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Předmluva

V brožuře Vybrané úlohy matematické olympiády - kate-
gorie В, C, kterou sestavil v roce 1971 kolektiv vedený
profesorem M. Zedkem, byly shrnuty nejzajímavější úlohy
prvních patnácti ročníků MO. Když končil 30. ročník,
rozhodlo se předsednictvo ÚV MO vydat vybrané úlohy
dalších patnácti ročníků. V té době teprve vznikaly nové
učebnice matematiky pro gymnázia a osnovy ještě nebyly
definitivní. Bez ohledu na to, ve které kategorii se vyskytly,
rozdělili jsme nejinstruktivnější úlohy kategorií В a C 16. až
30. ročníku MO do dvou brožurek. Technicky jednodušší
úlohy nevyžadující velké znalosti jsme zařadili do svazku
věnovaného kategorii C a úlohy, které se nám zdály složitější,
do svazku věnovaného kategorii B.

Doufáme, že obě takto vzniklé knížky se budou hodit
vedoucím matematických kroužků, učitelům matematiky
i účastníkům MO, a přejeme všem mnoho úspěchů nejen
v matematické olympiádě, ale i všude tam, kde budou mate-
matiku potřebovat.

Autoři
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Kombinatorika1.Pro kolik uspořádaných trojic přirozených čísel x, y3 z

platí
xyz — 1 000 000 ?

2. Kolika způsoby je možno rozložit číslo 78 na součet tří
přirozených čísel? Přitom dva rozklady lišící se pouze pořadím
sčítanců považujeme za stejné.

3. Sečtěte všechna šesticiferná čísla, z nichž každé obsahuje
všechny číslice 1, 2, 3, 4, 5, 6.

4. Z číslic 0, 1 je sestaveno číslo

101001000100001..

které má 1 000 000 číslic. Kolik obsahuje jedniček a na koli-
kátém místě stojí poslední z nich ?

5. Uvažujme všechny výrazy, které dostaneme z výrazu
и -— v — x —у — z

doplněním alespoň jedné dvojice závorek tak, aby se tím ve
výrazu neobjevilo násobení.*)

• 3

*) Jeden z uvažovaných výrazů je např. и — ((v — x) -—у — z).
Avšak např. výraz (и — v) (—* —у — z) mezi uvažované výrazy ne-
patří, neboť obsahuje násobení.
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Kolika různých hodnot mohou nejvýše tyto výrazy nabývat
pro jednu pětici čísel и, v, x,у, z?6.Určete, kolik různých součtů můžeme dostat z výrazu

1 - 1 + 1 - 1 + ... + 1 — 1

1980 jedniček

doplněním alespoň jednoho páru závorek tak, aby vznikl
správně uzávorkovaný výraz a nedostali jsme přitom zápis
součinu.

7. Žáci jedné školy se účastnili biologické, fyzikální a ma-
tematické olympiády. Účastníků FO bylo dvakrát víc než
účastníků МО a těch třikrát víc než účastníků ВО. Jen jedné
z olympiád se zúčastnilo 12 žáků a alespoň dvou olympiád
4 žáci. Určete, kolik žáků soutěžilo v jednotlivých olympiá-
dách.

8. Cestovní kancelář pořádá čtyři typy rekreací. Hlásí
se na ně 195, 203, 106 a 329 osob. Na právě dvě rekreace
se hlásí 267 lidí, na právě tři nikdo a na všechny čtyři re-
kreace 2 lidé. Kolik lidí se přihlásilo na právě jednu rekreaci ?

9. Konečné množiny Mi, M2, Мз, M4, Mi vj M2 и M3 и M4
mají mi, wí2, w3j w4> s prvků; přitom platí

Mi n M3 = Mo n M4 = 0.

Dokažte, že platí

mi + m-г + w3 + Ш4 ^ 2s.

Může-li nastat rovnost, tedy v kterém případě?
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10. Tři konečné množiny Mi, М2, М3 mají m2, m$

prvků; množina Mi и М2 и М3 má s prvků. Dokažte:
a) Je-li

mi + m2 + m3 ^ 2s + 1,

má průnik všech tří množin alespoň jeden prvek.
b) Má-li průnik všech tří množin alespoň jeden prvek, je

mi + m2 + тз^5 s + 2.

Dokažte dále, že nerovnost v b) není postačující pro to, aby
tři uvažované množiny měly neprázdný průnik.11.Ze 100 osob koupilo na předvánočním trhu 80 lidí
textil, 70 lidí knihy a 55 lidí gramofonové desky. Kolik osob
nejméně koupilo výrobky všech tří druhů? Jestliže každá
z uvedeného sta osob si koupila aspoň jeden z uvedených
výrobků, kolik osob nejvýše koupilo výrobky všech tří druhů ?

Kalendář

Od r. 1582, kdy byl zaveden gregoriánský kalendář, je
přestupný každý rok, jehož letopočet je dělitelný čtyřmi.
Výjimku tvoří roky, jejichž letopočet je dělitelný stem a není
dělitelný čtyřmi sty - ty přestupné nejsou.

12. Rok 1905 začal i skončil nedělí. Které další roky
20. století mají ještě tuto vlastnost?

13. Zjistěte, kolikrát připadá v letech 1601 —2000 Nový rok
na jednotlivé dny v týdnu.

11



14.Na který den v týdnu připadl od reformy kalendáře
r. 1582 až do úterý 29. 2. 1972 nejméně často 29. únor?

Pohyb

Nebude-li určeno jinak, předpokládáme, že v úlohách
tohoto odstavce jde o rovnoměrný pohyb.

15. Auto jelo z A do B. Po hodině jízdy snížilo rychlost
na -f- původní rychlosti. Jeho příjezd do В se tak opozdil
o 2 hodiny. Kdyby ke stejnému snížení rychlosti došlo
o 50 km blíž к В, opozdilo by se jen o 80 minut. Vypočtěte
vzdálenost z A do В a původní rychlost auta.

16. V 8 hodin ráno vyjel cyklista z A do 50 km vzdáleného
B. Když ujel 10 km, předjelo ho auto, které vyjelo z A v 8
hodin 25 minut. Automobilista dojel do B, tam se zdržel
1 hodinu 15 minut, a potom se opět vracel do A. Zpáteční
cesta mu trvala o třetinu kratší dobu než cesta tam. Cyklistu
potkal 5 km před В. V kolik hodin se automobilista vrátil
do A?

17. Podél železniční trati jdou za sebou dva chodci. Stejným
směrem jede vlak a druhého chodce dostihne o t sekund
později než prvního. Přitom prvního chodce vlak mine za t\
sekund a druhého za t% sekund. Kdy dohoní druhý chodec
prvního ?

18. Osobní vlak jel rychlostí vi m/s a po souběžné koleji
ho předjížděl rychlík rychlostí v% m/s. Cestující v osobním
vlaku naměřil ti sekund, než rychlík přejel. Pozorovatel
u trati naměřil H sekund, než přejel osobní vlak. Od okamžiku. .
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kdy lokomotiva rychlíku dostihla poslední vagón osobního
vlaku, do okamžiku, kdy poslední vůz rychlíku minul loko-
motivu osobního vlaku, uplynulo Г3 sekund. Vyjádřete poměr
rychlostí vi : vo pomocí ři, ?2,

Rovnice a nerovnice19.Určete všechny trojice reálných čísel x} у, z, které
vyhovují soustavě rovnic

x + 2у — 4,

2xy — 3z2 = 4.20.V oboru reálných čísel najděte všechna řešení soustavy
rovnic

x(x + y) + z(x — y) =6,

y(y + -г) + x(y — z) = —2,

z(z + x) + y(z — x) — 3.21.Najděte všechna řešení soustavy nerovnic
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1
#i + —~ ^ 2,

#2

1
2,#2 +

#3

1
^2,#1975 +

#1976

1
#1976 + ^ 2

#1

v oboru kladných reálných čísel.
22. V oboru reálných čísel řešte soustavu rovnic s nezná-

mými x9y

ах + у = 1,

I # I + У = a,

kde a je reálný parametr.

23. V oboru reálných čísel řešte soustavu tří rovnic s dvěma
neznámými x, у a s reálným parametrem a

x + у — a + 2,

3x — 2\y = 1,

2
ах + (1 — a2)y = — a2 + 1.
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24.Je dána soustava rovnic s neznámými x3 y3 z

x + ay = b,

у — a2z = 1,

az + x — b + 1.

Určete všechny hodnoty reálných parametrů a, b, pro něž má
soustava nekonečně mnoho řešení v oboru reálných čísel.

Nerovnost25.Dokažte, že pro všechna kladná čísla a, b3 c platí

b(2a — c) c(2b — a) a(2c — b) ac ab bc
~ + + •+ +

b ba c ac

Kdy platí rovnost ?

Vlastnosti celých čísel

26. Ke každému přirozenému číslu n existují přirozená
čísla г ф s tak, že číslo 3r — 35 je dělitelné číslem n. Dokažte.

27. Dokažte, že z 50 libovolně zvolených navzájem různých
prvočísel lze vždy vybrat 13 prvočísel tak, že rozdíl každých
dvou z nich je dělitelný pěti.

15



28. Zvolíme-li libovolně 7 navzájem různých prvočísel,
součin všech jejich kladných rozdílů dělitelný číslem 163 8*
Dokažte.

29. Jsou-li a, b, c taková přirozená čísla, že a2 + b2 +
je dělitelné sedmi, je aspoň jedno z nich dělitelné sedn
Dokažte.

SO. Určete poslední dvě číslice čísla

l4 + 24 + 34 + ... + 10004.

Rovnice a nerovnice v oboru celých čísel31.Najděte všechna celá čísla x, pro která platí

3 \x - 1| -2* =2 |3x + 1| .32.Najděte všechny dvojice přirozených čísel x, y, pi
které platí

I* —21 + \у-г\ =3-y.33.Je dáno celé číslo p. Najděte všechny dvojice celýc
čísel .v, y, pro které platí

x + у = p?,

Юл; + у — p2.
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if 34. Najděte všechny dvojice celých čísel x, y} pro které
ý^latí

Ш i
X — I у2 — Зу I + у > 0,.k

3
< 2.X 4- v — —J 235.Najděte všechny trojice prvočísel a, b, c3 pro které platí

abc < ab + bc + ac.36.Je dáno prvočíslo p. Určete všechny čtveřice přiroze-
ných čísel a, b, c, d, pro které platí

ac — bd = p,

ad — bc = 0.

Hledání celých čísel s danými vlastnostmi
ň:

37. Určete nejmenší přirozené číslo, které má právě 15
kladných dělitelů.

38. Najděte všechny takové trojice po sobě následujících
lichých čísel, že součet jejich druhých mocnin je menší než
107 a všechny jeho číslice jsou stejné.
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39. Najděte všechna přirozená čísla, jejichž třetí mocnina
končí na 1981.

40. Při oslavě svých narozenin Josef zjistil, že sečte-li
číslice momentálního letopočtu, dostane svůj věk, a odečte-li
momentální letopočet od jeho zrcadlového obrazu, dostane
čtyřnásobek svého roku narození. V kterém roce našeho
tisíciletí Josef provedl výpočet?

41. Stejně velké utěrky čtvercového tvaru pokrývají obdél-
nik ABCD a přitom se nepřekrývají. Visí-li všechny utěrky
na šňůře těsně vedle sebe, zabírají ji v délce obvodu troj-
úhelníku ABC. Kolik je utěrek?

42. Určete všechny pravoúhlé trojúhelníky, které mají tyto
dvě vlastnosti:

(a) délky stran v cm jsou celá čísla,
(b) obvod v cm je roven obsahu v cm2.

Kombinatorická geometrie

43. Na kružnici je dáno 6 bodů a každé dva jsou spojeny
úsečkou, buď modrou nebo červenou. Tyto úsečky přitom
tvoří právě jeden červený a právě jeden modrý trojúhelník.
Dokažte, že červených úseček je buď 7 nebo 8.

44. Každá strana a každá úhlopříčka konvexního pětiúhel-
niku je obarvena jednou ze dvou barev tak, že žádný troj-
úhelník (tvořený stranami nebo celými úhlopříčkami pěti-
úhelníku) není jednobarevný. Dokažte, že z každého vrcholu
pětiúhelníku vycházejí právě dvě úsečky každé barvy.

45. Je dán konvexní devítiúhelník AiAzAzAíA^AqA^A^A^.

18



Kolika způsoby můžeme obarvit jeho vrcholy tak, aby byly
4 modré, 5 červených a aby právě 13 jeho úhlopříček spoj o-
válo vrcholy stejné barvy?

46. V rovině je dána čtvercová síť. Zvolíme-li libovolně
pět jejích uzlů, leží střed úsečky omezené jistými dvěma ze

zvolených uzlů v uzlu sítě. Dokažte.
47. Určete největší možný počet figurek, které se dají

umístit na šachovnici tvaru n x n tak, aby žádné dvě nestály
na sousedních polích. Za sousední považujeme ta pole, která
mají společnou stranu nebo roh.

48. V rovině je dáno pět bodů, z nichž žádné tři neleží
v přímce. Kolika způsoby je z nich možno vybrat čtyři tak,
aby tvořily vrcholy konvexního čtyřúhelníku ?

49. Na kružnici je dán konečný počet bodů. Středem této
kružnice pak prochází taková přímka, že každá z opačných
polorovin, na něž dělí rovinu, obsahuje stejný počet z daných
bodů. Dokažte.

50. Je dána množina bodů B, z nichž žádné tři neleží
v přímce. Některé z bodů množiny В jsou spojeny úsečkami,
které tvoří množinu U. Přitom platí:
(1) Z každého bodu množiny В vycházejí nanejvýš tři úsečky

množiny U.
(2) Každé dva body množiny В jsou spojeny buď úsečkou

z U nebo lomenou čarou složenou ze dvou úseček z U.

Určete, jaký je největší možný počet bodů množiny B.

19



Trojúhelníky

51. Je dán trojúhelník ABC, středy jeho stran označíme
P, O, R. Dokažte, že trojúhelníky ABC a PQR mají těžiště
v tomtéž bodě.

52. V rovině je dán trojúhelník PCQ a uvnitř tohoto troj-
úhelníku bod T. Sestrojte trojúhelník ABC tak, aby bod T
byl jeho těžištěm, vrchol A ležel na polopřímce CP a vrchol
В na polopřímce CO.

53. V rovině je dán trojúhelník ABC a přímka p neprochá-
zející žádným jeho vnitřním bodem. Dokažte, že součet
vzdáleností bodů А, В, C od přímky p se rovná součtu
vzdáleností středů úseček AB, ВС, AC od přímky p.

54. V rovině je dán trojúhelník ABC a přímka p, která
neprochází žádným jeho vnitřním bodem. Vyjádřete vzdále-
nost jeho těžiště T od přímky p pomocí vzdáleností bodů
А, В, C od přímky p.

55. Sestrojte rovnoramenný trojúhelník ABC se základnou
AB, jestliže znáte součet s výšek na základnu a na rameno
a velikost úhlu у při vrcholu C.

56. V rovině je dán rovnoběžník ABCD. V polorovině
opačné к polorovině ABC leží rovnoramenný trojúhelník
ABB' se základnou BB', v polorovině opačné к polorovině
BCA leží rovnoramenný trojúhelník CBC se základnou BC\
Tyto dva trojúhelníky jsou podobné. Dokažte, že i trojúhelník
DCB' je s nimi podobný.

57. Kružnice opsaná trojúhelníku ABC se dotýká kružnice
procházející středy jeho stran. Dokažte, že trojúhelník ABC
je pravoúhlý a že bod dotyku obou kružnic je jeho vrcholem.

58. Je dán pravoúhlý trojúhelník ABC, bod D je středem
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jeho přepony AB a bod S je středem kružnice trojúhelníku
vepsané. Je-li | CS | = j DS |, pak jeden vnitřní úhel troj-
úhelníku ABC má velikost 30°. Dokažte.

59. Součet vzdáleností každého bodu rovnostranného troj-
úhelníku od jeho stran se rovná velikosti výšky tohoto troj-
úhelníku. Dokažte.

60. Je dán ostroúhlý trojúhelník ABC. Označme И mno-
žinu všech pravoúhelníků, jejichž dva vrcholy leží na úsečce
AB a zbývající dva na úsečkách АС a BC. Pak platí: jestliže
dva různé pravoúhelníky z množiny M mají stejný obvod,
pak mají stejný obvod všechny pravoúhelníky z množiny И.
Toto tvrzení dokažte.

61. Jsou dána dvě kladná čísla m, s a body А, В, C tak, že
\AB\ — 2m a úhel ABC je pravý. Sestrojte rovnoramenný troj-
úhelník AXY se základnou A Y tak, aby měl obvod 2s. vr-
chol X ležel na polopřímce AB a vrchol Y na polopřímce BC.

62. Je dán rovnoramenný trojúhelník ABC se základnou
AB. Sestrojte na straně AC bod P a na straně BC bod Q
tak, aby úsečky CP, PQ a QB měly stejnou délku.

63. V ostroúhlém trojúhelníku ABC je uvnitř strany AB
dán bod P. Sestrojte uvnitř strany AC bod M a uvnitř
strany BC bod N tak, aby obvod trojúhelníku PMN byl co
nejmenší (minimální).

64. Na straně AC ostroúhlého trojúhelníku ABC zvolte
bod M, na straně BC bod N a na straně AB bod P tak, aby
obvod trojúhelníku MNP byl minimální.

65. Označme s poloviční obvod a tUi tb3 tc délky těžnic
trojúhelníku. Dokažte, že platí

3

2 S < ta 4" tb + tc < 2s.
21



Mnohoúhelníky

66. Dokažte, že pro libovolný vnitřní nebo hraniční bod M
obdélníku ABCD platí | MA l2 + | MC |2 = | MB )2 +
+ ! MD |2. Platí tato rovnost i pro body ležící vně obdélníku ?

67. Lichoběžník ABCD má tyto vlastnosti: pro jeho
základny platí | AB \ —2 \ CD | a jeho úhlopříčky jsou na
sebe kolmé. Vypočtěte délky základen lichoběžníku pomocí
délek jeho ramen и — | BC j, v = \ AD j. Dokažte, že
v < 2u а и < 2v.

68. Je dán ostrý úhel MVN. Na rameni VM jsou zvoleny
body А, В a C, pro které platí \AV\ > \BV\ > \CV\. Na
rameni VN sestrojte body X, Y tak, aby průnikem trojúhel-
niku AXB a CYB byl čtyřúhelník osově souměrný podle
osy procházející bodem B. Určete podmínlcu řešitelnosti.

69. Do kružnice o středu S je vepsán konvexní čtyřúhelník
tak, že bod 5 není jeho vnitřním bodem. Pak má čtyřúhelník
jedinou stranu maximální délky. Dokažte.

79. Je dán konvexní šestiúhelník ABCDEF, jehož úhlo-
příčky AD, BE, CF jsou stejně dlouhé a jehož každé dvě
protější strany jsou spolu rovnoběžné. Pak lze tomuto šesti-
úhelníku opsat kružnici. Dokažte.

Kružnice

71. Je dána kružnice k a její tětiva AB. Najděte množinu
těžišť všech trojúhelníků ABX, kde X je bod kružnice k.

72. Ve vnitřní oblasti kružnice o poloměru 1 jsou dány
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čtyři různé body. Dokažte, že jsou mezi nimi dva, jejichž
vzdálenost je menší než ]/2.

73. Kružnice k\ se dotýká základen AB, CD a ramene AD
lichoběžníku ABCD, kružnice hi se dotýká jeho stran AB,
BC a DG, přitom obě kružnice leží v lichoběžníku. Jestliže
je dvojnásobek výšky lichoběžníku roven rozdílu součtu délek
obou základen a součtu délek obou ramen, pak mají kružnice
k\ a &2 vnější dotyk. Dokažte.

74. Je dána kružnice k — (S-, r) a přímka p ve vzdálenosti
1

—

r od bodu S. Sestrojte čtverec opsaný kružnici k,

jehož jeden vrchol leží na přímce p. Dokažte, že úloha má
právě dvě řešení.

75. V rovině trojúhelníku ABC určete všechny takové
body M, pro které mají kružnice opsané trojúhelníkům
ABM, ВCM a CAM stejně velké poloměry.

76. Jsou dány dvě kružnice, vzdálenost jejich středů je
větší než součet jejich poloměrů. Označme А, В, C, D body,
z nichž každý je průsečíkem jedné vnitřní a jedné vnější
společné tečny daných kružnic. Dokažte, že středy daných
kružnic a body A, В, C, D leží na jedné kružnici.

77. Je dána kružnice k = (S; r), bod A z vnitřní oblasti
kružnice k a kladné číslo d. Bodem A je vedena tětiva kruž-
nice k tak, že bod A dělí tětivu na dvě úsečky, jejichž rozdíl
délek se rovná d. Vypočtěte délku této tětivy pomocí hodnot
r, d v — |&4|. Na základě obdrženého výsledku sestrojte
všechny tětivy dané vlastnosti.

78. Úsečka AB délky 12 cm je rozdělena bodem C v poměru
1 : 2. V jedné polorovině určené přímkou AB jsou sestrojeny

v —
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polokružnice s průměry AB, АС, CB. Vypočítejte poloměr
kružnice, která se dotýká všech tří polokružnic.

79. Kružnice ki = (Si; n), k* — (S%; гг) se dotýkají vně
v bodě C. Označme А, В body dotyku těchto kružnic na

jejich společné tečně, která je však různá od společné tečny
v bodě C. Dokažte, že trojúhelník ABC je pravoúhlý, a vy-

jádřete jeho obsah pomocí poloměrů daných kružnic.
80. Nad průměrem AB délky 10 cm je sestrojena polo-

kružnice k. Kružnice k±, кг mají stejně velké poloměry,
dotýkají se vzájemně a každá se dotýká polokružnice k
a průměru AB. Určete velikost jejich poloměru.

Obsahy rovinných útvarů

81. V rovině je dána konečná množina bodů, z nichž
každé dva mají vzdálenost nejvýše 1. Dokažte, že existuje
čtverec o straně 1, který danou množinu obsahuje.

82. Je dán obdélník ABCD o stranách a — \ AB\, b = \BC\3
a > b. Určete bod U ležící mezi body C, D a bod V mezi body
B, C tak, aby se obsahy trojúhelníků ABV, AUV, ADU
sobě rovnaly. Vypočtěte délky |CC7|, \CV\ pomocí a, b.
Sestrojte body U, V.

83. V trojúhelníku ABC označíme D střed strany АС a E
ten bod strany AB, pro který platí \AE\ = 2 \BE\. Průsečík
přímek BD3 CE označíme К. V jakém poměru dělí bod К
úsečky BD3 CE? Vypočtěte obsahy obrazců, na které je daný
trojúhelník rozdělen přímkami CE, BD, jestliže znáte obsah
P trojúhelníku ABC.
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84. Obdélník ABCD má rozměry a — \AB\, b — !BC|,
kde a > b. Vystřihneme-li tento obdélník z papíru a přelo-
žíme podle osy úsečky BD, vznikne pětiúhelník. Vyjádřete
obsah tohoto pětiúhelníku pomocí a, b.

85. Je dán čtverec ABCD, označme E střed strany CD
a k kružnici o středu A a poloměru AC. Najděte na kružnici k
všechny ty body X, pro které mají trojúhelníky XDE a XBC
stejně velké obsahy.

86. Je dán ostroúhlý trojúhelník ABC, v němž má úhel
CAB velikost a. Obsah trojúhelníku je P. Označme B\ patu
výšky vedenou bodem В na stranu АС a Ci patu výšky
z vrcholu C na stranu AB. Dokažte, že čtyřúhelník BCB\C\
má obsah P sin2a.

87. Nechť trojúhelník Ti s nejmenší výškou v± a obsahem
Pi je obsažen v trojúhelníku s nejmenší výškou vo a obsa-
hem P2. Dokažte, že pak platí v^Pi ^ viPo.

88. V rovině je dán pravoúhelník P a trojúhelník T, který
je v něm obsažen. Dokažte, že pro obsah Si pravoúhelníku
P a obsah S2 trojúhelníku T platí 2S% ^ Sí. Najděte všechny
případy, kdy v této nerovnosti platí znaménko rovnosti.

89. Je dán čtverec, jehož strana má velikost a. Z každého
vrcholu jsou dovnitř čtverce opsány čtvrtkružnice s polomě-
rem a. Tak se čtverec rozdělí na devět částí. Vypočtěte jejich
obsahy.

90. Je dán pravidelný osmiúhelník ABCDEFGH. Čtverce
ACEG a BDFH se protínají také v pravidelném osmiúhel-
niku. Vypočtěte poměr obsahů obou osmiúhelníků.

91. Je dán pravidelný šestiúhelník ABCDEF o straně s.
Na jeho stranách AB, BC, ... , FA leží po řadě body Ai,
Bi, ... , Fitak, že \AA±\ — |PPi| = ... = |FFi| = t. Jsou
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to vrcholy pravidelného šestiúhelníku o straně r. Dokažte, že
r2 _ s2 _ st + a zjistěte, pro které t je r nejmenší.92.Do daného obdélníku ABCD, kde \AB\ > |BC|, je
vepsán osmiúhelník JKLMNOPQ, který je sjednocením
obdélníků JKNO, JMNQ o společné úhlopříčce JN, kde J
je střed úsečky AD, N je střed úsečky BC a body К, M leží
na přímce CD. Vypočtěte obsah osmiúhelníku, znáte-li strany
a = \AB\, b = |BCj daného obdélníku.

Množiny bodů dané vlastnosti

93. V rovině je dána úsečka AB a její vnitřní bod C. Ke
každému bodu Y, pro který je úhel CYB pravý, sestrojíme
na přímce A Y bod X tak, že CX 11 В Y. Ukažte, že takto
obdržené body leží na kružnici. Vyjádřete její poloměr
pomocí velikostí úseček AC, BC.

94. Je dán trojúhelník ABC, určete množinu všech bodů
M trojúhelníku ABC, pro které platí

P(ABM) P(BCM) ^ P(CAM),

kde P(ABM) značí obsah trojúhelníku ABM, analogicky pro

obsahy dalších dvou trojúhelníků.
95. Je dána úsečka AB a její vnitřní bod S. Co je množinou

vrcholů C všech trojúhelníků ABC, pro které platí
|<£ЛС£| = |<MSC| ?

96. V rovině je dána přímka ^ a ve vzdálenosti a od ní
bod A (a > 0). Dále je dáno kladné číslo c. Určete množinu
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vrcholů D všech pravoúhelníků ABCD o obsahu c, jejichž
vrchol В leží na přímce p.

97. V rovině je dána úsečka AB. V jedné z polorovin s hra-
niční přímkou AB uvažujme všechny pravoúhlé trojúhelníky
ABC s přeponou AB. V každém takovém trojúhelníku
označíme D patu kolmice vedené bodem В na osu úhlu ACB.
Vyšetřete, co je množinou všech takto obdržených bodů D.

98. Jsou dány dva různé body А, В v rovině a kladné číslo
b. Určete množinu těžišť všech trojúhelníků ABC v dané
rovině, pro které je |AC\ = b.

99. V rovině jsou dány dva různé body A, D a dále je
dáno kladné číslo r. Určete množinu průsečíků úhlopříček
všech rovnoramenných lichoběžníků s ramenem AD a s po-
loměrem opsané kružnice r.

100. V rovině je dána kružnice k s průměrem AB. Na
kružnici k zvolíme bod X různý od bodů А, В a na polo-
přímce AX sestrojíme bod Y tak, aby platilo \AY\ — \AX\ +
4- \XB\. Co je množinou všech takto obdržených bodů Y?

101. Je dán trojúhelník ABC. Najděte množinu těžišť
všech trojúhelníků AXY takových, že bod X je vnitřním
bodem úsečky AB a bod Y je vnitřním bodem úsečky AC.

102. V rovině jsou dány dvě různoběžky p, q, dále je dáno
kladné číslo c. Určete množinu všech bodů v rovině přímek
p, q, jejichž součet vzdáleností od těchto dvou přímek se
rovná číslu c.

103. V předchozí úloze nahraďte součet vzdáleností absolut-
ní hodnotou rozdílu vzdáleností.

104. Určete množinu středů všech čtverců, jejichž všechny
strany leží na stěnách dané krychle.
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Stereometrie

105. Piatí-li pro povrchy P\, P2, Ps tří krychlí vztah
P3 = Pi + Pii pak pro jejich objemy Fi, V2, F3 platí

Fi + F2 < F3 ^ 1/2 (Fi + Fo).
Dokažte.

106. Je dána krychle ABCDA'B'C'D' o hraně délky 1,
M je střed hrany A'B'. Přímkou MC je vedena rovina q,
která rozděluje krychli na dvě tělesa. Těleso obsahující bod В

1
má objem —. V jaké vzdálenosti od vrcholu В protíná rovina

o hranu АВ ?
107. Je dána krychle ABCDA'B'C'D' o hraně délky 3,

E je bod úsečky DD', pro který platí A\ED'\ — |Z)Z)'|, a bod
F je průsečík úhlopříček čtverce DCCD'. Vypočtěte obsah
lichoběžníku, který je průnikem roviny AEF a krychle.

108. Podstavou trojbokého kolmého hranolu je rovno-

stranný trojúhelník o straně délky 1. Jedním vrcholem pod-
stavy prochází rovina, která protíná plášť hranolu v právo-
uhlém rovnoramenném trojúhelníku. Vypočtěte obsah řezu
hranolu touto rovinou.

109. Krychle o hraně délky 6 je rozdělena v 63 = 216
jednotkových krychlí a je jí vepsána koule o průměru 6.
Zjistěte, kolik jednotkových krychlí leží v kouli a kolik jich
neobsahuje žádný vnitřní bod koule.

110. V prostoru jsou dány čtyři body A> Z?, C, D. Dokažte,
že pro každý bod X prostoru platí
3{\AX\ + \BX\ + \CX\ + \DX|)^ \AB\ + \AC\ + \AD\ +

+ |BC| + \BD\ + |CD|.
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ŘEŠENÍ ÚLOH



 



1. Rozklad čísla 1 000 000 na prvočinitele je 2656. Trojice,
jejichž počet hledáme, se tedy skládají právě z čísel, která
mají rozklad na prvočinitele

x = 2«52), у = 265?, z — 2c5r,

kde a3 b, c3 p3 q3 r jsou nezáporná celá čísla, pro něž

a + b + c — 63 p + q + r = 6.

Prozkoumáme-li systematicky všechny možnosti, najdeme 28
uspořádaných trojic nezáporných celých čísel se součtem 6.
Hledaný počet je tedy 28.28 = 784.

2. Všechny uspořádané trojice, jejichž součet je 78, dosta-
neme takto: První číslo p zvolíme libovolně mezi 1 a 76,
druhé číslo q zvolíme libovolně mezi la78— p — la třetí
číslo je pak určeno jednoznačně - je to 78 — p — q. Při pevně
zvoleném p dostaneme 78 — p — 1 takových trojic, a protože
p probíhá čísla 1, 2, ..76, máme celkem

76 + 75 + ... + 1 = (76 + 1) + (75 + 2) + ... +
+ (39 + 38) = 38.77 = 2926
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uspořádaných trojic přirozených čísel, jejichž součet je 78.
V jediném rozkladu 26 + 26 + 26 jsou všechny tři sčítance
stejné. Rozkladů, ve kterých jsou právě dva sčítance stejné, je
celkem 37 - jsou to rozklady 1 + 1 + 76, 2 + 2 + 74, ..

38 + 38 + 2 s výjimkou rozkladu 26 + 26 + 26. Každý ta-
kový rozklad se mezi našimi trojicemi vyskytuje třikrát.
Každý rozklad v tři navzájem různé sčítance se mezi našimi
trojicemi vyskytuje šestkrát, je jich tedy

•3

2 926 - 1 - 3.37
= 469.

6

Hledaný počet rozkladů je 1 + 37 -f 469 = 507.

3. Sčítanců je 6.5.4.3.2 . 1 = 720. Na místě jednotek
je každá z číslic 1,2,3,4,5,6 ve 120 sčítancích, číslice na místě
jednotek tedy к součtu přispějí číslem

120 (1 + 2 + 3 + 4 + 5 + 6) = 120.21 = 2520.

Analogicky je tomu i u ostatních řádů. Hledaný součet je

2520 . Ill 111 - 279 999 720.

4. Před и-tou jedničkou je n — 1 jedniček a

и (и — 1)
1 4 2 ■(* ... -f- и — 1 -—

2
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nul, tedy w-tá jednička stojí na

n (n — 1) n (n + 1)
-tém místě.n — 1 + + 1 =

2 2

Snadno zjistíme, že největší přirozené číslo n, pro které je

n (n + 1)
^ 1 000 000,2

je 1413. V našem čísle je tedy 1413 jedniček a poslední je na

1413 . 1414
= 998 991-tém místě.

2

5. Ať si vezmeme kterýkoli z uvažovaných výrazů, můžeme
vždy postupně provést úpravy naznačené závorkami a dospět
к výrazu tvaru

и — v A x Bj; C z,

kde každý ze symbolů А, В, C znamená buď + nebo —.

Výrazů tohoto tvaru existuje 8. Ukážeme, že každý z nich
může vzniknout popsaným způsobem:

и — v + X -{- у + z = u — (v — x — у — z),

и — V + X + у — z — и — (v — x — y) — z,

и — v x — у + z — и — (v — x) — (y — z),
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и — v + х — у — z = и — (у — х) — у — z3

и — V — x+y + z = u — v — (х — у — z)3

v — {х — у) — z3и — v — х + у — z = и

и— V — х—y + z — и—V — х — (у — z)3

и — v — х—у—z = (и — v)—х—у — z.

Pro jakoukoliv pětici čísel x, y, z3 u3 v nabývají tedy všechny
výrazy popsané v úloze nejvýše 8 různých hodnot. Přitom
existují pětice, pro něž uvedených 8 výrazů nabývá 8 různých
hodnot, např. и — v — 0, x — 1, у = 23 z — 3. Hledaný
počet je 8.

6. Nejprve dokážeme, že můžeme dostat součty

-1978, -1976, ..., -2, 0, 2, ..., 1974, 1976.

Součet tvaru —2k pro k = 989, 988, ..., 1 dostaneme např.
uzávorkováním

1 - (1 + 1) - (1 + 1) - ... - (1 + 1) - 1 + 1 - ... +

k párů závorek
+ 1-1.

Součet tvaru 2k pro k = 0, 1, 2, ..., 988 dostaneme např.
uzávorkováním
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1 - (1 + 1 - (1 + 1) - (1 + 1) - ... - (1 + 1)) -1 +

k + 1 párů závorek
+ ... + 1 - 1.

Ještě dokážeme, že jiné hodnoty dostat nemůžeme. Po doplně-
ní závorek dostaneme výraz, který lze upravit na výraz bez zá-
vorek s 1980 členy, který se bude od původního lišit jen zna-

ménky členů. Je-li v něm a znamének -fa b znamének —,

je jeho součet a — b, a je tedy sudý, protože a + b = 1980.
První člen má vždy kladné a druhý záporné znaménko, takže
součty —1980 ani 1980 vzniknout nemohou. Součet zřejmě
nemůže v absolutní hodnotě přesáhnout 1980. Zbývá dokázat,
že nemůže vzniknout ani součet 1978.

a) Má-li po odstranění závorek čtvrtý člen znaménko —,

pak alespoň dva členy (druhý a čtvrtý) mají znaménko — a sou-
čet nemůže přesáhnout 1976.

b) Má-li čtvrtý člen znaménko +, znamená to, že leží
uvnitř závorky, před kterou je znaménko —. V této závorce leží
i třetí člen a ten pak má v upraveném výrazu znaménko —.

Opět tedy alespoň dva členy mají znaménko — a součet
nemůže přesáhnout 1976.

7. Počet účastníků biologické, fyzikální a matematické
olympiády označme 6,/, m. Dále označme pi počet žáků,
kteří dělají právě jednu olympiádu, a ai, resp. а2з počet žáků,
kteří dělají alespoň jednu, resp. alespoň dvě olympiády.
Podle úlohy je

f = 2 w, m = 3 b3 pi = 12, a2 = 4.
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Zřejmě

<zi — Pi + #2 = 12 + 4 = 16.

Dále je

ailĚb + f + ni

čili

6b ^ 16 ^ 106.

Této nerovnici vyhovuje jediné celé číslo 6, totiž 6=2.
Je tedy 6 = 2, m = 6, / = 12.

8, Označme a, 6, c, d počty rekreantů přihlášených na jed-
notlivé rekreace аръРг->ръ->Рь počet lidí přihlášených na právě
jednu, právě dvě, právě tři a právě čtyři rekreace. V součtu
a -f 6 + c + d je každý rekreant započítán tolikrát, na kolik
rekreací se hlásí, platí tedy

(1)a + b + c + d— pi + 2pz + Зрз -Ь 4p4.

Je dáno a — 195, 6 = 203, c = 106, d — 329, p% = 267,
рз = 0, j>4 = 2. Po dosazení do (1) vyjde pi = 291.

$. Počet prvků konečné množiny M označme | M |. V naší
úloze je

; Mi \j М3 J = j Mi j + | М3 j = mi + m3,

; M2 u M4 I = ] М21 + I M4 j = m2 + mi,
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protože v obou případech jde o disjunktní množiny. Zřejmě

| Ml и м3 I ^ I Ml и м2 и Из и м4 I, (1)

М2 и м4 I ^ I Ml и м2 и Мз и м4 ]. (2)

Sečtením těchto nerovností dostaneme

mi + m2 + ms + ^ 2s,

což jsme měli dokázat. Rovnost zde nastane, právě když
nastane v obou nerovnostech (1), (2), což bude, právě když

Mi и Мз = M2 и М4 = Mi и М2 и М3 и М4.

10. Označme ještě р počet prvků průniku všech tří uva-
žovaných množin. Ve sjednocení všech tří množin leží p

prvků, z nichž každý je ve všech třech uvažovaných množi-
nách, a s — p prvků, z nichž každý leží aspoň v jedné a nejvý-
še ve dvou z uvažovaných množin. Platí tedy nerovnosti

3p + s — p ^ mi + тг + тз ^ 3p + 2 (s — p),

neboli

s + 2p 5^ mi + m2 + m3 5Í p + 2s.

a) Je-li

mi + ni2 + m3 ^ 2s + 1,
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je

p mi + m2 4- m3 — 2s 1.

b) Je-li p ^ 1, je

m\ 4- m-i + ^ s 4- 2p ^ s + 2.

Pro množiny Mi = (a, &}, M2 = {6,c}, М3 = {a, c) je
mi = Ш2 — m3 = 2, 5 = 3 a splňují tedy podmínku

s + 2.mi + Ш-2 + WÍ3

Přesto je p = 0.

11. Mějme tři konečné množiny Mi, M3, М3. Označme
mi, mi, m3, s,p počty prvků těchto tří množin, jejich sjednocení
a průniku. Stejně jak v předešlé úloze dokážeme, že pro tato
čísla platí nerovnost

s + 2p ^ mi + m2 -f- m3 5S p + 2s.

Je tedy

1
mi + m2 + m3 — 2s^PtĚ — (mi + m2 + m3 — 5). (1)

Vezmeme-li za množiny Mi, M2, М3 množiny lidí, kteří na-

koupili textil, knihy a desky, bude s = 100, mi = 80, m2 = 70
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а шз = 55. Dosadíme-П do (1), dostaneme pro počet lidí,
kteří nakoupili ode všeho trojího zboží,

5^p^52.

Ukážeme ještě, že obou hranic může být dosaženo. Koupilo-li
si 5 lidí výrobky všech tří druhů, 45 lidí jen textil a knihy,
30 lidí jen textil a desky a 20 lidí jen knihy a desky, jsou
podmínky úlohy splněny. Jsou splněny i v případě, kdy si 52
osoby koupily trojí zboží, 27 osob jen textil, 18 osob jen knihy
a 2 osoby jen desky a 1 osoba jen textil a desky.

12. Z rovností 365 = 7.52 + 1 a 366 = 7.52 + 2 je
vidět, že nepřestupný rok končí stejným dnem v týdnu jako
začal, zatímco přestupný rok končí dnem v týdnu bezprostřed-
ně následujícím po dnu, kterým začal. Sestavíme tabulku dnů,
jimiž začínají jednotlivé roky:

1905 Ne

1906 Po

1907 Út
1908 St

1909 Pá

1910 So

1911 Ne

1912 Po

1913 St

1914 Čt
1915 Pá

1916 So

1917 Po

1918 Út

1919 St

1920 Čt
1921 So

1922 Ne

1923 Po

1924 Út
1925 Čt

1926 Pá

1927 So

1928 Ne

1929 Út
1930 St

1931 Čt
1932 Pá

Rok 1933 pak začíná nedělí stejně jako před 28 lety. Protože
číslo 28 je dělitelné čtyřmi, bude se situace po 28 letech opa-
kovat. Pro léta 1933-1960, 1961-1988, 1989-2016 bude
rozložení dnů, na které připadne Nový rok, stejné jako v le-
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tech 1905—1932. Z let, která začínají nedělí, zbývá vybrat
jen ty roky, které nejsou přestupné. Dostaneme roky 1905,
1911, 1922, 1933, 1939, 1950, 1961, 1967, 1978, 1989 a 1995.

13. Nejprve si všimněme, jak jdou za sebou dny, na které
připadá Nový rok, uvnitř jednotlivých staletí. Nepřestupný
rok má 365 = 7.52 + 1 a přestupný 366 = 7.52 + 2 dnů.
Označíme-li А, В, C, D, E, F, G prvních sedm dní r. 1601,
můžeme tak sestavit tabulku, na které dny připadl Nový rok
v dalších letech 17. století:

1601 A

1602 В

1603 C

1604 Z)
1605 F

1606 G
1607 A

1608 В

1609 D

1610 E

1611 F

1612 G

1613 В

1614 C

1615 D

1616 E

1617 G

1618 A

1619 В

1620 C

1621 E

1622 F

1623 G
1624 A

1625 C

1626 D

1627 E

1628 F

Nový rok 1629 připadl na den A, a protože číslo 28 je
dělitelné čtyřmi, po 28 letech se vždy situace opakuje. Naše
tabulka tedy platí i pro další 281etá období 1629 — 1656,
1657—1684 a začátek tabulky pro posledních 16 let 1685 až
1700. Zjistíme tak, že ze sta Nových roků 1601 — 1700 jich
připadlo po 14 na dny A, С, E, F3 G a po 15 na dny B, D.
Prozkoumáme ještě přechod do dalšího staletí. Nový rok 1700
připadl na den E3 a protože rok 1700 nebyl přestupný, Nový
rok 1701 připadl na den F. Za sto let 1601—1701 se tedy
Nový rok posunul o pět dnů, z A na F. Stejně velká změna
nastane i v dalších staletích, než ji naruší 29. únor 2000.
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Nový rok 1801 připadl tedy na den D a Nový rok 1901 na
den B. Posuneme-li o pět dnů výsledky ze 17. století, zjistíme,
že v letech 1701 — 1800 připadá Nový rok 14krát na dny
Fy Ау C, D, E a 15krát na dny G, By v letech 1801—1900
14krát na dny D, F, А, В, C a 15krát na dny E, G a v letech
1901—2000 14krát na dny B, D, F, G, A a 15krát na dny
Су E. Celkem tedy v letech 1601—2000 připadá Nový rok
56krát na dny A, F, 57krát na dny C, D a 58krát na dny
By Ey G.

Zbývá zjistit, který den jsme označili A. Určíme-li Nový
rok třeba právě probíhajícího roku pomocí naší tabulky
a výsledek srovnáme se skutečností, zjistíme, že symbolu A
odpovídá pondělí.

14. Mezi dvěma po sobě následujícími 29. únory většinou
uplyne 4.365 + 1 =208.7 + 5 dnů. Posledních sedm 29.
únorů v uvažovaném období tedy připadlo na dny

1972 Út
1968 Čt
1964 So

1960 Po

1956 St

1952 Pá

1948 Ne

Protože 29. únor 1944 byl opět v úterý, opakuje se tento 281etý
cyklus, dokud ho nenaruší přechod přes rok, jehož letopočet
je dělitelný stem a není dělitelný čtyřmi sty. Ten není pře-
stupný a mezi posledním 29. únorem příslušného století
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a prvním 29. únorem následujícího století uplyne 8.365 +
+ 1 =417.7 + 2 dnů. Takto zjistíme, že v letech 1901 — 1972
byly 29. února dvakrát středa, pátek a neděle a třikrát ostatní
dny, přičemž 29. 2. 1904 bylo pondělí. Rok 1900 přestupný
nebyl, takže 29. 2. 1896 byla sobota a v letech 1801—1900
byl 29. únor čtyřikrát v pondělí, středu a sobotu a třikrát
v ostatních dnech. 29. 2. 1804 byla středa, takže 29. 2. 1796
bylo pondělí. Výsledky za léta 1801—1900 můžeme přenést
na léta 1701 — 1800 s tím, že údaje posuneme o dva dny
(protože 29. 2. 1896 byla sobota a 29. 2. 1796 pondělí):
v těchto letech byl 29. únor čtyřikrát ve středu, v pátek
a pondělí a třikrát v ostatních dnech. Dalším posunutím o dva
dny dostaneme údaje za léta 1601 — 1700: čtyřikrát pátek,
neděle a středa, třikrát ostatní dny, přitom 29. 2. 1604 byla
neděle. Došli jsme к přestupnému roku 1600 a zbývá ještě
započítat prvních pět 29. únorů:

1600 Út
1596 Čt
1592 So

1588 Po

1584 St

Ve zkoumaném období byl 29. únor v pondělí a ve středu
15krát, v sobotu 14krát, v úterý, čtvrtek a pátek 13krát
a v neděli 12krát. Nejméně často byl tedy v neděli.

15. Vzdálenost budeme měřit v kilometrech, čas v hodi-
nách, rychlost v km/h. Hledanou vzdálenost a rychlost
označme d, v. Kdyby auto rychlost nesnížilo, trvala by mu
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d
cesta —. Jelo-li hodinu rychlostí v a zbylou vzdálenost

3
d — v rychlostí — v, trvala mu cesta

d — v

1 +
3

т

platí tedy

d — v d
(1)+ 2.1 +

3 v

5V

Ujede-li původní rychlostí vzdálenost v + 50 a sníženou
rychlostí zbytek cesty d — v — 50, trvá mu cesta

d — v — 50v + 50
+

3v

5V
takže

г? + 50 d — v — 50 d 4
(2)+

3 *3 vv

Tv

Dostali jsme soustavu dvou rovnic (1), (2) o dvou neznámých.
Úpravou jednotlivých rovnic dostaneme ekvivalentní soustavu
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4v = d,

3v + 50 = d,

která má jediné řešení v = 50, d — 200.
Z A do В je 200 km. Původní rychlost auta byla 50 km/h.

16. Čas budeme měřit v minutách, vzdálenosti v kilo-
metrech, rychlost v km/min. Dobu jízdy auta z A do В

2
označme t. Zpáteční cesta trvala autu — r, auto bylo na cestě

5
celkem —t + 75. Zbývá určit r.

Auto vyjelo o 25 min dříve než cyklista a dohonilo ho po
10 km v pětině cesty. Cyklista jel tedy rychlostí

10 50

t + 125 't

25+ -J
Cesta do В cyklistovi trvala t + 125 a do druhého setkání

9
s autem, které ho potkalo v — cesty, uplynula doba10

9

10(í+125).
Autu trvala cesta do druhého setkání, počítáno také od 8 h,

1 2 32

Го * ~Ъ 1 = 30 1 r 10°*25 + г + 75 +
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Pro hledané t tedy platí

9 32
(i + 125) = — t + 100.10

Řešením této rovnice je t = 75. Auto bylo tedy na cestě
5

— .75 + 75 - 200 min = 3 h 20 min
3

a vrátilo se v 11 h 45 min.

17. Čas budeme měřit v sekundách, vzdálenost v metrech,
rychlost v m/s. Rychlosti vlaku, prvního a druhého chodce
označme v, ví, v-г, délku vlaku d. Předpokládáme, že
ví < V2 < v. Druhého chodce vlak míjí po dobu

d
t2 =

V — V2

prvního po dobu
d

ti —
v — vi

V okamžiku, kdy vlak dostihne prvního chodce, jsou chodci
od sebe vzdáleni

Vt — V21 = t(v — V2)

a do setkání jim zbývá doba

t(v — v%)
V-z — Vl
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Vzhledem к tomu, že

V — V2 = dt2i

V2 — vi = v — v1 — (v—v2) = tid — Í2d = d(t1 — ř2)>

je
t(v — v2) tdt2 tt2

d(t± — t2) ti — ?21)2 —

tt2

Druhý chodec dohoní prvního za
ti — 12

ku, kdy vlak dostihl prvního chodce.

sekund od okamži-

18. Čas budeme měřit v sekundách, vzdálenost v metrech,
rychlost v m/s. Délku osobního vlaku označme d\ a délku
rychlíku d2. Cestujícího v osobním vlaku rychlík předjíždí
rychlostí 1)2 — i)\ po dobu ři, je tedy

di = 11(1)2 — vi).

Pozorovatele na trati míjí vlak rychlostí vi po dobu t2s je tedy

d2 = tíVi.

Od okamžiku, kdy lokomotiva rychlíku dostihla konec osob-
ního vlaku, do okamžiku, kdy konec rychlíku minul lokomo-
tivu osobního vlaku, uplynula stejná doba, za jakou by rychlík
urazil vzdálenost di + d2 rychlostí v2 — vi3 je tedy

di + d2 — h(i)2 — ^1).

46



Sečteme-li první dvě rovnosti, vyjde

dj + d-z — h(v2 — ví) + tzvi,

takže

t\{V2 — v{) + t>vi = Í3O2 — ví),

neboli

Vl(t\ — Í2 — ?з) = Z>2(íl — Г3).

Je tedy

11 — hVl

V2 t± — ?2 — h

19. Dosadíme-li z první rovnice do druhé za x — 4 — 2y3
dostaneme po jednoduché úpravě

4(1 -yf + Зг* = 0.

Odtud vidíme, že musí platit у — 1, z — 0 a pro x pak
dostaneme x — 2. Tato trojice dané soustavě skutečně vy-

hovuje.

20. Sečteme-li 1. a 2. rovnici, dostaneme

(■x + у)2 = 4.
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Podobně sečtením 2. a 3. rovnice a sečtením 1. a 3. rovnice

vyjde

Су + = i»

(z + л:)2 — 9.

Řešení dané soustavy budou tedy jen mezi řešeními osmi
soustav

x + у — i 2,

у + z = ±1,

x + z = ±3

(pro všech osm kombinací znamének). Každá z těchto soustav
má jediné řešení, jsou to trojice x, y, z

2, 0, 1 0, -2, 3

0, 2, -3 -2, 0, -1

3,-1, 0 1, -3, 2

-1, 3, -2 -3, 1, 0.

Jak se přesvědčíme dosazením, všech osm trojic vyhovuje
dané soustavě.
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21. Předpokládejme, že pro kladná čísla xi, x<i, ..яшв

platí

1
*i + šs 2,

X2

1
X2 + 2=5 2,

*3

(1)

1
^2,*1975 +

*1976

1
*1976 + ^ 2.

*1

Sečteme-li těchto 1976 nerovností a uspořádáme-li sčítance,
dostaneme

1 1 1
^ 1976.2*1 + + *2 + + ..•+ *1976 +

*1 X2 *1976

(2)

Uvědomme si, že pro každé kladné číslo я platí

1
* + — ^ 2 (3)

x
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a rovnost zde nastane, právě když x — 1. Ekvivalentní
úpravou z ní totiž dostaneme nerovnost

O - l)2 ^ 0.

V nerovnosti (2), a tedy i v 1976 nerovnostech (1) nastává
rovnost a to je v oboru kladných čísel možné, jen když

*1 = X2 = . . . = #1976 = 1.

Je vidět, že tato čísla vyhovují dané soustavě.

22. Abychom se zbavili absolutní hodnoty, budeme sou-
stavu řešit zvlášť v oboru x ^0 a zvlášť v oboru x < 0.

a) Vyhovuje-li soustavě dvojice čísel x,y, kde x ^ 0, má
soustava tvar

ах + у = 1,
(1)

x + у — а,

odkud dostaneme

(2)(а — 1) x = 1 — а.

Je-li а Ф 1, vyhovuje rovnici (2) jen číslo x = —1, které
v uvažovaném oboru neleží. Je-li a — 1, má soustava tvar

X + у = 1,

X + у = 1
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a vyhovují jí všechny dvojice x3 у, kde x ^ 0, у = ! — x.

b) Vyhovuje-Ii soustavě dvojice čísel *,3?, kde x < 0, má
soustava tvar

ах + у — 1,
(3)

—x + у = a.

Platí tedy

(й + 1)X = 1 — CL. (4)

1 — a

Je-li а Ф — 1, vyhovuje rovnici (4) jen x — . To leží
1 4* CL

v uvažovaném oboru, právě když a < — 1 nebo a > 1.
1 + a2

Příslušné у — vypočteme z jedné z rovnic (3).1 + a

Pro a = — 1 má soustava tvar

— x + у = 1,

— x + у — — 1

a zřejmě nemá řešení.
Závěr: Pro a < — 1 a pro a > 1 má soustava jediné řešení

1 + a21 — a

1 + и У 1 + <х
. Pro — 1 ^ a < 1 soustava řešení

nemá. Pro a = 1 má nekonečně mnoho řešení x — t,

у = 1 — r, kde t je libovolné nezáporné číslo.

x =

51



23. Soustava prvních dvou rovnic má pro každou hodnotu
parametru a jediné řešení

2 3

ja3y = 1 + уй.X — Id"

Dosadíme-li odtud do třetí rovnice, dostaneme po jednodu-
ché úpravě

a(a — 1) | + — j = 0.

Má-li tedy soustava řešení, je a — 0 nebo a — 1 nebo
8

——. Zkouškou ověříme, že soustava má řešení ve všech
3

třech případech. Pro a = 0 je řešeni x — 1, у — 1, pro
7 8 8 1

«2=1 je x = —, у = — a pro a = —— je x = —у_,

a =

y = —

24. Odečteme-li třetí rovnici od první, dostaneme

ay — az = — 1.

Dosadíme-li sem z druhé rovnice za у a upravíme, zjistíme,
že pro každé řešení soustavy platí

a( 1 — a2)z = 1 + a. (1)
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Má-li rovnice (1) pro některou hodnotu parametru a konečný
počet řešení z, má daná soustava nanejvýš tolik řešení x,

y} z. Ze soustavy totiž vidíme, že každému z může odpovídat
nanejvýš jedno řešení x3 y, z. Rovnice (1) má nekonečně
mnoho řešení, právě když a — — 1. Daná soustava tedy může
mít nekonečně mnoho řešení jen pro a — — 1. V tomto
případě má tvar

x — у = b,

У — z — 1,

x — z — b + 1

a pro každou hodnotu parametru b má nekonečně mnoho
řešení. Vyhovují jí všechny trojice x = b — f, у = r,
z — t — 1, kde r je libovolné reálné číslo.

Daná soustava má nekonečně mnoho řešení, právě když
a — — 1, b pak může být voleno libovolně.

25. Po jednoduchých úpravách, které jsou pro abc > 0
ekvivalentní, dostaneme z dokazované nerovnosti nerovnost

a2bc + b2ac + c2ab ačc2 + a2b2 + b2c2

a ta je ekvivalentní s nerovností

(ac — ab)2 + (ab — bc)2 + (ac — bc)2 ^ 0.

Poslední nerovnost zřejmě platí pro všechna a, b3 c a pro
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nenulová a, b3 c v ní nastane rovnost, právě když a ~b =- c.

28. Dělíme-li n + 1 mocnin čísla 3

З1, 32, ..3», 3»+!

číslem n3 aspoň dvě dávají stejný zbytek. Jejich rozdíl je
dělitelný číslem n.

27. Zvolená prvočísla rozdělíme do pěti skupin podle toho,
jaký zbytek dávají při dělení pěti. Vzhledem к tomu, že jde
o prvočísla navzájem různá, obsahuje skupina odpovídající
zbytku 0 nanejvýš jedno prvočíslo, totiž 5. Na ostatní čtyři
skupiny připadá tedy celkem alespoň 49 prvočísel, na někte-
rou skupinu tedy alespoň 13 prvočísel. Rozdíl prvočísel z téže
skupiny je zřejmě dělitelný pěti.

28. Nejprve si uvědomme, že 163 840 — 5.215. Mezi sedmi
navzájem různými prvočísly jich je alespoň šest lichých
a rozdíly těchto lichých prvočísel jsou sudé. Mezi všemi klad-

6.5
= 15nýrni rozdíly zvolených prvočísel je tedy alespoň —

sudých čísel. Uvažovaný součin je tedy dělitelný číslem 215.
Zbývá ukázat, že uvažovaný součin je dělitelný pěti. Daná
prvočísla označme p\ < pz < ... < pí. Vezměme si těchto
pět jejich rozdílů:

p-г — Pi» pz — pu — pí» po — pi> Pe — ръ

Je-li některý z nich dělitelný pěti, jsme hotovi. Není-li, pak
alespoň dva dávají stejný zbytek a jejich rozdíl je tedy děli-
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telný pěti. Rozdíl těchto rozdílů je však rozdílem zvolených
prvočísel.

29. Dělíme-li třetí mocninu přirozeného čísla sedmi, je
zbytek stejný, jako dělíme-li sedmi třetí mocninu zbytku
tohoto čísla po dělení sedmi. Je-li totiž p = Iq + z3 je

p3 = 7(72#3 + 3 .Iq2z 4- 3qz2) + zz.

Zbytek při dělení třetí mocniny sedmi je tedy vždy roven
některému zbytku, který dostaneme při dělení čísel O3, l3,
23, зз} 43з 53з 63 sedmi, tj. některému z čísel 0, 1, 6. Součet
tří čísel je dělitelný sedmi, právě když součet zbytků při
dělení jednotlivých sčítanců je dělitelný sedmi. Ze všech
trojic složených z čísel 0, 1, 6 je součet složek dělitelný sedmi
jen pro trojice 0, 0, 0 a 0, 1, 6. Je-li tedy součet a3 + 63 + c3
dělitelný sedmi, je alespoň jedno z čísel a3, 63, c3 dělitelné
sedmi, a tedy také alespoň jedno z čísel a, b, c je dělitelné
sedmi.

30. Uvědomme si, že poslední dvojčíslí součtu závisí jen
na posledních dvojčíslích sčítanců a že poslední dvojčíslí
Čísla nA závisí jen na posledním dvojčíslí čísla n. Částečné
součty

l4 + 2A + ... + 1004,

1014 + 1024 + ... + 2004,

9014 + 9024 + ... + 1 0004
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mají tedy stejná poslední dvojčíslí. Jejich součet je tedy
dělitelný deseti a poslední číslice součtu

l4 + 24 + ... + 1 0004

je nula. Předposlední číslice tohoto součtu je rovna poslední
číslici částečného součtu

l4 + 24 + ... + 1004.

Analogicky jako předtím usoudíme, že je to také nula. Poslední
dvě číslice čísla l4 + 24 + ... + 1 0004 jsou tedy nuly.

31. Abychom odstranili absolutní hodnoty, budeme rovnici
řešit zvlášť v oboru přirozených čísel a zvlášť v oboru zápor-
ných celých čísel. Číslo 0, jak se můžeme přesvědčit, řešením
není. Je-li x přirozené číslo, je |ar — 1| = л; — 1, \3x + lj =
— 3x+ 1 a vyhovuje-li rovnici, platí pro ně

3{x - 1) - 2x = 2(3x + 1).

Tuto podmínku splňuje jedině x — — 1. V oboru přirozených
čísel tedy rovnice řešení nemá.

Je-li *5^ —1, je \x — 1| = 1 — X} \3x + 1| = —3x — 1
a vyhovuje-li rovnici, platí pro ně

3(1 - x) - 2x = 2(-3x - 1).

Tuto podmínku splňuje jen л; — —5. To je jediné celočíselné
řešení rovnice.
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32. Zřejmě

I* — 2[ + \y — 3| ^ 3 — у

a rovnost nastane, právě když [д: — 2] = 0, jjy — 3| = 3 — y.
Vyhovují tedy právě ty dvojice x,y, kde x — 2, v ^ 3, tj. tři
dvojice (2, 1), (2, 2), (2, 3).

33. Předpokládejme, že х3 у jsou celá čísla, která vyhovují
soustavě. Odečteme-li druhou rovnici od první, vidíme, že
pro číslo л; platí

(1)9x — p\p — 1).

Je tedy buď p — 1 nebo p2 dělitelné devíti. Vyšetříme tyto
případy zvlášť.

a) Je-li/» — 1 dělitelné devíti, tj. / = 9k + 1, kde k je celé
číslo, pak podle (1) platí

x — k(9k + l)2

a podle první rovnice soustavy

у = (1 - k) (9k + l)2.

Tato dvojice je jediným řešením soustavy.

b) Je-li p2 dělitelné devíti, tj. p — 3q, kde q je celé číslo,
dostaneme analogicky
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x = q\3q — 1), у = í2(10 — 3q),

což je jediné řešení soustavy.
V ostatních případech soustava nemá řešení.

34. Jednoduchou úpravou dostaneme ekvivalentní soustavu

I
x > |y2 — 3y\ — —3 5

3
x <2 — у — 2 5

odkud vidíme, že pro každé řešení musí platit

1
— — < x < 2.

Soustavě mohou vyhovovat jen celá čísla x = 0 a x = 1.
Je-li x = 0, platí pro у soustava

1
\У2 ~3y\ < — ,

3

2 <2У -

a vyhovují jen у — 0, у = 3.
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Je-li x = 1, platí projy soustava
4

\y2 - ЗУ < у,

3

y~2 <l

a žádné celé у jí nevyhovuje. Soustava má právě dvě řešení:
x — 0, у = 0 a x = Oj у — 3.

35. Vzhledem к tomu, že

ab + bc + ас 1 1 1
= — + T~ + — jbabc a c

hledáme všechna prvočísla, pro něž

1 1 1
~ + ~r~ + ~ > 1.

ba c

Zvolme označení tak, aby a^b^Lc, a proberme systematicky
všechny možnosti. Pro a — 2, b — 2 dostáváme nekonečně
mnoho řešení

a = 2, b = 2, c ... libovolné prvočíslo.

Pro a = 2, b — 3 další dvě řešení

a = 2, b — 3, c = 3,

a ~ 23b — Ъ3 c — 5.

Pro a — 2, b > Ъ ani pro a > 2 už žádná řešení neexistují.
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36. Předpokládejme, že a, b, c, d jsou přirozená čísla, pro
která platí

ac — bd — p,

ad — bc — 0.

Sečtením obou rovností dostaneme

(a —b)(c + d)— p,

a jejich odečtením

(a + b) (c — d) — p.

Vzhledem к tomu, že p je prvočíslo а a, b3 c: d přirozená
čísla, platí

a — b — 1, c — d = 1,

c + d = pa + b — p,

a odtud

P- 1
d =a — c =

2 *

Pro p — 2 nejsou tato čísla celá a žádné řešení neexistuje.
Pro prvočísla p > 2 nalezená čísla, jak se snadno přesvědčíme,
soustavě vyhovují.
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37.Je-li m =pilp2at.. .Pnn rozklad na součin prvočini-
telů, je počet kladných dělitelů čísla m zřejmě roven

(ai + 1) (<22 + 1) ... (an + 1).

Má-li být počet dělitelů 15, bude n = 2 a ai, a-z budou čísla
2, 4. Má-li být číslo m co nejmenší, musí být prvočísla pi, pi
co nejmenší, tj. buď p\ — 2, p2 — 3, nebo pi = 3, p2 = 2.
Hledané číslo bude menší z čísel 22.34, 24.32, totiž 24.32 =

- 144.38.Prostřední z hledaných čísel označme л;. Součet jejich
druhých mocnin je

(1)5 = (x — 2)2 + x2 + (x + 2)2 = Зя2 + 8.

Protože x je liché, končí x2 některou z číslic 1, 5, 9 a součet
s některou z číslic 1, 3, 5. Z (1) vidíme, že součet s není
dělitelný třemi, takže číslice 3 nepřichází v úvahu. Součet s
dává při dělení třemi zbytek 2, pro s tedy zbývají možnosti
11, 11 111, 5, 5 555, 5 555 555. Z (1) najdeme pro 5 = 11
trojice —1, 1, 3 a —3, —1, 1 a pro s = 5 555 trojice 41, 43, 45
a —45, —43, —41. Ostatní tři možnosti pro s nedávají celé x.39.Hledané číslo můžeme rozepsat

x = 10a + b.

potom

x3 = 1000a3 + 300a4 + 30ab2 + b3.
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Má-li být poslední číslice 1, musí být b — 1. je tedy

x3 = 1000a3 + 300a2 + 30a + 1.

Na předposlední číslici čísla x3 má vliv jen předposlední
sčítanec, a aby to byla 8, musí poslední číslice čísla a být 6.
Hledané číslo rozepíšeme

x — 100c + 61,

takže

x3 = ... + 3.61M00c + 613.

Číslici na místě stovek ovlivňují jen poslední dva členy, a aby
to byla 9, musí poslední číslice čísla c být 0. Můžeme tedy psát

x = 1000 d + 61,

takže

x3 = ... + 3.612.1000 d + 613.

Aby číslice na místě tisíců byla 1, musí poslední číslice
čísla d být 5.

Splňuje-li nějaké číslo požadovanou podmínku, musí končit
na 5061. Všechna přirozená čísla končící tímto čtyřčíslím
vyhovují.

40. Provedl-li Josef výpočet v roce

1000 + 100 a + 10 b -f- c,
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bylo mu právě

1 + a + 6 + c

let a narodil se v roce

999 + 99a + 96.

Rozdíl momentálního letopočtu a zrcadlového obrazu je

(1000c + 1006 + 10a + 1) - (1000 + 100a + 106 + c) =

= 4 (1000 + 100a + 106 + c — 1— a — 6 — c)

a po úpravě

(1)37c + 2b- 18a - 185 = 0.

Odtud vidíme, že číslice c je nutně lichá, a dostáváme odhad

1 1
c — — (185 + 18a — 26) ^ — (185 + 18.0 - 2.9) > 4.37 37

Číslice c může tedy být jen 5, 7 nebo 9.
Pro c = 5 se rovnice (1) redukuje na 6 = 9a a té vyhovuji

dvě dvojice a = 0, 6 = 0; a = 1, 6 = 9.
Pro c — 7 dostáváme rovnici

6 = 9 (a - 4) - 1

a té vyhovuje jediná dvojice a = 5, 6 = 8.
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Pro с — 9 dostáváme rovnici

b = 9 {a - 8) - 2

a té vyhovuje jediná dvojice a — 9, 6 = 7.
Příslušné letopočty jsou 1005, 1195, 1587 a 1979. Zbývá se

přesvědčit, že všechny vyhovují podmínkám úlohy. (Šestiletý
Josef v r. 1005 měl neuvěřitelné matematické schopnosti.)

41. Jako jednotku délky vezměme stranu utěrky a označme
velikosti stran obdélníku ABCD vzhledem к této jednotce
a} b. To budou celá čísla a utěrek bude ab. Má tedy platit

ab — a + b + Уа2 + b2,

neboli

Уа2+62 = ab — a — b.

Po umocnění obou stran a úpravě dostaneme podmínku

ab {ab — 2a — 2b + 2) = 0.

Protože a, b jsou nenulová čísla, musí platit

ab — 2a — 2b + 2 = 0,

neboli

{a - 2) {b - 2) = 2.
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Oba činitelé jsou celá čísla a jsou to tedy dělitelé čísla 2.
Probereme všechny možnosti a zjistíme, že vyhovují jen dvo-
jice a = 3, 6 = 4 nebo a — 4, b — 3. Úloze tedy může
vyhovovat jen obdélník o stranách 3, 4 a také skutečně
vyhovuje - utěrek je 12.

42. Délky odvěsen pravoúhlého trojúhelníku označíme a, b
a délku přepony c (vše v cm). Vyhovuje-li trojúhelník pod-
mínkám úlohy, platí podle (b)

ab
a + b + c — ——

2 (1)

a podle Pythagorovy věty

a2 + b2 = c2. (2)

Vyjádříme-li z (1) c pomocí a, b a dosadíme do (2), dostaneme
podmínku

1
— a2b2 + 2ab — a2b — ab2 = 0,4

neboli

ab (ab — 4a — 46 + 8) = 0.

Protože a, b jsou nenulová čísla, musí být

ab — 4a — 46 + 8 = 0,

65



neboli

(a -4) (Ъ- 4)'= 8.

Podle (a) jsou oba činitelé celá čísla, jsou to tedy dělitelé
čísla 8. Po probrání všech možností zjistíme, že vyhovují
dvojice

a = 5, 6 — 12 a = 12, b — 5

a = 6, b — 8 a = 8, b — 6

Vypočteme ještě příslušné hodnoty с a vidíme, že pokud
nějaký trojúhelník vyhovuje úloze, může to být jen trojúhelník
se stranami 5, 12, 13 nebo 6, 8, 10. Oba trojúhelníky vyhovují.

43. Vrcholy červeného trojúhelníku označme 1, 2, 3. Troj-
úhelník s vrcholy ve zbývajících bodech 4, 5, 6 není červený,
má tedy alespoň jednu modrou stranu. Z každého bodu 4, 5,
6 vedou alespoň dvě modré úsečky do bodů 1, 2, 3 - jinak by
vznikl další červený trojúhelník. Celkem je tedy alespoň 7
modrých úseček. Analogicky zjistíme, že je aspoň 7 červe-
ných úseček. Úseček je celkem 15, tedy 7 jedné barvy a 8
druhé barvy.

44. Předpokládejme, že z některého vrcholu A vycházejí
aspoň tři úsečky jedné barvy AB, AC, AD. Není-li žádný
z trojúhelníků ABC, ABD, ACD jednobarevný, jsou úsečky
BC3 BD3 CD obarveny druhou barvou, a tedy trojúhelník
BCD je jednobarevný. Z žádného vrcholu tedy nemohou vy-
cházet více než dvě úsečky jedné barvy. Vzhledem к tomu,
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že z každého vrcholu vycházejí právě čtyři úsečky, jsou dvě
z nich jedné barvy a dvě druhé barvy.

45. Uvažujme devítiúhelník obarvený tak, jak požaduje
úloha. Ze spojnic vrcholů (tj. úhlopříček a stran) jich bude
5.4 4.3
—-

= 10 spojovat červené vrcholy, = 6 modré vrcholy
Z Z

a ostatní červený vrchol s modrým. Mezi 16 spojnicemi
stejnobarevných vrcholů bude 13 úhlopříček, zbývající 3 tedy
budou strany. Z 9 stran devítiúhelníku budou tedy 3 strany
spojovat stejnobarevné vrcholy a 6 stran různobarevné vrcho-
ly. Počítejme teď na okamžik každý vrchol tolikrát, na kolika
stranách leží, tzn. dvakrát. Z 10 červených a 8 modrých
vrcholů připadne na strany spojující různobarevné vrcholy
6 červených a 6 modrých vrcholů. Na strany spojující stejno-
barevné vrcholy zbývají 4 červené a 2 modré vrcholy. Ze 3
stran spojujících stejnobarevné vrcholy tedy 2 strany spojují
červené vrcholy a 1 strana modré vrcholy.

Jsou-li tedy vrcholy devítiúhelníku obarveny způsobem
předepsaným v úloze, pak jediná strana spojuje modré
vrcholy. Obráceně snadno zjistíme, že jsou-li vrcholy devíti-
úhelníku obarveny tak, aby jich bylo 5 červených, 4 modré
a přitom jediná strana spojovala modré vrcholy, pak právě
13 úhlopříček spojuje vrcholy stejné barvy. Zbývá tedy určit,
kolika způsoby lze vrcholy takto obarvit.

Jsou-li vrcholy A\, A2 jediná dvojice sousedních modrých
vrcholů, budou vrcholy A3, A9 červené. Zbývající dva modré
vrcholy pak budou zastoupeny mezi vrcholy A4, A5, Ae, A7,
As tak, aby nesousedily. Proto je 6 možností A^Aq, A4A7,
A4A8, A5A7, AeAs, АбА&. Cyklickou záměnou očíslování
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vrcholů dostaneme z každé možnosti 9 obarvení vrcholů

vyhovujících úloze. Vzhledem к tomu, že žádná dvě z těchto
6.9 obarvení zřejmě nesplynou, je vrcholy možno obarvit
právě 54 způsoby.

4<6. Zaveďme v rovině souřadnicovou soustavu tak, aby
splynula s danou sítí. Bod roviny je pak uzlem sítě, právě když
má obě souřadnice celočíselné. Z prvních souřadnic pěti
zvolených uzlů mají aspoň tři stejnou paritu. Z druhých
souřadnic těchto tří uzlů mají aspoň dvě stejnou paritu. Našli
jsme tak dva ze zvolených uzlů A = [ai, ao], В — [6i, 62],
jejichž první souřadnice mají stejnou paritu a druhé souřad-
nice také. Souřadnice středu úsečky AB

Ul + b\ <22 + bi
22

jsou tedy celá čísla a střed úsečky AB leží v uzlu sítě.

47. Řádky i sloupce šachovnice očíslujme 1, 2, .. ., n. Na
každé pole, které leží současně v lichém řádku i lichém sloupci,
postavme figurku. Toto rozmístění vyhovuje podmínce úlohy.

Je-li n sudé, rozestavili jsme ^ —
2

figurek, v případě n liché-

/ n + 1 \2
h0 (—) figurek.

Ukážeme, že má-li být splněna podmínka úlohy, více
figurek se na šachovnici nevejde. Rozdělme šachovnici přím-
kami, které oddělují sudé řádky a sloupce od následujících
lichých. V případě sudého n se tak šachovnice rozpadne na
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I n\2 in — 1\2
\2! tvaru ^ x v případě lichého n из у —-— J
částí tvaru 2x2, n — 1 částí tvaru 2x1 a jednu část tvaru

n -p 1\2
částí. Přitom v každé části můželxl, celkem na

být nanejvýš jedna figurka, nemůže jich tedy na šachov-
nici stát více, než je počet částí.

Největší možný počet figurek rozestavených tak, aby žádné

2

/ n \2

у — J pro sudé n,dvě nestály na sousedních polích, je tedy

n + 1\2
pro liché n.2

48. Budeme uvažovat tři možnosti:

1. Dané body jsou vrcholy konvexního pětiúhelníku. Pak
vynecháním kteréhokoli z nich dostaneme čtveřici vrcholů
konvexního čtyřúhelníku. V tomto případě má úloha
5 řešení.

2. Čtyři z daných bodů jsou vrcholy konvexního čtyřúhelníku
a pátý leží uvnitř něho. Označíme-li vrcholy čtyřúhelníku
Ai, A2, A3, A4 tak, že pátý bod A5 leží uvnitř trojúhelníku
A1A2B, kde В je průsečík úhlopříček čtyřúhelníku, dosta-
neme požadovanou čtveřici vynecháním kteréhokoliv z bo-
dů A\, A2, A5. Zde dostáváme 3 řešení.

3. Tři z daných bodů jsou vrcholy trojúhelníku a uvnitř
něho leží ostatní dva body A\, A5. Přímky spojující
vrcholy tohoto trojúhelníku s bodem A4 ho rozdělí na 6
trojúhelníčků. Označíme-li vrcholy trojúhelníku Ai, A2, A3
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tak, aby trojúhelníček obsahující bod A5 měl dvě strany
na přímkách A\A\3 A2A43 tvoří body A\3 Аг3 А$3 A5
jedinou čtveřici vyhovující úloze.

49. Střed dané kružnice označme S. Každému bodu X
dané kružnice přiřaďme číslo p{X) = m — m’3 kde m je počet
daných bodů ležících v polorovině, kterou opíše polopřímka
SX při otočení o 180° ve směru hodinových ručiček, a m' je
počet daných bodů v polorovině opačné. Všimněme si, jak
se hodnota p{X) bude měnit při pohybu bodu X po kružnici
ve směru hodinových ručiček. Neprochází-li přímka SX
žádným z daných bodů, zůstává hodnota p(X) beze změny.
Splyne-li bod X s některým z daných bodů, číslo p(X) se
zmenší o 1 a po průchodu tímto bodem se opět zmenší o 1.
Dostane-li se bod X' souměrný s bodem X podle středu 5
do některého z daných bodů, číslo p(X) se zvětší o 1 a pak
se opět zvětší o 1. (Jsou-li mezi danými body body souměrně
sdružené podle středu S3 nemají tedy vliv na hodnoty p(X).)

Na uvažované kružnici zvolme nějaký bod A. Je-li p(A) =
= 0, úloze vyhovuje přímka AS. Je-lip(A) Ф 0, všimněme si,
že pro bod A' souměrně sdružený s bodem A podle středu 5
zřejmě platí p(A') — —p(A). Proběhne-li tedy bod X od bodu
A do bodu A', změní hodnota p(X) znaménko. Vzhledem
к tomu, že hodnoty p(X) jsou celočíselné a postupně se zvětšu-
jí nebo zmenšují o 1, je pro některý bod В nutně p{B) = 0
a přímka BS vyhovuje úloze.

50. Zvolme si libovolný bod množiny B. Podle (1) je spojen
nanejvýš se třemi body množiny В úsečkami z U a každý
z těchto tří bodů je spojen úsečkami z U nanejvýš se dvěma
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dalšími body z В. Zvolený bod může tedy být úsečkou z U
nebo lomenou čarou složenou ze dvou úseček z U spojen
nanejvýš s devíti dalšími body z B. Množina В tedy vzhledem
к (2) obsahuje nanejvýš 10 bodů. Na obr. 1 vidíme, že deseti-
bodová množina В s vlastnostmi (1), (2) existuje. Hledaný
počet je 10.

51. Jestliže jsme střed strany AB označili P a střed strany
BC označili Q (obr. 2), je PQ střední příčka trojúhelníku ABC.
Proto tvoří body P} Q, C, R rovnoběžník. Úhlopříčky rovno-
běžníku se vzájemně půlí, tudíž přímka CP prochází středem
úsečky QR a je tedy nejen těžnicí trojúhelníku ABC, ale i
těžnicí trojúhelníku PQR. Totéž lze dokázat pro těžnici
AQ nebo BR. Protože oba trojúhelníky mají stejné těžnice,
mají i stejné těžiště.

52. Má-li trojúhelník ABC požadované vlastnosti, protíná
polopřímka CT stranu AB v jejím středu M a protože těžiště
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3
trojúhelníku dělí těžnici v poměru 2 : 15 je \CM\ = \CT\.

Doplníme-li trojúhelník ABC na rovnoběžník ANBC, je bod
M jeho středem (obr. 3). Z uvedeného rozboru vyplývá již
konstrukce trojúhelníku ABC. Na polopřímce CT zvolíme
bod N tak, aby \CN\ = 3 \ CT\3 bodem N vedeme rovno-

běžky s přímkami CQ3 CP a jejich průsečíky s přímkami CP3
CQ jsou body A3 B. Úloha má vždy právě jedno řešení.
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53. Protože přímka p neprochází podle předpokladu žád-
ným vnitřním bodem trojúhelníku, leží celý trojúhelník ABC
v jedné polorovině s hraniční přímkou p. Označme S střed
úsečky AB3 s vzdálenost bodu 5 od přímky pa.a3b vzdálenosti

a + b
To je

ihned zřejmé v případě a = b3 kdy body А, В a tedy i 5

bodů А, В od přímkyp (obr. 4). Pak je s —

Obr. 4

leží na přímce rovnoběžné s přímkou p. Také v případě, kdy
je přímka АВ kolmá na přímku p3 je platnost uvedeného vzor-
ce zřejmá. V ostatních případech je s velikost střední příčky
lichoběžníku se základnami a, b3 případně pravoúhlého troj-
úhelníku (je-li a = 0 nebo b = 0) a tedy i v těchto přípa-
dech vidíme, že 2s = a + b. Označíme-li R, T středy stran
ВС, АС a r, r, c vzdálenosti bodů R3 T3 C od přímky p,pla-
tí podle předcházejícího 2s = a + b3 2r = b + c3 2t = a +
+ c. Sečtením těchto tří rovnic a dělením dvěma dostá-
váme s + r + t = a + b + c3 což jsme měli dokázat. 21

54. Označme vzdálenosti bodů A3 B3 C od přímky p stejně
jako v předcházející úloze a3 b3 c. Můžeme předpokládat, že
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bod C máz vrcholů A, B3 C od přímky p největší vzdálenost,
tj. с ^ a3 c ^ b. Označme ještě s a t vzdálenosti středu S
úsečky AB a těžiště T trojúhelníku ABC od přímky p (obr. 5).

a + b

2 ’ '
c — s

—-—. Po dosazení za 5 do-

staneme t = — (a + b + c). Můžeme tedy říci, že vzdá-

lenost těžiště trojúhelníku ABC od přímky/) se rovná aritme-
tickému průměru vzdáleností vrcholů А, В, C od této přímky.

Pak je s —
= s +

1

Obr. 5

55. Má-li rovnoramenný trojúhelník proti své základně úhel
У

у, má každý jeho úhel při základně velikost 90° — --.Jsou tudíž

každé dva rovnoramenné trojúhelníky s úhlem у při vrcholu
proti základně podobné, protože se shodují ve všech vnitřních
úhlech. Snadno sestrojíme rovnoramenný trojúhelník PQC
s úhlem у při vrcholu C as rameny CP, CQ. Označme 5
střed strany PQ a R patu kolmice vedené bodem P к přímce
CQ (obr. 6). Na polopřímce CS zvolíme za bodem 5 bod U
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tak, aby \SU\ — |PP(. Kdyby bylo \CU\ — s3 byli bychom
s konstrukcí hotovi, stačilo by vzít za trojúhelník ABC troj-
úhelník PQC. To by však byla příliš velká náhoda, spíše bude
|CČ7| menší nebo větší než velikost s. Pak zvolíme na polo-
přímce CS bod D tak, aby |CD| = s. Bodem D vedeme

rovnoběžky s přímkami PU, QU a jejich průsečíky s přímkami
CP, CQ označíme A, В (viz obrázek). Dokážeme, že troj-
úhelník ABC má požadované vlastnosti. Je to rovnoramenný
trojúhelník s úhlem у při vrcholu C. Označme E patu kolmice
vedené bodem А к přímce CB a F střed úsečky AB. Z po-
dobnosti trojúhelníků PRQ, AEB a také dvojice trojúhelníků
PSU.AFD plyne

\PR\ \AE\
= \SU\ _ \FD\

\PQ\ “ |AB\ 3 |PS| “ \AF\ '
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Protože je ] PQ \ = 2\ PS |, | AB j = 2 j AF |, platí podle
\SU| | FD|
! PQ I I AB Г

I FD | | PR I 1 AE |

poslední rovnosti také Podle konstrukce je

| SÍ7 | = | PR I, tedy

| FD | = | AE\. Pak je ale \CF\ + \AE\ = \CF\ + | FD | =

= | CD | = í a trojúhelník ABC má požadované vlastnosti.

a proto| AB I PQ | AB

56. Z podobnosti rovnoramenných trojúhelníků ABB' a
CBC plyne I <£B'AB \ = | BCC | (obr. 7). Dále je

C

| AB’| = | AB | = | DC I, | AD | = | BC ] = | CC |. Podle
věty sus jsou tudíž trojúhelníky DAB' a CCD shodné, proto je
| DB' | = | DC |. Tím jsme dokázali, že trojúhelník DB'C je
rovnoramenný. Označme a velikost sobě rovných úhlů BAB\
BCC а /5 velikost vnitřního úhlu rovnoběžníku ABCD
při vrcholu A. Z předcházejícího víme, že | <£ADB' | =
= |<^CC'£)|,označme tuto velikost y,podobně\<£AB'D\ —
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— j <£C'Z)C j = d. Z trojúhelníku ADB' plyne a + /9 + у 4-
+ b — 180°. Součet velikostí úhlů BAD a CDA je také 180°,
proto | <£B'DC | = a. Rovnoramenné trojúhelníky BAB'
a C'DB' mají tudíž proti základnám stejně velké úhly, takže
jsou podobné. Mlčky jsme předpokládali, že stejně jako na
obrázku je a + /9 < 180°. Postup důkazu by však byl v pod-
statě stejný i v případě a + /9 > 180° nebo a + /9 = 180°.
V posledním případě by se však trojúhelníky DAB' a C'CD
redukovaly na úsečky.

57. Stejnolehlost se středem v těžišti trojúhelníku a s koe-
ficientem —2 zobrazuje středy stran trojúhelníku do pro-
tějších vrcholů. Proto má kružnice procházející středy stran
trojúhelníku poloviční poloměr než kružnice trojúhelníku
opsaná a leží v její vnitřní oblasti nebo s ní má vnitřní dotyk,
jak se v zadání úlohy předpokládá. V tom případě leží střed
S kružnice k trojúhelníku ABC opsané na kružnici k\ prochá-
zející středy stran trojúhelníku ABC. Bod dotyku obou
kružnic označíme V (obr. 8). Střed alespoň jedné strany
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trojúhelníku je různý od bodu V i od bodu S, nechť je jím
například střed P strany AC. Úsečka AC je pak takovou
tětivou kružnice k, která je bodem P půlena, proto musí být
AC _L SP. Podle Thaletovy věty je PF J_ SP, splývá tudíž
přímka AC s přímkou PV. Pak však musí jeden z vrcholů
A, C splynout s bodem V. Tím jsme dokázali jednu část
tvrzení úlohy. Můžeme předpokládat, že C = F, vrchol A
je druhým průsečíkem přímky PF a kružnice k. Vrchol В leží
na kružnici k a střed Q úsečky AB musí ležet na k'. Musí
proto bod <2 ležet také na kružnici, která odpovídá kružnici k

1
ve stejnolehlosti se středem A a koeficientem —. To je však

právě kružnice opsaná trojúhelníku APS. Proto musí bod Q
splynout s bodem S, úsečka AB je pak průměrem kružnice k
a trojúhelník ABC je pravoúhlý, což jsme právě měli dokázat.

58. Označme M, N, P (obr. 9) po řadě body dotyku kružni-
ce trojúhelníku vepsané a stran BC, CA, AB. Pak je [ SM j —

— | SN | — | SP |. Z pravoúhlého trojúhelníku CMS plyne,
že j CS | > | MS |, tedy také | DS ] > | PS j. Proto je P ф D
a trojúhelníky SMC a DPS jsou shodné rovnoramenné troj-
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úhelníky. Můžeme předpokládat, že bod P leží mezi body
В a D, jinak bychom zaměnili označení bodů А а В a dvojice
M, N. Pak je | ВС | = | BM | + | MC | = | BP | + | PD | =
= | BD |. Je tedy velikost odvěsny BC pravoúhlého trojúhel-
niku ABC rovna polovině velikosti přepony, protože bod D
je podle předpokladu jejím středem. Kdybychom к bodu В
sestrojili bod B' souměrně sdružený podle přímky AC, byl by
trojúhelník ABBf rovnostranný, proto je | <£BAC | = 30°.

59. Označme M libovolný bod rovnostranného trojúhelníku
ABC (obr. 10), označme dále a stranu trojúhelníku a p, q3 r

C

r

M*q

:P

ВÁ a

Obr. 10

vzdálenosti bodu M od jednotlivých stran trojúhelníku. Sou-
čet obsahů trojúhelníků ABM, BCM, CAM se rovná obsahu

1
trojúhelníku ABC, tedy — a (p + q + r) —

p + q + r = — а Уз, což jsme měli dokázat. Použili jsme

—а2 Уз, odkud
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přitom vzorců pro obsah a velikost výšky rovnostranného
trojúhelníku. Leží-li bod M na některé straně trojúhelníku,
redukuje se příslušný trojúhelník v úsečku nebo dokonce v bod,
což však v uvedeném důkazu není na závadu.

60. Každý pravoúhelník z množiny M dostaneme tímto
postupem: s přímkou AB vedeme přímku rovnoběžnou, která
protíná úsečku AC v některém jejím vnitřním bodě К a pro-
tíná tudíž i úsečku BC v bodě L (obr. 11). Paty kolmic vede-

ných body К, L na přímku AB označíme R, S. Pravoúhelník
KRSL má požadované vlastnosti. Označme c = | AB |,
v výšku trojúhelníku ABC к straně AB, z = j KL j а у
výšku trojúhelníku KLC, příslušnou к straně KL. Z po-
dobnosti trojúhelníků ABC, KLC plyne у : v = z : c. Obvod
pravoúhelníku KRSL se rovná

(ť-)12 [z + (■v —y)] =2 v + у
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Jestliže dva různé pravoúhelníky z množiny M mají

[^(v-1)]prostejný obvod, nabývá funkce 2

dvě různé hodnoty proměnné у stejné funkční hodnoty.
c

To nastává jedině tehdy, když je — — 1 = 0, pak jsou ob-

vody všech pravoúhelníků z množiny M rovny hodnotě 2v.

61. Předpokládejme, že se nám již podařilo sestrojit troj-
úhelník AXY požadovaných vlastností (obr. 12). Označme Z

А к

\

Z,/2/7?

X'

в У с

Obr. 12

střed strany AY а у její délku. Trojúhelníky AZX a ABY
\AX |

jsou podobné pravoúhlé trojúhelníky, proto je

| AYj2
\AZ\

\ay\
odkud \AX\ = . Obvod trojúhelníku AXY\AB\ 5

je 2s, tedy \AY\2 + 2m \AY\ = 4ms. Poslední rovnici upra-
víme na tvar (\AY\ + mjf = m(m + 4s'), odkud plyne

4m
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\ AY I = Уm (тп + 4s) — m. Tento vztah použijeme obráceně
ke konstrukci bodu Y a pak trojúhelníku AXY. К hodnotám
m, s sestrojíme úsečku délky r = Mm (m + 4s) — m a hledáme
průsečík polopřímky BC s kružnicí o středu A a poloměru r.

Aby však takový průsečík Y existoval a byl různý od bodu B>
je nutné a stačí, aby platilo Mm {m + 4s) — m > 2m, což je
podmínka ekvivalentní s podmínkou s > 2m. Je-li tato pod-
minka splněna, můžeme bod Y sestrojit, bod X dostaneme
jako průsečík osy úsečky AY a polopřímky AB, výpočtem
pak zjistíme, že obvod trojúhelníku AXY je 2s. Podmínka
s > 2m je nutnou a postačující podmínkou řešitelnosti úlohy.
Ještě poznamenejme, že úsečku délky Mm (m + 4s) sestrojíme
pomocí Euklidovy věty o odvěsně tak, že sestrojíme pravoúhlý
trojúhelník o přeponě m + 4s, jehož jeden úsek na ní má
délku m. Odvěsna při tomto úseku má pak velikost
Mm (m + 4s).

62. Nechť body P, Q splňují podmínky úlohy. Bod P ne-
může být totožný s bodem C, protože by s ním pak musel
splynout i bod <2, je totiž | CP | = | PQ |. Pak by však ne-
mohlo platit | PQ | = | QB |. Na druhé straně může s bodem
C splynout bod <2, pak ovšem musí být P = A. Vidíme, že
úloha má vždy aspoň jedno řešení: P = A3 Q = C. Nechť
ani bod P, ani bod Q nesplývá s bodem C. Pak body С, P, O
tvoří rovnoramenný trojúhelník se základnou CQ (obr. 13),
je tedy | <$;CQP | =y, kde у — \ <^ACB |. Rovnoramenný
trojúhelník tvoří také body P, <2, P, protože bod Q nemůže
být totožný s bodem B. Protože | <£PQB | = 180° — y3 je
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I <£QBP I = Víme, že [ *£CBA \ = 90° — ~ a protože

I <£CBA I > I <£CPP I (rovnost by mohla nastat pouze v pří-
pádě P — A, ten jsme probrali zvlášť), je nutnou podmínkou
pro to, aby úloha měla další řešení, splnění nerovnosti
90° > y. Ukážeme, že je to i podmínka postačující. Nechť je
tato podmínka splněna. Na úsečce AC zvolme bod P tak,

aby | <£CBP | = -у a na úsečce PC bod <2tak, aby | <^CQP | =
= y. Pak je trojúhelník CPQ rovnoramenný, ] CP | = | PQ |.

Dále je j JfiQPB [ = j, a tedy \PQ\ = \QB\. Body P, Q
jsou tedy dalším řešením úlohy. Můžeme shrnout: úloha má
vždy řešení P = A3 Q — C. Je-li trojúhelník ABC ostroúhlý,
má úloha další řešení, které jsme právě popsali.

63. Zvolme bod M na straně AC a bod N na straně BC
zatím libovolně (obr. 14). Sestrojme bod Pi souměrně sdru-
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žený к bodu P podle přímky AC a bod P2 souměrně sdružený
к bodu P podle přímky BC. Pak je j MP | ----- | MP\ |, | NP | =
= I NP2 I a obvod trojúhelníku MNP se rovná součtu
j P\M I + I MN I + I NPz |. Je zřejmé, že tento součet je
nejmenší právě tehdy, když body M, N leží na úsečce PiP2.
Řešení úlohy je tedy nasnadě - body M3 N zvolíme v průse-
čících přímky PiP2 s přímkami АС, BC. Co však, když přímka
P1P2 vůbec trojúhelník ABC neprotíná? Ukážeme, že tento
případ nenastane. Je totiž | <£PiCP| = 2[<£ЛСР|,
|<£PCP2j = 2 I <£PCB I, tedy | <£PiCP | + | ^PCP2 | =2y,
kde je у velikost vnitřního úhlu v trojúhelníku ABC při
vrcholu C, tedy podle předpokladu ostroúhlosti trojúhelníku
ABC je 2у < 180°. Z nerovnosti | ^TPiCP | + | <£PCP2 | <
< 180° pak vyplývá, že přímka PiP2 protíná strany AC, BC
trojúhelníku ABC v jejich vnitřních bodech. Kdyby v po-
slední nerovnosti platilo místo znaménka nerovnosti znamén-
ко rovnosti, procházela by přímka PiP2 bodem C a kdyby
platila nerovnost obrácená, neobsahovala by přímka PiP2
žádný bod trojúhelníku ABC. V těchto dvou případech by
úloha neměla řešení, protože čím bychom body M, N volili
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blíže к bodu C, tím by byl obvod trojúhelníku MNP menší.
Při žádné volbě bodů M, N by nebyl obvod nejmenší.

64. Úloha navazuje na úlohu předcházející, nyní však není
dán ani bod P. Zvolme zatím bod P uvnitř strany AB libo-
volně a podle předcházející úlohy sestrojme body M, N tak,
aby byl obvod trojúhelníku PMN minimální (obr. 15). Obvod

trojúhelníku PMN se tedy rovná velikosti úsečky P\Pz- Jde
tedy vlastně o to, zvolit uvnitř úsečky AB bod P tak, aby byla
velikost | PiP-2 | minimální. Víme, že | P\C
= | PC I, | ^PiCP2 | = 2y. To znamená, že nezávisle na tom,
jak zvolíme bod P, je P\P2C rovnoramenný trojúhelník
s úhlem 2у proti základně P\P2- Každé dva takové trojúhelníky
jsou podobné, musíme ovšem bod P zvolit tak, abychom
dostali trojúhelník s nejmenší možnou základnou. To je však
totéž, jako kdybychom požadovali, aby to byl trojúhelník
s nejmenším ramenem. Velikost ramene trojúhelníku P\CP>
je | PiC | — | PC |. Chceme tedy zvolit bod P na úsečce AB
tak, aby bylo j PC | nejmenší. Je tudíž nutné zvolit za P patu

P2C\ =

85



kolmice vedené bodem С к straně AB. Protože je podle
předpokladu trojúhelník ABC ostroúhlý, leží pata P uvnitř
strany AB. Dál pak postupujeme stejně jako v předcházející
úloze. Je zřejmé, že i body M3 N budou patami výšek v troj-
úhelníku ABC, mohli jsme totiž místo od bodu P vyjít také
od bodu M nebo N. Dokážeme si to však též přímo (obr. 16):

Body P\, P, P-г leží na kružnici se středem C, tečnou v bodě
Pi je přímka PiA, v bodě P je tečnou přímka AB. Označme
a = | <ž£ACP |. Pak je | <tP]CP | = 2a a podle věty
o obvodovém a středovém úhlu je [ -ЗСР1Р2Р j = a. Pak je také
a = 1 <£NPP2 I, protože NB je osou úsečky PP2, a tudíž
[ <£IP1NP I = 2a. Čtyřúhelníku CPiAP lze opsat kružnici
(je to kružnice nad průměrem АС), a protože | <£PiNP | =
= I <);PiCP [, prochází tato kružnice i bodem N. Protože
bod A je středem oblouku PiP na této kružnici, je | <)CPiAM | =
= J <):ANP I = a. Je tedy AN || PP2, to znamená AN JL BC.
Tím je dokázáno, že bod N je patou kolmice vedené bodem A
na přímku BC. Stejně bychom dokázali, že bod M je patou
výšky na stranu AC v trojúhelníku ABC.
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65. Označme Г těžiště trojúhelníku ABC a P, Q, R středy
jeho stran (obr. 17). Užitím trojúhelníkové nerovnosti na troj-

úhelník ABT dostaneme c <— + —. Nahradíme-li troj-
3 3

úhelník ABT postupně trojúhelníky BCT, CAT, dostaneme
dvě další nerovnosti, které bychom mohli také dostat cyklickou
záměnou hodnot a, b, c v předcházející nerovnosti. Sečtením

4 (ta + tb + tc)
, odkudvšech tří nerovností dostáváme 2s <

3

3í
— < ta + tb + tc. Tím jsme dokázali jednu z nerovností

úlohy. Všimněme si nyní trojúhelníku APR. Podle trojúhelní-
c b

kové nerovnosti je ta < — + —. Sečteme-li opět tuto nerov-

nost s nerovnostmi, které z ní dostaneme cyklickou záměnou
hodnot a, b, c, vychází přímo druhá nerovnost, kterou jsme
měli dokázat.

66. Nechť je M libovolný bod obdélníku ABCD. Veďme
jím rovnoběžku s přímkou AB, její průsečíky s přímkami AD,
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ВС označme Р, Q (obr. 18). Dále veďme bodem M přímku
rovnoběžnou s přímkou AD, její průsečíky s přímkami AB,
CD označíme R, S. Je pak

| MA |2 + i MC j2 = | AR |2 + | RM I2 + | MQ |2 + | QC j2,

| MB |2 + | MD |2 = | BQ |2 + | MQ |2 + | MS |2 + 1 DS |2.

\SD

QP M

A ВR

Obr. 18

Protože je | AR | = |DS|9|&AÍ| = | BQ\a\ QC\ = \ MS |,
je | MA |2 + | MC |2 = | MB !2 + | MD |2, což jsme měli do-
kázat. Všimněme si, že jsme při důkazu ani nepoužili toho,
že bod M je bodem obdélníku. Tvrzení tedy platí i pro body
vně obdélníku. Velmi jednoduše se tvrzení úlohy dokazuje
analyticky.

67. Označme P průsečík úhlopříček AC, BD (obr. 19).
Trojúhelníky ABP, CDP jsou stejnolehlé a protože je podle
předpokladu | AB \ — 2 1 CD |, je také | BP \ — 2 | DP |,
| AP | = 2 | CP |. Zvolme označení podle obrázku. Protože
jsou úhlopříčky na sebe kolmé, platí podle Pythagorovy věty
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x2 + у2 = z2

4х2 + у2 = и2

х2 + 4у2 — v2.

Sečtením posledních dvou rovnic a užitím první rovnice
dostaneme vztah

1
u2 + v2 — 5z2, tedy z = | CD | = -(m2 + v2),

2 |/y (u2 + v2).
Dále je v2 — x2 + 4jy2, 4м2 = 16л:2 + 4у2 a tedy v2 <
< 4м2. Pak je též v < 2u, protože и, v jsou čísla kladná.
Stejně bychom dokázali, že и < 2v.

\AB\ =

Cza
7x У

P 2x uv’

2у
В2 zA

Obr. 19

68. Předpokládejme, že jsme body X, Y již sestrojili.
Označme K3 L, M další tři vrcholy čtyřúhelníku BKLM3
který je průnikem trojúhelníků AXB, CYB (obr. 20). Protože
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a ■

\ \£
NV X D: Y

Obr. 20

je čtyřúhelník BKLM souměrný podle přímky BL, jsou
podle této přímky souměrně sdružené jak body К, M, tak
také body X3 Y. Vidíme, že osa o čtyřúhelníku BKLM je
nutně kolmá na spojnici XY, tedy na přímku VN. Kromě toho
leží bod X na spojnici bodů A, C'3 kde C je bod souměrně
sdružený к bodu C podle osy o3 podobně bod Y leží na spoj-
nici CA'i A' je bod souměrně sdružený к bodu A podle osy o.
Tento rozbor nás vede ke konstrukci: sestrojíme nejdříve
přímku o3 která je kolmá к přímce VN a prochází bodem B.
Dále sestrojíme body A'3 C souměrně sdružené к bodům
A, C podle přímky o. Bod X nechť je průsečíkem přímky AC
s ramenem VN úhlu MVN3 bod Y průsečíkem této polo-
přímky a přímky CA'. Může se však stát, že trojúhelníky
AXB a CYB budou mít společný pouze bod В nebo úsečku
BD, kde je D průsečík přímek o3 VN. Aby se toto nestalo, je
nutné a stačí, aby bod У ležel dál od bodu V než bod D.
Je \VD\=b cos a, kde a - | <£NVM |, dále je | AA' | =
= 2(a — b) cos a, kde a = \ AV \3 b = | BV |, c = \CV\.
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Z podobnosti trojúhelníků AA'C, VYC plyne | VY\ =
2 (a — b)c

cos a. Pak je | VY | > | VD | právě tehdy, když

je 2ac > b (a + c). To je nutnou a postačující podmínkou
řešitelnosti úlohy. Za této podmínky se trojúhelníky AXB
a CYB protínají v čtyřúhelníku souměrném podle osy o.

(a - c)

$ 69. Jestliže leží střed S' na některé straně čtyřúhelníku, je
tato strana průměrem kružnice, žádná jiná strana čtyřúhelníku
pak bodem S neprochází, jinak by byl bod S vrcholem čtyř-
úhelníku. To však nemůže nastat, protože všechny vrcholy
čtyřúhelníku leží na kružnici. Strany čtyřúhelníku, které
neobsahují bod S, jsou pak tětivy kružnice, různé od průměru,
a proto kratší. Leží-li bod S vně čtyřúhelníku ABCD, existuje
jedna jeho strana, která odděluje bod 5 od ostatních dvou
vrcholů čtyřúhelníku (obr. 21). Zvolme označení tak, že je to

strana AB. Vrcholy C, D pak leží na menším oblouku kružnice
s krajními body A, B. Proto jsou tětivy AD, CD, BC kratší
než tětiva AB.
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70. Danému šestiúhelníku (obr. 22) lze opsat kružnici,
právě když osy všech jeho stran procházejí společným bodem.
Nejdříve dokážeme, že osy protějších stran šestiúhelníku
splývají. Vezměme například strany АВ, DE. Protože jsou
spolu rovnoběžné, tvoří body A, B, D, E lichoběžník nebo

E
/°1

i D°2 l /
/ У

\У

Ы
\■ ■+-ЖУ

F/
\F'P

.

J~ J'д/У
~ýc\A

i
!
í

/

В

Obr. 22

rovnoběžník. Jeho úhlopříčky AD, BE jsou stejně dlouhé,
jde tedy o rovnoramenný lichoběžník nebo pravoúhelník.
Pak je ovšem osa oi úsečky AB zároveň osou úsečky DE.
Obdobně je osa o2 strany BC zároveň osou strany EF a osa 03

strany CD zároveň osou strany FA. Již jsme si ukázali, že
ABDE je rovnoramenný lichoběžník nebo pravoúhelník. Proto
je jeho osa o\ osou úhlu AMB, kde M je průsečík úhlopříček
AD, BE. Stejně tak je 02 osa úhlu ENF, kde N je průsečík
úhlopříček BE a CF a přímka 03 je osou úhlu CPD, P je
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průsečík úhlopříček AD, CF. Jestliže úhlopříčky AD, BE,
CF procházejí jedním bodem, splývají body M, N, P v jediný
bod, kterým procházejí i osy o\, 02, 03. Neprocházejí-li úhlo-
příčky šestiúhelníku jedním bodem, tvoří body M, N, P
trojúhelník a o\, 02, 03 jsou osy úhlů v tomto trojúhelníku.
I pak však procházejí jedním bodem, což jsme měli dokázat.

71. Zvolme na kružnici k bod X, X Ф A, X ф B. Těžiště
T trojúhelníku ABX leží na těžnici procházející bodem X,
tedy na úsečce MX, kde M je střed úsečky AB. Ze známé

1
vlastnosti těžiště dále víme, že | MT [ = —* | MX | (obr. 23).3

Odtud je vidět, že bod T je obrazem bodu X ve stejnolehlosti

se středem M a koeficientem —. Označme k' kružnici odpoví-

dající kružnici k v této stejnolehlosti. Těžiště každého uvažo-
váného trojúhelníku ABX leží tedy na kružnici k'. Zvolme
obráceně na kružnici k' bod T a pokusme se sestrojit troj-
úhelník ABX s těžištěm T tak, aby X e k. Bod X najdeme
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snadno, je to vzor bodu T v uvažované stejnolehlosti. Leží
na polopřímce MT a je | MX | = 3 | MT). Musíme však
vyloučit ty body T, při nichž bod X splyne s některým z bodů
A, Bj protože pak body А, В, X netvoří trojúhelník. Můžeme
tedy shrnout: množinou těžišť všech trojúhelníků ABX,
kde X E k3 je kružnice k' bez jejích dvou průsečíků s přímkou
AB.

72. Rozlišíme dva případy:
a) Jeden z daných bodů splývá se středem dané kružnice.

Pak je vzdálenost každého z dalších tří daných bodů od to-
hoto bodu menší než 1, tedy také menší než ] 2.

b) Žádný z daných bodů nesplývá se středem 5 dané
kružnice. Pak určuje střed S spolu s každým z daných bodů
polopřímku a aspoň dvě z těchto polopřímek svírají úhel
nejvýše rovný 90°. Nechť to jsou polopřímky SA, SB; A,
В jsou dva z daných bodů (obr. 24). Z trojúhelníku SAB
pak plyne \AB\2 = | SA |2 + | SB |2 nebo | AB |2 < | SA |2 +
+ | SB j2 podle toho, zda je úhel ASB pravý nebo ostrý.
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Protože j SA I < 1, | SB | < 1, platí v obou případech
| AB |2 < 2, tedy | AB | < ]/Ž

73. Označme po řadě K, L, M body dotyku kružnice fa
na stranách AB, AD, CD, dále U, V, WFbody dotyku kružnice
fa na stranách AB, BC, CD. Poloměr kružnic fa, fa označíme
r a vzdálenost jejich středů s. Je | AK | = | AL |, označme
tuto velikost л; (obr. 25). Podobně у = | DL | = | DM |,

D У ,M s W, t C
t

I/[_ !

I>

7 \ki и
'

'

/I x К и и Вs

Obr. 25

t = | CW | = | CV I, u = | BU | = | BV |. Pro délky zá-
kladen lichoběžníku pak platí a = x + s + u,b = у + s + t,
pro délky ramen máme с — и + t,d = x + y, tedy (a + b) —
— (c + d) — 2s, výška v lichoběžníku je 2r. Je tudíž (a + b) —
— (c + d) — 2v právě tehdy, když je s — 2r. To je však nutná
a postačující podmínka pro to, aby měly kružnice fa, fa vnější
dotyk.

74. Předpokládejme, že jsme úlohu již vyřešili. Označme A
vrchol čtverce, který leží na přímce p. Protože | SA | = rj2,
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leží bod A také na kružnici se středem S o poloměru r]/2
(obr. 26). Ta protíná přímku p právě ve dvou bodech, každý
z nich můžeme doplnit na čtverec opsaný kružnici k. Tyto dva
čtverce nemohou být totožné. Dva vrcholy čtverce by totiž
ležely na přímce p3 která by musela být jeho stranou nebo
úhlopříčkou. Stranou nemůže být, protože se kružnice k
nedotýká, úhlopříčkou také nemůže být, protože neprochází
bodem S, který musí být středem čtverce. Úloha má tedy
právě dvě řešení.

75. Nechť bod M splňuje podmínku úlohy. Označme středy
kružnic opsaných trojúhelníkům ABM, BCM, CAM postup-
ně Su S2s S3 (obr. 27). Pak platí | SiA \ = j SiJ3 | = | SiAÍ | =
= \S2B\ = I S2CI = I S2M| = | S3C\ = I S3A I = I 53AÍ|.
Bod M musí být různý od bodů Л, В, C a z rov-
ností | SiM | — | S2M | = | SiB | = | S2B | plyne, že buď
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Si = S2, nebo že S1MS2B je kosočtverec. Je-li Si = б’г,
splývají kružnice opsané trojúhelníkům ABM, БСМ s kružni-
cí opsanou trojúhelníku ABC a bod M je jejím bodem.
Ve druhém případě je nejen S1MS2B, ale též S2MS3C a
S3MS1A kosočtverec. První dva mají společnou stranu MS2,
a proto tvoří zbývající vrcholy obou kosočtverců rovnoběžník,
v našem případě je to rovnoběžník S1BCS3. Odtud plyne,
že přímky S1S3 a BC jsou rovnoběžné, a protože přímky
AM, S1S3 jsou kolmé, jsou to úhlopříčky kosočtverce, jsou
kolmé i přímky AM a BC. Leží tedy bod M na výšce troj-
úhelníku ABC, která prochází bodem A. Stejně bychom
dokázali, že bod M leží též na zbývajících výškách trojúhelníku
ABC, neboli že je průsečíkem výšek trojúhelníku ABC.
Tím jsme dokázali: jsou-li poloměry kružnic opsaných troj-
úhelníkům ABM, BCM, CAM stejné, pak je bod M bud!
průsečíkem výšek v trojúhelníku ABC, nebo je bod M
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libovolný bod kružnice opsané trojúhelníku ABC, různý od
bodů А, В, C.

Obráceně, nechť je bod M libovolný bod kružnice opsané
trojúhelníku ABC různý od bodů А, В, C. Pak kružnice
opsané trojúhelníkům ABM, BCM, CAM splývají všechny
s kružnicí opsanou trojúhelníku ABC a mají tudíž stejný
poloměr. Nechť je teď M průsečíkem výšek trojúhelníku
ABC, který nemůže být pravoúhlý, protože podle předpo-
kladu nesplývá bod M s žádným vrcholem trojúhelníku
ABC. Kružnice ks a ks opsané trojúhelníkům BCM a CAM
mají společnou tětivu CM, které přísluší v kružnici ks obvo-
dový úhel CBM a v kružnici ks obvodový úhel CAM. Přitom
je CA JL BM, AM J_ CB, a proto jsou úhly CBM, CAM
stejně veliké. Odpovídají tedy společné tětivě CM kružnic
ks, ks stejně velké obvodové úhly, a proto mají kružnice k<>, ks
stejně velké poloměry. К témuž výsledku bychom došli
i v případě kružnic ks a ki, kde k\ je kružnice opsaná troj-
úhelníku ABM. Můžeme tedy shrnout: množinou všech
bodů M, pro něž mají kružnice opsané trojúhelníkům ABM,
BCM, CAM stejně velké poloměry, je množina bodů kruž-
nice opsané trojúhelníku ABC a průsečík výšek trojúhelníku
ABC s výjimkou bodů А, В, C.

76. Body А, В, C, D tvoří rovnoramenný lichoběžník,
popřípadě pravoúhelník, spojnice středů S, T daných kružnic
je vždy osou tohoto čtyřúhelníku. Dokážeme, že kružnice nad
průměrem ST prochází body А, В, C, D. Nechť je t společná
vnější a s společná vnitřní tečna daných kružnic, A jejich
průsečík (obr. 28). Protože 5 a T jsou středy kružnic, jež se

dotýkají přímek s, t, jsou přímky AS a AT osy úhlů přímek
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s3 t, a jsou tudíž na sebe kolmé. Podle Thaletovy věty leží
bod A na kružnici nad průměrem ST. Totéž bychom dokázali
pro body В, C} D. Tím je tvrzení úlohy dokázáno.

77. Zvolme označení podle obrázku 29. Podle podmínek
úlohy má být \AP\ - \AQ\ = d. Protože \AP\ - \AQ\ -
= \PM\ 4- у — (\MQ\ — y)s je 2y = d. Z pravoúhlého
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У d-
trojúhelníku SMA máme x — v2 — — a délka tětivy PQ4

je 21 r- — x2 = 2 J/ d~
r2 + — — v2. Úloha má právě tehdy řeše-

ní, je-li tato hodnota nejvýše rovna průměru kružnice,
d

musí tedy platit v ^ . Známe-li délku tětivy PQ, můžeme

ji sestrojit. Stačí zvolit libovolnou tětivu vypočtené délky
a otočit ji kolem středu 5 tak, aby procházela bodem A.
Lépe je však najít nejdříve střed M hledané tětivy. Ten je
podle výše odvozeného bodem dotyku tečny vedené bodem S

d
ke kružnici o středu A a poloměru —. Zde opět vidíme, že

d
nutnou podmínkou řešitelnosti úlohy je v ^ —, a to je i pod-

minka postačující.

78. Poloměr hledané kružnice označíme r, její střed S>
další označení zvolíme podle obr. 30. Bod D je pata kolmice

100



vedené bodem ě> к přímce AB. Z pravoúhlých trojúhelníků
SDSq, SDSi a SDS2 dostáváme rovnice

p2 + qi = (6 — r)2,

p2 + (4 - 9)2 = (2 + r)2,

p2 + (2 + # = (4 + r)2,

kde jsme označili p = |SD|, g == |5oD|.
Je to soustava tří rovnic o třech neznámých p3 q3 r, kterou

snadno vyřešíme. Odečtením první rovnice od zbývajících
dvou dostaneme rovnice 2r + q = 63 5r — q — 6. Jejich

12
sečtením dostaneme r — —. A protože úloha nevyžaduje

důkaz existence kružnice dotýkající se všech tří polokružnic,
jsme s řešením hotovi. Snad bychom mohli ještě poznamenat,
že střed hledané kružnice můžeme snadno sestrojit, když již
známe její poloměr. Vzdálenost bodu 5 od bodu S± je totiž

12 12
—, od bodu £2 je 4 + —.2 +

79. Označme D druhý průsečík přímky S1S2 s kružnicí Л2,
tedy ten průsečík, který je různý od bodu C. Je-li r\ = гг3 je
trojúhelník BDS2 obrazem trojúhelníku ACS± v posunutí.
V případě ri Ф r^3 můžeme pak předpokládat ri > Г2, jsou
trojúhelníky BDS% a ACS± stejnolehlé. V obou případech
jsou přímky BD3 AC rovnoběžné. Podle Thaletovy věty jsou
přímky BC3 BD na sebe kolmé. Jsou tedy kolmé i přímky
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ВС, АС. Tím je dokázáno, že je trojúhelník ABC pravoúhlý.
Vypočteme ještě obsah P trojúhelníku ABC. Je-li ri = 7*2,
je obsah P roven polovině obsahu obdélníku ABS2Si o stra-
nach 2ri, n, tedy P = rNechť je n > Г2. Veďme body
C, ^2 přímky rovnoběžné s přímkou AB, jejich průsečíky
s přímkou SiA označíme F, G. Pak je |SiG| — n. — r2)
|5iF| = ri — v, kde je v výška v trojúhelníku ABC na stranu
AB (obr. 31). Z podobnosti pravoúhlých trojúhelníků SiS2G,
SiCF plyne (ri — v) : n = (n — Г2) : (n + r2), takže

2rir2
и =

ri + r2

Dále je jAfi| = \S2G\ = ]/(n + r2)2 — (n — r2)2 = 2]/пг2.
Odtud pak plyne

2ri/2 Vrir21
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80. Zvolme označení podle obr. 32, r je hledaný poloměr.
Je |S(2í =5 - г, |5Г| = \TQ\ = r a trojúhelník STQ je
pravoúhlý. Podle Pythagorovy věty je (5 — r)2 = 2r2, tedy
>■ = 5(1/2 - 1) = 2,07.

81. Zvolme v uvažované rovině libovolnou pravoúhlou
soustavu souřadnic. Body dané konečné množiny označme
Ai, A2, ..., An, dále označme souřadnice bodu Ak
vzhledem к zvolené soustavě souřadnic, k = 1, 2, ..., n.

Některá z hodnot xjc (k — 1, ..., n) je nejmenší, můžeme
předpokládat, že je to hodnota x±. Jedna z těchto hodnot je
také největší, nechť to je např. hodnota xn. Je tedy ^ Xk ^
^ xn pro každé k — 1, ..., n. To znamená, že všechny body
Aic leží v pásu mezi přímkami x — xi, x — xn (obr. 33).
Jeho šířka je nejvýše rovna jedné, protože by jinak byla
vzdálenost bodů Ai, An větší než 1. Stejně tak dokážeme, že
všechny body dané konečné množiny leží v pásu rovnoběž-
ném s osou x, jehož šířka je nejvýše rovna jedné. Všechny
dané body tedy leží v průniku obou pásů, jímž je pravoúhelník,
jehož žádná strana není větší než 1. Můžeme zvolit čtverec
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Obr. 33

o straně 13 který tento pravoúhelník obsahuje, ten pak obsa-
huje i všechny body z dané konečné množiny.

82. Zvolme na straně CD obdélníku ABCD bod U, na

straně BC bod V a označme x — \CU\, у — \CV\ (obr. 34).
1

Obsah trojúhelníku ABV je —a(6 — y)3 obsah trojúhelníku

Obr. 34
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1
ADU je —b (a — x). Obsah trojúhelníku A UV se rovná obsahu

obdélníku ABCD zmenšenému o obsahy trojúhelníků ABV3
ADU a CUVy rovná se tedy hodnotě

1 1 11
-ci{b -y) - - b{a - x) - —xy = —(ay + bx - xy).ab —

Všechny tři trojúhelníky mají právě tehdy stejný obsah, když
platí

1 1
~b(a - x) = —a(b -y)

a zároveň

1 1
—b(a — x) = ~Aay + bx— xy).

Úpravou těchto rovnic dostaneme bx — ay, ab — ay — 2bx +
+ xy = 0. Vyjádříme z první rovnice у a dosadíme do druhé.

a

Po vynásobení výsledné rovnice číslem — dostaneme pro

x rovnici

x2 — 3ax + a2 — 0,

kterou upravíme na tvar

[5(*-|e) = T*2-4
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3 a3
— — 1/ 5 nebo л: — — а =

— У 5. Vzhledem к tomu, že л; nemůže být větší

Z této rovnice plyne x ■— 2a

než a, nevyhovuje první možnost a je tedy

3 - У5
—

a > 0, у = —* =
2 a

3 - 1/5
-2”*-

b
x =

Zvolíme-li obráceně na stranách CD, CD body U, V tak, že
2\CU\ = (3 — V5)a, 2]CFJ = (3 — У5)6, můžeme se pře-
svědčit, že trojúhelníky ABV, ADU a AUV mají stejné
obsahy. Známe-li úsečku délky a, snadno sestrojíme nejen
úsečku délky 3a, ale i úsečku délky аУ5, a to jako přeponu
v pravoúhlém trojúhelníku o odvěsnách a, 2a. Z úseček délek

За, аУ5 pak již snadno sestrojíme úsečku délky (3 — У5)—.
Všimněme si ještě, že |C£7| : |CF| — a:b. Jsou tedy trojúhel-
niky CUV, CDB stejnolehlé a proto UV || DB. Stačí sestrojit
výše popsaným způsobem třeba jen bod U, bod V leží na
rovnoběžce vedené bodem U s úhlopříčkou DB.

83. S touto úlohou se často setkáme, vyřešíme si ji proto
trochu obecněji. Veďme bodem A přímku rovnoběžnou nej-
dříve se spojnicí CE (obr. 35), její průsečík s přímkou BD
označíme F. Ze stejnolehlosti trojúhelníků AFD, CKD plyne

\AF\ \AD\
iСАП = 7cD0
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podobně ze stejnolehlosti trojúhelníků EKB, AFB plyne

\EI<\ \EB\
\AF\ ~\AB\-

Vynásobením těchto dvou rovnic se \AF\ zkrátí a máme

\EK\ \AD\\EB\
|C/<i = |CDj \AB\'

Veďme nyní bodem A rovnoběžku s přímkou BD, její průsečík
s přímkou CE označíme G. Platí

\AG\ \AC\
\DK[ = \pč\ 5 \AG\ = \ÉA\ '

\EB\| BK\
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Určete si sami dvě dvojice stejnolehlých trojúhelníků, které
vedou к těmto dvěma rovnicím. Jejich vynásobením dosta-
neme

|BK\ \AC\ \EB\
\DK\ = \DC\\EA\'

V našem případě je \EK\ : \CK\ = 1 : 3, \BK\ : \DK\ = 1,
protože\AD\ : 1CZ>| = 1,\AC\ : |£>C| = 2, |£Я| : |/LB| = 1:3
а [Ш?| : = 1:2. Je tudíž bod К středem úsečky BDy
zatímco úsečku CE dělí bod К v poměru 3:1. Protože je
bod К středem úsečky BD, jsou si sobě rovny obsahy troj-
úhelníků DKC, BKC3 a protože obsah trojúhelníku DBC je

P
—, je obsah každého z trojúhelníků BKC, DJČC roven —.

P
Součet obsahů trojúhelníků BKC а ВKE je —3 je tudíž obsah3

trojúhelníku BKE roven — a na obsah čtyřúhelníku AEKD

P

P

5P
zbývá 12 ‘

84. Označme E3 F průsečíky osy úsečky BD s přímkami
AB, DC a C bod souměrně sdružený к bodu C podle přímky
EF (obr. 36). Pětiúhelník AEFC'D, jehož obsah máme určit,
je složen ze dvou překrývajících se čtyřúhelníků AEFD

ab
a DEFC'3 obsah každého z nich je —. Sečteme-li tyto dva

obsahy, dostaneme obsah pětiúhelníku AEFC'D a obsah

108



trojúhelníku DEF, protože ten je průnikem obou čtyřúhel-
níků. Trojúhelník DEF je rovnoramenný, jeho obsah je
[DS\.\SF\, kde S je střed obdélníku. Z podobnosti právo-

úhlých trojúhelníků DSF a DCB plyne | SF : b = — Уa2 -bé2: a,

b(a2 + b3)
takže obsah trojúhelníku DEF je j hledaný obsáh

b(3a2 - b2)
pětiúhelníku AEFCD je . Z úlohy bychom si měli

zapamatovat pravidlo pro výpočet obsahu obrazce., který je
sjednocením dvou obrazců. Obsah sjednocení se rovná součtu
obsahů obou obrazců zmenšenému o obsah jejich průniku3
což lze vyjádřit vzorcem

4a

P(K {j L) = P(K) + P(L) - P(K n Ц.

85. Trojúhelníky XDE a XBC mají právě tehdy stejné
obsahy, když vzdálenost bodu X od přímky DE je nenulová
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a dvakrát větší než vzdálenost bodu X od přímky BC. Dále
platí: má-li bod X popsanou vlastnost, má tuto vlastnost
každý bod přímky CX různý od bodu C. To plyne z podob-
nosti trojúhelníků. Stejně tak je vidět, že na přímce CX lze
zvolit bod Y tak, že jeho vzdálenost od přímky BC je rovna
jedné a jeho vzdálenost od přímky CD dvěma (obr. 37).

VY4Y

Takové body jsou čtyři, dostaneme je jako průsečíky dvou
rovnoběžek s přímkou BC ve vzdálenosti jedna od přímky
BC3 s dvěma rovnoběžkami s přímkou CD, vedenými ve
vzdálenosti dvě od této přímky. Spojíme-li tyto čtyři body
s bodem C, dostaneme dvě různoběžky a právě všechny
body X těchto dvou různoběžek (kromě bodu C), mají výše
popsanou vlastnost. К vyřešení naší úlohy stačí určit průse-
číky sestrojených dvou různoběžek s kružnicí k. Žádná
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z těchto přímek není tečnou kružnice k v bodě C, protože
každý bod této tečny má od přímek BC, CD stejné vzdále-
nosti. Protíná proto každá z uvažovaných různoběžek kružnici
k v bodě C a v jednom dalším bodě. Úloha má tedy dvě
řešení.

86. Je \ACi\ = \AC\ cos a, \AB\\ — \AB\ cos a, odkud
\ACi\ : \ABi\ = \AC\ : \AB\. Jsou tedy trojúhelníky AC1B1,
ACB podobné, poměrem podobnosti je číslo cos a. Pak se
obsah trojúhelníku AC1B1 rovná P cos2 a a obsah čtyřúhel-
niku BCB1C1 j e P — P cos2 a = P sin2 a.

87. Označíme di velikost té strany trojúhelníku 7i, ke
které přísluší výška vi. Pak je d\ nejdelší strana trojúhelníku
Ti a 2Pi = v±di. Podobně označíme d% nejdelší stranu v troj-
úhelníku Г2. Nerovnost, kterou máme dokázat, převedeme
postupně na ekvivalentní nerovnosti:

V-lPi ^ VlP-2

v2.2Pi^ vi.2P2

v-2Vidi ^ vivzdz

di ^ d->

Máme tedy dokázat, že nejdelší strana trojúhelníku Ti je
nejvýše rovna nejdelší straně trojúhelníku T2. To je možno
provést různými způsoby. Nechť jsou např. A2, P2 takové
dva vrcholy trojúhelníku r2s které tvoří jeho nejdelší stranu,
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další jeho vrchol označíme C2 (obr. 38). Sestrojme v polo-
rovině A2B2C2 bod D tak, aby A2B2D byl rovnostranný
trojúhelník. Protože [ЛгСг! 5^ do, \ВгСо\ ^ d%, leží bod C2
nutně v průniku M poloroviny A2B0C2 a dvou kruhů o stře-
dech A-2, B2 a poloměru </2- Kruh opsaný z libovolného bodu

množiny M poloměrem d2 obsahuje celou množinu M. To
znamená, že vzdálenost libovolných dvou bodů množiny M
je nejvýše d%, tím spíše to platí pro libovolné dva body troj-
úhelníku T23 který leží celý v M. Pak je však též každá strana
trojúhelníku T± rovna nejvýše dz, tedy i pro jeho nejdelší
stranu dx platí d\ ^ ^2.

88. Promítněme vrcholy А, В, C trojúhelníku T kolmo na
některou stranu pravoúhelníku P. Dostaneme body A', B',
C, z nichž jeden musí ležet na úsečce tvořené zbývajícími
dvěma. Můžeme předpokládat, že bod A' leží na úsečce
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B'C (obr. 39). Označme D ten bod úsečky BC, který se
promítne do bodu A'. Takový bod existuje, protože A' leží
na úsečce B’C'. Trojúhelník ABC je sjednocením trojúhel-
níků ADB, ADCy které mají společnou jen stranu AD. Proto

2S% = \AD\ \A'B'\ + \AD\ \A'C'\ = \AD\ \B'C\.

Velikost \AD\ je nejvýše rovna velikosti jedné strany právo-
úhelníku, \B'C'\ je nejvýše rovna velikosti druhé strany právo-
úhelníku. Je tedy 2Sz ^ Si, rovnost platí právě tehdy, když
je B'C jedna strana pravoúhelníku a AD příčka rovnoběžná
s druhou stranou. To ovšem znamená, že dva vrcholy troj-
úhelníku jsou sousedními vrcholy pravoúhelníku a třetí leží
na jeho protější straně.

89. Čtverec je rozdělen na devět částí (obr. 40), čtyři z nich,
které jsou na obrázku vyšrafovány řídce, jsou shodné, mají
stejný obsah Q. Rovněž tak jsou shodné každé dvě hustě
vyšrafované části, obsah každé z nich označíme P a R ozna-
číme obsah části nevyšrafované. Pak je
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3<2 + 2P + R = (obsah čvrtkruhu),

4<2 + 4P + i? = a2 (obsah čtverce).

Průnik dvou čtvrtkruhů opsaných ze sousedních vrcholů Л, J5
čtverce má podle našeho označení obsah R + 2Q + P. Na
druhé straně můžeme tento průnik dostat též jako průnik
dvou kruhových výsečí o středovém úhlu 60°, které se proti-
nají v rovnostranném trojúhelníku ABF, F je společný bod
čtvrtkružnic opsaných z bodů A, B. Proto je

таг2 a2 a2

jh =-(4тг-зУз).R + 2Q + P = 2.~6

Máme tak pro P3 Q3 R tři lineární rovnice3 z nichž postupným
vylučováním vypočteme

á2
p =— (12 - зУз -2тс),12
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a2
(тс + бУз - 12),^ 12

а2
R = — (4т. + 12 - 12У3).12

90. Označme К, L ty vrcholy nově vzniklého osmiúhelníku,
které leží na úsečce HB (obr. 41), T jejich střed a S střed
obou osmiúhelníků. Každé dva pravidelné osmiúhelníky jsou
podobné, poměrem podobnosti je např. poměr poloměrů

kružnic osmiúhelníkům opsaných, v našem případě je to

poměr k = \SK\ : |&4|. Platí \SA\ = \ST\]/2 (poloviční úhlo-
příčka a poloviční strana čtverce), dále je \KT\ = \TA\.
Označíme-li x = \KT\, у = \ST\, je \SK\ = Vx2 +

|&4| = x + у = у]/2, takže x = y(]/2 — 1) a |SjK] =
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= у |/ 4 - lb = уЪ |/ 2 - Ъ,= У У (1'2 - I)2 + 1

k = |5/Cj : |5Л| — 2 — У2. Poměr obsahů obou osmiúhel-

níků je k2, tedy 2 — ;2.

91. Označme P patu kolmice z bodu Fi na přímku AB

(obr. 42). Protože \^FxAP\ = 60°, je \AP\

voúhlého trojúhelníku A1PF1 dostáváme

. Z pra-

ВP A s

Obr. 42

r2 = |^iP|2 + |FiP|2 = И1Р12 + HFi!2 - ИР|2 =

(т-Т-.(..iy-T + (s — tf — t2 + s2 — st.

-ИГ 5
— í2.
4

Tento výraz můžeme upravit na tvar r2 +

s

Odtud vidíme, že r2 a tedy i r je nej menší pro t = 2 ‘
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92. Osmiúhelník je sjednocením obdélníků JMNQ aJONK
ab

(obr. 43), které mají stejný obsah —, protože obsah např.

ab
trojúhelníku JNK je —. Průnikem obou odbélníků je rovno-

běžník JLNPy jeho obsah se rovná dvojnásobku obsahu
trojúhelníku JNL. Z podobnosti pravoúhlých trojúhelníků
LSN, KRN, kde R je pata kolmice vedené bodem К na

přímku JN a S střed obdélníku, plyne

\LS\ : \SN\ = |JCR| : \RN\3

ab 1
, protože \SR\ = —Уаг—1Р.odtud |LS| =

2 (a + Уд2 - b2)

Obsah rovnoběžníku JLNP je tedy
a2b

. Proto se

2{a + Уa2 -ů2)
hledaný obsah osmiúhelníku JKLMNOPQ rovná hodnotě

a(2b2 — a2 + аУa2 — b2)a2bab
2

2 2(a + Уa2 - б2) 2b
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93. Podle Thaletovy věty je úhel CYB pravý právě tehdy,
když bod Y leží na kružnici nad průměrem BC. Protože
bod X má ležet na přímce AY a CX |j BY, je X bod, který
je obrazem bodu Y ve stejnolehlosti se středem A a koefi-
cientem \AC\ : \AB\. Proto musí bod X ležet na kružnici,
která je obrazem kružnice nad průměrem BC v popsané
stejnolehlosti. Obráceně lze ukázat, že každý bod X této
kružnice, s výjimkou bodů na přímce AB, je obrazem někte-
rého bodu Y. Stačí jen ještě určit její poloměr r. Ten se rovná

1
poloměru —\BC\ kružnice nad průměrem BC, vynásobenému

koeficientem stejnolehlosti, tedy

\AC\.\BC\
2 iAB\ = 2QAC\ + !BCj) ‘
1 \BC\.\AC\

r —

94. Předpokládejme nejdříve, že pro některý bod M troj-
úhelníku ABC se sobě rovnají obsahy trojúhelníků ABM
а ВCM. Tyto dva trojúhelníky mají společnou stranu BM,
a protože mají stejný obsah, musí mít stejně velké výšky
к společné straně BM. Označme P, O paty kolmic, vedených
body A3 C na přímku BM a R průsečík přímek BM a AC
(obr. 44). Trojúhelníky CQR a APR jsou shodné podle věty
usu, takže R je středem úsečky AC. Tím jsme dokázali, že
z rovnosti obsahů trojúhelníků ABM, BCM (M je bod
trojúhelníku ABC) plyne, že bod M leží na těžnici BR
trojúhelníku ABC. Stejně tak se dokáže, že P(ABM) ^
^ P{BCM) právě tehdy, když bod M trojúhelníku ABC leží
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v polorovině BRA (R je střed úsečky AC). Podobně doká-
žeme, že pro bod M trojúhelníku ABC platí P(BCM) ^
^ P(CAM), jestliže leží bod M v polorovině CSB3 kde S je
střed strany AB. Mají-li platit obě nerovnosti úlohy, je nutné
a stačí, aby bod M z vnitřku trojúhelníku ležel též v průniku
obou výše uvedených polorovin, tedy v trojúhelníku BTS3
kde T je těžiště trojúhelníku ABC.

95. Splňuje-li bod C podmínku úlohy, jsou trojúhelníky
ASC, ACB podobné, protože se shodují ve dvou úhlech
(obr. 45). Pak je
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\AC\
_ \ASj

|ЛБ| “ !ЛС|
, tedy |ЛС|2 = \AS\.\AB\.

To znamená, že bod C leží na kružnici k se středem A
poloměru V|i45|. \AB\. Nechť leží obráceně nějaký bod

na kružnici k3 avšak mimo přímku AB (abychom mohli
vůbec mluvit o trojúhelníku ABC). Pak jsou trojúhelníky
ASC, ACB podobné, protože se shodují v úhlu při vrcholu
A a platí \AC\ : \AB\ = |Л5| : \AC\. Z podobnosti těchto
dvou trojúhelníků pak ovšem plyne |<£Л£С| = |^ACBl.
Hledanou množinou je tudíž kružnice k s výjimkou jejích
průsečíků s přímkou AB.

a o

96. Označíme P patu kolmice vedené bodem А к přímce p

(obr. 46). Veďme bodem A přímku q rovnoběžnou s přímkou
p. Na přímce q leží dva body, které splňují podmínky úlohy.

c

Jsou to body ve vzdálenosti — od bodu A, označme je M, N.

В P P

Obr. 46
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Nechť nějaký další pravoúhelník ABCD splňuje podmínky
úlohy. Bod D nemůže ležet na přímce AP3 protože by bod В
musel zároveň ležet na různých rovnoběžných přímkách p3 q.
Nechť bod D leží např. v polorovině APN. Pak je \фВАР\ —

= \^NAD\ a \AB\.\AD\ = \AP\.\AN\3 tedy

! AB\ \AN\
\AP\ = AD, •

To znamená, že jsou trojúhelníky ABP, AND podobné,
takže úhel ADN je pravý. Proto leží bod D na některé z kruž-
nic nad průměrem AN nebo AM. Obdobně se dokáže obrá-
ceně, že každý bod D ze sjednocení těchto dvou kružnic,
různý od bodu A, je možno doplnit na pravoúhelník ABCD
požadovaných vlastností.

97. Označme k kružnici nad průměrem AB а К ten průsečík
osy úsečky AB s kružnicí k, který leží v opačné polorovině,
než ve které leží uvažované trojúhelníky. Mezi ně patří
obráceně trojúhelník ABC právě tehdy, když bod C leží na
té polokružnici nad průměrem AB, která neobsahuje bod К
(obr. 47). Samozřejmě musí být bod C různý od bodů A, B.
Pak osa táhlu ACB prochází bodem K3 protože úhly ACK,
KCB jsou obvodové úhly nad shodnými tětivami AK, BK
kružnice k, přičemž bod C leží vždy na větším oblouku
kružnice. Protože osa úhlu ACB prochází bodem K, leží
pata D kolmice vedené bodem В na tuto osu na polokružnici
nad průměrem BK. Je-li obráceně D libovolný bod této
polokružnice různý od К a B, najdeme průsečík C přímky
KD s kružnicí k3 С Ф K. Podle Thaletovy věty je pak
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BD J_ KD3 tedy BD J_ КС а КС je osa úhlu ACB právo-
úhlého trojúhelníku ABC. Množinou všech bodů D je tudíž
ta polokružnice nad průměrem KB (bez bodů K3 B)3 která
obsahuje střed úsečky AB.

98. Tato úloha je velmi podobná úloze 71. Body C vyplňují
totiž kružnici o středu A a poloměru b bez jejích průsečíků
s přímkou AB. Rozdíl oproti úloze 71 spočívá v tom, že
úsečka AB není v tomto případě tětivou zmíněné kružnice.
To však na řešení úlohy nic nemění. Množinou všech hledá-
ných těžišť je kružnice se středem ve středu úsečky AB

b
a s poloměrem —, ze které musíme vyloučit její průsečíky

s přímkou AB.
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99. Nechť je ABCD rovnoramenný lichoběžník s polome-
rem r kružnice opsané. Víme tedy, že body B3 C musí ležet
na kružnici o poloměru r, která prochází body A, D. Je-li
2r < \AD\, pak taková kružnice a tedy ani lichoběžník ne-
existuje, hledaná množina je prázdná. V případě 2r = \AD\
existuje právě jedna kružnice o poloměru r, která prochází
body A, D. Je to kružnice nad průměrem AD. Neexistuje
však rovnoramenný lichoběžník požadovaných vlastností, pro-
tože BC by musel být také průměrem kružnice jemu opsané.
Hledaná množina je opět prázdná. Předpokládejme, že
2r > \AD\. Pak existují dvě kružnice o poloměru r, které
procházejí body A, D. Nechť je k — (S, r) jedna z nich
(obr. 48). Je-li ABCD rovnoramenný lichoběžník vepsaný

kružnici k, leží body В, C na větším oblouku kružnice k
s krajními body A, D. Označme P průsečík jeho úhlopříček
a a = \<$ACD\. Trojúhelník CPD je rovnoramenný, proto
\^APD\ =2a a téže velikosti je podle věty o obvodovém
a středovém úhlu i úhel ASD. Leží tedy bod P na oblouku
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kružnice, který obsahuje bod S a jehož krajními body jsou
body A, D. Kdybychom zvolili druhou kružnici o poloměru ry

procházející body A, D, dostali bychom oblouk souměrně
sdružený podle přímky AD. Můžeme se obráceně snažit ke
každému bodu P ze sjednocení těchto dvou podle přímky AD
souměrně sdružených kruhových oblouků sestrojit lichoběž-
nik ABCD požadovaných vlastností. To se nám podaří,
nesmíme však za bod P zvolit bod A nebo D a také ne bod S

nebo bod S' souměrně sdružený к bodu 5 podle přímky AD.
V posledních dvou případech bychom totiž nedostali licho-
běžník, nýbrž pravoúhelník. Hledaná množina bodů se tedy
skládá ze čtyř kruhových oblouků bez jejich krajních bodů.

100. Úloha se dá lehce vyřešit pomocí věty o obvodovém
a středovém úhlu. Je-li totiž Y bod, který dostaneme pomocí
bodu X kružnice k způsobem popsaným v zadání úlohy, je
trojúhelník BXY rovnoramenný a pravoúhlý, |<СХУБ| —

= |<£Л УБ| = 45° (obr. 49). Označme C, D ty body kružnice
k, které tvoří průměr kolmý к průměru AB. Leží-li bod X
v polorovině ABC, leží bod Y na kruhovém oblouku v polo-
rovině ABC, který je průnikem této poloroviny a kružnice
se středem C. Kdybychom uvažovali polorovinu opačnou,
dostali bychom oblouk souměrně sdružený podle přímky AB.
Označme ještě K, L průsečíky těchto dvou oblouků s tečnou
kružnice k v bodě A, které jsou různé od bodu A. Chceme-li
totiž obráceně к bodu Y z některého z těchto dvou oblouků

(У Ф A, Y ф B) sestrojit bod X, zjistíme, že se nám to
podaří pouze pro ty body Y, které leží v polorovině KLB
a jsou různé od bodů К, L. Hledanou množinou je množina
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bodů kruhových oblouků KB, LB (bez bodů K, L, B), které
jsou na obrázku vyznačeny silně.

101. Zvolme libovolný trojúhelník AXY podle zadání
úlohy. Označme Z střed úsečky XY a T těžiště trojúhelníku
AXY. Body T, Z leží na téže polopřímce s hraničním bodem

2
A a je \AT\ = — \AZ\. Budeme se proto nejdříve zabývat

otázkou, co vytvoří středy Z úseček XY, jestliže bod X
probíhá vnitřek úsečky AB, bod Y vnitřek úsečky AC.
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Jestliže zvolíme nejdříve bod Y pevně, probíhá bod Z střední
příčku trojúhelníku ABY bez krajních bodů (obr. 50). Ne-
cháme-li teď bod Y probíhat vnitřek úsečky AC, vytvoří
tyto střední příčky rovnoběžník AKLM, kde К, L, M jsou
středy stran AB, ВС, AC, bez jeho hraničních bodů. Bod T
probíhá vnitřek rovnoběžníku AK'L'M', který odpovídá rov-

noběžníku AKLM ve stejnolehlosti se středem A a koeficien-

—. Obráceně, zvolíme-li bod T ve vnitřku rovnoběžníku

AK’L'M', sestrojíme na polopřímce AT bod Z tak, aby
3

\AZ\ ——\AT\. К bodu Z pak sestrojíme body X, Y na

úsečkách AB, AC tak, aby Z byl středem úsečky XY. К tomu
stačí na polopřímce AZ zvolit bod U tak, aby Z byl středem
úsečky AU. Rovnoběžky, vedené bodem U s přímkami AC,
AB, je protínají v hledaných bodech X, Y. Hledanou množi-
nou je tedy vnitřek rovnoběžníku AK'L'M'.

2
tem
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102. Při řešení úlohy využijeme této vlastnosti rovnoramen-
ného trojúhelníku: nechť ABC je rovnoramenný trojúhelník
se základnou AB. Pak součet vzdáleností každého bodu X

základny AB od ramen trojúhelníku se rovná výšce trojúhel-
niku na jeho rameno. Důkaz lehce vyčtete z obr. 51, v němž

I
'

I\
I\

■

\ :
\

■

Obr. 51

je C bod souměrně sdružený к bodu C podle přímky AB,
takže АС || BC. Zvolme teď na přímce p body P, R tak, aby
měly od přímky q vzdálenost c, podobně zvolíme na přímce q

body <2, 5 tak, aby měly vzdálenost c od přímky p (obr. 52).
Průsečík přímek p, q označíme T. Do hledané množiny patří
podle konstrukce body P, Q, R, S. Podle předcházejícího
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mají dokonce všechny body úsečky PS od přímek p, q součet
vzdáleností rovný číslu c, stačí si všimnout rovnoramenného
trojúhelníku PST. Totéž platí pak o bodech úseček PQ, QR
a RS. Patří tedy do hledané množiny všechny body hranice
pravoúhelníku PQRS. Bod T do hledané množiny zřejmě
nepatří. Nepatří do ní ani žádný další bod, který neleží na
hranici pravoúhelníku PQRS. Je-li F takový bod, pak leží na

polopřímce TY právě jeden bod X z hranice pravoúhelníku
PQRS. Ten do hledané množiny patří, jak jsme dokázali.
Poměr vzdáleností bodu Y od přímky p a bodu X od přímky
p je |TFj : | TX\ Ф 1, totéž platí pro vzdálenosti bodů F, X
od přímky q. Proto je součet vzdáleností bodu F od přímek

! TY\
p, q rovný číslu с т^г, a tedy různý od c. Hledaná množina\1X\
se skládá tudíž pouze z hranice pravoúhelníku PQRS.

103. Je-li ABC rovnoramenný trojúhelník se základnou AB}
pak se absolutní hodnota rozdílu vzdáleností každého bodu X
přímky AB, nepatřícího do vnitřku úsečky AB, rovná veli-
kosti výšky trojúhelníku ABC na jeho rameno. To se dokáže
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snadno, stačí si rozmyslet situaci znázorněnou na obr. 53.
Sestrojíme-li podle předcházející úlohy body P} Q, i?, S, pak
se dá stejným postupem za pomoci výše uvedené vlastnosti
rovnoramenného trojúhelníku dokázat, že hledaná množina

PQ P

R S

Я"

Obr. 54
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se skládá ze všech bodů přímek PQ, QR, RS a SP, které
neleží uvnitř úseček PQ, QR, RS a SP (obr. 54).

104. Leží-li celý čtverec v jedné stěně krychle, leží v ní
i jeho střed. Ten je pak nutně vnitřním bodem stěny, neleží
na žádné hraně krychle. Obráceně je každý vnitřní bod každé
stěny krychle středem nějakého čtverce ležícího v té stěně.
V dalším vyloučíme tento výjimečný případ. Nechť tedy
čtverec ABCD neleží v žádné stěně krychle, ale každá jeho
strana leží v některé stěně krychle. Pak všechny jeho vrcholy
leží na hranách krychle. Kdyby byl např. bod A vnitřním
bodem některé stěny, musely by v ní ležet strany А В i AD
čtverce, a tudíž celý čtverec. Předpokládejme, že strana AB
čtverce není rovnoběžná s žádnou hranou krychle. Pak strana
BC musí ležet ve stěně sousední к stěně, v níž leží strana AB,
a protože jsou strany AB, BC kolmé, musí být strana BC
kolmá к té stěně krychle, ve které leží strana AB. To ale
znamená, že je strana BC rovnoběžná s některou hranou
krychle, a sice s tou, která je kolmá к stěně krychle, v níž
leží strana AB. Tím jsme dokázali, že některá strana čtverce
je vždy rovnoběžná s některou hranou krychle.

Je-li rovina čtverce ABCD rovnoběžná s některou stěnou
krychle, leží střed čtverce na spojnici středů těch stěn krychle,
se kterými je rovina čtverce rovnoběžná. Obráceně je každý
bod úsečky spojující středy protilehlých rovnoběžných stěn
krychle středem čtverce, jehož strany leží na stěnách krychle.
Stačí vzít řez krychle rovinou kolmou к spojnici středů proti-
lehlých stěn, která prochází zvoleným bodem spojnice.

Není-li rovina čtverce ABCD rovnoběžná s žádnou stěnou

krychle, musí být podle předcházejícího rovnoběžná aspoň
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s některou hranou KL krychle. Střed S čtverce pak leží
v rovině q souměrnosti hrany KL (obr. 55). Rovina o protne
krychli ve čtverci MNPR. Označme ještě U, V průsečíky
čtverce MNPR s hranicí čtverce ABCD. Můžeme předpo-

TM
N51/

<?.

L

P

К

Obr. 55

kládat, že jsme označení vrcholů čtverce MNPR zvolili tak,
že je trojúhelník URV pravoúhlý s pravým úhlem při vrcholu

1
R. Je pak |5ř7| = |SFÍ —a, kde a je délka hrany krychle

a zároveň délka strany čtverce ABCD. Protože je trojúhelník
URV pravoúhlý a bod S je středem jeho přepony, je také

1
!RS\ = —a. Bod 5 leží tedy nutně na té čvrtkružnici v rovině q

a

o středu R a poloměru —, která je částí krychle. Obráceně lze

ke každému bodu S této čvrtkružnice sestrojit body U, V
tak, aby ležely v rovině q a současně na stěnách krychle
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a aby bod S byl středem úsečky UV. Pak je \SU\ — |5F| =
<■:

= —. К bodům U, V se potom snadno sestrojí čtverec

ABCD, jehož strany leží na stěnách krychle a jehož středem
je bod S.

Množina středů všech čtverců, jejichž všechny strany leží
na stěnách krychle, je tudíž sjednocením těchto tří množin:

a) množiny všech vnitřních bodů všech stěn krychle,
b) množiny všech bodů na třech úsečkách spojujících stře-

dv protilehlých stěn krychle,
c) množiny všech bodů dvanácti čvrtkružnic se středy

v středech hran dané krychle, jejichž popis je uveden výše.

105. Označme délky hran krychlí a, b, c. Podle předpokladu
je povrch třetí krychle roven součtu povrchů zbývajících dvou,
tedy 6c2 = 6a2 + 6b2. To znamená, že с = 1 a2
dokázat, že

b2. Máme

a3 + b2 < с3 ^ ]f2 (a3 + b->).

Tyto dvě nerovnosti jsou ekvivalentní s nerovnostmi

(a3 + b2)2 < (a2 + b2f ^ 2 (a3 + b2)2.

První nerovnost upravíme na ekvivalentní nerovnost 2a363 <
< Ъа^Ь2 + 3a264, po vydělení kladným číslem a2b2 dostaneme
ekvivalentní nerovnost 2ab < 3 (a2 + b2), tedy 0 < (a — b)2 +
+ 2 {a2 + b2). Tato nerovnost zřejmě platí a proto platí i vý-
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chozí nerovnost. Podobně se upraví druhá nerovnost 11a ekvi-
valentní nerovnost

0 íSj a6 — 3a4b2 + 4cPb3 — 3a2b4 4- b6.•\

Výraz na pravé straně se rovná výrazu

b)2 (a4 + 2a3b + 2ab3 + b4)(a

a pro kladná čísla a, b je zřejmě nezáporný. Nule se rovná
pouze pro a — b.

Vidíme, že se jednalo sice o úlohu formulovanou geometrie-
ky, převedla se však na úlohu algebraickou. Mnozí asi na-
mítnete, že je uvedené řešení vykonstruované, že není možné
uhodnout uvedený rozklad výrazu na pravé straně dokazované
nerovnosti. To však není tak těžké. Je totiž vidět, že znaménko
rovnosti platí v případě a — b, kdy jsou obě menší krychle
stejně velké. To znamená, že uvažovaný výraz je dělitelný
výrazem a — b. Vzhledem к symetričnosti výrazu v a, b lze
soudit,' že je možné dokonce vytknout (a — b)2.

106. Jednou z rovin, která obsahuje přímku MC'3 je rovina
MCC'3 procházející též středem N úsečky BA (obr. 56).
Tato rovina odděluje od krychle trojboký hranol NBCMB'C'y

1
. 1

jehož objem je —, protože obsah trojúhelníku NBC je —.
fr fr

Hledaná rovina má oddělit těleso většího objemu. Předpoklá-
dejme, že prochází bodem X na úsečce AN} jeho vzdálenost
od bodu В označíme x. Oddělené těleso se skládá z výše
uvedeného trojbokého hranolu a z dalšího trojbokého hranolu
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MXNC'YC (Y leží na CD a je ХУ || MC'). Obsah troj-

, výška hranolu se rovná vzdále-

nosti rovin MXN, C YC, tedy jedné. Obsah celého oddělené-
1

a má se rovnat —, což vede к vý-

—. Zvolíme-li na polopřímce BA bod X tak, aby

2
| BX | = — , leží bod X ještě na úsečce AN a rovina XMC'

dělí krychli na dvě části, z nichž ta, která obsahuje bod B,
1

má objem

úhelníku MXN je

H-ibiho tělesa je

2
sledku x =

W7. Máme určit obsah lichoběžníku AEGH (obr. 57),
HG a AE jsou průsečnice roviny AEF s rovnoběžnými stě-
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námi krychle, a tudíž rovnoběžné. Proto jsou trojúhelníky
3

ADE, HCG podobné, přičemž | GC \ — \ ED' | = —. Z po-

dobnosti těchto trojúhelníků pak plyne | HC | = 1. Pomocí
Pythagorovy věty můžeme již vypočíst všechny strany licho-

běžníku. Dostaneme | АН |2 == 32 + 22, | EG |2 = 32 + (!)‘-
45 15 5

= —, |ЯЛ | =

choběžníku. Ty protínají základnu /ЗД ve vnitřních bodech
iVf, AT, protože jsou úhly AEG, HAE ostré. Označme | EM | =
= x, |ziiV| — у a výšku lichoběžníku v. Je x + у + \MN\ —

5
— x + у + | HG | = | AE I, tj. x + у — —. Dále je я2 +

+ v2 = | EG |2,jy2 + v2 — | АН |2. Odečteme-li poslední rov-

HG | = —. Veďme body G, Я výšky li-4 5
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nice, můžeme vypočíst x, y3 protože známe jejich součet.
9 8

Dostaneme x — —, у = ~~ a pro výšku lichoběžníku pak

— У29. Aritmetický průměr obou základen lichoběžníku

5 3 y—takže obsah lichoběžníku vychází — i 29.

v =

j‘2>

108. Vrcholy trojúhelníku, který je řezem, označíme A. Z),
E (obr. 58). Velikosti úseček BD a CE označíme y, x. Podle
Pythagorovy věty platí

| AE |2 = 1 + *2, | AD |2 = 1 + y23\ DE |2 = 1 + (x-yf.

E D
у

у
lx

У
С \

А- \
\1 В

Obr. 58
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Úhel DAE nemůže být pravý. V opačném případě by opět
podle Pythagorovy věty platilo | AE |2 + \ AD \2 — \ DE |2,
odkud by plynulo 2xy — —1, což není možné, protože x3 у

jsou nezáporná čísla. V trojúhelníku AED je tedy pravý
úhel AED nebo ADE. Předpokládejme, že úhel AED je pra-

vý, v opačném případě bychom jen zaměnili označení vrcholů
hranolu. Podle předpokladu je trojúhelník AED též rovno-

ramenný, tedy | AE | = j DE |. Je tudíž 1 + x2 — 1 -r

+ (x — y)2, odkud plyne y(y — 2x) = 0. Trojúhelník AED
je pravoúhlý s pravým úhlem při vrcholu E, musí proto
ještě platit 2xy = 1 + 2x2. Proto nemůže být у — 0, musí
tedy platit у — 2x a zároveň 2x2 = 1. Obsah trojúhelníku

o

1 1 1
AED je — | AE\ \ DE \ = — | AE !2 = — (1 + x2) - 4 ‘

109. Úloha se nejlépe řeší pomocí souřadnic. Počátek
soustavy souřadnic zvolíme ve středu 5 krychle, osy soustavy
souřadnic rovnoběžné s hranami krychle. Omezíme se zatím
na tu část krychle a vepsané koule, které leží v průniku polo-
prostorů x ^ 0, у ^ 0, z ^ 0, tedy na jednu osminu krychle.
Nechť jsou [x3y3 z] souřadnice toho bodu jednotkové krychle,
který leží nejblíže к bodu S. Další body téže jednotkové krych-
le dostaneme ze souřadnic x, y3 z tak, že jednu, dvě nebo
všechny tři zvětšíme o 1. Největší vzdálenost od bodu 5 bude
z nich mít bod [x + 1 ,y + 13z + 1]. Celá jednotková krychle
bude ležet v uvažované kouli právě tehdy, bude-li v ní ležet
její od středu S nejvzdálenější vrchol, tedy právě tehdy, bude-li
platit

(X + l)2 + O + l)2 + O + l)2 ^ 9.
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Protože x, у, z probíhají nezávisle na sobě čísla 0, 1,2, má
poslední nerovnost celkem 7 řešení. Jedno je x — у — z — 0,
tři řešení dostaneme tak, že jednu ze souřadnic zvolíme
jednotkovou, zbývající dvě nulové a další tři řešení mají
jednu souřadnici nulovou a dvě souřadnice rovny 1. V celé
krychli je tudíž 8.7 = 56 jednotkových krychlí, které leží
celé v uvažované kouli. Uvažovaná jednotková krychle nemá
s koulí žádný společný vnitřní bod, jestliže leží v kouli nej-
výše její bod [x, y, z], který je ke středu koule nejblíž. To
nastává právě tehdy, když platí

x2 4- y2 + z2 ^ 9.

Vzhledem к tomu, že x, y, z jsou celá nezáporná čísla nejvýše
rovna 2, má tato nerovnost pouze 4 řešení: [2, 2, 2], [2, 2, 1],
[2, 1, 2], [1, 2, 2], celkem však existuje 8.4 = 32 jednotko-
vých krychlí, které neobsahují žádný vnitřní bod koule.

110. Pro každý bod X prostoru platí podle trojúhelníkové
nerovnosti

| AX | + | BX j ^ | AB I, AX i + | CX | АС I,

BX I + | CX | ^ | BC i,\AX\ + | DX\ ^ | AD I,

| BX | + | DX | ^ | BD I, | CX | + | DX | ^ | CD |.

Sečtením všech těchto šesti nerovností dostaneme dokazova-
nou nerovnost. Ve výsledné nerovnosti platí znaménko rov-
nosti jen tehdy, platilo-li znaménko rovnosti ve všech šesti
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výchozích nerovnostech. To však nastane jen tehdy, když bod
X leží na všech úsečkách AB, AC, AD, BD, BC, CD. To by
ovšem musely body А, В, C, D splynout a rovnost by platila
jen pro X = A, pro všechny ostatní body by stejně platila
ostrá nerovnost.
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