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Předmluva

V brožuře Vybrané úlohy matematické olympiády - ka-
tegorie В, C, kterou sestavil roku 1971 kolektiv vedený
profesorem M. Zedkem, byly shrnuty nejzajímavější úlohy
prvních patnácti ročníků MO. Když končil 30. ročník, roz-
hodlo se předsednictvo ÚV MO vydat vybrané úlohy z dal-
ších patnácti ročníků. V té době teprve vznikaly nové učeb-
nice matematiky pro gymnázia a rozdělení látky do jednotli-
vých ročníků nebylo ještě definitivní. Bez ohledu na to,
ve které kategorii se vyskytly, jsme tedy nejinstruktivnější
úlohy z kategorií В a C 16.—30. ročníku MO rozdělili do dvou
brožurek. Technicky jednodušší úlohy nevyžadující velké
znalosti jsme zařadili do svazku věnovanému kategorii C
a úlohy, které se nám zdály složitější, přišly do svazku věno-
váného kategorii B.

Doufáme, že obě takto vzniklé knížky se budou hodit
vedoucím matematických kroužků, učitelům matematiky
i účastníkům MO, a přejeme jim mnoho úspěchů nejen
v matematické olympiádě, ale i všude tam, kde budou mate-
matiku potřebovat.

Autoři
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ÚLOHY



Rovnice1.Určete všechny dvojice reálných čísel x3 y, pro které
platí

\x + 1| + \y + 1| = |лг + у + 1|.2.V oboru reálných čísel řešte soustavu rovnic o třech
neznámých

x(y + z) у {z + x) z(x +y)
4 109

23
xy + уz + zx = — xyz.

153.V oboru reálných čísel řešte soustavu n + 1 rovnic
o n + 1 neznámých

Xk *0 + Xjc — 1 Xi + X]c - 2 *2 + . • • + X0 Xjfc = 2kXk

(k = 0, 1, 2, ..n).4.Najděte nutnou a postačující podmínku pro koeficienty
rovnice x3 + ax2 + bx + c = 0,

aby dva její kořeny byly nenulová opačná reálná čísla.
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Rovnice s parametry5.V oboru reálných čísel najděte všechna řešení rovnice

2x — |x| + a \x - a\ = 0,

kde x je neznámá a a je reálný parametr.6.V oboru reálných čísel řešte soustavu rovnic

x2 + xy = a2 + ab

y2 + xy = a2 — ab,

kde x, у jsou neznámé a a, b reálné parametry.7.Určete všechny kladné hodnoty parametru a, pro něž
má soustava rovnic

I* — a\ + a = |*| + \y\

x + 2y — 2

s neznámými x, у právě tři řešení v oboru reálných čísel.8.Najděte všechna reálná čísla a, pro která platí: Množina
všech bodů roviny [я, y\, jejichž souřadnice vyhovují rovnici

X~\ry\ + a\y\ = 1,

vyplní obvod pravoúhelníku.9.V oboru reálných čísel řešte soustavu rovnic s nezná-
mými x, у
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2x + py — 16

x — 2y — \ p2

(P \) x + 2у = 12p — 6.

Proveďte diskusi vzhledem к reálnému parametru p.10.Kolik řešení má v oboru reálných čísel soustava
rovnic

b
ax a = 1

У

by + — = 1
x

s neznámými x, у ? Proveďte diskusi vzhledem к daným
reálným číslům a, b.11.V oboru reálných čísel najděte řešení soustavy lineár-
nich rovnic

x — a3y + dlz = 1

a3x —y + az — 1

a2x — ay + z = 1

s neznámými x} y, z a reálným parametrem a.12.Jsou dána reálná čísla a, b. Najděte všechny čtveřice
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nezáporných reálných čísel xi, x>, хз, x±, které vyhovují
soustavě rovnic

xi — x-2 = a

Хз — X*4 = Ь

xi + x-2 + хз + X4 = [a- -• b2.

Nerovnosti13.Dokažte, že pro každá dvě kladná čísla p, q platí:
Jestliže pq ^ 1, pak

KM-ř) ^4.

Kdy nastane rovnost ?14.Nechť n je přirozené číslo a a, b reálná čísla, pro která
platí

a ^ b ^ 0.

Dokažte, že potom

an —bn^(a— b)n.

Určete všechny případy, kdy platí rovnost.15.Jsou-li xi, X2, ..., xn kladná čísla, pak platí
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Xi X2 Xn-1 Xn
+ —^ n;+

Xn Xn-i
+ ... +

XIX2

dokažte. Kdy nastane rovnost ?16.Předpokládejme, že pro reálná čísla xi, X23 ..xn

platí

*1 + Л'2 + ... + Xn — 0.

Označíme-li nejmenší z nich m a největší M3 dokažte, že

X2y + xl + ... -f x\ — nmM.

Kdy nastane rovnost ?17.Je dáno 2n + 1 reálných čísel a\3 аг3 . ..,Я2я + 1

(n ^ 2) uspořádaných podle velikosti

ai < a2 < ... < ú2n +1-

Každému jejich pořadí x\, xz3 ..., X2n +1 přiřadíme součet

i*l — Xz\ + \Х2—Хг\ + ... + \X2n — *2я + 11 + \X2n + 1 — *l[.

Dokažte, že největší součet dostaneme pro pořadí
&13 &n + 2j &23 &n + Зэ ••• 3 an3 Д2п + 1э + 1*

Nerovnice18.Načrtněte množinu všech bodů v rovině, jejichž
souřadnice x, у vyhovují nerovnici
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1 ^ II* + y\ - I* —y\\ 2.19.Načrtněte množinu všech bodů v rovině, jejichž sou-
řadnice x, у vyhovují nerovnici

(** - 13л? + 36л:) (л:4 - 17л:2 + 16)
(у5 - 13У* + 36у) (У _ Пу* + 16)

^ 0.

Funkce20.Je dána funkce reálné proměnné

V 1 + л:2 1 + x2

У 2,
4- l - - l

2л:
У = л:

УУ *

1 + х2 1 + л:2
- 1+ 1 +

2л:

Určete její definiční obor a sestrojte její graf.21.Funkce proměnné л:

у = a\x\ + b \x — k\

nabývá hodnoty 0 pro л: = — 1 a pro x = 3; největší hod-
nota, které nabývá, je 2. Určete konstanty a, b, k a nakreslete
graf funkce.22.Najděte všechny kvadratické funkce /(*), které splňují
pro všechna reálná čísla л: podmínku

/(2x + 1) = 4 /(-*).
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23.Jestliže kvadratická funkce

f(x) — a:c2 + bx 4- c

nabývá v intervalu — 1 ^ x ^ 1 pouze hodnot —1 ^f(x)
potom \a\ ^ 2; dokažte. Najděte všechny takové funkce,
pro něž \a\ = 2.24.Je dána množina funkcí

/0) = *2 + ь 1*1 + c,

kde b3 c jsou reálné parametry. Najděte všechny funkce z této
množiny, které v intervalu <— \3 1) mají největší hodnotu 2
a nejmenší hodnotu 1.25.Je dána funkce proměnné *

x2 + 2px — 2
/0)

x2 — 2x + 2

Určete všechny hodnoty reálného parametru p, pro které je

1/0)1 < 2

pro všechna reálná čísla *.26.Najděte všechna reálná čísla a, která mají tu vlastnost,
že pro každé reálné číslo * platí

2x2 + * — 1 ;
< a.

x2 — x + 1

16



Mnohočleny s celočíselnými koeficienty27.Jsou-li koeficienty kvadratické rovnice

ax2 4- bx + c — 0

lichá čísla, nemá tato rovnice racionální kořeny; dokažte.28.Je dán mnohočlen

f(x) — л;3 + ax2 + bx + c

s celočíselnými koeficienty. Jsou-li pro některé celé číslo m
čísla /(m), f(m + 1), f(m + 2) násobky tří, pak je násobkem
tří číslo f(k) pro jakékoli celé číslo k. Dokažte.

Vlastnosti celých čísel

29. Jsou-li py q prvočísla větší než 5, je číslo p4 — q4
dělitelné šedesáti. Dokažte.

30. Je-li k^3 přirozené číslo, je součin

k(k + 1) (k + 2) ... (3k - 4) (3k - 3)

dělitelný druhou mocninou jakéhokoli přirozeného čísla
m ^ k. Dokažte.

31. Přirozené číslo N > 2 je součtem aspoň dvou za se-
bou následujících přirozených čísel, právě když není mocni-
nou čísla 2. Dokažte. Rozložte číslo N = 100 na součet
za sebou následujících přirozených čísel.

32. Ke každému přirozenému číslu n ^ 150 existují dva
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různí dělitelé d\, d2 čísla 9000 tak, že n dělí rozdíl d± — d%.
Dokažte.

33. Dokažte, že mezi přirozenými čísly, jejichž dekadický
zápis končí čtyřčíslím 1978, existuje číslo dělitelné číslem
1977.

34. Ať zvolíme jakkoli velké přirozené číslo k, existuje
prvočíslo tvaru \2n + 5 nebo \2n — 5 (w je přirozené číslo)
větší než k. Dokažte.

Hledání celých čísel s danými vlastnostmi

35. Najděte všechna přirozená čísla n, pro něž je ciferný
součet čísla 2V roven 5.

36. V dekadickém zápisu čísla 23А 5B6 nahraďte písmena
А, В číslicemi tak, aby vzniklo číslo dělitelné devatenácti.
Najděte všechna řešení.

37. Najděte všechna přirozená čísla x, která vyhovují
rovnici

4.1-1 _ 7<2* + 48 = x(x - 1) ... 3.2.1.38.Najděte všechny dvojice přirozených čísel x, y, pro
které platí

ХУ = yx - У.39.Najděte všechny dvojice přirozených čísel x, y3 pro
které platí

2* - 10*1 ^ 5.
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40.Najděte všechny trojice přirozených čísel x, у, z
takové, že

хз -f y3 + z5 = 1979

y2z - x.41.Najděte všechny dvojice celých čísel x, ys pro které
platí, že obě čísla

1 + x 1 + у

XУ

jsou celá.42.Najděte všechny dvojice přirozených čísel m, я, pro
které platí: Aritmetický průměr čísel m, n je dvojciferné
číslo a vvměníme-li jeho číslice, dostaneme geometrický
průměr čísel m, n.

Pohyb

43. Voda v řece teče rychlostí 2 m/s. Cesta od přístavu
к mostu a zpět trvá malému člunu 33 min a velkému člunu,
který má (ve stojaté vodě) dvojnásobnou rychlost, 16 min.
Jak daleko je od přístavu к mostu?

44. Na kruhové dráze vyjeli z téhož místa současně dva
cyklisté v opačných směrech. První jel rychlostí 6 m/s a potkal
druhého cyklistu v prvním svém okruhu dvakrát, v druhém
okruhu třikrát, ve třetím okruhu zase dvakrát, vždy mimo
místo startu. Najděte co nejužší meze pro rychlost druhého
cyklisty za předpokladu, že byla rovnoměrná.
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Šachoynice

45. Na šachovnici tvaru 20x20 polí je vyznačeno 31 na-

vzájem různých šachovnic tvaru 8x8. Dokažte, že existuje
pole, které patří aspoň šesti vyznačeným šachovnicím.

46. Na polích šachovnice 8x8 je rozestaveno 42 figurek.
Dokažte, že některá její část tvaru 4x4 má figurkami obsa-
zena aspoň 4 diagonální pole. (Diagonálními poli šachovnice
4x4 rozumíme 8 polí na jejích úhlopříčkách.)

47. Na šachovnici tvaru 1000x1000 stojí 800 000 figurek.
Dokažte, že na obvodu některé její části tvaru 8x8 stojí
aspoň 22 figurek.

Operace48.V oboru reálných čísel je dána binární operace *

x*y = x+ y+xy.

a) Zjistěte, zda je tato operace komutativní a asociativní
a zda má neutrální prvek.

b) Určete všechna reálná čísla x, pro která platí

a * (x * x) = b * x;

proveďte diskusi vzhledem к reálným parametrům a, b.49.V oboru přirozených čísel zaveďme operaci * takto:
Pro každé x je ж * 1 = 1 * x = 1. Je-li x > 1, у > 1
a jsou-li x — pi ... pa, у — qi ... дь rozklady čísel x, у
na součin prvočinitelů, definujeme x * у jako součin všech
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součtů pi + qic (í e (1, ..., a}, k e {1, ..., b}). Dokažte,
že operace * je distributivní vzhledem к násobení.

Množin/
50. Sestrojte dvě neprázdné podmnožiny А, В množiny C

všech celých čísel tak, aby bylo C = A U 6, aby nebylo
A — В — C a aby pro libovolná čísla a e A, d e A, b e B,
b' e В platilo

(Z (2 E A, b ~h Ь E A3 CL -f- Ъ E B.

Dokažte, že úloha má jediné řešení. Dále dokažte, že nahra-
díme-li v úloze množinu C všech celých čísel množinou R
všech reálných čísel, úloha nemá řešení.

Geometrické nerovnosti

Jedna z nejjednodušších úloh na geometrické nerovnosti
je úloha najít mezi všemi pravoúhelníky daného obvodu
ten, který má největší obsah. Je to úloha lehká, vhodná i pro

žáky nejvyšších tříd základní školy. Označíme-li totiž daný
obvod 4a a jednu stranu pravoúhelníku x3 je druhá strana
pravoúhelníku 2a — x (aby byl obvod roven 4a) a jeho ob-
sah P se rovná číslu x (2a — x) = a2 — (a — x)2. Odtud je
vidět, že hodnota P je největší právě tehdy, když je x — a.
Pak se 2a — x rovná také hodnotě a, pravoúhelník maximál-
ního obsahu při daném obvodu je tedy čtverec. Úlohu mů-
žeme formulovat též algebraicky: Mezi všemi dvojicemi
kladných čísel daného součtu 2a (a > 0) najít tu dvojici
čísel, jejichž součin je maximální. Výsledkem je dvojice
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(a, a) čísel sobě rovných. Místo čísel kladných jsme mohli
uvažovat též čísla nezáporná, tvrzení pak platí také. Pod-
statně obtížnější je úloha, při které se neomezíme na právo-

úhelníky (obdélníky a čtverce), nýbrž budeme hledat mezi
všemi čtyřúhelníky daného obvodu.

51. Ze všech čtyřúhelníků daného obvodu má největší
obsah čtverec. Dokažte.

Víme, že к jednoznačnému určení trojúhelníku je často
třeba zadat tři jeho prvky, například velikosti jeho tří stran
nebo dvě strany a úhel jimi sevřený. Pak se nám zdá,
že úloha, při které jsou dány pouze dva prvky troj úhelní-
ku, není zadána úplně. Přitom se při řešení ukáže, že podmiň-
kám úlohy vyhovuje dokonce pouze jediný trojúhelník. Po-
dobně je tomu i v případě čtyřúhelníku, pětiúhelníku nebo
libovolného mnohoúhelníku. Uveďme příklad takové úlohy.

52. Najděte všechny trojúhelníky o obsahu 18 cm2, jejichž
jediná strana je větší než 6 cm.

Příkladem úlohy, která má nekonečně mnoho řešení, je
další úloha.

53. Sestrojte čtyřúhelník ABCD, u něhož součet velikostí
úseček AB, AC, AD je 20 cm a jehož obsah je větší než
49 cm2.

Dále uvedeme řadu úloh důkazových.
■л

--

-f,

54. Je-li trojúhelník Ti celý obsažen v trojúhelníku Tz,
pak platí:

a) délka největší strany trojúhelníku Ti je menší nebo
rovna délce největší strany trojúhelníku Tz;
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b) délka nejmenší výšky trojúhelníku 7\ je menší nebo
rovna délce nejmenší výšky trojúhelníku 7b.

Dokažte obě tvrzení.

55. Je-li v délka nejmenší výšky trojúhelníku a P jeho
obsah, pak platí v ]/P ]/3. Dokažte a zjistěte, kdy platí
znaménko rovnosti.

56. Je dán pravoúhlý rovnoramenný trojúhelník ABC,
jehož základna má střed D a délku 2.

a) Dokažte, že pro každý bod M výšky CD platí

|^Af| + |BAÍ| + \CM\ ^ 1 + 1/3.

b) Sestrojte ten bod M výšky CD, pro který je součet
\AM\ + \BM\ + |CAř| nejmenší.

57. Je dán vypuklý (tj. konvexní) čtyřúhelník ABCD
a bod X úhlopříčky BD takový, že přímka AX protíná
stranu CD v jejím vnitřním bodě. Pak platí | AX + BX f
4- \CX\ < \AD\ + \BD\ + \CD\. Dokažte a zjistěte, zda
platí tato nerovnost též v případě, kdy přímka AX prochází
vrcholem C nebo protíná úsečku BC.

Další dvě úlohy se týkají součtu druhých mocnin vzdáleností.

58. V rovině je dán obdélník ABCD o stranách a, b.
Najděte v obdélníku všechny body X, pro které je součet
\AX\2 + \BX\2 + \CX|2 + \DX\2 minimální.

59. Je dán trojúhelník ABC, velikosti jeho stran jsou
a, b, c. Najděte bod trojúhelníku, pro který je součet dru-
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hých mocnin jeho vzdáleností od vrcholů trojúhelníku mini-
mální.

Na závěr odstavce jedna úloha o zvláštním případu licho-
běžníku.60.Lichoběžník ABCD má tu vlastnost, že všechny jeho
strany se dotýkají téže kružnice (čtyřúhelník s touto vlast-
ností se nazývá tečnový). Dokažte, že jeho nejkratší strana
je některá ze základen a že jeho nejdelší strana je druhá
základna.

Kružnice

61. V rovině jsou dány dva různé body А, В a kružnice k.
Sestrojte na kružnici k body C, D tak, aby body А, В, C, D
tvořily vrcholy rovnoramenného lichoběžníku ABCD se
základnami BC, AD.

62. Je dán konvexní čtyřúhelník ABCD, velikosti jeho
stran označíme a = \AB\, b = \BC\, c = \CD\, d — \DA\.
Kružnice Ha má střed v bodě A, kružnice ke v bodě В a po-
dobně jsou středy kružnic kc, кв body C, D. Kružnice
кл, кв mají vnější dotyk, stejně tak kružnice кв, kc, dále
kružnice kc, kn a vnější dotyk mají i kružnice kc, к4- Dokažte,
že platí a + c = b + d. Dokažte, že platí též obrácené
tvrzení: je-li a + c — b + d, pak existují kružnice кл, кв,
kc, кв se středy А, В, C, D tak, že dvojice kružnic kA а кв,
кв a kc, kc a kn, kz> a kA mají vnější dotyk.

63. Je dán pravoúhlý trojúhelník ABC s odvěsnami
\AC\ — 4, \BC\ = 3. Kružnice k\, k<i, кз mají středy ve vrcho-
lech А, В, C a každé dvě z nich mají vnější dotyk.
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a) Vypočtěte poloměry kružnic k\, ks, ks.
b) Vypočtěte poloměr kružnice k, která má s každou

z kružnic ki, ks, ks vnější dotyk.
64. Je dána kružnice k se středem Sas poloměrem r.

Dokažte, že každý bod Z z vnitřní oblasti kružnice, různý
od středu S, je středem kružnice vepsané trojúhelníku SXY,
jehož vrcholy X, Y leží na kružnici k. Vyjádřete poloměr
této kružnice pomocí r a \SZ\.

65. Je dána kružnice k — (S, r), bod A, pro který platí
|Л5| — d > r, a kladné číslo q. Sestrojte kružnici s polomě-
rem q, která prochází bodem A a dělí kružnici k na dvě
polokružnice. Uveďte podmínky řešitelnosti.

Zobecněním této úlohy je úloha následující.

66. Jsou dány dvě nesoustředné kružnice k\ — (Si, r)-
a ks = (Ss, гг) a kladné číslo q. Sestrojte kružnici k s poloi
měrem q, která dělí kružnici k\ na dvě polokružnice a je dě-
léna kružnicí ks na dvě polokružnice.

Trojúhelníky67.Sestrojte pravoúhlý trojúhelník, je-li dána délka jeho
přepony a délka těžnice к některé odvěsně. Uveďte podmínku
řešitelnosti.

68. Sestrojte trojúhelník ABC, jsou-li dány délky b, c

jeho stran АС, AB a jestliže pro délku jeho těžnice t na
stranu AB a délku a jeho třetí strany platí vztah 2t — За.

69. Je dána úsečka AB a přímka p kolmá к AB, která
nemá společný bod s úsečkou AB. Sestrojte trojúhelník ABC
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tak, aby vrchol C ležel na přímce p a platilo <£ABC —

= 2<%BAC. Uveďte podmínky řešitelnosti.
70. Je dán trojúhelník, jehož žádná strana není větší než 3.

Dokažte, že trojúhelník lze umístit do kruhu o poloměru j/3.
71. Je dán trojúhelník ABC a nad jeho stranami AC,BC

jsou v polorovinách opačných к polorovinám ACB, BCA
sestrojeny rovnostranné trojúhelníky ACD, ВСЕ. Také nad
stranou АВ je sestrojen rovnostranný trojúhelník ABF, ten
však tak, že jsou poloroviny ABC, ABF totožné. Označme
ještě M těžiště rovnostranného trojúhelníku ABF. Dokaž-
te, že trojúhelník DME je rovnoramenný a <£ DME — 120°.

Můžete si sami zadat podobné úlohy, například: co vytvoří
těžiště U, V, W rovnostranných trojúhelníků sestrojených
nad stranami trojúhelníku ABC, jestliže leží tyto trojúhelníky
vždy v opačných polorovinách, než ve kterých leží daný
trojúhelník.

72. Je dán ostroúhlý trojúhelník ABC a bod M na kružnici
mu opsané, různý od jeho vrcholů. Označme M\, M2, М3
body souměrně sdružené к bodu M podle stran trojúhelníku
ABC. Dokažte, že body M\, М2, М3 leží na jedné přímce,
která prochází průsečíkem výšek daného trojúhelníku.

Z tvrzení této úlohy také plyne, že paty kolmic vedených
bodem M к stranám trojúhelníku leží rovněž na přímce,
která se nazývá Simsonova, někdy též Wallaceova přímka.

73. Je dán trojúhelník ABC, označme P, Q, R paty výšek
к stranám BC, CA, AB. Zjistěte, zda existuje trojúhelník
UVW tak, aby úsečka UV byla rovnoběžným posunutím
úsečky AP a totéž platilo pro dvojici úseček VW, BQ a také
pro WU a CR.
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74. Je dán trojúhelník ABC, označme P, Q, R středy
stran BC, CA, AB. Ukažte, že existuje trojúhelník UVW
tak, že úsečku UV dostaneme rovnoběžným posunutím
úsečky AP a totéž platí pro dvojice úseček VW, BQ a WU,
CR. Vypočtěte poměr obsahů trojúhelníků UVW a ABC.

Čtyřúhelníky, mnohoúhelníky
75. Jestliže pro strany a úhlopříčky konvexního čtyřúhel-

niku ABCD platí

|ЛС|2 + |BD|2 = \AB\2 + \BC\2 + |CD]2 + \DA\2,

potom je tento čtyřúhelník rovnoběžníkem. Dokažte.

76. Nechť a = \AB\, b — |jBC|, c — \CD\, d — \DA\ jsou
délky stran tečnového čtyřúhelníku ABCD. Jestliže platí

a2 + b2 = (a + c) (b + d) — (ac + bd),

je čtyřúhelník deltoidem (tj. čtyřúhelník souměrný podle
některé své úhlopříčky). Jestliže kromě toho platí

Ъ2 + с2 = (a + c) (b + d) — (ac + bd),

je ABCD kosočtverec. Dokažte.

77. Nechť je ABCD deltoid s osou souměrnosti AC, S prů-
sečík jeho úhlopříček a M, N, P, Q paty kolmic vedených
bodem S к stranám AB, BC, CD, DA. Dokažte, že MQ\\NP,
a rozhodněte, kdy je čtyřúhelník MNPQ lichoběžníkem
a kdy rovnoběžníkem.
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78. Nechť ABCD je takový vypuklý čtyřúhelník, že kolmé
průměty průsečíku jeho úhlopříček na jednotlivé strany leží
uvnitř těchto stran. Nutnou a postačující podmínkou pro

to, aby tyto průměty ležely na jedné kružnici, je, aby úhlo-
příčky čtyřúhelníku ABCD byly na sebe kolmé. Dokažte.

79. Předpokládejme, že kolmé průměty průsečíku úhlo-
příček čtyřúhelníku na jeho strany leží uvnitř těchto stran.
Pak je možno jimi proložit kružnici právě tehdy, když středy
stran leží na kružnici. Dokažte.

80. Dokažte, že úhlopříčky konvexního čtyřúhelníku ABCD
jsou právě tehdy na sebe kolmé, když platí \AB\2 + |CD|2 =
= \BC\2 + AD2.

81. Je dán trojúhelník ABC. Sestrojte na straně BC
bod Dana straně AC bod E tak, aby čtyřúhelníku ABDE
bylo možno opsat i vepsat kružnici. Vyjádřete vzdálenosti
\CD\, \CE\ i obvod čtyřúhelníku ABDE pomocí délek a, b, c
stran trojúhelníku ABC.

82. Jestliže je možno lichoběžníku vepsat kružnici, pak je
geometrický průměr délek jeho ramen větší než geometrický
průměr délek jeho základen. Dokažte. (Srovnej s úlohou 60.)

83. Sestrojte konvexní rovnostranný, ne nutně pravidelný
pětiúhelník ABCDE, v němž jsou dány délky úhlopříček
AC, AD, platí-li

^BAE = 2.<$iCAD.84.Je dán konvexní šestiúhelník ABCDEF. Jeho úhlo-
příčky vycházející z bodu В dělí úhel ABC na čtyři shodné
úhly a totéž platí pro úhlopříčky vycházející z vrcholů D a F.
Dokažte, že je šestiúhelník ABCDEF pravidelný.
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Stereometrie

85. Mají-li čtyřstěny ABCD a A'B'C'D' tu vlastnost, že
přímky AB a A'B' splývají, přímky CD a C'D' splývají a

\AB\ — \A'B'I, |CDj = \C'D'\, pak mají stejný objem. Do-
kažte.

86. Určete objem čtyřstěnu, jehož každé dvě protější
hrany mají stejnou délku. Délky hran v těchto dvojicích jsou
a, b, c.

87. Je dán čtyřstěn ABCD. Body В', C jsou po řadě
středy hran BD, CD. Označme R bod polopřímky opačné
к polopřímce AB, pro který platí |AR | = k \AB\. Dále
označíme A' průsečík hrany AD s rovinou B'C'R. Vyjádřete
poměr objemů čtyřstěnů A'B'C'D a ABCD pomocí čísla k.

88. V čtyřstěnu ABCD jsou každé dvě z hran AD, BD,
CD na sebe kolmé. Označme U těžiště trojúhelníku ABC,
T těžiště čtyřstěnu a 5 střed kulové plochy, která prochází
body А, В, C, D. Vyjádřete její poloměr pomocí vzdále-
nosti ST.

89. Je dán čtyřboký jehlan VABCD s čtvercovou podsta-
vou ABCD a na úsečce VC bod E tak, že \ VE\ : \VC\ = q,
0 < q < 1. Rovina ABE protne hranu VD v bodě F. Určete
poměr objemů těles, na které dělí jehlan rovina ABE.

90. Do polokoule o poloměru 10 umístěte tři shodné kulo-
vé plochy tak, že každé dvě mají vnější dotyk a každá z nich
se dotýká podstavy polokoule i její hraniční polosféry. Vy-
počtěte poloměr vepsaných sfér a ukažte, že úloha má vždy
řešení.
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ŘEŠENÍ ÚLOH



1. Jsou-li x, у čísla, která vyhovují dané rovnici, platí
pro ně

|x + 1| + \y + 1[ = \x + у + 1| ^ \x\ + \y + 1|,

a tedy

|x + 1| ^ |x|.

Analogicky odvodíme podmínku

\y + 1|^Ы.

Snadno zjistíme, že tyto podmínky jsou ekvivalentní s pod-
mínkami

* ^ — by ^ — b

Řešení tedy budeme hledat jen v tomto oboru, což nám
umožní odstranit absolutní hodnotu na pravé straně rovnice,
protože pro tato x, у je

|x + у + 1| = — x — у — 1.

Budeme řešit rovnici

\x + 1| + \y + 1| + x + у + 1 = 0.

V případě — 1 ^ x ^ —l^y^—j má rovnice
po odstranění zbývajících absolutních hodnot tvar
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2х "Ь 2у -(- 3 — Oj

v případě — 1 ^ jc ^ —},y < —1 má tvar

2x + 1 = Oj

v případě x < —1, — 1 5^ у ^ —\ má tvar

2y + 1 = O

a v případě x < — l}y < — 1 má tvar —1=0. Poslednímu
případu neodpovídá žádné řešení. Grafické znázornění řešení
z ostatních případů je na obr. 1.

У

-1-1 О X2
T

!

I2y+1 - 0 i
2

'

2x+2y+3=0\ i

2x+1=0

Obr. i

2. Jednoduchými úpravami dostaneme soustavu

4yz — 9xz — 5xy = 0

—yz + 9xz — 10xy = 0 (1)
23

уz + xz + xy = xyz,
15
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která je ekvivalentní s danou soustavou. Nechť x, y, z je
trojice reálných čísel vyhovujících soustavě.
Je-li xyz Ф 0, vydělíme každou rovnici tímto číslem a dosta-
neme soustavu

4m — 9v — 5zv = 0

(2)
—u + 9v — 10a; = 0

23
и + V + W = ,

15

11 1
kde и — —, a = —yW — — . Snadno zjistíme, že soustava (2)

3' z

1 1
má jediné řešení u — l,v — —3zv——3 kterému odpovídá

řešení x — \3y = 3, z = 5 soustavy (1).
Je-li aspoň jedno z čísel x3y3 z rovno nule, je ze soustavy (1)
vidět, že aspoň dvě z čísel x, у, z jsou rovna nule. Snadno
se přesvědčíme, že trojice x = 0, у = 0, z = t; x = 0,
у = t3 z = 0; x = t3 у = 0, z = 0 soustavě (1) vyhovují
pro libovolné reálné číslo t.

3. Z první rovnice
xl — Xq

vidíme, že musí být buď *o = 0, nebo xo = 1. V případě
xo — 0 dostaneme z druhé rovnice

XiX0 + XqXi = 2xi,
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že #1 = O, a z dalších rovnic postupně, že všechny neznámé
jsou nulové.

Zbývá vyšetřit případ лго = 1- Druhé rovnici

2xi — 2xi

pak vyhovuje každé reálné číslo xi. Pro k ^ 2 dostaneme
z (k + l)ní rovnice

Xk - 1 Xl + Xlc - 2 *2 + ... + Xl X* - 1 = (2k — 2)x*,

což nám umožňuje jednoznačně určit x/c pomocí xi, хг, ...,

Xk -1, tj. jednoznačně určit Xk pomocí xi. Postupně dostává-
me ze třetí rovnice

A

ze čtvrté rovnice

x]2xiXí
хз =

3.2 58-2

z páté rovnice

A2xiX3 + x\
X4 =

4.3.216-2

atd. I další pokračování by nasvědčovalo, že řešení soustavy
je
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í2 tn
(1)Xo = 1, *1 = t, x > — — •) %n — . )

n\2!3 ”

kde t je libovolné reálné číslo. Ověříme, je-li to tak, dosazením
do soustavy. Na levé straně {k + l)ní rovnice dostaneme

t* tk tktk ř*
+ ... +

k\ + 1 \{k — 1)! + 2\{k — 2)! {k - 1)!1! + k\

[0*0 tk. 2ktk k
+ ... +

kk\

což se shoduje s pravou stranou. (Součet kombinačních čísel
v závorce je 2fc - jde o rozvoj (1 + l)fc podle binomické věty.)
Z našich úvah vyplývá, že nulové řešení a řešení (1) jsou
všechna řešení soustavy.

4. Dejme tomu, že uvažovaná rovnice má nenulové reálné
kořeny u, —u. Platí tedy pro ně

u3 + au2 + bu + c — O,

—u3 + au2 — bu + c = 0.

Sečtením a odečtením těchto rovností vyjdou podmínky

2au2 + 2c — O,

2u3 + 2bu — O,
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odkud plyne

au2 + c — 0,

u2 + b = 0.

Z druhé rovnosti vidíme, že musí být b < 0. Dosadíme-li
odtud za w2 do první rovnosti, dostaneme podmínku ab — c.

Obráceně, předpokládejme, že pro koeficienty rovnice

x3 + ax2 + bx + c — 0

platí b < 0, ab = c. Levá strana rovnice je tedy

л:3 + ax2 + bx + ab = x2(x + a) + b (x + a) =

— (x2 + b) (x + a) — (x + ]/ —b) {x — У — b) (x + a)

a rovnice má dva reálné nenulové opačné kořeny ]/—b,
— ]/ — b. Hledaná nutná a postačující podmínka je tedy

b < 0, ab = c.

5. Pro a = 0 jde o rovnici

2x — |x| — 0,

která má jediné řešení v = 0. Pro а Ф 0 budeme rovnici
řešit zvlášť v každém ze tří intervalů, na které dělí body 0, a
reálnou osu, aby odpadly absolutní hodnoty.
Nejprve předpokládejme, že a > 0. V intervalu x < 0 má
rovnice tvar
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2x + x + a(a — x) = O,

neboli

x(a — 3) = a2

a má zde řešení

a2
x —

a — 3 ’

právě když a < 3.
V intervalu 0 ^ л: a má rovnice tvar

2x — x + a(a — x) = 0,

neboli

x(a — 1) — a2 — 0

a nemá v něm řešení, protože graf funkce

у = x(a — 1) — a2

je na tomto intervalu úsečka s krajními body [0, —a2],
[a, —a], která leží pod osou x. Podobně v intervalu x > a
nemá rovnice

2x — x + a(x — a) — 0

pro žádné a > 0 řešení, neboť polopřímka vycházející z bodu
[a, a] a procházející bodem [2a, a2 + 2a] neprotíná osu x.
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Analogicky postupujeme pro a < 0, kdy najdeme řešení jen
v případě a > — 1, a to

a2
x =

a + 1

Závěr: Pro —1 < a < 0 má soustava jediné řešení

a2
x =

CL Ar 1

pro a — 0 jediné řešení x — 0 a pro 0 < a < 3 jediné ře-
šení

a2
x =

a — 3

Pro ostatní a řešení neexistuje.

6. Sečteme-li obě rovnice, dostaneme

(.x + у)2 = 2a2,

a odečteme-li druhou rovnici od první, vyjde

x2 — j>2 = 2ab.

Dostali jsme tak dvě rovnice, které tvoří soustavu ekvivalentní
s původní soustavou. Můžeme je psát ve tvaru

(1)(jc + jy)2 = 2a2
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(л: + у) (я — у) = 2ab. (2)

Je-li а = О, snadno zjistíme, že řešením soustavy jsou právě
všechny dvojice x = t, у = — r, kde t je libovolné reálné
číslo.

Předpokládejme, že а Ф 0. Z rovnice (1) vidíme, že je buď

x + у — a |/2,
nebo

x + у = —a ]j2.

Po dosazení do rovnice (2) dostaneme

x — у — b ]/2,
resp.

x — у — —b j/2.

Vyhovují-li tedy čísla x, у dané soustavě, vyhovují také buď
soustavě

x + у = a "j/2

* — у = b j/2,
nebo soustavě

л: + = —a ]/2

x — у = —b ]/2.
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Je to tedy bud dvojice

1/2У2
a* = (a + b) ±—3y = (a — b)1—,

2 2

nebo dvojice

V2 V2
x = (—a — b)l—,y = (b — a) 1—.

Zkouškou zjistíme, že obě dvojice dané soustavě vyhovují.

7. Ze druhé rovnice vyjádříme

2 — x

У =
2

a dosadíme do první, dostaneme

2 — A

|a — a\ + a = |я| + (O
2

Počet řešení dané soustavy se zřejmě bude shodovat s po-
ctem řešení rovnice (1). Abychom odstranili absolutní hodno-
ty, budeme tuto rovnici zkoumat zvlášť v každém ze čtyř
intervalů, na které rozdělí čísla 0, a, 2 reálnou osu.

Nejprve budeme předpokládat, že a ^ 2.
V intervalu a < 0 má rovnice (1) tvar

2 — x
a — x + a= —x +

2
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a řešení

x — —4a + 2,

právě když a >

V intervalu O 5^ x < a má rovnice (1) tvar

2 — x
a — x + a = x +

2

a řešení

4a - 2
x = )

3

právě když \
V intervalu a

a < 2.

x < 2 má rovnice (1) tvar

2 — x
x — a + a = x +

2

a řešení nemá pro žádné a.
V intervalu x^ 2 má rovnice (1) tvar

x — 2
x—a + a = x +

2

a řešení x = 2 pro každé a.

Vidímej že pro každé reálné a^2 má rovnice (1), a tedy
i daná soustava, nanejvýš tři řešení. Tři různá řešení dosta-
neme pro \ < a <2 (snadno se přesvědčíme, že pro žádné

4a-2
-—, 2 nesplynou).takové a některé z hodnot —4a + 2,
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Při vyšetřování případu a > 2 postupujeme obdobně. Zjistí-
me, že ve dvou ze čtyř vyšetřovaných intervalů je nanejvýš
po jednom řešení a ve dvou intervalech žádné. V tomto
případě se tedy pro žádné a nestane, že by daná soustava
rovnic měla tři řešení.

8. Abychom se vyhnuli absolutním hodnotám, rozdělíme
rovinu na čtyři podmnožiny složené z bodů, jejichž souřadni-
ce splňují podmínky

x + у ^ о, у :> o,

0,3^0,x + у

x + у ^ о, у :> o,

X + у ^ о, у ^ 0.

Na obr. 2 jsou jednotlivé části znázorněny. Zadaná rovnice
bude mít v jednotlivých případech tvar

x + (1 + a)y = 1, (1)

x + (1 — a)y = 1, (2)

x + (1 — a)y = —1, (3)

x + (1 + a)y ■= — 1, (4)

což jsou rovnice dvou dvojic rovnoběžných přímek. Vyplní-li
řešení obvod čtyřúhelníku, bude tedy každá jeho strana
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v, X/

/
x+y= O

x

O O

У

У

ОО х X

Obr. 2

ležet na jedné z uvedených přímek a každý vrchol bude ležet
na jednom ramenu úhlů, na něž jsme rozdělili rovinu. Hned
je vidět, že přímky (1), (2) procházejí bodem [1, 0], přímky
(3), (4) bodem [ — 1,0], a to jsou tedy dva protilehlé vrcholy čtyř-
úhelníku. Je-li to pravoúhelník, leží zbývající dva vrcholy na

přímce л: + у = 0 souměrně podle počátku, od kterého jsou
]/2 p
2 5 2 - ’

■

[f. ]/2vzdáleny l,tedy v bodech
2
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V těchto vrcholech se protínají přímky (1), (3) a (2), (4).
Dosadíme-li souřadnice vrcholů do rovnic příslušných pří-
mek, dostaneme pro parametr podmínku a — | 2 nebo a =
= — j/2. Snadno se přesvědčíme, že obě hodnoty vyhovují.

9. Odečteme-li dvojnásobek druhé rovnice od první, do-
staneme

(1)(p + 4)y = 16 — p2.

Prozatím budeme předpokládat, že p Ф —4, což nám umožní
vyjádřit у = 4 — p a z druhé rovnice pak

x = %p2 + 2y — \p2 — 2p + 8. (2)

Existuje-li tedy v případě p Ф —4 řešení, platí pro ně (1),
(2). Dosadíme odtud do daných rovnic a ověříme, jsou-li
splněny. Zjistíme, že první dvě rovnice jsou splněny vždy,
zatímco třetí, právě když

рз _ 5p2 _ 8p + 12 = 0.

Všimneme si, že součet koeficientů této rovnice je 0, jejím
kořenem je tedy p = 1. Po vydělení kořenovým činitelem
(p — 1) dostaneme rovnici

p2 - 4p - 12 = 0

s kořeny 6, —2. V uvažovaném případě má tedy soustava
řešení, právě když p — 1 nebo p — 6 nebo p — —2. Pří-
slušná řešení dostaneme dosazením za p do (1), (2).
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Zbývá ještě prozkoumat případ p — —4. Pak má soustava
tvar

2x — 4у — 16

x — 2y — 8

—5x + 2у = —54

23 7
a snadno najdeme její jediné řešení x = —, у = —

2 ’ 4

23
Závěr: Soustava má pro p = —4 jediné řešení x = —

2 9
7

у — —, v případě p = —2 jediné řešení x = 14, у = 6,
4

13
у = 3 a v případěv případě p — 1 jediné řešení x =

p — 6 jediné řešení x = 14, у = —2. Pro ostatní p řešení
nemá.

2 5

10. Nejprve předpokládejme^ že a = 0. Soustava má pak
tvar

b
= lj by = 1

a je-li 6 = 1 nebo b = — 1, má nekonečně mnoho řešen
(y — b, x libovolné), pro ostatní b řešení nemá.
Analogický výsledek dostaneme v případě b — 0, protože
výměnou a, b v soustavě dostaneme soustavu, která se od
původní liší jen výměnou neznámých.
Zbývá vyšetřit případ ab Ф 0.
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Je-li я, у řešení dané soustavy, je xy Ф 0. Vyjádříme-li
z druhé rovnice

x — a

bx 3 (1)У =

dosadíme do první rovnice a upravíme, zjistíme, že x je
kořenem kvadratické rovnice

ax2 — (a2 — b2 + l)x + a = 0. (2)

Obráceně, je-li x kořenem rovnice (2), je v ф а, x Ф 0
(tato čísla rovnici zřejmě nevyhovují). Rovnici (2) vydělíme
číslem x — a a napíšeme ve tvaru

b
= 1 .ax +

x — a

bx

Odtud vidíme, že položíme-li pro každé řešení x kvadratické
rovnice (2) у podle předpisu (1), vyhovuje dvojice x, у

jako řešení dané soustavy. Daná soustava je tedy ekvivalentní
se soustavou (1), (2). Počet řešení je dán počtem řešení rovni-
ce (2), a ten závisí na jejím diskriminantu

(a + b + 1) (a + b 1) (a — b + 1) (a — b — 1).

Výsledek diskuse je znázorněn na obr. 3.
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11. Ze třetí rovnice vyjádříme

z = 1 — a2x + ay

a dosadíme do prvních dvou rovnic. Dostaneme tak

(1 — a4)* = 1 — a2,

(1 — a2)y — 1 + a.
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Nejprve budeme předpokládat, že а Ф 1 i а Ф — 1. To
umožní z (2) a (3) vyjádřit

1
(4)x =

1 + a2’

1
(5)У =

1 — a

a po dosazení do (1)

a3 + 1

(1 — a) (1 + a2)
(6)

Existuje-li tedy v našem případě řešení, má tvar (4), (5),
(6). Dosadíme-li do dané soustavy, zjistíme, že jí opravdu
vyhovuje. Zbývají případy a = 1, a = — 1. Pro a — 1 do-
staneme soustavu

x — у + z — 1

x — у + z = —1

x — у + Z — 1,

která zřejmě nemá řešení. Pro a = — 1 dostaneme soustavu

x + у + z — 1

X + у + z = 1

Ж + У + Z = 1,

která má nekonečně mnoho řešení.
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12. Změna znaménka parametru a odpovídá výměně
neznámých *i, x2 a změna znaménka parametru b odpovídá
výměně neznámých хз, X4. Stačí tedy, omezíme-li se na případ
a ^ 0, b^: 0. Sečtením prvních dvou rovnic dostaneme

xi — x2 + хз — X4 = a + b

a srovnáním se třetí rovnicí máme

a + b — I/a2 + b2 2{x2 + X4) ^ l/a2 + 62,

neboť vyžadujeme nezáporná řešení. Nerovnost

a + b ^ ]/a2 + №

platí v našem případě, jak zjistíme umocněním, právě když
ab = 0. Přitom v ní nastává rovnost, takže musí být x2 = 0,
#4 = 0.
Je-li a = 0, je z první rovnice x\ — x2i a tedy xi = 0,
z druhé rovnice X3 = b. V tomto případě může být hledaným
řešením jen čtveřice (0, 0, b, 0). Je-li b = 0, je z druhé rovnice
*3 — X4. Je tedy *3 = 0 a z první rovnice x± = а. V tomto
případě může být hledaným řešením jen čtveřice (a, 0, 0, 0).
Obě čtveřice vyhovují, jak se snadno přesvědčíme.
Přihlédneme-li к úvaze o omezení na případ a ^ 0, b^ 0,
dojdeme к tomuto závěru:
Pro a = b — 0 je jedinou čtveřicí nezáporných čísel výhovu-
jících soustavě čtveřice (0, 0, 0, 0). Pro a > 0, b — 0 je
to čtveřice (a, 0, 0, 0). Pro a < 0, b — 0 je to čtveřice (0, —a,

0, 0). Pro a = 0, b > 0 je to čtveřice (0, 0, b, 0). Pro a — 0,
b < 0 je to čtveřice (0, 0, 0, —b). Pro ostatní hodnoty para-
metrů nemá úloha řešení.
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Jiné řešení:
Dosazením z prvních dvou rovnic do třetí dostaneme

2x2 + 2x4 = j/a2 + b2 — a — b,
a tedy

X2 — i (}/a2 + b2 — a b) — X4.

Dále je

xi = x-2 -ř a = \ (]/a2 + b2 + a

X3 — b + X4.

Aby byla všechna xt nezáporná, musí být

b) — x4,

x4 ^ 0, (1)

x4 ^ — b, (2)

x4^i (]!a2 + b2 — a b\ (3)

x4 ^ \ ()/a2 + b2 + a — b). (4)

Takové x4 existuje, právě když

0 s i (1/a2 + W- -a-b),

0 ^ \ (\ja2 + b2 + a b),

1(1ia2 + b2 a — b) neboli 0 ^ ^(j/a2 + b2 — a + b),-b

-b^\ (j/a2 + b2 + a b) neboli 0 5^ \ (]/a2 + b2 + a + b),
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tj. právě když

|/a2 + 62 Й |a| + !&U
což nastane, právě když ab = 0. Je-li a = 0, je podle (1)
а (3) #4 = 0 v případě b ^ 0 a podle (2) a (3) je X4 — —b
v případě 6 < 0. Je-li b = 0, je podle (3) a (4) *4 = 0.
Zbývá vypočíst hodnoty ostatních neznámých a provést
zkoušku.

Jiné řešení:
Předpokládejme, že nezáporná čísla xi, X2, хз, X4 vyhovují
soustavě. Dosadíme-li do třetí rovnice z první za a a z druhé
za b, dostaneme

Xl + X2 + X3 + X4 = У(Х1 — X2)2 + (Хз — X4)2

a po umocnění obou stran

4xixa + 2x1x3 + 2x1X4 + 2x2x3 + 2x2x4 + 4x3X4 = 0.

Všechny sčítance jsou nezáporné, a tedy nulové. Odtud je
vidět, že nejvýše jedno z čísel xi, X2, хз, X4 může být nenulové.
Z prvních ,dvou rovnic dále vyplývá, že nejvýše jeden z pa-
rametrů a, b může být nenulový. Zbývá už jen prozkoumat
jednotlivé případy.

1
13. Protože pq 5^ 1, q > 0, je — ^ p, a tedy

Я

1 \ (p+ l)2—) (1 + p) = —p 1 p
1 +

(1)
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Vzhledem к tomu, že p > 0 a

СP + l)2 -4P=(J>- l)2 ^ 0, (2)

je

(p +1)2
P

a dokazovaná nerovnost platí. Rovnost nastane, právě když
nastane v (1) i ve (2), tj. právě když p — q = 1.

Jiné řešení:
Roznásobíme

(-tX-ť)- 1 1
1 + 4"

p q pq

1
> 1, ukážeme ještě, žePodle předpokladu je

pq

1 1
-j ^ 2.

P Я

Protože

(P + q)2 ^ 4pq ^ 4p2q2,

je

P + q^ 2pq,
a tedy

1 p + q
a 2pj

p ^ pq pq

i
+ — =
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Tím je důkaz proveden. I z této úvahy je vidět, že rovnost
nastane, právě když p — q — 1.

14. Hned vidíme, že dokazovaná nerovnost platí v pří-
pádech n — 1 nebo a = b nebo b — 0 a ve všech těchto
případech nastane rovnost.

Zbývá vyšetřit případ, kdy n > 1 a zároveň a > b > 0.
Vzhledem к tomu, že

an —bn — (a — b) (an ~1 + an ~2 b + ... + abn~2 + bn ~ 1),

je dokazovaná nerovnost ekvivalentní s nerovností

an ~1 + an ~ 2b + ... + abn ~ 2 + bn ~1 ^ (a — b) n~1. (1)

Protože za našeho předpokladu je

an ~1 > (a — b)n ~ 1,

je nerovnost (1), a tedy i dokazovaná nerovnost splněna,
dokonce s ostrým znaménkem.

Jiné řešení.
Podle binomické věty je

an = [b + (a — b)]n = bn + (a — b)n +
n— i

IC) bk (a — tí)n k.+
k=i

V případě n = 1 poslední suma odpadá, v případě n > 1
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obsahuje samé nezáporné sčítance, které jsou kladné, pokud
a > b > 0, jinak nulové. Je tedy

an _ bn ^ (a - Ъ)«

a rovnost nastane, právě když je buď n — 1, nebo a — b,
nebo b — 0.

15. Při řešení úlohy nám pomůže následující tvrzení:
Je-li a > 0, pak

1
(1)CL + 2.

a

Rovnost nastane, právě když a — 1.

Pomocné tvrzení je důsledkem toho, že nerovnost (1) je pro
a > 0 ekvivalentní s nerovností

a2 - 2a + 1 = (a - 1)2 ^ 0.

Abychom dokázali nerovnost z úlohy, uspořádáme součet
na levé straně takto:

xn X2 Xn—1Xi
+ ...

— + — + +
Xn Xn—1 X2Xl

Na součty dvojic zlomků v závorkách můžeme použít po-
mocné tvrzení - podle něho je každý aspoň roven 2. Je-li
n sudé, n = 2k, dostaneme tak k dvojic a levá strana je tedy
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aspoň k.2 — n. Je-li n liché, n =2k + 1, dostaneme k dvojic
Xjc +i

Xlc + 1

aspoň k.2 + 1 = n. Rovnost nastane, právě když

a samostatný prostřední člen = 1, levá strana je tedy

Xi X2.

Xn Xfi—1

tj. právě když = xn, X2 = xn -1 atd.

16. Neztratíme na obecnosti, budeme-li předpokládat, že

Xl ^ X2 • • • Xn-

Pro každé k £ {1, 2, ..., n) pak platí

o ^ (*1 — Xlc) (x/c — Xn) = (Xl + xn)xic — XlXn — xl,
neboli

x\ ^ (*i + xn)xic — XlXn.

Sečteme-li těchto n nerovností, dostaneme

x\ + X2 + • • • + xl ^ (Xl + Xn) (*1 + *2 + • • •

. . . + Xn) — nX\Xn,

a protože podle předpokladu je

x\ + *2 + ... + xn = 0, = m, xn = M,
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platí

x\ + x\ + ... + x* ^ — nrnM.

Rovnost nastane, právě když pro každé ke {1,2, ...,«}
bude

Ol — Xk) (Xjc — Xn) = 0,

tj. každé Xk bude rovno buď m, nebo Aí. Pro и-tic i čísel
s nulovým součtem tedy nastane rovnost, právě když obsahuje
nanejvýš dvě různá čísla.

17. Součet přiřazený pořadí

<2l, <Zn+ 2) <22, Ctw + 3, • • <, <22и + 1з + 1

je roven

|«1 — Ди + 2| + \an + 2 — 021 + \a2 — an + sl + • • •

. . . + |а2я + 1 — <*n + l| + Wn + 1 — #l| =

— Яп + 2 '— #1 + + 2 — <22 + Cín + 3 — <22 + • • •

. . . + a^n + 1 CLn + 1 + &n + 1 #1 —

— 2(аи + 2 + <2и+з + ... + azn +1) + a.n + i —
— 2(ai + <22 + ... + <2ji) — <2n + 1» (1)

Pro libovolné uspořádání se uvažovaný součet po úpravě
vedoucí к odstranění absolutních hodnot skládá z 2(2n + 1)
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sčítanců, mezi nimiž se každé z čísel ai, a2i ..., a2n +1

vyskytuje právě dvakrát. Přitom u 2n + 1 sčítanců je kladné
znaménko a u 2n + 1 záporné. Odtud vidíme, že součet (1)
je největší možný, kladná znaménka má u 2n + 1 největších
členů

O-Zn + 1? n + 1э а2пз Й2n, . . ., dn + 2j Gn + 2j + 1

a záporná u 2« + 1 nej menších členů

^lj #1} ^2? ^2) • • • 3 Й-яэ «пэ + !•

18. Je hned vidět, že pokud bod [v, jy] nerovnici vyhovuje,
vyhovují jí také body [x, -у], [-x, у], [у, x], [-у, —x].
To znamená, že hledaná množina je souměrná podle osy x,

podle osy y, podle přímky у — ха podle přímky у — —x.
Stačí proto najít tu část množiny, kde pro souřadnice
bodů platí

(1)x.

Za této podmínky bude mít nerovnice tvar

I* + у — O — y) í1 2,

neboli

1 ^ 12У, ^ 2

a vyhovují jí právě ty body, pro které platí

2 =2 у =S 1 • (2)
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Množina všech bodů vyhovujících nerovnicím (1) a (2) je
znázorněna na obr. 4. Využijeme-li souměrností, o nichž
jsme se zmínili, dostaneme celou hledanou množinu (obr. 5).

У

2
. I

i

0 i 1

Obr. 4

7 i/

/

/----A- /

2
ho-i x1

i 1i ~1
_

2

"'-IУ

/

v.
'Л/

Obr. 5
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19. Jednoduchou úpravou dáme nerovnici tvar

o + 4) (x + 3) (* + 2) (x + 1) * (* — 1) O — 2) Q — 3)
(y + 4) (y + 3) (y + 2) (y + 1)y(y — 1) (У ~ 2) (y - 3)

0-4)
^0.

Су — 4)

Vidíme, že pro žádné jy e {—4, —3, —2, —1, O, 1, 2, 3, 4}
není levá strana definována (jmenovatel je nulový), a tedy

У
у

■ /..

{///Л
Z/7; zz
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žádný bod ležící na některé z devíti vodorovných přímek
у = —4, у = —3, ..., у — 4 nerovnici nevyhovuje. Body
ležící na devíti svislých přímkách x — —4, x — —3, ..

x = 4, s výjimkou bodů už vyloučených, nerovnici vyhovují -

levá strana je v nich nulová. Uvedených 18 přímek rozdělí
rovinu na 100 částí, jejichž vnitřní body zbývá vyšetřit.
Levá strana je v nich definována a je různá od nuly. Přitom
pro všechny body uvnitř téže části má stejné znaménko,
které se při přechodu к sousední části ve vodorovném nebo
svislém směru změní. Hledaná množina má tedy »šachovnico-
vý« tvar a vidíme ji na obr. 6.

20. Jmenovatele zlomků jsou nenulové pro л Ф 0. Odmoc-
niny mají smysl, právě když současně

1 + л:2

• 3

1 + x2
-1^0;-+1^0,

2x 2x

snadno zjistíme, že to nastane právě pro x ^ 0. Funkce je
tedy definována pro všechna x > 0.
Upravujme výraz definující funkci. Postupně dostaneme

/ 1 + x2 + 2x — / 1 + x2 — 2x

/ *У =
/

I1 + x2 + 2x + 1 + x2 — 2x

/

/ (1 + x)2 / (1 - x)2

/ *
(1 + x)2 + (1 - x)2j
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/ 11 + лг| — jl — л:|
/ 11 + xj + [ 1 — лт|

Abychom odstranili absolutní hodnoty, rozdělíme definiční
obor na dvě části:

Pro 0 < x rš 1 jde o funkci

I / (1 + *) — (1 — x)
_

Г (1 + x) + (1 — x)
]jx- — |jc| = X,У

pro x > 1 o funkci

/ (1 + x) + (1 — x) I ! 1
X

(1 + x) — (1 — *)
— = 1.У =
X

Graf funkce vidíme na obr. 7.

У

1 —
:
:

X

0 1

Obr. 7

— 1 funkce nabývá hodnoty21. V bodě x

a b \ \ -]r k\ — 0 (1)

a v bodě x = 3 hodnoty

3a + b|3 - *| = 0. (2)
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Odečteme-li od trojnásobku podmínky (1) podmínku (2),
dostaneme

bQ3 -k\- 3Í1 + k\) = 0. (3)

Kdyby bylo b — 0, plynulo by z (1), že a — 0, a funkce by
byla nulová; nenabývala by tedy hodnoty 2. Je tedy b Ф 0 a

\3-k\= 3] 1 + k\. (4)

Snadno zjistíme, že podmínce (4) vyhovují jen k — 0
a k = —3. V případě & = 0 dostaneme z (1) b = —a
a funkce má tvar

у — а|лг| — a\x — 0| = 0

a nenabývá hodnoty 2. V případě k — —3 dostaneme z (1)
a = —2b a funkce má tvar

у = — 2^?j jej + b\x + 3|.

Prozkoumáme průběh této funkce a určíme 6 tak, aby její
největší hodnota byla 2.

—3 můžeme funkci psátPro x

У =bx — 3b,

pro —3 ^ x ^ 0

у = 3bx + 3b

a pro л; ^ 0

у — —bx + 3b.
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Jak už víme, je b Ф 0. Kdyby bylo b < 0, nabývala by funkce
pro dostatečně velká x hodnot větších než 2. Aby funkce
vyhovovala podmínkám úlohy, musí tedy být b > 0.
V tomto případě v intervalu (—oo, —3> funkce dosahuje
největší hodnoty — 6b v bodě x = —3, v intervalu <—3, 0)
největší hodnoty 3b v bodě x — 0 a v intervalu <0, + oo)
největší hodnoty 3b v bodě x — 0. Aby byla největší hodnota

2
dané funkce 2, musí tedy být 3b — 2, tj. b = —. Pak je

3

— a hledaná funkce je
4

a — —2b =

4 2

—i- 1*1 + I* + 3I-J =

Její graf je na obr. 8.
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22. Hledáme všechny trojice reálných koeficientů a, b, c

tak, aby funkce f(x) = ax2 + bx. -f c splňovala danou pod-
minku, tj. aby

a(2x + l)2 + b(2x + 1) + c — 4a[( —x)'2 + b(—x) + c],

neboli

(4a 4- 6b)x + (a + b — 3c) = 0

pro každé reálné x. To nastane, právě když koeficienty
a, b, c jsou řešením soustavy rovnic

4a + 6b = 0

a + b — 3c = 0.

Tato soustava má nekonečně mnoho řešení; jsou to právě
všechny trojice

a = 9t, b — —61, c = t,

kde t probíhá všechna reálná čísla. Pro t — 0 však dostaneme
a = 0, což nedává kvadratickou funkci.
Řešením úlohy jsou všechny kvadratické funkce tvaru f(x) ~
— t(9x2 — 6x + 1), kde t je nenulové reálné číslo.

23. V bodě x = 0 nabývá funkce hodnoty

(1)

v bodě x = 1 hodnoty
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— 1 ^ a + b + с ^ 1 (2)

a v bodě x — — 1 hodnoty

a — b + c ^ 1.-1 (3)

Z (1) plyne, že

(4)—2 ^ —2c ^ 2.

Sečteme-li nerovnosti (2), (3), (4), dostaneme

-4 ^ 2a ^ 4

neboli |a| ^ 2.

Splňuje-li funkce /(я) = 2x2 + bx + c podmínku úlohy,
platí pro koeficienty b, c nerovnosti

(1)

(5)— 1 < 2 + b + c 1,

-1 ^2 -b + c< 1. (6)

Sečteme-li nerovnosti (5) a (6), dostaneme

-З^с^ -1

a z (1) vidíme, že musí být c — —1. Z (5) a (6) pak dostaneme

-2 ^ b ^ 0, 0 ^ b ^ 2,
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takže musí být b = O a podmínce může vyhovovat jedině
funkce

f(x) = 2x2 — 1.

Snadno zjistíme, že skutečně vyhovuje. Analogicky pro
a = —2 vyhovuje jediná funkce

f(x) = —2x2 + 1.

24. Ušetříme si práci, když si všimneme, že pro každou
funkci z dané množiny platí

/(*) = /(-*)

pro každé reálné číslo л;. Z toho totiž vyplývá, že funkce

f(x) — x2 + b |я| + c

nabývá v intervalu <— 1) stejných hodnot jako funkce

g{x) = л:2 + bx + c

v intervalu <0,1 >. Pochopitelně budeme raději pracovat
s funkcí g(x). Můžeme ji upravit na tvar

b \2 b2
g(x) = X + — + c — —

2 4

Odtud vidíme, že pro uvažované funkce mohou nastat tři
případy:
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b
— G (0,1), nabývá funkce g(x) v intervalu <0,11. Je-li

b2b
—, a to hodnoty c .

2 4

Největší hodnoty pak nabývá v bodě x = 0, a to c, nebo v bodě
ж = 1, a to i + c + 1. Aby v tomto případě byla splněna
podmínka úlohy, muselo by pro koeficienty b, c platit

nejmenší hodnoty v bodě x —

b2
—2 < 6 < 0, c — — = 1

4

a buď c = 2 nebo b + c + 1=2. Snadno zjistíme, že žádná
dvojice reálných čísel b, c těmto podmínkám nevyhovuje.

b
2. Je-li —— ^ 0, nabývá funkce g(x) v intervalu <0,1)

nejmenší hodnoty v bodě x — 0 a největší hodnoty v bodě
x — 1. Aby v tomto případě byla podmínka splněna, musí
pro koeficienty b, c platit

b 2c! 0, c — 1, b -j- c -f- 1 —-2.

Vyhovují koeficienty b — 0, c = 1.
b

— 2c! 1, nabývá funkce ^(x) v intervalu <0,1)

největší hodnoty v bodě x = 0 a nejmenší hodnoty v bodě
x = 1. Aby v tomto případě byla podmínka splněna, musí
pro koeficienty b3 c platit

3. Je-li

b ^ — 2, c — 2, 6 + c 4- 1 — 1.

Vyhovují koeficienty b — —2, c = 2.

68



Snadno se přesvědčíme, že obě nalezené funkce g(x) = x2 +
+ 1, g(x) = x2 — 2x + 2 skutečně v intervalu <0,1 > na-

bývají nejmenší hodnoty 1 a největší hodnoty 2. Řešením
úlohy jsou funkce /(x) = x2 + 1, /(x) = x2 — 2'xj + 2.

25. Nejprve si všimneme, že jmenovatel

x2 - 2x + 2 = (x - l)2 + 1 > 0,

takže funkce/(x) je skutečně definována pro všechna reálná x.
Vzhledem к tomu, že jmenovatel je kladný, je nerovnice

i x2 + 2px — 2 |
2x -f- 2 j

< 2
x2

ekvivalentní nerovnici

jx2 + 2px 2 j < 2(x2 — 2x + 2),

tj. soustavě dvou nerovnic

x2 + 2px 2 < 2(x2 - 2x + 2)

x2 + 2px — 2 > —2(x2 — 2x + 2),

neboli

x2 — (2p + 4)x + 6 > 0

3x2 + (2/> — 4)x + 2 > 0.
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Poslední soustava je splněna pro každé x, právě když oba
diskriminanty

(2p + 4)2 - 4.6 = 4(p + 2)2 - 24,

(2p — 4)2 —4.3.2 = 4(/> — 2)2 — 24

budou záporné. Odtud dostaneme hledanou podmínku

2 - 1/6 < p < 2 + 1/6.

26. Protože

1 \2 3
X2 — X + 1 = X T- >

4
+

2

je zlomek v absolutní hodnotě opravdu definován pro každé
reálné x. Nerovnice z úlohy je ekvivalentní nerovnici

|2x2 + x — 11 < a(x2 x + 1),

tj. soustavě nerovnic

2x2 + x — 1 < a(x2 x + 1)

2x2 + x — 1 > —a(x2 — x + 1),

neboli

(a — 2)x2 — (a + l)x + (a + 1) > 0

{a + 2)x2 — (a — l)x + (a 1) > 0.
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Číslo a — 2 zřejmě úloze nevyhovuje (musí být a > 0).
Ani číslo a = 2 nevyhovuje, protože pak první nerovnice
soustavy má tvar

—3x + 3 > 0

a není splněna pro všechna reálná x. Soustavě nerovnic tedy
vyhovují všechna reálná x3 právě když současně

a — 2>0, a + 2>0

a oba diskriminanty

{a + l)2 - 4(a - 2) (a + 1) < 0,

(a — l)2 — 4(a + 2) (a — 1) < 0,

tj. právě když a > 3.

P
27. Připustíme, že rovnice má racionální kořen — ,kde

p, q jsou celá nesoudělná čísla. Po dosazení do rovnice a vy-
násobení číslem q2 dostaneme

ap2 + bpq + cq2 = 0.

První dva členy jsou dělitelné číslem p, a protože p, q jsou
nesoudělná čísla, jsou p, q2 také nesoudělná čísla, takže
koeficient c je dělitelný číslem p. Protože c je liché číslo,
je i p liché číslo. Analogicky ukážeme, že q dělí koeficient a,
a je tedy liché. Všechny tři sčítance jsou tedy liché a jejich
součet nemůže být nula. Odvodili jsme spor.
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28. Protože

r2 _ y2 _ _ у') (* + _y),

x3 — З>3 = (x — 3;) (x2 + X3; + 3>2),

je pro každá dvě celá čísla x, 3/ rozdíl/(x) —f(y) násobkem
čísla x — y. Zvolme libovolné celé číslo k. Čísla f(k) — f(m),
/(&) —f(m + 1), f(k) — f(m 4- 2) jsou po řadě násobky čísel
k — m, k — m — 1, k — m — 2. Protože k — m, k — m — 1,
k — m — 2 jsou tři po sobě následující přirozená čísla, je
právě jedno z nich násobkem tří a aspoň jedno z čísel f(k) —
— f(m), /(&) —f(m + 1), /(&) —f(m + 2) je tedy násobkem
tří. Předpokládáme-li, že čísla /(m), /(w + 1), /(m + 2) jsou
násobky tří, je tedy i f(k) násobkem tří.

29. Rozložíme

pA _ q i = (p2 _ (p2 + qzy

Obě prvočísla p, q jsou lichá, liché jsou tedy i jejich mocniny,
oba činitelé p2 — q23 p2 + q2 jsou sudá čísla a p4 — q4 je
proto dělitelné čtyřmi. Prozkoumáme ještě dělitelnost obou
činitelů třemi a pěti. Uvědomme si, že dává-li číslo c při dělení
číslem d zbytek z, číslo c2 dává při dělení číslem d stejný
zbytek jako dává číslo z2. Při dělení třemi dávají čísla p, q

zbytky 1 nebo 2 a čísla p23 q2 tedy jedině zbytek 1. Číslo
p2 — q2 je tedy dělitelné třemi. Při dělení pěti dávají čísla
p3 q zbytky 1, 2, 3 nebo 4 a čísla p2, q2 zbytky 1 nebo 4;
jsou-li zbytky u p2, q2 stejné, je p2 — q2 dělitelné pěti, jsou-li
různé, je pěti dělitelné p2 + q2.
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30. Činitelé součinu

k{k+ 1) ... (3k - 3)

jsou 2k — 2 za sebou následujících přirozených čísel. Uvě-
domíme-li si, že mezi každými 2c za sebou následujícími
přirozenými čísly jsou aspoň dva násobky čísla c, vidíme,
že v případě m < k obsahuje součin aspoň dva násobky
čísla m. Zbývá případ m = k, kdy součin obsahuje činitele
k, 2k (protože k ^ 3, je 3k — 3 ^ 2k).

31. Dá-li se číslo N rozložit na součet

N ■—•# + (#+ 1) + ... +(n + b), (1)

kde a, b jsou přirozená čísla, dostaneme sečtením této rovnosti
s rovností

N — (a b') (cl "Ь b 1) + ... + и

vztah

2N = (2a + b)(b + 1).

Je-li b liché, je 2a + b liché. Je-li b sudé, je b + 1 liché.
Číslo 2N, a tedy i N, má, jak vidíme, aspoň jednoho lichého
prvočinitele, a není proto mocninou čísla 2.
Předpokládejme, že číslo N > 2 není mocninou čísla 2.
Má tedy aspoň jednoho lichého prvočinitele a číslo 2N mů-
žeme rozložit na součin dvou činitelů p, q, z nichž jeden je

73



sudý, druhý lichý a každý z nich je větší než 1. Pokusíme se

najít přirozená čísla a, b tak, aby platilo

p — b + 1, q = 2a + b.

Vyhovují čísla

q -p + 1
b = p — 1, a = (2)

2

Pokud zvolíme označení tak, aby p ^ q, jsou takto zavedená
čísla a, b skutečně přirozená. Číslo N pak můžeme rozložit
na součet (1).
Při rozkladu čísla N = 100 na takový součet vyjdeme z roz-
kladu čísla 2N = 200 na součin dvou činitelů různé parity.
Tak např. ze součinu 200 = 8.25 sestavíme podle (2)

25 - 8 + 1
£=8 — 1=7, a = = 9

2

a dostaneme rozklad (1)

100 = 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16.

Vyjdeme-li ze součinu 200
= 18,

5.40, dostaneme b — 4, a =

100 = 18 + 19 + 20 + 21 + 22.

32. Nejprve zjistíme, kolika přirozenými čísly je dělitelné
číslo 9 000. Jeho rozklad na prvočinitele je
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9000 = 2s . З2 . 56

a jeho přirození dělitelé jsou tedy právě všechna čísla tvaru
23». 3®. 5r, kde 0 ^ p ^ 6, 0 ^ q ^ 2, 0 ^ r ^ 6, je jich
tedy 7.3.7 = 147.
Označme je a\3 az, ..., <zi47- Zvolme přirozené číslo n a zbytky
po dělení čísel a\3 аг, ..., <2147 číslem n označme z\, ^2> • •

^147. Je-li и < 147, jsou mezi čísly z\3 zz3 ..., zi47 aspoň dvě
stejná; označme je zj3 Zk. Rozdíl čísel щ3 aic je pak dělitelný
číslem n. Můžeme vzít c/i = aj3 dz = a*.

Zbývá prozkoumat čísla 147 ^ n 5^ 150. Pro я = 147 najde-
me c/i = 150, dz = 3, pro n = 148 d\ = 150, dz = 2, pro
n = 149 d\ = 150, dz = 1 a pro n = 150 c/i = 300, c/2 = 150.

•5

33. Zkusíme najít takové přirozené číslo X3 že dekadický
zápis jeho 1977násobku končí na 1978. Číslice čísla X označme
bo, bi3 bz3 b-í, ..., tj.

X = b0 + Ю61 + ЮО62 + IOOO63 + ...

Číslo X.1977 má končit čtyřčíslím 1978. Číslo bo.7 má tedy
končit číslicí 8, takže musí být bo = 4. Číslo

(10bi + b0).77 = (10/>i + 4).77 = 770bi + 308

má končit dvojčíslím 78, takže musí být bi = 1. Číslo

(ЮО62 + 10bi + bo).977 = (100772 + 14).977 =
= 97 700&2 + 13 678
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má končit trojčíslím 978, takže musí být b-z — 9. Číslo

(IOOO63 + 100^2 + Ю61 + bo). 1977 =

(IOOO63 + 914). 1977 = 1 977 000Č3 + 1 806 978

má končit čtyřčíslím 1978, takže musí být 63 — 5. Existuje-li
tedy hledané číslo X, končí čtyřčíslím 5 914, přičemž číslice
vyšších řádů nemají vliv na poslední čtyřčíslí násobků čísla X.
Hledaná čísla X jsou právě všechna přirozená čísla končící
čtyřčíslím 5 914.

Jiné řešení. *
Označme pro každé přirozené číslo n jako an 4w-ciferné číslo

an = 19781978...1978.

Ukážeme, že mezi prvními 1977 členy této posloupnosti je
číslo dělitelné 1977. Předpokládejme, že takové číslo mezi
čísly a\, az, ...,#1977 není. Pak jsou mezi nimi dvě čísla,
která dávají po dělení číslem 1977 stejný zbytek, nechť jsou to
#?, ak (i < k). Označme m — k — i. Číslo

ак - сц = 1978.. .1978.104<fc-*> = am.Wm

je dělitelné 1977. Protože 104ra je nesoudělné s 1977, je
am dělitelné 1977 a přitom 1 ^ m < 1977, což je spor
s naším předpokladem. (Tento důkaz umožňuje zobecnit
dokazované tvrzení.)

34. Při dělení dvanácti mohou prvočísla dávat jen zbytky
1, 5, 7 nebo 11. Součin čísel, která při dělení dvanácti dávají
zbytky 1 nebo 11, dává opět zbytek 1 nebo 11.
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Po těchto předběžných úvahách zkonstruujeme požadované
prvočíslo к libovolnému k ^ 7. Součin všech prvočísel
větších než 5 a menších než k označme s a uvažujme číslo
125 + 5. V jeho rozkladu na prvočinitele musí být podle
předběžných úvah prvočíslo p tvaru 12« + 5 nebo 12w + 7.
Toto prvočíslo p není 5 (pak by s číslem 125 + 5 dělilo
i číslo 5 a to odporuje definici čísla s) a je větší než k (jinak
by podle definice čísla s dělilo s a nedělilo by pak 125 + 5).
Vidíme, že p má požadované vlastnosti.

35. Je-li n hledané číslo, pak 2n může končit buď číslicí 2,
nebo číslicí 4.

Končí-li číslicí 2, má 2n nanejvýš tři další nenulové číslice.
Má-li jedinou, je to číslice 3 a 2n má tvar 3.10/i: + 2. Nemůže
být k > 1, to by 2n bylo dělitelné čtyřmi a 3.10^' + 2 ne.

Je tedy k = 1 a n — 5 vyhovuje úloze. Má-li 2n právě dvě
další nenulové číslice, jsou to 1 a 2. Na místě desítek nemůže
mít 2n číslici 2 (spor s dělitelností čtyřmi), 1 (spor s dělitel-
ností osmi) ani 0 (spor s dělitelností čtyřmi). Má-li 2n právě
tři další nenulové číslice, jsou to 1, 1, 1. Poslední možná
trojčíslí jsou 002, 012, 102, 112. Prvé tři možnosti vedou opět
ke sporu s dělitelností osmi. Čísla 1112,10 112 nejsou mocniny
čísla 2, a proto poslední možnost může být jen číslo končící
na 00112. To však není dělitelné číslem 32. Končí-li 2n

číslicí 4, má jedinou další nenulovou číslici, a to 1. Čísla 14
ani 104 nejsou mocniny čísla 2 a čísla končící trojčíslím 004
nejsou dělitelná osmi.
Závěr: Úloha má jediné řešení n = 5.

36. Pro každé dvě číslice А, В můžeme dané číslo napsat
jako součet
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23A5B6 = 230 506 + 1000. Л + 10. В.

Vzhledem к tomu, že 230 506 dává při dělení devatenácti
zbytek 17, je dané číslo dělitelné devatenácti, právě když
1000. A + 10.В dává zbytek 2. Avšak 1000 dává zbytek 12,
takže 1000.A + 10.В dává stejný zbytek jako 12.A +
+ 10. B. Protože 19 je prvočíslo, dává 12 .A + 10. В zbytek 2,
právě když 6.A + 5.В dává zbytek 1. Zbytky násobků šesti
a pěti po dělení 19 jsou v tabulce:

0 4 | 51 2 3 6 7 | 8 9t

17 4 i 1061 12 160 6 18 5 11

51 5 10 15 16 í 2 70 1 6 11

Odtud vidíme, že vyhovují jedině kombinace číslic

A =0, В =4;

A = 3, В = 8;

A = 4, В = 3;

A = 7, В = 7;

Л - 8, В = 2.

Úloze vyhovuje pět čísel: 230546, 233586, 234536, 237576
a 238 526.
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37. Pravá strana nemůže být menší než 16 + 7.2 +
— 48 = 78, a tedy musí být x > 4. Pak je levá strana ná-
sobkem čísla 16 a aby to platilo i pro pravou stranu, musí
být x ^ 6. V tomto případě můžeme rovnici zkrátit číslem 16,
dostaneme

4.Z-3 + 7.2я-4 + 3 = x(x - 1) ... 8.7.45.

Je-li x > 7, je na pravé straně sudé číslo a na levé liché,
musí tedy být x ^ 7. Zbývají jen dvě možnosti: x — 6
nebo x = 7. Zkouškou zjistíme, že vyhovuje jen x — 7.

38. Předpokládejme, že pro dvě přirozená čísla x, у platí

(1)ХУ = yx ~ У.

Protože vlevo je přirozené číslo, je přirozené číslo i vpravo,
a je proto exponent x — у ^ 0. Pro základy je tedy x
takže pro exponenty platí у 5^ x — y. Vydělíme-li rovnost (1)
číslem yy3 dostaneme

(ýí - Ух~2у, (2)

kde vpravo je přirozené číslo. Vlevo je proto také přirozené
číslo, takže x = ky, kde k je přirozené číslo. Dosazením
do (2) dostaneme

kv = y№ - 2)y

a po odmocnění

k — yk ~ 2.
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Tento vztah platí, jak snadno zjistíme, jen pro k = 1 а у = 1,
k — 3 а у — 3, k — 4 a jí = 2. Odpovídající dvojice jsou
x — 1 а у = 13 x = 9 а у = 3, x = 8 а у = 2. Dosazením
do dané rovnice se přesvědčíme, že všechny tyto dvojice jí
vyhovují.

39. Mocniny čísla 2 rostou pomaleji než mocniny čísla 5,
což signalizuje, že pro žádné řešení úlohy nebude x ^ y.

Skutečně, pro л; ^ у je

\2X — 10ž/j = 102/ — 2х — 2Ж(2у ~x 5у 1) ^ 2(5 - 1) - 8.

Řešení nerovnice tedy můžeme najít jen pro dvojice x > y.
Pro taková řešení platí

\2X — 102/| = 2у\2х ~ у — 5v\ 5,

odkud

5 5
\2X - у — 5у\ ^ •—

22у

takže

\2X ~ у — 5у\ = 1,

protože je to liché číslo. Je tedy buď

5у + l = 2х ~ у, nebo 5у — 1 = 2х ~ у.

První případ nemůže nastat, protože číslo na levé straně
končí dvojčíslím 06 nebo 26 a není dělitelné čtyřmi. Ve dru-
hém případě rozložíme levou stranu
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5» - 1 =(5 - 1) (1 + 5 + ... + 5У~!).

Je tedy

2*-v = 4(1 + 5 + ... + 5»-1).

Kdyby bylo у ^ 2, byl by vpravo buď lichý počet členů,
a tedy liché číslo, nebo nenulový počet členů, a tedy číslo
dělitelné šesti, což není možné. V úvahu tedy přichází
jen у = 1, čemuž odpovídá я = 3. Tato dvojice, jak se pře-
svědčíme dosazením, vyhovuje.

40. Protože 133 > 1979, 55 > 1979, dostaneme z první
rovnice, že pro každou trojici vyhovující soustavě platí

12, у £ 12, z ^4.

Z druhé rovnice ještě dostaneme

У2 y2z = X,

a tedy

3>^3.

Kdyby bylo у = 1, bylo by x = я a

*3(1 + z2) - 1978,

což nesplňuje žádné z e (1, 2, 3, 4 }.

Kdyby bylo jy = 2, bylo by л: = 4z a

*3(64 + z2) = 1971,
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což platí jen pro * = За příslušná trojice by byla x — 12,
у = 2, z = 3.
Kdyby bylo у = 3, bylo by x = 9z a

*3(729 + *2) = 1952,

což nesplňuje žádné z.
Danou soustavu rovnic může tedy splňovat jen trojice 12, 2,
3, která skutečně vyhovuje.

Jiné řešení:
Dosadíme-li z druhé rovnice do první za z3 dostaneme kvadra-
tickou rovnici pro у3

j>6*3 + jy3 + zb — 1979 = 0.

Ta má v oboru reálných čísel řešení

1 ± ]/l - 4*3(*5 - 1979)y2, —
2*3

Dosazujeme-li sem za * hodnoty 1, 2, 3, 4, vyjde у přirozené
jen pro * = 3 a to vede к trojici 12, 2, 3.

41. Jsou-li obě čísla

1 + x \ + у
(1)

У x

celá, platí

bí^li + *1,1*1 ^|i + .?!,
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a odtud

|*| — 1 ^ |1 + y\ — 1 ^ \y\ ^ |1 + x\ ^ |*| + 1.

Vyhovuje-li tedy dvojice [я, jy] požadavkům úlohy, platí
pro ni

|*| — 1 ^ \y\ ^ 1*1 + 1.

Může tedy nastat jen následujících šest případů:

I.y = X

Čísla (1) mají tvar

1 + X 1 + я

XX

Kdyby bylo \x\ > 1, čitatel by při dělení jmenovatelem x
dával zbytek 1 a zlomky by nebyly celá čísla. Prozkoumáním
všech možností x = 1, x = — 1 najdeme dvojice [1, 1],
[-1, -1].

II. у — —x

Čísla (1) mají tvar

1 + X 1 — X

—x—x

a podobně jako v I. musí být |я| ^ 1. Zde najdeme další
dvě dvojice [1, —1], [—1, 1].

III. ý = x + 1
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Čísla (1) mají tvar

1 + x x + 2

1 + x 5 x

Aby byl druhý zlomek celé číslo, musí být |x| ^ 2. Probrá-
ním všech možností najdeme tři dvojice [—2,
[2, 3].

IV. у = _ 1

Čísla (1) mají tvar

1], [1, 2],

1 + x — X

Л Э
— 1 — X X

a jsou to celá čísla pro všechna x ф 0, x Ф — 1. Dostáváme
nekonečně mnoho dvojic [—4, 3], [—3, 2], [—2, 1],
[h -21, [2, -3], [3, -4], ...

V. у — x — 1

Čísla (1) mají tvar

1 + x x

x — 1 x

Aby byl první zlomek celé číslo, musí být jx — 1| ^2.
Najdeme tři dvojice [ — 1, —2], [2, 1], [3, 2].

VI. у = 1 - x

Čísla (1) mají tvar

1 + x 2 — x

1 — X X
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Aby byl první zlomek celé číslo, musí být |x — 1| ^2,
pro druhý zlomek dostaneme podmínku |x| 2. Najdeme
dvě dvojice [—1, 2], [2, —1].

42. Je-li m = n, je aritmetický i geometrický průměr
roven m. Obě číslice průměru jsou tedy stejné. Úloze v tomto
případě vyhovuje devět dvojic [11, 11], [22, 22], ..., [99, 99].
Je-li m ф n dvojice vyhovující úloze, platí pro číslice p, q

0 < p < 10, 0 < q < 10,

m + n
—

= Щ + q3 уmn = 10# + p}

neboli

(tn + и)2 = 4(100p2 + 20pq 4- #2),

4mn — 4(100^2 + 20pq + p2).

Odečtením posledních dvou podmínek dostaneme

(m — n)2 = 4.99(p2 — q2) = 4.9.11 (p + q){p — q).

Protože m Ф n, je p > a (to plyne i z vlastností průměrů)
a číslo na pravé straně je čtvercem přirozeného čísla. Buď
p + q, nebo p — q musí tedy být dělitelné číslem 11. Pro-
tože p — q < 9, p + q < 19, je p + q — 11. Dále musí
být p — q čtvercem přirozeného čísla a musí to být liché
číslo, protože p + q je liché. Jediná možnost je p — q = 1.
Těmto podmínkám vyhovují jen číslice p — 6, q — 5. Pro
čísla m, n má platit
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m + n
——

= 65, (m — ri)2 = 4.9.112 = 662.

Tyto podmínky splňuje jediná dvojice 98, 32. Jen ta může
být řešením úlohy. Snadno se o tom přesvědčíme.

43. Rychlost malého člunu ve stojaté vodě označme c
a hledanou vzdálenost d. Malému člunu trvá cesta к mostu

a zpět celkem

d d
(1)= 33.60 s+

c + 2 c — 2

a velkému člunu

d d
— 16.60s.+

2c 4- 2 2c — 2

Je tedy

d d
+

c + 2 c — 2 33

d d 16
+

2c 4“ 2 2c — 2

a po úpravě

4c2 -4

2(c2 - 4) = Тб '
33

Odtud dostaneme c = 10 m/s a pak z (1) vyjde d = 9904m.
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44. Označme tk dobu, která uplyne od startu do &-tého
setkání cyklistů, v odhadovanou rychlost druhého cyklisty
a j délku kruhové dráhy. První cyklista ujede první okruh

5

za dobu — a druhého cyklistu potká dvakrát, takže6

5

tz-
6 (1)< ř3-

2s
První dva okruhy ujede za dobu — a druhého cyklistu

potká pětkrát, takže

2s
Í5 ^ < ?6- (2)

35
První tři okruhy ujede za dobu — a druhého cyklistu potká

o

sedmkrát, takže

35
t~! —~

6

Vzhledem к tomu, že к setkání nikdy nedošlo v místě startu,
jsou všechna znaménka nerovností v (1), (2), (3) ostrá.
Uvědomme si ještě, že při &-tém setkání ujeli oba cyklisté
celkem vzdálenost

(3)< t8.

ks = 6 tk + Vtki

odkud

ks
tk =

6 + v'
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Dosadíme-li to do (1), (2) a (3), dostaneme

2s 355

, < - < ,
6 + V 6 6 + V

5s 2s 6s
< — < ,6 + V 6 6 + V

Is 3s 8s
2 < ~z < 7
О ~r ‘V O Q -|- ey

a po úpravě

6 < v < 123

9 < v < 12,

8 < z; < 10,

tj. 9 < v < 10. Rychlost druhého cyklisty byla tedy mezi
9 a 10 m/s.

45. Počítáme-li každé pole tolikrát, v kolika vyznačených
šachovnicích je obsaženo, je na 31 vyznačených šachovnicích
celkem

S = 31.8.8 = 1984

polí.
Předpokládejme, že dokazované tvrzení neplatí, tj. že každé
pole velké šachovnice patří nejvýše pěti vyznačeným ša-
chovnicím. Některá pole v okolí rohů velké šachovnice ne-
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3 ! 2 1

24

3

4

Obr. 9

mohou ležet dokonce ani v pěti vyznačených šachovnicích
(na obr. 9 znamenají čísla počet různých šachovnic 8x8,
v nichž leží příslušná pole šachovnice 20x20). Z našeho
předpokladu dostáváme odhad

S^4(l + 2 + 3 + 4 + 2 + 4 + 3 + 4) +
+ (400 - 4.8).5 = 1932

a to je spor.

Jiné řešení:

Na šachovnici 20x20 zaveďme přirozeným způsobem sou-
řadnice polí a všimněme si polí o souřadnicích (8, 8), (8, 16),
(16, 8) a (16, 16). Každá šachovnice 8x8 obsahuje, jak
snadno zjistíme, právě jedno z nich. Některé z těchto čtyř
polí tedy leží dokonce aspoň v osmi z 31 vyznačených ša-
chovnic.

46. Každou figurku budeme počítat tolikrát, v kolika
šachovnicích 4x4 stojí na diagonále, a celkový počet ozna-
číme S. Na obr. 10 je znázorněno, do diagonály kolika ša-
chovnic 4x4 patří jednotlivá pole. Vidíme, že 5 je mini-
mální, právě když jsou figurkami obsazena všechna pole
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2 2 11 11 1

232 3 4 4 11

63 6 5 31 5

8 6 26 8 42 4

8 6 26 8 42 4

6 36 13 51 5

3 24 3 12 41

2 2 11 111 1

Obr. 10

s hodnotami 1,2, 3 a ještě dvě pole s hodnotami 4. Pro jakékoli
rozestavení figurek je tedy

5 ^ 20.1 + 12.2 + 8.3 + 2.4 - 76.

Šachovnice 8x8 obsahuje právě 25 šachovnic 4x4. Kdyby
každá měla na diagonálách nanejvýš tři figurky, bylo by

5 ^ 3.25 = 75

a to je spor.

Jiné řešení:
Rozdělme šachovnici 8 x 8 na čtyři šachovnice 4x4. Na ně-
které z nich musí být aspoň 11 figurek, takže obsahují aspoň
čtyři diagonální pole nebo všech 8 nediagonálních polí.
Ve druhém případě dostaneme šachovnici 4x4 s aspoň
čtyřmi figurkami na diagonálních polích posunutím o dvě
pole doprava nebo doleva (obr. 11).
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,XX

XX
:XX

X X JA

Obr. n

Jiné řešení (obr. 12):
Uvažujme následujících šest šachovnic 4x4: ACHF, BDIG,
CEJH3 FHMK, GINL, HJOM. Každé pole šachovnice
AEOK leží buď v diagonále jediné z uvedených šesti ša-
chovnic (48 polí), nebo žádné (16 polí). Na diagonálních
polích uvedených šesti šachovnic stojí tedy aspoň 42 —
— 16 = 26 figurek. Aspoň pro jednu šachovnici 4x4 tedy
platí, že na jejích diagonálních polích stojí aspoň pět figurek.

К L M N 0

F

ABODE

Obr. 12
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47. Označme S počet figurek stojících na šachovnici
1000x1000, přičemž každou budeme počítat tolikrát, na
obvodu kolika šachovnic 8x8 stojí. Abychom se vyhnuli
komplikacím u okraje šachovnice 1000x1000, omezíme se
na prostředních 9862 polí - každé z nich leží na obvodu právě
28 různých šachovnic 8x8. Okrajových polí je 10002 —
— 9862 a na prostředních polích stojí tedy aspoň 800 000 —
— (10002 — 9862) figurek. Označíme-li Si počet figurek na

prostředních polích i s násobností, dostaneme

(800 000 - (10002 - 9862)). 28.5^ Si

Šachovnice 1000x1000 obsahuje právě 9932 různých ša-
chovnic 8x8. Kdyby na obvodu každé z nich stálo nanejvýš
21 figurek, bylo by

5^ 9932.21

a to je, jak snadno spočteme, spor.

(Poznamenejme, že kdybychom se neomezili jen na prostřední
pole, byl by odhad pracnější, ale přesnější. Mohli bychom
tak dokázat, že na obvodu nějaké šachovnice 8x8 stojí aspoň
23 figurky.)

48. a) Vzhledem ke komutativitě sčítání a násobení reál-
ných čísel je zřejmé, že

x * у = у * x

pro každá dvě reálná čísla x3y a operace je komutativní. Aby-
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chom zjistili asociativnost operace, porovnáme (x * y) * z
s x * (y * z):

(x*y)*z = (x+y + xy)*z = x+ y+xy + z +

+ (x + у + xy) z = x + у + z + xy + xz + yz + xyz,

x * (y * z) = X + (y * z) + x(y * z) —

= x+ y + z+yz-{-x(y + z-\- уz) — X + у +

+ z + xy + xz + yz + xyz.

Operace * je tedy komutativní a asociativní. Neutrálním
prvkem může být jen takové reálné číslo e, že pro všechna x

platí

e * x — x * e = x,

neboli

x + e + xe = x,

tj-

e(l + x) = 0.

Tuto podmínku splňuje jedině číslo e = 0, které je skutečně
neutrálním prvkem.

b) Převedeme-li si rovnici s operací * na rovnici se sčítáním
a násobením, dostaneme po úpravě rovnici

(a + l)x2 + (2a — b + l)x + (a — b) — 0.
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Je-li a = — 1, jde o lineární rovnici

(—b — 1)jc + (—b — 1) = 0.

Té vyhovuje v případě b — — 1 každé reálné číslo x a v pří-
pádě b Ф —1 jedině x = —1.
Je-li а Ф —1, má kvadratická rovnice diskriminant

(2a~b + 1)2 - 40 + 1) O - b) = 0 + I)2-

V případě b — — 1 má jediný kořen
b — a

a + 1 5

1 a v případě b Ф — 1

dva kořeny 1.

49. Máme dokázat, že pro každou trojici přirozených
čísel x, у, z platí

(xy) * z = (x * z) (y * z).

Snadno se přesvědčíme, že rovnost je splněna v případě,
kdy je některé z čísel x, y, z rovno 1.
Zbývá ověřit rovnost v případě, kdy všechna tři čísla x, y, z

jsou větší než jedna. Jsou-li jejich rozklady na součin prvo-
činitelů

x =pi. • •Pa,У = qi- ■ ■qi, z =n.. .rc,

má číslo xy rozklad

xy = Pi- ■ -pa-qi- • -qb

a na levé straně dokazované rovnosti je tedy součin všech
O + b)c činitelů pi + rk3 qj + rk (i e (1,../ e (1,.. .,6},
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ke {l,...,c}). Na pravé straně je součin všech ac činitelů
pi + rjc (i e {1,.. .,a), &e{l,...,c}) násobený součinem
všech bc činitelů qi + n (i e {1ke {1,.. .,c}), což
je totéž.

50. Nejprve se budeme zabývat množinou C všech celých
čísel. Není těžké uhádnout, že podmínkám úlohy vyhovují
např. podmnožiny A = S, В = L, kde S je množina všech
sudých čísel a L množina všech lichých čísel.
Abychom dokázali, že je to jediné řešení, nejprve si uvědo-
mime, že vyhovují-li nějaké dvě podmnožiny А, В úloze,
jsou disjunktní. Předpokládejme, že pro nějaké celé číslo p
by platilo p e A n 6. Jakékoli celé číslo c můžeme psát
jako c — p + (c — p). Je-li pak c — p e A, vzhledem к tomu,
že p e A, je с e A a vzhledem к tomu, že p e B, je с e B,
takže с e А n В. I v případě с — p e В dojdeme к tomu,
že с e A n B, tj. C <= A n 6, tedy A = В = C. Z před-
pokladu А n В Ф 0 jsme odvodili spor s podmínkou úlohy.
Jsou-li А, В nějaké dvě podmnožiny splňující podmínky úlohy,
je S <= A. Skutečně, libovolné sudé číslo s můžeme psát jako

5

součet dvou stejných celých čísel s = — + —, takže s e A.

Podmnožina В tedy obsahuje jen lichá čísla (А, В jsou disjunkt-
ní), a to aspoň jedno (je neprázdná). Nechť např. ke В
a zvolme si libovolné liché číslo /.To můžeme psát jako / =
— k + m, kde m je sudé, tj. m e A. Je tedy l e В a vidíme, že
Leg, Vzhledem к tomu, že Au 6 = C, je A — S, В — L.
Závěrem ukážeme, že když množinu C nahradíme množinou R
všech reálných čísel, úloha nemá řešení. Kdyby podmnožiny
A, В vyhovovaly v tomto případě požadavkům úlohy, byly
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by disjunktní. To je vidět analogicky jako v případě celých
čísel. Také by bylo A — R, což lze odvodit analogicky jako
A = S v případě celých čísel. Bylo by tedy 6 = 0 a to odpo-
ruje jedné z podmínek úlohy.

51. Nechť je ABCD čtyřúhelník daného obvodu 4p,
velikosti jeho stran AB3 BC, CD a DA označíme a, b, c, d
a jeho obsah P. Není-li čtyřúhelník ABCD konvexní (obr. 13),

existuje konvexní čtyřúhelník se stejně velkými stranami,
jehož obsah je větší než P. Najdeme-li mezi všemi konvexními
čtyřúhelníky daného obvodu čtyřúhelník s největším obsahem,
bude to též čtyřúhelník s maximálním obsahem mezi všemi,
i nekonvexními čtyřúhelníky daného obvodu. Nic se tedy
nestane, budeme-li předpokládat, že čtyřúhelník ABCD je
konvexní. Matematikové říkají, že »bez újmy na obecnosti
můžeme předpokládat, že čtyřúhelník ABCD je konvexním
Pro takový čtyřúhelník je jeho obsah P roven součtu obsahů
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trojúhelníků ABD a BCD (obr. 14). Obsah trojúhelníku
ABD se rovná polovičnímu součinu av, kde v je velikost
výšky v trojúhelníku ABD, příslušné к straně AB. Je v ^ d
a rovnost nastane právě tehdy, když jsou strany AB a AD
na sebe kolmé. Je proto 2P ^ ad + bc, přičemž znaménko
rovnosti platí v této nerovnosti právě tehdy, když je AB \_ AD
a současně BC _L CD. Obdobně bychom dostali 2P ^ ab +
+ cd s rovností pouze pro AB _L BC a zároveň CD _[_ DA.
Sečtením posledních dvou nerovností dostaneme 4P ^
^ (a + c) (b + d) a znaménko rovnosti platí pouze pro právo-

úhelníky. Dále již víme, že ze všech pravoúhelníků daného
obvodu má největší obsah čtverec. Složením těchto dvou
úvah dostáváme konečný výsledek: ze všech čtyřúhelníků
daného obvodu má největší obsah čtverec.

52. Nechť trojúhelník ABC splňuje podmínky úlohy.
Zvolme označení jeho vrcholů tak, že pouze strana АВ je
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větší než 6 cm, tedy |BC| ^ 6, | AC\ ^ 6. Pak platí pro obsah
P trojúhelníku ABC (obr. 15)

P = i\AC| v ^ i |i4C| . |BC| ^ i (6.6) = 18.

Protože v našem případě je P = 18, musí ve všech uvedených
nerovnostech platit znaménko rovnosti. Musí tedy být
v = |BCj, tj. trojúhelník ЛБС musí být nutně pravoúhlý
s pravým úhlem při vrcholu C, a dále musí platit \AC\ —

= \BC\ — 6. Pak je trojúhelník ABC pravoúhlý a rovnora-

menný s odvěsnami délky 6 cm, jeho přepona má délku

6У2 cm a je to jeho jediná strana, která je delší než 6 cm.
Protože jeho obsah je 18 cm2, vyhovuje všem podmínkám
úlohy a je to jediný trojúhelník požadovaných vlastností.

53. Úloha nežádá sestrojit všechny čtyřúhelníky poža-
dováných vlastností, stačí sestrojit některý, například deltoid
ABCD, souměrný podle úhlopříčky AC (obr. 16), pro který
je \AC\ = 10, \AB\ = \AD\ = 5 a vzdálenost bodů B, D
od přímky AC je větší než 4,9 a menší než 5. Čtenáře však
možná napadne otázka, jak nalézt toto nebo některé další
řešení úlohy. Můžeme postupovat asi takto: nechť v čtyř-
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úhelníku ABCD je součet délek úseček AB, AC, AD ro-
ven 20. Pokusíme se odhadnout shora jeho obsah P. Můžeme
předpokládat, že body B, D leží v opačných polorovinách
ohraničených přímkou AC, jinak bychom nahradili bod В
bodem souměrně sdruženým podle přímky AC, čímž bychom
obsah čtyřúhelníku ABCD zvětšili. Pak se P rovná součtu
obsahů trojúhelníků ACB a ACD. Označme v, w velikosti
výšek v těchto trojúhelnících, příslušných společné základně
AC. Je tedy 2P = \AC\ (v + w), a protože v
w \AD\, máme 2P
- |AC\) = 100 - (10 - \AC\)2 < 100, tudíž P íí 50. Vi-
dime, že úloha by neměla řešení, kdyby měl být obsah čtyř-
úhelníku ABCD větší než 50 cm2. Kdyby mělo platit P — 50,
muselo by být \AC\ = 10 a zároveň v = \AB\, w — \AD\.
To by však musely být obě přímky AB, AD na přímku AC
kolmé. Pak by ležely body B, A, D na jedné přímce, body
А, В, C, D by netvořily čtyřúhelník. Úloha tudíž nemá řešení
ani v případě P — 50. Protože podle zadání úlohy je P > 49,
musí být 98 < 2P < 100 — (10 — \AC\)2, odkud plyne
(10 - \AC\f < 2, tedy 10 - ]/2 < \AC\ <10 + ]/2. Vidí-

\AB\,
\AC\{\AB\ + \AD\) = |ЛС|(20 -
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me3 že se velikost úhlopříčky AC nemůže příliš lišit od hod-
noty 10. Při volbě bodů A, C tak, aby velikost \AC\ byla
z uvedeného intervalu, volíme dále hodnoty v, w tak, aby

platilo
98

< v + w < 20 — \AC\, což lze, protože je'AC |
98

< 20 — j AC\. Ve vzdálenostech v, w vedeme rovnoběžné
\AC\
přímky s přímkou AC, a to tak, aby ležely v opačných polo-
rovinách ohraničených přímkou AC (obr. 17). Na první

В

Obr. 17

zvolíme bod В a na druhé bod D tak, aby \AB\~^. v, \AD\ ^
^ w, \AB\ + \AD\ = 20 — \AC\. To opět lze, protože je
v + w < 20 — \AC\ a z téhož důvodu bude alespoň jedna
z nerovností \AB\ ^ v, \AD\ ^ zo ostrá. Můžeme dokonce
volit body B, D tak, aby byl čtyřúhelník ABCD konvexní.
Kdybychom volili |ЛС| = 10, v = w = 4,95 a \AB\ —

— \AD\ — 5, dostali bychom deltoid, jaký jsme uvedli na
začátku.

54. Zvolme libovolnou stranu AB trojúhelníku Ti. Je-li
úsečka АВ částí některé strany trojúhelníku Ti, je délka
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úsečky AB nejvýše rovna velikosti této strany trojúhelníku
T<l. V opačném případě prodloužíme úsečku AB na úsečku
PQ3 jejíž krajní body P, Q leží na hranici trojúhelníku Tz
(obr. 18). Je pak |AB\ ^ \PQ\. Označme U patu kolmice

R P Su

Obr. 18

vedené bodem О к té straně trojúhelníku Tz, na které leží
bod P. Alespoň jeden krajní bod R této strany má od bodu U
vzdálenost větší nebo stejnou než bod P. Pak je \PQ\ ^ \RQ\-
Bodem R vedeme kolmici к té straně trojúhelníku T%3 na které
leží bod Q, patu kolmice označíme V. Alespoň jeden krajní
bod strany trojúhelníku Tz3 na které leží bod Q, nemá
od bodu V vzdálenost menší než bod Q, tj. platí tedy ]Č>F| ^
^ \QV\. Pak je \RS\ > RQl ^ \PQ\ ^ \AB\. Kdyby bod P
nebo Q byl vrcholem trojúhelníku Tz3 mohli bychom ho
vzít za bod R nebo S3 a tím celý postup zkrátit. V každém
případě jsme však dokázali, že libovolná strana trojúhelní-
ku Ti je menší nebo nejvýše rovna délce některé strany troj-
úhelníku Tz. Pak je též každá strana trojúhelníku T\ menší
nebo rovna nejdelší straně trojúhelníku Tz3 a protože to
platí pro každou stranu trojúhelníku T±3 platí to i o jeho nej-
delší straně, což jsme měli dokázat.
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Nechť je nyní KL libovolná strana trojúhelníku T2 a P
pata výšky vedené třetím vrcholem M trojúhelníku T2 na
stranu KL. Pak leží celý trojúhelník T2 v pásu ohraničeném
přímkou KL a přímkou s ní rovnoběžnou, vedenou bodem M
(obr. 19). Vrcholy trojúhelníku Ti vedeme nyní přímky rovno-

M

LК P

Obr. 19

běžné s přímkou PM. Aspoň jedna z nich protíná protější
stranu trojúhelníku T\. Nechť je to například ta, která pro-
chází vrcholem A, průsečík s protější stranou označíme D.
Body A, D patří trojúhelníku T±3 a tím i trojúhelníku T2,
proto je \PM\ ^ IAD\. Dále je \AD\ ^ \AE\3 kde je E pata
výšky trojúhelníku T±3 procházející bodem A. Máme tedy
\MP\ ^ \AE\, každá výška trojúhelníku T2 je tedy větší
nebo nejvýše rovna některé výšce trojúhelníku T\. Odtud
plyne, že každá výška trojúhelníku T% je větší nebo rovna

nejmenší výšce trojúhelníku T\. A protože toto tvrzení platí
pro každou výšku trojúhelníku Г2, platí i pro jeho nejmenší
výšku. Tím je dokázána i druhá část tvrzení úlohy.

55. Nechť je v nejmenší výška trojúhelníku ABC. Ozna-
čení vrcholů zvolíme tak, aby v byla výška к straně AB3

102



která je pak největší stranou trojúhelníku ABC. Proto je
protější vnitřní úhel у největším vnitřním úhlem trojúhelníku
ABC, tedy у ^ 60°. Sestrojme v polorovině ABC bod D
tak, aby byl trojúhelník ABD rovnostranný a opišme troj-
úhelníku ABD kružnici. Protože je у ^ 60 °, leží bod C ve
vnitřní oblasti této kružnice. Proto není jeho výška větší než

V3
výška rovnostranného trojúhelníku ABD, tj. v \AB\—.

Vynásobíme-li tuto nerovnost číslem v, dostaneme v2 ^ Pj/3,
kde P je obsah trojúhelníku ABC a poslední nerovnost je
ekvivalentní s nerovností v 5Í |/Pj/3, kterou jsme měli do-
kázat. Rovnost platí právě tehdy, když je D = C, tedy když
je trojúhelník ABC rovnostranný.

56. Položme \DM\ = x, pak je \CM\ — 1 — x, a tedy
\AM\ + \BM\ + \CM\ = 1 - * + 2 ]/l + x2 (obr. 20). Má-
me dokázat, že 1 — x + 2 j/1 + я2 ^ 1 + ]/3 pro všechna x
z intervalu <0, 1). Dokazovanou nerovnost postupně upra-
víme na ekvivalentní nerovnosti

2 1/1 + x2 ^ ]/3 + x

C

M.

x

A 'BD

Obr. 20
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Зх2 - 2х 1/3 + 1^0
1

3 /х
Уз

Poslední nerovnost je splněna dokonce pro každé reálné
číslo x, tím je nerovnost úlohy dokázána. Zároveň vidíme,
že znaménko rovnosti platí v poslední, a tím i v dokazované

1
nerovnosti právě tehdy, když je x = —=. V tom případě je

P
1

= j/3 : 1 = tg 60°. Bod M sestrojí-\AD\ : \DM = 1 :
уз

me tak, aby <£ MAD — 30°.

57. Označme Y průsečík přímek AX, CD. Je \AX\ +
+ \XY\ < \AD\ + \DY\ (protože \AX\ + \XY\ = \AY\),
\BX\ < \BD\, \CX\ < \CY\ + \ YX\. Sečtením těchto tří
nerovností dostaneme nerovnost, kterou jsme měli dokázat.
Prochází-li přímka AX bodem C, je Y — C, poslední z uve-

děných tří nerovností sice neplatí, ale dokazovaná nerovnost
je součtem prvních dvou, a tedy platí. Protíná-li přímka AX
vnitřek úsečky BC, nerovnost v textu úlohy už nemusí platit.
Kdyby bod X splynul s bodem B, bylo by \AX\ + \BX\ +
+ \CX\ = \AB\ + |BC|. Zvolme proto čtyřúhelník, pro

který je |AB\ + |BC| > \AD\ + \BD\ + \CD\. Stačí zvolit
body A, C, D tak, aby AD, CD byly malé ve srovnání s \AB\,
!BC\. Zvolme například deltoid vepsaný kružnici o polomě-

r

ru r, pro který je \AD\ = \CD\ < —, a za bod Xzvolme střed
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kružnice (obr. 21). Je pak \AX\ + |BX| + \CX\ = 3r,
\AD\ + \BD\ 4- |CD| < 3r. To tedy znamená, že nerovnost
v zadání úlohy obecně neplatí, jestliže přímka AX neprotíná
úsečku CD.

58. Nechť je X libovolný bod obdélníku ABCD. Označme
x jeho vzdálenost od přímky AD а у jeho vzdálenost od přím-
ky AB. Pak je jeho vzdálenost od strany CD rovna b — у
a od strany BC rovna a — x. Dále je \AX\2 + \BX\2 +
+ \CX\2 + \DX\2 = x2 + у2 + (a — x)2 + ý1 + x2 +
+ (b — у)2 + (a — x)2 + (b — y)2 — a2 + b2 + (2x — a)2 +
+ (2у — b)2. Odtud je ihned vidět, že součet druhých mocnin
vzdáleností bodu X od vrcholů obdélníku je vždy roven

alespoň hodnotě a2 + b2 a této hodnotě se uvažovaný součet
rovná právě tehdy, když je bod X středem obdélníku. Snad
bychom ještě měli dodat, že tvrzení platí i v případě čtverce.

59. Úlohu je nejlépe řešit analyticky. Zvolme soustavu
souřadnic tak, aby počátek splynul s bodem A, bod В ležel
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У C=[p;Q]

B-íc.O)A=í 0;0]

Obr. 22

na kladné poloose x a bod Cležel v polorovině^ > 0 (obr. 22),
tedy A = [0, 0], В — [c, 0], C — [p3 q], přičemž p2 + q2 =
= b2, (p — c)2 + í2 =a2. Nechť X = [д:, _y], pak je \AX\2 +
+ \BX\2 + \CX\2 = X2 +y2 + (x- c)2 + y2 + (jc - />)2 +
+ (jy — ?)2 = 3x2 + 3y2 — 2x(c + p) — 2qy + c2 + p2 + q2.
Tento výraz upravíme na tvar

2lc + P\2 ( q\r)+ b - 3

2
3 + ~(p2 + q2 + c2 — pc).

Je vidět, že uvažovaný součet je nejmenší v případě x =

c + p q
—, tedy právě tehdy, když je bod X totožný3

s těžištěm trojúhelníku ABC, protože první, resp. druhá,
souřadnice těžiště trojúhelníku je aritmetickým průměrem
prvních, resp. druhých souřadnic vrcholů trojúhelníku.
Všimněme si, že jsme ani nepoužili předpokladu, že bod X
je bodem trojúhelníku ABC. Dokázali jsme tedy, že těžiště
trojúhelníku má ze všech bodů roviny ABC nejmenší součet
druhých mocnin vzdáleností od vrcholů trojúhelníku. Ještě
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musíme tento nejmenší součet vyjádřit pomocí velikostí stran
trojúhelníku. Je

p2 + q2 + c2 — pc
2 _ _

3

a2 + b2 + c2

p2 + q2 + (p — c)2 + q2 + c2
3

. Pro těžiště je tedy uvažovaný součet ro-

ven jedné třetině součtu druhých mocnin délek stran troj-
úhelníku.

3

Uveďme ještě jeden postup, který místo analytické geo-
metrie používá pouze kosinovou větu. Označme S střed
strany AB a T těžiště trojúhelníku ABC (obr. 23). Je pak

\AX\2 = \AS\* + |5X|2 + 2 cos a,

\BX\2 = \BS\2 + |5X|2 - 2 |Б5||5Х| cos a,

protože cos (180° — a) = — cos a.
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Dále máme

\CX\2 = |СГ|2 + \TX\2 - 2 \CT\\TX\ cos &

2 |SXj2 = 2 !7\S|2 + 2 |ГХ|2 + 4 |5Г||Г.Х| cos /3.

Sečtením všech čtyř rovnic dostáváme užitím vztahů \CT\ —

= 2 \ST\, |C\S| = 3 \ST\ rovnost

2 \CS\2
\AX |2 + \BX i2 + \CX\2 = |Л5|2 + \BS\2 + —-— +

+ 3 \TX\2.

Podobně dostaneme

2 \CS\2 = \AC\2 + \BC\2 - 2 M5|2

a po dosazení do poslední rovnice máme

\AB\2 + |J3C|2 + \CA\2
\AX |2+ \BX\2 + \CX\2=3\TX\2 + 3

Odtud je vidět, že součet na levé straně je nejmenší, když
bod X splývá s těžištěm T trojúhelníku a rovná se pak jedné
třetině součtu a2 + b2 + c2, kde a, b} c jsou velikosti stran
trojúhelníku.

60. Lichoběžník ABCD je tečnový (obr. 24). Porovnejme
lichoběžník s kosočtvercem AB'C'D, opsaným téže kružni-
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D М С С

(L /
N /

к ¥
Obr. 24

4 В

ci k. Body dotyku stran lichoběžníku s kružnicí k označíme
K, L, M, N. Můžeme předpokládat, že základna AB je
větší než základna CD, jinak bychom pouze změnili označení
vrcholů lichoběžníku. Je pak |1<CJ3'| < \KB\, \MC'\ > \MC\.
Dále platí |BC| = \BL\ + \CL\ = \BK\ + |CAÍ|, a proto je
|SC| < \BK\ + |AÍC'| = + \AK\ = \AB\j \BC\ >
> \KB’\ + \CM\ = |DAÍ| + |CAÍ| = |CD| a současně
|CD| < |C'£>| = \AD\ = \AB’\ < \AB\. Jsou tedy obě dvě
ramena AD, BC lichoběžníku ABCD menší než větší základ-

D ty C

\

L\

N

r
/

a

A\a Лi

ВКА

Obr. 25
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na AB a větší než menší základna CD, což jsme měli do-
kázat.

Jiný důkaz: Označme r poloměr kružnice k, a úhel D/1S,
0 úhel CBA (obr. 25). Pak je <£ ADC = 180° - a, <£ DCS

a a

180° - /5, И*Г| = ИЛ/] =r cotg—, |DiV| = |DAÍ| = r tg -,

|CAř| = |CL| = r tg y, |SL| = |Siq = r cotg у, a tedy
/5

\AB| - r (cotg — + cotg —J ,

|CD| = r (tg —
P

+ t4>’

\AD\ = r ^tg у + cotg y) ,

a

P P
\BC\ =* r ^tgy + cotg yj .

Protože je ABCD lichoběžník, je a + /3 Ф 180°, a tudíž
a /5 a P /5 a

cotg у =č tg у. Je-li cotg у < tg у, je cotg у < tg у, а
PP a

tudíž cotg у + cotg у < cotg у + tg у < tg у + tg у ,

tj. \AB\ < \AD\ < \CD\ a zároveň \AB\ < \BC\ < |CD|.
a /5

Obdobně bychom postupovali v případě cotg у > tg y.
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61. Předpokládejme, že body C, D na dané kružnici k
(obr. 26) tvoří s body A, В rovnoramenný lichoběžník se
základnami BC, AD. Označme o osu tohoto lichoběžníku
a k! kružnici souměrně sdruženou ke kružnici k podle osy o.

Kružnice k' prochází body А, В a má stejně velký poloměr r

jako kružnice k. Odtud vychází konstrukce úlohy. Sestrojíme
kružnici k' o poloměru r (r je poloměr kružnice k), která
prochází body A, B. Dále sestrojíme osu o souměrnosti
kružnic k, k' а к bodům А, В body D, C souměrně sdružené
podle osy o. Musíme však nyní ověřit, zda obdržené body
C, D splňují podmínky úlohy. Podle jejich konstrukce je
\AB\ — \CD\ a AD\\BC. Přesto netvoří body А, В, C, D
rovnoramenný lichoběžník, jestliže nastane některá z těchto
situací:

a) Úsečky AB, CD mají společný bod (obr. 27). Tento
případ nastane právě tehdy, když má osa o společný bod
s úsečkou AB. Body А, Б, C, D pak tvoří trojúhelník nebo
nekonvexní čtyřúhelník.
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b) Úsečky AB, CD jsou rovnoběžné s osou o, ABCD je
pravoúhelník (obr. 28).

c) Úsečky AB, CD jsou na osu o kolmé, body А, В, C, D le-
ží na jedné přímce (obr. 29).

Proveďme teď diskusi řešitelnosti úlohy. Je ihned vidět, že
úloha nemá řešení, jestliže je \ AB\ > 2r, protože pak neexistu-
je kružnice k'. Nechť je tedy \AB\ ^ 2r. Rozlišíme čtyři
případy:

1. Body А, В leží na kružnici k. Jsou-li body А, В krajní
body průměru kružnice k, nemá úloha řešení, protože
jediná kružnice o poloměru r, procházející body A, B,
je kružnice k sama a každá její osa prochází středem
kružnice, protíná tedy úsečku AB. Je-li \AB\ < 2r, existu-
je kromě kružnice k ještě jedna kružnice téhož poloměru,
procházející body A, B. Jenže osou souměrnosti, podle
které jsou tyto kružnice souměrně sdružené, je přímka AB,
což nevede к řešení úlohy. Můžeme však vzít libovolný
průměr o kružnice k, neprotínající úsečku AB, a body
D, C souměrně sdružené podle о к bodům А, В jsou
řešením úlohy, která má v tomto případě nekonečně mnoho
řešení.

2. Jeden z bodů А, В leží na kružnici k, druhý nikoli. Úloha
nemá řešení, protože osa o má společný bod s úsečkou AB.

3. Ke stejnému výsledku dospějeme v případě, kdy jeden
z bodů А, В leží ve vnitřní a druhý ve vnější oblasti
kružnice k.

4. Body А, В jsou oba z vnější nebo oba z vnitřní oblasti
kružnice k. Jsou-li stejně vzdáleny od středu kružnice k,
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je AB || o, kde o je osa souměrnosti, podle níž je kružnice k
souměrně sdružená s libovolnou kružnicí téhož poloměru,
procházející body A, B. Úloha pak nemá řešení. V opáč-
něm případě musíme ještě vyloučit situaci, při které je
АВ J_ o. Ta nastane, jestliže přímka АВ protíná kružnici k
v tětivě KL stejně velké, jako je úsečka AB. Je-li KL
průměrem kružnice k3 nemá úloha řešení (obr. 30). Není-li
KL průměrem kružnice k (obr. 31), existují dvě kružnice

O O

L

к
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o poloměru г, procházející body A, В, pro jednu z nich
je sice AB J_ o, druhá však vede к jednomu řešení úlohy.
V nevyloučených případech má úloha vždy jedno řešení,
je-li \AB\ — 2r, a dvě řešení pro \AB\ < 2r.

62. Označme га, гв, re, r# poloměry kružnic кл, кв,
kc, кв. Podle podmínek úlohy je га + гв — а, гв + rc = b,
гс + гв = с, гв + га — d. Sečteme-li první a třetí rovnici
a od součtu odečteme druhou a čtvrtou rovnici, dostaneme
dokazovaný vztah a + c = b + d. Nechť je obráceně tento
vztah splněn. Zvolme libovolně hodnotu га v intervalu
(0, d) a položme гв = d — га, гс — с — d + га, гв = b —
— с + d — га. Рак je též га + гв — a. Ptejme se ještě,
zda můžeme zvolit га tak, aby i гв, гс, гв byly kladné. Tyto
hodnoty budou kladné, bude-li kromě nerovností 0 < га < d
platit také a — Ъ — c + d > ya> d — c. Zvolme tedy гa

tak, aby max[0, d — с] < га < min[<i, a]. To lze právě
tehdy, když je d — c < a, což platí, protože je d — c =
= a — b.

63. Poloměry kružnic k\, kz, ks označíme n, з*з. Podle
podmínek úlohy platí n + rs = 4, rs + гз — 3, r± + г% = 5,
odkud plyne r± = 3, = 2, гз = 1. Označme ještě r poloměr
kružnice k a S její střed. Pak platí (obr. 32)

x2 + у2 — (1 + r)2, x2 + (3 — y)2 = (2 + r)2,

(4 — x)2 + y2 — (3 + r)2. Odtud plyne odečtením první
r r

rovnice od druhé a od třetí x = l — —,y = l — — a po do-

115



sazení těchto hodnot do rovnice x2 + y2 = (\ + r)2 dostane-
me rovnici 23r2 + 132r — 36—0, která má jediný kladný

6
kořen r = —

23'
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64. Uvažujme trojúhelník SXY3 kde X, Y jsou body
kružnice k (obr. 33). Označme U střed tětivy XY а и =
= |5Í7| (0 < и < r) a vypočítejme poloměr x kružnice к

vepsané trojúhelníku SXY. Střed kružnice к označíme Z
a patu kolmice vedené bodem Z к přímce 5 Y označíme V.
Z podobnosti pravoúhlých trojúhelníků UYS, VZS plyne

]/r2 — u2\UY\ \VZ\
|F5| “ \ZS\

x

, tj.
и — Xr

odkud dostáváme

и ]/r2 — u2
r + ]jr2 — u2

ur

\SZ\ = и — x —X —

r + ]/r2 — и2

Označíme-li ještě z = \SZ\, dostaneme z poslední rovnice
postupně

zr + z |Ir2 — u2 — nr3

z ]/r2 u2 = r (u z') 3

z2r2 — z2u2 — r2u2 + r2*2 — 2uzr2,

a protože и Ф 03 je

2r2
и =

r2 + z2 Z'
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Nechť je obráceně dán bod Z tak, že pro z = |.SZ| platí
0 < z < r. Na polopřímce SZ sestrojíme bod U tak, aby
platilo

2r2
SU\ = и = Г2 + Z2 Z"

2r2
Protože je z < r, je > 1 a 2rz < r2 + z2, tedyr2 + z2
z < и < г. К bodu U sestrojíme tětivu X Y kružnice k tak,
aby bod U byl jejím středem. Střed kružnice vepsané troj-
úhelníku SXY leží na polopřímce SU ve vzdálenosti

2r2zur

od bodu S. Dosadíme-li za и výraz
r2 + z2r + |jr2 — u2

zjistíme, že je tato vzdálenost rovna z. Je tedy středem kruž¬
nice vepsané trojúhelníku SXY daný bod Z. Tím jsme doká-
žali tvrzení, obsažené v úloze. Ke každému bodu Z z vnitřní
oblasti kružnice k, různému od jejího středu S, jsme sestro-

jili bod U a na kružnici k body X, Y tak, že bod Z je středem
kružnice vepsané trojúhelníku SXY.

65. Označme střed hledané kružnice M. Kružnice se

středem M o poloměru q dělí kružnici k právě tehdy na dvě
polokružnice, jestliže platí q2 = r2 + |5AÍ|2, tj. \SM\ =

= Ve2
šitelnosti úlohy: q > r. Hledaná kružnice o poloměru q má
procházet bodem A, tedy | AM\ = g. Bod M musí tedy ležet
na průniku kružnic ki3 k^3 kde k\ má střed v bodě 5 a poloměr
j/o2 — r2, kružnice k<i má střed v bodě A a poloměr o. Tyto
kružnice mají právě tehdy společný bod, jestliže je

r2 (obr. 34). Tím dostáváme první podmínku ře-
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í? — |4>2 — r2 |*Sz£| ^ q + ]/o2 — r2.

To je další podmínka řešitelnosti úlohy. Obráceně: Jsou-li
tyto dvě nerovnosti a samozřejmě též nerovnost q > r spině-
ny, mají kružnice kis kz aspoň jeden společný bod a každý
jejich společný bod M je středem kružnice o poloměru q, která
e řešením naší úlohy.

66. Označme opět M střed hledané kružnice. Podle pod-
mínek úlohy má platit q2 — r\ + |5iM|2 a zároveň r\ =
= q2 + I^AÍI2, tedy |5iAř| = ]/q2 — r\ a současně |5гМ| =
= ]/r| — q2. Nutnou podmínkou řešitelnosti úlohy je tedy
splnění nerovností n < q < rz, |jlr\ — q2 — ]4>2 — r\| ^
^ 1ЗД ^ У^2 — q2 + j/o2 — r\. Stejně jako v předchá-
zející úloze můžeme ukázat, že splnění těchto čtyř nerovností
je též postačující podmínkou pro existenci řešení.

67. Nechť trojúhelník ABC má požadované vlastnosti
(obr. 35). Označme D střed přepony a T těžiště. Předpoklá-
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dejme, že je dána délka t těžnice na stranu BC, v opačném
případě bychom zaměnili označení bodů A, B. Víme, že

2t
\AT\ — —, protože těžiště dělí těžnici v poměru 2:1. Dále3

c

víme, že |C£>| = —, protože v pravoúhlém trojúhelníku je

střed přepony středem kružnice trojúhelníku opsané. Pak je
c

\TD| = —. V trojúhelníku ADT tedy známe velikosti všech6

jeho tří stran. Známe-li trojúhelník ADT, můžeme, již sestro-
jit trojúhelník ABC. Stačí sestrojit bod В tak, aby bod D
byl středem úsečky AB, a na polopřímce DT bod C tak,

c

aby \DC\ = 3 \DT\ — —. Takto vzniklý trojúhelník je pra-

voúhlý a má těžiště v bodě T. Úloha je řešitelná právě tehdy,
c

existuje-li trojúhelník ADT s předepsanými stranami —,

c 21
a ten existuje právě tehdy, platí-li c < 2t < 2c.6 3
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68. Předpokládejme, že trojúhelník ABC má požadované
vlastnosti, a označme D střed strany AB (obr. 36). Známe
velikosti stran AB, АС a víme, že \CD\ : \CB\ = 3 : 2.
Patří tedy bod C do množiny všech bodů, jejichž poměr
vzdáleností od bodů D, В je 3 : 2. Do této množiny patří

\E

bod F úsečky DB, který ji dělí v poměru 3 : 2, a také bod E
na polopřímce DB, pro který je \DE\ = 3\DB\. Ukážeme,
že množinou všech bodů X, pro které platí \XD\ : \XB\ =
= 3 : 2, je kružnice k nad průměrem FE (tzv. Apolloniova
kružnice). Předpokládejme, že bod X leží na kružnici k.
Spojme bod X s body D, В i F a E, bodem В veďme rovno-
běžku s přímkou DX, její průsečíky s přímkami FX, EX
označíme Y, Z. Z podobnosti trojúhelníků DXF, BYF
plyne !DX\ : \BY\ — \DF\ : |AF| = 3 : 2, z podobnosti troj-
úhelníků DXE, ВZE plyne \DX\ : \BZ\ = \DE\ : \BE\ =
= 3:2. Porovnáním těchto dvou úměr dostáváme \BY\ =
— \BZ\. Je tedy bod В středem přepony pravoúhlého troj-
úhelníku YXZ, a proto \BY\ = \BZ\ = \BX\. Dosazením
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\BX\ za \BY\ do první z odvozených dvou úměr dostaneme
\DX\ : \BX\ —3:2. Musíme ještě ukázat, že body mimo
kružnici k tuto vlastnost nemají. Zvolme bod U (obr. 37),
který neleží na kružnici k, jeho spojnice s bodem В protne
kružnici k v bodech R, S, pro které platí \DR\ : \BR\ =
= \DS\ : \BS\ —3:2, jak jsme právě dokázali. Bodem U
vedeme rovnoběžky s přímkami DR, DS, jejich průsečíky
s přímkou DB označíme K, L. Je pak \KU\ : \BU\ =
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- \DR\ : \BR\=3: 2 a zároveň \LU\ : BU = IDS| : \BS\ =
— 3:2. Kdyby platilo též \DU\ : BU —3:2, muselo by
platit \KU\ = \LU\ = \BU\, bod U by měl od tří na-

vzájem různých bodů К, B, L přímky DB stejnou vzdále-
nost, což nemůže nastat.

Vraťme se к naší úloze. Víme, že bod C leží na kružnici k
sestrojené nad průměrem FE (obr. 38). Současně však leží
na kružnici se středem A as poloměrem b. Podle těchto
vztahů můžeme trojúhelník ABC sestrojit. Zvolíme úsečku
AB velikosti c, sestrojíme body F, E a kružnici k nad prů-
měrem FE. Existuje-li průsečík C kružnice k s kružnicí
(A, b), který neleží na přímce AB, je trojúhelník ABC řešením
naší úlohy. Úloha má tedy až na shodnost nejvýše jedno
řešení, protože druhý průsečík obou kružnic by vedl pouze
к trojúhelníku souměrně sdruženému podle přímky AB.
Toto řešení existuje právě tehdy, když se budou uvažované

4c
dvě kružnice protínat ve dvou bodech. Je \ AF\ = —, \AE\ =

7c
— 2c, proto \AO\ = —, kde je O střed kružnice k, jejíž

5

3c
poloměr je —. Naše úloha má tedy právě tehdy řešení,

platí-li

b — 3c\ 7c b + 3c 4c
<J< č~, 4-J < b < 2c•5

К tomuto výsledku bychom došli snadněji, kdybychom si
uvědomili, že se uvažované dvě kružnice protínají ve dvou
bodech právě tehdy, když je \AF\ < b < \AE\.
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69. Předpokládejme, že trojúhelník ABC splňuje podmínky
úlohy, označme <£BAC = a, tedy PflABC = 2a (obr. 39).
Dále označíme Q průsečík přímek AB, p a a — \QA\, b =
= \QB\. Protože proti většímu úhlu leží v trojúhelníku větší
strana a obráceně, je \AC\ > [UČ], a tudíž \AQ\ > \BQ\,
tj. a > b. To je nutná podmínka řešitelnosti úlohy, dále
budeme předpokládat, že je splněna. Mohli bychom vyšetřit

a

a-b

2a
В

b

Q\ x P

Obr. 39

nejdříve množinu všech bodů X, pro které platí <^ABX —

= 2 .PíBAX, a najít její společné body s přímkou p. Touto
množinou je část hyperboly, nepočítáme-li polopřímku
opačnou к polopřímce BA. To však přesahuje rámec středo-
školské matematiky, a proto si ukážeme raději jiný postup,
vlastně dva postupy. První postup není zrovna pěkný. Neví-
me-li totiž, jak na to, zkusíme třeba vzdálenost x = \QC\

x x

vypočítat. Podle podmínek úlohy je — = tga, — =

= tg (180° — 2a) = — tg 2a. Ze vzorce pro tangens dvojnásobné-
ho úhlu pak vyplývá x2 = a2 + 2ab, protože x — 0 není řešením
naší úlohy. Pak je podle Pythagorovy věty \AC\ = |/a2 + x2 =
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= ]j2a(a + b), \BC\ = ]/b2 + x2 — a + b. Zvolíme-li obrá-
ceně na přímce p bod C tak, že \BC\ = a 4- ů, zjistíme
užitím trigonometrických vztahů, že 2.<fBAC — <jlABC.
A protože vzdálenost bodu В od přímky p se rovná b,
b < a + b, má úloha vždy dvě řešení (stále předpokládá-
me a > b).

Když už teď řešení úlohy známe, pokusíme se je vylepšit,
najít elegantnější postup. Nechť je trojúhelník ABC řešením
úlohy (obr. 40). (Podle předcházejícího víme, že je \BC\ —

= a + by to však nepoužijeme.) Sestrojme na polopřímce
BQ bod A' tak, aby byl trojúhelník BCA' rovnoramenný,
\BC\ = \BA'\. Protože tento trojúhelník má při vrcholu В
úhel 180° - 2a, je <£BA'C = a, tj. <£QA'C = ^CQAC.
Pak je bod A' bodem souměrně sdruženým к bodu A podle
přímky p. Důsledkem toho je \QA'\ — a, \BA’\ = a + b,
tudíž \BC\ = a + b. Zvolme obráceně na přímce p bod C
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tak, aby \BC\ — a + b, a nechť je A' bod souměrně sdružený
к bodu A podle přímky p. Pak je trojúhelník BCA' rovnora-

menný, tedy <X.BAC = <£.BA'C = <^BCA', označme veil-
kost těchto úhlů a. Z trojúhelníku BCA' pak plyne, že
<£A'BC = 180° — 2x, tudíž <£ABC = 2oc. Stejně jako při
předcházejícím postupu vidíme, že úloha má pro a > b
vždy dvě řešení, jinak řešení nemá.

70. Předpokládejme, že v trojúhelníku ABC není žádná
strana větší než 3 a že AC je jeho nejdelší strana, tj. \AB\ ^
^ |AC\ a současně \BC| ^ \AC\ ^ 3. Sestrojme rovnostran-

ný trojúhelník ADC tak, aby body J3, D ležely v téže polo-
rovině, ohraničené přímkou AC (obr. 41). Protože je \AB\ <

^ \AC\, leží bod В ve vnitřní oblasti kružnice (A,\AC\).
Stejně tak leží bod В ve vnitřní oblasti kružnice (C, \AC\).
Tj^to dvě kružnice se protínají v bodě Dav bodě к němu
souměrně sdruženém podle přímky AC. Leží tedy bod B,
a tím i celý trojúhelník ABC ve vyšrafované části, která leží
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celá v kruhu, jehož hraniční kružnicí je kružnice opsaná

trojúhelníku ADC. Její poloměr je r =

třetinám výšky v rovnostranném trojúhelníku o straně \AC\).
Jelikož je \AC\ ^ 3, je r ^ j/3. Tím jsme dokázali, že troj-
úhelník ABC leží v kruhu, jehož poloměr se nejvýše rovná ]/3.

| AC\
(rovná se dvěma

P

71. Označme a, b, c délky stran a a, /?, у velikosti úhlů
trojúhelníku ABC obvyklým způsobem, V a U nechť jsou
těžiště trojúhelníků ACD а ВСЕ (obr. 42). Potom otočení
kolem bodu A, které převede polopřímku AC do polopřímky
AB, zobrazí polopřímku А V na polopřímku AM. Proto je
<CVAM = a, stejně tak je <£MBU = p. Dále je |£>K| =

b a

\AM\ =-=, \BU\ =

уз
. Jsou tudíž trojúhelníky>5 уз

a

ABQAMVa MB Upodobné,důsledkem toho je | VM\
уз

127



b
= \EU\, \MU\ = -= = \DV\. Porovnejme ještě úhly DVM,

Уз
MUE. Je <£DVM = 120° + = 120° + 7 a totéž
platí pro <£MUE. (To ovšem za předpokladu у ^ 60°,
v opačném případě je analogicky <^DVM = <^MUE =
= 360° — (120° + y) = 240° — y.) Jsou tedy trojúhelníky
DFAf, MUE shodné, v případě у = 60° jsou to shodné úseč-
ky. V každém případě je \DM\ — \ME\. Zbývá ještě vypočí-
tat velikost úhlu DME. Víme, že v případě у ^ 60° je
<£VMA = & = 120°, <£BMU = a. Velikosti úhlů
UME, FAfZ) sice neznáme, víme však, že <^UME —

= <£FDAf a že <£FAfZ) + <£F£>AÍ = 180° - <XDFM =
= 60° - у, takže + <£FAfZ) - 60° - y. Pak
je <£Z)M£ - 360° - <£FAM - <£ЛАГВ - <£BMU +
+ <£UME + <£VMD = 360° - /9 - 120° - a + 60° -
— у — 120°. Podobně bychom postupovali v případě
у > 60°.

72. Označme O průsečík výšek v trojúhelníku ABC
a Oi, O2, Оз body souměrně sdružené к bodu O podle stran
ВС, АС, AB trojúhelníku (obr. 43). Kružnice nad průměrem
АО prochází patami výšek vedených body В a C, proto je
<£CAB + <£02003 = 180°. Je ale ^C02003 = <£COB =
- <£СОхВ, tedy 4:COiB + CAB = 180°, přičemž přím-
ka CB odděluje body Oi, A. Proto je čtyřúhelník ACO\B
tětivový, jinými slovy bod Oi a stejně tak body 02, 03 leží
na kružnici opsané trojúhelníku ABC (označme ji k). Zvolme
na kružnici k libovolný bod M, různý od bodů А, В, C.
Označme M%, М3 body souměrně sdružené к bodu M
podle přímek АС, AB. Ze souměrnosti podle přímky AC
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plyne <£AOM2 = <£Л02М, obdobně <£АОМ3 = <£А03М.
Body А, М, 02) 03 leží na kružnici k, proto se buď úhly
A02M, A03M sobě rovnají, nebo se jejich součet rovná
přímému úhlu. Totéž musí proto platit i o úhlech AOM2,
AOM3. Leží tudíž body O, M2, M3 na jedné přímce. Po-
drobný důkaz by však vyžadoval ještě diskusi podle polohy
bodu M, popřípadě zavedení orientovaných úhlů. Podobně
se dokáže, že i body M2, Mi leží na jedné přímce, procházející
bodem O, a tím je dokázáno, že všechny body O, Mi, M2,
M3 leží na jedné přímce. S malými obměnami si můžete
tvrzení rílohy dokázat i pro trojúhelník, který není ostro-
úhlý.

73. Předpokládejme, že trojúhelník UVW požadovaných
vlastností existuje. Protože strany trojúhelníku UVW jsou kol-
mé к stranám trojúhelníku BCA, jsou tyto trojúhelníky podob-
né. Existuje tedy kladné číslo k tak, že |BC| = k\UV\3 \AC\ =
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= k\VW\3 \ЛВ\ — k\ UW\, tedy |fiC| . \UV\ = k\UV\*,
\AB\ . \UW\ = k\UW\2, \AC\ .\VW\= k\VW\*. Protože
\UV\ — \AP\ a analogicky pro další strany trojúhelníků,
jsou levé strany posledních tří rovnic sobě rovny, rovnají se
totiž dvojnásobnému obsahu trojúhelníku ABC. Pak tedy
nutně platí | UV| = | UW\ = | VW\3 a tudíž je původní troj-
úhelník rovnostranný. К rovnostrannému trojúhelníku mů-
žeme zřejmě sestrojit trojúhelník UVW, který je opět rov-

nostranný.

74. Doplňme trojúhelník ABC na rovnoběžník ABDC
(obr. 44). Označme V střed úsečky BD. Pak jsou ARVP3
BVCO rovnoběžníky. Stačí tedy za trojúhelník UVW zvolit
trojúhelník RVC. Označíme-li 5 obsah trojúhelníku ABC,
je obsah rovnoběžníku ABDC roven 25, obsahy trojúhelníků

5 S
AUCa CVD jsou — a obsah trojúhelníku UBV je —. Proto

2 4

35
je obsah trojúhelníku UVW roven —, poměr obsahů troj¬

3
úhelníků UVW a ABC je —4

DC=W

/
/

/PQ V
/

/
x"

ВA R=U

Obr. 44
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75. Délky úhlopříček AC, BD označíme u, v, délky stran
čtyřúhelníku označíme a — \AB\, b = |BC|, c = \CD\, d =
— \DA\, střed úsečky BD označíme M (obr. 45). Pak je \ CM\

b2 + c2
délka těžnice v trojúhelníku BCD a je |CM|2 = 2

v2
Tento vzorec pro délku těžnice si lehce odvodíme

4 '

Вa

Obr. 45

užitím Pythagorovy věty pro pravoúhlé trojúhelníky CPM,
CPD, СРВ, kde je P pata výšky v trojúhelníku CDВ

a2 + d2 v2
na stranu BD. Stejně tak je \AM\2 = 4 52

a2 + b2 + c2 + d2 — v2 u2
a tedy \AM\2 + \CM\2 =

(použili jsme předpoklad u2 + v2 = a2 + b2 + c2 + d2).
Podle trojúhelníkové nerovnosti je \AM\ + \CM\ ^ u, tedy
\AM\2 + \CM\2 + 2\AM\\CM\ > u2 - 2 (\AM\2 + \CM\2),
odkud plyne 0 ^ (\AM\ — |CAÍ|)2. Musí proto být \AM\ =

2 2

u2
= |CAÍ| a ze vztahu \AM\2 + \CM\2 =— ještě vyplývá

131



\AM\ — \CM\ = —. Pak je bod Mstředem úsečky AC. Tím

jsme dokázali, že se úhlopříčky čtyřúhelníku navzájem půlí,
a proto je čtyřúhelník rovnoběžníkem.

76. Čtyřúhelník je tečnový, body dotyku jeho stran
s kružnicí mu vepsanou označíme K, L, M, N (obr. 46).
Je \AK\ — |/2AT|, \BI<\ = \BL\ a podobně, tedy a + c =
= b + d. Podle prvního předpokladu úlohy platí a2 + b2 +

+ ac + bd = (a + c) (b + d). Dosadíme-li za b + d hodnotu
a + c a dělíme-li nenulovým číslem a + c, dostaneme b — c
a současně a — d. To znamená, že trojúhelníky ABD a BCD
jsou oba rovnoramenné se společnou základnou BD, tedy je
čtyřúhelník ABCD deltoid. Dosadíme-li d = a, c — b do
druhého předpokladu úlohy, dostaneme a = b. Pak jsou
všechny strany čtyřúhelníku stejně dlouhé, čtyřúhelník je
kosočtverec.
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77. Ze souměrnosti podle přímky AC vyplývá, že jsou
body M} Q a také N, P dvě dvojice bodů souměrně sdruže-
ných podle přímky AC (obr. 47). Proto jsou spojnice MQ,
NP obě kolmé na ЛС, a tudíž spolu rovnoběžné. Čtyřúhelník
MNPQ je proto podle přímky AC souměrný lichoběžník
nebo pravoúhelník. Poslední možnost nastane právě tehdy,
když je MN\\ AC |j PQ, tj. MN J_ MQ. Čtyřúhelník

MBNS je tětivový, lze mu opsat kružnici, protože má při
vrcholech M, N pravé úhly. Proto je <XNMS — <£NBS.
Označíme-li а, у velikosti úhlů BAS, BCS, je Sf,SMQ = a,

<£NBS = *£NMS = 90° -y tedy <£NMQ = <£NMS +
+ <£ SMQ = 90° + a —- y. Je tudíž čtyřúhelník MNPQ
právě tehdy pravoúhelník, když je a = y. A tato rovnost platí
právě tehdy, když jsou trojúhelníky ABD a CBD shodné,
neboli když je čtyřúhelník ABCD kosočtverec. Někdy se
však kosočtverec nepovažuje za deltoid, tak jako nepovažuje-
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me pravoúhelník za lichoběžník. Deltoidem se pak rozumí
čtyřúhelník, který je souměrný jen podle jedné své úhlopříč-
ky. Pak je ovšem čtyřúhelník MNPQ vždy jen lichoběžní-
kem.

78. Označení zvolíme podle obr. 48. Stejně jako v před-
cházející úloze jsou čtyřúhelníky AMSQ, BNSM3 CPSN
a DQSP tětivové. Proto je ASM — <£AQM, označme

tuto velikost a. Podobně /3 = <£MSB — <£MNB, у —

= ^PSC = <^PNC, <5 = *$PSD = ^PQD a a + /3 =
= y+d. Dále je <£PQM = 180° - (a + <5), <£РЛШ -
= 180° — (/9 + у). Čtyřúhelník PQMN je právě tehdy tě-
tivový (lze mu opsat kružnici), když je <)CPQM + *$iPNM =
= 180°, tj. a+jff + y+ <3 = 180°, tedy a + /8 = 90°, což
znamená, že jsou úhlopříčky čtyřúhelníku na sebe kolmé.
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79. Středy stran čtyřúhelníku tvoří rovnoběžník (obr. 49),
jehož strany jsou rovnoběžné s úhlopříčkami čtyřúhelníku.
Vrcholy rovnoběžníku leží právě tehdy na jedné kružnici,
když je to pravoúhelník. V našem případě to nastane právě
tehdy, když budou úhlopříčky daného čtyřúhelníku na sebe
kolmé. Podle předcházející úlohy je to podmínka ekvivalentní
s podmínkou, aby kolmé průměty průsečíku úhlopříček na

jeho strany ležely na kružnici.

80. Předpokládejme, že úhlopříčky AC, BD konvexního
čtyřúhelníku ABCD jsou na sebe kolmé. Zavedeme označení
podle obr. 50. Je pak a2 + c2 = и2 + x2 + v2 + j>2, b2 4-
+ d2 — x2 + v2 + и2 + у2, tedy a2 + c2 = b2, + d2. Nechť
je teď <3CASB Ф 90°, třeba <£ ASB < 90°. Pak je a2 < x2 +
+ u2, c2 < v2 + у2 a <^BSC > 90°, tedy b2 > x2 + v2,
d2 > u2 + y2. Důsledkem je nerovnost a2 + c2 < b2 + d2.
Obdobně bychom dokázali, že a2 + c2 > b2 + d2, kdyby-
chom předpokládali <KASB > 90°. Tím jsme dokázali, že
a2 + c2 = b2 + d2 právě tehdy, když jsou úhlopříčky čtyř-
úhelníku na sebe kolmé.
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81. Předpokládejme, že jsme body D, E již sestrojili.
Kružnice k, která je vepsána čtyřúhelníku ABDE, je i kruž-
ničí vepsanou trojúhelníku ABC (obr. 51). Kromě toho lze
podle předpokladu čtyřúhelníku ABDE i opsat kružnici,
proto je <£EAB + <£EDB = 180°. Přímka ED je tedy tečnou
kružnice k, pro kterou je <^EDB = 180° — x, a = <$iCAB.
Tím je již dána konstrukce tečny ED, kterou ovšem musíme
zvolit tak, aby neoddělovala body A, B. Označme 5 střed
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kružnice k а А', В', C body dotyku kružnice k se stranami
BC, CA} AB. Protože bod S leží na osách úhlů CAB3 EDB3

180° - aa a

je <£SAC' = -, <£SZb4' =

jsou pravoúhlé trojúhelníky SAC', DSA' podobné, takže
|5С'|:|ЛС'| = \DA'\:\SA'\. Víme,že |БЛ'| = \SC\ = q(po-
loměr kružnice trojúhelníku vepsané), odkud \AC'\ . \DA'\ =
= e2. Kromě toho je \AC\ = \AB'\, |СБ'| = |СЛ'|, |BC'| =
= \BA'\ а |СЛ'| + \ВА'\ = а, tudíž |ЛС'| - 5 - a, kde
je s poloviční obvod trojúhelníku ABC. Dále je sq obsah
trojúhelníku ABC a podle Heronova vzorce

= 90° - — Proto
2 ‘2

sq = J/s (s — a) (s — b) (s — c)-

Použitím všech těchto vztahů dostáváme

Q2 0 — b)(s — c) (s — a) (s — c)
\DA'\ = , |£B'|

5 a 5 5

(s — a) (s — c) a (s — c)
\CE\ — b — (s — a) —

ss

b(s — c)
, obvod čtyřúhelníku ABDE je proto\CD\ =

2c(2s — c)
s

82. Označme v tečnovém lichoběžníku ABCD vzdálenosti

jeho vrcholů od bodů dotyku kružnice vepsané se stranami
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lichoběžníku x,y,u, v podle obr. 52. Pro výšku z lichoběžníku
pak platí z2 = (у + у)2 — (у — у)2 = 4yv a stejně tak z2 =
— 4xu, takže je yv = xu. Délky ramen lichoběžníku jsou
x + и, у + v, jeho základny mají délky и + v, x + y.

Je (x + u) (y + v) — (u + v) (x + у) = (у — и) (л — v).
Kdyby bylo у — и, plynulo by ze vztahu yv = xu také v = x3

čtyřúhelník by byl kosočtvercem. Je-li у > и, je v důsledku
yv = xu také x > v a podobně je pro у < и také x < v.

Dr-%* I
уи,

z

У

A Вx У

Obr. 52

V každém případě je proto (я + и) (у + v) > (и + v) (x 4- у).
Odmocněním dostaneme dokazovaný vztah, protože geo-

metrický průměr dvou nezáporných čísel se rovná druhé
odmocnině jejich součinu.

83. Nechť pětiúhelník ABCDE splňuje podmínky úlohy
(obr. 53). Označme a úhel ВАС а /5 úhel DAE. Protože
<^BAE — 2-^LCAD, je ^yCAD = a + /?. Proto bod O
souměrně sdružený к bodu В podle přímky AC splývá s bo-
dem souměrně sdruženým к bodu E podle přímky AD a je
vnitřním bodem úhlu CAD3 který je ostrý, neboť se rovná
jedné polovině nevypuklého úhlu BAE. Využili jsme přitom
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též předpokladu rovnostrannosti daného pětiúhelníku. Z to-
hoto předpokladu též plyne \AO\ = \CO\ = |DO, neboť
\AO\ = \AB\ = \CB\ = |CO| a stejně tak \AO\ = \AE\ =
= \DE\ = |DO|. Je tedy bod O středem kružnice opsané
trojúhelníku ACD, a protože leží v jeho ostrém úhlu, je bod O
jeho vnitřním bodem. Je tudíž trojúhelník ACD nutně ostro-
úhlý. Trojúhelník CDO je rovnostranný, z věty o obvodovém
a středovém úhlu plyne <T CAD — \ <£ COD = 30°. Z těchto
úvah vyplývá konstrukce pětiúhelníku. Sestrojíme trojúhelní
ACDj v němž známe délky dvou stran AC, AD a úhel jimi
sevřený je 30°. Dále sestrojíme střed O kružnice opsané troj-
úhelníku ACD. Není-li trojúhelník ACD ostroúhlý, neleží
bod O uvnitř trojúhelníku ACD a úloha nemá řešení. V opáč-
ném případě tvoří body В a E souměrně sdružené к bodu O
podle přímek AC, AD zbývající dva vrcholy hledaného pěti-
úhelníku. Jaké jsou nutné a postačující podmínky, aby byl
trojúhelník ACD ostroúhlý? Je-li \AC\ = \AD\ cos 30°, je
trojúhelník ACD pravoúhlý s pravým úhlem při vrcholu C;
je-li \AC\ > \AD\ cos 30°, je v trojúhelníku A CD při vrcho-
lu C úhel ostrý a také obráceně, je-li úhel ACD ostrý, je spině-
na uvedená nerovnost. Podobně to platí pro vrchol D. Troj-
úhelník ACD je tedy právě tehdy ostroúhlý, když platí
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2\AC\ > \AD\]/3 a zároveň 2\AD\ > \AC\]/3,
tj-

\AD ||/3 2\AD\
< \AC\ <

P2

84. Z trojúhelníku BDF (obr. 54) je vidět, že přímky
BE, DA, FC jsou osami jeho vnitřních úhlů, protínají se
tudíž v jednom bodě, který označíme 51. Protože <£SBF —

= <£FBA a <ž£SFB = <^BFA a přímka BF odděluje body
S a A, jsou tyto body souměrně sdružené podle přímky BF,
tedy SA _L BF. To znamená, že přímka DS je výškou v troj-
úhelníku BDF, obdobně přímky FS a BS. Je tudíž bod 5
také průsečíkem výšek v trojúhelníku BDF, který je proto
rovnostranný. Protože Л a 5 jsou body souměrně sdružené
podle přímky BF a obdobně dvojice S, E podle přímky DF
a S, C podle BD, je šestiúhelník ABCDEF pravidelný.
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85. Uvažujme nejdříve čtyřstěny ABCD a A'B'CD
(obr. 55). Trojúhelníky ABC, A'B'C leží v téže rovině, jejich
základny leží na téže přímce a jsou stejně dlouhé, protilehlý
vrchol mají společný, mají tudíž stejné výšky к těmto základ-
nám, a tedy stejný obsah. Protože trojúhelníky ABC, A'B'C
mají stejný obsah a leží v téže rovině, mají čtyřstěny ABCD
a A'B'CD stejný objem. Stačí si totiž uvědomit, že tyto
čtyřstěny mají společnou výšku vedenou bodem D. Stejně
tak dokážeme, že čtyřstěny A'B'CD a A'B'CD' mají stejný
objem. Tím je pak dokázáno, že i čtyřstěny ABCD a A'B'CD'
mají stejný objem.

86. Stěny čtyřstěnu se stejně dlouhými protilehlými hra-
námi jsou navzájem shodné trojúhelníky (obr. 56). Sestrojme
si síť našeho čtyřstěnu. Dostaneme ji tak, že trojúhelníky
ABD, BCD a CAD otočíme podle přímek AB, BC, CA
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do roviny /4БС (obr. 57). Dostaneme tak trojúhelník A'B'C',
úsečky AB, BC, CA jsou jeho středními příčkami. Průsečík P
výšek trojúhelníku A'B'C je kolmým průmětem bodu D
do roviny ABC. To pochopíme snadno, stačí si rozmyslet,
jak se pohybuje vrchol D trojúhelníku ABD při jeho otáčení
do polohy ABC. Označíme-li Co průsečík přímek AB, CP,
je CoP kolmý průmět úsečky CoD. Proto musí být |CoP| <
< |c0i>;
< \AoA'\. Bod P je tedy vnitřním bodem trojúhelníku A'B'C,
který je tudíž ostroúhlý a stejně tak trojúhelník ABC. Obráce-

jCoC'l a stejně tak \B0P\ < \B0B'\, \AqP\ <
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ně, je-li trojúhelník ABC ostroúhlý, leží bod P uvnitř trojúhel-
niku A'B'C, ne nutně uvnitř trojúhelníku ABC, a dá se pak
z popsané sítě čtyř shodných trojúhelníků složit čtyřstěn
ABCD. Protože je trojúhelník o stranách a, b, c ostroúhlý,
jak budeme dále předpokládat, jsou hodnoty c2 + b2 — a2,
a2 + b2 — c2, a2 + c2 — b2 kladné. Vypočteme teď objem
čtyřstěnu ABCD. К tomu doplníme čtyřstěn na trojboký
hranol ABCDEF (obr. 58) čtyřbokým jehlanem CBEFD.

Stěna CBEF je kosočtverec, který rozdělíme úhlopříčkou CE.
Celý hranol je tak rozdělen na tři jehlany ABCD, CEFD
a CBED. První dva mají shodné podstavy ABC, EDF
a stejnou výšku (je to vzdálenost rovnoběžných rovin ABC,
EDF). Druhý a třetí jehlan mají též shodné objemy, protože
mají společný vrchol D a protější stěny leží v téže rovině
a mají stejný obsah. Víme tedy, že objem čtyřstěnu ABCD
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se rovná jedné polovině objemu jehlanu CBEFD. Jeho po-
bočné hrany DC a DE jsou stejně dlouhé, právě tak jeho
zbývající dvě pobočné hrany BD, FD. Proto je patou výšky
tohoto jehlanu vedené bodem D průsečík O úhlopříček CE>
FB kosočtverce CBEF. Označme \QE\ — \QC\ = x3 \QB\ =
— \QF\ = y, \QD\ — z. Podle Pythagorovy věty je

x2 + z2 = c2, y2 + z2 — b23 x2 + y2 = a2.

2xyz
Objem jehlanu CBEFD je - ^ a pro hledaný objem V čtyř-
stěnu ABCD tedy máme

1
V -

-

Xyz =

= T212 K£2 + t>- a2) (a2 + b2 - c2) (a2 + c2 - b2).

87. Úlohu můžeme řešit pomocí tzv. Menelaovy věty.
Podle ní je

\AR\ \BB'\ \DA'\
BR\ ídW\ IAA'\

k + 1
= 1, tedy \DA'\ = —— \AA'\.

К témuž výsledku bychom ovšem mohli dospět bez znalosti
Menelaovy věty. Stačí bodem A vést rovnoběžku s A'B\
její průsečík s přímkou DB označíme X (obr. 59). Z podob-
nosti trojúhelníků RB'B, AXB a též DA'B';, DAX dostaneme
též výše uvedený vztah. Čtyřstěny ABCD, A'B'C'D mají
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stěny ABD, A'B'D v téže rovině. Vzdálenost bodu C od
této roviny se rovná dvojnásobku její vzdálenosti od bodu C.

(k + 1) \AA'\ k + 1
Protože \DA'\ = , je \DA'\ = \DA\,k 2 k + 1

\DB\
——. Je proto obsah trojúhelníku DA'B' ro-dále je |D5'| -

k + 1
násobku obsahu trojúhelníku DAB. Uvážíme-liven

2 (2k + 1)
ještě poměr výšek obou čtyřstěnů к těmto stěnám, vidíme, že

k + 1
hledaný poměr je 4 (2k + 1)'

88. Kulová plocha x, která prochází body A, В, C, D,
protíná rovinu ABD v kružnici opsané pravoúhlému troj-
úhelníku ABD, střed O této kružnice je středem přepony AB
(obr. 60). Proto leží střed 5“ kulové plochy x na kolmici ve-
děné bodem О к rovině ABD. Stejně tak leží bod 5 na přímce

145



rovnoběžné s přímkou DB procházející středem M úseč"
ky AC. Úloha přímo vybízí к analytickému řešení. Zvolíme-11
počátek soustavy souřadnic v bodě D, přímky DA, DB, DC
za osy x, y, z, je A — {a, 0, 0], В — [03 b, 0], C = [0, 0, с].

a b c

3 ’ J’ 3

\ a b ca b
Pak je O - —, 0 , U= - , T

j/u2 + b2 + c2a b c

J’J’Jra S = takže \ST\ = , zatímco
4

]ja2 + b2 + c2
pro poloměr r kulové plochy x je r = |Szí [ 2

takže r = 2|5Г|.

89. Označme a délku strany čtverce АВCD a v výšku
jehlanu VABCD, jehož objem je tedy V — a2v. Je EF\\ AB
a \EF\ : |CZ)| = q, tedy \EF\ = aq (obr. 61). Veďme bodem F
rovinu rovnoběžnou s rovinou ВЕС, její průsečíky s přímkami
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AB a DC označíme G a H. Dostaneme tak trojboký hranol
FGHEBC a čtyřboký jehlan ADHGF. Objemy těchto těles

Pv'
jsou Vi = j kde je P obsah obdélníku HGBC, v' je

výška hranolu, tj. vzdálenost bodu E od roviny ABC, tedy
V\ — \a2iq{ 1 — q)v 2l V2 =^a2(l — q)2v3 sečtením dostane-

(1 - q){2 + q)
me objem tělesa AFDBEC, který se rovná a2v 6

Odečtením tohoto částečného výsledku od objemu celého
jehlanu dostaneme objem jehlanu AFEBV, který se tudíž

a2vq (1 + q)
rovná hodnotě , hledaný poměr je pak6

gQ + q)
(1 -í)(2 + ?)’
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90. Předpokládejme nejdříve, že řešení úlohy existuje.
Označme O střed polokoule a Si3 S23 S3 středy vepsaných
kulových ploch, r jejich poloměr. Body 5i, Sz, S3 tvoří
rovnostranný trojúhelník o straně 2r, takže jejich vzdálenosti d

od středu 5 rovnostranného trojúhelníku jsou —-—.3
• - Ч1ТОГГ"-

Rovina SOSi protne polosféru v polokružnici o poloměru 10
a první vepsanou plochu kulovou v kružnici o poloměru r

(obr. 62). Tato kružnice se dotýká uvažované polokružnice
v bodě Tiy body O, 5í, Ti leží v přímce, takže |OSi| =
= 10—r. Zároveň je

5(|/21 -3)2

|OSi|2 = r2 + , tedy r = 2

d = 5 (]/7 — ]/з). Obráceně se dá ukázat, že tři sféry o vy-
počteném poloměru r, jejichž středy mají od osy polokoule
vzdálenost d a tvoří rovnostranný trojúhelník, jsou řešením
úlohy.

O

Obr. 62
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