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Předmluva

Vědomosti předpokládané pro porozumění této knížce jsou
zcela elementární a v podstatě vlastní všemu živému. Např. pes
nebo zajíc utíká za kořistí nebo před nepřítelem vždy pokud možno
přímočaře, neboť zajisté zná trojúhelníkovou nerovnost. Také
každá liška ví, že když slepice jsou v kurníku a kurník ve dvoře,
pak slepice musejí být ve dvoře (transitivita inkluse), a nehledá
je jinde. Nejhezčí květy bývají souměrné kolem středu. Onomu po-
divuhodnému řádu podléhali i starořečtí myslitelé, když prvně
studovali řez kuželové plochy rovinou a objevili elipsu. A o dva
tisíce let později se ukázalo, že dráhami našeho i jiných světů
jsou vlastně elipsy. Tato vzrušující harmonie přírody probouzí
v člověku cit, který nazýváme matematikou. A právěpro takového
čtenáře, kterého začíná matematika zajímat, je napsána tato
knížka.

Na obecně přístupné úrovni pokusili jsme se v ní naznačit
jisté charakteristické prvky matematického myšlení. К tomu se
výborně hodí některá témata z dosavadních matematických olym-
piád našich i mezinárodních. Doplnili jsme je ovšem řadou dalších
příkladů v podobném duchu. Přesto však si myslíme, že tento
delikátní úkol nebyl snadný a samozřejmě mohou se vyskytnout
názory na to, jak jsme jej realizovali.

Snažili jsme se, aby byly optimálně zastoupeny všechny složky
tzv. elementární matematiky (aritmeticko-algebraická, geomet-
rická, funkční, logická, numerická, kombinatorická, konečná i ne-
konečná, abstraktní i názorná) a zdůrazněna jejich vzájemná
jednota {viz např. řešení úloh 3, 15, 35, 47, 59, 62, 69, 70,
71, 78, 83, 87, 88, 96, 97, 100, 102, 103, 104, 105, 106, 107,
109, 110, 113 aj.). Rovněž metody důkazů {konstruktivní i exis-
tenění, početní i geometrické, čistě logické, přímé či nepřímé atd.)
možná začátečníka často překvapí. Toto jsme považovali za
důležité, neboť tyto složky či metody jakož i jejich nejrozmani-
tější kombinace se podivuhodně zobecňují v ohromné a neustálého
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vývoje schopné struktuře současné matematiky. Vznikly nové,
značně bohatší a zajímavější obory. Není však těžké rozpoznat
třeba v těch z nejvýznamnějších původní geometrické ideje. Proto
sdílíme přesvědčení, že čtenář, maje na vědomí principy a zá-
klady, z nichž matematika začala vyrůstat, bude se moci správ-
něji orientovat v její dnešní budově. Též proto, že mnohé dnes
centrální pojmy a metody jsou, jak jsme již naznačili, vlastně
přirozeným zobecněním dřívějších představ. Z těchto důvodů
(<a také s ohledem na ostatní vědy a techniku) pokládáme zvolenou
tématiku za zvláště vhodnou a nad jiné osvědčenou na úvod před
vyšším studiem.

Máme však pro to ještě jedno ospravedlnění. Aby nějaká věta
mohla zaujmout v matematice významnější místo, musí být nejen
pravdivá, ale ještě také užitečná, zajímavá a ,,krásnáJeden
z velkých matematiků kdysi prozradil, že se vždy snažil spojovat
v matematice pravdu s krásou, ale kdykoli musel volit jednu nebo
druhou, volil zpravidla krásu. Skutečně, estetický smysl jakožto
výraz všeobecné touhy po harmonii bývá důležitým činitelem
v tvůrčí práci. Domníváme se, že se nám podařilo alespoň ně-
kterými příklady a důkazy vyjádřit hlubokou estetiěnost mate-
matického způsobu myšlení. A jestliže si vzpomenete, jak та-
tematika vznikla, pak vám bude jasné, odkud se v ní vzala
sama spravedlnost a ještě tolik krásy.

Odtud pramení též obecnější výchovný význam této vědy. A je
také nasnadě, jak to přijde, že výsledky matematiky jaksi dobře
zapadají do světa, který pozorujeme, a tím přinášejí neocenitelný
užitek ostatním snahám ělověka.

Chtěli bychom však varovat před idealizováním matematiky.
Soudíme, že žádný model pozorovaných skutečností, tedy ani
matematika, nemůže dávat věrný obraz světa třeba už jen proto,
že zajisté není úplný (neobráží všechny vlastnosti vesmíru). A to
je dobře, neboť tak zůstávají neodhalena mnohá tajemství. Na
druhé straně však nelze popřít, že již sama analýza zákonitostí
v rámci matematiky může leccos napovědět.

Vraťme se k obsahu nynější knížky. Jednotlivými úlohami, které
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jsme vybrali, je možno se zabývat celkem v libovolném pořadí.
Třicet důmyslnějších jsme označili hvězdičkou. Ke každé jsme
připojili nejméně jedno řešení a popř. další poznámky. Čtenářům
však doporučujeme, aby se vždy sami snažili najít řešení anebo
si alespoň promysleli smysl a problematiku úlohy, dříve než si
řešení prohlédnou. Proto také uvádíme nejprve jenom zadání
úloh a až potom vše ostatní. Věříme, že pro člověka nejcennější
jsou vlastní silou vybojované zápasy a přejeme tudíž čtenáři
hodně trpělivosti na obtížnějších místech této knížky.

V poznámkách, které se bezprostředně po některých úlohách
nabízejí, je možno se jakoby mimochodem a v příhodnou chvíli
dovědět o širších souvislostech. Zaměřili jsme se zejména na tyto
okruhy otázek: konvexní funkce, vlastnosti čtyřstěnů, geometrie
mřížových bodů, teorie množin, kombinatorická geometrie, pojem
limity a kompaktnosti. Také v nich můžete najít řadu řešitel-
ských triků, jimiž ostatně hýří snad každá stránka a které mož-
ná někomu pomohou vyhrát matematickou olympiádu, jestliže se
jí zúčastní. V tomto smyslu tedy přehled 113 úloh vytištěných
v prvé části nevystihuje plně obsah knížky. Dokonce v poznámce
za př. 49 se zmiňujeme o jednom problému, jehož řešení nám
není známo. Koho zajímá problém nekonečna, nechť si přečte
např. úlohu 107 a poznámky, které následují za jejím řeše-
ním.

Existují ovšem i jiné populárně vědecké knížky resp. články
vhodné k přemýšlení. Na některé odkazujeme v závěru. Lze totiž
předpokládat, že stupeň vyspělosti získaný svědomitým prostu-
dováním alespoň části materiálů, které zde předkládáme, umožní
čtenáři přistoupit nikoli bez nadějí ke studiu další vážnější lite-
ratury.

Vybranými příklady nemíníme nikoho učit absolutní dokoná-
losti v řešení olympijských úloh, poněvadž dosažení takového
cíle se nám nezdá reálné a pro další rozvoj mladého člověka ani
žádoucí. Prosíme jen, aby čtenář nepodceňoval ideje obsažené
v této knížce. Neboť nejmoudřejším mužům našeho tisíciletí po-
mohla právě euklidovská matematika a z ní plynoucí filosofie
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k principiálním objevům, jimž jako žádným jiným vděčíme za
možnost vědeckého poznání.

Pravda, k pochopení soudobých problémů bude čtenář muset
později studovat další obory a teorie. Přáli bychom si, aby schop-
nosti rozvinuté ve hře s naší knížkou usnadnily mu tuto nelehkou
cestu.

Praha, leden 1975

Autoři
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1.Dokažte, že zlomek
21 n + 4
14w + 3’

v němž n je přirozené číslo, nelze zkrátit.

2. Číslo 1719 + 1917 je dělitelné číslem 17 + 19. Dokažte.3.* Dokažte, že ke každému celému číslu c existuje neko-
nečná množina Mc složená z přirozených čísel a taková, že
pro každé me Mc platí

c = ±l2 ±22 ± . . . ±m2

při vhodné volbě znamének.
4. Najděte všechna přirozená čísla щ pro něž je číslo 2” — 1

druhou nebo vyšší mocninou (s celým exponentem) přirozeného
čísla.

5. a) Najděte všechna přirozená čísla n, pro něž je číslo
2n — 1 dělitelné sedmi.

b) Dokažte, že pro žádné přirozené číslo n není číslo 2n + 1
dělitelné sedmi.

6. Najděte všechna přirozená čísla n, která mají tuto vlast-
nost: Množinu

n 1, и 4“ 2, n 4~ 3, n 4~ 4, n 4~ 5)-
lze rozložit ve dvě podmnožiny bez společného prvku tak, že
součin všech prvků jedné z těchto podmnožin je roven sou-
činu všech prvků druhé podmnožiny.7.Pro které dvojice celých čísel x, у platí, že obě čísla
1 4~ x 1 4- у

, jsou celá? Výsledek znázorněte náčrtkem v ro-

vině pravoúhlých souřadnic x, y.

10



8. Vyjasněte, zda čtverec některého přirozeného čísla začíná
čtyřčíslím 1976.

9. Je dán trojčlen:

Najděte všechna celá čísla x, pro něž je hodnota daného troj-
členu rovna druhé mocnině prvočísla.

10. Nechť n je přirozené číslo a f(x) mnohočlen jedné pro-
měnné x s celočíselnými koeficienty. Písmenem M označme
množinu všech celých čísel v takových, že n dělí f(x). Vy-
šetřte, zda se počet prvků množiny M může rovnat vašemu
oblíbenému číslu.

11. Bud n přirozené číslo. Dokažte, že z čísel 0, 1, 2, . .

3” — 1 lze vybrat 211 různých čísel, z nichž žádné není arit-
metickým průměrem jiných dvou vybraných čísel.

12. Přirozená čísla p, q jsou nesoudělná právě tehdy, jsou-li
nesoudělná čísla 2V — 1, 2q — 1. Dokažte.

13. Jsou-li m, n dvě různá přirozená čísla, pak čísla 22?,i -f-
+ 1, 22” + 1 jsou nesoudělná. Dokažte a odvoďte z toho, že
existuje nekonečně mnoho prvočísel.

14. Zjistěte všechna přirozená čísla, která nelze vyjádřit jako
součet aspoň dvou, ale méně než 1976 po sobě následujících
přirozených čísel.15.* Dokažte, že posloupnost

(2" — 3} (« = 2,3,4,...)
obsahuje nekonečně mnoho čísel, z nichž každá dvě jsou ne-
soudělná.

16. Dokažte, že pro každé přirozené číslo n platí nerovnost
1 5

2x2 - x - 36.

• 5

1 1
1

23 + 33 ' '
L... + <

4 'n3
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17. Zjistěte, pro která reálná čísla x je definována funkce

ь
x

У x
4

— I x
4

a sestrojte její graf.
18. Předpisem

px
У = x2 -f p2 — 1

je dána funkce reálné proměnné x s reálným parametrem p.
Dokažte, že všechny hodnoty, kterých tato funkce nabývá,
leží v intervalu K’ !)•

Vypočtěte parametr p tak, aby funkce měla největší hodnotu
— ; v tomto případě vyšetřte její průběh a načrtněte její graf.4

19. Je možno rozložit množinu všech přirozených čísel na
dvě části tak, aby žádná neobsahovala nekonečnou aritmetickou
posloupnost ?

20. Najděte všechny reálné kořeny rovnice

[/x2 — p + 2 |/x2 — 1 = x,
kde p je reálný parametr.21.Dokažte, že ke každému přirozenému číslu n existuje
přirozené číslo m takové, že platí

(j/2 -f 1)” = |lni

(j/2 — \)n = |!m + 1 — |tm.

1 rn

a zároveň
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22.V oboru reálných čísel řešte soustavu rovnic
x + J + z = a,

x2 + y2 -+- z2 — b2,
xy = z2,

kde a, b jsou daná reálná čísla.
Udejte nutné a postačující podmínky pro daná čísla a, b,

aby existovalo řešení soustavy skládající se z kladných a na-
vzájem různých čísel.

23. Najděte všechny čtveřice reálných čísel xx, x2, x33 xi3
pro něž platí, že součet každého z těchto čísel se součinem tří
Zbývajících je roven dvěma.

24. Je dána soustava rovnic

anxt + dX2x2 + d13x3 = 0,
^21^1 ~í~ ^23-^3 = 0»
a3lxt ~f~ <232^-2 a33x3 — 0

s neznámými xL, x2, x3. Její koeficienty splňují tyto podmínky:
a) an, a22, a33 jsou kladná čísla;
b) všechny ostatní koeficienty jsou záporná čísla;
c) v každé z daných rovnic je součet všech tří koeficientů

kladné číslo.

Dokažte, že daná soustava má jediné řešení = x2 = x3 = 0.25.Řešte soustavu

Cli ! ^2 ~Ь I ^1, ^3 I X3 -f- I dx ÍZ4 I X4 — 1,
+ [ a2 — a3 I *3 4" I a2 — Я4 I *4 = 1,

+ I a3 — a41 x4 = 1,
= 1,

kde ax, a2, a3, a4 jsou čtyři daná navzájem různá reálná čísla.

\ax — a2\xi
I ai a3\ xi -\- \ a2 a3 I x2

\dx —- clx I X4 -j- I d2 — dx \ x2 -j- I d3 —- #4 I x3

13



26.* Řešte soustavu rovnic

*5 + *2 = УХ»

xx + *3 = yXv

*2 + *4 = J>*3>

kde у je parametr.

27. Je dáno n kladných čísel ax, a2, . . ., a,„ jejichž součin
je 1. Dokažte, že platí

*3 + *5 = yx4,

Xi + *1 = JX5S

a\ ~b a2 + ■ • • ~b &n = n>

přičemž rovnost zde nastává právě tehdy, je-li ax — a., —

= ...=an = 1.28.Jestliže ax ^ ^ an a bx < b2 • • ^ bn, pak
platí

(ai -f- a2 + . . . + an) (bx — b2 -(- . . . -j- bn)
^ n (a1b1 + a2b, — . . . + anbn),

přičemž rovnost nastává právě tehdy, je-li buď ax= a2 —
=

. . . = an nebo bx — b2 = . . . = bn. Dokažte.29.Jsou-li d13 d2, d3 kladná čísla taková, že dx ^ d2 ^ d3,
pak pro libovolná nezáporná čísla q, c2, c3 platí

(cxdx -f- c2d2 -f- c3d3) í ci C2
^ C3

d2 d3

2 (A ~r d3)2
Adxd3

A

^ (q + c2 - c3)

Dokažte.30.Jsou-li x, у kladná čísla a m > 1 přirozené, pak platí
xm - ym| x + m 2

Dokažte a zjistěte, kdy nastává rovnost.
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31. Dokažte, že tvrzení
„Pro libovolná reálná čísla a1} a2, . . ., an platí nerovnost

(<h - a2) ifh - a3). . . (oj — an) + (a2 - ax) (a2 — a3) ...

• • • (^2 ~ ^n) “Ь • • • “Ь (^n — ^l) (fln ^2) • • • (^» ^71 1) = ®
je pravdivé pro n = 3an = 5a není pravdivé pro žádné jiné
přirozené číslo n > 2.

32. Jsou-li koeficienty a, 6, c, d mnohočlenu ax3 -f- bx2, тЬ
+ cx + d celá čísla taková, že ad je liché a bc sudé, pak aspoň
jeden kořen tohoto mnohočlenu není racionální. Proč?

33. Nechť mnohočlen p(x) s celočíselnými koeficienty nabývá
hodnoty 5 pro pět různých celočíselných hodnot v. Dokažte,
že p(x) nenabývá hodnoty 8 pro žádné celé x.

34. Po moři (považovaném za rovinu) pluly dvě lodi stálými
rychlostmi při stálých kursech. V 9.00 hod. činila jejich vzdá-
lenost 20 mil, v 9.35 hod. 15 mil a v 9.55 hod. 13 mil. Kdy si
byly lodě nejblíže a jaká byla při tom jejich vzdálenost?

35.* Komplexní číslo z není reálné nezáporné, právě když
lze najít přirozené číslo n a kladná čísla a0, <%,..., an tak, že platí

a0 + ci\Z ~b < • • ~b <^nzn — 0.
Dokažte.36.Dokažte, že všechny nerovnosti

sin a sin 2a ^ sin 3a ^ . . .

platí jen pro čísla tvaru a = ku, kde k je celé číslo.
37. V oboru reálných čísel řešte rovnici

sin x + cos a + sin x cos x = 1.
38. V oboru reálných čísel řešte rovnici

cos" x — sin" x = 1,
v níž n je dané přirozené číslo.

15



39.Najděte všechna čísla v z intervalu O ^ x < 2л, která
vyhovují nerovnicím

2 cos x 5S | У1 + sin 2x — ]/1 — sin 2x [ sS J/2.40.V rovině je dána soustava pravoúhlých souřadnic. Na-
jděte množinu všech bodů, jejichž souřadnice x,y splňují všech-
ny nerovnice

0 x

1 + | cos x | rgj 2 sin2 j;.41.Buďte dány reálné konstanty aís a2, . , ., an (kde n je
dané přirozené číslo) a funkce

n, 0 ^ у ^ л,

1
f(x) = cos (ax + x) + — cos (fl2 + x) + . . . +

1
cos (an + x)2n~1

reálné proměnné x.

Dokažte tato tvrzení:

1° Existuje číslo x0 takové, že /(x0) — 0.
2° Jestliže také /(xx) = 0, pak xx = x0 -f тл pro vhodné
celé m.42.Dokažte, že v každém trojúhelníku platí

3
1 < cos oc + cos (3 + cos у 5S —,

kde a, (3, у jsou velikosti vnitřních úhlů.43.Jsou-li a, (3, у velikosti vnitřních úhlů trojúhelníka,
potom platí

3
cos2 a + cos2 /5 + cos2 у 22 -j-.
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Dokažte. Najděte všechny trojúhelníky, pro něž v předchozím
vztahu platí rovnost.

44. Buď x reálné číslo. Které z čísel cos sin jc a sin cos x je
větší ?45.* Dokažte, že platí

2л Ъж 171
— + COS — =
7 7

cos COS
2 '7

46. V rovině je dáno и ^ 3 bodů, které neleží v jedné
přímce.

Potom lze najít kružnici, která obsahuje alespoň tři z da-
ných bodů, přičemž žádný z daných bodů neleží uvnitř této
kružnice. Dokažte.47.* V rovině je dána množina n bodů (n 3), každé dva
z nich jsou spojeny úsečkou. Označme d délku nejdelší z těchto
úseček. Průměrem dané množiny nazveme každou z těchto
úseček, která má délku d.

Dokažte, že počet průměrů dané množiny je roven nejvýše
číslu n.

48. Konvexní и-úhelník, jehož po sobě následující strany
mají délky als a2, . . ., an, má tyto vlastnosti:

a) všechny jeho vnitřní úhly jsou shodné;
b) pro délky jeho stran platí nerovnosti

JSť a2 = • • • = an.

Pak je ax = a2 = .. . = an. Dokažte.49.* V rovině je dána konvexní množina K. Její bod E na-
zveme ekvichordálním bodem, jestliže všechny přímky této ro-
viny, které procházejí bodem E, protínají množinu К v úsečce
stejné délky.

Dokažte, že množina К nemá více než dva ekvichordální
body.
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50.V rovině je dána kružnice k o středu 5 a poloměru 1.
Buď ABC libovolný trojúhelník, jemuž je kružnice k vepsána,
s označením voleným tak, že

SA ^ SB ^ SC.

Najděte geometrické místo vrcholů А (В, C) všech takových
trojúhelníků.51.V rovině je dán rovnoramenný trojúhelník ABC, jehož
základna AB je menší než jeho rameno. Sestrojte uvnitř úseček
CA, CB po řadě body X, Y a v polorovině XYC bod Z tak, aby
platilo

Д XYZ ^ Д ABC.

Najděte geometrické místo bodů Z.
52. Sestrojte pravoúhlý trojúhelník ABC (v němž <£ ACB =

= 90°), jsou-li dány délky těžnic tx, t2 příslušných к vrcho-
lům A, B. Proveďte diskusi řešitelnosti.

53. V rovině jsou dány dva různé body A, M o vzdálenosti d.
Dále je dáno kladné číslo v. V této rovině sestrojte koso-
čtverec ABCD o výšce v tak, aby bod M byl středem jeho
strany BC.

Najděte podmínku řešitelnosti a zjistěte počet řešení úlohy.
Může být řešením čtverec?

54. Pouhým kružítkem sestrojte střed úsečky, jejíž krajní
body jsou dány.

55. Je dána kružnice k a na ní tři různé body А, В, C.
Sestrojte na kružnici k další bod D tak, aby vznikl čtyř-
úhelník ABCD, jemuž lze vepsat kružnici.

56. Je dán pravoúhlý rovnoramenný trojúhelník APQ s pře-
ponou AP. Sestrojte čtverec ABCD tak, aby přímky BC,
CD procházely po řadě body P, Q. Vyjádřete délku strany
čtverce ABCD pomocí délky a odvěsny daného trojúhelníku.
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57.Je dán pravoúhlý trojúhelník ABC, jehož přepona BC
je rozdělena na lichý počet n shodných úseček. Označme a
úhel, pod kterým je z bodu A vidět tu ze shodných úseček,
která obsahuje střed přepony daného trojúhelníku; dále
označme h výšku a a délku přepony daného trojúhelníku.

Dokažte, že potom platí
4nh

tg a =
(n2 — 1) a

58. Do trojúhelníku ABC se stranami o délkách a, b, c ve-
píšeme kružnici a sestrojíme к ní tři nové tečny rovnoběžné
se stranami daného trojúhelníku. Každá z těchto tečen utíná
od trojúhelníku ABC po jednom trojúhelníku. Do každého
z těchto tří nových trojúhelníků vepíšeme kružnici. Vypočtěte
součet obsahů všech čtyř vepsaných kruhů.

59. V rovině je dán konvexní pětiúhelník P4 s vrcholy At,
A2, A3, A4, A 5. Označme P{ (i = 2, 3, 4, 5) pětiúhelník, který
se dostane z P4 rovnoběžným posunutím, při němž bod Ax
přejde do bodu At (i — 2, 3, 4, 5).

Dokažte, že alespoň dva z pětiúhelníků PJ} P2, P3, P4, P5
mají společný vnitřní bod.

60. V rovině leží pět bodů О, А, В, C, D. Pro jejich vzdá-
lenosti platí OA < OB < OC < OD.

Dokažte, že pro obsah P konvexního čtyřúhelníku, jehož
vrcholy jsou body А, В, C, D, vždy platí

1
P ^

2 (OA + OD) (OB + OC).
Zjistěte, kdy nastane rovnost.

61. Uvnitř stran AB, BC, CA trojúhelníku ABC zvolíme
po řadě libovolné body K, L, M. Dokažte, že obsah aspoň
jednoho z trojúhelníků MAK, KBL, LCM je menší nebo rovný
čtvrtině obsahu trojúhelníku ABC.
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62. Je dán dutý úhel <£ XA Y a uvnitř něho bod M. Na polo-
přímkách AX, AY sestrojte po řadě body В, C takové, aby
přímka BC procházela bodem M a aby obsah trojúhelníka
ABC byl co nejmenší.63.* Jsou dána kladná čísla a, b, c, d. Sestrojte čtyřúhelník
ABCD s AB = a, BC — b, CD — c, DA — d tak, aby jeho
obsah byl co největší. Zjistěte podmínku řešitelnosti.64.* Pro každé čtyři body А, В, C, D v rovině platí

AB .CD A- AD . BC

Rovnost zde nastává, právě když body А, В, C, D leží (v tom-
to cyklickém pořadí) na kružnici nebo v přímce (v uspořádání
А, В, C, D nebo В, C, D, A nebo C, D, А, В nebo D, А, В, C).
Dokažte.

65. Je dán tečnový čtyřúhelník. Dokažte, že úsečky spo-
jující dotykové body protějších stran s vepsanou kružnicí
procházejí průsečíkem úhlopříček.

66. Na kulové ploše o středu S a poloměru r = 1 buďte
dány čtyři body A, В, C, D, které jsou vrcholy čtyřstěnu
ABCD. Jestliže bod 5 leží uvnitř čtyřstěnu ABCD, potom
alespoň jedna ze tří hran AB, AC, AD má délku větší než
|/2. Dokažte.

67. V každém čtyřstěnu existuje takový vrchol, že z úseček
rovných hranám, které z něho vycházejí, lze sestrojit troj-
úhelník. Dokažte.

AC. BD.

68. Je-li odchylka každých dvou stěn čtyřstěnu ostrý úhel,
pak všechny stěny tohoto čtyřstěnu jsou ostroúhlé trojúhel-
niky. Dokažte.69.* Nechť A1A2A3A4 je čtyřstěn, <pik (i Ф k, i, k = 1,
2, 3, 4) vnitřní úhly stěn, protější к hranám AtAk. Potom platí:
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a) alespoň jeden z úhlů q>12, <p13, cpu je ostrý;
b) alespoň jeden z úhlů <p13, cpu, qp23, (p2i je ostrý;
c) alespoň tři ze šesti úhlů cpik jsou ostré.

Dokažte a najděte příklad čtyřstěnu, který má právě tři ostré
vnitřní úhly.

70. * V prostoru je dáno n ^ 3 různých bodů tak, že žádné
tři z nich netvoří trojúhelník s maximálním úhlem menším
než 120°. Potom lze tyto body označit Ax, A2, ..., An tak,
že pro všechna přirozená i, j, k, 1 <,i<j<kf^n platí
<£ AiAjAk ^ 120°. Dokažte.*)71.* V prostoru je dána konečná množina bodů taková, že
každá přímka procházející dvěma jejími body obsahuje ještě
alespoň jeden další bod této množiny.

Dokažte, že všechny body dané množiny leží v jedné přímce.

72. V prostoru je dána bodová množina M, jejíž pravoúhlé
průměty na všechny roviny jsou kruhy.

Dokažte, že M obsahuje kulovou plochu.

73. Je dán čtyřstěn ABCD, jehož hrany AB, BC, CD, DA
se dotýkají jisté kulové plochy. Dokažte, že dotykové body
leží v jedné rovině.

74. Nutná a postačující podmínka к tomu, aby bylo možno
sestrojit kulovou plochu, která by se dotýkala všech hran
čtyřstěnu, je, aby součty všech tří dvojic protějších hran si
byly rovny. Dokažte.

75. Bud SABC čtyřstěn. Existuje-li pět kulových ploch,
z nichž každá se dotýká šesti přímek SA, SB, SC, AB, BC,
CA, pak je tento čtyřstěn pravidelný. Obráceně ke každému

*) V této úloze výjimečně užíváme značky nejen pro tzv. duté
úhly, ale i pro úhly nulové a přímé.
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pravidelnému čtyřstěnu lze sestrojit pět takových kulových
ploch.

Dokažte obě tyto věty.76.* V prostoru je dán bod P a množina bodů M taková,
že její průnik s každou rovinou procházející bodem P je kruh.

Dokažte, že M je koule.
77. Čtyřstěn ABCD je rozdělen ve dvě tělesa rovinou e

rovnoběžnou s přímkami AB, CD; poměr vzdáleností roviny e
od přímky AB a od přímky CD je roven k. Vypočtěte poměr
objemů obou vzniklých těles.

78. Na jaký nejmenší počet čtyřstěnů lze rozřezat krychli?

79. Body A13 Ao, .. ., An jsou právě všechny vrcholy kon-
vexního mnohostěnu,

d = max AtAj pro i ,j — 1, 2,..., n.

Dokažte, že vzdálenost každých dvou bodů tohoto tělesa je
menší nebo rovna d.

80. Výšky čtyřstěnu ABCD (tj. přímky vedené vrcholy
kolmo к rovinám protilehlých stěn) se protínají v jednom
bodě právě tehdy, platí-li

AB2 + CD2 = AC2 + BD2 = AD2 + BC2.
Dokažte.

81. V prostoru je dána úsečka AB a přímka p J_ AB.
Najděte geometrické místo průsečíků výšek trojúhelníků ABX,
probíhá-li bod X přímku p.

82. Je dán bod A a úsečka BC. Najděte geometrické místo
všech bodů v prostoru, které jsou vrcholy pravých úhlů, jejichž
jedno rameno obsahuje bod A a druhé rameno má s úsečkou
BC společný aspoň jeden bod.
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83.* Je dán čtyřstěn ABCD a jeho vnitřní bod M; objemy
čtyřstěnů MBCD, MACD, MABD, MABC označme po řadě
VA3 VB, Vc, VD. Dokažte, že platí

->

VA . MA + VB . MB + Vc . MC + VD . MD = 0.84.Čtyřstěn ABCD má vlastnost, že
AB = BC = CD = DA = 1.

Dokažte, že jeho objem je nejvýše ^ ]/3. Může nastat rovnost?
85.* Má-li jediná hrana čtyřstěnu délku větší než 1, pak

je jeho objem menší nebo roven
1

. Dokažte.
886.* Je dán čtyřstěn ABCD a bod D13 který leží uvnitř

podstavy ABC. Rovnoběžky к přímce DD13 vedené vrcholy
А, В, C, protínají po řadě roviny BCD, CAD, ABD v bo-
dech A13 B13 Cx.

Dokažte, že objem čtyřstěnu ABCD je roven jedné třetině
objemu čtyřstěnu87.* Čtyři body čtyřstěnu, které neleží v jedné rovině, mají
stejný součet vzdáleností od rovin jeho stěn. Dokažte, že
stěny tohoto čtyřstěnu jsou navzájem shodné trojúhelníky.88.* Najděte geometrické místo středů všech kruhů o polo-
měru ~, které lze umístit do dané krychle o hraně 1.

89. Je dán čtyřstěn ABCD a jeho vnitřní bod X. Dokažte, že
existuje kladné číslo r takové, že každá koule o poloměru r,
která neobsahuje žádný z vrcholů А, В, C, D, neobsahuje ani
bod X.

90. Soutěže se zúčastnilo pět žáků А, В, C, D, E. Kdosi
předpověděl, že výsledné umístění bude ABCDE. Tato před-

i*
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pověď se však nesplnila: žádný soutěžící nebyl na předpově-
děném místě a žádná dvojice bezprostředně za sebou násle-
dujících soutěžících nebyla předpověděna správně.

Kdosi jiný předpověděl umístění DAECB. Tato předpověď
byla správnější: právě dva soutěžící byli na předpověděných
místech a právě dvě dvojice bezprostředně za sebou násle-
dujících soutěžících byly předpověděny správně.

Jaké bylo skutečné výsledné umístění?
91. Je dáno n ^ 3 bodů, z nichž žádné tři neleží v přímce,

a množina U skládající se z n (různých) úseček, které spojují
vždy dva z daných bodů.

Pak lze z daných n bodů vybrat k 3 bodů A1} A2, . . ., Ak
tak, že všechny úsečky АгА2, A2A3, ..., Ak—XAk, AkA1
náležejí množině U. Dokažte.92.* Sedmnáct osob si navzájem dopisuje, každá z nich se
všemi ostatními. V celé korespondenci se objevují celkem jen
tři různá témata. Každá dvojice osob si spolu dopisuje pouze
o jednom z těchto témat.

Dokažte, že existují alespoň tři osoby, které si navzájem
píší o témže tématu.

93. Kolik existuje (navzájem neshodných) trojúhelníků,
jejichž délky stran jsou přirozená čísla nepřevyšující dané při-
rozené číslo и?

94. Na stole leží patnáct časopisů, které jej celý pokrývají.
Dokažte, že lze ubrat sedm z nich tak, aby zbývajících osm
časopisů zakrývalo alespoň osm patnáctin plochy stolu.

95. Jaký je největší možný počet oblastí, na které rozdělují
kruh úsečky spojující n bodů daných na jeho obvodu? ж96.* V rovině je dáno 100 bodů, z nichž žádné tři neleží
v přímce. Uvažujme všechny trojúhelníky, jejichž všechny
tři vrcholy jsou některé z daných bodů.
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Dokažte, že nejvýše 70 % uvažovaných trojúhelníků jsou
trojúhelníky ostroúhlé.97.* Trojúhelník, jehož vrcholy jsou označeny čísly 1, 2, 3,
je rozdělen na konečný počet menších trojúhelníků, z nichž
každé dva mohou mít společný pouze vrchol anebo celou
stranu. Každý z vrcholů těchto menších trojúhelníků je ozna-
čen jedním z čísel 1, 2, 3, a to tak, že se na žádné straně zá-
kladního trojúhelníku neobjevuje číslo jeho protějšího vrcholu;
jinak je označení libovolné.

Dokažte, že vrcholy alespoň jednoho z menších trojúhelníků
jsou označeny třemi různými čísly 1, 2, 3.

98. Zrcadlením podle průměru ciferníku hodin přejdou
ručičky do nových poloh, které mohou být v rozporu s me-
chanismem hodin, tzn. nemusejí ukazovat možný čas. (např.
v pravé poledne nedává obraz ručiček podle průměru 9—3
možný čas.)

Pro které časy a pro které polohy osy souměrnosti vzniká
po zrcadlení možný čas?

99. V rovině buď dána soustava kartézských souřadnic
s počátkem P. Body, jejichž obě souřadnice jsou celá čísla,
nazveme mřížové body. Budiž p > 2 dané přirozené číslo.
Mřížový bod (p, k), kde 1 ^ k ^p — 1, označme Ak.

Dokažte, že p je prvočíslo, právě když se počet mřížových
bodů uvnitř každého z trojúhelníků

РАгА2, PA2A3, . . ., PAp—2Ap—i

1
1).rovná číslu (p

2

100.* V rovině je dáno nekonečně mnoho bodů, jejichž
všechny vzájemné vzdálenosti jsou přirozená čísla.

Dokažte, že všechny tyto body leží v jedné přímce.
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101. Najděte všechna reálná čísla x, pro něž platí
1 1 1

1 + x sin > 0.cos
2X X102.* Každému reálnému číslu x je přiřazeno reálné číslo

A (x). Přitom pro libovolná reálná čísla x, у platí
A (x + y) = A (x) + A (y),
A (xy)

Dokažte, že je buď A (x) = x pro všechna x anebo A (x) = 0
pro všechna x.103.* Budiž dána posloupnost

Ci — Q>\ + <z2 + . . . -f- u8,

c2 = + a\ + . . . + a|,

A(x) . A(y).

cn — -[- a” + • • • +

kde a13 a2, . . ., a8 jsou reálná čísla, ne všechna rovná nule.
Nechť dále nekonečně mnoho členů posloupnosti {c„} je
rovno nule. Zjistěte všechna přirozená čísla n, pro která je
cn 0.

104. Najděte všechny funkce /(x) definované v intervalu
<0, 1) takové, že pro libovolná čísla xl3 x2 z tohoto intervalu
platí

/ Ol) —/О2) ^ Ol - x2)2.
105.* Dokažte, že к libovolné skupině číslic (v níž na prvém

místě není nula) existuje přirozená mocnina dvojky, jejíž de-
sítkový zápis začíná touto skupinou.

106.* Vrcholy pravidelného w-úhelníku (n ^ 6) jsou obar-
vény několika (alespoň dvěma) barvami, každý vrchol jednou
barvou. Přitom všechny body téže barvy tvoří vrcholy pra-
videlného mnohoúhelníku.
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Dokažte, že mezi těmito barevnými mnohoúhelníky lze najít
dva shodné (a různé).

107.* Každému reálnému číslu л; je přiřazeno reálné číslo
f(x). Přitom je splněna tato podmínka: Existuje kladná kon-
stanta M tak, že nerovnost

Z /(*) í < M
x<eK

platí pro každou konečnou množinu К reálných čísel.
Dokažte, že pro některé c je f(c) = 0.

108. V rovině leží n ^ 3 úseček tak, že každé tři z nich mají
společný bod. Dokažte, že lze najít bod společný všem těmto
úsečkám.109.* V rovině je dáno n ^ 3 navzájem rovnoběžných
úseček. Přitom pro každé tři z nich existuje přímka, která je
všechny protíná.

Dokažte, že některá přímka protíná všech n daných úseček.110.* Dokažte, že pro každé přirozené číslo m existuje
neprázdná konečná množina S bodů v rovině s tou vlastností,
že ke každému A e S lze najít v S právě m bodů, jejichž vzdá-
lenost od A se rovná jedné.111.Je dána čtvercová tabulka

ai\ ai2 • •

<^21 ^22 • •

<hn
&2n

anlan2 • •

sestavená z celých nezáporných čísel, která splňuje tuto pod-
minku: jakmile ai} = 0, pak

ail ai2 "b • • • ain + alj 4“ a2j 4" • • • + anj =

Q"nn>
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Dokažte, že pro součet s všech čísel dané tabulky platí
1

2
s ^

112. V prostoru jsou dány body A0, A1} A2, . . ., An = A0.
Zvolme bod B0 a sestrojme další body Blf B2, . . ., Bn tak,
aby pro každé k = 1, 2, . . ., n střed dvojice Blc—1 Bh splynul
se středem dvojice Ах—^Аь.

Udejte nutné a postačující podmínky pro to, aby Bn — B0.113.* Nechť M je množina bodů v prostoru taková, že ke
každému bodu prostoru lze v množině M najít právě jeden
nejvzdálenější bod.

Dokažte, že množina M je jednobodová.
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1

Poněvadž
3 (14я + 3) - 2 (21я + 4) = 1,

je každý společný dělitel čísel 14n + 3, 21 w -f 4 dělitelem 1,
takže čitatel a jmenovatel jsou nesoudělná čísla, c. b. d.

2

První řešení. Platí

1719 + 1917 = (1719 - 1717) + (1717 + 1917) = 1717 (172 - 1) +
+ (17 + 19) (1716 - 1715.19 + . . . + 19г ) = 1717 .16. 18 +
+ 36 . В = 36 (А + В), kde А = 1717 . 8, В = 17l ! - 1715.

. 19 + . . . + 1916 jsou přirozená čísla. Číslo 171э 4- 1917 je tedy
dělitelné třiceti šesti, c. b. d.

Druhé řešení. Poněvadž 17 + 19 = 36 = 4.9, musíme
o čísle x — 1719 + 191? dokázat, že je dělitelné oběma nesou-
dělnými čísly 4 a 9. To je však snadné; platí totiž

1719 = (16 + l)19 = 16a + 1,
1917 = (20 - l)17 = 20b - 1,

odkud
x — A (4a + 5b)

(a, b jsou přirozená čísla), a podobně

1)19 = 18c - 1,1719 = (18
1917 = (18 + l)17 = 1,

odkud
x = 9 (2c + 2d)

(c, d jsou opět přirozená čísla).

Zobecnění. Jsou-li p, q dvě po sobě následující lichá čísla,
je číslo pq + qv dělitelné číslem p + q.
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Důkaz. Platí

pa + qP = (pa - 1) + (qv + 1) =
= 0~i) O®-1 + P9~2 + . . • + 1) +
+ 0 + 1) (qp~l - qp~2 + ... + i) =
= 0 — 1) (2m + !) + (?+!) (2n + 1)»

neboť čísla pq~~x + P9~2 + . . • + 1, qv
jsou lichá (lichý počet lichých sčítanců). Můžeme předpokládat,
že je např. p < q, takže p — q 2, p — 1 = q + 1. Pak ale

qp~2 + . . . + 1

p9 + qv 2 O - i) + n + i) =
= o — i + q + i) O + n + i) =

= O + q) (pn + n + i),
c. b. d.

3

Můžeme předpokládat, že c ^ 0. Nejdříve dokážeme, že ke
každému celému c ^ 0 existuje přirozené číslo m takové, že

í = ±l2i22±...±w2

při vhodné volbě znamének. Pro c = 0, 1, 2, 3 máme vyjádření
0 = l2 + 22

1 = l2, 2 = -l2 - 22

Poněvadž dále

O)

52 - 62 + 72,
32 + 42, 3 = -l2 + 22.

32 -f 42

(m + l)2 — (m + 2)2 — (m + 3)2 + (m + 4)2 = 4, (2)

plyne naše tvrzení indukcí.
To je zároveň klíč к řešení, neboť podle (2) platí

(m + l)2 — (m + 2)2 — (m + 3)2 + (m + 4)2 —

(m + 5)2 + (m + 6)2 + (m + 7)2 — (m + 8)2 = 0,
takže v (1) můžeme m nahradit čísly m + 8, m + 16 atd.
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4

Číslo n = 1 vyhovuje požadavkům úlohy, a proto budeme
v dalším předpokládat, že je n ^ 2. Má platit

1 =am,

kde m > 1, a jsou přirozená čísla. Především je jasné, že číslo
a musí být liché a větší než 1; pišme tedy a = 2k -f 1, kde
k je přirozené číslo.

Je-li m sudé, m = 2p, dostaneme z (1)
2» - 1 = (2k + 1 )2p

2n = [4 (k2 + *) + lp + 1,
2” = 4K + 2,

kde jFC je přirozené číslo. Pak ale

(1)2n

2n~1 = 2K + 1,
což není možné.

Zbývá tedy druhá možnost, že m je liché. Pak z (1) plyne
(2)2n =\a + 1) A,

kde A = a”1-1 — am~~2 -f ... — a + 1 je součet lichého počtu
m lichých sčítanců, přičemž pro přirozená 2 ^ q m — 1
platí aq — aq l — aq l (a — 1) > 0. Číslo A je tedy liché
a větší než 1, takže ani vztah (2) není možný.

Úloha má jediné řešení n — 1.

5

Tabulka

5 6 7 8 9 10l I 2 3 ! 4n
! I

31 63 127 255 511 10237 1532n - 1 1

1 3 0 1 i 31 í 3'| o o 1zbytek
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vede к domněnce, že hledaná čísla я budou násobky tří. Proto
budeme pro zbývající čísla я > 10 rozlišovat tři možnosti

ct) n — 3k,
kde k je přirozené číslo.

V případě a) platí
2" - 1 = 23fc - 1 = 8fc - 1 = (7 + l)fc - 1 - 7A,

kde A je přirozené číslo; skutečně je tedy 2n — 1 dělitelné
sedmi.

V případě /3) máme
2» - 1 = 2 w - 1 = 2.8fc - 1 = 2 . (7 + l)fc - 1 = 1B + 1
(В přirozené), což znamená, že číslo 2" — 1 dává při dělení
sedmi zbytek 1.

Konečně v případě y) lze psát
2» - 1 = 23fc+2 - 1 = 4.8fc - 1 = 4 . (7 + l)fc - 1 = 1C + 3

(C přirozené), takže číslo 2n — 1 dává nyní při dělení sedmi
zbytek 3.

Řešení úlohy a) jsou tedy právě ta přirozená čísla и, která
jsou násobky čísla 3.

b) Poněvadž v žádném z probraných případů nebyl zbytek
čísla 2n — 1 při dělení sedmi roven číslu 5, nemůže být číslo
2n + 1 (které je o 2 větší než 2n — 1) dělitelné sedmi pro žádné
přirozené n, c. b. d.

/3) n = 3k -\r 1, у) я = 3k + 2,

6

První řešení. Označme M — {n, n + 1, и + 2, n + 3,
я + 4, n + 5} a buďte j3 obě hledané podmnožiny. Budiž
p prvočinitel čísla aeM; pak je např. aeA, takže existuje
aspoň jedno číslo b e В (tedy b Ф a), které je rovněž dělitelné
prvočíslem p. Pak i rozdíl a — b je dělitelný prvočíslem p
a protože 0 < | a — b \ Ф 5, platí, že

p je buď 2 nebo 3 nebo 5.
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Je zřejmé, že 5 může být prvočinitelem jedině čísel n, n + 5,
(jinak by M neobsahovala dva násobky pěti). Množina

N = (я -j- 1, я + 2, n + 3, я -f 4}
obsahuje tedy jedině čísla tvaru 2a . 3'9 (a, /5 celá nezáporná).
Množina N však obsahuje dvě čísla sudá a dvě lichá. Obě
lichá čísla z N můžeme tedy napsat ve tvaru

3 ’, 3Ó
s přirozenými exponenty. Avšak | 3-' — Зл | < 4, a protože

3Ó je číslo sudé, platí | 3y — 3'5 | '= 2. Zvolíme-li ozna-
čení tak, aby bylo у > S, bude

3/ -3d = 3k = 2,
kde k je přirozené číslo; to však není možné.

Dokázali jsme, že žádné přirozené číslo n nemá vlastnost
popsanou v zadání úlohy.

Druhé řešení. Množina (я; n + 1; n + 2; n + 3; n -f 4;
n + 5} se skládá ze šesti po sobě jdoucích přirozených čísel.
Předpokládejme, že ji lze rozložit ve dvě podmnožiny poža-
dováných vlastností. Potom zřejmě součin

V

— n (n (n -\- 2) (n 4~ 3) (n -f- 4) (n + 5)

je čtvercem přirozeného čísla. Rozložíme-li tedy součin Sn
na prvočinitele

sn=P\'/„r,
kde p19 p2, . . ., pm jsou navzájem různá prvočísla, budou

rm přirozená sudá čísla. Přitom prvo-exponenty rl3 r2 . .

číslem pí musí být dělitelná aspoň dvě z čísel,я, я + 1, . .

я + 5 (součiny prvků obou podmnožin musí být dělitelné
prvočíslem p{).

Ze šesti po sobě následujících přirozených čísel je aspoň
jedno dělitelné pěti. Proto, jak jsme ukázali, aspoň dvě z čísel
я, я + l, . . . , я + 5 musí být dělitelná pěti. Protože čísel я,

• 3

• 3

34



n + 1, .. ., n + 5 je šest, nastane tato možnost jen tehdy,
bude-li n dělitelné pěti, tj. když

n — 5k, (1)
kde k je přirozené číslo.

Protože nejvýše jedno ze šesti po sobě jdoucích čísel je
dělitelné sedmi, nemůže být v našem případě žádné z čísel
n, я -j- 1, . . ., я + 5 dělitelné sedmi. To je možné jen tak, že

(2)n = 11 -f- 1,
kde / je celé nezáporné číslo.

Jedna z podmnožin obsahuje číslo n. Součin prvků druhé
podmnožiny je tedy dělitelný číslem n. Potom i součin

(n + !)(« + 2) (n + 3) (n -f- 4) (n + 5) = A . n -f- 120

je dělitelný číslem n. Poněvadž A je zřejmě celé číslo, je n
nutně dělitelem čísla 120. Vzhledem к (1) však přicházejí
v úvahu jen tito dělitelé čísla 120:

5, 10, 15, 20, 30, 40, 60, 120.

Z nich pouze 15 a 120 splňují podmínku (2). Vypočteme-li
příslušné součiny Sn, tj.

S1& = 27.33.52. 17 . 19,
^120 = 26.32.54 . II2.31.41.61,

vidíme, že u prvočinitelů obou čísel se vyskytují liché expo-
nenty, takže žádné z čísel 515, S120 není čtvercem přirozeného
čísla.

Neexistuje tedy žádné číslo n požadovaných vlastností.

7

Čísla x, у jsou nutně různá od nuly.
[1] V případě x > 0, у > 0 musí být

1 + x ^ у 1 + у ^ xa
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neboli
x — 1 ^jv^x + 1.

Zde máme tři možnosti:

1 у
a) у = x — 1. Potom je = — = 1 celé číslo. Ale

1 + X X + 1 2
= 1

x — 1 }x — 1У

a to je celé číslo právě tehdy, je-li x
dem к x > 0 dostáváme x = 2 nebo 3; příslušné^ = x — 1 =
= 1 nebo 2. Obě nalezené dvojice (x = 2, у = 1), (x = 3,
у — 2) vyhovují úloze, o čemž se můžeme snadno přesvědčit
dosazením,

b) у = x. Pak

1 dělitelem 2, tj. vzhle-

1 —|— x 1 -j- у 1 —)— X 1
= 1 + -.

X X XУ

Nutně x — 1. Dvojice (x = 1, у = 1) vyhovuje úloze.
с) у = x + 1, tj. x = у — 1. To je zřejmě obdobné jako

v a); výsledek zde dostaneme symetrickým obrazem výsledků
z a) podle přímky у — x.

V I. kvadrantu je tedy celkem pět řešení (viz obr. 1).
[2] Je-li x = — 1, pak pro každé celé у Ф 0 dostáváme vy-

hovující dvojici (obr. 1).
V případě x < — 1, у > 0 zřejmě musí platit

(1 + *) а 1+з>^ x,
čili

(1 -I- x) ^3; ^ — (1 + x),
tj.
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\
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Ф -3/

/
9 -4
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Obr. 1.

Potom skutečně

1 —I— лг 1 -f- X

1 + X
= — 1 je celé číslo

У
а

1 Л-у
—

— — 1 je rovněž celé číslo.
x X

Nalezené dvojice jsou opět znázorněny na obr. 1.
[3] Případy = — 1 je zase snadný (viz obr. 1). Mějme tedy

x < —1, у < —1. Pak musí platit
— (1 + x) ^ —у a (1 +y) ^ —x

neboli
x + 1 tZy.Žž x — 1,

37



což však není možné, neboť

X + 1 > x — 1.

V tomto případě nenacházíme tedy žádnou vyhovující dvojici
X, y.

[4] Vzhledem к souměrnosti výsledku podle přímky у = x
nemusíme už IV. kvadrant vyšetřovat.

Tím je celá rovina prozkoumána; úloha má nekonečně mnoho
řešení (viz obr. 1).

8

Všechna čísla zapisujeme v desítkové soustavě. Buď abc . . ./
k cifer

libovolné Л-ciferné číslo (а Ф 0). Ukážeme, že čtverec ně-
kterého přirozeného čísla má za prvních k číslic zleva právě
abc . . . /.

Vezměme čísla

Ni = abc . . ./00 ... 0, N2 = abc . . ./99 ... 9.
k 3k k 3k

Buď n2 největší čtverec přirozeného čísla, který nepřevyšuje
číslo Nv Všimněme si, že n < 102fc. Dále

Nx < (n + 1)2 = и2 + 2n + 1 < + 2 . 102fc + 1 <
< + 103fc — 1 =n2.

Poněvadž tedy
Wi < (n + l)2 < iV2,

začíná číslo (n l)2 číslicemi abc . . ./ a odpověď na otázku
úlohy je kladná.

Poznámka. Rozmyslete si, platí-li obdobné tvrzení pro
vyšší mocniny než druhé.
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9

Pomocí kořenů kvadratické rovnice 2x2 — x — 36 = 0,

jimiž jsou čísla , 4, najdeme rozklad

2x2 — x — 36 = (2x — 9) (x + 4).
Nyní musí být buď

[1] 2x — 9 — ±1, x + 4 = úzp2)
nebo

дг + 4 = ±1, 2x — 9 — ±/>25[2]
nebo

[3] x + 4 = ±p, 2x — 9 — ±p,
kde p je prvočíslo.

V případě [1] dostaneme z první rovnice buď x — 5 nebo
x — 4, načež druhá rovnice dá buď p2 — 9 nebo p2 — —8.
Vychází tedy jedno řešení

x = 5.

V případě [2] dostaneme z první rovnice buď x = —3 nebo
5, což dosazeno do druhé rovnice dává buď p2 = —15x =

nebo p2 — 19. To nevede к žádnému dalšímu řešení.
Konečně v případě [3] musí být x + 4 — 2x — 9; odtud

vychází x = 13, (x + 4) (2x — 9) = 172. Máme tedy druhé
řešení

x = 13.

Úloha je vyřešena; hledaná čísla jsou x = 5 a x = 13.
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10

Buď * celé číslo. Je-li k přirozené číslo, platí

(x + п)к — хк + n . C,
kde C je celé číslo. Proto také

f(x + n) =f(x) + n.F,
kde F je celé číslo. Jakmile tedy x e M, je též x -\- ne M.
Z toho však plyne, že množina M je buď prázdná nebo ne-
konečná.

11

Představme si všechna čísla 0, 1, 2, . .., Ъп — 1 zapsána
v trojkové soustavě. Mezi nimi je právě 2n čísel, v jejichž troj-
kovém zápise se neobjevuje číslice 2. Dvojnásobek každého
takového čísla nemá tedy ve svém trojkovém zápise číslici 1,
zatímco součet dvou různých takových čísel ji má. To zna-
mená, že tato skupina čísel vyhovuje požadavku úlohy.

12

První řešení. Předpokládejme nejprve, že čísla 2^ — 1,
— 1 jsou nesoudělná, a dokažme (sporem), že i čísla p, q

jsou nesoudělná. Kdyby bylo p — km, q = kn (k, m, n při-
rozená, k > 1), měla by čísla 2p — 1 = (2к)т — l, 2q
= (2k)n

24

1 =

1 společného dělitele 2fc — 1 > 1, což by byl spor.
Obráceně, buďte p, q nesoudělná čísla a nechť je např.

p > q (případ p = q — 1 je totiž jasný); dokážeme, že i čísla
2? — 1, 24 — 1 jsou nesoudělná. Poněvadž pro q — 1 to platí,
mějme q > 1. Předpokládejme naopak, že čísla 2J> — 1, 2ř/ — 1
mají společného dělitele d > 1.

Dělme číslo p číslem q a označme r příslušný zbytek: p =
= qt + r, kde ř, r jsou přirozená čísla a 0 < r < q. Čísla
q, r jsou tedy také nesoudělná. Z úpravy
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2? — 1 = 2qt+r — 1 = 2r. 2qt — 2r + 2r — 1 =

= 2r (2«ř - 1) + 2Г - 1 = 2r [{2qJ - 1] + (2r - 1)

vyplývá, že d je společným dělitelem i čísel 2« — 1, 2r — 1,
přičemž máme q > r.

Opakováním postupu naznačeného v předchozím odstavci
(nyní s čísly q, r místo p, q) bychom našli přirozené číslo s,
0 < s < r takové, že čísla 2r — 1, 2s — 1 by měla opět spo-
léčného dělitele d. Pak bychom provedli tutéž úvahu s čísly r,
5 místo q, r atd. Poněvadž p > q > r > s .. ., došli bychom
po konečném počtu kroků к takovému číslu и této posloup-
nosti, že 2U — 1 < d. Pak by ale d nemohlo být dělitelem čísla
2м — 1, což by byl spor.

Čísla 233 — 1,2® — 1 jsou tedy nesoudělná a věta je dokázána.
Druhé řešení. Jsou-li čísla p, q soudělná, pak stejně jako

v předchozím řešení se dokáže, že i čísla 2V — 1, 2q — 1 jsou
soudělná.

Mějme tedy dvě nesoudělná čísla p, q (např. p > q) a pro
důkaz sporem předpokládejme, že čísla 2^ — 1, 2« —- 1 mají
společného dělitele d > 1; přitom d je liché.

Vyjádříme-li číslo 2^ — 1 ve dvojkové soustavě, bude
2® - 1 = 11 ... 1,

kde na pravé straně je právě p jedniček a žádné nuly; analogický
zápis má i číslo 2q — 1.

Vezměme nyní nejmenší přirozené číslo, které je dělitelné
číslem d a jehož zápis ve dvojkové soustavě se přitom skládá
ze samých jedniček; počet těchto jedniček označme m (zřejmě
m > 1). Jinými slovy, m je nejmenší ze všech přirozených
čísel n takových, že 2n — 1 je dělitelné číslem d. Je tedy 1 <
< m % q < p. Ukážeme, že m je společný dělitel čísel p, q,
což bude spor. Dokažme např., že p je násobek m.

Nahraďme ve vyjádření (1) posledních m jedniček nulami,
tj. odečtěme od čísla 2" — 1 číslo 2m — 1. Vzniklý rozdíl bude
tedy dělitelný číslem d. Je-li nyní p — m > m, nahraďme

(1)
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dalších (v pořadí zprava) m jedniček nulami, čímž vznikne
opět číslo dělitelné d (rozdíl dvou čísel dělitelných d). Tak
postupujeme dále. Jsou dvě možnosti: buď po několika kro-
cích všechny jedničky zmizí (takže p bude násobkem m,
c. b. d.) nebo zbude prvních k < m jedniček, za nimiž bude
následovat p — k nul. Poslední číslo je pak rovno (2/,: — 1).
. 2? ~~к a je dělitelné číslem d (jak vyplývá z našeho postupu).
Poněvadž však d je liché, nutně d dělí 2fc — 1. To je ale spor
s volbou čísla m.

Tvrzení je dokázáno.

13

Budiž např. m~> n a pišme m — n -f x, kde x je přirozené
číslo. Kdyby daná dvě čísla byla soudělná, existovala by při-
rozená čísla d > 1, p, q taková, že

22”1 + 1 =d.p, tj. 2*n =d.p- 1,
2*n+l=d.q, tj. 2*n = d.q-\.

(1)
(2)

Poněvadž ale
n+x 22й • 2* ^22П)2ж22?” = 22

dostali bychom podle (1), (2)
d . p — 1 = (d . q

a dále (vzhledem к sudému exponentu na pravé straně)

ir,

A.d = 2,

kde A je přirozené číslo. Z toho plyne, že d = 1 nebo 2.
Avšak nemůže být d — 2, neboť d je dělitel daných lichých čísel.
Je tedy nutně d — 1, což je ovšem spor s naším předpokladem,
že d > 1.

Kdyby bylo jenom konečně mnoho prvočísel

Pl> P‘l) • • • 3 Pki
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pak by některé z nich muselo být společným prvočinitelem dvou
z k + 1 různých čísel 22J + 1, kde j — 1, 2, .. ., k + 1. To
by byl spor s tvrzením dokázaným v předchozím odstavci.
Existuje tedy nekonečně mnoho prvočísel.

Poznámka. Čtenáři jistě znají přímější důkaz posledního
tvrzení.

14

Pro součet r(2s2) po sobě jdoucích přirozených čísel
m, m + 1, • • ., m + r — 1

platí známý vzoreček

’’f,1 1
L (m +j) = — r (2m + r

j=o ^
1).

Z toho především vyplývá, že čísla tvaru N — 2a (a celé ne-
záporné) patří mezi hledaná čísla. Nelze je totiž vůbec vy-
jádřit jako součet alespoň dvou po sobě jdoucích přirozených
čísel, neboť číslo r (2m + r — 1) má zřejmě lichého dělitele
většího než 1.

Hledejme nyní přirozené číslo N vyhovující podmínkám
úlohy, které má alespoň jednoho lichého prvočinitele 2^ + 1.
Můžeme tedy psát

N = (2k + 1) 72,

kde 72 je vhodné přirozené číslo. Vezmeme-li posloupnost
celých čísel

(1)k -)- 1, . . . , 72, 72 + 1, . . . , 72 + k,

která má právě 26 + 1 členů, bude její součet roven číslu
(2k + 1) 72 = N. Číslo N se nám tedy podařilo vyjádřit jako
součet 2k + 1 po sobě jdoucích celých čísel. Několik prvních
členů v (1) však mohou být nekladná čísla; vynecháme-li je
i s čísly к nim opačnými, zbude posloupnost alespoň dvou
po sobě jdoucích přirozených čísel, která má méně než 2k -f 1

72 — k,n
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členů, ale týž součet N (součet vynechaných členů je totiž
nula). Z toho vyplývá, že každý lichý prvočinitel hledaného
čísla N musí být větší než 1976.

Označme nyní 2/ -j- 1 součin všech lichých prvočinitelů
hledaného čísla N, takže

N = (21 + 1) 5,

kde s je (celá nezáporná) mocnina dvojky. Přitom už víme, že
21 -f 1 > 1976, tedy / > 987. Je-li s ^ /, je nutně 5
(nejbližší mocnina dvojky převyšující číslo 987 je 1024). Je-li
s < /, vezmeme opět posloupnost celých čísel

s — /, s — / + 1,. . ., s, s + 1,. . ., s -j- /,

jejíž součet je (21 + 1) 5 = N. Z ní však již dovedeme utvořit
posloupnost po sobě jdoucích přirozených čísel, která má
rovněž součet N. Počet členů této posloupnosti bude

(21 + 1) — 2 (/ — 5) — 1 = 2s.
Proto musí být 2s ^ 1976, tedy opět s ^ 1024.

Zatím jsme dokázali, že hledané přirozené číslo N (pokud
není mocninou dvojky), musí mít tvar

1024

N = 1024.2C. M,
kde c je celé nezáporné číslo a M je součinem prvočísel větších
než 1976.

Dokažme nyní, že právě popsaná čísla N skutečně vyhovují
požadavkům úlohy. Proveďme nepřímý důkaz tohoto tvrzení.

Předpokládejme nejprve, že by takové číslo N bylo součtem
lichého počtu 2r + 1 < 1976 (r ^ 1) po sobě jdoucích při-
rozených čísel. Označíme-li p prostřední z nich, bude N
součtem přirozených čísel

P — r, p — r + 1, . .., p, p + 1, + r,

tj. bude
N = (2r + 1) p.
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Číslo 2r + 1 bude tedy lichým dělitelem čísla N, a proto
2r + 1 > 1976, což je spor.

Předpokládejme nyní, že by naše číslo N bylo součtem
sudého počtu 2r < 1976 (r ^ 1) po sobě jdoucích přiro-
zených čísel. Označíme-li m prvé z nich, bude

N = r (2m + 2r — 1).
Číslo v závorce je liché, proto platí r ^ 1024, tedy 2r ^ 2048 >
> 1976, což je opět spor.

Závěr. Hledaná čísla jsou jednak všechny celé nezáporné
mocniny čísla 2, jednak všechna čísla, která mají všechny liché
prvočinitele větší než 1976 a která jsou zároveň dělitelná
číslem 1024.

15

První řešení. Tvrzení dokážeme sestrojením vybrané po-
sloupnosti s uvedenou vlastností užitím matematické indukce.
Předpokládejme, že každá dvě z přirozených čísel

ax 2"1 — 3, a2 = 2”a — 3, . . ., ak — 2nk
kde 2 = nx < n2 < . . . < nk, jsou nesouděná a sestrojme číslo
ak+l = 2nk+i — 3 nesoudělné s každým z čísel (1) takto:

Označme s = axa2. . . ak. Z s + 1 čísel 2°, 21, . . ., 2S lze
vybrat alespoň dvě taková, že při dělení číslem s dávají týž
zbytek. Nechť jsou to čísla 2a, 29 (a > /?). Pak tedy

2* — 2 ’ = p .s,
kde p je přirozené číslo. Vztah (2) lze psát ve tvaru

(2“-£ - 1) 2'3 = p . s

a poněvadž 5 je liché, plyne odtud, že
2a~'9 — 1 = q . s,

3, (1)

(2)

(3)
kde q je přirozené číslo. Z (3) pak dostaneme

2*-/?+ 2 _ 3 _ 4 # 2«~3 3=4 (^5 T 1) — 3 = 4^5 + 1.
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Stačí tedy vzít

nk+x = a — /9 + 2, ak+1 = Aqs + 1.
Poněvadž zřejmě platí ak+1 > ak, je též nk+1 > nk a v celé
konstrukci můžeme neomezeně pokračovat.

Druhé řešení. Budiž

(1)^13 ^23 • • • 3

k ^ 2 po dvou nesoudělných členů dané posloupnosti. Nechť
Pl3 p2) • • • 3 pr (2)

jsou všechna prvočísla, která dělí některé z čísel (1). Prvočísla
(2) jsou zřejmě lichá, takže podle Fermatovy věty (pozn. za
řešením) platí

2pi~1 = 1 modpj
pro každé i = 1, 2, . . ., r. Položme

(3)

Vhodným umocněním kongruence (3) dostaneme

(4)2s = 1 mod pí

pro každé i = 1, 2, . . ., r. Z (4) plyne, že
2S+1 = 2 mod pt

opět pro každé i = 1, 2, . . ., r. Každé p, tedy dělí číslo
2S+1 — 2 a nedělí tudíž číslo 2S+1

a*+1 = 2S+1 — 3 > 1

3. To znamená, že číslo

je nesoudělné s každým z čísel (1), takže je také různé od
každého z nich. Naznačená konstrukce dokazuje tvrzení.

Poznámka. Jestliže celé číslo a není dělitelné prvočíslem
p, pak číslo ar>—1 dává při dělení prvočíslem p zbytek 1, tj.
platí

(1)av~ i = 1 mod p.
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To je Fermatova věta; můžeme ji dokázat např. takto:
Nechť r13 r2, ..., Гр—L jsou pořade zbytky čísel a, 2a, . .

(p — 1) a po dělení prvočíslem p. Každý z těchto zbytků je
některé z čísel 1, 2, — 1) a platí

a = rx mod p,
2a = r2 mod p,

• У

(p — 1) a = rv—x mod p.
Čísla rx, r2, . . ., Гр—Х jsou navzájem různá (ověřte nepřímo
užitím předpokladu věty). Proto

■ r2 = 1.2 (p - 1).
Vynásobením uvedených kongruencí dostaneme

1.2 (p — 1) . ap~l = rx.r2 гр—х modp
a odtud již plyne (1), neboť součin v (2) není dělitelný prvo-
číslem p.

(2)

16

1 1 1 1 1
< 1 ^

23 — 2 ^+ ...+
3 + . . .23 33 33 -

1 1 1
= 1 +. + +

ri] — n 1.2.3 2.3.4

1 -■+*( 1 1 1
... + +

(n — 1) n (n + 1) 1.2 2.3 2.3

-

1 1 1
+ ... +

(n — 1) n3.4 n (n + 1)

)-í1 51 1 1

( <
2n (n + 1) 42 \ 2 n (n + 1)
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17

Nejprve vyšetříme, pro která reálná čísla x má daná funkce
smysl.

Především musí platit 1
x

— ! x I > 0 neboli
2 1 —

2.x I x

Tuto nerovnici splňuje každé záporné číslo x, neboť levá strana
je v tomto případě záporná; pro nezáporná x je | л: | = x
a nerovnost dává podmínku л; У2. V dalším budeme
proto předpokládat, že je

(1)
Dále stačí už jen ověřit, zda platí

x
, ' л

2 1 * 1 - °;4IX
pak totiž i výraz pod prvou odmocninou v definičním předpisu
dané funkce bude tím spíše nezáporný. Vzhledem к (1) můžeme
však poslední nerovnost ekvivalentně upravit

1

1 -

(H‘
л:

2 ! X 1 +
x

T I *4
^0,

čímž je její platnost ověřena.
Definiční obor dané funkce je tedy určen jedinou pod-

mínkou (1).
X

Položme c = — a = 1 — c, b — У1 — 2c.
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Potom

у — |/a -f b — j/a — b — j' {\!a + b — j/u — b)2 =

- 1 a + b- 2 \a2 - ¥+ a - ř = ]/2 (a - ]/a2^b2) =

= |/2 (l - c - |/(1 ~c)2“" (1 - 2c) = У2 (l - с - Ус2) =

= 1/2(1 - c c I ).

Pro ;c<0jec<0a tedyjy = ]/2 (1
co pro x

Závěr. Pro x t=k 0 je jy = |/2 konstantní a příslušný graf je
polopřímka. Pro 0 ^ л: ^ j/2 je у — У2 — x2 a grafem je
čtvrtkružnice se středem v počátku a poloměrem [/2, která
leží v prvém kvadrantu.

Graf dané funkce je naznačen na obr. 2.

c — (—c)) =1/2, zatím-
0 je c ^ 0 a tedy у = ]/2 (1 -2c) = ]/2 - r2.

У

V#

у
+

0Obr. 2. 12-1

18

Je-li p = 0, máme konstantní funkci у = 0; v tomto pří-
pádě je prvá část úlohy samozřejmě splněna a druhá nepři-
chází v úvahu. Budeme proto v dalším předpokládat, že je
p Ф 0.
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Náleží-li bod A = [я, jy] grafu dané funkce, pak na tomto
grafu leží i bod A' = [—x, —y], jak je vidět přímo z definič-
ního předpisu. Graf funkce je tedy souměrný podle počátku
O = [0,0] pravoúhlých souřadnic, takže jej stačí vyšetřovat
jen pro x ^ 0.

Nejprve máme dokázat, že vždy platí | у | < , tj.
1px

< 2XI X-2 - f +1
neboli

2 | p | x
< 1.

x2 + p2 + 1
Tuto nerovnost lze ekvivalentně upravit na

2|p|x<x2+p2 + l
neboli

0 < (x — | p |)2 + 1,
což platí.

Dále máme zvolit p tak, aby pro všechna x platilo у ^ —4číií
ipx

(1)x2 + p2 + 1 4
a aby pro některé x nastala v tomto vztahu rovnost. Ekvivalent-
nimi úpravami dostaneme

4px ^ x2 + P2 + 1,
0 ^ (x - 2p)2 + 1 - 3p2. (O

3p2 < 0, neboť pak by nerovnost nebyla spi-
3p2 > 0,

Nemůže být 1
něna např. pro x = 2p. Nemůže být ani 1
neboť pak by pro všechna x platila ostrá nerovnost. Je tedy
nutně 1 — 3p2 = 0, tj.

1/3
ř=±-v-
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V tomto případě vztah (1') a tedy i (1) platí pro všechna x a rov-
nost nastane pro x = 2p, tj.

1/3
Pro p = dostáváme funkci

Уз* (2)=

3*2 + 4
1/3

— funkcia pro p =

]/3x (3)=

З*2 + 4
Poněvadž graf funkce (3) se dostane jako obraz grafu funkce (2)
v souměrnosti podle osy x, vyšetříme pouze průběh funkce (2).
Dokážeme, že pro

0 < x < 213
- -

3
je funkce (2) rostoucí a pro

2 |/3
-~3

je funkce (2) klesající.
Označme yl3 y2 hodnoty funkce (2), které přísluší po řadě

к hodnotám x13 x23 pro něž platí
2 1/3

(4)0 ^ xx < *2 ^
Pak je

*2 УЗ *i1/3
У2 -3i

3*1 + 4 3*f + 4

(*2^ *0 1/3
(3*?+~4) (3*1+ 4) (5)(4 — 3*!*2).
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První činitel (zlomek) výrazu (5) je kladný. Z (4) plyne
4

*1*2 < —, takže 4 — 3xtx2 > 0; je tedy i druhý činitel vý-

rázu (5) kladný a tím i y2 —yi> 0 neboli y2 > yv Podobně

se dokáže, že pro x ^ Iе funkce (2) klesající.

Graf funkce (2) sestrojíme užitím této tabulky:

2 1/31
20 1

2 3



Dále užijeme středové souměrnosti grafu vzhledem к bodu
O = [0, 0]; viz obr. 3.

Výsledek. Existují právě dvě funkce

]/3x
У = 3x2 + 4 5

Уз*
У = Зх2 + 4 5

které splňují druhý požadavek úlohy. První z nich nabývá
2 2
j= a druhá pro x — — yj= ; ostatní hod-

1
maxima —pro x

4

noty těchto funkcí jsou menší než .

Уз Гз
1

Poznámka. Tento příklad je možno řešit též elementárními
metodami diferenciálního počtu.

19

Ano. Stačí sestrojit takový rozklad, aby každá část obsahovala
libovolně dlouhé intervaly po sobě jdoucích přirozených čísel.
Např. v obr. 4 jsou čísla jedné části rozkladu značena plnými
kroužky a zbývající prázdnými; čísla 11, . . ., 15 budou tedy
vyznačena plnými kroužky, dalších šest čísel 16, . . ., 21
prázdnými atd.

O -O--o -o--o-

Obr. 4. 1 23456 / 89 10

20

První řešení. Je-li x kořenem dané rovnice, platí

Q\jx2 —p + 2 |/;c2 — \)2 = x2, (1)
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a také obráceně, splňuje-li číslo л; vztahy (1), je kořenem dané
rovnice. Soustavu (1) upravíme

4 |/x2 — p . j/x2 — 1 = p + 4 — 4x2,
x ^ 0 .

Tato soustava je ekvivalentní soustavě

(4 j/x2 — p . j/x2 — l)2 = (/> + 4 — 4x2)2,
* ^ 0,

p + 4 - 4x2 ^ 0,
(2)

a dále soustavě

16(x2 — p) (x2 — 1) = (/> + 4 — 4x2)2,
x ^0,

P + 4 - 4x2 ^ 0 ,

x2 — p ^ 0 ,

x2 - 1 ^ 0
neboli

8(2-/>) x2 = (4 — /))2,
x ^0,

** <^4* =

4 5 (3)
x2 ^p ,

X2 ^ 1 .

Ukážeme, že při p 2 nemá soustava (3) řešení. Je-li totiž
/ ^ 2a /> Ф 4, pak levá strana v rovnici z (3) je nekladná,
kdežto pravá kladná; je-li p = 4, pak nutně x = 0, což však
odporuje poslední podmínce v soustavě (3).

V dalším proto předpokládejme, že je p < 2. Pak musí být

(4 -Pfx2
8 (2 — p) ’

V tomto případě jsou splněny obě poslední podmínky soustavy
(3), neboť je lze psát ve tvaru
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(3P - 4)2 P2
^0, ^0,

8(2-p) 8(2-p)
což platí.

Nerovnost

(4 — P)2 <P±4
8 (2 — p) ~ 4

je splněna právě tehdy, platí-li
P (3p — 4) < 0

2 P
čili (máme p < 2)

p(3p - 4) fg 0,
tj.

0 ^ p ^ -y. (4)

Pro čísla p vyhovující nerovnostem (4) je tedy soustava (3)
ekvivalentní soustavě

(4^P? .

8 (2 p)’
X2 =

(5)
;

pro jiná p soustava (3) nemá řešení.
Poněvadž daná rovnice je ekvivalentní soustavě (3), do-

stáváme z (5) jediné řešení
4 P

X
2 [/2 (2 -p)

za předpokladu (4); nesplňuje-li číslo p podmínky (4), nemá
úloha řešení.

Druhé řešení. Nechť x je reálný kořen dané rovnice. Pak
platí

2 |/x2 — 1 = x — jx2 — p,
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a umocníme-li obě strany této rovnice dvěma, dostaneme po
úpravě

2x2 + (p — 4) = —2x ]/jc2 — p.

Po dalším umocnění a úpravě vyjde

4(4 - 2p)x2 =(p- 4)2. (1)

Odtud plyne, že p Ф 2, 4 (v případě p — 4 dá (1) kořen
x — 0, který však nevyhovuje dané rovnici). Je-li p Ф 2, 4,
je nutně v(l) 4 — 2p > 0 neboli p < 2. V úvahu pak přichází
kořen rovnice (1) daný vzorcem

p — 4
(2)x =

2 1/4 —2p 5
neboť číslo x na pravé straně dané rovnice musí být nezáporné.

Je ovšem třeba ověřit, zda toto x splňuje rovnici úlohy. Vy-
počteme

(p_ 4)»
_ (3p_~4?ř 4 (4 - 2p) P 4 (4 - 2p) 5

| 3p - 4 I
2 ^4 - 2p '

x2 —

takže

]/ x2 — p =

Dále

(P - 4)2
4 (4 - 2/>)

P2x2 - 1 =
4 (4 - 2p)

a

P1/x2 - 1
2 1 4 - 2p

Číslo (2) bude tedy kořenem dané rovnice právě tehdy, bude-li
platit

(3)4!.3p — 4 \ +2\p \ = \ p
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Při zkoumání rovnice (3) rozlišíme čtyři intervaly:
a) p ^ 0 ,

bJOSřáj,

c){ářS4,
d) p ^ 4 .

V případě a) má rovnice (3) tvar —3p -f- 4 — 2p = 4 — p, tj.
p = 0. V případě b) rovnice (3) zní —3p + 4 + 2p = 4 — p
a vyhovuje jí kterékoli p z tohoto intervalu. V případě c) má

4
p a jediné řešení p = -.rovnice (3) tvar Ър — 4 + 2p = 4

Konečně případ d) vzhledem к výše nalezené podmínce p < 2
nemusíme už vyšetřovat.

Výsledek: jediný možný kořen (2) vyhovuje dané rovnici
Podmínka řešitelnosti

4
jen v případě p <2 a 0 < p ^ ~ .

tedy je
rt 4
OSPS 3

a jediný kořen
4 P

x —

2 1/4-2p
21

Prostým vynásobením vychází

(1/2 + 1)" =Л 1/2 + 5, (1)
kde Л, 5 jsou přirozená čísla.

Předpokládejme nejprve, že n je liché. Pak z analýzy předchozí
úvahy vyplývá

(]/2 - 1)" =A]Í2-B. (2)
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Znásobením rovností (1), (2) dostaneme
1=2A2- B2,

z čehož

В = \'2A2 - 1.
Položíme-li m = 2A2 — 1, obdržíme vzhledem к (1), (2), (3)
žádaný výsledek

(3)

(|/2 i 1)” = + 1 ± ['m.
V případě, kdy n je sudé, platí obdobně

А У2 + В.(1/2 - l)w = (4)
Znásobením rovností (1), (4) plyne

1 = B2 - 2A2,
odkud

В = У2A2 + 1.
Položíme-li nyní m — 2A2, dostaneme vzhledem к (1), (4), (5)
opět žádaný výsledek

(5)

(]/2 i 1)и = | m + 1 i Уrn •

Věta je dokázána.

22

Dané rovnice označme postupně znaky (1) až (3). Z (2) a (3)
odvodíme, že

(* +У)2 =b2 + я2,
a z (1) plyne, že

(* + J’)2 — (a — *)2.

Porovnáním posledních dvou vztahů dostaneme
a2 — 2az = b2.
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Je-li a = О, b Ф О, nemá soustava řešení. V případě a = b — 0
nacházíme z (2) jediné řešení x = у — z = 0.

Buď tedy а Ф 0. Pak
a2 -b2

(4)z =
2a

Dosadíme-li (4) do (1) a (3), vypočteme
a2 + b2

(5)2a

(a2 - ž>2)2
=

4a2 (6)

Poněvadž neznámé x, у vystupují v dané soustavě symetricky,
můžeme předpokládat např. x ^ y. Pak z rovnic (5), (6) vy-
počteme

У KW— За1 - 36*a2 + b2
л; =

4a 4a
(7)

У 1(W - 3a4 -3b'a2 + b2
У — 4a 4a

ovšem za předpokladu, že je
10a262 — 3a4 (8)364 ^ 0;

neplatí-li (8), nemá soustava reálná řešení.
Dosazením se lze přesvědčit, že trojice čísel x, y, z daná

vztahy (7) a (4) (a též druhá trojice, která vznikne výměnou
písmen x, y) skutečně vyhovuje dané soustavě.

a2 + 62
Aby kořeny byly kladné, musí být nutně x -\-у = .2a

>
a2 b2

> 0, z čehož a >

> | b |. Obráceně, je-li a > | b \, pak kořen z je kladný a rovněž
kořeny x, у jsou kladné, neboť byly vypočteny ze soustavy
rovnic (5), (6) [z (6) plyne, že x, у mají stejná znaménka, podle
(5) však x,y nemohou být obě záporná]. Nechť je tedy a > j b |.

> 0, odkud a > 0, a dále я =
2a
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Nalezené kořeny x, у jsou různé právě tehdy, je-li 10a2b2 —
— 3a{ — 3> 0 neboli a < | b | ]/з. Pak i kořen z je různý
od x i od у; kdyby např. x = z, plynulo by z rovnice (3)
У = Z, a tedy x = .y.

Nutná a postačující podmínka к tomu, aby čísla x, y, z spi-
ňující danou soustavu rovnic byla kladná a navzájem různá, je

| b | < a < | b 11/3.

23

Žádné z hledaných čísel nemůže být nula; kdyby např.
— 0, pak by muselo platit

■^'2*^3*^'4 —

^3 ^4

což není možné. Označíme-li = p, pak pro každé i =
= 1, 2, 3, 4 platí

P
%i ~\ = 2

Xi
čili

xf — 2Xi -r p = 0.

Všechna čtyři hledaná čísla jsou tedy kořeny jedné kvadratické
rovnice. Proto nejvýše dvě z nich mohou být různá. Vyšetříme
tyto tři možnosti:

[1] = x2 = x3 = x4 = m, takže m + m3 — 2. Poněvadž
funkce m + m3 je rostoucí, nacházíme jediný reálný kořen
m — 1.

[2] Nechť např. xx = x2 — x3 = m, xá = n. Pak máme sou-
stavu rovnic

m + m2n = 2,

n -f m3 = 2.
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Odečtením

(m — n) (1 — m2) — 0.

Možnosti m — n a m = 1 nevedou к ničemu novému. V pří-
pádě m — — 1 bude n = 3. Tak dostaneme celkem čtyři řešení.

[3] V případě xl = x2 = m, x3 = x4 = w máme soustavu

m + mri1 — 2,
n + nrrí1 — 2.

Odečtením
(m — n) (1 — mri) = 0.

Opět stačí uvažovat jen možnost mn — 1. Pak ale z předchozí

soustavy dostaneme m -)- n = 2 a dále m +
m

l)2 — 0, m — 1, n = 1. Ale tento případ

1
= 2, m2 —

— 2m -p 1 = 0,{m
jsme už dříve probrali.

Závěr. Úloha má celkem pět řešení: ^ = x2 = x3 — xA = 1;
jedno z čísel xt se rovná 3 a ostatní —1.

24

První řešení. Nechť trojice reálných čísel xlt xž, x3 splňuje
danou soustavu. Můžeme předpokládat, že aspoň dvě z čísel
jc1s x2, x3 jsou nezáporná; jinak bychom přešli к trojici —xl3

x3, která rovněž splňuje danou soustavu. Vhodnou
výměnou neznámých a současnou výměnou rovnic dosáhneme
toho, že

*i ^ 0, x2 ^ 0
a že koeficienty takto upravené soustavy opět splňují podmínky
a) až с). V poslední rovnici dané soustavy pak bude

«81*1 + a32*2 ^
a proto

«33X3 2^ 0, x3 Sí 0.
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Je tedy jcx ^ O, x2 ^ O, x3 ^ 0. Budiž např. x1 největší z čísel
*1, %2) *3> tj*

^2 > O,

Vynásobíme nerovnosti (1) po řadě zápornými čísly a12, a13;
vyjde

^ *3 0. (1)*i

(2)^12^-1 = ^12^-2? <*13*1 — <*13*3-

Sečteme nerovnosti (2) a přičteme rovnost anxx = anxt; do-
staneme

0 ^ (an + a12 + a13) хг < alxxx + a12 x2 + a13x3 = 0.
Odtud plyne — protože an + a12 + a13 > 0 — výsledek x, = 0
a dále podle (1) x2 — x3 = 0.

Druhé řešení (předpokládá některé znalosti o determi-
nantech). Označme st — an + ai2 + ai3 pro i = 1, 2,3 a vypočtě-
me determinant D dané soustavy

h u12 a13
s2 a22 u23 =

s3 a32 a33
= 5l(a22a33 <^23^32) ~b $2^13^32 s3al2a23 s2al2ai3 SZa22alZ‘

Druhý, třetí, čtvrtý a pátý sčítanec jsou kladná čísla; dokáže-
me-li, že je a22a33 — a23a32 > 0, bude D > 0, takže podle
známé věty je x1 = x2 = x3 = 0 jediné řešení dané soustavy.

Protože je a31 < 0,s3> 0, platí a32 + a33 > 0; vynásobíme-li
tuto nerovnost kladným číslem —a23 a přičteme-li pak na obou
stranách součin a22a333 dostaneme a22a33 — a2ia32 — a2ia33 >

^22^333 neboli

<*11 <*12 ai3
<*21 <*22 <*23
<*31 <*32 <*33

D =

<*22<*33 <*23<*32 > <*3з(<*23 “1“ <*22)*
Zde je zase a23 + a22 > 0 (neboť a21 < 0 a s2 > 0), takže
skutečně platí a22a33 — a23a32 > 0.

Třetí řešení. Nechť trojice reálných čísel x15 x2, x3 je ře-
x3 |; toho lzešením dané soustavy a nechť | xx

vždy dosáhnout vhodnou permutací neznámých a rovnic.
x2
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Případ \x1\ — O je jasný, a proto budeme v dalším předpokládat,
že je | xt | > 0. Pak platí

x2x2 x3 x3
al\ ~Ь al2 + a13 an | a12 al3

*1*1 *1

^13 I — ^11 d12 "T di3 > 0 •bí au ai2

Z prvé rovnice plyne
X

0 = | апхг + a12x2 + a13x3 j = | xt | au + a12 2 *3
+ a!3

JC4 *1

avšak druhý činitel v posledním součinu je, jak jsme právě
dokázali, kladný. Proto xx = 0 a z uspořádání | jc4 | ^ | x2 j ^
^ | jc3 | pak vyplývá, že i x2 = x3 — 0.

Tohoto řešení lze užít i v případě analogické soustavy n rovnic
o n neznámých.

25

Při současné výměně parametrů аь ak a neznámých xi3 xk se
soustava nezmění. Můžeme tedy předpokládat, že

d2 d3 ÍZ4.

Pak lze každou absolutní hodnotu | dt — dk \ (i < k) nahradit
rozdílem ař — ak. Odečteme-li druhou rovnici od první, vyjde

(<h ~ az) (—*i + X2 + *3 + *4) = 0.
Podobně odečtením třetí rovnice od druhé dostaneme

(d2 — a3) (—*4 — x2 + x3 + x4) = 0.
Konečně odečtením čtvrté rovnice od třetí dostaneme

(a3 — a4) (—xx — x2 — x3 + x4) = 0.
V rovnicích (2), (3), (4) zkrátíme nenulové koeficienty (a4 — a2),
(a2 — a3), (a3 — a4). Takto upravené rovnice (2) a (4) sečteme;
vyjde x1 = x4. Odečtením upravených rovnic (2) a (3) vyjde

(1)

(2)

(3)

(4)
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x2 = O, z (2) pak x3 = 0. Z původních rovnic pak dostaneme
1

*1 = *4

Za předpokladu (1) má tedy daná soustava jediné možné
řešení x4 = jc4 =

1
—, x2 = x3 = 0. Dosazením je

_ «4 I
možno se přesvědčit, že je to skutečně řešení dané soustavy.

Podobně lze řešit obdobnou úlohu pro libovolný počet rovnic.

<h

26

Očíslujeme dané rovnice (1) až (5). Prvé tři z nich pišme ve
tvaru

(la)*5 = УХ1 —

*3 = 3>*2 — *1J
X\ — yx3 — X2.

Dosazením x2 z (2a) do (3a) dostaneme po úpravě
x*=(y2 - O *2 — yxi.

Do (4) dosaďme nyní z (la), (2a) a (3b):
yx2 — xx +yxi — x2 = y[(y2 — l)x2 — yxx],

(2a)
(3a)

(3b)

čili po úpravě

(У2 +У ~ 1) - {У - 1) (У2 +У - 1) *2 = °- (4a)
Dále dosaďme do (5) za jc4, хъ z (3b) a (la):

О2 - 1) *2 - УХ\ +xx = у (yx! - x2),
čili po úpravě

1) xx—(y2-\-y — 1) x2 = 0. (5a)(У2 +У
Snadno se ověří, že pětice čísel x13 x2, x3, jc4, x5 splňuje danou

soustavu rovnic tehdy a jen tehdy, platí-li současně (la), (2a),
(3b), (4a), (5a).
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Řešme tedy soustavu rovnic (la), (2a), (3b), (4a), (5a). Při-
tom rozlišujme dvě možnosti vzhledem к parametru y.

1 ±1/51 = 0, tj. у , pak rovnice[1] Je-li y2 фу 2

(4a), (5a) jsou splněny pro libovolná čísla xX) x2. Vztahy (la),
(2a), (3b) pak již jednoznačně určují zbývající čísla xb, x3, x4.
Vychází tedy nekonečně mnoho řešení.

[2] V případě, že y2 + у — 1 Ф 0, lze rovnice (4a), (5a)
zjednodušit

(4b)% — (y — 1)*2 =

x1 — x2 = 0.

Je-li nyní = 2, pak nacházíme nekonečně mnoho řešení tvaru
—■ X% Xg X/± —- X 5

kde a je libovolné číslo; jiné pětice v tomto případě nevyhovují.
Je-li jy Ф 2, pak z (4b) a (5b) plyne xx = x2 = 0 a z (la), (2a),
(3b) pak také v3 = x4 = x5 = 0; v tomto případě má soustava
jediné řešení.

Úloha je vyřešena.

(5b)

27

Pro n = 1 a 2 je důkaz snadný. Předpokládejme, že tvr-
zení platí pro přirozené číslo n ^ 2, a dokažme, že platí
i pro n + 1. Mějme tedy n + 1 kladných čísel a13 a2,, an+1
se součinem rovným 1. V případě ax — a2 — . . . = an+1 = 1
platí rovnost

ax ú a2 ~b • • • an+1 — n -\- 1.
Nejsou-li všechna čísla at rovna 1, pak některé z nich musí

být menší než 1 (nechť je to např. číslo a,) a některé musí být
větší než 1 (nechť je to např. an+1). Položíme-li bx = ax an+X3
bude bxa2. . . an = 1. Podle indukčního předpokladu

bi Ф a2 ~ ... Ф an = n.
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Potom

й1 + «2 + • • • + On + 0И+1 = (^1 + 02 + • • • + «и) +
+ 0ra+i — + 0Х ^ п + ап+1 — Ъх+ ах -

— (п + 1) + ап +1 — 010И+1 + 01 — 1 =
= (п + 1) + (ап+1 — 1) (1 — 0i) •

Poněvadž а < 1, ап+1 > 1, je (ап+1 — 1) (1 — ах) > 0, a tedy
01 + 02 + • • • + 0И+1 > П 4* 1.

Tvrzení je dokázáno.
Poznámka. Buďte a13 a2}..., an libovolná kladná čísla.

П

Položme ]/ axa2.. . an = g. Pak
01 02

8 g

takže podle věty dokázané v předchozí úloze platí

0«

g

0i 02
+ • • • + •— ^ n+

8 8 g
neboli

П

^ ]/ага2. .

01 + 02 + • • • + 0и
• 0«

П

s rovností pouze v případě ax = a2 — . . . = an. Tak jsme od-
vodili důležitou nerovnost mezi aritmetickým a geometrickým
průměrem kladných čísel.

28

Protože pro n = 1 je tvrzení zřejmé, mějme n > 1 a pišme

(0i + 02 + • • • + 0n) (b\ + b2 + • • • + bn) — Sx + S2, (1)

kde é>i je součet n sčítanců tvaru аД (i = 1, 2, .. ., n) aS2 je
součet n(n — 1) sčítanců tvaru афк (i, k — 1, 2, . . ., n,
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n(n — 1)
г Ф k). Součet S2 se tedy skládá z

tvaru dpk + akbi. Přitom platí

aibk “Ь аФг = (fllbi + 0,фtc) (ai — ak) (pi bk) fSj dpi -|- dkbk.

2 částečných součtů

(2)
Součet S2 je proto menší nebo roven součtu n (n — 1) součinů
dpj, v nichž index / nabývá každé z hodnot 1, 2přesně
(n — l)-krát. To znamená, že

S2^(n- 1) (ci1b1 + ... + dnbn).
S přihlédnutím к (1) a (3) dostáváme nyní žádanou nerovnost

(fli + a2 + ... + dn) (bx -f- b2 + .. • + bn) ^
^ n (dxbx + ... + dnbn).

Je-li dx — d2 — ... = dn nebo bx — b2 = ... = bn, platí
zřejmě v (4) znaménko rovnosti. Není-li dx= d2 — ... — dn
ani bx = b2 — ... — bn, pak vzhledem к danému uspořádání
se najdou indexy *, j takové, že ař < an, b} < bn. Budiž např.
i ^ j. Pak je také bt < bn, takže v (2) při k—n platí ostrá
nerovnost. Potom i v (4) nastává ostrá nerovnost.

(3)

(4)

29

Uvažovaná nerovnost platí právě tehdy, když
4dxd +'—+ <■d^ dj =(dx + d3f (Clál + C~d<l + ( di

(1)= (C1 4" C2 + Cg)2.

Výraz na levé straně nerovnosti (1) je součin dvou činitelů

2
x = ———j- (cxdx + c2d2 + c3d3),di -j- u3
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2dxd3 / Сл Со Со \
\а + d~ + Í) •

J> =
ál <4

Tento rozklad jsme provedli proto, že aritmetický průměr
čísel x, у je velmi jednoduchý, jak snadno zjistíme výpočtem:

1

у (* +y) =
- £cx (A + d,) + c3 A + d3) + + d%)j,1 C2

(did.di -(- d d2
tj.

dxd3 + d\
(d\ ~h d3) d2

1

у (x + У) — ci + сз + c2
Snadno dokážeme, že koeficient při c2 v (2) je menší nebo roven
jedné. Skutečně, kdyby bylo

(2)

dxd3 + c/f
A ~b ď3) d2

> 1,

platilo by
dxd3 -)- dl dxd2 “I- d2d33

dx (d3 c/2) -f- d2 (d2 c/g) 0,
neboli

neboli
(c/g c/o) A d2) > 0,

což je ve sporu s předpoklady dx ^ d2 < d3. Protože koeficient
při c2 ve vztahu (2) je menší nebo roven jedné, platí

1

у + У) = C1 + C2 + C3•
Poněvadž geometrický průměr dvou nezáporných čísel je

menší nebo roven jejich aritmetickému průměru, platí

]/xy ^ у (x + y).

(3)

(4)
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Z (3) a (4) dostaneme po umocnění

xy < {cx + c2 + C3)2,

a to je nerovnost, kterou jsme měli dokázat.

30

y. Abychom změn-
у

šili počet parametrů, položíme я = — ^ 1 a nerovnost, kterou
máme dokázat, nyní je

O + i)m
Tuto nerovnost upravíme

Můžeme předpokládat, že je např. x

2«-l (*m + 1).

(Z + l)m
— 1 Zm,

2m—1

O + \)m — 2m ^ zm - 1,2»г—1

(я - 1) [(г + l)--1 + 2 (я + 1) 2+ . .. + 2m—*]m—

<í
2m 1

^ (z — 1) (zm^1 + 2 4- 0 1).
Je-li 2 = 1 (tj. x —y)3 platí znaménko rovnosti. V případě
z > 1 dostáváme ekvivalentní nerovnost

(ЧТ'ЧЧТ' + .^+i±i+.S
^ z™-' + Zm~* + ...+Z+1,

která pro z > 1 platí dokonce se znaménkem ostré nerovnosti

|je totiž * + 1 < .
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Poznámka 1. Vlastnost funkce

g (x) = xm

(m přirozené číslo, definiční obor x > 0) dokázaná v předchozí
úloze, tj. nerovnost

+ x2j g Oi) + g 02)
(1)g 2

(pro xx, x2 > 0), má názorný geometrický smysl. Představme
si v rovině pravoúhlých souřadnic x, у graf takové funkce
У —g O) J viz °br. 5. Na tomto grafu zvolme dva body

pi = [x13g Oi)],

P2 = [*2> g O2)]

Obr. 5.

(nechť je např. xx < x2). Třetí bod Q nechť odpovídá hodnotě
+ *2 .

—2—>thv bodě x

Г Xj_ -j- x2 I xx -|- x2 \ 1
L 2~‘ ř\ ^/J'Q =
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Označme ještě M střed úsečky PXP2, tj.
g Oi) + g O2) ]-[*1 + X2

I 2 5
M =

2

Naše nerovnost (1) nyní říká, že bod Q leží „pod“ bodem M
(viz obr. 5). Dalo by se dokázat, že celá úsečka PXP2 leží „nad“
grafem funkce g (x) v intervalu <x13 x2).

Mají-li každé dva body Px, P2 grafu funkce /(x) popsanou
vlastnost, říkáme, že funkce /(x) je konvexní. V předchozí
úloze jsme tedy v podstatě dokázali, že tzv. mocninné funkce
g (x) = xm (m přirozené) jsou konvexní v oboru x > 0.

Poznámka 2. Všimněme si nyní jednoho důsledku nerov-
nosti (1). Dokážeme tuto větu:

Jestliže funkce /(x), definovaná v jistém intervalu, splňuje ne-
rovnost

/(*1) +/(*2) (1)<
2

pro libovolná čísla xl5 x2 z toho intervalu, pak platí nerovnost

x1 + x2 + . .. + xn f(x1) + /(*2) + • • • + f(xn) (2)
n n

pro libovolná čísla xl3 x2, . . ., xn z uvažovaného intervalu.
Jestliže přitom v (1) nastává rovnost právě tehdy, když x1 — x2,
pak rovnost v (2) nastává právě tehdy, když x1 — x2 = . . . = xn.

Důkaz. Nerovnost (2) dokážeme (indukcí) nejprve v pří-
pádě, že n je přirozenou mocninou čísla 2. Pro n = 2 ne-
rovnost (2) splývá s předpokladem (1), takže není co dokazovat.
Předpokládejme nyní, že (2) platí pro jisté n = k a dokažme
nerovnost (2) pro n rovné nejbližší vyšší mocnině čísla 2, tj.
pro n — 2k. Platí

A xl “b x2 “1“ • • • 4“ x2Jc—í “Ь x2к
2k
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X1 “t~ X2 x2k—X + x2k
+ ... +2 2

= f (3)k

kde čísla — *2
2

intervalu, takže na základě indukčního předpokladu máme

*1 “Ь x2 "4" • • • “t" x2k

X2k—1 + x2k leží opět v uvažovaném5 • • • 3
2

2k

/Ж ^2fc—1 + x2к )+ .

2
(4)k

z čehož užitím (1) plyne (2) pro n — 2k. Nerovnost (2) tedy
platí pro každé n tvaru 2m (m přirozené).

Buď nyní n > 1 přirozené číslo, které není mocninou čísla 2.
Pak tedy existuje přirozené m tak, že

2m 1 < n < 2m.

Rozdíl 2m — n označme p, čili n -f p = 2m. Položme nyní
*1 + x2 “b . • * Xn

xn+1 xn+2 • • • xn+p
П

(toto číslo opět leží v uvažovaném intervalu). Poněvadž n + p
je přirozená mocnina čísla 2, platí podle již dokázaného nerov-
nost

( / (*l) + / (*2) + . . . +/ (xn ~ p)flxl + x2 + • • • + xn+p
П + P n + p

(5)
Avšak argument na levé straně v (5) je

*1 ~b x2 -f . . . -f- xn+p
n + p

72



*i ~Ь х2 • • • 4~ хп
-Ь х2 -+- . •. + хп 4~ р

п

п + р

Х1 ~Ь х2 “Ь • • • Н- Хп
п

a pravou stranu (5) lze psát
/ (*i) + / (*2) + •••+/ (xn+p)

n + p

)/ (xl) + / (*2) +•••+/ (xn) + P • / I% + *2 H- • • • I xn
n

n + p
takže nerovnost (5) říká, že

)f[ xi Ч- x2 ~b • • • "b xn
n

• + / (Xn) + P • / I*1 “Ь X2 I • • • xn
f (*l) + / (*2) + • •

П

n — p
odkud

)*1 + x2 + • • • + xn
(n +p) ./| n

• + / (Xn) + p ■ f I
/ (*l) + / (*2) + •••+/ (xn)

X1 + *2 “f" • • •
=/ (Xl) + /(*2) + • '

a tedy
w

)'( •^1 ~b ^2 “b • • • “I- xn <
и

Nerovnost (2) je dokázána pro všechna přirozená čísla n.
Nejsou-li si všechna čísla x13 x2, . . ., xn navzájem rovna,
platí v (2) ostrá nerovnost. Vyplývá to z ostré nerovnosti v (4),
která je zřejmá, uspořádáme-li v (3) sčítance x13 x2,..., x2k tak,
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aby různí sčítanci xit x} tvořili jednu dvojici, a užijeme-li pak
našeho předpokladu o rovnosti v (1).

Věta je dokázána.

31

Pro n — 3 máme

— az) Oi — <h) + 0*2 — ai) O2 - «з) + Оз - <*i) Оз — «2) =

= (<z4 — a2)2 + (a3 — a4) (a3 — a2) = af + a| + — axa2 —

1

2 [Oi - a2)2 + O2 -%)2 + Оз - <h)2bcl2cí3 a3ax —

a to je vždy nezáporné.
Pro n = 5 dostaneme na levé straně uvažované nerovnosti

výraz
Ol - «2) Ol - «3) (ax - a4) (ax - a5) +

+ O2 — «1) O2 — «з) O2 — «i) O2 — «5) +
+ Оз — ai) Оз — я2) Оз — я4) Оз — я5) +
+ 04 — «i) 04 — в2) 04 — аз) 04 — <*5) +
+ О5 ai) Об аг) Об аз) Об д4)*

Poněvadž v něm čísla ах, а2, а3, а4, а5 vystupují rovnocenně,
můžeme předpokládat např. uspořádání ax ^ a2 ^ a3
^ a5. Pak platí — a2 = — (а2 — a4) > 0, a4
— a3 ^ 0, ax — a4 а2 — a4 0, ax — a5 Sg а2'— a5 2^ 0,
takže

a4 =

íz3 = ci2

Oi - «2) Oi - «3) Oi - «4) Oi - «5) +
~f" O2 ^l) O2 ^3) O2 ^4) O2 ^5) — 0.

Obdobně

04 - <h) 04 - a2) (а4 - а3) (а4 - a5) +
+ Os - ai) Os - «2) Об - e3) Об - a4) ^ 0-
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Zbývající sčítanec
(a3 ax) (a3 a2) (<23 я4) (й3 a5)

je, jakožto součin dvou nekladných a dvou nezáporných čísel,
nezáporný. Z toho už vyplývá správnost uvedeného tvrzení
i pro n = 5.

Abychom dokázali nesprávnost daného tvrzení pro ostatní
přirozená n > 2, stačí najít n-tici reálných čísel a13 a2, ..., an
tak, že výraz na levé straně bude záporný.

Pro n = 4 stačí vzít např. ax = a2 = a3 > a4. Obdobně pro
n ^ 6 stačí zvolit např. — a2 = a3 > a4 > a5 = .. . an při
n sudém a ay — a2 = a3 < a4 < a5 = . . . = an při n lichém;
uvažovaný výraz má pak hodnotu (a4 — a4)3 (ax — a5)n_4, což
je v obou případech záporné číslo.

32

Pro důkaz sporem předpokládejme, že všechny kořeny
Xi (i = 1, 2, 3) daného mnohočlenu jsou racionální čísla.
Čísla yi = axi jsou pak zřejmě racionální kořeny mnohočlenu
у3 + by2 + асу + a2d. Snadno se zjistí, že každý racionální
kořen mnohočlenu s celočíselnými koeficienty, kde koeficient
při nejvyšší mocnině je 1, je celé číslo. Proto čísla yi jsou
celá a každé z nich zřejmě dělí prostý člen a2d, což je liché
číslo. Z toho plyne, že čísla yt jsou lichá, takže také čísla

У1 + У2 + 3>з = —ъ,
У1У2 +УгУл + У3У1 = ас

jsou lichá. To je však spor s předpokladem, že bc je sudé.

33

Buďte a0, a13 . . ., an (n celé nezáporné) celočíselné koefi-
cienty daného mnohočlenu, tzn.

p (x) = anxn + an_x xn~x + . . . + axx + a0 (1)
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pro každé x. Nechť pro pět navzájem různých celých čísel x13
x2, x3, xi3 x5 platí

řW = 5 (i = 1,2, 3,4, 5).

Předpokládejme, že pro nějaké celé číslo я je

P O) = 8.
Odečtením (2) od (3) dostaneme

P (*)-/>(*t) = 3 (i = 1,2, 3,4, 5).
Z vyjádření (1) je však patrné, že

P {z) - p (xi) = (z — Xi) . Ciy

(2)

(3)

(4)

(5)
kde Cj (* = 1, 2, 3, 4, 5) jsou vhodná celá čísla. Z (4) a (5) nyní
vyplývá

3 = {z — xi). Ch

xi (i — 1, 2, 3, 4, 5) se tedyKaždé z pěti různých čísel я
musí rovnat některému ze čtyř čísel 3, 1, —1, —3. To však
není možné.

34

Zvolme počátek času 9.00 hod. a časovou jednotku 5 min.
Vzdálenost lodí v okamžiku t označme 5 (ř). Užitím analytické
geometrie se lehce vypočítá, že S'2(t) je kvadratická funkce
času, tj.

S2 (r) = ať2 + bt + c.
Podle předpokladů

400 = c,

225 = 49a + 1b
169 = 121a + 116 + c.

c>

Odtud
a = 1, b — —32, c = 400,
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takže
32ř + 400 = (г - 16)2 + 144.S\t) = t2

Lodě si byly nejblíže v 10.20 hod. (ř = 16) a jejich vzdálenost
v tu chvíli činila 12 mil.

35

Především je jasné, že nezáporně číslo z nemůže být ко-
řenem mnohočlenu se všemi koeficienty kladnými.

Buď tedy z libovolné komplexní číslo, které není reálné
nezáporné. Je-li Re z < 0, pak můžeme položit

a0 = zz, аг = — (г + I), a2 = 1,
a číslo z splňuje rovnici

z2 axz -j- a0 = 0,
v níž všechny tři koeficienty jsou kladné.

V případě Re z 0 můžeme předpokládat, že Im z > 0
(jinak bychom přešli к číslu z, které rovněž musí být kořenem
hledaného mnohočlenu). Pak obraz čísla я leží v prvém kvad-
rantu roviny komplexních čísel, nikoli na reálné ose. Proto
(vzhledem к Moivrově větě) pro vhodné přirozené číslo n
bude Re z11 < 0. Podobně jako v předchozím odstavci najdeme
kladná čísla a, b taková, že platí

z2n + azni b = 0.

Pak samozřejmě platí i

(z2n — az" -(- b) {z + 1)” = 0.

Úpravou levé strany (tj. postupným násobením trojčlenu
z2n -f- azn + b výrazy z + 1 a sloučením stejných mocnin
čísla z) se dostane mnohočlen (stupně 3w), jehož všechny
koeficienty budou kladné.

Věta je dokázána.
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36

Pro čísla tvaru a = kn (k celé) platí
sin 2a ^ sin 3a ^ .sin a

neboť všechny členy jsou nulové.
Nechť a není tvaru kn (k celé). Představme si příslušný bod

Ma na jednotkové kružnici v rovině kartézských souřadnic
(tzn. a je velikost orientovaného úhlu s vrcholem v počátku,
jehož prvé rameno prochází bodem [1; 0] a druhé bodem
Ma). Přitom Ma neleží na prvé souřadnicové ose a druhá sou-

řadnice bodu M% je podle
definice právě sin a (viz
obr. 6). Nyní je jasné, že
druhé souřadnice bodů

(1)• 5

M-

&a/
M„ Aí2as M3oc> • •sm a

\a

0

"4>

Obr. 6.

nemohou tvořit monotónní posloupnost, tj. nemohou platit
všechny nerovnosti (1). (Na obr. 6 jsme předpokládali, že Ma leží
v prvém kvadrantu, ale podobnou úvahu lze provést i pro
ostatní možné polohy bodu Ma.)

37

Přirozeně se nabízí úprava
sin x + cos x = 1 — sin x cos x,

(sin x -f- cos a)2 = (1 — sin x cos a)2,
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sin2 x -j- 2 sin X COS X -f- COS2 X = 1 — 2 sin X COS X +
+ sin2 X COS2 X,

(4 — sin X cos x) sin X COS X = 0.
Odtud vyplývá, že je buď sin x — 0 nebo cos x — 0. Dosa-
díme-li tyto dvě možnosti do dané rovnice, najdeme všechna
řešení úlohy:

n
X —

^ i 2R>JT/}x = 2kn a

kde k je libovolné celé číslo.

38

V případě n = 1 rovnice zní
cos л: — sin x = 1

a z grafů funkcí kosinus a sinus nacházíme řešení
Зтг

(1)2~ + 2kjl>x = 2kn nebo x —

kde k je libovolné celé číslo.
V případě n = 2 máme rovnici

cos2 x — sin2 x = 1,

která se velmi zjednoduší, dosadíme-li za 1 na pravé straně
cos2 x 4- sin2 x. Po malé úpravě vyjde

sin2 x = 0.

Jediná řešení jsou nyní
(2)x = kn,

kde k je libovolné celé číslo.
Pro zbývající n > 2 zkusme psát danou rovnici opět v ekvi-

valentním tvaru

cos" x — sin” x = cos2 x + sin2 x
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neboli

(1 — cosn—2 jc) cos2 x -f- (1 + sinw—2 X) sin2 X = 0.
Oba sčítanci na levé straně jsou nezáporní, takže rovnice je
splněna právě tehdy, platí-li

(1 COSn“2 jc) COS2 X — 0
a zároveň

(1 + sin”-2 x) sin2 jc = 0.
Rozebráním jednotlivých možností, které se zde nabízejí, se
zjistí, že pro n liché jsou řešení stejná jako v případě n — 1
[tj. (1)] a pro n sudé vycházejí táž řešení jako v případě n = 2
[tj- (2)].

39

Zabývejme se nejprve pravou nerovnicí

| У1 + sin 2x — У1
kterou lze psát v ekvivalentním tvaru

(У1 -j- sin 2jc — yi — sin 2jc)2 ^ 2,
Umocníme-li, dostaneme po malé úpravě nerovnici

—2 ]/1 + sin 2x ]/1 — sin 2x ^ 0,
jíž vyhovuje každé číslo jc z intervalu <0, 2л).

Řešme nyní levou nerovnici

2 cos jc ^ | У1 + sin 2jc — У1 — sin 2jc [ .

Tuto nerovnici splňuje především každé x, pro něž platí
cos x ^ 0, čili

sin 2jc [ У2,

(1)

л .

^ Ътс
i' л" > • (2)
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Z ostatních čísel intervalu <0, 2ti) splňují pak nerovnici (1)
právě ta x, o nichž platí

4 cos2 я ^ ([/l sin 2x — j/l — sin 2л:)2
neboli po úpravě

2 cos2 л; ^ 1 — | cos 2x | .

Poněvadž víme, že 2 cos2 x — l — cos 2x, můžeme poslední
nerovnici ještě přepsat

cos 2x ^ — | cos 2x | .

To je splněno právě tehdy, je-li cos 2x ^ 0, tj. у íS 2x ^ ~
v •

2 > 1311
Л . Зл

- X < -

4 4

5л
nebo —

2
2x

5л 1л
nebo (3)— x < —.

4 — — 4

Sjednocením výsledků (2), (3) nacházíme všechna řešení ne-
rovnice (1); jsou to čísla x, pro něž platí

1лЛ

^T = x4

To jsou také všechna řešení této úlohy.

4 '

40

Máme najít všechny body čtverce OMNP (viz obr. 7),
jejichž souřadnice x, у vyhovují nerovnici

1 + I cos x I ^ 2 sin2jy.
Všimněme si nejprve, není-li vyšetřovaná množina třeba

souměrná; tím by se mohl zmenšit obor proměněných x, у
a zjednodušit další úvahy. Skutečně, náleží-li bod o souřad-

(1)
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nicích x0, y0 hledané množině, pak jí náleží i bod o souřadnicích
л — хс>Уо (díky tomu, že se cos x vyskytuje v (1) s absolutní
hodnotou) a také bod o souřadnicích x0, л — y0 (neboť sin j>0 =
= sin (л — у0)). To však znamená, že naše množina má do-
konce dvě osy souměrnosti; jsou to přímky

л л
X — — У =2 5 2 '

Stačí tedy zkoumat např. jen tu část uvažované množiny,
která leží ve čtverci

У

P Nл- — 1

\D
i* -i

%
■ín C2 A

yy
±i71 i

I в

I M x
■

Obr. 7.0 1л Л
:

л л
0 x 0 (2)У2 5 2

(na obr. 7 je to čtverec OM'SA).
V tomto menším čtverci podmínka (1) zní

2 sin2jy.1 + cos x
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Vzhledem ke vzorečku 2 sin2j> — 1 = — cos 2y ji můžeme psát
ve tvaru

cos x ^ — cos 2 у
neboli

(3)cos x ^ cos (ti — 2y).
Jak číslo x, tak i číslo л — 2y leží v intervalu <0, л}, v němž je
funkce kosinus klesající. Proto nerovnice (3) je splněna právě
tehdy, platí-li

čili
x

(4)2 2 '

Průnikem čtverce (2) a poloroviny (4) je trojúhelník ABS
s vrcholy

A =
Г л л

I 2 5 4 5
В =

(viz obr. 7).
V důsledků zmíněných souměrností je hledaná množina

bodů kosočtverec ABCD se středem 5 (viz obr. 7).

41

Podle vzorce pro kosinus součtu platí
f(x) = A cos x — В sin x,

kde
cos a2

cos аг H —

В = sin ax +

jsou pevná čísla. Ukážeme, že aspoň jedno z čísel А, В je ne-
nulové. Kdyby totiž A = В — 0, pak by pro všechna x platilo
/(x) = 0. Snadno však najdeme bod, v němž má daná funkce

cos an

2«—i 5
sin an

A = + ... +

+ ... +
2n-\
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např. kladnou hodnotu. Stačí položit x — —ax a dokázat, že
f(—ai) > 0. V tomto případě je totiž první sčítanec v definič-
ním předpisu dané funkce roven 1 (tedy největší možný). Pro
součet zbývajících sčítanců (vzhledem к tomu, že vždy
cos a ^ — 1) platí

1 1
— cos (a2 + + • • • + 2n T cos (an + x) ^

1 1
- 1.

2n~i 2n~1

Celkem pak máme
1

>0.
2”~1

Nyní už tvrzení 1° snadno plyne.
Nechť nyní /(x0) = /(xJL) = 0 neboli

A cos x0 — В sin x0 = 0,
A cos xx — В sin хг = 0.

Je-li A = 0, pak nutně В Ф 0 a z podmínek sin x0 = sin xx =
= 0 vyplývá, že xl — x0 = mn, kde m je celé číslo. Je-li А Ф 0,
pak první ze vztihů (1) násobíme číslem A sin xx a druhý číslem
—A sin x0, načež sečtením dostaneme

A2 sin (xx — x0) — 0.
Odtud vyplývá tvrzení 2°.

42

cos (a + /5), můžeme levou nerovnostPoněvadž cos у =
psát ve tvaru

1 + cos (a + /?) < cos a + cos /5.
Užijeme-li nyní známých vzorců, dostaneme ekvivalentní ne-
rovnost
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a + ft v. — ft2 cos2 a ■■ < 2 cos -
2 2

cos
2

^>o)neboli Iponěvadž cos
x + ft oc — ft

< coscos
2 2

a + ft a — ftTato nerovnost však platí, neboť čísla
leží v intervalu

přitom víme, že cos x — cos (—я).
Pravou nerovnost dokážeme vhodnou úpravou součtu

>
22

N) , v němž je funkce kosinus klesající;

cos a -T cos ft + cos у = cos a + cos ft
a + ft

cos (a + ft) =

a — ft 4l+ii— 2 cos2= 2 cos cos
2 2

2cos^-2 -4í+.,2 cos2

9
a + ft 1 \2 33

„ /2 cos
2 \ 2 2 *2

-ftPřitom rovnost zde nastane právě tehdy, když cos

a zároveň cos a ; snadno se zjistí, že tyto podmínky

splňuje jedině rovnostranný trojúhelník.

= 1

43

Nejprve upravíme levou stranu dané nerovnosti. Dosadíme
cos2 у — cos2 (a + ft) = (cos a cos ft — sin a sin ft)2 =

= cos2 a cos2 ft + sin2 a sin2 ft — 2 cos a cos ft sin a sin ft =■
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= cos2 a cos2 /3 + (1
— 2 cos a cos /3 sin a sin /3 =

= 1+2 cos2 a cos2 /3 — cos2 a — cos2 /3
— 2 cos a cos /3 sin a sin /3.

cos2 a) (1 — cos2 /3) —

Platí tedy
cos2 a + cos2 /3 + cos2 у =
= 1+2 cos2 a cos2 /3 — 2 cos a cos /3 sin a sin /3 =
= 1+2 cos a cos /3 (cos a cos /3 — sin a sin /3) =
= 1 + 2 cos a cos /3 cos (a + /3) = 1 — 2 cos a cos /3 cos y.

Pro tupoúhlé nebo pravoúhlé trojúhelníky je cos a cos /3
cos у ^ 0, takže podle předchozí úpravy máme dokonce ne-
rovnost

cos2 a + cos2 (3 + cos2 у ^ 1.
Budeme se proto v dalším zabývat už jen ostroúhlým troj-

úhelníkem. Vzhledem к tomu, že

cos2 a + cos2 /3 + cos2 у = 1 — 2 cos a cos /3 cos y,

můžeme danou nerovnost psát ve tvaru
1

cos a cos /3 cos у +

Zde s výhodou užijeme vzorce

cos a . cos /3 = — [cos (a — /3) + cos (a + /5)],

neboť cos (a — /3) ^ 1 a cos (a + /3) =

cos a . cos (3 ^ (1 — cos y).

Poněvadž cos у > 0, platí dále

cos a . cos (3 . cos у ^ — (1 — cos y) cos y.

8 '

cos y, takže
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Nyní již jen vhodně upravíme pravou stranu:

COS y) COS у = “ (cos у — cos2 y) =

1 1

1

2"(1
21 1 \241- 1

у Ices у — у
cos у — — 8

Skutečně tedy platí
1

cos a cos /5 cos у <: 8 5
jak jsme chtěli dokázat.

Z dosavadního postupu vyplývá, že rovnost v daném vztahu
může nastat jen pro nějaký ostroúhlý trojúhelník, a to takový,
v němž cos a = 1 a zároveň cos у = ~. Tyto podmínky

splňuje jedině rovnostranný trojúhelník.

Poznámka. Nerovnost

1
cos a cos /5 cos у < 8 5

která je pro tupoúhlý i pravoúhlý trojúhelník zřejmá, lze pro
ostroúhlý trojúhelník dokázat též na základě výsledku úlohy
42, užijeme-li známé nerovnosti mezi aritmetickým a geo-
metrickým průměrem kladných čísel (viz pozn. za řešením
úlohy 27). V tomto případě totiž platí

cos a + cos /5 -f- cos y\3 1 3\3_ 1 .

T'J) ~8;cos a cos /5 cos у ^ 3

přitom rovnost zde nastává právě tehdy, je-li cos a = cos [i =
■ = cos y, tj. v rovnostranném trojúhelníku.
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44

Abychom mohli užitím známých vzorečků vypočítat rozdíl
daných dvou čísel, pišme

sin cos x — — cos I n + cos л: .

\2
Pak

sin cos ,= cos sin, + cos (f + cos,) =
cos sin X —

+ COS X + sin X
Л

— sin л:— + cos л:
2

• (1)= 2 cos cos
2 2

Avšak

| cos x i sin v | = Уcos2 x ± 2 cos x sin x + sin2 x =
= j/l ± sin 2x ^ ]/2.

Poněvadž У2 < , platí

— + COS X ± sin X
2 71

0< <
2 '2

Proto je součin (1) kladný, takže vždy platí

cos sin x > sin cos x.

45

První řešení. Představme si na jednotkové kružnici v ro-
vině kartézských souřadnic tři body Аг, A2, A3, jejichž argu-

menty jsou pořadě —,

vrcholy pravidelného čtrnáctiúhelníku A1A2A3 . . . Au vepsa-

2n 3n
— (obr. 8). Tyto tři body jsou7 ’
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ného do jednotkové kružnice (Au = [1; 0]), který je zřejmě
souměrný podle počátku O. Číslo

Obr. 8.

je součet velikostí průmětů vektorů OA13 OA9, OA3 na prvou
souřadnicovou osu. To je však totéž jako velikost průmětu
(vektorového) součtu těchto tří vektorů. Týž průmět má i sou-

čet vektorů OA13, OA OAn (viz obr. 8). Kdyby se nám podá-
řilo dokázat, že

- >

OA1 -j- OA 3 -f- OA5 -j- OA7 -j- OA 9 -(- OAn -f- OAl3 = 0,
pak by pro velikost průmětu platilo

_ V n 2n
, 3л\2 cos cos - + cos „\ 7 7 7 /

a byli bychom hotovi.

(1)

-1=0
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Všimněme si však, že body A1} A3, A5, A7, A9, An, A13 jsou
vrcholy pravidelného sedmiúhelníku. Otočíme-li soustavu sedmi
vektorů OAl3 OA3,. . ., OA13 kolem počátku o úhel —,

obdržíme tutéž množinu vektorů, která tudíž bude mít i stejný
součet. Součet našich sedmi vektorů je tedy takový vektor,
který se nezmění, otočíme-li jej o jistý úhel různý od 2kn
(k celé). Tuto vlastnost má jedině nulový vektor. Platí tedy (1)
a úloha je rozřešena.

Druhé řešení. Upravme levou stranu takto:
2Л Л
-----

— 2 cos —

7 7
T I 71 IL — I cos — + cos

„ O n , , л 71 I 271
— 2 cos^ -„-+1=2 cos — I cos

7 7 \ 7

t) 2n
— cos cos

7

— cos

t)
2tj

~ 71
— 2 cos —

71 2ti \ti
= 4 cos — cos ■ cos -- + 1.

7 7 7

Poněvadž argumenty a tvoří geometrickou po-

sloupnost s kvocientem 2, provedeme další úpravu užitím vzo-
rečku 2 sin a cos a = sin 2a:

4 sin ~ cos

— + coscos —

2n Att,
cos ~ cos —

7 7
— + 1 =L =

. 71
sin ~

2л 2л 4тг
- cos _ cos2 sin —

7

. л
sin —

90



. 4л 4л
sm cos _

8л
sin

7 77
+ 1 = - + 1 =

лл
2 sinsin

77

л
sin —-

17
, с. b. d.

2л
2 sin

7

Třetí řešení. Užitím vzorce 2 cos a cos /? = cos (a + /?) +
+ cos (a — /i) dostaneme

Зл2л лл лл
2L cos — = cos

у cos— — cos cos — =cos cos
7 147 14

5л Зл 7лЗл
+= cos -- 4- cos — — cos —— cos — 4- cos

141414 14 14

5л л
cos = cos

14 514

)(
л

z čehož I neboť cos Ф0
14

1
L = , c. b. d.

2

Čtvrté řešení. Položme

л
г = cos — -f- i sin

7 ‘7

л л Л
, odkudPak z = cos — i sin takže z + z — 2 cos

7 57 7

0 -j- #л
cos

2 '7

91



1
Avšak z = , čili

z

z2 1Л
COS — =

2z7

2л 271 Ъл Ъл
Poněvadž z2 = cos — + i sin

platí obdobně

a z3 - cos —— + i sin
7 57 7

2л: S'1 + 1
7 = 2z2 3

Зл я3 + í
cos _ =cos

2я3 '7

Označíme-li
2л Зл

5 = cos —— cos Y + cos 7 57
bude

я2 + 1( .г4 + 1 )-1 г3 + 1
5 = +

z2 z32 z

1 z1 + z2 — z5 — z + z3 + 1
z32

1 (1 — z + z2 — z3 + z4 — Z5 + Z°°) + Z3
г32

г7 + 1
f *3

1 я + 1
л32

Zde však máme z7 = со8л + i sin л = — 1, proto skutečně

1
S =

2 '
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První řešení. Buďte А, В (А Ф B) takové dva z daných
bodů, jejichž vzdálenost není větší než vzdálenost kterékoli
dvojice z daných n bodů (jsou-li M, N dva libovolné různé
body dané я-tice, platí tedy MN ^ AB). Označme U množinu
všech těch daných bodů, které neleží na přímce AB. Množina U je
konečná a neprázdná. Je-li X bod množiny U, vzniká trojúhelník
ABX s ostrým úhlem £ = <£ AXB, neboť žádná ze stran AX,
BX není menší než strana AB. Označme у ten (popř. jeden
z těch) úhlů £, který není menší než kterýkoli zbývající; pří-
slušný bod X nazvěme C. Buď k kružnice opsaná trojúhelníku
ABC. Uvnitř úsečky AB neleží žádný z daných bodů (proč?).
Ani uvnitř kružnice k neleží žádný z daných bodů. To do-
kážeme sporem: Je-li D bod množiny U, který padne dovnitř
kružnice k, platí < ADВ > у. Toto tvrzení je patrné z obr. 9,
pokud bod D leží v polorovině ABC (o vnějším úhlu Ó =
= ADB trojúhelníku BDE platí <5 > e = y). Leží-li bod D
v polorovině opačné к polorovině ABC (obr. 10), je d > e =
= 180° — у > 90° (protější úhly v tětivovém čtyřúhelníku),
tj. á > 90°, což však vzhledem к tomu, že zorné úhly £ jsou



ostré, nemůže vůbec nastat. Tím je důkaz podán, a žádný
z daných n bodů tedy nepadne dovnitř kružnice k.

Druhé řešení. Představme si přímku p procházející (ale-
spoň) dvěma z daných bodů (označme je A, В) a takovou, že
všechny uvažované body leží v jedné polorovině určené přím-
kou p a žádný neleží mezi A a B. Snadno ukážeme, že taková
přímka/) skutečně existuje: Zajisté můžeme zvolit „dostatečně
vzdálenou“ přímku q takovou, aby všech n bodů leželo po téže
straně přímky q. Mezi danými body najdeme bod A, který je
nejblíže přímce q, a vedeme jím rovnoběžku q |] q. Leží-li
na přímce q ještě další body dané množiny, stačí za p vzít q .

V opačném případě můžeme zřejmě přímku q pootočit kolem
bodu A tak, aby vznikla přímka p, jež prochází (kromě bodu A)
dalším bodem В dané skupiny, přičemž ostatní uvažované body
leží v jedné polorovině určené touto přímkou p a žádný z nich
neleží mezi A a B.

Ze všech trojúhelníků ABX, kde X probíhá dané body ne-
ležící na přímce p, vezmeme pak ten (popř. jeden z těch), jehož
úhel <£ AXB je co největší. Nyní je jasné, že kružnice opsaná
takovému trojúhelníku vyhovuje požadavkům úlohy.

Poznámka. Ze všech kružnic, z nichž každá prochází alespoň
třemi danými body, vezměme tu popř. ty, jejichž poloměr je
co nejmenší. Můžete si rozmyslet, zda některá z těchto nej-
menších kružnic vyhovuje úloze.

47

Především je jasné, že věta platí pro n = 3. Předpokládejme
proto, že věta platí pro některé přirozené číslo n ^ 3, a zkusme
dokázat, že platí i pro n + 1. Mějme tedy množinu N\n+1
skládající se z n

Může se stát, že v této množině existuje bod A, z něhož vy-
chází nejvýše jeden průměr množiny /Ии+1. Odstraníme-li tento
bod, dostaneme množinu M„ o n bodech, která má podle in-

1 bodů.
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dukčního předpokladu nejvýše n průměrů; přitom si uvědomme,
že buď žádný anebo všechny z těchto průměrů jsou též průměry
množiny M
pádě dokázáno, že počet průměrů množiny Mra+1 je skutečně
nejvýše n + 1.

V opačném případě, který zbývá prozkoumat, vycházejí
z každého bodu množiny M„+1 alespoň dva průměry (viz např.
pět úhlopříček pravidelného pětiúhelníku). Stačilo by nyní
dokázat, že z každého bodu vycházejí přesně dva průměry;
pak by počet všech průměrů množiny Mn+1 byl roven n + 1.
(Kdyby tato domněnka nebyla pravdivá, nemohlo by platit
ani tvrzení úlohy.)

Pro důkaz sporem tedy předpokládejme, že existuje bod A,
z něhož vycházejí tři různé průměry AB, AC, AD množiny

Pak všechny tří body В, C, D leží na kružnici kA = (A;
d); označení zvolme tak, aby polopřímka AB náležela úhlu
< CAD, jehož velikost je zřejmě ^ 60°. V našem případě vy-
chází z bodu В kromě průměru BA ještě alespoň jeden další
průměr BX množiny Mn+1. Bod
X (^ A) leží tedy na kružnici
kB = (B; d), avšak nemůže le-
žet vně kružnice kA, neboť by
bylo AX > d. Kružnice kM
kB se protínají ve dvou bodech
U, V (viz obr. 11) a nechť bod
X leží např. na oblouku AU.
Pak je ale zřejmé, že D je vněj-
ším bodem kružnice kx = (X;
d) (viz obr. 11), tj. XD > d, což
je spor.

Vzhledem к volbě bodu A máme v tomto pří-n- 1*

Mn+ ] •

Obr. 11.



Tím je úloha vyřešena; je možno též ukázat, že pro libovolné
přirozené číslo n 7> 3 existuje (v rovině) množina o я bodech
mající právě я průměrů.

48

První řešení. Potřebujeme dokázat, že daný я-úhelník je
pravidelný. Vezměme proto pravidelný я-úhelník AXA2. . . Am
který má s daným я-úhelníkem A[A2.. . A’n společnou stranu
AXA2 = A[A2i přičemž oba leží v téže polorovině určené přím-
kou AXA2. Velikost vnitřních úhlů je u obou mnohoúhelníků
nutně stejná.

Předpokládejme, že by bylo např. ax > a2. Pak by bod A3
ležel uvnitř strany A2A3 (obr. 12) a z podmínek úlohy by vyplý-
válo, že všechny vrcholy A4,. . ., A'n leží uvnitř pravidelného
mnohoúhelníku AXA2... An (obr. 12). Speciálně i bod A'n by

ležel uvnitř našeho pravidel-
ného mnohoúhelníka, takže by
platilo

As <
/ \ '< A'nAxA2 < < AnAxA2,/ \

%

A2 Obr. 12.

což by byl spor. Kdyby nastala ostrá nerovnost pro jinou
dvojici sousedních stran daného я-úhelníku, důkaz by byl od-
dobný. Pouze v případě ax = a2 = ... = an—x > a„ by bylo
An = Ani ale pak by nemohlo platit A\ = A13 jak od začátku
předpokládáme.

Druhé řešení. Buď AXA2. .. An daný я-úhelník, v němž
AxA2 = ax, AxAn = an. Předpokládejme nejprve, že я je liché
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(n = 2k -f 1), a sestrojme osu p vnitřního úhlu při vrcholu A
Z podmínky, že všechny vnitřní úhly «-úhelníku AXA2. . . An
jsou shodné, vyplývá, že přímka p je kolmá na stranu
^Jc+l^k+2-

Promítněme nyní (pravoúhle) na přímku p lomené čáry
AXA2.. . Ак+1 а AxAn ... Ак+2. Jejich průměty musí být stejně
dlouhé. Přitom strany AtAi+1 a An—i+2An—i+1 (1 < i < k,
rozumí se An+1 = Ax) mají stejnou odchylku od přímky p.
Proto průmět úsečky A{Ai+1 není menší než průmět úsečky

Kdyby v posloupnosti ax
tila alespoň jedna ostrá nerovnost, bylo by ax > an, tj. AXA2 >
> AxAn. Průmět lomené čáry AXA2. . .Ak+1 by pak byl delší
než průmět lomené čáry А{Ап . . . Ak+2, což není možné.
Proto platí ax = a2 = . . . = an.

Je-li n sudé, vezmeme za přímku p, na niž promítáme, opět
osu úhlu <£ A2AxAn. Strany daného и-úhelníku můžeme nyní
seskupit ve dvojice úseček majících vždy stejné odchylky od
přímky p. Pak lze provést obdobnou úvahu jako v předcho-
zim odstavci.

i-

An—i+2An—í+i*

Třetí řešení. Označme PXP2.. . Pn—xPn daný konvexní
«-úhelník, v němž PiPi+1 = at pro i = 1, 2,...,« (Pn+1 =
= PJ. Kdyby byl pravidelný (jak potřebujeme dokázat), bylo
by možno opsat mu kružnici. Myšlenka tohoto řešení spočívá
v tom, že se pokoušíme sestrojit kružnici opsanou danému «-
-úhelníku, a to tak, že vycházíme postupně ze všech jeho stran.
Tak dostaneme obecně « kružnic a za předpokladu, že tvrzení
úlohy neplatí, najdeme pak spor v jejich vzájemných polo-
hách.(

Nad stranou PiPi+1 jako základnou sestrojíme rovnoramenný
trojúhelník PiPi+lSi tak, aby úhel i PiSiPi+l proti základně
měl velikost 360°/«; trojúhelník sestrojíme v té polorovině
s hranicí PiPi+x, v níž leží daný «-úhelník (podle předpokladu
konvexní). Kružnice = (5); Sp) by měla být kružnicí
«-úhelníku opsanou.
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Vyšetříme vzájemnou polohu kružnic kb ki+1 (i — 1, 2,. . .,

n, kn+x = kx). Je-li at = at+1 neboli PžPi+1 = Pž+1Pí+2, sply-
nou body Si3 Si+1 a tedy i kružnice kh ki+x.

Je-li cii > ai+n leží bod 54+! mezi Si3 Pi+1 (viz obr. 13),
kružnice ki, ki+1 mají pak vnitřní dotyk v bodě Pi+1, přičemž
ki+1 leží (s výjimkou bodu Pi+1) uvnitř ki.

Nyní provedeme nepřímý důkaz. Nechť ve vztazích ax ^
^ a2 = • • • = platí aspoň jedna ostrá nerovnost. Pak
z předchozí úvahy vyplývá, že kruh kn leží uvnitř kx s možnou
výjimkou jediného bodu Pn. To znamená, že bod Px ф P„
leží zároveň na kružnici kx a zároveň uvnitř kx (na kn). To není
možné. Proto platí ax — a.2 — . . . = an, jak jsme měli do-
kázat.

Obr. 13.

Předpokládejme, že množina К má tři různé ekvichordální
body

(1)Е» E2, Ея
a uvědomme si, že každá přímka procházející kterýmkoliv
z bodů (1) vytíná v množině К tětivu stejné délky d.
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Buď p přímka, která prochází jedním z bodů (1) a odděluje
zbývající dva; rozmyslete si, že taková přímka existuje. Nechť
přímka p prochází např. bodem Es a protíná úsečku EXE2
v jejím vnitřním bodě (obr. 14). Rovnoběžky s přímkou p
vedené body Ely E2 vytínají v množině К dvě tětivy délky d
a tyto dvě tětivy jsou protějšími stranami rovnoběžníku R,
jehož všechny body náležejí konvexní množině K.

Přímka <7 naznačená na obr. 14
však vytíná již v rovnoběžníku
R (a tím spíše v množině К)
úsečku větší délky než d, což
je spor s tím, že Es je ekvi-
chordální bod. Nakreslete si
sami obdobný obrázek pro
případ, že E3 leží (na p) mimo
R.

Věta je dokázána.

Obr. 14.

Poznámka. Kruh má zřejmě jediný ekvichordální bod —

svůj střed. Není těžké ukázat, že např. konvexní mnoho-
úhelník nemá žádný ekvichordální bod. Pozoruhodná je však
otázka, zda nějaká konvexní množina v euklidovské rovině
může mít dva ekvichordální body.
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Označme ос, /?, у velikosti vnitřních úhlů trojúhelníku ABC
při vrcholech А, В, C. Pak (obr. 15)

1. oc
sin — =

2

• P
Sm 2= SB’

SA 5

1

1У
sc5

Obr. 15.

a poněvadž SA ^ SB < SC, platí
oc

sin —

2
/3 7sin — ^ sin ~~ > 0.

P УOhly|-, — jsou ostré, proto

90” > « => A S -£2 — 2 — 2

180° >oc^fi^y>0.

Vzhledem к tomu, že a + P + 7 = 180°, dostaneme z (1)
nerovnosti

2 5

>0,

tj.
(1)

OC + p + У ^ 3a,
180° ^ 3a,

a -f + у ^ 3y,
180° ^37,
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čili
a ^60°, у ^60°.

Odtud = 30° a tedy

1 1
= 2.SA

sin 30°. a
sin —

2

Pro každý vrchol A platí 1 < SA 57 2.

Poněvadž dále ^ 30°, je

SC =

11
- 2.

sin 30°7sin
2

Pro úhel /3 máme interval

0° < /3 < 90°,
Ptj. 0° < Ý < 45°. Pak

11
= 1/2.S£ = >

sin 45°
sin —

2

Pro každý vrchol В platí SB > |/2.
Ve všech třech případech platí i obrácené tvrzení: Vy-

hovuje-li délka úsečky SA (SB, SC) uvedeným podmínkám, je
bod А (В, C) vrcholem jistého trojúhelníku ABC, jemuž je
kružnice k vepsána a v němž platí SA 57 SB
lze přenechat čtenáři.

SC. Důkaz
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V trojúhelníku ABC označme АС *= BC = a, AB = c,
A = < В — oc, <í C = y; je tedy

a > c, oc > y, a < 90°, у < 90°,
a + у = 180° - a > 90°.

Je-li XYZ trojúhelník splňující požadavky úlohy, platí

ZX = ZY = a, XY — с, < X = < Y = a, <íZ = y.

Body X, У, Z, C jsou navzájem různé a platí < XC Y =
= <í /ЗСВ = y. Podle textu úlohy leží body C, Z v téže polo-
rovině určené přímkou XY a platí <pXCY — <z XZY ; proto
body C, Z leží na větším oblouku jisté kružnice k, která pro-
chází body X, Y. Jsou tedy X, Y, Z, C vrcholy jistého těti-
vového čtyřúhelníku, přičemž mohou nastat dva případy:

a) Body X, Z jsou odděleny přímkou BC (obr. 16).
b) Body X, Z padnou do téže poloroviny vyťaté přímkou

BC, a protože v tětivovém čtyřúhelníku každá úhlopříčka
odděluje jeden pár jeho protějších vrcholů, jsou nutně body
У, Z odděleny přímkou AC = XC. Budiž p osa úsečky AB
(obr. 17). Označme Y'X'CZ' obraz uvažovaného tětivového
čtyřúhelníku XYCZ v souměrnosti podle osy p. Potom X,
Y' а У, X' jsou dvojice souměrně sdružených bodů a CA,
CB souměrně sdružené přímky. Tu body X', Y' po řadě
padnou dovnitř úseček CA, CB, trojúhelník X' Y'Z' patří к pří-
pádu a) a body X', Z' (což jsou obrazy bodů У, Z) jsou od-
děleny přímkou BC. Tím je případ b) převeden na případ a).
Postačí tedy omezit se v dalším na případ a) a na výsledky užít
souměrnosti vzhledem к přímce p.

Bod Z čtyřúhelníku XYZC leží v polorovině opačné к polo-
rovině BCA. Úhly obvodové <£ YXZ — oc, <i YCZ v kružnici
k leží v téže polorovině vyťaté přímkou YZ, takže jsou shodné,
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a proto jsou shodné i střídavé úhly < ABC, <í YCZ; odtud
plyne, že je CZ \\ AB a že bod Z leží na polopřímce q s po-
čátkem C. Označme M ten bod polopřímky q, pro nějž
platí

CM = c.

To znamená, že čtyřúhelník ABMC je rovnoběžník. Dále
sestrojíme na polopřímce CM bod N tak, aby platilo

CN — a;

bod Л1 tedy leží uvnitř úsečky CN (obr. 16).

cr

Dokážeme, že každý bod Z hledaného geometrického místa
padne dovnitř úsečky MN (obr. 16). Důkaz provedeme spo-
rem. .
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Předpokládejme nejprve, že bod Z náleží úsečce CM (obr. 18).
Víme, že Z ^ C. Je-li Z = M, pak kružnice k' = (Z; a)
má s úsečkou BC jediný společný bod B, tj. Y = В proti
předpokladu. Leží-li bod Z mezi body С, M, je zřejmě ZB <
< CB = a; celá úsečka BC pak leží uvnitř kružnice k', což
není možné.

Předpokládejme za druhé, že bod Z náleží prodloužení
úsečky CN za bod N. Je-li Z = N, prochází kružnice k’
bodem C a je X = C proti předpokladu. Je-li Z ^ N, pak pro
všechny body X ležící uvnitř strany AC platí ZX > ZC > a
(úhel <í ZCA je totiž tupý) a kružnice k! nemá s úsečkou AC
vůbec žádný společný bod.

Dokážeme nyní, že každý bod Z ležící mezi body M, N je
vrcholem jednoho z vyšetřovaných trojúhelníků XYZ (obr. 16).
Sestrojíme opět kružnici k' = (Z; a); pro ni je vrchol C
bodem vnitřním, neboť ZC < NC = a. Vrchol A je pro kruž-
nici k' bodem vnějším; trojúhelník ACZ je totiž tupoúhlý
(<£ ACZ > 90°), proto je ZA > AC — a. Kružnice k' protne
tedy úsečku AC v jejím vnitřním bodě X. Trojúhelníku XCZ
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Obr. 18. 5

opišme kružnici A'; polopřímka CB prochází vnitřkem úhlu
<£ XCZ, protíná úsečku XZ v jejím vnitřním bodě, a tudíž
i kružnici k v jistém bodě Y ^ C. Body X, Y, Z, C kružnice k
jsou navzájem různé a jsou vrcholy tětivového čtyřúhelníku;
přitom X, Z jsou přímkou BC odděleny; vznikne tedy čtyř-
úhelník XYZC, takže C, Z jsou sousední vrcholy tohoto
čtyřúhelníku. Proto je XZY = -y XCY = у (obvodové
úhly v kružnici k nad tětivou XY); stejně platí <£ YXZ —

= < YCZ = a. Je tedy YZ = a, YXZ = a, < XZY = y,
a proto platí AXYZ ^ A ABC. Odtud plyne ZY = CB =
= a, takže bod Y leží na kružnici k'. Bod В je však vnějším
bodem kružnice k'; protože <£ BZN > BMN > 90°, je
ZB > BM = a. Trojúhelník XYZ je tedy skutečně jedním
z vyšetřovaných trojúhelníků.

Závěr. Hledaným geometrickým místem bodů Z jsou
vnitřky dvou úseček MN, M'N'. Tyto úsečky jsou souměrně
sdružené podle osy úsečky AB a konstrukce úsečky MN je
výše popsána.
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Předpokládejme, že jsme našli trojúhelník ABC, který
splňuje požadavky úlohy (obr. 19). Označme T těžiště tohoto
trojúhelníku a sestrojme rovnoběžník ABCD ; jeho střed

B' je zároveň středem odvěs-
ny AC. Tu platíВ

7 2
TA — j ř15

TD — 4
B’D = ř2,

/

/

о -5
•/ Г\

/ A
/ВК У/ уí \ 1/ \ // /\

^ ř2*Гi \ /
к

\ /
/ S\ /\/y/ /А-/

Obr. 19.

Ze souměrnosti rovnoběžníku ABCD podle jeho středu В
plyne, že

<$B'AD = <£ B'CB = 90 .

Bod /3 leží proto na Thaletově kružnici opsané nad úsečkou
DB' jako průměrem, přičemž je TA = — íj.

Sestrojíme tedy úsečku BD délky 2ř2, její střed В' a dále

bod Г ležící mezi В', В a takový, že B'T — — t2. Nechť kruž-

ír, у protíná kružnici k opsanou nad průměremnice m =
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B'D ve dvou různých bodech A a A'. Potom А ф В', Аф D.
Bod souměrně sdružený s bodem A podle B' označme C.
Pak trojúhelník ABC vyhovuje úloze.

Z provedené konstrukce vyplývá, že BB' — t2 je těžnice a T
těžiště trojúhelníku ABC. Délka těžnice příslušné vrcholu A

»!-«■
B'AD, B'CB jsou zřejmě shodné.

Řešitelnost úlohy závisí pouze na vzájemné poloze kružnic
k, m. Řešení existuje právě tehdy, když se kružnice kam
protínají ve dvou různých bodech, tj. (obr. 19)

— tx a úhel < ACB je pravý, neboť trojúhelníky

52 2i 1

3 h 2 h < 6 h < 3 h 2 hi

neboli < 212 a zároveň t2 <2tx. Z bodu A' se dostane
trojúhelník souměrně sdružený s ABC podle přímky BD.

Každá z daných těžnic musí být menší než dvojnásobek
druhé z nich. Jedině za tohoto předpokladu má úloha řešení,
a to jediné; jinak úloha řešení nemá.

53

Předpokládejme, že hledaný kosočtverec existuje a označme
К patu kolmice spuštěné z bodu M na přímku AB. Pak vzniká
pravoúhlý trojúhelník AKM s přeponou AM = d a odvěsnou
MK = . Všimněme si ještě poměru

BM
_ 1

AB ~ 2 ‘

Nejprve tedy v jedné z polovin určených přímkou AM
sestrojíme pravoúhlý trojúhelník AKM s přeponou AM = d
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v
— ; podmínkou proveditelnosti této kon-a odvěsnou MK =

strukce je nerovnost
v < 2d.

Bod В nyní najdeme užitím stejnolehlosti takto: Uvnitř polo-

přímky АК zvolme bod P a opišme kružnici k =

(I)

(л в
— ~ AP^j; označme X ф A jeden ze společných bodů polo-
přímky AM s kružnicí k. Pak je др = у j takže bod B
bude průsečík polopřímky AK s přímkou procházející bodem
M a rovnoběžnou s PX (obr. 20).

CD
\

/ \
/Iv \2 /

\/
M

i-illf I
x! /i*. \

XY"' ! \ /\
ч\ у\

1t Кв\ /Р /A
\

—'k
Obr. 20.

Počet řešení úlohy závisí [při splnění podmínky (1)] na
vzájemné poloze kružnice k a polopřímky AM. Úhel <í MAK
je ostrý; vzdálenost bodu P od přímky AM označme x. Zřejmě

platí * - = v čili — = -y. Je-li tedy v > d (tj. x > o),2 Q 2d q d
nemá úloha řešení. Je-li naopak v ^ d, je již splněna i pod-
minka (1) a naše konstrukce dává dvě nebo jedno řešení.
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Má-li být ABCD čtverec, musí podle Pythagorovy věty platit

~z>|/5. Platí-li tento vztah, je již d > v a jedním ze

dvou sestrojených řešení je čtverec (neboť v tomto případě
může být В = К).

Závěr. Při konstrukci bodu К jsme se omezili na jednu
z opačných polorovin o hranici AM; souměrností podle přímky
AM dospějeme z právě popsaných řešení к dalším řešením.
Pro v = d jsou tedy celkem dvě řešení, pro v < d celkem
čtyři řešení (popřípadě včetně dvou čtverců); pro v > d není
žádné řešení.

d =

Konstrukci naznačuje obr. 21, kde kružnice sestrojujeme
v tomto pořadí: kx eí (Л; AB), = (B; BA), k3 = (P; PA),

= (Q; QB), kb = (С; СЛ). Bod X je průsečík oblouků
opsaných kolem středů M, N s poloměry MA = NA.

109



Body A, X, В, C leží zřejmě v přímce a z podobnosti rovno-
ramenných trojúhelníků AMX, ACM (mají společný vnitřní
úhel) plyne

AX
_ AM

AM ~ АС 5
odkud

„ Tr AM2 AB2 ABAV __ __

•

AC 2AB 2 ‘

Hledaný bod je X.

55

Nechť ABCD je čtyřúhelník vyhovující požadavkům úlohy.
Poněvadž mu lze vepsat kružnici, platí

ЩУ

(1)AB + CD — AD + BC.

Můžeme předpokládat, že je AB ^ BC .(jinak bychom vymě-
nili označení bodů A, C). Potom

(2)CD - AD = BC - AB > 0.

V případě AB — BC je nutně i AD = CD a bod D (ф В)
najdeme jako průsečík osy tětivy AC s kružnicí k. Vzniklému
deltoidu ABCD je pak zřejmě možno vepsat kružnici.

Je-li AB < BC, pak podle (2) platí AD < CD. Na úsečce
CD můžeme tedy sestrojit takový bod E, že DE = AD neboli
CE — CD — AD - BC — AB (obr. 22). Poněvadž <£ ADC —

2 <XADC
— < ABC (vnější úhel rovnoramenného trojúhelníku ADE).

Na základě tohoto rozboru provedeme konstrukci.

= 180° - « ABC, je <: AEC - 90° = 180°

1
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V polorovině opačné к polorovině ACB sestrojíme (známým
způsobem) oblouk AC kružnice o, z jehož bodů je vidět úsečku
AC pod úhlem velikosti 1800 - ~ < ЛБС. Tento oblouk

protneme kružnicí kx = (С, BC —■ AB). Průsečík E (obr. 22)
vždy existuje, neboť podle trojúhelníkové nerovnosti platí
ВС — АВ < AC. Polopřímka CE pak protne oblouk AC
kružnice k, který neobsahuje bod В, v bodě Рф A, C. Ve
čtyřúhelníku АВCD podle naší konstrukce platí vztah (1),
takže tento čtyřúhelník je (viz pozn.) tečnový.

Úloha má jediné řešení.

Obr. 22.

Poznámka. Buď ABCD konvexní čtyřúhelník takový, že
platí

(1)AB -f CD = AD + BC.

Dokážeme, že tomuto čtyřúhelníku lze vepsat kružnici.
Je-li ABCD rovnoběžník, pak vzhledem к (1) je to koso-

čtverec a lze mu vepsat kružnici.
Nechť tedy např. strany AB, CD nejsou rovnoběžné. Pak se

přímky AB, CD protínají v jistém bodě P a z konvexity čtyř-
úhelníku ABCD plyne, že bod P neleží na úsečce AB. Mů-
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žeme předpokládat, že např. bod В leží mezi body A, P
(jinak by byl důkaz obdobný). Trojúhelníku ADP vepíšeme
kružnici k (obr. 23 a, b, c).

0

\
C

\ Obr. 23 a.

\
k\.

'PA P

D

Lc1\ Obr. 23 b.
\



Je-li přímka BC tečnou kružnice k, je zřejmě kružnice
k vepsána čtyřúhelníku ABCD (obr. 23 a).

Je-li přímka BC sečnou kružnice k, můžeme v polorovině
BCP sestrojit přímku B'C' rovnoběžnou s BC a dotýkající se
kružnice k (obr. 23 b). Pak platí

AB < AB', DC < DC', B'C'< ВС,
takže

AB + CD < AB' + CD = AD +■ B'C < AD + BC,
což je spor s (1).

Obdobně postupujeme i v případě, že přímka BC nepro-
tíná kružnici k. V polorovině BCA sestrojíme tečnu B'C
(obr. 23 c). Pak bude

AB' < AB, DC' < DC, ВС < B'C,
takže

AD + ВС < AD + B'C' = AB' + DC' < AB -+- CD,
což je zase spor s (1).

Důkaz je hotov.

56

Označme k = (M, MA) kružnici opsanou danému troj-
úhelníku APQ. Hledaný bod В zřejmě leží na této kružnici
(obr. 24 a, b), a to buď

[1] uvnitř poloroviny APQ
anebo

[2] uvnitř poloroviny opačné к polorovině APQ. Zabývejme
se odděleně těmito dvěma možnostmi.

Případ [1] (obr. 24a). Bod В musí ležet uvnitř čtvrtkružnice
AQ, neboť jinak by přímka CD nemohla procházet bodem Q.
Bod C pak zřejmě leží uvnitř úsečky BP. Označme S společný
bod úseček AQ, BP. V pravoúhlém trojúhelníku PSQ je C
pata výšky QC, takže <£ SQC = <j; SPQ, načež l\AQD ^
= Д QPC (usu), neboť AQ = QP = a. Z toho plyne, že

113



Obr. 24a.

AD = QC = b. Dále též CD
To znamená, že bod C je středem úsečky QD. Poněvadž
CS || AD, je CS střední příčka v trojúhelníku AQD, takže 5
je střed úsečky AQ.

Odtud vyplývá tato konstrukce: Sestrojme střed úsečky
AQ a označme В ^фР průsečík polopřímky PS s kružnicí k.
Buď C obraz bodu В v souměrnosti o středu 5. Trojúhelník
ABC (v němž <^ABC = 90°) doplníme na pravoúhelník
ABCD, o němž hned dokážeme, že vyhovuje požadavkům úlohy.

Především je jasné, že přímka BC prochází bodem P a že
platí /\ABS 9* AQCS (sus); je tedy <£ QCS = 90° a přímka
CD prochází bodem Q. Dále je CQ = AB, tedy i

= b, neboť ABCD je čtverec.

CQ = CD.
Avšak A AQD ^ AQPC (usu), takže

CQ = DA.

(1)

(2)
Z (1) a (2) plyne

* CD = DA.

Pravoúhelník ABCD je tedy čtverec.
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Případ [1] dává tedy jediné řešení úlohy. Z pravoúhlého troj-
úhelníku ABS, který má přeponu AS = — a a odvěsny

1 2
AB = b, BS = — 6, u^m Pythagorovy věty vypočteme

Případ [2] (obr. 24b). Poněvadž bod D musí ležet v polo-
rovině BPA (čili BPQ), musí polopřímka CD procházet bo-
dem Q. To znamená, že фАСР = 45°, takže bod C leží na
větším oblouku AQ kružnice k. Zároveň bod Сф В leží na
přímce BP. Proto je nutně С = P. Pak ovšem D = Q a bod В
je obrazem bodu Q v souměrnosti o středu M. Iv tomto pří-
pádě nacházíme tedy jediné řešení; strana čtverce má délku a.

Závěr. Úloha má dvě řešení.

57

Střed přepony BC označme 5 a krajní body prostřední
shodné úsečky buďte D, E. Pata H výšky spuštěné na přeponu
nechť leží např. na úsečce BS (obr. 25). Dvojím vyjádřením ob-
sáhu trojúhelníku DAE dostaneme rovnost

AD . AE . sin oč =

Obr. 25. В M D s E
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a z kosinové věty

-Y = AD2 jr AE2 - 2AD . AE . cos a.
n

Z posledních dvou rovností vyplývá

AD . AE . sin (x ha

2AD . AE . cos a
n ^AD2 + AE2 — |^|2

čili
2ha

(1)tg a
n\AD2 + AE2 -

Položíme-li HS — x, pak (obr. 25)

4-i)'
2a

+ h2,AD2 + A2, AE2= x +
2w

takže
1 a2

2 w2"'
ylD2 + ЛЯ2 = 2x2 + 2h2 + —

Přitom

-И' -h\

tedy
a2 1

AD* + AE*= 1+-r .

Dosadíme-li tento výsledek do (1), dostaneme po malé úpravě
vzorec

4nh
. tg a =

a (и2 — 1)
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Označme po řadě q, q13 q2, Q3 poloměry kružnic k, k13 k2, k3
(viz obr. 26). Máme vypočítat číslo

Č — Л (Q2 + + @| + PŠ)-
Pro výpočet poloměrů užijme vzorců

(1)

P2 PsPlp
Qsв = 5 Q 2Pl 5

kde P, Px, P2, P3 jsou po řadě obsahy trojúhelníku ABC a tří
trojúhelníků oddělených při vrcholech А, В, C, a s, s15 s2, % jsou
jejich poloviční obvody. Z podobnosti trojúhelníku ABC
a každého ze tří oddělených trojúhelníků vyplývá

Л
= ^2 = Лз = P

S2 $1 íf S2
Proto

p p p
Qi — To" • Q 2 — •^23 í?3 — O • 53‘S2 •S2 S2
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Dosazením do (1) dostaneme
лР2

Č = (■s2 + 4 + s\ + s§). (2)S4

Z vlastností tečen snadno zjistíme, že obvod trojúhelníku
ABXCX je ABX + ACX + BXCX = + ЛСг + BXT + СХГ =
= AU + AV = 2AU a dále zřejmě AU = s — a. Je tedy

S2 = 5 — b3— S CL}

Podle (2) pak platí
nP2

Sq — S C•

(5 O2 + (5 — a)2 + (s — 6)2 + 0 — c)2),s4

neboli po úpravě
nP2

Č = (fl2 + + c2),s1

přičemž P lze vyjádřit pomocí čísel a, b, c Heronovým vzorcem.
Tím je úloha vyřešena.

Poznámka. Z uvedeného řešení vyplývá, že
P P

(sx + S2 + Í3) = -T (?s — a — b c) =Qi + {?2 + Qs — s2 5 2
P P

59

Označme R pětiúhelník, který se dostane z P, stejnolehlostí
se středem Ax a koeficientem 2. Dokážeme, že pro každé
i — 1,. . ., 5 platí Рг <= R.

Pro i = 1 je to jasné. Buď X bod pětiúhelníka Př (i = 2,...,
5). Bod X je tedy obrazem jistého bodu У e Px v příslušném
rovnoběžném posunutí. Potom střed Z úsečky AxX náleží P15
neboť zřejmě půlí vzdálenost mezi At a Y (obr. 27), což jsou
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Obr. 27.
\
\

s

\Rr \
\
\\
>\ И P /■ \\

\ /
У

p / 4 /
//

J

4t

body konvexního útvaru Pv To však znamená, že X e R, jak
jsme chtěli dokázat.

Všech pět pětiúhelníků P15. . ., P5 má týž obsah p, obsah
pětiúhelníka R je zřejmě 4p. Kdyby se žádné dva z pětiúhelníků
P13, P5 nepřekrývaly, byl by obsah R větší nebo roven 5p,
tj. 4p ^ 5p, což není možné.

Poznámka. Obdobná věta platí i v «-rozměrném prostoru
(n ^ 3) pro konvexní mnohostěny s 2” -f 1 nebo více vrcholy.
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Pokusíme se odhadnout (shora) obsah uvažovaného kon-
vexního čtyřúhelníku pomocí součinu jeho úhlopříček. Kaž-
dou úhlopříčku pak nahradíme (podle trojúhelníkové nerov-
nosti) součtem vzdáleností bodu O od jejích krajních bodů.
Tak dojdeme к jistému výsledku podobnému tomu, který se
vyskytuje v tvrzení úlohy; umístění bodů А, В, C, D bude popř.
jiné, neboť předem nevíme, v jakém pořadí jsou tyto body vr-
choly konvexního čtyřúhelníku. Nakonec však ukážeme, že
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vzhledem к danému uspořádání vzdáleností lze nalezený odhad
ještě převýšit tak, abychom dostali žádaný výsledek.

Uvažujme proto libovolný konvexní čtyřúhelník KLMN
a označme Q průsečík jeho úhlopříček KM a LN. Pro obsah
trojúhelníku KLM platí

PKLM

1
KM. LQ..,

neboť úsečka LQ není kratší než výška trojúhelníku KLM pří-
slušná straně KM. Podobně

1
Pkmn = 2 KM • NQ-

Z posledních dvou nerovností vyplývá, že pro obsah čtyřúhel-
niku KLMN vždy platí

1

2 KM. LN,
přičemž rovnost nastane pouze v případě KM J_ LN.

Buď R libovolný bod roviny KLMN. Podle trojúhelníkové
nerovnosti platí KM ^ KR -f MR a LN ^ LR + NR, takže

PKLMN

1
^ - (KR + MR) (LR + NR).PKLMN

Rovnost v tomto vztahu nastane právě tehdy, leží-li bod R jak
mezi body К a M, tak i mezi body L a N (tzn. R = Q) a jsou-li
přitom úhlopříčky KM a LN navzájem kolmé (viz závěr před-
chozího odstavce).

Konvexní čtyřúhelník s vrcholy А, В, C, D má úhlopříčky
buď AB a CD, nebo AC a BD, anebo AD a BC. Podle naší
úvahy platí v prvém případě

I

P^j(AO + BO) (СО + ЛО),
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v druhém případě
1

Р^{АО + СО) (ВО i-DO)
a ve třetím případě

1

P<j(AO + DO) (50 +CO),
přičemž rovnost nastane vždy právě tehdy, je-li bod O prů-
sečíkem navzájem kolmých úhlopříček.

Poněvadž АО + ВО < CO < DO, platí

(АО + ВО) (СО + DO) =
АО. СО-

ВО .DO = АО .ВО + СО .DO-

(АО + DO) (ВО + СО)
= АО. ВО + ВО. DO + АО. СО + СО. DO
-АО. DO ВО. СО

ВО .СО = (DO - ВО) (СО - АО) ^ О,-АО. DO

takže

(АО + ВО) (СО + DO) < (АО + DO) (ВО + СО)
a rovnost zde nastane právě tehdy, je-li buď DO = ВО nebo
CO = АО. Podobně též

(АО + СО) (ВО + DO) =
= (DO - СО) (ВО - АО) ^ 0,

(AO + DO) (ВО + СО)

takže platí

(АО + СО) (ВО + DO) ^ (АО + DO) (ВО + СО)
s rovností právě tehdy, je-li buď DO — CO nebo ВО = АО.

Dokázali jsme tedy, že vždy platí
1

P<2 (AO + DO) (ВО + CO);
podmínky pro rovnost jsou patrné z uvedeného řešení.
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Označíme K0, L0, M0 po řadě středy úseček AB, BC, CA
(obr. 28); pak úsečky KUL(), L0M0, M0K0 rozdělí trojúhelník
ABC ve čtyři části téhož obsahu — Д ABC.

Leží-li dva z bodů K, L, M na obvodu některého z „roho-
vých“ trojúhelníků AK0M(), L0BK0,
CM0L0, např. K, L na úsečkách BK0,
BL0 (viz obr. 28), pak je

1
Д BKL Д Д BK0L0 = - Д ABC.

Obr. 29.

Stačí tedy zabývat se případem, kdy žádné dva z bodů
K, L, M nemají od téhož vrcholu trojúhelníku ABC vzdálenosti
menší nebo rovné polovinám délek příslušných stran.

Nechť např. bod К leží mezi A, iC0, dále bod L mezi B, L(l
a bod M mezi C, M0 (obr. 29). Pro obsahy trojúhelníků platí:

3
Д KLM Д Д KLM0 Д Д KLCM0 = Д K0L0M0 = — Д ABC.
Odtud již ihned vyplývá tvrzení úlohy.
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Bod M musí být středem hledané úsečky BC, neboť jinak
by bylo možno malým otočením přímky BC kolem bodu M
obsah trojúhelníka ABC
zmenšit. Obr. 30 nazna-

čuje konstrukci a zároveň
ukazuje, že toto je jediné
řešení.

Y:

CA f-
//

/
/

/
/

ф
/у

/У
У

У
У

fObr. 30. ВА

63

Nutnou podmínkou, aby existoval vůbec nějaký čtyřúhelník
daných rozměrů, je, aby největší z čísel a, b, c, d bylo menší
než součet tří zbývajících. Budeme proto předpokládat, že
tato podmínka je splněna (a nakonec uvidíme, že je i postačující
pro existenci hledaného čtyřúhelníku). Máme tedy

ci b c “f- d5
b *y o, -{- c -f~ с/,
c a b “I- d,
d cl -(- b -f- c,

(jedna z těchto nerovností právě vyjadřuje naši podmínku a zbý-
vající tři jsou pak triviálně splněny).

Předpokládejme, že ABCD je čtyřúhelník daných rozměrů;
označme 5 jeho obsah, a resp. у velikost jeho vnitřního úhlu

1
při vrcholu A resp. C, p — — (a + b + c + d). Pak platí

i

(1)
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1
— {ad sin a -f bc sin y),

45 = 2 {ad sin a + bc sin y).
Z dvojího vyjádření BD2 podle kosinové věty plyne

b2 — c2 — 2ad cos oc — 2bc cos y.

S =

(2)

a2 + d2

Vztahy (2), (3) umocníme dvěma
1652 == 4a2d2 sin2 a — 8abed sin a sin у -f 4b2c2 sin2 y,

{a2 +d2-b2 - c2)2 =
= 4a2d2 cos2 a — 8abed cos a cos у + 4b2c2 cos2 у

а рак sečteme
1652 = 4аЧ2 + 4b2с2 - (a2 + d2- b2 - c2)2 -

Dosadíme sem cos (a -f y) = 2 cos2 a -

1652 = 4 (at/ + bc)2 - (a2 + d2 -b2- c2)2 -

Upravíme
4 (at/ + ta)2 — (a2 -f- c/2 — ta — c2)2 = (a2 4- d2 — i2 — c2 -j-

+ 2ad + 2ta) . (—a2 — d2 + ta -{- c2 -f 2ad — 2bc) —
= [(a + </)2 - (6 - c)2] . [(6 +, c)2 - (a - t/)2] =

= (a -|- d b — c) {a d — b-\~c){b-\-c^-a — d).
. {b + c — a + d) = 16{p — a){p — b) {p — c){p — d).

Odvodili jsme tedy vzorec

(3)

8abcd cos (a -f y).

1 a dostaneme

5£тУ1 babcd cos2
2 '

5 = {p — a) {p — b) {p — c){p — d) — abcd cos2 —~~ •

(4)
Úloha bude rozřešena, sestrojíme-li za předpokladů (1) tě-

tivový čtyřúhelník ABCD s АВ — a, BC — by CD = c, DA =
— d a dokážeme-li, že existuje jediný takový tětivový čtyř-
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úhelník. V něm bude a + у = 180% takže podle (4) bude jeho
obsah větší než obsah každého jiného (tedy netětivového)
čtyřúhelníka daných rozměrů.

Sestrojme /\ABD s
i

! (ab + cd) (ac + bd)AB = a, AD — d, BD = j ad + bc

(dvojím užitím kosinové věty snadno plyne, že úhlopříčka BD
tětivového čtyřúhelníku ABCD musí mít tuto velikost). Je
zřejmé, že úsečku BD lze sestrojit euklidovskými konstrukcemi,
neboť platí

bdab cd

(
ac

l JJ JBD = had bc

J J

kde j je velikost pomocné úsečky. Musíme však ověřit troj-
úhelníkové nerovnosti. To provedeme metodou ekvivalentních
úprav:

(iab + cd) (ac + bd)
a d >

ad + bc

(a2 -(- 2ad -f- d2) (ad + bc) > (ab 4- cd) (ac 4- bd),
a3d — 2a2ď2 4- cid3 + a2bc 4- 2abed + bed2 >

> a2bc 4- ac2d 4- ab2d 4 bed2,
a2 4- 2ad d2 4- 2bc > b2 4- c2,

(a +' df -(b- c)2 > 0,
(a 4- b — c 4- d) (a — b c 4- d) > 0,

což podle (1) platí. Podobně

(ab — cd) (ac 4- bd)
a — d\ < ad + bc

125



(a2 — 2ad + d2) (ad + bc) < (ab + cd) (ac -f bd),
a?d — 2a2d2 -j- ad2 + a2bc — 2abcd -f bed2 <

< a2bc + ac2d + ab2d + bed2,
a2 — 2ad + d2 — 2bc < c2 4- 62,

O < (b 4- c)2 — (a — d)2,
O < (a -|- 6 -f- c — cř) (—a + b -f c -f- á),

což opět platí podle (1).
Nakonec v polorovině opačné к BDA sestrojíme trojúhelník

BCD s BC — b, CD = c; jeho existence plyne analogicky z (1).
Podle kosinové věty vypočteme

, t

{ab -f cd) {ac + bd)1
a2 + d2cos a =

2ad ad — bc

1 a3c/ + ad2 + &lbc -f- — álbc — ac2d ab2d — bed2

2ad ad -f bc
1 a2 + d2 b2 - c2

ad + bc2

analogicky
1 b2 -j- c2 — a2 — d2

cos у = —
. 2

Je tedy cos a = — cos y, takže ABCD je tětivový čtyřúhelník.
Dokázali jsme, že úloha má jediné řešení, jakmile je splněna

podmínka vyslovená na začátku.
Cvičení 1. Ze všech čtyřúhelníků, které mají daný obvod,

největší obsah má čtverec.
Cvičení 2. Jestliže jedna úhlopříčka tětivového čtyřúhel-

nika je průměrem opsané kružnice, pak pravoúhlé průměty
protějších stran na druhou úhlopříčku jsou shodné.

Poznámka. Buď ABCD tětivový čtyřúhelník. Ze vzorce
pro délku úhlopříčky BD, o němž jsme se zmínili v našem ře-

ad + bc
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šení, a z obdobného vzorce pro úhlopříčku AC plyne Ptole-
maiova rovnost

AB . CD + AD . BC = AC . BD.

Obráceně, splňují-li délky stran a úhlopříček čtyřúhelníku
ABCD Ptolemaiovu rovnost, je tento čtyřúhelník tětivový.
Toto tvrzení je obsaženo v následující úloze. Dříve si však při-
pomeneme pojem tzv. kruhové inverze, který budeme v řešení
další úlohy potřebovat.

V rovině q budiž dána kružnice k = (S;r). Definujeme
. zobrazení cp takto: je-li X libovolný bod roviny o různý od

bodu S, je bod X' — cp(X) takový (jediný) bod na polopřímce
SX, že SX. SX' = r2; obraz bodu č> nedefinujeme. Čtenář
nechť si rozmyslí, že zobrazení cp, nazývané kruhová inverze
vzhledem ke kružnici k, má tyto vlastnosti:

a) Je-li X' =cp (X), pak X — cp (X'), tj. bodu X' odpovídá
v kruhové inverzi opět původní bod X.

b) Probíhá-li bod X kružnici neprocházející bodem S, pak
bod cp (X) probíhá také kružnici neprocházející bodem S.

c) Probíhá-li bod X kružnici procházející bodem 5 (s vý-
jímkou bodu 5 samého), pak bod cp (X) probíhá přímku ne-
procházející bodem S. Probíhá-li bod X přímku neprocházející
bodem S, pak cp (X) probíhá kružnici procházející bodem č>
(s výjimkou bodu S).

d) Probíhá-li bod X polopřímku vycházející z bodu S (s vý-
jimkou bodu S), probíhá bod cp (.X) touž polopřímku, ale v opáč-
ném smyslu.

e) Jsou-li X, Y dva body, oba různé od S, pak o vzdálenosti
obrazů X' = cp (X) a Y' — cp (Y) platí

r2
X'Y' XY.

SX. SY
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64

Splynou-li alespoň dva z bodů А, В, C, D, nerovnost platí,
a to s rovností, jak je uvedeno.

Nechť tedy dále jsou všechny body А, В, C, D navzájem
různé. Proveďme na body А, В, C kruhovou inverzi (viz pozn.
za řešením úlohy 63) cp vzhledem ke kružnici o středu D a polo-
měru 1. Pro obrazy A'= <p (А), В' = (p (В) a C'—cp(C)
platí

AC < A'B' + B’C. (1)
Podle e) je však

AC
AC =

AD .CD 5

BC
B’C =

BD . CD 5

AB
AB'

AD.BD5
takže

AC BCAB
< 4

AD .CD ~ AD .BD BD. CD '

Po vynásobení číslem AD . BD . CD dostáváme žádanou ne-
rovnost.

Rovnost nastane, právě když nastane rovnost v (1), tj. když
bod B' leží uvnitř úsečky AC'. Neprochází-li přímka AC
bodem D, leží podle a) a c) body А, В, C na kružnici x prochá-
zející bodem D. Přitom dvojice A, C „odděluje” dvojici B, D
na kružnici x, protože při jednom proběhnutí kružnice x (s vy-
ňatým bodem D) od bodu D se právě proběhne přímka AC,
a protože bod B' leží uvnitř AC, leží В na druhém oblouku
AC než je bod D. Prochází-li přímka AC bodem D, leží vše-
chny body А, В, C, D v přímce. Je-li nyní D na opačné polo-
přímce к polopřímce A'C, je uspořádání bodů А, В, C, D.
Je-li D uvnitř úsečky AB', je uspořádání В, C, D, A. Je-li D
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uvnitř úsečky B'C\ je uspořádání C, D, А, В; je-li D na polo-
přímce opačné к C'A', je uspořádání D, А, В, C. Protože po-
stup lze obrátit, jsou podmínky pro rovnost nutné i postačující.

65

Buď ABCD daný čtyřúhelník a E, F, G, H dotykové body
vepsané kružnice se stranami (obr. 31, 32). Průsečík úhlopříčky
AC s úsečkou HF označme P (obr. 31). Všimněme si troj-
úhelníků APH, CPF, které jsou na obr. 31 vyšrafovány. Tyto
trojúhelníky mají při vrcholu P shodné úhly, proto poměr
jejich obsahů je roven pomě-
ru součinů stran svírajících
ty úhly, tj.

obsah A APH
obsah Д CPF

PA. PH

PC. PF ’

Obr. 31.

Všimněme si dále, že úhly těchto trojúhelníků při vrcholech
#, F se doplňují do 180°, neboť úsekové úhly <ý PHD, <^ PFC
jsou shodné. Proto sin <£ AHP — sin <£ PFC, takže

obsah A APH АН. PH
obsah A CPF "" PF. CF ' (2)

Porovnáním výsledků (1), (2) dostáváme

PA. PH АН. PH

PC . PF " PF . CF
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a odtud
PA

_ АН
PC ~ CP ’ (3)

Označme nyní Q průsečík úhlopříčky AC s úsečkou EG
(obr. 32). Provedeme-li s trojúhelníky AQE, CQG obdobnou

úvahu jako v předchozím
odstavci, obdržíme rovnost

QA AE
OC ' CG‘

/ (4)

Obr. 32.

Vzhledem к tomu, že АН — AE a CF-= CG, vyplývá z (3)
a (4) vztah

PA QA
PC " QC ’

To však znamená, že body P, 2 musí splynout. Tak jsme do-
kázali, že úhlopříčka AC prochází průsečíkem úseček EG, HF.
Poněvadž totéž lze zřejmě dokázat i o úhlopříčce BD, je tím
úloha rozřešena.

66

Označme q rovinu proloženou bodem 5 kolmo к přímce
SA. Kdyby všechny tři body В, C, D ležely v poloprostoru
oA, nemohl by 51 být vnitřním bodem čtyřstěnu ABCD.
Proto např. bod В leží uvnitř poloprostoru opačného к qA

130



(a zároveň na dané kulové ploše). Takový bod В však zřejmě
leží vně kulové plochy o středu A a poloměru ]/2, takže vzdá-
lenost AB je větší než ]/2.

67

Mějme libovolný čtyřstěn. Jeho vrcholy označme písmeny
А, В, C, D tak, aby hrana AB byla nejdelší (popř. jedna
z nejdelších). Pro stěny ABC, ABD čtyřstěnu platí trojúhel-
níkové nerovnosti

AC + BC> AB,
AD + BD> AB.

Sečtením dostaneme nerovnost

АС + BC + AD + BD > 2AB,

kterou můžeme psát též takto

(AC + AD — AB) + (BC + BD - AB) > 0.
Nutně tedy platí buď AC + AD > AB anebo BC -j- BD >
> AB. Protože hrana AB je nejdelší, je možné buď z úseček
AC, AD, AB anebo z úseček BC, BD, BA sestrojit trojúhelník.

68

Buď ABCD daný čtyřstěn a nechť P je pata kolmice spuštěné
z vrcholu D na rovinu ABC (obr. 33). Poněvadž stěnové
úhly D (AB) C, D (АС) В jsou ostré, leží bod P uvnitř úhlu
ýiBAC. Ze dvou úhlů <£PAB, <£РАС je zajisté alespoň
jeden ostrý; nechť je to např. <£PAB (v opačném případě by
další úvaha byla obdobná). Potom pata Q kolmice spuštěné
z bodu P na přímku AB padne dovnitř polopřímky AB (obr. 33).
Bod Q je však zároveň pravoúhlým průmětem bodu D na
přímku AB; přímka AB je totiž kolmá na DQ, neboť je kolmá
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Obr. 33.

na rovinu DPQ, jak vyplývá z konstrukce bodů P, Q. Po-
něvadž tedy pravoúhlý průmět Q vrcholu D na přímku АВ
leží uvnitř polopřímky AB, je úhel <£j3AD ostrý.

Z vrcholu C nyní spusťme kolmici na rovinu ABD a označme
R její patu (obr. 34). Z předpokladů úlohy opět vyplývá, že
R leží uvnitř úhlu <£BAD, o němž však již víme, že je ostrý.
Proto jsou ostré i oba úhly <£jRAB, <$.RAD. Pata 5 resp. T
kolmice spuštěné z bodu R na přímku AB resp. AD padne
tudíž dovnitř polopřímky AB resp. AD (obr. 34). Opět se
snadno uváží, že 5 resp. T je též pravoúhlý průmět vrcholu C
na přímku AB resp. AD. To znamená, že úhly <£ CAB, <£ CAD
jsou ostré.

Dokázali jsme tedy, že všechny tři úhly při vrcholu A jsou
ostré. Poněvadž pro ostatní vrcholy lze užít téže myšlenky, je
tím úloha vyřešena.

Poznámka 1. Úloha 68 je speciální případ obdobné věty
z geometrie и-rozměrného euklidovského prostoru.
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Poznámka 2. V obecném čtyřstěnu ovšem nemusejí být
všechny vnitřní úhly ostré, jako tomu bylo v této úloze. V další
úloze se proto budeme zabývat rozložením ostrých úhlů ve
čtyřstěnu a mj. dokážeme, že alespoň tři vnitřní úhly čtyřstěnu
jsou vždy ostré. Budeme však potřebovat jednoduchou po-
mocnou větu, kterou uvádíme v této poznámce.

Začněme příkladem v rovině. V trojúhelníku A1A2A3 platí
známé vztahy o délkách stran, které označíme p1(= A2A3),
p2 (= A3Aj),p3 (=АгА2) a vnitřních úhlech (p12(=^A1A3A2)y
9^23 (= A2AiA3), (Pl3 (= <^Л3А2А1)'.

Pl Pl COS <Pl2 Рз COS <Pl3 = ®3
Pi C0S Ф23 = ®3

= 0.

pl cos cp12 -(- p2

—Pl cos Ф13 — P2 cos cp23 + p3

Obr. 35.

První vztah např. znamená, že délka px je součet (popř.
rozdíl) délek průmětů p2 \ cos cpn\ a p3 | cos cp13 | stran p2 a p3
na px, s vhodnými znaménky podle toho, jsou-li oba úhly
9?i2, (pl3 ostré, nebo jeden pravý popř. tupý.

Obdobné vztahy platí o čtyřstěnu AXA2A3A4. Označíme-li
po řadě pj, p2, p3, p4 obsahy stěn A2A3A4, А4А3А4, A1A2Ai,
AXA2A3 a rpl2, (p13, <pw (p23, <pu, fp3i vnitřní úhly stěn (např.
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cpl2 úhel stěn AXA3A4 a A2A3A4, tedy úhel „proti“ hraně
AXA2, jako tomu bylo v předchozím trojúhelníku A1A2A3),
pak lze opět odvodit vztahy o průmětech:

Pi — P2 cos 9p12 — p3 cos cpl3 — p4 cos cpl4 = 0,'
p3 cos qp23 — p4 cos qp24 = 0,

Pí cos qp34 = 0,
= 0.

První vztah v případě ostrých úhlů qpl2, qp13, q?J4 odpovídá
v rovině A2A3A4 rozkladu z obr. 35, v případě ostrých úhlů
cp12 a cpl3 a tupého úhlu qpl4 situaci v obr. 36, kde AA2A3A4 =
= AA[A2A4 + AA[A3A4 — AA[A2A3. Přitom A[ značí
vždy pravoúhlý průmět bodu Ax na rovinu A2A3A4.

—Pí cos qp12 + p2
—py COS qp13 — p2 COS qp23 + p3
—pi COS qp14 — p2 COS qp2i — p3 COS qp3i + p4

(1)

69

К důkazu užijeme vztahů (1) z předchozí poznámky. Kdyby
žádný z úhlů qp12, qpl3, cpl4 nebyl ostrý, platilo by cos qp12 ^ 0,
cos qp13 A 0, cos (p14 < 0 a první ze vztahů (1) by neplatil.
(Je to ostatně zřejmé i geometricky.) Abychom dokázali
tvrzení b), předpokládejme, že žádný z úhlů qp13, qpl4, qp23,
qp24 není ostrý. Pak cos qpl3 ^ 0, cos qp14 5S 0, cos qp23 A 0,
cos9?24 ^ 0. Násobíme-li první ze vztahů (1) číslem px, druhý
číslem p2 a sečteme, dostaneme

P\ + p\ — 2pxp2 cos qp12 — (p4p3 cos <pl3 + pxp4 cos qpu +
+ P2P3 COS (p23 + pop4 COS qp24) = 0.

Avšak | 2pxp2 cos qp12 | < 2p4p2 ^ p\ + p\, takže součet
prvních tří členů je kladný. Výraz v závorce je podle našich
předpokladů nekladný, což celkem dává, že levá strana je kladná.
Tento spor dokazuje tvrzení b).

Dokažme nyní z a) a b) tvrzení c). Podle a) je alespoň jeden
z úhlů qp12, qp13, qp14 ostrý. Případným přečíslováním lze do-
sáhnout toho, že qp12 je ostrý. Z tvrzení a) také plyne, že alespoň
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jeden z úhlů (píS, cp23, (p34 je ostrý. Je-li to úhel <p13 nebo ср23,
pak třetí (popř. dokonce čtvrtý) ostrý úhel najdeme opět podle
a) mezi úhly cpu, cp24, cpM a tvrzení c) platí. Není-li ani úhel
9?13, ani cp23 ostrý, je ostrý úhel cp34. Třetí ostrý úhel pak najdeme
z tvrzení b), neboť alespoň jeden z úhlů <p13, 9?14, 9?23, cp24 (tedy
alespoň jeden z úhlů (p]4, <p24) je ostrý.

Tím je důkaz proveden. Příkladem čtyřstěnu s právě třemi
ostrými úhly je čtyřstěn vzniklý odříznutím jednoho „rohu”
kvádru. Přímý důkaz tvrzení c) předkládáme v pozn. 2.

Poznámka 1. Rozložení ostrých, pravých a tupých vnitřních
úhlů stěn čtyřstěnu si můžeme názorněji vyznačit takto: Je-li
úhel 9)ik (i Ф k) ostrý, „obarvíme” hranu AiAk červeně; je-li
fpik tupý, obarvíme A-,Ak modře-, je-li (pik pravý, obarvíme AjAk
bíle. Rozložení ostrých, tupých a pravých vnitřních úhlů tedy
odpovídá obarvení všech šesti hran čtyřstěnu, každé jednou
z barev červená, modrá, bílá. Ukažme, že množina červených
hran je „souvislá množina spojující všechny vrcholy A„ A2,
A3, A4“, tj., že po červených hranách se dostaneme z každého
vrcholu čtyřstěnu do každého jiného vrcholu.

Nechť toto neplatí. Pak se z vrcholu Ax nedostaneme do
některého dalšího vrcholu (jinak bychom se z každého vrcholu
dostali do každého přes vrchol A,) po červených hranách.
Tedy množina M složená z vrcholu Ax a z těch vrcholů, do
nichž se dostaneme z Ax po červených hranách, má nejvýše
tři prvky. Má-li jeden prvek, je to jen vrchol Ax a žádná z hran
AxA2, A:A3, AxA4 není červená. To však odporuje tvrzení a)
z úlohy. Má-li dva prvky, nechť to jsou Ax a (po vhodném
přečíslování vrcholů A2, A3, A4) A2. Hrana AXA2 je tedy čer-
vená, ale žádná z hran A,A3, A}A4, A2A3, A2A4 už není čer-
vená, což odporuje tvrzení b) úlohy. Má-li tři prvky a chybí-li
v M např. vrchol A4, pak žádná z hran A4A4, A2A4, A3A4 není
červená, což odporuje tvrzení a) (užitému na vrchol A4).

Lze ukázat, že uvedené obarvení hran není kromě nalezené
souvislosti červených hran vázáno žádnou další podmínkou.
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Platí totiž: Obarvíme-li šest hran pomocného čtyřstěnu A1A2A3A4
červeně, modře a bíle tak, aby množina červených hran byla sou-
visld, pak tento čtyřstěn můžeme zdeformovat tak, že proti
červeným hranám leží ostré, proti modrým hranám tupé a proti
bílým hranám pravé vnitřní úhly.

Ověřte si sami, že obdobné vlastnosti má i trojúhelník (sou-
vislost červených hran i to, že toto je jediná podmínka). A lze
to dokázat pro obdobný útvar v и-rozměrném prostoru.

Snad nejzajímavější je obarvení hran čtyřstěnu třemi červe-
nými a třemi bílými hranami. Aby červené hrany tvořily sou-
vislou množinu „nad“ vrcholy A13 A2, A3, A4, nesmí tvořit
trojúhelník (čtvrtý vrchol by byl ,,isolovaný“). Jsou proto
možné v podstatě dva případy:

1. případ. A1A2, AxA3, AxA4 jsou červené, ostatní bílé.
Tento případ odpovídá zřejmě „rohu kvádru“, tj. úsečky
A4Ao, AxA3, AXA4 jsou po dvou navzájem kolmé.

2. případ. AxA2, A2A3, A3A4 jsou červené, ostatní bílé.
Lze ukázat, že v tomto případě jsou úsečky AXA2, A2A3,
A3A4 po dvou navzájem kolmé, tj. že čtyřstěn vznikne (obr. 37)
z kvádru. Jsou tedy vlastně dva typy ,,pravoúhlých“ čtyřstěnů

(tj. čtyřstěnů se třemi pra-
vými vnitřními úhly).

Poznámka 2. Podáme

nyní bezprostřední důkaz
tvrzení c) úlohy 69. Buď
ABCD daný čtyřstěn. Chce-
me dokázat, že alespoň tři
jeho vnitřní úhly jsou ostré.

Obr. 37.



Důkaz. Vezměme tu stěnu daného čtyřstěnu, která má
největší obsah (má-li více stěn maximální obsah, zvolíme libo-
volnou z nich). Nechť je to např. trojúhelník ABC. Ze vzorečku
pro objem čtyřstěnu pak vyplývá, že výška v spuštěná z vrcholu
D na rovinu ABC je nejkratší (popř. jedna z nejkratších).
Označme P patu této výšky.

Padne-li bod P dovnitř trojúhelníku ABC (čili dovnitř každé
ze tří polorovin ABC, BCA, CAB), jsou všechny vnitřní úhly
čtyřstěnu přilehlé ke stěně ABC ostré a není co dokazovat.

Nepadne-li bod P dovnitř trojúhelníku ABC, můžeme před-
pokládat, že leží např. v polorovině opačné к polorovině BCA.
Přímka AP pak protíná přímku BC v jistém bodě R (obr. 38 a, b)
a úhel <$iARD je zřejmě pravý nebo tupý (neboť R náleží
úsečce AP a APD je pravý). V trojúhelníku ARD je tedy
strana AP) nejdelší, a proto výška w к ní příslušná je nejkratší,
jak plyne ze vzorečku pro obsah trojúhelníku, zejména tedy
platí w < v.

C)

В

RObr. 38 a. Obr. 38 b. P

Vzdálenost r bodu R od roviny ACD je popřípadě ještě menší
než w, neboť bod R má již od přímky AD, která v této rovině
leží, vzdálenost rovnou zv. Celkem tedy máme r ^ w < v.
Obdobně též vzdálenost bodu R od roviny ABD je ^zv < v.

Ukážeme nyní, že bod R leží uvnitř úsečky BC. Kdyby tomu
tak nebylo, ležel by bod R např. na prodloužení úsečky BC
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za bod В (obr. 38b). Vzdálenost bodu В od roviny ACD
by pak byla ^ než vzdálenost bodu R od této roviny,
tj. ф r. Výška čtyřstěnu ABCD spuštěná z vrcholu В
na rovinu ACD by tedy byla kratší než v, a to by byl spor
s naším předpokladem. Proto bod R leží uvnitř úsečky BC
(obr. 38 a).

Bod P tudíž leží uvnitř úhlu фВАС (obr. 38a), což zna-
mená, že vnitřní úhly D (А В) C, D (АС) В jsou ostré. Úhel
D {BC) A v našem případě není ostrý, avšak třetím ostrým
úhlem musí být buď A {BD) C nebo A {CD) B, neboť všechny
tři vnitřní úhly přilehlé ke stěně BCD zřejmě nemohou být
neostré [viz též tvrzení a) úlohy 69J.

V každém případě jsme tedy našli (alespoň) tři ostré vnitřní
úhly daného čtyřstěnu.
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Mezi body dané soustavy existují dva, které mají největší
vzdálenost (je-li takových dvojic víc, zvolíme některou z nich).
Označme tyto body Ax a An. Ukažme nyní: Jsou-li P a Q dva
různé body soustavy, různé od -A,, pak úhel <^PA,Q < 120°.
Pro Pф Апф Q je totiž фАхРАп ф 120°, <AxQAn ф 120°
(ať bod P resp. Q leží na přímce AxAn či nikoli), takže zřejmě
фРАхАп < 60°, <^QA,An < 60°. Odtud plyne (viz pozn. 1
za řešením), že <£PA{Q ф <£PALAn + <£QAxAn < 120°,
jak jsme chtěli ukázat. Pro P = An nebo Q = An je rovněž
<£PAxQ < 120°. To však znamená, že АУР ф AXQ, neboť
jinak by (tři různé) body A13 P, O tvořily rovnoramenný troj-
úhelník s maximálním úhlem menším než 120°, což je spor
s předpokladem. Jsou tedy vzdálenosti každých dvou bodů
soustavy od bodu A} různé, takže zbylé body můžeme označit
A2, . . . , An-X tak, že

AxA~2 <C AxA3 <c AxAx <C ... <C AxAn—^ < AxAn.
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Dokažme nyní, že pro 1 5S i < j < k ^ n platí

šAtAjAt ^ 120°.

Pro i — 1, k = n je (1) správná. Nechť i = 1, k Ф n. Pro-
tože <£ AjA1Ak < 120° a AjAl < platí <£AxAjAk ^
^ 120°, tj. (1). Buď tedy i Ф 1. Už víme, že ^АХА{А,} ^ 120°,
stejně tak <^АХА,-Ак ф 120°, ^АгА^к Ф 120°. Předpoká-
dejme, že ■^AiAjA/c< 120°. Potom je buď фАкАгАх ф 120°
anebo <^AjAkAi ^ 120°. Nastane-li první možnost, svírají
každé dvě z polopřímek АгАх, AtAk, А{А}- úhel alespoň 120°.
To je možné jen tak (pozn. 2), že všechny tři leží v rovině
a svírají úhel právě 120°. Potom však (obr. 39) <£ AxA}Ak —
— фА^-Ai -f- <£AiAjAk < 60 + 60° = 120°, což je spor.
Zbývá tedy možnost фАхАкА{ ф 120°. Potom, označíme-li
Aj některý bod opačné polopřímky к polopřímce AkAj} platí
<£А'-АкА{ < 60°, dále vzhledem к <^A1AiAk^l20° platí
<£ AAAkAt < 60°, tj. Ф:А)АкАх < 120° < <$AkA}A
tože toto není možné (obr. 40), platí фА,-АхАк ^ 120° a věta
je dokázána.

(1)

Pro-1*



Poznámka 1. V předchozím řešení jsme užili tohoto
tvrzení: Jsou-li MA, MB, MC polopřímky, pak každý
z úhlů <£ AMB, ^BMC, <£СМЛ je menší nebo roven součtu
dvou zbývajících. Důkaz zřejmě stačí provést jen pro případ,
že dané polopřímky neleží v rovině a že právě jeden z těchto
tří úhlů má největší velikost (ostatní případy jsou totiž
snadné).

Na obr. 41 jsou znázorněny tři polopřímky MA, MB, MC
v prostoru takové, že <$iAMC je větší než oba zbývající. Pak
uvnitř úsečky AC existuje takový bod K, že KMC =■ BMC.
O bodu В můžeme zřejmě předpokládat, že platí MB = MK.
Pak také ВС = CK. Poněvadž АС < AB + BC, máme AK <
< AB. Trojúhelníky AMK, AMB mají tedy dvě dvojice

shodných stran, avšak pro
třetí strany platí nerovnost
AK < AB. Proto pro úhly
ležící proti těmto stranám
platí nerovnost

<ŠCAMK< <£AMB,

Obr. 41.

z níž plyne (vzhledem к tomu, že <£ KMC = <£BMC)

<ŽAMK + <£KMC < < AMB + <$BMC,
tj-

<£AMC < <£ AMB + -$BMC.
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Zbývající dvě nerovnosti jsou zřejmé vzhledem к tomu, že
úhel <С/ШС je největší.

Poznámka 2. Buďte opět MA, MB, MC tři polopřímky,
které neleží v rovině, takže MABC je čtyřstěn. Užitím výsledku
pozn. 1 dokážeme, že součet

S = <£AMB + <$BMC + <£CMA

je menší než 360°. Platí totiž

<$iBAC < <£BAM + <£ CAM,
^ABC < <£ABM + <CBM,
^BCA < <£BCM + <£ACM.

Sečtením těchto tří nerovností dostaneme

180° < 3 . 180° - 5
a odtud skutečně

5 < 360°.

71

Nechť tvrzení neplatí. Pak ke každé přímce procházející
alespoň dvěma z uvažovaných bodů lze najít v dané množině
bod, který na této přímce neleží. Ze všech dvojic (p, X), kde
p je přímka procházející alespoň dvěma z daných bodů а X je
bod dané množiny, který neleží na přímce p, vyberme tu (popř.
jednu z těch), pro niž je vzdálenost bodu X od přímky p co
nejmenší. To můžeme, neboť uvažovaných dvojic je konečný
počet. Bud (p,-X) zvolená dvojice.

Písmenem P označme pravoúhlý průmět bodu X na přímku
p. Bod P rozděluje přímku p na dvě uzavřené polopřímky. Na
každé z nich může ležet nejvýše jeden bod dané množiny, jak
ukazuje obr. 42, kde Х'Р' < XP. Proto na celé přímce p leží
nejvýše (vlastně právě) dva body dané množiny, a to odporuje
předpokladu úlohy. Věta je dokázána.
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Obr. 42.

Poznámka. Úloha 71 je elementárním příkladem jedné
obecnější teorie.

Cvičení. V prostoru je dáno я(^3) bodů, které neleží
v jedné přímce. Pak existuje alespoň n různých přímek,
z nichž každá prochází nejméně dvěma z daných bodů.

72

Všechny kruhy, o nichž se mluví v úloze, mají týž poloměr r.
К objasnění tohoto tvrzení stačí vzít dvě různoběžné roviny
a promítnout množinu M pravoúhle na jejich průsečnici; vzniklý
průmět bude zřejmě zároveň pravoúhlým průmětem obou pří-
slušných kruhů na tuto průsečnici. Proto oba kruhy mají
stejné průměry. Rozmyslete si také, že kolmice vztyčené ve
středech všech uvažovaných kruhů procházejí společným bo-
dem S.

Sestrojme nyní kulovou plochu x = (S;r). Kdyby některý
bod X množiny M ležel vně této kulové plochy, pak by právo-
úhlý průmět množiny M na libovolnou rovinu obsahující
přímku SX nemohl být kruh o středu S a poloměru r. Proto
celá množina M leží v kouli s hranicí x. Kdyby některý bod Y
kulové plochy x nepatřil množině M, pak by zase pravoúhlý
průmět množiny M na libovolnou rovinu proloženou přímkou
SY nemohl být kruh o středu S' a poloměru r, neboť v tečné
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rovině plochy x vedené bodem Y podle předchozího neleží
žádný bod množiny M.

Množina N\ tedy obsahuje všechny body kulové plochy >í
(a je celá obsažena v kouli, kterou tato plocha určuje).

Poznámka. Kdybychom v úloze předpokládali navíc kon-
vexitu množiny M, platilo by, že M je koule.
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První řešení. Dotykové body kulové plochy s hranami AB,
BC, CD, DA označme po řadě M, N, P, Q. Z vlastností tečen
kulové plochy nacházíme vztahy

AM = AQ, BM = BN, CN = CP, DP = DQ, (1)

pomocí nichž dokážeme, že body M, N, P, Q leží v jedné rovině.
Rovina MNP neobsahuje žádný z bodů А, В, C, D, neboť

jinak by musela obsahovat všechny vrcholy čtyřstěnu, což není
možné. Body А, В leží proto uvnitř opačných poloprostorů
určených touto rovinou. Totéž platí i o vrcholech В, С a C, D.
Z toho vyplývá, že vrcholy A, D jsou odděleny rovinou MNP,
takže tato rovina protíná úsečku AD v jejím vnitřním bodě R.
Potřebujeme dokázat, že R = Q.

Označme А', В', C, D'
(pravoúhlé) průměty bo-
dů А, В, C, D na rovinu
MNP. Pak zřejmě platí
(obr. 43)

Obr. 43.



AM
_ AA' BN BB’ CP CC DR DD'

BM ~ BB' ’ CN ~ CC 5 DP ~ DD'’ AR ~ AA' 5

tedy
AM BN CP DR

BM ‘ CN ' DP' AR

Vzhledem к (1) odtud dostáváme
AM DR

DP ’ AR

Poněvadž AM = AQ, DP = DQ, vyplývá z poslední rovnosti,

AA' BB' CC' DD'

BB' ’ CC' ' DD' ’ AA'
= 1.

= 1.

že

AQ . DR = DQ . AR.
AR, DQ = ADDosaďme sem DR = AD

bude
AQ, takže

AQ {AD - AR) = {AD - AQ) AR,
z čehož

AQ = AR.
Tím je dokázáno, že R = Q.

Druhé řešení. Označení zvolme stejně jako v předchozím
řešení, takže opět platí rovnosti (1). Rozlišujme nyní dva pří-
pády:

[1] Může se stát, že AM = CN. Pak též AQ = CP. Troj-
úhelník ABC je pak rovnoramenný {BA = ВC) a platí
MN || AC. Obdobně je QP || AC. Z toho vyplývá MN || OP,
takže body M, N, P, Q leží v jedné rovině.

[2] V případě AM Ф CN předpokládejme např., že je AM >
> CN, takže též AQ > CP. Rovnoběžka s MN vedená bodem
C protíná úsečku AB v jistém bodě E (ležícím mezi A, M)
a obdobně rovnoběžka s PQ vedená bodem C protíná úsečku
AD v jistém bodě F (ležícím mezi A, Q); viz obr. 44. Poněvadž
BM — BN a DP — DQ, je EM = CN = CP — QF\ to zna-
mená, že v rovině ABD platí MQ || ЕЕ.
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DObr. 44.
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Přímky PQ, QM, MN jsou tedy rovnoběžné po řadě s přím-
kami CF, FE, ЕС, a proto jsou obě roviny PQM i QMN
rovnoběžné s rovinou CFE. Poněvadž však tyto dvě roviny mají
společnou přímku QM, jsou totožné. To znamená, že body
M, N, P, Q leží v jedné rovině, c. b. d.

Třetí řešení. Dotykové body dané kulové plochy s hra-
námi AB, BC, CD, DA označme opět M, N, P, Q. Je-li AM =
— CN, provedeme tutéž úvahu jako na začátku druhého řešení.

Jestliže AM Ф CN, můžeme předpokládat, že je např.
AM > CN a tedy též AQ > CP. V rovině ABC jsou pak přím-
ky AC, MN různoběžné a protínají se v jistém bodě К, který
zřejmě leží na polopřímce opačné к polopřímce CA (obr. 45).
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У

aTN
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Obr. 45.4 M В
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Přímka QP protíná přímku AC v jistém bodě L, který leží také
na polopřímce CK. Dokážeme-li, že je К = L, budou přímky
MN, PQ různoběžné a body M, N, P, Q budou ležet v jedné
rovině (určené těmito dvěma různoběžkami). К tomu stačí
ukázat, že platí CK = CL.

Přímka MN protíná přímky AB, BC, CA po řadě v bodech
M, N, K, takže podle Menelaovy věty (pozn. za řešením) platí

AM . BN. CK = BM . CN . AK.

Poněvadž zřejmě BN = BM a AK = AC + CK, je
AM .CK = CN (AC + CK)

a odtud
CN .AC

(1)CK =
AM — CN '

Obdobně z trojúhelníku ACD proťatého přímkou PQ vypo-
čteme

CP .AC
(2)CL =

AQ-CP '
Ve vzorcích (1), (2) je však CN = CP, AM = AQ, takže
skutečně platí

CK = CL,
jak jsme chtěli dokázat.

Poznámka. Menelaova věta, kterou jsme užili ve třetím
řešení zní takto:

Nechť je dán trojúhelník ABC a přímka p, která protíná
přímky AB, BC, CA po řadě v bodech X, Y, Z. Pak platí

(1)AX .BY . CZ — BX . CY . AZ.

Důkaz. Prochází-li přímka p jedním nebo dvěma vrcholy
trojúhelníku ABC, jsou obě strany v (1) rovny nule. Nepro-
chází-li přímka p žádným vrcholem trojúhelníku ABC, označ-
me vzdálenosti vrcholů А, В, C cd přímky p po řadě písmeny
a, b, c (obr. 46).
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Pak zřejmě platí
AX BY b CZ

BX ~ b ’ CY ~ c 5 ,4Z

a c

a

Vynásobením těchto rovností dostaneme
AX BY CZ

BX'CY'AZ ~ b

a b c
__ i

c a

a odtud již bezprostředně vyplývá rovnost (1).
Jiný důkaz (již jen pro případ, že přímka p neprochází

žádným vrcholem trojúhelníku ABC). Sestrojme v rovině ABC
přímku q různoběžnou s danou přímkou p. Rovnoběžné prů-
měty bodů А, В, C na přímku q ve směru daném přímkou p
označme po řadě А', В', C'; při tomto promítání bude obra-
zem bodů X, Y, Z jediný bod P', různý od bodů A', B'3 C
(obr. 47). Pak o úsečkách a jejich průmětech platí vztahy

AX
_ A'P' BY B'P' CZ C'P'

BX - B'PT5 CY ~ C'P' 5 ZZ _ A'P' '

Vynásobením těchto rovností opět plyne (1).
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Nechť existuje kulová plocha, která se dotýká všech hran
čtyřstěnu ABCD. Dotykové body rozdělují každou hranu na
dvě úsečky a každé tři z těchto dvanácti úseček, které vychá-
zejí z jednoho vrcholu čtyřstěnu, jsou stejně dlouhé. Délky
tečen vycházejících z vrcholů А, В, C, D označme po řadě a, b,
c, d. Pak AB = a + b, CD — c + d, takže AB + CD =
= a-\-b-\-c-\-d. Podobně se dokáže, že také AC + BD =
— AD -\- BC = aJrb-\-c-\-d.

Předpokládejme nyní, že čtyřstěn ABCD splňuje podmínku

(1)AB + CD = AC + BD = AD -f BC,

a ukažme, že je možno sestrojit kulovou plochu, která se dotýká
všech jeho hran.

Hledaná kulová plocha musí protínat každou stěnu v kruž-
nici jí vepsané; přitom kružnice vepsané libovolným dvěma
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stěnám se budou dotýkat společné hrany v témž bodě (je to
dotykový bod kulové plochy s touto hranou). Dokažme proto
především, že z předpokladu (1) vyplývá toto tvrzení: Kružnice
vepsané libovolným dvěma stěnám čtyřstěnu ABCD se dotý-
kají společné hrany v témž bodě
(obr. 48).

Vepišme trojúhelníkům ABD,
BCD kružnice kx, k2 a označme
M, N jejich dotykové body se /
společnou stranou BD; viz obr. /
48, kde Sv S2 jsou středy těchto /
kružnic a P, Q dotykové body / S1 o
se stranami AB, BC. Z trojúhel- "7^”
niku ABD vypočteme nA

D

íi *2,

n N

C

Obr. 48. В

1
— (АВ A-BD- AD)BM

a z trojúhelníku BCD
. 1

BN ='— (BC + BD - CD).

Podle (1) však platí AB — AD = BC
BM - BN.

To ale znamená, že M = N. Obdobně lze důkaz provést i pro
ostatní dvojice stěn.

Rovina SXMS2 je kolmá к přímce BD, neboť obě různoběžky
Č>,M, S2M jsou kolmé ke společné tečně BD kružnic k1} k2. Proto
je rovina Д.Мё>2 kolmá i к rovinám ABD, BCD. V rovině
S^MS2 leží tedy kolmice к rovinám ABD, BCD vztyčené v bo-
dech S13 S2. Tyto dvě kolmice nejsou rovnoběžné (neboť roviny

CD, takže
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ABD, BCD nejsou rovnoběžné), takže se protínají v jistém bodě
S. Bod 6" má od bodů kružnic kv k2 stejnou vzdálenost, rovnou
délce 5Ж. Kulová plocha к o středu é> a poloměru SM pro-
chází tedy kružnicemi kl3 k2 a dotýká se hran AB, BC, CD,
BD, AD v jejich vnitřních bodech.

Zbývá dokázat, že se dotýká i hrany AC. Kulová plocha x
protíná rovinu ABC v jisté kružnici k, která se dotýká přímek
AB, BC v bodech P, Q. Z našeho pomocného tvrzení o kruž-
nicích vepsaných stěnám čtyřstěnu ABCD nyní vyplývá, že
kružnice k musí být totožná s kružnicí vepsanou trojúhelníku
ABC. Dotýká se tedy i úsečky AC ve vnitřním bodě a důkaz je
hotov.

75

Buď Q jedna z pěti daných kulových ploch. Kulová plocha Q
protíná rovinu každé stěny čtyřstěnu SABC v kružnici, která
je buď vepsána nebo vně vepsána příslušnému trojúhelníku.
Přitom každé dvě z těchto čtyř kružnic se dotýkají průsečnice
svých rovin v témž bodě (je to dotykový bod této průseč-
nice s kulovou plochou Q). Nyní jsou myslitelné dva pří-
pády:

[1] Kulová plocha Q se dotýká všech hran v jejich vnitř-
nich bodech. Pak Q prochází body P, Q, R, v nichž se dotýká
kružnice vepsaná trojúhelníku ABC jeho stran, a dále dotyko-
vým bodem К strany SA s kružnicí vepsanou trojúhelníku
SAB (obr. 49). Body P, Q, R neleží v přímce a bod К neleží
v rovině PQR. Čtyřmi body P, Q, R, K, které neleží v jedné
rovině, prochází jediná kulová plocha. Proto nejvýše jedna z pěti
daných kulových ploch patří к případu [1].

[2] Alespoň jeden dotykový bod kulové plochy Q s přím-
kami obsahujícími hrany čtyřstěnu leží vně příslušné hrany.
Pro určitost např. předpokládejme, že se kulová plocha Q
dotýká přímky SA v bodě Кг, který leží na prodloužení úsečky
SA za bod A (obr. 49). Pak Q protíná rovinu SAB v kružnici kx
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Obr. 49.

vně vepsané trojúhelníku
SAB, a to ke straně AB.
Proto se kružnice k1 dotý-
ká úsečky AB v jistém
vnitřním bodě a dále

polopřímky SB v bodě Lx,
který je od bodu .S oddě-
len bodem В (obr. 49).
Kružnice k2 . v rovině
SAC pak také obsahuje
bod Kx (neboť, jak jsme
na začátku řešení poznamenali, kružnice kx, k2 se musí do-
týkat přímky SA v témž bodě) a je tedy vně veprána troj-
úhelníku SAC, a to ke straně AC. Rovněž kružnice k3 v ro-
vině SBC musí být vně vepsána trojúhelníku SBC ke straně
BC. Z toho vyplývá, že kulová plocha Q protíná rovinu ABC
v kružnici vepsané trojúhelníku ABC a dotýká se tedy hran
BC, CA, AB po řadě v bodech P, Q, R (obr. 49). Ostatní
tři roviny protíná kulová plocha Q v kružnicích vně vepsaných
příslušným trojúhelníkům a dotýká se přímek SA, SB, SC po
řadě v bodech Kx, Lx, Mx (obr. 49). Čtyřstěnu PQRKX lze
opsat jedinou kulovou plochu, proto existuje nejvýše jedna
sféra Q, která má vlastnosti popsané v tomto odstavci. Celkem
pak existují nejvýše čtyři kulové plochy patřící к případu [2].

Poněvadž v předpokladu úlohy je dáno pět kulových ploch,
z nichž každá se dotýká šesti přímek SA, SB, SC, AB, BC, CA,
existuje podle provedeného rozboru jedna kulová plocha prvého
typu a čtyři kulové plochy druhého typu.

Všimněme si nejprve kulové plochy prvého typu a její do-
týkové body s hranami čtyřstěnu SABC označme podle obr. 50.
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Pak platí
SK = SL = SM = s, AK = AQ = AR = a,
BL = BP = BR — b, CM = CP = CQ = c.

Obr. 50.

Vezměme nyní kulovou plochu
druhého typu příslušnou stěně
ABC a dotykové body označme
opět podle obr. 50. Pak také

AKy = a, BLX — b, CMy — c

a dále SKy = SLy = SM13 tj.
2o, -f- í — 2b -)- s — 2c s

čili
a = b = c.

To však znamená, že trojúhelník ABC je rovnostranný (obr.
50). Provedeme-li obdobnou úvahu i se třemi zbývajícími kulo-
vými plochami, dokážeme, že i stěny SAB, SBC, SCA jsou
rovnostranné trojúhelníky. Daný čtyřstěn SABC je tedy pra-
videlný.

Obráceně, nechť SABC je pravidelný čtyřstěn. Označme T
jeho střed (těžiště). Pak kulová plocha o středu T, která pro-
chází středem jedné hrany, bude procházet i středy ostatních
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hran a bude se dotýkat všech hran čtyřstěnu SABC (tj. bude
prvého typí*}. Stejnolehlostí se středem 5 a koeficientem 3
přejde tato sféra v kulovou plochu druhého typu příslušnou
stěně ABC. Obdobně sestrojíme další tři sféry. Celkem tedy
existuje pět kulových ploch, jak jsme měli dokázat.

76

Veďme bodem P přímku p, která protíná množinu M v jisté
úsečce АВ; uvědomte si, že taková přímka p existuje. Přímkou
p proložme dvě různoběžné roviny a, /?. Každá z nich podle
předpokladu protíná množinu M v kruhu; hraniční kružnice
k, l těchto dvou kruhů mají společnou tětivu AB. Kružnicemi
k, l prochází jediná kulová plocha; kouli, kterou ohraničuje,
označme K. Ukážeme, že M = K.

Obr. 51.

Buď X libovolný bod množiny M, který neleží v rovině a
ani /5. Dokážeme, že X náleží kouli K. Rovina co proložená bo-
dem P a přímkou, která prochází bodem X a obsahuje dva různé
vnitřní body kruhů o hranicích k, l — rozmyslete si (obr. 51),
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že taková přímka existuje — protíná kružnice k, l alespoň ve
třech různých bodech Tl3 T2, Г3. Průnik množiny*//! s rovinou
co je (podle předpokladu) jistý kruh s hranicí m, který pocho-
pitelně obsahuje body 7) (i = 1, 2, 3), Kdyby některý z bodů
Ti (i — 1, 2, 3) ležel uvnitř tohoto kruhu, pak by byl vnitřním
bodem tětivy, kterou by v tomto kruhu vyhnala rovina <x nebo /3
(totiž ta, v níž Ti leží). Celá tato tětiva náleží množině M (podle
definice kružnice ni) a tudíž leží v kruhu určeném kružnicí k
(v a) nebo l (v /?). Bod Ti by pak nemohl ležet na hranici přísluš-
něho kruhu. Proto body 7), T2, T3 leží na kružnici m. To známe-
ná, že kružnice m leží na povrchu koule K, načež celý kruh touto
kružnicí určený (tj. průnik roviny co s množinou M) nále-
ží kouli K. Zejména také bod X leží v K, jak jsme chtěli do-
kázat.

Zatím tedy víme, že platí M с K. Předpokládejme, že některý
bod Y z К nepatří do M. Rovina ABY protíná kouli K. v kruhu
a množinu M také v kruhu (neboť P leží na AB). Tyto dva
kruhy mají společnou tětivu, takže kdyby nebyly totožné, ob-
sahoval by každý z nich body nepatřící druhému (nakreslete
si obrázek); některé body množiny /VI by pak ležely vně koule K,
což, jak už víme, není možné. Proto oba uvažované kruhy
splývají a Y patří do M. Platí tedy rovnost M = К a věta je
dokázána.

77

Označme délky hran AB = a, CD
odchylku mimoběžek AB, CD, Čtyřstěn ABCD doplníme na
rovnoběžnostěn, jak ukazuje obrázek 52; výsledný rovnoběžno-
stěn ovšem nemusí být kolmý. Hrany AB, CD čtyřstěnu jsou
úhlopříčkami jeho podstav, rovina e dělí rovnoběžnostěn ve
dva rovnoběžnostěny; objem dolního (horního) označíme Vx

(V2). Protože jejich výšky jsou po řadě

b, d vzdálenost a co

kd d

1 + k ’ 1 + k
a protože oba rovnoběžnostěny mají podstavu téhož obsahu
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D1
— ah sin oj, platí

kabd

2 (1 + &)
sin OJ,V!

аЫ
- sin OJ.V2 2(1 -f- k)

Obr. 52.

Rovina e rozdělí čtyřstěn ABCD na dvě části; dolní dostaneme,
když od dolního rovnoběžnostěnu oddělíme dva jehlany a dva

komolé jehlany. Výška jehlanů je
kd

a jejich podstavy

mají týž obsah P4; je to obsah trojúhelníku XYZ. Poněvadž
1 + k

trojúhelníky XYZ, CDE jsou stejnolehlé podle středu A |koe
* .)\ +k)

ficient stejnolehlosti je , platí

НттхЙ-
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Součet objemů jehlanů je tedy

2 kd

3“’l +k (tti)' ШLd.
3

• p3. (1)

kd
Oba komolé jehlany mají také výšku

mají obsahy Рг (AABF) a P2 (f\XVU). Protože trojúhelníky

; jejich podstavy1 + k 9

XVU, ABF jsou stejnolehlé podle středu C ^koeficient stej-
1

)nolehlosti je platí1 + k] 5
1

P2 = .Pv1 + k

Součet objemů obou komolých jehlanů je tedy

МпЫНпЫЧ2 kd

3 * 1 + k

2d k (k2 + 3k + 3)
:

3 “(TT^)§ x* (2)

Objem V[ dolní části dostaneme, odečteme-li od V1 obě čísla
(1), (2). Uvážíme-li, že

1
Рг — P3 = — ab sin co,

bude

2kd 2 k3

3~ (1 TWy; •л •лi + k

2
, k (k2 + 3& + 3)

Tá' (i+*y>
2k2 (k + 3)

i- áPi- (3)3 (1 + &)
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Objem V% horní části dostaneme zřejmě, nahradíme-li ve vý-
sledku (3) číslo k číslem ^ ; po úpravě vyjde

2(1+ 3k)
3 (Г+ £)3

Z (3), (4) plyne
_ кЦк + з)

v:2 i+3k 9
a to je poměr, který bylo třeba vypočítat.

Poznámka. Pro k = 1 dává výsledek úlohy 77 toto tvrzení:
Rovina, která prochází středy dvou mimoběžných hran a stře-
dem jedné další hrany čtyřstěnu, dělí tento čtyřstěn na dvě
části o stejném objemu.

V2 = dPv (4)

78

Obr. 53 naznačuje rozklad krychle na pět čtyřstěnů. Do-
kážeme, že toto je nejmenší možný počet.

Nechť je krychle rozřezána na čtyřstěny. Žádná stěna krychle
nemůže náležet jedinému z těchto čtyřstěnů a žádné dvě stěny
čtyřstěnu nemohou ležet v rovnoběžných rovinách. Proto čtyřstě-
ny jsou alespoň čtyři;
dva s podstavami náleže-
jícími jedné stěně krych-
le a dva s podstavami
náležejícími protější stě-
ně krychle. Lehce se však
nahlédne, že součet obje-
mů těchto čtyř čtyřstěnů

\/ \
/ X/ \

/
/ \
/

\/
\/ V

/
/

Obr. 53.
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není větší než dvě třetiny objemu krychle. Existuje tedy ještě
další — pátý — čtyřstěn.

Poznámka. Všimněte si podobného triku v řešení úlohy 59.

79

Buď X bod daného tělesa. Koule o středu Až (i = 1, 2,. . ., n)
a poloměru d obsahuje všechny vrcholy a tudíž i bod X (proč ?)
— viz obr. 54. Pro každé i — 1, 2,. . ., n tedy platí

XAt
Buďte nyní X, Y libovolné dva body daného tělesa. Koule

o středu X a poloměru d obsahuje podle (1) všechny vrcholy
A13 A2,. . ., An a tím i celé těleso, včetně bodu Y. Proto platí

d. (1)

Obr. 54.

80

a) Nejprve si odvodíme pomocnou větu, kterou budeme
v dalším potřebovat: Buď dán trojúhelník PQR. Potom mno-
žina všech bodů X v prostoru, pro něž platí

PX2 + QR2 = QX2 + PR2,
je rovina q procházející bodem R a kolmá к přímce PQ.

(1)
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Při důkazu této věty užijeme metody souřadnic. V prostoru
zvolíme kartézskou soustavu tak, aby P = [0; 0; 0], O =
= [t; 0; 0] (t > 0), R = [r; s; O'], X = [x; y; z]. Podmínku
(1) pak vyjádříme ve tvaru

X2 + y2 + Z2 + (r — tf + 52 =
= (x — r)2 + y2 + z2 + r2 + s2 (2)

neboli
(2')x — r.

To znamená, že každý bod X, který splňuje podmínku (1),
leží v rovině q. Obráceně, každý bod X =[x; y, #] této
roviny g splňuje podmínku (2') čili (2), tedy i (1). Pomocná
věta je dokázána.

b) Nechť se nyní výšky čtyřstěnu ABCD protínají v jednom
bodě. Pak pravoúhlým průmětem vrcholu D na rovinu ABC
je zřejmě průsečík výšek trojúhelníku ABC. Platí tedy CD _L
_L AB a přímkou CD lze proložit rovinu kolmou к přímce AB.
Podle odst. a) splňuje bod D rovnost

AD2 + BC2 = BD2 + AC2.

Obdobně se dokáže, že také

AB2 + CD2 = AC2 + BD2 = AD2 + BC2. (3)

Obráceně, platí-li (3), pak např. vrchol D leží v rovině
procházející bodem А (В, C) a kolmé к přímce BC (CA, AB),
tj. každé dvě mimoběžné hrany čtyřstěnu ABCD jsou kolmé.
To znamená, že pravoúhlý průmět bodu D na rovinu ABC
leží na všech třech výškách trojúhelníku ABC a je to tedy
průsečík výšek trojúhelníku ABC. Z toho vyplývá, že výšky
čtyřstěnu ABCD, které procházejí vrcholy А, В, C, protínají
výšku vedenou vrcholem D. Poněvadž označení vrcholů není
v naší úloze podstatné, platí, že každé tři výšky čtyřstěnu
ABCD protínají jeho čtvrtou výšku. Čtyřstěn ABCD je tedy
ortocentrický (tzn. jeho výšky se protínají v jednom bodě).
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Poznámka 1. Čtenář si možná všiml, že v našem řešení je
vlastně obsažen i důkaz této věty: Čtyřstěn ABCD je orto-
centrický právě tehdy, platí-li AB _L CD a AC _\_ BD; každé
dvě mimoběžné hrany ortocentrického čtyřstěnu jsou na-
vzájem kolmé. Dále, čtyřstěn je ortocentrický, právě když
pravoúhlý průmět některého jeho vrcholu na rovinu protější
stěny splývá s průsečíkem výšek této stěny. К tomu, aby čtyř-
stěn byl ortocentrický, zřejmě stačí (a je ovšem nutné), aby
tři jeho výšky měly společný bod.

Poznámka 2. Čtyřstěn je ortocentrický, právě když středy
všech jeho hran leží na kulové ploše. Střední příčky liboolnéhoí
čtyřstěnu (tj. úsečky spojující středy protějších hranv)úmaj
totiž vždy společný střed, neboť každé dvě z nich jsou hlo-
příčkami jistého rovnoběžníku. Je-li tedy čtyřstěn ortocentrický,
jsou tyto tři rovnoběžníky pravoúhelníky, jak plyne z kolmosti
mimoběžných hran, a každé dva z nich mají společnou úhlo-
příčku. Proto vrcholy těchto pravoúhelníků, tj. středy šesti hran
čtyřstěnu, leží na kulové ploše. Obráceně, leží-li středy všech
hran čtyřstěnu na kulové ploše, pak Umíněné tři rovnoběžní-
ky jsou pravoúhelníky (neboť každý rovnoběžník, jemuž lzэ
opsat kružnici, je pravoúhelník) a z toho plyne kolmost mimo-
běžných hran; podle pozn. 1 je pak takový čtyřstěn ortocen-
trický.

Poznámka 3. Buď dán ortocentrický čtyřstěn. Kulová
plocha z pozn. 2 protíná rovinu každé stěny v tzv. kružnici
devíti bodů příslušného trojúhelníku, neboť prochází středy
jeho stran. Proto na této kulové ploše leží také paty výšek
všech stěnových trojúhelníků a body, které půlí vzdálenosti
vrcholů každé stěny od průsečíku výšek této stěny. Podle
pozn. 2 a 4 je středem této kulové plochy těžiště čtyřstěnu.

Poznámka 4. Není těžké dokázat, že v libovolném čtyřstěnu
je společný střed středních příček, o němž jsme se zmínili
v pozn. 2, vždy zároveň těžištěm tohoto čtyřstěnu (každá
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přímka, která spojuje tento bod s vrcholem čtyřstěnu, protíná
totiž každou těžnici protější stěny). Toto tvrzení má i zřejmý
fyzikální smysl.

Poznámka 5. Ortocentrický čtyřstěn, s nímž jsme se se-
známili v úloze 80, má řadu dalších zajímavých vlastností.
Všimněme si zde např. rozložení případných neostrých úhlů
jeho stěnových trojúhelníků. Platí: V ortocentrickém čtyřstěnu
všechny neostré úhly stě-
nových trojúhelníků leží
při jednom vrcholu čtyř-
stěnu.

Důkaz
Označíme-li
BC — a, CA = b, AD =
= a', BD = b', CD - c,

platí podle předpokladu
(resp. podle úlohy 80)

(obr. 56).
AB = c,

Obr. 56.

a2 + a'2 = b2 + b'2 = c2 + c'2.

Vyšetřujeme velikosti úhlů <$.BAD=cp, <£CAD =гр,
ý:BAC — co. Podle kosinové věty platí

2a c cos cp = a'2 + c2 — b'2,
2a b cos cp = a'2 + b2 — c2,
2bc cos co — b2 + c2 — a2.

(2)
(3)
(4)

Z (1) však vyplývá
a2 - b'2 + c2 =b2 + c2 - a2,
a 2 — c2 + b2 = b2 + c2 — a2.
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To znamená, že všechna čísla na pravých stranách ve vztazích
(2), (3), (4) jsou stejná. Všechna tři čísla cos cp, cos ip, cos co
jsou tedy současně buď kladná nebo záporná nebo rovná nule.
Všechny tři úhly cp, xp, co jsou proto současně buď ostré nebo
tupé nebo pravé. Stejný výsledek platí i pro vrcholy В, C, D.

Má-li tedy některá stěna tupý resp. pravý vnitřní úhel, mají
i ostatní dvě stěny při tomto vrcholu tupý resp. pravý úhel,
načež všechny úhly při zbývajících vrcholech musejí být
ostré. Z toho též vyplývá, že vždy buď jediná anebo všechny
stěny ortocentrického čtyřstěnu jsou ostroúhlé trojúhelníky.

Poznámka 6. Čtyřstěn ABCD je ortocentrický, právě když
existují čísla a, b, c, d tak, že

AB2 = a + b,
BC2 = b + c,

AC2 — a + c,

BD2 = b + d,
AD2 — a -\- d,
CD2 == c + d.

Dokažme to pomocí výsledku úlohy 80. Nechť čtyřstěn
ABCD je ortocentrický. Položme a = — (.AB2 + AC2 — BC2),

j (.AB2 + ВС2 - АС2), с = -- (.AC2 + BC2 - AB2),
d = AD2 — a. Pak jsou splněny vztahy AB2 = a + b, AC2 =
= a + c, BC2 = b -f c, AD2 — a + d. Zbylé dva vztahy pak
plynou z toho, že podle úlohy 80 BD2 = AD2 + ВC2 — AC2 =
= a.-\- d b + c — a — c = b + d, CD2 = AD2 + BC2 —
— AB2 = a-\~dJrbJrc~a — b = dJrc.

Jsou-li obráceně splněny vztahy AB2 = a + b atd., pak
AB2 + CD2 = AC2 + BD2 = AD2 + BC2 ~aj-b-\-c-\-d
a podle výsledku úlohy 80 je čtyřstěn ABCD ortocentrický.

Je zajímavé, že i průsečíku výšek V ortocentrického čtyřstěnu
ABCD lze přiřadit číslo v tak, že navíc А V2 = a + v, В V2 =
= b + v, CV2 — c + v, DV2 = d + v. Body А, В, C, D, V
tedy vystupují ,,symetricky“, totiž v tom smyslu, že každý
z nich je ortocentrem čtyřstěnu s vrcholy v ostatních čtyřech,

b =
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pokud ovšem tyto čtyři body neleží v rovině. Lze dokázat,
že z čísel a, b, c, d, v nejvýše jedno je rovné nule. Jsou-li všechna
nenulová, je právě jedno záporné a ostatní kladná, a

1 1 1 11
1 T 1 1 ~r H

a b c d v
= 0.

81

První řešení. Jsou-li přímky p, AB různoběžky, je hle-
daným geometrickým místem zřejmě buď celá přímka p s vý-
jímkou průsečíku s přímkou AB (neprochází-li přímka p
bodem A ani bodem B) anebo pouze bod A resp. В (jestliže
jím přímka p prochází). V dalším budeme proto předpokládat,
že přímky p, AB jsou mimoběžné.

Poněvadž platí p ± AB, můžeme přímkou p proložit ro-
vinu л kolmou к přímce AB; příslušný průsečík označme M.
Je-li M = A nebo M = B, jsou všechny vyšetřované trojúhel-
niky ABX pravoúhlé a hledané geometrické místo se skládá
z jediného bodu M.

Nechť tedy platí A M B. Na přímce p můžeme zvolit
(jediný) bod X0 takový, že rovina ABX0 je kolmá к přímce p.
Průsečík V0 výšek trojúhelníku ABX0 náleží hledanému geo-
metrickému místu a leží zřejmě v rovině л, nesplývá však
s bodem M.

Vezměme nyní libovolný bod X přímky p různý od X0
a označme V průsečík výšek trojúhelníku ABX (obr. 57).
Výška trojúhelníku ABX spuštěná z vrcholu X je kolmá na
přímku AB a leží proto v rovině л. To znamená, že i hledané
geometrické místo bodů V leží v rovině л; a je zřejmě souměrné
podle roviny ABX0. Bude-li se bod X vzdalovat po přímce p
od bodu X0, bude se bod V vzdalovat od bodu V0. Bude-li
však bod X již hodně daleko, budou úhly <^XAB, <£XBA
blízké pravým a bod V se bude zřejmě blížit (v rovině л)
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к bodu М. Potřebujeme tedy zjistit, jakou dráhu v rovině л
opisují body V. Vzhledem к názorné představě, kterou jsme
právě naznačili, mohla by touto dráhou být např. kružnice
nad průměrem V0M — ovšem bez bodu M. Budeme se proto

zajímat o úhel <£ V0VM.
Především je jasné, že

V0V _L AB, (1)

neboť přímka V0V leží
v rovině л kolmé к přím-
се AB. Dále si všimně-
me, že přímka AV0 je
kolmá к přímce BX0
a i к přímce p.

Obr. 57.

Proto je přímka А V0 kolmá na rovinu pB a tudíž i na přímku
BX, která v této rovině leží. Platí tedy

(2)BX _!_ A V0.

Z trojúhelníku ABX samozřejmě dostáváme, že

(3)BX ±AV.

Ze vztahů (2) a (3) plyne, že přímka BX je kolmá na rovinu
AV0V, tedy i na přímku V0V, tj.

(4)V0V _L BX.
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Vztahy (1) a (4) však říkají, že přímka V0V je kolmá na
rovinu ABX. Odtud vychází

<£ V0VM = 90°,
/ jak jsme očekávali.

Tím je dokázáno, že každý bod hledaného geometrického
místa leží na kružnici k sestrojené v rovině n nad průměrem
V0M; bod M však leží na přímce AB a není tedy průsečíkem
výšek žádného z vyšetřovaných trojúhelníků ABX (je totiž
АфМфВ).

Obráceně, zvolme na této kružnici k libovolný bod V různý
od bodu M. Pak přímka MV protne přímku p v jistém bodě X.
Rovina ABX nesplývá s rovinou n a proto kružnice k neleží
v rovině ABX. Z toho plyne, že rovina ABX má s kružnicí k
společné pouze dva body —Fa M. Průsečík výšek trojúhelníku
ABX leží v rovině ABX a podle předchozího též na kružnici k,
přičemž je různý od bodu M. To znamená, že průsečíkem
výšek trojúhelníku ABX musí být právě bod V.

Hledaným geometrickým místem jsou tedy všechny body
kružnice k různé od bodu M.

Druhé řešení (již jen pro případ, že přímky p, AB jsou
mimoběžky). Stejně jako v prvém řešení sestrojíme body
M, X0. Předpokládejme, že platí Аф M ф В (opačný pří-
pad je totiž snadný). Buď X libovolný bod přímky p, V prů-
sečík výšek trojúhelníku ABX (obr. 57). Pro pravoúhlé troj-
úhelníky AMX, VMB platí

XM _L BM, XA±BV.

Proto <£AXM = <£ VBM a

AAMX ~ AVMB.
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Z této podobnosti plyne
AM

_ XM
VM " BM

čili
MX. MV = MA . MB = k, (1)

kde k je kladná konstanta. Speciálně i pro trojúhelník ABX0,
označíme-li jeho ortocentrum V0, platí

MX0. MV0 k. Oo)
Budiž nyní X ф X0. Porovnáním výsledků (1), (10) dosta-

neme

MX
_ MV0

MX~ ~ MV ' (2)

Leží-li bod M mezi body А, В (obr. 57), mají všechny vy-
šetřované trojúhelníky při vrcholech А, В ostré úhly. Bod V
resp. V0 leží proto v polorovině ABX resp. ABX0, tj. na
polopřímce MX resp. MX0. Trojúhelníky XMX0, V0MV
mají tedy při vrcholu M společný vnitřní úhel, takže z (2)
plyne podobnost

AXMX0 ~ Д V0MV.
Poněvadž první z těchto trojúhelníků je pravoúhlý, je i druhý
trojúhelník pravoúhlý a zřejmě platí

V0VM = 90°. (3)

Padne-li bod M mimo úsečku AB, jsou všechny vyšetřované
trojúhelníky tupoúhlé s tupým úhlem při vrcholu A nebo В
(podle toho, zda bod M leží na prodloužení úsečky AB za
bod A nebo В). Bod V resp. V0 pak leží v polorovině opačné
к polorovině ABX resp. ABX0 a obdobně jako v předchozím
odstavci se zjistí, že platí vztah (3).

Závěr se provede stejně jako v prvém řešení.
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Vyšetřujeme nejdříve zvláštní případ, kdy bod A splývá
s některým z bodů В, C, např. A = B. Proložme přímkou
BC libovolnou rovinu a hledejme v ní množinu všech bodů M,
které jsou vrcholy pravých ůhlů, jejichž jedno rameno prochází
bodem A = В a druhé má s úsečkou BC společný aspoň jeden
bod (obr. 58a, b). Vzhledem к Thaletově větě je touto mno-
žinou kruh sestrojený nad průměrem BC. Hledané geo-
metrické místo bodů v prostoru dostaneme pak rotací tohoto
kruhu kolem přímky BC-, vyjde koule nad průměrem BC.
Stejný výsledek bude i v případě A = C.

Obr. 58 a.

Až do konce řešení budeme tedy předpokládat, že bod A
nesplývá s žádným z bodů В, C. Označíme Z — hledané
geometrické místo bodů v prostoru; К
AB; K2 — kouli nad průměrem AC; U — množinu těch bodů
koulí a K2, které neleží současně uvnitř obou koulí.

a) Dokážeme, že každý bod množiny Z náleží množině U.
Bod A náleží množině Z i množině U. Nechť M je bod mno-
žiny Z různý od bodu A. Pak existuje pravý úhel s vrcholem
M a ramenem MA, jehož druhé rameno prochází jistým bodem
úsečky BC (který může splývat s bodem M). Označme В', C
pravoúhlé průměty bodů В, C na přímku AM. Bod B' leží na

kouli nad průměrem
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povrchu koule K13 neboť buď splývá s některým z bodů А, В
anebo je vrcholem pravého úhlu <£CAB'B, jehož ramena
procházejí krajními body průměru AB koule Kv Obdobně
bod C leží na povrchu koule K2.

Je-li B' = C, pak celá úsečka BC se promítá do jediného
bodu a je také Aí = В' = C. To však znamená, že bod Aí
patří do množiny U.

Jestliže B' ^ C, pak bod Aí náleží úsečce B'C'. Je-li
A = С, pak Aí je bodem koule K13 neboť náleží tětivě AB'
této koule, ale není vnitřním bodem koule K2, neboť úsečka
B'C je kolmá к průměru AC koule K23 takže má s ní jediný
společný bod C' = A; bod Aí tedy opět patří do množiny U.
Obdobně se vyřídí případ A = B'. Je-li konečně bod A
různý od B' i C, pak úsečka AB' je tětiva koule K1 a úsečka
AC' je tětiva koule K2. Bod M úsečky B'C' leží buď na úsečce
AB' nebo na úsečce AC, avšak nemůže ležet současně uvnitř
obou těchto úseček (obr. 59a, b, c). Proto bod Aí náleží mno-
žině U.

Tím jsme dokázali inkluzi Z a U.

+ 4

А В1 M С В' П A C & MCA

Obr. 59 a, b, c.

b) Dokažme nyní obrácenou inkluzi U a Z. Již jsme řekli,
že bod A patří do U i do Z. Vezměme tedy libovolný bod Aí
množiny U, který je různý od bodu A. Pak bod Aí leží např.
v kouli K13 takže náleží jisté tětivě AB' této koule. Bod B' je
pravoúhlým průmětem bodu В na přímku AM, neboť není-li
přímo B’ = B, je úhel <£ BB'A pravý podle Thaletovy věty.
Pravoúhlý průmět bodu C na přímku AM označme C'; bod
C leží na povrchu koule K2.

Je-li C = A, pak bod Aí úsečky BC je pravoúhlým prů-
mětem nějakého bodu úsečky BC.
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Jestliže С ф А, рак bod М neleží uvnitř obou úseček
AB’, АС', neboť jinak by ležel uvnitř Kx i K2. Z toho vyplývá
(obr. 60a, b), že bod M (úsečky AB') leží na úsečce B'C' a je
tedy opět pravoúhlým průmětem nějakého bodu úsečky BC
(rozumí se, že promítáme stále na přímku AM).

Z a), b) plyne, že bodové množiny Za (J jsou totožné. Tím
je úloha vyřešena.

+ +:

В' n A C 'B' ti C A

Obr. 60 a, b.
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Obr. 61. Veďme bodem A přímku p || MB a označme X její
průsečík s rovinou MCD. Buďte Ax, B, pravoúhlé průměty
bodů А, В na rovinu MCD. Zřejmě platí

AX AA1 _ VB
BM ~ BB, _ VA *

Poněvadž rovina MCD odděluje body A, B, jsou vektory AX,
MB souhlasně rovnoběžné a máme

VR
(1)AX = • MB.

VA

Veďme dále bodem X přímku q || MC a označme Y její
průsečík s rovinou MBD. Buďte C13 X{, A2 pravoúhlé prů-
měty bodů С, X, A na rovinu MBD\ poněvadž AX || MB,
máme XXA — AA2. Nyní platí

XY XX!
_ AA2 _ Vc

cm ~ cc~ ~ cc7 ~ Va'
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Přímka p (a tedy i její bod X)
leží v poloprostoru MBDA,
takže rovina MBD odděluje
body X, C

D

a můžeme psát

M,
С

Obr. 61.
В

■ MC. (2)VA
Přímka q leží v rovině MCD, neboť v této rovině leží její bod X
a je 9 11 MC. Proto i bod Y (přímky q) leží v rovině MCD.
Avšak (podle konstrukce) Y leží také v rovině MBD. Z toho
plyne, že Y leží na přímce MD. Označme nyní Dit Y1} X2,
A3 pravoúhlé průměty bodů D, Y, X, A na rovinu MBC.
Protože body X, Y leží na přímce q || MC, máme YYX =
= XX2, a protože p = AX || MB, je také XX2 = AA3; z toho
vyplývá, že YYX= AA3. Poněvadž body Y, M, D leží na
jedné přímce, platí

YM
_ YYX _ AA3 VD

DM ~ DDl ~ DDV ~ Va

—>

Jelikož vektory AX, MB jsou souhlasně rovnoběžné, leží oba
body X, В v témž poloprostoru určeném rovinou MAC, tj.
v MACB. Proto i přímka q || MC (a procházející bodem X)
leží v tomto poloprostoru, takže její bod Y (o němž už víme,
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že leží na přímce MD) je oddělen bodem M od bpdu D. Tak
můžeme psát

VD
(3)YM = •MD.

VA

Vzhledem к výsledkům (1), (2), (3) nakonec dostáváme

VA . MA + VB . MB + Vc . MC + VD . MD =

VB Vc VD
= Va.\MA + •MCA• MB A • MD) =

VA VA VA

= VA . {MA +AX + XYA- YM).
Vektor v poslední závorce je však zřejmě nulový.

Poznámka. Čtenáře znající základy geometrie w-rozměr-
něho euklidovského prostoru En upozorňujeme na analogické
tvrzení pro и-rozměrný simplex (místo čtyřstěnu nebo troj-
úhelníku). Jedna věta z teorie konvexity umožňuje i rychlejší
důkaz indukcí vzhledem к n.

84

Abychom se mohli stručněji vyjadřovat, budeme každý
čtyřstěn, jehož čtyři hrany, z nichž žádné tři neleží v rovině,
mají délku 1, nazývat jednotkový.

Ukažme nejprve, že má-li nějaký jednotkový čtyřstěn tu
vlastnost, že odchylka stěn proti některé z obou zbývajících
hran není rovna 90°, pak existuje jednotkový čtyřstěn, který
má větší objem.

Nechť tedy ve čtyřstěnu ABCD platí AB = BC = CD =
= DA = 1 a nechť např. úhel proti hraně AC (tj. úhel rovin
ABD> CBD) není pravý (obr. 62). Objem tohoto čtyřstěnu

je — Рг>, kde P je obsah trojúhelníku ABD a v výška spuštěná3
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Obr. 62. Obr. 63.

z vrcholu C na stěnu ABD. Otočme rovinu CBD okolo přímky
BD do polohy kolmé к rovině ABD. Při tomto otočení přejde
bod C v bod C', jehož vzdálenost v' od roviny ABD je větší
než v. Čtyřstěn ABCD je opět jednotkový a jeho objem je
~ Pv' > ^ Pv, což jsme chtěli ukázat.

Předpokládejme, že ve čtyřstěnu A1B1ClD1 platí AiB1 =
= B1C1 — C1D1 = D1A1 = 1 a přitom úhly proti zbývajícím
hranám AXCX, B1D1 jsou pravé (obr. 63). Označme Sx střed
hrany A1C1 a Tx střed hrany BXDX. Nyní BXSX je výška rovno-
ramenného trojúhelníku A1B1C1 a je tedy kolmá na jeho zá-
kladnu AXCX (obr. 63). Obdobně DXSX je výška rovnoramenného
trojúhelníku AXDXCX kolmá na jeho základnu AXCX. Protože
tyto dva trojúhelníky jsou zřejmě shodné, platí B1SÍ = DXSX,
a poněvadž roviny Л1С1Б1, A1CXD1 jsou navzájem kolmé, je
<£BXSXDX = 90°. Trojúhelník BXSXDX je tedy pravoúhlý a rov-
noramenný (s pravým úhlem při vrcholu Sx) a úsečka SXTX
je jeho výška. Podobně se ukáže, že úsečka SXTX je také výška
pravoúhlého rovnoramenného trojúhelníku AXTXCX (s pravým
úhlem při vrcholu Tx). Z toho vyplývá, že úsečky AXSX> SXTX,
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TlB1 jsou stejně dlouhé a po dvou navzájem kolmé. Protože
podle Pythagorovy věty

i = ла = h*,sf + s,т\ + t,b\ = a:s, уз,
je

УзЛ151 — S1T1 — TíBl — 3 5
a rovněž

1/3ВД = Z), г, = 3 '

Je ihned zřejmé, že jsou-li obráceně p, q kolmé mimoběžky,
jejichž nejkratší (ke každé z nich kolmá) příčka S2T2 (kde S2

1/3je na p, T2 na q) má délku -, pak body A2, C2 ležící ve vzdá-
1/3 3lenosti
^ od bodu S2 na p a body Z?2, Z)2 ležící ve vzdálenosti

Уз
^ od bodu T2 na q tvoří vrcholy jednotkového čtyřstěnu,

proti jehož zbylým hranám A2C2, B2D2 jsou pravé úhly.
Z provedené analýzy vyplývá, že skutečně existuje čtyřstěn

AlBlClDl s vlastnostmi popsanými na začátku předchozího
odstavce, a je až na polohu v prostoru určen jednoznačně.
Zbývá vypočítat jeho objem (obr. 63). Obsah trojúhelníku

13 1'3 I
je 2?! Tú

l/з . 3
= fr- je zřejmě kolmá na rovinu B1SlDl, je objem čtyřstěnu3

1 Уз i
= уз*

3 27 ■

= —. Poněvadž úsečka =
3 1 1

'

3

A1B1S1D1 roven číslu — • Objem čtyřstěnu

21 У3’AlBlC1Dl je pak zřejmě dvojnásobný, tj.
Úloha je rozřešena.

173



85

Budiž ABCD čtyřstěn, jehož hrany mají délky AB = 2x ^
1, AC < 1, AD < 1, BC 1, fiD 5S 1, CD > 1. Označme u,

v délky výšek trojúhelníků ABC, ABD, spuštěných na síranu AB.
V rovině stěny ABC náleží vrchol C průniku jednotkových

kruhů se středy A, B-, tato oblast je
znázorněna na obr. 64.

Zavedeme-li označení bodů podle
obr. 64, bude

и — CR

P

C)
i\c, C'R <PM= /1 - x2,
i V.

tedy\u\
и ^ j/l — X2. (1)Jn Д

a r л/1;—x—'В Obdobně z trojúhelníku ABD odvo-
dime, že

v ^ ]/1 — x2. (2)

Obr. 64.

Protože výška čtyřstěnu ABCD spuštěná z vrcholu D má
nejvýše velikost v, platí pro objem у čtyřstěnu ABCD odhad

1
у Sí —- xuv.

Užitím (1) a (2) dostaneme
1

(3)У ^ 3 (x — X3).
1 1

Vyšetřujme funkci — (x — x3) pro 0 < x fS —-. Vezměme3 2
dvě čísla xx < x2 z uvažovaného intervalu a porovnejme pří-
slušné funkční hodnoty:
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11
- (x, - xf) =у (x2 - x|)

=

у (*2 - *0(1
ž

3 (*í-*,)(i - f) =
1

12 (*2 - *l) > °>
takže

11

3 (*2 - *1) > у (*l - *?)•
Tím jsme dokázali, že pravá strana (3) je v uvažovaném inter-
válu 0 < x fS-- rostoucí funkce. Její největší hodnotu do-

у; vyjde právě
1

To znamená, že vždystaneme pro x

platí
8 '

1

8 *

Čtyřstěn, jehož hrany mají délky AB = AC = AD = BC =
= BD — 1 a jehož stěny ABC, ABD jsou navzájem kolmé,

má objem Уб1
a jeho hrana CD má délku —

Tvrzení vyslovené v úloze je dokázáno a zároveň je ověřeno,

> 1.
8

1
že existuje čtyřstěn maximálního objemu 8 '

Cvičení. Řešte obdobnou metodou příkl. 84 (označte
AC = 2x, q) odchylku rovin ACB, ACD).
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První řešení. Sestrojme si nejprve náčrtek (obr. 65).
Vztahy, jichž si přitom všimneme, pomohou nám potom do-
kázat tvrzení úlohy. Jak sestrojíme bod Ax? Podle zadání úlohy

leží tento bod jednak na
rovnoběžce s DDX vedené
bodem A, tedy též v ro-
vině AD}D, jednak v ro-
vině BCD. Bod Ax proto
leží na průsečnici rovin
ADXD, BCD a touto prů-
sečnicí je zřejmě přímka
DK, kde К je bod, v němž
přímka A Dx protíná úseč-
ku BC. Bod Ax najdeme
tedy jako průsečík přím-
ky DK s rovnoběžkou
s DDX vedenou bodem
A. Zároveň je vidět, že
bod D odděluje body A1}
K, neboť bod Dx odděluje
body А, К a je AA x | | DDX.
Obdobně sestrojíme i bo-
dy Bx, C,; tyto konstruk-
ce nejsou v obr. 65 na-
značeny, aby bylo možno
lépe sledovat další úvahy.
Body Ax, Bx, Cx leží

C tedy uvnitř poloprostoru
ABCD, nikoli v jedné
přímce (neboť je AAX ||
BBX || CCJ, takže sku-
tečně vzniká čtyřstěn
A1BlClD1. Přímka DXD
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protíná rovinu A1BXC1 v jistém bodě D2. Tato přímka leží
v rovině ADK, proto bod D., najdeme jako průsečík přímky
DXD s přímkou AXKX, kde Kx je průsečík roviny ADK
s úsečkou BXCX, tj. takový bod úsečky BXCX, že platí KKX \ \ DXD.
Bod D2 leží tedy uvnitř trojúhelníku AXBXC

Trojúhelníky AD1D2, AlD2Dl mají týž obsah, neboť mají
společnou stranu DXD2 a platí AAX || DXD2. Oba trojúhelníky
leží v jedné rovině a body B, Bx mají od této roviny stejnou vzdá-
lenost, neboť přímka BBX je s touto rovinou rovnoběžná. Proto
čtyřstěny ABDXD2 a AlBlD2D1 mají stejný objem. Rovněž
čtyřstěny BCDXD2, B1C1D2Dl a také CADXD2, CaAxD2Dx mají
stejné objemy. Sjednocením čtyřstěnů ABDXD2, BCDXD2,
CADXD2 vznikne čtyřstěn ABCD.2 a sjednocením čtyřstěnů
AXBXD2DX, BxCxD2Dx, CXAXD2DX je čtyřstěn AXBXGXDX. Ob-
jem čtyřstěnu AXBXCXDX se proto rovná objemu čtyřstěnu
ABCD2.

Stačilo by dokázat, že objem daného čtyřstěnu ABCD je
roven jedné třetině objemu čtyřstěnu ABCD2. Tyto dva čtyř-
stěny mají společnou podstavu ABC a body Dl3 D, D2 leží
v přímce. Proto se poměr jejich objemů rovná poměru délek
úseček DXD a DXD2. Potřebovali bychom tedy dokázat, že
platí DxD2 = 3 . DXĎ.

Čtyřúhelník BCC1Bl je lichoběžník nebo rovnoběžník (platí
BBX || CCX) a úsečka KKl je jeho příčka rovnoběžná se stra-
námi BBl3 CCV Úhlopříčka BCX leží (podle konstrukce bodu
Cj) v rovině ABD a druhá úhlopříčka СВЛ leží v rovině ACD.
Průsečík L úhlopříček BC13 CBX náleží tudíž průsečnici AD
těchto rovin. Přímka AD však protíná rovinu čtyřúhelníku
BCC^B^ v bodě, který náleží přímce KKr (obr. 65). Z toho plyne
že příčka KKl prochází průsečíkem úhlopříček, který ji tudíž
půlí (to je známá vlastnost lichoběžníku resp. rovnoběžníku).
Bod L je tedy středem úsečky KK13 takže úsečka AXL je těžnicí
v trojúhelníku KAXKV Příčka DD2 tohoto trojúhelníku je
rovnoběžná se stranou KKX, a proto její střed D3 leží na těžnici
AXL, tj. DD3 = D3D2.

i*
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Všimněme si dále, že čtyřúhelník AKLA1 je také lichoběžník
nebo rovnoběžník (platí AAX \ \ KL) a průsečíkem jeho úhlo-
příček je bod D (obr. 65). Proto je bod D středem příčky
D1D3, která jím prochází a je rovnoběžná se stranami AAX, KL.
Platí tedy DDX = DD3.

Ze závěrů posledních dvou odstavců vyplývá, že skutečně
platí DXD2 = 3 . DXD.

Druhé řešení. Stejně jako na začátku prvého řešení se-
strojíme body Ax, Bx, Cx, D2 a ověříme, že čtyřstěn AXBXCXDX
skutečně existuje.

Poněvadž platí AAX || BBX || CCX || DDX, mají trojúhelníky
ABC a AXBXCX týž pravoúhlý průmět na rovinu kolmou
к přímce DDX. Poměr objemů čtyřstěnů ABCD, AXBXCXDX je
pak roven poměru délek úseček DDX, DXD2, jak vyplývá z to-
hoto tvrzení:

Buď KLMN čtyřstěn а X libovolný bod roviny KLM.
Pak objem tohoto čtyřstěnu je roven jedné třetině součinu

délky úsečky NX a obsahu
pravoúhlého průmětu K'L'M'
trojúhelníku KLM na rovinu
kolmou к přímce NX.

Důkaz (obr. 66). Objem
KLMN = l3
NX . sin a, kde a je odchylka
přímky NX od roviny KLM
(NX. sin a je totiž délka výšky
NH čtyřstěnu KLMN). Dále
obsah K'L'M' = obsah KLM .

cos /9, kde j3 je odchylka rovin
KLM, K'L'M'. Tento vzorec je
zřejmý, je-li jedna strana troj-

N

\

П
. obsah KLM .

К

L

M'К

Obr. 66.
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úhelníku KLM rovnoběžná s rovinou K'L'M'; není-li tomu tak,
můžeme (dokažte!) trojúhelník KLM rozdělit rovinou rovnoběž-
nou s K’L’M' a procházející jedním jeho vrcholem na dva troj-
úhelníky, takže každý z nich bude mít jednu stranu rovnoběžnou
s rovinou K'L’M' a sjednocením jejich průmětů tude troj-
úhelník K'L'M'. Odchylka rovin KLM, K'L'M' se však rovná
odchylce přímek NH, NX к nim kolmých. Proto cos (J> = sin a

a platí, že objem KLMN = — . NX . obsah K'L'M'.3

N /7

\
\P УX. \

\
\
\

Obr. 67.
К a

V dalším budeme potřebovat ještě toto pomocné tvrzení
(obr. 67): Nechť KLMN je lichoběžník nebo rovnoběžník
(KL || MN) a XY jeho příčka rovnoběžná se stranami KL,
MN (X leží mezi vrcholy К, N). Pak platí

KX . NM + NX . KL
XY

KN

Tento vzorec plyne z úměry XP: KQ = NX: NK vyjadřující
podobnost trojúhelníků NXP, NKQ; na obr. 67 je PQ || LM.

Potřebujeme nyní vypočítat poměr úseček DDX a DXD2.
Zaveďme označení bodů podle obr. 68. Z lichoběžníku resp.
rovnoběžníku PPXCXC užitím vzorečku odvozeného v před-
chozím odstavci vypočteme

DXC . PPX + DXP . CCX (1)DxD2 — PC
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Obdobně ze čtyřúhelníku AAXBXB dostaneme

PB . AAX + PA . BBXPPi = (2)AB

Dosaďme z (2) do (1):

DXC. PB D.C.PA D P
'BBi +pb“*CCi-•aaxaDxD2 PC.AB PC.AB

(3)
Ze stejnolehlých trojúhelníků MAAl a MDXD vypočteme

AM
AAx = . DXD

DXM
a obdobně platí

BN CP
BBX . DXD, CCX = . DXD.D,N DXP

Dosadíme-li tyto tři výsledky do (3), obdržíme vztah

DXC .PB .AM
PC.AB . DXM

D\D2 DXC . PA. BN DXP . CP
PC . AB . DtN PC. DXP'DXD

(4)

Každý ze tří sčítanců na pravé straně v (4) se však rovná 1.
Pro první a druhý výraz to plyne z Menelaovy věty (viz pozn.
za řešením úlohy 73) užité pro trojúhelník DXPA a přímku BC,
resp. pro trojúhelník DXPB a přímku AC (obr. 68); pro třetí
výraz je to zřejmé. Platí tedy

DxD2
= 3

DXD
a úloha je rozřešena.
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Af 87

Zabývejme se nejprve
zvláštním případem,kdy uva-
žované čtyři body jsou vrcho-
ly daného čtyřstěnu ABCD.
Předpoklad úlohy v tomto
případě znamená, že všechny
čtyři výšky našeho čtyřstěnu
jsou stejně dlouhé. Ze vzorce
pro objem potom vyplývá,
že všechny stěny čtyřstěnu
ABCD mají týž obsah.

Pokusme se tedy dokázat
toto tvrzení: Mají-li stěny

i čtyřstěnu ABCD týž obsah,
pak jsou to shodné trojúhel-

: \ V» \

'i

fy%
v \\ \

\
ÍN

\ \

/ \

\

\ \
/\\

\

4\\I
\

\\
Vl\ 1 \vi 7iJCD\ \

£\ /\Ab-

X-%--
Л\А/

niky.o\ I M
Obr. 68.D

Důkaz (obr. 69). Proložme přímkou AB rovinu a rovno-
běžnou s přímkou CD. Jsou-li Cx, Dx pravoúhlé průměty bodů
C, D na rovinu a, platí

(1)CCX = DDV
Označme dále C2, D2 pravoúhlé průměty bodů C, D na přímku
AB. Poněvadž trojúhelníky ABC, ABD mají týž obsah a spo-
léčnou stranu AB, platí

(2)CC2 = dd.2.
Z (1) a (2) vyplývá (obr. 69), že také \ '

(3)CXC2 — DXD2.
To znamená, že body C15 Dx mají stejnou vzdálenost od přímky
AB a leží tedy uvnitř dvou navzájem opačných polorovin
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Obr. 69. N
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vyťatých v rovině a přímkou ЛЯ (jinak by totiž bylo
AB || СХЛХ
M úsečky C1D1 leží na přímce AB.

Představme si nyní rovinu у proloženou přímkou CD rovno-
běžně s přímkou AB. Označme N střed úsečky CD а A13 Вг
pravoúhlé průměty bodů А, В na rovinu y. Úsečka MN je
střední příčka v pravoúhelníku CC^Dy^D (obr. 69), a je proto
kolmá к oběma rovnoběžným rovinám a, y. Pravoúhlým prů-
mětem bodu M na rovinu у je tedy bod N. Obdobně jako v před-
chozím odstavci lze dokázat, že přímky ArBr a CD mají jediný
společný bod — střed úsečky AXBX. Avšak jediný bod přímky
AB, jehož průmět padne na přímku CD, je zřejmě bod M.
Proto je bod N středem úsečky AXB{ a z pravoúhelníku AAXB}B
plyne, že M je střed úsečky AB.

Poněvadž tedy bod M je středem úsečky AB, platí

AC2 = BD2;

není-li totiž přímo C2 = D2 = M, je bod M středem úsečky
C2D2, jak je vidět z rovnoběžníku C1C2D1D2 (obr. 69).

CD, což není možné). Z (3) pak vyplývá, že střed

(4)
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Vzhledem к (2) а (4) dostáváme rovnost
АС = BD

(obr. 69). Obdobně lze dokázat rovnosti
AB = CD, AD = BC

a tím i naše tvrzení.
Buďte nyní A1} Bv C1} Z)t čtyři body dané.ho čtyřstěnu

ABCD, které neleží v jedné rovině a které mají stejný součet
vzdáleností od rovin

(5)ABC, BCD, CDA, DAB.
Má-li být tvrzení úlohy pravdivé, musí mít všechny čtyři
výšky čtyřstěnu ABCD tutéž délku, jak vyplývá ze vzorce
pro objem. Naopak, kdyby se nám podařilo ukázat, že z před-
pokladů úlohy plyne rovnost výšek daného čtyřstěnu, byla by
úloha vzhledem к prvé části řešení dokázána. К tomu je však
třeba si uvědomit, jak se mění vzdálenost bodu od daných
rovin, pohybuje-li se tento bod po nějaké přímce.

Nechť tedy p je daná přímka. Představme si polorovinu n
s hraniční přímkou p. V této polorovině budeme znázorňovat
vzdálenosti resp. součty vzdáleností bodů přímky p od daných
rovin.

Vezměme nejprve jednu rovinu q. Je-li p || g, mají všechny
body přímky p stejnou vzdálenost od roviny g ; příslušným gra-
fem v polorovině n je rovnoběžka s přímkou p (obr. 70a). Je-li
však přímka p různoběžná s rovinou g, bude naším grafem
v polorovině ji zřejmě lomená čára, jak ukazuje obr. 70b, kde
R je průsečík přímky p s rovinou g; přitom obě polopřímky
této lomené čáry svírají s přímkou p týž ostrý úhel.

Přidejme nyní další rovinu o a sestrojme v polorovině n opět
graf vzdáleností bodů přímky p od roviny a. Dostaneme zase
buď rovnoběžku s přímkou p nebo lomenou čáru složenou ze
dvou polopřímek a s vrcholem v bodě S—průsečíku přímky p
s rovinou a.
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Obr. 70a.

*//ж/
p

Obr. 70b.

«

PR

Co bude grafem součtu vzdáleností bodů přímky p od rovin
g, a? Z posledních dvou odstavců vyplývají čtyři možnosti:
a) je-li p|| g || a, bude grafem rovnoběžka s přímkou p;
b) je-li p|| g, ale p . o = S, bude grafem lomená čára složená

ze dvou polopřímek a s vrcholem „nad“ bodem S;
c) případ p . g = R, p 11 o je podobný případu b);
d) konečně v případě p.g = R,p.o = S bude grafem opět lo-

mená čára složená ze dvou polopřímek a jedné (je-li R
resp. žádné (;e-li R = S) úsečky a vrcholy této lomené čáry
zase odpovídají bodům R, S, viz např. obr. 71.

Obdobně, přidáme-li další roviny, bude grafem součtu
vzdáleností bodů přímky p od všech těchto rovin buď rovno-
běžka s přímkou p anebo lomená čára složená ze dvou polopří-
mek a konečného počtu úseček. Vrcholy této lomené čáry od-
povídají průsečíkům přímky p s danými rovinami. Z toho ze-
jména vyplývá toto tvrzení: Jestliže krajní body některé úsečky
přímky p nejsou odděleny žádnou z daných rovin (takže „mezi
nimi“ není žádný vrchol lomené čáry), pak grafem součtu
vzdáleností bodů této úsečky od daných rovin je jistá úsečka.
Důsledek: Mají-li dva různé body takové úsečky přímky p
stejný součet vzdáleností od uvažovaných rovin, pak všechny
body této úsečky mají týž součet vzdáleností od těchto rovin.

5)
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Všechny body ležící na hranách čtyřstěnu A1BlOfD1 mají
tedy stejný součet vzdáleností od rovin (5), neboť žádná
z těchto rovin neodděluje žádné dva ze čtyř bodů A1} Вг ,C1S D
Dále všechny body ležící na povrchu čtyřstěnu A1B1ClDl mají
týž součet vzdáleností od rovin (5), neboť každý takový bod
náleží nějaké úsečce, jejíž krajní body leží na hranách čtyřstěnu
A1BlCxDl a nejsou tudíž odděleny žádnou z rovin (5). Nakonec
se podobně dokáže, že vůbec všechny body čtyřstěnu A1B1ClD1
mají týž součet vzdáleností od rovin (5).

Nyní již snadno zjistíme součet vzdáleností vrcholu A od
rovin (5). Tento vrchol můžeme totiž spojit přímkou p s ně-
jakým vnitřním bodem čtyřstěnu A^B^C^D^, takže přímka p
protíná čtyřstěn A1B1C1Dl v jisté úsečce KL (КфЬ). Druhý
průsečík přímky p s povrchem čtyřstěnu ABCD označme M.
Body A, M nejsou odděleny žádnou z rovin (5) a přitom dva
různé body K, L úsečky AM mají stejný součet vzdáleností od
rovin (5). Proto všechny body úsečky AM, speciálně i bod A,
mají týž součet vzdáleností od rovin (5). Téže myšlenky lze
užít i pro vrcholy В, C, D.

v
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Dokázali jsme, že všechny výšky čtyřstěnu ABCD mají
stejnou délku a vzhledem к první části řešení je všechno hotovo.

Poznámka 1. Mají-li všechny stěny čtyřstěnu týž obsah
(což je, jak z našeho řešení vyplývá, ekvivalentní se shodností
těchto stěn), pak všechny body tohoto čtyřstěnu mají kon-
stantní součet vzdáleností od rovin jeho stěn. Je-li totiž X li-
bovolný bod takového čtyřstěnu a jsou-li x4, x2, хг, x4 jeho vzdá-
lenosti od rovin stěn, pak zřejmě platí

1 11 1

3 X\P + -3 x2P + у хлР + — х4Р = V,
kde V je objem čtyřstěnu a P (stejný) obsah jeho stěn. Z této
rovnosti plyne, že součet

W
% “Г X2 -j- X3 + X4 — —p

je konstantní.
Věta z úlohy 87 je tedy odpověď na přirozenou otázku, zda

také obráceně konstantní součet vzdáleností (pro všechny body
čtyřstěnu) zajišťuje rovnost obsahů stěn. Ukazuje se, že ano
a že dokonce stačí předpokládat stejný součet vzdáleností pouze
pro čtyři body čtyřstěnu, které neleží v jedné rovině. Čtenář
nechť si rozmyslí, že obdobný předpoklad pouze pro tři body
nestačí, a v řešení úlohy 87 nechť si vyhledá místo, kde se pod-
statně užilo předpokladu, že body Als BJ3 Cl3 Dv neleží v rovině.

Poznámka 2. Je možno řešit i obdobnou planimetrickou
úlohu.

Poznámka 3. Všimněme si ještě některých dalších vlast-
ností čtyřstěnu ABCD, v němž platí

AB = CD, AC = BD, AD = BC.
V našem řešení jsme mj. dokázali, že každá střední příčka

takového čtyřstěnu je kolmá к těm jeho hranám, které půlí.
Lze tedy sestrojit kvádr tak, že v každé stěně tohoto kvádru
jedna ze stěnových úhlopříček splývá s jednou hranou čtyř-
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c1

stěnu ABCD (obr. 72). Střed 5 úsečky MN je pak středem
kvádru AC^D^^B^D, takže je také středem kulové plochy
opsané tomuto kvádru, tedy i čtyřstěnu ABCD. Střed S’ kulové
plochy opsané čtyřstěnu ABCD je tedy vnitřním bodem tohoto
čtyřstěnu, neboť je to střed jeho (libovolné) střední příčky.

Bod S je zároveň středem kulové plochy vepsané čtyřstěnu
ABCD. Poněvadž již víme, že je jeho vnitřním bodem, stačí
ukázat, že má stejné vzdálenosti od rovin stěn. Skutečně, např.
roviny ABC, ABD protínají opsanou kulovou plochu ve dvou
kružnicích, které mají společnou tětivu AB. Přitom ze shodnosti
trojúhelníků ABC, BAD plyne rovnost obvodových úhlů
<$iACB a 4C ADB. Proto jsou tyto dvě kružnice shodné a jejich
roviny mají tudíž od středu 5 opsané kulové plochy stejnou
vzdálenost, c. b. d.

Z pozn. 4 za úlohou 80 víme, že bod 5 je zároveň těžištěm
čtyřstěnu ABCD.

Poznámka 4. Buď ABCD čtyřstěn. Písmeny S, О, V
označme po řadě střed čtyřstěnu (tj. průsečík jeho středních
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příček čili těžiště), střed kulové plochy čtyřstěnu opsané a ve-
psané. Jestliže některé dva z bodů S, О, V splývají, pak všechny
tyto body splývají a platí

AB = CD, AC = BD, AD = BC.
Důkaz. Nechť 5 = 0. Pak např. trojúhelník ASB je rovno-

ramenný, takže střední příčky čtyřstěnu ABCD jsou kolmé
к těm hranám, které půlí. Každými dvěma mimoběžnými
hranami lze tedy proložit dvě spolu rovnoběžné roviny, které
jsou kolmé na společnou střední příčku. Stejně jako v řešení
úlohy 87 se pak dokáže, že platí (1). V důsledku pozn. 3 je
potom též 5=0= V.

Nechť S = V. Vzdálenost těžiště 5 od roviny stěny se rovná
čtvrtině příslušné výšky. Je-li tedy 5 = V, mají všechny čtyři
výšky tutéž délku a z toho, jak již víme, plyne (1). Vzhledem
к pozn. 3 pak opět platí 5 = O = V.

Nechť O = V. Pak opsaná kulová plocha protíná rovinu
každé stěny v kružnici opsané příslušnému trojúhelníku. Stře-
dem této kružnice je pata kolmice spuštěné z bodu O = V na
rovinu stěny, čili dotykový bod vepsané kulové plochy s touto
stěnou; tento bod zřejmě leží uvnitř stěny. Všechny stěny jsou
tedy ostroúhlé trojúhelníky a jejich roviny mají stejnou vzdá-
lenost od bodu O. Proto platí např. <JACB — ý:ADB apod.
Všechny čtyři stěny jsou tedy navzájem shodné trojúhelníky
a platí (1), z čehož zase plyne 5 = O = V.

0)

88

Úlohu si zjednodušíme touto úvahou: Třemi rovinami pro-
cházejícími středem krychle a rovnoběžnými se stěnami se
krychle rozdělí na osm menších krychlí. Je zřejmé, že výsledné
geometrické místo je souměrné podle každé z uvedených tří
rovin, takže stačí najít geometrické místo jen v jedné z osmi

malých krychlí o hraně .
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Zvolme si nyní pravoúhlou soustavu souřadnic x, y, z tak,
aby původní krychle byla určena nerovnicemi 0 ^ x 1,
0^з;^1,0^г-^1,а zvolená menší krychle К nerovnicemi
0 ^ x ^ -i , 0 sS у ^ . 0 ^ z ^ . Je-li nyní k kruh

z y z Z
o poloměru - , celý obsažený v dané krychli a se středem
v krychli K, pak je kruh k celý obsažen v oktantu x ^ 0, у ^ 0,
я 0. Je-li obráceně kruh o poloměru ~ celý obsažen v ok-
tanu x 0, у 0, z ^ 0, a má-li střed v krychli K, je obsažen
v původní krychli, neboť vzdálenost jeho středu od ostatních
stěn x = l,jy=l,£ = lje vždy větší nebo rovna * • Je proto

ta část hledaného geometrického místa, která je obsažena v K,
totožná s geometrickým místem středů všech kruhů obsaže-
ných v oktantu x^0,}i^0, г^Оа majících střed v K.

Ukážeme, že toto je průnik krychle К a vnějšku kulové plochy

co se středem v počátku (0, 0, 0) a poloměrem f-
kulové plochy).

Nechť tedy předně je bod S = (x0, j>0, я0) z К středem kruhu
k s poloměrem у obsaženého v oktantu x

Je-li rovina o kruhu k rovnoběžná s některou stěnou oktantu,
např. se stěnou я = 0, platí zřejmě o vzdálenostech bodu 5 od

zbylých dvou stěn x0 ^ tj. x*+y*^Z
S leží na ploše co nebo vně. Tento případ vždy nastane, leží-li
bod 5 sám v některé ze stěn oktantu. Zbývá nám tedy případ, že 5
má všechny tři souřadnice kladné: x0 > 0, y0 > 0, z0 > 0,
a přitom rovina q není rovnoběžná s žádnou ze stěn oktantu.
Je-li

J/2 (včetně této

0, у ^ 0, z ^ 0.

a bod

a (x - x„) + b (y - j>0) + c (z — z0) = 0
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rovnice roviny o, je proto nejvýše jedno z čísel a, b, c rovno nule,
takže q protíná stěny x = 0, у = 0, £ = 0 pořade v přímkách

Pi = b (y - y0) + c (z - z0) - ax0 - - 0,
p2 = a (x — x0) + с (я — z0) — by0 = 0,
Ps = a (x - x0) + b (y —y0) - cz0 = 0.

Ukažme nyní, že patu Px kolmice z bodu 5 na přímku px do-
staneme, najdeme-li nejprve patu Qx kolmice kx z bodu 5 na -

rovinu x = 0 a pak patu P[ kolmice kx z bodu Qx na px. Přímka
px je totiž kolmá ke kx i kx, tedy i к P[S, tj. P[ = Px. Je pak
(pro Qx ф P1 podle Pythagorovy věty)

Px52 = PXQ\ 4- QiS2.
Vzdálenost bodu Qx od Px je stejná jako vzdálenost bodu Qx

od přímky px. Protože Qx — (0, y0, z0), je podle známého
vzorce pro vzdálenost bodu od přímky (používáme jej v rovině
У> z)

(1)

ax0
PiQi

]/b2 + c2 *
Dále je = x0 a PXS ^ —, takže z (1) plyne

a2x2 1
+ 4 2= *b2 + c2

neboli
1

(a2 + 62 + c2) x20^—(b2 + c2).

Obdobně dostaneme, užijeme-li stejné úvahy pro vzdálenost
bodu 5 od přímek p2 a p3, že

(2)

1
(3)(a2 + b2 + c2)y\5 ^ (a2 + c2),

0a2 + b2 + c2) z2 ^l-(a2 + é2). (4)
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Z nerovností (2), (3) a (4) plyne sečtením
1

*0 + Уo + *0 ^ у >

což znamená, že bod 51 leží na ploše co nebo vně.
Obráceně nechť bod 5 = (x0, y0, z0) leží na ploše co nebo

vně, a zároveň v krychli K. Ukažme, že existuje kruh o středu
a poloměru * 3 který je obsažen v oktantu x ^ 0, у ^ 0, z

To je zřejmé, je-li některé z čísel x0,y0, z0 rovné nule |alespoň
dvě jsou vždy nenulová, neboť xjj + Уo + zo = тг > *o =

^ —, y% ^ — , zl < — ; je-li některé rovno nule, např.

0.

x0 — 0, jsou nutně ostatní rovna -^-tj. jy0 = z0 = . Jsou-li
všechna tři čísla jc0, y03 z0 kladná, pak existuje nezáporné řešení
a2, b2, c2 soustavy nerovnic (2), (3), (4), např.

a2- = —xl +yl + z2,
4-Уо + *o>

xl+Уо — zl
b2 -

c2 =

Je totiž
*o + Уо + *o = *o + Уо + — 2xl ^

* i
“

2

a obdobně pro ostatní pravé strany. Rovina

У—*0 + Уо + z0 O — x0) + \fx% —yl + 4(y— Уо) +
+ У*§ + Уo — zo i.2 — zo) = 0

protíná pak roviny stěn v přímkách, od pichž má bod 5 stejnou

= 2(!-*š)ž02x20
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/1
vzdálenost, rovnou podle dřívější úvahy 1/ (jc,2, -j- yl + zf[),

1 ■ 2
což je číslo větší nebo rovné .

Závěr. Hledaným geometrickým místem je množina těch
bodů dané krychle, které mají od každého z jejích vrcholů

\/2vzdálenost alespoň rovnou ^ •

Poznámka. Z řešení předchozí úlohy vyplývá, že geometrie-
ké místo středů kružnic o daném poloměru r, které se dotýká
všech tří stěn pravoúhlého trojhranu, je část kulové plochy
se středem ve vrcholu trojhranu a poloměrem r [ 2.

Považujeme-li nyní kružnici za pevnou a pravoúhlý trojhran
za „proměnný", lze usoudit, že geometrické místo vrcholů právo-
úhlých trojhrami,jejichž všechny tři stěny se dotýkají pevné kružnice
o poloměru r, je kulová plocha o poloměru r \ 2, jejímž středem je
střed kružnice kaz níž je vyjmut rovník ležící v rovině kružnice k.
Toto je jakési zobecnění známé Thaletovy věty.

89

Nechť koule К obsahuje bod X, ale neobsahuje žádný z bodů
А, В, C, D. Označíme-li a (/?, y, ó) rovinu, která půlí úsečku
АХ (BX, CX, DX) a je к ní kolmá, pak střed 5 koule К leží
uvnitř poloprostoru otX ([IX, yX, óX). Z názoru se zdá být
zřejmé, že průnikem T těchto čtyř poloprostorů je jistý čtyř-
stěn; abychom mohli nyní dokončit myšlenku řešení, odložme
zatím důkaz této domněnky.

Ze čtyř soustředných kulových ploch, které mají střed A
a procházejí po řadě vrcholy čtyřstěnu T, vyberme tu, která
má největší poloměr d. Pak vně této kulové plochy neleží
žádný bod čtyřstěnu T. To vyplývá z toho, že koule je kon-
vexní množina: především je jasné, že vrcholy čtyřstěnu T
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leží v kouli určené největší kulovou plochou, proto i hrany
čtyřstěnu T náleží této kouli, dále i všechny stěny, neboť každý
bod stěny čtyřstěnu je obsažen v nějaké úsečce, jejíž krajní
body leží na obvodu té stěny, a nakonec se podobně dokáže,
že i celý čtyřstěn T leží v naší kouli. Jinak řečeno, dokázali
jsme toto tvrzení: Existuje vrchol čtyřstěnu T, jehož vzdá-
lenost d od bodu A není menší než vzdálenost libovolného
jiného bodu tohoto čtyřstěnu. Zvolme nyní r > d.

Kdyby nějaká koule К o poloměru r obsahovala bod X, ale
neobsahovala žádný z bodů А, В, C, D, náležel by její střed 5
čtyřstěnu T (dokonce by byl jeho vnitřním bodem). Pak by
platilo AS < d < r, takže bod A by byl vnitřním bodem
koule K, což by byl spor.

Zbývá tedy dokázat, že T je skutečně čtyřstěn. Každé tři ze
čtyř rovin a, /5, y, ó se protínají v jediném bodě — je to střed
kulové plochy opsané jednomu ze čtyřstěnů BCDX, ACDX,
ABDX, ABCX (obr. 73). Označme tedy Sa, Sb, Sc, Sd středy
kulových ploch opsaných po řadě čtyřstěnům BCDX, ACDX,
ABDX, ABCX a ukažme, že T je čtyřstěn s vrcholy Sa,
Sb, Sc, Sd. Především je jasné, že všechny body Sa, Sb, Sc,
Sd jsou navzájem různé (jinak by totiž bod X musel ležet na
kulové ploše opsané čtyřstěnu ABCD, což není možné, neboť
X je vnitřní bod čtyřstěnu ABCD a leží tedy uvnitř této kulové
plochy — dokažte podrobně!).
Body Sb, Sc) Sd leží v rovině a;
ukažme, že neleží na jedné přím-
ce. Body Sc, Sd leží také v ro-
vině /5 a proto platí

XB _L ScSd',
obdobně je

CX _L SbSd, XD J_ SbSc.



Kdyby body Sb, Sn Sd ležely v jedné přímce s, byly by к této
přímce kolmé tři přímky XB, XC, XD, takže by tyto tři
přímky musely ležet v jedné rovině (procházející bodem X
a kolmé к přímce 5), což však odporuje předpokladu úlohy.
Žádné tři z bodů Sa, Sb, Sc, Sd neleží tedy v přímce. Ukažme
ještě, že tyto čtyři body neleží v jedné rovině. Kdyby např.
bod Sa ležel v rovině a, měl by stejnou vzdálenost od všech
pěti bodů А, В, C, D, X; před chvílí jsme však poznamenali,
že těmito pěti body nemůže procházet kulová plocha. Body
Sa, Sb, Sc, Sd jsou tedy skutečně vrcholy čtyřstěnu.

Množina T je průnik poloprostorů ocX, fiX, yX, 6X a čtyř-
stěn SaSbScSd je průnik poloprostorů txSa, (3Sb, ySci dSd. Stačilo
by tedy již jen dokázat že např. rovina a neodděluje body X,
Sa. Kdyby je oddělovala, pak by body A, Sa ležely uvnitř téhož
poloprostoru určeného rovinou a (opačného к aX), takže
bod A by ležel uvnitř kulové plochy o středu Sa a poloměru
SaX. Tato kulová plocha by (podle definice bodu Sa) pro-
cházela také body В, C, D. Pak by zřejmě (dokažte!) všechny
body čtyřstěnu ABCD, až na vrcholy В, C, D, ležely uvnitř
této kulové plochy; dostali bychom spor s polohou bodu X.
Množina T je tedy totožná s množinou všech bodů čtyřstěnu
SaSbScSd-
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První řešení. Vyjdeme z druhé předpovědi, podle níž
jsou v pořadí DAECB právě dvě místa správně obsazena.
V úvahu tedy přichází deset možností:

(1) DA—,
(2) D-E-,
(3) D-C-,
(4) D—B,
(5) -AE~,

(6) -A-C-,
(7) -A-B,
(8) -EC-,
(9) -E-B,

(10) —CB.
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V každém z těchto deseti případů se pokusíme doplnit tři volná
místa tak, aby byly splněny podmínky úlohy; ukáže se, že to je
možné v jediném případě (10). Předpoklady úlohy jsou čtyři:

V1: v pořadí ABCDE není správně obsazeno žádné místo;
V2: v pořadí ABCDE není správně určena žádná dvojice

bezprostředně za sebou následujících prvků;
Wx: v pořadí DAECB jsou právě dvě místa správně obsazena;
W2: v pořadí DAECB jsou právě dvě dvojice bezprostředně

za sebou následujících prvků správně určeny.
(1) V tomto případě písmeno E nemůže stát na místě třetím

(Wy) ani pátém (Vy), takže pro něj zbývá jedině čtvrté místo.
Pak ale písmeno C musí být páté, neboť nemůže být třetí
(podle Vy), a tudíž pro В zbývá třetí místo. Pořadí DABEC
však není možné vzhledem к podmínce V2 (dvojice AB).

(2) Z Vy a Wx vyplývá, že В musí být čtvrté a pak A nutně
páté; pro C zbývá druhé místo. Umístění DCEBA však od-
póruje předpokladu W2.

(3) Z Vy a Wy vyplývá, že E musí být druhé. Podle V2 však
E nemůže následovat bezprostředně po D.

(4) Z Vy a Wy vyplývá, že C musí být druhé, pak E čtvrté
a tudíž A třetí. Dostáváme pořadí DCAEB, které však ne-
vyhovuje podmínce W2.

(5) V tomto případě z Vx a Wx vyplývá, že D musí být páté.
Podle V2 pak C nemůže být čtvrté (dvojice CD), takže musí
být první, načež В je čtvrté. Umístění CAEBD opět ne-
splňuje W2.

(6) Podle Vy a Wx musí být E první. Podle V2 nemůže být
В třetí (dvojice AB) a podle Wx ani páté. Tento případ je tedy
opět nemožný.

(7) Z Vy a Wy vyplývá, že C musí být první a D třetí, načež
E čtvrté. Pořadí CADEB však odporuje předpokladu V2
(dvojice DE).

(8) Z Vy a Wy zase vyplývá, že A musí být páté а В první,
tedy D třetí. V pořadí BDECA pak E následuje bezprostředně
po D, což je ve sporu s V2.
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(9) Podle V1 a Wx musí být A čtvrté, což opět odporuje
podmínce V2 (dvojice AB).

(10) Konečně v tomto posledním případě z Vx a Wx zase
vyplývá, že A musí být třetí, D druhé, tedy E první. Nachá-
zíme umístění EDACB, o němž lze lehko dokázat, že vyhovuje
podmínkám úlohy.

Výsledek soutěže byl EDACB.
Druhé řešení. Vyjdeme opět z druhé předpovědi. Z po-

řadí DAECB můžeme utvořit čtyři dvojice

DA, AE, ЕС, CB,
z nichž právě dvě jsou správné. Tyto dvě správné dvojice ne-
mohou mít společné písmeno. Jinak bychom totiž obdrželi
správnou trojici bezprostředně za sebou následujících písmen
a obě správně předpověděná místa by tudíž musela ležet mimo
tuto trojici. To by ale znamenalo, že druhá předpověď dává
výsledné umístění, což není pravda.

V úvahu tedy přicházejí tyto tři dvojice:

(DA, EC); (DA, СВ); (AE, СВ).

Je zřejmé, že jedna ze dvou správně předpověděných dvojic
musí obsahovat obě správně předpověděná místa a druhá
žádné. Tak dostáváme ‘celkem čtyři možnosti: DABEC,
DACBE, EDACB, AEDCB. Z nich však jenom pořadí
EDACB vyhovuje podmínkám úlohy.
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Důkaz provedeme matematickou indukcí vzhledem к číslu
n. Pro n = 3 je vše jasné. Předpokládejme tedy, že věta platí
pro nějaké přirozené číslo n ^ 3 a vezměme podle zadání
úlohy n A- 1 bodů s n + 1 úsečkami.

Najde-li se v naší skupině takový bod, z nějž vychází nej-
výše jedna úsečka, pak jej odstraníme (popř. i s příslušnou
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úsečkou) a pro zbylou skupinu n bodů a n úseček (z případných
n + 1 úseček můžeme jednu vynechat) užijeme indukčního
předpokladu.

V opačném případě vycházejí z každého bodu alespoň dvě
úsečky. Vyjdeme-li tedy z jednoho bodu, můžeme se po ně-
které úsečce dostat do druhého bodu, z něj pak do třetího atd.
Poněvadž počet bodů je konečný, musíme se při tomto postupu
vrátit do některého bodu, jímž jsme už dříve prošli. Tak
obdržíme hledaný cyklus.
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Označme jednu ze sedmnácti osob A. Osoba A si podle
podmínky úlohy dopisuje se šestnácti jinými osobami o nej-
výše třech tématech. Proto existuje (alespoň) šest osob, s nimiž
si osoba A dopisuje o jednom tématu (označme ho /).

Dopisují-li si některé dvě z těchto šesti osob také o tématu I,
máme nalezeny tři osoby, které si píší o témže tématu (/).

V opačném případě si žádné dvě z uvažovaných šesti osob
nepíší o tématu I. Osoba B, libovolně vybraná z těchto šesti
osob, si tedy píše s pěti ostatními nejvýše o dvou tématech.
Proto (alespoň) se třemi z nich si dopisuje o jednom tématu II.

Dopisují-li si nyní některé dvě z těchto tří osob o tématu II,
nacházíme opět tři osoby píšící si o témže tématu (II).

V posledním možném případě si uvažované tři osoby navzá-
jem dopisují o tématu III, takže tvrzení úlohy je opět splněno.

Poznámka. Obdobné tvrzení neplatí pro méně než sedm-
náct osob.

93

Nechť uvažovaný trojúhelník má největší stranu x = p, kde
p <n je zvolené přirozené číslo. Uvažujme nejprve tyto
případy:
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Je-li druhá strana у = p, pak třetí strana z se rovná někte-
rému z čísel

1, p -2, ..., 1;P> P

to je celkem p trojúhelníků.
Je-li druhá strana у — p

rovná některému z čísel
1, pak třetí strana z fí у se

p — l, p 2, ... j 2

(nemůže být z = 1, neboť platí x <y + я); to je celkem
p — 2 trojúhelníků.

Je-li druhá strana у — p
některému z čísel

2, pak třetí strana z se rovná

P — 2, p — 3, . . ., 3;
to je celkem p — 4 trojúhelníků.

Proveďme tedy obecnou úvahu: Je-li druhá strana

— k, kde k je přirozené číslo menší než (aby byla

splněna podmínka x < у + z), pak třetí strana z se rovná
některému z čísel

p — k, p — k — 1, ..., k f l = p — (p — k
to je celkem p — 2k trojúhelníků.

Označme nyní sp počet všech trojúhelníků, jejichž jedna
strana má délku p a délky ostatních dvou stran jsou přirozená
čísla nepřevyšující p. Je-li p sudé, pak

Sp =P + (P - 2) + (f - 4) + ... + 2 = I(P + 2) t. =

y=P

i);

p
+

2 '
Je-li p liché, pak

sP =P + (P - 2) + (p - 4) + ... + 1 =
P + 1\2

2
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Nechť Sn je počet všech trojúhelníků, které vyhovují pod-
mínkám úlohy. Podle předchozího platí

Sn — S1 + ^2 + • • • + srr

Je-li n sudé, máme

S, = l2 + (l2 + 1) + 22 + (2! + 2) + .. . + +

m
n

+

a-2^12 + 22 + . .
1+2 + ..,+1

n I n \ . v 1 n I n A

•T(T+1)(" + 1) + yT(y+1)

. +

1

=2-6
a po malé úpravě

1

24 n (и + 2) (2n + 5). (1)Sn —

Pro n liché a větší než 1 lze psát Sn = Sn+ sn, tedy
1 1

(n — 1) (w 4~ 1) (2я + 3) -f- — (n l)2;5 =

24

po úpravě
1

24 0 + 1) (Я + 3) (2n + 1)Sn — (2)

a tento vzorec platí i pro n = 1 (neboť Sx = 1).
Vzorec (1) (pro n sudé) a (2) (pro n liché) dávají odpověď

na otázku úlohy.
Poznámka. Všimněte si, že výsledky (1), (2) lze vyjádřit

jediným vzorcem

2и3 + 9n2 + 10я + ( — 1)” • -^-j.1
Sn = 24
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První řešení. Pro důkaz sporem předpokládejme, že kaž-
dých osm časopisů zakrývá část stolu o ploše menší než
8

S, kde je plocha celého stolu. Takových osmic je j ^ j15

(“)a každý časopis vystupuje v z nich. Všechny tyto osmice

/ 14 \
dohromady pokryjí tedy nejméně I I -krát celý stůl; přitom
však součet ploch, které celkem na stole zakryjí, bude menší

S. Proto platí15

15 8
než

8

№<(*>• 8
5,

15

ale 1 < 1 není možné.

Druhé řešení. Poznamenejte si na každý časopis velikost
plochy, kterou na stole bezprostředně zakrývá. Pak uberte ty
časopisy, na nichž je zapsáno sedm nejmenších hodnot.
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Mějme na kružnici m různých bodů A13 A2, . . ., Am;
označení volíme tak, aby indexy vzrůstaly proti směru hodi-
nových ručiček. Označme zm množinu všech úseček, které
spojují dvojice těchto bodů, a um počet oblastí vzniklých v da-
ném kruhu. Na oblouku mezi Am a Ax přidejme další bod Am+1.
Úsečka A Ak (k = 1, . . ., ni) roztíná ve dvě části právě
tolik oblastí, na kolik částí ji rozdělují úsečky množiny zm.
Úsečka A

m~r 1

Ak obsahuje vnitřní body právě těch úseček
k — 1 a j = k + 1, . . ., m. Takových

m+l

AiAj3 kde i = 1, . .

úseček je tedy (k — 1) {m — k) a dělících bodů, které vznik-
nou na úsečce Am+Í Ak, je stejně tolik nebo méně; poslední

• 5
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případ může nastat pouze tehdy, když alespoň tři úsečky
množiny zm+l mají společný vnitřní bod. Při sestrojení úsečky
Am+1Ak se tedy počet oblastí um zvětšil nejvýše o číslo 1 —

-f (k — 1) (m — k).
Úsečky Am+j Ak (k = 1, . . ., m) mohou protínat ve vnitř-

nich bodech pouze úsečky původní množiny zm, a nikoli
samy sebe navzájem. Proto při sestrojení každé úsečky Am+1A,:.
(k — 1, . . ., rvi) se počet existujících oblastí zvětšuje nejvýše
o číslo 1 + {k — 1) (m — k). Po sestrojení všech úseček

A13 , Am+1Am bude tedyAm+i

= Um + Y [1 + {k — 1) (
k=\

m

= Um + m + m Y — Ú

~k)] =Um+l

m

E k(k-\)
k - l

čili po úpravě
m (m •— 1) (jn — 2)

«m+l ^ Um + m -t 6

Poněvadž ux = 1, dostaneme sečtením nalezených nerovností
(pro m — 1, . . ., n — 1) odhad

n (n 1) (n — 2) (n — 3)1) n (n
un ^ 1

2 24

při úpravě pravé strany jsme užili vzorce
П — 1

1
Y m (w — 1) (m — 2) = — n (n

m = 1 4
1) (n - 2) (n - 3),

jehož správnost je možno snadno ověřit indukcí podle n.
Z předchozích úvah však také vyplývá, že nemají-li žádné

tři úsečky dané množiny zn společný vnitřní bod, pak
n (nn (n 1) 1) (n — 2) (n — 3)

. (1)1un 2 24
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Stačí ukázat, že taková konfigurace skutečně existuje (pro
každé n). Dokažme toto tvrzení indukcí podle n. Pro n = 1,
2, 3, 4 je to jasné.

Buďte A13 . . ., An (n ^ 4) takové body na obvodu daného
kruhu, že žádné tři úsečky příslušné množiny zn nemají spo-
léčný vnitřní bod. Každý z bodů Al3 . . ., An spojme přímkami
se všemi průsečíky úseček množiny zn a sestrojme všechny
průsečíky těchto přímek s danou kružnicí. Tak na naší kružnici
vznikne konečný počet bodů, takže na ní můžeme, zajisté zvolit
další bod A
An3 An+Í pak zřejmě tvoří hledanou konfiguraci pro n + 1.

Odpověď na otázku úlohy je dána vzorcem (1).

různý od všech těchto bodů. Body A13 . .n+1 • 5
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Označme Tn počet všech trojúhelníků daných systémem n
bodů (n ^ 3), z nichž žádné tři neleží na přímce, a On počet
všech ostroúhlých trojúhelníků daných týmž systémem. Do-
kážeme lemma: Jestliže pro každý takový systém n bodů
platí nerovnost On ržL cTn3 kde c je pevné číslo, pak je také vždy

^ cTn+1.
Ze systému n + 1 bodů vynecháme po řadě první, druhý až

(n + l)-ní bod; příslušné počty všech trojúhelníků (ostro-
úhlých trojúhelníků) v těchto n + 1 systémech o n bodech
označíme Tnk resp. Onk (k = 1, 2, . . ., n -f- 1). Pak platí

Ofi+i

Tni + Tn2 + ... + ТП'П+1 (1)Tn+ 1
n — 2

0»1 + 0n2 +... + On<n (2)^n-fl
n — 2

neboť každý trojúhelník (ostroúhlý trojúhelník) je zahrnut do
(и + 1) — Ъ —n — 2 systémů. Podle indukčního předpokladu
platí

Опк < cTnk (А = 1,2,...,я-г1).
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Sečtením těchto nerovností a užitím vzorců (1), (2) nyní dosta-
neme vztah

Ofl+X — £^n+lJ
který jsme chtěli dokázat.

Protože je Ti = 4, 04 ^ 3, platí 04 5S 0,75 . Г4. Podle
lemmatu je pak také 05 ^ 0,75 Г5. Avšak Tb = 10, tedy 05 ^ 7,5.
Poněvadž 05 je přirozené číslo, platí 05 ^ 7 (líbí se vám tento

7
— Tb. Z lemmatu potom

vyplývá, že pro každé přirozené n ^ 5 (tedy i pro n = 100)
platí

krok?). Tak dostáváme vztah 05

On 7

Tn - 10 '
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Obr. 74. Buď X počet malých trojúhelníků, které mají
jedinou stranu 12 (tj. jejichž vrcholy jsou označeny třemi
různými čísly 1, 2, 3), a Y počet malých trojúhelníků, které

3
Obr. 74.

3, 2
2

3/C
r 2

1 3'1

2\

21221
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mají dvě strany 12; žádný trojúhelník nemůže mít tři strany 12.
Potřebujeme dokázat, že X Ф 0.

V součtu X + 2 F všech stran 12 malých trojúhelníků mohou
být některé strany počítány dvakrát (neboť ty z nich, které
zasahují dovnitř základního trojúhelníku, jsou společné dvěma
malým trojúhelníkům), zatímco každá strana 12 ležící na ob-
vodu základního trojúhelníku je zde počítána jenom jednou.

Označíme-li tedy U počet malých stran 12, které zasahují
dovnitř základního trojúhelníku, a V počet malých stran 12
ležících na jeho obvodu, bude

X + 2Y = 2U + V.

Avšak číslo V je zřejmě liché (obr. 74), a proto X musí být
liché. Dokázali jsme tedy poněkud více, než bylo třeba.

Poznámka. Obdobná věta platí i pro čtyřstěny a též ve
vícerozměrných prostorech.
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Předpokládejme, že existují dva stavy 1 a II, souměrné podle
nějakého průměru o ciferníku hodin (obr. 75 a).

Pak je jasné, že jsou možné i časy,
při nichž velké ručičky splývají na
našem průměru o a polohy malých
ručiček jsou (v souladu s mechanis-
mem hodin) opět souměrné podle
osy o (obr. 75 b).

| Poněvadž Г a IT jsou možné časy,
I] musí po určité době uplynulé od oka-I mžiku Г nastat stav IT. Z toho, že po-

o

I

Obr. 75 a.
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lohy velkých ručiček v Г a IV splývají, plyne, že tato doba je celý
počet h hodin. Přitom z naší symetrie je vidět, že přesně za
^

hodin bude malá ručička na ose o (obr. 75 c). Jelikož ^ je2 2
i

číslo bud celé anebo celé +
^ 5 bude velká ručička v té chvíli

opět na ose o (buď se bude krýt s malou, anebo bude na opačné
straně od ní).

Tak jsme dokázali, že průměr o má tuto vlastnost: Existuje
okamžik, v němž obě ručičky leží v ose o. Nakonec se snadno
uváží, že zrcadlový obraz každého možného času podle takové
osy o je opět možný čas. Rozmyslete si sami, kolik je celkem
takových os a jak se najdou.
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Předpokládejme nejprve, že p > 2 je prvočíslo (na obr. 76
je p = 7). Uvnitř úsečky PAk neleží žádný mřížový bod. Kdyby
tam totiž ležel mřížový bod M = (x, y), pak by platilo 1 íS x <

< p, — = — (směrnice přímky PAk), což není možné, neboť
p x
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Obr. 76.ÍP.P)

Ap-1Вp-1

В p-2p-2

УЛ

*3 A3

В2 a2■<>

у
01 =- A i

/1P

zlomek , jehož jmenovatel je prvočíslo, nelze zkrátit.
P

Počet mřížových bodů uvnitř obdélníku PAAkBk je roven
číslu (p — 1) {k — 1). Protože uvnitř úsečky PAk není žádný
mřížový bod, je počet mřížových bodů ležících uvnitř trojúhel-
niku PAAk poloviční, tj.

1

2<P~ 1) (*-l). (1)

Uvažujeme nyní trojúhelník PAiAJ+1 (pro j — 1, 2,. .

p — 2). Uvnitř tohoto trojúhelníka je -^-(p — 1) (/ + 1 — 1) —
(P — 1) (У — 1) = (p — 1) mřížových bodů, jak plyne

• 5

z výsledku (1) a z toho, že vnitřek trojúhelníka PAjA}+1
staneme, jestliže od vnitřku trojúhelníku PAAj+1 ubereme
trojúhelník PAAj. Tím je jedna část úlohy dokázána.

do-
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Předpokládejme naopak, že p > 2 je liché číslo a že uvnitř
každého z trojúhelníků PA1A2, PA2A3,. . ., PA

právě — (p — 1) mřížových bodů. To máme celkem ~ ■

. (p — 1) (p — 2) mřížových bodů; všechny leží uvnitř trojúhel-
niku PAAp—v

Uvnitř úsečky PAp—x není žádný mřížový bod, neboť zlomek
p — 1 nelze zkrátit. Uvnitř trojúhelníku РААр—г je proto

P 1
podle téhož úsudku jako v první části řešení právě — (p — 1)

V—2-Aj)—i leží
1

(p — 2) mřížových bodů. Přitom žádný z nich zřejmě nenáleží
trojúhelníku PAAV

Z posledních dvou odstavců vyplývá, že počet mřížových bodů
uvnitř trojúhelníku РААр—х se rovná celkovému počtu mřížo-
vých bodů uvnitř trojúhelníků PAгА2, PA2A3,..., PAp—2Ap—v
Proto uvnitř úseček PAX, PA2, PA3,. . ., PAp—2 neleží žádný
mřížový bod. Odtud však již plyne, že p je prvočíslo. Kdyby
totiž bylo p = ab, kde 1 < a b < p jsou přirozená čísla, ležel
by uvnitř úsečky PAa mřížový bod (b, 1). Tím je dokázána
i druhá část úlohy.

100

Buďte O, P, Q tři z daných bodů, které neleží v přímce.
Je-li A další bod dané množiny, pak z nerovností

АО | ^ PO, \AQ-AO | ^ QOAP

plyne, že rozdíly AP — AO, AQ — АО mohou nabývat jenom
konečného počtu hodnot. Avšak při daných hodnotách obou
rozdílů

k, AQ- АО = 1
máme pro bod A jenom konečný počet možných poloh (prů-
sečíky dvou „hyperbol"); můžete se o tom přesvědčit i jinak

AP - АО
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(např. přímým výpočtem kosoúhlých souřadnic bodu A
v soustavě OPQ při vhodném užití kosinové věty). To je spor
s nekonečností dané množiny.

Poznámka. Užitím kruhové inverze (pozn. za př. 63) lze
snadno ukázat, že ke každému přirozenému číslu n existuje n bodů
ležících na kružnici, jejichž všechny vzájemné vzdálenosti jsou
přirozená čísla. Je však zajímavé, že tyto body lze dokonce po-
važovat za mřížové (viz text př. 99). To si nyní objasníme.

V rovině kartézských souřadnic v, у vezměme jednotkovou
kružnici se středem v počátku a zvolme na ní body

Pk = (cos 2kot, sin 2kot), k = 0, 1, 2,. .

kde oc je takový ostrý úhel, že

• 5

4 3
— neboli cos a = _ .

5 5
sin a =

Z trigonometrických vzorců je zřejmé, že obě souřadnice kaž-
dého bodu Pk jsou racionální čísla a že i všechny vzdálenosti

PkPl = 2 | Sin (/ — k) OL |
jsou racionální.

Ukažme ještě, že
sin kýO pro k = 1, 2,. . . .

Položíme-li (pro k = 1,2,. . .)
4 = 5fc sin kot,

pak vzhledem к tomu, že
sin (k + 2)a = 2 sin (k + l)a cos ot — sin kot,

máme

^к+2 1 254.
Poněvadž ale

4 = 4, t2 — 24,
nemůže být žádné 4 dělitelné pěti a proto 4 4 0.
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Pro k Ф l pak platí
•Pfc-Pj > 0,

takže množina všech bodů Рк (k = 0, 1, 2,. . .) je nekonečná.
Odtud již snadno plyne slíbené tvrzení.

Cvičení. Množinu všech bodů roviny, jejichž obě souřadnice
x, у jsou racionální čísla, lze rozložit ve dvě podmnožiny,
z nichž prvá je konečná na každé rovnoběžce s osou x a druhá
je konečná na každé rovnoběžce s osoujy.
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Číslo x = 0 úloze nevyhovuje. V dalším proto bude x Ф 0.
Dokážeme, že platí

1 1 1
(1)1 + x sin > o— cos

2X X

pro každé x^O. Vzhledem к tomu, že hodnota levé strany
v (1) je pro čísla x a —x stejná, stačí se omezit jen na kladná x.

Buď tedy x libovolné kladné číslo. Platí nerovnosti
1 1

sin1 1,cos5
X X

z nichž plyne
1 11 1

—X ^ x sin
2 — 2

cos5
XX

Sečtením dostáváme

1 1 1i
-— - — X < x sin

2 — x

a přičtením čísla 1 vychází nerovnost

cos
2 x

1 11 1
„ X ^ 1 4- X sin2 x

-cos —.

2 x
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Přitom pro každé x < je x > 0, takže (1) platí. Pro

x > 1
—

2
máme i

1
0 < — ^.2 <7i.

X

Z toho je však ihned patrné, že (1) platí. V součtu nalevo v (1)
jsou totiž první dva sčítanci kladní a dávají součet větší než 1.

Od nich se odčítá číslo cos — , které je buď dokonce zá-
2 x 5

' l v' Jv ^
porne I v případe — <

zvětší, anebo nezáporné |a ovšem menší než -^- j , takže levá
strana v (1) bude i v tomto případě kladná.

Nerovnost (1) tedy platí pro všechna reálná čísla x různá
od nuly. Je možno též dokázat, že pro všechna taková x platí
dokonce nerovnost

1
^ 2) , čímž se levá strana ještěx

1 1 1
1 + x sin COS > E,

2X X

kde £ je jisté kladné číslo.
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Poněvadž

A (0) = A (0 + 0) = A (0) + A (0),
je

A (0) = 0.
Dále

A(\)=A(\A)=A(\).A{\\

anebo A (1) = 1.
proto

buď A (1) = 0
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V případě, že A (1) = O, máme A (x) = A (1 . x) — A (1).
. A (x) = 0 pro každé x.

Zabývejme se tedy případem A (1) = 1 a dokažme, že pro
každé reálné x platí A (x) — x.

Všimněme si nejprve průběhu funkce A (x). Pro nezáporná x
platí

A (x) = A (]/x . ]/x) = [A( j/x)]2 ^ 0.
Jsou-li tedy x ^ у libovolná reálná čísla, je

A (x)> A (y),
neboť

A (x) = A [y + (x — y)] = A(y) + A (x — y) ^ A (y).
Buďte nyní m, n přirozená čísla. Ukážeme, že

A ” = -

n n

Skutečně,

l=A(l)=A Ю-+ A

11 1
= A = nA+ A + .

nn n n

takže
1 1

A
n 3n

a dále obdobně

1
A l” = A +

n n

1 m
= mA

n n
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Pro kladná racionální čísla r tedy platí A (r) = r.
Předpokládejme, že by pro nějaké kladné (neracionální) číslo

x bylo А (x) Ф x. Nechť např. A (x) > x. Vezměme racionální
číslo r takové, že x < r < A (x). Pak A (r) = r < A (v), ačkoliv
л; < r. To odporuje průběhu funkce A (x). Platí tedy A (x) = x
pro každé x ^ 0 a zbývá vyšetřit případ x < 0. Vzhledem
к tomu, že

0 = A (0) = A (x — x) — A (x) -f A (—-x),
dostáváme

A (—x) = —A (x).

Je-li tedy x záporné (čili —x kladné), platí podle předchozího
A (x) = —A (—x) — —(—x) = x.

Tím je vše dokázáno.
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Pro sudá n je cn > 0. Ukážeme, že cn — 0 pro všechna n
lichá. Budiž I množina těch indexů i, pro něž at > 0, J mno-
žina těch j, pro něž a} < 0. Obě množiny jsou neprázdné a pro
lichá n je cn = 0 právě když

2>” =£ и, (1)
iel jej

kdež bj = —dý jsou kladná. Podle předpokladu rovnost (1)
platí pro ne N, kdež N je jistá nekonečná množina (lichých)
čísel.

Budiž c největší z čísel at (i e 7), b} (j e J); nechť např.
c — di pro některé i e 7. Pak existuje jej takové, že at = bj.
Skutečně, kdyby bj < c pro všechna j ej, pak rovnost (1)
neboli

i Гf = i (bA"iel \ c I jej \ c )
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by nemohla platit pro nekonečně mnoho exponentů n\ pro
všechna dostatečně velká n je totiž pravá strana téměř nula
(rozmyslete si!), zatímco levá je vždy alespoň 1.

Odtud plyne, že v (1) můžeme na obou stranách ubrat po
jednom sčítanci. Obdržíme rovnost platnou zase pro všechna
ne N. Zopakujeme tedy úvahu předchozího odstavce. Po ко-
nečném počtu takových kroků se sčítanci na obou stranách
v (1) vyčerpají. To ale znamená, že cn = 0 pro všechna lichá n,
a úloha je rozřešena.

104

První řešení. Předběžná úvaha. Vyměníme-li čísla xx
a x2, dostaneme

/02) —/(*1) ^ Oi - x2)2,
neboli celkem

l/Oi) — / O2) I ^ Oi - *2)2
pro všechna x13 x2 z intervalu <0, 1).

Odtud plyne, že pro xl ф x2 je
/О2) —/Oi)

(1)^ x2 — Xv
\ • x2 — xx

Číslo [/O2) —/О1Л/О2 — ^í) )e směrnice přímky v rovině
(x,y), která prochází body [Ou/ Oi)] a Огг/Ог)]- Číslu I/O2) —

-/Oi) \l\x2
/0) mezi body xx a x2.

Jsou-li tedy body xl a x2 různé, ale dosti blízké, tj. | x2
malé, pak z (1) plyne, že absolutní směrnice hledané funkce
mezi Vj a x2 je malá. Z toho lze předběžně usuzovat, že hledané
funkce budou funkce konstantní v celém intervalu <0, 1).

К vlastnímu řešení budeme ještě potřebovat tuto pomocnou
větu:

budeme říkat absolutní směrnice funkce

%

Pomocná věta. Nechť ax, bx (ax < bx) jsou body z intervalu
<0, 1). Nechť f (x) je funkce definovaná na intervalu <0, 1).
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Pak existují v intervalu <ax, bx) body a2, b2 {a2 < b2) tak, že

1
^2 a2 I 2“ I ^1 I 5

a přitom
1

1/(62) -/(a2) I

1
Důkaz. Označme c = - (ax + 6X), takže | с — ax | =

"M = T
= K/W) -/(*))+(/to ~/W)) I ^ I f(bx)

61 - <h I • Protože I / (fcj) — / (aj) I == i c

/ to I +
+ I /to — / to) I, je splněna alespoň jedna z nerovností

1
l/(6i) -/(с) I ^ у 1/(60 -/(Oj) I, (2)

1
I/to-/to) I ^Tl/to)-/to)|. (3)

Je-li splněna nerovnost (2), položíme b2 = b13 a2 = c; není-li,
je splněna nerovnost (3) a položíme b2 = c, a2 — av Důkaz
je hotov.

Vlastní řešení. Každá funkce konstantní v intervalu <0,1)
vyhovuje úloze. Ukážeme, že žádná jiná funkce úloze nevyho-
vuje.

Nechť tedy /(x) je funkce definovaná v intervalu <0, 1),
splňující danou podmínku, a tedy též (1), která není v celém
intervalu <0, 1) konstantní. Pak existují v <0, 1) body x a z,
x < z, takové, že / (x) ф f (z). Podle pomocné věty užité na
dvojici x, z existují body x15 zx v intervalu <x, z}, tedy i v <0,1),
tak, že
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1
*1 - *11 = у I *

— * I)

1
l/W-/W I ^y !/(*)-/(*) I.

Podle téže pomocné věty užité na dvojici xx, zx existují body
x2i z2 v (xj, zxy, tedy i v <0, 1), tak, že

1 1
*8 — *2 I = у I *1 — *1 I = у | * — * I »

a přitom
1 1

l/W -/(*2) I l/Ol) -/(*1) I I/O) - fix) |.

Obecně se indukcí snadno ukáže, že pro každé n ^ 1 existují
body xn, zn v <0,1) tak, že

1
I Xn I 2n I ^ 5

a přitom
1

l/W —/W I ^ 2„ I / i2) - fix) |.
Protože podle předpokladu o funkci f(x) platí

f i%n) f iXn) I = I Zn Xn I ,

dostáváme odtud

I/O) —fix) 1 ^ 2n 1 /W — /On) I ^ 2” I zn - I2 = ~ 12Г

Protože však \f (z) —f(x)\ ф 0 a posloupnost — | z2n

je nulová, existuje n tak, že \f(z) — f(x) \ > ~ | z — x |2,
což je spor s předchozí nerovností.

Závěr. Úloze vyhovují jenom funkce konstantní v inter-
válu <0, 1).

x|2.

- x |2
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Druhé řešení. Jestliže pro 0
Ф f (b), pak lze najít přirozené číslo n takové, že | / (a)

a < b 1 platí / (a) #

1 i
f(b) | > — . Položme xt = a H (b — a) pro i — 0,1,... , n.

Platí
П— 1

Z 70г) —f(xl+1) | <f (a) f (P)
i—0

n—1

^ Z & — xi+O2 ^ z
7 1

т = 1 n2

a to je spor. Výsledek je tedy stejný jako v předchozím řešení.
Poznámka. Pro čtenáře, který zná počátky diferenciálního

počtu, byla tato úloha zajisté velmi snadná.

1

n 52 = 0
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Bud M dané přirozené číslo. Potřebujeme dokázat, že pro
vhodné přirozené číslo n a celé nezáporné číslo k platí ne-
rovnosti

M. 10fc ^ 2я < (M + 1). 1(F
neboli

log M + k ^ n log 2 < log (M + 1) + k

(uvažujeme desítkové logaritmy). Všechny polouzavřené inter-
vály

log M + k, log (M -f 1) + k),

kde k probíhá celá nezáporná čísla, mají touž délku
M + 1 log(1 + ^)log (Ař + 1) — log M = log

a vzniknou z intervalu

<log M, log (M + 1))
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posunutím о 1,2,3,... . Čísla log2,2 log 2,3 log 2,..., n log 2,.. t

tvoří aritmetickou posloupnost; chceme dokázat, že některý
její člen padne do některého z uvažovaných intervalů.

К tomu bude užitečné si představit, že polopřímka nezá-

porných čísel je navinuta na kružnici o délce 1 |tj. o poloměru
1

,. Potom obrazy dvou čísel na této kružnici splynou právě2л !
tehdy, když jejich rozdíl je celé číslo; zejména také splynou
všechny uvažované intervaly (obr. 77). Pokud jde o obrazy
Als A2, A3,. . . čísel log 2, 21og 2, 31og 2,..., žádné dva
z nich nesplynou, neboť log 2 je iracionální (ověřte sporem).
V nekonečné posloupnosti bodů A±, A2, A3,... lze najít dva,
nechť jsou to Ap a Ap+q, jejichž oblouková vzdálenost je
menší než délka oblouku vy-
značeného na obr. 77, tj.

log (l
1

M ‘

Obr. 77.

Poněvadž každé dva sousední členy nekonečné posloupnosti
. . mají zřejmě stejnou obloukovou

, je jasné, že některý
z nich musí padnout od uvažovaného intervalu. To jsme chtěli
dokázat.

Ap,A ■Ap+2q) Apj-3q, .P+Q’

vzdálenost, a to menší než log 11 + j
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Obr. 73

О An =€n —1

An.1^cn~1

106

Vrcholy Ал, A2, . . ., An pravidelného и-úhelníku si před-
stavme v rovině komplexních čísel jako n-té odmocniny z 1.
To znamená, že bod Ak (k = 1, 2, . . ., n) zobrazuje číslo
ek, kde

2л 2л
+ i sine = cos

n 5n

takže £n = 1 (obr. 78).
Těchto n bodů je rozděleno do q 2) skupin příslušných

jednotlivým barvám. Počet vrcholů patřících do j-té skupiny
(j = 1, 2, .. ., q) označme každé m} je zřejmě dělitelem
čísla n. Skupiny si seřaďme tak, aby bylo

(1)m2 ^ . . .mx mq.
V každé skupině najdeme vrchol s nejmenším kladným argu-
mentem; nechť mu odpovídá číslo erj, kde r} (pro j = 1,

2, . . ., q) je přirozené číslo. Položíme-li ех = emí, můžeme
všechny vrcholy j-té skupiny zapsat ve tvaru eri. e), kde
/ = 1, 2, ..., Ttíj.
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Označme

5 = Z £кт\
k = i

Poněvadž zřejmě S. emi — S a emi Ф 1, je
5 = 0

(viz též obdobnou úvahu v prvém řešení úlohy 45). Každé
ek (k = 1, 2, . . ., n) je však rovno některému erj£l} (j — 1,
2, . . ., q; I — 1, 2, . . ., тх) a také obráceně, každé takové
erj e] je rovno některému ek. Proto

(2)

n q mj q I mj
S = X £fcmi = Z Z (erje])mi = X ( Z ejmi • (3)

y=i/=i = i* = i /=i

Pro j — 1 máme
mi mx mi

X £i”‘ = X £nl = Z = mx.
i = i /=i /=i

První sčítanec v (3) je tedy
mísr'mi.

Pokusíme se nyní ukázat, že mí = m2. Předpokládejme, že
platí m1 < m2. Pak pro j = 2 máme

m2 m2 n

Z 4m,= Z £ W2 = 0,
/=1 /= 1

A2 _ __

neboť ml je přirozené číslo menší než n, takže em2 mi ^ 1
m2

a lze užít téhož obratu jako v (2). Obdobně se dokáže, že i další
sčítanci v (3) (pro j = 3, , q) se [vzhledem к (1)] rovnají
nule.

Z předpokladu mx < m2 tedy vyplynulo, že pro součet (3)
platí

(4)5 = mlerimi Ф 0.
Výsledky (2) a (4) si však odporují.
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Skutečně tedy mx = m2 a věta je dokázána (dokonce v po-
někud silnějším znění). Představte si např. v pravidelném
dvanáctiúhelníku dva rovnostranné trojúhelníky a jeden pra-
videlný šestiúhelník.

107

Zvolme přirozené číslo n a označme An množinu všech
reálných čísel x, pro něž platí

1
/O) I > — •

Tato množina An obsahuje jenom konečný počet prvků. Kdyby
totiž An byla nekonečná, pak by alespoň jedna z nerovností

1 ;
/0) > -■ > /(*) < - —

n

platila pro nekonečně mnoho reálných čísel x, takže by zřejmě
nemohla být splněna podmínka vyslovená v zadání úlohy.
Počet prvků množiny An je tedy jisté přirozené číslo mn.

Sestrojíme nyní posloupnost reálných čísel

{Xl5 X2, X3, X4, . .

takto: Vezmeme nejprve množinu Ax; ta má mx prvků, takže
za prvních ra, členů posloupnosti (1) můžeme vzít čísla mno-
žiny Ax v nějakém (celkem libovolném) pořadí. Tím máme
určeno prvních mx hodnot posloupnosti (1). Potom vezmeme
množinu A2) která má nu prvků, a za dalších m.2 členů posloup-
nosti (1) (tj. členů s indexy mx + 1, . . ., mx T m2) vezmeme
čísla množiny A2 (v nějakém pořadí). Tímto postupem mů-
žeme definovat xn pro každé přirozené n.

Posloupnost (1), jak jsme ji právě popsali, obsahuje všechna
reálná čísla x, pro něž /(x) Ф 0, a žádná jiná. Je-li totiž
/(x) Ф 0, pak pro dostatečně velké přirozené číslo n platí

1 (1)•/
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1
< |/(я) I? takže toto x patří do An, a je tedy členem po¬

n

sloupnosti (L). Naopak každé číslo x z posloupnosti (1) patří
do některé množiny AM takže /(x) ф 0.

Hledané číslo c musí proto ležet mimo posloupnost (1).
Potřebovali bychom tedy dokázat, že posloupnost (1) nevyčer-
pává všechna reálná čísla, čili sestrojit reálné číslo c, které
nepatří do (1). To provedeme pomocí dekadického rozvoje.

Každé reálné číslo r má, jak známo, svůj nekonečný deka-
dický rozvoj

Г = ±(pxp2 • • • Ps, ?i$2Í3 • • 0>
kde px, p2, ..., p§, q-t, q2i qs, . . . jsou číslice. Obráceně každá
taková posloupnost číslic spolu se znaménkem -f nebo —
a polohou desetinné čárky určuje reálné číslo. Přitom dva
takové dekadické rozvoje, které se liší na některém místě
(majícím v každém rozvoji stejný index), mohou dávat totéž
číslo jen tehdy, když jeden končí samými nulami a druhý
samými devítkami, např.

0,248 = 0,248 00000 . . . = 0,247 99999 . . .

Při konstrukci čísla c se tedy budeme snažit o to, aby se
číslo c lišilo od každého z členů posloupnosti (1) na některém
místě a aby se v jeho rozvoji (pokud možno) nevyskytovaly
nuly ani devítky.

Každé číslo z (1) si představme v nekonečném dekadickém
rozvoji a aby tento rozvoj byl jednoznačný, nebudeme např.
připouštět na konci samé devítky.

Nyní je už vše jasné. Vezmeme nejprve číslo xx a všimneme
si jeho první číslice za desetinnou čárkou; za cr pak zvolíme
nějakou číslici různou od této číslice i od 0 a 9 (to je možno
učinit, neboť číslic je deset, takže se zajisté můžeme vyhnout
třem resp. dvěma případům). Pak si všimneme druhé číslice
za desetinnou čárkou v rozvoji čísla x2 a zvolíme číslici c2 tak,
aby byla různá od této číslice i od 0 a 9. Dále zvolíme číslici

221



c3 tak, že se vyhneme nule, devítce a třetí číslici za desetinnou
čárkou v rozvoji čísla x3. Obdobně najdeme pro každé při-
rozené n vhodné cn (dokonce cítíme značnou volnost při volbě
číslic cn).

Reálné číslo
c — 1, c^c3c3. . .

se pak liší od každého členu posloupnosti (1) na některém
desetinném místě (totiž od xn alespoň na я-tém místě za dese-
tinnou čárkou) a poněvadž nekončí samými nulami ani devít-
kami (vůbec žádné totiž ve svém rozvoji nemá), je jistě různé
od všech členů posloupnosti (1). Pro toto c tedy platí/(c) = 0
a úloha je rozřešena.

Poznámka 1. V řešení úlohy 107 jsme dospěli к závažnému
poznatku, když jsme ukázali, že reálných čísel je „tak mnoho",
že žádná (nekonečná) posloupnost je nemůže všechna vy-
čerpat. Povězme si tedy o „počtu prvků" (čili mohutnostech)
množin a o tom, jak velké „nekonečno" si vlastně můžeme
představit. Budeme proto porovnávat dvě množiny А, В co
do početnosti.

Jsou-li obě množiny konečné, je to snadné. V tomto pří-
pádě můžeme prostě spočítat prvky každé množiny a porovnat
výsledky. Je však myslitelný i jiný přístup. Představme si
kupř. dvě dosti velké hromádky kaštanů (množiny A a B),
takže nelze na první pohled určit počet prvků; navíc bychom
se při jejich počítání mohli splést. Jde-li nám pouze o porovnání
počtu kaštanů („kdo nasbíral víc"), bude asi pohodlnější
a jistější ubírat z každé hromádky po jednom kaštanu — tvořit
dvojice. Tak přiřadíme každému kaštanu z jedné skupiny
kaštan z druhé skupiny. Jestliže se tímto kaštany v obou sku-
pinách vyčerpají, je jasné, že obě hromádky měly stejný počet
kaštanů. Jinými slovy, dvě konečné množiny mají stejný počet
prvků, právě když lze definovat prosté zobrazení (které různým
vzorům přiřazuje různé obrazy) jedné množiny na druhou
(viz dvojice kaštanů).
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Je přirozené považovat tuto vlastnost dvou množin za projev
jejich stejné početnosti (mohutnosti), a to i v případě neko-
nečných množin. (Je samozřejmé, že tento vztah „rovnopočet-
nosti" je symetrický: druhou množinu lze zobrazit na prvou
inverzním zobrazením.) V tomto smyslu můžeme např. říci,
že všech přirozených čísel je „stejně tolik“ jako všech sudých
čísel; příslušné prosté zobrazení mezi těmito dvěma množi-
námi lze definovat velice jednoduše: každému přirozenému
číslu n přiřadíme sudé číslo 2n. Můžete si sami najít např.
prosté zobrazení množiny všech přirozených čísel na mno-
žinu všech racionálních čísel, takže i množina všech racionál-
nich čísel je „stejně početná“ jako množina všech přirozených
čísel.

V řešení úlohy 107 jsme však v podstatě dokázali toto tvr-
zení: Ať na množině přirozených čísel definujeme jakoukoli (tedy
i prostou) posloupnost reálných čísel, vždy se najdou reálná čísla,
která nejsou členy této posloupnosti. Množinu všech přirozených
čísel je tedy možno prostě zobrazit do množiny všech reálných
čísel, avšak nikoli na ni. Je tedy přirozené říci, že množina
všech reálných čísel má „větší mohutnost'4 než množina všech
přirozených čísel.

Obecně lze pak tuto vlastnost dvou množin (totiž, že jednu
lze prostě zobrazit do druhé, ale nikoli na ni) považovat za
projev „větší mohutnosti“ druhé množiny. V tomto smyslu je
tedy např. množina všech reálných čísel „početnější" než
množina všech přirozených čísel. Rozmyslete si též, že množina
všech těch čísel c, která splňují tvrzení úlohy 107 [tj. pro něž
f(c) — 0] je nejenom nekonečná (což bylo možno tušit už
z našeho důkazu), ale dokonce má větší mohutnost než množina
všech přirozených čísel.

Poznámka 2. Poznali jsme dvě nekonečné množiny (při-
rozená čísla a reálná čísla), z nichž druhá je „početnější" než
prvá. Vzniká tedy otázka, zda může být ještě „mohutnější"
množina než je množina všech reálných čísel. Kladná odpověď
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na tuto otázku vyplývá z následujícího zajímavého příkladu:
Bud M množina (např. všech reálných čísel). Představme si

soustavu S všech podmnožin množiny M. (S je tedy množina,
jejímiž prvky jsou podmnožiny AI). Pak S má větší mohutnost
než M.

Důkaz. Množinu AI můžeme zajisté prostě zobrazit do S:
každému prvku те M přiřadíme jednobodovou množinu {m).
Toto zobrazení pochopitelně nevyčerpává všechny prvky z Š,
neboť např. prázdná množina (která jakožto podmnožina M
je prvkem S) není při našem zobrazení přiřazena žádnému
prvku z M. Z toho však ještě neplyne, že by se při nějakém
jiném zobrazení definovaném na M nemohla vyčerpat celá
množina S. Zatím můžeme jenom říci, že množina S má mo-
hutnost „větší nebo rovnou” než M.

Dokažme nyní, že S má skutečně větší mohutnost než AI,
tzn. že ať vezmeme jakékoli prosté zobrazení / množiny M
do S, pak některý prvek ž S nebude obrazem žádného prv-
ku z M.

Za hledanou podmnožinu ZcM (tj. prvek S) můžeme totiž
vzít množinu všech těch prvků x z AI, pro něž platí x $ f(x)
[f(x) je prvek z S, čili podmnožina AI], Ukažme, že pro každé
x z AI platí f{x) ф Z.

Pro důkaz sporem předpokládejme, že pro některé x0
z AI je

(1)/(*o) = Z.
Zkusme zjistit, zda prvek x0 patří do Z či nikoliv. Jestliže
x0eZ, pak podle naší definice množiny Z platí x0^/(x0);
podle (1) však x0 e/(x0). To je spor a proto musí platit, že
x0£Z. Potom ale podle definice množiny Z platí x0pf(x0)
a podle (1) x0 e Z, což je zase spor. Předpoklad (1) vede ke
sporu a věta je dokázána.

Poznámka 3. Rozřešme si ještě jeden zajímavý problém:
Jestliže mohutnost množiny A je menší nebo rovna mohutnosti

množiny В (tj. existuje-li prosté zobrazení / množiny A do В)
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a jestliže zároveň mohutnost množiny В je menší nebo rovna
mohutnosti množiny A (tj. existuje-li prosté zobrazení g mno-
žiny В do A), pak množiny А, В mají stejnou mohutnost (tj.
existuje prosté zobrazení h množiny А na В).

Tato věta je celkem zřejmá v případě, kdy А, В jsou konečné
množiny. Jinak však vyžaduje důkaz, který zde podáme.
Označení ponechme tak, jak jsme je právě zavedli. Musíme
sestrojit zobrazení h.

V dalším odstavci rozložíme množiny А а В na jisté třídy
prvků. Přitom budeme užívat této úmluvy: prvek x (z A
nebo B) nazveme předchůdcem prvku у (z A nebo В), jestliže
se у dostane z x, provedeme-li několikrát (střídavě) zobrazení
/ a g (resp. g a /).

Rozložme nyní množinu A ve tři po dvou disjunktní mno-
žiny, a to vzhledem к celkovému počtu všech předchůdců
(v A U B) jednotlivých prvků z A: As bude množina všech
těch bodů z A, které mají sudý (tedy i nulový) počet před-
chůdců; Al bude množina všech těch bodů z A, které mají
lichý počet předchůdců; AN bude množina všech těch bodů
z A, které mají nekonečně mnoho předchůdců. Obdobně
i množinu В rozložíme na disjunktní třídy Bs, BL, BN.

Všimněme si nyní, že / zobrazuje As na BL, AN na BN a že
g—1 zobrazuje AL na Bs. Proto pro x z As nebo AN položíme
h (x) = /(x) a pro x z AL položíme h (x) = g~~x (x). Pak h je
prosté zobrazení množiny A na množinu B.

Poznámka 4. Nebudeme zde již prodlužovat tuto terna-
tiku; čtenářka resp. čtenář se dozví více při dalším studiu
matematiky.

108

Poněvadž každé tři z daných úseček mají společný bod, mají
i každé dvě z nich společný bod. Připusťme, že mezi danými
úsečkami mx, u2, . . ., un jsou dvě, např. ux a u2, které neleží
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v jedné přímce, takže mají pouze jeden společný bod A. Je-li
uk kterákoli ze zbývajících úseček, pak trojice щ, w2, uk má
podle předpokladu společný bod; proto úsečka uk musí ob-
sahovat bod А. V tomto případě tedy bod A náleží všem
úsečkám ux, u2, . . ., un.

Nenastane-li případ uvažovaný v předchozím odstavci, pak
všechny dané úsečky leží na jedné přímce. V tomto případě
však platí silnější tvrzení:

Jestliže úsečky щ, u2, . . ., un (n ěě 2) leží v přímce a každé
dvě z nich mají společný bod, pak všechny tyto úsečky mají
společný bod.

Důkaz tohoto tvrzení provedeme matematickou indukcí
vzhledem к n. Pro n = 2 je vše jasné. Předpokládejme, že
naše tvrzení platí pro přirozené číslo n 2 a ukažme, že platí
i pro zz —j— 1. Vezměme tedy n +. 1 úseček u13 u2, . . ., un}
un+l, které splňují předpoklady věty (tj. leží v přímce a každé
dvě z nich mají společný bod). Podle indukčního předpokladu
mají úsečky щ, u2, . . ., un společný bod A. Krajní body
úsečky un+l označme В, C. Náleží-li bod A úsečce BC, náleží
všem úsečkám u13 u2, . . ., un, un+1 a je to hledaný bod.
V opačném případě leží bod A mimo úsečku BC, např. na
jejím prodloužení za bod В (obr. 79). Pak je hledaným bodem
bod B. Každá úsečka щ (kde i = 1, 2, .. ., n) totiž obsahuje
bod A a — podle předpokladu — i jistý bod Д úsečky BC;
tato úsečka щ musí proto obsahovat celou úsečku ADt a tedy
i bod B. Obdobně postupujeme i v případě, že A leží na
prodloužení úsečky BC za bod C (pak hledaným bodem
bude C).

Poznámka 1. Věta o úsečkách, kterou jsme právě dokázali,
vyplývá též z důležité obecnější tzv. Hellyovy věty o kon-

++

В Di CA Obr. 79.
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vexních množinách. Připomeňme, že množina bodů (na přímce,
v rovině nebo v prostoru) se nazývá konvexní, jestliže s každými
dvěma svými body obsahuje i celou úsečku je spojující. Tak
např. na obr. 80 a je nakreslena konvexní množina, kdežto
obr. 80 b ukazuje příklad množiny, která konvexní není. Dal-
šími příklady konvexních množin jsou kruh, koule, trojúhelník,
bod, přímka, polopřímka, úsečka, prázdná množina apod.;
naproti tomu např. kružnice není konvexní.

Uvědomte si, že průnikem konvexních množin je zase kon-
vexní množina. Tento průnik může být popřípadě prázdný.
Zajímavá Hellyova věta však udává přirozenou postačující
podmínku, která zajišťuje neprázdnost průniku většího počtu
konvexních množin. Věta zní takto:

Je-li v n-rozměrném prostoru (n = 1, 2, 3) dán konečný počet
konvexních množin, jichž je alespoň n -\- 1 a z nichž každých
n 1 má společný bod, pak všechny tyto množiny mají společný
bod.

Obr. 80 a, b.

V úloze 108 jsme tedy řešili zvláštní případ této věty (pro
úsečky); věta platí dokonce pro každé přirozené číslo n (pří-
pády n = 1, 2, 3 jsme vyznačili pouze pro větší názornost).
S jedním z možných důkazů se zde seznámíme. Obecnou
myšlenku vyložíme v rovinném případě, tj. pro n = 2. Dříve
si však vysvětlíme několik jednoduchých pojmů a tvrzení,
které budeme potřebovat.
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Poznámka 2. V rovině zvolme kartézskou soustavu sou-

řadnic. Jsou-li X = (xx, x2), Y — (yx, y2) dva body této roviny,
pak jejich součtem míníme bod

X + Y = (л^ + У\> x2 + у2)
(obr. 81). Obdobně Я-násobkem (kde Я je reálné číslo) bodu
X — (я13 x2) míníme bod

XX — (XxXi Xx2)
(obr. 82). Jsou-li tedy např. Я, /n reálná čísla а X = (jc13 x2)3
Y = (yx,y2) body roviny, pak

XX + fxY = (Xxx + fxyx, Xx2 + /uy2).
Položíme-li Z = X + Y, pak platí např. XZ = XX -f- Я Y,
dále Я (/iX) = (Х[л) X, (-1) X = -X apod.

Nyní můžeme jednoduše zapsat množinu všech bodů úsečky
XY: jsou to právě všechny body tvaru XX +/í7, kde Я, /1
jsou nezáporná čísla a platí Я + [i — 1. Představte si jednotlivé
souřadnice těchto bodů.

Poznámka 3. Buď A libovolná množina bodů v naší
rovině. Tato množina pochopitelně nemusí být konvexní,
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avšak zajisté existují konvexní množiny, které ji obsahují (např.
celá rovina). Průnik všech konvexních množin obsahujících
danou množinu A (tj. „nejmenší” konvexní množinu obsa-
hující A) nazýváme konvexním obalem množiny A a značíme
conv A. Lehko se dokáže, že conv A je skutečně konvexní mno-
žina (ostatně jsme se o tom již zmínili v pozn. 1). Je-li A
konvexní, pak zřejmě conv A — A. Je-li В cz A, kde A je
konvexní, pak conv В a A (přímo podle definice conv В).

Tak např. konvexním obalem kružnice je kruh touto kružnicí
určený, konvexním obalem dvou různých bodů je úsečka je
spojující.

Představme si v naší rovině m (ne nutně různých) bodů
XXi X2, . . ., Xm (m je přirozené číslo). Pak každý bod tvaru

4“ ^2^2 T • • • "T ^m-X
kde koeficienty Áv Я2, . .., Am jsou nezáporná čísla a ?.x .+
+ Аз + . . . + Am — 1, nazveme konvexní kombinací bodů Xl9
X2, • • •) Xm.

Není těžké dokázat, že konvexní obal množiny A vždy splývá
s množinou všech konvexních kombinací utvořených od všech
konečných podmnožin množiny A. Proveďte to!

Poznámka 4. Pomocná věta: V rovině (resp. n-rozměr-
ném prostoru) bud dána konečná množina M skládající se z m ^ 4
(obecně mjjcn J- 2) různých bodů. Pak lze množinu M rozložit
ve dvě neprázdné a disjunktní podmnožiny X a Y, jejichž kon-
vexni obaly conv X a conv Y mají společný bod.

Rozmyslete si smysl této věty pro m = 4 (při n = 2); jest-
liže dokážete tento speciální případ, můžete vynechat zbytek
této poznámky a číst až pozn. 5 a 6. Všimněte si též, že v pří-
pádě n = 1, m = 3 věta říká, že ze tří bodů přímky leží jeden
mezi oběma zbývajícími.

Důkaz pomocné věty. V rovině můžeme zvolit kartézskou
soustavu souřadnic tak, aby žádný z bodů množiny M neležel
na souřadnicové ose. Jednotlivé body množiny M zapišme:

my
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Ai O^ujyi)’ -^2 (x2,y2), ... 5 Am - (xm, Ут)>
takže všechna čísla x19 y1} x2, . . ., ym jsou různá od nuly.

Uvažujme soustavu tří rovnic o m neznámých Ax, /2,. . ., ?,m:
+ A2X2 + • • • + ^mxm — 0,

КУ\ + КУч + • • • + Лтут = О,
Ai + A2 + . . . + Am

Poněvadž počet neznámých je alespoň o jednu větší než počet
(lineárních) rovnic, lze najít čísla A13 A2, . . ., Am, která vy-
hovují naší soustavě a nejsou všechna rovna nule. Rozmyslete
si podrobně tento krok: můžete se nejprve zabývat rovnicemi
(1), (2) a dokázat, že existují dvě řešení soustavy (1), (2) taková,
že pro vhodné dva indexy i ф j je v prvém řešení )H = 0,
Áj = 1 a v druhém naopak hL = 1, ф = 0; z těchto dvou
řešení pak utvořte hledané řešení soustavy (1), (2), (3).

Budiž tedy Al5 A2, • • ■> Ki takové řešení soustavy rovnic
(1), (2), (3). Poněvadž všechna čísla nejsou rovna nule, jsou
mezi nimi — vzhledem к (3) — čísla kladná i záporná a popř.
i nuly. Písmenem I označme (neprázdnou) množinu všech těch
indexů i, pro něž platí Až >0; obdobně J bude (neprázdná)
množina těch j, pro něž je < 0. Pak

c = Z h > 0

(1)
(2)
(3)= 0.

iel
a vzhledem к (3)

z h = —c.

jej

Všimněme si ještě, že — v souladu s pozn. 2 — můžeme
soustavu rovnic (1), (2) zapsat jedinou rovnicí

h\A1 + "k2A2 + ••• + hmAm — 0.
Naše řešení Я15 Я2, ..., ).m splňuje tedy podmínku (4). Vzhle-
dem к označení, které jsme zavedli v předchozím odstavci,
můžeme podmínku (4) psát ve tvaru

(4)

z A,= Y (5)Aj.
iel c jej
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Všechny koeficienty v (5) jsou nezáporná (vlastně kladná)
čísla a na každé straně dávají součet 1. Vztah (5) tedy říká,
že konvexní obaly bodů At (pro i e I) a A} (pro j eJ) mají
společný bod (viz poslední odstavec v pozn. 3).

Množina X složená právě ze všech bodů Ai3 kde ie I, a mno-
žina Y složená ze všech zbývajících bodů množiny M (sem
tedy zařazujeme i ty body Ak3 pro jejichž indexy k mohlo být
Afc = 0) tvoří pak požadovaný rozklad množiny M. Pomocná
věta je dokázána.

Poznámka 5. Nyní jsme již připraveni uvést slíbený důkaz
Hellyovy věty. Důkaz provedeme indukcí podle m (počtu
daných konvexních množin). Nejmenší m, které přichází v úvahu,
je m = 3 (obecně m — n -f- 1). V tomto případě tvrzení věty
splývá s předpokladem a není co dokazovat.

Předpokládejme, že věta platí pro každou soustavu skládající
se z ш ^ 3 (obecně m Ф n + 1) konvexních množin. Vezměme
m + 1 konvexních množin

(*)^2J • • • » Km+1
takových, že každé tři (n + 1) z nich mají společný bod.

Ubereme-li z (*) množinu Kt (i = 1, 2,, m + 1), pak
zbylých m množin má podle indukčního předpokladu společný
bod, který označíme At (je-li více společných bodů, zvolíme
libovolný z nich). Jestliže pro některé dva indexy i Ф j platí
At = Ap pak tento bod náleží všem množinám (*) a jsme hotovi.
Nechť jsou tedy všechny body A13 A2,..., Am+1 navzájem různé.

Písmenem M označíme množinu bodů Al3 A2,. . ., Am+l.
Počet jejích prvků je m + 1 ^ 4 (obecně ^ n + 2), takže
lze užít pomocné věty z pozn. 4. Množinu M lze rozložit ve
dvě neprázdné a disjunktní části X, Y tak, že existuje bod

A e conv X n conv Y.

Tento bod A zřejmě náleží všem množinám (*) — viz obr. 83
pro čtyři množiny, kde X = {A13 A3], Y = {A2, A4J. Tím je
věta dokázána.
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Obr. 83.

Poznámka 6. V ro-

vinném případě (tj. pro
n — 2) je možno obecnou
myšlenku důkazu, kterou
jsme právě naznačili, ještě
trochu zjednodušit. Všim-
něte si, že pomocnou
větu z pozn. 4 stačí vždy
dokázat pro nejmenší
možné m (tj. pro m -

— 4 resp. m = n + 1); pro větší m je pak ihned zřejmá. A to
lze v rovinném případě provést čistě geometricky, bez řešení
rovnic. Potom se dokáže Hellyova věta tak, jako v pozn. 5.
Proveďte to!

Jsou ovšem myslitelné i jiné důkazy této zajímavé věty. Nebu-
deme je zde už popisovat, zato si všimneme některých důsledků.

109

Můžeme předpokládat, že každé dvě úsečky, které leží v přím-
ce, mají společný bod; jinak by všechny úsečky ležely v jedné
přímce a byli bychom hotovi. Pak všechny úsečky ležící v jedné
přímce mají společný bod (viz řešení úlohy 108).

Zvolme v rovině kartézskou soustavu souřadnic x, у tak,
aby (všechny) dané úsečky byly rovnoběžné s osou у (obr. 84).
Je-li 5 jedna z nich, označme Cs množinu všech takových
bodů (a, /?) naší roviny, že přímka у = otx + /3 má s úsečkou 5
společný bod. Pak Cs je (neprázdná) konvexní množina bodů
v rovině (ověřte!). Přitom každé tři takové množiny mají spo-
léčný bod (utvořený z koeficientů přímky, která není rovnoběžná
s osou у a protíná příslušné tři úsečky; uvědomte si, že taková
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Obr. 84.

s

x

0

přímka vždy existuje). Proto podle Hellyovy věty (viz před-
chozí poznámky) existuje bod (a0, /30) společný všem mno-
žinám Cs a přímka у = <x0x + /?0 protíná všechny dané úsečky.

Poznámka 1. Dalším důsledkem Hellyovy věty je např.
toto tvrzení: V rovině je dáno n^3 bodů, z nichž každé tři
leží v nějakém kruhu o poloměru r. Pak všechny tyto body leží
v kruhu o poloměru r.

Důkaz. Potřebujeme dokázat, že v naší rovině existuje takový
bod O, od něhož má každý z daných bodů vzdálenost ^ r. Jinak
řečeno, ptáme se, zda existuje bod O společný všem n kruhům,
které mají středy v daných bodech a poloměry vesměs rovné r.

Podle Hellyovy věty stačí ověřit, že každé tři z uvažovaných
n kruhů mají společný bod.
To je však jasné, neboť za
tento společný bod (X) lze
vzít střed kruhu, který obsa-
huje zvolené tři body (A, B,
C) a má poloměr r (takový
kruh existuje podle předpo-
kladu tvrzení). Viz obr. 85.

Poznámka 2. Na zákla-
dě pozn. 1 nyní snadno doká- Obr. 85.



žeme toto tvrzení: V rovině je dáno nýi3 bodů. Vzdálenost
žádných dvou z nich nepřevyšuje kladné číslo d. Pak všechny

tyto body leží v jistém kruhu o poloměru —.

Důkaz. Vzhledem к výsledku pozn. 1 stačí dokázat, že
každé tři z daných n bodů jsou obsaženy v některém kruhu

- v d
o poloměru -VFl

v přímce anebo jsou-li vrcholy neostroúhlého trojúhelníka,
d

p=> který ie

Buďte tedy А, В, C tři z našich bodů. Leží-li
W

lze sestrojit dokonce kruh o poloměru ^ <
obsahuje.

Předpokládejme proto, že trojúhelník ABC je ostroúhlý.
Alespoň jeden z jeho vnitřních úhlů je ^ 60°. Nechť je to např.
ос = BAC. Pro poloměr r kružnice opsané trojúhelníku ABC
platí

d dBC
<;r — -

2. h W2 sin a

2

Každé tři z daných n bodů jsou tedy obsaženy v jistém kruhu
. v d

o poloměru 7 a tím je vše dokázáno.
1/3 *

Obdobnou větu (a nejen pro konečné množiny) lze vyslovit
i v n-rozměrném euklidovském prostoru.

i
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110

Předběžná úvaha. Pro m = 1 stačí zvolit dva body o vzdá-
lenosti 1, pro m — 2 trojici vrcholů rovnostranného trojúhel-
nika o straně 1 nebo čtveřici vrcholů kosočtverce o straně 1,
který nemá úhel 60°. Pro m = 3 je asi nejjednodušším řešením
soustava osmi bodů A0,.. ., A7 naznačených na obr. 86, kde
všechny nakreslené rovnoběžníky s vrcholy v těchto bodech
jsou kosočtverce o straně 1 bez úhlu 60°. Označme si vektory

^

= A0A1} v2 = A0A2, v3 = A0Aá.
•> ■>

Obr. 86.

Je pak
^1 — ^0 + V1J

A3 = A0 -j- v i + v2,

^5 = ^0 + V1 + V9>

A7 = A0 + Vi + v2 + v3.

Všechny tyto body Ak jsou tedy tvaru

^0 + £1V1 + £2V2 + £3V3>

kde ev s2, e3 jsou čísla rovná nule nebo jedné (jak souvisí tato
čísla s dvojkovým vyjádřením indexu k?). Podrobnější vy-
šetření tohoto případu m — 3 vede к obecnému řešení.

A2 = A0 -f- v2,

-^4 = Л0 + V3,

^6 — Л0 + v2 + V3,
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Vlastní řešení. Při m = 1 stačí vzít dva body o vzdálenosti
1. V dalším tedy bude m ^ 2 dané přirozené číslo. V rovině
existuje soustava vektorů v13 v23... 3vm těchto vlastností (| v
značí délku vektoru v):

I ^ | 1 (i — 1, ... , w),
0 ^ I clvl + C2V2 + • • • + cmvm I Ф 1

(1)

(2)

pro libovolná cl3 c23. .

not —1, 0, 1, ale aspoň dvě z nich jsou nenulová. Toto tvrzení
je možno lehko ověřit matematickou indukcí vzhledem к m

cm3 která nabývají jen některých z hod-• 5

2).
Ukážeme, že požadované vlastnosti má množina S skládající

se z 2m bodů tvaru

A — A0 + £1^1 + £2^2 + • • • + Zmvm>

kde A0 je libovolný pevně zvolený bod v naší rovině a e>;

(г — 1, 2, . . ., m) jsou čísla rovná nule nebo jedné.
Buď A bod množiny S odpovídající skupině čísel e13 ь23... 3 em

rovných nule nebo jedné. Z (1) a (2) plyne, že v S existuje právě
m bodů, jejichž vzdálenost od A je 1. Jsou to totiž právě ty
body, jejichž příslušné skupiny čísel e13..., en se liší od

6m právě na jednom místě, tj. | éx — ex | -f-
= 1.

£1, £25 . •

+ I £2 e2 I + • • • + I *т Em

• 3

111

Utvořme součty všech čísel v jednotlivých řádcích a sloup-
n

cích a označme p nejmenší z těchto součtů. Je-li p =2?
pak

s^np^ ~ n2
a jsme hotovi.
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Zbývá tedy prozkoumat možnost p < . Abychom mohli

lépe vyjádřit myšlenku důkazu, předpokládejme např., že
právě prvý řádek má součet p a že právě na prvních q místech
v něm jsou kladná čísla; jinak by byla úvaha obdobná. V našem
případě se součet všech čísel v posledních n — q sloupcích
rovná alespoň číslu (n — p){n — q), zatímco součet všech čísel
v prvních q sloupcích bude nejméně pq. Platí tedy

5 ^ (n — p) (n — q) + pq = n2 — n (p + q) + 2pq -

= y«2+y (n-2p)(n- 2 q) > у и2,
neboť n > 2p ^ 2q.

Úloha je rozřešena.

112

Představme si v prostoru kartézskou soustavu souřadnic,
takže body můžeme sčítat a násobit čísly „po souřadnicích“, tj.
tak, jak je to naznačeno v pozn. 2 za řešením úlohy 108. Zápis

A]~—i | ALft ^ft j ~j

kde k — 1, 2,. . ., я, pak vyjadřuje předpoklad úlohy, že dvo-
jice Ак—гАк а Вк—хВк mají společný střed.

Píšíce rovnosti (1) se střídavými znaménky, dostaneme po
sečtení

(1)

A0 + An = B0 + Bn, je-li n liché,
a

-^o An — B0 Bn, je-li и sudé.

V prvém případě tedy Bn = B0 jedině pro B0 = A0, zatímco
v druhém Bn = B0 vždy.
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Předběžná poznámka. Při řešení této zajímavé úlohy
budeme potřebovat některé základní pojmy z matematické
analýzy. Bude proto užitečné, když si je nejdříve připome-
neme.

Buď Z množina bodů v prostoru. Bod A nazýváme hromad-
ným hodem množiny Z, jestliže v libovolné jeho blízkosti se
hromadí body množiny Z, čili přesněji, když každá koule
o středu A obsahuje nekonečně mnoho bodů množiny Z.
Množinu Z spolu se všemi jejími hromadnými body nazýváme
uzávěrem Z a značíme uz Z.

Říkáme, že bod A je limitou posloupnosti bodů {An}%= ъ
jestliže každá koule o středu A obsahuje všechny členy této po-
sloupnosti, až na konečný počet. V tomto případě též říkáme,
že posloupnost konverguje (k bodu A). Všimněte si, že posloup-
nost může mít nejvýše jednu limitu a že uvedená definice je při-
rozeným zobecněním známé definice limity číselné posloup-
nosti.

Buď Z zdola omezená neprázdná množina reálných čísel
(tzn., že pro každé z g Z platí z c, kde c je konstanta). Pak
existuje největší dolní mez množiny Z, tj. takové číslo r, že pro
každé z g Z platí z ^ r a pro každé e > 0 lze najít takové
z g Z, že r + e > £ Sí r. Toto číslo r, které je zřejmě jediné,
nazýváme infimem množiny Z. Obdobně mají shora omezené
neprázdné množiny reálných čísel tzv. supremum.

Buď {«„}”= i omezená posloupnost reálných čísel (tj. taková,
že pro všechna přirozená n platí \an\ pč C, kde C je konstanta).
Tato posloupnost nemusí mít limitu, jak ukazuje příklad an —
— (- T)ra. Je však svrchovaně důležité, že lze vybrat podpo-
sloupnost j (kde nx < n2 < пг < . . . jsou přirozená
čísla), která už limitu má. Tuto větu lze celkem jednoduše
dokázat postupným půlením intervalu (—С, C) resp. těch
jeho částí (podintervalů), které obsahují nekonečně mnoho
členů dané posloupnosti; přitom víme, že každá monotónní

238



posloupnost (při důkazu vytvoří krajní body zmenšujících se
intervalů dvě takové posloupnosti) má limitu (totiž své in-
fimum resp. supremum).

Obdobně z každé omezené posloupnosti bodů {A„}%= i v pro-
storu (tj. takové, která je obsažena v nějaké kouli), lze vybrat
konvergentní podposloupnost. Toto tvrzení lze dokázat trojím
užitím věty z předchozího odstavce pro kartézské souřadnice
členů dané posloupnosti.

Doporučujeme čtenářům, aby si důkladně rozmysleli pojmy
naznačené v této poznámce.

Vlastní řešení. Především je jasné, že daná množina M je
omezená, tzn. soubor X všech koulí, které ji obsahují, je ne-
prázdný. Budiž r infimum poloměrů všech koulí z X. Je-li r = 0,
není co dokazovat. Buď tedy r > 0 a nechť K„ = (5„, r7t),
n = 1,2,..., jsou koule z X takové, že (nerostoucí) posloup-
nost poloměrů {r„}®= i konverguje к číslu r (z definice infima).
Posloupnost bodů [Sn] je omezená, neboť je obsažena např.
v kouli o poloměru r\, která má střed v libovolném bodě mno-
žiny M. Proto lze vybrat podposloupnost {*Snfc}®=1 konvergující
к jistému bodu S; příslušná posloupnost poloměrů {r„fc}“=1
pak ovšem opět konverguje к číslu r. Koule К = (S, r) obsa-
huje množinu M (kdyby některý bod z M neležel v K, pak by
neležel ani v Kn pro velké n — nakreslete si obrázek) a žádná
jiná koule o menším poloměru tuto vlastnost nemá (jak plyne
z minimality r).

Podle předpokladu úlohy lze к bodu S najít v množině M
(jediný) nejvzdálenější bod P, který musí, jak vyplývá z před-
chozího, ležet na povrchu koule K. Kdyby množina uz M ne-
měla na povrchu К již žádný další bod (kromě P), bylo by
možno kouli К posunout ve směru SP tak, aby množina M
ležela celá uvnitř této posunuté koule (rozmyslete podrobně!),
načež by bylo možno sestrojit soustřednou kouli o menším
poloměru, která by také obsahovala M. To však není možné,
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a proto na povrchu koule К leží ještě další bod 0(ф P) mno-
žiny uz M. Označme R bod souměrně sdružený s bodem Q
podle středu S. Pak

2r = RQ> RY

pro každé 7eM(c К), Y Ф Q. Avšak к bodu R musí v mno-
žíně M existovat nejvzdálenější bod a z vlastností bodu Q vy-
plývá, že právě on musí být tímto nejvzdálenějším bodem (na-
kreslete si obrázek). Nutně tedy Q e M. Pak ale к bodu S máme
v množině M dva různé nejvzdálenější body P, Q. Tento spor
jsme odvodili z předpokladu r > 0. Platí tedy r — 0 a věta je
dokázána.
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