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Předmluva

Dáváme do rukou českým i slovenským čtenářům nové roz-
šířené a přepracované vydání sbírky řešených soutěžních úloh
matematické olympiády kategorie Z, tj. úloh určených pro žáky
nejvyšších ročníků základních škol.

Při přípravě tohoto nového vydání jsme uvážili zejména to, že
nynější žáci 7. a 8. ročníku ZŠ jsou aspoň o rok mladší než žáci
dřívějšího nejvyššího ročníku ZDŠ, a tedy jejich matematický
fond je podstatně menší. Nejde jenom o matematické vědomosti,
ale i o znalost postupů řešení a všeobecně o zkušenosti v řešení
úloh. Proto jsme přidali do sbírky hlavně jednodušší úlohy
a v řešení jsme se snažili napovídat čtenářům aspoň částečně
postup řešení naznačením odpovědí na otázku »jak na to«.
Zdá-li se vám tato pomoc nedostatečná, uvažte, že jsme byli
vázáni zpracovat v podstatě jen úlohy, které prošly soutěží
a pokud možno je neměnit. Proto jsme upravovali hlavně
řešení, v nichž jsme se snažili vyhnout se trikům, kde některé
kroky »padají z nebe« a které mohou čtenáře znechucovat.
Náš názor je, že к řešení úlohy se má dospět postupem »přiro-
zeným«, ne pomocí umělých obratů. К přirozenému postupu
patří - zvláště na úrovni kategorie Z - zkoušení', experimentování,
vyšetřování speciálních případů, sestavování tabulek. Velmi často
se při řešení tzv. slovních úloh podaří pomocí jednoduché
tabulky nalézt výrokovou formu potřebnou pro řešení úlohy.
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To se osvědčuje zvláště tehdy, když jde o přechod od slovního
vyjádření к vyjádření algoritmickému (pomocí matematických
symbolů, tzv. sestavování rovnic). Např. máme úlohu s textem:

Jsem dnes tak stár, jako byl můj strýc tehdy, když byl dvakrát
tak stár, jako jsem byl já. Jak je dnes stár strýc?
Použijeme pomocné tabulky pro počty let:

dřívednes

já 2x x

strýc 2x

Rozdíl stáří strýcova a mého je podle druhého sloupce 2x — x —

= x’, do prázdného okénka je tedy třeba vepsat 3x. Úloha má
neomezený počet řešení, daný např. tabulkami:

2015 1030 40 20

nebonebo

45 30 2030 60 40

Musíme uvážit, že žáky zajímají takové úlohy, к jejichž
řešení jim sice vystačí jejich školské vědomosti, ale jejichž
výsledek jim není předem znám, na který mohou být zvědavi.
Uvedeme dvě ukázky toho druhu.

I. Ke každému přirozenému číslu x lze určit jednociferné
číslo x takto:
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Sestrojíme posloupnost přirozených čísel, jejíž první člen je
číslo x a každý další člen je ciferný součet předcházejícího
čísla; poslední člen posloupnosti je jednociferné číslo x.

Např. x = 21 594; 21 594 ->2 + 1+ 5 + 9 + 4 = 21 -*
2 + 1 = 3, x = 3.

Nebo x = 835 696; 835 696 —> 8 —(— 3 —f— 5 —j— 6 —)— 9 —j— 6 =

1, x = 1. Toto číslo x budeme nazývat stručně= 37 -> 10

zbytek.
Budeme zkoumat vztah zbytků dvou činitelů ke zbytku jejich

součinu. Je např. 354.61 = 21 594, 354 = 3*), 61 = 7,
21 594 = 3, 3?7 = 21 = 3. Jiný příklad: 754.96 = 72 384,
754 = 7, 96 = 6, 72384 = 6,77(5 = 42 = 6. Další příklad:
83.50 = 4150, 83 = 2, 50 = 5, 4150 = 1, 27? = 10 = 1.

Příklady tohoto druhu nás vedou к domněnce, že platí obecně:

Vypočteme zbytek z\ součinu dvou čísel;
vypočteme zbytky z2, zs obou činitelů;
vypočteme zbytek z,i součinu zz . сз;

pak platí

Zi = Z4.

Pokuste se vyslovit tuto domněnku slovy. Můžete ji objasnit
ještě na dalších číselných příkladech.

Mnohé z čtenářů bude asi zajímat odpověď na otázku, zdali
ta věta opravdu obecně platí a proč, tj. otázka odůvodnění věty.
Jistě si vzpomenou na aritmetiku, kde ciferný součet souvisí

*) Zápis 354 znamená zbytek čísla 354.
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úzce s kritériem dělitelnosti devíti. Nebudeme větu dokazovat,
prozradíme jen, že důkaz se opírá o vzorec

x = x -f- 9я,

kde x je přirozené číslo, x jednociferné číslo, 9n vhodný násobek
devíti; je tedy x zbytek při dělení čísla л: devíti.

II. Druhá ukázka je z geometrie. Je dán čtverec ABCD
o straně délky 1 (obr. 1). Jemu je vepsán rovnoramenný troj-
úhelník EFC (CE = CF). Tím se rozdělí čtverec ABCD
na čtyři trojúhelníky. Rozdělení je takové, že tři pravoúhlé
trojúhelníky AEF, CDE, CBF mají obsahy sobě rovné. Jaký
obsah má trojúhelník CEF?

1

Tato úloha je problém s algebraickými výpočty. Označíme
délky AE — AF = x a vyjádříme obsahy:

Л AEF = ! *2, л CDE = л CBF = J (1 - *)•
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Z požadavku úlohy Д AEF = Д CDE dostaneme pro délku x
rovnici:

x2 -f x — 1 = 0

Na levé straně provedeme úpravu, která stojí za zapamatování:

(*) (* + W ~ i - 1 = o

a dále

(**)

Obsah Д CEF dostaneme ze vztahu

Д CEF = 1 - fx2,

když do něj dosadíme za x ze vztahu (**).
Úloha je ukázka složitější úpravy algebraických výrazů.

Úprava (*) málo přesahuje rámec školské matematiky; ale
nezapomeňte, že cíl MO není jen soutěžit, ale také se něčemu
ne příliš složitému navíc přiučit. Uvažte ještě, že matematika
není jen řešení úloh, ale je třeba také se seznámit se základními
poznatky (pojmy a větami), které tvoří tzv. teorii.

Především jsme se však snažili zdůraznit, vyložit a rozvést
pracovní metody a postupy, neboť ty jsou pravým klíčem ke stu-
diu matematiky.

Ve sbírce jsme ponechali s malými úpravami rozčlenění
na kapitoly podle témat. Má tedy toto vydání 12 kapitol s tímto
obsahem:

• Úlohy z aritmetiky přirozených čísel
• Úlohy z algebry
• Úlohy logického charakteru
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Cl Úlohy z reality
9 Úlohy na konstrukce čar vzniklých pohybem bodů
в Úlohy na výpočet velikostí obrazců a ploch
© Důkazové úlohy v geometrii
9 Geometrické úlohy s výpočty
9 Nerovnosti v geometrii
• Úlohy na množiny všech bodů dané vlastnosti
9 Konstrukční úlohy
H Stereometrické úlohy

Budou-li se zdát čtenářům některé úlohy příliš těžké, ať
uváží, že sbírka je určena žákům, kteří mají zvláštní zájem
o matematiku a jisté, třeba minimální schopnosti pro ni. Úlohy
rázu školských cvičení by takovým žákům nic nedaly. Jak už
jsme řekli, je třeba, aby soutěžní úlohy splnily i své studijní
poslání - aby se řešitelé naučili něčemu novému, aspoň pokud
jde o způsoby řešení úloh.

Nakonec ještě jedna poznámka к označování (symbolice).
V tomto novém vydání byly přizpůsobeny zápisy novému
způsobu zavedenému do škol. To se týká hlavně geometrie;
tak např. Pythagorův vzorec se místo dřívějšího

АС- + BC2 - AB2

píše

{i(AC)f + ДОС))2 = (d(AB))z.

Postiženy jsou zejména výpočty týkající se délky úsečky, neboť
pro délku úsečky se vyskytují v různých knihách znaky AB,
AB, 1 AB i, d{AB). Velikosti úhlu se tyto změny nedotkly.

Autoři
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I. Aritmetika přirozených čísel

1. Určete počet všech přirozených čísel menších než 5000000,
z nichž každé je dělitelné zároveň třemi, pěti a sedmi.

Řešení. Každá dvě z čísel 3, 5, 7 jsou navzájem nesoudělná,
tj. mají největšího společného dělitele 1. Číslo n, které je
dělitelné zároveň třemi, pěti i sedmi, je dělitelné součinem

(1)3.5.7 — 105.

Uvědomte si, že by tento úsudek nebyl správný, kdyby některá
dvě z těchto tří čísel byla soudělná. Např. čísla 9, 10, 14 nejsou
po dvou nesoudělná; číslo 630 je dělitelné zároveň devíti,
deseti i čtrnácti, ale není dělitelné jejich součinem 9.10.14 =
= 1 260.

Každé z čísel hledaných v naší úloze je tedy dělitelné číslem
105. Obráceně, zřejmě každé číslo dělitelné číslem 105, je
podle (1) dělitelné zároveň třemi, pěti a sedmi.

Musíme tedy zjistit počet násobků čísla 105, které jsou menší
než 5 000 000; tento počet zjistíme dělen m

5 000 000 : 105 = 47 619

800

650

200

950

5
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Provedeme zkoušku dělení násobením:

47 619.105 + 5 - 4 999 995 + 5 = 5 000 000

Počet hledaných čísel je tedy 47 619.

2. Někdo znásobil tři bezprostředně po sobě jdoucí přirozená
čísla. Aniž známe součin, můžeme o něm tvrdit, že je dělitelný
šesti; dokažte.

Řešení, a) Označme nejmenší ze zvolených čísel я; pak jsou
další dvě čísla я + 1, я + 2. Součin všech tří čísel je

5 = n(n -f 1)(я + 2). (1)

Chceme-li dokázat, že s je násobek šesti, musíme dokázat, že
s je násobek dvou (tj. číslo sudé) a že je zároveň násobek tří.

Snadno zjistíme, že aspoň jedno z čísel я, я + 1, n + 2 je
sudé: buď je я sudé, nebo je я liché a pak je я + 1 sudé.

Snadno také dokážeme, že aspoň jedno z čísel я, я + 1,
я + 2 je násobkem čísla 3. Číslo я dává totiž při dělení třemi
zbytek buď nula, nebo jedna, nebo dvě. Dává-li я zbytek nula,
je я dělitelné třemi. Dává-li я zbytek 1, pak dává číslo я + 2
zbytek nula а я + 2 je dělitelné třemi. Dává-li я zbytek 2, pak
číslo n -f- 1 dává zbytek nula а я + 1 je dělitelné třemi.

Dokázali jsme tedy, že v součinu (1) je aspoň jeden činitel
dělitelný dvěma a aspoň jeden činitel dělitelný třemi; součin
je tedy vždy dělitelný šesti.

b) Rozřešíme úlohu ještě jedním způsobem, na kterém ukáže-
me dva typické obraty.

Za prvé: Poněvadž jde o tři po sobě bezprostředně násle-
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dující přirozená čísla, označíme prostřední z nich n; nejmenší
je pak n — 1 a největší n -f 1; jejich součin se dá vyjádřit
v poměrně jednoduchém tvaru

1 )n(n -j- 1) = n(n2 — 1) = zz3 — n.s — (n (2)

Za druhé: Protože máme zkoumat dělitelnost čísla s šesti
a protože číslo 5 je vyjádřeno vzorcem (2) pomocí n, vyjádříme
číslo n pomocí zbytku po dělení šesti takto:

(3)n = 6/e + z,

kde k je nula nebo číslo přirozené a zbytek 0 je některé z čísel
0, 1, 2, 3, 4, 5.

Z (3) dosadíme do (2) a dostaneme po úpravě

5 = 216£3 + 108&2£ + 18&a2 — 6k + z3 — гг. (4)

Každý z prvních čtyř sčítanců v (4) je zřejmě dělitelný šesti;
vypočteme ještě rozdíl z3 — z pro z — 0, 1, 2, 3, 4, 5:

32 4 50 1z

z3 — z 0 6 1200 24 60

Poněvadž v druhém řádku tabulky (5) jsou vesměs násobky
šesti, je podle (4) každý součin 5 dělitelný šesti a věta je do-
kázána.
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3. Dělíme-li druhou mocninu přirozeného čísla dvanácti,
může být zbytek jenom jedno z určitých čtyř přirozených čísel.
Zjistěte tato čtyři čísla.

Řešení. Při dělení přirozeného čísla dvanácti je zbytek z
některé z čísel

(1)0, 1,2, ..., 10, 31.

Přirozené číslo n, které dává při dělení dvanácti zbytek z,
lze napsat ve tvaru

n — \2k + z.

Jeho druhá mocnina je

n2 = 144F + 24kz + z* = 12(12£2 + 2kz) + г2. (2)

Z rovnosti (2) vyplývá, že zbytek při dělení čísla n2 dvanácti je
týž jako zbytek při dělení čísla z2 dvanácti.

Vypočteme tedy druhé mocniny všech dvanácti zbytků (1)
a zjistíme, jaké zbytky dávají čísla z2 při dělení dvanácti.

2 3 9 100 1 4 5 6 7 8 11z

z2 4 81 100 1210 9 16 25 36 49 641

Zbytek při dělení
z2 dvanácti 4 9 4 10 4 9 4 1 0 11

16



Hledaný zbytek je tedy některé z čísel O, 1, 4, 9.

4. Jsou dána celá čísla a, b3 jejichž aritmetický průměr je celé
číslo dělitelné třemi. Dokažte, že pak číslo

a(3a2 + b2) (a3 - 263)3

je násobkem čísla 108.
Řešeni. Podle textu úlohy je \{a + b) = 3k, kde k je celé

číslo. Odtud plyne b = 6k — a a dále

3a2 4* b2 — 3a2 -f 36k2 — 12ak + a2 — 4(a2 — 3ak + 9k2),

аз _ 2£3 = аз _ 2(216k? - 108k2a + 18b2 - a2) -

- 3(a3 - 12b2 + 72k2a - 144P);

z toho

a(3a2 + b2) (a3 - 2b2f -

= 4.33a(a2 — 3a^ + 9k2) (a3 — 12b2 + 12k2a — 144fe3)3,

což je násobek 108, jak jsme měli dokázat.

5. Představte si, že napíšete všechna přirozená čísla od 1
do 5 555. Kolik devítek přitom napíšete ?

Řešeni. Uvažujme takto: Devítky se budou vyskytovat
jednak na místě jednotek, jednak na místě desítek, jednak
na místě stovek (na místě tisícovek už ne). Označme:
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x počet devítek na místě jednotek,
у počet devítek na místě desítek,
z počet devítek na místě stovek.

V každé desítce se vyskytuje jedna devítka na základním
místě. Číslo 5 555 obsahuje 555 celých desítek a »načatou«
desítku

5 551, 5552, 5553, 5 554, 5 555.

Je tedy

(1)* = 555.

V každé stovce se vyskytuje 10 devítek na místě desítek; je
to u čísel

.90, .91, .92, ..., .99.

Číslo 5 555 obsahuje 55 celých stovek a »načatou« stovku

5501 až 5 555.

Je tedy

(2)у = 55 . 10 = 550.

V každé tisícovce se vyskytuje 100 devítek na místě stovek; je
to u čísel

.900, .901, .902, ..., .999.

18



Číslo 5 555 obsahuje 5 celých tisícovek a »načatou« tisícovku

5001 až 5 555.

Je tedy

z — 5 . 100 = 500. (3)

Z (1), (2), (3) plyne л: + у + z = 1 605.

Napíšete tedy celkem 1605 devítek.

6. Napišme za sebou přirozená čísla

(1)1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...;

tak dostaneme jistý sled číslic. Která číslice stojí v tomto sledu
na milióntém místě?

Řešení. Kdybychom chtěli tento sled skutečně napsat až
к milióntému místu a kdybychom počítali na napsání jedné
cifry a konstatování jejího místa jen jednu sekundu, trvala by
nám tato práce při osmihodinovém pracovním dni asi 35 pra-
covních dní. Je tedy vidět, že se vyplatí přemýšlet, jak rozřešit
úlohu obratněji.

Máme devět jednociferných čísel (1 až 9), která zaujmou devět
míst sledu číslic. Dvojciferná čísla počínají číslem 10 a končí
číslem 99; je jich 90 a spotřebují 2.90 = 180 míst. Troj-
ciferná čísla počínají číslem 100 a končí číslem 999; je jich
900 a spotřebují 3.900 = 2 700 míst. Obdobně je 9 000
čtyřciferných čísel (1 000 až 9 999) a zaujmou 4.9 000 =
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— 36 000 míst; pěticiferných čísel je 90 000 (10 000 až 99 999)
a zaujmou 5.90 000 = 450 000 míst. Jednociferná až pěti-
ciferná čísla spotřebují celkem

9 + 180 + 2 700 + 36 000 + 450 000 = 488 889

míst. Protože 900 000 šesticiferných zaujme 6.900 000 =
= 5 400 000 dalších míst, náleží miliónté místo některému
šesticifernému číslu.

Šesticiferná čísla zaujmou v sledu (1), napsanému až po mi-
lióntou cifru, celkem

1 000 000 - 488 889 = 511 111

míst. Na tato místa se vejde x šesticiferných čísel a část (x +
+l)ního čísla. Číslo x zjistíme dělením:

511 111 : 6 = 85 185

1

Je tedy x = 85 185 a na milióntém místě stojí první cifra
(.x + l)ního čísla.

První šesticiferné číslo je

100 000 = 100 000 + (1 - 1),

druhé šesticiferné číslo je 100 000 + (2 — 1) — 100 001, třetí
šesticiferné číslo je

100 002 = 100 000 + (3 - 1);
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(x + l)ní šesticiferné číslo je

100 000 + (x + 1 - 1) = 100 000 + x.

Pro x = 85 185 je to tedy číslo 185 185. Jeho první cifra je 1
a to je cifra stojící na milióntém místě sledu (1).

7. Domy ve větších obcích bývají označeny nejen popisnými
čísly, ale ještě tzv. orientačními čísly, a to takto: V každé
ulici jsou označeny domy po jedné její straně po řadě čísly
2, 4, 6... a po druhé straně 1, 3, 5... Kolik domů má ulice,
jestliže na každé její straně je právě n domů, jejichž orientační
číslo obsahuje aspoň jednu číslici 4 ? Úlohu řešte a) pro n — 6,
b) pro n — 9.

Řešení, a) Nechť n = 6. Na straně sudých čísel jsou »čtyř-
kové« domy

4, 14, 24, 34, 40, 42.

Na straně lichých čísel jsou »čtyřkové« domy

41, 43, 45, 47, 49, 141.

Na obou stranách je tedy 21 +71 =92 domů.

b) Nechť n = 9. Na straně sudých čísel jsou »čtyřkové«
domy

4, 14, 24, 34, 40, 42, 44, 46, 48.
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Dům č. 48 však nemusí být poslední, za ním může být ještě
dům č. 50 a popřípadě č. 52. Na straně lichých čísel jsou
»čtyřkové« domy

41, 43, 45, 47, 49, 141, 143, 145, 147.

Na obou stranách je tedy 24 -f 74 = 98 domů, nebo 25 -f 74 =
= 99 domů, nebo 26 + 74 = 100 domů.

8. Určete nejmenší přirozené číslo, jehož ciferný součet je
1 977.

Řešení. Hledané číslo n je nejmenší ze všech přirozených
čísel, která mají ciferný součet 1 977. Odtud plyne, že číslo n
má zápis s nejmenším možným počtem cifer, tj. že v jeho
zápise jsou všechny cifry nenulové a největší možný počet
z nich jsou devítky.

Z rovnosti

1 977 = 9.219 + 6

plyne, že číslo n má ve svém zápise 219 devítek a jednu šestku.
Protože n je nejmenší ze všech dvousetdvaceticiferných přiro-
zených čísel, v jejichž zápise je jedna cifra 6 a ostatní jsou 9,
platí

и = 699 ... 9.

celkem 219 devítek
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Poznámka. Nalezené číslo n lze psát také ve tvaru

7.10219 - 1.

9. Dokažte, že rozdíl každých dvou kladných čísel, která
jsou v desítkové soustavě trojciferná a jsou v ní napsána týmiž
číslicemi, ale v opačném pořadí, je násobek devíti i jedenácti.

Řešení. Zapíšeme obě čísla:

100<2 -f- 106 c, 100c -J- 106 -j~ a.

Předpokládáme, že je a ^ c, aby rozdíl vyšel nezáporný.
Rozdíl je

100a + 106 + c — 100c - 106 - a = 99a - 99c =

= 9.11.(a - c) ^ 0.

Tím je věta dokázána.

10. Najděte všecka přirozená čísla dělitelná osmi, jejichž
ciferný součet (v desítkové soustavě) je roven sedmi a cifemý
součin*) je roven šesti.

Řešení. Při řešení této úlohy nebudeme vycházet z vyjádření
čísla jako mnohočlenu v mocninách deseti, protože nevíme,
kolikaciferné je hledané číslo.

Protože hledané číslo N je násobkem osmi, je sudé - jeho
poslední cifra (vpravo) je některá z cifer 0, 2, 4, 6, 8. Protože

*) Ciferný součin čísla 572 je 5.7.2 = 70; ciferný součin čísla 503
je 5.0.3 = 0.
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N má cifemý součin 6, není poslední cifra ani 0, ani 4, ani 8
(číslo šest není dělitelné ani čtyřmi, ani osmi). Poslední cifra
je tedy buď 6, nebo 2.

Číslo N neobsahuje ve svém zápisu žádnou nulu (cifemý
součin je 6). Protože ciferný součet je 7, máme dvě možnosti:

a) Číslo N je dvojciferné s ciframi 1, 6.
b) Číslo N je čtyřciferné s ciframi 2, 3, 1, 1.

Případ a): Úloze vyhovuje číslo 16.
Případ b): Možná řešení jsou čísla

3 112, 1 312, 1 132.

Z těchto tří čísel jsou jen první dvě násobky osmi, třetí nikoli.

Úloha má tedy tři řešení:

16, 3112, 1312.

11. Nejmenší přirozené číslo x, pro které je 1 260* třetí
mocninou přirozeného čísla, je

a) 1 470, b) 1 2602, c) 7 350.

Rozhodněte, která z odpovědí a), b), c) je správná.

Řešení. Číslo 1 260 rozložíme v součin prvočinitelů; platí

1 260 = 22-32- 5-7.
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Hledané číslo 1 260л; tedy bude mít ve svém rozkladu jen
prvočísla 2, 3, 5, 7; to vyplývá z požadavku, aby bylo л; co

nejmenší. Z téhož požadavku vyplývá, že číslo 1 260л: má ve
svém rozkladu co nejmenší mocniny prvočísel 2, 3, 5, 7,
tj. 23, 33, 53, 73; je tedy

v = 2.3.52.72 = 150.49 = 7 350.

Správná je odpověď c).

12. Najděte nejmenší přirozené číslo x takové, aby každé
z čísel x, 616, 700, 924 bylo dělitelem součinu ostatních tří.

Řešení. Nechť л; je takové přirozené číslo, že každé z čísel
x, 616, 700, 924 dělí součin zbývajících tří. Platí

616 = 23.7.11,

(1)700 = 22.52.7,

924 — 22.3.7.11.

Z (1) plyne, že číslo 924 dělí součin 616.700.л:, právě když
existuje takové přirozené číslo a, že

(2)x = 3a.

Dále podle (1) platí, že číslo 700 dělí součin 616.924.л;, právě
když

x = 52.b, (3)

kde b je přirozené číslo.
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Číslo 616 dělí součin 700.924.x, jak vyplývá z (1), pro každé
přirozené číslo x.

Nejmenší přirozené číslo x vyhovující zároveň podmínkám
(2) a (3) a dělící přitom součin 616.700.924 je zřejmě číslo

3.52 = 75.

13. Představme si, že jsme znásobili všecka přirozená čísla
od 1 do 1 976. Kolika nulami končí zápis výsledku v desítkové
soustavě ?

Řešení. Představme si, že číslo N = 1.2 1 976 vy-

jádříme jako součin prvočinitelů; provede se to tak, že každé
z čísel 2, 3, ..., 1 976 se rozloží v součin prvočinitelů (např.
12 = 2.2.3 = 22.3, 22 = 2.11, 1000 = 23.53). Ze všech těch-
to prvočinitelů nás zajímají jen prvočinitelé rovní 2 a 5, neboť
2.5 = 10; kolik dvojic 2, 5 vytvoříme v součinu N, tolika
nulami bude končit číslo N v desítkovém zápisu.

Označme a počet těch prvočinitelů čísla N, které se rovnají 2.
Protože každé sudé číslo 1 976 obsahuje aspoň jednoho
prvočinitele rovného 2, je

a ^ i.l 976 = 988. (1)

Označme b počet těch prvočinitelů čísla N, jež se rovnají 5.
Prvočinitel 5 se vyskytuje aspoň jednou u všech přirozených
čísel ^ 1 976, která jsou násobky pěti, tj. u čísel 5, 10, 15,
20, ..., 1 975; dále se vyskytuje aspoň dvakrát u násobků
čísla 25, tj. 25, 50, 75, 100, ..., 1 975; dále se vyskytuje aspoň
třikrát u násobků čísla 125, tj. 125, 250, 375, 500, ..., 1 875;
konečně se vyskytuje aspoň čtyřikrát u násobků čísla 625,
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tj. 625, 1 250, 1 875. Žádné přirozené číslo ^ 1 976 není ná-
sobkem 55, neboť 55 = 3 125.

Mezi čísly 1,2, ..., 1 976 je 395 násobků pěti, neboť 1 976 —

= 5.395 + 1; obdobně se zjistí, že je mezi nimi 79 násobků
dvaceti pěti, 15 násobků čísla 125 a tři násobky čísla 625.

Ve vyjádření čísla N jako součinu prvočinitelů se vyskytuje
tedy prvočíslo pět ž>-krát, kde

(2)b = 395 -f 79 + 15 + 3 = 492.

Podle (1), (2) je a > b, takže číslo b = 492 udává počet nul,
které má číslo N v dekadickém vyjádření na konci.

14. Najděte všechna celá nezáporná čísla n, pro která je podíl

1 260 : (3n + 1)

přirozené číslo.

Řešení. Jde o to najít všechny kladné dělitele čísla 1 260,
které lze vyjádřit ve tvaru Ъп -f 1, tj. dělitele, které při dělení
třemi dávají zbytek 1. Předně je to číslo 1 (pro n — 0); je-li
n > 0, je Ъп -f 1 > 1 a číslo Ъп + 1 je vytvořeno pomocí
prvočinitelů čísla 1 260. Vyjádříme tedy číslo 1 260 jako součin
prvočinitelů

1 260 = 2.2.3.3.5.7

а к jednotlivým prvočinitelům připíšeme zbytky při děleni
třemi:
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Prvočinitel 2 2 3 3 5 7

Zbytek 2 2 0 0 2 1

Utvoříme ty dělitele čísla 1 260, jež nejsou násobky tří, a připí-
šeme к nim zbytky při dělení třemi (násobek tří nelze totiž
napsat ve tvaru 3n + 1):

Dělitel 2 7 2.2 2.5 2.7 5.75 2.5.72.2.5 2.2.7 2.2.5.7

Zbytek 2 1 1 1 2 2 2 1 22 1

Dostáváme tedy spolu s n = 0 tato řešení:

10 28 70Зя + 1 4 71

3 9 230 1 2n

15. Součet druhých mocnin tří po sobě jdoucích lichých
čísel je čtyřciferné číslo, jehož všechny číslice (v dekadickém
vyjádření) jsou stejné. Najděte všecky takové trojice lichých
čísel.

Řešení. Chceme-li vyjádřit tři za sebou následující členy
aritmetické posloupnosti, pak se zpravidla osvědčuje jejich
»symetrický« zápis pomocí prostředního z nich, tj. zápis
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о. — d, a, a -j- d.

Tento obrat použijeme i při řešení této úlohy.
Je-li x prostřední číslo hledané trojice, pak další dvě čísla

jsou x — 2 a x -f 2. Platí:

(x — 2)2 -f x2 + (x -f 2)2 = 3x2 + 8

Číslo 3x2 -f 8 je liché kladné, a proto se musí rovnat některému
z čísel

1 111, 3 333, 5 555, 7 777, 9 999,

tj. číslo 3.v2 se rovná některému z čísel

1 103, 3 325, 5 547, 7 769, 9 991.

Z nich pouze číslo 5 547 je dělitelné třemi, takže

3x2 = 5 547,
tedy

*2 = 1 849 = 432,
tj-

| x | = 43.

Poněvadž

412 + 432 _|_ 452 = 1 681 + 1 849 + 2 025 = 5 555,

má úloha právě dvě řešení; jsou to trojice 41, 43, 45 a —41,
-43, -45.
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16. Dokažte, že každé přirozené číslo n ^ 6 lze vyjádřit
jako součet dvou přirozených čísel, z nichž jedno je prvočíslo
a druhé číslo složené.

Řešení. Každé sudé přirozené číslo větší nebo rovné 4 je
složené. Jediné sudé prvočíslo je 2, ostatní prvočísla jsou lichá.
Nejmenší liché prvočíslo je 3. Z těchto vlastností prvočísel již
plyne řešení:

a) Nechť přirozené číslo n ^ 6 je sudé, pak je lze psát jako
součet

n — 2 -j- (я — 2),

kde číslo n — 2 ^ 4 je sudé, a tedy složené.
b) Nechť přirozené číslo я 6 je liché. Potom je vyjádříme

jako součet

n = 3 -f (n — 3),

kde číslo n — 3 ^ 3 je sudé, takže je složené.

17. a) Vyšetřte, kterou číslicí končí zápis druhé mocniny
prvočísla v desítkové soustavě.

b) Je-li p prvočíslo větší než 3, pak čísla p2-fl4ap2 — 14
nejsou obě zároveň prvočísla. Dokažte.

Řešení, a) Pro prvočíslo 2 máme 22 = 4, a tedy poslední
číslice je 4. Zvláštní postavení v našem vyšetřování má též
prvočíslo 5. Platí 52 = 25 a poslední číslice je tedy 5. Každé
jiné prvočíslo končí některou z číslic 1, 3, 7, 9. Končí-li číslicí
1, pak druhá mocnina též končí číslicí 1. Končí-li číslicí 3, je
poslední číslice druhé mocniny 9. Končí-li číslicí 7, poslední
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číslice je též 9. Konečně končí-li číslicí 9, druhá mocnina má
na konci 1.

Můžeme shrnout: Zápis druhé mocniny prvočísla v desítkové
soustavě končí jedině některou z číslic 1, 4, 5, 9. (Přitom, je-li
prvočíslo větší než 5, pak jeho druhá mocnina končí jedině
číslicí 1 nebo 9.)

b) Nyní ke druhé otázce. Je-li p — 5, pak p2 -f 14 = 39,
což není prvočíslo. Zvolíme-li libovolné prvočíslo p větší než 5,
pak p2 končí buď číslicí 1, nebo 9. Končí-li číslicí 1, pak číslo
p2 -f 14 končí číslicí 5 a je větší než 5. Tedy je p2 + 14 složené.
Končí-li p2 číslicí 9, pak p2 — 14 končí číslicí 5 a je větší
než 5. Proto p2 — 14 je číslo složené. Tím je důkaz podán.

18. Dokažte, že existuje jediné takcfvé prvočíslo p, že p,
p + 2, p + 4 jsou prvočísla.

Řešení. Je-li p = 2, nejsou čísla p, p + 2, p -f 4 prvočísla.
Je-li p — 3, jsou p, /> + 2 = 5, p + 4 = 7 prvočísla. Zbývá
tedy dokázat, že kromě trojice 3, 5, 7 jiná trojice daných vlast-
ností neexistuje. Každé číslo p > 3 lze vyjádřit ve tvaru

= 3x, p = 3x + 1, p = 3* -f- 2,

kde л: je přirozené číslo > 1. Vyplníme tabulku:

3x + 23x Зх + 1P

3(* + 1) 3(x + 1) + 13x + 2P + 2

30 + i) + i 30 + 1) + 2 30 + 2)p + 4
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Zarámovaná čísla jsou složená. Proto úloha nemá řešení mimo
trojici 3, 5, 7.

19. Ciferný součet kladného trojciferného prvočísla p\ je
dvojcifemé prvočíslo рг- Ciferný součet prvočísla p2 je jedno-
ciferné prvočíslo рз > 2. Najděte všecky takové trojice prvo-
čísel pi, p2, рз-

Řešení. Úlohu lze řešit experimentálně, ovšem velmi ne-
obratně. Nahlédli bychom do tabulky prvočísel a našli bychom
v ní všechna trojciferná prvočísla; je jich 143. Pak bychom
vypočetli jejich ciferné součty a vybrali mezi nimi všechna
dvojciferná prvočísla. Opět bychom vypočetli jejich ciferné
součty a mezi nimi nalezli ty, které jsou jednocifernými prvo-
čísly. Úloha by tak byla vyřešena, ovšem řešení by bylo časově
velmi náročné. S uvedeným postupem kontrastuje řešení,
v němž použijeme dedukci.

Ciferný součet trojciferného čísla je nejvýše 3.9 = 27. Mezi
přirozenými čísly do 27 je jen pět dvojciferných prvočísel;
jejich ciferné součty ukazuje tabulka:

Prvočíslo 11 13 17 19 23

Jeho ciferný součet 10 52 4 8

Mezi nimi je jen jedno prvočíslo větší než 2; je to 5. Našli
jsme tak p% — 23, рз — 5.

Nyní je třeba najít ještě prvočíslo p\. Nejprve musíme
rozložit číslo 23 na součet tří kladných celočíselných sčítanců.
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Zřejmě neaí možné, aby největší sčítanec byl 7, neboť 3.7 — 21.
Rozklady obsahující sčítanec 9 jsou tři:

9 + 9 + 5
9+8 + 6
9+7 + 7

Rozklad obsahující jako největší sčítanec číslo 8 je jen jeden:

8 + 8 + 7

Nyní najdeme všechna možná trojciferná čísla, která odpo-
vídají těmto součtům. Následující tabulka uvádí přehledně
všechny možnosti.

Rozklad
čísla 23 Trojciferná čísla Pi

9 + 9 + 5 995, 959, 599 599 \

9 + 8 + 6 986, 968, 896, 869, 698, 689

9 + 7 + 7 977, 797, 779 977, 797

8 + 8 + 7 887, 878, 788 887

Při vyplňování posledního sloupce tabulky jsme užili tabulku
prvočísel, která je uvedena např. v Matematických, fyzikálních
a chemických tabulkách pro ZŠ. (Všechna čísla nemusíme
v tabulce prvočísel hledat. Pokud jsou sudá nebo končí 5, pak
nejsou zřejmě prvočísly.)
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Úloha má čtyři řešení: 599, 23, 5; 797, 23, 5; 887, 23, 5;
977, 23, 5.

20. Přirozená čísla 1, 2, 3, ..., n napsaná v nějakém pořadí
označíme ai, a2, аз, ..., an. Je-li n číslo liché, je součin

(ai - 1) (a2 - 2) (аз - 3) (fln — ri)

dělitelný dvěma. Dokažte.

Řešení. Mezi čísly 1, 2, ..., n je lichých čísel o jedno víc
než sudých, neboť n je liché. Proto v uspořádání ai, a2, аз,

..., an stojí aspoň jedno liché číslo ал- na »lichém« místě k;
sudých míst je totiž o jedno méně. Rozdíl ал — k je pak dělitelný
dvěma, a tedy i součin (ai — 1) (a2 — 2) (аз — 3)
je dělitelný dvěma.

(an —n)

21. V zápise dělení dvou přirozených čísel chybějí některé
cifry. Nahraďte chybějící cifry tak, aby zápis byl správný.

Zápis zní:

12а76 : 236 = c2\

každé z písmen a, 6, c značí jednu cifru.

Řešení. Zápis dělení ukazuje, že jde o dělení beze zbytku.
Použijeme postup, kterým provádíme zkoušku dělení: platí

(1)(236). (c2) = (12a76).
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Všechna tři čísla v rovnici (1) přepíšeme jako dvojčleny; vyjde

(230 + 6).(10c + 2) = 12 076 + 100a. (2)

Rovnice (2) obsahuje sice tři neznámé a, b, c, avšak každé
z čísel a, b, c je celé číslo, které je větší nebo rovné nule a menší
nebo rovné devíti.

Vynásobíme oba dvojčleny na levé straně (2); po úpravě
dostaneme:

2 300c + 10bc - 100a = 11 616 — 2b. (3)

Číslo na levé straně (3) je násobek deseti; proto jím musí být
také číslo na pravé straně (3). Odtud vyplývají jen dvě mož-
nosti pro b\b = 3 nebo b = 8.

1. Zkusíme dosadit do (3) b — 3; po krácení deseti vyjde:

233c - 10a = 1 161

a odtud

233c = 1 161 + 10a. (4)

Protože je 0 ^ a ^ 9, plyne z (4)

1 161 ^ 233c ^ 1 251. (5)

Z nerovností (5) dostaneme odhady

35



tj. с — 5. Avšak 233.52 = 12 116, takže pro žádné a neplatí
rovnost (1).

2. Zkusíme nyní druhou možnost b — 8; z (3) dostaneme
po krácení deseti

238c = 1 160 + 10a. (6)

Číslo na pravé straně (6) je násobek deseti; proto je tomu tak
i na levé straně (6). Protože je 0 ^ c ^ 9, je buď c — 0,
nebo c = 5.

Zkusíme c = 0; z (6) vyjde 116 -f a — 0, což je nemožné
9). Je tedy c — 5 a z (6) vypočteme a = 3.

Skutečně je

12 376 : 238 - 52.

22. Udejte všechny pravoúhelníky, jejichž strany mají délky
vyjádřené celými čísly (v centimetrech), které mají tu vlastnost,
že jejich obvod (v cm) je roven jejich obsahu (v cm2).

Řešení. Jsou-li a, b velikosti stran hledaného pravoúhelníka,
pak podle podmínky úlohy platí

2a + 2b = ab. (1)

Přepíšeme-li tuto rovnici v tvaru

ab — 2a — 2b -j- 4 — 4,

vyplývá odtud

(a -2)(b-2)= 4.
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Čísla a — 2, b — 2 jsou tedy sdruženými děliteli čísla 4.
Výsledky sestavíme do tabulky:

i —4 —2a — 2 4 2 —1

b — 2 4 —2 —4—11 2

106 4 3 —2a

i 0 -243 16

Geometrický význam mají jen kladné hodnoty. Hledané právo-
úhelníky jsou dva: obdélník o stranách velikosti 3 cm a 6 cm
a čtverec, jehož strana má velikost 4 cm.

Poznámka. Při hledání dvojic přirozených čísel a, 6, které
splňují rovnici (1), lze také postupovat následujícím způsobem.
Z (1) plyne

2b 2(b - 2) + 4
b-2

4
- 2 +a — —

b- 2*6-2

Číslo 6 — 2 je tedy dělitelem čísla 4. Na základě toho dojdeme
tedy к obdobné tabulce jako v uvedeném řešení. Bude ovšem
mít jen tři řádky, a to pro b — 2, b, a.

23. Určete všechny dvojice celých čísel jc, y, pro které platí

4x2 - 4X -y2 == 20. (1)
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Řešení. Rovnici (1) upravíme na tvar

(2x - l)2-y* = 21. (2)

Levou stranu poslední rovnice rozložíme pomocí vzorce pro
rozdíl druhých mocnin. Dostáváme

(2x +y - 1) (2jc —у - 1) = 21.

Číslo 21 lze rozložit v tyto součiny celých čísel:

1.21 = 3.7 = (-1). (-21) - (-3). (-7).

Sestavíme tabulku:

—2121 —1 3 7 —3 —72x + у —-1 1

—21 7 3 —7 —32x—v 1 21 1 —1

—2 —236 —5 —5 36л:

2 —2—10 —2 210 10 —10

Každá z 8 dvojic čísel x, у je řešením úlohy, jak se přesvědčíme
zkouškou.

24. Určete všecky dvojice přirozených čísel x, y, pro které
platí

8x3 —yd = 387. (1)
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Řešení. Platí 8x3 — jy3 = (2x)3 — jy3 = (2x — 3;) (4x2 -f-
f 2xjy +У2)5 tj. rovnice (1) zní

(2x — y) (4x2 -+- 2xy + у2) = 387.

Zřejmě je 4x2 + 2xy у- > 03 2x — у > O, 2x >3;. Rozloží-
me číslo 387 v součin prvočinitelů: 387 = 3.3.43. Sestavíme
tabulku:

2x—y 3 43 9 1291 387

4x2-f 2ry +
+ V2 129 9 43387 3 1

I (2x —y)2 1292>3 3872>19 1 849 811

4x2 + 2xy +
+v2—
—(2x—y)2 =
= 6xy 386 120 záporné záporné záporné záporné

není
celé

xy
20

■

4x

5V

Rozložíme číslo 20 v součin dvou činitelů: 20 = 1 . 20 =

= 2.10 = 4.5; kladné rozdíly 2x — у jsou 2.20 — 1 = 39,
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2.10 — 2 = 18, 2.5 — 4 = 6, 2.4
poslední; proto do tabulky (sloupec 2) doplníme x = 4, у = 5.
Skutečně je 8x3 - j;3 = 8.64 - 125 = 512 - 125 - 387.

Jiné řešení. Položíme-li 2x = z, dostáváme

5=3. Vyhovuje jen

z3 -y3 = 387. (2)

Úloha zní: Určete dvě přirozená čísla z,ys přičemž
z je sudé, aby rozdíl jejich třetích mocnin byl 387.

Ъ3 — 21 Z rovnosti (2) plyne, že pro sudé číslo z platí
*3 > 387,

53 = 125 takže z tabulky třetích mocnin přirozených čísel
63 = 216 snadno zjistíme, že
73 = 343

83 = 512 Z této tabulky lze také odhadnout, že sudé číslo z
93 = 729 nemůže být větší než 10, tj. musí být

10.

II3 = 1 331 Odečteme-li totiž od třetí mocniny libovolného su-
123 = 1 728 dého čísla a- > 10 třetí mocninu největšího čísla,
133 — 2 197 které přichází v úvahu jako čísloy, tj. třetí mocninu
143 — 2 744 čísla z — 1, potom, jak se zdá z tabulky, dostaneme

vždy číslo větší než 387. Pravdivost tohoto odhadu
snadno dokážeme. Každé sudé přirozené číslo
z > 10 lze psát ve tvaru 12 + я, kde n je celé ne-

záporné číslo. Platí:

13 = 1

23 = 8

43 = 64

z ^ 8. (3)

(4)103 = 1 000

(12 + n)3 - [(12 + n) - l]3 =

= (12 + n)3 - (12 + n)3 + 3(12 + w)2 - 3(12 + n) + 1 =

= 397 + n2 + 69n > 387.
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Ze vztahů (3) a (4) plyne, že sudé číslo z je buď 8 nebo 10.
Z tabulky třetích mocnin zjistíme, že úloha má jediné řešení
z = 8 а у = 5, tj. x = 4 а у = 5.

178
— vyjádřete jako součet dvou kladných zlomků

se jmenovateli 3, 13 a s celočíselnými čitateli. Najděte všecka
řešení úlohy.

25. Zlomek

Řešení. Podle textu úlohy je

178 x

(1)39 3 + 135

kde x3y jsou přirozená čísla. Rovnici (1) upravíme na tvar

13* + 3y = 178

a dále

1 - 13*
(2)у — 59 -f- ———3

Protožeу musí být přirozené číslo, musí být podle (2) číslo

1 - 13*
-59

3

a zároveň celé. Těmto podmínkám vyhovují jedině čísla * = 1,
4, 7, 10, 13. Sestavíme tabulku:
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104 71 13x

^(1—13л:) 30 -43 —56—4 —17

55 42 29 16 3У

Zkouška ukáže, že všech pět dvojic j__i 55J, 14 | 42 1,
29 I, 1 10 ( 16 I, | 13 [ 3 | jsou řešení úlohy.i 7

Jiné řešení. Odvodíme opět rovnici

13* + 3j? = 178. (3)

Každé její celočíselné řešení x, у má tu vlastnost, že x se dá
vyjádřit v jednom z tvarů 3z, 3z -f- 1, 3z + 2, kde z je vhodné
číslo celé. Snadno vyloučíme tvar 3z (178 není násobek 3)
a tvar 3z -f- 2 (178 — 26 = 152 také není násobek 3). Je tedy

x = 3z + 1

a z (3) plyne

у = 55 — 13a:.

Sestavíme tabulku:

4 05 1 —123z

554210 3 682916У

1 —2416 13 10 7x
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Pro z > 5 je у < O, pro z < 0 je x < 0. Pět zarámovaných
sloupců udává tedy jako předtím všecka řešení úlohy.
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N. Algebra

26. Jsou dány výrazy

1 1

p — 3 p + 3 p + 3
£ 5

Č7 =

1 1

p — 3 p + 3

1 1

p2 _ 9 p2 + 9 p2 -j_ 9
F -

p21 1

p2 _ 9 + p2 _|_ 9

Zjistěte, pro která p mají oba výrazy význam, a dokažte, že pro
tato p]t U — V.

Řešení. U i V má smysl právě tehdy, je-li
pak je i p2 Ф i 9. Upravíme U i V:

p + 3 — (p — 3) p + 3 6 p + 3
p -}- 3 + /* — 3 p 2p p

3 —p — 3

и =

= -l,
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p2 + 9-(p2-9) p2 + 9 18 /)2 + 9
/)2 4- 9 -f p2 _ 9 ~ ~~p2 = 2p2 ~ p2
9 _ p2 _ 9

F =

= -1.
P2

27. Dokažte tyto dvě věty:
a) Platí-li pro dvě různá čísla a, b vztah

(1)a — a- — b — b2,

pak pro ně platí

(2)a -f b = 1.

b) Platí-li pro dvě čísla a, 6 vztah (2), pak pro ně platí i (1).
Uvedše příklad takových čísel a, b.
Řešení, a) Z (1) plyne

(3)a — b = a2 — b2

neboli

a — b = {a — b) {a -f- b). (3')

Protože je а Ф b, tj. a — b Ф 0, plyne z (3') po dělení číslem
a, ■—b vztah (2).

b) Rovnost (2) znásobíme číslem a
Z (3) odvodíme (1).

b a dostaneme (3).

2 1
Zvolme a b — — (podle (2)). Pak je3 3
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2 4 6-4 2

9 = ~9 5
a — a2 = ■— — —-

3 9

1 1 3-1 2
b — b2 = —

3 9 '9 9

28. Je dán výraz

2ab
a2 + b2 +

a — bj

a) Dosadíme-li a = 53b = 7, dostaneme zlomek, jehož čita-
tel i jmenovatel jsou druhé mocniny přirozených čísel. Pře-
svědčte se o tom.

b) Dokažte, že vlastnost z úlohy a) mají každá dvě různá celá
čísla a, b.

Řešení, a) Pro a = 5, ů = 7 vypočteme

35 \2 1 521 392
74 +

22 *2 4

b) Důkaz záleží v úpravě daného výrazu. Jakýsi »vtip«
důkazu je v tom, že nebudeme provádět všechny naznačené
výkony, ale že budeme stále »hlídat«, zda se nám při výpočtu
neobjeví v čitateli druhá mocnina mnohočlenu.

Daný výraz můžeme napsat ve tvaru

1
[(a2 + b2) (a — b)2 + á2b2].(a - b)2'
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Stačí upravit výraz v lomených závorkách takto:

(a2 -j- b2) (a2 + b2 — 2ab) -j- a2ť>2 =

= (a2 + b2)2 - 2ab(a2 + b2) + a-b2.

Při pozorném pohledu vidíme, že poslední výraz je druhou
mocninou dvojčlenu

(a2 -f b2) — ab, (1)

o němž lze dokázat, že pro každá dvě různá celá čísla a, b je
roven přirozenému číslu. Zřejmě stačí pouze dokázat, že dvoj-
člen (1) je pro každá dvě různá čísla kladný. Nechť ab ^ 0.
Pro а Ф b je a2 + b2 > 0, a tedy

a2 + b2 — ab > 0. (2)

Nechť ab > 0. Z podmínky a~b dostáváme

(a — b)2 = a2 + b2 — 2ab > 0.

Odtud již vyplývá nerovnost (2), neboť pro ab > 0 je 2ab > a&.

Pro každá dvě různá celá čísla a, b tedy platí

2 (a2 + b2 - a6)2ať»
a2 + ť>2 +

a — b \a-b\2

kde | a — b \ a a2 -f b2 — ab jsou přirozená čísla.
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29. Rozložte v součin dvojčlenů 1. stupně výraz

V = (x — 1) (x — 2) (x — 3) + (x — 1) (x — 2) — x + 1.

Výsledek ověřte pro x = — 1.

Řešení. Vytýkáním.

V = O - 1) O - 2) [(x - 3) + 1] - x + 1 -
— (x — 1) (x — 2) (x — 2) — (x — 1) =
= (x - 1) [(x - 2)2 - 1] -
= (x - 1) (x - 2 + 1) (x — 2 - 1) =
= (x — 1) (x — 1) (x — 3) =
= (x — l)2 (x — 3)

30. Součinem dvou kvadratických trojčlenů x2 ax -] - b,
x2 + cx + d je dvojčlen x4 + 4. Určete koeficienty a, b, c, í/.

Řešení. Podkladem řešení je věta, že dvě polynomické
funkce (mnohočleny s jednou proměnnou x) jsou si rovny

právě tehdy, když koeficienty při týchž mocninách x jsou si
rovny.

V našem případě vypočteme

(x2 + ax + b) (x2 + cx + d) —
= x4 (й -\- c) x^ (b -\- d -\- cic) x2 -J- (úd -(- bc) x -j- bd.

Tento mnohočlen má být roven x4 + 4. Je tedy

(1)a + c = 0,

(2)d = a2 — b,
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a3 — 2ab = 0, (3)

a2b — b2 = 4. (4)

a2
Z (4) plyne а Ф 0. Z (3) plyne Ъ — —, neboť můžeme dělit čís-

a2
lem a. Z (2) plyne d = —. Z (1) plyne c = —a. Z (4) plyne

a4 a4
—

— — = 4, tj. a = 2 nebo a = —2. Hledané koeficienty jsou

a — 2., b — 23 c — —2, d = 2, resp. a = —2, b = 2, c — 2,
d — 2.

Správnost ověříme zkouškou.
i

31. Určete všechny takové dvojice čísel a, b3 pro něž je
trojčlen x4 + ax2 + b možno vyjádřit jako součin trojčlenů
2. stupně, z nichž jeden je x2 + ax + b.

Řešeni. Podle věty, kterou jsme užili při řešení úlohy 30,
platí я4 + ax2 + b = л:4 + (a + с) я3 + (b + d + ac) x2 -(-
+ (oi + bc) x -f bd a odtud

(1) a+c = 0, (2) b -j- d -(- дс = д,

(3) ad + bc = 0, (4) bd = b.

Vzhledem к (4) jsou 2 možnosti:
ad

I. b = o, II. b Ф 0, d — 1.
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V případě I je podle (3) buď a = 0, nebo d = 0. Je-li a = 0,
b — 0, je podle (2) d = 0 a podle (1) c = 0. Je-li b — 0, d = 0,
je podle (1), (2) —a2 = аэ tj. buď a = 0, nebo a = — 1.
V případě II je c — —a, 6 + 1 — a2 = a, a — ab = 0. Z rovnic
ab + a — a3 = a2 а a — ab — 0 plyne 2a — a3 = a2, tj.
a(a2 + a — 2) = 0. Je tedy buď a = 0, nebo a2 -f a — 2 = 0,

/ 1 \2 9
čili \a + ^\ ~ ~43 a ~2 — ^ čl11 a = 1’a== ~2- Pr0
koeficient a jsou tedy možnosti a = 0, a = — i (případ I),
a — 0, a — I, a = —2 (případ II).

Pomocí rovnic (1), (2), (3), (4) doplníme tabulku:

1 3

b da c

)
O 00 o

případ I
0—1 1 O

oo —1 1

1 —11 > případ II1

—2 1 2 1

Všech 5 případů ověříme zkouškou.

32. Vyjádřete trojčlen jc8 + x4 + 1 aspoň jedním způsobem
jako součin

a) dvou mnohočlenů 4. stupně;
b) čtyř mnohočlenů 2. stupně.
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Řešení. Daný mnohočlen rozložíme podle známých vzorců
z algebry takto:

x8 -f x4 + 1 = (*8 + 2x4 + 1) — x4 — (я4 -f- l)2 — (x2)2 =
= (r4 + x2 + 1) (я4 — x2 + 1)

Tímto rozkladem jsme úlohu a) vyřešili. V rozkladu budeme
dále pokračovat a postupně dostáváme:

(x4 + X2 + 1) (x4 — X2 -f- 1) =
= (x4 + 2x2 -f 1 — x2) (x4 + 2x2 + 1 — 3x2) =

= [(x2 + l)2 - X2] [(x2 + l)2 - (x]/3)~2] =
= (x2 -f x + 1) (x2 — x + 1) (x2 + xj/3 + 1) (x2 — x|/3 + 1)

Poslední rozklad je řešením úlohy b).

33. Výraz

V = (x —y)3 +(y — z)3 + (z — x)3

upravte na součin a pak určete všechny trojice čísel x, y, z,

pro které je V — 0.
Řešení. Znění úlohy naznačuje, že se rozklad výrazu V

v součin činitelů zdaří. Protože V je třetího stupně v x, y3 z3
bude v rozkladu buď jeden činitel prvního stupně a jeden
druhého, nebo budou tři činitelé prvního stupně.

Bylo by možné umocnit každý z dvojčlenů na třetí podle
známého vzorce, ale tak bychom dostali dosti nepřehledný výraz
o 12 členech. Bude lépe užít vzorec

a3 -f b3 — (a + b) (a2 — ab + b2). (1)
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Dosadíme-li do (1) a = x — у, b —у — z, dostaneme na levé
straně součet prvních dvou členů V a na pravé straně dvojčlen
a b = x — z = —{z — x), který lze pak z V vytknout.

Výpočtem dostaneme

V = (x — z) (x2 — 2xy -f* y2 — xy + y2 + xz — уz -f- y2 —

— 2уz + z2) + (z — x)3,

tj-

V — (x — z) (x2 + 3y2 + z2 — 3xy — 3уz + xz) + (z — л:)3 =

=(jc—z).(x2-{-3y2-\-z2—3xy—3yz-\-xz—x2—z2-\-2xz)=
= 3(x — #) (у2 — xy — yz ~T- xz) =
- 3(дс - а-) [y(y - z) - *(y - я)] =

= 3(* - *) (y - 2) (y - x).

Je tedy V = 0 právě tehdy, když aspoň dvě z čísel x, y, 2- jsou
sobě rovna.

34. a) Rozhodněte nejprve, pro která reálná čísla a, b, c má
smysl výraz

(a - b)2 (b - c)2
V = + +

a2 — ab — ac -\- bcc2 — ac — bc -\- ab

(c - a)2
b2 — bc — ba + ca '

+

b) Dokažte, že pro každou trojici a, b, c, pro kterou má výraz
V smysl, je V totéž číslo, a vypočtěte je.
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Řešení. Označíme

a — b = z, b — c = x, c — a — у (1)

a vypočteme

c2 — ac — bc + ab = (c — á) (c — b) — —xy. (2)

Obdobně upravíme

a2 — ab — ac ф bc = {a — b) {a — c) — —уz,

(3)
b2 — bc — ba ф ca = (b — a) (b — c) = —xz.

Ad a) Odtud je patrno, že V má smysl právě tehdy, je-li
а Ф b Ф с Ф a čili x Ф 0, у ф0, z Ф 0.
Ad b) Vypočtěme podle (2), (3)

— Vxyz = x3 ф y3 + z3 (4)

a podle (1)

(5)x фу ф z = 0.

Dále

(x + у + zf + 3xyz —

= 3(x + у ф z)xy + 3(jc Ф у Ф z)xz +
+ 3(x ф у ф z)xy + X3 + y3 + z3

neboli podle (5)

x3 _|_ y3 z3 — 3xyz. (6)
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Spojením (4), (6) dostaneme

— Vxyz — 3xyz.

Protože je x Ф 0, у Ф 0, z ф 0, je

V — —3.

Úloha je značně obtížná, zejména je nesnadný trik se zavedením
nových proměnných x, y, z.

35. Dokažte, že výraz

V = a2 — ab + b2 — a -{- b 1

nabývá pro každá dvě čísla a, b kladné hodnoty.
Řešeni. Tato úloha je příkladem na složitější úpravu alge-

braického výrazu, tj. celistvé racionální funkce o dvou pro-

měnných a, b. »Nezápornost« takového výrazu se obvykle
snažíme dokázat úpravou na součet, v němž každý sčítanec je
buď druhá (sudá) mocnina reálného čísla, nebo součin činitelů,
který je nezáporný, nebo určité kladné číslo.

Výraz V budeme postupně upravovat:

V — o,2 — a(b -{~ 1) -f- 62 -}- & -j- 1 —

= [<č - 2.a.i(í +1) + l(b + l)2] +
+ Ь2 + ь +1 - Kb +1)2 =

= [a - &b + l)]2 + 1(462 + 4b + 4 - b2 - 2b - 1) -
= [a - Kb + l)]2 + Kb2 + & + l) =
= [a - i(b + l)p + i(b + if + i
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Z posledního součtu plyne, že je V > 0 pro všechna a, 6.
Poznámky. 1. Za povšimnutí stojí, že při vytváření druhé
mocniny dvojčlenu a — \{b + 1) jsme užili všechny členy
výrazu V, které obsahovaly proměnnou a.
2. Naši úlohu lze vyřešit trikem, který překvapuje svou krátkostí
a elegancí, ale také svou smělostí. Budeme totiž zkoumat výraz
2V. Platí:

2 V = 2a2 - 2ab -f 2b2 - 2a + 2b + 2 -
= (a2 — 2ab + b2) + (a2 — 2a + 1) + (b2 + 26 + 1) =

= (a - 6)2 + (a - i)2 + (6 - l)2

36. Dokažte, že pro každá dvě reálná čísla л, b nabývá výraz

V = a4 + 64 — 2ab(b2 — ab — a2)

nezáporné hodnoty.
V kterém případě je tento výraz roven nule ?

Řešení. Jde o typovou úlohu úpravy algebraického výrazu,
která směřuje к tomu, aby se výraz V vyjádřil jako součet
druhých mocnin polynomů. Výraz V budeme postupně upra-
vovat:

(1)V — a4 + б4 — 2аЬ'л -f 2a2b2 + 2ďjb

V = (a4 4- 2a% + a2b2) + (a262 - 2ab- + bl)

V = á\a- + 2ab + b2) + 62(a2 - 2ab + b2)

(2)V — ar(a + b)2 + b2(a — b)2
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Je tedy V ^ O pro všechna a, b. V předcházejících úpravách
je jeden trochu umělý obrat - rozdělení členu 2a2b2 — a2b2 +
+ a2b2 a sdružení šesti členů do dvou trojčlenů.

Zjištění nutné a postačující podmínky pro to, aby bylo
V = 0, je stereotypní. Platí podle (2):
V — 0, právě když a2(a + b)2 = 0 a zároveň b2(a — b)2 — 0.

Z obou součinů dostáváme tyto čtyři možné kombinace:I.a2 = 0, b2 = 0II.a2 = 0, (a - b)2 = 0

III.(a + 6)2 - 0, b2 = 0

IV. (a + b)2 = 0, (a - ž>)2 = 0

Ve všech čtyřech případech vyjde a — b = 0; to je skutečně
jediná dvojice a, 6, pro kterou je V = 0.

Vraťme se ještě jednou ke vztahu (1), který vznikl roznáso-
bením daného výrazu. Při prvním pohledu nás napadne spíše
jiná úprava, než je ta, kterou jsme použili. Je to sdružení

V = (a4 + 2a2b2 + ť>4) -f- 2ab(a2 — b2)

neboli

V = (a2 + 62)2 + 2ab(a2 - 62). (3)

První člen (3) je nezáporný, druhý může být záporný. Bude-li
však absolutní hodnota druhého členu menší nebo rovna

absolutní hodnotě prvního členu, bude určitě V ^ 0. Místo
porovnávání absolutních hodnot můžeme vypočítat rozdíl

V - (a2 + 62)4 - 4a2b2(a2 - b2)2 -
= (a4 + 2a2b2 + b4)2 - 4a2b2(a* - 2a2b2 + b4).
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Po krátkém výpočtu dostaneme

V = a8 + 14aW + b8.

Zřejmě je vždy V ^ 0,tedy i 7^ 0. Je-li V — 0, je V — 0,
tj. (a4 -f 64)2 + 12a4č>4 = 0 a odtud plyne a = & — 0. Dostává-
me tedy opět jedinou možnou dvojici a = b — 0, pro kterou
je V = 0.

37. Jsou-li a, b, c taková nezáporná čísla, že platí

<2 b -j- C — 1,

pak je

ab + ac -f- bc < f, (1)

ab + ac + bc — abc < 3. (2)

Řešení. Nerovnost (1) je patrná z obr. 2.
Obsah tlustě zarámovaného pravoúhlého trojúhelníka je
obsah šrafovaného obrazce je ab + ac -f bc; platí tedy ne-
rovnost (1).

Vypočteme 2(ab + ac + bc) -f- a2 -j- b2 + c2 = (a -f b + c)2 —

= 1, tj. 2(ab + ac -f- bc) < 1, a odtud plyne (1).
Vypočteme

(a -f- b -f- c)3 =
= a3 + 63 + c3 -f 3ab(a -(- b) + 3ac{a + c) +
+ 3bc(b + c) + 6abc =
— a3 + b3 + c3 + 3ab(a -f b + c) +
+ 3ac(a + b + c) + 3bda + b + c) — 3a6c — 1

57



с

b

а

bа с

Obr. 2

Protože а + b + с = 1, dostaneme

ab + ас -f- be — abc < -J,

což je nerovnost (2).

38. Jsou dána kladná čísla a, b, c, d, pro která platí

a -f- b -\- c d — 1.

Dokažte3 že pak platí

abc -j~ abd -}- cicd -J~ bed <У

a3 -j- 63 + c3 + d3 < 1.

Řešení. Základní myšlenka pro tyto jednoduché odhady je
vyhledat příslušný výraz v rozvedení (a + b + c -f- d)s a odtud
odvodit příslušnou nerovnost. К tomu nepotřebujeme znát
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vzorce pro umocňování čtyřčlenu; mocnina se nahradí prostě
součinem

(u -\- b с (T) (a -\- b c -\- d) (a b c ~\~ d). (1)

Násobení však nebudeme provádět, neboť bychom dostali ne-

přehledný sled 43 = 64 členů.
Bez roznásobení určíme, kolik členů se rovná abc. Sestavíme

tabulku, v níž bude zachyceno, z kterého z činitelů (a + b -f
+ c -f d) součinu (1) je vybráno a, z kterého b, z kterého c.
Tabulka může vypadat takto:

Činitelé
ba c

Součin

abc 1 2 3

acb 1 3 2

bac 2 1 3

bca 3 1 2

cab 32 1

cba 3 2 1

Protože násobení je komutativní a asociativní, dostaneme součin
abc při roznásobení součinu (1) celkem 6krát.

Stejnou úvahu jako pro součin abc můžeme provést i pro
součiny abd, acd, bed', vlastně jde jen o záměnu písmen. V sou-
činu (1) dostaneme po roznásobení mimo členy

6abc -f 6abd + 6acd -f- 6bed
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ještě další kladné členy (a, b, c jsou čísla kladná); jejich součet
označíme ife. Je tedy

(a + b + c + d)3 — 6(abc -f- abd + acd + bed) + k,

ti. vzhledem к podmínce aJrb + c-\-d = 1

6(abc + abd + acd + bed) = 1 — k < 1

a odtud

abc -f abd + acd + bed <

Obdobně, ale jednodušeji, se získá odhad a3 + b3 + c3 + d3 <
< 1.

39. Rozhodněte, který ze zlomků

5 555 555 553 6 666 666 664

5 555 555 557 5 6 666 666 669

je větší.

Řešení. Kdybyste postupovali, jak jste se učili ve škole,
uvedli byste oba zlomky na společného jmenovatele a porovnali
byste pak čitatele. Bylo by to však příliš pracné. Společný
jmenovatel by byl asi součin obou jmenovatelů a počítání by
trvalo příliš dlouho. Proto musíme postupovat vtipněji.

Vidíme, že čitatel a jmenovatel každého zlomku jsou sice
velká čísla, ale liší se jen o několik jednotek. Označíme-li
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5 555 555 557 = a, 6 666 666 669 = 6,

jsou oba dané zlomky

b - 5a — 4
A =

6a

Víme, že je A > j5 právě tehdy, je-li A — 5 > 0; a obdobně
A < В právě tehdy, je-li A — В < 0. Vypočteme tedy A — B;
vyjde

a6 — 46 — ab -f 5a 5a — 46
(1)A — В =

abab

Protože je ab > 0, stačí vypočítat 5a — 46, a to je poměrně
snadné.

Dostaneme 5a - 46 = 27 777 777 785 - 26 666 666 676 > 0.
Podle (1) je tedy A — В > 0, tj.

A > B.

Vidíte, jak nám pomohla algebra.

40. Rozhodněte, které z obou čísel

a = 6399, 6 = 6389 + 6388

je větší. Své tvrzení odůvodněte.
Řešení. Bylo by jistě pracné a zdlouhavé vypočítat tak

vysoké mocniny trojciferných čísel a porovnat přímo výsledky.
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Víme, že a > b právě tehdy, když je a — b > O, a že a < b
právě tehdy, když je a — b < 0. Pomocí znalosti algebry se

tedy pokusíme vypočítat výhodně rozdíl a — b.

a — b — 6399 - (6389 + 6388). (1)

Platí

638» + 6388 = 6388 (638 + 1) = 6388.639.

Dosadíme-li do (1), vyjde

a — b — 639» - 6388.639,

a-b = 639 (6398 - 6388). (2)

Protože je 639 > 638, je 6398 > 6388, tj. 6398 - 6388 > 0;
z (2) tedy vyplývá a — b > 0 a dále a > b.

41. Zjistěte, který ze zlomků

23 456 798 23 456 789

29 876 543 29 876 534

je větší.

Řešení. Prohlédneme-li si pozorně oba zlomky, vidíme, že
jejich čitatelé se od sebe liší jen o 9; podobně je tomu se jme-
novateli. Označíme-li 23 456 789 = a, 29 876 534 = b3 jsou
dané zlomky
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a 9 a

b + 9’ b ’

Dále si uvědomíme, že dvě kladná čísla x, у můžeme porovnat
buď pomocí jejich rozdílu nebo pomocí jejich podílu. Platí
totiž např. věta: x > у (nebo x = y nebo x <y), právě když

x

je — >1 nebo — =1 nebo — <11. Vypočteme tedy
v У

x (a + 9)b ab + 9b
у (b + 9)a ab + 9a "

Protože je b > a, je 9b > 9a, ab + 9b > ab + 9a, a tedy

x

-> 1,
У

neboli první zlomek je větší než druhý.

42. Zjistěte, které z čísel

1 1 2
+

999 999 1 000 001 5 1 000 000

je větší.
Řešení. Položme a = 1 000 000. Pak pro daná čísla platí

1 1 1 1 2a

+
a + 1 a2 — 1 ’999 999 1 000 001 a — 1

2 2

1 000 000 a
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Daná čísla lze porovnat podílem nebo rozdílem.
1. Užijeme podíl. Platí

a22a 2 2a a

a2 - 1 ' a2 - 1 ' 2 a2 - 1 'a

Zřejmě a2 > a2 — 1, takže uvažovaný podíl je větší než 1.
Platí tedy

21 1
(1)+ >

999 999 1 1 000 001 1 000 000 *

2. Užijeme rozdíl. Platí:

2 2a2 - 2(a2 - 1)2a 2
>0,a2 — 1 a(a2 — 1) a2(a2 — 1)a

tj. docházíme také к závěru (1).

43. Určete všecka čísla a, pro která kořen x rovnice
a(x — 2) + x — 5=0 vyhovuje rovnici

x3 - 7x2 + Ix + 15 = 0. (1)

Řešení. Rovnice

a(x — 2) + x — 5=0

má pro každé а Ф — 1 kořen

2a -j- 5
(2)x =

a -f- 1
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Dosadíme-li číslo я do rovnice (1), požaduje se, aby byla
splněna rovnice

(2a + 5\3 (2a + 5 \2
\ a + 1/ ~ 7 \7+ 1 /

2a -j- 5
+ 15 = 0. (3)+ 7-

a 1

Znásobíme ji číslem (a + l)3 a upravíme; vyjde

a3 — Aa — 0. (4)

Tato rovnice se dá napsat ve tvaru

a(a + 2) (a — 2) = 0.

Čísla a = 0, a = 2, <2 = —2 jsou jediná čísla, která mohou být
řešením úlohy. Zkouškou se přesvědčíme, že skutečně čísla 5,
3, — 1, která dostaneme z (2) pro a = 0, a = 2aa = —2,
vyhovují úloze. Jádrem řešení je přechod od rovnice (3) к rov-
nici (4).

44. Je dána soustava dvou rovnic o dvou neznámých x, у

Ъх + 2у = 0,
(1)

2х — у — —3.

Ke každému koeficientu u neznámé přičteme totéž číslo p;
nová soustava bude mít za řešení dvě čísla x, y, jejichž rozdíl
je 1. Určete všecka čísla p této vlastnosti.
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Řešení. Řešení nové soustavy budou buď čísla x, x -f 1
nebo čísla x, x — 1. Probereme obě možnosti:

a) (3 + p)x + (2 + />) (x + 1) = 0
(2)

(2 + p)x + (p — 1) (x + 1) = —3

Odečtením obou rovnic vyjde x = 0. Dosazením do první
rovnice (2) vyjde p — —2. Pozměněná soustava (2) pak zní
x = 03 —3у = —3, tj. у = 1, je tedy у — x = 1.

b) Druhá možnost:

(3+p)x + (2+£) (x — 1) — 0
(3)

(2 + p)x + (p — 1) (x — 1) — —3

Odečtením obou rovnic (3) dostaneme 4x — 3 = 3, odtud
3

x = —. Dosazením do první rovnice (3) vyjde p =

Pozměněná soustava pak zní

11

4 '

1 3

4 * - 4 У = °>

3 15
= -3.-ix~Ty

3 1
Tato soustava má řešení x = — 3 у = —, takže je opět splněna

podmínka textu úlohy: x — у = 1.
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11
Hledaná čísla p jsou tedy p — —2, p = — — ; poněvadž

soustavy (2), popř. (3), mají vždy jen jediné řešení x = 0,
3

P = -2, popř. x = —3p = —

11

4 '

45. Dokažte, že platí

(■4M'4M-4) (
1

1 + <2
n1 — 1

pro všecka přirozená čísla n > 1.
Řešení. V posledních závorkách je předpis, jak se sestrojí

jednotliví činitelé součinu, např. pro n = 2 dostaneme

1 1
1 + -i + 3,22 - 1

pro n — 3

1 1
1 + = 1+T

32 - 1 8

1
atd. Výraz 1 4 upravíme »uvedením na společnéhow2 — 1

jmenovatele«

O2 - i) + i n21
1 +

»2_i (и + 1) (и — 1) '7Z2 — 1
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Užijeme-li tuto úpravu pro každého činitele, můžeme součin
zapsat

22 32 42

1.3' 2T4 ‘ 3Т5
w2

s =

Сn — 1) (я + 1)

neboli

22.32.42 n2
s —

2.32.42.52 {n - l)2.n (n + 1) ‘

Po zkrácení vyjde

1 n

~2'n + 1
<2.1 =2.s — 2n

n -j- 1

Tím je nerovnost dokázána.
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ill. Úlohy logického charakteru

46. Sedm spolužáků si slíbilo na začátku prázdnin, že každý
z nich napíše třem dalším zprávu o svých příhodách. Jeden
z nich si vzpomněl, že by měl každý žák dostat listy právě
od těch tří spolužáků, kterým napsal. Je to možné?

Řešeni. Kdyby to bylo možné, musili by si vždy určití dva
žáci vyměnit dva dopisy. To znamená, že by všech dopisů
musil být sudý počet. Ale víme, že každý žák napsal a odeslal
3 dopisy; celkem tedy bylo vyměněno 7.3 —21 dopisů, což
je lichý počet. Dodatečné podmínce tedy nelze vyhovět. Tato
úloha nevyžaduje celkem žádný výpočet; je třeba jen uvažovat.
Zároveň je to pěkný příklad úlohy neřešitelné.

47. Šachový kroužek uspořádal turnaj, v němž každý z ka-
marádů Jirka, Karel, Tonda obsadil právě jedno ze tří prvních
míst. Určete pořadí chlapců v šachovém turnaji, víte-li, že
právě jeden z výroků

a) Jirka je třetí,
b) Tonda není druhý,
c) Karel není třetí

je pravdivý.
Řešení. Sestavme tabulku, která udává, které z výroků я,

b, c jsou pravdivé pro jednotkové permutace JKT, JTK, KJT,
KTJ, TJK, TKJ, které udávají pořadí soutěžících.
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JTK KTJJKT KJT тук тку

b, c b, c a, b, cbCly c

Řešení je tedy jediné: permutace TJK.

48. Dopravní síť města se skládá ze tří trolejbusových linek.
Celková délka trolejbusového vedení je 13 km. Jednotlivé linky
číslované 1, 2, 3 mají po řadě délky 5,7 km, 5,8 km, 6,9 km.
Linky 1 a 2 mají společný úsek délky 1,8 km, linky 2 a 3 mají
společný úsek délky 2,3 km. Linky 3 a 1 mají společný úsek
délky 2,7 km. Rozhodněte, zda existuje úsek společný všem
třem linkám. Jestliže ano, vypočtěte jeho délku. Načrtněte
plánek všech tří tratí a vpište do něho délky jednotlivých
úseků.

Řešení (všecky délky jsou udány v kilometrech). Označíme:
a) di, d%, ds délky těch částí tratí 1, 2, 3, v nichž jezdí každá

linka sama;

b) d\2, dzs, d-а délky těch úseků, jimiž jezdí právě dvě linky
(označené indexy);

c) x délku úseku, jímž jezdí všecky tři trati.
Úlohu lze řešit velmi jednoduše bez soustavy rovnic. Zobrazme
délky tratí kruhy a délky jejich společných úseků částmi kruhů,
jako na obr. 3a. Sečteme-li délky jednotlivých linek, dostaneme
číslo

(1)5,7 + 5,8 + 6,9 - 18,4,

jež je o 5,4 větší než skutečná délka tratí. Tento rozdíl lze
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snadno vysvětlit. Z obr. 3a plyne, že v součtu (1) jsme dvakrát
započetli úseky d\2> <4з5 <4i a úsek л: dokonce třikrát. Tedy

<4.2 + <4з + <4i + 2x — 5,4. (2)

Sečteme-li délku společného úseku linek 1 a 2 s délkou spo-
léčného úseku linek 2 a 3 a s délkou společného úseku linek
3 a 1, dostáváme

1,8 + 2,3 + 2,7 = 6,8.

Z obr. 3a je zřejmé, že

<4.2 + ^23 + ^31 + Ъх = 6,8. (3)

Podle (2) a (3) je tedy

x = 6,8 — 5,4 = 1,4.
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Nyní již snadno pomocí obr. 3a vypočteme

i23 = 2,3 - 1,4 - 0,9,dn — Ij8 — 1,4 = 0,4,

= 2,7 - 1,4 = 1,3,

di = 5,7 - 3,1 = 2,6, d2 =5,8-2,7 = 3,1,

d3 = 6,9 - 3,6 = 3,3.

Náčrtek plánku tří linek je na obr. 3b.
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49. Když jsem vkročil na náměstí, odbíjely právě hodiny
na radnici 8 hodin, kostelní hodiny však už ukazovaly 802.
Když jsem přešel náměstí a dorazil к zámku, bylo na zámec-
kých hodinách teprve 801, ale na kostelních hodinách už 806.
Mám však už s hodinami v našem městě své zkušenosti:
zámecké nikdy nejdou napřed, radniční zato vždycky jdou
napřed a čas na kostelních hodinách se neliší od správného
času nikdy víc než o 3 minuty. Určete (na minuty), jaký byl
správný čas, když jsem vkročil na náměstí.

Řešení. Z údajů kostelních hodin je vidět, že od vstupu na
náměstí do příchodu к zámku uplynuly 4 minuty. Tudíž
v okamžiku vstupu na náměstí bylo na zámeckých hodinách
757 h. Zámecké hodiny nikdy nejdou napřed, takže ukazují-li
757, jsou možné (uvažujeme-li jen celé minuty) následující
časové údaje

757a 758j 759j 8(Ю 801} ... . (1)

Radniční hodiny jdou vždy napřed, a proto když odbíjejí
8 hodin, ještě 8 hodin není a jsou možné (uvažujeme-li jen
celé minuty) následující časové údaje:

759j 758? 757^ 756s (2)

Čas na kostelních hodinách se neliší od správného času nikdy
o víc než o 3 minuty, tudíž, když tyto hodiny ukazují 802,
jsou možné (uvažujeme-li jen celé minuty) následující časové
údaje

759, 8°°, 801, 802, 803, 804, 805. (3)
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Porovnáme-li možné časové údaje všech tří hodin, tj. množiny
(1), (2) a (3), vidíme, že správný čas (na minuty) byl 759 h.
Tento výsledek lze také dostat pomocí grafického znázornění
(obr. 4).

y33 уЗв уз? yS3 узя gOO Q01 q02 доз до* доз QOS до?
ф # ф фZámek —+—f—®- >•——4S О

Radnice —•—*■ ■© © + ■+ f +—+■-f

Kostel —♦ э>— + —+ — •H А

Obr. 4

50. Je dána tabulka přirozených čísel připomínající tabulku
pro sázení ve sportce.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49
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Vybereme-li z tabulky sedm čísel tak, aby z každého řádku
i z každého sloupce bylo vybráno jediné číslo, pak je součet
vybraných čísel vždy týž. Dokažte. (Jeden možný výběr je
vyznačen v tabulce tučně.)

Řešení. Postup vybírání čísel si můžeme představit takto:
Na každé pole 1. řádku položíme jednu minci. Potom jednu
minci necháme v 1. řádku a ostatní mince posuneme ve směru
sloupců tak, aby každá z nich ležela právě v jednom řádku.
Čísla zakrytá mincemi potom splňují požadavky výběru. Když
mince ležely v 1. řádku, byl součet čísel, která zakrývaly.

1 + 2 + 3+ 4 + 5 + 6+ 7 — 28.

Tím, že jsme jednu minci posunuli do 2. řádku, se součet
čísel zakrytých mincemi zvětšil o 7; podobně posunem do
3. řádku o 2.7, ..., posunem do 7. řádku o 6.7. Součet čísel
zakrytých mincemi se tedy celkem zvětšil o

(1 + 2 + 3 + 4 + 5 + 6).7 = 21.7 = 147.

Součet čísel vybraných tak, jak požaduje úloha, je tedy vždy

28 + 147 = 175.

51. Na obrázku (obr. 5) je znázorněn hodinový ciferník
a dvě rovnoběžné přímky, z nichž žádná neprochází žádným
z bodů 1 až 12. Změňte polohu přímek tak, aby součet čísel
ležících v každé ze dvou vyšrafovaných polorovin i ve vyšra-
fovaném pásu byl týž.
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Řešení. Nejdříve zjistíme součet všech čísel na ciferníku:

1 + 2 + ... + 12 = 78 — 3.26.

Součet v každé z částí ciferníku musí být tedy 26. Určeme
nejprve tu část, do níž patří číslo 12. Musíme rozlišit dva
případy:

1. Nechť číslo 12 leží v části, jež je polorovinou. Experi-
mentováním zjistíme, že

26 = 11 +12 + 1+2.

Jedna z hledaných polorovin obsahuje tedy body ciferníku
označené 1, 2, 11, 12. Analogicky zjistíme, že
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26 = (10 + 9) + (3 + 4),

takže pás obsahuje body ciferníku označené 3, 4, 9, 10 a zbývá-
jící polorovina body ciferníku označené 5, 6, 7, 8.

2. Experimentováním se přesvědčíme, že 12 nemůže ležet
v rovnoběžkovém pásu, neboť součty

(11 + 12) + 3, 12 + (5 + 4 + 3 + 2), (12 + 1) + (7 + 6),

(12 + 1 + 2) + (6 + 5), (12 + 1 + 2 + 3) + 8

nevedou к řešení.

52. Na kružnici k leží 8 různých bodů, z nichž jsou 4 červené
a 4 modré. Zjistěte, zda lze vždy sestrojit takovou přímku p,
že uvnitř opačných polorovin s hraniční přímkou p leží po
2 červených a po 2 modrých bodech.

Řešeni. Při hledání přímky p musíme přihlížet к tomu,
kolik stejnobarevných bodů je »sousedy«. Nejprve tedy přistou-
píme к systematickému výčtu všech možností (dichotomické
třídění). Třídění zaznamenáme do schématu zvaného strom:
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a\
existuje aspoň
jedna čtveřice
stejnobarevných
»sousedů«

neexistuje
žádná čtveřice
stejnobarevných
»sousedů«

existuje aspoň
jedna trojice
stejnobarevných
»sousedů«

neexistuje
žádná trojice
stejnobarevných
»sousedů«

£1 D\
existuje aspoň
jedna dvojice
stejnobarevných
»sousedů«

neexistuje
žádná dvojice
stejnobarevných
»sousedů«

Na obr. 6 jsou nakresleny koncové případy А, В, C, D.
V případě В jsou dvě možnosti. V případě C musí být »sousedi«
dvou červených dva modré, na uspořádání zbývajících čtyř
nezáleží.

Na obr. 6 jsou také naznačeny polohy přímky p. Získali jsme
je experimentálně.
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Ф červená O modrá X červená nebo modrá

53. Osmiúhelník vepsaný dané kružnici má čtyři vrcholy
červené a čtyři modré; přitom žádné tři sousední vrcholy
nejsou téže barvy. Zjistěte, zda lze vždy sestrojit takové dvě
různoběžné přímky, aby uvnitř každého úhlu jimi určeného
ležel jeden červený a jeden modrý vrchol.

Řešení. Rozlišíme dva případy.
I. Žádné dva sousední vrcholy nemají tutéž barvu.

II. Lze najít aspoň jednu dvojici sousedních vrcholů téže
barvy.
V případě I se barvy vrcholů střídají. Na kružnici zvolíme
čtyři body K, L, M, N tak, aby každý z nich odděloval dvě
dvojice červená-modrá a spojíme je přímkami ob jeden (obr. 7).
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V případě II nechť jsou např. body А, В červené; pak jsou
vrcholy С, H modré. Přehled barvy vrcholů si zapíšeme
»tabulkou«

ABCDEFGH
(1)č č m m

kde v druhé řádce je zaznamenána barva. V tabulce (1) nemůže
být červená žádná z dvojic D, E a F3 G; pak by totiž byla
modrá zbývající dvojice a tři sousední vrcholy by byly modré.
»Barvení« vrcholů v tabulce (1) lze tedy dokončit některým
z těchto způsobů:
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А \ В С { D Е I F G \ Н

čč č č m mm m

čč č čm шш m

č č č č m mm m

č č č čm mm m

Konstrukce bodů K3 L3 M3 N3 které je třeba spojit přímkami,
je ve všech čtyřech případech zřejmá; ukazují ji šipky.

54. Hrací kostka má tvar krychle; její stěny jsou opatřeny
oky v počtu 1, 2, 3, 4, 5, 6 tak, že součet počtů ok na dvou
protějších stěnách je týž. К hrací kostce přilepíme dvě další
stejné hrací kostky vždy celými stěnami. Máme zjistit, jak
máme kostky slepit a jak slepenec položit na stůl (aspoň jednou
stěnou), aby počet viditelných ok byl a) co největší, b) co

nejmenší. (Za viditelné pokládáme všecky stěny slepence, které
nepřiléhají ke stolu.)

Řešení. Popsaným slepováním hracích kostek lze získat
právě dva různé tvary slepenců; znázorňují je obr. 8 a), b).
Tyto útvary můžeme postavit na stůl celkem pěti způsoby.
К případům z obr. 8 a), b) přibývají totiž další tři možnosti
znázorněné na obr. 8 c), d), e).

Před zjišťováním počtů viditelných ok je třeba spočítat, kolik
je součet počtu ok na dvou protějších stěnách. Rovná se

sedmi, neboť
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(1 + 2+ 3 + 44-54-6) :3 — 7.

Protější stěny totiž tvoří právě tři různé dvojice.

A
Á 7 Д+1/

\ÁL7 Ai

bj)— У-aj

7 // /

4 /

<
(9/I

—+-f/LÍ7+7
(P (o

■

//

7-7 у

r—■f—Г7 7 I

/ 17 7 V177
Z

Obr. 8
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Největší a nejmenší možné počty viditelných ok u jednot-
livých sestav zapíšeme do tabulky:

Počet viditelných ok
Sestava
z obr.

největší nejmenší

8 a) 4348

8 c) 2849

338 b) 51

8 d) 2651

8 e) 3952

Největší počet viditelných ok může být 52 (u sestavy podle
obr. 8 e)) a nejmenší 26 (podle obr. 8 d)).

55. Máme 12 kamenů stavebnice; každý z nich je kvádr
o rozměrech 2, 3, 4 centimetry. Z těchto kamenů sestavujeme
kvádry, a to tak, že vždy shodné stěny kamenů musí být přilo-
ženy к sobě; musíme použít vždy všech 12 kamenů.

a) Udejte rozměry všech kvádrů, které lze sestavit.
b) U každého kvádru udejte, kolika způsoby ho sestavit.
Řešení. Hlavní věcí při řešení úlohy je najít nějaký systém,

jak udat všecky kvádry, které z kamenů lze vytvořit. Pak vypo-
čteme rozměry každého z nich a snadno zodpovíme otázku b).

Ze způsobu, jak jsou kvádry tvořeny, vyplývá, že každý
kvádr má dvě protější stěny složeny z obdélníků o rozměrech
3 a 4 cm, další dvě protější stěny složené z obdélníků o rozmě-
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rech 2 a 4 cm a konečně další dvě stěny složené z obdélníků
o rozměrech 2 a 3 cm. Obrázek 9 ukazuje jeden z »vystavěných«
kvádrů; dolní a horní stěna jsou zde složeny ze čtyř obdélníků
o rozměrech 3 a 4 cm, přední a zadní stěny ze šesti obdélníků
o rozměrech 2 a 4 cm, pravá a levá stěna ze šesti obdélníků
o rozměrech 2 a 3 cm.

4

2

2

4 A

Obr. 9
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Tabulka (4)

Rozměry vytvořené-
ho kvádru v cmČíslo

případu
Počet

sloupců z

Počet
řadjy

Počet
vrstev x

3у 4z2x

483212111
246261 22
1692433 1
12122344 1

8182265 1
436212 16 1

24346127
12643228

8942329
418416210

16364111 3
8662212 3

12 461413 3
1

123834 114
9 483 1415

3 81226 116
46122 1617

424 3112 118

Kvádry budeme tvořit tak, že ze stěny složené z obdélníků
o rozměrech 3 a 4 cm vyjdeme jako z podstavy, počet obdélníků
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označíme p. Nad touto stěnou je x »vrstev« výšky 2 cm. Pro
čísla p, x zřejmě platí

(1)p.x = 12,

neboť nad každým obdélníkem podstavy je x kamenů a počet
všech kamenů stavebnice je 12.

Podstava kvádru složená z p obdélníků o rozměrech 3 a 4 cm
se dá rozdělit v »řady« a »sloupce«, jak ukazuje obr. 10. Počet
řad (každá z nich má šířku 3 cm) označíme y; počet sloupců
(každý z nich má šířku 4 cm) označíme z; pak platí zřejmě

(2)P =yz.

4 4

řada
p -4
v - 2

z = 2rada

sloupec sloupec

Obr. 10
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Tabulka (5)

Rozměry kvádru
v cmPřípady z (4) 2,3, 48

2, 6,24
2, 9, 16
2, 12, 12
2, 8, 18
2, 4, 36
3, 4, 24
4, 6, 12
4, 8, 9
4, 4, 18
3, 6, 16
6, 6, 8
3, 8, 12

1
2
3
4
5
6

7, 18
8, 13, 17

9; 15

i

10
11
12

14, 16

Spojením vztahů (1), (2) dostaneme

(3)xyz = 12.

Čísla x, у, z jsou podle (3) dělitelé čísla 12; např. na obr. 9
je x = 3,y = 2, z = 2.

Sestavíme nyní tabulku (4) pro všechny možnosti rozkladu
čísla 12 podle (3); všimněme si, jak je tabulka konstruována.
Nyní vybereme z tabulky (4) kvádry o týchž rozměrech a sesta-
víme je do tabulky (5); rozměry jsou tu uvedeny vzestupně,
čísla případů podle tabulky (4) udávají počet způsobů, kterými
lze vytvořit každý z kvádrů. Tím jsou rozřešeny úlohy a) i b).

56. Na obr. 11 je znázorněn hrací plán podkovy, hry fran-
couzských dětí. Obsahuje 5 polí označených čísly 1 až 5.
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Sousedními poli se nazývají dvě pole spojená úsečkou nebo
obloukem. Hru hrají dva hráči, červený (Č) a modrý (Aí),
z nichž každý má dva kameny své barvy. Počáteční postavem
zaujmou tak, že střídavě kladou po jednom kamenu své barvy
na pole 1 až 5; jedno pole zůstane volné. Při samotné hře táhnou
hráči střídavě, vždy jeden kámen na sousední volné pole.
Vyhrává hráč, který znemožní svému protivníkovi další tah.

a) Kolik počátečních postavení má hra podkova?
b) Najděte všechna postavení, z nichž modrý nemůže dále

táhnout.

c) Je dáno postavení Č14, M35; červený táhne. Zapište další
průběh hry, jestliže červený svým třetím tahem vyhrál.

Řešení, a) Jedno z polí 1 až 5 zůstane neobsazeno, to je 5
možností. Zbývající čtyři pole jsou obsazena dvěma modrými
a dvěma červenými kameny, to je celkem 6 možností. Všech
počátečních postavení je tedy 5.6 = 30.
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Q prázdný

b) Jsou to jedině postavení Č25, M34 a Č35, M12 (obr. 12).

Odůvodnění: Je-li volné pole 5, může táhnout Č i AI.
Je-li AI na 5,může táhnout na některé z polí 1 až4.
Je tedy Č na 5 a stačí vyzkoušet ČI 5 a Č25.
Při ČI 5 může AI vždy táhnout.
Při Č25 nemůže AI táhnout jedině při AÍ34.

c) Zápis hry je

ČI4, M35 -> Č24, AI 35 -> Č24, M13 -> Č45, AÍ13 -> Č45,
táhne Č táhne AI táhne Č táhne AI

(chyba)
M12 -> Č35, Ml 2

táhne Č
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57. Zdeněk krátil při výpočtech zlomky takto:

lý 1 2/2
Д = Т’

\Уэ 1

Дъ = 5 '

Učitel mu tento způsob »krácení« pochopitelně neschvaluje,
ale Zdeněk se hájí tím, že výsledek je správný. Najděte všechny
zlomky s a) dvojcifernými, b) trojcifernými čitateli a jmenovateli,
které mohl Zdeněk »krátit« svým způsobem a dostal správný
výsledek.

Řešeni, a) Čitatel i jmenovatel zlomku, který je možno
podle Zdeňka »krátit«, jsou dvojciferná čísla, a proto můžeme
takový zlomek psát ve tvaru

10a + b
№ + c'

V případech, kdy má Zdeněk pravdu, platí

10a +b a

(1)lOé -)- c c

přičemž čísla a, b, c jsou přirozená a menší než 10. Z rovnice (1)
plyne

10ab
(2)C

9a + 6'

O číslech a, b, c víme, že jsou přirozená a menší než 10, přičemž
číslo c splňuje vztah (2). Chceme-li najít všechny zlomky, kde
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je možno »krátit« Zdeňkovým způsobem, musíme při volbě
čísel a, b postupovat tak, abychom vystřídali všechny možnosti.
1. Zvolme a = 1. Pro b г c sestavme tabulku:

b 5 6 91 | 2 3 4 7 8

50 70 8010 40 60 9020 30
c

10 15 1613 14 17 1811 12

11 1

n = T5Obdrželi jsme řešení: a = b = c = 1, tj.

16 1

64 = 4 5
a — 1, b — 6, c = 4, tj.

19 1

95 ~ 5"'a = 1, b — 9, c = 5, tj.

2. Zvolme a = 2. Pro 6, c sestavíme tabulku:

i 2 5 6 7 91 3 4 8

20 160 18040 60 | 80
21 I 22

140100 120
c

19 20 25 26 2723 24

22 2

22 = 2~5Našli jsme další řešení: a — b — c = 2, tj.
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26 2
a = 2, b = 6, c = 5, tj. — = .

3. až 9. Volíme-li postupně a = 3, 4, ..., 9, najdeme další
zlomky, pro něž platí a = b = c, tj.

33 3 44 4

33 = J’44 = ~4’ ”599 =9~5
99 9

a ještě případ

49 4

98 = 8 '
a = 4, b = 9, c = 8, tj.

99 16 19 26 4911 22

íl5 225 ’ ‘'5995 64’ 955 655 98
Závěr. Zlomky

jsou všechny zlomky vyhovující úloze.
b) Postupujeme obdobně jako v části а). V tomto případě jde

o nalezení přirozených čísel a, b, c menších než 10, které splňují
rovnost

100a + 10b + b a

100b + 106 + c c

Snadnou úpravou zjistíme, že pro c platí

10a6
c —

b’9a
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tj. vzorec (2). Je tedy možno využít výsledky z části a). Všechny
zlomky, které splňují část b) naší úlohy, jsou:

999 166 199 266 499111 222

TTT’ 222 5 '"3 9993 664’ 9953 6653 998 ‘

58. V písemné práci se vyskytl lomený výraz

ax b

x -f- c

Luděk se pamatuje, že a, b, c byla určitá čísla a že při dosazení
x = 1 dostal výsledek 1, při dosazení л: = —1 dostal — 1,
a když dosadil x — 2, zjistil, že se nedá hodnota daného výrazu
vypočítat. Pomozte mu najít čísla a, b, c.

Řešení. Z textu úlohy dostaneme

či -f- b —a + b
= -1.

1 -1 +c

Hodnotu výrazu nebylo možno vypočítat pro x — 2, protože
jmenovatel byl roven nule, tj. c + 2 = 0. Z uvedených rovnic
dostaneme

a = —2, b = 1, c = —2.

Lomený výraz, s kterým se Luděk potýkal, byl tedy

1 - 2x

x — 2
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59. Žák měl řešit rovnici

x — 2x + 2
(1)7(x + 1)'7x + 23

Opsal ji však s chybami: v čitateli na levé straně napsal chybně
druhý člen a v jmenovateli na pravé straně místo znaménka
plus napsal znaménko minus. Přesto při správném řešení
chybně opsané rovnice dostal správné řešení (kořen) dané
rovnice. Jak zněla chybně opsaná rovnice?

Řešení. Tato úloha je výstrahou pro učitele, kteří kontrolují
jen výsledky; jak je vidět, může být výpočet nesprávný, ale
výsledek je přesto »správný«. Jinak patří tato úloha do skupiny
úloh »na pátrání po chybě«, které bývají velmi poučné. Nejprve
zjistíme, jaké vlastně řešení má daná rovnice (1).

Postupnými úpravami dostaneme:

7(x + 1) (x + 2) = (7x + 23) (x - 2)
7(x2 + 3x + 2) = 7x2 + 9x — 46

12x = -60

x — —5

Dosadíme-li x = —5 do pravé i levé strany rovnice, dostaneme
vždy -J; zkouška tedy »vyšla«. Zkoušku jsme museli provést,

/> abychom se mimo jiné přesvědčili, že číslo x = —5 neanuluje
jmenovatele zlomků z rovnice (1).

Nyní: jak opsal žák rovnici (1)? Podle textu úlohy místo
čísla 2 v čitateli na levé straně napsal jakési neznámé číslo u;
v jmenovateli na pravé straně rovnice (1) spletl znaménko.
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Chybně opsaná rovnice tedy zněla

x — 2x -j- a
(2)Ix + 23 7(x - 1)'

Číslo a bylo takové, že rovnice (2) měla »správné« řešení
x = —5. Dosadíme-li do (2) x = —5, vyjde

a — 5 -7

-12 -425

tj. po úpravě a — 5 = —2 neboli a = 3. Chybně opsaná
rovnice tedy zněla

x + 3 x — 2

7x + 23 7(x - 1)'

Jejím řešením se přesvědčíme, že má skutečně řešení x = —5.
Žák měl tedy šťastnou ruku: obě chyby při opisování »se zrušily«.

60. Žák dostal za úlohu umocnit trojčlen (a + 2b — 3)2
a vyšlo mu a2 + 4b2 — 9. »Ale to je přece špatně,« namítal
učitel, »dosaď si na zkoušku za a i b nějaká určitá přirozená
čísla.« Žák poslechl a zkouška mu vyšla. Která čísla dosadil ?

Řešení. Vynásobením nebo podle vzorce pro druhou mocni-
nu trojčlenu zjistíme, že správný výsledek je

(a + 2b- 3)2 = a2 + 4b2 + 9 + 4ab -6a- 12b. (1)

Jsou-li a, b přirozená čísla, která žák dosadil, platí podle (1)
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а2 + 462 — 9 = а2 + 462 + 9 -f 4а6 — 6а — 126, (2)

neboť zkouška mu »vyšla«, jak praví text úlohy.
Všechny členy v (2) převedeme na pravou stranu; vyjde

4ob-6a- 126 + 18 = 0,

po dělení dvěma

2ab — 3a — 6b -|- 9 = 0.

Postupným vytýkáním dostaneme

a(2b - 3) - 3(26 — 3) = 0,
(a - 3) (2b - 3) = 0. (3)

Pro žádné přirozené číslo b neplatí 2b — 3 = 03 neboť pro každé
přirozené b je 2b — 3 vždy číslo liché a nula je číslo sudé.
Z rovnice (3) tedy pijme a — 3 = 0, tj. a = 3. Dosadíme-li
za а číslo 3 a za b libovolné přirozené číslo, je

(a + 2b - 3)2 - (26)2 = 462,
a2 + 462 — 9 = 462;

zkouška tedy opravdu »vyjde«.
Odpověď zní. Žák dosadil а = 3 a za 6 nějaké přirozené

číslo.

61. Olda si kontroloval po hodině úlohu z písemky: »Měli
jsme upravit výraz
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x2 — 3 6x — 7
+

2x - Гя + 1

v čitateli mi vyšel nějaký mnohočlen ax3 + 6x2 + cx + d,
koeficienty si již nepamatuji; ve jmenovateli bylo 2x2 + x — 1.
Vyšla mi dobře zkouška pro x — 0, 1 a 2, ale pro x = 3 už ne:
to vyšlo na levé straně 3,7 a na pravé 4.«

Dovedete z těchto údajů zjistit koeficienty a, b, c, d a roz-

hodnout, zda Oldovo řešení bylo správné?

Řešení. Rozřešíme znovu Oldův příklad.

x2 - 3 6x - 7 O2 - 3) (2.x - 1) + O + 1) (6x - 7)
x —(— 1 2x — 1 (x + 1) (2x - 1)

V čitateli vyjde po vynásobení a sečtení

2x3 + 5x2 — 7x — 4,

ve jmenovateli vyjde skutečně 2x2 + x — 1, jak tvrdil Olda.
Pro x = 0 mělo vyjít na levé i pravé straně číslo 4. Oldovi
vyšlo —d; protože mu zkouška souhlasila, bylo d = —4.

a + b + c — 4
Pro x = 1 mělo vyjít —2. Olda dostal ; protože

2

a + b + c — 4
mu zkouška souhlasila, bylo = -2, tj.2

a b c — 0. (1)
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8a 4b -j~ 2c — 4
Pro x — 2 mělo vyjít 2. Olda dostal 9

8a + 46 + 2c — 4
protože mu zkouška souhlasila, bylo

tj. po úpravě

= 2,
9

(2)4a -f" 2b -\- c — 11.

Konečně pro x = 3 mělo vyjít 3,7. Olda dostal

27a + 96 + 3c - 4
= 4,20

tj. po úpravě

(3)9a -j- 3b -f- c — 28.

Dosadíme-li z (1) c = —a — b do (2) а (3), dostaneme sou-
stavu

(4)3a + b = 11,

4a -f b = 14.

Odečtením první rovnice (4) od druhé vyjde a — 3, dále
z první rovnice (4) b — 2 a z (1) c = —5.

Oldův nesprávný výsledek byl tedy

Зя3 + 2x2 — 5x — 4
2x2 + * — 1
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IV. Úlohy z reality

62. Dílna splnila v prvním týdnu plán, tj. vyrobila n výrob-
ků. V druhém týdnu poklesla výroba proti prvnímu týdnu
o p %. O kolik procent proti druhému týdnu musela dílna
zvýšit výkon v třetím týdnu, aby koncem třetího týdne byl
splněn třítýdenní plán ?

Řešení. Prvním úkolem při řešení tzv. slovní úlohy je sesta-
vit z ní matematickou úlohu (často to bývá rovnice nebo několik
rovnic či nerovnic), jejíž řešení nám umožní rozřešit úlohu
z reality (ze života). Při sestavení matematické úlohy jde
o nahrazení slov matematickými symboly, tj. písmeny a znaky
pro operace (+, —, : atd.). Některá z písmen jsou dána už
v textu úlohy, některá si musíme zvolit. V naší úloze je označen
počet výrobků n, počet procent poklesu p\ musíme zvolit
označení (x) pro počet procent růstu výroby v třetím týdnu.

Při vyjádření počtu výrobků v jednotlivých týdnech si musí-
me bedlivě všimnout, z jakého základu jsou vzata procenta.
Vyplatí se vždy zapsat potřebné údaje do tabulky:
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Období
1. až 3.
týden

1.týden 2.týden 3. týden

(i _ n{1\ 100/ V íoo) ■
pPočet

výrobků 3nti

(x + íoo)
Vzrůst (pokles)
v % proti
předešlému
týdnu P x

V tabulce jsme už použili údaje z textu úlohy, že ve třech
týdnech má být splněn plán (3?i výrobků). Mimoto užíváme
věty: Zvětšíme-li, resp. zmenšíme-li číslo n (počet výrobků)

í1 + resp- * í1 - íoo)o p procent, dostaneme číslo n

Podle textu úlohy je

”+" f1 “ řůč) + ”(* “ íůo) (
x

(1)= 3n.1 +
100

Rovnici (1) dělíme kladným číslem n a dostaneme lineární
rovnici pro jedinou neznámou x:

U--L =
\ 10014+1-^ x

3,1 + 1 - +
100 ' 100 \100

po úpravě
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2pPx

100/ 1005100

x(100 — p) — 200p,

200p
(2)X = 7T^

100 - p

Je totiž 100 — p ф 0, neboť jер Ф 100; jinak by v druhém tý-
dnu dílna vůbec nepracovala.

Vzorec (2) dává výsledek, který ověříme zkouškou.
Z (2) totiž vyplývá, že

100 +px

100 100 - p

Počet výrobků v třetím týdnu je pak podle tabulky

100 + p
'

Ю0 - p

p x n

(100 - p)n 1 - 1 +
100/ 100 100

100/ 5

součet výrobků z 1. a 3. týdne je potom skutečně 3n3 protože

" + "( 1 ~ Ш0 ) + ” (1 + шо) =
/ p

, p \
— П П ( 1 — “bid-, I —

\ 100 100'
= n b 2n = 3n.
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200
Např. pro n = 10 dostaneme z (2) x = == 22,2 %.

63. V továrně pracovalo 1 440 zaměstnanců (mužů a žen).
Za vzornou práci dostalo prémie 18,75 % mužů a 22,5 % žen.
Vedení továrny vyhlásilo, že prémiemi bylo odměněno 20 %
zaměstnanců. Kolik mužů a kolik žen bylo zaměstnáno v to-
várně ?

Řešení. Neznámý počet zaměstnaných mužů označíme x,

počet zaměstnaných žen označíme y. Všimněme si, jakého typu
je matematická formulace úlohy. Jsou to dvě lineární rovnice

X + у = s,

(1)
ax + by = cs.

V našem případě je s = 1 440, a — 0,187 5, b = 0,225, c = 0,20.
Typ úlohy je tento: Je dán součet s hledaných čísel a součet
jistých částí hledaných čísel je jistá známá část součtu s. Pře-
pišme znovu soustavu (1) s číselnými údaji:

(2)x -\-y — 1 440
0,187 5x + 0,225j> = 0,2 . 1 440

Dosadíme z první rovnice (2) za j> do druhé:

0,187 5x + 0,225 (1 440 - x) = 0,2 . 1 440

neboli
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(0,187 5 - 0,225)* = (0,2 - 0,225) . 1 440

neboli

0,037 5* = -0,025.1 440

neboli

375* - 25.14 400.

Odtud plyne 15* = 14 400 a dále

* = 960;

z první rovnice (2) pak vyjde

у - 480.

Zkouškou ověříme správnost výpočtu.

64. Při omezování odběru elektrické energie v době špiček
se 35 závodů zavázalo к snížení spotřeby. Celkem byly tři
skupiny závodů: V první skupině každý závod dosáhl snížení
na 50 % pravidelného odběru, v druhé snížil každý závod
spotřebu o J, ve třetí o i pravidelného odběru.

Tím se dosáhlo úspory 40 % celkové pravidelné spotřeby.
Přitom v první skupině byl počet závodů dvojnásobný než
v druhé a původně měl každý z 35 závodů tutéž spotřebu.
Kolik bylo závodů v každé skupině?
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Řešení. Označíme písmeny neznámé počty závodů: v druhé
skupině bylo x závodů, v první 2x závodů, v třetí у závodů.

Je tedy 2x + x + у = 35 neboli

3x -\-y = 35. (1)

Dále označme m kWh spotřebu elektrické energie, kterou
původně odbíral každý z 35 závodů v době špičky. Celková
původní spotřeba v době špičky byla 35 m kWh.

Zapišme původní i snížené spotřeby jednotlivých skupin
do tabulky:

Druhá
skupina
závodů

Třetí
skupina
závodů

První
skupina
závodů

Celkem

Původní

spotřeba 35m2xvi ymxm

Snížená
spotřeba

50 2 3 60

m-2xm 100-35w.xm ~4 -У*»3

Podle textu úlohy je

2 3 3
xm + —xm -j- ~~ym — — . 35 m;

po úpravě dostaneme
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5 3
= 21*x+v

a dále

(2)20x + 9y = 252.

К rovnici (2) připojíme rovnici (1) a vyloučíme y, vyjde

20x + 9(35 - 3x) = 252

a dále

Ix = 63,

.v = 9.

Z rovnice (1) vyjde у = 8.
V první skupině je tedy 2.9 = 18 závodů, v druhé 9 a v třetí

8.

Zkouškou ověříme, že výsledek je správný (při zkoušce po-
čítáme vlastně údaje z tabulky).

65. Na chmelové brigádě soutěžily dvě třídy v česání chmele.
Jedna třída o 39 žácích pracovala 9 dní a natrhala 2 282 věrtelů.
Druhá třída o 31 žácích pracovala 8 dní a natrhala 1 959
věrtelů. Přitom jeden žák z této třídy onemocněl a čtyři dni
nepracoval. Která třída měla vyšší průměrný denní pracovní
výkon na osobu ?
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Řešení. Výkon první třídy by splnilo za jeden den 39.9 —

= 351 žáků. Průměrný denní výkon na osobu je tedy

2 282
—

= 6,5 (věrtele).

Výkon druhé třídy by splnilo za jeden den 31.4 -f 30.4 =
= 124 + 120 = 244 žáků (ve skutečnosti 4 dni pracovalo
31 žáků, 4 dni jen 30 žáků). Průměrný denní výkon na osobu
je tedy

1 959
8,0 (věrtele).244

Vyšší výkon měla tedy druhá třída, která zvítězila.

66. Máme 1 500 gramů 7,2procentního roztoku kuchyňské
soli ve vodě. Vařením tohoto roztoku se odpaří část vody
a zůstane 1 200 gramů nového roztoku.

a) Kolikaprocentní je nový roztok ?
b) Kolik gramů soli musíme přidat do nového roztoku, aby

vznikl 25procentní roztok ?

Řešení. Je třeba si připomenout, co znamenají slova »1 500
gramů 7,2procentního roztoku kuchyňské soli«. Hmotnost to-
hoto roztoku je 1 500 g a roztok se skládá z

7,2 % z 1 500 g, tj. 1 500.0,072 g soli a

92,8 % z 1 500 g, tj. 1 500.0,928 g vody.
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Původní roztok obsahuje tedy 108 g soli a 1 392 g vody.
Úloha a). Po odpaření se množství soli nezměnilo, celková

hmotnost roztoku je 1 200 g. Procenta soli tedy určíme dělením

108 : 1 200 = 0,09.

Nový roztok je 9procentní.
Úloha b). Otázka úlohy nás vybízí, abychom zavedli ne-

známou: označíme x počet gramů soli, které musíme přidat
к 1 200 g roztoku se 108 g soli, abychom dostali 25procentní
roztok. Zápis úlohy je

0,25 . (1 200 + x) = 108 + x

neboli

J(1 200 -j- x) — 108 -f- x. (1)

Rovnici (1) upravíme

1 200 + x = 432 + 4x

a řešíme; vyjde

x — 256.

Je tedy třeba přidat 256 g soli.

67. Máme dva kusy klempířské pájky (slitina olova a cínu)
o hmotnostech 5 kg, 1\ kg. Obsah cínu v prvním kusu je \ jeho
hmotnosti, v druhém kusu % jeho hmotnosti. Od obou kusů
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oddělíme část stejné hmotnosti a připojíme ke zbytku druhého
kusu. Po slití každého zbytku s nově připojenou částí dosta-
neme opět dva kusy o hmotnosti 5 kg a 1\ kg.

Vypočtěte hmotnosti oddělených částí, aby nové slitiny
měly stejné procento cínu.

Řešení. Hmotnost oddělených částí v kg označíme x a pro
přehlednost si zapíšeme údaje do tabulky.

Část
oddělená
od první

pájky

Část
oddělená
od druhé

pájky

Zbytek
druhé

pájky

Zbytek
první
pájky

Hmotnost
v kg i 7,5 — x5 — xx X

Díl cínu 1 11 1

4 34 3

7,5 —xHmotnost
cínu v kg

5 — xx X

4 34 3

tt tf

Nově vzniklé pájky jsou:
x 7,5 — x

a) 7,5 kg, obsahující (podle tabulky) — + ——— kg cínu,

5 — x

b) 5 kg, obsahující (podle tabulky) — + —-— kg cínu.3 4

X
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Podle textu úlohy je

V)7,5 - * ixx

: 7,5 = : 5.+\ 34 3

Odtud dostaneme

(3x + 30 - 4x) : 7,5 = (4* -f 15 — 3x) : 5

neboli

5 . (30 — x) = 7,5(15 + x),

tj. x = 3. Oddělená část váží 3 kg, což ověříme zkouškou.

68. Klempířská pájka je slitina cínu a olova. Jeden druh
pájky obsahuje 25 % cínu a druhý 60 %. Smísením obou
druhů pájky a přidáním 2 kg čistého olova máme vyrobit
10 kg pájky obsahující 30 % cínu.

Kolik kilogramů každého druhu pájky potřebujeme к výrobě
nové pájky?

Řešení. Soustředíme se na hmotnosti olova obsaženého
v každém ze tří druhů pájek. První druh obsahuje 25 % cínu -

tedy 75 % olova, druhý druh 60 % cínu - tedy 40 % olova.
Výsledná pájka obsahuje 30 % cínu - tedy 70 % olova.

Potřebná množství pájek označíme: xkg prvního druhu,
у kg druhého druhu.
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Celkem je ve směsi obou pájek po přidám 2 kg olova

0,75л; + 0,40j/ + 2 (1)

kilogramů olova. Celkem dostaneme x у 2 — Ю kg pájky
se 70 % obsahem olova. Je tedy podle (1)

0,75л; + 0,40j> + 2 = 0,70.10 (2)

a mimoto

(3)x -\- у — 8.

Rovnice (2), (3) tvoří soustavu dvou lineárních rovnic o dvou
neznámých x, y. Rovnice (2) dá po úpravě 15x - 40у = 500
neboli

(4)15x + 83; = 100.

36
Dosadíme-li za у z (3) do (4), dostaneme x = — a z (3) pak

20
у = — . Výsledek ověříme zkouškou.

61
Odpověď. Potřebujeme 5 у kg prvního druhu pájky a 2 — kg

druhého druhu.

Úlohu rozřešíme ještě jednou graficky. Osu x zvolíme
za »osu pájky«; jednotková úsečka znázorňuje 1 kg pájky.
Osu у zvolíme za »osu cínu«; jednotková úsečka znázorňuje
1 kg cínu.
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2T7

Obr. 13

Určitá pájka obsahuje vždy totéž procento cínu. Např. první
druh pájky obsahuje 25 % cínu, tj. např. 4 kg pájky obsahují
1 kg cínu, 8 kg pájky obsahuje 2 kg cínu atd. Grafem pájky je
tedy polopřímka; každý bod této polopřímky má za souřadnice
čísla x, y, udávající počet kg pájky (x) a cínu (y). Čisté olovo je
»pájka«, jejímž grafem je poloosa +x.

К sestrojení grafu kterékoli pájky stačí její počátek [0,0]
a jeden další bod. Tak jsou sestrojeny na obr. 13 grafy obou
druhů pájek i graf výsledné pájky s 30 % cínu.
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Konstrukce je provedena takto: Když z 10 kg výsledné pájky
рз (bod A) ubereme 2 kg olova, dostaneme pájku charakteri-
zovanou bodem B. Bod C leží na grafu pi, a to tak, aby bylo
BC jj P2- Když sestrojíme bod C, odečteme množství obou
druhů pájek, jak ukazuje obr. 13.

69. Ve sklepě JZD jsou dva sudy vína; v jednom je a litrů
vína po n Kčs, ve druhém b litrů vína po p Kčs. Z každého sudu
ubereme současně totéž množství vína a nalejeme je do druhého
sudu. Lze toto množství zvolit tak, aby cena směsi za jeden
litr v obou sudech byla stejná? Jaká bude tato cena?

Vypočtěte numericky pro a = 80 litrů, b = 120 litrů,
n = 20 Kčs, p = 16 Kčs.

Řešení. Vyplníme tabulku:

Celková cena

v Kčs
Cena za 1 litr j

v Kčs
Množství vína

v litrech

Před
mícháním a an n

T3 (a — x)n + xpPo
3 (a — x)n + xpmíchání (<a x) + x = a a

Před
mícháním bpb P

T5
Po (b — x)p + xng

(b — x)p + xnmíchání ib x) + x = b b
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Přitom x je množství vína v litrech, které se ubralo z I. i II. su-
du. Podle znění textu úlohy má mít směs v sudě I i v sudě II
stejnou cenu za 1 litr, tj. má platit (viz tabulka)

{a — x) n + xp (b — x)p -f xn
(1)ba

Při úpravě se z této rovnice (1) vyloučí n, pokud je n Ф p
(n — p Q), a dostaneme

ab
(2)x =

a + b'

Cena za jeden litr směsi je podle tabulky

(a - x) n + xp
(3)q =

a

Dosadíme-li do (3) z (2), dostaneme

an + bp
q = ~

a + b

Číselně vyjde л; = 48 litrů, q = 17,60 Kčs.

Nyní se ještě podíváme na vyloučený případ n = p, tj. kdy
cena za 1 litr vína je v obou sudech stejná. Popsaným přelévá-
ním vína se jeho cena za 1 litr ani v jednom sudu nemůže zrně-
nit; v obou bude stále n = p. Vzorec (3) platí i v tomto případě.
Vzorec (2) však neurčuje všechna řešení; v tomto případě může
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být přelévané množství vína x jakékoli kladné číslo, jež je
menší nebo rovné menšímu z čísel a a bý plyne to i z toho, že
rovnici (1) lze pro n = p upravit na tvar x . 0 = ab . 0.

70. Bylo vypočteno, že stavební materiál odveze jisté auto
za x dní (x > 3). Když bylo třeba odvoz urychlit, počal se
materiál čtvrtého dne odvážet ještě dalšími dvěma auty. Výkon

5
1. pomocného auta byl — výkonu původního auta, výkon

2. pomocného auta byl 1,5 výkonu původního auta. Celý odvoz
pak trval у dní.

a) Vyjádřete у pomocí x.

b) Pro která celá čísla x < 50 je у číslo celé ?
Řešení. Označíme M množství materiálu v tunách a vy-

plníme tabulku:

Původní auto 1. pomocné auto 2. pomocné auto

Odvezený
materiál
za 1 den

5_ M.
6 ’ x

MM
1,5 . —

Xx

Počet
pracovních

у — 3dní у — 3У

Z této tabulky vyčteme rovnici

MM 5 M
M =y— + {y — 3)

x
-b 1,5 (3; — 3) — .6 x
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Dělíme číslem M a upravíme

20
x — 3 = {y - 3). — .

Další úpravou dostaneme

3
У = (Л + 7),10

což dává odpověď na otázku a).
Má-li x vyhovovat požadavkům úlohy b), musí být * + 7

násobkem 10 a x < 50. Oběma požadavkům vyhovují jedině
čísla x = 13, 23, 33, 43, neboť v textu úlohy je podmínka
x > 3.

71. Turistického zájezdu se zúčastnilo 286 zaměstnanců
podniku. Měli к dispozici jednak autobusy s 19 sedadly,
jednak autobusy se 17 sedadly (řidič a jeho sedadlo se neberou
v úvahu).

Kolik autobusů každého druhu se použilo při zájezdu, když
všechna sedadla v každém autobusu byla obsazena ?

Řešení. Text úlohy nás vybízí к zavedení dvou neznámých:
x počet autobusů s 19 sedadly,
у počet autobusů se 17 sedadly.

Matematický zápis úlohy je

19* + 17у = 286, (1)
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neboť 19л: je počet všech osob, které jely autobusy prvního
druhu, 17y je počet všech osob, které jely autobusy druhého
druhu.

Rovnice (1) je rovnice o dvou neznámých; hledáme však
taková její řešení x, y, která jsou přirozená čísla.

Rovnici (1) budeme řešit pokusně. Pro я = 1, 2, 3, ...

budeme počítat rozdíl 286 — 19л; a mezi těmito čísly vyhledáme
násobky čísla 17. Přitom stačí omezit se na čísla x = 1 až
x = 15, neboť 15 autobusů prvního druhu odveze 15.19 = 285
osob a větší počet než 15 autobusů by nebyl zcela zaplněn.

Sestavíme tabulku:

2 4 51 3 6 7 8 9 10 11 12 13 14 15x

286—
—19* 267 248 229 210 191 172 153 134 115 96 77 58 39 20 1

Všimněme si, že druhý řádek tabulky (2) dostaneme postup-
ným přičítáním čísla 19 takto: 1 -f 19 = 20, 20 -f- 19 = 39,
39 + 19 = 58 atd.

V druhém řádku tabulky (2) nyní vyhledáme násobky čísla
17; к tomu účelu si vypíšeme »násobilku sedmnácti«:
17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204,
221, 238, 255, 272, 289, ....

Z těchto násobků je v druhém řádku tabulky (2) obsaženo
jediné číslo 153. Podle tabulky (2) je tedy x = 7 a z rovnice (1)
plyne у = 9.

Odpověď; Při zájezdu se použilo 7 autobusů prvního druhu
a 9 autobusů druhého druhu.
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Jiné řešení. Užijeme postup velmi obvyklý v úlohách
na zjištění počtu předmětů dvou druhů (v našem případě
autobusů). Seskupíme autobusy do dvojic: v každé dvojici bude
jeden autobus prvního druhu a jeden autobus druhého druhu;
tato dvojice pojme 19 -f 17 = 36 sedících osob. Takovýchto
dvojic je nejvýše 7, neboť

286 : 36 = 7

34

Při 7 dvojicích stačí ještě přibrat 2 autobusy druhého druhu,
neboť 2.17 = 34, a úloze je vyhověno; dostáváme týž výsledek
7, 9 jako při předchozím způsobu řešení.

Zbývá ovšem ještě dokázat, že není možné řešení s menším
počtem dvojic autobusů. To provedeme pomocí tabulky (3):

3 4 6 70 : l 2 5z

(3)
286—362 286 250 ! 214 106178 142 70 34

Přitom z znamená počet dvojic autobusů. Protože v druhém
řádku je jediný násobek sedmnácti (34) a žádný násobek deva-
tenácti, má úloha jediné řešení.

72. Vzdálenost Praha - Brno po železniční trati je 255 km.
Rychlík projede tuto trať za dobu t hodin. Má-li se doba jízdy
rychlíku zkrátit o p %, musí se jeho průměrná rychlost c km/h
zvýšit o q %.

a) Vyjádřete q pomocí c, t a p.
b) Vypočtěte q, je-li p — 10.
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Řešení, a) Možná, že se někdo hned pozastaví nad úlohou b).
Jak mám vypočítat q, neznám-li car? Uvidíme, že to je možné,
neboť q vůbec nezávisí ani na c, ani na r; to nám ukáže řešení
úlohy a).

Sestavme si tuto přehlednou tabulku:

Po zvýšení rychlostiPůvodně

c(1 + 100)Průměrná rychlost jízdy
(km/h) c

r(1 íoo)Doba jízdy (h) t

Co jsme potřebovali к sestavení této tabulky? Stoupne-li
q

y^.c; nová rychlost je tedyrychlost c o q %, činí přírůstek

q / q
c + c. = c 1 + —

100
Podobně tomu je s dobou.100/'

V obou případech jede rychlík z Prahy do Brna; je tedy

P/ Ч.
ct = 255, cl 1 + — (1)= 255.

100/100

Z obou rovností (1) dostaneme

cí = a(1 + ioo) (1_ioo) (2)
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Rovnice (2) dělíme číslem ct; vyjde

(1 + ioo) (
p

(3)= 1.1 -
100

Rovnost (3) znásobíme činitelem 1002; dostaneme

(100 + q) (100 -p) = 1002,

tj-

1002 + ?(100 - />) - 100/) - 1002.

Odtud vyjde

#(100 — p) — 100/>. (4)

Protože je určitě p < 100, je 100 — p > 0; z (4) pak vyjde

100/)
(5)q = 100 —p

Vztah (5) je výsledný vzorec; je vidět, že q skutečně závisí
jen na />, nikoli na c, t, dokonce nezávisí ani na vzdálenosti
Praha - Brno (255 lan).

Vypočteme dosazením p = 10 do vzorce (5); dostaneme

1 000 1
= U9-q 90
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Úloha nás poučuje o tom, že některé údaje v textu mohou být
zbytečné. Dále nás upozorňuje, jak je výhodné počítat nejdříve
s proměnnými (písmeny) a pak teprve dosazovat číselné údaje;
tím se vyhneme zbytečným výpočtům.

73. Petr a Milan jeli tramvají do kina, které je v ulici na
trati tramvaje mezi stanicemi A, B. Poměr vzdáleností vchodu
do kina od stanic А, В je 3 : 2. Petr vystoupil na stanici A,
Milan na stanici B. Šli stejnou průměrnou rychlostí a ke
vchodu kina přišli v témž okamžiku. Vypočtěte, kolikrát byla
průměrná rychlost jejich chůze menší než průměrná rychlost
tramvaje mezi stanicemi A, B.

Řešení. Tramvaj zřejmě nejdříve přijela do stanice A. Jen
tak je možné, aby chlapci přišli v týž okamžik ke vchodu kina.

Vzdálenost zastávek AaBv kilometrech nechť je 5a (obr. 14).

КA В

За 2 а

Obr. 14

Průměrnou rychlost chůze chlapců v km/h označme v. Je-li
průměrná rychlost tramvaje x-krát větší než průměrná rychlost
chůze chlapců, pak je její rychlost xv km/h.

Doby cest chlapců ke vchodu kina měřme od okamžiku, kdy
tramvaj zastavila ve stanici A. Pak platí
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За
tp = —- 5

v

5a 2a

tM = + •

v

Odtud plyne

3a 5a 2a
_ _j_

vv

tj.

5
3 = +2,

■

takže

x = 5.

Snadno ověříme, že chlapci přijdou ke vchodu kina v týž
okamžik, má-li tramvaj pětkrát větší průměrnou rychlost než
chlapci.

Závěr. Chlapci šli pětkrát menší průměrnou rychlostí, než
byla průměrná rychlost tramvaje mezi stanicemi А а Б.

74. Dva přátelé z téže obce potřebují navštívit blízké město.
První jde pěšky a cesta mu trvá hodinu. Druhý jede na kole
a cesta mu trvá 20 minut. Chodec vyšel čtvrt hodiny před
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odjezdem cyklisty. Za jakou dobu po svém odjezdu ho cyklista
dohoní ?

Řešení. Úloha patří do skupiny úloh na »dohánění« a »potká-
vání«. Chceme-lituto úlohu řešit úsudkem, je dobře sizapamato-
vat tento obrat: představíme si, že pomalejší z obou cestovatelů
(v našem případě chodec) se nepohybuje. Pak rychlejší cesto-
vatel se bud pohybuje proti němu rychlostí vi + V9, nebo ho
dohoní rychlostí v\ — V2I přitom vi(v2) značí rychlost (v km/h
nebo m/min apod.) rychlejšího (pomalejšího) cestovatele.

V okamžiku, kdy vyjel cyklista z obce O do města M, byl
chodec v místě P vzdáleném od O o {OM (neboť tuto vzdále-
nost urazil chodec za čtvrt hodiny, OM urazí za hodinu);
obr. 15.

P M0

Obr. 15

Zastavíme chodce v místě P a cyklista ho bude dohánět
rychlostí vi — V2 (v m/min). Přitom platí

(1)ОЛ1 = . 20 = V2.60.

Hledaný čas (za který cyklista dohoní chodce) je

OM
(2)— : (vi - v2).t =
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Z (1) vypočteme vi — 3v2 a dosadíme do (2)

1 OM
—-: 2v2 = — .

4 8 V2

OM
(3)t =

60 15 1
—

= — — 7—.
8 2 2

О/иГ
Podle (1) je = 60; z (3) tedy dostaneme t

V2

Cyklista dohoní chodce za 7| minuty.
Úlohu rozřešíme ještě jednou graficky. Použijeme

přitom vlastně »grafický jízdní řád« pro cyklistu a chodce,
které zakreslíme do téhož obrazu.

dráhyosa
D ВП-

graf cyklisty
‘’graf chodce

E

ion-

osa časuA C,
0 10 i 20 4030 50 60

Z5

Obr. 16
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Osu x zvolíme za »osu času«; jednotková úsečka značí 10
minut. Osu у zvolíme za »osu dráhy«; jednotková úsečka
značí \ vzdálenosti OM. Cyklista i chodec se pohybují stálými
rychlostmi ví, v?, tj. konají pohyb rovnoměrný. Dráha vyko-
naná při tomto pohybu je přímo úměrná času; proto je grafem
rovnoměrného pohybu přímka (část přímky). К jejímu sestro-
jení stačí dva body, tj. dvě dvojice údajů: čas - vykonaná
dráha. Na obr. 16 se použilo bodů А, В pro chodce, C, D pro

cyklistu. Bod A odpovídá času 0 minut (počátek pozorování)
a dráze 0 km (obec O). Bod В odpovídá času 60 minut a dráze
OM km (vzdálenost obce O od města M). Bod C odpovídá
času 15 minut (cyklista vyjel \ h po chodci) a dráze 0 km
(obec O). Konečně bod D odpovídá času 35 minut (15 + 20 =
= 35, cyklista jel z O do M 20 minut) a dráze OM km.

Průsečík E obou grafů udává čas a dráhu předjetí chodce
cyklistou. Čas je 22,5 min od vyjití chodce, tj. 7,5 min od
vyjetí cyklisty z obce O.

9 В (Jirka)

í

400-3t

A (Zdenik)К 500-4t

Obr. 17
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75. Zdeněk a Jirka bydlí v domech А, В ve dvou vzájemně
kolmých ulicích; domy А, В jsou od křižovatky К obou ulic
po řadě vzdáleny 500 m a 400 m. V témž okamžiku vyjedou
oba chlapci na kolech od svých bydlišť po ulicích AK, BK
směrem ke křižovatce K, kterou projedou.

Zdeněk jede průměrnou rychlostí 4 m/s, Jirka průměrnou
rychlostí 3 m/s. Za kolik sekund po startu bude jejich vzdušná
vzdálenost nejmenší a kolik metrů to bude?

Řešení. V okamžiku t sekund po startu (obr. 17) je podle
Pythagorovy věty vzdálenost obou chlapců (v m) dána vzorcem:

z°- = (500 - 4O2 + (400 - 3r)2

neboli

я2 - 25r2 - 6 400 г + 410 000

neboli

s2 = (5 t — 640)2 + 400.

Proměnná z2 nabývá svého minima jen tehdy, je-li 51 — 640 =

= 0, tj. r = 128 sekund. Toto minimum je ]/400 metrů,
tj. 2 = 20.

76. Ručičky hodin ukazují přesně 12 hodin. Otočíme minu-
tovou (velkou) ručičkou stokrát po sto stupních. Kolik hodin
budou pak hodiny ukazovat? Udejte s přesností na minuty.
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Řešení. Předpokládáme, že otáčení velkou ručičkou nepro-
vádí ničitel hodinových strojů, tj. že se otáčení děje ve smyslu
pohybu hodinových ručiček. Otočí se o 100.100°, tj. o 10 000
úhlových stupňů. Jedné časové minutě je na ciferníku přiřazen
úhel 6°; provedenému otočení je tedy přiřazen čas \.10 000 ==

== 1 667 časových minut, tj. 27 hodin 47 minut, neboť 1 667 =
= 27.60 + 47. Je tedy

10 000° -> 1 den + 3 hodiny + 47 minut.

Hodiny budou ukazovat 3h 47min (s přesností na jednu
minutu).

77. Kolikrát v době od 14.00 hodin do 14.05 hodin je cen-

trální sekundová ručička hodinek osou dutého úhlu sevřeného
hodinovou a minutovou ručičkou? Udejte příslušné okamžiky
s přesností na sekundy.

Řešení. Nechť S je střed ciferníku hodin a bod O nechť
na něm označuje 12 hodin. Označme a, /?, у velikosti úhlů
sevřených po řadě minutovou, hodinovou a sekundovou ručič-
kou s polopřímkou SO po uplynutí t sekund po 14. hodině.

Minutová ručička opíše za 1 hodinu, tj. za 3 600 sekund,
úhel o velikosti 360°. Tedy

t t

(1). 360 = —oc =

103 600

stupňů.
Hodinová ručička svírá ve 14 hodin s polopřímkou SO úhel

126



o velikosti 60°. Za 12 hodin, tj. za (12.3 600) sekund, opíše
tato ručička úhel 360°, takže

t t
. 360 + 60 = (2)f 60

12.3 600 120

stupňů.
Sekundová ručička opíše za 1 minutu, tj. za 60 sekund, úhel

o velikosti 360°. Tedy

t

(3).360 — £.360 = 6ř — £.3607 = 60

stupňů, kde £ je celé nezáporné číslo udávající, kolikrát sekun-
dová ručička oběhla celý ciferník za dobu t sekund po 14
hodinách.

V hledaných okamžicích je velikost úhlu у aritmetickým
průměrem velikostí úhlů a a /9. Platí tedy podle (1), (2), (3):

1 t t
61 - £.360 =

2 10 + 120 + 60 ’

odkud po úpravě dostaneme

(4)1 427 t = 86 400 k + 7 200;

z této rovnice už lehko určíme t.

Podle textu úlohy splňuje t nerovnici

0 ^ t ^ 300.
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Tuto podmínku však splňuje pouze pět kořenů rovnice (4),
totiž

6, 66, 126, 186, 247

(s přesností na celé sekundy). O správnosti počtu řešení se též
můžeme přesvědčit jednoduchým úsudkem.

78. Na výstavě hraček jezdí dvě elektrické lokomotivy po kole-
jích položených na dvou soustředných kružnicích &i(6i;ri),
^2(^2; Г2), kde ri < Г2, ve stejném smyslu stálou rychlostí v.

Vyjely z polohy, v níž byly sobě nejblíže. V kterých okamžicích
po startu budou od sebe

a) poprvé nejdále;
b) poprvé nejblíže ?

Řešte nejprve obecne, pak pro n = 60 cm, Г2 = 70 cm,

v — 20 cm/s, к ==

22

7 *

Řešení. Nechť body Li a L2 na obr. 18 znázorňují obě
lokomotivy v jistém časovém okamžiku. Označme К průsečík
polopřímky S1L2 s kružnicí k\. Pohybuje-li se bod L2 po kruž-
nici k% rychlostí v, pak se bod К pohybuje po kružnici k±
rychlostí

П
v.—

Body Li a L2 jsou si zřejmě nejdále (nejblíže), právě když
jsou si nejdále (nejblíže) body Li а К. V okamžiku startu
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body Li a К splývaly. Protože ri < Г2, je rychlost bodu К
menší než rychlost bodu L\.

a) Body Li а К budou od sebe nejdále, právě když budou
v krajních bodech téhož průměru kružnice k\. Poprvé se tak
stalo v okamžiku t, v němž platilo

n
V.t — V. — . t = 7ГГ1,

r2

tj-

ПГ1Г2

v(r2 — n)5
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pro dané údaje t = 66 s. V tomto okamžiku jsou od sebe
také poprvé nejdále obě lokomotivy.

b) Body Li а К budou к sobě vždy nejblíže, když budou
splývat. Poprvé se tak stane, když bod Li bude mít před
bodem К náskok 2nr\. Bude tomu tak v časový okamžik T,
v němž bude platit

n
vT — v — T — 2itrn

Г2

tj. pro

2кГ\Г2
t =

v(j2 — ri)
— 2í;

pro dané údaje T= 132 s. V tomto okamžiku jsou také poprvé
po startu nejblíže к sobě obě lokomotivy.

79. Ozubené pedálové kolečko jízdního kola (bicyklu) má
48 zubů; malé převodové kolečko na zadní ose má 20 zubů.
Průměr zadního kola bicyklu je 72 cm. (Uvědomte si, že vzdá-
lenost dvou sousedních zubů u obou koleček je táž.) Cyklista
jede po vodorovné silnici stálou rychlostí 25 km za hodinu
na plný záběr (šlape rovnoměrně).

a) Kolikrát musí šlápnout za 1 minutu, aby si udržel stálou
rychlost 25 km/h?

b) Kolikrát musí šlápnout na trati dlouhé 4,5 km ?

Řešeni. Úloha je značně idealizována; může být proti ní
oprávněná námitka, že se takto na kole nejezdí.
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Otočí-li se pedálové kolečko jednou, otočí se zadní kolo
—

= 2,4krát; к lomu, aby se pedálové kolečko otočilo jednou,

musí cyklista šlápnout dvakrát.
Při jednom šlápnutí ujede zadní kolo dráhu délky (v cm)

48

nd. 2,4 3,14.72.2,4
= 271,296 d= 271,

2 2

kde d jsme označili průměr zadního kola bicyklu.

Na dráze 25 km = 2 500 000 cm cyklista šlápne tolikrát,
kolik je 2 500 000 : 271; to je přibližně 9 225. Za jednu hodinu
tedy šlápne 9 225krát a za jednu minutu 9 225 : 60 = 153,75,
tj. přibližně 154krát.

4,5
Poměr drah 4,5 km a 25 km je —. V témže poměru se změní25

i počet šlápnutí, tj. číslo 9 225; dostaneme

4,5
9 225 . — = 369.4,5 = 1 660,5 = 1 660.25

Na dráze 4,5 km musí cyklista šlápnout asi 1 660krát.
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I. Úlohy na konstrukci čar vzniklých pohybem bodu

1. Na obr. 19 je čtverec ABCD o straně délky 9 сш a dále
12 shodných rovnostranných trojúhelníků Ti, T2, ..., T12.
Převedeme trojúhelník Ti v T2, T2 v T3, ..., Ti2 v Ti vždy
otočením kolem společného vrcholu obou trojúhelníků, prove-
děným ve čtverci ABCD.

D

/1

Obr. 19
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a) Sestrojte čáru, která je dráhou vrcholu X ve všech těchto
otočeních.

b) Vypočtěte její délku a porovnejte ji s délkou kružnice
opsané i kružnice vepsané čtverci ABCD.

Řešení, a) Čára je vyznačena v obrázku tlustě (zmenšeno
na tři čtvrtiny). Skládá se ze čtyř oblouků kružnice o poloměru
AX délky 3 cm příslušných к středovému úhlu 120° a ze čtyř
oblouků kružnic téhož poloměru příslušných к středovému
úhlu 30°.

b) Délka čáry je (v cm)

3к Зтс
d = 4-m-120 + 4 30

180

(1)
3к 1Зк

= 4. — .2+4. — = 4.2я+ 4 . — я
JO z

— 10 л.

Délka kružnice opsané čtverci ABCD je

d\ — n . 9 . ]/2 = 12,7jt, (2)

délka kružnice vepsané čtverci ABCD je

(3)dz = 9n.

Je tedy podle (1), (2), (3)

d2<d< di.
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4 cm) vepište rovnostranný2. Do dané kružnice k — (S;r
trojúhelník ABC. Trojúhelník ABC se i s kružnicí k a polo-
přímkou AB otáčí rovnoměrně kolem bodu 5. Na polopřímce
AB se zároveň pohybuje rovnoměrně bod X tak, že jeho po-
čáteční poloha je bod A, přičemž za dobu jedné otočky
(tj. otočení o 360°) trojúhelníku urazí dráhu o velikosti 2 . AB.

Uvažujte oba smysly otáčení.

a) Narýsujte polohu bodu X v jednotlivých dvanáctinách
první otočky.

b) Nakreslete co nejpřesněji čáru, kterou opíše bod X při
svém pohybu během první otočky.

Řešení. Na obr. 20 (zmenšeno na polovinu) jsou čárkovaně
vyznačeny polohy trojúhelníku ABC při otáčení v opačném
smyslu než je pohyb hodinových ručiček. Např. poloha A\B\Ci

1
vznikla otočením o úhel velikosti — ze 360°, tj. o 30°. Pohybují-

cí se bod X dostane se po polopřímce AiBi do polohy 1,
přičemž platí

1 1
d(Arl) = - . 2 . d(AB) — — d(AB).*)

*) Zápis d(Ail) ve významu »délka úsečky A\ 1« užíváme podobně
jako v nově zaváděných učebnicich matematiky pro ZŠ.

137



Úsečku délky — d(AB) sestrojíme да pomocném obr. 21 takto:

Bodem A vedeme polopřímku AM různoběžnou s přímkou
AB. Na polopřímku AM naneseme postupně libovolné shodné
úsečky tak, že vzniknou body (1), (2), ..(6). Pak bod (6)
spojíme s bodem В a systémem rovnoběžek vytvoříme podobné
trojúhelníky
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ДЛ1(1) ~ ДЛ2(2) ~ ... ~ Д А6(6).
21

Dostaneme tak úsečky А1 = — ЛБ, Л2 = — АВ atd. potřebné
о 6

ke konstrukci poloh 1,2,... bodu Xpři daném pohybu (obr. 21).

H
(6)'

(5)/ /
//(Э)'A /

// /(2)/, // //H)/ / /// // /
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Na obr. 22 je znázorněno otáčení trojúhelníku ve smyslu
pohybu hodinových ručiček. Konstrukce se provede obdobně
jako na obr. 21; v tomto případě se bod X pohybuje po polo-
přímce AC.

3. V bodě A na okraji gramofonové desky sedí brouk.
Ozrtačme S střed desky a AB její průměr. Brouk začne lézt
z bodu A po úsečce AB do bodu В; v okamžiku, kdy se dá
brouk do pohybu, počne se deska otáčet. Když se deska jednou
otočí, dorazí brouk právě do bodu B.

Narýsujte cestu brouka po desce, jak se jeví pozorovateli
při pohledu shora. Přitom předpokládáme, že pohyb brouka
i otáčení desky se děje rovnoměrně.*) Průměr AB volte 12 cm.

Pro narýsování cesty brouka sestrojte přesně body, v nichž
je brouk v jednotlivých dvanáctinách jedné otočky desky.

Řešení je pro jeden možný smysl otáčení desky provedeno
na obr. 23. Jednotlivé polohy brouka na desce dostaneme takto:
Kdyby se deska neotáčela, dostal by se brouk na cestě z bodu
A do bodu В postupně do poloh (1), (2), (3) atd. Protože se
však deska otáčí i s broukem a s úsečkou AB, bude se brouk
např. místo v poloze (1) nalézat na polopřímce SAi. Tato
polopřímka vznikne otočením polopřímky SA o úhel velikosti

1
— z 360°, tj. o 30°. Přitom platí S( 1) = 51.

Obdobně zkonstruujeme body 2, 3, 4, 5 a 6. Bod (7) a další
leží už na polopřímce opačné к SA; proto bod 7 (a další)
bude ležet na polopřímce opačné к SA7 atd. Uvedenou kon-

*) Všimněte si, že v úloze jde vlastně o skládání dvou rovnoměrných
pohybů: posunutí a otočení.
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strukcí, kterou můžeme nazvat »bodovou«, získáme jen jednotli-
vé body cesty; jejich spojením plynulou čárou dostaneme
hledanou cestu.

Čím přesněji chceme dráhu narýsovat, tím více jejích bodů
se pokusíme sestrojit. Na obr. 23 je pohyb rozdělen do 12 poloh;
můžete ho však rozdělit též např. do 16 nebo 24 poloh.

A3

A2
\

otáčeni

l-л, (V 12) a m (8) (9) (10) (11) В-A =12
O
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4. Narýsujte pravidelný osmiúhelník

A1A2A3A4A5A 6A 7A 8

se středem O. Uvnitř tohoto osmiúhelníka sestrojte nad úsečkou
A1A2 čtverec A1A2CD; jeho střed označte S.

Čtvercem, který jste sestrojili, budete pohybovat tak, že
stále zůstane v daném osmiúhelníku. Čtverec nejdříve otočíte
kolem bodu A2 tak, že vrchol C splyne s bodem A3; novou

polohu bodu D označte D'. Čtverec, který jste tak dostali, pak
otočíte opět, tentokrát kolem bodu A3, a to tak, že bod D'
po otočení splyne s bodem A4. Stejným způsobem postupně
provedete další otočení čtverce kolem bodů А43Аъ3А&3 Л7, Ag3
A\. Při posledním otočení se čtverec dostane do své původní
polohy.

Vyšetřte, jakou čáru při všech osmi otočeních opsal střed 5
daného čtverce. Zjistěte všechny osy souměrnosti vzniklé dráhy
bodu S.

360°
Řešení (obr. 24). Platí <£А\ОА2 =

= 67,5°, <£A8AiA2 = 135°. Protože je <£SAiA2 = 45°, je
<£SAiA2 < <^OAiA2 a bod «S tedy padne dovnitř trojúhelníka
OA1A2; je tedy AiS < A±0. Při prvním pohybu čtverce
AiA2CD se bod S otáčí kolem bodu A2 po oblouku kružnice z po-

lohy 5 do polohy S'3 kde <£S'A2A3 = 45°. Je tedy <^SA2S' =

= <£AiA2A3 - 2. <£/M2S = 135° - 2.45° - 45° (to plyne
i z toho, že <£CA2A3 = <£AiA2A3 — <£AiA2C). Protože je
<£SA2C = 45°, padne bod S' právě dovnitř úsečky A2C9

= 45°}^OAiA2 =
8
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neboť je A2S < Л2C (odvěsna pravoúhlého trojúhelníka A2.CS
je menší než jeho přepona A2C).

Odtud výsledek: Dráha, kterou postupně bod S opíše,
se skládá z osmi shodných oblouků. První oblouk má střed
A2 a poloměr A2S, tj. polovinu úhlopříčky čtverce A1A2CD,
úhel <£SA2S' = 45°; přímka A2O je osou souměrnosti tohoto
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oblouku. Snadno se zjistí, že celá dráha bodu S’ má osm os

souměrnosti. Jsou to jednak čtyři hlavní úhlopříčky A1A5,
АгАб, A3A7, АзAs daného osmiúhelníka, jednak čtyři osy
stran osmiúhelníka (přitom totiž osy protějších stran daného
osmiúhelníka - např. A1A2, A^A% - navzájem splývají).

5. Daný čtverec MNPQ má stranu délky 4,5 cm. Sestrojte
rovnostranný trojúhelník ABC tak, že A = M, В = N a vrchol
C leží vně daného čtverce.

Trojúhelník ABC se pohybuje po obvodu čtverce MNPQ
takto: Nejprve se otočí okolo bodu N do polohy A1B1C1 tak,
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že Ci = P, Bi = В — N a bod A\ leží vně daného čtverce.
Při dalších pohybech se otočí trojúhelník po řadě okolo bodů
P, Q a M, 2V, až se dostane do své původní polohy ABC, ale
tak, že A\ = C.

Narýsujte a) polohy, do nichž se dostane trojúhelník vždy
po vykonání jednotlivých otočení, a dráhu bodu A;

b) čáru, kterou opíše střed trojúhelníka ABC.

Řešení je patrné z obr. 25; úhly otočení jsou rovny 210°.



6. Jsou dány dva různé pravidelné šestiúhelníky ABCDEF
a KLMNOPj které mají společnou stranu (A — К, В — L).

a) Určete dráhu, kterou opíše vrchol К šestiúhelníka
KLMNOP, který se kotálí vně po obvodě šestiúhelníka
ABCDEF.

b) Vypočítejte délku této dráhy.
Řešení, a) Dráha bodu К se skládá z pěti oblouků kružnice,

jak je naznačeno na obr. 26.
b) Každému z pěti oblouků odpovídá středový úhel velikosti

120°; &i, &2, ks jsou délky příslušných oblouků. Označíme-li
a délku strany daného šestiúhelníka, budou mít příslušné
poloměry délky n — a, rz = aj/3, гз = 2a (jak plyne podle
Pythagorovy věty z pravoúhlých trojúhelníků vyznačených
na obr. 26).

Platí tedy

2nri 2
*i= ~з~ = 1 па>

22nrz
kz = —r~ = — nap,

2nr3
=

3
= —na.

Odpověď: Celková dráha bodu К je tedy

4
d -—- 2ki -J- 2kz ~b ks —

2 (2 |/3).
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(Je-li např. a = 4 cm, dostaneme d == 62,3 cm.)

7. Je dán rovnostranný trojúhelník ABC se stranou a délky
8 cm. Dále je dán pravidelný šestiúhelník KLMNOP se stranou
délky 4 cm, takový, že vrcholy Ал К v základní poloze splývají

147



a vrchol L leží na polopřímce AB. Oba útvary leží v opačných
polorovinách vyťatých přímkou AB.

Šestiúhelník KLMNOP se kotálí po obvodě trojúhelníka
ABC.

a) Najděte dráhu vrcholu K.
b) Vypočítejte obsah útvaru ohraničeného dráhou bodu K.
Řešení (obr. 27). a) Dráha bodu К se skládá z pěti kružni-

cových oblouků, jak je vyznačeno na obrázku.
b) Obsah útvaru ohraničeného dráhou bodu vypočítáme

jako součet obsahů celkem deseti obrazců, z nichž je pět troj-
úhelníků a pět kruhových výsečí (viz obr. 27). Obsah obrazce
označeného číslem i bude Pí v cm2 (i = 1, 2, ..., 10).

Obsah rovnostranného trojúhelníka ABC je

уз
P1 = a2 = 16.]/3 = 27,68.4 a)

Dále je P2 = P3, takže

Pi
= 8 . уз = 13,84.P-2 + Рз = 2 (2)— .4.4.^-

2 2

Podobně P4 — P5, takže

1
= 16]/ 3 db 27,68. (3)P,+P5 = 2. (-.4.4. УЗ

Kruhová výseč označená na obr. 27 číslem 7 má poloměr
a — 8 cm a středový úhel velikosti 60°; její obsah je tedy
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1
(4)Рт = — n . 64

о
33,60.

1
Dále je P6 = P8 = — n (4. ]/Ъ )2 = 24я, takže

(5)P6 + P8 = 48л = 150,72.

Nakonec Pg = Рю, proto je

1 к

(6)Pg + Pio ~ 2 у — n . 42 = 16. — = 16,80.

Sečtením výsledků (1), (2), (3), (4), (5) a. (6) dostaneme

Pi + Pa + Рз + Pa + •.. + Pio = 270 cm2.

Odpověď. Obsah útvaru ohraničeného dráhou bodu К je
přibližně 270 cm2.

8. V rovině je dána kružnice k o poloměru délky 6 cm a čtve-
rec AqBoCqDq, jehož strana má délku 3,5 cm. Označme ABCD
čtverec těchto vlastností:

1. Vznikne rovnoběžným posunutím čtverce A0BoCoD0;
2. náleží kruhu К s hranicí k-3
3. aspoň jeden jeho vrchol náleží kružnici k.

Narýsujte čáru, kterou vyplní vrcholy A všech takových
čtverců.
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d4

Di
4

AS+

A1 B1
t

Obr. 28

Řešeni. Poloměr kružnice opsané čtverci AqBqCqDq se rovná
polovině délky jeho úhlopříčky, tj.

1

J-3,5. 1/2,
takže je menší než poloměr kružnice k. Čtverec AqBqCqDq lze
tedy rovnoběžně posunout tak, aby náležel kruhu К (např.
čtverec AiBiCiDi na obr. 28). Přitom na kružnici k mohou
ležet nejvýše dva jeho vrcholy. Totiž, kdyby na kružnici k
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ležely tři jeho vrcholy, pak by střed čtverce ABCD byl středem
5 kružnice k, což však není možné. Leží-li na k dva vrcholy
čtverce ABCD, pak musí být sousední. Kdyby byly protější,
potom by čtverec ABCD neležel uvnitř kruhu K. Toto tvrzení
dokážeme.

\ C

\ /
/

*0
/ \/

A \
\
\к \S

\

Oljr. 29

Nechť na kružnici k leží např. vrcholy A a C. Střed 5 pak
leží (obr. 29) na přímce BD; předpokládejme, že náleží polo-
přímce OB, kde bod O je střed čtverce ABCD. (Kdyby střed 5
ležel na polopřímce OD, byly by další úvahy obdobné.) Protože
platí AS > AB, má trojúhelník ASD při vrcholu A tupý úhel,
takže DS > AS a bod D leží vně kruhu K.

Čtverce, které dostaneme ze čtverce AqBqCqDq rovnoběžným
posunutím a jež náleží kruhu К a mají dva vrcholy na kružnici
k, jsou právě čtyři (obr. 28). Konstrukce těchto čtyř čtverců je
jednoduchá. Přímky A1B3 a D1C3 jsou rovnoběžné s přímkou
AqBo a jejich vzdálenosti od středu 5 kružnice k jsou 1,75 cm.
Obdobně přímky A2D4 а B2C4 jsou rovnoběžné s přímkou
A0Do a jejich vzdálenosti od bodu S jsou 1,75 cm. Body
A\, A2, A3, A4 leží na hledané čáře.
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Představme si, že čtverec ABCD se z polohy AiBiCiDi
pohybuje tak, že v každé své další poloze je obrazem čtverce
AoBqCqDo v rovnoběžném posunutí, přitom náleží kruhu К
a zároveň vrchol A leží na kružnici k. Při tomto pohybu se bod
A pohybuje na obr. 28 proti směru hodinových ručiček a pohyb
čtverce ABCD skončí v poloze A2B2C2D2. Kdyby se totiž
čtverec ABCD uvedeným způsobem dále pohyboval, pak by
vrchol В opustil kruh K. Bod A proběhl při uvažovaném pohybu
oblouk A1A2 kružnice k, který je tedy částí hledané čáry.

Nyní budeme obdobně pohybovat čtvercem ABCD z polohy
A2B2C2D2 tak, aby vrchol В ležel na kružnici k. Tak se dospěje
až do polohy A3B3C3D3, odkud už nebude možno v pohybu
pokračovat, neboť vrchol C by opustil kruh K. Vrchol A
při tomto pohybu opíše oblouk A2A3, jenž získáme z oblouku
B2B3 kružnice k rovnoběžným posunutím (B2 -> A2). Oblouk
A2A3 je další částí hledané čáry.

Obdobně zjistíme, že zbývajícími částmi hledané čáry jsou
oblouky A3A4 а Л4А1, jež vzniknou z oblouků C3C4 a D4D1
rovnoběžnými posunutími (C3 -> A3) a (D4 -> A,\).

Hledaná čára je na obr. 28 vyznačena tlustě.
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II. Úlohy na výpočet velikosti obrazců a ploch

9. Narýsujte pravoúhlý rovnoramenný trojúhelník ABC
s přeponou AB délky 0,7 dm. Kolem bodů А, В opište kružnice
s poloměrem \AB. Označte x obsah (v dm2) té části trojúhelní-
ka, která leží vně obou kružnic.

/ 22\I použijte n = — Ia) Vypočítejte číslo л;

b) Kolik procent obsahu trojúhelníka ABC je obsah л; ?

Řešení (obr. 30). a) Obsah P trojúhelníka ABC snadno
1

vypočítáme, neboť d(AB) = 0,7 dm, d(SC) = — . 0,7 dm, a je

tedy
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11
p = J.о,7.-.ОЛ

čili

1
(1)P = — . 0,72 (dm2).

1
Kruhové výseče se středy А, В mají poloměr r = у d(AB) =

1
= —. 0,7 dm. Protože středové úhly těchto výsečí mají velikost

45°, je součet Q obsahů těchto výsečí roven obsahu čtvrtkruhu.

Platí

21 1 1 1
— n . 0,72 (dm2).
luQ = 4Kr - 4И\У'0>7/ =

Pro obsah X vyšrafované části trojúhelníka (obr. 30) dostáváme

x = P — O

čili

1 11
я . 0,72 = — . 0,72(4 - n).

lo"=4-°>72-16

Po výpočtu dojdeme к odpovědi a):
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Obsah x vyšrafované části trojúhelníka ABC je přibliž-
ně 0,026 25 dm2.

b) Označme písmenem p hledaný počet procent, P je základ
a x procentová část; je tedy

t.Px =
100

čili

lOOx
P = P '

Dosadíme za д: a P a dostaneme

2,625
= 21,4.P = 1

Г -0’724

Odpověď b): Obsah x uvažovaného obrazce je asi 21,4 %
obsahu daného trojúhelníka ABC.

10. Je dán pravoúhlý rovnoramenný trojúhelník ABC o od-
vesnách CA a CB délky 2 dm. Kolem každého jeho vrcholu
opíšeme kružnici o poloměru 1 dm. Oblouky těchto kružnic
oddělí z trojúhelníka ABC tři kruhové výseče a z trojúhelníka
zbude obrazec, jehož obsah označíme x.

Vypočtěte, kolik procent je obsah x z obsahu daného troj-
úhelníka.
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Řešení (obr. 31 zmenšený na jednu čtvrtinu). Označme P
obsah trojúhelníka ABC a x obsah v textu uvažovaného obrazce;
dále označme Q obsah tří kruhových výsečí, které od troj-
úhelníka ABC máme oddělit. Platí

11
P = — . d(CA). d(CB) = — .2.2=2,

tedy je

P = 2 (dm2). (1)

Obsah Q je součet obsahů tří výsečí o poloměru r = 1,
kruh o poloměru r — 1 má obsah яг2, tj. я; dvě z těchto výsečí

1
(při vrcholech А, В) mají tedy obsahy rovné — я a třetí výseč8
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1
(při vrcholu C) má obsah у я; je tedy4

i i
Q = 2-jK + jn’

tj-

1
Q = у я (dm2). (2)

Z výsledků (1), (2) pro číslo x = P — Q dostáváme

1
x — 2 — — n.

2 (3)

22
Položme n

—

; po dosazení do (3) obdržíme

1 22 11 14-11 3

7 = У*2 - —'

7 7

tj-

3
(4)7 '

Označme /> hledaný počet procent; je

p = — . 100.P
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Dosaďme sem z (1) a (4); dostáváme přibližně

3.100 3 . 100 1 150

7 ‘ 2 = ~Y
3

: 2 = == 21P = 7 7

neboli

p == 21,43.

3
Odpověď. Hledaný obrazec je asi 21 у % obsahu daného

trojúhelníka.

11. Je dán čtverec ABCD o straně a a středu 5“. Čtverci je
vepsána kružnice o středu S; z každého vrcholu čtverce jsou
opsány čtvrtkružnice o poloměru rovném polovině strany
čtverce (obr. 32). Kružnice a čtvrtkružnice omezují útvar,
který je v obrázku vyšrafován.
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Kolik procent obsahu čtverce zaujímá vyčárkovaný obrazec ?

Závisí toto číslo na velikosti strany daného čtverce? ^Položte
22

7 '

Řešení. Strana daného čtverce má velikost a centimetrů.

Obsahy, které budeme počítat, budou pak udány v cm2.
Kružnice v našem obrázku 32 i každá ze čtyř čtvrtkružnic mají

1
poloměry r = — a neboli

a — 2r.

Střední příčky velkého čtverce na obrázku 32 rozdělují bílou
plochu (tj. nevyčárkovanou) kolem bodu S na čtyři části.
Každou z těchto částí dostaneme, když od čtverce (např.
AQSP) o straně r oddělíme čtvrtkruh o poloměru r; střed
tohoto čtvrtkruhu je v jednom z vrcholů velkého čtverce.
Rovněž bílé plošky při vrcholech velkého čtverce vzniknou tak,
že od čtverce o straně r oddělíme čtvrtkruh o poloměru r

(střed je ve středu velkého čtverce). Dostáváme tak celkem osm

bílých ploch, z nichž každá má týž obsah x. Tento obsah x

je roven rozdílu obsahu r2 malého čtverce a čtvrtkruhu o obsahu
1

— nr2, tedy

1
-—яг2.
4

x = r2 —
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Všech osm bílých plošek má dohromady obsah

1
8jc = 81 r2 — 7*rSJ

neboli

8л: = 8r2 — 2кг2.

Plochu, která je na obr. 32 vyčárkována, dostaneme, když
od velkého čtverce oddělíme oněch osm bílých plošek. Označme
у obsah vyčárkované plochy. Obsah velkého čtverce je a2 =
= (2r)2 neboli a2 — 4r2. Obsah у = a2 — 8x neboli

у — 4r2 _ (gr2 _ 2кг2),

tj.

у = 2яг2 — 4r2 = 2г2(я — 2).

Označíme p počet procent, у je procentová část a 4r2 (obsah
velkého čtverce) je základ. Tu platí

У
. - . 100^ 4r2

neboli

2г2(я - 2)
. 100.P ” 4r2
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Odtud po zkrácení dostaneme

n — 2
. 100

neboli

n

(1). 100.ř = l2

22 11 тсn

У 5 je — = у - 1,571 428, a tedy уProtože n == -1 =

= 0,571 4.

Je tedy

p == 0,571 4.100

neboli

p = 57,14.

Odpověď. Obsah čárkované části na obr. 32 je přibližně
57 % obsahu čtverce o straně a. Protože číslo p, které jsme
ve vztahu (1) vypočítali, nezávisí na velikosti poloměru r,
a tím na velikosti a strany velkého čtverce, dospějeme к témuž
výsledku při každém kladném čísle a.

Poznámka. Snadno usoudíme, že bílé plošky, o nichž jsme
mluvili (viz obr. 32), jsou shodné s bílými ploškami na obr. 33.

161



Obr. 33

Proto obsah 8x těchto bílých plošek podle obr. 33 dostaneme,
když od obsahu 2a2 dvou velkých čtverců odečteme obsah
2nr2 dvou kruhů, z nichž každý má poloměr r. Platí tedy

8л: = 2(2r)2 — 2кг2

neboli

8л; — 8r2 — 2яг2,

čímž bychom podstatně zkrátili předchozí výpočet.
Jiné řešení (obr. 32). Délka strany čtverce a je rovna 2r,

přičemž r je poloměr vepsané kružnice. Proto obsah čtverce

p = (2r)2 = 4r2,

což představuje 100 %; z toho 1 % je
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^2 уи

100 25'

Obsah kruhu do čtverce vepsaného je P± — nr2, což představuje
x % obsahu čtverce. Vypočteme nyní v procentech, jakou částí
obsahu čtverce je obsah kruhu P\. Zjistíme to dělením

7*2
nr2: — = 25тг.

25

Potom platí, že

22 4
25;t = 25-7

4
Obsah kruhu se rovná 78 у % obsahu čtverce. Čtyři plošky při
vrcholech čtverce se rovnají nevyčárkovanému obrazci uvnitř
kruhu, to znamená, že jejich obsah je roven P — J°i, což
v procentech činí:

= 78 —
7 *

4 3
100 - 78 у = 21 у

Obsah vyčárkovaného obrazce se rovná rozdílu obsahu kruhu
a obrazce uvnitř kruhu. V procentech to znamená:

4 3 1

78y-21y = 57 у
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1
Odpověď. Vyčárkovaný obrazec zaujímá asi 57 у % obsahu

čtverce.

Z výrazu

nr2.25
= 25л

r2

je vidět, že počet procent je nezávislý na délce strany čtverce,
neboť se rovná 25л (r2 se totiž zkrátí).

Tentýž výsledek dostaneme řešením úlohy:

12. Je dán čtverec ABCD o straně délky d. Kolem středu
každé jeho strany opište polokružnici, která prochází středem
čtverce ABCD.

Kolik procent z obsahu čtverce tvoří obsah vyčárkovaného
obrazce (obr. 34) ?
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Řešení lze provést postupem vycházejícím z obr. 35, tj.
od obsahu polokruhů s průměrem AB odečteme obsah rovno-
ramenného pravoúhlého trojúhelníka ABS a dostaneme obsah
jednoho »lístku«. Výsledek úlohy je týž jako v úloze 11.

13. Park tvaru obdélníka ABCD má rozměry d(AB) —
= 240 m, d(AD) = 232 m. Parkem vedou dvě stejně široké
navzájem kolmé hlavní cesty (viz obr. 36).

a) Vypočítejte výměru obou cest dohromady, b) Zjistěte,
kolik procent (s přesností na desetiny) z celého parku připadá
na obě cesty dohromady.

Řešení, a) Velikosti úseček budeme udávat v metrech a obsa-
hy v m2. Použijeme označení zavedené na obr. 36. Celý útvar je
souměrný podle os p J_ AB, q _j_ BC, vedených středem 5
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obdélníka ABCD. Proto body M, P leží na přímce p a body
Ny Q na přímce q.

Pro výpočet výměry cest bude třeba určit šířku cest; ta
bude známa, zjistíme-li společnou délku úseček AAi = BBi =
= CCi — DD\ x. Vzhledem к souměrnosti podle přímky q

je pravoúhlý trojúhelník BCN rovnoramenný a jeho přepona
BC má délku 232. Jeho odvěsna NB je i odvěsnou pravoúhlého
rovnoramenného trojúhelníka A\BN; platí tedy

ABCN = AAiBNy

takže také BC = A\B čili 232 = 240 - *. Je tedy

x — 8.

Z rovnoběžníka AAiNQ plyne, že d(QN) — 8. Je tedy šířka
cesty QM = у rovna délce strany čtverce QMNP s úhlopříčkou
QN, tj.

j = 4|/2.

Výměru V obou cest dohromady dostaneme jako součet
obsahů dvou shodných rovnoběžníků AAiCCi a BiBDiD,
zmenšený o obsah čtverce QMNP. Rovnoběžník AAiCCi má
ke straně AA\ příslušnou výšku v — d(BC) — 232. Je tedy

V = 2.8.232 - (41/2)2,
tj-

V = 3 712 - 16.2
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čili

V = 3 680 (m2).

Poznámka. Výpočtu šířky у cest bychom se mohli vyhnout,
kdybychom obsah čtverce QMNP vyjádřili jako polovinu

x2 82
obsahu čtverce se stranou QN velikosti x, tj. — = — = 32.

b) Výměra 3 680 m2 představuje procentovou část vzhledem
к základu, jímž je obsah pozemku ABCD, tj.

232.240 = 55 680 (m2).

Máme tedy vypočítat, kolik procent p je 3 680 ze základu
55 680. Pro p platí

55 680
. p = 3 680100

čili

3 680.100
p = 55 680 '

Po úpravě krácením a dělením dostaneme

p = 6,6.
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Odpověď. Obě cesty mají dohromady výměru 3 680 m2
a zaujímají asi 6,6 % celkové výměry parku.

14. Plechová podložka má tvar čtverce o straně délky 8 dm.
Při každém vrcholu tohoto čtverce máme odříznout stejnou
část tvaru pravoúhlého rovnoramenného trojúhelníka tak, aby
se hmotnost podložky zmenšila a) o 18 %; b) o 72 %.

Vypočtěte velikost odvěsen odříznutých trojúhelníků. Dále
rozhodněte, zda je možné obojí odříznutí provést.

Obr. 37

Řešení. Čtvercová podložka má čtvercovou stěnu o straně
délky 8 dm; tato stěna má obsah 64 dm2. Rovnoramenný
pravoúhlý trojúhelník, který odřízneme, má odvěsnu velikosti

1
x dm; součet obsahů všech těchto čtyř trojúhelníků je 4.—x2 =

— 2x2 (obr. 37). V našem případě musí být x ^ 4, jinak by
se odříznutí nedalo provést.
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Protože tloušťka podložky i hustota jejího materiálu je
všude stejná, stačí, když místo hmotnosti uvažujeme jen
obsah čtvercové stěny podložky.

a) 18% ze 64 je 64.0,18; toto číslo má být rovno 2x2,
tj. má platit

2x2 - 64.0,18

neboli
x2 = 64.0,09.

Je tedy

x = 8.0,3,

tj-

x — 2,4.

Protože je 2,4 < 4, lze odříznutí provést (obr. 37). Zkouškou
bychom se přesvědčili o správnosti výpočtu.

Odpověď. Abychom hmotu podložky zmenšili o 18 %,
je nutno v každém rohu podložky odříznout pravoúhlý rovno-

ramenný trojúhelník s odvěsnou délky 2,4 dm.

b) 72 % ze 64 dm2 je 64.0,72. Má platit

2*2 = 64.0,72

neboli

x2 - 64.0,36.
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Je tedy

x — 8.0,6,

tj-

x = 4,8,

Protože je 4,8 > 4, nelze odříznutí provést (obr. 38).

Odpověď. Požadavky úlohy nelze tedy v případě b) splnit
a úloha je neřešitelná.

15. Je dán čtverec ABCD, jehož strana má délku a. Kolem
jeho vrcholů jsou opsány vnitřkem čtverce čvrtkružnice s polo-
měrem a. Tím se čtverec rozdělí na 9 částí tří různých tvarů
(obr. 39). Vypočítejte obsahy těchto částí.
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Řešení. Průsečík oblouků opsaných okolo bodů А, В
označme M. Písmeny x3 y, z označme obsahy vzniklých ploch
tak jako na obr. 39. Potom platí

z = P-(P1 + 2P2),

kde P je obsah čtverce ABCD se stranou délky a, Pi je obsah
rovnostranného trojúhelníka ABM se stranou délky a a Po
je obsah kruhové výseče s poloměrem a a středovým úhlem
velikosti *30° (tj. 2P2 je součet obsahů výsečí AMD a BCM).
Platí tedy

I 30
z — a- — — a2 ] 3 — 2яа2 '

360’

tj-

a2
3 ]/3) = 0,043 a2.z = — (12 - 2jt (1)12
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Dále je

У = P — (Рз + 2 я),

kde P3 je obsah čtvrtkruhu ABD s poloměrem a, tj.

a2
у = — (n + 6 1/3 - 12) = 0,128 a2. (2)

Pro x platí

x = P — (43; + 4^)j

tj-

a2
~ (3 -f л — 3 |/3) == 0,315 a2. (3)jc =

Odpověď. Řešení úlohy je dáno vztahy (1), (2) a (3).

16. Je dán pravidelný šestiúhelník ABCDEF. Trojúhelníky
ACE a BDF se protínají opět v pravidelném šestiúhelníku.

Dokažte, že jeho obsah se rovná třetině obsahu šestiúhelníka
ABCDEF.

Řešení. Pozorně si prohlédněte obr. 40 a dokažte, že šesti-
úhelník ABCDEF je sjednocením 36 shodných pravoúhlých
trojúhelníků, které mají ostré vnitřní úhly 60° a 30° a jejichž
delší odvěsna je rovna polovině strany daného šestiúhelníka.
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Přitom žádné dva z těchto trojúhelníků se nepřekrývají. Šesti-
úhelník KLMNOP, který je průnikem trojúhelníků АСЕ
a BDF, je sjednocením dvanácti těchto trojúhelníků. Odtud
již plyne tvrzení úlohy.

D

A

В

Obr. 40

17. Na obr. 41 je znázorněna plechová součástka., jejíž
obvod se skládá z oblouků shodných kružnic s daným polo-
měrem a. Středy oblouků jsou v obrázku vyznačeny kroužky.
Přitom ABCD, MNPQ jsou čtverce, jejichž úhlopříčky leží
ve dvou navzájem kolmých přímkách MACP, NBDQ. Přitom
je d(AB) — 4a, d(MN) = 6a.

a) Narýsujte obrázek součástky, je-li a = 2,5 cm.

b) Vyjádřete obsah obrazu součástky pomocí čísla a.

c) Vyjádřete pomocí čísla a hmotnost 1 000 kusů součástek,
jestliže 1 m2 plechu, z kterého jsou vyrobeny, váží 8,5 kg.
Výpočet proveďte pro a = 2,5 cm.
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Řešení, a) Obrázek součástky je zmenšen na dvě pětiny
(obr. 41).

b) Protože číslo a udává velikost úseček v centimetrech,
vypočteme obsah P vyšrafované plochy v obr. 41 v centi-
metrech čtverečných. Obvod čtverce ABCD rozděluje plochu
součástky ve dvě nepřekrývající se části. První část je znázor-
něna vyšrafovanou plochou ve čtverci ABCD; její obsah
označíme x. Druhá část je znázorněna čtyřmi vyšrafovanými
plochami, z nichž každá leží ve čtverci MNPQ. Jedna z těchto
ploch je znázorněna ve zvětšení v obr. 42, a to plocha, která
leží při vrcholu A; její obsah označíme y. Výpočty provedeme
odděleně.
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Obsah čtvrtkruhu o poloměru a označíme K; obsah celého
kruhu o poloměru a je

(1)

I. Výpočet obsahu л; první části vyšrafované plochy: Obsah
x dostaneme, když od obsahu čtverce ABCD odečteme obsah
čtyř polokruhů o poloměru a (středy polokruhů jsou v bodech
1, 2, 3, 4). Čtverec ABCD má stranu délky 4a; jeho obsah
je (4a)2 = 16 a2. Obsah jednoho polokruhu je 2K, všech čtyř
je SK. Proto je

.v - 16a2 - SK. (2)

II. Výpočet obsahu druhé části vyšrafované plochy: Obsahy
plochy naznačené v obr. 42 dostaneme, když od obsahu
čtverce MAiAxAo o straně MA\ délky a odečteme obsah
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jednoho čtvrtkruhu (jeho střed je v M a poloměr má délku a)
а к tomu přičteme obsahy dvou čtvrtkruhů o středu A a délce
poloměru a. Obsah čtverce MA1AA2 je a2, obsah čtvrtkruhu
je К; je tedy у = (a2 — К) + 2К neboli у = a2 + К. Obsah
4у druhé části tudíž je

4y = 4(a2 + K). (3)

III. Vypočteme obsah P celé vyšrafované plochy, tj. určíme
součet obsahů všech nepřekrývajících se obrazců. Tu platí
P — x + 4y. Dosaďme sem z výsledků (2) a (3); dostaneme
postupně

P = (16a2 - 8К) + 4(a2 + К),

P - 16a2 - 8K + 4a2 + 4K,

P = 20a2 - 4/C.

Do tohoto výsledku dosadíme ze vzorce (1); obdržíme po-

stupně

P — 20a2 — jra2,
(4)

P = a2(20 - я),

což je hledaný výsledek. Tím je úloha b) rozřešena.

c) Označme Q hmotnost 1 000 kusů součástek v kilogramech.
Protože je udána hmotnost 1 m2 plechu, převedeme obsah P
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ve výsledku (4) na čtverečné metry. Platí 1 m2 = 100 dm2 =
= 100.100 cm2 = 10 000 cm2. Obsah součástky v metrech

a2 (20 — я) a hmotnost jedné sou-
1

čtverečných je proto

částky v kilogramech je

10 ООО '

1
a2 (20 - я).8,5.10 ООО '

Hmotnost <2 je 1 OOOkrát větší, tj.

1
a2 (20 - я).8,5.1 000;10 000 ■

postupnou úpravou dostaneme

1
2 = -.a2(20-n).8,5,

což je hledaná hmotnost 1 000 součástek vyjádřená užitím
čísla a.

Jestliže nyní je a — 2,5, dostaneme odtud postupně

Q = 2,52.(20 - я).0,85,

Q = 6,25.0,85.(20 - я).

22
Výpočet proveďme pro n = —. Tu je
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22 140 -22 118
20 — к = 20 - — =

-у-; je tedy7 7

118 1 1
2 = 5,31,— = (5,31.118).-= 627. у = 89,6.

Odpověď. 1 000 kusů plechových součástek má hmotnost
asi 90 kg.

18. Pole tvaru obdélníka ABCD má rozměry d(AB) = 810 m,
d(AD) = 180 m. Toto pole je třeba rozdělit na čtyři obdélníky
s obsahy Pi, P2, P3, Pa jako na obr. 43. Přitom má platit

Pi = 2303 ha, P4 = 3,19 ha.

Vypočítejte a) obsahy P2, P3; b) obvody všech obdélníků.

N 0D

PгзH
o

$К Li

P‘24
;

-ti-
810

Obr. 43
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Řešení (obr. 43).
a) Abychom úlohu rozřešili, musíme určit velikosti úseček

AM, AK-, jejich pomocí už snadno vypočítáme rozměry všech
vzniklých obdélníků. (Písmeny Pi, P2, Рз, P4 budeme značit
jak dané obdélníky, tak jejich obsahy.)

Obsah obdélníka AMND je Pi + P4, jeden jeho rozměr je
d(AD) = 180 m; druhý rozměr d(AM) vypočítáme tak, že
obsah obdélníka dělíme rozměrem d(AD). Uvedeme-li délku
úseček v metrech a obsahy ve čtverečných metrech, platí

Pi = 20 300 m2, P4 = 31 900 m2

a dále

d(AM) = 52 200 : 180 = 290 (m). (1)

Nyní obdobně vypočítáme délku úsečky AK jako podíl
obsahu obdélníka Pi a délky druhé strany AM. Platí

d(AK) = 20 300 : 290 = 70 (m). (2)

Z výsledků (1) a (2) vypočítáme zbývající rozměry obdélníků
P2, P3, tj. d(MB) = 520 m, d(KD) = d(LC) = 110 m. Je tedy

P2 = d(MB).d(AK) = 520.70 = 36 400 (m2), (3)

P3 = d(MB).d{LC) = 520.110 = 57 200 (m2). (4)

Zkoušku provedeme sečtením obsahů obdélníků Pi, P2, Рз,
P4; snadno se přesvědčíte, že dostanete obsah P obdélníka
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ABCD, tj. 145 800 m2. Výsledky (3) a (4) jsou tedy řešením
úlohy.

b) Označme oi, 02, 03, 04 (v tomto pořadí) obvody obdélní-
ků Pi, P2, P33 P4. Pak platí

01 = 2 .(d(AM) + d(AK)) = 2(290 + 70) = 720 (m),

02 = 2 .(d(MB) + d{AK)) = 2(520 + 70) = 1 180 (m),

03 - 2.(d(MB) + d(KD)) = 2(520 + 110) = 1 260 (m),

04 = 2.(d(AM) + d{I<D)) = 2(290 + 110) - 800 (m).

Zkoušku provedeme např. tak, že součet obvodů 01 + 02 +
+ 03 + 04 porovnáme s dvojnásobným obvodem obdélníka
ABCD; druhý obvod odpovídá dvojnásobně počítanému součtu
délek úseček MN a KL.

19. Na obr. 44 jsou dány soustředné kružnice k± = (5; л:),
h>2 = (*+ y), přičemž je x ~> у. Úsečka AB je průměrem kruž-
nice ki, bod C leží na kružnici кг a uvnitř úsečky SB. Nad
úsečkami AC3 BC jako průměry opíšeme kružnice &з, k<±.

Součet Pi + P2 obsahů vodorovně vyčárkovaných ploch je
roven součtu M + N obsahů ploch vyčárkovaných svisle.
Dokažte.

180



Řešení (obr. 44). Obsahy kruhů k\, кз, k4 označme po
řadě pi, P2, Pzí P* = N. Poloměry kružnic ks, k4 jsou po řadě

1 1
- d(AC), r4 = — d(CB), kde d(AC) = d(AS) + d(SC) =

— x +У, d(CB) = d{SB) — d{SC) — x — y, proto je

rs =

11
— O +y), r4 = — (x - y).rs =

Je proto

кn

Pl = KX2, p2 = ny2, ps = — (x + 302> P4 = -j- (* — y)2-
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Je tedy

Pi + P2 = pi — pz — Pa —

я
= — [4x2 — (x + y)2 — (x —y)2] =

я я
= -[2*2-2У]=-(*2_У). (1)

Dále je

л

M =p3—p2 = ~(x +y)2 — ny2 =

Я
= -т[(х+у)2-Ьу2},

я

P4 =A/- =

a tedy

к

M 4- N = — [(* +з>)2 — 4j>2 4- (x — 3;)2] =
4

яя

(2)= -[2^_2У]=-(л:2-У).

Porovnáním výsledků (1), (2) vyplývá
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Pi -f- P'2 = Aí + Лг,

což jsme měli dokázat.

20. Je dán trojúhelník ABC, jehož úhly mají velikosti
<$iBAC = 60°, <^ABC = 30° a strana AC má velikost 1.
Vypočtěte obsah vyšrafované plochy (obr. 45), která je omezená
kružnicemi sestrojenými nad průměry AB3 BC, CA (na dvě
desetinná místa).
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Řešení. Trojúhelník ABC je pravoúhlý, <£ACB = 90°.
Označme D patu výšky к přeponě. Podle obrácení Thaletovy
věty procházejí kružnice ki3 k% sestrojené nad odvěsnami BC,
CA bodem D. Pro délky stran trojúhelníka ABC platí

AC = 1, AB = 2,BC= УЗ. (1)

Označme P obsah vyšrafované plochy, Pi, P2 obsahy úsečí
omezených tětivami BD3 AD a kružnicemi k\3 k2‘, středy
těchto kružnic označme S\3 S2. Pak platí vzhledem к (1)

1
P = — я — Pi — Рг. (2)

Obsahy Pi, P2 vypočteme pomocí středových úhlů

<$BSiD = 120°, <£AS2D = 60°.

Je tedy vzhledem к (1)

P Y 2

n
2

4 V3.120Pi =
360

čili

1/3(?)■
21

(3)Pi = — n
43
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^trojúhelník BDSi má týž obsah jako rovnostranný trojúhelník
V3\

o straně délky — I. Rovnost (3) po úpravě zní

3 ]/31
Pi=—ic

4 (4)16 ‘

Obdobně dostaneme

1 \2 1 \2

2 V3М2
P2 = .60-

360 4

čili

po úpravě

уз1
Po — — Л —2

24 (5)16 *

Dosadíme-li z (4) a (5) do (2), vyjde

1 1 3 ]/3 ж ]/3 5л ]/3
Р = 2П ~ 4Я г 16 24^ 16 = 24^ 4 '
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Numericky

P = (3,14.5) : 24 + (1,73 : 4) = 0,65 + 0,43,

tedy

P= 1,08.

21. Je dán obdélník ABCD. Bod M je středem strany AB.
Uvnitř stran BC, AD sestrojte body E, F tak, aby bylo možno
pětiúhelníku MECDF opsat kružnici. Vyjádřete poloměr této
kružnice i obsah pětiúhelníka pomocí délek stran obdélníka.
Určete podmínku řešitelnosti úlohy.
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Řešeni. Situaci zachycuje obr. 46. Kružnice k opsaná
pětiúhelníku MECDF je opsaná i rovnoramennému trojúhel-
niku MCD. Její střed je průsečíkem osy úsečky CD a osy

úsečky MC. Označme N střed strany CD, r poloměr kružnice k,
a = d(AB), b = d(JBC) délky stran obdélníka. Potom

1
d(SC) - d(SM) = r, d(SN) =b-r, d(CN) = ja,

a podle Pythagorovy věty platí

a2
(b — r)2 + — = r2. (1)

Z (1) po úpravě dostaneme

4b2 + a2
(2)r =

86

Ze vzorce (2) vyjde vždy r > 0. Dále je r < b právě tehdy,
když 462 + a2 < 8b- neboli 462 > a2, tj. 2b > a čili

a

b>2■ (3)

Nerovnost (3) je podmínkou řešitelnosti, jak vyplývá z obrá-
cení postupu.

Výpočet obsahu pětiúhelníka MECDF:
Protože trojúhelník CES je rovnoramenný, platí
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d(CE) = d{DF) = 2d(SN) = 2(6 - r). (4)

Protože platí BE = ВС — CE, je vzhledem ke (4)

d(BE) = 6 - 2(6 - r) = 2r - 6. (5)

Pětiúhelník MECDF vznikne sjednocením obdélníku ECDF
a rovnoramenného trojúhelníku MEF. Jeho obsah P je tedy
vzhledem ke (4) a (5)

1 a
= a.2(4 -r) + y a(2r - 4) = - (34 - 2r).P (6)

Po dosazení za r ze vzorce (2) do (6) dostaneme po úpravě

a3
P — ab — (7)86'

Odpověď. Poloměr r hledané kružnice je dán vzorcem (2)
a obsah pětiúhelníku vzorcem (7). Úloha má řešení jen pro

1
b>~a.
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III. Důkazové úlohy

22. Sestrojte libovolný lichoběžník ABCD tak, že AB || CD,
AB > CD.

Dokažte, že součet úhlů lichoběžníka při základně CD je
větší než součet úhlů při základně AB.

\D lc D

/V ;VŮ 7
//

+\ /
/* <{>

/«/
\ /

XP Pí.a
:

8 jÁ\ W
Obr. 47

8F

Obr. 48

Řešení. Úlily lichoběžníka ABCD (viz obr. 47) při vrcho-
lech A3 В, C, D označme po řadě a, fi, y, d. Z pomocného
obrázku 47 se zdá, že tvrzení úlohy je zřejmé, neboť oba úhly
při základně AB jsou ostré a při základně CD jsou oba úhly
tupé. Avšak obr. 48 ukazuje, že tomu tak vždy nemusí být.
Důkaz provedeme pro každý případ zvlášť.

a) Bodem C (obr. 47) veďme rovnoběžku e se stranou AD.
Protože AB || DC, AB > DC, protne přímka e úsečku AB
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ve vnitřním bodě E tak, že AE — DC. Čtyřúhelník AECD je
tedy rovnoběžník, v němž <^CDAE = <$.DCE — a. Avšak podle
konstrukce je úhel <£DCE částí úhlu <£DCB, a platí tedy

(1)a < y.

Pomocí přímky /11 BC bodem D obdobně dokážeme, že

P<d. (2)

Je tedy zřejmě součet velikostí úhlů na levých stranách ne-
rovností (1) a (2) menší než součet velikostí úhlů na pravých
stranách, tj.

a + P < У + <5,

což jsme měli dokázat.
b) Také na obr. 48 vytvoříme přímkou e\\BC vedenou

bodem A, přímkou BC a přímkami AB || DC rovnoběžník
ABCE. V tomto rovnoběžníku zřejmě platí

<£.AEC = /9.

Protože <$iADC = <5 je vnějším úhlem trojúhelníka ADE, je

(3)P<d.

Zároveň v rovnoběžníku ABCE je

<£EAB = <$ECB = y,
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a protože ос < <^EAB, dostáváme

(4)a < у.

Nerovnosti (3) а (4) obdobně jako v případě a) vedou к doka-
zovanému vztahu

a + /3 < у -f d

5 V

//.
(Pa

A В

Obr. 49

Jiné řešení. Lichoběžník ABCD doplníme na trojúhelník
ABE (viz obr. 49). Úhel při vrcholu E označíme e. (V další
úvaze nezáleží na tom, zda lichoběžník ABCD má tvar jako
na obr. 47 nebo na obr. 48.)

Protože přímky AB a CD jsou rovnoběžné, má podle věty
o rovnoběžkách proťatých příčkou AD, popř. BC, trojúhelník
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DCE při vrcholu D úhel a, při vrcholu C úhel /5. V tomto
trojúhelníku pro součet velikostí vnitřních úhlů platí a -f /3 -f-
+ £ = 180° čili

a + /5 < 180°. (1)

Úhly у а d jsou к úhlům a, /9 trojúhelníka DCE vedlejší,
a tedy platí

a + <5 = 180°,

p + у = 180°.

Sečteme-li tyto nerovnosti, dostaneme známou rovnost pro
součet velikostí úhlů v lichoběžníku ABCD:

a + P + y + 360°

Protože podle (1) je a + /3 < 180°, musí platit

у + ó > 180°. (2)

Porovnáním (1) a (2) dostaneme dokazovaný vztah

a + p < у + <5.

23. Je dána úsečka Kolem jejího středu 5 je opsána
kružnice k s poloměrem r < SA. Dále jsou sestrojeny body
U, V tak, aby platilo
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BU = BV = 2г, SU=SV= SA.

Dokažte, že přímky AU, AV jsou tečnami kružnice k.

Řešení (obr. 50). Jak poznáme, že přímka je tečnou kruž-
nice? Např. podle toho, že tato přímka má od středu kružnice
vzdálenost rovnou poloměru kružnice. Ze souměrnosti celého
obrázku podle přímky AB vyplývá, že stačí vyšetřit vzdálenost
přímky A U od bodu S.

Protože bod U leží na kružnici m = (S; SA), je podle
Thaletovy věty

(1)<£BUA = 90°.
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Sestrojíme-li bodem 5 kolmici n к přímce AU, je n\\ BU;
patu této kolmice označme T. Protože SA — SB, BU \ \ ST,
je úsečka ST střední příčkou v trojúhelníku AUВ a platí

1
ST = (2)— BU — r.

2

Dále platí ST _j_ AU vzhledem ke vztahu (1) а к tomu,že
ST\\BU; proto přímka AU má vzdálenost r od středu 5
kružnice k, a je tedy její tečnou.

24. Jsou dány body А, В, C, D, z nichž žádné tři neleží
v přímce. Sestrojte bod E tak, aby bylo AE \ | BD, DE 11 AB,
a bod F tak, aby bylo AF || CD, DF\\AC. Dokažte, že
EF = BC.

Obr. 51
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Řešení. Obrazec ABDE je rovnoběžník, neboť body A, B,
D neleží v přímce. Průsečík jeho úhlopříček označme .S (obr. 51).
Pak AS — DS, BS — ES. Obrazec ACDF je rovněž rovno-

běžník, neboť ani body A, C,D neleží v přímce. Jeho úhlopříčky
se rovněž protínají v bodě S, neboť úhlopříčka AD je oběma
rovnoběžníkům společná; proto také CS — FS. Z podmínek
BS = ES, CS — FS plyne EF — BC, neboť body В, E
a C, F tvoří dvojice bodů souměrně sdružených podle středu 5.

25. Je dán rovnoběžník ABCD. Uvnitř stran AB, BC, CD,
DA zvolme po řadě body K, L, M, N tak, aby KL \ \ MN.
Uvnitř týchž stran zvolme další body K', L', M, N' tak, aby
K'L' 11 MN' 11 KL a aby vzdálenost rovnoběžek K'L', MN'
byla táž jako vzdálenost rovnoběžek KL, MN. Dokažte, že
šestiúhelníky AKLCMN a AK’L'CM'N' mají týž obvod.

M CD r

Ť5,N\
Y

Гv,
N,

v

X
L

K'A ВКг

Obr. 52
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Řešení (obr. 52). Předpokládejme, že bod IC leží uvnitř
úsečky AK (kdyby tomu tak nebylo, zaměníme označení bodů
K, L,M, Na IC, L', M', N'). Pak bod M! leží uvnitř úsečky
DM a KK' = MM'. Veďme body К, M rovnoběžky se stranou
ВС a označme po řadě X, Y jejich průsečíky s přímkami ICL',
MN. Zřejmě platí AK'KX C AMM' Y. Označme d{KIC) =
= d(MM') = r, d(KX) = d{M' Y) = 5, d(ICX) = d{MY) = t.
Potom (také vzhledem к vlastnostem stran pomocně vzniklých
rovnoběžníků) dostáváme:

d(AK') — d(AK) — r;

d(K'L') = d(KL) + v,

d(L'C) = d(LC) — s;

d(CM') = d(CM) + r;

d(M’N') = d(MN) - v,

d(N'A) = d(JNA) + s;

sečteme-li tyto rovnosti, dostaneme vztah, z něhož pro vy-
šetřované úsečky vyplývá:

AIC + K'L' + L'C + CM' + M'N‘ + N'A =

= AK + KL + LC+CM + MN+ NA,

což znamená, že obvody obou šestiúhelníků jsou si rovny.
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/ к zА х ВL

Obr. 53

26. Do lichoběžníka ABCD jsou vepsány kružnice k\, kz>
které se dotýkají stran AB, CD a AD, popř. AB, ВС a CD
(viz obr. 53). O délkách stran lichoběžníka platí

ci -f- c b -j- d.

1
Dokažte větu: Má-li výška lichoběžníku délku — (a + c —

— b — d), potom mají kružnice k\, kz vnější dotyk.
Řešení. Body a délky úseček označme podle obrázku.

(Platí, že úsečky ohraničené daným bodem a dotykovým bodem
na tečnách vedených z bodu ke kružnici mají rovné délky.)
Potom KLMN je pravoúhelník. Dále platí

a ~ x + у -\- z, c — b d — x — у z.

Sečtením obou rovností dostaneme

и -f- c — b -j- d -j- 2z
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čili

1
— (a + С — b — d).z —

Pravoúhelník KLMN je tedy čtverec, délka středné 5i&
je rovna součtu poloměrů kružnic k\, k?, a obě kružnice mají
tedy vnější dotyk.

27. Je dán rovnostranný trojúhelník ABC o straně délky a
a dále úsečka délky q. Střed kružnice opsané tomuto trojúhelní-
ku označme O.

Na prodloužení úsečky AB za bod В sestrojte bod X tak,
aby platilo d{BX) = q. Na prodloužení úsečky BC za bod C
sestrojte bod Y tak, aby platilo d(CY) = q. Na prodloužení
úsečky CA za bod A sestrojte bod Z tak, aby platilo d(AZ) = q.

Dokažte: a) Trojúhelník YXZ je také rovnostranný.
b) Trojúhelníku XYZ lze opsat kružnici se stře-

dem v bodě O.
Řešení, a) Vzhledem ke konstrukci bodů X, Y, Z (obr. 54)

je jednak

d(BX) = d(CY) = d(AZ) - <?, O)

jednak

d(AX) - d(BY) = d(CZ) = a + q. (2)

Protože úhly <^XBY, <£YCZ a <^ZAX jsou vedlejšími
к vnitřním úhlům rovnostranného trojúhelníka ABC, mají
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velikost 120°, a jsou tedy navzájem shodné. Proto vzhledem
к (1) a (2) platí podle věty sus

AXBY £ д YCZ Ш AZAX

a rovněž

XF = FZ £ ZX,

takže trojúhelník XFZ je rovnostranný.
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b) Dokážeme-li, že

(Ж = OY = OZ, (3)

je zřejmé, že trojúhelníku XYZ lze opsat kružnici se středem O
a poloměrem OX.

Na obr. 55 jsou vyznačeny úsečky OX, OY, OZ.
Podle konstrukce platí (1) a vzhledem к tomu, že bod O je

středem kružnice opsané trojúhelníku ABC, je

(4)OB = OC = OA.

Polopřímky ВО, СО, АО v rovnostranném trojúhelníku
jsou i osami vnitřních úhlů trojúhelníka, neboť středy opsané
a vepsané kružnice splynou. Proto platí pro velikosti úhlů
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<£ OBY = <£OCZ = <$OAX = 30°.

V trojúhelníku OBX je zřejmě

<$OBX = <£OBY + <£ YBX = 30° + 120° = 150°.

Obdobně zjistíme, že i úhly <£OCF a <^OAZ mají velikost
150°. Proto vzhledem к (1) a (4) platí

/\ОВХ = ДОСУ = [\OAZ (sus)

a rovněž

OX = OY £ OZ,

takže trojúhelníku XYZ lze opsat kružnici (O; OX).

28. Narýsujte libovolný pravoúhlý trojúhelník ABC s pra-

vým úhlem při vrcholu C. Na prodloužené straně AC za bod C
sestrojte bod B\ tak, aby bylo CB\ = CB. Na prodloužení
strany BC za bod C určete bod A\ tak, aby bylo CA\ = CA.

a) Dokažte, že trojúhelníky ABC a A±BiC jsou shodné.
b) Bodem C sestrojte přímku p kolmou к přímce AiBi;

její patu označte D. Dokažte, že přímka p protne úsečku AB
v jejím středu.

Řešení, a) Podle konstrukce (obr. 56) platí BC = B±C3
<^BCA = <^BxCAi, AC = AiC, a tedy

ДАВС = ДА1В1С (sus),

přičemž pravé úhly <£ВСА а ДВ1СЛ1 jsou vrcholové.
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b) Shodné úhly při vrcholech A, A\ označíme a, při vrcho-
lech В, Вl je označíme fi. Protože oba úhly a, /3 jsou ostré,
padne pata D kolmice p dovnitř úsečky A\B±-, polopřímka CD
leží tedy uvnitř úhlu <£B\CA\. Polopřímka CE opačná к polo-
přímce CD prochází vnitřkem úhlu <£BCA, který je vrcholový
к <£BiCAi. Průsečík polopřímky CE s úsečkou AB nazveme F.

Jak dokážeme, že F je střed úsečky AB, tj. střed přepony AB
pravoúhlého trojúhelníka ABC? Nastane-li to, je F středem
kružnice opsané AABC, tj. FA = FB = FC. Obráceně, je-li
FA = FB = FC, je bod F středem kružnice opsané trojúhelní-
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ku ABC. Musíme tedy dokázat, že trojúhelníky ACF, BCF
jsou rovnoramenné s hlavním vrcholem F. Důkaz shodnosti
stran převedeme na důkaz shodnosti úhlů.

V pravoúhlém trojúhelníku CDBi má druhý ostrý úhel
<FB\CD zřejmě velikost a; pak úhel к němu vrcholový <£ACF
je rovněž velikosti a. Protože trojúhelník ACF má dva shodné
úhly velikosti a, je rovnoramenný se základnou АС a platí

FC £ FA. (1)

Obdobně dokážeme, že trojúhelník CBF je rovnoramenný
se základnou CB, pro jehož ramena platí

(2)BF £ FC.

Spojením rovnosti (2) a (1) dostaneme konečně

BF = FA,

a protože polopřímky FA, FB jsou opačné, je bod F středem
úsečky AB, což jsme měli dokázat.

Poznámka 1. Ze vztahů (1) a (2) rovněž vyplývá, že »střed
přepony pravoúhlého trojúhelníka je středem kružnice tomuto
trojúhelníku opsané«. Protože jsme v úloze vyšli od zcela
libovolného pravoúhlého trojúhelníka, provedli jsme v bodě b)
také vlastně důkaz věty uvedené v uvozovkách pro libovolný
pravoúhlý trojúhelník.
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Poznámka 2. Vraťme se nyní к obrázku 56. Po konstrukci
trojúhelníka A\B\C sestrojíme osu o úsečky AA\. Protože
CAi = CA, prochází o bodem C a obsahuje osy úhlů ACA±
i BCBi. Dále je podle konstrukce CB\ = CB, takže i body B,
B\ jsou souměrně sdružené podle osy o. Trojúhelníky ABC
a A1B1C jsou tedy souměrně sdružené podle osy o, a proto jsou
i shodné. Tím jsme vlastně úlohu a) vyřešili jiným způsobem.

29. Je dán lichoběžník ABCD, v němž AB > CD. Označme
M a N po řadě středy základen AB a CD.

Dokažte: Je-li

1

2 (AB - CD),MN =

pak

BAD + ABC = 90°.

C

11A К L В

Obr. 57
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Řešení. Bodem N vedme (obr. 57) rovnoběžky s přímkami
AD a BC, jejich průsečíky s přímkou AB označme po řadě

1
К a L. Z konstrukce bodů К a L plyne, že AK = BL = — CD.

Bod M je tedy středem úsečky KL = AB — CD, takže z před-
pokladu plyne

KM = ML = MAT.

Bod ЛГ leží tedy na půlkružnici nad průměrem KL, takže

<:KNL = 90°,

a tedy

<£AÍ/ČL + <?J<LN = 90°.

Protože <£NKL = <££>/!£ a £ <£С£Л, plyne do-
kazovaná rovnost z poslední rovnosti.

А/ CD

i I
I I í

í II I
i

I
Ii I

j^2a Ia

M V 3UA

Obr. 58
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Jiné řešení. Body Ca D vedeme rovnoběžky s přímkou MN.
Průsečíky s přímkou AB označme U a V (obr. 58). Platí

1 1
UM = MV = DN = NC =

2 CD< 2 AB’

takže U а V jsou vnitřní body úsečky AB. Z konstrukce bodů
U а V plyne

1
~ CV = —(AB- CD)DU (1)

a

1
AU = AM — UM =

- (AB - CD%

(2)
1

- (AB - CD).BV = BM — VM =

Trojúhelníky AUD a BVC jsou podle (1) a (2) rovnoramenné
s hlavními vrcholy U a V. Z vlastnosti vnějšího úhlu trojúhelní-
ka vyplývá:

1
<£UAD £ у <)CAřř/D

(3)
1

<CF£C = у <X^ÍFC
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Podle konstrukce bodů U a V je UD || VC, takže

MUD + <£MVC = 180°.

Zřejmě -ŠUAD = <$BAD a <£F5C = <£ЛБС, takže z (3)
a (4) dostáváme dokazovanou rovnost.

(4)

30. Do kružnice je vepsán sedmiúhelník АхА^АзА^А^А^А^.
Přímka p prochází středy stran АзАц, AeA7. Kolik úhlopříček
daného sedmiúhelníka přímka p protíná?

Řešení. Přímka p protíná úhlopříčku daného sedmiúhelníka,
právě když její krajní body leží v opačných polorovinách s hra-
niční přímkou p. V jedné z těchto polorovin (obr. 59) leží body
A7, Ai, A2, A3 a ve druhé A6, A5, A4. Počet úseček, jejichž
jeden krajní bod je A7 a druhý z množiny {Аб, A5, Л4}, se
zřejmě rovná třem. Obdobně je tomu pro body A\, A9, A3.
Tedy úseček, jejichž jeden krajní bod je z množiny {A7, A1, Л2,
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A3} a druhý z množiny {Л6, A5, А4), je 4.3 = 12. Ovšem
mezi těmito dvanácti úsečkami jsou též strany AGA7 а A3A4
daného sedmiúhelníka. Zbývajících deset je úhlopříčkami. Tedy
přímka p protíná 10 úhlopříček daného sedmiúhelníka.

31. Je dán konvexní*) pětiúhelník ABCDE.
a) Dokažte, že žádné jeho tři úhlopříčky nemohou procházet

týmž bodem.
b) Narýsujte tento pětiúhelník a všechny jeho úhlopříčky.

Potom ho vystřihněte a rozstříhejte podél jeho úhlopříček.
Zjistěte, kolik částí vzniklo a jaké jsou to útvary.

ia

I
! '\'Г

C

/

\6 /

X 5
\'f
\

1 i \
I 2 /

/ 3 В
/

I /

Obr. 60 A

*) Pro naši úvahu je účelná tato vlastnost konvexního mnohoúhelní-
ka v rovině: Zvolme jeho libovolnou stranu a veďme jí přímku, která
rozdělí rovinu na dvě opačné poloroviny. Potom mnohoúhelník (až
na zvolenou stranu) leží v právě jedné z těchto polorovin.

Příklad: Pětiúhelník ABCDE leží (až na stranu ED) celý v polorovině
EDB; strana ED, ale jenom ona, patří též polorovině opačné (obr. 60).

208



Řešeni, a) Pětiúhelník má celkem 5 vrcholů; z každého z nich
vycházejí právě dvě strany a dvě úhlopříčky (např. na obr. 60
z vrcholu A dvě strany AB, AE a dvě úhlopříčky AC3 AD -

jiné možnosti nejsou). Kdyby tři úhlopříčky procházely týmž
bodem, nemohl by to tedy být vrchol pětiúhelníka.

Další úvahu provedeme formou tzv. »nepřímého důkazu«.
Při důkazu tohoto typu obyčejně vylučujeme platnost jisté
vlastnosti nebo situace tak, že nejprve její platnost pomocně
předpokládáme, a pak na základě dalších správně vedených
úvah dojdeme к neplatnému závěru. Z toho soudíme, že před-
pokládaná vlastnost neplatí. Ukážeme si to konkrétně v naší
úloze:

Předpokládejme, že tři navzájem různé úhlopříčky se proti-
nají v bodě X, který je vnitřním pro každou z nich. Na každé
z úhlopříček leží dva vrcholy. Žádný z těchto vrcholů nemůže
být společný dvěma různým úhlopříčkám; takové dvě úhlo-
příčky by měly společný vrchol a průsečík, a proto by splynuly.

209



Existuje tedy celkem 6 různých vrcholů (obr. 61), což však
není možné, neboť pětiúhelník má jen 5 vrcholů. (Někdy říkáme,
že jsme došli ke »sporu«.) Neplatí tedy náš předpoklad, že tři
navzájem různé úhlopříčky procházejí bodem X, který je
vnitřním pro každou z nich. Tím je důkaz a) zcela proveden.

b) Rozstříháním vypuklého pětiúhelníka vznikne 10 troj-
úhelníků a jeden pětiúhelník.

A

к
/

/
<Гоz

LР/.Z/a'

Y

/
P'Ф

/

A
-ih 'c вX

/

Obr. 62
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32. Načrtněte pravoúhlý trojúhelník ABC tak, aby odvěsna
BC byla menší než odvěsna CA. Uvnitř úsečky BC zvolte bod
X a uvnitř úsečky AB najděte bod Y tak, že platí XY = XB.
Bodem Y veďte kolmici к přímce XY; její průsečík s přímkou
AC označte Z.

Dokažte, že obvod čtyřúhelníka CXYZ je stále týž, ať
zvolíme bod X kdekoli uvnitř úsečky BC.

Vypočtěte tento obvod pomocí stran trojúhelníka ABC.

Řešení (obr. 62). Označme d(BC) = a, d{CA) = b; podle
textu úlohy je

a < b. (1)

Bod X jsme podle textu úlohy zvolili uvnitř úsečky BC.
Myslíme si, že sestrojení bodů X, Z lze provést tak, jak je
naznačeno v obrázku 62, tj. že je

(2)XY = XB,

přičemž bod Y leží uvnitř úsečky BA, a dále, že je

YZ J_ XY,

přičemž bod Z padne dovnitř úsečky CA. Podle (2) je troj-
úhelník XBY rovnoramenný a úhly /?, /5' při jeho základně
BY jsou shodné; je tedy

P = (3)
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Dále podle konstrukce kolmice k je

/ = 90°. (4)

Vypočítejme nyní velikost úhlu a'. Víme, že v daném troj-
úhelníku ABC je у = 90°, a tedy

a + p = 90° (5)

(součet velikostí ostrých úhlů v pravoúhlém trojúhelníku je
90°). Je tudíž

a' = 180° - F - /

neboli [dosazujeme sem ze vztahů (3), (4)]

a' = 180° — P— 90°,

a tedy

a' = 90° - p.

Ze vztahu (5) plyne, že a = 90° — /?; odtud porovnáním obou
posledních vztahů dostáváme

(6)a' = a.

Z této rovnosti (podle známé věty o úhlech a protějších stranách
trojúhelníka) plyne pro trojúhelník A FZ, že je

(7)ZY = ZA.

212



Nyní vyjádříme obvod p čtyřúhelníka CXYZ\ je

p = (d(CX) + d{XY)) + (d(CZ\) + d{ZY)).

Dosaďme sem za XY ze vztahu (2) a za ZY ze vztahu (7);
dostaneme

p = (^(CÁO + i(X8)) + (ď(CZ) + d{ZA)\ (8)

Podle obr. 62 však platí

J(CX) + d(XB) = d(CB) = a,

d(CZ) + d(Z^) = <ř(C4) = ft.

Dosaďme tyto výsledky do (8); dostaneme

p = a + b.

Odpověď. Obvod čtyřúhelníka CXYZ je roven součtu
délek odvěsen daného pravoúhlého trojúhelníka ABC.

Než však ukončíme řešení, musíme ještě dokázat, že při volbě
bodu X uvnitř úsečky CB (viz obr. 62)

[1] bod Y padne dovnitř úsečky AB3
[2] bod Z padne dovnitř úsečky CA.

Důkaz (viz označení z obrázku 62). V polorovině BCA
sestrojme polopřímku CQ ]| XY. Vnější úhel co rovnoramenné-
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ho trojúhelníka XBY je roven 0 + (3'3 a protože je 0' = 0
[viz (3)], platí

co = 2(3. (9)

O přilehlých úhlech £, co mezi rovnoběžkami Cg, YA- platí
£ + co — 180°; dosadme sem ze vztahu (9). Dostaneme
£ + 20 = 180°; proto je

£ = 2a,

neboť 2(a + 0) = 2.90° [viz vztah (5)]. Ale a < 45°, 0 > 45°,
neboť v daném trojúhelníku ABC je a < b, у = 90°; je tedy
£ — 2a < 90° a polopřímka Cg leží v pravém úhlu y. Proto
společný bod Y0 polopřímky CQ a úsečky AB padne dovnitř
této úsečky. Leží tedy celá přímka AY|| CY0 uvnitř polo-
roviny CYqB, a bod Y padne tudíž vždy dovnitř úsečky Y0B,
a tím také dovnitř úsečky AB.

Nyní sestrojme přímku YP 11 BC; je tedy CA J_ YP.
Protože přímka YP leží uvnitř poloroviny BCA a protože bod
Y je vnitřním bodem úsečky AB, padne společný bod Z0
kolmic CA, YP dovnitř úsečky CA. V trojúhelníku AYZ0
je úhel <£Z0 = 90° a úhel 0" - 90° - a, tj. /3" = 0. Protože
je a < 0, je podle (6) též a' < 0" a polopřímka YZ leží v úhlu
(3", a tudíž bod Z padne dovnitř úsečky Z0A; tato úsečka však
je částí úsečky CA, a proto bod Z leží též uvnitř úsečky CA,
což jsme měli dokázat.

Tím je celý důkaz proveden.
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IV. Úlohy s výpočty

33. V trojúhelníku ABC\ označme úhly <£CiAB — a,

<£ABCi = /3, ^BCíA = y.
Uvnitř trojúhelníka ABCi leží bod Cn takový, že platí

11
.a, <yABCn — • /3,

n
<£CnAB =

n

kde n je dané přirozené číslo větší než 1.
Vyjádřete velikost úhlu <^ACnB pomocí úhlu y.

CJ

C2

C3

íp (Гía
вA

Obr. 63
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Řešení. Na obr. 63 jsou trojúhelníky ABCi, АВС2з АВСз.
Výpočet úhlu <yAC2B je jednoduchý:

1 1 1
<$AC2B = 180° — — K— — p= 180° -- (a + /5).

Protože platí a + P + у — 180°, je

a + £ = 180° - у (1)

čili

11
<£ЛС2В - 180° - - (180° - у) = 90° + - у.

Obdobně bychom vypočítali velikost úhlu <yAC2B = уз
a obecně pak úhlu <yACnB = y„:

P 1a

= 180°- —(a +/?) (2)
И и

у» = 180° - —
п

Dosadíme-li z (1) do (2), dostaneme

1
yn = 180° - - (180° - у)

п

nebo po další úpravě

1
yn = 180° + — у.

n
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Toto vyjádření velikosti úhlu yn závisí na přirozeném čísle я,
velikosti úhlu у a konstantě 180°, jak vyžadoval text úlohy.

34. Rovnoramenný trojúhelník ABC se základnou AB má
obvod 50 cm. Označte D střed strany ВС a E střed strany AC.
Obvod trojúhelníka ABE je o 8 cm větší než obvod trojúhelníka
ACD.

Vypočítejte velikosti stran trojúhelníka ABC.

Řešení (obr. 64). Označme z = d(AB), r — d(CA) = d(CB)
v rovnoramenném trojúhelníku ABC se základnou AB. Protože
body E, D jsou středy ramen, platí podle věty sus zřejmě

AAEB ^ BDA. (1)

Podle podmínek úlohy je
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d(AB) + d(BE) + d{AE) -8 cm- d(AD) + d(CD) +d(AC).
(2)

Protože podle (1) je AD = BE, dostaneme po dosazení
do (2) rovnici

11
— 8 cm =z + jr 2 r + r

čili

(3)z — r = 8 cm.

Z podmínky pro obvod trojúhelníka ABC plyne druhá
rovnice pro neznámé z, r:

(4)z + 2r = 50 cm

Řešením soustavy (3), (4) dostaneme r — 14 cm, z — 22 cm,

tj. d(AB) — 22 cm, d(CA) = d(CB) = 14 cm.

Zkouška, a) d(AB) -f d(CA) + d{CB) = 22 cm + 2.14 cm —

= 50 cm, což je podmínka úlohy.
b) Vypočítáme d(AB) + d(BE) + d(AE) - (d(AC) +

+ d{DC) + d(AD)). Protože podle (1) je AD = BE, dosta-
neme d(AB) + d(AE) — d(AC) — d{DC) — 22 cm + 7 cm —
— 14 cm — 7 cm = 8 cm, jak žádá text úlohy.

35. Je dán lichoběžník ABCD, jehož střední příčka má dél-
ku 1 a jemuž lze vepsat kružnici. Vypočtěte jeho obvod.
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rfl

В

Řešení (obr. 65). Kružnice k vepsaná lichoběžníku ABCD
se dotýká jeho stran AB, BC, CD, DA v bodech, které ozna-
číme po řadě T, U, V, W. Podle známé vlastnosti tečen vede-
ných z bodu ke kružnici platí AW = AT, ВТ = BU, CU =

= CV, DV = DW. Délky těchto úseček označíme 1, m, n, p.
Podíváme-li se pozorně na obr. 65, vidíme, že součet délek
obou základen je

(1)/■fffl + K-fř

a že témuž číslu se rovná i součet délek obou ramen. Obvod
lichoběžníka je tedy

2(7 + m + n + p). (2)

Nyní využijeme podmínky, že střední příčka má délku 1.
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Délka střední příčky se rovná polovině součtu obou základen,
tj. podle (1)

¥) + m + n +/>) = 1.

Dosadíme-li do výrazu (2), dostáváme, že obvod daného licho-
běžníka se rovná číslu 4.

’ 36. Je dán pravoúhlý trojúhelník ABC o stranách délek
d(AC) = b = 12 cm, d(BC) = a — 5 cm. Sestrojte kružnici
& = (vS; r), která se dotýká uvnitř každé z kružnic &i = (A; b),
kz — (B> a) a má střed na AB.

Vypočtěte poloměr r a vzdálenost CS.

r S r JiNВ ti A

к

*1 к2

Obr. 66
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Řešení. Při rýsování obrázku využijeme toho, že úhel ACB
je pravý; celá konstrukce je patrna z obr. 66. Dotykový bod
kružnic k a k\ označíme M. Kružnice k a mají dotykový
bod N.

a) Nejprve vypočítáme délku přepony c v centimetrech:

j/52 + 122 = 13 (cm)

Z polohy bodů na přímce АВ vyplývá, že

c = d(BM) + d(MN) + d(NA)

čili

c — {a — 2r) + 2r + (b — 2r),

takže platí

c — a + b — 2r.

Proto dostaneme

2r = a + b — c = 5 cm + 12 cm — 13 cm = 4 cm.

Odpověď. Poloměr kružnice k je r = 2 cm.

b) Úsečka CS je přeponou pravoúhlého trojúhelníka CSP,
kde bod P je patou kolmice vedené bodem S na přímku CB.
Trojúhelníky BSP a BAC jsou podle věty uu podobné; toho
využijeme к určení délek odvěsen trojúhelníka CSP. Platí
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d(BS) d(BA)
d(SP) = d(AC)

čili

3 cm. 13 cm

d(SP) = 12 cm 5

takže

36
(4)d(SP) = ~ cm.

Protože CP = CP — PB, vypočteme nejprve délku PB.
Platí

d(PB) d(CB)
d{BS) = с*(РЛ)

čili

d(PS) 5 cm

3 cm 13 cm 5

takže

15
d(PB) = — cm
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a

15 50
d(CP) = 5 cm — — cm = — cm. (5)13 13

Podle Pythagorovy věty pak dostaneme

d(CS) = 1l(d(CP))* + (d(SP)f cm =

-V2 500 1 296
+ cm =

132 132

1 1
= — 1/3 796 cm r£= — . 61,61 cm = 4,74 cm.

Odpověď. Vzdálenost CS = 4,74 cm.

3
37. Obdélník ABCD má rozměry d(AB) = 6 — cm, d(BC) =

2
= 4— cm; označte F střed strany AB. Výpočtem řešte úlohu:

Na polopřímce BC určete takový bod X3 aby obsah troj-
5

úhelníka AFX byl roven — obsahu obdélníka ABCD. (Vypočtě-
O

te délku x úsečky BX.)
Řešení (obr. 67). Obsah P obdélníka ABCD je

3 2
P = 6—. 4— cm2.

5 3
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5
— obsahu P je8

(1)

x

A

Trojúhelník AFX má stranu AF délky

3 1
(2)d(AF) = 6 —

cm
5 ' 2
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a délku příslušné výšky v centimetrech označíme x; obsah
tohoto trojúhelníka je

1
—

. d(AF). x cm2.

Dosadme sem za d(AF) ze vztahu (2); dostaneme

1 3 1
6 x cm2.

2 5 2

Toto číslo má být rovno číslu (1); tím dostaneme rovnici
(v cm2)

1 3 1

I-6y-2'* = ?-65-4
5 3 2

3 ’

1 3 1
Znásobme tuto rovnici číslem převráceným к číslu —. 6—. —;

3
pak se na pravé straně zkrátí 6 — a dostaneme pro x v cen-5

timetrech

5 2
x — — . 4 — . 4 cm;

8 3 5

odtud postupně dostáváme
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5 14
x —

n . — cm,2 3

5 7

Г* 3
х -

—

cm,

35
х = — cm,

3

2
x — 11 — cm.

3

2
Odpověď. Délka úsečky BX jell - cm.

Zkouška. Obsah T trojúhelníka AFX je (v cm2)

1 3 1
л 2 1.33.1.35 1.11.1.7 77Г = 2'65'2*П3 = 2.5.2 .Т = 2.1.2.7 = Т *

Pro obsah Р obdélníka ABCD dostáváme (v cm2)

33 14 154

~5 ' 3^ = 5 ‘

3 2
P = 6?.4¥ =

5
jeho obsahuVypočteme 8

5 154 5 77
p ^ — — —

5*8 4 38

a to je skutečně obsah T trojúhelníka AFX v cm2.
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Poznámka. Promyslíte-li si text úlohy, uvážíte-li, které
údaje jsou pro řešení úlohy podstatné, a nebudete-li hned
dosazovat numerické údaje, zjednoduší se celý výpočet takto:

1
Označme d(AB) = a, d(AF) = — a, d(BC) — b, d(BX) = x.

Podle textu úlohy má platit

1 1

2 ‘ 2

Po výpočtu x dostaneme

5
—

a . x — — a . b.
8

5

x=2b

2 14
— cm (za a není třeba dosa-a po dosazení za b = 4 — cm = —

zovat) je

5 14

2 • у cm = — cm = 11 — cm.
235

x — —

38. Je dán obdélník ABCD, jehož strany mají délky d(AB) —
—

a, d(BC) = b, a> b. Na polopřímkách ÍL4, C5, DC, /ID
sestrojte po řadě body В', C', D', /3' tak, aby platilo/ЗЛ' =

= DB' S CC S DD' a aby A'B'C'D' byl kosočtverec.
Vypočtěte nejprve délku úseku d(AA') = x, a pak koso-

čtverec sestrojte.
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Řešení. Budiž A'B'C'D' kosočtverec (obr. 68). Označme
d(AA') = d(BB') - d(CC') = d{DD') = л. Pak je d(AB') =
— d{CD') = \a — x\ (nevíme, zda je a > x nebo x > a);
obdobně je d(BC') = d(DA') = \b — x\. Podle Pythagorovy
věty a z toho, že A'B'C'D' je kosočtverec, je

(d{BB')f + ДОС'))2 - (d(B'C))2,
(1)

(J(CC'))2 + {d{CD')f = {d(C'D'))\

Protože je B'C S C'£>', plyne z (1)

дев'))2 + дас'))2 - дес'))2 + {d(CD')f,

protože je d(BB') = d(CC') = x, dostáváme
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j ъ - X i2 - I a - x I2. (2)

Základy druhých mocnin v rovnici (2) jsou absolutní hodno-
ty, tedy nezáporná čísla, a proto můžeme každou ze stran
rovnice (2) odmocnit a dostaneme správnou rovnici

\a — x \ — \b — x\. (3)

Připustíme-li možnosti jednak a > x nebo a < x, jednak
b > x nebo b < x, dostaneme po odstranění absolutních
hodnot dvě rovnice

(I)a — x = b — x,

(П)a — x = x — b.

První rovnice je vyloučena, poněvadž je a > b. Z druhé rovnice
pijme

1
x (a + b). (4)

Obrácením postupu zjistíme, že A'B'C'D' je při takto zvoleném
д: skutečně kosočtverec. Vzorec (4) zároveň ukazuje, že je

b < x < a,

tj. body Cr, A' leží vně obdélníka, £', D' na jeho stranách (viz
obr. 68).
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Konstrukce. Na polopřímce opačné к AB sestrojíme bod M
tak, aby bylo d(AM) — b. Pak je d(BM) = a + b a B' je

1 1
středem úsečky BM, neboť je d{BB') — — d(BM) = — (a + b).

Další body A', C, U snadno doplníme.

Poznámka. Předpokládáme-li, že na obr. 68 je znázorněno
řešení úlohy, zjistíme, že

AB'BC' = ACCD'

(podle věty Ssu, neboť oba trojúhelníky jsou pravoúhlé a platí
d{B'B) = d(C'C) = x3 d{B'C') = d(C'D'), kde В'С > B B).
Proto je

BC = CD',

t). \ a — x\ = \b — x\z obdobnou úvahou jako v uvedeném
řešení zjistíme platnost vzorce (4).

39. Je dán obdélník ABCD o rozměrech d{AB) — 2 m,

d(AD) — 1,6 m. Uvnitř tohoto obdélníka leží bod X; přitom
jsou obsahy trojúhelníků ABX, BCX, CDX, DAX po řadě
úměrné číslům 5, 6, 3, 2.

a) Vypočtěte obsah každého z těchto čtyř trojúhelníků.
b) Vypočtěte vzdálenost bodu X od přímek AB, BC, CD,

DA.

c) Sestrojte obdélník ABCD v měřítku 1 : 20 a v něm
bod X, který vyhovuje požadavkům úlohy.
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Řešení (obr. 69). a) Je d(AB) = 20 dm, d(BC) — 16 dm.
Obsah P daného obdélníka ABCD je 320 dm2. Označme Pi,
P2, Рз, P4 obsahy (v decimetrech čtverečných) trojúhelníků
ABX, BCX, CDX, DAX. Podle textu úlohy platí

(1)Pi = 5d, P2 = 6d, P3 = 3d, P4 = 2d,

kde číslo d > 0 musíme vypočítat. Platí

P = Pi + P2 + Рз + P4

neboli (v dm2)

320 - 5d + 6d + 3d + 2d;

odtud postupně dostaneme

16d = 320,
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320
d = —

16 5

d = 20.

Ze vztahů (1) pak dostáváme

Pi = 100 dm2, P2 = 120 dm2, P3 - 60 dm2, P4 = 40 dm2. (2)

Čísla Pi, P2, Рз, P4 jsou zřejmě úměrná číslům 5, 6, 3, 2, jak se
1

přesvědčíme násobením čísel (2) číslem — . Součet Pi + P2 +

+ P3 + P4 = 320 dm2.
b) Označme po řadě z>i, z>2, ^з, ^4 vzdálenosti bodu X od

přímek AB, PC, CD, D/l neboli výšky trojúhelníků ABX,
BCX, CDX, DAX. Platí po řadě (délky úseček v decimetrech,
obsahy v decimetrech čtverečných):

1 1
P2 = —.BC.V2,Pi = —. AB. z>i,

1 1
P4 = —. DA. v4Рз = ~2 - CD.V3,

neboli

11
120 = у .16. ©г,100 =

— .20.^1,

11
— .20.г>3, 40 = 216-щ-60 =
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Po zkrácení a záměně stran rovnic dostáváme

l(bi = 100, 8z>2 = 120, Юг^з = 60, 8z>4 = 40.

1111

10’¥’To’8 ;Násobme obě strany každé z rovnic po řadě čísly —

dostaneme

120 60 40
vi = 10, v2 = ——, V3 = — v4 — —

10 58 8

neboli v decimetrech

v\ = 10 dm, V2 = 15 dm, v% — 6 dm, г>4 = 5 dm.

Zřejmě platí vi + vz — d{BC), tj. 16 dm, dále + v4 =
= d(AB), tj. 20 dm.

c) (Délky úseček udáváme v decimetrech; obr. 70 zmenšen.)
Obdélník ABCD znázorníme obdélníkem A'B'C'D' v měřítku
1 : 20, tj.

1 1
d(A’B') = To d(AB)> d(B'C) = 20d(BC)

neboli

1
d(A'B') = — .20 dm = 1 dm = 10 cm,20

81
d(irC') = -16dm = - dm = 8 cm.
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Obr. 70

Sestrojení obdélníka A'B'C'D' je z vypočítaných rozměrů
zřejmé.

Nyní platí
v\ 10 5 V2 15 3

V3 6 3 5 5 1

Úsečku A'B' délky 1 dm rozdělíme v poměru 3 : 1 [viz (3)].
Provedeme to tak, že ji rozdělíme na 4 rovné díly: délka jednoho

(3)

1311
dílu je — .d(A'B') — — dm; části budou — dm, — dm. Označ-

1
me X0 bod úsečky A'B\ pro nějž platí d(A'X0) = — dm neboli

3
— dm (tj. d(A'X0) = 2,5 cm).4d(B'Xo) =
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Úsečku Б'C délky 0,8 dm = 8 cm rozdělíme v poměru 5 : 3.
Provedeme to takto: Rozdělíme ji na 8 rovných dílů: délka

11
jednoho dílu je — d(B'C') = —.0,8 dm = 0,1 dm, tj. 1 cm.8 8

Části budou:

0,1 dm.5 = 0,5 dm; 0,1 dm.3 = 0,3 dm.

Na úsečce B’C sestrojíme bod Xq" tak, aby platilo d{B'Xo") =
= 0,5 dm neboli d(C'XQ”) = 0,3 dm (tj. d(C'XQ") = 3 cm).

Nyní sestrojíme bodem Xq přímku x' || B'C', bodem Xq"
přímku x" |i A'B'. Průsečík přímek x', x" je bod X'. Tím je
celá úloha rozřešena.

40. V rovnoramenném lichoběžníku ABCD má větší základ-
na AB délku 4 cm; úhlopříčky lichoběžníka jsou navzájem
kolmé a dělí se v poměru 2:1.

Vypočtěte poloměr kružnice lichoběžníku opsané.

Řešení. V této i v každé jiné geometrické úloze, kterou
řešíme početně, velmi záleží na pořízení zřetelného obrázku,
na jeho vhodném označení i postupném doplňování dosaže-
nými výsledky nebo na vhodném uplatňování známých geo-

metrických vět.
Na obrázku lichoběžníka ABCD, o němž předpokládáme, že

má dané vlastnosti (obr. 71), označíme P průsečík úhlopříček
a M, N po řadě středy úseček AB, CD. Přímka MN je osou
souměrnosti lichoběžníka a dělí i úhel APB na dva shodné

úhly, takže <£АРМ — <£BPM = 45°. Proto pravoúhlý troj-
úhelník AMP (<^CAMP — 90°) je rovnoramenný a platí
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d(AM) = d(MP) - 2 cm; d(AP) = 2]/2 cm.

Pak podle podmínky úlohy je d(PC) = j/2 cm a z podobnosti
pravoúhlých trojúhelníků AMP a CNP vyplývá, že d(PN) =
= 1 cm, takže d(MN) = 3 cm a dále d(NC) = 1 cm, takže
d(DC) = 2 cm.

Střed O kružnice opsané lichoběžníku leží na přímce MN
a např. na ose q strany AD. Dokážeme-li, že průsečík přímek
MN a q padne dovnitř úsečky MN tak, jak nám vyšlo na
obrázku, pak budeme moci při výpočtu poloměru r — d(AO) —
= d{DO) použít trojúhelníky AMO a DNO.

Nejprve tedy početní ověření polohy bodu O mezi body
M, N: Střed úsečky AD označme Q; bod Q přímky q leží
tedy uvnitř polorovin MNA, AMN a NDA. Označme dále E
patu kolmice bodem D к přímce AB; tu je d{AE) — d(AM) —
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— d(ME) = 2 cm - 1 cm = 1 cm. V pravoúhlém trojúhel-
niku ADE o přeponě AD pak podle Pythagorovy věty platí:

{d(AD)f = (d(AE))2 + (d(DE)Y- = Г- + 32 = 10 (v cm2)

čili

1
d(AD) = yiOcm; d(AQ) = — |10 cm.

Protože z trojúhelníku AED vyplývá, že úhel DAE je ostrý,
protnou se přímky q a AE v bodě F a vytvoří rovněž pravoúhlý
trojúhelník AQF. Trojúhelníky AED a AOF jsou podle věty
uu o podobnosti trojúhelníků podobné, a platí pak např.

d{AE) d(AQ)
d(AD)= d(AF);

odtud po dosazení za d(AE) = 1 cm, d{AD) — j/lO cm
1 —

a d(AQ) — у j/10 cm dostaneme

d(AF) = 5 cm.

Avšak d(AB) = 4 cm, takže bod F padne do poloroviny
MNB; bod Q leží v polorovině opačné. Potom bod O úsečky
QF leží uvnitř poloroviny ABD, a tedy i uvnitř úsečky MN.

Nyní už vypočteme poloměr r — d(AO) — d(DO) opsané
kružnice z trojúhelníků AMO a DNO. Pomocně označíme
d{MO) — x, takže je d(NO) = 3 — x (oba údaje jsou v centi-
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metrech). Podle Pythagorovy věty pro uvedené pravoúhlé
trojúhelníky dostaneme:

(d(AM))2 + (d(MO))2 = r2, (d(ON))2 + (d(ND))'2 = r2

(vše v cm2) neboli

4 + x2 = r2, (3 — x)2 + l2 y2 (i)

Porovnáním obou vyjádření r2 dostaneme rovnici

4 + x2 = 9 — 6x + x2 + 1

a z ní vypočteme x = 1, což značí, že bod O je středem úsečky
MP. Dosazením do (1) dostaneme r2 = 5 (v cm2) čili r =

= У5 cm = 2,24 cm.

Odpověď. Hledaný poloměr opsané kružnice je r = |/5 cm.

CD
a. Кz

* I У%
a

P I
A В

2a

Obr. 72
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41. Je dán obdélník ABCD, v němž d(AB) = 2a, d(BC) = a.
Nad stranami AB, AD jako nad průměry jsou sestrojeny kruž-
nice, které kromě bodu A mají společný ještě bod K.

a) Dokažte, že bod К leží na úhlopříčce BD.
b) Vypočtěte vzdálenosti bodu К od vrcholů A, B, D.

Řešení, a) Poněvadž podle Thaletovy věty (viz obr. 72) je

^AKD = 90° a zároveň <£AKB = 90°,

leží body By K, D v přímce, tj. na úhlopříčce BD daného
obdélníka.

b) Označme (v centimetrech)

d(AK) - x, d(BK) = з/, d{BD) = }'a2 + 4a2 = a]/5.

Z pravoúhlého trojúhelníka ABK plyne

x2 _J_ y2 — 4a2^

a podobně z pravoúhlého trojúhelníka ADK plyne

x2 + (aj/5 —y)2 — a2.

Upravujeme druhou rovnici

x2 y2 _ 2ay]/5 + 5a2 = a2.

Dosadíme z první rovnice
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4a2 — 2ayУ5 + 4a2 = O

a odtud

4a 2a

x = —=У
У5 ’ F5

Nakonec ještě dostaneme (v centimetrech)

a

d(DK) = a1/5 - у = -=
V5

Jiné řešení. Označme d(DK) — z (v centimetrech). Z podob-
nosti /\AKB ~ /\DKA (věta ш) plyne

ar : x = л: : у;.

Dosadíme-li

« = ф — ^ (1)

dostáváme

ay]j5 —- j>2 = л2,

odtud s použitím vztahu

(2)x2 -f jy2 = 4a2
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4a

plyne 3; = —=. Z (1) pak určíme z. Z (2) můžeme určit x.
V5

Rychleji lze л; určit z podobnosti /\ABK ~ l\DBA (věta uu),
odkud plyne

1я a

у 2a 2

42. Je dán čtverec ABCD o straně a = 10 cm. Každá ze

stran BC3 CD je rozdělena devíti body na deset shodných
úseček. Střed К strany AB je spojen s dělicím bodem X strany
ВС a vrchol В je spojen s dělicím bodem Y strany CD.
Které dělicí body X, Y musíme vybrat, aby přímky KX,
В Y byly navzájem kolmé ?

241



Řešení. Dělicí bod na straně BC označme X a dělicí bod
na straně CD označme Y (obr. 73). Aby přímky KX, В Y byly
к sobě kolmé, musí platit

AKBX ~ ABCY.

Odtud máme

(1)d{BX) : d(BK) = d(CY) : d(BC\

ale

a

d(BK) - ~ = 5 cm,

d{BC) = a = 10 cm.

Dále ještě označme

d(BX) = a,

d(CY) = /?,

kde pro přirozená čísla a, /5 (v centimetrech) platí

0 < a < 10, 0 < ft < 10.

Po dosazení do (1) dostaneme

a
= /5 : a,a:2

/5 = 2a.
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Vyhovují tyto hodnoty:

2 31 4a

P 2 4 6 8

Úloha má podle toho čtyři různá řešení.

43. Je dán čtverec ABCD. Stranu CD rozdělte na n shodných
dílů tak, aby na ní existoval dělicí bod X takový, že

KX || YL. (1)
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К je střed strany ВС, L je střed strany AB а У je dělicí bod
na straně AD, která je rozdělena na 5 shodných dílů.

Určete nejmenší n této vlastnosti.

Řešení (obr. 74). Ze vztahu (1) plyne

AALY ~ ACXK,

tj.

d(AY) d(CK)
d(AL)=d(CX)‘

l
(2)

Označíme-li délku strany čtverce a, potom rovnost (2) nabývá
tvaru

a a

r. — —
5 2

(3)
a a

s. —
2 n

kde r, s jsou přirozená čísla vyhovující nerovnostem

(4)l^r<5, 1 ^ 5 < K.

Vztah (3) po úpravě zní

(5)4rí = 5n.
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Z poslední rovnosti je zřejmé, že n je násobkem 4. Nejmenší
takové n jsou 4. Pro n — 4 dává (5)

rs = 5,

což však nelze splnit čísly r, 5 vyhovujícími nerovnostem (4).
Pro n — 8 rovnost (5) zní

rs = 10.

Této nerovnosti vyhovují čísla r = 2, 5 = 5, která také splňují
2 5

nerovnosti (4). Potom Y) = —a3 d(CX) = ~ a. V tomto5 o

případě skutečně platí (1).
Závěr. Nejmenší n požadované vlastnosti je n — 8.
Jiné řešení. Označme Yi, Y2, Y3, Y4 dělicí body na straně

AD (viz obr. 74). Ze vztahu (2) plyne

d(CK).d(AL) a2 1
d(A Y) = 4 ' J(i4Y) ‘d{CX) -

Pro Yi platí

a2 5 5
= — a, tj. X by nebyl bodem úsečky DC;d{CX) = —4 ’ a

pro Y2 je

a2 5 5

T.^ = ¥a,tj.«=8;ť/(CX) =

245



pro Уз je

а2 5 5

7 ' За = 12d(CX) = a, tj. п = 12;

pro У4 je

а2 5 5

4 ' 4а 16
a, tj. п = 16.d{CX) =

Závěr. Nejmenší п požadované vlastnosti je tedy n = 8.
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V. Nerovnosti v geometrii

44. Je dán trojúhelník ABC. Označme 5 střed strany AB.
Dokažte, že

1
CS < — (AC + BC). (1)

Řešení. Na prodloužení úsečky CS (obr. 75) za bod 5
sestrojíme bod C tak, aby platilo

C'S = CS.
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Pak ovšem platí

CC = 2.CS slBC = AC. (2)

Bod S neleží na přímce BC, takže body С, С а В neleží na
téže přímce a platí pro ně trojúhelníková nerovnost

CC < BC + BC,

tj. podle (2)

2.CS< AC + BC,

odkud již plyne dokazovaná nerovnost (1).

45. V rovině daného vypuklého čtyřúhelníku ABCD najděte
všechny body, jejichž součet vzdáleností od vrcholů A3 В, C,
D je nejmenší.
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Řešeni. Zvolme libovolný bod X v rovině daného čtyřúhel-
niku ABCD a hledejme (obr. 76), v kterém případě je nejmenší
součet

ЛХ + ВХ + СХ + DX.

Pro body А, С, X podle trojúhelníkové nerovnosti platí

AX + CX^ AC, (1)

přičemž rovnost nastává, právě když bod X je bodem úsečky
AC. Obdobně podle trojúhelníkové nerovnosti pro body B3
D3 X plyne

BX + DX ^ BD, (2)

kde rovnost platí, právě když je bod X bodem úsečky BD.
Z nerovností (1) a (2) dostáváme

AX + BX+CX + DX ^ AC + BD}

přičemž rovnost platí, právě když je bod X zároveň bodem
úsečky AC a úsečky BD. Tyto dvě úsečky mají jediný společný
bod - svůj průsečík V. Tento bod V je tedy bodem, jehož
součet vzdáleností od bodů A, В, C, D je nejmenší.

Úloha má jediné řešení; je jím průsečík úhlopříček čtyř-
úhelníku ABCD.

46. Je dán rovnoběžník ABCD. Potom pro každý bod X
roviny rovnoběžníku platí
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AX < BX + CX + DX. (1)

Dokažte.

Řešení. Pro každý bod X roviny rovnoběžníku ABCD
(obr. 77) podle trojúhelníkové nerovnosti platí

AX^AD + DX. (2)

Porovnáním s nerovností (1), kterou máme dokázat, vidíme, že
na místě úsečky AD potřebujeme mít součet BX + CX. Pro
tento součet podle trojúhelníkové nerovnosti pro body Bs C,
X platí

(3)BC^BX+ CX,

přičemž

(4)AD = BC,
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což plyne z toho, že čtyřúhelník ABCD je rovnoběžník. Tak
dostáváme nerovnost

AD ^ BX + CX, (5)

z níž a z nerovnosti (2) plyne

AX^BX + CX + DX. (6)

Nyní zbývá ještě rozřešit problém, zda v (6) může nastat
rovnost. Ta by platila, právě když by platila rovnost současně
v (2) a (5), tj. v (2) a (3), tedy právě když by bod X ležel zároveň
na polopřímce opačné к polopřímce DA a na úsečce BC. To
však není možné, neboť přímky AD a BC jsou různé rovnoběž-
ky. Tedy pro každý bod X roviny rovnoběžníka ABCD platí
nerovnost (1).

47. Je dán vypuklý čtyřúhelník ABCD. Označme M a N
po řadě středy stran AD a BC.
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Dokažte následující tvrzení: Jestliže

1
MN =

- (.AB + CD), (1)

pak střed 5 úhlopříčky AC leží uvnitř úsečky MN a AB || CD.
Řešeni. Úsečky AíS a SN jsou po řadě středními příčkami

(obr. 78) trojúhelníků ACD a ABC. Tedy

MS'|| CD, SN !| AB, (2)

1 1
MS = JAB,2 CD, SN =

takže

1
MS + SN = — (AB + CD).

Z předpokladu (1) tedy plyne

MS + SN = MN. (3)

Podle trojúhelníkové nerovnosti pro body M, N S platí

MS + SN ^ MN,

přičemž rovnost nastává, právě když bod S je vnitřním bodem
úsečky MN. Tedy z rovnosti (3) vyplývá, že bod S je vnitřním
bodem úsečky MN. Pak podle (2) je
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MN\\ABaMN\\ CD,

tj.

AB || CD.

48. Jsou dány dva různé body P a. Q. Sestrojte čtverec K,
který obsahuje body P a Q a má nejmenší možný obsah.

D
\ /
\ /
\ /
\ /

S/W к
>\/

\ V
\/

/ \

A

Obr. 79

Řešení. Nejprve dokážeme, že pro každý čtverec ABCD
platí: Jsou-li X a Y dva jeho body, pak

XY^AC, (1)

přičemž rovnost nastává, právě když X a Y jsou protější
vrcholy čtverce ABCD.

Označme 5 střed čtverce ABCD а и délku jeho úhlopříčky
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(obr. 79). Všechny body čtverce ABCD náleží kruhu o středu
и

S a poloměru — . Je tedy

и и

d(SX) (2)

Podle trojúhelníkové nerovnosti pro body S3 X3 Y platí

SX + SY ^XY3 (3)

odkud již vzhledem к nerovnosti (2) plyne nerovnost (1).
Rovnost v nerovnosti (1) nastane, právě když platí rovnost
v obou nerovnostech (2) a v nerovnosti (3), tj. právě když
bod 5 je vnitřním bodem úsečky XY a body X, Y jsou vrcholy
čtverce ABCD3 tj. právě když X a Y jsou protější vrcholy
čtverce ABCD.

Hledaný čtverec К má obsahovat dané body P, Q a mít
přitom nejmenší možný obsah. Musí tedy mít nejmenší možnou
stranu, a tedy nejmenší možnou úhlopříčku. Body P a Q jsou
různé, a proto nejmenší možná délka úhlopříčky čtverce К je
podle (1) rovna d(PQ). Body P, O jsou tedy protějšími vrcholy
čtverce K. Odtud již plyne (obr. 80) konstrukce čtverce K.

49. Pro každý trojúhelník ABC se středem S vepsané kruž-
nice platí: Jestliže

<$CAB > <£ABC > <$BCA3 (1)
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pak

AS < BS < CS. (2)

Dokažte. Platí i věta obrácená к této větě ?

Řešení. Z předpokladu

<$BCA < <$ABC (3)

plyne, že

1 1
-^BCA<-^ABC. (4)

Bod 5 je však středem vepsané kružnice trojúhelníka ABC,
takže z nerovnosti (4) dostáváme (obr. 81)

<£SCB < <$SBC. (5)
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Podle známé věty o vztahu mezi úhly a stranami trojúhelník;
pak z trojúhelníka BSC dostáváme

BS < CS. (6;

Z předpokladu

*£ABC < <£CAB (Г

dále obdobně plyne, že

<£ABS < <£SAB. (8!

V trojúhelníku ABS je tedy

(9;

256



Nyní už stačí napsat nerovnosti (6) a (9) do jednoho zápisu
tvaru (2) a věta je dokázána.

Zbývá ještě odpovědět na poslední otázku v textu úlohy.
Nejprve však musíme zformulovat obrácenou větu. Ta zní:

Pro každý trojúhelník ABC se středem vepsané kružnice
platí: Jestliže jsou splněny nerovnosti (2), pak platí nerovnosti
(1). К důkazu této obrácené věty lze využít důkaz původní
věty, stačí ho číst odzadu. Z nerovností (2) užijeme nerovnost
(9), podle níž platí v trojúhelníku ABS nerovnost (8), z níž
plyne nerovnost (7). Dále z nerovností (2) využijeme nerovnost
(6), z níž postupně vyplynou nerovnosti (5), (4) a (3).
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VI. Množiny všech bodů dané vlastnosti

50. Je dána polokružnice k se středem 5 a průměrem AB.
Označme x vzdálenost libovolného bodu X polokružnice k od
přímky AB. Na polopřímce SX sestrojte bod Y tak, aby platilo
SY = x. Vyšetřte množinu všech bodů Y.

Řešení (obr. 82). Nejprve provedeme odhad hledané mno-

žiny. Označme k — (S; r = 1) danou polokružnici s průměrem
AB a dále bod C této polokružnice, který má sobě rovné vzdá-
lenosti od bodů A, B, takže SC _[_ AB. Poloměr r jsme zvolili
rovný jednotkové úsečce; je totiž zřejmé, že velikost poloměru
nemá vliv na způsob a výsledek řešení.

Zvolíme několik poloh bodu X a sestrojíme příslušné body Y.

258



Při volbě různých poloh bodu X postupujeme systematicky.
Zvolíme např. nejdříve bod X = C; pak je Y = X = C. Pak
volíme postupně body X na oblouku blíže bodu A a snadno
uhodneme, že je-li X = A, je Y — S. Proto body C a S patří
určitě do hledané množiny. Konstrukcí dalších několika bodů F,
které odpovídají bodům X ф A, X Ф C, snadno dospějeme
к domněnce, že body F padnou na kružnici m sestrojenou
nad úsečkou SC jako průměrem.

Nyní nejprve dokážeme, že každý bod F leží na kružnici m.
1. O bodech F odpovídajících bodům X = А, X = В

а X — C to zřejmě platí.
2. Nechť bod X polokružnice k je různý od bodů A, В, C.

Potom vznikne pravoúhlý trojúhelník SXZ, kde Z je pata
kolmice vedené bodem X к přímce AB, takže XZ \ \ SC. Troj-
úhelníky SXZ, CSY jsou potom shodné podle věty sus, protože
se shodují ve stranách d(SX) = d(CS) = 1, d(XZ) = d{SY) =
= nv úhlech <%SXZ — <^C CSY (úhly střídavé mezi rovno-
běžkami XZ, SC). Je tedy <£ SYC = <$XZS = 90°, a proto
bod F leží na Thaletově kružnici m sestrojené nad úsečkou
SC jako průměrem.

Dokážeme ještě obráceně, že každý bod F kružnice m má
vlastnost požadovanou textem úlohy, tj. že platí d(YS) = x
a F leží na polopřímce SX:

Nechť tedy bod F leží na kružnici m (můžeme předpokládat,
že F je různý od bodů S, C, pro něž jsou podmínky úlohy
samozřejmě splněny). Označme X průsečík polopřímky SY
s polokružnicí k a Z patu kolmice vedené bodem X к přímce
AB. Potom trojúhelníky SCY a XSZ jsou shodné podle věty
usu, protože d(SC) = d(XS) = 1, <£CSY = <£SXZ (úhly
střídavé mezi rovnoběžkami SC, XZ), 90° = -^CYS = <^SZX,
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a tedy i <£SCY = <£XSZ. Je tedy d(YS) = d(XZ) = x;

body Y, X leží zřejmě na téže polopřímce s počátkem S.
Závěr. Hledaná množina všech bodů Y je kružnice m sestro-

jená nad úsečkou SC jako průměrem, kde C je společný bod
polokružnice k a osy úsečky AB.

Poznámka. Všimněte si pozorně dvojího kroku v důkazu
a promyslete si, proč jsou oba kroky nutné.

V prvním kroku jsme vlastně dokázali, že body Y nemohou
ležet někde jinde než v odhadnuté množině, neboť úhly CYS
jsou pravé. Máme tedy zaručeno, že náš odhad je dost široký
a hledaná množina je jeho částí.

Druhý krok nám poví, zda náš odhad nebyl příliš široký
a zda skutečně každý bod kružnice m může být považován
za bod Y.

51. Je dána úsečka AB = 7 cm. Představte si, že sestrojíte
všechny možné rovnoběžníky ABCD, pro něž je d{AD) = 4 cm.

— D
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Vyšetřte množinu všech
a) vrcholů C;
b) středů 5 všech rovnoběžníků ABCD.
Řešení, a) Na obr. 83 je narýsován jeden z rovnoběžníků

s pevnou stranou AB a stranou AD délky 4 cm. Možné vrcholy
D opisují kružnici k = (A, d(AD) = 4 cm) a obdobně vrcholy
C kružnici k = (Б; 4 cm). Odpovídající si vrcholy D, C, resp.
Di, Ci apod., leží na přímce rovnoběžné s AB. Průsečíky U, V
kružnice k a X, Y kružnice k' s přímkou AB nemohou být
vrcholy uvažovaných rovnoběžníků, neboť by se v tom případě
redukovaly na úsečku.

Zvolíme-li na kružnici k' libovolný bod Ci Ф X, Ci Ф Y,
je d{C\B) = 4 cm a na kružnici k najdeme příslušný bod Di
tak, že ABC\D\ je uvažovaný rovnoběžník.

D

c

Obr. 84

Závěr. Hledanou množinou všech bodů C je tedy kružnice
k! = (B; 4 cm) bez bodů X, Y, která vznikne z kružnice k
posunutím.

b) Označme písmenem 5 střed jednoho uvažovaného rovno-
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běžníka ABCD (obr. 84) a písmenem O střed úsečky AB. Pak
úsečka OS je střední příčkou v trojúhelníku ABD a platí

1
OS || AD, d(OS) = — d{AD).

Protože bod O je pevný a \d(AD) = 2 cm je pevné číslo, leží
body na kružnici ko = (O; 2 cm); tím jsme provedli odhad
hledané množiny a zároveň první část důkazu.

Aby kružnice ko byla hledanou množinou všech bodů S,
musíme ještě dokázat, že každý její bod je středem rovnoběž-
nika daných vlastností. Zřejmě průsečíky M, N kružnice ko
s přímkou AB do hledané množiny bodů nepatří, neboť střed
rovnoběžníka nemůže ležet na přímce obsahující jeho stranu.

Zvolme nyní bod S' na ko různý od bodů M, N a proveďme
konstrukci bodů C, D tak, aby vznikl rovnoběžník požado-
váných vlastností. Na prodloužení úsečky AS' za bod S'
naneseme úsečku AS'; dostaneme tak bod C'. Obdobně sestro-

jíme bod D' na přímce BS'. Protože úhlopříčky AC a BD'
se půlí, je čtyřúhelník ABC'D' rovnoběžník. Protože úsečka
délky d(OS') = 2 cm je střední příčkou v trojúhelníku ABD',
je d{AD') = 2.d(OS') = 4 cm, jak vyžaduje text úlohy
(■d(AB) =7 cm bylo použito při konstrukci).

Závěr. Kružnice ko — (O; 2 cm) až na body M, N je tedy
množinou středů 5 všech rovnoběžníků ABCD daných textem
úlohy.

52. Je dána polokružnice o průměru AB a středu S. Na
polokružnici zvolme bod C různý od bodů А, В a sestrojme
v něm к polokružnici tečnu t. Bodem В veďme kolmici p
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к přímce t a bodem 5 kolmici q к přímce BC. Označme X
průsečík přímek p, q.

Vyšetřte množinu všech bodů X, jestliže bod C probíhá
danou polokružnicí.

Řešení (viz označení z obr. 85). Označme q polorovinu
(s hranicí AB), v které leží daná polokružnice k. Provedeme
odhad hledané množiny. Při konstrukci bodu X se pokusíme
najít vzájemné vztahy, které se při volbě různých bodů C
nemění. Tím vlastně provádíme první krok důkazu.

Zvolme tedy bod C a hledejme к němu bod X. Podle textu
úlohy je p _L t, q _L BC; paty těchto kolmic označme po řadě
P, O. O středu 5 polokružnice k platí

d(SA) = d(SB) = d(SC) = r. (1)

Označme a, /3 úhly při vrcholech А, В pravoúhlého trojúhel-
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nika ABC (bod C leží totiž na Thaletově kružnici opsané nad
úsečkou AB jako průměrem). Proto o úhlech vyznačených
v obr. 85 platí

oc + 0 = 90°

(ostré úhly v pravoúhlém trojúhelníku ABC),

h = P

(trojúhelník SBC podle (1) je rovnoramenný se základnou BC),

<*1 + fíi — 90°, tj.'ai = a (je SC J_ Оз

ai + = 90°, tj. /?2 =

(součet velikostí ostrých úhlů v trojúhelníku BCP, kde <£P =
= 90°). Přímka BC tedy půlí úhel <$.SBX, přičemž je BC q;
je tedy BSX rovnoramenný trojúhelník s rameny BS, BX
a vzhledem к (1) platí r = d(BS) = d(BX). Je tedy <£SBX
dutý a bod X padne dovnitř poloroviny q na polokružnici m,
která má střed В a průměr SM. Tím jsme nejen provedli
odhad hledané množiny, ale i dokázali, že každý bod X,
sestrojený podle textu úlohy, padne na polokružnici m (její
krajní body к ní nepatří).

Poznámka. Trojúhelníky SBC, BSX mají kolmé základny
BC, SX, které se navzájem půlí, proto je SBXC rovnostranný
rovnoběžník (čtverec nebo kosočtverec) a polokružnice k, m
vzniknou jedna z druhé posunutím o délku SB ve směru SB
(nebo opačném).

Obráceně, je-li X bod uvnitř oblouku SM (polokružnice m),
sestrojíme rovnostranný rovnoběžník SBXC; je SC = SB, tj.
bod C padne dovnitř oblouku АВ (polokružnice k), a najde-
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me-li к bodu C příslušné přímky p, q, je jejich průsečíkem
zvolený bod X.

Závěr. Množinou všech bodů X jsou body polokružnice
m = (В; \d(AB)) ležící v polorovině q, a to bez obou jejích
krajních bodů S, M.

53. V rovině je dána úsečka AM. Určete množinu středů
ramen AC všech rovnoramenných trojúhelníků ABC se zá-
kladnou AB3 v nichž je úsečka AM těžnicí.

В

Obr. 86

Řešení, a) Budiž T těžiště trojúhelníků ABC, tj. T je bod
úsečky AM, pro který platí AT — 2TM. Označme N střed
ramena AC (obr. 86); pak BN je těžnice trojúhelníka ABC.
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Poněvadž trojúhelník ABC je rovnoramenný, je AM = BN,
a tedy TM = TN. Bod N leží tedy na kružnici k se středem T
a poloměrem TM.

b) Nyní ještě musíme zjistit, zda ke každému bodu kružnice k
existuje rovnoramenný trojúhelník požadovaných vlastností.

Označme M' střed úsečky A T (který je také bodem kružnice
k). Zvolme libovolný bod N kružnice k, různý od M, M’.
Dokážeme, že existuje rovnoramenný trojúhelník ABC se zá-
kladnou AB a těžnicemi AM, BN. Na polopřímce opačné
к polopřímce TN sestrojíme bod В tak, aby platilo ТВ = 2TN.
Dále sestrojíme bod C souměrně sdružený s bodem В podle
bodu M. Poněvadž N Ф M, M', leží bod В mimo přímku AM,
body В, C jsou odděleny přímkou AM, a tudíž body А., В, C
neleží v přímce a jsou vrcholy trojúhelníka ABC.

Protože AM je těžnice trojúhelníka ABC (neboť BM = CM)
a protože AT — 2TM, je T těžiště trojúhelníka ABC. Protože
T je těžiště trojúhelníka ABC, leží jeho těžnice z vrcholu В
v přímce ВТ, a protože ВТ = 2TN, je N středem strany AC.
Protože těžnice AM, BN trojúhelníka ABC mají stejnou délku,
je trojúhelník ABC rovnoramenný se základnou AB.

Závěr. Hledaná množina bodů je kružnice k bez bodů M, M'.
Poznámka 1. Kdyby platilo N = M nebo N = M', ležely

by sestrojené body А, В, C v přímce.
Poznámka 2. Trojúhelník ABC je rovnostranný, právě když

<£ MTN 120°.

54. Do ostroúhlého trojúhelníka ABC je vepsán obdélník
MNPO tak, že vrcholy M, N leží na straně AB, vrchol P
na straně ВС a vrchol O na straně CA.

Vyšetřte množinu středů všech obdélníků MNPO.
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А N В(1 Е G

Obr. 87

Řešení. Sestrojíme jeden obdélník MNPO splňující pod-
minky úlohy a jeho střed S’ (obr. 87). Bod S jako střed obdélníka
MNPO je středem jeho střední příčky HG, kde H je střed
strany OP a G střed strany MN. Zřejmě HG J_ AB.

Bod H je střed příčky OP trojúhelníka ABC, která je rovno-
běžná se stranou AB, a proto bod H leží na těžnici tc = ЕС
trojúhelníka ABC. Obráceně snadno zjistíme, že každý vnitřní
bod H' těžnice ЕС = tc je středem strany 0'P' jistého obdélní-
ka M'N'P'0' splňujícího podmínky úlohy. Docházíme tedy
к jiné formulaci úlohy:

Určete množinu středů S všech úseček HG, kde bod H
probíhá vnitřek úsečky EC = tc, G leží na AB a HG J_ AB.
Lze tedy zřejmě vyslovit závěr úlohy takto:

Závěr. Množinou všech středů S je tedy vnitřek úsečky
EF, kde F je střed výšky vc z bodu C na stranu AB, což platí
i v případě, že tc splývá s vc, tj. je-li АС ^ BC.
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55. Je dán čtverec ABCD, jehož strana má délku a; К je
střed strany AD, L je bod polopřímky BA, pro který platí

3
d(BL) = — a. Označme o takovou přímku procházející bo-

dem D,že úsečka XY souměrně sdružená s KL podle osy o
leží celá ve čtverci ABCD.

Jaký útvar vyplní všechny takto vytvořené úsečky XY?
Narýsujte obrázek a vyšrafujte tento útvar.

Řešení. Danou situaci znázorňuje obr. 88. Protože body
К, X jsou souměrně sdruženy podle osy o, která prochází
vrcholem D, platí

DK ^ DX.
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Bod X leží tedy na kružnici ki se středem D a poloměrem
a

d(DK) = —, ovšem jenom na tom oblouku kružnice ki, který

leží na čtverci ABCD (je to čtvrtkružnice KM).
Protože body L, Y jsou souměrně sdruženy podle osy o,

která prochází vrcholem D, je

DL = DY.

Bod Y leží tedy na kružnici k> se středem D a poloměrem
a —

— ]/5, jak snadno vypočteme podle Pythagorovy věty *
z trojúhelníka ADL. Kružnice kz prochází středem G strany
BC; bod Y leží ovšem jen na tom oblouku kružnice kz, který
leží ve čtverci ABCD. Tento oblouk je omezen středy E, G
stran AB, BC.

Budiž Y libovolný bod oblouku EG; dokážeme, že vznikne
jako souměrně sdružený bod s bodem L podle vhodné osy o

procházející bodem D. Tuto osu o sestrojíme jako osu úsečky
L Y; určíme průsečík Z přímek o, KL a dále průsečík X přímky
YZ s obloukem KM kružnice k\. Úsečka XT je souměrně
sdružená s KL podle osy o. Je-li Y = G, je X = F.

Závěr. Proměnná úsečka XY vyplní vyšrafovanou část
mezikruží (k\, kL) omezenou obloukem EG kružnice kz, ob-
loukem KF kružnice k\ a úsečkami KE, FG.

d{DL)

56. Je dán obdélník ABCD, v němž je AB > CD. Sestrojte
množinu středů všech kružnic, které leží v obdélníku ABCD
a dotýkají se dvou jeho sousedních stran nebo dvou jeho pro-
tějších stran.
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Řešení (viz obr. 89). Označme a velikost strany AB a b
velikost strany BC.

a) Hledejme množinu M± středů všech kružnic, které se

dotýkají stran AD a BC a leží uvnitř obdélníka ABCD. Každá
kružnice, jež se dotýká zároveň přímek AD a BC, má poloměr

1
—

a a její střed leží na ose o\ stran AB a CD. Každá taková

kružnice tedy vytíná na přímce 01 tětivu délky a. Avšak a > b,
a proto Mi je prázdná množina.

b) Hledejme množinu M<> středů všech kružnic, které se

dotýkají stran AB a CD a leží uvnitř obdélníka ABCD. Každá
1

kružnice, která se dotýká přímek AB a CD, má poloměr — b

a její střed leží na ose 02 stran AD a BC.
Označme U vnitřní bod obdélníka ABCD, který leží na přím-

1
ce 02 a jehož vzdálenost od AD je rovna — b. Obdobně V je bod,

který leží uvnitř obdélníka ABCD na přímce 02 a jehož vzdále-
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1
nost od ВС je — b. Zřejmě každý bod úsečky UV je středem

1
kružnice o poloměru — b, která se dotýká stran AB a CD a leží

v obdélníku ABCD. Body přímky 02 ležící vně úsečky UV
už tuto vlastnost nemají, neboť každá kružnice se středem

1
v takovém bodu a mající poloměr — b obsahuje aspoň jeden bod

ležící vně rovnoběžkového pásu přímek AD a BC. Množinou
М2 je tedy úsečka UV.

c) Hledejme množinu М3 středů všech kružnic, které leží
v obdélníku ABCD a dotýkají se jeho stran AB a AD. Velikost
úhlu UAB je 45°, a proto střed každé kružnice, která se dotýká
strany AB a strany AD, leží v polopřímce AU. Zřejmě А ф Мз
a U E Л43.

Nechť S je libovolný bod ležící mezi A a U. Protože AS <
1

< A U, je vzdálenost bodu S od strany AB menší než — b,

takže kružnice o středu S, která se dotýká AB a AD, leží v da-
ném obdélníku, tj. Se М3.

Nechť S' je libovolný bod ležící na prodloužení úsečky A U
za bod U. Pak AS' > AU, a proto vzdálenost bodu S' od přím-

1
ky AB je větší než —b a vzdálenost od přímky CD menší než

1
— b, takže kružnice se středem S', jež se dotýká přímek AB a

AD, neleží v daném obdélníku, tj. S' ф M3.
Množina М3 je tedy množinou všech bodů úsečky AU

s výjimkou bodu A.
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Závěr. Hledaná množina bodů je sjednocení úsečky UV
a úseček AU, DU, В V a CV s výjimkou bodů А, В, C, D.

57. Je dán čtverec, jehož strana má délku 6 cm. Bod M má
od obou sousedních stran čtverce vzdálenosti 15 mm a 20 mm.

Sestrojte lomenou čáru procházející bodem M, která tvoří
množinu středů všech úseček XY navzájem rovnoběžných,
jejichž krajní body leží na stranách daného čtverce. Vypočtěte
její délku.

D

Y

Yo

*2

x„ x d, x' a
Obr. 90

A
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Řešení. Sestrojíme čtverec ABCD o straně délky 6 cm.
Nechť bod M má vzdálenost 20 mm od strany AB a 15 mm
od strany AD (obr. 90).

Bod M sám musí být středem jedné takové úsečky XY3
o nichž mluví text úlohy, a proto bod M musí být vnitřním
bodem čtverce ABCD.

Nejprve budeme řešit dílčí úlohu.
Na obvodu čtverce ABCD sestrojte body Xq3 Yo tak, aby

bod M byl středem úsečky Xq Y0.

Jsou-li Xo, Yo takové body, potom
a) neleží na téže straně čtverce ABCD, neboť bod M je vnitřním

bodem čtverce ABCD;
b) neleží na rovnoběžných stranách čtverce ABCD, neboť

bod M neleží ani na jedné ze středních příček čtverce ABCD;
c) neleží na stranách AB а ВС, ВС a CD, neboť M je vnějším

bodem trojúhelníka ABC a trojúhelníka BCD.
Zbývají tedy dvě možnosti: Xo a Y0 leží po řadě na stranách

AB a AD nebo AD a. DC.

Uvažujme případ, že Xo je bodem strany AB a Y0 je bodem
strany AD. Označme M\ patu kolmice spuštěné z bodu M na AB
a М2 patu kolmice spuštěné z bodu M na AD. Potom zřejmě
Xo je bodem úsečky MiВ a Y0 je bodem úsečky M2D. Platí

(1)AM±XoM s AM2MY0,

neboť oba trojúhelníky jsou pravoúhlé, <£MiXoM = <£AÍ2MY0
a XoM s MY0. Tudíž platí

d(MiXo) = 15 mm, d{M.2 Y0) = 20 mm. (2)
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Vzhledem к tomu, že strana čtverce ABCD má délku 6 cm,

body Xo, F0 splňující podmínky (2) leží uvnitř úseček M\B
a M2D, tj. na obvodu čtverce ABCD.

Jsou-li Xq a F0 body ležící po řadě na úsečkách M\B, M^D,
přičemž splňují podmínky (2), pak platí (1), a tudíž M je stře-
dem úsečky Xq Yq.

Uvažujeme-li možnost, že Xq, F0 leží po řadě na stranách
AD, DC, potom stejnou úvahou, jakou jsme právě užili pro stra-
ny AB a AD, zjistíme, že takové body Xq a Fo na obvodu
čtverce ABCD neexistují.

Řešením dílčí úlohy máme určen směr úseček XY.
Veďme rovnoběžky s úsečkou Xq F0 vrcholy D a B. Označme

body Di a Di podle obrázku. Nechť E je střed úsečky DD\ a F
je střed úsečky BB\. Hledaná lomená čára je AEFC, neboť

1. AE je těžnice trojúhelníka ADiD, která je množinou stře-
dů všech úseček XY \\ D\D, jejichž krajní body leží na
straně AD\ a na straně AD (dokáže se z podobnosti troj-
úhelníka AD\D a trojúhelníka AXY);

2. EF je střední příčka rovnoběžníka D\BB\D, a je tedy
množinou středů všech úseček XY \ \ DD±, jejichž krajní
body leží na stranách D\B a DBi;

3. FC je těžnice trojúhelníka BCB\, a je tedy množinou
středů všech úseček XY || BB±, jejichž krajní body leží
na stranách ВС a B\C.

Zbývá určit délku lomené čáry AEFC. Bod F leží na střední
příčce čtverce ABCD, a proto FC = FB. Čtyřúhelník D\BFE
je rovnoběžník, tj. FC = FB = ED\. Trojúhelník AD\D je
pravoúhlý, E je střed jeho přepony, a proto DE = AE. Z před-
chozích úvah plyne, že
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d(AE) + d(FC) = d{DDi).

Délku úsečky DD\ určíme pomocí podobnosti trojúhelníků
MiXqM a ADiD. Platí

d{DA)
d(DDi) = d(MXo). = 3 . d(MX,o).d(MMj)

Užijeme-li pro trojúhelník MiXqM Pythagorovu větu, dostává-
me, že d(MX0) = 2,5 cm, tj.

d(DD{) = d(AE) + d(FC) - 7,5 cm.

Čtyřúhelník DiBFE je rovnoběžník, tj.

EF = DiB;

dále platí

d(DiB) = d(AB) - d{AD\).

Z podobnosti trojúhelníků MjXqM a AD\D plyne, že

6
d(ADi) = 1,5 . — cm = 4,5 cm,

tj.

d(EF) — 1,5 cm.
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Odpověď. Délka lomené čáry AEFC je 7,5 cm -f- 1,5 cm =
- 9 cm.

58. Je dán šestiúhelník ABCDEF složený z obdélníka
ABGF o rozměrech d(AB) = 12 cm, d(AF) = 4 cm a z ob-
dělníka CDEG o rozměrech d(CD) = 4 cm, d{CG) — 2 cm

(viz obr. 91). Narýsujte tento šestiúhelník a zakreslete množinu
středů všech úseček kolmých к BE, jejichž krajní body leží
na obvodu šestiúhelníka. Množina se skládá z osmi úseček;
vypočtěte součet jejich délek.

4/

2

G

-

5

Obr. 91

Řešení. Na obr. 91 je narýsován daný šestiúhelník. Vrcholy
С, E, D, A vedeme po řadě přímky pi, ръ, рз, Pa kolmé к BE.
Část hledané množiny M, která leží v polorovině p\B, je výška
rovnoramenného pravoúhlého trojúhelníka BCC (C' je průse-
čík p\, AB). Obdobně je tomu v polorovině PaF, kde příslušná
část množiny M je výška rovnoramenného pravoúhlého troj-
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úhelníka AFA' (A' je průsečík p4, FG). V pásech (pipz) a

(рзрл) jsou příslušné části množiny M úsečky; leží v osách
souměrnosti dvojice rovnoběžek AB, CD a AB, EF. Nej-
složitější je situace v pásu (Р2рз)- Na obr. 92 je zakreslena
přímka p tohoto pásu kolmá к přímce BE. Čísly 1, 2, 3, 4 jsou
označeny její průsečíky s obvodem šestiúhelníka ABCDEF;
dvojicemi 12, 13, ..., 34 je označeno šest středů dvojic vy-

braných ze čtyř bodů 1, 2, 3, 4. Probíhá-li přímka p pás (р-грз),
dostaneme úsečky tlustě vytažené na obr. 92. Na obr. 91 jsou
připsány к jednotlivým úsečkám délky (bez pojmenování cm).
Sjednocením těchto úseček je vyšetřovaná množina.

i
.34

3:

1

Рз/ "P Ъ

Obr. 92

Odpověď. Součet délek úseček je 10cm + 8.j/2
= 21,3 cm.

cm ==
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59. Je dána úsečka AB a kružnice m opsaná kolem středu M
úsečky AB poloměrem větším než je polovina délky úsečky AB.
Nechť 5 je střed kružnice opsané trojúhelníku ABC.

a) Vyšetřte množinu všech bodů S, když bod C probíhá
kružnici m.

b) Jakou množinu dostaneme, když poloměr kružnice m
bude rovný polovině délky úsečky АВ ?

Řešení, a) Středy kružnic, opsaných trojúhelníkům ABC,
musí ležet na ose o úsečky AB, která je společnou stranou
všech uvažovaných trojúhelníků (obr. 93).
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Je otázka, zda obráceně každý bod přímky o patří hledané
množině, kterou nazveme G. Do G patří body é>i, So, které
jsou středy kružnic opsaných rovnoramenným trojúhelníkům
ABCi a ABC2 (kde Ci, C2 jsou průsečíky přímky o s kružnicí
ní).

Každý bod X vnitřku úsečky SJCi (popř. S0C2) je středem
kružnice x = (X; d(AX)), která protne kružnici m ve dvou
bodech (vzniknou tak dokonce dva uvažované trojúhelníky).
Z trojúhelníka AS\X plyne AX > ASi. Protože ASi = SiCL
a 5iCi > XCi, je AX > XCi. Kružnice x tedy protíná kruž-
nici m.

Proto bod X patří do G. Také každý bod Y prodloužení
úsečky S1C1 za bod Ci (popř. S2C2 za bod Cí) patří do G,
neboť kružnice у = (F, d(A Y)) protne vždy kružnici m.

Naproti tomu bod M do G nepatří, neboť kružnice m a

(M; d(MA)) se neprotnou.
Je-li Z bod vnitřku úsečky MSi (popř. MSo), pak z troj-

úhelníka AZSi plyne AZ < ASi. Dále platí AS± = C1S1 a
C1S1 < ZCi. Proto je AZ < ZC±, takže kružnice maz —

= (Z, d(AZ)) se neprotnou. Bod Z tedy do G nepatří.
1

b) Je-li poloměr kružnice m roven — d(A B), splyne kružnice m

s kružnicí opsanou každému trojúhelníku ABC. Pak G obsahuje
jediný bod - střed M kružnice m.

Závěr. V případě a) tvoří množinu G body polopřímek
S1C1 a S2C2 (viz obr. 93). V případě b) obsahuje množina G
jediný bod M (obr. 94).
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60. Je dán trojúhelník ABC. Vyšetřte množinu všech bodů
X tohoto trojúhelníka, pro něž platí

AX^BX^ CX. (1)

Pomocí délek stran a velikostí úhlů trojúhelníka ABC vy-

jádřete podmínky pro to, aby
a) množinou všech bodů X byl pětiúhelník;
b) množinou všech bodů X byl šestiúhelník;
c) množina všech bodů X obsahovala právě jeden bod;
d) množina všech bodů X byla prázdná.

Řešeni (obr. 95). Množinou všech bodů X, pro něž platí
např. AX ^ BX, je polorovina 03B, kde 03 je osa úsečky AB.
Obdobně množinou všech bodů X, pro které platí BX ^ CX3
je polorovina o±C3 kde o\ je osa úsečky BC. Protože se osy stran
trojúhelníka ABC protínají v jediném bodě O, tvoří množinu
všech bodů X3 splňujících podmínku (1), dutý úhel co, který je
společnou částí polorovin 03B a o±C. Hledaná množina je tedy
průnikem trojúhelníka ABC a úhlu co.
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Víme, že poloha vrcholu O, tj. středu opsané kružnice, vzhle-
dem к přímce BC závisí na tom, zda úhel BAC je tupý, pravý
nebo ostrý. Rozlišujeme proto tyto dva případy:

1. Úhel BAC je tupý. Pak O leží v té polorovině a vyťaté
přímkou BC, která neobsahuje bod A. Protože i obě ramena
úhlu co leží v polorovině <5, leží celý úhel co v polorovině a, takže
hledaná množina neobsahuje žádný bod.

2. Úhel BAC je pravý. Bod O pak leží na straně BC, obě
ramena jsou opět v polorovině or. Bod O je proto jediným bodem
hledané množiny (obr. 96).

3. Úhel BAC — a je ostrý. Pak bod O leží v té polorovině
vyťaté přímkou BC, která obsahuje vrchol A. Hledaná množina
pak obsahuje střed 5 strany BC a další body blízké к bodu S,
tedy alespoň dva různé body. Odtud již plyne, že případ d)
v úloze nastane, právě když a > 90°, a případ c) nastane, právě
když a = 90°. Abychom našli řešení v případech a) a b), všim-
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němé si, kdy společná část libovolného trojúhelníka a libovolné-
ho dutého úhlu je pětiúhelník a kdy šestiúhelník. Protože
strany této části, pokud je to mnohoúhelník, jsou částí tří stran
trojúhelníka a dvou ramen úhlu, je těchto stran nejvýše pět.
Nikdy tedy nevznikne šestiúhelník. Pětiúhelník vznikne právě
když jeden vrchol trojúhelníka leží uvnitř úhlu, zbylé dva vně
úhlu tak, že úsečka je spojující protne obě ramena úhlu.

Vraťme se к případu ostrého úhlu BAC. Protože co je spo-
léčná část polorovin o\C а 03B a protože В není v 01C, A není
v o3B, nastane případ a) právě když C je v 03B čili a < b
(C je vždy v 01C) a strana AB protne obě ramena úhlu co (obr.
97). Strana AB protne rameno obsažené v 03, právě když O
leží v té polorovině vyťaté přímkou AB, která neobsahuje bod C.
Pak však už AB protne i druhé rameno. Nastane tedy případ
a), právě když úhel у je tupý a když úhel a je menší než /5,
neboť a < b (a je pak skutečně ostrý).
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Závěr. Podmínky, kdy nastanou jednotlivé případy, jsou:
a) у > 90°, a < /5;
b) nikdy;
c) a = 90°;
d) a > 90°.

61. V rovině je dána úsečka AB. Vyšetřte množinu vrcho-
lů C všech trojúhelníků ABC dané roviny, pro jejichž vnitřní
úhly (při obvyklém značení) platí

a ^ /5 > y.

Řešení. Platí-li pro vnitřní úhly trojúhelníka ABC ne-
rovnosti (1), pak pro jeho strany je

a ^ b a zároveň b > c.

Také obráceně z nerovností (2) plynou nerovnosti (1).
Při vyšetřování množiny vrcholů C docházíme к těmto třem

závěrům:

(1)

(2)
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(a)Množina všech bodů C, pro něž platí

d(BC) = a^b = d(AC),

je uzavřená polorovina n, jejíž hranicí (obr. 98) je osa o úsečky
AB a jež obsahuje bod A.(b)Množina všech bodů C, pro které je

d(AC) — b > c — d(AB),

je vnější oblast kružnice k se středem A a poloměrem c —
= d(AB).(c)Bod C je vrcholem trojúhelníka ABC, a proto bod C
neleží na přímce AB.

284



Závěr. Hledaná množina je tedy průnikem uzavřené polo-
roviny я a vnější oblasti kružnice k bez bodů přímky AB.
Průsečíky M, N kružnice k a osy úsečky АВ к hledané množině
ovšem nepatří.

62. Je dán pravoúhlý trojúhelník ABC s přeponou AB.
Ke každému bodu D kružnice opsané trojúhelníku ABC
(D Ф A, D Ф B) sestrojíme bod E souměrně sdružený s bo-
dem C podle přímky AB a bod F souměrně sdružený s bo-
dem C podle přímky AD.

Vyšetřte množinu a) všech bodů E; b) všech bodů F.
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Řešení, a) Trojúhelník ABC je pevně dán (obr. 99), a proto
bod souměrně sdružený s bodem C podle přímky AB je právě
jeden. Množina všech bodů E je jednoprvková.

b) Označme И hledanou množinu všech bodů F. Bod F je
souměrně sdružen s bodem C podle osy AD, a proto AF = AC,
kde AC je pevná úsečka. Proto každý bod F leží na kružnici
x = (A, r = d(AC)). Platí tedy Max.

Dále musíme zjistit, zda každý bod kružnice x náleží do hledá-
né množiny M. Zvolme na kružnici x libovolný bod F. Nejdříve
budeme hledat osu o dvojice bodů C a F. Je vhodné rozlišit dva
případy:

a) Nechť F Ф C. Body F а. C leží na kružnici x, a proto osa o
této dvojice bodů prochází bodem A. Bod F bude náležet
množině M, právě když přímka o bude mít s kružnicí k společný
bod D, různý od bodu A a od bodu B. Je tomu tak, právě když
přímka o není ani přímkou AB, ani tečnou t kružnice k v bo-
dě A. Tedy FgM, právě když F Ф E a F ф G, kde bod G
je souměrně sdružený s bodem C podle přímky t.

/3) Nechť F — C. Pak je bod F souměrně sdružený s bo-
dem C podle každé přímky, která prochází bodem C, tedy také
podle přímky АС. V tomto případě je tedy D = C a uvažovaný
bod F (tj. C) náleží do množiny M.

Závěr. Hledanou množinou všech bodů F je množina

M=x \ {E,G}.
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63. Je dán pravoúhelník ABCD. Najděte množinu všech
takových bodů X pravoúhelníka ABCD, kde pro obsahy troj-
úhelníků platí

AABX = ABCX < AADX.

D C

К В

Obr. 100

Řešení. Označme Mi množinu všech bodů X pravoúhelníku
ABCD, pro něž je AABX = ABCX a M > množinu všech
bodů X daného pravoúhelníku, pro které platí ABCX <
< ДADX. Potom hledaná množina je průnik

Mi n M2. (1)

Začněme hledáním množiny Mi. Nechť bod X e Mi (viz
obr. 100). Pak bod X neleží ani na AB, ani na BC. Označme
va, Vb vzdálenosti bodu X od přímek AB, BC. Potom

11
— d(AB). va =— d(BC). Vb, (2)
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tj.

d(BC)Va
(3)

Vb d(AB) •

Označme К patu výšky z bodu X na přímku AB. Pak z rovnosti
(3) plyne

d(KX) d(AD)
d(KB) = d{AB) 5 (4)

tj. pravoúhlé trojúhelníky a KBX jsou podobné. Úhly
<^ABD a <$LKBX jsou tedy shodné. Body D а X leží v téže
polorovině určené přímkou AB, takže bod X leží na polo-
přímce BD.

Obráceně se snadno dokáže, že pro každý bod X, jenž leží
na úhlopříčce BD, přičemž X Ф B, platí (4), tj. podle (3) a (2)
obsahy trojúhelníků ABX a BCX se sobě rovnají.

Zjistili jsme tedy, že množinou Mi je úhlopříčka BD bez bo-
du B.

Množina M2 se najde snadno (obr. 101). V pravoúhelníku
ABCD je AD = ВС, a proto nerovnost

ABCX< AADX

platí, právě když vzdálenost bodu X od přímky BC je menší
(avšak nenulová) než vzdálenost bodu X od přímky AD.
Tyto dvě podmínky splňuje bod X, právě když neleží na přímce
BC a zároveň leží uvnitř poloroviny oB, kde přímka o je osou
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rovnoběžkového pásu určeného přímkami AD a BC. Označme
L, M průsečíky osy o a přímek AB a CD. Potom množina М2
je sjednocením vnitřku pravoúhelníku LBCM a vnitřků úseček
BL a CM.

Nyní už můžeme určit hledanou množinu, tj. průnik (1).
Je jím vnitřek úsečky BN, kde N je průsečík úhlopříček právo-
úhelníku ABCD.

Závěr. Hledanou množinu všech bodů X tvoří body úsečky
BN bez bodů B, N.
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VII. Úlohy konstrukční

64. Je dána úsečka SP délky 31 mm; bod 5 má být středem
přepony AB a bod P středem odvěsny AC pravoúhlého troj-
úhelníka ABC.

a) Sestrojte tento trojúhelník, je-li d(AB)
b) Zjistěte podmínka řešitelnosti úlohy.

98 mm.

В

Řešení, a) Rozbor. Úsečka SP je zřejmě střední příčkou
trojúhelníka ABCs pravým úhlem <£ACB (obr. 102). Platí tedy

d{BC) = 2 . d(SP\ BC || SP.
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Proto i úhel <£ SPA je pravý; protože bod S je středem strany
1

AB, je d(SA) = — d{AB) a pomocný trojúhelník APS je sestro-

jitelný podle věty Ssu.
Protože z textu úlohy vyplývá, že jde o úlohu polohovou

(»Je dána úsečka SP ...«), postupujeme při konstrukci takto
(obr. 103):

1. Sestrojíme danou úsečku SP délky 31 mm.
2. Bodem P vedeme kolmici p к přímce SP.
3. Kolem bodu S opíšeme kružnici k s poloměrem r =

= d(SA) = id(AB) = 49 mm.
4. Průsečík kružnice k s přímkou p je hledaný vrchol A.
5. Bod В sestrojíme na polopřímce opačné к polopřímce SA

tak, že SB = SA.
6. Bod C sestrojíme na polopřímce opačné к polopřímce PA

tak, že PC = PA.
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Zkouška. Dokážeme, že trojúhelník ABC je hledaným troj-
úhelníkem. Z bodů 5 a 6 konstrukce plyne, že body S, P jsou
po řadě středy stran AB, AC. Úhel <^BCA je pravý, neboť
podle vlastností střední příčky trojúhelníka je BC \ \ SP J_ p.

Protože poloměr d(SA) = 49 mm je větší než vzdálenost
středu 5 kružnice k od přímky p, tj. než d(SP) = 31 mm,
dostaneme právě dva body A, A', z nichž každý vede к jednomu
řešení úlohy. Úloha má tedy v případě a), tj. pro d{AB) —
— 98 mm, právě dvě řešení.

b) Z konstrukce je zřejmé, že úloha má právě dvě řešení
v případě, že SA je větší než SP, čili

AB> 2. SP.

Jinak úloha nemá řešení.

65. Je dán trojúhelník ABC.
Sestrojte střed S kružnice k, která protíná strany trojúhelníka

AB, BC, CA po řadě ve dvojicích bodů (různých nebo splývá-
jících)

Ci, Co", Ai, A2; Вl, В2

tak, že platí

ACi ^ BC2, BA 1 £ CA2, CB1 s AB2.

Stanovte podmínky pro poloměr kružnice k.
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Řešení. Rozbor. Předpokládáme, že kružnice k = (S; r)
na obr. 104 má požadované vlastnosti. Jsou-li C±, Cz dva různé
body, pak bod 5 leží na ose 03 této úsečky; protože však ACi s
= БС2, je 03 osou i úsečky AB. Platí-li C\ = C2, pak AB je

tečnou kružnice k a rovněž platí, že bod leží na ose úsečky AB.
Obdobně dostaneme, že bod S leží na ose 01 úsečky ВС a na ose
02 úsečky CA. Z toho plyne velmi jednoduchá konstrukce:

1. Bod S sestrojíme jako střed kružnice trojúhelníku ABC
opsané.

2. Poloměr r hledané kružnice musí být větší nebo roven

největší ze vzdáleností bodu S od stran trojúhelníka a musí být
menší nebo roven poloměru kružnice trojúhelníku opsané.

Zkoušku vlastností kružnice k požadovaných textem úlohy
provedeme obrácením úvahy z rozboru.
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66. Je dán čtyřúhelník ABCD, jehož strany mají délky
d(AB) = 70 mm, d(BC) = 35 mm, d(CD) = 75 mm, d{DA) =
= 65 mm a úhlopříčka má délku d(BD) — 70 mm. Sestrojte
čtyřúhelník ABCD a pak sestrojte rovnoběžník, jehož všechny
čtyři vrcholy leží na obvodu čtyřúhelníka ABCD a jehož
úhlopříčky jsou rovnoběžné s úhlopříčkami daného čtyřúhelní-
ka. Sestrojte nejprve střed hledaného rovnoběžníka.

D

*jLS\
\

\ \

\ \N

Y, V\ \

Obr. 105

Řešení. Sestrojíme nejprve trojúhelník ABD, a pak v polo-
rovině opačné к BDA sestrojíme trojúhelník BCD (obr. 105),
a tak získáme daný čtyřúhelník ABCD.

Rozbor vlastní úlohy. Střed S hledaného rovnoběžníka
náleží dvěma množinám bodů: množině Ti středů všech příček
čtyřúhelníka ABCD rovnoběžných s přímkou АС, a množině
Г2 středů všech příček čtyřúhelníka ABCD rovnoběžných
s přímkou BD. Množina Ti je sjednocení těžnic BM, DM
trojúhelníků ACB, ACD (bez bodů B, D)3 množina Г2 je
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sjednocení těžnic AN, CN trojúhelníků BDA, BDC (bez bodů
A, C). Body M, N jsou tedy po řadě středy úhlopříček AC, BD.

Z toho už vyplývá jednoduchá konstrukce: Množiny Г1,
Г2 mají jediný společný bod; je to průsečík 51 těžnic AN, DM.
Bodem S vedeme rovnoběžky s přímkami AC, BD; ty protnou
obvod čtyřúhelníka ABCD v bodech X, Y, Z, T, které jsou
vrcholy hledaného rovnoběžníka.

Rozbor i zkouška konstrukce vyplývá z věty: Konvexní
čtyřúhelník je rovnoběžníkem právě tehdy, když se jeho úhlo-
příčky navzájem půlí. (Takto je možno i rovnoběžník definovat.)

Z vrcholů X, Y, Z, T výsledného rovnoběžníka leží X, Y
na straně AD, Z na straně AB а Г na straně CD.

67. Sestrojte kosočtverec ABCD, je-li dána délka jeho výšky
v = 3 cm a jestliže úhlopříčka AC má délku 2v.

n_

J
PÁm B\

\o
Obr. 106

Řešení. Rozbor. Na obr. 106 je znázorněn hledaný koso-
čtverec. Vzdálenost rovnoběžek AB a CD je v, vzdálenost
d(AC) — 2v. Úsečka BD je kolmá na úsečku АС a půlí ji.
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Z toho plyne konstrukce:
1. Sestrojíme dvě rovnoběžné přímky m, n ve vzdálenosti

£i = 3 cm.

2. Na přímce m zvolíme bod A a opíšeme kružnici k =
= (Aí 2v)-

3. Průsečík n a k je bod C.
4. Osa o úsečky AC protne přímky m, n po řadě v bodech

B,D.
Zkouška. Sestrojený čtyřúhelník ABCD je rovnoběžník,

protože se jeho úhlopříčky půlí, a protože jsou na sebe kolmé,
je to kosočtverec nebo čtverec. Čtverec to nemůže být, neboť
v tomto případě (obr. 107) by pravoúhlý trojúhelník BSC
musel být rovnostranný, tj. platilo by

d(BS) = d(SC) = d(CB) = v. (1)

Pro úhlopříčku čtverce však platí d(AC) = 2 .d(SC) = z>j/2čili

V2
d(BS) = d(SC) = v^~. (2)

Protože vztahy (1) a (2) si neodpovídají, nemůže čtverec
konstrukcí vzniknout. Sestrojený čtyřúhelník je tedy koso-
čtverec. Jeho výška je v — 3 cm podle 1. bodu konstrukce
a úhlopříčka AC má délku 2v podle 2. a 3. bodu konstrukce.

Protože vzdálenost středu A kružnice k od přímky n je
v = 3 cm a je menší než poloměr 2v = 6 cm kružnice, dosta-
nerne v konstrukci (viz obr. 108) dva různé body С a C', které
vedou к dvěma shodným výsledkům úlohy (souměrně sdru-
ženým podle přímky p procházející bodem A kolmo к oběma
rovnoběžkám m, и). Dostáváme tedy jediné řešení úlohy.
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Jiné řešení. Rozbor (obr. 109). Průměr kružnice k vepsané
kosočtverci ABCD je v našem případě roven výšce v = 3 cm
kosočtverce. Označme dotykový bod kružnice k na straně AB
písmenem T, na straně AD písmenem T'. Ve vyšrafovaném
pravoúhlém trojúhelníku ATS je známa přepona AS délky v

1
a odvěsna ST délky — je tedy tento trojúhelník podle věty

Ssu sestrojitelný.
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Konstrukce: 1. Sestrojíme trojúhelník ATS podle Ssu.
2. Na prodloužení úsečky AS za bod S sestrojíme bod C

tak, že d(SC) = d(AS) = v.
3. Bodem C vedeme přímku n\\ AT.
4. Osa o úsečky AC protne přímky AT, n po řadě v bo-

dech B, D.
Zkouška tohoto řešení úlohy odpovídá prvnímu odstavci

zkoušky prvního řešení. Protože jsme v druhé konstrukci vyšli
přímo z trojúhelníka určeného podle věty Ssu, odpadla úvaha
o dalších výsledcích konstrukce. V druhém případě má každý
krok konstrukce jediný výsledek, a úloha má tedy jediné
řešení - kosočtverec. Případ čtverce nastat nemůže, neboť
pomocný trojúhelník ATS by musel být rovnoramenný. To
však zde není splněno.

68. Narýsujte trojúhelník ABC. Uvnitř strany AC sestrojte
bod X a uvnitř strany BC bod Y tak, aby platilo

XY\\ AB, AX £ XY.
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Řešení. V rozboru předpokládáme (viz obr. 110), že body
X, Y splňují podmínky úlohy, tj.

XY\\ AB, AX s XY.

Proto je trojúhelník A YX rovnoramenný; platí

<£XAY s <£XYA. (1)

Protože přímka AY protíná rovnoběžky AB, XY, platí pro
střídavé úhly

XYA S <£YAB. (2)
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Ze vztahů (1) a (2) vyplývá

<£XAY s (3)

takže polopřímka Z!Y je osou úhlu *^XAB = <£САВ.

Na základě tohoto výsledku dostaneme již konstrukci
bodů X, Y:

1. Osa úhlu CAB protne stranu BC v hledaném bodě Y.
2. Rovnoběžka bodem Y s přímkou AB protne úsečku AC

v bodě X.

Zkouška. Z 2. bodu konstrukce je zřejmé, že XY || AB.
Dokážeme, že AX ~ XY.

Podle 1. bodu konstrukce je polopřímka A Y osou úhlu CAB,
a platí tedy (3). Z 2. kroku konstrukce vyplývá platnost vztahu
(2) a platí tedy celkem

<£XAY s <£XYA.

Trojúhelník AXY je tedy rovnoramenný se základnou A Y
a s ramenem AX = XY, což jsme měli dokázat.

Každý z kroků konstrukce vede к jedinému částečnému
výsledku, takže úloha má jediné řešení.

Poznámka. Tvar trojúhelníka ABC má sice vliv např. na

vzájemný poměr úseček АХ a CX apod. v dané úloze (říkáme
též, že tvar trojúhelníka je »parametrem úlohy«), ale protože
pro kterýkoli trojúhelník jsou kroky konstrukce proveditelné
týmž způsobem, neovlivňuje tvar trojúhelníka existenci a počet
řešení, a proto diskusi neprovádíme. Platí tedy řešení pro

libovolný trojúhelník ABC.
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69. Je dána kružnice k — (S-, r) a přímka p ve vzdálenosti
1

— r od bodu S.
2

Sestrojte čtverec ABCD opsaný kružnici k, jehož vrchol A
leží na přímce p. Dokažte, že úloha má právě dvě řešení.

v =

\ D

P

A В

Obr. 111

Řešení. Rozbor (obr. 111). Poloměr r kružnice vepsané
čtverci je roven polovině jeho strany, tj. d(AB) — a — 2r.

1 __ _

VzdálenostiS je — a|/2 čilid(iě>) = r j/2 je délka sestrojitelné
úsečky. Vrchol A má tedy ležet na přímce p a současně na

kružnici l = (5; rj/2). Existuje-li společný bod přímky p
a kružnice /, je to bod i; pak je známa polovina AS úhlopříčky
AC. Protože úhlopříčky čtverce jsou shodné a na sebe kolmé,
můžeme už přikročit ke konstrukci:

1. Sestrojíme danou kružnici k a přímku p.
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2. Pomocně sestrojíme úsečku délky rj/2 (je to úhlopříčka
pomocného čtverce o straně r).

3. Opíšeme kružnici / = (S; r]/2 ).
4. Průsečík přímky p a kružnice l je bod A.
5. Na prodloužení úsečky AS za bod 5 sestrojíme bod C

tak, že SC = SA.
6. Sestrojíme přímku q J_ AC bodem 5 a na ní body В Ф D

tak, že SB = ^i) = SA.

Zkouška je jednoduchá; z 5. a 6. bodu konstrukce ihned
plyne, že čtyřúhelník ABCD je čtverec. Bod A leží na přímce p

(viz bod 4). Protože úhlopříčka sestrojeného čtverce má délku

2r]/2, je jeho strana 2r. Jemu vepsaná kružnice má týž střed
a týž poloměr r jako kružnice daná.
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Zbývá určit počet řešení. Kružnice / protne přímku p vždy
_ 1

ve dvou různých bodech A, A', protože AS > ST, tj. r j/2 > — r

(obr. 112). Každý z bodů A, A' vede podle naší konstrukce
к jednomu čtverci; každý z čtverců má za svůj střed bod S.
Je tedy otázka, zda tyto čtverce splynou, nebo jsou různé. Jde
totiž o polohovou úlohu, v níž každý z výsledků konstrukce,
který splňuje podmínky úlohy, je řešením úlohy. Oba čtverce
ABCD a A'B'CD' by splynuly, kdyby bod A' byl některým
z vrcholů čtverce ABCD. Avšak А' Ф A, neboť přímka p je
sečnou kružnice / a také А' Ф C, neboť p neprochází bodem S.
Možnosti A' — В nebo A' = D jsou také vyloučeny, neboť
úhel <£ASA' není pravý, což vyplývá z délek stran trojúhelníků
ATS a A'TS. Je totiž

y2 i

4 = 2^2-d(AT) = d(A'T) = 2r2

Proto AT Ф ST a <^AST Ф 45°.
Úloha má tedy vždy dvě různá řešení.

70. Sestrojte rovnoramenný lichoběžník ABCD, jsou-li dány
délky jeho střední příčky d(MN) — 6 cm, výšky v — 5 cm
a ramena d{AD) = 6 cm.

Řešení. Rozbor. Na obr. 113 je znázorněno předpokládané
řešení: rovnoramenný lichoběžník ABCD s osou souměrnosti o.
Bod M je středem ramena AD, bod N středem ramena BC.
Kolmice vedená bodem M к přímkám pásu АВ || CD spolu-
vytvoří se stranami lichoběžníka dva shodné pravoúhlé troj-
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úhelníky АРМ a DQM. Tyto trojúhelníky jsou z podmínek
1

úlohy sestrojitelné podle věty Ssu (např. d(PM) = —v, d(AM)=

1
= ~d(AD)). Odtud již plyne konstrukce (obr. 114).

1. Sestrojíme střední příčku MN délky 6 cm.
2. Bodem M vedeme přímku m _]_ MN.
3. Sestrojíme rovnoběžky a, c s přímkou MN ve vzdálenosti

1
= 2,5 cm.

2 V
4. Průsečík přímek m, a je bod P.
5. Kolem bodu M opíšeme kružnici k s poloměrem d(AM) —

1
= — d(AD) = 3 cm.

6. Protože AM > MP, protne kružnice k každou z přímek
a, c ve dvou bodech; z nich vybereme dvojice bodů A, D3
popř. A', D' tak, aby tvořily průměr kružnice k a zároveň
rameno lichoběžníka.

7. Pomocí osové souměrnosti podle osy o úsečky MN dopl-
níme vrcholy В, C, popř. В', C.

Zkouška. Za podmínky AM > MP, tj. AD > v, vzniknou
dva lichoběžníky ABCD, A'B'C'D'. Každý z nich splňuje pod-
minky úlohy. Např. lichoběžník ABCD má střední příčku MN
délky 6 cm, jak plyne z 1. a 6. bodu konstrukce. Výška licho-
běžníka má velikost v = 5 cm podle 3. bodu. Délka ramen
AD a BC je 6 cm podle 5. a 6. bodu konstrukce.

Lichoběžník A'B'C'D' má obdobně požadované vlastnosti
až na to, že jsou prohozeny velikosti obou základen (AB =

= CD', CD ~ A'B'). Úloha má tedy dvě různá řešení.
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Poznámka. Úloha byla řešena pro rozměry dané v úloze.
Připustíme-li však, že rozměry jsou libovolné (tj. jsou zadány
parametricky), vznikne zajímavá diskuse:

Za podmínky AM > MP, tj.

d(AD) > v, (1)

vzniknou dva lichoběžníky ABCD, A’B'C'D' pouze tehdy, je-li
splněna ještě další podmínka

d(MN) > ]/(d(AD))2 - v2. (2)

Podmínka (1) je zřejmě pro konstrukci podmínkou nutnou;
při jejím splnění je možno trojúhelník АРМ vždy sestrojit.
Tato podmínka však při konstrukci lichoběžníků nestačí. Zvo-
líme-li totiž např. d(AD) = 10 cm, v = 8 cm, d(MN) = 6 cm

(obr. 115), trojúhelník АРМ sice sestrojíme, ale po další
konstrukci body D a C splynou a vznikne trojúhelník ABC;

1
platí totiž d(MN) = — d{AB). Odtud už dostaneme pro kon-

vexní lichoběžník podmínku (2), neboť

d(AB) =2 .d(AQ) = ]/(d(AD))2 - v2.

Pro d(MN) < |/(ú(/lZ)))2 — v2 konvexní lichoběžník nedosta-
neme (obr. 116).

Proto říkáme, že teprve oba vztahy (1) a (2) tvoří tzv. pod-
minku postačující pro konstrukci lichoběžníka při parametric-
kém zadání naší úlohy.
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Obr. 116

71. Jsou dány tři různé body A, B3 S, které neleží v přímce.
Sestrojte čtverec MNPQ, který má tyto vlastnosti:
a) Bod S je jeho středem.
b) Přímka MN prochází bodem A a přímka PQ bodem B.
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Obr. 117

Řešení. Rozbor. Na obr. 117 je načrtnuto předpokládané
řešení úlohy (všimněte si, že tento pomocný obrázek pro roz-
bor začneme kreslit od čtverce MNPQ а к němu teprve
připojíme dané údaje - při konstrukci ovšem budete vycházet
z daných prvků).

Bod S je středem čtverce MNPQ a leží např. na ose o pásu
rovnoběžek MN \\ PQ, které po řadě obsahují body A, B.
Střed Si úsečky AB je také bodem osy o uvedeného pásu.
Osa pásu je rovnoběžná s jeho hraničními přímkami, šíře pásu
je rovna délce strany hledaného čtverce. Můžeme tedy při-
stoupit ke konstrukci:

1. Sestrojíme střed <Si úsečky AB a přímku o — SSi.
2. Rovnoběžky a, b s osou o vedené po řadě body A, В

vytvoří pás, jehož šířku zjistíme např. kolmicí o' bodem 5
к hranicím pásu.

3. Paty této kolmice určí po řadě středy Оц O2 stran MN,
PQ hledaného čtverce.
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4. Sestrojíme vrcholy M, N, P3 Q hledaného čtverce na
hranicích pásu a\\b tak, že MOi = NOi = SOi = PO2 =

£ Qpz. «
Zkouška. To, že sestrojený čtverec MNPQ má bod 5 za

střed, zjistíme ze shodnosti (podle věty sus) trojúhelníků
MOiS, NOiS, PO2S, OO2S. Z bodu 2 konstrukce je zřejmé,
že přímka MN prochází bodem A a přímka PQ bodem B.

Úloha, jak vyplývá z konstrukce pro body A, B3 S neležící
na přímce, má jediné řešení, nehledíme-li na možnou záměnu
pojmenování bodů M a N3 popř. P a Q.

A' a P\p2 B
а bO,.

.jS.
s

s

\

4

-#—á>3Oja Л7 /V /4

Obr. 118

Poznámka. Kdybychom při rozboru vyšli ze středové sou-
měrnosti čtverce MNPQ se středem S (obr. 118), bylo by
možno přímky a, b sestrojit jednodušeji: a = AB'3 b = BA',
kde body A'3 B' jsou středově souměrné po řadě к bodům
A, B. Jinak by řešení úlohy probíhalo obdobně.
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72. a) Narýsujte rovnoběžník ABCD těchto vlastností
d(AB) = 7 cm, <CBAD = 60°, strana CD prochází průsečí
kem M os úhlů <£BAD a <£;ABC.

b) Dokažte, že pro tento rovnoběžník platí

d{AB) = 2.d{AD).

\
D\ С/\t1"

\
D V¥

\°2
Ж'

120°60°
\
ВA

Obr. 119

Řešení, a) Rozbor provedeme na obr. 119. Úhel <£ABC
má velikost 120°. Konstrukci rovnoběžníka provedeme tedy
takto:

1. Sestrojíme úsečku AB délky 7 cm.
2. Ve zvolené polorovině s hranicí AB sestrojíme úhly

<$BAD' = 60° a <£ABC' = 120° a jejich osy oi = AM'
a 02 — BM".

3. Průsečíkem M přímek o\ a vedeme přímku m \ ] AB.
4. Průsečík přímek m a AD' je bod D, průsečík přímek

m a BC je bod C.
Dokážeme, že čtyřúhelník ABCD je rovnoběžník a že má po-
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žadované vlastnosti. Z 2. bodu konstrukce plyne, že AD' 11 BC.
Bod M existuje, neboť podle vlastností os úhlů o\, o% platí

<£ВАМ' + <£ABM" = 30° + 60° < 180°.

Úhel <£BAD = 60° byl použit ve 2. bodě konstrukce. Také
strana CD je podle 3. bodu konstrukce rovnoběžná s AB.

b) Z konstrukce vyplývá, že

<£BAM = <£MAD = <£DMA = 30°.

Proto v rovnoramenném trojúhelníku AMD se základnou AM
je

(1)AD ^ DM.

Obdobně dokážeme, že v trojúhelníku BMC platí

(2)BC £ CM.

Z (1) a (2) plyne dokazovaný vztah

d(AB) = 2.d(AD),

neboť AB = CD = DM + MC, BC = AD.

73. Narýsujte přímku p a zvolte dva různé body X, Y
mimo ni.

Sestrojte rovnoramenný trojúhelník ABC se základnou AB,
který má tyto vlastnosti:

a) Přímka p je osou souměrnosti tohoto trojúhelníka.
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b) Délka ramen je 6 cm.

c) Folopřímka CA prochází bodem Y, polopřímka CB
bodem X.

Řešení. Rozbor. Z podmínky c) a a) vyplývá, že body X, Y
nemohou ležet uvnitř téže poloroviny vyťaté přímkou p, má-li
mít úloha řešení.

C b—

Y

Obr. 120

Na obr. 120 je znázorněno předpokládané řešení úlohy.
Protože přímka p je osou souměrnosti trojúhelníka, jsou sou-
měrně sdružené jak body A, B3 tak i polopřímky CA a CB;
bod C je v této osové souměrnosti samodružný. Proto bod X'
souměrně sdružený s bodem X podle přímky p padne na

přímku CA. Je-li X' Ф Y, jsou přímky X’Y a CA totožné
a konstrukce trojúhelníka bude jednoduchá (případ X' = Y
vyšetříme zvlášť):
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1. Sestrojíme bod X' souměrně sdružený s bodem X podle
přímky p.

2. Existuje-li průsečík přímky X'Y s přímkou p, je to bod C.
3. Na polopřímky CX, popř. CY, naneseme úsečku délky

6 cm a dostaneme po řadě body B, A.
Zkouška bezprostředně vyplývá z konstrukce: trojúhelník

ABC je rovnoramenný se základnou AB, přímka p je jeho osou
souměrnosti, vznikne-li ovšem trojúhelník ABC. To nastane

jen tehdy, neleží-li body X', Y a C na přímce (kolmé к přímce p)
- viz obr. 121. Závěr této úvahy už uvádí jeden z případů
diskuse.

4—p

X'i Y

Obr. 122

Diskuse. Pro případ X' Ф У, který jsme právě vyšetřili, má
úloha jediné řešení, protnou-li se přímky X'Y a p, přičemž
X' Y není kolmá na p. Existenci řešení nebrání ani možnost, že
by bod Y ležel na přímce p; musel by však být různý od průse-
číku přímek XX' a p.
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Jestliže X'Y \ \p, což je v případě, že vzdálenosti bodů X
а У od přímky p jsou si rovny, úloha nemá řešení (obr. 122).

Zbývá vyšetřit případ X' = Y, což nastane právě tehdy,
když body X, Y jsou souměrně sdružené podle přímky p.
Označme P průsečík přímek XY a p. Pak průsečík Ci (C2, ...)
libovolné přímky procházející bodem X' = Y až na bod P
může být vrcholem trojúhelníka, který splňuje podmínky úlohy.
V tomto případě má úloha nekonečně mnoho řešení (obr. 123).

Již v rozboru jsme zjistili, že úloha nemá řešení, jestliže
body X, Y leží uvnitř téže poloroviny vyťaté přímkou p.

74. Je dán rovnoběžník ABCD, v němž je AB > ВС a jehož
úhel <$iDAB je ostrý. Na přímce AB sestrojte takový bod X,
z něhož je vidět úsečky AD a DC pod shodnými úhly.

Vyšetřete polohu bodu X vzhledem к úsečce AB.
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Obr. 124

Řešení. Protože jde o polohovou úlohu, opět je úkolem
»najít všechny body X«.

Rozbor. Pro zjednodušení úvahy vyloučíme nejprve možnost,
že by hledaný bod mohl ležet na polopřímce AB*, která je к po-

lopřímce AB opačná. Předpokládejme, že bod (X) leží na po-

lopřímce AB* (obr. 124). Pak úhly <£A(X)D = £ a <£D(X)C =
= r\ leží v téže polorovině s hranicí (X)D. Jedno ráme-
no {X)D mají společné, druhá jejich ramena (X)A a (X)C
jsou však různá, neboť bod C na přímce (X)A = AB neleží.
Proto i Ф r] pro libovolný bod (X) polopřímky AB*; bod (X)
nemůže být tedy řešením úlohy.

Předpokládejme tedy, že bod X leží na polopřímce AB
(obr. 125) a má požadovanou vlastnost, tj. <£AXD = <^DXC.
Protože AB 11 DC, platí o střídavých úhlech <£AXD = <%.XDC.
Trojúhelník DXC je tedy rovnoramenný se základnou DX.
Odtud konstrukce:

1. Okolo bodu C poloměrem CD opíšeme kružnici k.
2. Průsečík přímky AB a kružnice k (existuje-li) je hledaný

bod X.

315



\D /

с/

/i
/

\ /
/\ /

/ /

sz:
,4 вX

Obr. 125

Zkouška vlastností sestrojeného bodu X je jednoduchá:
Existuje-li X na přímce AB, pak trojúhelník DXC je rovno-

ramenný se základnou DX, úhly <^XDC a <£DXC jsou
shodné. Podle věty o střídavých úhlech platí <>^XDC =

Xf^AXD, takže i ^AXD s <£DXC.



Diskuse. Kružnice k má s přímkou AB společný aspoň
jeden bod, je-li d(CD) = d(AB) ^ v3 kde o = d(CP) je výška
rovnoběžníka ke straně AB. V prvním případě má úloha dvě
řešení (viz obr. 126); případ rovnosti nemůže nastat vzhledem
к podmínce úlohy AB > ВС a proto, že úhel <£DAB =

= СВР je ostrý.
Vzhledem к souměrnosti obou řešení X а X' podle přímky

CP jeden z bodů, např. X', určitě nenáleží polopřímce PA.
Pro bod X dokážeme, že patří vnitřku úsečky AB. Protože
podle podmínky úlohy je úhel <^DAB ostrý, je úhel <£ADC
trojúhelníka ADC tupý. Z podmínky úlohy a z vlastnosti tupo-
úhlého trojúhelníka ADC plyne

AC > CD > AD. (1)

Protože body А, В, X leží na polopřímce PA a platí CD ^
= XC, AD = BC, dostaneme z nerovnosti (1) nerovnost

AC > XC > BC,

z níž vyplývá toto uspořádání bodů na polopřímce PA:

P, В, X, A;

bod X leží tedy uvnitř úsečky AB.
Neprotne-li kružnice k přímku AB, je poloměr d{CD) < v =

= d(CP). Protože <£ СВР je ostrý v pravoúhlém trojúhelníku
BPC, platí BC > CP. Je tedy d(BC) > d(CD) - d(AB), což
odporuje podmínce úlohy AB > BC. Nemůže se tedy stát, že
by úloha neměla řešení. Z diskuse vyplývá, že existují vždy
dvě řešení.
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75. Je dán čtverec ABCD o délce strany a a čtverec MNPQ
o délce strany b, přičemž a > b; vrcholy M, N, P, Q leží
v úhlopříčkách AC, BD (viz obr. 127).

Sestrojte čtverec XYZT tak, aby jeho vrcholy ležely na
obvodu čtverce ABCD a aby body M, N, P, Q ležely na
obvodu čtverce XYZT.

Stanovte počet řešení úlohy vzhledem к daným číslům a, b.
Řešení. Rozbor (viz obr. 127). Podle zadání úlohy jsou oba

dané čtverce souměrné podle svého středu č>. Naši představu
řešení znázorňuje čtverec XYZT. Pak trojúhelník MNX je
pravoúhlý s přeponou MN; bod X tedy nutně leží na Thale-
tově kružnici nad průměrem MN.
Odtud plyne konstrukce:

1. Sestrojíme kružnici k = (O; r = \b) nad stranou MN
jako průměrem.
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Obr. 128

2. Existuje-li společný bod kružnice k a strany AB, nazveme
ho X (na obr. 128 jsou to dva různé body X, X').

3. Kolem průsečíku 5 úhlopříček daného čtverce opíšeme
kružnici m = (S; r = d(SX)).

4. Na kružnici m leží další vrcholy Y, Z, T hledaného
čtverce tak, že АX ^ BY ^ CZ ^ DT.

Protože však jde o polohovou úlohu, musíme uvažovat i pří-
pádný druhý průsečík k s AB, tj. na obr. 128 bod X', který
vede к druhému řešení úlohy, čtverci X'Y'Z'T'.

Zkouška. Nejprve musíme dokázat, že např. bod Y leží
na přímce XN atd. Označme úhly pravoúhlého trojúhelníka
MXN tak, že

<$:XMN = a, <$XNM = /3
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a platí
a + p = 90°. (1)

Pro trojúhelníky MAX a NBY platí: BY £ AX (podle
konstrukce), BN s AM, <£NB Y = <j:MAX (ze zadání úlohy),
proto jsou shodné podle věty sus a je NY = MX.

Trojúhelníky MXN a NYP jsou shodné podle věty sss,
neboť d(NP) — d{MN) — b,NY = MX (podle předešlé úva-
hy) a YP £ XN, protože platí Д YCP £ /\XBN podle sus.
Je tedy <£PNY ^ <£NMX — a a platí vzhledem к (1):

<£XNM + <£ATAÍP + <£PNY = p + 90° + a = 180°; (2)

proto polopřímky ATZ a NY tvoří přímý úhel, tj. body X, N,
Y leží v přímce.

Z dokázané shodnosti pravoúhlých trojúhelníků

AMXN £ ANYP ~ APZQ = AQTM

vyplývá dále:

a) ^TXY = <£ZFZ = <£ YZT = <£Zr.Z = 90°;

b) АГАТ + ATT = YP + PZ = Z<2 + 2Г = ГМ + MX,

takže čtyřúhelník XYZT je vskutku čtverec.
Poznámka. Celá zkouška proběhne jednodušeji, otočíme-li

celý útvar okolo bodu 51 o pravý úhel (např. tak, že bod A
přejde v bod B, bod Mv N atd.). Je to možné, neboť ze zadám
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vyplývá SA = SB, SM ~ SN atd. Pak úsečka AB přejde
v úsečku BC, pravoúhlý trojúhelník MXN přejde ve shodný
trojúhelník NYP; tím dokážeme předpoklady pro platnost
vztahu (2).

Diskuse. Počet řešení závisí na vzájemné poloze přímky
AB a kružnice k. Vzdálenost v jejího středu O od AB je
v = \(a — b), její poloměr je r — \b. Podle věty o vzájemné
poloze přímky a kružnice dospějeme к tomuto výsledku:a)Je-li v < r neboli a — b < b, tj.

b < a < 2b,

dostaneme dvě různá řešení XYZT, X'Y'Z'Ttato řešení jsou
souměrně sdružená podle středních příček daných čtverců
a můžeme к nim dospět dvěma otočeními v navzájem opačných
smyslech (jedno z nich je popsáno v poznámce).b)Je-li v — r neboli

a = 2b,

má úloha jediné řešení XYZT, kde X je střed úsečky AB.c)Je-li v > r neboli

a > 2b,

nemá úloha řešení.
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76. V rovině je dána úsečka AM a uvnitř této úsečky bod V.
Sestrojte rovnoramenný trojúhelník ABC se základnou AB

tak, aby úsečka AM byla jeho výškou a bod V průsečíkem
výšek. Stanovte podmínku řešitelnosti.

Narýsujte, je-li d(AM) = 82 mm, d(A V) = 52 mm.

Řešení. V textu úlohy je vlastně dána výška AM hledaného
trojúhelníka a předepsána poloha průsečíku V jeho výšek. Toto
zadání vás může svést přímo к vlastní konstrukci: Podle vašich
znalostí je zřejmé, že přímka vedená bodem M kolmo к přímce
AM bude obsahovat stranu BC hledaného trojúhelníka. Tím
však vaše konstrukce skončí, neboť asi nevíte, jak využít bod V
pro další konstrukci. Provedete-li však řádně rozbor úlohy,
uvidíte, že sestavení konstrukce není obtížné.
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Při rozboru vyjdeme opět z předpokladu, že na obr. 129
je narýsován hledaný trojúhelník ABC. Paty jeho výšek vede-
ných po řadě body А, В, C označme M, N, P. Přímka CP =
— p — vc prochází bodem V a je osou souměrnosti tohoto
trojúhelníka, takže je VA ~ VB. Protože jde o úlohu poloho-
vou, potřebujeme sestrojit dva »neznámé« vrcholy В, C. Pro
ně hledáme množiny možných bodů. Oba body leží na přímce
m procházející bodem M a kolmé к přímce AM. Pro bod C
nemáme »v dohledu« žádnou jednoduchou množinu bodů;
o bodu В však víme, že VA ^ VB. Proto bod В náleží kružnici
k — (V; d(VA)). V pravoúhlém trojúhelníku VMB (kde
<C VMB = 90° - pokud ovšem existuje) známe tedy přeponu
VB a odvěsnu VM. Odtud konstrukce.

1. Sestrojíme bodem M přímku m J_ AM.
2. Okolo bodu V opíšeme kružnici k poloměrem d(VA).
3. Každý z průsečíků kam (existují-li) vede к jednomu

vrcholu В hledaného trojúhelníka.
4. Bod C je průsečíkem přímky m a osy p úsečky AB.

Provedeme zkous u t ho, že každý sestrojený trojúhelník
je řešením úlohy. Pod1, instrukce je AM J m — BC. Proteze
pomocný trojúhelník
rovnoramenný, je osa p úsečky AB jenc osou souměrnosti
a zároveň i osou základny trojúhelníka ABC; proto je CV J_ AB
a bod V je průsečíkem výšek.

Podmínku řešitelnosti zjistíme takto: Popsanou konstrukcí
získáme řešení právě tehdy, protne-li kružnice k přímku m3

tj. když VB ~ VA > VM. Pak dostaneme dva různé body
В a B' souměrně sdružené podle přímky AM. V pravoú dém
trojúhelníku AMB je úhel ABM ostrý, úhel VPB je pravý,

:'B (existuje-li) ie txx'le konstrukce
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a proto se přímky map podle Euklidova axiómu protnou;
bod C tedy vždy existuje. Úloha má tedy pro VA > VM - což
je náš případ - vždy dvě řešení souměrně sdružená podle
přímky AM.

Poznámka. Tato dvě řešení splynou (nehledíme-li na popis),
jestliže přímka AM je osou úsečky BC. Pak trojúhelník je
rovnostranný; to nastane právě tehdy, je-li d(AV) = 2.d(VM);
ze zadání naší úlohy to však neplyne.

Konstrukce je provedena na obr. 130 v poměru 1:2.
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77. Je dána délka s střední příčky*) a délka v výšky licho-
běžníka ABCD, jehož úhlopříčky jsou na sebe kolmé. Průse-
číky úhlopříček se střední příčkou lichoběžníka ABCD dělí
tuto příčku na tři shodné úsečky.

Sestrojte lichoběžník ABCD.

v

A

2s

Obr. 131

Řešení (obr. 131). Rozbor. Předpokládejme, že ABCD je
hledaný lichoběžník. Rovnoběžka vedená bodem C s úhlopříč-
kou BD protne polopřímku AB v bodě E. Trojúhelník АЕС
je pravoúhlý, známe jeho výšku a víme, že d(AE) je 2s. Střední

1
příčka trojúhelníka DCB má délku — s; je tedy d(DC) = d(BE) =

*) Střední příčka lichoběžníka je úsečka určená středy jeho ramen.

Je rovnoběžná se základnami. Její délka s je rovna aritmetickému prů-
a + c

měru délek obou základen, tj. s = .

2
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2
= — s. Protože ЕС || BD, je <^ACE = 90°. V pravoúhlém3

trojúhelníku АСЕ známe tedy délku 2s přepony AE a délku
příslušné výšky v.

Konstrukce

1. Nejprve sestrojíme pravoúhlý trojúhelník АСЕ s pře-
ponou AE délky 2s a příslušnou výškou v. [Použijeme Thale-
tovu větu: Nad průměrem AE opíšeme půlkružnici (jejíž polo-
měr je s) a najdeme její průsečík C s přímkou sestrojenou
v téže polorovině rovnoběžně s AE ve vzdálenosti v.]

2. Na přeponě AE sestrojíme bod В tak, aby platilo: d(AB) :
4 2

: d(BE) =2:1 (víme totiž, že d{AB) = — s, d(BE) = — s).3.Trojúhelník ABC doplníme na hledaný lichoběžník
ABCD tak, že CD s BE.

Zkouška. Z toho, že d(AE) = 2s, CD = BE a AE = AB
+ BE, je zřejmé, že střední příčka sestrojeného lichoběžníka
ABCD má danou délku s. Protože <^ACE = 90° a CE || DB,
jsou úhlopříčky АС a DB navzájem kolmé.

Označme písmeny (viz obr. 131) M, N, O, P a Q průsečíky
přímky obsahující střední příčku lichoběžníka ABCD postupně
s přímkami AD, AC, BD, ВС a CE. Potom v rovnoběžníku
BECD platí

1
(1)d{OP) = d{PQ) = ~s.

1
V trojúhelníku AEC má střední příčka NQ délku — d{AE) = s.
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Vzhledem к uspořádání bodů M, N, O, P a Q vyplývá
z d(NQ) = saz (1), že i

1
d(NO) = js.

Potom také

12
d(MN)= d(MP) - d(NP) = 5 - — 5 = — 5.3 3

Střední příčku MP rozdělují tedy úhlopříčky АС а ДО na
tři shodné úsečky.

Diskuse. Možnost provedení celé konstrukce závisí jen na
existenci bodu С. V případě v > s bod C neexistuje, takže
úloha nemá řešení.

V případě v ^ s bod C existuje (jeden nebo dva), takže
úloha má řešení (jedno nebo dvě).

Jedinou podmínkou řešitelnosti je tedy splnění nerovnosti
v ^ s.

78. Sestrojte pravoúhlý trojúhelník ABC s přeponou AB,
je-li dána délka jeho těžnice tc a velikost úhlu co, který svírá
těžnice tc s osou úhlu ACB. Pro které co má úloha řešení?

Řešení. Rozbor (obr. 132). Označme é> střed přepony AB.
Podle Thaletovy věty je d{SA) = d(SC) = d(SB) = tc. Troj-
úhelníky ASC a BSC jsou tedy rovnoramenné, a proto

<£ACS = <£CAS - a,
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■ŠBCS = <£ SBC = p.

Je-li co úhel, který svírá těžnice tc s osou úhlu <£ACB = 90°,
potom

7. = 45° + co, P = 45° - oo, (1)

nebo

a = 45° — co, p = 45° + co. (2)

Z posledních vztahů vyplývá konstrukce. Jde o konstrukci
trojúhelníka podle věty usu: d(AB) = 2.tc a úhly a, p jsou
určeny vztahy (1), popř. (2).

328



Zkouška. Ze vztahů (1), popř. (2), je zřejmé, že sestrojený
trojúhelník ABC je pravoúhlý. Protože délka jeho přepony je
2tc, má těžnice к přeponě předepsanou délku.

Diskuse. Aby úloha měla řešení, musí být úhly a, (3 dané
vztahy (1), popř. (2), ostré, tj.

0° co < 45°.

Je-li co = 0°, má úloha jediné řešení a sestrojený trojúhelník
ABC je rovnoramenný. Je-li 0° < co < 45°, má úloha dvě
řešení.

Pro co ^ 45° nemá úloha řešení.

79. V trojúhelníku ABC jsou těžnice ta a na sebe kolmé.
Dále je dána délka t těžnice tc a poloměr r opsané kružnice.

Sestrojte tento trojúhelník a proveďte diskusi řešitelnosti.
C

í
í
!

/
/

/
/
/ /\

У
\У !±t \

\
\hу

L
A 3 Jf B

Obr. 133
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Řešení. Rozbor (obr. 133). Víme, že d(CS) = t, kde S je
střed strany AB, a že ATB = 90°. Kružnice opsaná troj-
úhelníku ABC má střed O a poloměr r. Z pravoúhlého troj-

1
úhelníka ATB vyplývá d(ST) — d(SA) = d(SB) — — t. Proto

2
d(AB)=2.d(ST) = — t.

C' C

c

0
é

/ к/r

/
/

В
J

;o

Obr. 134

Z toho vyplývá konstrukce (obr. 134):
2

1. Sestrojíme úsečku AB délky - řa její střed 5.

2. V jedné z polorovin vyťatých přímkou AB sestrojíme
bod O tak, aby platilo d(OA) — d(OB) = r.
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3. Sestrojíme kružnice c = (S, t) a k = (O, r).
4. Průsečík kružnic c, k označme C.
5. Sestrojíme trojúhelník

Zkouška. Je jasné, že kružnice opsaná sestrojenému troj-
úhelníku ABC má poloměr r. Označme písmenem T těžiště

1
trojúhelníka ABC; potom d(ST) = — t. Protože podle kon-

2
strukce je d{AB) = — t, platí SA ^ SB ^ ST. Proto leží bod T

na Thaletově kružnici s průměrem AB, takže <£ATB = 90°.
Těžnice v přímkách AT, ВТ jsou tedy navzájem kolmé.

Diskuse. Bod 2 z konstrukce je možno provést jen tehdy, je-li

1
r> — t.

—

3 (1)

Průsečík C kružnic c — (S, t) a k = (O, r) podle bodu 4
existuje tehdy a jen tehdy, platí-li

| r - 11 ^ d(SO) r + t.

= A3-(j')Dosadíme-li d(SO)

11 ^ d(SO), dostaneme po umocnění

do nerovnosti | r —

ř2
r- — 2rt + í2 < r2 — ——

9
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a po další úpravě

5
(2)

Vztahy (1) a (2) platí současně právě tehdy;, je-li

5
Г Й g t.

Protože průsečík C kružnic c a k nikdy nemůže ležet na

přímce AB, je možno provést 5. bod konstrukce.

Podmínkou řešitelnosti je tedy

5

t ~ 9 ’

Snadno zjistíme, že úloha má dvě řešení souměrná podle
5

přímky o; pouze v případě, že r — — t, je jediným řešením

rovnoramenný trojúhelník s hlavním vrcholem C.

80. Je dán trojúhelník ABC se stranami délek d(AB) =
— 9 cm, d(BC) — 5 cm, d(CA) = 8 cm. Sestrojte kružnici k ve-

psanou tomuto trojúhelníku a na ní najděte všechny body X
této vlastnosti: přímka p rovnoběžná s АС a procházející
bodem X protíná strany AB, BC v takových bodech У a Z,
že X je střed úsečky YZ.
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Řešení. Rozbor. Kružnice k vepsaná trojúhelníku ABC
představuje jednu množinu možných bodů X. Druhou mno-
žinu možných bodů X tvoří středy úseček YZ popsaných
v textu úlohy; nazveme ji M. Nejdříve najděte tuto množinu.
Na obr. 135 je trojúhelník ABC daných rozměrů. Je zřejmé,
že bod M jako střed strany AC patří do množiny M. Nabízí
se domněnka, že i další body úsečky MB (tj. těžnjce r&) patří
do množiny M, nikoliv však bod B. Veďme libovolným bodem
X mezi body M, В rovnoběžku s AC; písmeny Y, Z označme
její průsečíky se stranami AB, BC.

Provedeme tzv. nepřímý důkaz toho, že XY = XZ.
a) Předpokládáme, že XY < XZ, tzn.,že pro délky těchto

úseček platí x± < x% (viz obr. 135). Vzdálenosti bodu В od
přímek AC, YZ označíme v, v'; vzdálenost přímek AC, YZ
je tedy v — v'.

O obsazích trojúhelníků XYB, XZB vzhledem к n< х-г

platí
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Sxyb < SxZB . (1)

Z obdobného důvodu pro obsahy lichoběžníků AMXY
a CMXZ dostáváme

Samxy < Scmxz (2)

Sečtením nerovností (1) a (2) dostaneme, že obsah trojúhel-
nika AMB je menší než obsah trojúhelníka CMB, tj.

Samb < Scmb• (a)

b) Jestliže předpokládáme, že jci > *2, dostaneme obdobným
postupem

Samb > Scmb• (b)

Oba výsledky (a) a (b) jsou však zřejmě ve sporu s tím, že

1 1
Samb = Scmb = y. W^-v-

Pro vztah mezi čísly xl, X2 musí tedy platit jediná zbývaicí
možnost xi = X2) což znamená, že bod X je středem úsečky YZ.

Závěr. Body množiny M jsou všechny body těžnice MB
vyjma bodu B. Z úvahy též vyplývá, že žádný jiný bod roviny
nemůže mít požadovanou vlastnost.
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Tento výsledek využijeme v konstrukci (obr. 136).
1. Sestrojíme trojúhelník ABC.
2. Trojúhelníku ABC vepíšeme kružnici k.
3. Určíme těžnici BM.

4. Kružnice k protne těžnici BM ve dvou různých bodech
X\, X2, které jsou zřejmě řešením úlohy.

Dokážeme to: Jak z úvahy v rozboru vyplývá, jedině body
těžnice BM (mimo bod В) mohou mít požadovanou vlastnost.
Těžnice BM leží ve vnitřku úhlu ABC, neboť bod M leží
mezi body A, C. Polopřímky BA, BC se kružnice k dotýkají,
a proto polopřímka BM protne kružnici k ve dvou různých
bodech. Tyto body X\, X2 vzhledem ke konstrukci jsou body
vnitřku trojúhelníka ABC. Úloha má tedy dvě různá řešení.

81. Je dán lichoběžník ABCD se základnami AB, CD.
a) Určete takový bod X úhlopříčky AC, aby přímka p

rovnoběžná s AB vedená bodem X proťala ramena AD, BC
po řadě v bodech Y, Z, pro něž platí Z7 = XZ.

335



b) Vyjádřete délku úsečky XY pomocí a = d(AB), c =
= d(CD).

Řešení. Rozbor, a) Bod X na obr. 137 má požadovanou
vlastnost, tj. úsečky XY a XZ na přímce p || AB jsou shodné.
Obměníme-li i úvahu z rozboru v úloze č. 80, patří bod Z
(mimo to, že leží na straně BC) straně trojúhelníka AZY,
v němž úsečka AX je těžnicí. Proto úsečka AC je těžnicí troj-
úhelníka ADE, kde pro bod E platí: E -/- Z), d(CD) — d(CE) =
—

c3 E leží na přímce DC (obr. 137). Z toho vyplývá i jedno-
duchá konstrukce.

1. Sestrojíme lichoběžník ABCD a na přímce DC bod E tak,
jak je popsáno v rozboru.

2. Průsečík polopřímky AE se stranou BC je bod Z požado-
vany textem úlohy.

3. Konstrukcí přímky p || AB bodem Z dostaneme bod Y
a hledaný bod X.

^4hD Cc c

XXYj
+7Z*

X
X

A 3a

Obr. 137
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Důkaz vlastností bodu X je patrný z rozboru. Úloha má
popsané řešení jako jediné, neboť body В a C leží v opačných
polorovinách vyťatých přímkou AE-, společný bod úsečky BC
a polopřímky AE je proto jediný.

b) Ze vztahu ДZCE ~ /\ZBA plyne (obr. 137)

d{EZ) c

(1)d(AZ) ~ a

a dále podle (1)

d(AE) d(AZ) + d(EZ)
d{AZ) = d{AZ)

a -j~ cc

(2)= 1+- =
a a

Ze vztahu [\AXZ ~ /\ACE plyne

d{XZ) d(AZ)
d(CE) = ф4£) *

Podle (2) je

d{AE)

ac

d(XZ) = . J(C£) - . 3
a — c

a tedy

ac

J(XF) = d(XZ) = i Э
a + c

což je hledané vyjádření.
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са R

В

f Р

Obr. 138

82. Pravoúhlý trojúhelník ABC má odvěsny délek d(AB) —

— 4 cm, d{BC) = 3 cm. Opište mu čtverec APQR tak, aby
vrcholy В, C ležely po řadě na stranách PQ, QR.

a) Popište konstrukci.
b) Vypočtěte délku úsečky AP.
Řešení. Úloha bude vyřešena (obr. 138), sestrojíme-li ně-

který z bodů P, Q, R. Konstrukce zbývajících dvou vrcholů
hledaného čtverce už bude snadná. Část b) dané úlohy požaduje
výpočet délky úsečky AP, kterou označíme a.

Pravoúhlé trojúhelníky АВР a BCQ jsou podobné, neboť

<£ABP + <CBQ = 90°, (1)

takže

<$ABP - <$BCQ. (2)

Koeficient podobnosti trojúhelníků ABP a BCQ (v tomto
pořadí) je
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d(AB) 4
d(BC) = 3~*

Odtud již plyne, že

</(ЛР) 4
d(BQ)=33

tj-

3 3
d{BQ) = — d(AP) — —a.

Protože P<2 = ЛР, je

1
d{BP) = a — d(BQ) = —a. (3)

Z pravoúhlého trojúhelníka //PP podle Pythagorovy věty
dostáváme

(d(AP))2 + (d(BP))2 = (d(AB))2,

tj. podle (3)

1
a2 + — a2 — 16,16
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tj.

162
a2 = -—.

17

Odtud již plyne řešení části b):

16 cm 16.]/l7cm 16.4,13cm
d{AP) = a = — 3,88 cm.

1/17 1717

(4)

Z výsledku (4) vyplývá jeden ze způsobů řešení části a)
dané úlohy. Bod P sestrojíme na Thaletově půlkružnici nad prů-
měrem AB (v polorovině opačné к polorovině s hraniční přím-

16
kou AB, v níž leží bod C) tak, aby bylo d(AP) = — ] 17

(viz (4)).

cm

U 4

Obr. 139

Jiný způsob nalezení bodu P se zakládá na konstrukci úhlu
BAP. Z rovnosti (3) totiž plyne

d{BP) 1
d(AP) = 4'
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Sestrojíme pomocný pravoúhlý trojúhelník UVW (obr. 139)
s odvěsnami o délkách d(UV) = 4 cm a d(UW) = 1 cm. Pak
sestrojíme bod T (obr. 138) tak, aby platilo

<£BAT= <£WVU.

Bod P se sestrojí jako pata kolmice z bodu В к přímce AT.
(Poznamenejme ještě, že trojúhelník UVW je užitečný i pro

konstrukci, která se zakládá na rovnosti (4), neboť d(VW) =

= |/17 cm.)
Známe-li bod P, pak již snadno sestrojíme další dva vrcholy

hledaného čtverce. Na polopřímce PB najdeme bod Q tak, aby
bylo d(PQ) = a. Na polopřímce QC sestrojíme bod R, pro který
platí d(QR) = a.

Na závěr musíme ještě provést zkoušku, tj. dokázat, že
čtyřúhelník APQR je hledaný čtverec. Z konstrukce vyplývá,
že úhel APB je pravý a že d(PQ) = d(QR) = a. Je třeba do-
kázat, že také úhel PQR je pravý, že bod В leží na straně PQ
a bod C leží na straně QR.

Bod В leží uvnitř úsečky PQ, neboť podle konstrukce bodu P
je d(PB) < a — d(PQ). Trojúhelníky АВР a BCQ jsou

s

podobné podle věty ум—. Z rovnosti (1) plyne rovnost (2) a
z konstrukce bodu P vyplývá rovnost (3), takže

s

d(AP)d(AP) 4 d{AB)
J = d(BC)'

a

d(BQ) d(PQ)-d(BP) 1
a — -~a

4
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Úhel PQC je tedy pravý a čtyřúhelník APQR je
Z konstrukce dále plyne., že bod C skutečně leží na str ně ( R.
Je totiž

vrerec.

d(BC) 3
d(QC) = d{PB). =■• d(PB) . — < i.d{AB)

Poznámka. Při řešení úlohy lze také začít konstrukcí bo-
du <2 a využít pro ni podmínky <£ВОС — 90° a <XBQA = 45°.
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Vlil. Stereometrie

83. Kvádr ABCDA'B'C'D' (s podstavou ABCD3 přičemž
je AA' || BB' || CC || DD') má rozměry a = d(AB), b =
= d(AD), c = d(AA'). Rovnoběžné roviny BDA' a CB'D'
oddělují od daného kvádru dva čtyřstěny ABDA' a C'CB'D'.

a) Vyjádřete objem zbylého tělesa pomocí rozměrů a, b, c.

b) Narýsujte síť tohoto tělesa pro a — 4 cm, 6 = 3 cm a
c = 5 cm.
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Řešení, a) Na obr. 140 je znázorněn kvádr ABCD ve volném
rovnoběžném promítání pro lepší názornost v »nadhledu zleva«
(znamená to, že jsou viditelné: horní podstava, přední a levá
pobočná stěna). Objem Z zbylého tělesa, jehož obraz je tlustě
vytažen, vypočteme tak, že od objemu původního kvádru
odečteme objemy oddělených čtyřstěnů.

Objem čtyřstěnu vypočítáme podle vzorce pro objem V
jehlanu, tj.

1

jp-v>V =

kde P je obsah podstavy a v délka příslušné výšky. Považujme
ve čtyřstěnu ABDA' trojúhelník ABD za podstavu; pak
příslušná výška je v — d(AA') = c. Obsah pravoúhlého troj-

1
úhelníka ABD o odvěsnách a, b je P — ~ab. Proto je

1 1 1
Vi — — . — ab . c = — abc.

j Z o

1
Objem V<i druhého čtyřstěnu C'CB'D' je rovněž ~~ abc, neboť

6

oba čtyřstěny mají shodné podstavy a výšky.
Dostáváme tedy pro objem Z zbylého tělesa

Z = abc-Vi — V2

čili
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Odpověď. Objem zbylého tělesa je — abc.

b) Síť zbylého tělesa je na obr. 141; při konstrukci vyjdeme
nejvhodněji od stěny A'B'B a její sousední stěny B'BC a postup-
ně připojujeme další stěny. Při rozvinutí povrchu v síť má např.
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bod D tři obrazy (značené D, Di, Do); obdobně bod D' se zobrazí
třikrát jako D\ Di’ a DC

A
/ / I/ /

//
i/

/ I N
// I\

/
---/

*

// // /// // //
/ /// //

b(~S- /// /

^S7^c4 /
/

J 3
I

//O /
I N /r /II./ //

^ ^ j/
Obr. 142В

84. Je dán kvádr o rozměrech a, b, c (viz obr. 142). Od kvádru
oddělíme tělesa rovinnými řezy tak, že zbude těleso, které je
na obrázku vyznačeno tlustými čárami. Jeho vrcholy leží
ve středech hran přední a zadní stěny daného kvádru.

a) Narýsujte obrázek, z něhož je vidět, že se odříznuté části
dají složit v jiný kvádr.

b) Vypočtěte objem tělesa, které zbylo po odříznutí.
Řešení, a) Označme středy hran stěny ABCD daného kvádru

stejně jako na obr. 142. Střední příčky MP, NQ tohoto obdélní-
ka a dále úsečky MN3 NP, PQ, QM dělí obdélník ABCD
na osm shodných pravoúhlých trojúhelníků; ty jsou na obr. 142
očíslovány 1, 2, 3, 4, Г, 2', 3', 4'. Trojúhelníky se totiž shodují
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v odvěsnách, tedy podle věty sus. Proto můžeme trojúhelník 3
přemístit do polohy Y, trojúhelník 4 do polohy 2'. S troj-
úhelníky 3, 4 přemístíme zároveň i odříznuté části kvádru,
které к nim příslušejí.

b) Podle výsledku úlohy a) dostaneme z odřezaných částí
kvádr, jehož přední stěnou je obdélník ABNQ (obr. 143);

1

rozměry tohoto kvádru jsou a, — 6, c a jeho objem V je

b
V = a . — . c

2

neboli

1
V = — . abc.

2
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Protože objem daného kvádru je abc3 rovná se objem odřezaných
částí polovině objemu daného kvádru. Z toho plyne, že zbytek
tělesa má objem rovný polovině objemu daného kvádru neboli
1

—.abc. Tím je úloha rozřešena.

85. Osový řez rotačního kužele je pravoúhlý rovnoramenný
trojúhelník VAB o přeponě AB délky d. Přímkou A V je vedena
rovina, která protne kužel v rovnostranném trojúhelníku VAC.

Pomocí proměnné d vyjádřete
a) objem jehlanu ABCV;
b) povrch jehlanu ABCV.

V

E\\

\

Obr. 144
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Řešení (obr. 144). a) Pro výpočet objemu jehlanu ABCV
podle vzorce

1

jP.vV =

potřebujeme znát obsah podstavy P a velikost výšky v. Zjistíme
potřebné údaje.

Bod V je vrcholem kužele a pravého úhlu rovnoramenného
pravoúhlého trojúhelníka ABV s přeponou AB délky d; je tedy

d
d(A V) = d(B V) = (1)

P

Je-li 5 střed podstavy kužele, je jeho výška

d
v = d{SV) = ~. (2)

Protože trojúhelník VAC je rovnostranný, je

d
(3)d(AC) = -=

P

Trojúhelník ABC je podle Thaletovy věty pravoúhlý s pře-
ponou AB. Pomocí Pythagorovy věty vypočítáme druhou
odvěsnu
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d‘2 d
d(BC) = / {d{AB)f - (d(AC))2 = á2 - - —

• (4)
2 V2ti

Vzhledem к (1), (3) a (4) je

A VAB £ ACAB;

proto je i trojúhelník VBC rovnostranný.
Pro objem jehlanu ABCV s podstavou ABC a výškou SV

dostaneme

id \2 d

3 2 lj/2/ ‘ 2 ”
d31 1

V = —.

24

b) Vzhledem ke vztahům (1) až (4) platí IA4 ^ VB ^ FC ^

^ АС ~ BC. Toho použijeme při výpočtu povrchu 5 našeho
jehlanu. Nejprve zjistíme obsah P trojúhelníka ABC, který je
týž jako obsah s ním shodného trojúhelníka VAB. Platí

1 d d d2

2'1/2 ' 1/2 ~ 4

1
P — — . AC. BC = —

2

Pomocí Pythagorovy věty vypočteme výšku VM trojúhelníka
VBC:

Id2 d2 i/3d2 43
T + ¥=l/d(VM) = 8 21/2
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Obsah P' trojúhelníka VBC je roven obsahu s ním shodného
trojúhelníka VCA. Platí

ld cil/ 3 d2l/3
-

. d{BC). d(VM) =
2 2 V2 2|/2

1
P' =

8

Povrch 5 jehlanu je tedy

ď2p 2d2 + d2]/3d2
5 = 2P + 2P' = 2 . — + 2 .

d2 —

= T (2 + 1/3).

48

Q,X

ХГЧ I V
Qi E

N
У N

D

N
\
\

в

Obr. 145
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86. Na připojeném obr. 145 vidíte kvádr o rozměrech
d(AB) = 4 cm, d(AD) = 3 cm, d(AE) = 5 cm; tento kvádr je
stmelen z krychliček o hranách délky 1 cm. Na povrchu kvádru
je vyznačen obdélník Qi o rozměrech 1 cm a 2 cm a dále pak
dva čtverce Q2, Q3 o stranách 1 cm.

Nad obdélníkem Qi vyrazíme z daného kvádru ve směru
hrany AD sloupec (tvaru kvádru) složený celkem ze šesti
krychliček; vyňatá část je znázorněna vlevo na obrázku. Tím
vznikne v daném kvádru otvor. Obdobným způsobem sestrojí-
me nad čtvercem Q2 otvor dlouhý 5 cm ve r . hrany AE
a nad čtvercem Q3 otvor dlouhý 4cmrsr urany AB.

Vypočtěte objem a povrch (tj. včetně _chu dutiny) tělesa,
které takto vzniklo.

Řešení. Abychom úlohu rozřešili, rozřežeme vzniklé těleso
(tj. daný kvádr po sestrojení otvorů) na vrstvy, a to rovinnými
řezy rovnoběžnými s rovinou horní podstavy EFGH daného
kvádru. Dostaneme tak pět vrstev, které jsou v obr. 146 seřazeny
ve směru shora dolů; přitom si myslíme, že se na vrstvu díváme
shora (z nadhledu). Patří-li horní stěna krychličky v určité
vrstvě к povrchu tělesa, označíme ji v našem obrázku znamén-
kem +; patří-li spodní (dolní) stěna krychličky к povrchu
tělesa, označíme ji v obrázku znaménkem —. Jestliže náleží
povrchu boční stěna krychličky, vyznačíme ji v obrázku vrstvy
tlustou úsečkou. Podle toho spočítáme v každé vrstvě počet
stěn krychliček, které patří povrchu tělesa; zároveň spočítáme
i počet krychliček v každé vrstvě (obr. 146 a, b, c, d, e).
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Počet stěn ve vrstvě krychliček,
které patří povrchu tělesa

Cel-
kem
stěn

Počet
krychliček
ve vrstvě

Značka
vrstvy

bočních
stěn

(v obrázku
tlustě

vytažených)

horních
stěn

dolních
stěn

(+) (-)

5 1811 34 11a

b 20 20 6

3 18 21 9c

d 2 18 20 11

11 18 29 11e

Součet 124 48

Odpověď. Povrch vzniklého tělesa je tedy 124 cm2, objem
tělesa je 48 cm3. (Odpadlo 60 — 48 = 12 krychliček.)

Jiné řešení. Na obrázku 147 máme znázorněno těleso, které
jsme z kvádru odebrali. (Svislé šrafy značí zelenou barvu, šikmé
šrafy červenou a vodorovné žlutou; stejně jsou obarveny i stěny
vzniklé dutiny.)

Označme V objem a S’ povrch původního kvádru a V', S'
objem a povrch kvádru s dutinou.

Dutina nad Qi vznikla vyjmutím šesti krychlí a vezmeme ji
celou; má objem V\ = 6 cm3, povrch Si — 14 cm2.

Dutina nad Q2 vznikla vyjmutím dalších tří krychlí; objem
je V2 = 3 cm3, povrch S2 = 12 cm2.
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Dutina nad Q3 vznikla vyjmutím ještě dalších tří krychlí;
objem je V3 = 3 cm3, povrch S3 = 12 cm2.

Obsahy obrazců Qi, Gb, Q3 označíme Qi, Q2, Q3.
Podle obrázků vidíme, že platí (objem je vyjádřen v cm3,

povrch v cm2):

V = V - (Fi + V-г + V3) = 4.3.5 — (6 + 3 + 3) =
= 60 - 12 = 48;

S' — S -j- (Sn + S2 + S8) — 2 (Qi + Q2 + 2з) =
= 2.(4.5 + 3.5 + 4.3) + (14 + 12 + 12) - (4 + 2 + 2) =

= 94 + 38 - 8 = 124.

Odpověď. Kvádr s dutinou má objem 48 cm3 a povrch
124 cm2.

červená

žlutá

zelená I/
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87. Budiž dána krychle o hraně délky 5 cm; krychle je slepena
z krychliček o hraně 1 cm. Zvolme na povrchu dané krychle tři
čtverečky Qi, Q23 Q3 o stranách délky 1 cm tak, jak je nazna-
čeno v obr. 148a. Nad čtverečkem Qi ve směru hrany OA
(viz obr. 148a) vyrazíme sloupec složený z pěti krychliček
(vyňatá část je znázorněna v obr. 148b); tím vznikne v dané
krychli otvor. Obdobným způsobem sestrojíme otvor nad čtve-
rečkem Q2 ve směru hrany OB a dále nad čtverečkem Q3
otvor ve směru hrany OC. (Celkem bylo vyňato 13 krychliček.)

Provrtanou krychli ponoříme nyní do červené barvy, aby
se povrch a dutiny obarvily. Po uschnutí krychli rozbijeme
na krychličky o hranách délky 1 cm.

Určete, kolik jsme dostali krychliček, které mají obarvenou
1. jednu, 2. dvě, 3. tři, 4. čtyři, 5. pět, 6. šest, 7. žádnou stěnu.

Obr. 148a, bC
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Řešení. Abychom snadněji úlohu rozřešili, rozřežeme krychli
na desky tvaru kvádru, a to rovinnými řezy rovnoběžnými
s horní podstavou krychle. Tím dostaneme pět desek tvaru
kvádru o rozměrech 5 cm, 5 cm, 1 cm; tyto desky na dané krych-
li odshora dolů očíslujeme číslicemi I, II, III, IV, V. Desky
zobrazíme čtverci o rozměrech 5 cm (viz obr. 149 až 153);
mysleme si, že se na desky díváme shora, takže vidíme horní
stěnu čtvercové desky. Je-li horní stěna krychličky v určité
desce obarvena, napíšeme do čtverečku, který krychličku zná-
zorňuje, znaménko +; je-li obarvena dolní stěna, napíšeme
znaménko —. Je-li obarvena boční stěna krychličky, vytáhneme
stranu čtverečku v obrázku tlustou úsečkou. Tak snadněji
spočítáme, kolik stěn má krychlička obarvených; celkový počet
obarvených stěn krychliček napíšeme také dovnitř čtverečku.
Krychličky, které jsme z krychle vyňali, znázorníme v obrázcích
vyšrafováným čtverečkem.

Výsledky, které získáme, napíšeme do tabulky. V tabulce,
např. v řádku označeném II (tj. deska čís. II), čteme: 1 krychlič-
ka je neobarvená, 4 krychličky mají obarvenou jednu stěnu,
6 krychliček má obarvené dvě stěny, 4 krychličky tři stěny,
I krychlička má obarvené čtyři stěny; celkem má deska 16
krychliček.

V předposledním řádku, označeném S, čteme výsledek:
II krychliček je neobarvených, 36 krychliček má obarvenou
jednu stěnu, 42 dvě stěny, 20 tři stěny, 3 čtyři stěny.

Provedeme zkoušku. Snadno přímo zjistíme, že je obarveno
192 stěn (150 — 6+ 12.4); skutečně platí

36.1 + 42.2 + 20.3 + 3.4 = 192.
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Počet obarvených krychliček v jednotlivých deskách je patrný
z této tabulky:

Počet krychliček, které mají
obarveno n stěn Počet

krychliček
v desce

Deska
číslo

n — 0 n = 1 n = 2 n = 3 n — 4

0 10 2 24I 4 8

6 4 16II 1 4 1

III 04 10 8 2 24

IV 12 0 06 6 24

V 6 0 240 6 12

5*) 11 36 42 20 3 112

Obarv. stěn 0 36 84 12 19260

5 je celkový počet krychliček.
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88. Dokažte, že hrany pravidelného trojbokého jehlanu se

nedají očíslovat čísly 1, 2, 3, 4, 5 a 6 tak, aby součet tří čísel,
kterými jsou očíslovány hrany jedné stěny, byl pro všechny čtyři
stěny stejný (mezi stěny počítáme též podstavu).

Řešení. Představme si, že jsme si zvolili libovolný pravidelný
trojboký jehlan, a že jsme jeho hrany očL.ovali nějakým způ-
sobem čísly 1, 2, 3, 4, 5, 6. Každé jeho stěně přiřaďme číslo,
které je součtem tří čísel, jimiž jsou očíslovány její hrany.
Jestliže sečteme čtyři čísla, která jsme takto přiřadili stěnám
uvažovaného jehlanu, pak jejich součet bude

2 . (1 + 2 + 3 + 4 + 5 + 6) = 42,

neboť každá hrana náleží dvěma stěnám. Odtud již plyne tvrzení,
které jsme měli dokázat, neboť číslo 42 není dělitelné čtyřmi.

89. Je dán trojboký jehlan ABCV. Rovina q protíná jeho
hrany AB, BC, CV a neprochází žádným z bodů А, В, С, V.
Které hrany jehlanu rovina ještě protíná?

?л
Z

/

Y

Obr. 154
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druhý poloprostor
určený rovinou (j*

jeden poloprostor
určený rovinou ý

ВA

C

Obr. 155

Řešení. Nejprve zjistíme, které hrany by rovina q ještě
mohla protínat. Načrtneme-li trojboký jehlan ABCV, vidíme,
že z textu úlohy nevyplývá, zda protíná hrany АС, А V а В V.

Před vlastním řešením si připomeňme jeden poznatek z geo-

metrie, který zní: Jsou-li X a Y dva různé body, které neleží
v rovině o, pak rovina o úsečku XY protíná (obr. 154), právě
když body X a Y leží v opačných poloprostorech vyťatých
rovinou g.

Vrcholy А, В neleží v rovině q a rovina o protíná hranu AB.
Z těchto dvou podmínek plyne, že body А, В leží v opačných
poloprostorech vyťatých rovinou g. Obdobně zjistíme, že v na-

vzájem opačných poloprostorech určených rovinou g leží body
В, C a také body С, V. Přehlednější bude, když si tato tři
zjištění zapíšeme do tabulky (obr. 155). V témže poloprostoru
tedy leží body A a C a také body В а V, takže rovina g hrany
АС a BV neprotíná. Body А, V však leží v různých polo-
prostorech, a proto rovina g protíná hranu А V. Tyto vztahy
jsou znázorněny na obr. 156.
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