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Predmluva

Brozurka, kterou pravé ctete, vydala Matematicko-fyzikalni fakulta Univerzity
Karlovy v Praze ve spolupraci ustfednim vyborem matematické olympiddy pii
prilezitosti 50. roéniku této soutéZe, prvni predmétové olympiddy na naSich 8ko-
lach. PiSeme rok 2001, a tak si i nematematik snadno spoditd, Ze matematicka
olympidda v tehdej$im Ceskoslovensku vznikla v roce 1951. Padesét4 léta byla
v nasi zemi jak po hospodarské, tak predevsim po politické strance velmi slozi-
td. O to vice je tfeba ocenit iniciativu nékolika matematiki v Cele s profesorem
Karlovy univerzity Dr. Eduardem Cechem, kterym se podafilo v té dobé& zalozit
matematickou soutéz pro studenty tehdejsich tzv. vybérovych, dnesnich stfednich
gkol, kterd se pozdéji rozsifila i na zaky zakladnich gkol. Profesor Dr. E. Cech,
matematik svétového vyznamu, pracoval jesté pred 2. svétovou valkou v Brné,
odkud znal Dr. FrantiSska Kahudu, ktery byl v padesatych letech nejdfive namést-
kem, a pak nékolik let ministrem Skolstvi, a plné podpofil vznik a pribéh prvnich
ro¢niki MO. Dr. Kahuda byl také po dlouhou dobu predsedou Jednoty cesko-
slovenskych matematikt a fyzikii (JCSMF), a zde je tieba konstatovat, ze pravé
Jednota Ceskych matematiki a fyzika je spolu s Matematickym tstavem Akade-
mie véd Ceské republiky odbornjm garantem matematické olympiddy. Hlavnim
cilem matematické olympiddy bylo ziskat studenty stfednich $kol pro studium
technickych oborti, aby se stali pfistimi budovateli naseho, hlavné tézkého pri-
myslu. Bylo to vyjadfeno i graficky na diplomech pro vitéze celostatniho kola
MO, kde byl vyobrazen mlady matematik, jak na papife néco pocitd obklopen
mnoha mohutné kouficimi kominy tovaren. Samoziejmé iniciatofi MO i uditelé
na Skolach vidéli v MO hlavné prostfedek k zvySeni zdjmu o matematiku. MO
navézala jednak na soutéZ v feSeni matematickych tloh, kterou vypisovala JCMF
ve svém Casopise (byla to ovSem soutéZ trochu jiného druhu), jednak na matema-
tické olympiddy v jinych zemich, napiiklad v Polsku, Madarsku nebo v Sovétském
svazu.

Prvnim predsedou ustfedniho vyboru MO byl prof.Dr.Frantisek Vy¢ichlo, pro-
fesor Ceského vysokého uéeni technického. I tim bylo zdtraznéno spojeni MO s pii-
pravou studentli na vysoké Skoly technického zaméfeni. Bohuzel, ze zdravotnich
divodti musel prof. Vy¢éichlo jiz po roce funkci opustit, jeho nastupcem se stal
prof. Dr. Josef Novék, feditel Matematického ustavu CSAV. Z dalsich piedsedi
UV MO je tfeba piipomenout docenta Jana Vysina, kterého zna vétsina ulitelek
a uCiteld matematiky jako propagatora modernizace vyuky matematiky (v dob-
rém slova smyslu) a autora celé fady ufebnic matematiky, metodickych piirucek
a matematickych ¢lankt v ¢asopisech pro uditele matematiky, a dale slovenského
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kolegu prof. Dr. Jozefa Moravéika ze Ziliny, ktery vedl UV MO od 27. do 32. ro¢niku
soutéze. Pak, az do své smrti v roce 1988, byl pfedsedou UV MO opét pracovnik
MU CSAV Dr. Frantisek Zitek, ktery v praci pro MO uplatnil mimo jiné své bo-
haté znalosti cizich jazykt a velmi dbal také o spravnou formulaci Gloh z hlediska
spravné cestiny.

Chtél bych zde zdiraznit, Ze pod slovy ,astfedni vybor*, kterd budi dnes ¢asto
neprijemné asociace, je tfeba si predstavit ne pfili§ pocetnou skupinu védeckych
pracovniki a uciteld matematiky zakladnich, stfednich a vysokych $kol, kteri pre-
vazné nad rdmec svych pracovnich povinnosti matematickou olympiadu pfipravuji.
A zde bych rad vzpomenul Dr. Rudolfa Zelinku, zastupce feditele MU CSAV. Vy-
konéaval funkci tajemnika ustfedniho vyboru MO od vzniku této soutéze az do své
smrti v roce 1956. A pravé na tajemnikovi UV MO spoéiva pievazné cely pribéh
kazdého ro¢niku MO, od pripravy konecné formulace texti Gloh, pfipravy letaki,
komentari tloh, organizace jednotlivych kol, az po pripravu soustiedéni tspésnych
resitell iloh MO a organizaci koresponden¢niho seminére. To vSe zarizoval Rudolf
Zelinka vétSinou po skonceni své prace v ustavu dlouho do noci, velmi se vénoval
také organizaci 4. mezindrodni matematické olympiddy, kterd se konala v roce
1962 v Ceskoslovensku. Hlavné se viak vénoval vybéru tloh, z nichZ vétsinu sdm
vymyslel. TakZe evidentné plati véta ,Rudolf Zelinka se zaslouzil o matematic-
kou olympiadu®, kterou vyslovil doc. Vysin. I ti, kteri ho pak vystridali, zaslouzi,
aby byli pfipomenuti. Dovolte, abych zminil aspon doc. Dr. Vlastimila Machéacka
a doc. Dr. Jiriho Midu, oba byli pracovniky Pedagogické fakulty Karlovy univerzity
v Praze, a Dr. Karla Hordka z Matematického tstavu AV, ktery vykonava funkci
tajemnika UV MO jiz 18 let. Kdyz se MO rozsifila i do nizsich t¥id a piidalo se
programovani, vzrostl pocet soustfedéni, nestacil na praci jeden Rudolf Zelinka,
ale musel se pocet tajemniki zvysit na dva, posledni dobou na tfi. Jisté, MO
nestoji pouze na praci predsedy a tajemnikd, neni vSak mozné vyjmenovat zde
vSechny, ktefi se na praci pro MO v rtznych letech podileli. Zminim se vSak aspon
o dvou pracovnicich. Neddvno zesnuly doc.Dr.Jifi Sedlacek byl ¢lenem UV MO od
16. ro¢niku této soutéZe, pracoval viak pro MO i predtim, pripravoval tlohy, mél
na starosti soustfedéni pro pripravu zakt na mezinarodni matematické olympiady,
psal texty pro fesitele iloh MO. A jeho kolega z MU AV profesor Dr. Miroslav
Fiedler pracoval v MO od jejiho vzniku a jeho autorita, jeho prehled a zkuse-
nosti nachdzeji stale uplatnéni pii pripravé dalsich ro¢nikid MO. O vybér tloh
MO se v poslednich letech staraji dvé tlohové komise, jedna pro kategorie 7 —
zdkladni 8koly, druhd pro kategorie A, B, C — stfedni 8koly. Vznik obou komisi
inicioval doc. Dr. Jaromir Simsa z brnénské pobocky Matematického tstavu AV,
ktery také druhou komisi vede. Pracuje v ni fada mladych lidi, vétSinou byvalych
reprezentantl nas{ zemé na mezinarodnich matematickych olympiddéach. PrinaSeji
do soutéze pékné, zajimavé a netradi¢ni tlohy. Tady je tfeba konstatovat, Ze obé
komise pracuji na ,federalni“ rovni, spolecné se slovenskymi kolegynémi a kolegy.
Vysledkem jsou stejné tlohy a stejné terminy jednotlivych kol MO v Ceské repub-
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lice i na Slovensku. Takze MO zistala vlastné az na vysledkové listiny celostatnich
kol ceskoslovenskou zalezitosti.

Méli bychom se zde zminit o praci regionalnich, krajskych a okresnich vybort
MO, ocenit préaci ¢lenti téchto vybort. Tézko bych vSak mohl zde vSechny vy-
jmenovat. Za viechny uvedu aspoi tii kolegyné, profesorky gymnéazii v Ricanech,
Strakonicich a v Plzni pani Ludmilu Tréglovou, doc. Dr. Ladu Vanatovou a pani
Véru Radlovou. Vedly dlouhd léta krajské vybory MO ve své oblasti, organizo-
valy celostatni kola i celostatni soustredéni, opravovaly zakovska reSeni iloh MO.
A pokud vim, sleduji pribéh MO i nadéle.

Neni mozné zde opomenout préci tisici ucitelek a uciteld, profesorek a pro-
fesorti matematiky na zéakladnich a stfednich Skolach, ktefi informuji své zaky
a studenty o existenci MO, predkladaji jim tlohy I.kola, pomahaji navodnymi
tlohami, doporudi jim vhodnou literaturu. Jsou to hlavné ucitelky a ucitelé, kteri
vénuji kontrole zakovskych FeSeni illoh MO mnoho svého volného ¢asu. Jim patii
dik v8ech poradateli soutéze, bez jejich prace by MO nemohla existovat. Vétsinou
je jim odmeénou pouze uspéch jejich zaku ve vyssim kole MO.

Pokud se tyka kategorie P-programovani, ktera vznikla pti MO v roce 1986,
spoCiva prace na nékolika mélo pracovnicich, z nichz je tfeba na prvnim misté
zminit doc. Dr. Pavla Topfra z MFF UK Praha, ktery je nejen autorem vétsiny
uloh v kategorii P, ale také zakovska feSeni hodnoti, sepisuje k tlohdm komentare
a pripravuje naSe studenty na mezinarodni soutéze v informatice. Dalsi takovou
osobou byl doc. Dr. Vaclav Sedlacek z Masarykovy Univerzity v Brné, ktery se vSak
po odchodu z oblasti $kolstvi uz nemuze MO vénovat. Byl vSak hlavni osobou pfi
organizaci stiedoevropské soutéze v informatice v Brné v roce 1999.

Kategorie A (pro studenty poslednich dvou roéniki stiedni Skoly) a katego-
rie P jsou kazdym rokem zakonceny celostdtnim kolem MO. V prvnich letech se
celostatni kolo konalo vzdy v Praze na matematicko-fyzikalni fakulté, od 10. roé-
niku MO se jednotlivé kraje v usporadani celostatniho kola stiidaly, za organisaci
zodpovidal z povéieni MSMTv odbor Skolstvi piislusného krajského narodniho
vyboru. To se v poslednich letech zménilo a celostatni kola organizuje opravdu
dobrovolné vzdy nékterd stfedni Skola, kterd je ochotna se tohoto kolu ujmout.
V tomto sméru ndm pomohlo predevsim gymndazium v Jevicku, kde se celostatni
kola MO konala v letech 1993, 1994, 1995 a 1997, déle gymnéazium M. Kopernika
v Bilovci (1992, 1996 a 2000). I v letech 1998 a 1999 se zavér 47. a 48. roéniku
MO odehraval na moravskych gymnéziich, v Uherském Hradi$ti a v Novém Mésté
na Moravé. Ucitelé uvedenych gymnazii vénovali vZdy akci hodné préace a je to
jejich zéasluha, ze vzdy probéhla celostatni kola diistojné, bez problémt. Upfimné
jim dékujeme a prejeme ulitelskym kolektiviim uvedenych $kol a jejich fediteliim
Dr. Dagu Hrubému, Mgr. Vaclavu Vankovi, doc. Dr. Z. Botkovi a Dr. Karlu Kote-
novi mnoho uspéchti a eldnu v jejich pedagogické praci, aby byli jejich Zaci Gisp&Sni
nejen v Skolnich soutézich, ale i v dal§im studiu.



Letos, pfi jubilejnim 50. ro¢niku MO, se celostatni kola konaji v Praze, a to
zasluhou Stredni primyslové skoly sdélovaci techniky v Praze 1, Panska ul. Dékuji
feditelce Skoly pani Ing. M. Plockové a vSsem daldim pracovnikim této Skoly za
praci, kterou pro zdarny pribéh zavéru 50. ro¢niku MO vykonali.

Jiz jsme se nékolikrat zminili o mezinarodnich matematickych olympiddach.
Nase republika, a dale pouze Rumunsko, se zucastnily vSech 41 dosud konanych
MMO. Jako vedouci a zastupce vedouciho naseho druzstva na MMO se po mnoho
let stfidali Dr. Zitek a prof. Dr. Morav¢ik, po roce 1989 prevzali Stafetu mladsi
kolegové, napiiklad Dr. Horak a doc. Dr. Sim$a. Na 33. MMO v Moskvé v roce
1992 soutézilo jesté spolecné ceskoslovenské druzstvo, od 34. MMO v roce 1993
v Istanbulu jiZz samostatné druzstva Ceské republiky a Slovenské republiky. Pocet
soutézicich druzstev se v téchto letech podstatné zvétsil, mimo jiné i rozpadem
Sovétského svazu a Jugoslavie. Konkurence je tedy vétsi, soutézi zaci z 80 i vice
zemi. V neoficidlnim poradi druZstev se umistilo naSe v roce 1998 na pékném
15. misté, v roce 1999 na 49. misté a loni na 41. misté. Vérime, Ze se nam to podari
opét zlepsit. Také v programovani (informatice) se konaji mezinarodni olympiddy
(MOI), posledni se konala v Pekingu. Tti ze ¢tyf ¢lent Ceského druzstva ziskali
na ni bronzové medaile. Pfejeme viem pfistim reprezentantiim Ceské republiky
na MMO v USA a na MOI ve Finsku umisténi v prvni poloviné startovniho pole,
tedy mezi medailisty.

S matematickou olympiddou je spojena rada akci, které postupné vznikly za
ucelem podpory feSitelim tloh MO a tim k zvySeni znalosti zZakt a studentu
v matematice. Byly a jsou to rizné seminare celostatni i regiondlni, z nichz nékteré
probihaji korespondenc¢ni formou, déle soustfedéni iispésnych resitelt tloh MO, jez
jsou zaroven jejich pripravou na dalsi rocniky MO. Konaji se i seminafe pro ucitele,
pripravujeme pro né komentare k iloham I. kola s ndvodnymi tlohami apod. Patii
sem i edi¢ni ¢innost UV MO v minulych letech. Spoéivala predeviim ve vyda-
vani tzv. rocCenek, jez obsahovaly vSechny Glohy vcetné jejich feSeni z prislusného
ro¢niku MO. Z ekonomickych divodt tomu uz tak neni. Publikace, kterou drzite
v ruce, je struénym shrnutim poslednich deseti ro¢niki MO a ma aspon castecné
nahradit t&ch 10 chybgjicich rotenek. Podobn4 situace je s edici Skola mladych
matematiki (SMM). Ta vznikla v roce 1961 a do roku 1989 vyslo 61 svazki, né-
které ve vice vydanich. Uvedu asponi ndzvy nékterych svazki: Mnohostény, Co asi
nevite o vzdalenosti, Nerovnosti a odhady, Kombinatorika, Mnoziny bodt v pro-
storu, Funkcionalni rovnice, Matematické indukce. Svazky SMM byla v podstaté
pokryta tématika iloh MO a nezbyvéa nez doufat, ze brozurky SMM i ro¢enky MO
si mohou dnesni soutézici vypujcit v Skolnich knihovnach.

Padesat let — co pfineslo téch padesat let matematické olympiddy? Dovo-
lim si tvrdit, Ze predevsim lepsi, rozsdhlejsi matematické znalosti icastniki MO.
A ¢teme-li si v ro¢enkdch MO jména vitézl celostatniho kola, vidime, Ze mnozi
z nich se stali matematiky, i kdyz méli tfeba puvodné jiné cile. Stali se védec-
kymi pracovniky Akademie véd nebo vysokoskolskymi uciteli matematiky u nas
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nebo i v ciziné. Hlavni prinos matematické olympiddy spocivd pravé ve vyhle-
dani a v dalsi podpore Sirokého spektra matematickych talentt, a to i z téch t¥id
a Skol, které nejsou zaméfeny na matematiku, z mést, které nemaji moznost vy-
uzit zdzemi nékteré katedry matematiky vysoké Skoly. Takze MO urcité prispiva
k zvySeni matematické kultury Zaki, a ¢astecné snad i uéitelii na vSech Skolach,
kde se matematické olympiadé dari.

Doc. Dr. Leo Bocek,
piedseda UV MO






Vyhrane ulohy MO
rocnikii 41-50






41-A-1-3

Jestlize v8echny zlomky se jmenovatelem nejvySe rovnym n, jez lezi v intervalu
(0,1) a jsou zapsany v zakladnim tvaru, sefadime podle velikosti, pak pro kazdé

€ bude platit ¢b — ad = 1 (¢isla 0 a 1 chdpeme jako

dva sousedni zlomky % < p

zlomky 2, 1). Dokazte.

Regeni. Plati-li & < ¢ (b,d > 0), plati i a4 < ate Je-li navic bc — ad =1,

c

b <4 b “brd " d

je také b(a + c) —alb+d) =1ac+d —da+c) =1 Vyjdeme tedy od
zlomk 2 Ta to bude prvni krok. P¥i druhém kroku pridame mezi tyto zlomky
zlomek 1J+‘_1 = 2, pri tfetim kroku pridame mezi tyto zlomky za §, dostaneme
tak kone¢nou posloupnost 2, 1, % % 1. Tak postupujeme déle, pfi n-tém kroku

priddme mezi kazdé dva zlomky 3 E zlomek T ate b d pokud ovSem bude b+ d <

< n. Dostaneme koneénou posloupnost zlomkd, jejichZz jmenovatelé jsou vesmés

y s xr . 2w . . . . . a ¢
pfirozend Cisla nejvysSe rovna n, a budou-li stat v této posloupnosti zlomky 7 q

vedle sebe, plati pro né bc — ad = 1. Sta¢i uz jenom ukazat, ze jsme tim dostali
vBechny zlomky z intervalu (0, 1) se jmenovatelem menSim nez n + 1.

Predpokladejme tedy, Ze zlomek b (¢ £ n) v nasi posloupnosti neni, pak musi
q

lezet mezi dvéma jejimi sousednimi Cleny %, 2, tj. % < £ < 2, odkud plyne
q

bp—aq 2 1, cq — dp 2 1. Vynésobime-li prvni nerovnost d, druhou b a se¢teme-li
je, dostaneme s vyuZitim vztahu bc — ad = 1 nerovnost ¢ = b+ d. To ale znamen4,

ze b + d < n. Pak by ale zlomky %, 2 nemohly byt sousednimi ¢leny uvazované

posloupnosti, protoze by mezi nimi leZel jesté zlomek —— b ate i . Tim je dokazano, Ze po

n-tém kroku obsahuje posloupnost vSechny zlomky —, pro které je 0 S p < ¢ S n.
q

41-A-1ll-5

Uvazujme funkci f definovanou v intervalu (0,1) jako

T, z iracionalni,
fl@)=q p+1 _p
] = -,
q q

kde 0 < p < ¢ jsou nesoudélné celd ¢isla. Najdéte maximum funkce f na intervalu
(3. )
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v s . 7 8 vroxs 15 ‘e 15\ _ 16 8 v o s
Reseni. V intervalu (§»9) lezi &islo 17, pro které je f(ﬁ) = 17 > 5 Podle feSeni
dlohy A-I1-3 nelezi v intervalu (g, {3) Z4dné raciondlni ¢islo 2 se jmenovatelem

87
15 8
17 §)
vatelem ¢ < 26. Pro kazdé racionélni ¢islo g z intervalu (—g—, g—), E # %, tedy plati
q 2 26, a proto je

p\ _p,1 8 1 16
f(q>—q+q<9+2<17.

q < 25 a podobné interval ( neobsahuje zadné raciondlni ¢islo 13 se jmeno-

ProtoZe pro kazdé iracionalni &slo z € (£, 8) je f(z) = = < ¥, je hledané

maximum 2.

41-C-1-5

Jsou-li a, b, ¢ velikosti stran trojahelniku a t,, t;, t. velikosti prislusnych téznic,

pak
3 = to + 1ty + ¢ <1
4 a+b+c ’
Dokazte.

Reseni. Oznaé¢me K, L, M stiedy stran po fadé protilehlych vrcholim A, B,
C daného trojtahelniku a 7" jeho téZisté (obr.1). Podle trojihelnikové nerovnosti
v trojuhelniku BCT plati

2 2
|BO| < BT| +1CT), . a < 2t + ot

Podobné z trojuhelniki ABT a C AT usoudime, zZe

Gl bt 5 Bebdd
33" 33

Seétenim téchto tfi nerovnosti dostaneme

4
a+b+c<§'(ta+tb+tc),

coz je vlastné levd dokazovand nerovnost. Déle si vSimnéme, Ze podle trojuhelni-
kové nerovnosti v trojihelniku KM A plati

b
|AK| < |[KM|+ |AM|, tj. t.< 3 + 5,
podobné z trojuhelniki LK B a M LC plyne

<<+ a4 t.<2
>S9 7% c>9 Ty
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Seétenim téchto t¥i nerovnosti dostaneme

fo by + 1t <2(a+b+f)—a+b+c
a b c 2 2 2 = )

a to je vlastné prava dokazovana nerovnost.

C
L
v P
K
A R B
Obr. 1
41-C-1-6

Najdéte nejmensi prirozené ¢islo n tak, aby existovalo pravé 45 usporadanych
dvojic (u,v) pfirozenych &isel, jejichZ nejmensi ndsobek je n.

Reseni. Je-li p, q,r, ... posloupnost viech prvoéiselnych déliteléi hledaného &sla n,
pak rozklad n na prvoéinitele ma tvar n = p®¢®r°..., kde exponenty a, b, c, ...
jsou cela kladna ¢isla. Libovolni dva délitelé ¢isla n pak maji tvar

n=plgrf ... a n=pigrt.. .,

kde d, e, f, ..., g, h, i, ... jsou celd nezipornd ¢isla. Navic je ¢islo n je nejmensi
spolecny nasobek téchto ¢isel u a v, pravé kdyz plati soustava rovnosti

a = max(d, g), b =max(e, h), ¢ = max(f,7), ....

Vybéry moznych dvojic (d, g), (e, h), (f,7), ... jsou tedy navzajem nezavislé, napt.
pro dvojici (d, g) méme moznosti

(0,a), (1,a), ..., (a,a), (a,a—1), ..., (a,1), (a,0),

tj. pravé (2a + 1) moznosti. Existuje tedy pravé (2a + 1)(2b+ 1)(2¢+ 1) ... uspo-
radanych dvojic (u,v) zkoumané vlastnosti. (VSimnéte si, Ze uréeny pocet zavisi
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na exponentech a, b, c, ..., nikoliv na hodnotach prvodisel p, ¢, r, ... v rozkladu
Cisla n.) Pozadovana rovnost

45=(2a+1)(2b+1)(2c+1)...

predstavuje rozklad ¢isla 45 na nékolik celych cinitela vétsich nez 1, tedy jeden
ze soulint 45, 153, 9-5 nebo 5 -3 -3 (na poradi ¢initelid nebereme ohled). To
znamena, ze Cislo n ma jeden z tvart

%, p'd, p'd®, pldir.
Nejmensi predstavitelé téchto Etyt typt jsou &isla 222, 27.3,24.32 222 -3 -5 (za p,
q, r dosazujeme nejmensi prvodisla, pritom vzdy k mensimu prvodislu prirazujeme
vétsi exponent). Nejmensi je posledni z téchto ¢isel, tj. ¢islo 60.

42-B-1-4

Honza si zapomnél poznacit kvadratickou rovnici, kterou mél doma resit. Pama-
toval si vSak, ze koeficient u kvadratického ¢lenu byl 3 a u linedrniho ¢lenu 25.
U absolutniho ¢lenu se spletl pouze ve znaménku. Obé& rovnice (ta, kterou mél
Fesit, 1 ta, kterou fesil) mély celodiselny koren. Zjistéte, které to byly rovnice.

Reseni. Rovnice maji tvar
‘ 322 +252+¢c=0; c¢>0.

Jejich diskriminanty jsou

D1’2 =625F 12c (2)
a koreny
-25++vD; .
T12 = 256 D, 1=1,2

Odtud ++v/D; = 25 + 671 2. Je-li n&ktery z korenti celé ¢&islo, pak musi byt také
++/D; celé a dale néktery z vyrazti —25 + /D; je délitelny 3esti. Cislo /D; =
= /625 — 12¢ < 25 budeme tedy hledat ve tvaru /D, = 6k £ 1, k € Ng. Ze
vztahu (2) vyplyvé, ze D; + Dy = 1250. /Dy = /1250 — D; musi byt celé.
Postupné volime za /Dy &sla 1, 5, 7, 11, 13, 17, 19, 23 a uréujeme /Ds. Zjistime,
7e vyhovuje pouze v/D; = 5 nebo /D; = 17.

V prvém pripadé je ¢ = &51_2—& = 50 a jednéa se o rovnice 322 + 25z + 50 = 0,
ve druhém pripadé to budou rovnice 32% + 25z + 28 = 0. VyfeSenim rovnic se
presvédéime, Ze vyhovuji podminkam tlohy. Existuji tedy dvé razné dvojice rovnic,
které jsou reSenim dané tlohy.
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42-B-11-1

Zjistéte, pro kterd realnd cisla a mé soustava rovnic

r+y=2+2,
2 +y? =22 +4,
P +yd=2>+a
feSeni v oboru realnych cisel, a vyreste ji.

ReSeni. Umocnime-li prvni rovnici na druhou a od vysledku odeéteme rovnici
druhou, dostaneme 2zy = 4z. Z dvojice rovnic zy = 2z a ¢ + y = z + 2 vyplyva,
7e {z,y} = {2, 2}. Proto z® + y® = 2% + 8, takZe a = 8 je jedin hodnota, kdy m4
soustava FeSeni. VSechna FeSeni pro a = 8 jsou trojice (z,y, z) tvaru (2, p,p) nebo
(p,2,p), kde p je libovolny parametr.

42-B-S-2
Pro kterd redlna ¢isla p ma soustava rovnic
3 —
z° — 2+ 3p =6,
2 +z+4p=10
aspon jedno feSeni v oboru realnych ¢isel?

ReSeni. Je-li u spole¢ny kofen obou rovnic, pak
0= —u+3p—6)— (u®+u+4p—10) = —2u—p+4,

odkud u = —%& + 2. Dosazenim zpét do libovolné z obou rovnic dostaneme pod-
minku na &slo p, kterd je po tpravé tvaru kubické rovnice p(p? — 12p + 20) = 0
s kofeny p; = 0, p2 = 2 a p3 = 10. Snadno se presvéd¢ime, ze dand dvojice rovnic
pak ma skutecné spolecny kofen u rovny 2, 1 resp. —3.

42-79-11-1
Jestlize pro trojcifernd ¢isla a, b plati a + b = 1000, potom se &isla a2, b? shoduji
v poslednim trojcisli. Dokazte.

Reseni. Protoze a? — b? = (a — b)(a + b) = 1000(a — b), je v uvazovaném piipadé
rozdil a? — b? délitelny &islem 1000, a proto se &sla a2, b% shoduji v poslednich
tfech Cislicich.
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43-A-1-4
Pro ktera cela n > 2 existuji racionélni &sla p a g takova, ze ¥/n = p + qv/2?
ResSeni. Umocnénim na tieti dostaneme ekvivalentni rovnost
n = (p° +2¢%) + 3p°q V2 + 3pg® V4. (1)
Zabyvejme se nejdiive piipadem n = 4. Je-li ¥/4 = p + qv/2, pak z (1) plyne
4= (p* +2¢%) + 3p°qV2 + 3p* (p + ¢V2), (2)

neboli 4 — p* — 2¢° — 3p*¢*> = V/2(3p*q + 3pg®). Protoze v/2 je iracionélni &islo,
je posledni rovnost mozna, jen kdyz 4 — p® — 2¢® — 3p%¢*> = 0 a 3pq(p + ¢*) = 0.
Z druhé rovnice plyne p = 0, ¢ = 0 nebo p = —¢?, dosazenim do prvni pak po
fadé ¢® = 2, p® = 4, resp. ¢® + ¢® — 2 = 0. Protoze &isla p a ¢ jsou racionélni, je
z posledni trojice splnitelnd jen tfeti podminka, kter4d znamend, ze ¢> = —2, nebo
¢®> = 1. Dostavame tak jedinou dvojici (p,q) = (-1, 1), pro kterou sice plati (2),
ne viak V4 = p + ¢¥/2. Proto posledni rovnost nespliiuji Z4dné racionélni p a q.
V obecném pripadé ukazeme, Ze plati-li (1) pro nékterd racionélni n, p a g, pak
koeficient 3pg? u ¢lenu v/4 musi byt roven nule. Jinak by totiz 3lo z (1) vyjadfit

n—pd—2¢
A=tPo by

coz by byl spor s tim, Ze &islo 4 neni feSenim. Proto plati 3pg? = 0, tj. p = 0
nebo ¢ = 0. Pak oviem n = p® nebo n = 2¢3. Je-li navic &slo n celé, musi byt
v poslednich dvou rovnostech i &isla p, ¢ celd. Odpovéd: n = k3 nebo n = 2k3, kde
k > 1 je celé cislo.

43-A-11-4
Rozhodnéte, zda existuje kubicka rovnice
2 +pr’+qr+r=0

s celoc¢iselnymi koeficienty p, ¢ a r, kterd méa v oboru redlnych cisel jediny koten
o =1+ V2 + V4. (J. Simsa)

Reseni. Postupné spoéteme
23 =5+4V2+3V4, z3=19+15V2+12V4.
Dosazenim do rovnice (1) tak po tipravé dostaneme podminku
(19+5p+q+7)+ (15+4p+q)V2+ (12 + 3p+q)V4a =0,
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ktera je splnéna, pokud jsou rovna nule vSechna tfi ¢isla 19+ 5p+q+7, 15+4p+q
a 12+ 3p+q. (Podle lohy A-I-4 doméciho kola je to nejen postacujici, ale i nutna
podminka.) Snadnym vypoétem zjistime jedinou trojici (p,q,7) = (=3,-3,—1).
Zbyva dokazat, ze rovnice

22 -322-32-1=0
ma jediny redlny kotfen. To lze provést vice zplisoby (asi nepiili§ schiidné je déleni
kofenovym dvojélenem z — zp), napf. takto: protoze 3z% + 3z + 1 > 0 pro kazdé

redlné z, je kazdy kofen rovnice 2® = 322 + 3z + 1 > 0 kladny; ze zépisu 1 =

3 3 1 . . o oy , . »
=—-+=+ = plyne, Ze tento kofen je nejvyse jeden (prava strana je totiz pro
T

kladné z klesajici).
Jiné feseni. Plati
13— (32)° 1
To=14+V2+ V4= = ,
. ’ 1-v2 V21
takze — = v/2 — 1. Proto je x¢ FeSenim rovnice
o 1 3
(=2
x
pfi¢em? je jasné, Ze tato rovnice méa v oboru realnych ¢isel jediny kofen. Pro z # 0

je oviem tato rovnice ekvivalentni s (14 )3 = 223, coZ je po roznésobeni hledani
rovnice.

43-B-1-6

Urcete nejvétsi mozny objem ctyrbokého jehlanu ABCDV, jehoz zakladnou je
kosoc¢tverec ABCD se stranou délky a a jehoz sténové vysky z vrcholu V na hrany
AB, CD malji délku h.

Reseni. Ozna¢me K, L paty kolmic z V na hrany AB, CD. Piimka AB je kolma
na rovinu KLV, protoZe je kolmé k pfimkdm KV, LV (obr.2). Odtud KL 1 AB.
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Vyska kosoctverce ABCD je |KL| = 2x. Pata vysky jehlanu lezi v roviné K LC
a je ziejmé totozna se stfedem S tsecky K L. Z pravothlého trojahelniku K'SV je
tato vySka v = v/h? — z2. Objem jehlanu je tedy

2 2 ;
V= gax\/ h? —z2 = 3 a\/ x2h? — x4,
Objem bude maximaélni, pravé kdyZ bude maximalni vyraz pod odmocninou
1 1 2
—2h2 gt = ot (22~ 2n2)
U=a®h?—a* = 2h (z Sh )

Maximum hleddme na intervalu 0 < z < %a, protoze vyska kosoCtverce 2z je

men3i neZ velikost a jeho strany. Kvadratick4 funkce U proménné ¢t = z? nabyva

h

. h o e
absolutniho maxima pro x = —=, proto zavisi dalsi diskuse na tom, zda bod —

V2 V2
padne do intervalu (0, %a) & nikoliv. Pro hv/2 < a je tedy maximalni objem jehlanu
Vinax = %ah2.

Pro a £ hy/2 je kvadraticka funkce U v intervalu (0, %hQ) rostouci, a proto
objem jehlanu v tomto pfipadé nema maximum, ale neomezené se blizi hodnoté
o V4h? —a?

6
pokladame, ze podle béiné uzivané definice Ctverec neni kosoCtverec).

Vinax = a (pro z = %a dostaneme ¢tvercovou podstavu — zde pred-

43-B-11-4

Kazdy z bodt krychle o hrané délky a obarvime praveé jednou ze tii barev. Dokazte,
ze pak mezi témito body existuji dva téze barvy, jejichz vzdalenost je vétsi nez %a.
(P. Leischner)

ResSeni. Oznaéme vrcholy dané krychle obvyklym zptisobem A, B, C, D, E, F, G,
H. Je-li vrchol A obarven jednou ze tii barev a néktery z vrchola C, F'; H ma tutéz
barvu, jsme hotovi, nebot |AC| = |AF| = |AH| = av/2 > 1,41a > La. V opaéném
pripadé musi byt uvedené tfi vrcholy rovnostranného trojihelniku CF H obarveny
nejvyse dvéma rtznymi barvami, takze aspon dva z bodi C, F, H maji tutéz
barvu. Jejich vzdalenost je vétsi nez %a. Tim je tvrzeni Glohy dokéazéano.

43-75-1-4

V jednom mésté maji tfi kina. V kiné Slunce prodéavaji vstupenky za 7 korun.
V kiné Mars za 8 korun, ale kazdy desaty navstévnik mé vstup zdarma. V kiné
Venuse prodavaji vstupenky za 9 korun, také kazdy desity navstévnik ma vstup
zdarma, ale navic kazdy sty navstévnik vyhrava 100 korun. V kiné Mars vybrali
na poslednim predstaveni 2776 korun. Kolik by vybrali v kiné VenuSe a Slunce,
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kdyby je navstivil stejny pocet divaka? (Pod vybranymi penézi rozumime ty, které
zistanou po zakoupeni listki v pokladné. Vyhry se plati z vybranych penéz, tedy
ve Venusi vyberou o to méné.) (M. Koman)

Reseni. Od kazdé desitky divaki vyberou v kinu Mars 9-8 = 72 korun. Kino Mars
navstivilo 2776 : 72 = 38 (zbytek 40) celych desitek divaka. Zbyvajicich 40 korun
vybrali od 5 divakt. Do kina Mars pfislo 385 divaka.

Od stejného poctu divaka by v kinu Slunce vybrali 7 - 385 = 2695 korun.

V kinu Venuse od 38 desitek divédkid vyberou 38 - (9 -9) = 3078 korun a od
poslednich péti divaki 5 -9 = 45 korun. Na vyhrach pfitom vyplatili 300 korun.
V pokladné kina Venuse ztstalo 3078 + 45 — 300 = 2833 korun.

43-78-1-3

Na Ciselné ose jsou znazornéna tii ¢isla z, y, z. Narysuj na této Ciselné ose obraz
nuly, jestlize vi§, Ze 3y = z + z. Najdi feSeni pro vS8echny polohy ¢isel z, y, z, pro
které <y < z. (P. Cernek)
Regeni. Danou rovnost 3y = z + 2 miZzeme upravit takto: y + (y —z) + (y —z) = 0.

Proto dostaneme obraz pocatku tak, ze k obrazu bodu y ,pri¢teme” y —z ay — z.
Obé tyto hodnoty vycteme z ¢iselné osy (obr. 3).

-
<

] ) T
0 =z Yyy+(@y—=z) *

Obr. 3

Jiné feSeni. Rovnost 3y = = + z délime ¢islem 2. Dostaneme

T+ 2z

1,5y = 5

Obrazem aritmetického priméru z a z je stfed Gsecky uréené body = a z, coz
je zaroven obraz bodu 1,5 - y. Zname-li obrazy ¢isel y a 1,5 - y snadno najdeme
pocatek.

43-728-11-2

Na ciselné ose jsou vyznaleny obrazy Cisel a, 3a, 6a — 2. Sestrojte obrazy Cisel 0
al.

| | |

I
a 3a 6a — 2
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Reseni. Nejprve najdeme obraz &isla 2a jako stied tise¢ky s krajnimi body a a 3a
a pak obraz 0 (a je stfed usecky urcené obrazy Cisel 0 a 2a, obr.4) a ¢isla 6a (3a
je stfed dvojice bodd 0 a 6a). Orientovand tsecka s pocateénim bodem 6a — 2
a koncovym bodem 6a znazornuje ¢islo 2, takze jeji polovina odpovida jednotkové
usecce. Jejim posunutim do bodu 0 dostaneme obraz ¢isla 1.

Pri konstrukci je tfeba rozlisit pripady, kdy obraz 6a — 2 lezi vlevo nebo vpravo
od obrazu 6a. Pokud by tyto obrazy splynuly, neméa tloha reSeni.

01 2a 6a
j | | | el |
T I I | T 1
a 3a 6a — 2
Obr. 4
44-A-1-1

Pro dana kladna ¢isla x # y uvazujme praméry

T+y 2y [x? 4 y?
e = ./ h: ,k: e
a ) y 9 xy, .'E+y 2

(Jde o aritmeticky, geometricky, harmonicky a kvadraticky pramér ¢isel z a y.) Ze
vSech rozdéleni ¢tverice a, g, h, k na dvé dvojice r, s a t, u vyberte to rozdéleni,
pii kterém mé vyraz V = r + s — t — u nejmensi kladnou hodnotu.  (J. Simsa)

Reseni. Uvedené kladné priméry splituji zndmé nerovnosti h < g < a < k. Ty
plynou napf. z vyjadreni
k2_02:(93"y)2 a2_92:($'y) g2_h2:$y(x—y)2
4 7 4 (z +y)?

a z podminky = # y. (Je to ponékud vyumélkované zduvodnéni, fesitele vyzveme
dokazovat kazdou ze tfi nerovnosti metodou ekvivalentnich aprav.)

Oznacme Vy =k+a—-g—h,Vo=k+g—a—haVs=k+h—a—g. Ostatni
tIi hodnoty vyrazu V jsou —Vi, =V, a —V3. Protoze

Vi—Voa=2(a-g)>0 a Va-V3=2(g—h)>0,

plati Vi > Vo > V3. DokdZeme-li, ze V3 > 0, bude V3 hledand nejmensi kladna
hodnota vyrazu V. Nerovnost V3 > 0 je ekvivalentni s nerovnosti £ — g > a — h,
jejiz obé strany jsou kladné. Muzeme ji proto ekvivalentné umocnit na druhou
a pak prepsat do tvaru

2kg < k% + g% — a® 4 2ah — h*.
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Pred dal$im umocnénim vyjadiime pravou stranu této nerovnosti pomoci ¢isel x
a y (a tak zjistime, Ze je skutecné kladnd). Vyjde nam

2, 2 o_ (@+y)? o _ 2zy(2® +9°)
k*+g°—a 1 a 2a @ +9)°

Proto mizeme posledni nerovnost ekvivalentné umocnit na druhou:

(z+y)

4 42292 (32 + y2)?
- +xy(a;2+y2)+ y*( y?)

Ak2q% = 9 2, .2
k*g zy(z® +y°) < @+y)

Tuto nerovnost lze ekvivalentné upravit na tvar

(@+9)? 2zy@®+y?))”
0<{ 4 (z+y)? }

Vyraz v slozené zavorce je kladny, nebot je roven

(z+y)* —8ay(z* +3y?)  (z—y)*

4(x +y)? T 4z +y)?

a r # y. Tim je dikaz hotov. Odpovéd: Hledané rozdéleni je {r,s} = {k,h}
a {t,u} = {a, g}, nebot nejmensi kladna hodnota vyrazu V je rovna k+h—a—g.

44-A-S-3

Urcete kladna redlnd Cisla z # y takova, Ze jejich praméry

T+y 2xy z? + y?
G="g 0 9=V sty 2
45
lezi v8echny v mnoziné M = {?, 18v/2, 30, 251/2, 40, 10\/23}. (J. Simsa)

Reseni. Vime, 7e h < g < a < k. Protoze prvky M jsou vypsany v poradi od
nejmensiho po nejvétsi, musi nastat néktery z téchto pripadi:

(i) g = 182, (ii) a = 40, (iil) g = 30 a a = 25v/2.
V kazdém z nich je uz dalsi postup snadny:

(i) Z g = 18V2 plyne h = %3. Protoze zy = g*> = 2 - 182, dostdvame

a:+y_g2 - 16 - 92 144

2  h 45 T 5

Posledni ¢islo nepatii do M, takZe piipad (i) nemize nastat.
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(ii) Z a = 40 plyne k = 101/23, takze

z+y=2a=80

z? 4 y? = 2k% = 4600.
Odtud 2zy = 80% — 4600 = 1800, ¢ili zy = 900 a g = v/900 = 30 € M. Koneéné

h =230 = % ¢ M. Cisla z a y jsou kofeny rovnice t* — 80t + 900 = 0, tedy

{z,y} = {40 £ 10V7}.
(iii) Plati
zy = g*> =900

x+y=2a=50\/§,

odkud h = gb—gqg = 18v/2 € M. Déle
2? +y? = (50v/2)” — 2900 = 3200,

takze k = v/1600 = 40 € M. Cisla z a y jsou kofeny rovnice t2 — 50v/2 t + 900 = 0,
tedy {z,y} = {25v2 £ 5V/14}.
Odpovéd: {z,y} = {40 £ 10V7}, {z,y} = {25v2 £ 5V/14}.
4 -A-111-2

Urcete kladnd redlnd ¢isla z a y, vite-li, Ze priaméry

T+y 2zy 2 + 32
a= , =zy, h= k =
2 0 9TV z+y’ 2
jsou piirozen4 ¢isla, jejichz soucet se rovna, 66. (J. Simsa)

ReSeni. Protoze &islo 66 neni délitelné ¢tyfmi, nemuize platit a = g = h = k, takze

jak dobre vime, plati h < g < a < k. Oznacme c nejvétsi spolecny délitel ¢isel a, g.

Pak a = ca; a g = cg;, priemz g; < a; jsou nesoudélnd prirozend Cisla. ProtoZe
2

2

C . w7 w1 2 w7 ’ v i

B L = _QL, je Cislo ¢ délitelné ¢islem aq, tedy ¢ = da; pro vhodné pfirozené
a ay

¢islo d. Dostavame tak vyjadreni priméru pomoci ¢isel d, a1, g;:

h=dg}, g=daigi, a=da?, k=+/2a%— g2 = da;\/2a? — g3.

Protoze druhd odmocnina z prirozeného ¢isla je bud pfirozené, nebo iracionalni
¢islo, musi byt Eislo \/2a? — g# ptirozené (a to vétsi nez aj, nebot g1 < ay). Proto
je leva strana rovnosti

dg? + daygy + da? + dayy/2a? — g} = 66 (%)
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vétsi nez 2a? (vzhledem k nerovnosti d 2 1 stali uvaZovat jen tieti a étvrty s¢i-
tanec). Odtud plyne 2a? < 66, neboli a; < 5. Snadno se zjisti, kterd z deseti

odmocnin
/203 — g3,  kde 1Zg<a $5,

je rovna piirozenému &slu: takova je jediné odmocnina /252 — 12 pro a; = 5
a g1 = 1. Dosazenim do (*) zjistime, ze d = 1. Praméry (h,g,a,k) = (1,5,25,35)
mé dvojice kofent rovnice t? — 50t + 25 = 0, tedy dvojice &isel {z,y} = {25 +

+10v/6,25 — 10v/6}.
44-B-1-3
Pro dand kladna ¢isla x # y uvazujme praméry

T+y 2zy z2 4 y?
= 4/ }:— — .
2 9 S $+y’k 2

a=

(Jde o aritmeticky, geometricky, harmonicky a kvadraticky pramér ¢isel z a y.) Ze
vSech rozdéleni ctvefice a, g, h, k na dvé dvojice r, s a t, u vyberte to rozdéleni,
pro které mé vyraz V = rs — tu nejmensi kladnou hodnotu. (J. Simsa)

Reseni. Jedn4 se o zndmé priméry, které (pii x # y) spliuji nerovnosti
O<h<g<a<k (2)
(viz napt. svazek SMM ¢&. 39). Vyraz V nabyvéa pouze hodnot
Vi =ka—hg, Vo =kg—ah, V3 =a9—kh a -V, =V,, —V3.

Dokazeme-li, ze
Vi>Ve>Vy>0, (3)

bude to znamenat, Ze V3 je nejmensi kladnd hodnota vyrazu V. Levé dvé nerovnosti
ve (3) plynou okam?zité z (2), nebot V1 =V, = (k+h)(a—g) a Vo—V3 = (9+h)(k—a).
Zbyvé tedy dokazat, ze V3 > 0, neboli ag > kh. Dikaz je vyhodné provést sporem:
Necht existuji takova riznéd z,y € Ry, Ze ag < kh, tj.

1 2 +y2 2y
Nt L ——
vy S@+y) S/ — P

Obé strany této nerovnosti jsou kladné. Po umocnéni na druhou a snadné tpravé
dostaneme (z + y)* < 8(22 + y?)xy; odtud (z — y)* £ 0, a to je spor.
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44-C-1-3

KaZzdy bod obvodu ¢tverce o strané 10 cm je obarven jednou ze dvou barev. Dokaz-
te, Ze pfi libovolném obarveni mzeme na obvodu ¢tverce vzdy najit body stejné
barvy tak, aby trojihelnik s témito vrcholy mél obsah aspoii 25cm?. (M. Cadek)

Redeni. Vrcholy ¢tverce oznaéme A, B, C, D. Mohou nastat dva piipady:

1. Dva vrcholy na jedné strané maji stejnou barvu (napf. modrou). Necht jsou
to napft. vrcholy A, B. Existuje-li na strané C'D ¢tverce bod X, ktery je obarven
toutéz barvou, dostavame trojuhelnik ABX, jehoz vrcholy jsou obarveny modrou
barvou a jehoz obsah je 50 cm? > 25 cm?. Maji-li v8ak vechny body strany C'D
barvu jinou (napf. ¢ervenou), uvazujme stied S strany BC'. Je-li obarven modrou
barvou, mé trojuhelnik ABS vSechny vrcholy obarveny modrou barvou a obsah
25cm?. Je-li S ¢erveny, pak trojihelnik C' DS méa viechny vrcholy ¢ervené a pfitom
obsah 25 cm?.

2. Z4dné dva sousedni vrcholy &tverce ABC D nejsou obarveny stejnou barvou.
(Napt. A, C jsou modré a B, D jsou Cervené.) Uvazujme opét bod S, ktery je
stfedem strany BC'. Je-li obarven modrou barvou, pak trojuhelnik AC'S méa obsah
25cm?, a pfitom jeho vrcholy jsou obarveny modrou barvou. Je-li bod S obarven
¢ervenou barvou, mé trojihelnik BDS obsah 25 cm?, a pfitom vSechny jeho vrcholy
maji cervenou barvu.

Tim je dikaz ukoncen.

44-C-S-2

V roviné je dan ¢tverec ABCD se stfedem S. Uvnitf tsecek SA a SC jsou zvoleny
po fadé body E a F tak, ze |SE| = |SF|. Sestrojme prusecik X polopfimky BE
se stranou AD a prusecik Y poloptimky DF' s prodlouzenim strany AB. Dokazte,
ze obsah trojuhelnika AXY nezavisi na poloze bodu E a F. (J. Simsa)

Reseni. Oznaéme Z priisecik tse¢ek BC a DY a U prisecik tise¢ek BD a XY
(obr. 5).

D C
FE
S Z
& U
E
A B Y
Obr.5
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1. zptusob: 7Z dvojic podobnych trojuhelniki AYF ~ CDF a AFD ~ CFZ
plyne
|AY| |AF| |AD|
|CD| — |CF| |CZ]

Odtud dostavdme |AY |- |CZ| = |AD| - |CD| = a?, kde a je délka strany daného
ctverce ABCD. Diky své konstrukci jsou body X a Z stiedové soumérné podle
stfedu S, proto je |CZ| = |AX|, takZe pro obsah P trojihelnika AXY plati P =
= L|AY||AX| = L|AY||CZ| = }a?, tj. obsah nezavisi na volbé bodi E a F.

2. zpisob: Protoze body X a Z jsou stiedové soumérné podle stfedu S, je
Y DX B lichobénik (obr.5), pfi¢emz bod U je prusecikem jeho thlopficek BD
a XY. Obsah trojihelnika DXU je proto roven obsahu trojihelnika BY U. Vzhle-
dem k tomu, zZe obsah trojuhelnika AXY je souctem obsaht ctyrthelnika AXUB
a trojuhelnika BY U, je obsah trojihelnika AXY roven obsahu trojahelnika ABD,

i1 2
oz je 5a*.

44-78-111-1

. % s : a < < a .
Pro dvé rizna prirozena cisla a, b plati a + 7= 81. Urcete cislo b + 7 Uvedte

vSechny moznosti.

a
Reseni. Cislo 3 musi byt pfirozené, proto a = k - b, kde k je pfirozené, a plati

k(b + 1) = 81. Protoze ¢isla a a b maji byt riznd, nemtze byt k = 1, a protoze
b # 0, nemiize byt k = 81. Musi tedy nastat jedna z téchto moznosti:

1.k=3,b=26,a=78, pak je b+ < = 29,

b
2.k:g,b=8,a,:727pak_]'eb-}-%:1’77
3.k=27,b:2,a:54,pakjeb+%:29.

44-79-11-2

Pro ktera celd ¢isla z, y plati 2% = 3zy + 10?7 Najdéte vSechna feSeni.

Reseni. Zadany vztah mtzeme upravit na tvar z(z — 3y) = 10. Odtud vidime, Ze
x iz —3y déli ¢islo 10. Mohou tedy nastat pouze moznosti uvedené v prvnich dvou
radcich tabulky:

T 1 [-1] 2 [-2] 5 [-5] 10 [—10
T—3y| 10 |-10] 5 | =5 2 | =2 1 | -1
y |-3|3 |-1|1]1]|-1] 3 |-3
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Pro kazdou z moznosti vypoéitame y. ReSenim tlohy budou ty dvojice, pro
které bude ziskané ¢islo y celé. Vysledek je uveden v tfetim radku tabulky. ProtoZe
ve vSech pripadech vyslo y celé, ma aloha 8 feseni. Jsou jimi tyto dvojice ¢isel (z,y):

(17_3)7 (_1a3)7 (27—1)) (—271)’ (5a1)a (—5’—1)7 (1073)’ (_107_3)'

45-A-1-4
Dokazte, ze pokud pro prirozend ¢isla a, b je i ¢islo

a+1 b+1
+
b a

prirozené, pak pro nejvétsi spoleény délitel D éisel a, b plati nerovnost D £ v/a + b.
Muze nastat rovnost v pfipadé, ze D < a < b?

Reseni. Po jednoduché tipravé dostaneme, Ze

a+1+b+1_a2+b2+a+b )
b a ab '

Protoze D je nejvétsi spolecny délitel ¢isel a, b, mizeme psat a = Da; a b = Dby,
kde aq, by jsou nesoudélné pfirozend ¢&isla. Vyraz (1) ma po vykraceni tvar

Da? + Db? + a1 + by @)
Da1b1 '

Aby vyraz (2) byl pfirozené &islo, musi byt ¢itatel délitelny jmenovatelem, a tedy
i vSemi jeho déliteli. Proto musi byt ¢itatel délitelny D,

D | Da} + Db + ay + by.
Cislo D zfejmé déli &isla Da? a Db?, proto musi platit
D|a; +b;. (3)
Protoze ¢isla ay, by, D jsou pfirozend a plati (3), musi zaroveh byt
D < ay + by, (4)
coz po prenasobeni D (D > 0) dava
D?<La+b.
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Po odmocnéni (obé strany jsou kladné) vychézi, ze
D <Va+b. (5)

Jesté musime zjistit, zda nékdy nastane v (5) rovnost. Ta zfejmé nastane, pravé
kdyz nastane rovnost v nerovnosti (4). Proto musi byt D = a; + b;. Aby byla
zaroven splnéna podminka D < a < b, musi platit 1 < a; < by. Volme proto a; = 2
a by = 5. Potom musi byt D =2+ 5 = 7, neboli a = Da; = 14 a b = Db; = 35.
Snadno se presvédéime, Ze v tomto pripadé rovnost (5) skutecné nastane.

Poznamka. Mizeme postupovat také tak, Ze na zacatku zavedeme substituci
a=a;D, b= b D a po obdobnych tivahach dojdeme k tvrzeni D? | a + b, coz po
odmocnéni dava (5).

45-A-1-5

Najdéte vSechny funkce f: N — Z splhujici pro kazda z,y € N rovnost

f(zy) = f(2) + f(v) = f(D(z,9)),
kde D(z,y) znadi nejvétsi spoledny délitel &isel z, y, vite-li, ze plati f(p) = p pro
kazdé prvocislo p. (P. Hlinény)

Reseni. Predevsim si v§imnéme, e pro nesoudélna &isla z, y plati

fzy) = f(@) + f(v) - F(1).

Proto pro prvoéiselny rozklad n = p{"'p5? ...p%m Eislan (p1,p2,. .., Pm jsou ruznd

prvolisla a ai,as,...,a, jsou pfirozend Cisla) dostavame, ze f(n) = f(pi*) +
+ f(p5?) + ...+ f(p%m) — (m — 1) f(1). Déle opakovanym pouzitim dané rovnosti
zjistime, Ze f(p®) = f(p*~1) = ... = f(p) = p pro prvodislo p a libovolné pfirozené
¢islo a. Odtud vyplyva, ze plati

fn)=pr+pe+...4+pm—(m—-1)f(1), n=pps*...pE".

Dokazme jesté uvedené tvrzeni podrobnéji:
Nejdrive dokdzeme matematickou indukci podle «, Ze pro prvocislo p plati

f@*)=fp) =p.
Pruni krok. Pro a = 1 plyne tvrzeni pfimo ze zadani.
Druhy krok. Necht tvrzeni plati pro a 2 1, potom

f@*th) = f(™) + f(p) — F(D(®*% p) = f(PY).

Odtud podle indukéniho predpokladu plyne, Ze je také
F@ ) = f(™) = f(p) = p.
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Déle dokazeme, ze pokud n = pi"*p5? ... p%m je prvociselny rozklad ¢islan 2 2,
je
f(n) = f"p3? ..p) =pi+p2a+. P — (m—1)f(1).
Tvrzeni dokazeme opét indukei, tentokrat podle poctu m prvociselnych délitelt
¢isla n. :
Pruni krok. Pro m = 1 dostavame predchozi tvrzeni, které jsme pravé dokazali.
Druhy krok. Necht tvrzeni plati pro m 2 1. Potom plati

Fps® ) = F0p5? ) + F () -
= (D@ pe® o palii)) -
Protoze ale D(p{'ps?...p%, porih') = 1, mé dle indukéniho pfedpokladu
predchazejici rovnost tvar

Q41

fOUPe?  pil) =P+ P2+ D —
= (m=1f1) +pmt1 — f(1) =
=p1+...+pms1 —mf(1). (1)
Jesté zbyva ukazat, ze takto definovand funkce f vyhovuje dané podmince pro
libovolnou hodnotu f(1). Necht a a b jsou pfirozend ¢isla. Ozna¢me ¢ = D(a,b)
anecht ¢ = pi* ... p%m je jeho prvodiselny rozklad. Prvociselny rozklad ¢isla a ma

pak zfejmé tvar

fl Bon ’B"""'l ﬁ1n.+s

a=p"...ppnq) g

a podobné ¢islo b bude mit prvociselny rozklad
— o Yt
b=p/t. . . plrr"T Tt

Zaroven vime, ze prvocisla p1,...,Pm, q1y---,Qs & T'1,...,T¢ jSOU navzajem razna.
Proto rozklad ¢isla a - b na prvocinitele je

_ Pitm B +ym ,Pm+1 Bonts o Ym+1 Y
a-b=p] C Py g cogemter] coordmtt
Podminka ze zadani rika, ze

fla-b) = f(a) + f(b) = f(D(a,b)). (2)
Spoditejme tyto hodnoty pro funkci definovanou pomoci (1):
fl@=p+...4+pm+a+...+q¢—(m+s-1)f(1),
fO)=pr+...4pm+r+...+r.—(m+t—1)f(1),
fla-d)=pr+...4pmt+@a+...+q+r+...+r.—
—(m+s+t—1)f(1),
fle)=pi+...4+pm—(m—1)f(1).
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Snadno nahlédneme, ze po dosazeni téchto hodnot do (2) dostaneme identitu (jesté
je potreba si uvédomit, Ze vSechny tyto uvahy jsou korektni i v ptipadé m = 0,
s =0,t=0). Funkce f definovand pomoci (1) je tedy jedinym feSenim dané alohy
pro libovolnou hodnotu f(1).

45-A-111-5

Pro ktera cela ¢isla k existuje funkce f: N — Z spliujici

(i) £(1995) = 1996,

(i) f(zy) = f(z) + f(y) + k- f(D(z,y)) pro viechna piirozena &isla z, y?
D(z,y) oznacuje nejvétsi spolecny délitel ¢isel z, y. (P. Hlinény)

Reseni. Ze vztahu (ii) pro z = y vyplyva f(2?) = f(z-z) = (k +2) f(z). Dvojna-
sobnou aplikaci predchoziho vztahu dostaneme
fla*) = f(a® - 2%) = (k +2)f(2?) = (k +2)* f(2).

Jinym postupem ale dostaneme

f(&*) = f(z-2°) = f(2) + F(=°) + kf(z) =
=(k+1)f(2)+ f(z-2?) =
= (k+1)f(2) + f(2) + f(a®) + kf(z) =
= (2k 4+ 2)f(z) + f(2?) = (3k + 4) f(x).

Nyni staci najit libovolné z, pro které je f(z) # 0, tedy naptiklad podle (i) z =
= 1995. Porovnanim predchozich dvou vztahi dostaneme podminku

(k +2)2f£(1995) = f(1995%) = (3k + 4) f(1995),
(k +2)? = 3k + 4,
ke {0,-1}.

Pro k = —1 dostavame funkcionalni rovnici z doméciho kola. Vime, Ze jejim obec-
nym FeSenim je pro z = p{* ...p% funkce

f@)=fP)+...+ flpn) —(n - 1)f(1).
Podminku (i) tlohy miZzeme splnit napiiklad volbou f(5) = 1996, f(p) = 0 pro

vSechna prvocisla p # 5 a f(1) = 0.
Pro k£ = 0 dostavame funkciondlni rovnici

f(zy) = f(z) + fv).

31



Odtud predevsim pro x = y = 1 plyne f(1) = 0. Obecnym FeSenim této rovnice
pak je pro = p{™* ... p%" funkce

f(il:) = alf(pl) +...+ anf(pn)7

kde f(p;) jsou libovolna celd ¢isla. Opét staci zvolit f(5) = 1996 a f(p) = 0 pro
vSechna prvodisla p # 5 jako vyse.

45-B-1-4
Cislo 2n* + n® + 50 je délitelné Sesti pravé pro ta pfirozend &isla n, pro ktera je
Cislo 2 - 4™ + 3™ + 50 délitelné tfinacti. Dokazte. (J. Simsa)

Reseni. Sestavime tabulku zbytki pti déleni ¢isel A = 2n* + n3 + 50 Sesti v z4-
vislosti na zbytku ¢isla n (zbytek pfi déleni ¢isla A Sesti totiz zavisi jen na zbytku
pfi déleni ¢isla n Sesti):

2 nd pt 2pt 2pt+n® A =2n"+n®+450
2

S
S
S

[ B JCIE NI e B
= oRs Wk = O
T W N~ O
s W ks = O
NN O NN O
= O W s W o
[SCIN IS, B e IS4

Z tabulky vidime, ze ¢islo A je nasobkem Sesti, pravé kdyz cislo n dava pri déleni
Sesti zbytek rovny 2, tj. je rovno jednomu z Cisel 2, 8, 14, 20, ... .

Nyni sestavime tabulku zbytka pri déleni nékolika prvnich ¢isel B = 2 - 4™ +
+ 3™ + 50 tfindcti. (Na rozdil od vyrazu A, ktery je mnohoclenem, se ve vyrazu B
vyskytuje proménnd n i v exponentu. Nelze proto Fici, ze zbytek pfi déleni ¢isla B
t¥inacti zavisi na zbytku pii déleni ¢isla n tfinacti. AZ pii sestavovani tabulky se
ukézZe, s jakou periodou se zbytky opakuji.)

n 3% 4" 2-4" 2.4"4+3" B=2-4"+4+3"+450
0 1 1 2 3 1
1 3 4 8 11 9
2 9 3 6 2 0
3 1 12 11 12 10
4 3 9 5 8 6
5 9 10 7 3 1
6 1 2 3 1

1
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Dalsi vypocty uz nemusime provadét. Vidime totiz, ze zbytky mocnin 3" a 4™
se vzhledem k éislu n opakuji se spole¢nou periodou rovnou Sesti (u mocnin 3"
existuje dokonce mensi perioda rovna tfem). Proto i posloupnost zbytki ¢isel B
mé periodu 6. Navic je z tabulky patrno, Zze B je nasobkem tfinacti, pravé kdyz
¢islo n dava pri déleni Sesti zbytek 2, tj. je rovno jednomu z ¢isel 2, 8, 14, 20, ...

Pozndmka. Periodicitu v posloupnosti zbytkt pii déleni mocnin a* &islem d
presnéji postihuji Fermatova a Eulerova véta. Podle Fermatovy véty je v pripadé,
kdy d je prvocislo, délka periody rovna nékterému déliteli ¢isla d — 1.

45-B-1-1
Zjistéte, pro kterd redlna Cisla p mé rovnice
23+ pr? 4+ 2px=3p+1

ti rizné realné koteny 1, 2 a x3 takové, 7e x1zo = 2. (J. Simsa)

Reseni. VyuZijeme vztahti mezi kofeny a koeficienty mnoho¢lenu, tzv. Vietovych
vzorcu. Podle nich je

r1 + 22 + 23 = —p,
129 + T1T3 + Taxz = 2p,

r1T2x3 = 3p+ 1.
Dosadime-li do druhého vztahu za z129 = :v%, dostaneme
2p = mg + z123 + x223 = x3(21 + T2 + X3) = —pI3,
a protoze p = 0 zfejmé nevyhovuje, je x3 = —2.

Dale plati
_ T1T2T3 _ 3p+ 1

T3 -2 ’

4:w§ =TT

odkud p = —3. Jen pro toto p tedy mize dana rovnice vyhovovat danym podmin-
kam. Dosadime-li do Vietovych vzorct za z3 a za p, dopocteme zbyvajici feSeni
x1 =4, xo = 1 a presvédcime se, ze je tomu opravdu tak.

45-B-11-3
Dokaizte, Ze rovnice 2% — 199622 + roz — 1995 = 0 m4 pro kazdy redlny koeficient r
nanejvys jeden celociselny koren. (A. Vrba)

Reseni. Pripustme, Ze pro nékteré ¢islo r ma dana rovnice dva celoéiselné koie-
ny a, b. Déleni levé strany rovnice mnohoélenem (xz — a)(xz — b) vyjde beze zbytku
a vysledny podil bude tvaru z — ¢ pro vhodné realné &slo c. Cislo ¢ musi byt oviem
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celé, nebot a + b + ¢ = 1996. Viechna tfi &isla a, b, ¢ nemohou byt licha, kdyz je
jejich soucet sudy. Jejich soucin je vSak liché ¢islo 1995, coZz neni mozné. Rovnice
miize mit tedy nanejvys jeden celociselny koten.

45-C-11-4

V poloroviné ABM sestrojte kruznice ky a ks, které se dotykaji pfimky AB po
fadé v danych bodech A a B, dotykaji se vné v néjakém bodé T a jejich spolecna
tecna v tomto bodé prochazi danym bodem M. (J. Svréek)

Reseni. Oznaéme S prisecik uvazované teény obou hledanych kruznic s piim-
kou AB. Z vlastnosti teCen ke kruznici plyne, zZe je |SA| = |ST| = |SB| (obr.6),
takze bod S je stredem tsecky AB. Odtud jiz snadno plyne konstrukce.

S1

k1

N
|
|
|
|
|
|
|

A

Obr.6

Nejprve sestrojime stied S usecky AB, pak najdeme bod T na polopfimce
SM takovy, ze |ST| = |SA|. Stfed Sy hledané kruznice k; najdeme jako priseéik
kolmice k pfimce AB v bodé A a kolmice k pfimce SM v bodé T. Podobné
sestrojime i stfed Sy kruznice ky. Sestrojené kruznice k; a ko zfejmé maji vSechny
pozadované vlastnosti.

Uloha m4 vzdy jedno FeSent.

46-B-1-2

Najdéte v8echny kvadratické funkce, které zobrazi interval (2, 5) na interval (15, 27)
a jejichz graf prochézi pocatkem soustavy soufadnic. (P. Cernek)

Reseni. Funkci budeme hledat ve tvaru f(z) = az? + bz + c. Protoze jeji graf
prochézi po¢atkem soufadnic, je ¢ = 0. Proto f(z) = az? + bz pro vhodné kon-
stanty a, b.
Prozkoumdame nejprve moznosti, kdy je f na intervalu (2,5) monoténni, a tedy
bud
f(5) =27, je-li tam rostouci, anebo
f(5) = 15, je-li tam klesajici.



Re$me nejprve pifpad a). Dostaneme dvé linearni rovnice 4a +2b = 15 a 25a +
+ 5b = 27. Refenim této soustavy je a = ~T76 ab= %. Jesté musime ovérit,
zda je skutetné f na intervalu (2,5) monotdnni. Staci zfejmé zjistit, zda nenabyva
svlj extrém (maximum) na tomto intervalu. V naSem pripadé se extrém nachazi
v bodé %, ktery je mimo uvazovany interval.

Pfipad b). Obdobné jako v a) dostaneme funkci —I2? + %'z, ktera nabyvé
maximum v bodé 1%, ktery vSak tentokrat je v intervalu (2,5), a hodnota funkce
v ném je vétsi nez 27, tedy tato funkce nevyhovuje zadanym podminkam.

Necht ted f neni na intervalu (2,5) monoténni. Z tvaru kvadratické funkce
vyplyva, zZe f méni svoji monoténnost jen v bodé extrému, tedy v nasem pripadé

b
bude bod ~%a lezet v intervalu (2,5). ProtoZe y-ova souradnice vrcholu paraboly
a

b2
je ——, je bud
J 1a Je bu
b2
—— =27, a<0, (1)
4a
2
anebo o 15 pro a > 0, coz vSak zrejmé nemuize nastat.
a

Minimum se zfejmé nabyva na kraji intervalu, tedy bud

f(2) =4a+2b =15, (2)
anebo
f(5) = 25a+ 5b = 15. (3)

V prvnim piipadé vyjadiime z (2) vyraz 4a a dosadime do (1). Dostaneme kvadra-
tickou rovnici b? —54b+405 = 0, kterd ma dva koteny b = 9, b = 45. V jednotlivych
pripadech dostavame kvadratické funkee:

flz) = —74—5ac2 + 452 a f(z) = —zx2 + 9z.

Jesté ziejmé musime ovéfit, ze f(5) 2 15. Z této podminky vyplyva, Ze jen druha
funkce muze vyhovovat zadanym podminkam, ale jeji extrém neni v intervalu (2, 5).

V druhém p¥ipadé dostavdme obdobné kvadratickou rovnici 5b% — 108b+ 324 =
= 0, kterd ma dva kofeny b = 18, b = %. V jednotlivych pripadech tentokrat
dostavame kvadratické funkce

3 18
= —322 1 = —— g2 —Z.
f(z) 32° + 182 a f(z) 557 + £

Nyni musime ovéfit, ze f(2) = 15. Tentokrat vyhovuje jen prvni funkce.
Takto jsme dostali vSechna mozna FeSeni, a to kvadratické funkce

fz) = ——2° + —u; f(z) = =322 + 18z.
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46-B-S-2

Rovnice z3 + az? + bz + ¢ = 0, kde a, b a c jsou cel4 &sla, ma kofen z = 1 — /2.
Dokaite, Ze pak plati a — 2b + 5¢ = 0. (P. Cernek)

Reseni. Po dosazeni &isla z = 1 — /2 do dané rovnice a jednoduché tpravé dosta-
vame
(54+2a+b)-V2=T+3a+b+c

Protoze na pravé strané je celé ¢islo, musi platit
5+2a+b=0 a 7+3a+b+c=0

(jinak bychom mohli vyjadfit v/2 jako podil dvou celych &isel, coz vzhledem k ira-
cionalité nejde). Vyjadiime-li b a ¢ z téchto dvou rovnic pomoci a, dostaneme
b=-5—2aac=—-2—a, takze

a—2b+5c=a—-2-(-5-2a)+5-(—2—a) =0.

Tim je tvrzeni ulohy dokazano.

46-B-11-2

Urcete, pro ktera redlné ¢isla p méa funkce f(z) = 23 — pz? + 1997 na intervalu
(0,1) minimum v bodé z = 1.

Reseni. Ziejmé staci zkoumat funkci g(z) = 2® — pa?, protoze v kazdém intervalu
nabyva minima ve stejnych bodech jako dand funkce f. Funkce g ma v intervalu
(0,1) minimum v bodé 1, pravé kdyZ pro vSechna z z tohoto intervalu plati g(z) =
> g(1), neboli 2® — pz? > 1 — p. Po tipravé dostdvame ekvivalentni nerovnost

2® =12 p(z® - 1), (1)
kterou muizeme upravit na tvar
(1-2)(z2*+z+1-p(z+1)) 0.

Vzhledem k tomu, Ze pro &islo z = 1 je nerovnost (1) splnénd trividlné, mizeme pro
z € (0,1) vydélit posledni nerovnost dvojélenem 1 — x a dostaneme ekvivalentni
podminku

giz)=2>+(1-p)r+1-p=Z0.

Protoze q je kvadratickd funkce s kladnym koeficientem u z? (jejim grafem je

parabola ,obracend vzhiru“), plati nerovnost ¢(z) < 0 pro vSechna z € (0,1),
pravé kdyz je soucasné ¢(0) <0 a q(1l) £0, tj. pravé kdyz 1 —p<0a3—2p 0.
Dohromady tak vychézi jedind (nutna i postacujici) podminka p = %
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Jiné feSeni. Po odvozeni nerovnosti (1) mizeme postupovat také nasledovné.
Pro &slo z = 1 je nerovnost trividlné splnénd, pro = € (0,1) muZeme nerovnost
vydélit zapornym dvojélenem z? — 1, takze vyjde
-1 z24+z+1 1

2—-1 z+1 m+x+1

v

(2)

p

1
pro vSechna z € (0, 1). Ukdzeme, Ze funkce h(z) = x + o je v tomto intervalu
x

rostouct.
Pokud je totiz z 2 0 a e > 0, je h(z +€) > h(z), nebot

1
Tr+eE+ >+

P T po upravé davd 1 < (z +¢e+1)(z +1).

Tato nerovnost v8ak vzhledem k volbé = a e plati, a protoze vSechny tupravy byly
ekvivalentni, dokdzali jsme, ze funkce h je rostouci dokonce v intervalu (0, 00).
Nerovnost (2) je splnéna pro vSechna z € (0,1), pravé kdyz plati pro z = 1,
tj. pravé kdyz p = % ReSenim jsou viechna realné ¢isla p z intervalu <%, oo).
Pozndmka. Je mozno postupovat i pomoci diferencidlniho poc¢tu. Z prvni
a druhé derivace funkce f snadno zjistime, ze v intervalu (0,1) nabyva funkce f

jen dva extrémy: v bodé x = 0 a v bodé = = %p. 7 toho pak lze snadno odvodit,
Ze Giloze vyhovuji pravé sla p 2 2.

46-C-11-1

V ¢tyteiferném cisle jsou stejné prvni dvé Cislice a také posledni dveé ¢islice. Urcete
toto ¢islo, vite-li, Ze je druhou mocninou prirozeného ¢isla.

Reseni. Cislo 1000a + 100a + 10b + b = 11(100a + b) m4 byt druhou mocninou,
proto musi byt &slo 100a+b délitelné &islem 11 a podil 1 (100a+b) = 9a+ 1 (a+b)
musi byt druhou mocninou pfirozeného ¢isla. Vzhledem k tomu, Zze a a b (a # 0)
jsou Cislice, musi byt a + b = 11, a protoze 9a + 1 ma byt druhou mocninou, vyjde
a = 7. Hledané &islo je 7744 = 882,

46-725-1-2

Lukas secital dvé péticiferna ¢isla. V obou ¢islech se kazda z ¢islic 5, 6, 7, 8 a 9
vyskytovala pravé jednou. Vysel mu vysledek 164 528. Markéta jeho vysledek kon-
trolovala a prohlasila, ze Lukas udélal chybu. Mé&la Markéta pravdu?  (Macura)
Reseni. S¢itani zapiSeme ve tvaru

Xk ok kK

+ k k k % *

164528
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a zkusime nahrazovat hvézdicky v obou sé¢itancich éislicemi. Hvézdicky nahrazu-
jeme zprava doleva a vzhledem k tomu, Ze kazd4 z ¢islic 5, 6, 7, 8 a 9 se v kazdém
sCitanci vyskytuje pravé jednou, mame pro jejich nahrazeni pouze (az na poradi
sCitancl) tyto dvé moznosti:

*5869 *x5769
+*x8659 +*x8759
164528 164528

Zbyvajici hvézdicky vsak v obou pripadech nelze zbyvajicimi ¢islicemi doplnit
na spravny zapis sc¢itani.
Markéta méla pravdu.

47-A-1-1

Cislo 1997%" — 1 je délitelné ¢islem 22 pro kazdé piirozené &islo n. Dokaite.
(P. Kariovsky)

Reseni. Oznaéme k = 1997 a viimnéme si, ze pro kazdé n plati
k2n+1 . 1 _ (k2n)2 _ 12 — (k‘2" _ 1) (k2n + 1) (1)

To ndm umozni dokazovat uvedené tvrzeni indukci. Mizeme zacit s hodnotou
n = 0, nebot &slo k — 1 je délitelné &islem 22. Protoze ¢islo k2" + 1 je pro kazdé
n sudé, plyne z rozkladu (1), ze pokud &slo k2" — 1 je délitelné ¢islem 2712 je
dslo k2"" — 1 délitelné &islem 27+2 - 2, tedy &islem 273, Tim je ditkaz indukef
ukoncen. Dodejme, Ze misto (1) je mozné obdobné vyuzit rovnosti

(" -1’ =" —2. B 1= (7 —1) -2k - 1).

Jiné feseni. Misto matematické indukce mizeme vyuzit binomickou vétu a do-
kézat, ze pro kazdé celé &islo k je rozdil (4k + 1)%" — 1 délitelny &islem 27+2.
(Odtud volbou k = 499 dostaneme tvrzeni tlohy.) Z binomické véty pro exponent
2™ vyplyvéa rozklad

n

(4k +1)%" =1 = (4k)*" + (21 >(4k)2""1 +..+

g . on
- <j>(4k) o (Qn_1>4k.

Prvni sétanec napravo je délitelny mocninou 22°*', a tedy i mocninou 27+2,
nebot n + 2 < 27 pro kazdé celé n = 0 (snadnd indukce). Nyni pro kazdé
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Jj€{1,2,...,2" — 1} zjistime, jakou mocninou ¢isla 2 je délitelné kombinaé¢ni ¢islo

(QJ) K tomu vyuZijeme vyjadieni

(2">:z.2"—1'2”—2.2"—3_ .2”—j+1 @)
i) G 1 2 3 -1

které je vyhodné proto, Ze ¢isla ¢ a 2™ — i maji ve svych rozkladech na prvocinitele
tutéZ mocninu éisla 2,1 £ 4 < 2™ — 1. Je-li proto j = 2%, kde0 S a<n—-1al
je liché, je podle (2) uvazované &slo (/) lichym ndsobkem mocniny 2"~*. Odtud
plyne, Ze &islem 2"*2 je délitelny kazdy sc¢itanec na pravé strané (1), pravé kdyz
pro kazdy uvazovany index j plati nerovnost n + 2 £ (n — a) + 2(2" — j), neboli
a+2 < 2(2" — j). Protoze a + 2 < 22! (snadnd indukce), sta¢i ndm dokdzat
silngj$i nerovnosti 2% < 2™ — j. Ty ale plynou z definice ¢isel @ = a(j): jelikoz
mocnina 2 déli ¢islo j, déli i ¢islo 2™ — j, takZe ho neprevysuje.

47-A-11-1

Cislo 1997%" 4 1 je délitelné &islem 3"13 pro kazdé piirozené &islo n. Dokaite.
(J. Simsa)

Reseni. Tvrzeni dokdZeme indukci podle &sla n. Mzeme zalit od hodnoty n =
0
= 0: &slo 19972 + 1 je skutend nasobkem ¢&isla 3% (1998 = 27 - 74). Plati-li
podle indukéniho predpokladu rovnost 19973" +1 = 313k, pro vhodné piirozené
¢slo ky,, dostaneme ze vzorce A% + B® = (A + B)3 — 3AB(A + B) pro hodnoty
A =1997%" a B =1 nasledujici vyjadfeni:
19973"" 1= (373k,)° —3.1997%" . (3"*3k,,) =
= 3n T4 (32 H5k3 —1997%"k,,).
Tim je dikaz hotov.
Dodejme, ze pfi druhém indukénim kroku bylo rovnéz mozné vyuzit rozklad

2 41=00%) 13 = (0% +1) (@ - 2% 1)
a vysvétlit, pro¢ pro z = 1997 je druhy ¢&initel délitelny tfemi: &sla 199723"
a 19973" totiz pii déleni tfemi davaji po fadé zbytky 1 a 2.
47-A-S-1
Najdéte vSechny trojuhelniky ABC, pro které plati rovnost
|BC|-|AX| = |AC| - |BY],

kde bod X je pruseéikem osy ihlu BAC se stranou BC a bod Y priiseikem osy
tthlu ABC se stranou AC. (P. Cernek)
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Reseni. Zkoumanou rovnost prepiseme do tvaru |BC| : |BY| = |AC| : |AX]|
a oba poméry vyjadiime pomoci sinovych vét pro trojuhelniky BCY a ACX
(ve kterych pfi obvyklém oznaceni vnitinich Ghla trojahelniku ABC zfejmé plati
|[¥BYC|=a+ 1B a |$AXC|= B+ }a, obr.7):

c
X
A B
Obr.7
|BC| _sin(a+38)  |AC| _sin(8 + 39)
|BY|  siny |AX| siny

Hledame proto pravé ty trojtuhelniky, pro které
sin(a + 18) =sin(8 + 3a).

Protoze oba argumenty lezi mezi 0° a 180°, rovnost jejich sini nastane, jen pokud
a+ 1B =B+ La, nebo (@ + 1B) + (B + +a) = 180°. Prvni podminka znamen4
a = f3, druhd a + 8 = 120°, neboli v = 60°.

Mala obmeéna prvni ¢asti: Srovname-li zkoumanou rovnost s obecné platnou
rovnosti |[BC|-|AP| = |AC|-|BQ)|, kde AP a BQ jsou vysky daného trojahelniku,
dostaneme ekvivalentni podminku ve tvaru |AP| : |AX| = |BQ]| : |BY|. Z pravoih-
lych trojahelnikit APX a BQY tak opét vyjde rovnost sin(a+ 18) = sin(8+ 3a).

Odpoveéd’: Hledanymi jsou pravé ty trojahelniky, pro které plati |AC| = |BC|
nebo |4 ACB| = 60°.

47-B-1-1

Magicky ¢tverec je ¢tvercova tabulka prirozenych ¢isel, v niz je soucet vSech Cisel
v kazdém radku, v kazdém sloupci i na obou thloprickach stejny. Najdéte vSechny
magické ¢tverce 3 x 3, pro které je soucin ¢tyt ¢isel v rohovych polich roven 3 465.

(P. Cernek)
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Reseni. Oznaéme piirozen4 ¢isla v magickém &tverci pismeny a, b, ¢, d, e, f, g, h, i
jako na obr. 8 a pismenem S ozna¢me soucet tii ¢isel v kazdém radku,

sloupci i Ghlopri¢ce. Ukazeme, Ze je S = 3e: Secteme-li totiz Cisla albjc

v prvnim a tfetim fadku a od vysledku odec¢teme ¢isla v prostfednim dle

sloupci, dostaneme rovnost glhl|i
S+S—S=a+c+g+i—e Obr. 8

Odtud vzhledem k rovnostem a +i =c+ g = S — e plyne
S=(S—e)+(S—e)—e, mneboli S=3e
Disledkem jsou rovnosti
a+i=c+g=2e.

Hledejme tedy ¢tyfi pfirozena €isla a, i, ¢, g, jejichz soucin je roven ¢islu 3 465,
a pritom a + ¢ = ¢ + g. Probrat kone¢nou mnozinu feSeni rovnice aicg = 3465
miizeme tak, Ze nejprve vypiseme viechny mozné rozklady &isla 3465 = 3%2-5-7-11
na soudin dvou €initeld M a N (jez by mély odpovidat soudintim ai a cg):

3465=1-3465=3-1155=5:693=7-495=9-385=
=11-315=15-231=21-165=33-105=35-99 =
=45-77=55-63.
Nyni pro jednotlivé dvojice M, N snadno vyhledame rozklady M = aia N = cg

s vlastnosti a+¢ = c+g (pro prvnich osm dvojic takové rozklady zfejmé neexistuji).
Jediné dva vyhovujici rozklady jsou

3465 =(5-11)-(7-9) = (3-15) - (7 - 11).

V prvnim pripadé 2e = 16, tedy e = 8; v druhém 2e = 18, tedy e = 9. Snadno
dopocteme i ostatni ¢isla magického ¢tverce (obr. 9).

5 (12| 7 3177
101 8|6 1319
91411 111115

Obr. 9

Protoze ¢tyri rohovéa ¢isla mizeme do tabulky umistit osmi zpisoby, je kazda
tabulka na obr. 9 zastupcem osmi tabulek, jeZ z ni vzniknou ,,preklopenim*“ podle
os soumérnosti ¢tverce. Jind reseni tlohy neexistuji.
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47-B-S-3

Najdéte vSechny c¢tvercové tabulky 3 x 3 pfirozenych Cisel, v nichZ je souéin vech
¢isel v kazdém radku, v kazdém sloupci i na obou uhlopfickach stejny a pro néz
plati, Ze soucet Ctyt Cisel v jejich rohovych polich je jednociferné ¢islo.

(J. Aragorn Tésinsky)

Reseni. Ozna¢me a, b, ¢, d jednomistna &sla v rohovych polich hledané tabulky
(obr.10) a e ¢islo v jejim stfedovém poli. Vzhledem k soumérnosti

(preklopenim podle jedné z thlopri¢ek nebo stfedniho sloupce ¢&i a b
radku se uvazované vlastnosti tabulky nezméni) mizeme predpokla- €

dat,zejea < d,b £ caa+d < b+c, a protoZze ma byt a+b+c+d < 9, c d
bude za uvedenych predpokladi a +d £ 4 a b+ ¢ < 5. Z rovnosti b

aed = bec plyne ad = be, takze sta¢i prozkoumat nasledujicich pét
moznosti:

all 1 1 2 2
d|{1l1 2 3 2 2
b1 1 1 1 2
c|l 2 3 4 2

V kazdém z téchto péti pripadi muzeme pomoci ,prostiedniho ¢isla e stejnou
metodou vyjadrit ostatni ¢isla tabulky, a to tak, Ze vyuZijeme rovnosti souéint ¢isel
v obou thloprickach, obou krajnich fadcich a obou krajnich sloupcich. Tabulky pak
vypadaji takto:

l1|le]|l 11]2e|1 11(3e|1l 212e|1 21el?2
elele elele ele lel e |2e ele

1 1 1
lle|l 5€ 2 z€ 3 4 5€ 2 e

Porovname-li nyni zminéné souciny se sou¢inem ¢isel v druhém fadku (¢i v dru-
hém sloupci), dostaneme v kazdém z uvedenych pripadii jedinou rovnici

e3 = (ad)e, kde postupné ad = 1,2,3,4,4.

Tato rovnice mé v prirozenych ¢islech feSeni pouze pro ad € {1,4} a tomu odpovi-
daji tri tabulky na obr. 11. Z posledni tabulky dostaneme zminénymi soumérnostmi
jesté tri dalsi, ale jak snadno zjistime, vznikne kazd4 z nich otac¢enim uvedené ta-
bulky o 90°.

1(1]1 2 1

1(1]1

1(1]1 41112
Obr. 11
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47-B-11-3

Je dana ¢tvercova tabulka 3 x 3 prirozenych ¢isel, v niz je soucin vSech ¢isel v kaz-

dém radku, v kazdém sloupci i na obou uhloprickach roven cislu s.

a) Dokazte, ze Cislo s je tfeti mocninou prirozeného ¢isla.

b) Pokud je jedno z rohovych ¢isel tabulky rovno 1, je soucet vSech ¢ty rohovych
¢isel druhou mocninou prirozeného ¢isla. Dokazte. (J. Aragorn Tésinsky)

Reseni. Uvazujme ¢tvercovou tabulku 3 x 3 (obr. 12) spliwjici podminky tlohy.
a) Z tabulky je patrné, Ze pro uvazovany soucin s plati

_ (aci)(def)(gec) _ 4
(adg)(cfi) ©

Cislo s je tedy tieti mocninou pfirozeného &isla e, které je umisténo uprostied

tabulky.
alb]|ec 1]e?|e
dle|f e?lell
gl hl|i e|1]e?
Obr. 12 Obr. 13

b) Bez (jmy na obecnosti predpokladejme, ze a = 1 (otocenim tabulky o 90°

nebo o 180° se uvazované vlastnosti tabulky nezméni). Vzhledem k vysledku
. S P e g e?
Casti a) ze soucinu ¢isel na obou thloprickach zjistime, Ze musi byt i = e ac = —.

g

s o v ur s v € wE_ . 7 o i
Ze soucinu Cisel v tfetim fadku pak dostaneme, Ze h = —, a ze soucinu ¢isel v tietim
g

sloupci f = I Protoze h i f jsou prirozena ¢isla, musi byt e = g, a proto také
e

h = f = 1. Uvazovana ¢tvercova tabulka je tedy typové shodnd s tabulkou na
obr. 13. Odtud plyne, Ze soucet vSech ¢tyr ¢isel v jejich rohovych polich je

atct+gt+i=lde+e+e?=(1+e)?,

coz je druhd mocnina prirozeného ¢isla. Tim je dikaz hotov.

47-C-1-1

Pro libovolné trojciferné ¢islo uréime jeho zbytky pii déleni ¢isly 2, 3, 4, ..., 10
" a ziskanych devét isel pak secteme. Zjistéte nejmensi moznou hodnotu takového
souctu. (J. Simsa)

Reseni. Oznaéme S(n) soucet uvedenych zbytkd trojciferného &sla n. Vysvétlime,
pro¢ S(n) 2 3.
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e Pro liché n je S(n) 2 5 (uvazte zbytky pti déleni sudymi &isly 2, 4, 6, 8, 10).
Déle tedy necht n je sudé.
e Pokud 4 1 n, tak S(n) 2 4 (n dava pii déleni &isly 4 a 8 zbytek aspon 2). Necht
n je dale délitelné ¢tyfmi.
e Pokud 81 n, tak S(n) 2 4 (zbytek 4 pii déleni &islem 8). Proto necht je dile n
délitelné osmi.
e Pokud 3 { n, tak S(n) 2 3 (n dava pti déleni &isly 3, 6, 9 zbytek aspon 1).
Necht je déle n délitelné osmi a t¥emi.
e Pokud 91 n, tak S(n) = 3 (zbytek aspon 3 pfi déleni ¢islem 9). Necht déle 8 |n
a9|n.
e Pokud 51 n, tak S(n) 2 3 (zbytek aspoii 1 pfi déleni &islem 5 a zbytek aspon 2
pri déleni cislem 10).
Predpokladejme proto, Ze 5|n, 8|n a 9|n. Pak prichazeji do ivahy uz jen ¢isla 360
a 720, pro néz S(360) = 3 a S(720) = 9. Tim je nerovnost S(n) = 3 dokézana.
Zaroven jsme zjistili, Ze S(n) = 3 napt. pro n = 360. (Je také S(840) = 3.)

Jiné resSeni. Uvazujme jen ten piipad, kdy cislo n neni délitelné nejvyse dvéma
z ¢isel 2, 3, ..., 10 (jinak S(n) 2 3). Pokud je tento ,nedélitel“ jediny, je to nutné
Cislo 7 (musi to byt prvodislo, jehoz dvojnédsobek je vétsi nez 10), takze 360 | n.
Pokud jsou takovi ,nedélitelé“ dva, musi to byt nékterd z dvojic 5 a 10,8 a 9, 7
a8, 7a9,4a8. V kazdém piipadé 6 | n, takZe snadno ukazeme, Ze jeden z obou
kladnych zbytki je vétsi nez 1, tedy S(n) 2 3.

47-C-S-2
Zjistéte nejmensi trojciferné Cislo, které je délitelné pravé polovinou z Cisel
2,3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36.

(P. Cernek)

ReSeni. Hledané ¢islo A ma byt délitelné pravé Sesti z vypsanych &isel. Kazdé
z téchto 12 cisel je délitelné pouze prvocisly 2 a 3. JelikoZ mezi témito ¢isly jsou
jen Ctyfi mocniny dvou (2, 4, 8, 16) a jen tfi mocniny tii (3, 9, 27), musi byt ¢islo
A délitelné jak dvéma, tak tfemi (a tedy i Sesti).

Protoze kromé ¢isel 2, 3 a 6 mé cislo A jesté dalsi tii délitele mezi vypsanymi
Cisly, musi byt A délitelné ¢tyfmi nebo deviti, ne v8ak obéma ¢isly zaroven (pak
by mélo osm délitela 2, 3, 4, 6, 9, 12, 18 a 36). Rozlidme proto dva pfipady.

e 4| Aa9t A Pakje Cislo A délitelné 2, 3, 4, 6 a 12, Sesty vypsany délitel
je nutné (jediné) z &isel 8, 16, 24. Proto 8 | A, takZe také (ve sporu s predchozi
vétou) 24 | A. Musi tedy nastat druhy p¥ipad.

e 9| Aadt A Pak je Cislo A délitelné 2, 3, 6, 9 a 18, Sesty vybrany délitel
je nutné ¢islo 27. Proto 54 | A, tedy A = 541, kde [ je liché &islo (nebot 4  A).
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Na druhé strané, kazdé takové ¢islo 541 ma zfejmé mezi vypsanymi Cisly pravé 6
délitelu (2, 3, 6, 9, 18, 27). Takové nejmensi trojciferné ¢islo je 54 - 3 = 162.

Jiné feseni. Hledané trojciferné ¢islo A nemuze byt délitelné ani Cislem 36 (pak
by mélo osm délitelta 2, 3, 4, 6, 9, 12, 18, 36), ani ¢islem 24 (pak by mélo sedm
délitela 2, 3, 4, 6, 8, 12, 24). Probirejme zbylych 10 vypsanych ¢isel (sestupné od
nejvétsiho) a zjistujme, zda mohou délit ¢islo A.

e 27 | A. Protoze ¢islo A je nutné sudé (jinak by meélo jen délitele 3, 9, 27),
plati 54 | A. Cislo 54 - 2 = 108 podmince tlohy nevyhovuje, zato &islo 3 - 54 = 162
ano. Déle uz predpokladejme, ze 27 t A.

e 18 | A. Cislo A m4 pét délitelt 2, 3, 6,9 a 18. Sesty vypsany délitel je (jediné)
z Cisel 4, 8, 12, 16. Proto 4 | A, takze také 12 | A, coz je spor s predchozi vétou.

e 16 | A. Cislo A m4 ¢&tyii délitele 2, 4, 8 a 16, posledni dva vypsani délitelé
musi byt z ¢isel 3, 6, 9, 12. Proto 3 | A, takZe také 24 | A, a to jsme tvodem
vyloudili.

e 12 | A. Cislo A mé pét délitelt 2, 3, 4, 6 a 12, Sestym vypsanym délitelem
musi byt ¢islo 8 nebo ¢islo 9. Z 8 | A pak ale plyne 24 | A (spor), z 9 | A zase
18 | A, a tim jsme se uz zabyvali.

Kdyby ¢islo A nebylo délitelné Zadnym z Cisel 36, 24, 27, 18, 16 a 12, muselo
by byt délitelné vSemi Sesti Cisly 2, 3, 4, 6, 8 a 9, a tedy prece jen i ¢islem 18. Tim
je naSe diskuse uzaviena. Hledané ¢islo je 162.

Jiné FeSeni. Stejné jako v prvnim feSeni vysvétlime, Ze hledané ¢islo je délitelné
Sesti. Budeme proto postupné probirat trojcifernd ¢isla délitelnd Sesti (od nejmen-
§iho z nich, ¢isla 102), dokud nenajdeme takové, které méa mezi vypsanymi &isly
pravé Sest délitelt (polet téchto déliteld dale uvadime vzdy v zavorce za &islem):
102 (3), 108 (9), 114 (3), 120 (7), 126 (5), 132 (5), 138 (3), 144 (11), 150 (3), 156
(5), 162 (6). Hledané &islo je 162.

48-A—-1-2
Najdéte vSechna kladna ¢isla k, pro néz plati: Ze vSech trojihelniki ABC, v nichz
|AB| = 5cm a |AC| : |BC| = k, m4 nejvétsi obsah trojuhelnik rovnoramenny.
(P. Cernek)

Reseni. Pro k = 1 uvedené charakterizaci vyhovuje libovolny rovnoramenny troj-
uhelnik s danou zékladnou AB a libovolné velkou vyskou z vrcholu C. Mezi nimi
ziejmeé neexistuje trojuhelnik s nejvétsim obsahem.

S . S « 1
Ziejmé k # 1 (pro k = 1 maximum neexistuje). Obé &isla k a % zkournanou

vlastnost zaroven bud maji, nebo ne. Pfedpokladdejme tedy (bez Gjmy na obec-
nosti), ze k > 1. Na piimce AB existuji dva rizné body C;, Cy, pro které plati

AC AC:
||BCi|| e IlBCZ: = k. V8echny body C' v roving, pro které |AC| : |BC| = k, lezi na
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Apolloniové kruznici o stfedu S sestrojené nad primérem C;Cy (obr.14). Odtud
je zrejmé, ze trojuhelnik ABC bude mit nejvétsi obsah pro vrchol C ve stredu
oblouku C;Cs (v libovolné z polorovin uréenych piimkou AB). Za predpokladu
k > 1 pro takto zvoleny bod C plati [AC| > |BC| a také |AC| > |AS| > |AB|,
takze trojihelnik ABC bude rovnoramenny, pravé kdyz bude |AB| = |BC|. Odtud
sestavime rovnici pro odpovidajici hodnotu k.

C
v
A z Co B
Obr. 14 Obr. 15
Pro bod C; predevsim plati
|BCy| = ! |AB| |BCy| = L|AB[
HT 100 A7 170
takZe z rovnosti |CCy| = |BC)| + |BC3| vychazi
1 k
= - = ——|AB]|.
|SCy| 210102| k2—1| |
Jesté spocteme
k 1 1
|BS| = |SC1| - |BC1| = (m - k—H)lABI = 748l
a
2 2 2 2 2 1+ k? 2

Proto z podminky |AB| = |BC| vychazi rovnice
1+ k*=k"—2k*+1, neboli k*(k*-3)=0,

kterd ma jediné kladné feseni k = V3.
Uloze vyhovuji dvé kladna ¢isla k, k = V3 a k = 1/V/3.

Jiné feseni (bez Apolloniovy kruznice). Predpokliddejme opét (bez jmy na
obecnosti), ze k > 1 je pevné. Oznatme Cy patu vysky z vrcholu C a z = |AC)|
(obr.15). Pro dané = spocitame zavislost v = v(x), najdeme maximum této funkce
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a nakonec se podivame, pro které & > 1 tomuto extrému odpovida rovnoramenny
trojuhelnik.
Ziejmeé je
|AC|? = 2® +v?, |BC|* = (z —c)® +¢?, (1)

kde ¢ = |AB] a v = |CCy|, takze podminka |[AC| = k|BC| je ekvivalentni rovnosti
? + 02 = k*((x — ¢)* + %),

neboli
2k%c k2c?

Ro1 ' B’-1

Jak vime, nabyva nalezena kvadraticka funkce maxima pro

T = ke >c
k2 -1

a té odpovidd maximalni hodnota

ke

Umax = m
Protoze vyslo ¢ > ¢, znamend to, Ze |AC| > ¢, takZe trojihelnik ABC mize
byt rovnoramenny, jediné kdyz |BC| = |BA| = c. Dosazenim do druhé rovnosti
v (1) dostaneme podminku

2 k2 _C2+ k2c2 _02(k2+1)
\k2-1 (k2-1)2 " (k2-1)2°

odkud pro t = k? vychazi kvadratick4 rovnice
t+1=(—-1)2

kterd mé jediny kladny kofen ¢t = 3, takie k = v/3. Zavér je stejny jako v predcho-
zim TeSeni.

48-A-S-2

V roviné jsou dany dva rtizné body A a B. Najdéte viechna redlnd ¢isla k > 1, pro
néz plati: Ze vSech trojuhelniki ABC, v nichz |AC| : |BC| = k, nejvétsi mozny
vnitini thel pfi vrcholu A m4 trojahelnik rovnoramenny.  (J. Simsa, L. Bocek)
Reseni. Ze sinové véty sina : sinf3 = a : b za podminky b = ka, k > 1, plyne
odhad

sin 3

k

17
|

sina =
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pritom rovnost nastane, prave kdyz sin § = 1, tedy 8 = 90°. Proto nejvétsi thel a
ma ten z uvazovanych trojuhelniki ABC, ktery mé pravy thel u vrcholu B a jeho
(ostry) thel pfi vrcholu A je urden rovnosti sina = +. Tento pravothly trojihelnik
je ziejmé rovnoramenny, pravé kdyz a = 45°, tedy kdyz % = sin45° = —‘é—g , COZ
nastane pouze pro hodnotu k = /2.

Jiné feSeni. Pfedpokladejme, Ze ¢islo & > 1 je pevné. Zvolime-li v roviné
usecku AB, vrcholy C vSech uvazovanych trojuhelniki ABC' zaplni Apolloniovu
kruZnici w viech bodt X s vlastnosti |AX| : |[BX| = k. Uhel BAC bude maximalni,
pravé kdyz primka AC bude te¢nou této kruznice w (a bod C bude jeji bod dotyku,
obr. 16).

A U B S Vv
Obr. 16

Popisme polohu krajnich boda U, V' toho priméru kruznice w, ktery lezi na
primce AB: bod U je vnitinim bodem tusecky AB, bod V' vnitinim bodem polo-
primky opacné k polopfimce B A, pficemz pochopitelné plati

|AU| : |BU| = |AV|: |BV|=k.
Odtud snadno pomoci délky ¢ = |AB| uréime, Ze

ke ke
AV| = .
k+1 & Ak k-1

|AU| =

Bod C na kruznici w je bodem dotyku tecny vedené bodem A k této kruZnici,
pravé kdyz plati (mocnost bodu ke kruznici) rovnost |AC|? = |AU| - |AV]|, z niz
po dosazeni za |AU| a |AV| dostaneme

ke |AC| c
AC| = ——, takie |BC|="r—=—=—.
G| = —— |BC| = — e
Snadno se zjisti, Ze trojuhelnik o stranach

c ke

V-1 V-1 °

(jenZ je pravotihly pro kazdé k > 1) je rovnoramenny jediné pro k = /2.
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Jiné feseni. Do kosinové véty a® = b? + ¢? — 2bc cos a dosadime b = ka a vyja-
dfime z ni cos a:
(k* —=1)a?+c?  (k*-1)a L.

cose= 2kac =T 2ke 2ka’

Podle nerovnosti mezi aritmetickym a geometrickym primérem dvou ¢isel plati

(k2—1)a+ e

c (k2=1)a ¢  Vk?-1
2kc 2ka

4 2%kc  2%ka  k

1\Y%

takZe cosa = cos ag, neboli a < ag, kde ag je ostry tthel uréeny rovnosti

k2 —1
S

cosag =

Maximalni hodnota @ = ag se dosdhne, kdyz se obé prumérovana ¢isla rovnaji,

tedy kdyz
(*-1)a _ ¢ o o
e = 2k’ ¢ili c=avk 1.

Protoze navic b = ka > a, zjistujeme, Ze nejvétsi mozny thel o m4 trojihelnik
rovnoramenny jediné v piipadé ¢ = a; z rovnosti avk? —1 = a tak nachdzime
(jedinou) hledanou hodnotu k = /2.

48-A-1-3
Pro kterd celd ¢isla a je maximum i minimum funkce

-~ 1222 — 12ax
- 22436

celé &islo? (P. Cernek)

Reseni. Budeme nejprve zjistovat obor hodnot uvedené funkce, tj. pro které realn4
s existuje aspon jedno realné x takové, ze

_12x2—12ax_
T 22436

Jednoduchou tpravou dostaneme rovnici
(s — 12)z% + 12az + 365 = 0, (1)

kterd je kvadratickd, pokud s # 12. Z rovnice plyne, Ze s = 12 patii do oboru
hodnot, jen kdyz az = —36, tedy jen kdyz a # 0. Pro a = 0 dostaneme pro x
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5 —36s
s—12
uvazované funkce nema pro a = 0 maximum.
Predpokladejme proto, ze a # 0 a s # 12. V tomto piipadé je rovnice (1)
kvadratickd a bude mit v redlném oboru reSeni, pravé kdyz jeji diskriminant

rovnici x , z niz vychdzi pro s nerovnost 0 < s < 12, takZe obor hodnot

D =12%a% — 4-365(s — 12) = 12%(a® — s* + 12s)

bude nezaporny, tj. pravé kdyz
6—136+a?<s<6+4/36+a’

Krajni body nalezeného intervalu (ktery ziejmé obsahuje i diive nalezeny prvek
oboru hodnot s = 12) jsou minimum a maximum dané funkce. Pokud to maji byt
cel4 ¢isla, musi pro vhodné piirozené &islo b platit 36+a? = b2, tedy (b — a)(b+a) =
= 36. Z kazdého rozkladu ¢isla 36 na soucin dvou pfirozenych ciniteld 36 = mn
dostaneme a = 1(m —n), b = 1(m + n), coz jsou celd &sla, jen kdyz m a n
maji stejnou paritu (m = n (mod 2)), a protoze a # 0, vyhovuje jediné rozklad
36 =218, odkud b = 10, a = £8.

Odpovéd’: Pozadovanou vlastnost maji pravé dvé celd ¢isla a, atoa =8 aa =

= -8,

48-A-111-6

Najdéte vSechny dvojice realnych Cisel a a b, pro které ma soustava rovnic

T+y 4+ y°
TS —==b
22 + 42 22 + y2
s neznamymi x a y feSeni v oboru redlnych ¢isel. (J. Simsa)

Reseni. Ma-li dana soustava feseni (z,y) pro &isla a = A, b = B, ma ziejmé
1
i feSeni (kz, ky) pro libovolné k # 0 a pro ¢isla a = EA’ b = kB. Odtud vidime,

Ze existence feSeni dané soustavy zavisi jen na hodnoté soucinu ab.
Budeme tedy nejdiive zkoumat hodnoty vyrazu

u v U3 ’U3

kde ¢isla u a v spliwji normaliza¢ni podminku u? + v? = 1. Podle ni plati

P(u,v) = (u+v)(u® +v3) = (u+v)*(u? —uwv +0?) =
= (u? + 2uv + v?)(1 — wv) = (1 4 2uv)(1 — wv).

50



Za podminky u? +v? = 1 nabyvé souéin uv viech hodnot z intervalu (-3, £) (je-li
u=cosa av = sina, je uv = § sin2a). Proto stadf zjistit mnozinu hodnot funkce
f(t) = (1 +2t)(1 — t) na intervalu ¢ € (=3, 3). Z vyjadient

1 9

ﬂﬂ=—dﬁ+t+1=—2@—1f+§

plyne, Ze hledanou mnozinou hodnot je uzavieny interval s krajnimi body f(—3) =
—o0af(h)=1.

To tedy znamend, ze pokud méa dana soustava feSeni, musi pro jeji parametry a
a b platit 0 £ ab < 2, pfitom rovnost ab = 0 je mozn4, jen kdyz z +y = 0, tehdy
vsak a = b= 0.

Splhuji-li naopak nékterd ¢isla a a b nerovnosti 0 < ab < %, existuji dle doké-
zaného &isla u a v takova, Ze u? +v? = 1 a (u + v)(u® + v*) = ab. Oznalime-li
a =u+vab =ud+0v3 pak z rovnosti a’b’ = ab # 0 plyne, ze oba poméry a : a’
a b’ : b maji tutéz hodnotu k # 0. Pak ale dvojice x = ku a y = kv je zfejmé
feSenim soustavy rovnic ze zadani lohy pro uvazované hodnoty a a b.

48-C-1-6

Pro libovolnou dvojici redlnych ¢isel a, b splhujici vztah a + b = 1 plati

Va2 +a+1+vVb2+b+1>2. (1)

Jsou-li navic ¢isla a, b nezdpornd, plati také

Va2 +a+1+Vb2+b+1<3. (2)

Obé tvrzeni dokaZte. (P. Leischner, J. Svrcek)

Reseni. Nejprve je nutné ovéfit, zda jsou dané vyrazy definovany pro viechna
redlnd Cisla a, b. Staéi dokazat, ze pro kazdé realné u je vyraz U = u? +u + 1
nezaporny.

1. zpusob:

1 12 12 1\2 3
u® + 2u+ 3 3 +1 u+ )+4

Odtud vidime, Ze je dokonce
2 3
U=u +u+1§z, (3)

protoze druhd mocnina realného vyrazu je vzidy nezdporné.
2. zpisob: Pro u 2 0 je zfejmé vyraz U kladny. Je-li u < 0, je

U>u+u+l+u=(@u+1)?20.
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3. zpiisob: Piedstavme si rovnost U = u? + u + 1 jako kvadratickou rovnici
u? +u+ (1 —U) = 0 s parametrem U. Tento vztah je splnén pro néjaké realné u,
jen kdyz je pfislusny diskriminant nezdporny, tj. 1 —4(1—U) 2 0, a odtud U = %.

4. zptisob: Upravou na tvar U = u(u + 1) + 1 a substituci u = s — 1 (viz té%

prvni pomocnou tlohu) méme U = (s — 1)(s + 1) + 1 = s + 2, coz vede na
odhad (3).
Déle asi resitelé budou zkouset vyraz
V=va+a+1l+V02+b+1 (4)

upravovat, aby jej mohli odhadnout. Jak asi budou postupovat? Uvedeme nékteré
moznosti:
I. Dosazenim b = 1 — a do (3) dostaneme

V=va+a+1+va2—3a+3. (5)

Tim jsme se ovSem k cili moc neptiblizili. Zkusme jesté obé strany rovnosti (5)
umocnit:

V2=a’+a*-2a+1+3+2Va2+a+1Va? -3a+3=
=a’+(a—1)2+3+2Va* — 243 +a? + 3.

Vyraz pod odmocninou se da jesté po vytknuti a z prvnich t¥i ¢lend upravit,
takze dostaneme

VZ=3+4+a’+(a—1)2+2/3+a%(a—1)? (6)

II. Rovnost (4) umocnime p¥imo a pii dalsich tipravéch opakované nahrazujeme
soucty a + b jednickami:

VZ=a?4b>+34+2a?? +abla+b+1)+a2+b2+a+b+1=
=3+ a® + 23+ a2b? + b°. (7)

Diikaz nerovnosti (1).

1. eseni (bez umocihovani vyrazu V): Jsou-li a, b nezdporna, je V > /1 +
+ /1 = 2. Jestlize je b < 0, pak musi byt a > 1. Polozme tedy na pravé strané
vztahu (4) a = 1 a druhou odmocninu odhadnéme pomoci (3). Dostaneme tak
siln&jsi odhad, nez se pozaduje: V > v/3 + \/g =3v3> 3.

2. reseni: Kdyz uvazime, ze druh& mocnina kazdého realného ¢isla je nezaporna,
odhadneme z (6), ze V2 > 3 4 2v/3 > 4, a po odmocnéni vyjde, ze V > 2.

3. reseni: Ze vztahu (7) vidime, Ze

V2> 3+ (a +2Va2V0? +b?) =
=3+ (Va2 +V12)® =3+ (|a] + |b])* =
atedy V > 2.
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Dtikaz nerovnosti (2).
1. feSeni: ProtoZe a, b jsou nezdporna a nemuze byt a = b = 0, plati

V<va+2a+1+vV+20+1=(a+1)+(b+1)=3.

2. 7eSeni: Z podminky a + b = 1 pro nezaporna ¢isla a, b mame 0 £ a < 1,
0 £ b £ 1 a hodnotu vyrazu V mtizeme odhadnout dosazenim a = b =1 do (7):
V2<34+1+2V/4+1=09, takze V < 3.

3. teseni: P¥i odhadu mtzeme riznym zptisobem uplatnit uzitecné nerovnosti
ze &tvrté pomocné tlohy. Zvolime-li naptiklad m = a? +a+1an = b2 + b+ 1,
dostavame

m+n=(*>+0)+(@+b)+2=1-2ab+3=4-2ab<4,

kde vztah
a?+b*=1-2ab

pouzity p¥i tipravé jsme ziskali umocnénim podminky a+b = 1. Podle nerovnosti b)
ze 4. pomocné ulohy pak je

V=vm+vn<V2m+n)<V8<3.

48-C-S-1

Najdéte v8echny dvojice a, b nezdpornych redlnych ¢isel, pro které plati

Va2 +b+ Vo2 +a=+va2+b+Va+b.

(J. Simsa)

Reseni. Umocnénim rovnice s nezdpornymi stranami a dal§imi ekvivalentnimi
Upravami postupné dostaneme

a®+b+2/ (a2 + b))% +a) + 0> +a=a® + b +2y/(a® + b2)(a+ b) + a + b,
V(@ +b) (2 +a) = /(a® + b?)(a + ),
(a® 4 b)(b* + a) = (a* + b?)(a + b),
a?b?® + a® + b® + ab = a® + ab? + ba® + b®,
ablab+1—a—0b) =0,
ab(a—1)(b—1) =0.

Hledanymi jsou proto pravé ty dvojice nezdpornych ¢isel a, b, které splhuji aspon
jednu z podminek a =0, b =0, a =1 nebo b = 1.
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48-75-1-4

V Sestici ¢isel 7, _, _, _, _, 66 doplite chybéjici ¢isla tak, aby kazdé ¢islo bylo
souctem predchézejicich dvou.
ResSeni. Oznaéme 2 prvni z nezndmych &isel. Nasledujici &isla jsou 7 + z, = +
+(7T+2) =2c+7 (T+2)+ (22 +7) = 3z + 14 a posledni &slo Sestice je
(22 +7) + (3z + 14) = 5z + 21 = 66. Odtud méme z = 9.

Hledana sSestice ¢isel je 7, 9, 16, 25, 41 a 66.

48-726-1-2

Rodné cislo ma deset cislic. Prvni dvojcisli rodného ¢isla je poslednim dvojéislim
roku narozeni. Druhé dvojcisli je u chlapct ur¢eno mésicem narozeni, u dévcat je
to mésic narozeni zvétSeny o 50. Tteti dvojcisli je dano dnem narozeni. Posledni
nenulova ¢tvefice cisel je zvolena tak, aby rodné ¢islo bylo délitelné 11. Kolik
nejvice déti se mohlo narodit 23. 11. 1998, jestlize kazdé z nich musi mit jiné rodné
¢islo?

Reseni. Rodné &isla chlapcii narozenych 23.11. 1998 jsou &isla tvaru
9811230000 4+ z = 891930000 - 11 + x.

Cislo z je tedy libovolné pfirozené nejvyse Gtyiciferné ¢islo, které je ndsobkem 11,
tj. libovolné z ¢isel 1-11,2-11, ...,909 11 = 9999. Pocet moznych rodnych ¢isel
pro chlapce je 909.

Rodné ¢isla divek narozenych 23.11. 1998 jsou ¢isla tvaru

9861230000 + z = 896475454 - 11 + 6 + .

Aby byla tato rodna ¢isla délitelnd 11, musi byt x prirozené nejvyse Ctyrciferné
Cislo, které pii déleni 11 dava zbytek 5, tj. nékteré z ¢isel 5, 5+1-11,5+2-11, ...,
5490811 =9993. Takovych ¢isel je 1 + 908 = 909.
Pro den 23.11. 1998 lze priradit nejvyse 1818 riznych rodnych cisel.
48-729-11-3
Najdéte prvocisla p, r, ktera spliuji rovnost
p+p*+p*+r+r2+r®=2393.
(Mészaros)

Reseni. Levou stranu zadané rovnosti rozdélime na dva soucty: (p+p? +p3) + (r+
+ 72 +r3) = 2393. Hledana prvodisla p, r musi byt rizn4, protoze prava strana
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je liché cislo. Zaroven je jasné, ze jeden ze sou¢ti na levé strané musi byt sudy
a druhy lichy. Soucet prvocisla s jeho druhou a tfeti mocninou je vSak sudy jen
pro sudé prvodislo 2. Polozme p = 2, ¢ili p+ p? + p® = 2+ 4 + 8 = 14, takZe
r+12 4+ 12 = 2393 — 14 = 2379. Mezi prvodisly, jejichZ tieti mocnina je mensi
nez 2379, je nejvétsi ¢islo 13 (133 = 2197). Dosazenim ovéiime, ze r = 13 splije
rovnost 7 + 12 + r® = 2379,

Hledanymi prvocisly jsou ¢isla 2 a 13.

49-A-1-1

Necht P(z), Q(x) jsou kvadratické trojcleny takové, Ze tii z kofend rovnice
P(Q(x)) = 0 jsou &isla —22, 7, 13. Urcete tvrty kofen této rovnice.

Reseni. Vzhledem k tomu, Ze rovnice P(Q(z)) = 0 m4 redlny kofen, mé kvad-
ratickd rovnice P(xz) = 0 dva realné kotfeny ri, ro (nevyluCujeme, ze ry = 713).
Mnohoélen P(Q(z)) lze proto zapsat ve tvaru

P(Q(z)) = a(Q(z) — 1) (Q(z) —12),

kde a je realné &islo a # 0. Rovnice P(Q(z)) = 0 ma podle zadani &tyFi redlné
kofeny, proto kazda z kvadratickych rovnic Q(z) — 1 = 0, Q(z) — ro = 0 musi
mit dva redlné koreny. Z Vietovych vzorci plyne, ze soucet kofent v obou kva-
dratickych rovnicich je tyz, nebot obé& rovnice maji stejny koeficient u linedrniho
¢lenu. Pritom t¥i ze ¢tyf redlnych korenii obou kvadratickych rovnic Q(z)—ry =0,
Q(x) —ro = 0 jsou dle zadani ¢isla —22, 7, 13, ¢tvrty kofen oznacme ¢. Déle mohou
nastat tii moznosti:

(i) Jedna z kvadratickych rovnic m4 kofeny —22, 7, druhd ma kofeny 13 a ¢. Pak

plati =22+ 7 =13 + ¢, tedy ¢ = —28.

(i1) Jedna z kvadratickych rovnic mé kofeny —22, 13, druhd ma koteny 7 a ¢. Pak

plati =22+ 13 =7+ ¢, tedy ¢ = —16.

(iii) Jedna z kvadratickych rovnic mé koteny 13, 7, druhd mé kofeny —22 a ¢. Potom

vsak plati 13 +7 = —22 + ¢, tedy ¢ = 42.

Je zfejmé, ze v kazdém z pripadid (i), (ii), (iii) existuji prislusné kvadratické
trojéleny P(z) a Q(z). M&-li mit jedna z kvadratickych rovnic Q(z) —r; = 0,
Q(x) — ro = 0 kofeny —22, 7 a druha 13, —28, polozime Q(z) = z? + 15z, r; =
= (—22)-7=—154,r, = 13- (—28) = —364, P(z) = (z + 154)(z + 364) = 22 +
+ 518z + 56056. Obdobné lze postupovat ve zbyvajicich pripadech.

Ctvrtym koFenem rovnice P(Q(z)) = 0 mize byt kterékoliv z &isel —28, —16,
42.

Jiné feseni. Uvahy o koeficientu u linearniho ¢lenu s vyuzitim Vietovych vztaht
lze nahradit nasledujici ivahou o grafech kvadratickych funkei.
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Protoze grafy kvadratickych funkei fi: y = Q(z) —r1 a fo: vy = Q(x) — ro maji
tutéZ osu soumérnosti a pritom existuji ¢étyfi realné koreny rovnice P(Q(x)) =
= 0, jsou tyto korfeny na ose xz po dvou stredové soumérné podle pruseciku os
soumérnosti graf obou funkel f; a fo s osou x. Vzhledem k poloze danych tii
korent na ose x l1ze dale uvazovat tii moznosti stejné jako v predchazejicim reseni.
Napr.

(i) Stied soumérnosti je —7,5 = =22+7
s obrazem ¢isla 13 dle stiedu soumérnosti v bodé —7,5. Ctvrtym hledanym
kofenem je tudiz ¢islo —28.

Podobné lze postupovat ve zbylych dvou pripadech a dospéjeme tak ke stej-
nému vysledku.

, Ctvrty koren lezi na ose x a je symetricky

49-B-1-1

Pro kterd realna ¢isla ¢t ma funkce f(z) = 5z + 44 + t|o — 2| — 3|z — | maximum
rovné 07 (P. Cernek)

Reseni. Dan4 funkce je linedrni lomend, protoze obsahuje dva vyrazy s absolutni
hodnotou, které zptisobuji, Ze jejim grafem neni primka, nybrz lomend c¢ara. Jeji
defini¢ni obor, mnozinu R vsech realnych ¢isel, mizeme v tomto pripadé rozdélit
na tii disjunktni ¢4sti podle toho, jak se prislusnd absolutni hodnota chova (zda je
vyraz v absolutni hodnoté kladny, ¢i zaporny). Protoze jedna z absolutnich hodnot
zavisi na parametru ¢, rozlisime, zda je t < 2 (pfipad A), ¢i ¢t = 2 (pfipad B).

Rozlisime dva piipady, podle toho, zda je t < 2 (pfipad A), ¢i ¢t = 2 (pfipad B).

A. Necht ¢t < 2. Mnozina R se ndm rozpadne na t¥i disjunktni intervaly, R =
= (—o0,t) U (t,2) U (2,00).

(a) V intervalu (—oo,t) je, jak snadno spoclteme, f(z) = (8 — t)x + 44 — t.
Protoze za uvedeného predpokladu je 8 — ¢ > 0, je funkce f v tomto intervalu
rostouci a nabyde maxima v bodé x = t.

(b) V intervalu (t,2) je f(z) = (2 — t)z + 44 + 5t. Protoze za uvedeného
predpokladu je 2—t > 0, je funkce f i v tomto intervalu rostouci a nabyde maxima
v bodé x = 2. Pfitom zfejmé plati f(t) < f(2) = 2(2 —t) + 44 + 5¢.

(c) V intervalu (2,00) je f(z) = (24 t)x + 44 + t. Tato funkce je pro 2+t >0
na tomto intervalu rostouci a shora neomezend, takze nemuze mit maximum. Musi
tedy nutné byt 2 +¢ £ 0, tj. t £ —2, funkce f bude v intervalu (2, c0) nerostouci
a jeji hodnota nebude vétsi nez f(2), kterou jsme spocitali v (b).

Zjistili jsme tedy, Ze za predpokladu ¢ < 2 nabyva funkce f maxima jediné pro
t £ —2, pfi¢emz jeji maximum je f(2) = 2(2 — t) + 44 + 5t. Toto maximum se
rovnd 0, pravé kdyz 2(2 — t) + 44 + 5t = 0, neboli t = —16, coz je nastésti ¢islo,
které spliuje podminku ¢ £ —2.

B. Necht ¢t 2 2. MnoZina R se ndm rozpadne na t¥i disjunktn{ intervaly, R =
= (—00,2) U (2,t) U (t,00), pficemz prostfedni ,interval* bude prazdny pro t = 2
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(to vSak neni pro dalsi tivahy podstatné, jinak bychom mohli tento piipad snadno
rozebrat samostatné).

V intervalu (—o0,2) je f(z) = (8 — t)z + 44 — t. Kdyby ted bylo 8 — ¢ < 0,
byla by funkce f v tomto intervalu klesajici a shora neomezend, takze by nemohla
mit maximum. Proto je 8 — ¢ 2 0, tj. t £ 8. Pak ale je f(2) =2(8 —t)+ 44—t =
= 60— 3¢ > 0. Odtud hned vidime, Ze za uvedeného predpokladu nemiuze funkce f
nikdy mit maximum rovné 0.

Z uvedeného rozboru vyplyvé, Ze uvazovana funkce ma maximum rovné 0 jediné
pro t = —16.

Jiné FeSeni. Vime, Ze grafem dané funkce f je lomend céara, kterd se v nasem
pripadé sklad4 ze dvou polopiimek (pro t = 2), resp. ze dvou polopfimek a jedné
usecky (ndvodnd tloha 1).

Daéle bychom si méli uvédomit, ze pokud ma takovato funkce maximum, nabyva
ho urcité v nékterém ze ,zlomovych® bodu (tam, kde je prislusny vyraz v absolutni
hodnoté nulovy). To samoziejmé neznamend, ze funkce nemtize maximum nabyt
i v jinych bodech (je-li konstantni na nékterém intervalu, ndvodna tloha 2).

V naSem pfipadé jsou témito zlomovymi body pro z = 2 bod A(2,54 —3|t—2|),
pro =t bod B(t,5t + 44 + t|t — 2|).

Protoze jeden z bodi x = 2, z = t ma byt bodem maxima funkce f rovného 0,
zjistime, pro kterd t je jedna z y-ovych soufadnic bodi A a B nulova (a druha

nekladnd).
A 54 -=-3|t—2| =0, B: 5t4+44+t|t—2| =0,
|t —2| =18, t22=12+3t+44=0,
t = 20 anebo t = —16. nema reSeni.

t<2=>t*-Tt—44=0.
t =11 anebo t = —4,
vyhovuje jen t = —4.

Mame tak tfi mozZnosti:

Pro ¢t =20 je A(2,0), B(20,504), coz nevyhovuje.

Prot = —16 je A(2,0), B(—16,—80+ 11 — 16 - 18), zatim vyhovuje.

Pro t = —4 je A(2,36), B(—4,0), coz nevyhovuje.

Zjistili jsme, Ze tloha ma reseni nejvyse pro t = —16, kterému odpovida funkce
f(z) = 5z + 44 — 16|z — 2| — 3|z + 16]. Pro tuto funkci samozrejmé plati f(2) = 0.
Ovérit, ze tato hodnota je skuteéné maximem funkce f, miZeme vice zpiisoby.
Napriklad tak, Ze ovéfime, ze pro x < —16 je uvedend funkce neklesajici (pro
x < —16 je f(z) = 24z + 60) a soucasné pro x > 2 nerostouci (pro z > 2 je
f(z) = =14z + 28).
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49-B-11-1
Zjistéte vSechna redlna ¢isla ¢, pro kterd ma rovnice
(A +c—8)(x+2) =8|z —c+2| =clz +c+ 14
nekonec¢né mnoho feSeni v oboru celych ¢isel. (J. Simsa)
Reseni. Oznadime-li pro dané realné ¢
fo@)=clz+c+ 14|+ 8z —c+2| = (2 +c—8)(z +2)

odpovidajici po ¢astech linedrni funkci, je zfejmé, Ze rovnice f.(z) = 0 bude
mit nekone¢né mnoho celodiselnych feSeni, pravé kdyz bude funkce f. identicky
rovna nule na nékterém z nekone¢nych intervalt (—oo, min(c — 2, —c — 14)) nebo
(max(c — 2, —c — 14), 00). VySetfime postupné obé moznosti.

a) Necht z < min(c — 2, —c — 14), pro takova z plati

fe(x)

—c(z+c+14) -8z —c+2) - (F+c-8)(z+2) =
—c(2+4¢)z — 3¢* =8¢ = —c(z(c+2) + 3c+8).

Na tomto intervalu bude funkce f. identicky rovna nule, pravé kdyz ¢ = 0 (soustava
c+2 =0, 3c+ 8 = 0 nema zadné feSeni).
b) Necht z 2 max(c — 2, —c — 14), pro takova x plati

fe@)=clx+c+14)+8x —c+2)—(*+c—8)(z+2) =
= (16 — ¢®)z — % + 4c + 32.

Na tomto intervalu bude funkce f. identicky rovna nule, pravé kdyz bude soucasné
platit ¢ = 16 a ¢ — 4c — 32 = 0. Dosazenim c¢?> = 16 do druhé rovnice vychézi

¢ = —4, coz je zfejmé jediné reSeni obou rovnic.
Zdver. Dana rovnice ma v oboru celych ¢isel nekoneéné mnoho reseni, pravé
kdyZz ¢ = 0 nebo ¢ = —4 (v prvnim pripadé rovnici vyhovuji vSechna celd ¢isla

z £ —14, v druhém pak vSechna cel4 ¢isla z = —6).

49-C-1-4

Jirka zhotovil papirovy model pravidelného ¢tyibokého jehlanu ABCDV s pod-
stavou ABCD. Kdyz pak model podél ¢tyr hran roziizl, bylo ho mozno rozvinout
(bez prekryti) do roviny. Kolik riiznych siti daného jehlanu tak mohl Jirka dostat?
Ukézalo se, ze sit, kterou Jirka dostal, méla tvar (nekonvexniho) sedmithelniku.
Vypocététe tthel AVB v boéni sténé jehlanu. (P. Leischner)

Reseni. Pocet riiznych siti daného jehlanu uréime tak, Ze nejprve viechny mozné
sité nakreslime. Abychom nékterou moznost neopomenuli, méli bychom do vyctu
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siti vnést wurcity systém. PopiSeme dva pristupy, které takovy systém vytvareji
(a které budou patrné zakim nejblizsi).

Pristup 1 (,od sité k jehlanu“). Kazd4 sit bude sloZena z jednoho ¢tverce
o strané a a Ctyr rovnoramennych trojihelniki o stranach a, b, b, kde a znaci délku
podstavné hrany a b délku bo¢ni hrany daného jehlanu ABC DV . Pfemyslejme tedy
o tom, jak takovy ¢tverec a Ctyfi trojuhelniky ,slepit* podél shodnych stran do
yeelku® a zda tento celek skuteéné vytvori sit jehlanu. Je velmi pfirozené rozélenit
feSeni tohoto tkolu podle poctu stram ctverce, které budou slepeny (moZné pocty
jsou 1 az 4).

Pristup 2 (,od jehlanu k siti“). Pfemyslejme o tom, jak rozfiznout dany jehlan
ABCDYV podél ¢tyi hran, abychom po rozvinuti dostali jeho sit. (Brzy si pfi tom
uvédomime jeden obecny poznatek: z kazdého vrcholu télesa musi vychazet aspon
jedna hrana fezu.) ProtoZe ndm jde o pocet rtiznych (tj. po dvou neshodnych) siti,
s ohledem na symetrii daného jehlanu neni ptili§ vhodné systematizovat ¢tverice
hran fezu podle toho, zda obsahuji nékteré konkrétni hrany (jako napt. hrany AB,
AV apod.). Vyhodné&jsi je rozdéleni téchto ¢tveric do skupin podle toho, kolik hran
Tezu je v jehlanu podstavnych (a kolik bo¢nich).

Protoze oba popsané pristupy vedou ke shodné systematizaci (je-li pravé k hran
fezu podstavnych, je v prislu$né siti pravé 4 — k stran ¢tverce slepeno s trojthel-
niky), popiSeme vycet vSech siti jen podle Piistupu 2:

1. Nelezi-li v podstavé ABC D zadné hrana fezu, je jehlan rozfiznut podél viech

Ctyf bocnich hran, prislu$né sit je na obr.17.

V3 Vi
Vv V
D C 4 C
Vi Vs D Va
A B A B
amva v
A B %4 A B V3
Obr. 17 Obr. 18

2. Predpokladejme, Ze v podstavé ABCD lezi jedind hrana fezu, napiiklad hrana
AD. Z vrcholi B a C musi vychédzet néjaké hrany fezu, mohou to tedy byt
jediné hrany BV a CV. Tt hrany fezu jsou tedy AD, BV a CV, s ohledem
na symetrii je lhostejno, zda je ¢tvrtou hranu fezu AV nebo DV, necht je to
tedy hrana AV jako na obr. 18.
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3. Predpoklddejme, Ze v podstavé ABCD lezi pravé dvé hrany fezu. RozliSme,
zda jsou to hrany sousedni (napf. AB a AD), nebo hrany protéjsi (napt. AD

a BC); pro vétsi prehlednost oba piipady posudme v odd&lenych odstavcich:
(3a) Je-li podstava roziiznuta pravé podél hran AB a AD (takZe fezem v pod-
stavé je lomend ¢ara BAD), musi byt tfeti hranou fezu hrana CV, ¢tvrtd
hrana fezu je pak jedna z hran AV, BV, nebo DV. S ohledem na symetrii
pripadd, kdy je ¢tvrtou hranou fezu BV nebo DV, uvadime jen obrazky

pro hrany fezu AV (obr.19) a BV (obr. 20).

1% ‘/2 1% Vl
B,
A, p Ai c
" & 12
c A B Ve ¢ A B
A B A A B
Obr. 19 Obr. 20

(3b) Je-li podstava rozfiznuta pravé podél hran AD a BC, je t¥eti hranou rezu
jedna z bocnich hran AV, DV a ¢tvrtou hranou fezu jedna z boc¢nich hran
BV, CV (nemohou to totiZ byt ani obé hrany AV, DV, ani obé hrany BV,
CV). S ohledem na symetrii staéi rozlisit jen dva p¥ipady: bo¢ni hrany fezu
jsou bud AV a BV (obr.21), nebo AV a CV (obr.22).

V1 V2
v v
A1 Bl Al
Dl [c pl ¢
A—1B AL—1B
Cy
e e
A B Vs A B 12
Obr. 21 Obr. 22

4. Predpokladejme, ze v podstavé ABCD lezi pravé tii hrany fezu, naptiklad
hrany AB, BC a CD, takze fezem v podstavé je lomené ¢ara ABCD. S ohle-
dem na symetrii nyni staci rozli$it jen dva pifipady: ¢tvrtd hrana fezu vede
do vrcholu V' budto z jednoho z obou krajnich vrcholi zminéné lomené cary
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Ay By

Vi
C A B C A B

Y L ¥

A B A B

Obr. 23 Obr. 24

ABCD, napiiklad bodu A (obr.23), nebo z jednoho z obou prostfednich vr-

cholt, naptiklad bodu B (obr. 24).

Zjistili jsme, Ze dany jehlan mé pravé osm riiznych siti. (VétSina zaka asi
spravné vsech osm siti do svych feSeni nakresli, aniz pociti nutnost vysvétlovat,
pro€ jiné sité neexistuji. Diskutujme s nimi o této otdzce.)

Prejdéme nyni k druhé ¢asti ulohy, otdzce, kdy néktera ze siti daného jehlanu
mé tvar nekonvexniho sedmithelniku. Podle obrazkt vidime, ze kazda sit ma,
obecné vzato, osm vrcholi; jejich podet se snizi na sedm, pravé kdyz se tihel u jed-
noho z osmi obecnych vrcholi ,napfimi“, tj. bude mit velikost 180°. Velikosti vSech
doty¢nych thli lze snadno vyjadiit pomoci w = |[{AVB| a a = |{ BAV|; zjistime
tak, popsand situace nastane, jen kdyz jeden z thla

2a, a+90° 2a+90°, 2w, 3w nebo 4w (%)

bude 180°. Polozme si nyni ponékud obecnéjsi otazku: Jaké hodnoty a a w jsou
pripustné, tj. odpovidaji néjakému jehlanu ABCDV? Oznalme S stfed Ctverce
ABCD a E stfed hrany AB (obr.25), z pravothlého trojihelniku EVS plyne, Ze

\4

[\ /]

A E B
Obr. 25

|[EV| > |ES| neboli |EV| > |AE|, proto pro thel a v pravothlém trojihelniku
AVE plati 45° < a < 90° (pro a = 45° bychom dostali ,zdegenerovany* jehlan
s nulovou vyskou, pro @ = 90°  jehlan“ s nekoneénou vyskou, tedy hranol). Za-
roven je jasné, zZe pro kazdé a € (45°,90°) odpovidajici jehlan existuje. Odtud
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vzhledem k rovnosti 2a + w = 180° plyne, Ze pfipustné hodnoty w zaplni interval
(0°,90°). Proto z thli () mohou byt piimé jedin& hly 3w a 4w. Pro w = 60°
maji tvar sedmithelniku sité z obr. 20 a 21, pro w = 45° sité z obr. 23 a 24.

Odpovéd’: Jirka mohl dostat pravé osm raznych siti. Uhel AVB mél velikost
45° nebo 60°.

49-78-1-3

Je dan c¢tverec ABCD a bod P tak, ze bod D je stfed tsetky AP. Bodem P
prochazi piimka p. Ta déli ¢tverec na dva utvary, jejichZz obsahy jsou v poméru
5: 3. Narysujte takovou primku. (D. Hruby)

Reseni. Ctverec rozdélime na osm shodnych obdélniki (obr. 26). Z obrazku je ziej-
mé, ze zvyraznéné usecky déli ¢tverec ABC'D na dva utvary, jejichZ obsahy jsou
v poméru 5 : 3 (resp. 3 : 5). Vedeme-li libovolnou pfimku protinajici stranu AB
stfedem zvyraznéné tsecky, bude ji étverec rozdélen v daném poméru. Reenim je
tedy piimka prochazejici danym bodem P a stfedem zvyraznéné tsecky. Uloha mé
dvé feSeni, nebot poradi Gtvari v poméru neni urceno.

P P P
D C D C D C
A B A B A B
pl\ b2 p2\ P1\
Obr. 26 Obr. 27

Jiné feSeni. Pfimka p déli ¢tverec na dva pravouhlé lichobé&Zniky. Obsah li-
chobézniku je roven soucinu jeho stredni pricky a vysky. Obsahy lichobézniki
jsou v poméru 5 : 3 nebo 3 : 5 a jejich vysky jsou shodné, proto stfedni pricky
lichobéznikid musi byt téZz v poméru 5 : 3 nebo 3 : 5. Hledand pfimka p proto
prochézi danym bodem P a bodem, ktery déli stredni pricku ¢tverce rovnobéznou
se stranou AB v daném poméru (obr. 27).

49-79-111-3

Najdéte vSechna trojciferna ¢isla x, kterd po zaokrouhleni na stovky se rovnaji

» 8x + 240
éislu ———.
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Regeni. Trojciferné ¢islo z zaokrouhlené na stovky ozna¢me [z]. Cislo [z] miize

byt nékteré z cisel 100, 200, 300, ..., 1000. Nejdiive vynasobime tato Cisla ¢is-
lem 9, potom odecteme 240 a vysledek vydélime &islem 8 (to plyne z rovnosti
9lx| — 240
T = ﬁ]—_S—_—) ReSenim jsou ta z nich, jeZ jsou trojciferna a lze je zaokrouhlit
na ¢islo [z].
[z] 100 200| 300| 400| 500| 600| 700| 800| 900 |1000
9[z] 9001800 (2700|3600 4500|5400 |6300|7200|8100|9000

9[z] — 240 | 660 1560|2460 |3360|4260 5160|6060 6960|7860 8760
(9[z] — 240) : 8| 82,5] 195|307,5| 420(532,5| 645|757,5| 870|982,5|1095

Uloha mé tedy tfi feSeni: 195, 420 a 645.

50-A-1-1

V urné jsou jen bilé a ¢erné kulicky, jejichZ pocet zaokrouhlen na stovky je 1 000.
Pravdépodobnost vytaZeni dvou ¢ernych kuli¢ek je o % vétsi nez pravdépodob-
nost vytazeni dvou bilych kuli¢ek. Kolik bilych a kolik ¢ernych kulicek je v urné?
(Pravdépodobnost vytazeni kterékoli kulicky je stejné.) (P. Cernek)

Reseni. Necht je v urné n kuli¢ek, z toho b biljch (a n — b &ernych). Potom prav-
dépodobnost vytazeni dvou bilych kulicek je rovna podilu

b
2)  bb-1)
n\ nn-1)
2
zatimco pravdépodobnost vytaZzeni dvou ¢ernych kuli¢ek podilu

(n§b>=<n—b)<n—b—1>.

(121) n(n —1)

Podle zadani tlohy plati rovnost

(n=0b(m-b-1) bb-1) 17
n(n —1) Tnn—1) ' 43’

kterou lze algebraickymi tipravami zjednodusit do tvaru 43b = 13n (pron ¢ {0,1}
jde o ekvivalentni rovnice). Odtud vzhledem k nesoudélnosti &isel 13 a 43 plyne,
zZe prirozend c¢isla n a b jsou tvaru n = 43k a b = 13k, kde k je vhodné pfirozené
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cislo. Podle zadani pro ¢islo n plati odhady 950 < n < 1050, z nichZ zjistime, ze
k € {23,24}. Pro k = 23 vychézi n = 989 a b = 299 (tehdy n — b = 690), zatimco
hodnoté k = 24 odpovidd n = 1032 a b = 312 (tehdy n — b = 720).

Odpoved’: Uloha mé dvé feSeni — v urné je bud 299 bilych a 690 Eernych, nebo
312 bilych a 720 ¢ernych kulicek.

50-A-1-3

V roviné je dan ostrothly trojihelnik ABC. Paty vySek z vrcholi A, B ozna¢me
po radé A;, B;. Te¢ny kruznice opsané trojihelniku C'A; By sestrojené v bodech
Ay, B; se protinaji v bodé M. Dokazte, ze kruznice opsané trojuhelnikiim AM By,
BMA,, CA,B; prochazeji jednim bodem. (J. Surcek)

Reseni. Ozna¢me k kruznici opsanou trojthelniku CA; B;. V prvni ¢asti feSeni
ukdzeme, ze bod M z textu tulohy je stfedem strany AB. ProtoZe trojihelnik
ABC je ostrouhly, lezi paty Ay, By prislusnych vysek uvniti odpovidajicich stran.
S ohledem na symetrii dané situace staci uvazovat jen tec¢nu t ke kruznici k se-
strojenou v bodé A;, oznacit X jeji prusecik s pfimkou AB a dokdzat rovnost
|AX| = |BX]| (obr.28).

X

A B

Obr. 28

Oznacme jesté Y libovolny vnitini bod poloptimky opac¢né k poloprimce A; X.
Protoze jsou oba uhly AA; B a BB A pravé, je ¢tyruhelnik ABA; By tétivovy,
a tak plati |YAB;A;| = 180° — |[SABA;| = 180° — f, kde jako obvykle f =
= |<ABC|. Proto mé obvodovy tihel A; B;C' v kruznici k nad tétivou A; C velikost
|$A1 B C| = 180° — |4 AB1A1| = 180° — (180° — ) = f3, stejnou velikost ma
i prislusny tsekovy tihel Y A;C.! Protoze tthly X A1 B a Y A;C jsou vrcholové,
dohromady dostavame |{ X A, B| = [4Y A1 C| = |4 A1 B1C| = 8 (tyto shodné thly
jsou na obr. 28 vyznaleny obloucky). Zaroven plati i [SXA1 4| = |[SXAA| =
= 90° — (3. Zjistili jsme, Ze tefna t protne primku AB v takovém bodé X, pro
ktery jsou trojuhelniky BA; X a A; AX rovnoramenné, tj. |[BX| = |4, X| = |AX].

Dokézali jsme, Ze bod M (priiseéik tecen ke kruZnici k s body dotyku A; a By)
splyva se stiedem strany AB. Oznac¢me nyni k; a k» kruznice opsané po radé

1 K pojmu tsekového thlu a jeho shodnosti s obvodovym tihlem viz S. Horak: Kruznice, SMM
16, MF, Praha 1966, str. 3-7.
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trojuihelnikim AM By a BM Ay a Sy, Ss jejich stiedy (obr. 29). Jednim prusecikem
kruznic k; a ko je bod M, druhy prisecik oznacme N. Protoze body Si, Sa lezi

Obr. 29

v poloroviné ABC, lezi v ni i bod N, nebot je soumérné sdruzeny s M podle
stfedné S;Ss. Nasi tlohou je dokazat, ze bod N lezi na jedné kruznici s body A;,
Bl aC.

Jak uz vime, je trojuhelnik BA; M rovnoramenny, a protoZe je | BBy M| =
=90° — a < f = |$BA; M| (tato nerovnost je ekvivalentni tomu, ze v < 90°),
lezi bod By vné kruznice k. To znamena, Ze kruznice ky musi protinat kruznici k;
v tom jejim oblouku nad tétivou M By, ktery odpovida obvodovému tihlu 180° — a.
Analogicky zjistime, ze bod A; lezi vné kruznice ki, takze prusecik N lezi na
oblouku kruznice ky prislusného tétivé M A; a obvodovému thlu 180° — 3. Protoze
zaroven

|XBINM| + |[¥A NM| = (180° — a) + (180° — ) = 360° — (a + ) =
=180° + v > 180°,

musi bod N leZzet uvniti trojihelniku A; By M (ptimka A; By tedy oddéluje body C
a N). Protoze a+ 8+~ = 180° (kde v = |4 A1 CBy|), plyne odtud, Ze ve &tyiahel-
niku A;CB;y N je soucet vnitinich thla u protilehlych vrchola C a N roven 180°,
a tak je tento ctyrtuhelnik skutecné tétivovy.

50-B-1-5
Urcete vSechny polynomy P(z), které pro kazdé realné ¢islo = splhuji rovnost
P(2z) = 8P(z) + (z — 2)°.
(P. Cernek)
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Reseni. Stupeii polynomu P je aspoii dva. Necht nejprve P(z) = az? + bz + c.
Dosazenim tohoto vyjadreni do vztahu v zadani dostdvame

4ax® 4 2bz + ¢ = (8a + 1)z* + (8b — 4)z + 8¢ + 4.

Porovnanim koeficient u stejnych mocnin z na levé a pravé strané dostaneme
4a=8a+1,2b=8—4ac=8c+4. Odtuda=-1b=2% c=-1

Je-li déle stupen n polynomu P vét$i nez dva, zjistime analogicky, zZe jeho ¢len
anx™ s nejvyssi mocninou x spliuje vztah 2"a, = 8a,, tedy n = 3, pficemz a,, # 0
je libovolné. Koeficienty mnohoé¢lenu P u mocnin 2%, z! a 2° vyjdou stejné jako
v predchozi situaci.

Celkovy zdvér: P(x) = ax®

— 1224+ 22 — 1 kde a je libovolné redlné &islo.

50~-C~—1-2
Sestrojte lichobéznik, jsou-li dany délky 9cm a 12 cm jeho uhlopricek, délka 8 cm
stfedni pricky a vzdalenost 2 cm stredu thlopricek. (E. Kovac)

Reseni. Zvolme oznageni podle obr. 30, K P je stiedni piicka v trojahelniku ACD,

D c C
u
K ) L
A a B E
Obr. 30

proto |K P| = §|DC|, obdobné |QL| = 3|DC|, |PL| = }|AB|, takze |PQ| = §(a—
—¢) = 2cm. Protoze |[KL| = (a+c) = 8cm, je a = 10cm, ¢ = 6 cm. Nejdiive
sestrojime trojihelnik AEC podle véty sss, na usecce AE pak bod B, jim vedeme
rovnobézku s CE. Ta protne primku vedenou bodem C rovnobéznés AE v bodé D.

50-7Z8-1-5
Blecha se dostala na ¢tvercovou sit se ¢tverecky 1 cm x 1 cm. Rozhodla se, Ze bude
skakat jen po uzlovych bodech této sité. Protoze jeji $tastné ¢islo je 13, udéla vzdy
skok dlouhy jen 13 cm. MizZe se takto dostat do libovolného uzlového bodu?

(P. Cernek)

Reseni. Blecha mitize skakat bud ve sméru miizovych ¢ar, nebo se miize piesouvat
do protéjsiho vrcholu obdélniku s rozméry 5 a 12 (podle Pythagorovy véty).
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Blecha se mize dostat do libovolného uzlového bodu, jestlize se miize dostat do
sousedniho uzlového bodu. Do libovolného dalsiho bodu se dostane potom sledem
skokii. Do sousedniho uzlového bodu se muze dostat napriklad podle obr. 31.

|| ||
| |
eEREERESENY
NI T/
\ /
Aﬁf *Mw
\ /
\ /
\ G/
\ |/
W
2
|
Obr. 31

Odpovéd’: Blecha se miize dostat do libovolného uzlového bodu.

50-27-1-5

Jedna ze stran obdélniku ABCD je dvakrat kratsi nez jedna z thlopficek koso-
¢tverce K LM N. Jedna ze stran koso¢tverce K LM N je stejné dlouhd jako jedna
z hlopficek obdélniku ABCD. Kosoétverec K LM N mé obsah 36 cm?. Jak velky
obsah méa obdélnik ABCD? (S. Bedndfovd)

Reseni. Uhlopiicka obdélniku déli obdélnik na dva shodné pravouhlé trojihelni-
ky, thlopricky kosoctverce ho déli na ¢tyfi shodné pravothlé trojuhelniky. Podle
zadani je pravouhly trojihelnik v obdélniku shodny s pravotihlym trojihelnikem
v kosoctverci podle véty Ssu (obr.32). Obsah obdélniku je tak roven poloviné
obsahu kosoc¢tverce, proto obsah obdélniku je 18 cm?.

N

D C - ”
k b E b
A B L

Obr. 32
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42-P-11-1

Nékladni auta. Z mésta A vede silnice do mésta B. Na této silnici lezi mésta
Ay,...,A,, By,...,B, — ne nutné v tomto poradi, ale pro kazdé i (1 < i < n)
je vzdy mésto A; blize k A nez mésto B;. Nakladni auto jezdi mezi mésty A a B
a ma za ukol vyfidit n objednavek; i-ta (1 < 7 < n) objednavka spoCiva v prevezeni
nakladu z mésta A; do mésta B;. Auto pritom miize vézt vzdy nejvyse jeden naklad
a po nalozeni ve mésté A; ho mize vylozit jediné v B;.

Jizdou nédkladniho auta rozumime jednu cestu auta z mésta A do mésta B
a zpét do mésta A s pripadnym splnénim nékterych objednavek béhem této jizdy.
Smér jizdy auta lze zménit jen ve mésté B.

Napiste a zdivodnéte program, ktery pro zadané vzdalenosti mést A; a B; od
mésta A sestavi pldn ndkladniho auta (tj. urdi pocet jizd a splnéné objednavky
pro kazdou jizdu) tak, aby auto vyfidilo vSechny zadané objednavky minimalnim
poctem jizd.

Reseni. Ozna¢me si a; = |AA;| a b; = |AB;|. Dle zaddni 0 £ a; < b; pro kazdé i.
V nasledujicim textu budeme jako objednavku j oznacovat tu objednavku, kterd
patii méstim A; a B;. Myslenka algoritmu je jednoduchd — dokud existuji néjaké
nesplnéné objednavky, pridame vzdy dalsi jizdu a simulujeme cestu auta z A do B.
Pokud je auto v néjakém mésté volné, vybereme si jako dalsi objednavku z dosud
nesplnénych tu, ktera zacind co nejdrive.

Primé implementace této myslenky vede k prili§ slozitému programu. Proto
nebudeme piifazovat objednavky jizdam, ale naopak. Cisla a1, ...,a, a by,..., by,
usporadame vzestupné a poté prochazime tsek od A do B. Pritom si udrzujeme
zatim potfebny pocet jizd v proménné p a seznam ,volnych jizd“ (na zacatku
prazdny). JestliZze narazime na mésto A; a seznam je prazdny, zvysime pocet jizd
na p + 1 a i-tou objednavku splnime v této jizdé. Jestlize narazime na mésto Bi,
jizdu, ve které jsme splnili i-tou objedndvku, ,uvolnime“, tj. pfidime do seznamu
volnych jizd.

Pozndamky k implementaci:
e Pri tridéni si ke kazdému prvku pamatujeme jeho pivodni index;
e seznam volnych jizd implementujeme napt. jako zasobnik;
e je-li b; = ay, nejprve zpracovavame b;.

Driikaz sprdavnosti algoritmu:

Algoritmus zfejmé nalezne nédjaky korektni plan, nebot kazdé objednavce pfi-
radi pravé jednu jizdu a jizda, kterd je objednédvce pfifazena, je v dané chvili volna.
Nyni dokdZeme optimalitu ziskaného planu. Ozna¢me ko = max |{i: = € (a;, b;)}|
pro z € (0,|AB]) (maximélni pofet intervald s nepradzdnym prinikem). Z¥ejmé
potfebujeme alesponi kg jizd. UkdZeme, Ze algoritmus nalezne plan s pifesné ko
jizdami. Uvazujme takové i, Ze polet jizd (proménnd p) se zvySuje z p na p + 1
pri pridani bodu a;. Tehdy neni k dispozici Zadna volna jizda, tedy bod a; lezi
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v néjakych intervalech (axj,br;) pro j =1,...,p. Bod a; + e, kde e je dostatecné
malé ¢islo, lezi uvnitf téchto p intervald a navic v intervalu (a;, b;), tedy p+1 < ko,
takze hodnota p nikdy nevzroste nad kg.

Odhad c¢asove sloZitosti:

Odhlédneme-li od tfidéni, pro kazdy prvek a; nebo b; vykondme konstantni
mnozstvi operaci, tedy celkem O(n). Slozitost tiidéni je O(nlogn), dohromady
tedy mame ¢asovou slozitost algoritmu O(nlogn).

Pamétova slozitost je linedrni.

42-P-111-2

Nepostradatelné silnice. V zemi je N mést oznacenych ¢isly od 1 do N. Mezi
mésty je vybudovana silni¢ni sit. Kazd4 silnice spojuje vzdy dvojici mést. VSechny
silnice jsou obousmérné. Mezi nékterymi dvojicemi mést prim4 silnice nevede, ale
z kazdého mésta je mozné dojet po silnicich do libovolného jiného mésta (tieba
i vice riznymi zpusoby). VSechna piipadnd kiiZeni silnic mimo mésta jsou mimo-
aroviova a neumoziuji vozidlim prejet z jedné silnice na druhou.

Silnici nazveme nepostradatelnou, pokud by se jejim znicenim Gplné prerusilo
silni¢ni spojeni mezi nékterou dvojici mést.

Napiste program, ktery vyhleda a vypisSe vSechny nepostradatelné silnice. Vstu-
pem programu je pocet mést N a dale seznam vSech silnic vedoucich mezi mésty.
Kazda silnice je zadana dvojici ¢isel mést, mezi nimiz vede.

Regeni. Uloha je jednou z klasickych tloh teorie grafa. Silni¢ni sit piedstavuje
souvisly neorientovany graf, v némz vrcholy grafu odpovidaji méstim a hrany
grafu silnicim. Nepostradatelné silnice, tak jak jsou definovany v zadani Glohy,
odpovidaji v teorii grafi zvlastnim hranidm zvanym mosty. Ukolem tedy je nalézt
v daném grafu vSechny mosty.

Algoritmus TfeSeni je zalozen na prochazeni zadanym grafem do hloubky. Pii
prochazeni bude kazdy vrchol grafu navstiven pravé jednou. Zptusob prochézeni
lze znézornit stromem. Korenem stromu prochazeni je vrchol, z néhoz bylo pro-
chazeni zahajeno. Za kofen mizeme zvolit libovolny vrchol.grafu. Bezprostfednimi
nasledniky nékterého vrcholu V' jsou vSechny ty vrcholy, do nichz prohledavéani
z vrcholu V' bezprostiedné pokracovalo. Protoze zadany graf je souvisly, budou ve
stromu prochédzeni obsaZeny vSechny vrcholy ptvodniho grafu (mésta). Ze vSech
hran (silnic) budou ve stromé prochézeni obsaZeny jen ty, které nds v priibéhu
prochéazeni dovedly do nového, doposud nenavstiveného vrcholu.

Predstavme si, Ze do stromu prochéazeni dokreslime zelenou barvou vsechny
zbyvajici hrany grafu. To jsou tedy takové, kterymi priichod do hloubky nepokra-
¢oval. Jinak feceno, v prubéhu prochézeni tyto silnice vedly z pravé prochazeného
mésta do jiného, jiz dfive navstiveného mésta. Doplnény strom tedy bude izomorfni
s puvodnim grafem.
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Nyni vyslovime jedno pomocné tvrzeni: Oba koncové vrcholy kazdé zelené
hrany lezi na téze vétvi stromu prochazeni. Tvrzeni snadno dokadzeme sporem.
Predpokladejme, Ze by nékterd zelend silnice spojovala dvé mésta A a B, ktera
nelezi na jedné vétvi stromu prochazeni. Oznacme je tak, zZe béhem prichodu
bylo A poprvé navstiveno drive nez B. Mésto B jisté nelezi v podstromu procha-
zeni s kofenem A (jinak by A a B lezela na téze vétvi). Pro postup prochdzeni
to znamend, ze nejprve bylo (pfipadné nékolikrat) navstiveno mésto A a teprve
potom (pfipadné nékolikrit) navstiveno mésto B. VSimnéme si okamziku béhem
prochéazeni, kdy jsme mésto A navstivili naposledy. To bylo v situaci, kdy jsme
se z ného vraceli zpét (kdybychom $li vpfed, museli bychom do A pfijit je$té na
zpéatelni cesté). V tomto okamziku jsme se ale nezachovali spravné podle algoritmu
prochéazeni grafem do hloubky: vraceli jsme se zpét, a piitom jsme jesté méli projit
silnici AB, protoze ta vedla do tehdy jesté nenavstiveného mésta B.

K tomu, aby hrana byla mostem, je nutné a staci, aby se jejim odstranénim
oddélil podstrom ve stromu prochézeni, ktery nebude dostupny ani po nékteré
zelené hrané. Podle predchoziho tvrzeni by takové spojeni zelenou hranou muselo
vést do vyssi vrstvy ve stromé prochazeni.

Na zakladé provedenych tvah jiz lze zformulovat algoritmus. Zadany graf bu-
deme prochéazet do hloubky, zacit mtzZeme libovolnym vrcholem (napf. vrcho-
lem ¢&islo 1). Béhem prochézeni si budeme u kazdého vrcholu M pamatovat jeho
hloubku ve stromé prochazeni H ;. Kotfen stromu prochazeni bude mit hloubku 0.
Postupné béhem prichodu budeme pro kazdy prochazeny vrchol M urcovat ¢islo
Zm definované takto: Zjs je minimum z H)ys a z hloubek koncovych mést vSech
zelenych silnic, které vychézeji z vrcholid v podstromu s kofenem M. Zy; je tedy
Cislo nejvyssi hladiny ve stromé prochézeni, do které vede piimé spojeni zelenou
silnici z néjakého mésta v podstromu s kofenem M. Pfitom si v8imame jen hladin
nad vrcholem M. Nastane-li pro néktery vrchol M nerovnost Zys < H)y, existuje
zelend silnice, kterd spojuje podstrom s kofenem ve vrcholu M se zbytkem grafu.
Je-li Zpr = Hpy, je silnice, po niz jsme do M béhem prochdzeni pfisli, mostem.

Zbyvé ukéazat, jak budeme pocitat hodnoty Hys a Zys pro vrchol M. Hodnotu
H)s uréime snadno pfi prvnim vstupu do vrcholu M béhem prochdzeni grafem —
je o 1 vétsi nez odpovidajici hodnota H x vrcholu X,z néhoz do M prichdzime. Sta-
noveni hodnoty Zs je o néco obtiznéjsi. Hodnota Zj je rovna minimu z hodnoty
H s azhodnot Z; viech vrcholi leZicich v podstromu s koifenem ve vrcholu M. Pri
prvnim vstupu do vrcholu M muZeme tudiZ inicializovat hodnotu Zj; jiz zndmou
hodnotou Hjs a pak ji béhem prochézeni podstromu vrcholu M budeme piipadné
zmen$ovat, bude-li to mozné. Pii kazdém dal$im prichodu do vrcholu M (tj. pri
nédvratu z néjakého naslednika vrcholu M) lze hodnotu Z), snizit na Z-hodnotu
tohoto néslednika. K dal$imu snizeni Zj; mohou pfispét hrany, které vedou z vr-
cholu M do jiz navstivenych uzli a po nichZ se tudiz pii prichodu nepostupuje.
Hodnotu Zj; muzeme snizit na H-hodnotu koncovych vrchol téchto zelenych
hran. Definitivni hodnotu Zy; ziskdme aZ p¥i poslednim opusténi vrcholu M.
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Slozitost celého algoritmu je dana slozitosti prichodu grafem do hloubky.
Ostatni vypocty spojené s urcovanim hodnot Hys a Zjs maji konstantni casové na-
roky. Casova slozitost programu pro priichod grafem do hloubky zavisi na vhodné
volbé vnitini reprezentace grafu. P¥i vhodné zvolené reprezentaci (viz uvedend
programové ukazka) je piimo imérna poctu hran v grafu, tj. je fadu n?, kde n je
pocet vrcholi grafu.

program Nepostradatelne_silnice;

{Format oZekavanjch vstupnich dat - zadani grafu:
- sousedi kaZdého vrcholu vZdy na jednom fadku ve tvaru
<&islo-vrcholu> <&islo-sousedal> <&islo-souseda2>

- vrcholy musi bjt oZislovany od jedné po jedné a v tomto
poradi musi byt také radky na vstupu zadany

- kazda hrana se tedy uvadi dvakrat (na fadcich pro jeden
a pro druhy jeji koncovy vrchol)

- program pro jednoduchost netestuje spravnost zadanych
vstupnich dat (nebylo by t&2zké testy doplnit) }

const
MaxPocetMest = 40;
MaxPocetSilnic = 200;

type
Mesto = 1..MaxPocetMest+1; {fiktivni m&sto na konci}
Silnice = 1..MaxPocetSilnic;

var
GMesto : array [Mesto] of record

Spoje : Silnice;
Hloubka : integer;
Projito : Boolean;
end;
GSilnice : array [Silnice] of Mesto;
{pole GMesto a GSilnice pfedstavuji vnit¥ni uloZeni grafu
- ke kaZdému vrcholu je v poli GSilnice uloZen seznam
jeho sousedfi, poloZka Spoje v GMesto ur&uje, kde presné
jsou uloZeni sousedi kaZdého konkrétniho vrcholu
- viz tdvodni komentaf o tvaru vstupnich dat a procedura

NactiGraf}
PocetMest : 0..MaxPocetMest;
PocetSilnic : 0..MaxPocetSilnic;
F:integer; {pomocnad prom&nnd - je potfebnd pro spravné

volani procedury Pruchod v hlavnim programu}

procedure NactiGraf;
{na&teni vstupnich dat - zadani zkoumaného grafu}
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var dummy:integer;
begin
PocetMest:=0;
PocetSilnic:=1;
repeat
PocetMest:=PocetMest+1;
read (dummy) ; {¢islo mé&sta - nevyuZiva se}
GMesto[PocetMest].Spoje:=PocetSilnic;
while not eoln do
begin
read (GSilnice[PocetSilnic]);
PocetSilnic:=PocetSilnic+1;
end;
readln;
until eof;
GMesto[PocetMest+1] .Spoje:=PocetSilnic;
end;

function min(X,Y:integer) :integer;
{pomocna procedura - minimum ze dvou celyjch &isel}
begin
if X<Y then min:=X else min:=Y;
end;

procedure PisMost(odkud,kam : Mesto);
{vypiSe, Ze z mé&sta "odkud" do mé&sta "kam" vede most}
begin
writeln(’Most z ’,odkud,’ do ’,kam,’.’);
end;

procedure PredPruchodem;
{ozna&i v3echna m&sta za dosud neprojita - nutné!}
var i:Mesto;
begin

for i:=1 to PocetMest do GMesto[i].Projito := false;
end;

procedure Pruchod(Start: Mesto; hl:integer; var Z: integer);
{Projde odpovidajici &ast grafu do hloubky.
Zatinad ve mést& Start, jeho hloubka je hl, spolitd pro né&j
hodnotu Z (viz text).}
var Nasl : Mesto;
S : Silnice;
pomZ : integer;
begin
GMesto[Start] .Projito := true; {vrchol navitiven}
GMesto[Start] .Hloubka := hl; {ma hloubku hl}
Z := hl; {prozatimni hodnota Z}
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for S:=GMesto[Start].Spoje to GMesto[Start+1].Spoje-1 do
begin
Nasl := GSilnice[S]; {m&sto dostupné po silnici S}
if GMesto[Nasl].Projito then
begin {nepo&itat silnici, po niZ jsme prisli!}
if GMesto[Nasl].Hloubka+1 <> hl then
{zelena silnice, bud nahoru, nebo dolf}
Z := min(Z,GMesto[Nasl].Hloubka)
{pokud vede zelend silnice nahoru,
sniZime hodnotu Z v na3em uzlu}
end
else
begin
Pruchod (Nasl,hl+1,pomZ) ;
if hl+1 = pomZ then
PisMost (Start,Nasl); {nalezen most v grafu}
Z := min(Z,pomZ) ; {pfipadné sniZeni hodnoty Z}
end;
end;
end;

begin
NactiGraf;
PredPruchodem;
Pruchod(1,0,F);
{vzdy je F=0}
end.

47-P-111-2

Koédy. Pri prenosu dat (posloupnosti biti) po linkdch mezi poéitadi mize nékdy
dojit k chybé: ¢as od Casu se stane, Ze se misto nékterého vyslaného bitu prijme
na konci linky bit jiny. Nedochézi ovSem k tomu, Ze by se pfi pfenosu néktery bit
zcela ztratil nebo Ze by naopak bit pribyl.

Pro prenos dat po nespolehlivych vedenich se proto ¢asto pouzivaji rtizné za-
bezpecovaci kddy. K prendSenym bitim b; ...b, se pridaji navic kontrolni bity
c1 - ..cm tak, aby podle nich bylo mozné na druhé strané linky zjistit, zda se zprava
prenesla v poradku.

Nejjednodussim moznym zabezpecovacim kédem je paritni kéd dopliujici je-
diny bit ¢; takovy, aby celkovy pocet jednickovych bitd v celé zpravé byl sudy.
Tento kéd umoziuje spolehlivé odhalit nejvyse jeden chybny bit v celé zpravé (at
jiz to byl jeden z datovych bitti b; nebo pfidany paritni bit). Neumoziuje vak
presné zjistit, ktery bit je chybny (coz by se rovnalo opraveni tohoto bitu, jelikoz
jsou pouze dvé moZnosti, jakou hodnotu muZe mit).
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a) Navrhnéte zabezpecovaci kéd, ktery k n-bitové zpravé prida m zabezpecova-
cich bitu tak, aby pfipadnou chybu v jednom bitu zpravy bylo mozné nejen zjistit,
ale také opravit.

b) Navrhnéte zabezpecovaci kéd, ktery k n-bitové zpravé prida m zabezpecova-
cich biti tak, aby bylo mozné ovérit spravnost doslé zpravy za predpokladu, ze pri
jejim prenosu dojde k chyb& v nejvyse dvou bitech (véetné bitli zabezpedovacich).

V obou pfipadech se snaZte o co nejmensi prodlouzeni zpravy (tzn. minimali-
zujte pocet pridanych biti m) a dokaZte, ze navrzeny kéd skuteéné pozadované
vlastnosti ma.

Reseni. Nasledujici kéd fesi obé podilohy (nikoliv viak sou¢asné — neni schopen
rozhodnout, jestli doslo k opravitelné jednochybé& nebo neopravitelné dvojchybé).

Necht zprava mé n = 2F — 1 bitd oznalenych by ...b, (v piipadé, Ze je krat-
§i, povazujeme zbylé bity za nuly). My ji doplnime o paritni bit p (stejné jako
v ukdzkovém prikladu v zadéni) a zabezpefovacimi bity co az cx—1, jez budou
paritnimi bity jednotlivych blokd zvolenych podle nasledujiciho pravidla: v i-tém
bloku budou préveé ty bity, jejichz poradové ¢islo (pro bit b, to je z) ma v i-tém
bindrnim fadu jedni¢ku (kazdy bit ptivodni zpravy tak patii do alespoii jednoho
bloku a je jednoznalné identifikovan tim, do kterych blok patii a do kterych
nikoliv).

a) Po pfijmu zpravy zkusime podle pfijatych datovych bitd znovu spocist
v8echny bity kontrolni (tedy p a vSechna ¢;). Pokud souhlasi s témi, které byly
prijaty, zprava byla prijata bezchybné nebo doslo k vice jak jedné chybé. Pokud
doslo k pravé jedné chybé, mohlo k ni dojit témito zptsoby:

e V jednom datovém bitu b;: v tomto pripadé zarucené nesouhlasi paritni bit p
a rovnéz nékteré z blokovych paritnich biti ¢; — konkrétné ty, jez odpovidaji
bloktim, do nichz bit b; patfi. Jenze tim, ve kterych blocich se b; nachazi, je jiz
jeho poradové ¢islo ¢ jednoznaéné urceno.

e V jednom kontrolnim bitu ¢;: v tomto pfipadé souhlasi centralni paritni bit p,
¢imZ tento pripad snadno odliSime.

e V centralnim paritnim bitu p: v tomto pripadé nesouhlasi tento bit, ale souhlasi
vSechny ostatni kontrolni bity, coZ znamend, Ze chyba se nenachézi v zddném
bloku, ale to u chyb v datovych bitech nastat nemuze.

b) Nedoslo-li k zadné chybé, souhlasi v8echny zabezpecovaci bity s jejich vy-
poctenymi hodnotami (viz feSeni lohy a). Doslo-li k pravé jedné chybé, nesouhlasi
centralni paritni bit nebo jeden z blokovych paritnich bit (viz diskuse vyse). Do-
$lo-li k pravé dvéma chybam, mohou nastat nasledujici pripady:

e Chyba ve dvou rtiznych datovych bitech: centralni paritni bit jisté souhlasi, ale
jelikoz kazdy datovy bit je jednozna¢né popsan kombinaci bloki, do nichz patri,
zarucené existuje alesponn jeden blok, do kterého patii pravé jeden z chybné
prijatych bit, a proto jeho blokovy paritni bit nesouhlasi.
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e Chyba ve dvou rtaznych blokovych paritnich bitech: centralni paritni bit sou-
hlasi, ale oba chybné prijaté blokové paritni bity nikoliv.

e Chyba v jednom datovém bitu a jednom blokovém paritnim bitu: nesouhlasi
centralni paritni bit.

e Chyba v jednom datovém bitu a centralnim paritnim bitu: centralni paritni bit
souhlasi, ale alespoii jeden z blokovych nikoliv (kazdy datovy bit je v alespoi
jednom bloku).

e Chyba v centrdlnim paritnim bitu a jednom z blokovych: nesouhlasi centralni
paritni bit.

Ve vSech pripadech tedy pozname, ze k chybé doslo.

48-P-1-4

Normalni algoritmy Markova. Kone¢nou mnozinu symbola 7' = {ag,a1,...,an}
nazveme abecedou. Prvky mnoziny 7' budeme nazyvat znaky abecedy. Slovem P
v abecedé T nazveme kazdou koneCnou posloupnost znakt abecedy 7. Prazdné
slovo budeme oznadovat symbolem A. Algoritmem v abecedé T" budeme rozumét
funkci, jejiz definiénim oborem je podmnozina slov v abecedé 7" a oborem hodnot je
opét podmnozina slov v T'. Necht P je slovo v abecedé T'. Rekneme, Ze algoritmus
A je pripustny pro slovo P, pravé kdyz P je prvkem jeho defini¢niho oboru. Vétsinu
algoritmil je mozno rozdélit na néjaké jednodussi kroky. Jeden ze zptisobti navrhl
v roce 1954 A. A. Markov. Zakladni operaci je substituce jednoho slova za jiné.
Vyrazy P — Q a P — -@Q, kde P a @ jsou slova v abecedé T', nazyvame formulemi
substituce v abecedé T'. Pritom predpokladame, Ze Sipka (—) a tecka (-) nejsou
prvky T'. Nékteré ze slov P a ) muize byt i prazdné. Formuli P — ) nazyvame
obyé&ejnou a formuli P — -Q nazyvame koncovou. Zipisem P — (-)Q) rozumime
bud formuli P — @, nebo P — -Q. Kone¢ny seznam formuli substituce v abecedé T'

P = ()@
Py, = (1)Q2
PT ——) (.)QT

nazyvame schéma algoritmu A.

Rekneme, Ze slovo W je obsazeno ve slové Q, pravé kdyz existuji takova slova
U, V (mohou byt i prazdnd),ze @ = UWV. Algoritmus A pracuje néasledujicim
zptisobem. Necht je déno slovo P v abecedé T'. Ve schématu algoritmu A na-
jdeme prvni formuli P, = (\)Qm (1 £ m < r) takovou, Ze P, je obsazeno v P.
Provedeme substituci nejlevéjsiho vyskytu slova P, na @,,. Ozna¢me R; slovo,
které je vysledkem této substituce. Mizeme napsat A: P+ R;. Je-li P, = -Qm
koncova formule substituce, ¢innost algoritmu A kondéi, jeho hodnotou je slovo R;
a piseme A(P) = R;. Je-li P,, = Q., obyCejna formule substituce, aplikujeme na
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R; stejny postup, ktery jsme pouzili na slovo P. Timto zptisobem pokracujeme
déle. Dostaneme posloupnost slov P, Ry,..., R; (i 2 1). MiZzeme psat

A: P+ Ry,...,F R; nebo téz zkrdcené A: P+* R;.

Jestlize v urcitém okamziku nastane situace, Ze ani jedno ze slov P, ..., P. neni
obsazeno v R;, potom ¢innost algoritmu rovnéz konéi a R; je hodnotou algoritmu
A. MizZe se ovSem stat, Zze popsany postup nikdy nekonéi. V takovém piipadé
rekneme, Ze algoritmus neni pripustny pro slovo P.

Priklad 1: Necht T' = {b, c}. Uvazujme schéma

{b—)-A
c—>e¢

normalniho algoritmu A pro slovo P v abecedé T
Vysledek ¢innosti algoritmu A je pro P nasledujici:

e Je-li P prazdné slovo, je hodnota algoritmu rovnéz prazdné slovo (A(A) =
=A).

e Obsahuje-li P aspon jeden znak b, potom hodnotou algoritmu je slovo,
které vznikne z P vynechanim nejlevéj$iho vyskytu znaku b v P (napf.
A(cbeb) = ccebd).

e Algoritmus neni pfipustny pro slova neobsahujici znaky b.

Priklad 2: Necht T' = {ag,a1,...,an}. Uvazujme schéma

a()'-)A
a; > A

an = A
Takové schéma zapisujeme zkracené ve tvaru
{ £€=A (E€T).

Pri tomto zkraceném zapisu schématu predpokladame, ze odpovidajici prvky se-
znamu mohou byt zapsany v libovolném poradi. Vysledkem algoritmu A je vzdy
prazdné slovo. Rikdme té%, Ze A piepisuje libovolné slovo (v abecedd T') na
prazdné slovo. Cinnost tohoto algoritmu mtZeme zapsat napiiklad ve tvaru A:
ajazap F ajaz Faz - A nebo A: ajazag F* A, takze A(ajazag) = A.

Pfiklad 3: Necht T' = {1}. Definujme induktivné 0 = 1an + 1 =71, tj. 1 = 11,
2 =111 atd. Slova i nazveme &isla.
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Uvazujme schéma
A— 1.

Pro libovolné slovo P v T' plati zfejmé A(P) = 1P, coz miZzeme zapsat ve tvaru
A(m) = n + 1 pro libovolné pfirozené ¢islo n. (Uvédomte si, Ze kazdé slovo P za¢ina
prazdnym slovem A, tj. P = AP).

Abecedu B nazveme rozsifenim abecedy T, plati-li T C B. V fadé pripadu je
nutno pri konstrukei schématu algoritmu v abecedé 7" pouzit mimo znakt abecedy
T jesté dalsi pomocné znaky. Pak fekneme, Ze jsme vytvofili schéma algoritmi nad
abecedou T' (tj. v n&jaké abecedé B, ktera je rozsirenim T).

Priklad 4: Necht T = {ag,a1,...,a,} je abeceda. Pro kazdé slovo P =
= ajaj, ---aj, vT (k20 a5 € T,i=0,1,...,n) jeslovo P = aj, ---ajaj,
obracenim slova P. Sestrojte normalni algoritmus A, ktery pro libovolné slovo P
vytvori jeho obraceni, tj. A(P) = P.

UvaZzujme zkracené schéma algoritmu v abecedé B =T U {«, 3}:

aa — 3 (a)
pE B (E€T) (b)
Ba —f (c)
B —-A (d)
avé —éav (LreT) (e
A —a ()

Na zakladé formule (f) dostaneme A: P aP.

Potom je aplikovdna v potfebném poctu opakovani formule (e): A: P +
kaj aaj,a5, - - aj, Faj 05,0055 - a, B aj a5, - 0,005,

S opakovanim predchozich dvou krokt postupné dostaneme

a * . . e . . . * . . ... . .
A: PFaja4, - aj,0a4, a0, B oajoa, - aaj aag, B

Faaaj, aaj, - aaj oag,.

S pomoci (a) dale dostaneme A: P+*fa;, aaj, _, - - aaj, aa;j,, pomoci (b) a (c)
a s poslednim pouzitim (d) dostaneme A(P) = P.

Tim jsme popsali ¢innost norméalniho algoritmu A nad abecedou T' obracejici
slovo v abecedé T'.

SoutéZzni ulohy:

1. Necht H = {1}, M = {1, *}. Kazdé prirozené ¢islo n muze byt zapsano jako
i, coZ je slovo v abecedé H (viz pf. 3 ve studijnim textu). NapiSte schéma
algoritmu A v M, ktery je pfipustny pouze pro slova, jez jsou zapisem priroze-
ného &isla. Hodnotou algoritmu A pro libovolné 7 bude A(77) = 0. Zdiivodnéte
spravnost navrzeného algoritmu.

2. Je dana abeceda T, kterd neobsahuje znaky «, 3, v, B = T U {a, 3,7}. Se-
strojte schéma algoritmu A v abecedé B, ktery kazdé slovo v abecedé T' zdvoji
(tj. A(P) = PP). Zdivodnéte jeho spravnost.
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Reseni. a) Vyskyt znaku * ve vstupnim slové musi zptisobit, ze Markoviiv algorit-
mus nebude pro toto slovo pripustny. Toho dosdhneme tak, Ze prvnim pravidlem
schématu budeme hvézdicku stale prepisovat samu na sebe. Jinak se ma jakykoliv
pocet jednicek ve vstupnim slové zredukovat na jediny znak 1 predstavujici ¢islo
nula. To zajisti formule (2). Posledni jednicka ve slové zistane a vypocet se ukonci
podle formule (3). Zbyva oSetfit pripad, Ze vstupni slovo je prazdné. V takovém
pripadé slovo neobsahuje zapis ¢isla, proto pomoci pravidla (4) vlozime do slova
hvézdicku, coz v nasledujicim kroku vede opét k nekone¢nému vypoctu podle prvni
formule.

¥ = % (1)
11 -1 (2
1 =1 (3)
A — (4)

Rychlost vypoétu podle tohoto schématu Markovova algoritmu je linedrni, pocet
kroki vypoctu je roven nejvyse délce vstupniho slova.

b) Ulohu lze fesit s pouzitim pouze dvou pomocnych symbolii mimo abecedu 7.
Pomoci formule (5) se nejprve umisti na zacatek vstupniho slova symbol a. Po-
moci formule (1) pak timto symbolem prochézime slovo zleva doprava a za sebou
zdvojujeme jednotlivé znaky slova. V kazdém okamziku je umisténo pred znakem,
ktery ma byt v pristim kroku zdvojen, zatimco kazdy nové pridany ,dvojnik“ je
oznaCen symbolem 3 (umistén bezprostfedné pied nim). Formule (1) se pouzije
presné tolikrat, kolik znakt ma vstupni slovo. Po jejim poslednim pouziti se do-
stane symbol a az na konec slova. Dale se pouzivia opakované formule (2). Ta
zajistuje presunuti pridanych dvojniki i se svymi symboly 3 na pravy konec slova,
nepripousti vSak zménu vzajemného poradi dvojniki. V okamziku, kdy jiz nelze
pravidlo (2) pouzit, jsme v podstaté hotovi — ptivodni vstupni slovo je zdvojené,
zbyva uz jen odstranit pomocné symboly. Pred kazdym dvojnikem v pravé casti
slova se nachazi jeden symbol 3 a na samém konci slova je jeden symbol a.. VSechny
pomocné symboly snadno odstranime pravidly (3) a (4).

af —EBla (EeT) (1)
BEn —npE (EneT)  (2)
B —=A (3)
a —-A (4)
A s a (5)

Zbyvé stanovit rychlost vypoctu. Formule (4) a (5) se pouziji kazda jednou,
formule (1) a (3) kazda n-krat, kde n je pocet znaki vstupniho slova. Nej-
pracngjsi je prerovnani poradi znakid ve slové pomoci formule (2). Prvni dvoj-
nik se musi vyménit postupné se vSemi n — 1 zbyvajicimi znaky, druhy jiz jen
s n — 2 znaky, atd. Celkovy pocet pouziti pravidla (2) p¥i vypoétu je proto
(n—1)+(n—-2)+(n—-3)+...4+1 = n(n—1). Algoritmus ma tedy kvadratickou
Casovou slozitost.
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49-P—11-2

Posloupnost. Necht A = (a1, az,...,ap) je posloupnost celych ¢isel. Posloup-
nost A’ nazveme vybranou podposloupnosti této posloupnosti, jestlize vznikne
z posloupnosti A vynechanim nékterych jejich Cleni, pri¢emz poradi ostatnich
prvki zachovame. Spoleénd vybrand podposloupnost posloupnosti A, B je kazda
takova posloupnost C, ktera je vybranou podposloupnosti obou posloupnosti A i B.

Priklad. Necht A = (1,11,2,1,4,99), B = (9,4,1,2,7,1,99). Posloupnost
(1,2,1,99) je spoletnou vybranou podposloupnosti posloupnosti A, B. Posloupnost
(1,2,4) je vybranou podposloupnosti posloupnosti A, ale neni vybranou podpo-

sloupnosti posloupnosti B, takZe neni ani spole¢nou vybranou podposloupnosti A
a B.

Soutézni uloha. Mame dany dvé posloupnosti celych ¢isel A = (ay,aq,...,an)
a B = (b1,ba,...,by) s délkami M, resp. N. Tyto posloupnosti jsou uloZeny
v polich a[l...M], resp. b[1...N], jejichz obsah neni dovoleno ménit. Uvazujme
takovou spole¢nou vybranou podposloupnost posloupnosti A a B, ve které soucet
vSech jejich ¢lent je nejvétsi mozny. Napiste program, ktery vypiSe soucet ¢lent
takovéto posloupnosti.

Poznamka. Existuje algoritmus, ktery tuto tlohu resi v case imérném M x N
a paméti, jejiz velikost je imérnd mensimu z ¢isel M, N.

Priklad : Vstup: Vystup:
M=6, N=7 103
A=(1,11,2,1,4,99)
B=(9,4,1,2,7,1,99)
(Vybrané podposloupnosti se souc¢tem 103 existuji dvé: 4,99 a 1,2,1,99.)

ReSeni. V feSeni tlohy pouZzijeme metodu dynamického programovéni. Oznacéme
A; = a[1],a[2],...,ali] posloupnost tvoFenou prvnimi i ¢leny posloupnosti a, ana-
logicky B; = b[1],...,b[j]. Budeme nejprve fesit obecnéjsi ulohu: Pro kazdé i, j
(07 < M,0 < j < N) spocitame, jaky je maximdlni soucet ¢lenti spolecné
vybrané podposloupnosti posloupnosti A; a B;. Tyto maximalni soucty si budeme
zapisovat do tabulky p[0...M,0...N], kde p[i,j] je soucet maximalni spolecné
vybrané podposloupnosti posloupnosti A; a B;. Hledanym maximélnim souctem
bude tedy hodnota p[M, N].

Tabulku p budeme vypliiovat po fadcich s vyuzitim predpocitané informace
ulozené v predeslém fadku. Radek p[0] obsahuje samé nuly, protoZe neexistuje
vybran& podposloupnost prazdné posloupnosti. Radek p[i] (pro i > 0) vyplnime
podle Fadku p[i — 1] takto: Poli¢ko p[i,0] mé zfejmé hodnotu nula. Poli¢ko pli, j]
(pro j > 0) umime uréit pomoci hodnot p[i — 1,5], p[¢,j — 1] a p[i — 1,7 — 1].
Jestlize se ¢isla a[t] a b[j] neshoduji, kazda vybrana podposloupnost posloupnosti
A; a Bj je zaroven vybranou podposloupnosti posloupnosti A;_; a Bj; nebo A;
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a B;_i. Tedy v tomto piipadé je p[i, j] rovno maximu z &isel p[i — 1, 7] a p[i, j — 1].
Jestlize a[i] = b[j], kazd4 vybrana podposloupnost posloupnosti A; a B; je vybra-
nou podposloupnosti posloupnosti A;—; a B; nebo A; a Bj_1, nebo je vybranou
podposloupnosti posloupnosti A;_; a Bj_; s pfidanym ¢lenem afi] = b[j]. Proto
pli, 7] je rovno maximu z ¢isel pli — 1, 4], pi,7 — 1] a p[i — 1,5 — 1] + a[i].
Navrzeny algoritmus méa ¢asovou slozitost O(M N). Pamétova slozitost je také
O(MN). Jelikoz kazdy fadek tabulky p zdvisi pouze na predchézejicim fadku,
staci si pamatovat jen posledni dva fadky (pti pocitani fadku p[i] si pamatujeme
predchazejici radek p[i — 1]; v programu p; oznacuje fadek p[i — 1] a p, fadek p[i]),
pamétova slozitost algoritmu je p¥i této realizaci proto pouze O(M + N).

program Posloupnost;

const MAX = 1000;

var a,b: array[1..MAX] of integer;

var pl,p2: array[0..MAX] of integer;
M,N,i,j: integer;

Begin
for i:=0 to N do p1[i]:=0;
p2[0] := 0;

for j:=1 to M do begin
for i:=1 to N do begin
if p2[i-1] > p1[i] then p2[i] := p2[i-1]
else p2[i] := pi1[il;
if (b[i] = alj]) and (p1li-1]+alj] > p2[il) then
p2[il] pili-11+alj];
end;
for i:=1 to N do pi1[i] := p2[i];
end;
Writeln(’Nejvét3i soulet podposloupnosti je: ’,p1[N]);
End.

50=P=1-2

Posel. Na kralovstvi krale Mirumila III. zattocila nepratelska vojska a podarilo se
jim obsadit nékolik mést. Kral nyni potiebuje dat svému generalovi prikaz k pro-
tittoku (bez prikazu preci generdl nemtze bojovat). General vSak momentalné
provadi inspekci vojsk v jiném meésté. Je proto tfeba vyslat posla, ktery prikaz
co nejrychleji doruci. Prikaz ovSem v zZadném pripadé nesmi padnout do rukou
nepftitele! Proto se posel musi neustale drzet co nejdale od nepfitelem obsazenych
mést. Vasim tkolem je navrhnout pro posla co nejlepsi trasu.

Soutézni tloha: Program dostane na vstupu zadany pocet mést N (1 £ N < 100).
Jednotliva mésta budeme oznacovat ¢isly 1...N. Déle je na vstupu uveden pocet
cest M (1 < M < 10000) a seznam téchto cest vedoucich mezi mésty. Kazda cesta
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je urcena dvojici ¢isel mést, kterd spojuje. Cesty se kiizi pouze ve méstech a je
mozno se po nich dostat z libovolného mésta do libovolného (pfipadné pres mésta
jind). Dalsi udaj K zadany na vstupu urcuje pocet mést obsazenych nepfitelem,
nasleduje seznam obsazenych mést. Nakonec program dostane ¢islo mésta, odkud
vyrazi posel, a ¢islo mésta, kde se zdrzuje general. Vs program ma nalézt trasu,
jejiz vzdéalenost od mést obsazenych nepritelem je maximalni. Pokud existuje ta-
kovych tras vice, program urc¢i libovolnou nejkrat$i z nich. Vzdalenost mést A a B
pocitame jako minimalni pocet cest, po kterych musime projit, abychom se dostali
z mésta A do mésta B. Vzdalenost trasy od mésta A je pak nejmensi ze vzdale-
nosti mésta A od jednotlivych mést lezicich na uvazované trase. Vzdalenosti trasy
od obsazenych mést rozumime nejmensi ze vzdéalenosti mezi trasou a nékterym
z obsazenych mést nebo nulu pokud nékteré mésto na trase samé je obsazeno.

Format vstupu: Prvni fadek vstupniho souboru posel.in obsahuje cisla NV
(pocet mést) a M (pocet cest). Po ném néasleduje M radki, z nichz kazdy obsahuje
popis jedné cesty. Cesta je popsana dvojici ¢isel koncovych mést. Nasleduje radek
s Cislem K (poclet obsazenych mést) a za nim K fadku s ¢isly obsazenych mést.
Posledni fadek vstupniho souboru obsahuje ¢islo mésta, odkud vyjizdi posel, a ¢islo
mésta, kde dli general.

Format vystupu: Vystupem programu v souboru posel.out jsou ¢isla mést na
nejlepsi nalezené trase uvedend v poradi, v jakém jimi mé posel projizdét. Vsechna
Cisla mést jsou zapsana na jediném fadku vystupniho souboru a jsou oddélena
mezerami.

Priklad: posel.in posel.out
10 12 19105
1

O P, 0N O = N b W N
© 010 N O O 0 W W N

-
o

-
(6 N e)

3
15
Reseni. Algoritmus fedici tuto tlohu se d4 rozdélit do t¥i fazi. V prvni fazi se

pro kazdé mésto spocita, jakd je jeho vzdalenost od nepfitelem obsazenych mést
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(ve smyslu definice uvedené v zadani). Ve druhé fazi se zjisti, jakou maximalni
vzdélenost od nepratelskych mést dokaZzeme udrzet pii cesté z pocate¢niho do
cilového mésta. Ve tieti fazi pak nalezneme nejkratsi z tras vedoucich z poc¢atecniho
do cilového mésta, které udrzuji spoctenou vzdalenost.

Pruni fdze: Vzdéalenost od obsazenych mést budeme hledat pomoci prohleda-
vani do sitky. U kazdého mésta si budeme udrzovat informaci, zda jsme v ném jiz
byli (na poc¢atku bude nastaveno pravé u viech obsazenych mést) a jeho vzdélenost
od nepritele. Pro mésta obsazena nepfitelem bude tato vzdalenost rovna 0. Dale si
budeme udrzovat frontu mést ke zpracovani, do které na zacatku ulozime vSechna
nepratelskd mésta. V kazdém kroku vypoctu vzdy vezmeme jedno mésto z fronty
a u vSech jeho soused, ve kterych jsme dosud nebyli, nastavime vzdalenost o jedna
vétsi, nez je vzdalenost vybraného mésta. U vSech téchto sousedii také oznacime,
Ze jsme v nich uz byli, a pfiddme je na konec fronty. Prvni fize vypoc¢tu kondi,
kdy?Z se vypréazdni fronta. Tehdy jsme prosli vSechna mésta a urcili jsme vzdalenost
kazdého z nich od nepfitele.

Druha fize: V této fazi si budeme udrzovat front hned nékolik, pro kazdou
vzdélenost od nepratelskych mést jednu. Dale si pro kazdé mésto budeme za-
znamendavat, zda jsme v ném uZ byli. Také si budeme pamatovat dosud nejvétsi
nalezenou vzdalenost, kterou dokazeme udrzet od nepritele. Na zacatku nastavime
udrZzitelnou vzdalenost od nepfitele na hodnotu vzdélenosti kralovského mésta od
nepftitele a toto mésto vlozime do fronty pro prislusnou vzdéalenost. U tohoto mésta
také nastavime, Ze jsme v ném uz byli. Vypocet probiha tak, Ze postupné vyzve-
davame mésta z fronty pro aktudlni udrzitelnou vzdélenost, dokud se tato fronta
nevyprazdni. Kdyz se fronta vyprazdni, snizime udrzitelnou vzdalenost o jedna
a opét zaCneme vybirat mésta z prislu$né fronty. Vzdy, kdyz vezmeme néjaké mésto
z fronty, projdeme vSechny jeho sousedy, u dosud nenavstivenych z nich nastavime
priznak, Ze uz jsme je nenavs§tivili, a pridame je do fronty — jestlize je vzdalenost
takového mésta od nepratelskych mést vétsi, nez je aktudlni udrzitelna vzdalenost,
pridame vrchol do fronty odpovidajici aktualni udrzitelné vzdéalenosti, jinak mésto
pridame do fronty odpovidajici jeho vzdélenosti od nepratelskych mést. Druhé faze
konci, jakmile vybereme z fronty cilové mésto. Aktualni udrzitelnd vzdalenost je
pak vyslednou udrzitelnou vzdalenosti.

Treti faze: Tato faze predstavuje opét prosté prohledavani do Sifky. Pro kazdé
mésto si pamatujeme, zda jsme v ném jiz byli, a pokud ano, zaznamename si také
mésto, ze kterého jsme do néj prisli. Opét pouzivame frontu na dosud nezpracovana
mésta. Na zacatku vlozime do fronty cilové mésto. U néj nastavime, ze jsme v ném
jiz byli, a jako jeho predchiidce nastavime je samé. V kazdém kroku vypocétu pak
vezmeme jedno mésto z fronty a projdeme vSechny jeho sousedy. Kazdého souseda,
kterého jsme dosud nenavstivili a jehoz vzdalenost od nepratelskych mést je vétsi
nebo rovna vysledné udrzitelné vzdalenosti, oznac¢ime jako navstiveného a pridame
ho na konec fronty. Také u néj jako mésto, ze kterého jsme prisli, nastavime pravé
vybrané mésto. Prohledavani konci ve chvili, kdyz je z fronty vyzvednuto pocatecni
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(kralovské) mésto. Poté uz jenom projdeme cestu z pocateéniho do cilového mésta
(to je velmi snadné diky odkaziim na mésta, odkud jsme do nich pii prohledavani
prisli) a cestu vypiSeme.

Algoritmus ma casovou slozitost O(M + N), kde M je pocCet cest a N je pocet
mést,.

Spravnost algoritmu budeme ukazovat opét po fazich. To, Ze algoritmus spocte
spravné vzdalenosti od nepratelskych mést v prvni fazi, plyne z ndasledujiciho:
Na pocatku maji vSechny vrcholy se vzdélenosti nula tuto vzdalenost prirazenu.
V okamziku, kdy jsou zpracovany vSechny vrcholy vzdalenosti nula, prosli jsme
vSechny jejich sousedy, ptiradili jsme jim vzdalenost jedna a zaradili je do fronty.
Protoze jiné vrcholy vzdélenost jedna mit nemohou, je vzdalenost jedna piifazena
pravé vSem spravnym vrcholim. Tuto Gvahu lze snadno zobecnit pro libovolnou
vzdélenost D. Prohledavani tedy skutecné urc¢i vzdalenosti od nepratelskych mést
Spravné.

Ve druhé fazi se spravné spocitd maximalni udrzitelnd vzdalenost od obsaze-
nych mést. Sledujeme v ni totiz soubézné vsechny mozné trasy vedouci z poca-
te¢niho mésta tak dlouho, dokud dokazeme udrzet vzdalenost pocatecniho mésta
(vyslednd vzdalenost od nepfitele zfejmé nemize byt vétsi nez vzdélenost po-
¢ateéniho mésta). Kdyz uz neexistuje mésto s dostateéné velkou vzdélenosti, do
kterého bychom mohli jit, snizime udrzitelnou vzdalenost o jedna. VSechny vrcholy
se vzdalenosti o jedna nizsi, do kterych se dokdzeme dostat pres vrcholy s dosa-
vadni udrzitelnou vzdélenosti, mame jiz pfipraveny v prislu$né fronté a zacneme
tedy prohledavat z nich. Protoze udrzitelnou vzdalenost snizujeme az kdyz jsme se
jiz dostali vSude, kam to bylo mozné, jeji vysledna hodnota bude zfejmé nejvyssi
mozna.

To, ze ve tteti fazi nalezneme nejkratsi trasu s danou vzdalenosti, je zfejmé.
Provadime totiz jednoduché prohledavani do Sitky s tim, Ze ignorujeme mésta
s prilis malou vzdalenosti od nepritele. Nalezneme tedy urcité trasu s dostatec-
nou vzdalenosti od nepritele. Skutecnost, ze to bude trasa nejkratsi mozna, plyne
z vlastnosti prohledavani do Sitky uvedenych v prvni ¢asti diikazu.

Program je primou implementaci uvedeného algoritmu.
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Vysledky celostatniho kola 41. roéniku MO
kategorie A

Vitézove
1.-2. Lubos Motl, 4 G Plzen, Opavska, 42b.
Michal Stehlik, 4 G Brno, kpt. Jarose, 42b.
3. Juraj Lanyi, 4 GAM Bratislava, 41b.
4.-6. Kamil Budinsky, 3 GJH Bratislava, 38b.
Vit Novdk, 3 G Praha, Korunni, 38Db.
Pavel Rizicka, 4 G Brno, kpt. JaroSe, 38Db.
7.~11. Ondrej Klima, 3 G Brno, kpt. JaroSe, 37h.
Michal Kubecek, 4 G Praha, Korunni, 37b.
Martin Niepel, 2 GAM Bratislava, 37b.
Matej Ondrusek, 3 GJH Bratislava, 37h.
Daniel Stefankovi¢, 3 GAM Bratislava, 37b.
12.-16. Viliam Bur, 3 GAM Bratislava, 35b.
Pavol Mederly, 4 GAM Bratislava, 35b.
Filip Miinz, 4 G Brno, kpt. JaroSe, 35b.
Josef Mensik, 4 G Brno, kpt. Jarose, 35b.
Herbert Vojcik, 4 G Kosice, Pivovarska, 35b.
17.-19. Richard K. Kollar, 3 GAM Bratislava, 34b.
Lubos§ Pdstor, 4 G Kosgice, Pivovarska, 34b.
Andrej Zlatos, 2 GAM Bratislava, 34b.

Dalsi uspésni resitelé

20.-21. Katarina Skalova, 3 GAM Bratislava, 33b.
Michal Skokan, 2 G Zilina, Velka Okruzna, 33b.
22.-23. Pavol Marton, 3 GAM Bratislava, 32b.
Petr Novotny, 4 G Praha, Korunni, 32b.
24.-26. Petr Staufcik, 3 GMK Bilovec, 31b.
Milos Volauf, 3 GAM Bratislava, 31b.
Tomds Zellerin, 4 G Usti n. L., Jate¢ni, 31b.
27.-29. Jiri Cerny, 3 G Plzeni, Mikula$ské nam., 30b.
Roman Koch, 4 GMK Bilovec, 30b.
Viclav Kominek, 3 G Brno, kpt. Jarose, 30b.
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30.-36.

37.-43.

90

Martin Benes, 3 GMK Bilovec,

Marcela Hlawiczkovd, 3 G TFinec,

Jan Manuch, 4 G KoSice, Pivovarska,

Dusan Svitek, 4 G Ban. Bystrica, Tajovského,
Jana Uhrovd, 3 GMK Bilovec,

Jirt Vanicek, 3 G Praha, Korunni,

Jan Zabka, 3 G Zilina, Velka Okruzna,
Tomds Bruna, 3 G Zilina, Velkd Okruzna,
Martin Kacer, 3 G Liberec,

Ladislav Kis, 4 GAM Bratislava,

Matej Kordos, 4 GJH Bratislava,

Alezander Kupco, 4 GMK Bilovec,

Roman Mackovéik, 4 G Banska Stiavnica,
Michael Schenk, 4 G C. Budé&jovice, Jirovcova,

29b.
29b.
29b.
29b.
29b.
29b.
29b.
28b.
28 b.
28b.
28b.
28b.
28b.
28 b.



13.-16.

17.-18.

19.-22.

23.-26.

Vysledky celostatniho kola 41. roéniku MO

kategorie P

Vitézove

. Matej Ondrusek, 3 GJH Bratislava

. Michal Kubecek, 4 G Praha, Korunni

. Herbert Vojcik, 4 G Kosice, Pivovarskd

. Jana Syrovdtkovd, 3 G Brno, kpt. Jarose
. Tomas Vinar, 2 G Kosice, Srobarova

Jan Kotas, 4 G Plzen, Mikulasské nam.

. Jan Kybic, 4 G Praha, Korunni

Rastislav Kralovic, 3 G Bratislava, Vazovova

. Pavel Kankovsky, 4 G Brno, kpt. Jarose
. Michal Koucky, 4 G Praha, Korunni

Daniel Stefankovi¢, 3 GAM Bratislava

. Pavel Petrovi¢, 3 GJH Bratislava

Dalsi uspésni tesitele

Martin Helmich, 4 G Mlada Boleslav
Jaroslav Kaas, 4 G Plzen, Mikulasské nam.
Martin Mares, 1 G Praha, U liben. zamku
Karel Srsen, 4 G BeneSov

Peter Budai, 4 G Kosice

Tomas Nemec, 4 G Beroun

Juraj Bardt, 3 G Kogice, Srobarova

Milan Bok, 3 G Praha, Korunni

Vit Nowdk, 3 G Praha, Korunni

Dusan Vallo, 4 GJH Bratislava

Marek Gura, 4 G Poprad

Richard Ostertag, 4 GJH Bratislava
Michael Schenk, 4 G C. Budé&jovice, Jirovcova
Jiri Vanicek, 3 G Praha, Korunni

40b.
37b.
30b.
29b.
28b.
28 b.
27b.
27b.
26 b.
25b.
25b.
24b.

22b.
22b.
22b.
22b.
22b.
22b.
19b.
19b.
19b.
19b.
18b.
18b.
18b.
18b.
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Vysledky celostatniho kola 42. roéniku MO

kategorie A

Vitézove

Villiam Bur, 4b G Bratislava, Grosslingova
Andrej Zlatos, 3b G Bratislava, Grosslingova
Jiri Cerny, 4a G Plzeii, Mikul4asské nam.
Michal Brodsky, 4a G Brno, kpt. JaroSe
Jana Syrovdtkovd, 4a G Brno, kpt. Jarose

. Marek Macuha, 3b G Bratislava, Grosslingova

Vit Novdk, 4e G Praha 2, Korunni

8. Robert Simal, 2d G Praha 2, Korunni

12.-14.

15.
16.
17.-19.

20.-24.

25.-26.

27.-28.
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. Petr Kanouvsky, 2a G Brno, kpt. Jarose

Pavol Marton, 4 G Bratislava, Grosslingova
Daniel Stefankovic, 4b G Bratislava, Grosslingova
Marcela Hlawiczkova, 4c G Ttinec

Daniel Pastor, 3b G Bratislava, Grosslingova

Jiri Vanicek, 4e G Praha 2, Korunni

Ondrej Klima, 4a G Brno, kpt. Jarose

Frantisek Vymazal, 4a G Brno, kpt. Jarose

Jan Mach, 3¢ G Bilovec

Martin Niepel, 3b G Bratislava, Grosslingova
Martin Vagasky, 3b G Bratislava, Grosslingova

Dalsi uspésni tesitelé

Kamil Budinsky, 4b G Bratislava, Novohradska
Blazej Neradilek, 3a. G Brno, kpt. JaroSe

Jan Rychtar, 2¢ G Strakonice

Katarina Skalovd, 4b G Bratislava, Grosslingovéa
Juraj Slanicka, 4 G Bratislava, Grosslingova
Jana Uhrova, 4d G Bilovec

Milos Volauf, 4 G Bratislava, Grosslingova
Matej Ondrusek, 4b G Bratislava, Novohradska
Marek Zabka, 4f Bansk4 Bystrica, Tajovského

35b.
34b.
32b.
31b.
31b.
30b.
30b.
29b.
28b.
28 b.
28 b.
27b.
27b.
27b.
26 b.
25b.
24b.
24Db.
24b.

23b.
23b.
23b.
23b.
23b.
22b.
22b.
21b.
21b.



29.-31.

32.-35.

.36.-38.

Milan Hokr, 3d G Praha 2, Korunni

Filip Krska, 2a G Brno, kpt. JaroSe

Libor Masicek, 2a G Brno, kpt. JaroSe

ITvana Brudndkovd, 2e G PreSov, KonStantinova
David Kruml, 4a G Brno, kpt. Jarose

Boris Krupa, 1 G Bratislava, Grosslingova
Petr Vachovec, 3a G Plzen, Mikulasské nam.
Matus Kirchmayer, 3a G Bratislava, Metodova
Mikulas Pinos, 3a G Brno, kpt. Jarose

Martin Semerdd, 4¢ G Praha 2, Korunni

20b.
20b.
20b.
19b.
19b.
19b.
19b.
17b.
17b.
17b.
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14.-15.

16.-19.

20.
21.-25.

26.-28.

94

Vysledky celostatniho kola 42. roéniku MO

kategorie P

Vitézove

Tomds Vinat, 3.A G Kosice, Srobarova

Jiri Vanicek, 4. E G Praha, Korunni

Martin Mares, 2.E G Praha, U lib.zamku
Martin Niepel, 3.B G Bratislava, Grosslingova
Matej Ondrusek, 4.B G Bratislava, Novohradska

. Bronislava Brejovd, 3.B G Bratislava, Novohradska
. Vit Novak, 4.E G Praha, Korunni

Daniel Stefankovi¢, 4.B G Bratislava, Grosslingova

. Jiri Hanika, 4.F. G Praha, Korunni

Cyril Sochor, 4. E G Praha, Korunni

. Martin Gazik, 3.B G Zilina, V.okruzna

Ondrej Pdr, 3.D G MK Bilovec
Jana Syrovatkova, 4.A G Brno, kpt. Jarose

Dalsi uspésni resitelé

ITvana Brudndkova, 2.E G PreSov, Konst.
Rastislav Kralovié, 4.F G Bratislava, Vazovova
Milan Bok, 4. E G Praha, Korunni

Zoltan Bugar, 4.A G Galanta

Pavel Machek, 2.D G Praha, Korunni

Ondrej Poradek, 4. E G Praha, Korunni

Jan Mach, 3.C G MK Bilovec

Marek Fekete, 4.A G Michalovce

Patrik Hornik, 2.B G Bratislava, Grosslingova
Boris Letocha, 3.A G H. Kralové, Tylovo nam.
Robert Simal, 2.D G Praha, Korunni

Martin Vagasky, 3.B G Bratislava, Grosslingova
Kamil Budinsky, 4.B G Bratislava, Novohradska
Pavel Petrovi¢, 4.B G Bratislava, Novohradska
Marian Varga, 3.A G Bratislava, Novohradska

33b.
31b.
30b.
30b.
30b.
29b.
26 b.
26 b.
23b.
23b.
22b.
22b.
22b.

20b.
20b.
19b.
19b.
19b.
19b.
18D.
17b.
17b.
17b.
17b.
17b.
16 b.
16 b.
16b.



10.-11.

12.-13.

14.-16.

17.-20.

21.-22.

23.-24.

26.

Vysledky celostatniho kola 43. roéniku MO

kategorie A

Vitézove

David Pavlica, 3.xr. GMK Bilovec, 17. listopadu
Martin Necesal, 3.r. G Brno, kpt. Jarose
Robert Sdmal, 3.r. G Praha 5, Zborovska

Petr Kanovsky, 3.r. G Brno, kpt. Jarose

Libor Masicek, 3.r. G Brno, kpt. Jarose

. Jan Mach, 4.xr. GMK Bilovec, 17. listopadu

David Opéla, 2.r. GMK Bilovec, 17. listopadu

. Filip Krska, 3.r. G Brno, kpt. JaroSe

Jan Vanek, 4.xr. G Praha 5, Zborovska

Michal Benes, 2.r. G Praha 5, Zborovska

Michal Fabinger, 3.r. G Praha 6, Nad aleji
Michaela Prokesovd, 3.r. G C. Budgjovice, Jirovcova
Jan Rychtar, 3.r. G Strakonice, Machova

Dalsi uspésni resitelé

Prantisek Sanda, 4.r. GJV Klatovy, Nar. mucedniki
Jaroslav Sevcik, 4.x. G Brno, kpt. Jarose

Karel Vigbornyg, 2.r. G Praha 5, Zborovska

Igor Gliicksmann, 4.xr. G Pisek, Komenského
Stanislav Hencl, 4.r. G Pardubice, Dasicka

Jitka Necasova, 4.r. G Praha 5, Zborovska

Petr Vilim, 2.r. GMK Bilovec, 17. listopadu

Milan Hokr, 4.r. G Praha 5, Zborovska

Jan Hradil, 4.r. G Brno, kpt. Jarose

Michal Johanis, 4.r. GJKT Hradec Kr., Tylovo nabr.

Daniel Krdl, 2.x. G Zlin, Lesni ¢tvrt
Karel Svadlenka, 3.r. G C. Budgjovice, Jirovcova
Pavel Kérber, 4.r. G Praha 5, Zborovska

29b.
28 b.
27b.
26 b.
26 b.
24b.
24 b.
23b.
23b.
21b.
14b.
20b.
20b.

18b.
18 b.
18b.
17b.
17b.
17b.
17b.
16 b.
16b.
15b.
15b.
15D.
14b.
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Vysledky celostatniho kola 43. roéniku MO

kategorie P

Vitezove

. Robert Spalek, 2.r. G Brno, ti. kpt. JaroSe

2. Petr Kanowvsky, 3.r. G Brno, tf'. kpt. JaroSe

14.

96

. David Stanovsky, 3.r. G Pardubice, Dasicka

Daniel Skarda, 4.r. G Praha, Zborovska
Petr Novdk, 4.r. G Brno, tf. kpt. Jarose

Dalsi uspésni tesitelé

Jaroslav Sevcik, 4.r. G Brno, ti. kpt. Jarose
Jiri Hajek, 3.r. G Praha 5, Zborovska

Tomas Miiller, 2.xr. G M. Boleslav, Palackého
Mikulds Patocka, 1.xr. G Brno, tf. kpt. Jarose
StanislavHencl, 4.r. G Pardubice, Dasicka

. Jan Kratochvil, 1.r. G Praha 8, U libenského zamku

Martin Mares, 3.r. G Praha 8, U libenského zamku
Jiri Valasek, 4.r. G Jablonec n. N., U balvanu
Pavel Machek, 3.r. G Praha 5, Zborovska

31b.
30b.
28b.
28b.
27b.

25b.
24b.
23b.
23b.
22b.
21b.
21b.
21b.
20b.



13.
14.-17.

18.-19.

20.
21.
22.-23.

Vysledky celostatniho kola 44. roéniku MO
kategorie A

Vitezove

. Robert Simal, 4.r. G Praha 5, Zborovska
. David Pavlica, 4.r. GMK Bilovec
. Filip Krska, 4.r. G Brno, kpt. Jarose

Libor Masicek, 4.r. G Brno, kpt. Jarose

. Karel Svadlenka, 4.r. G Ceské Budé&jovice, Jirovcova

Tomas Barta, 3.r. G Praha 5, Zborovska
Robert Spalek, 3.x. G Brno, kpt. Jaroge
Martin Necesal, 4.r. G Brno, kpt. JaroSe

. Petr Kanouvsky, 4.r. G Brno, kpt. JaroSe

Dalibor Smid, 3.r. G Plzeii, Mikul4asské nam.

. Michal Benes, 3.r. G Praha 5, Zborovska

Michaela Prokesovd, 4.r. G Ceské Budéjovice, Jirovcova
Dalsi uspésni tesitelé

Jan Vybiral, 2.r. GMK Bilovec

Petr Pudlak, 2.r. G Praha 5, Zborovska
David Stanovsky, 4.r. G Pardubice

Norbert Vanék, 4.xr. G Praha 5, Zborovska
Samuel Zajicek, 3.r. G Praha 10, Vodéradska
Milan Roupec, 4.r. G Brno, kpt. Jarose

Petr Vodstreil, 3.r. G Policka

Michal Fabinger, 4.xr. G Praha 6, Nad aleji
Petr Marik, 4.x. G Plzen, Mikulasské nam.
Hedvika Simkovd, 4.r. G Plzen, Mikuld$ské nam.
Petr Skovroti, 3.r. GMK Bilovec

42b.
40b.
35b.
35b.
33b.
31b.
29b.
27b.
26b.
26 b.
25b.
25b.

23 b.
22b.
22b.
22b.
22b.
20b.
20b.
18 b.
17b.
16 b.
16 b.
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N

12.
13.-14.

15.-17.
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0 o =

Vysledky celostatniho kola 44. roéniku MO

kategorie P

Vitézove

Martin Mares, 4.r., G Praha 8, Liben

Jiri Hdjek, 4.r., G Praha 5, Zborovska
Daniel Krdl, 3.r., G Zlin, Lesni ¢tvrt
Martin Necesal, 4.r., G Brno, tf. kpt. Jarose
David Stanovsky, 4.r., G Pardubice, Dasicka
Robert Simal, 4.r., G Praha 5, Zborovska
Robert Spalek, 3.r., G Brno, ti. kpt. JaroSe

. Pavel Machek, 4.r., G Praha 5, Zborovska

Dalsi uspésni Tesitele

. Mikulds Patocka, 2.r., G Brno, tf. kpt. Jarose
10.-11.

Ondrej Chum, 4.r., G Praha 5, Zborovska

Jan Kratochvil, 2.r., G Praha 8, Liben

Stanislav Mikes, 3.r., G Ceské Budgjovice, Jirovcova
Tomds Miiller, 3.x., G Dr. J. Pekare Ml. Boleslav
Ondrej Najdek, 3.x., G M. Kopernika Bilovec

Petr Mafik, 4.r., G Plzen, Mikulasské nam.

Petr Vilim, 2.r., G M. Kopernika Bilovec

Roman Zenka, 3.r., G Ceské Budgjovice, Jirovcova

49b.
48b.
44b.
43 b.
43 b.
43 b.
42b.
40b.

39b.
38b.
38b.
33b.
31b.
31b.
30b.
30b.
30b.



10.-11.

12.-13.

14.

15.-17.

18.-20.

21.

Vysledky celostatniho kola 45. ro¢niku MO

kategorie A

Vitézove

. David Opéla, 4.r. GMK Bilovec

. Tomds Barta, 4.r. G Zborovska, Praha
. Jan Spévak, 3.r. G Hellichova, Praha

. Michal Benes, 4.r. G Zborovska, Praha
. Daniel Kral, 4.r. G Zlin '

Robert Spalek, 4.x. G ti. Kpt. Jarose, Brno

. Tomas$ Brauner, 3.r. G Moravsky Krumlov

Petr Vilim, 4.r. GMK Bilovec

Jan Vybiral, 3.r. GMK Bilovec

Karel Vyborny, 4.r. G Zborovska, Praha
Petr Vodstréil, 4.xr. G Policka

Dalsi uspésni tesitelé

Roman Zerika, 4.x. G Jirovcova, C. Budé&jovice
Pavel Strnad, 5.r. GFXS Liberec

Zbynék Pawlas, 4.r. GMK Bilovec

Petr Pudldk, 3.xr. G Zborovska, Praha

Jana Flaskovd, 3.r. Svob. cheb. skola, Cheb
Petr Skovroti, 4.r. GMK Bilovec

Jan Stola, 3.r. G Zborovska, Praha

Radek Pelinek, 2.r. G tf. Kpt. Jaro$e, Brno
Jiri Benedikt, 4.r. G MikulaSské nam., Plzen
Karel Zikmund, 4.xr. G Jihlava

34b.
32b.
29b.
28b.
26b.
26 b.
23b.
23 b.
22b.
21b.
21b.

20b.
20b.
17b.
15b.
15b.
15b.
14b.
14 b.
14b.
13b.

99



Vysledky celostatniho kola 45. roéniku MO
kategorie P

Vitezove

1. Daniel Krdl, 4 G Zlin 48 b.
2. Stanislav Mikes, 4 G Jirovcova, Ceské Bud&jovice 38b.
3.—4. Michal Benes, 4 G Zborovska, Praha 37h.
Tomas Tichy, 4 G Dasicka, Pardubice 37h.
5. Robert Spalek, 4 G ti. Kpt. JaroSe, Brno 35b.
6. Jan Vodicka, 4 G Zborovska, Praha 33b.
7.-8. Tomas Miiller, 4 G J. Pekafe, Mlada Boleslav 32b.
Mikulas Patocka, 3 G Kpt. Jarose, Brno 32b.

Dalst uspésni Tesitelé
9. Pawvel Jelinek, 4 G Mikulasské nam., Plzen 30b.
10.-13. Viastimil Janda, 5 G Humpolec 29b.
Véroslav Kaplan, 3 G tf. Kpt. JaroSe, Brno 29b.
Petr Vilim, 4 GMK Bilovec 29 b.
Roman Zenka, 4 G Jirovcova, Ceské Bud&jovice 29b.
14. Ales Privetivy, G Dasickd, Pardubice 28 b.
15.-16. Jan Brezina, 3 G F.X. Saldy, Liberec 27b.
Karel Zikmund, 4 G Jihlava 27b.
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10.-13.

14.-15.

16.-17.

18.-20.

21.-23.

Vysledky celostatniho kola 46. roéniku MO

kategorie A

Vitezove

. Petr Zima, 3 G nam. dr. E. Benese, Kladno
. Libor Barto, 3 G Hellichova, Praha 1
. Jan Vybiral, 4C GMK 17. listopadu 526, Bilovec

Tomds Brauner, 4B G Smetanova 168, Mor. Krumlov
Pavel Podbrdsky, 3A G t¥. Kpt. Jaro$e, Brno

Martin Viscor, 2A G tf. Kpt. JaroSe, Brno

Jan Spévdk, 4A G Hellichova, Praha 1

Jan Stovicek, 3 G nam. dr. E. Benese, Kladno

Dalsi iuspésni resitelé

Tomas Hanzl, 3A G tf. Kpt. JaroSe, Brno

Radek Pelanek, 3A G tf. Kpt. Jaro$e, Brno

Jan Stola, 4D G Zborovska 45, Praha 5

Petr Simecek, 3A G t¥. Kpt. JaroSe, Brno

Lukas Vokrinek, 2A G t¥. Kpt. Jaro$e, Brno

Jan Brezina, 4 G FXS, Partyzanska 530/1, Liberec
Jana Flaskovd, 4 Svob. cheb. §., Kubelikova 4, Cheb
Ales Benda, 4C GMK 17. listopadu 526, Bilovec
Roman Roznik, 3A G tf. Kpt. JaroSe, Brno

Eva Buresovd, 2A G tf. Kpt. JaroSe, Brno

Libor Inovecky, 3 G Zborovska 45, Praha 5

Jiri Houska, VII G Mikulasské nam. 23, Plzen
Oldrich StraZovsky, 4A G t¥. Kpt. Jaro$e, Brno
Ales Navrat, 2A G t¥. Kpt. JaroSe, Brno

Filip Matéjka, 3 G Zborovska 45, Praha 5

38b.
33b.
32b.
32b.
30b.
30b.
30b.
29b.

26b.
25b.
25b.
25b.
25b.
24b.
24 b.
23b.
23b.
22b.
22b.
22b.
21b.
21b.
21b.
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Vysledky celostatniho kola 46. roéniku MO
kategorie P

Vitézove

. Mikulds Patocka, 4.A G tf. kpt. JaroSe 14, Brno

2. Jan Kratochvil, 4.C G U libeniského zadmku, Praha 8

7-11.

12.-13.

14.-16.

102

. Filip Kabrt, 4.A G Litoméricka 720, Praha 9

Radek Pelanek, 3.A G tf. kpt. JaroSe 14, Brno

. Ales Privetivy, 7. G Dasickd 1083, Pardubice
. Jan Taus, 3.A 1. G Mikulasské nam. 23, Plzen

Dalsi uspésni Tesitelé

Jan Biezina, 4D GFXS Partyzanska 530/3, Liberec 11
Vlastimil Janda, sexta G Komenského ul., Humpolec
Petr Chaloupka, 4.C G Zborovska 45, Praha 5

Petr Sedldicek, 4.C G Husova 470, BeneSov

Petr Simecek, 3.A G t¥. kpt. Jarose 14, Brno

Ladislav Kavan, 6.A G Ustavni 400, Praha 8

Viadimir Sisma, 3.r GMK, 17 listopadu 526, Bilovec
Karel Carva, VIG Gymnéazium, Téabor

Véroslav Kaplan, 4.A G tf. kpt. Jarose 14, Brno

Jiri Srain, septima G VAgnerovo nam. 458, Beroun

31b.
26 b.
25b.
25b.
23b.
22b.

21b.
21b.
21b.
21b.
21b.
20b.
20b.
19b.
19b.
19b.



12.-13.

14.
15.-16.

17.-18.

19.-20.

21.-22.

23.-25.

Vysledky celostatniho kola 47. roéniku MO
kategorie A

Vitézové

. Libor Barto, 4. G Hellichova 3, Praha 1

Pavel Podbrdsky, 4. M G tf. Kpt. JaroSe, Brno
Lukas Vokrinek, 3. M G ti. Kpt. JaroSe, Brno

. Tomas Hanzl, 4. M G tf. Kpt. JaroSe, Brno

Libor Inovecky, 4. M G Zborovska 45, Praha 5

Martin Viscor, 3. M G tf. Kpt. JaroSe, Brno

Martin Ondrdcek, VIL. G, Kyjov

Eva Buresovd, 3. M G tr. Kpt. JaroSe, Brno

Zdenék Dvordk, VI. G L. Cecha 152, Nové Mésto n. Mor.

. Petr Liska, 3. M G tf. Kpt. Jaro$e, Brno

Jan Stovicek, 4. G nam. dr. E. Benese 1573, Kladno
Dalsi uspésni resitelé

Radek Pelanek, 4. M G tf. Kpt. JaroSe, Brno
Petr Zima, 4. G nam. dr. E. BeneSe 1573, Kladno
Petr Simecek, 4. M G t¥. Kpt. Jaroge, Brno
Martina Kupcikovd, 3. M G tf. Kpt. JaroSe, Brno
Ales Navrat, 3. M G t¥. Kpt. JaroSe, Brno

Jan Houstek, 3. G Jirsikova 244, Pelhfimov

Petr Lastovicka, 4. G Komenského nam. 4, Dé¢in
Filip Matéjka, 4. M G Zborovska 45, Praha 5
Lenka Zdeborovd, 3. G Mikulasské nam. 23, Plzen
Alezandr Jevsejenko, 3. M G ti. Kpt. Jaroe, Brno
Antonin Slavik, VII. G Narodni 25, Karlovy Vary
Jaroslav Jansky, 3. M G t¥. Kpt. JaroSe, Brno
Tomads Kubat, 4. G Pivovarska 323, Domazlice
Jan Petr, 4. M G Zborovska 45, Praha 5

42b.
42b.
42b.
41b.
41b.
40b.
37b.
36b.
36b.
35b.
35b.

34b.
34b.
32b.
31b.
31b.
30b.
30b.
29b.
29b.
26 b.
26 b.
25b.
25b.
25b.
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S O s 69 1o

10.-11.

12.-13.

104

Vysledky celostatniho kola 47. roéniku MO
kategorie P

Vitézove

Zdenek Dvordk, 6.A G Nové Mésto na Moravé
Pavel Nejedly, 4.A G Videnska, Brno

Jan Kara, 4.C G U liben. zdmku, Praha 8
Michal Illich, septima G Budanka, Praha 5
Radek Pelanek, 4.A G tf. Kpt. JaroSe, Brno
Petr Simecek, 4.A G t¥. Kpt. JaroSe, Brno

Dalsi uspésni resitelé

. Jaromir Malenko, 3.C G M. Kopernika, Bilovec
. Jiti Benc, 3.C G M. Kopernika, Bilovec

Vlastimil Janda, 7.r. G Dr. A. Hrdlicky, Humpolec
Ladislav Kavan, 7.A G Ustavni, Praha 8

Antonin Slavik, 7.A G Néarodni, Karlovy Vary
Lukds Kroc, 4.C G Zborovské, Praha 5

Michal Sida, septima G Tanvald

38b.
37b.
36b.
35b.
31b.
30b.

27Db.
26 b.
25b.
24 b.
24 b.
22 b.
22b.



11.
12.
13.-16.

17.-19.

20.
21.
22.

Vysledky celostatniho kola 48. roéniku MO
kategorie A

Vitézove

Jan Housték, 4. G Jirsikova 244, Pelhfimov

Zdenek Dvordk, VII G L. Cecha 152, Nové Mésto n. Mor.

David Holec, 4. M G tf. Kpt. JaroSe, Brno
Pavel Moravec, 4. M G tf. Kpt. JaroSe, Brno
Lukds Vokrinek, 4. M G tf. Kpt. Jarose, Brno

. Ales Ndvrat, 4. M G tf. Kpt. JaroSe, Brno

Martin Viscor, 4. M G tf. Kpt. JaroSe, Brno
Lenka Zdeborovd, 4. G Mikulagské nam. 23, Plzen
Lubos Dostal, VIII G a OA, Stiibro

. Karel Kyridn, G Jirovcova 8, Ceské Budgjovice

Dalsi uspésni tesitelé

Robert Kaldy, 4. M G Zborovska 45, Praha 5
Karel Honzl, 4. G Komenského 843, Podborany
Jaroslav Hlinka, 4. M G Zborovské 45, Praha 5
Jaroslav Jdansky, 4. M G tf. Kpt. JaroSe, Brno
Frantisek Némec, 2. M G Zborovska 45, Praha 5
Ondrej Rucky, VI-M G Mikulasské nam. 23, Plzen
Jaromir Dobry, VI-M G Mikula$ské ndm. 23, Plzen
Josef Kristan, V M G Mikuldsské nam. 23, Plzen
Jakub Sdcha, VII G Komenského 549/550, Kyjov
Pavel Nejedly, VII G Videnska 47, Brno

David Pelikdn, 4. SPS Strojnicka Klatovska 109
Jan Vrsouvsky, VII G FXS, Partyzanska 530/3, Liberec

41b.
40b.
30b.
30b.
30b.
29b.
29b.
26b.
25b.
24b.

20b.
19b.
17b.
17b.
17b.
17b.
14b.
14b.
14b.
13b.
12b.
11b.
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10.
11.
12.
13.
14.-16.

106

Vysledky celostatniho kola 48. roéniku MO
kategorie P

Vitézove

Zdenek Dvorak, G V. Makovského, Nové Mésto na Mor.

Michal Illich, G Budéanka, Holeckova 31a, Praha 5
Josef Zlomek, Purkynhovo G, Straznice

Jakub Bystron, G Mirova 1442, Karvind 6

Pavel Nejedly, G Videnska 47, Brno

Petr Zika, G Vodéradska 900/2, Praha 10

Dalsi uspésni resitelé

. Jiti Benc, G Mikulase Kopernika, Bilovec

Pavel Charvdt, G Ohradni 55, Praha 4

Stanislav Zivng, G Ed. Benege 449, Sobéslav
Ondrej Nekola, G Zizkova 162, Kolin

Jirt Svoboda, G Ch. Dopplera, Praha 5

Ondrej Rucky, G Mikulasské nam. 23, Plzen
Milan Roubal, G MikulaSské nam. 23, Plzen

Pavel Cizek, Dvoidkovo G a OA, Kralupy nad Vlt.
Michal Kardsek, G Jirovcova 8, Ceské Budgjovice
Jan Vriovsky, GFXS, Partyzanska, Liberec 11

28 b.
28 b.
27D.
24 b.
22b.
22b.

20b.
20b.
20b.
19b.
18b.
16 b.
15b.
13b.
13b.
13b.



11.-12.

13.
14.-16.

17.-18.

19.-20.

21.

22.

23.
24.

Vysledky celostatniho kola 49. roéniku MO
kategorie A

Vitézove

. Jan Housték, 7/7 G Jirsikova 244, Pelhfimov
. Jan Herman, 3/4 (M) G ti. Kpt. Jarose 14, Brno
. Jan Kynél, 5/6 G Kostelni 259, Jilemnice

Jan Pipek, 7/8 G Parléfova 2/118, Praha 6

. Jaroslav Hdjek, 2/4 G 17. listopadu 526, Bilovec

Ondrej Sery, 7/8 G a sport. §k. Plzefisk4 3103, Kladno
Ondrej Suchy, 6/7 G Mikulasské nam. 23, Plzen

. Josef Kristan, 6/7 G Mikulasské nam. 23, Plzen

Ondrej Rucky, 7/7 G Mikulasské nam. 23, Plzen
Rudolf Stolar, 3/4 (M) G t¥. Kpt. Jarose 14, Brno

Jan Kulveit, 7/7 G Ustavni 400, Praha 8

Tomas Protivinsky, 2/4 (M) G tf. Kpt. JaroSe 14, Brno

Dalsi ispésni Tesitelé

Martin Tancer, 2/4 (M) G Zborovska 45, Praha 5
David Chodounsky, 3/4 (M) G Zborovska 45, Praha 5
Filip Jaros, 3/4 (M) G Zborovska 45, Praha 5

Jirt Koula, 3/4 (P) G U Libenského zamku 1, Praha 8
Tomds Matousek, 7/7 G Narodni 25, Karlovy Vary
Pavel Valis, 3/4 G Dvordkovo nam. 800, Kralupy
Ondrej Bystry, 4/4 (M) G tf. Kpt. Jarose 14, Brno
Viclav Flaska, 7/8 Svob. cheb. sk. Janské nam. 15, Cheb
Jaromir Dobry, 7/7 G Mikul4$ské nam. 23, Plzen
Ondrej Kreml, 3/4 G 17. listopadu 526, Bilovec

Pavel Augustinsky, 7/7 G Studentskd 11, Havifov 2
Frantisek Némec, 3/4 (M) G Zborovska 45, Praha 5

40b.
37b.
36 b.
32b.
31b.
31b.
27b.
26 b.
26 b.
26b.
25b.
25b.

23b.
22b.
22b.
22b.
21b.
21b.
20b.
20b.
19b.
18b.
17b.
16 b.
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10.
11.
12.
13.
14.
15.
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Vysledky celostatniho kola 49. roéniku MO

kategorie P

Vitézove

Ondrej Rucky, 7/7, G Mikuld$ské ndm., Plzen

Pavel Charvdt, 7/7, G Ohradni, Praha 4

Jakub Bystroni, 7/7, G Karvind

JiFt Svoboda, 6/8, G Ch. Dopplera, Praha 5

Matyds Novdk, 7/7, G Ustavni, Praha 8

Pavel Cizek, 5/8, Dvordkovo G, Kralupy nad Vltavou
Viclav Jiza, 7/7, G Spitalsk4, Praha 9

Dalst ispésni Tesitelé

Miroslav Trmad, 7/8, Biskupské gymndazium, Brno
Roman Krejcik, 3/4, G Ch. Dopplera, Praha 5
Miroslav Pisték, 7/7, GOA Sedléany

Ondrej Sery, 7/8, G a SG Plzeiisk4, Kladno
Martin Berdnek, 6/7, G Ohradni, Praha 4
Ladislav Prosek, 7/7, G V. Hlavatého, Louny
Zdenék Bulan, 6/7, G BeneSov

Martin Vejndr, 3/8, G tf. Kpt. JaroSe, Brno

41b.
39b.
34b.
33b.
30b.
29b.
26 b.

25b.
24b.
23b.
22b.
21b.
19b.
18 b.
17b.



Uéast na mezinarodnich
olympiadach
rocniku 41-50






33. mezinarodni matematicka olympidda

10.-21. ¢ervence 1992

Moskva (Rusko)

dlohy 1. 2. 3. 4. 5. 6. body ceny poradi
Michal Kubecdek 777106 28 II 47.-50.
4. ro¢nik G Praha, Korunni
Lubo$ Motl 521706 21 IIT 93.-99.
4. rotnik G Plzen, Opavskd
Martin Niepel 731506 22 III 86.-92.
2. roénik GAM Bratislava
Pavel Rizicka 50127 4 19 III 108.-114.
4. roénik G Brno, tr. kpt. Jarose
Michal Stehlik 737275 31 II 27.-31.
4. ro¢nik G Brno, tF. kpt. Jarose
Daniel Stefankovi¢ 540004 13 156.-169.
3. ro¢nik GAM Bratislava
(322 studentt z 56 zemi)
ceny
I 11 11 body
1. CLR 6 240
2. USA 3 3 181
3. Rumunsko 2 2 2 177
4. SNS 2 3 176
5. Velké Britanie 2 2 2 168
6. Rusko 2 2 2 158
7. Némecko 0 4 2 149
8.-9. Madarsko 1 3 1 142
8.-9. Japonsko 1 3 1 142
10.-11. Vietnam 1 2 3 139
10.-11. Francie 1 3 1 139
12. Jugoslavie 2 4 136
13. Ceskoslovensko 2 3 134
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34. mezindrodni matematicka olympiada
13.-24. Cervence 1993,

Istanbul (Turecko)

dlohy 1. 2. 3. 4. 5. 6. body ceny poradi
Michal Brodsky 221743 19 III 102.-110.
4. ro¢nik G Brno, tr. kpt. Jarose
Marcela Hlawiczkova 170070 15 IIT 143.-150.
4. roénik G Trinec
Ondiej Klima 104714 17 III 122.-132.
4. ro¢nik G Brno, tt. kpt. Jarose
Vit Novak 704536 25 II 52.-58.
4. ro¢nik G Praha, Korunni
Jana Syrovatkova 727475 32 1 19.-24.
4. rotnik G Brno, tr. kpt. Jarose
Robert Sdmal 720753 I 59.-65.
2. ro¢nik G Praha, Korunni
(412 studentt z 73 zemi)
ceny
1 11 11 body
1. CLR 6 215
2. Némecko 4 2 189
3. Bulharsko 2 4 178
4. Rusko 4 1 1 177
5. Taiwan 1 4 1 162
6. Iran 2 3 1 153
7. USA 2 2 2 151
8. Madarsko 3 1 2 143
9. Vietnam 1 4 1 138
10. Ceskd republika 1 2 3 132
12. Slovensko 1 3 1 126
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35. mezindrodni matematicka olympidda
8.-20. ¢ervence 1994

Hongkong
alohy 1. 2. 3. 4. 5. 6. body ceny poradi
Petr Kanovsky TT7TTT7T03 31 II 78.-87.
3. ro¢nik G Brno, tr. kpt. Jarose
Filip Kr3ka 076230 18
3. rocnik G Brno, tr. kpt. Jarose
Jan Mach 075230 17
4. ro¢nik GMK Bilovec
Libor Masicek 077740 25 III 126.-131.
3. ro¢nik G Brno, tr. kpt. Jarose
David Pavlica 077725 28 III 102.-113.
3. ro¢nik GMK Bilovec
Robert Sdmal 077777 35 II 49-57.
3. rocnik G Praha 5, Zborovska
(385 studentti z 69 zemi)
ceny
I 11 111 body
1. USA 6 252
2. CLR 3 3 229
3. Rusko 3 2 1 224
4. Bulharsko 3 2 1 223
5. Madarsko 1 5 222
6. Rumunsko 5 1 208
7. Vietnam 1 5 207
8. Velka Britanie 2 2 2 206
9. fran 2 2 2 203
10. Japonsko 1 2 3 180
21. Ceskd republika 2 2 154
22. Slovensko 1 1 2 150
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36. mezindrodni matematicka olympidada

13.-25. c¢ervence 1995

Toronto (Kanada)

alohy

1. 2. 3. 4. 5. 6. body ceny poradi

Petr Kanovsky
4. ro¢nik G Brno, tr. kpt. Jarose

TT7702 30 II 81.-88.

Filip Krska 707770 28 III 101.-112.
4. ro¢nik G Brno, tr. kpt. Jarose
Libor Masicek 607771 28 IIT 101.-112.
4. ro¢nik G Brno, tr. kpt. Jarose
Martin Necesal 706430 20 IIT 181.-190.
4. rotnik G Brno, tr. kpt. Jarose
David Pavlica 707720 23 III 152.-160.
4. roénik GMK Bilovec
Robert Samal 607570 25 III 136.-146.
4. rotnik G Praha 5, Zborovskd
(412 studentt z 73 zemi)
ceny
I 11 111 body
1. CLR 4 2 236
2. Rumunsko 4 2 230
3. Rusko 4 2 227
4. Vietnam 2 4 220
5. Madarsko 3 1 2 210
6. Bulharsko 1 4 1 207
7. Korea 2 3 1 203
8. Irdn 2 3 1 202
9. Japonsko 1 3 2 183
10. Velka Britanie 2 1 3 180
17.-18. Ceskd republika 1 5 154
21.-22. Slovensko 2 2 145
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Sl

5.—17. €ervence 1996
Bombaj (Indie)

mezindrodni matematicka olympiada

dlohy 1. 2. 3. 4. 5. 6. body ceny poradi
Tomas Barta 716007 21 II 81.-93.
4. ro¢nik G Praha 5, Zborovskd
Michal Benes 716007 21 II 81.-93.
4. ro¢nik G Praha 5, Zborovskad
Daniel Kral’ 421001 8 236.—247.
4. rotnik G Zlin
David Opéla 417006 18 III 111.-120.
4. roénik GMK Bilovec
Jan Spévak 211100 5 290.-324.
3. ro¢nik G Praha 5, Zborovska
Robert Spalek 105301 10 216.-226.
4. ro¢nik G Brno, tr. kpt. Jarose
(426 studentt z 75 zemi)
ceny
I 11 111 body
1. Rumunsko 4 2 187
2. USA 4 2 185
3. Madarsko 3 2 167
4. Rusko 2 3 1 162
5. Velka Britanie 2 4 161
6. CLR 3 2 1 160
7. Vietnam 3 1 1 155
8. Korea 2 3 151
9. fIrén 1 4 1 143
10. Némecko 3 1 1 137
17.-18. Slovensko 1 5 108
28. Ceskd republika 1 4 83
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38. mezindrodni matematicka olympiada

18.-31. €ervence 1997

Mar del Plata (Argentina)

dlohy 1. 2. 3. 4. 5. 6. body ceny poradi
Libor Barto 577740 30 II 60.-69.
3. ro¢. G Praha 1, Hellichova
Pavel Podbrdsky TTTT7T03 I 32-39.
3. ro¢. G Brno, tr. kpt. Jarose
Jan Spévak 110340 9 299.-321.
4. ro¢. G Praha 1, Hellichova
Lukas Vokiinek 400770 18 III 177.-191.
2. ro¢. G Brno, tr. kpt. Jarose
Jan Vybiral 770670 27 II 86.-96.
4. ro¢. GMK Bilovec
Petr Zima 171740 20 III 155.-166.
3. ro¢. G Kladno
(460 studentt z 82 zemi)
ceny
I 11 11 body
1. Cina 6 223
2. Madarsko 4 2 219
3. Iran 4 2 217
4.-5. Rusko 3 2 1 202
4.-5. USA 2 4 202
6. Ukrajina 3 3 195
7.—-8. Bulharsko 2 3 1 191
7.—8. Rumunsko 2 3 1 191
9. Australie 2 3 1 187
10. Vietnam 1 5 183
18. Ceskd republika 1 2 2 139
36. Slovensko 1 2 96
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39. mezindrodni matematicka olympiada

10.-21. cervence 1998
Taipei (Tchaj-wan)

dlohy 1. 2. 3. 4. 5. 6. body ceny  pofadi

Libor Barto 076670 26 II 73-85.
4. ro¢. G Praha 1, Hellichova
Tomas Hanzl 307703 20 III 134.-144.
4. ro¢. G Brno, tr. kpt. Jarose
Pavel Podbrdsky TTTT7T01 29 II 49.-57.
4. ro¢. G Brno, tr. kpt. Jarose
Jan Stovitek 272620 19 III 145.-157.
4. ro¢. G Kladno
Martin Viséor 701070 15 II 183.-193.
3. ro¢. G Brno, tr. kpt. JaroSe
Lukas Vokiinek 471770 26 II 73.-85.
3. ro¢. G Brno, tr. kpt. Jarose
(419 studentt z 76 zemi)
ceny
I 11 111 body
1. Irén 5 1 0 211
2. Bulharsko 3 3 0 195
3.-4. Madarsko 4 2 0 186
USA 3 3 0 186
5. Tchaj-wan 3 2 1 184
6. Rusko 2 3 1 175
7. Indie 3 3 0 174
8. Ukrajina 1 3 2 166
9. Vietnam 1 3 2 158
10. Jugoslavie 0 5 0 156
15. Ceskd republika 0 3 3 135
33.-34. Slovensko 0 1 4 88
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40. mezindrodni matematicka olympiada

10.-22. €ervence 1999
Bukurest (Rumunsko)

Glohy 1. 2. 3.4.5 6. body ceny pofadi
Lubos Dostal 112401 9 270.-291.
8. ro¢. GOA Stfibro
Zden&k Dvorak 300404 11 227.-247.
7. ro¢. G Nové Mésto na Moravé
David Holec 01210 5 371.-393.
4. ro¢. G Brno, tr. kpt. Jarose
Pavel Moravec 01300 6 343.-370.
4. ro¢. G Brno, tf. kpt. Jarose
Martin Viséor 10110 10 248.-269.
4. ro¢. G Brno, tr. kpt. Jarose
Lukas Vokiinek 04211 14 TIII 159.-177.

4. ro¢. G Brno, tf. kpt. Jarose
(450 studenti z 81 zemi)

ceny

1 11 III body

1.-2. CLR 4 2 0 182
Rusko 4 2 0 182

3. Vietnam 3 3 0 177
4. Rumunsko 3 3 0 173
5. Bulharsko 3 3 0 170
6. Bélorusko 3 3 0 167
7. Korea 3 3 0 164
8. Iran 2 4 0 159
9. Tchaj-wan 1 5 0 153
10. USA 2 3 1 150
21. Slovensko 0 2 3 88
49.-50. Ceskd republika 0 0 1 55



41. mezindarodni matematicka olympidda
13.-25. ¢ervence 2000
Taejon (Jizni Korea)

dlohy 1. 2. 3. 4. 5. 6. body ceny poradi

Jaroslav Hajek 000200 2 395.-416.
2. ro¢. GMK Bilovec
Jan Herman 720200 11 III 205.-213.
3. ro¢. G Brno, tr. kpt. Jarose
Jan Housték 721740 21 II 100.-110.
7. ro¢. G Pelhrimov
Jan Kyn¢l 71420 2 16 III 139.-149.
5. ro¢. G Jilemnice
Rudolf Stolai 010300 4 351.-368.
3. ro¢. G Brno, tr. kpt. Jarose
Ondfrej Suchy 70020 2 11 III 205.-213.
6. ro¢. G Plzen, Mikuldsské ndm.
(462 studentt z 82 zemi)
ceny
1 I Il body
1. CLR 6 0 0 218
2. Rusko 5 1 0 215
3. USA 2 4 0 184
4. Korea 3 3 0 172
5.—6. Bulharsko 2 3 1 169
Vietnam 3 2 1 169
7. Bélorusko 2 2 2 165
8. Tchaj-wan 2 3 1 164
9. Madarsko 1 5 0 156
10. fran 1 4 1 155
18.-19. Slovensko 0 2 3 111
42. Ceskd republika 0 1 3 65
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Vysledky naSich studentu
na mezindrodnich programatorskych olympiadach

Uvadime vysledky od roku 1993, nebot od tohoto ro¢niku se mezinarodnich olym-
pidd Glastnilo samostatné druzstvo Ceské republiky (do té doby bylo spole¢né
Ceskoslovenské druzstvo). V roce 1993 se konal 5. ro¢nik Mezindrodni olympiddy
v informatice, zatimco Stfedoevropska olympidda v informatice vznikla aZ v roce
1994. V obou soutézich se Gcastni vzdy ctyri soutézici z kazdé zemé. U kazdého
soutézicitho uvadime poradi a pripadnou medaili, kterou ziskal. Pocet udélenych
medaili zavisi na poctu ziucastnénych. Nékterou z medaili ziskd vzdy prvni polovina
soutézicich v celkovém poradi, pricemz zlaté, stfibrné a bronzové medaile se roz-
déluji v poméru 1 : 2 : 3. Pocet bodt jednotlivych student v soutézi neuvadime,
nebot v riznych ro¢nicich olympiad byl maximalni dosazitelny bodovy zisk rizny.
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Mezindrodni olympidda v informatice
(101 — International Olympiad in Informatics)

1993 — Argentina, Mendoza

Martin Mare$ 1. zlata medaile
Vit Novak 15. stribrna medaile
Jan Syrovatkova 31. stfibrnd medaile
Jifi Vanicek 137.

1994 — Svédsko, Haninge

Martin Mares 6. zlatd medaile
Robert Spalek 25. st¥ibrna medaile
Daniel Skarda 44. sti{brna medaile
Petr Novak 73. bronzova medaile

1995 — Holandsko, Eindhoven

Jiri Hajek 6. zlatd medaile
Martin Mare$ 7. zlata medaile
Robert Spalek 16.  zlatd medaile
Pavel Machek 18. zlata medaile

1996 — Madarsko, Veszprém

Daniel Kral 1. zlata medaile

Tomés Tichy 71. bronzova medaile
Stanislav Mikes 84. bronzova medaile
Robert Spalek 95.  bronzova medaile

1997 — Jihoafricka republika, Kapské Mésto

Mikulas Patocka 19. zlatd medaile

Filip Kabrt 60. bronzova medaile
Jan Kratochvil 69. bronzova medaile
Ales Privétivy 90. bronzova medaile
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1998 — Portugalsko, Setubal

Michal Illich stfibrnd medaile

Zdenék Dvorak bronzova medaile
Jan Kara bronzova medaile
Pavel Nejedly bronzova medaile

Pozn.: na zakladé dosazenych vysledkt byly udéleny medaile, poradi jednotlivych
soutézicich nebylo poradateli vydano.

1999 — Turecko, Antalya

Zdenék Dvorak 10. zlata medaile

Pavel Nejedly 81. bronzova medaile
Michal Illich 86. bronzova medaile
Josef Zlomek 93. bronzova medaile

2000 — Cina, Peking

Pavel Charvat 79. bronzova medaile
Jakub Bystron 102. bronzova medaile
Jifi Svoboda 108. bronzova medaile

Ondrej Rucky
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Stredoevropska olympidda v informatice
(CEOI — Central European Olympiad in Informatics)

1994 — Rumunsko, Cluj

Jiri Hajek 2. zlatd medaile
David Stanovsky 18. bronzova medaile
Jan Kratochvil 19.

Petr Kanovsky 28.

1995 — Madarsko, Szeged

Daniel Kral 2. zlatd medaile
Mikulas Patocka 5. stiibrna medaile
Jan Kratochvil 7. stribrna medaile
Stanislav Mikes 26.

1996 — Slovensko, Bratislava

Véroslav Kaplan 17.
Mikulas Patocka 20.
Jan Kratochvil 21.
Martin Drab 25.

1997 — Polsko, Nowy Sacz
Pozn.: naSe Gicast byla zrusena z duvodu katastrofickych zaplav na nasem i polském
uzemi a preruseni vlakového spojeni.

1998 — Chorvatsko, Zadar

Zdenék Dvorak 25.
Jiri Benc 30.
Pavel Nejedly 33.
Jaromir Malenko 37.
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1999 — Ceska republika, Brno

Pavel Charvat 8. stiibrnd medaile
Pavel Nejedly 10. stfibrné medaile
Jakub Bystron 14. bronzova medaile
Zdenék Dvorak 17. bronzova medaile
Jiri Svoboda 18. bronzova medaile
Josef Zlomek 26.

Michal Illich 28.

Ondrej Rucky 37.

Pozn.: jako poradatelskd zemé jsme do soutéze vyslali dvé soutézni druzstva.

2000 — Rumunsko, Cluj

Miroslav Trmag 20.
Roman Krejcik 23.
Pavel Cizek 26.
Martin Beranek 31.
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