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PFfedmluva

V brozuie Vybrané ulohy matematické olympiddy - ka-
tegorie B, C, kterou sestavil roku 1971 kolektiv vedeny
profesorem M. Zedkem, byly shrnuty nejzajimavéjsi dlohy
prvnich patndcti roéniki MO. KdyZ kon¢il 30. ro¢nik, roz-
hodlo se pfedsednictvo UV MO vydat vybrané tlohy z dal-
§ich patndcti roCnikd. V té dobé teprve vznikaly nové uceb-
nice matematiky pro gymndzia a rozdéleni litky do jednotli-
vych rocnikdi nebylo je§t¢ definitivni. Bez ohledu na to,
ve které kategorii se vyskytly, jsme tedy nejinstruktivnéjsi
tlohy z kategorii Ba C 16.—30. ro¢niku MO rozdélili do dvou
brozurek. Technicky jednodu$s$i ulohy nevyZzadujici velké
znalosti jsme zafadili do svazku vénovanému kategorii C
a ulohy, které se ndm zddly sloZit&jsi, pfiSly do svazku véno-
vaného kategorii B.

Doufime, Ze obé takto vzniklé knizky se budou hodit
vedoucim matematickych krouzkt, ucitelim matematiky
i ucastnikim MO, a piejeme jim mnoho uspéchii nejen
v matematické olympiddé, ale i vSude tam, kde budou mate-
matiku potiebovat.

Autofi






ULOHY



Rovnice

1. Urcete vSechny dvojice redlnych cisel x, y, pro které
plati

lx+ 1+ y+1=|x+y+ 1]

2. V oboru redlnych cisel feSte soustavu rovnic o tfech
neznamych

x(y+2 y@E+zx 2(x+y)
4 9 10

23
xy + y2 + zx=gxyz.

3. V oboru redlnych d&isel feSte soustavu n + 1 rovnic
o n + 1 neznidmych

Xp X0 + Xp—1%1 + Xp—2%X2 + ... + x0xp = 2Kxg
(k=0,1,2,...,n).

4. Najdéte nutnou a postacujici podminku pro koeficienty
rovnice

x3 + ax?2 + bx +c¢c=0,
aby dva jeji kofeny byly nenulovd opacnd redlnd Cisla.
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Rovnice s parametry
5. V oboru redlnych &isel najdéte vSechna feseni rovnice
2x — |x| + a|x —a| =0,

kde x je nezndmd a a je redlny parametr.
6. V oboru redlnych Cisel feSte soustavu rovnic

¥ + xy =a® + ab
¥? + xy = a? — ab,
kde x, y jsou nezndmé a a, b redlné parametry.
7. Uréete vSechny kladné hodnoty parametru a, pro néz
m4d soustava rovnic
|* —al + a=|x] + |y
x+2y=2
s nezndmymi x, y prdvé tfi feSeni v oboru redlnych disel.
8. Najdéte vSechna redlnd Cisla a, pro kterd plati: MnoZina

vSech bodu roviny [x, y], jejichZ soufadnice vyhovuji rovnici

[x+y +alyl=1,

vyplni obvod pravotihelniku.
9. V oboru redlnych Cisel feSte soustavu rovnic s neznd-
mymi x, y
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2x + py = 16
x—2y=3%p?
(p—1x+2y=12p — 6.

Provedte diskusi vzhledem k redlnému parametru p.
10. Kolik feSeni méd v oboru redlnych Cisel soustava

rovnic
b
ax +—=1
y
a
by +—=1
x

s neznamymi x, y? Provedte diskusi vzhledem k danym
redlnym ¢islam a, b.

11. V oboru redlnych Cisel najdéte feSeni soustavy linedr-
nich rovnic
x —a’y + a?z =1
a®x —y + az = —1

ax —ay + z2=1

s nezndmymi ¥, y, £ a redlnym parametrem a.
12. Jsou ddna redlnd Cisla a, b. Najdéte vSechny Ctvefice
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nezdpornych redlnych cisel x1, x2, x3, xs, které vyhovuji
soustavé rovnic

X1 — X2 —=a

x3—x4:b

x1 4 %2 + x3 4 x4 = |fa2 + b2
Nerovnosti

13. Dokazte, Ze pro kazdd dvé kladnd cisla p, ¢ plati:
Jestlize pg < 1, pak

s

Kdy nastane rovnost?
14. Necht #n je pfirozené Cislo a a, b redlnd Cisla, pro kterd
plati

a=b=0.
Dokazte, ze potom

ar —bn = (a — by,

Urcete vSechny pfipady, kdy plati rovnost.
15, Jsou-li x1, x2, ..., x, kladnd ¢isla, pak plati
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X1 X2 Xn—1 Xn
— + + ...+ + —=n;
Xn Xn—1 X2 X1

dokazte. Kdy nastane rovnost?
16. Predpoklidejme, Ze pro redlnd d&isla x1, X2, ..., xn
plati
X1+ X2+ ...+ x,=0.
Oznacime-li nejmens$i z nich m a nejvétsi M, dokaite, Ze
X+ x5 o+ xRS — nmM.
Kdy nastane rovnost?
17. Je dano 2n + 1 redlnych CdCisel a1, ag, ..., +1
(n = 2) uspofddanych podle velikosti
a<a<...<am+1.
Kazdému jejich pofadi x1, x2, ..., X2n 41 pfifadime soucet

|x1 — xa2| + [¥2 — x3] + ...+ [X2n — Xon +1] + |¥X2m +1— 21l

Dokazte, Ze nejvétsi soucet dostaneme pro pofadi
a1y Ap +25 A2, Ap +35 -+ -5 Ans A2n + 15 An + 1.

Nerovnice

18. Nalrtnéte mnozinu viech bodid v roviné, jejichz
soufadnice x, y vyhovuji nerovnici
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1= |lx+y —[x—yl|=2

19. Naértnéte mnozinu vsech boda v roviné, jejichz sou-
fadnice x, y vyhovuji nerovnici

(2% — 1323 + 36x) (x* — 17x2 + 16) =0
(y5 — 1398 + 36y) (y* — 172 + 16) —

Funkce

20. Je ddna funkce redlné proménné

+1— |/ — =1
2x 2x

1 + x2 1+ x2
+14+ }/——1
2x 2x

Urcete jeji definiCni obor a sestrojte jeji graf.
21. Funkce proménné x

ll+x2 14+ x2

y = x

y=alx| + b|x — k|

nabyvé hodnoty 0 pro x = —1 a pro x = 3; nejvétsi hod-
nota, které nabyvi, je 2. Urlete konstanty a, b, k a nakreslete
graf funkce.

22. Najdéte vSechny kvadratické funkce f(x), které spliiuji
pro viechna redlnd ¢isla x podminku

f@x + 1) = 4 f(—2).
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23, Jestlize kvadratickd funkce
fx) =ax? + bx + ¢

nabyvi vintervalu —1 = x = 1 pouze hodnot —1 = f(x) <1,
potom |a| =< 2; dokazte. Najdéte vSechny takové funkce,
pro néz |a| = 2.

24. Je ddna mnozina funkci

flx) =x2 +blx| + ¢

kde b, c jsou redlné parametry. Najdéte vSechny funkce z této
mnoziny, které v intervalu {— 1, 1> maji nejvétsi hodnotu 2
a nejmensi hodnotu 1.

25. Je ddna funkce proménné x

x2 + 2px — 2
X2 —2x + 2

f(x) =

Uréete vSechny hodnoty redlného parametru p, pro které je

) <2

pro vSechna redlna Cisla x.
26. Najdéte vSechna redlnd Cisla a, kterd maji tu vlastnost,
ze pro kazdé redlné Cislo x plati

2x2 + x — 1]
—_— < a.
¥ —x+ 1]
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Mnohodieny s celodiselnymi koeficienty
27. Jsou-li koeficienty kvadratické rovnice
ax? +bx +c¢c=0

lichd cCisla, nemd tato rovnice raciondlni kofeny; dokaZzte.
28. Je ddn mnohoclen

flx) =3 + ax? + bx + ¢

s celoCiselnymi koeficienty. Jsou-li pro nékteré celé Cislo m
¢isla f(m), f(m + 1), f(m + 2) ndsobky tfi, pak je ndsobkem
tii Cislo f(k) pro jakékoli celé Cislo k. Dokazte.

Vlastnosti celych Zisel

29. Jsou-li p, g prvocisla vétsi nez 5, je Cislo p* — g4
délitelné Sedesdti. Dokazte.
30. Je-li £ = 3 pfirozené ¢islo, je soucin

Rk + 1)k +2) ... 3k —4) 3k — 3)

délitelny druhou mocninou jakéhokoli pfirozeného Cisla
m < k. Dokazte.

31. Prirozené Cislo N > 2 je soultem aspoil dvou za se-
bou nidsledujicich pfirozenych Cisel, pravé kdyZz neni mocni-
nou Cisla 2. Dokazte. RozloZte Cislo N = 100 na soucet
za sebou ndsledujicich pfirozenych Eisel.

32. Ke kazdému pfirozenému cislu 7 = 150 existuji dva

17



ruzni délitelé di, do Cisla 9 000 tak,Ze n déli rozdil di — do.
Dokazte.

33. Dokazte, Ze mezi pfirozenymi Cisly, jejichz dekadicky
zapis konéi Ctyfcislim 1978, existuje Cislo délitelné Cislem
1977.

34. At zvolime jakkoli velké pfirozené Cislo k, existuje
prvocislo tvaru 12z + 5 nebo 127 — 5 (n je pfirozené Cislo)
vétsi nez k. Dokazte.

Hledani celych Cisel s danymi vlastnostmi

35. Najdéte vSechna pfirozend Cisla #, pro néZ je ciferny
soucet Cisla 27 roven 5.

36. V dekadickém zdpisu Cisla 234 5B6 nahradte pismena
A, B {islicemi tak, aby vzniklo Cislo délitelné devatendcti.
Najdéte vSechna feseni.

37. Najdéte vSechna pfirozend Cisla x, kterd vyhovuji
rovnici

45-12720 4 48 =x(x—1)...3.2.1.

38. Najdéte vsechny dvojice pfirozenych Cisel x, ¥, pro
které plati

XY :y»T"?!_

39. Najdéte vSechny dvojice pfirozenych cisel x, y, pro
které plati

20 —10v] < 5.
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40. Najdéte viechny trojice ptirozenych ¢&isel x, v, 2z
takové, Ze

%8+ 33 4+ 25 = 1979
¥z = x.

41, Najdéte vSechny dvojice celych &isel x, y, pro které
plati, Ze ob¢ Cisla

jsou cela.

42. Najdéte vSechny dvojice pfirozenych cisel m, n, pro
které plati: Aritmeticky pramér C&isel m, n je dvojciferné
Cislo a vyménime-li jeho (Cislice, dostaneme geometricky
prumér cisel m, n.

Pohyb

43. Voda v fece tece rychlosti 2 m/s. Cesta od pfistavu
k mostu a zpét trvd malému ¢lunu 33 min a velkému ¢lunu,
ktery md (ve stojaté vodé) dvojndsobnou rychlost, 16 min.
Jak daleko je od pfistavu k mostu ?

44. Na kruhové draze vyjeli z téhoz mista soucasné dva
cyklisté v opacnych smérech. Prvni jel rychlosti 6 m/s a potkal
druhého cyklistu v prvnim svém okruhu dvakrat, v druhém
okruhu tfikrdt, ve tfetim okruhu zase dvakrit, vzdy mimo

misto startu. Najdéte co nejuzs$i meze pro rychlost druhého
cyklisty za predpokladu, Ze byla rovnomérnd.
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Sachovnice

45. Na sachovnici tvaru 20 X 20 poli je vyznaceno 31 na-
vzdjem raznych Sachovnic tvaru 8 X 8. DokaZte, Ze existuje
pole, které patfi aspoii Sesti vyznaenym Sachovnicim.

46. Na polich Sachovnice 8 X8 je rozestaveno 42 figurek.
Dokazte, ze nékterd jeji Cast tvaru 4 x4 md figurkami obsa-
zena aspoil 4 diagondlni pole. (Diagondlnimi poli $achovnice
4 x4 rozumime 8 poli na jejich whlopfickdch.)

47. Na Sachovnici tvaru 1000 X 1000 stoji 800 000 figurek.
Dokazte, Ze na obvodu nékteré jeji Cdsti tvaru 8 X8 stoji
asponi 22 figurek.

Operace

48. V oboru redlnych Cisel je ddna bindrni operace
X%xy=x-+3y+ xy.

a) Zjistéte, zda je tato operace komutativmi a asociativni
a zda md neutrdlni prvek.
b) Urcete vSechna redlnd ¢isla x, pro kterd plati

ax(xxx)=>bx%x;

provedte diskusi vzhledem k redlnym parametrim a, b.
49. V oboru pfirozenych Cisel zavedme operaci * takto:
Pro kazdé x je x %1 =1 % x=1. Je-li x>1, y>1
ajsou-i x=p1...9a5 ¥y =q1 ... qp rozklady Ccisel x, y
na soudin prvociniteli, definujeme x * y jako soucin viech
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souttd p; + qx (Ge{l,...,a}, ke {1,...,b}). Dokaite,
Ze operace * je distributivni vzhledem k ndsobeni.

MnoZiny

50. Sestrojte dvé neprdzdné podmnoziny A, B mnoziny C
viech celych ¢isel tak, aby bylo C = AU B, aby nebylo
A =B = C a aby pro libovolnd &isla a€ A, a' € A, beB,
b’ € B platilo

a+aecAb+behAa+beb.

DokaZte, Ze tiloha md jediné fe$eni. Ddle dokaZte, Ze nahra-
dime-li v tiloze mnoZinu C vSech celych &isel mnoZinou R
viech redlnych ¢isel, Gloha nemd feSeni.

Geometrické nerovnosti

Jedna z nejjednodussich tloh na geometrické nerovnosti
je uloha najit mezi vSemi pravouhelniky daného obvodu
ten, ktery md nejvétsi obsah. Je to tloha lehkd, vhodnd i pro
zaky nejvyssich trid zdkladni Skoly. Oznacime-li totiz dany
obvod 4a a jednu stranu. pravouhelniku x, je druhd strana
pravouhelniku 2a — x (aby byl obvod roven 4a) a jeho ob-
sah P se rovnd Cislu x (2a — x) = a2 — (a — x)2. Odtud je
vidét, Ze hodnota P je nejvétsi pravé tehdy, kdyZ je x = a.
Pak se 2a — x rovnd také hodnoté a, pravouhelnik maxim4l-
niho obsahu pii daném obvodu je tedy étverec. Ulohu mi-
Zeme formulovat téZ algebraicky: Mezi vSemi dvojicemi
kladnych c¢isel daného souétu 2a (a > 0) najit tu dvojici
Cisel, jejichz souin je maximdlni. Vysledkem je dvojice
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(a, a) Cisel sobé rovnych. Misto Cisel kladnych jsme mohli
uvazovat téz Cisla nezdpornd, tvrzeni pak plati také. Pod-
statné obtiznéjsi je uloha, pfi které se neomezime na pravo-
thelniky (obdélniky a cCtverce), nybrz budeme hledat mezi
vSemi Ctyfuhelniky daného obvodu.

51. Ze vSech cCtyfihelnikd daného obvodu md nejvétsi
obsah ctverec. Dokazte.

Vime, ze k jednoznaénému uréeni trojuhelniku je Casto
tieba zadat tfi jeho prvky, napfiklad velikosti jeho tfi stran
nebo dvé strany a dhel jimi sevieny. Pak se ndm zdd,
Ze tloha, pfi které jsou diny pouze dva prvky trojuhelni-
ku, neni zaddna uplné. Pfitom se pii feSeni ukdze, Ze podmin-
kdm tlohy vyhovuje dokonce pouze jediny trojuhelnik. Po-
dobné je tomu i v pfipad¢ ctyfihelniku, pétitihelniku nebo
libovolného mnohotihelniku. Uvedme ptiklad takové dlohy.

52. Najdéte vSechny trojuhelniky o obsahu 18 cm?, jejichz
jedind strana je vét$i neZ 6 cm.

Prikladem tlohy, kterd md nekoneéné mnoho feSeni, je
dalsi uloha.

53. Sestrojte ¢tyfuhelnik ABCD, u néhoz soulet velikosti
usecek AB, AC, AD je 20 cm a jehoZ obsah je vét$i nez
49 cm?2.

Dile uvedeme fadu uloh duikazovych.

54. Je-li trojihelnik T3 cely obsaZen v trojuhelniku T3,
pak plati:

a) délka nejvétsi strany trojuhelniku 77 je mens$i nebo
rovna délce nejvétsi strany trojihelniku Tg;
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b) délka nejmensi vysky trojuhelniku 77 je mensi nebo
rovna délce nejmensi vysky trojihelniku 7%.

Dokazte obé tvrzeni.

55. Je-li v délka nejmens$i vySky trojuhelniku a P jeho
obsah, pak plati v < VF]/—; Dokazte a zjistéte, kdy plati
znaménko rovnosti.

56. Je didn pravouhly rovnoramenny trojuhelnik ABC,

jehoz zdkladna md stfed D a délku 2.
a) Dokazte, Ze pro kazdy bod M vysky CD plati

|AM| + |BM| + |CM| =1 + /3.

b) Sestrojte ten bod M vySky CD, pro ktery je soucet
|AM| + |BM| + |CM| nejmensi.

57. Je dan vypukly (tj. konvexni) Ctyrthelnik ABCD
a bod X uhlopficky BD takovy, Ze piimka AX protind
stranu CD v jejim vnitfnim bodé. Pak plati |[4X + BX +
+ |CX| < |4D| + |BD| + |CD|. Dokaite a zjistéte, zda
plati tato nerovnost téZ v ptipadé, kdy pfimka AX prochdzi
vrcholem C nebo protind tsecku BC.

Dalsi dvé ulohy se tykaji sou¢tu druhych mocnin vzdalenosti.

58. V roviné je ddn obdélnik ABCD o strandch a, b.
Najdéte v obdélniku vSechny body X, pro které je soucet
|AX|?2 + |BX|?2 + |CX|2 + |DX|2 minimalni.

59. Je ddn trojuhelnik ABC, velikosti jeho stran jsou
a, b, c. Najdéte bod trojihelniku, pro ktery je soucet dru-
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hych mocnin jeho vzdélenosti od vrchol trojuhelniku mini-
malni.

Na zdvér odstavce jedna uloha o zvla$tnim ptipadu licho-
béZniku.

60. Lichobéznik ABCD md tu vlastnost, Ze vSechny jeho
strany se dotykaji téZze kruZnice (Ctyfuhelnik s touto vlast-
nosti se nazyva teCnovy). DokaZte, Ze jeho nejkrat$i strana
je nékterd ze zdkladen a Ze jeho nejdelsi strana je druhd
zakladna.

KruZnice

61. V roviné jsou ddny dva rtizné body A4, B a kruZnice k.
Sestrojte na kruznici 2 body C, D tak, aby body 4, B, C, D
tvofily vrcholy rovnoramenného lichobézniku ABCD se
zdkladnami BC, AD.

62. Je ddn konvexni ctyfuhelnik ABCD, velikosti jeho
stran ozna¢ime a = |AB|, b = |BC|, ¢ = |CD|, d = |DA|.
Kruznice k4 md stfed v bodé A, kruznice kg v bodé B a po-
dobné jsou stfedy kruznic k¢, kp body C, D. KruZnice
k4, kp maji vn&jsi dotyk, stejné tak kruzmice kg, k¢, ddle
kruZnice k¢, kp a vnéjsi dotyk maji i kruznice kp, k4. Dokazte,
ze plati a + ¢ =b + d. Dokazte, ze plati téZ obrdcené
tvrzeni: je-li @ + ¢ = b + d, pak existuji kruznice kg, ks,
ko, kp se stiedy A, B, C, D tak, ze dvojice kruznic k4 a kg,
kg a ke, ko a kp, kp a k4 maji vnéjsi dotyk.

63. Je ddn pravouhly trojihelnik ABC s odvésnami
|AC| = 4, |BC| = 3. KruZnice ki, kg, k3 maji stiedy ve vrcho-
lech A4, B, C a kazdé dvé z nich maji vnéjsi dotyk.
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a) Vypoltéte poloméry kruznic ki, k2, k3.
b) Vypoltéte polomér kruznice k, kterd md s kazdou
z kruznic ki, ke, k3 vnéjsi dotyk.

64. Je ddna kruZnice k se stfedem S a s polomérem r.
Dokaite, Ze kazdy bod Z z vnitini oblasti kruZnice, rizny
od stiedu S, je stfedem kruZnice vepsané trojihelniku SXVY,
jehoz vrcholy X, Y lezi na kruZnici k. Vyjddiete polomér
této kruZznice pomoci r a |SZ|.

65. Je ddna kruznice k& = (S, r), bod A, pro ktery plati
|AS| =d > r, a kladné cislo p. Sestrojte kruZnici s polomé-
rem o, kterd prochdzi bodem A a déli kruZnici 2 na dvé
polokruznice. Uvedte podminky fesitelnosti.

Zobecnénim této ulohy je tloha ndsledujici.

66. Jsou ddny dvé nesoustiedné kruZnice ki = (81, 7)-
a kg = (8o, r9) a kladné Cislo p. Sestrojte kruZnici & s polo;
mérem g, kterd déli kruznici k; na dvé polokruZznice a je dé-
lena kruZnici k2 na dvé polokruZnice.

Trojahelniky

67. Sestrojte pravouhly trojihelnik, je-li ddna délka jeho
prepony a délka téZnice k nékteré odvésné. Uvedte podminku
Tesitelnosti.

68. Sestrojte trojuhelnik ABC, jsou-li diny délky b, ¢
jeho stran AC, AB a jestlize pro délku jeho téznice ¢ na
stranu 4B a délku a jeho tfeti strany plati vztah 2 = 3a.

69. Je ddna tseCka AB a pfimka p kolmd k AB, kterd
nem4d spolecny bod s useCkou AB. Sestrojte trojihelnik ABC

25



tak, aby vrchol C lezel na pfimce p a platilo <CABC =
= 2<CBAC. Uvedte podminky feditelnosti.

70. Je ddn trojuhelnik, jehoZ Zddnd strana neni vétsi nez 3.
Dokazte, Ze trojuhelnik 1ze umistit do kruhu o poloméru VSA

71. Je ddn trojuhelnik ABC a nad jeho stranami AC, BC
jsou v polorovinich opacnych k polorovindim ACB, BCA
sestrojeny rovnostranné trojihelniky ACD, BCE. Také nad
stranou 4B je sestrojen rovnostranny trojihelnik 4BF, ten
vsak tak, Ze jsou poloroviny ABC, ABF totozné. OznaCme
jesté M t€zist€ rovnostranného trojihelniku ABF. Dokaz-
te, Ze trojuhelnik DME je rovnoramenny a <¢ DME = 120°.

MiiZete si sami zadat pocdobné ulohy, napfiklad: co vytvori
nad stranami trojihelniku ABC, jestliZe leZi tyto trojihelniky
vzdy v opacénych polorovindch, neZ ve kterych lezi dany
trojihelnik.

72. Je ddn ostrodhly trojihelnik ABC a bod M na kruZnici
mu opsané, ruzny od jeho vrchold. Oznaéme M, Mz, M3
body soumérné sdruzené k bodu M podle stran trojihelniku
ABC. Dokazte, ze body M1, Ms, M3 leZi na jedné pfimce,
kterd prochdzi prusecikem vySek daného trojihelniku.

Z tvrzeni této tlohy také plyne, Ze paty kolmic vedenych
bodem M k strandm trojuhelniku lezi rovnéZ na pfimce,
kterd se nazyvd Simsonova, nékdy téz Wallaceova piimka.

73. Je ddn trojdhelnik ABC, oznaéme P, Q, R paty vySek
k strandm BC, CA, AB. Zjistéte, zda existuje trojuhelnik
UVW tak, aby tsetka UV byla rovnobéznym posunutim
useCky AP a totéZ platilo pro dvojici tseéek VW, BQ a také
pro WU a CR.
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74. Je dén trojuhelnik ABC, oznatme P, Q, R stfedy
stran BC, CA, AB. Ukazite, Ze existuje trojuhelnik UVW
tak, ze useCku UV dostaneme rovnobéznym posunutim
useCky AP a totéz plati pro dvojice useCek VW, BQ a WU,
CR. Vypoctéte pomér obsahti trojthelnikd UVW a ABC.
éty‘r‘ﬁhelniky, mnohothelniky

75. Jestlize pro strany a thlopficky konvexniho Ctyithel-
niku 4ABCD plati

|AC2 + |BD|?2 = |AB|2 + |BC|2 + |CD[2 + |DAP,

potom je tento Ctyfuhelnik rovnobéznikem. DokaZte.

76. Necht a = |AB|, b = |BC|, ¢ = |CD|, d = |DA]| jsou
délky stran teCnového cCtyrthelniku ABCD. Jestlize plati

@+ b =(a+c)b + d) — (ac + bd),

je Ctyfuhelnik deltoidem (tj. Ctyfuhelnik soumérny podle
nékteré své thlopricky). Jestlize kromé toho plati

B+ 2=+ c)b+ d) — (ac + bd),
je ABCD kosoétverec. Dokazte.

77. Necht je ABCD deltoid s osou soumérnosti AC, S pri-
seCik jeho uhlopficek a M, N, P, Q paty kolmic vedenych
bodem S k strandm 4B, BC, CD, DA. Dokaite, ze MQ||NP,
a rozhodnéte, kdy je {tyfdhelnik MNPQ lichobéZnikem
a kdy rovnobéznikem.
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78. Necht ABCD je takovy vypukly ¢tyfuhelnik, Ze kolmé
praméty priseciku jeho thlopficek na jednotlivé strany leZi
uvnitf téchto stran. Nutnou a postacujici podminkou pro
to, aby tyto priméty leZely na jedné kruZnici, je, aby thlo-
pricky ctyfdhelniku ABCD byly na sebe kolmé. Dokazte.

79. Predpoklidejme, Ze kolmé primeéty pruseciku uhlo-
pricek ¢tyfuhelniku na jeho strany leZi uvnitf téchto stran.
Pak je moZno jimi prolozit kruZznici préavé tehdy, kdyz stfedy
stran leZi na kruznici. Dokazte.

80. Dokazte, ze thlopficky konvexniho Ctyftihelniku 4 BCD
jsou pravé tehdy na sebe kolmé, kdyZ plati |4AB|2 + |CD|2 =
= |BC]2 + |AD|2.

81. Je ddn trojahelnik ABC. Sestrojte na strané BC
bod D a na strané AC bod E tak, aby &tyfihelniku 4BDE
bylo moZno opsat i vepsat kruZnici. Vyjddfete vzdélenosti
|CD|, |CE| i obvod ¢tytahelniku ABDE pomoci délek a, b, ¢
stran trojthelniku ABC.

82. Jestlize je mozno lichobé&Zniku vepsat kruZnici, pak je
geometricky primér délek jeho ramen vétsi nez geometricky
prumér délek jeho zdkladen. DokaZte. (Srovnej s tlohou 60.)

83. Sestrojte konvexni rovnostranny, ne nutné pravidelny
pétithelnik ABCDE, v némz jsou ddny délky uhlopficek
AC, AD, plati-li

<LBAE = 2.<LCAD.

84. Je ddn konvexni Sestithelnik ABCDEF. Jeho uhlo-
pri¢ky vychézejici z bodu B déli thel ABC na ¢tyfi shodné
thly a totéZ plati pro Ghlopficky vychdzejici z vrcholt D a F.
Dokazte, Ze je Sestithelnik ABCDEF pravidelny.
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Stereometrie

85. Maji-li ¢tyfstény ABCD a A'B'C’D’ tu vlastnost, Ze
piimky AB a A'B’ splyvaji, pfimky CD a C’D’ splyvaji a
|AB| = |A'B’|, |CD| = |C'D'|, pak maji stejny objem. Do-
kazte.

86. Urcete objem Ctyfsténu, jehoz kazdé dvé protéjsi
hrany maji stejnou délku. Délky hran v téchto dvojicich jsou
a, b, c.

87. Je ddn ctyistén ABCD. Body B’, C’ jsou po radé
sttedy hran BD, CD. Ozna¢me R bod polopfimky opacné
k polopfimce AB, pro ktery plati |AR | =k |AB|. Dile
oznacime A’ prisecik hrany AD s rovinou B’C’R. Vyjadfete
pomér objemi Ctyfsténd A'B'C'D a ABCD pomoci cisla k.

88. V cryfsténu ABCD jsou kazdé dvé z hran AD, BD,
CD na sebe kolmé. Oznacme U tézisté trojuhelniku ABC,
T t&zisté Ctyisténu a § stied kulové plochy, kterd prochdzi
body A, B, C, D. Vyjadfete jeji polomér pomoci vzdile-
nosti ST.

89. Je ddn ctyfboky jehlan VABCD s ¢tvercovou podsta-
vou ABCD a na tse¢ce VC bod E tak, ze |VE|: |VC| =g,
0 < ¢ < 1. Rovina ABE protne hranu VD v bod¢ F. Urcete
pomér objemu téles, na které déli jehlan rovina ABE.

90. Do polokoule o poloméru 10 umistéte tfi shodné kulo-
vé plochy tak, ze kazdé dvé maji vnéjsi dotyk a kazdd z nich
se dotykd podstavy polokoule i jeji hrani¢ni polosféry. Vy-
poctéte polomér vepsanych sfér a ukaZte, Zze uloha md vzdy
feseni.
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RESENI ULOH



1. Jsou-li x, y cisla, kterd vyhovuji dané rovnici, plati
pro né

x+ 1 +ly+1=lx+y+ =[x +]y+ 1],
a tedy
[x + 1] = Ix].
Analogicky odvodime podminku
ly + 1 =yl

Snadno zjistime, Ze tyto podminky jsou ekvivalentni s pod-
minkami

X

IA
IA

—dy 9 - %

Reseni tedy budeme hledat jen v tomto oboru, coZ nim
umozni odstranit absolutni hodnotu na pravé strané rovnice,
protozZe pro tato x, y je

lx+y+1ll=—x—y— 1
Budeme fesit rovnici

lx + 1+ |y +1+x+y+1=0.

V piipadé —1=x=—3, —1=y= —% md rovnice
po odstranéni zbyvajicich absolutnich hodnot tvar
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2x + 2y +3=0,
vpiipadé —1 < x =< —%,y < —1 md tvar
2x +1=0,
v piipadé x < —1, —1 <y < —} m4 tvar
2y +1=0
a v piipadé¢ x < —1,y < —1 md tvar —1 = 0. Poslednimu

piipadu neodpovidd Zddné feSeni. Grafické zndzornéni feSeni
z ostatnich pfipadd je na obr. 1.

Obr. 1

2. Jednoduchymi dpravami dostaneme soustavu

4yz — 9xz — 5xy =0

—yz + 9xz — 10xy =0 €))
23
Yz + xz 4 xy = Exyz,

33



kterd je ekvivalentni s danou soustavou. Necht x, y, 2 je
trojice redlnych cisel vyhovujicich soustavé.

Je-li xyz = 0, vydélime kazdou rovnici timto Cislem a dosta-
neme soustavu

4u — 9% — 50 =0

2
—u + 99 — 10w =0
o 23
Uu+o+w=—
15°
1 1 3
kde # =—,9 = —,w =—_. Snadno zjistime, Ze soustava (2)
x y 2
. . ’ v 1 1 r 7 3 r
mé jediné feSeni ¥ = 1, v = 3 w = 5° kterému odpovida

feSeni x = 1,y = 3, 2 = 5 soustavy (1).

Je-li aspoii jedno z ¢isel x, ¥, 2 rovno nule, je ze soustavy (1)
vidét, Ze aspoii dvé z Cisel x, y, 2 jsou rovna nule. Snadno
se presvédéime, Ze trojice x =0, y =0, 2 =1 x =0,
y=1t,2=0; x=1,y=0, 2=0 soustavé¢ (1) vyhovuji
pro libovolné redlné ¢islo z.

3. Z prvni rovnice
Xo = Xo

vidime, Ze musi byt bud xp = 0, nebo xp = 1. V pfipadé
xo = 0 dostaneme z druhé rovnice

X1%0 + Xox1 = 2x1,

34



Ze x1 = 0, a z dalSich rovnic postupné, Ze vSechny nezndmé
jsou nulové.

Zbyva vysetfit pfipad xp = 1. Druhé rovnici
2x1 = 2x1

pak vyhovuje kazdé redlné Cislo x;. Pro 2 = 2 dostaneme
z (k + 1)ni rovnice

Xp—-1X1+ Xp—-2%X2+ ... + X1 Xp -1 =(2"7 —2)xk,
coZ ndm umoziiuje jednoznacné urcit xx pomoci x1, X2, . . .,

Xk —1, tj. jednoznacné urcit x; pomoci x;. Postupné dostdva-
me ze tfeti rovnice

x
X3 == —'2'_ ,

ze Ctvrté rovnice

2x1%2 x]

X3 = = >

8§ —2 3.2

z pdté rovnice
2x1x3 + %3 B

M=T6—2  4.3.2

atd. I dal$i pokralovéni by nasvédcovalo, Ze feSeni soustavy
je
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2 tn

*2T,...,xn=;'—, (1)

Xo=1,% =1 x2=
kde t je libovolné redlné Cislo. Ovéfime, je-li to tak, dosazenim
do soustavy. Na levé strané (k + 1)ni rovnice dostaneme

tk tk 1tk tk tk

= + R —
BTG —D! " 21k —2)! k=l

alle) e (1) e (-5

coz se shoduje s pravou stranou. (Soucet kombinacnich Cisel
v zdvorce je 2F - jde o rozvoj (1 + 1)¥ podle binomické véty.)
Z naSich uvah vyplyvd, Ze nulové feSeni a feSeni (1) jsou
vSechna feSeni soustavy.

+k—!—

4. Dejme tomu, Ze uvazovand rovnice md nenulové redlné
kofeny u, —u. Plati tedy pro né

ud + au® + bu + ¢ =0,
—ud + au? —bu + ¢ =0.
Seétenim a odeétenim téchto rovnosti vyjdou podminky
2au? + 2¢ =0,
2ud + 2bu = 0,
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odkud plyne
au? + ¢ =0,

u2 +b=0.

Z druhé rovnosti vidime, Ze musi byt b < 0. Dosadime-li
odtud za »2 do prvni rovnosti, dostaneme podminku ab = c.
Obricené, pfedpoklidejme, Ze pro koeficienty rovnice

¥+ ax®+bx+c=0
plati b < 0, ab = c. Leva strana rovnice je tedy

x5 + ax? + bx + abzxz(ﬁa)+b(x+a)=
=2+ b (x+a)=(+)—-bE—)—b(+a

a rovnice md dva redlné nenulové opa¢né kofeny |—b,

— |}/ —b. Hledand nutnd a postalujici podminka je tedy

b<0,ab=c.
5. Pro a = 0 jde o rovnici
2x — |x| =0,
kterd md jediné feSeni x = 0. Pro a #% 0 budeme rovnici
fesit zvlast v kazdém ze tii intervalfl, na které déli body 0, a
redlnou osu, aby odpadly absolutni hodnoty.

Nejprve predpoklddejme, Ze @ > 0. V intervalu x < 0 md
rovanice tvar
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2x + x + ala — x) =0,
neboli
x(a — 3) = a?

a mid zde feSeni

pravé kdyz a < 3.
V intervalu 0 < x < ¢ md rovnice tvar

2x — x + ala — x) =0,
neboli
x(a—1)—a2=0
a nemd v ném feeni, protoze graf funkce
y =x(a —1) — a?

je na tomto intervalu tseCka s krajnimi body [0, —a?],
[a, —a], kterd lezi pod osou x. Podobné v intervalu x > a
nemd rovnice

2x —x +a(x —a) =0

pro Zidné a > 0 feSeni, nebot polopfimka vychdzejici z bodu
[a, a] a prochdzejici bodem [2a, a® + 2a] neprotind osu x.
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Analogicky postupujeme pro a < 0, kdy najdeme feSeni jen
v pfipadé a > —1,a to

pro a = 0 jediné feSeni x =0 a pro 0 < a < 3 jediné fe-

Seni

Pro ostatni a feSeni neexistuje.
6. Secteme-li obé rovnice, dostaneme
(x + 9) = 22,
a odecteme-li druhou rovnici od prvni, vyjde

x2 — y2 = 2ab.

Dostali jsme tak dvé rovnice, které tvoii soustavu ekvivalentni
s pivodni soustavou. MiiZeme je psdt ve tvaru

(x + )2 = 2a2 ¢))
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(x + ) (x —y) = 2ab. 2)

Je-li @ = 0, snadno zjistime, Ze feSenim soustavy jsou pravé

vSechny dvojice x =1, y = —1, kde ¢ je libovolné redlné

Cislo.

Predpoklddejme, Ze a # 0. Z rovnice (1) vidime, Ze je bud
x+y=a ]/5,

nebo

x+y=—a ]/E
Po dosazeni do rovnice (2) dostaneme

x—y:bVE,
resp.
x—y=—bV£

Vyhovuji-li tedy Cisla x, y dané soustavé, vyhovuji také bud
soustaveé

x+y=al/2_

x—y:bV2—,

nebo soustavé

x+y=—alZ

x—y=—bJ2
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Je to tedy bud dvojice

2
a—<a+b>V—,y 512,
nebo dvojice

VTN IR )
x=(—a b)2,y b a)T.

Zkouskou zjistime, Ze ob& dvojice dané soustavé vyhovuji.

7. Ze druhé rovnice vyjadiime

2 —x
2

y:

a dosadime do prvni, dostaneme

2 —x

2

Ix—a!+a=!xi+|

ey

Pocet feSeni dané soustavy se ziejmé bude shodovat s po-
¢tem feSeni rovnice (1). Abychom odstranili absolutni hodno-
ty, budeme tuto rovnici zkoumat zvld$t v kazdém ze Ctyf
intervalli, na které rozdéli ¢isla 0, a, 2 redlnou osu.

Nejprve budeme predpoklidat, Ze a = 2.

V intervalu x < 0 m4 rovnice (1) tvar

2—x
a—x+a=—x+
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a feSeni
x = —4a + 2,
pravé kdyz a > 1.

V intervalu 0 =< x < a m4 rovnice (1) tvar

2—x

a—x+a=x+

a feSeni
4a — 2
X =
pravé kdyz 1 < a < 2.
V intervalu ¢ =< x < 2 md rovnice (1) tvar

2—x
x—a+a=x+

a feSeni nemd pro zZddné a.
V intervalu x = 2 mad rovnice (1) tvar
x—2
2

xX—a+ta=x+

a feSeni x = 2 pro kazdé a.

Vidime, Ze pro kazdé redlné a = 2 md rovnice (1), a tedy
i dand soustava, nanejvys tii feSeni. T¥i riiznd reSeni dosta-
neme pro + < a < 2 (snadno se presvéd¢ime, Ze pro Zzddné

. 4a — 2
takové ¢ nékteré z hodnot —4a + 2, —3 2 nesplynou).
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Pfi vySetfovdni pfipadu a > 2 postupujeme obdobné. Zjisti-
me, Ze ve dvou ze Ctyf vySetfovanych intervall je nanejvys
po jednom feSeni a ve dvou intervalech Zddné. V tomto
pfipadé se tedy pro Zidné a nestane, Ze by dand soustava
rovnic méla tfi feSeni.

8. Abychom se vyhnuli absolutnim hodnotdm, rozdélime
rovinu na ¢tyfi podmnoZiny sloZené z bodt, jejichZ soufadni-
ce spliiuji podminky

x+y=20,y=0,
*r+y=20,y=0,
x+y=0,9=0,
x+y=0,y=0.

Na obr. 2 jsou jednotlivé Cdsti zndzornény. Zadand rovnice
bude mit v jednotlivych pfipadech tvar

x+ (1 +ay=1, . (1)
x+ (1 —ay=1 )
x4+ (1 —a)y=—1, 3)
2+ A+ ay=—1, )

coz jsou rovnice dvou dvojic rovnobéznych primek. Vyplni-li
feSeni obvod Cctyfuhelniku, bude tedy kazdd jeho strana
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Obr. 2

leZet na jedné z uvedenych pfimek a kazdy vrchol bude leZet
na jednom ramenu hld, na néZ jsme rozdélili rovinu. Hned
je vidét, Ze pfimky (1), (2) prochdzeji bodem [1, 0], pfimky
(3),(4) bodem [—1,0],a tojsou tedy dva protilehlé vrcholy ctyr-
thelniku. Je-li to pravothelnik, lezi zbyvajici dva vrcholy na
pfimce x + y = 0 soumérné podle pocdtku, od kterého jsou

, LTOEN 1§ )
vzdéleny 1, tedy v bodech [—2., S b 5 o |
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V téchto vrcholech se protinaji primky (1), (3) a (2), (4).
Dosadime-li soufadnice vrcholit do rovnic pfislu$nych pii-
mek, dostaneme pro parametr podminku @ = |/2 nebo a =

= — 1'2— Snadno se presvédcime, Ze obé hodnoty vyhovuji.

9. Odecteme-li dvojndsobek druhé rovnice od prvni, do-
staneme

(p + 49y =16 —p2 (1)

Prozatim budeme predpoklddat, Ze p = —4, coz ndm umozni
vyjadfit y = 4 — p a z druhé rovnice pak

x=%p2+2y=%p2—2p + 8. (2)

Existuje-li tedy v pfipadé p 5= —4 feSeni, plati pro né (1),
(2). Dosadime odtud do danych rovnic a ovéfime, jsou-li
splnény. Zjistime, Ze prvni dvé rovnice jsou splnény vzdy,
zatimco tfeti, pravé kdyz

P2 —5p® —8p + 12 =0.

Vsimneme si, Ze soucet koeficientd této rovnice je 0, jejim
kofenem je tedy p = 1. Po vydéleni kofenovym Cinitelem
(p — 1) dostaneme rovnici

pP—4p—12=0
s kofeny 6, —2. V uvazovaném pfipadé md tedy soustava

feSeni, pravé kdyZz p = 1 nebo p = 6 nebo p = —2. Pfi-
sluSnd feSeni dostaneme dosazenim za p do (1), (2).
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Zbyvd jesté prozkoumat pripad p = —4. Pak md soustava
tvar

2x — 4y =16
x—2y=28
—5x + 2y = —54

23 7
a snadno najdeme jeji jediné feSeni x = P Yy = ik
. * r v Y ¥ 23
Zavér: Soustava méd pro p = —4 jediné feSeni x = -

7
y = e v pfipadé p = —2 jediné feSeni x = 14, y =6,

13
v pfipadé p = 1 jediné FeSeni x = - y =3 a v pfipadé
p = 6 jediné feSeni x = 14, y = —2. Pro ostatni p feSeni
nema.

10. Nejprve piedpoklddejme, Ze a = 0. Soustava md pak
tvar

a je-li b =1 nebo b = —1, md nekone¢né mnoho feSen
(y = b, x libovolné), pro ostatni b feSeni nemad.
Analogicky vysledek dostaneme v pfipadé & = 0, protoze
vyménou a, b v soustavé dostaneme soustavu, kterd se od
puvodni lisi jen vyménou nezndmych.

Zbyva vysetiit piipad ab £ 0.
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Je-i x, vy feSeni dané soustavy, je xy 7= 0. Vyjddrime-li
z druhé rovnice

Yy = ] (1)

bx

dosadime do prvni rovnice a upravime, zjistime, Ze x je
kofenem kvadratické rovnice

ax? —(a> — b + Dx + a=0. )
Obrdcené, je-li x kofenem rovnice (2), je x #a, x # 0

(tato Cisla rovnici zfejmé nevyhovuji). Rovnici (2) vydélime
dislem x — a a napiSeme ve tvaru

Odtud vidime, Ze polozime-li pro kazdé feSeni x kvadratické
rovnice (2) y podle predpisu (1), vyhovuje dvojice x, y
jako feSeni dané soustavy. Dand soustava je tedy ekvivalentni
se soustavou (1), (2). Pocet feSeni je ddn poltem FeSeni rovni-
ce (2), a ten zdvisi na jejim diskriminantu

(a+b+ND@+b—1@—b+1)(a—>b—1).
Vysledek diskuse je zndzornén na obr. 3.

47



Obr. 3
11. Ze tieti rovnice vyjadfime
z2=1—a%x + ay n
a dosadime do prvnich dvou rovnic. Dostaneme tak
1 —ax =1 —a?, (2)
(I —a%)y=1+a. (3)
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Nejprve budeme piedpoklddat, Ze a %41 i a# —1. To
umozni z (2) a (3) vyjadiit

1

P—— 4
* 1+ a? @
- )

= l1—a

a po dosazeni do (1)

341

g=— ©)

=(l—a)(l + a?)’

Existuje-li tedy v naSem pfipadé feleni, md tvar (4), (5),
(6). Dosadime-li do dané soustavy, zjistime, Ze ji opravdu
vyhovuje. Zbyvaji pfipady a =1, a = —1. Pro a =1 do-
staneme soustavu

x—y+z=1
x—y+z=—1

x—y+z=1,

kterd ziejm& nemd feSeni. Pro a = —1 dostaneme soustavu
x+y+z=1
x+y+z=1

x+y+z=1,

kterd md nekone¢n& mnoho feseni.
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12. Zména znaménka parametru a odpovidd vyméné
neznamych x1, x2 a zména znaménka parametru b odpovidd
vyméné nezndmych x3, x4. Stali tedy, omezime-li se na pfipad
a =0, b = 0. Sectenim prvnich dvou rovnic dostaneme

X] — X+ X3 — x4 =a -+ b

a srovndnim se tfeti rovnici méme
a+b:1/417f1;2——2(x2+x4)§]/a74ﬁ;5,
nebot vyzadujeme nezdpornd feSeni. Nerovnost
a+ b Va_z_:ﬁ

plati v naSem pripadé, jak zjistime umocnénim, pravé kdyz
ab = 0. Pfitom v ni nastdvd rovnost, takZe musi byt xo = 0,
X4 — 0.

Je-li @ =0, je z prvni rovnice x; = xp, a tedy x; =0,
z druhé rovnice x3 = b. V tomto pfipadé mtize byt hledanym
feSenim jen Ctvefice (0, 0, b, 0). Je-li & = 0, je z druhé rovnice
x3 = x4. Je tedy x3 = 0 a z prvni rovnice x; = a. V tomto
pfipadé muze byt hledanym feSenim jen ctvefice (a, 0, 0, 0).
Obé ctvetice vyhovuji, jak se snadno presvédcime.
Pifihlédneme-li k tvaze o omezeni na pfipad ¢ =0, b = 0,
dojdeme k tomuto zdvéru:

Pro a = b = 0 je jedinou Ctvefici nezdpornych ¢isel vyhovu-
jicich soustavé ctvefice (0, 0, 0, 0). Pro a > 0, 6 =0 je
to Ctvefice (a, 0, 0, 0). Pro a < 0, b6 = 0 je to ¢tvefice (0, —a,
0, 0). Pro a = 0, b > 0 je to ¢tvetice (0, 0, b, 0). Pro a = 0,
b < 0 je to ctverice (0, 0, 0, —b). Pro ostatni hodnoty para-
metrd nemd uloha feSeni.
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Jiné feSeni:
Dosazenim z prvnich dvou rovnic do tfeti dostaneme

2xz+2x4=]/a7+_l—7§—a—b,
a tedy
xzzf(]/c;z_—i—_bz—a—b)—m.
Dile je
x1=x2+a=%(VEﬁ+a—b)—x4,
x3 = b + x4.

Aby byla vSechna x; nezdpornd, musi byt

% = 0, 0
X1 = —b, @
2 =1 (Ja® + B2 —a —b), ®3)
21 =3()a® + 8+ a—b). 4)

Takové x4 existuje, pravé kdyz
0<_1(]/a2+ b2 —a — b),
0=1(Ja® + b2+ a—b),

—b=1(]a® + b —a — b) neboli 0 =< 4(Ja? + b —a + b),

—b=1}(JJa? + 8% + a — b)neboli 0 < 1 ()@ + 62 + a + b),
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tj. pravé kdyz
Va? + 82 = lal + b,

coZ nastane, pravé kdyZz ab = 0. Je-li a = 0, je podle (1)
a (3) xa =0 v pfipadé b =0 a podle (2) a (3) je x4 = —b
v pfipadé b < 0. Je-i b =0, je podle (3) a (4) x4 = 0.
Zbyva vypocist hodnoty ostatnich nezndmych a provést
zkousku.

Jiné feSeni:

Piedpoklddejme, Ze nezdpornd Cisla x1, x2, x3, x4 vyhovuji
soustavé. Dosadime-li do tfeti rovnice z prvni za a a z druhé
za b, dostaneme

X1+ X2 4 X3 + X4 = V(xl — xz)2 + (x3 —_ x4)2
a po umocnéni obou stran
4x1x2 + 2x1%3 + 2x1%4 + 2x9x3 + 2x9x4 + 4x3x4 = 0.

Vsechny scitance jsou nezdporné, a tedy nulové. Odtud je
vidét, Ze nejvyse jedno z Cisel x1, X3, ¥3, ¥4 miZe byt nenulové.
Z prvnich dvou rovnic ddle vyplyvd, Ze nejvySe jeden z pa-
rametri @, b miZe byt nenulovy. Zbyva uz jen prozkoumat
jednotlivé pripady.

1
13. Protoze pg =1, g > 0, je — = p, a tedy
q
[ 1 1 1 + 1)2
(1 + —) (1 + —)g(l + ——)(1+p)=(—P-——l.
p q p V2
O
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Vzhledem k tomu, ZzZe p > 0 a

p+12—4p=(p—12=20, @
je
(p + 1
p

a dokazovand nerovnost plati. Rovnost nastane, prdvé kdyz
nastane v (1) i ve (2), tj. pravé kdyz p = ¢ = 1.

> 4

Jiné feSeni:
Rozndsobime

1 1 111
(1+—)(1+*)=1+—+-+_.
? q » ¢ 1

1
Podle pfedpokladu je p— = 1, ukdZeme jesté, ze
q

1

1
— F+—2=2
2 q
Protoze
(p + 9)? = 4pg = 49%¢%
je
?+4q = 2pq,
a tedy
1 1 + 2
—_ — = u % __p_q. = 2.
? q rq rq
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Tim je diikaz proveden. I z této dvahy je vidét, Ze rovnost
nastane, pravé kdyz p = ¢ = 1.

14. Hned vidime, Ze dokazovand nerovnost plati v pri-
padech n =1 nebo @ = b nebo b =0 a ve vSech téchto
pfipadech nastane rovnost.

Zbyva vysetfit ptipad, kdy » > 1 a zdroved a > b > 0.
Vzhledem k tomu, Ze

ar —b" =(a—>b)(a®~1+an~2b+4 ... + ab?~2 4 pn—1),
je dokazovand nerovnost ekvivalentni s nerovnosti

a1l 4 agn—-2 4 ... +ab" -2+ b1 =(a—b)"1 (1)
ProtoZe za naseho pfedpokladu je

ar 1> (a—byr—1,

je nerovnost (1), a tedy i dokazovand nerovnost splnéna,
dokonce s ostrym znaménkem.

Jiné feSeni.
Podle binomické véty je

=+ (@— b =b+ (@a—bp +

+k§:(2) b (@ — byn —F,

V ptipadé n = 1 posledni suma odpadd, v pfipadé n > 1
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obsahuje samé nezdporné scitance, které jsou kladné, pokud
a > b > 0, jinak nulové. Je tedy

ar —b" = (a — b

a rovnost nastane, pravé kdyZz je bud n =1, nebo a = b,
nebo b = 0.

15. Pfi feSeni ulohy ndm pomiZe ndsledujici tvrzeni:
Je-li a > 0, pak

%

1
a+—=2 (1)
a

Rovnost nastane, praveé kdyz a = 1.

Pomocné tvrzeni je disledkem toho, Ze nerovnost (1) je pro
a > 0 ekvivalentni s nerovnosti

a@?—2a+1=(@@a—12=0.

Abychom dokdzali nerovnost z ulohy, uspoidddme soucet
na levé strané takto:

X1 Xn X2 Xn—1
('—- + —') + ( + ) T as
Xn X1 Xn—1 X2

Na soucty dvojic zlomkd v zdvorkich muZeme pouzit po-
mocné tvrzeni - podle né¢ho je kazdy aspoii roven 2. Je-li
nsudé, n = 2k, dostaneme tak k& dvojic a levd strana je tedy
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aspoft k.2 = n. Je-li n liché, n = 2k + 1, dostaneme % dvojic

” v r v xk +1
a samostatny prostiedni ¢len
Xk +1

asponi k.2 4+ 1 = n. Rovnost nastane, prdvé kdyz

=1, leva stranaje tedy

X1 X2
- =...=1,
Xn Xn—1

tj. praveé kdyZ x1 = xp, Xo = xp —1 atd.

16. Neztratime na obecnosti, budeme-li pfedpoklddat, Ze

Pro kazdé k< {1,2, ..., n} pak plati

0 = (%1 — x) (% — x) = (%1 + Xn)Xk — X1Xn — X2y
neboli
xp = (%1 + X)Xk — X1%n.
Selteme-li téchto »# nerovnosti, dostaneme
X+t e+ 2= (a1 xn) (1 X2+
ceo + oxp) — nx1%p,
a protoze podle predpokladu je

X1+ X2+ ...+ xp=0,x1 =my xy =M,
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plati
X2+ x5+ .+ x2S — nmM.

Rovnost nastane, pravé kdyZ pro kazdé ke {1,2,...,n}
bude

(x1 - xk) (xk — xn) =0,
tj. kazdé x; bude rovno bud m, nebo M. Pro n-tici Cisel
s nulovym souctem tedy nastane rovnost, pravé kdyZ obsahuje
nanejvy$ dvé riznd Cisla.
17. Soucet pfifazeny poradi
a1y An+ 25 A25An +35 -+ -5 Any A2n + 15 An + 1

je roven

a1 — an +2| + lan +2 —ag| + laz —an+3| + ...
v a1 —an 1] + lan 41 — a1l =

=ap+2—ar+ ap+2 —az+ap4+3 —az + ...
ce. tAp+1—AGu+1t+ ap+1 — a1 =

=2an+2+an+3+ ... + @z +1) + an+1 —
—2(ay + a2+ ... + an) — an +1. ¢))

Pro libovolné uspofdddni se uvaZovany souCet po upravé
vedouci k odstranéni absolutnich hodnot skliddd z 2(2» + 1)
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sCitancti, mezi nimiz se kazdé z Cisel a1, as, ...,a2, +1
vyskytuje prdvé dvakrdt. Pfitom u 27 + 1 séitanch je kladné
znaménko a u 2z + 1 zdporné. Odtud vidime, Ze soucet (1)
je nejvétsi mozny, kladnd znaménka md u 2z + 1 nejvétdich
Clent

a2n + 15920 + 15 @2ps G205 « - -5 An + 25 Ap +25 dp + 1

a zdpornd u 27 + 1 nejmensich ¢lent

ai, a1, A2, A2, . . .5 Any Ans An + 1.

18. Je hned vidét, Ze pokud bod [x, y] nerovnici vyhovuje,
vyhovuji ji také body [x, —], [—x, 3], [3> %], [y, —x].
To znamend, Ze hledand mnoZina je soumérnd podle osy x,
podle osy y, podle pfimky y = x a podle pfimky y = —x.
Sta¢i proto najit tu Cdst mnoZiny, kde pro soufadnice
bodu plati

0

MIA

y=x. 1)

I/

Za této podminky bude mit nerovnice tvar

l=lx+y—(—»I=2,
neboli
1=2y(=2
a vyhovuji ji prdvé ty body, pro které plati
Isy=s1. 2
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Mnozina vSech bodd vyhovujicich nerovnicim (1) a (2) je
zndzornéna na obr. 4. VyuZijeme-li soumérnosti, o nichz
jsme se zminili, dostaneme celou hledanou mnoZinu (obr. 5).

Y
1= g
AN
2T .
1
0 3 1
1
Obr. 4
J
/

2
AT
IIEPS ; |1 //‘r

A o0 N
-1 R
. 7;_%? .
S | Sy
/S
— b
Obr. 5
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19. Jednoduchou tpravou ddme nerovnici tvar

+DE+NE+2)@E+Dax(x—1DE—2)(x—3)

GO+ + Dy —DO—2(—3)

(x —4)
e

4, —3, —2, —1,0, 1,2, 3, 4}

neni levd strana definovéna (jmenovatel je nulovy), a tedy

0 z4dné y € {

ime, Ze pr

Vidi

Obr. 6
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zddny bod leZici na nékteré z deviti vodorovnych primek
y = —4, y = —3,..., ¥y =4 nerovnici nevyhovuje. Body
leZici na deviti svislych pfimkich x = —4, x = —3, ...,
x = 4, s vyjimkou bodu uZ vyloucenych, nerovnici vyhovuji -
levd strana je v nich nulovd. Uvedenych 18 pfimek rozdéli
rovinu na 100 dCdsti, jejichZ vnitfni body zbyvd vySetfit.
Levd strana je v nich definovdna a je rtznd od nuly. Pfitom
pro vSechny body uvnitf téZe Cdsti md stejné znaménko,
které se pri prechodu k sousedni Cisti ve vodorovném nebo
svislém sméru zméni. Hledand mnoZina md tedy »Sachovnico-
vy« tvar a vidime ji na obr. 6.

20. Jmenovatele zlomkd jsou nenulové pro x % 0. Odmoc-
niny maji smysl, pravé kdyZ soucasné
1+ x2 1+ x2

+1=20, — —1
2x 2x

v

0;

snadno zjistime, Ze to nastane pravé pro x = 0. Funkce je
tedy definovdna pro vSechna x > 0.
Upravujme vyraz definujici funkci. Postupné dostaneme

_/ //l+x2+2x—l/l+x2—2x
y = ,/ x — . -

1+ %% + 2x + ] 1+ x2 —2x

| / [a + %2 — »I'/(1 p:
= / X ’ = ‘ =

[V + e+ ]':(1 — )2
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1/ T+ x| — |1 — x|

= }/ X .

1+ x] + |1 — x

Abychom odstranili absolutni hodnoty, rozdélime defini¢ni

obor na dvé Cdsti:
Pro 0 < x < 1 jde o funkci

V.4 m—a—n_ .5
y“‘l/x(l-l-x)-l-(l—x)—]/ = =

pro x > 1 o funkci

x —:1.

_]/ A+x)+A—2% ]/ 1
Yy =1x =1/ x .
4+ x)—10 — %) / X

Graf funkce vidime na obr. 7.

Obr. 7

21. V bodé x = —1 funkce nabyvéd hodnoty
a+bll + k=0 ¢y
a v bod¢ x = 3 hodnoty

3a + b|3 — k| = 0. )
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Odecteme-li od trojndsobku podminky (1) podminku (2),
dostaneme

b(13 — k| — 3|1 + &) = 0. 3)

Kdyby bylo & = 0, plynulo by z (1), Ze a = 0, a funkce by
byla nulovéd; nenabyvala by tedy hodnoty 2. Je tedy & # Oa

13—k =31 + &|. (4)

Snadno zjistime, Ze podmince (4) vyhovuji jen 2 = 0
a k= —3. V pfipadé k=0 dostaneme z (1) b = —a
a funkce md tvar

y=alx] —alx — 0 =0

a nenabyvd hodnoty 2. V pfipadé & = —3 dostaneme z (1)
a = —2b a funkce m4 tvar

y = —2b|x| + b|x + 3|.

Prozkoumdme prubéh této funkce a uréime b tak, aby jeji
nejvétsi hodnota byla 2.

Pro x = —3 muzeme funkci psdt

y = bx — 3b,
pro —3=x=0

y = 3bx + 3b
aprox =0

y = —bx + 3b.
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Jak uz vime, je b 7 0. Kdyby bylo 4 < 0, nabyvala by funkce
pro dostatené velkd x hodnot vétSich neZ 2. Aby funkce
vyhovovala podminkim tlohy, musi tedy byt & > 0.
V tomto piipadé v intervalu (—oo, —3) funkce dosahuje
nejveétsi hodnoty —6b v bodé x = —3, v intervalu (—3, 0)
nejvétdi hodnoty 36 v bodé x =0 a v intervalu <0, + o)
nejvétsi hodnoty 35 v bodé x = 0. Aby byla nejvéti hodnota
dané funkce 2, musi tedy byt 36 =2, tj. b = % Pak je

4
a= —2b=— Y a hledand funkce je

4ll+2l+3l
y = 3x 3x .

Jeji graf je na obr. 8.

Obr. 8



22. Hleddme vSechny trojice redlnych koeficientd a, b, ¢
tak, aby funkce f(x) = ax2 + bx + ¢ spliiovala danou pod-
minku, tj. aby

a2x + 1)2 + b(2x + 1) + ¢ = 4a[(—x)% + b(—x) + ],
neboli

(4a + 6b)x + (a + b —3c) =0

pro kazdé redlné x. To nastane, prdvé kdyz koeficienty
a, b, ¢ jsou feSenim soustavy rovnic

4a + 60 =0
a+b—3=0.

Tato soustava méd nekonecné mnoho feSeni; jsou to prdvé
vSechny trojice

a=9tb= —6t,c =1,
kde 7 probihd vSechna redlnd Cisla. Pro ¢ = 0 v3ak dostaneme
a = 0, coz neddva kvadratickou funkci.

Resenim tlohy jsou viechny kvadratické funkce tvaru f(x) =
= t(9x%2 — 6x + 1), kde 7 je nenulové realné cislo.

23. V bodé x = 0 nabyva funkce hodnoty
—1=c=1, (1)

v bodé¢ x = 1 hodnoty



—1=Za+b+c=<1 @
a v bodé x = —1 hodnoty

—1=a—-b+c=1 (3)
Z (1) plyne, ze

—2=< —2c=2. 4
Secteme-li nerovnosti (2), (3), (4), dostaneme

—4<2a<L4

neboli |a| < 2.

Splituje-li funkce f(x) = 2x2 + bx + ¢ podminku ulohy,
plati pro koeficienty b, ¢ nerovnosti

—1=<c<, 1)
—1<2+b+c<1, (5)
—1<2—-b+c<1. (6)

Secteme-li nerovnosti (5) a (6), dostaneme
365 —1
a z (1) vidime, Ze musi byt ¢ = —1. Z (5) a (6) pak dostaneme
—2=506=0,0=0=2,
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takze musi byt b = 0 a podmince muZe vyhovovat jediné
funkce

flx) = 2x% — 1.

Snadno zjistime, Ze skutetné vyhovuje. Analogicky pro
a = —2 vyhovuje jedind funkce

flx) = —2x2 + 1.

24, Usetfime si prdci, kdyZ si vSimneme, Ze pro kazdou
funkci z dané mnoziny plati

f(x) =f(—x)
pro kazdé reédlné Cislo x. Z toho totiz vyplyvd, Ze funkce
f(x) = x2 + blx| + ¢
nabyvéd v intervalu {(— 4, 1) stejnych hodnot jako funkce
gx) =2 4+ bx + ¢

v intervalu <0,1)>. Pochopitelné¢ budeme radéji pracovat
s funkci g(x). Mizeme ji upravit na tvar

g(x)=(x+%)2+c——4—.

Odtud vidime, Ze pro uvaZované funkce mohou nastat tii
pripady:
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b
1. Je-li — 7 € (0,1), nabyva funkce g(x) v intervalu <0,1)

‘ b b2
nejmensi hodnoty v bodé x = — > a to hodnoty ¢ — e

Nejvétsi hodnoty pak nabyvé v bodé x = 0,a to ¢, nebo v bodé
x=1,ato b+ c+ 1. Aby v tomto pfipad¢ byla splnéna
podminka tlohy, muselo by pro koeficienty b, ¢ platit

2

2

—2<b<0c——=1
4

a bud ¢ =2 nebo b + ¢ + 1 = 2. Snadno zjistime, Ze Zddnd
dvojice redlnych &isel b, ¢ témto podminkim nevyhovuje.

b
2. Je-li — 5 = 0, nabyvd funkce g(x) v intervalu <{0,1)

neirﬁenéi hodnoty v bodé x = 0 a nejvétsi hodnoty v bodé
x = 1. Aby v tomto pfipad¢ byla podminka splnéna, musi
pro koeficienty b, ¢ platit

b=0,c=1b+c+1=2.
Vyhovuji koeficienty b = 0, ¢ = 1.
b
3. Je-li — 5 = 1, nabyvd funkce g(x) v intervalu <0,1)

nejvétsi hodnoty v bodé x = 0 a nejmensi hodnoty v bodé
x = 1. Aby v tomto pfipadé byla podminka splnéna, musi
pro koeficienty b, ¢ platit

b—2,c=2,b+c+1=1.

Vyhovuji koeficienty b = —2, ¢ = 2.
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Snadno se presvéd¢ime, Ze obé nalezené funkce g(x) = x2 +
+ 1, g(x) = x2 — 2x + 2 skutecné v intervalu (0,1) na-
byvaji nejmensi hodnoty 1 a nejvét$i hodnoty 2. Refenim
ulohy jsou funkce f(x) = x2 + 1, f(x) = x2 — 2[x| + 2.

25. Nejprve si véimneme, Ze jmenovatel
2—2x+2=(x—12+1>0,

takze funkce f(x) je skute¢né definovéna pro vechna redlnd x.
Vzhledem k tomu, Ze jmenovatel je kladny, je nerovnice

[x2 + 2px — 2]
¥ _2x 12 1

|

<2

ekvivalentni nerovnici
§x2 + 2px — 2| < 2(x2 — 2x + 2),
tj. soustavé dvou nerovnic
x2 4+ 2px — 2 < 2(x? — 2x + 2)
22+ 2px —2 > —2(x2 — 2x + 2),
neboli
2—2p+4)x+6>0
3x2 4+ (2p —4)x + 2 > 0.
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Posledni soustava je splnéna pro kazdé x, prdvé kdyZz oba
diskriminanty

(2p + 42 —4.6 =4(p + 22 — 24,
(2p — 42 —4.3.2=4(p —22—24
budou zdporné. Odtud dostaneme hledanou podminku
2—-)6<p<2+]6

26. Protoze

1\2 3
—x+1=|x—- + —>0,
2 4

/

je zlomek v absolutni hodnoté opravdu definovin pro kazdé
redlné x. Nerovnice z ulohy je ekvivalentni nerovnici

222 + x — 1] < a(x®2 — x + 1),
tj. soustavé nerovnic
202+ x — 1 <a(x®—x+ 1)

252+ x —1> —a(x® — x + 1),
neboli

(@ —2)x2—(@+Dx+(@+1)>0
(@ +2)x2—(a@a—Dx+ (a—1)>0.
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Cislo a = —2 zfejm& tloze nevyhovuje (musi byt a > 0).
Ani &islo a =2 nevyhovuje, protoze pak prvni nerovnice
soustavy md tvar

—3x+3>0
a neni splnéna pro vSechna redlnd x. Soustavé nerovnic tedy
vyhovuji vSechna redlnd x, prav€ kdyz soucasné
a—2>0a+2>0
a oba diskriminanty

(a+12—4a—2)(a+1)<0,
(@—12 —4a+2)(a—1)<0,

tj. pravé kdyz a > 3.

5 g . . ?
27. Pripustime, Ze rovnice md raciondlni kofen —,kde
q

P> g jsou celd nesoudélnd Cisla. Po dosazeni do rovnice a vy-
ndsobeni Cislem ¢2 dostaneme

ap? + bpq + cq? = 0.

Prvni dva ¢leny jsou délitelné Cislem p, a protoZe p, ¢ jsou
nesoudélnd dCisla, jsou p, ¢2 také nesoudélnd Cisla, takZe
koeficient ¢ je délitelny cislem p. ProtoZe ¢ je liché dislo,
je i p liché Cislo. Analogicky ukdZeme, Ze g déli koeficient a,
a je tedy liché. VSechny tii s¢itance jsou tedy liché a jejich
soucet nemiize byt nula. Odvodili jsme spor.
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28. Protoze
¥ —yr=(x—y)(x+ ),
¥ —3=(x—y) (2% + xy + 32,

je pro kazdd dvé celd ¢isla x, y rozdil f(x) — f(y) ndsobkem
¢isla x — y. Zvolme libovolné celé &islo k. Cisla f(k) — f(m),
f(k) — f(m + 1), f(k) — f(m + 2) jsou po fadé ndsobky Cisel
k—mk—m—1,k—m— 2. Protoze k —m, k —m — 1,
k —m — 2 jsou tfi po sobé ndsledujici pfirozend Cisla, je
pravé jedno z nich ndsobkem tfi a asponi jedno z Cisel f(k) —
— f(m), f(k) — f(m + 1), f(k) — f(m + 2) je tedy ndsobkem
tfi. Pfedpokldddme-li, Ze &isla f(m), f(m + 1), f(m + 2) jsou
ndsobky tri, je tedy i f(k) ndasobkem tfi.

29. Rozlozime
Pr—=0>—@*+ 9.

Obé prvocisla p, ¢ jsou lichd, liché jsou tedy i jejich mocniny,
oba Cinitelé p2 — g2, p2 + ¢2 jsou sudd Cisla a p* — ¢ je
proto délitelné Ctyfmi. Prozkoumdme jesté délitelnost obou
Ciniteld tfemi a péti. Uvédomme si, Ze ddva-li Cislo ¢ pfi déleni
Cislem d zbytek z, Cislo ¢2 ddva pfi déleni Cislem d stejny
zbytek jako ddvé Cislo 22. Pfi déleni tfemi ddvaji Cisla p, ¢
zbytky 1 nebo 2 a é&sla p2, ¢2 tedy jedin& zbytek 1. Cislo
p2 — ¢2 je tedy délitelné tfemi. Pfi déleni péti ddvaji Cisla
P, q zbytky 1, 2, 3 nebo 4 a Cisla p2, ¢2 zbytky 1 nebo 4;
jsou-li zbytky u p?, g2 stejné, je p2 — ¢? délitelné péti, jsou-li
rizné, je péti délitelné p2 + ¢2.
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30. Cinitelé souinu
k(k+1)...(3k —3)

jsou 2k — 2 za sebou ndsledujicich pfirozenych cisel. Uvé-
domime-li si, Ze mezi kazdymi 2¢ za sebou ndsledujicimi
prirozenymi Cisly jsou aspon dva ndsobky Cisla ¢, vidime,
ze v piipadé m < k obsahuje soucin aspon dva ndsobky
Cisla m. Zbyva pripad m = k, kdy soucin obsahuje Cinitele
k, 2k (protoZe k = 3, je 3k — 3 = 2k).

31. D4-li se Cislo N rozlozit na soucet
N=a+ @+ 1)+ ... +(a+bd), €))

kde a, b jsou pfirozend Cisla, dostaneme sectenim této rovnosti
s rovnosti

N=(@+b+@+b—1)+ ... +a
vztah
2N = (2a + b) (b + 1).
Je-li b liché, je 2a + b liché. Je-li b sudé, je b + 1 liché.
Cislo 2N, atedy i N, md, jak vidime, aspoii jednoho lichého
prvocCinitele, a neni proto mocninou cisla 2.
Piedpoklddejme, Ze Cislo N > 2 neni mocninou Cisla 2.

Mai tedy aspon jednoho lichého prvocinitele a ¢islo 2N mu-
Zeme rozlozit na soucin dvou Ciniteld p, ¢, z nichZ jeden je
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sudy, druhy lichy a kazdy z nich je vétsi nez 1. Pokusime se
najit pfirozend Cisla a, b tak, aby platilo

p=0b+1,q9=2a+ b
Vyhovuji ¢isla

—p
b::pal,a:%——. @)

Pokud zvolime oznaceni tak, aby p < ¢, jsou takto zavedend
&isla a, b skuteéné piirozend. Cislo N pak muZeme rozloZit
na soucet (1).

Pti rozkladu &isla N = 100 na takovy soucet vyjdeme z roz-
kladu ¢isla 2N = 200 na soucin dvou Ciniteld rtizné parity.
Tak napf. ze soucinu 200 = 8.25 sestavime podle (2)

25 -8 +1

b=8—-1=Ta=——"—=9
2

a dostaneme rozklad (1)

100 =9+ 10 + 11 + 12 + 13 + 14 + 15 + 16.

Vyjdeme-li ze soudinu 200 = 5.40, dostaneme b = 4, a =
= 18,

100 =18 + 19 + 20 + 21 + 22.

32. Nejprve zjistime, kolika pfirozenymi Cisly je délitelné
¢islo 9000. Jeho rozklad na prvodinitele je
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9000 = 26 . 32, 56

a jeho pfirozeni délitelé jsou tedy pravé vSechna Cisla tvaru
20,3057, kde 0=p =6, 0=¢=2, 0=r=6, je jich
tedy 7.3.7 = 147.

Oznadme je a1, ag, ..., aia7. Zvolme pfirozené Cislo # a zbytky
po déleni cisel a1, ag, ..., auar Cislem n oznaCme 21, 22, .. .,
z147. Je-li m < 147, jsou mezi Cisly 21, 29, . . ., 2147 asponl dvé
stejnd; oznaéme je 2j, 2. Rozdil &sel aj, ax je pak délitelny
Cislem n. Mizeme vzit di = aj, ds = a;.

Zbyva prozkoumat Cisla 147 =< n =< 150. Pro n = 147 najde-
me d; = 150, d» = 3, pro n = 148 d; = 150, d2 = 2, pro
n =149 d; = 150,ds = 1 a pron = 150 d; = 300, d> = 150.

33. Zkusime najit takové prirozené Cislo X, Zze dekadicky
zépis jeho 1977ndsobku konéi na 1978. Cislice &isla X oznaéme
bo, b1, be, b3, . . ., tj.

X = by + 1061 + 10062 + 100063 + ...

Cislo X.1977 m4 kondit &tyicislim 1978. Cislo bo.7 md tedy
kongit &islici 8, takze musi byt by = 4. Cislo

(1061 + bo). 77 = (10by + 4).77 = 7706, + 308
mé konéit dvojéislim 78, takze musi byt b = 1. Cislo

(100b; + 10by + bo).977 = (10055 + 14).977 =
— 97 700b; + 13 678
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ma koncit trojCislim 978, takZe musi byt by = 9. Cislo
(100085 + 10065 + 1061 + bg).1977 =
= (100063 + 914).1977 = 197700053 + 1806 978

ma koncit Ctyfcislim 1978, takZe musi byt b3 = 5. Existuje-1i
tedy hledané ¢islo X, konci CtyiCislim 5 914, pficemz Cislice
vyssich fddt nemaji vliv na posledni ¢tyféisli ndsobku Cisla X,
Hledand ¢isla X jsou pravé vSechna pfirozend ¢isla konéici
Ctyfcislim 5914.
Jiné feSeni. '
Ozna¢me pro kazdé pfirozené Cislo n jako a, 4n-ciferné Cislo

ap = 19781978...1978.

UkédZeme, Ze mezi prvnimi 1977 Cleny této posloupnosti je
Cislo délitelné 1977. Piedpoklddejme, Ze takové Cislo mezi
Cisly a1, as, ...,a1977 neni. Pak jsou mezi nimi dvé dCisla,
kterd ddvaji po déleni ¢islem 1977 stejny zbytek, necht jsou to
ai, ap (1 < k). Oznatme m = k — 1. Cislo

ar — a; = 1978...1978.104% = 1) —= q,, . 104m

je délitelné 1977. Protoze 1047 je nesoudélné s 1977, je
a, délitelné 1977 a piitom 1 = m < 1977, coZ je spor
s nasim pfedpokladem. (Tento dikaz umoZiiuje zobecnit
dokazované tvrzeni.)

34. Pfi déleni dvandcti mohou prvocisla ddvat jen zbytky

1, 5, 7 nebo 11. Soudin Cisel, kterd pti déleni dvandcti dédvaji
zbytky 1 nebo 11, ddvd opét zbytek 1 nebo 11.
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Po téchto predbéZnych tvahdch zkonstruujeme pozadované
prvocislo k libovolnému % = 7. Soudin vSech prvodéisel
vétsich nez 5 a mensich nez & oznalme s a uvazujme Cislo
12s + 5. V jeho rozkladu na prvocinitele musi byt podle
predbéznych tvah prvocislo p tvaru 12z + 5 nebo 12n + 7.
Toto prvocislo p neni 5 (pak by s &islem 125 + 5 délilo
i Cislo s a to odporuje definici ¢isla s) a je vétsi nez k (jinak
by podle definice ¢isla s délilo s a nedélilo by pak 125 + 5).
Vidime, Ze p md pozadované vlastnosti.

35. Je-li n hledané Cislo, pak 27 muze koncit bud &islici 2, .
nebo Cdislici 4.
Kon¢i-li Cislici 2, md 2" nanejvys tfi dal$i nenulové Cislice.
Ma-li jedinou, je to Cislice 3 a 27 m4 tvar 3.10% + 2. Nemuze
byt £ > 1, to by 2" bylo délitelné ¢tyimi a 3.10% + 2 ne.
Je tedy £ =1 a n = 5 vyhovuje tloze. Md-1i 27 pravé dvé
dalsi nenulové Cislice, jsou to 1 a 2. Na misté desitek nemuze
mit 27 Cislici 2 (spor s délitelnosti ¢tyimi), 1 (spor s délitel-
nosti osmi) ani 0 (spor s délitelnosti ¢tyfmi). Md-1i 27 praveé
tfi dal$i nenulové Cislice, jsou to 1, 1, 1. Posledni moznd
troj¢isli jsou 002, 012, 102, 112. Prvé tfi moznosti vedou opét
ke sporu s d&litelnosti osmi. Cisla 1112, 10 112 nejsou mocniny
Cisla 2, a proto posledni moZnost miZe byt jen Cislo kondici
na 00112. To vSak neni délitelné &islem 32. Konéi-li 27
&islici 4, md jedinou dal$i nenulovou &islici, a to 1. Cisla 14
ani 104 nejsou mocniny ¢isla 2 a ¢isla kondici trojéislim 004
nejsou délitelnd osmi.
Zavér: Uloha m4 jediné fefeni n — 5.

36. Pro kazdé dvé Cislice 4, B muzeme dané Cislo napsat
jako soucet
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234 5B6 = 230506 + 1000.4 + 10.B.

Vzhledem k tomu, Ze 230506 ddvd pfi déleni devatendcti
zbytek 17, je dané Cislo délitelné devatendcti, pravé kdyz
1000.4 + 10.B ddvd zbytek 2. AvSak 1000 ddvd zbytek 12,
takze 1000.4 + 10.B ddvé stejny zbytek jako 12.4 -+
+ 10.B. ProtoZe 19 je prvocislo, ddvd 12. 4 + 10.B zbytek 2,
pravé kdyz 6.4 + 5.B ddvd zbytek 1. Zbytky ndsobka Sesti
a péti po déleni 19 jsou v tabulce:

i
6: | 0 | 6 [12 |18 | 5 |11 |17 | 4 10 |1

~

5t 0 5 10 | 15 1 6 11 16 2

[=))

Odtud vidime, Ze vyhovuji jedin¢ kombinace Cislic

A=0,B =4;
A=3,B=8;
A=4,B=3;
A=1,B=T;
A=8,B=2.

Uloze vyhovuje pét &isel: 230546, 233 586, 234536, 237576
a 238 526.
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37. Pravd strana nemiZe byt mens$i nez 16 + 7.2 +
+ 48 =178, a tedy musi byt x > 4. Pak je levd strana nd-
sobkem ¢isla 16 a aby to platilo i pro pravou stranu, musi
byt x = 6. V tomto pfipadé miZeme rovnici zkrétit Cislem 16,
dostaneme

45-3 4 7.20-4 4 3 = x(x —1)...8.7.45.

Je-li x > 7, je na pravé strané sudé Cislo a na levé liché,
musi tedy byt x = 7. Zbyvaji jen dv€é moZnosti: x = 6

nebo x = 7. Zkouskou zjistime, Ze vyhovuje jen x = 17.
38. Predpoklddejme, Ze pro dvé pfirozena Cisla x, y plati
XY =y Y, (1)

Protoze vlevo je prirozené (islo, je pfirozené Cislo i vpravo,
a je proto exponent x — ¥ = 0. Pro zdklady je tedy x = v,
takZe pro exponenty plati y = x — y. Vydélime-li rovnost (1)
Cislem y¥, dostaneme

G n

kde vpravo je prirozené Cislo. Vlevo je proto také prirozené
Cislo, takZe x = ky, kde k je pfirozené Cislo. Dosazenim
do (2) dostaneme

kY =y -2y
a po odmocnéni

k= yk -2,
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Tento vztah plati, jak snadno zjistime, jenprok =lay =1,
k=3ay=3, k=4 ay=2. Odpovidajici dvojice jsou
x=1lay=1,x=9ay =23, x=28ay =2 Dosazenim
do dané rovnice se piesvédéime, Ze vSechny tyto dvojice ji
vyhovuji.

39. Mocniny ¢isla 2 rostou pomaleji nez mocniny Cisla 5,
coz signalizuje, Ze pro Zddné feSeni ulohy nebude x =< y.
Skutecné, pro x = y je

[2¢ — 10¥] = 10¥ — 27 =2%(2v—2 5/ — 1) =2(5 — 1) =8.
Reseni nerovnice tedy miizeme najit jen pro dvojice x > .
Pro takovid feSeni plati

|22 — 10¥| = 2v|2¢ —¥ — 5¥| < 5,
odkud

5

v ==
2v 2

takze
20 - v — 5v] =1,
protoze je to liché ¢islo. Je tedy bud
5 4+ 1 =2"-Y,nebo 5 — 1 =27~ ¥,

Prvni pfipad nemuZe nastat, protoze Cislo na levé strané
konéi dvoj¢islim 06 nebo 26 a neni délitelné ¢tyfmi. Ve dru-
hém pfipadé rozlozime levou stranu
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5 —1=05-1D0+5+ ... +5v-1),
Je tedy
2-Y=41+54+ ... +5/-1),

Kdyby bylo y = 2, byl by vpravo bud lichy pocet ¢&lent,
a tedy liché ¢islo, nebo nenulovy pocet ¢lend, a tedy Cislo
délitelné Sesti, coZ neni mozné. V tvahu tedy pfichdzi
jen y = 1, CemuZ odpovidd x = 3. Tato dvojice, jak se pre-
svédcime dosazenim, vyhovuje.

40. Protoze 138 > 1979, 55 > 1979, dostaneme z prvni
rovnice, Ze pro kazdou trojici vyhovujici soustavé plati

x=12,y< 12,2 < 4.

Z druhé rovnice je$té dostaneme

P=yz=1x
a tedy

y=3.
Kdyby byloy =1, byloby x = z a
23(1 + 22) = 1978,

coz nespliluje Zddné z € {1, 2, 3, 4}.
Kdyby bylo y = 2, bylo by x =4z a

23(64 + 22) = 1971,
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coz plati jen pro z = 3 a pfislu$nd trojice by byla x = 12,
y=2,2=23.
Kdyby byloy =3, byloby x =9z a

23(729 + 22) = 1952,
coz nespliiuje zddné z.

Danou soustavu rovnic muZe tedy spliiovat jen trojice 12, 2,
3, kterd skutecné vyhovuje.

Jiné feSeni:
Dosadime-li z druhé rovnice do prvni za 2, dostaneme kvadra-
tickou rovnici pro y3

528 + 33 + 25 — 1979 = 0.

Ta md v oboru redlnych cisel feSeni

-1+ ]/1 — 423(25 — 1979)
223 ’

» =

Dosazujeme-li sem za 2z hodnoty 1, 2, 3, 4, vyjde y pfirozené
jen pro z = 3 a to vede k trojici 12, 2, 3.

41. Jsou-li obé Cisla

H - (1)

celd, plati

YIS+ x =1+,
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a odtud

M —1=|1+5 —1<|p<[1+2<|x] + L.

Vyhovuje-li tedy dvojice [x, y] poZadavkim ulohy, plati
pro ni

lx —1=lyl =12+ L
MuiZe tedy nastat jen nasledujicich Sest pfipadi:
Ly=x

Cisla (1) maji tvar

X X

Kdyby bylo |x| > 1, Citatel by pifi déleni jmenovatelem x
ddval zbytek 1 a zlomky by nebyly celd ¢isla. Prozkoumdnim

vSech moZnosti x =1, x = —1 najdeme dvojice [1, 1],
[—1, —1].
ILy=—x

Cisla (1) maji tvar

a podobné jako v I. musi byt |x| = 1. Zde najdeme dalsi
dvé dvojice [1, —1], [—1, 1].

OL j = x + 1
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Cisla (1) maji tvar

1+x x4+ 2
1+« x

Aby byl druhy zlomek celé ¢islo, musi byt !x[ < 2. Probrid-
nim vSech mozZnosti najdeme tfi dvojice [—2, —1], [1, 2],
(2, 3].
IV.y = —x —1
Cisla (1) maji tvar

l1+x —x

-1 —x’ x

a jsou to celd Cisla pro vSechna x £ 0, x = —1. Dostdvdme
nekone¢né mnoho dvojic ..., [—4, 3], [—3, 2], [—2, 1],
[1> —2]: [23 _3]: [33 _4]: s

V.y=x—1
Cisla (1) maji tvar
1 +x x
x—17 x°
Aby byl prvni zlomek celé cislo, musi byt |[x — 1] = 2.
Najdeme tfi dvojice [—1, —2], [2, 1], [3, 2].
VL y=1—x
Cisla (1) maji tvar

1+ x 2—x

1 —x «x
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Aby byl prvni zlomek celé ¢islo, musi byt |x — 1| = 2,
pro druhy zlomek dostaneme podminku |x| = 2. Najdeme
dvé dvojice [—1, 2], [2, —1].

42, Je-li m =mn, je aritmeticky i geometricky pramér
roven m. Obé &islice praméru jsou tedy stejné. Uloze v tomto
pfipadé vyhovuje devét dvojic [11, 11}, [22, 22], ..., [99, 99].
Je-li m = n dvojice vyhovujici tloze, plati pro Cislice p, ¢

0<p<10,0 < g <10,

m+ n
2

—10p + g, |/mn = 10g + p,

neboli
(m + n)2 = 4(100p% + 20pq + q¢2),

4mn = 4(100¢2 + 20pq + p2).

Odectenim poslednich dvou podminek dostaneme
(m —n)?2 =4.99(p%2 — ¢2) =4.9.11(p + ¢) (p — 9).

ProtoZze m == n, je p > ¢ (to plyne i z vlastnosti praméri)
a Cislo na pravé strané je Ctvercem priirozeného Cisla. Bud
? + ¢, nebo p — ¢ musi tedy byt délitelné Cislem 11. Pro-
toze p —q¢ <9, p+¢g<19, je p + g =11. Diale musi
byt p — g Ctvercem pfirozeného Cisla a musi to byt liché
Cislo, protoze p + ¢ je liché. Jedind moZnost je p — g = 1.
Témto podminkdm vyhovuji jen &islice p = 6, ¢ = 5. Pro
Cisla m, n ma platit
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m+n
2

— 65, (m — n)® = 4.9.11% = 662,

Tyto podminky spliiuje jedind dvojice 98, 32. Jen ta mize
byt feSenim ulohy. Snadno se o tom presvédéime.

43. Rychlost malého ¢lunu ve stojaté vod€ oznalme c
a hledanou vzddlenost d. Malému c¢lunu trvd cesta k mostu
a zpét celkem

4 33.60 1
-1-0_2-—- . S ()

a velkému ¢lunu

d

d
2% + 2 + 2% —2= 16.60s.

Je tedy
d d
c+2 ¢—2 33
d d 16
204+2  2c—2
a po upravé
4c2 — 4 33
2(c2 —4) 16°

Odtud dostaneme ¢ = 10 m/s a pak z (1) vyjde d = 9904 m.
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44. Ozname 7 dobu, kterd uplyne od startu do %-tého
setkdni cyklistt, » odhadovanou rychlost druhého cyklisty
a s délku kruhové drdhy. Prvni cyklista ujede prvni okruh

s
za dobu Ik druhého cyklistu potkd dvakrdt, takze

3]
tr < e < 1)

2s
Prvni dva okruhy ujede za dobu 5 @ druhého cyklistu
potkd pétkrat, takze

2s
w§g<m 2

3s
Prvni tfi okruhy ujede za dobu e 2 druhého cyklistu potka

sedmkrat, takze

3s
< — < ©)
6
Vzhledem k tomu, Ze k setkdni nikdy nedoslo v misté startu,
jsou vSechna znaménka nerovnosti v (1), (2), (3) ostrd.
Uvédomme si je$té, Ze pfi k-tém setkdni ujeli oba cyklisté
celkem vzddlenost

ks = 61 + viy,
odkud
ks
6+ v

k=
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Dosadime-li to do (1), (2) a (3), dostaneme

2s s 3s
6+v<6<6+v

b

5s 2s 6s

6+9 6 6+0°

s 3s 8s
6—|—7)<6<6+7)

a po uprave

6 <v <12,
I9<ov<l12,

8 < v <10,

tj. 9 < v < 10. Rychlost druhého cyklisty byla tedy mezi
9a 10 m/s.

45. Pocitdme-li kazdé pole tolikrat, v kolika vyznacenych
$achovnicich je obsaZeno, je na 31 vyznaenych Sachovnicich
celkem

S =31.8.8 = 1984
poli.
Predpoklddejme, Ze dokazované tvrzeni neplati, tj. Ze kazdé

pole velké Sachovnice patii nejvySe péti vyznaCenym Sa-
chovnicim. Nékterd pole v okoli roht velké Sachovnice ne-
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113
e

Obr. 9

mohou leZet dokonce ani v péti vyznaenych Sachovnicich
(na obr. 9 znamenaji Cisla pocet rtznych Sachovnic 8x8,
v nichZ lezi pfislu$nd pole Sachovnice 20x20). Z naSeho
pfedpokladu dostdvame odhad

S=401+2+3+4+2+4+3+4)+
+ (400 — 4.8).5 =1932

a to je spor.

Jiné feseni:

Na Sachovnici 20 X20 zavedme pfirozenym zplisobem sou-
fadnice poli a vSimnéme si poli o soufadnicich (8, 8), (8, 16),
(16, 8) a (16, 16). Kazdd Sachovnice 8x8 obsahuje, jak
snadno zjistime, prdvé jedno z nich. Nékteré z téchto Ctyf

poli tedy lezi dokonce aspoil v osmi z 31 vyznalenych Sa-
chovnic.

46. Kazdou figurku budeme pocitat tolikrdt, v kolika
Sachovnicich 4 <4 stoji na diagondle, a celkovy poclet ozna-
¢ime S. Na obr. 10 je zndzornéno, do diagondly kolika $a-
chovnic 4 x4 patii jednotlivd pole. Vidime, Ze S je mini-
mdlni, pravé kdyZz jsou figurkami obsazena vSechna pole
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s hodnotami 1, 2, 3 a je§té dvé pole s hednotami 4. Pro jakékoli
rozestaveni figurek je tedy

§=20.1+12.2+8.3+2.4=176.

Sachovnice 8 x8 obsahuje prévé 25 $achovnic 4 x4. Kdyby
kazdd méla na diagondldch nanejvy$ tfi figurky, bylo by

§3.25=175

a to je spor.

Jiné feSeni:

Rozdélme Sachovnici 8 X8 na ¢tyfi Sachovnice 4 X 4. Na né-
které z nich musi byt aspon 11 figurek, takZe obsahuji aspofi
Ctyfi diagondlni pole nebo vSech 8 nediagondlnich poli.
Ve druhém piipadé¢ dostaneme Sachovnici 4Xx4 s aspoil
Ctyfmi figurkami na diagondlnich polich posunutim o dvé
pole doprava nebo doleva (obr. 11).
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Jiné feSeni (obr. 12):

Uvazujme ndsledujicich $est Sachovnic 4 x4: ACHF, BDIG,
CEfH, FHMK, GINL, HfOM. Kaidé pole Sachovnice
AEOK 1lezi bud v diagondle jediné z uvedenych Sesti Sa-
chovnic (48 poli), nebo Zidné (16 poli). Na diagondlnich
polich uvedenych Sesti Sachovnic stoji tedy aspoii 42 —
— 16 = 26 figurek. Aspoil pro jednu Sachovnici 4 x4 tedy
plati, Ze na jejich diagondlnich polich stoji aspoii pét figurek.
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Obr. 12
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47. Oznaéme S pocet figurek stojicich na Sachovnici
1000 x 1000, pfiemZ kazdou budeme pocitat tolikrdt, na
obvodu kolika Sachovnic 8 X8 stoji. Abychom se vyhnuli
komplikacim u okraje Sachovnice 1000 x 1000, omezime se
na prostfednich 9862 poli - kazdé z nich leZi na obvodu prdvé
28 ruznych Sachovnic 8 x8. Okrajovych poli je 10002 —
— 9862 a na prostfednich polich stoji tedy aspoii 800 000 —
— (10002 — 9862) figurek. Oznadime-li S; pocet figurek na
prostiednich polich i s ndsobnosti, dostaneme

S = 81 = (800 000 — (10002 — 9862)).28.

Sachovnice 1000% 1000 obsahuje prévé 9932 riznych 3a-
chovnic 8 x8. Kdyby na obvodu kaZdé z nich stdlo nanejvys
21 figurek, bylo by

§=9932.21
a to je, jak snadno spocteme, spor.
(Poznamenejme, Ze kdybychom se neomezili jen na prostfedni
pole, byl by odhad pracnéji, ale pfesnéj$i. Mohli bychom
tak dokdzat, Ze na obvodu néjaké Sachovnice 8 X 8 stoji asponl

23 figurky.)

48. a) Vzhledem ke komutativité s¢itdni a ndsobeni redl-
nych Cisel je zfejmé, Ze

Xky=y&x
pro kazdd dv¢ redlnd Cisla x, y a operace je komutativni. Aby-
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chom zjistili asociativnost operace, porovndme (x # y) % 2
sx % (y % 2):

(xxy)xz=C+y+xy)x2=x+y+xy+ 2+
+Ex+y+xyz=x+y+ 2+ 29+ x2+ yz+ xy3,
xx(y*x2)=x+Q*2)+ 2y *2)=
=x+y+e+tyvz+x(y+2+y2)=x+y+

+ 2+ xy + X2 + yz + xy2.

Operace * je tedy komutativni a asociativni. Neutrdlnim
prvkem muZe byt jen takové redlné Cislo e, Ze pro vSechna x
plati

ek X=X %e=x,
neboli
X + e + xe = X,
tj.
e(1 + x) =0.
Tuto podminku spliiuje jediné ¢islo e = 0, které'je skute¢né

neutrdlnim prvkem.

b) Prevedeme-li si rovnici s operaci % na rovnici se s¢itdnim
a ndsobenim, dostaneme po tpravé rovnici

(@a+ Dx%2+ (2a—b+ 1)x + (a—0b)=0.
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Je-li @ = —1, jde o linedrni rovnici
(=b—Dx+ (—=b—1)=0.

Té vyhovuje v pfipadé b = —1 kazdé redlné Cislo x a v pfi-
padé b £ —1 jediné x = —1.
Je-li a = —1, m4 kvadratickd rovnice diskriminant

(2a —b+ 12 —4(a+ 1)(a—b) =(b + 1)

V ptfipadé b = —1 md jediny kofen —1 a v pfipadé b # —1
b—a

a+ 1’

dva kofeny —1.

49. Méame dokdzat, Ze pro kazdou trojici prirozenych
Cisel x, y, 2 plati

(xy) * 2 = (x % 2) (¥ * 2).

Snadno se prfesvéd¢ime, Ze rovnost je splnéna v pripadé,
kdy je nékteré z Cisel x, y, 2 rovno 1.
Zbyvé overit rovnost v pripadé, kdy viechna tfi ¢isla x, y, 2
jsou vEétsi nez jedna. Jsou-li jejich rozklady na soudin prvo-
Cinitelt

X =Pp1...0asyY = q1...qQbs 8 = ¥1...T¢

mi Cislo xy rozklad

Xy =p1...pa-q1...9»

a na levé strané dokazované rovnosti je tedy soucin vSech
(a + b)c &initeld p; + 1, g5 + 16 (€ {1,.. a7 € {1,...,b},
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ke {1,...,c}). Na pravé strané je souin viech ac Ciniteld
pi+ 1 (Ge{l,...,a}, ke {l,...,c}) ndsobeny souinem
viech bc Ciniteld ¢; + rx (1€ {1,...,6}, k€ {1,...,c}), coZ
je totéz.

50. Nejprve se budeme zabyvat mnoZinou C viech celych
Cisel. Neni tézké uhddnout, Ze podminkidm tlohy vyhovuji
napf. podmnoziny A =S, B = L, kde S je mnozZina vSech
sudych Cisel a L mnoZina vSech lichych Cisel.

Abychom dokdzali, Ze je to jediné feSeni, nejprve si uvédo-
mime, Ze¢ vyhovuji-li néjaké dvé podmnoZiny A, B tiloze,

jsou disjunktni. Pfedpoklddejme, Ze pro néjaké celé Cislo p
by platilo pe A N B. Jakékoli celé &slo ¢ muZeme psit
jako ¢ = p + (¢ — p). Je-li pak ¢ — p € A, vzhledem k tomu,
7e pe A, je ce A a vzhledem k tomu, Ze p€B,je c€B,
takze ce ANB. I v pfipadé ¢ — p e B dojdeme k tomu,
¢ ceAnB, tj. C=ANB, tedy A=B =C. Z pred-
pokladu A N B = @ jsme odvodili spor s podminkou ulohy.
Jsou-li A, B néjaké dvé podmnoZiny spliiujici podminky ulohy,
je S = A. Skutecné, libovolné sudé ¢islo s miiZeme psat jako
soucet dvou stejnych celych Cisel s :% + %, takze s € A.
PodmnoZina B tedy obsahuje jen lichd &isla (A, B jsou disjunkt-
ni), a to aspoil jedno (je neprdzdnd). Necht napf. ke B
a zvolme si libovolné liché ¢islo /. To miZeme psat jako / =
=k + m,kde m je sudé, tj.m € A. Je tedy ! € B a vidime, Ze
L < B. Vzhledem k tomu, ze AUB =C, je A= S, B = L.
Zavérem ukdZeme, Ze kdyZ mnoZinu C nahradime mnoZinou R
vSech redlnych Cisel, uloha nemd feSeni. Kdyby podmnoZiny
A, B vyhovovaly v tomto pfipadé pozadavkum tlohy, byly
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by disjunktni. To je vidét analogicky jako v pfipadé celych
Cisel. Také by bylo A = R, coz lze odvodit analogicky jako
A = S v ptipadé celych &isel. Bylo by tedy B = @ a to odpo-
ruje jedné z podminek tlohy.

51. Necht je ABCD ¢&ryiuhelnik daného obvodu 4p,
velikosti jeho stran AB, BC, CD a DA oznalime a, b, ¢, d
a jeho obsah P. Neni-li ¢tyfthelnik 4 BCD konvexni (obr. 13),

Obr. 13

existuje konvexni Ctyfdhelnik se stejné velkymi stranami,
jehoZ obsah je vétsi nez P. Najdeme-li mezi v§emi konvexnimi
ctyfuhelniky daného obvodu ¢tyfihelnik s nejvétSim obsahem,
bude to téZ Ctyfdhelnik s maximdlnim obsahem mezi vSemi,
i nekonvexnimi ctyfthelniky daného obvodu. Nic se tedy
nestane, budeme-li predpoklddat, Ze Ctyfthelnik ABCD je
konvexni. Matematikové fikaji, Ze »bez djmy na obecnosti
muzeme predpoklddat, Ze Ctyruhelnik ABCD je konvexnic.
Pro takovy Ctyrthelnik je jeho obsah P roven souctu obsahil
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Obr. 14

trojihelnikt ABD a BCD (obr. 14). Obsah trojuhelniku
ABD se rovnd polovi¢nimu souinu av, kde v je velikost
vy$ky v trojuhelniku ABD, ptislu$né k strané AB. Je v = d
a rovnost nastane pravé tehdy, kdyz jsou strany AB a AD
na sebe kolmé. Je proto 2P = ad + bc, pfi¢emz znaménko
rovnosti plati v této nerovnosti praveé tehdy, kdyz je AB | AD
a soucasné BC | CD. Obdobné bychom dostali 2P = ab +
+ ¢d s rovnosti pouze pro AB | BC a zirovein CD | DA.
Seétenim poslednich dvou nerovnosti dostaneme 4P =
= (a + ¢) (b + d) aznaménko rovnosti plati pouze pro pravo-
uhelniky. Ddle jiz vime, Ze ze vSech pravoudhelnikii daného
obvodu md nejvétsi obsah Ctverec. SloZenim téchto dvou
uvah dostdvime koneény vysledek: ze vSech ctyfuhelnika
daného obvodu md nejvétsi obsah Ctverec.

52. Necht trojihelnik 4BC spliiuje podminky ulohy.
Zvolme oznaceni jeho vrchold tak, Ze pouze strana AB je
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vét¥ nez 6 cm, tedy |BC| = 6, |AC| =< 6. Pak plati pro obsah
P trojihelniku ABC (obr. 15)

P =1|AC|v <1|AC| . |BC| < 1(6.6) = 18.

Obr. 15

ProtoZe v naSem pripadé je P = 18, musi ve vech uvedenych
nerovnostech platit znaménko rovnosti. Musi tedy byt
v = |BC|, tj. trojihelnik ABC musi byt nutné pravodhly
s pravym udhlem pfi vrcholu C,a dile musi platit |AC| =
= |BC| = 6. Pak je trojihelnik ABC pravouhly a rovnora-
menny s odvésnami délky 6 cm, jeho pfepona md délku
6]/2 cm a je to jeho jedind strana, kterd je del$i neZ 6 cm.
Protoze jeho obsah je 18 cm2, vyhovuje vSem podminkdm
ulohy a je to jediny trojtihelnik pozadovanych vlastnosti.

53. Uloha nezada sestrojit viechny Ctyfthelniky poza-
dovanych vlastnosti, staci sestrojit néktery, napfiklad deltoid
ABCD, soumérny podle tuhlopficky AC (obr. 16), pro ktery
je |AC| =10, |AB| = |AD| =5 a vzdélenost bodd B, D
od piimky AC je v&$i neZ 4,9 a mensi nez 5. Ctendte viak
moznd napadne otdzka, jak nalézt toto nebo nékteré dalsi
feSeni ulohy. MtZeme postupovat asi takto: necht v Ctyi-
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Obr. 16

thelniku ABCD je soulet délek tseéek AB, AC, AD ro-
ven 20. Pokusime se odhadnout shora jeho obsah P. MiZeme
pfedpoklddat, Ze body B, D lezi v opacnych polorovinich
ohranifenych pfimkou AC, jinak bychom nahradili bod B
bodem soumérné sdruZzenym podle ptimky AC, ¢imzZ bychom
obsah ¢étyfuhelniku ABCD zvétsili. Pak se P rovnd souctu
obsahi trojuhelniki ACB a ACD. Oznalme v, w velikosti
vysSek v téchto trojihelnicich, pfisluSnych spoleCné zdkladné
AC. Je tedy 2P = |AC|(v + w), a protoze v = |AB|,
w = |AD|, méme 2P = |AC|(|AB] + |AD|) = |AC|(20 —
— |4AC]) = 100 — (10 — |4C|)2 < 100, tudiz P = 50. Vi-
dime, 7e tloha by neméla feSeni, kdyby mél byt obsah ctyi-
thelniku ABCD vétsi nez 50 cm?. Kdyby mélo platit P = 50,
muselo by byt |AC| = 10 a zdroveir v = |4AB|, w = |4D|.
To by vsak musely byt obé pfimky 4B, AD na pfimku AC
kolmé. Pak by leZely body B, 4, D na jedné pfimce, body
A, B, C, D by netvotily ¢tyithelnik. Uloha tudiZ nems feSeni
ani v pfipadé P = 50. ProtoZe podle zaddni dlohy je P > 49,
musi byt 98 < 2P < 100 — (10 — |AC|)?, odkud plyne
(10 — |AC))? < 2, tedy 10 — ]/5 < |AC| < 10 + /2. Vidi-
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me, Ze se velikost thlopficky AC nemuze pfili$ lisit od hod-
noty 10. Pfi volbé bodu A, C tak, aby velikost |[AC| byla
z uvedeného intervalu, volime ddle hodnoty v, = tak, aby

platilo <o+ w<20—|AC|, coz lze, protoZe je

'AC|

lA—Ci— < 20 — |AC!. Ve vzddlenostech v, w vedeme rovnob&zné
pfimky s pfimkou AC, a to tak, aby lezely v opaénych polo-
rovinich ohraniCenych pfimkou AC (obr. 17). Na prvni

D / +
N w
C
>

A

Obr. 17

zvolime bod B a na druhé bod D tak, aby |AB| = v, |AD| =
=, |AB| + |AD| =20 — |AC|. To opét lze, protoZe je
v+ w < 20 — |AC| a z téhoz davodu bude alespoii jedna
z nerovnosti |AB| = v, |AD| = w ostrd. MZeme dokonce
volit body B, D tak, aby byl ¢tyfthelnik ABCD konvexni.
Kdybychom volili [AC| =10, v = =4,95 a |4B| =
= |AD| =5, dostali bychom deltoid, jaky jsme uvedli na
zaCdtku.

54. Zvolme libovolnou stranu AB trojuhelniku T7. Je-li
tseCka AB Cdsti nékteré strany trojihelniku 73, je délka
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useCky AB nejvyse rovna velikosti této strany trojuhelniku
To. V opaéném piipadé prodlouzime useCku AB na tsecku
PQ, jejiz krajni body P, Q lezi na hranici trojuhelniku Tp
(obr. 18). Je pak |AB| =< |PQ|. Oznacme U patu kolmice

/-
AN

QObr. 18

vedené bodem Q k té strané trojthelniku 75, na které lezi
bod P. Alespoii jeden krajni bod R této strany md od bodu U
vzddlenost vétsi nebo stejnou nez bod P. Pak je |[PQ| =< |RQ|.
Bodem R vedeme kolmici k té strané trojuhelniku 7%, na které
lezi bod Q, patu kelmice oznacime V. Alesponi jeden krajni
bod S strany trojuhelniku 7%, na které lezi bod Q, nemad
od bodu V vzddlenost mensi nez bod Q, tj. plati tedy |SV| =
= |QV|. Pak je |[RS| = |RQ| = |PQ| = |4B|. Kdyby bod P
nebo Q byl vrcholem trojuhelniku 7%, mohli bychom ho
vzit za bod R nebo S, a tim cely postup zkrdtit. V kazdém
pfipadé jsme vSak dokdzali, Ze libovolnd strana trojGhelni-
ku T je mens$i nebo nejvyse rovna délce nékteré strany troj-
thelniku 7%. Pak je téZ kaZzdd strana trojihelniku 77 mensi
nebo rovna nejdel$i strané trojuhelniku 7%, a protoZe to
plati pro kazdou stranu trojihelniku 77, plati to i o jeho nej-
delsi strané, coZ jsme méli dokdzat.
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Necht je nyni KL libovolnd strana trojuhelniku T2 a P
pata vySky vedené tietim vrcholem M trojuhelniku T3 na
stranu KL. Pak lezi cely trojihelnik T v pdsu ohrani¢eném
piimkou KL a pfimkou s ni rovnobéZnou, vedenou bodem M
(obr. 19). Vrcholy trojihelniku T vedeme nyni piimky rovno-

bézné s piimkou PM. Aspoil jedna z nich protind prot&jsi
stranu trojdhelniku T7. Necht je to napfiklad ta, kterd pro-
chdzi vrcholem A, prisecik s proté&jsi stranou oznacime D.
Body A, D patfi trojihelniku 773, a tim i trojuhelniku T&,
proto je |PM| = |AD|. Déle je |AD| = |AE|, kde je E pata
vysky trojihelniku 773, prochdzejici bodem 4. Mime tedy
|MP| = |AE|, kazdd vySka trojihelniku 79 je tedy vétdi
nebo nejvySe rovna nékteré vySce trojihelniku 7. Odtud
plyne, Ze kazdd vySka trojihelniku 7% je vétsi nebo rovna
nejmensi vySce trojuhelniku 747. A protoZe toto tvrzeni plati
pro kazdou vysku trojihelniku T, plati i pro jeho nejmensi
vySku. Tim je dokdzdna i druhd ¢dst tvrzeni ulohy.

55. Necht je v nejmensi vySka trojihelniku ABC. Ozna-
Ceni vrcholii zvolime tak, aby v byla vyska k strané AB,
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kterd je pak nejvétsi stranou trojuhelniku ABC. Proto je
prot&jsi vnitfni dhel y nejvét$im vnitfnim dhlem trojihelniku
ABC, tedy y = 60°. Sestrojme v poloroviné ABC bod D
tak, aby byl trojihelnik ABD rovnostranny a opiSme troj-
thelniku ABD kruznici. ProtoZe je y = 60 °, lezi bod C ve
vnitini oblasti této kruZnice. Proto neni jeho vyska vétsi nez

3
vyska rovnostranného trojihelniku ABD, tj. v = [AB[l/z—.
Vyndsobime-li tuto nerovnost ¢islem v, dostaneme 22 = PV?,
kde P je obsah trojihelniku ABC a posledni nerovnost je

ekvivalentni s nerovnosti v < VPVg kterou jsme méli do-
kdzat. Rovnost plati pravé tehdy, kdyz je D = C, tedy kdyz
je trojihelnik ABC rovnostranny.

56. Polozme [DM| = x, pak je |CM| =1 —x, a tedy
|AM| + |BM| + |CM| =1 — x + 2 |/1 + 2 (obr. 20). M4-
me dokdzat, Ze 1 — x + 2 )/l + 22 =1 + ]/3 pro viechna x

z intervalu <0, 1). Dokazovanou nerovnost postupné upra-
vime na ekvivalentni nerovnosti

21+ 223+«
C
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322 —2x]3+1=0

3(x — %)220

Posledni nerovnost je splnéna dokonce pro kazdé redlné
¢islo x, tim je nerovnost ulohy dokdzdna. Zirovei vidime,
Ze znaménko rovnosti plati v posledni, a tim i v dokazované

1
nerovnosti pravé tehdy, kdyz je x = -17; V tom ptipadé je

1 _
|AD|: |IDM| =1:-==1]3:1=1g 60°. Bod M sestroji-
| ]/3

me tak, aby <C MAD = 30°.

57. Oznatme Y priasecik pfimek AX, CD. Je |[AX] +
+ | XY| < |AD| + |DY| (protoze |AX|+ |XY|=|A4Y]),
|BX| < |BD|, |CX| < |CY| + |YX|. Sectenim téchto t¥i
nerovnosti dostaneme nerovnost, kterou jsme méli dokdzat.
Prochdzi-li pfimka AX bodem C, je Y = C, posledni z uve-
denych tfi nerovnosti sice neplati, ale dokazovand nerovnost
je souctem prvnich dvou,a tedy plati. Protind-li pfimka AX
vnitfek tsecky BC, nerovnost v textu tlohy uz nemusi platit.
Kdyby bod X splynul s bodem B, bylo by |4X| + |BX| +
+ |CX| = |AB| + |BC|. Zvolme proto Cctyfthelnik, pro
ktery je |AB| + |BC| > |AD| + |BD| + |CD|. Stali zvolit
body A4, C, D tak, aby AD, CD byly malé ve srovnani s |AB|,
|BC|. Zvolme napfiklad deltoid vepsany kruZnici o polomé-

r
rur, prokteryje |AD| = |CD| < Saz bod X zvolme stied
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B
Obr. 21

kruznice (obr. 21). Je pak |4X| + |[BX|+ |CX|=3r,
|AD| + |BD| + |CD| < 3r. To tedy znamend, Ze nerovnost
v zaddni wlohy obecné neplati, jestlize pfimka AX neprotind
tsecku CD.

58. Necht je X libovolny bod obdélniku 4BCD. Oznaéme
x jeho vzddlenost od pfimky AD a y jeho vzddlenost od pfim-
ky AB. Pak je jeho vzdilenost od strany CD rovna b —y
a od strany BC rovna a — x. Dile je |AX|2 + |BX|2 +
+ |CX]2 + |DX]2 = 2 + »2 + (@ — x)2 + 2 + x2 +
+ b —y2 +(@—x2+b—9y2=a+b2+ (2x —a)? +
+ (2y — b)2. Odtud je ihned vidét, Ze soucet druhych mocnin
vzdédlenosti bodu X od vrcholii obdélniku je vidy roven
alesponi hodnoté a2 + 52 a této hodnoté se uvazovany soucet
rovnd pravé tehdy, kdyZ je bod X stfedem obdélniku. Snad
bychom jesté méli dodat, Ze tvrzeni plati i v pfipadé Ctverce.

59. Ulohu je nejlépe fedit analyticky. Zvolme soustavu
soufadnic tak, aby poédtek splynul s bodem A4, bod B leZel
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Y C=[p:ql

X
A=[0;0] B-=[c;0]

Obr. 22

na kladné poloose x a bod C lezel v poloroviné y > 0 (obr. 22),
tedy A4 =1[0,0], B= [c 0], C = (2 q]: Pﬁéemi Pz + q2 =
=82, (p — ¢)? + ¢% =a? Necht X = [x, y], pak je |AX2 +
+ |[BX]2 4+ |CX|2 = x% + 32 4+ (x — )2 + 3% + (x — p)2+
+ (v — )2 =3x2 + 392 — 2x(c + p) —2qy + ® + p + ¢2.
Tento vyraz upravime na tvar

o begl] 3
3[(96— 5 ) T3] |3 @ ¢+ —po)

Je vidét, Ze uvazovany soucet je nejmensi v pfipadé x =
c+p

=3 ¥ = %, tedy pravé tehdy, kdyzZ je bod X totoZny

s téziStém trojuhelniku ABC, protoZe prvni, resp. druhd,
soufadnice t&zisté trojuhelniku je aritmetickym primérem
prvnich, resp. druhych soufadnic vrcholti trojihelniku.
Viimnéme si, Ze jsme ani nepouzili pfedpokladu, Ze bod X
je bodem trojuhelniku ABC. Dokézali jsme tedy, Ze t&Zi§té
trojihelniku md ze vSech bodi roviny 4ABC nejmensi soucet

druhych mocnin vzdédlenosti od vrcholt trojihelniku. Je$té
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musime tento nejmensi soucet vyjadfit pomoci velikosti stran
trojihelniku. Je
P+@E+E—pc pP+@E+Pp—cP+gZ+3
3 - 3
a’ + b% + 2
=3 - Pro t&zi§t¢ je tedy uvaZovany soucet ro-

ven jedné tfetiné soultu druhych mocnin délek stran troj-
uhelniku.

Obr. 23

Uvedme je$té jeden postup, ktery misto analytické geo-
metrie pouzivd pouze kosinovou vétu. OznaCme S stied
strany AB a T tézisté trojuhelniku ABC (obr. 23). Je pak

|AX2 = |AS]2 + |SX|2 + 2|A4S||SX]| cos =,
IBX[2 = |BS2 + |SX|2 — 2 |BS||SX]| cos «,

protoZe cos (180° — a) = — cos .
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Diéle mdme
|CX|2 = |CT2 + |TX[2 — 2 |CT||TX| cos B,
2|SX[2=2|TSP + 2|TX|> + 4|ST||TX| cos p.

Se¢tenim vSech ¢tyf rovnic dostdvame uZitim vztaht [CT| =
=2|8T|, |CS| = 3 |8T| rovnost

| 2|CSP2
|AXP + |BX + |CX? = |ASP + |BSE + —5— +

+ 3 |TX
Podobné dostaneme
2 |CS|2 = |AC|2 + |BC]2 — 2 |AS)?

a po dosazeni do posledni rovnice mame

|AB2 + |BC|2 + |CA[?
|AX2+ |BX|2+ |CX?2=3|TX]?+ 3 :
Odtud je vidét, Ze soucet na levé strané je nejmensi, kdyz
bod X splyvd s tézistém T trojihelniku a rovnd se pak jedné
tieting souctu a2 + b2 + ¢2, kde a, b, ¢ jsou velikosti stran
trojuhelniku.

60. Lichobéznik ABCD je teCnovy (obr. 24). Porovnejme
lichobéZnik s kosoctvercem AB’'C’D, opsanym téze kruZni-
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ci k. Body dotyku stran lichobé&Zniku s kruZnici & oznacime
K, L, M, N. Mizeme piedpoklddat, Ze zdkladna AB je
vétdi neZ zdkladna CD, jinak bychom pouze zménili oznadeni
vrcholii lichobéZniku. Je pak |KB'| < |KB|, |MC’| > |MC|.
Dile plati |BC| = |[BL| + |CL| = |BK| + |CM|, a proto je
|BC| < |BK| + |MC’| = |BK| + |AK| = |AB|, |BC| >

> |KB'| + |CM| = |DM| + |CM| = |CD| a soulasné

|CD| < |C'D| = |AD| = |AB'| < |4B|. Jsou tedy ob& dvé&
ramena AD, BC lichobéZniku ABCD mensi neZ vétsi zdklad-
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na AB a vétsi neZ mensi zdkladna CD, coz jsme méli do-
kézat.

Jiny dikaz: Oznacme » polomér kruZnice &, « thel DAB,
p thel CBA (obr. 25). Pak je <t ADC = 180° — «, <¢ DCB

o
180° — B, |AK| = |AN| =r cotg — ,|DN[ IDM| =r1g -,

|CM| = |CL| —rtgﬂ,lBLl |BK| =rcotg§,atedy
g
|AB| =r cotg + cotg — 5

o = (i ’3)
oDl =r g +185)

v
|AD| = r (tg 2 + cotg 2)

B ﬁ)
|BC| =r (tg—é- + cotg 2]

Protoze je ABCD lichobéinik, je o + f 7 180°% a tudiz

o

« B . o B . p
cotg 2 # tg - Je-li cotg—z— < th, je cotg; <1tg 508

« B o 3 B o
tudiz cotgfz* + cotgz < cotg; + th <tg~2—+tg5,

tj. |AB| < |AD| < |CD| a zirovei |AB| < |BC| < |CD|,

o 14
Obdobné bychom postupovali v pfipadé cotg 5>’y
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61. Predpoklidejme, Ze body C, D na dané kruZnici %
(obr. 26) tvofi s body A4, B rovnoramenny lichobéznik se
zdkladnami BC, AD. Oznalme o osu tohoto lichobé&Zniku
a k' kruznici soumérné sdruzenou ke kruznici £ podle osy o.

QObr. 26

Kruznice &’ prochdzi body 4, B a ma stejné velky polomér r
jako kruZnice k. Odtud vychdzi konstrukce tlohy. Sestrojime
kruZnici k' o poloméru r (r je polomér kruZnice k), kterd
prochdzi body A4, B. Dile sestrojime osu ¢ soumérnosti
kruZnic &, £’ a k bodim A4, B body D, C soumérné sdruzené
podle osy o. Musime vSak nyni ové&fit, zda obdrzené body
C, D spliuji podminky ulohy. Podle jejich konstrukce je
|AB| = |CD| a AD||BC. Pfesto netvofi body 4, B, C, D
rovnoramenny lichobéZnik, jestlize nastane nékterd z téchto
situaci:
a) Use¢ky AB, CD maji spole¢ny bod (obr. 27). Tento
pfipad nastane pravé tehdy, kdyZ mad osa o spolecny bod
s useCkou 4B. Body A4, B, C, D pak tvofi trojihelnik nebo
nekonvexni Ctyfuhelnik.
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Obr. 29
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b) Useéky AB, CD jsou rovnob&Zné s osou o, ABCD je
pravouhelnik (obr. 28).

c) Usetky AB, CD jsou na osu o kolmé, body 4, B, C, D le-
Zi na jedné pfimce (obr. 29).

Provedme ted diskusi feSitelnosti ulohy. Je ihned vidét, Ze

tloha nemd feSeni, jestliZe je |AB| > 2r, protoZe pak neexistu-

je kruznice k'. Necht je tedy |AB| = 2r. Rozli§ime Ctyfi

pfipady:

1. Body A, B lezi na kruZnici k. Jsou-li body A, B krajni
body priméru kruznice %k, nemd uloha feSeni, protoZe
jedind kruznice o poloméru r, prochdzejici body 4, B,
je kruZnice k& sama a kaZdd jeji osa prochdzi stfedem
kruznice, protind tedy tseCku AB. Je-li |AB| < 2r, existu-
je kromé& kruZnice k je$té jedna kruznice téhoz poloméru,
prochdzejici body A, B. JenZe osou soumérnosti, podle
které jsou tyto kruznice soumérné sdruZené, je piimka 4B,
coz nevede k feSeni ulohy. MuZeme vSak vzit libovolny
pramér o kruznice k, neprotinajici useCku AB, a body
D, C soumérné sdruzené podle o k bodim A, B jsou
feSenim ulohy, kterd md v tomto pfipadé nekone¢né mnoho
feSeni.

2. Jeden z bodti 4, B le#i na kruznici &, druhy nikoli. Uloha
nemd reSeni, protoZe osa 0 ma spole¢ny bod s dseckou AB.

3. Ke stejnému vysledku dospéjeme v pfipadé, kdy jeden
z bodit A, B lezi ve vnitini a druhy ve vnéj$i oblasti
kruZnice k.

4. Body A, B jsou oba z vnéj$i nebo oba z vnitini oblasti
kruznice k. Jsou-li stejné vzdileny od stfedu kruZnice &,
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je AB || 0, kde o je osa soumérnosti, podle niZ je kruZnice k
soumérné sdruzend s libovolnou kruZnici téhoZ poloméru,
prochiazejici body 4, B. Uloha pak nemi fedeni. V opad-
ném piipadé musime jeSté vyloucit situaci, pri které je
AB | o. Ta nastane, jestlize pfimka AB protind kruZnici &
v tétivé KL stejné velké, jako je useCka AB. Je-li KL
prumérem kruZnice k, nema tloha feSeni (obr. 30). Neni-li
KL prtimérem kruZnice % (obr. 31), existuji dvé kruznice

/ O/\ )

k \ Kk
|

L KJ‘(A B
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o poloméru r, prochazejici body 4, B, pro jednu z nich
je sice AB | o, druhd vsak vede k jednomu fedeni tlohy.
V nevyloucenych pfipadech md uloha vzdy jedno feSeni,
je-li |AB| = 2r,a dvé feSeni pro |AB| < 2r.

62. Ozname r4, B, ¢, rp poloméry kruznic ka4, kg,
ko, kp. Podle podminek ulohy je r4 + rg = a, rg + r¢ = b,
re + rp =¢, rp + r4 = d. SeCteme-li prvni a tfeti rovnici
a od souctu odeCteme druhou a ¢tvrtou rovnici, dostaneme
dokazovany vztah a + ¢ = b + d. Necht je obrdcené tento
vztah splnén. Zvolme libovolné hodnotu r4 v intervalu
(0, d) a polozme rp =d — 14, r¢c =¢c —d + 14, rg = b —
—c¢+ d—rq. Pak je téZ rq + rp = a. Ptejme se jeSté,
zda mizeme zvolit r4 tak, aby i g, r¢, rp byly kladné. Tyto
hodnoty budou kladné, bude-li kromé nerovnosti 0 < r4 < d
platit také a =b —c +d > rqg > d —c. Zvolme tedy r4
tak, aby max[0, d — ¢] < r4 < min[d, a]. To lze prdvé
tehdy, kdyZz je d — ¢ < a, coz plati, protom je d—c=
=a —b.

63. Poloméry kruznic ki, k2, k3 oznacime rq, 79, ¥3. Podle
podminek dlohy plati r1 + rg =4, ra + r3 =3, 1, + r2 =5,
odkud plyne r; = 3, r2 = 2, r3 = 1. Oznacme je$té r polomér
kruznice & a § jeji stfed. Pak plati (obr. 32)

Xty =0+ a2+ G —yP=02+ 17
(4 —x)2 + y2=(3 + r)2. Odtud plyne odeétenim prvni

r r
rovnice od druhé a od tfeti x =1 — Gl = 1— 3 2Ppo do-
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sazeni téchto hodnot do rovnice x2 + y2 = (1 + r)2 dostane-
me rovnici 23r2 + 132r — 36 = 0, kterd md jediny kladny

6

kofen r = 23

Obr. 33
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64. UvaZzujme trojuhelnik SXY, kde X, Y jsou body
kruznice k (obr. 33). Oznalme U stfed tétivy XY a u =
=|SU| (0 < u < r) a vypocitejme polomér x kruznice zx
vepsané trojuhelniku SXY. Stfed kruZnice » oznalime Z
a patu kolmice vedené bodem Z k pfimce SY oznacime V.
Z podobnosti pravothlych trojihelnikd UYS, VZS plyne

uy| vzl  Jer-—w s
s Tizsy v Ty Tu—x

odkud dostdvime

u],/rz—u2 ur
PP LI .. S—
r+ 2 —u? r+ |r2 —u?

Oznacime-li jesté z = |SZ|, dostaneme z posledni rovnice
postupné

r + = 1? w? = ur,

zl/r?;—_uzzr(u—z),

22r2 — 2242 = r242 + 1222 — uzr?,
a protoze u # 0, je

2r2

2.
r2 + 22
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Necht je obrdcené ddn bod Z tak, Ze pro z = |SZ| plati
0 < 2 < r. Na polopfimce SZ sestrojime bod U tak, aby
platilo

2r2

|SU| :uz'?_’_—-zaz.

2r2

Protoze je 2 < r, je ————
] 3] r2 + 22

> 1 a2rz <r?+ 22, tedy

z < u < r. K bodu U sestrojime t&tivu XY kruznice % tak,
aby bod U byl jejim stfedem. Stfed kruZnice vepsané troj-
thelniku SXY lezi na polopfimce SU ve vzddlenosti

ur . 2r2z
——=——— od bodu §. Dosadime-li za u vyraz — s
r+ |2 —u? r2 4 22

zjistime, Ze je tato vzdalenost rovna z. Je tedy stiedem kruz-
nice vepsané trojihelniku SXY dany bod Z. Tim jsme doké-
zali tvrzeni, obsazené v uloze. Ke kazdému bodu Z z vnitfni
oblasti kruznice &, riznému od jejiho stiedu S, jsme sestro-
jili bod U a na kruZnici & body X, Y tak, Ze bod Z je stifedem
kruznice vepsané trojihelniku SXY.

65. Ozna¢me stied hledané kruznice M. KruZnice se
sttedem M o poloméru p déli kruZnici & pravé tehdy na dvé
polokruZnice, jestlize plati o2 =2 + |SM2, tj. |SM| =
. ngrz (obr. 34). Tim dostivdme prvni podminku fe-
Sitelnosti ulohy: o > r. Hledand kruZnice o poloméru ¢ md
prochdzet bodem 4, tedy lAM[ = 0. Bod M musi tedy lezZet
na priniku kruZnic ki, k2, kde k1 md stfed v bodé S a polomér
]/Qz_ ——r‘z, kruZnice k2 m4 stied v bodé 4 a polomér p. Tyto
kruZnice maji pravé tehdy spole¢ny bod, jestliZe je
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Obr. 34

0~ —r =S4 <o+ Yo — 2

To je dal$i podminka feSitelnosti tlohy. Obrdcené: Jsou-li
tyto dvé nerovnosti a samoziejmé téZ nerovnost ¢ > r splné-
ny, maji kruznice ki, ko aspoii jeden spole¢ny bod a kazdy
jejich spolecny bod M je stfedem kruZnice o poloméru g, kterd
i€ feSenim nasi tlohy.

66. Oznacme opét M stied hledané kruznice. Podle pod-
minek tdlohy md platit p2 = r1 + |SlM|2 a zdrovefi r; =
= 0? + [SaMP, tedy |S1M| = Vo2 — 7 a souasné |SeM| =
= Vr - 92 Nutnou podminkou feSitelnosti tlohy je tedy

splnéni nerovnosti r1 < o <7y, |[r — 02 — |02 —1i| =
= 8182 = |/r — 02 + o —r}. Stejnd jako v piedchd-
zejici tloze muZeme ukdzat, Ze splnéni téchto ¢tyf nerovnosti
je téZ postacujici podminkou pro existenci FeSeni.

67. Necht trojuhelnik ABC md pozadované vlastnosti
(obr. 35). Oznacme D stfed piepony a T téziSté. Piedpokld-

119



A D B
Obr. 35

dejme, Ze je dédna délka ¢ t&%nice na stranu BC, v opaném
pfipadé¢ bychom zaménili oznadeni bodt A4, B. Vime, Ze

A4

2t
|AT| = 3 protoZe t&€zisté deli t€Znici v poméru 2 : 1. Ddle

c
vime, ze |CD| = 2> protoze v pravouhlém trojuhelniku je
stfed pfepony stiedem kruZnice trojuhelniku opsané. Pak je
c
|TD| = e V trojthelniku ADT tedy zndme velikosti vSech
jeho tii stran. Zndme-li trojihelnik ADT, mZeme jiZ sestro-
jit trojuhelnik ABC. Stadi sestrojit bod B tak, aby bod D
byl stfedem udseCky AB, a na polopifimce DT bod C tak,

c
aby |DC| =3 |DT| = X Takto vznikly trojuhelnik je pra-

A4

vouhly a md t&zi$té v bodé 7. Uloha je feitelnd pravé tehdy,
¢
existuje-li trojuhelnik ADT s prfedepsanymi stranami -,

2t

c
5’37 a ten existuje pravé tehdy, plati-li ¢ < 2t < 2c.
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68. Predpoklddejme, Ze trojihelnik ABC md pozadované
vlastnosti, a ozna¢me D stfed strany AB (obr. 36). Zndme
velikosti stran AB, AC a vime, Ze |CD|:|CB| =3:2.
Patii tedy bod C do mnoZiny vSech bodu, jejichz pomér
vzdélenosti od boda D, B je 3 :2. Do této mnoziny patfi

Obr. 36

bod F tusecky DB, ktery ji déli v poméru 3 : 2, a také bod E
na poloptimce DB, pro ktery je |DE| = 3|DB|. Ukdzeme,
Ze mnozinou vSech bodu X, pro které plati |XD|:|XB| =
= 3:2, je kruZnice k& nad pramérem FE (tzv. Apolloniova
kruZnice). Predpoklddejme, Ze bod X lezi na kruznici k.
Spojme bod X s body D, B1i F a E, bodem B vedme rovno-
bézku s pfimkou DX, jeji pruseciky s pfimkami FX, EX
ozna¢ime Y, Z. Z podobnosti trojuhelnikt DXF, BYF
plyne |DX| :|BY| = |DF|: |BF| = 3 : 2, z podobnosti troj-
thelnikd DXE, BZE plyne |DX|:|BZ| = |DE|:|BE| =
= 3 :2. Porovndnim téchto dvou umér dostdvime |BY| =
= |[BZ|. Je tedy bod B stfedem pfepony pravouhlého troj-
thelniku YXZ, a proto |BY| = |BZ| = |BX|. Dosazenim
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|[BX| za |[BY| do prvni z odvozenych dvou umér dostaneme
|IDX| : |BX| =3 :2. Musime jes$té ukdzat, Ze body mimo
kruZnici % tuto vlastnost nemaji. Zvolme bod U (obr. 37),
ktery neleZi na kruZnici %, jeho spojnice s bodem B protne
kruznici & v bodech R, S, pro které plati |DR|: |BR| =
= |DS|:|BS| =3:2, jak jsme prdvé dokdzali. Bodem U
vedeme rovnob&Zky s pfimkami DR, DS, jejich praseliky
s pfimkou DB oznatime K, L. Je pak |KU|:|BU| =

Obr. 38
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=|DR)| : 1BR> =3 :2azdroven LU :|BU =|DS|:|BS| =
=3:2. Kdyby platilo té¢z [DU| : |BU| = 3 : 2, muselo by
platit |[KU| = |LU| =|BU|, bod U by mél od tfi na-
vzdjem riznych bodd K, B, L ptimky DB stejnou vzdile-
nost, coZ nemuze nastat.

Vratme se k nasi uloze. Vime, Ze bod C lezi na kruZnici &
sestrojené nad prumérem FE (obr. 38). Soucasné vSak lezi
na kruznici se sttedem A a s polomérem b. Podle téchto
vztahtt mtzeme trojihelnik ABC sestrojit. Zvolime useku
AB velikosti ¢, sestrojime body F, E a kruZnici k2 nad pro-
mérem FE. Existuje-li prise¢ik C kruznice k2 s kruZnici
(4, b), ktery nelezi na pfimce AB, je trojuhelnik ABC feSenim
nadi tlohy. Uloha mi tedy a na shodnost nejvy$e jedno
feSeni, protoze druhy prisecik obou kruznic by vedl pouze
k trojuhelniku soumérné sdruZenému podle pfimky AB.
Toto feSeni existuje pravé tehdy, kdyZ se budou uvazované

4c
dvé kruZnice protinat ve dvou bodech. Je {4AF| = 5 |AE| =

Tc

= 2¢, proto |AO| = 5

,kde je O stfed kruznice k, jejiz

3¢ .
polomér je 5 NaSe tuloha md tedy prdvé tehdy feseni,
plati-li

b—3c| Tc b+ 3 4 e 5
5 <3< 5 >ty <b<2

K tomuto vysledku bychom dosli snadnéji, kdybychom si
uvédomili, Ze se uvazované dvé kruZnice protinaji ve dvou
bodech pravé tehdy, kdyz je |[AF| < b < |AE|.
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69. Pfedpoklddejme, Ze trojuhelnik ABC splituje podminky
ulohy, oznaéme <{BAC = «, tedy <LABC = 2« (obr. 39).
Dile oznalime Q pruse¢ik pfimek AB, p a a = |Q4|, b =
= |QB|. Protoze proti vét§imu udhlu lezi v trojihelniku vétsi
strana a obrdcend, je |AC| > |BC|, a tudiz |4AQ| > |BQ|,
tj. a > b. To je nutnd podminka fFeSitelnosti ulohy, dile
budeme pfedpoklddat, Ze je splnéna. Mohli bychom vySetfit

Obr. 39

nejdfive mnoZinu vSech boda X, pro které plati {ABX =
= 2.<CBAX, a najit jeji spolecné body s primkou p. Touto
mnozinou je &dst hyperboly, nepolitdme-li polopfimku
opacnou k polopfimce BA4. To viak pfesahuje rdmec stiedo-
$kolské matematiky, a proto si ukdZeme radé&ji jiny postup,
vlastné dva postupy. Prvni postup neni zrovna pékny. Nevi-
me-li totiz, jak na to, zkusime tfeba vzddlenost x = |QC]|
vypocitat. Podle podminek ulohy je % = tga, % =

= tg (180° —2«) = — tg 2a. Ze vzorce protangens dvojnisobné-
ho thlu pak vyplyvd x2 =a? + 2ab, protoZe x = 0 neni feSenim

nasi ulohy. Pak je podle Pythagorovy véty |AC| = Vc—z? + %2 =
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= |/2a(a + b), |BC| = |b% + x® = a + b. Zvolime-li obrd-
cené na piimce p bod C tak, Zze |BC| =a + b, zjistime
uzitim trigonometrickych vztaht, Ze 2.<(BAC = < ABC.
A protoze vzdilenost bodu B od piimky p se rovnd b,
b < a-+ b, mi tloha vidy dvé feSeni (stdle predpoklddd-
me a > b).

A
a \\\
AN
\\\
3 2a\ \
s
| 180°f20 C
Q| a D
|
|
a
AL
Obr. 40

KdyZ uz ted feSeni ulohy zndme, pokusime se je vylepSit,
najit elegantn&jsi postup. Necht je trojihelnik ABC feSenim
tlohy (obr. 40). (Podle pfedchdzejiciho vime, Ze je |BC| =
=a + b, to viak nepouzijeme.) Sestrojme na polopiimce
BQ bod A’ tak, aby byl trojihelnik BCA’ rovnoramenny,
|BC| = |BA'|. Protoze tento trojuhelnik méd pfi vrcholu B
dhel 180° — 22, je <{BA'C = a, tj. <CQA'C = < QAC.
Pak je bod A" bodem soumérné sdruzenym k bodu A4 podle
pfimky p. Dusledkem toho je |QA'| =a, |BA'| =a + b,
tudiz |BC| = a + b. Zvolme obrdcené na piimce p bod C
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tak, aby |BC| = a + b, a necht je A’ bod soumérné sdruZeny
k bodu A4 podle ptimky p. Pak je trojuhelnik BCA' rovnora-
menny, tedy <CBAC = <{BA'C = <C{BCA’, ozname veli-
kost téchto uhld «. Z trojuhelniku BCA’ pak plyne, Ze
<LA'BC = 180° — 24, tudiz <CABC = 2a. Stejné jako pfi
predchdzejicim postupu vidime, Ze tloha md pro a > b
vzdy dvé fedeni, jinak feSeni nemd.

70. Predpoklddejme, Ze v trojthelniku ABC neni Zddnd
strana vétsi nez 3 a Ze AC je jeho nejdeldi strana, tj. |AB] =
= |AC| a soucasné¢ BC| = |AC| = 3. Sestrojme rovnostran-
ny trojuhelnik 4DC tak, aby body B, D lezely v téze polo-
roviné, ohrani¢ené pfimkou AC (obr. 41). Protoze je |AB| =

Obr. 41

< |AC|, lezi bod B ve vnitini oblasti kruznice (4,]AC|).
Stejné tak lezi bod B ve vnitfni oblasti kruznice (C, |AC)).
Tyto dvé kruZnice se protinaji v bodé D a v bod¢ k nému
soumérné sdruzeném podle pfimky AC. Lezi tedy bod B,
a tim i cely trojuhelnik ABC ve vysrafované Cdsti, kterd lezi
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celd v kruhu, jehoZ hrani¢ni kruZnici je kruZnice opsand
|AC|
trojihelniku ADC. Jeji polomér je r = —/—3: (rovnd se dvéma
/
tfetindm vysSky v rovnostranném trojthelniku o strané |AC|).
Jelikoz je |AC| = 3,je r = 1/3. Tim jsme dokdzali, Ze troj-
thelnik ABC lezi v kruhu, jehoZ polomér se nejvyse rovnd V3.

71. Oznaéme a, b, ¢ délky stran a «, (5, y velikosti whla
trojihelniku ABC obvyklym zplsobem, V' a U necht jsou
tézisté¢ trojuhelniki ACD a BCE (obr. 42). Potom otoceni
kolem bodu 4, které prevede polopfimku 4C do polopfimky
AB, zobrazi polopfimku AV na polopfimku 4AM. Proto je
IVAM = o, stejné tak je SLMBU = . Déle je |[DV| =

b c a
= ]/—3_, |[AM| = ﬁ’ |BU| = V—? Jsou tudiZz trojuhelniky

a
ABC,AMYV a MBU podobné,dtisledkem tohoje | VM| = —?:

Obr. 42
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b
= |EU|, | MU| = ]73-: = |DV|. Porovnejme jesté uhly DV M,

MUE. Je {DVM = 120° + CAVM = 120° + y a totéz
plati pro <CTMUE. (To ovSem za predpokladu y = 60°,
v opaéném pripadé je analogicky <{DVM = SCMUE =
= 360° — (120° + p) = 240° — ».) Jsou tedy trojuhelniky
DVM, MUE shodné, v piipadé y = 60° jsou to shodné dsec-
ky. V kazdém piipadé je |DM| = |ME|. Zbyv4 jesté vypoci-
tat velikost thlu DME. Vime, Ze v pfipadé 7y = 60° je
SVMA = B, LAMB = 120°, xBMU = «. Velikosti uhla
UME, VMD sice nezndme, vime vSak, Ze <CUME =
= <IVDM a ze S {VMD + <<{VDM = 180° — CDVM =
= 60° — y, takze <TUME + <VMD = 60° — y. Pak
je XDME = 360° — xVMA — <AMB — <<BMU +
+ XUME + S VMD =360° — f — 120° — o + 60° —
— vy = 120°. Podobné bychom postupovali v pripadé
y > 60°.

72. OznaCme O priseCik vySek v trojuhelniku ABC
a 01, Oz, O3 body soumérné sdruzené k bodu O podle stran
BC, AC, AB trojihelniku (obr. 43). KruZnice nad primérem
AO prochdzi patami vySek vedenych body B a C, proto je
LCAB + <0003 = 180°. Je ale <0:003 = <.COB =
= <LCO1B, tedy <CcCO1B + <.CAB = 180°, ptiCemz piim-
ka CB oddéluje body Oi, A. Proto je ¢tyfuhelnik ACO:B
tétivovy, jinymi slovy bod O; a stejné tak body O, O3 lezi
na kruZznici opsané trojuhelniku ABC (ozna¢me ji k). Zvolme
na kruZnici %k libovolny bod M, rtzny od bodt 4, B, C.
Oznaéme My, Ms body soumérné sdruzené k bodu M
podle pfimek AC, AB. Ze soumérnosti podle piimky AC
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Obr. 43

plyne <TAOMz = L AOM, obdobné X AOMs = <L AOsM.
Body A4, M, Oz, Os lezi na kruZnici %, proto se bud thly
AO:M, AOsM sob& rovnaji, nebo se jejich soudet rovnd
pifimému uhlu. TotéZ musi proto platit i o dhlech AOMs,
AOMs. Lezi tudiz body O, M, M3 na jedné pifimce. Po-
drobny dikaz by vsak vyZadoval je$té diskusi podle polohy
bodu M, poptipadé zavedeni orientovanych uhlt. Podobné
se dokdZe, Ze i body Mz, M; leZi na jedné pfimce, prochdzejici
bodem O,a tim je dokdzédno, Ze vSechny body O, Mi, M,
Ms lezi na jedné pfimce. S malymi obménami si mulizZete
tvrzeni tlohy dokdzat i pro trojihelnik, ktery neni ostro-
dhly.

73. Piedpoklidejme, Ze trojuhelnik UVW poZadovanych
vlastnosti existuje. ProtoZe strany trojuhelniku UV W jsou kol-
mé k strandm trojihelniku BCA, jsou tyto trojuhelniky podob-
né. Existuje tedy kladné &islo & tak, Ze |BC| = k|UV|, |AC| =
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= k|VW|, |AB| =k UW|, tedy |BC| . |UV| = k|UV2,
|AB| . |UW| = k|UW2, |AC| . |VW| = k|VW|2. ProtoZe
|UV| = |AP| a analogicky pro dal$i strany trojuhelniki,
jsou levé strany poslednich tfi rovnic sob& rovny, rovnaji se
totiz dvojndsobnému obsahu trojihelniku ABC. Pak tedy
nutné plati |UV| = |UW/| = |VW]|, a tudiz je pavodni troj-
thelnik rovnostranny. K rovnostrannému trojihelniku mu-
Zeme ziejmé sestrojit trojihelnik UVW, ktery je opét rov-
nostranny.

74. Dopliime trojuhelnik ABC na rovnobéinik ABDC
(obr. 44). Oznaéme V stfed useCky BD. Pak jsou ARVP,
BV CQ rovnobézniky. Stadi tedy za trojihelnik UVW zvolit
trojihelnik RVC. Oznalime-li S obsah trojtihelniku ABC,
je obsah rovnobéZniku ABDC roven 28, obsahy trojahelnika

S S
AUCa CVDjsou P obsah trojihelniku UBV je e Proto

38
je obsah trojihelniku UVW roven —, pomér obsahit troj-

4

3
thelnikd UVW a ABC je R
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75. Délky uhlopticek AC, BD oznacime u, v, délky stran
Ctytthelniku oznacime a = |AB|, b = |BC|, ¢ = |CD|, d =
= |DA|, stfed usetky BD oznacime M (obr. 45). Pak je |CM|
: b2 + 2
délka t&nice v trojihelniku BCD a je |[CM|? = — -

2
v
~ % Tento vzorec pro délku téZnice si lehce odvodime

Obr. 45

uzitim Pythagorovy véty pro pravouhlé trojuhelniky CPM,

CPD, CPB, kde je P pata vysky v trojihelniku CDB
a® + d2 o2

na stranu BD. Stejné tak je |AM]2 =

T
2 4 B2 4 4 42— 2 2
atedylAM|2+[CM{2=a+b +c2+d v:%

(pouzili jsme predpoklad #2 + o2 = a2 + b2 + 2 + d2).
Podle trojihelnikové nerovnosti je |[AM| + |CM| = u, tedy
|[AM|2 + |CM2 + 2|AM||CM| = u? = 2 (|AM?2 + |CM[2),

odkud plyne 0 = (|AM| — |CM|)2. Musi proto byt |AM| =
w2
= |CM| a ze vztahu |AM|?2 + |CM|2 = 2 jesté vyplyva
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u
|[AM| = |CM| = > Pak je bod M stiedem usecky AC. Tim

jsme dokdzali, Ze se Ghlopfi¢ky Ctyfuhelniku navzdjem puli,
a proto je Ctyfthelnik rovnobéZnikem.

76. Ctyithelnik je teénovy, body dotyku jeho stran
s kruZnici mu vepsanou oznaime K, L, M, N (obr. 46).
Je |AK| = |AN]|, |BK| = |BL| a podobné, tedy a + ¢ =
= b + d. Podle prvniho pfedpokladu ulohy plati a2 + 5% +

D

Obr. 46

+ ac + bd = (a + ¢) (b + d). Dosadime-liza b + d hodnotu
a + c¢ a délime-li nenulovym d&islem a + ¢, dostaneme b = ¢
a soucasné a = d. To znamend, Ze trojuhelniky ABD a BCD
jsou oba rovnoramenné se spoleénou zdkladnou BD, tedy je
¢tyfuhelnik ABCD deltoid. Dosadime-li d =a, ¢ =b do
druhého predpokladu tlohy, dostaneme a = b. Pak jsou
vSechny strany Ctyfthelniku stejné dlouhé, Ctyfuhelnik je
kosoctverec.
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77. Ze soumérnosti podle primky AC vyplyvd, Ze jsou
body M, Q a také N, P dv¢ dvojice bodi soumérné sdruze-
nych podle pfimky AC (obr. 47). Proto jsou spojnice MQ,
NP obg kolmé na AC, a tudiZ spolu rovnob&sné. Ctyiihelnik
MNPQ je proto podle pfimky AC soumérny lichobéZnik
nebo pravouhelnik. Posledni moZnost nastane pravé tehdy,
kdy? je MN | AC || PQ, tj. MN | MQ. Ctyituhelnik

Obr. 47

MBNS je tétivovy, lze mu opsat kruznici, protoze md pfi
vrcholech M, N pravé uhly. Prote je <tNMS = <CNBS.
Oznacime-li «, y velikosti uhla BAS, BCS, je <CTSMQ = «,
<LNBS = LNMS =90° — y tedy SCLNMQ = INMS +
+ L SMQ =90° + « — »v. Je tudiz ctyfuhelnik MNPQ
pravé tehdy pravothelnik, kdyZ je « = . A tato rovnost plati
pravé tehdy, kdyZ jsou trojihelniky ABD a CBD shodné,
neboli kdyz je Ctyithelnik ABCD kosoltverec. Nékdy se
viak kosoctverec nepovazuje za deltoid, tak jako nepovazuje-
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me pravouhelnik za lichobéZnik. Deltoidem se pak rozumi
ctyfuhelnik, ktery je soumérny jen podle jedné své dhlopfic-
ky. Pak je ovSem cCtyfihelnik MNPQ vidy jen lichob&Zni-
kem:. :

78. Oznacleni zvolime podle obr. 48. Stejné jako v pred-
chdzejici tdloze jsou Ctyitihelniky AMSQ, BNSM, CPSN
a DQSP tétivové. Proto je LASM = <CAQM, ozname

Obr. 48

tuto velikost «. Podobné f = <IMSB = <CMNB, y =
= <(PSC = <{PNC, 6 = <PSD =<PQD a o+ f=
=y + 0. Dédle je <{PQM = 180° — (a + ), <CPNM =
= 180° — (B + y). Ctyithelnik PQMN je pravé tehdy té-
tivovy (lze mu opsat kruznici), kdyz je TPOM + <{PNM =
= 180°% tj. « + S + v + 0 = 180° tedy « + f = 90° coZ
znamend, Ze jsou uhlopfi¢ky CEtyfdhelniku na sebe kolmé.
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79. Stiedy stran ¢tyfuhelniku tvofi rovnobéznik (obr. 49),
jehoZ strany jsou rovnobézné s whlopfickami ctyithelniku.
Vrcholy rovnobézniku lezi prdvé tehdy na jedné kruZnici,
kdyZ je to pravouhelnik. V naSem pfipadé to nastane prdvé
tehdy, kdyZz budou uhlopficky daného Ctyithelniku na sebe
kolmé. Podle predchdzejici tlohy je to podminka ekvivalentni
s podminkou, aby kolmé priméty priseciku dhlopfi¢ek na
jeho strany leZely na kruZznici. '

Obr. 49

80. Piedpoklddejme, Ze uhlopficky 4AC, BD konvexniho
ctyftdhelniku ABCD jsou na sebe kolmé. Zavedeme oznaceni
podle obr. 50. Je pak a2 + ¢ =2 + x2 + o2 + 32, B2 +
+ d2 = x2 + o2 + u2 + »2, tedy a? + 2 = b2 + d2. Necht
jeted <LASB = 90°, tfeba <CASB < 90°. Pak je a2 < &2 +
+u2, 2 <92+ 32 a <BSC > 90°, tedy &2 > a2 + 22,
d? > 2 + y2, Dusledkem je nerovnost a2 + ¢ < b2 + d2,
Obdobné bychom dokdzali, Ze a2 + ¢ > b2 + 42, kdyby-
chom predpoklddali <C4ASB > 90°. Tim jsme dokdzali, Ze
a? + ¢ = b2 4 d? pravé tehdy, kdyZz jsou tuhlopficky Ctyi-
dhelniku na sebe kolmé¢.
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Obr. 50

81. Pfedpoklddejme, Ze jsme body D, E jiz sestrojili.
KruZnice k, kterd je vepsdna Ctyfuhelniku ABDE, je i kruz-
nici vepsanou trojihelniku ABC (obr. 51). Kromé toho lze
podle predpokladu &tyifthelniku ABDE i opsat kruZnici,
proto je LEAB + <{EDB = 180°. Pfimka ED je tedy teCnou
kruZnice k, pro kterou je <CEDB = 180° — =z, « = <CCAB.
Tim je jiz ddna konstrukce te¢ny ED, kterou ovSem musime
zvolit tak, aby neoddélovala body 4, B. Oznatme S stied
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kruZnice k a A’, B’, C" body dotyku kruZnice k se stranami
BC, CA, AB. ProtoZe bod S leZi na osich uhla CAB, EDB,

° — a

je X SAC’ :%, SSDAr = —— =90 — % Proto
jsou pravouhlé trojihelniky SAC’, DSA’ podobné, takze
|SC’|: |AC'| = |DA’|:|SA’|. Vime, 7e |SA'| = |SC’| = p (po-
lomér kruZnice trojihelniku vepsané), odkud |AC’| . [DA’| =
= p2. Kromé toho je |AC’| = |AB’|, |CB’'| = |CA’|, |BC’'| =
=|BA’| a |CA'| + |BA'| = a, tudiz |AC'| =5 — a, kde
je s poloviéni obvod trojdhelniku ABC. Didle je sp obsah
trojuhelniku ABC a podle Heronova vzorce

so=|s(s —a)(s —b) (s —¢)

PouzZitim vSech téchto vztahtt dostdvime

2 s —b)(s—c s—a)(s —c

R L . [ Gt R Gt [ )

s — a s s

s—a)(s—c) a(s—c
ICEIzb—(s—a)—g )( )——— ( ),
s s

b(s —¢)
|CD| = Ty obvod ctyfuhelniku ABDE je proto
2¢(2s — ¢)

82. Oznacme v te¢novém lichobéZzniku ABCD vzdilenosti
jeho vrcholt od bodt dotyku kruZnice vepsané se stranami
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lichobézniku x, y,'u, v podle obr. 52. Pro vy$ku z lichobéZniku
pak plati 22 = (v + )2 — (v — ¥)? = 4yv a stejné tak 22 =
= 4xu, takze je yv = xu. Délky ramen lichobéZniku jsou
x + u, ¥+ v, jeho zdkladny maji délky u + v, x + y.
Je c+w(y+o)—@+o)(x+y) =00 —u(x—0o).
Kdyby bylo ¥ = u, plynulo by ze vztahu yo = xu také v = x,
¢tyfuhelnik by byl kosoétvercem. Je-li y > u, je v dusledku
yo = xu také x > v a podobné je pro y < u také x < v.

Qbr. 52

V kazdém ptipadé je proto (x + ) (y + o) > (u + 2) (x + ¥).
Odmocnénim dostaneme dokazovany vztah, protoZe geo-
metricky pramér dvou nezdpornych c¢isel se rovnd druhé
odmocniné jejich soucinu.

83. Necht pétithelnik ABCDE spliiuje podminky tlohy
(obr. 53). Oznatme o thel BAC a [ thel DAE. ProtoZe
<'BAE = 2.<{CAD, je <(CAD = o« + p. Proto bod O
soumérné sdruZeny k bodu B podle primky AC splyvd s bo-
dem soumérné sdruzenym k bodu E podle pfimky 4D a je
vnitinim bodem thlu CAD, ktery je ostry, nebot se rovna
jedné poloviné nevypuklého thlu BAE. VyuZili jsme pfitom
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Obr. 53

téZ piedpokladu rovnostrannosti daného pétithelniku. Z to-
hoto pfedpokladu téz plyne |AO| = |CO| = |DO|, nebot
|AO| = |AB| = |CB| = |CO| a stejné tak |AO| = |AE| =
= |DE| = |DO)|. Je tedy bod O stfedem kruZnice opsané
trojuhelniku ACD, a protoZe lezi v jeho ostrém thlu, je bod O
jeho vnitfnim bodem. Je tudiZ trojuhelnik 4CD nutné ostro-
uhly. Trojihelnik CDO je rovnostranny, z véty o obvodovém
a stfedovém thlu plyne <CCAD = + <cCOD = 30°. Z téchto
tvah vyplyva konstrukce pétitihelniku. Sestrojime trojihelni
ACD, v némz zndme délky dvou stran AC, AD a thel jimi
sevieny je 30°. Dile sestrojime stfed O kruZnice opsané troj-
thelniku ACD. Neni-li trojuhelnik ACD ostrouhly, nelezi
bod O uvnitf trojuhelniku ACD a tloha nemd feseni. V opac-
ném pripadé tvoii body B a E soumérné sdruzené k bodu O
podle pfimek AC, AD zbyvajici dva vrcholy hledaného péti-
thelniku. Jaké jsou nutné a postacujici podminky, aby byl
trojihelnik ACD ostrothly? Je-li |[AC| = |4D| cos 30°, je
trojihelnik ACD pravouhly s pravym thlem pfi vrcholu C;
je-1i |AC| > |AD| cos 30° je v trojihelniku ACD pfi vrcho-
lIu C dhel ostry a také obrdcené, je-li uhel ACD ostry, je splné-
na uvedend nerovnost. Podobné to plati pro vrchol D. Troj-
thelnik ACD je tedy pravé tehdy ostrouhly, kdyZ plati
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2|AC| > |AD|]3 a zéroveii 2|AD| > |AC||/3,
tj.

|AD|)3 2|4D|

— < |AC —.
/3

84. Z trojuhelniku BDF (obr. 54) je vidét, Ze pfimky

BE, DA, FC jsou osami jeho vnitfnich whlt, protinaji se

tudiZ v jednom bodé&, ktery oznacime S. ProtoZe {SBF =

Obr. 54

= <FBA a <{SFB = <(BFA a pfimka BF oddéluje body
S a 4, jsou tyto body soumérné sdruzené podle pfimky BF,
tedy S4 | BF. To znamend, Ze pfimka DS je vySkou v troj-
thelniku BDF, obdobné pfimky FS a BS. Je tudiZ bod S
také prusecikem vy$ek v trojuhelniku BDF, ktery je proto
rovnostranny. ProtoZze 4 a S jsou body soumérné sdruZené
podle ptimky BF a obdobné¢ dvojice S, E podle pfimky DF
a S, C podle BD, je Sestithelnik ABCDEF pravidelny.
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Obr. 55

85. Uvazujme nejdfive cCtyisttny ABCD a A'B'CD
(obr. 55). Trojuhelniky ABC, A'B’'C lezi v téze roviné, jejich
zdkladny leZi na téZe pfimce a jsou stejné dlouhé, protilehly
vrchol maji spoleny, maji tudiz stejné vysky k témto zaklad-
ndm, a tedy stejny obsah. ProtoZe trojihelniky ABC, A'B'C
maji stejny obsah a lezi v téZe roviné, maji Ctyistény ABCD
a A'B'CD stejny objem. Stali si totiz uvédomit, Ze tyto
Ctyfstény maji spoleCnou vys$ku vedenou bodem D. Stejné
tak dokdzeme, Ze Ctyistény A'B'CD a A'B'C’'D' maji stejny
objem. Tim je pak dokdzéno, Ze i Ctyistény ABCDa A'B’'C'D’
maji stejny objem.

86. Stény Ctyfsténu se stejné dlouhymi protilehlymi hra-
nami jsou navzdjem shodné trojuhelniky (obr. 56). Sestrojme
si sit naSeho Ctyfsténu. Dostaneme ji tak, Ze trojihelniky
ABD, BCD a CAD otofime podle pfimek AB, BC, CA
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Obr. 57

do roviny ABC (obr. 57). Dostaneme tak trojihelnik A’B'C’,
usecky AB, BC, CA jsou jeho stfednimi piickami. Praseéik P
vysek trojuhelniku A'B'C’ je kolmym primétem bodu D
do roviny ABC. To pochopime snadno, stadi si rozmyslet,
jak se pohybuje vrchol D trojihelniku ABD pfi jeho otdéeni
do polohy ABC’. Oznacime-li Cy pruasecik pfimek AB, C'P,
je CoP kolmy pramét usecky CoD. Proto musi byt |CoP| <
< |CoD| = |CpC’| a stejné tak |[BoP| < |ByB'|, |AoP| <
< |Aopd’|. Bod P je tedy vnitfnim bodem trojuihelniku 4’'B’C’,
ktery je tudiZ ostrouhly a stejné tak trojuhelnik 4BC. Obréce-
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né, je-li trojuhelnik ABC ostrouhly, leZi bod P uvnitf trojihel-
niku 4'B’'C’, ne nutné uvniti trojuhelniku ABC,a dd se pak
z popsané sité Ctyf shodnych trojihelnika slozit Ctyfstén
ABCD. ProtozZe je trojihelnik o strandch a, b, ¢ ostrouhly,
jak budeme déle predpoklddat, jsou hodnoty ¢? + b2 — a2,
a? + b2 — 2, a? + ¢ — b? kladné. Vypolteme ted objem
¢tyisténu ABCD. K tomu doplnime Ctyfstén na trojboky
hranol ABCDEF (obr. 58) ¢tyfbokym jehlanem CBEFD.

Obr. 58

Sténa CBEF je kosoltverec, ktery rozdélime thlopfickou CE.
Cely hranol je tak rozdélen na tfi jehlany ABCD, CEFD
a CBED. Prvni dva maji shodné podstavy ABC, EDF
a stejnou vysku (je to vzddlenost rovnobéznych rovin ABC,
EDF). Druhy a tfeti jehlan maji téZ shodné objemy, protoze
maji spole¢ny vrchol D a protéj§i stény lezi v téZe roviné
a maji stejny obsah. Vime tedy, Ze objem ctyrsténu ABCD
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se rovnd jedné poloviné objemu jehlanu CBEFD. Jeho po-
boéné hrany DC a DE jsou stejné dlouhé, pravé tak jeho
zbyvajici dvé poboc¢né hrany BD, FD. Proto je patou vysky
tohoto jehlanu vedené bodem D prusecik O uhlopficek CE,
FB kosoctverce CBEF. Oznaéme |QE| = |QC| = x, |QB| =
= |QF| =y, |QD| = 2. Podle Pythagorovy véty je

¥+ 22 =c%y2 4+ 22 =02 a2 4 y2 =a

2xyz
Objem jehlanu CBEFD je 3 apro hledany objem V' ¢tyf-
sténu ABCD tedy médme
1
V= 3 e =

[
:-172]2 J(c® + b2 —a?) (a® + b2 — @) (a® + 2 — b?).

87. Ulohu miZeme fesit pomoci tzv. Menelaovy véty.
Podle ni je

AR| |BB'| |DA|

|BR| |DB'| |AA’|

B+ 1
=1, tedy |DA'| = — |44/,

K témuZ vysledku bychom oviem mohli dospét bez znalosti
Menelaovy véty. Stadi bodem A vést rovnobézku s A'B’,
jeji prisecik s pfimkou DB oznalime X (obr. 59). Z podob-
nosti trojihelniktt RB'B, AXB a téz DA'B’, DAX dostaneme
téz vyse uvedeny vztah. Cty¥stény ABCD, A'B'C’'D maji
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stény ABD, A'B'D v téze roviné. Vzddlenost bodu C od
této roviny se rovnd dvojndsobku jeji vzddlenosti od bodu C’.

(k + 1) |A4']

Protoze |[DA'| = — i » je|DA'| = |DA],

2k + 1
|DB| ]
déle je |DB'| = — Je proto obsah trojihelniku DA’B’ ro-

R+1
) (2k + 1)
jesté pomér vysek obou Ctyfstént k témto sténdm, vidime, Ze
R+1
4k + 1)

— ndsobku obsahu trojihelniku DAB. UvédZime-li

hledany pomér je

Obr. 59

88. Kulovd plocha #, kterd prochdzi body 4, B, C, D,
protind rovinu ABD v kruZnici opsané pravodhlému troj-
thelniku ABD, stied O této kruZnice je stfedem prepony 4B
(obr. 60). Proto leZi stfed S kulové plochy » na kolmici ve-
dené bodem O k roviné ABD. Stejné tak leZi bod S na piimce
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Obr. 60

rovnob&Zzné s piimkou DB prochdzejici stfedem M tsed,
ky AC. Uloha pifimo vybizi k analytickému fe$eni. Zvolime-1*
pocétek soustavy soufadnic v bodé D, pfimky DA, DB, DC
za 0sy X, ¥, 2, je A =[a, 0, 0], B=][0, &, 0], C =[O0, O, c].

Dl 0 [abO‘!U labc]T 'abc]
axk je - 2;25 7, = 3533373 :l434,47

s [a b c] W5e ST Vaz—-l-_l;z+cz
a -—2,2,2,taze| | = 4

, zatimco

ot toche Vb s @
pro polomér » kulové plochy x jer = |SA4| = T

takze r = 2|ST|.
89. Ozname a délku strany Ctverce ABCD a v vysku
jehlanu VABCD, jehoz objem je tedy V = % a?v. Je EF || AB

a |EF|:|CD| = g, tedy |[EF| = aq (obr. 61). Vedme bodem F
rovinu rovnobéZznou s rovinou BEC, jeji pruseciky s pfimkami
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Obr. 61

AB a DC oznatime G a H. Dostaneme tak trojboky hranol
FGHEBC a ctyiboky jehlan ADHGF. Objemy téchto téles

’

Py
jsou Vi =52 kde je P obsah obdélniku HGBC, 2" je

vySka hranolu, tj. vzdilenost bodu E od roviny ABC, tedy
Vi=1%a%q(1 —q)vaVy= % a?(1 — g)2v, setenim dostane-
(1—g)2+9)

6 .

Odectenim tohoto ¢dsteéného vysledku od objemu celého
jehlanu dostaneme objem jehlanu AFEBV, ktery se tudiz

me objem télesa AFDBEC, ktery se rovnd a2

) Latvg (1l + q) . L.
rovnd hodnoté e » hledany pomér je pak
g+ 9
-9+ 9
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90. Predpoklddejme nejdfive, Ze feSeni tulohy existuje.
Oznalme O stied polokoule a S;, S2, Ss stfedy vepsanych
kulovych ploch, » jejich polomér. Body Si, Sz, S3 tvoii
rovnostranny trojuhelnik o strané 2r, takZe jejich vzdalenosti d
2|3

3
Rovina SOS; protne polosféru v polokruZznici o poloméru 10
a prvni vepsanou plochu kulovou v kruZnici o poloméru r
(obr. 62). Tato kruZnice se dotykd uvaZované polokruZnice
v bodé¢ T1, body O, 81, T1 leii v pfimce, takZze |0S;| =
= 10 — r. Zdrovei je

od stfedu S rovnostranného trojihelniku S;S283jsou

/3 \2 21 —
0812 =12 + (ziji) , tedy r 5(V21 —i)

2 >

d=>5 (]/?—— ]/?7 ) Obrécend se dd ukdzat, ze tfi sféry o vy-
pocteném poloméru r, jejichZ stfedy maji od osy polokoule
vzdélenost d a tvoifi rovnostranny trojihelnik, jsou feSenim
tulohy.
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