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O průběhu 43. ročníku matematické olympiády

Soutěž Matematická olympiáda ve školním roce 1993/94 pořádaly pro
žáky středních a základních škol Ministerstvo školství, mládeže a tě-
lovýchovy ČR ve spolupráci s Jednotou českých matematiků a fyziků
a Matematickým ústavem AV ČR. Soutěž řídil ústřední výbor matema-
tické olympiády (ÚV MO) prostřednictvím oblastních a okresních výborů
matematické olympiády.

Cílem soutěže je vyhledávání žáků talentovaných v matematice, pro-
bouzení jejich hlubšího zájmu o matematiku a rozvíjení jejich matema-
tických schopností. Ve školním roce 1993/94 se uskutečnil její 43. ročník.

Ústřední výbor MO pracoval ve složení, v němž byl jmenován minis-
terstvy školství ČR a SR na pětileté období při zahájení 39. ročníku.
Předsedou ÚV MO byl doc. dr. Leo Boček, CSc., z MFF UK v Praze,
tajemníky byli dr. Karel Horák, CSc., z MÚ AV ČR v Praze a dr. Jiří
Binder, CSc., z PF UK v Praze.

V průběhu 43. ročníku MO se konala dvě zasedání ÚV MO, první
v prosinci 1993 v Brně, druhé 25.-26. dubna 1994 na gymnáziu v Jevíčku
při celostátním kole kategorie A. Hodnotil se průběh soutěže, zabezpečení
celostátních soustředění úspěšných řešitelů MO včetně soustředění pro

přípravu na MMO a organizace dalších kol soutěže a v neposlední řadě
i další spolupráce mezi českým a slovenským výborem olympiády.

Pro žáky středních škol byla soutěž organizována ve čtyřech katego-
riích А, В, С a P. Kategorie A byla určena žákům 3. a 4. ročníků středních
škol, kategorie В byla pro žáky 2. ročníků a v kategorii C soutěžili žáci
1. ročníků. Pro žáky všech tříd středních škol byla určena ještě katego-
rie P, zaměřená na úlohy z programování a matematické informatiky.

V kategoriích А, В a C má I. kolo dvě části. V první části řeší soutěžící
šest úloh doma nebo v matematických kroužcích a mohou se přitom radit
se svými učiteli, vedoucími kroužků apod. Druhá část má formu klauzurní
práce, v níž řeší žáci tři úlohy v omezeném čase čtyř hodin. Řešitelé, kteří
úspěšně projdou prvním kolem, jsou pozváni do druhého (oblastního)
kola soutěže, kde řeší čtyři úlohy opět v limitu čtyř hodin.
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V kategoriích A a P se koná ještě třetí, celostátní kolo. V něm je
vlastní soutěž rozdělena do dvou dnů. V kategorii A řeší soutěžící každý
den tři úlohy v časovém limitu čtyř hodin, v kategorii P ve stejném limitu
vždy dvě úlohy.

Novinkou letošních celostátních kol MO byla skutečnost, že se poprvé
oddělilo pořádání soutěže v České republice a ve Slovenské republice. Vý-
borná spolupráce s našimi slovenskými kolegy však nadále trvá, v obou
zemích probíhala všechna kola matematické olympiády ve stejných termí-
nech a se stejnými soutěžními úlohami. Podobnou spolupráci plánujeme
i na příští léta. Rozdělení soutěže se promítlo do počtu účastníků a trochu
i do kvality soutěže, konkurence v menší zemi je pochopitelně menší.

V letošním školním roce se stejně jako v tom předchozím ukázalo, že
v současné době obnovujícího se kapitalismu není snadné získat ochotné
organizátory, kteří by byli schopni zajistit finanční prostředky к uspořá-
dání celostátního kola MO, když dotace MŠMT na tuto akci jsou velice
skromné. A tak hrozbu, že se 43. celostátní kolo MO vůbec konat ne-

bude, odvrátila stejně jako vloni šlechetná nabídka dr. Daga Hrubého,
ředitele Gymnázia v Jevíčku, že akci bude možno po roce uspořádat
opět v malebném východočeském městě, kterému dřívější titul královské
udělil Přemysl Otakar II. privilegiem z 6. srpna 1258.

Celostátní kolo 43. ročníku se tak uskutečnilo v Jevíčku od 24. do

27. dubna 1993 (kategorie A) a od 27. do 30. dubna 1994 (katego-
rie P). Obětaví členové pedagogického sboru tamního gymnázia v čele
s dr. Hrubýn nejen dobře zabezpečili podmínky pro samotnou soutěž, ale
připravili pro soutěžící i členy UV MO bohatý doprovodný program.

Vybraná družstva se zúčastnila mezinárodní matematické olympiády
i mezinárodní olympiády v informatice. Těmto soutěžím je věnována sa-
mostatná kapitola v závěru této ročenky.

К matematické olympiádě vedle vlastní soutěže patří i řada doprovod-
ných akcí pro talentované žáky. Z akcí pořádaných oblastními výbory MO
к nim zejména patří semináře pro řešitele MO a instruktáže pro učitele.
Pro nejúspěšnější řešitele oblastních kol MO a korespondenčních semi-
nářů byla pořádána (většinou týdenní) soustředění.

Ústřední výbor MO zajišťoval tři celostátní soustředění. Pro žáky
nematurujících ročníků to bylo již tradiční soustředění řešitelů úloh MO
a FO. Proběhlo ve dnech 13.-24. 6. 1994 v Jevíčku. Další dvě soustředění

byla věnována přípravě našeho družstva na mezinárodní matematickou
olympiádu a konala se 10.-13. května a 20.-24. června 1994 opět v Je-
víčku.
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Tabulka 1

Počty žáků středních škol soutěžících v I. kole 43. ročníku MO

Kategorie
Kraj Celkem

A В C P
s и s и s и s и s и

Praha

Středočeský
Jihočeský
Západočeský
Jihlava

Jihomoravský
Moravskoslezský

87 46
94 30
55 37
57 35
38 24
55 39

109 57

73 47
119 58
63 48

104 65
60 30

138 88
184 68

27 27
17 12

8 7
15 10

0 0
15 15
17 5

62 36
86 33
51 25
68 33
42 22
75 33

104 59

249 156
316 133
177 117
244 143
140 76
283 175
414 189

CR 495 268 488 241 741 404 99 76 1823 989

Tabulka 2

Počty žáků středních škol soutěžících v II. kole 43. ročníku MO

Kategorie
Kraj Celkem

A C PВ
s иs и s и s и s и

Praha

Středočeský
Jihočeský
Západočeský
Jihlava

Jihomoravský
Moravskoslezský

46 28 36 11
32 3
23 8
32 7
16 2
27 4
59 16

47 43
54 32
39 26
63 50
22 12
79 66
68 49

27 12
10 4

6 0
10 2

0 0
15 9
17 5

156 94
125 44
100 57
140 72

59 21
159 97
201 94

29 5
32 23
35 13

721
38 18
57 24

CR 372 278 85 32 940 479258 118 225 51

S ... počet všech soutěžících U ... počet úspěšných řešitelů
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Výsledky celostátního kola 43. ročníku MO

kategorie A

Vítězové

1. David Pavlica, 3.r. G M. Koperníka Bílovec
2. Martin Nečesal, 3.r. G Brno, kpt. Jaroše
3. Robert Šámal, 3.r. G Praha 5, Zborovská

4.-5. Petr Kaňovský, 3.r. G Brno, kpt. Jaroše
Libor Masíček, 3.r. G Brno, kpt. Jaroše

6.-7. Jan Mach, 4.r. G M. Koperníka Bílovec
David Opěla, 2.r. G M. Koperníka Bílovec

8.-9. Filip Krška, 3.r. G Brno, kpt. Jaroše
Jan Vaněk, 4.r. G Praha 5, Zborovská

10. Michal Beneš, 2.r. G Praha 5, Zborovská
11.-12. Michaela Prokešová, 3.r. G C. Budějovice, Jírovcova

Jan Rychtář, 3.r. G Strakonice

29 b.

28 b.

27 b.

26 b.

26 b.

24 b.

24 b.

23 b.

23 b.

21b.

20 b.

20 b.

Další úspěšní řešitelé

13.-15. František Šanda, 4.r. GJV Klatovy
Jaroslav Ševčík, 4.r. G Brno, kpt. Jaroše
Karel Výborný, 2.r. G Praha 5, Zborovská

16.-19. Igor Glúcksmann, 4.r. G Písek
Stanislav Hencl, 4.r. G Pardubice Dašická
Jitka Nečasová, 4.r. G Praha 5, Zborovská
Petr Vilím, 2.r. G M. Koperníka Bílovec

20.-21. Milan Hokr, 4.r. G Praha 5, Zborovská
Jan Hradil, 4.r. G Brno, kpt. Jaroše

22.-24. Michal Johanis, 4.r. GJKT Hradec Kr., Tylovo nábř.
Daniel Král, 2.r. G Zlín, Lesní čtvrť
Karel Švadlenka, 3.r. G C. Budějovice, Jírovcova

25.-26. Michal Fabinger, 3.r. G Praha 6, Nad alejí
Pavel Kórber, 4.r. G Praha 5, Zborovská

18 b.

18 b.

18 b.
17b.

17b.

17b.

17b.

16 b.

16 b.

15 b.

15 b.

15 b.

14 b.

14 b.
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Výsledky celostátního kola 43. ročníku MO
kategorie P

Vítězové

1. Robert Špalek, 2.r. G Brno, tř. kpt. Jaroše
2. Petr Kaňovský, 3.r. G Brno, tř. kpt. Jaroše

3.-4. David Stanovský, 3.r. G Pardubice
Daniel Škarda, 4.r. G Praha, Zborovská

5. Petr Novák, 4.r. G Brno, tř. kpt. Jaroše

31b.

30 b.

28 b.
28 b.

27 b.

Další úspěšní řešitelé

6. Jaroslav Ševčík, 4.r. G Brno, tř. kpt. Jaroše
7. Jiří Hájek, 3.r. G Praha 5, Zborovská

8.-9. Tomáš Miiller, 2.r. G Ml. Boleslav
Mikuláš Patočka, l.r. G Brno, tř. kpt. Jaroše

10. Stanislav Hencl, 4.r. G Pardubice
11.-13. Jan Kratochvíl, l.r. G Praha 8, U libeňského zámku

Martin Mareš, 3.r. G Praha 8, U libeňského zámku
Jiří Valášek, 4.r. G Jablonec n. N.

14. Pavel Machek, 3.r. G Praha 5, Zborovská

25 b.

24 b.

23 b.

23 b.
22 b.

21b.

21b.

21b.

20 b.
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Nejúspěšnější řešitelé II. kola MO
v kategoriích А, В, С a P

Z každého kraje a z každé kategorie jsou dle dostupných výsledků uvedeni
všichni úspěšní řešitelé, kteří skončili do desátého místa. Označení G
znamená gymnázium.

Kraj Praha

Kategorie A

1. Robert Šámal,, 3M, G Praha 5, Zborovská
2. Michal Beneš, 2M, G Praha 5, Zborovská

3.-4. Karel Výborný, 2, G Praha 5, Zborovská
Milan Hokr, 4M, G Praha 5, Zborovská

5.-6. Pavel Kuncát, 3M, G Praha 5, Zborovská
Jan Vaněk, 4M, G Praha 5, Zborovská

7. Jan Hora, 4M, G Praha 5, Zborovská
8.-10. Norbert Vaněk, 3, G Praha 5, Zborovská

Pavel Kórber, 4M, G Praha 5, Zborovská
Jitka Nečasová, 4M, G Praha 5, Zborovská

Kategorie В

1. Jiří Vaněk, 2D, G Praha 5, Zborovská
2. Petr Holzhauser, 2D, G Praha 5, Zborovská
3. Jan Vodička, 2D, G Praha 5, Zborovská
4. Karel Výborný, 2A, G Praha 5, Zborovská
7. Tomáš Bárta, 2D, G Praha 5, Zborovská

Martin Hokeš, 2D, G Praha 5, Zborovská
Petr Honzík, 2D, G Praha 5, Zborovská

8.-11. Michael Frouza, 2D, G Praha 5, Zborovská
Václav Šubrta, 2D, G Praha 5, Zborovská
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Vít Švachouček, 2D, G Praha 5, Zborovská
Martina Fialová, 2A, G Praha 10, Voděradská

Kategorie C1.Petr Pudlák, ID, G Praha 5, Zborovská
2.-3. Libor Inovecký, ID, G Praha 5, Zborovská

Bernard Jaroš, ID, G Praha 5, Zborovská
4.-7. Jan Spěvák, 1A, G Praha 1, Hellichova

Martin Rumlena, ID, G Praha 5, Zborovská
Denisa Chábová, 1C, G Praha 6, Parléřova
Karel Kulhavý, ID, G Praha 8, U libeňského zámku

8.-9. Wí Hradecký, ID, G Praha 6, Arabská
Kristýna Kastlová, 1C, G Praha 1, Štěpánská

10.-12. Stanislav Duben, 1A, G Praha 3, Sladkovského
Adam Rogalewicz, ID, G Praha 5, Zborovská
Miroslav Uller, ID, G Praha 5, Zborovská

Kategorie P

1. Robert Šámal, 3.D, G Praha 5, Zborovská
2. Pavel Machek, 3.D, G Praha 5, Zborovská
3. Jan Kratochvíl, l.C, G Praha 5, U libeňského zámku
4. Martin Mareš, 3.E, G Praha 5, U libeňského zámku
5. Jiří Hájek, 3.D, G Praha 5, Zborovská
6. Martin Veselka, 4.E, G Praha 5, Zborovská

7.-8. Daniel Škarda, 4.E, G Praha 5, Zborovská
Milan Vančura, 4.E, G Praha 5, Zborovská9.Kare/ Kulhavý, l.D, G Praha 5, U libeňského zámku10.Vojtěch Pavlík, 4.D, G Praha 5, U libeňského zámku

Středočeský kraj

Kategorie A

1. Martin Jaroš, 3, G Benešov
2. David Sitenský, 4, G Kladno
3. Pavel Kučera, 4, G Mladá Boleslav
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4. Marek Kobera, 4, G Beroun
5. Jan Wasserbauer, 3, G Mladá Boleslav

Kategorie В1.Ondřej Crha, 2, G Mladá Boleslav
2.-3. Jiří Franta, 2, G Příbram

Veronika stulíková, 2, G Beroun

Kategorie C

1.-2. Vladimír Pilný, 1, G Český Brod
Peír Sedláček, 1, G Benešov

3.-4. Jiří Lukavský, 1, Sport. G Kladno
Tomáš Maršik, 1, SOU Mladá Boleslav

Kategorie P

1. Tomáš Miiller, 2, G Mladá Boleslav
2. Václav Petříček, 4, G Mladá Boleslav

3.-4. Pavel Starosta, 2, G Benešov
Jiří Šrain, kvarta, G Beroun

Jihočeský kraj

Kategorie A

1. Jan Rychtář, 3C, G Strakonice
2. Roman Otec, 4A, G České Budějovice, Jírovcova
3. Aareč Švadlenka, ЗА, G České Budějovice, Jírovcova

4.-5. Ondřej Pangrác, 4B, G Pelhřimov
Michaela Prokešová, ЗА, G České Budějovice, Jírovcova6.-7. Igor Gliicksmann, 4D, G Písek
Václav Finěk, 4C, SZeŠ Blatná

8. Tomáš Mrkvička, 4A, G Strakonice
9. -10. M. Andrle, 4A, České Budějovice, Jírovcova

Ondřej Mareš, 4A, České Budějovice, Jírovcova
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Kategorie В1.Markéta Elisová, 2A, G České Budějovice, Jírovcova
2.-5. Jan Hubička, 2A, G České Budějovice, Jírovcova

Jana Husová, 2C, G Strakonice
Petr Jindra, 2A, G České Budějovice, Jírovcova
Pavel Zeman, 2C, G Tábor

6. Jan Huml, 2A, G České Budějovice, Jírovcova
7.-8. Lenka Baborová, 2C, G Strakonice

Stanislav Mikeš, 2A, G České Budějovice, Jírovcova

Kategorie C

1. M. Kulhavý, 1A, G České Budějovice, Jírovcova
2.-6. Karel Carva, IV, G Tábor

Dušan Kollar, 1A, G České Budějovice, Jírovcova
Vlastimil Kozák, 1, SPSS Tábor
Pečr Pruner, IV, G Tábor
Miroslav Šiman, 1A, G České Budějovice, Jírovcova

7.-8. Lukáš Oborský, 1, G České Budějovice, Jírovcova
Václav Porod, 1, G Týn nad Vltavou

9. Kamil Novák, 1A, G Strakonice
10.—11. Jan Radil, 1A, G Humpolec

PnJa Ventluková, 1A, G České Budějovice, Jírovcova

Plzeňský kraj

Kategorie A

1. Marek Vecka, 4, G Domažlice
2. Jzífta Lhotská, 4M, 1. G Plzeň

3.-4. Robert Pelikán, 4M, 1. G Plzeň
František Šanda, 4, G Klatovy

5. Michal Škop, 4M, 1. G Plzeň
6.-9. Miloš Mulač, 4MF, 2. G Plzeň

Martin Orság, 4, G Klatovy
Jan Pospíšil, 4M, 1. G Plzeň
Tomáš Soukup, 3M, 1. G Plzeň

13



10. Petr Písek, 4M, 1. G Plzeň

Kategorie В1.Dalibor Šmíd, 2M, 1. G Plzeň
2.-4. Kristina Forstová, 2M, 1. G Plzeň

Vojtěch Ocelík, 2M, 1. G Plzeň
Jakub Slovan, 2M, 1. G Plzeň

5.-6. Michal Ježek, 2M, 1. G Plzeň
Jan Ludvík, 2M, 1. G Plzeň

7. Tomáš Suda, 2, G Klatovy

Kategorie C

1. Jakub Hendrich, 1M, 1. G Plzeň
2. Jiří Houška, 1M, 1. G Plzeň

3.-4. Robert Janisch, 1M, 1. G Plzeň
Vlastimil Kulda, 1M, 1. G Plzeň

5. Martin Moravec, 1, Svob. chebská škola Cheb
6.-7. Tomáš Ebelendr, IMF, 2. G Plzeň

Kamil Řezáč, kvarta, G Klatovy
8.-10. Ondřej Nezdara, 1, Svob. chebská škola Cheb

Eva Reitspiesová, kvarta, G Klatovy
Jiří Trnka, IMF, 2. G Plzeň

Kategorie P

1. Vladimír Kraus, 3B, 1. G Plzeň
2. Jan Pospíšil, 4A, 1. G Plzeň

Liberecký kraj

Kategorie A

Michal Kaut, 4, G F. X. Saldy Liberec
Pavel Strnad, 3, G F.X. Saldy Liberec
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Kategorie В

1.-2. Michal Celler, G F. X. Saldy Liberec
Čeněk Svoboda, G F. X. Saldy Liberec

Kategorie C

1.-3. Hynek Bořil, SPŠSE Liberec
Jan Březina, G F. X. Saldy Liberec
Peír Šídlof, G F. X. Saldy Liberec

4.-5. Ondřej Horáček, G Jablonec nad Nisou
Pavel Rais, G F. X. Saldy Liberec

6.-7. Jana Brotánková, G Česká Lípa
Jiří Jón, G Tanvald

8.-9. Patrik Endler, G Tanvald
Matěj Stránský, G F. X. Saldy Liberec

10. Kateřina Jindrová, G Česká Lípa

Východní Čechy

Kategorie A

1. Stanislav Hencl, 4D, G Pardubice
2. Alena Píšová, 3D, G Pardubice
3. Michal Johanis, 4A, G J. K. Tyla, Hradec Králové

4.-5. Peřr Vodstrčil, 2A, G Polička
Boris Letocha, 4A, G J. K. Tyla, Hradec Králové

6.-8. Arnošt Komárek, 3D, G B. Němcové, Hradec Králové
Kare/ Houfek, 4A, G J.K. Tyla, Hradec Králové
Peír Doubek, 3D, G Pardubice

9.-12. Michal Řada, ЗА, G J. K. Tyla, Hradec Králové
Ladislav Ostrý, 4A, G J. K. Tyla, Hradec Králové
Michal Róssler, 4A, G Česká Třebová
David Stnovský, 3D, G Pardubice

Kategorie В

1. Petr Vodstrčil, G Polička
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2. Aleš Král, G J. K. Tyla, Hradec Králové
3. Petr Chocholouš, G J.K. Tyla, Hradec Králové

4.-6. Vojtěch Rejdák, G J.K. Tyla, Hradec Králové
Vít Ždára, G Polička
Martin Tajovský, G B. Němcové, Hradec Králové

Kategorie C1.Petr Lidman, G J.K. Tyla, Hradec Králové
2.-4. Tomáš Bílek, G J. K. Tyla, Hradec Králové

Jiří Zika, G J.K. Tyla, Hradec Králové
Zdeňka Broklová, G Polička

5.-7. Jan Fátor, G J. K. Tyla, Hradec Králové
Jan Peíras, G J.K. Tyla, Hradec Králové
Petr Pnner, G Moravská Třebová

8. Martin Klíma, G Havlíčkův Brod
9. 12. Pavel Příhoda, G J.K. Tyla, Hradec Králové

Lucie Sedláková, G J. K. Tyla, Hradec Králové
Jose/ Uchytil, G Turnov
Ties Přívětivý, G Pardubice

Jihlava

Kategorie A

1. /réta Tomenendálová, 4A, G Jihlava
2. Martina Benešová, 4A, G Jihlava
3. František Lavický, 3D, SPŠ Zdar nad Sázavou
4. Tomáš Vejchodský, 3B, G Jihlava

5.-7. Petr Čása, 3B, G Jihlava
Martin Černý, 2A, G Zdar nad Sázavou
Helena Málková, 4A, G Moravské Budějovice

Kategorie В

1.-2. Jakub Machek, 2A, G Žďár nad Sázavou
Petr Příplata, 2B, G Jihlava
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Kategorie С1.Vít Německý, kv., G Nové Město na Moravě
2.-5. Markéta Hladká, kv., G Třebíč

David Laštovička, IB, G Třebíč
Jindřich Makovička, IB, G Telč
Miroslav Soukal, 1A, G Velké Meziříčí6.Tomáš Tichý, 1A, G Zdar nad Sázavou

7.-9. Jana Humpoličková, 1A, G Jihlava
Inka Píbilová, 1A, G Jihlava
Jiří Roubínek, 1A, G Zdar nad Sázavou

10.-12. Martin Drdla, IB, G Zdar nad Sázavou
Lucie Kantorová, 1C, G Zdar nad Sázavou
Daniela Makerová, IB, G Telč

Jihomoravský kraj

Kategorie A

1.-2. Petr Kanovský, ЗА, G Brno, tř. kpt. Jaroše
Libor Mašíček, ЗА, G Brno, tř. kpt. Jaroše

3.-4. Lenka Baráková, 4A, G Brno, tř. kpt. Jaroše
Filip Krška, ЗА, G Brno, tř. kpt. Jaroše

5.-6. Mikuláš Piňos, 4A, G Brno, tř. kpt. Jaroše
Jan Hradil, 4A, G Brno, tř. kpt. Jaroše

7. Martin Nečesal, ЗА, G Brno, tř. kpt. Jaroše
8.-9. Jan Strejček, ЗА, G Brno, tř. kpt. Jaroše

Jaroslav Ševčík, 4A, G Brno, tř. kpt. Jaroše
10.—11. Petr Novák, 4A, G Brno, tř. kpt. Jaroše

Aleš Vocílka, ЗА, G Brno, tř. kpt. Jaroše

Kategorie В

1. Robert Špalek, 4A, G Brno, tř. Kpt. Jaroše
2. Richard Štoudek, 2A, G Blansko
3. Petr Vejchoda, 2A, G Brno, tř. Kpt. Jaroše
4. Milan Fikar, 2A, G Brno, tř. Kpt. Jaroše
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Kategorie С1.Mikuláš Patočka, 1A, G Brno, tř. kpt. Jaroše
2.-3. Vítězslav Karásek, 1A, G Brno, tř. kpt. Jaroše

Petr Šimeček, 3AG, G Brno, tř. kpt. Jaroše
4.-7. Tomáš Hanzl, 3AG, G Brno, tř. kpt. Jaroše

Martin Ježek, 3AG, G Brno, tř. kpt. Jaroše
Jan Kamelander, 1BMF, G Brno, tř. kpt. Jaroše
Pavel Šmerk, 1A, G Brno, Vídeňská

8.-9. Jiří Mikulášek, 1AM, G Brno, tř. kpt. Jaroše
Karel Zitterbart, 4bg, G Zastávka u Brna

10.-12. Tomáš Brauner, 1A, G Moravský Krumlov
Jaroslav Černý, 1A, G Brno, tř. kpt. Jaroše
Oldřich Stražovský, 1A, G Brno, tř. kpt. Jaroše

Kategorie P

1. Petr Kanovský, ЗА, G Brno, tř. kpt. Jaroše
2.-3. Pavel Bubák, 2A, G Brno, tř. kpt. Jaroše

Petr Novák, 4A, G Brno, tř. kpt. Jaroše
4. Jaroslav Ševčík, 4A, G Brno, tř. kpt. Jaroše
5. Věroslav Kaplan, 1A, G Brno, tř. kpt. Jaroše
6. Mikuláš Patočka, 1A, G Brno, tř. kpt. Jaroše

7.-9. Libor Mašíček, ЗА, G Brno, tř. kpt. Jaroše
Petr Šimeček, ЗА, G Brno, tř. kpt. Jaroše
Robert Špalek, 2A, G Brno, tř. kpt. Jaroše

Severomoravský kraj

Kategorie A

1.-2. Jaromír Fiurášek, 4, G Přerov
Jan Mach, 4, G M. Koperníka, Bílovec3.David Opěla, 2, G M. Koperníka, Bílovec

4.-5. Jan Foniok, 2, G M. Koperníka, Bílovec
David Pavlica, 3, G M. Koperníka, Bílovec

6.-8. Petr Vilím, 2, G M. Koperníka, Bílovec
Jan Onderek, 3, Matiční G Ostrava
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Petr Dub, 3, SPŠE Mohelnice
9.-10. Martin Vaněk, 4, G Prostějov

Petr Masopust, 4, G M. Koperníka, Bílovec

Kategorie В

1. David Opěla, 2C, G M. Koperníka, Bílovec
2. Václav Hrbáč, 2C, G M. Koperníka, Bílovec
3. Pečr Škovroň, 2C, G M. Koperníka, Bílovec
4. Zbyněk Pawlas, 2C, G M. Koperníka, Bílovec

5.-6. Jan Foniok, 2C, G M. Koperníka, Bílovec
Přemysl Jedlička, 2E, Mendelovo G, Opava

7.-9. Marian Kechlibarov, 2A, G Ostrava-Hrabůvka
Pavel Skalický, 2D, Slovanské G, Olomouc
Pavel Komišák, 2B, G J. Wolkera, Prostějov

10.-16. Jana Erbenová, 2B, G Bruntál
Michal Batko, 2B, G Nový Jičín
Šárka Čerňáková, 2F, Mendelovo G, Opava
Vítězslav Stejskal, 2D, G Ostrava-Poruba, Čs. exilu
Ondřej Bláha, 2, G Olomouc, Na vlčinci
Jiří Šimek, 2B, G Jeseník
Tomáš Loun, 2D, Slovanské G, Olomouc

Kategorie C

1.-2. Marek Eliáš, kvarta, Matiční G Ostrava
Jan Vybíral, 1C, G M. Koperníka, Bílovec

3.-5. Antonín Navrátil, 1C, G M. Koperníka, Bílovec
Radim Janda, 1A, G Hlučín
Petr Kolovrat, 8C, ZŠ Opava, Otická

6. David Kubánek, IB, G Havířov, Komenského
7. Tomáš Blumenstein, IB, G J. Wolkera, Prostějov

8.-10. Jiří Fojtík, 1C, G M. Koperníka, Bílovec
Ivo Škola, 1C, G M. Koperníka, Bílovec
Ladislav Vondráček, IB, G Havířov, Komenského
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Kategorie P

1. Petr Vilím, 2C, G M. Koperníka, Bílovec
2. Zdeněk Románek, 4C, G Bruntál
3. Radek Hejhal, 4F, Opava, Komenského
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Kategorie С

Texty úloh

C - I - 1

Pavouk Hubert usoukal pavučinu, jejíž tvar je vyznačen na obr. 1. Po
práci se oddal zaslouženému odpočinku v jednom rohu pavučiny (A),

A

В

Obr. 1

když tu se najednou v protějším rohu (В) chytla moucha. Kolik cest
nejkratší délky spojujících tyto dva rohy má Hubert к dispozici?

(P. Leischner)

С - I - 2

Najděte všechny dvojice přirozených čísel man, pro které platí

m\n\ — (mn)2,

(Číslo m! je součin všech přirozených čísel г, 1 ^ г m. 1! = 1.)
(J. Šimša)

C - I - 3

Šachového turnaje hraného systémem každý s každým se zúčastnili pouze

prváci a druháci. Ačkoliv druháků bylo třikrát víc než prváků, získali do-
hromady pouze o 3 body víc než prváci. Kolik žáků se zúčastnilo turnaje?

(P. Černek)

21



С - I - 4

V městě Little York je 10 severojižních ulic a 10 východozápadních ulic,
které se protínají ve sto křižovatkách. Autobus má po uzavřeném okruhu
projet všechny křižovatky. Navrhněte jeho trasu tak, aby počet změn
směru jízdy byl co nejmenší. (M. Čadek)

С - I - 5

Na stranách BC, CA, AB trojúhelníku ABC jsou sestrojeny body Ai,
Въ Сг tak, že \АСг\ = \\AB\, \BAX\ = \\BC\, \CBX\ = \\AC\. Nechť
P, Q, R jsou vzájemné průsečíky přímek AAi, BBi a CC\. Porovnejte
obsah trojúhelníku PQR se součtem obsahů trojúhelníků vyznačených
na obr. 2. (J. Dula)

C - I - 6

Uvažujme trojúhelník ABC, pro jehož průsečík výšek M platí \AB\ —

= \CM\. Vypočtěte velikost úhlu při vrcholu C trojúhelníku ABC.

C - S - 1

Najděte všechny dvojice přirozených čísel x a y, pro které platí

2Ax2 = y\ — xl.

C-S-2

Na zimu se pavouk Hubert uchýlil do kabinetu matematiky. V něm objevil
drátěný model krychle (obr. 3) s délkou hrany 20 cm. Na tomto modelu
nejprve napjal vlákna do všech stěnových úhlopříček a pak vlákny po-

spojoval navzájem všechny středy stěn. Jednou se chtěl rychle dostat
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z vrcholu В do vrcholu H. Zvolil si cestu po drátu BF a vláknu FH.
Poraďte mu v této prolézačce z drátů a vláken kratší cestu zpět z H
do B. Určete rovněž počet nejkratších cest z H do B.

GH

E

CD

A В Obr. 3

C - S - 3

Je dán konvexní čtyřúhelník ABCD o obsahu 100cm2. Označme středy
stran AB, BC, CD a DA po řadě písmeny E, F, G a H. Vypočtěte
součet obsahů trojúhelníků ABF, BCG, CDH a ADE.

C - II - 1

Určete všechny trojice přirozených čísel x, у a, z, pro které platí

x\ — y\ = 5 • z\ + 96.

С - II - 2

Na zemi leží těžká kovová tyč o délce 7 metrů. Jeden člověk s ní může
pohnout jedině tak, že zvedne jeden konec tyče a otáčí tyč kolem druhého
konce ležícího na zemi. Kolikrát nejméně musí zvednout a otáčet tyč,
aby ji z polohy AB posunul o 12 metrů ve směru polopřímky AB do
polohy A'B'l (Konec A přejde v A', konec В v B'.) Popište postup
s nej menším počtem otáčení a ukažte, že menší počet otáčení nestačí.
Vzájemná poloha a vzdálenosti bodů А, В, A', B' jsou uvedeny na obr. 4.

7 5 7

A В В'А

Obr. 4
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С - II - 3

Uvnitř obdélníku ABCD leží body X a Y tak, že celý obdélník je roz-
dělen na dva trojúhelníky ADX, BCY o stejném obsahu a dva konvexní
čtyřúhelníky ABYX a CDXY rovněž o stejném obsahu. Dokažte, že
potom úsečka XY prochází středem obdélníku.

С - II - 4

Tentokrát si náš starý známý pavouk Hubert vybral ke svým hrám v ka-
binetě matematiky drátěný model pravidelného osmistěnu. Jeho stěny
tvoří 8 rovnostranných trojúhelníků (obr. 5). V každé stěně pospojoval

Hubert vlákny středy příslušných hran. Z kolika cest nejkratší délky si
může Hubert vybrat, aby se v takto vzniklé síti pavučin a drátů dostal
z vrcholu E do vrcholu F? (M. Čadek)
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Řešení úloh

C - I - 1

Cesty nejkratší délky vedoucí z bodu A do bodu В jsou trojího druhu:
1. ty, které vedou po úsečce CD, 2. ty, které vedou po úsečce EF, a 3. ty,
které vedou po úsečce GH (obr. 6). Jestliže počet nejkratších cest mezi

A

В

dvěma body X a Y Hubertovy pavučiny označíme p(X, Y), potom počet
cest nejkratší délky mezi А а В je

p(A, В) = p(A, C) • p(D, В) + p(A, E) ■ p(F, B) + p(A, G) ■ p(H, B).

Zbývá nám tak spočítat počet cest nejkratší délky mezi dvěma vrcholy
čtvercové sítě. Po chvíli experimentování zjistíme, že každá cesta nejkratší
délky z bodu o souřadnicích [0,0] do bodu o souřadnicích [m, n], m > 0,
n > 0, vede bud přes bod [m — 1, n], nebo přes bod [m, n — 1]. Proto jejich
počet je dán součtem p([0,0], [m — 1, n]) + p([0,0], [m, n — 1]).

Uplatňujeme-li toto pravidlo postupně na levé třetině pavučiny, do-
stáváme počty nejkratších cest tak, jak je uvedeno na obr. 7. Proto
p(A, С) = p(H, B) = 1, p(A, E) = p(F, B) = 6, p{A, G) = p(D, B) = 15.
Celkový počet cest je tedy 1 • 15 + 6 • 6 + 15 • 1 = 66.

1 3 6 10 15

1 2 3 4 5

1111

Obr. 7
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С - I - 2

Rovnici po dělení mn upravíme na tvar

(m — 1)! (n — 1)! = mn (1)

(klademe 0! = 1). Všimněme si, že pro každé celé к ^ 4 platí (к — 1)! > k,
neboť

(к - 1)! = 2 • 3 •... • (к — 1) ^ 2{k — 1) = к + {к — 2) > к.

Proto nemohou být obě čísla m, n větší než 3: vynásobením nerovností
(m— 1)! > m a (n — 1)! > n bychom dostali spor s rovnicí (1). S ohledem
na symetrii můžeme předpokládat, že např. m ^ 3. Pro m = 1 dostáváme
(n - 1)!
možností n = 1, 2, 3 zjistíme, že rovnici vyhovuje pouze n = 1. Pro
m = 2 dostáváme (n — 1)! = 2n, což pro n ^ 4 zřejmě nenastane; pro
n ^ 5 ale platí

n, což podle předchozího znamená, že n ^ 3; probráním

(n — 1)! ^ 2 • 3 • (n — 1) = 6(n — 1) = 2n + (4n — 6) > 2n. (2)

Konečně pro m = 3 dostáváme 2 (n — 1)! = 3n, což v případě n < 5 platí
pouze pro n = 4; pro n ^ 5 ale podle (2) platí 2(n — 1)! > 4n > 3n.
Hledané dvojice (m, n) jsou (1,1), (3,4) a (4,3).

C - I - 3

Označme n počet prváků, kteří se zúčastnili turnaje. Druháků pak bylo 3n
a celkový počet žáků byl 4n. Ti mezi sebou sehráli celkem | • 4n(4n — 1)
zápasů. Protože za vítězství je jeden bod, za remízu půl bodu a za prohru
žádný bod, celkový počet rozdaných bodů je roven počtu zápasů. Jestliže
tedy prváci získali p bodů a druháci d bodů, pak

p + d = 2n(4n — 1).

Druháci získali jen o tři body více než prváci, tedy

p = d — 3.

Dosazením z druhé rovnice do první dostaneme

3
d = n(4n -!) + -.
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Počet bodů, které získali druháci, je roven aspoň počtu bodů, které získali
ve vzájemných zápasech mezi sebou. Tedy

3 3n(3n — 1)n(4n - 1) + -
>

2

Úpravou získáme nerovnost n + 3 ^ n2. V oboru přirozených čísel ji
splňují pouze čísla n = 1, n = 2, neboť pro n^;3jen + 35í2n<n-n.

Turnaje se tedy mohli zúčastnit bud 3 druháci a jeden prvák, nebo
6 druháků a 2 prváci. V obou případech se musíme přesvědčit, že turnaj
mohl proběhnout tak, aby byly splněny podmínky zadání. V případě
čtyř účastníků získal prvák v zápasech s druháky 1,5 bodu. Ti pak zís-
kalí zbývajícího 4,5 bodu. V případě 8 účastníků ve všech zápasech mezi
prvákem a druhákem s výjimkou jednoho, který skončil remízou, zvítězil
prvák. Prváci tak získali 12,5 bodu a druháci 15,5 bodu.

С - I - 4

Po chvíli experimentování přijdeme na to, že nejmenší možný počet změn
směru na okruhu je 20. Jeden z více možných návrhů takového okruhu
je znázorněn na obr. 8. Podstatnou částí řešení je však důkaz toho, že na
každém okruhu procházejícím přes všechny křižovatky je aspoň 20 změn
směru.

Obr. 8

Předpokládejme prvně, že okruh je takový, že autobus jede po každé
z deseti severojižních ulic. Vždy, když na nějakou severojižní ulici přijíždí,
a vždy, když z ní odbočuje, musí změnit směr. Těchto změn je tedy aspoň
2 • 10 = 20.

Pokud autobus nejede po některé ze severojižních ulic, musí přes ni
projíždět na deseti křižovatkách. Jede tedy po všech deseti východozápad-
nich ulicích. Stejnou úvahou, jakou jsme provedli už dříve, dostáváme, že
počet změn směru je aspoň 20.
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С - I - 5

Trojúhelník ABC je rozdělen na tři tmavě vyznačené trojúhelníky, tři
čtyřúhelníky a trojúhelník PQR. Součet obsahů všech těchto trojúhelníků
a čtyřúhelníků je roven obsahu trojúhelníku ABC. Obsahy trojúhelníků
ABA\, BCBi a CACi jsou rovny jedné třetině obsahu trojúhelníku ABC.
Proto platí

S{ABAX) + S{BCBl) + S{CAC\) = S(ABC).
V součtu na levé straně je plocha každého z tmavě vyznačených troj-
úhelníků započítána dvakrát, plocha čtyřúhelníků je započítána jednou,
zatímco plocha trojúhelníku PQR není započítána ani jednou. Odtud
plyne, že součet obsahů vyznačených trojúhelníků je roven obsahu troj-
úhelníku PQR.

Lze ukázat, že obsah trojúhelníku PQR]e roven jedné sedmině obsahu
trojúhelníku ABC.

C - I - 6

Označme O patu výšky z vrcholu A, P patu výšky z vrcholu В a Q
patu výšky z vrcholu C. Trojúhelníky АВР a MCP mají pravé úhly
u vrcholu P. V případě, že úhel u vrcholu C je ostrý, shodují se rovněž
v úhlech při vrcholech В a C. Pro ostroúhlý trojúhelník (obr. 9) to doká-
žeme takto:

\<ABP\ = 90° - \<QMB\ = 90° - \<PMC\ = \<PCM\.

(Důkaz pro trojúhelník s neostrým úhlem při vrcholu A nebo В proveďte
sami!) Protože \AB\ = \CM\, jsou oba trojúhelníky shodné. Speciálně
\CP\ = \BP\, pravoúhlý trojúhelník BCP je rovnoramenný a úhel při
vrcholu C je tedy roven 45°.

V případě, že úhel u vrcholu C je tupý (může být pravý?), dokážeme
analogicky, že AABP = ACMP. (Proveďte podrobně!) Odtud plyne,
že \MP\ — \PB\, a tedy v trojúhelníku BMP je úhel při vrcholu M
roven 45°. Uhel při vrcholu C je proto roven 135°, jak se přesvědčíme
výpočtem v čtyřúhelníku COMP (obr. 10).

C - S - 1

Levá strana rovnice je kladné číslo, proto у A x + 1. Odtud plyne, že

24ж2 = y\ — x\ A (x + 1)! — x\ = x\(x + 1 — 1) = x\ x.
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л лQ Q вв

Obr. 9 Obr. 10

Po vydělení kladným číslem x2 dostáváme 24 ^ (x — 1)!. (Zde klademe
0! = 1.) Tedy x^5a současně má být y\ = 24ж2 + x\. Dosadíme-li za
x čísla 1, 2, 3, 4, 5, zjistíme, že předchozí rovnice má řešení pouze pro
x — 5, a to у — 6.

Řešením rovnice je jediná dvojice (ж, у) = (5,6).

С - S - 2

Cesta z В do Я po drátu BF a úhlopříčce FH má délku 20(l + л/2).
Označme X střed stěny EFGH a Y střed stěny BCGF (obr. 11). Každá
z úseček FÍX, XY a YB má délku poloviny úhlopříčky ve stěně krychle,
tj. 20 • |л/2- Proto cesta z H do В po vláknech HX: XY a,YB má délku
20 • |л/2 < 20(l + \/2). Dokážeme, že tato cesta je i cestou nejkratší
délky.

GH

\

F /E
\

Yi
\

CD /

A В Obr. 11

Každá cesta z H do В, která vede přes nějaký vrchol krychle, má
délku aspoň 20(1 + л/2)- Proto cesty nejkratší délky musí nutně vést přes
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středy stěn. Nechť tedy cesta z H vede po půlce úhlopříčky do středu
stěny s vrcholem H. Dále mohou nastat tyto možnosti:
1. Cesta vede dále do stěny, jejímž vrcholem není bod B. Potom je její

délka větší než 20(|\/2 + |\/2 + l).
2. Cesta pokračuje do středu protější stěny a její délka je aspoň

20(| \/2 + 1 + \ \/2).
3. Cesta vede do středu stěny s vrcholem B. Vede-li z tohoto středu

přímo do B, má délku 20 • |\/2.
Třetí případ dává popis všech cest z H do В nejkratší délky. Jejich

počet je 3 • 2 = 6. Z bodu H má pro výběr prvního úseku cesty nejkratší
délky Hubert 3 možnosti, pro výběr druhého úseku cesty má 2 možnosti
a pro výběr posledního úseku pouze jedinou možnost.

C - S - 3

Obsah trojúhelníku XYZ budeme označovat Sxyz, obsah čtyřúhelníku
ABCD označíme S. Protože F je středem ВС а Я je středem AD, platí
(obr. 12)

2Sacd■
1

ScDH =Sabf =
2 Sabc,

Tedy

C

VG
/

/D
/ F

/
/H

/

A E В

Obr. 12

11
Sabf + Scdh =

2 (Sabc + Sacd) = ^

Zcela, stejně dokážeme
1

2(Sbcd + Sabd) 25'
Součet obsahů trojúhelníků ABF, BCG, CDH a ADE je tedy roven
obsahu daného čtyřúhelníku, tj. 100cm2.

Sbcg+Sade =
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С - II - 1

Především х\ > 96, a proto х ^ 5. Tedy х\ je dělitelné 5 a pravá strana
dává při dělení 5 zbytek 1. Proto y\ musí dávat po dělení 5 zbytek 4, což
je možné pouze pro у = 4. Řešme tedy rovnici

(1)x\ = 5 • z! + 120.

Můžeme postupovat dvěma různými způsoby.
1. Z rovnice plyne, že x ^ z + 1, tedy (z + 1)! 5 • z! + 120 a odtud

120 ;> (2 + 1)!-5-г! = (z-4)-z!.

Proto z 'š 5. Prověřením všech pěti možností 2 = 1, 2, 3, 4, 5 zjistíme, že
rovnici (1) vyhovuje pouze jediné 2, a to z = 5. Přitom x — 6.

2. Z rovnice (1) plyne, že x\ > 120, tedy x ^ 6. Číslo x\ je proto
dělitelné 16. Číslo 120 dává po dělení 16 zbytek 8, proto z! nemůže být
dělitelné 16, a tedy 2 5Š 5. Dále postupujeme stejně jako v (1).

Úloha má jediné řešení (x, y, z) = (6,4, 5).

С - II - 2

Při každém otáčení tyče zůstává jeden její konec na místě. Proto к pře-
místění tyče z polohy AB do polohy A!B' nám jedno otáčení nestačí.
Nestačí ani dvě otáčení, protože prvním otáčením nepřemístíme konec A
nebo В do bodů A! nebo B'. Ukážeme, jak přemístění provést pomocí
tří otáčení.

Uvažujme kružnici к se středem В a kružnici k' se středem B', obě
s poloměrem 7m (obr. 13). Tyto kružnice se protnou ve dvou bodech.

Libovolný z nich označme A". Prvně tyč otočíme kolem bodu В tak, aby
konec A padl do bodu A". Podruhé otočíme tyč kolem bodu A" tak, aby
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se konec В přemístil do bodu B'. Nakonec otočíme tyč kolem bodu B'
tak, aby se druhý konec tyče dostal do bodu A!.

C - II - 3

Nechť \AB\ = a, \BC\ = b. Trojúhelníky ADX a BCY mají stejný obsah,
a proto vzdálenost bodu X od AD je rovna vzdálenosti bodu Y od BC.
Označme tuto vzdálenost v. Dále označme x vzdálenost X od AB а у
vzdálenost Y od CD.

Obsah čtyřúhelníku ABYX je roven součtu obsahů dvou pravoúhlých
trojúhelníků a lichoběžníku (obr. 14) a rovná se

\ vx + i (b - y)v + i (x + b - y)(a - 2n) = i (a v)(b + x - у).

Stejně spočítáme obsah čtyřúhelníku CDXY:

11 1 1

2 (a-v){b + y x).-уу+-(Ь-х)у+-{Ь-х + у) (a - 2v)

Protože a > v, plyne z rovnosti obsahů obou čtyřúhelníků rovnost b +
+ x — у = b + у — x neboli x = y. Bod Y je tedy obrazem bodu X
při středové souměrnosti podle středu obdélníku. Tím je dokázáno, že
úsečka XY prochází středem obdélníku.

С - II - 4

Předpokládejme, že hrany osmistěnu mají délku 1. Každá cesta z E do F
musí zřejmě vést buď některým z vrcholů А, В, C, D, anebo středem ně-
které z hran AB, BC, CD, DA (obr. 15). Přitom nejkratší cesta z bodu E
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do každého z těchto bodů má délku 1. Počet nejkratších cest z bodu E

do každého z vrcholů А, В, C, D je roven 1 a do každého ze středů hran
AB, BC, CD, DA je roven 2. Stejné jsou i počty nejkratších cest z těchto
osmi bodů roviny ABCD do bodu F. Proto je počet nejkratších cest z E
do F roven

l-l + l- l + l- l + l- l + 2- 2 + 2- 2 + 2- 2 + 2- 2 = 20.
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Kategorie В

Texty úloh

В - I - 1

Pro která reálná čísla a má rovnice

xA + 6x3 + ax2 + 6x + 1 = 0

(J. Šimša)čtyři různé kořeny v oboru reálných čísel?

В - I - 2

Jestliže pro kladná reálná čísla a, 6, c platí c > a + 6, potom

a3 + b3 + c3 + 3abc > 2(a + b)2c.

(J. Šimša)Dokažte.

В - I - 3

Nechť P je mnohočlen s celočíselnými koeficienty a nechť P( 13) = 8046.
Dokažte, že součet koeficientů mnohočlenu P není prvočíslo.

(P. Černek)

В - I - 4

V pravoúhlém trojúhelníku ABC s odvěsnami délek \AC\ = 3cm, \BC\ =
= 4 cm označme M průsečík osy úhlu ACB a přepony AB. Dokažte, že
vzdálenost středů O i, O2 kružnic vepsaných trojúhelníkům 4MC, BMC
je y\/340 — 170\/2 (P. Leischner)cm.

В - I - 5

Určete největší možný počet částí, na něž n kružnic rozdělí rovinu (n je
přirozené číslo). (J. Vinárek)
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В - I - 6

Určete největší možný objem čtyřbokélio jehlanu ABCDV, jehož základ-
nou je kosočtverec ABCD se stranou délky a a jehož stěnové výšky
z vrcholu V na hrany AB, CD mají délku h. (P. Leischner)

В - S - 1

Pro která reálná čísla a mají rovnice

ж4 — Зж3 — x2 — 2x = a — 2,
ж4 — ж3 — 2ж2 — Зж = 1 — 2a

(«7. Šimša)aspoň jeden společný kořen v oboru reálných čísel?

В - S - 2

Určete největší počet dílů, na které lze n polopřímkami rozdělit rovinu.
(J. Vinárek)

В - S - 3

V pravoúhlém trojúhelníku ABC s danými odvěsnami a, b označme D
patu výšky z vrcholu C na přeponu AB. Vypočtěte vzdálenost středů O i,

O2 kružnic vepsaných trojúhelníkům ACD, BCD. (P. Leischner)

В - II - 1

Určete všechny hodnoty reálných čísel a, b, pro které je řešením soustavy
rovnic

ж4 + аж3 + bx2 + аж + 1 = О,

у4 + by3 + ay2 + by + 1 = 0

jediná dvojice reálných čísel ж, у, přičemž navíc platí xy < 0.
(P. Černek)

В - II - 2

Rozhodněte, zda existuje přirozené číslo ж, pro které platí

19ж + 94х = ж1994.

(R. Kollár)
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В - II - 3

Na přeponě AB pravoúhlého trojúhelníku ABC je dán bod M takový,
že kružnice vepsané trojúhelníkům CAM a BCM mají stejný poloměr.
Rozhodněte, co je větší: obsah trojúhelníku ABC, nebo obsah čtverce
o straně \CM\1

В - II - 4

Každý z bodů krychle o hraně délky a obarvíme právě jednou ze tří
barev. Dokažte, že pak mezi těmito body existují dva téže barvy, jejichž
vzdálenost je větší než |a. (P. Leischner)
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Řešení úloh

В - I - 1

Rovnice zřejmě nemá kořen 0. Po vydělení obou stran rovnice číslem x2
upravíme rovnici na tvar

x2 + \ + б(х +xz \ x /
•f й — 0.

1
pak x2 + Дг = м2 — 2 a rovnici přepíšeme na tvarPoložme и = x -\—

x2x

u2 + 6m + a — 2 = 0. (1)

Ze substitučního vztahu dostáváme

x2 — их + 1 = 0. (2)

Má-li mít původní rovnice čtyři různé reálné kořeny, pak rovnice (1)
musí mít dva různé kořeny (označme je u\ аиг), stejně jako každá z obou
rovnic (2) pro и = ui, resp. и = м2 musí mít dva různé reálné kořeny, tj.
diskriminanty těchto rovnic jsou kladné. To vede na podmínky

a < 11 a zároveň |mi| > 2 а |г/21 > 2- (3)

Předpokládejme, že Mi, m2 jsou kořeny rovnice (2), a nechť u\ < m2.
Z Vietových vztahů zjistíme, že < u\ +U2 = —6, takže u\ < —3. Pro
kořen Mi tedy platí vztah (3) automaticky, pro druhý kořen musí platit
buď U2 < —2, nebo U2 > 2. Představíme-li si graf a kořeny kvadratické
funkce f(u) = и2 + 6u + a — 2, pak to znamená, že /(—2) > 0, nebo
/(2) < 0. Odtud a > 10, nebo a < —14. Tedy a € M = (—00,—14) U
U (10,11).

Ukážeme ještě, že pro každé a € M má původní rovnice čtyři navzájem
různé kořeny. Pro a £ M má rovnice (1) dva různé kořeny щ, м2, jejichž
absolutní hodnoty jsou větší než 2. Proto každá z obou rovnic x + l/x =
— m má dva různé reálné kořeny Xi a 1/xí (i — 1,2), což jsou kořeny
původní rovnice. Mezi čísly xi, l/xi,X2, l/x2,X2 ovšem nemohou být dvě
stejná (kdyby {хь l/xx} П {ж2,1/ж2} + 0, pak {xx, l/xx} = {x2, l/x2}
a Mi = m2).
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В - I - 2

Položme ж = с — a — b. Рак ж > 0 а с = а + b + x. Jednoduchými
algebraickými úpravami lze ověřit, že

F — a3 + b3 + c3 + 3abc — 2 (a + b)2
^

T b^ 4- ((й T 6) -(- x) T 3a6(a -f- b -t- ж) — 2(u T b)2(o —P —P ж)
ж(а + 6)(a + 6 + Зж) + ж(ж2 + 3a6) > 0,

c =

= a

neboť všechny členy posledního výrazu jsou kladné. Tím je daná nerov-
nost dokázána.

Jiné řešení spočívá v tom, že výraz F budeme považovat za mnoho-
člen s proměnnou c. Dosazením c = a + b se po úpravě přesvědčíme,
že F(a + b) = 0, tj. a + b je kořenem polynomu, a proto je tento
polynom dělitelný kořenovým činitelem c — (a + b) a platí: F(c) =

ac + bc — a2 + ab — b2). Výraz v první závorce
je pro c > a + b kladný, výraz v druhé závorce je také kladný, protože
c2 + (a + b)c — a2 + ab — b2 > 2(a + b)2 —a2 + ab — b2 = (a -f 6)2 + 3ab > 0.

(c - (a + b))(c2 +

В - I - 3

Označme s součet koeficientů daného mnohočlenu. Zřejmě je s = P(l).
Pro každá dvě různá celá čísla a, b a libovolný mnohočlen Q s celočísel-
nými koeficienty platí, že číslo Q(a) — Q(b) je dělitelné číslem a — b. Proto
12 | (P(13) — P( 1)). Existuje tedy celé číslo к takové, že 8 046 — s = 12k,
odtud s = 8 046 — 12A; = 6(1 341 — 2k). Součet koeficientů daného
liočlenu je dělitelný šesti, a tudíž není prvočíslo.

mno-

В - I - 4

Z Pythagorovy věty určíme \AB\ — 5 cm. Bod M dělí přeponu AB v po-
měru obsahů trojúhelníků AMC a BMC, a protože bod M má zároveň
stejnou vzdálenost od obou odvěsen, je zřejmě \AM\ : \BM\ = \AC\ :
: \BC\ =3:4, odtud \AM\ = %\AB\ = Щ- cm, \BM\ = f

V trojúhelníku ABC označme s polovinu obvodu a r poloměr kružnice
vepsané. Pro jeho obsah S pak platí S — sr — ||AP?||ACj siná.

Pro trojúhelníky AMC, BMC označme analogicky Si, S2 jejich ob-
sáhy, ri, Г2 poloměry vepsaných kružnic asi, s2 poloviny jejich obvodů.
Platí pak S = i|ACj|BCj = 6cm2, S1 : S2 = \AM\ : \BM\ =3:4,
neboť trojúhelníky AMC, BMC mají stejnou výšku z vrcholu C. Platí

cm.
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tedy Si = у cm2, S2 = у cm2. Ze vztahu Si = \\CM\\CA\ sin45°
vyplývá, že \CM\ = y\/2cm.

Body, v nichž se kružnice vepsaná trojúhelníku ABC dotýká stran
АС, AB, PC, označme postupně Вi, Ci, zlx. Pro shodné úseky tečen
z jednotlivých vrcholů ke kružnici vepsané trojúhelníku ABC pak platí
{AB^ = \ACi\ = s-a, |БЛх| = \BCX\ = s - Ь, \CAi\ = \CBX\ = s - c.
Ze vzorců pro obsah dále dostáváme

9 — 3\/2 8 — 2\/2Si S2
r1 = — cm, +2 = — cm

7 7Sl «2

a |CTi| = si - |AM|, \CT2\ = s2 - \BM\ (obr. 16). Odtud \TiT2\ -
= \CT2\ - \CTi\ = s2-si + \AM\ - \BM\ = i

A M В

Obr. 16

Označme dále KL obraz úsečky 0\02 v posunutí o vektor OiTj {K =
= Ti). Z pravoúhlého trojúhelníku KT2L pak máme IO1O2I — \KL\ =

cm.

В - I - 5

Pro n = 1 je hledaný počet P( 1) = 2. Přitom n-tá kružnice protne n — 1
kružnic nejvýše v 2(n — 1) bodech. Počet dílů roviny se tedy přidáním
n-té kružnice zvýší také nejvýš o 2(n — 1). Pro počet P(n) dílů roviny
dostáváme

P{n) 5Í 2(гг — 1) + P(n — 1) ^ 2(гг — 1) + 2(гг — 2) + P(n — 2) ^ ... ^
^ 2(n — l + n — 2 + ... + l) + P(l) = n(n — 1) + 2.

Vhodným příkladem se přesvědčme, že pro P(n) platí rovnost P{n) —

— n(n — 1) + 2. Nechť ki je jednotková kružnice se středem O a nechť
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A je pevně zvolený bod této kružnice. Označme k{ obraz kružnice k±
ž — l

v posunutí o vektor OA, kde i G {1,2,..., n}. Pak soustava kružnic
n

ki, &2, • •kn dělí rovinu na n(n — 1) + 2 dílů.

В - I - 6

Označme K, L paty kolmic z У na hrany AB, CD. Přímka AB je kolmá
na rovinu KLV, protože je kolmá к přímkám KV, LV (obr. 17). Odtud
KLA-AB. Výška kosočtverce ABCD je \KL\ — 2x. Pata výšky jehlanu

V

/ I
/ I

/
/ h \\

/
LA c

s D

Ж/
f/

A К В

Obr. 17

leží v rovině KLC a je zřejmě totožná se středem S úsečky KL. Z pra-
voúhlého trojúhelníku KSV je tato výška v = y/h2 — x2. Objem jehlanu
je tedy

V = ^axy/hO

= - a\/x2h2
ó

— X2 — X4.

Objem bude maximální, právě když bude maximální výraz pod odmoc-
ninou

1 \ 2

l*2)'U = X2h2 - X4 x2

Maximum hledáme na intervalu 0 < x < ^a, protože výška kosočtverce
2x je menší než velikost a jeho strany. Kvadratická funkce U proměnné
t = x2 nabývá absolutního maxima pro x — hjyj2, proto závisí další
diskuse na tom, zda bod hf\J2 padne do intervalu (0, ha) či nikoliv. Pro
h\[2 < a je tedy maximální objem jehlanu Утах = \ah2.

Pro a ú h\[2 je kvadratická funkce U v intervalu (0, \h2) rostoucí,
a proto objem jehlanu v tomto případě nemá maximum, ale neomezeně se
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= |а2л/4/г2 — а2 (pro х = |а dostaneme čtvercovou
a pod/e áeine užívané definice čtverec nem- kosočtverec).

blíží hodnotě V

podstavu

В - S - 1

Z dané dvojice rovnic nejdříve vyloučíme parametr a — např. tak, že
první rovnici vynásobíme dvěma a к výsledku přičteme rovnici druhou,
dostaneme

Зж4 — 7x3 — 4ж2 — 7x = —3,

což je reciproká rovnice, kterou musí splňovat každý společný kořen
výchozích rovnic. Po substituci у — x + l/x dostaneme rovnici 3y2 —
— 7y — 10 = 0 s kořeny pi = -y a y2 = — 1. Hodnotě yi odpovídají kořeny
x\ — 3 a X2 = zatímco pro у = У2 reálné kořeny neexistují. Pro x = 3
a x = | vypadá výchozí dvojice rovnic takto:

-71
= a — 2,-15 = a- 2,

27 =1 — 2a,
81

resp. -101
= 1 — 2a,

81

odkud snadno určíme hledané hodnoty a = —13aa=|j.

В - S - 2

Označme p(n) hledaný maximální počet. Zřejmě platí p(l) = 1 ap(2) = 2.
Uvažujme jedno takové rozdělení dané roviny n polopřímkami na p(n)
částí. Přidáme-li další polopřímku tak, aby protínala každou z n polo-
přímek, určí vzniklé průsečíky jednu polopřímku a n — 1 úseček, z nichž
každá může z jedné z dosavadních částí roviny oddělit další. Dostaneme
tak nejvýše p(n) + n nových částí, tj. platí

p(n + 1) ^ p(n) + n.

Ukážeme nyní pro dané n konstrukci, která splňuje předchozí „maxi-
mální“ požadavky. Zvolme úhel e tak, aby ne < 90° a sestrojme v dané
rovině libovolnou polopřímku po s počátkem Vq. Na polopřímcepo zvolme
libovolný bod V\ a v jedné z polorovin určených přímkou VoUl sestrojme
polopřímku pi s počátkem Ví, která bude s polopřímkou po svírat úhel e.
Podobně v polorovině opačné к piVo sestrojíme polopřímku p2 s počát-
kem Už ležícím na polopřímce pi tak, aby svírala s po úhel e (taková
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polopřímka protne obě polopřímky po, pi, obr. 18). Dále postupujeme
tak, že máme-li sestrojeny polopřímky pi, P2, .P2k (2 ^ 2k < n),
přičemž p*. protíná všechny polopřímky pí (0 ^ г < к), zvolíme na polo-
přímce p2k bod V2k+i tak, aby úsečka V2kV2k+i rovněž protínala všechny
polopřímky pi (0 i < к), a sestrojme polopřímku P2fc+i s počátkem
v bodě V2k+1, která bude ležet v polorovině opačné к V2k-iV2kV2k-2
a bude protínat všechny dosud sestrojené polopřímky; к tomu stačí, aby
velikost úhlu omezeného polopřímkami po a P2k+i byla ke. Podobně se-

strojíme i polopřímku p2k+2-

Vb-

Obr. 18

Pro hodnotu p(n) tedy platí

p(n) = (n — 1) + p{n — 1) = {n — 1) + (n — 2) + p(n — 2) = ...

= (n — 1) + (те — 2) + ... + 1 +p(l) = \n(n - 1) + 1.

Jiné řešení. Vyřešme nejprve podobnou úlohu pro přímky. Označme
q(n) maximální počet částí, na něž rozdělí danou rovinu n přímek. Sestro-
jíme-li v situaci, kdy je rovina rozdělena n přímkami na q(n) částí, další
přímku, jež je s každou z nich různoběžná, rozdělí každou z částí, kterou
prochází, na dvě části. Protože n přímek protíná tuto přímka v n bodech,
prochází (n + l)-ní přímka celkem n + 1 částí a pro hodnotu q(n + 1)
platí

q(n 4-1) = q(n) + n + 1.

Je tedy

n + q(n — 1) = n + (n — 1) 4- q(n — 2) = ... —

— n {ji — 1) + ... + 2 4- ^(1) = ^Tt{ji + 1) + 1.
q(n)

Představme si nyní, že máme n polopřímek, jež rozdělují rovinu na

p(n), tedy maximální počet částí. Nahradíme-li polopřímky přímkami,
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bude zřejmě rovina rozdělena na q(n) částí. Protože počet průsečíků všech
n přímek je konečný, existuje v dané rovině kruh, který obsahuje všechny
průsečíky, a tedy i všechny omezené části roviny v uvedeném rozdělení.
Bez újmy na obecnosti můžeme předpokládat, že počátky všech n daných
polopřímek leží vně uvedeného kruhu. Obě uvažovaná rozdělení (s polo-
přímkami, resp. s přímkami) se nyní liší jen v počtu neomezených částí
vně kruhu, z kterého v prvním případě vychází n polopřímek a n úseček,
v druhém pak 2n polopřímek. Je tedy

p(ri) = q(n) — n = \n{n + 1) + 1 — n \n(n - 1) + 1.

В - S - 3

Označme ri, Г2 poloměry obou kružnic vepsaných trojúhelníkům ACD
BCD (obr. 19). Z Pythagorovy věty pro pravoúhlý trojúhelník O1O2X

A D В

Obr. 19

kde X je pravoúhlý průmět bodu 0\ na kolmici bodem O2 к přeponě AB
pro hledanou vzdálenost plyne

|Oi02| = y/(n +r2)2 + (ri -r2)2 = л/2yjr\ + r\
Pro poloměr r kružnice vepsané danému trojúhelníku ABC z podobnosti
obou trojúhelníků ACD, BCD trojúhelníku ABC vyplývá, že je

b r2 a

r c r c

čili
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Proto

л/2.\Oi02\ = г

Vyjádříme-li obsah trojúhelníku ABC dvěma různými způsoby, dosta-
neme

\ab = \{a + b + c)r,
takže

ab(a + b — Va2 + 62)ab
r =

(a -f b)2 — (a2 + 62)a + b + Va2 + b2
= \{a + b-c)

Je tedy IO1O2I = |л/2 (a + b — c).

В - II - 1

Je-li и kořen některé z obou zadaných rovnic, pak и ý 0 a l/и je kořen
téže rovnice. Proto и = l/u, takže и — ±1. Nechť tedy číslo 1, resp. —1 je
kořenem první, resp. druhé rovnice (jinak vyměníme navzájem čísla a, b).
Ze soustavy rovnic

l-bflTáTnTl — 0 a 1 — b A cl — b A 1 — 0

I a b = Zkoumané rovnice jsou pakplyne a

(x - l)2 (ж2 + íж + l) = f£ + l) = 0,(x + iý(x20 a

tj. mají jediné reálné kořeny, neboť diskriminanty obou trojčlenů ж2 +
+ |ж + 1 а ж2 — |ж + 1 jsou záporné. Hledané dvojice (a, b) jsou (—§,§)
а

В - II - 2

Žádné takové ж neexistuje, neboť jak ukážeme, dekadické zápisy obou
stran rovnice mají různé poslední číslice, ať je číslo ж zvoleno jakkoli.
Skutečně, podle toho, zda je ж liché či sudé, končí mocnina 19x číslicí 9
či 1 a mocnina 94ж končí číslicí 4 či 6. Proto je poslední číslice součtu
19ж + 94* rovna 3 nebo 7. Na druhé straně druhá mocnina (ж997)2 končí
jednou z číslic 0, 1, 4, 5, 6 nebo 9. Tím je naše tvrzení dokázáno.

Jiné řešení. Obě čísla 19 i 94 při dělení třemi dávají zbytek 1. Součet
obou jejich mocnin tedy dává při dělení třemi zbytek 2. Na druhé straně
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druhá mocnina libovolného čísla к dává při dělení třemi buď zbytek 0
(je-li к dělitelné třemi), anebo zbytek 1 (není-li к dělitelno třemi). Proto
(ж997)2 dává při dělení třemi zbytek 0 nebo 1. Uvedenou rovnici tedy
nemůže splňovat žádné přirozené číslo x.

В - II - 3

Nechť a = \BC\, b = \CA\, c = \AB\ a \AM\ = pc, kde 0 < p < 1
(obr. 20).

A M (1 — p)c Вpc

Obr. 20

Trojúhelníky CAM a BCM mají obsahy v poměru p : (1 — p), tj. jsou
rovny |pa6, resp. |(1 — p)ab, takže rovnost poloměrů příslušných vepsa-
ných kružnic lze zapsat takto:

(1 — p)ab
b + pc + x a + (l—p)c + x

pab

kde jsme označili x = \CM\. Odtud po úpravě plyne

pa — (1 — p)b — (1 — 2p)x. (1)

Na druhé straně podle Pythagorovy věty pro trojúhelník CMN platí

x2=p2a2 + (l-pfb2.

Proto z (1) plyne umocněním na druhou

(pa- (1 ~p)b)2 = (1 - 2p)2(p2a2 + (1 -p)2b2),
odkud po roznásobení a úpravě dostaneme

2p(l — p) \p2a2 + (1 — p)2b2] — p{ 1 — p)ab.
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Protože p(l—p) / Оа výraz v hranaté závorce je ж2, dostáváme rovnost
ж2 — |a&, která znamená, že čtverec o straně x má stejný obsah jako
trojúhelník ABC.

Poznámka. Hodnotu p není nutno určovat. Je to kořen kvadratické
rovnice

ab
p2a2 + {l-p)2b2 2

která má ovšem obecně dva kořeny. Vybrat ten „pravý“ je možné na
základě diskuse o znaméncích obou stran rovnosti (1). (Rovnost (1) jsme
dále použili umocněnou, tedy po neekvivalentí úpravě.)

В - II - 4

Označme vrcholy dané krychle obvyklým způsobem А, В, C, Z), E, F,
G, H. Je-li vrchol A obarven jednou ze tří barev a některý z vrcholů
C, F, H má tutéž barvu, jsme hotovi, neboť \AC\
= aV2 > 1,41a > |а. V opačném případě musí být uvedené tři vrcholy
rovnostranného trojúhelníku CFH obarveny nejvýše dvěma různými
barvami, takže aspoň dva z bodů C, F, H mají tutéž barvu. Jejich vzdá-
lenost je větší než |a. Tím je tvrzení úlohy dokázáno.

\AF\ = \AH\ =
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Kategorie A

Texty úloh

A - I - 1

Přirozené číslo m > 1 nazveme fc-násobným dělitelem přirozeného čís-
la n, pokud platí rovnost n mkq, kde q je celé číslo, které není
násobkem čísla m. Určete, kolik sedminásobných dělitelů má číslo 100! =
= 1 • 2 • 3 •... • 100. (J. Šimša)

A - I - 2

Základnou trojbokého hranolu ABCA'B'C' je pravoúhlý rovnoramenný
trojúhelník ABC s odvěsnami AB, AC dané délky a. Boční hrany AA!,
BB', CC svírají s rovinami základen úhel 60°. Úhlopříčka BC' boční
stěny BCC'B' má délku а\/б a je kolmá na hranu AC. Určete objem

(P. Leischner)hranolu.

A - I - 3

Je dán trojúhelník ABC, jehož úhel ACB má velikost 140°. Označme X
průsečík osy úhlu ABC se stranou AC a Y bod strany AB, pro který
má úhel YCB velikost 100°. Určete velikost úhlu YXB. (P. Černek)

A - I - 4

Pro která celá n > 2 existují racionální čísla p a q taková, že tfň —

— p + qŠfŤÍ (./. Šimša)

A - I - 5

Najděte nej menší reálné číslo p, při kterém nerovnost

a + b — p ■ Vab š л/a2 + b2

(J. Šimša)platí pro libovolnou dvojici kladných čísel a, b.
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A - I - 6

Zjistěte všechna čísla, která jsou cifernými součty druhých mocnin přiro-
zených čísel (zapsaných v desítkové soustavě). (P. Černek)

A - S - 1

Udejte příklad přirozeného čísla n, pro které má číslo 2n právě 1 993 růz-
ných 1 994-násobných dělitelů. (Přirozené číslo m > 1 nazýváme fc-násob-
ným dělitelem přirozeného čísla n, pokud platí rovnost n = mkq, kde q je
přirozené číslo, které není násobkem čísla m.) (./. Šimša)

A - S - 2

Je dán trojúhelník ABC a bod M na polopřímce opačné к polopřím-
се AB. Bodem M veďte přímku p ф AB tak, aby její průsečíky P, Q
s přímkami АС, BC určily trojúhelník PQC, který má stejný obsah jako
trojúhelník ABC. (J. Vinárek)

A - S - 3

V rovině je nakreslen konvexní n-úhelník (n ^ 3) a některé jeho úhlo-
příčky tak, že žádné dvě vyznačené úhlopříčky se neprotínají. Dokažte,
že jeho vrcholy je možno obarvit pomocí tří barev tak, že žádné dva
vrcholy spojené stranou nebo nakreslenou úhlopříčkou nemají stejnou
barvu. (P. Hliněný)

A - II - 1

Najděte nejmenší přirozené číslo, které má právě pět dvojnásobných děli-
telů. (Přirozené číslo m > 1 nazýváme /с-násobným dělitelem přirozeného
čísla n, pokud platí rovnost n — mkq, kde q je přirozené číslo, které není
násobkem čísla m.) (J. Šimša)

A - II - 2

Uvažujme trojúhelník ABC s úhlem 100° při vrcholu A a označme po
řadě D, E průsečíky os úhlů při vrcholech В, C s protějšími stranami.
Určete všechny možné velikosti úhlu ABC, víte-li, že \BE\ — \CD\.
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A - II - 3

V rovině uvažujme systém n navzájem různých přímek pi, P2, •pn-

Každý bod, kterým procházejí právě tři z těchto přímek, obarvíme čer-
véně a označíme a* počet červených bodů na přímce pí, i = 1,2,..., n.

Rozhodněte, zda existuje systém
a) 4 přímek, pro nějž (ai, a^-, аз, a4) = (1,1, 2,2).
b) 6 přímek, pro nějž (ai, аг, аз, a4, a5, a6) = (2, 2, 2, 2, 2, 2),
c) 9 přímek, pro nějž (ai, аг,..., a9) = (2, 2, 2, 2,2, 2, 3,3, 3),
d) 9 přímek, pro nějž (ai, аг,..., a9) = (2, 2, 2, 2, 2,2, 2, 3,3).

(J. Kratochvíl)

A - II - 4

Rozhodněte, zda existuje kubická rovnice

ж3 + рж2 + qx + r = 0

s celočíselnými koeficienty p, q ar, která má v oboru reálných čísel jediný
kořen xq = 1 + ^2 + v^4. (J. Šimša)

A - III - 1

Nechť /: f^J —> N je libovolná funkce na množině přirozených čísel, která
splňuje nerovnost

f(x) + f(x + 2) ^ 2f(x + 1)

pro každé přirozené číslo x. Dokažte, že potom v rovině existuje přímka,
na které leží nekonečně mnoho bodů s kartézskými souřadnicemi [n, /(n)].

(P. Hliněný)

A - III - 2

V kvádru o objemu У je umístěn konvexní mnohostěn M. Kolmý průmět
mnohostěnu M do každé stěny kvádru je totožný s touto stěnou. Jaký

(P. Leischner)nejmenší objem může mít M?

A - III - 3

V rovině je nakreslen konvexní 1 994-úhelník M a některé jeho úhlopříčky
tak, že z každého vrcholu vychází právě jedna nakreslená úhlopříčka.
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Délkou úhlopříčky rozumíme počet stran mnohoúhelníku M, které tato
úhlopříčka od M odřezává (minimum dvou možných čísel). Označme
(di, d.2, ■ . -, (Í997) délky nakreslených úhlopříček, uspořádané sestupně po-
dle velikosti. Rozhodněte, zda je možno úhlopříčky nakreslit tak, aby

a) (di, c?2, ■ • •> ^997) = (3,. „, 3,2, 2, 2^2, 2, 2),
b) (di, d2,..., dgg7) = (8,8,8,8,6,..., 6,3,3,3,3,3,3,3,3).

991

4 985 8

(J. Kratochvíl)

A - III - 4

Nechť (ате)“°=1 je libovolná posloupnost přirozených čísel taková, že pro
každé n je číslo (an — l)(an—2)... (an—n2) celým kladným násobkem čísla
n71,2—1. Potom pro každou konečnou množinu prvočísel P platí nerovnost

1
E < 1.

l°gp apE P

(J. Kratochvíl)Dokažte.

A - III - 5

Označme Ai, B\, C\ paty výšek ostroúhlého trojúhelníku ABC a V jejich
průsečík. Jestliže trojúhelníky ACiV, BA\V, CBiV mají stejný obsah,
plyne odtud, že trojúhelník ABC je rovnostranný? (J. Šimša)

A - III - 6

Dokažte, že z každé čtveřice různých čísel ležících v intervalu (0,1) lze
vybrat dvě čísla а ф b tak, aby platila nerovnost

V(1-»’)(!-*)>£ +A 1
— ab

8ab

(J. Vinárek)
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Řešení úloh

A - I - 1

Odvodíme nejprve obecný vzorec pro počet P/C(n) všech fc-násobných
dělitelů čísla n s rozkladem n = p^p1^2 kde pí jsou navzájem
různá prvočísla a exponenty clí jsou přirozená čísla. Platí mk | n, právě
když m je tvaru p^p^2 ■■■P^ , kde celá bi splňují 0 bi ^ ai/k pro

N / Г CLi 1 \
každé i. Proto je takových čísel m právě П (1 + -j- ). Hodnotu Pk{n)

i=i ' ik
určíme, když od počtu čísel m s vlastností mk | n odečteme počet těch
z nich, pro které dokonce platí mk+1 | n, takže

pk(n) - [J (l + [-jf]) - П (X +
CLi

(i)lk + l\J‘
i= 1 1=1

Nyní určíme rozklad čísla 100! = 2ai 3fl2 5“3 ... Snadno uvážíme, že prvo-
číslo p má v rozkladu čísla n! exponent rovný

'rr 'ni г n'

.p2. .p3.

'

n '

(2)+ + + ...

lpA\LpJ

(pouze konečný počet sčítanců je nenulových). Takto můžeme stanovit
prvočíselný rozklad 100! = 297 З48 524 716 ll9 137 175 ..., kde tečky vyzná-

čují další prvočísla, jejichž exponenty jsou menší než 7, a tedy neovlivní
hodnotu

Р7(Ю0!) =

ЧЧ?]) ]) Ит]) My]) 0+Й)
И!])И|])И|])(- rl6l

L 8 J
= 14-7-4-3-2-2 — 13-7-4-3-2 = 4 704 — 2 184 = 2 520.

A - I - 2

Objem našeho hranolu je V = |a2u, kde v je neznámá vzdálenost jeho
podstav. Obě přímky ВС' a AB, a tedy i rovina ABC' jsou kolmé na

přímku AC. Je-li P kolmý průmět bodu C na přímku AB, pak obě
přímky AB a AC, a tedy i rovina ABC, jsou kolmé na přímku C'P.
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Hledaná vzdálenost v je proto rovna \C'P\ a oba úhly CPC', APC jsou
pravé. Navíc \yPCC'\ = 60°, takže v — \CP\y/Š. Označme x souřadnici
bodu P na přímce AB v soustavě, ve které A — [0] а В = [—a] (tedy
x = ±|HP|, kde znaménko —, resp. + vezmeme podle toho, zda P padne
na polopřímku AB či na polopřímku opačnou.) Pak z trojúhelníku ACP
plyne \CP\2 — a2 + x2, takže v2 — 3(a2 +x2). Protože \BC'\ = ay/6, má
Pythagorova věta pro trojúhelník ВPC' tvar 6a2 = (a + x)2 + 3(a2 + x2).
Tato rovnice má dva kořeny x\ = |a, X2 = —a. Podmínky úlohy proto
splňují dva hranoly (obr. 21a obr. 22) o výškách

aV15a2
3 a2 + - =vi -

2 ’1

respektive
V2 = \/3 (a2 + a2) = а\/б.

Jejich objemy jsou V\ = |a3\/l5, respektive V2 = |а3л/б.
В'

7A'i

Vaс
p

АС

Obr. 21 Obr. 22

А - I - 3

Nechť P značí kolmý průmět bodu X na přímku BC (obr. 23). Protože
platí \<XCY\ = 40° = \<XCP\, leží bod X nejen na ose úhlu ABC, ale
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také na ose úhlu YCP. Proto má bod X stejnou vzdálenost od tří přímek
AB, BC a CY, takže leží i na ose úhlu AYC, tj. |<АУХ| = \\<AYC\.
Označíme-li /3 = \<ABC\, pak \<CYB\ = 80° - /3, \<AYC\ = 100° + /3
a \yAYX\ = 50° + |/3, tedy \<XYB\ = 130° — |/3. Z trojúhelníku XYB
konečně plyne, že \ yYXB\ = 180° — (130° — ^(3) — \/3 — 50°.

P C
В

A - I - 4

Umocněním na třetí dostaneme ekvivalentní rovnost

n = (p3 + 2q3) + 3p2q \Í2 + 3pq2 ^4. (1)
Zabývejme se nejdříve případem n = 4. Je-li \/4 = p + q\/2, pak z (1)
plyne

4 = {p3 + 2q3) + 3p2q^2 + 3pq2{p + qV2)
neboli 4 — p3 — 2q3 — 3p2q2 — v^2(3p2q + 3pq3). Protože \/2 je iracionální
číslo, je poslední rovnost možná, jen když 4 — p3 — 2q3 — 3p2q2 = 0
a 3pq(p + q2) = 0. Z druhé rovnice plyne p = 0, q — 0 nebo p = —q2,
dosazením do první pak po řadě q3
Protože čísla p a q jsou racionální, je z poslední trojice splnitelná jen
třetí podmínka, která znamená, že q3 = —2, nebo q3 — 1. Dostáváme
tak jedinou dvojici (p,q) = (—1,1), pro kterou sice platí (2), ne však
v^4 = p + qy/2. Proto poslední rovnost nesplňují žádná racionální p a q.

V obecném případě ukážeme, že platí-li (1) pro některá racionální n,

p a, q, pak koeficient 3pq2 u členu \/4 musí být roven nule. Jinak by totiž
šlo z (1) vyjádřit

(2)

4, resp. q6 + q3 — 2 = 0.2, p3

- p3 ~ 2q3П=- - • \/2,
3pq2

což by byl spor s tím, že číslo 4 není řešením. Proto platí 3pq2 — 0,
tj. p = 0 nebo q = 0. Pak ovšem n = p3 nebo n — 2q3. Je-li navíc číslo n

celé, musí být v posledních dvou rovnostech i čísla p, q celá.
Odpověď: n — k3 nebo n = 2/c3, kde к > 1 je celé číslo.

Ц
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A - I - 5

Dosadíme-li do (1) a = b = 1, dostaneme nutnou podmínku na číslo p:

p ^ 2 — л/2 (> 0). Ukažme, že pro p = 2 — \/2 nerovnost (1) pla-
tí. Pro p > 0 lze nerovnost a + b 5Š p • \/ab + \/a2 + 62 ekvivalentně
umocnit na druhou, po úpravě dostaneme (2 — p2)ab íš 2p^ab(a2 + b2).
Dosadíme-li sem p — 2 — л/2, dostaneme (po dělení dvěma) nerovnost
2 (л/2 - 1 )ab й (2 - л/2) ^a6(a2 + b2). Protože 2 - л/2 = л/2(\/2 - 1),
je možné poslední nerovnost po dělení kladným výrazem (л/2 — l)\/2a6
zjednodušit na \/2ab ^ \/a2 + 62. Tato nerovnost platí pro libovolná
kladná a, 6, neboť je ekvivalentní s 2ab 5Š a2 + b2 neboli 0 (a — b)2.
Hledané nej menší p je tedy rovno 2 — л/2.

A - I - 6

Ciferný součet S(n) každého čísla n dává při dělení devíti týž zbytek
jako samo číslo n. Protože číslo n2 je tvaru 9к nebo Зк + 1 (podle toho,
zda 3 | n, či nikoliv), leží každé číslo S(n2) v množině {9,18, 27,...} U
U {1,4,7,10,...}. Nyní je třeba zjistit, pro která к mají rovnice S(n2) =
= 9/г, resp. S(n2) = ЗА; + 1 aspoň jedno řešení n. Ukážeme, že je tomu
tak pro každé k. Předně 5(12) = 1. Dále pozorujme příklady

32 = 9, 332 = 1089, 3332 = 110 889, 3 3332 = 11 108 889, ...

22 = 4, 322 = 1 024, 3322 = 110 224, 3 3322 = 11 102 224, ...

Označme ečíslo zapsané к jedničkami a vyslovme hypotézu, že S(n2) =
= 9k pro n = 3e/c a S(n2) = ЗА; + 1 pro n = Зе& — 1. К jejímu důkazu
stačí ověřit rovnosti

fc+i(3ek)2 = 11... 1088... 89 = 10 &k-1 + 80efc_i + 9,
к-1 к-1

(1)
(3efc - l)2 = 11... 1 0 22 ... 2 4 = 10fc+1efc_i + 20efc_i + 4.

fe-ifc-i

I když rovnosti (1) je možné ověřit dosazením formulí em = ^(10m — 1)
pro m = k& m = k— 1, je možný i jiný postup: Protože 9ek = 10fc — 1,
platí 9e2 = (10fc — l)efc, a tedy

(3efc)2 = 10fcefc - efc,

(3efc — l)2 = 9e2 — 6efc + 1 = lO^e^ — 7ek + 1.
(2)
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Dekadický zápis pravých stran (2) už lze snadno zjistit užitím pravidel
pro písemné sčítání a odčítání — proveďte sami.

A - S - 1

Každý dělitel čísla 2n je zase mocnina 2х a ta je /с-násobným dělitelem,
72 72

právě když kx ^ n < (к + 1)ж neboli —j- < x =

fc-násobných dělitelů čísla 2n roven ^L к
nice

Proto je počet

. Příkladem řešení rov-
.к + 1

n n
= 1 993.

L1994 J Ll995J

je hodnota n = 1 993 • 1 994 • 1 995. Přitom je zřejmé, že pro libovolné
celé nezáporné к < 1994 bude číslo n — 1 993 • 1 994 • 1 995 + к rovněž
vyhovovat podmínce úlohy.

A - S - 2

Budeme předpokládat, že přímka p protíná polopřímky opačné к polo-
přímkám CA, CB.1 Klíčovým momentem je pozorování, že musí být
(a stačí) QA || PB — trojúhelníky ABC a PQC mají totiž stejný obsah,
právě když totéž platí o trojúhelnících АВР a BPQ (obr. 24), to jest
když vzdálenosti bodů Q a A od přímky BP jsou stejné.

P

T

Q,
V

Cy
P q

AM в

Obr. 24

1 To byl zřejmě i původní záměr autora úlohy. Naštěstí většina řešitelů přehlédla,
že jde o úlohu do školního kola poněkud nepatřičnou a že pro některé polohy
bodu M blízko bodu A může mít úloha dokonce ještě další dvě řešení.
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Odtud již plyne konstrukce. Protože přímka BP je obrazem přím¬
ky AQ ve stejnolehlosti o středu M a koeficientu \MB\/\MA\ a bod Q
leží na přímce BC, leží bod P na obraze přímky BC v této stejnoleh-
losti. Vlastní konstrukci můžeme provést např. tak, že bodem В vedeme
přímku q rovnoběžnou s AC, její průsečík s přímkou MC označíme D.
Bodem D poté vedeme přímku r rovnoběžnou s BC a její průsečík
s přímkou AC označíme P. Z podobnosti trojúhelníků MAC, MBD
plyne \MA\/\MB\ = \MC\/\MD\ a z podobnosti trojúhelníků MCQ,
MDP plyne \MC\/\MD\ = \MQ\/\MP\, odkud již porovnáním vyplývá

PB. Za uvedeného předpo-\MA\/\MB\ = \MQ\/\MP\, a tedy AQ
kladu má úloha vždy jediné řešení.

Přejděme nyní к obtížnějšímu řešení obecné situace, zmíněné v úvodní
poznámce pod čarou. Případ, kdy hledaná přímka p protíná prodloužení
strany AC za vrchol C jsme již úplně vyřešili. Kdyby proťala samotnou
stranu AC, byl by trojúhelník PQC částí trojúhelníku ABC, tudíž by
měl menší obsah. Budeme se proto v dalším zabývat zbylou možností,
kdy přímka p protíná prodloužení strany AC za vrchol A. Označme ob-
vyklým způsobem a, b délky stran trojúhelníku ABC a 7 velikost úhlu
při vrcholu C. Poloha přímky p pak bude určena délkami r — \CQ\
a s — \CP\ > b (obr. 25) a rovnost obsahů trojúhelníků ABC a PQC
zapíšeme vztahem

|rs sin(180° — 7) = ^aůsin7
neboli
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Budeme nyní počítat v kosoúhlé souřadnicové soustavě s počátkem
v bodě C a osami CQ, CP (již vyznačenými na obr. 25), ve které známe
body A[0, b], B[—a, 0] a M[u, u] s kladnými parametry a, b, u, v, zatímco
body P[0, s] a Q[r, 0] hledáme. К výpočtu neznámých ras (připomeňme,
že r > 0 a s > b) kromě rovnice (1) ještě využijeme rovnici

и v
—I— = 1,

která vyjadřuje, že bod M leží na přímce PQ. Po jejím vynásobení hod-
notou rs dostaneme s ohledem na (1) rovnici

(2)vr + us — ab.

Před vlastním řešením soustavy rovnic (1) a (2) poznamenejme, že
každé její řešení (r, s) s vlastností r > 0 a s > b zřejmě odpovídá některé
přímce PQ, jež je řešením původní úlohy a má polohu jako na obr. 25.

Rozšíříme-li rovnici (1) činitelem uv, můžeme vzhledem ke (2) pro

násobky vr, us neznámých r, s rovnou napsat kvadratickou rovnici

z2 — abz + uvab — 0 (3)

s diskriminantem D = ab(ab — 4uv). Z jejích dvou kořenů tak dostáváme
následující řešení soustavy rovnic (1) a (2):

ab ± y/Ď ab =F \[D
(4)r = s -

2v 2и

přitom v obou vzorcích je třeba brát současně buď horní, nebo dolní
znaménko. Je nabíledni, že výsledné hodnoty r, s lze ze zadaných hodnot
a, b, u, v podle vzorců (4) pomocí pravítka a kružítka sestrojit.

Ještě ukážeme, že vyhovující přímka p v poloze z obr. 25 existuje,
právě když (kladné) souřadnice u, v zadaného bodu M splňují podmínku

uv 5Š (5)

přitom v případě rovnosti je taková přímka p jediná, zatímco v případě
nerovnosti jsou takové přímky (právě) dvě.

Podmínka (5) je zřejmě ekvivalentní s nerovností D ^ 0, navíc je
D < a2b2, takže obě hodnoty ve (4) jsou vždy kladné. Zbývá proto už
jen zjistit, kolik dvojic (r, s) určených vzorci (4) splňuje i podmínku s > b.
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Pro nezáporný diskriminant D = ab{ab—áuv) ovšem podle nerovnosti
mezi geometrickým a aritmetickým průměrem platí \[Ď ^ ab—2uv, proto
pro menší z obou možných hodnot s máme s
neboť bod M dle zadání leží na polopřímce opačné к polopřímce AB.
Tím je výše uvedené tvrzení o existenci a počtu vyhovujících přímek p
z obr. 25 dokázáno.

Poznámka. Všimněme si, že bod M leží na přímce AB, takže jeho
souřadnice splňují rovnici

(ab — y/Ď)/2и ^ v > b,

v
... и v

h - = 1 neboli — = -
b a ba

S využitím hraniční podmínky (5) tak pro poměr Л = |AM|/|AB| odtud
dostáváme

v uv

a\b

сот, vede na kvadratickou rovnici A2 + A — | = 0, jež má jediný kladný
kořen A = |(\/2 — l). Odtud plyne, že další řešení existuje, právě když
\AM\ “A A|AB|. Existence dalších řešení tedy vůbec nezávisí na poloze
vrcholu C, tudíž ani na délkách a, 6, které v podmínce (5) vystupují.

Jiný přístup. Rovnost (1) napovídá, že střed S hledané úsečky PQ
bude ležet na jisté hyperbole. Označíme-li totiž (x,y) = (|r, |s) sou-
řadnice bodu S v kosoúhlé souřadnicové soustavě, zavedené v předchozí
části, bude platit xy = \ab (obr. 26).

ab
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Ukážeme ještě, že přímka PQ musí být tečnou nalezené hyperboly.
Souřadnice obecného bodu přímky PQ mají totiž vyjádření x — tr а у —

= (1 — í)s, kde t je reálný parametr; protože pro každé t platí t( 1 — i) ^
^ | s rovností jedině pro t = pro součin souřadnic obecného bodu
přímky PQ dostáváme díky (1) odhad

xy — í(l — t)rs ú |rs = |ab,
přičemž rovnost xy = \ab nastane pouze pro hodnotu t = které
odpovídá střed S úsečky PQ. Ten je proto jediným společným bodem
dané hyperboly s přímkou PQ, která je tudíž skutečně její tečnou.

Převedli jsme tak tuto část úlohy na sestrojení tečny к větvi hyperboly
xy = \ab daným bodem M[u,v\ (ten samozřejmě musí ležet v její vnější
oblasti, takže jeho souřadnice musejí splňovat nerovnost (5)). Vrchol W
i ohnisko F leží na ose vnějšího úhlu při vrcholu C daného trojúhelníku
a pro souřadnice vrcholu W[w,w\ uvedené větve hyperboly pak platí
w — T^y/ab, pročež |PCj = 2w = Va6. Tím známe vše potřebné ke stan-
dardní konstrukci tečny z daného bodu M к hyperbole. Pata U kolmice
z ohniska F na hledanou tečnu p totiž leží na Thaletově kružnici nad prů-
měrem MF a zároveň (jak je z teorie kuželoseček známo) na vrcholové
kružnici k(C,\CW\) (obr. 27).

Dospěli jsme tak к nové konstrukci řešení z druhé části úlohy bez
užití vzorců (4). Vidíme přitom, že takové řešení je právě jedno, pokud
daný bod M leží v průsečíku uvedené hyperboly s přímkou AB, anebo
jsou dvě, leží-li bod M mezi zmíněným průsečíkem a bodem A.
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A - S - 3

Tvrzení úlohy dokážeme indukcí podle počtu vyznačených úhlopříček.
Není-li vyznačena žádná, barvíme vrcholy 1—2—1—2—... -1-2 pro n sudé
a 1-2-1-2-... -1-2-3 pro n liché. Pokud je nakreslena alespoň jedna úh-
lopříčka, vybereme libovolnou z nich a podle ní rozdělíme daný n-úhelník
na dva menší mnohoúhelníky, které mají dohromady vyznačenu o jednu
úhlopříčku méně než původní mnohoúhelník. Jejich vrcholy obarvíme
podle indukčního předpokladu. Podstatné je, že koncové vrcholy dělící
úhlopříčky dostanou v každém z obou obarvení různé barvy, takže po

případné permutaci barev lze tato obarvení sjednotit do obarvení celého
n-úhelníku.

Jiné řešení. Tvrzení stačí dokázat pro případ, kdy nakreslené úh-
lopříčky dělí vnitřek n-úhelníku na trojúhelníky (takový n-úhelník se

nazývá triangulovaný, každý systém neprotínajících se úhlopříček lze do-
plnit na triangulaci). Poté dokazujeme opět indukcí. Vybereme vrchol,
ze kterého nevychází žádná úhlopříčka (takový musí existovat, jinak
by se některé úhlopříčky protínaly). Po odebrání tohoto vrcholu zbývá
(n — l)-úhelník, jehož vrcholy je podle indukčního předpokladu možno
obarvit třemi barvami. Odebraný vrchol má pouze dva sousedy, takže
vždy pro něj zbývá alespoň jedna volná barva, kterou jej obarvíme.

A - II - 1

Podle vzorce odvozeného v řešení úlohy A-I-l budeme hledat nejmenší
číslo x s prvočíselným rozkladem

x=Pi1 -Va2 ■ ■■■■PnNi

které splňuje podmínku

n(1 + [f])-n(1+[f]) (1)= 5.

k=i k=l

Jistě můžeme předpokládat, že a/t к 2 pro každé k\ v případě ak — 1
bychom totiž mohli činitel p^k v rozkladu čísla x vynechat, aniž bychom
narušili podmínku (1). Dále rozlišíme případy 7V=l,V = 2aV^3.

V případě N = 1 má (1) tvar (pro jednoduchost pišme a místo ai)
г ar 'a'

(2)= 5.
L 2 J L3 J
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Je-li a — 6r + s, kde r^0a0^s^5 jsou celá čísla, pak

~s''a' 'a'
= r+Í2L 2 J L3J

Proto z (2) plyne r ^ 4, tj. a ^ 24. Nyní už rychle najdeme nejmenší
řešení rovnice (2) a = 26. V případě iV = 1 je tedy nejmenší x rovno 226.

V případě N = 2 vypíšeme několik nej menších čísel гаи každého
v závorce připojíme počet jeho dvojnásobných dělitelů:

2232 (3), 2233 (2), 2234 (4), 2235 > 2334
2332 (2), 2333 (0), 2334 > 2632,
2432 (4), 2433 (2), 2434 > 2334,
2532 (4), 2533 > 2334,
2632 = 576 (5).

Každé další x je alespoň 2732 nebo 2334, tedy větší než 576.
V případě TV ^ 3 je každé x alespoň 223252 = 900, tedy číslo větší

než 576.

Shrneme naše úvahy: protože platí 226 > 576, je hledané nejmenší x
576. (Jeho dvojnásobní dělitelé jsou právě čísla 3, 6, 8, 12 a 24.)rovno

A - II - 2

Označme a = \BC\, b = \AC\ a c — \AB\. Protože osa úhlu dělí protější
stranu v poměru velikostí přilehlých stran, je

bc ac

\AE\ \BE\ —
a + 6’ a + b

bc ab
\AD\ \CD\

a + c a + c

a rovnost \BE\ — \CD\ je ekvivalentní s rovností

ab ac

a + c a + b

kterou lze upravit na tvar

a(a + b + c)(b — c) = 0.
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Protože a(a + b + c) > 0, je \BE\ — \CD\, právě když b = c, to jest
právě když je trojúhelník ABC rovnoramenný se základnou BC. Uhel
při vrcholu В má tedy jednoznačně určenou velikost 40°.

Jiné řešení. Označme \BE\ = |CD\ = s, a protože BD a CE jsou osy

příslušných vnitřních úhlů, platí

\BC\ \BC\
\AD\ ~ \АВУ \AE\~ \АСУ

_ \AD\\BC\ _ \AE\\BC\
S~

\AB\ \AC\ ’
\AC\

_ \AE\
\АВ\~\Щ-

Odtud ovšem plyne, že je \AC\ > \AB\, právě když \AE\ > \AD\, a tudíž
i \AB\ - s = \AE\ > \AD\ = \AC\ - s neboli \AB\ > \AC\. Vzhledem
к tomuto sporu nemůže platit ani nerovnost \AC\ > \AB\, ani nerovnost
obrácená, musí proto být \AC\ = |AB|, trojúhelník ABC je rovnora-

menný a snadno dopočteme, že úhel při vrcholu В má velikost 40°.

A - II - 3

{(x,i): x £ M ЛOznačme M množinu všech červených bodů a D
Л x € pí} a počítejme prvky množiny D dvěma způsoby: každý bod
z množiny M leží na třech přímkách, takže |D| = 3|M|, pro každou

přímku pí je v D právě dvojic neboli |D| = ^ a^. Odtud plyne
i=i

(i) a* = 0 (mod 3)
1= 1

(H) lMl = ^ E «г-
1=1

Pokud by existovaly čtyři přímky podle zadání a), byl by podle (ii)
celkový počet červených bodů roven dvěma a dvě z přímek by procházely
stejnými dvěma body, byly by tedy totožné. To je ve sporu se zadáním
a odpověď v případě a) je NE.

Případ ze zadání b) je realizován např. stranami a těžnicemi trojúhel-
niku, též stranami a úhlopříčkami čtverce. Odpověď je v tomto případě
ANO.

Případ ze zadání c) je realizován např. stranami pravidelného šesti-
úhelníku a úhlopříčkami protínajícími jeho střed. Odpověď je opět ANO.
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9

V případě d) je odpověď NE, protože součet J2ai = 20 není dělitelný
třemi (viz (i)). i—1

A - II - 4

Postupně spočteme

xl = 5 + 4^2 + 3S/4, ^ = 19 + 15^2 + 12^4.
Dosazením do dané rovnice tak po úpravě dostaneme podmínku

(19 + 5p + q + r) + (15 + 4p + q) ^2 + (12 + 3p + q) \/I = 0,

která je splněna, pokud jsou rovna nule všechna tři čísla 19 + 5p + q + r,
15 + 4p + q a 12 + 3p + q. (Podle úlohy A-I-4 je to nejen postačující, ale
i nutná podmínka.) Snadným výpočtem zjistíme jedinou trojici (p, q, r) =
= (—3, —3, —1). Zbývá dokázat, že rovnice

x3 — Зж2 — Зж — 1 = 0

má jediný reálný kořen. To lze provést více způsoby (asi nepříliš schůdné
by bylo dělení kořenovým dvojčlenem x — xo), například takto: protože
Зж2 + Зж + 1 > 0 pro každé reálné ж, je každý kořen rovnice ж3 = Зж2 +
+ Зж + 1 kladný; ze zápisu

„ 3 3 11 — 1 2 ^ 3Ж Xz Xó

plyne, že tento kořen je nejvýše jeden (pravá strana je totiž pro kladná ж

klesající).
Jiné řešení. Platí

i3 - (Щ3 1
Жо — 1 + л/2 + л/4

1 - у/2-I
1

takže — = ^2 — 1. Proto je xq řešením rovnice
ж0

(M = 2,

přičemž je jasné, že tato rovnice má v oboru reálných čísel jediný kořen.
Pro ж ф 0 je ovšem tato rovnice ekvivalentní s (1 + ж)3 = 2ж3, což je po
roznásobení hledaná rovnice.
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A - III - 1

Označme d(x) = f(x +1) — f{x). Podle zadání úlohy je funkce d: N —> 7L
nerostoucí. Funkce d je ale také nezáporná: Kdyby totiž pro některé к
bylo d(k) fs — 1, byla by f ostře klesající pro x А к, a bylo by

/(*)

f(k + f(k) + 1) = f{k) + ^2d(k + i) й
i=o

á m + d(k)(f(k) + 1) s f(k) - (.f(k) + 1) = -1 < 0.

Je tedy d( 1) A d{2) ^...^0a existuje c G U {0} a no G N takové,
že pro každé x A no je d(x) = c neboli f(x) = /(no) + c(x — щ). Pak ale
všechny body [ж, f(x)], x ^ no, leží v jedné přímce.

A - III - 2

Označme vrcholy jedné podstavy kvádru A, В, C, D a vrcholy ve druhé
podstavě -E1, F, G, H (tak, že AE, BF, CG, tvoří hrany). Průnik
mnohostěnu M s každou hranou kvádru musí být neprázdný. Vyberme
tedy na každé hraně kvádru jeden bod patřící mnohostěnu M a označme
M' konvexní obal těchto 12 (ne nutně různých) bodů. Mnohostěn M'
vznikne z kvádru odříznutím osmi rohových čtyřstěnů, jejichž objemy
odhadneme po seskupení do dvojic podle hran AE, BF, CG, DH.

Nechť X, Y, Z, U, V jsou po řadě vrcholy mnohostěnu M' ležící na
hranách AB, AD, AE, EF, EH (obr. 28). Označme x = |AX"|, у = \AY\,
z = \AZ\, и = \EU\,v = \EV\,w= \EZ\ aa = \AB\,b= \BC\,c= \AE\.
Přitom x,u^a, y,v^baz + w = c. Potom dostáváme

V(AXYZ) + V(EUVZ) = — (xyz + uvw) ^6

ů - (abz + abw) =6

Protože M1 vznikl odříznutím čtyř takovýchto dvojic rohových čtyřstěnů,

1 1 1
-ab(z + w)~ -abc = „

6 v ’ 6 6
-V.

je

V{M) A V(M') ZV -^V = \v.O o

Hodnoty nabývá např. objem čtyřstěnu BDEG (obr. 29). Tudíž
vmlu = ív.
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А - III - 3

Dokážeme následující tvrzení: Nechť v 2n-úhelníku je vyznačeno n úhlopří-
ček tak, že z každého vrcholu vychází právě jedna. Potom počet úhlopříček
sudé délky je sudý.

Důkaz: Obarvěme vrcholy 2n-úhelníku střídavě bíle a černě, máme
tedy n bílých a n černých vrcholů, každá strana 2n-úhelníku spojuje
jeden bílý a jeden černý vrchol. Úhlopříčky sudé délky spojují vrcholy
stejné barvy, úhlopříčky liché délky spojují vrcholy různých barev. Při-
tom bílo-bílých úhlopříček je stejně jako černo-černých (po odstranění
vrcholů spojených bílo-černými úhlopříčkami zůstane stejný počet čer-
ných i bílých bodů). Jednobarevných úhlopříček je tedy sudý počet.

Jiný důkaz. Označme úhlopříčky u\, U2, • ■ ■, un. Protože nám jde
o kombinatorické vlastnosti, můžeme předpokládat, že žádné tři úhlo-
příčky neprocházejí jedním bodem. Označme ještě a* počet úhlopříček,
které protínají úhlopříčku щ, a počítejme celkový počet P průsečíků

П

vyznačených úhlopříček. Z počítání dvěma způsoby plyne 2P = ^ щ
i= 1

a nutně počet úhlopříček s lichým ai je sudý. Přitom úhlopříčka щ

délky di odřezává di — 1 vrcholů, z nichž vychází celkem di — 1 úhlopříček.
Ty z nich, které neprotínají щ, využijí každá právě dva z di — 1 vrcholů.
Je tedy ai = di — 1 (mod 2), tj. a* je liché, právě když di je sudé.

V případě b) se požaduje 985 úhlopříček délky 6 a čtyři úhlopříčky
délky 8, to je celkem 989 úhlopříček sudé délky, a proto je v tomto případě
odpověď NE.

Pro případ a) je odpověď ANO. Označme vrcholy 1 994-úhelníku po
řadě X\, X2, • •A1994 a vyznačme úhlopříčky:
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XxX3, Х2Х5, Х4Х6 (jedna délky 3 a dvě délky 2);
X7X9, XaX10, xux13, X12X14 (čtyři úhlopříčky délky 2);
X9+6ÍX12+6Í, Xio+6iXi3+6i, Xn+6iXi4+6i, i — 1,2,, 330 (990 úhlo-

příček délky 3).

A - III - 4

ap — p2 je právě pNechť n = p je prvočíslo. Z čísel ap — 1, ap — 2, ..

dělitelných číslem p. Z toho pro p— 1 čísel je pl nejvyšší mocnina p, která
je dělí. Právě jedno z čísel ap — 1, ap — 2, ..., ap — p2 je dělitelné p2, ovšem
toto číslo (označme je např. ap — i, ap — i > 0) může být dělitelné i vyšší
mocninou p. Nechť x je takové přirozené číslo, že px \ ap — i apx+1 \ ap—i.
Nejvyšší mocninou p, která dělí součin (ap — 1 )(ap
tedy pX+P-1.

Protože podle zadání je číslo (ap — 1 )(ap — 2)... (ap — p2)/pp -1 celé
a kladné, je nutně p2 — 1 ^ x + p — 1, a tedy x ^ p2 — p- Je tedy též
ap > ap — i ^ px ^ pp2~p. Proto pro každé prvočíslo p je logp ap > p2 —p.

Pro konečnou množinu prvočísel P označme к její největší prvek. Po-
tom máme

2)...(ap-p2), je

1 1
E ' p2

peP y

<<

bgp ap -P
p£P

к к к
11 1

á E - - < 1.
i2 — i i

i=2 i=2 i=2

A - III - 5

Ano. Platí totiž toto tvrzení: Jestliže se příčky AA\, BB\, CC\ protínají
v bodě V a trojúhelníky AC\V, BA\V, CB\V mají stejný obsah, je V
těžiště trojúhelníku ABC. A trojúhelník, jehož těžnice splývá s výškou, je
zřejmě rovnoramenný. Trojúhelník ABC, jehož dvě těžnice jsou zároveň
výškami, je tudíž rovnostranný.

К důkazu uvedeného tvrzení označme po řadě w, x, y, z obsahy troj-
úhelníků VBAX, VABi, VBCX a VCAX (obr. 30). Platí

2w + z\ACi\
_ w

Wm ~ у w + у + z

odkud po úpravě získáme rovnost

w(w + z) — y(w + x).
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A Ci В

Obr. 30

Podobně platí (stačí použít cyklickou záměnu x —> у —> z —> x)

w(w + x) = z(w + у) a w{w + y) = x{w + z).

Předpokládejme bez újmy na obecnosti, že x ^ y, x ^ 2. Protože w + z "š
^ w + y, z první rovnosti w(w + z) = y(w + x) plyne w y. Podobně
z druhé rovnosti w(w + x) = z(w + ?/) plyne w ^ z. Dohromady tak
máme у ^ w ^ z ^ x, takže z třetí rovnosti w(w + y) = x(w + z) plyne
w ^ x, a je tedy x = y = z = w.V tom případě jsou ale body A1, Bx,
C\ středy stran trojúhelníku ABC а У je jeho těžiště.

Jiné řešení. (Podle Karla Švadlenky, G České Budějovice, Jírovcova.)
Označme jednotlivé úseky podle obr. 31. Z podobnosti pravoúhlých troj-
úhelníků AVBi ~ BVAU BVCX ~ CVBX, CVAx ~ АУС1 máme

|ГЛ,|
_ lyBil lyBil _ IKCil IVCil _ |V4j| (1)^2«1 C2 Cl a2

Z předpokládané rovnosti obsahů S(BXVC) = S(CXVA) — S(AXVB)

A ci Ci c2 В

Obr. 31
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plyne
\VBi\ • b\ — \VCi\ ■ ci = \VAi\ ■ ai,

což ve spojení s (1) postupně dává a2 = 6162, b\ = C1C2, cf = ai<22, a tudíž

aí + &i + ci = aia2 + М2 + CiC2. (2)

Konečně sečtením tří Pythagorových rovností \VA\\2 -\-a\ = \VCi\2 + c2,

{VB^+b2 = |KAi|2 + ai, IVCrp + cf = \УВг\2 + Ь22 pro dvojice právo-
úhlých trojúhelníků se společnými přeponami VB, VC а VA dostaneme

ai + b\ + c2 — a2 + b\ + c2. (3)

Vtipnou kombinací obou rovností (2) a (3) získáváme rovnost

ďi A b2 c2 a2 A b2 A c2 — 2aia2 + ‘2b\b2 + 2ciC2,

jež je ekvivalentní rovnosti (ai — a2)2 + (61 — b2)2 + (ci — C2)2 = 0. A ta
platí, právě když ai = a2, b\ = b2, c\ — c2. Všechny výšky tedy půlí
protější stranu, což je možné jen v rovnostranném trojiihelníku.

A - III - 6

Každé číslo z intervalu (0,1) je tvaru cosa, kde a £ (0, |тг). Proto z každé
čtveřice takových různých čísel můžeme vybrat a = cos a a b = cos (3 tak,
aby bylo 0 < \a — (3\ < | • |rc = |тг. Nerovnost cos(cn — f3) > můžeme
přepsat do tvaru

V3
ab + л/{1 - a2)(l - b2) > —,

odkud po umocnění na druhou a úpravě dostaneme

1
2ab\J{l — a2)( 1 — b2) > a2 + b2 — 2a2b2 — -,

odkud po dělení číslem 2ab vyjde dokazovaná nerovnost.
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Kategorie P

Texty úloh

P - I - 1

Souvislý úsek v posloupnosti celých čísel nazveme hladkým úsekem, jest-
liže se libovolná dvojice čísel, která do něj patří, liší nejvýše o 1.

Je dáno celé číslo N (N ^ 1) a posloupnost N celých čísel. Napište
program, který určí délku maximálního hladkého úseku v dané posloup-
nosti čísel. Počet čísel N není předem shora omezen a může být velmi
vysoký. Při návrhu programu se zaměřte na dosažení co největší rychlosti
výpočtu.

Příklad. Pro N — 10 a posloupnost čísel 2123343464 bude
výsledkem číslo 5, neboť nejdelší hladký úsek 3 3 4 3 4 je tvořen pěti
čísly (další hladké úseky, např. 2 12 nebo 2 3 3, jsou kratší).

P - I - 2

V zemi je N měst označených čísly od 1 do N. Mezi městy je vybudo-
vána silniční síť. Každá silnice spojuje vždy dvojici měst a je známa její
délka v kilometrech. Všechny silnice jsou obousměrné. Mezi některými
dvojicemi měst přímá silnice nevede, ale z každého města je možné dojet
po silnicích do libovolného jiného města (třeba i více různými způsoby).
Všechna případná křížení silnic mimo města jsou mimoúrovňová (pomocí
mostů) a neumožňují vozidlům přejet z jedné silnice na druhou.

Při velké sněhové bouři byly všechny silnice zaváty sněhem. Napište
program, který určí minimální celkovou délku silnic, z nichž je třeba odkli-
dit sníh, aby byla všechna města v zemi navzájem pospojována sjízdnými
silnicemi.

Vstupem programu je počet měst N a dále seznam všech silnic ve-
doucích mezi městy. Každá silnice je určena trojicí čísel: čísla obou měst
silnicí spojených a délka silnice.
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P - I - 3

Na hromádce je připraven předem známý počet N zápalek. Dva hráči
hrají hru, při které z hromádky střídavě odebírají zápalky. Hráč, který
je na řadě, musí v jednom tahu odebrat bud 3, nebo 5 zápalek. Prohrává
ten hráč, který nemůže provést svůj tah, nebot na hromádce již zbývá
méně než 3 zápalky.

a) Určete, pro jaké hodnoty N má při správné hře zajištěnu výhru
ten hráč, který je právě na tahu. Jak musí během hry postupovat, aby
této výhry dosáhl? Své tvrzení zdůvodněte.

b) Řešte stejnou úlohu pro případ, že hráč smí v jednom tahu odebrat
z hromádky bud 3 nebo 7 zápalek.

P - I - 4

Sekvenční stroj (studijní text)
Konečný sekvenční stroj je speciální výpočetní zařízení. Má řídicí jed-

notku, čte několik vstupních sledů a vytváří jeden výstupní sled. Počet
vstupních sledů к je pro každý sekvenční stroj pevně dán. Sledem zde
rozumíme konečnou posloupnost znaků z předem dané konečné množiny
(tzv. abecedy). Každý vstupní sled je čten postupně znak po znaku zleva
doprava, žádný znak ze vstupního sledu nemůže být přečten vícekrát.

Řídicí jednotka má konečnou paměť; říkáme, že se může nacházet
v jednom z konečně mnoha stavů. Programem stroje je sada přechodo-
vých pravidel, která každému vnitřnímu stavu a k-tici vstupních znaků
(z každého vstupního sledu jeden znak) přiřazují nový vnitřní stav a vý-
stupni znak.

Výpočet stroje probíhá po krocích. Na začátku výpočtu je stroj
v počátečním stavu a z každého vstupního sledu bude číst první znak.
V jednom kroku stroj přečte z každého vstupního sledu po jednom znaku,
podle vhodného přechodového pravidla (tj. podle svého programu) změní
svůj vnitřní stav a zapíše nejvýše jeden znak na výstup. Výpočet končí
v okamžiku, kdy neexistuje přechodové pravidlo, podle něhož by výpočet
mohl pokračovat.

Nyní popíšeme sekvenční stroj ještě jednou formálněji. Konečný
sekvenční stroj s к vstupy je uspořádaná pětice (V, Y, Q, á, qo), kde
V, Y, Q jsou konečné množiny, qo G Q a S je parciální zobrazení
Q x (V U p)k —> Q x (Y U ip). Slovo parciální znamená, že S nemusí být
definováno pro všechny kombinace stavů a vstupních symbolů (tzn. v ta-
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kové situaci není určeno, jak má výpočet pokračovat). Množina V se
nazývá vstupní abeceda, Y výstupní abeceda, Q je množina stavů, qo je
počáteční stav a S jsou přechodová pravidla. Speciální hodnota pou-
žitá v definici přechodových pravidel znamená, že v příslušném vstupním
sledu už není žádný znak (celý vstupní sled už byl přečten), resp. že se
do výstupního sledu v tomto kroku nic nezapíše.

Výpočet stroje začíná ve stavu qo a vstupní sledy jsou nastaveny pro
čtení prvních znaků. V každém kroku výpočtu stroj přečte po jednom
znaku z těch vstupních sledů, které ještě nebyly přečteny do konce, vypíše
jeden (případně žádný) znak do vytvářeného výstupního sledu a změní
svůj vnitřní stav. Označme q momentální stav stroje a ai, a2, ..., a^

právě čtené znaky ve vstupních sledech (je-li některý vstupní sled již
celý přečten, bude čteným znakem ф). V přechodových pravidlech se
vyhledá hodnota S(q, ai, аг,..., а*,) = (q', у). Pokud je nalezena, stroj do
výstupního sledu zapíše znak у a přejde do stavu q'. Pokud odpovídající
přechodové pravidlo neexistuje, výpočet stroje končí.

Pomocí sekvenčních strojů budeme zpracovávat zápisy celých nezá-
porných čísel. Zápisem celého nezáporného čísla C v binární (dvojkové)
poziční soustavě je sled znaků anan-\.. .а\а^ z abecedy {0,1} takový, že
platí:
1. buď n = 0 (tj. zápis je tvořen jediným znakem), nebo n > 0 a přitom

an = 1 (víceznakový zápis začíná vždy znakem 1);
2.

3=o

Jednotlivým znakům zápisu říkáme binární cifry. Takovýto zápis čísla
je strojem čten nebo je vytvářen postupně od nejvyšších řádů (an)
к nejnižším (ao). Zápisem pozpátku rozumíme zápis cifer v opačném
pořadí. Čísla zapsaná pozpátku tedy stroj čte v pořadí od nej nižších
řádů (йо) к nejvyšším (an).
Příklad. Sestavte konečný sekvenční stroj s jedním vstupem, který

vytiskne 5, pokud je dané číslo sudé, a L, pokud je liché. Předpokládejte,
že vstupní sled obsahuje jedno číslo zapsané v binární soustavě.

Řešení: Sudost nebo lichost vstupního čísla je dána tím, jaká je
jeho poslední cifra. Sekvenční stroj bude proto velmi jednoduchý, postačí
pouze tři vnitřní stavy. Pomocí dvou z nich bude rozlišovat, jakou cifru
naposledy přečetl, zbývající třetí vnitřní stav bude sloužit к ukončení
výpočtu (nebude pro něj definováno žádné přechodové pravidlo). Během
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čtení čísla stroj nebude nic zapisovat na výstup. Až po přečtení celého
čísla podle svého momentálního vnitřního stavu vypíše výsledek.

Stav stroje po přečtení nuly označíme N, stav po přečtení jedničky
pojmenujeme J. Stav sloužící к ukončení výpočtu nazveme K. Počáteční
stav bude N, protože nula je také sudé číslo. Program stroje je určen
následujícími přechodovými pravidly:

S(N,0) = {N,<p), S(J,0) = (N,V),
S(N,1) = <5(J,1) = (J,¥>),
d(N,<p) = (K,S), Ó(J,V) = (K,L).

Pro zvýšení přehlednosti zapisujeme přechodová pravidla sekvenčního
stroje obvykle do tvaru tabulky. Právě popsanému sekvenčnímu stroji
odpovídá tato tabulka přechodových pravidel:

čtený symbol
0 1stav <P

K/SN/<p J/vN

N/f-P J/v K/LJ
К

Přiklad. Sestavte konečný sekvenční stroj se dvěma vstupy, který vy-
tiskne znak P, je-li zápis prvního čísla delší, znak S', jsou-li zápisy obou
čísel stejně dlouhé, a znak D, je-li zápis druhého čísla delší.

Řešení: Stroj bude číst souběžně obě vstupní čísla. Nerozlišuje nuly
a jedničky na vstupu, pouze sleduje, kdy které číslo skončí. Podle toho
vytiskne výsledek a skončí svou práci. Navrhovaný stroj má dva stavy,
označíme je С a X. Počátečním stavem stroje bude stav С. V tomto
stavu stroj setrvá tak dlouho, dokud některé ze vstupních čísel neskončí.
Potom přejde do stavu A, který slouží к ukončení výpočtu.

čtené symboly
10 11 0 <p cpO 4> 100 01stav 4>4>

С/ч> C/<p C/<p C/ip X/P X/P X/D X/D X/Sc
X

Soutěžní úloha.

a) Sestavte konečný sekvenční stroj se dvěma vstupy, který porovná
vstupující čísla podle velikosti. Vytiskne S, pokud jsou stejná, P pokud
je první větší, a D, pokud je druhé větší.
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b) Řešte úlohu a) pro případ, kdy jsou čísla zapsána pozpátku.
c) Sestavte konečný sekvenční stroj se dvěma vstupy, který vytiskne

součet vstupujících čísel.
d) Řešte úlohu c) pro případ, kdy jsou čísla zapsána pozpátku.
e) Sestavte konečný sekvenční stroj s jedním vstupem, který určí, zda

je vstupní číslo dělitelné třemi. Výstupem bude znak A, pokud je dělitelné
třemi, v opačném případě bude výstupem znak N.

f) Sestavte konečný sekvenční stroj s jedním vstupem, který spočítá
celočíselný podíl při dělení vstupujícího čísla třemi.

Ve všech úlohách předpokládejte, že čísla jsou ve vstupních sledech
zapsána v binární poziční soustavě. Pokud dospějete к názoru, že některý
ze strojů nelze sestrojit, své tvrzení zdůvodněte.

P - II - 1

Souvislý úsek v posloupnosti celých čísel nazveme iú-hladkým úsekem,
jestliže se libovolná dvojice čísel, která do něj patří, liší nejvýše o K.

Jsou dána dvě kladná celá čísla N, К a posloupnost N celých čísel.
Napište program, který určí délku maximálního iú-hladkého úseku v dané
posloupnosti čísel. Počet čísel N není předem shora omezen a může být
velmi vysoký, naproti tomu hodnota К je rovna nejvýše 10. Při návrhu
programu se zaměřte na dosažení co největší rychlosti výpočtu.

Příklad. Pro TV = 10,iV = 2a posloupnost čísel 2123343464
bude výsledkem číslo 6, neboť nejdelší 2-hladký úsek 233434je tvořen
šesti čísly (další 2-hladké úseky, např. 2 1 2 3 3 nebo 4 6 4, jsou kratší).

P - II - 2

V zemi je N měst označených čísly od 1 do TV. Mezi městy je vybudována
silniční síť. Každá silnice spojuje vždy dvojici měst. Všechny silnice jsou
obousměrné. Mezi některými dvojicemi měst přímá silnice nevede, ale
z každého města je možné dojet po silnicích do libovolného jiného města
(třeba i více různými způsoby). Všechna případná křížení silnic mimo
města jsou mimoúrovňová (pomocí mostů) a neumožňují vozidlům přejet
z jedné silnice na druhou.

Napište program, který určí, zda je možné rozdělit města do dvou
skupin tak, aby každá dvojice měst patřících do stejné skupiny byla spo-

jena přímou silnicí (tzn. uvnitř každé skupiny vede přímá silnice mezi
každými dvěma městy). Nezáleží přitom na velikosti jednotlivých skupin
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(jedna ze skupin může být případně i prázdná), ale každé město musí být
do některé skupiny zařazeno.

Vstupem programu je počet měst N a dále seznam všech silnic vedou-
cích mezi městy. Každá silnice je zadána dvojicí čísel měst, mezi nimiž
vede.

P - II - 3

Na hromádce je připraven předem známý počet N zápalek. Dva hráči
hrají hru, při které z hromádky střídavě odebírají zápalky. Hráč, který
je na řadě, musí v jednom tahu odebrat takový počet zápalek, který je
celočíselnou mocninou dvou (tzn. lze ho vyjádřit ve tvaru 2К pro vhodné
celé nezáporné číslo K). Vyhrává ten hráč, který vezme z hromádky po-
slední zápalku.

a) Určete, pro jaké hodnoty N má při správné hře zajištěnu výhru
ten hráč, který je právě na tahu. Jak musí během hry postupovat, aby
této výhry dosáhl? Své tvrzení zdůvodněte.

b) Řešte stejnou úlohu pro případ, že počet zápalek odebíraných v jed-
nom tahu musí být tvaru 3К pro nějaké celé nezáporné číslo K.

P - II - 4

Pomocí sekvenčních strojů (definici najdete v úloze P-I-4) budeme nyní
zpracovávat zápisy celých čísel v tzv. doplňkovém kódu. К zápisu čísel
budeme používat abecedu {0,1}. Celá nezáporná čísla budeme zapiso-
vat v obvyklé binární poziční soustavě s jedinou drobnou úpravou -

zápis čísla musí začínat číslicí 0. Toho lze snadno dosáhnout doplněním
jedné nebo více nul zleva к zápisu čísla. Každé celé nezáporné číslo má
tedy nekonečně mnoho různých zápisů, které se liší pouze počtem úvod-
nich nul.

Zápisy záporných čísel získáme následujícím postupem. Ze zápisu
absolutní hodnoty čísla (v binární soustavě s vedoucí nulou) nejprve
odečteme jedničku a potom zaměníme každou 0 za 1 a každou 1 za 0.
Zápisy záporných čísel tedy začínají číslicí 1. I každé záporné číslo má
více možných zápisů, ty se liší pouze počtem úvodních jedniček.

Přiklad zápisu čísel v doplňkovém kódu:
+3 lze zapsat jako 011, 0011 nebo také 000000000011,
—3 lze zapsat jako 101, 1101 nebo také 111111111101.
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Soutěžní úloha.

a) Sestavte konečný sekvenční stroj se dvěma vstupy, který vytiskne
součet vstupujících čísel.

b) Řešte úlohu a pro případ, kdy jsou čísla zapsaná pozpátku.
c) Sestavte konečný sekvenční stroj s jedním vstupem, který určí, zda

je vstupní číslo dělitelné třemi. Výstupem bude znak A pokud je dělitelné
třemi, v opačném případě bude výstupem znak N.

d) Sestavte konečný sekvenční stroj s jedním vstupem, který spočítá
celočíselný podíl při dělení vstupujícího čísla třemi.

Ve všech úlohách předpokládejte, že čísla jsou ve vstupních sledech
zapsána v doplňkovém kódu. Pokud dospějete к názoru, že některý ze

strojů nelze sestrojit, své tvrzení zdůvodněte.

P - III - 1

Souvislý úsek v posloupnosti celých čísel nazveme vybalancovaným úse-
kem, jestliže počet kladných a počet záporných čísel v úseku se sobě
rovnají.

Je dáno celé číslo N (1 ^ 1000) a posloupnost N celých čísel.
Napište program, který určí délku maximálního vybalancovaného úseku
v dané posloupnosti čísel. Při návrhu programu se zaměřte na dosažení
co největší rychlosti výpočtu.

Příklad. Pro N = 10 a posloupnost čísel 8647 —5 —3 20—19 bude
výsledkem číslo 7, neboť nejdelší vybalancovaný úsek 4 7 —5 —3 2 0 —1
(případně jiný stejně dlouhý vybalancovaný úsek 7 —5 —3 2 0 —1 9) je
tvořen sedmi čísly.

P - III - 2

V zemi je N měst označených čísly od 1 do V. Mezi městy je vybudována
silniční síť. Každá silnice spojuje vždy dvojici měst. Všechny silnice jsou
obousměrné. Mezi některými dvojicemi měst přímá silnice nevede, ale
z každého města je možné dojet po silnicích do libovolného jiného města
(třeba i více různými způsoby). Všechna případná křížení silnic mimo
města jsou mimoúrovňová (pomocí mostů) a neumožňují vozidlům přejet
z jedné silnice na druhou.

Silnici nazveme nepostradatelnou, pokud by se jejím zničením úplně
přerušilo silniční spojení mezi některou dvojicí měst.
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Napište program, který vyhledá a vypíše všechny nepostradatelné sil-
nice. Vstupem programu je počet měst N a dále seznam všech silnic
vedoucích mezi městy. Každá silnice je zadána dvojicí čísel měst, mezi
nimiž vede.

P - III - 3

Na hromádce je připraven předem známý počet N zápalek, kde N je
liché číslo. Dva hráči hrají hru, při které z hromádky střídavě odebírají
zápalky. Hráč, který je na řadě, musí v jednom tahu odebrat 1, 2 nebo
3 zápalky. Hra skončí, když je celá hromádka zápalek rozebraná. Vyhrává
ten hráč, který z hromádky celkově odebral sudý počet zápalek.

a) Určete, pro jaké hodnoty N má při správné hře zajištěnu výhru
ten hráč, který je právě na tahu. Jak musí během hry postupovat, aby
této výhry dosáhl? Své tvrzení zdůvodněte.

b) Řešte stejnou úlohu pro případ, že hráč smí v jednom tahu odebrat
z hromádky 1, 2, 3 nebo 4 zápalky.

P - III - 4

Pomocí sekvenčních strojů (definici najdete v úloze P-I-4) budeme zpra-
covávat zápisy celých čísel. Zápisem celého čísla C v poziční soustavě
o základu (—2) je sled znaků anan-\... aiao z abecedy {0,1} takový, že

c = E°j(-2)í
3=0

Jednotlivým znakům zápisu říkáme cifry. Takovýto zápis čísla je stro-
jem čten nebo je vytvářen postupně od nejvyšších řádů (an) к nejnižším
(ao). Zápisem pozpátku rozumíme zápis cifer v opačném pořadí. Čísla
zapsaná pozpátku tedy stroj čte v pořadí od nejnižších řádů (ao) к nej-
vyšším (an).

Uvědomte si, že popsaným způsobem lze zapsat libovolné celé číslo,
a to až na úvodní nuly právě jedním způsobem.

Příklad zápisu čísel v poziční soustavě o základu —2:
+3 lze zapsat jako 111, 0111 nebo také 0000000000111,
—3 lze zapsat jako 1101, 01101 nebo také 00000000001101.
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Soutěžní úloha.

a) Sestavte konečný sekvenční stroj se dvěma vstupy, který porovná
vstupující čísla podle velikosti. Vytiskne S, pokud jsou stejná, P pokud
je první větší, a D, pokud je druhé větší.

b) Řešte úlohu a) pro případ, kdy jsou čísla zapsaná pozpátku.
c) Sestavte konečný sekvenční stroj se dvěma vstupy, který vytiskne

součet vstupujících čísel.
d) Řešte úlohu c) pro případ, kdy jsou čísla zapsaná pozpátku.
e) Sestavte konečný sekvenční stroj s jedním vstupem, který určí, zda

je vstupní číslo dělitelné třemi. Výstupem bude znak A, pokud je dělitelné
třemi, v opačném případě bude výstupem znak N.

f) Sestavte konečný sekvenční stroj s jedním vstupem, který spočítá
celočíselný podíl při dělení vstupujícího čísla třemi.

Ve všech úlohách předpokládejte, že čísla jsou ve vstupních sledech
zapsána v poziční soustavě o základu (—2). Pokud dospějete к názoru,
že některý ze strojů nelze sestrojit, své tvrzení zdůvodněte.
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Přípravná soustředění před 35. MMO

V průběhu 43. ročníku byla uspořádána dvě výběrová soustředění pro

přípravu na mezinárodní matematickou olympiádu. Na první soustředě-
ní, které se konalo v dobře známém internátu při gymnáziu v Jevíčku
od 10. do 13. května 1994, bylo pozváno všech 12 vítězů celostátního
kola kategorie A, z nichž se jeden omluvil.

Soustředění bylo zaměřeno na řešení obtížných úloh v omezeném čase
(v soutěžních podmínkách). Po odpolední relaxaci byl proveden detailní
rozbor opravených řešení. Úspěšnost jednotlivých studentů ukazuje ná-
sledující tabulka:

Libor Mašíček

David Opěla
David Pavlica

Robert Šámal
Martin Nečesal

Petr Kaňovský
Filip Krška
Michal Beneš

Jan Mach

Michaela Prokešová

Jan Rychtář

3 G Brno, kpt. Jaroše
2 GMK Bílovec, 17. listopadu 67
3 GMK Bílovec, 17. listopadu 66
3 G Praha 5, Zborovská
3 G Brno, kpt. Jaroše
3 G Brno, kpt. Jaroše
3 G Brno, kpt. Jaroše
2 G Praha 5, Zborovská
4 GMK Bílovec, 17. listopadu 56
3 G 0. Budějovice, Jírovcova 51
3 G Strakonice, Máchova

69

65

60

63

62

57

48

Druhé soustředění bylo už určeno pouze vybraným reprezentantům
České republiky na 35. MMO v Hongkongu včetně dvou náhradníků а ко-
nalo se opět v Jevíčku od 20. do 24. června 1994. Výsledky jednotlivých
studentů ukazuje další tabulka:

Robert Sámal
David Pavlica

Petr Kaňovský
Libor Mašíček

Filip Krška
Jan Mach

Martin Nečesal

David Opěla

3 G Praha 5,
3 GMK Bílovec, listopadu 28,5
3 G Brno, Jaroše
3 G Brno, Jaroše
3 G Brno, Jaroše
4 GMK Bílovec, listopadu 20
3 G Brno, Jaroše
2 GMK Bílovec, listopadu 18

30,5

25

22

20

19
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Jednotlivé semináře vedli a úlohy připravili:
dr. Jaroslav Svrček (20. 6. a 21. 6.),
dr. Miroslav Engliš (22. 6.),
dr. Karel Horák (23. 6.).

Některé úlohy zadané na přípravných soustředěních1.Nechť AB a, CD jsou vzájemně kolmé tětivy téže kružnice к a nechť
Pii P21 P3, Pa označují v cyklickém pořadí obsahy čtyř částí, na něž je
kruh s hraniční kružnicí к oběma tětivami rozdělen. Určete, jaké největší
a nej menší hodnoty nabývá výraz

P1AP3
P2 + Pa2.Určete všechny funkce /: IR —> IR takové, že platí

1 11

2 fM + 2 f(xz) - = 4

pro libovolná reálná x, у, 2.

3. Dokažte, že součet velikostí šesti úhlů, pod nimiž vidíme hrany libo-
volného čtyřstěnu z jeho libovolného vnitřního bodu, je větší než 540°.
4. Uvažujme tři kružnice vně připsané danému trojúhelníku ABC
a trojúhelník А'В'С' takový, že tyto tři kružnice leží uvnitř trojúhel-
niku А'В'С', přičemž strany trojúhelníku А'В'С' jsou společnými teč-
námi každých dvou z těchto kružnic. Dokažte, že platí

PА'В'С = 25Pabc,
kde Pxyz značí obsah trojúhelníku XYZ.5.Nechť /: IR —> U je daná funkce a nechť dále pro každá dvě reálná
čísla x, у platí
a) f(2x) = /(sin(±7u: + xy)) + /(smírce - h^y))

У2) = (ж + y)f(x -y) + (x- y)f(x + y).b) f(x2
Určete

/(1994 + 19941/2 + 19941/3).
6. V trojúhelníku ABC jsou zvoleny body К £ ВС, L £ АС, M £ AB,
N £ LM, R £ MK, F £ KL. Jestliže Q\, Q2, Q3, Qa, Qsi Qe a Q značí
po řadě obsahy trojúhelníků AMR, CKR, BKF, ALF, BNM, CLN
a ABC, pak platí

Q = &(QiQ2Q3QaQ5Q6)1^6 ■

Dokažte.
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7. Dokažte, že na kružnici se středem v [0,0] a poloměrem 5s5 leží aspoň
55 bodů s celočíselnými souřadnicemi.

8. Jsou-li X, Y dva body roviny, pak z(XY) je zobrazení roviny na sebe
vzniklé složením osové souměrnosti podle XY a posunutí o vektor X Y. Je
dán konvexní čtyřúhelník ABCD\ kdy je z(AB) ■ z(BC) ■ z(CD) ■ z{DÁ)
identita?

9. V rovině jsou dány dva různé body A, В spojené lomenou čarou l.
Tětivou budeme rozumět úsečku rovnoběžnou s AB, jejíž oba krajní body
leží na l. Dokažte, že pokud neexistuje tětiva délky a ani tětiva délky 6,
tak neexistuje ani tětiva délky a + b.

10. V rovině je dán rovnostranný trojúhelník ABC. Zjistěte, ve kterých
bodech X dosahuje funkce

í(x) = \XA\ + \XB\ - \XC\

svého minima.

11. Dokažte, že pro každé přirozené n začínají čísla 1994n a 1994n + 2n
vždy stejným dvojčíslím.

12. Na stranách A1A2 а A2A3 pravidelného 2n-úhelníku A1A2 ... A2n
jsou dány body Jú, N takové, že \ Y.KAn+2N\ = tt/2n. Dokažte, že NAn+2
je osou úhlu KNA3.

13. Na povrchu koule jsou dány body А, В, C, A', 5', C takové, že
tětivy AA', BB\ CO se protínají v bodě P uvnitř, ale neleží v jedné
rovině. Přitom kulové plochy určené body А, В, С, P а А', В', С", P se

dotýkají. Dokažte, že |AA'| = \BB'\ — \CC'\.
14. Nechť mnohočlen p s komplexními koeficienty má stupeň nej-
výše 1994 a vesměs různé kořeny. Dokažte, že existují komplexní čísla
<21, a2,..., «1994 taková, že p(z) dělí mnohočlen

(... ((2 - ax)2 - a2)2 - ... - a1993)2 — «1994-
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35. mezinárodní matematická olympiáda

Po loňském poměrně úspěšném vystoupení jak české-
ho, tak i slovenského družstva na 34. MMO v tureckém
Istanbulu jsme letos odjížděli na olympiádu s vědomím,
že naše vyhlídky jsou tentokrát poněkud slabší, zvlášť
když vítězové III. kola kategorie A nedosáhli v republi-
kovém finále více než 69% možných bodů. Nicméně dva
z našich studentů získali na 35. MMO druhou cenu, dva
se museli spokojit s třetí cenou a dva zůstali bez ceny.
Vedoucím naší výpravy byl dr. Karel Horák z Matematického ústavu
AVČR, pedagogickým vedoucím družstva byl doc. Jaromír Šimša z br-
něnské pobočky téhož ústavu.

Výsledky našich žáků:

Body za úlohu Body Cena
1 2 3 4 5 6Umístění

78.-87. Petr Kaňovský
193.-204. Filip Krška
205.-213. Jan Mach

126.-131. Libor Mašíček

102.-113. David Pavlica
49.-57. Robert Šámal

7 7 7 7 0 3 31 II.

0 7 6 2 3 0 18

0 7 5 2 3 0 17

0 7 7 7 4 0 25 III.

0 7 7 7 2 5 28 III.
0 7 7 7 7 7 35 II.

Celkem 7 42 39 32 19 15 154

Vedoucím slovenské delegace byl doc. RNDr. Tomáš Hecht, CSc.,
z MFF UK v Bratislavě a pedagogickým vedoucím bývalý úspěšný repre-
zentant Richard Kollár, nyní student MFF UK v Bratislavě. Že Slovensko
jede na MMO se dvěma výrazně lepšími borci, jsme věděli už ze srovnání
výsledků obou celostátních kol v Bratislavě a Jevíčku. A to ve sloven-
ském družstvu ještě chyběl vítěz III. kola, který dal přednost účasti na
MFO v Pekingu. A tak nakonec mezi slovenskými studenty nejvíce za-
zářil Andrej Zlatoš ze 4. ročníku Gymnázia Grósslingová v Bratislavě,
který získal za všechna svá řešení plný počet bodů a zařadil se tak mezi
22 absolutních vítězů 35. MMO.
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Body za úlohu Body Cena
1 2 3 4 5 6Umístění

284.- 297. Ivan Cimrák

154.-164. Patrik Horník

268.-283. Michal Kovář

114. 119. Peter Macák

44.-48. Martin Niepel
1.-22. Andrej Zlatoš

1 5 0 1 4 0 11

7 7 0 2 6 0 22 III.

0 7 0 1 4 0 12

3 7 5 7 5 0 27 III.

7 7 7 7 7 1 36 II.

7 7 7 7 7 7 42 I.

Celkem 25 40 19 25 33 8 150

Výběr úloh lze stručně charakterizovat tak, že nebylo téměř z čeho
vybírat. Problémová komise, přestože byla vedena velmi zkušeným Ka-
nadaném čínského původu Andym Liu, se patrně rozhodla učinit letošní
olympiádu jednou z nejlehčích za posledních 10 let. Výběr 24 úloh, které
dostala jury, téměř neobsahoval opravdu obtížné úlohy, jež by pak více
rozvrstvily početné pole soutěžících (v naší situaci jsme samozřejmě stáli
o úlohy spíše těžší, protože naši dva nejlepší studenti, jak se ostatně potvr-
dilo, neměli na suverénní vyřešení všech úloh, nicméně jsem přesvědčen,
že stejného výsledku by dosáhli i při těžších úlohách; a pro slabší žáky
je menší ostuda, když pohoří na těžších úlohách). Navíc jediné dvě úlo-
hy, jež snad odpovídaly náročností mezinárodní olympiádě, byly nakonec
staženy po nejasném prohlášení trenéra jedné ze zúčastněných zemí, že
podobné či stejné úlohy byly použity během jejich přípravy. Tak se na-
konec nejtěžší úlohou 1. dne stala 1. úloha, za kterou jsme získali jen
7 bodů. Druhý den byla bez konkurence poněkud nestandardní úloha 6.

Překvapivě nejlepšího výsledku dosáhli naši studenti ve 2. úloze, která
byla geometrická (a přestože to byla úloha natolik jednoduchá, že téměř
neodpovídala nárokům na úlohy MMO, a umožňovala jak trigonomet-
rické, tak i nepříliš složité analytické řešení, potěšila i ta skutečnost, že
mezi našimi šesti řešeními byla tři velmi pěkná řešení syntetická), zatímco
1. úloha, mezi členy jury všeobecně považovaná za nejlehčí z předložené
šestice, dopadla nejhůře, jak již bylo zmíněno.

Že letošní úlohy byly poměrně lehké, je vidět i z počtu bodů nutných
pro získání příslušné medaile: První cena se udělovala za 40-42 bodů,
druhá za 30-39 a třetí za 19-29 bodů. Žádná z úloh nebyla taková, že
by se dalo očekávat nějaké zvlášť elegantní či překvapivé řešení. Proto
nebyla udělena ani žádná zvláštní cena.

Suverénně nej lepší byli tentokrát Američané (v čínském družstvu
údajně doplatili tři studenti na špatný překlad 6. úlohy do čínštiny) -
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všichni získali plný počet bodů. Značný byl letos i počet úspěšných dí-
vek; Rakušanka Theresia Eisenkólblová měla dokonce plný počet bodů
a nejméně devět dalších defilovalo během slavnostního zakončení ještě
před naším nej lepším Robertem Šámalem. V íránském družstvu jich byla
přesně polovina. Ve výsledkové listině se však dívčí jména obtížně určují.

Neoficiální pořadí první třetiny zúčastněných zemí (olympiády se zú-
častnilo 385 žáků z 69 zemí):

I II III bodyI II III body
USA Itálie

Nizozemsko

Lotyšsko
Brazílie (5)
Gruzie
Švédsko
Řecko
Chorvatsko
Estonsko (5)
Norsko
Макао
Litva
Finsko
Irsko
Makedonie (4)
Mongolsko
Trinidad a Tobago
Filipíny
Chile (2)
Moldavsko

Portugalsko
Dánsko (4)
Kypr
Slovinsko (5)
Indonésie
Bosna a Hercegovina (5) 0 0 1
Španělsko
Švýcarsko (3)
Lucembursko (1)
Island (4)
Mexiko

Kyrgyzstán
Kuba (1)
Kuvajt (5)

1026 0 0
3 3 0
3 2 1
3 2 1
15 0
15 0
2 2 2
2 2 2
0 5 1
1 2 3
12 3
0 2 3
0 2 4
2 0 3
0 4 1
0 3 3
112
0 2 4
113
0 3 1
0 2 2
112
0 14
10 3
0 1 4
0 2 2
0 0 3
0 0 4
0 0 4
0 2 0
10 0
0 0 4
0 0 3
0 0 2
0 0 2

252 0 0 2
0 0 2
0 0 3
0 2 0
0 0 2
0 0 1
0 0 1
0 0 2
0 0 1
0 1 1
0 1 0
0 0 1
0 0 0
0 0 0
0 0 1
0 10
0 0 0
0 0 0
0 10
0 0 1
0 0 0
0 0 2
0 0 0
0 0 0
0 0 0

Clr 99229
Rusko
Bulharsko
Maďarsko
Vietnam
Velká Británie
Írán
Rumunsko

Japonsko
Německo
Austrálie
Korea
Polsko

Tchaj-wan
Indie

Ukrajina
Hongkong
Francie

Argentina
Česká republika
Slovensko
Bělorusko
Kanada
Izrael
Kolumbie
JAR
Turecko

Nový Zéland
Singapur
Rakousko
Arménie (5)
Thajsko
Belgie
Maroko

224 98
223 95

95221
92207
91206
90203
82198
80180
75175

173 73
70170

170 68
170 67

65168
163 63

53162
52161

159 52
52154

150 51
48144
47143

143 46
136 44

0 0 0 41120
118 0 0 1

0 10
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

35
116 32
116 29
114 29
110 24
106 12
105 12
105

Příští, 36. MMO se bude konat v roce 1995 v kanadském Torontu.
Vzhledem к tomu, že mezi našimi letošními reprezentanty byl jen jeden
maturant, mohlo by se nám podařit do příští olympiády připravit docela
solidní a zkušené mužstvo, které by se určitě mělo pokusit o návrat do
první čtvrtiny, ne-li dokonce do první desítky nejlepších zemí.
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Texty soutěžních úloh
(v závorce je uvedena země, která úlohu navrhla)1.Nechť man jsou kladná celá čísla a nechť ai, 02,..., am jsou různé

prvky množiny {1,2, s následující vlastností: jestliže pro ně-
jaká i, j, 1 = i = j = тп, je a* + dj A n, pak existuje /с, 1 А к A m,
že di + dj = a,k ■ Dokažte, že

n + 1ai + U2 + • • • + dm >
2m

(Francie)
2. Je dán rovnoramenný trojúhelník ABC s rameny |AE?| = \AC\. Dále
předpokládejme, že
(i) M je střed úsečky ВС a O bod přímky AM takový, že přímky OB

a AB jsou navzájem kolmé;
(ii) Q je libovolný bod úsečky BC různý od bodů В a C;
(iii) bod E leží na přímce AB a bod F na přímce AC tak, že E, Q a F

jsou tři různé body ležící v přímce.
Dokažte, že OQ J_ EF, právě když \QE\ = \QF\. (Arménie, Austrálie)
3. Pro libovolné kladné celé číslo к označme f(k) počet všech prvků
množiny {k + l,k + 2, ■ ■ ■ ,2k}, v jejichž dvojkovém zápise jsou právě tři
jedničky.
(a) Dokažte, že pro každé kladné celé číslo m existuje aspoň jedno kladné

celé číslo к takové, že f(k) = m.

(b) Určete všechna kladná celá čísla m, pro něž existuje právě jedno к
takové, že f(k) — m. (Rumunsko)4.Určete všechny uspořádané dvojice (m, n) kladných celých čísel, pro

něž je číslo
n3 + 1
mn — 1

(.Austrálie)5.Nechť S je množina všech reálných čísel větších než —1. Najděte
všechny funkce /: S —> S, jež splňují následující dvě podmínky:
(i) f(x + f(y) + xf{y)) = y + f{x) + yf(x) pro všechna x,y e S;
(ii) funkce f(x)/x je rostoucí v každém z intervalů -1<ж<0а0<ж.

(Velká Británie)

celé.
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6. Ukažte, že existuje množina A kladných celých čísel s následující vlast-
ností: Pro libovolnou nekonečnou množinu S prvočísel existuje к ^ 2
a dvě kladná celá čísla m G A, n £ A, jež jsou součinem к různých prvků
množiny S. (Finsko)

Řešení soutěžních úloh

1. Bez újmy na obecnosti můžeme předpokládat, že a\ < <22 < ... < am.

Uvažujme libovolné dva prvky щ, a,j takové, že ai + a;; U n. V takovém
případě je podle předpokladu ai + a\ — < ... < di+aj = a*, rostoucí
posloupnost j prvků uvažované množiny {ai, 0,2,..., am}, přičemž odpo-
vídající indexy k\,,kj patří do množiny {i + 1,...,m}, takže platí
j ^ m — i. Dokázali jsme tak, že jakmile a* + aj ^ n, pak i +j ^ m. Pro
každé i G {1,2,..., m} tedy platí a* + am+i_j ^ n + 1. Sečtením všech
m takových nerovností dostáváme

2(ai + a2 + • • • + am) ^ m(n + 1)

neboli
n -f 1CLi + 0,2 + ■■■ + d-m >

2m

Jiné řešení. Označme h nejmenší prvek množiny A = {«1,02,..., am}
a uvažme rozklad množiny A na podmnožiny A^ podle zbytků modulo ů,
kde Afc = {a G A: a = к (mod /1)}, 0 ^ к ^ h — 1. Pokud je mno-
žina Afc neprázdná, označme h& její nejmenší prvek, takže bude A^. = {/гд,.,
ůfc + ů,..., hk +ýfců}, kde jk je největší celé číslo takové, že hk +jkh ^ n.
Protože prvky z A& tvoří aritmetickou posloupnost, je jejich aritmetický
průměr roven průměru nejmenšího a největšího prvku a ten splňuje ne-
rovnosti

hk + (hk + jkh) ^ hk + (jk + l)h . n + 1> >
2 2 2

Protože výsledná nerovnost platí pro všechny neprázdné množiny Ak,
platí stejná nerovnost i pro aritmetický průměr prvků množiny A.

2. Protože trojúhelník ABC je osově souměrný podle osy АО, můžeme
bez újmy na obecnosti předpokládat, že bod Q leží uvnitř úsečky BM,
což zřejmě znamená, že bod E musí ležet na polopřímce AB za bodem В.
Dodejme, že pro Q = M je tvrzení úlohy zřejmé.

Nechť OQ _L EF. Podle předpokladu je úhel EBO pravý, proto body
O, Q, В, E leží na kružnici s průměrem EO. Obdobně dostáváme, že

85



body O, Q, С, F leží na kružnici s průměrem FO. Z rovnosti odpoví-
dajících obvodových úhlů nad společnou tětivou OQ obou kružnic tak
plyne (obr. 32) podobnost trojúhelníků EOF ~ BOC. Trojúhelník BOC
je však rovnoramenný, je tudíž rovnoramenný i trojúhelník EOF a Q
jakožto pata jeho výšky půlí základnu EF.

Nechť \QE\ = \QF\. Opišme kružnice trojúhelníkům EBQ, FCQ
a další průsečík obou kružnic označme X. Jelikož trojúhelník ABC je rov-

noramenný, platí \<EBQ\ = 180° — \<QCF\. Odtud plyne, že shodným
tětivám EQ a FQ v každé z obou opsaných kružnic přísluší týž středový
úhel. Jsou to tudíž shodné kružnice, a tak je také \<QEX\ = \<QFX\.
Trojúhelník EFX je tudíž rovnoramenný a QX je jeho výška, takže
QX J_ EF. To však znamená, že EX a FX jsou průměry uvažovaných
kružnic, a proto (podle Thaletovy věty) \<EBX\
Vidíme, že bod X je totožný s bodem O, proto OQ J_ EF.

\<FCX\ = 90°.

Jiné řešení. Předpokládejme opět, že bod Q leží uvnitř úsečky BM
a nechť \QE\ — \QF\. Uvažujme bod F' souměrně sdružený s bodem F
podle osy AM (obr. 33). Je tedy \OF\ — \OF'\, FF' || BQ, a protože Q je
střed strany EF, je BQ střední příčka trojúhelníku F'FE, tudíž \EB\ =
= \BF'\, a tak je OB výška rovnoramenného trojúhelníku EOF'. Vidíme,
že \EO\ = \OF'\ = \OF\, takže i trojúhelník EOF je rovnoramenný a OQ
je tím pádem jeho výška, tedy OQ J_ EF, jak jsme chtěli dokázat.
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К důkazu opačné implikace si stačí uvědomit, že daným bodem Q
prochází jediná přímka q kolmá na QO a jediná přímka p taková, že
polopřímky AB, AC na ní vytínají shodné úseky QE, QF (takový
bod F E AC musí ležet na obrazu přímky AB ve středové souměrnosti
podle Q). A z důkazu první implikace víme, že p = q.

Poznámka. Předchozí argument samozřejmě nezávisí na tom, kterou
ze dvou implikací dokážeme jako první. Uveďme ještě hezký argument
v případě, že jsme nejdříve dokázali implikaci QO _L EF =+ \QE\ — \QF\.
Za předpokladu \QE\ = \QF\ veďme bodem Q kolmici ke QO. Ta protne
polopřímky AB, AC v bodech E', F', pro něž tedy rovněž platí \QE'\ =
= \QF'\. Bod Q je tak společným středem úseček EF a E'F'. Kdyby byly
úsečky EF a E'F' různé, byl by EE'FF' rovnoběžník, což není možné,
protože AB, AC jsou různoběžky.

3. (a) Podívejme se, jak se mění hodnota funkce / při přechodu od к
ke k+1. Označme T množinu všech čísel, jejichž dvojkový zápis obsahuje
právě tři jedničky. Hodnota f(k) pak udává počet čísel z T v množině
{k+1, k+2,..., 2k}, zatímco f(k+1) počet čísel z T v množině {k+2,...,
2k, 2к +1,2к A- 2}. Všimněme si, že počet jedniček v dvojkovém zápisu
čísel к + 1&2к + 2 = 2(k + 1) je stejný, proto o případné změně hodnoty
f(k + 1) oproti f(k) rozhoduje jen číslo 2к + 1, tudíž

1, když 2k + 1 E T,
0, když 2k + 1 ^ T.

f(k + i)-f(k) = í (1)

Dvojkový zápis čísla 2k + 1 dostaneme z dvojkového zápisu čísla к přidá-
ním jedničky na konec, proto platí, že

f(k + 1) — f(k) = 1, právě když dvojkový zápis čísla к
obsahuje právě dvě jedničky.

(2)

Posloupnost /(1), /(2),... začíná nulou, a protože čísel, jejichž dvojkový
zápis obsahuje právě dvě jedničky, je nekonečně mnoho, obsahuje uvažo-
váná posloupnost všechna přirozená čísla.

(b) Z (1) vidíme, že funkce / je po částech konstantní. Má-li tedy
funkce / nabýt nějaké hodnoty m pro jediné k, musí jednotkový skok
nastat v к — 1 i v k, což podle (2) nastane, právě když obě čísla к i к — 1
mají ve svém dvojkovém zápisu právě dvě jedničky. Číslo к — 1 zřejmě
musí být liché, protože jinak by jeho dvojkový zápis končil nulou а к by
pak nutně mělo o jedničku víc. Jako liché číslo, jehož dvojkový zápis

87



obsahuje právě dvě jedničky, musí číslo к — 1 začínat a končit jedničkou,
mezi nimiž je skupina nul. Ta však nemůže být prázdná, protože jinak
bychom z (11)2 dostali (100)2- Číslo к — 1 proto musí být tvaru 2r + 1,
kde r ^ 2, neboli

к = 2r + 2, r ^ 2.

Obráceně pro každé takové к mají jak /с, tak к — 1 ve svém dvojkovém
zápisu právě dvě jedničky. Zbývá vyčíslit příslušnou hodnotu m — f(k).

Pro к = 2r je 2k = 2r+1, takže množina T П {k + 1, к + 2,..., 2A:}
je tvořena čísly, jejichž dvojkový zápis začíná jedničkou a na zbývajících
r místech má právě dvě jedničky. Pro jejich výběr máme (Q možností,
proto

/(2-)=(;)
Protože pro každé r ^ 2 má číslo 2r ve svém dvojkovém zápisu jednu

jedničku a číslo 2r + 1 dvě jedničky, je podle (2)

/(2r+1)-/(2r)=0 a f(2r + 2) - f{2r + 1) = 1.

Sečtením obou rovností dostáváme

v

/(2r + 2) = f(2r) + 1 r > 2.
2 +1’m =

To jsou všechny hledané hodnoty, pro něž má rovnice f(k)
jedno řešení.

Jiné řešení, (a) Označme t funkci, jež je rovna jedné právě pro všechna
přirozená čísla, jejichž zápis v dvojkové soustavě obsahuje právě tři jed-
ničky, a jinak je nulová. Z rozdílu množin {k + 2,..., 2k, 2k + 1, 2k + 2}
a {k + 1, к + 2,..., 2к} vyplývá, že

m právě

f(k + 1) = f(k) - t(k + 1) + t(2k + 1) + t(2k + 2).

Protože dvojkové zápisy čísel n a 2n se liší jen přidanou nulou na konci
druhého z nich, je t(2k + 2) = t(k + 1), a proto

f(k + l)-f(k) = t(2k + \). (3)

Funkce / je tedy neklesající, její přírůstek je nejvýše 1, /(1) = 0 a navíc
funkce / není shora omezená, protože /(2r) = (£) (to jsme už zdůvodnili
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v předchozím řešení). Funkce f tedy nabývá všech nezáporných celočísel-
ných hodnot.

(b) Vzhledem к uvedeným vlastnostem bude mít rovnice f(k) = m

jediné řešení к, právě když bude / v hodnotě к rostoucí, tj. když bude
platit

m-f(k-i)=f(k+i)~f(k) = i
což nastane, právě když bude

t(2k — 1) = t(2k + l) = 1.

Protože dvojkový zápis lichého čísla 2k — 1 — 2(к — 1) + 1 končí
jedničkou, musí mít 2{k — 1), a tedy i к — 1 ve svém dvojkovém zápisu
právě dvě jedničky. Dvojkový zápis čísla к— 1 ovšem nemůže končit nulou,
neboť pak by číslo 2(к — 1) končilo dvěma nulami, tudíž dvojkový zápis
čísla 2k + 1 = 2(k — l) + 3by celkem obsahoval čtyři jedničky. Vychází
tak, že dvojkový zápis čísla к — 1 je sestaven ze dvou jedniček a případné
skupiny nul mezi nimi, tudíž к — 1 = 2r + l neboli к = 2r + 2. Pro takové к
pak vychází 2k +1 = 2r+1 + 5, což je číslo se třemi jedničkami v dvojkové
soustavě, právě když r ^ 2.

Pro odpovídající hodnoty m = f(k) tak podle (3) máme

f(2r + 2) = /(2r + 1) + í(2r+1 + 3) =

= /(2r) + í(2r+1 + 1) + í(2r+1 + 3) =

,F-

m =

/•
r > 2

protože pro r ^ 2 je í(2r+1 + 1) = 0 a t(2r+1 + 3) = 1. Tím je hledaná
množina popsána.

4. Všimněme si, že čísla mn — 1 a m3 jsou nesoudělná. Číslo mn— 1 proto
dělí n3 + 1, právě když mn — 1 dělí m3{n3 + 1)
neboli mn — 1 dělí m3 + 1. Ačkoli to nebylo na první pohled zjevné, je
úloha vůči neznámým man symetrická, proto budeme dál bez újmy na
obecnosti předpokládat, že ш ^ n.

V případě m = n dostáváme

3_3
— 1 + m3 + 1m n

m3 + 1 n3 + 1 1
— n +

n2 — 1mn — 1 n — 1

To je číslo celé, právě když n = 2.
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n3 + 1 2
Nechť je nyní m > n. Pokud n 1, má být číslo

mn— 1 m — 1
celé, což nastane jen pro m = 2 nebo m = 3.

Zbývá rozebrat případ m > n ^ 2. Je však n3 + 1 = 1 (mod n)
zatímco mn — 1 = — 1 (mod n). Proto pro případný celočíselný podíl
musí platit

n3 + 1
= kn — 1

mn — 1

pro vhodné celé k. Pak ovšem

n3 + 1 1
kn — 1 < = n +

n2 — 1 n — 1

neboli
1

(к — 1 )n < 1 +
n — 1

(mn — l)(n — 1). Máme takOdtud plyne, že к — 1, a tedy n3 + 1

n3 + 1 n3 + n 2
neboli m = n + 1 ++ 1 =mn =

n — 1 ’

což je celé jen pro n = 2 nebo n = 3. V obou případech vychází m = 5.
Úloha má tedy celkem devět řešení (2,2), (2,1), (3,1), (5,2), (5,3),

(1,2), (1,3), (2, 5) a (3, 5), přičemž poslední čtyři jsme získali díky syme-
trii mezi m, n.

n — 1 n — 1

5. Z podmínky (ii) v zadání plyne, že rovnice f(x) = x může mít nejvýše
tři řešení, jedno na intervalu (—1,0), jedno rovné 0 a jedno na intervalu
(0, oo). Dokažme sporem, že rovnice ani v jednom z uvedených intervalů
(—1,0) či (0,oo) řešení nemá.

Necht и E (—1,0) U (0, oo) je takové, že f(u) = u. Dosadíme-li x =
= у = и do dané funkcionální rovnice, dostaneme f{u2 + 2u) = u2 + 2u.
Kvadratická funkce u2 + 2u, jak se lze snadno přesvědčit, zobrazuje každý
z intervalů (—1,0) a (0, oo) do sebe. Proto musí platit u2 + 2u — u. Ovšem
ani jeden z kořenů 0 a —1 této kvadratické rovnice ve sjednocení obou
intervalů neleží. Jediné řešení rovnice f(x) = x tudíž může být x = 0.

Dosazením x = у do dané funkcionální rovnice však pro všechna x E S
dostáváme

f(x + (x + 1 )f(x)) = x + (1 + x)f(x).
Proto musí platit x -f (1 + x)f(x) — 0 neboli

x

(1)/0) =
x + 1
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Ještě ověříme zkouškou, že nalezená funkce vyhovuje zadaným pod-
mínkám. Funkce (1) je evidentně rostoucí na S a pro všechna x,y € S
splňuje

_ x{\ + y) = у — x
x + 1 x+1

У + (1 + y)f(x)

a

x-y

У + 1f(x + {l+x)f(y)) =/(^qpy) У — x
x — у

1 H у
У + 1

x + l

6. Nechť A je množina všech přirozených čísel tvaru x — qiq2 ... qQl, kde
qi < Q2 < ■ ■ ■ < Qqi jsou jakákoli prvočísla v libovolném (tedy prvočísel-
něm) počtu q\. Jinými slovy

A = {2-3,2-5,2-7,.. .}U{3-5-7,3-5-11,.. .}U
U{5-7-11 • 13• 17,...}U...

Snadno se přesvědčíme, že pro libovolnou nekonečnou množinu prvočísel
S = {p\iP2iP2,i ■ ■ •}, kdepi < p2 < рз < ■.splňuje množina A podmínky
úlohy. Stačí zvolit к = p\ ^ 2, m = p\P2 ■ ■ - Pk a n — P2P3 ■ ■ -Pk+i-

Jiné řešení. Vytvořme množinu A následovně: Pro každé přirozené
к ^ 2 zařadíme do A právě ta přirozená čísla x, pro která x = P1P2 ■ • - Pk,
kde pi,p2, • • • iPk je к navzájem různých prvočísel, jejichž součet je
dělitelný k. Pro libovolnou nekonečnou množinu prvočísel S označme
q — minS. Protože množina S je nekonečná, určitě v ní najdeme q prvočí-
sel PhP2, ■ ■ ■ ,Pq se stejným zbytkem mod q (podle Diriehletova principu
stačí v množině S probrat q(q — 1) + 1, nebo dokonce jen (q — l)2 + 1
čísel, poněvadž žádné další prvočíslo už nemá nulový zbytek mod q).

Nyní stačí vzít к — q, m = p\P2 ■ ■ - Pk a n — qp\P2 • • - Pk-1- Zřejmě
m G A, protože q čísel se stejným zbytkem mod q má součet dělitelný q,
an ^ A, protože součet q—1 čísel se stejným nenulovým zbytkem dělitelný
číslem q být nemůže.

Poznámka. Všimněme si, že úloha se týká jen čísel, jež ve svém roz-
kladu na prvočinitele postrádají vyšší mocninu nějakého prvočísla. Kam
budou patřit ostatní složená čísla, nehraje žádnou roli. Je asi zřejmé, že
počet možností, jak požadovanou množinu A sestrojit, není omezen.

91



6. mezinárodní olympiáda v informatice

Šestá mezinárodní olympiáda v informatice ЮГ94 (International Olym-
piad in Informatics) se konala od 3. do 10. července 1994 ve městě
Haninge nedaleko hlavního města Švédská Stockholmu. Olympiády se
zúčastnilo celkem 189 soutěžících (z toho 6 dívek) ze 49 zemí.

Mezinárodní olympiáda v informatice je organizována jako soutěž
jednotlivců, každá země na ni může vyslat delegaci tvořenou dvěma ve-
doucími a nejvýše čtyřmi soutěžícími. Vedoucí delegace se automaticky
stává členem mezinárodní jury, jeho zástupce se po dobu soutěže stará
o soutěžní družstvo. Soutěžícími jsou studenti středních škol, případně
čerství absolventi v příslušném školním roce, ale ve věku do 19 let. Sou-
těž je řízena mezinárodním výborem IOI a je pořádána pod patronací
UNESCO.

Naši soutěžící se zúčastnili všech předchozích ročníků soutěže a po-
každé dosáhli velmi dobrých výsledků. Společné československé družstvo
nás reprezentovalo na prvních čtyřech ročnících IOI v letech 1989-92,
loni jelo na ЮГ93 do Argentiny poprvé samostatné české a samostatné
slovenské družstvo. Reprezentační družstvo pro mezinárodní olympiádu
v informatice je každoročně vybíráno na základě výsledků, kterých stu-
denti dosáhli v kategorii P příslušného ročníku matematické olympiády.
Pro účast na IOI může být vybrán pouze úspěšný řešitel celostátního kola.
Při výběru ovšem nerozhoduje pouze dosažené absolutní pořadí v celo-
státním kole. Ústřední výbor matematické olympiády přihlíží i к tomu,
jakých výsledků jednotliví soutěžící dosáhli při řešení těch úloh 2. a 3. kola
kategorie P, které jsou zaměřeny na tvorbu programů a jsou tedy bližší
charakteru úloh, jaké se zadávají na IOI. Dále se při výběru berou v úvahu
také výsledky dosažené v loňském ročníku MO kategorie P, případně na
loňské IOI.

České reprezentační družstvo pro ЮГ94 odcestovalo do Švédská v ná-
sledujícím složení: Martin Mareš, student 3. ročníku gymnázia U libeň-
ského zámku v Praze 8, Daniel Škarda, absolvent gymnázia Zborovská
v Praze 5, Robert Špalek, student 2. ročníku gymnázia na tř. kpt. Jaroše
v Brně, a Petr Novák, absolvent gymnázia na tř. kpt. Jaroše v Brně.
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Vedoucím delegace byl jmenován doc. RNDr. Václav Sedláček, CSc.,
z přírodovědecké fakulty Masarykovy univerzity v Brně, jeho zástupcem
RNDr. Pavel Tdpfer, CSc., z matematicko-fyzikální fakulty Univerzity
Karlovy v Praze.

Vlastní soutěž byla již tradičně soustředěna do dvou dnů. V kaž-
dém soutěžním dnu byly studentům zadány к řešení tři úlohy. Soutěžní
úlohy byly zvoleny vždy v den jejich řešení mezinárodní porotou slože-
nou z vedoucích delegací všech zúčastněných států. Soutěžící pracovali
samostatně u přidělených osobních počítačů typu PC 486, v každém sou-
těžním dnu měli na práci 5 hodin čistého času. Mohli používat některý
ze čtyř předem oznámených programovacích jazyků, jimiž byly Turbo
Pascal, Borland C++, LCN Logo a Quick Basic. Výsledné programy pak
byly za přítomnosti studenta a vedoucího delegace testovány koordiná-
tory. Hodnotila se jak jejich správnost, tak také rychlost výpočtu pro
různá testovací data. Příliš pomalé programy, které nedokázaly vyřešit
úlohu ve stanoveném a předem známém časovém limitu, byly hodno-
ceny jako nevyhovující. Letos bylo poprvé využito automatické testování
a hodnocení studentských programů pomocí testovacích a vyhodnoco-
vacích programů připravených předem organizátory soutěže. Na základě
výsledků těchto testů byla řešení úloh obodována. Každý den mohl sou-
těžící získat maximálně 100 bodů. Celkové výsledky byly stanoveny jako
součet bodových zisků získaných v obou soutěžních dnech.

Letošní soutěžní úlohy se ukázaly být velmi obtížné a stanovený
způsob hodnocení vytvořených programů byl značně přísný. Průměrná
dosažená bodová ohodnocení jednotlivých úloh byla proto o dost nižší než
v minulých letech. Prvních 101 soutěžících z přítomných 189 bylo oceněno
některou z medailí. Celkově bylo uděleno 16 zlatých medailí (za bodový
zisk 195-148 bodů), 35 stříbrných medailí (za 145-96 bodů) a 50 bronzo-
vých medailí (za 95-65 bodů). Naši studenti navázali na dobrou tradici
a opět dosáhli vynikajících výsledků. Martin Mareš získal zlatou medaili
(162 bodů), Robert Špalek (121 bodů) a Daniel Škarda (101 bodů) zís-
kali medaile stříbrné a Petr Novák medaili bronzovou (72 bodů). Soutěž
družstev nebyla na IOI vyhlášena a ani žádné pořadí družstev nebylo
publikováno. Naše výsledky v soutěži nás ale opět řadí mezi několik nej-
lepších družstev na světě. Všichni naši reprezentanti byli oceněni některou
z medailí.

Mimo vlastní soutěž připravili organizátoři pro všechny účastníky bo-
hatý doprovodný program. К nejzajímavějším akcím patřila vyhlídková
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plavba lodí Stockholmem, prohlídka muzea historické lodi Vasa a celo-
denní výlet parníkem na ostrov Uto.

Celá olympiáda byla švédskými organizátory velmi pečlivě připrave-
na, počínaje jejím slavnostním zahájením ve výukovém středisku stoč-
kholmské university Riksápplet a konče slavnostním předáváním medailí
vítězům soutěže na stockholmské radnici v sále, ve kterém jsou každo-
ročně udělovány Nobelovy ceny nejlepším vědcům světa.

Příští, v pořadí sedmá mezinárodní olympiáda v informatice se bude
konat ve dnech 26.6.-3.7. 1995 v Nizozemí ve městě Eindhoven. Přítomní

zástupci organizátorů příštího ročníku IOI pozvali na tuto olympiádu
všechny země zúčastněné v letošním ročníku. Pořadatelé počítají s roz-
šířením počtu členů soutěžních družstev na pět studentů a dva vedoucí.
Podmínkou účasti pátého soutěžícího je nominace alespoň jedné dívky do
družstva. Další ročníky IOI uspořádají postupně Maďarsko v roce 1996,
Jihoafrická republika v roce 1997, Portugalsko v roce 1998, Turecko v roce

1999, Čína v roce 2000, USA nebo Thajsko nebo Irsko v roce 2001 а Ко-
rea v roce 2002. Nejbližší ročník středoevropské regionální olympiády
v informatice uspořádá v květnu 1995 Maďarsko.

Účast na takovéto světové soutěži představuje pro každého nejen ná-
ročný úkol reprezentovat co nejlépe naši zemi v zahraničí, ale je také
příležitostí podívat se někam do světa, poznat mnoho zajímavých míst
i lidí a třeba také vyhrát některou z hodnotných cen. Každý ze současných
i budoucích studentů středních škol, kdo se více zajímá o programování,
má možnost dostat se za rok nebo v některém z dalších let na IOI. Stačí

jenom začít řešit úlohy kategorie P matematické olympiády, věnovat pří-
pravě na olympiádu potřebné úsilí a část svého volného času a pak také
mít trochu štěstí, jako ostatně v každé soutěži. Zcela bez šance je ale
jenom ten, kdo to vůbec nezkusí.

Texty soutěžních úloh

1. Trojúhelník Obrázek 34 znázorňuje trojúhelník čísel. Napište program,

který spočítá maximální součet čísel podél cesty začínající v horním vr-
cholu trojúhelníku a končící někde na jeho spodní základně.

7

3 8

08 1

7 4 42

4 5 2 6 5 Obr. 34.
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о V každém kroku cesty můžete jít šikmo dolů směrem doleva nebo
šikmo dolů směrem doprava.

i> Počet řádků v trojúhelníku je větší než 1 a menší nebo roven 100.
> Všechna čísla v trojúhelníku jsou celá z rozmezí od 0 do 99.

Vstupní data. Vstupní soubor INPUT.TXT obsahuje v prvním řádku
počet řádků trojúhelníku. Na dalších řádcích souboru jsou uvedena čísla
tvořící jednotlivé řádky trojúhelníku. Pro výše uvedený příklad trojúhel-
niku má vstupní soubor INPUT. TXT následující tvar:

5

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

Výstupní data. Do výstupního souboru OUTPUT.TXT je zapsáno jedno
celé číslo udávající nalezený maximální součet. Pro náš příklad bude vý-
stupni soubor OUTPUT.TXT obsahovat:

30

2. Hrad Obrázek 35 znázorňuje plánek hradu. Napište program, který
určí

1) kolik má hrad místností,
2) jak velká je největší místnost,
3) která jedna zeď hradu se má odstranit, aby vznikla co největší míst-

nost.

Hrad se skládá ze sítě mn (m ^ 50, n ^ 50) jednotkových čtvercových
modulů. Každý z těchto modulů může mít žádnou, jednu, dvě, tři nebo
čtyři zdi.

1 2 3 4 5 6 7
N

1

2 W* -> E
3

4 S—>• Obr. 35.

Vstupní data. Plánek je uložen ve vstupním souboru INPUT.TXT a je
zakódován pomocí čísel. Každému modulu odpovídá jedno číslo.

> V souboru je uložen v prvním řádku počet modulů ve směru sever-jih
a ve druhém počet modulů ve směru západ-východ.
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t> V následujících řádcích je každý modul zakódován jedním číslem z roz-
mezí od 0 do 15. Toto číslo je rovno součtu kódů stěn ohraničujících
modul:

1 = západní stěna
2 = severní stěna

4 = východní stěna
8 = jižní stěna.

Vnitřní zdi jsou tedy uvedeny dvakrát; například jižní stěna mo-
dulu 1,1 je zároveň severní stěnou modulu 2,1.

\> Zadaný hrad má vždy nejméně dvě místnosti.
Vstupní soubor INPUT. TXT pro příklad z obr. 2:

4

7

11 6 11 6 3 10 6

9 6 13 5 15 5

1 10 12 7 13 7 5

13 11 10 8 10 12 13

7

Výstupní data. Výstupní soubor 0UTPUT.TXT obsahuje tři řádky. Na
prvním řádku je uveden počet místností, na druhém je velikost největší
místnosti (měřena počtem jednotkových modulů) a na třetím je návrh,
kterou zeď je třeba odstranit. Odstraňovaná zeď je určena takto: nejprve
řádek modulu, potom sloupec modulu a nakonec světová strana udávající
stěnu v modulu pomocí anglické zkratky světové strany (viz obr. 2).

V našem příkladě bude výstupní soubor 0UTPUT.TXT obsahovat:

5

9

4 1 E

Poznámka: „4 1 E“ je jednou z více možností správného řešení.

3. Prvočísla Na obr. 36 je znázorněn čtverec složený
z pěti řádků a pěti sloupců, přičemž v každém políčku 3 3 2
čtverce je zapsána jedna dekadická číslice. Každý řádek, *3 q 3
každý sloupec a každou z hlavních diagonál čtverce bu- 4~“q
deme číst jako pěticiferné prvočíslo. Řádky čtverce se ”3 3 3
čtou zleva doprava. Sloupce se čtou shora dolů. Obě di-
agonály se čtou zleva doprava.

1 1 3 5 1

0 3

2 3
3 3
1 1

Obr. 36
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Napište program, který na základě dat obsažených ve vstupním sou-
boru INPUT. TXT vytváří takové čtverce.

o Všechna prvočísla musí mít stejný ciferný součet (v našem příkladě
je to 11).

o Číslice v levém horním rohu čtverce je předem pevně dána (v našem
příkladě je to 1).

> Stejné prvočíslo může být v jednom čtverci obsaženo vícekrát.
> Má-li úloha více řešení, program musí nalézt všechna řešení.
t> Pěticiferné prvočíslo nemůže začínat vedoucími nulami, tzn. 00003

není pěticiferné prvočíslo.
Vstupní data. Program čte data ze vstupního souboru INPUT.TXT,

který obsahuje dva řádky. Na prvním je uveden ciferný součet prvočísel,
na druhém řádku je číslice z levého horního rohu čtverce. Můžete předpo-
kládat, že pro daná testovací data vždy existuje řešení. Pro náš příklad
vypadá vstupní soubor INPUT. TXT takto:

11

1

Výstupní data. Program zapíše pro každé nalezené řešení pět řádků
do výstupního souboru OUTPUT.TXT. Každý řádek řešení je tvořen pěti
ciframi prvočísla. Výše uvedený příklad má tři řešení, takže soubor
OUTPUT. TXT bude obsahovat (prázdné řádky mezi jednotlivými řešeními
jsou nepovinné):

113 5 1

1 4 0 3 3

3 0 3 2 3

5 3 2 0 1

13 3 13

113 5 1

3 3 2 0 3

3 0 3 2 3

1 4 0 3 3

3 3 3 1 1

13 3 13

1 3 0 4 3

3 2 3 0 3

5 0 2 3 1

1 3 3 3 1
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4. Hodiny Na obr. 37 je devět ciferníků hodin uspo-

řádaných ve tvaru tabulky 3x3. Cílem je, aby
všechny ukazovaly 12 hodin. Máte 9 dovolených
způsobů (budeme je nazývat tahy) na změnu nasta-
vení polohy ručiček. V každém kroku si zvolíte tah
určený číslem 1 až 9. Pokud si ciferníky po řádcích
zleva doprava označíme А, В, C, D, E, F, G, H, I,
pak tahem 1 až 9 přiřadíme tato otočení:

O O O
ABC

O O O
D E F

O G O
G H I

Obr. 371: ABDE 2: ADG

4: ABC

7: BCEF 8: CFI

3: DEGH

5: BDEFH 6: GHI

9: EFHI

Podle takto zvoleného čísla pootočíte o 90 stupňů (ve směru otáčení
hodinových ručiček) ručičky těch ciferníků, které jsou označeny.

Vstupní údaje. Ze souboru INPUT.TXT přečtěte 9 čísel. Tato čísla
udávají výchozí pozici na cifernících: 0 znamená 12 hodin, 1 znamená
3 hodiny, 2 znamená 6 hodin a 3 znamená 9 hodin.

Výstupní údaje. Do výstupního souboru OUTPUT.TXT napište nějakou
nejkratší posloupnost tahů, která nastaví všechny ciferníky na 12 hodin.
Pokud má úloha více řešení, vypište pouze jedno z nich.
5. Autobusy Na autobusové zastávce staví několik autobusových linek.
Člověk přijel na zastávku přesně ve 12:00 hod. Zůstal zde od 12:00 do
12:59 hod. a zaznamenával si časy příjezdů všech autobusů na zastávku.

> Autobusy každé linky přijíždějí na zastávku po celou dobu od 12:00
do 12:59 v pravidelných intervalech.

t> Časy příjezdů jsou dány v celých minutách jako celá čísla od 0 do 59.
d> Autobusy každé linky staví na zastávce v uvažovaném časovém inter-

válu alespoň dvakrát.
> Počet autobusových linek v testovacích příkladech bude nejvýše 17.
> Autobusy různých linek mohou přijet na zastávku současně.
> Více autobusových linek může mít stejný čas prvního příjezdu na za-

stávku anebo stejný interval. I když mají dvě autobusové linky stejný
čas prvního příjezdu a stejný interval, jedná se o odlišné linky a obě
musí být uvedeny.
Určete nejmenší počet autobusových linek, které musí zastavovat na

autobusové zastávce, aby řešení vyhovovalo vstupním datům. Pro každou
autobusovou linku vypište čas prvního příjezdu autobusu na zastávku
a interval mezi příjezdy.
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Vstupní data. Vstupní soubor INPUT.TXT obsahuje nejprve číslo N
(N ^ 300), které udává, kolik autobusů přijelo na zastávku. Následují
časy příjezdů všech N autobusů ve vzestupném pořadí. Příklad:

17

0 3 5 13 13 15 21 26 27 29 37 39 39 45 51 52 53

Výstupní data. Výstupní soubor 0UTPUT.TXT obsahuje údaje o každé
autobusové lince. Na jednom řádku jsou uvedeny údaje vždy o jedné
lince. Každý z těchto řádků obsahuje čas příjezdu prvního autobusu na
zastávku a interval mezi příjezdy autobusů této linky v minutách. Nezá-
leží na tom, v jakém pořadí budou jednotlivé autobusové linky na výstupu
uvedeny. Pokud existuje více řešení, uveďte pouze jedno z nich. Pro výše
uvedený příklad vstupních dat bude výstupní soubor obsahovat:

0 13

3 12

5 8

6. Kruh Máte kruh rozdělen do sektorů. Jsou dány tři čísla: n (n ^ 6),
m (m 20) а к (k ^ 20), kde n je počet sektorů. Napište program, který
vybere a umístí celá čísla do každého sektoru; tato čísla mají být větší
nebo rovno k. Po naplnění sektorů můžete vytvářet nová čísla použitím
čísel z jednoho sektoru nebo sečtením čísel ze dvou nebo více sousedních
sektorů.

Z nově vytvořených čísel máte vytvořit souvislou posloupnost všech
celých čísel mezi m a i (tj. m, m + 1, m + 2,..., г). Úkolem programu
je vybrat čísla do sektorů tak, aby největší číslo posloupnosti (г) bylo
největší možné.

Vstupní údaje. Vstupní soubor INPUT.TXT obsahuje tři celá čísla
(n, m, k).

Výstupní údaje. Výstupní soubor OUTPUT.TXT musí obsahovat:
t> největší číslo v posloupnosti (i), které může být vygenerované,
t> všechny uspořádání čísel do kruhových sektorů, které vytvářejí po-

sloupnost od m do i (do každého řádku jedno). Uspořádání čísel
zapište jako seznam začínající nejmenším číslem (které nemusí být
pouze jedno).
Uvědomte si, že pokud by (1123) bylo řešením, musíte vypsat i se-

známy (1321), (1231) a (1132).
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První ročník Středoevropské olympiády v informatice

Na základě velmi dobrých zkušeností s Mezinárodní olympiádou v infor-
matice (International Olympiad in Informatics — IOI) se v roce 1993
zainteresovaní pracovníci ze střední a jižní Evropy rozhodli pořádat na-
víc regionální olympiádu v informatice. Její charakter odpovídá duchu
IOI. Jde tedy o soutěž jednotlivců. Účastní se jí z každého pozvaného
státu oficiální delegace, složená z vedoucího, jeho zástupce a 4 soutěžících.
Přitom je ponecháno na rozhodnutí pozvané strany, zda na olympiádu
vyšle studenty určené pro daný ročník IOI, nebo dá příležitost dalším ta-
lentovaným studentům. Organizace prvního ročníku se iniciativně ujali
organizátoři z Rumunska.

První ročník regionální olympiády se konal na Institutu informatiky
v rumunské Cluji ve dnech 26. května až 1. června 1994. Soutěžící z České
republiky byli vybráni na základě výsledků letošního celostátního kola
matematické olympiády v kategorii programování s tím, že naši nejlepší
studenti byli nominováni na VI. ročník IOI do Stockholmu. Naše druž-
stvo tak bylo složeno z perspektivních mladších studentů, kteří se mohou
účastnit příštích ročníků IOI a tvořilo tak jistou reservu, která jela na

regionální olympiádu pro zkušenosti. Vedoucím družstva byl MŠMT ČR
jmenován doc. RNDr. Václav Sedláček, CSc., z Masarykovy university
a jeho zástupkyní RNDr. Miroslava Kozubíková, profesorka gymnázia na
tř. kpt. Jaroše v Brně.

Regionální olympiády, pečlivě připravené rumunskými organizátory,
se zúčastnila oficiální družstva z osmi zemí: České republiky, Chorvatska,
Maďarska, Polska, Jugoslávie, Moldávie, Turecka a pořádajícího Rumun-
ska. Většina z nich sem vyslala studenty, kteří se zúčastní i letošního IOI,
a tato soutěž byla považována z jejich strany za formu přípravy. Pořádá-
telé využili výhody domácího prostředí a nominovali další tři neoficiální
družstva.

Regionální soutěž v informatice byla organizována za přispění celé
řady sponzorů. Oficiální zahájení i slavnostní vyhlášení výsledků pro-
bělilo na městské radnici za přítomnosti primátora. Celý její průběh byl
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sledován místními sdělovacími prostředky. Pracovníci katedry informa-
tiky z university v Cluji pracovali ve vědeckém výboru olympiády, který
garantuje její odbornou úroveň a učitelé informatiky z rumunských střed-
nich škol s nevšedním zájmem působili jako hodnotitelé studentských
softwarových produktů.

Každý soutěžící řešil 6 úloh, z nichž každá byla hodnocena maxi-
málně 100 body. Na základě počtu dosažených bodů, udělených podle
výsledků testů vytvořených softwarových produktů na počítači, pak mezi-
národní porota, složená z vedoucích družstev, udělila 3 zlaté, 7 stříbrných
a 8 bronzových medailí. Soutěžící z České republiky dosáhli následujících
výsledků: Jiří Hájek, student gymnázia ve Zborovské ulici v Praze, získal
druhý nejvyšší počet bodů 522 a zlatou medaili. David Stanovský, student
gymnázia v Pardubicích, získal s 372 body bronzovou medaili. Soutěže
se dále zúčastnili Jan Kratochvíl z gymnázia U libeňského mostu v Praze
a Petr Kaňovský z gymnázia na tř. kpt. Jaroše v Brně.

S ohledem na přípravný charakter soutěže z naší strany lze výsledky
hodnotit jako dobré. Pokud budeme chtít v budoucnu lépe uspět na

podobných soutěžích, bude nezbytné zvýšit zainteresovanost učitelů střed-
nich škol na přípravě studentů a nespoléhat pouze na talent a píli doslova
několika jedinců.

Účastníci olympiády jednoznačně ocenili přínos této olympiády a roz-
hodli o konání jejího příštího ročníku. Bude uspořádán v podobném
termínu jako letos v Maďarsku, které v roce 1996 bude organizátorem
i 8. ročníku IOI.

V průběhu olympiády byl zorganizován seminář o studijních plánech
informatiky a o přípravě učitelů informatiky pro střední školy. Příspěvek
o přípravě učitelů informatiky v České republice byl vyslechnut s velkým
zájmem. Systém výchovy a výuky informatiky na středních školách v Ru-
munsku je dle našeho názoru na velice solidní úrovni. Vybavenost škol
výpočetní technikou je mimo jiné i díky nadaci Soros překvapivě dobrá.
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