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Předmluva

Brožurka, kterou právě čtete, vydala Matematicko-fyzikální fakulta Univerzity
Karlovy v Praze ve spolupráci ústředním výborem matematické olympiády při
příležitosti 50. ročníku této soutěže, první předmětové olympiády na našich ško-
lách. Píšeme rok 2001, a tak si i nematematik snadno spočítá, že matematická
olympiáda v tehdejším Československu vznikla v roce 1951. Padesátá léta byla
v naší zemi jak po hospodářské, tak především po politické stránce velmi složi-
tá. O to více je třeba ocenit iniciativu několika matematiků v čele s profesorem
Karlovy univerzity Dr. Eduardem Čechem, kterým se podařilo v té době založit
matematickou soutěž pro studenty tehdejších tzv. výběrových, dnešních středních
škol, která se později rozšířila i na žáky základních škol. Profesor Dr. E. Čech,
matematik světového významu, pracoval ještě před 2. světovou válkou v Brně,
odkud znal Dr. Františka Kahudu, který byl v padesátých letech nejdříve náměst-
kem, a pak několik let ministrem školství, a plně podpořil vznik a průběh prvních
ročníků MO. Dr. Kahuda byl také po dlouhou dobu předsedou Jednoty česko-
slovenských matematiků a fyziků (JČSMF), a zde je třeba konstatovat, že právě
Jednota českých matematiků a fyziků je spolu s Matematickým ústavem Akade-
mie věd České republiky odborným garantem matematické olympiády. Hlavním
cílem matematické olympiády bylo získat studenty středních škol pro studium
technických oborů, aby se stali příštími budovateli našeho, hlavně těžkého prů-
myslu. Bylo to vyjádřeno i graficky na diplomech pro vítěze celostátního kola
MO, kde byl vyobrazen mladý matematik, jak na papíře něco počítá obklopen
mnoha mohutně kouřícími komíny továren. Samozřejmě iniciátoři MO i učitelé
na školách viděli v MO hlavně prostředek к zvýšení zájmu o matematiku. MO
navázala jednak na soutěž v řešení matematických úloh, kterou vypisovala JČMF
ve svém časopise (byla to ovšem soutěž trochu jiného druhu), jednak na matema-
tické olympiády v jiných zemích, například v Polsku, Maďarsku nebo v Sovětském
svazu.

Prvním předsedou ústředního výboru MO byl prof.Dr.František Vyčichlo, pro-
fesor Českého vysokého učení technického. I tím bylo zdůrazněno spojení MO s pří-
pravou studentů na vysoké školy technického zaměření. Bohužel, ze zdravotních
důvodů musel prof. Vyčichlo již po roce funkci opustit, jeho nástupcem se stal
prof. Dr. Josef Novák, ředitel Matematického ústavu ČSAV. Z dalších předsedů
ÚV MO je třeba připomenout docenta Jana Výšina, kterého zná většina učitelek
a učitelů matematiky jako propagátora modernizace výuky matematiky (v dob-
rém slova smyslu) a autora celé řady učebnic matematiky, metodických příruček
a matematických článků v časopisech pro učitele matematiky, a dále slovenského
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kolegu prof. Dr. Jozefa Moravčíkaze Žiliny, který vedl ÚV MO od 27. do 32. ročníku
soutěže. Pak, až do své smrti v roce 1988, byl předsedou ÚV MO opět pracovník
MÚ ČSAV Dr. František Zítek, který v práci pro MO uplatnil mimo jiné své bo-
haté znalosti cizích jazyků a velmi dbal také o správnou formulaci úloh z hlediska
správné češtiny.

Chtěl bych zde zdůraznit, že pod slovy „ústřední výbor11, která budí dnes často
nepříjemné asociace, je třeba si představit ne příliš početnou skupinu vědeckých
pracovníků a učitelů matematiky základních, středních a vysokých škol, kteří pře-
vážně nad rámec svých pracovních povinností matematickou olympiádu připravují.
A zde bych rád vzpomenul Dr. Rudolfa Zelinku, zástupce ředitele MÚ ČSAV. Vy-
konával funkci tajemníka ústředního výboru MO od vzniku této soutěže až do své
smrti v roce 1956. A právě na tajemníkovi ÚV MO spočívá převážně celý průběh
každého ročníku MO, od přípravy konečné formulace textů úloh, přípravy letáků,
komentářů úloh, organizace jednotlivých kol, až po přípravu soustředění úspěšných
řešitelů úloh MO a organizaci korespondenčního semináře. To vše zařizoval Rudolf
Zelinka většinou po skončení své práce v ústavu dlouho do noci, velmi se věnoval
také organizaci 4. mezinárodní matematické olympiády, která se konala v roce
1962 v Československu. Hlavně se však věnoval výběru úloh, z nichž většinu sám
vymýšlel. Takže evidentně platí věta „Rudolf Zelinka se zasloužil o matematic-
kou olympiádu11, kterou vyslovil doc. Výšin. I ti, kteří ho pak vystřídali, zaslouží,
aby byli připomenuti. Dovolte, abych zmínil aspoň doc. Dr. Vlastimila Macháčka
a doc. Dr. Jiřího Mídu, oba byli pracovníky Pedagogické fakulty Karlovy univerzity
v Praze, a Dr. Karla Horáka z Matematického ústavu AV, který vykonává funkci
tajemníka ÚV MO již 18 let. Když se MO rozšířila i do nižších tříd a přidalo se

programování, vzrostl počet soustředění, nestačil na práci jeden Rudolf Zelinka,
ale musel se počet tajemníků zvýšit na dva, poslední dobou na tři. Jistě, MO
nestojí pouze na práci předsedy a tajemníků, není však možné vyjmenovat zde
všechny, kteří se na práci pro MO v různých letech podíleli. Zmíním se však aspoň
o dvou pracovnících. Nedávno zesnulý doc.Dr.Jiří Sedláček byl členem ÚV MO od
16. ročníku této soutěže, pracoval však pro MO i předtím, připravoval úlohy, měl
na starosti soustředění pro přípravu žáků na mezinárodní matematické olympiády,
psal texty pro řešitele úloh MO. A jeho kolega z MÚ AV profesor Dr. Miroslav
Fiedler pracoval v MO od jejího vzniku a jeho autorita, jeho přehled a zkuše-
nosti nacházejí stále uplatnění při přípravě dalších ročníků MO. O výběr úloh
MO se v posledních letech starají dvě úlohové komise, jedna pro kategorie Z —

střední školy. Vznik obou komisízákladní školy, druhá pro kategorie А, В, C
inicioval doc. Dr. Jaromír Šimša z brněnské pobočky Matematického ústavu AV,
který také druhou komisi vede. Pracuje v ní řada mladých lidí, většinou bývalých
reprezentantů naší země na mezinárodních matematických olympiádách. Přinášejí
do soutěže pěkné, zajímavé a netradiční úlohy. Tady je třeba konstatovat, že obě
komise pracují na „federální11 úrovni, společně se slovenskými kolegyněmi a kolegy.
Výsledkem jsou stejné úlohy a stejné termíny jednotlivých kol MO v České repub-
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lice i na Slovensku. Takže MO zůstala vlastně až na výsledkové listiny celostátních
kol československou záležitostí.

Měli bychom se zde zmínit o práci regionálních, krajských a okresních výborů
MO, ocenit práci členů těchto výborů. Těžko bych však mohl zde všechny vy-

jmenovat. Za všechny uvedu aspoň tři kolegyně, profesorky gymnázií v Říčanech,
Strakonicích a v Plzni paní Ludmilu Tréglovou, doc. Dr. Ladu Vaňatovou a paní
Věru Rádiovou. Vedly dlouhá léta krajské výbory MO ve své oblasti, organizo-
vály celostátní kola i celostátní soustředění, opravovaly žákovská řešení úloh MO.
A pokud vím, sledují průběh MO i nadále.

Není možné zde opomenout práci tisíců učitelek a učitelů, profesorek a pro-
fesorů matematiky na základních a středních školách, kteří informují své žáky
a studenty o existenci MO, předkládají jim úlohy I.kola, pomáhají návodnými
úlohami, doporučí jim vhodnou literaturu. Jsou to hlavně učitelky a učitelé, kteří
věnují kontrole žákovských řešení úloh MO mnoho svého volného času. Jim patří
dík všech pořadatelů soutěže, bez jejich práce by MO nemohla existovat. Většinou
je jim odměnou pouze úspěch jejich žáků ve vyšším kole MO.

Pokud se týká kategorie P-programování, která vznikla při MO v roce 1986,
spočívá práce na několika málo pracovnících, z nichž je třeba na prvním místě
zmínit doc. Dr. Pavla Topfra z MFF UK Praha, který je nejen autorem většiny
úloh v kategorii P, ale také žákovská řešení hodnotí, sepisuje к úlohám komentáře
a připravuje naše studenty na mezinárodní soutěže v informatice. Další takovou
osobou byl doc. Dr. Václav Sedláček z Masarykovy Univerzity v Brně, který se však
po odchodu z oblasti školství už nemůže MO věnovat. Byl však hlavní osobou při
organizaci středoevropské soutěže v informatice v Brně v roce 1999.

Kategorie A (pro studenty posledních dvou ročníků střední školy) a katego-
rie P jsou každým rokem zakončeny celostátním kolem МО. V prvních letech se
celostátní kolo konalo vždy v Praze na matematicko-fyzikální fakultě, od 10. roč-
niku MO se jednotlivé kraje v uspořádání celostátního kola střídaly, za organisaci
zodpovídal z pověření MŠMTv odbor školství příslušného krajského národního
výboru. To se v posledních letech změnilo a celostátní kola organizuje opravdu
dobrovolně vždy některá střední škola, která je ochotna se tohoto úkolu ujmout.
V tomto směru nám pomohlo především gymnázium v Jevíčku, kde se celostátní
kola MO konala v letech 1993, 1994, 1995 a 1997, dále gymnázium M. Koperníka
v Bílovci (1992, 1996 a 2000). I v letech 1998 a 1999 se závěr 47. a 48. ročníku
MO odehrával na moravských gymnáziích, v Uherském Hradišti a v Novém Městě
na Moravě. Učitelé uvedených gymnázií věnovali vždy akci hodně práce a je to
jejich zásluha, že vždy proběhla celostátní kola důstojně, bez problémů. Upřímně
jim děkujeme a přejeme učitelským kolektivům uvedených škol a jejich ředitelům
Dr. Dagu Hrubému, Mgr. Václavu Vaňkovi, doc. Dr. Z. Botkovi a Dr. Karlu Kote-
novi mnoho úspěchů a elánu v jejich pedagogické práci, aby byli jejich žáci úspěšní
nejen v školních soutěžích, ale i v dalším studiu.
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Letos, při jubilejním 50. ročníku MO, se celostátní kola konají v Praze, a to
zásluhou Střední průmyslové školy sdělovací techniky v Praze 1, Panská ul. Děkuji
ředitelce školy paní Ing. M. Plockové a všem dalším pracovníkům této školy za

práci, kterou pro zdárný průběh závěru 50. ročníku MO vykonali.
Již jsme se několikrát zmínili o mezinárodních matematických olympiádách.

Naše republika, a dále pouze Rumunsko, se zúčastnily všech 41 dosud konaných
MMO. Jako vedoucí a zástupce vedoucího našeho družstva na MMO se po mnoho
let střídali Dr. Zítek a prof. Dr. Moravčík, po roce 1989 převzali štafetu mladší
kolegové, například Dr. Horák a doc. Dr. Šimša. Na 33. MMO v Moskvě v roce
1992 soutěžilo ještě společné československé družstvo, od 34. MMO v roce 1993
v Istanbulu již samostatná družstva České republiky a Slovenské republiky. Počet
soutěžících družstev se v těchto letech podstatně zvětšil, mimo jiné i rozpadem
Sovětského svazu a Jugoslávie. Konkurence je tedy větší, soutěží žáci z 80 i více
zemí. V neoficiálním pořadí družstev se umístilo naše v roce 1998 na pěkném
15. místě, v roce 1999 na 49. místě a loni na 41. místě. Věříme, že se nám to podaří
opět zlepšit. Také v programování (informatice) se konají mezinárodní olympiády
(MOI), poslední se konala v Pekingu. Tři ze čtyř členů českého družstva získali
na ní bronzové medaile. Přejeme všem příštím reprezentantům České republiky
na MMO v USA a na MOI ve Finsku umístění v první polovině startovního pole,
tedy mezi medailisty.

S matematickou olympiádou je spojena řada akcí, které postupně vznikly za
účelem podpory řešitelům úloh MO a tím к zvýšení znalostí žáků a studentů
v matematice. Byly a jsou to různé semináře celostátní i regionální, z nichž některé
probíhají korespondenční formou, dále soustředění úspěšných řešitelů úloh MO, jež
jsou zároveň jejich přípravou na další ročníky MO. Konají se i semináře pro učitele,
připravujeme pro ně komentáře к úlohám I. kola s návodnými úlohami apod. Patří
sem i ediční činnost ÚV MO v minulých letech. Spočívala především ve vydá-
vání tzv. ročenek, jež obsahovaly všechny úlohy včetně jejich řešení z příslušného
ročníku MO. Z ekonomických důvodů tomu už tak není. Publikace, kterou držíte
v ruce, je stručným shrnutím posledních deseti ročníků MO a má aspoň částečně
nahradit těch 10 chybějících ročenek. Podobná situace je s edicí Škola mladých
matematiků (ŠMM). Ta vznikla v roce 1961 a do roku 1989 vyšlo 61 svazků, ně-
které ve více vydáních. Uvedu aspoň názvy některých svazků: Mnohostěny, Co asi
nevíte o vzdálenosti, Nerovnosti a odhady, Kombinatorika, Množiny bodů v pro-

storu, Funkcionální rovnice, Matematická indukce. Svazky ŠMM byla v podstatě
pokryta tématika úloh MO a nezbývá než doufat, že brožurky ŠMM i ročenky MO
si mohou dnešní soutěžící vypůjčit v školních knihovnách.

co přineslo těch padesát let matematické olympiády? Dovo-
lim si tvrdit, že především lepší, rozsáhlejší matematické znalosti účastníků MO.
A čteme-li si v ročenkách MO jména vítězů celostátního kola, vidíme, že mnozí
z nich se stali matematiky, i když měli třeba původně jiné cíle. Stali se vědec-
kými pracovníky Akademie věd nebo vysokoškolskými učiteli matematiky u nás

Padesát let
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nebo i v cizině. Hlavní přínos matematické olympiády spočívá právě ve vyhle-
dání a v další podpoře širokého spektra matematických talentů, a to i z těch tříd
a škol, které nejsou zaměřeny na matematiku, z měst, které nemají možnost vy-
užít zázemí některé katedry matematiky vysoké školy. Takže MO určitě přispívá
к zvýšení matematické kultury žáků, a částečně snad i učitelů na všech školách,
kde se matematické olympiádě daří.

Doc. Dr. Leo Boček,
předseda ÚV MO
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41 - A - I - 3

Jestliže všechny zlomky se jmenovatelem nejvýše rovným n, jež leží v intervalu
(0,1) a jsou zapsány v základním tvaru, seřadíme podle velikosti, pak pro každé
dva sousední zlomky у < - bude platit cb — ad — 1 (čísla 0 a 1 chápeme jakob a

zlomky y, y). Dokažte.

Řešení. Platí-li у <b

je také b(a + c) — a(b + d) = 1 a c[b + d) — d(a + c) = 1. Vyjdeme tedy od
zlomků у a y, to bude první krok. Při druhém kroku přidáme mezi tyto zlomky
zlomek y±y = při třetím kroku přidáme mezi tyto zlomky | a |, dostaneme
tak konečnou posloupnost у, |, |, |, у. Tak postupujeme dále, při n-tém kroku
přidáme mezi každé dva zlomky y, — zlomekb d

^ n. Dostaneme konečnou posloupnost zlomků, jejichž jmenovatelé jsou vesměs

přirozená čísla nejvýše rovná n, a budou-li stát v této posloupnosti zlomky y, -b d

vedle sebe, platí pro ně bc — ad = 1. Stačí už jenom ukázat, že jsme tím dostali
všechny zlomky z intervalu (0,1) se jmenovatelem menším než n + 1.

P
Předpokládejme tedy, že zlomek - (q ^ n) v naší posloupnosti není, pak musí

ležet mezi dvěma jejími sousedními členy у

a + c
- (6, d > 0), platí i у <d b

Q
< -. Je-li navíc bc — ad =

d
1,

b + d

a + c
; pokud ovšem bude b + d ^

b + d

Q

-, odkud plyne
d

c a p
7 ) 7 ) k) • 7 ^b d b q

bp — aq ^ 1, cq — dp ^ 1. Vynásobíme-li první nerovnost d, druhou b a sečteme-li
je, dostaneme s využitím vztahu bc — ad = 1 nerovnost q ^ b + d. To ale znamená,

a c
že b + d ^ n. Pak by ale zlomky —, - nemohly být sousedními členy uvažované

b d

posloupnosti, protože by mezi nimi ležel ještě zlomek

Pn-tém kroku obsahuje posloupnost všechny zlomky -, pro které je 0 ^ p ^ q ^ n.

<

a + c
Tím je dokázáno, že po

b + ď

4

41 —A —III —5

Uvažujme funkci / definovanou v intervalu (0,1) jako

x iracionální,f x,
f(x) = < p+ 1 V

X = -

q q

kde 0 < p < q jsou nesoudělná celá čísla. Najděte maximum funkce / na intervalu
(I’ §)•
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Řešení. V intervalu (|, |) leží číslo Щ, pro které je /(jf) = Щ > |. Podle řešení
úlohy A-I-3 neleží v intervalu (|, jf) žádné racionální číslo ^ se jmenovatelem
q < 25 a podobně interval (yf, |) neobsahuje žádné racionální číslo ^ se jméno-
vatelem q < 26. Pro každé racionální číslo ^ z intervalu (|, |), ^ ф Щ, tedy platí
q ^ 26, a proto je

, fp\ p 1 8 1 16
\qj q q 9 26 17

Protože pro každé iracionální číslo £ G (|, §) je /(rr) = x <
maximum y|.

8 je hledané9 ’

41 - С - I - 5

Jsou-li a, b, c velikosti stran trojúhelníku a ta, tb, tc velikosti příslušných těžnic,
pak

3 ta + tb + tc
4 ' a + b + c

< 1.- <

Dokažte.

Řešení. Označme K, L, M středy stran po řadě protilehlých vrcholům А, В,
C daného trojúhelníku a T jeho těžiště (obr. 1). Podle trojúhelníkové nerovnosti
v trojúhelníku BCT platí

\BC\<\BT\ + \CT\, tj. a<fíb + fíc.
Podobně z trojúhelníků ABT a CAT usoudíme, že

2 2 2
a b <С з^а-c < ^ta + tb

Sečtením těchto tří nerovností dostaneme

a + b + c < — • (ta + tb + tc)
O

což je vlastně levá dokazovaná nerovnost. Dále si všimněme, že podle trojúhelní-
kové nerovnosti v trojúhelníku KMA platí

b c

\AK\ < \KM\ + \AM\ tj- ťo <
2 + 2

podobně z trojúhelníků LKB a MLC plyne

bc a a

tb<2 + 2 a tc < 2 + 2'

14



Sečtením těchto tří nerovností dostaneme

л fa b
ta + tb + tc < 2-f - + 2) — я + b 4- c,

a to je vlastně pravá dokazovaná nerovnost.

C

Lb P
V

zH
A ВR

Obr. 1

41 -C-1-6

Najděte nejmenší přirozené číslo n tak, aby existovalo právě 45 uspořádaných
dvojic (u, v) přirozených čísel, jejichž nejmenší násobek je n.

Řešení. Je-li p,q,r, ... posloupnost všech prvočíselných dělitelů hledaného čísla n,

pak rozklad n na prvočinitele má tvar n = paqbrc..., kde exponenty a, 6, c, ...

jsou celá kladná čísla. Libovolní dva dělitelé čísla n pak mají tvar

n = p9qhrl..n = pdqerf ... a * ?

kde d, e, /, ..., g, h, i, ... jsou celá nezáporná čísla. Navíc je číslo n je nejmenší
společný násobek těchto čísel и a, v, právě když platí soustava rovností

a = max(d, g), b = max(e, h), c= max(/,(i), ....

Výběry možných dvojic (d, g), (e, h), (/, г), ... jsou tedy navzájem nezávislé, např.
pro dvojici (d, g) máme možnosti

(0,a), (1 ,a), ..., (a,a), (a,a-l), ..., (a, 1), (a,0)

tj. právě (2а + 1) možností. Existuje tedy právě (2а 4-1)(26 + l)(2c + 1)... uspo-
řádaných dvojic (w,u) zkoumané vlastnosti. (Všimněte si, že určený počet závisí

15



na exponentech a, 6, c, ..nikoliv na hodnotách prvočísel p, q, r, ... v rozkladu
čísla n.) Požadovaná rovnost

45 = (2a+l)(2Ď+l)(2c+l)...

představuje rozklad čísla 45 na několik celých činitelů větších než 1, tedy jeden
ze součinů 45, 15-3, 9-5 nebo 5-3-3 (na pořadí činitelů nebereme ohled). To
znamená, že číslo n má jeden z tvarů

22
P p7q\ рУ, p2qlrl.

Nejmenší představitelé těchto čtyř typů jsou čísla 222, 27 • 3, 24 • 32 a 22 -3-5 (za p,

q, r dosazujeme nejmenší prvočísla, přitom vždy к menšímu prvočíslu přiřazujeme
větší exponent). Nejmenší je poslední z těchto čísel, tj. číslo 60.

42 - В - I - 4

Honza si zapomněl poznačit kvadratickou rovnici, kterou měl doma řešit. Parna-
toval si však, že koeficient u kvadratického členu byl 3 a u lineárního členu 25.
U absolutního členu se spletl pouze ve znaménku. Obě rovnice (ta, kterou měl
řešit, i ta, kterou řešil) měly celočíselný kořen. Zjistěte, které to byly rovnice.

Řešení. Rovnice mají tvar
За:2 + 25a; ± c = 0; c > 0.

Jejich diskriminanty jsou
(2)jD1>2 = 625 ť 12c

a kořeny
-2b±y/Dl

, г = 1,2.Я1.2 = 6

Odtud ±y/Ďl = 25 + 60:1,2. Je-li některý z kořenů celé číslo, pak musí být také
±y/Di celé a dále některý z výrazů —25 ± y/Ďi je dělitelný šesti. Číslo \fD\ —

= \/625 — 12c < 25 budeme tedy hledat ve tvaru y/Dl = 6k ± 1, к £ No- Ze
vztahu (2) vyplývá, že D\ -I- D2 — 1 250. y/Ď2 — л/1 250 — D\ musí být celé.
Postupně volíme za \[Ď\ čísla 1, 5, 7, 11, 13, 17, 19, 23 a určujeme y/Ď?- Zjistíme,
že vyhovuje pouze y/Di = 5 nebo \fD\ = 17.

V prvém případě je c = 625~Dl = 50 a jedná se o rovnice 3a;2 + 25a; ± 50 = 0,
ve druhém případě to budou rovnice 3a:2 + 25a: ± 28 = 0. Vyřešením rovnic se

přesvědčíme, že vyhovují podmínkám úlohy. Existují tedy dvě různé dvojice rovnic,
které jsou řešením dané úlohy.
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42 - В - II - 1

Zjistěte, pro která reálná čísla a má soustava rovnic

x + у = z + 2,
x2 + y2 = z2 + 4,
x3 + y3 = z3 + a

řešení v oboru reálných čísel, a vyřešte ji.

Řešení. Umocníme~li první rovnici na druhou a od výsledku odečteme rovnici
druhou, dostaneme 2xy = 4z. Z dvojice rovnic xy = 2zax + y = z + 2 vyplývá,
že {ж, yj = {2, z}. Proto x3 +y3 — z3 + 8, takže a = 8 je jediná hodnota, kdy má
soustava řešení. Všechna řešení pro a = 8 jsou trojice (x,y,z) tvaru (2,p,p) nebo
(p, 2,p), kde p je libovolný parametr.

42 - В - S - 2

Pro která reálná čísla p má soustava rovnic

x3 — x + 2>p = 6,
x3 + x + 4p = 10

aspoň jedno řešení v oboru reálných čísel?

Řešení. Je-li и společný kořen obou rovnic, pak

0 — (u3 — и + 3p — 6) — (u3 + и + 4p — 10) = —2и — p + 4,

odkud и = — | + 2. Dosazením zpět do libovolné z obou rovnic dostaneme pod-
minku na číslo p, která je po úpravě tvaru kubické rovnice p(p2 — 12p -f 20) = 0
s kořeny p\ — 0, p2 = 2 а рз = 10. Snadno se přesvědčíme, že daná dvojice rovnic
pak má skutečně společný kořen и rovný 2, 1 resp. —3.

42 — Z9 — 11 — 1

Jestliže pro trojciferná čísla a, b platí a + b = 1 000, potom se čísla a2, b2 shodují
v posledním trojčíslí. Dokažte.

Řešení. Protože a2 — b2 — (a — b)(a + b) — 1 000(a — 6), je v uvažovaném případě
rozdíl a2 — b2 dělitelný číslem 1000, a proto se čísla a2, b2 shodují v posledních
třech číslicích.
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43 - A - I - 4

Pro která celá n > 2 existují racionální čísla p a q taková, že yfň = p 4- gv^2?
Řešení. Umocněním na třetí dostaneme ekvivalentní rovnost

n — (p3 + 2 q3) + 3p2q\/2 + 3pq2\^4.

Zabývejme se nejdříve případem n — 4. Je-li = p 4- pak z (1) plyne

4 — (p3 + 2q3) + 3p2q\/2 + 3pq2(p + q\/2),
neboli 4 — p3 — 2q3 — 3p2q2 = s/2(3p2q 4- 3pq3). Protože \pí je iracionální číslo,
je poslední rovnost možná, jen když 4 — p3 — 2q3 — 3p2q2 = 0 a 3pq(p 4- q2) = 0.
Z druhé rovnice plyne p = 0, q = 0 nebo p = —q2, dosazením do první pak po
řadě q3 = 2, p3 = 4, resp. g6 -f q3 — 2 = 0. Protože čísla p a q jsou racionální, je
z poslední trojice splnitelná jen třetí podmínka, která znamená, že q3 — —2, nebo
q3 = 1. Dostáváme tak jedinou dvojici (p,q) = (—1,1), pro kterou sice platí (2),
ne však v^4 — p -f q\/2. Proto poslední rovnost nesplňují žádná racionální p a q.

V obecném případě ukážeme, že platí-li (1) pro některá racionální n, p a q, pak
koeficient 3pq2 u členu v^4 musí být roven nule. Jinak by totiž šlo z (1) vyjádřit

- p3 - 2q3

(1)

(2)

n=- Р--Г2,
3pq2 <1

což by byl spor s tím, že číslo 4 není řešením. Proto platí 3pq2 = 0, tj. p = 0
nebo q = 0. Pak ovšem n = p3 nebo n = 2q3. Je-li navíc číslo n celé, musí být
v posledních dvou rovnostech i čísla p, q celá. Odpověď: n — k3 nebo n — 2k3, kde
к > 1 je celé číslo.

43 - A - II - 4

Rozhodněte, zda existuje kubická rovnice

x3 -f px2 + qx 4- r — 0

s celočíselnými koeficienty p, q a r, která má v oboru reálných čísel jediný kořen
x0 = 1 4- V2 + s/4.
Řešení. Postupně spočteme

(J. Šimša)

rrj = 5 + 4^ + Зл/4, x3Q = 19 + 15л/2 + 12^4.

Dosazením do rovnice (1) tak po úpravě dostaneme podmínku

(19 4- 5p 4- q + r) + (15 4- 4p 4- q) ^Í2 4- (12 4- 3p 4- q) v^4 = 0,
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která je splněna, pokud jsou rovna nule všechna tři čísla 19 + 5p + q + r, 15 + 4p + q
a 12 + 3p+q. (Podle úlohy A-I-4 domácího kola je to nejen postačující, ale i nutná
podmínka.) Snadným výpočtem zjistíme jedinou trojici (p, q,r) = (—3, — 3,-1).
Zbývá dokázat, že rovnice

x3 — 3x2 — 3x — 1 = 0

má jediný reálný kořen. To lze provést více způsoby (asi nepříliš schůdné je dělení
kořenovým dvojčlenem x — xo), např. takto: protože 3x2 + 3x + 1 >0 pro každé
reálné x, je každý kořen rovnice x3 = 3x2 + 3x + 1 > 0 kladný; ze zápisu 1 =

3 1
= —I—-4—- plyne, že tento kořen je nejvýše jeden (pravá strana je totiž proxz xá

3

X

kladná x klesající).
Jiné řešení. Platí

13~(У2)3 1
xq — 1 + s/l + \/i —

1 - s/l
takže — = s/l — 1. Proto je xq řešením rovnice

v/2-11

Xq

e+o*=*.
přičemž je jasné, že tato rovnice má v oboru reálných čísel jediný kořen. Pro x / 0
je ovšem tato rovnice ekvivalentní s (1 + ж)3 — 2ж3, což je po roznásobení hledaná
rovnice.

43 - В - I - 6

Určete největší možný objem čtyřbokého jehlanu ABCDV, jehož základnou je
kosočtverec ABCD se stranou délky a a jehož stěnové výšky z vrcholu V na hrany
AB, CD mají délku h.
Řešení. Označme К, L paty kolmic z V na hrany AB, CD. Přímka AB je kolmá
na rovinu KLV, protože je kolmá к přímkám KV, LV (obr. 2). Odtud KLDAB.

V

4
7

/
/ h

/
\L+ C

/D /

Vу
У

'У /

А К В

Obr. 2
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Výška kosočtverce ABCD je \KL\ = 2x. Pata výšky jehlanu leží v rovině KLC
a je zřejmě totožná se středem S úsečky KL. Z pravoúhlého trojúhelníku KSV je
tato výška v = \fh2 — x2. Objem jehlanu je tedy

V = ^ax\/h2 — x2 = - a\/x2h2 — rr4.O O

Objem bude maximální, právě když bude maximální výraz pod odmocninou

1 \2

A2)U = x2h2 - x4 =

Maximum hledáme na intervalu 0 < x < |a, protože výška kosočtverce 2x je
menší než velikost a jeho strany. Kvadratická funkce U proměnné t — x2 nabývá

-^=, proto závisí další diskuse na tom, zda bod -^=
v 2 v 2

padne do intervalu (0, |a) či nikoliv. Pro h\[2 < a je tedy maximální objem jehlanu
= |ah2.

Pro а й h\/2 je kvadratická funkce U v intervalu (0, \h2) rostoucí, a proto
objem jehlanu v tomto případě nemá maximum, ale neomezeně se blíží hodnotě

(pro x = |a dostaneme čtvercovou podstavu —

pokládáme, že podle běžně užívané definice čtverec není kosočtverec).

absolutního maxima pro x —

v;max

\/4h2 — o2
= a2V, zde před-max

6

43 - В - II -4

Každý z bodů krychle o hraně délky a obarvíme právě jednou ze tří barev. Dokažte,
že pak mezi těmito body existují dva téže barvy, jejichž vzdálenost je větší než |a.

(P. Leischner)
Řešení. Označme vrcholy dané krychle obvyklým způsobem А, В, C, D, E, F, G,
H. Je-li vrchol A obarven jednou ze tří barev a některý z vrcholů C, F, H má tutéž
barvu, jsme hotovi, neboť \ AC\ = \AF\ = \AH\ = a\[2 > 1,41a > |a. V opačném
případě musí být uvedené tři vrcholy rovnostranného trojúhelníku CFH obarveny
nejvýše dvěma různými barvami, takže aspoň dva z bodů C, F, Я mají tutéž
barvu. Jejich vzdálenost je větší než |a. Tím je tvrzení úlohy dokázáno.

43 - Z5 - I - 4

V jednom městě mají tři kina. V kině Slunce prodávají vstupenky za 7 korun.
V kině Mars za 8 korun, ale každý desátý návštěvník má vstup zdarma. V kině
Venuše prodávají vstupenky za 9 korun, také každý desátý návštěvník má vstup
zdarma, ale navíc každý stý návštěvník vyhrává 100 korun. V kině Mars vybrali
na posledním představení 2 776 korun. Kolik by vybrali v kině Venuše a Slunce,
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kdyby je navštívil stejný počet diváků? (Pod vybranými penězi rozumíme ty, které
zůstanou po zakoupení lístků v pokladně. Výhry se platí z vybraných peněz, tedy

(M. Koman)
Řešení. Od každé desítky diváků vyberou v kinu Mars 9 • 8 = 72 korun. Kino Mars
navštívilo 2 776 : 72 = 38 (zbytek 40) celých desítek diváků. Zbývajících 40 korun
vybrali od 5 diváků. Do kina Mars přišlo 385 diváků.

Od stejného počtu diváků by v kinu Slunce vybrali 7 • 385 = 2 695 korun.
V kinu Venuše od 38 desítek diváků vyberou 38 • (9 • 9) = 3 078 korun a od

posledních pěti diváků 5-9 — 45 korun. Na výhrách přitom vyplatili 300 korun.
V pokladně kina Venuše zůstalo 3 078 -f 45 — 300 = 2 833 korun.

ve Venuši vyberou o to méně.)

43-Z8-I-3

Na číselné ose jsou znázorněna tři čísla x, y, z. Narýsuj na této číselné ose obraz
nuly, jestliže víš, že 3у = x + z. Najdi řešení pro všechny polohy čísel x, у, 2, pro
které x < у < z. (P. Čtrnek)
Řešení. Danou rovnost 3у = x + z můžeme upravit takto: у + (у — x) 4- (у — z) = 0.
Proto dostaneme obraz počátku tak, že к obrazu bodu у „přičteme1' у — x а у — z.
Obě tyto hodnoty vyčteme z číselné osy (obr. 3).

<■

У у + (у - x) z0 x

Obr. 3

Jiné řešení. Rovnost 3у — x + z dělíme číslem 2. Dostaneme

i с x + zl,5y = —.

Obrazem aritmetického průměru x a z je střed úsečky určené body x a z, což
je zároveň obraz bodu 1,5 ■ y. Známe-li obrazy čísel у a 1,5 ■ у snadno najdeme
počátek.

43 - Z8 - II - 2

Na číselné ose jsou vyznačeny obrazy čísel a, 3a, 6a — 2. Sestrojte obrazy čísel 0
a 1.

a 3a 6a — 2
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Řešení. Nejprve najdeme obraz čísla 2a jako střed úsečky s krajními body a a 3a
а рак obraz 0 (a je střed úsečky určené obrazy čísel 0 a 2a, obr. 4) a čísla 6a (3a
je střed dvojice bodů 0 a 6a). Orientovaná úsečka s počátečním bodem 6a — 2
a koncovým bodem 6a znázorňuje číslo 2, takže její polovina odpovídá jednotkové
úsečce. Jejím posunutím do bodu 0 dostaneme obraz čísla 1.

Při konstrukci je třeba rozlišit případy, kdy obraz 6a — 2 leží vlevo nebo vpravo
od obrazu 6a. Pokud by tyto obrazy splynuly, nemá úloha řešení.

0 1 2a 6a

3a 6a — 2a

Obr. 4

44 - A - I - 1

Pro daná kladná čísla x ф у uvažujme průměry

x + у V

x2 + y2x + y

2 , 9 = y/xý, h =a =
2

(Jde o aritmetický, geometrický, harmonický a kvadratický průměr čísel x a y.) Ze
všech rozdělení čtveřice a, g, h, к na dvě dvojice r, s a t, и vyberte to rozdělení,
při kterém má výraz V = r + s — t — и nej menší kladnou hodnotu.

Řešení. Uvedené kladné průměry splňují známé nerovnosti h < g < a < k. Ty
plynou např. z vyjádření

{x - y)2

(J. Šimša)

xy(x - y)2{x - y)2k2 - a2 =
2 2

, a -g = g2-h> =
(x + y)24 4

a z podmínky x ф у. (Je to poněkud vyumělkované zdůvodnění, řešitele vyzveme
dokazovat každou ze tří nerovností metodou ekvivalentních úprav.)

Označme V\ = к + a — g — h, V2 = к + g — a — /г a V3 = к + h — a — g. Ostatní
tři hodnoty výrazu V jsou —V\, —V2 a — V3. Protože

Vx-V2 = 2(a -g)>0 a V2 - V3 = 2(g - h) > 0,

platí V\ > V2 > V3. Dokážeme-li, že V3 > 0, bude V3 hledaná nejmenší kladná
hodnota výrazu V. Nerovnost V3 > 0 je ekvivalentní s nerovností к — g > a — h,
jejíž obě strany jsou kladné. Můžeme ji proto ekvivalentně umocnit na druhou
a pak přepsat do tvaru

2kg < k2 + g2 — a2 + 2ah — h2.
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Před dalším umocněním vyjádříme pravou stranu této nerovnosti pomocí čísel x
а у (a tak zjistíme, že je skutečně kladná). Vyjde nám

2xy(x2 -f у2)
(x + y)2

(x + y)2k2 + g2 - a2 - a 2ah — h2 =
4

Proto můžeme poslední nerovnost ekvivalentně umocnit na druhou:

4x2y2(x2 + y2)2(x + y)44:k2g2 — 2xy(x2 4- y2) < + xy(x2 +y2) + (x + y)416

Tuto nerovnost lze ekvivalentně upravit na tvar

(x + y)2 2xy(x2 +y2)\2
(x + y)2 J

0 <
4

Výraz v složené závorce je kladný, neboť je roven

(x + y)4 — 8xy(x2 -f y2) (x - y)4
4(x + y)2A(x -f y)2

a x Ф y. Tím je důkaz hotov. Odpověď: Hledané rozdělení je {r, s} = {k,h}
a {í, u} = {a, g}, neboť nejmenší kladná hodnota výrazu V je rovna k + h — a — g.

44 - A - S - 3

Určete kladná reálná čísla x ф у taková, že jejich průměry

x2 + y22xyx + y
g = у/xy, h = к =a =

x + y’

leží všechny v množině M = j 18y/2,30, 25\/2,40,10\/2з|

2 ’ 2

(J. Šimša)

Řešení. Víme, že h < g < a < k. Protože prvky M jsou vypsány v pořadí od
nejmenšího po největší, musí nastat některý z těchto případů:

(iii) g = 30 a a = 25>/2.(i) g = 18V2, (ii) a = 40,
V každém z nich je už další postup snadný:

(i) Z g = 18\/^ plyne h = Щ-. Protože xy — g2 — 2 ■ 182, dostáváme

x + y
_ g2 16 • 92 144

h2 45 5

Poslední číslo nepatří do M, takže případ (i) nemůže nastat.
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(ii) Z a = 40 plyne к = 10\/23, takže

x + у = 2a = 80

a

rr2 + y2 = 2k2 = 4 600.

Odtud 2xy = 802 — 4 600 = 1 800, čili xy = 900 a g = >/900 = 30 G M. Konečně
= ^ G M. Čísla ха у jsou kořeny rovnice t2 — 801 + 900 = 0, tedy

{x,y} = {40 ± 10\/7}.
(iii) Platí

2-900h =

xy — g2 — 900

a

x + у — 2a = 50\/2,
= 18-v/2 G M. Dále2-900odkud h =

50 v/2

ж2 + y2 = (50\^)2 - 2 • 900 = 3 200,

takže к = \/l 600 = 40 G M. Čísla ха у jsou kořeny rovnice t2 — 50 \/21 + 900 = 0,
tedy {rr, y} = {25\/2 ± 5\/l4}.

Odpověď: {x,y} = {40 ± 10\/7}, {x,y} = |25\/2 ± 5-\/l4}.

44 - A - III - 2

Určete kladná reálná čísla ха у, víte-li, že průměry

ж2 4- y22xyx + y
9 = y/xý, h = k =a =

x + y’2 2

(J. Šimša)jsou přirozená čísla, jejichž součet se rovná 66.

Řešení. Protože číslo 66 není dělitelné čtyřmi, nemůže platit a = g = h = k, takže
jak dobře víme, platí h < g < a < k. Označme c největší společný dělitel čísel a, g.
Pak a = ca i a g = cgi, přičemž g\ < jsou nesoudělná přirozená čísla. Protože

g-2 CQ^
h = — = —je číslo c dělitelné číslem ai, tedy c = da\ pro vhodné přirozené

11 a i

číslo d. Dostáváme tak vyjádření průměrů pomocí čísel d, ai, <71:

g2 = daiyj2a\ - g\.
Protože druhá odmocnina z přirozeného čísla je buď přirozené, nebo iracionální
číslo, musí být číslo у 2a2 — g\ přirozené (a to větší než au, neboť g\ < a\). Proto
je levá strana rovnosti

h = dg\, g — da\g\, a = da2, к = \j2a2

dg\ + daigi + da\ + da\ 2a\ — g\ — 66 (*)
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větší než 2a\ (vzhledem к nerovnosti d ^ 1 stačí uvažovat jen třetí a čtvrtý sčí-
tanec). Odtud plyne 2a\ < 66, neboli a\ ^ 5. Snadno se zjistí, která z deseti
odmocnin

\/2a\-9Í
je rovna přirozenému číslu: taková je jedině odmocnina \/2 • 52 — l2 pro ai = 5
a g\ = 1. Dosazením do (*) zjistíme, že d = 1. Průměry (h,g,a,k) = (1,5,25,35)
má dvojice kořenů rovnice t2 — 501 -f 25 = 0, tedy dvojice čísel {x,y} = {25 -f
+ 10^6,25- 10\/6}.

kde 1 ^ gi < a\ 5Í 5,

44 - В - I - 3

Pro daná kladná čísla x ф у uvažujme průměry

^,k = Jx + у V

x2 + y2X + y r—

y~, 9 = y/xy, h =a =
2

(Jde o aritmetický, geometrický, harmonický a kvadratický průměr čísel x a y.) Ze
všech rozdělení čtveřice а, g, /г, к na dvě dvojice r, s a t, и vyberte to rozdělení
pro které má výraz V = rs — tu nejmenší kladnou hodnotu. (J. Šimša)
Řešení. Jedná se o známé průměry, které (při i/y) splňují nerovnosti

(2)0 <h<g<a<k

(viz např. svazek ŠMM č. 39). Výraz V nabývá pouze hodnot

Vi = ka — hg, V2 = kg — ah, V3 = ag — kh a —Ví, — V2, — V3.

Dokážeme-li, že
(3)Ví > V2 > V3 > 0,

bude to znamenat, že V3 je nejmenší kladná hodnota výrazu V. Levé dvě nerovnosti
ve (3) plynou okamžitě z (2), neboť V\ — V2 = (k+h)(a—g) a V2 — V3 = (g+h)(k—a).
Zbývá tedy dokázat, že V3 > 0, neboli ag > kh. Důkaz je výhodné provést sporem:
Nechť existují taková různá x,y £ IR+, že ag ^ kh, tj.

y/žý- \ix + v) й у
x2 + у2 2xy

2 x + y

Obě strany této nerovnosti jsou kladné. Po umocnění na druhou a snadné úpravě
dostaneme (x + у)4 ^ 8(x2 + y2)xy; odtud (ж — у)4 ^ 0, a to je spor.

25



44 - С - I - 3

Každý bod obvodu čtverce o straně 10 cm je obarven jednou ze dvou barev. Dokaž-
te, že při libovolném obarvení můžeme na obvodu čtverce vždy najít body stejné
barvy tak, aby trojúhelník s těmito vrcholy měl obsah aspoň 25 cm2. (M. Čadek)
Řešení. Vrcholy čtverce označme A, 23, C, D. Mohou nastat dva případy:

1. Dva vrcholy na jedné straně mají stejnou barvu (např. modrou). Nechť jsou
to např. vrcholy A, 23. Existuje-li na straně CD čtverce bod V, který je obarven
toutéž barvou, dostáváme trojúhelník ABX, jehož vrcholy jsou obarveny modrou
barvou a jehož obsah je 50 cm2 > 25 cm2. Mají-li však všechny body strany CD
barvu jinou (např. červenou), uvažujme střed S strany BC. Je-li obarven modrou
barvou, má trojúhelník ABS všechny vrcholy obarveny modrou barvou a obsah
25 cm2. Je-li S červený, pak trojúhelník CDS má všechny vrcholy červené a přitom
obsah 25cm2.

2. Žádné dva sousední vrcholy čtverce ABCD nejsou obarveny stejnou barvou.
(Např. A, C jsou modré a 23, 22 jsou červené.) Uvažujme opět bod 5, který je
středem strany BC. Je-li obarven modrou barvou, pak trojúhelník ACS má obsah
25 cm2, a přitom jeho vrcholy jsou obarveny modrou barvou. Je-li bod S obarven
červenou barvou, má trojúhelník BDS obsah 25 cm2, a přitom všechny jeho vrcholy
mají červenou barvu.

Tím je důkaz ukončen.

44-C-S-2

V rovině je dán čtverec ABCD se středem S. Uvnitř úseček SA a SC jsou zvoleny
po řadě body E a F tak, že |S2ť| = \SF\. Sestrojme průsečík X polopřímky BE
se stranou AD a průsečík Y polopřímky DF s prodloužením strany AB. Dokažte,
že obsah trojúhelníka AXY nezávisí na poloze bodů E a F.

Řešení. Označme Z průsečík úseček BC a DY a U průsečík úseček BD a XY
(obr. 5).

(J. Šimša)

A YВ

Obr. 5
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1. způsob: Z dvojic podobných trojúhelníků AYF ~ CDF a AFD ~ CFZ
plyne

\AY\
_ \AF\ _ |AD|

|OD| “ jCFf _ |CZ|‘
Odtud dostáváme \AY\ ■ \CZ\ = \AD\ ■ \CD\ = a2, kde a je délka strany daného
čtverce ABCD. Díky své konstrukci jsou body X a Z středově souměrné podle
středu S, proto je \CZ\ = \AX\, takže pro obsah P trojúhelníka AXY platí P —

= ||ЛУ| \AX\ = ||АУ| \CZ\ = |a2, tj. obsah nezávisí na volbě bodů E a F.
2. způsob: Protože body X a Z jsou středově souměrné podle středu 5, je

YDXB lichoběžník (obr. 5), přičemž bod U je průsečíkem jeho úhlopříček BD
a XY. Obsah trojúhelníka DXU je proto roven obsahu trojúhelníka BYU. Vzhle-
dem к tomu, že obsah trojúhelníka AXY je součtem obsahů čtyřúhelníka AXUB
a trojúhelníka BYU, je obsah trojúhelníka AXY roven obsahu trojúhelníka ABD,
což je \oZ.

44 — Z8 — 111 — 1

Pro dvě různá přirozená čísla a, b platí a + 7 =81. Určete číslo b 4- 7. Uveďteb b

všechny možnosti.

Řešení. Číslo 7 musí být přirozené, proto a = к ■ b, kde к je přirozené, a platíb

k{b + 1) = 81. Protože čísla a a b mají být různá, nemůže být к = 1, a protože
b ф 0, nemůže být к — 81. Musí tedy nastat jedna z těchto možností:

1. к = 3, b = 26, a = 78, pak je b + 7 = 29,b

2. к — 9, b = 8, a = 72, pak je b + 7 = 17,b

3. к = 27, b = 2, a = 54, pak je b + 7 = 29.b

44 - Z9 - II - 2

Pro která celá čísla ж, у platí ж2 = Зжу + 10? Najděte všechna řešení.

Řešení. Zadaný vztah můžeme upravit na tvar x(x — 3y) = 10. Odtud vidíme, že
x i x — 3y dělí číslo 10. Mohou tedy nastat pouze možnosti uvedené v prvních dvou
řádcích tabulky:

1 -1 2 -2 5 -5 10 -10x

X - 3y 10 -10 25 -5 -2 1 -1

-3 3 -1 1 1 -1 3 -3У
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Pro každou z možností vypočítáme y. Řešením úlohy budou ty dvojice, pro
které bude získané číslo у celé. Výsledek je uveden v třetím řádku tabulky. Protože
ve všech případech vyšlo у celé, má úloha 8 řešení. Jsou jimi tyto dvojice čísel (x, y)\

(1,-3), (-1,3), (2,-1), (-2,1), (5,1), (-5,-1), (10,3), (-10,-3).

45 - A - I - 4

Dokažte, že pokud pro přirozená čísla a, b je i číslo

a -f-1 b 1

b a

přirozené, pak pro největší společný dělitel D čísel a, b platí nerovnost D ^ \/a + b.
Může nastat rovnost v případě, že D < a < 6?

Řešení. Po jednoduché úpravě dostaneme, že

й -f 1 b -(-1 a2 *j- b2 -t- ci -(- b
(1)b aba

Protože D je největší společný dělitel čísel a, 6, můžeme psát a = Da\ a b = Db\
kde ai, bi jsou nesoudělná přirozená čísla. Výraz (1) má po vykráčení tvar

Daf ~b Dbl Oi b\ (2)Da\b\

Aby výraz (2) byl přirozené číslo, musí být čitatel dělitelný jmenovatelem, a tedy
i všemi jeho děliteli. Proto musí být čitatel dělitelný D,

D | Dal Dbl “b “b bi.

Číslo D zřejmě dělí čísla Dal a Dbl, Pr°t° musí platit

D | flj 4* b\. (3)

Protože čísla a\, b\, D jsou přirozená a platí (3), musí zároveň být

D ^ -|- b\ (4)

což po přenásobení D (D > 0) dává

D2 <; a + b.
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Po odmocnění (obě strany jsou kladné) vychází, že

D ^ \/a + b. (5)

Ještě musíme zjistit, zda někdy nastane v (5) rovnost. Ta zřejmě nastane, právě
když nastane rovnost v nerovnosti (4). Proto musí být D — a\ + b\. Aby byla
zároveň splněna podmínka D < a < b, musí platit 1 < ai < b\. Volme proto a\ = 2
a bi = 5. Potom musí být D — 2 + 5 = 7, neboli a = Da\ — 14 a b = Db\ = 35.
Snadno se přesvědčíme, že v tomto případě rovnost (5) skutečně nastane.

Poznámka. Můžeme postupovat také tak, že na začátku zavedeme substituci
a = a\D, b = b\D a po obdobných úvahách dojdeme к tvrzení D2 \ a + 6, což po
odmocnění dává (5).

45 - A - I - 5

Najděte všechny funkce f: N —> I splňující pro každá x,y E N rovnost

f{xy) = f{x) + f(y) - f(D(x,y))
kde D(x,y) značí největší společný dělitel čísel x, у, víte-li, že platí f(p) = p pro
každé prvočíslo p.

Řešení. Především si všimněme, že pro nesoudělná čísla x, у platí

(P. Hliněný)

f(xy) = f{x) + f(y) - /(1).

Proto pro prvočíselný rozklad n = Pi'p%2 ■ ■ .p“m čísla n {jpi,P2, • • • ,Pm jsou různá
prvočísla a au, «2, • • •,a™ jsou přirozená čísla) dostáváme, že f(n) = /(p“x) +
+ /(ř>22) + • • • + f{Pmn) — (m — 1)/(1). Dále opakovaným použitím dané rovnosti
zjistíme, že f(pa) = f(pa~1) = ... = f(p) = p pro prvočíslo p a libovolné přirozené
číslo a. Odtud vyplývá, že platí

f(n) =pi +P2 + ... +Pm - (m - 1)/(1), n = p^P22 ■ • -Kr-

Dokažme ještě uvedené tvrzení podrobněji:
Nejdříve dokážeme matematickou indukcí podle a, že pro prvočíslo p platí

f(pa) = fip) = P-
První krok. Pro a = 1 plyne tvrzení přímo ze zadání.
Druhý krok. Nechť tvrzení platí pro a ^ 1, potom

a+l ) = f(pa) + f(p) ~ f{D(pa,p)) = f{pa).f(p

Odtud podle indukčního předpokladu plyne, že je také

fÍPa+1) = f{pa) = f{p) =P-
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Dále dokážeme, že pokud n — p^p^2 • • - Pm'1 je prvočíselný rozklad čísla n ^ 2,
je

f(n) = f{PllP22 ■ • -Pm11) =Pl+P2 + ■■■+Pm- {m - 1)/(1).
Tvrzení dokážeme opět indukcí, tentokrát podle počtu m prvočíselných dělitelů
čísla n.

První krok. Pro m = 1 dostáváme předchozí tvrzení, které jsme právě dokázali.
Druhý krok. Nechť tvrzení platí pro m ^ 1. Potom platí

/(РГРГ • • -Pm+Í1) = /(РГХ3 • ■ -Pm”) + /(Pm+Í1) "

-/(Д(р?+Г---Р™".гС+1,)Ь
Protože ale D^p^p^2 ■ ■ . Pm11 Pm+V) = má dle indukčního předpokladu

předcházející rovnost tvar

f{P\lP22 • • • Pm+l ) — Pl + P2 + ■■■+ Pm -
- (m - 1)/(1) +Pm+1 - /(1)

= P! + ...+Pm+l — 7Tl/(l). (1)

Ještě zbývá ukázat, že takto definovaná funkce / vyhovuje dané podmínce pro
libovolnou hodnotu /(1). Nechť a a b jsou přirozená čísla. Označme c = D(a,b)
a nechť c = p^1 .. .p^p1 je jeho prvočíselný rozklad. Prvočíselný rozklad čísla a má
pak zřejmě tvar

a=P?1 ■■■Anqin+1
a podobně číslo b bude mít prvočíselný rozklad

Pm+ s
■■■Qs

U _ „71 Лш J"‘+l r7m + tu Pi .. . pm li i s

Zároveň víme, že prvočísla p\,..., pm, q\,..., qs ari,...,rt jsou navzájem různá.
Proto rozklad čísla a ■ b na prvočinitele je

+7m +1
• • •Pm Q\

01+71 0m + 3»7m + l Jm+ ta ■ b = Pi ri ...Г'■■■Qs

Podmínka ze zadání říká, že

f(a-b) = f(a) + f(b)-f(D(a,b)). (2)

Spočítejme tyto hodnoty pro funkci definovanou pomocí (1):

f(a) = pi + ... + pm + qi + . .. + qs - (m + s - 1)/(1)
f(b) = pi + ... + Pm + n + ... + rt - (m + t - 1)/(1),

f(a-b) = pi + ... + Pm + Qi + ■.. + qs + ri + ■ ■ ■ + rt —

- (m + s + t- 1)/(1),
/(с) =Pi + ...+pm-(m- 1)/(1).
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Snadno nahlédneme, že po dosazení těchto hodnot do (2) dostaneme identitu (ještě
je potřeba si uvědomit, že všechny tyto úvahy jsou korektní i v případě m = 0,
s = 0, t — 0). Funkce / definovaná pomocí (1) je tedy jediným řešením dané úlohy
pro libovolnou hodnotu /(1).

45 - A - III - 5

Pro která celá čísla к existuje funkce /:№—>■ Z splňující
(i) /(1995) = 1996,

(ii) f(xy) = f(x) + f(y) + к ■ f(D(x, y)) pro všechna přirozená čísla ж, у?
D(x,y) označuje největší společný dělitel čísel x, y.

Řešení. Ze vztahu (ii) pro x — у vyplývá /(ж2) = /(ж ■ x) = (k + 2)/(ж). Dvojná-
sobnou aplikací předchozího vztahu dostaneme

(P. Hliněný)

/(z4) = f(x2 ■ x2) = {k + 2)/(ж2) = {k + 2)2f{x).

Jiným postupem ale dostaneme

/(ж4) = /(ж • ж3) = /(ж) + /(ж3) + kf{ж) =

= {к + 1)/(ж) + /(ж • ж2) =

= (к + 1)/(ж) + /(ж) + /(ж2) + kf (ж) =

= (2к + 2)/(ж) + /(ж2) = (ЗА; + 4)/(ж).

Nyní stačí najít libovolné ж, pro které je /(ж) ф 0, tedy například podle (i) ж =
= 1 995. Porovnáním předchozích dvou vztahů dostaneme podmínku

{k + 2)2/(l 995) = /(1 9954) = (ЗА; + 4)/(l 995),
(A; + 2)2 = ЗА; + 4,

к G {0, —1}.

Pro к — — 1 dostáváme funkcionální rovnici z domácího kola. Víme, že jejím obec-
ným řešením je pro ж = pj*1 ... p°ýn funkce

/(ж) = f{pi) + ... 4- f{pn) ~ (n - 1)/(1).

Podmínku (i) úlohy můžeme splnit například volbou /(5) = 1996, f(p) = 0 pro
všechna prvočísla p/5a/(l) = 0,

Pro A; = 0 dostáváme funkcionální rovnici

f(xy) = f{x) + f(y).
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Odtud především pro x = у = 1 plyne /(1) = 0. Obecným řešením této rovnice
pak je pro x = pf1 .. .p“n funkce

f(x) = + ... + an/(pn),

kde f(pi) jsou libovolná celá čísla. Opět stačí zvolit /(5) = 1 996 a f(p) = 0 pro
všechna prvočísla p ф 5 jako výše.

45 - В - I - 4

Číslo 2n4 + n3 + 50 je dělitelné šesti právě pro ta přirozená čísla n, pro která je
číslo 2 • 4n + 3n + 50 dělitelné třinácti. Dokažte.

Řešení. Sestavíme tabulku zbytků při dělení čísel A = 2n4 + n3 + 50 šesti v zá-
vislosti na zbytku čísla n (zbytek při dělení čísla A šesti totiž závisí jen na zbytku
při dělení čísla n šesti):

(J. Šimša)

n n2 n3 n4 2n4 2n4 + n3 A — 2n4 + n3 + 50

0 0 0 0

1111

2 4 2 4

3 3 3 3

4 4 4 4

5 15 1

0 0 2

2 3 5

2 4 0

0 3 5

2 0 2

2 31

Z tabulky vidíme, že číslo A je násobkem šesti, právě když číslo n dává při dělení
šesti zbytek rovný 2, tj. je rovno jednomu z čísel 2, 8, 14, 20, ... .

Nyní sestavíme tabulku zbytků při dělení několika prvních čísel В — 2 • 4n +
+ 3n + 50 třinácti. (Na rozdíl od výrazu A, který je mnohočlenem, se ve výrazu В
vyskytuje proměnná n i v exponentu. Nelze proto říci, že zbytek při dělení čísla В
třinácti závisí na zbytku při dělení čísla n třinácti. Až při sestavování tabulky se

ukáže, s jakou periodou se zbytky opakují.)

n 3n 4n 2 • 4n 2 • 4n + 3n В = 2 • 4n + 3n + 50

0 11 2

13 4 8

2 9 3 6

3 1 12 11

4 3 9 5

5 9 10 7

6 11 2

3 1

911

02

1012

68

13

13
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Další výpočty už nemusíme provádět. Vidíme totiž, že zbytky mocnin 3n a 4n
se vzhledem к číslu n opakují se společnou periodou rovnou šesti (u mocnin 3n
existuje dokonce menší perioda rovna třem). Proto i posloupnost zbytků čísel В
má periodu 6. Navíc je z tabulky patrno, že В je násobkem třinácti, právě když
číslo n dává při dělení šesti zbytek 2, tj. je rovno jednomu z čísel 2, 8, 14, 20, ...

Poznámka. Periodicitu v posloupnosti zbytků při dělení mocnin ak číslem d
přesněji postihují Fermatova a Eulerova věta. Podle Fermatovy věty je v případě,
kdy d je prvočíslo, délka periody rovna některému děliteli čísla d — 1.

45 - В - I - 1

Zjistěte, pro která reálná čísla p má rovnice

x3 + px2 4- 2px = Зр + 1

tři různé reálné kořeny x\, X2 а x3 takové, že x\x2 = x\.
Řešení. Využijeme vztahů mezi kořeny a koeficienty mnohočlenu, tzv. Viětových
vzorců. Podle nich je

(J. Šimša)

x\ + x2 + x3 - -p,

XiX2 + xix3 + x2x3 = 2p,

X\x2x3 =3p+l.

Dosadíme-li do druhého vztahu za xix2 = re2, dostaneme

2p = x\ + x\x3 + x2x3 = x3(xi + x2 + x3) = -px3

a protože p = 0 zřejmě nevyhovuje, je x3 = —2.
Dále platí

3p+ 1X]_x2x3
4 = x\ — x\x2 — -2x3

odkud p = —3. Jen pro toto p tedy může daná rovnice vyhovovat daným podmiň-
kám. Dosadíme-li do Viětových vzorců za x3 a za p, dopočteme zbývající řešení
x\ = 4, x2 = 1 a přesvědčíme se, že je tomu opravdu tak.

45 - В - II - 3

Dokažte, že rovnice ж3 — 1 996rr2 + rx — 1 995 = 0 má pro každý reálný koeficient r

nanejvýš jeden celočíselný kořen.

Řešení. Připusťme, že pro některé číslo r má daná rovnice dva celočíselné koře-
ny a, b. Dělení levé strany rovnice mnohočlenem (x — a)(x — b) vyjde beze zbytku
a výsledný podíl bude tvaru x — c pro vhodné reálné číslo c. Číslo c musí být ovšem

(A. Vrba)
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celé, neboť a + b + c = 1 996. Všechna tři čísla a, b, c nemohou být lichá, když je
jejich součet sudý. Jejich součin je však liché číslo 1 995, což není možné. Rovnice
může mít tedy nanejvýš jeden celočíselný kořen.

45 - С - II - 4

V polorovině ABM sestrojte kružnice k\ a k^, které se dotýkají přímky AB po
řadě v daných bodech A a B, dotýkají se vně v nějakém bodě T a jejich společná
tečna v tomto bodě prochází daným bodem M.

Řešení. Označme S průsečík uvažované tečny obou hledaných kružnic s přím-
kou AB. Z vlastností tečen ke kružnici plyne, že je \SA\ = |ST| = \SB\ (obr. 6),
takže bod S je středem úsečky AB. Odtud již snadno plyne konstrukce.

(J. Švrček)

Nejprve sestrojíme střed S úsečky АБ, pak najdeme bod T na polopřímce
SM takový, že \ST\ = |5Л|. Střed S\ hledané kružnice k\ najdeme jako průsečík
kolmice к přímce AB v bodě A a kolmice к přímce SM v bodě T. Podobně
sestrojíme i střed S2 kružnice k2- Sestrojené kružnice k\ a ^2 zřejmě mají všechny
požadované vlastnosti.

Úloha má vždy jedno řešení.

46 - В - I - 2

Najděte všechny kvadratické funkce, které zobrazí interval (2,5) na interval (15, 27)
a jejichž graf prochází počátkem soustavy souřadnic. (P. Černek)
Řešení. Funkci budeme hledat ve tvaru f(x) = ax2 + bx + c. Protože její graf
prochází počátkem souřadnic, je c = 0. Proto f(x) = ax2 + bx pro vhodné kon-
stanty a, b.

Prozkoumáme nejprve možnosti, kdy je / na intervalu (2, 5) monotónní, a tedy
buď

a) /(2) = 15, /(5) = 27, je-li tam rostoucí, anebo
b) /(2) = 27, /(5) = 15, je-li tam klesající.
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Řešme nejprve případ a). Dostaneme dvě lineární rovnice 4a + 26 = 15 a 25a4-
+ 56 = 27. Řešením této soustavy je a = — ^ a 6 = ||. Ještě musíme ověřit,
zdaje skutečně / na intervalu (2,5) monotónní. Stačí zřejmě zjistit, zda nenabývá
svůj extrém (maximum) na tomto intervalu. V našem případě se extrém nachází
v bodě ji, který je mimo uvažovaný interval.

Případ b). Obdobně jako v a) dostaneme funkci — ~x2 + 4рж, která nabývá
maximum v bodě který však tentokrát je v intervalu (2,5), a hodnota funkce
v něm je větší než 27, tedy tato funkce nevyhovuje zadaným podmínkám.

Nechť teď / není na intervalu (2,5) monotónní. Z tvaru kvadratické funkce
vyplývá, že / mění svoji monotónnost jen v bodě extrému, tedy v našem případě
bude bod —— ležet v intervalu (2, 5). Protože y-ová souřadnice vrcholu paraboly2a

b2
je - —, je buď

4a

62
(1)— = 27, a < 0,

4a

62
anebo = 15 pro a > 0, což však zřejmě nemůže nastat.

4a
Minimum se zřejmě nabývá na kraji intervalu, tedy buď

(2)/(2) = 4a+ 26= 15
anebo

/(5) = 25a+ 56= 15. (3)

V prvním případě vyjádříme z (2) výraz 4a a dosadíme do (1). Dostaneme kvadra-
tickou rovnici 62 — 546 + 405 = 0, která má dva kořeny 6 = 9, 6 = 45. V jednotlivých
případech dostáváme kvadratické funkce:

75 3
f(x) = --a:2 + 9ж.fix) = x2 + 45x4

4
a

Ještě zřejmě musíme ověřit, že /(5) ^ 15. Z této podmínky vyplývá, že jen druhá
funkce může vyhovovat zadaným podmínkám, ale její extrém není v intervalu (2,5).

V druhém případě dostáváme obdobně kvadratickou rovnici 562 — 1086 + 324 =
= 0, která má dva kořeny 6 = 18, 6 = Щ-. V jednotlivých případech tentokrát
dostáváme kvadratické funkce

,, v 3 2 18fix) = x2 4JK J 25 5
f(x) = — Зх2 + 18ж a

Nyní musíme ověřit, že /(2) ^ 15. Tentokrát vyhovuje jen první funkce.
Takto jsme dostali všechna možná řešení, a to kvadratické funkce

7
f(x) = ~ TTT2'2 + f(x) = —Зж2 + 18ж.10 10
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46 - В - S - 2

Rovnice x3 + ax'2 4- bx 4- с = 0, kde a, b a c jsou celá čísla, má kořen x = 1 — \/2.
Dokažte, že pak platí a — 2b + 5c = 0. (P. Černek)
Řešení. Po dosazení čísla x = 1 — y/2 do dané rovnice a jednoduché úpravě dostá-
váme

(5 -J- 2a 4- Ď) • v/2 — 7 4- 3d -4- & 4~

Protože na pravé straně je celé číslo, musí platit

c.

5 4* 2a b — 0 7 4“ 3a 4~ b 4~ c — 0a

(jinak bychom mohli vyjádřit \[2 jako podíl dvou celých čísel, což vzhledem к ira-
cionalitě nejde). Vyjádříme-li b a c z těchto dvou rovnic pomocí a, dostaneme
b — —5 — 2a а c — —2 — a, takže

a — 2b 4- 5c = a — 2 ■ (—5 — 2a) 4- 5 • (—2 — a) = 0.

Tím je tvrzení úlohy dokázáno.

46 - В - II - 2

Určete, pro která reálná čísla p má funkce f(x) = x3 — px2 4- 1 997 na intervalu
(0,1) minimum v bodě x = 1.

Řešení. Zřejmě stačí zkoumat funkci g{x) — x3 — px2, protože v každém intervalu
nabývá minima ve stejných bodech jako daná funkce /. Funkce g má v intervalu
(0,1) minimum v bodě 1, právě když pro všechna x z tohoto intervalu platí g(x) ^
^ g( 1), neboli x3 — px2 ^ 1 — p. Po úpravě dostáváme ekvivalentní nerovnost

x3 — 1 ^ p{x2 — 1), (1)

kterou můžeme upravit na tvar

(1 — x) (x2 4- x 4-1 — p{x 4- 1)) ^ 0.

Vzhledem к tomu, že pro číslo x = 1 je nerovnost (1) splněná triviálně, můžeme pro
x 6 (0,1) vydělit poslední nerovnost dvojčlenem 1 — x a dostaneme ekvivalentní
podmínku

q{x) = x2 4- (1 — p)x 4-1 — p ^ 0.

Protože q je kvadratická funkce s kladným koeficientem u x2 (jejím grafem je
parabola „obrácená vzhůru11), platí nerovnost q(x) й 0 pro všechna x € (0,1),
právě když je současně q(0) 0 a q( 1) ^ 0, tj. právě když 1— pí 0a3 - 2p^0.
Dohromady tak vychází jediná (nutná i postačující) podmínka p ^ |.
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Jiné řešení. Po odvození nerovnosti (1) můžeme postupovat také následovně.
Pro číslo x = 1 je nerovnost triviálně splněná, pro x E (0,1) můžeme nerovnost
vydělit záporným dvojčlenem x2 — 1, takže vyjde

x3 — 1 x2 + x + 1 1
(2)P ^ = x +

x2 — 1 X + 1X + 1

1
pro všechna x E (0,1). Ukážeme, že funkce h(x) = x +

rostoucí.
Pokud je totiž x ^ 0 a e > 0, je h(x 4- s) > h(x), neboť

je v tomto intervalu
x + 1

1 1
po úpravě dává 1 < (i + e + l)(í + l).x + e + > x +

X + £ + 1

Tato nerovnost však vzhledem к volbě x a e platí, a protože všechny úpravy byly
ekvivalentní, dokázali jsme, že funkce h je rostoucí dokonce v intervalu (0, oo).
Nerovnost (2) je splněna pro všechna x E (0,1), právě když platí pro x = 1,
tj. právě když p ^ |. Řešením jsou všechna reálná čísla p z intervalu (|, oo).

Poznámka. Je možno postupovat i pomocí diferenciálního počtu. Z první
a druhé derivace funkce / snadno zjistíme, že v intervalu (0,1) nabývá funkce /
jen dva extrémy: v bodě i = 0av bodě x = |p. Z toho pak lze snadno odvodit,
že úloze vyhovují právě čísla p ^ §.

x + 1

46 - С - II - 1

V čtyřciferném čísle jsou stejné první dvě číslice a také poslední dvě číslice. Určete
toto číslo, víte-li, že je druhou mocninou přirozeného čísla.

Řešení. Číslo 1 000a + 100a + 106 + 6 = 11 (100a + 6) má být druhou mocninou,
proto musí být číslo 100a+6 dělitelné číslem 11 a podíl jj(100a+6) = 9a+jj(a+6)
musí být druhou mocninou přirozeného čísla. Vzhledem к tomu, že a a 6 (а ф 0)
jsou číslice, musí být a + 6 = 11, a protože 9a + 1 má být druhou mocninou, vyjde
a = 7. Hledané číslo je 7 744 = 882.

46 - Z5 - I - 2

Lukáš sečítal dvě pěticiferná čísla. V obou číslech se každá z číslic 5, 6, 7, 8 a 9
vyskytovala právě jednou. Vyšel mu výsledek 164 528. Markéta jeho výsledek kon-
trolovala a prohlásila, že Lukáš udělal chybu. Měla Markéta pravdu? (Macura)
Řešení. Sčítání zapíšeme ve tvaru

jjc э|с э|с sfc jf:

-f * * * * *

164528
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a zkusíme nahrazovat hvězdičky v obou sčítancích číslicemi. Hvězdičky nahrazu-
jeme zprava doleva a vzhledem к tomu, že každá z číslic 5,6,7,8a9sev každém
sčítanci vyskytuje právě jednou, máme pro jejich nahrazení pouze (až na pořadí
sčítanců) tyto dvě možnosti:

* 5 8 6 9

+*8659

* 5 7 6 9

+*8759

164528 164528

Zbývající hvězdičky však v obou případech nelze zbývajícími číslicemi doplnit
na správný zápis sčítání.

Markéta měla pravdu.

47 - A - I - 1

Číslo 1 9972” — 1 je dělitelné číslem 2n+2 pro každé přirozené číslo n. Dokažte.
(P. Kaňovský)

Řešení. Označme к = 1 997 a všimněme si, že pro každé n platí

- i = (к2")2 - l2 = (kfc2"+1 2" 1)+”+!)• (1)

To nám umožní dokazovat uvedené tvrzení indukcí. Můžeme začít s hodnotou

n = 0, neboť číslo к — 1 je dělitelné číslem 22. Protože číslo к2" + 1 je pro každé
n sudé, plyne z rozkladu (1), že pokud číslo A:2” — 1 je dělitelné číslem 2n+2, je
číslo k2"+1 — 1 dělitelné číslem 2n+2 • 2, tedy číslem 2n+3. Tím je důkaz indukcí
ukončen. Dodejme, že místo (1) je možné obdobně využít rovností

i)2 = k2"*' 2n + 1 1) -2(k2' -1).2”' 2 • к2'1 + 1 = (k(k

Jiné řešení. Místo matematické indukce můžeme využít binomickou větu a do-
kázat, že pro každé celé číslo к je rozdíl (4к + l)2’ — 1 dělitelný číslem 2n+2.
(Odtud volbou к = 499 dostaneme tvrzení úlohy.) Z binomické věty pro exponent
2n vyplývá rozklad

-l = (4+”+ (”)(«)
2”Wr-

2" 2" — 1(4fc + 1) + ... +

2n
4k.+ ... ++

i 2n-l

2n + 1
a tedy i mocninou 2n+2První sčítanec napravo je dělitelný mocninou 2

neboť n + 2 ^ 2n+1 pro každé celé n ^ 0 (snadná indukce). Nyní pro každé
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j E {1, 2,..., 2n — 1} zjistíme, jakou mocninou čísla 2 je dělitelné kombinační číslo
(2. ). К tomu využijeme vyjádření

2n — i + 12n 2n 2n - 1 2n - 2 2n - 3
(2)

j ~ 1J 21 3

které je výhodné proto, že čísla i a 2n — i mají ve svých rozkladech na prvočinitele
tutéž mocninu čísla 2, 1 ú i ^ 2n — 1. Je-li proto j = 2al, kde 0 ^ a ^ n - 1 a/
je liché, je podle (2) uvažované číslo (2. ) lichým násobkem mocniny 2n~a. Odtud
plyne, že číslem 2n+2 je dělitelný každý sčítanec na pravé straně (1), právě když
pro každý uvažovaný index j platí nerovnost n + 2 й (n — a) + 2(2n — j), neboli
a + 2 ^ 2(2n — j). Protože a + 2 ý 2a+1 (snadná indukce), stačí nám dokázat
silnější nerovnosti 2a ^ 2n — j. Ty ale plynou z definice čísel a = jelikož
mocnina 2a dělí číslo j, dělí i číslo 2n — j, takže ho nepřevyšuje.

47 —А — II — 1

Číslo 1 9973 + 1 je dělitelné číslem 3n+3 pro každé přirozené číslo n. Dokažte.
(J. Šimša)

Kešení. Tvrzení dokážeme indukcí podle čísla n. Můžeme začít od hodnoty n =
= 0: číslo 1 9973° + 1 je skutečně násobkem čísla 33 (1998 = 27 • 74). Platí-li
podle indukčního předpokladu rovnost 1 9973" + 1 = 3n+3kn pro vhodné přirozené
číslo kn, dostaneme ze vzorce A3 + В3 = (A + B)3 — 3AB(A + В) pro hodnoty
A — 1 9973" а В — 1 následující vyjádření:

3” + 1
+ 1 = (3n+3Á;n)3 - 3-1 9973” • (3n+3kn) =

= 3n+4 (32п+5/с3 - 1 997yikn).
1997

Tím je důkaz hotov.
Dodejme, že při druhém indukčním kroku bylo rovněž možné využít rozklad

x3 + + 1 = (x3 )3 + l3 = (x3 + l) (x
a vysvětlit, proč pro x = 1 997 je druhý činitel dělitelný třemi: čísla 1 9972'3"
a 1 9973 totiž při dělení třemi dávají po řadě zbytky 1 a 2.

2-3" -ЖЗП+1)

47 - A - S - 1

Najděte všechny trojúhelníky ABC, pro které platí rovnost

\BC\-\AX\ = \AC\-\BY\,

kde bod X je průsečíkem osy úhlu BAC se stranou ВС a bod Y průsečíkem osy
úhlu ABC se stranou AC. (P. Černek)
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Řešení. Zkoumanou rovnost přepíšeme do tvaru \BC\ : \BY\ = \AC\ : \AX\
a oba poměry vyjádříme pomocí sinových vět pro trojúhelníky BCY a ACX
(ve kterých při obvyklém označení vnitřních úhlů trojúhelníku ABC zřejmě platí
\$BYC\ =a+\P a |3 AXC\ = /3 + §a, obr. 7):

A В

Obr. 7

sin(a + |/3) sin(/3 + |a)\BC\ \AC\
a

|АУ||ВУ| siny siny

Hledáme proto právě ty trojúhelníky, pro které

sin (a + \ft) = sin (/3 + |a).

Protože oba argumenty leží mezi 0° a 180°, rovnost jejich sinů nastane, jen pokud
a + — /3 + ^a, nebo (a + + (/3 + ^a) = 180°. První podmínka znamená
a — /3, druhá a + /3 = 120°, neboli у = 60°.

Malá obměna první části: Srovnáme-li zkoumanou rovnost s obecně platnou
rovností \BC\ ■ \ AP\ = \AC\ ■ \BQ\, kde AP a BQ jsou výšky daného trojúhelníku,
dostaneme ekvivalentní podmínku ve tvaru \AP\ : \AX\ = \BQ\ : |J5P|.Z pravoúh-
lých trojúhelníků APX a BQY tak opět vyjde rovnost sin(a + \(3) — sin(^+ |a).

Odpověď: Hledanými jsou právě ty trojúhelníky, pro které platí \AC\ — \BC\
nebo \$ACB\ = 60°.

47 - В - I - 1

Magický čtverec je čtvercová tabulka přirozených čísel, v níž je součet všech čísel
v každém řádku, v každém sloupci i na obou úhlopříčkách stejný. Najděte všechny
magické čtverce 3x3, pro které je součin čtyř čísel v rohových polích roven 3 465.

(P. Černek)
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Řešení. Označme přirozená čísla v magickém čtverci písmeny a, b, c, d, e, /, g, h, i
jako na obr. 8 a písmenem S označme součet tří čísel v každém řádku,
sloupci i úhlopříčce. Ukážeme, že je S = 3e: Sečteme-li totiž čísla
v prvním a třetím řádku a od výsledku odečteme čísla v prostředním
sloupci, dostaneme rovnost

ba c

fd e

h i9

Obr. 8S + S — S — cl + с -Р g “b i — e.

Odtud vzhledem к rovnostem a + i = c + g = S — e plyne

S = (S — e) + (S — e) — e, neboli S = 3e.

Důsledkem jsou rovnosti

a + i — c + g = 2e.

Hledejme tedy čtyři přirozená čísla а, г, c, g, jejichž součin je roven číslu 3 465,
a přitom a + i = c + g. Probrat konečnou množinu řešení rovnice aicg = 3 465
můžeme tak, že nejprve vypíšeme všechny možné rozklady čísla 3 465 = 32 • 5 • 7 • 11
na součin dvou činitelů M a N (jež by měly odpovídat součinům ai a cg):

3 465 = 1 • 3 465 = 3 • 1155 = 5 • 693 = 7 • 495 = 9 • 385 =

= 11 • 315 = 15 • 231 = 21 • 165 = 33 • 105 = 35 • 99 =

= 45 • 77 = 55 • 63.

Nyní pro jednotlivé dvojice M, N snadno vyhledáme rozklady M = ai a N = cg
s vlastností a+i = c+g (pro prvních osm dvojic takové rozklady zřejmě neexistují).
Jediné dva vyhovující rozklady jsou

3465 = (5 • 11) • (7 • 9) = (3 • 15) • (7 • 11).

V prvním případě 2e = 16, tedy e = 8; v druhém 2e = 18, tedy e = 9. Snadno
dopočteme i ostatní čísla magického čtverce (obr. 9).

7

5

15

Protože čtyři rohová čísla můžeme do tabulky umístit osmi způsoby, je každá
tabulka na obr. 9 zástupcem osmi tabulek, jež z ní vzniknou „překlopením14 podle
os souměrnosti čtverce. Jiná řešení úlohy neexistují.
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47 - В - S - 3

Najděte všechny čtvercové tabulky 3x3 přirozených čísel, v nichž je součin všech
čísel v každém řádku, v každém sloupci i na obou úhlopříčkách stejný a pro něž
platí, že součet čtyř čísel v jejich rohových polích je jednociferné číslo.

(./. Aragorn Těšínský)
Řešení. Označme a, b, c, d jednomístná čísla v rohových polích hledané tabulky
(obr. 10) a e číslo v jejím středovém poli. Vzhledem к souměrnosti
(překlopením podle jedné z úhlopříček nebo středního sloupce či
řádku se uvažované vlastnosti tabulky nezmění) můžeme předpoklá-
dat, že je a ^ d, b ^ c a a+d ^ b+c, a protože má být a+b+c+d ^ 9,
bude za uvedených předpokladů a + dý4aHc^5. Z rovnosti
aed = bec plyne ad = bc, takže stačí prozkoumat následujících pět
možností:

ba

e

dc

Obr. 10

1112 2

1 2 3 2 2
11112

1 2 3 4 2

a

d
b
c

V každém z těchto pěti případů můžeme pomocí „prostředního" čísla e stejnou
metodou vyjádřit ostatní čísla tabulky, a to tak, že využijeme rovnosti součinů čísel
v obou úhlopříčkách, obou krajních řádcích a obou krajních sloupcích. Tabulky pak
vypadají takto:

1 1 1 2e 21 2e e

e e e e e e e e e

i1 1 2 2 2 2e 2e e

Porovnáme-li nyní zmíněné součiny se součinem čísel v druhém řádku (či v dru-
hém sloupci), dostaneme v každém z uvedených případů jedinou rovnici

e3 = (ad)e, kde postupně ad = 1,2,3,4,4.

Tato rovnice má v přirozených číslech řešení pouze pro ad G {1,4} a tomu odpoví-
dají tři tabulky na obr. 11. Z poslední tabulky dostaneme zmíněnými souměrnostmi
ještě tři další, ale jak snadno zjistíme, vznikne každá z nich otáčením uvedené ta-
bulky o 90°.

41 1 1 2 2 2 2 1

1 1 1 2 2 42 2 1

41 1 1 2 2 2 21

Obr. 11
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47 - В - II - 3

Je dána čtvercová tabulka 3x3 přirozených čísel, v níž je součin všech čísel v kaž-
dém řádku, v každém sloupci i na obou úhlopříčkách roven číslu s.

a) Dokažte, že číslo s je třetí mocninou přirozeného čísla.
b) Pokud je jedno z rohových čísel tabulky rovno 1, je součet všech čtyř rohových

(J. Aragorn Těšínský)
Řešení. Uvažujme čtvercovou tabulku 3x3 (obr. 12) splňující podmínky úlohy,

a) Z tabulky je patrné, že pro uvažovaný součin s platí

čísel druhou mocninou přirozeného čísla. Dokažte.

_ (aei){def){gec)
(<adg)(cfi)

= e3.

Číslo s je tedy třetí mocninou přirozeného čísla e, které je umístěno uprostřed
tabulky.

e21 e

e2 1e

e21e

Obr. 13

b) Bez újmy na obecnosti předpokládejme, že a = 1 (otočením tabulky o 90°
nebo o 180° se uvažované vlastnosti tabulky nezmění). Vzhledem к výsledku

části a) ze součinu čísel na obou úhlopříčkách zjistíme, že musí být i = e2ac= —
9

g
Ze součinu čísel v třetím řádku pak dostaneme, že h = a ze součinu čísel v třetím

e2

9

sloupci f = -■ Protože h i / jsou přirozená čísla, musí být e = g, a proto také
e

h = f = 1. Uvažovaná čtvercová tabulka je tedy typově shodná s tabulkou na
obr. 13. Odtud plyne, že součet všech čtyř čísel v jejích rohových polích je

a + c + g + i = 1 + e + e-fe2 = (1 + e)2

což je druhá mocnina přirozeného čísla. Tím je důkaz hotov.

47 - С - I - 1

Pro libovolné trojciferné číslo určíme jeho zbytky při dělení čísly 2, 3, 4, ..., 10
a získaných devět čísel pak sečteme. Zjistěte nejmenší možnou hodnotu takového
součtu.

Řešení. Označme S(n) součet uvedených zbytků trojciferného čísla n. Vysvětlíme,
proč S(n) ^ 3.

(./. Aimsa)
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• Pro liché n je 5(n) ^ 5 (uvažte zbytky při dělení sudými čísly 2, 4, 6, 8, 10).
Dále tedy nechť n je sudé.

• Pokud 4 \ n, tak 5(n) ^ 4 (n dává při dělení čísly 4 a 8 zbytek aspoň 2). Nechť
n je dále dělitelné čtyřmi.

• Pokud 8 { n, tak 5(n) ^4 (zbytek 4 při dělení číslem 8). Proto nechť je dále n
dělitelné osmi.

• Pokud 3 j n, tak 5(n) ^ 3 (n dává při dělení čísly 3, 6, 9 zbytek aspoň 1).
Nechť je dále n dělitelné osmi a třemi.

• Pokud 9 { n, tak S(n) ^ 3 (zbytek aspoň 3 při dělení číslem 9). Nechť dále 8 | n
a 9 | n.

• Pokud 5 { n, tak 5(n) ^ 3 (zbytek aspoň 1 při dělení číslem 5 a zbytek aspoň 2
při dělení číslem 10).
Předpokládejme proto, že 5|?г, 8|n a 9|n. Pak přicházejí do úvahy už jen čísla 360

a 720, pro něž 5(360) = 3 a 5(720) = 9. Tím je nerovnost 5(n) ^ 3 dokázaná.
Zároveň jsme zjistili, že 5(n) = 3 např. pro n = 360. (Je také 5(840) = 3.)

Jiné řešení. Uvažujme jen ten případ, kdy číslo n není dělitelné nejvýše dvěma
z čísel 2, 3, ..., 10 (jinak 5(n) ^ 3). Pokud je tento „nedělitel11 jediný, je to nutně
číslo 7 (musí to být prvočíslo, jehož dvojnásobek je větší než 10), takže 360 | n.
Pokud jsou takoví „nedělitelé“ dva, musí to být některá z dvojic 5 a 10, 8 a 9, 7
a 8, 7 a 9, 4 a 8. V každém případě 6 | n, takže snadno ukážeme, že jeden z obou
kladných zbytků je větší než 1, tedy 5(n) ^ 3.

47 - C - S - 2

Zjistěte nejmenší trojciferné číslo, které je dělitelné právě polovinou z čísel

2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36.

(P. Černek)
Řešení. Hledané číslo A má být dělitelné právě šesti z vypsaných čísel. Každé
z těchto 12 čísel je dělitelné pouze prvočísly 2 a 3. Jelikož mezi těmito čísly jsou
jen čtyři mocniny dvou (2, 4, 8, 16) a jen tři mocniny tří (3, 9, 27), musí být číslo
A dělitelné jak dvěma, tak třemi (a tedy i šesti).

Protože kromě čísel 2, 3 a 6 má číslo A ještě další tři dělitele mezi vypsanými
čísly, musí být A dělitelné čtyřmi nebo devíti, ne však oběma čísly zároveň (pak
by mělo osm dělitelů 2, 3, 4, 6, 9, 12, 18 a 36). Rozlišme proto dva případy.

• 4 | A a 9 \ A. Pak je číslo A dělitelné 2, 3, 4, 6 a 12, šestý vypsaný dělitel
je nutně (jediné) z čísel 8, 16, 24. Proto 8 | A, takže také (ve sporu s předchozí
větou) 24 | A. Musí tedy nastat druhý případ.

• 9 | A a 4 { A. Pak je číslo A dělitelné 2, 3, 6, 9 a 18, šestý vybraný dělitel
je nutně číslo 27. Proto 54 | A, tedy A = 54/, kde / je liché číslo (neboť 4 \ A).
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Na druhé straně, každé takové číslo 54/ má zřejmě mezi vypsanými čísly právě 6
dělitelů (2, 3, 6, 9, 18, 27). Takové nejmenší trojciferné číslo je 54 • 3 = 162.

Jiné řešení. Hledané trojciferné číslo A nemůže být dělitelné ani číslem 36 (pak
by mělo osm dělitelů 2, 3, 4, 6, 9, 12, 18, 36), ani číslem 24 (pak by mělo sedm
dělitelů 2, 3, 4, 6, 8, 12, 24). Probírejme zbylých 10 vypsaných čísel (sestupně od
největšího) a zjišťujme, zda mohou dělit číslo A.

• 27 | A. Protože číslo A je nutně sudé (jinak by mělo jen dělitele 3, 9, 27),
platí 54 | A. Číslo 54 • 2 = 108 podmínce úlohy nevyhovuje, zato číslo 3 • 54 = 162
ano. Dále už předpokládejme, že 27 { A.

• 18 | A. Číslo A má pět dělitelů 2, 3, 6, 9 a 18. Šestý vypsaný dělitel je (jediné)
z čísel 4, 8, 12, 16. Proto 4 | A, takže také 12 | A, což je spor s předchozí větou.

• 16 | A. Číslo A má čtyři dělitele 2, 4, 8 a 16, poslední dva vypsaní dělitelé
musí být z čísel 3, 6, 9, 12. Proto 3 | A, takže také 24 | A, a to jsme úvodem
vyloučili.

• 12 | A. Číslo A má pět dělitelů 2, 3, 4, 6 a 12, šestým vypsaným dělitelem
musí být číslo 8 nebo číslo 9. Z 8 | A pak ale plyne 24 | A (spor), z 9 | A zase
18 | A, a tím jsme se už zabývali.

Kdyby číslo A nebylo dělitelné žádným z čísel 36, 24, 27, 18, 16 a 12, muselo
by být dělitelné všemi šesti čísly 2, 3, 4, 6, 8 a 9, a tedy přece jen i číslem 18. Tím
je naše diskuse uzavřena. Hledané číslo je 162.

Jiné řešení. Stejně jako v prvním řešení vysvětlíme, že hledané číslo je dělitelné
šesti. Budeme proto postupně probírat trojciferná čísla dělitelná šesti (od nejmen-
šílio z nich, čísla 102), dokud nenajdeme takové, které má mezi vypsanými čísly
právě šest dělitelů (počet těchto dělitelů dále uvádíme vždy v závorce za číslem):
102 (3), 108 (9), 114 (3), 120 (7), 126 (5), 132 (5), 138 (3), 144 (11), 150 (3), 156
(5), 162 (6). Hledané číslo je 162.

48 - A - I - 2

Najděte všechna kladná čísla k, pro něž platí: Ze všech trojúhelníků ABC, v nichž
\AB\ — 5 cm a \AC\ : |-BCj = к, má největší obsah trojúhelník rovnoramenný.

(P. Černek)
Řešení. Pro к = 1 uvedené charakterizaci vyhovuje libovolný rovnoramenný troj-
úhelník s danou základnou AB a libovolně velkou výškou z vrcholu C. Mezi nimi
zřejmě neexistuje trojúhelník s největším obsahem.

Zřejmě к ф 1 (pro к — 1 maximum neexistuje). Obě čísla к a \к zkoumanou

vlastnost zároveň buď mají, nebo ne. Předpokládejme tedy (bez újmy na obec-
nosti), že к > 1. Na přímce AB existují dva různé body Ci, C2, pro které platí
|ACi|

= |AC2|
\BC,\ \BC2\

= k. Všechny body C v rovině, pro které \AC\ : \BC\ = k, leží na
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Apolloniově kružnici o středu S sestrojené nad průměrem C1C2 (obr. 14). Odtud
je zřejmé, že trojúhelník ABC bude mít největší obsah pro vrchol C ve středu
oblouku C1C2 (v libovolné z polorovin určených přímkou AB). Za předpokladu
к > 1 pro takto zvolený bod C platí \AC\ > \BC\ a také \AC\ > |A5| > \AB\,
takže trojúhelník ABC bude rovnoramenný, právě když bude \ AB\ — \BC\. Odtud
sestavíme rovnici pro odpovídající hodnotu k.

x C0 В

Obr. 15

Pro bod C1 především platí

1 1
\ВСг\ = \AB I, \BC2\ = - \AB\к + 1 - 1

takže z rovnosti \C\C2\ = \BC\ \ + \BC2\ vychází

l-SC'1| = I |C,C2| =

Ještě spočteme

|BS| = |SC1|-|BC1| = (^ 1 1

)\AB\ j\AB\k2 —1 k + 1
a

1 + k2
\BC\2 = \BS\2 + \SC\2 = \BS\2 + IACíI2 = ž\AB\2.

{k2 — l)
Proto z podmínky \AB\ = \BC\ vychází rovnice

1 H- Л:2 = Л:4 — 2k2 + 1, neboli к2 (к2 — 3) = О,

která má jediné kladné řešení к = \/3.
Úloze vyhovují dvě kladná čísla к, к = \/3 а к — 1/\/3.
Jiné řešení (bez Apolloniovy kružnice). Předpokládejme opět (bez újmy 11a

obecnosti), že к > 1 je pevné. Označme Cq patu výšky z vrcholu С а ж = |АСЬ|
(obr. 15). Pro dané x spočítáme závislost v = v(x), najdeme maximum této funkce
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a nakonec se podíváme, pro které к > 1 tomuto extrému odpovídá rovnoramenný
trojúhelník.

Zřejmě je
\BC\2 = (x-c)2+v2

kde c = \AB\ a, v = \CCq\, takže podmínka \AC\ = k\BC\ je ekvivalentní rovnosti

\AC\2=x2+v2, (1)

x2 + v2 = к2 ((x — c)2 4- v2)
neboli

k2c2
k!^i x ~

Jak víme, nabývá nalezená kvadratická funkce maxima pro

2 k2c
v2 = -x2 4-

k2c
> cX =

к2 - 1

a té odpovídá maximální hodnota

kc
^max —

к2 — 1

Protože vyšlo x > c, znamená to, že \AC\ > c, takže trojúhelník ABC může
být rovnoramenný, jedině když \BC\ = \BA\ — c. Dosazením do druhé rovnosti
v (1) dostaneme podmínku

2 c2[k2 4- l)k2c k2c2
c2 = — c

к2 — 1 (к2 - l)2 (.к2 - l)2

odkud pro t = к2 vychází kvadratická rovnice

t + 1 = (t - l)2

která má jediný kladný kořen t = 3, takže к = \/3. Závěr je stejný jako v předcho-
zim řešení.

48 - A - S - 2

V rovině jsou dány dva různé body A a B. Najděte všechna reálná čísla к > 1, pro
něž platí: Ze všech trojúhelníků ABC, v nichž \AC\ : |jBC| = к, největší možný
vnitřní úhel při vrcholu A má trojúhelník rovnoramenný. (J. Šimša, L. Boček)
Řešení. Ze sinové věty siná : sin(3 = a : b za podmínky b = ka, к > 1, plyne
odhad

sin (3 ^ 1
к ~ к

since —
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přitom rovnost nastane, právě když sin/3 = 1, tedy /3 — 90°. Proto největší úhel a
má ten z uvažovaných trojúhelníků ABC, který má pravý úhel u vrcholu В a jeho
(ostrý) úhel při vrcholu A je určen rovností siná = Tento pravoúhlý trojúhelník
je zřejmě rovnoramenný, právě když a = 45°, tedy když £ = sin45° = což
nastane pouze pro hodnotu к = \/2.

Jiné řešení. Předpokládejme, že číslo к > 1 je pevné. Zvolíme-li v rovině
úsečku AB, vrcholy C všech uvažovaných trojúhelníků ABC zaplní Apolloniovu
kružnici co všech bodů X s vlastností \AX\ : \BX\ — k. Úhel BAC bude maximální,
právě když přímka AC bude tečnou této kružnice co (a bod C bude její bod dotyku,
obr. 16).

Popišme polohu krajních bodů U, V toho průměru kružnice cu, který leží na

přímce AB: bod U je vnitřním bodem úsečky AB, bod V vnitřním bodem polo-
přímky opačné к polopřímce BA, přičemž pochopitelně platí

\AU\ : \BU\ = \AV\ : \BV\ = k.

Odtud snadno pomocí délky c = \AB\ určíme, že

kc kc
a \AV\ = -

Bod C na kružnici co je bodem dotyku tečny vedené bodem А к této kružnici,
právě když platí (mocnost bodu ke kružnici) rovnost \AC\2 = |Ař7| • \AV\, z níž
po dosazení za \AU\ a \AV\ dostaneme

\AU\ = к + 1 - 1

\AC\kc c

\AC\ = takže \BC\='—-к

Snadno se zjistí, že trojúhelník o stranách

kcc

T c
(jenž je pravoúhlý pro každé к > 1) je rovnoramenný jedině pro к = л/2.
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Jiné řešení. Do kosinové věty a2 = b2 + c2 — 2bccosa dosadíme b = ka a vyjá-
dřime z ní cos a:

(к2 — 1 )a2 + c2 (A;2 — l)a c

2ka
cos a ==

2kac 2kc

Podle nerovnosti mezi aritmetickým a geometrickým průměrem dvou čísel platí

(k2 — l)a (к2 — l)a c
_ yjk2 — 1

2kc 2ka к
+ -f-^22ka2 kc

takže cos a ^ cosacb neboli a ^ an, kde chq je ostrý úhel určený rovností

Vk2^1
cosao —

к

Maximální hodnota q = ao se dosáhne, když se obě průměrovaná čísla rovnají,
tedy když

(k2 — l)a
2kc 2k;a’

c
čili с = а у/к2 — 1.

Protože navíc b = ka > a, zjišťujeme, že největší možný úhel a má trojúhelník
rovnoramenný jedině v případě c = a; z rovnosti ал/к2 - 1 = a tak nacházíme
(jedinou) hledanou hodnotu к — л/2.

48 - А - I - 3

Pro která celá čísla a je maximum i minimum funkce

12x2 — 12ax
У = x2 4- 36

(P. Černek)celé číslo?

Řešení. Budeme nejprve zjišťovat obor hodnot uvedené funkce, tj. pro která reálná
s existuje aspoň jedno reálné x takové, že

12a;2 — 12aa;
У = = s.

x2 + 36

Jednoduchou úpravou dostaneme rovnici

(s — 12)a;2 + 12aa; + 36s = 0, (1)

která je kvadratická, pokud s / 12. Z rovnice plyne, že s = 12 patří do oboru
hodnot, jen když ax = —36, tedy jen když a / 0. Pro a = 0 dostaneme pro x
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-36s
rovnici x2 = z níž vychází pro s nerovnost 0 ^ s < 12, takže obor hodnot

s - 12
uvažované funkce nemá pro a = 0 maximum.

Předpokládejme proto, že а Ф Oas Ф 12. V tomto případě je rovnice (1)
kvadratická a bude mít v reálném oboru řešení, právě když její diskriminant

D = 122 a2 - 4 • 36s(s - 12) = 122(a2 - s2 + 12s)

bude nezáporný, tj. právě když

6 — \/36 + a2 ^ s í 6 + а/з6 + a2.

Krajní body nalezeného intervalu (který zřejmě obsahuje i dříve nalezený prvek
oboru hodnot s = 12) jsou minimum a maximum dané funkce. Pokud to mají být
celá čísla, musí pro vhodné přirozené číslo b platit 36+a2 = 62, tedy (6 — a)(b+a) =
= 36. Z každého rozkladu čísla 36 na součin dvou přirozených činitelů 36 = mn
dostaneme a = |(m — n), b = |(m + n), což jsou celá čísla, jen když man
mají stejnou paritu (m = n (mod 2)), a protože а Ф 0, vyhovuje jedině rozklad
36 = 2 • 18, odkud b = 10, a = ±8.

Odpověď: Požadovanou vlastnost mají právě dvě celá čísla a, atoa = 8aa =
= -8.

48 - A - III - 6

Najděte všechny dvojice reálných čísel a a 6, pro které má soustava rovnic

x3 + y3
x2 + у2

x + y
= a,x2 + y2

(J. Šimša)s neznámými ха у řešení v oboru reálných čísel.

Řešení. Má-li daná soustava řešení (x,y) pro čísla a = A, b — В, má zřejmě
i řešení (kx,ky) pro libovolné к / 0 a pro čísla a = уA, b = кВ. Odtud vidíme,к
že existence řešení dané soustavy závisí jen na hodnotě součinu ab.

Budeme tedy nejdříve zkoumat hodnoty výrazu

(u + v)(u3 + v3)P(u,v) = (и2 + v2)2

kde čísla и a v splňují normalizační podmínku u2 + v2 — 1. Podle ní platí

P(u, v) = (u 4- v)(u3 + v3) — (u + v)2(u2 — uv + v2) =

= (u2 + 2uv + n2)(l — uv) = (1 + 2uv)(l — uv).
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Za podmínky и2 + v2 = 1 nabývá součin uv všech hodnot z intervalu (— |, |) (je-li
и = coso! a v = siná, je uv = | sin2o;). Proto stačí zjistit množinu hodnot funkce
f(t) = (1 + 2í)(l — t) na intervalu t G |). Z vyjádření

/(í) _ —2ř2 4-1 + 1 — -2^t - + -

plyne, že hledanou množinou hodnot je uzavřený interval s krajními body f{—\) =
— 0 a /(?) — f •

To tedy znamená, že pokud má daná soustava řešení, musí pro její parametry a
a b platit 0 ^ ab ^ |, přitom rovnost ab = 0 je možná, jen když x + у = 0, tehdy
však a = b = 0.

Splňují-li naopak některá čísla a a b nerovnosti 0 < ab й |, existují dle doká-
zaného čísla и a v taková, že u2 + v2 = 1 a (u + v)(u3 + v3) — ab. Označíme-li
a' = и + v a, b' = u3 + v31 pak z rovnosti а'Ъ' = ab ф 0 plyne, že oba poměry a : a!
a b' : b mají tutéž hodnotu к ф 0. Pak ale dvojice x = ku а у = kv je zřejmě
řešením soustavy rovnic ze zadání úlohy pro uvažované hodnoty a a b.

48 - С - I - 6

Pro libovolnou dvojici reálných čísel a, b splňující vztah a + b = 1 platí

\/a2 + a + 1 + y/b2 + b + 1 > 2. (1)

Jsou-li navíc čísla a, b nezáporná, platí také

\/a2 -f a + 1 + \/b2 + b + 1 < 3. (2)

(P. Leischner, J. Švrček)
Řešení. Nejprve je nutné ověřit, zda jsou dané výrazy definovány pro všechna
reálná čísla a, b. Stačí dokázat, že pro každé reálné и je výraz U — и2 + и + 1
nezáporný.

1. způsob:

Obě tvrzení dokažte.

1\2 31
= u2 + 2 ■ -u +

Odtud vidíme, že je dokonce

U и + - + -•
2 4

(3)

protože druhá mocnina reálného výrazu je vždy nezáporná.
2. způsob: Pro и ^ 0 je zřejmě výraz U kladný. Je-li и < 0, je

U > и2 -I- и + 1 -I- и — (и + l)2 ^ 0.
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3. způsob: Představme si rovnost U = и2 + и + 1 jako kvadratickou rovnici
и2 + и + (1 — U) = 0 s parametrem U. Tento vztah je splněn pro nějaké reálné u,

jen když je příslušný diskriminant nezáporný, tj. 1 — 4(1 — U) ^ 0, a odtud U ^ |.
4- způsob: Úpravou na tvar U = u(u + 1) + 1 a substitucí и = s — \ (viz též

první pomocnou úlohu) máme U = (s — |)(s + |) + 1 = s2 + |, což vede na
odhad (3).

Dále asi řešitelé budou zkoušet výraz

V = \Jo? + a + 1 + y/b2 + b + 1 (4)

upravovat, aby jej mohli odhadnout. Jak asi budou postupovat? Uvedeme některé
možnosti:I.Dosazením b — 1 — a do (3) dostaneme

V = у/a2 + a + 1 + a/o2 — 3a + 3.

Tím jsme se ovšem к cíli moc nepřiblížili. Zkusme ještě obě strany rovnosti (5)
umocnit:

(5)

V2 = a2 + a2 — 2a + 1 + 3 + 2\/a2 + a + ly/a2 — 3a + 3 =

= a2 + (a — l)2 T 3 T 2\/a4 — 2a^ T a2 + 3.

Výraz pod odmocninou se dá ještě po vytknutí a z prvních tří členů upravit,
takže dostaneme

V2 = 3 T a2 + (a — l)2 + 2^/з^aЗ{a-~l)2
II. Rovnost (4) umocníme přímo a při dalších úpravách opakovaně nahrazujeme

součty a + b jedničkami:

V2 = a2 + b2 + 3 + 2yJa2b2 + ab(a + b+l)+a2 + b2+a + b+ l =

= 3 + a2 + 2\/3 + a2b2 + b2.

Důkaz nerovnosti (1).
1. řešení (bez umocňování výrazu V): Jsou-li a, b nezáporná, je V > y/l +

+ y/í — 2. Jestliže je b < 0, pak musí být a > 1. Položme tedy na pravé straně
vztahu (4) a = 1 a druhou odmocninu odhadněme pomocí (3). Dostaneme tak
silnější odhad, než se požaduje: V > \/3 + ^/| = |\/3 > |.

2. řešení: Když uvážíme, že druhá mocnina každého reálného čísla je nezáporná,
odhadneme z (6), že V2 ^ 3 + 2\/3 > 4, a po odmocnění vyjde, že V > 2.

3. řešení: Ze vztahu (7) vidíme, že

V2 > 3 + (a2 + 2\4Vb2 + b2) =

= 3 + (Va? + VtčÝ = 3 + (M + |6|)2 ^ 4,

(6)

(7)

a tedy V > 2.
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Důkaz nerovnosti (2).1.řešení: Protože a, b jsou nezáporná a nemůže být a = b = 0, platí

V \jo?1 + 2a + 1 + \/b2 + 2b + 1 — (я + 1) + (6 + 1) — 3.

2. řešení: Z podmínky a + b = 1 pro nezáporná čísla a, b máme 0 š a ^ 1,
Odbila hodnotu výrazu V můžeme odhadnout dosazením a — b = 1 do (7):
V2 < 3 + 1 + 2л/i +1 = 9, takže V < 3.

3. řešení: Při odhadu můžeme různým způsobem uplatnit užitečné nerovnosti
ze čtvrté pomocné úlohy. Zvolíme-li například га = я2 + я + 1 an = 62 + 6 + l,
dostáváme

vn + n — {oj2 + 62) + (я + 6) + 2 — 1 — 2ab + 3 — 4 — 2я6 / 4,

kde vztah

a2 + b2 = 1 — 2ab

použitý při úpravě jsme získali umocněním podmínky a+b = 1. Podle nerovnosti b)
ze 4. pomocné úlohy pak je

V — у/т + л/п Z \j2{m + n) / л/8 < 3.

48-C-S-1

Najděte všechny dvojice a, b nezáporných reálných čísel, pro které platí

\Joí2 + b + \Jb2 + a = \Ja2 +b2 + \/a + b.

(J. Šimša)
Řešení. Umocněním rovnice s nezápornými stranami a dalšími ekvivalentními
úpravami postupně dostaneme

a2 + b + 2 л/(a2 + b)(b2 + a) + b2 + a = a2 + b2 + 2\J(a2 + b2)(a + b) + a + b,
л/ (a2 + b)(b2 + a) = л/ (a2 + 62)(a + 6),

(a2 + 6)(b2 + a) = (a2 + 62)(a + 6),
a2b2 + a3 + b3 + ab — a3 + ab2 + ba2 + 63,

a6(a6 + 1 — a — 6) = 0,

ab(a — 1)(6 — 1) = 0.

Hledanými jsou proto právě ty dvojice nezáporných čísel a, 6, které splňují aspoň
jednu z podmínek a = 0, 6 = 0, a = l nebo 6=1.
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48 - Z5 - I - 4

V šestici čísel 7, _

součtem předcházejících dvou.

Řešení. Označme x první z neznámých čísel. Následující čísla jsou 7 + x, x +
+ (7 + a;) = 2x + 7, (7 + x) + (2x + 7) — 3x + 14 a poslední číslo šestice je
(2x + 7) + (3x + 14) = 5x + 21 = 66. Odtud máme x = 9.

Hledaná šestice čísel je 7, 9, 16, 25, 41 a 66.

66 doplňte chybějící čísla tak, aby každé číslo bylo

48 - Z6 - I - 2

Rodné číslo má deset číslic. První dvojčíslí rodného čísla je posledním dvojčíslím
roku narození. Druhé dvojčíslí je u chlapců určeno měsícem narození, u děvčat je
to měsíc narození zvětšený o 50. Třetí dvojčíslí je dáno dnem narození. Poslední
nenulová čtveřice čísel je zvolena tak, aby rodné číslo bylo dělitelné 11. Kolik
nejvíce dětí se mohlo narodit 23.11. 1998, jestliže každé z nich musí mít jiné rodné
číslo?

Řešení. Rodné čísla chlapců narozených 23.11. 1998 jsou čísla tvaru

9 811 230 000 +x = 891930 000- 11 + x.

Číslo x je tedy libovolné přirozené nejvýše čtyřciferné číslo, které je násobkem 11,
tj. libovolné z čísel 1-11,2-11, ..., 909 • 11 = 9 999. Počet možných rodných čísel
pro chlapce je 909.

Rodná čísla dívek narozených 23.11. 1998 jsou čísla tvaru

9 861 230 000 + ж = 896 475 454 • 11 + 6 + x.

Aby byla tato rodná čísla dělitelná 11, musí být x přirozené nejvýše čtyřciferné
číslo, které při dělení 11 dává zbytek 5, tj. některé z čísel 5,5 + 1-11,5 + 2-11, ..

5 + 908 -11 = 9 993. Takových čísel je 1 + 908 = 909.
Pro den 23.11. 1998 lze přiřadit nejvýše 1 818 různých rodných čísel.

* ?

48 - Z9 - II - 3

Najděte prvočísla p, r, která splňují rovnost

p + p2 + p3 + r + r2 + r3 — 2 393.

(Mészáros)
Řešení. Levou stranu zadané rovnosti rozdělíme na dva součty: (p + p2 +p3) + (r +
+ r2 + r3) = 2 393. Hledaná prvočísla p, r musí být různá, protože pravá strana
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je liché číslo. Zároveň je jasné, že jeden ze součtů na levé straně musí být sudý
a druhý lichý. Součet prvočísla s jeho druhou a třetí mocninou je však sudý jen
pro sudé prvočíslo 2. Položme p = 2, čili p + p2 + p3 = 2 + 4 + 8 = 14, takže
r + r2 + r3 = 2 393 — 14 = 2 379. Mezi prvočísly, jejichž třetí mocnina je menší
než 2 379, je největší číslo 13 (133 = 2 197). Dosazením ověříme, že r = 13 splňuje
rovnost r + r2 + r3 = 2 379.

Hledanými prvočísly jsou čísla 2 a 13.

49 - A - I - 1

Nechť Р(ж), Q(x) jsou kvadratické trojčleny takové, že tři z kořenů rovnice
P(Q(x)) = 0 jsou čísla —22, 7, 13. Určete čtvrtý kořen této rovnice.

Řešení. Vzhledem к tomu, že rovnice P(Q(x)) = 0 má reálný kořen, má kvad-
ratická rovnice P{x) — 0 dva reálné kořeny ri, Г2 (nevylučujeme, že r\ — Г2).
Mnohočlen P(Q(x)) lze proto zapsat ve tvaru

P(ow) a(Q(x) - ri) (<2(ж) - r2),

kde a je reálné číslo o / 0. Rovnice P(Q(x)) = 0 má podle zadání čtyři reálné
kořeny, proto každá z kvadratických rovnic Q(x) — ?’i = 0, Q(x) — Г2 =0 musí
mít dva reálné kořeny. Z Vietových vzorců plyne, že součet kořenů v obou kva-
dratických rovnicích je týž, neboť obě rovnice mají stejný koeficient u lineárního
členu. Přitom tři ze čtyř reálných kořenů obou kvadratických rovnic Q(x) — ry = 0,
Q(x) — Г2 =0 jsou dle zadání čísla —22, 7, 13, čtvrtý kořen označme q. Dále mohou
nastat tři možnosti:

(i) Jedna z kvadratických rovnic má kořeny —22, 7, druhá má kořeny 13 a q. Pak
platí —22 + 7 = 13 + q, tedy q = —28.

(ii) Jedna z kvadratických rovnic má kořeny —22, 13, druhá má kořeny 7 a q. Pak
platí —22 + 13 = 7 + q, tedy q — —16.

(iii) Jedna z kvadratických rovnic má kořeny 13, 7, druhá má kořeny —22 a q. Potom
však platí 13 + 7 = —22 + q, tedy q = 42.
Je zřejmé, že v každém z případů (i), (ii), (iii) existují příslušné kvadratické

trojčleny P{x) a Q(x). Má-li mít jedna z kvadratických rovnic Q(x) — r\ = 0,
Q(x) — Г2 = 0 kořeny —22, 7 a druhá 13, —28, položíme Q(x) = x2 + 15x, r\ =
= (-22) • 7 = -154, r2 = 13 • (-28) = -364, P{x) = (ж + 154)(ж + 364) = ж2 +
+ 518ж + 56056. Obdobně lze postupovat ve zbývajících případech.

Čtvrtým kořenem rovnice P(Q(ж)) = 0 může být kterékoliv z čísel —28, —16,
42.

Jiné řešení. Úvahy o koehcientu u lineárního členu s využitím Vietových vztahů
lze nahradit následující úvahou o grafech kvadratických funkcí.
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Protože grafy kvadratických funkcí /1: у — Q{x) — r 1 a /2 : у — Q{x) — Г2 mají
tutéž osu souměrnosti a přitom existují čtyři reálné kořeny rovnice P(Q(x)) =
= 0, jsou tyto kořeny na ose x po dvou středově souměrné podle průsečíku os
souměrnosti grafů obou funkcí /1 a /2 s osou x. Vzhledem к poloze daných tří
kořenů na ose x lze dále uvažovat tři možnosti stejně jako v předcházejícím řešení.
Např.
(i) Střed souměrnosti je —7,5 = ~2%^~7, čtvrtý kořen leží na ose ж a je symetrický

s obrazem čísla 13 dle středu souměrnosti v bodě —7,5. Čtvrtým hledaným
kořenem je tudíž číslo —28.
Podobně lze postupovat ve zbylých dvou případech a dospějeme tak ke stej-

němu výsledku.

49-B-1-1

Pro která reálná čísla t má funkce f(x) — 5x + 44 + t\x — 2| — 3|ж — t\ maximum
rovné 0?

Řešení. Daná funkce je lineární lomená, protože obsahuje dva výrazy s absolutní
hodnotou, které způsobují, že jejím grafem není přímka, nýbrž lomená čára. Její
definiční obor, množinu IR všech reálných čísel, můžeme v tomto případě rozdělit
na tři disjunktní části podle toho, jak se příslušná absolutní hodnota chová (zdaje
výraz v absolutní hodnotě kladný, či záporný). Protože jedna z absolutních hodnot
závisí na parametru í, rozlišíme, zdaje t < 2 (případ A), či t ^ 2 (případ B).

Rozlišíme dva případy, podle toho, zdaje t < 2 (případ A), či t ^ 2 (případ B).
A. Nechť t < 2. Množina IR se nám rozpadne na tři disjunktní intervaly, IR —

= (—00, t) U (ř, 2) U (2, 00).
(a) V intervalu (—00, ř) je, jak snadno spočteme, f(x) = (8 — ť)x + 44 — t.

Protože za uvedeného předpokladu je 8 — t > 0, je funkce / v tomto intervalu
rostoucí a nabyde maxima v bodě x — t.

(b) V intervalu (í, 2) je f(x) = (2 — ť)x + 44 + 51. Protože za uvedeného
předpokladu je 2 — t > 0, je funkce / i v tomto intervalu rostoucí a nabyde maxima
v bodě x = 2. Přitom zřejmě platí f{t) < /(2) = 2(2 — ť) + 44 + 51.

(c) V intervalu (2, 00) je f(x) = (2 + t)x + 44 + t. Tato funkce je pro 2 + t > 0
na tomto intervalu rostoucí a shora neomezená, takže nemůže mít maximum. Musí
tedy nutně být 2 + t ^ 0, tj. t ^ —2, funkce / bude v intervalu (2, 00) nerostoucí
a její hodnota nebude větší než /(2), kterou jsme spočítali v (b).

Zjistili jsme tedy, že za předpokladu t < 2 nabývá funkce / maxima jedině pro
t ^ —2, přičemž její maximum je /(2) = 2(2 — t) + 44 + 51. Toto maximum se
rovná 0, právě když 2(2 — t) + 44 + 5t — 0, neboli t = —16, což je naštěstí číslo,
které splňuje podmínku t ^ —2.

B. Nechť t ^ 2. Množina IR se nám rozpadne na tři disjunktní intervaly, R =
= (—00,2) U (2, t) U (í, 00), přičemž prostřední „interval11 bude prázdný pro t = 2

(P. Ůernek)
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(to však není pro další úvahy podstatné, jinak bychom mohli tento případ snadno
rozebrat samostatně).

V intervalu (—00,2) je f(x) = (8 — ť)x + 44 — t. Kdyby teď bylo 8 — t < 0,
byla by funkce / v tomto intervalu klesající a shora neomezená, takže by nemohla
mít maximum. Proto je 8 — t ^ 0, tj. t ^ 8. Pak ale je /(2) = 2(8 — ť) + 44 — t —

— 60 — 3í > 0. Odtud hned vidíme, že za uvedeného předpokladu nemůže funkce /
nikdy mít maximum rovné 0.

Z uvedeného rozboru vyplývá, že uvažovaná funkce má maximum rovné 0 jedině
pro t — —16.

Jiné řešení. Víme, že grafem dané funkce / je lomená čára, která se v našem
případě skládá ze dvou polopřímek (pro t — 2), resp. ze dvou polopřímek a jedné
úsečky (návodná úloha 1).

Dále bychom si měli uvědomit, že pokud má takováto funkce maximum, nabývá
ho určitě v některém ze „zlomových“ bodů (tam, kde je příslušný výraz v absolutní
hodnotě nulový). To samozřejmě neznamená, že funkce nemůže maximum nabýt
i v jiných bodech (je-li konstantní na některém intervalu, návodná úloha 2).

V našem případě jsou těmito zlomovými body pro x = 2 bod A(2,54 — 3|í — 2|),
pro x = t bod B(t, 5t + 44 + t\t — 2|).

Protože jeden z bodů x = 2, x = t má být bodem maxima funkce / rovného 0,
zjistíme, pro která t je jedna z y-ových souřadnic bodů А а, В nulová (a druhá
nekladná).

54 — 3|í — 2| =0,
\t-2\ = 18,

t = 20 anebo t = —16.

B: 51 + 44 + t\t — 2| — 0,
t ^ 2 => t2 + 3í + 44 = 0,

nemá řešení.

t < 2 => ť2 - 7t — 44 = 0.
t = 11 anebo t = —4,
vyhovuje jen t = —4.

A:

Máme tak tři možnosti:

Pro t = 20 je A(2,0), 5(20,504), což nevyhovuje.
Pro t = —1G je A(2,0), B( —16, —80 + 11 — 16 • 18), zatím vyhovuje.
Pro t — — 4 je A(2,36), B(—4,0), což nevyhovuje.
Zjistili jsme, že úloha má řešení nejvýše pro t = —16, kterému odpovídá funkce

f(x) = 5x + 44 — 16|ж — 2| — 3|rr + 16|. Pro tuto funkci samozřejmě platí /(2) = 0.
Ověřit, že tato hodnota je skutečně maximem funkce /, můžeme více způsoby.
Například tak, že ověříme, že pro x < —16 je uvedená funkce neklesající (pro
x < —16 je /(ж) = 24ж + 60) a současně pro x > 2 nerostoucí (pro x > 2 je
f(x) = —14ж + 28).
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49-В-11-1

Zjistěte všechna reálná čísla c, pro která má rovnice

(с2 + c — 8) (ж + 2) — 8|rr — c + 2| = c\x + c + 14|

(J. Šimša)nekonečně mnoho řešení v oboru celých čísel.

Řešení. Označíme-li pro dané reálné c

/с(ж) = c\x + c -f- 14| + 8|ж — с + 2| — (с2 + с — 8)(ж + 2)

odpovídající po částech lineární funkci, je zřejmé, že rovnice /с(ж) — 0 bude
mít nekonečně mnoho celočíselných řešení, právě když bude funkce fc identicky
rovna nule na některém z nekonečných intervalů (—oo, min(c — 2, —c — 14)) nebo
(max(c — 2, —c — 14), oo). Vyšetříme postupně obě možnosti,

a) Nechť x ^ min(c — 2, —c — 14), pro taková x platí

fc{x) = — c(x + c + 14) — 8(ж — c + 2) — (c2 -f c — 8)(ж + 2) =

= —c(2 + c)x — 3c2 —8c— —с(ж(с + 2) + 3c + 8).
Na tomto intervalu bude funkce fc identicky rovna nule, právě když c = 0 (soustava
c + 2 = 0, 3c+ 8 = 0 nemá žádné řešení).

b) Nechť x ^ max(c — 2, — c — 14), pro taková x platí

fc{x) = c(x + c + 14) + 8(x — c + 2) — (с2 + c — 8) (ж + 2) =

= (16 — с2)ж — с2 + 4c + 32.

Na tomto intervalu bude funkce fc identicky rovna nule, právě když bude současně
platit c2 = 16 a c2 — 4c — 32 = 0. Dosazením c2 = 16 do druhé rovnice vychází
c = —4, což je zřejmě jediné řešení obou rovnic.

Závěr. Daná rovnice má v oboru celých čísel nekonečně mnoho řešení, právě
když c = 0 nebo c = — 4 (v prvním případě rovnici vyhovují všechna celá čísla
x й —14, v druhém pak všechna celá čísla x ^ —6).

49 - С - I - 4

Jirka zhotovil papírový model pravidelného čtyřbokého jehlanu ABCDV s pod-
stavou ABCD. Když pak model podél čtyř hran rozřízl, bylo ho možno rozvinout
(bez překrytí) do roviny. Kolik různých sítí daného jehlanu tak mohl Jirka dostat?
Ukázalo se, že síť, kterou Jirka dostal, měla tvar (nekonvexního) sedmiúhelníku.
Vypočtěte úhel AVB v boční stěně jehlanu.

Řešení. Počet různých sítí daného jehlanu určíme tak, že nejprve všechny možné
sítě nakreslíme. Abychom některou možnost neopomenuli, měli bychom do výčtu

(P. Leischner)
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sítí vnést určitý systém. Popíšeme dva přístupy, které takový systém vytvářejí
(a které budou patrně žákům nejbližší).

Přístup 1 („od sítě к jehlanu11). Každá síť bude složena z jednoho čtverce
o straně a a čtyř rovnoramenných trojúhelníků o stranách a, b, b, kde a značí délku
podstavné hrany a b délku boční hrany daného jehlanu ABCDV. Přemýšlejme tedy
o tom, jak takový čtverec a čtyři trojúhelníky „slepit11 podél shodných stran do
„celku11 a zda tento celek skutečně vytvoří síť jehlanu. Je velmi přirozené rozčlenit
řešení tohoto úkolu podle počtu stran čtverce, které budou slepeny (možné počty
jsou 1 až 4).

Přístup 2 („od jehlanu к síti11). Přemýšlejme o tom, jak rozříznout daný jehlan
ABCDV podél čtyř hran, abychom po rozvinutí dostali jeho síť. (Brzy si při tom
uvědomíme jeden obecný poznatek: z každého vrcholu tělesa musí vycházet aspoň
jedna hrana řezu.) Protože nám jde o počet různých (tj. po dvou neshodných) sítí,
s ohledem na symetrii daného jehlanu není příliš vhodné systematizovat čtveřice
hran řezu podle toho, zda obsahují některé konkrétní hrany (jako např. hrany AB,
AV apod.). Výhodnější je rozdělení těchto čtveřic do skupin podle toho, kolik hran
řezu je v jehlanu podstavných (a kolik bočních).

Protože oba popsané přístupy vedou ke shodné systematizaci (je-li právě к hran
řezu podstavných, je v příslušné síti právě 4 — к stran čtverce slepeno s trojúhel-
niky), popíšeme výčet všech sítí jen podle Přístupu 2:
1. Neleží-li v podstavě ABCD žádná hrana řezu, je jehlan rozříznut podél všech

čtyř bočních hran, příslušná síť je na obr. 17.

2. Předpokládejme, že v podstavě ABCD leží jediná hrana řezu, například hrana
AD. Z vrcholů В a C musí vycházet nějaké hrany řezu, mohou to tedy být
jedině hrany BV a CV. Tři hrany řezu jsou tedy AD, BV a CV, s ohledem
na symetrii je lhostejno, zda je čtvrtou hranu řezu AV nebo DV, nechť je to
tedy hrana AV jako na obr. 18.

59



3. Předpokládejme, že v podstavě ABCD leží právě dvě hrany řezu. Rozlišme,
zda jsou to hrany sousední (např. AB a AD), nebo hrany protější (např. AD
a BC)-, pro větší přehlednost oba případy posuďme v oddělených odstavcích:

(3a) Je-li podstava rozříznuta právě podél hran AB a AD (takže řezem v pod-
stavě je lomená čára BAD), musí být třetí hranou řezu hrana CV, čtvrtá
hrana řezu je pak jedna z hran AV, BV, nebo DV. S ohledem na symetrii
případů, kdy je čtvrtou hranou řezu BV nebo DV, uvádíme jen obrázky
pro hrany řezu AV (obr. 19) a BV (obr. 20).

Obr. 19 Obr. 20

(3b) Je-li podstava rozříznuta právě podél hran AD a BC, je třetí hranou řezu
jedna z bočních hran AV, DV a čtvrtou hranou řezu jedna z bočních hran
BV, CV (nemohou to totiž být ani obě hrany AV, DV, ani obě hrany BV,
CV). S ohledem na symetrii stačí rozlišit jen dva případy: boční hrany řezu
jsou buď AV a BV (obr. 21), nebo AV a CV (obr. 22).

B1

Obr. 21

4. Předpokládejme, že v podstavě ABCD leží právě tři hrany řezu, například
hrany AB, BC & CD, takže řezem v podstavě je lomená čára ABCD. S ohle-
dem na symetrii nyní stačí rozlišit jen dva případy: čtvrtá hrana řezu vede
do vrcholu V buďto z jednoho z obou krajních vrcholů zmíněné lomené čáry

60



A В A

Obr. 23

ABCD, například bodu A (obr. 23), nebo z jednoho z obou prostředních vr-
cholů, například bodu В (obr. 24).
Zjistili jsme, že daný jehlan má právě osm různých sítí. (Většina žáků asi

správně všech osm sítí do svých řešení nakreslí, aniž pocítí nutnost vysvětlovat,
proč jiné sítě neexistují. Diskutujme s nimi o této otázce.)

Přejděme nyní к druhé části úlohy, otázce, kdy některá ze sítí daného jehlanu
má tvar nekonvexního sedmiúhelníku. Podle obrázků vidíme, že každá síť má,
obecně vzato, osm vrcholů; jejich počet se sníží na sedm, právě když se úhel u jed-
noho z osmi obecných vrcholů „napřímí", tj. bude mít velikost 180°. Velikosti všech
dotyčných úhlů lze snadno vyjádřit pomocí ui = \$AVB\ a a = \^BAV\\ zjistíme
tak, popsaná situace nastane, jen když jeden z úhlů

(*)2a, a + 90°, 2a + 90°, 2u, 3a; nebo 4a;

bude 180°. Položme si nyní poněkud obecnější otázku: Jaké hodnoty а а ы jsou
přípustné, tj. odpovídají nějakému jehlanu ABCDV2 Označme S střed čtverce
ABCD a E střed hrany AB (obr. 25), z pravoúhlého trojúhelníku EVS plyne, že

V
i

'"/C
a

A E В

Obr. 25

\EV\ > |£S| neboli \EV\ > \AE\, proto pro úhel a v pravoúhlém trojúhelníku
AVE platí 45° < a < 90° (pro a = 45° bychom dostali „zdegenerovaný" jehlan
s nulovou výškou, pro a = 90° „jehlan" s nekonečnou výškou, tedy hranol). Zá-
roven je jasné, že pro každé a E (45°, 90°) odpovídající jehlan existuje. Odtud
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vzhledem к rovnosti 2a 4- uj — 180° plyne, že přípustné hodnoty uj zaplní interval
(0°,90°). Proto z úhlů (*) mohou být přímé jedině úhly 3cv a 4cu. Pro uj = 60°
mají tvar sedmiúhelníku sítě z obr. 20 a 21, pro uj = 45° sítě z obr. 23 a 24.

Odpověď: Jirka mohl dostat právě osm různých sítí. Úhel AVB měl velikost
45° nebo 60°.

49-Z8-I-3

Je dán čtverec ABCD a bod P tak, že bod D je střed úsečky AP. Bodem P
prochází přímka p. Ta dělí čtverec na dva útvary, jejichž obsahy jsou v poměru
5 : 3. Narýsujte takovou přímku.
Řešení. Čtverec rozdělíme na osm shodných obdélníků (obr. 26). Z obrázku je zřej-
mé, že zvýrazněné úsečky dělí čtverec ABCD na dva útvary, jejichž obsahy jsou
v poměru 5 : 3 (resp. 3:5). Vedeme-li libovolnou přímku protínající stranu AB
středem zvýrazněné úsečky, bude jí čtverec rozdělen v daném poměru. Řešením je
tedy přímka procházející daným bodem P a středem zvýrazněné úsečky. Úloha má
dvě řešení, neboť pořadí útvarů v poměru není určeno.

(D. Hrubý)

P P P

D C D C D

A В A AВ

V i P2

Obr. 26

Jiné řešení. Přímka p dělí čtverec na dva pravoúhlé lichoběžníky. Obsah li-
choběžníku je roven součinu jeho střední příčky a výšky. Obsahy lichoběžníků
jsou v poměru 5 : 3 nebo 3:5a jejich výšky jsou shodné, proto střední příčky
lichoběžníků musí být též v poměru 5 : 3 nebo 3 : 5. Hledaná přímka p proto
prochází daným bodem P a bodem, který dělí střední příčku čtverce rovnoběžnou
se stranou AB v daném poměru (obr. 27).

49 — Z9 — 111 — 3

Najděte všechna trojciferná čísla x, která po zaokrouhlení na stovky se rovnají
8x + 240

číslu
9
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Řešení. Trojciferné číslo ж zaokrouhlené na stovky označme [ж]. Číslo [ж] může
být některé z čísel 100, 200, 300, ..., 1 000. Nejdříve vynásobíme tato čísla čís-
lem 9, potom odečteme 240 a výsledek vydělíme číslem 8 (to plyne z rovnosti
x = ^ ^ ). Řešením jsou ta z nich, jež jsou trojciferná a lze je zaokrouhlit

na číslo [ж].

[ж] 100 200 300 400 600 700 800 900 1000500

9M 900 2 700 7 2001800 3 600 4 500 5 400 6 300 8100 9 000

9[ж] - 240 7860 8 760660 1560 2 460 4 260 5160 6 060 6 9603 360

(9[ж] - 240) : 8 757,5 87082,5 195 307,5 420 532,5 645 982,5 1095

Úloha má tedy tři řešení: 195, 420 a 645.

50-A-1-1

V urně jsou jen bílé a černé kuličky, jejichž počet zaokrouhlen na stovky je 1 000.
Pravděpodobnost vytažení dvou černých kuliček je o ^ větší než pravděpodob-
nost vytažení dvou bílých kuliček. Kolik bílých a kolik černých kuliček je v urně?
(Pravděpodobnost vytažení kterékoli kuličky je stejná.)
Řešení. Nechť je v urně n kuliček, z toho b bílých (a n — b černých). Potom prav-

děpodobnost vytažení dvou bílých kuliček je rovna podílu

(P. Ůernek)

b

b(b- 1)2

n(n - 1)n

2

zatímco pravděpodobnost vytažení dvou černých kuliček podílu

n — b

(n — b)(n — b — 1)2

n(n - 1)n

2

Podle zadání úlohy platí rovnost

(n — b)(n — b — 1)
_ b{b — 1) 17

n(n - 1) + 43n(n - 1)

kterou lze algebraickými úpravami zjednodušit do tvaru 436 = 13n (pro n ^ {0,1}
jde o ekvivalentní rovnice). Odtud vzhledem к nesoudělnosti čísel 13 a 43 plyne,
že přirozená čísla паб jsou tvaru n = 43к a b = 13k, kde к je vhodné přirozené
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číslo. Podle zadání pro číslo n platí odhady 950 ^ n < 1 050, z nichž zjistíme, že
к G {23, 24}. Pro к = 23 vychází n = 989 a b = 299 (tehdy n — b — 690), zatímco
hodnotě к = 24 odpovídá n = 1 032 a b — 312 (tehdy n — b — 720).

Odpověď: Úloha má dvě řešení — v urně je buď 299 bílých a 690 černých, nebo
312 bílých a 720 černých kuliček.

50-A-1-3

V rovině je dán ostroúhlý trojúhelník ABC. Paty výšek z vrcholů A, В označme
po řadě A 1? B\. Tečny kružnice opsané trojúhelníku CA\Bi sestrojené v bodech
Ai, B\ se protínají v bodě M. Dokažte, že kružnice opsané trojúhelníkům AMВ i,

BMAi, CA\B\ procházejí jedním bodem.

fteseni. Označme к kružnici opsanou trojúhelníku CA\Bi. V první části řešení
ukážeme, že bod M z textu úlohy je středem strany AB. Protože trojúhelník
ABC je ostroúhlý, leží paty Ai, Bi příslušných výšek uvnitř odpovídajících stran.
S ohledem na symetrii dané situace stačí uvažovat jen tečnu t ke kružnici к se-

strojenou v bodě Ai, označit X její průsečík s přímkou AB a dokázat rovnost
\AX\ = \BX\ (obr. 28).

(J. Švrček)

A В

Obr. 28

Označme ještě Y libovolný vnitřní bod polopřímky opačné к polopřímce A\X.
Protože jsou oba úhly AA\B a BB\A pravé, je čtyřúhelník ABAiB\ tětivový,
a tak platí \-$AB\Ai\ = 180° — \<$.ABAi
= \$.ABC\. Proto má obvodový úhel A\BiC v kružnici к nad tětivou A\C velikost
\$AÍB1C\ = 180° — \-$ABiAi\ = 180° — (180° — /3) = /3, stejnou velikost má
i příslušný úsekový úhel YA\C} Protože úhly XA\B a YA\C jsou vrcholové,
dohromady dostáváme \^XA\B\ = \ě^YA\C\ = \-$.AiB\C\ = /3 (tyto shodné úhly
jsou na obr. 28 vyznačeny obloučky). Zároveň platí i \^XA\A\ = \$.XAA\\ =
= 90° — (3. Zjistili jsme, že tečna t protne přímku AB v takovém bodě X, pro

který jsou trojúhelníky BA\X a A\AX rovnoramenné, tj. \BX\ = |^4iAr| = |AX"|.
Dokázali jsme, že bod M (průsečík tečen ke kružnici к s body dotyku A\ а, В i)

splývá se středem strany AB. Označme nyní ki a kružnice opsané po řadě

180° — /3, kde jako obvykle /3

1 К pojmu úsekového úhlu a jeho shodnosti s obvodovým úhlem viz S. Horák: Kružnice, ŠMM
16, MF, Praha 1966, str. 3-7.
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trojúhelníkům AMBi a BMA\ a 5i, 52 jejich středy (obr. 29). Jedním průsečíkem
kružnic k\ a k-2 je bod M, druhý průsečík označme TV. Protože body Si, S2 leží

v polorovině ABC, leží v ní i bod N, neboť je souměrně sdružený s M podle
středné S1S2. Naší úlohou je dokázat, že bod N leží najedná kružnici s body A\,
£1 a C.

Jak už víme, je trojúhelník BA\M rovnoramenný, a protože je \^.BB\M\ =
— 90° — a < /3 = \$.BA\M\ (tato nerovnost je ekvivalentní tomu, že 7 < 90°),
leží bod B\ vně kružnice To znamená, že kružnice k2 musí protínat kružnici k\
v tom jejím oblouku nad tětivou MB\, který odpovídá obvodovému úhlu 180° — a.

Analogicky zjistíme, že bod A\ leží vně kružnice k\, takže průsečík N leží na
oblouku kružnice příslušného tětivě MA\ a obvodovému úhlu 180° — /3. Protože
zároveň

\<$B\NM\ + \$iAiNM\ = (180° - a) + (180° - 0) = 360° - (a + 0) =

= 180° + 7 > 180°,

musí bod N ležet uvnitř trojúhelníku A\B\M (přímka A\B\ tedy odděluje body C
a TV). Protože а + /З + 7 = 180° (kde 7 = \$.AiCB\\), plyne odtud, že ve čtyřúhel-
niku A\CB\N je součet vnitřních úhlů u protilehlých vrcholů C a TV roven 180°,
a tak je tento čtyřúhelník skutečně tětivový.

50-B-1-5

Určete všechny polynomy P(x), které pro každé reálné číslo x splňují rovnost

P{2x) — 8P(x) + (x — 2)2.

(P. Černek)
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Řešení. Stupeň polynomu P je aspoň dva. Nechť nejprve P{x) = ax2 + bx + c.
Dosazením tohoto vyjádření do vztahu v zadání dostáváme

4ax2 + 2bx + c = (8a + l)x2 + (8b — A)x + 8c + 4.

Porovnáním koeficientů u stejných mocnin x na levé a pravé straně dostaneme
4a = 8a -I- 1, 26 = 86 — 4 a c = 8c + 4. Odtud a = — 6 = |, c = —

Je-li dále stupeň n polynomu P větší než dva, zjistíme analogicky, že jeho člen
anxn s nej vyšší mocninou x splňuje vztah 2nan = 8an, tedy n — 3, přičemž an ф 0
je libovolné. Koeficienty mnohočlenu P u mocnin x2, x1 a x° vyjdou stejně jako
v předchozí situaci.

Celkový závěr: P(x) = ax3 — \x2 4- kde a je libovolné reálné číslo.

50-C-1-2

Sestrojte lichoběžník, jsou-li dány délky 9 cm a 12 cm jeho úhlopříček, délka 8 cm
střední příčky a vzdálenost 2 cm středů úhlopříček.
Řešení. Zvolme označení podle obr. 30, KP je střední příčka v trojúhelníku ACD,

(E. Kováč)

D Cc

A a В E

Obr. 30

proto \KP\ = \\DCI, obdobně \QL\ = \\DC\, \PL\ = \\AB\, takže \PQ\ = §(a-
— c) = 2 cm. Protože \KL\ = |(a + c) - - 8 cm, je a = 10 cm, c = 6 cm. Nejdříve
sestrojíme trojúhelník AEC podle věty sss, na úsečce AE pak bod B, jím vedeme
rovnoběžku s CE. Ta protne přímku vedenou bodem C rovnoběžně s AE v bodě D.

50-Z8-I-5

Blecha se dostala na čtvercovou síť se čtverečky 1 cm x 1 cm. Rozhodla se, že bude
skákat jen po uzlových bodech této sítě. Protože její šťastné číslo je 13, udělá vždy
skok dlouhý jen 13 cm. Může se takto dostat do libovolného uzlového bodu?

(P. Cernek)
Řešení. Blecha může skákat buď ve směru mřížových čar, nebo se může přesouvat
do protějšího vrcholu obdélníku s rozměry 5 a 12 (podle Pythagorovy věty).
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Blecha se může dostat do libovolného uzlového bodu, jestliže se může dostat do
sousedního uzlového bodu. Do libovolného dalšího bodu se dostane potom sledem
skoků. Do sousedního uzlového bodu se může dostat například podle obr. 31.

3'

■4-

7В

2

Obr. 31

Odpověď: Blecha se může dostat do libovolného uzlového bodu.

50 - Z7 - I - 5

Jedna ze stran obdélníku ABCD je dvakrát kratší než jedna z úhlopříček koso-
čtverce KLMN. Jedna ze stran kosočtverce KLMN je stejně dlouhá jako jedna
z úhlopříček obdélníku ABCD. Kosočtverec KLMN má obsah 36 cm2. Jak velký

(S. Bednářová)
Řešení. Úhlopříčka obdélníku dělí obdélník na dva shodné pravoúhlé trojúhelní-
ky, úhlopříčky kosočtverce ho dělí na čtyři shodné pravoúhlé trojúhelníky. Podle
zadání je pravoúhlý trojúhelník v obdélníku shodný s pravoúhlým trojúhelníkem
v kosočtverci podle věty Ssu (obr. 32). Obsah obdélníku je tak roven polovině
obsahu kosočtverce, proto obsah obdélníku je 18cm2.

obsah má obdélník ABCD?
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42 - P - II - 1

Nákladní auta. Z města A vede silnice do města B. Na této silnici leží města

ne nutně v tomto pořadí, ale pro každé i (1 š i š n)
je vždy město A{ blíže к A než město Bi. Nákladní auto jezdí mezi městy А а В
a má za úkol vyřídit n objednávek; г-tá (1 úiún) objednávka spočívá v převezení
nákladu z města A{ do města Вi. Auto přitom může vézt vždy nejvýše jeden náklad
a po naložení ve městě Ai ho může vyložit jedině v B{.

Jízdou nákladního auta rozumíme jednu cestu auta z města A do města В
a zpět do města A s případným splněním některých objednávek během této jízdy.
Směr jízdy auta lze změnit jen ve městě B.

Napište a zdůvodněte program, který pro zadané vzdálenosti měst Ai a Bi od
města A sestaví plán nákladního auta (tj. určí počet jízd a splněné objednávky
pro každou jízdu) tak, aby auto vyřídilo všechny zadané objednávky minimálním
počtem jízd.

Řešení. Označme si a; = \AA{\ a bi = \ABi\. Dle zadání 0 й ai < bi pro každé i.
V následujícím textu budeme jako objednávku j označovat tu objednávku, která
patří městům Aj a Bj. Myšlenka algoritmu je jednoduchá — dokud existují nějaké
nesplněné objednávky, přidáme vždy další jízdu a simulujeme cestu auta z A do B.
Pokud je auto v nějakém městě volné, vybereme si jako další objednávku z dosud
nesplněných tu, která začíná co nejdříve.

Přímá implementace této myšlenky vede к příliš složitému programu. Proto
nebudeme přiřazovat objednávky jízdám, ale naopak. Čísla ai,..., an a b\,..., bn
uspořádáme vzestupně a poté procházíme úsek od A do B. Přitom si udržujeme
zatím potřebný počet jízd v proměnné p a seznam „volných jízd“ (na začátku
prázdný). Jestliže narazíme na město Ai a seznam je prázdný, zvýšíme počet jízd
na p + 1 a г-tou objednávku splníme v této jízdě. Jestliže narazíme na město Bi,
jízdu, ve které jsme splnili г-tou objednávku, „uvolníme", tj. přidáme do seznamu

volných jízd.

Poznámky к implementaci:
• Při třídění si ke každému prvku pamatujeme jeho původní index;
• seznam volných jízd implementujeme např. jako zásobník;
• je-li bi — од,, nejprve zpracováváme bi.

Důkaz správnosti algoritmu:
Algoritmus zřejmě nalezne nějaký korektní plán, neboť každé objednávce při-

řadí právě jednu jízdu a jízda, která je objednávce přiřazena, je v dané chvíli volná.
Nyní dokážeme optimalitu získaného plánu. Označme ко = тах|{г: x £ (a;,6;)}|
pro x £ (0, \AB\) (maximální počet intervalů s neprázdným průnikem). Zřejmě
potřebujeme alespoň ко jízd. Ukážeme, že algoritmus nalezne plán s přesně ко
jízdami. Uvažujme takové г, že počet jízd (proměnná p) se zvyšuje z p na p + 1
při přidání bodu ai. Tehdy není к dispozici žádná volná jízda, tedy bod ai leží

/1 •) An, B\,..., Bnь • •

71



v nějakých intervalech (akj,bkj) pro j = 1,... ,p. Bod a* + e, kde e je dostatečně
malé číslo, leží uvnitř těchto p intervalů a navíc v intervalu (a^, &;), tedy p+1 ко,
takže hodnota p nikdy nevzroste nad ко.

Odhad časové složitosti:

Odhlédneme-li od třídění, pro každý prvek a; nebo bi vykonáme konstantní
množství operací, tedy celkem O(n). Složitost třídění je 0(nlog?r), dohromady
tedy máme časovou složitost algoritmu O(nlogn).

Paměťová složitost je lineární.

42 - P - III - 2

Nepostradatelné silnice. V zemi je N měst označených čísly od 1 do N. Mezi
městy je vybudována silniční síť. Každá silnice spojuje vždy dvojici měst. Všechny
silnice jsou obousměrné. Mezi některými dvojicemi měst přímá silnice nevede, ale
z každého města je možné dojet po silnicích do libovolného jiného města (třeba
i více různými způsoby). Všechna případná křížení silnic mimo města jsou mimo-
úrovňová a neumožňují vozidlům přejet z jedné silnice na druhou.

Silnici nazveme nepostradatelnou, pokud by se jejím zničením úplně přerušilo
silniční spojení mezi některou dvojicí měst.

Napište program, který vyhledá a vypíše všechny nepostradatelné silnice. Vstu-
pem programu je počet měst N a dále seznam všech silnic vedoucích mezi městy.
Každá silnice je zadána dvojicí čísel měst, mezi nimiž vede.

Řešení. Úloha je jednou z klasických úloh teorie grafů. Silniční síť představuje
souvislý neorientovaný graf, v němž vrcholy grafu odpovídají městům a hrany
grafu silnicím. Nepostradatelné silnice, tak jak jsou definovány v zadání úlohy,
odpovídají v teorii grafů zvláštním hranám zvaným mosty. Úkolem tedy je nalézt
v daném grafu všechny mosty.

Algoritmus řešení je založen na procházení zadaným grafem do hloubky. Při
procházení bude každý vrchol grafu navštíven právě jednou. Způsob procházení
lze znázornit stromem. Kořenem stromu procházení je vrchol, z něhož bylo pro-
cházení zahájeno. Za kořen můžeme zvolit libovolný vrchol.grafu. Bezprostředními
následníky některého vrcholu V jsou všechny ty vrcholy, do nichž prohledávání
z vrcholu V bezprostředně pokračovalo. Protože zadaný graf je souvislý, budou ve
stromu procházení obsaženy všechny vrcholy původního grafu (města). Ze všech
hran (silnic) budou ve stromě procházení obsaženy jen ty, které nás v průběhu
procházení dovedly do nového, doposud nenavštíveného vrcholu.

Představme si, že do stromu procházení dokreslíme zelenou barvou všechny
zbývající hrany grafu. To jsou tedy takové, kterými průchod do hloubky nepokra-
čoval. Jinak řečeno, v průběhu procházení tyto silnice vedly z právě procházeného
města do jiného, již dříve navštíveného města. Doplněný strom tedy bude izomorfní
s původním grafem.
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Nyní vyslovíme jedno pomocné tvrzení: Oba koncové vrcholy každé zelené
hrany leží na téže větvi stromu procházení. Tvrzení snadno dokážeme sporem.

Předpokládejme, že by některá zelená silnice spojovala dvě města А а В, která
neleží na jedné větvi stromu procházení. Označme je tak, že během průchodu
bylo A poprvé navštíveno dříve než B. Město В jistě neleží v podstromu prochá-
zení s kořenem A (jinak by А а В ležela na téže větvi). Pro postup procházení
to znamená, že nejprve bylo (případně několikrát) navštíveno město A a teprve
potom (případně několikrát) navštíveno město B. Všimněme si okamžiku během
procházení, kdy jsme město A navštívili naposledy. To bylo v situaci, kdy jsme
se z něho vraceli zpět (kdybychom šli vpřed, museli bychom do A přijít ještě na

zpáteční cestě). V tomto okamžiku jsme se ale nezachovali správně podle algoritmu
procházení grafem do hloubky: vraceli jsme se zpět, a přitom jsme ještě měli projít
silnicí AB, protože ta vedla do tehdy ještě nenavštíveného města B.

К tomu, aby hrana byla mostem, je nutné a stačí, aby se jejím odstraněním
oddělil podstrom ve stromu procházení, který nebude dostupný ani po některé
zelené hraně. Podle předchozího tvrzení by takové spojení zelenou hranou muselo
vést do vyšší vrstvy ve stromě procházení.

Na základě provedených úvah již lze zformulovat algoritmus. Zadaný graf bu-
deme procházet do hloubky, začít můžeme libovolným vrcholem (např. vrcho-
lem číslo 1). Během procházení si budeme u každého vrcholu M pamatovat jeho
hloubku ve stromě procházení Нм- Kořen stromu procházení bude mít hloubku 0.
Postupně během průchodu budeme pro každý procházený vrchol M určovat číslo
Zm definované takto: Zm je minimum z Нм a z hloubek koncových měst všech
zelených silnic, které vycházejí z vrcholů v podstromu s kořenem M. Zm je tedy
číslo nejvyšší hladiny ve stromě procházení, do které vede přímé spojení zelenou
silnicí z nějakého města v podstromu s kořenem M. Přitom si všímáme jen hladin
nad vrcholem M. Nastane-li pro některý vrchol M nerovnost Zm < Нм, existuje
zelená silnice, která spojuje podstrom s kořenem ve vrcholu M se zbytkem grafu.
Je-li Zm — Нм, je silnice, po níž jsme do M během procházení přišli, mostem.

Zbývá ukázat, jak budeme počítat hodnoty Ям a Zm pro vrchol M. Hodnotu
Нм určíme snadno při prvním vstupu do vrcholu M během procházení grafem —

je o 1 větší než odpovídající hodnota Hx vrcholu X, z něhož do M přicházíme. Sta-
novení hodnoty Zm je o něco obtížnější. Hodnota Zm je rovna minimu z hodnoty
Нм a z hodnot Zi všech vrcholů ležících v podstromu s kořenem ve vrcholu M. Při
prvním vstupu do vrcholu M můžeme tudíž inicializovat hodnotu Zm již známou
hodnotou Нм a pak ji během procházení podstromu vrcholu M budeme případně
zmenšovat, bude-li to možné. Při každém dalším příchodu do vrcholu M (tj. při
návratu z nějakého následníka vrcholu M) lze hodnotu Zm snížit na Z-hodnotu
tohoto následníka. К dalšímu snížení Zm mohou přispět hrany, které vedou z vr-
cholu M do již navštívených uzlů a po nichž se tudíž při průchodu nepostupuje.
Hodnotu Zm můžeme snížit na Я-hodnotu koncových vrcholů těchto zelených
hran. Definitivní hodnotu Zm získáme až při posledním opuštění vrcholu M.

73



Složitost celého algoritmu je dána složitostí průchodu grafem do hloubky.
Ostatní výpočty spojené s určováním hodnot Нм a Zm mají konstantní časové ná-
roky. Oasová složitost programu pro průchod grafem do hloubky závisí na vhodné
volbě vnitřní reprezentace grafu. Při vhodně zvolené reprezentaci (viz uvedená
programová ukázka) je přímo úměrná počtu hran v grafu, tj. je řádu n2, kde n je
počet vrcholů grafu.

program Nepostradatelne_silnice;

{Formát očekávaných vstupních dat - zadání grafu:
- sousedi každého vrcholu vždy na jednom řádku ve tvaru

<číslo-vrcholu> <číslo-sousedal> <číslo-souseda2> ...

- vrcholy musí být očíslovány od jedné po jedné a v tomto
pořadí musí být také řádky na vstupu zadány

- každá hrana se tedy uvádí dvakrát (na řádcích pro jeden
a pro druhý její koncový vrchol)

-

program pro jednoduchost netestuje správnost zadaných
vstupních dat (nebylo by těžké testy doplnit) }

const

MaxPocetMest = 40;
MaxPocetSilnic = 200;

type
{fiktivní město na konci}= 1..MaxPocetMest+1;

Silnice = 1..MaxPocetSilnic;

Město

var

GMesto : array [Město] of record
Spoje
Hloubka

Projito

Silnice;
integer;
Boolean;

end;
GSilnice : array [Silnice] of Město;
{pole GMesto a GSilnice představují vnitřní uložení grafu
- ke každému vrcholu je v poli GSilnice uložen seznam

jeho sousedů, položka Spoje v GMesto určuje, kde přesně
jsou uloženi sousedi každého konkrétního vrcholu

- viz úvodní komentář o tvaru vstupních dat a procedura
NactiGraf}

PocetMest : 0..MaxPocetMest;
PocetSilnic : 0..MaxPocetSilnic;

F:integer; {pomocná proměnná - je potřebná pro správné
volání procedury Průchod v hlavním programu}

procedure NactiGraf;
{načtení vstupních dat - zadání zkoumaného grafu}
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var dummy:integer;
begin

PocetMest:=0;
PocetSilnic:=1;

repeat
PocetMest:=PocetMest+l;

read(dummy);
GMesto[PocetMest].Spoje:=PocetSilnic;
while not eoln do

begin
read(GSilnice[PocetSilnic]);
PocetSilnic:=PocetSilnic+l;

{číslo města - nevyužívá se}

end;
readln;

until eof;

GMesto[PocetMest+1].Spoje:=PocetSilnic;
end;

function min(X,Y:integer):integer;
{pomocná procedura - minimum ze dvou celých čísel}
begin

if X<Y then min:=X else min:=Y;
end;

procedure PisMost(odkud,kam : Město);
{vypíše, že z města "odkud" do města "kam" vede most}
begin

writeln(’Most z ’.odkud,’ do ’,kam,’.’);
end;

procedure PredPruchodem;
{označí všechna města za dosud neprojitá - nutné!}
var i:Město;

begin
for i:=l to PocetMest do GMesto[i].Projito := false;

end;

procedure Průchod(Start: Město; hi:integer; var Z: integer);
{Projde odpovídající část grafu do hloubky.
Začíná ve městě Start, jeho hloubka je hl, spočítá pro něj
hodnotu Z (viz text).}

var Nasl : Město;
S : Silnice;
pomZ : integer;

begin
GMesto[Start].Projito := true; {vrchol navštíven}
GMesto[Start].Hloubka := hl; {má hloubku hl}
Z := hl; {prozatímní hodnota Z}

75



for S:=GMesto[Start].Spoje to GMesto[Start+1].Spoje-1 do
begin

Nasi := GSilnice[S]; {město dostupné po silnici S}
if GMesto[Nasl].Projito then

begin {nepočítat silnici, po níž jsme přišli!}
if GMesto[Nasl].Hloubka+1 O hi then

{zelená silnice, buď nahoru, nebo dolů}
Z := min(Z,GMesto[Nasl].Hloubka)

{pokud vede zelená silnice nahoru,
snížíme hodnotu Z v našem uzlu}

end

else

begin
Pruchod(Nasl,hl+l,pomZ);
if hl+1 = pomZ then

PisMost(Start,Nasl);
Z := min(Z,pomZ);

{nalezen most v grafu}
{případné snížení hodnoty Z}

end;
end;

end;

begin
NactiGraf;
PredPruchodem;
Průchod(1,0,F);
{vždy je F=0}

end.

47 - P - III - 2

Kódy. Při přenosu dat (posloupností bitů) po linkách mezi počítači může někdy
dojít к chybě: čas od času se stane, že se místo některého vyslaného bitu přijme
na konci linky bit jiný. Nedochází ovšem к tomu, že by se při přenosu některý bit
zcela ztratil nebo že by naopak bit přibyl.

Pro přenos dat po nespolehlivých vedeních se proto často používají různé za-

bezpečovací kódy. К přenášeným bitům b\ ... bn se přidají navíc kontrolní bity
Ci... cm tak, aby podle nich bylo možné na druhé straně linky zjistit, zda se zpráva
přenesla v pořádku.

Nejjednodušším možným zabezpečovacím kódem je paritní kód doplňující je-
diný bit ci takový, aby celkový počet jedničkových bitů v celé zprávě byl sudý.
Tento kód umožňuje spolehlivě odhalit nejvýše jeden chybný bit v celé zprávě (ať
již to byl jeden z datových bitů bi nebo přidaný paritní bit). Neumožňuje však
přesně zjistit, který bit je chybný (což by se rovnalo opravení tohoto bitu, jelikož
jsou pouze dvě možnosti, jakou hodnotu může mít).
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a) Navrhněte zabezpečovací kód, který к n-bitové zprávě přidá m zabezpečova-
cích bitů tak, aby případnou chybu v jednom bitu zprávy bylo možné nejen zjistit,
ale také opravit.

b) Navrhněte zabezpečovací kód, který к n-bitové zprávě přidá m zabezpečova-
cích bitů tak, aby bylo možné ověřit správnost došlé zprávy za předpokladu, že při
jejím přenosu dojde к chybě v nejvýše dvou bitech (včetně bitů zabezpečovacích).

V obou případech se snažte o co nejmenší prodloužení zprávy (tzn. minimali-
zujte počet přidaných bitů m) a dokažte, že navržený kód skutečně požadované
vlastnosti má.

Řešení. Následující kód řeší obě podúlohy (nikoliv však současně — není schopen
rozhodnout, jestli došlo к opravitelné jednochybě nebo neopravitelné dvojchybě).

Nechť zpráva má n = 2k — 1 bitů označených b\ .. .bn (v případě, že je krát-
ší, považujeme zbylé bity za nuly). My ji doplníme o paritní bit p (stejně jako
v ukázkovém příkladu v zadání) a zabezpečovacími bity cq až Ck-1, jež budou
paritními bity jednotlivých bloků zvolených podle následujícího pravidla: v г-tém
bloku budou právě ty bity, jejichž pořadové číslo (pro bit bz to je z) má v г-tém
binárním řádu jedničku (každý bit původní zprávy tak patří do alespoň jednoho
bloku a je jednoznačně identifikován tím, do kterých bloků patří a do kterých
nikoliv).

a) Po příjmu zprávy zkusíme podle přijatých datových bitů znovu spočíst
všechny bity kontrolní (tedy p a všechna c*). Pokud souhlasí s těmi, které byly
přijaty, zpráva byla přijata bezchybně nebo došlo к více jak jedné chybě. Pokud
došlo к právě jedné chybě, mohlo к ní dojít těmito způsoby:
• V jednom datovém bitu bp v tomto případě zaručeně nesouhlasí paritní bit p

a rovněž některé z blokových paritních bitů Cj — konkrétně ty, jež odpovídají
blokům, do nichž bit bi patří. Jenže tím, ve kterých blocích se 6; nachází, je již
jeho pořadové číslo г jednoznačně určeno.

• V jednom kontrolním bitu cp v tomto případě souhlasí centrální paritní bit p,
čímž tento případ snadno odlišíme.

• V centrálním paritním bitu p: v tomto případě nesouhlasí tento bit, ale souhlasí
všechny ostatní kontrolní bity, což znamená, že chyba se nenachází v žádném
bloku, ale to u chyb v datových bitech nastat nemůže.
b) Nedošlo-li к žádné chybě, souhlasí všechny zabezpečovací bity s jejich vy-

počtenými hodnotami (viz řešení úlohy a). Došlo-li к právě jedné chybě, nesouhlasí
centrální paritní bit nebo jeden z blokových paritních bitů (viz diskuse výše). Do-
šlo-li к právě dvěma chybám, mohou nastat následující případy:
• Chyba ve dvou různých datových bitech: centrální paritní bit jistě souhlasí, ale

jelikož každý datový bit je jednoznačně popsán kombinací bloků, do nichž patří,
zaručeně existuje alespoň jeden blok, do kterého patří právě jeden z chybně
přijatých bitů, a proto jeho blokový paritní bit nesouhlasí.
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• Chyba ve dvou různých blokových paritních bitech: centrální paritní bit sou-

hlásí, ale oba chybně přijaté blokové paritní bity nikoliv.
• Chyba v jednom datovém bitu a jednom blokovém paritním bitu: nesouhlasí

centrální paritní bit.
• Chyba v jednom datovém bitu a centrálním paritním bitu: centrální paritní bit

souhlasí, ale alespoň jeden z blokových nikoliv (každý datový bit je v alespoň
jednom bloku).

• Chyba v centrálním paritním bitu a jednom z blokových: nesouhlasí centrální
paritní bit.
Ve všech případech tedy poznáme, že к chybě došlo.

48 - P - I - 4

Normální algoritmy Markova. Konečnou množinu symbolů T = {ao,ai,..
nazveme abecedou. Prvky množiny T budeme nazývat znaky abecedy. Slovem P
v abecedě T nazveme každou konečnou posloupnost znaků abecedy T. Prázdné
slovo budeme označovat symbolem A. Algoritmem v abecedě T budeme rozumět
funkci, jejíž definičním oborem je podmnožina slov v abecedě T a oborem hodnot je
opět podmnožina slov v T. Nechť P je slovo v abecedě T. Řekneme, že algoritmus
Л je přípustný pro slovo P, právě když P je prvkem jeho definičního oboru. Většinu
algoritmů je možno rozdělit na nějaké jednodušší kroky. Jeden ze způsobů navrhl
v roce 1954 A. A. Markov. Základní operací je substituce jednoho slova za jiné.
Výrazy P —)■ Q a P —> Q, kde P a Q jsou slova v abecedě T, nazýváme formulemi
substituce v abecedě T. Přitom předpokládáme, že šipka (—>) a tečka (•) nejsou
prvky T. Některé ze slov P a Q může být i prázdné. Formuli P -» Q nazýváme
obyčejnou a formuli P —>• -Q nazýváme koncovou. Zápisem P —> (-)Q rozumíme
buď formuli P —> Q, nebo P —> Q. Konečný seznam formulí substituce v abecedě T

ttn}• }

ř P\ —> {')Qi
P? ->(•№

, Pr (’)Qr

nazýváme schéma algoritmu A.
Řekneme, že slovo W je obsaženo ve slově Q, právě když existují taková slova

U, V (mohou být i prázdná), že Q = UWV. Algoritmus A pracuje následujícím
způsobem. Nechť je dáno slovo P v abecedě T. Ve schématu algoritmu A na-

jdeme první formuli Pm —>■ (-)Qm (1 ^ m ^ r) takovou, že Pm je obsaženo v P.
Provedeme substituci nejlevějšího výskytu slova Pm na Qm. Označme R\ slovo,
které je výsledkem této substituce. Můžeme napsat A: P \~ R\. Je-li Pm ->• -Qm
koncová formule substituce, činnost algoritmu A končí, jeho hodnotou je slovo R\
a píšeme A(P) = R\. Je-li Pm -» Qm obyčejná formule substituce, aplikujeme na
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Ri stejný postup, který jsme použili na slovo P. Tímto způsobem pokračujeme
dále. Dostaneme posloupnost slov P, Px,... ,R{ (i ^ 1). Můžeme psát

A: P h Ri,... ,h R{ nebo též zkráceně A: P h* Ri.

Jestliže v určitém okamžiku nastane situace, že ani jedno ze slov Pi,..., Pr není
obsaženo v potom činnost algoritmu rovněž končí a Ri je hodnotou algoritmu
A. Může se ovšem stát, že popsaný postup nikdy nekončí. V takovém případě
řekneme, že algoritmus není přípustný pro slovo P.

Příklad 1: Nechť T — {6, c}. Uvažujme schéma

6 -» -A

c —У c

normálního algoritmu A pro slovo P v abecedě T.
Výsledek činnosti algoritmu A je pro P následující:
• Je-li P prázdné slovo, je hodnota algoritmu rovněž prázdné slovo (M(A) =

— A).
• Obsahuje-li P aspoň jeden znak b, potom hodnotou algoritmu je slovo,

které vznikne z P vynecháním nejlevějšího výskytu znaku b v P (např.
A(cbcb) = ccb).

• Algoritmus není přípustný pro slova neobsahující znaky b.

Příklad 2: Nechť T = {ao, oi,..., an}. Uvažujme schéma

tto —^ A
Q,\ —^ A

<

w an —> A

Takové schéma zapisujeme zkráceně ve tvaru

{ Í->A (Í€T).

Při tomto zkráceném zápisu schématu předpokládáme, že odpovídající prvky se-
známu mohou být zapsány v libovolném pořadí. Výsledkem algoritmu A je vždy
prázdné slovo. Říkáme též, že A přepisuje libovolné slovo (v abecedě T) na

prázdné slovo. Činnost tohoto algoritmu můžeme zapsat například ve tvaru A:
ахазОо к ахаз h аз h A nebo A: aia^ao h* A, takže Л(ахазао) = A.

Příklad 3: Nechť T = {1}. Definujme induktivně 0 = lan + 1 = ňl, tj. i = 11,
2 = 111 atd. Slova ň nazveme čísla.
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Uvažujme schéma
Л -> 1.

Pro libovolné slovo P v T platí zřejmě A(P) = IP, což můžeme zapsat ve tvaru
A(TL) — n + 1 pro libovolné přirozené číslo n. (Uvědomte si, že každé slovo P začíná
prázdným slovem Л, tj. P — ЛР).

Abecedu В nazveme rozšířením abecedy T, platí-li T С В. V řadě případů je
nutno při konstrukci schématu algoritmu v abecedě T použít mimo znaků abecedy
T ještě další pomocné znaky. Pak řekneme, že jsme vytvořili schéma algoritmů nad
abecedou T (tj. v nějaké abecedě P, která je rozšířením T).

an} je abeceda. Pro každé slovo P =
= dj0ajl ■ ■ ■ a,jk v Г (к ^ 0, dj{ E T, i = 0,1,..., n) je slovo P = djk ■ ■ ■ dj1dj0
obrácením slova P. Sestrojte normální algoritmus A, který pro libovolné slovo P
vytvoří jeho obrácení, tj. A(P) — P.

Uvažujme zkrácené schéma algoritmu v abecedě В = T U {a, P}:
( aa

Příklad 4: Nechť T = {ao,ai,.. * 9

(a)^P
PZ -+Z(3 ((ЕГ) (b)
/За —> P

p -> -A
oívÍ £av (£,veT) (e)

(c)
(d)

(0^ A —у ol

• Na základě formule (f) dostaneme А: P Ь aP.
• Potom je aplikována v potřebném počtu opakování formule (e): A: P h

h dj1<y.dj0dj2 ■ ■ ■ djk h dj1dj2adj0dj3 • • • djk h dj1 dj2 ■ ■ • djkOídjQ.
• S opakováním předchozích dvou kroků postupně dostaneme

A: P dj2 dj3 • • • djkOLdjlOLdj0 P OLdjkQ.djk_1 ■ • • OLdjlOLdj0 h
h aadjkadjk_1 ■ ■ ■ adj1adj0.

• S pomocí (a) dále dostaneme A: P\~*Pdjkadjk_1 ■ ■ ■ adj1adj0, pomocí (b) a (c)
a s posledním použitím (d) dostaneme A(P) = P.
Tím jsme popsali činnost normálního algoritmu A nad abecedou T obracející

slovo v abecedě T.

Soutěžní úlohy:
1. Nechť H — {1}, M = {1,*}. Každé přirozené číslo n může být zapsáno jako

ň, což je slovo v abecedě H (viz př. 3 ve studijním textu). Napište schéma
algoritmu AvM, který je přípustný pouze pro slova, jež jsou zápisem přiroze-
ného čísla. Hodnotou algoritmu A pro libovolné ň bude A{ň) = 0. Zdůvodněte
správnost navrženého algoritmu.

2. Je dána abeceda Г, která neobsahuje znaky cn, /3, 7, В — T U {a,P, 7}. Se-
strojte schéma algoritmu A v abecedě B, který každé slovo v abecedě T zdvojí
(tj. A(P) = PP). Zdůvodněte jeho správnost.
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Řešení, a) Výskyt znaku * ve vstupním slově musí způsobit, že Markovův algorit-
mus nebude pro toto slovo přípustný. Toho dosáhneme tak, že prvním pravidlem
schématu budeme hvězdičku stále přepisovat samu na sebe. Jinak se má jakýkoliv
počet jedniček ve vstupním slově zredukovat na jediný znak 1 představující číslo
nula. To zajistí formule (2). Poslední jednička ve slově zůstane a výpočet se ukončí
podle formule (3). Zbývá ošetřit případ, že vstupní slovo je prázdné. V takovém
případě slovo neobsahuje zápis čísla, proto pomocí pravidla (4) vložíme do slova
hvězdičku, což v následujícím kroku vede opět к nekonečnému výpočtu podle první
formule.

(1)—> *

(2)11

(3)1

(4)Л -> *

Rychlost výpočtu podle tohoto schématu Markovova algoritmu je lineární, počet
kroků výpočtu je roven nejvýše délce vstupního slova.

b) Úlohu lze řešit s použitím pouze dvou pomocných symbolů mimo abecedu T.
Pomocí formule (5) se nejprve umístí na začátek vstupního slova symbol a. Po-
mocí formule (1) pak tímto symbolem procházíme slovo zleva doprava a za sebou
zdvojujeme jednotlivé znaky slova. V každém okamžiku je umístěno před znakem,
který má být v příštím kroku zdvojen, zatímco každý nově přidaný „dvojník11 je
označen symbolem /3 (umístěn bezprostředně před ním). Formule (1) se použije
přesně tolikrát, kolik znaků má vstupní slovo. Po jejím posledním použití se do-
stane symbol a až na konec slova. Dále se používá opakovaně formule (2). Ta
zajišťuje přesunutí přidaných dvojníků i se svými symboly (3 na pravý konec slova,
nepřipouští však změnu vzájemného pořadí dvojníků. V okamžiku, kdy již nelze
pravidlo (2) použít, jsme v podstatě hotovi — původní vstupní slovo je zdvojené,
zbývá už jen odstranit pomocné symboly. Před každým dvojníkem v pravé části
slova se nachází jeden symbol (3 a na samém konci slova je jeden symbol a. Všechny
pomocné symboly snadno odstraníme pravidly (3) a (4).

af (íeT)
Piv (t,'n£T) (2)

(1)

(3)(3 -> A
(4)a -> -A

(5)k A —У ct

Zbývá stanovit rychlost výpočtu. Formule (4) a (5) se použijí každá jednou,
formule (1) a (3) každá n-krát, kde n je počet znaků vstupního slova. Nej-
pracnější je přerovnání pořadí znaků ve slově pomocí formule (2). První dvoj-
nik se musí vyměnit postupně se všemi n — 1 zbývajícími znaky, druhý již jen
s n — 2 znaky, atd. Celkový počet použití pravidla (2) při výpočtu je proto
(n — 1) + (n — 2) + (n — 3) -f ... 4-1 = |n(n — 1). Algoritmus má tedy kvadratickou
časovou složitost.
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49 - P - II - 2

Posloupnost. Nechť A = (щ, <22,..., ам) je posloupnost celých čísel. Posloup-
nost A! nazveme vybranou podposloupností této posloupnosti, jestliže vznikne
z posloupnosti A vynecháním některých jejích členů, přičemž pořadí ostatních
prvků zachováme. Společná vybraná podposloupnost posloupností А, В je každá
taková posloupnost C, která je vybranou podposloupností obou posloupností A i В.

Příklad. Nechť A = (1,11,2,1,4,99), В = (9,4,1,2,7,1,99). Posloupnost
(1, 2,1, 99) je společnou vybranou podposloupností posloupností A, B. Posloupnost
(1,2,4) je vybranou podposloupností posloupnosti A, ale není vybranou podpo-
sloupností posloupnosti В, takže není ani společnou vybranou podposloupností A
a B.

Soutěžní úloha. Máme dány dvě posloupnosti celých čísel A = (ai, a.2,..., ам)
а В = (&i, Ь2, • • •, bn) s délkami M, resp. N. Tyto posloupnosti jsou uloženy
v polích a[l... M], resp. 6[1... N], jejichž obsah není dovoleno měnit. Uvažujme
takovou společnou vybranou podposloupnost posloupností A a S, ve které součet
všech jejích členů je největší možný. Napište program, který vypíše součet členů
takovéto posloupnosti.

Poznámka. Existuje algoritmus, který tuto úlohu řeší v čase úměrném M x N
a paměti, jejíž velikost je úměrná menšímu z čísel M, N.

Vstup:
M=6, N=7
A=(l,11,2,1,4,99)
B=(9,4,1,2,7,1,99)

(Vybrané podposloupností se součtem 103 existují dvě: 4,99 a 1,2,1,99.)
Řešení. V řešení úlohy použijeme metodu dynamického programování. Označme
Ai = a[l], a[2],..., a[i] posloupnost tvořenou prvními i členy posloupnosti а, апа-
logicky Bj = 6[1],..., b[j]. Budeme nejprve řešit obecnější úlohu: Pro každé i, j
(0 S i = M, 0 S j = N) spočítáme, jaký je maximální součet členů společné
vybrané podposloupností posloupností A{ a Bj. Tyto maximální součty si budeme
zapisovat do tabulky p[0 ... M, 0 ... TV], kde p[i,j] je součet maximální společné
vybrané podposloupností posloupností A{ a Bj. Hledaným maximálním součtem
bude tedy hodnota p[M, N].

Tabulku p budeme vyplňovat po řádcích s využitím předpočítané informace
uložené v předešlém řádku. Řádek p[0] obsahuje samé nuly, protože neexistuje
vybraná podposloupnost prázdné posloupnosti. Řádek p[i\ (pro i > 0) vyplníme
podle řádku p[i — 1] takto: Políčko р[г,0] má zřejmě hodnotu nula. Políčko p[i,j]
(pro j > 0) umíme určit pomocí hodnot p[i — 1, j], p[i,j — 1] a p[i — l,j — 1].
Jestliže se čísla a[i] a b[j] neshodují, každá vybraná podposloupnost posloupností
Ai a Bj je zároveň vybranou podposloupností posloupností Ai-1 a Bj nebo Ai

Příklad: Výstup:
103
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a Bj-1. Tedy v tomto případě je p[i, j] rovno maximu z čísel p[i
Jestliže а [г] = b[j], každá vybraná podposloupnost posloupností A{ a Bj je vybra-
nou podposloupností posloupností Ai-i a Bj nebo A{ a Bj-1, nebo je vybranou
podposloupností posloupností A{-i a Bj-i s přidaným členem a[i] = b[j]. Proto
p[i, j] je rovno maximu z čísel p[i — 1, j], p[i,j — 1] a p[i — 1, j — 1] + а [г].

Navržený algoritmus má časovou složitost O(MN). Paměťová složitost je také
O(MN). Jelikož každý řádek tabulky p závisí pouze na předcházejícím řádku,
stačí si pamatovat jen poslední dva řádky (při počítaní řádku p[i] si pamatujeme
předcházející řádek p[i — 1]; v programu p\ označuje řádek p[i — 1] a p2 řádek p[i]),
paměťová složitost algoritmu je při této realizaci proto pouze 0{M + N).

1 ,j] ap[i,j - 1].

program Posloupnost;
const MAX = 1000;
var a,b: array[1..MAX] of integer;
var pl,p2: array[0..MAX] of integer;

M,N,i,j: integer;

Begin
for i:=0 to N do pl[i]:=0;
p2[0] := 0;
for j:=l to M do begin

for i:=l to N do begin
if p2[i-l] > pi [i] then p2[i] := p2[i-l]
else p2[i] := pi[i] ;
if (b [i] = a[j]) and (pi [i—1] +a[j] > p2[i]) then

p2[i] := pi [i—1] +a[j] ;
end;
for i:=l to N do pl[i] := p2[i];

end;

Writeln(’Největší součet podposloupnosti je: ’,pl[N]);
End.

50 - P - I - 2

Posel. Na království krále Mírumila III. zaútočila nepřátelská vojska a podařilo se

jim obsadit několik měst. Král nyní potřebuje dát svému generálovi příkaz к pro-
tiútoku (bez příkazu přeci generál nemůže bojovat). Generál však momentálně
provádí inspekci vojsk v jiném městě. Je proto třeba vyslat posla, který příkaz
co nej rychleji doručí. Příkaz ovšem v žádném případě nesmí padnout do rukou
nepřítele! Proto se posel musí neustále držet co nejdále od nepřítelem obsazených
měst. Vaším úkolem je navrhnout pro posla co nejlepší trasu.

Soutěžní úloha: Program dostane na vstupu zadaný počet měst N (1 ^ ^ 100).
Jednotlivá města budeme označovat čísly 1... N. Dále je na vstupu uveden počet
cest M (1 M ^ 10 000) a seznam těchto cest vedoucích mezi městy. Každá cesta
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je určena dvojicí čísel měst, která spojuje. Cesty se kříží pouze ve městech a je
možno se po nich dostat z libovolného města do libovolného (případně přes města
jiná). Další údaj К zadaný na vstupu určuje počet měst obsazených nepřítelem,
následuje seznam obsazených měst. Nakonec program dostane číslo města, odkud
vyráží posel, a číslo města, kde se zdržuje generál. Váš program má nalézt trasu,
jejíž vzdálenost od měst obsazených nepřítelem je maximální. Pokud existuje ta-
kových tras více, program určí libovolnou nejkratší z nich. Vzdálenost měst А а В
počítáme jako minimální počet cest, po kterých musíme projít, abychom se dostali
z města A do města B. Vzdálenost trasy od města A je pak nejmenší ze vzdále-
ností města A od jednotlivých měst ležících na uvažované trase. Vzdáleností trasy
od obsazených měst rozumíme nejmenší ze vzdáleností mezi trasou a některým
z obsazených měst nebo nulu pokud některé město na trase samé je obsazeno.

Formát vstupu: První řádek vstupního souboru posel, in obsahuje čísla N
(počet měst) a M (počet cest). Po něm následuje M řádků, z nichž každý obsahuje
popis jedné cesty. Cesta je popsána dvojicí čísel koncových měst. Následuje řádek
s číslem К (počet obsazených měst) a za ním К řádků s čísly obsazených měst.
Poslední řádek vstupního souboru obsahuje číslo města, odkud vyjíždí posel, a číslo
města, kde dlí generál.

Formát výstupu: Výstupem programu v souboru posel .out jsou čísla měst na

nejlepší nalezené trase uvedená v pořadí, v jakém jimi má posel projíždět. Všechna
čísla měst jsou zapsána na jediném řádku výstupního souboru a jsou oddělena
mezerami.

Příklad: posel.in
10 12

posel.out
1 9 10 5

1 2

2 3

3 4

4 5

2 5

1 6

6 7

7 8

8 5

1 9

9 10

10 5

1

3

1 5

Řešení. Algoritmus řešící tuto úlohu se dá rozdělit do tří fází. V první fázi se
pro každé město spočítá, jaká je jeho vzdálenost od nepřítelem obsazených měst
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(ve smyslil definice uvedené v zadání). Ve druhé fázi se zjistí, jakou maximální
vzdálenost od nepřátelských měst dokážeme udržet při cestě z počátečního do
cílového města. Ve třetí fázi pak nalezneme nejkratší z tras vedoucích z počátečního
do cílového města, které udržují spočtenou vzdálenost.

První fáze: Vzdálenost od obsazených měst budeme hledat pomocí prohledá-
vání do šířky. U každého města si budeme udržovat informaci, zda jsme v něm již
byli (na počátku bude nastaveno právě u všech obsazených měst) a jeho vzdálenost
od nepřítele. Pro města obsazená nepřítelem bude tato vzdálenost rovna 0. Dále si
budeme udržovat frontu měst ke zpracování, do které na začátku uložíme všechna
nepřátelská města. V každém kroku výpočtu vždy vezmeme jedno město z fronty
a u všech jeho sousedů, ve kterých jsme dosud nebyli, nastavíme vzdálenost o jedna
větší, než je vzdálenost vybraného města. U všech těchto sousedů také označíme,
že jsme v nich už byli, a přidáme je na konec fronty. První fáze výpočtu končí,
když se vyprázdní fronta. Tehdy jsme prošli všechna města a určili jsme vzdálenost
každého z nich od nepřítele.

Druhá fáze: V této fázi si budeme udržovat front hned několik, pro každou
vzdálenost od nepřátelských měst jednu. Dále si pro každé město budeme za-

znamenávat, zda jsme v něm už byli. Také si budeme pamatovat dosud největší
nalezenou vzdálenost, kterou dokážeme udržet od nepřítele. Na začátku nastavíme
udržitelnou vzdálenost od nepřítele na hodnotu vzdálenosti královského města od
nepřítele a toto město vložíme do fronty pro příslušnou vzdálenost. U tohoto města
také nastavíme, že jsme v něm už byli. Výpočet probíhá tak, že postupně vyzve-
dáváme města z fronty pro aktuální udržitelnou vzdálenost, dokud se tato fronta
nevyprázdní. Když se fronta vyprázdní, snížíme udržitelnou vzdálenost o jedna
a opět začneme vybírat města z příslušné fronty. Vždy, když vezmeme nějaké město
z fronty, projdeme všechny jeho sousedy, u dosud nenavštívených z nich nastavíme
příznak, že už jsme je nenavštívili, a přidáme je do fronty — jestliže je vzdálenost
takového města od nepřátelských měst větší, než je aktuální udržitelná vzdálenost,
přidáme vrchol do fronty odpovídající aktuální udržitelné vzdálenosti, jinak město
přidáme do fronty odpovídající jeho vzdálenosti od nepřátelských měst. Druhá fáze
končí, jakmile vybereme z fronty cílové město. Aktuální udržitelná vzdálenost je
pak výslednou udržitelnou vzdáleností.

Třetí fáze: Tato fáze představuje opět prosté prohledávání do šířky. Pro každé
město si pamatujeme, zda jsme v něm již byli, a pokud ano, zaznamenáme si také
město, ze kterého jsme do něj přišli. Opět používáme frontu na dosud nezpracovaná
města. Na začátku vložíme do fronty cílové město. U něj nastavíme, že jsme v něm
již byli, a jako jeho předchůdce nastavíme je samé. V každém kroku výpočtu pak
vezmeme jedno město z fronty a projdeme všechny jeho sousedy. Každého souseda,
kterého jsme dosud nenavštívili a jehož vzdálenost od nepřátelských měst je větší
nebo rovna výsledné udržitelné vzdálenosti, označíme jako navštíveného a přidáme
ho na konec fronty. Také u něj jako město, ze kterého jsme přišli, nastavíme právě
vybrané město. Prohledávání končí ve chvíli, když je z fronty vyzvednuto počáteční
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(královské) město. Poté už jenom projdeme cestu z počátečního do cílového města
(to je velmi snadné díky odkazům na města, odkud jsme do nich při prohledávání
přišli) a cestu vypíšeme.

Algoritmus má časovou složitost 0{M + N), kde M je počet cest a A” je počet
měst.

Správnost algoritmu budeme ukazovat opět po fázích. To, že algoritmus spočte
správně vzdálenosti od nepřátelských měst v první fázi, plyne z následujícího:
Na počátku mají všechny vrcholy se vzdáleností nula tuto vzdálenost přiřazenu.
V okamžiku, kdy jsou zpracovány všechny vrcholy vzdálenosti nula, prošli jsme
všechny jejich sousedy, přiřadili jsme jim vzdálenost jedna a zařadili je do fronty.
Protože jiné vrcholy vzdálenost jedna mít nemohou, je vzdálenost jedna přiřazena
právě všem správným vrcholům. Tuto úvahu lze snadno zobecnit pro libovolnou
vzdálenost D. Prohledávání tedy skutečně určí vzdálenosti od nepřátelských měst
správně.

Ve druhé fázi se správně spočítá maximální udržitelná vzdálenost od obsaze-
ných měst. Sledujeme v ní totiž souběžně všechny možné trasy vedoucí z počá-
tečního města tak dlouho, dokud dokážeme udržet vzdálenost počátečního města
(výsledná vzdálenost od nepřítele zřejmě nemůže být větší než vzdálenost po-
čátečního města). Když už neexistuje město s dostatečně velkou vzdáleností, do
kterého bychom mohli jít, snížíme udržitelnou vzdálenost o jedna. Všechny vrcholy
se vzdáleností o jedna nižší, do kterých se dokážeme dostat přes vrcholy s dosa-
vadní udržitelnou vzdáleností, máme již připraveny v příslušné frontě a začneme
tedy prohledávat z nich. Protože udržitelnou vzdálenost snižujeme až když jsme se

již dostali všude, kam to bylo možné, její výsledná hodnota bude zřejmě nejvyšší
možná.

To, že ve třetí fázi nalezneme nejkratší trasu s danou vzdáleností, je zřejmé.
Provádíme totiž jednoduché prohledávání do šířky s tím, že ignorujeme města
s příliš malou vzdáleností od nepřítele. Nalezneme tedy určitě trasu s dostateč-
nou vzdáleností od nepřítele. Skutečnost, že to bude trasa nejkratší možná, plyne
z vlastností prohledávání do šířky uvedených v první části důkazu.

Program je přímou implementací uvedeného algoritmu.
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Výsledky
celostátních kol
ročníků 41 -50



 



Výsledky celostátního kola 41. ročníku MO

kategorie A

Vítězové

42 b.1.-2. Luboš Motl, 4 G Plzeň, Opavská,
Michal Stehlík, 4 G Brno, kpt. Jaroše,

3. Juraj Lanyi, 4 GAM Bratislava,
4.-6. Kamil Budinský, 3 GJH Bratislava,

Vít Novák, 3 G Praha, Korunní,
Pavel Růžička, 4 G Brno, kpt. Jaroše,

7.-11. Ondřej Klíma, 3 G Brno, kpt. Jaroše,
Michal Kubeček, 4 G Praha, Korunní,
Martin Niepel’ 2 GAM Bratislava,
Matěj Ondrušek, 3 GJH Bratislava,
Daniel Štefankovič, 3 GAM Bratislava,

12.-16. Viliam Búr, 3 GAM Bratislava,
Pavol Mederly, 4 GAM Bratislava,
Filip Miinz, 4 G Brno, kpt. Jaroše,
Josef Menšík, 4 G Brno, kpt. Jaroše,
Herbert Vojčík, 4 G Košice, Pivovarská,

17.-19. Richard K. Kollár, 3 GAM Bratislava,
Luboš Pástor, 4 G Košice, Pivovarská,
Andrej Zlatoš, 2 GAM Bratislava,

42 b.

41b.

38 b.

38 b.

38 b.

37 b.

37b.

37b.

37b.

37 b.

35 b.

35 b.

35 b.
35 b.

35 b.

34 b.

34 b.

34 b.

Další úspěšní řešitelé

33 b.20.-21. Katarina Skálová, 3 GAM Bratislava,
Michal Skokan, 2 G Žilina, Velká Okružná,

22.-23. Pavol Marton, 3 GAM Bratislava,
Petr Novotný, 4 G Praha, Korunní,

24.-26. Petr Staufčík, 3 GMK Bílovec,
Miloš Volauf, 3 GAM Bratislava,
Tomáš Zellerin, 4 G Ústí n. L., Jateční,

27.-29. Jiří Černý, 3 G Plzeň, Mikulášské nám.,
Roman Koch, 4 GMK Bílovec,
Václav Komínek, 3 G Brno, kpt. Jaroše,

33 b.

32 b.

32 b.

31b.

31b.

31b.

30 b.

30 b.

30 b.
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30.-36. Martin Beneš, 3 GMK Bílovec,
Marcela Hlawiczková, 3 G Třinec,
Ján Maňuch, 4 G Košice, Pivovarská,
Dušan Svitek, 4 G Ban. Bystrica, Tajovského,
Jana Uhrová, 3 GMK Bílovec,
Jm Vaniček, 3 G Praha, Korunní,
Ján Žabka, 3 G Žilina, Velká Okružná,

37.-43. Tomáš Bruna, 3 G Žilina, Velká Okružná,
Martin Kačer, 3 G Liberec,
Ladislav Kis, 4 GAM Bratislava,
Matěj Kordoš, 4 GJH Bratislava,
Alexander Kupčo, 4 GMK Bílovec,
Roman Mackovčák, 4 G Banská Štiavnica,
Michael Schenk, 4 G Č. Budějovice, Jírovcova,

29b.

29 b.

29 b.

29 b.

29 b.

29 b.

29 b.

28 b.

28 b.

28 b.

28 b.

28 b.

28 b.

28 b.
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Výsledky celostátního kola 41. ročníku MO
kategorie P

Vítězové

40 b.1. Matěj Ondrušek, 3 GJH Bratislava
2. Michal Kubeček, 4 G Praha, Korunní
3. Herbert Vojčík, 4 G Košice, Pivovarská
4. Jana Syrovátková, 3 G Brno, kpt. Jaroše

5.-6. Tomáš Vinař, 2 G Košice, Šrobárova
Jan Kotas, 4 G Plzeň, Mikulášské nám.

7.-8. Jan Kybic, 4 G Praha, Korunní
Rastislav Královic, 3 G Bratislava, Vazovova

9. Pavel Kaňkovský, 4 G Brno, kpt. Jaroše
10.—11. Michal Koucký, 4 G Praha, Korunní

Daniel Štefankovič, 3 GAM Bratislava
12. Paveí Petrovič, 3 GJH Bratislava

37 b.

30 b.

29 b.

28 b.

28b.

27b.

27b.

26 b.

25 b.

25 b.

24 b.

Další úspěšní řešitelé

22 b.13.-16. Martin Helmich, 4 G Mladá Boleslav
Jaroslav Kaas, 4 G Plzeň, Mikulášské nám.
Martin Mareš, 1 G Praha, U libeň. zámku
Karel Sršeň, 4 G Benešov

17.-18. Peter Budai, 4 G Košice
Tomáš Němec, 4 G Beroun

19.-22. Juraj Barát, 3 G Košice, Šrobárova
Milan Bok, 3 G Praha, Korunní
IAJ Novák, 3 G Praha, Korunní
Dušan Vallo, 4 GJH Bratislava

23.-26. Marek Gura, 4 G Poprad
Richard Ostertág, 4 GJH Bratislava
Michael Schenk, 4 G 0. Budějovice, Jírovcova
Jiří Vaniček, 3 G Praha, Korunní

22 b.

22 b.

22 b.

22 b.

22 b.

19b.

19b.

19b.

19 b.
18b.

18b.

18b.

18b.
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Výsledky celostátního kola 42. ročníku MO
kategorie A

Vítězové

1. Villiam Búr, 4b G Bratislava, Grosslingová
2. Andrej Zlatoš, 3b G Bratislava, Grosslingová
3. Jiří Černý, 4a G Plzeň, Mikulášské nám.

4.-5. Michal Brodský, 4a G Brno, kpt. Jaroše
Jana Syrovátková, 4a G Brno, kpt. Jaroše

6.-7. Marek Mačuha, 3b G Bratislava, Grosslingová
Vít Novák, 4e G Praha 2, Korunní

8. Robert Šámal, 2d G Praha 2, Korunní
9.-11. Petr Kaňovský, 2a G Brno, kpt. Jaroše

Pavol Marton, 4 G Bratislava, Grosslingová
Daniel Štefankovič, 4b G Bratislava, Grosslingová

12.-14. Marcela Hlawiczková, 4c G Třinec
Daniel Pastor, 3b G Bratislava, Grosslingová
Jiří Vaniček, 4e G Praha 2, Korunní

15. Ondřej Klíma, 4a G Brno, kpt. Jaroše
16. František Vymazal, 4a G Brno, kpt. Jaroše

17.-19. Jan Mach, 3c G Bílovec
Martin Niepel, 3b G Bratislava, Grosslingová
Martin Vagaský, 3b G Bratislava, Grosslingová

35 b.

34 b.

32 b.

31b.

31b.

30 b.

30 b.

29 b.

28 b.

28 b.

28 b.

27 b.

27b.

27b.

26 b.

25 b.

24 b.

24 b.

24 b.

Další úspěšní řešitelé

23 b.20.-24. Kamil Budínský, 4b G Bratislava, Novohradská
Blažej Neradílek, 3a G Brno, kpt. Jaroše
Jan Rychtář, 2c G Strakonice
Katarina Skálová, 4b G Bratislava, Grosslingová
Juraj Slanička, 4 G Bratislava, Grosslingová

25.-26. Jana Uhrová, 4d G Bílovec
Miloš Volauf, 4 G Bratislava, Grosslingová

27.-28. Matěj Ondrušek, 4b G Bratislava, Novohradská
Marek Žabka, 4f Banská Bystrica, Tajovského

23 b.

23 b.

23 b.

23 b.

22 b.

22 b.

21b.

21b.
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20 b.29.-31. Milan Hokr, 3d G Praha 2, Korunní
Filip Krška, 2a G Brno, kpt. Jaroše
Libor Masíček, 2a G Brno, kpt. Jaroše

32.-35. Ivana Brudňáková, 2e G Prešov, Konštantínova
David Kruml, 4a G Brno, kpt. Jaroše
Boris Křupa, 1 G Bratislava, Grosslingová
Pečr Vachovec, 3a G Plzeň, Mikulášské nám.

36.-38. Matúš Kirchmayer, 3a G Bratislava, Metodova
Mikuláš Piňos, 3a G Brno, kpt. Jaroše
Martin Semerád, 4e G Praha 2, Korunní

20 b.

20 b.

19b.

19b.

19 b.

19b.

17b.

17b.

17b.
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Výsledky celostátního kola 42. ročníku MO
kategorie P

Vítězové

1. Tomáš Vinař, 3.A G Košice, Šrobárova
2. Jiří Vaniček, 4.E G Praha, Korunní

3.-5. Martin Mareš, 2.E G Praha, U lib.zámku
Martin Niepel, 3.B G Bratislava, Grosslingova
Matěj Ondrušek, 4.В G Bratislava, Novohradská

6. Bronislava Brejová, 3.B G Bratislava, Novohradská
7.-8. Kíč Novák, 4.E G Praha, Korunní

Daniel Štefankovič, 4.В G Bratislava, Grosslingova
9.-10. Jiří Hanika, 4.E G Praha, Korunní

Cyril Sochor, 4.E G Praha, Korunní
11.-13. Martin Gažák, 3.B G Žilina, V.okružná

Ondřej Pár, 3.D G MK Bílovec
Jana Syrovátková, 4.A G Brno, kpt. Jaroše

33 b.

31b.

30 b.

30 b.

30 b.

29 b.

26 b.

26 b.

23 b.

23 b.

22 b.

22 b.

22 b.

Další úspěšní řešitelé

14.-15. Ivana Brudňáková, 2.E G Prešov, Konšt.
Rastislav Královiě, 4.F G Bratislava, Vazovova

16.-19. Milan Bok, 4.E G Praha, Korunní
Zoltán Bugár, 4.A G Galanta
Pavel Machek, 2.D G Praha, Korunní
Ondřej Pořádek, 4.E G Praha, Korunní

20. Jan Mach, 3.C G MK Bílovec
21.-25. Marek Fekete, 4.A G Michalovce

Patrik Horník, 2.В G Bratislava, Grosslingova
Boris Letocha, 3.A G H. Králové, Tylovo nám.
Robert Šámal, 2.D G Praha, Korunní
Martin Vagaský, 3.B G Bratislava, Grósslingová

26.-28. Kamil Budinský, 4.В G Bratislava, Novohradská
Pavel Petrovič, 4.В G Bratislava, Novohradská
Marián Varga, 3.A G Bratislava, Novohradská

20 b.

20 b.

19b.

19 b.

19b.

19b.

18 b.

17b.

17b.

17b.

17b.

17b.

16b.

16 b.

16b.
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Výsledky celostátního kola 43. ročníku MO
kategorie A

Vítězové

29 b.1. David Pavlica, 3.r. GMK Bílovec, 17. listopadu
2. Martin Nečesal, 3.r. G Brno, kpt. Jaroše
3. Robert Šámal, 3.r. G Praha 5, Zborovská

4.-5. Petr Kaňovský, 3.r. G Brno, kpt. Jaroše
Libor Mašíček, 3.r. G Brno, kpt. Jaroše

6.-7. Jan Mach, 4.r. GMK Bílovec, 17. listopadu
David Opěla, 2.r. GMK Bílovec, 17. listopadu

8.-9. Filip Krška, 3.r. G Brno, kpt. Jaroše
Jan Vaněk, 4.r. G Praha 5, Zborovská

10.—11. Michal Beneš, 2.r. G Praha 5, Zborovská
Michal Fabinger, 3.r. G Praha 6, Nad alejí

12.-13. Michaela Prokešová, 3.r. G Č. Budějovice, Jírovcova
Jan Rychtář, 3.r. G Strakonice, Máchova

28 b.

27b.

26 b.

26 b.

24 b.

24 b.

23 b.

23 b.

21b.

14 b.

20 b.

20 b.

Další úspěšní řešitelé

14.-16. František Šanda, 4.r. GJV Klatovy, Nár. mučedníků
Jaroslav Ševčík, 4.r. G Brno, kpt. Jaroše
Karel Výborný, 2.r. G Praha 5, Zborovská

17.-20. Igor Glucksmann, 4.r. G Písek, Komenského
Stanislav Hencl, 4.r. G Pardubice, Dašická
Jitka Nečasová, 4.r. G Praha 5, Zborovská
Petr Vilím, 2.r. GMK Bílovec, 17. listopadu

21.-22. Milan Hokr, 4.r. G Praha 5, Zborovská
Jan Hradil, 4.r. G Brno, kpt. Jaroše

23.-24. Michal Johanis, 4.r. GJKT Hradec Kr., Tylovo nábř.
Daniel Král, 2.r. G Zlín, Lesní čtvrť
Karel Švadlenka, 3.r. G Č. Budějovice, Jírovcova

26. Pavel Korber, 4.r. G Praha 5, Zborovská

18b.

18b.

18b.

17b.

17b.

17b.

17b.

16 b.

16b.

15b.

15b.

15b.

14b.
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Výsledky celostátního kola 43. ročníku MO

kategorie P

Vítězové

1. Robert Špalek, 2.r. G Brno, tř. kpt. Jaroše
2. Petr Kaňovský, 3.r. G Brno, tř. kpt. Jaroše

3.-4. David Stanovský, 3.r. G Pardubice, Dašická
Daniel Škarda, 4.r. G Praha, Zborovská

5. Petr Novák, 4.r. G Brno, tř. kpt. Jaroše

31b.

30 b.

28 b.

28 b.

27b.

Další úspěšní řešitelé

6. Jaroslav Ševčík, 4.r. G Brno, tř. kpt. Jaroše
7. Jiří Hájek, 3.r. G Praha 5, Zborovská

8.-9. Tomáš Muller, 2.r. G Ml. Boleslav, Palackého
Mikuláš Patočka, l.r. G Brno, tř. kpt. Jaroše

10. StanislavHencl, 4.r. G Pardubice, Dašická
11.-13. Jan Kratochvíl, l.r. G Praha 8, U libeňského zámku

Martin Mareš, 3.r. G Praha 8, U libeňského zámku
Jiří Valášek, 4.r. G Jablonec n. N., U balvanu

14. Pavel Machek, 3.r. G Praha 5, Zborovská

25 b.

24 b.

23 b.

23b.
22 b.

21b.

21b.

21b.

20 b.
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Výsledky celostátního kola 44. ročníku MO
kategorie A

Vítězové

1. Robert Šámal, 4.r. G Praha 5, Zborovská
2. David Pavlica, 4.r. GMK Bílovec

3.-4. Filip Krška, 4.r. G Brno, lept. Jaroše
Libor Masíček, 4.r. G Brno, kpt. Jaroše

5. Karel Švadlenka, 4.r. G České Budějovice, Jírovcova
6. Tomáš Bárta, 3.r. G Praha 5, Zborovská
7. Robert Špalek, 3.r. G Brno, kpt. Jaroše
8. Martin Nečesal, 4.r. G Brno, kpt. Jaroše

9.-10. Petr Kaňovský, 4.r. G Brno, kpt. Jaroše
Dalibor Šmíd, 3.r. G Plzeň, Mikulášské nám.

11.-12. Michal Beneš, 3.r. G Praha 5, Zborovská
Michaela Prokešová, 4.r. G České Budějovice, Jírovcova

42 b.

40 b.

35 b.

35 b.

33 b.

31b.

29 b.

27b.

26 b.

26 b.

25 b.

25 b.

Další úspěšní řešitelé

13. Jan Vybíral, 2.r. GMK Bílovec
14.-17. Petr Pudlák, 2.r. G Praha 5, Zborovská

David Stanovský, 4.r. G Pardubice
Norbert Vaněk, 4.r. G Praha 5, Zborovská
Samuel Zajíček, 3.r. G Praha 10, Voděradská

18.-19. Milan Roupec, 4.r. G Brno, kpt. Jaroše
Petr Vodstrčil, 3.r. G Polička

20. Michal Fabinger, 4.r. G Praha 6, Nad alejí
21. Petr Marik, 4.r. G Plzeň, Mikulášské nám.

22.-23. Hedvika Šimková, 4.r. G Plzeň, Mikulášské nám.
Petr Škovroň, 3.r. GMK Bílovec

23 b.

22 b.
22 b.

22 b.
22 b.

20 b.

20 b.

18b.

17b.

16b.

16b.
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Výsledky celostátního kola 44. ročníku MO
kategorie P

Vítězové

1. Martin Mareš, 4.r., G Praha 8, Libeň
2. Jiří Hájek, 4.r., G Praha 5, Zborovská
3. Daniel Král’, 3.r., G Zlín, Lesní čtvrť

4.-6. Martin Nečesal, 4.r., G Brno, tř. kpt. Jaroše
David Stanovský, 4.r., G Pardubice, Dašická
Robert Šámal, 4.r., G Praha 5, Zborovská

7. Robert Špalek, 3.r., G Brno, tř. kpt. Jaroše
8. Pavel Machek, 4.r., G Praha 5, Zborovská

49 b.

48 b.

44 b.

43 b.

43 b.

43 b.

42 b.

40 b.

Další úspěšní řešitelé

39 b.9. Mikuláš Patočka, 2.r., G Brno, tř. kpt. Jaroše
10.—11. Ondřej Chum, 4.r., G Praha 5, Zborovská

Jan Kratochvíl, 2.r., G Praha 8, Libeň
12. Stanislav Mikeš, 3.r., G České Budějovice, Jírovcova

13.-14. Tomáš Muller, 3.r., G Dr. J. Pekaře Ml. Boleslav
Ondřej Najdek, 3.r., G M. Koperníka Bílovec

15.-17. Petr Mařík, 4.r., G Plzeň, Mikulášské nám.
Petr Vilím, 2.r., G M. Koperníka Bílovec
Roman Ženka, 3.r., G České Budějovice, Jírovcova

38 b.

38 b.

33 b.

31b.

31b.

30 b.

30 b.

30 b.
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Výsledky celostátního kola 45. ročníku MO
kategorie A

Vítězové

1. David Opěla, 4.r. GMK Bílovec
2. Tomáš Bárta, 4.r. G Zborovská, Praha
3. Jan Spěvák, 3.r. G Hellichova, Praha
4. Michal Beneš, 4.r. G Zborovská, Praha

5.-6. Daniel Král’ 4.r. G Zlín

Robert Špalek, 4.r. G tř. Kpt. Jaroše, Brno
7.-9. Tomáš Brauner, 3.r. G Moravský Krumlov

Petr Vilím, 4.r. GMK Bílovec
Jan Vybíral, 3.r. GMK Bílovec

10.—11. Karel Výborný, 4.r. G Zborovská, Praha
Petr Vodstrčil, 4.r. G Polička

34 b.

32 b.

29 b.

28 b.

26 b.

26 b.

23 b.

23 b.

22 b.

21b.

21b.

Další úspěšní řešitelé

12.-13. Roman Ženka, 4.r. G Jírovcova, C. Budějovice
Pavel Strnad, 5.r. GFXŠ Liberec

14. Zbyněk Pawlas, 4.r. GMK Bílovec
15.-17. Petr Pudlák, 3.r. G Zborovská, Praha

Jana Flašková, 3.r. Svob. cheb. škola, Cheb
Petr Škovroň, 4.r. GMK Bílovec

18.-20. Jan Štola, 3.r. G Zborovská, Praha
Radek Pelánek, 2.r. G tř. Kpt. Jaroše, Brno
Jiří Benedikt, 4.r. G Mikulášské nám., Plzeň

21. Karel Zikmund, 4.r. G Jihlava

20 b.

20 b.

17b.

15b.

15b.

15b.

14 b.

14b.

14b.

13b.
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Výsledky celostátního kola 45. ročníku MO

kategorie P

Vítězové

1. Daniel Král’, 4 G Zlín
2. Stanislav Mikeš, 4 G Jírovcova, České Budějovice

3.-4. Michal Beneš, 4 G Zborovská, Praha
Tomáš Tichý, 4 G Dašická, Pardubice

5. Robert Špalek, 4 G tř. Kpt. Jaroše, Brno
6. Jan Vodička, 4 G Zborovská, Praha

7.-8. Tomáš Muller, 4 G J. Pekaře, Mladá Boleslav
Mikuláš Patočka, 3 G Kpt. Jaroše, Brno

48 b.

38 b.

37b.

37b.

35 b.

33 b.

32 b.

32 b.

Další úspěšní řešitelé

9. Pavel Jelínek, 4 G Mikulášské nám., Plzeň
10.-13. Vlastimil Janda, 5 G Humpolec

Věroslav Kaplan, 3 G tř. Kpt. Jaroše, Brno
Petr Vilím, 4 GMK Bílovec
Roman Ženka, 4 G Jírovcova, České Budějovice

14. Aleš Přívětivý, G Dašická, Pardubice
15.-16. Jan Březina, 3 G F. X. Šaldy, Liberec

Karel Zikmund, 4 G Jihlava

30 b.

29 b.

29 b.

29 b.

29 b.

28 b.

27b.

27b.
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Výsledky celostátního kola 46. ročníku MO
kategorie A

Vítězové

38 b.1. Petr Zima, 3 G nám. dr. E. Beneše, Kladno
2. Libor Bárto, 3 G Hellichova, Praha 1

3.-4. Jan Vybíral, 4C GMK 17. listopadu 526, Bílovec
Tomáš Brauner, 4B G Smetanova 168, Mor. Krumlov

5.-7. Pavel Podbrdský, ЗА G tř. Kpt. Jaroše, Brno
Martin Viščor, 2A G tř. Kpt. Jaroše, Brno
Jan Spěvák, 4A G Hellichova, Praha 1

8. Jan Šťovíček, 3 G nám. dr. E. Beneše, Kladno

33 b.

32 b.

32 b.

30 b.

30 b.

30 b.

29 b.

Další úspěšní řešitelé

26 b.9. Tomáš Hanzl, ЗА G tř. Kpt. Jaroše, Brno
10.-13. Radek Pelánek, ЗА G tř. Kpt. Jaroše, Brno

Jan Štola, 4D G Zborovská 45, Praha 5
Petr Šimeček, ЗА G tř. Kpt. Jaroše, Brno
Lukáš Vokřínek, 2A G tř. Kpt. Jaroše, Brno

14.-15. Jan Březina, 4 G FXŠ, Partyzánská 530/1, Liberec
Jana Flašková, 4 Svob. cheb. š., Kubelíkova 4, Cheb

16.-17. Aleš Benda, 4C GMK 17. listopadu 526, Bílovec
Roman Rožník, ЗА G tř. Kpt. Jaroše, Brno

18.-20. Eva Burešová, 2A G tř. Kpt. Jaroše, Brno
Libor Inovecký, 3 G Zborovská 45, Praha 5
Jiří Houška, VII G Mikulášské nám. 23, Plzeň

21.-23. Oldřich Stražovský, 4A G tř. Kpt. Jaroše, Brno
Aleš Návrat, 2A G tř. Kpt. Jaroše, Brno
Filip Matějka, 3 G Zborovská 45, Praha 5

25 b.

25 b.

25 b.

25 b.

24 b.

24 b.

23 b.

23 b.

22 b.

22b.
22 b.

21b.

21b.

21b.
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Výsledky celostátního kola 46. ročníku MO

kategorie P

Vítězové

1. Mikuláš Patočka, 4.A G tř. kpt. Jaroše 14, Brno
2. Jan Kratochvíl, 4.C G U libeňského zámku, Praha 8

3.-4. Filip Kábrt, 4.A G Litoměřická 720, Praha 9
Radek Pelánek, 3.A G tř. kpt. Jaroše 14, Brno

5. Aleš Přívětivý, 7.К G Dašická 1083, Pardubice
6. Jan Tauš, З.А I. G Mikulášské nám. 23, Plzeň

31b.

26 b.

25 b.

25 b.

23 b.

22 b.

Další úspěšní řešitelé

7.-11. Jan Březina, 4.D GFXŠ Partyzánská 530/3, Liberec 11
Vlastimil Janda, sexta G Komenského ul., Humpolec
Petr Chaloupka, 4.C G Zborovská 45, Praha 5
Petr Sedláček, 4.C G Husova 470, Benešov
Petr Šimeček, 3.A G tř. kpt. Jaroše 14, Brno

12.-13. Ladislav Kavan, 6.A G Ústavní 400, Praha 8
Vladimír Šišma, 3.r GMK, 17.listopadu 526, Bílovec

14.-16. Karel Carva, V7G Gymnázium, Tábor
Věroslav Kaplan, 4.A G tř. kpt. Jaroše 14, Brno
Jiří Šrain, septima G Vágnerovo nám. 458, Beroun

21b.

21b.

21b.

21b.

21b.

20 b.

20 b.

19b.

19b.

19b.
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Výsledky celostátního kola 47. ročníku MO

kategorie A

Vítězové

1.-3. Libor Bárto, 4. G Hellichova 3, Praha 1
Pavel Podbrdský, 4. M G tř. Kpt. Jaroše, Brno
Lukáš Vokřínek, 3. M G tř. Kpt. Jaroše, Brno

4.-5. Tomáš Hanzl, 4. M G tř. Kpt. Jaroše, Brno
Libor Inovecký, 4. M G Zborovská 45, Praha 5

6. Martin Viščor, 3. M G tř. Kpt. Jaroše, Brno
7. Martin Ondráček, VII. G, Kyjov

8.-9. Eva Burešová, 3. M G tř. Kpt. Jaroše, Brno
Zdeněk Dvořák, VI. G L. Čecha 152, Nové Město n. Mor.

10.—11. Petr Liška, 3. M G tř. Kpt. Jaroše, Brno
Jan Šťovíček, 4. G nám. dr. E. Beneše 1573, Kladno

42 b.

42 b.

42 b.

41b.

41b.

40 b.

37 b.

36 b.

36 b.

35 b.

35 b.

Další úspěšní řešitelé

34 b.12.-13. Radek Pelánek, 4. M G tř. Kpt. Jaroše, Brno
Petr Zima, 4. G nám. dr. E. Beneše 1573, Kladno

14. Petr Šimeček, 4. M G tř. Kpt. Jaroše, Brno
15.-16. Martina Kupčíkově, 3. M G tř. Kpt. Jaroše, Brno

Aleš Návrat, 3. M G tř. Kpt. Jaroše, Brno
17.-18. Jan Houštěk, 3. G Jirsíkova 244, Pelhřimov

Petr Laštovička, 4. G Komenského nám. 4, Děčín
19.-20. Filip Matějka, 4. M G Zborovská 45, Praha 5

Lenka Zdeborová, 3. G Mikulášské nám. 23, Plzeň
21.-22. Alexandr Jevsejenko, 3. M G tř. Kpt. Jaroše, Brno

Antonín Slavík, VII. G Národní 25, Karlovy Vary
23.-25. Jaroslav Jánský, 3. M G tř. Kpt. Jaroše, Brno

Tomáš Kubař, 4. G Pivovarská 323, Domažlice
Jan Petr, 4. M G Zborovská 45, Praha 5

34 b.

32 b.

31b.

31b.

30 b.

30 b.

29 b.
29 b.

26 b.

26 b.

25 b.

25 b.

25 b.
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Výsledky celostátního kola 47. ročníku MO
kategorie P

Vítězové

1. Zdeněk Dvořák, 6.A G Nové Město na Moravě
2. Pavel Nejedlý, 4.A G Vídeňská, Brno
3. Jan Kára, 4.C G U libeň. zámku, Praha 8
4. Michal Illich, septima G Buďánka, Praha 5
5. Radek Pelánek, 4.A G tř. Kpt. Jaroše, Brno
6. Petr Šimeček, 4.A G tř. Kpt. Jaroše, Brno

38 b.

37b.

36 b.

35 b.
31b.

30 b.

Další úspěšní řešitelé

7. Jaromír Malenko, 3.C G M. Koperníka, Bílovec
8. Jiří Benc, 3.C G M. Koperníka, Bílovec
9. Vlastimil Janda, 7.r. G Dr. A. Hrdličky, Humpolec

10.-11. Ladislav Kavan, 7.A G Ústavní, Praha 8
Antonín Slavík, 7.A G Národní, Karlovy Vary

12.-13. Lukáš Kroc, 4.C G Zborovská, Praha 5
Michal Šída, septima G Tanvald

27b.

26b.

25 b.

24 b.

24 b.

22 b.

22 b.
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Výsledky celostátního kola 48. ročníku MO

kategorie A

Vítězové

1. Jan Houštěk, 4. G Jirsíkova 244, Pelhřimov
2. Zdeněk Dvořák, VII G L. Čecha 152, Nové Město n. Mor.

3.-5. David Holec, 4. M G tř. Kpt. Jaroše, Brno
Pavel Moravec, 4. M G tř. Kpt. Jaroše, Brno
Lukáš Vokřínek, 4. M G tř. Kpt. Jaroše, Brno

6.-7. Aleš Návrat, 4. M G tř. Kpt. Jaroše, Brno
Martin Viščor, 4. M G tř. Kpt. Jaroše, Brno

8. Lenka Zdeborová, 4. G Mikulášské nám. 23, Plzeň
9. Luboš Dostál, VIII G a OA, Stříbro

10. Karel Kyrián, G Jírovcova 8, České Budějovice

41b.

40 b.

30 b.

30 b.

30 b.

29 b.

29 b.

26 b.

25 b.
24 b.

Další úspěšní řešitelé

11. Robert Káldy, 4. M G Zborovská 45, Praha 5
12. Karel Honzl, 4. G Komenského 843, Podbořany

13.-16. Jaroslav Hlinka, 4. M G Zborovská 45, Praha 5
Jaroslav Jánský, 4. M G tř. Kpt. Jaroše, Brno
František Němec, 2. M G Zborovská 45, Praha 5
Ondřej Rucký, VI-M G Mikulášské nám. 23, Plzeň

17.-19. Jaromír Dobrý, VI-M G Mikulášské nám. 23, Plzeň
Josef Křišťan, V M G Mikulášské nám. 23, Plzeň
Jakub Ráchá, VII G Komenského 549/550, Kyjov

20. Pavel Nejedlý, VII G Vídeňská 47, Brno
21. David Pelikán, 4. SPŠ Strojnická Klatovská 109
22. Jan Vršovský, VII G FXŠ, Partyzánská 530/3, Liberec

20 b.

19b.

17b.

17b.

17b.

17b.
14b.

14b.

14b.

13b.

12b.

11b.
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Výsledky celostátního kola 48. ročníku MO
kategorie P

Vítězové

1.-2. Zdeněk Dvořák, G V. Makovského, Nové Město na Mor.
Michal Illich, G Buďánka, Holečkova 31a, Praha 5

3. Josef Zlomek, Purkyňovo G, Strážnice
4. Jakub Bystrou, G Mírová 1442, Karviná 6

5.-6. Pavel Nejedlý, G Vídeňská 47, Brno
Petr Zika, G Voděradská 900/2, Praha 10

28 b.

28 b.

27b.

24 b.

22 b.

22 b.

Další úspěšní řešitelé

20 b.7.-9. Jiří Benc, G Mikuláše Koperníka, Bílovec
Pavel Charvát, G Obřadní 55, Praha 4
Stanislav Živný, G Ed. Beneše 449, Soběslav

10. Ondřej Nekola, G Žižkova 162, Kolín
11. Jiří Svoboda, G Ch. Dopplera, Praha 5
12. Ondřej Rucký, G Mikulášské nám. 23, Plzeň
13. Milan Roubal, G Mikulášské nám. 23, Plzeň

14.-16. Pavel Čížek, Dvořákovo G a OA, Kralupy nad Vit.
Michal Karásek, G Jírovcova 8, České Budějovice
Jan Vršovský, GFXŠ, Partyzánská, Liberec 11

20 b.

20 b.

19b.

18b.

16b.

15 b.

13b.

13 b.
13b.
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Výsledky celostátního kola 49. ročníku MO
kategorie A

Vítězové

1. Jan Houštěk, 7/7 G Jirsíkova 244, Pelhřimov
2. Jan Herman, 3/4 (M) G tř. Kpt. Jaroše 14, Brno
3. Jan Kynčl, 5/6 G Kostelní 259, Jilemnice
4. Jan Pipek, 7/8 G Parléřova 2/118, Praha 6

5.-6. Jaroslav Hájek, 2/4 G 17. listopadu 526, Bílovec
Ondřej Šerý, 7/8 G a sport. šk. Plzeňská 3103, Kladno

7. Ondřej Suchý, 6/7 G Mikulášské nám. 23, Plzeň
8.-10. Josef Křišťan, 6/7 G Mikulášské nám. 23, Plzeň

Ondřej Rucký, 7/7 G Mikulášské nám. 23, Plzeň
Rudolf Stolař, 3/4 (M) G tř. Kpt. Jaroše 14, Brno

11.-12. Jan Kulveit, 7/7 G Ústavní 400, Praha 8
Tomáš Protivínský, 2/4 (M) G tř. Kpt. Jaroše 14, Brno

40 b.

37b.

36 b.

32 b.

31b.

31b.

27b.

26 b.

26 b.

26 b.

25 b.

25 b.

Další úspěšní řešitelé

13. Martin Tancer, 2/4 (M) G Zborovská 45, Praha 5
14.-16. David Chodounský, 3/4 (M) G Zborovská 45, Praha 5

Filip Jaroš, 3/4 (M) G Zborovská 45, Praha 5
Jiří Koula, 3/4 (P) G U Libeňského zámku 1, Praha 8

17.-18. Tomáš Matoušek, 7/7 G Národní 25, Karlovy Vary
Pavel Vališ, 3/4 G Dvořákovo nám. 800, Kralupy

19.-20. Ondřej Bystrý, 4/4 (M) G tř. Kpt. Jaroše 14, Brno
Václav Flaška, 7/8 Svob. cheb. šk. Jánské nám. 15, Cheb

21. Jaromír Dobrý, 7/7 G Mikulášské nám. 23, Plzeň
22. Ondřej Kreml, 3/4 G 17. listopadu 526, Bílovec
23. Pavel Augustinský, 7/7 G Studentská 11, Havířov 2
24. František Němec, 3/4 (M) G Zborovská 45, Praha 5

23 b.

22 b.

22 b.

22 b.

21b.

21b.

20 b.

20 b.

19 b.

18 b.

17b.

16b.
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Výsledky celostátního kola 49. ročníku MO
kategorie P

Vítězové

1. Ondřej Ruchy, 7/7, G Mikulášské nám., Plzeň
2. Pavel Charvát, 7/7, G Ohradní, Praha 4
3. Jakub Bystrou, 7/7, G Karviná
4. Jzří Svoboda, 6/8, G Ch. Dopplera, Praha 5
5. Matyáš Novák, 7/7, G Ústavní, Praha 8
6. Páve/ Čížek, 5/8, Dvořákovo G, Kralupy nad Vltavou
7. Václav Jůza, 7/7, G Špitálská, Praha 9

41b.

39 b.

34 b.

33 b.

30 b.

29 b.

26 b.

Další úspěšní řešitelé

8. Miroslav Trmač, 7/8, Biskupské gymnázium, Brno
9. Roman Krejčík, 3/4, G Ch. Dopplera, Praha 5

10. Miroslav Pištěk, 7/7, GOA Sedlčany
11. Ondřej Šerý, 7/8, G a SG Plzeňská, Kladno
12. Martin Beránek, 6/7, G Ohradní, Praha 4
13. Ladislav Prošek, 7/7, G V. Hlavatého, Louny
14. Zdeněk Bulan, 6/7, G Benešov
15. Martin Vejnár, 3/8, G tř. Kpt. Jaroše, Brno

25 b.

24 b.

23 b.

22 b.

21b.

19 b.

18b.

17b.
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Účast na mezinárodních
olympiádách

ročníků 41 -50



 



33. mezinárodní matematická olympiáda
10.-21. července 1992

Moskva (Rusko)

pořadíúlohy 1. 2. 3. 4. 5. 6. body ceny

7 7 7 1 0 6 28 II 47.-50.Michal Kubeček

4. ročník G Praha, Korunní
Luboš Motl

4. ročník G Plzeň, Opavská
Martin Niepel’
2. ročník GAM Bratislava

Pavel Růžička

4. ročník G Brno, tř. kpt. Jaroše
Michal Stehlík

4. ročník G Brno, tř. kpt. Jaroše
Daniel Štefankovič
3. ročník GAM Bratislava

(322 studentů z 56 zemí)

5 2 1 7 0 6 21 III 93.-99.

7 3 1 5 0 6 22 III 86.-92.

5 0 1 2 7 4 19 III 108.-114.

7 3 7 2 7 5 31 II 27.-31.

156.-169.540004 13

ceny

ni bodyI II

Olr
USA

Rumunsko

SNS

Velká Británie
Rusko

Německo

Maďarsko

Japonsko
Vietnam

Francie

Jugoslávie
Československo

24061.

1813 32.

17722 23.

17634. 2

2 1682 25.

2 1582 26.

1494 27. 0

1423 118.-9.

1423 18.-9. 1

3 139210.-11.

10.-11.

1

1393 11

4 136212.

1342 313.
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34. mezinárodní matematická olympiáda
13.-24. července 1993,

Istanbul (Turecko)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Michal Brodský
4. ročník G Brno, tř. kpt. Jaroše
Marcela Hlawiczková

4. ročník G Třinec

Ondřej Klíma
4. ročník G Brno, tř. kpt. Jaroše
Vít Novák

4. ročník G Praha, Korunní
Jana Syrovátková
4. ročník G Brno, tř. kpt. Jaroše
Robert Šámal
2. ročník G Praha, Korunní
(412 studentů z 73 zemí)

2 2 1 7 4 3 19 III 102.-110.

1 7 0 0 7 0 15 III 143.-150.

1 0 4 7 1 4 17 III 122.-132.

7 0 4 5 3 6 25 II 52.-58.

7 2 7 4 7 5 32 I 19.-24.

7 2 0 7 5 3 II 59.-65.

ceny

i ii ni body

ČLR
Německo

Bulharsko

Rusko

Taiwan

Írán
USA

Maďarsko
Vietnam

Česká republika
Slovensko

1. 6 215

2. 4 2 189

3. 1782 4

4. 4 1771 1

5. 41 1 162

6. 2 3 1531

7. 2 2 2 151

8. 1433 1 2

9. 4 1381 1

10. 31 2 132

12. 1 3 1 126
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35. mezinárodní matematická olympiáda
8.-20. července 1994

Hongkong

1. 2. 3. 4. 5. 6. body ceny pořadíúlohy

Petr Kaňovský
3. ročník G Brno, tř. kpt. Jaroše

Filip Krška
3. ročník G Brno, tř. kpt. Jaroše
Jan Mach

4. ročník GMK Bílovec

Libor Masíček

3. ročník G Brno, tř. kpt. Jaroše
David Pavlica

3. ročník GMK Bílovec

Robert Šámal
3. ročník G Praha 5, Zborovská
(385 studentů z 69 zemí)

7 7 7 7 0 3 31 II 78.-87.

076230 18

075230 17

0 7 7 7 4 0 25 III 126.-131.

0 7 7 7 2 5 28 III 102.-113.

0 7 7 7 7 7 35 II 49.-57.

ceny

nii ii body

1. USA
2. ČLR
3. Rusko

4. Bulharsko

5. Maďarsko
6. Rumunsko

7. Vietnam

8. Velká Británie

9. Írán
10. Japonsko
21. Česká republika
22. Slovensko

2526

3 2293

2243 2 1

2233 2 1

2221 5

5 1 208

2071 5

22 2 206

2 2 2 203

2 3 1801

2 2 154

21 1 150
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36. mezinárodní matematická olympiáda
13.-25. července 1995

Toronto (Kanada)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Petr Kaňovský
4. ročník G Brno, tř. kpt. Jaroše

Filip Krška
4. ročník G Brno, tř. kpt. Jaroše
Libor Mašíček

4. ročník G Brno, tř. kpt. Jaroše
Martin Nečesal

4. ročník G Brno, tř. kpt. Jaroše
David Pavlica

4. ročník GMK Bílovec

Robert Šámal
4. ročník G Praha 5, Zborovská
(412 studentů z 73 zemí)

7 7 7 7 0 2 30 II 81.-88.

7 0 7 7 7 0 28 III 101.-112.

6 0 7 7 7 1 28 III 101.-112.

7 0 6 4 3 0 20 III 181.-190.

7 0 7 7 2 0 23 III 152.-160.

6 0 7 5 7 0 25 III 136.-146.

ceny

i и ni body

Clr
Rumunsko

Rusko

Vietnam

Maďarsko
Bulharsko

Korea

Írán
Japonsko
Velká Británie

Česká republika
Slovensko

1. 4 2 236

2. 4 2 230

3. 4 2 227
4. 2 4 220

5. 3 1 2

4 1

3 1

3 1

3 2

1 3

1 5

2 2

210

6. 1 207

7. 2 203

8. 2 202

9. 1 183

10. 2 180

17.-18. 154

21.-22. 145
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37. mezinárodní matematická olympiáda
5.-17. července 1996

Bombaj (Indie)

pořadíúlohy 1. 2. 3. 4. 5. 6. body ceny

Tomáš Bárta

4. ročník G Praha 5, Zborovská
Michal Beneš

4. ročník G Praha 5, Zborovská
Daniel Král’
4. ročník G Zlín

David Opěla
4. ročník GMK Bílovec

Jan Spěvák
3. ročník G Praha 5, Zborovská
Robert Špalek
4. ročník G Brno, tř. kpt. Jaroše
(426 studentů z 75 zemí)

7 1 6 0 0 7 21 II 81.-93.

7 1 6 0 0 7 21 II 81.-93.

236.-247.4 2 1 0 0 1 8

4 1 7 0 0 6 18 III 111.-120.

290.-324.2 1110 0 5

216.-226.105301 10

ceny

и ni bodyI

187Rumunsko

USA

Maďarsko
Rusko

Velká Británie

ČLR
Vietnam

Korea

Írán
Německo

Slovensko

Česká republika

4 21.

1854 22.

1673 2 13.

2 3 1 1624.

4 16125.

1606. 3 2 1

7. 1553 1 1

2 3 1518.

4 1439. 1 1

1373 1 110.

17.-18. 1 5 108

4 8328. 1
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38. mezinárodní matematická olympiáda
18.-31. července 1997

Mar del Plata (Argentina)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Libor Bárto

3. roč. G Praha 1, Hellichova
Pavel Podbrdský
3. roč. G Brno, tř. kpt. Jaroše
Jan Spěvák
4. roč. G Praha 1, Hellichova
Lukáš Vokřínek

2. roč. G Brno, tř. kpt. Jaroše
Jan Vybíral
4. roč. GMK Bílovec

Petr Zima

3. roč. G Kladno

(460 studentů z 82 zemí)

5 7 7 7 4 0 30 II 60.-69.

7 7 7 7 7 0 35 I 32.-39.

1 1 0 3 4 0 9 299.-321.

4 0 0 7 7 0 18 III 177.-191.

7 7 0 6 7 0 27 II 86.-96.

1 7 1 7 4 0 20 III 155.-166.

ceny

i ii ni body

Čína
Maďarsko
Írán
Rusko

USA

Ukrajina
Bulharsko

Rumunsko

Austrálie

Vietnam

Česká republika
Slovensko

22361.

4 2192. 2

4 2173. 2

4.-5. 3 2 1 202

4 2024.-5. 2

1956. 3 3

1917.-8. 2 3 1

7.-8. 3 1 1912

1872 3 19.

183510. 1

1392 218. 1

2 96136.
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39. mezinárodní matematická olympiáda
10.-21. července 1998

Taipei (Tchaj-wan)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Libor Bárto

4. roč. G Praha 1, Hellichova
Tomáš Hanžl

4. roč. G Brno, tř. kpt. Jaroše
Pavel Podbrdský
4. roč. G Brno, tř. kpt. Jaroše
Jan Šťovíček
4. roč. G Kladno

Martin Viščor

3. roč. G Brno, tř. kpt. Jaroše
Lukáš Vokřínek

3. roč. G Brno, tř. kpt. Jaroše
(419 studentů z 76 zemí)

0 7 6 6 7 0 26 II 73.-85.

3 0 7 7 0 3 20 III 134.-144.

7 7 7 7 0 1 29 II 49.-57.

2 7 2 6 2 0 19 III 145.-157.

7 0 1 0 7 0 15 II 183.-193.

4 7 1 7 7 0 26 II 73.-85.

ceny

ni bodyI II

1. Írán
2. Bulharsko

3.-4. Maďarsko
USA

5. Tchaj-wan
6. Rusko

7. Indie
8. Ukrajina
9. Vietnam

10. Jugoslávie
15. Česká republika

33.-34. Slovensko

0 2115 1

3 0 1953

1864 2 0

1863 3 0

1842 13

1752 3 1

17403 3

2 1661 3

2 1581 3

0 1560 5

3 3 1350

4 880 1
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40. mezinárodní matematická olympiáda
10.-22. července 1999
Bukurešť (Rumunsko)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Luboš Dostál

8. roč. GOA Stříbro

Zdeněk Dvořák

7. roč. G Nové Město na Moravě

David Holec

4. roč. G Brno, tř. kpt. Jaroše
Pavel Moravec

4. roč. G Brno, tř. kpt. Jaroše
Martin Viščor

4. roč. G Brno, tř. kpt. Jaroše
Lukáš Vokřínek

4. roč. G Brno, tř. kpt. Jaroše
(450 studentů z 81 zemí)

1 1 2 4 0 1 9 270.-291.

300404 11 227.-247.

371.-393.10 12 10 5

2 0 1 3 0 0 6 343.-370.

710110 10 248.-269.

6 0 4 2 1 1 14 III 159.-177.

ceny

i и ni body

1.-2. CLR
Rusko

3. Vietnam

4. Rumunsko

5. Bulharsko

6. Bělorusko

7. Korea

8. Írán
9. Tchaj-wan

10. USA
21. Slovensko

49.-50. Česká republika

4 2 0 182

4 2 0 182

1773 3 0

1733 3 0

3 3 1700

1673 3 0

3 3 o 164

2 4 0 159

1 5 0 153

2 3 1501

880 2 3

0 0 1 55
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41. mezinárodní matematická olympiáda
13.-25. července 2000

Taejon (Jižní Korea)

úlohy 1. 2. 3. 4. 5. 6. body ceny pořadí

Jaroslav Hájek
2. roč. GMK Bílovec

Jan Herman

3. roč. G Brno, tř. kpt. Jaroše
Jan Houštěk

7. roč. G Pelhřimov

Jan Kynčl
5. roč. G Jilemnice

Rudolf Stolař

3. roč. G Brno, tř. kpt. Jaroše

Ondřej Suchý
6. roč. G Plzeň, Mikulášské nám.
(462 studentů z 82 zemí)

0 0 0 2 0 0 2 395.-416.

7 2 0 2 0 0 11 III 205.-213.

7 2 1 7 4 0 21 II 100.-110.

7 1 4 2 0 2 16 III 139.-149.

0 1 0 3 0 0 4 351.-368.

7 0 0 2 0 2 11 III 205.-213.

ceny

o ni bodyI

1. ČLR
2. Rusko

3. USA
4. Korea

5.-6. Bulharsko

Vietnam

7. Bělorusko

8. Tchaj-wan
9. Maďarsko

10. Írán
18.-19. Slovensko

42. Česká republika

0 0 2186

1 0 2155

1842 4 0

1723 3 0

2 3 1 169

3 2 1 169

2 2 2 165

3 1642 1

0 1561 5

41 1 155

0 2 3 111

0 1 3 65
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Výsledky našich studentů
na mezinárodních programátorských olympiádách

Uvádíme výsledky od roku 1993, neboť od tohoto ročníku se mezinárodních olym-
piád účastnilo samostatné družstvo České republiky (do té doby bylo společné
československé družstvo). V roce 1993 se konal 5. ročník Mezinárodní olympiády
v informatice, zatímco Středoevropská olympiáda v informatice vznikla až v roce
1994. V obou soutěžích se účastní vždy čtyři soutěžící z každé země. U každého
soutěžícího uvádíme pořadí a případnou medaili, kterou získal. Počet udělených
medailí závisí na počtu zúčastněných. Některou z medailí získá vždy první polovina
soutěžících v celkovém pořadí, přičemž zlaté, stříbrné a bronzové medaile se roz-

dělují v poměru 1:2:3. Počet bodů jednotlivých studentů v soutěži neuvádíme,
neboť v různých ročnících olympiád byl maximální dosažitelný bodový zisk různý.
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Mezinárodní olympiáda v informatice
(101 — International Olympiad in Informatics)

1993 - Argentina, Mendoza
Martin Mareš

Vít Novák

Jan Syrovátková
Jiří Vaniček

zlatá medaile

stříbrná medaile

stříbrná medaile

1.

15.

31.

137.

1994 - Švédsko, Haninge
Martin Mareš

Robert Špalek
Daniel Škarda
Petr Novák

zlatá medaile

stříbrná medaile

stříbrná medaile

bronzová medaile

6.

25.

44.

73.

1995 - Holandsko, Eindhoven
Jiří Hájek
Martin Mareš

Robert Špalek
Pavel Machek

zlatá medaile

zlatá medaile
zlatá medaile

zlatá medaile

6.

7.

16.

18.

1996 - Maďarsko, Veszprém
Daniel Král’
Tomáš Tichý
Stanislav Mikeš

Robert Špalek

1. zlatá medaile

71. bronzová medaile

84. bronzová medaile

95. bronzová medaile

1997 - Jihoafrická republika, Kapské Město
Mikuláš Patočka 19. zlatá medaile

60. bronzová medaile

69. bronzová medaile

90. bronzová medaile

Filip Kábrt
Jan Kratochvíl

Aleš Přívětivý
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1998 - Portugalsko, Setúbal
Michal Illich
Zdeněk Dvořák

Jan Kára

Pavel Nejedlý

stříbrná medaile

bronzová medaile

bronzová medaile

bronzová medaile

Pozn.: na základě dosažených výsledků byly uděleny medaile, pořadí jednotlivých
soutěžících nebylo pořadateli vydáno.

1999 - Turecko, Antalya
Zdeněk Dvořák

Pavel Nejedlý
Michal Illich

Josef Zlomek

zlatá medaile

bronzová medaile

bronzová medaile

bronzová medaile

10.

81.

86.

93.

2000 - Čína, Peking
Pavel Charvát

Jakub Bystroň
Jiří Svoboda

Ondřej Rucký

bronzová medaile

bronzová medaile

bronzová medaile

79.

102.

108.
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Středoevropská olympiáda v informatice
(CEOI — Central European Olympiad in Informatics)

1994 - Rumunsko, Cluj
Jiří Hájek
David Stanovský 18.
Jan Kratochvíl

Petr Kaňovský

zlatá medaile

bronzová medaile

2.

19.

28.

1995 - Maďarsko, Szeged
Daniel Král’
Mikuláš Patočka

Jan Kratochvíl

Stanislav Mikeš

zlatá medaile

stříbrná medaile

stříbrná medaile

2.

5.

7.

26.

1996 - Slovensko, Bratislava
Věroslav Kaplan 17.
Mikuláš Patočka 20.

Jan Kratochvíl

Martin Dráb

21.

25.

1997 - Polsko, Nowy Sacz
Pozn.: naše účast byla zrušena z důvodu katastrofických záplav na našem i polském
území a přerušení vlakového spojení.

1998 - Chorvatsko, Zadar
Zdeněk Dvořák

Jiří Benc

Pavel Nejedlý
Jaromír Malenko 37.

25.

30.

33.
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1999 - Česká republika, Brno
Pavel Charvát
Pavel Nejedlý
Jakub Bystroň
Zdeněk Dvořák

Jiří Svoboda
Josef Zlomek

Michal Illich

Ondřej Rucký

stříbrná medaile

stříbrná medaile

bronzová medaile

bronzová medaile

bronzová medaile

8.

10.

14.

17.

18.

26.

28.

37.

Pozn.: jako pořadatelská země jsme do soutěže vyslali dvě soutěžní družstva.

2000 - Rumunsko, Cluj
Miroslav Trmač

Roman Krejčík
Pavel Čížek
Martin Beránek

20.

23.

26.

31.
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