvolena v neprotilehlých rozích. Každý vyhovující výběr políček mů-
žeme vytvořit následujícím postupem sestávajícím z n kroků:

> Krok 1: Zvolíme políčko na jedné ze dvou 1-diagonál směru A.
> Krok к (2 ^ к ^ n — 1): Zvolíme dvě políčka, každé na jedné ze dvou

/е-diagonál směru A.
> Krok n: Zvolíme políčko na n-diagonále směru A.

Zřejmě pro každé m = 1,2,..., n — lpom krocích (takových, že žádná
dvě zvolená políčka nejsou na téže diagonále směru B) se na každé mezi
2m — 1 nejdelšími /с-diagonálami směru В (tj. к ^ n + 1 — m) nalézá
zvolené políčko (obr. 57). Jestliže m < n — 1, v následujícím kroku m + 1
musejí být obě políčka zvolena na kraji obou (m -f l)-diagonál směru A
(zbylá políčka těchto dvou diagonál leží na už „obsazených“ diagonálách
směru В), což se dá udělat právě dvěma způsoby. Podobně je to v případě
m +1 = n. Máme tedy dvě možnosti v každém z n kroků a celkový počet
různých vyhovujících výběrů je 2n.

Jiné řešení. (Podle Pavla Novotného, Slovensko.) Obarvěme políčka
šachovnice jako obyčejně, přičemž levý horní roh bude černý. Z podobné
úvahy jako v úvodu prvého řešení plyne, že musíme zvolit n — 1 bílých
a n — 1 černých políček. Počet pn všech vyhovujících výběrů 2n — 2
políček na šachovnici n x n se rovná součinu bn- cn, přičemž bn a cn jsou
počty vyhovujících výběrů n — 1 bílých, resp. černých políček. Zřejmě
62 = Ьз = 2, C2 = 2 а сз — 4. Snadno ukážeme, že pro každé n ^ 4 platí
bn — 26n_2, cn — “žbfi— i, takže pn — bncn — 4ůn_2bn—i — 2Cn—lán—i —-

= 2pn_i, odkud už triviálně plyne pn = 2n.

3. Bez újmy na obecnosti předpokládejme, že |AF\ < \AG\. Rozeberme
nejprve situaci, kdy je G na kratším oblouku DE.

Označme J dotykový bod vepsané kružnice se stranou AC. Z vlast-
ností souhlasných, úsekového a obvodových úhlů máme \<CAB\ —

= \<CJE\ — \<JDE\ = \šiJFE\ (obr. 58), takže AJFK je tětivový
čtyřúhelník. Proto z obvodových, vrcholových a úsekového úhlu dostá-

1 Odstraníme dvě bílé 2-diagonály v jednom směru a dvě bílé (n — l)-diagonály
v druhém směru; zbylá bílá políčka vytvářejí stejné diagonály jako bílá políčka
šachovnice (n — 2) X (n — 2).

2 Odstraníme jednu černou n-diagonálu; zbylá černá políčka vytvářejí stejné diago-
nály jako bílá políčka šachovnice (n — 1) x (n — 1).
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váme \<AJK\ = \<AFK\ = \<EFG\ = \<GEB\ = |<L£B|, trojúhel-
niky AJK a J3.EZ/ jsou tedy shodné. Protože К a L jsou vnitřní body
úsečky AB, z rovnosti \AK\ = \BL\ plyne \DK\ = \DL\.

Jestliže bod G leží na delším oblouku DE (mezi body E a J), leží
body К, A, B, L na přímce v tomto pořadí a tětivovým čtyřúhelníkem
je AKJF. Zbylé argumenty jsou stejné jako v předchozím případě.

Obr. 59Obr. 58

Jiné řešení. (Podle Tomáše Pavlíka.) Označme X průsečík přímky AF
se stranou BC (obr. 59). Z mocnosti bodu X к vepsané kružnici plyne
\XE\2 = \XF\ ■ |XG|, tedy

\XG[=\XE\
\XE\ \XF\'

Podle Menelaovy věty pro trojúhelník ABX a přímky EG a EF máme

\AL\ |ВЦ \XG\
_

\LB\ \EX\ \GA\

(1)

\AK\ \BE[ \XF\
\KB\ \EX\ \FA\

což můžeme přepsat (použitím (1) v případě první rovnosti) na

1*^1 \AL 1 • 1 BE\ \XE\ \KB\-\FA\
\XF\ \LB\ ■ \GA\ \XF\ \AK\ ■ \BE\

Odtud postupně

\AL\ ■ \BE\
_ \KB\ • \FA\

\LB\ ■ \GA\ ~ \AK\ ■ \BE\
\AK\ ■ \AL\ ■ \BE\2 (2)= 1.

|KB\ ■ \LB\ • \FA\ • |Gb4|
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Z mocnosti bodu А к vepsané kružnici (ta je díky symetrii stejná jako
mocnost bodu В) plyne \AF\ ■ \ AG\ — \AD\2, odkud dohromady se zřej-
mými rovnostmi \AD\ = \BD\ = \BE\ máme \AF\ • \AG\ — \BE\2.
Spojením s (2) dostáváme

\AK\ ■ \AL\ = \KB\ ■ \LB\.

V závislosti na poloze bodu G leží body К a L buď oba uvnitř, anebo
vně úsečky AB. Podle toho pro některé znaménko plus nebo mínus platí

\AK\■ (\AB\±\BL\) = \AK\ ■ \AL\ = \KB\■ \LB\ = {\AB\± \AK\) ■ \BL\.

V obou případech vyjde po úpravě \AK\ — \BL\, což je ekvivalentní
s rovností \DK\ = \DL\.
4. Protože číslo 4n + 1 je liché, z rovnosti к — 4 = k(4n + 1) — 4(kn + 1)
vidíme, že 4n + 1 a kn + 1 jsou nesoudělná, jestliže к — 4 nemá žádného
lichého dělitele p > 1, tj. jestliže к — 4 = ±2m pro nějaké nezáporné celé
číslo m.

Na druhé straně jestliže к — 4 má lichého dělitele p > 1, snadno
najdeme násobek p tvaru 4n+l (je jím například číslo p2 anebo jednoduše
jedno z dvojice čísel p, 3p). Pro každé číslo 4n + 1, které je násobkem p,
z rovnosti uvedené na začátku řešení plynep | Zcn +1, tedy 4n +1 afcn + l
nejsou nesoudělná.

Odpověď. Hledanými čísly jsou к = 4 ± 2m, přičemž m = 0,1,2,...

5. Dosazením x = у = 0 do dané rovnosti

xf(x + xy) = xf(x) + f(x2)f(y) (1)

dostaneme /(0) = 0. Po dosazení у = — 1 do (1) tak máme

xf{x) + f{x2)f(-1) = 0. (2)

Rozeberme postupně případy /(—1) = 0 a /(—1) ф 0.
Nechť /(—1) = 0. Z (2) potom plyne f(x) = 0 pro všechna x ф 0.

Protože už víme, že i /(0) = 0, dostáváme konstantní nulovou funkci
f(x) = 0, která zřejmě vyhovuje.

Nechť /(—1) Ф 0. Dosazením x = —1 do (2) dostáváme /(1) = 1. Díky
tomu po dosazení x = 1 do (2) máme /(—1) — —1, takže (2) můžeme
přepsat na

xf(x) = f{x2). (3)
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Dosaďme nyní do dané rovnosti (1) у = x — 1. Dostaneme

xf(x2) = xf{x) + f(x2)f(x - 1)
a po dosazení z (3) získáme po úpravě rovnost

f(x2)(f(x - 1) - (x - 1)) = 0. (4)

Předpokládejme, že /(a) = 0 pro nějaké а ф 0. Potom podle (3)
máme /(a2) = 0, takže po dosazení x — a do dané rovnosti (1) dostaneme
af(a + ay) = 0, tedy f(a + ay) = 0. Protože у může být libovolné, nutně
i /(—1) = 0, což odporuje případu, který právě rozebíráme. Proto pro
každé r / 0 platí f(x) ф 0 a zároveň i f(x2) ф 0. Ze (4) pak vychází
f(x — 1) — x — 1 pro každé x Ф 0, takže f[x) — x pro každé x ф —1.
Protože z předchozího víme, že i /(—1) = —1, dostáváme funkci f(x) — x,
která zřejmě rovněž vyhovuje.

Závěr. Hledanými funkcemi jsou f(x) = 0 a f{x) = x.

6. Jestliže začneme s n-ticí (2, 2,1,1,..., 1), přičemž n ^ 3, v každé
n-tici, kterou z ní po libovolném počtu kroků dostaneme, bude počet
členů nabývajících maximální hodnotu sudý. Proto nevyhovuje žádná
lichá hodnota n ф. 3.

Matematickou indukcí dokážeme, že každé sudé пф 2 vyhovuje. Pro
2 je to zřejmé. Jestliže je n ^ 4 sudé, podle indukčního před-

pokladu umíme libovolnou n-tici po konečném počtu kroků změnit na

(a, a,..., a, 6, b). Jestliže a Ф b, opakovaně uděláme některou z následu-
jících sérií kroků, které vždy vedou na n-tici tvaru

n

n—k

(v ní může mít к i jinou hodnotu než počáteční к = n — 2, stále však
bude sudé)\

к

к n—k к n—k

(a,... ,a,26,.. .,2b),
^ v

série f3\ (a,..., a, b,..., b)
n — k

série 7i (/c ^ n — k): (a,..., a, b,..., b)
к к n — k

2 кк n — k n — 2k

(a,... ,a,a + b,... ,a + b).
4

v ' 4 v /
2 (n—k)

série 72 (k ^ n

к n — k 2 k — n
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Kvůli dalším úvahám zaveďme pro libovolné přirozené číslo c označení
c = 2p(cS)N(c), přičemž P(c) ^ 0 a N(c) je liché. Na n-tici

к n—k

použijeme
c> sérii a, jestliže P(a) < P(Z>),
> sérii /?, jestliže P(a) > P(b),
> sérii 7i nebo 72, jestliže P(a) = P(b) (a tedy N(a) 7^ N(b)).

Při použití sérií a a (3 se čísla N(a), N(b) nemění, zatímco při použití
71 a 72 se změní právě jedno z nich, konkrétně

N(a) + N(b)N(a) + N(b)N(b) anebo N(b) 2m2m

přičemž m = P(N(a) + N(b)) ^ 1, a tedy

jV(a) + N(6) . iV(a) + iV(fe)< < max(iV(a), N(b))2m 2

(připomínáme, že АГ(а) Ф N(b)). Z uvedených úvah plyne, že hodnota
max(iV(a), N(b)) nikdy neroste, takže po konečném počtu kroků začne
být konstantní. Od toho okamžiku musíme mít stále buď N(a) ^ N(b),
anebo N(a) ^ N(b). To vylučuje z dalšího použití buď sérii 71, anebo
sérii 72. Všechny další změny parametru к jsou potom buď к —> 2/c,
anebo (n — k) —> 2(n — k). Protože toto můžeme zopakovat jen r-krát, kde
2r ^ n, musíme nakonec dostat n-tici (a,..., a, 6,..., b), kterou (pokud
a ф b) můžeme měnit už jen sériemi а а /3. Použitím série a nebo /3 právě
|P(a) — P(6)|-krát dostaneme n-tici (a',..., a', 6',..., b'), v níž P(a') =
= P(b'). Protože použití 71, 72 jsme už vyloučili, nutně a' = b\ čímž je
indukční krok ukončen.

Jiné řešení. (Upravené řešení německého družstva.) Dokážeme bez
matematické indukce, že vyhovuje každé sudé n = 2k. Nejdříve v po-
čáteční 2/c-tici (ai,...,a2fc) nahradíme každou dvojici (a2i-i,a2i) (pro
i = 1 dvojicí (q,2í— 1 +«2i5a2i-i +^2*)- Odteď budeme mít na

(2г—l)-té a 2ž-té pozici vždy stejná čísla. Proto kvůli přehlednosti budeme
dále pracovat jen s Zc-ticemi (x, y,z,...) místo 2/c-tic (ж, x, y, y, z,z,...).
S k-ticemi můžeme dělat následující změny:

t> zvolíme dvě čísla x, у a nahradíme každé z nich jejich součtem (to
odpovídá dvěma krokům (..., x, x,..., y, y,...) —> (..., x + y, x,.. • f
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X + У, У, ■ • •) -» (• • •, X + у, х + у,..., х + у, X + у,...) provedeným па
původní 2/c-tici);

о zvolíme jedno číslo x a vynásobíme ho dvěma (to odpovídá jednomu
kroku (..., x, x,...) —> (..., x + x, x + x,...);

t> vydělíme všechna čísla dvěma (to samozřejmě nemá na výsledek vliv;
formálně si můžeme pamatovat, kolikrát jsme dělení dvěma provedli
a na konci můžeme všechna čísla vynásobit příslušnou mocninou
dvou).
Naším cílem je dostat Zc stejných čísel. Získáme je opakováním násle-

dujícího algoritmu:
1. Dokud existují aspoň dvě různá lichá čísla, najdeme nejmenší a nej-

větší liché číslo a nahradíme každé z nich jejich (sudým) součtem.
2. Jestliže po skončení prvního kroku zůstane v k-tici jedno liché číslo,

vynásobíme ho dvěma.
3. Vydělíme všechna čísla dvěma.

Zřejmě po každém provedení celého algoritmu se největší číslo mezi
všemi к čísly buď zmenší, anebo zůstane stejné. Protože tímto maximem
je stále přirozené číslo, přestane se po konečném počtu opakování algo-
ritmu měnit. Jeho hodnotu označme M a dále označme N počet čísel M
v naší Zc-tici.

Číslo M je zřejmě liché (jinak by se v třetím kroku algoritmu změn-

šilo). Kdyby bylo N < k, našli bychom v Zc-tici aspoň jedno číslo m
menší než M. Je-li m liché, po provedení algoritmu se N zmenší. Protože
N se nemůže nikdy zvětšit, po konečném počtu kroků už musí zůstat
konstantní a všechna čísla v Zc-tici menší než M musejí být sudá. Ale
každé sudé m se po provedení algoritmu zmenší na polovinu a po několika
provedeních algoritmu by se nutně objevilo liché číslo menší než M. Proto
v Zc-tici nemohou existovat čísla menší než M, což jsme chtěli dokázat.

7. Podmínka \<ADB\ — \<CDE\ nabádá zobrazit bod В v osové sou-
měrnosti podle přímky AE do bodu B' (obr. 60). Potom leží body C,
D a B' v přímce a \<EAB'\ = \<EAB\ = \<ECD\ = \<ECB'\, takže
В'АСЕ je tětivový čtyřúhelník. Odtud \kECA\ = 180° — \<EB'A\ =
= 180° - \<EBA\ = 180° - \<ACB\, tedy \<ECA\ + \<ACB\ - 180°,
a tudíž body В, С, E leží v přímce.

Poznámky. Stejně dobře můžeme zobrazit bod C v osové souměrnosti
podle AE do C ležícího na jedné přímce s 5, D. Tětivový je potom
čtyřúhelník ABEC a dále \<ECA\ = \<ECA\ = 180° - \<EBA\ =
= 180° - \<ACB\, tj. opět \<ECA\ + \<ACB\ = 180°.
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Díky dokázané koiineárnosti bodů В, С, E z podmínky \<ACB\ —

— \kEBA\ plyne \ AB\ — |AC\, zatímco z podmínky \<BAD\ — \<ECD\
plyne, že čtyřúhelník ABCD je tětivový. To naznačuje, jak úlohu řešit
jiným způsobem. Předtím ještě poznamenejme, že rozmístění bodů po-

psané v zadání může nastat a všechna taková rozmístění jsou tohoto
typu: ABC je rovnoramenný trojúhelník, přičemž \AB\ = \AC\, body
В, С, E leží v přímce (C mezi В a E) a AE protíná kružnici opsanou
trojúhelníku ABC v bodě D.

A В

Obr. 61

Jiné řešení. Předpokládejme, že В, С, E nejsou kolineární. Přímka
vedená bodem В rovnoběžně s CE protíná přímky CD a. AD postupně
v bodech С a E'. Protože \<E'CD\ = \<ECD\ = \<BAD\, čtyřúhelník
ABCD je tětivový (obr. 61). Označme к opsanou mu kružnici. Máme
\<AC'B\ = \<ADB\ = \<CDE\ = \<CDE\ - \<ABC\,t].\<AC'B\ =
= I^ASC"! (ABC je tedy rovnoramenný trojúhelník).

Předpokládejme, že bod C leží uvnitř úsečky CD. Potom C leží
ve vnitřní oblasti kružnice к (v téže polorovině určené přímkou AB jako
bod C), proto \<ACB\ > \<ACB\ = |<ABC"| - \<ABE'\ > \<ABE\
(neboť bod E leží mezi A a E'), což odporuje rovnosti \<ACB\ =
= \<EBA\.

Podobně pokud bod C neleží na úsečce CD, leží ve vnější oblasti
kružnice к (v téže polorovině určené přímkou AB jako bod C), proto
\<ACB\ < \<AC'B\ = \<ABC\ - \<ABE'\ < \<ABE\ (neboť bod E'
leží mezi A a E), což opět odporuje rovnosti \<ACB\ = \<EBA\.
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Jiné řešení. (Podle Karla Horáka.) Z daných rovností velikostí úhlů
plyne, že trojúhelníky ABD a CED jsou podobné (obr. 62). Z toho oka-

mžitě dostáváme, že i trojúhelníky ACD a BED jsou podobné (podle
sus; stejně velký úhel při společném vrcholu D a úměrné strany). Z rov-
nosti úhlů BED a ACD potom plyne, že součet velikostí tří sousedních
úhlů BCA, ACD a DCE je roven součtu velikostí úhlů v trojúhelníku
ABE, body E, С а В jsou tedy kolineární.
8. Nechť prvočíselný rozklad čísla n je n = p^p^2 • • • p\[k, přičemž p\, ..

Pk jsou různá prvočísla a Sj ^ 1 pro každé i. Předpokládejme, že součet
všech kladných dělitelů čísla n, který se dá vypočítat jako

(1 +Pi +pl + ... +PSi){1 +P2 +P2 + ■ ■ ■ +p¥) • • • (i +Pk+Pk + .-. +pSkk),
je mocninou dvou. Potom každý z činitelů

fi = 1 + pi + p\ + ... + pC
musí být též netriviální mocninou dvou, což znamená, že pi i Si jsou lichá.
Je-li Si > 1, je

* 5

fi = (1 +Pi)(l +pf +pt + ••• +Pil ')■
Protože fi nemá žádného lichého dělitele většího než 1, sudé celé číslo
Si — 1 (o němž předpokládáme, že je kladné) musí být tvaru 4k + 2, a proto
můžeme provést další rozklad

fi = (i + pí)(i + Pí)(i + Pí + Pí + ■ ■ - + рТ~3)-
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Obě čísla 1 + pi a 1 + pj jsou mocniny dvou, takže 1 + pi. | 1 + pf. To
však není možné, např. proto, že by pak muselo být číslo 1+Pi dělitelem
i čísla 2 = 1 +p? + (1 +Pi)( 1 —Pí)- Proto pro každé i platí s* — 1 a počet
dělitelů čísla n je roven 2k.

Poznámka. Uvedené řešení lze ukončit i bez pozorování, že 1 + Pí
a l+pf nemohou být současně mocninami dvou. Opakováním postupných
rozkladů na součin totiž dostaneme

fi = (l+Pi)(l+Pi)(l+pt) ■•■(! +рГ)
takže pro každé i je Sj = 2tí+1 — 1 pro nějaké vhodné ti ^ 0, proto počet
dělitelů čísla n je roven 2fc+íl+Í2+ - +ífc. (Z uvedeného řešení však víme,
ze ti = 0 pro každé i.)
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15. středoevropská olympiáda v informatice

Ve dnech 6.-12. 7. 2008 se konal v německém městě

Drážďany 15. ročník Středoevropské olympiády v in-
formatice (CEOI 2008 — Central European Olympiad
in Informatics). Soutěže se zúčastnilo 36 studentů —

čtyřčlenná družstva ze všech 7 zemí středoevropského
regionu a navíc jako hosté družstva Izraele a pořádá-
jící spolkové země Sasko.

Reprezentační družstvo České republiky bylo sestaveno na základě
výsledků dosažených soutěžícími v ústředním kole 57. ročníku Matema-
tické olympiády
řešitelé ústředního kola MO kategorie P pojedou soutěžit na celosvěto-
vou soutěž IOI 2008 v srpnu do Egypta, pro účast na CEOI 2008 bylo
jako obvykle vybráno družstvo složené z dalších úspěšných řešitelů naší
národní olympiády, kteří letos ještě nebudou maturovat a na CEOI tak
mohu získat cenné zkušenosti, které jistě uplatní v různých programá-
torských soutěžích v průběhu dalšího školního roku. České družstvo pro
15. středoevropskou olympiádu v informatice mělo následující složení:

František Hejl, student Gymnázia Jana Nerudy v Praze,
Hynek Jemelík, student Gymnázia na tř. Kpt. Jaroše v Brně,
David Klaška, student Gymnázia na tř. Kpt. Jaroše v Brně,
Libor Plucnar, student Gymnázia Petra Bezruce ve Frýdku-Místku.

Vedoucími české delegace byli jmenováni doc. RNDr. Pavel Tópfer,
CSc., a Bc. Zbyněk Falt, oba z Matematicko-fyzikální fakulty Univerzity
Karlovy v Praze.

Naši studenti měli možnost připravit se na soutěž nejen samostatným
studiem odborné literatury, ale v červnu se zúčastnili společně s repre-

zentanty vybranými na IOI i týdenního přípravného soustředění. Toto
tradiční společné česko-polsko-slovenské přípravné soustředění před IOI
a CEOI (CPSPC
roce uspořádali slovenští organizátoři programátorské olympiády v ob-
jektu UPJŠ Košice v obci Danišovce.

kategorie P (programování). Zatímco čtyři nej lepší

Czech-Polish-Slovak Preparation Camp) v letošním
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Vlastní soutěž CEOI 2008 byla jako obvykle rozdělena do dvou soutěž-
nich dnů, v každém z nich studenti řešili tři soutěžní úlohy a na práci měli
vymezen čas 5 hodin. Každý soutěžící pracuje na přiděleném osobním
počítači s nainstalovaným soutěžním prostředím, které umožňuje vyvíjet
a testovat programy a odesílat je к vyhodnocení. Výsledné programy

jsou testovány pomocí připravené sady testovacích dat a se stanovenými
časovými limity. Tím je zajištěna nejen kontrola správnosti výsledků, ale
pomocí časových limitů se také odliší kvalita použitého algoritmu. Při
testování každé úlohy se používají sady testovacích dat různé velikos-
ti, takže teoreticky správné řešení založené na neefektivním algoritmu
zvládne dokončit výpočet pouze pro některé, menší testy. Takové řešení
je potom ohodnoceno částečným počtem bodů.

Pořadatelé olympiády připravili soutěžní úlohy velmi pečlivě, takže
celý proces přípravy úloh, upřesnění jejich formulací a překladu zadání
úloh do národních jazyků večer před soutěží probíhal velmi rychle. Sou-
těžící měli jen minimum dotazů к zadání úloh a neobjevily se ani žádné
oprávněné protesty proti hodnocení. Soutěžní úlohy byly dobře navrženy,
byly věcně zajímavé, byly ovšem o něco obtížnější než obvykle.

Pro všechny účastníky CEOI připravují pořadatelé vždy také dopro-
vodný program. Absolvovali jsme prohlídku Drážďan a místních historie-
kých památek, navštívili jsme některá zdejší muzea i provozy firmy AMD
zabývající se výrobou mikroprocesorů, celodenní turistický výlet mířil do
oblasti skalních měst v Saském Švýcarsku.

Večer před odjezdem se konalo slavnostní zakončení soutěže spojené
s vyhlášením výsledků. Každá ze soutěžních úloh byla hodnocena ma-
ximálně 100 body, takže celkově bylo možné získat až 600 bodů. To se

ovšem vzhledem к náročnosti úloh nikomu nepodařilo, celkový vítěz do-
sáhl 524 bodů. Podle pravidel CEOI obdrží na závěr soutěže lepší po-
lovina účastníků některou z medailí, přičemž zlaté, stříbrné a bronzové
medaile se udělují přibližně v poměru 1:2:3 (pochopitelně s ohledem
na to, aby soutěžící se stejným bodovým ziskem získali stejnou medaili).
Letos byly uděleny 3 zlaté, 6 stříbrných all bronzových medailí. Z na-
šich reprezentantů získal bronzovou medaili pouze David Klaška, který
se umístil na 14. místě:

14. David Klaška

24. František Hejl
33. Hynek Jemelík
36. Libor Plucnar

237 bodů
158 bodů

91 bodů

34 bodů

bronzová medaile
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Zlaté medaile získali reprezentanti Chorvatska, Polska a Rumunska.
Středoevropská olympiáda v informatice je soutěží jednotlivců, žádné po-
řadí zúčastněných zemí v ní není vyhlašováno.

Veškeré informace o soutěži, texty soutěžních úloh i podrobné vý-
sledky všech účastníků lze nalézt na Internetu na adrese

http://www.ceoi2008.de.

Následující, v pořadí 16. ročník CEOI se bude konat v červenci 2009
v Rumunsku. Tamní organizátoři již nyní pozvali všechny země zúčast-
něné na CEOI v Německu к účasti v příštím ročníku soutěže.
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20. mezinárodní olympiáda v informatice

Jubilejní 20. ročník Mezinárodní olympiády v infor-
matice (IOI) se uskutečnil ve dnech 16.-23. srpna
2008 v egyptském hlavním městě Káhiře. Soutěže se
zúčastnilo 283 soutěžících ze 78 zemí celého světa;
nově vyslali své soutěžní týmy Alžírsko a Ghana.
Většina zemí využila možnosti vyslat na IOI ma-
ximální povolený počet čtyř soutěžících, z několika
nově se zúčastňujících zemí přijely reprezentace menší.

Reprezentační družstvo České republiky bylo sestaveno na základě vý-
sledků dosažených soutěžícími v ústředním kole 57. ročníku Matematické
olympiády - kategorie P (programování), které se uskutečnilo v dubnu
2008 v Českých Budějovicích. Naše družstvo pro IOI 2008 mělo následu-
jící složení:

Miroslav Klimoš, student gymnázia M. Koperníka v Bílovci,
Jan Matějka, student gymnázia Jírovcova v Českých Budějovicích,
Roman Smrž, absolvent gymnázia E. Krásnohorské v Praze,
Vojtěch Tůma, absolvent gymnázia J. Masaryka v Jihlavě.

Vedoucími české delegace byli jmenováni RNDr. Daniel Král’, Ph.D.,
a Bc. Tomáš Gavenčiak, oba z Matematicko-fyzikální fakulty Univer-
žity Karlovy v Praze. Vedle této oficiální šestičlenné delegace se 20. me-
zinárodní olympiády v informatice zúčastnil z České republiky ještě
Mgr. Martin Mareš, Ph.D., rovněž pracovník MFF UK v Praze, a to
jako člen Mezinárodního vědeckého výboru IOI.

Naši studenti měli možnost připravit se na soutěž nejen samostat-
ným studiem, ale i účastí na přípravném soustředění, které tradičně
pořádáme společně s polskými a slovenskými organizátory (CPSPC —

Czech-Polish-Slovak Preparation Camp). Letos toto přípravné soustře-
dění uspořádalo vedení slovenské olympiády v informatice ve slovenských
Danišovcích. Soustředění se zúčastnili R. Smrž, V. Tůma a vybraní účast-
nici CEOI 2008; zbylí dva studenti vybraní pro účast na IOI 2008 se
soustředění nemohli zúčastnit z časových důvodů.

EGYPT
2008
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Pořadateli letošní Mezinárodní olympiády v informatice bylo egyptské
ministerstvo školství a ministerstvo informačních a komunikačních těch-

nologií. Čestnou záštitu nad soutěží převzal egyptský prezident Husny
Mubarak. Ubytování a stravování soutěžních týmů bylo zajištěno ve vzdě-
lávacím komplexu Mubarak Education City v nově budované čtvrti káhir-
ské metropole 6 October City. V tomto komplexu proběhla samotná sou-
těž i oficiální zahájení a ukončení soutěže, kterých se zúčastnili egyptský
ministr školství a egyptský ministr informačních a komunikačních těch-
nologií.

Dnem příjezdu účastníků na soutěž byla stanovena sobota 16. srpna
2008. Český tým odlétal z Prahy kolem poledne a přiletěl do Káhiry
v jedenáct hodin večer. Na místním letišti pořadatelé jednotlivé týmy
očekávali a zajistili jim transport na místo soutěže. Soutěžními dny bylo
pondělí 18. srpna 2008 a středa 20. srpna 2008. Zbylé dny pak byly vy-

hrazeny pro výběr úloh, zasedání mezinárodní jury a doprovodný spo-

lečenský a kulturní program. V každém soutěžním dni byla účastníkům
předložena sada tří úloh, na jejichž vyřešení měl každý soutěžící vyme-
zen čas 5 hodin. Mezinárodní olympiáda v informatice je soutěží jed-
notlivců a tak každý soutěžící pracoval na přiděleném osobním počítači
s předem oznámeným soutěžním prostředím. Vyhlášení soutěže proběhlo
netradičně již ve čtvrtek 21. srpna 2008, neboť pátek a sobota jsou podle
islámské tradice volné dny. Dnem odjezdu dle programu soutěže pak byla
sobota 23. srpna 2008; česká delegace využila jeden z prvních ranních letů
z Káhiry, který umožnil mimopražským účastníkům soutěže bezproblé-
mový odjezd domů.

Během Mezinárodní olympiády v informatice proběhla na zasedání
jury drobná revize pravidel soutěže. Jako nové pravidlo bylo schváleno,
že student může reprezentovat na soutěži buď zemi, kde studuje střední
školu, nebo (nově) zemi, jejímž je občanem. Vedoucí týmů byli informo-
váni o výdajích na propagaci soutěže. Registrační poplatek na soutěž byl
ponechán ve stejné výši, která je 200 EUR nebo 300 USD. Podstatná
část vybraných poplatků je čerpána na rozvoj webových stránek soutěže,
které jsou spravovány na kanadské University of Waterloo, workshopy
určené к testování nových typů soutěžních úloh a podporu konference
o mezinárodních soutěžích v informatice, jejíž druhý ročník se uskutečnil
letos společně s Mezinárodní olympiádou v informatice.

Mezinárodní výbor soutěže, který nad celou soutěží bdí, pak vedoucí
týmů informoval o problémech s reprezentací Chile na soutěži, neboť chil-
ské ministerstvo školství oficiálně na soutěž vyslalo jiný tým, než který se
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soutěže zúčastnil. Celou situaci řeší mezinárodní výbor soutěže ve spo-

lupráci s prezidentem soutěže. Vedoucí delegací byly též informováni, že
Mezinárodní olympiáda v informatice se v roce 2012 uskuteční v Itálii,
která jako jediná země projevila zájem olympiádu v tomto roce uspo-
řádat.

Vraťme se nyní к průběhu soutěže. Jak již bylo zmíněno, soutěžící ře-
šili v každém soutěžním dni sadu tří úloh, na jejichž vyřešení byl stanoven
časový limit 5 hodin. Letošní sada úloh, na jejichž přípravě se letos vý-
raznou měrou podíleli členové Mezinárodního vědeckého výboru soutěže,
byla velmi obtížná, o čemž svědčí fakt, že pouze 15 soutěžících (z 283)
získalo více než 400 bodů z možných 600 bodů. Úlohy však byly připra-
vény velmi kvalitně a jejich popis byl velmi výstižný. Během soutěže se
к zadání úloh vyskytlo méně než 10 dotazů (počet dotazů bývá obvykle
v řádu desítek). Řešení odevzdaná soutěžícími byla testována pomocí
softwaru vyvinutého pro polskou olympiádu v informatice na předem
připravených testovacích datech se stanovenými časovými limity. Použití
časových limitů umožňuje odlišit kvalitu (rychlost) použitého algoritmu.
Zadání úloh zaručuje, že i neoptimální řešení získají jisté množství bodů.
Proti vyhodnocení úloh se neobjevily žádné protesty.

Podle pravidel Mezinárodní olympiády v informatice obdrží polovina
soutěžících medaili a počty zlatých, stříbrných a bronzových medailí se
určí tak, aby jejich počet byl v poměru 1:2:3. Letos tedy bylo uděleno
24 zlatých, 47 stříbrných a 70 bronzových medailí. O již zmiňované ob-
tížnosti úloh svědčí fakt, že к získání bronzové medaile stačilo pouhých
127 bodů ze 600 možných a 26 soutěžících nezískalo vůbec žádný bod.
I přes zmiňovanou obtížnost úloh se dvěma našim soutěžícím podařilo
získat stříbrné medaile. Výsledky našich studentů byly následující:

47. Miroslav Klimoš

71. Roman Smrž
197. Jan Matějka
219. Vojtěch Tůma

267 bodů

229 bodů
53 bodů

33 bodů

stříbrná medaile

stříbrná medaile

Mezinárodní olympiáda v informatice je soutěží jednotlivců; žádné
oficiální pořadí zemí se neurčuje. Z hlediska počtu a kvality získaných me-
dailí bychom se v hodnocení národních delegací umístili přibližně v druhé
čtvrtině zúčastněných zemí; nejúspěšnějšími zeměmi byly již tradičně
CLR a Polsko (se třemi zlatými a jednou stříbrnou medailí) a Rusko
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a USA (se dvěma zlatými a dvěma stříbrnými medailemi). Soutěžícím ze
Slovenska se tentokrát vedlo o něco lépe než nám, získali v soutěži dvě
stříbrné a dvě bronzové medaile. Výsledky našich soutěžících napovídají,
že předchozí zkušenosti účastníků soutěže mají výrazný vliv na jejich
umístění (M. Klimoš a R. Smrž se soutěže IOI zúčastnili již vloni). Po-
drobnější informace o soutěži, texty soutěžních úloh a celkové výsledky
všech účastníků lze nalézt na Internetu na adrese

http://www.ioi2008.org/.

Následující, v pořadí 21. ročník IOI se bude konat v srpnu 2008 v bul-
harském Plovdivu. Tamní organizátoři již vyzvali všechny země zúčast-
něné na IOI v Egyptě к účasti v příštím ročníku soutěže. Byla též sta-
novena i místa konání několika dalších ročníků IOI: 2010 Kanada, 2011
Thajsko a 2012 Itálie.

Texty soutěžních úloh

1. Jednorozměrná zahrada

Faraón Ramses II. se právě vrátil z další prohrané bitvy. Na věčnou
připomínku své čestné porážky se rozhodl postavit smuteční zahradu,
která spojí jeho palác v Luxoru s chrámem v Karnaku. V zahradě bu-
dou pěstovány pouze květy lotosu a papyrové rákosí, tedy rostliny, které
symbolizují Horní a Dolní Egypt.

Zahrada bude rozdělena na N částí a v každé z nich se bude pěstovat
jedna ze dvou vybraných rostlin. Jako symbol rovného postavení Horního
a Dolního Egypta musí být zahrada vyvážená v následujícím smyslu:
v každé posloupnosti po sobě následujících částí zahrady se počet částí
s lotosovými květy liší od počtu částí s papyrovým rákosím nejvýše o 2.

Osazení jednotlivých částí zahrady rostlinami lze reprezentovat jako
řetězec N písmen ,L‘ a ,P‘, která představují části osazené lotosovými
květy a papyrovým rákosím. Pro N = 5 existuje celkem 14 vyváže-
ných osazení zahrady: LLPLP, LLPPL, LPLLP, LPLPL, LPLPP, LPPLL, LPPLP,
PLLPL, PLLPP, PLPLL, PLPLP, PLPPL, PPLLP a PPLPL.

Řetězce kódující vyvážená osazení zahrady rostlinami lze seřadit abe-
cedně a poté očíslovat celými čísly od 1. Např. pro N = 5 má řetězec
PLPPL pořadové číslo 12.

Úkol: Vaším úkolem je napsat program, který pro zadaný počet N
částí zahrady a zadaný řetězec představující osazení zahrady rostlinami
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vypočte zbytek pořadového čísla tohoto řetězce po dělení zadaným čís-
lem M. Hodnota čísla M nemá žádný vliv na řešení úlohy kromě zjed-
nodušení výpočtů.

Omezení:

N й 1000 000

7 <; М й 10 000 000 číslo м

Bodování: U testovacích vstupů v hodnotě alespoň 40 bodů je počet
N částí zahrady nejvýše 40.

Popis vstupu: Váš program načte ze standardního vstupu data v ná-
sledujícím tvaru:

D> První řádek obsahuje celé číslo N, které udává počet částí zahrady.
c> Druhý řádek obsahuje celé číslo M.
> Třetí řádek obsahuje řetězec N znaků ,L‘ (lotos) a ,P‘ (papyrus), který

představuje vyvážené osazení zahrady.
Popis výstupu: Váš program zapíše na standardní výstup jedno celé

číslo mezi 0 a M — 1 (včetně), které je zbytek pořadového čísla zadaného
řetězce po vydělení číslem M.

Příklad 1:

Vzorový vstup 1

počet částí zahrady

Vzorový výstup 1
5 5

7

PLPPL

Číslo přiřazené řetězci PLPPL je 12 a jeho zbytek po dělení 7 je 5.
Příklad 2:

Vzorový vstup 2 Vzorový výstup 2
12 39

10000

LPLLPLPPLPLL

2. Ryby
Čtyřicáté druhé noci princezna Šeherezáda vyprávěla pohádku o da-

lekém jezeře uprostřed pouště, ve kterém žilo F vzácných ryb. Z nqjvzác-
nějších drahokamů světa bylo vybráno К různých druhů a každá z ryb
spolkla jeden drahokam. Vyprávěla, že druhů drahokamů (K) možná bylo
méně než ryb v jezeře (F), a tak více různých ryb mohlo spolknout tentýž
druh drahokamu.

Jak čas běžel, větší ryby pozřely některé z menších ryb v jezeře. Ryba
může sníst jinou rybu právě tehdy, když je alespoň dvakrát delší (ryba A
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může sníst rybu B, právě když Ьд ^ 2Lb)- Kromě tohoto pravidla není
vzájemné požírání ryb nijak omezeno. Jedna ryba může postupně sníst
několik menších ryb nebo také nemusí sníst žádnou rybu, ačkoliv by moh-
la. Pokud větší ryba sní menší, její délka se nezmění a drahokamy, které
byly původně v žaludku menší ryby, přibudou к těm v žaludku větší
ryby.

Šeherezáda vyprávěla, že kdokoliv najde toto jezero, může z něj jednu
rybu vylovit a obsah jejího žaludku si ponechat. Rádi byste také zkusili
své štěstí, ale ještě než se vydáte na cestu, by vás zajímalo, kolik různých
kombinací drahokamů může být v žaludku vylovené ryby.

Úkol: Vaším úkolem je napsat program, který ze znalosti délek ryb,
které v jezeře původně žily, a obsahu jejich žaludků určí počet různých
kombinaci drahokamů, které se mohou vyskytnout v žaludku nějaké ryby,
modulo zadané celé číslo M. Kombinace drahokamů je jednoznačně po-

psána počtem drahokamů každého z К druhů. Druhy drahokamů jsou
vzájemně neporovnatelné jak krásou tak hodnotou a drahokamy téhož
druhu jsou nerozlišitelné.

Omezení:

1 ^ F й 500 000
1 ^ К й F
2 < M < 30 000

počet ryb, které původně žily v jezeře
počet druhů drahokamů
číslo M

Popis vstupu: Váš program načte ze standardního vstupu data v ná-
sledujícím tvaru:

t> První řádek obsahuje celé číslo F, které udává původní počet ryb.
> Druhý řádek obsahuje celé číslo K, které určuje počet druhů draho-

kamů. Druhy drahokamů jsou očíslovány čísly od 1 do К (včetně).
o Třetí řádek obsahuje číslo M.
> Každý z následujících F řádků popisuje jednu z původních ryb. Řádek

obsahuje dvě celá čísla oddělená jednou mezerou. První udává délku
ryby a druhé určuje druh drahokamu, který ryba na začátku pohádky
spolkla.

Poznámka: Je zaručeno, že pro každý z К druhů drahokamů existuje
ryba, která ho má ve svém žaludku.

Popis výstupu: Váš program zapíše na standardní výstup jedno číslo
mezi 0 a M — 1 (včetně), které je zbytkem po dělení počtu možných kom-
binací drahokamů v žaludku vylovené ryby číslem M. Hodnota čísla M
nemá na řešení úlohy žádný vliv kromě zjednodušení výpočtů.

188



Bodování: U testovacích vstupů v hodnotě alespoň 70 bodů hod-
nota К nepřekročí 7 000. A také u testovacích vstupů v hodnotě alespoň
25 bodů hodnota К nepřekročí 20.

Příklad:

Vzorový vstup Vzorový výstup
5 4

3

7

2 2

5 1

8 3

4 1

2 3

Existuje celkem 11 kombinací drahokamů, které by se mohly vyskyt-
nout v žaludku vylovené ryby. Váš program by tedy měl vypsat číslo 4,
které je zbytkem 11 po dělení 7. Možné kombinace jsou následující: [1]
[1.2] [1.2,3] [1,2,3,3] [1,3] [1,3,3] [2] [2,3] [2,3,3] [3] a [3,3], kde např.
[2,3,3] znamená, že žaludek vylovené ryby obsahuje jeden drahokam
druhu č. 2 a dva drahokamy druhu č. 3.

Popišme si, jak je lze tyto kombinace dosáhnout:
> [1]: Je možné, že vylovíte druhou nebo čtvrtou rybu před tím, než sní

nějakou jinou.
> [1,2]: Je možné, že vylovíte druhou rybu poté, co snědla první.
> [1,2,3]: Jednou z možností je vylovit třetí rybu, potom co snědla

čtvrtou rybu, která už před tím snědla první.
> [1,2, 3, 3]: Čtvrtá sní první, třetí sní čtvrtou, třetí sní pátou a vylovíte

třetí (a sníte ji).
> [1,3]: Chytíte třetí, která snědla čtvrtou.
> [1,3,3]: Třetí sní čtvrtou a pátou.
t> [2]: První ryba.
> [2,3]: Třetí sní první.
> [2,3,3]: Třetí sní první a pátou.
> [3]: Třetí ryba.
o [3,3]: Třetí sní pátou.

3. Ostrovy
Rozhodli jste se navštívit zábavný zábavní park rozkládající se na

N ostrovech. Při budování parku začali z každého ostrova stavět je-
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den most na některý jiný ostrov. Po dokončení stavby je tedy v parku
N mostů a na některé ostrovy vede více mostů. Délka mostu stavěného
z г-tého ostrova je Li. Každý z mostů lze používat v obou směrech. Kromě
toho v parku také funguje mezi každou dvojicí ostrovů přívoz.

Protože jste velmi rychle zjistili, že nejzábavnější atrakcí v parku je
chůze po dlouhatánských mostech, rádi byste po nich v parku ušli co

největší vzdálenost. Při vašem pohybu v parku se však chcete řídit ná-
sledujícími pravidly:

t> Svou návštěvu můžete začít na vámi vybraném ostrově.
t> Žádný ostrov nenavštívíte více než jednou.
> Z ostrova A se můžete (přímo) přesunout na ostrov B, který jste

dosud nenavštívili, a to jedním ze dvou následujících způsobů:
d$> Chůzí po mostě, pokud mezi ostrovy А а. В vede most. V tomto

případě je délka tohoto mostu (v případě dvou souběžných mostů
délka delšího z nich) je přičtena к celkové vzdálenosti, kterou jste
už ušli po mostech.

tt> Přívozem, pokud ostrov В není dosažitelný z ostrova A pomocí
mostů a přívozů, které jste již během své návštěvy parku použili.
(Při rozhodování o dosažitelnosti ostrova В z A uvažujte i cesty
vedoucí přes již navštívené ostrovy.)

Vaším úkolem není navštívit všechny ostrovy. Podobně nemusí být
možné projít přes všechny mosty.

Úkol: Vaším úkolem je napsat program, který z popisu N mostů
v parku určí nej delší možnou vzdálenost, kterou lze po mostech ujít při
dodržení výše uvedených podmínek.

Omezení:

2 < N < 1 000 000 počet ostrovů v parku
1 ^ Li ^ 100 000 000 délka mostu vystavěného z г-tého ostrova

Popis vstupu: Váš program načte ze standardního vstupu data v ná-
sledujícím tvaru:

t> První řádek obsahuje celé číslo N, které udává počet ostrovů v parku.
Ostrovy jsou očíslovány čísly od 1 do V (včetně).

[> Každý z následujících N řádků popisuje jeden z mostů; г-tý z těchto
řádků obsahuje dvě celá čísla oddělená jednou mezerou a popisuje
most vystavěný z ostrova číslo i. První z těchto dvou čísel je číslo
ostrova, kam most vede, druhé je jeho délka Lj. Můžete předpokládat,
že každý most spojuje dva různé ostrovy.

Popis výstupu: Váš program zapíše na standardní výstup (na jedi-
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ném řádku) jedno číslo, které udává největší možnou vzdálenost, kterou
můžete v parku po mostech ujít.

Poznámky: 1. Pro některé testovací vstupy výsledná hodnota pře-
kročí rozsah 32bitového celočíselného typu а к získání plného počtu bodů
za tuto úlohu může být nutné použít 64bitové typy (int64 v Pascalu
a long long v C/C++).

2. Programy v jazyce Pascal, které používají к načtení vstupu 64Ы-
tové datové typy, jsou výrazně pomalejší než stejné programy používající
32bitové typy a to i tehdy, když načítané hodnoty nepřekročí rozsah 32Ы-
tových celočíselných typů. Doporučujeme tedy к načtení vstupu používat
pouze 32bitové celočíselné typy.

Bodování: U testovacích vstupů v hodnotě alespoň 40 bodů hodnota
N nepřekročí 4 000.

Příklad:

Vzorový vstup Vzorový výstup
7 24

3 8
J)—1—©-2,7 2

44 2

1 4 8
4'

1 9

3 4

*—©12 3

N = 7 mostů v příkladu spojuje dvojice ostrovů (1-3), (2-7), (3-4),
(4-1), (5-1), (6-3) a (7-2). Povšimněte si, že ostrovy 2 a 7 jsou spojeny
dvěma různými (souběžnými) mosty.

Jedna z možností, jak ujít maximální možnou vzdálenost, je:
> Začněte na ostrově 5.

> Přejděte po mostě délky 9 na ostrov 1.
> Přejděte po mostě délky 8 na ostrov 3.
> Přejděte po mostě délky 4 na ostrov 6.
> Použijte přívoz z ostrova 6 na ostrov 7.
> Přejděte po mostě délky 3 na ostrov 2.

Svou cestu zakončíte na ostrově 2 a celkem jste po mostech ušli 9 +
+ 8 + 4 + 3 = 24. Jediný nenavštívený ostrov má číslo 4. Všimněte si, že
na konci cesty už tento ostrov navštívit nemůžete:

t> Nelze se na něj z ostrova 2 dostat přímo po mostě.
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> Nesmíte na něj přejet přívozem, neboť ostrov 4 je dosažitelný z ost-
rova 2 následujícím způsobem: Přešli byste zpět po mostě na ostrov 7,
pak byste pokračovali již jednou použitým přívozem na ostrov 6 a od-
tud byste došli po mostech na ostrov 4.

4. Knihtisk

Je potřeba vytisknout N slov pomocí starého jednořádkového knihař-
ského lisu. Tento typ lisu používá к tisku kovové litery, tj. malé kousky
kovu každý s jedním písmenem. Litery se skládají za sebou a vytvoří tak
jedno slovo, které lze pak pomocí lisu obtisknout na papír. Litery lze do
lisu přidávat a odebírat pouze na konci vytvářeného slova. S vytvářeným
slovem je tedy možné provádět pouze následující operace:

> přidání jednoho písmene (litery) na konec slova v lisu,
\> odebrání jednoho písmene (litery) z konce slova v lisu,
d> vytištění slova v lisu.

Na začátku lis neobsahuje žádné litery. Na konci tisku je možné v lisu
zanechat libovolné množství liter. Zadaná slova můžete vytisknout v libo-
volném pořadí.

Snažíte se vytisknout všechna zadaná slova co nejrychleji, tedy po-
mocí nejmenšího možného počtu výše uvedených operací.

Úkol: Vaším úkolem je napsat program, který pro zadaných N slov,
určí nejmenší možný počet operací nutných к vytištění zadaných slov
a jednu takovou posloupnost operací vypíše.

Omezení: 1 ^ 25 000 maximální možný počet zadaných slov

Popis vstupu: Váš program načte ze standardního vstupu data v ná-
sledujícím tvaru:

> První řádek obsahuje celé číslo N, které udává počet zadaných slov
t> Každý z následujících N řádků obsahuje jedno zadané slovo. Slovo se

skládá pouze z malých písmen anglické abecedy (,a‘-,z‘) a jeho délka
je alespoň 1 a nejvýše 20.
Všechna zadaná slova jsou navzájem různá.

Popis výstupu: Váš program zapíše své výsledky na standardní vý-
stup v následujícím tvaru:

t> První řádek bude obsahovat jedno celé číslo M, které udává nejmenší
možný počet operací potřebných к vytištění zadaných slov.

> Každý z následujících M řádků bude obsahovat právě jeden znak,
který odpovídá jedné z operací následujícím způsobem:

192



K> Přidání písmene na konec slova v lisu je reprezentováno přidává-
ným písmenem (malé anglické abecedy),

k> Odebrání posledního písmene slova v lisu je reprezentováno zna-
kem (mínus, ASCII kód 45)

и> Operace vytištění slova v lisu je reprezentována znakem ,P‘ (velké
písmeno pé).

Posloupnost operací na výstupu musí mít délku M a vést к vytištění
všech zadaných slov.

Bodování: U testovacích vstupů v hodnotě alespoň 40 bodů hodnota
N nepřekročí 18.

Příklad:

Vzorový vstup Vzorový výstup
3 20

print
the

poem

t

h

e

P

P
o

e

m

P

r

i

n

t

p

5. Teleporty
Účastníte se velkého závodu napříč Egyptem podél rovnoběžky smě-

rem ze západu na východ. Závod má jen dvě pravidla: musíte se pohy-
bovat pouze po rovnoběžce, a to vždy pouze na východ.
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Na trati je umístěno N teleportů. Každý teleport má dva konce.
Jakmile dorazíte к jednomu z jeho konců, teleport vás okamžitě nasosne
a přenese na svůj druhý konec. Teleport vás přemístí směrem na východ
nebo na západ podle toho, ke kterému jeho konci dorazíte. Přesuny tele-
portem směrem na západ neodporují pravidlům závodu. Po teleportaci
však musíte pokračovat dál na východ, jak určují pravidla závodu. Tele-
portaci se nemůžete nijak vyhnout. Na každém místě trasy závodu se

vyskytuje konec nejvýše jednoho z teleportů; každý teleport spojuje dvě
různá místa na trase. Konce teleportů jsou pouze mezi startem a cílem
závodu (mimo start a cíl).

Pokaždé, když se teleportujete, získáte jeden bod. Cílem závodu je
získat největší možný počet bodů. Abyste získali co nejvíce bodů, smíte
před začátkem závodu postavit na trasu závodu M nových teleportů.
Konce těchto teleportů můžete umístit kamkoliv mezi start a cíl závodu
(mimo start a cíl) tak, aby se stále na každém místě nacházel nejvýše
jeden konec teleportů a každý teleport spojoval dvě různá místa. Konce
nových teleportů mohou být i v neceločíselných vzdálenostech od startu.
Body získáte i za použití nově postavených teleportů.

Je zaručeno, že se vždy dostanete do cíle závodu, ať se děje, co se

děje, tj. po jakémkoliv přidání M nových teleportů se chůzí na východ
dostanete ze startu závodu do jeho cíle.

Úkol: Vaším úkolem je napsat program, který pro N zadaných tele-
portů a zadaný největší počet M teleportů, které můžete postavit, vy-

počte největší možný počet bodů, které můžete během závodu získat.
Omezení'.

1 ^ N й 1 000 000
1 < M < 1000 000

původní počet teleportů na trase závodu
největší možný počet teleportů,
které můžete postavit

1 Wi ^ Ei ^ 2,000,000 vzdálenosti konců г-tého teleportů od startu

Popis vstupu: Váš program načte ze standardního vstupu data v ná-
sledujícím tvaru:

> První řádek obsahuje celé číslo N, které udává původní počet tele-
portů.

o Druhý řádek obsahuje celé číslo M, které určuje počet teleportů, které
můžete postavit.

> Každý z následujících N řádků popisuje jeden z původních teleportů.
Řádek obsahuje dvě celá čísla W* a Ei oddělená jednou mezerou.
Tato čísla udávají polohu západního a východního konce teleportů
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jako vzdálenost od startu závodu. První z těchto dvou čísel je vždy
menší než druhé.

Je zaručeno, že žádné dva konce teleportů nemají stejnou vzdálenost
od startu. Start závodu se nachází na pozici 0 a cíl je ve vzdálenosti
2 000 001 od startu závodu.

Popis výstupu: Váš program zapíše na standardní výstup jedno celé
číslo, které udává největší možný počet bodů, které můžete v závodu
získat.

Bodování: Pro testovací vstupy v hodnotě alespoň 30 bodů platí, že
N й 500 a M й 500.

Příklad 1:

Vzorový vstup 1 Vzorový výstup 1
3 6

1

10 11

1 4 -i—i—i—i—i—Ai i i—Aк á—

2 3 ■>

Na obrázku vlevo je počáteční úsek trati závodu s původ-
nimi teleporty a vpravo je tentýž úsek s nově postaveným
teleportem, který spojuje místa ve vzdálenosti 0,5 a 1,5 od
startu závodu.

Po přidání nového teleportů způsobem znázorněným na obrázku bude
vaše cesta ze startu do cíle vypadat takto:

> Začnete na pozici 0 (start) a vydáte se na východ.
> Ve vzdálenosti 0,5 od startu vás nově postavený teleport přenese do

vzdálenosti 1,5 a tím získáte jeden bod.
> Pokračujete na východ a dosáhnete konce teleportů ve vzdálenosti 2

od startu. Teleport vás přenese do vzdálenosti 3 od startu a získáte
druhý bod.

> Po dosažení konce teleportů ve vzdálenosti 4 od startu, jste telepor-
továni do vzdálenosti 1. Získali jste třetí bod.

> Ve vzdálenosti 1,5 od startu vás nově postavený teleport přenese
do vzdálenosti 0,5 a máte již 4 body.

o Ve vzdálenosti 1 od startu jste teleportováni do vzdálenosti 4. Získali
jste už 5 bodů.

> Ve vzdálenosti 10 od startu jste teleportováni do vzdálenosti 11. Nyní
máte 6 bodů.

> Pokračujete na východ až do cíle závodu. Celkem jste získali 6 bodů.
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Příklad 2:

Vzorový vstup 2 Vzorový výstup 2
3 12

3

5 7

6 10

1999999 2000000

6. Stavba pyramidy
Veliký faraón Ramses XLII. vás pověřil nalezením co největšího sta-

vebního pozemku pro jeho pyramidu. К dispozici vám jeho úředníci dali
územní plány, které popisují krajinu jako mřížku M krát N čtvercových
polí. Základna pyramidy musí být čtvercová oblast bez překážek se stra-
námi rovnoběžnými s hranami mřížky.

V plánu je vyznačeno P překážek spolu s cenami za odstranění každé
z nich. Odstranění г-té překážky stojí C*. Každá z těchto překážek je
obdélník se stranami rovnoběžnými s mřížkou. Překážky se mohou na-

vzájem překrývat. Každá překážka zabírá celou plochu všech polí, na

kterých leží. Základnu pyramidy je možné umístit pouze na políčka bez
překážek. Kdykoli se rozhodnete odstranit překážku, musíte ji odstranit
celou, tj. není možné odstranit pouze část překážky. Odstranění jedné
překážky nijak neovlivní ostatní překážky (ani ty, které se s odstraňova-
nou překážkou překrývají).

Stavebního materiálu i pracovní síly na stavbu pyramidy má faraón
dostatek, avšak odstranění překážek a úprava terénu jsou často velmi
nákladné. Faraón proto určil, že celkový rozpočet na odstranění překážek
nesmí přesáhnout B.

Úkol: Vaším úkolem je napsat program, který ze znalosti umístění
P překážek a parametrů M, N а В určí největší možnou velikost strany
základny pyramidy, na kterou si můžete dovolit vyčistit stavební po-
zemek.

Omezení a bodování: Váš program bude spuštěn na třech sadách tes-
tovacích vstupů. Ve všech testech budou splněna následující omezení:

1 ú M, N ^ 1 000 000 rozměry mřížky
1 ^ Ci <L 7 000
1 й Хн й Xu й M
1йУг1й Yi2 й N

V první sadě testovacích vstupů v hodnotě 35 bodů platí:

cena za odstranění г-té překážky
x-ové souřadnice krajních polí г-té překážky
y-ové souřadnice krajních polí г-té překážky
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vás rozpočet (nesmíte odstranit žádné překážky)
počet překážek

Ve druhé sadě testovacích vstupů v hodnotě 35 bodů platí:
0 <; В <; 2 000 000 OOO váš rozpočet

počet překážek
Ve třetí sadě testovacích vstupů v hodnotě 30 bodů platí:

váš rozpočet (nesmíte odstranit žádné překážky)
počet překážek

Popis vstupu: Váš program ze standardního vstupu načte data v ná-
sledujícím tvaru:

> První řádek obsahuje dvě celá čísla M a N oddělená jednou mezerou.
> Druhý řádek obsahuje celé číslo B, které udává váš rozpočet.
o Třetí řádek obsahuje počet překážek P.
> Každý z následujících P řádků popisuje jednu překážku. Na i-tém

z těchto řádků se nachází pět celých čísel oddělených od sebe jednou
mezerou: Хц, Уц, Хм, Ум а Сi (v tomto pořadí). Udávají postupně
souřadnice nejnižšího nejlevějšího pole překážky, nejhornějšího nej-
pravějšího pole překážky a cenu odstranění překážky.
Pole v levém dolním rohu mřížky má souřadnice (1,1) a pole v pravém

horním rohu má souřadnice (M, N).
Popis výstupu: Váš program na standardní výstup vypíše jediný řá-

dek obsahující jedno celé číslo. Toto číslo je největší možná délka strany
základny pyramidy, pro kterou je možné připravit pozemek bez překážek
při dodržení stanoveného rozpočtu. Pokud není možné postavit žádnou
pyramidu, váš program vypíše 0.

Příklad 1:

Vzorový vstup 1
6 9

B = 0

1 < P < 1 000

1 < P < 30 000

в = o

1 < P < 400 000

Vzorový výstup 1
4

tel" 4 i-
i 21;

42

5 £
í 24 K"L9244 1 6 3 12

3 6 5 6 9

1 3 3 8 24

3 8 6 9 21

5 1 6 2 20

i

12 12

20

Na obrázku vidíte dvě možná umístění základny pyramidy, v obou
případech o délce strany 4.
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Příklad 2:

Vzorový vstup 2
13 5

Vzorový výstup 2
3

O

8

8 4 10 4 1

4 3 4 4 1

10 2 12 2 2

8 2 8 4 3

2 4 6 4 5

10 3 10 4 8

12 3 12 4 13

2 2 4 2 21

0 paJ ГТ0321

Na obrázku vidíte jediné možné umístění základny pyramidy o délce
strany 3.
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