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Piedmluva

Védomosti  predpoklddané pro porozuméni této kniZce jsou
zcela elementdrni a v podstaré vlastni vSemu Zivému. Napr. pes
nebo zajic utikd za kotisti nebo pred nepritelem vidy pokud mogno
primolate, nebot zajisté znd trojuhelnikovou nerovnost. Také
kazdd liska vi, Ze kdyZ slepice jsou v kurniku a kurnik ve dvore,
pak slepice museji byt ve dvore (transitivita inkiuse), a nehledd
je jinde. Nejhezi kvéty byvaji soumérné kolem stiedu. Onomu po-
divuhodnému tddu podiéhali i starofecti myshitelé, kdyg proné
studovali tez kuZelové plochy rovinou a objevili elipsu. A o dva
tisice let pozdéji se ukdzalo, Ze drdhami naSeho i jinych svéti
Jsou vlastné elipsy. Taro vzruSujici harmonie prirody probouzi
v Clovéku cit, ktery nazyvdme matematikou. A prdvé pro takového
Ctendre, kterého zalind matematika zajimat, je napsdina tato
kniZka.

Na obecné pristupné virooni pokusili jsme se v ni naznacit
Jisté charakteristické proky matematického mysleni. K tomu se
vyborné hodi nékterd témata z dosavadnich matematickych olym-
pidd naich 1 mezindrodnich. Doplnili jsme je ovSem ¥adou dalSich
prikladii v podobném duchu. Presto vSak si myslime, Ze tento
delikdrni 1ikol nebyl snadny a samoztejmé mohou se vyskytnout
ndzory na to, jak jsme jej realizovali.

Snazili jsme se, aby byly optimdlné zastoupeny viechny slogky
tzv. elementdrni matematiky (aritmeticko-algebraickd, geomet-
rickd, funkéni, logickd, numerickd, kombinatorickd, koneénd i ne-
konecnd, abstrakini i ndzornd) a zdiraznéna jejich vzdjemnd
jednota (viz napt. teSeni dloh 3, 15, 35, 47, 59, 62, 69, 70,
71, 78, 83, 87, 88, 96, 97, 100, 102, 103, 104, 105, 106, 107,
109, 110, 113 aj.). Rovnég metody ditkazii (konstruktioni i exis-
tencni, pocetni 1 geomerrické, Cisté logické, piimé &1 nepiimé ard.)
mognd zaldtelnika Casto prekvapi. Toto jsme povagovali za
ditlezité, nebor tyto slogky & metody jakoZ i jejich nejrozmani-
t¢j5i kombinace se podivuhodné zobectiuji v ohromné a neustdlého
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vyvoje schopné strukture soucasné matematiky. Vznikly nové,
znacné bohatsi a zajimavéjsi obory. Neni viak té£ké rozpoznat
tieba v téch z nejuyznamnéjSich pirvodni geometrické ideje. Proto
sdilime presvédéeni, Ze Ctend¥, maje na védomi principy a zd-
klady, z nichg matematika zalala vyristat, bude se moci sprdv-
néji orientovat v jeji dneSni budové. TéZ proto, fe mmohé dnes
centrdlni pojmy a metody jsou, jak jsme jig naznacili, vlasiné
pfirozenym zobecnénim ditvéjsich predstav. Z téchto dirvodit
(a také s ohledem na ostarni védy a techniku) pokldddme zvolenou
tématiku za zvldsté vhodnou a nad jiné osvédéenou na tvod pred
vy§§im studiem.

Mdme viak pro to jesté jedno ospravedinéni. Aby néjakd véta
mohla zaujmout v matematice vyznamnéjsi misto, musi byt nejen
pravdivd, ale jesté také uZiteCnd, zajimavd a ,krdsnd‘. Jeden
2 velkych matematiki kdysi prozradil, Ze se vEdy snagil spojovat
v matematice pravdu s krdsou, ale kdykoli musel volit jednu nebo
druhou, volil zpravidla krdsu. Skutecné, esteticky smysl jakoZto
vyraz vseobecné touhy po harmonii byvd dilleitym Cinitelem
v touréi prdci. Domnivdme se, Ze se ndin podaiilo alespori né-
kterymi priklady a ditkazy vyjddfit hlubokou esteticnost mate-
matického zpiisobu mysleni. A jestlife si vzpomenete, jak ma-
tematika vzmkla, pak vdm bude jasné, odkud se v ni vzala
sama spravedinost a jesté tolik krdsy.

Odrtud prameni téZ obecnéjsi vychovny vyznam této védy. A je
také nasnadé, jak to prijde, Ze vysledky matematiky jaksi dobie
zapadaji do svéta, ktery pozorujeme, a tim pfindSeji neocenitelny
usitek ostatnim snahdm Elovéka.

Chtéli bychom viak varovar pred idealizovdnim matematiky.
Soudime, e Zddny model pozorovanych skutecnosti, tedy ani
matematika, nemiife ddvat vérny obraz svéta tieba uz jen proto,
Se zajisté neni uplny (neobrdgi viechny vlastnosti vesmiru). A to
je dobfe, nebot tak ziistdvaji neodhalena mnohd tajemstvi. Na
druhé strané vSak nelze popf¥it, Ze jig sama analyza zdkonitosti
o rdmci matematiky mige leccos napovédét.

vy,

Vratme se k obsahu nynéjsi knizky. Jednotlivymi vilohamz, které



jsme vybrali, je mogno se zabyvat celkem v libovolném poradi.
T¥icet diumysinéjsich jsme oznacili hvézdickou. Ke kaZdé jsme
PFipojili nejméné jedno ¥eSeni a pop¥. dalsi pozndmky. Ctendiiim
vsak doporuéujeme, aby se vidy sami snagili najit veSeni anebo
si alespori promysleli smysl a problematiku ilohy, dffve neZ si
veSeni prohlédnou. Proto také wvddime mejprve jenom zaddni
iloh a ag potom vie ostatni. Vérime, Ze pro clovéka nejcenné)si
jsou vlastni silou wvybojované zdpasy a prejeme tudif Ctendfi
hodné trpélivosti na obtiznéjsich mistech této kniky.

V' pozndmkdch, které se bezprostiedné po nékterych ulohdch
nabizeji, je mozno se jakoby mimochodem a v pFihodnou chvili
dovédér o SirSich souvislostech. Zaméfili jsme se zejména na tyto
okruhy otdzek: konvexni funkce, vlastnosti Cryfsténmii, geometrie
miiZovych bodi, teorie mnozin, kombinatorickd geometrie, pojem
limity a kompaktnosti. Také v nich miigete najit Fadu feSitel-
skych trikii, jimig ostarné hyvi snad kagdd strdnka a které mog-
nd nékomu pomohou vyhrdt matematickou olympiddu, jestlize se
Ji zucastni. V' tomto smyslu tedy prehled 113 iloh vytisténych
v proé Cdsti nevystihuje piné obsah knigky. Dokonce v pozndmce
za pr. 49 se zmiriujeme o jednom problému, jehoZ veSeni ndm
neni zndmo. Koho zajimd problém nekonelna, necht si precte
napt. ulohu 107 a pozndmky, které ndsleduji za jejim fFeSe-
nim.

Existuji ovsem 1 jiné populdrné védecké knizky vesp. Clanky
vhodné k premysleni. Na nékteré odkazujeme v zdvéru. Lze totig
predpoklddat, Ze stupen vyspélosti ziskany svédomitym prostu-
dovdnim alespori Cdsti materidlit, které zde predkldddme, umozni
Ctend¥i pristoupit mkoli bez nadéji ke studiu dalsi vdZnéjsi lite-
rarury.

Vybranymi priklady neminime nikoho ucit absolutni dokona-
losti v teSeni olympiskych uloh, ponévads dosageni takového
cile se ndm nezdd redlné a pro dalsi rozvoj mladého clovéka ami
Zddouci. Prosime jen, aby C{tend¥ mepodcerioval ideje obsagené
v této knigce. Nebot nejmoudiessim muziim naSeho tisicileti po-
mohla prdvé euklidovskd matematika a z ni plynouci filosofie
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k principidlnim objeviim, jimg jako Fddnym jinym wvdélime za
moznost védeckého pozndni.

Pravda, k pochopeni soudobych problémit bude Ctend¥ muser
p0zdéji studovat dalsi obory a teorie. Prdli bychom si, aby schop-
nosti rogvinuté ve hie s nasi knizkou usnadnily mu tuto nelehkou
cestu.

Praha, leden 1975

Autori
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1. Dokazte, Ze zlomek
2ln + 4
14n + 37
v némz 7 je pfirozené Cislo, nelze zkratit.

2. Cislo 17'* + 197 je délitelné &islem 17 + 19. Dokazte.

3.% Dokazte, ze ke kazdému celému Cislu ¢ existuje neko-
netnd mnozina M, slozend z pfirozenych cisel a takova, zZe
pro kazdé m e M, plati

c=4+12422 L .., 4 m?
pii vhodné volbé znamének.

4. Najdéte vSechna pfirozena Cisla n, pro néz je Cislo 2» — 1
druhou nebo vy3si mocninou (s celym exponentem) piirozeného
Cisla.

5. a) Najdéte vSechna pfirozena Cisla n, pro néZ je Cislo
2n — 1 délitelné sedmi.

b) Dokazte, Ze pro zadné pfirozené ¢islo n neni Cislo 27 + 1
délitelné sedmi. '

6. Najdéte vSechna pfirozend Cisla n, ktera maji tuto vlast-
nost: Mnozinu

{n,mn+1,n+2,n+3,n+4,n+5}

Ize rozlozZit ve dvé podmnozZiny bez spolecného prvku tak, Ze
soucin vSech prvki jedné z téchto podmnoZin je roven sou-
¢inu vSech prvki druhé podmnoziny.
7. Pro které dvojice celych ¢&isel x, vy plati, Ze obé c':islg
I4+x 1 : - AT
Ll 5 L+y jsou cela? Vysledek znazornéte nacrtkem v ro-
X

viné pravouhlych soufadnic x, y.
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8. Vyjasnéte, zda Ctverec nékterého pfirozeného Cisla zacina
Ctytcislim 1976.
9. Je dan trojclen: 2x% — x — 36.

Najdéte vSechna celd Cisla x, pro néz je hodnota daného troj-
¢lenu rovna druhé mocniné prvocisla.

10. Necht z je pfirozené Cislo a f(x) mnohoClen jedné pro-
ménné x s celoCiselnymi koeficienty. Pismenem M ozna¢me
mnozinu vSech celych ¢&isel x takovych, ze n déli f(x). Vy-
Setfte, zda se pocet prvki mnoziny M muZe rovnat vaSemu
oblibenému &islu.

11. Bud # pfirozené cislo. Dokazte, Ze z Cisel 0, 1, 2, ...,
37 — 1 lze vybrat 2" ruznych Cisel, z nichz Zddné neni arit-
metickym prumérem jinych dvou vybranych Cisel.

12. Piirozena Cisla p, ¢ jsou nesoudélnd pravé tehdy, jsou-li
nesoudélni Cisla 2» — 1, 2¢ — 1. DokaZte.

13. Jsou-li m, n dvé rGzna pfirozend &isla, pak Cisla 22" +
-1, 22" 4 1 jsou nesoudélni. DokaZte a odvodte z toho, Ze
existuje nekonecné mnoho prvocisel.

14. Zjistéte vSechna pfirozené Cisla, ktera nelze vyjadfit jako
soucet aspon dvou, ale méné nez 1976 po sobé nasledu;mch
pfirozenych Cisel.

15.% Dokazte, Ze posloupnost

n—3Y (n=2,3,4,...)
obsahuje nekoneéné mnoho Cisel, z nichz kazda dvé jsou ne-
soudélna.

16. Dokazte, Ze pro kazdé prirozené Cislo n plati nerovnost

1 1 1 5

R Al S T o
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17. Zjistéte, pro ktera realna Cisla x je definovina funkce

y = ’/1 - 73;— | x l“—‘—;]‘/-/l— %‘ | x '!_—

%, T
_I/I_T“” Al/l——zﬂxb,

a sestrojte jeji graf.

18. Predpisem
_ px
Y= ;z*:; ’PTj_il
je dana funkce redlné proménné x s realnym parametrem p.
Dokazte, Ze vSechny hodnoty, kterych tato funkce nabyva,
1 1
lezi v i ——y —.
ezi v intervalu ( 20 )
Vypoctéte parametr p tak, aby funkce méla nejvétsi hodnotu

.

4V tomto pripadé vysetite jeji prubéh a nalrtnéte jeji graf.

19. Je mozno rozlozit mnozinu vsech prirozenych Cisel na
dvé casti tak, aby Zadné neobsahovala nekonecnou aritmetickou
posloupnost ?

20. Najdéte vSechny realné kofeny rovnice
I/x2 —p+2 l’xz —1=ux,
kde p je realny parametr.

21. Dokazte, Ze ke kazdému pfirozenému Cislu n existuje
pfirozené Cislo m takové, Ze plati

Y21 =m 1+ |m

J2—vr=)m+1—}m.

a zaroven
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22. V oboru reilnych cisel feSte soustavu rovnic

x+y + 2 =a,
x? +y2 + 22 = P2,
xy = 2%,
kde a, b jsou dand realna Cisla.

Udejte nutné a postacujici podminky pro dana disla a, b,
aby existovalo feSeni soustavy skladajici se z kladnych a na-
vzijem ruznych Cisel.

23. Najdéte vSechny Ctvefice redlnych Cisel x;, X5, X35 X4
pro néZ plati, Ze souet kazdého z téchto Cisel se soucinem tii
zbyvajicich je roven dvéma.

24. Je dana soustava rovnic

A% + AeXs + ay3x3 = 0,

AX) + AgeXy + Ggg¥y = 0,

AzX) + AgeXy + Agxy = 0
s neznamymi x,, X,, X5. Jeji koeficienty spliiuji tyto podminky:
a) ayq, Qg9 Ay jsou kladnd Cisla;
b) vSechny ostatni koeficienty jsou zéporné Cisla;

c) v kazdé z danych rovnic je souet vSech tii koeficientd
kladné cislo.

Dokazte, ze dana soustava ma jediné feSeni x;, = x, = x, = 0.
25. Reste soustavu

lay —as | x4+ |a, —ag|x3+lag —a|x,=1,

a, —ap | %, +lay—ag|xg+lag—alx=1,
lay —ag| % + | a, —ag | x, +lag—alx =1,
lay —ag|x +|as —ag| % + | a3 —ay| x5 =1,

kde ay, a,, a;, a, jsou Ctyfi dand navzdjem ruzna redlna Cisla.
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26.* Reste soustavu rovnic
X5 + Xp =YXy,
X + X3 = YXo,
Xy -+ Xy = YXs,

X3+ X5 = YXy
Xy + X =YX

kde y je parametr.

27. Je dano n kladnych d&isel a,, a,, ..., a,, jejichZ soucin
je 1. Dokazte, Ze plati

a+ay+...+a, =n,
pricemZ rovnost zde nastava pravé tehdy, je-li a; = a, =

=...=a,=1

28. Jestlite @, <a,<...<a, a b <b,<...<b, pak
plati

(ay+ay+...4+a)0b, b, +...+b)=

= n(ayb; + asb, — ... + aub,),
pfiCemZ rovnost nastiva pravé tehdy, je-li bud a, =a, =
=...=a, nebo b, = b, = ... =b,. Dokazte.

29. Jsou-li d,, d,, d, kladna c¢isla takova, ze d; =< d, < d,,
pak pro libovolna nezdporna cisla ¢, ¢,, ¢, plati

o | ¢ c
(c1dy + cods + c3ds) ([Ti + dz; 1 Eii) <
P (dl + d3)2
< DAY 3 Nt Sl 7
< (e +¢ +cy) idd, -

Dokazte.

30. Jsou-li x, y kladna Cisla a m > 1 prirozené, pak plati
X _‘,_y 1111g x"l +ym )
2 - 2
Dokazte a zjistéte, kdy nastiva rovnost.
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31. Dokazte, Ze tvrzeni

,»Pro libovolna redlna cisla ay, a,, ..., a, plati nerovnost
(e —ay) (@ —ay)...(ay —a,) + (a2 — @) (az — ay) . »
coc(@—a)+ ...+ (a,—a)(a,—ay)...(a,—a,—)=0

je pravdivé pro n = 3 a n — 5 a neni pravdivé pro Zadné jiné
piirozené Cislo n > 2.

32. Jsou-li koeficienty a, b, ¢, d mnohoclenu ax® + bx? -+
+ cx + d cela Cisla takova, Ze ad je liché a bc sudé, pak aspon
jeden kofen tohoto mnohoclenu neni raciondlni. Proc?

33. Necht mnohoclen p(x) s celo¢iselnymi koeficienty nabyva
hodnoty 5 pro pét riznych celo¢iselnych hodnot x. Dokazte,
Ze p(x) nenabyva hodnoty 8 pro Zadné celé x.

34. Po mofi (povazovaném za rovinu) pluly dvé lodi stalymi
rychlostmi pfi stalych kursech. V 9.00 hod. ¢inila jejich vzda-
lenost 20 mil, v 9.35 hod. 15 mil a v 9.55 hod. 13 mil. Kdy si
byly lodé nejbliZe a jakd byla pfi tom jejich vzdalenost?

35.%* Komplexni ¢islo z neni redlné neziporné, pravé kdyz
Ize najit ptirozené Cislo n a kladna ¢isla a, ay, . . . , a, tak, Ze plati

ay+ a2+ ...+ az® =0.
Dokazte.

36. Dokazte, Ze vSechny nerovnosti
sin o = sin 2o = sin 30t < . ..
plati jen pro Cisla tvaru « = kx, kde % je celé dislo.
37. V oboru realnych Cisel fe$te rovnici
sin x -+ cos x + sinx cos x = 1.
38. V oboru realnych Cisel fe$te rovnici
cos" x —sin”® x = 1,

v niZ n je dané pfirozené Cislo.
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39. Najdéte vSechna Cisla x z intervalu 0 < x < 27, ktera
vyhovuji nerovnicim

2cosx < | |/1+sin2x — /1 —sin2x| < J2.

40. V roviné je déna soustava pravouhlych soufadnic. Na-
jdéte mnozinu vsech bodu, jejichZ soufadnice x, y spliiuji v§ech-
ny nerovnice

0=x=n, 0=y=m,
1+ |cosx| = 2sin?y.

41. Budte dany redlné konstanty a;, a,, ..., a, (kde n je
dané pfirozené Cislo) a funkce

1
f(x):cos(a1+x)+—§cos(a2+x)+... —

1
1 Ccos (an + x)

_J[_ .

2

realné proménné x.
DokaZte tato tvrzeni:

1° Existuje Cislo x, takové, Ze f(x,) = 0.
2° Jestlize také f(x,) =0, pak x, = x, + mn pro vhodné
celé m.

42. Dokazte, ze v kazdém trojuhelniku plati
l<cosoc+cos[)’+cosy§—3~ 5
kde «, f8, v jsou velikosti vnitfnich thld.
43. Jsou-li «, f§, y velikosti vnitfnich hlt trojihelnika,

potom plati
3

cos? o + cos? f + cos?y = e

16



Dokazte. Najdéte vSechny trojuhelniky, pro néz v pfedchozim
vztahu plati rovnost.

44. Bud x realné cislo. Které z Cisel cos sin x a sin cos x je
veétsi?

45.%* Dokazte, ze plati

n cos 2 -+ cos 37
cos — — o — =
7 7 7 2

46. V roviné je dano n = 3 bodu, které nelezi v jedné
primce.

Potom lze najit kruZnici, kterd obsahuje alespon tii z da-
nych bodi, pficemZ zadny z danych bodi nelezi uvnitf této
kruznice. Dokazte.

47.* V roviné je ddna mnozina n bodd (n = 3), kazdé dva
z nich jsou spojeny useckou. Ozna¢me d délku nejdelsi z téchto
useCek. Primérem dané mnoziny nazveme kazdou z téchto
usecek, kterd ma délku d.

Dokazte, Ze pocet prumérti dané mnoziny je roven nejvyse
Cislu n.

48. Konvexni n-thelnik, jehoZ po sobé nasledujici strany
maji délky a,, a,, ..., a,, ma tyto vlastnosti:
a) vSechny jeho vnitini dhly jsou shodné;
b) pro délky jeho stran plati nerovnosti
a =a, = = ay.

Pak je a; = a, = ... = a,. Dokazte.

49.% V roviné je ddna konvexni mnoZina K. Jeji bod E na-
zveme ekvichorddinim bodem, jestlize vSechny pfimky této ro-
viny, které prochézeji bodem E, protinaji mnozinu K v dseéce
stejné délky.

Dokazte, Ze mnozina K nemi vice nez dva ekvichordalni
body.
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50. V roviné je déna kruznice k o stfedu S a poloméru 1.
Bud ABC libovolny trojihelnik, jemuz je kruZnice k vepsana,
s oznaenim volenym tak, Ze

§4 = §B = SC.

Najdéte geometrické misto vrchold 4 (B, C) vSech takovych
trojuhelnika.

51. V roviné je dan rovnoramenny trojuhelnik ABC, jehoz
zakladna AB je men$i neZ jeho rameno. Sestrojte uvniti tsecek
CA, CB po tadé body X, Y a v poloroviné X YC bod Z tak, aby
platilo :

AN XYZ ~ A ABC.

Najdéte geometrické misto bodu Z.

52. Sestrojte pravouhly trojuhelnik ABC (v némz < ACB =
= 90°), jsou-li diny délky téznic ¢, 7, pfislu$nych k vrcho-
lim A, B. Provedte diskusi feSitelnosti.

53. V roviné jsou dany dva ruzné body A, M o vzdalenosti d.
Dale je dano kladné Cislo v. V této roviné sestrojte koso-
ctverec ABCD o vysce v tak, aby bod M byl stiedem jeho
strany BC.

Najdéte podminku fesitelnosti a zjistéte pocet feSeni ulohy.
Muze byt feSenim Ctverec?

54. Pouhym kruzitkem sestrojte stfed usecky, jejiz -krajni
body jsou dany. :

55. Je dana kruznice 2 a na ni tfi razné body A, B, C.
Sestrojte na kruznici & dalsi bod D tak, aby vznikl ctyi-
thelnik ABCD, jemuz lze vepsat kruZnici.

56. Je dan pravouhly rovnoramenny trojihelnik APQ s pre-
ponou AP. Sestrojte Ctverec ABCD tak, aby pfimky BC,
CD prochazely po fadé¢ body P, Q. Vyjadrete délku strany
¢tverce ABCD pomoci délky a odvésny daného trojihelniku.
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57. Je dan pravouhly trojihelnik ABC, jehoz pifepona BC
je rozdélena na lichy pocet n» shodnych usecek. Oznacme o
thel, pod kterym je z bodu A vidét tu ze shodnych usecek,
kterd obsahuje stfed pfepony daného trojuhelniku; dale
oznaCme % vySku a a délku prepony daného trojuhelniku.

Dokazte, ze potom plati

o
n* —1)a’

58. Do trojuhelniku ABC se stranami o délkiach a, b, ¢ ve-
piSeme kruZnici a sestrojime k ni tfi nové teny rovnobézné
se stranami daného trojihelniku. Kazda z téchto teCen utini
od trojuhelniku ABC po jednom trojihelniku. Do kazdého
z téchto tfi novych trojihelniki vepiSeme kruznici. Vypoctéte
soucet obsaht vSech ¢tyf vepsanych kruhd.

tgo =

59. V roviné je dan konvexni pétithelnik P; s vrcholy 4,
A,y Ay, Ay, Ay Oznalme P; (1 = 2, 3, 4, 5) pétithelnik, ktery
se dostane z P, rovnobéZnym posunutim, pfi némz bod A4,
pfejde do bodu 4; (¢ = 2, 3, 4, 5).

Dokazte, Ze alesponi dva z pétithelnika P,, P,, P,, P, Py
maji spolecny vnitini bod.

60. V roviné lezi pét bodu O, 4, B, C, D. Pro jejich vzda-
lenosti plati O4 < OB = OC = OD.

Dokazte, ze pro obsah P konvexniho Ctyfuhelniku, jehoZ
vrcholy jsou body A4, B, C, D, vzdy plati

P< ; (04 + OD) (OB + OC).

Zjistéte, kdy nastane rovnost.

61. Uvnitf stran AB, BC, CA trojuhelniku ABC zvolime
po fadé libovolné body K, L, M. Dokazte, Ze obsah aspon
jednoho z trojahelnikt MAK, KBL, LCM je mensi nebo rovny
¢tvrtiné obsahu trojihelniku ABC.
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62. Je dan duty thel <t XAY a uvnitf né¢ho bod M. Na polo-
pfimkich AX, AY sestrojte po fadé body B, C takové, aby
pfimka BC prochézela bodem M a aby obsah trojuhelnika
ABC byl co nejmensi.

63.* Jsou déana kladna ¢isla a, b, ¢, d. Sestrojte Ctyfuhelnik
ABCD s AB = a, BC =b, CD = ¢, DA = d tak, aby jeho
obsah byl co nejvétsi. Zjistéte podminku feSitelnosti.

64.* Pro kazdé Ctyii body A, B, C, D v roviné plati
AB .CD + AD . BC = AC . BD.

Rovnost zde nastava, pravé kdyz body 4, B, C, D lezi (v tom-
to cyklickém poradi) na kruZnici nebo v pfimce (v uspofddini
A, B, C, D nebo B, C, D, A nebo C, D, A4, B nebo D, A, B, C).
Dokazte.

65. Je dan teCnovy Ctyfuhelnik. Dokazte, Ze tseky spo-
jujici dotykové body protéjsich stran s vepsanou kruZnici
prochazeji prusecikem uhlopficek.

66. Na kulové plose o stfedu S a poloméru r = 1 budte
dany c¢tyfi body A, B, C, D, které jsou vrcholy ctyfsténu
ABCD. Jestlize bod S lezi uvnitf Ctyfsténu ABCD, potom
alesponl jedna ze tfi hran AB, AC, AD ma délku véts$i nez

|/2. Dokazte.
67. V kazdém cCtyfsténu existuje takovy vrchol, Ze z usecek

rovnych hrandm, které z ného vychazeji, lze sestrojit troj-
thelnik. DokaZte.

68. Je-li odchylka kazdych dvou stén Ctyfsténu ostry thel,
pak vSechny stény tohoto Ctyfsténu jsou ostrouhlé trojihel-
niky. DokaZte.

69.* Necht A4,4,4;4, je Ctyfstén, ¢y (GF£k, 1, k=1,
2, 3, 4) vnitfni dhly stén, protéjsi k hranam A4;A4,.. Potom plati:
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a) alesponi jeden z Ghld @5, @13, @14 j€ OSLIY;
b) alesponi jeden z dhla ¢, Pra> Paz> Pou € ostry;
c) alespon tfi ze Sesti Ghli ¢y jsou ostré.

Dokazte a najdéte ptiklad Ctyfsténu, ktery mé pravé tii ostré
vnitfni dhly.

70.* V prostoru je dino n =3 rtznych bodu tak, Ze Zadné
tfi z nich netvofi trojihelnik s maximalnim dhlem mensim
nez 120°. Potom lze tyto body oznaclit 4,, A, ..., A, tak,
Ze pro vSechna pfirozend i, j, k, 1 =1 <j< k =mn plati
X A;4;4, = 120°. Dokazte.*)

71.% V prostoru je dina koneénd mnozina bodua takova, Ze
kazda pfimka prochazejici dvéma jejimi body obsahuje jesté
alesponl jeden dalsi bod této mnoziny.

Dokazte, Ze vSechny body dané mnoZiny lezi v jedné pfimce.

72. V prostoru je dina bodovd mnozina M, jejiz pravouhlé
pruméty na vSechny roviny jsou kruhy.
Dokazte, ze M obsahuje kulovou plochu.

73. Je dan ctyistén ABCD, jehoz hrany AB, BC, CD, DA
se dotykaji jisté kulové plochy. DokaZte, Zze dotykové body
" lezi v jedné roviné. .

74. Nutné a postacujici podminka k tomu, aby bylo mozno
sestrojit kulovou plochu, kterd by se dotykala vSech hran
Ctyfsténu, je, aby soulty vSech tfi dvojic protéjSich hran si
byly rovny. Dokazte.

75. Bud SABC ctyistén. Existuje-li pét kulovych ploch,
z nichZ kazda se dotyka Sesti ptimek SA4, SB, SC, AB, BC,
CA, pak je tento Ctyfstén pravidelny. Obracené ke kazdému

*) V této tloze vyjimecné uzivime znafky < nejen pro tzv. duté
uhly, ale i pro thly nulové a primé.
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pravidelnému Ctyisténu lze sestrojit pét takovych kulovych
ploch.

Dokazte obé tyto véty.

76.% V prostoru je dan bod P a mnozina bodid M takova,
Ze jeji prunik s kazdou rovinou prochdzejici bodem P je kruh.
Dokazte, Ze M je koule.

77. Ctyistén ABCD je rozdélen ve dvé télesa rovinou &
rovnobéznou s pfimkami AB, CD; pomér vzdalenosti roviny &
od piimky 4B a od pfimky CD je roven k. Vypoltéte pomér
objemti obou vzniklych téles.

78. Na jaky nejmensi pocet Ctyfsténid lze rozfezat krychli?

79. Body 4,, A,, ..., A, jsou pravé vSechny vrcholy kon-
vexniho mnohosténu,

d=max A;A; proi,j=1,2,...,n

Dokazte, ze vzdalenost kazdych dvou bodt tohoto télesa je
mensi nebo rovna d.

80. Vysky Cctyfsténu ABCD (tj. pfimky vedené vrcholy
kolmo k rovindm protilehljch stén) se protinaji v jednom
bod¢ pravé tehdy, plati-li

AB? 4+ CD? = AC? + BD?* = AD?* + BC2.
Dokazte.

81. V prostoru je dana tsecka AB a pfimka p | AB.
Najdéte geometrické misto prasecika vysek trojuhelniki ABX,
probiha-li bod X piimku p.

82. Je dan bod A a tseCka BC. Najdéte geometrické misto
viech bodl v prostoru, které jsou vrcholy pravych uhld, jejichz

jedno rameno obsahuje bod 4 a druhé rameno ma s useckou
BC spole¢ny aspoini jeden bod.
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83.* Je dan Ctyistén ABCD a jeho vnitini bod M; objemy
Ctyfsténu MBCD, MACD, MABD, MABC oznatme po fadé
Vi Vi, Ve, V. Dokazte, Ze plati

—> —> —> o
V,.MA+Vy.MB+V..MC+V,.MD=0.

84. Ctyfstén ABCD m4 vlastnost, Ze
AB = BC = CD = DA = 1.

. e . 2 5
Dokazte, Ze jeho objem je nejvyse 27 V3. Maize nastat rovnost ?

85.% Ma-li jedind hrana Ctyfsténu délku vétsi nez 1, pak

. ) v 1 y
je jeho objem mensi nebo roven 8 Dokazte.

86.* Je dan ctyfstén ABCD a bod D,, ktery lezi uvnitf
podstavy ABC. Rovnobézky k pfimce DD,, vedené vrcholy
A, B, C, protinaji po fadé¢ roviny BCD, CAD, ABD v bo-
dech 4,, B;, C,.

Dokazte, ze objem Ctyfsténu ABCD je roven jedné tfetiné
objemu Ctyfsténu 4,B,C,D;.

87.* Ctyfi body Ctyfsténu, které neleZi v jedné roving, maji
stejny soucet vzdalenosti od rovin jeho stén. Dokazte, Ze
stény tohoto Ctyfsténu jsou navzajem shodné trojuhelniky.

88.* Najdéte geometrické misto stfed vSech kruhti o polo-
1 .
méru 5 které lze umistit do dané krychle o hrané 1.
89. Je dan Ctyfstén ABCD a jeho vnitini bod X. Dokazte, zZe
existuje kladné Cislo r takové, Ze kazda koule o poloméru 7,

kter& neobsahuje Zadny z vrcholtt A, B, C, D, neobsahuje ani
bod X.

90. Soutéze se zucastnilo pét zaka A, B, C, D, E. Kdosi
predpovédél, Ze vysledné umisténi bude ABCDE. Tato pied-
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povéd se vsak nesplnila: zadny soutéZici nebyl na pfedpové-
déném misté a zddna dvojice bezprostiedné za sebou nasle-
dujicich soutézicich nebyla pfedpovédéna spravné.

Kdosi jiny predpovédé]l umisténi DAECB. Tato ptredpoveéd
byla spravnéjsi: pravé dva soutéZici byli na pfedpovédénych
mistech a pravé dvé dvojice bezprostfedné za sebou nésle-
dujicich soutézicich byly predpovédény spravné.

Jaké bylo skutecné vysledné umisténi?

91. Je dano » = 3 bodd, z nichZ Zzadné tfi nelezi v pfimce,
a mnozina U skladajici se z n (rdznych) usecek, které spojuji
vzdy dva z danych bodu.

Pak Ize z danych 7 bodua vybrat £ = 3 bodu 4, 4,, . . ., 4;
tak, Ze vSechny usecky A4,4,, A,A;, ..., Ap— A, A4,
naleZeji mnoziné U. Dokazte.

92.* Sedmnict osob si navzijem dopisuje, kazda z nich se
vSemi ostatnimi. V celé korespondenci se objevuji celkem jen
tfi ruzna témata. Kazda dvojice osob si spolu dopisuje pouze
o jednom z téchto témat.

Dokazte, Ze existuji alesponl tfi osoby, které si navzajem
pisi o témze tématu.

93. Kolik existuje (navzajem neshodnych) trojuhelniki,
jejichz délky stran jsou pfirozena Cisla nepfevySujici dané pfi-
rozené Cislo n? .

94. Na stole lezi patnact Casopisu, které jej cely pokryvaji.
Dokazte, ze lze ubrat sedm z nich tak, aby zbyvajicich osm
Casopisi zakryvalo alespori osm patnictin plochy stolu.

95. Jaky je nejvétsi mozny pocet oblasti, na které rozdéluji
kruh tsecky spojujici » bodd danych na jeho obvodu?

96.* V roviné je dano 100 bodul, z nichz zadné tii nelezi
v pfimce. Uvazujme vSechny trojuhelniky, jejichz vSechny
tfi vrcholy jsou nékteré z danych bodi.
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Dokazte, Zze nejvyse 70 9, uvazovanych trojihelnika jsou
trojihelniky ostrouhlé.

97.* Trojuhelnik, jehoz vrcholy jsou oznaceny Cisly 1, 2, 3,
je rozdélen na koneCny pocet menSich trojuhelnikd, z nichz
kazdé dva mohou mit spolecny pouze vrchol anebo celou
stranu. Kazdy z vrcholt téchto mensich trojihelnikid je ozna-
¢en jednim z Cisel 1, 2, 3, a to tak, Ze se na Zadné strané za-
kladniho trojuhelniku neobjevuje islo jeho protéjsiho vrcholu;
jinak je oznaceni libovolné.

Dokazte, ze vrcholy alespon jednoho z mensich trojihelnika
jsou oznaceny tfemi raznymi Cisly 1, 2, 3.

98. Zrcadlenim podle priméru ciferniku hodin piejdou
rucicky do novych poloh, které mohou byt v rozporu s me-
chanismem hodin, tzn. nemuseji ukazovat mozny cas. (napi.
v pravé poledne nedavd obraz ruciek podle priaméru 9—3
mozZny cas.)

Pro které casy a pro které polohy osy soumérnosti vznika
po zrcadleni mozny cas?

99. V roviné¢ bud déna soustava Kkartézskych soufadnic
s pocatkem P. Body, jejichz obé soufadnice jsou cela cisla,
nazveme mfigové body. Budiz p > 2 dané pfirozené Cislo.
Mfizovy bod (p, k), kde 1 =k < p — 1, oznaCme 4,.

Dokazte, Ze p je prvocislo, pravé kdyz se pocet miizovych
boda uvnitf kazdého z trojuhelnika

PA,A,, PAAs, ..., PA, A4,
1
rovna Cislu > (p» — D.
100.* V roviné je dano nekonecné mnoho bodi, jejichz
vSechny vzajemné vzdalenosti jsou pfirozena Cisla.

Dokazte, Zze vSechny tyto body lezi v jedné piimce.
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101. Najdéte viechna redlna Cisla x, pro néz plati
.1 1 1
l1+xsin— — —cos— > 0.
x 2 x

102.* Kazdému redlnému Cislu x je pfifazeno redlné cislo
A (x). Ptitom pro libovolna redlna Cisla x, y plati

A(x +y) =4 (x) + A(y),
Alxy) =4 . AQ).
Dokazte, ze je bud 4 (x) = x pro vSechna x anebo 4 (x) =0
pro vsechna x.

103.* Budiz dana posloupnost

|

€, =a; + Ay + ...+ Gy
ca=al+al+ ...+ a}

kde @, a,, ..., ag jsou redlnad Cisla, ne vSechna rovna nule.
Necht déile nekonetné mmnoho Clenti posloupnosti {c,} je
rovno nule. Zjistéte vSechna pfirozena Cisla n, pro kterd je
¢ = 0;

104. Najdéte vSechny funkce f(x) definované v intervalu
<0, 1) takové, ze pro libovolna cisla x,, x, z tohoto intervalu

plati
Flx) —f(x) = (% — x0)%
105.% Dokazte, Ze k libovolné skupiné ¢islic (v niz na prvém
misté neni nula) existuje pfirozend mocnina dvojky, jejiz de-
sitkovy zapis zacina touto skupinou.

106.* Vrcholy pravidelného n-thelniku (n = 6) jsou obar-
veny nékolika (alesponn dvéma) barvami, kazdy vrchol jednou
barvou. Pfitom vSechny body téZe barvy tvoii vrcholy pra-
videlného mnohothelniku.
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Dokazte, Ze mezi témito barevnymi mnohothelniky 1ze najit
dva shodné (a ruzné).

107.* Kazdému redlnému cislu x je pfifazeno redlné Cislo
f(x). Pfitom je splnéna tato podminka: Existuje kladna kon-
stanta M tak, Ze nerovnost

Y f@<M
xeK

plati pro kazdou kone¢nou mnozinu K realnych disel.
Dokazte, Zze pro nékteré ¢ je f(c) = 0.

108. V roviné lezi n = 3 tuselek tak, ze kazdé tfi z nich maji
spole¢ny bod. Dokazte, Ze 1ze najit bod spolecny vSem témto
tseckam.

109.% V roviné je dédno n = 3 navzijem rovnobéznych
usecek. Pfitom pro kazdé tfi z nich existuje pfimka, kterd je
vSechny protina.

Dokazte, Ze néktera pfimka protina vsech n danych dsecek.

110.* Dokazte, ze pro kazdé pfirozené Cislo m existuje
neprazdna kone¢na mnozina S bodu v roviné s tou vlastnosti,
Ze ke kazdému A € S lze najit v S pravé m bodu, jejichz vzda-
lenost od A se rovna jedné.

111. Je dana c¢tvercova tabulka

a1 Qg+ . . Ay
Aoy Ao« .« . Qg
An18nz + -+ - Auns

sestavena z celych nezapornych cisel, ktera spliuje tuto pod-
minku: jakmile ¢; = 0, pak

@Gy @+ F oy, taytay . ay =n



Dokazte, Ze pro soucet s vSech Cisel dané tabulky plati
1

1
s =5
112. V prostoru jsou dany body 4, 4,, 4y, . .., A, = A,.
Zvolme bod B, a sestrojme dalsi body B,, B,, ..., B, tak,
aby pro kazdé & =1, 2, ..., n stfed dvojice B;—, B, splynul
se stiedem dvojice A;—, A;.
Udejte nutné a postacujici podminky pro to, aby B, = B,.

113.* Necht M je mnozina bodi v prostoru takova, Ze ke
kazdému bodu prostoru lze v mnoziné M najit pravé jeden
nejvzdalenéjsi bod.

Dokazte, ze mnozina M je jednobodova.
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ReSeni aloh a poznamky



1

Ponévadz
3(14n +3) —2(2ln + 4) =1,

je kazdy spolecny délitel Cisel 14n + 3, 21n + 4 délitelem 1,
takZe Citatel a jmenovatel jsou nesoudélna cisla, c. b. d.

2
Prvni feSeni. Plati
179 4 197 = (17 — 1797) 4 (177 + 19%7) = 1797 (17 — 1) +
17 +19) (17 — 175019 + ... 4+ 191) — 1717 . 16.18 -+
1+ 36.B —36 (4 + B), kde A — 17" . 8, B — 171 — 17%.
.19 4 ... -+ 19" jsou pfirozena &isla. Cislo 1727 4 19%7 je tedy
délitelné tiiceti Sesti, c. b. d.

Druhé feSeni. Ponévadz 17 + 19 = 36 = 4.9, musime
o Cisle x = 17% + 197 dokazat, Ze je délitelné obéma nesou-
délnymi Cisly 4 a 9. To je vSak snadné; plati totiz
179 = (16 + )Y = 16a + 1,

1917 — (20 — 1)V =206 — 1,
odkud
x = 4 (4a + 5b)

(a, b jsou pfirozena cisla), a podobné
17" = (18 — 1) = 18¢ — 1,

19'7 = (18 + 1)V = 18d + 1,
odkud
x =9 (2c + 2d)

(¢, d jsou opét pfirozena Cisla).

Zobecnéni. Jsou-li p, ¢ dvé po sobé nasledujici licha cisla,
je Cislo p7 + g7 délitelné Cislem p + g.
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Dukaz. Plati
prtg=0p-D+(+1)=
=@-—-D@Et+p 2+ + 1)+
+@+ D@ —¢g2+...+1)=
—(p—1@m+ 1)+ (g+1)@2n+ 1),
nebot Cisla prt - pt2 ... F 1, gt —gr2 ...+ 1
jsou liché (lichy pocet lichych sc¢itanct). MiZeme pfedpokladat,
Ze je napf. p << ¢, takZe p = ¢+ 2,p — 1 = g + 1. Pak ale
P =2p—Dm+n+1)=
=@p—1+g+Dm+n+1)=

=@+ g9m+n+1),
c. b.d.

3

Mizeme predpokladat, Ze ¢ = 0. Nejdfive dokazeme, Ze ke
kazdému celému ¢ = 0 existuje pfirozené Cislo m takové, Ze

c= 412422 4 ... 4+ m? (1)
pfi vhodné volbé znamének. Pro ¢ = 0, 1, 2, 3 mame vyjadieni
0=124+2%-32 442 -5 — 624+ 73
1=1%,2=—12—-22 -3 42, 3 = —1% 4 22

Ponévadz dale
m+12—(m+2P—m+3+m+49°=4 )

plyne nase tvrzeni indukci.
To je zaroven kli¢ k feSeni, nebot podle (2) plati

(m 4 1% — (m + 2)2 — (m + 32 + (m + 42 —
—(m 5P (m 4 6F - (m+ T2 — (m + 82 =0,

takZe v (1) mizeme m nahradit &isly m + 8, m -+ 16 atd.
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4

Cislo n = 1 vyhovuje poZadavkam tilohy, a proto budeme
v dal§im predpokladat, Ze je n = 2. M4 platit

2* —1=am, (1)
kde m > 1, a jsou pfirozena Cisla. Pfedev$im je jasné, ze Cislo
a musi byt liché a vétsi nez 1; piSme tedy a = 2k + 1, kde
k je ptirozené Cislo.

Je-li m sudé, m = 2p, dostaneme z (1)
2n — 1 =2k + 1)
20 = [4 (k> + k) + 17 + 1,
2" = 4K -+ 2,
kde K je pfiroiené Cislo. Pak ale

2n1=2K + 1,
coZ neni mozné.

Zbyva tedy druha moznost, Ze m je liché. Pak z (1) plyne

2" =(a+1)4, 2
kde 4 =am 1 —am 24 ... — a1 je soucet lichého poctu
m lichych sCitancl, pficemZ pro pfirozend 2 = g=m — 1
plati a? — a1 =qa21(a —1)> 0. Cislo 4 je tedy liché
a vétsi nez 1, takZe ani vztah (2) neni moZny.

Uloha ma jediné feSeni n = 1.

5
Tabulka
‘7711 | 2'| 3 \ 4 { 5 \ 6 : 7‘ 8}9‘| Vlol
s s e e
~zb;te7kir‘71”:‘7;'é ol 1 | 3ol a| 3] of 1




vede k domnénce, Ze hledana cisla » budou nésobky tfi. Proto
budeme pro zbyvajici ¢isla # > 10 rozliSovat tfi moZnosti

o) n =3k, f) n=23k+1, y) n =73k + 2,

kde % je pfirozené Cislo.
V pripadé o) plati

1 =2% 1 =8 —1=(7+1F—1="174,

kde A je pfirozené Cislo; skuteéné je tedy 27 — 1 délitelné
sedmi.
V ptipadé ) mame

2" —1=2*k1-1=2.8—-1=2.7T4+1)Ff—-1=7B+1
(B ptirozené), coz znamend, Ze Cislo 2® — 1 dava pri déleni
sedmi zbytek 1.

Konecné v pripadé y) lze psat
2n—1=2%+ —1=4.8—-1=4.7T+1F—1=7C+3

(C prirozené), takze Cislo 2» — 1 dava nyni pfi déleni sedmi
zbytek 3.

Reseni tlohy a) jsou tedy pravé ta piirozena Cisla n, kterd
jsou nasobky disla 3.

b) Ponévadz v zadném z probranych pfipadd nebyl zbytek
Cisla 2» — 1 pfi déleni sedmi roven Cislu 5, nemtze byt Cislo
27 + 1 (které je o 2 vétsi nez 2" — 1) délitelné sedmi pro zadné
pfirozené 7, c. b. d.

6

Prvni feSeni. Oznalme M = {n, n +1, n + 2, n 4 3,
n + 4, n + 5} a budte 4, B ob¢ hledané podmnoziny. Budiz
p prvocinitel &isla a € M; pak je napf. a € A, takZe existuje
aspon jedno Cislo b € B (tedy b =~ a), které je rovnéz délitelné
prvodislem p. Pak i rozdil a — b je délitelny prvocislem p
a protoze 0 < | a — b | =< 5, plati, Ze

p je bud 2 nebo 3 nebo 5.

33



Je ziejmé, Ze 5 muZe byt prvolinitelem jediné &isel n, n -+ 5,
(jinak by M neobsahovala dva nasobky péti). MnoZina

N={n+1,n+2,n+3n+4

obsahuje tedy jediné Cisla tvaru 2*.37 (a, f celd nezdporna).
Mnozina N vsak obsahuje dvé Cisla sudd a dvé licha. Obé
licha ¢isla z N muiZeme tedy napsat ve tvaru

37, 39
s prirozenymi exponenty. AvSak |3" — 39| < 4, a protoZe
37 — 39 je Cislo sudé, plati | 37 — 3% | = 2. Zvolime-li ozna-

Ceni tak, aby bylo v > 4, bude
3 — 30 =3k =2,

kde % je prirozené (islo; to vSak neni mozné.
Dokéazali jsme, Zze zadné pfirozené Cislo » nemd vlastnost
popsanou v zadani tlohy. _
Druhé feSeni. MnoZina {n;n + l;n + 2;n + 3; n + 4;
n + 5} se skladd ze Sesti po sobé& jdoucich pfirozenych Cisel.
Predpokladejme, Ze ji lze rozlozit ve dvé podmnoziny poza-
dovanych vlastnosti. Potom zfejmé soucin

S,=nn+1)mn+2)n+3)(n+4)(n+5)

je Ctvercem prfirozeného Cisla. Rozlozime-li tedy soulin S,
na prvocinitele
kde pi, Pos -..» P, jSOU navzajem ruznd prvocisla, budou
exponenty 7y, ¥y ..., r, pfirozend suda cisla. Pfitom prvo-
Cislem p; musi byt délitelna aspon dvé z cisel n, n + 1, ...,
n -+ 5 (souliny prvkd obou podmnozin musi byt délitelné
prvocislem p;).

Ze Sesti po sobé nasledujicich pfirozenych Cisel je aspor
jedno délitelné péti. Proto, jak jsme ukazali, aspon dvé z Cisel
n,n+ 1, ..., n-+ 5 musi byt délitelnd péti. Protoze Cisel n,
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n-+1, ..., n+5 je Sest, nastane tato moznost jen tehdy,
bude-li » délitelné péti, tj. kdyz

" n = 5k, €))]
kde % je pfirozené cislo.

ProtoZze nejvySe jedno ze Sesti po sobé jdoucich dCisel je
délitelné sedmi, nemiZe byt v naSem piipadé Zadné z Cisel
ny,n+1,...,n 4+ 5 délitelné sedmi. To je mozné jen tak, Ze

n="1+1, )
kde 7 je celé nezaporné cislo.

Jedna z podmnoZzin obsahuje Cislo #. Soucin prvki druhé
podmnoziny je tedy délitelny cislem z. Potom i soucin

M+ 1D)(m+2)(m+3)(n+4)@m+5 =4A.n+ 120

je délitelny Cislem n. Ponévadz A je ziejmé celé Cislo, je n
nutné délitelem Cisla 120. Vzhledem k (1) vSak pfichazeji
v uvahu jen tito délitelé Cisla 120:

5, 10, 15, 20, 30, 40, 60, 120.
Z nich pouze 15 a 120 spliuji podminku (2). Vypocteme-li
pfislusné souciny S, tj.
S5 =27.3%.52.17.19,
Sip0 =26.32.54.112.31.41.61,
vidime, Ze u prvociniteld obou Cisel se vyskytuji liché expo-
nenty, takze zddné z Cisel S;;, S;90 neni Ctvercem prirozeného
¢isla.
Neexistuje tedy zadné Cislo #» poZadovanych vlastnosti.
7

Cisla x, y jsou nutné riizna od nuly.
[1] V pfipadé x > 0, y > 0 musi byt

l+x=y a l+y=x
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neboli
x—1=y=x-+1.

Zde mame tii moZnosti:

a) y =x — 1. Potom je - j;y :%:lcelé Cislo. Ale
l+x_x+l_ 2
y a1t teo1e

a to je celé Cislo pravé tehdy, je-li x — 1 délitelem 2, tj. vzhle-
dem k x > 0 dostavame x = 2 nebo 3; pfislusné y = x — 1 =
=1 nebo 2. Obé nalezené dvojice (x =2, y = 1), (x =3,
vy = 2) vyhovuji dloze, o ¢emZ se miZeme snadno presvédcit
- dosazenim.

b) y = x. Pak
1+x:1+y:1+x:1+17'
y x x X

Nutné x = 1. Dvojice (x = 1, y = 1) vyhovuje tloze.

oy=x+11. x =y — 1 To je zfejmé obdobné jako
v a); vysledek zde dostaneme symetrickym obrazem vysledka
z a) podle pfimky y = x.

V 1. kvadrantu je tedy celkem pét feSeni (viz obr. 1).

[2] Je-li x = —1, pak pro kazdé celé y - 0 dostavame vy-
hovujici dvojici (obr. 1).

V piipadé x << —1, y > 0 ziejm¢é musi platit

—(1+x)=y a 1+y=—x,
cili
, —A+D=y< — (A +x),
tj.
y=—x—1L
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Potom skute¢né

1—}—x_41—|—x
y 1 +4+x

= —1 je celé Cislo

x . .
= — — = —1 je rovnéz celé {islo.
X

Nalezené dvojice jsou opet znazornény na obr. 1.

[3] Pfipad y = —1 je zase snadny (viz obr. 1). Mé&me tedy
x < —1, y < —1. Pak musi platit

—(l+x)=-y a —(1+3=—x
neboli
x+l=y=x—1
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coz vak neni mozné, nebot
x+1>x—1.

V tomto pfipadé nenachidzime tedy Zzadnou vyhovujici dvojici
X Y.
[4] Vzhledem k soumérnosti vysledku podle pfimky y = x
nemusime uz IV. kvadrant vySetfovat.
Tim je cela rovina prozkouména; tiloha ma nekonecné mnoho
feSeni (viz obr. 1).

8

Vsechna ¢isla zapisujeme v desitkové soustavé. Bud abe . . . f
k cifer

libovolné k-ciferné (&islo (a ##~ 0). UkadZeme, Ze ctverec né-
kterého pfirozeného Cisla ma za prvnich & Cislic zleva pravé
abc...f.

Vezméme dCisla
N, =abc...f00...0, N,=abc...f99...9.

[ — [ —

k 3k k 3k

Bud 7 nejvétsi Ctverec pfirozeného Cisla, ktery nepievySuje
Cislo N;. Vsimnéme si, Ze n < 10%, Dale
Ny<m+12=n>4+2n+1< N, +2.10% +1<
< N; +10% — 1 = N,.

Ponévadz tedy
Ny < (n+ 1)? < N,,

zalina Cislo (n + 1) Cislicemi abc . .. f a odpovéd na otizku
dlohy je kladna.

Pozndmka. Rozmyslete si, plati-li obdobné tvrzeni pro
vys$i mocniny neZ druhé.
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9

Pomoci kofent kvadratické rovnice 2x%2 —x — 36 =0,
2 ey .9 .
jimiz jsou Cisla 5 —4, najdeme rozklad

2% —x — 36 = (2x — 9) (x + 4).
Nyni musi byt bud ’

[1] 2 — 9= 41, x +4 = 4p
nebo

[2) x+4=+41, 2 — 9= +p2,
nebo

(3] x+4=4p, 2x—9=+p,

kde p je prvodislo.
V ptipadé [1] dostaneme z prvni rovnice bud x = 5 nebo

x = 4, naceZ druhi rovnice did bud p? =9 nebo p* = —8.
Vychazi tedy jedno feSeni
x =5.
V pripadé [2] dostaneme z prvni rovnice bud x = —3 nebo
x = —5, coZz dosazeno do druhé rovnice dava bud p* = —15

nebo p? = 19. To nevede k Zidnému dal$imu feSeni.
Konecné v pifipadé [3] musi byt x + 4 = 2x — 9; odtud
vychazi x =13, (x + 4) 2x — 9) = 17%. Mame tedy druhé
feSeni
x = 13.

Uloha je vyfeSena; hledana &isla jsou x =5 a x = 13.
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10
Bud x celé ¢islo. Je-li k& pfirozené ¢islo, plati
(x+nf=x"+n.C,
kde C je celé Cislo. Proto také

fx+n)=f() +n.F

kde F je celé Cislo. Jakmile tedy x e M, je téZ x + ne M.
Z toho vsak plyne, Ze mnozina M je bud prazdnid nebo ne-
konecna.

11

Predstavme si vSechna ¢isla 0, 1, 2, ..., 3* — 1 zapsina
v trojkové soustavé. Mezi nimi je pravé 27 Cisel, v jejichZ troj-
kovém zapise se neobjevuje Cislice 2. Dvojnasobek kazdého
takového Cisla nema tedy ve svém trojkovém zéapise Cislici 1,
zatimco soucet dvou riznych takovych disel ji ma. To zna-
mena, Ze tato skupina Cisel vyhovuje pozadavku tulohy.

12

Prvni feSeni. Predpokladejme nejprve, ze Cisla 27 — 1,
2¢ — 1 jsou nesoudélnd, a dokaZme (sporem), Ze i Cisla p, ¢
jsou nesoudélnd. Kdyby bylo p = km, ¢ = kn (k, m, n pii-
rozena, k> 1), méla by disla 27 — 1 = (2¥)m — 1, 2¢ — 1 =
= (2%¥)» — 1 spole¢ného délitele 2* — 1 > 1, coZ by byl spor.

Obracené, budte p, ¢ nesoudélnd Cisla a necht je napf.
p > ¢ (ptipad p = ¢ =1 je totiz jasny); dokazeme, Ze i Cisla
27 — 1, 2¢ — 1 jsou nesoudélna. PonévadZ pro ¢ =1 to plati,
méjme ¢ > 1. Predpoklddejme naopak, Ze Cisla 27 — 1, 27 — 1
maji spolecného délitele d > 1.

Délme d&islo p Cislem ¢ a oznaéme r pfislusny zbytek: p =
— gt +r, kde 1, r jsou pfirozena Cisla a 0 < r < ¢. Cisla
g, r jsou tedy také nesoudélna. Z upravy
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20 — 1 =2a4r — 1 =2r 20t —2r L 2r — ] =
— 2@ —1) 42 —1=2[Q) — 1]+ @ —1)

vyplyva, Zze d je spolenym délitelem i cisel 2¢ — 1, 27 — 1,
pfiemz mame ¢ > r.

Opakovinim postupu naznaleného v predchozim odstavci
(nyni s Cisly ¢, r misto p, ¢) bychom nasli pfirozené Cislo s,
0 << s < r takové, Ze Cisla 27 — 1, 2° — 1 by méla opét spo-
le¢ného délitele d. Pak bychom provedli tutéz uvahu s Cisly r,
s misto g, r atd. PonévadZ p > ¢ > r > s..., dosli bychom
po konecném poctu krokd k takovému Cislu u této posloup-
nosti, Ze 2* — 1 < d. Pak by ale d nemohlo byt délitelem cisla
2 — 1, coz by byl spor.

Cisla2? — 1,2¢ — 1 jsou tedy nesoudélna a véta je dokdzana.

Druhé feSeni. Jsou-li ¢isla p, ¢ soudélnd, pak stejné jako
v pfedchozim feSeni se dokéze, Ze i Cisla 27 — 1, 22 — 1 jsou
soudélna.

M¢jme tedy dvé nesoudélna Cisla p, ¢ (napf. p > ¢) a pro
dikaz sporem predpoklidejme, Ze Cisla 27 — 1, 2¢ — 1 maji
spole¢ného délitele d > 1; pfitom d je liché.

Vyjadfime-li ¢islo 22 — 1 ve dvojkové soustavé, bude

2 —1=11...1, )

kde na pravé strané je pravé p jednicek a zadné nuly ; analogicky
zapis ma i Cislo 2¢ — 1.

Vezméme nyni nejmensi pfirozené Cislo, které je délitelné
Cislem d a jehoZ zapis ve dvojkové soustavé se pritom sklada
ze samych jedniCek; pocet téchto jednicek oznacme m (ziejmé
m > 1). Jinymi slovy, m je nejmensi ze vSech pfirozenych
Cisel n takovych, ze 2" — 1 je délitelné Cislem d. Je tedy 1 <
< m = g < p. UkdZeme, ze m je spolecny délitel Cisel p, ¢,
coz bude spor. Dokazme napf., Ze p je ndsobek m.

Nahradme ve vyjidfeni (1) poslednich m jedni¢ek nulami,
tj. odeCtéme od Cisla 27 — 1 ¢islo 2 — 1. Vznikly rozdil bude
tedy délitelny Cislem d. Je-li nyni p — m > m, nahradme
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dalsich (v pofadi zprava) m jedni¢ek nulami, ¢imZz vznikne
opét Cislo délitelné d (rozdil dvou d&isel délitelnych d). Tak
postupujeme dale. Jsou dvé moznosti: bud po nékolika kro-
cich vSechny jednicky zmizi (takZe p bude néasobkem m,
c. b. d.) nebo zbude prvnich 2 < m jedniCek, za nimiz bude
nasledovat p — & nul. Posledni ¢islo je pak rovno (2 —1).
.2r% 3 je délitelné Cislem d (jak vyplyva z naSeho postupu).
Ponévadz vsak d je liché, nutné d déli 2 — 1. To je ale spor
s volbou disla m.
Tvrzeni je dokdzano.

13

Budiz napt. m > n a piSme m = n -+ x, kde x je pfirozené
Cislo. Kdyby dana dvé cisla byla soudélnd, existovala by pfi-
rozena Cisla d > 1, p, g takova, Ze

2" L 1=d.p, tj. 22" =d.p—1, (1)

2"+ 1=d.qg t. 22"=d.q— 1. (2)
Ponévadz ale

QoM _ gewts _ gam v 9T _ (ganyar
dostali bychom podle (1), (2)
d.p—1=@{d.q— 13,
a dale (vzhledem k sudému exponentu na pravé strané)
A.d=2,

kde A je pfirozené Cislo. Z toho plyne, Ze d = 1 nebo 2.
Avsak nemiZe byt d = 2, nebot d je délitel danych lichych cisel.
Je tedy nutné d = 1, coZ je ovSem spor s nasim piedpokladem,
ze d > 1. ;

Kdyby bylo jenom konecné mnoho prvocisel

PP+ 5 Pro>
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pak by nékteré z nich muselo byt spoleénym prvocinitelem dvou
z k + 1 riznych &sel 22’ 4 1,kdej =1, 2, ..., k+ 1. To
by byl spor s tvrzenim dokdzanym v piedchozim odstavci.
Existuje tedy nekone¢né mnoho prvocisel.

Poznamka. Ctenafi jisté znaji pfimé&jsi dikaz posledniho
tvrzeni.

14
Pro soucet r (=2) po sobé jdoucich pfirozenych Cisel
mm-+1,...,m+r—1

plati znamy vzorecek
r—1 1
Y m+j)=—=r@m+r—1).

; i=o 2
Z toho predevsim vyplyva, Ze Cisla tvaru N = 2* (x celé ne-
zéporné) patii mezi hledana &isla. Nelze je totiz vibec vy-
jadfit jako soucet alesponi dvou po sobé jdoucich pfirozenych
Cisel, nebot Cislo r 2m + r — 1) ma zfeymé lichého délitele
vét§iho nez 1.

Hledejme nyni pfirozené cislo N vyhovujici podminkim
tlohy, které ma alesponl jednoho lichého prvocinitele 2% + 1.
Miazeme tedy psat

N=_2k+ 1)n,

kde 7 je vhodné pfirozené Cislo. Vezmeme-li posloupnost
celych Cisel

n—kn—k+1,...,nn+1,...,n+ 4, (1)

ktera ma pravé 2k + 1 ¢lend, bude jeji soulet roven Cislu
(2k +1)n = N. Cislo N se nim tedy podatilo vyjadiit jako
soucet 2% 4 1 po sobé jdoucich celych cisel. Nékolik prvnich
Clenti v (1) vSak mohou byt nekladni disla; vynechame-li je
i s Cisly k nim opacnymi, zbude posloupnost alesponi dvou
po sobé jdoucich pfirozenych &isel, kterd ma méné nez 2k + 1
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Clend, ale tyz soucet N (soucet vynechanych ¢lent je totiz
nula). Z toho vyplyva, Ze kazdy lichy prvocinitel hledaného
¢isla N musi byt vétsi nez 1976.

Oznacme nyni 2/ 4 1 soucin vSech lichych prvociniteld
hledaného &isla N, takze

N =2+ 1)s,
kde s je (cela nezaporna) mocnina dvojky. Pfitom uZ vime, Ze
20 4+ 1 > 1976, tedy I > 987. Je-li s =1, je nutné s = 1024
(nejbliz§i mocnina dvojky pfevySujici Cislo 987 je 1024). Je-li
s < I, vezmeme opét posloupnost celych Cisel
s—Ls—1+1,...,8,s+1,...,8s+1,

jejiz soucet je (2 + 1) s = N. Z ni vsak jiz dovedeme utvofrit
posloupnost po sobé jdoucich pfirozenych Ccisel, kterd ma
rovnéz souCet N. Poclet Clent této posloupnosti bude

@I+1)—20—s)—1=2s.

Proto musi byt 2s = 1976, tedy opét s = 1024.
Zatim jsme dokazali, Ze hledané pfirozené Cislo N (pokud
neni mocninou dvojky), musi mit tvar

N =1024.2¢. M,

kde ¢ je celé nezaporné Cislo a M je soucinem prvocisel vétsich
nez 1976.

DokaZzme nyni, Ze pravé popsand ¢isla N skutecné vyhovuji
pozadavkim ulohy. Provedme nepfimy dikaz tohoto tvrzeni.

Predpokliadejme nejprve, Ze by takové Cislo N bylo souctem
lichého poctu 2r + 1 << 1976 (r = 1) po sobé jdoucich pii-
rozenych &isel. Oznalime-li p prostiedni z nich, bude N
souctem pfirozenych cisel

p—rap—r+1,...,pp+1L...,p+1
tj. bude
N =(Q2r + 1)p.
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Cislo 2r 4+ 1 bude tedy lichym d&litelem ¢&isla N, a proto
2r 4+ 1 > 1976, coZ je spor.

Predpoklddejme nyni, Ze by naSe Cislo N bylo souctem
sudého poftu 2r < 1976 (r = 1) po sobé jdoucich pfiro-
zenych Cisel. Oznacime-li m prvé z nich, bude

N =r(2m + 2r — 1).
Cislo v zavorce je liché, proto plati » = 1024, tedy 2r = 2048 >
> 1976, coZ je opét spor.

Zavér. Hledana cisla jsou jednak vSechny celé nezdporné
mocniny ¢isla 2, jednak vSechna Cisla, ktera maji vSechny liché

prvocinitele vétsi nez 1976 a ktera jsou zaroven délitelnd
Cislem 1024.

15

Prvni feSeni. Tvrzeni dokdZeme sestrojenim vybrané po-
sloupnosti s uvedenou vlastnosti uzitim matematické indukce.
Predpokladejme, Ze kazda dvé z pfirozenych Cisel

a=2"—3,a,=2"—3, ..., aq =2"%—3, 1

kde 2 =n, < n, < ... < m, jsou nesoudéna a sestrojme Cislo
@y = 2"+ — 3 nesoudélné s kazdym z Cisel (1) takto:
OznaCme s = a;ay ..., Z s+ 1 Cisel 20, 21, ..., 25 lze

vybrat alesponn dvé takova, Ze pfi déleni Cislem s davaji tyz
zbytek. Necht jsou to &isla 2%, 27 (o > f). Pak tedy

20 — 20 =p.s, (2)
kde p je ptirozené Cislo. Vztah (2) lze psat ve tvaru
=3 —1)2=p.s
a ponévadz s je liché, plyne odtud, Ze
220 —1=gq.s, (3)
kde ¢ je pfirozené cislo. Z (3) pak dostaneme

20-3+2 3 =4,2%0 —3=4(¢gs +1) —3 = 4¢s + L.
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Staci tedy vzit
My =0 — 4 2, apyy = 4gs + 1.

Ponévadz ziejmé plati a;., > a;, je téZ n,., > n, a v celé
konstrukci muzeme neomezené pokraCovat.

Druhé feSeni. Budiz

A5 Aoy o v o 5 A ¢))
k = 2 po dvou nesoudélnych ¢lent dané posloupnosti. Necht
P1>Pos- v s Py ©)

jsou vSechna prvocisla, ktera déli nékteré z Cisel (1). Prvodisla
(2) jsou ziejmé licha, takze podle Fermatovy véty (pozn. za
feSenim) plati
271 =1 mod p; 3)
pro kazdé i =1, 2, ..., r. PoloZme '
s=(p—D@—1)...(p, — D).
Vhodnym umocnénim kongruence (3) dostaneme
2 =1 mod p; 4
pro kazdé 1 =1, 2, ..., r. Z (4) plyne, Ze
2571 =2 mod p;
opét pro kazdé 7 =1, 2, ..., r. Kazdé p;, tedy déli cislo
2s+1 — 2 a nedéli tudiz Cislo 25+1 — 3. To znamena, Ze Cislo
ak+1 — 28+1 i 3 > 1

je nesoudélné s kazdym z cisel (1), takze je také ruzné od
kazdého z nich. Naznacena konstrukce dokazuje tvrzeni.
Poznimka. Jestlize celé Cislo a neni délitelné prvocislem
p, pak Cislo a»—! dava pfi déleni prvocislem p zbytek 1, tj.
plati
ar—!' =1 mod p. (1)
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To je Fermatova véra; muzeme ji dokdzat napf. takto:

Necht ry, 15, ..., 1, jsou pofadé zbytky cisel a, 2a, ...,
(p — 1) a po déleni prvocislem p. Kazdy z téchto zbytku je
nékteré z Cisel 1, 2, ..., (p — 1) a plati

a=r, modp,
2a =r, mod p,

(p —1)a=r,_, modp.

Ci§1a Tys Tas ... T,y jsOU navzijem riznd (ovéfte nepiimo
uzitim predpokladu véty). Proto
ety oo Ty =1.2. ... (p— 1. (2)

Vynasobenim uvedenych kongruenci dostaneme
1.2. ... .(p—D.a»'=r,.1ry. ... .1~ modp

a odtud jiz plyne (1), nebot soucin v (2) neni délitelny prvo-
Cislem p.

) 16
1+1~+ ! teet o <1+flf*+ﬁi~-+...
23 33 2 33—-3
1 1 1
Twea T2 ot
T oL (17 S N
n—Dnmn+1) 1.2 2.3 ' 2.3
R T S )_
3.4 777 (n—Dn namn+1)
PP SR N S DR 0§
2\2 n(n+1) 4  2n(n+1 )
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17

Nejprve vysetiime, pro kterd realna ¢isla x ma dana funkce
smysl. :

mwwmnWMpmnl—;+ugOnwm

x|x| =2
Tuto nerovnici spliiuje kazdé zaporné Cislo x, nebot leva strana
je v tomto piipadé zapornd; pro nezdpornd x je |x|=x
a nerovnost diva podminku x = |/2. V daliim budeme
proto predpokladat, Ze je
x =<2 (1)
Dale staci uz jen ovéfit, zda plati

I—Z—ixw—],/;j;‘wxeo;

pak totizZ i vyraz pod prvou odmocninou v defini¢nim predpisu
dané funkce bude tim spiSe nezdporny. Vzhledem k (1) mizZeme
vSak posledni nerovnost ekvivalentné upravit

PRI Voo

lfzwxr:)/l EIP

X x o X

— > =
AR (AP IR TP

(%Jxl)zzo,

¢imz je jeji platnost ovéfena. »
Defini¢ni obor dané funkce je tedy urCen jedinou pod-
minkou (1).

Polozme ¢ = Z x|, a=1—¢, b= Vli:AHZ?.
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Potom

y=Vais—Yab=Qats—Ya—by-

—Vatb—2y@—F+a—b=)2(—}ar—p)—

~J2a—c=TeD)

Prox < 0jec < Oatedyy = [/'27('1': c— (=) = Vf, zatim-
coprox =0jec=0atedyy = ]/2(1 —2) = 1/2—4—972.
Zivér.Prox <0jey = l/i konstantni a pfislusny graf je
polopfimka. Pro 0 <x=]/2 je y =]/2 —x* a grafem je
Ctvrtkruznice se stfedem v pocatku a polomérem [/2_, ktera
lezi v prvém kvadrantu.
Graf dané funkce je naznaen na obr. 2.

Yy
I =S
| ~
| S
| s
| //
|
i X
Obr. 2. -1 0 z
18

Je-li p = 0, mame konstantni funkci y = 0; v tomto pfi-
padé je prva Cast dlohy samoziejmé splnéna a druhd nepfi-
chazi v dvahu. Budeme proto v dal$im pfedpokladat, Ze je
p#0.
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Nalezi-li bod 4 = [x,y] grafu dané funkce, pak na tomto
grafu lezi i bod 4" = [—x, —y], jak je vidét pfimo z defini¢-
niho predpisu. Graf funkce je tedy soumérny podle pocitku
O = [0, 0] pravouhlych soufadnic, takze jej stali vySetfovat
jen pro x = 0.

. |
Nejprve mame dokazat, Ze vzdy plati |y | < —, tj.

2
¢ T 3
2tprt1l ~ 2"
neboli
2pl=x
Y E

Tuto nerovnost lze ekvivalentné upravit na

2|pla<x®+p*+1
neboli

O<(x—Ip+1,
coZ plati.

Déle mame zvolit p tak, aby pro vSechna x platilo y < L

cili

R

px 1 (1)
x4+ p2+1 4
a aby pro nékteré x nastala v tomto vztahu rovnost. Ekvivalent-
nimi dpravami dostaneme

dpx < x* + p* 4 1,
0=(x—2p+1—3p% 1)
Nemuze byt 1 — 3p? < 0, nebot pak by nerovnost nebyla spl-
néna napf. pro x = 2p. Nemize byt ani 1 — 3p* > 0,
nebot pak by pro vSechna x platila ostrd nerovnost. Je tedy
nutné 1 — 3p? =0, tj.

IA

N
p=%5
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V tomto ptipadé vztah (1) a tedy i (1) plati pro vSechna x a rov-
nost nastane pro x = 2p, tj.

Pro p = M;i dostavame funkci

R
Y= 3214 2
s
aprop=— 5 funkci
V3
O ®)

Ponévadz graf funkce (3) se dostane jako obraz grafu funkce (2)
v soumérnosti podle osy x, vySetfime pouze pribéh funkce (2).
Dokéazeme, Ze pro

0§x§—2~3v—3

je funkce (2) rostouci a pro

je funkce (2) klesajici.
Oznaéme y,, y, hodnoty funkce (2), které pfislusi po fadé
k hodnotdm x,, x,, pro néZz plati

0§x1<x2§2TV3 4)

%3 /3

V2T NT R s T e 4

(-3
INCT R TC

Pak je

(4 — 3x;%,). ®)
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Prvni Cinitel (zlomek) vyrazu (5) je kladny. Z (4) plyne
4 . . ..

XXy < 55 takze 4 — 3x,x, > 0; je tedy i druhy Cinitel vy-

razu (5) kladny a tim i y, — y, > 0 neboli y, > y,. Podobné

23

se dokaze, Ze pro x = 3 je funkce (2) klesajici.

Graf funkce (2) sestrojime uzitim této tabulky:

2

| =
-

N

| -

| bl
N}

23
0|21 - -
10 0,182
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Dile uzijeme stiedové soumérnosti grafu vzhledem k bodu
O = [0, 0]; viz obr. 3.

Vysledek. Existuji pravé dvé funkce

V3 32

Y= mryar YT T mria
které spliiuji druhy poZadavek ulohy. Prvni z nich nabyvé

2
— ; ostatni hod-

13

. 1 2 ;
maxima — pro x = —,—a druh4 pro x = —
4 V3

< . g 1
noty téchto funkci jsou mensi nez .

Poznamka. Tento pfiklad je mozno fesit téZ elementarnimi
metodami diferencidlniho poctu.

19

Ano. Stali sestrojit takovy rozklad, aby kazda Cast obsahovala
libovolné dlouhé intervaly po sobé jdoucich pfirozenych cisel.
Napt. v obr. 4 jsou Cisla jedné Casti rozkladu znacena plnymi
krouzky a zbyvajici prazdnymi; Cisla 11, ..., 15 budou tedy
vyznacena plnymi krouzky, dalich Sest cisel 16, ..., 21
prazdnymi atd.

——0

obr.a. 1 2 3

oO—

5 6 * 8 9 10

Ne

20

Prvni feSeni. Je-li x kofenem dané rovnice, plati

(Vo= +2 )1y =,
x =0,
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a také obrécené, spliuje-li Cislo x vztahy (1), je kofenem dané
rovnice. Soustavu (1) upravime

4Vx2~p.]/§§—v1:p+4—4x2,
x=0.

Tato soustava je ekvivalentni soustavé

MVﬂ—¢.%W—Dh=@+4f4ﬂﬁ]
x=0, @
p+4—4x2=0, J
a dale soustavé
16(x2 —p) (x2 — 1) = (p + 4 — 4x2)?,
x=0,
p+4—4x2>0),
x? —p = 03
x2—1=0

82 —p)x* = (4 —p)%
x =0,

p+4
e S Wi
x4 =

neboli

> ©)

x2=p,
x? 1

V1

Ukazeme, Ze pii p = 2 nema soustava (3) feSeni. Je-li totiz
p =2a p +# 4, pak leva strana v rovnici z (3) je nekladna,
kdezto prava kladna; je-li p = 4, pak nutné x = 0, coz vSak
odporuje posledni podmince v soustavé (3).
V dalsim proto pfedpoklddejme, Ze je p < 2. Pak musi byt
X2 — (4 - P)2

- 82—p°

V tomto pfipadé jsou splnény obé posledni podminky soustavy
(3), nebot je lze psat ve tvaru
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Gp—4r_, ??

o/ .\ = 3 C N g 0,
8(2—p) 8(2—»2)
coz plati.
Nerovnost
(4—pP _p+4
82—p)— 4
je splnéna pravé tehdy, plati-li
23 —4) <0
2—p
¢ili (mame p < 2)
1.
4
0=p= 3 4)

Pro ¢isla p vyhovujici nerovnostem (4) je tedy soustava (3)
ekvivalentni soustavé

PGSO
8(2—p)’ (5)
x=0;

pro jind p soustava (3) nema feSeni.
Ponévadz dana rovnice je ekvivalentni soustavé (3), do-
stavame z (5) jediné feSeni

za predpokladu (4); nespliuje-li ¢islo p podminky (4), nema
uloha feSeni.

Druhé feSeni. Necht x je realny kofen dané rovnice. Pak
plati

2/ —1=2x— st —p,
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a umocnime-li obé strany této rovnice dvéma, dostaneme po
upravé

2x2 +(p — 4) = -ZxVJ?ﬁp.

Po dal$im umocnéni a upravé vyjde

44 —2p)x* = (p — 4™ M

Odtud plyne, Ze p # 2, 4 (v pfipadé p =4 da (1) kofen
x = 0, ktery vSak nevyhovuje dané rovnici). Je-li p # 2, 4,
je nutné v (1) 4 — 2p > 0 neboli p < 2. V uvahu pak pfichazi
kofen rovnice (1) dany vzorcem

—4
S Ak @
2)/4 —2p

nebot Cislo x na pravé strané dané rovnice musi byt nezaporné.
Je ovsem tieba ovéfit, zda toto x spliiuje rovnici ulohy. Vy-

pocteme
o, G Gp 4y
4(4 —2p) 4(4 —2p)°
takze
Ve —p = PR
2/4—2p
Dale
el - P
44 —2p) 44 — 2p)
a
je—1=__l2l
2|4 —2p

Cislo (2) bude tedy kofenem dané rovnice pravé tehdy, bude-li
platit

3p—4| +2[pl=1p—4]. (3)
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Pii zkoumani rovnice (3) rozli§ime Ctyfi intervaly:
a)p=0,
4
b)0=p= EE

d%gpg&

d)p=4.
V piipad¢ a) ma rovnice (3) tvar —3p +4 — 2p =4 — p, tj.
p = 0. V pfipad¢ b) rovnice (3) zni —3p +4 +2p =4 —p
a vyhovuje ji kterékoli p z tohoto intervalu. V pfipad¢ c) ma
rovnice (3) tvar 3p — 4 + 2p =4 — p a jediné feSeni p = 3
Konecné ptipad d) vzhledem k vyse nalezené podmince p << 2
nemusime uZ vysetfovat.

Vysledek: jediny mozny kofen (2) vyhovuje dané rovnici

jen v pfipadé p<2 a 0<p =< é—. Podminka feSitelnosti
tedy je 3
0< < ,4,
=p= 3
a jediny kofen
iy 2
2)/a—2p
21
Prostym vynasobenim vychazi
V2+1) =42+ B, (1)

kde A, B jsou prirozena Cisla.
Predpokladejme nejprve, Ze 7 je liché. Pak z analyzy pfedchozi
uvahy vyplyva , ‘
(2 -1 =42 —B. (2)
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Znasobenim rovnosti (1), (2) dostaneme
1 =24* — B,
z Cehoz
24® — 1. (3)
Polozime-li m = 24* — 1, obdrzime vzhledem k (1), (2), (3)
zadany vysledek
V2= |m+1+£|m.
V ptipadé, kdy # je sudé, plati obdobné

(J2 —1» = —4}2 + B. (4
Znasobenim rovnosti (1), (4) plyne
1 =B — 242,
odkud _
B =24 11. (5)

Polozime-1i nyni m = 242, dostaneme vzhledem k (1), (4), (5)
opét zadany vysledek
B2+ =|m+14m.

Véta je dokazéna.

22

Dané rovnice oznaéme postupné znaky (1) az (3). Z (2) a (3)
odvodime, Ze
(x + y) = b2 + 22,
az (1) plyne, ze
(x +3)* = (a — 2)*

Porovnanim poslednich dvou vztaht dostaneme

a? — 2az = b2,
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Je-li a = 0, b +# 0, nema soustava feSeni. V pfipadé a = b =0
nachézime z (2) jediné feSeni x =y = 2 = 0.
Bud tedy a # 0. Pak

a2 _ b2
=0 4)
Dosadime-li (4) do (1) a (3), vypocteme
a® + b?
x+y= T 3
(a2 _ b2)2
Xy = a2 (6)

Ponévadz neznamé x, y vystupuji v dané soustavé symetricky,
muzeme pfedpoklidat napf. x = y. Pak z rovnic (5), (6) vy-
pocteme , B

IR V/102%* — 3a* — 35"

4a 4a g
Q)
@+ |10a%® —3a' —3b
T 4a  4a
ovSem za pfedpokladu, Ze je
10a26? — 3a* — 3b* = 0; (8)

neplati-li (8), nema soustava realna feSeni.

Dosazenim se lze prfesvéddit, Ze trojice Cisel x, y, z dana
vztahy (7) a (4) (a téZ druha trojice, kterd vznikne vyménou
pismen x, y) skute¢né vyhovuje dané soustavé.

. ; . . a® -+ b?
Aby kofeny byly kladné, musi byt nutné x +y = % >
2 H2
> 0, odkud a > 0, a dile 2z = q7b>0’ z CehoZz a >

> | b |. Obraceng, je-lia > | b |, pak kofen z je kladny a rovnéz
koteny x, y jsou kladné, nebot byly vypocteny ze soustavy
rovnic (5), (6) [z (6) plyne, Ze x, y maji stejnd znaménka, podle
(5) vsak x, y nemohou byt obé zaporna). Necht je tedy a > | b |,
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Nalezené kofeny x, y jsou rizné pravé tehdy, je-li 10a%h* —
— 3a! — 3b* > 0 neboli @ < | b | |/3. Pak i kofen z je rizny
od x i od y; kdyby napf. x = 2, plynulo by z rovnice (3)
y =2z, a tedy x = y.

Nutna a postacujici podminka k tomu, aby disla x, y, z spl-
nujici danou soustavu rovnic byla kladna a navzijem raznd, je

bl <a<|bl]3.

23

Z4dné z hledanych ¢&isel nemiZe byt nula; kdyby napi.
x;, = 0, pak by muselo platit

XoX5Xy = 2,

Xy = X3 = X4 = 2,

coz neni mozné. Oznalime-li x;x,x,x, = p, pak pro kazdé ; =
=1, 2, 3, 4 plati
X + P _ 2
X;
¢ili
x2 —2x; +p=0.

Vsechna Ctyfi hledana Cisla jsou tedy kofeny jedné kvadratické
rovnice. Proto nejvySe dvé z nich mohou byt rizna. VySetfime
tyto tfi moznosti:

[1] x, = x, = xy = x, = m, takZie m + m® = 2. Ponévadz
funkce m -+ m® je rostouci, nachdzime jediny realny kofen
m = 1.

[2] Necht napf. x; = x, = x3 = m, x, = n. Pak mame sou-
stavu rovnic

m + mPn = 2,

n -+ m = 2.
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Odectenim
(m —n) (1 —m?) = 0.

Moznosti m = n a m = 1 nevedou k nicemu novému. V pfi-
padé m = —1 bude n = 3. Tak dostaneme celkem ctyfi feSeni.
[3] V ptipadé x;, = x, = m, x3 = x, =7 mame soustavu

m + mn?® = 2,
. n -+ nm® = 2.
Odectenim
(m —n) (1 — mn) = 0.

Opét staci uvazovat jen moznost mn = 1. Pak ale z pfedchozi
, 1

soustavy dostaneme m +n =2 a dale m + — = 2, m* —
m

—2m +1=0,(m — 1> =0,m = 1,n = 1. Ale tento pfipad
jsme uz dfive probrali.

Z4avér. Uloha m4 celkem pét feleni: x, = x, = x, = x, = 1;
jedno z Cisel x; se rovna 3 a ostatni —1.

24

Prvni feSeni. Necht trojice redlnych cisel x;, x,, x, spliiuje
danou soustavu. MuzZeme predpokladat, Ze aspoil dvé z Cisel
X1, X9, X5 jSOU nezaporna; jinak bychom piesli k trojici —x;,
—X,5, —X5, kterd rovnéZ spliiuje danou soustavu. Vhodnou
vyménou neznamych a soucasnou vyménou rovnic dosdhneme
toho, Ze

xl 2 03 x2 2 0

a Ze koeficienty takto upravené soustavy opét spliiuji podminky
a) az c). V posledni rovnici dané soustavy pak bude

Ay Xy + agpxy = 0,
a proto
Ag3%3 = 0, x5 = 0.
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Je tedy x; = 0, x, = 0, x; = 0. BudiZ napf. x; nejvétsi z Cisel
X5 Xgs X35 1).

X = x5 =0, X = x5 = 0. (1)
Vynésobime nerovnosti (1) po fadé zapornymi Cisly a;s, a3
vyjde

A9X) = AypXys 3% = a15%. )

Se¢teme nerovnosti (2) a pfiteme rovnost a;;x, = a;,%;; do-

. staneme

= (@ + arp + ar3) ¥ = apXy + agp Xy + ay3x; = 0.
Odtud plyne — protozZe a;; + a;, + a;3 > 0 — vysledek x; = 0
a dale podle (1) x, = x; = 0.
Druhé feSeni (pfedpokladd nékteré znalosti o determi-
nantech). Oznacme s; = a;; + a@;5 + a;5 proi =1, 2, 3 a vypocté-
me determinant D dané soustavy

a1 Q12 A3 i S1 G1p Qy3
D= | ay Gy a3 | = | Sy Gyp Ay | =
Qg Qg Agg 1 S3 Agp Agg

= 51(A2033 — A23a30) + $5@1303 + S3q12Ga3 — S2@19833 — S3dasdys.
Druhy, tfeti, ¢tvrty a paty scitanec jsou kladna &isla; dokaze-
me-li, Ze je Q@3 — as3as > 0, bude D > 0, takZe podle
znamé véty je x; = X, = x5 = 0 jediné feSeni dané soustavy.

ProtoZe je az; < 0,553 > 0, plati ag, + a;53 > 0; vynasobime-li
tuto nerovnost kladnym ¢islem —a,,; a pfi¢teme-li pak na obou
strandch soucin ay,ag;, dostaneme a@yyds; — dy3dgp — Agydsy >
> yya34, neboli

A2oQs3 — Qaayy > A33(asy + Gsa).
Zde je zase ay; + @y, > 0 (nebot ay, <0 a s, > 0), takze
skutené plati ay.a33 — as3a5, > 0.
Trteti feSeni. Necht trojice realnych Cisel x,, x,, x5 je fe-
Senim dané soustavy a necht |x;| = |x,| = | x;]|; toho lze
vidy dosidhnout vhodnou permutaci nezndmych a rovnic.
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Ptipad | x, | = 0je jasny,a proto budeme v dalsim pfedpokladat,
ze je | x; | > 0. Pak plati

X3 E | x5 |
a; + alZ +f113 =Zay — lapl- — | ayg | 2 >
*1 ] X1 ‘ [ %1 |
2“11“1“12i —lay| =ay +a, + a3 > 0.
Z prvé rovnice plyne

0 =|aux, + apx; + apx | = | x| "111 + alz + a13 x,
avSak druhy Cinitel v poslednim soucinu je, ]ak jsme pravé
dokazali, kladny. Proto X = 0 a z uspofadani | x; | = |x,| =
= | x4 | pak vyplyva, Ze i x, = x5 = 0.

Tohoto feSeni lze uzit i v pfipadé analogické soustavy » rovnic
0 n neznamych.

25

Pfi soucasné vyméné parametri a;, @, a neznamych x;, x; se
soustava nezméni. MiZeme tedy pfedpokladat, Ze

a; > a, > ag > a,. (1)

Pak 1ze kazdou absolutni hodnotu | a; — a; | ( < k) nahradit
rozdilem a; — a;,. Odeéteme-li druhou rovnici od prvni, vyjde

(@, — ay) (—x, + %, + x3 + %) = 0. 2
Podobné odeltenim tieti rovnice od druhé dostaneme

(@y — ag) (—x — %, + x5+ x,) = 0. 3)
Konec¢né odeltenim Ctvrté rovnice od tfeti dostaneme

(a5 — ap) (—x; — % — x5 + x,) = 0. 4)

V rovnicich (2), (3), (4) zkratime nenulové koeficienty (a; — a,),
(ay — a3), (a3 — a,). Takto upravené rovnice (2) a (4) seCteme;
vyjde x; = x,. Odeltenim upravenych rovnic (2) a (3) vyjde
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x, =0, z (2) pak x, = 0. Z pavodnich rovnic pak dostaneme

Za predpokladu (1) ma tedy dand soustava jediné mozné
. 1 e
feSeni x, = x4, = —— ————, Xy = x3 = 0. Dosazenim je

.| 4 — 4 !
mozno se presvédCit, Ze je to skutecné reSeni dané soustavy.
Podobné Ize fesit obdobnou ulohu pro libovolny pocet rovnic.

26

Ocislujeme dané rovnice (1) az (5). Prvé tfi z nich piSme ve
tvaru

X5 = YX1 — Xo (1a)
X3 =YXy — Xp5 (22)
Xy = YX3 — Xy (3a)

Dosazenim x; z (2a) do (3a) dostaneme po upravé
X = (" — 1) x; — yx,. (3b)
Do (4) dosadme nyni z (la), (2a) a (3b):
Yxy — % + 3% — xp = Y[(5® — Dxy — yxq],
¢ili po uprave
P+y—Dxi =@ —-DO*+y—Dx=0 (4
Dale dosadme do (5) za x,, x5 z (3b) a (la):
(9 — D xy —yx; + % =y (¥x, — %),
¢ili po upravé
P +y—Dx—0*+y —Dx=0. (5a)

Snadno se ovéfi, Ze pétice Cisel x,, x,, X3, X,, X5 spliiuje danou
soustavu rovnic tehdy a jen tehdy, plati-li soucasné (la), (2a),
(3b), (4a), (5a).
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Resme tedy soustavu rovnic (la), (2a), (3b), (4a), (5a). Pii-
tom rozliSujme dvé moznosti vzhledem k parametru y.

[11Je-li »* +y —1=0,t. y = i;tﬁ , pak rovnice

(4a), (5a) jsou splnény pro libovolna Cisla x,, x,. Vztahy (la),
(2a), (3b) pak jiz jednoznaéné urcuji zbyvajici Cisla x5, x5, X,.
Vychazi tedy nekone¢né mnoho feseni.
[2] V pfipadé, Zze y* +y — 1 # 0, lze rovnice (4a), (5a)
zjednodusit
x— (@ —Dxy; =0, (4b)
x; — %o = 0. (5b)
Je-li nyni y = 2, pak nachézime nekone¢né mnoho feSeni tvaru
X, = Xy = X3 = X = X5 = @,
kde a je libovolné &islo; jiné pétice v tomto pfipadé nevyhovuji.
Je-li y + 2, pak z (4b) a (5b) plyne x; = x, = 0 a z (1a), (2a),
(3b) pak také x; = x, = x5 = 0; v tomto pfipadé¢ ma soustava
jediné feSeni.
Uloha je vyfeSena.

27

Pro n =1 a 2 je dikaz snadny. Pfedpokliadejme, Ze tvr-
zeni plati pro pfirozené Cislo n =2, a dokaZme, Ze plati
i pro n + 1. M&jme tedy » + 1 kladnych Cisel a;, @y, . . . 5 @yt
se souCinem rovnym 1. V pfipadé ¢, =a, = ... =a,4; =1
plati rovnost

a,+a,+...+a=n+1

Nejsou-1i vSechna ¢isla a; rovna 1, pak nékteré z nich musi
byt mensi neZ 1 (necht je to napf. Cislo a,) a nékteré musi byt
vétsi neZ 1 (necht je to napf. a,.,;). PoloZime-li b; = a; a,41,
bude b,a,...a, = 1. Podle indukiniho piedpokladu

by +a +...+a, =n
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Potom
a+a+...+a,+a =0 +a+...+a)+
tap —bta=n+ayy —bta =
=m+1)+au— a4, +a—1=
o=@+ D+ @ DA —a).
Ponévadz a < 1, a,4; > 1, je (@47 — 1) (1 — a;) > 0, a tedy
a +ay+ ...+ a1, >n-+ 1.
Tvrzeni je dokazano.
Pozndmka. Budte a;, as, ..., a, libovolnd kladna &isla.

Polozme Vm = g. Pak
e T an
takZe podle véty dokdzané v pfedchozi tloze plati

:1’

5‘—+ﬁ+...+%"zn

. g g
neboli
a+ta,+...}+a n_
: 2= " = aa,...a,
n
s rovnosti pouze v pfipadé @, =a, = ... = a,. Tak jsme od-

vodili dilezitou nerovnost mezi aritmetickym a geometrickym
prumérem kladnych Cisel.

28
Protoze pro n = 1 je tvrzeni zfejmé, méjme » > 1 a piSme
(ag+a,+...4+a)0b;+b,+...4+b)=8 + 8, (1)

kde S, je soulet n s¢itanct tvaru a;b; (1 = 1,2,...,n) a S, je
souCet n (n — 1) sCitanch tvaru ab, (5, k=1, 2, ..., n,
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nn—1)

1 # k). Soucet S, se tedy skladé z 3

CasteCnych souctti
tvaru a;b; + a;b;. Pfitom plati

aibk + akb,- = (albl + akbk) = (di — ak) (bi = bk) é aibi + ak(bk)'
2

Soucet S, je proto mensi nebo roven souctu n (r — 1) soucind
a;b;, v nichZ index j nabyva kazdé z hodnot 1, 2, .. ., n pfesné
(n — 1)-krat. To znamend, Ze

S, = (n— 1) (b + ...+ a.by). 3)
S ptihlédnutim k (1) a (3) dostdvame nyni Zadanou nerovnost

@+ ayteeeta)btbyt...+b)<

<n(ab, + ...+ ab,). 4)

]e-li a =a,=...=a, nebo by =05b,=...=2b,, plat
zre)me v (4) znaménko rovnosti. Neni-li ¢, = a2 =...=a,
ani b, = b, =...=2b,, pak vzhledem k danému uspofadani

se najdou indexy 7, j takové, Ze a; < a,, b; < b,. BudiZ napf.
i <j. Pak je také b, < b,, takZe v (2) pfi £ =n plati ostra
nerovnost. Potom i v (4) nastavd ostra nerovnost.

29
Uvazovand nerovnost plati pravé tehdy, kdyz
4d,d, ' Co C3
a2 =1
(d + d )2 (Cldl + 62d2 + C3d3) ( + d2 + d3 =

s@+tea+ 03)2- 1)

Vyraz na levé strané nerovnosti (1) je souin dvou Cdinitela

X = dl + dy (a1dy + cody + cady),
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24,
e +d( +@+3)

Tento rozklad jsme provedli proto, Ze aritmeticky primér
Cisel x, y je velmi jednoduchy, jak snadno zjistime vypoltem:

1
Laty=
d+d[q@+¢)+%w+da+ s+ dB)|,
i 1 ddy + &2
+
_ 143
7(x+-y) —CI+C3+C2 (d1+d3)d2 (2)

Snadno dokazeme, Ze koeﬁc1ent pii ¢, v (2) je mensi nebo roven
jedné. Skute¢né, kdyby bylo

didy + d3

-2 T~ 1’

(d, + ds) d;
platilo by

dydy + d3 > dyd, + dpds,
neboli
dy (dy — dy) + dy (dy — dy) > 0,

neboli :

(d3y — dy) (dy — dy) > 0,

coz je ve sporu s pfedpoklady d; < d, < d,. ProtoZe koeficient
pfi ¢, ve vztahu (2) je mensi nebo roven jedné, plati

1
7("7 +y =+t (3)

Ponévadz geometricky primér dvou nezapornych disel je
mensi nebo roven jejich aritmetickému praméru, plati

Vo < 5 (x+) @)
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Z (3) a (4) dostaneme po umocnéni
xy = (ep + ¢+ cg)s

a to je nerovnost, kterou jsme méli dokazat.

30
Muzeme piedpokladat, Ze je napf. x = y. Abychom zmen-
$ili pocet parametri, poloZime z = % = 1 a nerovnost, kterou
méame dokizat, nyni je
(2 + 1m = 2m2 (zm + 1)

Tuto nerovnost upravime

E—Diz+ hr= 420+ Dr2t ... + 277

2m——1 -
S—DEm 14z 24 . 42+ 1)

Je-li 2 =1 (tj. x =y), plati znaménko rovnosti. V piipadé
2 > 1 dostavame ekvivalentni nerovnost

24 1\m1 2+ 1\m2 z+1
(5) () s

Lagm—l fgm—2_1 Lz l],

ktera pro z > 1 plati dokonce se znaménkem ostré nerovnosti

(je totiz © —; E < z) .
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Poznamka 1. Vlastnost funkce

g(x) = xn

(m pfirozené Cislo, definiCni obor x > 0) dokdzana v predchozi
dloze, tj. nerovnost

p (x1 +x2) — &) tg(x)

2 | = ) " @)

(pro x;, x, > 0), ma nazorny geometricky smysl. Predstavme
si v roviné pravouhlych soufadnic x, y graf takové funkce
y = g (x); viz obr. 5. Na tomto grafu zvolme dva body

y P, = [x1, 8 (x1))s
g Py = [x5, 8 (x5)]
I
I
/o
|
O
VAR
/ ! L x
o x» % % Obr. 5.

(necht je napf. x; < x,). Tieti bod Q necht odpovidd hodnoté

v bodé x =x—1#, tj.

Xy + Xy * 1 Xp
2 > &\ 2 :

Q

Il
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Oznalme jesté M stied usecky P,P,, tj.
M= [x1 + X ('xl) + g (x5) ]

bl

Nase nerovnost (1) nyni fiké, Ze bod Q lezi ,,pod* bodem M
(viz obr. 5). Dalo by se dokazat, Ze celd usecka P, P, leZi ,,nad*
grafem funkce g (x) v intervalu {x, x5).

Maji-li kazdé dva body P,, P, grafu funkce f(x) popsanou
vlastnost, fikdme, Ze funkce f(x) je konvexni. V predchozi
tloze jsme tedy v podstaté dokazali, Ze tzv. mocninné funkce
g (x) = x™ (m ptirozené) jsou konvexni v oboru x > 0.

Pozndmka 2. V§imnéme si nyni jednoho duasledku nerov-
nosti (1). DokdZeme tuto vétu:

Jestlige funkce f(x), definovand v jistém intervalu, splriuje ne-
rovnost

eA M
pro libovolnd Cisla x,, x, 2 toho mtervalu, pak plati nerovnost

4xﬁwz +M)§ﬂm+ﬂ@fn~um>@)

f(xl‘iz_iz’) = f(x1) —|—f(x2)

n n

pro lhibovolnd Cisla x,y, X5y ..., X, 2 uvagovaného intervalu.
Jestlige pritom v (1) nastdvd rovnost prdvé tehdy, kdyz x, = x,,
pak rovnost v (2) nastdvd prdvé tehdy, kdyz x, = x, = ... = X,

Dikaz. Nerovnost (2) dokdZzeme (indukci) nejprve v pii-
padé, Ze n je pfirozenou mocninou Cisla 2. Pro n = 2 ne-
rovnost (2) splyva s pfedpokladem (1), takZe neni co dokazovat.
Predpokladejme nyni, Ze (2) plati pro jisté » = & a dokazme
nerovnost (2) pro n rovné nejbliz$i vy$si mocniné Cisla 2, tj.
pro n = 2k. Plati

f(7{17+x2f7 4‘?2): i Xok ):
2k
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X+ X Xop—1. + Ko

foo B
2 2
= f A ) (3)
kde isla 2 *2 + u xz"_lzﬂ lezi opét v uvaZovaném

intervalu, takze na zakladé indukéniho predpokladu mame

f(xl—l—x2+ +x2k)<
2k

< . , @

z CehoZ uzitim (1) plyne (2) pro n = 2k. Nerovnost (2) tedy
plati pro kazdé »n tvaru 2" (m pfirozené).
Bud nyni » > 1 pfirozené Cislo, které neni mocninou Cisla 2.
Pak tedy existuje pfirozené m tak, Ze
2m—l < g o< 27,
Rozdil 2™ — n oznatme p, Cili n + p = 2™. Polozme nyni

x1+x2+---+xn

Xnt1 = Xptg = oo = Xptp = - ”

(toto ¢islo opét lezi v uvazovaném intervalu). Ponévadz n -+ p
je pfirozena mocnina Cisla 2, plati podle jiz dokézaného nerov-
nost
,({1 +x+...+ xn+p) ) () £ f ()
n+p n+p '
3

Avsak argument na levé strané v (5) je

x1+x2 +xn+p

n—o—p
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+x4+...+x,

X + %, + +xn+p -

n—i—p

X, + xy + ...—an

a pravou stranu (5) lze psat

fx) +f(x) + <. ‘Lf(xn p)

n-+p

) ) S G p S ()
didiid s |

takze nerovnost (5) fika, Ze

f (,,’fL,JT Xyt ... J_xl’) <

n

S ) +fmo+pf(

x +...+xn)
n

< — s
odkud

X+ x4+ ... +x,

(o +p).f(BTRE T ) <
STE)+IG) + oo ) +pf (BT T,
a tedy

X A X+ ...+ f(xl)—l-f(xz)i +f(xn)
) g,

Nerovnost (2) je dokdzdna pro vSechna pfirozena Cisla n.
Nejsou-li si vSechna Cisla x;, x5, ..., X, navzijem rovna,
plati v (2) ostrd nerovnost. Vyplyva to z ostré nerovnosti v (4),
ktera je zfejma, uspofadame-1i v (3) s¢itance x;, X, . . . 5 Xo;, tak,
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aby ruzni séitanci x;, x; tvofili jednu dvojici, a uzijeme-li pak
naSeho pfedpokladu o rovnosti v (1).
Véta je dokazana.

31
Pro n = 3 mame

(ar —as)(ay — a3) + (@ —ay) (@, —a3) + (a5 — ay) (a3 —a,) =

=(a, —a)* + (a3 —a,)(ay — a,) = af + a3 + a3 —a,a, —
1
T QA3 — A3a; = ) [(a; — a2)* + (a5 —ay)® + (a3 — a)*],

a to je vZdy nezaporné.

Pro n = 5 dostaneme na levé strané uvazované nerovnosti
vyraz
(@ — ay) (@, — a3) (a; — ay) (a; — a;) +
+ (ay — a)) (a2 — a3) (@, — ay) (@y — a5) +
+ (a3 — ay) (a3 — ay) (a3 — ay) (a3 — a5) +
+ (ay — a)) (a, — ay) (@, — a3) (@ — a;) +
+ (a5 — ay) (a5 — ap) (a5 — a3) (a5 — ay).
Ponévadz v ném disla ay, a,, a;, a4, a5 vystupuji rovnocenné,
muzeme piedpokladat napt. uspofadani a;, = a, = a3 = a, =
= a; Pak plati g, —ay, = —(@y —a,) = 0,0, —a; =a, —
—ay3 =0, ¢y —ay=a,—a,=0, a, —a;=a, —a; =0,
takze
(a1 — ap) (@, — @) (@ — ay) (@, — a;) +
+ (ay — a)) (a2 — ay) (a; — ay) (@2 — a;) = 0.

Obdobné

(ay — ay) (ay — ay) (@, — a3) (@, — a;) +
+ (a5 — ay) (a5 — ay) (a; — a3) (a5 — a,) = 0.
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Zbyvajici scitanec

(a3 — ay) (a5 — ap) (a3 — a,) (a3 — a;)
je, jakoito soucin dvou nekladnych a dvou nezdpornych &isel,
nezaporny Z toho uz vyplyva spravnost uvedeného tvrzeni
ipron =>5.

Abychom dokazali nespravnost dancho tvrzeni pro ostatni
pfirozena n > 2, staCi najit n-tici redlnych Cisel a;, ay, . . . , ay
tak, Ze vyraz na levé strané bude zéporny.

Pro n = 4 staci vzit napt. ¢, = a, = a3 > a,. Obdobné pro
n = 6 staCi zvolit napf. a; =a, = a3 > @, > a; = ...a, pil
nsudém a a; =a, = a3 < ay < a; =...=a, pii n lichém;
uvaZovany vyraz ma pak hodnotu (a, — a;)% (@, — az)" %, coz
je v obou pfipadech zaporné Cislo.

32

Pro dikaz sporem pfedpokladejme, ze vSechny kofeny
x; (=1, 2, 3) daného mnohoclenu jsou raciondlni Cisla.
Cisla y; = ax; jsou pak zifejmé raciondlni koteny mnohoclenu
% + by* + acy + a*d. Snadno se zjisti, Ze kazdy raciondlni
kofen mnohoclenu s celociselnymi koeficienty, kde koeficient
pfi nejvyss$i mocniné je 1, je celé Cislo. Proto Cisla y; jsou
celd a kazdé z nich zfejmé déli prosty ¢len a2d, coZ je liché
Cislo. Z toho plyne, Ze Cisla y; jsou licha, takZe také Cisla

Yty +y3=—b
Y1Ya + Vo5 + Ys1 = ac

jsou licha. To je vSak spor s pfedpokladem, Ze bc je sudé.

33

Budte a,, ay, ..., a, (n celé nezaporné) celociselné koefi-
cienty daného mnohoclenu, tzn.

p(x) =ax" +a, ;x" 1 +...+ax + a (1)
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pro kazdé x. Necht pro pét navzajem riznych celych &isel x;,
Xay X35 Xy5 X5 plaﬁ

p(x)=5 (i=1,23,4,5). )
Predpokladejme, Ze pro néjaké celé Cislo z je
p(2) =8. 3
Odectenim (2) od (3) dostaneme
PR —px)=3 (@=1,2,3,4,5). 4)
Z vyjadreni (1) je vSak patrné, Ze
pR)—p () =(2—x).C, ®)

kde C; (1 = 1, 2, 3, 4, 5) jsou vhodna cela cisla. Z (4) a (5) nyni
vyplyva
3:(z—x;):C,-.

Kazdé z péti riznych Cisel z — x; (2 =1, 2, 3, 4, 5) se tedy
musi rovnat nékterému ze Ctyt Cisel 3, 1, —1, —3. To vsak
neni mozné.

34

Zvolme pocatek casu 9.00 hod. a casovou jednotku 5 min.
Vzdalenost lodi v okamziku 7 ozna¢me S (7). Uzitim analytické
geometrie se lehce vypocitd, Ze S2(r) je kvadratickd funkce
Casu, tj.

8% (1) = ar* + bt + c.
Podle predpoklada
400 = ¢,
225 = 49a - 7b - ¢,
169 = 121a - 11b + c.
Odtud
a=1, b= —32, ¢ =400,
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takze

S2(z) = > — 32r + 400 = (r — 16)* + 144.
Lodé si byly nejblize v 10.20 hod. (z = 16) a jejich vzdalenost
v tu chvili ¢inila 12 mil.

35

PredevSim je jasné, Ze nezaporné Cislo z nemiZe byt ko-
fenem mnohoclenu se viemi koeficienty kladnymi.

Bud tedy z libovolné komplexni Cislo, které neni realné
nezéporné. Je-li Re 2 << 0, pak mizeme poloZit

ay=22, a=—(2+2), ay=1,
a Cislo z spliuje rovnici
22 +a2+a,=0,

v niz vSechny tfi koeficienty jsou kladné.

V ptipadé¢ Re z = 0 muZeme pfedpokladat, Ze Im =z > 0
(jinak bychom pfesli k Cislu z, které rovnéZz musi byt kofenem
hledaného mnohoclenu). Pak obraz &isla z lezi v prvém kvad-
rantu roviny komplexnich ¢isel, nikoli na redlné ose. Proto
(vzhledem k Moivrové vété) pro vhodné prirozené cislo n
bude Re 2" < 0. Podobné jako v pfedchozim odstavci najdeme
kladni cisla a, b takova, ze plati

2+ azn + b =0,
Pak samoziejmé plati i
(2 +az" +b)(z + 1)" =0.

Upravou levé strany (tj. postupnym nasobenim trojélenu
g 4 az" + b vyrazy z -1 a slouCenim stejnych mocnin
Cisla 2) se dostane mnohollen (stupné 3#z), jehoz vSechny
koeficienty budou kladné.

Véta je dokizana.
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36
Pro cisla tvaru o = knr (k celé) plati

sin ¢ < sin 2o < sin 30t =< ..

.5 M
nebot vechny Cleny jsou nulové.

Necht « neni tvaru kn (k celé). Predstavme si pfislusny bod
M, na jednotkové kruznici v roviné kartézskych soutadnic
(tzn. o je velikost orientovaného thlu s vrcholem v pocitku,
jehoZ prvé rameno prochdzi bodem [1; 0] a druhé bodem
M,). Piitom M, neleZi na prvé soufadnicové ose a druha sou-

fadnice bodu M, je podle

definice pravé sin o (viz
M obr. 6). Nyni je jasné, Ze

Mg druhé souradnice bodu

M3, .
sina Moo MZas Msa) .o
a
0 1
M4a

Obr. 6.

nemohou tvofit monoténni posloupnost, tj. nemohou platit
viechny nerovnosti (1). (Naobr. 6 jsme pfedpokladali, ze M, lezi
v prvém kvadrantu, ale podobnou tuvahu lze provést i pro
ostatni mozné polohy bodu M,.)

37
Pfirozené se nabizi uprava

sin x + cos x = 1 — sin x cos x,
(sin x -+ cos x)? = (1 — sin x cos x)?,
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sin?x + 2sinxcosx + cos2x =1 — 2sinx cos x -
-+ sin2 x cos? x,
(4 — sin x cos x) sin x cos x = 0.
Odtud vyplyva, Ze je bud sinx = 0 nebo cos x = 0. Dosa-
dime-li tyto dvé moZnosti do dané rovnice, najdeme vSechna
feSeni ulohy:
7
x=2knr a x=-§~+2kn,

7wz

kde % je libovolné celé dislo.

38
V ptipadé n = 1 rovnice zni
cosx —sinx =1

a z grafu funkci kosinus a sinus nachdzime feSeni

=2kx nebo x = }; + 2km, (1)

7w

kde % je libovolné celé Cislo.
V ptipadé n — 2 mame rovnici
cos?x —sin?x =1,
ktera se velmi zjednodusi, dosadime-li za 1 na pravé strané
cos? x + sin? x. Po malé upravé vyjde
sin®? x = 0.

Jedina feSeni jsou nyni

x = kn, (2
kde % je libovolné celé cislo.

Pro zbyvajici n > 2 zkusme psat danou rovnici opét v ekvi-
valentnim tvaru

cos™ x — sin” x = cos? x - sin? x
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neboli
(1 — cos®2x) cos?x + (1 + sin” 2 x)sin®?x = 0.

Oba s¢itanci na levé strané jsou nezdporni, takze rovnice je
splnéna pravé tehdy, plati-li

) (1 —cos”2x)cos?x =0
a zéroven ;
(1 4 sin® 2 x) sin?x = 0.

Rozebranim jednotlivych moznosti, které se zde nabizeji, se
zjisti, Ze pro n liché jsou feSeni stejni jako v pfipadé n =1
[t. (1)] a pro n sudé vychazeji taZ feSeni jako v piipadé n = 2

1. )]

39
Zabyvejme se nejprve pravou nerovnici

/1 +sin2x — 1 —sin2x| < /2,
kterou lze psat v ekvivalentnim tvaru

(J/1 + sin 2x — J/1 — sin 2x) < 2.
Umocnime-li, dostaneme po malé tpravé nerovnici

—2]/1 +sin2x J/1 —sin2x < 0,

jiz vyhovuje kazdé Cislo x z intervalu <0, 27).

Redme nyni levou nerovnici .

2cosx§il/lf—f—'sian—Vl—sianﬁ}. (1)
Tuto nerovnici spliuje ptedevSiim kazdé x, pro néz plati
cos x = 0, cili
7T
2 2

9
t.»

2
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Z ostatnich ¢isel intervalu <0, 27) spliuji pak nerovnici (1)
pravé ta x, o nichz plati
4cos? x =< (/1 + sin 2x — /1 — sin 2x)?
neboli po upravé
2cos?x =1 —|cos2x]|.

Ponévadz vime, Ze 2 cos?x — 1 = cos 2x, mizeme posledni

.....

cos2x = — | cos2x|.
To je splnéno pravé tehdy, je-li cos 2x = 0, tj.% = 2x g%”
nebo —- = 2x < ——, dli
7 3n 57 T
— xS — ho — < x < —
g =¥=4 nebo == 3

Sjednocenim vysledkt (2), (3) nachdzime vSechna feSeni ne-
rovnice (1); jsou to Cisla x, pro néz plati

7 n

=

4 = 4

To jsou také vSechna feSeni této ulohy.

40

Mame najit vSechny body ctverce OMNP (viz obr. 7),
jejichz soufadnice x, y vyhovuji nerovnici

1 + | cosx| = 2sin?y. €))

Vsimnéme si nejprve, neni-li vySetfovand mnozina tfeba
soumérnd; tim by se mohl zmensit obor proménénych x, y
a zjednodusit dalsi uvahy. Skute¢né, nalezi-li bod o soufad-
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nicich x,, ¥, hledané mnoziné, pak ji naleZi i bod o soufadnicich
7T — X, Y, (diky tomu, Ze se cos x vyskytuje v (1)'s absolutni
hodnotou) a také bod o soufadnicich x,, = — y, (nebot sin y, =
=sin (@ — ¥,)). To v8ak znamen4, Ze naSe mnoZina ma do-
konce dveé osy soumérnosti; jsou to pfimky

7 7

X =" =_,
27 . 7732

Staci tedy zkoumat napf. jen tu C4st uvaZované mnoziny,

ktera lezi ve Ctverci

3
'2-7[
a1
2
1
p3
¥
Obr. 7.
0sx=7, O0sys7 @)

(na obr. 7 je to ¢tverec OM'SA).
V tomto mensim C¢tverci podminka (1) zni

1 + cos x = 2 sin?y.
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Vzhledem ke vzorecku 2 sin’y — 1 = — cos 2y ji mizeme psat
ve tvaru

COsx = —cos2y
neboli

cos x = cos (m — 2y). 3
Jak &islo x, tak i Cislo w — 2y lezi v intervalu <0, 7), v némz je
funkce kosinus klesajici. Proto nerovnice (3) je splnéna pravé
tehdy, plati-li
x=m—2y
cili
x 7
yz—5+5- 4

Prunikem ¢tverce (2) a poloroviny (4) je trojihelnik ABS
s vrcholy

o T [z = _[= =
A:[0,2~}, B:[z,-‘f], S:[2,2]

(viz obr. 7).
V dusledku zminénych soumérnosti je hledand mnoZina
bodu kosoétverec ABCD se stiedem S (viz obr. 7).

41
Podle vzorce pro kosinus souctu plati
f(x) = A cos x — B sin x,

kde
COS a COos a
A——COSa1+772742‘+...+72T_1n,
. sin a sina
B—Slna1+—é£+...+—2n—_;b—

jsou pevna Cisla. Ukazeme, Ze aspon jedno z Cisel 4, B je ne-
nulové. Kdyby totiz 4 = B = 0, pak by pro vSechna x platilo
f(x) = 0. Snadno vS$ak najdeme bod, v némZ ma dan funkce
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napt. kladnou hodnotu. Staci poloZit x = —a, a dokizat, Ze
f(—a,) > 0. V tomto pfipadé¢ je totiZz prvni s¢itanec v defini¢-
nim pfedpisu dané funkce roven 1 (tedy nejvét$i mozny). Pro
soucet zbyvajicich s¢itanct (vzhledem k tomu, Ze vzdy

cos « = —1) plati

%cos(az%—x)#—...+%cos(an+x)g

2
1 1 1
> | | = — .
S LR ) 1
Celkem pak mame
f(—a) =5 —=>0.

Nyni uz tvrzeni 1° snadno plyne.
Necht nyni f(x,) = f(x,) = 0 neboli

A cos xy — Bsinx, =0,
A cos x; — Bsinx; =0.

Je-li A = 0, pak nutné B # 0 a z podminek sin x, = sin x; =
= 0 vyplyva, Ze x;, — x, = mm, kde m je celé Cislo. Je-li A -~ 0,
pak prvni ze vztahi (1) nasobime Cislem A sin x, a druhy Cislem
—4 sin x,, nacez seCtenim dostaneme

A?sin (x; — x,) = 0.
Odtud vyplyva tvrzeni 2°.

42

Ponévadz cos y = — cos (« + f5), mizeme levou nerovnost
psat ve tvaru

1 4 cos (o + pB) < cos o + cos f.

Uzijeme-li nyni znamych vzorcl, dostaneme ekvivalentni ne-
rovnost
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22+ P atp  r—F
2 cos 2 < 2 cos 2 cos 3
neboli (ponévadi cos & —2|_ P > 0)
o+ o—f
cos > < COS - 5
Tato nerovnost vSak plati, nebot Ccisla °‘2j > x ;‘B

o e 44 vy : . s s
lezi v intervalu [0, —2—) , v némzZ je funkce kosinus Kklesajici;
ptitom vime, Ze cos x = cos (—x).

Pravou nerovnost dokdzeme vhodnou tpravou souctu

cos o + cos ff + cosy = cos a + cos f — cos (o + f) =
o+ o — o+
oos =B By =

_ 22 TP
2 cos 5 2 cos 2 =

x+p
2

= 2 cos

= 2 cos — 2 cos?

«+p B
2 1=

Py

v foy y o —
Pritom rovnost zde nastane pravé tehdy, kdyz cos —~——

2
x —; p . % 5 snadno se zjisti, Ze tyto podminky

spliuje jediné rovnostranny trojihelnik.

a zaroven cos

43

Nejprve upravime levou stranu dané nerovnosti. Dosadime

cos?y = cos? (o + f§) = (cos o cos f — sin « sin f)? =
= cos?acos®ff 4 sin? o sin®f — 2 cos o cos fsinasin f =
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= cos? o cos* f + (1 — cos? &) (1 — cos? ) —
— 2 cos o cos 3 sin a sin ff =
= 1+ 2 cos? x cos? f — cos® o« — cos? ff —
— 2 cos « cos f3 sin o sin f5.
Plati tedy

cos? & + cos? f + cos?y =

=14 2cos? e cos? f — 2 cos a cos 3 sin o sin f =

=1 -+ 2 cos & cos f# (cos & cos f — sin o sin f) =

=1+ 2cos acos fcos (o« + ff) =1 — 2 cos o cos f3 cos y.

Pro tupothlé nebo pravouhlé trojihelniky je cos a cos f
cos y = 0, takZe podle predchozi Gpravy méme dokonce ne-
rovnost

cos? o + cos? f# 4 cos?y = 1.

Budeme se proto v dalS$im zabyvat uZ jen ostrouhlym troj-
thelnikem. Vzhledem k tomu, Ze

cos? ot + cos? 4 cos?y = 1 — 2 cos o cos f3 cos y,

muZeme danou nerovnost psat ve tvaru
' 1
COs o COs 3 cos y = e

Zde s vyhodou uzijeme vzorce
Cos & . COos ff = %[cos (¢ — ) + cos (e« + P,
nebot cos (« — f) =1 a cos (x + ) = — cos y, takze
cos o . COS f§ = %(1 — cosy) .
Ponévadz cos y > 0, plati dale

cos o . cos 3. cos y g%(l — €OS ) COS .

86



Nyni jiz jen vhodné upravime pravou stranu:

1
% (1 —cosy)cosy = 5 (cosy — cos?y) =

11 _12_17”14COS 1y
T2\ )T e 2 )

Skutecné tedy plati
1
cos o cos ff cosy = 8

jak jsme chtéli dokazat.
Z dosavadniho postupu vyplyvd, Ze rovnost v daném vztahu
muZe nastat jen pro néjaky ostrouhly trojuhelnik, a to takovy,
—p 1
“— | =1 a zaroven cos y = 5 Tyto podminky
spliuje jediné rovnostranny trojihelnik.

v némzZ cos

Pozniamka. Nerovnost
1
COS & COS 3 cos y = 8

ktera je pro tupouhly i pravouhly trojuhelnik zfejm4, lze pro
ostrouhly trojuhelnik dokazat téZz na zakladé vysledku ulohy
42, uzijeme-li zndmé nerovnosti mezi aritmetickym a geo-
metrickym pramérem kladnych Cisel (viz pozn. za feSenim
dlohy 27). V tomto piipad¢ totiZ plati

cos a + cos f + cosy 3< 1 3 3_ 1

3 3 2/ 8’
pfitom rovnost zde nastéva pravé tehdy, je-li cos « = cos f =
= oS 7, tj. v rovnostranném trojuhelniku.

COS ot COs 3 cos y g(
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4

Abychom mohli uzitim znidmych vzorecka vypocitat rozdil
danych dvou ¢isel, piSme

sin cos x = — cos (% -+ cos x) .
Pak

o . N TT
COS SIn X — SIn COS X = COS SIn X -+ COS (—2~ + cos x) .

zT——i—cosx—l—sinx z2E~—}—cosx—sinx
= 2 cos 3 cos —; 3 —. (1)

Avsak
]cosx -+ sin x | zl’coszx 4+ 2 cos xsin x + sin® x =
= |/1 £sin2x < J/2.

Ponévadz V 2 < —Z— , plati

1+cosxisinx
0<2 e
2 2

Proto je soucin (1) kladny, takze vzdy plati

cos sin x > sin cos x.

45

Prvni feSeni. Pfedstavme si na jednotkové kruZnici v ro-
viné kartézskych soufadnic t¥i body A;, 4., A3, jejichz argu-

2n 3m

menty jsou poradé id - (obr. 8). Tyto tfi body jsou

T 7T
vrcholy pravidelného ctrnactihelniku A4,4,4, . .. Ay, vepsa-
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ného do jednotkové kruZnice (4,, = [1; 0]), ktery je ziejmé
soumérny podle pocatku O. Cislo

Obr. 8.

2

7T
COS — — COS -

JT
7 7 -+ cos

=

»

—> > >
je soucet velikosti pruméta vektort OA4,, OA4,, OA, na prvou
soufadnicovou osu. To je vSak totéZ jako velikost prumétu
(vektorového) souctu téchto tii vektort. TyZ pramét mé i sou-

=
et vektort OA, 5, OA;, OA;, (viz obr. 8). Kdyby se ndm poda-
filo dokazat, Ze

> > —> > > > -
04, + 04, + OA, + 04, + 04, + 04,, + 04, =0,
¢

pak by pro velikost prumétu platilo
7 27 37
2(cos~7~ —cos - -+ cos 7—) —1=0
a byli bychom hotovi.
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Viimnéme si v8ak, Ze body 4,, 4;, A5, A;, Ayy A1y Ay3 jsou
vrcholy pravidelného sedmitithelniku. Otocime-1i soustavu sedmi

—> > 27
vektort OA4,, OA,,..., OA,; kolem pocatku o uhel — -,

obdrzime tutéZ mnoZinu vektort, kterd tudiz bude mit i stejny
soucet. Soucet naSich sedmi vektort je tedy takovy vektor,
ktery se nezméni, otoCime-li jej o jisty thel razny od 2kxw
(& celé). Tuto vlastnost ma jediné nulovy vektor. Plati tedy (1)
a uloha je rozfeSena.

Druhé feSeni. Upravme levou stranu takto:

7 3n 27 T 2n
L= (cos 7 4 cos —777) — CoS E 2 cos 7 cos e

2
—2cos2~7;-—|—1:2cosz7f (cos ,;T — COos 7,;) +1 =

44 2m 67
= 2 cos 7 (COS ~ + cos 7) + 1=

—4csncos2ﬂc0s4n#l
= 008 7008 - cos -+ L

. n 2m 4n ., . .
PonévadZ argumenty R a £l tvofi geometrickou po-
sloupnost s kvocientem 2, provedeme dal$i upravu uzitim vzo-
recku 2 sin « cos o = sin 2«:

4 si T 7 cos s cos 473
sin = cos - 7 7

L=— "~ 2
sin A
7
. 2n 47
2 sin —— COS —— COS —
7 7
e
. JT
sin —-
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Ak el Ao et
n hids 2 sin i
si 7

sin i

7 1

= — i +1=—_-,c.b.d

2 sin - .

7

Tieti feSeni. Uzitim vzorce 2 cos o cos § = cos (o + ) +
+ cos (« — [3) dostaneme

2L cos— = COS — - - COS— — COS —— e COS — —+ COS — i cos LA
14 14 7 14 7 14
= COS —3l+cos v cosS— cos~3—n— -+ cos7—n+
14 14 14 14 14
-+ cos 5— = COS -
14 14°

z ¢ehoz (nebot’ cos 124 + 0)

L:%,c.b.d.

Ctvrté teseni. Polozme

74

4 o
z:cos——l—zsm—w.

7
Pak E:cos—;l—zsm R takze z#z—2cos—i-. odkud
cos ¥ = 513
7 2
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1 ..
Aviak z = o ¢ili

oS — = il
7 2z
27 2n 3 3
PonévadZ 22 = cos —— 7 -+ 7sin —7—a 23 = cos —— - 7sin : 5
plati obdobné
COSZn_z‘+1 Cos3n_z"’—!—1
7 222 7 223
Oznalime-li
S = cos C + G
7 os COS - R
bude
2241 22 4+1 23 +1
8 7( F o R ) o
—l—zz—z5-z—i—z’+l
o 2 23
1 (I—2+42% —2° +2" —2°+ 25 +2°
) 23
e ,
3
1z s 1 +=
2 23
Zde vSak mime 27 = cosmw + 7 sin w = —1, proto skutecné
1
S = 5
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46

Prvni feSeni. Budte 4, B (4 # B) takové dva z danych
bodd, jejichz vzdalenost neni vétsi nez vzdalenost kterékoli
dvojice z danych n bodu (jsou-li M, N dva libovolné rizné
body dané n-tice, plati tedy MN = AB). Ozna¢me U mnoZinu
vSech téch danych bodu, které nelezi na pfimce AB. MnoZina U je
konec¢na a neprazdna. Je-1i X bod mnoZiny U, vznika trojuhelnik
ABX s ostrym uhlem & = <« AXB, nebot zadna ze stran AKX,
BX neni men$i nez strana AB. Oznalme y ten (popf. jeden
z téch) uhla &, ktery neni mensi nez kterykoli zbyvajici; pfi-
slu$ny bod X nazvéme C. Bud % kruZnice opsana trojihelniku
ABC. Uvnitf tse¢ky AB nelezi zadny z danych bodd (proc?).
Ani uvnitf kruznice % nelezi Zadny z danych bodd. To do-
kazeme sporem: Je-li D bod mnoziny U, ktery padne dovnitf
kruznice &, plati <« ADB > y. Toto tvrzeni je patrné z obr. 9,
pokud bod D lezi v poloroviné ABC (o vnéjsim thlu 6 =
= < ADB trojihelniku BDE plati 6 > ¢ = y). Lezi-li bod D
v poloroviné opacéné k poloroviné ABC (obr. 10), je 6 > ¢ =
= 180° —y > 90° (prot¢jsi uhly v tétivovém ctyfuhelniku),
tj. 0 > 90°, coz v8ak vzhledem k tomu, Ze zorné dhly & jsou

Obr. 9. Obr. 10.
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ostré, nemuzZe vubec nastat. Tim je dikaz podan, a Zadny
z danych 7 bodu tedy nepadne dovnitf kruZnice k.

Druhé feSeni. Pfedstavme si pfimku p prochazejici (ale-
sponl) dvéma z danych bodd (oznaéme je A, B) a takovou, Ze
vSechny uvazované body lezi v jedné poloroviné uréené piim-
kou p a zadny nelezi mezi 4 a B. Snadno ukézeme, Ze takova
pfimka p skutecné existuje: Zajisté mizeme zvolit ,,dostateéné
vzdalenou* pfimku ¢ takovou, aby vsech # bodu lezelo po téze
strané¢ piimky g. Mezi danymi body najdeme bod A, ktery je
nejblize pfimce ¢, a vedeme jim rovnobézku ¢' || ¢. LeZi-li
na ptimce ¢’ jesté dalsi body dané mnoziny, stadi za p vzit ¢'.
V opacném pripadé¢ muzZeme zfejmé pfimku ¢ pootolit kolem
bodu A tak, aby vznikla ptimka p, jez prochazi (kromé bodu A4)
dal$im bodem B dané skupiny, pfi¢emzZ ostatni uvazované body
lezi v jedné poloroviné uréené touto primkou p a zadny z nich
nelezi mezi 4 a B.

Ze vsech trojuhelnikd 4BX, kde X probiha dané body ne-
lezici na pfimce p, vezmeme pak ten (popt. jeden z téch), jehoz
thel <x AXB je co nejvétsi. Nyni je jasné, ze kruznice opsana
takovému trojuhelniku vyhovuje pozadavkim ulohy.

Poznamka. Ze viech kruznic, z nichz kazda prochézi alespon
tfemi danymi body, vezméme tu popf. ty, jejichz polomér je
co nejmensi. MuZete si rozmyslet, zda nékterd z téchto nej-
menSich kruznic vyhovuje tloze.

47

Predevsim je jasné, Ze véta plati pro » — 3. Predpokladejme
proto, Ze véta plati pro nékteré pfirozené Cislo n = 3, a zkusme
dokazat, Ze plati i pro n + 1. Mé&me tedy mnozinu M, ,
skladajici se z » +— 1 bodu.

MuzZe se stat, Ze v této mnoziné existuje bod A4, z néhoz vy-
chazi nejvyse jeden primér mnoziny M, ;. Odstranime-li tento
bod, dostaneme mnozZinu M, o n bodech, kterd méa podle in-
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dukcniho predpokladu nejvyse # pramérti; pritom si uvédomme,
ze bud zadny anebo vSechny z téchto praméru jsou téZ praméry
mnoziny M, ;. Vzhledem k volbé bodu 4 mame v tomto pfi-
padé dokazano, ze pocet prumérd mnoziny M, ., je skuteCné
nejvyse n -+ 1.

V opacném pripadé, ktery zbyva prozkoumat, vychazeji
z kazdého bodu mnoziny M, ., alesponl dva praméry (viz napf.
pét uhlopficek pravidelného pétithelniku). Stacilo by nyni
dokazat, ze z kazdého bodu vychazeji pfesné dva pruméry;
pak by pocet vSech prumért mnoziny M,., byl roven n + 1.
(Kdyby tato domnénka nebyla pravdivd, nemohlo by platit
ani tvrzeni ulohy.)

Pro dukaz sporem tedy predpokladejme, Ze existuje bod A,
z néhoz vychazeji tii ruzné praméry AB, AC, AD mnoZiny
M, .. Pak vSechny tfi body B, C, D lezi na kruZnici k4 = (4;
d); oznaceni zvolme tak, aby polopiimka AB nilezela dhlu
< CAD, jehoz velikost je zfejmé = 60°. V nasem ptipadé vy-
chazi z bodu B kromé praméru BA jesté alespon jeden dalsi
prumér BX mnoziny M, ;. Bod
X (£ A) lezi tedy na kruznici
kp = (B;d), avsak nemuZe le-
zet vné kruznice k4, nebot by
bylo AX > d. Kruznice k,,
ky se protinaji ve dvou bodech
U, V (viz obr. 11) a necht bod
X lezi napf. na oblouku AU.
Pak je ale zfejmé, ze D je vnéj-
$im bodem kruZnice ky = (X;
d) (vizobr. 11), tj. XD > d, coz
je spor.

Obr. 11.
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Tim je tloha vyfeSena; je mozno téZ ukézat, Ze pro libovolné
prirozené Cislo » = 3 existuje (v roviné) mnoZina o n bodech
majici pravé n praméra.

48

Prvni feSeni. Potfebujeme dokazat, Ze dany n-ihelnik je
pravidelny. Vezméme proto pravidelny n-uhelnik 4,4, ... A,,
ktery ma s danym n-thelnikem A;A4, ... A, spole¢nou stranu
A,A,= A, A,, pticemz oba leZi v téZe poloroving uréené piim-
kou A,A4,. Velikost vnitfnich Ghla je u obou mnohotuhelniki
nutné stejna.

Predpokladejme, Ze by bylo napf. a; > a,. Pak by bod A4,
lezel uvnitf strany 4,4, (obr. 12) a z podminek tlohy by vyply-
valo, Ze vSechny vrcholy 4y, . . ., A, lezi uvnité pravidelného
mnohothelniku 4,4, ... 4, (obr. 12). Specialné i bod 4, by

lezel uvnitf naseho pravidel-
ného mnohothelnika, takze by
platilo

A < A;AlAz < % 4,4,45
3
/
A.’J

A, A, Obr. 12.

coz by byl spor. Kdyby nastala ostrd nerovnost pro jinou
dvojici sousednich stran daného n-tihelniku, dukaz by byl od-
dobny. Pouze v ptfipadé a, = a, = ... = a,—, > a, by bylo
A, = A,, ale pak by nemohlo platit 4; = A,, jak od zacatku
predpokladame.

Druhé feSeni. Bud 4,4, ... 4, dany n-thelnik, v némz
A, A, = a,, A,A, = a,. Pfedpokladejme nejprve, Ze # je liché
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(n = 2k + 1), a sestrojme osu p vnitfniho thlu pfi vrcholu 4.
Z podminky, Ze vSechny vnitini thly n-dhelniku 4,4, ... 4,
jsou shodné, vyplyva, Ze pfimka p je kolmd na stranu
A1 Ap+o.

Promitnéme nyni (pravothle) na pfimku p lomene cary
AA, ... Apia A4, ... Aryo. Jejich priméty musi byt stejné
dlouhé. Pritom strany AiAiﬂ a Ap—iiodp—iy 1 =1 =k,
rozumi se A,.; = A;) maji stejnou odchylku od piimky p.
Proto pramét usecky A;A;+, neni mensi nez prumét usecky
A,—ii2Ad,—i,. Kdyby v posloupnosti a; = a, = ... = a, pla-
tila alespon jedna ostra nerovnost, bylo by a, > Ay, tj. A1 Ay >
> A,A,. Pramét lomené cary A,4, .. .A;., by pak byl delsi
nez prumét lomené cary A,A4, ... Ay s COZ neni mozZné.
Proto plati a, = a, = ... =a,.

Je-1i n sudé, vezmeme za pfimku p, na niz promitame, opét
osu thlu = A,A4,4,. Strany daného n-thelniku miizeme nyni
seskupit ve dvojice useCek majicich vzdy stejné odchylky od
pfimky p. Pak lze provést obdobnou tvahu jako v pfedcho-
zim odstavci.

Trteti feSeni. OznaCme P,P,...P,_ P, dany konvexni
n-thelnik, v némz PP =a;proi =1, 2,...,n (P =
= P,). Kdyby byl pravidelny (jak potfebujeme dokazat), bylo
by mozZno opsat mu kruznici. MySlenka tohoto feSeni spociva
v tom, Ze se pokouSime sestrojit kruZnici opsanou danému #-
-uhelnikuy, a to tak, Ze vychazime postupné ze vSech jeho stran.
Talk dostaneme obecné n kruZnic a za predpokladu, Ze tvrzeni
tlohy neplati, najdeme pak spor v jejich vzajemnych polo-
hach. |

Nad stranou P;P;,, jako zakladnou sestrojime rovnoramenny
trojihelnik P;P;,S; tak, aby uhel < P;S;P;., proti zakladné
mél velikost 360°/n; trojihelnik sestrojime v té poloroviné
s hranici P;P;.,, v niz lezi dany n-ihelnik (podle pfedpokladu
konvexni). Kruznice k; = (S§;; S;P) by méla byt kruznici
n-uhelniku opsanou.
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Vysetfime vzajemnou polohu kruznic k;, by =1, 2,. ..,
ny kyiy = ky). Je-li a; = a;, neboli PP, = P Py, sply-
nou body S;, S;;, a tedy i kruZnice &;, k.

Je-li a; > a;,,, lezi bod S;,, mezi S;, P, (viz obr. 13),
kruZnice k;, k;.; maji pak vnitfni dotyk v bodé¢ P, ,, pfiCemz
ki lezi (s vyjimkou bodu P;.;) uvnitf ;.

Nyni provedeme nepfimy dukaz. Necht ve vztazich a, =
=ay,=...=a, plati aspon jedna ostrd nerovnost. Pak
z ptedchozi uvahy vyplyva, Ze kruh &, lezi uvnitf k£, s moznou
vyjimkou jediného bodu P,. To znameni, Ze bod P, == P,
lezi zaroven na kruZnici &, a zaroven uvnitt &, (na &,). To neni
mozné. Proto plati ¢ = a, = ... =a,,jak jsme méli do-
kazat.

Obr. 13.

49

Pfedpoklidejme, Zze mnozina K ma tii ruzné ekvichordalni
body
E,, E,, E; ¢))

a uvédomme si, ze kazda pfimka prochazejici kterymkoliv
z bodua (1) vytind v mnoziné K tétivu stejné délky d.
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Bud p pfimka, kterd prochézi jednim z bodu (1) a oddéluje
zbyvajici dva; rozmyslete si, Ze takova piimka existuje. Necht
pfimka p prochdzi napf. bodem E; a protind tsetku E,E,
v jejim vnitinim bodé¢ (obr. 14). Rovnobézky s pfimkou p
vedené body E,, E, vytinaji v mnoziné¢ K dvé tétivy délky d
a tyto dvé tétivy jsou protéj§imi stranami rovnobézniku R,
jehoz vSechny body naleZeji konvexni mnoziné K.

Pfimka ¢ naznacena naobr. 14
v§ak vytind jiz v rovnobézniku
R (a tim spiSe v mnoZiné¢ K)
tseCku vétsi délky nez d, coz
je spor s tim, Ze E, je ekvi-
chordélni bod. Nakreslete si
sami obdobny obrazek pro
pfipad, Zze E; lezi (na p) mimo

Véta je dokazana.

Obr. 14.

Poznamka. Kruh ma zfejmé jediny ekvichordalni bod —
svij stfed. Neni tézké ukazat, Ze napf. konvexni mnoho-
thelnik nema Zadny ekvichordélni bod. Pozoruhodna je vsak
otazka, zda néjakd konvexni mnozina v euklidovské roviné
muze mit dva ekvichordalni body.
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Oznaéme «, (3, y velikosti vnitfnich uhla trojihelniku ABC
pfi vrcholech A, B, C. Pak (obr. 15)

¢ sin & — 1
2 s4°
: 1
sin —g = s’
. 1
Obr. 15.
a ponévadz SA = SB = SC, plati
sin%g sing gsin%> 0.
Uhly %—, %, —);‘ jsou ostré, proto
o2 B
P s 7
90° > 7 =3 =5 > 0,
1.
180°>a=f=y>0. 1)

Vzhledem k tomu, Ze o +  + y = 180°, dostaneme z (1)
nerovnosti

«+p+y =30 o+ p+y =3y,
180° < 3a, 180° = 3y,
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Gili
%= 60°, y =< 60°.

Odtud % = 30° a tedy

1 1
- < —
54 .o sin30° %
sin -

Pro kazdy vrchol 4 plati 1 < S4 < 2.

Ponévads déle % < 30°, je

SC = ! = — ! s =2
.Y sin 30
sin 7

Pro thel f mame interval

0° < f < 90°,
£, 0° < g ~ 45°, Pak
1 1 .
SB=—"7> @5 =12
Sin **2*

Pro kazdy vrchol B plati SB > |/2.

Ve vSech tfech pfipadech plati i obracené tvrzeni: Vy-
hovuje-li délka useCky SA (SB, SC) uvedenym podminkim, je
bod A (B, C) vrcholem jistého trojuhelniku ABC, jemuz je
kruznice % vepsdna a v némz plati SA =< SB < SC. Diikaz
1ze prenechat Ctenafi.
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V trojihelniku ABC oznatme AC = BC =a, AB = ¢,
A= <B=uo, <C=y;je tedy

a>c¢, o>y, o<<90°, ¥ <90
o +y = 180° — o > 90°.

Je-li XYZ trojuhelnik spliiujici pozadavky ulohy, plati
ZX=272Y=a, XY=¢, s X=5Y=0, 2Z=1.

Body X, Y, Z, C jsou navzijem ruzné a plati <+ XCY =
= 4 ACB = y. Podle textu ulohy lezi body C, Z v téze polo-
roviné urcené pfimkou XY a plati + XCY = 4 XZY; proto
body C, Z lezi na vétSim oblouku jisté kruZnice &, kterd pro-
chézi body X, Y. Jsou tedy X, Y, Z, C vrcholy jistého téti-
vového Ctyfthelniku, pfi¢emZ mohou nastat dva ptipady:

a) Body X, Z jsou oddéleny piimkou BC (obr. 16).

b) Body X, Z padnou do téze poloroviny vytaté piimkou
BC, a protoZze v tétivovém Ctyfuhelniku kazdd dhlopticka
oddéluje jeden par jeho protéjsich vrcholi, jsou nutné body
Y, Z oddéleny pfimkou AC = XC. Budiz p osa tseCky AB
(obr. 17). Oznacme Y'X'CZ’ obraz uvaZovaného tétivového
¢tyfuhelniku XYCZ v soumérnosti podle osy p. Potom X,
Y a Y, X’ jsou dvojice soumérné sdruZenych bodu a CA4,
CB soumérné sdruzené piimky. Tu body X', Y’ po radé
padnou dovnitt tsecek CA, CB, trojuhelnik X" Y’'Z’ patii k pti-
padu a) a body X', Z’ (coz jsou obrazy bodd Y, Z) jsou od-
déleny pfimkou BC. Tim je piipad b) pieveden na pfipad a).
Postaci tedy omezit se v dal$im na pfipad a) a na vysledky uzit
soumérnosti vzhledem k pfimce p.

Bod Z ¢tytdhelniku XY ZC lezi v poloroviné opacné k polo-
roviné BCA. Uhly obvodové + YXZ = «, & YCZ v kruZnici
k lezi v téze poloroviné vytaté pfimkou YZ, takZe jsou shodné,
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a proto jsou shodné i stfidavé thly «+ ABC, < YCZ; odtud
plyne, ze je CZ || AB a Ze bod Z lezi na polopfimce ¢ s po-
catkem C. Oznatme M ten bod polopfimky ¢, pro né&jZ
plati

CM =c.

To znamenda, Ze Ctyfihelnik ABMC je rovnobéZnik. Dile
sestrojime na poloptimce CM bod N tak, aby platilo

CN = a;
bod M tedy lezi uvnitf tsecky CN (obr. 16).

Obr. 16.

Dokazeme, ze kazdy bod Z hledaného geometrického mista
padne dovniti' dsecky MN (obr. 16). Dikaz provedeme spo-
rem. °
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Obr. 17.

Predpokladejme nejprve, Ze bod Z nalezi tsetce CM (obr. 18).
Vime, ze Z = C. Je-li Z= M, pak kruznice k' = (Z; a)
ma s useCkou BC jediny spoletny bod B, tj. Y = B proti
predpokladu. Lezi-li bod Z mezi body C, M, je zfejmé ZB <
< CB = a; celd usetka BC pak lezi uvnitf kruZnice %', coz
neni mozné.

Predpokladejme za druhé, Ze bod Z nélezi prodlouzeni
usecky CN za bod N. Je-li Z= N, prochazi kruZnice &’
bodem C a je X = C proti pfedpokladu. Je-li Z == N, pak pro
vSechny body X lezici uvniti strany AC plati ZX > ZC > a
(tGhel < ZCA je totiz tupy) a kruZnice &' nema s useckou 4AC
vubec zadny spolecny bod.

Dokazeme nyni, ze kazdy bod Z lezici mezi body M, N je
vrcholem jednoho z vySetfovanych trojihelnika X YZ (obr. 16).
Sestrojime opét kruZnici & = (Z; a); pro ni je vrchol C
bodem vnitfnim, nebot ZC << NC = a. Vrchol 4 je pro kruz-
nici £ bodem vnéjsim; trojihelnik ACZ je totiZ tupotuihly
(s ACZ > 90°), proto je ZA > AC = a. Kruznice k' protne
tedy usecku AC v jejim vnitfnim bodé X. Trojuhelniku XCZ
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Obr. 18.

opiSme kruznici k; polopfimka CB prochédzi vnitfkem dhlu
4 XCZ, protind use¢ku XZ v jejim vnitfnim bodé, a tudiz
i kruznici £ v jistém bodé¢ Y == C. Body X, Y, Z, C kruznice k&
jsou navzdjem ruzné a jsou vrcholy tétivového Ctyiihelniku;
pfitom X, Z jsou pfimkou BC oddé&leny; vznikne tedy C&tyi-
thelnik XYZC, takze C, Z jsou sousedni vrcholy tohoto
¢tyfdhelniku. Proto je « XZY = < XCY =1y (obvodové
thly v kruznici £ nad tétivou XY); stejné plati = YXZ =
=2 YCZ =o. Jetedy YZ =a, « YXZ =0, <« XZY =,
a proto plati /\XYZ ~ A ABC. Odtud plyne ZY = CB =
= a, takZe bod Y lezi na kruZnici £’. Bod B je vSak vnéjsim
bodem kruznice k’; protoZze <« BZN > < BMN > 90°, je
ZB > BM = a. Trojihelnik XYZ je tedy skutecné jednim
z vysetfovanych trojihelniku.

Zavér. Hledanym geometrickym mistem bodad Z jsou
vnitiky dvou usecek MN, M'N’. Tyto dseCky jsou soumérné
sdruzené podle osy usecky AB a konstrukce usecky MN je
vySe popséna.
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Predpoklidejme, Ze jsme nasli trojahelnik ABC, ktery

trojihelniku a sestrojme rovnobéznik ABCD; jeho stied
- B’ jezaroven stfedem odvés-
ny AC. Tu plati

TA —i ths
4
TD = 1,
3
B'D =1,
TB = ;:2.

Obr. 19.

Ze soumérnosti rovnobéZniku ABCD podle jeho stiedu B’
plyne, Ze
<B'AD = < B'CB = 90".
Bod A lezi proto na Thaletové kruznici opsané nad tseckou
. vy 2
DB’ jako prumérem, pficemz je 74 = 3 Ly
Sestrojime tedy usecku BD délky 21,, jeji stfed B’ a dale

bod T leZici mezi B, B a takovy, ze B'T = ; t,. Necht kruz-

nicem = |T, 3 ¢, ) protind kruznici k£ opsanou nad primérem
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B’'D ve dvou riiznych bodech 4 a A’. Potom A == B’, A == D.
‘Bod soumérné sdruzeny s bodem A podle B’ oznatme C.

Pak trojuhelnik ABC vyhovuje uloze.
Z provedené konstrukce vyplyva, ze BB' =1, je téZnice a T

vy

tézisté trojuhelniku ABC. Délka téznice pfislp§né vrcholu A4
je %AT: r, a thel < ACB je pravy, nebot trojihelniky

B'AD, B'CB jsou ziejmé shodné.

Resitelnost tlohy zivisi pouze na vzijemné poloze kruZnic
k, m. ReSeni existuje pravé tehdy, kdyz se kruZnice k£ a m
protinaji ve dvou riznych bodech, tj. (obr. 19)

) 1 5 2 1
Fh—gh<egh<zh+h

neboli #, < 2z, a ziroven ¢, < 2t,. Z bodu A’ se dostane
trojuhelnik soumérné sdruzeny s ABC podle pfimky BD.

Kazda z danych téZnic musi byt mensi nez dvojnasobek
druhé z nich. Jediné za tohoto pfedpokladu ma tuloha feseni,
a to jediné; jinak dloha feSeni nema.

53

Predpokladejme;, Zze hledany kosoltverec existuje a ozname
K patu kolmice spusténé z bodu M na pfimku AB. Pak vznika
pravouhly trojihelnik AKM s pifeponou AM = d a odvésnou

v y. ¥ c vy M
MK = 5 Vsimnéme si jeSté¢ poméru

BM 1

4B " 2

Nejprve tedy v jedné z polovin uréenych pfimkou AM
sestrojime pravouhly trojuhelnik AKM s pfeponou AM =d
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¥ v : . s
a odvésnou MK = PR podminkou proveditelnosti této kon-

strukce je nerovnost
v < 2d. ¢))

Bod B nyni najdeme uzitim stejnolehlosti takto: Uvnitt polo-
ptimky AK zvolme bod P a opiSme kruZnici k= (P, ¢ =
. % AP); oznacme X == A jeden ZICJ )s{poleéil}'rch bodu polo-
piimky AM s kruZnici k. Pak je AP 2> takze bod B
bude prusecik polopfimky AK s ptimkou prochazejici bodem
M a rovnobéznou s PX (obr. 20).

Obr. 20.

Pocet feseni tlohy zavisi [pfi splnéni podminky (1)] na
vzijemné poloze kruznice & a poloptimky AM. Uhel &« MAK
je ostry; vzdalenost bodu P od pfimky AM oznacme x. Ziejmé
5"5 - 2% i ’; - Z Jeli tedy v >d (4. x> o),
nema tloha feSeni. Je-li naopak v = d, je jiz splnéna i pod-
minka (1) a naSe konstrukce dava dvé nebo jedno FeSeni.

plati
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Ma-1i byt ABCD (¢tverec, musi podle Pythagorovy véty platit
d= % v /5. Plati-li tento vztah, je jiz d > v a jednim ze

dvou sestrojenych feSeni je Ctverec (nebot v tomto pripadé
muze byt B = K).

Zavér. Pii konstrukci bodu K jsme se omezili na jednu
z opacnych polorovin o hranici AM; soumérnosti podle primky
AM dospéjeme z pravé popsanych feSeni k dalSim feSenim.
Pro v =d jsou tedy celkem dvé feSeni, pro v <<d celkem
Ctyfi feSeni (popfipadé vcetné dvou Ctverct); pro v > d neni
zadné feSeni.

Obr. 21.

Konstrukci naznaCuje obr. 21, kde kruZnice sestrojujeme
v tomto pofadi: k, = (4; AB), ky, = (B; BA), ky = (P; PA),
ky = (Q; OB), k; = (C; CA). Bod X je prusecik oblouki
opsanych kolem stfedd M, N s poloméry MA = NA.
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Body A4, X, B, C lezi ztejmé v pfimce a z podobnosti rovno-
ramennych trojuhelnikd AMX, ACM (maji spole¢ny vnitini
uhel) plyne

AX  AM

AM ~ ac>
odkud
' AM? AB? AB
AX =—4c =248~ 2

Hledany bod je X.

55

Necht ABCD je ctyfuhelnik vyhovujici pozadavkim tlohy.
Ponévadz mu lze vepsat kruznici, plati

AB -+ CD = AD —+ BC. 1

Mizeme predpokladat, ze je AB = BC .(jinak bychom vymé-
nili oznaceni boda A4, C). Potom

CD — AD = BC — AB = 0. )

V piipadé AB = BC je nutné i AD = CD a bod D (= B)
najdeme jako prusecik osy tétivy AC s kruznici k. Vzniklému
deltoidu ABCD je pak ziejmé moZno vepsat kruZnici.

Je-li AB < BC, pak podle (2) plati AD <~ CD. Na tsecce
CD muzeme tedy sestrojit takovy bod E, ze DE = AD neboli
CE = CD — AD = BC — AB (obr. 22). Ponévadz - ADC =

= 180° — < ABC, je = AEC = 90" - ; + ADC = 180° —

1 . .
— 5 < ABC (vnéjsi thel rovnoramenného trojuhelniku ADE).

Na zakladé tohoto rozboru provedeme konstrukci.
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V poloroviné opacné k poloroviné ACB sestrojime (zndmym
zpusobem) oblouk AC kruZnice o, z jehoZ bodu je vidét tsecku

AC pod uhlem velikosti 180° —»;f < ABC. Tento oblouk

protneme kruznici k, = (C, BC — AB). Prusetik E (obr. 22)
vzdy existuje, nebot podle trojdhelnikové nerovnosti plati
BC — AB < AC. Poloptimka CE pak protne oblouk AC
kruznice &, ktery neobsahuje bod B, v bodé¢ D=£ 4, C. Ve
Ctyfihelniku ABCD podle nasi konstrukce plati vztah (1),
takZe tento Ctyithelnik je (viz pozn.) teCnovy.

Uloha ma jediné feeni.

Obr. 22.

Poznamka. Bud ABCD konvexni {tyfthelnik takovy, Ze
plati
AB + CD = AD + BC. (1)

Dokazeme, ze tomuto Ctyfuhelniku lze vepsat kruZnici.

Je-li ABCD rovnobéznik, pak vzhledem k (1) je to koso-
Ctverec a lze mu vepsat kruZnici.

Necht tedy napf. strany AB, CD nejsou rovnobézné. Pak se
primky AB, CD protinaji v jistém bodé P a z konvexity Ctyf-
thelniku ABCD plyne, Zze bod P nelezi na usec¢ce AB. Mu-
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Zeme predpoklidat, Ze napf. bod B lezi mezi body A, P
(jinak by byl dikaz obdobny). Trojthelniku ADP vepiseme
kruznici % (obr. 23a, b, c).

Obr. 23a.

Obr. 23b.

Obr. 23c.




Je-li pifimka BC te¢nou kruZnice &, je zfejmé kruZnice
k vepsana Ctyfthelniku - ABCD (obr. 23a).

Je-li pfimka BC se¢nou kruZnice k, mizeme v poloroviné
BCP sestrojit ptimku B'C’ rovnobéznou s BC a dotykajici se
kruznice & (obr. 23b). Pak plati

AB < AB'y, DC < DC', B'C’ < BC,
takze

AB + CD < AB' + C'D = AD + B'C’ < AD + BC,

coz je spor s (1).

Obdobné postupujeme i v pfipadé, Ze piimka BC nepro-
tind kruznici k. V poloroviné BCA sestrojime te¢nu B'C’
(obr. 23c). Pak bude

AB" < AB, DC’' < DC, BC < B'C/,
takze

AD + BC < AD + B'C' = AB' +-DC’ < AB + CD,

coz je zase spor s (1).
Dukaz je hotov.

56

Oznatme k = (M, MA) kruznici opsanou danému troj-
thelniku APQ. Hledany bod B zfejmé lezi na této kruznici
(obr. 24a, b), a to bud

[1] uvnitf poloroviny APQ
anebo

[2] uvnitf poloroviny opacné k poloroviné APQ. Zabyvejme
se oddélené témito dvéma moZnostmi.

Pripad [1] (obr. 24a). Bod B musi lezet uvnitt ¢tvrtkruznice
AQ, nebot jinak by ptimka CD nemohla prochazet bodem Q.
Bod C pak ziejmé lezi uvnitf dsecky BP. Oznacme S spolecny
bod usecek AQ, BP. V pravouhlém trojihelniku PSQ je C
pata vy$ky QOC, takze <. SQC = <. SPQ, nacez /\ AQD ~
=~ ANQPC (usu), nebot AQ = QP = a. Z toho plyne, Ze
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Obr. 24a. Obr. 24b.

AD = QC = b. Dale téz CD = b, nebot ABCD je {tverec.
To znamena, Zze bod C je stiedem useCky QD. Ponévadz
CS || AD, je CS stiedni pficka v trojihelniku AQD, takze S
je stied usecky AQ.

Odtud vyplyva tato konstrukce: Sestrojme stied S usecky
AQ a oznacme B =~ P prisecik polopfimky PS s kruZnici k.
Bud C obraz bodu B v soumérnosti o stfedu S. Trojihelnik
ABC (v némz < ABC =90°) doplnime na pravouhelnik
ABCD, o némz hned dokazeme, Ze vyhovuje poZzadavkim ulohy.

Predevsim je jasné, Ze pfimka BC prochazi bodem P a Ze
plati A\ ABS =~ A\ QCS (sus); je tedy <t QCS = 90° a pfimka
CD prochazi bodem Q. Dile je CQ = AB, tedy i

CQ = CD. (1
Avsak N AQD ~ N\ QPC (usu), takze

CQ — DA. 2
Z (1) a (2) plyne

CD = DA.

Pravouhelnik ABCD je tedy cCtverec.
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Ptipad [1] davé tedy jediné feSeni dlohy. Z pravouhlého troj-
1
dhelniku ABS, ktery méa pfeponu AS = 5@ 2 odvésny
AB = b, BS = -lz—b, uzitim Pythagorovy véty vypoclteme

h—

Vs

Ptipad [2] (obr. 24b). Ponévadz bod D musi leZet v polo-
rovin¢ BPA (¢ili BPQ), musi polopfimka CD prochézet bo-
dem Q. To znamend, Ze L ACP = 45 takie bod C leZi na
vétsim oblouku A9 krunice k. Zaroveni bod C =~ B le#i na
pfimce BP. Proto je nutné C = P. Pak ovSem D = Q a bod B
je obrazem bodu Q v soumérnosti o stiedu M. I v tomto pri-
padé nachdzime tedy jediné feSeni; strana Ctverce ma délku a.

Z4avér. Uloha ma dvé feSeni.
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Stied piepony BC oznatme S a krajni body prostiedni
shodné usecky budte D, E. Pata H vysky spusténé na pfeponu
necht leZi napf. na tGseéce BS (obr. 25). Dvojim vyjadienim ob-
sahu trojuhelniku DAE dostaneme rovnost

b

AD.AE.sina:f’g. A

Obr. 25.
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a z kosinové véty

2
(%) — AD*+ AE* — 24D . AE . cos o.

Z poslednich dvou rovnosti vyplyva

AD . AE .sino ha
— - -
2AD . AE . cos « n[AD2+AE2~(%’J
¢ili
2
o LR
n[AD2 +AE — (7) ]
Polozime-li HS = x, pak (obr. 25)
a \? a \?
AD? = (x—i) LR, AE— (x+—) )
2n 2n
takze
1 a?
AD* - AB* =25 +- 21 + 5 .
Pfitom
2
()
tedy

2
AD2+AE2=—a—(1+—12—).
2 n

Dosadime-li tento vysledek do (1), dostaneme po malé tpravé
vzorec
Anh

. tgoc: a‘(’nz—i—l)ﬁ.
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Oznaéme po fadé g, 9, 05, 03 poloméry kruznic &, &, ko, kg
(viz obr. 26). Mame vypocitat Cislo

C=n(e*+ of + of + of). ¢))
Pro vypocet polomért uZzijme vzorct

Obr. 26.

kde P, P,, P,, P, jsou po fadé obsahy trojuhelniku ABC a tii
trojuhelnika oddélenych pii vrcholech 4, B, C, a s, s, S, 55 jSOU
jejich poloviéni obvody. Z podobnosti trojuhelniku ABC
a kazdého ze tii oddélenych trojuhelnika vyplyva

H_P_P_ P

2 2 s2 s
Proto

P

=-—.5 05 = —5 .« So, =—. S5
01 2 p 2 93 2%
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Dosazenim do (1) dostaneme

, ,
C= ”TI:* (24 21424 82). )
Z vlastnosti teCen snadno zjistime, Ze obvod trojihelniku
AB\C,je AB, + AC, + B,C, = AB, + AC, + B,T + C,T =
=AU + AV = 24U a dile ziejmé AU =s — a. Je tedy
s, =s—a, Sy =58 — b, S§g=5§—¢.
Podle (2) pak plati

6 (5 — @ (s — B+ (s — P,

s

neboli po dpravé

nP?

C= — (a® + b% + ¢?),

=
pricemz P lze vyjadfit pomoci Cisel a, b, ¢ Heronovym vzorcem.
Tim je uloha vyfeSena.

Poznamka. Z uvedeného feSeni vyplyva, ze

P P
Ql+Qz“*‘@s:}5(31+52+53):§'(35*‘1—b_0):
P P

= .s=—=o0.
s2 s h

59

Ozna¢me R pétithelnik, ktery se dostane z P, stejnolehlosti
se stiedem A, a koeficientem 2. DokdZeme, Ze pro kazdé
i=1,..., 5 plati P, = R.

Pro i =1 je to jasné. Bud X bod pétidhelnika P; (7 =2,...,
5). Bod X je tedy obrazem jistého bodu Y € P, v pfislu$ném
rovnobéZzném posunuti. Potom stfed Z usecky A,X nalezi Py,
nebot zfejmé puli vzdilenost mezi 4; a Y (obr. 27), coz jsou
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Obr. 27.

Ay

body konvexniho tutvaru P,. To vSak znameni, ze X € R, jak
jsme chtéli dokazat.

Vsech pét pétithelnika P, ..., P; ma tyZ obsah p, obsah
pétidhelnika R je ziejmé 4p. Kdyby se Zadné dva z pétitthelnika
P ..., P; neptekryvaly, byl by obsah R v¢tsi nebo roven 5p,
tj. 4p = 5p, coz neni mozné.

Poznamka. Obdobné véta plati i v #-rozmérném prostoru
(n = 3) pro konvexni mnohostény s 2 4 1 nebo vice vrcholy.

60

Pokusime se odhadnout (shora) obsah uvaZovaného kon-
vexniho ctyftihelniku pomoci soucinu jeho uhlopticek. Kaz-
dou uhlopficku pak nahradime (podle trojihelnikové nerov-
nosti) souCtem vzdalenosti bodu O od jejich krajnich bodi.
Tak dojdeme k jistému vysledku podobnému tomu, ktery se
vyskytuje v tvrzeni tlohy; umisténi boda 4, B, C, D bude popft.
jiné, nebot predem nevime, v jakém pofadi jsou tyto body vr-
choly konvexniho Ctyfuhelniku. Nakonec vSak ukiZeme, Ze
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vzhledem k danému uspofadani vzdalenosti lze nalezeny odhad
jesté prevysit tak, abychom dostali zZddany vysledek.

Uvazujme proto libovolny konvexni Ctyfuhelnik KLMN
a oznatme Q prusecik jeho uhlopticek KM a LN. Pro obsah
trojuhelniku KLM plati

Prim = %KM- LQ,

nebot usecka LQ neni krat$i nez vyska trojahelniku KLAM pfi-
slu$né strané KM. Podobné

1
PKJIN g ’é‘ KM . NQ.

Z poslednich dvou nerovnosti vyplyvé, Ze pro obsah ctytfihel-
niku KLMN vzdy plati

Prrn = %KM .LN,

pfi¢emz rovnost nastane pouze v pripadé KM | LN.
Bud R libovolny bod roviny KLMN. Podle trojuhelnikové
nerovnosti plati KM = KR + MR a LN = LR + NR, takze

1
Prruny = ) (KR ++ MR) (LR + NR).

Rovnost v tomto vztahu nastane pravé tehdy, lezi-li bod R jak
mezi body K a M, tak i mezi body L a N (tzn. R = Q) a jsou-li
pfitom thlopticky KM a LN navzijem kolmé (viz zavér pred-
choziho odstavce).

Konvexni ¢tyrahelnik s vrcholy 4, B, C, D ma thlopricky
bud AB a CD, nebo AC a BD, anebo AD a BC. Podle nasi
uvahy plati v prvém ptipadé

P= ; (A0 + BO) (CO + DO),
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v druhém pripadé
P = ; (A0 + CO) (BO + DO)
a ve tfetim pfipadé

P< ; (A0 -+ DO)(BO + CO),

pficemz rovnost nastane vzdy pravé tehdy, je-li bod O pru-
seCikem navzajem kolmych thlopficek.
Ponévadz AO = BO = CO = DO, plati

(A0 -+ DO) (BO + CO) — (A0 + BO) (CO + DO) —
— A0 .BO "+ BO.DO + A0 .CO + CO.DO — AO . CO —
— A0 .DO — BO.CO — BO.DO = A0 . BO + CO . DO —
—A0.DO — BO.CO = (DO — BO) (CO — AO) = 0,

takze
(A0 + BO)(CO + DO) = (AO + DO) (BO + CO)

a rovnost zde nastane pravé tehdy, je-li bud DO = BO nebo
CO = AO. Podobné téz

(A0 + DO) (BO + CO) — (AO + CO) (BO + DO) =
= (DO — CO) (BO — A0) = 0,
takze plati

(A0 -+ CO) (BO + DO) = (A0 + DO) (BO + CO)

s rovnosti pravé tehdy, je-li bud DO = CO nebo BO = A4O.
Dokazali jsme tedy, Zze vzdy plati

1
) - 3 (AO -+ DO) (BO + CO);
podminky pro rovnost jsou patrné z uvedeného feSeni.
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Oznacime K,, L,, M, po fadé¢ stfedy usecek AB, BC, CA
(obr. 28); pak usecky K L,, LyM,, M K, rozdé€li trojihelnik

1
ABC ve Ctyti Casti téhoz obsahu = A ABC.
Lezi-li dva z bodt K, L, M na obvodu nékterého z ,,roho-
c ‘ vych® trojuhelnikdt AK,M,, L,BK,,

.CM,L,, napt. K, L na tGseckiach BK,,
BL, (viz obr. 28), pak je

ABKL < A BK,L, = }1 A ABC.

L
/
/
/
/
K, K
Obr. 28.
Obr. 29.

Sta¢i ‘tedy zabyvat se ptipadem, kdy Zadné dva z bodu
K, L, M nemaji od téhoz vrcholu trojihelniku ABC vzdalenosti
mensi nebo rovné polovinam délek prislusnych stran.

Necht napt. bod K lezi mezi 4, K,, dale bod L mezi B, L,
a bod M mezi C, M, (obr. 29). Pro obsahy trojuhelnika plati:

AKLM = NKLMy = A KLMy = A KyLoM, = 71{ / ABC.
Odtud jiz ihned vyplyva tvrzeni ulohy.
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Bod M musi byt stfedem hledané usecky BC, nebot jinak
by bylo mozno malym oto¢enim pfimky BC kolem bodu M
obsah trojihelnika ABC
zmens$it. Obr. 30 nazna-
Cuje konstrukci a zaroven
ukazuje, Ze toto je jediné
feSeni.

Obr. 30.

63

Nutnou podminkou, aby existoval vibec néjaky ¢tyfuhelnik
danych rozméru, je, aby nejvétdi z Cisel a, b, ¢, d bylo mensi
nez soucet tii zbyvajicich. Budeme proto predpokladat, Ze
tato podminka je splnéna (a nakonec uvidime, Ze je i postacujici
pro existenci hledaného ¢tyfuhelniku). Mame tedy

a<b-+c+d,
b<a-+c-+d, )
c<a-+b-t+d,
d<a-+b+ec,
(jedna z téchto nerovnosti pravé vyjadiuje nasi podminku a zby-
vajici tfi jsou pak trividlné splnény).
Pi’edpoklédeime, ze ABCD je Ctyfahelnik danych rozmért;
oznatme S jeho obsah, o« resp y velikost jeho vnitfniho thlu

pii vrcholu 4 resp. C, p = (a + b + ¢ + d). Pak plati

123



S = . (ad sin o0 + be sin y),

=i
4S8 = 2 (ad sin o0 + bc sin y). 2

Z dvojiho vyjadfeni BD? podle kosinové véty plyne
a* + d? — b* — ¢* = 2ad cos o — 2bc cos y. 3)

Vztahy (2), (3) umocnime dvéma
1682 = 4a?d? sin® o + 8abcd sin « sin y + 4b%c? siny,
(@ +d? — b — &) =
= 4a*d? cos® o« — 8abcd cos o cos y + 4b*c* cos? y
~ a pak seéteme
168?% = 4a?d® + 4b%c® — (a*> + d*> — b* — ¢?)*> — 8abcd cos (x -+ 7).

Dosadime sem cos (x + y) = 2 cos? i;—_—y — 1 a dostaneme

1682 =4 (ad + bc)* — (a® + d* — b* — c2)? — 16abcd cos? 017—12—;1 .

Upravime

4(ad + b —(@*+d*—b>— 2 =(a>+d>—b>— 2+
+ 2ad + 2bc) . (—a* — d? + b* + ¢ + 2ad + 2bc) =

=[e+adf —0C—cf].[b+c—(a—ady] =

=@+d+b—c@a+d—>b+c)(b+c+a—4d).
b+ec—atd)=16(p—a)(p —b)(p —c)(p — d).

Odvodili jsme tedy vzorec

S = ]/(p jé) (0 —5)(p— ) (p — d) — abed cost > “2” :
4)

Uloha bude rozfeSena, sestrojime-li za predpokladi (1) té-
tivovy Ctyfuhelnik ABCD s AB = a, BC = b, CD = ¢, DA =
=d a dokazeme-li, Ze existuje jediny takovy tétivovy Ctyi-
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thelnik. V ném bude o + y = 180°, takze podle (4) bude jeho
obsah vétsi nez obsah kazdého jiného (tedy netétivového)
¢tyfahelnika danych rozméri.
Sestrojme /A ABD s
(ab + cd) (ac + bd)
ad + bc

AB =a, AD =d, BD =

(dvojim uzitim kosinové véty snadno plyne, Ze uhlopticka BD
tétivového Ctyfthelniku ABCD musi mit tuto velikost). Je
ziejmé, Ze tseCku BD lze sestrojit euklidovskymi konstrukcemi,

nebot plati
o5
l]- )

b c ]’
e
kde j je velikost pomocné usccky. Musime vSak ovéfit troj-

thelnikové nerovnosti. To provedeme metodou ekvivalentnich
uprav:

ad - bc )

(a® + 2ad + d?) (ad + bc) > (ab + cd) (ac + bd),

a’d + 2a*d? + ad® -+ a®bc - 2abcd -+ bcd? >
> a%bc + ac*d + ab*d + bcd?,
a? + 2ad + d? + 2bc > b* + 2,
(@ +dp—(—c>0,
@+b—ctd)@a—b+c+d)>0,
coz podle (1) plati. Podobné

@E cd) (ac + bd)

]/(ab + ¢cd) (ac + bd)

la—d| <
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(a* — 2ad + d?) (ad + bc) < (ab + cd) (ac + bd),
a*d — 2a%d* + ad® + a®bc — 2abed - bed? <
< a*bc + ac*d + ab*d - bcd?,
a® — 2ad + d? — 2bc < ¢® + b,
0<(®+c¢P—(a—4a)y
0O<(@+b+c—d(—a+b+c+d),

coz opét plati podle (1).

Nakonec v poloroviné opacné k BDA sestrojime trojuhelnik
BCD s BC = b, CD = c; jeho existence plyne analogicky z (1).

Podle kosinové véty vypoclteme

O (ab + cd) (ac + bd)
—_— s 2 g2 __ 3 0 TN D TN —
8% = 2ad la d ad -+ bc
_ 1 dd+ad®+ahe - bed®—a*bc —ac*d —ab*d —bed® _
" 2ad ad + be N

1 a* +-d*>—b* — %

2" ad+tb

analogicky
cos v 1 B>+ —a*—d?
v 2 ad + bc
Je tedy cos « = — cos y, takze ABCD je tétivovy Ctyithelnik.

Dokézali jsme, Ze tloha ma jediné feSeni, jakmile je splnéna
podminka vyslovena na zacatku.

Cviceni 1. Ze vsech Ctyfihelnikd, které maji dany obvod,
nejvétsi obsah mé cCtverec.

Cviceni 2. Jestlize jedna tuhlopticka tétivového Ctyfuhel-
nika je prumérem opsané kruznice, pak pravouhlé priméty
protéjsich stran na druhou thlopficku jsou shodné.

Poznamka. Bud ABCD tétivovy ctyruhelnik. Ze vzorce
pro délku dhlopficky BD, o némz jsme se zminili v naSem fe-
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Seni, a z obdobného vzorce pro uhlopficku AC plyne Ptole-
maiova rovnost

AB.CD + AD . BC = AC . BD.

Obracené, spliuji-li délky stran a uhlopficek Cctyfuhelniku
ABCD Ptolemaiovu rovnost, je tento Ctyfuhelnik tétivovy.
Toto tvrzeni je obsazeno v nasledujici tloze. Dfive si vSak pfi-
pomeneme pojem tzv. kruhové inverze, ktery budeme v feSeni
dalsi ulohy potiebovat.

V roviné p budiz dina kruznice k= (S;r). Definujeme
zobrazeni ¢ takto: je-li X libovolny bod roviny ¢ rdzny od
bodu S, je bod X’ = ¢(X) takovy (jediny) bod na polopiimce
SX, ze SX.SX' —r?; obraz bodu S nedefinujeme. Ctenai
necht si rozmysli, Ze zobrazeni ¢, nazyvané kruhova inverze
vzhledem ke kruZnici &, ma tyto vlastnosti:

a) Je-li X' = ¢ (X), pak X = ¢ (X'), tj. bodu X' odpovida
v kruhové inverzi opét ptvodni bod X.

b) Probiha-li bod X kruznici neprochézejici bodem S, pak
- bod ¢ (X) probiha také kruznici neprochazejici bodem S.

c) Probiha-li bod X kruZnici prochazejici bodem S (s vy-
jimkou bodu § samého), pak bod ¢ (X) probihd pfimku ne-
prochazejici bodem S. Probiha-li bod X ptimku neprochazejici
bodem S, pak ¢ (X) probiha kruznici prochizejici bodem S
(s vyjimkou bodu §).

d) Probiha-li bod X polopfimku vychézejici z bodu S (s vy-
jimkou bodu §), probiha bod ¢ (X) touz poloptimku, ale v opac-
ném smyslu.

e) Jsou-li X, Y dva body, oba rizné od S, pak o vzdalenosti
obrazit X' = ¢ (X)a Y' = ¢ (Y) plat

’ ’ r2
S a5 oy 5t
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Splynou-li alespoil dva z boda A4, B, C, D, nerovnost plati,
a to s rovnosti, jak je uvedeno.

Necht tedy dale jsou vSechny body A, B, C, D navzijem
ruzné. Provedme na body A, B, C kruhovou inverzi (viz pozn.
za feSenim tlohy 63) ¢ vzhledem ke kruznici o stfedu D a polo-
méru 1. Pro obrazy A" =¢ (4), B =¢(B) a C'=¢(C)
plati

A'C' < A'B + BC.. (1)
Podle e) je vsak
- .
AC="up. CD’
’ !’ — BC
B¢ = BD.CD’
i AB
dB = AD .BD’
takze
AC AB BC

e i 1

AD.CD — AD.BD
Po vynasobeni cislem AD . BD . CD dostivame Zadanou ne-
rovnost.

Rovnost nastane, pravé kdyz nastane rovnost v (1), tj. kdyz
bod B’ lezi uvniti usecky A'C’. Neprochazi-li pfimka A'C’
bodem D, lezi podle a) a ¢) body 4, B, C na kruznici x procha-
zejici bodem D. Pfitom dvojice A, C ,,0oddéluje” dvojici B, D
na kruZnici %, protoze pfi jednom probéhnuti kruznice x (s vy-
natym bodem D) od bodu D se pravé probéhne pfimka A'C’,
a protoze bod B’ lezi uvniti A'C’, lezi B na druhém oblouku
AC nez je bod D. Prochazi-li pfimka 4'C’ bodem D, lezi vse-
chny body A4, B, C, D v pfimce. Je-li nyni D na opacné polo-
pfimce k poloptimce A'C’, je uspotfadani boda A4, B, C, D.
Je-li D uvnitt aseCky A'B’, je uspeiadani B, C, D, 4. Je-li D

" BD.CD
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uvniti usecky B'C’, je uspofadani C, D, A, B; je-li D na polo-
pfimce opacné k C'4’, je uspotadani D, A, B, C. Protoze po-
stup lze obratit, jsou podminky pro rovnost nutné i postaéujici.

65

Bud ABCD dany ctyiuhelnik a E, F, G, H dotykové body
vepsané kruZznice se stranami (obr. 31, 32). Prasecik uhlopficky
AC s tseCkou HF oznatme P (obr.31). VSimnéme si troj-
thelnikid APH, CPF, které jsou na obr. 31 vysrafoviny. Tyto
trojuhelniky maji pfi vrcholu P shodné uhly, proto pomér
jejich obsaht je roven pome-

ru soulinu stran svirajicich D 6
ty uhly, tj. ; C
obsah AAPH 7/
obsah A CPF H o, P/ F
_ PA.PH 1) \\\\\\ W
PC.PF "
Obr. 31. A £ B

Vsimnéme si dale, Ze thly téchto trojuhelnika pii vrcholech
H, F se dopliuji do 180°, nebot dsekové thly < PHD, <t PFC
jsou shodné. Proto sin <t AHP = sin < PFC, takZe

obsah AAPH _ AH.PH @
obsah A\CPF =~ PF.CF’
Porovnanim vysledka (1), (2) dostdvame

PA.PH AH.PH
PC.PF  PF.CF
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a odtud
PA AH

PC T CF° ®)

Ozna¢me nyni Q prusecik dhlopficky AC s tuseCkou EG
(obr. 32). Provedeme-li s trojuhelniky AQE, CQG obdobnou
uvahu jako v predchozim
odstavci, obdrzime rovnost

04  AE

oc~cg @

B Obr. 32.

Vzhledem k tomu, ze AH = AE a CF.= CG, vyplyva z (3)
a (4) vztah

To v8ak znamen4, Ze body P, Q musi splynout. Tak jsme do-
kazali, ze uhlopficka AC prochazi prisecikem tsecek EG, HF.
Ponévadz totéz lze zfejmé dokazat i o uhlopficce BD, je tim
uloha rozfe$ena.

66
Oznatme ¢ rovinu proloZenou bodem S kolmo k pfimce
SA. Kdyby vSechny tfi body B, C, D lezely v poloprostoru
04, nemohl by S byt vnitinim bodem ctyfsténu ABCD.
Proto napt. bod B lezi uvnitf poloprostoru opacného k oA
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(a zéroven na dané kulové plode). Takovy bod B viak zfejmé
lezi vné kulové plochy o stfedu 4 a poloméru l/2, takZe vzda-
lenost AB je vétsi nez |/2.

67
M¢jme libovolny ctyfstén. Jeho vrcholy oznacme pismeny
A, B, C, D tak, aby hrana AB byla nejdelsi (popf. jedna
z nejdelSich). Pro stény ABC, ABD ¢tyfsténu plati trojihel-
nikové nerovnosti
AC + BC > AB,
AD + BD > AB.

Sectenim dostaneme nerovnost
AC + BC + AD + BD > 2A4B,
kterou mtzeme psat téz takto
(AC + AD — AB) + (BC + BD — AB) > 0.

Nutné tedy plati bud AC + AD > AB anebo BC + BD >
> AB. Protoze hrana AB je nejdeldi, je mozné bud z usecek
AC, AD, AB anebo z tsecek BC, BD, BA sestrojit trojuhelnik.

68

Bud ABCD dany ctyfstén a necht P je pata kolmice spusténé
z vrcholu D na rovinu ABC (obr.33). PonévadZ sténové
uhly D (AB) C, D (AC) B jsou ostré, lezi bod P uvnitf thlu
<.BAC. Ze dvou uhld <t PAB, <t PAC je zajisté¢ alespon
jeden ostry; necht je to napf. <t PAB (v opatném pfipadé by
dal$i tivaha byla obdobn4). Potom pata Q kolmice spusténé
z bodu P na pfimku 4B padne dovnit# polopfimky AB (obr. 33).
Bod O je v8ak ziroven pravouhlym prumétem bodu D na
piimku AB; piimka 4B je totiZ kolma na DQ, nebot je kolma
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Obr. 33.

na rovinu DPQ, jak vyplyva z konstrukce bodu P, Q. Po-
névadz tedy pravouhly pramét Q vrcholu D na piimku AB
lezi uvnitf poloptimky AB, je thel <t BAD ostry.

Z vrcholu C nyni spustme kolmici na rovinu ABD a oznacme
R jeji patu (obr. 34). Z piedpokladi ulohy opét vyplyva, Ze
R lezi uvnitf uhlu <t BAD, o némz vsak jiz vime, Ze je ostry.
Proto jsou ostré i oba tihly <t RAB, <t RAD. Pata S resp. T
kolmice spusténé z bodu R na pfimku AB resp. AD padne
tudiz dovnitt polopiimky AB resp. AD (obr.34). Opét se
snadno uvazi, ze S resp. T je téZ pravothly prumét vrcholu C
na pfimku 4B resp. AD. To znamena, Ze thly <t CAB, <cCAD
jsou ostré.

Dokazali jsme tedy, Ze vSechny tfi thly pii vrcholu A jsou
ostré. Ponévadz pro ostatni vrcholy lze uzit téZe myslenky, je
tim tloha vyfeSena.

Poznimka 1. Uloha 68 je specidlni piipad obdobné véty
z geometrie n-rozmérného euklidovského prostoru. *
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Poznidmka 2. V obecném Ctyfsténu ovsem nemuseji byt
vSechny vnitini uhly ostré, jako tomu bylo v této tloze. V dalsi
tloze se proto budeme zabyvat rozloZenim ostrych uhla ve
Ctyfsténu a mj. dokaZeme, Ze alespon tfi vniténi dhly Ctyfsténu
jsou vzdy ostré. Budeme vSak potiebovat jednoduchou po-
mocnou vétu, kterou uvadime v této poznimce.

Zatnéme ptikladem v roviné. V trojihelniku A4, 4,4, plati
znamé vztahy o délkach stran, které oznacime p, (= A,4,),
b (= A3A,), ps (= A,A,) a vnitinich thlech ¢, (=<4,4;54,),
P23 (= L A4, 45), 13 (= L A34:4,):

P1 — P2 COS Q15 — P3 COS @13 =0,
—P1 COS P15 + Py — P35 COS o3 = 0,
—D1 COS @13 — Py COS Po3 + Py =0.

Obr. 35. Obr. 36.

Prvni vztah napf. znamena, Ze délka p, je soucet (popf.
rozdil) délek pramétd p, | cos @5 | a pg| cos @y stranp, a p,
na p;, s vhodnymi znaménky podle toho, jsou-li oba uhly
@125 P13 Ostré, nebo jeden pravy popf. tupy.

Obdobné vztahy plati o ctyfsténu A,A4,A4;A4,. Oznacime-li
po fad€ py, p,, ps, py Obsahy stén AyAsd,, A, A3Ass A,A4x4,,
A AsAs @ Pra5 Pr3> Pras Pos> Pass Paa VRitind dhly stén (napf.
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@, thel stén A,4;4, a A,A3A,, tedy uhel ,proti‘ hrané
A,A4,, jako tomu bylo v piedchozim trojuhelniku A4,4,4,),
pak lze opét odvodit vztahy o primétech:

—P1 COS @ + Py — D3 COS Py — Py COS Py = 0,
Py COS P13 — P2 COS o3+ Py — P4 €08 @y = 0,
—P1 COS Qg — Py COS Pgq — Py COS Py + Py = 0.

Prvni vztah v pfipadé ostrych ahla ¢, @5, ¢, odpovidd
v roviné¢ A,A;A, rozkladu z obr. 35, v pfipadé ostrych uhla
@12 @ @13 a tupého Ghlu ¢, situaci v obr. 36, kde A 4,454, =
= NA{AA, + NAAAy — NAjA,A,. Pritom A; znali
vzdy pravouhly pramét bodu 4, na rovinu A,4,4,.

P1 — P2 COS Qrp — P3 COS ¢y3 — Py €COS ¢yy = 0, l
(D

69

K dakazu uZijeme vztahu (1) z pfedchozi poznamky. Kdyby
zadny z ahla @5, @3, @4 nebyl ostry, platilo by cos ¢,, = 0,
cos @3 = 0, cosg,, =0 a prvni ze vztahd (1) by neplatil.
(Je to ostatné ziejmé 1 geometricky.) Abychom dokazali
tvrzeni b), predpokladejme, Zze zadny z Ghld @5, @4 @ogs
@sq neni ostry. Pak cos¢3 = 0, cos¢p, =0, cosg, =0,
cos @y, = 0. Nasobime-li prvni ze vztahd (1) Cislem p,, druhy
Cislem p, a seCteme, dostaneme

Pi+ P35 — 2p1ps €OS @1y — (P13 COS @13 + Pypy COS @yy +
= PaPs3 COS Pog + PaPy COS Pyy) = 0.

Avsak | 2p,p, cos @ip | < 2p1pp = pi + p3, takZe soulet
prvnich t#i ¢lend je kladny. Vyraz v zavorce je podle naSich
pfedpokladd nekladny, coZ celkem déva, Ze leva strana je kladna.
Tento spor dokazuje tvrzeni b).

DokaZme nyni z a) a b) tvrzeni c). Podle a) je alespoil jeden
z Uhld @5 @5 @, ostry. Pfipadnym piecislovanim lze do-
sahnout toho, Ze ¢,, je ostry. Z tvrzeni a) také plyne, Ze alesponi
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jeden z Ghld ¢4 @ag, @y, je ostry. Je-li to thel @5 nebo @,g,
pak tieti (popf. dokonce Ctvrty) ostry uhel najdeme opét podle
a) mezi dhly Pra> Pass Paa 2 tvrzeni c) plati. Neni-li ani thel
Q13> a0 @yy 08try, je ostry uhel g,,. Tieti ostry thel pak najdeme
z tvrzeni b), nebot alesponl jeden z Ghld @5, @145 Pogs Poy (tedy
alesponl jeden z uhla ¢4, ¢,,) je ostry.

Tim je dikaz proveden. Piikladem Ctyfsténu s pravé tfemi
ostrymi uhly je Ctyfstén vznikly odfiznutim jednoho ,rohu
kvadru. Pfimy dukaz tvrzeni c) predkladdme v pozn. 2.

Poznamka 1. RozloZeni ostrych, pravych a tupych vnitfnich
Ghla stén Ctyfsténu si muZeme ndzornéji vyznaclit takto: Je-li
thel ¢y (1 # k) ostry, ,,obarvime® hranu A4;4, cervené; je-li
@i tupy, obarvime A4;A4;, modie; je-li ¢;; pravy, obarvime A;A4;
bile. Rozlozeni ostrych, tupych a pravych vnitfnich thla tedy
odpovida obarveni vSech Sesti hran Ctyfsténu, kazdé jednou
z barev Cervend, modrd, bild. Ukazme, Ze mnoZina Cervenych
hran je ,,souvisla mnozina spojujici vSechny vrcholy 4,, A,,
Ay, A)S, 1., Ze po Cervenych hrandch se dostaneme z kaZdého
orcholu Ctyfsténu do kagdého jiného vrcholu.

Necht toto neplati. Pak se z vrcholu A, nedostaneme do
nékterého dalsiho vrcholu (jinak bychom se z kazdého vrcholu
dostali do kazdého pres vrchol A4,) po cervenych hranich.
Tedy mnozina M sloZena z vrcholu A, a z téch vrchold, do
nichz se dostaneme z A, po Cervenych hranich, ma nejvyse
tf1 prvky. Ma-li jeden prvek, je to jen vrchol 4, a Zadnd z hran
A, A5, A A, A A, neni Cervend. To vSak odporuje tvrzeni a)
z ulohy. Ma-li dva prvky, necht to jsou 4, a (po vhodném
precislovani vrchola A,, A,, A,) A,. Hrana A,A4, je tedy Cer-
vena, ale zadna z hran 4,4,, A,A4,, AA;, A,A, uZz neni Cer-
vend, coz odporuje tvrzeni b) ulohy. Ma-li tfi prvky a chybi-li
v M napf. vrchol 4,, pak Zadna z hran 4,4,, A,A4,, A3A, neni
cervend, coz odporuje tvrzeni a) (uzitému na vrchol A4,).

Lze ukazat, Ze uvedené obarveni hran neni kromé nalezené
souvislosti Cervenych hran vazano zadnou dalsi podminkou.
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Plati totiz: Obarvime-Ii Sest hran pomocného Cryvsténu A, A,AzA,
Cervené, modre a bile tak, aby mmoZina Cervenych hran byla sou-
visld, pak tento CtyFstén migeme zdeformovar tak, Ze proti
Cervenym hrandm le2i ostré, proti modrym hrandm tupé a proti
bilym hrandm pravé vnitini ihly.

Ovéite si sami, Ze obdobné vlastnosti ma i trojuhelnik (sou-
vislost ¢ervenych hran i to, Ze toto je jedind podminka). A lze
to dokazat pro obdobny ttvar v zn-rozmérném prostoru.

Snad nejzajimavéjsi je obarveni hran Ctyfsténu tfemi Cerve-
nymi a tfemi bilymi hranami. Aby Cervené hrany tvofily sou-
vislou mnozinu ,,nad*“ vrcholy 4,, A,, A;, A,, nesmi tvofit
trojihelnik (¢tvrty vrchol by byl ,isolovany‘). Jsou proto
mozné v podstaté dva piipady:

1. ptipad. 4,4,, A,A4;, A;A, jsou Cervené, ostatni bilé.
Tento pfipad odpovidd ziejmé ,,rohu kvadru®, tj. usecky
A, Ay, AAs, A A, jsou po dvou navzijem kolmé.

2. ptipad. 4,4,, A,A;, A3A, jsou Cervené, ostatni bilé.
Lze ukéazat, 7Ze v tomto piipad¢ jsou tusecky A,A4,, A,As,
AzA, po dvou navzajem kolmé, tj. Ze Ctyfstén vznikne (obr. 37)
z kvadru. Jsou tedy vlastné dva typy ,,pravouhlych® Ctyistént
(tj. Ctyfstént se tfemi pra-
vymi vnitinimi hly).

Poznamka 2. Podame
nyni bezprostfedni dukaz
tvrzeni c) ulchy 69. Bud
ABCD dany ctyistén. Chee-
me dokéazat, Ze alespon tfi
jeho vnitfni uhly jsou ostré.

Obr. 37.



Dukaz. Vezméme tu sténu daného Ctyfsténu, kterd ma
nejvetsi obsah (ma-li vice stén maximalni obsah, zvolime libo-
volnou z nich). Necht je to napf. trojihelnik ABC. Ze vzorecku
pro objem Ctyfsténu pak vyplyva, Ze vyska v spusténa z vrcholu
D na rovinu ABC je nejkrat$i (popf. jedna z nejkratSich).
Oznacme P patu této vysky.

Padne-li bod P dovnitf trojahelniku ABC (¢ili dovnitt kazdé
ze tii polorovin ABC, BCA, CAB), jsou viechny vnitini thly
Ctyfsténu prilehlé ke sténé ABC ostré a neni co dokazovat.

Nepadne-li bod P dovnitf trojdhelniku 4ABC, muZeme pied-
pokladat, ze lezi napt. v poloroviné opacné k poloroviné BCA.
Primka AP pak protina pfimku BC v jistém bodé R (obr. 38a,b)
a uhel <t ARD je zfejmé pravy nebo tupy (nebot R nélezi
useCce AP a < APD je pravy). V trojihelniku ARD je tedy
strana 4D nejdelsi, a proto vyska w k ni pfislusna je nejkratsi,
jak plyne ze vzoreCku pro obsah trojihelniku, zejména tedy
plati @ < .

A B A T B\
Obr. 38a. Obr. 38b. RN\ P

Vzdalenost r bodu R od roviny ACD je poptipadé jesté mensi
nez w, nebot bod R ma jiz od pfimky AD, kterd v této roviné
lezi, vzdalenost rovnou . Celkem tedy mime r < w < v.
Obdobné téZ vzdalenost bodu R od roviny ABD je = < v.

UkéaZzeme nyni, Ze bod R lezi uvnitf useCky BC. Kdyby tomu
tak nebylo, leZel by bod R napf. na prodlouZeni tisetky BC
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za bod B (obr.38b). Vzdalenost bodu B od roviny ACD
by pak byla = nez vzdilenost bodu R od této roviny,
tj. =r. Vyska Ctyfsténu ABCD spuSténd z vrcholu B
na rovinu ACD by tedy byla krat$i nez v, a to by byl spor
s nad$im predpokladem. Proto bod R lezi uvnitf usetky BC
(obr. 38a).

Bod P tudiz lezi uvnitf uhlu < BAC (obr. 38a), coZ zna-
mend, e vnitini thly D (AB) C, D (AC) B jsou ostré. Uhel
D (BC) A v nasem piipad¢ neni ostry, avSak tfetim ostrym
thlem musi byt bud 4 (BD) C nebo A (CD) B, nebot vSechny
tfi vnitfni dhly pfilehlé ke sténé BCD ziejmé nemohou byt
neostré [viz téZ tvrzeni a) tlohy 69].

V kazdém piipadé jsme tedy nasli (alesponl) tfi ostré vnitfni
uhly daného Ctyfsténu.

70

Mezi body dané soustavy existuji dva, které maji nejvétsi
vzdalenost (je-li takovych dvojic vic, zvolime nékterou z nich).
Oznacme tyto body A4, a 4,. Ukazme nyni: Jsou-li P a Q dva
rizné body soustavy, ruzné od-A,, pak thel <r P4,Q < 120°.
Pro P=£ A4, == Q je totiz <x A, PA, = 120°, <t 4,04, = 120°
(at bod P resp. Q lezi na ptimce 4,4, Ci nikoli), takze ziejmé
<L PA,A, < 60°, xQA,A, < 60°. Odtud plyne (viz pozn. 1
za feSenim), Ze < PAQ = <xPA A, + 04,4, < 120°,
jak jsme chtéli ukdzat. Pro P = A4, nebo Q = 4, je rovnéz
<L PA,Q << 120°. To vsak znamend, ze AP # A,Q, nebot
jinak by (tfi rtzné) body 4,, P, Q tvofily rovinoramenny troj-
thelnik s maximalnim dhlem men$im nez 120°, coz je spor
s predpokladem. Jsou tedy vzdalenosti kazdych dvou boda
soustavy od bodu A, ruzné, takze zbylé body muzeme oznacit
Asy ooy A,— tak, Ze

Ad, < A A, < AA, < ... < A An_, < AA,.
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Dokazme nyni, ze pro 1 =7 < j < k =< n plati
x A 4,4, = 120°. )

Pro i =1, k =n je (1) spravna. Necht 7 = 1, k& == n. Pro-
- toze <L A;A\Ap < 120° a A;A, < Ay Ay, plati < A,4;4, =
= 120°, tj. (1). Bud tedy 7 == 1. Uz vime, ze <t 4,4;4; = 120°,

stejné tak < A,4;4, = 120°, <x A,4;4; = 120°. Pfedpoka-
dejme, ze <r 4;4;4;, < 120°. Potom je bud < A4,4;4;, = 120°
anebo < A4;A4;A; = 120°. Nastane-li prvni moznost, sviraji
kazdé dvé z polopiimek A;A4,, A;A;, A;A; Ghel alesponn 120°.
To je mozné jen tak (pozn. 2), Ze vSechny tfi leZi v roviné
a sviraji thel pravé 120°. Potom vSak (obr. 39) <r 4,44, =
= s A A;A4; + < A 4,4, < 60° 4 60° = 120°, coz je spor.
Zbyva tedy moznost <r 4;A4,A; = 120°. Potom, oznacime-li
Aj néktery bod opacné polopfimky k poloptimce A,4;, plati
L AjArA; = 60°, dale vzhledem k < A4,4;A4, = 120° plati
S A, A A < 60°, tj. s AjAA, < 120° = < A A;A4,. Pro-
toZe toto neni mozné (obr. 40), plati <© 4;4;4; = 120° a véta
je dokazana.




Poznamka 1. V pfedchozim feSeni jsme uzili tohoto
tvrzeni: Jsou-i MA, MB, MC polopfimky, pak kazdy
z Ghla <t AMB, <t BMC, <t CMA je mensi nebo roven soultu
dvou zbyvajicich. Dukaz zfejmé staci provést jen pro pfipad,
Ze dané polopfimky nelezi v roviné a Ze pravé jeden z téchto
tfi dhld mé nejvétsi velikost (ostatni pfipady jsou totiz
snadné).

Na obr. 41 jsou znazornény tii poloptimky MA, MB, MC
v prostoru takové, Zze <L AMC je vetsi nez oba zbyvajici. Pak
uvnitf usecky AC existuje takovy bod K, ze <- KMC = - BMC.
O bodu B muzeme zfejmé predpokladat, ze plati MB — MK.
Pak také BC = CK. Ponévadz AC < AB + BC, miame AK <
< AB. Trojuhelniky AMK, AMB maji tedy dvé dvojice

shodnych stran, avsak pro

M tfeti strany plati nerovnost
AK < AB. Proto pro uhly
leZici proti témto stranim
plati nerovnost

SAMK < < AMB,

| Obr. 41.

z niz plyne (vzhledem k tomu, e <t KMC = < BMC)
T AMK + <t KMC < <t AMB + <t BMC,
tj.
< AMC < < AMB + <t BMC.
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Zbyvajici dv¢ nerovnosti jsou ziejmé vzhledem k tomu, Ze
thel <t AMC je nejvetsi.

Poznamka 2. Budte opét MA, MB, MC tii polopiimky,
které nelezi v roviné, takze MABC je Ctyistén. Uzitim vysledku
pozn. 1 dokazeme, Ze soucet

S = <<AMB + <tBMC + <-CMA
je mensi nez 360°. Plati totiz

< BAC < < LBAM + <L CAM,
<X ABC < <. ABM + <. CBM,
<<BCA < <{BCM + < ACM.

Seétenim téchto tiéi nerovnosti dostaneme

180° < 3.180° — §
a odtud skute¢né
S < 360°.

71

Necht tvrzeni neplati. Pak ke kazdé primce prochdzejici
alesponl dvéma z uvaZovanych bodi lze najit v dané mnoZiné
bod, ktery na této p¥imce nelezi. Ze vSech dvojic (p, X), kde
p je pfimka prochazejici alesporl dvéma z danych bodu a X je
bod dané mnoziny, ktery neleZi na piimce p, vyberme tu (popf.
jednu Z t&ch), pro niZ je vzdalenost bodu X od p#imky p co
nejmensi. To miZeme, nebot uvazovanych dvojic je konecny
pocet. Bud (p,- X) zvolena dvojice.

Pismenem P ozna¢me pravouhly primét bodu X na pfimku
p. Bod P rozdéluje pfimku p na dvé uzaviené polopfimky. Na
kazdé z nich miZe leZet nejvysSe jeden bod dané mnoZiny, jak
ukazuje obr. 42, kde X'P’ <~ XP. Proto na celé pfimce p lezi
nejvyse (vlastné pravé) dva body dané mnoZiny, a to odporuje
predpokladu tlohy. Véta je dokédzéana.
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Obr. 42.

Poznamka. Uloha 71 je elementirnim ptikladem jedné
obecnéjsi teorie.

Cviteni. V prostoru je dano n(=3) bodu, které nelezi
v jedné piimce. Pak existuje alespori z riznych piimek,
z nichZ kazda prochézi nejméné dvéma z danych bodu.

72

Viechny kruhy, o nichZ se mluvi v tiloze, maji tyZ polomér 7.
K objasnéni tohoto tvrzeni stali vzit dvé rtznobézné roviny
a promitnout mnoZinu M pravouhle na jejich prisecnici; vznikly
primét bude ziejmé zéroveii pravothlym primétem obou pii-
slusnych kruh@i na tuto prise¢nici. Proto oba kruhy maji
stejné praméry. Rozmyslete si také, Ze kolmice vztyCené ve
sttedech viech uvaZovanych kruht prochazeji spoleéw’m bo-
dem S.

Sestrojme nyni kulovou plochu x = (S; 7). Kdyby né&ktery
bod X mnoZiny M leZel vné této kulové plochy, pak by pravo-
uhly primét mnoziny M na libovolnou rovinu obsahujici
pfimku SX nemohl byt kruh o stiedu S a poloméru r. Proto
cela mnozina M leZi v kouli s hranici ». Kdyby néktery bod Y
kulové plochy » nepatiil mnoZin&é M, pak by zase pravouhly
primét mnoZiny M na libovolnou rovinu proloZenou ptimkou
SY nemohl byt kruh o stfedu S a poloméru », nebot v tecné
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roviné plochy x» vedené bodem Y podle predchoziho nelezi
74dny bod mnozZiny M.

Mnozina M tedy obsahuje vSechny body kulové plochy x
(a je cela obsazena v kouli, kterou tato plocha urcuje).

Poznamka. Kdybychom v tloze pfedpokladali navic kon-
vexitu mnoziny M, platilo by, ze M je koule.

73

Prvni feSeni. Dotykové body kulové plochy s hranami AB,
BC, CD, DA oznatme po fadé¢ M, N, P, Q. Z vlastnosti teCen
kulové plochy nachazime vztahy

AM — AQ, BM — BN, CN — CP, DP — DO, (1)

pomoci nichz dokazeme, Zze body M, N, P, Q lezi v jedné roviné.

Rovina MNP neobsahuje zadny z boda A4, B, C, D, nebot
jinak by musela obsahovat vSechny vrcholy ¢tyfsténu, coZ neni
mozné. Body A4, B lezi proto uvniti opacnych poloprostora
ur¢enych touto rovinou. TotéZ plati i o vrcholech B, C a C, D.
Z toho vyplyva, Ze vrcholy A, D jsou oddéleny rovinou MNP,
takZe tato rovina protina usecku AD v jejim vnitinim bodé R.
Potfebujeme dokazat, ze R = Q.

Oznatme A',B’, C', D’
(pravouhlé) praméty bo-
da A4, B, C, D na rovinu
MNP. Pak ziejmé plati
(obr. 43)

Obr. 43.
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AM A4 BN BB CP CC' DR DD

BM~ BB CN CC'> DP DD’ AR ~ A4’
tedy
AM'BN- CP DR AA" BB 'CC' .DD’ -
BM CN DP AR BB CC' DD AA
Vzhledem k (1) odtud dostivame

AM DR
DP AR

Ponévadz AM = AQ, DP = DQ, vyplyva z posledni rovnosti,
Ze ’

1.

AQ .DR = DQ . AR.
Dosadme sem DR — AD — AR,DQ — AD — AQ, takse
bude
AQ (AD — AR) = (AD — AQ) AR,
z Cehoz
AQ = AR.

Tim je dokazano, ze R = Q.

Druhé feSeni. Oznaceni zvolme stejné jako v pfedchozim
feSeni, takze opét plati rovnosti (1). RozliSujme nyni dva pfi-
pady: «

[1] MizZe se stit, Ze¢ AM = CN. Pak téz AQ — CP. Troj-
thelnik ABC je pak rovnoramenny (BA — BC) a plati
MN || AC. Obdobné je QP || AC. Z toho vyplyva MN || QP,
takze body M, N, P, Q lezi v jedné roviné.

[2] V ptipadé AM -+ CN predpokladejme napi., Ze je AM >
> CN, takze téz AQ > CP. Rovnobézka s MN vedena bodem
C protina tsetku AB v jistém bodé E (lezicim mezi 4, M)
a obdobné rovnobézka s PQ vedend bodem C protina tsecku
AD v jistém bodé F (lezicim mezi A, Q); viz obr. 44. Ponévadz
BM = BN a DP = DQ, je EM = CN = CP = QF; to zna-
mend, Ze v roviné ABD plati MQ || EF.
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Obr. 44.

A

Ptimky PQ, QM, MN jsou tedy rovnobézné po fadé s pfim-
kami CF, FE, EC, a proto jsou obé roviny POM i QMN
rovnobézné s rovinou CFE. Ponévadz vsak tyto dvé roviny maji
spolecnou pfimku QM, jsou totozné. To znamend, Ze body
M, N, P, Q lezi v jedné roviné, c. b. d.

Tteti feSeni. Dotykové body dané kulové plochy s hra-
nami AB, BC, CD, DA oznatme opét M, N, P, Q. Je-li AM =
= CN, provedeme tutéz tivahu jako na zac¢atku druhého feSeni.

Jestlize AM - CN, muZeme piedpokladat, Ze je napf.
AM > CN atedy téz AQ > CP. V roviné ABC jsou pak ptim-
ky AC, MN rtznobézné.a protinaji se v jistém bodé K, ktery
ziejmé lezi na polopiimce opacné k polopfimce CA (obr. 45).

Obr. 45.
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Primka QP protind ptimku AC v jistém bodé L, ktery lezi také
na polopiimce CK. Dokézeme-li, Ze je K = L, budou pfimky
MN, PQ riaznobézné a body M, N, P, Q budou lezet v jedné
roviné (urCené témito dvéma ruznobézkami). K tomu staci
ukazat, ze plati CK = CL.

Ptimka MN protind piimky AB, BC, CA po tadé v bodech
M, N, K, takze podle Menelaovy véty (pozn. za feSenim) plati
AM .BN.CK = BM .CN . AK.

Ponévadz zfejmé BN = BM a AK = AC + CK, je

AM .CK = CN (AC + CK)
a odtud
~ CN.AC 0
~ AM —CN "
Obdobné z trojihelniku ACD protatého primkou PQ vypo-
Cteme

CK

CP. AC
AQ —CP ° @

Ve vzorcich (1), (2) je vSak CN = CP, AM = AQ, takze
skutecné plati

CL =

" CK = CL,
jak jsme chtéli dokazat.

Poznamka. Menelaova véta, kterou jsme uzili ve tfetim
feSeni zni takto:

Necht je dan trojuhelnik ABC a pfimka p, kterd protind
ptfimky AB, BC, CA po fad¢ v bodech X, Y, Z. Pak plati

AX.BY.CZ =BX.CY.AZ. )

Diakaz. Prochazi-li pfimka p jednim nebo dvéma vrcholy
trojuhelniku ABC, jsou obé strany v (1) rovny nule. Nepro-
chazi-li ptimka p zddnym vrcholem trojihelniku ABC, oznac-
me vzdalenosti vrchold 4, B, C cd pfimky p po fadé pismeny
a, b, ¢ (obr. 46).
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Obr. 46.

Pak ziejmé plati

AX a BY b CZ c

BX b’ CY ¢’ AZ a-
Vynasobenim téchto rovnosti dostaneme

AX BY CZ _a b c
BX CY AZ a

a
b ¢ a
a odtud jiz bezprostiedné vyplyva rovnost (1).

Jiny dikaz (jiz jen pro ptipad, Ze pfimka p neprochazi
zadnym vrcholem trojuhelniku ABC). Sestrojme v roviné ABC
piimku ¢ rGznobéznou s danou pfimkou p. Rovnobézné pri-
méty bodid 4, B, C na pfimku ¢ ve sméru daném piimkou p
ozna¢me po fadé A’, B’, C’; pfi tomto promitini bude obra-
zem bodd X, Y, Z jediny bod P’, rizny od bodu 4, B, C’
(obr. 47). Pak o tseckach a jejich pramétech plati vztahy

AX AP BY BP CZ CP

BX BP’ CY CP’ AZ AP

Vynésobenim téchto rovnosti opét plyne (1).
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Obr. 47.

74

Necht existuje kulova plocha, ktera se dotykd vSech hran
Ctyfsténu ABCD. Dotykové body rozdéluji kazdou hranu na
dvé usecky a kazdé tii z téchto dvanicti usedek, které vycha-
z¢ji z jednoho vrcholu Ctyfsténu, jsou stejné dlouhé. Délky
teCen vychazejicich z vrcholu 4, B, C, D oznatme po tadé a, b,
¢, d. Pak AB=a + b, CD =c +d, takze AB + CD =
=a + b + ¢ + d. Podobné se dokaze, ze také AC + BD =
=AD +BC =a +b+c¢+d.

Piedpokladejme nyni, Ze Ctyfstén ABCD spliiuje podminku

AB + CD = AC + BD = AD + BG, (1)

a ukazme, Ze je mozno sestrojit kulovou plochu, ktera se dotyka
vSech jeho hran.

Hledana kulova plocha musi protinat kazdou sténu v kruz-
nici ji vepsané; pfitom kruznice vepsané libovolnym dvéma
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sténdm se budou dotykat spole¢né hrany v témz bod& (je to
dotykovy bod kulové plochy s touto hranou). DokaZzme proto
predevs§im, Ze z pfedpokladu (1) vyplyva toto tvrzeni: KruZnice
vepsané libovolnym dvéma sténidm Ctyfsténu ABCD se doty-
kaji spolecné hrany v témz bodé
(obr. 48). D

Vepi$me trojuhelnikim ABD,
BCD kruznice k,, k, a 0zname

M, N jejich dotykové body se
spolecnou stranou BD; viz obr.
48, kde S,, S, jsou stiedy téchto
kruznic a P, Q dotykové body j c
se stranami AB, BC. Z trojuhel- 4
niku ABD vypocteme
p Q

Obr. 48. B

BM =%(AB + BD — AD)
a z trojuhelniku BCD
BN ='% (BC + BD — CD).

Podle (1) vsak plati AB — AD = BC — CD, takze
BM = BN.

To ale znamen4, Zze M = N. Obdobné lze diikaz provést i pro
ostatni dvojice stén.

Rovina S;MS, je kolma k pfimce BD, nebot obé raznobézky
S, M, S, M jsou kolmé ke spole¢né te¢né BD kruZnic &, k,. Proto
je rovina S;MS, kolma i k rovindim ABD, BCD. V roviné
8§, MS, lezi tedy kolmice k rovindm ABD, BCD vztyCené v bo-
dech S, S,. Tyto dvé kolmice nejsou rovnobézné (nebot roviny
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ABD, BCD nejsou rovnobézné), takZe se protinaji v jistém bodé
S. Bod S méa od bodi kruznic k,, &, stejnou vzdalenost, rovnou
délce SM. Kulova plocha x o stiedu S a poloméru SM pro-
chazi tedy kruznicemi k,, k, a dotykd se hran AB, BC, CD,
BD, AD v jejich vnitfnich bodech.

Zbyva dokazat, Ze se dotyka i hrany AC. Kulova plocha »
protind rovinu ABC v jisté kruznici &, kterd se dotykd pfimek
AB, BC v bodech P, Q. Z naseho pomocného tvrzeni o kruz-
nicich vepsanych sténam ctyisténu ABCD nyni vyplyva, Ze
kruznice £ musi byt totoznd s kruznici vepsanou trojihelniku
ABC. Dotyka se tedy i tsecky AC ve vnitfnim bod¢ a dukaz je
hotov.

75

Bud 2 jedna z péti danych kulovych ploch. Kulova plocha 2
protina rovinu kazdé stény Ctyisténu SABC v kruznici, ktera
je bud vepsina nebo vné vepsina pfislusnému trojuhelniku.
Pritom kazdé dvé z téchto Ctyf kruznic se dotykaji prusecnice
svych rovin v témzZ bodé (je to dotykovy bod této prisec-
nice s kulovou plochou £2). Nyni jsou myslitelné dva pfi-
pady:

[1] Kulova plocha 2 se dotykd vSech hran v jejich vniti-
nich bodech. Pak £ prochazi body P, Q, R, v nichZ se dotyka
kruZnice vepsana trojthelniku ABC jeho stran, a dale dotyko-
vym bodem K strany SA s kruZnici vepsanou trojuhelniku
SAB (obr. 49). Body P, Q, R nelezi v pfimce a bod K nelezi
v roving¢ PQR. Ctyfmi body P, Q, R, K, které nelezi v jedné
roving, prochézi jedina kulova plocha. Proto nejvyse jedna z péti
danych kulovych ploch patii k pfipadu [1].

[2] Alespori jeden dotykovy bod kulové plochy £ s pfim-
kami obsahujicimi hrany Ctyfsténu lezi vné pfislusné hrany.
Pro uréitost napi. pfedpoklidejme, Ze se kulovd plocha £
dotyka pfimky SA v bodé K, ktery lezi na prodlouzeni usecky
SA4 za bod A4 (obr. 49). Pak 2 protina rovinu SAB v kruZnici &,
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Obr. 49.

vné vepsané trojihelniku
SAB, a to ke strané AB.
Proto se kruznice k,; doty-
ka useCky AB v jistém
vnitinim bodé¢ a dile
poloptimky SBvbodé L,,
ktery je od bodu S oddé-
len bodem B (obr. 49).
Kruznice k, v roviné
SAC pak také obsahuje
bod K; (nebot, jak jsme
na zacitku feSeni poznamenali, kruZnice k;, k, se musi do-
tykat pfimky SA v témZ bod¢) a je tedy vné vepgdna troj-
thelniku SAC, a to ke strané AC. Rovnéz kruznice k3 v ro-
viné SBC musi byt vné vepsana trojihelniku SBC ke strané
BC. Z toho vyplyva, Ze kulova plocha {2 protina rovinu ABC
v kruznici vepsané trojuhelniku ABC a dotyka se tedy hran
BC, CA, AB po fad¢ v bodech P, O, R (obr. 49). Ostatni
tfi roviny protind kulova plocha £ v kruZnicich vné vepsanych
prisluSnym trojihelnikiim a dotyka se pfimek S4, SB, SC po
fadé v bodech K,, L,, M, (obr. 49). Ctyisténu PQRK, lze
opsat jedinou kulovou plochu, proto existuje nejvyse jedna
sféra 2, ktera m4 vlastnosti popsané v tomto odstavci. Celkem
pak existuji nejvyse Ctyti kulové plochy pattici k ptipadu [2].

Ponévadz v predpokladu tlohy je dano pét kulovych ploch,
z nichZ kazda se dotyka Sesti ptimek SA4, SB, SC, AB, BC, CA,
existuje podle provedeného rozboru jedna kulova plocha prvého
typu a Ctyfi kulové plochy druhého typu.

Viimnéme si nejprve kulové plochy prvého typu a jeji do-
tykové body s hranami ¢tyfsténu SABC oznacme podle obr. 50.
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Pak plati
SK=S8SL=8SM=s5, AK = AQ = AR = a,
BL =BP =BR =b, CM =CP =CQ =c.

Obr. 50.

Vezméme nyni kulovou plochu
druhého typu pfisluSnou sténé
ABC a dotykové body ozna¢me
opét podle obr. 50. Pak také

AK, =a, BL, =b, CM, =¢
a dale SK;, = SL, = SM,, tj.
2a +5s=2b+s5s=2c+s

cili
a=b=c.

To vSak znamen4, Ze trojihelnik ABC je rovnostranny (obr.
50). Provedeme-li obdobnou tvahu i se tfemi zbyvajicimi kulo-
vymi plochami, dokaZeme, Ze i stény SAB, SBC, SCA jsou
rovnostranné trojuhelniky. Dany ctyfstén SABC je tedy pra-
videlny.

Obracené, necht SABC je pravidelny Ctyfstén. Ozna¢me T

vvey

chazi stfedem jedné hrany, bude prochazet i stfedy ostatnich
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hran a bude se dotykat vSech hran Ctyfsténu SABC (tj. bude
prvého typw. Stejnolehlosti se stfedem S a koeficientem 3
prejde tato sféra v kulovou plochu druhého typu piislu$nou
sténé ABC. Obdobné sestrojime dalsi tfi sféry. Celkem tedy
existuje pét kulovych ploch, jak jsme méli dokazat.

76

Vedme bodem P piimku p, kterd protind mnozinu M v jisté
usecce AB; uvédomte si, Ze takova piimka p existuje. Pfimkou
p prolozme dvé ruznobéZné roviny «, (. Kazdd z nich podle
predpokladu protind mnoZinu M v kruhu; hrani¢ni kruZnice
k, I téchto dvou kruhti maji spole¢nou tétivu AB. KruZnicemi
k, [ prochazi jedind kulova plocha; kouli, kterou ohranicuje,
oznat¢me K. UkdZeme, Ze M = K.

Obr. 51.

Bud X libovolny bod mnoziny M, ktery nelezi v roviné o
ani 5. DokaZeme, Ze X nélezi kouli K. Rovina w proloZena bo-
dem P a pfimkou, kterd prochédzi bodem X a obsahuje dva rizné
vnitini body kruht o hranicich &, / — rozmyslete si (obr. 51),
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Ze takova pfimka existuje — protind kruznice k, / alespon ve
tfech riznych bodech T, Ty, T5. Prinik mnozinygM s rovinou
o je (podle pfedpokladu) jisty kruh s hranici m, ktery pocho-
pitelné obsahuje body 7; ( = 1, 2, 3). Kdyby néktery z boda
T; (i = 1, 2, 3) leZel uvnitf tohoto kruhu, pak by byl vnitfnim
bodem tétivy, kterou by v tomto kruhu vytinala rovina « nebo
(totiZ ta, v niz T; lezi). Celd tato tétiva nalezi mnoziné M (podle
definice kruznice m) a tudiz lezi v kruhu uréeném kruznici %
(v o) nebo I (v ). Bod T; by pak nemohl leZet na hranici pfislus-
ného kruhu. Proto body Ty, T, T, leZi na kruznici m. To zname-
na, ze kruznice m lezi na povrchu koule K, nacez cely kruh touto
kruznici urCeny (tj. pranik roviny o s mnoZinou M) nale-
Zi kouli K. Zejména také bod X lezi v K, jak jsme chtéli do-
kazat.

Zatim tedy vime, Ze plati M < K. Pfedpokladejme, Ze néktery
bod Y z K nepatii do M. Rovina ABY protina kouli K v kruhu
a mnozinu M také v kruhu ( nebot P lezi na AB). Tyto dva
kruhy maji spolecnou tétivu, takZe kdyby nebyly totozné, ob-
sahoval by kazdy z nich body nepatfici druhému (nakreslete
si obrazek); nékteré body mnoziny M by pak lezely vné koule K,
coz, jak uZz vime, neni mozné. Proto oba uvazované kruhy
splyvaji a Y patii do M. Plati tedy rovnost M = K a véta je
dokézéna. -

77

Ozna¢me délky hran AB = a, CD = b, d vzdalenost a w
odchylku mimobézek AB, CD. Ctyistén ABCD doplnime na
rovnobéZnostén, jak ukazuje obrazek 52; vysledny rovnobézno-
stén ovSem nemusi byt kolmy. Hrany 4B, CD (tyfsténu jsou
thlopfitkami jeho podstav, rovina & déli rovnob&zZnostén ve
dva rovnobéznostény; objem dolniho (horniho) oznacime V,

kd d
1+k> 14k
a protoze oba rovnobéZnostény maji podstavu téhoz obsahu

(V,). Protoze jejich vysky jsou po fadé
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1 .
5 ab sin o, plati

|4 —Mrsin o)
YT2(1+ k) ’
__&d sin o
2T 2(1+ k)
.
1+k
kd
T+k
Obr. 52.

Rovina ¢ rozdéli Ctyfstén ABCD na dvé Casti; dolni dostaneme,
kdyZz od dolniho rovnobéznosténu oddélime dva jehlany a dva
komolé jehlany. Vys$ka jehlanu je 1'{—?75 a jejich podstavy
maji tyZ obsah P,; je to obsah trojihelniku XYZ. Ponévadz

trojuhelniky X YZ, CDE jsou stejnolehlé podle sttedu 4 (koe-

. . .. k ,
ficient stejnolehlosti je ﬁ?) , plati
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Soucet objemu jehlantu je tedy

2 kd ko2 2 k3
?'T‘Fk_(ﬁl?) .P3=?d.(m) P ()

Oba komolé jehlany maji také vysku —1% 5 jejich podstavy
maji obsahy P, (A ABF) a P, (\ XVU). ProtoZe trojihelniky
XV U, ABF jsou stejnolehlé podle stfedu C (koeﬁcient stej-

.. 1 .
nolehlosti je m) , plati

P———1 2P
2_1+k'1'

Soucet objemt obou komolych jehlant je tedy

2 kd 1
”5"f—+k[ 1+(1+k) 1+(1+k) P]:

_ k(k2+3k+3)

e e i ©)

Objem V' dolni ¢asti dostaneme, odecteme-li od V, obé ¢isla
(1), (2). Uvazime-li, ze

P, =P, :iabsinw,

4
bude
. 2kd 2 k3
Vl‘m"’l'?d‘m"’l
k(R + 3k + 3) 2k (k + 3)
*? A +RP YT 31+ kP ap;. ,(3)
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Objem V] horni casti dostaneme zfejmé, nahradime-li ve vy-

1 :
sledku (3) cislo & Cislem 5 3 PO upravé vyjde

,2(1+ 3k
V= e dP,. 4
Z (3), (4) plyne
Vi R (k+3)
vV, 143k °’

a to je pomér, ktery bylo tfeba vypoditat.

Poznamka. Pro £ = 1 déava vysledek tlohy 77 toto tvrzeni:
Rovina, kterd prochazi stfedy dvou mimobéznych hran a stie-
dem jedné dal§i hrany Ctyfsténu, déli tento Ctyfstén na dvé
Casti o stejném objemu.

78

Obr. 53 naznacuje rozklad krychle na pét Ctyfstént. Do-
kazeme, Ze toto je nejmensi mozny pocet.

Necht je krychle rozfezana na ¢tyfstény. Zadna sténa krychle
nemize ndleZet jedinému z téchto Ctyfsténd a zadné dvé stény
Ctyfsténu nemohou leZet v rovnobéZnych rovinich. Proto étyfsté-
ny jsou alesponl Ctyii;

dva s podstavami naleZe-
jicimi jedné sténé krych- s
le a dva s podstavami /|
naleZejicimi prot&j§i sté- / | N
né krychle. Lehce se viak /| N
nahlédne, Ze soucet obje- /A
mu téchto Ctyt Ctyfsténd I \\
/ b
/s
| /7 et |
/ - -
Obr. 53. =
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neni vetsi nez dvé tfetiny objemu krychle. Existuje tedy jesté
dals$i — paty — Ctyfstén.
Poznamka. VSimnéte si podobného triku v feSeni ulohy 59.

79

Bud X bod daného télesa. Koule o stiedu 4; (7 = 1,2,...,#n)

a poloméru d obsahuje v§echny vrcholy a tudiz i bod X (proc?)
— viz obr. 54. Pro kazdé 1 = 1, 2, ..., n tedy plati

X4, =d. ()

Budte nyni X, Y libovolné dva body daného télesa. Koule
o sttedu X a poloméru d obsahuje podle (1) vSechny vrcholy
Ay Ay ..., Ay atim i celé téleso, véetné bodu Y. Proto plati

XY =d.

Obr.54. Obr. 55.

80

a) Nejprve si odvodime pomocnou vétu, kterou budeme
v dal$im potfebovat: Bud dan trojihelnik PQR. Potom mno-
zina vSech bodd X v prostoru, pro néz plati

PX? + QR? = QX? + PR?, (1)
je rovina o prochazejici bodem R a kolma k piimce PQ.
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Pii dukazu této véty uzijeme metody soufadnic. V prostoru
zvolime kartézskou soustavu tak, aby P=[0; 0; 0], O =
=1[z;0;0] (> 0), R=[r;s; 0], X =[x;y; 2]. Podminku
(1) pak vyjadiime ve tvaru’

R4y 4+ 24—+ s2=
=(x —1)%+y*+ 22122 2)

neboli
x=r. (2"

To znamend, 7e kazdy bod X, ktery spliiuje podminku (1),
lezi v roviné o. Obracené, kazdy bod X = [x; y; 2] této
roviny o splituje podminku (2') ¢ili (2), tedy i (1). Pomocna
véta je dokazana.

b) Necht se nyni vysky ¢tyisténu ABCD protinaji v jednom
bodé. Pak pravouhlym prumétem vrcholu D na rovinu ABC
je zfejmé prusecik vysek trojihelniku ABC. Plati tedy CD |
| AB a pfimkou CD lze proloZit rovinu kolmou k pfimce AB.
Podle odst. a) spliiuje bod D rovnost

AD® “BC? — BD® - AC®.
Obdobné se dokize, Ze také

AB? + CD* = AC? + BD* = AD* + BC>. 3)

Obracené, plati-li (3), pak napf. vrchol D lezi v roviné
prochazejici bodem A4 (B, C) a kolmé k pfimce BC (CA, AB),
tj. kazdé dvé mimobézné hrany Ctyfsténu ABCD jsou kolmé.
To znamena, Ze pravouhly pramét bodu D na rovinu ABC
lezi na vSech tifech vySkich trojuhelniku ABC a je to tedy
prusecik vysek trojahelniku ABC. Z toho vyplyva, Ze vysky
Ctyfsténu ABCD, které prochazeji vrcholy A, B, C, protinaji
vy$ku vedenou vrcholem D. PonévadZ oznaceni vrchold neni
v nadi uloze podstatné, plati, Ze kazdé tii vySky Ctyfsténu
ABCD protinaji jeho &tvrtou vysku. Ctyistén ABCD je tedy
ortocentricky (tzn. jeho vysky se protinaji v jednom bodg).
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Poznamka 1. Ctendf si mozna viiml, Ze v nasem FeSeni je
vlastné obsaZen i dikaz této véty: Ctyistén ABCD je orto-
centricky pravé tehdy, plati-li AB 1 CD a AC | BD; kazdé
dvé mimobézné hrany ortocentrického Ctyfsténu jsou na-
vzajem kolmé. Dale, Ctyfstén je ortocentricky, pravé kdyz
pravouhly pramét nékterého jeho vrcholu na rovinu protgjsi
stény splyva s prasecikem vysek této stény. K tomu, aby Ctyi-
stén byl ortocentricky, zfejmé stali (a je ovSem nutné), aby
tfi jeho vysky mély spole¢ny bod.

Poznamka 2. Cryfstén je ortocentricky, pravé kdys stiedy
vsech jeho hran le3i na kulové plose. Stiedni pticky liboolnéhoi
Ctyfsténu (tj. useCky spojujici stfedy protéjSich hranv)imaj
totiz vzdy spolecny st¥ed, nebot kazdé dvé z nich jsou hlo-
prickami jistého rovnobézniku. Je-li tedy Ctyfstén ortocentricky,
jsou tyto tii rovnobézniky pravouhelniky, jak plyne z kolmosti
mimobéznych hran, a kazdé dva z nich maji spolecnou thlo-
pricku. Proto vrcholy téchto pravouhelnikd, tj. sttedy Sesti hran
Ctyisténu, lezi na kulové plose. Obracené, lezi-li stiedy vSech
hran ctyfsténu na kulové ploSe, pak %Zminéné tii rovnobéZni-
ky jsou pravodhelniky (nebot kazdy rovnobéznik, jemuZz lzs
opsat kruznici, je pravothelnik) a z toho plyne kolmost mimo-
béznych hran; podle pozn. 1 je pak takovy Ctyfstén ortocen-
tricky.

Poznamka 3. Bud dan ortocentricky Cctyistén. Kulova
plocha z pozn. 2 protind rovinu kazdé stény v tzv. kruznici
deviti bodu pfislusného trojihelniku, nebot prochazi stiedy
jeho stran. Proto na této kulové plose lezi také paty vysek
vsech sténovych trojihelniku a body, které ptli vzdalenosti
vrcholt kazdé stény od pruseciku vysek této stény. Podle
pozn. 2 a 4 je stiedem této kulové plochy tézist¢ Ctyfsténu.

Poznamka 4. Neni tézké dokazat, Ze v libovolném cCtyfsténu
je spolecny stfed stfednich pficek, o némz jsme se zminili
v pozn. 2, vidy ziroveni téZiStém tohoto Ctyfsténu (kazda
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pfimka, kterd spojuje tento bod s vrcholem Ctyfsténu, protind
totiz kazdou téZnici protéjsi stény). Toto tvrzeni mé i zfejmy
fyzikalni smysl.

Poznédmka 5. Ortocentricky Ctyfstén, s nimZ jsme se se-
znamili v tloze 80, mé4 fadu dalSich zajimavych vlastnosti.
Vsimnéme si zde napf. rozloZeni pfipadnych neostrych thla
jeho sténovych trojuhelnikd. Plati: V ortocentrickém cryfsténu
vSechny neostré uhly sté-
novych trojihelnikit lezi
p¥i jednom ovrcholu Ctyr-
sténu.

Dukaz  (obr. 56).
Oznalime-li AB = ¢,
BC=a, CA=b, AD =
=a, BD=V, CD=,
plati podle predpokladu
(resp. podle ulohy 80)

Obr. 56.

a4 a? =0+ b%=c*+ 2 (1)

Vysetfujeme velikosti thld <fBAD = ¢, <<CAD =,
<L BAC = . Podle kosinové véty plati

2a'ccosp = a'* 4 ¢ —b'?, 2)
2a'bcosy =a'? + b* — '3 3)
2bc cos w = b% + ¢ — @’ 4)

Z (1) vsak vyplyva

a? —b? 4 =0+ c* —a?
a?— %42 =0 4 ¢ —a’
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To znamen4, Ze vSechna Cisla na pravych stranach ve vztazich
(2), (3), (4) jsou stejna. VSechna tfi Cisla cos ¢, cosy, cosw
jsou tedy soucasné bud kladna nebo zdporna nebo rovna nule.
Vsechny .tfi uhly ¢, p, @ jsou proto soucasné bud ostré nebo
tupé nebo pravé. Stejny vysledek plati i pro vrcholy B, C, D.
Ma-li tedy néktera sténa tupy resp. pravy vniténi uhel, maji
i ostatni dvé stény pifi tomto vrcholu tupy resp. pravy uhel,
nacez vSechny uhly pii zbyvajicich vrcholech museji byt
ostré. Z toho téz vyplyva, ze vzdy bud jedind anebo vSechny
stény ortocentrického Ctyfsténu jsou ostrouhlé trojuhelniky.

Poznamka 6. CryFstén ABCD je ortocentricky, prdvé kdys
existuji Cisla a, b, ¢, d tak, Ze

AB? = a + b, AC?*=a + ¢, AD? = a + d,
BC2=1b + ¢, BD%* = b 1 d, CD2 = ¢ +d.

Dokazme to pomoci vysledku tlohy 80. Necht ctyfstén
ABCD je ortocentricky. Polozme a = %(AB2 + AC?* — BC?),

b— % (AB® + BC* — AC?), ¢ — % (AC? + BC* — AB?),

d = AD? — a. Pak jsou splnény vztahy AB?* = a + b, AC? =
=a -+ ¢, BC>*=0b + ¢, AD*> = a + d. Zbylé dva vztahy pak
plynou z toho, Ze podle tlohy 80 BD? = AD? + BC?* — AC? =
=a-+d+b+c—a—c=b+d, CD> = AD> + BC? —
—AB? =a+d-+b-+c—a—b=d+c.

Jsou-li obracené splnény vztahy AB? =a + b atd., pak
AB? 4+ CD? = AC? + BD>* = AD®> + BC*=a +b +c¢c+d
a podle vysledku ulohy 80 je ¢tyfstén ABCD ortocentricky.

Je zajimavé, Ze i pruseciku vySek V oriocentrického Ctytsténu
ABCD Ize pfiradit &slo v tak, fe navic AV? = a + v, BV? =
=b+9v, CV*=c+ v, DV?*=d + v. Body 4, B, C, D, V
tedy vystupuji ,,symetricky, totiz v tom smyslu, Ze kazdy
z nich je ortocentrem Ctyfsténu s vrcholy v ostatnich Ctyfech,
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pokud oviem tyto ¢tyfi body nelezi v roviné. Lze dokézat,
Ze z &isel a, b, ¢, d, v nejvyse jedno je rovné nule. Jsou-li viechna
nenulova, je pravé jedno zaporné a ostatni kladna, a

1 1 1 1 1
st tetaty =t

81

Prvni feSeni. Jsou-li pfimky p, AB raznobézky, je hle-
danym geometrickym mistem zifejmé bud celd pfimka p s vy-
jimkou pruseCiku s piimkou AB (neprochdzi-li pfimka p
bodem A ani bodem B) anebo pouze bod A resp. B (jestlize
jim pfimka p prochézi). V dalsim budeme proto pfedpokladat,
ze pfimky p, AB jsou mimobézné.

Ponévadz plati p | AB, muzeme piimkou p proloZit. ro-
vinu 7z kolmou k pfimce AB; pfislusny prisecik oznacme M.
Je-li M = A nebo M = B, jsou vSechny vySetfované trojihel-
niky ABX pravouhlé a hledané geometrické misto se sklada
z jediného bodu M.

Necht tedy plati 4 == M =& B. Na pfimce p miZeme zvolit
(jediny) bod X, takovy, Ze rovina ABX, je kolma k pfimce p.
Prusecik V, vySek trojihelniku ABX, nalezi hledanému geo-
metrickému mistu a lezi zfejmé v roviné 7z, nesplyva vsak
s bodem M.

Vezméme nyni libovolny bod X pfimky p rizny od X,
a oznatme V prasecik vySek trojuhelniku ABX (obr. 57).
Vyska trojihelniku ABX spu$ténd z vrcholu X je kolméd na
pifimku AB a lezi proto v roviné . To znamen4, Ze i hledané
geometrické misto bodd V lezi v roviné 7 a je zfejmé soumérné
podle roviny ABX,. Bude-li se bod X vzdalovat po pfimce p
od bodu X, bude se bod V vzdalovat od bodu V. Bude-li
vsak bod X jiz hodné daleko, budou thly <t XAB, <r XBA
blizké pravym a bod V se bude zfejmé bliZit (v roviné x)
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k bodu M. Potfebujeme tedy zjistit, jakou dridhu v roviné =
opisuji body V. Vzhledem k nazorné piedstavé, kterou jsme
pravé naznatili, mohla by touto drihou byt napt. kruZnice
nad pramérem V,M — ovSem bez bodu M. Budeme se proto
zajimat o thel < V VM.

Piedevsim je jasné, Ze

v,V 1 AB, (1)

nebot primka V,V lezi
v roviné i kolmé k pfim-
ce AB. Dile si vSimné-
me, ze piimka AV, je
kolmd k piimce BX,
a i k pfimce p.

Obr. 57.

Proto je pfimka AV, kolma na rovinu pB a tudiZ i na piimku
BX, ktera v této roviné lezi. Plati tedy

BX 1 AV, (2)
Z trojuhelniku ABX samoziejm¢é dostavame, Ze
BX | AV. ' 3)

Ze vztahu (2) a (3) plyne, Ze pfimka BX je kolmé na rovinu
AV,V, tedy i na ptimku V,V, tj.

V.V | BX. (4)
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Vztahy (1) a (4) vSak fikaji, Ze pfimka V V' je kolma na
rovinu ABX. Odtud vychazi

LV VM = 90°,
jak jsme ocekavali.

Tim je dokdzino, ze kazdy bod hledaného geometrického
mista lezi na kruznici % sestrojené v rovin¢ s nad pramérem
VoM; bod M vSak lezi na pfimce AB a neni tedy prasecikem
vysek zddného z vySetfovanych trojuhelniki ABX (je totiz
A= M=£B).

Obracené, zvolme na této kruZnici £ libovolny bod V riizny
od bodu M. Pak ptimka MV protne pfimku p v jistém bodé X.
Rovina ABX nesplyva s rovinou s a proto kruZnice & nelezi
v roviné ABX. Z toho plyne, Ze rovina ABX ma s kruznici %
spolené pouze dva body — V' a M. Prisecik vysek trojuhelniku
ABX lezi v roviné ABX a podle pfedchoziho téZ na kruznici &,
pfiemz je ruzny od bodu M. To znamend, Ze praseCikem
vysek trojihelniku ABX musi byt pravé bod V.

Hledanym geometrickym mistem jsou tedy vSechny body
kruZnice & razné od bodu M.

Druhé feSeni (jiZ jen pro pfipad, Ze pfimky p, AB jsou
mimobézky). Stejné jako v prvém feSeni sestrojime body
M, X,. Predpokladejme, Ze plati 4=~ M == B (opacny pii-
pad je totiz snadny). Bud X libovolny bod pfimky p, V pra-
secik vySek trojuhelniku ABX (obr.57). Pro pravouhlé troj-
thelniky AMX, VMB plati

XM | BM, XA | BV.
Proto <rAXM = <CVBM a

NAMX ~ N VMB.
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Z této podobnosti plyne

AM XM
VM  BM
&ili
MX .MV = MA . MB = k, (1)

kde % je kladna konstanta. Specialné i pro trojuhelnik ABX,,
oznacime-li jeho ortocentrum V,, plati

MX,. MV, = k. ' (1)

BudiZ nyni X == X,,. Porovnanim vysledka (1), (1,) dosta-
neme
MX MV, )
MX, MV’ @
Lezi-li bod M mezi body A4, B (obr. 57), maji vS§echny vy-
Setfované trojihelniky pii vrcholech A, B ostré thly. Bod V
resp. V, lezi proto v poloroviné ABX resp. ABX,, tj. na
polopfimce MX resp. MX,. Trojuhelniky XMX,, V.MV
maji tedy pfi vrcholu M spole¢ny vnitini dhel, takze z (2)
plyne podobnost

AXMX, ~ AV,MV.

PonévadZ prvni z téchto trojihelnikid je pravouhly, je i druhy
trojtihelnik pravouhly a zfejmé plati

SV VM = 90°. 3)

Padne-li bod M mimo useCku AB, jsou vSechny vySetfované
trojihelniky tupodhlé s tupym uhlem pii vrcholu 4 nebo B
(podle toho, zda bod M lezi na prodlouZeni tsecky AB za
bod A4 nebo B). Bod V resp. V, pak leZi v poloroviné¢ opalné
k poloroviné ABX resp. ABX, a obdobné jako v pfedchozim
odstavci se zjisti, Ze plati vztah (3).

Zavér se provede stejné jako v prvém feSeni.
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Vysetiujeme nejdiive zvlastni pfipad, kdy bod A splyva
s nékterym z bodd B, C, napi. A = B. Prolozme pfimkou
BC libovolnou rovinu a hledejme v ni mnoZinu vSech boda M,
které jsou vrcholy pravych uhlu, jejichZ jedno rameno prochazi
bodem A = B a druhé ma s useckou BC spolecny aspon jeden
bod (obr. 58a, b). Vzhledem k Thaletové vété je touto mno-
zinou kruh sestrojeny nad pramérem BC. Hledané geo-
metrické misto bodi v prostoru dostaneme pak rotaci tohoto
kruhu kolem pifimky BC; vyjde koule nad primérem BC.
Stejny vysledek bude i v pripadé 4 = C.

n

A= c A c

Obr. 58a. Obr. 58b.

Az do konce feSeni budeme tedy pfedpokladat, ze bod A
nesplyva s zZddnym z bodi B, C. Ozna¢ime Z — hledané
geometrické misto bodil v prostoru; K, — kouli nad pramérem
AB; K, — kouli nad prumérem AC; U — mnozinu téch bodu
kouli K| a K,, které nelezi sou¢asné uvnitf obou kouli.

a) DokéaZeme, ze kazdy bod mnoziny Z naleZi mnoziné U.
Bod A nélezi mnoziné Z i mnoziné U. Necht M je bod mno-
ziny Z rizny od bodu A. Pak existuje pravy uhel s vrcholem
M a ramenem MA, jehoZ druhé rameno prochazi jistym bodem
usecky BC (ktery muze splyvat s bodem M). Oznaéme B’, C’
pravouhlé praméty bodt B, C na pfimku AM. Bod B’ leZi na
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povrchu koule K, nebot bud splyva s nékterym z bodt A4, B
anebo je vrcholem pravého thlu <t AB'B, jehoZ ramena
prochézeji krajnimi body priméru AB koule K,. Obdobné
bod C’ lezi na povrchu koule K,.

Je-li B' = C’, pak celd tsecka BC se promita do jediného
bodu a je také M = B’ = C'. To vSak znamend, Ze bod M
patii do mnoziny U.

Jestlize B’ == C’, pak bod M nalezi tseCce B'C’. Je-li
A = C’, pak M je bodem koule K,, nebot nalezi tétivé AB’
této koule, ale neni vnitfnim bodem koule K,, nebot usecka
B'C’ je kolméa k praméru AC koule K,, takze ma s ni jediny
spolecny bod C’ = A4; bod M tedy opét patii do mnoziny U.
Obdobné¢ se vyfidi ptipad 4 = B’. Je-li konetné bod 4
razny od B’ i C’, pak tsecka AB’ je tétiva koule K; a tsecka
AC’ je tétiva koule K,. Bod M tsecky B'C’ leZi bud na tsecce
AB’ nebo na usetce AC’, avSak nemuze leZet soucasné uvniti
obou téchto usecek (obr. 59a, b, c). Proto bod M nalezi mno-
Ziné U.

Tim jsme dokazali inkluzi Z < U.

L !
+ t t T

A B M C BMA C BN C A
Obr. 59a, b, c.

b) Dokazme nyni obracenou inkluzi Uc Z. Jiz jsme fekli,
Ze bod A patii do U i do Z. Vezméme tedy libovolny bod M
mnoziny U, ktery je rtzny od bodu A. Pak bod M lezi napi.
v kouli K;, takze nélezi jisté tétivé AB’ této koule. Bod B’ je
pravouhlym primétem bodu B na piimku AM, nebot neni-li
pfimo B’ = B, je uhel < BB’A pravy podle Thaletovy véty.
Pravouhly primét bodu C na pfimku AM ozna¢me C’; bod
C’ lezi na povrchu koule K,.

Je-li C' = A, pak bod M usecky B'C’ je pravouhlym pri-
métem néjakého bodu tsecky BC.
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AB', AC', nebot jinak by lezel uvniti K i K,. Z toho vyplyva
(obr. 60a, b), ze bod M (usetky AB’) lezi na usecce B'C’ a je
tedy opét pravotuhlym primétem néjakého bodu usecky BC
(rozumi se, Ze promitime stile na pfimku AM).

Z a), b) plyne, Ze bodové mnoziny Z a U jsou totozné. Tim
je uloha vyfeSena.

v A e B ohC
QObr. 60a, b.

83

Obr. 61. Vedme bodem A ptimku p || MB a ozname X jeji
prusecik s rovinou MCD. Budte A,, B, pravoihlé praméty
bodi A, B na rovinu MCD. Zfejm& plati

AX A4, V,

BM BB, V,°
. . ——>
Ponévadz rovina MCD oddéluje body A, B, jsou vektory AX,

—>
MB souhlasné rovnobézné a mame

—> —>
ax— 7 . up. (1)
V4

Vedme dale bodem X pfimku ¢ || MC a oznatme Y jeji
pruse¢ik s rovinou MBD. Budte C,, X;, 4, pravothlé pra-
méty bodu C, X, A na rovinu MBD; ponévadz AX || MB,
mame XX, = AA,. Nyni plati

XY XX, A4, Ve

CM CC, CC, V,°
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D Pfimka p (a tedy i jeji bod X)
lezi v poloprostoru MBDA,
takZe rovina MBD oddéluje
body X, C a muZeme psat

o
=
B Obr. 61.
—> . —>
XY = I;( -MC. 2)

A
Primka ¢ lezi v roviné MCD, nebot v této roviné lezi jeji bod X
a je ¢q|| MC. Proto i bod Y (piimky g¢) leZi v roviné MCD.
Avsak (podle konstrukce) Y lezi také v roviné MBD. Z toho
plyne, Ze Y lezi na ptimce MD. Ozna¢me nyni D,, Y,, X,,
A pravodhlé pruméty boda D, Y, X, 4 na rovinu MBC.
Protoze body X, Y leZi na pfimce ¢ || MC, mame YY, =
= XX,, a protoze p = AX || MB, je také XX, = AA,; z toho
vyplyva, ze YY, = AA,. Ponévadz body Y, M, D lezi na
jedné pfimce, plati
YM YY, AA, Vo

DM ~ DD, DD, V,°

>

Jelikoz vektory AX, MB jsou souhlasné rovnobézné, lezi oba
body X, B v témz poloprostoru ureném rovinou MAC, tj.
v MACB. Proto i pfimka ¢ || MC (a prochazejici bodem X)
lezi v tomto poloprostoru, takze jeji bod Y (o némz uz vime,
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ze lezi na ptimce MD) je oddélen bodem M od bpdu D. Tak
muiZeme psat

> v, —>

YM = ;" MD. 3)

A

Vzhledem k vysledkam (1), (2), (3) nakonec dostavame

—> > —> —
V..MA~+Vy.MB+Ve.MC+V,.MD=

—> S > >
=V,. MA+&-MB+&-MC+Z£.MD —
VA VA VA

e e
=V,.(MA + AX + XY + YM).
Vektor v posledni zévorce je vSak ziejmé nulovy.

Poznamka. Ctenafe znajici zéklady geometrie n-rozmér-
ného euklidovského prostoru E, upozoriiujeme na analogické
tvrzeni pro n-rozmérny simplex (misto Ctyfsténu nebo troj-
dhelniku). Jedna véta z teorie konvexity umoziuje i rychlejsi
dtikaz indukci vzhledem k 7.

84

Abychom se mohli stru¢néji vyjadfovat, budeme kazdy
Ctyfstén, jehoz Ctyfi hrany, z nichZ Zadné tii nelezi v roviné,
maji délku 1, nazyvat jednotkovy.

Ukazme nejprve, Ze ma-li néjaky jednotkovy cCtyfstén tu
vlastnost, ze odchylka stén proti nékteré z obou zbyvajicich
hran neni rovna 90°, pak existuje jednotkovy Ctyfstén, ktery
ma vétsi objem.

Necht tedy ve Ctyfsténu ABCD plati AB = BC = CD =
= DA =1 a necht napf. dhel proti hrané AC (tj. thel rovin
ABD, CBD) neni pravy (obr.62). Objem tohoto Ctyfsténu

je% P, kde P je obsah trojuhelniku ABD a v vyska spusténa
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Obr. 62. . Obr. 63.

z vrcholu C na sténu ABD. Oto¢me rovinu CBD okolo pfimky
BD do polohy kolmé k roviné ABD. Pfi tomto otoceni prejde
bod C v bod C’, jehoz vzdalenost 2’ od roviny ABD je vétsi
nez v. Ctyfstén ABC'D je opét jednotkovy a jeho objem je
—;—— Py > ; Pov, coz jsme chtéli ukazat.

Predpokladejme, ze ve Ctyisténu A,B,C,D, plati A,B, =
= B,C, = C,D, = DA, = 1 a piitom uhly proti zbyvajicim
hranam A4,C,, B,D, jsou pravé (obr. 63). Oznatme S, stied
hrany A4,C, a T, stfed hrany B,D,. Nyni B,S; je vyska rovno-
ramenného trojihelniku 4,B,C; a je tedy kolma na jeho za-
kladnu 4, C, (obr. 63). Obdobné D, S, je vyska rovnoramenného
trojuhelniku A4,D;C,; kolmé na jeho zakladnu A,C;. Protoze
tyto dva trojuhelniky jsou zfejmé shodné, plati B,S; = D, S},
a ponévadz roviny A,C,B;, A4;C,D, jsou navzijem kolmé, je
< B;S;D; = 90°. Trojthelnik B;S,D, je tedy pravouhly a rov-
noramenny (s pravym thlem pfi vrcholu ;) a usecka S,T,
je jeho vyska. Podobn¢ se ukaze, zZe tsecka ST, je také vyska
pravouhlého rovnoramenného trojuhelniku 4,7,C; (s pravym
thlem pfi vrcholu T). Z toho vyplyva, ze usecky A,S;, S$;T;,
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T,B, jsou stejné dlouhé a po dvou navzijem kolmé. Protoze
podle Pythagorovy véty

1= AlBl = V;I;Svlz‘:{_ Slleii‘ifB% = AISI V3:

4,8, =8T, =T,B, =,
a rovnéZ

GS,=D,T, ="

Je ihned zfejmé, Ze jsou-li obracené p, ¢ kolmé mimobézky,
jejichZ nejkratsi (ke kazd¢ z nich kolm4) pficka S,T, (kde S,

/3

3 pak body 4,, C, lezici ve vzda-

/
lenosti li od bodu S, na p a body B,, D, lezici ve vzdalenosti

3
V; od bodu T, na ¢ tvofi vrcholy jednotkového Ctyfsténu,
proti jehoz zbylym hranam A,C,, B,D, jsou pravé udhly.

Z provedené analyzy vyplyva, Ze skuteCné existuje Ctyf'stén
A,B,C,D, s vlastnostmi popsanymi na zaCatku pfedchoziho
odstavce, a je az na polohu v prostoru urcen jednoznalné.
Zbyva vypocitat jeho objem (obr. 63). Obsah trojihelniku

: i3 13 1
B,S\D,jeB,T,.S,T, =L3« . —137— =3 Ponévadz usecka 4,5, =
3. . . . i ey g
=3 e zfejmé kolmé na rovinu B,;S,D,, je objem Ctyfsténu
131 |3

333 271"

je nap, T, na ¢) ma délku

A,B;S,D; roven Cislu Objem Ctyisténu

2 V3.

A,B,C,D, je pak ziejmé dvojnéasobny, tj. - 77

Uloha je rozieSena.
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Budiz ABCD C(tytstén, jehoz hrany maji délky AB = 2x <
<1, AC<1,AD<1,BC=1, BD=1, CD > 1. Oznatme u,
v délky vysek trojihelniki ABC, ABD, spusténych na stranu 4B.
V roviné stény ABC nalezi vrchol C pruniku jednotkovych
kruha se stfedy 4, B; tato oblast je
znazornéna na obr. 64.

Zavedeme-li oznaceni bodu podle
obr. 64, bude

u=CR<CR=<PM=]|1-2x,

tedy -

u< |1 —x (1)
Obdobné z trojihelniku ABD odvo-
dime, Ze

v =1 — )

Obr. 64.

Protoze vyska Ctyfsténu ABCD spusténa z vrcholu D ma
nejvySe velikost v, plati pro objem y Ctyfsténu ABCD odhad

1
y=- 3 Xuv.
Uzitim (1) a (2) dostaneme
1
Y5 & — ). ©)

Vysetfujme funkci ; (x —x%) pro 0 < x = ; Vezméme

dvé cisla x, < x, z uvaZovaného intervalu a porovnejme pii-
slusné funkéni hodnoty:
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1 1

30— — 53D =

1 2 2

T3 (ks — 2)(1 — o — %1%, — x3) =
1 3 1
= 3 (x2 o xl) (1 e 4‘) _ 712‘ (x2 - xl) > 0’
takze
1 3 ! 3
(%2 — x3) > 5~ (% — 29).

3 3
Tim jsme dokazali, Ze prava strana (3) je v uvazovaném inter-
valu 0 < x.= ; rostouci funkce. Jeji nejvétsi hodnotu do-
staneme pro x — ; ;vyjde prave éf To znamena, zZe vidy

plati

Ctyfstén, jehoz hrany maji délky AB — AC = AD = BC =
= BD =1 a jehoz stény ABC, ABD jsou 7navzéjem kolmé,

: ) 6
ma objem 8—a jeho hrana CD ma délku J/é—— > 1.
Tvrzeni vyslovené v tiloze je dokdzano a zaroven je ovéfeno,
ze existuje Ctyfstén maximalniho objemu 8"
Cvileni. Re$te obdobnou metodou piikl. 84 (oznalte
AC = 2x, ¢ odchylku rovin ACB, ACD).
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Prvni feSeni. Sestrojme si nejprve nacrtek (obr. 65).
Vztahy, jichZ si pfitom vSimneme, pomohou nam potom do-
kazat tvrzeni tlohy. Jak sestrojime bod A, ? Podle zadani dlohy

lezi tento bod jednak na
rovnobéZce s DD, vedené
bodem A, tedy téZ v ro-
viné AD,D, jednak v ro-
viné¢ BCD. Bod A, proto
lezi na prusecnici rovin
AD,D, BCD a touto pru-
seCnici je zfejmé piimka
DK, kde K je bod, v némz
primka 4D, protina tsec-
ku BC. Bod A4, najdeme
tedy jako prusecik pfim-
ky DK s rovnobézkou
s DD, vedenou bodem
A. Zaroven je vidét, Ze
bod D oddéluje body 4,,
K, nebot bod D, oddéluje
body 4, Kaje AA4,||DD,.
Obdobné sestrojime i bo-
dy B,, C,; tyto konstruk-
ce nejsou v obr. 65 na-
znaceny, aby bylo mozno
Iépe sledovat dal3i uvahy.
Body 4,, B;,, C, lezi
tedy uvnitf poloprostoru
ABCD, nikoli v jedné
pfimce (nebot je AA, ||
BB, || CC,), takze sku-
teCné¢ vznika Ctyfstén
A,B,C,D,. Piimka DD



protind rovinu A4,B,C; v jistém bodé¢ D,. Tato pfimka lezi
v roviné ADK, proto bod D, najdeme jako prisecik primky
D,D s pfimkou A4,K;, kde K, je pruseCik roviny 4ADK
s useCkou B,C,, tj. takovy bod dsecky B, C,, ze plati KK, || D,D.
Bod D, lezi tedy uvniti trojihelniku 4,B,C;.

Trojahelniky AD,D,, A;D,D, maji tyZ obsah, nebot maji
spole¢nou stranu DD, a plati A4, || D;D,. Oba trojuhelniky
lezi v jedné roviné a body B, B, maji od této roviny stejnou vzda-
lenost, nebot pfimka BB, je s touto rovinou rovinobéznd. Proto
Ctyistény ABD,D, a A,B,D,D, maji stejny objem. Rovnéz
Ctytstény BCD,D,, B,C,D,D, a také CAD,D,, C,A,D,D; maji
stejné objemy. Sjednocenim Ctyfstént ABD,D,, BCD,D,,
CAD,D, vznikne c(tyistén ABCD, a sjednocenim  Ctyfstént
A,B,D,D,, B,C,D,D,, C;A,D,D, je Ctyistén A,B,C,D,. Ob-
jem Ctytsténu A, B,C;D; se proto rovna objemu Ctyfsténu
ABCD,. ;

Stacilo by dokazat, Ze objem daného Ctyisténu ABCD je
roven jedné tfetiné objemu Ctyfsténu ABCD,. Tyto dva Ctyi-
stény maji spoletnou podstavu ABC a body D,, D, D, lezi
v pfimce. Proto se pomér jejich objemi rovna poméru délek
use¢ek D,D a D,D,. Potiebovali bychom tedy dokazat, zZe
plati D;D, = 3. D, D.

Ctyttihelnik BCC,B, je lichob&znik nebo rovnobéznik (plati
BB, || CC)) a usectka KK, je jeho pficka rovnobézna se stra-
nami BB,, CC,. Uhloptitka BC, lezi (podle konstrukce bodu
C,) v roviné ABD a druha tuhlopticka CB, lezi v roviné¢ ACD.
Prasecik L tdhlopricek BC,, CB, nalezi tudiz prtsecnici AD
téchto rovin. Pfimka AD vsak protind rovinu Ctyiuhelniku
BCC, B, v bodg¢, ktery nalezi pfimce KK (obr. 65). Z toho plyne
ze pricka KK, prochazi prusecikem uhlopficek, ktery ji tudiz
puli (to je zndma vlastnost lichobéZniku resp. rovnobézniku).
Bod L je tedy stiedem usecky KK, takze dsecka 4,L je téZnici
v trojihelniku KA,K,. Pficka DD, tohoto trojuhelniku je
rovnobézna se stranou KK, a proto jeji stted D, lezi na téZnici
AL, tj. DDy = D,D.,.
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Viimnéme si dale, Ze Ctyfuhelnik AKLA, je také lichobéZznik
nebo rovnobéznik (plati A4, || KL) a pruse¢ikem jeho uhlo-
pricek je bod D (obr. 65). Proto je bod D stfedem pficky
D, D,, které jim prochazi a je rovnobézna se stranami 4A4,, KL.
Plati tedy DD, = DD,.

Ze zavéra poslednich dvou odstavcd vyplyva, Ze skutecné
plati DD, = 3. D,D.

Druhé feSeni. Stejné jako na zalatku prvého feSeni se-
strojime body A4,, B,, C,, D, a ovéfime, Ze ¢tyfstén 4,B,C,D,
skutecné existuje.

Ponévadz plati A4, || BB, || CC, || DD,, maji trojuhelniky
ABC a A,B,C; tyz pravouihly priamét na rovinu kolmou
k pfimce DD,. Pomér objemu (tyisténd ABCD, A,B,C,D; je
pak roven poméru délek usecek DD,, D,D,, jak vyplyva z to-
hoto tvrzeni:

Bud KLMN ctyistén a X libovolny bod roviny KLAM.
Pak objem tohoto Ctyfsténu je roven jedné tfetiné soucinu
délky usecky NX a obsahu
pravouihlého pramétu K'L'M’
trojihelniku KLM na rovinu
kolmou k pfimce NX.

Dikaz (obr. 66). Objem

KLMN = ~; . obsah KLM .

NX .sina, kde o je odchylka
pfimky NX od roviny KLM
(NX .sin o je totiz délka vysky
NH cryisténu KLMN). Dale
obsah K'L'M" = obsah KLM .
cos 3, kde [ je odchylka rovin
KLM,K'L'M'. Tento vzorec je
ziejmy, je-li jedna strana troj-

Obr. 66.
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thelniku KLM rovnobézna s rovinou K'L' M’ ; neni-li tomu tak,
muzeme (dokazte!) trojihelnik KLM rozdé&lit rovinou rovnobéz-
nous K'L'M’ a prochézejici jednim jeho vrcholem na dva troj-
uhelniky, takZe kazdy z nich bude mit jednu stranu rovnobéznou
s rovinou K'L'M’ a sjednocenim jejich pruméta tude troj-
thelnik K'L’'M’. Odchylka rovin KLM, K'L' M’ se vSak rovna
odchylce ptimek NH, NX k nim kolmych. Proto cos # = sin «

a plati, Ze objem KLMN = %— .NX .obsah K'L'M’.

M
/! \
X \P Y

Obr. 67. :

V dal$im budeme potfebovat jesté toto pomocné tvrzeni
(obr. 67): Necht KLMN je lichobéZnik nebo rovnobéZnik
(KL || MN) a XY jeho pticka rovnobézna se stranami KL,
MN (X lezi mezi vrcholy K, N). Pak plati
KX.NM + NX.KL

KN )
Tento vzorec plyne z iméry XP: KQ = NX: NK vyjadfujici
podobnost trojuhelniki NXP, NKQ; na obr. 67 je PQ || LM.

Potfebujeme nyni vypolitat pomér useéek DD; a D,D,.
Zavedme oznaCeni bodid podle obr. 68. Z lichobézniku resp.
rovnobézniku PP,C,C uzitim vzoreCku odvozeného v pred-
chozim odstavci vypolteme
D,C. PP, + D,P.CC, 0

PC ’ .

XY =

D,D, =
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Obdobné ze Ctyfuhelniku AA4,B,B dostaneme

PB.AA, + PA.BB,

PP, = 1B : 2)
Dosadme z (2) do (1):
__D,C.PB D,C. P4 D,P
Db = ap 44 pc ap BB T po €O
€)
Ze stejnolehlych trojihelnikid MAA, a MD,D vypoéteme
AM
AAI . DTM . DID
a obdobn¢ plati
BB, BN D.D, CC, = @ .D,D.

~ DN’
Dosadime-li tyto tfi vysledky do (3), obdrzime vztah

DD, DC.PB.AM D, C.PA.BN  DP.CP
DD PC.AB.DM ' PC.AB.D,N ' PC.D,P’
@

Kazdy ze tii sCitanct na pravé strané v (4) se vSak rovna 1.
Pro prvni a druhy vyraz to plyne z Menelaovy véty (viz pozn.
za feSenim tlohy 73) uzité pro trojuhelnik D,PA a pfimka BC,
resp. pro trojuhelnik D,PB a piimku AC (obr. 68); pro tfeti
vyraz je to ziejmé. Plati tedy

DD,
DD
a uloha je rozfeSena.
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87

R Zabyvejme se nejprve
~ zvla$tnim ptipadem, kdy uva-
> Zované Ctyfi body jsou vrcho-
o ly daného Ctyfsténu ABCD.
X Predpoklad tlohy v tomto
L T2 c piipadé znamend, Ze vSechny
N 7 &tyfi vysky naSeho Ctyfsténu
\ RN \ v jsou stejné dlouhé. Ze vzorce
' VoY \\ ,/ \' pro objem potom vyplyvé,
| : ’ Ze vSechny stény Ctyfsténu
ABCD maji tyz obsah.
Pokusme se tedy dokazat
toto tvrzeni: Maji-li stény
Ctyfsténu ABCD tyz obsah,
pak jsou to shodné trojihel-
niky.

Obr. 68.

Diukaz (obr. 69). Prolozme pfimkou AB rovinu « rovno-
béZnou s ptimkou CD. Jsou-li C,, D, pravoihlé pruméty bodi
C, D na rovinu o, plati

CC, = DD,. (1)

Oznatme dile C,, D, pravoihlé praméty bodu C, D na pi"imku
AB. Ponévadz trojihelniky ABC, ABD maji tyZ obsah a spo-
le¢nou stranu AB, plati

CC, = DD,. 2)
Z (1) a (2) vyplyva (obr. 69), ze také
C,C, = D,D,. 3)

To znamen4, ze body C,, D; maji stejnou vzdalenost od piimky
AB a lezi tedy uvnitf dvou navzdjem opacnych polorovin
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Obr. 69.

vytatych v roviné o ptimkou AB (jinak by totiz bylo
AB || C,D, || CD, coz neni mozné). Z (3) pak vyplyva, Ze stfed
M tusecky C,D, lezi na pfimce AB.

Pfedstavme si nyni rovinu y prolozenou pfimkou CD rovno-
bézné s ptimkou AB. Oznaéme N stfed usecky CD a A,, B,
pravothlé priiméty bodd 4, B na rovinu y. Usetka MN je
stfedni pficka v pravothelniku CC,D;D (obr. 69), a je proto
kolma k obéma rovnobéZnym rovindm o, 7. Pravodhlym pra-
métem bodu M na rovinu y je tedy bod N. Obdobné jako v pfed-
chozim odstavci Ize dokazat, Ze ptimky 4,B; a CD maji jediny
spole¢ny bod — stied tsecky A4,B;. Avsak jediny bod pfimky
AB, jehoz prumét padne na pfimku CD, je ziejmé bod M.
Proto je bod N stfedem tsecky A,B; a z pravothelniku A4,B,B
plyne, ze M je stied tsecky AB.

Ponévadz tedy bod M je stiedem usecky AB, plati

AC, = BD,; 4)
neni-li totiz pfimo C, = D, = M, je bod M stiedem usecky
C,D,, jak je vidét z rovnobézniku C,C,D,D, (obr. 69).
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Vzhledem k (2) a (4) dostdvame rovnost
AC = BD
(obr. 69). Obdobné lze dokazat rovnosti
AB = CD, AD = BC

a tim i nase tvrzenfi.

Budte nyni 4,, B;, C;, D, étyf'i body daného étyi-sténu
ABCD, které nelezi v jedné roviné a které maji stejny soucet
vzdalenosti od rovin

ABC, BCD, CDA, DAB. (5)

Ma-li byt tvrzeni tdlohy pravdivé, musi mit vSechny ctyfi
vysky Ctyfsténu ABCD tutéz délku, jak vyplyva ze vzorce
pro objem. Naopak, kdyby se nam podarilo ukazat, Ze z pred-
pokladd ulohy plyne rovnost vysek daného Ctyfsténu, byla by
uloha vzhledem k prvé cCasti feSeni dokdzana. K tomu je vsak
tieba si uvédomit, jak se méni vzdalenost bodu od danych
rovin, pohybuje-li se tento bod po néjaké primce.

Necht tedy p je dand pfimka. Pfedstavme si polorovinu 7
s hraniCni pfimkou p. V této poloroviné budeme znazornovat
vzdalenosti resp. soucty vzdalenosti boda pfimky p od danych
rovin.

Vezméme nejprve jednu rovinu p. Je-li p || o, maji vSechny
body pfimKky p stejnou vzdalenost od roviny p; ptisluSnym gra-
fem v poloroviné 7 je rovnobézka s p¥imkou p (obr. 70a). Je-li
vSak pfimka p ruznobéznid s rovinou p, bude nasim grafem
v poloroviné 7 zfejmé lomena Cara, jak ukazuje obr. 70b, kde
R je prusecik primky p s rovinou p; pfitom obé polopfimky
této lomené Cary sviraji s pfimkou p tyz ostry thel.

Ptidejme nyni dalsi rovinu ¢ a sestrojme v poloroviné 7 opét
graf vzdalenosti bodt pfimky p od roviny ¢. Dostaneme zase
bud rovnobézku s pfimkou p nebo lomenou caru sloZenou ze
dvou polopfimek a s vrcholem v bodé S—pruseciku pfimky p
s rovinou o.
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Obr. 70a.

/ Obr. 70b.

R P

Co bude grafem souctu vzdalenosti bodu pfimky p od rovin
0, 0? Z poslednich dvou odstavct vyplyvaji ¢tyfi moznosti:
a) je-li p|l ol o, bude grafem rovnobézka s pfimkou p;
b) je-li p || 0, ale p. o = S, bude grafem lomena Cdra slozena

ze dvou polopfimek a s vrcholem ,,nad* bedem §;

¢) piipad p . 0 = R, p || o je podobny piipadu b);

d) kone¢né v ptipadé p. o = R, p . ¢ = S bude grafem opét lo-
mend Cara slozena ze dvou polopfimek a jedné (je-li R == §)
resp. zadné (je-li R = S) usecky a vrcholy této lomené Cary
zase odpovidaji bodim R, S, viz napt. obr. 71.

Obdobné, pifiddme-li dalsi roviny, bude grafem souctu
vzdalenosti bodd pfimky p od vSech téchto rovin bud rovno-
bézka s pfimkou p anebo lomena Cara sloZena ze dvou polopii-
mek a koneného poctu useCek. Vrcholy této lomené Cary od-
povidaji prasecikim pfimky p s danymi rovinami. Z toho ze-
jména vyplyva toto tvrzeni: Jestlize krajni body nékteré usecky
pfimky p nejsou oddéleny zadnou z danych rovin (takZe ,,mezi
nimi“ neni Zadny vrchol lomené &ary), pak grafem souctu
vzdalenosti bodu této usecky od danych rovin je jista usecka.
Diusledek: Maji-li dva rizné body takové usecky piimky p
stejny soucet vzdalenosti od uvazovanych rovin, pak vSechny
body této usecky maji tyZ soucet vzdalenosti od téchto rovin.
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Vsechny body lezici na hranich Ctyfsténu A4,B,CyD,; maji
tedy stejny soulet vzdalenosti od rovin (5), nebot Zidna
z téchto rovin neoddéluje Zadné dva ze ¢ty boda A4, B, ,C;, D;.
Daéle vechny body leZici na povrchu Ctyfsténu 4,B,C,D, maji
tyZz soucet vzdalenosti od rovin (5), nebot kazdy takovy bod
nalezi néjaké uselce, jejiz krajni body leZzi na hranach ctyfsténu
A,B,C,D, a nejsou tudiz oddéleny Zddnou z rovin (5). Nakonec
se podobné dokaze, Ze vibec v§echny body ¢tyisténu A,B,C,D,
maji tyZ soucet vzdalenosti od rovin (5).

Nyni jiz snadno zjistime soucet vzdalenosti -vrcholu 4 od
rovin (5). Tento vrchol miZeme totiZ spojit pfimkou p s né-
jakym vnitfnim bodem Ctyfsténu A,B,C,D,, takze piimka p
protina Ctyfstén A,B;C,D; v jisté usecce KL (K == L). Druhy
prusecik pfimky p s povrchem Ctyfsténu ABCD oznatme M.
Body A, M nejsou oddéleny Zzadnou z rovin (5) a pfitom dva
ruzné body K, L tsetky AM maji stejny soucet vzdalenosti od
rovin (5). Proto vSechny body usecky AM, specialné i bod A4,
maji tyz soucet vzdalenosti od rovin (5). TéZe myslenky lze
uzit 1 pro vrcholy B, C, D.
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Dokazali jsme, ze vSechny vysky Ctyfsténu ABCD maji
stejnou délku a vzhledem k prvni Casti feSeni je vSechno hotovo.

Poznamka 1. Maji-li vSechny stény Ctyfsténu tyz obsah
(cozZ je, jak z nasSeho feSeni vyplyva, ekvivalentni se shodnosti
téchto stén), pak vSechny body tohoto Ctyfsténu maji kon-
stantni soucet vzdalenosti od rovin jeho stén. Je-li totiz X li-
bovolny bod takového Ctyfsténu a jsou-li x,, x,, x5, X, jeho vzda-
lenosti od rovin stén, pak zfejmé plati

1
3

kde V je objem étyfsténu aP (stejny) obsah jeho stén. Z této
rovnosti plyne, Ze soulet

- %, P+ - sz —!— x3P + = x4P v,

3V
X X + Xy A+ Xy = p
je konstantni.

Véta z tlohy 87 je tedy cdpovéd na pfirozenou otizku, zda
také obracené konstantni-soucet vzdalenosti (pro vSechny body
Ctyfsténu) zajiStuje rovnost obsahil stén. Ukazuje se, Ze ano
a Ze dokonce staci piedpokladat stejny soucet vzdélenosti pouze
pro ctyr1 body ctyrstenu, které neleZi v jedné roviné. Ctenat
necht si rozmysli, Ze obdobny pfedpoklad pouze pro tii body
nestaci, a v feSeni ulohy 87 necht si vyhledd misto, kde se pod-
statné uzilo pfedpokladu, Ze body 4,, B;, C,, D, nelezi v roviné.

Poznidmka 2. Je moZno feSit i obdobnou planimetrickou
dlohu.

Poznamka 3. VSimnéme si jesté nékterych dalSich vlast-
nosti ¢tyfsténu ABCD, v némz plati

AB = CD, AC = BD, AD = BC.

V naSem feSeni jsme mj. dokazali, ze kazda stfedni pricka
takového Ctyfsténu je kolma k tm jeho hrandm, které puli.
Lze tedy sestrojit kvadr tak, Ze v kazdé sténé tohoto kvadru
jedna ze sténovych uhlopticek splyva s jednou hranou Ctyi-
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Obr. 72.

sténu ABCD (obr. 72). Stfed S useCky MN je pak stfedem
kvadru AC,BD,A,CB,D, takze je také sttedem kulové plochy
opsané tomuto kvadru, tedy i ¢tyfsténu ABCD. Stied S kulové
plochy opsané Ctyfsténu ABCD je tedy vnitfnim bodem tohoto
Ctyfsténu, nebot je to stéed jeho (libovolné) stfedni pficky.

Bod S je zéroven stfedem kulové plochy vepsané Ctyfsténu
ABCD. Ponévadz jiz vime, Ze je jeho vnitinim bodem, staci
ukazat, Ze ma stejné vzdalenosti od rovin stén. Skute¢né, napi.
roviny ABC, ABD protinaji opsanou kulovou plochu ve dvou
kruznicich, které maji spole¢nou tétivu AB. Pfitom ze shodnosti
trojuhelnikt ABC, BAD plyne rovnost obvodovych uhld
<X ACB a < ADB. Proto jsou tyto dvé kruZnice shodné a jejich
roviny maji tudiz od stfedu S opsané kulové plochy stejnou
vzdalenost, c. b. d.

v vy

Ctyfsténu ABCD.

Pozndamka 4. Bud ABCD C(tyfstén. Pismeny S, O, V
oznatme po fadé stied Ctyfsténu (tj. prusecik jeho stfednich

187



XMV Y

pricek Cili téziste), stied kulové plochy Ctyfsténu opsané a ve-
psané. JestliZe nékteré dva 2z bodit S, O, V splyvaji, pak vSechny
tyto body splyvaji a plati

AB = CD, AC = BD, AD = BC. (1)

Dukaz. Necht S = O. Pak napt. trojihelnik ASB je rovno-
ramenny, takze stfedni pficky cCtyfsténu ABCD jsou kolmé
k tém hrandm, které puli. Kazdymi dvéma mimobé&Znymi
hranami lze tedy prolozit dvé spolu rovnobézné roviny, které
jsou kolmé na spolenou stfedni pfi¢ku. Stejné jako v feSeni
ulohy 87 se pak dokaZze, zZe plati (1). V dusledku pozn. 3 je
potom ¢z S=0 = V.

Necht § = V. Vzdalenost tézisté S od roviny stény se rovna
ctvrtiné prislusné vysky. Je-li tedy S = V, maji vSechny Ctyii
vysky tutéZ délku a z toho, jak jiz vime, plyne (1). Vzhledem
k pozn. 3 pak opét plati S =0 = V.

Necht O = V. Pak opsand kulovad plocha protind rovinu
kazdé stény v kruZznici opsané piislusnému trojihelniku. Stre-
dem této kruznice je pata kolmice spusténé z bodu O = V na
rovinu stény, ¢ili dotykovy bod vepsané kulové plochy s touto
sténou; tento bod zfejmé lezi uvnitf stény. VSechny stény jsou
tedy ostrotihlé trojihelniky a jejich roviny maji stejnou vzda-
lenost od bodu O. Proto plati napt. <« ACB = <C ADB apod.
Vsechny Ctyfi stény jsou tedy navzajem shodné trojihelniky
a plati (1), z ¢ehoZ zase plyne S=0 = V.

88

Ulohu si zjednodusime touto tivahou: Ttemi rovinami pro-
chézejicimi stfedem krychle a rovnobéznymi se sténami se
krychle rozdéli na osm mensich krychli. Je zfejmé, Ze vysledné
geometrické misto je soumérné podle kazdé z uvedenych tii
rovin, takze stali najit geometrické misto jen v jedné z osmi

1
malych krychli o hrané ER
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Zvolme si nyni pravodhlou soustavu soufadnic x, y, z tak,
aby piavodni krychle byla urcena nerovnicemi 0 = x < I,
0=y =1,0 =z =1, azvolend mensi krychle K nerovnicemi

ngg—;—, ogygf;.og zg—é—. Je-li nyni %2 kruh
o poloméru 5 cely obsazeny v dané krychli a se stfedem
v krychli K, pak je kruh % cely obsazen v oktantux = 0, y = 0,

z = 0. Je-li obracené kruh o poloméru % cely obsazen v ok-

tanu x =0, y =0, 2 =0, a ma-li stfed v krychli K, je obsazen
v puvodni krychli, nebot vzdélenost jeho stfedu od ostatnich

" A Yo Y7 l
stén x = 1,y = 1,2 = 1 je vZdy v¢tsi nebo rovna 5 . Je proto

ta Cast hledaného geometrického mista, kterd je obsaZena v K,
totoznd s geometrickym mistem stfedd vSech kruht obsaZe-
nych v oktantu x = 0,.y = 0, z = 0 a majicich stfed v K.

Ukazeme, Ze toto je prunik krychle K a vnéjSku kulové plochy
o se stiedem v pocatku (0, 0, 0) a polomérem 422 (vEetné této
kulové plochy).

Necht tedy pfedné je bod S = (xg, Vo 2p) Z K stfedem kruhu

1
k s polomérem - > obsazeného v oktantu x =0, y =0, 2 = 0.

Je-li rovina o kruhu % rovnobézna s nékterou sténou oktantu,
napft. se sténou z = 0, plati zfejmé o vzdalenostech bodu S od

1 1 . 1
zbylych dvou stén x, = 5 Yo = 5o U X +y8 = 5 abod

S lezi na plose o nebo vné. Tento pfipad vzdy nastane, lezi-li
bod S'sam v nékteré ze stén oktantu. Zbyva nam tedy ptipad,ze S
md vSechny tii soufadnice kladné: x, > 0, y, > 0, z, > 0,
a pfitom rovina o neni rovnobézna s Zadnou ze stén oktantu.
Je-li )

a(x —x) +b(y—y) +c(z—2)=0
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rovnice roviny g, je proto nejvyse jedno z Cisel a, b, ¢ rovno nule,
takZe o protina stény x = 0, y = 0, 2 = 0 pofadé v pfimkach
P1=b(y —yy) +c(z—2) —axg =0,
pr=a(x —x) +c(z—2) — by, =0,
s = a(x — xg) +b(y — ) —czy=0.

I

Ukazme nyni, Ze patu P; kolmice z bodu S na pfimku p; do-
staneme, najdeme-li nejprve patu Q, kolmice %; z bodu S na .
rovinu x = 0 a pak patu P; kolmice %, z bodu Q, na p,. P¥imka
2, je totiz kolma ke &, i ,, tedy i k P;S, tj. P; = P,. Je pak
(pro Q, == P, podle Pythagorovy véty)
P,S* = P,0% + 0, S* M

Vzdalenost bodu Q; od P; je stejna jako vzdalenost bodu Q,
od pfimky p,. Protoze Q, = (0, y,, 2,), je podle znimého
vzorce pro vzdéalenost bodu od pfimky (pouZivame jej v roviné
s 2)
| ax, |

ng +e
Dile je Q;S = x,a P,S = é— , takZe z (1) plyne

P1Q1=

a?x} 1
Fra TR

neboli
(@® + b* + cH)xg = % &% + . 2)

Obdobné dostaneme, uZijeme-li stejné tivahy pro vzdalenost
bodu S od pfimek p, a p,, Ze

(@ + b+ 3 = @+ e, ©

| — .{:.’-—-

(@ + b% + ¢?) 22 = — (a® + b). 4)

=
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Z nerovnosti (2), (3) a (4) plyne seCtenim
1
SR+ Bz
coz znamend, Ze bod § lezZi na plose w nebo vné.

Obracené necht bod S = (xy, ¥y, 2,) leZi na ploSe @ nebo
vné, a zdroven v krychli K: UkazZme, Ze existuje kruh o stfedu S

1 .
a poloméru 5 ktery je obsazen v oktantu x = 0,y = 0, 2 = 0.

To je ziejmé, je-li nékteré z Cisel x,, ¥y, 2, rovné nule (alespoﬁ

I\

g 5 : ; 1
dvé jsou vzdy nenulova, nebot x} -+ y3 + 23 = 5 x3

1 1

éf:yﬁé 4’2’%§

43 je-li nékteré rovno nule, napi.

. ; . 1 . 1 .
x, = 0, jsou nutné ostatni rovna 2 t. Yo = 8y = 2] Jsou-li

’
vSechna tfi Cisla x,, y,, 2, kladna, pak existuje nezdporné feSeni
a?, b%, ¢* soustavy nerovnic (2), (3), (4), napf.
@t = —af + 35 + 2
2
b* = x§ —y§ + 2
2
. ¢ = x4 y3— g
Je totiz
B R =B R 23

1 1
z A2x%:2(i—xﬁ);0

a obdobné pro ostatni pravé strany. Rovina

V=t + 25 —x) + |53 —35 + 2y —y0) +
ey e a) =0

protind pak roviny stén v pfimkach, od pichZz ma bod S stejnou
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X /1 RN
vzdalenost, rovnou podle diivéjsi tvahy ‘/ 5 (x5 + & + 22),

coz je Cislo vétsi nebo rovné

Zavér. Hledanym geometrickym mistem je mnozina téch

bodi dané krychle, které maji od kazdého z jejich vrcholi
, : J2
vzdélenost alesponn rovnou )

Poznamka. Z fedeni pfedchozi ulohy vyplyva, Ze geometric-
ké misto stfedu kruznic o daném poloméru r, které se dotyka
vSech tfi stén pravouhlého trojhranu, je Cast kulové plochy
se sttedem ve vrcholu trojhranu a polomérem 7 | /2.

Povazujeme-li nyni kruznici za pevnou a pravouhly trojhran
za ,,proménny*, 1ze usoudit, ze geometrické misto vrcholii pravo-
uhlych trojhranit, jejichg viechny t¥1 stény se dotykaji pevné kruznice
o poloméru r, je kulovd plocha o poloméru r VZ, Jejimz stredem je
stred krugnice k a z nizZ je vyymut rovnik lezici v roviné kruznice k.
Toto je jakési zobecnéni znamé Thaletovy véty.
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Necht koule K obsahuje bod X, ale neobsahuje Zadny z bodt
A, B, C, D. Oznac¢ime-li « (5, y, 0) rovinu, ktera puli usecku
AX (BX, CX, DX) a je k ni kolma, pak stied S koule K lezi
uvnitf poloprostoru X (X, yX, 6X). Z nazoru se zda byt
zfejmé, Ze prunikem T téchto Ctyt poloprostoru je jisty Ctyi-
stén; abychom mohli nyni dokoncit myslenku feseni, odlozme
zatim dukaz této domnénky.

Ze Ctyt soustfednych kulovych ploch, které maji stfed A4
a prochazeji po fad& vrcholy Ctyfsténu T, vyberme tu, kterd
ma nejvétsi polomér d. Pak vné této kulové plochy nelezi
zadny bod Ctyfsténu T. To vyplyva z toho, Ze koule je kon-
vexni mnoZina: ptedevdim je jasné, ze vrcholy Ctyfsténu T
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lezi v kouli urcené nejvétsi kulovou plochou, proto i hrany
Ctyfsténu T nalezi této kouli, dale i vechny stény, nebot kazdy
bod stény Ctyfsténu je obsazen v néjaké usece, jejiz krajni
body lezi na obvodu té stény, a nakonec se podobné dokaze,
7e i cely Ctyfstén T lezi v na$i kouli. Jinak feCeno, dokézali
jsme toto tvrzeni: Existuje vrchol Ctyfsténu T, jehoZz vzda-
lenost d od bodu A neni mensi nez vzdalenost libovolného
jiného bodu tohoto Ctyfsténu. Zvolme nyni r > d.

Kdyby néjakd koule K o poloméru r obsahovala bod X, ale
neobsahovala zddny z boda 4, B, C, D, nalezel by jeji stied S
Ctyfsténu T (dokonce by byl jeho vnitinim bodem). Pak by
platilo A4S = d <r, takze bod A by byl vnitinim bodem
koule K, coz by byl spor.

Zbyva tedy dokazat, ze T je skutecné Ctyistén. Kazdé tii ze
Ctyf rovin o, f3, y, 0 se protinaji v jediném bodé — je to stied
kulové plochy opsané jednomu ze Ctyfsténu BCDX, ACDX,
ABDX, ABCX (obr. 73). Oznacme tedy S,, S, S., S, stfedy
kulovych ploch opsanych po fadé ctyfsténim BCDX, ACDX,
ABDX, ABCX a ukazme, Ze T je Ctyfstén s vrcholy S,
Sy, Se, S;. Predevsim je jasné, Ze vSechny body S,, S,, S.,
S, jsou navzdjem ruzné (jinak by totiz bod X musel leZet na
kulové plose opsané Ctyisténu ABCD, coZ neni mozné, nebot
X je vnitini bod ctyfsténu ABCD a lezi tedy uvniti této kulové
plochy — dokazte podrobné!).

Body S,, S, S, lezi v roviné& o; »
ukazme, Ze nelezi na jedné prim-

ce. Body S, S; lezi také v ro-

viné f a proto plati

XB | S,S;
bdobné j
obdobne je 4 o
CX 1 S,S;, XD | S,S..
Obr. 73. 154
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Kdyby body S, S., S, leZely v jedné piimce s, byly by k této
pfimce kolmé tfi pfimky XB, XC, XD, takZe by tyto tii
piimky musely leZet v jedné roviné (prochazejici bodem X
a kolmé k primce s), coz vSak odporuje piedpokladu ulohy.
Z4dné tii z bodt S,, S,, S,, S, neleZi tedy v piimce. UkaZme
jesté, Ze tyto Ctyfi body nelezi v jedné roviné. Kdyby napf.
bod S, lezel v roviné o, mél by stejnou vzdilenost od vSech
péti bodu 4, B, C, D, X; pted chvili jsme vSak poznamenali,
Ze témito péti body nemuze prochédzet kulova plocha. Body
S Sy Ses Sy jsou tedy skutecné vrcholy Ctyfsténu.

Mnozina T je pranik poloprostord oX, X, yX, 0X a Ctyi-
stén S, 8, S.S, je prunik poloprostort aS,, Sy, ¥ S., 0S,. Statilo
by tedy jiZz jen dokazat Ze napf. rovina o neoddéluje body X,
S,. Kdyby je oddé¢lovala, pak by body 4, S, leZely uvniti téhoz
poloprostoru ur¢eného rovinou « (opatného k oX), takze
bod A by lezel uvniti kulové plochy o stfedu S, a poloméru
S,X. Tato kulova plocha by (podle definice bodu S,) pro-
chazela také body B, C, D. Pak by zifejmé (dokazte!) vSechny
body ctyfsténu ABCD, az na vrcholy B, C, D, lezely uvnitf
této kulové plochy; dostali bychom spor s polohou bodu X.
Mnozina T je tedy totozna s mnoZinou vSech bodi Ctyfsténu
S:5,S.S;-
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Prvni feSeni. Vyjdeme z druhé pfedpovédi, podle niz
jsou v poradi DAECB pravé dvé mista spravné obsazena.
V tvahu tedy prichazi deset moznosti:

(1) DA, ©) -A-C-,
(2) D-E--, (7) -A--B,
(3) D—C-, 8) --EC-,
(4) D—B, (9) --E-B,
(5) -AE--, (10) ---CB.

194



V kazdém z téchto deseti pripadi se pokusime doplnit tii volna
mista tak, aby byly splnény podminky tulohy; ukaZe se, Ze to je
mozné v jediném piipadé (10). Pfedpoklady ulohy jsou Ctyfi:

V,: v pofadi ABCDE neni spravné obsazeno zadné misto;

V,: v pofadi ABCDE neni spravné urCena Ziadna dvojice

bezprostiedné za sebou nasledujicich prvka;

W,: v potadi DAECB jsou pravé dvé mista spravné obsazena;

W,: v potadi DAECB jsou pravé dvé dvojice bezprostiedné

za sebou néasledujicich prvka spravné urceny.

(1) V tomto pfipadé pismeno E nemiZe stat na misté tfetim
(W) ani patém (V,), takze pro néj zbyva jediné Ctvrté misto.
Pak ale pismeno C musi byt paté, nebot nemuZe byt treti
(podle V,), a tudiz pro B zbyva tfeti misto. Potadi DABEC
vak neni moZné vzhledem k podmince V, (dvojice AB).

(2) Z V, a W, vyplyva, Ze B musi byt ¢tvrté a pak 4 nutné
pate, pro C zbyva druhé misto. Umisténi DCEBA vsak od-
poruje pfedpokladu W..

(3) Z V; a W, vyplyva, Ze E musi byt druhe. Podle V, vsak
E nemuze nasledovat bezprostiedné po D.

(4) Z V, a W, vyplyva, Ze C musi byt druhé, pak E ctvrté
a tudiz A4 tfeti. Dostavame potfadi DCAEB, které vSak ne-
vyhovuje podmince W,.

(5) V tomto pfipadé z V; a W, vyplyva, Ze D musi byt paté.
Podle V, pak C nemuze byt ¢tvrté (dvojice CD), takze musi
byt prvni, nacez B je Ctvrté. Umisténi CAEBD opét ne-
splnuje W,.

(6) Podle V; a W, musi byt E prvni. Podle V, nemuze byt
B tieti (dvojice AB) a podle W, ani paté. Tento pfipad je tedy
opét nemozny.

(7) Z V, a W, vyplyva, ze C musi byt prvni a D tfeti, nacez
E ctvrté. Poradi CADEB vsak odporuje predpokladu V,
(dvojice DE).

(8) Z V, a W, zase vyplyva, ze A musi byt paté a B prvni,
tedy D tfeti. V pofadi BDECA pak E nasleduje bezprostiedné
po D, cozZ je ve sporu s V,.
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(9) Podle V; a W, musi byt A Ctvrté, coZ opét odporuje
podmince V, (dvojice AB).

(10) Konecné v tomto poslednim piipadé z ¥, a W, zase
vyplyva, Ze A musi byt tieti, D druhé, tedy E prvni. Nacha-
zime umisténi EDACB, o némz lze lehko dokazat, Ze vyhovuje
podminkam ulohy.

Vysledek soutéze byl EDACB.

Druhé feSeni. Vyjdeme opét z druhé piedpovédi. Z po-
fadi DAECB miZeme utvofit Ctyfi dvojice

DA, AE, EC, CB,

z nichz pravé dvé jsou spravné. Tyto dvé spravné dvojice ne-
mohou mit spolecné pismeno. Jinak bychom totiz obdrzeli
spravnou trojici bezprostfedné za sebou nasledujicich pismen
a obé spravné predpovédénd mista by tudiz musela leZet mimo
tuto trojici. To by ale znamenalo, Ze druhd predpovéd dava
vysledné umisténi, coz neni pravda.

V tvahu tedy prichéazeji tyto tfi dvojice:

(DA, EC); (DA, CB); (AE, CB).

Je zfejmé, Ze jedna ze dvou spravné predpovédénych dvojic
musi obsahovat obé spravné predpovédénd mista a druhd
z4dné. Tak dostavame scelkem <Ctyfi moznosti: DABEC,
DACBE, EDACB, AEDCB. Z nich vSak jenom poradi
EDACB vyhovuje podminkam ulohy.
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Dukaz provedeme matematickou indukei vzhledem k Cislu
n. Pro n = 3 je vSe jasné. Pfedpokladejme tedy, Ze véta plati
pro néjaké pfirozené Cislo n =3 a vezméme podle zadani
tlohy # + 1 bodd s n + 1 dseckami.

Najde-li se v nasi skupiné takovy bod, z né&jz vychazi nej-
vySe jedna tusecka, pak jej odstranime (popf. i s pfisluSnou
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useckou) a pro zbylou skupinu z bodi a 7 usecek (z pfipadnych
n + 1 tselek muzeme jednu vynechat) uZijeme indukéniho
predpokladu.

V opaéném piipad¢é vychazeji z kazdého bodu alesponn dvé
useCky. Vyjdeme-li tedy z jednoho bodu, muZeme se po né-
které uselce dostat do druhého bodu, z néj pak do tfetiho atd.
Ponévadz pocet bodi je kone¢ny, musime se pfi tomto postupu
vratit do nékterého bodu, jimZ jsme uz dfive prosli. Tak
obdrzime hledany cyklus.
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Oznaéme jednu ze sedmnacti osob 4. Osoba A si podle
podminky tlohy dopisuje se Sestnicti jinymi osobami o nej-
vySe tfech tématech. Proto existuje (alesporl) Sest osob, s nimiz
si osoba A dopisuje 0 jednom tématu (oznac¢me ho I).

Dopisuji-li si nékteré dvé z téchto Sesti osob také o tématu I,
méame nalezeny tii osoby, které si pisi o témze tématu (I).

V opacném piipadé si zadné dvé z uvazovanych Sesti osob
nepisi o tématu I. Osoba B, libovolné vybrana z téchto Sesti
osob, si tedy piSe s péti ostatnimi nejvySe o dvou tématech.
Proto (alespon) se tfemi z nich si dopisuje o jednom tématu I1.

Dopisuji-li si nyni nékteré dvé z téchto tfi osob o tématu 11,
nachazime opét tii osoby pisici si o témzZe tématu (II).

V poslednim mozném pripadé si uvaZované tfi osoby navza-
jem dopisuji o tématu II7, takZe tvrzeni tlohy je opét splnéno.

Poznédmka. Obdobné tvrzeni neplati pro méné nez sedm-
nact osob.
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Necht uvazovany trojihelnik mé nejvétsi stranu x = p, kde
p =n je zvolené pfirozené Cislo. UvaZujme nejprve tyto
pripady:
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Je-li druha strana y = p, pak tfeti strana z se rovna nékte-
rému z Cisel
ppr—Lp—2...,1;
to je celkem p trojihelniki.
Je-li druha strana y = p — 1, pak tfeti strana 2z <y se
rovna nékterému z Cisel

p—Lp—2,...,2
(nemizZe byt z =1, nebot plati x <y + 2); to je celkem
p — 2 trojuhelnika.
Je-li druha strana y = p — 2, pak tfeti strana 2z se rovnd
nékterému z Cisel

P_Z:P_3> e 35
to je celkem p — 4 trojuhelnika.

Provedme tedy obecnou tuvahu: Je-li druhd strana
y=p — k, kde k je pfirozené Cislo mensi nez %(aby byla
splnéna podminka x <y - 2), pak tfeti strana z se rovnd
nékterému z Cisel

p—kp—k—1,...;k+1=p—(p—k—1)

to je celkem p — 2k trojuhelnika.

Oznaéme nyni s, poCet vSech trojihelniki, jejichz jedna
strana ma délku p a délky ostatnich dvou stran jsou pfirozena
Cisla neptrevysujici p. Je-1i p sudé, pak

1
sp=P+(p—2)+(p—4)+...+2=5(p+2)_§:
_ (2.2
—(7)+3“

Je-li p liché, pak
p+1

s=p+ =D+ -+ +1=(212)
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Necht S, je pocet vSech trojuhelniki, které vyhovuji pod-
minkim tlohy. Podle pfedchoziho plati
S,=85+8%+ ...+ s,
Je-li » sudé, mame

2
S=PEHE D+ @)+t (F) +
n 2+n -
|52 ]

n\? . n
:2[12+22+...+(2)J+[1+2+...+2]:
_21.n n+1( 1+1nn_|~1
—-?EWE )” >§”EF )

a po malé upravé

Sy = g n(nt2)(2n+5) M

Pro n liché a vétsi nez 1 lze psat S, = S,—; + s,, tedy

S= D@+t 3) -y (1

po upravé

1
S = 24 (n+1)(n+3)2n+1) )

a tento vzorec plati i pro n = 1 (nebot S, = 1).
Vzorec (1) (pro n sudé) a (2) (pro n liché) davaji odpovéd
na otazku ulohy.
Poznadmka. VSimnéte si, Ze vysledky (1), (2) lze vyjadfit
jedinym vzorcem
1

Sn = 24

[ n® + 9n* 4 10n + ——(—=Dr. —3—]
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94
Prvni feSeni. Pro dikaz sporem piedpoklddejme, Ze kaz-
dych osm casopist zakryva Cast stolu o ploSe men$i nez

% S, kde S je plocha celého stolu. Takovych osmic je (185)
: : 4
a kazdy Casopis vystupuje v (17 ) z nich. VSechny tyto osmice

. . 14
dohromady pokryji tedy nejméné ( 7 )—krét cely stal; pfitom
vSak soucet ploch, které celkem na stole zakryji, bude mensi

1
nez ( 5) -—% S. Proto plati

8.
14 15, 8
(7 )S<(8 15 S

ale 1 < 1 neni mozné.

Druhé tfeSeni. Poznamenejte si na kazdy Casopis velikost
plochy, kterou na stole bezprostfedné zakryva. Pak uberte ty
Casopisy, na nichzZ je zapsano sedm nejmensich hodnot.
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M¢éjme na kruznici m raznych bodt A4,, Ay ..., Ay
oznaceni volime tak, aby indexy vzrustaly proti sméru hodi-
novych rucicek. Oznatme z, mnozinu vSech usecek, které
spojuji dvojice téchto bodu, a #,, pocet oblasti vzniklych v da-
ném kruhu. Na oblouku mezi 4,, a 4, pfidejme dalsi bod 4,,,.
Usecka A4 Ar (R =1, ..., m) roztini ve dvé &isti pravé
tolik oblasti, na kolik Casti ji rozdé€luji tsecky mnozZiny z,,.
Use¢ka A,,+; A, obsahuje vnitini bedy pravé téch uselek
Adj,kdei=1,...,k —1aj=*Fk-+41,..., m Takovych
useCek je tedy (B — 1) m — k) a délicich bodi, které vznik-
nou na useCce A,,., A, je stejné tolik nebo méné; posledni
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pfipad muze nastat pouze tehdy, kdyz alespon tfi usecky
mnoziny 2., maji spoleny vnitini bod. Pfi sestrojeni usecky
A1 Ay se tedy pocet oblasti u,, zvetsil nejvyse o Cislo 1 +
+ (k—1)(m — k).

Use¢ky A,,+; Ay (B =1, ..., m) mohou protinat ve vnitf-
nich bodech pouze usetky pivodni mnoZiny z,, a nikoli
samy sebe navzdjem. Proto pfi sestrojeni kazdé tdsecky A4,,+, 4
(k=1, ..., m) se pocet existujicich oblasti zvétSuje nejvyse
o Cislo 1 -+ (k—1)(m — k). Po sestrojeni vSech tsecek
Ayiq Ay oo oy Ay A, bude tedy

Uiy =ty + ‘Z [1+Gk—1)0m—k]=
E=1

1=k k=1
¢ili po upravé
e e el e e L) 8 =)

6
Ponévadz u, — 1, dostaneme sectenim nalezenych nerovnosti
(prom =1, ..., n — 1) odhad
n(n — ,1)+ nn—1)m—2)(n—3),
2 ‘ 24 -

pii upravé pravé strany jsme uzili vzorce

n—1

2m@%&ﬂm~@:in@—nﬁ—@mf®,

jehoz spravnost je mozno snadno ovéfit indukei podle 7.
Z predchozich uvah vsak také vyplyva, Ze nemaji-li zddné
tfi usecky dané mnoziny z, spolecny vnitini bod, pak
nin—1) nr—1)n—-2)(n—3
- . — 7 1
2 24 &

Uy, = 1 -+
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Sta¢i ukazat, Ze takovd konfigurace skutecné existuje (pro
kazdé n). Dokazme toto tvrzeni indukci podle #. Pro n = 1,
2, 3, 4 je to jasné.

Budte 4, ..., A, (n = 4) takové body na obvodu daného
kruhu, Ze zadné tfi tsecky piisluSné mnoziny 2, nemaji spo-
le¢ny vnitini bod. Kazdy z bodu 4,, . . . , 4, spojme piimkami
se vSemi pruseCiky useCek mnoziny z, a sestrojme vSechny
pruseciky téchto ptimek s danou kruznici. Tak na nas$i kruZnici
vznikne kone¢ny pocet bodd, takZe na ni mizeme. zajisté zvolit
dalsi bod A4, rizny od vSech téchto bodd. Body 4, ...,
A,, A,+, pak zifejmé tvoii hledanou konfiguraci pro n -+ 1.

Odpovéd na otazku tlohy je dina vzorcem (1).
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Oznacme T, pocet vSech trojuhelniki danych systémem #
bodd (n = 3), z nichz zadné tii nelezi na pfimce, a O, pocet
vSech ostrouhlych trojuihelnikii danych tymzZ systémem. Do-
kizeme lemma: Festlife pro kaZdy takovy systém n bodi
plati nerovnost O,, = cT,, kde c je pevné Cislo, pak je také vZdy
Onw‘-l g CTn+1'

Ze systému n -+ 1 bodd vynechame po fadé prvni, druhy az
(n 4+ 1)-ni bod; piislusné pocty vSech trojihelnikd (ostro-
dhlych trojahelnikd) v téchto n» + 1 systémech o n bodech
oznalime T, resp. O,; (k =1, 2, ..., n+ 1). Pak plati

Tni;" leg %‘ e + Tn,n'? 1

Tn-'l‘l - n—2 b) (1)
O + 0,5+ ...+ Oy 0y
Opiy = —= 2;1 5 =, 2

nebot kazdy trojihelnik (ostrodhly trojihelnik) je zahrnut do
(n + 1) — 3 = n — 2 systému. Podle induk¢niho piedpokladu
plati

O, =cTy, (k=1,2,...,n+ 1)
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Sectenim téchto nerovnosti a uzitim vzorca (1), (2) nyni dosta-
neme vztah
Ont1 = ¢Tuiys

ktery jsme chtéli dokazat.

Protoze je T,=4, O, =3, plati O, =< 0,75.T,. Podle
lemmatu je pak také O; = 0,75 T;. Avsak T'; = 10, tedy O; =< 7,5.
Ponévadz Oy je prirozené Cislo, plati O; < 7 (libi se vdm tento

krok?). Tak dostavame vztah O; < % T,. Z lemmatu potom

vyplyva, Ze pro kazdé pfirozené n =5 (tedy i pro n = 100)
plati

Obr. 74. Bud X pocet malych trojuhelnika, které maji
jedinou stranu 12 (tj. jejichZ vrcholy jsou oznaleny tfemi
riznymi Cisly 1, 2, 3), a Y pocet malych trojuhelnikd, které

3
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maji dvé strany 12; zadny trojihelnik nemuze mit tfi strany 12.
Potfebujeme dokazat, ze X # 0.

V souctu X - 2Y vSech stran 12 malych trojuhelniki mohou
byt nékteré strany pocitiny dvakrat (nebot ty z nich, které
zasahuji dovnitf zakladniho trojuhelniku, jsou spole¢né dvéma
malym trojihelnikiim), zatimco kazdé strana 12 leZici na ob-
vodu zékladniho trojihelniku je zde pocitana jenom jednou.

Oznalime-li tedy U pocet malych stran 12, které zasahuji
dovniti zakladniho trojuhelniku, a V' pocet malych stran 12
lezicich na jeho obvodu, bude

X +2Y=2U0 -+ V.

Aviak &islo V je zfejmé liché (obr. 74), a proto X musi byt
liché. Dokazali jsme tedy ponckud vice, nez bylo tfeba.

Poznamka. Obdobna véta plati i pro Ctyfstény a téZ ve
vicerozmérnych prostorech.

98

Piedpokladejme, Ze existuji dva stavy I a I/, soumérné podle
néjakého priméru o ciferniku hodin (obr. 75a).

Pak je jasné, Ze jsou mozné i casy,
pfi nichZ velké rucicky splyvaji na
naSem praméru o a polohy malych
ruCiek jsou (v souladu s mechanis-
mem hodin) opét soumérné podle
osy o (obr. 75b).

Ponévadz I’ a II' jsou mozné Casy,
musi po urcité dobé uplynulé od oka-
mziku I’ nastat stav /I'. Z toho, Ze po-

lo

Obr. 75a.
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Obr. 75b, c.

lohy velkych rucic¢ek v I" a I1" splyvaji, plyne, Ze tato doba je cely
pocet £ hodin. Pfitom z na$i symetrie je vidét, Ze pfesné za

f;l— hodin bude mala rucicka na ose o (obr. 75c). Jelikoz g— je

1
&islo bud celé anebo celé + - 5 bude velka rucicka v té chvili

opét na ose o (bud se bude kryt s malou, anebo bude na opacné
strané od ni).

Tak jsme dokazali, Ze pramér o ma tuto vlastnost: Existuje
okamzik, v némz obé ruCicky leZi v ose o. Nakonec se snadno
uvazi, Zze zrcadlovy obraz kazdého mozného Casu podle takové
osy o je opét mozny Cas. Rozmyslete si sami, kolik je celkem
takovych os a jak se najdou.

99
Predpoklédejine nejprve, Ze p > 2 je prvocislo (na obr. 76
je p =T). Uvnitt tseCky P4, nelezi Zddny mfizovy bod. Kdyby
tam totiz lezel mfizovy bod M = (x, y), pak by platilo 1 = x <

<p, Y = i’ - (smérnice pfimky PA,), coz neni mozné, nebot
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(p.p) Obr. 76.

B, 4 Ay
B, ——AAp -2
o2 // P

r/

V
B3 ¥ A3
B, 7 / j 7/42

r // |
51 v, _(//— A1
P A

R . » -
zlomek? , jehoZ jmenovatel je prvocislo, nelze zkratit.

Pocet miiZovych bodd uvnitt obdélniku PAA,B, je roven
Cislu (p — 1) (k — 1). ProtoZe uvnitf usecky PA, neni zadny
miiZovy bod, je pofet miizovych bodu leZicich uvniti trojuhel-
niku PAA; polovi¢ni, tj.

S G-, (1)

Uvazujeme nyni trojuhelnik PA A]T1 (proj =1, 2,.
— 2) Upvnitf tohoto trojihelnika ]e—(p —DG+1-—1)—
— (p —D{G—1D= 1— (p — 1) mfizovych bodd, jak plyne

z vysledku (1) a z toho, Ze vnitfek trojuhelnika PA4,;4; , do-
staneme, jestlize od vnitiku trojuhelniku PAA;., ubereme
trojuhelnik PAA;. Tim je jedna ast tlohy dokdzana.
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Piedpokladejme naopak, ze p > 2 je liché cislo a Ze uvnitf
kazdého z trojuhelniki PA,A4,, PA,As, . . ., PA, 2A,, lezi

pravé -;— (p — 1) mfizovych bodd. To mame celkem 5

.(p — 1) (p — 2) mtiZzovych bodt; vSechny lezi uvnitf trojuhel-
niku PAA4,—,.

Uvniti usecky PA,—, neni zadny miiZovy bod, nebot zlomek
Pl nelze zkratit. Uvnitf trojuhelniku PAA, ., je proto
podle téhoz usudku jako v prvni Casti feSeni pravé % (p—1
(p — 2) miizovych bodi. Pfitom Zadny z nich zfejmé nenalezi
trojuhelniku PAA,.

Z poslednich dvou odstavct vyplyva, Ze pocet mrizovych boda
uvnitf trojihelniku PAA,_, se rovna celkovému poctu miiZo-
vych bodd uvnitt trojihelnika PA,A4,, PA,As, . . . s PAp—yA4,—,.
Proto uvniti usecek PA4,, PA,, PAs, ..., PA,_, nelezi Zadny
miizovy bod. Odtud vsak jiz plyne, Ze p je prvocislo. Kdyby
totiZ bylo p = ab, kde 1 << a = b < p jsou pfirozena Cisla, leZel
by uvnitt tseCky PA, miizovy bod (b, 1). Tim je dokizina
i druhé cast dlohy.

100

Budte O, P, Q tfi z danych bodd, které nelezi v pfimce.
Je-1i A dalsi bod dané mnoziny, pak z nerovnosti

| AP — AO | < PO, | AQ — AO | < 00

plyne, Ze rozdily AP — AO, AQ — AO mohou nabyvat jenom
konec¢ného poctu hodnot. AvSak pfi danych hodnotach obou
rozdila

AP — A0 =k, AQ — A0 =1

mame pro bod A jenom konecny pocet moznych poloh (pru-
seCiky dvou ,hyperbol®); muZete se o tom presvédcit i jinak
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(napf. pfimym vypoftem kosouhlych soufadnic bodu A
v soustavé OPQ pfi vhodném uziti kosinové véty). To je spor
s nekonecnosti dané mnoziny.

Poznamka. Uzitim kruhové inverze (pozn. za pf. 63) lze
snadno ukazat, Ze ke kagdému prirozenému Cislu n existuje n bodii
leZicich na krugnici, jejichg vSechny vzdjemné vzddlenosti jsou
prirozend Cisla. Je vSak zajimavé, Ze ryto body lze dokonce po-

vrv

vafovar za miifové (viz text pf. 99). To si nyni objasnime.
V roviné kartézskych soufadnic x, y vezméme jednotkovou
kruznici se stfedem v pocatku a zvolme na ni body
P, = (cos 2ka, sin 2kx), k = 0,1,2,...,
kde « je takovy ostry thel, Ze
sin 4 boli
o = —— 11ebol1 Cos o — .
5 5
Z trigonometrickych vzorcu je zfejmé, Ze obé soufadnice kaz-
dého bodu P, jsou racionilni ¢isla a Ze i vSechny vzdalenosti

PP, =2|sin(l —k)o|
jsou racionalni.
Ukazme jesté, ze
sinkx #0 prok=1,2,....

Polozime-li (prok = 1,2, ...)

1, = 5% sin ko,
pak vzhledem k tomu, Ze

sin (kR 4 2)oc = 2sin (k + 1) cos o — sin ka,

mame
lito = Oty — 25;.
Ponévadz ale ‘

t, =4, t,=24,

nemuze byt zadné z, délitelné péti a proto z, # 0.
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Pro k +# [ pak plati
PP, > 0,
takze mnozina vsech boda P, (k =0, 1, 2, ...) je nekonecna.
Odtud jiz snadno plyne slibené tvrzeni.

Cviceni. Mnozinu vSech bodu roviny, jejichz obé souradnice
X, y jsou raciondlni Cisla, lze rozlozit ve dvé podmnoZiny,
z nichZ prva je konecna na kazdé rovnobézce s osou x a druhd
je kone¢na na kazdé rovnobézce s osou y.

101

Cislo x = 0 tloze nevyhovuje. V daliim proto bude x # 0.
Dokazeme, Ze plati

.1 1 1
1 +xsm}——— 5 s > 0 (D)

pro ka?dé x # 0. Vzhledem k tomu, %e hodnota levé strany
v (1) je pro Cisla x a —x stejnd, stali se omezit jen na kladna x.
Bud tedy x libovolné kladné cislo. Plati nerovnosti
.1 1
—1<sin—, cos— =1,
x x

z nichz plyne

[a—

. 1
—x S xsin—, — - = ——-cos
x 2

o
|

Settenim dostdvame

1 1 1
. x<gxsin — — - cos
g —XSxsin_ 5 €08 —

a pfiCtenim Cisla 1 vychazi nerovnost

1 1 1 1
——x=1-+4+xsin— — —cos —.
2 x 2 X
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. .1
Pritom pro kazdé x < %]C 5 x> 0, takze (1) plati. Pro

mame i

1

0<—=2<m.

X
Z toho je vSak ihned patrné, Ze (1) plati. V souctu nalevo v (1)
jsou totiz prvni dva scitanci kladni a dévaji soudet vét$i neZ 1.

. D 1 1 [ ) .
Od nich se od¢ita cislo 5 s které je bud dokonce za-
x

1

orné (v piipadé - < — = 2|, ¢imz se levd strana jeSté
p 5 x )

p 3 Ty 3
zvetsi, anebo nezaporné (a ovSem mensi n627 ,takZe leva

strana v (1) bude i v tomto pfipadé kladna.

Nerovnost (1) tedy plati pro vSechna redlnd Cisla x razna
od nuly. Je mozno téZz dokazat, Ze pro vSechna takova x plati
dokonce nerovnost

1 1 1
1+ xsin—— —cos—> &,
x 2 x

kde ¢ je jisté kladné Cislo.

102
Ponévadz
| A©) =40 +0)=40)+40)
* A (0) = 0.
Dile
AL =A0Q.1)=A41).A4Q1),
proto

bud A (1) =0 anebo 4 (1) = 1.
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V pfipadé, ze 4 (1) =0, mame 4 (x) =A(1.x)=A(1).
.A(x) =0 pro kazdé x.

Zabyvejme se tedy pfipadem A4 (1) = 1 a dokaZme, Ze pro
kazdé realné x plati 4 (x) = x.

Vsimnéme si nejprve prubéhu funkce 4 (x). Pro neziporna x
plati

A = A= Vx) =14()xp = 0.
Jsou-li tedy x = y libovolna redlna Cisla, je

. 4 (x) = A(y),
nebot

AX) =Aly +Gx—M =40 + A& —y) = AQ).

Budte nyni m, n pfirozena cisla. UkdZeme, Ze

Skutecné,

1 1 1 1
‘:A“):A[TF (1 “‘5)]:‘4(7) vafi-g)=
) (1~£)=...:
+
takze
a dale obdobné

a(Z)=a (b —a (Y)Y -

n n n
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Pro kladné racionalni Cisla » tedy plati 4 (r) = r.

Ptedpokladejme, Ze by pro néjaké kladné (neracionalni) ¢islo
x bylo A4 (x) # x. Necht napf. 4 (x) > x. Vezméme racionalni
Cislo r takové, ze x << r <2 A (x). Pak 4 (r) = r << A (x), atkoliv
x < r. To odporuje prabéhu funkce 4 (x). Plati tedy 4 (x) = x
pro kazdé x = 0 a zbyva vysetfit pripad x < 0. Vzhledem
k tomu, Ze

0=40)=A4Ax —x)=A4Kx) + A4 (—x),
dostdvame
A(—x) = —A(x).
Je-li tedy x zaporné (Cili —x kladné), plati podle pfedchoziho
A4(x) = —A(—x) = —(—x) = x.

Tim je vSe dokazano.

103

Pro suda » je ¢, > 0. UkdZeme, Ze ¢, = 0 pro vSechna n
licha. Budiz I mnozina téch indexi 7, pro néZz a; > 0, ¥ mno-
zina téch j, pro néz a; < 0. Ob& mnoziny jsou neprazdné a pro
liché 7 je ¢, = 0 pravé kdyz

iel JEF
kdez b; = —a; jsou kladni. Podle pfedpokladu rovnost (1)
plati pro n € N, kdez N je jistd nekonecna mnozina (lichych)
Cisel.

Budiz ¢ nejvétdi z Cisel a; (el), b; (j€F); necht napi.
¢ = a; pro nékteré ¢ € I. Pak existuje j € J takové, Ze a; = b;.
Skutecné, kdyby b; << ¢ pro vSechna je ¥, pak rovnost (1)

neboli
a; n o bL)7L
i; ( 4 ) j‘cg} ( ¢
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by nemohla platit pro nekonetné mnoho exponentd #; pro
vSechna dostate¢né velka 7 je totiz prava strana téméf nula
(rozmyslete si!), zatimco leva je vZdy alespon 1.

Odtud plyne, Ze v (1) miZeme na obou stranich ubrat po
jednom scitanci. Obdrzime rovnost platnou zase pro vSechna
ne N. Zopakujeme tedy uvahu predchoziho odstavce. Po ko-
necném poctu takovych krokd se scitanci na obou stranich
v (1) vycerpaji. To ale znamen4, Ze ¢, = 0 pro vSechna licha #,
a tloha je rozfeSena.

104

Prvni feSeni. PfedbéZna dvaha. Vyménime-li ¢isla x;
a x,, dostaneme

fxe) —fx) = (% — x2)%
[ f(x) —f () | = (% — x)?

pro vSechna x,, x, z intervalu <0, 1).
Odtud plyne, Ze pro x, -+ x, je

f (x2) f (xl) o N (1)

Xy
—x

neboli celkem

Cislo [f(x,) —f (xl)]/(xz — x;) je smérnice pfimky v roviné
(x, ), kterd prochazi body [(x;, f (x1)] @ [, £ (x2)]- Cislu | f (x5) —
—f(x) | /] xy — x,| budeme ftikat absolutni smérnice funkce
f(x) mezi body x, a x,.

Jsou-li tedy body x, a x, razné, ale dosti blizké, tj. | x, — x; |
malé, pak z (1) plyne, Ze absolutni smérnice hledané funkce
mezi x, a x, je mald. Z toho lze pfedbézné usuzovat, Ze hledané
funkce budou funkce konstantni v celém intervalu {0, 1).

K vlastnimu feSeni budeme jesté potfebovat tuto pomocnou
vétu:

Pomocna véta. Necht ay, b, (a, < b;) jsou body z intervalu
<0, 1>. Necht f(x) je funkce definovana na intervalu <0, 1.
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Pak existuji v intervalu {ay, b;> body a,, b, (a, < b,) tak, ze

| by —ay| = by —a; |,

2
a pfitom

£ ) —F@)| = 5 176D — (@)
1
) 2
—le—b|= 5 |b—al. Protwke |f () /()| =
= 1G®) —f @O+ O —F@)| = 176 — @] +

+ | f(c) — f(a,) |, je splnéna alespori jedna z nerovnosti

Dikaz. Oznatme ¢ = - (a, +b,), takie |c—aqa,| =

£ ) —F @1 = 5 1fb) ], @

@ —f@) =5 1fE) —f@]. G

Je-li spln&na nerovnost (2), polozime b, — b,, a, = c; neni-li,
je splnéna nerovnost (3) a polozime b, = ¢, a, = a,. Dikaz
je hotov.

Vlastni feSeni. Kazda funkce konstantni v intervalu<0, 1)
vyhovuje tloze. UkdZeme, Ze Z4dnd jind funkce tiloze nevyho-
vuje.

Necht tedy f(x) je funkce definovana v intervalu <0, 1),
spliujici danou podminku, a tedy téz (1), kterd neni v celém
intervalu <0, 1) konstantni. Pak existuji v {0, I> body x a z,
x < 2, takové, Ze f(x) #~ f (2). Podle pomocné véty uzité na
dvojici x, z existuji body x,, 2, v intervalu {x, 2>, tedyiv<0, 1),
tak, Ze
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1
]zlfx1[=—2—|z—x|,

) @) | Z 5 1fE@) —FE)].

Podle téZe pomocné véty uzité na dvojici x,, 2; existuji body
Xoy 25 V {%q, 210, tedy 1 v <0, 1), tak, ze

1 1 K
[ 2y — %, | :E“|z1_x1‘ —Z“z—xlg
a pfitom
o) — )| Z 5 1f @) — )| Z 5 1f @) —f @)

Obecné se indukci snadno ukaze, Ze pro kazdé n = 1 existuji
body x,, 2, v <0, 1) tak, ze
|2 — %0 | = |
n nl E; 2 —X |3
a pfitom
1
) —f) | =50 1 f (@) —f() 1.
ProtoZe podle pfedpokladu o funkci f(x) plati
[f(zn) _f(xn) | é [ B — Xn !23

dostavame odtud

&) — [ S201f(za) —F(5) | S 20 2 — 52 = 5, |2 — 1%
ProtoZe v3ak | f(2) — f(x) | # 0 a posloupnost -2117

je nulova, existuje n tak, ze |f(2) —f(x)| > —2—1; |z —x |3

lz —x|?

coz je spor s piedchozi nerovnosti.

Z4avér. Uloze vyhovuji jenom funkce konstantni v inter-
valu <0, 1).
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Druhé feSeni. Jestlize pro 0 < a < b = 1 plati f(a) #
= f(b), pak lze najit prirozené Cislo n takové, Ze |f(a) —

1
—f(®)| > - . Polotme x;—a +v; (b —a)proi=0,1,...,n
Plati '

n—1
f(@)—f®)] éiZO S) —flu) | =
» n—1 n 1 1
P T
a to je spor. Vysledek je tedy stejny jako v predchozim feSeni.

Poznamka. Pro Ctenafe, ktery zna pocatky diferencidlniho
poctu, byla tato tloha zajisté velmi snadna.

105

Bud M dané pfirozené Cislo. Potfebujeme dokazat, Ze pro
vhodné pfirozené Cislo n a celé nezdporné Cislo & plati ne-
rovnosti

M. 108 <20 < (M + 1). 10%
neboli
logM +k=nlog2 <log(M+ 1)+ k

(uvazujeme desitkové logaritmy). VSechny polouzaviené inter-
valy
(log M + k, log (M + 1) + k),
kde % probihd celd nezdporna Cisla, maji touz délku
M+ 1 1
log(M + 1) — log M = log M log (1 - 7”)
a vzniknou z intervalu

{dog M, log (M 4+ 1))

216



posunutimo 1,2, 3,... . Cislalog2,2log2,3log2,...,nlog2,...
tvofi aritmetickou posloupnost; chceme dokézat, Ze néktery
jeji ¢len padne do nékterého z uvazovanych intervald.

K tomu bude uziteCné si predstavit, ze polopiimka neza-

pornych ¢isel je navinuta na kruznici o délce 1 (tj. o poloméru

2 ) Potom obrazy dvou ¢isel na této kruznici splynou pravé
7

tehdy, kdyz jejich rozdil je celé Cislo; zejména také splynou
vSechny uvazované intervaly (obr. 77). Pokud jde o obrazy
Ay, Ay, As, ... Cisel log 2, 2log 2, 3log 2,..., zadné dva
z nich nesplynou, nebot log 2 je iracionalni (ovéfte sporem).
V nekonecné posloupnosti bodi A4,, A,, A,, ... lze najit dva,
necht jsou to A, a A,., jejichz obloukova vzdéalencst je
mensi nez délka oblouku vy-

znateného na obr. 77, tj. A s

1
.
log (l | M) :
Ay
A
Ay A
Obr. 77. AJ 0

Ponévadz kazdé dva sousedni cleny nekonecné posloupnosti
Aps Apiys Apyiogs Apisgs - - - maji ziejmé stejnou obloukovou

M
z nich musi padnout od uvazovaného intervalu. To jsme chtéli
dokazat.

vzdalenost, a to mensi nez log (1 + — ) , je jasné, Ze néktery
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Obr. 73

106
Vrcholy 4y, A, ..., A, pravidelného n-thelniku si pied-
stavme v roviné komplexnich cisel jako 7n-té odmocniny z 1,

To znamend, Ze bod 4, (=1, 2, ..., n) zobrazuje &islo
&k, kde '

2n .. 2nm
&€ =C0S — -+1sln —,
n n

takze ¢" = 1 (obr. 78).
Téchto 7 bodu je rozdéleno do ¢ (= 2) skupin pfislusnych
jednotlivym barvim. Polet vrcholu patficich do j-té skupiny

(7=1,2, ..., g) oznalme m;; kazdé m; je zfejmé délitelem
Cisla n. Skupiny si sefadme tak, aby bylo
mo=m, = ...=m, (D)

V kazdé skupiné najdeme vrchol s nejmen$im kladnym argu-

mentem; necht mu odpovida cislo ¢, kde r; (pro j =1,
n

2, ..., ¢q) je pfirozené Cislo. Polozime-li ¢; = 7, muZeme

v8echny vrcholy j-té skupiny zapsat ve tvaru &7 . ¢!, kde

l:1,2,...,mj.
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OznaCme
n
S = Z slcm,_
k=1

Ponévadz ziejmé S. em = S a ¢™m #£ 1, je

§=0 2)

(viz téz obdobnou uvahu v prvém feSeni ulohy 45). Kazdé

& (k=1,2,...,n) je viak rovno nékterému &7l (5= 1,

2, ..., 951=1,2, ..., m) a také obracené, kazdé takové

¢’¢! je rovno nékterému &*. Proto

n mj q ™j

S=) edm= ) ) (gighm =), (6’1’”1 > e;nn). 3)
k=1 j=11=1 =1 =1

Proj = 1 mame
m my m
Z gllm. — z enl — Z 1! = my.
=1 =1 I=1

Prvni s¢itanec v (3) je tedy
myErim,

Pokusime se nyni ukazat, Ze m; = m,. Pfedpokladejme, Ze
plati m; << m,. Pak pro j = 2 mame

my my n 1
Y em=73 em =0,
I=1 I=1

, N S o 3

nebot — - m, je pfirozené &islo mensi neZ n, takZze em. ™ # 1
My,

a lze uzit téhoZ obratu jako v (2). Obdobné se dokaze, Ze i dalsi

sCitanci v (3) (proj =3, ..., ¢) se [vzhledem k (1)] rovnaji
nule.
Z predpokladu m; < m, tedy vyplynulo, Ze pro soucet (3)
plati
S =myenm £ 0. 4)

Vysledky (2) a (4) si vSak odporuji.
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Skutecné tedy m, = m, a véta je dokazéna (dokonce v po-
nékud silnéj$im znéni). Predstavte si napf. v pravidelném
dvanactithelniku dva rovnostranné trojuhelniky a jeden pra-

videlny Sestitthelnik.

107

Zvolme pfirozené Cislo # a ozname A4, mnozinu vSech
realnych Cisel x, pro néz plati

o
| f(x) | >7-

Tato mnozina 4, obsahuje jenom kone¢ny pocet prvka. Kdyby
totiz A, byla nekonecna, pak by alespon jedna z nerovnosti

0> )< — -

1

n

platila pro nekonecné mnoho realnych Cisel x, takze by zfejmé

nemohla byt splnéna podminka vyslovend v zadani tlohy.

Pocet prvka mnoziny A, je tedy jisté pfirozené Cislo m,.
Sestrojime nyni posloupnost realnych Cisel

{xla Xoy X35 Xg5 « o '} (1)

takto: Vezmeme nejprve mnozinu A,; ta ma m, prvka, takze
za prvnich m, Clent posloupnosti (1) mazeme vzit ¢isla mno-
ziny A, v né&jakém (celkem libovolném) poradi. Tim méame
ur¢eno prvnich m, hodnot posloupnosti (1). Potom vezmeme
mnozinu A4,, kterd mé m, prvkad, a za dalSich m, Clent posloup-
nosti (1) (tj. ¢lent s indexy m, + 1, ..., iy -+ m,) vezmeme
Cisla mnoziny A4, (v néakém pofadi). Timto postupem mu-
zeme definovat x,, pro kazdé pfirozené n.

Posloupnost (1), jak jsme ji pravé popsali, obsahuje vSechna
realna Cisla x, pro néz f(x) # 0, a zadna jina. Je-li totiz
f(x) # 0, pak pro dostatecné velké pfirozené Cislo n plati
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~L< | f(x) |, takze toto x patii do 4,, a je tedy Clenem po-
n

s v

sloupnosti (1). Naopak kazdé cislo x z posloupnosti (1) patii
do nékteré mnoziny A4,, takze f(x) = 0.

Hledané ¢islo ¢ musi proto lezet mimo posloupnost (1).
Potfebovali bychom tedy dokazat, Ze posloupnost (1) nevycer-
pava vSechna redlna cisla, Cili sestrojit redlné cislo ¢, které
nepatii do (1). To provedeme pomoci dekadického rozvoje.

Kazdé realné Cislo » ma, jak zndmo, svij nekonecny deka-
dicky rozvoj

r=12(P1P2-+Ps 19293 )

kde pis Pos - - -5 Pss Guis Go5 Gas - - - jsOu Cislice. Obracené kazda
takova posloupnost Cislic spolu se znaménkem - nebo —
a polohou desetinné carky urcuje realné Cislo. Pritom dva
takové dekadické rozvoje, které se 1i§i na nékterém misté
(majicim v kazdém rozvoji stejny index), mohou déavat totéZz
Cislo jen tehdy, kdyz jeden kon¢i' samymi nulami a druhy
samymi devitkami, napf.

0,248 = 0,248 00000 . . . — 0,247 99999 . ..

Pfi konstrukci Cisla ¢ se tedy budeme snaZit o to, aby se
cislo ¢ lisilo od kazdého z ¢lentt posloupnosti (1) na nékterém
misté a aby se v jeho rozvoji (pokud mozno) nevyskytovaly
nuly ani devitky.

Kazdé ¢islo z (1) si pfedstavme v nekoneném dekadickém
rozvoji a aby tento rozvoj byl jednoznaény, nebudeme napf.
pripoustét na konci samé devitky.

Nyani je uz vse jasné. Vezmeme nejprve Cislo x; a vS§imneme
si jeho prvni Cislice za desetinnou Carkou; za ¢, pak zvolime
néjakou Cislici raznou od této Cislice i od 0 a 9 (to je mozno
ucinit, nebot Cislic je deset, takze se zajisté muzeme vyhnout
tfem resp. dvéma piipadim). Pak si v§imneme druhé cislice
. za desetinnou Carkou v rozvoji Cisla x, a zvolime dislici ¢, tak,
aby byla rizna od této Cislice i od 0 a 9. Dale zvolime Cislici
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¢, tak, Ze se vyhneme nule, devitce a tfeti ¢islici za desetinnou
¢arkou v rozvoji Cisla xg. Obdobné najdeme pro kazdé pii-
rozené n vhodné ¢, (dokonce citime znacnou volnost pii volbé
Cislic ¢,).
Redlné cislo
c=1,c1¢505. ..

se pak liSi od kazdého ¢lenu posloupnosti (1) na nékterém
desetinném misté (totiz od x,, alespoil na n-tém misté za dese-
tinnou Carkou) a ponévadz nekon¢i samymi nulami ani devit-
kami (vabec Zadné totiZ ve svém rozvoji nema), je jisté razné
od vSech ¢lent posloupnosti (1). Pro toto ¢ tedy plati f(c) = 0
a tuloha je rozfeSena.

Poznamka 1. V fedeni dlohy 107 jsme dospéli k zavaznému
poznatku, kdyZ jsme ukazali, Ze redlnych isel je ,,tak mnoho®,
ze zadna (nekone¢nd) posloupnost je nemuZe vSechna vy-
Cerpat. Povézme si tedy o ,,poctu prvka‘ (Cili mohutnostech)
mnozin a o tom, jak velké ,,nekone¢no‘‘ si vlastné muzZeme
predstavit. Budeme proto porovnavat dvé mnoziny A, B co
do pocetnosti.

Jsou-li obé mnoZiny konecné, je to snadné. V tomto pii-
padé muzeme prosté spocitat prvky kazdé mnoziny a porovnat
vysledky. Je vSak myslitelny i jiny piistup. Predstavme si
kupf. dvé dosti velké hromadky kastant (mnoziny A a B),
takZe nelze na prvni pohled urcit pocet prvki; navic bychom
se pfi jejich pocitani mohli splést. Jde-li ndm pouze o porovnani
poctu kaStan (,,kdo nasbiral vic*), bude asi pohodIn&jsi
a jist&j8i ubirat z kazdé hromadky po jednom kastanu — tvorfit
dvojice. Tak pfifadime kazdému kastanu z jedné skupiny
kaStan z druhé skupiny. Jestlize se timto kaStany v obou sku-
pinach vycerpaji, je jasné, Ze obé hromadky mély stejny pocet
kastand. Jinymi slovy, dvé kone¢né mnoziny maji stejny pocet
prvku, pravé kdyz lze definovat prosté zobrazeni (které riznym
vzorum pfifazuje ruzné obrazy) jedné mnoziny na druhou
(viz dvojice kastanu).
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Je pfirozené povazovat tuto vlastnost dvou mnozin za projev
jejich stejné pocetnosti (mohutnosti), a to i v piipad¢ neko-
ne¢nych mnozin. (Je samoziejmé, Ze tento vztah ,,rovnopocet-
nosti*“ je symetricky: druhou mnozZinu Ize zobrazit na prvou
inverznim zobrazenim.) V tomto smyslu muZeme napfi. fici,
Ze vSech pfirozenych Cisel je ,,stejné tolik* jako vSech sudych
Cisel; piislusné prosté zobrazeni mezi témito dvéma mnoZi-
nami lze definovat velice jednoduSe: kazdému pfirozenému
Cislu n prifadime sudé Cislo 2n. MuzZete si sami najit napf.
prosté zobrazeni mnoZiny vSech pfirozenych cisel na mno-
zinu vSech racionalnich Cisel, takZze i mnoZina vSech racionil-
nich Cisel je ,,stejné pocetna“ jako mnozina vSech pfirozenych
Cisel.

V fedeni ulohy 107 jsme vSak v podstaté dokézali toto tvr-
zeni: At na mnoziné prirozenych Cisel definujeme jakoukoli (tedy
1 prostou) posloupnost redlnych Cisel, vidy se najdou redlnd Cisla,
kterd nejsou Eleny téro posloupnosti. Mnozinu vsech pfirozenych
Cisel je tedy mozno prosté zobrazit do mnoziny vSech redlnych
Cisel, avSak nikoli #a ni. Je tedy pfirozené fici, Ze mnozina
vSech redlnych cisel ma ,,vét$i mohutnost* nez mnozina vsech
pfirozenych Cisel.

Obecné Ize pak tuto vlastnost dvou mnozin (totiz, Ze jednu
Ize prosté zobrazit do druhé, ale nikoli na ni) povaZovat za
projev ,,vét8i mohutnosti* druhé mnoziny. V tomto smyslu je
tedy napf. mnozina vSech realnych Cisel ,,poCetnéj$i® nez
mnozina vSech pfirozenych Cisel. Rozmyslete si téZ, Ze mnozina
vSech téch disel ¢, kterd spliuji tvrzeni ulohy 107 [tj. pro néz
f(c) = 0] je nejenom nekonetna (coz bylo moZno tusit uz
z naSeho dikazu), ale dokonce ma vét$i mohutnost neZ mnozina
vSech pfirozenych Cisel.

Poznédmka 2. Poznali jsme dvé nekonecné mnoziny (pfi-
rozena Cisla a redlna Cisla), z nichZ druhd je ,,poletnéjsi‘“ nez
prva. Vznikd tedy otdzka, zda muze byt jeSté ,,mohutnéjsi*
mnozina neZ je mnoZina viech redlnych &isel. Kladna odpovéd
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na tuto otdzku vyplyva z nasledujiciho zajimavého pfikladu:

Bud M mnozina (napf. vSech realnych Cisel). Predstavme st
soustavu S vsech podmmozin mnoziny M. (S je tedy mnozina,
jejimiz prvky jsou podmnoziny M). Pak S md vétsi mohutnost
neg M.

Dukaz. Mnozinu M muZeme zajisté prosté zobrazit do S:
kazdému prvku m € M ptitadime jednobodovou mnoZinu {n}.
Toto zobrazeni pochopltelne nevycerpava viechny prvky z S
nebot napf. prizdnd mnozina (kterd jakoZto podmnoZina M
je prvkem §) neni pfi naSem zobrazeni ptifazena Zidnému
prvku z M. Z toho vsak jesté neplyne, Ze by se pii néjakém
jiném zobrazeni definovaném na M nemohla vycerpat celd
mnozina S. Zatim muZeme jenom fici, Ze mnozina § ma mo-
hutnost ,,vét$i nebo rovnou‘ nez M.

Dokazme nyni, ze § mé skutetné vétsi mohutnost nez M,
tzn. Ze at vezmeme jakékoli prosté zobrazeni f mnoziny M
do S, pak néktery prvek z S nebude obrazem ziddného prv-
ku z M.

Za hledanou podmnozinu Z < M (tj. prvek §) miZeme totiz
vzit mnozinu vSech téch prvka x z M, pro néz plati x ¢ f(x)
[f(x) je prvek z S, Cili podmnozina M]. Ukazme, ze pro kazdé
x z M plati f(x) # Z.

Pro dukaz sporem predpokladejme, Ze pro nékteré x,

zMje
f(xo) = Z. @

Zkusme zjistit, zda prvek x, patii do Z ¢i nikoliv. Jestlize
X, € Z, pak podle nasi definice mnoziny Z plati x, ¢ f(x,);
podle (1) vSak x,€f(x,). To je spor a proto musi platit, Ze
Xy ¢ Z. Potom ale podle definice mnoziny Z plati x, ¢ f(x,)
a podle (1) x,€ Z, coz je zase spor. Pfedpoklad (1) vede ke
sporu a véta je dokazana.

Poznidmka 3. RozieSme si jeS$té jeden zajimavy problém:

Jestlize mohutnost mnoginy A je mensi nebo rovna mohutnosti
mmnoZiny B (tj. existuje-li prosté zobrazeni f mnoziny A do B)
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a jestlie zdroven mohutnost mnoZiny B je men$i nebo rovna
mohutnosti mnoginy A (tj. existuje-li prosté zobrazeni ¢ mno-
ziny B do A), pak mnoginy A, B maji stejnou mohutnost (1.
existuje prosté zobrazeni h mnoginy A na B).

Tato véta je celkem ziejma v piipadé, kdy 4, B jsou konecné
mnoziny. Jinak vSak vyzaduje dukaz, ktery zde podame.
Oznaceni ponechme tak, jak jsme je pravé zavedli. Musime
sestrojit zobrazeni 4.

V dalsim odstavci rozlozime mnoziny 4 a B na jisté tfidy
prvkia. Pfitom budeme uzivat této umluvy: prvek x (z A4
nebo B) nazveme predchiidcem prvku y (z A nebo B), jestliZe
se y dostane z x, provedeme-li nékolikrat (stfidave) zobrazeni
fag(resp.gaf).

Rozlozme nyni mnoZinu A4 ve tfi po dvou disjunktni mno-
ziny, a to vzhledem k celkovému poctu vSech pfedchidcu
(v AU B) jednotlivych prvka z A: A bude mnozina vSech
téch bodu z A, které maji sudy (tedy i nulovy) pocet pied-
chidcti; 4, bude mnoZina vSech téch bodu z A, které maji
lichy pocet pfedchudci; 4, bude mnozina vSech téch bodu
z A, které maji nekonecné mnoho pfedchidci. Obdobné
i mnozinu B rozloZime na disjunktni t¥idy Bg, B, By.

Vsimnéme si nyni, Ze f zobrazuje Ag na B, Ay na By a Ze
g ! zobrazuje A, na Bg. Proto pro x z Ag nebo A, polozZime
h(x) =f(x) a pro x z A, poloZime % (x) = g—'(x). Pak % je
prosté zobrazeni mnoZiny 4 na mnoZinu B.

Poznamka 4. Nebudeme zde jiz prodluZovat tuto tema-
tiku; ctenarka resp. Ctenaf se dozvi vice pfi dals$im studiu
matematiky.

108

Ponévadz kazdé tfi z danych tsecek maji spole¢ny bod, maji
i kazdé dv€ z nich spole¢ny bod. Pfipustme, Ze mezi danymi
useCkami uy, #y, ..., #, jsou dvé, napf. u, a u,, které nelezi
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v jedné pfimce, takZe maji pouze jeden spole¢ny bod A. Je-li
u, kterédkoli ze zbyvajicich usecek, pak trojice u;, w#,, u;, ma
podle predpokladu spolecny bod; proto tsecka u, musi ob-
sahovat bod A. V tomto piipadé tedy bod A nalezi vSem
useCkam uq, Uy . . . 5 U,

Nenastane-li pfipad uvazovany v piedchozim odstavci, pak
vSechny dané usecky leZi na jedné piimce. V tomto piipadé
vSak plati silnéj$i tvrzeni:

Jestlize GseCky wuy, g, . . ., u, (n = 2) lezi v pfimce a kazdé
dvé z nich maji spolecny bod, pak vSechny tyto tiseCky maji
spole¢ny bod.

Dikaz tohoto tvrzeni provedeme matematickou indukci
vzhledem k n. Pro n =2 je vSe jasné. Pfedpokiiddejme, Ze
naSe tvrzeni plati pro pfirozené Cislo n = 2 a ukaZme, Ze plati
i pro n+ 1. Vezméme tedy n -+ 1 useCek uy, s, ..., Uy,
U, 1, které spliiuji predpoklady véty (tj. leZi v pfimce a kazdé
dv¢ z nich maji spole¢ny bod). Podle indukéniho predpokladu

maji useCky #, #y, ..., u, spolecny bod 4. Krajni body
usecky u,.-, oznatme B, C. Nalezi-li bod 4 usecce BC, nalezi
vSem useckdm u,, Uy, ..., Uy, U,1, 8 je to hledany bod.

V opacném pripadé lezi bod 4 mimo tsecku BC, napf. na
jejim prodlouZeni za bod B (obr. 79). Pak je hledanym bodem
bod B. Kazdi usecka u; (kde 7 = 1, 2, ..., n) totiZ obsahuje
bod 4 a — podle pfedpokladu — i jisty bod D; usecky BC;
tato tsecka u; musi proto obsahovat celou tsecku AD; a tedy
i bod B. Obdobné postupujeme i v piipadé, ze A lezi na
prodlouzeni usecky BC za bod C (pak hledanym bodem
bude C).

Poznamka 1. Véta o tseckach, kterou jsme praveé dokazali,
vyplyva téz z dulezité obecnéjsi tzv. Hellyovy wvéry o kon-

+

! !
1 T

A B Dy c Obr. 79.
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vexnich mnozinach. Pfipomenme, Ze mnozina bodu (na pfimce,
v roviné nebo v prostoru) se nazyva konvexni, jestlize s kazdymi
dvéma svymi body obsahuje i celou usecku je spojujici. Tak
napf. na obr.80a je nakreslena konvexni mnozina, kdeZto
obr. 80b ukazuje piiklad mnoziny, kterd konvexni neni. Dal-
$imi piiklady konvexnich mnozin jsou kruh, koule, trojihelnik,
bod, pfimka, polopfimka, tseCka, prazdnd mnoZina apod.;
naproti tomu napf. kruznice neni konvexni.

Uvédomte si, Ze prunikem konvexnich mnozin je zase kon-
vexni mnozina. Tento prinik muZe byt poptipadé¢ prazdny.
Zajimava Hellyova véta vSak uddva pfirozenou postacujici
podminku, kterd zajiStuje neprazdnost pruniku vétsiho poctu
konvexnich mnozin. Véta zni takto:

Je-li v n-rozmérném prostoru (n = 1, 2, 3) ddn konecny pocet
konvexnich mnogin, jichZ je alesport n + 1 a z nichg kagdych
"n -+ 1 md spoleény bod, pak vSechny tyto mnoZiny maji spolecny
bod.

Obr. 80 a, b.

V tloze 108 jsme tedy feSili zvlastni ptipad této véty (pro
useCky); véta plati dokonce pro kazdé pfirozené Cislo n (pfi-
pady n =1, 2, 3 jsme vyznalili pouze pro vét$i nizornost).
S jednim z mozZnych dikazi se zde seznimime. Obecnou
myslenku vylozime v rovinném pfipadé, tj. pro n = 2. Dfive
si vak vysvétlime nékolik jednoduchych pojmt a tvrzeni,
které budeme potfebovat.
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Obr. 81. Obr. 82.

Poznamka 2. V rovin€ zvolme kartézskou soustavu sou-
fadnic. Jsou-li X = (x,, x,), Y = (yy, ) dva body této roviny,
pak jejich soutem minime bod

X+Y=0+y, x+3)
(obr. 81). Obdobné A-nasobkem (kde 4 je realné Cislo) bodu
X = (x,, x,) minime bod

AX = (Axy, Axy)
(obr. 82). Jsou-li tedy napf. A, p redlna Cisla a X = (x,, x,),
Y = (y1,2) body roviny, pak
AX + pY = (Ax; + w1, A%y + uys).

Polozime-li Z = X + Y, pak plati napf. AZ = X + 1Y,
dale A (uX) = (Au) X, (—1) X = —X apod.

Nyni miZeme jednoduse zapsat mnozinu vSech bodu usecky
XY: jsou to pravé vSechny body tvaru AX + uY, kde 4, u
jsou nezaporna Cisla a plati 4 4 u = 1. Pfedstavte si jednotlivé
soufadnice téchto bodi.

Poznamka 3. Bud A libovolnd mnozina bodd v nasi
roviné. Tato mnozina pochopitelné nemusi byt konvexni,
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avsak zajisté existuji konvexni mnoziny, které ji obsahuji (napf.
celd rovina). Prunik vSech konvexnich mnoZin obsahujicich
danou mnozinu A (tj. ,nejmens$i“ konvexni mnoZinu obsa-
hujici A) nazyvame konvexnim obalem mnoziny A a znacime
conv A. Lehko se dokaze, Ze conv A je skuteéné konvexni mno-
Zina (ostatné jsme se o tom jiz zminili v pozn. 1). Je-li 4
konvexni, pak ziejmé conv A = A. Je-li Bc A, kde 4 je
konvexni, pak conv B< A (pfimo podle definice conv B).

Tak napt. konvexnim obalem kruZnice je kruh touto kruZnici
urleny, konvexnim obalem dvou rtznych boda je tusecka je
spojujici.

Pfedstavme si v nasi roviné m (ne nutné ruznych) boda
X, Xss ... 5 X, (m je pfirozené Cislo). Pak kazdy bod tvaru

Xle + 12X2 + LA + }‘me)

kde koeficienty A;, 25, ..., 4, jsou nezdporna Cisla a A, 4
+ Ay + ... + A, = 1, nazveme konvexni kombinaci boda X,
Xoy ooy X

Neni tézké dokazat, Ze konvexni obal mnoziny A vidy splyvd
s mmoZinou viech konvexnich kombinaci urvoremych od vsech
konecnych podmmogin mnosiny A. Provedte to!

Poznadmka 4. Pomocnda véta: V roviné (resp. n-rozmér-
ném prostoru) bud ddna koneénd mnogina M sklddajici se z m = 4
(obecné m = n —+ 2) riiznych bodii. Pak lze mnoinu M rozloZit
ve dvé meprdzdné a disjunkini podmnoziny X a Y, jejichg kon-
vexni obaly conv X a conv Y maji spolecny bod.

Rozmyslete si smysl této véty pro m = 4 (pfi n = 2); jest-
lize dokaZete tento specidlni pfipad, muzZete vynechat zbytek
této poznadmky a Cist aZ pozn. 5 a 6. VSimnéte si téz, Ze v pii-
padé n=1, m =3 véta tika, Ze ze tii boda pfimky lezi jeden
mezi obéma zbyvajicimi.

Dukaz pomocné véty. V roviné muZeme zvolit kartézskou
soustavu soufadnic tak, aby Zadny z bodi mnoZiny M neleZel
na soufadnicové ose. Jednotlivé body mnoZiny M zapi$me:
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4, = (xli‘yl)s Ay = (%95 92)s «vvs A = Xy Yiu)s

takZe vSechna Cisla xy, y;, %5, ..., ¥, jsou razna od nuly.
Uvazujme soustavu ti¥i rovnic o m nezndmych A;, Ao, . . ., Ayt
Mxy + Aoxo + o oo + Apx,, =0, (1)
Myr+ Ay + .o+ Apyn =0, o)
).1 ‘J[_lz +...+lm :0. (3)
Ponévadz pocet neznamych je alesponl o jednu vétsi neZ pocet
(line4rnich) rovnic, lze najit &isla A;, Agy ..., A, kterd vy-

hovuji nasi soustavé a nejsou vSechna rovna nule. Rozmyslete
si podrobné tento krok: muZete se nejprve zabyvat rovnicemi
(1), (2) a dokazat, Ze existuji dvé fesSeni soustavy (1), (2) takova,
Ze pro vhodné dva indexy 7 -4 j je v prvém feSeni 4, =0,
A; =1 a v druhém naopak A, =1, 4; =0; z téchto dvou
feSeni pak utvofte hledané feSeni soustavy (1), (2), (3).

Budiz tedy 4, 45, ..., 4,, takové feSeni soustavy rovnic
(1), (2), (3). Ponévadz vSechna Cisla A; nejsou rovna nule, jsou
mezi nimi — vzhledem k (3) — ¢isla kladna i zaporna a popf.
i nuly. Pismenem I oznaéme (neprazdnou) mnozinu v$ech téch
indexd 7, pro néZ plati 1, > 0; obdobné ¥ bude (neprazdna)
mnozina téch j, pro néz je 4; < 0. Pak

Cc :I Z Az - 0
a vzhledem k (3) e
Z Z.j == —¢C.
FISh

Vsimnéme si jeSté, ze — v souladu s pozn. 2 — muiZeme
soustavu rovnic (1), (2) zapsat jedinou rovnici
MA; + A4+ ... + 2,4, =0. (4)
Nase feSeni 4;, 4y, ..., 4,, spliiuje tedy podminku (4). Vzhle-
dem k oznaeni, které jsme zavedli v pfedchozim odstavci,
" muzeme podminku (4) psat ve tvaru

Y A4y ( “)‘f;) 4. (5)

iel € jEYF

c
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Vsechny koeficienty v (5) jsou nezdpornd (vlastné kladna)
isla a na kazdé strané davaji soucet 1. Vztah (5) tedy fika,
7e konvexni obaly boda 4; (pro iel) a A; (pro je¥) maji
spole¢ny bod (viz posledni odstavec v pozn. 3).

Mnozina X sloZena pravé ze vSech bodit 4;, kde 7 € I, a mno-
Zina Y sloZena ze vSech zbyvajicich bodi mnoziny M (sem
tedy zatazujeme i ty body A, pro jejichz indexy % mohlo byt
A = 0) tvofi pak pozadovany rozklad mnoziny M. Pomocni
véta je dokazana.

Poznamka 5. Nyni jsme jiz pfipraveni uvést slibeny dikaz
Hellyovy véty. Dukaz provedeme indukci podle m (poctu
danych konvexnich mnozin). Nejmensim, které ptichazi v Gvahu,
je m =3 (obecné m = n -+ 1). V tomto piipad¢ tvrzeni véty
splyva s predpokladem a neni co dokazovat.

Predpokladejme, Ze véta plati pro kazdou soustavu skladajici
se zm = 3 (obecné m = n -+ 1) konvexnich mnozin. Vezméme
m -+ 1 konvexnich mnoZin

Kl) KQ) % i 3 Kma Km +1 (*)
takovych, ze kazdé tfi (n + 1) z nich maji spole¢ny bod.

Ubereme-li z (*) mnozinu K; (1 =1, 2,..., m + 1), pak
zbylych m mnozin ma podle indukéniho predpokladu spoleény
bod, ktery oznatime A; (je-li vice spole¢nych bodu, zvolime
libovolny z nich). Jestlize pro nékteré dva indexy 7 + j plati
A; = A, pak tento bod nélezi v§em mnoZinam (*) a jsme hotovi.
Necht jsou tedy vSechny body 4,, A, ... , A, navzajem ruzné.

Pismenem M oznalime mnozinu bodd A, Ay, ..., Apiq.
Pocet jejich prvka je m +1=4 (obecné =n -+ 2), takze
lze uzit pomocné véty z pozn. 4. Mnozinu M lze rozloZit ve
dvé neprizdné a disjunktni Casti X, Y tak, Ze existuje bod

Aecconv X n conv Y.

Tento bod A zfejmé nalezi véem mnoZindm (*) — viz obr. 83
pro (tyfi mnoziny, kde X = {4,, 43}, Y = {4,, 4,}. Tim je
véta dokazana.
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Obr. 83.

Poznamka 6. V ro-
vinném piipadé (tj. pro
n = 2) je mozno obecnou
myslenku dikazu, kterou
jsme pravé naznacili, jesté
trochu zjednodusit. V§im-
néte si, Ze pomocnou
vétu z pozn. 4 staci vidy
dokézat pro nejmensi
mozné m (tj. pro m =
=4 resp. m = n -+ 1); pro vét8i m je pak ihned zfejma. A to
Ize v rovinném pfipadé provést Cisté geometricky, bez feSeni
rovnic. Potom se dokaze Hellyova véta tak, jako v pozn. 5.
Provedte to!

Jsou ovSem myslitelné i jiné dikazy této zajimavé véty. Nebu-
deme je zde uz popisovat, zato si viimneme nékterych dasledku.

109

Muzeme piedpokladat, ze kazdé dvé usecky, které lezi v pfim-
ce, maji spolecny bod; jinak by vSechny usecky leZely v jedné
_pfimce a byli bychom hotovi. Pak vSechny usecky lezici v jedné
pfimce maji spole¢ny bod (viz feSeni ulohy 108).

Zvolme v roviné kartézskou soustavu soufadnic x, y tak,
aby (vSechny) dané tsecky byly rovnobézné s osou y (obr. 84).
Je-li S jedna z nich, oznatme Cg mnozinu vSech takovych
bodu (e, B) nasi roviny, Ze pfimka y = ax + f ma s useCkou S
spole¢ny bod. Pak Cg je (neprizdna) konvexni mnozina bodu
v roviné (ovéite!). Pfitom kazdé tfi takové mnoZiny maji spo-
le¢ny bod (utvoteny z koeficientd pfimky, kterd neni rovnobézna
s osou y a protind pfislusné tii usecky; uvédomte si, Ze takova
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Obr. 84. y

0

primka vzdy existuje). Proto podle Hellyovy véty (viz pred-
chozi poznamky) existuje bod (e, f,) spolecny viem mno-
zindm Cy a pfimka y = «yx + f, protind vSechny dané usecky.

Poznamka 1. Dal$im dusledkem Hellyovy véty je napt.
toto tvrzeni: V roviné je dino n = 3 bodit, z nichg kagdé 11
leZi v néjakém kruhu o poloméru r. Pak vechny tyto body lesi
v kruhu o poloméru r.

Dikaz. Potfebujeme dokazat, Ze v nasi roviné existuje takovy
bod O, od néhoz ma kazdy z danych bodi vzdalenost < r. Jinak
feceno, ptame se, zda existuje bod O spole¢ny vSem # kruhtim,
které maji stfedy v danych bodech a poloméry vesmés rovné r.

Podle Hellyovy véty staci ovérit, ze kazdé tii z uvazovanych
n kruht maji spole¢ny bod.
To je vSak jasné, nebot za
tento spole¢ny bod (X) lze
vzit stfed kruhu, ktery obsa-
huje zvolené tti body (4, B,
C) a mé polomér r (takovy
kruh existuje podle pfedpo-
kladu tvrzeni). Viz obr. 85.

Poznamka 2. Na zékla-
dé pozn. 1 nyni snadno doka-




Zeme toto tvrzeni: V roviné je ddno n = 3 bodit. Vzddlenost
Zddnych dvou z nich nepfevyiuje kladné Cislo d. Pak vSechny

. d
tyto body lezi v jistém kruhu o poloméru 13

Dukaz. Vzhledem k vysledku pozn. 1 staci dokazat, zZe
kazdé tfi z danych » bodu jsou obsazeny v nékterém kruhu

d
o poloméru 1—/3 . Budte tedy 4, B, C tfi z naSich bodu. Lezi-li

v primce anebo jsou-li vrcholy neostrouhlého trojthelnika,

< 173, ktery je

Ize sestrojit dokonce kruh o poloméru £
obsahuje.

Predpokladejme proto, Ze trojuhelnik ABC je ostrouhly.
Alespon jeden z jeho vnitfnich Ghla je = 60°. Necht je to napt.
o = < BAC. Pro polomér r kruZnice opsané trojuhelniku 4BC
plati

BC d d

r=o = = —=,
2 sin o 5 /3 /3

Kazdé tii z danych n bodl jsou tedy obsazeny v jistém kruhu
. d o -
o poloméru —l /3 a tim je vSe dokazano.
Obdobnou vétu (a nejen pro konecné mnoziny) lze vyslovit
1 v n-rozmérném euklidovském prostoru.
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Predbézna uvaha. Prom = 1 staci zvolit dva body o vzda-
lenosti 1, pro m = 2 trojici vrcholid rovnostranného trojihel-
nika o strané 1 nebo d&tvefici vrchold kosoétverce o strané 1,
ktery nema4 dhel 60°. Pro m = 3 je asi nejjednodussim feSenim
soustava osmi bodd A, ..., 4, naznacenych na obr. 86, kde
vSechny nakreslené rovnobéZniky s vrcholy v téchto bodech
jsou kosoctverce o strané 1 bez uhlu 60°. Oznacme si vektory

— =

Vi = Aoy, Vo = Aoy, V3 = @4}

Obr. 86. Ag Az

Je pak
A, =4y + vy, Ay = A+ Vs
Ay =Ag+ vy + vy Ag=Ay+ vy
A; =4y + v+ Vs Ag=A4g+ V2 + Vs
A, = Ay + vy + vy + Vs

Vsechny tyto body A, jsou tedy tvaru

‘ Ay + &1vy + €2V + &3V,
kde &;, €5, &5 jsou Cisla rovna nule nebo jedné (jak souvisi tato
Cisla s dvojkovym vyjadfenim indexu k?). Podrobnéjsi vy-
Setfeni tohoto pfipadu m = 3 vede k obecnému feSeni.
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Vlastni feSeni. P¥i m = 1 stadi vzit dva body o vzdalenosti
1. V dalsim tedy bude m = 2 dané pfirozené ¢islo. V roving
existuje soustava vektord v, vy, ..., V,, téchto vlastnosti (| v |
znali délku vektoru v):

|Vll:1 (121,2,.,}%), (1)
O0F vy +cavo+ oo Fepvm | #1 (2)

pro libovolna ¢, ¢y, . . . 5 ¢y, kterd nabyvaji jen nékterych z hod-
not —1, 0, 1, ale asponl dvé z nich jsou nenulova. Toto tvrzeni
je mozno lehko ovéfit matematickou indukci vzhledem k m
(= 2.

Ukazeme, ze pozadované vlastnosti ma mnozina S skladajici
se z 2™ bodu tvaru

A=A+ &V, + &Vs + ... + EpVms

kde A4, je libovolny pevné zvoleny bod v na$i roviné a g
(¢=1,2, ..., m)jsou Cisla rovna nule nebo jedné.

Bud 4 bod mnoziny S odpovidajici skupiné ¢isel &y, &y, ... 5 &y
rovnych nule nebo jedné. Z (1) a (2) plyne, Ze v S existuje pravé
m bodd, jejichZ vzdalenost od 4 je 1. Jsou to totiz pravé ty
body, jejichz pfislusné skupiny Cisel &,..., &, se lisi od
&1y E€oye.ny &, pravé na jednom misté, tj. |é& — & | +

+ & — & +.eot+ém—eml =1

111

Utvoime souclty vSech Cisel v jednotlivych fadcich a sloup-

y . ¥ ¥ v o . n
cich a oznatme p nejmensi z téchto souctd. Je-li p = 2>
pak

1

7277 n

2

Y
v

np

a jsme hotovi.
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—g— . Abychom mohli
lépe vyjadfit myslenku dikazu, pfedpokladejme napt., Ze
pravé prvy fadek ma soucet p a Ze pravé na prvanich ¢ mistech
v ném jsou kladna ¢isla; jinak by byla tivaha obdobna. V nasem
pfipadé se soulet vSech Cisel v poslednich » — ¢ sloupcich
rovna alespon Cislu (n — p) (n — q), zatimco soudet vSech Cisel
v prvnich ¢ sloupcich bude nejméné pq. Plati tedy

Zbyva tedy prozkoumat moznost p <

s=z(m—p)(n—q +pg=n"—np+ g +2p9=
L e _ 1 e
=" +2(n 2p) (n — 2q) > 5
nebot n > 2p = 24.
Uloha je rozfeSena.

112

Predstavme si v prostoru kartézskou soustavu soufadnic,
takZe body mizeme scitat a nasobit ¢isly ,,po soufadnicich*, tj.
tak, jak je to naznaceno v pozn. 2 za feSenim ulohy 108. Zapis

Alc—l + Alc - Bk—-1 + Bm (1)

kde k=1, 2, ..., n, pak vyjadfuje pfedpoklad ulohy, Ze dvo-
jice Ay—, A a B,—,B, maji spole¢ny stied.

PiSice rovnosti (1) se stfidavymi znaménky, dostaneme po
secteni

A, + A, = B, + B,, je-linliché,
A, — A, =B, — B,, je-linsudé.

V prvém ptipadé tedy B, = B, jediné pro B, = A4,, zatimco
v druhém B, = B, vidy.
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Pifedbézna poznamka. Pfi feSeni této zajimavé udlohy
budeme potfebovat nékteré zakladni pojmy z matematické
analyzy. Bude proto uzitetné, kdyz si je nejdfive pfipome-
neme.

Bud Z mnozina bodt v prostoru. Bod A nazyvame Aromad-
nym bodem mnoziny Z, jestlize v libovolné jeho blizkosti se
hromadi body mnoziny Z, ¢ili pfesnéji, kdyz kazda koule
o stiedu A4 obsahuje nekonecné mnoho bodd mnoziny Z.
Mnozinu Z spolu se viemi jejimi hromadnymi body nazyvame
uzavérem Z a znalime uz Z.

Rikdme, Zze bod A je Lmitou posloupnosti boda {4 }r—1
jestlize kazda koule o stfedu 4 obsahuje vSechny Cleny této po-
sloupnosti, az na kone¢ny pocet. V tomto pripadé téz rikame,
Ze posloupnost konverguje (k bodu A). VSimnéte si, Ze posloup-
nost muze mit nejvyse jednu limitu a Ze uvedend definice je pfi-
rozenym zobecnénim znidmé definice limity Ciselné posloup-
nosti.

Bud Z zdola omezena nepridzdna mnozina redlnych Cisel
(tzn., ze pro kazdé z € Z plati 2 = ¢, kde ¢ je konstanta). Pak
existuje nejvetdi dolni mez mnoZiny Z, tj. takové Cislo 7, Ze pro
kazdé z € Z plati 2 = r a pro kazdé & > 0 lze najit takové
2e€Z,2er+ &>z =r. Toto lslo r, které je ziejmé jediné,
nazyvame infimem munoziny Z. Obdobné maji shora omezené
neprazdné mnoZiny redlnych Cisel tzv. supremum.

Bud {a,};-1 omezend posloupnost redlnych Cisel (tj. takova,
Ze pro vSechna pfirozend » plati | a, | = C, kde C je konstanta).
Tato posloupnost nemusi mit limitu, jak ukazuje ptiklad a, =
= (—1)n. Je viak svrchované dulezité, Ze lze wybrar podpo-
sloupnost {ank}]‘:’:l (kde n, < m, < my < ... jsou piirozena
Cisla), kterd uZ lLimitu md. Tuto vétu lze celkem jednoduse
dokédzat postupnym pulenim intervalu (—C, C) resp. téch
jeho casti (podintervall), které obsahuji nekonetné mnoho
Clentt dané posloupnosti; pfitom vime, Ze kazdd monoténni
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posloupnost (pfi dikazu vytvoii krajni body zmenSujicich se
intervald dvé takové posloupnosti) ma limitu (totiz své in-
fimum resp. supremum).

Obdobn¢ z kazdé omezené posloupnosti boda {4,};7- v pro-
storu (tj. takové, kterd je obsaZena v néjaké kouli), lze vybrat
konvergentni podposloupnost. Toto tvrzeni lze dokdzat trojim
uzitim véty z predchoziho odstavce pro kartézské souradnice
¢lenti dané posloupnosti.

Doporucu]eme Ctenafum, aby si dukladné rozmysleh pojmy
naznacené v této poznimce.

Vlastni feSeni. Pfedevsim je jasné, Ze danid mnoZina M je
omezend, tzn. soubor X vSech kouli, které ji obsahuji, je ne-
prazdny. Budiz r infimum polomért vSech kouli z X. Je-lir = 0,
neni co dokazovat. Bud tedy » > 0 a necht K, = (S,,r,),
n=1,2,...,jsou koule z X takové¢, Ze (nerostouci) posloup-
nost polomért {r,}_1 konverguje k Cislu » (z definice infima).
Posloupnost bodd {S,} je omezend, nebot je obsaZena napt.
v kouli o poloméru r;, kterd ma stied v libovolném bodé mno-
ziny M. Proto lze vybrat podposloupnost {S, ., konvergujici
k jistému bodu S; pfisluSnd posloupnost poloméri {r, }=
pak ovsem opét konverguje k Cislu ». Koule K = (S, ») obsa-
huje mnozinu M (kdyby néktery bod z M nelezel v K, pak by
nelezel ani v K, pro velké » — nakreslete si obrazek) a zadna
jind koule o men$im poloméru tuto vlastnost nema (jak plyne
z minimality 7).

Podle predpokladu tlohy lze k bodu S najit v mnoziné¢ M
(jediny) nejvzdalenéjsi bod P, ktery musi, jak vyplyva z pfed-
choziho, lezet na povrchu koule K. Kdyby mnoZina uz M ne-
méla na povrchu K jiz zadny dalsi bod (kromé P), bylo by

—>

mozno kouli K posunout ve sméru SP tak, aby mnozina M
lezela cela uvniti této posunuté koule (rozmyslete podrobné!),
nacez by bylo mozno sestrojit soustfednou kouli o mens$im
poloméru, kterd by také obsahovala M. To vSak neni mozZné,
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a proto na povrchu koule K lezi jesté dalsi bod Q (# P) mno-
ziny uz M. Ozna¢me R bod soumérné sdruzeny s bodem Q
podle stfedu S. Pak

2r = RQ > RY

prokazdé YeM (< K), Y # Q. Avsak k bodu R musi v mno-
Ziné M existovat nejvzdalenéjsi bod a z vlastnosti bodu Q vy-
plyva, Ze pravé on musi byt timto nejvzdalenéjsim bodem (na-
kreslete si obrazek). Nutné tedy Q € M. Pak ale k bodu S mame
v mnoziné M dva rtizné nejvzdalenéjsi body P, Q. Tento spor
jsme odvodili z pfedpokladu » > 0. Plati tedy » = 0 a véta je
dokézéna.
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