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9
PREDMLUVA

Ve sbirce jsou vyreSeny vSechny uilohy zadané v dosavadnich 25 mezindrod-
nich matematickych olympiddach. Tato soutéZ je uréena pro stredoskoldky
a ucastnické stdty na ni vétSinou vysilaji ty, kteri vynikli v ndrodnich matema-
tickych olympidddch. Kond se o letnich prdzdnindch a v jejim pofdddni se
Jednotlivé staty stFidaji. Pri jubilejni 25. MMO v Praze r. 1984 soutézilo 192
sakit z 34 zemi. Ulastnické stdty zasilaji pofadateliim ndvrhy tiloh, pofac/atelé
z nich pFipravi $irsi vybeér, z kterého pak vychdzi jury pfi uréovani soutéEniho
souboru. Dbd se piitom, aby ullohy byly puvodni, aby tematicky neprekratovaly
rdmec stiedni Skoly Zddného ziiéastméného statu a aby jejich obtiZnost na jedné
strané umoznila rozlisit uroveri ucastniki a na druhé strané odpovidala Casu
vymezenému na jejich feSeni. Soutézi se dva dny, kazdy den jsou zaddny zpra-
vidla t¥i villohy, na jejichZ FeSeni maji Zdci ¢tyFi a pal hodiny.

Pro Ctendfe je uziteCnéfsi, vyFeSi-li vilohu nejprve sam a teprve potom si své
FeSeni porovnd s FeSenim v knize. Proto jsme shrnuli texty vSech uiloh na za-
catek knizky a teprve pak uvadime jejich feSeni. Ta jsme se snazili sepsat co
nejprehlednéji tak, aby z nich vynikla mySlenka, na niz jsou zaloZena, nad
technickymi detaily. Zvlasté v geometrickych uilohdch jsme dbali o ndzornost,
takze jsme obcas dali prednost vystiznému obrdzku pred zdlouhavymi vy-
klady.

Doufdame, Ze sbirka poslouzi uéastnikim nasi matematické olympidcdy,
ucitelim matematiky a vedoucim matematickych krouzkii a Ze potési viechny
milovniky matematiky, ktefi rddi lusti vilohy.

Autofi
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1. MMO 1959

1. Dokaite, Ze zlomek
21n + 4
14n + 3

nelze zkré’it pro zadné prirozené Cislo n.

2. Zjistéte, pro kterd redind Cisla x plati

3. Predpokladejme, Ze Cislo cos x vyhovuje rovnici
acos?2x -+ bcosx+ ¢c=0,

kde a, b, ¢ jsou dand realna &isla. Napiste kvadratickou rovnici, kterou
spliiuje Cislo cos 2x. Vysledek uZijte na pfipad a = 4, b = 2, ¢ = —1.

4. Sestrojte pravouhly trojuhelnik ABC, je-li ddna piepona ¢ = 4B,
pfiCemz velikost téZnice pfislusné k pfeponé je rovna geometrickému pri-
méru obou odvésen.

5. V roviné je ddna useCka AB a uvnitf ni bod M. Nad tseC¢kami AM,
BM sestrojme dva ¢tverce AMCD, BMEF tak, aby leZely v téZe poloroviné
urdené piimkou 4 B. Témto Etverciim opisme kruZnice; ty se kromé& bodu M
protinaji jesté v dalsim bodé N.

a) Dokazte, Ze piimky AE, BC prochdzeji bodem N.

b) Dokazte, Ze pfimka MN prochdazi uréitym bodem nezavislym na volbé
bodu M.

¢) Urdete mnozinu vsech stfedii tGseéek, které spojuji sttedy obou uvaZo-
vanych ¢tvercti, probihd-li bod M vnitfek usecky 4B.
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6. Jsou dény dvé riiznobézné roviny =, o o pruseénici p. V roviné x je
ddn bod 4 a v roviné ¢ bod C, pfi¢emz zadny z bodd 4, C neleZi na pfimce
p- Sestrojte rovnoramenny lichobéznik ABCD, kde AB || CD, Be n, D € p,
jemuz lze vepsat kruZnici.

2. MMO 1960

7. Najdéte vSechna trojciferna &isla, jejichZ jedendctina je rovna soudtu
druhych mocnin jejich Cislic.

8. Urcete viechna redlna &isla x, pro kterd plati nerovnost
4x2

(1_V1+2x)2<2x—{—9.

9. Je dén pravouhly trojuhelnik ABC, jehoZ pfepona BC je rozdélena na n
shodnych usefek, kde n je liché &islo. Oznaéme o thel, pod kterym je
z bodu 4 vidét tu z usecek, kterd obsahuje stfed prepony daného trojuhel-
niku; déle ozname a velikost pfepony a 4 velikost pfislusné vysky daného
trojuhelniku. Dokazte, Ze

4nh

tga = ——‘(nz — 1)‘7
10. Sestrojte trojihelnik ABC, jsou-li dany velikosti vg, vy vySek piislus-
nych vrcholiim A4, B a velikost 7, téZnice pfislusné vrcholu 4.

11. Je déna krychle ABCDA'B'C'D’.

a) Uréete mnoZinu vSech stiedil useek XY, kde X je bod usecky ACa Y
je bod tse¢ky B'D'.

b) Urlete mnozinu vSech bodu Z, které lezi uvniti GseCek XY z tilohy a)
a pro néz plati |ZY| = 2|XZ|.

12. Je dén rotaéni kuZel, jemuZ je vepsdna kulova plocha tak, Ze se dotykd
podstavy kuZele. Této kulové plose je opsan rotadni valec, jehoZ jedna
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podstava lezi v roviné podstavy daného kuZele. OznaCme V1 objem kuZele,
V2 objem valce.

a) DokaZte, Ze neplati rovnost V1 = Va.

b) Urdete nejmensi &islo k, pro které mulZe nastat rovnost Vi =k Va;
pro tento pripad sestrojte thel, pod kterym je z vrcholu kuZele vidét pramér
podstavy kuzele.

13. Je dan rovnoramenny lichobé&inik se zakladnami a, ¢ a vyskou v.
Na ose soumérnosti tohoto lichob&Zniku sestrojte bod P tak, aby z n¢ho
byla vidét ob& ramena lichob&Zniku pod pravymi Ghly. Dale vypoctéte
vzdélenost bodu P od zdkladen lichob&Zniku. Rozhodnéte, za jakych pod-
minek bod P existuje.

3. MMO 1961

14. Reste soustavu rovnic

x+y+z=a,
x2 + y% + 22 = b2,
xy =z,

kde a, b jsou dana &isla. Udejte podminky, které musi &isla a, b splilovat,
aby feSeni x, y, z byla kladna a navzajem rGzna.

15. Oznaéme a, b, ¢ délky stran trojahelniku a S jeho obsah. DokaZte, Ze
a® -+ b + 22 43 8.

V kterém piipadé nastane rovnost?

16. Reste rovnici
cos?x —sin®x = 1,

kde n je dané pfirozené ¢&islo.
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17. Je dén trojihelnik P1P2P3 a uvnitf ného bod P. P¥imky PP, PoP,
P3P protinaji prot&si strany trojihelniku v bodech Q1, Q2, Q3. Dokaite,
Ze z Cisel

|P1P| |P2P| |P3P|
[PQ1|" |PQ2|” |PQs|

alespon jedno neni vétsi neZ 2 a alespon jedno neni mensi nez 2.

18. Sestrojte trojuhelnik ABC, je-li dano |AC|=b, |AB| = ¢ a thel
|% AMB| = o, kde M je stied useCky BC. Dokaizte, ze pro o << 90° ma
uloha feSeni, pravé kdyz plati

D)
btg7§c<b,

V kterém piipadé nastane rovnost?

19. Je ddna rovina ¢ a v jednom z poloprostor ji uréenych tfi body 4,
B, C, které nelezi v piimce. Pfitom rovina ABC neni rovnobéZna s rovinou
e. V roviné ¢ zvolme tfi libovolné body A’, B, C’. Oznaéme L, M, N stfedy
useCek AA’, BB, CC’; déle oznaéme G téZisté trojuihelniku LMN (nebudeme
uvazovat takové polohy bod A4’, B’, C’, pro které piislusné body L, M, N
netvofi vrcholy trojihelniku). Urcete mnoZinu vSech boddt G, probihaji-li
body A4', B, C’ rovinu e.

4. MMO 1962

20. Urcete nejmensi prirozené Cislo, které konéi v desitkové soustavé
Cislici 6, a presuneme-li ji na zacatek, dostaneme Ctyfndsobek hledaného
Cisla.

21. UrcCete vSechna realna Cisla x, kterda spliiuji nerovnost

1
V3——x—Vx+1>'5.
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22. Je dina krychle ABCDA'B'C'D'. Proménny bod X probihd stdlou
rychlosti obvod Ctverce ABCD (v tomto sméru), proménny bod Y probihd
toutéZ rychlosti obvod &tverce B'C'CB (v tomto sméru). Oba body X, YV
se zanou pohybovat soucasné¢ z vychozich poloh A4 a B’. Urlete mnoZinu
vSech stredt Z usecek X'Y.

23. Redte rovnici
cos2x - cos22x -+ cos?3x = 1.

24. Je dana kruznice k£ a na ni tfi rtzné body 4, B, C. Sestrojte na kruz-
nici £ bod D tak, aby vznikl étyfihelnik 4ABCD, jemuZ lze vepsat kruznici.

25. Je dan rovnoramenny trojuhelnik. KruZnice jemu opsanda ma polomér
R, kruznice vepsana ma polomér r. DokaZte, Ze vzdalenost d stfedii téchto
kruZnic je

J— VRER=2).

26. Ke Ctyfsténu A BCD existuje pét kulovych ploch, z nichz kazda se do-
tyka Sesti ptimek AB, BC, CA, AD, BD, CD, pravé kdyz je to pravidelny
Ctyfstén. Dokazte.

5. MMO 1963

27. Najdéte vSechny realné kofeny rovnice
Ve 2 =1 =,
kde p je redlny parametr.
28. Je dan bod A a use¢ka BC. Urlete mnoZinu vSech bodil v prostoru,

které jsou vrcholy pravych whld, jejichZ jedno rameno prochdzi bodem A
a druhé rameno ma s iseCkou BC spoleény aspoii jeden bod.
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29. Pfedpokladejme, Ze viechny vnitini Ghly konvexniho n-tthelniku jsou
shodné a jeho po sobé nasledujici strany maji délky

aa=a2= ... = ay.

Pak je a1 = a2 = ... = a,. DokaZte.

30. Urcete vSechna feSeni x1, X2, X3, X4, X5 soustavy rovnic

X5 -+ X2 = yxi,
X1 -+ X3 = yxo,
X2 -+ x4 = yxs,
X3 + X5 = yXa,
X4 -+ X1 = yXxs,

kde y je parametr.

31. Dokazte, Ze plati

b1 27 3r 1
cos7—cos 7—|—cos7 = 5

32. SoutéZe se zucastnilo pét zakh A, B, C, D, E. Predpovéd, Ze vysledné
umisténi bude ABCDE, se nesplnila: Zaddny soutézici nebyl na predpovéze-
ném misté a zadna dvojice bezprostiedné za sebou nasledujicich soutézicich
nebyla predpovézena spravné. Predpovéd DAECB byla spravnéjsi: pravé
dva soutézici byli na pfedpovézenych mistech a pravé dvé dvojice bez-

prostiedné za sebou nésledujicich soutézicich byly pfedpovézeny spravné.
Urcete vysledné umisténi.

6. MMO 1964

33. a) Urdete vSechna prirozena ¢isla n, pro ktera je Cislo 27 — 1 délitelné
sedmi.

b) DokaZte, Ze neexistuje Zadné ptirozené Cislo n, pro které je Cislo 27 +- 1
délitelné sedmi.
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34. Jsou-li a, b, ¢ délky stran trojihelniku, potom plati
a(b + ¢c—a) - b%c -+ a—b) + c¥a -+ b—c) £ 3abe.
Dokazte.

35. Do trojihelniku ABC se stranami a, b, ¢ vepiSme kruZnici a sestrojme
k ni dalsi tfi teCny rovnobézné se stranami daného trojuhelniku. Kazda
z téchto teCen utind z trojihelniku A BC po jednom trojihelniku. Do kaZzdého
z téchto tii trojuhelnikii vepiSme kruznici. Vypoctéte soucet obsahli vSech
Styt vepsanych kruhi.

36. Sedmndct osob si navzajem dopisuje, kazda z nich se vSemi ostatnimi.
V celé korespondenci se vyskytuji jen tfi riiznd témata. Kazdd dvojice osob
si dopisuje jen o jednom z téchto témat. Dokazte, Ze existuji alesponi tfi
osoby, které si dopisuji na totéz téma.

37. V roviné je dano pét bodu. Mezi ptimkami, které spojuji vzdy dva
z téchto bodu, nejsou zadné dvé navzajem rovnobézné nebo kolmé. Kazdym
z danych bodti vedme kolmice ke vSem spojnicim zbyvajicich ¢tyf bodu.
Dokazte, ze tyto kolmice se protinaji nanejvys v 315 bodech.

Vvew

ABC. Rovnobézky s pfimkou DD; vedené body A, B, C protinaji roviny
BCD, CAD, ABD v bodech A1, Bi, Ci.

a) DokaZte, Ze objem &étyisténu ABCD je roven tietiné objemu &tyisténu
A1B1C1D;.

b) Plati tento vysledek i v pfipadé, kdy Di je libovolny bod uvnitf troj-
thelniku ABC?

7. MMO 1965

39. Urcete viechna Cisla x z intervalu <0, 2x), kterd vyhovuji nerovnicim
2 cos x < |1 + sin 2x — |/1 —sin 2x| < V2—




40. Je dana soustava rovnic

ai1x1 + aiexa + aisxs = 0,
a21x1 + azexz 4 as3xz = 0,
a31x1 -+ asexz + assxz = 0

s nezndmymi x1, x2, x3. Jeji koeficienty a1, as2, @33 jsou kladné, viechny
ostatni koeficienty jsou zdporné a v kazdé z danych rovnic je soudet viech
tii koeficient@t kladny. DokaZte, Ze soustava md jediné fefeni x1 = xg =
= X3 = 0.

41. Je dan Ctyfstén ABCD, jehoz hrany AB, CD maji délky a, b. Vzdale-
nost mimob&Zek 4B, CD je d, jejich odchylka je . Ctyistén ABCD je
rozdélen rovinou & rovnobéznou s pfimkami AB, CD; pomér vzddlenosti
roviny ¢ od ptimky AB a od pfimky CD je roven k. Vypoététe pomér obje-
mu vzniklych téles.

42. Najdéte vSechny Ctvefice redlnych Cisel x1, x2, x3, x4, pro néz plati,
Ze soucet kazdého z téchto ¢isel se soudinem tii zbyvajicich je roven dvéma.

43. Je dan trojihelnik OAB s ostrym thlem pii vrcholu O. Bodem M =+~ O
trojihelniku OA4B vedme kolmice k pfimkdm OA, OB a jejich paty oznacme
P, Q; pruseéik vysek trojuhelniku OPQ ozna¢me H. Uréete mnoZinu vsech
bodl H, probiha-li bod M

a) stranu AB,

b) vnitfek trojuhelniku OA4B.

44. V rovin€ je ddana mnozZina n bodl (n = 3), pfiCemz kazdé dva jsou
spojeny tseckou. Oznalme d délku nejdelsi z téchto usecek. Primérem dané
mnoziny nazveme kaZdou z uvazovanych usefek, kterda ma délku d. Do-
kazte, Ze dand mnoZina ma nejvyse # pruméra.
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8. MMO 1966

45. V matematické soutéZi byly dany tfi tlohy A, B, C. Mezi UCastniky
bylo 25 zakd, z nichz kazdy vyfesil aspoii jednu tlohu. Ze vSech tcastniki,
ktefi nevyfesili tlohu 4, byl pocet téch, ktefi vytesili Glohu B, dvojndsobkem
poctu téch, ktefi vyfesili tilohu C. Pocet zak, ktefi vyfesili jen ulohu 4,
byl o 1 v&tsi neZ polet ostatnich zak, ktefi vyrfesili ulohu A. Ze vSech zaku,
ktefi vyfesili jedinou tulohu, pravé polovina nevyfeSila ulohu 4. Kolik
zakl vytesilo jen ilohu B?

46. Ozna¢me a, b, ¢ délky stran trojuhelniku a o, f, p velikosti protéjSich
Ghln. Plati-li

Y
atb=1tg (atga+btgh),

pak je trojuhelnik rovnoramenny. DokaZte.

47. Soulet vzdalenosti vrcholt pravidelného &tyfsténu od stiedu kulové
plochy jemu opsané je mensi neZ soulet vzddlenosti téchto vrcholi od
kteréhokoli jiného bodu prostoru. Dokazte.

48. Dokazte, 7e pro kazdé pfirozené Cislo n a pro kazdé redlné cislo

™
X Zﬁ’ kde ke {0, 1, ..., n} a A je celé, plati
1 1 1 5
S _— — n
sin 2x a sin 4x T eas o sin 2%x ERLE & —COIE &'

49, Reste soustavu rovnic

lai — as|x2 + |ay — as|x3 + a1 — aqlxs =1,

lay — as|x1 + laz — as|x3 + |lag — aalxa =1,
lai — aslx1 + |az — ag|xz + lag —aalxs =1,
la1 — aalx1 -+ |az — aaslx2 + |az — aalxs =1,

kde a1, as, as, as jsou Ctyfi dand navzajem riznd redlnd Cisla.
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50. Uvnitt stran AB, BC, CA trojihelniku ABC zvolme body X, L, M.
Dokazte, Ze obsah asponn jednoho z trojuhelnikit MAK, KBL, LCM jec
mensi nebo rovny ¢tvrtin€ obsahu trojihelniku 4 BC.

9. MMO 1967

51. Pfedpokladejme, Ze strany rovnobézniku ABCD maji velikosti
|AB| = a, |AD| = 1, thel DAB ma velikost o a trojihelnik ABD je ostro-
uhly. Pak jednotkové kruhy se stfedy A, B, C, D pokryvaji rovnobéZnik
ABCD, pravé kdyz

a = cos « + |/3 sin a.
Dokazte.

52. Mé-li jedind hrana Ctyfsténu délku vétsi nez 1, pak je jeho objem ncj-

vyse roven R Dokazte.
53. Budte k, m, n ptirozena Cisla takova, Zze m - k |- 1 je prvocislo vétsi
nez n -+ 1. Ozna¢me ¢s = s(s -+ 1). Pak soucin
(Cm+ 11— Clc) (Cm+2 - Clc) e (('mm - Ck)

je delitelny soucCinem cics. . .cu. DokaZte.

54. Jsou dany dva ostrouhlé trojtihelniky A9BoCo a A1B1Cy. Uvazujme
trojuhelniky ABC podobné trojihelniku 41B:1C1 a opsané trojihelniku
AoBoCy tak, ze body Co, Ao, Bo lezi na stranach 4B, BC, CA. Sestrojtc
trojihelnik, ktery ma ze vSech takovychto trojihelniki 4BC nejvEétsi obsah.

55. Je ddna posloupnost
c1=ay+az - ... 4 as,

ce=da +a + ...+ a,

en=2a,+ a5+ ...+ ag



kde a1, as, ..., ag jsou redlnd ¢isla ne vSechna rovna nule. Pfedpokladejme,
7e nekonednd mnoho &lent posloupnosti {c,} je rovno nule. Urcete viechna
pfirozena Cisla n, pro kterd je ¢p = 0.

56. Pii sportovni soutézi bylo rozdéleno v n po sobé jdoucich dnech
(n > 1) celkem m medaili. Prvniho dne byla udélena 1 medaile a sedmina ze
zbyvajicich m — 1 medaili. Druhého dne byly udéleny 2 medaile a sedmina
ze zbyvajicich, atd. Posledniho dne bylo udéleno poslednich n medaili.
Kolik dni trvala soutéz a kolik medaili bylo celkem rozdéleno?

10. MMO 1968

57. Dokazte, 7e existuje jediny trojuhelnik, jehoZ strany jsou tfi po sobé
jdouci pfirozena ¢isla a jehoZ jeden thel je dvojnasobkem druhého.

58. Najdéte vSechna ptirozena Cisla x takova, Ze souéin &islic v jejich
dekadickém zépisu je roven x2 — 10x — 22.

59. Je dana soustava rovnic s neznamymi X1, X2, ..., Xn

ax? +bx1  + ¢ = xs,
axs +bxs + ¢ = xs,

ax,z,_] -+ bxn-1 + ¢ = xa,
ax2 + bx, + ¢ = x1,
kde a, b, ¢ jsou realna Cisla, a 7= 0. Dokazte, Ze tato soustava
a) nema zadné redlné feSeni, jestlize (b — 1)2 — dac < 0;
b) ma pravé jedno realné feseni, jestlize (b — 1)2 — 4dac = 0;

¢) ma vice neZ jedno redlné feSeni, jestlize (b — 1)2 — 4ac > 0.

60. Dokazte, Ze v kazdém Ctyfsténu existuje takovy vrchol, Ze z tseCek
shodnych s hranami, kter¢ z ného vychazeji, lze sestrojit trojuhelnik.
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61. Je dano kladné &islo a a redlnd funkce f definovand pro vSechna redlnd
Cisla. Predpoklddejme, Ze pro kazdé x plati

1 =
fx+a) ==+ J7x) — (f(x))2.

a) Dokazte, Ze funkce f je periodickd (tj. existuje kladné &islo b takové,
Ze f(x + b) = f(x) pro vSechna Xx).

b) Udejte pro a = 1 pfiklad nekonstantni funkce f s uvedenymi vlast-
nostmi.

62. Pro kazdé prirozené Cislo n vypoctéte soudet

w0
n - 2%
" 2K+l |
k=0 .
kde [x] znaci celou &ast Cisla x.

11. MMO 1969

63. DokaZte, Ze existuje nekoneéné mnoho prirozenych ¢isel a takovych,
ze Cislo nt + a je sloZené pro kazdé pfirozené n.

64. Jsou dana realna &isla ay, as, ..., ay. Uvazujme funkci

1 1 ,
S(x) = cos (a1 - x) + 5 cos (@z+x)-+ ...+ Juo1 €os (an + x).

X2 — X1
Je-li f(x1) = f(x2) = 0, pak je — cel¢ cislo. Dokazte.

65. Pro kazdé ¢islo k € {1, 2, 3, 4, 5} feSte ulohu: Urcete nutné a posta-
Sujici podminky pro kladné &islo a, aby existoval Ctyfstén, jehoZ k hran
ma délku @ a ostatnich 6 — k& hran ma délku 1.
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66. Je dan pravouthly trojihelnik ABC s pfeponou AB a opsanou kruz-
nici k. Ozna¢me D patu vysky vedené z vrcholu C na pfeponu, k1 kruznici
vepsanou trojihelniku ABC, ks, k3 dvé navzdjem rizné kruznice, z nichz
kazda se dotyka pfimek 4B, CD, lezi v poloroviné ABC a dotyka se zevnitf
kruzZnice k. DokaZte, Ze kruzZnice k1, ko, k3 maji kromé pfimky 4B jeste
dalsi spolecnou teénu.

67. V rovin¢ je dano n bodi (n > 4), z nichZ zadné tii neleZi v piimce.
1
Potom existuje aspoil ?(n — 3) (n — 4) riiznych konvexnich étyfuhelniki
sc viemi vrcholy v danych bodech. Dokazte.
68. Jsou-li x1, y1, z1, X9, yo, z2 redlnd Cisla, pro néZ plati x; > 0, x2 > 0,
xX1y1 — 21> 0, X2y — z5 > 0, potom je

8 1 1

: , < S )
(x1 -+ x2) (1 + y2) — (21 + z2)%2 = x1y1 — 2z} { X2y — Z3

Dokazte a zjistéte, kdy nastane rovnost.

12. MMO 1970

69. Uvniti strany 4B trojahelniku ABC je dan bod M. Oznacme ry, ro, r
poloméry kruZnic vepsanych trojihelnikim ACM, BCM, ABC. Oznaime
dédle p1, 02, ¢ poloméry kruznic, které jsou pripsany tymZ trojuhelnikiim
a lezi v thlu ACB. Dokazte, Ze plati

rirg r

ez @’

70. Budte a, b, n ptirozena Cisla vetsi nez 1 a nechf Cisla A,, B, maji
totéZ vyjadfeni xuxnp-1...x1X0 Vv Ciselnych soustavich o zakladech a, b,
priemZ xp-1 # 0, x, 7 0. Cisla, kterd dostaneme z A, By vynechanim
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Cislice xp, oznaéme Ap-1, By—1. DokaZte, Ze je a > b, pravé kdyz

71. Kazdé posloupnosti {ay}’, kde
l=aw=<arZa: = ..., Q)

piitadme posloupnost {b,};° definovanou vzorcem
n
ap-1 1
n = 1 —_— ";z— —
*
b1 Jar
DokaZte:
a) Pro vsechna pfirozena &isla n plati
0= by, < 2.

b) Pro kazd¢ Cislo ¢ € <0,2) existuje takova posloupnost {@,} spliiujici (1),
Ze v odpovidajici posloupnosti {b,} je bs > ¢ pro nekonetné mnoho
indexii 7.

72. UrcCete vSechna piirozena Cisla n s touto vlastnosti: MnoZinu
{n,n+1,n+2,n+3,n-4,n 4 5} 1ze rozdélit na dvé& disjunktni podmno-
Ziny tak, Ze soucin vSech prvki jedné podmnoziny je roven souinu vSech
prvka druhé podmnoZiny.

73. Predpokladejme, Ze pata E vysky DE &tyfsténu ABCD je zéroven
pruse¢ikem vysck trojihelniku ABC a Ze BD | CD. Dokazte, Ze potom
plati

(I4B] + |BC| 4 |CA])* = 6 (|4D|? + |BD|2 + |CDI?).

Urcete, pro které z uvazovanych ¢&tyfsténii zde nastane rovnost.
74. V roving je dano 100 bodii, z nichZ Zadné tfi nelezi v pfimce. Uva-

Zujme viechny trojuhelniky, jejichz kazdy vrchol je néktery z danych bodii.
Dokazte, Ze nejvyse 70 9 téchto trojihelnikl jsou trojuhelniky ostrouhlé.
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13. MMO 1971

75. Dokazte, Ze nasledujici tvrzeni plati pro n =3 a n =5 a neplati
pro zadné jiné pfirozené cislo n > 2:
Jsou-li ai, as, ..., a, realna Cisla, pak
(a1 —a2) (@1 —ay) ... (a1 —ay) + (a2 —ay) (az —ay) ... (a2 — ay) +
+ oo (an—ay) (an —az) ... (an — an-1) = 0.

76. Je dan konvexni mnohostén Py, ktery ma pravé devét vrcholt 41,
Az, ..., Ag. Proie{l, 2, ..., 9} oznaéme P; mnohostén, ktery vznikne
z P1 rovnob&Znym posunutim, pii némz bod 4, piejde do bodu 4;. DokaZte,
7e aspon dva z mnohosténli P1, Ps, ..., Py maji spoleCny vnitini bod.

77. Dokazte, Ze posloupnost {2 — 3} obsahuje nekone¢né mnoho Cisel,
z nichZ kazda dvé jsou nesoudélnd.

78, Predpoklidejme, Zc vSechny stény Clyfsténu ABCD jsou ostrouhlé
trojuhelniky. Uvazujme vSechny uzaviené lomené cary XYZTX, kde
X, Y, Z, T jsou vnitini body hran 4B, BC, CD, DA. Dokaite:

a) Je-li | X DAB| + | % BCD| # | X ABC| -+ | ¥ CDA|,
potom mezi témito lomenymi Carami neexistuje nejkratsi.

b) Jeli | X DAB| + | ¥ BCD| = | X ABC| -+ | £ CDA|,
potom existuje nekoneéné¢ mnoho lomenych Car minimalni délky a tato

o
dé¢lka je rovna 2]AC| sin o> kde & = | BAC| + | < CAD| + |- DAB|.

79. Dokazte, Ze pro kazdé prirozené Cislo m existuje neprazdnd konecnd
mnoZzina S bodl v roviné takova, Ze ke kazdému bodu 4 €S existuje v S
pravé m bodua, jejichZ vzdalenost od A4 se rovnd jedné.

80. Uvazujme ¢tvercovou tabulku
airdiz ... dip
a1 dazz ... day

Ayl dn2 ... Aoy
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sestavenou z nezapornych celych ¢isel a vyhovujici nasledujici podmince:
jestlize a;; = 0, potom plati nerovnost

apn+ @izt ...+ G aytay + ... A ag = n.

1
Dokazte, Ze pro soucet s viech Cisel tabulky plati s = 5 n2.

14. MMO 1972

81. Dokazte, Ze libovolnd mnoZina deseti dvojcifernych pfirozenych ¢&isel
m4 dv& neprdzdné disjunktni podmnoZiny takové, Ze soudty jejich prvki
jsou stejué.

82. Dokazte, Ze pro n = 4 lze kazdy tétivovy Etyfuhelnik rozdélit na n
tétivovych Ctyftihelnik.

83. Pro kazda dvé cela nezaporna Cisla m, n je
(2m)! (2n)!
m! n! (m -+ n)!

celé ¢islo. Dokazte.

84. Najdéte vSechny pétice x1, x3, X3, ¥a, x5 kladnych realnych disel,
pro néz plati
(¥} — x3x5) (x3 — x3%5) £ 0,
(x5 — xax1) (x5 — xax1) £ 0,
(x5 — x5x2) (x — x5x2) < 0,
(x§ — x1x3) (x7 — x1x3) £ 0,
(x7 — x2x4) (x] — x2x4) £ 0.

85, Nechf f a g jsou redlné funkce takové, Ze pro viechna redalna x a y
plati

S+ ) H =) = 2f(x)e).
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Dokazte: JestliZe f neni identicky rovna nule a jestlize | f(x)| < 1 pro vSech-
na x, potom také |g(x)| < 1 pro vSechna x.

86. Jsou dany Ctyfi navzdjem rizné rovnobézné roviny. DokaZte, Ze
existuje pravidelny ¢tyfstén, ktery ma v kazdé z danych rovin jeden vrchol.

15. MIMO 1973

87. Na piimce p je din bod O. VSechny koncové body P1, P2, ..., Py
jednotkovych vektortt OFy, OPo, ..., OPy lezi v téze poloroviné ohrani-
¢ené primkou p. Dokazte, Ze pak pro lichd n plati

[OP1 + OPy + ... 4 OPy| = 1.

88. Rozhodnéte, existuje-li v trojrozmérném prostoru koneéna mnozina M
bodt nelezicich v jedné roviné, ktera ma nésledujici vlastnost: Ke kazdym
dvéma bodiim A4, B € M existuji body C, D € M tak, Ze piimky 4B a CD jsou
rovnobézné a nesplyvaji.

89. Najdéte nejmensi hodnotu souctu a? - b2, jsou-li a, b redlnd Cisla,
pro néZ ma rovnice

xt+ax3+bx2+ax+1=0

aspoil jeden redlny kofen.

90. Zenista ma provéfit, vyskytuji-li se miny na pozemku tvaru rovno-
stranného trojihelniku (v&etné jeho hranice). K dispozici ma detektor,
jehoZ polomér u¢innosti se rovnd poloviéni vySce trojuhelniku. Na priiz-
kum vychdzi z nékterého vrcholu trojuhelniku. Jakou cestu md zvolit,
aby prosel co nejkratsi vzddlenost a prozkoumal pritom cely pozemek ?

91. Uvazujme neprazdnou mnoZinu G nekonstantnich funkci f redlné
proménné x tvaru f(x) = ax + b, kde a 7 0, b jsou redlna &isla, s nésle-
dujicimi vlastnostmi:
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a) je-li f, g€ G, pak gofe G, kde (gof) (x) = g(f(x)),
b) je-li fe G, f(x) = ax -+ b, potom téz inverzni funkce f~1 e G;
x—b
pritom f~1(x) = P
c) ke kazdé funkci f e G existuje xy tak, Ze f(xy) = x.
Dokazte, ze existuje takové y, Ze f(y) = y pro vSechny fe G.

92. Je déno n kladnych redlnych ¢isel ay, as, . . ., apa redlné ¢islo g € (0, 1).
Najdéte n redlnych Cisel by, bo, ..., b, s témito tfemi vlastnostmi:
a) ap < by pro vSechna k € {1,2, ..., n},
bri1

1
b) g < < < 7 pro viechna ke {1, 2, ..., n— 1},

14 ¢
¢c) bi+ba+t ... + b, < :7] (a1 Fas—+ ...+ aw).

16. MMO 1974

93. Tii hraéi A, B, C hraji hru se tfemi kartami. Na kazdé z karet je
celé Cislo: na prvé p, na druhé ¢, na tieti r, pfiCemz plati 0 < p < g < r.
Pri kazdém kole hry se karty zamichaji a kaZdy hra¢ dostane jednu. Potom
kartu vrati a dostane za ni tolik kuliek, kolik udava na ni napsané cislo.
Hra trvala N kol, N = 2. Na konci hry mé¢l hra¢ A celkem 20 kulicek,
hra¢ B 10 a hra¢ C 9 kulicek. V poslednim kole hra¢ B dostal r kulicek.
Urcete, ktery z hrac¢t dostal v prvém kole g kulicek.

94. Ozna¢me velikosti vnitinich Ghlt trojuhelniku ABC obvyklym zpi’l-
sobem o, f3, y. Na UseCce AB existuje bod D tak, Ze |CD| = [/IAD[ IBDI,
praveé kdyz

. . L, Y
sin o sin f < sin? 5

Dokazte.
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95. Dokazte, Ze pro zZadné prirozené Cislo n neni islo
n

2n -+ 1 -
Z(2k -+ 1) 2

k=0

délitelné péti.

96. UvaZujme déleni Sachovnice s 8 % 8§ poli na nepiekryvajici se obdél-
niky, které se sklddaji ze stejného poctu cernych a bilych poli. Najdéte
nejvetsi Cislo p, pro které 1ze Sachovnici rozdélit na p takovychto obdélniki,
z nichZ Zddné dva neobsahuji stejny pocet poli. Pro toto maximdlni p urcete

vSechny moznosti pro pocty poli v obdélnicich pfislusného déleni.

97. Urdete mnozinu vSech hodnot, jichZ nabyva soucet
a b c d
“atbtd atbte brtctrdaterd

jsou-li a, b, c, d libovolna kladna redlnd Cisla.

S

98. Necht P je nekonstantni mnohoc¢len s celociselnymi koeficienty.
Ozna¢me deg(P) jeho stupeii a n(P) pocet viech celych Cisel &, pro néz
plati (P(k))? = 1. Dokaizte, Ze

n(P) — deg(P) < 2.

17. MMO 1975

99. Jsou dédna realna Cisla

X1 Z X2 2 ... = Xp,
yizyzz ... 2 ya
Dokazte, ze pro libovolné poradi z1, zo, ..., z, Cisel y1, yo, ..., yu plati
n n

> (i —p)? £ 3 (% — zi)2.
p=1

i=1 i
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160. Necht {a,} je rostouci posloupnost pfirozenych &isel. DokaZte, 7e
nekonecné mnoho ¢Elent a; této posloupnosti lze vyjadrit ve tvaru

am == .\'ﬂr}) ’f" ya(],

kde x, y jsou pFirozend ¢isla a p + q.

101. Je dan trojuhelnik ABC. Vné tohoto trojuhelniku sestrojme (v téZe
roviné) trojihelniky ARB, BPC, CQA takové, Ze
| XPBC| = |xCAQ| = 45°,
| %X BCP| = |¥QCA4| = 30°,
| % ABR| = |¥BAR| = 15°.

Dokazte, Ze |PR| = |QR] a | < PRQ| = 90°.

102. Jako A4 oznaCme soucet Cislic ¢isla 44444444 g jako B soudet Cislic
¢isla 4. Urcete soucet Cislic ¢isla B (vSechna Cisla jsou zapsana v desitkové
soustave).

103. Zjistéte, zda na kruZnici s polomérem 1 existuje 1975 bod takovych,
Ze délky vSech jimi uréenych tétiv jsou racionalni Cisla.

104. Je dano pfirozené Cislo n. Najdéte vSechny mnohocleny P dvou
proménnych s témito tfemi vlastnostmi:

a) P je homogenni mnohod¢len stupné n, tzn. Ze pro viechna redlnd Cisla
t, x, y plati

P(tx, ty) = t"P(x, ),
b) pro vsechna redlnd Cisla a, b, ¢ plati
Pla+b,c)+ Pla-+c, b) + Pb + ¢c,a) =0,
c) P(1,0) = 1.
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18. MMO 1976

105. V konvexnim rovinném ¢tyfahelniku o obsahu 32 cm?2 je soudet
délek dvou protilehlych stran a jedné uhlopricky roven 16 cm. Urcete
vSechny mozné délky druhé thlopricky.

106. Necht
Pi(x) = x2—2
aproje{2,3,4,...}je
Pi(x) = P1(Pj-1(x)).
Dokazte, Ze pro kazdé prirozené n jsou vsechny kofeny rovnice
Py(x) = x
realné a rtzné.

107. Krabici ve tvaru kvadru lze zcela vyplnit krychlemi o objemu 1.
Vlozime-li do ni co nejvice krychli o objemu 2 tak, aby hrany krychli byly
rovnobézné s hranami krabice, vyplnime pravé 40 9, prostoru krabice.
Urcete vnitfni rozméry vsech krabic s touto vlastnosti.

108. Urcete nejvétsi hodnotu, kterou mize nabyt souéin nékolika ptiro-
zenych Cisel, jejichZ soucet je 1976.

109. Je dana soustava p rovnic o ¢ = 2p neznamych

aiixi + aiexe2 + ... + aigxq =0,
az1x1 + agexe + ... + azxq =0,
api1X1 -+ apaX2 4+ ...+ ApgXq — 0

s koeficienty a;; € {—1,0, 1} pro viechnaie {1,2, ...,p},je {1,2, ..., q}.
Dokazte, ze tato soustava ma feSeni (x1, X2, ..., X;) s témito tfemi vlast-
nostmi:

a) vSechna &isla x1, x2, ..., x4 jsou celd,

b) x; # 0 pro alespoii jedno je {1, 2, ..., g},

¢) |xj| < g provsechnaje {1, 2, ..., ¢}.



110. Posloupnost {u,} je definovana vztahy

S
Uy = 2, uy = 7,
2 _
Upr1 = Up(u;_, —2) —uy pro n = 1.

Dokazte, Ze pro viechna n = 1 plati

[un] = 2@" = (=D"/3,

19. MMO 1977

111. Uvnitf daného &tverce ABCD sestrojme rovnostranné trojihelniky
ABK, BCL, CDM, DAN. DokaZte, 7e stiedy Ctyt useCek KL, LM, MN, NK
spolu se stfedy osmi UseCek AK, BK, BL, CL, CM, DM, DN, AN jsou
vrcholy pravidelného dvanactivhelniku.

112. V konecné posloupnosti redlnych ¢isel je soucet kazdych sedmi za
sebou nésledujicich ¢lent zdporny a soucet kazdych jedendcti za sebou
ndsledujicich ¢lentt kladny. Urcete, kolik mize mit takovd posloupnost
nejvyse Clent.

113. Je déno pfirozené &islo n > 2. OznaCme V, mnoZinu {l + n,
142n, 1+3n, ...} Cislo ¢ € V,, nazveme nerozlozitelnym ve V,, ne-
existuji-li ¢isla p, g eV, takovd, Ze ¢ = pq. DokaZte, Ze existuje Cislo
r € Vy, které lze vyjadrit jako soucin &isel nerozlozitelnych ve V, vice nez
jednim zplsobem (rozklady lifici se jen potfadim faktorli se povazuji
za stejné).

114. Uvazujme funkci
f(x) =1—acos x —b sin x — A4 cos 2x — B sin 2x,
kde a, b, A, B jsou dana redlna &isla. Je-li f(x) = 0 pro kazdé realné x,
potom
a?+b2<2 a A*+ BRI
Dokatzte.
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115. Jsou-li ddna pfirozend &isla a, b, oznaéme ¢ podil a r zbytek pfi
déleni Cisla a2 - b2 Cislem a - b. Najdéte vSechny dvojice a, b, pro které
je g% -+ r=19717.

116. Nechf f je funkce zobrazujici mnozinu vSech pfirozenych Cisel do
sebe. Jestlize pro kazdé prirozené cislo n plati

S+ 1) = f(fn)),

potom f(n) = n pro kazdé prirozené ¢islo n. Dokazte.

20. MMO 1978

117. Najdéte ptirozena Cisla m, n tak, aby dekadické zapisy Cisel 19787
a 1978~ kondily stejnym trojéislim a souéet m -+ n byl pfitom nejmensi.

118. Je ddna kulova plocha a uvnitf pevny bod P. Necht 4, B, C jsou
libovolné body lezici na dané kulové plose takové, Ze usecky PA, PB, PC
jsou navzajem kolmé. Uréete mnozinu vSech bodt Q, kde PQ je télesova
uhlopficka kvadru s hranami PA, PB, PC.

119. MnoZina vsech pfirozenych Cisel nechf je sjednocenim dvou dis-
junktnich podmnozin

), 2, f3),...} a {g(1), g(2), £B3),. .},
pri¢emz
S <f@<f3<...,
g() < g2 <gB) < ...

gm) = f(f(m) + 1
pro vSechna z. Urcete f(240).

120. Je dan rovnoramenny trojuhelnik A BC se zdkladnou BC. Uvazujme
kruZnici, kterd se dotyka zevniti kruZnice opsané trojihelniku ABC a ra-
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men AB, AC v bodech P, Q. Dokazte, Ze stfed tselky PQ je stfedem
kruznice vepsané trojuhelniku 4BC.

121. Necht {a.} je posloupnost navzijem riznych pfirozenych &isel.
Potom pro kazdé pfirozené n plati

Zkz—Zk

Dokazte.

122. Clenové mezindrodni spolenosti jsou oblané Sesti zemi. Seznam
¢lent této spoleCnosti obsahuje 1978 jmen olislovanych 1, 2, ..., 1978.
Dokaizte, Ze existuje alespori jeden Clen spolecnosti, jehoz pofadové ¢islo
v tomto seznamu se rovnd bud souétu poradovych ¢isel dvou ¢lent z jeho
zemé, nebo dvojnasobku potfadového Cisla jednoho Clena z jeho zemé.

21. MMO 1979

123. Nechf p a ¢ jsou pfirozena Cisla takova, ze
P 1 1 1 1 1

P T B e E TR T

Dokazte, Ze p je délitelné Cislem 1979.

124. Je dan pétiboky hranol se zdkladnami 4142434445 a B1BaB3ByBs.
Viechny hrany obou zdkladen a viechny usecky 4;By, j, k € {1, 2, 3, 4, 5},
obarvime Gervenou nebo zelenou barvou tak, aby zaddny trojihelnik, jehoz
vrcholy jsou vrcholy hranolu a jehoz vSechny strany byly obarveny, nebyl
jednobarevny. DokaZte, Ze vSech deset hran obou zdkladen ma stejnou
barvu.

125. V roviné jsou dany dvé protinajici se kruznice k1, k2. Ozname A
jeden z jejich pruseCikti. Po kruznici k1, resp. ko, se pohybuji body Bi,
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resp. B, ve stejném smyslu konstantnimi rychlostmi tak, Ze se pfi kazdém
ob&hu setkavaji v bodé 4. DokaZte, Ze v roviné existuje pevny bod P,
pro ktery v kazdém okamziku plati |PB1| = |PBa|.

126. Je déna rovina z, bod Pex a bod Q ¢ . Najdéte viechny body
|PQ| + |PR|
|OR|

R € 7, pro néZ je podil nejvetsi.

127. Najdéte vSechna readlna Cisla b, pro néZ existuji nezapornd redlna
éisla x1, x2, X3, X4, X5 takova, Ze plati
5 5

5
Skxe=b, Sk¥xi=0% 3 kixp=bs.

k=1 k=1 k=1

128. Po vrcholech pravidelného osmithelniku ABCDEFGH skéace klo-
kan. Kazdym skokem se pifemistuje z jednoho vrcholu do nékterého ze dvou
sousednich; za¢ind v 4 a zastavi se, jakmile se poprvé dostane do E. Oznac-
me a, pocet viech cest z A do E sloZenych z pravé n skokili. Dokazte, Ze pro
vSechna pfirozena k plati

1

12

azp-1=0, ax=

— 1 _
Q@+ J2rt — 7 @ — k1.

22. MMO 1981

129. Je-li P vnitini bod daného trojahelniku ABC, oznaéme D, E, F
paty kolmic vedenych z P na ptimky BC, CA, AB. Najdéte viechny body P,

|BC| |CA| |4B|
|PD| ~ |PE| ~ |PF|

pro které je soucet nejmensi.

130. Necht r < n jsou ptirozena Cisla. Utvofme vSechny r-prvkové
podmnoziny mnoziny {lI, 2, ..., n}. Z kazdé z nich vezméme jeji nej-



69

mensi prvek a oznaéme F(n, r) aritmeticky priamér vSech takto ziskanych
¢isel. Dokazte, Ze
n-41

F(n,r)=r+1.

131. Urcete nejveétsi hodnotu vyrazu m? + n2, kde m a n jsou pfirozend
Cisla takova, ze

(n2—mn—m?2)2 =1, m £ 1981, n < 1981.

132. a) Pro ktera pfirozena Cisla n > 2 existuje n po sobé jdoucich pfi-
rozenych cisel tak, Ze nejvétsi z nich je délitelem nejmensiho spolecného
nasobku ostatnich n — 1 ¢isel ?

b) Pro které n existuje prave jedna takova n-tice?

133. Uvazujme tfi shodné kruznice, které maji spolecny bod O, lezi
uvniti daného trojuhelniku ABC a kazda z nich se dotyka dvou stran to-
hoto trojuhelniku. Dokazte, Ze bod O, stfed kruznice vepsané a stfed kruz-
nice opsané trojuhelniku ABC lezi na jedné pfimce.

134. Je dana funkce f(x, y) spliiujici podminky

f(O, y) =y+1,
f(x + 1 0) :f(x’ 1),
S+ 1L,y+ D =fxf(x+ 1)

pro vsechna nezaporna x, y. UrCete f(4, 1 981).

23. MMO 1982

135. Uvazujme funkci f zobrazujici mnozinu vSech pfirozenych cisel do
mnoziny vsech celych nezdpornych ¢isel. Piedpokladejme, Ze
f(2) =0, f(3) > 0, f(9999) = 3333
a ze rozdil f(m + n) — f(m) — f(n) nabyva pro libovolnd pfirozena cisla
m, n hodnoty 0 nebo 1. Urcete f(1982).
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136. Je dan nerovnoramenny trojihelnik A414243. Pro ie {1, 2, 3}
oznaéme g; jeho stranu protilchlou vrcholu 4;, M; stied strany a;, T; bod
dotyku strany «; a kruznice vepsané trojuhelniku A14243, S; bod sou-
mérné sdruzeny s bodem T; podle osy vnitiniho Ghlu daného trojuhelniku
pii vrcholu A4;. Dokazte, ze piimky M1S1, M2S2, M3S3 maji spoleény bod.

137. Uvazujme nerostouci posloupnosti {xx},” , kladnych ¢isel, pro
které plati xo = 1.
a) Dokazte, Ze pro kazdou takovou posloupnost existuje index n = 1
tak, Ze plati
2 2 2
R L
X1 X2 Xn
b) Najdéte mezi uvazovanymi posloupnostmi takovou, ktera pro vsechna
n = 1 splituje nerovnost
X1

L)

X1 Xs a Xn

s T

138. Je dano pfirozené ¢islo n. Ma-li rovnice
x3—3xy2 4 y3 =n

celociselné feseni (x, y), pak ma alespoii tfi celodiselna feSeni. DokaZte.
Ukazte, Ze pro n = 2 891 rovnice nema celociselné feSeni.

139. Na uhlopfickich AC, CE pravidelného Sestithelniku ABCDEF
jsou dany body M, N tak, Ze

|[AM| |CN]|
|[AC| — |CE|
Urcete délici pomér 4, lezi-li body B, M, N v pfimce.

140. Ve ctverci Q o strané 100 leZi lomena neuzaviend a neprotinajici
se ¢ara L. Piedpoklddejme, Ze ke kazdému bodu P hranice ¢tverce Q exis-

: . 1
tuje na cate L bod, jehoZ vzdalenost od bodu P neni v&tsi nez 5 Dokazte,

Ze na cafe L pak existuji dva body, jejichz vzdalenost neni v&tsi neZ 1,
a pritom délka Casti ¢ary jimi omezend neni mensi nez 198.
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24. MMO 1983

141. Najdéte vsechny funkce f, které zobrazuji mnozinu vsech kladnych
Cisel do sebe a pfitom spliuji nasledujici dvé podminky:

a) f(xf(y)) = yf(x) pro libovolna kladna x, y,

b) f(x) — 0 pro x = + 0.

142. V roving jsou dany protinajici se kruZnice k1, k2 se stiedy O1, Os.
Ozna¢me A jeden z jejich spoleénych bodi. Necht jedna ze dvou spolec-
nych tecen se dotyka kruznic k1, k2 v bodech Pi, P2, druha v bodech Q1,
Q2. Oznatme M1, M2 stiedy Usecek P1Q1, P2Q2. Dokazte, Ze

| X 014032 = | X M14AM>|.

143. Nechf a, b, ¢ jsou po dvou nesoudélna ptirozena Cisla. Dokazte, Ze
2abc — ab — bc — ca
je nejvetsi celé Cislo, které se nedd vyjadfit ve tvaru
xbc + yca + zab,

kde x, y, z jsou nezaporna cela Cisla.

144. Ozna¢me E mnozinu vech bodii na obvodu daného rovnostranného
trojuhelniku. Rozhodnéte, zda pro kazdy rozklad mnoziny E na dvé pod-
mnoziny existuje pravouhly trojahelnik, jehoz vSechny tii vrcholy lezi
v jedné z obou podmnozin.

145. Existuje 1983 raznych pfirozenych ¢isel nepfevysujicich 105 tak,
aby zadna tfi z nich nebyla bezprostiedn¢ po sobé jdoucimi Cleny aritme-
tické posloupnosti?

146. Jsou-li a, b, ¢ délky stran trojuhelniku, pak
a®b(a — b) + b2%c(b — ¢) + c%a(c —a) = 0.

Dokazte a zjistéte, kdy nastane rovnost.
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25. MMO 1984

147. Jsou dana nezaporna redlna Cisla x, y, z takova, Ze x + y +z=1.
Dokarzte, ze
7

0=xy fl—yz+zx—2xyz§57.

148. Najdéte dvé prirozena Cisla a, b tak, aby zadné z Cisel a, b, @ 4 b
* nebylo délitelné sedmi a aby &islo (@ + b)7 — a7 — b7 bylo délitelné 77.

149. V roviné jsou dany dva body O 5 A. Pro kazdy bod X £ O v roviné
ozna¢me «(X) velikost orientovaného uhlu 40X méfeného v radianech proti
sméru hodinovych rucicek (O < a(X) < 2rw) a C(X) kruZnici se stiedem O

a(X)
a polomérem |OX| + @f] Predpokladejme, Ze kazdy bod roviny je obar-
ven nckterou z kone¢ného poctu barev. Dokazte, Ze existuje bod X, pro
ktery je a(X) > 0, a pfitom jeho barva se vyskytuje na kruznici C(X).

150. Necht A BCD je konvexni ¢tyfahelnik takovy, Ze kruznice s pramérem
AB se dotyka ptimky CD. Dokazte, Ze kruznice s pramérem CD se dotyka
piimky AB, pravé kdyz strany BC a AD jsou rovnobé&zné.

151. Pro n > 3 oznatme d soucet délek vSech uhlopficek konvexniho
n-uhelniku a p jeho obvod. Dokazte, ze

2d /[n“!n—!»l] .
Il—3<p\ ) D) »—-.

152. Necht a < b < ¢ < d jsou licha pfirozena Cisla takova, Ze ad = bc
aa-+d=2F b+ ¢c=2m pro néjaka pfirozend cisla k, m. Dokazte, Ze
a —
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1. ProtoZe
3(14n + 3) — 2Q21n + 4) =1,

kazdy spoleny délitel &isel 14n -+ 3, 21n -+ 4 déli &islo 1. Citatel a jmeno-
vatel jsou tedy nesoudélna Cisla.

2. Re¥me rovnici

l/x + ]/Z_Y——T + ]/x—— ]/2?:——1 = a, (1)

kde @ je dané kladné ¢&islo. Snadno zjistime, Ze viechny odmocniny maji

smysl (tj. vyrazy pod nimi maji nezdpornou hodnotu), pravé kdyz x = e

Za tohoto predpokladu obé strany rovnice umocnime a dostaneme ekviva-
lentni rovnici

2x + 2V(x—-i)—2~:-, a2,
neboli
2x + 2|x — 1| = a®. )
Je-li x = 1, mZeme rovnici (2) psat ve tvaru
2x -+ 2(x —1) = a?

a vidime, Ze ma jediné feseni

— 1
pokud a = /2. Je-li ) < x < 1, muZeme rovnici (2) psat ve tvaru

2x 4+ 2(1 — x) = a2,
neboli
a2 —2=0.

— 1 _
Pro a = |/2 tedy rovnici (2) vyhovuji viechna x € <—2—, 1), proa # |/2 zad-

né xe<%, 1).

Zavér. Pro a < ]/5 nema rovnice (1) feSeni, pro a = ]/3. ji vyhovuji



viechna x e/—, I, a pro a> |2 md jediné feSeni x = ————.Rov-
\ 2 / 4
, 3 et o . VAN :
nice b) tedy nemd feSeni, rovnici a) vyhovuji viechna x {5 1 ) @ rovni-
7 o . r v v ! 4 3
ce ¢) ma jediné feSeni x = 5

3. VyuZijeme zndmého vztahu
cos 2x = 2 cos2x — 1 )
platného pro viechna redlnd x. Cislo x, které vyhovuje dané rovnci, vyho-
vuje i rovnici
(a cos2x -+ ¢)2 = b2 cosZx,
neboli
a? costx + (2ac — b?) cos2x + ¢2 = 0.
Dosadime-li sem za cos2x ze vztahu (1), dostancme po upravé
a? cos? 2x -+ (2a2 + 4ac — 2b2) cos 2x + (a2 + 4ac — 2b2? + 4¢?) = 0.
Proa=4,b=2,c=—1vyjde
4(4cos?2x +2cos2x—1) =0,

takZe v tomto pripad¢ vyhovuji cos x i cos 2x téze kvadratické rovnici.

Pozndmka. Viechna feSeni goniometrické rovnice

4cos2x+2cosx—1=0 )
miZeme najit obvyklym zpiisobem - vyfe§ime kvadratickou rovnici
492 42y —1=0 3)
a pak ur¢ime vSechna x, pro néz
—1+)s5 —1—75
€Os X = nebo cosx = — “

Vysledek ulohy nabizi jiny postup. VSimnéme si, Ze vyhovuje-li rovnici
(3) cislo cos x, vyhovuje ji také Cislo cos 2x, a tedy i Cisla cos 4x, cos 8x atd.
Mi-li tedy rovnice (3) kofeny yi1 = cos x a y», pak plati bud y; = cos 2x,
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nebo ys = cos 2x. V prvanim prfipadé snadno zjistime, ze by x bylo nasob-

2%

kem 3 ale Zadné takové x neni feSenim rovnice (2). Je tedy

y1=cosx =cosdx = ...,
Y2 = €08 2x = COS 8x = ... .
. . 2n .
Odtud pak vyjde, ze hledand x jsou pravé viechny ndsobky 5 (Odvodili

jsme tak vlastné zpisob, jak sestrojit pravidelny pétitthelnik kruzitkem
a pravitkem - hodnoty (4) snadno sestrojime a dal$i postup je zfejmy z obr. 1.)

e I
/ | AN

[ i

|

|

|

8]
R
4

()br. I

4. Vyhovuje-li trojuhelnik 4ABC tuloze (obr. 2), plati
t> = |AC| . |BC]|.

ProtoZe stfed S kruZnice opsané trojihelniku ABC je stfedem piepony 4B,
je
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Dvojnasobny obsah trojuhelniku 4BC je roven

|AC| . |BC| = cve,
neboli
c\2
(o) o
Odtud
C
e = T

Bod C je tedy spole¢nym bodem kruZnice nad primérem AB a rovnobézky
&
s ptimkou AB ve vzddlenosti e Snadno je vidét, Ze uloha ma Ctyfi navzai-

jem symetrickd FeSeni.

5. a) Z obr. 3 (zde je situace zachycena pro |AM| < |BM]|; pro |[AM| >
> |BM| vyuzijeme osové soumérnosti a pro |AM| = |BM| je vSe trividlni)
vidime, Ze Ghly ANC a BNE jsou pravé a Ghly ANM a BNM maji velikost
45° (obvodové tthly nad thlopfickou, resp. stranou Ctverce vepsaného do
kruznice). Je tedy také

| ANB| = | X ANM| + |x BNM| = 45° 4 45° = 90°.

Protoze Gthly ANC, ANB jsou pravé, lezi body B, C, N v pfimce, a protoze
thly BNE, BNA jsou pravé, lezi body 4, E, N v pfimce.

Ez NF

N,
D C
.
~|/

74 \
A ¥

AN S M B //B

Obr. 3

b) Uz jsme si vSimli, Ze velikosti Ghlit ANM, ANB nezavisi na poloze
bodu M a jsou rovny | ANM| = 45° | ANB| = 90°. Bod N lezi tedy
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na kruznici s primérem 4B a thel ANM je obvodovy uthel pfislusny ¢tvrting
této kruznice vymezené body A, Q (obr. 4). Pfimka NM tedy prochdzi
bodem Q, ktery nezdvisi na poloze bodu M.

A
|/

Obr. 4

¢) Oznalme S1, So stiedy danych Ctverct, S stied Gsecky S1S2 a 01, Oq,
O pravothlé priméty bodt S1, S2, S na pfimku 4B (obr. 5). ProtoZe OS
je stfedni pticka lichobéZzniku 02525101, je

|0181] + |0282|  |AM| + [BM| |48

|0S| =

2 4 4
r-———>"">77"7"7"77—7=7= =
| [
| |
| |
{ |
| 1
I P
RIS D p
1 | lﬁ
! P
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Bod S tedy leZi na rovnobéZce p s piimkou AB vedené ve vzddlenosti
|AB|

4 Ozna¢me jesté P stied Ctverce o strané 4B (v poloroving 4BS). Pro-
biha-li bod M vnitfek Gsecky AB, body S1 a S probihaji vnittky tsetek
AP a BP a bod S vnittek tiseCky P1P2, kde P1, P2 jsou stiedy usefek AP, BP.

6. Zakladny hledaného lichobéZniku jsou navzijem rovnobézné a jsou
tedy rovnob&Zné s prisecnici p danych rovin (obr. 6). To nam umoZiiuje
prevést tlohu na nésledujici planimetrickou lohu v roviné hledaného licho-
béZniku:

Jsou dény dvé rovnobé&zky a 5~ ¢, na pfimce a bod A4 a na piimce ¢ bod C.
Sestrojte rovnoramenny lichob&Znik 4 BCD tak, aby bod B leZel na pfimce a,
bod D na pfimce ¢ a aby mu bylo moZno vepsat kruZnici.

Predpokladejme, Ze hledany lichobéZnik je sestrojen, a oznacme P, Q,
R, S body, v nichZ se vepsand kruZnice dotyka jeho stran (obr. 7). Pak je

|AS| = |4P| = |BP| = |BQ|, |CQ| = |CR| = |DR| = |DS]|.
Oznadime-li jesté Z patu kolmice vedené bodem C na pfimku a, dostaneme
|AZ| = |AP| + |PZ| = |AS| + |RC| = |A4S| + |DS| = |4AD|.

(V natem obrazku je |AB| > |CD|, rovnost |AZ| = |AD| vsak analogicky
odvodime i v pfipad€ |[AB| < |CD|.)

Této rovnosti vyuZijeme pii konstrukci hledaného lichob&Zniku. Bodem C
vedeme kolmici CZ k pfimce a. Kolem bodu 4 pak opiSeme kruZnici pro-
chézejici bodem Z a jeji spoleény bod s pfimkou ¢ bude bod D. Trojihelnik
ACD doplnime bodem B na rovnoramenny lichob&Zznik ABCD.
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Ukézeme jeSté, Zze pravé sestrojenému rovnoramennému lichob&Zniku
ABCD lze vepsat kruznici. Sestrojme kruznici &, ktera se dotyka zakladen
v jejich stfedech P, R (obr. 7). Podle konstrukce je trojihelnik 4DZ rovno-
ramenny se zakladnou DZ. Protoze

|PZ| = |RC| = |RD| a |OR| = |OP],

je stfed O kruZnice k stfedem zdkladny DZ. Dotyka-li se tedy kruZnice k
ramene AZ, dotyka se i ramene AD. Ze soumérnosti lichob&Zniku 4ABCD
podle osy PR pak vyplyva dotyk kruZnice k se stranou BC.

Je-li |[AZ| > |CZ]| (tj. odchylka mimob&Zek AC, p je mensi nez 45°),
ma tloha pravé dvé feSeni soumérné sdruzend podle stfedu tvisecky AC.
Je-li |AZ| = |CZ| (odchylka 45°), vyhovuje uloze jediny ¢tverec. Jinak iloha
nemad feseni.

7. Hleddame ¢islo n, pro jehoZ &islice a # 0, b, ¢ plati
100a + 10b -+ ¢ = 11(a2 + b2 + c?).
Cislo
n=100a + 10b + ¢ =99a + 11b + (a—b + ¢)
je délitelné jedendacti, pravé kdyz je jedendcti délitelné &islo a — b + ¢,
tj. pravé kdyz
a—b+c=0neboa—b-+c=11
(a, b, c jsou totiz Cislice).
V prvnim p¥ipadé pro hledané &islice plati
b=a+c €))
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a zaroven
99a + 11b = 11(a2 + b2 + c?),
neboli
9a + b = a% + b2% + c2. )
Po dosazeni (1) do (2) dostaneme pro a kvadratickou rovnici
2a% + (2¢ — 10)a + 2¢2 —c¢ = 0.
Jeji diskriminant
(2c —10)2 — 8(2¢2 — ¢) = 4(25 — 8¢ — 3¢?)
je pro ¢ > 1 zdporny. Pro ¢ = 1 nevychazi celo¢iselny kofen, pro ¢ = 0
vychéazi a = 5 (kofen a = 0 nevyhovuje uloze) a podle (1) b = 5. V prvnim
pfipadé¢ muZe byt tedy hledanym d&islem jediné n = 550, které skuteéné
vyhovuje.
Zbyva vysetfit druhy pfipad, kdy
b=a-+ c—11.
Tentokrat dostaneme kvadratickou rovnici
2a%2 + (2¢c —32)a + 2¢2—23¢ 4+ 132 =0
a analogicky dojdeme k &islu » = 803.
Uloha ma dvé& fefeni, &sla 550 a 803.

1
8. Leva strana nerovnice je definovana, pravé kdyz x = —5ax #0

V tomto oboru dostdvame ekvivalentnimi ipravami postupné nerovnice
4x2(1 + |1 + 2x)®
Q=1+ 207+ )1+29°
(14 V14202 <2x+9,
/1 +2x<7,
4(1 + 2x) < 49.

2x + 9,

45
Posledni nerovnici vyhovuji pravé viechna x < 3 Resenim dané nerovnice

jsou tedy vSechna x, pro ktera plati -

1< 45
— x<8,

5 = x # 0.
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9. Stfed piepony BC ozna¢me S, krajni body prostfedni ¢dsti pfepony
P, Q a velikosti useéek AP, AQ ozname p, g (obr. 8). Je-li napt. |[AB| < |AC|,
leZi pata H vysky spusténé na pfeponu uvniti Gsecky BS. (Je-li H = S, je
tloha velmi jednoduchd). Dvojim vyjadfenim obsahu trojuhelniku PAQ
dostaneme

. ah
pgsina = —

a z kosinové véty pro trojihelnik PAQ
a 2
2pg cos o = p2 + qz—(—) .

Je tedy

sin & 2ah
tga = S . (@))

cos & a\?
ot e — (7))

2n ? 2'1 ?

takZe

2 2
p2—|—q2::2x2+2h2+i—=1(1 +_1_)
2n? 2 n2
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Dosadime-li odtud do (1), po malé tipravé dostaneme

4nh
g = (n2—a’
2. feSeni. VyuZijeme vzorce
.- lgp—tgy
tg(ﬂ—y)—1+tgﬂtgy- 2

Pfi zachovdni uZ zavedeného znadeni jest€é oznaCme s = |BH|,
f =% QAH|,y = | ¥ PAH| (obr. 9). Dostdvame

a a
HO 2 " °V 2 a—2 a
gh === 7 = on T omw
a
|HP| HOI— = o 4

Y =" = Ty T T T omk

a podle vzorce (2)

a
nh
tga=tg(f—y) = a?(n? —1)—4n2s(@—s) "
4n2h2
Aa
h
i
B HP Sa ¢

Obr. 9

Dosadime-li sem podle Euklidovy véty o vysce

s(@—s) = h?
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a vyraz upravime, vyjde
4nh

tgoa = (————nz_ D'

10. Vyhovuje-li trojihelnik 4BC tloze, oznaéme P, patu vysky vs a T,
stfed strany a. Vedeme-li bodem T}, kolmici na stranu b a jeji patu oznac¢ime

vV
P (obr. 10), bude |PT,| — é’—

Obr. 10

Toho vyuzijeme ke konstrukci hledaného trojihelniku. Nad primérem
|ATy| = tq sestrojime kruZnici a na ni body P4, P tak, aby |APs| = v,
Vb
2
Ta), bodem P kolmici k ptimce T,P (prochdzi bodem A) a jejich priisecik
oznacéime C. Bod soumérné sdruZeny s bodem C podle stfedu 77 oznadime
B. Pravé sestrojeny trojuhelnik ABC ziejmé vyhovuje podminkam ulohy.

|TyP| = —. Dale vedeme bodem P kolmici k pfimce A Pq (prochazi bodem

ol ‘Yb « ‘Yb ’ r v v r

Pokud je vg = 4, s ta nebo vy =tz = 5 uloha nema feSeni.
wr 4 vb ror r v ’ r

V piipadé vg << 14, B < to ma tloha dvé riiznd feSeni (obr. 11), dalsi dv&
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. . . v v v r wr v ly[)
jsou s nimi soumérné sdruzena podle osy 47,. V piipad€ vy = 1y, S < la

’

b
(obr. 12) i v pfipadé vy < 14, 5 =l (obr. 13) jsou vzdy dvé shodna feseni

soumérné sdruzena podle osy AT,.

11. a) Staci si uvédomit, Ze mnozinou stiedl viech usecek PX, kde bod X
probihd stranu RS trojuhelniku PRS, je stiedni pii¢ka tohoto trojtihelniku.
Lezi-li bod Y na tiseCce B'D’ a bod X probiha tseCku AC, stied tiseCky XY
probiha stfedni pricku trojuhelniku ACY (obr. 14). Probihd-li bod Y

D' C'
/
AN
A/ /1 /NN B
/ l/ \\ \\
. // /l/ A M\
N Nl
/
R NN
/ 4 i 5 s i s e
) —==C
//////,4//"/’ X
A B

Obr. 14
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useCku B'D’, krajni body stfednich p¥icek trojihelnikit ACY probihaji
stiedni pficky trojihelnikit AB'D’, CB'D" a stfedni pficky trojihelnikii
ACY pak vyplni étverec KLMN, jehoz vrcholy jsou stiedy stén ABB'A’,
BCC'B’, CDD'C', DAA'D'.

b) Analogicky zjistime, Ze hledanou mnozZinou je obdélnik PORS, jehoz
vrcholy déli sténové uhlopticky AB’, CB', CD', AD’ v poméru 1 : 2 (obr. 15).

1) . c'

/ |
/ 1 777 G

Sk /WJ%\ |
| JBApTTTTITTTPC

Obr. 15

12. Vrcholovy thel kuzele ozna¢me 2e«, jeho vySku /4, polomér Kkoule
a podstavy valce r (obr. 16). Podle znamych vzorct je objem kuZele

Tha?
T3
a objem valce
Vz = 2mr3.

Obr. 16
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Pfitom
r 1+ sine
h=r-+|SV]|=r-F— =r— ,
sin o sin «
1} sinax 1 - sin«
a=htgoa =rtg o — =r
sin o COS &

Dosadime-li do vzorce pro V1, dostaneme
7r3(1 + sin «)3
~ 3sin« cos?a
Je tedy
Vi (1 + sin «)3 (1 + sin «)?

k= Vs =6sinoc(1——sin2<x) - 6 sin o (1 —sin )

a odtud
(1 + 6k)sin? & + 2(1 — 3k)sin« - 1 = 0.
Hledime-li na tento vztah jako na kvadratickou rovnici pro sin «, vidime, Ze
ma feSeni, pravé kdyz pro jeji diskriminant plati
4(1 — 3k)2 —4(1 + 6k) = 0,

4
tj. pravé kdyz k = ES Pro 7zadné « tedy neni V1 = V3. Nejmen$i mozné

1

k = 3 dostaneme pro sin « ==

uhel 2a.

, COZ nam umozni sestrojit pfislusny
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13. Hledany bod P ziejmé leZi na kruznici s primérem BC (obr. 17).
Pravothlé trojihelniky EPC, FBP jsou podobné, nebof | X ECP| = | FPB.
Oznacime-li |[EP| = x, plati tedy

a c

x:’-2—=—2—:(v—x)

a odtud
4x2 —4yx + ac = 0.
Tato kvadraticka rovnice ma feSeni
v 1

X = E“j_ > [/vz—-ac.

Je-li v2 — ac > 0, ma tGloha dvé feseni (kruzZnice nad primérem BC
ma dva spolecné body s osou EF), je-li v2 — ac = 0, ma tloha jediné fe-
Seni - stied usecky EF (kruznice se dotyka osy). V piipad¢ vZ —ac <0
iloha feSeni nema.

14. Piedpokladejme, Ze x, y, z jsou tfi redlni Cisla vyhovujici soustave
rovnic

<y iz-a 0
x2 4 %+ 22 = b2, @
xy = z2. 3

Z (2) a (3) plyne, ze

a z (1) mame
(x4 )2 = (@—2)2
Porovnanim téchto dvou vztahti dostaneme
2az = a? — b2
Je-li @ =0, b + 0, soustava nema feseni. Pro @ =0, b = 0 ma, jak je
vidét pfimo ze soustavy, jediné feSeni x = y = z = 0.
Daéle se budeme zabyvat jen pfipadem a # 0. Pak

a’— b?

c= 2a )
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a po dosazeni do (1) a (3) zjistime, Ze x a y vyhovuji soustavé rovnic

a® -+ b?

X +_ Yy = 2a 5 (5)
(a2 — b2)?

xp = ©)

Cisla x, y jsou tedy kofeny kvadratické rovnice
a® -+ b2 (a2 —b2)2
t+ =

e 2a 4a? =0
Ta ma za pfedpokladu
10a2b? — 3a* — 3b%4 = 0,
neboli
Y <l s i1,
14
kofeny
a® + b? 4 |/10a2p? — 3a* — 3b4, a® + b% — |/10a%h2 — 3a* — 3b4. ™
4a 4a

Dosadime-li do dané soustavy za x a y tato dvé Cisla (v libovolném pofadi)
a za z podle (4), pfesvédCime se, Ze soustava je splnéna.
Dana soustava ma tedy
a) v piipadé @ = b = 0 jediné feSeni x =y = z = 0,
_ a
b) v piipadé 0 < |a| = |b|]/3 jediné feSeni x = y = z = EX
¢) v piipad¢ 0 < |b| = ]Z]]/S jediné feSeni x =y = @, z = —a

bl = .
d)v ph’padév—g < la| < [b]])/3 pravé dvé feSeni (7), (4) lisici se jen vzajem-

nou vyménou x a y. V ostatnich pfipadech feseni neexistuje.

Aby soustava méla za feSeni kladna Cisla, musi byt a > 0, jak vidime
ze (7), a a > |b], jak vidime ze (4). Obracené, je-li a > |b|, je podle (4)
z > 0 a ze soustavy (5), (6) vidime, Ze x > 0, y > 0. Uz jsme zjistili, Ze
x 5y, prave kdyz nastanc pfipad d). Pak bude i kofen z rizny od x
a od y - kdyby bylo napf. x = z, bylo by podle (3) x = y. Nutnd a posta-
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Sujici podminka k tomu, aby Cisla x, y, z spliiujici danou soustavu byla
kladna a navzajem riiznd, je

bl < a < |b /3.

2. FeSeni. Umocnime rovnici (1) a dostaneme
x2 4 y2 4 22 4 2(xy + yz + zx) = a2

Dosadime sem podle (2)
b2 4 2(xy - yz + zx) = a?,

podle (3)
b2 + 2z(x + y + 2) = a?

a podle (1)
b2 + 2az = a?.

Déle pokracujeme stejné jako v 1. feSeni.

Pozndmka. Soustava rovnic (1), (2), (3) ma geometricky vyznam. Jeji
feseni jsou soufadnice bodu spolenych roviné (1), kulové plose (2) a ku-
Zelové plose (3). Rovina (1) ma oci pocatku vzdalenost E;:I a kulova plocha
(2) ma stfed v pocatku a polomér |b|. Odtud je napf. vidét, Ze k tomu, aby
soustava méla feSeni, musi byt % < |b], a plati-li zde rovnost, ma soustava

nanejvys jedno feSeni (rovina se dotykd kulové plochy).

15. Podle Heronova vzorce je
S2=s(s—a)(s—b)(s—o),

a+b-+c
kde s = — neboli

16S2=@+b+c)(—a+b+c)yla—b-+c)la+b—c)=
= —a%—b%— ¢t + 2a2b? - 2b2c2 + 2c2q2.

S dokazovanou nerovnosti je ekvivalentni nerovnost
(@2 + b2 + ¢2)2 = 3.16 S2.
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Dosadime-li sem 1652 z pfedeslého vztahu a upravime, dostaneme ekvi-
valentni nerovnost

a* + bt + ¢t —a?h? — b2 — %% = 0,
neboli
(a2 —b2)2 + (b2 — ¢2)% + (c2 — a2)? = 0.
Posledni nerovnost plati vZdy a rovnost v ni nastane, pravé kdyZa = b =c,
tj. pravé kdyZz jde o rovnostranny trojihelnik.
2. FeSeni. Podle Heronova vzorce je

48=a@a+b+tc)(—a+bt+c)la—b+e)@at+b—c)=
(a+b+c)p _atbt c)? P a? +b% + ¢

27 33 13
Zde jsme vyuzili znamé nerovnosti mezi aritmetickym a geometrickym prii-
mérem tii nezapornych Cisel x, y, z

/
§V@+b+@

g — _X+r+z (x+y+2)?»
s < — i o <
Vxyz < 3 neboli  xyz £ 7 ,
v niZ nastane rovnost, pravé kdyz x = y = z. (V naSem pripadé bylo
x=—a+b+c¢, y=a—b-+c¢, z=a-} b—c) Dile jsme odhadli
(@b ¢c)"

————Sar b,

tato nerovnost je ekvivalentni s nerovnosti
@—b2+@®—0c)?2+(c—a?20.

Opét je ziejmé, Ze rovnost v dokdzané nerovnosti nastane, pravé kdyz jde

o rovnostranny trojuhelnik.

3. FeSeni. Dosadime-li do dokazované nerovnosti za ¢2 podle kosinové
véty
¢2 = a2 + b2 —2ab cos y
a za S podle vzorce
2.8 =absin y,
dojdeme k ekvivalentni nerovnosti
a2+ b2 —ab cos y = ]/Eab sin y.
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Tu miZeme déle prepsat

1 [ERA
a® + b2 — 2ab S Cosy +osiny =0,

neboli
a% + b2 — 2ab sin (y + 30°) = 0.
Tato nerovnost plati, nebof
a? + b2 — 2ab sin (y + 30°) = a? 4 b2 — 2ab = (a — b)2 = 0.
Zde nastane rovnost, pravé kdyz y = 60° a a = b, tedy pravé kdyz jde
o rovnostranny trojuhelnik.

4. FeSeni. Alesporii jedna z vysek uvazovaného trojahelniku lezi uvniti -
necht je to napf. vySka na stranu a. Jeji velikost oznaéme v a Casti, na
které jeji pata déli stranu a, oznaéme x, y (obr. 18). Podle Pythagorovy
véty je

c2 —_— x2 _I_ vz’

b2 = y2 + 12
a obsah trojuhelniku ABC je
W(x + )
S = >
A
- C V b
B X v —C
Obr. 18

Dokazujeme tedy nerovnost
(+ )2+ y2 492 4 X2 Fv2 =2 3 u(x + ),
neboli

v2 — Vi?(x + w4+ x24y2+xy=0.
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Levou stranu miiZeme piepsat na tvar

13 2 (1 :
y— —Z-(x + » ] + E(x — )/

odkud vidime, ze je skuteCné vidy nezaporna. Nulova je, pravé kdyz
x =y av=x|3,tj. pravé kdyZ jde o rovnostranny trojuhelnik.

5. FeSeni. Predpoklidejme nejprve, Ze kazdy z uhli uvazovaného troj-
Ghelniku je mensi nez 120°. Nad kazdou ze stran a, b, ¢ sestrojme rovno-
stranny trojuhelnik v opacné poloroviné, nez lezi uvaZovany trojuhelnik
(obr. 19). KruzZnice opsané témto tfem rovnostrannym trojihelnikiim
prochazeji spoleénym bodem N uvnitf trojthelniku 4BC. (O tom se snadno
piesvédCime: je-li N spoleCny bod dvou z téchto kruznic, pak jsou z ného
dv¢ strany vidét pod uhlem 120° a tieti pod thlem 360° — 2.120° = 120°,
lezi tedy i na tfeti kruznici.) Obsah S trojuhelniku ABC je roven souctu
obsaht trojuhelnikit ABN, BCN, CAN.

Obr. 19

Ted si stali jen uvédomit, Ze je-li jeden thel v trojihelniku alespor
120°, pak obsah tohoto trojihelniku je nejvyse tietina obsahu rovnostran-
ného trojuhelniku sestrojeného nad protilehlou stranou (obr. 20) - ma
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totiz nejvySe tfetinovou vysku. PouZijeme-li to na trojuhelniky ABN,
BCN a CAN, dostaneme

13
4
a odtud plyne dokazovana nerovnost. Rovnost nastane, pravé kdyz
|AN| = |BN| = |CN|, tj. kdyZa = b = c. '
Zbyva jesté pfipad, kdy jeden z uhl trojuhelniku ABC je alespoii 120°.
Je-li protilehld strana napf. a, pak vime, Ze

LB

3
39 g

1
SS 5@+ + )

S

A

neboli
a%=4)j3 s,

coZ je siln&jsi nerovnost, neZ poZaduje uloha.

Obr. 20

- 16. Staci, najdeme-li feSeni v intervalu <0, 2rr). Ostatni feSeni z nich pak
dostaneme pfi¢tenim nasobkl 27.
Pro n = 1 m4 rovnice
cos x —sin x = 1

3r
v uvaZovaném intervalu pravé dvé feSeni x = 0 a x = o

Pro n = 2 se rovnice
cos2x — sin2x = 1
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zjednodusi, pouzijeme-li vztahu cos2x -+ sin2x = 1. Ekvivalentni rovnice
sinx =0

ma v uvedeném intervalu pravé dvé feseni x =0a x = .
Pro n > 2 piSme rovnici ve tvaru

cos”x — sin®x = cos2x -} sinZ2x,
neboli
(1 — cos?—2 x) cos2x + (1 + sin®—2x) sin2x = 0.
Oba s¢itanci jsou nezdporni, takZe rovnice je splnéna, pravé kdyz
(1 — cos?~2x) cos2x = (1 + sin”2x) sinZx = 0.

Rozebereme-li vSechny moznosti, které tu mohou nastat, zjistime, Ze pro

3n
liché n jsou pravé dvé feSeni x = 0, x = o apro sudd n pravé dvé reseni

x=0,x=m.
2. FeSeni pro n > 2. Vyhovuje-li ¢islo x dané rovnici, je

1 = |cos™x — sin®x| < [cos™x| + [sin"x| =
= cos2x |[cos”2x| + sin2x [sin?—2x| < cos2x - sinZx = 1.

V obou nerovnostech tedy musi nastat rovnost. V prvni nastane, pravé
kdyZ cos”x a sin”x maji opacnd znaménka, totiZ pravé kdyz

cos”x sin”x < 0.
Ve druhé nerovnosti bude rovnost, pravé kdyz
|cosn—2x| = [sin?~2x| =1
(to se nestane nikdy), nebo
cosZ2x = 0 a [sin?x| = 1,
nebo
sin2x = 0 a |cos”x| = 1.

Odtud je patrno, Ze ob& rovnosti nastanou, pravé kdyz cos x = 0 nebo

T
sin x = 0 a feSenim rovnice mohou tedy byt jen nasobky > Ted z nich

uz jen staci vybrat ty, které rovnici vyhovuji.
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Pozndmka. Pro suda n je vysledek vidét také z rovnosti
cos™x = 1 -} sin”x,
kde leva strana je
cosx <1
a prava
" 1 + sin?x = 1.
Rovnost tedy muze platit, jen kdyz je soucasné

cos2x = 1 a sin x = 0.

17. Tézistém T trojuhelniku P(PoPs vedme pricky RiS1, RaSs, RsS3
rovnob&Zné se stranami (obr. 21). LeZzi-li bod P uvnitf trojuhelniku P1R1S1,
je |PPy| : |PQ1| < 2, lezi-li na Usece R1Sh, je |[PPi|:|PQ1| = 2, a lezi-li
uvnité lichob&Zniku PsP3S1R1, je |PPi| :|PQ1| > 2. Podobné pro P2Q2
a P3Qs. Sjednoceni vnitikit trojuhelnikdt P1R1S1, P2R2Ss, PsR3Ss je
vnitfek trojuhelniku P1P2P3 az na bod 7. Stejné je sjednoceni vnitiki
tfi uvazovanych lichobéznik. Je-li tedy P = T, lezi bod P uvnitf nékterého
trojihelniku i uvnitf nékterého lichobéZniku a mezi tfemi hodnotami
|PP1| : |PQ1|, |PP2| : |PQ2l|, |PPs| : |PQs| je néktera veétsi neZ 2 a nékterd
mensi nez 2. Pro P = T jsou vSechny tfi hodnoty rovné 2.

Obr. 21

2. FeSeni. Trojuhelnik P1P2P3 (jeho obsah oznaéme S) je sloZen (obr. 22)
ze tfi trojuhelnikd PPsP3, PP3Pi, PP1Ps (jejich obsahy oznaéme Si,
S, S3). Plati tedy

S =851+ Sa2+ Ss.
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Pfitom vsak

S1:8 = |PQ1| : |P101],

nebof velikosti vySek trojuhelnikli PPsP3, P1P2P3 na spoleénou stranu
P3P3 jsou v poméru |PQ1] : |P1Q1|. Analogicky
Sz 18 = |PQo| : |P2Qs,
S3: 8= [PQ:;[ : ]P3Q3].
Je tedy
PO\l | IPQal | IPQsl 51 S:  Sa

Pr01] T1Pa0al TiPa0s s T s T s L

Odtud plyne, Ze jeden ze zlomki vlevo je

P
|PQs > b
[P:Q:i] = 3

a jiny je
POy 1
0y <L
|P;Qyl = 3
coz je ekvivalentni s dokazovanym tvrzenim.

18. M4-li trojihelnik 4BC poZadované vlastnosti (obr. 23), lezi bod M
na kruhovém oblouku, z néhoZ je stranu 4B vidét pod tihlem . St¥edni
pfiCka SM, kde S je stfed strany AB, je rovnobéZnd se stranou AC a ma

b
délku >

Toho vyuZijeme ke konstrukci. Nad use¢kou AB sestrojime zndmym zpti-
sobem kruhovy oblouk, z néhoZ je vidét pod thlem w. Déle sestrojime
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b
stted S tseCky AB a kruZnici (S, -5) Spoleény bod oblouku a kruZnice

bude bod M. Bod C pak leZi na polopfimce opaéné k MB ve vzdalenosti
|MC| = |MB|. (Pfitom bude AC||MS, |AC|= 2|MS)|.) Sestrojeny troj-
thelnik zfejmé ma vechny poZadované vlastnosti.

Obr. 23
Reitelnost tlohy zavisi na existenci spoleénych bodii oblouku, z n&ho¥

b
je strana AB vidét pod Ghlem w, a kruZnice (S, 3—) Situaci vystihuje obr. 24.

Spole¢ny bod existuje, pravé kdyz
c b P c )
y <2 =%

neboli

)
btg —2—§c<b.

Obr. 24
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w
V pfipadé ¢ = b tg Y dostaneme jediné feSeni - pravouhly trojahelnik

w

3 pii vrcholu C. Jinak dostaneme

s pravym uhlem pfi vrcholu 4 a s thlem

dve feseni (obr. 25).

Obr. 25

Poznamka. Je-li o > 90°, zustava vic v platnosti, pouze podminka
feSitelnosti je

)
b<c§btg~2—.

Pro o = 90° ma uloha feSeni, jen kdyz b = c¢. Pak vyhovuji vSechny
rovinoramenné trojihelniky s rameny b = c.

vvvvvvvv

A'B'C" (obr. 26). UkazZeme, Z¢ bod G je stiedem tGseCky 77". Zvolme
v prostoru soustavu soufadnic. Maji-li body P, Q soufadnice (pi1, p2, p3),
(g1, g2, q3), budeme symbolem P -+ Q rozumét bod o soufadnicich
(p1 + q1, p2 + q2, ps + ¢3) a symbolem sP, kde s je redlné cislo, bod
o soufadnicich (sp1, sp2, sps). Potom je
A+B+C =~ A+ B+ C

= 3 s I = 3 >

A+ A BB c+cC

7 M 7 N="3
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a - A+4 B+4+B C+C
L+ M+N 2 T 2 + 2
E - 3
A+B+C A +B+C
3 T 3 T+ T
2 -2
Ke kazdému bodu 7" roviny & v ni miZeme najit t¥i body A’, B’, C’
tak, aby bod 7" byl t&Zistém trojuhelniku 4’B’C’. Hledand mnoZina bodi
je tedy mnoZzina stfedit vSech usecek 77", kde T je tézisté daného troj-
thelniku ABC a bod T probiha danou rovinu e. Je to rovina rovnobéznd
s rovinou ¢, kterd pili vzdalenost bodu 7 od roviny e.

Obr. 26

Ve

A+ B+ C
thelniku« A’B'C" bod T’ = B

. Déle je zfejmé, Ze piedpo-

klady o umisténi bodtt 4, B, C vzhledem k rovin€ & nejsou podstatné.

20. Hledané ¢islo miiZzeme napsat jako
10x + 6,

kde x je nezaporné celé Cislo. Oznacime-li ¢ pocet &islic hledaného Cisla,
je podle podminek tilohy

4 (10x 4+ 6) = 6.10c-1 + x,
neboli
13x = 2 (101 — 4). (€))]
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Nejmensi z Cisel tvaru 10c-1 — 4, tj. z Cisel
6, 96, 996, 9996, ...,
délitelné tfinacti je, jak snadno zjistime,
99 996 = 13.7692.

V (1) pak bude ¢ = 6, x = 15 384, a jak se miiZeme pfesvéd¢it, Cislo 153 846
skute¢né tloze vyhovuje.

2. feSeni. Hledané cislo n kondi dislici 6, a tedy &islo 4n kondi &islici 4.
Podle podminky tlohy pak ¢islo n konéi dvojéislim 46. Odtud vidime, Ze
4n kondi dvojcislim 84 a n trojCislim 846. Postupujeme-li timto zpiisobem,
nachdzime postupné posledni Cislice Cisel 7 a 4n:

n 4n
.......... 6 ... 4
......... 46 R 2
........ 846 cee.....384
....... 3846 ee.....5384
...... 53846 ......15384
..... 153846 .....615384

Cislo 153 846 vyhovuje pozadavkiim tlohy a Zidné mensi nevyhovuje.
21. Vyhovuje-li ¢islo x dané ncrovnici, plati pro né nerovnost
- 1 -
]/3—x>7+ Jx+1

a pfitom jsou odmocniny definovdny, takZe je —1 < x < 3. Na obou
stranach nerovnosti jsou kladna Cisla, takZe pro €islo x plati i nerovnost

7
]/x+1<—4————2x,

kterou dostaneme umocnénim obou stran a jednoduchou upravou. Odtud
je patrno, Ze
-
—l1=x< e (D
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Po dalsim umocnéni obou stran dostaneme

sy 33 0
x—}+64/,

neboli
e - 31
(x—1)2> 6
Kazdé feseni dané nerovnice tedy vyhovuje nerovnici
31
x — 1] > -1/8— 2

Vsechna feSeni nerovnice (2) jsou praveé ta x, pro kterd plati
31 31
x>l+l/—8—- nebo x<l—M§—.

V intervalu (1) z nich leZi pravé ta, pro ktera
1 £x< V3_1
—l Z2x <1l — 5
Obracenim celého postupu se presvéd¢ime, Ze dané nerovnici vSechna
vyhovuji.

22. Zavedeme v prostoru soustavu soufadnic. Ma-li bod P soufadnice
(p1, p2, p3) a bod Q soufadnice (g1, g2, ¢3), budeme symbolem P 4 Q
rozumét bod o soufadnicich (p1 + g1, p2 + ¢2, ps -+ ¢3), symbolem sP,
kde s je realné &islo, bod o soufadnicich (sp1, spz, sps). Zkoumany pohyb
rozd€lime na Ctyfi Casti (obr. 27).

a) Bod X probihd use¢ku 4B a bod Y stejnou rychlosti tse¢ku B'C’. Je
tedy
X=(0—t)A+ 1B, Y=—1)B + (C,
kde parametr ¢ probiha interval {0, 1). Pro stfed Z tiseCky XY pak plati
X+7Y A+ B B+ C

=T, = —t) a4 >

2 2 2

probéhne tedy useCku KL, kde K je stied usecky AB’ a L je stied usec-
ky BC'.
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Obr. 27

b) Bod X probiha tsecku BC a bod Y stejnou rychlosti usecku C'C. Je
tedy

X=(U—t)B+tC, Y=(1—1C + tC,

kde parametr ¢ probiha interval <0, 1). Pro stfed Z Gsecky XY pak
plati

Y i B+ C c

probéhne tedy useku LC.
¢) Bod X probiha useCku CD a bod Y stejnou rychlosti isecku CB. Ana-
logicky zjistime, Ze bod Z probéhne tisecku CM, kde M je stied tseCky
BD.
d) Bod X probihd usecku DA a bod Y stejnou rychlosti tisecku BB'. Bod Z
pak probéhne tsecku MK.
Hledana mnozina bodu je tedy obvod ¢tyftuhelniku KLCM, kde K, L, M
jsou stfedy sténovych ahlopiiéek 4B’, BC’, BD.
. |AB|
Pozndmka. Ctyfihelnik KLCM je kosoétverec o strané — a s tihlem

| XLCM| = 60°.

23. Pro kazdé realné x je

cos 2x = 2 cos?x — 1,
cos 3x = 4 cos3x — 3 cos x.
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Resime tedy rovnici
cos2x + (2 cos2x — 1)2 + (4 cos3x — 3 cos x)? = 1,
kterou upravime na tvar
2 cos2x (8 costx — 10 cos2x -+ 3) = 0.
Odtud zjistime, Ze vyhovuji pravé ta x, pro néz cos x nabyva nékteré z hod-
not
" 2 12913 13
E] 2 s T 2 s 2 s T 2 U
V intervalu <0°, 360°) jsou to Uhly
30°, 45°, 90°, 135°, 150°, 210°, 225°, 270°, 315° a 330°.
Dalsi hodnoty dostaneme prictenim nasobkiti 360°.
2. feSeni. Dosadime-li do rovnice za cos2x a cos?2x

1 -} cos 2x I 4 cos 4x

cosy = ——, cos¥ 2y = ————
2 ’ 2 ’

dojdeme k rovnici
cos 2x |- cos 4x -} 2 cos?3x = 0.
Podle vzorce pro soucet kosinti je
cos 2x -+ cos 4x = 2 cos 3x cos x,
takZe feSime rovnici
cos 3x (cos x -+ cos 3x) = 0.
Podle téhoz vzorce je
Ccos X - cos 3x = 2 cos x cos 2x,
COZ nam umoznuje upravit rovnici na tvar
€Os X cos 2x cos 3x = 0.
Odtud uz snadno najdeme jeji feSeni.
3. FeSeni. Kazdému redlnému Cislu x ptifadime komplexni jednotku
z(x) = cos x + isin x.
Podle Moivreovy véty je

z"(x) = cos nx - isin nx
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a odtud snadno odvodime, Ze pro kazdé x je

ZM(x) + z7(x) | 2%(x) — z7%(x)
COS nx = -————2——————, sin nx = —————ZT—-—— €))

Resime tedy rovnici
(20) + 2710002 + (2(0) + 220)° + (3(0) + 23 = 4,

neboli

z78(x) + z74(x) + z72(x) + 1 + z2(x) + z4(x) + z8(x) = —1.
Vyndsobime-li tuto rovnici dvojélenem 1 — z2(x), dostaneme

z78(x) — z8(x) = z%(x) — 1,
neboli
27(x) — z77(x) = z71(x) — z(x).

Tato rovnice ma krom& hledanych feSeni jesté kofeny, pro které 1 — z2(x) =
== 0. Pfislund x v¥ak ptvodni rovnici nevyhovuji. Podle (1) pak dojdeme
k rovnici

sin 7x = — sin X,
neboli

sin 7x = sin (—x),
kterou uz neni tézké vyfiesit.

24. Nejprve piedpokladejme, Ze | X ABC| = 90°. Ve ¢tyfuhelniku 4BCD
s pozadovanymi vlastnostmi ozna¢me S stfed vepsané kruZnice (obr. 28).
Ten leZi na osdch Ghli étyfuhelniku ABCD, coZ ndm umoZiiuje vypodist

| ASC| = | < SAB| 4 | < SBA| + | X SBC| + | X SCB| =
1 1
= | ¥ DAB| + | % ABC| + — | % DCB].
ProtoZe Ctyfuhelnik ABCD je vepsan do kruZnice, je
| xDAB| 4 | ¥ DCB| = 180°,

takze
| % ASC| = |« ABC| + 90°.
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Tento vztah ndm umoZni sestrojit bod S jako spoleény bod osy thlu
ABC a kruhového oblouku o, ktery lezi v poloroviné ACB a z néhoz je
useCku AC vidét pod uhlem |¥xABC| -+ 90°. Vedeme-li pak bodem A
piimku p soumérné sdruZenou se stranou 4B podle osy A4S a bodem C
piimku g soumérné sdruZenou se stranou CB podle osy CS, protnou se
v hledaném bodé D.

Z konstrukce je patrno, Ze bod S lezi na osich uhlt ABC, BAD, BCD
a Ctyfihelniku ABCD lze tedy vepsat kruZnici. Abychom dokazali, Ze
bod D lezi na kruZnici k, sta¢i dokdazat, Ze

| %< ABC| + |¥ADC| = 180°.

Skutecné, z konstrukce vyplyva
| £ADC| + | ¥ ASC| = 360° — 1? (I BAD| + | ¥ BCD|),
tj.
|<ADC| 4 |¥ABC| + 90° = 360° — —;- (360° — | x ADC| — | ¥ 4ABC)),

odkud plyne uvedend nerovnost.

Osa uhlu ABC se vidy protne s obloukem o nad tseCkou AC v jediném
bodé, takZe bod S je vidy urlen jednoznacéné. Piimky p, g sviraji tihel
180° — | X ABC| a jsou tedy riiznobézné, takZe i bod D je vidy uréen
jednoznaéné.
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Analogicky postupujeme i v piipadé | % ABC| > 90°. Tentokrit bude
bod § spoleénym bodem osy uhlu ABC a kruhového oblouku, ktery lezi
v poloroviné opaéné k ACB a z néhoz je usecku AC vidét pod Uhlem
270° — | X ABC]|.

2. feSeni je zaloZeno na znamé vété: Konvexnimu Ctyfthelniku ABCD
lze vepsat kruznici, pravé kdyZ pro velikosti jeho stran plati
|AB| + |CD| = |BC| - |A4D]|.
Jeji diikaz pripomeneme v pozniamce.
Vyhovuje-li tedy ¢tyrahelnik A BCD uloze, plati
|AD| — |CD| = |AB| — |BC|. )
Stali se zabyvat ptfipadem |AB| > |BC|. (Je-li |AB| = |BC|, plyne z (1),
7e |AD| = |CD| a tloha je snadnd. Pripad |AB| < |BC| pfevedeme na
pfipad |AB| > |BC| zménou oznaceni vrcholit 4, C.) Oznaéme jeSté¢ F
bod na strané 4D, pro ktery je |DE| = |CD| (obr. 29). Pak je
|AE| = |AD| — |CD| = |AB| — |BC|.

Obr. 29

Ctyttahelnik ABCD je vepsan do kruZnice k, proto
| ¥ ABC| + ¥ ADC| = 180°,
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takze

1
| X AEC| = 180° — | X CED| = 180°——- (180° — | X ADC]) =

1
= 180° — — | X 4BC|.

To ndm umoZiiuje sestrojit bod E jako spolecny bod oblouku o leziciho
v poloroviné opa¢né k ACB, z néhoz je tsecku AC vidét pod thlem 180° —

1
Y | X ABC|, a kruznice (A4;|AB|— |BC|). Bod D pak bude prisetik

pfimky AFE s danou kruZnici k.

Z konstrukce je patrno, Ze pro sestrojeny bod D plati (1) a ¢tyfhelniku
ABCD lze tedy vepsat kruznici.

Oblouk o se s kruznici (4; |AB| — |BC|) vzdy protne v jediném bodé
a bod E je tedy urfen jednoznacné. Oblouk o, a tedy i bod E lezi uvnitf
kruzZnice k, nebot

1
| X AEC| = 180° — — | X ABC| > 180° — | X ABC| = | % ADC|.

Bod D je tedy také urCen vzdy jednoznacné.

Pozndmka. Existence bodu D, ktery vyhovuje pozadavkim tlohy, je
vidét také takto: bod D je takovy bod oblouku w kruznice k doplitkového
k oblouku ABC, Ze

|AD| — |CD| — |AB| + |BC| = 0. 2
Nechme bod X probihat oblouk w. V krajni poloze X = A4 je podle troj-
uhelnikové nerovnosti
|AX|— |CX|— |AB| + |BC| = — |AC| — |4B| + |BC| <0,
zatimco pro X = C je
|AX|—|CX|— |AB| + |BC| = |AC|— |AB| + |BC| > 0.
Na oblouku w tedy existuje bod D, pro ktery plati (2).

Pripomerime si jesté, jak se dokazuje véta, Ze konvexnimu Ctyfthelniku
ABCD lze vepsat kruznici, pravé kdyz pro velikosti jeho stran plati

|4B| + |CD| = |BC| + |4D|. 3)

V 2. feSeni jsme pouzili tuto vétu v obou smérech.
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Lze-li kruZnici vepsat, oznaéme P, Q, R, S body, v nichZ se dotykd
stran (obr. 30). Pak zfejmé

|AP| = |AS|, |BP| = |BQ|, |CQ| = |CR|, |DR| = |DS],
a tedy
|AB| + |CD| = |AP| + |BP| + |CR| + |DR| =
= |4S] + |BQ| + |CQ| + |DS| = |BC| + |4D|.

C

Obr. 30

Je-li ABCD rovnobé&Znik, pro ktery plati (3), je to kosoltverec a tomu
kruZnici snadno vepiSeme. Neni-li ABCD rovnobg&Znik, zvolme oznadeni
tak, aby se piimky 4B, CD protinaly v polorovin& ADB a priisetik oznac-
me P. Trojihelniku ADP vepi§me kruZnici v. Je-li strana BC se¢nou kruz-
nice v (obr. 31), sestrojime v poloroving BCP te¢nu B’C’ kruZnice v rovno-
béZnou s BC. Pak bude platit

|[AB| < |AB'|, |DC| < |DC’|, |B'C’| < |BC|,
takZe
|AB| + |CD| < |[4AB'| 1+ |C'D| = |AD| + |B'C’| < |AD| + |BC|

Obr. 31
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a (3) neplati. Obdobné postupujeme i v piipadg, Ze strana BC nema s kruz-
nici v spole¢ny bod (obr. 32). Pak bude

|AB'| < |AB|, |DC'| < |DC|, |BC| < |B'C'|,
takZe
|[AB| + |CD| > |AB'| 4+ |DC’| = |4AD| + |B'C’| > |AD| + |BC]|
a (3) opét neplati.

.,B, e
Obr. 32

25. Oznaéme V stied vepsané kruZnice a M prisecik piimky AV s opsa-
nou kruznici (obr. 33). Bude se nam pozdg&ji hodit, viimneme-li si, Ze
|BM| = |VM]|. Vyplyva to z rovnosti uhli

| % BVM| = |¥ABV| - | % BAV| = | X ABV| -+ | ¥ CAV| =
= | X CBV|+ | %< CBM| = | xMBV|.

Oznatme dile O stied opsané kruZnice a S stied zikladny BC. Body
0, V, S lezi na ose zakladny BC (obr. 34). Je-li | X BAC| = a < 90°, lezi
bod O uvnitf trojahelniku ABC a pfitom plati

o
|SO| = |BS| cotg o, |SV| = |BS]| cotg (45° -+ —4—)
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Odtud je vidét, Ze pro « < 60° je |SO| > |SV], pro « > 60° je |SO| < |SV|
a pro a = 60° je O = V. Je-li « > 90°, lezi bod O vné trojihelniku ABC.
Pro hraniéni pfipady o = 60° a o = 90° ulohu snadno vyfesime. Jinak
dostdvame tfi rliznd potfadi bodli O, ¥V, S na tseCce AM.

Pro « < 60° zachycuje situaci obr. 35, v némz T je bod, ve kterém se
vepsand kruzZnice dotykd ramene AB. Pravouhlé trojuhelniky ATV, ABM
jsou podobné, pfi¢emz

|[AV|=R 4+ d, |AM|=2R, |TV|=r a |BM|= |VM|=R—d.
Je tedy
|TV|:|BM| = |AV|: |AM]|,
neboli
r:(R—d)=R+d):2R.
Odtud hned dostaneme dokazovany vztah
d=JR(R—2r).
Pro 60° < a<< 90° je situace zndzornéna na obr. 36. Z podobnych troj-
Uhelnikt ATV, ABM, kde tentokrat je
|[AV|= R—d, |AM| =2R, |TV|=r a |BM|= |VM|= R + d,
dostaneme
r:(R+d)y={R—d):2R,

coz dava dokazovany vztah.
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Obr. 37 znazorfiuje situaci pro o > 90°. Zde opét dostaneme
r:(R+d)y=(R—d): 2R

Obr. 37

2. feSeni. DokaZeme, Ze vzorec plati, i kdyZ trojihelnik 4 BC neni rovno-
ramenny. Pfedev§im si uvédomme, Ze pfi odvozovani rovnosti |BM| = |V M|
jsme nepottebovali predpoklad o rovnoramennosti trojuhelniku ABC.
Oznaéme jesté N druhy koncovy bod priiméru OM opsané kruznice (obr. 38).
Pravothlé trojuhelniky ATV, NBM jsou podobné a odtud

|AV|.|BM| = |MN|.|TV| = 2Rr. (1)

Koncové body priiméru OV opsané kruznice oznalme P, Q. Pak je
[PV].1QV| = (R—d) (R + d),

a tedy i
|AV|.IMV|=(R—d) (R + d) ?2)
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(mocnost bodu ¥V k opsané kruZnici). Levé strany (1) a (2) jsou stejné,
proto

2Rr =R —d)(R+ d)
a odtud
d? = R(R — 2r).

Pozndmka. VSimnéte si, Ze pro kazdy trojuhelnik je R = 2r. Rovnost
nastane, pravé kdyz je trojuhelnik rovnostranny.
Obracenim tvahy z 2. feSeni bychom dokazali obricenou vétu: Jsou-li
v roviné ddny dvé kruZnice k, K, pro jejichZ poloméry r, R a vzdalenost
stfedil d plati
d? = R(R — 2r),

pak existuje trojahelnik, jemuZ je kruznice k vepsina a kruZnice K opsana.
Ptesngji, zvolime-li na kruZnici X libovolny bod 4, pak te¢ny vedené z ného
ke kruZnici k£ protnou kruznici K v bodech B, C, pfiemzZ tétiva BC se
dotyka kruZnice k.

26. Dotyka-li se kulova plocha vSech Sesti piimek, v nichZ lezi hrany
étytsténu, protina Etyfi roviny, v nichz lezi stény, v kruZnicich vepsanych
nebo pripsanych jeho sténdam. Pritom kazdé dveé z téchto kruznic maji
spoleCny bod dotyku.

Jedna mozZnost je, Ze vSechny &tyfi kruZnice jsou sténdam vepsané a vSech
Sest bodt dotyku K, L, M, P, Q, R lezi uvnitf hran (obr. 39). Takové ku-
lovéa plocha - fikejme ji vnitfni - existuje nejvyse jedna.

Qbr. 39 Obr. 40
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Druhd mozZnost je, Ze néktera z kruZnic je pfipsand, takZe néktery bod
dotyku leZi na prodlouZeni hrany za jeji krajni bod. Dejme tomu, Ze napf.
bod dotyku K’ leZi na prodlouZeni hrany DA za bod A4 (obr. 40). Kulovd
plocha pak protne rovinu DAB v kruZnici pfipsané trojuhelniku DAB,
kterd se dotykd hrany 4B ve vnitfnim bodé R’ a pfimky DB v bodé L’
na prodlouZeni hrany DB za bod B. Stejna situace je v rovinach DBC,
DAC. Kulova plocha se tedy v tomto pifipadé dotykd hran AC, BC, AB
v bodech P’, @', R" a pfimek DA, DB, DC v bodech K’, L', M’ oddé€lenych
od bodu D rovinou 4BC. Jedna kruZnice je vepsana sténé ABC a tfi kruz-
nice jsou pfipsény ostatnim sténdm. Stejnou tvahu, jakou jsme ted pro-
vedli pro bod D, mliZeme provést i pro ostatni vrcholy 4, B, C.

Zjistili jsme, Ze popsanou vlastnost miZe mit nanejvy$ pét kulovych
ploch, jedna vnit¥ni a &tyfi vnéjsi.

Existuje-li vnitini kulova plocha, je

|4K] = |AR| = |4Q| = a,
|BL| = |BP| = |BR| =b,
CM| = |CP| = |CQ| =,
|DK| = |DL| = |DM| = d.
Existuje-1i vnéjsi kulova plocha pfislusna bodu D, je
|AK'| = |4Q'| = |AR'| =d,
|BL'| = |BP'| = |BR'| =V,
|ICM'| = |CP'| = |CQ'| =<,
|DK'| = |DL'| = |DM'| =d'.
Existuji-li obé, je P = P, Q = Q', R = R’, a tedy
a=da,b=>b,c=c

d=2a+d=2b+d=2c-}d,
takZe
a=b=c

a trojuhelnik ABC je rovnostranny. Provedeme-li analogickou tivahu i se
tfemi zbyvajicimi vn&jsimi kulovymi plochami, zjistime, Ze i stény ABD,
BCD, ACD jsou rovnostranné trojihelniky a C&tyfstén ABCD je pravi-

delny.
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Obréacené, je-li ABCD pravidelny Ctyfstén, oznaéme S jeho stfed (tj.
téZisté). Pak kulova plocha o stiedu S, ktera prochazi stfedem jedné hrany,
bude prochézet i stiedy ostatnich hran. Stejnolehlosti se sttedem D a koe-
ficientem 3 pfevedeme tuto vnitini kulovou plochu ve vngjsi pfisluSnou
vrcholu D. Stejné pak sestrojime ostatni t¥i vn&jsi kulové plochy.

27. Je-li x redlny kofen dané rovnice, je x2 = p, x2 = 1, x = 0, tedy
¥¥=p x= L Q)
Pro ¢islo x plati
21 = x— R —p,
a umocnime-li obé strany,
2x2 4 (p—4) = — 2x|x2 — p.

Po dal§im umocnéni dostaneme rovnici

44 —2p)x2 = (p— 4. @

Je-li p = 4, ma rovnice (2) feSeni x = 0, ale to nevyhovuje podmince (1).
Je-li p = 2, p # 4, nemd rovnice (2), a tedy ani plivodni rovnice feSeni.
Pro p < 2 ma rovnice (2) dvé feSeni

4—rp
:-——'———‘, 3
g 2)/4—2p @
p—4
S ——" 4
¥ 2)/4—2p ®

Snadno se pfesvéd&ime, Ze Cislo (3) vyhovuje a Cislo (4) nevyhovuje pod-
minkdm (1). Jak uvidime, neznamend to jesté, Ze &islo (3) vzdy vyhovuje
dané rovnici. Dosadime-li totiZ (3) do dané rovnice, dostaneme rovnost,
pravé kdyz pro parametr p plati

13p — 4] + 2|p| = 4—>p,

tj. pravé kdyz

0

I\
IIA

4
p 3 &

Pro tyto hodnoty parametru p ma tedy dand rovnice jediné feSeni (3),
pro ostatni hodnoty feSeni nema.
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2. ¥eSeni. Dana rovnice je ekvivalentni se soustavou

(x> —p + 2)x2—1)* = x2,
x=0,

neboli

4)/x2 —px2—1=p + 4 —4x2,
x=0.
Tato soustava je ekvivalentni soustavé
(4)x2—p |x2 —1)2 = (p + 4 — 4x2)?,
x=0,
p+4—4x2 =0
a ta soustave
16 (x2 —p) (x — 1) = (p + 4 — 4x2)2,
x =0,
p+4—4x2 =0,
x2—p =0,
x2—1=0,
neboli
8(2—px?=(4—p)?
x =0, %)

¥y 6

x2 2 p, @)
x2 = 1. ®)

Porovname-li podminky (6), (7) a (6), (8), zjistime, Ze soustava nema
feSeni, neni-li

IV 1

0 <4
=p= 3'

Pro tato p ma piavodni rovnice jediné feSeni vyhovujici podmince (5),
totiz
4—p

X = .
2)/4—2p
Snadno se pfesvéd¢ime, Ze i podminky (6), (7), (8) jsou pro toto x splnény.
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28. Hledana mnoZina je podle Thaletovy véty sjednocenim vSech kulo-
vych ploch s primérem A4X, kde bod X probihd tsec¢ku BC (body 4 a X
patii do hledané mnozZiny, nebot pravé uhly s ramenem AX a vrcholem
v bodé€ 4 nebo X splituji podminky ulohy). Uvédomme si, Ze kulova plocha
je invariantni viéi otofeni kolem pifimky prochdzejici stiedem. MnoZina
vSech stfedi zminénych kulovych ploch je usecka B'C’, jejiz krajni body
B, C’ jsou stfedy useCek AB, AC. Hledana mnoZina bude tedy invariantni
vici otaceni kolem piimky B'C’. Staci tedy tlohu vyfesit v roving, v niz
lezi body 4, B, C. Najdeme-li tak mnozinu M, dostaneme hledanou mno-
Zinu v prostoru rotaci mnoziny M kolem pfimky B'C’.

Na obr. 4la—f jsou znazornény hledané mnoZiny v roviné pro riizné
pripady vzajemné polohy bodﬁ:A a tsetky BC. Je to sjednoceni viech kruz-
nic nad primérem AX, kde bod X probiha usecku BC. Jinymi slovy, je
to mnozina vSech kruZnic prochazejicich bodem 4, jejichZ stfedy probihaji
tseCku B'C’. Spoleénym bodem vsech téchto kruZnic je také bod 41 sou-
mérné sdruZeny s bodem A podle pfimky B'C’. Hledanou mnoZinu bodi
v roviné muZeme charakterizovat takto: Je to mnoZina vsech bodi, které
lezi v sjednoceni dvou kruhti s praméry 48, AC a neleZi uvniti jejich pra-
niku.

Obr. 41a Obr. 41b Obr. 41c Obr. 41d

Obr. 41e Obr. 41f
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Hledanou mnozinou bodii v prostoru je mnoZina vSech bodu, které lezi
ve sjednoceni dvou kouli s priméry AB, AC a neleZi uvnitf jejich priniku.

29. Vezméme pravidelny n-tithelnik BiBz. .. By, ktery ma s danym n-thel-
nikem Ai1Ads...A, spoleénou stranu Ai1de = BiB2, pficemZ oba lezZi
v téZe poloroviné uréené piimkou 4142. Oba mnohotuhelniky maji vnitini
uhly stejné. Jestlize

ay =dgz = ... = ay_1,
jC An S B)(,, a prOtOZC Al = Bl, je ap = lAnA],I - ]BnBlI =daj. Kdyby
ie{l,2,...,n—2} byl prvniindex takovy, Ze a; > a1, leZely by (obr. 42)
body Aii2, ..., Ay uvnitf pravidelného n-tihelniku B1Bs. . . B, a platilo by
|‘¥An/1]_A2] < I{BnBlelﬂ

COZ neni mozné.

A=l Ay B
Obr. 42

2. ¥eSeni. Sestrojme osu vnitiniho thlu pfi vrcholu 4; a promitnéme na
ni pravouhle vSechny vrcholy uvaZovaného n-uhelniku. ProtoZe vSechny
vnitini thly jsou shodné, maji dvojice stran 4142 a A14,, AsAz a ApAy-1,

. vZdy stejné odchylky od osy (je-li # = 2k — 1, zbyde strana AxAy.1,
ktera je na osu kolmd). Odtud je vidét, Ze praméty lomenych Car 41ds. .. A;
aA1Ay. .. A1 v piipadé lichého n = 2k — 1, resp. A1dz. . . A1, A14y. . .
... Agy1 v piipadé sudého n = 2k, jsou stejné dlouhé. Zaroveni je patrno,
Ze je-li alespon jedna z nerovnosti

ayZaz 2 ... 2dan

ostrd, nemohou byt priimély obou lomenych ¢ar stejné dlouhé.
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30. Vyhovuji-li ¢isla x1, x2, x3, x4, x5 dané soustavé, je podle prvnich
dvou rovnic

X5 = PX1— X2, e9)
X3 = yX2 — X1. )

Dosadime-li odtud do tfeti rovnice, dostaneme
x4 = (y2 — Dxg — yx1. ©))

Dosadime jesté do Ctvrté a paté rovnice za x3, x4, x5 podle (1), (2) a (3)
a dostaneme
0?+y—Dri—0—1D0%+y—1Dx2=0, @
0 +y—Dx1—(O%+y—Dx2=0. ©)
Reseni dané soustavy tedy vyhovuji soustavé (1)—(5). Obracenym postu-
pem bychom zjistili, Ze kazdé feSeni soustavy (1)—(5) spliiuje danou sou-
stavu. Obé& soustavy jsou tedy ekvivalentni.
Re¥me soustavu (1)—(5). Je-li y2 + y — 1 = 0, tj.
—1+ 5 —1— 5

y=p nebo y = T,

jsou rovnice (4) a (5) splnény pro libovolnd dvé Cisla x1, x2. Ke kazdé
dvojici x1, x2 pak rovnice (1)—(3) jednozna¢né uréuji Cisla x3, x4, X5.
V piipadé Ze y2 + y — 1 5 0, nabudou rovnice (4), (5) tvaru
x1— (@ —1Dx2=0,
x1—xg2 = 0.
Je-li y =2, zjistime, Ze soustave vyhovuji pravé vsechny pétice, pro
které plati X1 == X2 = X3 = X4 = X5.
Pro y # 2 ma v uvaZovaném piipad€ soustava jediné feSeni
X1 = X2 = X3 = X4 = X5 = 0.
Zaver. Je-li
—14 5 —1—5

y=——§——-neboy= 3 A

ma soustava nekoneéné mnoho feSeni tvaru
X1=1U X2 =7V, X3 = pV—u, Xa = (y2 — 1)y —yu, x5 = yu—v,

kde u, v jsou libovolna &isla.
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Je-li y = 2, ma soustava nekoneéné mnoho feSeni tvaru
X1 = X2 = X3 = X4 = X5 =1,
kde ¢ je libovolné ¢islo.
V ostatnich pfipadech ma soustava jediné feseni
X1 = Xg = X3 = X3 = X5 = 0.

31. Podle vzorct pro soucet kosintt a pro kosinus a sinus dvojnasobného
thlu je

T 2T RE T RE: 27
cos - — COs Kl -+ cos E (cos o -+ cos —7—) — COS 7=
1 27 i
= 2 cos 08 e 2 cos? e + 1=
b1 27 T
= 2 ¢cos Kl (cos -7—-—cos —7—) + 1=
T 2n 67
= 2 cos ‘7 (cos £l -+ cos 77—) + 1=
k1 27 4T
= 4cos7 0057 cos7—|— 1 =
T b1 27w 4
4 sin Kl cos 7 cos El cos -
= — 4 1=
sin 1
_2m 27w 4T _ 4rn 47
2 sm7 cos E3 cos £l sin K cos E2
= - tl=— 1=
sin - sin =
_ 8T .om
sin —- — sin = |
= +1 = - +1 = >
2 sin = 2 sin7
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2. FeSeni vyuziva vzorce
2 cos x cos y = cos (x + y) -+ cos (x — ).

Postupné dostavame

b1 T 27 3
2 cos — \cos = —cos — - cos — ) =

14 7 7 7
g ™ 27 ™ In T
= 2 cos El uos—lz—-h.os 7 s 1y + 2cos-— cos 15 =
3 11 5w 3n Tr 5w ]
-cos——i—cos—lz cosl—4 cos——+cos—+cos—lz-—cosl—4,

takZe

) ( B 27 37\:) ]
2 \cos - —cos = + cos | = 1.
7 8 TS
3. ¥eSeni. Zavedme v rovin€ soustavu soufadnic (budeme pracovat jen
s prvnimi soufadnicemi). Cisla
T 21 3w
€08 —7, €OS =, C0S
jsou soufadnice vrcholi 41, 42, A3 pravidelného Ctrnactithelniku vepsa-
ného do jednotkové kruZnice se sttedem v pocatku O (obr. 43). Cislo

17 27 KE
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se shoduje se soufadnici koncového bodu vektoru
OA; — OAz + OA3 = OA, + OAg + OAs.

Viimnéme si, ze koncovy bod vektoru

OAi13 + OAs + OAnn
ma tutéZz soutadnici. Pfidame-li jesté vektor OA;, dojdeme k zavéru, Ze
¢islo

b1 27 3w

2 (cos 7-cos -7— -} cos —7—) — 1
je soutfadnice koncového bodu vektoru
OA: -+ OA; + OAs + OA; + OAg + OAi1 + OAss.

27
To je viak nulovy vektor, nebot je invariantni vii¢i otoeni o - Je tedy

7
T 27 3w
2(cos —7~———cos —7— -+ cos :]—) =
4. feSeni. Uvazujme komplexni jednotku
T .. T
z = cos—,;- + lsm—7-.
Podle Moivreovy véty je
nt  #xw
z"~~~cos*7~ - 1sin 7
a odtud
2 cos mr = zn 4 z77,
7
Viimnéme si jesté, Ze z7 = —1. Je tedy
1] 2w 3n
2 (cos = cos + cos 7) =(Z+z)—(Z2+2zY)+ (z283—2z73) =
=28 —22 4 z— 14zl —2z24 234 1=
z4 4 273 z7 41

c+1 T agrp Tl
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32. Probereme vSech 120 potadi a zjistime, Ze jedin€ EDACB vyhovuje
podminkam ulohy.

2. feSeni. Vyjdeme z druhé predpovédi. Pofadi DAECB obsahuje Ctyfi
dvojice bezprostfedné za sebou nasledujicich pismen DA, AE, EC, CB,
z nichZz pravé dvé jsou spravné. Tyto dvé spravné dvojice nemohou mit
spolecné pismeno. Pak bychom totiz dostali spravnou trojici bezprostiedné
po sobé nasledujicich pismen. Kdyby tato trojice méla nékteré pismeno
na sprdvném misté, byla by pak vSechna jeji tfi pismena na spravném
misté, ale spravné predpovézena byla jen dvé. A kdyby na spravném misté
byla zbyvajici dvé pismena, bylo by vSech pét pismen na spravném misté.
V tvahu tedy prichdzeji tfi pary spravanych dvojic

DA, EC,
DA, CB,
AE, CB.

Uvédomme si jesté, Ze pro dvé spravné piedpovézena pismena neni
jind moZnost, nez Ze tvoii jednu ze spravnych dvojic. Pro hledané poradi
tak dostdvame v prvnim pfipadé jednoho kandidata DABEC, ve druhém
piipadé DACBE a EDACB a ve tfetim pfipadé AEDCB. Podle vysledku
prvni ptedpovédi z nich vyhovuje jen EDACB.

33. Nejprve zjistime, jaké zbytky dava 27 pii déleni sedmi. Cislo
28k — (28)k = (7 + 1)
dava podle binomické véty pii déleni sedmi zbytek 1. Odtud je vidét, Ze
Cislo 23k+1 — 2 .23k dava zbytek 2 a Cislo 23442 = 4,23k diva zbytek 4.
a) Cislo 27 — 1 je délitelné sedmi, pravé kdyz # je délitelné tfemi.
b) Cislo 2» 4 1 neni délitelné sedmi pro ?adné pfirozené n.

34. Podle trojuhelnikové nerovnosti je
b—0)%b+c—a) 20,
(c—a)(c+a—>b) 20,
(a—b)a+b—c)=0.
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Seéteme-li tyto tfi nerovnosti, dostaneme
a¥ct+a—b+a+b—c)+b¥bt+tc—atat+b—c)+

+c2b+c—a+c+a—>b)—2bc(b+ ¢c—a)—2ac(c+ a—b)—

—2ab(a+b—c)=

= 2a%a—b—c) + 2b%b—a—c) + 2c¢%(c—a—b) + 6abc = 0,

coz dava dokazovanou nerovnost.

2. FeSeni. Jsou-li a= b= ¢ = 0 libovolna tfi &isla, je
a?(b + ¢c—a) + b%c + a—>b) + c2(a + b—c) — 3abc =

= a(ab + ac — a® — bc) + b(bc + ba — b% — ac) +

+ c(ac + cb —c? —ab) =

=—ala—b)y(a—c)+bb—c)yla—b)—cla—c)(b—c) =
S—al@a—bbG—c)+bb—c)yla—b)—cla—c)(b—c)=
=—(@—b2b—c)—cla—c)(b—c)=0

a rovnost nastane, pravé kdyZz je a =b = c nebo a =5, ¢ = 0.

Pozndmka. Predpoklad, Ze a, b, ¢ jsou velikosti stran trojihelniku, byl
zbytedny. Za tohoto predpokladu je napr.
@+b—c)yb+c—a)(c+a—b)>0.
a odtud
a?b + c—a) + b%c + a—b) + c%(a + b —c) > 2abc.

35. Polomér kruZnice vepsané trojuhelniku ABC ozna¢me r a jeho
poloviéni obvod s. Analogického znaleni pouzZijeme pro trojuhelniky

Obr. 44
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oddélené uvedenymi te¢nami. VSechny &tyfi uvazované trojiihelniky jsou si
podobné. Nasim tkolem je vyjddfit Cislo

o o o I'a 2 ry 2 re 2
z=mr 4 wr, + 7, + wr] = 1:;'2(1 - (—,—) + (’—) + (;) )

pomoci a, b, c. Z vlastnosti tecen zjistime (obr. 44), Ze
1 1
sa =" (|AX| -+ |XP) + = (14¥| + |YP) =

1 1
= 5 |4M| + - |AN| = |[AM| = s —a,

takze
Fa Sa S—a
roos s s
analogicky
) b re c
—=1—— —=1-——
! S r §
a tedy

T I

a+b-+c a®- b2+ c?
r:7tr2(4-—2 - - o+ )-:
s 52
0a2_l_b2-+_.c2
=
S2

Obsah P trojuhelniku ABC je roven souctu obsahl trojahelnikii 4BS,
BCS, CAS, tj.

ar  br cr

P:-"2—+7—}-—2‘=rs,

a podle Heronova vzorce je

P=|s(s—a)(s—b)(s—c),
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takZze
o l/(s——a) (s—b) (s—o)
ro= 1 B .
Je tedy
™
z=3 (s—a)(s—b)(s—c)(a% -+ b2+ ¢2) =
b+ c—a)@-+c—>b)(a+ b—c)(a® -+ b2+ c?)
a (@a+b+c)s '
Pozndmka. VSimnéme si, Ze
Ta o Te a b c at+b+c
b —=l——tl——t1——=3— — =1
r r r S S S s
Je tedy

36. Zvolme jednu z uvazovanych osob a oznaéme ji A. Ta si dopisuje
se Sestndcti osobami nanejvys o tfech tématech. S alespon Sesti osobami
si tedy osoba A dopisuje o stejném tématu - oznac¢me je I.

Dopisuji-li si nékteré dvé z téchto Sesti osob také o tématu I, nalezli
jsme tii osoby, které si pisi o tématu I.

V opaéném piipadé si Zadné dvé z téchto Sesti osob nepisi o tématu I.
Libovolné z nich zvolend osoba B si tedy s ostatnimi péti dopisuje o nej-
vy§ dvou tématech. Alespon se tfemi si tedy dopisuje na jedno téma -
oznac¢me je II.

Dopisuji-li si nyni nékteré dvé z téchto tfi osob na téma II, nachdzime
opét tfi osoby pisici si o témZe tématu. Neni-li tomu tak, dopisuji si tyto
tfi osoby na dalsi téma TII a diikaz je proveden.

37. Zvolme jeden z péti danych bodii. Cty¥i zbyvajici body maji 6 spojnic
a zvolenym bodem k nim prochézi 6 kolmic. Zadné dvé z nich nesplynou
(jinak by dv& spojnice byly rovnobéZné) a 7adna z téchto kolmic nepro-
chazi Zddnym ze étyt zbyvajicich boda (jinak by byly dvé spojnice kolmé).
Nesplynou ani dvé kolmice vedené dvéma z danych bodi, jinak by byly
dvé spojnice kolmé. Mame tedy 30 kolmic.



38 (98)

Kdyby se kazdé dvé protinaly a kaZdym priseikem prochdzely jen
dvé, méli bychom (320) = 435 pruiseciki.
Kolmice vedené dvéma z danych bodii k téZe spojnici libovolnych dvou

zbyvajicich bodi jsou vSak rovnobézné a neprotinaji se. Ke kazdé z (;) =
= 10 spojnic lze vést tii takové dvojice, takze odpada 30 prﬁseéikﬁ.’
Kazdym z péti danych bodl prochazi 6 kolmic, a tak vidy (g) =15

pruseciki splyva v jeden. Odpadne tak dalsich 5.14 = 70 prisediki.

Kazdé tri z danych bodii jsou vrcholy trojuhelniku, v némZ t¥i vysky
prochazeji spoleénym prisecikem. V kazdém z (;) = 10 trojihelnikd tak
odpadnou dva priseCiky. Prisecik vysek v trojuhelniku, jehoZ vrcholy
tvori dané body, pfitom neni dany bod, jinak by byly nékteré spojnice
danych boda kolmé. Odpada tedy dalsich 20 prusecikil.

Kolmice se protinaji nanejvys v

435 —30 — 70 — 20 = 315

bodech, z nichZ 5 jsou dané body.

38. a) Rovina urcend rovnobézkami AA4:, DD obsahuje t&Znici AM

trojihelniku ABC (obr. 45). Body M, D, A; leZi v této rovin€ i v roviné
BCD, lezi tedy v pifimce. Trojuhelniky MAA1, MD1D jsou podobné,
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a protoZe |MA| = 3 |MD:|, je |AA1| = 3 |DD1]. Analogicky zjistime, Ze
|BB1| = 3|DD1] a |CCy1| = 3 |DD;]. Odtud vidime, Ze trojihelniky 4BC,
A1B1C1 jsou shodné a lezi v rovnobéZnych rovinach, jejichZ vzdalenost je
trojndsobek vzddlenosti bodu D od roviny ABC. Ctyistény A;B1C1D1,
ABCD maji tedy shodné zdkladny a druhy ma trojndsobnou vysku, tedy
i trojndsobny objem.

b) Bod A1 lezi na prisecnici rovin AD1D, BCD, tj. na piimce DM, kde
M je spoleény bod piimky AD; s hranou BC (obr. 46). Oznaéme D’ prii-
seCik primky DiD s rovinou A1B;Cy. Oznalime-li M’ prisecik piimek
A1D', B1C1, bude MM' || BB;.

Trojthelniky AD1D’, A1 DD’ maji stejny obsah, protoZe maji spoleénou
stranu D1D" a je AA1 || D1D’. Oba trojahelniky lezi v jedné roviné a body
B, Bi od ni maji stejnou vzddlenost, protoZe piimka BB; je s touto rovi-
nou rovinob&Zna. Ctyistény ABD1D’', A1B1D'D; maji proto stejny objem.
Podobné étyistény BCD1D" a B1C1D'Dy a také ACD1D’', A1C1D' Dy maji
stejné objemy. Sjednocenim Etyisténtt ABD1D’', BCD1D', ACD1D' vznikne
Ctyistén ABCD’ a sjednocenim &tyisténtt A1B1D'Dy, B1C1D' D1, A1C1D'Dy
Stytstén A1B1C1D1. Ctyistény A1B1C1D1 a ABCD' maji tedy stejny objem
a sta¢i dokazat, ze |D1D’'| = 3 |D1D)|.

Ae=—"__ _ | |
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Ve &tyrtahelniku BCC1B1 je BB1 || CCy. Podle predpokladu leZi Ghlo-
pricka BC; vrovin€ ABD a druhd uhlopiicka B1C v roviné ACD. Prisecik L
uhlopticek BCy, B:1C tedy lezi na pfimce 4D, a tudiZ i na pfimce MM'.
Pricka MM’ tedy prochdzi prusecikem uhlopti¢ek L, ktery ji proto puli
(o této vlastnosti lichobéZniku a rovnobéZniku se jeSté zminime v pozndmce).
Bod L je tedy stfed usecky MM’, takZe GiseCka AL je t&€Znice trojuhelniku
MAM'. Pricka DD’ tohoto trojihelniku je rovnobéznd se stranou MM,
a proto jeji stfed Dy leZi na téZnici A1L.

Vsimnéme si dale, Ze ve Ctyruhelniku AMLA: je AA1 || ML a priseci-
kem jeho uhlopticek je bod D. Proto je bod D stiedem pticky D1Dy.

Zjistili jsme, Ze |D1D| = |DDy| = |DoD’|, takZe skutec¢né |D1D’| = 3 |D1D|.

Pozndmka (obr. 47). Je-li PORS rovnobéznik nebo lichob&znik a UW
pricka prochézejici prusecikem V tuhlopticek, PO || UW || SR, maji obé
dvojice podobnych trojuhelniktt PUV ~ PSR, OVW ~ QSR stejny koe-
ficient podobnosti k, totiZ pomér vzdilenosti bodu V a bodu § od z4klad-
ny PQ. Je tedy |UV| =k |SR| = |V W|.

Obr. 47

2. FeSeni vyuziva zakladd analytické geometrie v prostoru a linearni
algebry. M4-li bod P soufadnice (p1, p2, ps) a bod Q soufadnice (q1, g2, ¢3),
budeme symbolem P -+ Q oznaovat bod se soufadnicemi (p1 -+ g1,
P2+ q2, ps + gs) a symbolem ¢P, kde 7 je redlné Cislo, bod se soufadnicemi
(tp1, tpe, tp3). Budeme pracovat v kartézské soustavé soufadnic s pocat-
kem v bod€ D. Objem Ctyisténu ABCD je pak roven

1
v =¢ ldet (4, B, C),

kde (4, B, C) je matice, jejiz sloupce jsou soufadnice bodl 4, B, C.
Zvolme bod D; v roviné ABC tak, aby nelezel na zadné z pfimek AB,
AC, BC. Pak je

Di=aA+ bB+ cC (a@a+ b+ c=1, abc #0).
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Rovnobézka s piimkou DD; vedend bodem 4 ma parametrickou rovnici
A+ tD1=A + t(@ad + bB+ ¢C) = (1 + at)A + btB + ctC
a rovinu BCD protind v bod€, v némz je koeficient u A nulovy, tj. pro

1
t = ——, tedy v bodé&

a

Ay=——B——0C
a
Analogicky zjistime, Ze
2 a p CC a b
1= =5 A—73C Cl;—cA—cB.

Objem ¢tyfsténu 41B81C1D1 je roven

1
Vi = 3 |det (41 — D1, B1 — D1, C1 — Dy,

pri¢emz
b c
Al—D1=~aA—(—+b)B—(~—-+C)C,
a a
a c
By —D; = — —b*+a A“—bB—"(’b—-i-C)C,
a b
Cl—Dl=—(7+a)A—~—(7+b)B—cC.
Je tedy
/e . O
e = +a . ta
b
V1=Vld°‘ pl b —+b '=V(a+b+c+2)=3V.
C C
;»kc "b‘+c c

Zjistili jsme, Ze tvrzeni a) plati pro libovolny bod D roviny ABC, ktery
neleZi na zadné z ptimek AB, AC, BC.

Pozndmka. Lezi-li bod D) napf. na ptimce AB, nema rovina ABD spo-
leny bod s pfimkou vedenou bodem C rovnobéziné s DDi, takZe ne-
vznikne bod Cj.
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39. Re$me nejprve druhou nerovnici
[J1 + sin 2x — |/1 —sin 2x | < |/2.
Obé strany umocnime a dostaneme ekvivalentni nerovnici

1 + sin 2x — 2]/1 + sin 2x /1 —sin 2x + 1 —sin 2x < 2,
neboli

—2)/1 + sin 2x |/1 —sin 2x < 0.

Této nerovnici vyhovuji vSechna x € 0, 27).
ReSme nyni nerovnici

2cos x = ||/1 + sin 2x — |/1 —sin 2x |. ()

T 31
Jestlize cos x = 0, tedy xe<7, > /) je nerovnice ziejmé splnéna. Hledame

dale feSeni nerovnice (1), pro néz cos x > 0. Za tohoto pfedpokladu obé
strany nerovnice umocnime a postupné dostavame ekvivalentni nerovnice
4 cos2x £ 1 + sin 2x — 2]/1 + sin 2x /1 — sin 2x + 1 — sin 2x,
4 cos?x < 2 — 2]/1 — sin22x,
2 cos?2x £ 1 — |cos 2x],
cos 2x £ — |cos 2x|.

Posledni nerovnost je splnéna, pravé kdyz cos 2x = 0. V druhém piipadé

. /n n\ /31‘5 . / 371:\
vyhovuji tedy x € a2/ \ 2 4 / Pripojime-li interval { 22
z piedeslého pf’l’pddu, vidime, Ze feSeni nerovnice (1) jsou prave VSCChlld

© T\ To isou také viechna Fesent dlol
X€\4, 4/ 0 Jsou take vsechna resent utony.

2. FeSeni. Jina tiprava nerovnice je zaloZena na tom, Ze

J/1 - sin 2x = |/sin2x 4 cos2x -- 2 sin x cos x = [sin x 4- cos x|.
Hledame tedy feSeni nerovnice
2cos x £ IIsinx+cosxl—[sinx—qosx|l = ]/2

a ta se v nékterych c¢astech intervalu <0, 2x) redukuje na

2
cos X = [cos x| = 5
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a v jinych na

)2

cos x £ |sin x| £ PR

40. Predpokladejme, Ze Cisla x1, X2, x3 jsou feSenim soustavy a nejsou
viechna rovna nule. Pak miZeme dokonce predpokladat, Ze aspoil jedno
z nich je kladné, nebof trojice —x1, —x2, —x3 soustavé také vyhovuje.
Nejvétsi z Cisel x1, x2, x3 oznaéme Xy, je tedy x, > 0. Z r-té rovnice mame
podle podminek Glohy

ar1x1 + GraXe + @raxs = arrXr + 2, Qrixi 2
LE2
2 apr Xy + Z AriXy = xr(arl + are ar3) >0
TEr

a dostavame spor, nebot uvazovana trojice nevyhovuje r-té rovnici.

2. FeSeni vyuziva zakladnich poznatkii o determinantech. Ozna¢me

aii dis ais
D = |az21 ass ass
las1 ass ass

determinant dané soustavy. Stac¢i dokazat, ze D # 0, nebof homogenni
soustava linedrnich rovnic ma nenulové feSeni, pravé kdyZz determinant
soustavy je nulovy.

Oznaéme soulty koeficientlt v i-té rovnici s§; = a1 + @iz + a3 pro
ie{l,?2, 3. Pak

aiy diz 51
D = |az1 azz 53| = si(aziasz — az2a31) + sa(a12a31 — aiasz) -+ H
asi asz 53 -F ss(ariaze — aieaz).

Z podminek tdlohy plyne, Ze prvni dva Cleny na pravé strané jsou kladné.
Dale ai1 -} a2 > a1 + ais + a13 >0, tedy ai1 > —ai2. Obdobné
asi -+ aze > as1 -+ aze + a3 > 0, tedy age > —asz1. Dohromady ai1a22 >
> ayeaz1, tedy i tfeti ¢len na pravé strané (1) je kladny. Plati tedy D > 0
a soustava md pouze nulové feseni.

Pozndmka. Tvrzeni Ulohy miiZzeme zobecnit na soustavu n linedrnich
rovnic o n neznamych, postupujeme-li stejné jako v 1. feseni.
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41. Ctyistén ABCD doplnime na rovnob&Znostén, jak ukazuje obr. 48
(vysledny rovnobéznostén ovsem nemusi byt kolmy). Hrany 4B, CD

Styfsténu jsou thloprickami jeho podstav, rovina ¢ déli rovnob&Znostén
ve dva rovnobéZnostény; objem dolniho (horniho) oznacime Vi (V2).

kd d
ProtoZe jejich vysky jsou po fadé TR 11k a protoze oba rovnobéz-
1
nostény maji podstavu téhoZ obsahu 2P = > ab sin w (klademe P; =
= P3 = P), plati
v 2kd P v 2d P |
ik TPtk )

_kd_ ,
1+k ) .

Rovina & rozdéli ¢tyfstén ABCD na dvé ¢asti; dolni dostaneme, kdyz od
dolniho rovnobéZnosténu oddélime dva jehlany a dva komolé jehlany.

Vyska jehlant je a jejich podstavy maji tyz obsah Pj4; je to obsah

kd
1+ k
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trojuhelniku XYZ. Pongvadz trOJuhelmky XYZ, CDE jsou stejnolchle

k
podle stfedu A (koeficient stejnolehlosti je T k>’ plati

Soucet objemu jehlant je tedy

2 kd < k )2 2 d( k )3}’ g
31 4+k\l+4+k 1+ k @
. . kd
Oba komol¢ jehlany maji také vysku I k; jejich podstavy maji obsahy P

(trojahelnik ABF) a Pg (trojuhelnik XVU). Protoze trojihelniky XV'U,

1
ABF jsou stejnolehlé podle stfedu C (koefment stejnolehlosti Jel s k)

()
Py = T P.

Soucet objemli obou komolych jehlanti je tedy

el () e+ (59 )
ERR I U Vi il V) A

_2d k(k® + 3k +3)
3 (1+k3
Objem V, dolni &sti &tyfsténu dostaneme, odeSteme-li od &isla V1 obé
Cisla (2), (3). Je tedy

plati

®)

, 2kd 2 k3 2 k(k®4 3k 4+ 3)
=Tk =590 P 3 e
2k%(k + 3)d
= ‘3—(‘1‘_Tk)3 P, 4)

Objem V, horni ¢asti zfejmé dostaneme, nahradime-li ve vysledku (4)

1
Cislo k Cislem —; po Gpravé vyjde

k
2(1 4 3k)d

Vy = m”k—‘)g P. Q)
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Z (4) a (5) plyne

v, k2K +3)

Poznamka. Vidime, Ze pomér nezavisi na a, b, d, . Pro k =1 jsme
dostali vétu:

Rovina, ktera prochazi stfedy dvou mimobéznych hran a stfedem dalsi
hrany Ctyfsténu, deli ¢tyistén na dvé ¢asti o stejném objemu.

2. FeSeni vyuZiva integralniho po¢tu. Vedme proménnou rovinu ¢ rovno-
béZnou s rovinou ¢ ve vzdalenosti x od pfimky 4B. Nechf rovina p protina
Ctyfstén ABCD v ctyfuhelniku EFGH (obr. 49). Ziejmé FG || CD || EH,
EF || AB || HG, tedy ctyitihelnik EFGH je rovnobéZnik. Jeho obsah je

d—x x(d—x)

= |EF|.|FG| sin ® = |[AB| ——— lC])] — sin w = ab 7 sin .

T "
TN M
> 0
F frem 8 2 (,/ ol
: TENG
// AN

Qbr. 49

Oznac¢me Vi, Vo objemy téles vzniklych rozdélenim Ctyisténu ABCD
rovinou ¢. Pak plati
kd
1+ , )
 x(d—x) absin o | x3d  x3] F
V]. = / -+ _

. ab—"1 sin o dy = ——— pE Y
0

k2(k + +3)

6 (1 k)3

sin m,
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d
y / bx(d—x) N ab sin ® [xzd x3 ]"
S AP TEEE  FE
_kd_ 1k
1+k
- 3k + 1
6 (1 + k)3 Slll w.

Pomér objem bude tedy
Vi k3k 4 3)
Ve Bk
3. FeSeni. Vyuzijeme nasledujici véty, kterou dokazeme nakonec.

Objem mnohosténu, jehoZ viechny vrcholy lezi ve dvou rovnobéznych
rovinach, je dan vzorcem

//
V= é (B1 + B -+ 4M), (6)

kde Bi, B2 jsou obsahy podstav, / je vyska mnohosténu (vzddlenost pod-
stav) @ M je obsah priniku mnohosténu s rovinou rovnobéZnou s podsta-
vami a stejn¢ vzdalenou od obou podstav. (Véta plati i v piipadé, kdy se
jedna z podstav redukuje na tise¢ku nebo na bod a ma tedy nulovy obsah.)
Uvazujme roviny &1, resp. &2 rovnobézné s rovinou ¢ a stejn¢ vzddlend
od roviny & a piimky AB, resp. CD (obr. 50). Vzdalenosti rovin &, e,
kd kd a+ 2k)d

A , T€SP. 7

1+ k2(1+k) 2(1—|—k)

resp. €2 od piimky 4B jsou —— Jak uz vime

Obr. 50
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z 2. teSeni, roviny &, &1, €2 protnou Ctyistén ABCD v rovnobéZnicich
s obsahem

" x(d —x)

a 42

sin ,

kde x je vzdalenost pfislusné roviny od pfimky A4B. Podle vzorce (6) pak
uz snadno uréime objemy Vi, Va téles vzniklych rozdélenim Ctyfsténu
ABCD rovinou e&.

Zbyva dokdzat vzorec (6) (obr. 51). Necht vSechny vrcholy mnohosténu
lezi ve dvou rovnobéZnych rovinach ¢ a ¢. Vrcholy Ri, R, ..., Ryvro-
viné o jsou spojeny hranami s vrcholy Si, Se, ..., Sp v roviné ¢ (nékolik
nasledujicich vrcholti miZe splyvat). Bo¢ni stény mnohosténu jsou troj-
uhelniky nebo Cctyfuhelniky. KaZdou boéni étyfuhelnikovou sténu roz-
délime tuhlopfickou na dva trojihelniky (v obr. 51 napf. &tyfthelnik
R1R32S2S1 UhlopiiCkou R1S2). Ozna¢me MiM3. ..M, n-uhelnik, ktery
vznikne jako fez mnohosténu rovinou rovnobéZnou s podstavami a stejné
od nich vzdalenou. Zvolme bod P uvniti tohoto mnohouhelniku a spojme
bod P s vrcholy M1, Ms, ..., My, s body A;, ve kterych ptidané sténové
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thloptic¢ky protinaji n-Ghelnik Mi1Ms. ..My, a se viemi vrcholy Ri, Rs,
..., Ry, S1, S, ..., S, mnohosténu. Oznaéme V, V1 objemy jehlani

1 A
R1R2S3P, A1M2SsP. Zfejmé V=4V, a Vi = ? ‘5 S, kde S je obsah

trojuhelniku A1 M2P. Je tedy Vrg%g. Stejnym zpiisobem vypocteme
objemy jehlant RaR3S2P, R3R4S3P, S3S4R4P atd. Soucet objemi téchto
jehlan®, z nichZ kaZdy ma vrchol P a za podstavu jeden z boCnich troj-
uhelnikd, je 2—,?{, kde M je obsah n-helniku M M. .. My. Objem mno-
hosténu ziskdme pfiddnim dvou jehlanti s vrcholem P a podstavami R1Rs . . .
... Ry, tesp. §1S2...8,. Oba jehlany maji vySku -l21~ Oznacime-li obsahy
podstav B a Bg, dostaneme vzorec (6).

4. feSeni. Rovina ¢ protind dany ¢tyistén v rovnobézZniku EFGH a roz-
déluje ho na dva pétistény ABEFGH a CDEFGH. Pétistétn ABEFGH
(obr. 52) je slozen ze tii Ctyfsténtt AEGH, BEFG a ABEG. Prvni dva z nich
maji podstavy EGH, EFG stejného obsahu a stejné velké vysky, maji tedy
stejné objemy. Porovnejme Ctyistény AEGH, ABEG. Vysku ze spole¢ného
vrcholu E maji spoleénou a vysky podstavy AGH na stranu GH a podstavy
ABG na stranu 4B jsou také stejné velké. Je tedy

V(ABEG)  |AB
==k +1,
V(AEGH)  |GH|

4 7
/ > -
( " A’/_//‘ ) -
et
E ';::"L
/ 7~
~.
/ TN
/ T
Vo o
Py
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takze
V(ABEFGH) = (k + 3) V(AEGH).
Pétistén CDEFGH rozlozime na tri Ctyistény DEGH, CEFG a CDEG
a analogicky zjistime, Ze

/

V(CDEFGH ) = (l’_ + 3) V(DEGH).

Vzhledem k tomu, Ze je ziejmé
V(AEGH) = k V(DEGH),
dostaneme
V(ABEFGH)  k(k +3) k2%k - 3)
V(CDEFGH) 1 O 3k+ 17
— __}__ 3
k
Pozndmka. Viimnéte si, Ze jsme vibec nepracovali s danymi veli¢inami
a, b, d, o.

5. FeSeni. Jak znamo, kazdé afinni zobrazeni v prostoru zachoviava rov-
nobéznost i délici pomér. Jsou-li diny dva Ctytstény ABCD, A'B'C'D’,
pak existuje afinni zobrazeni, které pfevede A v A’, BvB,Cv C',Dv D"
Staci tedy nasi tlohu vyfesit pro jeden urcity tyfstén a vysledek pak bude
stejny pro vSechny ostatni Ctyistény. PohodIné se objemy cdsti pocitaji
napf. pro Ctyfstén s vrcholy (0, 0, 0,) (0, 0, 1), (0, 1, 0), (1, 0, 0).

42. Predpokladejme, Ze &isla x1, x2, x3, x4 vyhovuji podminkdm tlohy,
tj. jsou feSenim soustavy rovnic

X1 4 Xex3xq4 = 2,
X2 - x1X3X4 = 2,
X3 4+ X1XoX4 = 2,
X4 + xX1x0x3 = 2.

Zadné z &isel x; neni rovno nule: kdyby napt. x1 = 0, dostaneme ze sou-
stavy xexgxs = 2, X2 = 2, X3 = 2, X4 = 2, coZ neni mozné.
OznaCme nyni p = x1x9x3x4. Pak i-t4 rovnice soustavy ma tvar

P
w4+ = =2
Xi

¢
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neboli
o
x;—2x;+p=0.
Pro ¢islo x; tedy plati
xi=1- |1 —p nebo x; =1 —|/1—p.

To znamend, ze z Cisel x; mohou byt nejvySe dvé riiznd. RozliSime (fi
.moznosti:

a) VSechna Ctyfi Cisla jsou si rovna, x; = xg = X3 = xq = m. Pak
m -+ m3 = 2, neboli

(m—1)y(m*+m+ 2)=0.

Tato rovnice ma jediny redlny kofen m = 1. Piislufnd Ctvefice x1 = xa =
= X3 = x4 = | vyhovuje podminkdm ulohy.

b) T¥i z Cisel x; jsou si rovna a &ivrté od nich rlizné, napf. x; = xa2 =

m -+ m2n = 2,
n -+ m3=2.
Odectenim dostaneme (i — n) (1 — m?2) = 0 a snadno zjistime, Ze miZe
byt jen m = —1, n = 3. Prislu$na ¢tvefice x1 = xo = xg = —1, x4 =3
jakoZz i dalsi tfi Ctvefice, které z ni dostaneme zinénou potadi, vyhovuji
tuloze.
c) Dvé a dvé Cisla x; jsou si rovma, napf. x; = Xg = m, X3 = X4 =
= n 7% m. Pak

m -+ mn2 =2,
n -+ m2n = 2.

Odectenim dostaneme (m — n) (1 — mn) = 0. ProtoZe m # n, musi byt
mn =1 a z prvni rovnice plyne m -+ n = 2. Takova {isla m % n viak
neexistuji.

Uloze tedy vyhovuije celkem pét Etvefic cisel (1, 1, 1, 1), (3, —1, —1, —1),
(—1, 3, —1, —1), (—1, —1, 3, —1), (—1, —1, —1, 3).

Pozndmka. V oboru komplexnich ¢isel jsou jeSte dalsi dvé feSeni

—1+i)7 —1—i)7

X1 = Xg = X3 = X4 = 5 P X1=Xe=Xg=xg=
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43. a) Oznaéme B’, Q' paty kolmic spusténych z bodtt B, Q na pfimku
OA (obr. 53) a A’, P’ paty kolmic spusténych z bodi A4, P na ptimku OB.
Dokazeme, Ze hledanou mnozZinou je UseCka A'B’.

OznaCme H; priselik pifimek PP’, A'B" a Hs priseéik pfimek QQ’,
A'B’. Dokazeme, ze Hi; = Ha, coZ znamena, Ze bod H leZi na uselce
A'B’. Z podobnosti trojuhelniki B'HP ~ B'’A’A, BB'A ~ MPA dosta-
neme

|B"H1| |B'P| |BM |
\BA'| ~ |BAl  |BA|

Obr. 53

a z podobnosti trojihelnikt 4A’H2Q ~ A'B'B, AA'B ~ MQOB
|[A'He|  |A'Q]  |AM]
4B (4B 4B’

Body Hi, Hy déli tedy tisec¢ku A'B’ v témZe poméru, a proto Hy = Ho,
H e A’'B’. Pritom probéhne-li bod M useCku AB, probé¢hne bod H ziejmé
usecku A'B’.

(V ptipadé, kdy thel ABO nebo BAO je pravy, useka A’'B’ splyne
s useCkou PP’ nebo QQ’ a dtikaz se zjednodusi.)

b) Necht M1 je vnitini bod trojuhelniku OAB (obr. 54). Bodem M
vedme rovnob&zku p s pfimkou AB. Priise¢iky piimky p s pfimkami OA4,
OB oznalme A1, B;. Existuje zfejmé pravé jedna stejnolehlost se stiedem O
a koeficientem k, 0 < k < 1, kterd prevadi body 4, B na body A1, B1
a néktery vnitini bod M usetky AB na bod Mi. Necht H, Hi jsou pri-
seCiky vySek sestrojené podle textu dlohy k bodim M a M. V dasti a)
jsme dokdzali, Ze probihd-li bod M useCku AB, probihd bod H usecku




(113) 43

A’B’. Probihd-li bod M, tseCku A1B1, probihd ziejm& bod Hp tUsecku
A\ B, stejnolehlou s A'B’ s koeficientem k. JelikoZz k miZe nabyvat libo-
volné hodnoty intervalu (0, 1), je hledanou mnoZinou bodl v &asti b)
vnitiek trojuhelniku OA’B’.

2. FeSeni. Zvolme v roviné soustavu soutadnic. Maji-li body P, O sou-
fadnice (p1, p2), (g1, ¢2), budeme symbolem P + Q rozumét bod o sou-
fadnicich (p1 4 q1, p2 + ¢g2) a symbolem sP, kde s je redalné ¢islo, bod
o soufadnicich (sp1, sp2). Protoze MPHQ je rovnobéznik, je (obr. 53)

H—P=0Q0—M,
neboli
H=P+Q0—M. @))
|AM|
|AB|
M=A+ k(B—A) = —k)A + kB.
Protoze MP || BB, je

Oznacime-li = k, je

P=(1—k)A-+ kP,
a protoZze MQ || AA’, je
O=({1—kA + kB.
Dosadime-li do (1), vyjde
H=({1—k)A"+ kB'.
Probihd-li tedy bod M tGiseCku 4B, probihd k interval <0, 1> a bod H usecku
A'B'.
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Pozndmka. Tvrzeni vety zlstane v platnosti, i kdyz uhel A0B neni
ostry.

44. UvaZujme nejdiive piipad, kdy z nékterého bodu 4 dané mnoziny M
vychazeji alespoii téi praméry AB, AC, AD (obr. 55). Pak body B, C, D
lezi na kruZnici k4 = (4; d) ve stfedovém thlu velikosti nejvySe 60°. Zvolme
oznadeni tak, aby polopfimka AC leZela uvnitt Ghlu BAD. Dokéazeme,
Ze z bodu C vychdzi pouze primér CA.

X # A. Bod X musi leZet na kruznici k¢ = (C, d) a v kruhu ohraniCe-
ném kruZnici k4. Nechf napf. bod X lezi v poloroving 4CB. Ozna¢me K
priseéik useCek XD a AC, pak seftenim trojihelnikovych nerovnosti
|XC| < |XK]| + |KC],
|AD| < |AK| + |KD|

dostaneme
|XC| + |4D| < |AC| -+ |XD|.

A (i .~‘M_,_;Yf__.4 (
\ YA
!.\\\ D
e /K
A
Obr. 55

Protoze |AC| = |AD| = |XC| = d, je |XD| > d. To je vSak spor s tim, Ze
d je primérem mnoziny M. Obdobné dostaneme nerovnost |[XB| > d,
lezi-li bod X v poloroviné ACD. Vychazi-li tedy z nékterého bodu dané
mnoziny alespoii t¥i priméry, pak v ni existuje bod, z néhoZ vychdzi jediny
pramér. ’

Ted jiz snadno dokdzeme tvrzeni ulohy indukci podle n. Pro n =3
ziejmé& tvrzeni plati. Pfedpokladejme, Ze tvrzeni plati pro kazdou k-prvko-
vou mnozinu bodd. Nechf Mg;1je libovolnda mnozina &k + 1 bodi A1,
Ao, ..., Agy1. Jestlize v My 1 existuje bod (napt. 41), ze kterého vychazi
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nejvySe jeden primér, je ziejmé podet primérid mnozZiny Mgi1 nejvyse
o 1 v&tsi nez polet primérti mnoZiny {As, As, ..., Axr1}. Z indukéniho
pfedpokladu plyne, Ze Mp+1 ma pak nejvyse k - 1 primért. Predpokla-
dejme déle, Ze z kazdého bodu mnoZiny My.1 vychdzeji alesponi dva
pruméry, pak z predchdzejici Givahy plyne, Ze z kazdého bodu mnoZiny
Mpgy1 vychdzeji pravé dva praméry. ProtoZe kazdy pramér spojuje dva
body, je celkovy podet priimért mnoZiny My,1 roven k - 1. Tim je tvrzeni
tlohy dokazano.

Pozndmka. Pro kazdé n = 3 existuje mnozina bodit v roving, kterd ma
pravé n praméri (obr. 56). Pro licha # jsou také takovou mnozinou vrcholy
pravidelného n-tihelniku (obr. 57). V prvanim piikladu vychéazi z jednoho
bodu vice nez dva a z nékterych bodt jen po jednom priméru, ve druhém
prikladu vychazeji z kazdého bodu pravé dva priméry.

Uvazujeme-li » > 3 bodl v prostoru, pak maximdini pocet praméri

vvvvv r

je 2n — 2. Duikaz tohoto tvrzeni je obtizn&jsi.

Obr. 56 Obr. 57

45. Oznacme p4 pocet zakl, ktefi vyfesili jen ulohu A4, pap pocet zaku,
ktefi vyftesili pravé ulohy 4 a B atd. Podminky ulohy zapiSeme rovnicemi
pa - pe-+pc -+ pag -+ pac+ pee -+ papc = 25,
P8 + prc = 2(pc -+ pre),
pa=1-+ pap -+ pac + pasc,
pa+ pe -+ pec=2ps + po),

neboli
pa -+ pp - pe -+ pas + pac -+ pee + pape = 25, (D
PB—2pc — PBC =0, )
P4 — PAB — PAC —papc =1, 3

pa—Ppe—pc = 0. 4
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Seétenim prvnich tfi rovnic dostaneme
2pa + 2pp — pc = 26.

Dosadime-li sem za p4 podle (4), vyjde

4pp + pc = 26.
Této rovnici vyhovuje pravé sedm dvojic nezdpornych celych ¢isel (pg, pc):
(0, 26), (1, 22), (2,18), (3, 14), (4, 10), (5, 6), (6, 2). Podle (2) je

pE—2pc = 0,
¢emuz vyhovuje jediné posledni z uvedenych sedmi dvojic, totiz pp = 6,
pc = 2. Jen tlohu B tedy vyfeSilo 6 zaku.

Pozndmka. Uloze ziejm& vyhovuji ty sedmice nezdpornych celych &isel,
pro které plati p4 = 8, pp =6, pc = 2, pc = 2, pag + pac + papc = 1.
Situace popsana v uloze miZe tedy skutecné nastat.

14 ., .
46. Do dané rovnosti miizeme dosadit za tg £ funkci Ghll o, p, protoZe

ol ETETE ST
g5 =1tg 5 = cotg ——5—.

Dalsimi upravami postupné dostaviame

+
a(l—tgacotgi%—@) —i—b(\l —tg/}cotga 3 ﬂ) =0,

. . o+ f
a\cos ff cos « sin 5 —cos p sin o cos > -+
o+ o+
-+ b\cos & cos f sin 2 ﬁ——cosocsinﬁcos 5 ﬂ) =0,
N el ol
a cos f sin > +bcos asin = =0,

2

sin (acos f—bcos a)=0.

2

Je tedy bud sin A =0, tj. f = «, a pak je trojuhelnik rovnoramenny,

nebo
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acos f—bcosa =0, tj. acos f=Dbcosa,
coZ spolu s rovnosti (sinova véta)
asin ff = b sin «

dava a? = b2. 1 v tomto pfipadé je tedy trojuhelnik rovnoramenny.
2. feSeni. Danou podminku mlzZeme piepsat na tvar

(a+b)tg (f:}*z—--ﬁ =atga-+btgp. 1)

Odtud jiz vidime, Ze {ihly «, # musi byt ostré. Levd strana je totiZ kladnd,
a kdyby napf. uhel f byl tupy, bylo by

a<b tga<tg(n—p)=—tgf

a prava strana by byla zaporna. Ted si sta¢i uvédomit, Ze funkce tangens

™
je ryze konvexni v intervalu (0, --,)—), takze pro ostré Ghly «, f plati

e+ p tgattgh
o <
tg—5— = > @
s rovnosti, pravé kdyZz a = f. Pfedpokladejme, Ze « 7# . Pak ve (2) bude
ostra nerovnost a podle (1) tedy mame

a-t+b
T(tga+tgﬂ)>atgoc+btgﬁ,

neboli

b—a b—a
5 tga > 5 tg p.

L

Odtud bychom pro a << b dostali tg o > tg f a pro a > b zase tg o < tg f,
coz odporuje skuteénosti, Ze tangens je rostouci funkce.

Pozndmka. O platnosti nerovnosti (2) se miiZeme presvéddit z obr. 58,

o+ p
kde |PQ| = tg o, |PR| = tg — |[PS| =tg ff a pro a < f je ziegjmé
[PQ| + |PS|

|QR| < |RS|, takze |PR| < . Jiny pfistup umoziiuje matema-

2



47 (118)

T
ticka analyza. Druhd derivace funkce tangens je v intervalu (0, —2-) klad-

na a funkce tangens je tam tedy konvexni, z ¢ehoZ okamzit¢ vyplyva ne-
rovnost (2).

%)

47. OznaCme ¢ rovinu soumérnosti hrany AB pravidelného Ctyfsténu
ABCD. Vrcholy C, D ziejmé lezi v roving p. Pro libovolny bod X prostoru
oznacme X jeho pravothly priimét do roviny e (obr. 59). Potom

|[AXo| + |BXo| = |AX]| + |BX]. )

Probihd-li totiz bod X piimku p|| AB, p % AB, je |AX| - |BX| mini-
malni, je-li |AX|= |BX]|, jak snadno zjistime pomoci osové soumérnosti
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a trojuhelnikové nerovnosti (obr. 60). V (1) nastane rovnost, pravé kdyz
X € o nebo lezi-li bod X na tsecce 4B. Dile je
|ICX|+ |DX| = |/ ICXol2 + |XXo|2 + |/ [DXo|2 + |XXo|2 =
= |CXo| + [DXo|
s rovnosti, pravé kdyz X € p. Je tedy

|[AX| 4 |BX| + |CX| + |DX| > |AXo| + |BXo| - |CXo| + |[DXol, (2)
praveé kdyz X ¢ p.

To znamena, Ze neleZi-li bod X v roviné soumérnosti nékteré hrany
Ctyisténu ABCD, najdeme bod Xy, pro ktery plati (2). Funkce f(X) =
= |AX| -+ |BX| 4+ |CX| + |DX| tedy nemlZe nabyvat minima jinde neZ
ve stiedu 7" Ctyfsténu ABCD, ktery je jedingm bodem leZicim ve vSech

Sesti rovindch soumérnosti hran. (Existence minima plyne ze spojitosti
funkce f7)

2. ¥eSeni. Ozname m spojnici stfedt hran 4B a CD a pro libovolny
bod X prostoru oznacme Xy jeho pravouhly priimét na pfimku m (obr. 61).
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Je-li X’ pravouhly priimét bodu X do roviny obsahujici hranu AB a pifim-
ku m, je
|[AX|+ |BX|=]/ |4X'|2 + |XX'|2 + |/ IBX'|> 4+ |XX'|2 Z |[4X’'| 4 |BX'| 2
z |AXo| + |BXol
(pfimky AB a XoX' jsou rovnobézné) s rovnosti, pravé kdyz X lezi na m
nebo na tisecce 4B. Podobné dostaneme
ICX| + |DX| 2 |CXol + |DXol

s rovnosti, prave kdyz X lezi na m nebo na usecce CD. Staci tedy zkoumat
jen body X lezici na piimce m1.

Oto¢me useCku CD kolem pfimky /2 do roviny uréené piimkami AB, m;
dostaneme useCku C'D’ (obr. 62). Pro kazdy bod X € m je pak

|4X| + |BX| + |CX| + |DX| = |4X]| + |BX| + |C'X| + |D'X],

pritom

|4X| + |D'X| z |AT| + |D'T|, |BX|+ |C'X| z |BT| + |C'T],
kde T je stied &tyfsténu, takze

|AX| + |BX|+ |C'X| + |D'X| =z |[AT| + |BT| + |CT| + |DT|
s rovnosti, pravé kdyz X = 7.

o " c'
>€ =
TN
y Np
Obr. 62

3. FeSeni. Zvolme libovolny bod X v prostoru. Trojahelniky XAB, XCD
(jeden z nich pfipadné redukovany na tdsecku) umistéme v roviné tak,
aby mély rovnobézné zakladny A41B; || C1D1 a spolecny vrchol X7 lezel
v pasu jimi uréeném (obr. 63). Pak bude

|[AX| 4 |BX| + |CX| + |DX| = [A1X1] + |B1X1] + |CiXa| + [D1X1],
|41B1| = |AB| = |CD| = |C1D]
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Ca
|
I
l
1
|
|
[

\

By

a vzdalenost rovnobézek A1By, C1D1 bude alespoii tak velkd jako vzda-
|AB| .. . e
lenost mimob¢zek AB, CD, tj. alespoii -——; Pouzijeme-li dvakrat principu

z obr. 60, dostaneme (obr. 63)
[A1X1| + [BiXa| + [C1Xa| + |D1Xa] 2
2 |A2X2| + |B2Xa| + [CeXal| -+ [DaX2| 2
= |A3X3| + |B3Xs| 4 |CsX3| 4 [D3Xs|= 2 [43Csl.

Protoze

3
|A3C3| = |/|43Bs3|2 4 |B3C3|2 = |ABIV'2‘,
je
|[4X| 4 |BX| + |CX| + |DX| Z |4B|]/6
a rovnost nastane, pravé kdyz

/6

|AX] = |BX| = |CX| = |DX| = [4B] ",

tj. pravé pro X = T, kde T je stied Ctyisténu.

4. FeSeni. Oznacme 7' stfed pravidelného Ctyisténu ABCD. Vedeme-li
jeho vrcholy roviny rovinobézné s protéjsimi sténami, dostaneme Ctyfstén
A’B'C'D’ stejnolehly s pivodnim &tyfsténem ABCD ve stejnolehlosti se
stiedem 7" a koeficientem —3 (obr. 64).
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Zvolme libovolny bod X v prostoru. Ziejmé
[AX| = d(X, B'C'D"), |BX| = d(X, A'C'D’), |CX| = d(X, A’'B'D’),
|DX| =z d(X, A'B'C"),
kde d(X, B'C'D’) oznacuje vzdalenost bodu X od roviny B'C'D" apod.
V nerovnosti
|[AX| + |BX] + |CX| + [DX| 2 d(X, B'C'D’) + d(X, A'C'D’) + 3)
-+ d(X, A’'B'D") + d(X, A'B'C")
pfitom nastane rovnost, praveé kdyz X = T.
Objem ctyfsténu XB'C'D’ (piipadné degenerovaného) je

S
Vypcp = 3 d(X,B'C'D),
kde S je obsah trojuhelniku B'C’D’. Obdobné vztahy plati i pro ostatni
trojice bodt 4’, B’, C’, D'. Je tedy
d(X, BC'D") + d(X, A'C'D’") + d(X, A’B'D") + d(X, A'B'C’) =
3

= "E’(VXB'C’D’ + Vxaren + Vxasp + Vxape). “
Dokazeme, Ze sjednoceni Ctyisténtt XB'C'D’, XA'C'D', XA'B'D’, XA'B'C’
obsahuje Ctyfstén A'B'C'D'. To je ziejmé, je-li bod X bodem Ctyfsténu

A'B'C'D'. Lezi-li bod X vné tohoto Ctyisténu, uvazujme libovolny bod P
téhoz Ctyfsténu. Ozna¢me jako R ten bod Ctyisténu A'B'C'D’, ktery lezi
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na piimce X a ma od bodu X nejvétsi vzdalenost. Bod R lezi v nékteré
sténé Ctyisténu A'B'C'D’. LeZi-li napt. ve sténé A4'B'C’, pak bod P leZi
ve Ctyfstenu XA'B'C’. Je tedy

Vxpon + Vxarcn + Vxapp + Vxape 2 Vasop )
s rovnosti, pravé kdyz bod X lezi v Ctyfsténu A'B'C'D’. Ze vztaht (3),
(4) a (5) dostaneme nerovnost

3

|AX| + |BX| + [CX| + IDX| 2 ¢ Vawen =V =3,
kde v a v jsou vySky Ctyisténit A’B'C'D" a ABCD. Rovnost zde nastane,
pravé kdyz X = T.

Poznamke. V pribehu 4. feseni jsme odvodili zajimavou veétu: Soucet
vzdalenosti bodu pravidelného Ctyfsténu od jeho stén je konstantni a rovna
se jeho vysce.

48. Rovnost dokazeme matematickou indukci.
Pro n = 1 rovnost plati:

CcOS X cos 2x

cotg x — cotg 2x = — — =
g & sin x sin 2x

COS X cos2x — sin2x |

" sin x 2sinxcosx  sin 2x

Necht tvrzeni plati pro pfirozené Cislo k. DokdZeme je pro & -- 1. Podle
indukéniho predpokladu dostavame

1 1

sin ox " sin 4x SR sin 2kiiy = cotg x — cotg2kx - e
cos 2kx |
= colgy — sin 2Fx T 2 sin 2%x cos 2kx
2 cos2 2kx — 1 cos 2k+1y
= O X — i 2kx cos 2bx O T Gip 2Rty

= cotg x — cotg 2F+1ly

a diikaz je hotov.
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2. FeSeni. Stejn€ jako v pfedchazejicim feSeni dokaZeme, Ze
1
S cotg x — cotg 2x.

To nam umoziuje upravit levou stranu dokazované rovnosti

1 1 1
sin 2 sin ax T gy (ot —eots 20
4 (cotg 2x — cotg 4x) + ... -+ (cotg 2n—1x — cotg 2"x) ==

= cotg x — cotg 2"x.

49. Libovolnou permutaci indext 1, 2, 3, 4 ziskame soustavu tychz rov-
nic, zméni se pouze jejich poradi. Necht (i, j, k, [) je takové pofadi
indexi 1, 2, 3, 4, pro které a; > a; > ar > a;. OznaCme po fadé a;, a,
ar, a; pismeny b1, be, b3, ba a xi, Xj, Xk, X1 pismeny yi, ya, ys, y4. Potom
by > bs pro r < s a danou soustavu miiZeme zapsat ve tvaru

(b1 —b2)y2 + (b1 — b3)ys + (b1 —ba)ys = 1, )]
(b1 — ba)y1 + (b2 — b3)ys - (b — bo)ys = 1, 2
(b1 — b3)y1 |- (ba — b3)ys - (bs — ba)ya = 1, ©))
(b1 —ba)y1 + (b2 —ba)ys -+ (b3 — ba)ys = 1. (4)

Odectenim druhé rovnice od prvé dostavame
(b1 —b2)(—y1+y2+ys+y) =0,
a protoze by — bz #0,

—y1+y2+ys+yi=0. (5)
Obdobné (2) a (3) dava

—y1—y2 + ys -+ ya=0, (6)
(3) a (4) dava

—y1—yz—ys+ ys=0. )

Odectenim rovnic (5), (6) dostivame yz = 0, obdobné z rovnic (6), (7)

plyne y3 = 0. Seétenim (5) a (7) vyjde y1 = yi4. Dosazenim do kterékoli

z rovnic (1) az (4) dostaneme yy = b b Zkouskou se piesvédéime, Zze
1—by

1 1
A
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je skuteéné feSenim soustavy (1)—(4). Piivodni soustava ma tedy pravé jedno

1
feSeni x; = x; = ———, x5 = x; = 0.
a;—da;
Pozndmka. Ulohu je moZno zobecnit na soustavu » rovnic
n
> lag— aglxr =1, ie{l,2, ...,n},
k=1
kde a1, as, ..., ap jsou dand navzijem riizna redlna Cisla. Analogickym

postupem miiZzeme dokdzat, Ze tato soustava ma pravé jedno feSeni x; =

1
R
i1 in

indextt 1, 2, ..., n,pronéZa, >a, > ... > a,.

n

, X, = X, = =x; =0, kde iy, is, ..., i, je pofadi

i2 ia . in1

50. Oznaéme Pxyz obsah trojihelniku XYZ. Plati (obr. 65)

1
5 |[AM|.|AK] sin o

== |
B |AB].|AC]| sin o

Parm B |[AM|.|AK|

|AB| . |AC|’

Pagc

obdobné
Pgxir, |BK|.|BL)| Pcoumr, |§‘M| .|CL)|

Pasc  |AB|.|BC| Pagc  |AC|.|BC|
Soucin téchto t¥i pomért je roven
|AK|.|BK| . |BL|.|CL| . |AM].|CM|
|AB|%. |BC|2. |AC|?
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. .,—————— |AK| 4 |BK| |[4B| |AK|.|BK| 1
Protoze |/|4K|.|BK| < 2 = Ik TapE =
. |BL|.|CL| 1 |AM|.|CM| 1 ; )
Obdobné h{B—Clﬁr < T -——W < e Vyndsobenim dostaneme
|AK|.|BK|.|BL|.|CL|.|AM|.|CM| 1
|AB|2.|BC|2.|AC)? = 64’

tedy alespori jeden z trojuhelniktt A KM, BKL, CML ma obsah neptevySujici
¢tvrtinu obsahu trojthelniku ABC.

2. feSeni. Oznacme Ko, Lo, My stiedy stran AB, BC, CA. Stfedni pricky
KoLo, LoMo, MoKy rozdéli trojihelnik ABC na ¢&tyfi ¢asti s obsahem
Page

4

a) Dva z bodl K, L, M lezi na obvodu téhoz »rohového« trojihelniku
napf. jako na obr. 66, kdy zfejmé

. Rozlisime dva pripady.

Pprr < Pprokg = ‘ZPABC-

b) Na obvodu kazdého z »rohovych« trojuhelnikd leZi po jednom z bodu
K, L, M jako na obr. 67. Uloha bude vyfesena, dokazeme-li, Ze pro obsah

— iy S ABC »
»vnitFniho« trojahelniku je Prrar = 4 (pak totiz

Pagy + Pprr + Pomr = 4 Pagpc

a alespori jeden z trojuhelniktt AKM, BLK, CML bude mit obsah nejvyse
1
" PABC). ProtoZe vzdalenost bodu K od primky LM je vétsi nebo rovna vzda-

lenosti bodu K, je Prrar = Prorsr. Podobné Prorar = Proroym = Prgrore =

- ?PA pe. Tim je dikaz proveden.

Poznamka. D4 se také dokdzat, Ze obsah aspoii jednoho z trojihelniki
MAK, KBL, LCM je nanejvy§ roven obsahu trojthelniku KZM. Toto
tvrzeni plati, i kdyZz nahradime obsah obvodem, diikaz je viak obtizny.
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Obr. 66 Obr. 67

51. Oznadme O stied kruZnice k opsané trojihelniku ABD a r jeji polo-
mér. Oznaéme dale K4, Kp, K¢, Kp jednotkové kruhy se stiedy 4, B, C, D.
Nejprve ukazeme, 7e v piipadé r < 1 je rovnobéZnik ABCD pokryt
kruhy K4, Kp, K¢, Kp. Oznacime-li X, Y, Z stiedy useéek AB, BD, AD,
bude (obr. 68)
[AX| £ 40| =r £ 1, |[AZ]| = r £ 1

a kruh K4 tedy pokryva Ctyfuhelnik AXOZ. Analogicky zjistime, Ze kruh
Kp pokryva &tyfuhelnik BXOY a kruh Kp Ctyfuhelnik DYOZ. Je tedy
ABD « K4V K U Kp. Ze stejného divodu je BCD < KU K¢ U Kp.
Je-li r > 1, kruhy K4, Kp, Kp uZ trojihelnik ABD nepokryji, protoze
7adny z uvedenych kruhii neobsahuje bod O. Bod O neleZi ani v kruhu K¢.

T
Bod C lezi totiz vn€ kruznice k, nebof je | < BCD| = o < o zatimco pro

body X poloroviny BDC, které lezi na kruznici k£ nebo uvnitf, plati (obr. 69)

T
| BXD| gﬂ:—o’.>7.Jetedy |OC| > r > 1.
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Obr. 69 Obr. 70

Jednotkové kruhy se stiedy A, B, C, D tedy pokryvaji rovnobé&Znik
ABCD, pravé kdyz pro polomér r kruZnice opsané trojihelniku ABD plati
r = 1. Nyni je z trojihelniku OA4 1D (obr. 70)

|BD|

= a =5 2 S
P g & |BD| = |1 + a%—2a cos «

podle kosinové véty. Je tedy

/1 4 a% —2a cos a

2 sin o

Z podminky r < 1 dostavime postupné ekvivalentni podminky
1 - a2 —2acos o < 45sin2q,
(a—cos #)2 — 3 sin2e < 0,
(@ — cos o — }/3 sin &) (@ — cos o + |/3 sin o) < 0,
cos oL — ]/5 sinoe < a<cosa ]/gsin o.

Leva strana posledni nerovnosti je viak splnéna vZdy, protoZe trojiihelnik
ABD je ostrothly a je

a = |AB| > |AD| cos o. = cO0S d.
Jednotkové kruhy se stiedy 4, B, C, D pokryvaji tedy rovnobéZznik ABCD,
pravé kdyz

a < cos o+ |/3sin o
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52. Oznalme A, B, C, D vrcholy &tyfsténu tak, aby [AB]=x =<1,
|[AC| €1, |BC| £ 1,|4D| £ 1, |BD| £ 1, |CD| > 1. Déle oznacme P
patu vySky trojuhelniku ABC vedené ke strané AB, |[PC| = u (obr. 71).
Ziejmé je

u=J|AC|2—|AP2 £ |1 — |4P|2

a zaroven

u = |/|BC|2— |BP|2 < |/l — |BP|2.

x x X
Protoze bud |AP| = 5 nebo |BP| = o platiu < l/l - Stejnymi tva-
hami dostaneme pro vySku v trojuhelniku 4BD vedenou ke strané 4B
1/ X2

v 1— R ProtoZe vyska &tyisténu ABCD sestrojend z vrcholu D ma

velikost nejvySe v a x < 1, plati pro objem V ¢tyfsténu ABCD odhad

vsylamrs b= -3+ ) =
=32xuv=6.x———4_6x_2 +2=

1 1
< ?x(l —'2—).72@(2){——)(2):?(1—()(—1)2)§—8ﬂ

=

C

Pl
A \x B

Obr. 71

Rovnost nastane pravé pro ¢tyfstén A BCD, jehoZ hrany maji délky |AB| =
= |AC| = |BC| = |AD| = |BD| = 1 a jehoz stény ABC, ABD jsou na-

3 R
vzdjem kolmé. V tomto Ctyfsténujeu = v =l/ R ICD| = Ju? + 2 =

R
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Pozndmka. V zavéru diukazu vlastné hledime maximum funkce

1 (1 xz) 1 [
g(x) = 6x — 4]~ 6x—24x
v intervalu (0, 1. Toto maximum muZeme snadno najit derivovanim. Plati
1

1
g'x) = e 0

pro vSechna x € (0, 1), tedy funkce g je v daném intervalu rostouci, hledané

1
maximum je v bodé x = 1 a g(1) = R

Maji-li vSechny hrany Ctyfsténu délku nejvyse 1, pak se da ukdzat, Ze
12

jeho objem je nejvyse TR

53. Vyjdeme ze vztahu
p—cg=plp+1)—qlg+1)=p>—q¢*+p—q=
=(@—@@+q+1).
Je tedy
(C'm+1 - Ck) (C'm+2 — Clc) e (Cm+n — Ck) =

=m+1—km+k+2)m+2—km+k+3). ....
.(m4+n—ky(m-+k+n-1) = 4B,

kde
A=m—k+1)m—k-+2)...(m—k+n),
B=m+k+2)m+k+3)...(m+k-+n-+1).
Dale je
cieg ... cn=1.2.23. ...n(n+ 1) =nl@n+ 1! .
Jesté ukazeme, Ze Cislo A - soudin n po sobé nasledujicich celych Cisel - je
délitelné Cislem n! . To je ziejmé, jestlize nektery z Cinitelll je roven nule.
Jsou-li vSechny kladné, tj. m — k 4+ 1 > 0, je
ﬁ (m—k—{—l)(m—k+2)...(m—k—l—n)_(m_.k_}-n)

n

nl n!
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Je-lim—Fk 4+ n <0, je
A k—m—1D(k—m—2)...(k—m—n k—m—1

n! n!

Tedy ve vSech pripadech je 4 délitelné Cislem n!. Ze stejného divodu je
(m + k -+ 1)B délitelné &islem (n + 1)!. Protoze m + k + 1 je prvodislo
VEétsi nez n -+ 1, jsou ¢isla m + k 4+ 1 a (n + 1)! nesoudélnd a &islo B je
délitelné Cislem (n + 1)!. Souéin (cm+1 — <) (Cmr2 — k) - .. (Cmyn — Ci) =
= AB je tedy délitelny souinem cic2 ... ¢ = n!(n + D!.

54. Velikosti vnitinich uhld trojihelnikd A4¢BoCo, A1B1C1 oznacme
@0, fo, Y0, &1, f1, y1. Uvazujme libovolny trojuhelnik 4BC, ktery vyhovuje
pozadavktim ulohy (ne nutné maximalni). Vrcholy A4, B, C pak lezi (obr. 72)
na obloucich kruznic k4, kg, ke, z nichz jsou usecky BoCo, A9Co, AoBo
vidét pod uhlem o1, f1, y1 (pfipadné mohou nékteré vrcholy splynout
s krajnimi body pfislusného oblouku). Tyto oblouky i jejich stfedy O,
O3, O¢ lezi ptitom vné trojihelniku 4¢BoCo, nebot trojihelnik 40BoCy je
vepsan do trojuhelniku ABC a trojthelnik ABC je ostrouhly.

Vysetiime nyni vzdjemnou polohu kruZnic k 4, ks, kc. Pfedevsim zjistime,
Ze kruZnice k4, kg se protnou v bodé M = Cy lezicim uvnitt Gthlu 4CoBo,
nebof (obr. 73)

[¥ 04Co0p| = | % O4CoBo| + | X BoCoAo| + | X AoCoOB| =

k1 k1

=5 —mutyptr—Ff=rtn<m
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Protoze
| AoMCy| + |<¢ BoMCy| =7t-—-ﬂ1 t+r—or=n+y1>T,
lezi bod M uvnitf trojuhelniku A49BoCy a je
I<)Z A()MB()| =T — ‘)/1.

Bod M tedy lezi na kruZnici k¢, takZe vSechny tii kruznice k4, kg, k¢ pro-
chézeji spole¢nym bodem M.

Klicem k feseni ulohy je zjisténi, ze trojuhelniky ABC a O40g0¢ jsou
podobné. Ze souvislosti stfedového a obvodového thlu plyne (obr. 72)

1
|§: ABCl . [{ AoBCO| == 7 1 < AOOBCOI’

a protoZe (obr. 74) 0403, OpO¢ jsou osy usetek CoM, AoM, je
|X 04080c¢| = |3 OcOpM| + | ¥ O40pM| =

1

2

1 1
|% 4008M| + - [¥ CoOeM| = | ¥ Ao08C,l,

takze
| X ABC| =[x 04080¢|.

Analogicky dokazeme, 7e | & BAC| = | % Op0O40¢]|.

Vedme kolmice z bodli O4, Og na stranu AB a jejich paty oznacme V,
W (obr. 75). Ztejmé |AB| = 2|VW| < 2|040pg| s rovnosti, pravé kdyz
AB || 0408. V tomto pripadé ma tedy trojuhelnik ABC nejdelsi strany ze
vSech trojuhelniki vyhovujicich tloze, a tedy i nejvétsi obsah. Zaroveii je
vidét, Ze (obr. 76) maximalni trojuhelnik ABC je stejnolehly s trojuhelnikem
04080¢ se sttedem M a koeficientem 2.

w V-
B 11 Co ——iA
l
L
—

Obr. 75
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Odtud plyne konstrukce maximalniho trojuhelniku ABC. Znamym postu-
pem sestrojime vné trojuhelniku A¢BoCo stiedy O4, Op, O¢ kruhovych
obloukil, z nichz jsou strany BoCo, 49Co, AoBp vidét pod thly i, f1, y1.
Body Ao, Bo, Co pak vedeme rovnobézky s ptimkami OpO¢, O40¢, O 40Bp.
Ty vytvofi trojuhelnik 4ABC (obr. 76).

Z uvah provedenych v rozboru vyplyva, Ze takto sestrojeny trojihelnik
ABC ma pozadované vlastnosti. Uloha ma vZdy jediné feSeni.

Poznamka. Pii konstrukci maximalniho trojtihelniku jsme mohli také
vyuZit toho, Ze jsou jeho strany kolmé k pfimkam MAg, MBo, MCy.

55. Muzeme pifedpokladat, Ze Cisla ai, ..., ag jsou ocCislovana tak, Ze
lai] = laz| = ... = |ag|. Dadle miZzeme predpokladat, Ze a; = 1, protoze
a; #0a

, Cn as \" as \"
c,= =1+ —) T o
a; ai ai

je rovno nule pro stejnou mnozinu indext jako ¢,. Uvazujme tedy posloup-
nost

ev=1-+aj+ ... +a,
kde

Iz lazl = ... 2 |as|.

1%

Pro n sudé je zfejmé ¢, > 0. Tedy ¢, je rovno nule pro nekoneéné mnoho
lichych indexti n.
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Necht k z ¢isel ay, .. ., ag je rovno 1 a / z téchto ¢isel je rovno —I1, potom
pro liché n je
S
o =k—1+ > a.
ikl
ProtoZe pro dostatecné velké n ziejme plati
8

2 4

=8l " <1

i=kti+1
a ¢y = 0 pro nekonecné mnoho lichych indexii, je nutné k =/ a
8
= 2 &
i=k4i+1

pro lichd n. Postupujeme-li ddle stejnym zpiisobem, zjistime, Ze mezi Cisly a;
s druhou nejvétsi absolutni hodnotou jich je stejny pocet kladnych i zdpor-
nych, atd. Cisla ay, ..., as se tedy sklidaji ze Gtyi dvojic opa¢nych &isel,
takZe ¢p = 0 pravé pro vSechna licha ».

Poznamka. Ziejmé neni podstatné, Ze isel a; je pravé 8. Dokdzané tvrzeni
zlistane v platnosti i pro posloupnost

cn=a}+ ...+ a,

kde a1, as, ..., ar jsou realna Cisla (je-li r liché, je ziejmé lichy pocet Cisel a;
roven nule).

Uvazujeme-li komplexni Cisla a;, tvrzeni neplati. Necht napf. ai, ..., as
jsou v8echny osmé (komplexni) odmocniny z 1. Snadno se ukdZe, ze ¢, = 0,
pravé kdyz n neni délitelné osmi.

56. Oznadme xi, k € {1, 2, ..., n}, poet medaili, které zbyly na zacatku
k-tého dne. Podle zadani je pro1 £ k < n—1

X1 =m,

M

Xirl = (xx — k).

Vypocteme-li nékolik prvnich ¢lenu, vidime, Ze pro 2 < k = n

(4 (9 ()

6
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coz miZeme dokdzat z rekurentniho vzorce (1) matematickou indukci.
ProtoZe x,, = n, dostavame tak vztah

6 \n-1 6 \n-1 6 \n-2 6
n:(7-) m—(-—j—) ———2(—7-) —....—(n——l)—7—. 2
Vypocitame soucet
6 \n-1 6 \n-2 6
S=(‘7—) —}—2('7]‘) —I—...—{—(n———l)‘7. 3
Ziejmé je
7 6\"2 6\"-3 6
-—6—S=(7) —1—2(7) +...+(n——-2)—7—+n—-1

a odectenim od (3)

S (6)n~1 (6‘n~2 (6)n—3 6
—%-7) 5 G e

tedy

s—o—ali— (%))

Dosadime do (2) a po malé uprave vychdzi

T
m—36 = pc (n—06).
. n—=~6
Protoze 6 a 7 jsou nesoudélna ¢isla, musi byt ey celé Cislo, avsak pro
) n—=~6
n>1 je |[n—6] < 671 Je tedy Gl = 0, coz dava n = 6, m = 36.

Snadno se presvédcime, Ze tyto hodnoty vyhovuji uloze. Sportovni soutéZ
tedy trvala Sest dnf a bylo rozdéleno 36 medaili.
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57. Necht trojuhelnik 4BC ma pfi obvyklém znaceni Ghly «, f,  a strany
a=mn,b=n+1,c=n-+ 2, kde n je ptirozené ¢islo. Potom z kosinové
véty plyne

b2 4 c2—a?2 (n+ 1)2+ (n+ 2)2—n? n-+45

COS & =

2be T 2n+D)(+2) T 2n+2)°
a4 c2—b2 2+ m+22—m+ 102 n2+2n+3
805 = 2ac 2n(n + 2) TR
a? + b2 — c? 712+(n+1)2—(n+’2)2 n—3
cosy = 2ab - 2n(n + 1) = om

ProtoZe « < f# < y, mohou nastat pouze tii mozZnosti:
a) f = 2a. Potom

—— == = ——— = 2C0s & =
n a sina  sina

Tedy n2 + 3n + 2 = n? + Snan = 1. To vsak nedava feSeni alohy, nebot
neexistuje trojuhelnik se stranami 1, 2, 3.
b) y = 2. Potom

n -2 c sin y  sin 2« n-+5
== = = 2005 & = .
n a sin « sin « n-+ 2
Tedy n? 4+ 4n + 4 = n? + 5n a n = 4. Trojahelnik o stranach 4, 5, 6
3
existuje a splituje podminky tlohy. Ze vztaht (1) totiz vyplyva cos o = R
1
€os y = 2, €08 20 = 2 cos?a — | = g = Cos Y, tedy y = 2.
¢) y = 2f. Potom ‘
n-4 2 c sin 7y n2-42n43
—— == =2c0s fl = ——— .
n-+1 b sin f§ n(n + 2)
Tedy n3 + 4n2 + 4n = n3 + 3n2 + Sn 4 3,
nt—n—3=0.

Kofeny této rovnice vsak nejsou pfirozena Cisla.
Dokazali jsme, Ze existuje jediny trojuhelnik s pozadovanymi vlast-
nostmi - trojahelnik se stranami 4, 5, 6.
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58. Piedpokladejme, Ze n-ciferné c¢islo x vyhovuje tloze. Soucin jeho
¢islic ozna¢me P(x). Ziejme

1071 < x < 10"

Jestlize n = 3, je

x2 — 10x — 22 = x(x — 10) — 22 = 107-1(107~1 — 10) — 22 =
= 102n-2 — 10n — 22 = 8.102n-3> 0
a
P(x) < 97 < 107, \
tedy

x2— 10x — 22 > P(x).
Jsou tedy jen dvé moZnosti: n = 1 an = 2.
Jestlize n = 1, pak P(x) = x a x2 — 10x — 22 = x, tedy
x2—1lx—22=0.

Této rovnici viak nevyhovuje zadné pfirozené Cislo x. Nutné tedy n = 2.
Nechf x = 10a + b, kde a, b jsou Cislice Cisla x, | £a <9, 05 b
Pak P(x) = ab a plati

(10a + b)? — 10(10a + b) — 22 = ab,

I\
V=)

neboli
100a(a — 1) + b(19a — 10) + b2 — 22 = 0. (1

Pro a = 2 je zfejmé& leva strana rovnice (1) kladnd. Tedy a = 1 a z rovnice
(1) dostavame

b2+ 9h —22 = 0.

Odtud b = 2 a x = 12. Zkouskou se pfesvédc¢ime, Ze x = 12 vyhovuje.
Jediné pfirozené ¢islo splitujici podminky Glohy je tedy x = 12.

2. feSeni. Necht
X =co -+ 10ct + 10%¢s 4+ ... 4+ 1071¢,_1,

kde co, c1, ..., cp—1 jsou Cislice Cisla x, ¢y—1 # 0. Pak pro soucin P(x)
Cislic Cisla x plati

P(x)=coc1...n-1= cn-19" 1 = ¢p1107-1 < x
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Pro ¢islo x tedy plati
X2 —10x —22 < x,
neboli
x2—1lx—22 0.
Resenim této kvadratické nerovnice zjistime, e x < 13. ProtoZe P(x) = 0,
plati dale
x2—10x—22=0
a odtud x > 11. Jedina moZnost je tedy x = 12, a ta vyhovuje tloze.

59. Ozna¢me P(x) = ax? + (b — l)x -+ ¢. Potom danou soustavu mii-
Zeme prepsat ve tvaru
P(x1) = x2 — X1,
P(x2) = x3— X3,

P(.ﬁ\'n- 1) = Xn — Xn-1,
P(xp) = x1— Xxp.
Sectenim dostavame
P(xy) 4+ P(x2) 4+ ... -+ P(xp) = 0. )

a) Jestlize (b — 1)? — 4ac < 0, je bud P(x) > 0 pro vsechna realnd ux,
nebo P(x) << 0 pro vSechna redlna x, a proto nemiiZe platit (1).

b) Jestlize (b — 1)2 — dac = 0, potom je bud P(x) = 0 pro vsechna
realnd x, nebo P(x) < 0 pro vSechna redlna x. Ze vztahu (1) potom
vyplyva P(x1) = P(xg2) = ... = P(xp) = 0. Rovnice P(x) =0 ma vsak

1—5b
pravé jedno feSeni x = g Jedingm feSenim dané soustavy je tedy
1 —b
2a
¢) Jestlize (b — 1)2— 4ac > 0, pak rovnice P(x) = 0 ma dvé rizna realna
fefeni & 7. Snadno se presvédCime, Ze X1 = X2 = ... =Xy =& a X1 =
= X2 = ... = Xp = 7 jsou dv¢ rliznd redlnd feSeni dané soustavy.

X =Xg=...=Xp = , jak se snadno presvédéime.

Pozndmka. V pfipadé c) soustava muZze mit jeste dalsi redlna feSeni.
Napfiklad pro n = 2, a = 1, b = —2, ¢ = 0 ma soustava 4 realna feseni
L+ 5 1—]/5) (1~1/5 1+ ]/5)

2 2 2 2

(xla x‘Z): (07 0): (39 3)’ (
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60. Necht ABCD je libovolny Ctyistén, pfi¢emZ oznaceni volime tak, aby
hrana AB byla nejdelsi (popf. jedna z nejdelSich). Pro stény ABC, ABD
Ctyfsténu plati trojihelnikové nerovnosti

|[AC| + |BC| > |48,
|AD| + |BD| > |AB|.
Sectenim dostaneme nerovnost
|[AC| + |BC| -+ |4D| + |BD| > 2|AB|,
kterou miizeme piepsat na tvar
(|4C| + |AD| — |4B|) + (IBC| + |BD| — |4B]) > 0.
Je tedy bud |AC| + |AD] > |AB|, nebo |BC| + |BD| > |AB|. Protoze hra-

na AB je nejdelsi, je mozno bud z usecek AC, AD, AB, nebo z usecek BC,
BD, AB sestrojit trojuhelnik.

61. a) Z dané¢ podminky plyne pro kazdé realné x, Ze f(x + a) = B

1
a zaroven f(x) — (f(x))? = 0, tedy - 5 < f(x) = 1 pro kazdé x. Navic je

|
x4 20) = 4 Y @) — (fx + @) =

/1 1 I
- ] — 1) — ()2 — - — ) — (FeN2—f(x) + (f(x)* =

i —f G =5 + | (w—5) =

w|~ NI'— N|—-

I

1
JO) ——’=f(X),

nebof jak uz vime, f(x) = Tedy f(x -+ 2a) = f(x) pro kazdé cislo x.

=2
b) Definujme funkci f nédsledujicim piedpisem:

1
J(x) == pro xe2k,2k -+ 1),
fx) = 1 pro xe€ 2k + 1, 2k + 2),
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kde k je celé &slo. Snadno se presvéd&ime, 7e takto definovana funkce f
vyhovuje podminkam tlohy.

Pozndmka. Obecné lze funkci f s poZadovanymi vlastnostmi definovat
takto:

|
pro x € <0, 1) definujeme f libovolné tak, aby > 2fx) £,

1
pro x € <1, 2) polozime f(x) = > + [ fx—1) —(fix—1))2,

pro ostatni redlnd x definujeme f(x) tak, aby funkce f byla periodicka
s periodou 2.

1 1
2. feSeni. Zavedeme funkci g(x) = f(x) - Protoze 5 <flx) = 1,je

1
0 = g(x) £ pro vsechna x. Danou podminku miZeme psat ve tvaru

.«

1 [ /1
gx +a)= V 8() + 5 — (@) —gx) — 5 = | 7—(5;(x))2
Pro hodnoty funkce g tedy plati

1
(8(x + @)* = 5~ —(g(x))?

a také

1
(g(x + 2a))% = i (g(x + a))2.

Porovndnim téchto dvou vztahii dostaneme
(8(x + 2a))? = (g(x))?,
a protoze g(x) = 0, je
g(x + 2a) = g(x)
pro kazd¢ x. Funkce g ma tedy periodu 2a, coz zieym¢ plati i pro funkci f.
3. feSeni. Z dané podminky vyjadiime f(x) pomoci f(x + @). Rovnici

piepiSeme

S+ @) — — = Jf) — (f)?
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a obé strany umocnime. Dostaneme tak pro f(x) kvadratickou rovnici
1\2
=1 + (fx+ o—5) = o

ktera ma koteny

1 1
5 st a) — (fx+ @)% = —|lflx + ) — (fix + @)

Druhy kofen je mensi nez EX takze

1
o) = 5 + Vfx + @) — (flx + a))?

pro kazdé x. Je tedy také

1 I
fox—a) =+ VD — (),

tudiz f(x — a) = f(x + a) pro kazdé x.

62. Je-li k tak velké, aby 2% > n, je

n -+ 2F 5 n 4 2k
e <1, takZe KTy =0

Uvazovany soucet tedy obsahuje pro kazdé n jen konecny pocet nenulovych
s¢itanct.
Srovnejme k-té s¢itance souctll Sy a Sp+1. Ziejmé

n -+ 2k n-+ 12k
e | ST e

(odtud plyne, Ze S, < Su+1). Protoze

n+ 1428 pn 2k 1
k+1 T Qktl | Qk+D

(n + 1 -+ 2k n+ 2k
2k+1 T 2kl =L ®

je
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Rovnost zde nastane, pravé kdyz existuje ptirozené Cislo p tak, Ze

n+ 2k n+ 14 2F

ET R R T
neboli

n+ 28 < p 2kt < p 28 4 1,
Musi tedy platit
p.2¢+1 = p |- 2k 4 1,
tj.
28Qp — 1) =n -+ 1. 2

Odtud vidime, Ze k danému 7 existuje pravé jedno k tak, aby platilo (2),
a tedy v (1) nastala rovnost, totiZ poCet dvojck v rozkladu éisla n -+ 1 na

prvocinitele. Je tedy Sp+1 = Sp 4 1. Snadno spocteme, ze S1 = 1, takze
Sn =

2. feSeni. Ptirozena Cisla 1, 2, ..., n rozdélime do dvou skupin: na Cisla

n-+1
lichd, kterych je 5 ], a na C¢isla suda. Suda ¢isla dale rozdélime opét do
: . . fn+2
dvou skupin: na ¢isla nedélitelna Ctyfmi - téch je T4 | -am ¢isla de-

litelnd Etyfmi. Posledni skupinu dale délime na Cisla nedélitelnd osmi - téch je

{”_:f‘_‘_‘
8

zena Cisla 1, 2, ..., n. Odtud vidime, Ze S = n.

- a zbytek. Tak postupujeme, dokud nevycerpime vSechna pfiro-

Podrobngji: Oznaéme My, k£ = 0 celé, mnoZinu vSech prirozenych disel
m < n délitelnych &islem 2% a nedélitelnych &islem 2++1, Zadné dvé z téchto
mnozin zfejmé nemaji spolecny prvek a sjednoceni vSech téchto mnozin je
{1, 2, ..., n}. UkdZeme, 7e polet prvki mnoZiny My je pravé M| =

n - 2k

Prvky mnozZiny My jsou totiz &isla tvaru m = 2¥Q2c¢ — 1), pro kterd
m < n. Je jich tedy pravé tolik, pro kolik p¥irozenych cisel ¢ plati

2k(2¢ — 1) £ n,
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neboli
n-+ 2%
c < Tr
et 2E
Takovych &isel ¢ je pravé oer | Tedy
< |7 + 2k i @
Z = 2 M =1UM| =1[{1,2,...,n} =n.
oy 2041 k=0 k=0

Pozndmka. Uvazujeme-li misto ¢isla 2 libovolné prvocislo p, dostaneme
obecnéjsi vysledek:

n-+1 "n+p n—l—p2 tn+21 fn+2p
P e .
P p® | 2 p
n+2p np—1 n+ (p—1p
e e
P P p
+(p— 1y SENELEY &
n — 1)p? n
RS
‘ k=0 j=1 :

3. feseni. Cislo » vyjadtime ve dvojkové soustavé:

n= ¢, ¢, =1,¢€{0,1}.

=0

P \ ) ’
Potom —2153— = 0 pro k > r. Jestlize k < r, plati
n+ 26| fe2r Fepm12 b o (ek - D28 L+ 2e1 - co
26+ | T kt1 =
= ¢2M%"1 0120 k-2 | 4 cpr1 +
F ek 4 D271 4 cp—1272 + ... - e127F  ¢p27F1].

ProtoZe

1
1278 b a2 27 S 2R 27 L 27R <y
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je
n - 2k ] Ck —I— 1]
e | = @2 a2 e =
= 2" k1 + ¢ 12MF-2 + L+ 41+ Cr
Plati tedy
_i_
5 ] = ¢+ c1+ 2co + 223+ ... + 1272 + 277
n-+4 2
4 = c1+ c2+42c3 + ... 012073 4 0272
n 4 21
|~ |~ Cr-1 + ¢,
' 2r
o] -

Secteme-li téchto r -+ 1 rovnosti, zjistime, Ze hledany soulet je roven
0o+2c1+ ...+ 2'¢, =n.

4. FeSeni je zalozeno na rovnosti

[x =+ %] = [2x] — [x],

kterou snadno ovéfime. Pro hledany soucet tak mame
- n+ 2k
Z [ okl | T
1
5 + . 2k+1+7 + ...+ =

- [] R N

= [n] = n,

[ 2] [3
(2] ]

nebot nenulovych scitancti je jen koneCny pocet.

& |

w‘:
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Pozndmka. 4. YeSeni zaruduje, Ze uvaZovany soucet je pro libovolné redlné
¢islo n roven [n]. To plati i pro obecnéj§i soucet, o némz jsme se zminili
v predeslé pozndmce.

63. Pro kazdé prirozené Cislo n a prirozené Cislo k > 1 je

n* -+ 4kt = n* 4 4n2k2 + 4k* — 4n2k2? =
= (n2 + 2k2)2 — (2nk)? =
= (n2 4 2k2 4 2nk) (n® + 2k? — 2nk),

pricemz
n2 - 2k2? 4 2nk > 1
a
n? 4 2k%2 —2nk = (n — k)% - k2 > 1.

Cisla tvaru a = 4k4, k e {2, 3, ...}, maji tedy poZadovanou vlastnost, Ze
C¢islo n + a je sloZené pro libovolné prirozené Cislo 7.

64. UZitim vzorce cos (a; + x) = cos a; cos x — sin @; sin x dostivame

n n

, 1 COS @; CO8 X S“ sin @; sin x
flx) = 5i-1 €08 (a; + x) = 21 — i1 =
=1 =1 t=1

= A cos x — B sin x,

n n

cos a; sina;
kde 4 =EF a B =z i1 jsou konstanty.

i=1 i=1

Obé ty.o konstanty nemohou byt ziroveri nulové. Kdyby tomu tak bylo,
méli bychom

n
1
0 = |4 cosai -+ Bsinay| = I] -+ E i1 cos (a1—a;) | =
i=2
1 1
=>1— —_—— =
= 2i-1 2n—1

1=

Tedy alesporti jedno z ¢isel 4, B je rlizné od nuly.
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Necht x1, x2 jsou redlnd &isla, pro ktera plati f(x1) = f(x2) = 0, tj.
A cos x1— Bsinx; =0, )
A cos xa — B sin x2 = 0.

Je-liA = 0, B £ 0, je pak sin x; = sin x2 = 0, tedy x1 — x2 = km, kde k je
celé Cislo. Je-li A 40, B = 0, je cos x1 = cos xg =0 ax;— xo = kw, kde k
je celé Cislo. Zbyva piipad 4 # 0, B 7= 0. Kdyby cos x1 = 0, ze vztahu (1)
by plynulo, Ze sin x; = 0, coz neni moZné. Tedy cos x1 * 0 a obdobné
cos x2 7% 0. Z (1) tak dostavame

A
tgx1 = B tg xa,
tedy opét x1 — x2 = kw, kde k je celé Cislo.
2. FeSeni. Nechf f(x1) = 0 a x je libovolné redlné ¢islo. Pak

o) — ;‘ cos (a; -+ x) §‘ cos ((a; + x1) + (x — x1)) B

2i-1 Zy 2i-1
t=1 t=1
n n )
cos (a; + x1) ] sin (a; + x1)
= Z cos (x — x1) B Z sin (x — x1) Ty &
i=1 i=1
'
n COS T3 + a; + x1

= c0s (x — x1) f(x1) + sin (x — x1) S -

=1

= sin (x—xl)f(% -+ x1).

™
Kdyby f (— + x1) = 0, bylo by f(x) = 0 pro vSechna redlnd x, avSak

cos (ai——al) < 1
f(—al)—cosO—l—Z >1—-Zz—i—1>0

1=2

Je tedy f ( + x1) # 0. Jestlize f(x2) = 0, plati

™
0 = f(xz2) = sin (X2—x1)f(h2‘ + x1),

tedy sin (x2 — x1) = 0 a x2 — x1 = km, kde k je celé Cislo.
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3. FeSeni vyuziva diferencidlniho poctu. Pro druhou derivaci uvaZované
funkce f plati

f7(x) = —f(x).
Této diferencialni rovnici vyhovuji pravé vSechny funkce tvaru
f(x) = A cos (x + @),
kde A4, ¢ jsou redlna &isla. ProtoZe f(—a1) 7 0, je také A4 # 0. Jestlize tedy
f(x1) = f(x2) = 0, potom
cos (x1 -+ @) = cos (x2 + ¢) = 0

a odtud x1 — x2 = km, kde £ je celé Cislo.

65. Postupné vySetiime jednotlivé ptipady.
a) k = 1. Oznaceni zvolme tak, aby platilo |AB| = a, |AC| = |AD| =
= |BC| = |BD| = |CD| = 1. Oznaéme M st¥ed hrany CD (obr. 77). Potom

3 _
|[AM| = |BM| = VT a |AB| < |AM| + |BM| =3,
tedy

a< V—3 ¢))

Obréicené ukdZeme, Ze podminka (1) je i postadujici. Sestrojime rovno-
stranné trojuhelniky ACD, BCD a otaenim trojihelniku BCD kolem spo-
leéné hrany CD muzeme diky podmince (1) dosdhnout, aby |4B| = a.
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b) k = 2. Hrany o délce @ mohou byt bud pfilehlé, nebo protilehlé.
Nejdiive zvolime oznadeni tak, aby |AB|= |BC|=a, |AC|= |AD|=
= |BD| = |CD| = 1. Ozna¢me M stfed hrany AC (obr. 78). Potom

V:"; / 1
|[MD| = —— a |[MB| = |/ a® — e

V trojtihelniku MBD plati
|MB| — |[MD| < |BD| < |MB| + |[MD]|,

neboli
L1 B / L l/
- JRH I el
!/“ s 2<1< ] 42
a odtud
1/2—]/§<a<l/2+l/§. @)
Obrécené, je-li splnéna podminka (2), plati @ > V2 — ]/3 > —1—.Podminka

2
(2) tak umoziuje sestrojit trojihelnik 4ABC se stranami [AB| = |BC| = a,
|AC| = 1, rovnostranny trojuhelnik ACD a hledany Ctyfstén dostaneme
jejich otd¢enim kolem spoleéné hrany AC, aZ bude |BD| = 1.

V ptipad€ protilehlych hran délky a zvolime oznaceni tak, aby [4B| =
= |CD| = a, |AC| = |BC| = |AD| = |BD| = 1. Je-li M stfed hrany AB
(obr. 79), je

g2
|MC| = |MD| = l 1—
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takze

—t
a=|CD| < |MC| 4 |MD| = 21/ -

neboli

a<]2. 3)
Podminka (3) je zfejmé i postadujici pro existenci ¢tyfsténu 4ABCD v tomto
pripadé.

Obr. 79
Z podminek (2) a (3) plyne, Ze pro k = 2 existuje poZadovany Ctyi'stén,
——= B
ravé kdyza < |/ 2+ |3 = — .
p y V V3 == @2+ V6)

¢) k = 3. Pro hledany Ctyfstén mame tfi moznosti. Necht nejprve hrany

délky 1 vychézeji z jednoho vrcholu. Zvolme oznaleni tak, aby |AB| =

= |AC| = |BC| = a, |AD| = |BD| = |CD| = 1 {obr. 80). Primét D’ bodu

D do roviny ABC pak splyva se stfedem kruZnice opsané rovnostrannému
al/3

trojihelniku A BC. Polomér této kruZznice je roven N Pozadovany Ctyistén
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al/3
muzeme tedy sestrojit, pravé kdyz % < 1, tj. pravé kdyz
a<]3. @)

Necht nyni vychazeji z jednoho vrcholu hrany délky a. Zvolme oznaceni
tak, aby |4B| = |AC|= |BC|=1, |AD|= |BD| = |CD| = a. Ctyistén
s témito hranami existuje, pravé kdyZz existuje Ctyistén s hranami |4B| =

1
= |AC| = |BC| = L |AD| = |BD| = |CD| = 1. Podle piedchazejiciho vy-

1 _
sledku takovyto Ctyistén existuje, pravé kdyz " < |3, tj. pravé kdyz

a >

d 5

Protoze pro kaZdé a > 0 je splnéna alespoinl jedna z podminek (4), (5),
hledany &tyfstén existuje v piipadé k = 3 pro libovolné ¢ > 0. Nemusime
uz tedy vySetfovat dalsi pfipad (napf. |AB| = |BC| = |CD| = a, |AC| =
= |AD| = |BD| = 1).

d) k = 4. Tento ptipad lehko pievedeme na p¥ipad k = 2. Ctyistén se
Styfmi hranami délky a a dvéma hranami délky 1 existuje, pravé kdyz

1
existuje Ctyfstén se Ctyfmi hranamidélky 1 a dvéma délky L Uzitim vysledku

pro k = 2 dostavame nutnou a postacujici podminku

% <)2+V3- % V6 + 2. . a > _; V6 —12).

¢) k = 5 pievedeme na piipad k = 1 stejnym zpisobem. Ze vztahu (1)

1 _
tak plyne nutna a postacujici podminka ” < )3, 4.
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Vysledky zapiseme do tabulky:

k Podminka
1 0<a< ]/3_
2 o<a<l2+)3
3 0<a
4 V2-V3<a
. s
5 - < oa
3

Pozndmka. Pro k = 3 jiz nebylo nutné vySetfovat tieti pfipad, kdy ze tii
hran délky « jsou dvé protilehlé, napt. |AB| = |BC| = |CD| = a, |AC| =
= |AD| = |BD| = 1. V tomto piipad¢ Ctyfstén existuje, pravé kdyz

P— _—
/ 7 / =
/13—
‘l/ .____V_S (< a < Vﬂ
/ 2 2 b
neboli

Js—1 P51
2 = ~ 2 .

V piipadé k = 3 mizZzeme také postupovat ndsledovng. PoloZzme M =
= max (1, @), m = min (I, @). Sestrojime rovnostranny trojihelnik 4ABC
o strané m avjeho stiedu sestrojime kolmici k roviné A BC. Na ni pak najde-
me bod D tak, aby |[AD| = M. Pro kazdé a > 0 jsme tak sestrojili Ctyf'stén
s pfedepsanymi vlastnostmi.

66. Oznaéme O3, O, O3 stfedy a ri1, ra, r3 poloméry kruznic k1, ks, ks.
Dale oznaCme Hi, Ha, Hs jejich body dotyku s pfeponou 4B. Stfed kruz-
nice k ozna¢me O a polomér r. Porovname velikosti useCek omezenych
body Hi, Hs, H3 s poloméry r1, re, rs a dokdZeme tak, Ze stiedy O1, Oz, O3



66 (152)

leZi v pfimce. P¥imka soumérné sdruZend s 4B podle osy prochazejici body
01, O3z, O3 je pak hledanou spole¢nou tecnou kruznic k1, ke, k3.
Oznaéme jesté |AB|=c¢, |BC|=a, |AC|=Db, |AD|=p, |BD| =g,

at+b+c ) .
Ty = Body dotyku kruZnice k1 rozdé€li strany trojuhelniku ABC

na Casti o velikostech u, v, w (obr. 81), pro které zfejmé plati
U=s—a, v=s—>b, w=s—c.
Odtud vidime, Ze
|AH1| = s —a, r1 =5 —c.

Z trojuhelniku O2H»0 je podle Pythagorovy véty (obr. 82)
(5=r) =+ era—3),

(rz + @) = qc

cili

c
(to plati i v pfipadé, kdy O = Ha, tj.rs = q = T)

Podle Euklidovy véty o odvésné v trojuhelniku ABC je gc = a?, takZe
re=dad—¢(.

Analogicky dostaneme z trojuhelniku O3H30, Ze
rg=>0 —PD.



|[AH| =p—ro=p+q—a=c—a,
|AH3| = p + r3 = b.
Piedpokladame-li, Ze @ = b (¢imZ neztratime na obecnosti), nastane situace
v obr. 83, kde
|AH3| + |AH3| = b + ¢ —a = 2(s — a) = 2|AH1|,
ret+rs=a+b—p—qg=a+b—c=2—c)=2r1.
Bod Hj je tedy stfedem usecky HziH3 a bod O; stiedem tiseCky O203.

.03
Og /,,6/7;//}
N P b
’1| 2 KIM . :\
A'L ~ ~t L B
H?. H‘i 0 H3
Obr. 83

67. Konvexnim obalem mnoziny bodi M rozumime nejmensi konvexni
mnozinu obsahujici mnoZinu M. Konvexnim obalem kone¢né mnoziny
bodt M v roving, které nelezi v jedné pfimce, je mnohouhelnik, jehoz kazdy
vrchol je z mnoziny M.

Zvolme tii vrcholy A4, B, C konvexniho obalu danych n boda. Dalsi dva
body D, E miZeme vybrat (” _2 3) zplsoby. Pfitom vZdy alespoii dva z bodi
A, B, C lezi v téze polorovin¢ uréené piimkou DE - zvolme oznaceni tak,
aby to byly body 4, B (obr. 84). Potom A, B, D, E jsou vrcholy konvexniho
¢tyfuhelniku. Kdyby tomu tak nebylo, byl by konvexnim obalem bodi A4,
B, D, E trojuhelnik a jeden z bodit 4, B by lezel uvnitt n¢ho. To vSak odpo-

Obr. 84
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ruje tomu, Ze body A4, B, C jsme zvolili ve vrcholech konvexniho obalu

n—3
2

2. FeSeni. VySetiime nejprve ptipad n = 5. Mame dokazat, Ze existuje

danych n bodii. Nalezli jsme tak ( ) riiznych konvexnich ¢tyfuhelniki.

alespoii (5 _,; 3) = 1 konvexnich ¢tyfuhelnikt s vrcholy v danych bodech.

Konvexni obal danych péti bodit 4, B, C, D, E miiZe byt trojuhelnik, Ctyi-
thelnik nebo pétitihelnik. Je-li to pétithelnik, pak libovolna Etvefice jeho
vrcholil tvoii konvexni ¢tyfthelnik. Pfipad, Ze konvexnim obalem je ¢tyi-
thelnik, je rovnéz jasny.

Dejme tomu, Ze konvexnim obalem bodit 4, B, C, D, E je trojihelnik
ABC. Body D, E tedy lezi uvniti trojihelniku ABC. Dva z bodd 4, B, C
(napt. 4, B) musi leZet ve stejné poloroving uréené pfimkou DE (obr. 85).
Potom body A4, B, D, E tvofi konvexni ¢tyftihelnik.

Obr. 85

. , A v (N .. , .
Uvazujme nyni obecny pfipad n = 5. V kazdé z ( 5) pétic danych bodi
vybereme Ctvefici tvofici konvexni Ctyfthelnik (existenci takovéto Ctvefice
jsme jiz dokdzali). Kazdd Ctvefice je obsaZena v prdvé n — 4 péticich,
tedy libovolnd Ctvefice bodl tvoficich konvexni Etyftihelnik mohla byt

1 n
vybrdna nejvySe z n — 4 pétic. Mdme tedy alespoii 4 (S)Iﬁznj'/ch étve-

fic danych bodu, které tvori konvexni ¢tyfahelnik. Staci ndm nyni ukdzat,

Zepron =5
1 (n) n——3)
a_als) =\ 2 )

Ekvivalentnimi upravami dostavame )
n(n—1)(n—2) = 60(n —4). (D
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Z¥ejmé pro n = 9 je n(n — 1) > 60 a n — 2 > n—4, nerovnost (1) tedy
plati. Pro zbylé pfipady n = 5, 6, 7, 8 snadno ovéfime pravdivost vztahu (1)
dosazenim.

Pozndamka. Odhad, ktery jsme dokdzali v 2. feSeni, je znacné lepsi nez
odhad, ktery bylo tieba dokdzat v tiloze. Pro velka n je

(5)

n—4 " 120

zatimco

68. Jmenovatele zlomkii oznacime postupné L, P1 a Py. Odhadneme L
pomoci Py, P2. Plati

L =Py + Py + x1ys + xop1 — 2z122,

pficemz
X1 X2 o
X1yz + xoy1 — 22123 = . P2+ z5) + P (Py -+ 2) — 22122 =
2

X1 X2 ’,F/.Xz
=—Po+—Pi-+\zn1}y) T —2z2
9 X1 /X1

X2

X1 X3 e

Z — P2+ — P1 = 2|P1P2.
X2 X1

Zde jsme uzili (a jeSt& nékolikrat uZijeme) nerovnost @ - b = 2|/ab, kterd

ziejmé plati pro viechna a, b > 0, a rovnost v ni nastane, pravé kdyz a — b.

Je tedy

Lz Pyt Pyt 2)PiPa= (JP1 + [P2)? > 0
a rovnost nastane, praveé kdyz soucasné

/

/X2 ,/xl X1 X2
z1 || =2z — a — Py =—2P;. (1
| X1 /X2 X2 X1
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Abychom dokazali danou nerovnost

B0t

L = P Py
staci dokdzat nerovnost

8 1 1

= —— ="+ 5
(JPL+ P22~ P P2
coZ neni obtizné:
8 8 PPy _PitP
Pi+ Py 2|P1Py ~— 4)P1Py  P1Pz T PiP:
Zde nastane rovnost, pravé kdyZ P1 = Ps. Pfipojime-li je$té podminky (1),

snadno zjistime, Ze rovnost v zadané nerovnosti nastane, pravé kdyZ
X1 = X2, Y1 =Yaadz] = Z3.

69. Stted S kruZnice vepsané trojiihelniku 4 BC dostaneme jako prisedik
os uhlit BAC a ABC (jejich velikosti oznadme « a f), prisecik os pfislusnych
uhli vedlejsich je stfedem R kruZnice ptipsané (obr. 86). Z pravouhlych
trojahelniktt ATS, BTS, AUR a BUR pak dostaneme jednak

(e + 1)
, p T\ e
|AB| = |AT| + |78 = —— 4+ — —

« B
tg7 tg; tg—z*tg?

2

jednak

. 3 p o
|4B| = [AU| + |UB| = ¢tg  + otg > = e\te 5 +t8 ),
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takZe porovnanim obou vztahii mdme
r o fi
9 = tg 7 tg + 2
Je-li M vnitfni bod tseky 4B a oznadime-li 6 = |3 AMC|, dostaneme
pro trojuhelniky AMC a MBC analogicky
ri o 0 ro ( T 0 ) p 0 /}
. tg

o B T B\ T/ By T
takze
FikFe o« p F
ooz £2®2 Ty
70. Je
An-1  Bp-1
An Bn ’

prave kdyz
An-1By — AuBp-1 < 0.

Pritom
n—1 n n n—1
An_lB.n—A”Bn_l = z xkak Z xk-b’“-—— Z xka’“ z xkb" =
k=0 k=0 k=0 k=0
n—1 n-—1 n—1
= xpb" > xpak¥ — xpa® > xpb* = xp Z xXi(akb? — anb¥) —
k=0 k=0 =0
n— 1

E—0
odkud je hned patrna platnost dokazovaného tvrzeni.

2. feSeni. Oznatme p(1) = xut" + xp-1t""1 - ... -+ xit + Xo,
nl® . An—l &—_1

q(t) = 1— 20 Pak je An = p(a), Bn = p(b), A q(a), B, q(b).

ProtoZe xo, X1, ..., Xp—2 = 0, Xp—1, Xp > 0, pro ¢ > 0 funkce p() roste,

funkce

(1) 1 1 1
7—=Xn+xn—1 7+xn—272—+-~.+xo;
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tn

p(t)

klesa, funkce roste a funkce ¢(7) klesd. Je tedy
Ap-1 By
—

Ap = By’

pravé kdyz a > b.

ag-1
71. a) Predevsim je Tan < 1, takZe b, = 0 pro kazdén = 1. Dédle mame
k

prok = 1

Sed&teme-li tyto nerovnosti pro k € {1, 2, ..., n}, dostaneme
s ol — L) <31 L)
n = T e— =) = —_ = < 2.
" Vao  Jan Van
1
b) Za a, zvolme geometrickou posloupnost —q—zz, kde 0 < g < 1. Pak je

ap =1,
l_qn

n
bn=2 (0—=¢)*=(10—=¢q7 =
k=1 —q
=q(1 + q) (1 —g¢") > 29°(1 —q").
Je-li ¢ < 1 pevné, bude vzdy pro dostate¢né velkda n (pfesn&ji pro

n > logg(l —¢q))
l—q" > q, tj bn > 2q3.

o —
Je-li dano ¢islo ¢ € <0, 2), poloZme g = l/%. Pak bude

by > 2q3 =c
pro vSechna dostate¢né velka a.
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72. Pfedpokladejme, Ze pozadovany rozklad mnoZinyM = {n, ..., n 4 5}
na dvé neprazdné podmnoziny My a Ms existuje. Mezi Sesti ¢isly mnoZiny M
existuje aspoii jedno délitelné péti, musi tedy byt v kazdé mnoziné My i My
Cislo délitelné péti a mohou to byt jen Cislan an - 5.Je tedy n = 5 a z ne-
rovnosti

nn+1)—m+5=n—5>0

vidime, Ze pro libovolna tfi Cisla a, b, ¢ € M plati ab > ¢. Odtud plyne, Ze
kazd4 z mnozin M1, Mg je tfiprvkova. ProtoZe ¢isla n a n -- 5 patfi do riz-

; .. L. 4
nych podmnozin, miame jen 5

) = 6 moznych rozkladil, pricemz je zfejmé

nn 1)+ 2) < (n-+ 3)(n -+ 4)(n+5),
nn+1)n+3)<@m+2)(n-+4)(n-+595),
nn+1)@n+4) <@+ 2)(n+ 3)@n+5),
nn+2)(n+3) <@+ D@+ 0+,
nn+42)(n+4<m-+D)@+3)@n+5)
a snadno se presvédcéime, Ze také
nn+3)(n+4) < (n-+ 1)+ 2) @0+ 9
Rozklad uvedenych vlastnosti tedy neexistuje pro zadné prirozené n.

2. YeSeni. Nechf p je prvocinitel nékterého Cisla ae N = {n 1, ..

vvvvv

9

no &islo b € M, b # a, takZe musi byt p = 2 nebo p = 3, nebof |[a — b| < 4.
MnozZina N obsahuje dvé za sebou jdouci lichd &isla vétsi nez 1, kterd by
tedy byla obé délitelna tfemi, coZ neni mozné.

3. FeSeni. Existuje-li uvaZovany rozklad M = M; U My, je soucin
sp=nn-+1)...(n+495)

étvercem piirozeného Cisla. Jak jiz vime, je n délitelné péti. ProtoZe ze Sesti
po sobé jdoucich &isel je nejvyse jedno délitelné sedmi, nemtzZe byt Zadné
z &isel mnoziny M sedmi délitelné a je proto n = 7k - 1, kde k je celé
nezaporné Cislo.

Nyni si uvédomme, Ze n déli soucin prvka té podmnoZiny, kterd Cislo n
neobsahuje, takze déli také souCin (n + 1) ...(n + 5) = An + 120, tedy n
je délitelem cisla 120.
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Vzhledem k uvedenym vlastnostem prichazeji v uvahu jen Cisla n = 15
a n = 120, anijedno z Cisel s15, s120 vSak neni ¢tvercem prirozeného cisla.

4. feSeni. Ozname a; soudin prvki mnoZiny My, ie {1, 2}. DokaZeme,
Ze neexistuje ani takovy rozklad M = My U Mg, pro ktery by platilo
a1 = az (mod 7).
Vime, Ze existuje-li takovy rozklad, Zadné z Cisel mnoziny M neni délitelné

sedmi. Soucin vSech Sesti za sebou jdoucich ¢isel z M dava tedy stejny zbytek
modulo 7 jako

6! = —1 (mod 7).
Kdyby a1 = a2 (mod 7), platilo by
a; = a1a2 = 6! = —1 (mod 7).

Rovnice
x2=—1 (mod 7)

vSak nema feSeni, jak se snadno pfesvédéime prozkoumanim vsech zbytki
modulo 7, takZe rozklad pozadované vlastnost: neexistuje pro ziadné pfi-
rozené n.

73. Releni je zaloZeno na tom, 7e viechny t¥i sténové Ghly pii vrcholu D
jsou pravé, jak ukaZeme (obr. 87). Predevsim je zfejmé, Zze AB | CDE,
takze CD | AB. To ov8em plati, i kdyZ C = E. ProtoZe je také CD | BD
podle ptedpokladu, je CD | ABD, tedy také CD | AD. Ziam&nou bodi
B a C v predchozi uvaze dostaneme BD | AD.

Pti oznadeni hran jako v obr. 87 plati podle Pythagorovy véty

2(p? + g% + r?) = a® + b2 4 %
Je tedy
6(p2% + q% 4+ r?) = 3(a® 4 b2 + ¢?) =
—@+b+t Ot @—bR+b—+@— 22 @+ b+ o3
pri¢emz rovnost nastane, pravé kdyz a = b = ¢. Vidime tedy, Ze rovnost
v dokdzané nerovnosti nastane pro jediny ¢tyfstén (az na podobnost), jehoZ
zakladnu tvofi rovnostranny trojuhelnik ABC a |AD| = |BD| = |CD| =

/2

=" |ABI.
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Obr. 87

2. feSeni. Nad priméry BC a AB sestrojme kulové plochy. Ty se protinaji
v kruznici, ktera prochazi body B a B; a lezi v roviné kolmé k ABC, tj.
v roviné BB1D = BED. Bod D lezi na prvni kulové plose i v roviné BED,
lezi tedy i na druhé kulové plose a thel ADB je pravy. Provedeme-li stejnou
tvahu pro kulovou plochu nad primérem AC, zjistime, Ze thel ADC je
pravy. Dale postupujeme jako v predchdzejicim feseni.

3. feSeni. Oznadme a, b, ¢, d vektory EA, EB, EC, ED. Bod E je prisecik
vysek trojuhelniku A BC, takze

a.b—cy=b.(c—a)=c.(a—b)=0,
tj.
a.b=>b.c=c.a. )
Protoze DE | ABC, je
a.d=b.d=c.d=0. )
Z rovnosti
(b—d).(c—d)=0,
kterd vyjadiuje pfedpoklad BD | CD, a z (2) plyne
b.c4d.d=0.

Podle (1) a (2) dostivime odtud kolmost zbyvajicich dvojic hran ve vrcho-
lu D

(b—d).(a—d)y=0, (a—d).(c—d)=0.

Dile postupujeme jako v 1. feSeni.
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74. Kazdych n nekolinearnich bodt urluje 7, = (’31) trojuhelnik.

Ozname O, nejvétsi polet ostrothlych trojihelnikdt urlenych n nekoli-
nearnimi body.

Uvazujme nyni urCitych n + 1 nekolinedrnich bodd 41, ..., Ap+1. Vy-
nechanim k-tého z nich dostaneme n bodl, které uréuji o,y ostrotihlych
trojahelnik@. Pro celkovy pocet 0,41 ostrothlych trojuhelniktt uréenych
témito n + 1 body pak plati

On1 + On2 + ... + Opa+1
n—2

Op+1 =

nebot kazdy ostrouhly trojuhelnik jsme zapocetli (n — 2)-krat. Ze stejného
dtivodu je
n—+1

Tn+1 =n_2Tn' )]
Je tedy pro kazdych n 4+ 1 nekolinedrnich bodt
n—+1
Ont+l = n—a“m
takze i
n-+1

lIA

0n+1 n—"2 On,

coz spolu s (1) dava
0n+1 On

Tn+1 n

()
Podil ostrouhlych trojuhelnikit —]Tn tvofi tedy nerostouci posloupnost.
n

Oy 3
Snadno zjistime, Ze je T4 = 4, O4 = 3, takZe T =1 dale je T'5 = 10, tak-
4
3 . . On Os
7e O5<—T5=1751.05<7.Pronz S5jetedy — =<7 =0,7.
4 Tn Ts

Pozndmka. Predchazejici vysledek jsme mohli formulovat také takto:
Existuje-li konstanta ¢ takova, Ze pro néaké n je O, < cTp, pak je také
On+1 = Tyt
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2. feSeni. Nejprve ukazeme, Ze kazda mnozina péti nekolinedrnich bodi
uruje aspon tfi neostrothlé (tj. tupouhlé nebo pravouhlé) trojuhelniky.

a) Je-li konvexnim obalem dané pétice bodi trojuhelnik (obr. 88), pak
lezi dva body v jeho vnittku (napf. Aa, A5). Kazdy z nich je spoleénym
vrcholem tfi trojthelnik® s ostatnimi vrcholy v bodech 41, A2, A3, z nichZ
aspon dva a dva musi byt tupothlé.

b) Je-li konvexnim obalem dané pétice Ctyfuhelnik (obr. §9), pak aspon
v jednom z vrcholl ¢tyfuhelniku neni ostry thel. Bod A5, ktery lezi uvnitf,
musi leZet uvnitf jednoho z trojihelniki, na které je Ctyrfuhelnik rozdélen
napi. thlopfi¢kou 4143. Ten je vSak vrcholem aspoii dvou tupothlych
trojuhelnikii.

A3 A4
A

Az

Al Az
Obr. 88 Obr. 89

¢) Je-li konvexnim obalem dané pétice pétithelnik, jsou aspon ve dvou
jeho vrcholech tupé uhly, protoze soucet vnitifnich thlu je 37. Jsou-li ve
zbyvajicich tfech vrcholech thly ostré, jsou aspon dva z nich sousedni,
feknéme A1, Az (obr. 90). Pak je ovSem ve Ctyfihelniku 41424345 asporii
jeden z uhla pfi vrcholech A3, A5 neostry.

Obr. 90
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Kazdych pét nekolinedrnich bodit uréuje 10 trojuhelnikd, z nichZ jak
jsme ukdzali, nejvySe 7 je ostrouhlych.

\
Mnozina 100 bodii obsahuje (](5)0) petibodovych podmnozin a ty uréuji
nejvys 7(1(5)0) ostrothlych trojuhelnikti, pfitom ale kaZdy takovy trojuhelnik

Sree 97 i . P . - L
zapocitdvame ( )-krat. Pro podet ostrotihlych trojuhelnikii tak dostavame

2
odhad
100
7
O100 ( 5 )
<
T100 — (100 97
3 2

75. Oznaéme A, uvedenou funkci n proménnych ai, ag, ..., a,. Jak
snadno zjistime, je A4, symetrickd (jeji hodnota se nezméni libovolnou
permutaci proménnych). MiiZeme tedy pri dikazu nerovnosti A3 = 0
pfedpokladat napt. a1 = as = as. Pak je

=0,7.

As = (a1 — a2) (a1 — a3) + (a2 — a1) (a2 — as) + (a3 —a1) (a3 — az) =
= (a1 —a2)? -+ (a3 —a1) (as —az) = 0.
Pro n = 5 predpoklidejme vzhledem k symetriia; = a2 = as = as4 = as.
Mame ‘
As = (a1 — a2) [(a1 — a3) (a1 — a4) (a1 — a5) —

— (a2—as) (a2 — aa) (42— a5)] + (a3—ar) (as— a2) (a3 — as) (a3 — as) +

+(as—as)[(as—ay) (a1 —a2) (a1 — a3) — (a5 — a1) (a5 — az) (a5 — as)].

Zde je
a1 —az = 0,

(a1 — as) (a1 — a4) (a1 — as) — (a2 — as) (a2 — a4) (a2 —as) 2 0,
ajs—das é 0:
(a1 —a1) (as — az) (a4 — az) — (a5 — a1) (as — az) (a5 — ag) =
= (a1 — a5) (a2 — a5) (a3 — a5) — (a1 — as) (a2 — as) (a3 — as) = 0.

vvvvv

dvou nekladnych a dvou nezdpornych ciniteld. Je tedy 45 = 0.
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Abychom ukazali, Ze pro ostatni n > 2 uvedené tvrzeni neplati, staci
najit takovou n-tici ¢isel ai, as, ..., an, Ze Ap < 0.

Viimnéme si, Ze volbou «; = aj vypadne v A, i-ty a j-ty sCitanec. Zvolime-li
ay = as = as 7 aq 7 ds — ... = ay, bude v piipadé n > 5 A, =
= (a1 — a1)>(as — an)"~*. Proay = as = az > a4 > as = ... = ay tedy
bude A4, < 0. Uvedeny piiklad mGzeme pouzit i pro n = 4: pro as < a1 =
= ags = ag je Aq = (a1 —a1)® < 0.

Pozndmky. Pro n > 2 sudé si sta¢i uvédomit, Ze
A",(-—(ll, —A2y ..y —an) = —An(a1, as, ..., an)‘

Protoze 4, neni identicky rovna nule, nemiiZe byt A, = 0 pro kazdou n-tici
redlnych cisel.

Pro n = 3 jsme mohli také psat

Ay = (a1 — az)? + (a3 — a1) (a3 — az) =
, = a‘]: -+ (13 -+ ag — ai1az — a1a3 — a203 =

i
i

1
= E‘[(al — a2)? + (a1 — a3)? + (a2 — a3)?] = 0.

76. Oznaéme P mnohostén, ktery dostaneme z mnohosténu P; stejno-
lehlosti se stiedem A; a koeficientem 2. Ziejm¢ P; < P. Je viak také P; — P
proie {2, 3, ...,9}, jak nyni ukaZeme.

Nechf X je libovolny bod mnohosténu P;. Oznacme X jeho vzor pfii
posunuti o vektor AiA; (obr. 91). ProtoZe X1 € P; a P; je konvexni mnoho-
stén, lezi také stied Y tsecky X14; v P1. V rovnobézniku A414; XX je vsak
|A1X| = 2]41Y], bod X je tedy obrazem bodu Y v uvazované stejnolehlosti,
tj. XeP.

Obr. 91
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Pro objemy uvaZovanych mnohostént plati
V(P;) = V(Py), ie{l,2,...,9},
V(P) = 23V(P1).”
Aspoti dva z deviti mnohosténit P1, Ps, ..., P9 musi mit spoleény vnitini
bod, protoZe jinak by platilo

V(P) = V(P1U P2 U ... U Py) =9V (Py).

Poznamky. Analogické tvrzeni plati pro libovolny konvexni mnohostén
s alespon deviti vrcholy. Neplati vSak pro mnohostén s osmi vrcholy (napf.
pro krychli).

Obdobné tvrzeni plati v roviné pro mnohouhelniky s alesponi péti vrcholy
a vyplyva snadno ze skuteCnosti, Ze pro n = 5 je soucet Ghli v n-uhelniku
(n—2)t > 2m.

Ukazeme jeste souvislost s nasledujici tlohou:

Jaky je nejvétsi pocet nekolinearnich bodd v roving, resp. v prostoru,
aby ani jeden z trojihelnikd s vrcholy v téchto bodech nebyl tupotihly?

Jsou-li 4;, A; libovolné dva z n-tice bodl 41, A2, ..., A, majicich poza-
dovanou vlastnost, musi viechny body leZet v pasu //;; omezeném p¥imkami
(resp. rovinami) prochazejicimi body A4;, A; a kolmymi k jejich spojnici.
Odtud plyne, Ze body A1, ..., Ay jsou vrcholy konvexniho obalu P; bodil
A, ..., Ag.

Uvazujeme-li nyni mnohostény P; vzniklé z Py posunutim o AA; ne-
maji zidné dva z nich spoleény vnitini bod, protoZe pfi posunuti o A;A;
prejde pas Il;; v pés, ktery s nim nemd spole¢ny vnitini bod (obr. 92).
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Z feSeni ulohy 76 plyne, Ze nejvétsi pocet bodit s poZadovanou vlastnosti je
v roving 4 a v prostoru 8 (¢tverec a krychle).

77. Pfedpokladejme, Ze jsme nasli navzdjem nesoudélnd Cisla
ay=2"—3,as=2"-3, ..., a;,=2"—3,
kde 2 < m < ... < ng, a oznadme s = aids ... ar. Najdeme-li nyni ta-
kové ¢&islo n > ny, aby bylo
2n —3 = gs + 1,

pak ziejmé bude 27 — 3 nesoudélné s Cislem s, tedy i s kazdym Cislem a;
proie{l,2, ..., k}.

Chceme tedy najit n tak, aby s délilo Cislo

2n— 4 = 4(2n—2—1).
Mezi s + 1 &isly 20, 21, ..., 25 existuji dv& &isla 2¢ < 20 takova, Ze davaji
pfi déleni Cislem s stejny zbytek, tj.
s |20 —20 = 20(2b-a— 1),
neboli
5| 20-e—1,

nebot s je liché. Vidime, Ze stadi poloZitn = b — a - 2. ProtoZe je 2v-a+2 >
> § = ag, je b—a+ 2 > n;. Opakovanim tohoto postupu dostaneme
nekonecnou posloupnost navzajem nesoudélnych &isel tvaru 22 — 3.

Pozndmlka. Tento postup je zaloZen na stejné myslence jako znamy dikaz,
Ze mnoZzina vsech prvocisel je nekonecna: Méjme k prvocisel pu, pe, ..., Pr,
pak existuje dalsi prvodislo pr+1, které je délitelem Cisla pips. . .pr + 1.

2. feSeni. V pfedchézejicim FeSeni jsme hledali takové n, aby s d¢lilo
&islo 27—2— 1. Takové n vsak existuje podle Eulerovy véty, ktera tika, Ze
pro nesoudélna Cisla a a r plati

a™ =1 (mod r),

kde ¢(r) oznaluje pocet ptirozenych Cisel mensich neZ r a s Cislem r ne-
soudélnych (tzv. Eulerova funkce). Je-li r prvoéislo, pak ¢(r) =r—1
a tomuto specidlnimu pifipadu Eulerovy véty se obvykle fika Fermatova
véta.

V naSem piipadé je a = 2, r = 5 a vyjde n = @(s) + 2.
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78. UvaZzujme libovolnou lomenou ¢iru XYZTX popsanou v tloze
(obr. 93). Sklopenim trojthelniku 4BD do roviny 4 BC (obr. 94) zjistime, Z¢
pokud bude |% T'XY| <<=, mizeme Caru 7XY zkratit zménou polohy
bodu X. (ProtoZe stény Ctyfsténu jsou ostrouhlé trojuhelniky, je ¢tyfuhelnik
BCAD’ konvexni a usecka 7”Y protind stranu AB ve vnitinim bodé.)
Stejnou tivahu mizeme ovSem provést i pro ostatni body Y, Z, T lomené
cary. Existuje-li tedy lomena ¢ara minimalni délky, musi pro ni platit

| ¥ AXT| = |% BXY| =§&, | % BYX|=|¥ CYZ| =,
|% CZY| = |¥ DZT|=¢, | % DTZ| = | ¥ ATX| = 7.

Obr. 93 Obr, 94

Z trojuhelnikt ATX, BXY, CYZ a DZT pak plyne (obr. 95)
| X DAB| + | % BCD| =2 — (§ + 0+ § + 7) = | X ABC| + | CDA|.

Obr. 95
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Jinymi slovy, je-li
| X DAB| + |x BCD| # | ¥ ABC| + | ¥ CDA|,
neexistuje mezi lomenymi Carami X YZTX Cara nejkratsi.
Obracené piedpokladejme, Ze
| < DAB| + | & BCD| = |% ABC| + | % CDA|. (H
Pro soucty rovinnych ahlit «, £, ¢, 0 pfi vrcholech 4, B, C, D pak plati
o+ 7y =X DAB| + |¥x DAC| + |¥x CAB| + |¥ BCD| + |x BCA| +
+ |¥ ACD| = |x DAB| + |x BCD| + ® — | % ABC| 4+ ©™ —
— | % CDA| = 2,
tedy také f# + 0 = 2.

Necht je napf. @ = y a ff = 0. Sestrojime-li plast étyisténu roziiznutim
podle hran AB, AC, BD (obr. 96), dostaneme Sestithelnik P = ABDB'A'C,
ktery bude konvexni, nebof je y < 7w, d < = a vSechny stény jsou ostrothi¢
trojiihelniky. Vzhledem k (1) je AB || A'B’. Rovnobéznik ABB'A" zicjmé
lezi cely v konvexnim Sestithelniku P a kazdé tiseCee XX’ rovnobézné s BB’
odpovida lomena ¢ara XYZTX minimdalni délky. Z rovnoramenncho troj-
uhelniku 44'C pak plyne, Ze jeji délka je

2N A < v g *
2| AC| sin Bl 2|AC| sin X

nebof « - y = 2.
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Pozndmka. Sestrojime-li rovnou plast étyisténu 4 BCD roziiznutim podle
hran AB, AC, BD, dostaneme (ne nutné konvexni) Sestitthelnik ABDB’'A’C,
v némZz |AB| = |A'B’|. Lomené ¢afe XYZTX odpovida v roviné plasté
Cara XYZTX' stejné délky, pficemZ je |XB| = |X’B’|. Podminka (1) je
ekvivalentni s AB || A'B’. Neplati-li (1), tj. ABJ.A'B’, mizZeme ke kazdé
lomené ¢afe XYZTX', kde body Y, Z, T jsou vnitini body tseéek DA, CD,
B'C a0 < |XB| = |X'B'| < |AB|, sestrojit kratsi ¢aru s témito vlastnostmi
(obr. 97a, b). Podrobny ditkkaz vyzaduje prozkoumat nékolik p¥ipadii a po-
rovndvat délky lomenych ¢ar. Proto jsme v prvni &asti naseho feSeni pouzili
jiného postupu.

Obr. 97a Obr. 97b

79. Na obr. 98 vidime piiklady mnoZin S poZadované vlastnosti pro n = 1,
m=2am=23.

Predpokladejme nyni, Ze pro m = k existuje kone¢nd mnoZina bodi
splitujici podminku tlohy, a oznaéme ji S;.. Posunutim mnoZiny Sz o jednot-
kovy vektor dostaneme mnoZinu S, se stejnou vlastnosti. Je-li Sxn S, = 0,
existuje pro kazdy bod mnoZiny S US; v této mnoZing aspott k - 1 bodi
ve vzddlenosti 1. Najdeme-li navic smér posunuti takovy, aby pro kazdy
bod mnoZiny S, existoval v mnoZin& Sy pravé jeden bod ve vzdélenosti 1
(jeho vzor v uvedeném posunuti), pak zfejm& bude mnoZzina Sg41 = Si U S,
vyhovovat podmince tGlohy pro m = k 4 1 a s dikazem matematickou
indukci budeme hotovi.
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ad
D

Obr. 98

UkazZeme, Ze takové posunuti mizeme vzdy najit. Pfedev§im pro kazdy
bod mnoZiny Si existuje jen k jednotkovych vektorii, Ze pro pfisluiné
posunuti je Sgn 'S, = 0. Dale pro libovolné dva riizné body X, Y e S
existuji nejvySe dva body, které maji od X i Y vzdélenost 1. MnozZina ne-
vhodnych jednotkovych vektori, tj. takovych, Ze je bud Sx N S, # 0, nebo
pro n&jaky bod mnoziny S, existuje vice bod mnoZiny Si ve vzdélenosti 1,
je tedy jen koneéna.

80. Utvofme soudty viech &isel v jednotlivych fadcich a sloupcich a oznaé-
me p nejmensi z téchto souctl. Soucet s vSech Cisel tabulky se nezméni vy-
.ménou libovolnych dvou fadki nebo sloupct ani ziménou sloupcii za fadky
a obrdcené. Takové pferovnani rovinéZ neovlivini platnost dané podminky.

MiiZzeme tedy predpoklddat, Ze prvni fddek ma soucet p a Ze v ném na
poslednich n — p mistech jsou nuly. Soucet Cisel v kazdém z prvnich p
sloupcti bude alesponi p, zatimco soucet Cisel v kazdém 'z n — p poslednich
sloupcti bude podle pfedpokladu tlohy alespoii n — p. Pro soucet s vSech
¢isel tabulky tak mame

1 1
szZpi+(n—p)?= —2—122 + -—5(112——-4np + 4p?) =

| | 1
= 2 (1—2p)2 > —p2
o | 2(/1 2p)% = S n®

2. feSeni. Protoze prerovnani sloupcti a fadka neovlivni podminku, kterou
dand tabulka spliiuje, ani nezméni soucet vSech ¢isel tabulky, mUzZeme
predpokladat, Ze mame tabulku, kterd ma na hlavni diagonéle k nul (k = 0),
a Ze tento pocet nemtizeme jiz Zzadnym pferovnanim radki a sloupch zvétsit.

Pro a;; = 0 je podle predpokladu soucet i-tého fadku a i-tého sloupce
asponl n. Je-li ai %0 a pro n&jaké j je a;; = 0, pak nemiize byt aj; = 0,
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protoZze bychom vyménou i-t¢ho a j-tého sloupce zvétsili poéet nulovych
¢lentt na hlavni diagonale. Je tedy i v tomto piipadé soucet i-tého radku
a sloupce aspofi # a jsme hotovi, nebot pak je

25 = n2.

Pozndmka. Pro n = 2k a tabulku

k0 0 o 0

0O £ 0 ... O

o 0 k£ ... 0

0O 0 0 k
nastane rovnost s = ——n2.

2
Pro tabulku, ve které jednicky a nuly odpovidaji ¢ernym a bilym polim

1
na sachovnicin X n, je pro n sudé rovnézs = —2—11‘3, pronlichés = -i—(n2 4+ 1.

81. Desetiprvkovia mnozina ma 210 — 1 = 1 023 neprazdnych podmnozins
Soucet nejvyse deseti rtznych dvojcifernych cisel je rozhodné mensi nez
10.99 = 990 << 1 023. Existuji tedy dvé rtzné neprazdné podmnoziny dané
mnoziny deseti Cisel takové, Ze soucty jejich prvki jsou stejné. Vynechanim
pripadnych spoleénych prvka dostaneme dvé disjunktni neprazdné pod-
mnoziny s pozadovanou vlastnosti.

82. Nejprve si pripomenme, Zc ABCD je tétivovy Ctyiuhelnik, pravé kdyz
pro jeho vnitini Ghly «, f, y, 0 plati & + 9 = ff + 0 = 7.

1. ¥eSeni. Je-1i ABCD rovnoramenny lichobéZznik (ten je tétivovy), pak sc
dd rozdélit pomoci n — 1 pti¢ek rovnobéznych se zakladnami na » rovno-
ramennych lichobézniki.

V obecném piipad€ ozna¢me vrcholy tak, aby uhel « byl nejmensi a bylo

T
[ = Y = 0 (obr. 99). Vezméme nyni vnitini bod P &étyfuhelniku 4ABCD

dostatecné blizky vrcholu A tak, aby rovnobézky se stranami AB a AD
vedené bodem P protinaly strany BC, CD ve vnitfnich bodech £ a F a aby-
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Obr. 99

chom mohli najit bod H uvnitf strany 4D takovy, 7e |- PHD| = . A pro-
toze o << f3, najdeme uvnitf strany 4B bod G tak, Ze | ¥ PGB| = f. Roz-
délili jsme tak ctyrthelnik ABCD na dva rovnoramenné lichobéZniky
GBEP, PFDH, ¢tytuhelnik PECF, ktery ma stejné uhly jako ABCD, a (tyi-
thelnik AGPH. Ten je viak rovnéz tétivovy, protoZe je

| AGP| + | X AHP|=nn—fi+ 17— 0 =m.

Rozdélili jsme tedy ABCD na Ctyfi tétivové Ctyfuhelniky. Je-li n > 4,
rozdélime jesté jeden z rovnoramennych lichobéznikii na n — 3 rovnora-
mennych lichobéznik.

2. feSeni. Pfipad rovnoramenného lichobéZniku (sem pocitime i obdél-
nik) jiZ nebudeme zvlast uvazovat, tj. budeme predpoklddat, Ze kazdé dva
sousedni Uhly jsou rtizné. Ozna¢me vrcholy Ctyfuhelniku ABCD tak, aby

T
byloy > 6 = D (obr. 100). Pfimka A’B’ rovnobéZna se stranou CD a pro-

Obr. 100
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tinajici strany AD a BC v bodech A’, B’ rozdéluje &tyfhhelnik ABCD na
tétivovy ctyfuhelnik ABB'A" a lichobéznik A’B'CD.
Rozdélime nyni lichobéZnik A'B'CD na tfi tétivové c¢tyrahelniky
(obr. 101). Na primce A’B’ najdeme body E, F tak, aby
|X DCE|=y + 0 —m=, | DCF|=

(zfejm€ 0 < p 4+ 0 — 7 << 0). Zvolme bod 7 uvnit¥ strany CD a sestrojme
useCku TR || CF, kde R € A’'B’. Je-li T dostatené blizko vrcholu C, existuje
bod P uvnitt 7R a bod S uvnitt B'C tak, ze PS|| EC. Potom je A’'RTD
rovnoramenny lichobéznik a ¢tyfuhelniky RB'SP a PSCT jsou tétivové,
nebot
|¥ PRB'| + |¥x BSP|=0+y—(y+0—m) =m,
| PSC|+ | CTP| =06 + 17— = .

D _
A’/J

Rozdélili jsme tak plivodni étyfuhelnik 4ABCD na Ctyfi tétivové Ctyi-
thelniky, z nichZ jeden je rovnoramenny lichobéZnik. Pro n > 4 staéi roz-
délit rovnoramenny lichobéznik na n — 3 rovnoramennych lichob&Znikii.

T C
e S
s
PE)
E R F B

Obr. 101

3. FeSeni. Dokazeme tvrzeni ulohy pro n =4, 5 a 6. Pro ostatni n > 6
odtud plyne uvedené tvrzeni matematickou indukci. Umime-li totiz roz-
délit ctyfuhelnik ABCD na n tétivovych ¢tyfuhelnikii, dostaneme rozdélenim
jednoho z nich na 4 tétivové Ctyfuhelniky rozklad daného ¢tyfuhelniku na
n -+ 3 tétivovych.

Vsimnéme si nejprve, Ze kazdy trojuhelnik miZeme snadno rozdélit na
tri tétivové Ctyfthelniky. Staci vzit stfed kruznice vepsané a spojit ho s pfi-
slusnymi body dotyku (obr. 102). Vzniklé ¢tyfahelniky maji vzdy dva pro-
t&jsi tihly pravé, jsou tedy tétivové.

Kazdy Ctyiuhelnik mizZeme rozdélit uhlopti€¢kou na dva trojuhelniky,
a tedy na 6 tétivovych Ctyfuhelniku.
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k1
Pro n = 5 ptredpokladejme opét, Ze je y > 0 = > (pfipad y = 9 je tri-

vidlni). Pfi¢ka A’B’ rovnobézna se stranou CD rozdéli tétivovy Ctyftihelnik
ABCD (obr. 103) na tétivovy &tyfuhelnik 4ABB'A" a lichobéZnik 4'B'CD,
ktery rozdélime na rovnoramenny lichobéZznik 4'FCD a trojuhelnik FB'C.
Trojthelnik FB'C lze jesté rozdélit na tfi tétivové Ctyfuhelniky.

Obr. 102 Obr. 103

T
Nakonec vyfeSime pfipad n = 4. Pfedpoklidejme, Zey = 6 > 5 (Ptipad

kL
0 = > je trividlni, stadi ze stfedu S kruZnice opsané danému CEtyfuhelniku

spustit kolmice na jednotlivé strany (obr. 104).) Sestrojme ve vrcholech C
a D kolmice ke strandim BC a AD (obr. 105), jejich prisefik oznaCme P.

Obr. 104 Obr. 105
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Dile sestrojime ptimku EF rovnobéznou se stranou 4B tak, aby protinala
UseCky CP a DP ve vnitinich bodech a pritom usecka EF lezela uvnitf
Ctyfthelniku ABCD. Konecné body G a H lezici na AB zvolime tak, aby
EFGH byl obdélnik. Ctyfahelniky AGFD a HBCE jsou ziejmé tétivové
stejné jako Ctyiruhelnik FECD, nebof

T 3
|<):DFE!+I9:DCEI=a+‘2“+7'-—3=m+)’=7‘-

Pozndmka. Pokud lezi stfed S kruZnice opsané uvniti étyithelniku A BCD,
lze Ctyrihelnik rozdélit na Ctyfi tétivové CEtyfthelniky podle obr. 104.
Obecné vsak takovy bod, ktery mizeme kolmo promitnout dovniti vSech
stran ¢tyfuhelniku, nemusi existovat (obr. 106).

[ﬁ,\ o ¢
A//// N s Z\\a
/ N7
/’ p \
Sx
Obr. 106

83. Nejprve zjistime, s jakou mocninou « vystupuje prvocislo p v rozkladu
Cisla n! na prvocinitele.

- n
MeziCisly 1,2, ...,njeprok = 1 prﬁvél ]él’se] délitelnych p¥, takZe je

SAHERBIR

pfitom uvedeny soudet ziejmé obsahuje jen koneény pocet nenulovych ¢lenti.
Miame tedy pro libovolné prvoéislo p dokazat, Ze je

SN S0zl )
k k = P i P’ X
= P =1 P pci o Lp
Pro libovolnd redlnd ¢isla a, b vsak plati, jak snadno ovéfime, nerovnost
[2a] + [2b] 2 [a] +- [b] + [a + b
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n m

Polozime-li zde a = pTc b = —-a seCteme pro vSechna k pfirozend, dostane-
r*

me pozadovanou nerovnost.

Vyfesili jsme tak Ulohu v pripadé, kdy m, n jsou prirozena Cisla. Je-li
nékteré z nich nula, dokazované tvrzeni také ziejmé plati.

2. feSeni. Oznaéme
(2m)! (2n)!
S, n) = m!n! (m+ n)!

Pro kazdé m, n = 0 plati
2(n + 1) 2n + ]) 2(2n + ])

f(m,n+l)=f(m,r)(l% D (m + 7 +1) m—{—n+1 f(m, n)
a zaroven
S+ 1, n) =f(n,m- 1) = wf(m n).
’ C m+n -
Se¢tenim dostaneme rekurentni vztah
Sm, n 1) 4 fm + 1, n) = 4 f(m, n). )

2m\ . . ORI T
Protoze f(m, 0) = ( ’:I) je celé pro kazdé celé ¢islom = 0, plyne dokazova-

né tvrzeni z rekurentniho vztahu (1) matematickou indukci podle n.

84. Predpokldadejme, ze kladna &isla x1, xs, ..., x5 vyhovuji dané soustavé
nerovnic. Secteme-li pét nerovnosti, které pro né plati, dostaneme (indexy
pocitime modulo 5)

5

0= Z x;"xf —— Z XP(XeraXiia b Xip1Xirs) =

b 5

x? Z 12 - Z -‘C?(XH oXi 4+ Xgr1Xir3) =
1 j#i i=1

I

5
Z TOF e+ aFy X — 22X aXira — 2Xi41X0r8) =

I

Xi+3)% -+ (vira— Xi+4)?).

21 ((Y¢+1
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Posledni vyraz je nezdporny, tedy nulovy. Odtud plyne, Ze dand soustava
nerovnic nem4 jiné feSeni neZ x1 = x2 = x3 = x4 = x5 = @, a to plvodni
soustavé skuteéné vyhovuje pro kazdé a > 0.

Pozndmka. V oboru vSech realnych &isel ma soustava kromé feSeni
X1 = X2 = X3 = X4 = X5 = a je§té feSeni tvaru x1 = a, x2 = x3 = x4 =
= x5 = 0, kde a je libovolné redlné &islo, a dalsi, kterd dostaneme cyklickou
zaménou.

2. feSeni. Snadno zjistime, Ze dana soustava se¢ nezméni, provedeme-li
cyklickou zaménu nezndmych x1, x2, ..., X5.

Predpokladejme tedy, Ze soustavé vyhovuji kladnd disla x1, xe, ..., x5,
prifemz x1 = xo, X3, X4, X5 > 0. Z prvni a paté nerovnosti pak plyne
X3 £ XaXs5 a X £ XoXu,

coz znamend, Ze x3 nebo x4 je nejveétsi z Cisel xo, X3, X4, X5.

ProtoZe soustava se nezméni, zaménime-li soucasné x3 s x4 a X2 S X5,
muZeme predpoklddat x1 = x3 = X2, x4, X5 > 0. Ze étvrté nerovnosti tak
plyne

X2 = x1x3 nebo xZ = x1x3,

coz tedy znamena, Ze je
X1 = X3 = X4 nebo x; = X3 = Xs.

Dosazenim do tieti, resp. do paté nerovnosti dostaneme v obou pfipadech
X1 = X2 = X3 = X4 = x5. Toto feSeni ptivodni soustavé nerovnic vyhovuje.

85. Z daného vztahu plyne pro libovolné x, y nerovnost
2lf@) g = Iftx + I + Ifex—)l,
coZ znamend, Ze plati aspoii jedna z nerovnosti
Gl eI = If(x + »)I

nebo

IA

)l g = 1f(x — ).
MuiZzeme tedy (pfi pevném y) ke kazdému x najit x’ tak, Ze

fE)l 18O = 1)
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Je-li ddno y takové, Ze g(y) # 0, zvolme xo, aby f(xo) # 0, a sestroj-
me na zdklad€ predchozi ivahy posloupnost xo, x1, x2, ... tak, Ze kla-
deme xx = x,_,. Pro viechna k ptirozené tedy plati

[fGee-l 18O £ 1f(xn)],
odkud plyne nerovnost
[fxo)l 18OIF < | f(x)l.-
ProtoZe podle pfedpokladu je [f(x)| < 1, je pro viechna k = 1

1

To je viak mozné, jen kdyz |g(y)| < 1.

2. FeSeni. Funkce f je omezend, oznatme
M = sup |f(x)] > 0.

Je-li y libovolné redlné &islo, pro které g(y) ## 0, pak z daného vztahu dosta-
neme pro kazdé x

21O = 1flx +p) + fix =)l = 2M,
takze Lf(x)] = L
T gl
’ M Wy
Z volby &isla M nyni plyne M = -Ig—(;)—’, cili [g(p)] = 1.

Pozndmka. Misto nerovnosti [f(x)] £ 1 stadil predpoklad, 7e funkce f je
omezend.

86. OznaCme dané Ctyfi roviny «, f3, p, 0 tak, Ze roviny f, y a 6 lezi ve
stejném poloprostoru uréeném rovinou « a pro jejich vzdélenosti x, y, z
od roviny a plati 0 < x < y < z.

Vezméme nyni libovolny pravidelny &tyistén ABCD a sestrojme Ciyfi
rovnobézné roviny a, b, ¢, d tak, aby Aea, Beb, Cec, D e d (obr. 107),
aby Ctyf'stén 4 BCD mél s rovinou a spoleény jen vrchol 4 a pro vzdélenosti
u, v, wrovin b, ¢, d od roviny a platilo

u:v.w=x:iy:z
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Pak budeme hotovi, protoze sta¢i provést stejnolehlost se stiedem A4 a koefi-
. x Y @ " .
cientem i vznikly Ctyfstén premistit.

Pii konstrukci rovin a, b, ¢, d vyuzijeme nasledujici vlastnosti t¥i rovno-
béznych rovin, kterda plyne z podobnosti: Protind-li tfi rovnobézné rovi-
ny ptimka p v bodech A4, B, C a pfimka p’ v bodech A4’, B', C’, pak

|AB| : |AC| = |A'B’| : |A'C'|.

Nejprve urc¢ime (obr.107) na hrané AC bod E tak, aby |AE|:|AC| = x : y.

Dale uréime na hrané AD dva body F, G tak, aby

|AF|: |AG| : |AD| = x:y:z.

Pak bude GC || EF, rovinu EFB oznacime jako b, roviny a, ¢, d sestrojime
jako roviny prochazejici body A, C, D a rovnobézné s EFB.

87. Dokazeme tvrzeni indukci. Pro n = 1 je |OP1] = 1, pfedpoklidejme
tedy, Ze tvrzeni plati pro n = k liché a mé&jme k -+ 2 jednotkovych vektort
OP1, OPs, ..., OPiis, jejichZz koncové body P; lezi na jednotkové polo-
kruznici se stfedem O v uvedeném poradi (obr. 108). Ozna¢me

0S = 0P, —}— OP3 + ... + OPpy1,
OR = OPy - OPj2,
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takZe je
OT =0P; + OPy |- ... 4 OPpyo = 0S 4 OR,
kde podle indukéniho pfedpokladu [0S]| = 1.

Nyni je bud OR = 0, nebo je |<¢ P1OPki2| < © a P1RPry20 je koso-
Ctveree. Protoze vektor OS lezi v jednom z Ghli |y P1OR| = |<¢ Pr4+20R]|,
je thel ROS ostry. Vektor OT tvoii uhlopticku rovnob&zniku ORTS, ve
kterém je uhel ROS ostry, takze

10T| > 05| = 1

(to platiivdegenerovaném pripadé pro |<. ROS| = 0). Tim je dikaz hotov.

Pozndamka. Pro n sudé tvrzeni ziejmé neplati (obr. 109).

Obr. 109

2. feSeni. Zvolme jednu polorovinu omezenou piimkou p a oznacme ji 7.
V poloroviné z sestrojme dva jednotkové polokruhy, které se dotykaji
v bodé O, a polokruh se sttedem O o poloméru 2 (obr. 110). Jsou-li Pi, P2
dva z uvazovanych bodd, pak koncovy bod Q vektoru 0Q = OP; + OP,
nebude lezet uvniti t¢ ¢asti roviny, kterd je na obr. 110 vySrafovana.
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Obr. 110

Oznac¢me nyni Ky (resp. Ks2) sjednoceni poloroviny opa¢né k z a vsech
jednotkovych kruhii, které maji stedy v bodech 2k (resp. 2k + 1), kde k
probihd viechna celd Cisla (obr. 111). Posuneme-li libovolny bod Q, ktery
nelezi uvniti jedné z mnoZin Ky, Kg o jednotkovy vektor OP, kde P e =,
dostaneme bod Q’, ktery neleZi uvnitié druhé z mnozin Ky, Kq. Vidime tedy,
Ze koncovy bod Q vektorn0Q = OPy - OPy -+ ... - OP, neleZi pro n
liché uvnitf Ky a pro n sudé uvnit¥ K. Specidlné pro liché n je

[OP1 4+ OPs + ... 4 OPy| = 1.

Obr. 111

Pozndmka. Koncové body Q vektorit OQ = OPy -+ OPy 4 ... -+
+ OP,, kde OP;, OPy, ..., OP, jsou jednotkové vektory spliujici
podminku tlohy, vyplni pro dané n mnozZinu, kterou dostaneme odetenim
prislusné mnoziny K; nebo Kq (podle toho, je-li n liché nebo sudé) od
kruhu se stfedem O a polomérem n.

88. Mnozina s pozadovanou vlastnosti existuje, jak dolozime na nékolika
ptikladech nejprve v roving, a pak teprve v prostoru.
a) Vrcholy pravidelného pétithelniku.
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b) Vrcholy pravidelného Sestithelniku.

c) MnozZina vrcholil n€kolika pravidelnych Sestitihelnikl se spoleCnym
stfedem soumérnosti (obr. 112a, b).

d) Mnozina vrcholil krychle ABCDEFGH doplnénd body K, L soumérng
sdruZenymi se stfedem krychle S podle stén ABCD, EFGH (obr. 113).

¢) Mnozina vrcholitkrychle ABCDEFGH doplnéna body K, L, M, N, P, Q
soumérné sdruzenymi se stfedem krychle S podle vSech jejich stén (obr. 114).

f) Mnozina vSech bodii s celoCiselnymi soufadnicemi (x, y, z), kde
0=x=n0y=sn0z<n(obr. 115 pron = 2.

O tom, Ze uvedené mnoZiny maji poZzadovanou vlastnost, se snadno pfe-
svédcéime.

1K

Obr. 112a H G

\O

Obr. 113 oL
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Obr. 114 Obr. 115

Poznamka. Mé-li mnozina bod uvedenou vlastnost, ma stejnou vlastnost
kazdd mnozina, kterou z ni dostaneme afinnim zobrazenim. Tak napf.
desetibodové mnoziny z obr. 112b a 113 jsou ekvivalentni.

V rovin€ ma nejmensi mnozina s uvedenou viastnosti pét bodii. V prostoru
jsme sestrojili desetiprvkovou mnoZinu - vznikd otdzka, existuje-li men$i
mnozina s uvedenou vlastnosti.

89. Je-li x kofen dané rovnice, je x % 0 a mlZeme ji pfepsat na tvar

12 1
(,\-4«—) +a(x+~)+b—2=0,
X x

neboli
y2i4ay+b—2=0, ()
kde y = x + —.
X
Tato rovnice ma realné kofeny

—a- Ja®—4b—2)
2 2

yi,2 =
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prave kdyz
a’*—4(b—2) = 0. (2)

Pavodni rovnice pak bude mit redlné feSeni pravé pro ta y, pro néz je
[v] = 2. Rovnice (1) ma takové feseni, pravé kdyz kromé (2) je

jal + Ja* —4(b—2) z 4. (3)
V piipad¢ || = 4 je tato nerovnost ekvivalentni nerovnosti
2a) z b+ 2, ()

kterou dostaneme umocnénim (3). V pripadé [b] = 2 je zaruceno splnéni

podminky (2) pfi jakémkoliv ¢ a nerovnost (4) je ekvivalentni s nerovnosti
4a® = b2 - 4b + 4,

takze

2\ 16
4a? + b2) 2 5b% + 4b + 4 = 5(1) +- ?) + -

V uvazovaném pripadé ma tedy dana rovnice realny koien, prave kdyz

b 2 4
a’ + b® = —.
5
Pro |a| > 4 nebo |b| > 2 je ziejm¢ vidy a? -+ b? > 4, takZe nejmensi
4
hodnotou souctu a? -|- 2, kdy ma dana rovnice redlny kofen, jsou 5

2. feSeni. Spliuje-li trojice (a, b, x) danou rovnici, splituje ji i trojice
(—a, b, —x), takZe mizeme predpokladat, Ze pro koten x plati x > 0.
Pak je

xt—la|x3 — b|x? —lalx + 1 = x* + ax? 4- bx2 + ax + 1 =0,
neboli
lal(x3 + x) 4 |b]x2 = x4 1.
Pouzijeme-li nerovnosti

X—x—x 4+ 1l=x—D2x2+x+1) 20,
Xt—2x2 4+ 1=x2—1)220,



89 (186)

ve kterych nastane rovnost pro x = 1, dostaneme
|b
X412 al(x3 4+ x)+ [blx2 2 (x4 4+ 1) (Ia] 4 %),
{j.
bl = 2 —2lal.

Pokud |¢] £ 1, plyne odtud umocnénim

b
a

4
a? 4 b% =z 5a%> —8|a| + 4 = S(Ial——-—) +

TN
v

4
5

s rovnosti pro |a| = —, zatimco pro |a| > 1 je a? + b2 > 1.

5
Zjistili jsme tedy, Ze md-li dand rovnice redlny kofen, je nejmensi moZnou

4 4 2
hodnotou souctu a2 - b2 Cislo 5 (a =% b = 5 X = 1).

3. feSeni. Rovnici pfepiSeme na tvar
y2tay+b—2=0, ©)

kde y = x = Zvolme redlné ¢islo p, |y| = 2 (jen pro takova y ma rovnice

= y realny kofen). MnoZinou vSech dvojic (a, b), pro které ma
rovnice (5) kofen y, je v kartézské soustavé soufadnic pfimka s rovnici
a--b+ y2—2=0.

Pfitom soudet a2 + b2 ma pro body této pfimky minimalni hodnotu rovnou
druhé mocniné vzddlenosti této primky od pocatku, tj.

_0° :—J)z 02 2)(1_T:3__‘)

Odtud vidime, Ze ze vSech |y| = 2 ma funkce d(y) nejmensi hodnotu pro

|y = 2,ato 5

4. ¥e¥eni. UvaZujme mnozinu S viech dvojic (a, b), pro néZ ma dand rov-
nice redlné feSeni. Kofeny mnohoclenu jsou spojitou funkei jeho koefi-
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cientdl, takze nema-li dand rovnice v bodé (a, b) ¢ S Zadny realny koten,
nema realné kofeny ani v jistém okoli bodu (g, b). Proto je mnozina S jakoZto
doplnék oteviené mnoziny uzaviend.

Protoze (0, 0) ¢ S, obsahuje mnoZina S na své hranici bod, ktery ma od
pocatku nejmensi vzdalenost, tj. soudet a2 4+ 5% ma nejmensi hodnotu.

Ze spojitosti také plyne, e pokud ma dand rovnice pro dvojici (e, b) jen
jednoduché realné koreny, pak je (a, b) vnitfnim bodem mnoziny S. V dosta-
te¢né malém okoli bodu («, b) zlistane totiz kazdy jednoduchy kofen riiznym
od ostatnich kofenti. V kazdém bod¢ na hranici mnoZiny S ma tedy dand
rovnice nasobny realny koten.

|
OznaCme nasobny koten r, pak je r 54 0 a— je také kofenem dané rovnice.
r

1
a) Necht |r| = 1. Protoze soucin kofent je 1, ma rovnice kofeny r, r, —,
b I'

1
—, a vyjadiime-li koeficienty pomoci kofenil, dostaneme
r

I 12
a2—4r+7)§—ib;04ﬂﬂ +226,

takze je a® - b2 = 52.
b) Necht r = 1 nebo r = —1, pak je
2a +b+2=0 nebo —2a 4+ b+ 2=0

2
a vzdilenost obou téchto pfimek od pocatku je —~.5:

Nejmensi hodnotou souétu a? - b2 je tedy Cislo 5

90. Najdeme nejkratsi cestu, pfi které Zenista provéfi vSechny ti vrcholy
trojthelniku.

Necht Zenista vychazi z vrcholu A rovnostranného trojihelniku ABC.
Aby provetil oba vrcholy B, C, musi se dostat na kruznice kp, k¢ se stiedy
h
2
proto takové body P e kp a Q € k¢, aby spojnice APQ byla nejkratsi. Body

B, C a polomérem —, kde % je vyska trojihelniku A BC (obr. 116). Najdeme



90 (188)

P, O, C zicjm¢ lezi na piimcee, takZe staci najit nejkratsi spojnici APC, kde
Pe /\'b'-

Pozadovanou vlastnost ma bod Py, ktery dostaneme jako prasecik kruz-
nice kp s osou strany AC (obr. 117). Bod Py ma totiz ze vsech bod@ piimky
p || AC nejmensi soulet vzddlenosti od vrcholit 4 a C, jak snadno plyne
z osové soumérnosti podle p a z trojuhelnikové nerovnosti (obr. 118).
Piitom ke kazdému jinému bodu Pekp, P # Py, najdeme bod P’ e p,
pro ktery je (obr. 117)

4P| + |P'C| < |4P]| + |PCI.

Oznacime-li Q¢ prisecik kruZnice k¢ s useckou PoC, bude spojnice
APoQo (obr. 119) nejkratsi cesta, pii které Zenista proveii vSechny tii
vrcholy trojuhelniku.

Obr. 116

Obr. 118 Obr. 119
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7oe Vv

h

vzddlenost nejvyse EX MnoZina, kterou Zenista béhem svého pohybu po tsec-

ce proviii, je konvexni, a protoZe z bodu Py obsdhne jeho detektor celou
vySku BB (obr. 119), proveéii pti cesté po APy cely trojithelnik AB8 a pri
cesté po PypQy cely trojuhelnik B1BC.

Je tedy APyQyp hledanou nejkratsi cestou (jin¢ feSeni dostaneme soumér-
nosti podle osy strany BC).

91. Necht fe G, do mnoziny G ziejmé ndleZi funkce

Z podminky c) je zaroveii ziejmé, Ze funkce tvaru x -+ ¢ pro ¢ 40 do G
nepatii.
Pro funkci i(x) = x md kazdy bod x vlastnost ¢), zatimco pro funkci
Sfx) =ax + b, a # 1, je bod x; jednoznac¢né urcen:
b

1l —a

Xp o=

Predpoklidejme, Ze G obsahuje aspoii dvé takové funkce f(x) = ax - b,
g(x) = ex |- d, kde a # 1, ¢ # 1 (jinak je tvrzeni Glohy trividlni). Pak je

» i 1 ( ( 1 b) ; I) d
(¢ 1ofogof () = —ac(—x — =) 4+ ad + ) -~ =

ad b d

=x—b+4 —+———

¢ ¢ ¢

Protoze g=lofogof~1 e G, je

ad b d

—b+—+———=0,
¢ ¢ ¢

Cili
b(l —¢) = d(1 — a).
Posledni rovnost v§ak znamend, 7e xy = xg4. Protoze f, g € G byly libovolné,

je tvrzeni dokazano.

2. feSeni. Je-li /e G, f(x) = ax -+ b, nazveme &islo a smérnici funkce f.
Z vlastnosti ¢) je zfejmé, Ze i(x) = x je jedina funkce v G se smérnici 1.
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Necht f, g€ G, z definice fog plyne, Ze smérnice této funkce je soudinem
smérnic funkei fa g. Oznalme m = fog, n = gof. Smérnice funkci m a n
jsou stejné a podle b) ma funkce n~om smérnici 1, takZe

n~lom =i a m = non~lom = noj = n,

tedy

fog = gof
pro kazdé dvé funkce f, g € G. Odtud plyne

f(g(xp) = (fog) (x7) = (gof) (xr) = &(f(xr)) = g(xs),

takze g(xy) je také pevnym bodem funkce f. Pokud tedy mnozina G obsahuje
aspori jednu funkci f # i, je pro kazdou funkci ge G

&(xr) = xp,
protoze pevny bod funkce f 5= / je urcen jednoznaéné.

Pozndmka. Z vlastnosti a) a b) plyne, Ze mnoZina G uvaZovanych linedr-
nich funkci je grupa (operace o je asociativnf). Mimo jiné jsme dokdzali,
Ze z podminky c) plyne komutativita G. Obecné vSak grupa viech ne-
konstantnich linearnich funkci komutativni neni.

92. Ulohu si nejdtive trochu zjednodusime tim, Ze p¥ipustime v podmin-
kich a) a b) rovnost a nebudeme vylucovat nulova ;. Pii jejim FeSeni
vyjdeme z nasledujici skuteCnosti: Je-li vektor (b1, bo, ..., by) TFeSenim
tlohy pro vektor (a1, as, ..., ay) a (by, by, ..., b)) feSenim pro vektor
(d,, @y ..., ay), je (br+ by, ba -+ by, ..., by -+ b)) feSenim tlohy pro
vektor (ay - aj, a2 - a,, ..., an |- a,) a (chby, cbs, ..., cb,) FeSenim pro
vektor (cai, cas, ..., cay), kde ¢ je libovolné kladné &islo. Ze je splnéna
také podminka b), je zfejmé, upravime-li ji na tvar

1
qb/.;/\[)}\-H < ?bk. (])

ProtozZe kazdy vektor (a1, as, ..., ay) je linedrni kombinaci

(a]: (12, ] aﬂ) = alul ’|‘ a‘.).uﬂ ”]- s “}" anun
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n jednotkovych vektorti

sta¢i fesit lohu pro vektory ug, i€ {1, 2, ..., n}. Obecné feSeni pak bude
linearni kombinaci takto ziskanych feseni.
Pro vektor u; mizeme vzit
br=1,ba=gq,bs3=1¢q>% ..., by =q" L
Podobng pro vektor ug, i€ {1, 2, ..., n}, najdeme feSeni
bi=1,by=¢q" i (k>1i)abpr=qF(k<i).
Pfitom je pro kazdé ie {1, 2, ..., n}

¢ 14+ ... +g+1+g+ ... +gt<1+20g+4¢24+ ... + ) <
2q 144
<1—f——_j5=1—__—q'(0+... +04+14+0+4+...40),
takZe podminka c) je vzdy splnéna.
Pro libovolny vektor (a1, as, ..., an) nezdpornych &isel jsme tak nalezli
feSeni
(b1, by ..., b)) =a1(l, q, ..., g% V) -Faxg, 1,q, ..., q"2) + ... +
+ an(g™1, ..., g, 1),
4.
n
br = aig* ke {l,2, ..., n}. )
i=1

Jsou-li vSechna &isla ay, as, . . ., a, kladnd, ziejmé je by > aj pro vSechna
ke{l, 2, ..., n} a snadno zjistime, Ze je také splnéna podminka (1). Je
totiz

n n
broi—gbs = 3 algitl— g = S agi k1 —g2) > 0
i=k+1 i=k+1

1 E-1
? by —bry1 = 2 aigb 11 —gq2?) > 0.

i=1



93, 94 (192)

Vidime tedy, Ze Cisla (2), kterd jsou feSenim zjednodusené tlohy, spliuji
i plivodni podminky ulohy.

93. Protoze N(p -+ ¢ + r) = 39 = 3.13 a soucet tfi raznych pfirozenych
Cisel p -+ g -+ r je aspoii 6, je
N=3 a p+qg-+r=13

Hrac B dostal ve tretim kole # kulicek a celkem jen 10 < p + ¢ -+ r = 13,
ziskal tedy v prvnim i druhém kole vzdy p kuli¢ek. Kdyby hraé C dostal
v prvnim kole » kuli¢ek, dostal by celkem aspon r -+ ¢ 4+ p = 13 kulicek,
ve skuteCnosti jich vsak ziskal jen 9. V prvnim kole tedy dostal ¢ kulicek
hrac C.

Muizeme je§té uréit presny pribéh hry. Pro ¢isla 1 £ p < ¢ < r mdme
soustavu

p+gqg+r=13
2p + r =10,
29+ps 9.

Z prvnich dvou rovnic plyne ¢ = 3 - p a nerovnost pak diva p = I,
q = 4, r = 8. Zisk kulicek v jednotlivych kolech ukazuje tabulka

1 2. g 3. Celkem
A 8 8 4 20
B 1 1 8 10
C 4 4 1 9

94. Opisme trojuhelniku A BC kruznici & a necht D je libovolny vnitini
bod strany AB. Pfimka CD protne kruznici £k v bodé E # C (obr. 120).
Z mocnosti bodu D ke kruZznici k plyne

|CD| . |DE| = |AD| . |BD|.

Odtud je vidét, ze délka CD bude geometrickym primérem délek AD a BD,
pravé kdyz bude bod FE vzdalen od piimky 4B stejné jako vrchol C. Bod D



(193) 94

Obr. 120

tedy najdeme pravé tehdy, kdyz pro obsahy trojahelniki ABC a ABM,
kde M je stied oblouku AB leziciho v poloroviné opacné k ABC, bude
platit

Papym 2 Pagpc. (1)
Snadno vSak spoéteme, ze je (r je polomér kruznice k)
1
Papc = Tab siny = > 2r sin o 2r sin f sin p,

1 1 2
Papy = 5 [AM |2 sin (m — y) = Y (2;‘ sin%) sin y,

takze z (1) dostavame nutnou a postacujici podminku
. . i )
sin o sin f# < sin EX

2. feSeni. Necht D je vnitini bod strany 48 trojuhelniku 4BC a ozna¢me
x velikost thlu ACD (obr. 121). Ze sinové véty plyne

ICD|  sin« |BD| sin(y —x)
|AD| ~ sin X’ |CD|  sinf

Obr. 121
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takze pro bod D plati |CD|2 = |AD|.|BD|, pravé kdyz
sin o« sin f = sin x sin (y — x). 2)

Bod D s uvedenou vlastnosti bude tedy existovat, pravé kdyz rovnice (2)
m4 feseni x, kde 0 << x << y.
Protoze

sin x sin (y — x) = sin x (sin y cos x — sin x cos y) =

1 . I —cos 2x
5 sin y sin 2x — 5 cosy =

1 1
=-—y cosy + > (cos 2x cos y + sin 2x sin y) =

= -———;— cosy + % cos (2x — y),
je rovnice (2) ekvivalentni rovnici
cos (2x — y) = 2sin o sin f + cos y.
Ta ma4 feSeni x, pravé kdyz
2sinosin f+ cosy £ 1,

tj. pravé kdyz

I —cosy LY
—— = sin%—

. o
sin o sin ff < 5 >

Ptitom je vZdy 0 < x < y, nebot

cos (2x — y) = 2sin & sin f 4 cos y > cos y.

Pozndmka. Funkce f(x) = sin x sin (y — x) v rovnici (2) je spojitd a z né-
sledujiciho odhadu

sin x sin (y — x)

(sin x 4 sin (y — x)) é
2 =

2x —y

Ve /4
A 2 < gin2 —
sin 2 cos 5 < sin >

s rovnosti pro x = —)2/- plyne, Ze funkce f(x) nabyva v intervalu (0, ) libo-
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. L, 7
volné hodnoty mezi 0 a sin? o Je tedy nerovnost

; : o gl
sin o sin f/ < sin? )

nutnou a postacujici podminkou pro to, aby rovnice (2) méla v intervalu
(0, ) feseni.

95. Z binomické véty plyne rozklad

. 2n+ 1\ o L N (20 1 555 432
2n+1 — 3k 3k
()8 + 1y2nt 12(2k)2+h%QhHP'2'
b= () =

Oznacime-li

n n
SO e S o
=0 k=0
jepron =0
(V8 + D20+t = ay + |8 by,
(J/8 — )2nit = —g, + /8 by
Vynédsobenim obou rovnosti dostaneme pro n = 0 vztah
72+l = 8p2 — 7.
Kdyby bylo pro néjaké n = 0 &islo b, délitelné péti, bylo by
—a? = 721 = 7 49" = 2 (—1)* (mod 5),

@

ale rovnice
x2 =4 2 (mod 5)

nema feSeni, jak se snadno pfesvédéime prozkoumdanim vsech péti zbytk
modulo 5. Cislo b, tedy neni dé&litelné péti pro zadné celé Cislo n = 0.

2. feSeni. Podle binomické véty je
(V8 -+ D21 = @ + /8 b,
kde ayu, by jsou urceny vztahem (1). MiZeme tedy pro n = 1 psat
an + 8bu = (/8 + 12 ()8 + en-1 =
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= O+ 28) (I8bur + arr) =
= 9ap-1 + 16by-1 + 1/8(2(771-1 + 9bp-1),
odkud plynou pro n = 1 rekurentni vztahy
ap = —an-1 + bu—1 (mOd 5), (3)
by = 2ay-1 — bp—1 (mod 5),
pticemz ap = by = 1.
Jejich seétenim dostaneme
an + by =ay1 (mOd 5)
a dosazenim do prvniho z nich
2ay = —b, + by—1 (mod 5),
takZe mame jednodussi rekurentni vztah
by, = ("‘"bn-—l + bn—z) —bp1=—2by 1+ bp-2 (mOd 5),
kde by = b1 =1 (mod 5). Podle tohoto rekurentniho vzorce dostivame
déale pro bo, bs, ... zbytky modulo 5
—1, =2, —2,2, —1, —1,1,2,2, =2, 1, 1, ...
a dale se zbytky periodicky opakuji. Vidime, 7e pro zidné n = 0 neni
b, = 0 (mod 95).
3. FeSeni. Vyjdeme z rekurentnich vztaht, které jsme odvodili v predchd-
zejicim feSeni. Z nich postupné dostavame
(a()y bO):”:(L 1)5 (ala bl) = (0, ])’ (azs bﬁ)i(la_])’
(a3, bs) = (—2, 3) = (3, 3) = (3ao, 3b¢) (mod 5).
Jak snadno dokdZeme ze vztahu (3),
(a’ll+3, b/H-3) = (3(171,, 3bn) (mod 5)
Protoze zadné z Cisel by, b1, bs neni délitelné péti, neni b, délitelné péti
pro zadné prirozené n.

4. FeSeni. Sectenim rovnosti (2) dostaneme
(I8 + D2nl 4 (8 — D)2+t
s 28 B

= e (9 4 2]/8)n V—§-7—19 2)/8)
~ i O+ 2|/8)" + 2Vgt—b).
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ProtoZe Cisla 9 - 2]/81 9 — 2]/8_jsou koteny kvadratické rovnice

A2 — 184 4 49 = 0,
plati pro posloupnost {b,} rekurentni vztah (srov. poznamku k feSeni
ulohy 128)

by = 18by—1 — 49by—2,
tj.
by = —2by-1 4+ by—2 (mod 5).
Dile pokradujeme jako v 2. feSeni, pfipadné mizeme odvodit rovnost
byss = 3b, (mod 5)

tak jako ve 3. feseni.

96. Oznacme a; pocet bilych poli v k-tém obdélniku, a1 £ a2 = ... = ap.
Protoze Sachovnice ma 32 bila pole, je
ay +az 4 ...+ ap = 32.

PonevadZ a1 =z 1, a2 =2 2, ..., ap = p, je
1
Rzl+24 ... +p=—7pp+1)

takze
p =T

Pro rozdéleni sachovnice na sedm obdélnikt uvedenych vlastnosti uvazme
vsechny rozklady &isla 32 na sedm riiznych pfirozenych s€itanciti

a) 142434445464 11,
b) 1 +243 444547410,
) 1+2+3+4+5+8+09,
A)1+24+34446+7+09,
&) 14+24+3+5+6474+8.

Prvni rozklad neni mozny, protoZe na Sachovnici 8 X 8 nenajdeme obdél-
nik s 2 X 11 = 22 poli. Pro ostatni ptipady b) aZ e) ukazuje piislusny
rozklad obr. 122 (¢islo v obdélniku udava pocet bilych poli).
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- '] 4 L _
i O 1 1 5| g |
7
b 4| 8 -
: S R O B '
2 31 2| 3 |
B 7 B 7
e &1 [3)e], | |
-4 . L 8_4
B T 7
E ] 3 |
141 3 ksl
Obr. 122

97. Ziejmé je pro libovolna Cisla a, b, ¢, d > 0
a b ¢ d

S > i btetrd atbtetd atbterd atbter
ad
a b ¢ d
<aFsTaiysterateraT?
takze

1< S <2

d
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Je-lia =b +# ¢ = d, pak je
2a 2¢
~2a+c+a+2c

S

aproc—>0jeS—1.
Pro a = ¢ # b = d zase dostaneme

2a 2b
_a+2b+2a+b’

takZe pro b — 0 je S — 2. ProtoZe S je spojitou funkei kladnych ¢isel a, b,
¢, d, nabyvd S vech hodnot otevieného intervalu (1, 2).

S

2. feSeni. ProtoZe vyraz S se nezméni, vezmeme-li misto Cisel a, b, ¢, d
Cisla ta, tb, tc, td pro libovolné kladné 7, miiZeme pfedpokladat, Ze a + b +
+c+d=1.0Omalimelix=a+c,y=b+d budex,y>0,x +y=
= 1. Potom je

a c b d
S=1etiTat1—ati1—s "~

x—a%2—c¢2 y—Db2—ad?

_ac+1——x+bd—{—l—y:
2ac + x—x2  2bd + y — y?
T actl—x +bd—|—l——y'

Jak znamo, pro a + ¢ = x pevné probihd soudin ac vSechny hodnoty

XA
intervalu (0, ——4—/\, takZe vyraz
2a¢ 4 x — x2 | —x2 4+ 3x—2 x—DHx—2)
ac -+ 1 —x r ac -+ 1 —x T ac+1—x

2x
probiha hodnoty intervalu (x, 5:—;>, podobné druhy vyrazprob + d =y

2y
pevné probihd interval (y, —2—_—}> Soucet S tedy probihd vsechny hodnoty

intervalu
2x 2y N\ _ ( 4——4xy\
(x+—y,2_x+2__/ 1’2-1——xy/'
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|
ProtoZe x + y = 1, probiha soucin xy interval (0, %/ a vyraz

4 —4xy 4( , 3 )
24xy O\ +2+xy

4
interval <?, 2). Odtud kone¢né plyne, Ze hodnoty S probihaji interval
(1, 2). ‘

98. Dokdazeme-li, Ze jedna z rovnic P(x) = 1, P(x) = —1 ma nejvyse dva
celociselné kofeny, bude dand nerovnost dokdzana, nebof kazda z téchto
rovnic md nanejvys deg(P) kofeni.

Dejme tomu, Ze kazdy z mnohoclentt P(x) — I, P(x) -4 1 ma aspoii tii
rtizné celociselné kotfeny (zddny kofen jednoho mnohoc€lenu ziejmé neni
kofenem druhé¢ho). Oznacme nejmensi z téchto Cisel a@. Nechf je napf.

P(x) + 1 = (x —a) Q(x),

kde Q je také mnohoclen s celociselnymi koeficienty. Pak pro tii kotfeny
p, ¢, ¥ druhého mnohoc¢lenu P(x) — 1 = (x — @) O(x) — 2 plati

2=(p—a)Qp)=(@q—a)Qq) = (r—a) Q@)

coZ je ve sporu s tim, Ze ¢islo 2 ma jen dva kladné délitele.

2. feSeni. Pokud ma celociselné kofeny jen jedna z rovnic P(x) = I,

P(x) = —I1, pak je ziejmé n(P) < deg(P) a dand nerovnost je spln¢na.
Nechf k, m jsou libovolnd cela ¢isla, pro néz P(k) = 1, P(m) = —I.

Protoze k — m déli Cislo P(k) — P(m) = 2, je |k — m| < 2. To vSak zna-
mena, ze vzdalenost libovolnych dvou kotenii rovnice (P(x))? = | je nej-
vyse 4, tj. n(P) £ 5. Dokazovand nerovnost je tedy splnéna pro kazdy
mnohoclen aspon 3. stupné.

Pro mnohoéleny nizsiho stupné je deg(P) = 2,

n(P) £ 2 deg(P) = deg(P) + 2.

Tim je ditkaz hotov.

Pozndmka. Maji-li obé rovnice P(x) = 1, P(x) = —1 celociselny kofen,
je dokonce n(P) = 4. Kdyby totiz bylo n(P) = 5, tak je z pfedchdzejiciho
feSeni patrno, Ze rovnice

(P(x))? =1
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by m¢la celoCiselné koteny
k,k +1,k+2, k4 3, k+ 4,
pfiemz jedna z rovnic P(x) = 1, P(x) = —1 by méla jediny celociselny
kofen k 4 2 a druhd ostatni Ctyfi. Bylo by tedy napft.
Px)y—l=x—x—k—1)(x—k—3)(x—k—4) O(x),
kde Q je mnohoclen s celociselnymi koeficienty, a
—2=Pk +2)—1=2.1.(—1).(—2) Ok + 2),

CcOoZ neni mozné.

99. Protoze

> xizi £ O Xiyi )
=1 ) =

Pro n =1 je tvrzeni trividlni. Jsou-li 1 £ r < s < n dva indexy takové,

Ze zy < zs, je
(xr —xs5) (zr —25) £ 0,
tj.
XrZy 4+ Xszs S XpZs -+ XsZr,

takZe vyménou z, a zs soucet na levé strané (1) nezmensime.

ProtoZze po kone¢ném poctu takovychto vymén dojdeme k poiadi
Y1, Y2 «. ., VY, je nerovnost (1) dokdzina.

2. feSeni. Oznacme pro ke {1, 2, ..., n}

k k
Yo= 2 yi, Ze = 2> z
-1 -1

a poloZzme Yo = Zo = 0. Pak je pro kazdé ke {1, 2, ..., n}
Ve =Yg — Yg-1, 2k = Zp — Zg-1,
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tedy
n n n n—1
> oxie =2 xi(Yik— Yic1) = > xp ¥k — 2 Xpp1 Y =
k=1 k=1 k=1 k=0
n—1
= XnYn + 2 (X — X5+1) Y
k=1
a podobné
n” n—1
Z XiZk = Xndn -+ z (xlc — xlc+1)Zlc-
k=1 k=1

Platnost nerovnosti (1) je nyni ziejmd, nebof Y, = Z, a pro kazdé
ke{l,2,...,n—1}je

Y2 Zig, xp—xp+1 2 0.

100. MaZeme predpokladat, Ze a1 > 1 (jinak prvni ¢len vynechame).
Cleny posloupnosti as, as, ... rozdélime do a; t¥id podle zbytki pii déleni
Cislem ai1. V kazdé neprazdné tfidé vezméme nejmensi Cislo a,, vSechny
ostatni Cleny posloupnosti patfici do stejné tfidy jako a, se od n¢ho lisi
o kladny nasobek ¢cisla a;, takZze

ay = ap + yai, y > 0.
Ponévadz vsech zbytkovych tiid je aj, vidime, Zc nejen nekoneéné mnoho
¢lentt dané posloupnosti, ale dokonce viechny aZz na nejvyse a1 + 1 jich
1ze vyjadfit v poZadovaném tvaru, pfi¢emz x = 1 a ¢ = 1.

2. feSeni. Nejprve ukazeme, Ze jsou-li @, b dvé ¢isla nesoudélna a ¢ > ab
libovolné, existuji prirozena Cisla x, y takova, Ze
¢ = xa - yb.
Protoze (a, b) = 1, patii b Cisel @, 2a, . .., ba do rtiznych zbytkovych tiid
modulo b, takZe existuje x, pro n¢z
Il £x£bh, blc—xa.
Ponévadz ¢ > xa, existuje kladné y, pro néz
¢ — xa = yb.
Pokud existuji dva Cleny ap, a4, pro néz (ap, a,) = 1, jsme hotovi, nebot
kazdé a > apa, ma pozadované vyjadieni. V opatném pfipad¢ ozname d
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nejvetsi spolecny délitel viech ¢lent posloupnosti a najdéme a,, a4 tak, Ze
ap dq _ dpdq
(7, ?) = 1. Pak pro kazd¢ a,, > — e
[ ap aq

a-*aTra
a dtkaz je hotov.
101. OznaCme strany a uhly v trojihelniku ABC obvyklym zplsobem.

Pouzijeme-li na trojuhelniky ABR, BCP, CAQ sinovou vé&tu, dostaneme
(obr. 123)

|AR| = |BR| = ¢ —ﬂli = 2¢sin 15°
sin 150° ’
sin 30°  2b sin 157 cos 157 )
Q] = b sin 1057 cos 15° = 2bsin 15%

|BP| = 2asin 15°,
sin 45° = sin 30

o

1CO| —  —— —
¢l sin 105° y2b cos 15°

ICP| = 2]/2 asin 15°.

- 2[/_2~ b sin 15°,

Strany trojihelniku POR vyjadfime pomoci kosinové véty, takze po dosa-
zeni z predchozich vztaht je

[QR|® = 45sin? 15" (b% + ¢? — 2bc cos (« + 60°)),

[PR|? = 45sin? 15° (¢? + a® — 2ca cos (f + 60°)),

[PQI% = 8s5in215° (b2 + a% — 2ba cos (y + 60°)).
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DokdZzeme nyni, Zze |PR| = |QR|. Pro libovolny trojihelnik ABC mame

QR]? — |PR?
= 0> —a® + 2c(a cos (f + 607) — b cos (« 4 60°)). (1)

4 sin2 15°

Dosadime-li do (1)

b2 —a? = 2bccos u — 2,

sin o
@ bsin [’
dostaneme
|QR|? — |PR|?
sina (1 I3 1 3
+ 2bc[ cos & + Sl (7 cos [)’———5- sin /)’) — (—-2— €0 o — = sin a)]z
= —¢? + — (sin ff cos « -+ sin « cos f}) = —c? + .bc siny =0
sin [ sin ’
nebof
sin ¢
sinff b

Zbyvd ukazat, ze | < PRQ| = 90°, tj. Ze
P2 = |PRI2 +- |QR|? = 2IPR]2.
Mame
2|PR|%2 —|PQ|%2= 8sin215°[c2—b2+ 2a(b cos (v + 607)— c cos (ff + 60))].
Vyraz v hranaté zavorce vznikne z (1) cyklickou zdménou a je proto roven
nule. Tim je ditkaz hotov.

2. feSeni. Sestrojme v trojuhelnicich AQC a BPC (obr. 124) vysky QK
a PL, takze je |QK| = |AK|, |PL| = |BL|. Jsou-li M, N body na stran¢ AB
takové, ze MK || BC, LN || AC, dostaneme z podobnosti trojithelniki
NBL ~ ABC a AQC ~ BPC rovnosti

|LN| |BL)| |AK]|
l[4C| ~ |BC| T lAC|
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Obr. 124

Jetedy |LN| = |AK|apodobnétaké |MK| = |BL|atrojihelniky AMK a NBL
jsou shodné. Navic je zicjmé |[RM| = |RN|. Protoze je PL | MK, |PL| =

= |MK| a QK | LN, |QK|= |LN|, sta¢i ukdzat, ze je také RM | RN.
Seétenim vektord QK, KM, MR a PL, LN, NR pak dostaneme |QR| = |PR|
a zaroven QR | PR.

Sestrojime-li rovnoramenny pravouhly trojuhelnik ABA’ (obr. 124),
bude trojuhelnik 4’RB s vyskou RK’ podobny trojihelniku AQC, takze ze
vztahu

|[AM| |AK| |A'K’]|
|AB]  |AC|  |A'B|

mame MK’ || AA’, tj. MR || AA’, podobné NR || A'B, tj. RM | RN.

3. feSeni. Ozna¢me uhly v trojahelniku ABC obvyklym zptisobem.
Uvnitt thlu ARB najdéme bod B’ tak, aby trojuhelnik ARB’ byl rovno-
stranny. Pak je B'R | BR (obr. 125) a | % B'AQ| = o.

Jak jsme jiz zjistili v 1. YeSeni, je

IAR] 40| . AB 40|
. takze ——
|AB] — |AC|’ [AB|  |AC|
a trojihelniky AB'Q, ABC jsou podobné. Je tedy |¥x AB'Ql = p
a |¥ RB'Q|= [+ 60° = | ¥ RBP|. Z této podobnosti a z podobnosti
trojihelnikit ACQO ~ BCP dale plyne
40| |BP|

|B'Q| = !B’Clqc‘| IBCII-B*CTI = |BP|.
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Obr. 125

Trojthelnik RB'Q dostaneme tedy z trojuhelniku RBP otofenim o 90°,
takze |PR| = |QR| a | < PRO| = 90°.

4. feSeni. Uvazujme zobrazeni 71 sloZené z otoc¢eni kolem bodu B o thel
|[BC| sin 105°

45° a ze stejnolehlosti se sttedem B a koeficientem —— 'BP| = S 30° takze
w1(P) = C. Déle uvazujme zobrazeni ma sloZzené z otofeni kolem bodu
|[AQ|  sin 30°

A o0hel45° a ze stejnolehlosti se stfedem 4 a koeficientem [AC| ~ sin 105°°

takZe wo(C) = Q. SloZenim zobrazeni 71 a ma je otofeni o 90°. UkaZeme,
7e bod R je stfedem tohoto otoceni.

Oznaéme S vrchol rovnostranného trojtihelniku ABS leziciho v polo-
roving€ ABR (obr. 126). ProtoZe trojihelniky BPC, BRS jsou podobné, je

C

Obr. 126
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71(R) = S a podobné m2(S) = R, bod R je tedy samodruznym bodem
slozeného zobrazeni mioms.

ProtoZe bod Q je obrazem bodu P v otoeni o 90° kolem stiedu R, je
| % PRQ| = 90°, |PR| = |QR|.

102. Nejprve ciferny soudet &isla B odhadneme. Cislo 44444444 m4 nej-
vyse 4.4444 Cislic, takze

A <29.20 000 = 180 000.

Pro ciferny soudet Cisla A4 tak mame odhad B £ 5.9 = 45, takze ciferny
soudet ¢isla B je nejvyse 12.

Kazdé dislo dava pri déleni 9 stejny zbytek jako jeho ciferny soudet.
Zjistime, jaky zbytek dava Cislo 44444444, Je

4444 = 4.11.101 = 4.2.2 =7 (mod 9),
a protoZe
73 =343 =1 (mod 9),
dostaneme
. 44444444 = 73-1481+1 = 7 (mod 9).

Odtud plyne, Ze hledany soucet Cislic ¢isla B je 7.

103. Délka tétivy jednotkové kruZnice, kterd odpovida stiedovému thlu o,
je
. o
d = 2sin o

Je-li 6 takovy ahel, Ze cos 0 i sin 6§ jsou &isla raciondlni, je podle Moivreovy
véty
cos kd -+ isin k6 = (cos & + isin d)¥,
takZe sin k6 je raciondlni pro kazdé k ptirozené. Ze vztahu
sin2d -+ cos2d = 1

plyne, Ze sin d a cos d jsou racionalni, pravé kdyz pro celd p, ¢, r je

. V4 r
sind =—, cosd = — a p2 4 r2 = ¢2
q q
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Posledni rovnici vyhovuji ¢isla

p =2, r=1>—u q=1%-+ u*

pro kazdd dvé prirozend Cisla 1, u.
PoloZime-li tedy
) 2t 12—1
sind = ;z_»l_l’ cos 0 = ﬂ——l
kde 7 je dostatedné velké, aby 1974 6 << =, budou body A1, As, ..., A1975
umisténé na jednotkové kruznici se stfedem S tak, aby pro ke {1, 2, ...,
1974} bylo |x A4pSA41| = 20, vyhovovat poZadavkim tlohy, protoZe
tétiva spojujici dva body A;, A (j > k) bude mit raciondlni délku
2 sin (j— k)o.
Zdroven je vidét, ze na jednotkové kruznici miZeme rozmistit libovolny
konecny pocet bodl tak, aby jejich spojnice mély racionalni délku.

2. feSeni. Dokazeme, ze na jednotkové kruznici existuje nekoneéné mnoho
bodi takovych, Ze jejich spojnice maji racionalni délku.

Sestrojme nad pramérem 4B pravouhly trojuhelnik 4ABC s raciondlnimi
stranami. Takovych trojahelnikli existuje nekone¢né mnoho - jsou to
vSechny trojtihelniky se stranami
2(m?% —n?)

[AC| = -
| m2 -+ n?

|4B| = 2, |BC| =~

kde m > n jsou prirozend Cisla.

Pritom jsou-li Cy, C2 vrcholy libovolnych dvou takovychto trojihelniki
ABC,, ABCs (obr. 127), ma tétiva C1Cs racionalni délku, protoZe pro
tétivovy ¢tyiuhelnik A BC2Cy plati podle Ptolemaiovy véty

[AB].|C1C2| + |AC1|.|BCo| = |ACo|.|BC4|,
tj.
1
|C1C2| = 7(1AC2[ ABC| — |AC,|.|BC:)).

Pozndmka. Pro Gplnost jesté uvedeme feseni neurcité rovnice
) (M

v prirozenych &islech. Trojice prirozenych Cisel (x, y, z), které ji vyhovuji,
se nazyvaji pythagorejské trojuhelniky.

X2 4 y2 =z
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Obr. 127

Budeme hledat jen takovd feSeni, Ze (x, y, z) =1, protois vSechna
ostatni dostaneme vynasobenim libovolnym pfirozenym ¢&islem.” Navic je
z rovnice (1) vidét, Ze ¢isla x, y, z jsou v tom pripadé po dvou nesoudélnd.

Snadno zjistime, Ze obé ¢isla x, y nemohou byt souasné lichd, pak by
totiz bylo z2 délitelné dvéma a nutné tedy i ¢tyfmi, zatimco Ctverec lichého
Cisla da pti déleni Ctyfmi vzdy zbytek 1.

Predpokldadejme tedy, Ze x je sudé, x = 2/, pak dostaneme

AP =22 —y =@ + ) @—y)
Jetedyproj > k
z+y=2j z—y =2k,
z=j+k y=j—k
a odtud /2 = jk. Cisla j, k jsou nesoud&Ind, protoZe jinak by &sla y, z méla
spole¢ného délitele. A protoze jk = /2, musi byt
j=m2 k =n2 | = mn,

kde m > n jsou nesoudélnd prirozena Cisla. Vyhovuji-li tedy nesoudélnd ¢isla
x, y, z rovnici (1), maji tvar
x =2mn, y = m2-—n? z=m?+ n2 (2)

Navic je 2 | mn, protoZe jinak by byla obé& Cisla y, z rovnéZ sudd.
Obrdcené, pro kazdou dvojici pfirozenych &isel m, n takovych, Ze m > n,
(m,n) =1 a 2| mn, dostaneme feSeni rovnice (1).

Je zajimavé, Ze vSechna FeSeni tvaru (2) jsou generovina body (m + in)?2
v komplexni roviné pro m, n cela - je totiZ (obr. 128)

(m + in)2 = m2 — n2 + 2mn i,
|(m + in)2| = m?2 4 n2.
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(m+'n)
a
"\Lx(/\/ |
S
/// :Zmn
A |
%= n?
Obr. 128

104. VyfeSme ulohu nejprve pro n = 1. Hledany linedrni homogenni
mnohoclen bude mit tvar

P(x, y) = Ax -+ By.
Z podminek b), ¢) dostaneme proa =1, =c =10
PO, 1) = —2P(1, 0) = —2.
Jetedy A=P(1,0)=1, B=P0,1)=—2 a
P(x, y) =x—2y
je jediny mnohodlen stupné 1, ktery vyhovuje danym podminkam.
Necht n > 1. Plati opét P(1,0) =1, P(0, 1) = —2aproa=2,b=c¢ =
= —1 dostaneme z podminky b)
P(—2,2) = —2P(1, —1),
pfi¢emz podle a)
P(—2, 2) = (—=2)»P(1, —1).
Pro n > 1 to znamena, Ze je P(1, —1) = 0 a vzhledem k homogenité mno-
hoclenu P
P(x,—x)=0
pro viechna redlnd x. Pro kazdé x ma tedy mnohoclen jedné redlné pro-
ménné y
Pa(y) = P(x, y)
kofen y = —x. Odtud plyne, Ze mnohoclen P ma tvar

P(x, y) = (x + ») Q(x, »),
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kde Q je také mnohoc€len. UkdZeme, Zze mnohoélen Q stupné n — 1 rovnéz
splituje podminky Glohy. Pro x 4+ y 5~ 0 je

P(tx, ty)
tx, ty) = —————=
O(rx, 1) Gt
proa-+b+c#0

Oa+b,¢)+Qa+ e, b)+ Qb+ ¢,a)=

= =10(x, ),

. m—c (Pla+b,¢)+Pla+c,b)+Pb-+c,a)=20

ataké O(1,0) =P(1,0)= 1. Pro x + y = 0, resp. @ + b - ¢ = 0 plynou
uvedené vlastnosti ze spojitosti mnohoclenu Q.

Ponévadz feSeni pro n = 1 uZ zname, vidime, Ze pro n = 1 je jedinym
feSenim Glohy mnohoclen

P(x, ) = (x + y)"»1(x —2y).

2. feSeni. Nechf mnohoclen P splituje dané podminky. Z podminky b)
pro libovolné a = b = ¢ = y plyne
3P(2y,y) = 0.
Pro kazdé y md tedy mnohoclen jedné proménné x
py(x) = P(x, y)
kofen x = 2y. To znamena, Ze
P(x, p) = (x —2y) Q(x;, »),

kde Q je homogenni mnohoclen stupné n — 1. Ziejmé O(1, 0) = P(1,0) = 1.
Pro b = ¢ z podminky b) plyne

2P(a+ b, b) -+ P22b, a) = 0,
coz pro mnohoc¢len Q dava
2(a —b) Q(a + b, b) + 2(b—a) Q(2b, a) = 0,
neboli pro a # b
O(a + b, b) = Q(2b, a).
Odtud postupné dostaneme
0(x, ) = 02y, x —y) = Q(2x — 2y, 3y —x) = Q(6y — 2%, 3x—5p) = .. .,
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tj.
0(x,»)=Qx + 2y —x),y — 2y —x) = Qx + (x —29),y —(x —2y))=
=0(x+32y—x,y—3—x)=....
ProtoZe Q je mnohoélen a rovnost Q(x, y) = O(x + d, y — d) je pti x # 2y
splnéna pro nekoneéné mnoho riiznych d = 2y — x, x — 2,32y —x),. . .,
je
O(x, ») = Q(x + d, y—d)
pro libovolné redlné d, coz plati diky spojitosti i pro vSechna x = 2y.
Specialng je Q(x, ¥) = Q(x + y, 0), a protoZze Q je homogenni mnoho€len
stupné n — 1, je
O(x, y) = c(x + y)»1,
pfiéemz Q(1, 0) = 1, takZe ¢ = 1. Jedinym mnohoclenem, ktery spliuje
dané podminky, je tedy

P(x, y) = (x —2y) (x + y)"~L

3. FeSeni. Necht mnoho¢len P spliiuje uvedené podminky. Z podminky b)
plyneproc=1—a—5b

Pla-+b,1—a—>b)+ P(1—>b,b)+ P(l —a,a) =0,
coz pro b = 0 dava vztah
P(l —a,a)=—P(a, 1 —a)— 1.
Dohromady je tedy
Pla~+0b1—a—>b)=Pla, | —a)+ Pb,1—>) -+ 2.
Polozme Q(x) = P(x, 1 —x) 4 2, pak je pro libovolnd realnd a, b
Q(a + b) = Q(a) + Q(b).
ProtoZze Q(1) = P(l, 0) + 2 = 3, plyne odtud Q(a 4 1) = Q(a) - 3, Cili
Q(n) = 3n

pro viechna ptirozena n. Ponévadz Q je mnohoclen, je O(x) = 3x pro vsech-
na realna x. Je tedy P(x, 1 — x) = 3x —2apodlea) prox 4+ y %0

X X
)=(x+y)"P(x+y, I‘x—[—y):

x y
P(x,3) = (x + ) P(x+y’x+y
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3
= (x + .V)"( - 2) = (x + y)P~1(x—2y).

Xy
Snadno zjistime, Ze tento mnohoclen spliiuje vSechny dané podminky.

Pozndmka. Je-1i Q spojita realna funkce, ma funkciondlni rovnice
O(x + y) = Q(x) + Q)

jediné feseni Q(x) = kux, kde k je libovolna realna konstanta. Z pfedchoziho
feSeni tedy vidime, Ze bylo zbyteCné predpokladat, Ze P je mnohoClen -
stadila napf. spojitost funkce P. Z rovnosti Q(1) = 3 pak rovnou plyne

O(x) = 3x.

105. UvazZujme ctyiahelnik ABCD, v némz |AB| -+ |BD| + |CD| = 16
a jehoz obsah je 32. Je tedy

1 1
32 = —'|4B|.|BD| sin | X ABD| + —|BD|.|CD|sin |%BDC| <
1 1 1
= 5'148|.1BD| + —|BD|.|CD| = —|BD|(4B| + |CD) = (1)

1
=5 |BD|(16 — |BD)).

Z (1) dostavame
|BD|2 — 16|BD| + 64 < 0,
neboli
(|lBD| —8)2 £ 0.
Z posledni nerovnosti plyne |[BD| = 8, tedy |[AB| + |CD| = 16 — |BD| = 8.
Déle v (1) plati rovnost, musi tedy byt AB | BD, BD | CD.

Oznaéme P patu kolmice spusténé z bodu 4 na pfimku CD (obr. 129).
Potom

|AC|2 = |AP|2 + |PC|2 = |BD|® + (|AB| + |CD])? = 2.82,
tedy |4C| = 8]/2.
Dokézali jsme, ze v kazdém Etyfuhelniku spliiujicim podminky tlohy je
délka druhé uhlopficky rovna 8]/2 cm.
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Obr. 129

106. Probiha-li x interval {—2, 2>, hodnoty funkce x2 probéhnou dvakrat
interval <0, 4> (nejprve klesaji od 4 k 0 a pak rostou od 0 do 4) a hodnoty
funkce Pi(x) = x2—2 probchnou dvakrat interval {—2, 2>. Hodnoty
funkce (P1(x))? probchnou ctyfikrat interval <0, 4> a hodnoty funkce
Po(x) = (P1(x))2 — 2 Ctytikrat interval {—2, 2> (obr. 130). Odtud plyne
indukci: Probéhne-li x interval {(—2, 2>, prob¢hne funkce P,(x) 2"-krit
interval {(—2, 2.

y=x

0 \ 2
NIN L\ Joes
2

Obr. 130

Funkce P,(x) je spojitda a protne tedy tGseCku spojujici body (—2, —2),
(2, 2) alespoii v 2" rtiznych bodech, tj. rovnice

Pn(x) = X (l)

ma alespoit 27 riiznych redlnych feSeni. ProtoZe funkce Py(x) i funkce
Pu(x) — x jsou mnohocleny stupné 27, jsou to vSechna feSeni rovnice (1).
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2. feSeni. Budeme hledat kofeny rovnice Pp(x) = x v intervalu (—2, 2.
Kazdé¢ redlné Cislo x z tohoto intervalu lze jednoznaéné vyjadrit ve tvaru
x = 2cosy, kde ye {0, ®>. To ndam umozni jednoduse vyjadiit hodnoty
funkce Py(x). Dokazeme indukci, Ze pro kazdé redlné y plati

Py(2 cos y) = 2 cos 27y. )

Pron=1je

P1(2 cos y) = 4 cos2y — 2 = 2(2 cos?y — 1) = 2 cos 2p.
Predpokladejme, Ze vztah (2) plati pro piirozené Cislo k, potom
Pr11(2 cos y) = P1(Pr(2 cos y)) = P1(2 cos 2ky) = 2 cos 2k+1y .

Vztah (2) tedy plati pro kazdé pfirozené Eislo 7.
Ulohu o rovnici Py(x) = x jsme tak pfevedli na tilohu o rovnici

2 cos 2my = 2 cos y

a ta ma v intervalu <0, ©) 27 feSeni

y=0
2k
V=T ke{l,2,...,2n"1—1},
2km
y = 2T ke{l,2,...,201},
Pritom vSechny tyto hodnoty jsou navzajem riizné. Kdyby totiZ bylo
2km 2jm

m—1 w41

bylo by k --j=2"(j—k), co? pro k £27-1—1 a j <271 pemiiZe
nastat, nebof 0 < k - j < 2". ProtoZe stupeii mnohoélenu Py je 27, jsme
s ditkazem hotovi.

107. Oznaéme @, b, ¢ rozméry krabice, a £ b < c¢. Podle podminek tlohy

jsou a, b, ¢ plirozena &isla. Krychle o objemu 2 mé hrany délky 3]/2—, tedy
maximdlni pocet krychli tohoto objemu, které milZeme do krabice vloZit,

Je L 5]
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Tyto krychle zaplni 40 9 objemu krabice, tedy

Ll ] oo

n

2}

Zavedeme-li oznaceni p, = , dostaneme vztah

Papope = 5. Q)]
n

Hodnoty [-3—1-/-?] a pn pron = 8 sestavime do tabulky:
n tr 2 3 4 5 6 7 8
—’Z: 0 1 2 3 3 4 5 6

3V2
3 4 5 3 7 4
DPn _ 2 = = = = = =
2 3 3 2 5 3

Vsimnéme si, Ze pro kazdé ptirozené Cislo n je
n

Pn = —n_ P - e 3]/5 ()]
Pro n =z 8 je naopak
31/5 31/3
n n-l2 = 2
pn < - Z—=3V2(1+“—Vat)§
_11__1 n—"°J2 n—"|2
31/5 3175 ,
gy = 2 872 8.1,26
< 3]/2(1 - V3 —>: l; = < -
8 —"°)2 8§—?2 ~ 8—126
10,08 3
~T674 = 2
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5

Odtud a z tabulky plyne, Ze pron = 3 je py = 3 takZe pro a = 3 mame

5\3
PaPbPe = (?) <35

a rovnice (1) neni splnéna. Nutné tedy « = 2 a rovnice (1) dostava tvar

5
Pope = 5 (3

3
takZe musi byt aspoii jedna z hodnot py, pe vEtSi nez > Z tabulky zjistime, Ze

5
takové jsou jen hodnoty 2 a ER Zbyvajici Cislo z dvojice py, peje pak podle

5 5 L, —
(3) rovno 7 nebo ER Prvni moZnost vylouc¢ime podle (2), nebot r < ‘}l/ 2.

Dvojici 3 odpovidaji feSeni b = 3, ¢ = 5 nebo b = 5, ¢ = 6.

Rozméry krabice jsou tedy bud 235, nebo 2 X 5% 6.

108. Jsou-li a1, aq, ..., a, piirozena &isla, jejichZ soucet je 1976 a jejichz
soucin je maximalni, potom plati:

(1) Zadné z &isel a; neni vétsi nez 4. Cislo a; = 5 bychom mohli nahradit
Cisly 2 a a; — 2. Soulet by se nezménil a soucin by se zvétsil, protoze
pro a; 2 5 je 2(a; — 2) > aj.

(2) Mezi Cisly a; jsou nejvyse dvé dvojky. Kdyby tfi z Cisel a; byly dvojky,
nahradili bychom je dvéma trojkami, soucet by sc tim nezménil, ale
soucin by se zvetsil, nebot 3.3 > 2.2.2.

(3) Zadné z &isel a; neni jednitka. Kdyby a; = 1, nahradili bychom dvojici 1,
aj (pro n&jaké j 5 i) Cislem a; + 1, pfiCemZ by se souCet nezménil, ale
soucin zvetsil.

Cisla a; tedy nabyvaji pouze hodnot 2, 3, 4. Je-li nékteré z &isel a; rovno
Ctyfem, miZeme je nahradit dvéma dvojkami. Tim nezménime soucet ani
soucin. Maximalni hodnotu soucinu ¢isel ¢; miZeme tedy dosahnout, vo-
lime-li za ¢&isla a; pouze dvojky a trojky, pficemZ dvojky sméji byt nejvyse
dve.
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Protoze 1976 = 3.658 -}- 2, maximéalniho soucinu dosahneme, volime-li
ay = ds = ... = dgsg = 3, dgse = 2. PiisluSny maximalni souéin je pak
2,3658,

Pozndmka. Cislo 1976 muaZzeme nahradit libovolnym pirozenym &islem
m > 1. Maximalni hodnota soucinu je

3k pro m = 3k,
2.3% pro m = 3k - 2,
4.3%1 pro m = 3k + 1.

2. YeSeni. Jsou-li a1, as, ... a, pfirozena Cisla, jejichZ soucet je 1976
a jejichZ soucin je maximalni, pak plati
la;—ayl = 1 M

pro libovolnd dvé i, je {1, 2, ..., n}. Jinak bychom totiz ¢&isla a;, aj, je-li
napt. a; > a; -|- 1, nahradili ¢isly a; — 1, a; -} 1, soudet by se nezménil
a soucin by se zvetsil:

(ai— 1) (a5 1 1) = aia5 + a; — aj — | > ayay.
Protoze pro libovolné ptirozené ¢islo m -+ 3 plati nerovnost
3m > m3, 2)

nemuze se zadné Cislo m 5~ 3 vyskytovat mezi Cisly a1, as, .. ., a vice nez
dvakrat. Libovolnou trojici Cisel m bychom totiz nahradili m trojkami,
pii€emZ by soucet zlistal stejny a soucin by se zvétsil podle (2).

Mezi Cisly ai, as, ..., ay jsou tedy podle (1) nejvyse dvé rliznd, a je-li
n = 5, musi byt vSechina aZ nejvySe na dvé rovna tfem. Zbyla nejvyse dvé
¢isla musi byt pak podle (1) rovna bud dvéma nebo &tyfem.

Z rozkladu 1976 = 3.658 |- 2 == 3.656 - 4.2 plyne, Ze hledany maxi-
malni soucin je 2.3658 > 42 3656, Moznost 7 < 4 snadno vyloucime,
protoZe podle nerovnosti mezi aritmetickym a geometrickym primérem

1976
je uvaZovany soudin shora omezen Cislem (
n

n
) apron < 4je

(1976

w
; ) < (37)% < 2.3658,
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109. Pro kazd¢ dvé g-tice
U= (g, Uy ooy lg) @V = (V1 v, ..., V)

takové, 7e

U 4
S ayig = D, ayvy,

i1 i—1

l{« q"

> aziu; = >, Az, (N
i-1 i—1

q
> apilly = . dpiVi,
=1 i=1

vyhovuje ziejmé ¢-tice
U—vV = (U1 — V1, Uz — V2, ..., Ug— Vg)

dané soustavé rovnic. Jestlize g-tice u, v jsou sloZzeny z celych Cisel, jsou
rizné a je ;] = p, vl = p pro vechna ie {1, 2, ..., ¢}, pak jsou splnény
i podminky a), b), ¢). Staci tedy ukiazat, ze takové dveé g-tice u, v existuji.

Ozna¢me T mnoZinu viech g-tict = (11, ta, . . ., tq) celych Cisel takovych,
Ze |t < p pro kazdé ie {1, 2, ..., q}. MnoZina T obsahuje (2p -|- 1)?
g-tic. Kazdé ¢-tici t € T pritadme p-tici

q

q q
O aviti, > azitiy, ..., > apity).
i—1 i-1 -1

Tyto p-tice vytvoii mnoZinu R. ProtoZe

q q q
| 2 axitil = 2 lawil [l = 2 16| < py,
i=1 i=1 i-1
ma mnozina R nanejvys (2pq - 1)? prvkit. Je viak
IRl < @pg + 1P =(4p2+ )P <(2p + DHP=(2p - )2 =(2p + 1)2= |T|
V mnozin¢ T tedy existuji dvé& g-tice u, v, pro které plati (1). Tim je diikaz
proveden.

110. Vypocteme nekolik ¢lentt posloupnosti {u,}. Je

5 5 5 65 1025
uo = 2, up = 2,142— 2,1{3—— 8,114~— D)
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2%k 4 |
a vSechny tyto ¢leny jsou tvaru BT 2k 4 2=k, To nas vede k do-
mnénce, Ze je
Uy = 20 (W) L D=f(n) )
pticemz pro f(n) > 0 bude
[l[n] e 2f(”)_

Matematickou indukci dokazeme, Ze pro
1
fn) = = @1 — (1))
vyhovuje posloupnost {u} vztahu (1), a dostaneme tak tvrzeni tlohy.
5

Pron=0an=1jeu0=2o+2o=2,u1=21+2—1=7.

Predpokladejme tedy, Ze pro n = k — 1, n = k vztah (1) plati. Potom je
u,f_l — 2 = 2% (k=1) L 2-2f(k-1)

5
uppr = (27 ®) 4 2-F(0)) (227 (k=1) | 2-2f (k=1)) — L
5
= 2f (k) +2f (k=1) .27 (k)=2f (k=1) . 2-f(k)+2f (k-1) L D—f(K)-2f(k-1) _?’

pfi¢emz

|
) + 2l — 1) = @k — (1) + 2% + A1) =

1
=5 @ —(=D)EY) =fk + 1),
fik) — 2f(k — 1) = (—1)*+1,

takze je dale

5
Upy1 = 27 (B4D) 1 =1y 4 2~(—1)"“+ 2—f(k+1)__7= 2f (k+1) 2-F(k+1)
Tim je diikaz hotov.

111. Oznaéme P stfed usecky KL, Q stfed useCky DN a S stied &tverce
ABCD (obr. 131). Vzhledem k soumérnosti sta¢i dokdzat, Ze |SP| = |SQ]|,
| % PSQ| = 30°a|x QSK| = 15°.
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Nejprve si vSimnéme, Ze pfimka AN je osa usecky BK, takze |[KN| = |BN]|.
Je tedy také |MN| = |BN| a trojihelnik MBN je rovnostranny (délku jeho
strany oznaéme s) a | ¥ CBN| = 15°. Use&ka SQ je stfedni pticka v trojuhel-

s
niku BDN, takze |SQ| = > | % QSK| = 15°. Déle pak

|¥ PSQ| = |x PSK|— | X OSK| = 45°—15° = 30°,
|KN| K
|SP| = - =7
2. feSeni. Ze soumérnosti je vidét (obr. 132), Ze ¢tyiuhelniky P1P1P7P1o,
P2Ps5PgP11, P3PgPyPi2 jsou Ctverce se spolenym stfedem, piicemZ
pfimka PP, je rovnobéZna se stranou AB a pfimky PaPj a P3Pg s ni sviraji
thly 30° a 60°. Posledni dva ¢tverce jsou ziejmé shodné, staci ukazat, Ze
i prvni je s nimi shodny.
Skutecné, je
/3 1 /3—1
|PoPs| = |APs| — | 4Py = "~ |4B| — - |AD| = ~——148],

1 1
|P1Pa| = — INL| = - (2INQ| — |4B|) =

E——l

= |AB.
D N C
BQ“‘ N
o \,n\ > ‘
. SN
L N )
° ¥ *"\\\ \\\
M \\¥\
A - B

Obr. 131
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3. FeSeni (obr. 132). Vzhledem k soumérnosti staci dokdzat, Ze |P1P2| =
= |PsP3| a |SP1| = |SPs|. Zavedme soustavu soufadnic, v niz bude

A= (—1,—1), B= (1, —1), D = (—I, 1),
K= |3—1),L=(1—130, M=(©,1—3), N=(J3—1,0),
1—)3 1—73 13 1 131
n=(5E50) me (T =)= (-5 =),

Odtud dostaneme

|P1P3|? = |PaP3|? = 7—-_415,
|SPy[2 = |SPy|2 = 2 — 3.

Obr. 132

112. UvaZujme posloupnost a1, as, ..., ay a ozname
Sg=day -+ as - ... |- a
Posloupnost spliiuje dané podminky, pravé kdyz
s7 <0, 511> 0,
Skyn < Sk pro viechna ke {l,2, ..., n—T7}
a
Skr11 > Sg pro vechna ke {1,2, ..., n—11}.
UkdZzeme, 7e n £ 16. Kdyby n = 17, platilo by
0> S7 > 814 > §3 > S10 > S17 > S¢ > S13 > S2 >
> 89 > S16 > S5 > S192 > 51 > S8 > S15 > $4 > S11 > O,
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coz neni mozné. Existuje vS§ak nekoneéné mnoho Sestnictic s1, s2, ..., S16,
pro které plati

S6 > S13 > S22 > S9 > S16 > S5 > S12 > §1 > Sg >
>S15>S4>s11>0>S7>Sl4>S3>S10.

Polozime-li

ayp = Si,
a1 = Spr1—sSk pro kazdé ke {1,2, ..., 15},

dostaneme Sestndcti¢lennou posloupnost, kterd vyhovuje podminkam tlohy.
Napt. pro

s¢ =12, 513 = 11, 52 =10, 59 = 9, 516 = 8, 55 = 7,
S12=206,51=25,858 =4, 515 =23, 54 =2, 511 = 1,
S7 = ——-1, S14 = ———2, §3 = ——3, S10 = —4

vyjde posloupnost

5,5,—13,5,5,5,—13,5,5,—13,5,5,5, —13, 5,5

vyhovujici danym podminkam.

2. ¥edeni. Predpokladejme, Ze posloupnost ma alespoii 17 ¢lentl. Zvolme
si libovolné 4 po sob¢ nasledujici ¢leny. Pak pfed nimi nebo za nimi je
jesté aspoii 7 ¢lent, tj. existuje 11 po sobé nésledujicich ¢lenti, které zadinaji
nebo kondi zvolenou &tvetici. Z podminek ulohy plyne, Ze soulet zvolenych
Styr Clent je kladny. Je tedy soudet libovolnych CtyF po sobé jdoucich ¢lent
kladny.

Zvolme si déle libovolné 3 po sobé nasledujici ¢leny a uvazujme 7 po
sobé ndsledujicich ¢lent, které zadinaji nebo kondi zvolenou trojici. Soudet
ostatnich ¢tyr ¢lent je, jak vime, kladny. Z podminek ulohy plyne, Ze zvo-
lend trojice ma zaporny soudet. Soucet libovolnych tii po sobé nésledujicich
¢lent je tedy zaporny.

Nakonec zvolme libovolny &len uvazované posloupnosti. Ctveftice, kterd
jim zacind nebo konci, ma kladny soudet a trojice ostatnich ¢lent ma zdpor-
ny soucet, takZe zvoleny Clen je kladny. Uvazovana posloupnost ma tedy
viechny ¢leny kladné, co odporuje jedné z podminek tlohy. Clenti je tedy
nejvyse Sestndct.



113 (224)

Pozndmka. Viimnéte si souvislosti metody 2. feSeni s Euklidovym algo-
ritmem pro hledani nejvétsiho spole¢ného délitele dvou prirozenych &isel.
To vede k zobecnéni:

Je-li v koneéné posloupnosti redlnych Cisel soucet kazdych m za sebou
jdoucich ¢lenti zaporny a soucet kazdych n za sebou jdoucich ¢lenti kladny,
je maximalni pocet ¢lenl posloupnosti m + n—d—1, kde d je nejvetsi
spoleény délitel ¢isel m a n.

3. feseni. Ma-li posloupnost alespoti 17 ¢lent, sestavme z nich tabulku
o 11 ¥adcich a 7 sloupcich:
ay a2 asz ayg das dg ap
az dag ai as dag dp asg
as dyg ds dg dy ag dy

a1 @12 ai13 ai4 ais dig A1y
Kdyby posloupnost spliiovala podminky tlohy, byly by vSechny fddkové
soucty zaporné a sloupcové soucty kladné, coZ neni moZné - soucet vSech
fadkovych soultti je totiz roven souctu vsech sloupcovych souctil.

113. Ukazeme, Ze Cislo
r=mn—012C2n—1)2=[(n—1)(2n—1)]2 (N
lze ve V,, rozlozit dvéma riiznymi zpiisoby na souéin nerozlozZitelnych &isel.
Predevsim si vSimnéme, ze kazdé z Cisel
r,(n—1)2% 2n—102 (n—1)(2n—1)

patfi do mnoziny V,. Prozkoumejme dile rozlozitelnost téchto &isel.

Kdyby ¢islo (n— 1)2 bylo rozlozitelné, existovala by prirozena disla c,
d tak, ze

(n—12=(cn -+ 1)(dn+1).

To viak neni mo¥né, protoZe pravi strana by byla v&3i nez n2. Cislo
(n — 1)2 je tedy nerozloZitelné pro kazdé n > 2.

Je-li ¢islo (2n — 1)2 rozlozitelné, existuji prirozena Cisla ¢, d tak, ze

2n—1)2 = (en + D) (dn 4+ 1) = cdn® + (¢ - d)n + 1,
neboli
4n—4 = cdn + ¢+ d.
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Plati tedy ¢d <4 a ze tfi moznosti c =1, d=3; ¢c=1,d=2; c=1,
d = 1 vyhovuje jen prvni v ptipadé n = 8. Pro n = 8 je tedy
Cn—1)2=028—1D2=B+1)(3.84+1)

a pro n # 8 je ¢islo (2n — 1)2 nerozlozZitelné.

Analogicky zjistime, Ze pro n = 5 je

m—Dn—1DN=06—1D2.5—1)=(5+1)2

a pro n # 5 je &islo (n — 1) (2n — 1) nerozlozZitelné.

Pro 5 #* n # 8 dava tedy (1) dva rtzné rozklady ¢&isla r na nerozloZitelné
Cinitele

(mn—12%2a 2n—1)2 resp. m—1)(2n—1) a (n—1)(2n—1).
Pro n = 5 mame dva rozklady
16.81 = 6.6.6.6

a pro n = 8 dva rozklady
9.25.49 = 105.105.

2. feSeni. Stejné jako v pfedchdzejicim feSeni zjistime, Ze Cislo (n — 1)2
je nerozlozitelné. Toto Cislo nedéli soucin (n — 1) (2n — 1), protoze &islo
m—1)@2n—1) 2n—1 1
— = 2 —{—
(n—1)2 n—1
neni pro zidné n > 2 ptirozené. Rozlozime-li tedy obé strany (1) ddle az
na nerozloZitelné Cinitele, bude na levé strané Cinitel (n — 1)2, a na pravé
strané nebude. Piijde tedy o dva rizné rozklady.

n—1

3. feSeni se opird o hlubokou Dirichletovu vétu: Jsou-li prvni &len a di-
ference aritmetické posloupnosti nesoudélna prirozena d&isla, obsahuje
posloupnost nekoneéné mnoho prvocisel. Podle této véty obsahuje posloup-
nost

n—1,2n—1, 3n—1, ...
nekoneén& mnoho prvolisel. Vezmeme-li dvé z nich, p a r, jsou &isla p2, r2,
pr, p%r? z mnoZiny V, a &islo p2r2 ma dva rozklady na nerozloZitelné Ci-
nitele:
p%.r: a  pr.pr.
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MiiZeme také vzit ¢tyfi prvociselné €leny p, ¢, r, s zminéné posloupnosti.
Jejich soucin ma pak tfi rozklady

pq.rs, pr.qs, ps.qr.

Pozndmka. Predpoklad n > 2 je podstatny. Vg je mnoZina vech lichych
isel vétsich nez 2 a nerozlozitelnd Cisla ve Vg jsou pravé lichd prvodisla.
Vi je mnozina vSech prirozenych &isel vétSich nez 1 a nerozloZitelna Cisla
ve Vi jsou pravé prvocisla. Z jednoznacnosti rozkladu na prvodinitele je
vidét, Ze pro n £ 2 tvrzeni tilohy neplati.

114. Je-1i alespoti jedno z Cisel a, b nenulové, plati

/.____ /________ =

|/a? 1 b2 cosy = a, |a? f}——l;z—siny =b.

Tyto vztahy plati i v pfipadé ¢ = b = 0, dokonce pro kazdé y. Existuje
tedy dislo y tak, Ze

I

Vm COs X cOs y + Vﬂ_ﬁ sin x sin y =
= ]/ET;)_2 cos (x — ).
Analogicky najdeme Cislo Y, pro které plati
A cos 2x -+ Bsin 2x = ]/mcos 2(x —Y).
Pro kazdé redlné x je pak
f(x)=1— V:z—f}—ﬁ cos (x — y) — Vmcos 2(x — Y).

Nyni snadno zjistime, Ze
TT T e e
f(y +—4—) +f(y--;;) =2—2a%+ b2,
)+ AY +m) =2—2]/42 + B2,

odkud plyne dokazované tvrzeni.

acos x + bsinx

Pozndmka. Obracené tvrzeni neplati. Napf. pro a = ]/2_, b=0,4=0,
B=0jea?+5b2<2,42+B2<1,f(0)=1—]2<0.
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115. Necht dvojice pfirozenych &isel a, b splituje podminky ulohy. Pak je

q% +r=1977,
kde :
0 r<a-+b,
takze
q> 21977 < q® +a -+ b. (D
Protoze

at -+ b2=gqla+Db)+r<(qg-+1)(a-+b)
a pro kazda dvé redlna Cisla x, y plati
(x + »)? < 2(x2 + »Y),
je
(@a+b?<2q+1)(a+b)
a odtud
a+b <2+ 1.
Podle (1) dostavame
21977 <q¢®>+2¢+1=(¢g+ D%
Této podmince vyhovuje jediné ¢ = 44. Pak je r = 1 977 — 442 = 4] a plati
a? + b2 = 44(a - b) + 41,
neboli
(a —22)2 4 (b —22)2 = 1 009.
Zbyva rozlozit ¢islo 1 009 na soucet dvou Ctvercti
1009 = u?2 - y2,
Probereme-li vSechny moznosti pro koncové &islice Cisel u, v, zjistime, Ze
jedno z nich musi koné&it nulou nebo pétkou, a najdeme jediny rozklad
1009 = 152 4 282,
Odtud pak dostaneme &tyfi dvojice (a, b) vyhovujici podminkdm ulohy:
(7,50), (37, 50), (50, 7), (50, 37).

116. Pro libovolné k > 1 je
Jk) > f(ftk — 1)), M
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takZe f(k) neni nejmensi ze vech hodnot funkce f. ProtoZe hodnoty funkce f
jsou pfirozend Cisla, nejmens$i hodnota existuje a neni jind moZnost, nez
Ze je to f(1). Je tedy

J) <fm) a fn) 2 2
pro kazdé n = 2.

Pro libovolné k& > 2 je pak f(k —1) = 2 a z (1) vidime, Ze f(k) neni
nejmensi z hodnot f(2), f(3), ... . Nejmensi z t&chto hodnot je f(2), takZe
J) <f2) <fm) a f(n) =3

pro kazdé n = 3.
Tak pokracujeme dale indukci a zjistime, Ze f(i) < f(j) pro kazdé dvé
hodnoty i < j a Ze f(n) = n pro kazdé n.
Kdyby pro nékteré n bylo
Sy > n, i f) z 0+ 1,
bylo by pak
f(f(n)) gf(n _*— 1)’

a to odporuje dané podmince.

2. FeSeni. MnoZinu viech funkci f spliiujicich podminky Glohy ozname F.
Matematickou indukci dokdZeme, Ze mnoZina F obsahuje jedinou funkci,
totiz identitu f(n) = n.

Nejprve ukdzeme, Ze pro kazdou funkci feF je f(1) = 1. Pro kazdé
k>1je

Jik) > f(ftk — 1) z 1,
takZe pokud pro n&které k je f(k) = 1, je to jen pro k = 1. Kdyby pro kazdé
k bylo f(k) > 1, platilo by pro kazdé n; > 1

fin) > fifnn — 1) = fine) > fifins — 1) = flma) > f(flma —1) ...,
tj. existovala by nekoneénd klesajici posloupnost p¥irozenych ¢isel f(n1) >
> f(ng) > f(nz) > ..., kde

no=fni—1D>1, ng=fne—1>1, ...,
coZ nenf mozné. Je tedy f(1) = 1 pro kaZdou f € F.

Bud nyni k pfirozené &islo a predpoklidejme, Ze pro kazdou funkci

feFje flk) = k. Uvazujme funkci g definovanou pfedpisem

g =fn+1)—1
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pro kazdé n. UkdZzeme, Ze pokud feF,je i geF. Jak uZ vime, je f(n + 1) > 1,
tedy g(n) je prirozené ¢islo pro kazdé n. Déle je

glgm) =g(fln + D —D=f(fln+ D) —1<fln +2)—1=grn+1).
Je tedy skute¢né g € F a podle indukéniho pfedpokladu je g(k) = k, jinymi
slovy
tj. f(k + 1) =k -+ 1 pro kazdou f€ F. Tim je dikaz proveden.

117. Pfirozena Cisla m << n (zatim ne nutn¢ s minimalnim souctem)

vyhovuji podmince ulohy, pravé kdyz ¢islo

19787 — 1978m = 1978m(1978n—m — 1)
je délitelné tisicem. To nastane, pravé kdyZ m = 3 a &islo 19787 —1 je
delitelné 125.

Snadno zjistime, Ze 1978"m — 1 je délitelné péti, jen kdyz n—m je
délitelné Ctyfmi. Pti déleni 125 dava 1978 zbytek 103 a 1034 dava zbytek 6.
Cislo 19787-m — 1 je tedy délitelné 125, pravé kdyz n — m = 4k a 6k — 1
je délitelné 125. Podle binomické véty
k(k—1)

6F—1 =06+ DF—1= 5k 4 25 3

1125 (...),

takZe 6F— 1 je délitelné 125, pravé kdyz
k(k— 1) Sk(5k — 3)
2 2
je délitelné 125, tj. pravé kdyz k je délitelné 25.
Cisla m, n tedy vyhovuji podmince, pravé kdyZ je proj = 1

Sk 4- 25

n—m=100j a m = 3.
Nejmensi soucet
n-+m=100j 4 2m
dostaneme proj = 1 a m = 3, tj. 106.

118. Oznaéme S stfed dané kulové plochy, r jeji polomér a d = |SP|.
Ukézeme, Ze hledanou mnoZinou je kulova plocha se stfedem S a polomérem
|/3r2 — 242.
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Bud Q libovolny bod popsany v tloze a uréeme vzdalenost SQ. Bude se
nam hodit, kdyz si uvédomime, Ze pro bod X a obdélnik TUV W v prostoru
vzdy plati

ITX[? + [VX|? = |UX|* + |[WX]2 Q)
Tuto rovnost snadno dostaneme napf. promitnutim bodu X na piimky
TU, VW. Mlzeme ji ale ovéfit také tak, ze zavedeme soustavu soufadnic,
aby
T= (_1)7 —{q, 0)9 U= (P’ -4, 0)7 V= ([)5 q, O): W= (—P, q, 0)>
X =(x,, 2).

Pak bude

ITX]? = (x+p)°* + O+ @+ 2%

UX|? = (x—p)? + (y + )% + 2%

X = (emp)® sl (p e @) .25,

IWX[E= (x +p)* + (r— @) + 22
a rovnost (1) skutecné plati.

Pouzijeme-li ji na obdélnik PAQ A1 a bod § (obr. 133), dostaneme
SQI2 = |SA[2 + [SAf2 — [SPI2 = r2 4 |SAL|2 — d2.

Obr. 133

Pro obdélnik PBA1C a bod § vyjde
|SA1|2 = |SB|2 + |SC|2 — |SP|%2 = 2r2 — d?,
takze
[SQ|2 = 3r2 — 2d2.
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Bod Q tedy lezi na kulové plose se stfedem S a polomérem ]/3r2—2d2.
Obrécené, zvolme libovolny bod Q na kulové ploSe se stiedem S a polo-
mérem [SQ| = |/3r2 —2d% Je d = |SP| < r, a tedy |SQ| > r, takZe bod P
lezi uvnitf a bod Q vné dané kulové plochy. Kulova plocha #» s primérem
PQ proto protind danou kulovou plochu v kruznici k£ (obr. 134). Zvolme
libovolny bod A4 na kruznici k a body 4, P, Q dopliime na obdélnik 4PA1Q.
Rovina vedend ptimkou PA; kolmo k piimce PA protne kulovou plochu »
v kruZnici k" s pramérem PA1. Podle (1) zjistime, Ze
|SA1)2 = |SP|2 + |SQ|2 — |SA|2 = d? 4 (3r2 —2d2) —r2 =
=2r2 —d? > r?, 2

takze bod A1 lezi vné dané kulové plochy. Odtud plyne, Ze kruZnice k, k’
se protnou ve dvou bodech B, C. Zitejmé AP | BP, AP | CP. Zbyva
ukazat, Ze BP | CP. Dopliime body P, B, A1 na obdélnik PBA1Cy. Pak je
podle (1) a (2)

SCo|? = [SP|? -+ |SA1|2 — [SB|? = d? + (2r2 — d?) —r? = 12,
a tedy bod Cy lezi na dané kulové plose, takze Co = C a PBA1C je obdélnik.

Obr. 134

Ke kazdému bodu Q kulové plochy se stfedem S a polomérem |/3r2— 242
existuji tedy na dané kulové plose se stfedem S a polomérem r body 4, B, C
tak, Ze usecka PQ je télesovou uhlopfickou kvadru uréeného navzajem kol-
mymi hranami PA, PB, PC.
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Pozndmky. Rovinna analogie Ulohy: Je dana kruZnice k se stiedem §
a polomérem r a bod P uvnitf ni. Mnozinou vSech bodit Q roviny takovych,
ze PQ je uhlopfickou obdélniku, jehoZz ostatni dva vrcholy lezi na kruZnici
k, je kruZnice se sttedem S a polomérem ]/21'2—— |[SP|2. Odtud plyne, Ze
vrcholy A1, Bi, Ci kvddru APBC1B1CA1Q lezi na kulové plose se
stiedem S a polomérem |/2r2 — 42.

119. Budeme postupné probirat pfirozena ¢isla a rozhodovat, do které
z podmnozin { (1), f(2), ...}, {g(1), g(2), ...} patii. Zfejmé je pro kazdé
prirozené ¢islo n
g(m) = f(f(m) + 1 > f(fw)) =z f(n),
takZe g(n) je aZ za f(n) a bezprosttfedné za f(f(n)).
Dostavame tedy

1= f(1) = f(A1),

2 =g(1),
3=A2),
4 = f(3) = f(f(2)),
5= g(2),
6 = f(4) = f(f(3)),
= g(3),
8 = f(5),
9 = f(6) = f(f4),
10 = g(4),
atd. az
388 = £(240).

2. feSeni. UvaZzujme mnoZinu prvnich g(n) ptirozenych ¢isel a rozlozme ji
na dveé disjunktni podmnoziny

{L2, ... f(f)), g} = {f(1), D), ... A(fm)} © {g(1), 8D, ..., g(n)}.

Odtud vidime, Ze pro kazdé pfirozené Cislo n plati

gn) = f(n) + n. (M
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Postupné dostiaviame

f) =1,
g)=1+1=2,
f@) =3,
gR2)=3+42==75,
f3) =4, ‘
g =4+43=7,
J@) = o6,

g4 = 6+ 4 =10,
f65) =38,

g(5) = 84 5=13,
f6) =9,

atd. az
£(240) = 388.

3. feSeni. Vyjdeme opé€t ze vztahu (1), ktery tentokrat napiseme ve tvaru
J(fm) = fin) +n—1. 2
Vyjdeme od hodnot f(1) = 1, f(2) = 3 a dale pak dostavame

B =
@) =
16 =
o =
4 =
e =
135) =
1(s56) =
f00) =
f(145) =
f(234) =

§E3—1=14
443—1 =6,
6+4—1=09,
94+ 6—1=14,

14 49 —1 =22,

22 4 14— 1 = 35,
35422 —1 = 56,

56 -+ 35—1 =90,
90 -}- 56 — 1 = 145,
145 + 90 — 1 = 234,
234 4 145 — 1 = 378.

Abychom doplnili zbyvajici ¢leny, uvédomme si, Ze pro ne F =

= {f(D. /@), ...} e

Sin+1) = f(n) + 2

aproneG = {g(l), g2, ...} je

o+ 1) =fm) + 1.
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Je-li totiz n e F, n = f(k), je
fin) +1=ffk) +1=gk)eG.

Nasledujici ¢islo f(n) -I- 2 pak nemtiZe byt také v G, nebot kazdému &islu
z G bezprostiedné ptedchazi Cislo z F, takze f(n) + 2€F. Je-li n e G,
n = g(k), je

Jfin) + 1= flgk)) -+ 1 ¢ G,
tj. f(n) + 1eF.
Vratme se k rovnosti
145 = f(90) = f(f(56)),
ze které plyne
145e¢F, 146 € G, 147 e F.

Dile mame f(145) = 234, f(146) = 234 + 2 = 236, f(147) = 236 4 1 =
= 237, f(148) = 237 - 2 = 239, takZe

234eF, 235G, 236eF, 237cF, 238G, 239¢F.
Konecné

£(234) = 378,

J(235) = 378 4 2 = 380,
£(236) = 380 |- | = 381,
J(237) = 381 |- 2 = 383,
f(238) = 383 4 2 = 385,
J(239) = 385 - 1 = 386,
£(240) = 386 - 2 = 388.

4. feSeni. Postupujeme stejné jako v predeslém feSeni az k rovnosti
J(56) = 90. Protoze 56 € F, je podle piedchozi avahy
f(57) = f(56) + 2 = 92

a podle (2) dale dostavame

f92) = 924 57— 1 = 148,

£(148) = 148 4 92 — 1 = 239,

f(239) = 239 | 148 — 1 = 386.
Protoze 239 € F, je

J(240) = £(239) + 2 = 388.
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5. FeSeni. Sledujeme-li hodnoty posloupnosti {f(n)} a {g(n)}, vidime, ze
rostou pomérné rovnomérné, a to nas vede k domnénce, Ze pro kazdé pii-
rozené n je

Jn) = [ngl, gm) = [ny],
kde ¢, v jsou n&jakda kladna redlna Cisla, kterd nejsou celd.
Plati-li tato domnénka, je podle (1) pro kazdé piirozené n
[ny] = [ng] + n,
neboli

[yl [ng]
T + 1. 3)

Pritom pro kazdé redlné « a prirozené n je

ne.— 1 < [na] < noe,

neboli
1 [nex
6——<— =«
n n
Pro kazdé redlné « je tedy
i)
lim — = «. (4
n—> n

Pfcjdeme-li ve (3) k limité, dostancme pro koeficienty ¢, » podminku

 r=g¢tL 5)

Plati-li nase domnénka, je kazdé pfirozené €islo obsaZzeno pravé jednou

mezi ¢leny dvou posloupnosti {[n¢]}, {[ny]}. Oznacime-li tedy F (resp. Gr)

pocet téch Clentt posloupnosti {[ng]} (resp. {[ny]}), které jsou nejvyse
rovny ¢islu k&, bude pro kazdé pfirozené k platit

Fi + G = k. (6)

[k+ IJ [k-}- 1|
Frp=\——} Ge=y—|
P Yo

[ng] = k

Pfitom

nebot nerovnost
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je ekvivalentni nerovnosti
k+1

@

np <k-+4+1, . n<,

(a analogicky pro y).
Rovnost (6) ma tedy tvar

[A;)lI%[kTHIA

|'k + 1‘] [k + l|
. P Y k
k+1 P TkE1l kTl
a limitnim pfechodem pro k —> oo dostaneme podle (4) dalsi podminku
1 I
; -+ 7 = 1. )
Snadno zjistime, Ze podminkdm (5) a (7) vyhovuje jedina dvojice kladnych
Cisel

neboli

p=c¢ y=c¢-F1,

FUs
kde ¢ =— 2]/

je kladny koten rovnice

e2—e—1=0.
Plati-li tedy nase domnénka, je
f(n) = [nel, gn) = [n(e + 1)]. ®)
Dokéazeme, Ze tyto dvé posloupnosti skute¢né vyhovuji v§em pozadavkiim
tulohy.
Pfedev§im je zfejmé, Ze hodnoty posloupnosti {f{r)} jsou pfirozend Cisla
a ze f(n -+ 1) > f(n) pro kazdé pfirozené n, nebof ¢ > 1, stejné pro g(n).
Pro 7?4dna dv& pfirozend m, n neni f(m) = g(n). Kdyby totiz
[me]l = [n(e + D] =k,
bylo by
k=me<k-+1,
ksn(e+1)<k-+1,
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a protoZe ¢ je iraciondlni, dokonce

k<me<k-+1,
k<n(e+1)<k+1.

e(5+ ) (5 +)
-+ e 1 <m4n<(@k-+1) s—*_e—}—l'

Odtud

ProtoZze, jak vime,
1 1
e+ 1
platilo by pro néjakd tfi pfirozena Cisla k, m, n

k<m-+n<k-+1,

:—:],

a to neni mozZné.

Déle ukaZeme, 7e kazdé prirozené &islo je Elenem nékteré z posloupnosti
{f(m}, {g(n)}. Pro kazdé ptirozené &islo k je totiZ pii stejném znaceni jako
v (6)

k+1 k+1] k+1
— =1 < F; = ! A
€ €
k41 . lk+1J k41
e+1 < Gr= e+ 1

(vpravo je ostra nerovnost opét diky iracionalité Cisla &), takZe
k—1<Fp+Gr <k-+1
{j.
Fr + G = k.
Zbyva dokazat, ze
S(f@m) + 1 =gm
pro kazdé pfirozené n, tj.
[[nele] + 1 = [n(e + 1)].
Vyjdeme z nerovnosti

[ne] < ne < [ne] + 1.
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Po vyndsobeni ¢islem e dostaneme
[nele < ne2 < ([ne] + 1)e < [nele + 2,
ponévadz ¢ < 2. Pfejdeme-li k celym Cdstem, mdme
[[nele] < [ne2] < [(Ine] + De] < [[nele] + 2,
coz muzeme psat jako
SO = gn) = () + D)0 + 2,

nebot 2 = & + 1. Jak uZ vime, posloupnosti {f(n)}, {g(n)} nemaji Zidny
spolecny clen, takze je f(f(n)) < g(m) < /(f(n)) + 2, a vidime, Ze

gy =1(f(n) + 1.

Tim je dukaz hotov.
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Obr. 135
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Vyjadfeni (8) umoziiuje pocitat pohodlné numerické hodnoty posloup-
nosti {f(n)}, {g(n)}. Tak mdme

£(240) = [240¢] = [388,3...] = 388 .

Pozndmka. Posledni feSeni md ndzorny geometricky vyznam: Na Ctve-
reCkovaném papiru zvolme dvé kolmé linky jako osy soufadnic a za jed-
notku délky vezméme stranu ¢tvereCku. Potatkem vedme piimku se smérnici

1+ 5
2
seCikem linek kromé pocatku. Zatneme od pocatku, postupujeme po primce
a prubézné Cislujeme Ctverecky, kterymi primka prochézi (obr. 135). Pak
bude f(n) rovno Cislu levého krajniho oCislovaného ¢tverecku v n-tém fad-
ku a g(n) rovno ¢islu spodniho o€islovaného Ctverecku v n-tém sloupci
(Cislujeme od nuly).

e = . Ta nebude vzhledem k iracionalité & prochédzet Zidnym pri-

120. Stfed tsecky PQ oznaéme S a patu kolmice vedené z bodu § k ra-
meni AB ozname K (obr. 136). Stfed kruznice prochézejici body P, O
a dotykajici se opsané kruznice v bodé T oznaéme O. St¥ed strany BC
oznaéme L. Ziejmé stai dokazat, Ze |SK| = |SL|.

Z podobnych pravouhlych trojuhelniktt AKS ~ APO~ ABT ~ ASP ~ ALB
mame

|SK| |OP|

|4S| |40’
|SL| |PB] |OT| |OP|
|4S| ~ |4P|~ |40| ~ |40)

Obr. 136
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nebot |OT| = |OP|. Je tedy |SK| = |SL| a bod S je sttedem kruZnice vepsané
trojihelniku ABC.

2. feSeni. Oznaéme L stfed strany BC, S stied Gsecky PQ a T bod,v némz
se kruznice prochdzejici body P, O dotyka kruZnice opsané trojihelniku
|AL|
ABC. Stejnolehlost se stfedem A4 a koeficientem L—‘i—ﬂ pfevede trojihelnik
AB'C’ (obr. 137) na trojuhelnik A BC a stted O kruZnice vepsané trojiihelniku
AB'C' na stfed kruZnice vepsané trojihelniku ABC. Z podobnych pravo-
uhlych trojuhelniki APO a ABT s vySkami PS, BL mame

|4S] |AL|
40|~ |AT|
Bod O tedy prejde v bod S a diikaz je hotov.
3. FeSeni. Oznaéme S stfed useCky PQ a L stfed tiseCky BC. Staci ukazat,
Ze pfimka BS je osou thlu ABC (obr. 138). Ve ¢&tyfahelniku PSTB jsou

thly pti protilehlych vrcholech S, B pravé, takZze mu lze opsat kruZnici.
Odtud vidime, Ze

| PBS| = | PTS|,

nebot jde o obvodové uhly pfislu§né témuz oblouku této kruznice. Dile je
1
| PTS| = 5 |x POS|,

nebof jde o obvodovy a stiedovy thel pfislusny témuz oblouku kruznice

Obr. 137 Obr. 138
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prochdzejici body P, O, T. Koneéné z podobnych pravouhlych trojuhelniki
APO a ALB mdme

|¥ POS| = | ¥ ABC|.
Je tedy

1
| PBS| = |x ABC|.

121. Zvolme pfirozené ¢islo n. Je-li
ay < ds < ... <dy,

pak pro kazdé ke {1, 2, ..., n} je ar = k, takze

ka-Zko >

Pokud pro nékteré dva mdexy i<j, i, je{l, 2, ..., n}, je a; > aj, pak

(ai a;) (ai aj) (1 1 ) 5
i2 + Jj2 - j2 + 2] (i — ay) i2 _jz > 0.

n
ar
Vyménime-li tedy mezi sebou Cisla a;, a5, soucet 2 5 zmensi. Konec-
E=1
nym poctem takovych vymén dojdeme od n-tice

ay, az, ..., ap

k n-tici
a, <a,< ...<a,
pricem?
n n , n
=5 = 2=
k2 k2 = k
k=1 k=1 k=1

122. Ptedpoklddejme, ze dokazované tvrzeni neplati, tj. Ze rozdil &isel
dvou ¢lenti z jedné zemé& neni nikdy roven &islu jejich krajana.

ProtoZe 6.329 < 1978, je z nékteré zem& A zapsino aspoii 330 Cleni
pod &isly

ay << ag < ... < as3s0.
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UvaZzujme 329 rozdilt

azzo — di, A330-— d2, ..., 4330 — d4329.
Podle naseho predpokladu to jsou Cisla Clenti z ostatnich péti zemi. ProtoZe
5.65 < 329, je mezi nimi aspoti 66 z jedné zemé B. Jejich pofadova &isla
ozna¢me

by <bs << ... <<bg

a uvazujme 65 rozdili
bee — b1, bgg — bo, ..., bgg — bes.
Tyto rozdily nejsou Cisla ¢lendt z B a nemohou to byt ani ¢isla Clentt z A,
nebot
bes — br = (asso — a;) — (azso — a;) = aj — a.

Jsou to ¢isla Clenti z ostatnich &tyf zemi. ProtoZe 4.16 << 65, je mezi nimi
aspofi 17 z jedné zemé& C a maji &isla

cr<ce<<...<c1v.
Ze 16 c&isel

Ci7 — €1, C17 — €2, ..., C17 — C16

nepatii Zadné ¢lentim ze zemi A, B, C a aspoii 6 jich patfi ¢lenlim ze zemé
D s Cisly

di<ds < ... <ds.
Z 5 Cisel

de—dv, ds—ds, ..., ds —ds
patii aspon tii
e1 < ez <es
¢lentim z dalsi zemé& E. Oba rozdily
fi=es—e1, fa=e3—es
pak patii &lenu z posledni zem& F. Clen s &slem
Sfe—N1

neni tedy obfanem Zddné z uvedenych zemi, a to je spor.

Pozndmka. Touto metodou by se ndm podafilo dokdzat tvrzeni tlohy
i v piipadé, kdy md spole€nost jen 1957 &lent. V obecném piipadé pak
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metoda funguje, ma-li spole€nost alespoii

11 1
M2+ —4+ =+ ... +=)=[kle
21 " 3 k!

< 1
¢lentl (e je zndma konstanta ZF = 2,718...) zk zemi.
=0
Tvrzeni Glohy v8ak plati i v dalSich pfipadech. Tak pro k = 3 plati pro
14 €lent a pro 13 €lent neplati, pro k = 4 plati pro 45 ¢lent a pro 44 &lend
neplati. Pritom je [3'e] = 16, [4!e] = 65.

123. Dany soudet upravime

» o1 1 I
PR R B E e TR ETT I
R I 1
R T B R AR A ETT I E T
o 1
“2(7+T"'““""‘73T§)=
i I ] I
= 1~I»-2‘-I—...—{—m———(l +—2'+...*|-'6‘5—§) =
1 1
= b o b s =
! 1 1 i ( o
:(6_6_0_1_1_3—15)+(6~6—1 _fﬂ)+"'4_ @%'59_0):
1979 1979 1979 1979
~660.1319 " 661.1318 T " T 989.990 ~ 660.661... 1319’

kde k je né&jaké pfirozené &islo. Uvedeme-li jesté€ posledni zlomek na za-
kladni tvar, zdstane v ditateli prvodinitel 1979, ktery tedy dé&li &islo p.

Pozndmka. Stejnym zptisobem bychom dokézali obecnéjsi vysledek: Je-li
s = 3k - 2 prvodislo a
1 1 1 1
By 1gd o b L

q 2 3 2k 2k 1
pak je ¢islo p délitelné islem s.
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124. Nejprve ukaZeme, Ze vSechny hrany téze zakladny maji stejnou barvu.
Kdyby tomu tak nebylo, existovaly by dvé sousedni hrany riiznych barev,
napt. Cervend 4142 a zelend A2A3. Z péti uselek AoB1, AaB2, ..., A2Bs
maji aspoil tfi stejnou barvu - aniZ bychom ztratili na obecnosti, mizeme
predpokladat, Ze Cervenou. Ze tii vrchold, do kterych tyto Cervené Gsecky
vedou, jsou dva sousedni B;, B;. Hrana B;B; je pak zelena (jinak by byl
trojuhelnik 42B;B; jednobarevny). Zelené jsou i Usecky A1B; a A1B; (jinak
by trojuhelniky A1492B;, A142B; byly jednobarevné). Vidime, Ze trojihelnik
A1B;B; by mél viechny strany zelené, a to neni mozZné.

Kdyby byly hrany jedné zdkladny &ervené a druhé zelené, pak by z péti
useek A;B; vychéazejicich z libovolného vrcholu Cervené zdkladny byly
nanejvys dvé zelené (jinak by aspoil dvé koncily v sousednich vrcholech
zelené zdkladny a dostali bychom zeleny trojtihelnik). Z 25 tGselek A;B;
by jich tedy bylo zelenych nanejvys 10. Uvazujeme-li analogicky pro druhou
zakladnu, zjistime, Ze nanejvy$ 10 viseCek A;B; by bylo fervenych, a to neni
mozné.

Pozndmka. Tvrzeni Glohy plati pro libovolny hranol s lichym poctem
vrcholdl podstavy. Pro hranoly se sudym poctem vrcholdl podstavy tvrzeni
neplati.

Jesté obecngji: Ve dvou riiznych rovnobéznych rovinach méjme dva mno-
hotihelniky A142...A2ps+1, B1B2...Bayt1. Viechny strany téchto mnoho-
uhelnikd a viechny tuseCky 4By, ie {1, 2, ..., 2k + 1}, je{l, 2, ...,
2m + 1}, obarvime dv&ma barvami tak, aby nevznikl jednobarevny troj-
thelnik. Pak maji vSechny strany obou mnohotihelnikl tutéZ barvu.

125. Sestrojime-li osy nékolika useéek omezenych dvojicemi odpovida-
jicich si poloh bodl Bi, B2, shledime, Ze se protinaji v bodé P, ktery je
soumérné sdruZzeny s bodem A podle osy spojnice stfedd S, Se kruZnic
k1, k2. DokédZeme, Ze tento bod md pozadovanou vlastnost (obr. 139).

Pro kazdou polohu bodl Bi, Bs je

|% AS1B1| = | & AS2B2|.
Z osové soumérnosti bodt 4, P a S1, S2 plyne

| AS1P| = | & ASqP|.
Je tedy

[<): B1S1P| = H: BzSzPI
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pro kaZdou polohu bodii By, Be. Trojuhelniky B1S1P, PS2Bs jsou shodné,
nebot

|B1S1| = [AS1] = |PS2l, |B2Ss| = |4S2| = |PS4l,

takZe |B1P| = |BaP| pro kazdou polohu bodt Bj, Bz. (Ve ziistava v plat-
nosti i v piipadé, kdy body S1, Bi, P a zaroveil Sz, Bs, P lezi v pfimce.)

Obr. 139

Pozndmka. Pokud by se body pohybovaly v opaénych smyslech, mél by
uvedenou vlastnost bod soumérné sdruZeny s bodem A4 podle stfedu tsecky
ASlsz.

2. ¥eSeni. Sestrojime-li nékolik poloh bodii Bi, B, shleddme, Ze body
Bi, Bs, A’, kde A’ je druhy prisedik kruZnic k1, ko, leZi vzdy v pfimce.
Tuto vlastnost bodit By, By si nejprve dokdZeme a pak ji vyuZijeme k feSeni
tulohy.

Obr. 140
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Vedme bodem A’ pfimku, ktera neprochazi bodem A4, a jeji dalsi spole¢ny
bod s kruznici k1, resp. kg, oznaéme A1, resp. Az. Oddéluje-li bod A’ body
A1, As (obr. 140), plati pro obvodové thly

| X AA'A1| + | X AA'A9| = 180°,
takze pfislusné stfedové uhly maji soudet 360°, odkud vyplyva
| ¥ AS141] = | X AS243|.
Neoddéluje-li bod 4" body A1, A (obr. 141), plati pro obvodové Ghly
| ¥ AA'A1]| = | ¥ AA'A2|,
a tedy i pro stfedové thly
| X AS141] = | X AS242].

Obr. 141

V obou piipadech souhlasi i orientace a priseciky 41, A3 jsou tedy jednou
z poloh bod Bi, Bo. :

Vezméme nyni pfimku prochazejici bodem A’ a neprochézejici bodem A
a jeji dalsi spoleéné body s kruznicemi k1, k2 oznatme Bj, Bs (obr. 142).
Ukdzeme, Ze osa usecky BiBg prochazi bodem P soumérné sdruZenym
s bodem A’ podle stiedu usecky S1S2. Promitnéme body Si, Ss, P kolmo
na pfimku B1Bj, dostaneme tak body S}, S,, P". Vzhledem ke stiedové
soumérnosti je |S;4'| = |S,P], |S,4| = |S{P|. Oddé&luje-li bod A’ bo-
dy B1, Bz (obr. 142), mame

|BoP| = 1B,S]| + 1S;P| = 1BySy| + [S{d| = 5 (1Bad | + B ) =

1
> |B1Bs].
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Obr. 142

1 v piipadé, kdy bod A" neoddéluje body B, Bs, dokaZzeme analogicky Ze
bod P’ puli tiseCku B1Bgz, a tim je diikaz proveden.

126. Z trojuhelnikové nerovnosti plyne, Ze pro R = P uvazovany podil
nejveétsi neni. Budeme piedpokladat, Ze R = P, a vnitini uhly v trojuhel-
niku POR oznalime o = |& QPR|, = |% PQR|, y = |< PRQ|. Podle
sinové véty je

|PQ| + |PR| siny 4 sinf  sin(e + ) + sin f

|OR| o sin « sin «
. ¢4 o
2 sin (ﬂ + —2—) cos -
- sin « ’

Ze v8ech trojuhelnik® s tymZ thlem « ma tedy uvaZovany podil nejvétsi

o
hodnotu pro trojihelnik, v némz f + " 90° tj. =7y, ato

[v4 o
2 cos —2— 2 cos D} :
sinoe o « A
2 sin > cos 5 sin >

Odtud vidime, Ze ze viech trojihelnikét POR md uvaZovany podil nejvetsi
hodnotu pro rovnoramenny trojuhelnik s co nejmensim thlem pfi hlavnim
vrcholu P. Nejmensi moznd hodnota tohoto thlu je odchylka p¥imky PQ
od roviny 7.
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Je-li PQ | &, vyhovuji pravé ty body R roviny z, které lezi na kruZnici
se sttedem P a polomérem |PQ|. Neni-li PQ | =, vyhovuje jediny bod R
roviny s, ktery lezi na pravothlém primétu poloptimky PQ do roviny 7
ve vzdalenosti |PQ| od bodu P.

2. feSeni. V trojuhelniku PQR ozna¢me ]PQ[ =1, |[PR| = X, | % QPR| =
= «. Podle kosinové véty je

|PQ| + |PR| x4r
|OR| ]/Jx2 42— 2xrcos o

()

Pfi pevném x bude tedy uvaZovany pomér ncjvetsi pii nejmensim
mozném «, tj. v pfipadé, kdy « je odchylka pfimky PQ od roviny z. Pred-
pokladejme tedy nadale, Ze tomu tak je a Ze rovina PQR je kolma k roving 7.

PohodInéji nez s vyrazem (1) se nam bude pracovat s jeho ¢tvercem

(x+r)?
X% 4 r2—2xr cos &

) = @

Abychom nasli jeho maximum, vypo¢teme derivaci
2r(l -+ cos a) (r2 — x2)
(x2 - 12— 2xr cos )2’

o=

Vidime, Ze pro x = rjef'(x) = 0, prox € (0, r)jef'(x) > Oaproxe (r, -+ )
je f'(x) < 0. Funkce f(x) tedy nabyvd maxima pro x = r.

Je-li PQ | m, vyhovuji pravé ty body roviny 7, které leZi na kruZznici se
stftedem P a polomérem |PQ|. Neni-li PQ | n, vyhovuje jediny bod R,
ktery lezi na pravouhlém primétu poloptimky PQ do roviny 7 ve vzdale-
nosti |PQ| od bodu P.

127. Existuji-li nezaporna Cisla x1, x2, X3, X4, X5 a realné cCislo b tak, ze
5 5

5
> kxg=0>b, > k3xp= b2 3 kSxy= b3,
k=1

k=1 k=1
plati pro né

bzzkxk—2b2k3xk+2k5xk—b3—2b3 4+ b3 = 0.

k=1 k=1
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Upravime-li levou stranu, dostaneme
S kr(b? — 20k + kY = S kxg(b — B2 = 0.
k=1 k=1

V prostiednim vyrazu jsou viechny séitance nezaporné a jsou tedy vSechny
nulové. Jedna moznost je x1 = xg = xg = x4 = x5 = 0, z prvni podminky
pak mame b = 0.

Je-li xg 40, je b = k2 a pro j +# k je pak b =~ 2, a tedy x5 = 0, takZe
xr = k. Pro Cislo b mame tedy Sest moznosti: 0, 1, 4, 9, 16, 25 a tém odpo-
vidaji nasledujici pétice (x1, X2, X3, X4, X5):

0, 0,0,0,0), (1,0, 0,0, 0),
©,2,0,0,0), 0,0, 3,0,0),
0, 0,0, 4,0), 0, 0,0,0, 5).

Snadno ovefime, Ze vSechny moznosti vyhovuji.

2. fefeni. Pro zjednoduseni poloZme yg = kxy, pro nezdpornd cisla yg
tak dostaneme soustavu
yi+yetystya-ys= b,
yi+4yz -+ 9y + 16y4 + 25p5 = b?, M
v1 4 16ps -+ 8lyg ++ 256y4 + 625y5 = b3,
Vylouc¢enim neznamych yy, ye z uvedenych tfi rovnic mame
40y3 -I- 180y4 + 504ys = b(b — 1) (b — 4).
ProtoZze hledame nezaporna feSeni yr, musi pro b platit
bb—1)(b—4) = 0. (2)
Podobné¢ dostaneme vylouCenim dvojic neznamych ya, ys; ys, ya; ya. Vs
a s, y1 ze soustavy (1) pro b dalsi nerovnice
bb—4)(b—9) = 0,
b(b—9)(h—16) = 0,
b(b—16) (b —25) = 0, 3)
—b(b—25bB—1)=0.
Soustava nerovnic (2), (3) ma feSeni b € {0, 1, 4, 9, 16, 25}.
Pro b = 0 jsou ziejmé feSenim soustavy (1) Cisla y; =0 (1 £i £9),
aje-li b =k2 (1 £k £5), snadno zjistime, Ze soustavé (1) vyhovuji ne-
zaporna Cisla yp = k2, y; = 0 pro i # k.



128 (250)

128. Ocislujme vrcholy 4, B, ..., H Cisly 0, 1, ..., 7. P#i své cesté pro-
chazi klokan stfidavé vrcholy se sudym a lichym &islem. Pocet skokt jeho
cesty ma stejnou paritu jako vrchol, na kterém skoncil. Do vrcholu E s ¢islem
4 se tedy miize dostat jen sudym poctem skoki, takZe asr—1 = 0 pro kazdé
prirozené k.

Oznacme by pocet viech cest z C do E sloZenych z praveé k skokt. Pocet
vsech k-skokovych cest z G do E je ziejmé také by. Pro kazdé ptirozené n
plati

Aony2 = 2a2n + bon. (N

Prvnimi dvéma skoky se totiz klokan dostane bud zpét do 4 (dv€ moZnosti),
nebo do C, nebo do G. Dile je

bany2 = 2ban + aza. 2

Z bodu C (resp. G) je totiz mozno dvéma skoky se bud vratit do C (resp. G),

a to dvéma zplisoby, nebo dospét do 4 (do E jesté klokan nemtze). Do-
sadime-1i do (2) za ban+2 a bay podle (1), dostaneme rekurenci

aonta = 4aomiz — 2azp. 3)

Snadno zjistime, Ze az = 0, aq = 2, a podle (3) miZeme postupné uréit
dalsi ¢leny posloupnosti {aaz}.
Zkontrolujeme jesté, shoduji-li se ¢leny této posloupnosti s posloupnosti

1
e — k-1 _ k=1
Aop = V_Z (x yh-1),

kde x = 2 |/2_, y=2— VE Mdme

1 1

12 12

1 1 =
—_— — “'__ :_—:,2/ —
Ay = 1/2 (\ y) VZ l2 2,

1
4 Aonys— 2 Agn = s (dxn — dyn — 2xn=1 4 2yn-1) —
I

12

|
(x"-1(4x _— 2) —-}’”"1(4)’ . 2)) — ]—/Z— (xn 1 yni-l)’
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nebot

4y —2 = x2, 4y — 2 = y2,
Je tedy

4 Aonyo— 2 A2n = A2nya

a diikaz je hotov.

Pozndmka. Rekurentni rovnici
e — Aupi1 + 2uy =0
vyhovuji pravé ty posloupnosti {ur}, pro které je
up = Cixi=1 4 Coxk=1 4
kde Cy, Cs jsou libovolna redlna ¢isla a xy, xg jsou kofeny kvadratické rov-
nice
x?—4x 2 =0.

V nasi aloze jsme jesté meli predepsany prvni dva Cleny u; = 0, ug = 2.
Po dosazeni do (4) dostaneme dv¢ rovnice o dvou neznamych Ci, Co,
které¢ maji feseni Cp = _l/—? Co = —ﬁ. (Srov. 4. feSeni Glohy 95).

129. Ozna¢me a, b, c strany trojihelniku ABC a x, y, z délky useéek PD,
PE, PF (obr. 143). Ziejme je

ax + by -+ cz = 258,

kde S je obsah trojihelniku ABC.

Plati tedy

a b ¢ a b ¢
(—“ =4 —=)2S=\—4+—+ -—) (ax 4+ by -+ cz) =
v z X ¥y z

X

Obr. 143
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=a% 4 b2+ % + ab (l o _y_) + be (l + _Z—) +ea (—Z + —l) =
5 x

X z y
= a? - b2+ ¢ - 2(ab + be - ca) = (a + b | ¢)*.

Pouzili jsme zde nerovinost

ktera plati pro libovolna kladna &isla u, v a v niZz nastane rovnost, pravé
kdyz u = v. Je tedy
(@4 b+ c)?

25

c
4

v

s rovnosti, pravé kdyZ x = y = z.

Odtud plyne, Ze dany soucet je nejmensi, pravé kdyz bod P je stfedem
kruZnice vepsané trojuhelniku ABC.

2. feSeni. Jsou-li &, f3, y vnitini thly trojuhelniku 4ABC, oznadme o' =
= |¥ PAB|, (" = |x PBC|, " = |x PCA| (obr. 144). Pro vySetfovany
soucet pak plati

|BC| |CA|l |4B] |BD| + |DC| =~ |CE| + |EA| | |AF| - |FB|

|PD| + |PE]| + |PF| —  |PD| + |PE]| v |PF|

= cotg ' -} cotg (y — »') - cotg y’ 4 cotg (« — ") +
- cotg o’ + cotg (f — ).

Pfitom je

sin o

Coig o o Cotgil—a) = mE (o —a')

Obr. 144
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a podle nerovnosti 4uy < (u + v)? je
sin o’ -+ sin (o0 — o) )2

sin o’ sin (0 — o) < (

2
Lt 20 —a .
= sin? —- ¢0s8? —;—— = sin?
2 2 = 2’
takze
Sin o o
cotga' 4 cotg (o —a') = ——— = 2 cotg-z—
o
N2 —
sin®
s rovnosti, pravé kdyz o’ = 5

Odtud vidime, Ze dany soudet je nejmensi, pravé kdyz bod P leZi na oséch
vnitfnich Ghla trojuhelniku 4 BC, tj. pravé kdyz bod P je stfedem kruZnice
vepsané trojuhelniku ABC.

130. Polet viech r-prvkovych podmnoZin mnoziny {1, 2, ..., n} je (';)

Proke{l,2, ...,n—r + 1} polet téch r-prvkovych podmnoZin, jejichZ
nejmensi prvek je Cislo &, se rovnd poétu (r — 1)-prvkovych podmnoZin

s 5183, 1 ()

Je tedy
n—r+1
D=2 (20
r] r—1
k=1
a
n—r-1
1 n—k
F(n,r)»—:-(-;} Z K\, —1)-
E=1
r

PouZijeme-li znamého vztahu pro kombinaéni ¢isla

(=)0,
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dostaneme
n—r+1

n—k n—k - 1 n—=k .
>+ Zh) - Zk[ (T -
k=1 k=1

(n-—-k)_ﬁ n-1
) \r+1)
k=0

Je tedy

n -1

(r + 1) n -1
n\  r+ 1
("

2. fefeni. Pro 1 £ k < m ozname S(m, k) soulet nejmensich prvkd viech
k-prvkovych podmnoZin mnoZiny {1, 2, ..., m}. ProtoZe viechny k-prvko-
vé podmnoziny mnoZiny {1, 2, ..., m + 1} se rozpadaji na dv& disjunktni
skupiny podle toho, zda obsahuji, ¢i neobsahuji &islo m -- 1, je pro
ke{2,3,...,m}

Fn, r)y=

S(m + 1, k) = S(m, k — 1) + S(m, k). 0]
Pro libovolné m ptirozené zfejmé plati
_(m+1 . (m41
Sm, 1)=1+4+24 ...+ m= ( ) ), S(m, m)=1= (m T ]).

Cisla S(n, r) tvori tedy &st Pascalova trojihelniku
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n-1

(r - 1) n--1
n o U
#

3. feSeni. Oznaéme R mnozinu viech r-prvkovych podmnozZin mnoziny
{1, 2, ..., n}. Jsou-li prvky r-tice {ai, as, ..., a;} € R uspotdddny podle

Odtud pak dostaneme

F(n, r) =

velikosti a1 < az < ... << a,, uvazme zobrazeni f: R — R, které takové
r-tici prifadi r-tici {az —a1, a3—a1, ..., ¢;—ai, n+1—a}eR.
Ziejmé ado — a1 < a3—a1 < ... < ap—ay <n -1 —aj.

Oznalime-li f; k-ndsobné sloZené zobrazeni f, plati

fo({ay, az, ..., ar}) =

= {as—as, as—as, ...,ar—az, n+ 1 —as, n-+1-+ar—as},

fe({ay, az, ..., a}) =

={ars1—ax, ary2—ax, ..., Gr—ax, n + l—ay, ..., n + 1 -+ ap-1—ar},

....................

fillay, as, ..., ar}) =
={n+l—a,n+1+a—an...,n+1+aa1—al

frai({ay, az, ..., ar})) = {a1, as, ..., ar}.

Zobrazeni f tedy rozdéli mnozinu R do nékolika disjunktnich podmnoZin:
je-li A = {ay, as, ..., a;} € R, budou do stejné podmnoziny patfit r-tice

A, f(A), foA), ..., f(A).

Pritom se jednotlivé r-tice mohou opakovat, v tom ptipadé se vSak opakuji
vSechny stejné Casto.
Aritmeticky primér nejmensich prvki r-tic

A’f(A)’fZ(A)’ .. ’f;(A)
je
a+a—ar+ ... +a—ar-1-+n+1—ar _n+1
r+1 T4
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je tedy aritmeticky primér nejmensich prvkt viech r-prvkovych podmnozin
mnoziny {1, 2, ..., n} také
n-+41
r4 1

Pozndmka. Pro soucet nejvétsich &isel r-prvkovych podmnozZin mnoziny
{1, 2, ..., n} plati

F(n, r) =

"= n—k
z (n+1—k) (,._ ]) =
7I:~:r1+1 n—r+1
S 3 ()= S) -
k=1 k=1

—(+ 1) (:) — F(n,r) (';)

takZe aritmetickym primérem nejvétSich &isel uvedenych podmnoZin je
n -1
r 1
Obecné proje {1, 2, ..., r} je aritmeticky pramér j-tych prvki r-prvkovych
podmnoZin mnoZiny {1, 2, ..., n} uspofadanych podle velikosti roven
n+1
J r+ 1

131. Pro kazdou dvojici ptirozenych &isel (n, m), kterd je feSenim rovnice
(n%2 —mn—m?)2 = 1, )
je n = m, nebol
—1 = n?2—mn—m? < n?—m?= (n-4 m)@m—m).

Pritom (k, k) je YeSenim rovnice (1) jen pro k = 1.

Je-li (n, m) ¥eSenim rovnice (1) a n > m, pak

Mm% — n—mym — (n — m)2)%2 = (m + nm —n?)? =1,

takZze (m, n — m) je také feSenim. Vyjdeme-li tedy od libovolného feSeni
(no, myo), dostaneme posloupnost feSeni (nz, my), kde

ng = Mg—1, Mg = Ap-1— M—1,
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ptiemz
no> My=™ny>mp=—=Hg>....

Je tedy kazda takova posloupnost koneéna, tj.existuje k, pro néZ ny =my = 1.

Obricend, z dvojice (1, 1) dostaneme opakovanym uZitim zobrazeni

(n, m) » (n -+ m, n)

kazdé feseni rovnice (1).

V posloupnosti feseni uvedené rovnice

LD, 2,1, (3,2), (53), 8,5, (13,8), ...

najdeme jako Sestndcty &len dvojici (n, m) = (1 597, 987), pro kterou je
n <1981, ale n+ m > 1981, takZe nejvétsi hodnotou souétu m?2 - n?
za danych podminek je &islo 15972 - 9872,

Pozndmka. Posloupnost {uy}, kterd splituje rekurentni vztah
Uk+1 = Ug + Ug—1, uo = u1 = 1,
se nazyva Fibonacciova. Jak jsme zjistili, dvojice jejich &lenl (w1, uk)
jsou pravé viechna prirozena feseni (n, m) rovnice

(n2—nm—m2)? = 1.

132. Pro n = 3 takova posloupnost neexistuje. Jsou-li m —2, m— 1,
m tii za sebou jdouci éisla, muselo by &islo m délit soudin (m — 1) (m — 2).
Cisla m, m — 1 jsou vSak nesoudélni a m nemiZe délit &islo m — 2 < m.

Jsou-li m — 3, m — 2, m — 1, m &tyti za sebou jdouci &isla s danou vlast-
nosti, je

m|(m—2)(m—3),
nebot m a m — 1 jsou nesoudélnd. Z rozkladu
m—2)y(m—3)=m(m—35) -+ 6

plyne, Ze m | 6, a protoZe m = 4, musi byt m = 6. Pro n = 4 existuje tedy
pravé jedna takova posloupnost. UkaZeme, Ze pro n = 5 existuji aspoii dvé
takové posloupnosti.

m
Jellim=m—1)(n--2), k = EY pak n-tice

m—n-+1,...,m—1, m,
k—n+1, .., k—1,k
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vyhovuji dané podmince. Je m > k > n— 1 a mezi n — 1 za sebou jdouci-
mi pfirozenymi &isly m —n + 1, ..., m— 1, resp. k—n -+ 1, ..., k—1,
existuje Cislo délitelné n — 1 a &islo délitelné n — 2. ProtoZe &isla n— 1,
n—2 jsou nesoudélna, je nejmensi spoleény ndsobek &isel m—n + 1,
..., m— 1, resp. Cisel k —n + 1, ..., k— 1, délitelny dislem

m
m=m—1)(n—2)atimspi§i &islem k = o

2. YeSeni. UvaZujme n po sobé jdoucich &isel
a—n-+1,...,a—1,a (D
a necht
a=pipy - by
je rozklad Cisla @ na prvoéinitele (p1 < p2 < ... < py).
Déli-1i éislo a nejmensi spoledny ndsobek predchdzejicich n — 1 &isel, pak
ke kazdému je {1, 2, ..., r} existuje me {1, 2, ..., n— 1} takové, Ze

pla—m.
Je tedy
PP m,
a proto
pY £ n—1 prokazdé je{l,2, ...,r}. (2)

Obrécené, plati-li (2), je mezi kazdymi n — 1 po sobé jdoucimi pfiroze-
nymi Cisly nékteré délitelné Cislem pf, takZe Cislo a pak d€li nejmensi spo-
leény ndsobek libovolnych n — 1 po sobé nasledujicich Cisel. Vidime, Ze
podminka (2) doplnénd podminkou @ = n je ekvivalentni podmince Ulohy.

NemiiZze byt r = 1, ponévadZ pak by bylo

nsa=pi'<n—1L
Jetedyr=2an—1=pa=3,tj. n=4. .

Pro n = 4 méame jedinou mozZnost p{* = 2, p§* = 3, a = 6 a dostdvame
jedinou &tvefici 3, 4, 5, 6.

Pro n = 5 mdme pravé dvé mozZnosti: p{' = 2, p3* = 3,a =6 a p{* = 4,
3= 3, a = 12, dostdvame tak pravé dvé pétice 2, 3,4, 5,6a 8,9, 10, 11, 12.

Pro n = 6 ureme pfirozena &isla s, ¢, u tak, aby

25 < p—1 <281,



(259) 133, 134

3 <n—1< 3,
St <n—1 < Sutl,

Pak dostaneme alespoii Sest n-tic pro a € {253t, 2554, 3t5u, 2s3t5u, 2s-15u,
2s-13t5u}, kdy je zfejmé a = n.
Uloha ma4 feSeni pro kazdé n = 4, jediné fefeni jen pro n = 4.

133. Oznalme S4, SB, S¢ stiedy tfi shodnych kruznic lezicich uvnit¥
trojihelniku ABC, z nichz kazda se dotyka jiné dvojice jeho stran (obr. 145).
Pak je S4Ss||AB, SBSc||BC a Sc¢S4||CA. Ptimky AS4, BSp, CSc¢ pro-
chézeji stiedem V¥ kruznice vepsané trojuhelniku ABC, bod V je tedy
zaroveri stfedem stejnolehlosti, kterd prevadi trojuhelnik S4SBSc¢ na
trojuhelnik ABC.

Existuje-li navic spole¢ny bod O uvazovanych tii kruZnic, je zdroveil
sttedem kruZnice opsané trojuhelniku S4SpSc a popsand stejnolehlost
ho zobrazi na stfed kruZnice opsané trojuhelniku ABC, ktery tudiz lezi
na piimce VO.

Obr. 145

134. Dosazenim x = 0 do uvedenych vztahti dostaneme pro libovolné
yz0

J(1,0)=f0, 1) = 2,
f(]’ Y+ 1) =:f(0,f(1, y)) :f(l’ V) + 1,
takze
S y)y=y+2
Analogicky mame
f2,0) = f(1,1) =3,
S,y + D) =112, ) =2 +2,
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takze
f2,9)=2+3,
déle
fB,0)=/2,1) =5,
fG,y+ 1) =12,f3,») =213, y) + 3,
takze

fG,y) =205+ QU1+ 20-2 .. 4 20).3 =203 3,
a koneéné

f4,0)=f3,1) =24 —3,
f@, y + 1) = f3, f(4, y)) = 2/ 4)+3 3,

Oznadime-li
g0) =f4, ») + 3,

je zfejmé
2

g(0) = 24 = 22
a

gy + 1) =2w,
takZe

-.2
y
g(y) = 2* (v + 3 dvojek).

Méme tedy

2

74, 1981) = g(1981) —3 =22 — 3 (1984 dvojek).

135. Podle posledni podminky je pro kazda dv& pfirozend &isla m, n
fim) + f(n) < fim + n) < fm) + f(n) + 1. (D
Protoze
S + ) = f(2) =0,
je také f(1) = 0. Podobné
0 </(3) S ) +/2) +1=1
dava f(3) = 1. Ze vztahu (1) déle plyne, Ze pro libovolné pfirozené n plati
fGn+3) 2 f0n) + 1,
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odkud dostaneme nerovnost

f(@n) = n.

Ptitom kdyby pro né&jaké no platilo f(3no) > no, bylo by jiZ pro viechna
n=ny

f(Bn) > n.

ProtoZe (9 999) = 3 333, plati pro viechna n < 3 333 rovnost f(3n) = n.
Je tedy podle (1)

1982 = f(3.1982) = f(2.1982) + f(1982) = 3 £(1982)
a odtud

1982 1980
661 > 3 = f(1982) = f(1980) + f(2) = = 660,

3
takze

£(1982) = 660.

2. FeSeni. Stejnd jako v predeslém feSeni zjistime, Ze f(1) = 0. Polo-
Zime-li v (1) m = 1, dostaneme pro kazdé pfirozené n

fln) = fin+ 1) = f(m) + 1. ()
Nerovnost (1) miiZeme zobecnit:
Pro k = 2 pfirozenych Cisel my, . . ., mg plati
fm)+ ... +fmp) Sfm+ ... +mp) fm)+ ... +fme) +k—1

jak snadno dokdZete matematickou indukci.
Pro m; = ... = mi = nodtud dostaneme

k fn) £ ftkn) < kf(n) + k — 1,

takze

k
f( n)]. 3)

f(n)=[ =
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Vyjdeme od zndmé hodnoty f(9 999) = 3 333 a vypocteme podle (3)

1O 910)]

f(1982) = [-—5———

Podle (1) mdme odhad :
3332 —f(89) = f(9910) < 3333 —£(89),
a pouZzijeme-li rovnosti

' f(90)] [ 1O 999)]
T A BERTTI

£(88) £19.999)
[T] =/ =[ 909 ]23’

dostaneme podle (2)
29 = f(90) — 1 < f(89) = f(88) + 1 < 33,

takze
3300 < f(9910) < 3304.

£(1982) = [&52@] = 660

136. Ozname o; osu uhlu p¥i vrcholu A; trojuhelniku A14243 (obr. 146).
Pfi osové soumérnosti podle osy o1 zfejmé usetka S17s piejde v tseCku
T1T2, ta zas pfi osové soumérnosti podle osy oz pfejde v usecku 7'3So.
Je tedy |T3S1| = |T3S2|, a proto S1Ss||4241. Analogicky dostaneme také

Proto

Obr. 146
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Obr. 147

SzS3]|A3A2, S3S1HA 143 (obr. 147). Protoze trojﬁhelm’ky S1SoS3a M {MoMs
jsou podobné, existuje bud stejnolehlost nebo posunuti, které prevddi
trojuhelnik S1S2S3 na trojihelnik M1MoMs. Nemize viak jit o posunuti,
protoZe kruZnice opsand trojuhelniku $1S2S3 je zdroveil vepsina troj-
thelniku 414243, takZe je mensi neZ kruZnice opsand trojihelniku M1 M M.
Kazd4 jind kruZnice, kterd ma spoleény bod s kaZdou z stran trojihelni-
ku, m4 totiZ vétsi polomér nez kruZnice vepsand. (Vedeme-li rovnob&zky
se stranami trojihelniku stfedem ¥ kruZnice vepsané (obr. 148), hned
vidime, Ze kazdy bod P % V ma alespoii od jedné ze stran vzdalenost
veétsi neZ polomér vepsané kruznice.) Pfimky M1S1, M2Ss, M3Ss pro-
chézeji tedy stfedem uvedené stejnolehlosti.

fAI 2

Obr. 148

Pozndmky. KruZnice opsand trojuhelniku Mi1MoM3 se nazyva kruZnici
deviti bodii, protoZe kromé stfedli stran obsahuje jeité paty jednotlivych
vysek trojihelniku 414243 a stfedy spojnic jednotlivych vrchold s orto-
centrem trojihelniku A14243. Podle Feuerbachovy véty se tato kruZnice
dotyka kruZnice vepsané. Tento bod dotyku je tedy stfedem uvedené
stejnolehlosti.
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Z feSeni je ziejmé, Ze staci pfedpokladat, Ze trojiihelnik 414243 neni
rovnostranny.

R
KruZnice opsana trojihelniku MiMsM3 ma polomér —, kde R je po-
lomér kruznice opsané trojuhelniku A;4243. KruZnice opsand trojihel-

niku S1S82S3 je vepsana trojuhelniku 414243, ozname jeji polomér r.

R
Dokazali jsme, Ze > > r. To plyne také z pozndmky v feSeni Glohy 25.

137. Necht posloupnost {x,} spliiuje podminky ulohy. Oznalme

n n
2
Xg—1
Sn = T On= X
XK
k=1 k=0

Podle Cauchyovy nerovnosti pro kazdé ptirozené n = 1 plati
n n n 2

PR PR 0

k=1 k=1 k=1

¢ili
N
Su(on — X0) 2 0, _y,
a protoZe oy — X9 = g, — 1 > 0, je

2
Op—1

)

Sn = .
op— 1

Je-li posloupnost {a,} ncomezend, je posloupnost {s,} také neomezend,
nebot
op—1 = op — Xy = 0On-1,
tj.
Sn 2 Onp—1.
Je-li naopak posloupnost {0} omezend, pak protoZe je rostouci, existuje
o = lim oy,.

Nn—> 0

Protoze ¢ > 1, z nerovnosti (2) tak dostaneme
0’2

lim sy, =

n—>

>
1=4.



(265) 137

Odtud plyne tvrzeni a) alohy.
ProtoZe v nerovnosti (1) nastane rovnost pro kazdé ptirozené n, pravé
kdyz je pro kazdé ptirozené k a néjaké nezaporné A
2
Xx—1 . ry
—— = Xk, tj.xp-1=|Axg,
XK
P
— 1
muaZe byt jedin posloupnost x, = 277, ktera jak sc snadno pfesvédc¢ime,
vyhovuje.

a protoze P = 4 jen pro o = 2, plyne odtud, Zc feSenim Casti b)

2. ¥eSeni. Necht posloupnost {x,] spliiuje podminky Glohy. Zfejm& pro
kazd¢ ptirozené k plati
(xk——l - 2xk‘)2 g 07

neboli
2
o
2 4(xp-1— Xk),
Xk
takze pro kazdé ptirozené n
5] D) DA
o XY N1 ,
s el .‘]"_ 24.\‘0'—.\4" ::41—.\‘71,
w e Py ( ) = 4( )
s rovnosti, pravé kdyZ x¢ = 2x1= ... = 2%x,. Posloupnost {xn} je

omezenda a nerostouci, takZe existuje

lim x,, = a.
n—>

[s) 5
X

E k=l ooy
X

k=1

s rovnosti pravé jen pro posloupnost x, = 27,
Je-lia >0, je

Pokud a = 0, je

9 (lim xn_l)z )
. Xn—l n—> 00 a
lim = : = — =,
nowo  Xn lim xy, a
n—> 0
takZe mame dokonce
w

©

X1
= 4 0o.
2

k=1

(3
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V obou pfipadech dostivame tvrzeni a) tlohy.

v xn— 1
Protoze
Xn

> 0, musi pro posloupnost {x,} s vlastnosti b) platit

@0
2
z Xi—1
Xk
k=1

Tato rovnost je splnéna, jak jiz vime, pro jedinou posloupnost x, = 2-7.

3. FeSeni. Necht posloupnost {x,} spliiuje podminky tGlohy. PoloZme pro
pfirozené Cislo k

XE—1
ag = >
Xk
ziejmé ay = 1. ProtoZe xo = 1, je
2 2 2
x5 Xy Xo_q an
Sw=__"+_—"+4+ ...+ = a1 - F"—+"—+---+—'—'—'——‘=
X1 X2 Xn aias aias. . .dy—1

o+ 5 ))

— A —
(ax — /4)? 2 0 neboli ay -+ . > 2)/4,
k

1 1
=al-l—"“(az +-(a3+---+
ax as

an-2

PouzZijeme-li nerovnosti

ktera plati pro kazdé 4 = 0, dostaneme

/ 1 1 an
Sné2ya2+—(a3+---+ (an—l"r‘ ))%
as an—2 An—1
Lz2 2]/ 2]/(1,,1»[ >7]/2]/ 2an 2
/ an-1
2]/ 2|/ 12

N e e e e e

n—I1

v

v

Posloupnost {b,} definovana rekurentné vztahy bg = 2, bpy1 = 2]/5; je
omezena a rostouci, nebof 4 > b = 2]/2 > 2 =bg,ajelid > b, > by-1,
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je také 4 > 2)/by > 2)/bu-1 = bu, neboli 4 > bys1 > bu. Pro jeji limitu b
plati

b=2|b, tj. b=4.
Odtud plyne tvrzeni a) Glohy. Podmince b) vyhovuje, jak jiz vime, posloup-
nost x, = 27",

4. feSeni. UvaZujme vSechny posloupnosti xo = x3 = ... kladnych disel

a oznaéme pro xo > 0
e
2
. X1
S(xo0) = inf E =
Xk
k=1

infimum pfes viechny takové posloupnosti {x,} s prvnim &lenem xo. Zfejmé
S(x0)Z x0>0a

a
fla) = —b-f(b)

pro kazda dvé Cisla a, b > 0. Je tedy

.2
()= inf i+z)‘k“‘ -

8

1znznz.. \¥1 & X%
I - 0 3)
= inf (-—- + f(xl)) = inf (— + xlf(l)).
o e (0,1 X1 o e 0,1y X1

|
Funkce ¢(x) = > -+ xf (1) je v intervalu (0, 1) spojita a pro x blizka
nule nabyva velkych hodnot. Infima tedy nabyva v n&akém bodé& g € (0, 1),
pro ktery podle (3) plati
1 1
f1) = T +qf (1), cili A1 —q) = r
Vidime, Ze ¢ % 1 a

|
1) =——— = 4.
Odtud plyne tvrzeni tlohy, pfi¢emZ rovnost nastane pravé pro posloupnost
Xp == 277,

138. Levou stranu rovnice mizeme prepsat takto:
X3 —3xy? 4 y3 = (y — x)3 — 3(y — x)x2 — x3. )
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Je-li dvojice (x, y) feSenim dané rovnice pro néjaké pfirozené n, pak je
feSenim i dvojice (y — x, —x) a také dvojice (—x — (y —x), x — ) =
= (—y, x — »). Dvojice feseni (x, ), (y — x, —x), (—y, x — ) jsou viechny
riizné, protoZe jinak by platilo x = y = 0, (0, 0) vSak neni feSenim pro
n #0.

Abychom dokazali, Ze rovnice

x3 —3xy2 4 p3 = 2891 =9.321 4 2
nema celoCiselna feSeni, staci ukazat, Ze leva strana neda pro Zadné x, y
pfi déleni deviti zbytek 2. Kdyby davala leva strana pfi déleni deviti pro x, y
zbytek 2, da stejny zbytek i pfi déleni tfemi. Podle Fermatovy véty je a3 = a
(mod 3) pro kazdé celé a, takZe
x3—3xy% + y3 = x +y (mod 3),
mélo by tedy byt
x -+ y=2 (mod 3).

Nejprve vysetfime pfipad x == 0, y = 2 (mod 3). Pro x = 35, y = 3t — 1
mame
x3—3xp2 p3 = 2753 — 953t —1)2 - 27¢3—=27¢2 + 9t — 1 = —1 (mod 9).
Pfipad x = 2, y = 0 (mod 3) nemusime uvaZovat diky symetrii (pro xy = 0
(mod 3) je totiz —3xy2 = 0 (mod 9)). Pfipad x = y = 1 (mod 3) se pievede
na predchazejici diky rovnosti (1).

Obr. 149
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139. Oznaéme L pruseéik uhlopfi¢ek AC a BF (obr. 149). ProtoZe BF || CE,

jsou trojuhelniky BML a NMC podobné, {j.
|BL|  |LM|
Nel T emy M

Sestihelnik ABCDEF je pravidelny, takZe | CAE|= 60° a trojihel-
nik ALK je rovnostranny, pfi¢emZ trojihelnik ALB je rovnoramen-
ny, tj. |KL| = |AL| = |BL|. Bez ujmy na obecnosti budeme pfedpokld-

1 1
dat, Ye |AC| = |BF| = 1. Pak je |BL| = |AL| = —, [LM| = 2 — T,
[CM| = 1— A, |CN| = A. Dosadime-li do (1), dostaneme

1 34—1
34 3(1—a

1
takZe 342 = 1 a odtud A =—-—§—.

2. FeSeni. LeZi-li body M, N, B v ptimce, oznalme | AMB| =
= |X NMC| = o (obr. 150). Ziejmé 30° < @ < 90°. ProtoZe v pravidel-

|
ném Sestithelniku ABCDEF je |AB| = T/:3: |AC|, dostaneme ze sinové véty

pro trojuhelniky ABM a NMC

sin @ sin A

sin (150° — ) Ay3T sin (120° — ) =2

1

¢ili
. 5
/3 sinw = 5 cos @ + 5 sin o,

et }(V& 1 )
(I—ANsinw = 1 ) cos w - 2smw.

Odedteme-li od druhé rovnice A]/S-nésobek prvni, dostaneme
(1—21—34%)sin o = —Asin o,
¢ili
3A2 = 1.
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1
ProtoZze 0 < A < 1,je A = —=.
J V3

Obr. 151

3. feSeni. Ze zaddni dlohy plyne, Ze jsou trojuhelniky BCM a DEN
shodné (obr. 151), tj. | NBC| = |x NDE|. ProtoZe v pravidelném 3esti-
thelniku plati | BCE| = 90° a|¥ CED| = 30° je
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|x BND| = |¥ BNC| + |x CND| =
= (90° — | ¥ NBC|) + (30° -+ | ¥ NDE|) = 120°.

To znamend, Ze GseCku BD je z bodu N vidét pod stejnym thlem 120° jako
ze stfedu S kruznice opsané danému Sestidhelniku. Bod N tedy lezi na

kruZnici se stfedem C a polomérem |CS| = |CB| = |CD|. Proto je také
|CN| = |CB| a pro délici pomér A plyne z trojihelniku BCE
4 |CN| |CB| (e 30° 1
TlcEl TicEl T T T

4. feSeni. Oznaéme B’ pruseéik primek AB a CE (obr. 152). Z vlastnosti
pravidelného Sestitthelniku A BCDEF plyne, Ze |BB'| = 2|AB|. ProtoZe body
B, M, N lezi v pfimce, dostdvame podle Menelaovy véty pro trojuhelnik
AB'C

|AB| |B'N| |CM]| 114+21—12

|B'B| " |CN| " |AM|~ 2 2 2 L

¢ili
342 = 1

Obr. 152

5. ¥eSeni. Zvolme v roving Sestitthelniku soustavu soufadnic s po&atkem
v bodé B. Maji-li body P, Q soufadnice (p1, p2), (¢1, g2), rozumime sym-
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bolem P +4 Q bod se soufadnicemi (p1 -+ q1, p2 + g2) a symbolem sP,
kde s je redlné &islo, bod (sp1, sp2).
Pro body M, N tedy plati (0 < 4 < 1)
M=({0—2)A-+ AC,
N=(1—2N)C+ AE=224 + (1 + HC,
ponévadz v pravidelném Sestitihelniku se stfedem S je E = 28 = 2(4 + C).
ProtoZe body B, M, N lezi v pfimce, musi platit
22 1+ 2
1—24~ 4 °

1
Glid3i2=1lal=—=
13

140. Konce lomené ¢ary L oznaéme M a N. Postupujme po ¢are L z bodu

1
M. Prvnivrchol étverce Q, ke kterému se pfiblizime na vzdalenost nejvyse 5

oznaéme A. Postupujeme déle a ten z vrchold sousedicich s A4, ke kterému

1
se priblizime diive na vzddlenost ——, oznaéme D. Druhy vrchol sousedici

2
s A oznaéme B (obr. 153).

D — c
/‘DI - \\‘ N~ e
RN

\‘\ \\A\ 1
\\ \\ |
\ S T
SN
PN
A 2 B
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1
Bod D’ lomené ¢ary L, pro néjzje |DD'| = EX rozdéli ¢aru L na dvé Casti

MD"a D'N. Odpovidajicim zptisobem vyjadiime tiseCku 4B jako sjednoceni
mnozin U a V, kde U je mnozina téch bodd, jejichz vzdélenost od ¢ary M D’

je nejvyse 5> a V mnozina téch bodd, jejichZ vzdalenost od éary D'N je nej-

1
vyse > Obé mnoziny U, V jsou neprizdné, 4 e U, Be V, a kazda je sjedno-
cenim koneéného poctu uzavienych tseéek a jednobodovych mnozin. Proto

existuje bod P spole¢ny obéma mnozinim U a V. Jsou-li X, resp. Y, body

1 1
Cary M D', resp. D'N,takové, ze |PX| < P [PY| =< DX pak je |[XY| =

< |PX| + |PY| = 1, a pfitom délka lomené Cary XD'Y je aspori
|XD'| + |YD'| = 99 + 99 = 198.

141. Podle prvni podminky je pro kazdé kladné x
JOf(x) = xf(),
takZze a = xf(x) je pevny bod funkce f; tj. f(a) = a.
Predpoklidejme, Ze p je pevny bod funkce f. Podle prvni podminky je
1efip)) = pfip),
neboli
f(p?® = p2,
bod p? je tedy také pevny bod funkce f. Dokonce p” je pevny bod funkce f
pro kazdé prirozené n, nebof jsou-li p, p»~1 pevné body, je
™) = fp.pm~Y) = f(pflp"=1) = p(p) = p".
Dale je
p =fp) =1{(p)) = f1.f(p)) = pAD),
takze f(1) = 1 a 1 je pevny bod funkce /. Je tedy

1= £(1) :f(%.p) =f(%f(l’)) :pf(}l?)
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)

1 1
takze i —p— je pevny bod funkee f. Pak je i p_" pevny bod funkce f.

a odtud

Kdyby bylo p > 1, pak by posloupnost p® konvergovala k -+ oo a tatdz
posloupnost p” = f(p") by podle druhé podminky konvergovala k 0. Stejnd

vylou¢ime moZnost p < 1 pomoci posloupnosti pevnych bodi p—"‘

Zjistili jsme, Ze funkce f ma jediny pevny bod 1. Pro kazdé kladné x je
tedy xf(x) = 1, takze

1
fx) = >

Tato funkce, jak snadno ovéfime, vyhovuje obéma podminkam.

142. Maji-li kruZnice k1, k2 stejné poloméry, je tloha trivialni. Nadale
budeme pfedpokladat, Ze poloméry obou kruZnic jsou riizné.
Dokazovana rovnost je ekvivalentni s rovnosti

[ X O14AM1| = | X O24M;|
(obr. 154). Oznaéme S priseéik teCen P1P2, Q10Q2. Tento bod je stiedem

stejnolehlosti, kterd prevadi kruZnici k1 v ko. Obraz bodu A4 v této stejno-
lehlosti ozna¢me B. Ziejmé

| O14AM;| = | X O2BM>]|.
Dokazujeme tedy rovnost

| % O24M3| = | ¥ O2BM3)|. ‘
Vzhledem k tomu, Ze body A, B lezi ve stejné poloroviné uréené piimkou
O3Mo, plati uvedena rovnost, pravé kdyz body 4, B, Oz, My leZi na jedné
kruznici, coz nastane, pravé kdyz

|SA|.|SB| = |SMs|.|SOx3]|.
Je vsak |SA|.|SB| = |SP2|? (mocnost bodu S ke kruZnici ko) a |SMa|.

.|SO3| = |SPs|2 (z podobnych pravouhlych trojihelnikiti SO2P2, SP2Ms).
Tim je dikaz hotov.
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2. FeSeni. PriiseCik spojuice spolecnych bodl A4, B kruznic k1, k2 s te€nou
P1P2 oznaéme P a priseéik s pfimkou 0102 oznaéme M (obr. 155). ProtoZe
bod P je stied tseCky P1P2 (je |PPi|2 = |PA|.|PB| = |PP3|?), je bod M
stfed tsetky M1Ms. Oznadime-li O] bod soumérné sdruZeny s bodem O
podle osy 4B, bude

| X M140:| = | X O;AM:|.
Stai tedy dok4zat, 7e pfimka 4 M3 je osou thlu O, 402. To nastane, pravé
kdyz
40| |M:0;]
|[40s| — [M209)

Obr. 155
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jak plyne ze sinové véty pro trojihelniky 40, Ms, AO2M>. Protoze |AO;| =
= |40,|, |M20,| = |M10|, dokazujeme rovnost

|[401|  [M10,]
|4Os| — |M202|
Jeji platnost je patrna z toho, Ze vlevo je pomér poloméri kruznic k1, ko

a vpravo je pomér délek dvou usecek, které si odpovidaji ve stejnolehlosti
prevadéjici kruznici k1 v ks.

143. Oznaéme M, resp. M’ mnozZinu vSech &isel, kterd se daji vyjadfit ve
tvaru
m = xbc -+ yca + zab, (1)
kde x, y, z jsou pfirozend, resp. nezdpornd celd Cisla. Ziejmé je ge M,
pravé kdyZz q — bc — ca — ab e M’. V tloze jde tedy o to dokézat, Ze 2abc
je nejvEtsi prirozené &islo, které nepatii do M.
Kdyby 2abc € M, tj. pro n&jaka x, y, z pfirozend by bylo
2abc = xbc +- yca + zab,
pak by « délilo souéin xbc a podle predpokladu o vzajemné nesoudélnosti
&isel a, b, ¢ by a délilo x, takze by bylo a < x. Analogicky zjistime, Ze by
bylo b £ y, ¢ < z. Pak by v8ak platilo
2abc = xbc + yca + zab = 3abe.
Je tedy 2abc ¢ M.
Zvolme libovolné pfirozené &islo k a zkoumejme &islo 2abe + k. Uva-
Zujme mnoZinu L vSech &isel tvaru (1), kde
xe{l,2,...,a}, ye{l,2,..,b}, ze{l,2, ..., c}. (2)
ZAadna dvé z téchto abc &isel nedavaji pii déleni &islem abe stejny zbytek.
(Rozdil kaZdych dvou ¢&isel z L ma totiz tvar (1), kde xe {—a + 1, ...,
a—1},ye{—b+1, ...,b—1}, ze{—c+1, ..., c—1}. Kdyby byl
tento rozdil délitelny &islem abe, bylo by alx, by, ¢lz, tj. x =y =2z=0
a &isla by nebyla rtiznd.) Existuje tedy ¢islo (1) z L a celé &islo ¢ tak, Ze
2abe + k = tabc + xbc -+ yca + zab. 3)
Podle (2) je
xbe + yca + zab < 3abc,
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takZe
k = tabc — 2abc + 3abe = (t + )abc.
ProtoZze k > 0, je t = 0 a (3) mlzZeme piepsat
2abe - k = (ta + x)bc + yca + zab,
kde ta - x je pFirozené ¢islo. Je tedy 2abe - k € M pro kazdé piirozené k.

Pozndmka. Stejnou metodou bychom dokézali obecnéjsi tvrzeni: Je ddno
n = 2 po dvou nesoudélnych pfirozenych &isel a1, az, ..., an. Oznacme

A = aias...a, a M mnoZinu viech ¢&isel tvaru

A
X1—+x2— 4 ... +XxXp —,
ay az (175
kde x1, x2, ..., Xy jsou pfirozena Cisla. Pak nejvétsi pfirozené Cislo, které

nepatii do mnoziny M, je (n — 1)4.
2. feSeni. NeZ se pustime do feseni tilohy, prozkoumame obecnou otazku
vyjadifovani celych Cisel m ve tvaru
m == xbc -}- yca -+ zab 4
s celo¢iselnymi koeficienty x, y, z. Pfedev§im ukazeme, Ze kazdé celé Cislo m

Ize takto vyjadfit. Vyplyva to z toho, Ze mnoZina zbytkil viech abc Cisel
tvaru (4), kde

xe{l,2,...,a},ye{l,2,..,b},ze{1,2, ..., ¢}, ®)
pfi déleni ¢islem abe je totozna s mnozinou {0, 1, ..., abc — 1}, éehoZ jsme
si vi§imli v predeslém feSeni. Je-li tedy m libovolné celé Cislo a

m = tabe + u,
kdetjecelécisloa0 < u = abe, existuji Cisla x, y, z splitujici (5) a celé islo v
tak, Ze
u = xbc + yca + zab - vabc.
Pro m tak mame vyjadieni
m = (ta -+ va + x) bc + yca - zab.

Déle se budeme zabyvat jednoznacnosti uvazovaného vyjadfeni. Dejme
tomu, Ze

x1bc -+ yica + ziab = x2bc + yaca - zaab,
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a nechf
X1=pia+p, y1=qb+q, z1=ric+r,
X2 = paa + Py, Yo = qab -+ q,, za = rac + 1,
pficemz
0=pLp<a,05q, ¢, <b, 021, ry<ec (6)
Potom je

0 = (x1 — x2)bc + (y1 ——/yz)ca + (z1 — z2)ab =
= (p; — pa)bc + (¢, — qo)ca -+ (ry — ry)ab +-
+ (P14 q1 4 r1—pa2 — g2 — ro)abe.
Odtud je ziejmé, Ze
alpy—py» blai—ay clri—r,

a vzhledem k (6) je tedy

PL =Py q1 =42 I =Ty,
takze musi byt také
p1FqiH-r1=p2+ g2+ re.

Dochdzime k nasledujicimu zavéru: Kazdé uspotfadané trojici celych
isel (x, y, z) pfifadme uspofadanou Ctvetici (p', ¢, 1, p -+ q + r), kde
xX=pa+p,y=qb+¢q', z=rc+7r,
0p' <a, 02qg <b 01 <c.

Kazdé celé Cislo m lze psat nekonecné mnoha zplisoby ve tvaru (4) s celo-
Ciselnymi koeficienty x, y, z, pfiCemZ dvé€ trojice koeficientlt davaji totéz
¢islo (4), pravé kdyz piislusné Ctvefice jsou stejné.

Pro feSenf nasi ulohy je vyznamny bezprostiedni diisledek prave vyslove-
né véty:

Celé Cislo m lze psat ve tvaru (4) s nezdpornymi koeficienty, pravé kdyz se
pro kazdé vyjadieni (4) s celoCiselnymi koeficienty pfislusnd Ctverice sklada
z nezapornych Cisel. Vyjadieni

2abc —bec — ca —ab = (a— 1)bc + (b — 1)ca + (—c¢ + ¢ — Dab @)

odpovida ¢&tvetice (a — 1,0 — 1, ¢ — 1, —1), kterd neni sloZena jen z ne-
zapornych &sel. Cislo (7) proto nelze vyjadfit ve tvaru (4) s nezdpornymi
koeficienty.
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Zvolme nyni pfirozené &islo m > 2abc — bc — ca — ab. Je-li (4) jedno
jeho vyjadieni s celo&iselnymi koeficienty x, y, z a (p, ¢', 1, s) pfislusna
étvetice, pak

0 < m— (2abc — bc — ca — ab) =
= (p' — (@a—1)bc + (¢’ — (b— D)ca + (+' — (c — 1))ab + (s — (—1))abc.
Prvni tfi koeficienty jsou zfejmé nekladné, takZe posledni koeficient musi
byt kladny, tj. s = 0. Ctvetice (p’, q', ', 5) je tedy sloZena z nezdpornych
Cisel a Cislo m lze proto vyjadfit ve tvaru (4) s nezdpornymi koeficienty,
coz jsme méli dokdzat.

144. Dejme tomu, Ze uvazované tvrzeni neplati, tj. existuje rozklad
mnoZiny E na dvé podmnoZiny Ei, Eq takovy, Ze Zddny pravothly troj-
thelnik nemd viechny tfi vrcholy v jedné z téchto podmnoZin. Vepisme do
daného rovnostranného trojihelniku pravidelny Sestithelnik PQRSTU
(obr. 156). Ze tii bodd P, R, T lezi aspoil dva v téZe podmnoZiné, napf.
PecEi, ReE;. Pak je viak UeEq, SeEg, Ce Eg, a to je spor.

>

/ - \
/- R

/

Obr. 156

2. YeSeni. Na obvodu daného rovnostranného trojihelniku ABC (obr. 157)
sestrojme body 4’, B’, C’ tak, aby
|[AA’|  |BB’| |CC’|
4B " [BCl ~ [cAl =
Ziejmé je AB | A'B', BC | B'C’, CA | C'A’. Uvaiujme libovolny roz-
klad mnozZiny E na dv& podmnoZiny E;, Es. Neztratime na obecnosti,
omezime-li se na nasledujici dva ptipady:
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Obr. 157

a) Necht 4" € Ey, B" € E1, C’ € E1. Existuje-li jeste dalsi bod D e Ej, pak
vzdy tvori se dvéma z bod A’, B’, C’ pravouhly trojuhelnik se vSemi vrcho-
ly v E;. Neexistuje-li &tvrty bod D € E4, patii vSechny ostatni body obvodu
do mnoziny Es a snadno najdeme pravothly trojuhelnik s vrcholy v Es.

b) Necht A’eE1, B eE;, C’'eEs. Existuje-li bod De AB, D # A,
D € Ey, je trojuhelnik A'B’'D pravothly s vrcholy v E;. Jinak patii viechny
body strany 4B az na bod A" do mnoziny Es a trojihelnik AC'C", kde C"’
je pravouhly pramét bodu C’ na stranu AB, je pravothly a ma vrcholy
\% Ez.

Poznamka. Diikaz ze 2. feSeni staci jen trochu doplnit, abychom odvodili
siln&jsi tvrzeni:

Pti kazdém rozkladu obvodu rovnostranného trojihelniku na dvé pod-
mnoziny existuje nekonecné mnoho pravouhlych trojuhelnik, které maji
vsechny vrcholy v téZe podmnozing.

V ptipadé a) jsou dvé moznosti. Bud je na nékteré strané, napt. 4B, ne-
kone¢né mnoho bodii z E; a ty pak spolus 4" a B’ tvoii nekoneéné mnoho
pravothlych trojuhelnikd s vrcholy v Ej, nebo je na kazdé strang jen
koneny pocet bodli z E1 a pak zfejmé existuje nekone¢né mnoho pravo-
uhlych trojahelnikt s vrcholy v Eo.

V piipadé b) uvazujeme takto: Je-li na strané 4B nekoneéné¢ mnoho bodi
mnoziny Ei, tvrzeni plati. Je-li na strané AB jen kone¢ny pocet bodii
mnoziny Ei, sestrojme v8echny trojuhelniky s pravym thlem pii vrcholu C’
a ostatnimi vrcholy na strané 4B. Téch je nekone¢né mnoho a jen konecné
mnoho z nich méa néktery vrchol v E;.
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145. Z posloupnosti vSech prirozenych cisel postupné vynechavejme ¢isla,
kterd jsou tfetim ¢lenem néjaké aritmetické posloupnosti. Ziistanou cisla

1,2,4,5,10, I1, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, ... .

To nds privadi na myslenku sestrojovat mnoZiny neobsahujici téi po sobé
jdouci &leny aritmetické posloupnosti takto: Vyjdeme od mnoziny M, =
= {l, 2} a dale poloZme pro kazdé pfirozen¢ k
Mk+1 = Mk U {x -+ 3k xe Mk}
Ozna¢ime-li n1, nejvétsi prvek mnoziny M, bude
my = 2, mpy1 = my + 3%,
tj.
3n ]

My = ———

2
pro kazdé piirozené n.

Dokdzeme, Ze v zadné z mnozin M,, nelezi tii po sobé nasledujici ¢leny
aritmetické posloupnosti, coz je totéz, jako Ze tam s Zadnymi dvéma prvky
nelezi jejich aritmeticky priimér. Pro mnoZinu M; je to ziejmé. Predpo-
kladejme, Ze to plati pro mnozinu My, kde & je néjaké piirozené ¢islo, a zvol-
me dva riizné prvky x, y mnoziny My;1. LezZi-li oba v mnoziné Mg nebo
oba v mnoziné {x + 3%: xe Mg}, pak jejich aritmeticky pramér neni
v Mi41 podle indukéniho piedpokladu. Je-li x € My, y € {x -+ 38 :xe—M; ],
pak

Il SxZmg, 1+ 382y £ my 4 3%,

takze
3k 4] ‘37"~1'—2<x+y 2my, -+ 3F X | .
mg = 2 ~ 2 = 2 é 2 :“‘3 +7<3 - 1.
I e .. R
Odtud vidime, Ze 5 ¢ M1 Mnozina M1 ma nejvétsi prvek
31t ]
miy = = 88 574 < 105

a obsahuje 211 = 2 048 prvk(. Uvazovand posloupnost tedy existuje.
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2. FeSeni. Mé&me dve Cisla, ktera se skladaji jen z €islic 0 a 1. Aby se jejich
aritmeticky prameér také skladal jen z Cislic 0 a 1, musel by se jejich soucet
skladat jen z €islic 0 a 2, ale to se stane, pravé kdyZ jsou obé &isla stejnd.
To plati v kazdé Ciselné soustavé se zékladem vétsim neZ 2.

Nejvétsi Cislo sloZzené z Cislic 0 a 1 v trojkové soustavé nepievySujici
105 = (12002011201)3 je €islo (11111111111)3 a viech takovych nanejvys
jedendcticifernych &isel je 211 — 1 = 2 047.

Pozndmka. Ozna&ime-li {a,} posloupnost z 1. feeni a {b,} posloupnost
z 2. feSeni, je pro kazdé ptirozené n

nv1 = by + 1.

146. Abychom nemuseli stdle respektovat predpoklad, Ze a, b, ¢ jsou strany
trojahelniku, oznaéme

=—a+b+t+c,y=a—b-+c,z=a+b—ec.
Pak bude

+ z x+z x -+
a——-ylz,b= }2—,0=—;—y €))
a v8echny trojice (@, b, ¢) délek stran trojihelniku tak budou vzijemné jedno-
znaéné odpovidat viem trojicim (x, y, z) kladnych &isel, s nimiz se pracuje
pohodIngji.
Dosadime-li do dokazované nerovnosti podle (1), dostaneme po upravé
nerovnost
yz g2

——+ Sty extytez 2

K tomu, abychom ji dokazali pro vSechna kladnd x, y, z, vyuZijeme Cau-
chyovy nerovnosti

n n n
(Suwd? £ 3 0} 3},
i=1 i=1  i=1

kterd plati pro vSechny n-tice redlnych &isel (u1, ..., tn), (V1, ..., Va)
a v niz nastane rovnost pravé tehdy, je-li jedna z n-tic ndsobkem druhé.
Pro trojice
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Cauchyova nerovnost da

2 2

x2
x+y+22= (7 ++ ) O+z+ ),

X

coz je nerovnost (2). Rovnost nastane, pravé kdyz
X -  y _
74:}/)7 ==z =—=:]x,

Vy Jz [

tj. pravé kdyz x = y = z. V plvodni nerovnosti tedy bude rovnost pravé

jen pro rovnostranny trojihelnik.

z

2. Feseni. Nerovnost (2) je ekvivalentni s nerovnosti
X3z + y3x + z3y = x%yz 4 y2xz 4 z%xy
a ta plyne z rovnosti
X3z 4 y3x + 238y — x%yz — y2xz — z2xy =
= xz(x — y)? + xy(y — 2)% + yz(x — 2)°.
3. fefeni. Dand nerovnost vyplyva z rovnosti

2 [a?b(a — b) + b2c(b — ¢) + c2a(c — a)] =
=(@tc—blat+b—ca—c)2+ b+ a—c)b+ c—a)b—a)? -+
+ (¢ + b—a)(c + a— b)(c — b)2.

4. feleni. Dand nerovnost vyplyvd z rovnosti
a?b(a — b) + b2c(b — ¢) + c2a(c — a) =
= a(b + ¢ —a)(b — )% + bla + b — c)(a — b)(a — c).
Dana nerovnost se totiz nezméni pii cyklické zaméné a — b, b —~c¢, ¢ —a
a muzeme tedy pfedpokladat bez ztraty na obecnosti, Ze a je nejdelsi strana.
Pozndmka. Predpoklad, Ze kladna Cisla a, b, ¢ spliuji trojthelnikové

nerovnosti, neni pro platnost dané nerovnosti nutny (uvedeny vyraz je
kladny napi. i proa=1, b =3, ¢ = 5).

147. K dukazu nezapornosti uvedeného vyrazu si staci uvédomit, Ze
0=ux z=1,takZe

xy 4 yz + zx — 2xyz = xy(1 — z) 4+ yz(l — x) 4+ zx = 0.
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1
Miizeme také diky symetrii pfedpokladat x < y £ z, takze x < 3

xy +yz+zx —2xyz = xy + yz(l —2x) 4 zx = 0.

Podle nerovnosti mezi aritmetickym a harmonickym primérem plati
dokonce
xy + yz + zx 3 3xyz

> — —_
3 ST T 1 Txgyizo v

tj.
xy +yz+ zx = 9xyz.

1 1

Nyni dokdzeme druhou nerovnost. PoloZme x = 3 +a,y= 3 + b,

1
2= + ¢, podle pfedpokladu tlohy pak je
|
3

a+b+c=0, ——=—=5abc

A

2
3

1
5-7——|~—3—(ab+bc+ca)—-2abc =

7 1
=37 - 3 (bc — a?® — 6abc). )

Xy +yz + zx — 2xyz =

Vzhledem k symetrii miZeme piedpokladat ¢ < b < ¢, pak musi byt
bude £b£0=Zc,neboa £0<bh = e
V prvnim pfipadé je bc — a? — 6abc £ 0, v druhém piipadé mulzZeme

pro—? < a £ 0 psat

be — a? — 6abc = be — (b + ¢)? — 6abc = —(b — ¢)? — 3bc — 6abc =
=—(b—c)2—3bc(l +2a) =0

s rovnosti, pravé kdyz b = c¢=a = 0. V obou ptipadech plyne z (1)

nerovnost

7
xy +yz + zx —2xyz = 27
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2. feSeni. Necht napf. x = Cx pak je

xy 4+ yz + zx — 2xyz = x(y + 2) + yz(l — 2x) =
1 7
=x(1 —x) 4+ pz(1 —2x) £ x(1 —x) = ) < 7
1

Vzhledem k symetrii zbyva vySetfit jen piipad, kdy je 0 < x, y, z < >

Polozme x" =1 —2x, )y = 1—2y,z' = 1 —2z, pak je

X +y4+z2Z=1 x,y,2>0

1
Xy + yz 4 zx — 2xyz = T 1+ x'y'z).

Podle nerovnosti mezi aritmetickym a geometrickym primérem dostaneme

(xl _{_yl—l"z,)s l

x'y'z' £ 3 =57
takze
7
Xy 4+ yz 4 zx — 2xyz < 27"

3. feSeni. UvaZujme mnohoclen
p) =t —x)(t —y)(t—z)=13—12 + t(xy + yz + zx) — xyz.
Mime tedy dokazat, Zeprox =2y =2z=20,x Fy+z=1je

1 1 1
Je-li x = > jey = 52 =< P (3) < 0 a podle nerovnosti mezi arit-

metickym a geometrickym primérem
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podobné pro x < B je

1) 2 YTV TE 1
sb——— ) =5

3 216

4. YeSeni. Funkce
SO, y, 2) = xy + yz ++ zx — 2xyz

je spojita a nabyva proto v uvazovaném definiénim oboru 0 £ x, y, z £ 1,

1
X 4y + z =1 svého maxima. Je-li x < 2} a y # z, plati

525 = (57

> x(y + 2) + yz(1 — 2x) = f(x, , 2).

Z duvodt symetrie muZeme predpokladat, Ze x < y < z. Neni-li

2x) >

x=y=z=-—,jebudx <y <z, nebox =y <z (v obou piipadech musi

3
1
byt x < —-2—), takze
y+z y+2)

f(A, )y 0o > f(x, y, 2),
nebox <y=rzaz < E‘,takie

YAy xty

f(29 2 H ) f("’ '\ y :f(.\', y’ Z),

: 0 1 : 1 1 1 11
anebox =0,y =z = 2,apa jeflo Ty <f 333 )

Funkce f tedy nabyva v uvedeném definiénim oboru svého maxima

1
vjedinémbodéxzy:zz?aje
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sl d) -2

5. FeSeni. OznaCme k = xy + yz + zx — 2xyz = x(1 — x) + yz(l — 2x).

Vzhledem k symetrii miZeme piedpokladat, Ze x < 3 Protoze

y+z=1—ux
k+ x(x—1)
yz = —i———~—2;—_’

jsou Cisla y, z redlné kofeny kvadratické rovnice
k+x(x—1)
t2+(x—~1)t—}————1—i——2—x———= 5
pro jejiz diskriminant plati

(x— D21 —2x) — 4k —4x(x — 1) 2 0,

neboli
k<_—}—x3+_1_x2+_1_
= 2 4 4
1 . ) r /1 \ ,
Funkce f(x) = — E-x -+ z-x -+ 7 ma v intervalu \O, —3- / nezapornou
derivaci
3 1 1
f'x) = —sz +-5x = —2—x(1 —3x) 20,
takze
k <f(l) = _7_
=7\3 27

6. FeSeni. Najdeme extrémy funkce
Jo, ) =xy+y1—x—y») + (1 —x—y)x—2xp(1 —x—y) =
=x+y—x2—y2—3xp + 2x2y - 2xy?2 '

v trojuhelniku T s vrcholy (0, 0), (0, 1), (1, 0). Ty budou leZet bud na jeho
hranici, nebo v jeho vnitfnich bodech, pro které zaroveii



148 (288)

of

P I —2x =3y +4xy + 22 =2x +y—1DQ2y— 1) =0,

0.

of

5}- =1—2y—3x+4xy 4+ 2x2 =2y + x—D2x—1) = 0.
Snadno zjistime, ze témto dvéma podminkdm vyhovuje jediny vnitfni

.vll) VV(11)7,,
bod trojuhelniku 7, totiz (3, 3 ) v némz f T3] = 27.Zbyva pro-

zkoumat hranici trojihelniku 7, tj. vySetfit priib&h funkce
S(x,0) = f(0, x) = f(x, | —x) = x(1 —x)
v intervalu €0, 1). Tam je ale 0 £ x(1 —x) = e
Funkce f(x, y) nabyva v trojuhelniku 7 maxima 375 v bodé (%,—;—)
a minima 0 v bodech (0, 0), (0, 1), (1, 0), takze je

7
0=xy+yz+2zx—2xpz < 27

s rovnosti vlevo pro trojice (1, 0, 0), (0, 1, 0), (0, 0, 1) a vpravo pro
(1 1 1 )
3’373/

148. Podle binomické véty je

(a + b)" — a? — b7 = Tab [(a® + b5) + 3ab(a® + b3) + 5a2b%(a + b)] =
= Tab(a + b)(a* - 2a3b - 3a%b2 + 2ab3 -+ b*) =
= Tab(a + b)(a? + ab + b2)2. )

Vyhovuji-li ¢isla @, b podminkdm ulohy, je ¢islo a® + ab + b2 délitelné
Cislem 73 = 343. Zkusme napf. ¢ = | a hledejme b tak, aby b2 - b - 1
bylo délitelné 343. Vyhovuje b = 18.

2. FeSeni. Pouzijme rovnost (1). PoloZme a = 1 a hledejme b tak, aby
¢isla b, b + 1 nebyla délitelnd sedmi a aby b2 - b + 1 bylo délitelné 73.
Podle Eulerovy véty plati pro nesoudéIna ¢&isla r, s, ze r™® — 1 je délitelné
Cislem s, kde ¢(s) je pocet pfirozenych &isel menSich nez s a nesoudélnych s s.



(289) 148

Je-li tedy r Cislo, které neni délitelné sedmi, je
P 1 =87 1 = (r2.72__ 1) (r4.7’ + P27 + 1)
délitelné 73, a neni-li ani r98 — 1 délitelné sedmi, bude r2-98 | 98 | 1
délitelné 73. Dvojice a =1, b = r9 tedy vyhovuje podminkdm ulohy,
pokud zidné z Cisel
rr98—1, b4+ 1=r% 41
neni délitelné sedmi.

Neni-li r délitelné sedmi, dava r¢ podle Fermatovy véty pti déleni sedmi
zbytek 1. ProtoZe 98 = 6.16 - 2, davaji Cisla r98 a r2 pii déleni sedmi stejny
zbytek, takze staéi najit takové r, aby zadné z Cisel r, 2 — 1, r2 4 1 nebylo
délitelné sedmi. Odtud plyne, Ze dvojice a = 1, b = r98 vyhovuji uloze,
pravé kdyz r dava pfi déleni sedmi zbytek 2, 3, 4 nebo 5.

3. feSeni. Refenim tlohy jsou pravé ty dvojice (a, b), pro n&% a0

(mod 7), b0 (mod 7), a + b=£0 (mod 7) a
a? + ab + b2 =0 (mod 73). ()]

Vyhovuje-li dvojice (a, b) rovnici (2), vyhovuje ji zfejmé i dvojice (ka, kb)
pro libovolné ptirozené &islo k. Vyhovuje-li tedy tuloze dvojice (@, b), vy-
hovuje podle Eulerovy véty (viz 2. feSeni) i dvojice (1, a293b). Chceme-li
tedy najit vSechny dvojice (a, b) vyhovujici uloze, sta¢i najit vSechna feSeni
tvaru (1, 7), ostatni pak budou tvaru (k, kt), kde k == 0 (mod 7).

Resme tedy rovnici

12+t -+ 1=0(mod 73). 3)
Vyhovuje-li ¢ rovnici (3), vyhovuje ji i (mod 7) a snadno zjistime, Ze ¢ = 2

(mod 7) nebo ¢ = 4 (mod 7).
Necht t = 2 (mod 7), tj. t = 7m -+ 2. Pak ma rovnice

(Tm + 2)2 4 (Tm + 2) + 1 = 0 (mod 72),
neboli
35m + 7 = 0 (mod 72),
neboli
5m + 1 =0 (mod 7)
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feSeni m =4 (mod 7). Proto vyhovuje-li # =2 (mod 7) rovnici (3), je
t = 30 (mod 72), tj. t = 72 n + 30. Plati tedy

(72n 4+ 30)2 +(72n + 30) + 1 = 0 (mod 73),
neboli
61n -+ 19 = 0 (mod 7)

a odtud n= 6 (mod 7). V piipad€ # = 2 (mod 7) jsme nasli jediné FeSeni
rovnice (3) ¢ = 324 (mod 73).

V piipadé ¢t =4 (mod 7) najdeme analogicky druhé feSeni rovnice (3)
t = 18 (mod 73).

Resenim 1lohy jsou viechny dvojice p¥irozenych &isel

(a, b) = (k, 18k) nebo (k, 324k) (mod 73),
kde k = 0 (mod 7).

149. Uvazujme dvé kruznice R = (O, r)a S = (0, s), kde 0 < r < s < 1.
Na kruZnici R existuje bod X takovy, ze S = C(X). Je to bod X, pro néjz
a(X) = r(s—r) (zfejmé 0 < a(X) < 1). Nevyskytuje-li se barva bodu X
na kruZnici S, znamend to, Ze mnoZina vSech barev na kruZnici R se lisi
od mnoziny vSech barev na kruZnici S.

Kdyby dokazované tvrzeni neplatilo, znamenalo by to, Ze na kazdych
dvou rtznych kruZnicich se stiedem O a polomérem men$im neZ 1 jsou
riizné mnoziny barev. MnoZina vSech barev, jimiz jsou obarveny body
roviny, by tedy méla nekone¢né mnoho podmnoZzin a nebyla by kone¢na.

150. Oznaéme M stfed strany AB, M’ pravouhly pramét bodu M na
pfimku CD (obr. 158). ProtoZe podle pfedpokladu lezi bod M’ na kruznici
s pramérem AB, je trojuhelnik BM’'M rovnoramenny, neboli

1
| ¥ MBM'| = |xMM'B| = > | X AMM'|.
Dale oznaéme N stied strany CD a N’ jeho primét na pfimku AB. ProtoZe
|<XMM'D| = | NN'A| = 90°, je
| xAMM'| = | X DNN'|
a body M, M', N, N’ lezi na kruZnici s primérem MN.
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Obr. 158 Obr. 159

B-N'
Y s S M

Obr. 160 ~ Obr. 161

KruZnice nad primérem CD se dotykda ptimky AB, pravé kdyZ troj-
thelnik CN’N je rovnoramenny, {j. pravé kdyz

1 1
| X NCN'| = = | XDNN'| = — | X AMM'| = | X MBM'|.

To nastane pro M’ 7 C a N’ =~ B pravé tehdy, lezi-li body M’, N’, B, C
na kruznici (obr. 158, 159). Pokud je M’ = C (obr. 160) nebo N’ = B
(obr. 161), je zfejmé |XNCN'| = |XMBM'|, pravé kdyZz MN||BC, tj.
AD||BC, takze v tomto specidalnim ptipadé jsme s ditkazem hotovi (do-
konce bude A = N, resp. D = M’).

Zbyvi ukdzat, Ze Ctyfi réizné body M’, N', B, C lezi na kruZnici, pravé
kdyz

| X AMN| = | ¥ ABC|,

{j. jsou-li prot&jsi strany BC a AD &tyfahelniku ABCD rovnobézné. To
ale plyne okamzité z véty o obvodovych thlech - jen je tfeba uvazit vech-



150 (292)

ny moZné polohy bodi M’, N’ vii bodim M, N, B, C (podle toho je
bud |XN'MN|= |xN'M'N| nebo |<xN'MN|= 180°— | X N'M'N| a po-
dobné bud |xN'BC|= 180°— |XN'M'N| nebo |XN'BC| = |xN'M'N|.
Ze vSech 16 moznosti vSak stadi uvaZovat jen piipady uvedené na obr.
162 a)—e) (pfipad M’ = N, N’ = M je trividlni). Tim je dikaz hotov.

1 / \\
M-N_ C \M/ \

[ /\\ Wi
\N\Y\\‘/ //

M TN

Obr. 162b

A MBN

Obr. 162¢ Obr. 162d

Obr. 162¢
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Pozndmka. Posledni tvrzeni ziejmé plati, i kdyz MN je libovolna tétiva
kruznice k (obr. 162): Pfedpokladejme, Ze body M, N, M’', N’, leZi na
kruznici, bod B lezi na pfimce MN' a bod C na pfimce M'N, M’ # C #
# B # N'. Potom body M’, N', B, C lezi na kruznici, pravé kdyz MN||BC.

2. feSeni. Oznaéme M stied strany AB, N stied strany CD a M’', N’
jejich kolmé praméty na protéjsi strany (obr. 163). Strany BC a AD budou
rovnobézné, prdvé kdyZ bude kazdd z nich rovnob&Znd s ptrikou MN,
tj. prdvé kdyz bude pro obsahy prislusnych trojuhelnikt platit

S(MNB) = S(MNC) a S(MNA) = S(MND).

Protoze
1
S(MNA) = S(MNB) =7 |AB| |[NN'|

1 1 AB
S(MNC) = S(MND) = - |CD| [MM'| = - |CD| '——2—1

. ICD|
jsou strany BC a AD rovnobéiné, pravé kdyZ |[NN'| = 0 tj. pravé kdyz

se kruZnice nad primérem CD dotykd strany AB.

A M N.' B
Obr. 163
3. feSeni. Pokud AB||CD, dotyka se zfejmé kruZnice nad primérem CD
primky AB, pravé kdyz |CD| = |AB|, tj. pravé kdyZ ABCD je rovnobéznik.

Jsou-li pfimky AB, CD rtiznobézné, oznaéme V jejich priiseik, o osu
uhlu BVC, M a N stiedy stran AB a CD (obr. 164). UvaZzujme zobrazeni Z,
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které dostaneme sloZzenim osové soumérnosti podle osy o a stejnolehlosti

|VN
se stiedem V a Kkoeficientem Wﬁ_’ﬂ V tomto zobrazeni bude Z(M) = N.

Protoze kruznice k sestrojena nad priimérem AB ma stfed v bodé M a do-
tyka se pfimky CD, bude se kruznice nad primérem CD se stiedem Z(M)
dotykat pfimky AB, pravé kdyZz bude obrazem kruZnice k v zobrazeni Z,
tj. pravé kdyz bude Z(A4) = D a Z(B) = C. Ziejmé vSak je AZ(A)||BZ(B).

Obr. 164

151. Uvazujme konvexni n-tthelnik 4143...A4,. S indexy budeme po-
¢itat modulo n.

Je-li A;A; uhlopricka, je podle trojahelnikové nerovnosti

[4id)| + |Aiv145101] > |AiAira] 4 |AgAz4].
n(n — 3)

Secteme-li tyto nerovnosti pro vsech 5 uhlopfic¢ek A;4; dostaneme
vlevo kazdou uhlopfiéku dvakrat a vpravo kazdou stranu (n — 3)-krat,
tedy

2d > (n— 3)p.
Pro délku uhlopticky 4;4; dale plati
|[4sd;] < |Aidira] + ... + [Aj-145l,
[didj| < |AjAzal 4 ... + |Ai-143].
Je-li n = 2k + 1, vezméme pro kaZdou uhlopti¢ku A;4; tu z nerovnosti
n(n— 3)
2

M

(1), kterd ma na pravé strané menSi pocet sCitancii, a téchto
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nerovnosti se¢téme. Dostaneme nerovnost, na jejiz levé strané je d a na
pravé strané je soucet délek stran, v némz se kazda strana vyskytuje to-
likrat, pro kolik thlopfiéek lezi v »mensSi« ze dvou ¢asti, na které je obvod
tihloptickou rozdélen. Napf. pro stranu 414, vychazi z vrcholu Ay jedind
takova thlopticka, z vrcholu Ax—1 dvé, ..., z vrcholu Ay jich vychazi
k—1 a z vrcholu A4; také k — 1. Na pravé strané je tedy kazda strana
zapoctena tolikrat, kolik je

takZze

1 2 o se o (F==1) 4 (b~=1);
2 P=72 2

2_[:142—1]_2).

Je-li n = 2k, vezméme pro kazdy »primér« A;A;+r nerovnost

(k—Dk+2 p ([n
P k)

p
[ Aidinrl < =
a pro ostatni uhlopfi¢ky opé€t tu z nerovnosti (1), kterd ma na pravé strané

n(n — 3)
mensi pocet sCitancil. SeCteme-li téchto T nerovnosti, dostaneme

p  (k—=2k+1) k2 —2
d<k2+ 2 p=—%pr=

HEM)

Pozndmka. Nerovnosti, které jsme dokdzali, nelze zlepsit. Pro mnoho-
thelnik, jehoZ dve¢ sousedni strany maji délku 1 a ostatni strany jsou velmi
malé, bude

2, d 3 2 3
=2, d=n—3a—=—n—3.
P P

' n
Pro mnohothelnik, jehoz »protilehlé« strany AgAg+1, And1, kde k = [?] s

maji délku 1 a ostatni strany jsou velmi malé, bude
p=2,d=k(n—k)—2
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2d niln+1

2. FeSeni. Zvolme pfimku ¢ a pravouhlé prameéty vrcholtt A1, 4a, ..., Ay
uvaZovaného mnohotihelniku na p¥imku q oznaéme 4;, A4, ..., 4,
Uvazujme nyni body Bi, B, ..., By lezici v pfimce v tomto pofadi
a odhadnéme soucet délek s vSech useéek B;B; pomoci délky usecky BiBy
a Cisla n. Zfejmé
s Z (IB1B2| -+ |B2Bn|) + (|B1Bs| -+ |B3Ba|) + ... 4 (|B1Bu-1| +
+ |Bu—1Bul) + |B1Bn| = (n — 1) | B1By|.

Dale si vSimnéme, Ze kazdd tuseCka B;B; se sklada z tseCek ByByy1, pii-
Cemz kazda useCka BpByi1 je Casti pravé k(n — k) tseCek B;iB;. Je tedy
n—1
s = k(n —_ k) 1Bchlc+ll-
k=1

Pfitom
4k(n — k) = n? — (n — 2k)?

n
a souc¢in k(n — k) nabyva tedy nejvétsi hodnoty pro k = [—2—], takze

< |[nln+1 nln+ 1
s = LZ 5 > | Bk B+1| = 2l 2 |B1By.
i1

Odvodili jsme nerovnost

n |[n+ 1]
(n—1)|B1By| £ 5 £ B} > |B1By)|. )
Jsou-li mezi body Bi, Bs, ..., B, aspoii ¢tyfi riizné, jsou pfitom na obou
stranach ostré nerovnosti.
Praméty A,, A, ..., A, nemusi sice leZet na pfimce ¢ v tomto

poradi, vzhledem ke konvexité¢ mnohothelniku A14s. .. A4, je vSak soucet
|A 45| + a4y + ... + 14, 1A, + 4,4
roven dvojndsobku nejdel3i z tiseSek A;4;. Je tedy podle (2)
(n—1) (|41 Ay] + | oAy + ... + |4,4,)) S 23 |4;45) £

P <j
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nfjn—+41 ., ., R

= _2— ""2_ (|A1Az| + |A2A3| + ...+ IAnAll)’

ptidemZ |A4;4;| = |4id;| cos oij, oznadime-li ai; thel sevieny piimkami
™

Aidj, q (0 S o= ‘2—)-

Otacejme nyni zvolenou pfimku ¢ kolem néjakého bodu 0. Pro0 < x < =
tak dostaneme pfimku ¢(x), kterd bude s pfimkou A4;4; svirat Ghel o;(x)

T
(0 < oy(x) = —2—), bude tedy pro kazdé x e <0, w) platit

(n —1 (|A1A42| cos 0(12()() -+ |A2A43]| cos otzs(x) 4+ ..o+
+ [AnA1| cos ani(x)) < 22 |A3A4;| cos O(ij(X) b

1<j

nlln+1
< [—2—][ 2 ] (|A142| cos a12(x) + |A243| cos xa3(x) + ... +
—{— EA7L141| COS an]_(x)).
Pfitomjepro l S i<j=n

[ cos ay(x) dx = [ |cos x| dx = 2.
0 0

Zintegrujeme-li tedy posledni nerovnost na intervalu <0, w), dostaneme
20n—1) (|A1d2| + |A243] + ... + |And1]) S 473 |4id;] <

i<j

nijn+1
2[7][7] (14142] + |4243] + ... + |4ad1)),

lIA

neboli

41
(1—1p < 2d + p) < [7][7 =In

ProtoZze n > 3 a jen pro koneéné mnoho x € <0, w) se stane, Ze nékteré
priméty splynou, budou na obou stranidch dokonce ostré nerovnosti, tj.

(n—Dp<2d+p < [%].’—lj—;—}-] 2
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¢ili
S
200

(n—3)p<.2d<(

n—1

3. feseni (dolni odhad). Pro k e {2, 3 ... } v pfipad¢ lichého n

n—2

ake {2, 3, ... } v ptipadé sudého n ozna¢me Uy mnozinu vsech

Ghlopti¢ek AiA;, kde j—i =k (s indexy pocitime modulo n), tj. uhlo-
pticek, které »obchézeji« pravé k — 1 vrcholil, a soulet jejich délek oznatme
n—2

dy. Pro k < ) ozna¢me jeSt¢ ox soulet délek »vnéjsich casti« whlo-

pticek z Uy, tj. t&ch &asti, které nejsou od obvodu mnohouhelniku oddéleny
jinou twhlopiitkou z Uy (v obr. 165 jsou zndzornény silné pro k = 3).
Ziejme

p <o = dg.

] —

Je-li n sudé, k = , je (obr. 166)

p
D) < dy.

Seéteme-li tyto nerovnosti pro viechna uvazovana k, dostaneme v pfipadé
lichého n
n—3
2

p<ditds+t ... +d-1=d
2

Obr. 165 Obr. 166
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a v piipade sudé¢ho n
il SO ST d /
> [14«2\43+(3+...—} n:‘.‘. = d,

G
“

coz dava levou ¢ast dokazované nerovnosti.

4. feSeni (dolni odhad). Budeme postupovat indukei podle n. Snadno
zjistime, Ze pro n = 4 dokazovand nerovnost plati. Nechf £ = 4, pfedpo-
kladejme, Ze leva nerovnost plati pro kazdy konvexni k-thelnik 414 2. . . A,
a mé&me dan néjaky konvexni (k - 1)-tGihelnik A1. .. AxArs1. Soulet délek
jeho thlopficek oznac¢me d a obvod p.

Pro kazdé ie {1, 2, ..., k -+ 1} z ného sestrojme konvexni k-thelnik
tak, Ze dvojici stran vychdzejicich z vrcholu A4; nahradime uhlopfickou
Ai—14441 (s indexy pocitime modulo k& - 1). Podle indukéniho pfedpokladu
je |
(k —3) (p — |di-14i| — |Aidiz1] 4 |di-14i11]) < 2(d —|Ai-1 A1 — di),
kde d; je soucet délek uhlopri¢ek vychazejicich z vrcholu A; uvazovaného
(k + 1)-thelniku. Seéteme-li tyto nerovnosti pro vechna i, dostanecme

k1
(k—3)((k + Dp—2p + 2 |Aic1disa]) <
: : i=1 -
Bl

< 2k + )d—2d — > |Ai—14i11)),
=1

3
neboli
ki1
(k—3)p + 2 |Ai-1dia] < 2d.
i=1
Ted si staci uvédomit (napf. jako v 3. feSeni), z¢
k1
> |Adi-14i1] > p,
i=1

a dostaneme nerovnost
(k —2)p < 2d,

coz je leva strana dokazované nerovnosti pro n = k - 1.
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152. Nejprve dokazeme, Ze k > m, coZ plyne z nerovnosti

ad d
2’0—2'”=a+d——(b+c)=a—b—|—d—7=(b—a)(;———1>>0.

Z rovnosti
a2k — a) = b(2m — b)
dostaneme
2m| p2 — a2 = (b + a) (b — a). €))
Cisla b + a, b — a nejsou ob¥ d&litelnd &tyfmi, protoZe jejich soudet 2b

neni ¢tyfmi délitelny. Jedno z Cisel b + a, b — a je tedy podle (1) délitelné
&islem 2m-1, Je vSak

b+c
b—a<b<——=2m1
2
a zdroven
b+ a<b-+c=2m,
takze
b+ a=2m1 )]
Podobné je
c—a=b+4+c—(b+a=2m—2m1=2m-1 3)
ProtozZe a, b, c¢ jsou licha &isla, plyne z (2), Ze a, b jsou nesoudélna &is-
la, a z (3), Ze a, ¢ jsou nesoudé&lna ¢&isla. Z podminky ad = bc vidime, Ze
a | bc. Musi tedy byt a = 1.
Navic odtud plyne, Ze b =2m-1_ 1, ¢c=2m"1| ]l ad=22m-1) ],
kde m > 2 je ptirozené Cislo.
2. feSeni. Nejprve ukazZeme, Ze k > m:
2% = (d + a)? = (d—a)2 + 4ad > (c — b)? + 4bc = (b + ¢)2 = 22m,
Uvazujme pfirozena &isla x, y, pro ktera je
a = 2k-1__ X, b= 2m-—1_y, c = 2m—1+ Vs (4)
d= 2k"14 x.
Plati
22k-2— x2 = qd = bc = 22m—2— p2, ®)
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takze
X% — y2 = 22k-2__ Q2m-2
neboli
(x =) (x + y) = 22m=2Q22%k-m) — 1), ©6)

Cisla x, y jsou lichd, &sla x 4 y, x — y sud4 a pfitom nemohou byt obé
zaroveti délitelnd étyfmi, protoze

X+y+x—y=2x (7)
Je tedy {x + y, x — y} = {2r, 22m=35} pro n&jaka lichd &isla r a 5. Odtud
plyne podle (7) a (6)
X =28m—4g 4 r, ps = 22(k-m)— |
takze podle (4)
a=2k1—x=2k1_22m-25
a déle
1 < sa=2k"1g—220n-252 _ D2(k-m) | ] =
=]1— (2’”‘25‘ —2k-m)2 < ]
tedy
a=ys=1.
Navic je m —2 =k —m, tj. k =2m —2 a ze (4) dostaneme
x=22m=3_1 d=aq+ 2x =22m"2_1 = pc = 22m-2_ »2
takze
b=2m"1—_1, ¢=2m"14 1.
Podminkam tlohy tedy vyhovuji pravé vSechny Ctvefice -
a=1,b=2m1_1, ¢c=2m"14 ], d=22m2_1],

kde m > 2 je pfirozené ¢islo.
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