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PŘEDMLUVA

Ve sbírce jsou vyřešeny všechny úlohy zadané v dosavadních 25 mezinárod-
nich matematických olympiádách. Tato soutěž je určena pro středoškoláky
a účastnické státy na ni většinou vysílají ty, kteří vynikli v národních matema-
tických olympiádách. Koná se o letních prázdninách a v jejím pořádání se

jednotlivé státy střídají. Při jubilejní 25. MMO v Praze r. 1984 soutěžilo 192
žáků z 34 zemí. Účastnické státy zasílají pořadatelům návrhy úloh, pořadatelé
z nich připraví širší výběr, z kterého pak vychází jury při určování soutěžního
souboru. Dbá se přitom, aby úlohy byly původní, aby tematicky nepřekračovaly
rámec střední školy žádného zúčastněného státu a aby jejich obtížnost na jedné
straně umožnila rozlišit úroveň účastníků a na druhé straně odpovídala času
vymezenému na jejich řešení. Soutěží se dva dny, každý den jsou zadány zpra-
vidla tři úlohy, na jejichž řešení mají žáci čtyři a půl hodiny.

Pro čtenáře je užitečnější, vyřeší-li úlohu nejprve sám a teprve potom si své
řešení porovná s řešením v knize. Proto jsme shrnuli texty všech úloh na za-
čátek knížky a teprve pak uvádíme jejich řešení. Ta jsme se snažili sepsat co

nejpřehledněji tak, aby z nich vynikla myšlenka, na níž jsou založena, nad
technickými detaily. Zvláště v geometrických úlohách jsme dbali o názornost,
takže jsme občas dali přednost výstižnému obrázku před zdlouhavými vý-
klady.

Doufáme, že sbírka poslouží účastníkům naší matematické olympiády,
učitelům matematiky a vedoucím matematických kroužků a že potěší všechny
milovníky matematiky, kteří rádi luští úlohy.

Autoři
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1. MMO 19591.Dokažte, že zlomek
21« + 4
14n -f" 3

nelze zkrátit pro žádné přirozené číslo n.2.Zjistěte, pro která reálná čísla л* platí

Vх—v2 1 = ]/2,
x — j/2x — 1 = 1,

x + ]/2x — 1 +a) .v —

x + j/2x — 1 -(-b)

x _i~ j/2x — 1 "j- x — |/2x — 1=2.c)3.Předpokládejme, že číslo cos x vyhovuje rovnici
a cos2 x + b cos x + c = 0,

kde a, b, c jsou daná reálná čísla. Napište kvadratickou rovnici, kterou
splňuje číslo cos 2x. Výsledek užijte na případ a — 4, b = 2, c = —1.4.Sestrojte pravoúhlý trojúhelník ABC, je-li dána přepona с = AB,
přičemž velikost těžnice příslušné к přeponě je rovna geometrickému prů-
měru obou odvěsen.5.V rovině je dána úsečka AB a uvnitř ní bod M. Nad úsečkami AM,
BM sestrojme dva čtverce AMCD, BMEF tak, aby ležely v téže polorovině
určené přímkou AB. Těmto čtvercům opišme kružnice; ty se kromě bodu M
protínají ještě v dalším bodě N.

a) Dokažte, že přímky AE, BC procházejí bodem N.
b) Dokažte, že přímka MN prochází určitým bodem nezávislým na volbě

bodu M.

c) Určete množinu všech středů úseček, které spojují středy obou uvažo-
váných čtverců, probíhá-li bod M vnitřek úsečky AB.



(14)6.Jsou dány dvě různoběžné roviny л, q o průsečnici p. V rovině л je
dán bod A a v rovině q bod C, přičemž žádný z bodů A, C neleží na přímce
p. Sestrojte rovnoramenný lichoběžník A BCD, kde A B || CD, В e л, D e q,

jemuž lze vepsat kružnici.

2. MMO 19607.Najděte všechna trojciferná čísla, jejichž jedenáctina je rovna součtu
druhých mocnin jejich číslic.8.Určete všechna reálná čísla x, pro která platí nerovnost

4x2
<C 2x -j- 9.

(l-yi +2x)29.Je dán pravoúhlý trojúhelník ABC, jehož přepona BC je rozdělena na n
shodných úseček, kde n je liché číslo. Označme a úhel, pod kterým je
z bodu A vidět tu z úseček, která obsahuje střed přepony daného trojúhel-
niku; dále označme a velikost přepony a h velikost příslušné výšky daného
trojúhelníku. Dokažte, že

4nh
tg a — (и2 — 1 )a '10.Sestrojte trojúhelník ABC, jsou-li dány velikosti va, v& výšek přísluš-

ných vrcholům А, В a velikost ta těžnice příslušné vrcholu A.

11. Je dána krychle ABCDA'B'C'D'.
a) Určete množinu všech středů úseček XY, kde Xje bod úsečky AC a Y

je bod úsečky B'D'.
b) Určete množinu všech bodů Z, které leží uvnitř úseček XY z úlohy a)

a pro něž platí |Z7| = 2\XZ\.

12. Je dán rotační kužel, jemuž je vepsána kulová plocha tak, že se dotýká
podstavy kužele. Této kulové ploše je opsán rotační válec, jehož jedna



(15)

podstava leží v rovině podstavy daného kužele. Označme V\ objem kužele,
V2 objem válce.

a) Dokažte, že neplatí rovnost Vi = V2-
b) Určete nejmenší číslo k, pro které může nastat rovnost V\ — к V2;

pro tento případ sestrojte úhel, pod kterým je z vrcholu kužele vidět průměr
podstavy kužele.13.Je dán rovnoramenný lichoběžník se základnami a, c a výškou v.
Na ose souměrnosti tohoto lichoběžníku sestrojte bod P tak, aby z něho
byla vidět obě ramena lichoběžníku pod pravými úhly. Dále vypočtěte
vzdálenost bodu P od základen lichoběžníku. Rozhodněte, za jakých pod-
mínek bod P existuje.

3. MMO 196114.Řešte soustavu rovnic

X + у + Z = a,
x2 + y2 + Z1 = ů2,

xy — z2,
kde a, b jsou daná čísla. Udejte podmínky, které musí čísla a, b splňovat,
aby řešení л;, у, z byla kladná a navzájem různá.15.Označme a, b, c délky stran trojúhelníku a S jeho obsah. Dokažte, že

a'2 + ú2 + c2 ^ 4]/3 S.
V kterém případě nastane rovnost?16.Řešte rovnici

cosnx — sinwx = 1,

kde n je dané přirozené číslo.



(16)17.Je dán trojúhelník P1P2P3 a uvnitř něho bod P. Přímky PiP, P2P,
P2P protínají protější strany trojúhelníku v bodech Q\, Q2, 03. Dokažte,
že z čísel

\Pip I \P2P\_ \P_sP\
\PQú' \PQ*V IPQ*\

alespoň jedno není větší než 2 a alespoň jedno není menší než 2.18.Sestrojte trojúhelník ABC, je-li dáno \AC\ — b, \AB\ — c a úhel
I £ AMB\ = oj, kde M je střed úsečky BC. Dokažte, že pro oj < 90° má
úloha řešení, právě když platí

OJ

b tg — S c < b.

V kterém případě nastane rovnost?19.Je dána rovina e a v jednom z poloprostorů jí určených tři body A,
В, C, které neleží v přímce. Přitom rovina ABC není rovnoběžná s rovinou
e. V rovině e zvolme tři libovolné body А', В', C. Označme L, M, N středy
úseček AA', BB\ CC; dále označme G těžiště trojúhelníku LMN (nebudeme
uvažovat takové polohy bodů А', В', C, pro které příslušné body L, M, N
netvoří vrcholy trojúhelníku). Určete množinu všech bodů G, probíhají-li
body А’, В’, C rovinu e.

4. MMO 196220.Určete nejmenší přirozené číslo, které končí v desítkové soustavě
číslicí 6, a přesuneme-li ji na začátek, dostaneme čtyřnásobek hledaného
čísla.21.Určete všechna reálná čísla л-, která splňují nerovnost

1
УЗ — x — ]/x + 1 > •



(17)22.Je dána krychle ABCDA'B'C'D'. Proměnný bod X probíhá stálou
rychlostí obvod čtverce ABCD (v tomto směru), proměnný bod Y probíhá
toutéž rychlostí obvod čtverce B'C'CB (v tomto směru). Oba body X, Y
se začnou pohybovat současně z výchozích poloh A a B'. Určete množinu
všech středů Z úseček XY.23.Řešte rovnici

cos2 a* + cos22a -j- cos23a* = 1.24.Je dána kružnice к a na ní tři různé body А, В, C. Sestrojte na kruž-
nici к bod D tak, aby vznikl čtyřúhelník ABCD, jemuž lze vepsat kružnici.25.Je dán rovnoramenný trojúhelník. Kružnice jemu opsaná má poloměr
R, kružnice vepsaná má poloměr r. Dokažte, že vzdálenost d středů těchto
kružnic je

cl - }/R(R — 2r).26.Ke čtyřstěnu ABCD existuje pět kulových ploch, z nichž každá se do-
týká šesti přímek AB, BC, CA, AD, BD, CD, právě když je to pravidelný
čtyřstěn. Dokažte.

5. MMO 196327.Najděte všechny reálné kořeny rovnice

]/.v2 —p + 2]/л'2 — 1 = x,

kde p je reálný parametr.28.Je dán bod A a úsečka BC. Určete množinu všech bodů v prostoru,
které jsou vrcholy pravých úhlů, jejichž jedno rameno prochází bodem A
a druhé rameno má s úsečkou BC společný aspoň jeden bod.



(18)29.Předpokládejme, že všechny vnitřní úhly konvexního и-úhelníku jsou
shodné a jeho po sobě následující strany mají délky

ai ^ «2 ^ ... ^ an.

Pak je ai = ci2 — ... = cin. Dokažte.30.Určete všechna řešení xi, X2, хз, X4, X5 soustavy rovnic
*5 + *2 = ух 1,

Xl + X3 = yx 2,

X2 + X4 = ^А'З,

Аз + X5 = УХ 4,

A4 + Xi= УХ 5,

kde у je parametr.31.Dokažte, že platí
Зтт: 1

— + cos — = — .

7 7 2

2tín

cos — cos
732.Soutěže se zúčastnilo pět žáků А, В, C, D, E. Předpověď, že výsledné

umístění bude ABCDE, se nesplnila: žádný soutěžící nebyl na předpověze-
ném místě a žádná dvojice bezprostředně za sebou následujících soutěžících
nebyla předpovězena správně. Předpověď DAECB byla správnější: právě
dva soutěžící byli na předpovězených místech a právě dvě dvojice bez-
prostředně za sebou následujících soutěžících byly předpovězeny správně.
Určete výsledné umístění.

6. MMO 196433.a) Určete všechna přirozená čísla n, pro která je číslo 2n — l dělitelné
sedmi.

b) Dokažte, že neexistuje žádné přirozené číslo ti, pro které je číslo 2n + 1
dělitelné sedmi.



(19)34.Jsou-li а, b, с délky stran troj'úhelníku, potom platí
a\b \ c — a) -f- b2(c + a — b) -f c\a -f b — c) ^ 3abc.

Dokažte.35.Do trojúhelníku ABC se stranami a, b, c vepišme kružnici a sestrojme
к ní další tři tečny rovnoběžné se stranami daného trojúhelníku. Každá
z těchto tečen utíná z trojúhelníku ABC po jednom trojúhelníku. Do každého
z těchto tří trojúhelníků vepišme kružnici. Vypočtěte součet obsahů všech
čtyř vepsaných kruhů.36.Sedmnáct osob si navzájem dopisuje, každá z nich se všemi ostatními.
V celé korespondenci se vyskytují jen tři různá témata. Každá dvojice osob
si dopisuje jen o jednom z těchto témat. Dokažte, že existují alespoň tři
osoby, které si dopisují na totéž téma.37.V rovině je dáno pět bodů. Mezi přímkami, které spojují vždy dva
z těchto bodů, nejsou žádné dvě navzájem rovnoběžné nebo kolmé. Každým
z daných bodů veďme kolmice ke všem spojnicím zbývajících čtyř bodů.
Dokažte, že tyto kolmice se protínají nanejvýš v 315 bodech.38.V daném čtyřstěnu ABCD spojme vrchol D s těžištěm Di trojúhelníku
ABC. Rovnoběžky s přímkou DDi vedené body А, В, C protínají roviny
BCD, CAD, ABD v bodech A\, B\, C\.

a) Dokažte, že objem čtyřstěnu ABCD je roven třetině objemu čtyřstěnu
A\B\C\Di.

b) Platí tento výsledek i v případě, kdy D\ je libovolný bod uvnitř troj-
úhelníku А ВСЧ

7. TMМО 196539.Určete všechna čísla v z intervalu <0, 2tt), která vyhovují nerovnicím
2 cos x |у 1 -f- sin 2x — У1 — sin 2x\ 5Š У2.



(20)40.Je dána soustava rovnic

tfnxi + a i2*2 + tfi3*3 = 0,
021*1 + «22*2 + 023*3 = 0,
031*1 + 032*2 + «33*3 = 0

s neznámými xi, X2, хз. Její koeficienty au, «22, «33 jsou kladné, všechny
ostatní koeficienty jsou záporné a v každé z daných rovnic je součet všech
tří koeficientů kladný. Dokažte, že soustava má jediné řešení xi = X2 =
= хз = 0.41.Je dán čtyřstěn ABCD, jehož hrany AB, CD mají délky a, b. Vzdále-
nost mimoběžek AB, CD je d, jejich odchylka je co. Čtyřstěn ABCD je
rozdělen rovinou e rovnoběžnou s přímkami AB, CD; poměr vzdáleností
roviny e od přímky AB a od přímky CD je roven k. Vypočtěte poměr obje-
mů vzniklých těles.42.Najděte všechny čtveřice reálných čísel xi, X2, хз, X4, pro něž platí,
že součet každého z těchto čísel se součinem tří zbývajících je roven dvěma.43.Je dán trojúhelník OAB s ostrým úhlem při vrcholu O. Bodem M Ф O
trojúhelníku OAB veďme kolmice к přímkám OA, OB a jejich paty označme
P, Q; průsečík výšek trojúhelníku OPQ označme H. Určete množinu všech
bodů H, probíhá-li bod M

a) stranu AB,
b) vnitřek trojúhelníku OAB.44.V rovině je dána množina n bodů (n ^ 3), přičemž každé dva jsou

spojeny úsečkou. Označme d délku nejdelší z těchto úseček. Průměrem dané
množiny nazveme každou z uvažovaných úseček, která má délku d. Do-
kažte, že daná množina má nejvýše n průměrů.
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§. MMO 196645.V matematické soutěži byly dány tři úlohy А, В, C. Mezi účastníky
bylo 25 žáků, z nichž každý vyřešil aspoň jednu úlohu. Ze všech účastníků,
kteří nevyřešili úlohu A, byl počet těch, kteří vyřešili úlohu B, dvojnásobkem
počtu těch, kteří vyřešili úlohu C. Počet žáků, kteří vyřešili jen úlohu A,
byl o 1 větší než počet ostatních žáků, kteří vyřešili úlohu A. Ze všech žáků,
kteří vyřešili jedinou úlohu, právě polovina nevyřešila úlohu A. Kolik
žáků vyřešilo jen úlohu B146.Označme a, b, c délky stran trojúhelníku a a, /5, у velikosti protějších
úhlů. Platí-li

tg у (a tg a + b tg /?),a -f- b —

pak je trojúhelník rovnoramenný. Dokažte.47.Součet vzdáleností vrcholů pravidelného čtyřstěnu od středu kulové
plochy jemu opsané je menší než součet vzdáleností těchto vrcholů od
kteréhokoli jiného bodu prostoru. Dokažte.48.Dokažte, že pro každé přirozené číslo n a pro každé reálné číslo

7C

kde к e (0, 1, ..., n} а Я je celé, platíx Ф X 2k’

11 1
= cotg x — cotg 2nx.+ ... +

sin 2x sin 4x sin 21lx49.Řešte soustavu rovnic

\ai — a2\x2 + \ai — a3|.v3 + |«i — = h
\ai — a2\xi + \a2 — a3\x3 + \a2 — ал\хь = 1,
\ai — a3\x\ + \az — a3\x2 + |a3 — «41*4 = 1,
\ai — fl 41 x i + i«2 — a4|x2 + |«з — tf4|x3 = 1,

kde ai, a2, a3, n4 jsou čtyři daná navzájem různá reálná čísla.



(22)50.Uvnitř stran А В, ВС, CA trojúhelníku ABC zvolme body K, L, M.
Dokažte, že obsah aspoň jednoho z trojúhelníků MAK, KBL, LCM je
menší nebo rovný čtvrtině obsahu trojúhelníku ABC.

9. MMO 196751.Předpokládejme, že strany rovnoběžníku ABCD mají velikosti
\AB\ — a, \AD\ = 1, úhel DAB má velikost ос a trojúhelník ABD je ostro-
úhlý. Pak jednotkové kruhy se středy А, В, C, D pokrývají rovnoběžník
ABCD, právě když

a ^ cos a + j/3 sin a.
Dokažte.52.Má-li jediná hrana čtyřstěnu délku větší než I, pak je jeho objem nej-

1
výše roven —. Dokažte.

O53.Buďte k, m, n přirozená čísla taková, že m + к
než n -f I- Označme cs = .v(..v +1). Pak součin

(Cm+1 — Cjc) (Cm+ 2 — Ck) • • ■ (('rn+n — C/č)

je dělitelný součinem ciC2.. .cn. Dokažte.

! je prvočíslo větší54.Jsou dány dva ostroúhlé trojúhelníky AoBoCo a A1B1C1. Uvažujme
trojúhelníky ABC podobné trojúhelníku A1B1C1 a opsané trojúhelníku
AqBqCq tak, že body Со, А о, Вo leží na stranách AB, BC, CA. Sestrojte
trojúhelník, který má ze všech takovýchto trojúhelníků ABC největší obsah.55.Je dána posloupnost

ci = ai 4- аг 4- • • • 4- as,

ci — a i -|~ a ; 4- • • • 4" a\,

cn = a'[ + a2 + ... + anb,
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kde cii, я 2, ..., «8 jsou reálná čísla ne všechna rovná nule. Předpokládejme,
že nekonečně mnoho členů posloupnosti {cn} je rovno nule. Určete všechna
přirozená čísla n, pro která je cn = 0.56.Při sportovní soutěži bylo rozděleno v n po sobě jdoucích dnech
(n > 1) celkem m medailí. Prvního dne byla udělena 1 medaile a sedmina ze
zbývajících m — 1 medailí. Druhého dne byly uděleny 2 medaile a sedmina
ze zbývajících, atd. Posledního dne bylo uděleno posledních n medailí.
Kolik dní trvala soutěž a kolik medailí bylo celkem rozděleno?

10. MMO 196857.Dokažte, že existuje jediný trojúhelník, jehož strany jsou tři po sobě
jdoucí přirozená čísla a jehož jeden úhel je dvojnásobkem druhého.58.Najděte všechna přirozená čísla л; taková, že součin číslic v jejich
dekadickém zápisu je roven x2 — 10x — 22.59.Je dána soustava rovnic s neznámými xi, X2, ..., xn

ax j + bxi
ax2 + bx 2

+ с = X2,

+ C — X3,

axzn_t + bxn-i + c = xn,

ax2n + bxn + c = x i,

kde a, b, c jsou reálná čísla, а Ф 0. Dokažte, že tato soustava

a) nemá žádné reálné řešení, jestliže (b — l)2 — Aac < 0;
b) má právě jedno reálné řešení, jestliže (b — l)2 — Aac — 0;
c) má více než jedno reálné řešení, jestliže (b — l)2 — Aac > 0.60.Dokažte, že v každém čtyřstěnu existuje takový vrchol, že z úseček

shodných s hranami, které z něho vycházejí, lze sestrojit trojúhelník.



(24)61.Je dáno kladné číslo a a reálná funkce/definovaná pro všechna reálná
čísla. Předpokládejme, že pro každé x platí

1
f(x -f a) = — + ]//(*) — (/(x))2.

a) Dokažte, že funkce/je periodická (tj. existuje kladné číslo b takové,
že /(x + b) = /(x) pro všechna x).

b) Udejte pro a = 1 příklad nekonstantní funkce / s uvedenými vlast-
nostmi.62.Pro každé přirozené číslo n vypočtěte součet

co

n + 2k2 2k+1 J’
fc = 0

kde [x] značí celou část čísla x.

11. MMO 196963.Dokažte, že existuje nekonečně mnoho přirozených čísel a takových,
že číslo /í4 + a je složené pro každé přirozené n.64.Jsou dána reálná čísla ai, ач, ..., an. Uvažujme funkci

11
/(x) = cos (a 1 + x) + — cos (a2 4- x) + ... + cos (an -f x).

X'2 — Xl
celé číslo. Dokažte.Je-li/(xi) = /(x2) = 0, pak jc

Ti65.Pro každé číslo /се (1, 2, 3, 4, 5} řešte úlohu: Určete nutné a posta-
čující podmínky pro kladné číslo a, aby existoval čtyřstěn, jehož к hran
má délku a a ostatních 6 — к hran má délku 1.



(25)66.Je dán pravoúhlý trojúhelník ABC s přeponou AB a opsanou kruž-
ničí k. Označme D patu výšky vedené z vrcholu C na přeponu, к i kružnici
vepsanou trojúhelníku ABC, к z, к 3 dvě navzájem různé kružnice, z nichž
každá se dotýká přímek AB, CD, leží v polorovině ABC a dotýká se zevnitř
kružnice k. Dokažte, že kružnice k±, kz, к3 mají kromě přímky 40 ještě
další společnou tečnu.67.V rovinč je dáno n bodů (n > 4), z nichž žádné tři neleží v přímce.

1
Potom existuje aspoň — (« — 3) (n — 4) různých konvexních čtyřúhelníků

se všemi vrcholy v daných bodech. Dokažte.68.Jsou-li A'i, y±, z i, X2, у2, z2 reálná čísla, pro něž platí xi > 0, a2 > 0,
Aij’i — z\> 0, Х2У2 — z\ > 0, potom je

1 I8
+

(A'i + A2) (y 1 + у2) — (zi -f z2)2 Xiyi — z\ Х2У2 — Z?2 '
Dokažte a zjistěte, kdy nastane rovnost.

12. MMO 197069.Uvnitř strany А В trojúhelníku ABC je dán bod M. Označme r 1, r2, r

poloměry kružnic vepsaných trojúhelníkům ACM, BCM, ABC. Označme
dále q 1, q2, q poloměry kružnic, které jsou připsány týmž trojúhelníkům
a Ježí v úhlu ACB. Dokažte, že platí

/• ir2

C1C2 Q

r70.Buďte a, b, n přirozená čísla větší než 1 a nechť čísla An, Bn mají
totéž vyjádření XnXn-i-. .aiao v číselných soustavách o základech a, b,
přičemž xn-i Ф 0, xn Ф 0. Čísla, která dostaneme z An, Bn vynecháním



(26)

číslice Xn, označme An-i, Bn-i. Dokažte, že je a > b, právě když
An-1 Вп-г
—7— <

An Bn71.Každé posloupnosti {an)j-“, kde
1 = Clo = cii ^ Й2 ^ ..

přiřaďme posloupnost {bn}™ definovanou vzorcem

(I)• ?

-2( > i
bn

]/ctkClíc
k=1

Dokažte:

a) Pro všechna přirozená čísla n platí
О йЬп< 2.

b) Pro každé číslo c e <(0,2) existuje taková posloupnost {an} splňující (1),
že v odpovídající posloupnosti {bn} je bn > c pro nekonečně mnoho
indexů n.72.Určete všechna přirozená čísla n s touto vlastností: Množinu
{n, n + 1,и + 2,й + 3,и + 4,и + 5} lze rozdělit na dvě disjunktní podmno-
žiny tak, že součin všech prvků jedné podmnožiny je roven součinu všech
prvků druhé podmnožiny.73.Předpokládejme, že pata E výšky DE čtyřstěnu ABCD je zároveň
průsečíkem výšek trojúhelníku ABC a že BD J_ CD. Dokažte, že potom
platí

(\AB\ + \BC\ + \СА\У й 6(HZ)|2 + \BD\2 + \CD\2).
Určete, pro které z uvažovaných čtyřstěnů zde nastane rovnost.74,V rovině je dáno 100 bodů, z nichž žádné tři neleží v přímce. Uva-
žujme všechny trojúhelníky, jejichž každý vrchol je některý z daných bodů.
Dokažte, že nejvýše 70 % těchto trojúhelníků jsou trojúhelníky ostroúhlé.
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13. MMO 197175,Dokažte, že následující tvrzení platí pro n — 3 a n = 5 a neplatí
pro žádné jiné přirozené číslo n > 2:

Jsou-li ai, «2, ..an reálná čísla, pak
(«i — a2) (« 1 — «3) ... («1 — o») + («2 — fli) («2 — аз) • • • («2 — «и) +

+ • • • + (а» — си) 0я» — «2) • • • (ая — o»-i) ^ 0.76,Je dán konvexní mnohostěn P1, který má právě devět vrcholu A1,
Z 2, A9. Pro Ze (1, 2, ..9} označme 17 mnohostěn, který vznikne
z Pí rovnoběžným posunutím, při němž bod Zi přejde do bodu At. Dokažte,
že aspoň dva z mnohostěnů P1, P2, ..., /’<j mají společný vnitřní bod.77.Dokažte, že posloupnost (2,ř — 3} obsahuje nekonečně mnoho čísel,
z nichž každá dvě jsou nesoudělná.78.Předpokládejme, že všechny stěny čtyřstěnu ABC!) jsou ostroúhlé
trojúhelníky. Uvažujme všechny uzavřené lomené čáry XYZTX, kde
X, Y, Z, T jsou vnitřní body hran AB, BC, CD, DA. Dokažte:

a) Je-li \YDAB\ + \*BCD\ ^ \YABC\ + \YCDA\,
potom mezi těmito lomenými čarami neexistuje nejkratší.

b) Jeli \YDAB\ + \ *BCD\ = \YABC\ + \ <CDA\,
potom existuje nekonečně mnoho lomených čar minimální délky a tato

/

délka je rovna 2\AC\ sin —, kde а = \YBAC\ + \ -YCAD\ + |<C DAB |.79.Dokažte, že pro každé přirozené číslo m existuje neprázdná konečná
množina S bodů v rovině taková, že ke každému bodu JeS existuje v S
právě m bodů, jejichž vzdálenost od A se rovná jedné.80.Uvažujme čtvercovou tabulku

«11 «12 . • • «1»

«21 «22 • • • «2?i

Clnl Cl112 • • • Clím



(28)

sestavenou z nezáporných celých čísel a vyhovující následující podmínce:
jestliže ciij — 0, potom platí nerovnost

(kl + (Ii2 + • • • + din + dlj -f- O23 + ... + dni = n.

1
Dokažte, že pro součet 5 všech čísel tabulky platí s^-^n2.

14. ММ0 197281.Dokažte, že libovolná množina deseti dvojciferných přirozených čísel
má dvě neprázdné disjunktní podmnožiny takové, že součty jejich prvků
jsou stejné.82.Dokažte, že pro n ^ 4 lze každý tětivový čtyřúhelník rozdělit na n

tětivových čtyřúhelníků.83.Pro každá dvě celá nezáporná čísla m, n je
(2w)! (2/г)!

m\ n\ (m + /?)!
celé číslo. Dokažte.84.Najděte všechny pětice xi, x->, л'з, x&, хъ kladných reálných čísel,
pro něž platí

(./ — А-3Л-5) (x\ — X3X5) й 0,
(xi — X4X1) (X3 — .V4X1) ^ 0,
(л-3 — x5x2) (x; — X5X2) ^ 0,
(x\ — X1X3) (xl — X1X3) й 0,
(vq — .Y2.Y4) (v[ — Y2.Y4) ^ 0.85.Nechť/ a g jsou reálné funkce takové, že pro všechna reálná л' а у

platí
f(x -I- v) -\-f(x — y) = 2f(x)g(y).
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Dokažte: Jestliže/není identicky rovna nule a jestliže |/(x)| ^ 1 pro všech-
na .v, potom také |g(x)| ^ 1 pro všechna x.86.Jsou dány čtyři navzájem různé rovnoběžné roviny. Dokažte, že
existuje pravidelný čtyřstěn, který má v každé z daných rovin jeden vrchol.

15. MMO 197387.Na přímce p je dán bod O. Všechny koncové body P\, P•>, ..., Pn
jednotkových vektorů OP i, OP 2, ..., 0Pn leží v téže polorovině ohřáni-
čené přímkou p. Dokažte, že pak pro lichá n platí

IOP1 + OP0+ ... +0P„| ^ 1.88.Rozhodněte, existuje-li v trojrozměrném prostoru konečná množina M
bodů neležících v jedné rovině, která má následující vlastnost: Ke každým
dvěma bodům А, В e M existují body C, Dg M tak, že přímky А В a CD jsou
rovnoběžné a nesplývají.89.Najděte nejmenší hodnotu součtu a2 -f- b2, jsou-li a, b reálná čísla,
pro něž má rovnice

x4 -j- ax2 + bx2 -f ax + 1 — 0

aspoň jeden reálný kořen.90.Ženista má prověřit, vyskytují-li se miny na pozemku tvaru rovno-
stranného trojúhelníku (včetně jeho hranice). К dispozici má detektor,
jehož poloměr účinnosti se rovná poloviční výšce trojúhelníku. Na průz-
kum vychází z některého vrcholu trojúhelníku. Jakou cestu má zvolit,
aby prošel co nejkratší vzdálenost a prozkoumal přitom celý pozemek?91.Uvažujme neprázdnou množinu G nekonstantmch funkcí / reálné
proměnné x tvaru /(x) = ax -f b, kde a ý=0, b jsou reálná čísla, s násle-
dujícími vlastnostmi:
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a) je-li f g 6 G, pak g ofe G, kde (g of) (x) = g(f(x)),
b) je-li fe G, f{x)— ax -f- b, potom též inverzní funkce / 1 e G;

x — b
přitom /-1(л') = —-—,

c) ke každé funkcife G existuje x/ tak, že f(xf) = Xf.
Dokažte, že existuje takové y, že f(y) = у pro všechnyfe G.

92. Je dáno n kladných reálných čísel a i, «2, ..., an a reálné číslo q e (0, I).
Najděte n reálných čísel bi, b2, ..., bn s těmito třemi vlastnostmi:

a) aic < bfc pro všechna ke (1,2,
bk+1 1

— < — pro všechna к e {1,2, ..

4
1 + q

— 11b) q < i’/v.'

c) b 1 + z>2 + • • • + bn < - (a\ + a 2 + .. . + r/w).
q1 —

16. MMO 1974

93. Tři hráči А, В, C hrají hru se třemi kartami. Na každé z karet je
celé číslo: na prvé p, na druhé q, na třetí r, přičemž platí 0 < p < q < r.
Při každém kole hry se karty zamíchají a každý hráč dostane jednu. Potom
kartu vrátí a dostane za ni tolik kuliček, kolik udává na ní napsané číslo.
Hra trvala N kol, N ^ 2. Na konci hry měl hráč A celkem 20 kuliček,
hráč В 10 a hráč C 9 kuliček. V posledním kole hráč В dostal r kuliček.
Určete, který z hráčů dostal v prvém kole q kuliček.

94. Označme velikosti vnitřních uhlů trojúhelníku ABC obvyklým způ-
sobem a, /1, y. Na úsečce AB existuje bod fí tak, že \CD\ — ]]\AD\.\BD\,
právě když

У
sin a sin (i 5S sin2 —.

Dokažte.



(31)95.Dokažte, že pro žádné přirozené číslo n není číslo

2/7 + 1
2к + 1

23*

k= 0

dělitelné pěti.96.Uvažujme dělení šachovnice s 8 x 8 poli na nepřekrývající se obdél-
niky, které se skládají ze stejného počtu černých a bílých polí. Najděte
největší číslop, pro které lze šachovnici rozdělit na p takovýchto obdélníků,
z nichž žádné dva neobsahují stejný počet polí. Pro toto maximální p určete
všechny možnosti pro počty polí v obdélnících příslušného dělení.97.Určete množinu všech hodnot, jichž nabývá součet

b da c
C !

a + b + d a + b + c ' b + c + d ' a -f c -+- ď

jsou-li a, b, c, d libovolná kladná reálná čísla.

+ +98.Nechť P je nekonstantní mnohočlen s celočíselnými koeficienty.
Označme deg(P) jeho stupeň a n{P) počet všech celých čísel k, pro něž
platí (P(k))2 = 1. Dokažte, že

n(P) — deg(P) <; 2.

17. MMO 197599.Jsou dána reálná čísla

Xl X2 ^ ... ^ xn,

У1 ^ >’2 2> ... ^ Уп-

Dokažte, že pro libovolné pořadí z\, Z2, ..., zn čísel vj, у2, ..., yn platí

(Xi — Vi)2 ^ 2 (xi — ZÚ2-v

i~ 1 i=1
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300. Nechť {(an} je rostoucí posloupnost přirozených čísel. Dokažte, že
nekonečně mnoho členů am této posloupnosti lze vyjádřit ve tvaru

am = xav + ytЦ,

kde x, у jsou přirozená čísla а p Ф q.101.Je dán trojúhelník ABC. Vně tohoto trojúhelníku sestrojme (v téže
rovině) trojúhelníky ARB, BBC, CQA takové, že

\*PBC\ = \<CAQ\
\*BCP\ = \*QCA\ = 30°,
\*ABR\ = \XBAR\ = 15°.

Dokažte, že \PR\ = \QR\ a \ ^PRO\ = 90°.

45°,102.Jako A označme součet číslic čísla 44444444 a jako В součet číslic
čísla A. Určete součet číslic čísla В (všechna čísla jsou zapsána v desítkové
soustavě).103.Zjistěte, zda na kružnici s poloměrem 1 existuje 1975 bodů takových,
že délky všech jimi určených tětiv jsou racionální čísla.104.Je dáno přirozené číslo n. Najděte všechny mnohočleny P dvou
proměnných s těmito třemi vlastnostmi:

a) P je homogenní mnohočlen stupně n, tzn. že pro všechna reálná čísla
t, x, у platí

P(tx, ty) = tnP(x, y\

b) pro všechna reálná čísla a, b, c platí
P(a + b, c) + P(a + c, b) + R(b + c, a) = 0,

c)/>(l,0) = 1.
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18. MMO 1976105.V konvexním rovinném čtyřúhelníku o obsahu 32 cm2 je součet
délek dvou protilehlých stran a jedné úhlopříčky roven 16 cm. Určete
všechny možné délky druhé úhlopříčky.

106.Nechť

Pi(x) = л-2 — 2
a pro j e {2, 3, 4, .. .} je

P,(x) = ři(P,_i(jc)).
Dokažte, že pro každé přirozené n jsou všechny kořeny rovnice

Pn(x) = x
reálné a různé.107.Krabici ve tvaru kvádru lze zcela vyplnit krychlemi o objemu 1.
Vložíme-li do ní co nejvíce krychlí o objemu 2 tak, aby hrany krychlí byly
rovnoběžné s hranami krabice, vyplníme právě 40 % prostoru krabice.
Určete vnitřní rozměry všech krabic s touto vlastností.108.Určete největší hodnotu, kterou může nabýt součin několika přiro-
zených čísel, jejichž součet je l 976.109.Je dána soustava p rovnic o q = 2p neznámých

ailXl + C112X2 + .. . + aigXq = 0,
C121X1 + 022X2 + • • • + Cl2qXq = 0,

OplXi + ap2X2 + . . . + OpgXq = 0
s koeficienty otj e {—1, 0, 1} pro všechna ř e {1,2, ..., p},j e (1, 2, ..., q).
Dokažte, že tato soustava má řešení (xi, X2, ■.., xQ) s těmito třemi vlast-
nostmi:

a) všechna čísla xi, X2, ..., xq jsou celá,
b) Xj Ф 0 pro alespoň jedno j e {1,2, ..., q),
c) \xj\ ^ q pro všechna je {1,2, .. ., q).



(34)110.Posloupnost {í/w} je definována vztahy
5

и o = 2, и i = —,

м»+1 = — 2) — щ pro n ^ 1.
Dokažte, že pro všechna л 1 platí

[i/„] = 2(2"_(_1)эт)/3.

19. MMO 1977111.Uvnitř daného čtverce ABCD sestrojme rovnostranné trojúhelníky
ABK, BCL, CDM, DAN. Dokažte, že středy čtyř úseček KL, LM, MN, NK
spolu se středy osmi úseček AK, BK, BL, CL, CM, DM, DN, AN jsou
vrcholy pravidelného dvanáctiúhelníku.112.V konečné posloupnosti reálných čísel je součet každých sedmi za
sebou následujících členů záporný a součet každých jedenácti za sebou
následujících členů kladný. Určete, kolik může mít taková posloupnost
nejvýše členů.113.Je dáno přirozené číslo n > 2. Označme Vra množinu {1 + n,
1+2n, 1 + 3n, ...Číslo c e ^ nazveme nerozložitelným ve Vn, ne-

existují-li čísla p, q e Vra taková, že c — pq. Dokažte, že existuje číslo
r £ \'n, které lze vyjádřit jako součin čísel nerozložitelných ve Vw více než
jedním způsobem (rozklady lišící se jen pořadím faktorů se považují
za stejné).114.Uvažujme funkci

f(x) =1 — a cos v — b sin x — A cos 2x — В sin 2x,
kde a, b, А, В jsou daná reálná čísla. Je-li f(x) ^ 0 pro každé reálné x,

potom
a2 + ů2 ^ 2 a A2 + В2 й 1.

Dokažte.



(35)115.Jsou-li dána přirozená čísla a, b, označme q podíl a r zbytek při
dělení čísla a2 -f b2 číslem a + b. Najděte všechny dvojice a, b, pro které
je r/2 + r = 1977.116.Nechť / je funkce zobrazující množinu všech přirozených čísel do
sebe. Jestliže pro každé přirozené číslo n platí

f(n +1) >/№)),
potom/(и) = n pro každé přirozené číslo n. Dokažte.

20. MMO 1978117.Najděte přirozená čísla m, n tak, aby dekadické zápisy čísel 1978m
a 1 978w končily stejným trojčíslím a součet m + n byl přitom nejmenší.118.Je dána kulová plocha a uvnitř pevný bod P. Nechť А, В, C jsou
libovolné body ležící na dané kulové ploše takové, že úsečky PA, PB, PC
jsou navzájem kolmé. Určete množinu všech bodů Q, kde PQ je tělesová
úhlopříčka kvádru s hranami PA, PB, PC.119.Množina všech přirozených čísel nechť je sjednocením dvou dis-
junktních podmnožin

í/(l),/(2),/(3),...) a {g(l),g(2),g(3),...},
přičemž

/(O </(2) </(3) < ..

g(1) < g(2) < g(3) < ...

• ?

a

g(n) =/№)) + 1

pro všechna n. Určete /(240).120.Je dán rovnoramenný trojúhelník ABC se základnou BC. Uvažujme
kružnici, která se dotýká zevnitř kružnice opsané trojúhelníku ABC a ra~



(36)

men AB, AC v bodech P, Q. Dokažte, že střed úsečky PO je středem
kružnice vepsané trojúhelníku ABC.121.Nechť {an} je posloupnost navzájem různých přirozených čísel.
Potom pro každé přirozené n platí

NT Ok NT' 1
= 2L~k'

k = 1 Jfc=l

Dokažte.122.Členové mezinárodní společnosti jsou občané šesti zemí. Seznam
členů této společnosti obsahuje 1978 jmen očíslovaných 1, 2, ..., 1978.
Dokažte, že existuje alespoň jeden člen společnosti, jehož pořadové číslo
v tomto seznamu se rovná buď součtu pořadových čísel dvou členů z jeho
země, nebo dvojnásobku pořadového čísla jednoho člena z jeho země.

21. MMO 1979123.Nechť p a q jsou přirozená čísla taková, že
1 1 1

2 + У ~ T + ' Тз 18

Dokažte, že p je dělitelné číslem 1979.

1 1

1319 'q124.Je dán pětiboký hranol se základnami а B1B2B3B4B5.
Všechny hrany obou základen a všechny úsečky AjBjc, j, к e (1, 2, 3, 4, 5),
obarvíme červenou nebo zelenou barvou tak, aby žádný trojúhelník, jehož
vrcholy jsou vrcholy hranolu a jehož všechny strany byly obarveny, nebyl
jednobarevný. Dokažte, že všech deset hran obou základen má stejnou
barvu.125.V rovině jsou dány dvě protínající se kružnice ki, кг- Označme A
jeden z jejich průsečíků. Po kružnici ki, resp. кг, se pohybují body B\,
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resp. В2, ve stejném smyslu konstantními rychlostmi tak, že se při každém
oběhu setkávají v bodě A. Dokažte, že v rovině existuje pevný bod P,
pro který v každém okamžiku platí \PBi\ = \PB%\.

126. Je dána rovina n, bod Pen a bod Q ф n. Najděte všechny body
\PQ\ + \PR I

Re n, pro něž je podíl největší.
\QR\127.Najděte všechna reálná čísla b, pro něž existují nezáporná reálná

čísla xi, X2, xg, X4, X5 taková, že platí
5 5 5

2 kxic = b, 2 k3Xk = b2, 2 = ú3-
fc=l k — í128.Po vrcholech pravidelného osmiúhelníku ABCDEFGH skáče klo-

kan. Každým skokem se přemisťuje z jednoho vrcholu do některého ze dvou
sousedních; začíná v A a zastaví se, jakmile se poprvé dostane do E. Označ-
me an počet všech cest z A do E složených z právě n skoků. Dokažte, že pro
všechna přirozená к platí

1 1
-=(2— py-Kazk-i = 0, агк — (2 + j/2) Jc~~ 1

p 1/2

22. MMO 1981129.Je-li P vnitřní bod daného trojúhelníku ABC, označme D, E, F
paty kolmic vedených z P na přímky BC, CA, AB. Najděte všechny body P,

\BC | \CA\ \AB\

\FčCW\+W\ nejmenší'pro které je součet130.Nechť r ^ n jsou přirozená čísla. Utvořme všechny r-prvkové
podmnožiny množiny (1, 2, n}. Z každé z nich vezměme její nej-
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menší prvek a označme F(n, r) aritmetický průměr všech takto získaných
čísel. Dokažte, že

n + 1
F(n, r) =

v + 1131.Určete největší hodnotu výrazu m2 + n2, kde m a n jsou přirozená
čísla taková, že

(n2 — mn— m2)2 — 1, m ^ 1981, n S 1981.132.a) Pro která přirozená čísla n > 2 existuje n po sobě jdoucích při-
rozených čísel tak, že největší z nich je dělitelem nejmenšího společného
násobku ostatních n — 1 čísel ?

b) Pro které n existuje právě jedna taková и-tice?133.Uvažujme tři shodné kružnice, které mají společný bod O, leží
uvnitř daného trojúhelníku ABC a každá z nich se dotýká dvou stran to-
hoto trojúhelníku. Dokažte, že bod O, střed kružnice vepsané a střed kruž-
nice opsané trojúhelníku ABC leží na jedné přímce.134.Je dána funkce/(x, v) splňující podmínky

/(О, у) = у + 1,
f(x +1,0) =/(x, 1),

f(x + 1, у + 1) =f(x,f(x + 1, +))

pro všechna nezáporná x, y. Určete/(4, 1 981).

23. MMO 1982135.Uvažujme funkci / zobrazující množinu všech přirozených čísel do
množiny všech celých nezáporných čísel. Předpokládejme, že

/(2) = 0, /(3) > 0, /(9999) = 3333
a že rozdíl f(jn + n) —/(m) —/(«) nabývá pro libovolná přirozená čísla
m, n hodnoty 0 nebo 1. Určete/(1982).
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označme щ jeho stranu protilehlou vrcholu At, Mi střed strany au Ti bod
dotyku strany ai a kružnice vepsané trojúhelníku A1A2A3, Si bod sou-
měrně sdružený s bodem Ti podle osy vnitřního úhlu daného trojúhelníku
při vrcholu A4. Dokažte, že přímky M1S1, M2S2, M3S3 mají společný bod.137.Uvažujme nerostoucí posloupnosti {xn}n=o
které platí xo = 1 •

a) Dokažte, že pro každou takovou posloupnost existuje index n

tak, že platí

kladných čísel, pro

1

A A
Xl X2

b) Najděte mezi uvažovanými posloupnostmi takovou, která pro všechna
n ^ 1 splňuje nerovnost

xlП — 1
^ 3,999.

Xn

9 9

X„ X,

X\ X2

4-i
<4.

Xn138.Je dáno přirozené číslo n. Má-li rovnice
x‘ó — 3xy2 + У3 = n

celočíselné řešení (x, y), pak má alespoň tři celočíselná řešení. Dokažte.
Ukažte, že pro n — 2 891 rovnice nemá celočíselné řešeni.139.Na úhlopříčkách АС, CE pravidelného šestiúhelníku ABCDEF
jsou dány body M, N lak, že

\AM I |CW|
\AC I = TCE\

Určete dělicí poměr Д, leží-li body В, M, N v přímce.

= A.140.Ye čtverci Q o straně 100 leží lomená neuzavřená a neprotínající
se čára L. Předpokládejme, že ke každému bodu P hranice čtverce Q exis-

1
tuje na čáře L bod, jehož vzdálenost od bodu Г není větší než —. Dokažte,

že na čáře L pak existují dva body, jejichž vzdálenost není větší než 1,
a přitom délka části čáry jimi omezená není menší než 198.
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24. MMO 1983141.Najděte všechny funkce /, které zobrazují množinu všech kladných
čísel do sebe a přitom splňují následující dvě podmínky:

a) f(xf(y)) — yf(x) Pro libovolná kladná x, y,

b) f{x) -> 0 pro л' -> + co.142.V rovině jsou dány protínající se kružnice k\, kz se středy O i, O2.
Označme A jeden z jejich společných bodů. Nechť jedna ze dvou společ-
ných tečen se dotýká kružnic k\, k% v bodech P1, P2, druhá v bodech 01,
Q2- Označme M1, M2 středy úseček EiDi, Dokažte, že143.Nechť a, b, c jsou po dvou nesoudělná přirozená čísla. Dokažte, že

2abc — ab — bc — ca

je největší celé číslo, které se nedá vyjádřit ve tvaru
xbc + yca + zab,

kde jc, y, z jsou nezáporná celá čísla.144.Označme E množinu všech bodů na obvodu daného rovnostranného

trojúhelníku. Rozhodněte, zda pro každý rozklad množiny E na dvě pod-
množiny existuje pravoúhlý trojiihclník, jehož všechny tři vrcholy leží
v jedné z obou podmnožin.145.Existuje 1 983 různých přirozených čísel nepřevyšujících 105 tak,
aby žádná tři z nich nebyla bezprostředně po sobě jdoucími členy aritmc-
tické posloupnosti?146.Jsou-li a, b, c délky stran trojúhelníku, pak

a2b(a — b) -f b2c(b — c) + c2a(c — a) ^ 0.
Dokažte a zjistěte, kdy nastane rovnost.
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25. ММ0 1984147.Jsou dána nezáporná reálná čísla x, y, z taková, že x + у + z = 1.
Dokažte, že

7
О й xy + yz + -x — 2xyz й -Z£y148.Najděte dvě přirozená čísla a, b tak, aby žádné z čísel a, b, a + b

'

nebylo dělitelné sedmi a aby číslo {a -f b)7 — a1 — b1 bylo dělitelné 77.149.V rovině jsou dány dva body О Ф A. Pro každý bod X Ф O v rovině
označme <x(X) velikost orientovaného úhlu AOXměřeného v radiánech proti
směru hodinových ručiček (O ^ a(áQ < 2тс) a C(X) kružnici se středem O

<X)
. Předpokládejme, že každý bod roviny je obar-a poloměrem \OX\ + \OX\

ven některou z konečného počtu barev. Dokažte, že existuje bod X, pro

který je a(X) > 0, a přitom jeho barva se vyskytuje na kružnici С(ЛЛ).150.Nechť ABCD je konvexní čtyřúhelník takový, že kružnice s průměrem
А В se dotýká přímky CD. Dokažte, že kružnice s průměrem CD se dotýká
přímky AB, právě když strany ВС a AD jsou rovnoběžné.151.Pro n > 3 označme cl součet délek všech úhlopříček konvexního
«-úhelníku a p jeho obvod. Dokažte, že

n n -f- 12d
— 2.3 < — <ii

22P152.Nechť a<ů<c<c/jsou lichá přirozená čísla taková, že ad — bc
a a + d = 2k, b -f c = 2m pro nějaká přirozená čísla k, m. Dokažte, že
a = 1.
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1. Protože

3(14n + 3) — 2(21л + 4) = 1,

každý společný dělitel čísel 14n + 3, 21 n + 4 dělí číslo 1. Čitatel a jméno-
vatel jsou tedy nesoudělná čísla.

2. Řešme rovnici

]/x — ]/2.x + ]/2x — I b (O

kde a je dané kladné číslo. Snadno zjistíme, že všechny odmocniny mají

smysl (tj. výrazy pod nimi mají nezápornou hodnotu), právě když .v ^ .

Za tohoto předpokladu obě strany rovnice umocníme a dostaneme ekviva-
lentní rovnici

2x + 2]/(x— l)2 = a2,
neboli

2x + 2\x — 11 = a2.
Je-li x ^ 1, můžeme rovnici (2) psát ve tvaru

2x + 2(x — 1) = a2

(2)

a vidíme, že má jediné řešení
a2 + 2

A' —

4 ’

1
pokud a ^ ]/2. Je-li — ^ a < 1, můžeme rovnici (2) psát ve tvaru

2a + 2(1 — a) = a2,
neboli

ci2 — 2 = 0.

1

^,proa + ]/2žád-Pro a = У2 tedy rovnici (2) vyhovují všechna x e( —, 1
\ ^

né a e

Závěr. Pro a <]/2 nemá rovnice (1) řešení, pro a = ]]2 jí vyhovují
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a2 + 2/_L a pro а > |/2 má jediné řešení „г =všechna x e . Rov-
\2’ / 4

1/nice b) tedy nemá řešení, rovnici a) vyhovují všechna xe a rovni-, 1\ 2 ’ /
3

ce c) má jediné řešení x = —2 ‘

3. Využijeme známého vztahu
cos 2x = 2 cos2x — ] 0)

platného pro všechna reálná .v. Číslo x, které vyhovuje dané rovnici, vyho-
vuje i rovnici

(a cos2x + c)2 = b2 cos2x,
neboli

a2 cos4x + (2ac — Z)2) cos2x + c2 = 0.

Dosadíme-li sem za cos2x ze vztahu (1), dostaneme po lipravě
a2 cos2 2x -f (2a2 + 4ac — 2b2) cos 2x -f- (a2 + 4ac — 2b2 + 4c2) = 0.

Pro a = 4, b = 2, c — —1 vyjde
4 (4 cos2 2x -f- 2 cos 2x — 1) = 0,

takže v tomto případě vyhovují cos x i cos 2x téže kvadratické rovnici.

Poznámka. Všechna řešení goniometrické rovnice
4 cos2 x + 2 cos x — 1=0

můžeme najít obvyklým způsobem - vyřešíme kvadratickou rovnici
4)’2 + 2v — 1 - 0

(2)

(3)
a pak určíme všechna x, pro něž

—1 +1/5 —1 — У5
nebo cos x = (4)COS X =

4 4

Výsledek úlohy nabízí jiný postup. Všimněme si, že vyhovuje-li rovnici
(3) číslo cos x, vyhovuje jí také číslo cos 2x, a tedy i čísla cos 4x, cos 8x atd.
Má-li tedy rovnice (3) kořeny у i = cos x а у 2, pak platí buď у i = cos 2x,
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nebo уг = cos 2x. V prvním případě snadno zjistíme, že by x bylo násob-
2n

kem —, ale žádné takové x není řešením rovnice (2). Je tedy
= cos 4.y = .у 1 = COS X

У2 = cos 2x = cos 8x = ..

• • 5

2n

Odtud pak vyjde, že hledaná .v jsou právě všechny násobky —. (Odvodili

jsme tak vlastně způsob, jak sestrojit pravidelný pětiúhelník kružítkem
a pravítkem - hodnoty (4) snadno sestrojíme a další postup ie zřejmý z obr. 1.)

4. Vyhovuje-li trojúhelník ABC úloze (obr. 2), platí
tc — \AC\. \BC\.

Protože střed S kružnice opsané trojúhelníku ABC je středem přepony AB,
je

c
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Dvojnásobný obsah trojúhelníku ABC je roven

\AC\ . |fiC| = evc,

neboli

(i)'- CVc.

Odtud

c

vc =
4 '

Bod C je tedy společným bodem kružnice nad průměrem А В a rovnoběžky
c

s přímkou А В ve vzdálenosti —. Snadno je vidět, že úloha má čtyři navzá-

jem symetrická řešení.

5. a) Z obr. 3 (zde je situace zachycena pro \AM\ < \BM\; pro \AM\ >
>\BM\ využijeme osové souměrnosti a pro \AM\ = \BM\ je vše triviální)
vidíme, že úhly ANC a BNE jsou pravé a úhly ANM a BNM mají velikost
45° (obvodové úhly nad úhlopříčkou, resp. stranou čtverce vepsaného do
kružnice). Je tedy také

| * ANB\ = | * ANM\ + | £ BNM\ = 45° + 45° = 90°.
Protože úhly ANC, ANВ jsou pravé, leží body В, C, N v přímce, a protože
úhly BNE, BNA. jsou pravé, leží body A, E, N v přímce.

/i "8M

Obr. 3

b) Už jsme si všimli, že velikosti úhlů ANM, ANB nezávisí na poloze
bodu M a jsou rovny |£ ANM\ = 45°, | < ANB\ = 90°. Bod N leží tedy
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na kružnici s průměrem AB a úhel ANM je obvodový úhel příslušný čtvrtině
této kružnice vymezené body A, Q (obr. 4). Přímka NM tedy prochází
bodem Q, který nezávisí na poloze bodu M.

N

A 'M В

Q

Obr. 4

c) Označme Si, S2 středy daných čtverců, S střed úsečky S1S2 a 01, O2,
O pravoúhlé průměty bodů Si, S2, S na přímku А В (obr. 5). Protože OS
je střední příčka lichoběžníku O2S2S1O1, je

\OxSi] + \02S2\ \AM\ + \BM\ \AB\
\0S\ = 4 '2 4

г

i

P

Č2s p

ГгI

I

A 01 M 0 02 в

Obr. 5
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Bod S tedy leží na rovnoběžce p s přímkou AB vedené ve vzdálenosti
\AB\
——. Označme ještě P střed čtverce o straně AB (v polorovině ABS). Pro-

bíhá-li bod M vnitřek úsečky AB, body Si a S2, probíhají vnitřky úseček
AP a BP a bod S vnitřek úsečky P1P2, kde Pi, P2 jsou středy úseček АР, BP.

6. Základny hledaného lichoběžníku jsou navzájem rovnoběžné a jsou
tedy rovnoběžné s průsečnicí p daných rovin (obr. 6). To nám umožňuje
převést úlohu na následující planimetrickou úlohu v rovině hledaného licho-
běžníku:

Jsou dány dvě rovnoběžky а Ф c, na přímce a bod A a na přímce c bod C.
Sestrojte rovnoramenný lichoběžník ABCD tak, aby bod В ležel na přímce a,
bod D na přímce c a aby mu bylo možno vepsat kružnici.

Předpokládejme, že hledaný lichoběžník je sestrojen, a označme P, Q,
R, S body, v nichž se vepsaná kružnice dotýká jeho stran (obr. 7). Pak je

\AS\ = \AP\ = \BP\ = \BQ\, \CQ\ = \CR\ = \DR\ = \DS\.
Označíme-li ještě Z patu kolmice vedené bodem C na přímku a, dostaneme

\AZ\ = \AP\ + \PZ\ = |zí,S| + |ЛС| = |Л5| + |DSj = \AD\.

(V našem obrázku je \AB\ > \CD\, rovnost \AZ\ — \AD\ však analogicky
odvodíme i v případě \AB\ < \CD\.)

Této rovnosti využijeme při konstrukci hledaného lichoběžníku. Bodem C
vedeme kolmici CZ к přímce a. Kolem bodu A pak opíšeme kružnici pro-

cházející bodem Z a její společný bod s přímkou c bude bod D. Trojúhelník
ACD doplníme bodem В na rovnoramenný lichoběžník ABCD.
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Obr. 7

Ukážeme ještě, že právě sestrojenému rovnoramennému lichoběžníku
ABCD lze vepsat kružnici. Sestrojme kružnici k, která se dotýká základen
v jejich středech P, R (obr. 7). Podle konstrukce je trojúhelník ADZ rovno-

ramenný se základnou DZ. Protože
\PZ\ = \RC\ = \RD\ a \OR\ = \OP\,

je střed O kružnice к středem základny DZ. Dotýká-li se tedy kružnice к
ramene AZ, dotýká se i ramene AD. Ze souměrnosti lichoběžníku ABCD
podle osy PR pak vyplývá dotyk kružnice к se stranou BC.

Je-li \AZ\ > \CZ\ (tj. odchylka mimoběžek AC, p je menší než 45°),
má úloha právě dvě řešení souměrně sdružená podle středu úsečky AC.
Je-li \AZ\ = \CZ\ (odchylka 45°), vyhovuje úloze jediný čtverec. Jinak úloha
nemá řešení.

7. Hledáme číslo n, pro jehož číslice а фО,Ь, c platí
100a + 10ú + c = 11 (a2 + ú2 + c2).

Číslo
n — 100a + 10Z> + c — 99a + 1 \b + (a — b -f c)

je dělitelné jedenácti, právě když je jedenácti dělitelné číslo a — b + c,

tj. právě když
a — b + c = 0 nebo a — b + c = 11

(a, b, c jsou totiž číslice).
V prvním případě pro hledané číslice platí

b = a + c 0)
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a zároveň

99a -f 1 \b = 11 (a2 + b2 + c2),
neboli

9a + b = a2 + b2 + c2.

Po dosazení (1) do (2) dostaneme pro a kvadratickou rovnici
2a2 + (2c — 10)a + 2c2 — c = 0.

(2)

Její diskriminant
(2c — 10)2 — 8(2c2 — c) = 4(25 — 8c — 3c2)

je pro c > 1 záporný. Pro c = 1 nevychází celočíselný kořen, pro с = 0
vychází а = 5 (kořen а — 0 nevyhovuje úloze) a podle (1) b — 5. V prvním
případě může být tedy hledaným číslem jedině n = 550, které skutečně
vyhovuje.

Zbývá vyšetřit druhý případ, kdy
b — a c — 11.

Tentokrát dostaneme kvadratickou rovnici

2a2 + (2c — 32)a + 2c2 — 23c + 132 = 0
a analogicky dojdeme к číslu n = 803.

Úioha má dvě řešení, čísla 550 a 803.

1
8. Levá strana nerovnice je definována, právě když x —— a x Ф 0

V tomto oboru dostáváme ekvivalentními úpravami postupně nerovnice
Ax%l + ]lT+2xf

2 < 2x -j- 9,(1 — |/l T" 2x)“ (1 T |/l -f- 2x)
(1 + ]/l + 2x)2 < 2x + 9,

2fl+2x < 7,
4(1 + 2x) < 49.

45 „

Poslední nerovnici vyhovují právě všechna x < — • Řešením dané nerovnice8

jsou tedy všechna x, pro která platí -

451
x Ф 0.2 - * < 8 ’
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9. Střed přepony ВС označme S, krajní body prostřední části přepony
P, Q a velikosti úseček AP, AQ označmep, q (obr. 8). Je-li např. \AB\ < \AC\,
leží pata H výšky spuštěné na přeponu uvnitř úsečky BS. (Je-li H — S, je
úloha velmi jednoduchá). Dvojím vyjádřením obsahu trojúhelníku PAQ
dostaneme

ah
pq sin a — —

n

a z kosinové věty pro trojúhelník PAQ
2

2pq cos a = p2 + q2 —

Je tedy
sin a 2ah

(Otg a =

0У(cos a

n\p2 + q2 —

Označíme-li ještě |#Sj = x, je
2

2
— /z2

a můžeme vypočítat

р2 = (х~т) д2 = {х + т)
а2 а1 I 1\

= т(1+^)-

+ h\ + /г2,

takže

Рг + q2 = 2х2 -f- 2h2 4 2л2

41

й

/? /7,Р

Ав Н Р S Q

Obr. 8
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Dosadíme-li odtud do (1), po malé úpravě dostaneme
4nh

tg a = (n2 — l)a
2. řešení. Využijeme vzorce

tg P — tg у

1 + tg P tg у

Při zachování už zavedeného značení ještě označme s — \BH\,
/? = |i: QAH\, у — |£ PAH\ (obr. 9). Dostáváme

(2)tg (V — У) =

aa

2 ~S + 2n a — 2s\HQ\ a

tg/i=-7 2nli2hh

a

\HQ\ - ~
n a — 2s\HP\ a

tgy = -- 2h 2nhh

a podle vzorce (2)
a

nh
tg a = tg (/] — y) = a2(n2 — 1) — 4n2s(a — .v) ’

1 + 4n2h2

A

P
a

hy

В cH P S Q

Obr. 9

Dosadíme-li sem podle Euklidovy věty o výšce

s(a — s) — li2
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a výraz upravíme, vyjde
4nh

tg a = (,n2 — 1 )a

10. Vyhovuje-li trojúhelník ABC úloze, označme Pa patu výšky va a Ta
střed strany a. Vedeme-li bodem Ta kolmici na stranu b a její patu označíme

Vb
P (obr. 10), bude \PTa\ = —2'

Toho využijeme ke konstrukci hledaného trojúhelníku. Nad průměrem
\ATa\ = ta sestrojíme kružnici a na ní body Pa, P tak, aby \APa\ — va,

vb
\TaP\ — Dále vedeme bodem Pa kolmici к přímce APa (prochází bodem

Ta), bodem P kolmici к přímce TaP (prochází bodem A) a jejich průsečík
označíme C. Bod souměrně sdružený s bodem C podle středu Ta označíme
B. Právě sestrojený trojúhelník ABC zřejmě vyhovuje podmínkám úlohy.

Vb
—, úloha nemá řešení.

Vb
V případě va < ta, < ta má úloha dvě různá řešení (obr. 11), další dvě

Vb
Pokud je Va > ta, — > ta nebo Va = ta
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v„
jsou s nimi souměrně sdružená podle osy ATa. V případě va = —

/ • Vb
(obr. 12) i v případě va — — ia (obr. 13) jsou vždy dvě shodná řešení

souměrně sdružená podle osy ATa.

ta

A

4r~ Vq Yb\Ip
у

В

Obr. 12

11. a) Stačí si uvědomit, že množinou středů všech úseček PX, kde bod X
probíhá stranu RS trojúhelníku PRS, je střední příčka tohoto trojúhelníku.
Leží-li bod Y na úsečce B'D' a bod X probíhá úsečku AC, střed úsečky XY
probíhá střední příčku trojúhelníku ACY (obr. 14). Probíhá-li bod Y
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úsečku B'D', krajní body středních příček trojúhelníku ACY probíhají
střední příčky trojúhelníků AB'D', CB'D' a střední příčky trojúhelníků
ACY pak vyplní čtverec KLMN, jehož vrcholy jsou středy stěn ABB'A',
BCCBCDD'C, DAA'D'.

b) Analogicky zjistíme, že hledanou množinou je obdélník PQRS, jehož
vrcholy dělí stěnové úhlopříčky AB’, CB\ CD', AD' v poměru 1 : 2 (obr. 15).

c

A

C

A

Obr. 15

12. Vrcholový úhel kužele označme 2a, jeho výšku h, poloměr koule
a podstavy válce r (obr. 16). Podle známých vzorců je objem kužele

nha2
Vl ~ ~3

a objem válce
Ví — 2кг3.

&В1п1гаяйипшч
Г

Obr. 16
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Přitom

1 -f- sinár
h — r -\- |iSK| — r -f- = r

sin a

1 + sin a

sin a

1 4" sin a
a = h tg a — r tg a = r

sin a cos a

Dosadíme-li do vzorce pro Vdostaneme
7rr3(l 4- sin a)3

3 sin a cos2a
Vi -

Je tedy
(1 4- sin a)3 (1 4- sin a)2

6 sin a(l —siná)
Vi

к = —
6 sin a (1 — sin2a)V2

a odtud

(l 4- 6k) sin2 a 4- 2(1 — ЗА') sin a + 1 — 0.
Hledíme-li na tento vztah jako na kvadratickou rovnici pro sin a, vidíme, že
má řešení, právě když pro její diskriminant platí

4(1 — ЗА')2 — 4(1 4- 6A) ^ 0,
4

tj. právě když к ^ —. Pro žádné a tedy není V\ V2- Nejmenší možné

4 1
к —

— dostaneme pro siná = —, což nám umožní sestrojit příslušný

úhel 2a.
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13. Hledaný bod P zřejmě leží na kružnici s průměrem BC (obr. 17).
Pravoúhlé trojúhelníky EPC, FBPjsou podobné, neboť | £ ECP\ = |£ FPB\.
Oznaěíme-li \EP\ — x, platí tedy

a c

x:y = T:(v-^
a odtud

4л'2 — 4vx + ac — 0.

Tato kvadratická rovnice má řešení

1г

Je-li v2 — ac > 0, má úloha dvě řešení (kružnice nad průměrem BC
má dva společné body s osou EF), je-li v2 — ac — 0, má úloha jediné řc-
šení - střed úsečky EF (kružnice se dotýká osy). V případě v2 — ac < 0
úloha řešení nemá.

x =

14. Předpokládejme, žc л*, у, z jsou tři reálná čísla vyhovující soustavě
rovnic

O)x + у + z = a,
X2 -f y2 4- z2 — b2,

xy = z2.
(2)
(3)

Z (2) a (3) plyne, žc
(x 4- v)3 — + z2->

a z (1) máme
(я- + у) 2 = (и — z)2.

Porovnáním těchto dvou vztahů dostaneme

2az = a2 — b2.

Je-li a — 0, b Ф 0, soustava nemá řešení. Pro a = 0, b = 0 má, jak je
vidět přímo ze soustavy, jediné řešení x = у — z — 0.

Dále se budeme zabývat jen případem а Ф 0. Pak
a2 — b2

(4)z —

2a
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a po dosazení do (1) a (3) zjistíme, že x a j vyhovují soustavě rovnic
a2 + b2

2a ’

(a2 — b2)2

(5)* + у =

(6)xy = 4a2

Čísla x, у jsou tedy kořeny kvadratické rovnice
a2 + b2 (a2 —b2)2

í2 = 0.t -j-
2a 4a2

Ta má za předpokladu
I0a2b2 — 3a4 — 3b4 > 0,

neboli

\b\
á M š |й| уз,

Уз
kořeny

a2 + b2 + ]j\0a2b2 — 3a4 — ЗЙ a2 + b2 — ]/\0a2b2 — Зд4 — 3h4 •(7)
4a 4a

Dosadíme-li do dané soustavy zaxay tato dvě čísla (v libovolném pořadí)
a za z podle (4), přesvědčíme se, že soustava je splněna.

Daná soustava má tedy
a) v případě a = b — 0 jediné řešení x = у = z — 0,

b) v případě 0 < \a\ — |6|]/3 jediné řešení x = у — z — —

c) v případě 0 < \b\ — \a\j/3 jediné řešení x = у — a, z —

a

3 ’

—a

\b\d)v případě —= < |a| < \b\]/3 právě dvě řešení (7), (4) lišící se jen vzájem-
у j

nou výměnou x а у. V ostatních případech řešení neexistuje.
Aby soustava měla za řešení kladná čísla, musí být a > 0, jak vidíme

ze (7), a a > |Z»|, jak vidíme ze (4). Obráceně, je-li a > \b\, je podle (4)
z > 0 a ze soustavy (5), (6) vidíme, že x > 0, у > 0. Už jsme zjistili, že
x Фу, právě když nastane případ d). Pak bude i kořen z různý od x
a od у - kdyby bylo např. x = z, bylo by podle (3) x = y. Nutná a posta-
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čující podmínka к tomu, aby čísla x, y, z splňující danou soustavu byla
kladná a navzájem různá, je

\b\<a< |ů| УЗ.

2. řešení. Umocníme rovnici (1) a dostaneme
x2 _|_ д,2 _[_ 22 -f 2(xy + yz + zx) = a2.

Dosadíme sem podle (2)
b2 2(xy -{- уz -f zx) — a2,

podle (3)
b2 + 2z(x + у -f- z) = a2

a podle (1)
b2 -f 2az = a2.

Dále pokračujeme stejně jako v 1. řešení.

Poznámka. Soustava rovnic (1), (2), (3) má geometrický význam. Její
řešení jsou souřadnice bodů společných rovině (1), kulové ploše (2) a ku-

\a\
želové ploše (3). Rovina (1) má od počátku vzdálenost —= a kulová plocha

V3
(2) má střed v počátku a poloměr |ů|. Odtud je např. vidět, že к tomu, aby

\a\
soustava měla řešení, musí být y= ^ |Z>|, a platí-li zde rovnost, má soustava
nanejvýš jedno řešení (rovina se dotýká kulové plochy).

15. Podle Heronova vzorce je
S2 = s(s — a) (5 — b) (s — c),

a -\- b c
kde s — , neboli2

16 S2 = (a + b + c) (—a -f- b -\- c) (a — h + c) (a + b — c) —
—

— a4 — b4 — c4 -J- 2a2b2 + 2b2c2 + 2c2a2.

S dokazovanou nerovností je ekvivalentní nerovnost

(a2 + b2 + c2)2 ^ 3.16 S2.
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Dosadíme-li sem 16S2 z předešlého vztahu a upravíme, dostaneme ekvi-
valenttií nerovnost

я4 + Л4 + c4 — a2b2 — b2c2 — c2a2 ^ 0,
neboli

(«2 — Ь2)2 + (/,2 _ C2)2 + (C2 _ fí2)2 ^ 0.
Poslední nerovnost platí vždy a rovnost v ní nastane, právě když a = b —c,

tj. právě když jde o rovnostranný trojúhelník.

2. řešení. Podle Heronova vzorce je
4 S — \/(a + b + c) (—a -f b + c) (a — b + c) (a -f- b — c) íS

(a + b + c)3 (a -f- b + c)2 a2 + ú2 + c2i /
^ /(a + b + c) 27 3j/3

Zde jsme využili známé nerovnosti mezi aritmetickým a geometrickým prťi-
měrem tří nezáporných čísel .v, y, z

X + у + z (x + У + z)2
3]/xyz й neboli xyz ^3 27

v níž nastane rovnost, právě když x ~ у = z. (W našem případě bylo
л: = — a -f- b + с, у — a — b -\- c, z = a -\- b — c.) Dále jsme odhadli

(a + b + c)2
^ a2 + b2 H- c2,3

tato nerovnost je ekvivalentní s nerovností
{a — V)2 + (b — c)2 + {c — a)2 ^ 0.

Opět je zřejmé, že rovnost v dokázané nerovnosti nastane, právě když jde
o rovnostranný trojúhelník.

3. řešení. Dosadíme-li do dokazované nerovnosti za c2 podle kosinové
věty

c2 = a2 + b2 — 2ah cos у

a za £ podle vzorce

2 S — ab sin y,

dojdeme к ekvivalentní nerovnosti
a2 + b2 — ab cos у ^ y3ab sin y.
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Tu můžeme dále přepsat
/I 1/3 \

a2 + b2 — 2ab cos у + — sin yj ^ 0,
neboli

(i2 -j- b2 — 2ab sin (y + 30°) ^ 0.
Tato nerovnost platí, neboť

a2 + b2 — 2ab sin (y + 30°) ^ a2 T b2 — 2ab — {a — b)2 ^ 0.
Zde nastane rovnost, právě když у — 60° a a — b, tedy právě když jde
o rovnostranný trojúhelník.

4. řešení. Alespoň jedna z výšek uvažovaného trojúhelníku leží uvnitř -

nechť je to např. výška na stranu a. Její velikost označme v a části, na
které její pata dělí stranu a, označme x, у (obr. 18). Podle Pythagorovy
věty je

c2 = x2 + v2,
b2 = y2 -f- v2

a obsah trojúhelníku ABC je

„ v(x + у)
2 •

Dokazujeme tedy nerovnost

(x + у)2 + y2 + v2 + x2 + v2 ^ 2 1/3 v(x + y),
neboli

v2 — |/3 (x -f- y)v + x2 + y2 + xy ^ 0.
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Levou stranu můžeme přepsat na tvar
2 2j/3 l

ytv-1-.vM +v —

odkud vidíme, že je skutečně vždy nezáporná. Nulová je, právě když
x = у a v = x[/3, tj. právě když jde o rovnostranný trojúhelník.

5. řešení. Předpokládejme nejprve, že každý z úhlů uvažovaného troj-
úhelníku je menší než 120°. Nad každou ze stran a, h, c sestrojme rovno-

stranný trojúhelník v opačné polorovině, než leží uvažovaný trojúhelník
(obr. 19). Kružnice opsané těmto třem rovnostranným trojúhelníkům
procházejí společným bodem N uvnitř trojúhelníku ABC. (O tom se snadno
přesvědčíme: je-li N společný bod dvou z těchto kružnic, pak jsou z něho
dvě strany vidět pod úhlem 120° a třetí pod úhlem 360° — 2.120° = 120°,
leží tedy i na třetí kružnici.) Obsah S trojúhelníku ABC je roven součtu
obsahů trojúhelníků ABN, BCN, CAN.

Teď si stačí jen uvědomit, že je-li jeden úhel v trojúhelníku alespoň
120°, pak obsah tohoto trojúhelníku je nejvýše třetina obsahu rovnostran-
ného trojúhelníku sestrojeného nad protilehlou stranou (obr. 20) - má
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totiž nejvýše třetinovou výšku. Použijeme-li to na trojúhelníky ABN,
BCN a CAN, dostaneme

p1
SS у(й2 + *2 + с2)^-

a odtud plyne dokazovaná nerovnost. Rovnost nastane, právě když
|ЛЛП = |SiV| = |CW|, tj. když a = b = c.

Zbývá ještě případ, kdy jeden z úhlů trojúhelníku ABC je alespoň 120°.
Je-li protilehlá strana např. a, pak víme, že

Уз1
S й у я2 -у,

neboli

а2 ^ 4]/3 5,
což je silnější nerovnost, než požaduje úloha.

ÉĚ
б

d

Ж /
2 /d

\
d

Obr. 20

16. Stačí, najdeme-li řešení v intervalu <0, 2k). Ostatní řešení z nich pak
dostaneme přičtením násobků 2n.

Pro n — 1 má rovnice

cos * — sin * = 1

Зтс
v uvažovaném intervalu právě dvě řešení x = 0 a .v = -

Pro n — 2 se rovnice
2 ‘

cos2* — sin2* = 1
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zjednoduší, použijeme-li vztahu cos2* + sin2* = 1. Ekvivalentní rovnice
sin x = 0

má v uvedeném intervalu právě dvě řešení л; = 0 а л: = tz.
Pro n > 2 pišme rovnici ve tvaru

cos”* — sin”* — cos2* + sin2*,

neboli

(1 — cos”-2 x) cos2* + (1 + sin”-2*) sin2* = 0.
Oba sčítanci jsou nezáporní, takže rovnice je splněna, právě když

(1 — cos71""2*) cos2* = (1 + sin”-2*) sin2* = 0.
Rozebereme-li všechny možnosti, které tu mohou nastat, zjistíme, že pro

Зтг
lichá n jsou právě dvě řešení * = 0, * = — a pro sudá n právě dvě řešení

* = 0, * = те.

2. řešení pro n > 2. Vyhovuje-li číslo * dané rovnici, je
1 = |cos”* — sin”*| ^ |cos”*| + |sin”*| =

= cos2* |cos”-2*| + sin2* |sin”-2*| ^ cos2* + sin2* = 1.
V obou nerovnostech tedy musí nastat rovnost. V první nastane, právě
když cos”* a sin”* mají opačná znaménka, totiž právě když

cos”* sin”* 0.

Ve druhé nerovnosti bude rovnost, právě když

|cos”-2*| = |sin”-2*| = 1

(to se nestane nikdy), nebo
cos2* = 0 a |sin”*| = 1,

nebo

sin2* = 0 a |cos”*| = 1.
Odtud je patrno, že obě rovnosti nastanou, právě když cos * = 0 nebo

TU

sin * = 0 a řešením rovnice mohou tedy být jen násobky —. Teď z nich

už jen stačí vybrat ty, které rovnici vyhovují.
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Poznámka. Pro sudá n je výsledek vidět také z rovnosti
COSw.V = 1 + S i IIйv,

kde levá strana je
cos”* 5Š 1

a pravá
1 + sinwx ^ 1.

Rovnost tedy může platit, jen když je současně
cos2x — 1 a sin x = 0.

17. Těžištěm T trojúhelníku P1P2P3 veďme příčky RíSi, R2S2, R3S3
rovnoběžné se stranami (obr. 21). Leží-li bod P uvnitř trojúhelníku P1R1S1,
je |JPPi| : \PQi\ < 2, leží-li na úsečce R1S1, je \PPi\ : \PQi\ = 2, a leží-li
uvnitř lichoběžníku P2P3S1R1, je |PPi| : \PQi\ > 2. Podobně pro P2Q2
a PsQs- Sjednocení vnitřků trojúhelníků P1R1S1, P2R2S2, P3R3S3 je
vnitřek trojúhelníku P1P2P3 až na bod T. Stejné je sjednocení vnitřků
tří uvažovaných lichoběžníků. Je-li tedy P Ф T, leží bod P uvnitř některého
trojúhelníku i uvnitř některého lichoběžníku a mezi třemi hodnotami
\PPi\ : \PQi\, \РРз\ ‘ IPQž\, \РРз\ : |Р0з| je některá větší než 2 a některá
menší než 2. Pro P = T jsou všechny tři hodnoty rovné 2.

2. řešení. Trojúhelník Р\Р2Рз (jeho obsah označme S) je složen (obr. 22)
ze tří trojúhelníků PP2P3, PP3P1, PP1P2 (jejich obsahy označme Si,
S2, Ss). Platí tedy

S — S1 + S2 + S3.
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5
G2 A

/р

р, Оз Рг

Obr. 22

Přitom však

Si: S' = \PQi\ : \PiQi\,
neboť velikosti výšek trojúhelníků РР2Рз, P1P2P3 na společnou stranu
P2P3 jsou v poměru \PQi\ : \PiQi\. Analogicky

52 :S= \PQ2\ : \P2Q2l
53 : S = \PQz\ : \P3Q3V

Je tedy
\PQi\ [PQ± \PQjl
\PiQi\ + IPzQzl + \PsQ3\

Si S2 S3
=

~š + ~š + ~š
= 1.

Odtud plyne, že jeden ze zlomků vlevo je
\PQi\ i

I PtQil = 3
a jiný je

\PQi\ _l_
- 3’

což je ekvivalentní s dokazovaným tvrzením.

\PjQj\

18. Má-li trojúhelník ABC požadované vlastnosti (obr. 23), leží bod M
na kruhovém oblouku, z něhož je stranu АВ vidět pod úhlem co. Střední
příčka SM, kde S je střed strany AB, je rovnoběžná se stranou АС a má

b
délku —.

Toho využijeme ke konstrukci. Nad úsečkou AB sestrojíme známým způ-
sobem kruhový oblouk, z něhož je vidět pod úhlem co. Dále sestrojíme
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(4)střed S úsečky АВ a kružnici . Společný bod oblouku a kružnice

bude bod M. Bod C pak leží na polopřímce opačné к MB ve vzdálenosti
\MC\ = \MB\. (Přitom bude AC\\MS, \AC\ = 2 \MS\.) Sestrojený troj-
úhelník zřejmě má všechny požadované vlastnosti.

Řešitelnost úlohy závisí na existenci společných bodů oblouku, z něhož
l b \

je strana AB vidět pod úhlem co, a kružnice гS, — j. Situaci vystihuje obr. 24.

Společný bod existuje, právě když
bc c (ti

T < 2 = Tcotg T
neboli

b tg — <Lc <b.
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Oj

V případě c = b tg — dostaneme jediné řešení - pravoúhlý trojúhelník

co

s pravým úhlem při vrcholu A as úhlem — při vrcholu C. Jinak dostaneme

dvě řešení (obr. 25).

Poznámka. Je-li co > 90°, zůstává vše v platnosti, pouze podmínka
řešitelnosti je

co

b < с й b tg y.
Pro co — 90° má úloha řešení, jen když b — c. Pak vyhovují všechny
rovnoramenné trojúhelníky s rameny b = c.

19. Označme ještě T těžiště trojúhelníku ABC a T' těžiště trojúhelníku
A'B'C (obr. 26). Ukážeme, že bod G je středem úsečky TT'. Zvolme
v prostoru soustavu souřadnic. Mají-li body P, Q souřadnice (pi, рз),
(qi, q2, </з), budeme symbolem P + Q rozumět bod o souřadnicích
(pi + qi, p2 + ^2, у?з + <7з) a symbolem лР, kde je reálné číslo, bod
o souřadnicích (.spi, óp2, spz). Potom je

A + В + C /ť 4- В' + C
T = ,r = -

В + B'
2 ’ ЛГ = —2

3 3

A + A’
—2~" M =

C+C'
L =
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A + A' 5 + 5' C+Ca

++
Г2 22L + M + N

G =
33

A + B+C A'+ В’+ C
+ T + r3 3

2 2

Ke každému bodu T roviny e v ní můžeme najít tři body А', В', C
tak, aby bod V byl těžištěm trojúhelníku А'В’С. Hledaná množina bodů
je tedy množina středů všech úseček TT\ kde T je těžiště daného troj-
úhelníku ABC a bod T' probíhá danou rovinu e. Je to rovina rovnoběžná
s rovinou s, která půlí vzdálenost bodu T od roviny e.

N

c

Obr. 26

Poznámka. Leží-li body А', В', C v přímce, rozumíme těžištěm »troj-
A' + 54- C

. Dále je zřejmé, že předpo-

klady o umístění bodů А, В, C vzhledem к rovině e nejsou podstatné.

úhelníku« A'B'C bod T' =
3

20. Hledané číslo můžeme napsat jako
10x d- 6,

kde jc je nezáporné celé číslo. Označíme-li c počet číslic hledaného čísla,
je podle podmínek úlohy

4 (10x 4- 6) = 6.10c_1 + x,

neboli

13x = 2(10c_1 — 4). (1)
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Nejmenší z čísel tvaru 10c-1 — 4, tj. z čísel

6, 96, 996, 9996, ..

dělitelné třinácti je, jak snadno zjistíme,
99 996 = 13.7692.

V (1) pak bude c = 6, x = 15 384, a jak se můžeme přesvědčit, číslo 153 846
skutečně úloze vyhovuje.

• ?

2. řešení. Hledané číslo n končí číslicí 6, a tedy číslo 4n končí číslicí 4.
Podle podmínky úlohy pak číslo n končí dvojčíslím 46. Odtud vidíme, že
4n končí dvojčíslím 84 а я trojčíslím 846. Postupujeme-li tímto způsobem,
nacházíme postupně poslední číslice čísel n a 4n:

4nn

6 4

46 84

846 384

3846 5384
.53846
153846

.15384

615384

Číslo 153 846 vyhovuje požadavkům úlohy a žádné menší nevyhovuje.

21. Vyhovuje-li číslo x dané nerovnici, platí pro ně nerovnost

I

]/3 — x > 2 У* 1
a přitom jsou odmocniny definovány, takže je —1 ^ .v ^ 3. Na obou
stranách nerovnosti jsou kladná čísla, takže pro číslo x platí i nerovnost

7
]/x + 1 < — — 2x,

kterou dostaneme umocněním obou stran a jednoduchou úpravou. Odtud
je patrno, že

7
(1)—1 й x < —

8 '
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Po dalším umocnění obou stran dostaneme

33
x2 — 2.v + T7 >64

neboli

31
(x !)2 > —.

Každé řešení dané nerovnice tedy vyhovuje nerovnici

1/31
(2)\x— 1| > y-

Všechna řešení nerovnice (2) jsou právě ta x, pro která platí

1/311/31
nebo * < 1л> 1 +

8

V intervalu (1) z nich leží právě ta, pro která

8 '

1/31
—1 <L x <1 — -y.

Obrácením celého postupu se přesvědčíme, že dané nerovnici všechna
vyhovují.

22. Zavedeme v prostoru soustavu souřadnic. Má-li bod P souřadnice
(pi, pz, pz) a bod Q souřadnice (qi, <72, <73), budeme symbolem P -f Q
rozumět bod o souřadnicích (p 1 + q 1, p% + <72, pz + qz), symbolem sP,
kde 5 je reálné číslo, bod o souřadnicích (spi, spz, spz). Zkoumaný pohyb
rozdělíme na čtyři části (obr. 27).
a) Bod X probíhá úsečku AB a bod Y stejnou rychlostí úsečku B'C'. Je

tedy
X = (1 — t)A + (В, У — (1 — t)B' + tC,

kde parametr t probíhá interval <0, 1>. Pro střed Z úsečky XY pak platí
A + В' В + CZ+ У

2 = 2

proběhne tedy úsečku KL, kde К je střed úsečky AB' a L je střed úseč-
ky BC.

Z = -{ - t
2 ’
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b)Bod X probíhá úsečku BC a bod Y stejnou rychlostí úsečku C'C. Je
tedy

X = (1 — t)B 4-tC, Y = (1 — t)C + tC,
kde parametr t probíhá interval <0, 1>. Pro střed Z úsečky XY pak
platí

В + C

j— (!-«)-=-
X+ Y

+ tC,Z =

proběhne tedy úsečku LC.
c) Bod X probíhá úsečku CD a bod Y stejnou rychlostí úsečku CB. Ana-

logicky zjistíme, že bod Z proběhne úsečku CM, kde Ařje střed úsečky
BD.

d) Bod X probíhá úsečku DA a bod Y stejnou rychlostí úsečku BB'. Bod Z
pak proběhne úsečku MK.

Hledaná množina boduje tedy obvod čtyřúhelníku KLCM, kde K, L, M
jsou středy stěnových úhlopříček AB', BC, BD.

Poznámka. Čtyřúhelník KLCM je kosočtverec o straně
\AB\

a s úhlem
V2

| AiLCMI = 60°.

23. Pro každé reálné x je
cos 2x = 2 cos2.v — 1,

cos 3x = 4 cos3x — 3 COS A'.
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Řešíme tedy rovnici
cos2* 4 (2 cos2* — l)2 4 (4 cos3* — 3 cos *)2 = 1,

kterou upravíme na tvar
2 cos2* (8 cos4* — 10 cos2* 4 3) = 0.

Odtud zjistíme, že vyhovují právě ta *, pro něž cos * nabývá některé z hod¬
not

p 1/2 1/3 УЗ
’

2 ’

V intervalu <0°, 360°) jsou to úhly
30°, 45°, 90°, 135°, 150°, 210°, 225°, 270°, 315° a 330°.

Další hodnoty dostaneme přičtením násobků 360°.

2 ’ 2 ’ 2 '

2. řešení. Dosadímc-li do rovnice za cos2* a cos22*

1 4 cos 2* 1 -f cos 4*
, eos22* =cos2* —

2 2

dojdeme к rovnici
cos 2* + cos 4* 4 2 cos23* = 0

Podle vzorce pro součet kosinů je
cos 2* 4 cos 4* = 2 cos 3* cos *,

takže řešíme rovnici

cos 3* (cos * 4 cos 3*) = 0.

Podle téhož vzorce je
cos * 4 cos 3* = 2 cos * cos 2*,

což nám umožňuje upravit rovnici na tvar
cos * cos 2* cos 3* = 0.

Odtud už snadno najdeme její řešení.

3. řešení. Každému reálnému číslu * přiřadíme komplexní jednotku

z(x) = cos * 4 i sin *.

Podle Moivreovy věty je
zn(x) = cos nx 4 i sin nx
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a odtud snadno odvodíme, že pro každé x je

z1l(x) + z~n(x) z1l(x) — z~n(x)
, sin nx — 0)cos nx —

2 2i

Řešíme tedy rovnici

(z(x) + z_1(„v))3 + (z2(x) + z~2(x))2 -f (z3(a) + z~3(a'))2 — 4,

neboli

2_6(x) + z~A(x) -f z_2(x) + 1 + z2(x) + z\x) -f- z6(x) — —1.

Vynásobíme-li tuto rovnici dvojčlenem 1 — z2(x), dostaneme

z~\x) — 28(x) — z2(x) — 1,
neboli

z1(x) — z~7(x) = z_1(x) — z(x).
Tato rovnice má kromě hledaných řešení ještě kořeny, pro které 1 — z2{x) =
= 0. Příslušná л- však původní rovnici nevyhovují. Podle (1) pak dojdeme
к rovnici

sin Ix — — sin x,

neboli

sin Ix — sin (—x),
kterou už není těžké vyřešit.

24. Nejprve předpokládejme, že \^ABC\ ig 90°. Ve čtyřúhelníku ABCD
s požadovanými vlastnostmi označme S střed vepsané kružnice (obr. 28).
Ten leží na osách úhlů čtyřúhelníku ABCD, což nám umožňuje vypočíst

= \*SAB\ + |*SfAÍ| + |*S»C| + =

11
= — \*DAB\ + \ *ABC\+-£\*DCB\.

Protože čtyřúhelník ABCD je vepsán do kružnice, je

\^DAB\ + \*DCB\ = 180°,
takže

| *ASC\ = \%.ABC\ + 90°.
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Tento vztah nám umožní sestrojit bod S jako společný bod osy uhlu
ABC a kruhového oblouku o, který leží v polorovině ACB a z něhož je
úsečku AC vidět pod úhlem | $:ABC\ -f 90°. Vedeme-li pak bodem A
přímku p souměrně sdruženou se stranou А В podle osy AS a bodem C
přímku q souměrně sdruženou se stranou CB podle osy CS, protnou se
v hledaném bodě D.

Z konstrukce je patrno, že bod S leží na osách úhlů ABC, BAD, BCD
a čtyřúhelníku ABCD lze tedy vepsat kružnici. Abychom dokázali, že
bod D leží na kružnici k, stačí dokázat, že

\*ABC | + \*ADC\ = 180°.

Skutečně, z konstrukce vyplývá
1

\*ADC\ + I ZASC\ = 360° — — (\*BAD\ + \*BCD\),

tj-
1

\*ADC\ + \*ABC\ +90° - 360° — у (360° — \^ADC\ — \*АВС\),
odkud plyne uvedená nerovnost.

Osa úhlu ABC se vždy protne s obloukem o nad úsečkou AC v jediném
bodě, takže bod S je vždy určen jednoznačně. Přímky p, q svírají úhel
180° — \&АВС\ a jsou tedy různoběžné, takže i bod D je vždy určen
jednoznačně.
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Analogicky postupujeme i v případě | £Л5С| > 90°. Tentokrát bude
bod S společným bodem osy úhlu ABC a kruhového oblouku, který leží
v polorovině opačné к АСВ a z něhož je úsečku AC vidět pod úhlem
270° — | $:ABC\.

2. řešení je založeno na známé větě: Konvexnímu čtyřúhelníku A BCD
lze vepsat kružnici, právě když pro velikosti jeho stran platí

\AB\ + \CD\ = \BC\ + \AD\.

Její důkaz připomeneme v poznámce.
Vyhovuje-li tedy čtyřúhelník A BCD úloze, platí

\AD\ — \CD\ = \AB\ — \BC\.
Stačí se zabývat případem \AB\ > \BC|. (Je-li \AB\ = \BC\, plyne z (1),
že \AD\ = \CD\ a úloha je snadná. Případ \AB\ < \BC\ převedeme na

případ \AB\ > \BC\ změnou označení vrcholů A, C.) Označme ještě E
bod na straně AD, pro který je \DE\ = \CD\ (obr. 29). Pak je

\AE\ = \AD\ — \CD\ = \AB\ — \BC\.

(O

Čtyřúhelník A BCD je vepsán do kružnice k, proto

\*ABC\ + *ADC | = 180°,
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takže
I

\*AEC\ = 180° — \$.CED\ = 180° — — (180° — | %.ADC\) =

I
= 180° — — | %.ABC\.

To nám umožňuje sestrojit bod E jako společný bod oblouku o ležícího
v polorovině opačné к ACB, z něhož je úsečku AC vidět pod úhlem 180° —

1
— — \%.ABC\, a kružnice {A\\AB\ — \BC\). Bod D pak bude průsečík

přímky AE s danou kružnicí k.
Z konstrukce je patrno, že pro sestrojený bod D platí (1) a čtyřúhelníku

A BCD lze tedy vepsat kružnici.
Oblouk o se s kružnicí (A; \AB\ — |i?C|) vždy protne v jediném bodě

a bod E je tedy určen jednoznačně. Oblouk o, a tedy i bod E leží uvnitř
kružnice k, neboť

1
\XAEC\ = 180° — — \^ABC\ > m°—\*ABC\ = \ *ADC\.

Bod D je tedy také určen vždy jednoznačně.

Poznámka. Existence bodu D, který vyhovuje požadavkům úlohy, je
vidět také takto: bod D je takový bod oblouku co kružnice к doplňkového
к oblouku ABC, že

(2)\AD\ — \CD\ — \AB\ + \BC\ - 0.
Nechrne bod X probíhat oblouk со. V krajní poloze X — A je podle troj-
úhelníkové nerovnosti

\AX\ — \CX\ — \AB\ + \BC\ = — \AC\ — \AB\ + \BC\ < 0,
zatímco pro X = C je

\AX\ — \CX\ — \AB\ + \BC\ = \AC\ — \AB\ + \BC\ > 0.
Na oblouku co tedy existuje bod D, pro který platí (2).

Připomeňme si ještě, jak se dokazuje věta, že konvexnímu čtyřúhelníku
ABCD lze vepsat kružnici, právě když pro velikosti jeho stran platí

\AB\ + \CD\ = \BC\ + \AD\.
V 2. řešení jsme použili tuto větu v obou směrech.

(3)
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Lze-li kružnici vepsat, označme P, Q, R, S body, v nichž se dotýká
stran (obr. 30). Pak zřejmě

\AP\ = \ASI, \BP\ - jад, \CQ\ = |СЛ|, \DR\ = |Z)5|,
a tedy

|ЛЯ| + |CD| = \AP\ + \BP\ + \CR\ + \DR\ -
= MSI + \BQ\ + \CQ\ + |Í>S| = \BC\ + \AD\.

Je-li ABCD rovnoběžník, pro který platí (3), je to kosočtverec a tomu
kružnici snadno vepíšeme. Není-li ABCD rovnoběžník, zvolme označení
tak, aby se přímky AB, CD protínaly v polorovině ADB a průsečík označ-
me P. Trojúhelníku ADP vepišme kružnici v. Je-li strana BC sečnou kruž-
nice v (obr. 31), sestrojíme v polorovině BCP tečnu B'C kružnice v rovno-
běžnou s BC. Pak bude platit

\AB\ < \AB’\, \DC\ < \DC'\, \B'C\ < \BC\,
takže

\AB\ + \CD\ < \AB'\ + \C'D\ - \AD\ + \B'C\ < \AD\ + \BC\
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a (3) neplatí. Obdobně postupujeme i v případě, že strana BC nemá s kruž-
ničí v společný bod (obr. 32). Pak bude

\AB'\ < \AB\, \DC'\ < \DC\, \BC\ < \B'C\,
takže

\AB\ + \CD\ > \AB'\ + \DC'\ = \AD\ + \B'C'\ > \AD\ + \BC\
a (3) opět neplatí.

25. Označme V střed vepsané kružnice a M průsečík přímky AV s opsa-
nou kružnicí (obr. 33). Bude se nám později hodit, všimneme-li si, že
\BM\ = | VM\. Vyplývá to z rovnosti úhlů

\*BVM\ = \ *ABV\ + \ ^BAV\ = \*ABV\ + \ *CAV\ =
= \*CBV\ + | £ CBM\ = \*MBV\.

Označme dále O střed opsané kružnice a S střed základny BC. Body
О, V, S leží na ose základny BC (obr. 34). Je-li \-%.BAC\ — a < 90°, leží
bod O uvnitř trojúhelníku ABC a přitom platí

\SO\ = |RSj cotg a, ISFI =

Obr. 34
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Odtud je vidět, že pro a < 60° je \SO\ > |£К|, pro a > 60° je |.S0| < |£К|
a pro a = 60° je O = V. Je-li a > 90°, leží bod O vně trojúhelníku ABC.
Pro hraniční případy a = 60° a a = 90° úlohu snadno vyřešíme. Jinak
dostáváme tři různá pořadí bodů О, V, S na úsečce AM.

Pro a < 60° zachycuje situaci obr. 35, v němž T je bod, ve kterém se

vepsaná kružnice dotýká ramene AB. Pravoúhlé trojúhelníky ATV, ABM
jsou podobné, přičemž

\AV\ = R + d, \AM\ = 2R, \TV\ = r a \BM\ = \VM\ = R — d.
Je tedy

\TV\ : \BM\ = \AV| : \AM|,
neboli

r : {R — d) = (R + d): 2R.
Odtud hned dostaneme dokazovaný vztah

d = l/7?(/? —2r).
Pro 60° < a< 90° je situace znázorněna na obr. 36. Z podobných troj-

úhelníků ATV, ABM, kde tentokrát je

\AV\ = R — d, \AM\ = 2Д, |7T| = r a \BM\ = \VM\ = R + d,
dostaneme

r :(R + d) = (R — d): 2R,
což dává dokazovaný vztah.
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Obr. 37 znázorňuje situaci pro a > 90°. Zde opět dostaneme
r ; (R + d) = (R — d): 2R.

2. řešení. Dokážeme, že vzorec platí, i když trojúhelník ABC není rovno-

ramenný. Především si uvědomme, že při odvozování rovnosti \BM\ = \ VM\
jsme nepotřebovali předpoklad o rovnoramennosti trojúhelníku ABC.
Označme ještě N druhý koncový bod průměru OM opsané kružnice (obr. 38).
Pravoúhlé trojúhelníky ATV, NBM jsou podobné a odtud

\AV\.\BM\ = \MN\.\TV\ = 2Rr. (O

Koncové body průměru О V opsané kružnice označme P, Q. Pak je
\PV\.\QV\ = (R-d)(R + d),

a tedy i
\AV\.\MV\ = (R — d)(R + d) (2)
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(mocnost bodu V к opsané kružnici). Levé strany (1) a (2) jsou stejné,
proto

2Rr = (R — d)(R + d)
a odtud

d2 = R(R — 2r).
Poznámka. Všimněte si, že pro každý trojúhelník je R ^ 2r. Rovnost

nastane, právě když je trojúhelník rovnostranný.
Obrácením úvahy z 2. řešení bychom dokázali obrácenou větu: Jsou-li

v rovině dány dvě kružnice к, K, pro jejichž poloměry r, R a vzdálenost
středů d platí

d2 =R(R — 2r),

pak existuje trojúhelník, jemuž je kružnice к vepsána a kružnice К opsána.
Přesněji, zvolíme-li na kružnici К libovolný bod A, pak tečny vedené z něho
ke kružnici к protnou kružnici К v bodech В, C, přičemž tětiva BC se

dotýká kružnice k.

26. Dotýká-li se kulová plocha všech šesti přímek, v nichž leží hrany
čtyřstěnu, protíná čtyři roviny, v nichž leží stěny, v kružnicích vepsaných
nebo připsaných jeho stěnám. Přitom každé dvě z těchto kružnic mají
společný bod dotyku.

Jedna možnost je, že všechny čtyři kružnice jsou stěnám vepsané a všech
šest bodů dotyku K, L, M, P, Q, R leží uvnitř hran (obr. 39). Taková ku-
lová plocha - říkejme jí vnitřní - existuje nejvýše jedna.
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Druhá možnost je, že některá z kružnic je připsaná, takže některý bod
dotyku leží na prodloužení hrany za její krajní bod. Dejme tomu, že např.
bod dotyku K' leží na prodloužení hrany DA za bod A (obr. 40). Kulová
plocha pak protne rovinu DAB v kružnici připsané trojúhelníku DAB,
která se dotýká hrany AB ve vnitřním bodě R' a přímky DB v bodě V
na prodloužení hrany DB za bod B. Stejná situace je v rovinách DBC,
DAC. Kulová plocha se tedy v tomto případě dotýká hran АС, ВС, AB
v bodech P', Q', R' a přímek DA, DB, DC v bodech K', L', M' oddělených
od bodu D rovinou ABC. Jedna kružnice je vepsána stěně ABC a tři kruž-
nice jsou připsány ostatním stěnám. Stejnou úvahu, jakou jsme teď pro-
vedli pro bod D, můžeme provést i pro ostatní vrcholy А, В, C.

Zjistili jsme, že popsanou vlastnost může mít nanejvýš pět kulových
ploch, jedna vnitřní a čtyři vnější.

Existuje-li vnitřní kulová plocha, je

\AK\ - \AR\ = \AQ\ = a,

\BL\ = \BP\ = \BR\ = b,
\CM\ = \CP\ = \CQ\ = c,
\DK\ = \DL\ = \DM\ = d.

Existuje-li vnější kulová plocha příslušná bodu D, je

\AK’\ = \AQ'\ - |AR'| = a',
\BL'\ = |PP'| - |AR'| = ú',
|CM'| = |CP'| = \CQ’\ - c',
|Z)K'| = \DL’\ - |DM'| = ď.

Existují-li obě, je P — P', Q — Q', i? = P', a tedy
a = a', b = b', c — c

а

d — 2a -f- d — 2b -j- d — 2c -f- d,

takže

a = b = c

a trojúhelník ЛРС je rovnostranný. Provedeme-li analogickou úvahu i se
třemi zbývajícími vnějšími kulovými plochami, zjistíme, že i stěny ABD,
BCD, ACD jsou rovnostranné trojúhelníky a čtyřstěn ABCD je pravi-
dělný.
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Obráceně, je-li ABCD pravidelný čtyřstěn, označme S jeho střed (tj.
těžiště). Pak kulová plocha o středu S, která prochází středem jedné hrany,
bude procházet i středy ostatních hran. Stejnolehlostí se středem D a koe-
ficientem 3 převedeme tuto vnitřní kulovou plochu ve vnější příslušnou
vrcholu D. Stejně pak sestrojíme ostatní tři vnější kulové plochy.

27. Je-li л: reálný kořen dané rovnice, je x2 ^ p, x2 ^ 1, x ^ 0, tedy
x2 p, x ^ 1. O)

Pro číslo x platí
2 Ух2 — 1 = x — Ух2 — p,

a umocníme-li obě strany,

2x2 + {p — 4) = — 2x]/x2 — p.

Po dalším umocnění dostaneme rovnici

4 (4 — 2p)x2 = (p — 4)2.
Je-li p = 4, má rovnice (2) řešení x = 0, ale to nevyhovuje podmínce (1).
Je-li p ^ 2, p Ф 4, nemá rovnice (2), a tedy ani původní rovnice řešení.
Pro p < 2 má rovnice (2) dvě řešení

(2)

4-P

2j/4— 2p
P-4

(3)x =

(4)x =

2y4 — 2p
Snadno se přesvědčíme, že číslo (3) vyhovuje a číslo (4) nevyhovuje pod-
mínkám (1). Jak uvidíme, neznamená to ještě, že číslo (3) vždy vyhovuje
dané rovnici. Dosadíme-li totiž (3) do dané rovnice, dostaneme rovnost,
právě když pro parametr p platí

\3p — 4\ + 2\p\ = 4 —p,

tj. právě když
4

Pro tyto hodnoty parametru p má tedy daná rovnice jediné řešení (3),
pro ostatní hodnoty řešení nemá.
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2. řešení. Daná rovnice je ekvivalentní se soustavou

(У*2 —p + 2j/x2 — 1 Ý = x2,
x ^ 0,

neboli

4 j/x2 — p |/x2 — 1 = p + 4 — 4x2,
0.x

Tato soustava je ekvivalentní soustavě

(4j/x2 — p ]/x2 — l)2 = (p + 4 — 4x2)2,
x^ 0,

p -f 4 — 4x2 ^ 0
a ta soustavě

16 (x2 — p) (x2 — 1) — {p + 4 — 4x2)2,
x ^ 0,

p -\r 4 — 4x2 ^ 0,
x2 — p ^ 0,
x2 — 1 ^ 0,

neboli

8 (2-/>)*» = (4 —p)*,
x ^ 0, (5)

P + 4
x2 ^ —4— ,
X2 ^ P,
X2 ^ 1.

(6)

(7)
(8)

Porovnáme-li podmínky (6), (7) a (6), (8), zjistíme, že soustava nemá
řešení, není-li

4
0 ^ p й у •

Pro tato p má původní rovnice jediné řešení vyhovující podmínce (5),
totiž

4 —P
x =

2]/4 — 2p
Snadno se přesvědčíme, že i podmínky (6), (7), (8) jsou pro toto x splněny.
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28. Hledaná množina je podle Thaletovy věty sjednocením všech kulo-
vých ploch s průměrem AX, kde bod X probíhá úsečku BC (body A a X
patří do hledané množiny, neboť pravé úhly s ramenem AX a vrcholem
v bodě A nebo X splňují podmínky úlohy). Uvědomme si, že kulová plocha
je invariantní vůči otočení kolem přímky procházející středem. Množina
všech středů zmíněných kulových ploch je úsečka B'C', jejíž krajní body
В', C jsou středy úseček AB, AC. Hledaná množina bude tedy invariantní
vůči otáčení kolem přímky B'C. Stačí tedy úlohu vyřešit v rovině, v níž
leží body А, В, C. Najdeme-li tak množinu M, dostaneme hledanou mno-
žinu v prostoru rotací množiny M kolem přímky B'C.

Na obr. 41a—f jsou znázorněny hledané množiny v rovině pro různé
případy vzájemné polohy bodů/l a úsečky BC. Jc to sjednocení všech kruž-
nic nad průměrem AX, kde bod X probíhá úsečku BC. Jinými slovy, je
to množina všech kružnic procházejících bodem A, jejichž středy probíhají
úsečku B'C. Společným bodem všech těchto kružnic je také bod A i sou-
měrně sdružený s bodem A podle přímky B'C. Hledanou množinu bodů
v rovině můžeme charakterizovat takto: Je to množina všech bodů, které
leží v sjednocení dvou kruhů s průměry AB, АС a neleží uvnitř jejich prů-
niku.

Obr. 41 f
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Hledanou množinou bodů v prostoru jc množina všech bodů, které leží
ve sjednocení dvou koulí s průměry AB, АС a neleží uvnitř jejich průniku.

29. Vezměme pravidelný «-úhelník B\Bz-. .Bn, který má s daným n-úhel-
níkem A1A2 . • - An společnou stranu A1A2 = B1B2, přičemž oba leží
v téže polorovině určené přímkou A1A2. Oba mnohoúhelníky mají vnitřní
úhly stejné. Jestliže

o 1 — «2 = • • • — cin-1,

je An = Bn, a protože Ai = Bi, je an = \AnAi\ = \BnB\\ = a\. Kdyby
í e {1,2, ..., n — 2} byl první index takový, že щ > щ+i, ležely by (obr. 42)
body Ai+2, ..., An uvnitř pravidelného «-úhelníku B1B2.. .Bn a platilo by

\%AnAiA2\ < \ -^BnBíB2\,
což není možné.

3

fy*2

Aj-Bj BM
Obr. 42

2. řešení. Sestrojme osu vnitřního úhlu při vrcholu A1 a promítněme na
ni pravoúhle všechny vrcholy uvažovaného «-úhelníku. Protože všechny
vnitřní úhly jsou shodné, mají dvojice stran A1A2 a AiAn, A2A3 a AnAn~ 1,

... vždy stejné odchylky od osy (je-li « = 2k— 1, zbyde strana A&At+i,
která je na osu kolmá). Odtud jc vidět, že průměty lomených čar A1A2.. .Ak
a A\An.. .Aic+1 v případě lichého n = 2k — 1, resp. A1A2.. .Ak+i,AiAn- • •

... /4jfc+i v případě sudého « = 2k, jsou stejně dlouhé. Zároveň je patrno,
že je-li alespoň jedna z nerovností

ai ^ a2 ^ ^ an

ostrá, nemohou být průměty obou lomených čar stejně dlouhé.
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30. Vyhovují-li čísla xi, хг, хз, X4, X5 dané soustavě, je podle prvních
dvou rovnic

(1)*5 = ух1 — X2,

X3 = УХ2 — X\.

Dosadíme-li odtud do třetí rovnice, dostaneme
X4 = (y2 _ 1 )X2—yXl.

Dosadíme ještě do čtvrté a páté rovnice za хз, ха, X5 podle (1), (2) a (3)
a dostaneme

(2)

(3)

0>2 + у — i)*i — (y — i) (у2 + у —1)*2 = o,
(,У2 -f у — l)Xl — (у2 + у — l)X2 = 0.

(4)
(5)

Řešení dané soustavy tedy vyhovují soustavě (1)—(5). Obráceným postu-
pem bychom zjistili, že každé řešení soustavy (1)—(5) splňuje danou sou-
stavu. Obě soustavy jsou tedy ekvivalentní.

Řešme soustavu (1)—(5). Je-li у2 + у — 1 = 0, tj.
—1 — 1/5—1 + 1/5

nebo у — 2

jsou rovnice (4) a (5) splněny pro libovolná dvě čísla xi, x%. Ke každé
dvojici xi, X2 pak rovnice (1)—(3) jednoznačně určují čísla хз, ха, X5.

V případě že y2 + У — 1 Ф 0, nabudou rovnice (4), (5) tvaru
*1 — (>’ — 1)X2 = 0,

xi — X2 = 0.

Je-li у — 2, zjistíme, že soustavě vyhovují právě všechny pětice, pro
které platí
Pro уф 2 má v uvažovaném případě soustava jediné řešení

Xi — Х2 = Хз = А'4 = Х5 = 0.

Л'1 ~ X2 — Хз = ХА — x§.

Závěr. Je-li

—1 + У5 —1 — 1/5
nebo у =У = 22

má soustava nekonečně mnoho řešení tvaru

xi = u, x2 = v, хз — yv — и, ха — (у2 — l)v — yu, X5 = yu — v,

kde u, v jsou libovolná čísla.
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Je-li у = 2, má soustava nekonečně mnoho řešení tvaru
Al = Л'2 = А'з = Л'4 = А5 — t,

kde t je libovolné číslo.
V ostatních případech má soustava jediné řešení

Al = Аз — Аз — A4 — A5 — 0.

31. Podle vzorců pro součet kosinů a pro kosinus a sinus dvojnásobného
úhlu je

2tc3 тс'2tc 3 TCTC Ti
— cos — + cos — = I cos — + cos — cos —cos

7 7 77 77

2 тс71 Ti
= 2 cos cos — — 2 cos2 + 1 =

7 7 7

2tcTC TC
= 2 cos — + 1 =cos — — cos

7 7 7

27Г 6tcTC

= 2 cos — ! cos — + cos —14-1 =
7 7 7

2tz 4tc
= 4 cos — cos — cos — -f 1 =

TC

7 7 7

2тс 47c
4 sin — cos — cos — cos —

TC TC

7 7 7 7
-j- 1 =

TC

sin
7

2tc 2tc 4tc
2 sin — cos — cos —

4tt 4tt
sin — cos

7 77 7 7
+ 1 - + 1 =

TC TC

sin — sin —
7 7

8tc TC

sin — — sin —
77 1

+ 1 - + 1 _
2 ’TC 7C

2 sin — 2 sin —
7 7
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2. řešení využívá vzorce

2 COS X cos у = cos (x + y) 4~ cos (x —у).
Postupně dostáváme

71 /2 cos — l cos — — cos
14 \

3tc\

у + COS yl =
2tzTZ

7

2 тс 3тсTZ n TC тс
= 2 cos у cos — — 2 cos у cos 14 4 2 C0S ~17 COS

14

Зтс 5tc 3tu 7n 5tcn 7Z
= COS — + COS — — COS — — COS 77 + COS 77 + COS 77 = COS 7714’14 14 14 14 14 14

takže

( 2tz 3tzTZ

2 ^cos у — cos
3. řešení. Zaveďme v rovině soustavu souřadnic (budeme pracovat jen

s prvními souřadnicemi). Čísla

— 1.77 + COS -77 7

2tc Зл:TZ

COS —, COS y, COS 7Г7 7

jsou souřadnice vrcholů Au A 2, A 3 pravidelného čtrnáctiúhelníku vepsa-
ného do jednotkové kružnice se středem v počátku O (obr. 43). Číslo

Зти
— + cos 777 7

Ao A1

Obr. 43
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se shoduje se souřadnicí koncového bodu vektoru
OAi — OA2 4~ OA3 = OA] 4" OA9 -j- OA3.

Všimněme si, že koncový bod vektoru

OA13 4" OA5 4~ ОАц

má tutéž souřadnici. Přidáme-li ještě vektor OA7, dojdeme к závěru, že
číslo

2 |cos — — cos
je souřadnice koncového bodu vektoru

OAi 4- OA3 4- OA5 4~ OA7 4~ OA» 4~ OA и 4~ OA13.

Зти'2tuTC
— 1— 4- cos —

7 1,

2 tu

To je však nulový vektor, neboť je invariantní vůči otočení o —. Je tedy

/tu 2tu 3tu\
2 I cos — — cos — 4- cos —) =

\ 7 7 7 /

4. řešení. Uvažujme komplexní jednotku
TU TU

Z — COS — 4- i sin
7 7

1.

Podle Moivreovy věty je
/пи n Ti
— 4- i sin —
7 7

zn — cos

a odtud

n TU

2 cos — = zn 4- z~n.

Všimněme si ještě, že z1 = —1. Je tedy
/ TU

2 ^cos — — cos
2tu 3tu\

у +cos у) = (z 4- r-1) — (z2 4* z-2) 4- (23 — г-3) —

— z3 — z2 4- 2 — 1 4- z-1 — z~2 4- z-3 4- 1 =

z4 4- z~3 z7 4-1
4- 1 = 4-1 — 1.

z3(z + 1)z 4- 1



32,33, 34 (94)

32. Probereme všech 120 pořadí a zjistíme, že jedině EDACB vyhovuje
podmínkám úlohy.

2. řešení. Vyjdeme z druhé předpovědi. Pořadí DAECB obsahuje čtyři
dvojice bezprostředně za sebou následujících písmen DA, AE, ЕС, CB,
z nichž právě dvě jsou správné. Tyto dvě správné dvojice nemohou mít
společné písmeno. Pak bychom totiž dostali správnou trojici bezprostředně
po sobě následujících písmen. Kdyby tato trojice měla některé písmeno
na správném místě, byla by pak všechna její tři písmena na správném
místě, ale správně předpovězena byla jen dvě. A kdyby na správném místě
byla zbývající dvě písmena, bylo by všech pět písmen na správném místě.
V úvahu tedy přicházejí tři páry správných dvojic

DA, ЕС,
DA, СВ,
AE, СВ.

Uvědomme si ještě, že pro dvě správně předpovězená písmena není
jiná možnost, než že tvoří jednu ze správných dvojic. Pro hledané pořadí
tak dostáváme v prvním případě jednoho kandidáta DABEC, ve druhém
případě DACBE a EDACB a ve třetím případě AEDCB. Podle výsledku
první předpovědi z nich vyhovuje jen EDACB.33.Nejprve zjistíme, jaké zbytky dává 2n při dělení sedmi. Číslo

23* = (23)* = (7 + 1)*
dává podle binomické věty při dělení sedmi zbytek 1. Odtud je vidět, že
číslo 23*+! = 2.23* dává zbytek 2 a číslo 23*+2 — 4.23* dává zbytek 4.

a) Číslo 2n — 1 je dělitelné sedmi, právě když n je dělitelné třemi.
b) Číslo 2n -f- 1 není dělitelné sedmi pro žádné přirozené n.34.Podle troj úhelníkové nerovnosti je

(b — с)\Ь + c — a) ^ 0,
{c — á)2(c -f- a — b) ^ 0,
(ia — b)\a + b — c) ^ 0.
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Sečteme-li tyto tři nerovnosti, dostaneme
a2(c + a — b -j- a + b — c) + b2(b -f c — а + а + b — c) +

+ c2(b + c — a -f c + а — b) — lbe (b + c — a) —lae (c + a — b) —
— 2ab (a + b — c) =
= 2а2(а — b — c) + 2b2(b — a — c) + 2c2(c — a — b) + 6abc ^ 0,
což dává dokazovanou nerovnost.

2. řešení. Jsou-li a ^ ^ c ^ 0 libovolná tři čísla, je
a2(b + c — á) + b2{c + a — b) + c2{a + b — c) — ЪаЬс —

= a(ab + ac — a2 — bc) + b{bc + ba — b2 — ac) +
+ c(ac + cb — c2 — ab) =

= — a(a — b)(a — c) + b(b — c) (a — b) — c(a — c) (b — c) ^
^ — a(a — b) (b — c) + b(b — c)(a — b) — c{a — c) (b — c) —
= — (a — b)2(b — c) — c(a — c) (b — c) ^ 0

a rovnost nastane, právě když je a = b = c nebo a = b, c = 0.

Poznámka. Předpoklad, že a, b, c jsou velikosti stran trojúhelníku, byl
zbytečný. Za tohoto předpokladu je např.

(a + b — c)(b + c — a) (c + a — b) > 0.
a odtud

a2(b + c — a) -f- b2(c + a — b) + c2(a + b — c) > labc.

35. Poloměr kružnice vepsané trojúhelníku ABC označme r a jeho
poloviční obvod 5. Analogického značení použijeme pro trojúhelníky
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oddělené uvedenými tečnami. Všechny čtyři uvažované trojúhelníky jsou si
podobné. Naším úkolem je vyjádřit číslo

('♦(tMtMtDZ = ТСГ2 -j- 7+ 7Crl + Ttjf = TO'2

pomocí a, b, c. Z vlastností tečen zjistíme (obr. 44), že

1 I
— {\AX\ -f \XP[) + у (\AY| + |J7>|) =•Vu =

1 1
=

у |ЛМ| + у \AN\ = \AM\ — s — a,
takže

t'a s — a a

r s s s

analogicky
bn crc

r s r s

a tedy

z — 7C/’2 11 + 11 — —

= тсг2^4 — 2
Й2 + b2 + C2'a + b -f c

+ S2s

a2 + b2 + c2
— Ttr2

s2

Obsah P trojúhelníku ABC je roven součtu obsahů trojúhelníků ABS,
BCS, CAS, tj.

ar br cr
— —t— - - —i— —

2 1 2 [ 2
P -

—

rs,

a podle Heronova vzorce je

P — j/.s (.s' — a) (v — b) (.? — c),
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takže

/О — а) О — Ь) (.? — с)
г —

S

Je tedy
7Г

(.9 — а) (.9 — b) (.9 — с) (а2 + b2 + с2) —Z — -
Л'3

tc(Z> + с — а) (а + с — b) (а + b — с) (а2 + Ь2 с2)
(а -j- Ъ + с)3

Poznámka. Všimněme si, že
b a + b + can rc cГа

+ 1 — +1 — —3 —+ + — 1 — = 1.
s s .9Г r r s

Je tedy
ra -h rb + rc = г.

36. Zvolme jednu z uvažovaných osob a označme ji A. Ta si dopisuje
se šestnácti osobami nanejvýš o třech tématech. S alespoň šesti osobami
si tedy osoba A dopisuje o stejném tématu - označme je I.

Dopisují-li si některé dvě z těchto šesti osob také o tématu T, nalezli
jsme tři osoby, které si píší o tématu I.

V opačném případě si žádné dvě z těchto šesti osob nepíší o tématu I.
Libovolně z nich zvolená osoba В si tedy s ostatními pěti dopisuje o nej-
výš dvou tématech. Alespoň se třemi si tedy dopisuje na jedno téma -

označme je II.
Dopisují-li si nyní některé dvě z těchto tří osob na téma II, nacházíme

opět tři osoby píšící si o témže tématu. Není-li tomu tak, dopisují si tyto
tři osoby na další téma Til a důkaz je proveden.

37. Zvolme jeden z pěti daných bodů. Čtyři zbývající body mají 6 spojnic
a zvoleným bodem к nim prochází 6 kolmic. Žádné dvě z nich nesplynou
(jinak by dvě spojnice byly rovnoběžné) a žádná z těchto kolmic nepro-
chází žádným ze čtyř zbývajících bodů (jinak by byly dvě spojnice kolmé).
Nesplynou ani dvě kolmice vedené dvěma z daných bodů, jinak by byly
dvě spojnice kolmé. Máme tedy 30 kolmic.
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Kdyby se každé dvě protínaly a každým průsečíkem procházely jen

dvě, měli bychom

Kolmice vedené dvěma z daných bodů к téže spojnici libovolných dvou

= 435 průsečíků.

zbývajících bodů jsou však rovnoběžné a neprotínají se. Ke každé z =

— 10 spojnic lze vést tři takové dvojice, takže odpadá 30 průsečíků.

Každým z pěti daných bodů prochází 6 kolmic, a tak vždy o = 15

průsečíků splývá v jeden. Odpadne tak dalších 5.14 — 70 průsečíků.
Každé tři z daných bodů jsou vrcholy trojúhelníku, v němž tři výšky

procházejí společným průsečíkem. V každém z = 10 trojúhelníků tak

odpadnou dva průsečíky. Průsečík výšek v trojúhelníku, jehož vrcholy
tvoří dané body, přitom není daný bod, jinak by byly některé spojnice
daných bodů kolmé. Odpadá tedy dalších 20 průsečíků.

Kolmice se protínají nanejvýš v

435 — 30 — 70 — 20 - 315

bodech, z nichž 5 jsou dané body.

38. a) Rovina určená rovnoběžkami A A i, DDi obsahuje těžnici AM
trojúhelníku ABC (obr. 45). Body M, D, A\ leží v této rovině i v rovině
BCD, leží tedy v přímce. Trojúhelníky MAAi, MD\D jsou podobné,
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a protože \MA\ = 3 \MDy\, je \AAi\ = 3 |DZ>i|. Analogicky zjistíme, že
|/?#i| = 3|DDi| a |CCi| = 3 \DDi\. Odtud vidíme, že trojúhelníky ABC,
A\fí\C\ jsou shodné a leží v rovnoběžných rovinách, jejichž vzdálenost je
trojnásobek vzdálenosti bodu D od roviny ABC. Čtyřstěny A\B\C\Dy,
ABCD mají tedy shodné základny a druhý má trojnásobnou výšku, tedy
i trojnásobný objem.

b) Bod A i leží na průsečnici rovin AD\D, BCD, tj. na přímce DM, kde
M je společný bod přímky AD\ s hranou BC (obr. 46). Označme D' prů-
sečík přímky DyD s rovinou A\B\C\. Označíme-li M' průsečík přímek
AiD', BiCi, bude MM' || ВBy.

Trojúhelníky AD\D', AyDíD' mají stejný obsah, protože mají společnou
stranu D\D' a je AA\ || DyD'. Oba trojúhelníky leží v jedné rovině a body
В, В i od ní mají stejnou vzdálenost, protože přímka BBy je s touto rovi-
nou rovnoběžná. Čtyřstěny ABDiD', A\B\D'D\ mají proto stejný objem.
Podobně čtyřstěny BCDiD' a B\C\D'D\ a také ACDyD', AyCiD'Di mají
stejné objemy. Sjednocením čtyřstěnů ABD\D', BCD\D', ACD\D' vznikne
čtyřstěn ABCD' a sjednocením čtyřstěnů AiB\D'Di, BiC\D'D\, AiCyD'D\
čtyřstěn AyByCiDy. Čtyřstěny AyBiCyDy a ABCD' mají tedy stejný objem
a stačí dokázat, že \DyD'\ — 3 \D\D\.

/и .

'V--

\

C

č~"A

Q

Obr. 46
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Ve čtyřúhelníku BCC1B1 je BBi || CC\. Podle předpokladu leží úhlo-
příčka BCi v rovině ABD a druhá úhlopříčka B\C v rovině ACD. Průsečík L
úhlopříček BCi, BiC tedy leží na přímce AD, a tudíž i na přímce MM'.
Příčka MM' tedy prochází průsečíkem úhlopříček L, který ji proto půlí
(o této vlastnosti lichoběžníku a rovnoběžníku se ještě zmíníme v poznámce).
Bod L je tedy střed úsečky MM', takže úsečka A\L je těžnice trojúhelníku
MA\M'. Příčka DD' tohoto trojúhelníku je rovnoběžná se stranou MM',
a proto její střed Dq leží na těžnici A iL.

Všimněme si dále, že ve čtyřúhelníku AMLAi je AA\ || ML a průsečí-
kem jeho úhlopříček je bod D. Proto je bod D středem příčky DiDq.

Zjistili jsme, že \D±D\ — |DDo| = \DqD'\, takže skutečně \D\D’\ = 3 \D\D\.

Poznámka (obr. 47). Je-li PQRS rovnoběžník nebo lichoběžník a UW
příčka procházející průsečíkem V úhlopříček, PQ || UW || SR, mají obě
dvojice podobných trojúhelníků PUV ~ PSR, OVW ~ QSR stejný koe-
ficient podobnosti k, totiž poměr vzdáleností bodu V a bodu S od základ-
ny PQ. Je tedy \UV\ = к \SR\ = \ VW\.

R5;
\WUi

PL-

Obr. 47

2. řešení využívá základů analytické geometrie v prostoru a lineární
algebry. Má-li bod P souřadnice (pi, p2, pз) a bod Q souřadnice (qi, qz, q3),
budeme symbolem P -f- Q označovat bod se souřadnicemi (p 1 + q\,

p2 + #2, рз + #3) a symbolem tP, kde t je reálné číslo, bod se souřadnicemi
(tpi, tpz, íp3). Budeme pracovat v kartézské soustavě souřadnic s počát-
kem v bodě D. Objem čtyřstěnu A BCD je pak roven

]
— |det (A, B, Ol,V =

kde (А, В, C) je matice, jejíž sloupce jsou souřadnice bodů А, В, C.
Zvolme bod Div rovině ABC tak, aby neležel na žádné z přímek AB,

АС, BC. Pak je
Z>i — aA -j- bB -f~ cC (a -j- b -j- c — 1, abc ^ 0).
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Rovnoběžka s přímkou DD\ vedená bodem A má parametrickou rovnici
A + tDi = A + t(aA + bB + cC) = (1 + at)A + ЫВ + ctC

a rovinu BCD protíná v bodě, v němž je koeficient u A nulový, tj. pro
1

——, tedy v bodě
a

t =

b c

A\ — — — В — — C.
a

Analogicky zjistíme, že
ba c

В i - —— A — —C, Ci = — A —
b b с c

Objem čtyřstěnu A1B1C1D1 je roven

—B.

1
Fi = — ]det (Ai — D и Вi — Du Ci — BJI,

přičemž

(!+*)я-(т+<)A i — D i = — fl/í — C,

(f * •)— Di — bB — c,

)A-{^+b)
O

C\ — Di = — I — + a B — cC.
c

Je tedy
a

/ a
ci — + ab c

4" ci

I b h
~~ + bVi = V det b — +b j=F(a + 6 + c + 2)-3F.a

cc

b + ‘
Zjistili jsme, že tvrzení a) platí pro libovolný bod Di roviny ABC, který

neleží na žádné z přímek AB, АС, BC.

Poznámka. Leží-li bod Di např. na přímce AB, nemá rovina ABD spo-

léčný bod s přímkou vedenou bodem C rovnoběžně s DDi, takže ne-
vznikne bod Ci.

c
a
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39. Řešme nejprve druhou nerovnici

| ]/1 + sin 2x — ]/1 — sin 2x | ^ ]/2.
Obě strany umocníme a dostaneme ekvivalentní nerovnici

1 + sin 2x — 2]/l + sin 2x ]/l — sin 2x + 1 — sin 2x S 2,
neboli

— 2j/l + sin 2x |/l — sin 2x ^ 0.
Této nerovnici vyhovují všechna x e <0, 2tí).

Řešme nyní nerovnici
2 cos x ^ | |/l -|- sin 2x — j/l — sin 2x |. (O

у л ЗтсJestliže cos x ^ 0, tedy xe , je nerovnice zřejmě splněna. Hledáme

dále řešení nerovnice (1), pro něž cos x > 0. Za tohoto předpokladu obě
strany nerovnice umocníme a postupně dostáváme ekvivalentní nerovnice

4 cos2x ^ 1 + sin 2x — 2|/l 4- sin 2x j/l — sin 2x 4- 1 — sin 2x,
4 co52x ^2 — 2j/l — sin22x,
2 cos2x ^ 1 — |cos 2x|,
cos 2x ^ — |cos 2x|.

\ 2 ’ 2 /

Poslední nerovnost je splněna, právě když cos 2x ^ 0. V druhém případě
/tí Злу

2 ’ 2/
z předešlého případu, vidíme, že řešení nerovnice (1) jsou právě všechna

^/71 7 7T\
\ 4~’T/‘

2. řešení. Jiná úprava nerovnice je založena na tom, že

j/l 4: sin 2x = [/sin2x + cos2x 4: 2 sin x cos x = |sin x 4: cos x|.
Hledáme tedy řešení nerovnice

2 cos x ^ 11 sin x + cos xj — [sin x — cos x 11 S j/2
a ta se v některých částech intervalu <0, 2rc> redukuje na

у re tí у уЗл 1л
4 ’ ~2/ U 2 ’ 4/"vyhovují tedy x e Připojíme-li interval

\

To jsou také všechna řešení úlohy.x £

P
cos x ^ |cos x] ^ —
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a v jiných na

p
cos X ^ |sin x| й ~2>

40. Předpokládejme, že čísla xi, X2, хз jsou řešením soustavy a nejsou
všechna rovna nule. Pak můžeme dokonce předpokládat, že aspoň jedno
z nich je kladné, neboť trojice —xi, —X2, —хз soustavě také vyhovuje.
Největší z čísel xi, хг, хз označme xr, je tedy xr > 0. Z r-té rovnice máme
podle podmínek úlohy

ClrlXl -j- (Ir 2X2 4" «гЗХз — ClrrXr 4" Ji, ariXi ^

^ arrxr + 2 ariXr = xAflr 1 + dr2, + ar3) > o
гфг

a dostáváme spor, neboť uvažovaná trojice nevyhovuje r-té rovnici.

2. řešení využívá základních poznatků o determinantech. Označme
ац a 12 «13

«21 «22 «23

«31 «32 «33

determinant dané soustavy. Stačí dokázat, že D Ф 0, neboť homogenní
soustava lineárních rovnic má nenulové řešení, právě když determinant
soustavy je nulový.

Označme součty koeficientů v i-té rovnici st = ац + «г2 + «гз pro
i € (1, 2, 3}. Pak

«11 «12 Sl

D — «21 «22 s2 — S1 («21«32 — «22«3l) 4 ^'2(«12«31 — «11«32) +
Л'з(«11«22 «12«2l)-

Z podmínek úlohy plyne, že první dva členy na pravé straně jsou kladné.
Dále «11 4- «12 > «и 4- «12 4- «13 > 0, tedy «ц > —«12- Obdobně
«21 + «22 > «21 4- «22 4- «23 > 0, tedy «22 > —«21- Dohromady «ц«22 >
> «i2«2i, ledy i třetí člen na pravé straně (1) je kladný. Platí tedy D > 0
a soustava má pouze nulové řešení.

Poznámka. Tvrzení úlohy můžeme zobecnit na soustavu n lineárních
rovnic o n neznámých, postupujeme-li stejně jako v 1. řešení.

D =

(1)
«31 «32 ^3
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41. Čtyřstěn ABCD doplníme na rovnoběžnostěn, jak ukazuje obr. 48
(výsledný rovnoběžnostěn ovšem nemusí být kolmý). Hrany AB, CD
čtyřstěnu jsou úhlopříčkami jeho podstav, rovina e dělí rovnoběžnostěn
ve dva rovnoběžnostěny; objem dolního (horního) označíme V\ (Ka).

Protože jejich výšky jsou po řadě
kd d

a protože oba rovnoběž-1 + к ’ 1 + к
1

nostěny mají podstavu téhož obsahu 2P — — ab sin co (klademe Pi =

— Рй = P), platí
2kdP 2d P

(1)Vx =
1 + k'1 + k’

d
1 *k

kd
Ь к

Rovina e rozdělí čtyřstěn ABCD na dvě části; dolní dostaneme, když od
dolního rovnoběžnostěnu oddělíme dva jehlany at dva komolé jehlany.

kd
Výška jehlanů je a jejich podstavy mají týž obsah Px, je to obsah1 + к
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trojúhelníku XYZ. Poněvadž trojúhelníky XYZ, CDE jsou stejnolehlé

podle středu A í koeficient stejnolehlosti je
к

platí1 + k)'
к 2

P.P 4 =
1 + к

Součet objemů jehlanů je tedy
2 kd ( к у 2 j к \3
J 1 + к \ 1 + к) P = T d\l +k) P' (2)

kd
Oba komolé jehlany mají také výšku ; jejich podstavy mají obsahy P1 +Г
(trojúhelník ABF) а Рг (trojúhelník XVU). Protože trojúhelníky XVU,

1
ABF jsou stejnolehlé podle středu C ^koeficient stejnolehlosti je
platí

1 + kl ’

21
P.Po -

1 + к
Součet objemů obou komolých jehlanů je tedy

2 kd

3 1 + к

1 21
P + T+~k) p I =P +

1 + к
2d к (к2 + 3к + 3)

(3)Р.
(1 + к)3

Objem V1 dolní části čtyřstěnu dostaneme, odečteme-li od čísla V\ obě
čísla (2), (3). Je tedy

2kd 2 k3
Vl = l~+kP ~ 3 d(l + k)3 P~

2k2(k 4- 3)d
*

_3 0 4- k)3
Objem V2 horní části zřejmě dostaneme, nahradíme-li ve výsledku (4)

3

2 k{k2 4- 3k + 3)
3 d "(V+T)^ P ^

(4)P.

1
číslo к číslem —; po úpravě vyjde

rC

2(1 4- 3k)d
V,- (5)P.

3(1 4- k)3
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Z (4) a (5) plyne
V[ к2 {к + 3)
Vl = 1 + ЗА: '

Poznámka. Vidíme, že poměr nezávisí na a, b, d, co. Pro к — l jsme
dostali větu:

Rovina, která prochází středy dvou mimoběžných hran a středem další
hrany čtyřstěnu, dělí čtyřstěn na dvě části o stejném objemu.

2. řešení využívá integrálního počtu. Vedíne proměnnou rovinu q rovno-
běžnou s rovinou e ve vzdálenosti x od přímky AB. Nechť rovina q protíná
čtyřstěn ABCD v čtyřúhelníku EFGH (obr. 49). Zřejmě FG\\ CD\\EH,
EF || AB || HG, tedy čtyřúhelník EFGH je rovnoběžník. Jeho obsah je

P = \EF\.\FG\ sin co - \AB\ г- \CD\ — sin to - ab
a a a*

x(d — x)x

sin co.

A

Označme Ví, Vz objemy těles vzniklých rozdělením čtyřstěnu ABCD
rovinou e. Pak platí

kd

1-1 -k
ab sin to [ x2d x'.AJiL

j í+i- .

2 3 !0
x(d — x)

— I ab sin co dv; —Ví
d2 t/2

k2(k + 3)
б'(ГТ/с)а

— abd - sin co,
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d

x(íl — A') A3ab sin co x2d
ab sin oj cIa = “■V‘2 —

d2 d2 2 3 kil
Ы 1 + ifc

1 + k

ЗА: + l
= abd sin co.

6 (1 + k)3
Poměr objemů bude tedy

Vl k\k + 3)
V2 = ЗА: + 1 ’

3. řešení. Využijeme následující věty, kterou dokážeme nakonec.
Objem mnohostěnu, jehož všechny vrcholy leží ve dvou rovnoběžných

rovinách, je dán vzorcem

//
r (/ii + lh + 4M),6

V = (6)

kde Bi, fí2 jsou obsaliy podstav, li je výška mnohostěnu (vzdálenost pod-
stav) a M je obsah průniku mnohostěnu s rovinou rovnoběžnou s podsta-
vámi a stejně vzdálenou od obou podstav. (Věta platí i v případě, kdy se

jedna z podstav redukuje na úsečku nebo na bod a má tedy nulový obsah.)
Uvažujme roviny ei, resp. e2 rovnoběžné s rovinou e a stejně vzdálené

od roviny e a přímky AB, resp. CD (obr. 50). Vzdálenosti rovin c, i:i,
(1 + 2k)dkd kd

resp. e 2 od přímky АВ jsou . Jak už víme, resp.1 + к’ 2(1 + к) 2(1 + к)

/

/>-— \

/1 'В

Obr. 50
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z 2. řešení, roviny e, ei, £2 protnou čtyřstěn ABCD v rovnoběžnících
s obsahem

x{d — x)
ab sin co,d2

kde x je vzdálenost příslušné roviny od přímky AB. Podle vzorce (6) pak
už snadno určíme objemy V\, V2 těles vzniklých rozdělením čtyřstěnu
ABCD rovinou e.

Zbývá dokázat vzorec (6) (obr. 51). Nechť všechny vrcholy mnohostěnu
leží ve dvou rovnoběžných rovinách q a a. Vrcholy Ri, R2, ..., Rnvro-
vině q jsou spojeny hranami s vrcholy Si, S2, ..., Sn v rovině a (několik
následujících vrcholů může splývat). Boční stěny mnohostěnu jsou troj-
úhelníky nebo čtyřúhelníky. Každou boční čtyřúhelníkovou stěnu roz-
dělíme úhlopříčkou na dva trojúhelníky (v obr. 51 např. čtyřúhelník
R1R2S2S1 úhlopříčkou JR11S2). Označme M1M2.. .Mn w-úhelník, který
vznikne jako řez mnohostěnu rovinou rovnoběžnou s podstavami a stejně
od nich vzdálenou. Zvolme bod P uvnitř tohoto mnohoúhelníku a spojme
bod P s vrcholy M\, М2, ..., Mn, s body Ai, ve kterých přidané stěnové
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úhlopříčky protínají и-úhelník M1M2.. .Mn, a se všemi vrcholy Ri, R2,
..., Rn, S1, S2, ..., Sn mnohostěnu. Označme V, Vi objemy jehlanů

1 h
R1R2S2P, AiM2SzP. Zřejmě V = 4Ki a Vi = — —

2hS
trojúhelníku A1M2P■ Je tedy V — -y~. Stejným způsobem vypočteme
objemy jehlanů R2R3S2P, R3R4S3P, S3S4R4P atd. Součet objemů těchto
jehlanů, z nichž každý má vrchol P a za podstavu jeden z bočních troj-

2hM
úhelníků, je ——, kde M je obsah и-úhelníku M1M2.. .Mn. Objem inno-

hoštěnu získáme přidáním dvou jehlanů s vrcholem Pa podstavami P1P2...

S, kde S je obsah

h
...Rn, resp. SiS2...Sn. Oba jehlany mají výšku —. Označíme-li obsahy

podstav В i а В2, dostaneme vzorec (6).

4. řešení. Rovina e protíná daný čtyřstěn v rovnoběžníku EFGH a roz-

děluje ho na dva pětistěny ABEFGH a CDEFGfí. Pětistěn ABEFGH
(obr. 52) je složen ze tří čtyřstěnů AEGH, BEFG a ABEG. První dva z nich
mají podstavy EGH, EFG stejného obsahu a stejně velké výšky, mají tedy
stejné objemy. Porovnejme čtyřstěny AEGH, ABEG. Výšku ze společného
vrcholu E mají společnou a výšky podstavy AGH na stranu GH a podstavy
ABG 11a stranu AB jsou také stejně velké. Je tedy

V(ABEG) \AB\

V(AEGH) = ]GH\
— к + 1,

H G
f/

/
/

/
Z

Ei

/ ■><__
у

/

A1-

Obr. 52
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takže

V(ABEFGH) = (к + 3) V(AEGH).
Pětistěn CDEFGH rozložíme na tři čtyřstěny DEGH, CEFG a CDEG

a analogicky zjistíme, že

= (y +3j V(DEGH).V(CDEFGH)

Vzhledem к tomu, že je zřejmě
V(AEGH) = к V{DEGII),

dostaneme

V(A BEFGH) k(k + 3) k\k + 3)
3T+T'V(CDEFGH) 1

7+3
Poznámka. Všimněte si, že jsme vůbec nepracovali s danými veličinami

a, b, cl, co.

5, řešení. Jak známo, každé afinní zobrazení v prostoru zachovává rov-
noběžnost i dělicí poměr. Jsou-li dány dva čtyřstěny ABCD, A'B'C'D',
pak existuje afinní zobrazení, které převede A v А', В v В', C v C, D v D'.
Stačí tedy naši úlohu vyřešit projeden určitý čtyřstěn a výsledek pak bude
stejný pro všechny ostatní čtyřstěny. Pohodlně se objemy částí počítají
např. pro čtyřstěn s vrcholy (0, 0, 0,) (0, 0, 1), (0, 1, 0), (1, 0, 0).

42, Předpokládejme, že čísla лм, л*2, *з, x.j vyhovují podmínkám úlohy,
tj. jsou řešením soustavy rovnic

*1 -j- .*2*3x4 = 2,
*2 + *1*3X4 = 2,
*3 + *1*2*4 = 2,
*4 + *1*2*3 = 2.

Žádné z čísel *г- není rovno nule: kdyby např. *1 = 0, dostaneme ze sou-
stavy *2*3*4 = 2, X2 = 2, л'з = 2, *4 = 2, což není možné.

Označme nyní p — v 1 *2*3*4. Pak /-tá rovnice soustavy má tvar

—

= 2,*í +
Xi
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neboli

xf — 2,Xi + p = 0.
Pro číslo x$ tedy platí

x* = 1 + ]/1 — р nebo хг = 1 — j/'l — р.

То znamená, že z čísel xi mohou být nejvýše dvě různá. Rozlišíme tři
možnosti:a)Všechna čtyři čísla jsou si rovna, xi = хг = хз = X4 — m. Pak
m + m3 — 2, neboli

(m — 1) (m2 + m + 2) — 0.
Tato rovnice má jediný reálný kořen m = 1. Příslušná čtveřice xi = xa =
= хз = X4 = 1 vyhovuje podmínkám úlohy.b)Tři z čísel Xi jsou si rovna a čtvrté od nich různé, např. xi = xa —
—

хз = m, X4 — пф m. Pak
m + m2n — 2,

n + m2 — 2.

Odečtením dostaneme (m — n) (1 — m2) = 0 a snadno zjistíme, že může
být jen m — —1, n — 3. Příslušná čtveřice xi = хз = хз = —1, X4 = 3
jakož i další tři čtveřice, které z ní dostaneme změnou pořadí, vyhovují
úloze.c)Dvě a dvě čísla xi jsou si rovna, např. xi = хз = m, хз — X4 =
— n Ф m. Pak

m + mn2 — 2,
n + m2n — 2.

Odečtením dostaneme (m — и) (1—mri) — 0. Protože тфп, musí být
mn = 1 a z první rovnice plyne m + n = 2. Taková čísla m Ф n však
neexistují.

Úloze tedy vyhovuje celkem pět čtveřic čísel (1, 1, 1, 1), (3, —1, —1, —1),
(-1, 3, -1, -1), (-1, -1, 3, -1), (-1, -1, -1, 3).

Poznámka. V oboru komplexních čísel jsou ještě další dvě řešení
—1 + i 1/7 —1 —i |/7

Xl = X2 = ХЗ = X4 = -, Xl = X2 = Хз = X4 —2 2
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43. a) Označme В', Q' paty kolmic spuštěných z bodů В, Q na přímku
OA (obr. 53) a A', P’ paty kolmic spuštěných z bodů A, P na přímku OB.
Dokážeme, že hledanou množinou je úsečka A'B'.

Označme H± průsečík přímek PP', A'B' a Hz průsečík přímek OQ',
A'B'. Dokážeme, že H\ — Hz, což znamená, že bod H leží na úsečce
A'B'. Z podobnosti trojúhelníků B'H\P ~ В'А'А, ВВ'A ~ MPA dosta-
neme

\B'Hi\ \B'P\ \BM\
TžřIT = ~\¥Á\ = \ba\

Q' В P

a z podobnosti trojúhelníků A'HzQ ~ А'В'В, АА'В ~ M0Ž?
И'я2| и#б| ИМ|

“

|Л'£| ~
Body Я1, Hz dělí tedy úsečku v témže poměru, a proto H\ — Hz,
He A'B'. Přitom proběhne-li bod M úsečku AB, proběhne bod Я zřejmě
úsečku A'B'.

(V případě, kdy úhel ABO nebo ВАО je pravý, úsečka A'B' splyne
s úsečkou PP' nebo QQ' a důkaz se zjednoduší.)

b) Nechť Mi je vnitřní bod trojúhelníku OAB (obr. 54). Bodem Mi
veďme rovnoběžku p s přímkou AB. Průsečíky přímky p s přímkami OA,
OB označme A\, B\. Existuje zřejmě právě jedna stejnolehlost se středem O
a koeficientem к, 0 < к < 1, která převádí body А, В na body A\, B\
a některý vnitřní bod M úsečky AB na bod M\. Nechť Я, H\ jsou prů-
sečíky výšek sestrojené podle textu úlohy к bodům M а M\. V části a)
jsme dokázali, že probíhá-li bod M úsečku AB, probíhá bod Я úsečku
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Obr. 54

Л/i?'. Probíhá-li bod Mi úsečku A\B\, probíhá zřejmě bod Hi úsečku
A[B\ stejnolehlou s A'B' s koeficientem k. Jelikož к může nabývat libo-
volné hodnoty intervalu (0, 1), je hledanou množinou bodů v části b)
vnitřek trojúhelníku OA'B'.

2. řešení. Zvolme v rovině soustavu souřadnic. Mají-li body P, Q sou-
řadnice (pi, />2), (qi, qz), budeme symbolem P + Q rozumět bod o sou-
řadnicích {p\ + qi, p<i -f qz) a symbolem sP, kde s je reálné číslo, bod
o souřadnicích {spi, sp2). Protože MPJÍQ je rovnoběžník, je (obr. 53)

Pí — P — Q — M,
neboli

O)Я =P + Q — M.

\AMI
= k, jeOznačíme-li

\AB\
M= A+ k{B —A) = ( 1 — k)A + кВ.

Protože MP И BB', je
P = (1 — k)A + кВ',

a protože MQ || AA', je
O = (1 —k)A' + кВ.

Dosadíme-li do (1), vyjde
H = (1 — к)A' + кВ'.

Probíhá-li tedy bod M úsečku A B, probíhá к interval <0, 1> a bod H úsečku
A’B'.
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Poznámka. Tvrzení věty zůstane v platnosti, i když úhel АО В není
ostrý.

44. Uvažujme nejdříve případ, kdy z některého bodu A dané množiny M
vycházejí alespoň tři průměry AB, AC, AD (obr. 55). Pak body В, C, D
leží na kružnici кл = (A; ď) ve středovém úhlu velikosti nejvýše 60°. Zvolme
označení tak, aby polopřímka AC ležela uvnitř úhlu BAD. Dokážeme,
že z bodu C vychází pouze průměr CA.

Předpokládejme, že z bodu C vychází ještě další průměr CX, leM,
X Ф A. Bod X musí ležet na kružnici kc — (C, d) a v kruhu ohraniěe-
ném kružnicí кa- Nechť např. bod X leží v polorovině ACB. Označme К
průsečík úseček XD a AC, pak sečtením trojúhelníkových nerovností

\xc\ < IXK\ + \KC\,
\AD\ < \AK\ + \KD\

dostaneme

\XC\ + \AD\ < \AC| + \XD\.

Protože \AC| = \AD\ — \XC\ — d, je \XD\ > d. To je však spor s tím, že
d je průměrem množiny M. Obdobně dostaneme nerovnost \XB\ > d,
leží-li bod X v polorovině ACD. Vychází-li tedy z některého bodu dané
množiny alespoň tři průměry, pak v ní existuje bod, z něhož vychází jediný
průměr.

Teď již snadno dokážeme tvrzení úlohy indukcí podle n. Pro n = 3
zřejmě tvrzení platí. Předpokládejme, že tvrzení platí pro každou &-prvko-
vou množinu bodů. Nechť M*+i je libovolná množina к + 1 bodů A i,

A 2, ..Ajc+1. Jestliže v M*+i existuje bod (např. A i), ze kterého vychází
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nejvýše jeden průměr, je zřejmě počet průměrů množiny M*+i nejvýše
o 1 větší než počet průměrů množiny {A2, A3, ..., Az+ij. Z indukčního
předpokladu plyne, že M^+i má pak nejvýše к + 1 průměrů. Předpoklá-
dejme dále, že z každého bodu množiny M&+i vycházejí alespoň dva
průměry, pak z předcházející úvahy plyne, že z každého bodu množiny
M*+i vycházejí právě dva průměry. Protože každý průměr spojuje dva
body, je celkový počet průměrů množiny M/c+1 roven к -j- 1. Tím je tvrzení
úlohy dokázáno.

Poznámka. Pro každé n ^ 3 existuje množina bodů v rovině, která má
právě n průměrů (obr. 56). Pro lichá n jsou také takovou množinou vrcholy
pravidelného я-úhelníku (obr. 57). V prvním příkladu vychází z jednoho
bodu více než dva a z některých bodů jen po jednom průměru, ve druhém
příkladu vycházejí z každého bodu právě dva průměry.

Uvažujeme-li я > 3 bodů v prostoru, pak maximální počet průměrů
je 2я — 2. Důkaz tohoto tvrzení je obtížnější.

45. Označme рл počet žáků, kteří vyřešili jen úlohu А, рлв počet žáků,
kteří vyřešili právě úlohy А а В atd. Podmínky úlohy zapíšeme rovnicemi

Pa + Pb + Pc + Pab + Рас + Рве + рлвс — 25,
рв + рве = 2(ре + рве),
Ра — 1 + Рлв + Рас + Равс,

Ра + Рв + ре — 2(рв + ре),
neboli

Ра + рв + ре + Рав + Рас + рве + Равс = 25,
рв — 2рс

(1)
(2)= 0,— рве

(3)— Равс — 1,
= 0.

РА — РАВ —РАС

(4)Ра —рв—рс
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Sečtením prvních tří rovnic dostaneme
2рл + 2рв — pc == 2ó.

Dosadíme-li sem za pA podle (4), vyjde
4рв + pc = 26.

Této rovnici vyhovuje právě sedm dvojic nezáporných celých čísel (рв, pc)'
(0, 26), (1, 22), (2,18), (3, 14), (4, 10), (5, 6), (6, 2). Podle (2) je

PB — 2pc ^ o,
čemuž vyhovuje jedině poslední z uvedených sedmi dvojic, totiž рв = 6,
pc = 2. Jen úlohu 5 tedy vyřešilo 6 žáků.

Poznámka. Úloze zřejmě vyhovují ty sedmice nezáporných celých čísel,
pro které platí pA = 8, рв = 6, pc = 2, рве = 2, />лв + Рас + рлвс = 7.
Situace popsaná v úloze může tedy skutečně nastat.

7
46. Do dané rovnosti můžeme dosadit za tg — funkci úhlů a, p, protože

7Г — a — p a + P7
tg у = tg

Dalšími úpravami postupně dostáváme
<* + P

— tg a cotg ——

= cotg 2 ‘2

/ a "T p
+ b I 1 — tg p cotg —Г—

\ z

a 4~ p
a ^cos P cos a sin —-— — cos p sin a cos —-—

/ a + p a+/5
-f Z>l cos a cos p sin —-— — cos a sin p cos —-—

P — a
a cos p sin —-— + ú cos a sin —-

я ^1 = 0,

a + P
i +

= 0,

a — P
= 0,

p — a
-— (a cos p — b cos a) = 0.sin

P — a
Je tedy buď sin —-—

nebo

= 0, tj. p — a, а рак je trojúhelník rovnoramenný,
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a cos /9 — b cos a = 0, tj. a cos (3 — b cos a,

což spolu s rovností (sinová věta)
a sin /9 = b sin a

dává a2 = Z?2. I v tomto případě je tedy trojúhelník rovnoramenný.

2, řešení. Danou podmínku můžeme přepsat na tvar
oí -f- /8

(a 4- ú) tg —— = a tg a 4- b tg (3.

Odtud již vidíme, že úhly a, /9 musí být ostré. Levá strana je totiž kladná,
a kdyby např. úhel /? byl tupý, bylo by

a <b,

a pravá strana by byla záporná. Teď si stačí uvědomit, že funkce tangens

je ryze konvexní v intervalu

(1)

tg a < tg (n — (3) = —tg /3

(». i) , takže pro ostré úhly a, (3 platí

« 4- />' tg a 4- tg /9
tg -y~ =

s rovností, právě když a — [3. Předpokládejme, že а Ф [3. Pak ve (2) bude
ostrá nerovnost a podle (1) tedy máme

o - |~ b
—— (tg a 4- tg /9) > a tg a -f b tg /9,

(2)2

neboli

b — я
—— tg a > —tg /9.

Odtud bychom pro a < b dostali tg a > tg /9 a pro a > b zase tg a < tg (3,
což odporuje skutečnosti, že tangens je rostoucí funkce.

b — a

Poznámka. O platnosti nerovnosti (2) se můžeme přesvědčit z obr. 58,
4" /9

—-—, |/\Sj = tg /9 a pro a < /9 je zřejměkde |PO| = tg a, |Pi?| = tg

TO + l^j
\QR\ < |RS\, takže \PR\ < . Jiný přístup umožňuje matema-2
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tická analýza. Druhá derivace funkce tangens je v intervalu (O, —

ná a funkce tangens je tam tedy konvexní, z čehož okamžitě vyplývá ne-
rovnost (2).

klad-

O

Obr. 58

47. Označme o rovinu souměrnosti hrany Atí pravidelného čtyřstěnu
ABCD. Vrcholy C, D zřejmě leží v rovině q. Pro libovolný bod X prostoru
označme Xq jeho pravoúhlý průmět do roviny q (obr. 59). Potom

№| + \BX0\ й \AX\ + \BX\. (1)

Probíhá-li totiž bod X přímku p || AB, p Ф AB, je \AX\ + \BX\ mini-
mální, je-li \AX\ = \BX\, jak snadno zjistíme pomocí osové souměrnosti



(119) 47

a trojúhelníkové nerovnosti (obr. 60). V (1) nastane rovnost, právě když
X e q nebo leží-li bod X na úsečce AB. Dále je

I CX\ + \DX\ = M |Of„|2 + \XXtf + l/lflíř+IHnP ž
s \CXo\ + \DXol

s rovností, právě když X e q. Je tedy
\AX| -I- \BX| + \CX\ + \DX\ > \AXol + \BX0\ + \CX0| + \DXa\, (2)

právě když X $ q.

A В

Obr. 60

To znamená, že neleží-li bod X v rovině souměrnosti některé hrany
čtyřstěnu ABCD, najdeme bod Xo, pro který platí (2). Funkce f(X) —

— \AX\ + \BX\ + \CX\ + \DX\ tedy nemůže nabývat minima jinde než
ve středu T čtyřstěnu ABCD, který je jediným bodem ležícím ve všech
šesti rovinách souměrnosti hran. (Existence minima plyne ze spojitosti
funkce /.)

2. řešení. Označme m spojnici středů hran AB a CD a pro libovolný
bod X prostoru označme Xo jeho pravoúhlý průmět na přímku m (obr. 61).
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Je-li X' pravoúhlý průmět bodu X do roviny obsahující hranu AB a přím-
ku m, je

|AX\+ \BX\=y \AX'\* + \XX'\* + 1/ \BX’\* -f {XT]* ^ \AX'| + iBX'\ ž
ž \AX0| + \BXq\

(přímky AB a XqX' jsou rovnoběžné) s rovností, právě když X leží na m
nebo na úsečce AB. Podobně dostaneme

\CX\ + \DX\ ^ \CX0\ + \DX0\
s rovností, právě když X leží na m nebo na úsečce CD. Stačí tedy zkoumat
jen body X ležící na přímce m.

Otočme úsečku CD kolem přímky m do roviny určené přímkami AB, ni;
dostaneme úsečku CD’ (obr. 62). Pro každý bod X e m je pak

IAX\ + \BX\ + \CX\ 4- \DX\ = \AX\ 4- \BX\ + \CX\ 4- \D’X\,

přitom
\AX| 4- \D'X\ ^ \AT| 4- ID'T\, \BX\ 4- \CX\ ^ \BT\ + \C'T\,

kde T je střed čtyřstěnu, takže
\AX\ 4- \BX\ + \C'X\ 4- \D'X\ ^ \AT\ + \BT\ 4- \CT\ 4- \DT\

s rovností, právě když X = T.

3. řešení. Zvolme libovolný bod X v prostoru. Trojúhelníky XAB, XCD
(jeden z nich případně redukovaný na úsečku) umístěme v rovině tak,
aby měly rovnoběžné základny A\B\. || C\D\ a společný vrchol X\ ležel
v pásu jimi určeném (obr. 63). Pak bude

\AX\ 4- \BX\ + \CX\ 4- \DX\ = \AxXi\ + \BxXx\ + \CiXi\ + |T>iA4|,
\AXBX\ = \AB\ = \CD\ - \CiDi\
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Obr. 63

a vzdálenost rovnoběžek AiBi, CiDi bude alespoň tak velká jako vzdá-
\AB\

. Použijcmc-li dvakrát principun lenost mimo běžek AB, CD, tj. alespoň
1/2

z obr. 60, dostaneme (obr. 63)
\AiXi\ + + ICiA-xl + \DiXi\ ž

^ \A2X21 + \B2X2\ + |C2*2| -1- \d2x2\ ^
ž \A3X31 + |ВзА'з| + |СзЛГз| + |£№lž 2 |Л3Сз|.

Protože

3
\А3Сз\ = УИз^з!2 + |Я3Сз|2 ^ \ЛВ\ ! 2 ’

je
\АХ\ + |BY| + \СХ\ + \DX\ Ž \АВ\\6

a rovnost nastane, právě když
1/6

\AXI - |/U"| = |CA'| = |ZHT| = \AB\~,

tj. právě pro X = 7’, kde Tjc střed čtyřstěnu.

4. řešení. Označme T střed pravidelného čtyřstěnu ABCD. Yedeme-li
jeho vrcholy roviny rovnoběžné s protějšími stěnami, dostaneme čtyřstěn
A'B'C'D' stejnolehlý s původním čtyřstěnem ABCD ve stejnolehlosti se
středem T a koeficientem —3 (obr. 64).
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Zvolme libovolný bod X v prostoru. Zřejmě
\AX| £ d(X, B'C'D'), \BX\ ^ d(X, A'C'D'), \CX\ ^ d(X, A'B'D'),

\DX\ ^ r/(AA, A'B'C'),
kde d(X, B'C'D') označuje vzdálenost bodu X od roviny B'C'D' apod.
V nerovnosti

\AX\ + \BX\ + \CX\ + \DX\ ^ d(X, B'C'D') + d(X, A'CD')
+ d(X, A'B'D') + d(X, A'B'C)

přitom nastane rovnost, právě když X = T.
Objem čtyřstěnu XB’C'D' (případně degenerovaného) je

(3)

s
Vxb’C'D’ — "у d(X, B'C'D'),

kde S je obsah trojúhelníku B'CD'. Obdobné vztahy platí i pro ostatní
trojice bodů А', В’, C, D’. Je tedy

d(X, B'C’D’) + d{X, A'C'D') + d(X, A’B'D') + d(X, A'B'C') =
3

= ~{VxB'C'D’ 4- VxA’C'D' + VxA’B'D' + KyA'B'C')-

Dokážeme, že sjednocení čtyřstěnů XB'CD', XA'C'D', XA'B'D’, XA’B'C
obsahuje čtyřstěn A'B'C'D'. To je zřejmé, jc-li bod X bodem čtyřstěnu
A'B’C'D'. Leží-li bod X vně tohoto čtyřstěnu, uvažujme libovolný bod P
téhož čtyřstěnu. Označme jako R ten bod čtyřstěnu A'B'C'D', který leží

(4)
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na přímce PX a má od bodu X největší vzdálenost. Bod R leží v některé
stěně čtyřstěnu A'B'C'D'. Leží-li např. ve stěně A'B'C, pak bod P leží
ve čtyřstěnu XA'B'C. Je tedy

VxB'C’D' + VxA'C’D' + УXA'B’D' + VxA’B'C' I VA'B'C’D'

s rovností, právě když bod X leží v čtyřstěnu A'B'C'D'. Ze vztahů (3),
(4) a (5) dostaneme nerovnost

(5)

3
\AX\ + \BX| + \CX| + \DX\ ^ - v' - 3v,

kde v' a v jsou výšky čtyřstěnů A'B'C'D’ a ABCD. Rovnost zde nastane,
právě když X = T.

Poznámka. V průběhu 4. řešení jsme odvodili zajímavou větu: Součet
vzdáleností bodu pravidelného čtyřstěnu od jeho stěn je konstantní a rovná
se jeho výšce.

48. Rovnost dokážeme matematickou indukcí.
Pro n — 1 rovnost platí:

cos 2xcos v

cotg x — cotg 2x = sin x sin 2x

cos2x — sin2xCOS X

sin 2x2 sin v cos x

Nechť tvrzení platí pro přirozené číslo k. Dokážeme je pro к 1. Podle
indukčního předpokladu dostáváme

sin x

1111
— cotg x — cotg 2kx -f+ • • • ++ sin 2k+1x sin 2k+1xsin 2x sin 4x

cos 2kx l
í= cotg X — -sin 2kx 2 sin 2kx cos 2kx

2 cos2 2kx — 1 cos 2k+1x
— cotg x —— cotg X 2 sin 2kx cos 2kx

— cotg x — cotg 2fc+1x

sin 2k+1x

a důkaz je hotov.
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2. řešení. Stejně jako v předcházejícím řešení dokážeme, že
I

—

= cotg x — cotg 2x.sin 2x

To nám umožňuje upravit levou stranu dokazované rovnosti
1 1 1

(cotg A' — cotg 2.v) +I + • • • +
sin 2a sin 4a sin 2wa

4- (cotg 2a — cotg 4a) 4- ... 4- (cotg 2,j-1a — cotg 2nx) —

= cotg x — cotg 2nx.

49. Libovolnou permutací indexů 1, 2, 3, 4 získáme soustavu týchž rov-
nic, změní se pouze jejich pořadí. Nechť (i, j, k, l) je takové pořadí
indexů 1, 2, 3, 4, pro které щ > cij > are > сц. Označme po řadě щ, aj,
are, cii písmeny b i, b2, b3, b\ a au aj, a*, ai písmeny у i, у2, уз, уi. Fotom
br > bs pro r < s a danou soustavu můžeme zapsat ve tvaru

Фi — b2)y2 4- (bi — b3)y3 -I- (bi — ů4)g4 = 1,
(b 1 — b2)yi 4- (b2 — Ьз)уз + (Ů2 — b,i)y4 = 1,
(ůl — пз)>’1 4- (Ů2 bs)y2 -|- (Ů3 ů,))j;4 — 1,
(bi — bfiyi + (Ů2 — Ů4)j2 4- (Ů3 — b4)у3

(1)
(2)
(3)
(4)= 1.

Odečtením druhé rovnice od prvé dostáváme
(bi — b2) (—>’1 + У2 4- Уз + уa) = 0 ,

a protože b\ — b2 Ф 0,
(5)—y 1 4- V2 + у3 + V4 = 0.

Obdobně (2) a (3) dává
(6)—Jl — J2 4- J3 + J4 = o,

(3) a (4) dává
(7)—Ji — J2 — J3 4- J4 = 0.

Odečtením rovnic (5), (6) dostáváme y2 = 0, obdobně z rovnic (6), (7)
plyne g3 = 0. Sečtením (5) a (7) vyjde у i — у4. Dosazením do kterékoli

1
z rovnic (1) až (4) dostaneme у4 — Zkouškou se přesvědčíme, žeb]_ — b4

1 1
J2 = о, уз = О, у4 =Л = bi — bi bi-~bi
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je skutečně řešením soustavy (1)—(4). Původní soustava má tedy právě jedno
1

řešení xt — xi —
— X}; — 0.—, Xj

ai

Poznámka. Úlohu je možno zobecnit na soustavu n rovnic
си —

П

n)i e (1, 2, ..T |at — ak\xic = 1,
*=1

kde ar, a%, ..., an jsou daná navzájem různá reálná čísla. Analogickým
postupem můžeme dokázat, že tato soustava má právě jedno řešení xh —

i’• 5

1
0, kde /1, i2, ..in je pořadí» xh = xh = • • • = xin.

ah Gin
indexů 1,2, pro něž ak > ah > ... > aín.

50. Označme Pxyz obsah trojúhelníku XYZ. Platí (obr. 65)

C

m/7
X-

к вА

Obr. 65

I
— \AM\.\AK\ sin a

\AM\.\AK\Parm

Pa вс \AB\ . |AC\'1
— \AB\. \AC\ sin a

obdobně

\BK\.\BL\Pbkl

Pabc

\CM\.\CL\
"\AC\.\BC\ ‘

PCML

\AB\.\BC\’ Pabc

Součin těchto tří poměrů je roven

\AK\.\BK\ . \BL\.\CL\ . \AM\.\CM\
\AB\z. \BC\2. \AC|2
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\AK\ + \BK\ \AB\ \AK\.\BK\ 1
-

4 '
Protože ЩАК\.\ВК\ й je2 ’ \AB |22

\BL\.\CL\ 1 \AM\.\CM\ 1
Obdobně ^ . Vynásobením dostaneme—

4 ’|£C|2 \AC |2

\AK\ .\BK\.\BL\ .\CL\. \AM\. \CM\ 1
^ 7T64’\ab\* .\bc\* .\ac\*

tedy alespoň jeden z troj úhelníků AKM, BKL, CML má obsah nepřevyšující
čtvrtinu obsahu trojúhelníku ABC.

2. řešení. Označme Ко, Lo, Mo středy stran AB, BC, CA. Střední příčky
KqLo, LoMo, M()Ko rozdělí trojúhelník ABC na čtyři části s obsahem
ВABC
—Rozlišíme dva případy.

a) Dva z bodů K, L, M leží na obvodu téhož »rohového« trojúhelníku
např. jako na obr. 66, kdy zřejmě

1
Pblk й PbloKo ~ ~tPabc.

b) Na obvodu každého z »rohových« trojúhelníků leží po jednom z bodů
K, L, M jako na obr. 67. Úloha bude vyřešena, dokážeme-li, že pro obsah

PABC í
»vnitřního« trojúhelníku je Pklm ^ ~— I pak totiž

3
PAim + Pblk + Pcml ík Pa вс

a alespoň jeden z trojúhelníků AKM, BLK, CML bude mít obsah nejvýše
1 \
~Pabci ■ Protože vzdálenost bod u Á'od přímkyLMje větší nebo rovna vzdá-
lenosti bodu K0, je Pklm ^ Pk0lm• Podobně Pkolm ^ PkqLom =PkqloMq —

1
= —Pabc• l im je důkaz proveden.

Poznámka. Dá se také dokázat, že obsah aspoň jednoho z trojúhelníků
MAK, KBL, LCM je nanejvýš roven obsahu trojúhelníku KLM. Toto
tvrzení platí, i když nahradíme obsah obvodem, důkaz je však obtížný.
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С *

/44 L
~T\L

/

,4 *Ь к В

Obr. 67Obr. 66

51. Označme O střed kružnice k opsané trojúhelníku ABD a r její polo-
měr. Označme dále Кa, Kb, Kc, Kd jednotkové kruhy se středy А, В, C, D.

Nejprve ukážeme, že v případě r ^ 1 je rovnoběžník ABCD pokryt
kruhy Кa, Kb, Kc, Kd. Označíme-li X, Y, Z středy úseček AB, BD, AD,
bude (obr. 68)

\AX\й \АО\ = гй 1,\Аг\йгй 1
a kruh Ка tedy pokrývá čtyřúhelník AXOZ. Analogicky zjistíme, že kruh
Kb pokrývá čtyřúhelník BXOY a kruh Kd čtyřúhelník DYOZ. Je tedy
ABD c: Ka u Kb u Kd• Ze stejného důvodu je BCD

Je-li r > 1, kruhy Ka, Kb, Kd už trojúhelník ABD nepokryjí, protože
žádný z uvedených kruhů neobsahuje bod O. Bod O neleží ani v kruhu Kc-

Kb^KcU Kn.a

7C

Bod C leží totiž vně kružnice k, neboť je |£ BCD \ a < —, zatímco pro

body X poloroviny BDC, které leží na kružnici k nebo uvnitř, platí (obr. 69)
7Г

| £ BXD\ — a > — . Je tedy \OC\ > r > 1.
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С

а

Obr. 70

Jednotkové kruhy se středy А, В, C, D tedy pokrývají rovnoběžník
A BCD, právě když pro poloměr r kružnice opsané trojúhelníku ABD platí
r íg 1. Nyní je z trojúhelníku OA\D (obr. 70)

BD
|#Z)| = У1 + a2— 2a cos aаr —

2 sin a

podle kosinové věty. Je tedy

У1 + й2 — 2a cos a
r —

2 sin a

Z podmínky r ^ 1 dostáváme postupně ekvivalentní podmínky
1 a2 — 2a cos a ^ 4 sin2a,
(ia — cos a)2 — 3 sin2a ^ 0,

(a — cos a — УЗ sin a) (a — cos a + ]/3 sin a) ^ 0,
cos a — УЗ sin a ^ a ^ cos a + j/3 sin a.

Levá strana poslední nerovnosti je však splněna vždy, protože trojúhelník
ABD je ostroúhlý a je

a = \AB\ > \AD\ cos a = cos a.

Jednotkové kruhy se středy А, В, C, D pokrývají tedy rovnoběžník A BCD,
právě když

a S cos a + |/3 sin a.
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52. Označme А, В, С, D vrcholy čtyřstěnu tak, aby \AB\ = x 5Š 1,
\AC\ й h \BC\ й 1, \AD\ š 1, \BD\ й 1, \CD\ > 1. Dále označme P
patu výšky trojúhelníku ABC vedené ke straně AB, \PC\ = и (obr. 71).
Zřejmě je

и = ]/\AC\2 — \AP\* й 1/1 — |Л/>|2
a zároveň

и = j/|fici2 — i^i2 ^ у 1 — |Я/>|2.
x2Л*.v

— —. Stejnými úva-Protože buď\AP\ — nebo \BP\ ^ —, platí и fL

hami dostaneme pro výšku v trojúhelníku ABD vedenou ke straně AB
x2

v 5Š /1 — —. Protože výška čtyřstěnu ABCD sestrojená z vrcholu D má
velikost nejvýše nxš 1, platí pro objem V čtyřstěnu ABCD odhad

1
V < —= 3 (t Xl)''s t-v(' ~ T)= iA(' - t) (' + f)

13 1
‘ T = "8

11 A*

(2x-x*)= j (1 -(*-l)2) S- 6 * V 2 8 '

U

P 1A
Вx

Obr. 71

Rovnost nastane právě pro čtyřstěn ABCD, jehož hrany mají délky \AB\ =
= \AC\ = \BC\ = \AD\ = \BD\ = 1 a jehož stěny ABC, ABD jsou na-

-Vf \CD\ = ]/u2 + v2 =vzájem kolmé. V tomto čtyřstěnu je и =

1/ 3
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Poznámka. V závěru důkazu vlastně hledáme maximum funkce

1 1
ТТЛ' — ттх36 24

v intervalu (0, 1). Toto maximum můžeme snadno najít derivováním. Platí
1 1

— — V2 > 0=

~6

pro všechna x e (0, 1), tedy funkce g je v daném intervalu rostoucí, hledané

s

I
maximum je v bodě x = 1 a g(l) = —8 '

Mají-li všechny hrany čtyřstěnu délku nejvýše 1, pak se dá ukázat, že

p
jeho objem je nejvýše 12 *

53. Vyjdeme ze vztahu

Cp Cq — p(p + 1) — q(q + 1) = p2 — q2 + p — q =
= (p — q)(p + q + i)-

Je tedy

ipm+l — Cic) {Cm-\-2 — Ck) . . . (Cm+n — Cj-) —

= (w + 1 — к) (m + к + 2) (in + 2 — к) (m + к + 3)
. (m + n — к) (m + к n + 1) = AB,

kde

A — (jm — к + 1) (m — к + 2) ... (m — к + n),
В = (?n + к + 2) (m + к + 3) ... (m + к + n + 1).

Dále je

ciC2 ... cn — 1.2.2.3. ... n{n + 1) = n\{n + 1)! .

Ještě ukážeme, že číslo A - součin n po sobě následujících celých čísel - je
dělitelné číslem n\ . To je zřejmé, jestliže některý z činitelů je roven nule.
Jsou-li všechny kladné, tj. m — к + 1 > 0, je

A (m — к + 1) (m — к + 2) ... (m — к + n) m — к +
n\ n\
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Je-li m — к + n < O, je

(к — m — 1) (k — m — 2)... (к—m— n)A m-7 = (—1 )n = (-iyn\n\

Tedy ve všech případech je A dělitelné číslem n\ . Ze stejného důvodu je
(m + к + l)i? dělitelné číslem (n + 1)! . Protože m + к + 1 je prvočíslo
větší než n -f- 1, jsou čísla m + к + 1 a (n -f 1)! nesoudělná a číslo В je
dělitelné číslem (n + 1)!. Součin (cm+1 — ск) (cm+2 — c*) ... (cm+n — cjc) =
= AB je tedy dělitelný součinem C1C2 ... cn — n\ (n -f 1)! •

54. Velikosti vnitřních úhlů trojúhelníků AqBqCq, A\B\Ci označme
ao, ^o, у o, ai, /51, yi. Uvažujme libovolný trojúhelník ABC, který vyhovuje
požadavkům úlohy (ne nutně maximální). Vrcholy А, В, C pak leží (obr. 72)
na obloucích kružnic кл, кв, kc, z nichž jsou úsečky BqCo, AqCo, AoBo
vidět pod úhlem ai, /?i, у i (případně mohou některé vrcholy splynout
s krajními body příslušného oblouku). Tyto oblouky i jejich středy Oa,

Ob, Oc leží přitom vně trojúhelníku AqBqCq, neboť trojúhelník AqBoCo je
vepsán do trojúhelníku ABC a trojúhelník ABC je ostroúhlý.

Vyšetříme nyní vzájemnou polohu kružnic кл, кв, kc- Především zjistíme,
že kružnice ка, кв se protnou v bodě M Ф Co ležícím uvnitř úhlu AqCoBq,
neboť (obr. 73)

I £ OaCqOb] = |£ OaCoBqI + I £ BoCoAoi + AqCqObI =

7C TZ

f>l — У0 + У1 < 7T.=

Y — ai + yo +
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Protože

I £ A$MCu\ + |<£ ВоМСо\ = тг — /Si + тс — ai = 7г + ух > тс,

leží bod М uvnitř trojúhelníku AqBqCq a je
I £ ЛоМ#о| = тг — у 1.

Bod М tedy leží na kružnici A:c, takže všechny tři kružnice Ал, А'д, кc pro-

cházejí společným bodem M.
Klíčem к řešení úlohy je zjištění, že trojúhelníky ABC a OaOrOc jsou

podobné. Ze souvislosti středového a obvodového úhlu plyne (obr. 72)
1

| * ABC| = | * A0BCq\ = у i * Л0ОеС0|,
a protože (obr. 74) OaOb, ObOc jsou osy úseček CqM, ЛоМ, je

I* ОлОвОс| - I* 0с0вМ| + I* OaObM\ =

1 1 1
=

■y |£ + — |£ С0ОвЛ/| = — |£ Л0(7дС0|,
takže

I £ vtJ5C| — | £ ОлОдОс!.

Analogicky dokážeme, že |£ iL4Cj = ]£ 0д(7л(7с|-
Veďme kolmice z bodů Ол, Ob na stranu А В a jejich paty označme V,

W (obr. 75). Zřejmě \AB\ — 2| VW\ 2\OaOb\ s rovností, právě když
AB || OaOb• V tomto případě má tedy trojúhelník ABC nejdelší strany ze
všech trojúhelníků vyhovujících úloze, a tedy i největší obsah. Zároveň je
vidět, že (obr. 76) maximální trojúhelník ABC je stejnolehlý s trojúhelníkem
OaObOc se středem M a koeficientem 2.

W Со V-
£b

———J
0:л

Obr. 75
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Odtud plyne konstrukce maximálního trojúhelníku ABC. Známým postu-
pem sestrojíme vně trojúhelníku AoBoCo středy Oa, Ob, Oc kruhových
oblouků, z nichž jsou strany BqCo, ^oCo, AqBq vidět pod úhly ai, /?i, у i.

Body А о, Во, Co pak vedeme rovnoběžky s přímkami ObOc, OaOc, OaOb•
Ty vytvoří trojúhelník ABC (obr. 76).

Z úvah provedených v rozboru vyplývá, že takto sestrojený trojúhelník
ABC má požadované vlastnosti. Úloha má vždy jediné řešení.

Poznámka. Při konstrukci maximálního trojúhelníku jsme mohli také
využít toho, že jsou jeho strany kolmé к přímkám MAo, MBo, MCo•

55. Můžeme předpokládat, že čísla a\, . . ., «8 jsou očíslována tak, že
|fli| ^ \a%\ ^ ... ^ |asl- Dále můžeme předpokládat, že a\ — 1, protože
a\ Ф 0 a

a2 \n as \ncn
+ • • • +

a i a\!

je rovno nule pro stejnou množinu indexů jako cn. Uvažujme tedy posloup-
nost

1 + a% + ... + «g,Cn

kde

I ^ |a2| t ^ l«sl -

Pro n sudé je zřejmě cn > 0. Tedy cn je rovno nule pro nekonečně mnoho
lichých indexů n.



56 (134)

Nechť к z čísel ai, ..., as je rovno 1 a / z těchto čísel je rovno —1, potom
pro liché n je

2Cn — к — / j- dll
i—k+l+1

Protože pro dostatečně velké n zřejmě platí

. 2 «7 = 8 \ak
i—k+l-\-1

a cn — 0 pro nekonečně mnoho lichých indexů, je nutně к — l a
8

2 <
i=к +1+1

pro lichá n. Postupujeme-li dále stejným způsobem, zjistíme, že mezi čísly ai
s druhou největší absolutní hodnotou jich je stejný počet kladných i zápor-
ných, atd. Čísla a i, as se tedy skládají ze čtyř dvojic opačných čísel,
takže cn = 0 právě pro všechna lichá n.

\n < I+/+i

Cn —

Poznámka. Zřejmě není podstatné, že čísel úí je právě 8. Dokázané tvrzení
zůstane v platnosti i pro posloupnost

Cn = a\ + ... + ďr,
kde a i, a 2, ..., ar jsou reálná čísla (jc-li r liché, jc zřejmě lichý počet čísel ai
roven nule).

Uvažujeme-li komplexní čísla au tvrzení neplatí. Nechť např. a 1, ..., a$
jsou všechny osmé (komplexní) odmocniny z 1. Snadno se ukáže, že cn = 0,
právě když n není dělitelné osmi.

56. Označme xk, к e {1,2, ..., n}, počet medailí, které zbyly 11a začátku
A>tého dne. Podle zadání je pro 1 ^ к ^ n — 1

xi = m,

(1)6
Xk+i = у (xjc — k).

Yypočteme-li několik prvních členů, vidíme, že pro 2 :й к ^ n

6 \2/ 6 Ч*-1 / 6 \

m-W) -2(y)
k—2

...-(k-2)Xk =

6

-{k-l)y,
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což můžeme dokázat z rekurentního vzorce (1) matematickou indukcí.
Protože xn — n, dostáváme tak vztah

jt-i

7
n-1 n- 2 6

(2). ... — (« —l)y.—2я = m —

Vypočítáme součet
n-1 м-2 6

(3)4" • • • 4- (я — 1) у •+ 2

Zřejmě je
íí-3 66 \и~27

4- • • • 4- (и — 2) 7 4” n — 1+ 26s'=l7
a odečtením od (3)

n-2 re-3 6и-1*ST
4- ... 4- n —

6

и

J —

— n,
6

tedy
6 \»'

S — 6n — 42 11 —

( 7

Dosadíme do (2) a po malé úpravě vychází
‘Jn

(n — 6).m — 36 —

би-i

n — 6
celé číslo, avšak proProtože 6 a 7 jsou nesoudělná čísla, musí být 6«-i

П — 6
n > 1 je |n — 6] < 6W_1. Je tedy = 0, což dává n — 6, m = 36.

6«-i

Snadno se přesvědčíme, že tyto hodnoty vyhovují úloze. Sportovní soutěž
tedy trvala šest dní a bylo rozděleno 36 medailí.
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57. Nechť trojúhelník ABC má při obvyklém značení úhly a, (3, у a strany
a = n, b — c — n-\~2, kde n je přirozené číslo. Potom z kosinové
věty plyne

b2 -j- c2 — a3 (/z -f l)2 + (« + 2)2 — az3 « + 5
cos a =

2{n + 2) ’2úc 2(/z + 1) (n + 2)
a2 -j- c2 — b2 n2 + (az + 2)2 — (az + l)2 n2 + 2/г + 3

cos = (1)2«(« + 2) 2«(/z + 2)2ac

a2 + b2 — с2 n2 + (я + l)2 — (« + 2)2 я — 3
cos у - 2n2n(n + 1)2ab

Protože a < /5 < y, mohou nastat pouze tři možnosti:
a) /? = 2a. Potom

n + 1 b sin /? sin 2a
a sin a sin a

Tedy л2 + 3/z + 2 = и2 + 5л а n = 1. To však nedává řešení úlohy, neboť
neexistuje trojúhelník se stranami 1, 2, 3.

b) у = 2a. Potom
я + 2 c sin у sin 2a

a sin a sin a

Tedy я2 + 4я + 4 = az2 + 5/z a n = 4. Trojúhelník o stranách 4, 5, 6

« + 5
= 2 cos a =

n + 2'/z

n + 5
-

— 2 cos a —

n -f 2‘n

3
existuje a splňuje podmínky úlohy. Ze vztahů (1) totiž vyplývá cos a = 4 ’

I 1
cos у = —, cos 2a = 2 cos2a — 1 — — cos y, ledy у = 2a.

O O

с) у = 2/3. Potom
sin у a/2 + 2az + 3n + 2 c

= 2 cos /3 = az(az + 2)sin /3AZ + 1 Ů

Tedy až3 + 4az2 + 4az = az3 + 3az2 + 5я + 3,
az2 — az — 3 = 0.

Kořeny této rovnice však nejsou přirozená čísla.
Dokázali jsme, že existuje jediný trojúhelník s požadovanými vlast-

nostmi - trojúhelník se stranami 4, 5, 6.
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58. Předpokládejme, že «-ciferné číslo л; vyhovuje úloze. Součin jeho
číslic označme P(x). Zřejmě

10»_1 ^ Л' < 10».

Jestliže n ^ 3, je

x2 — lOx — 22 = x(x — 10) — 22 ^ lO^HtO»"1 — 10) — 22 =
= 102»~2 — 10'* — 22 ^ 8.102n_3> 10»

a

P(x) g 9» < 10»,

tedy
lOx — 22 > P(x).

Jsou tedy jen dvě možnosti: n = 1 a n = 2.
Jestliže n = 1, pak P(x) = x a x2 — lOx — 22 = x, tedy

x2— 11 x — 22 = 0.

Této rovnici však nevyhovuje žádné přirozené číslo x. Nutně tedy n = 2.
Nechť x = 10a b, kde a, b jsou číslice čísla x, 1 ^ a íS 9, 0 íS b ^ 9.
Pak P(x) = ab a platí

x2

(10a + b)2 — 10(10a + b) — 22 = ab,
neboli

100a(a — 1) + b{\9a
Pro a ^ 2 je zřejmě levá strana rovnice (1) kladná. Tedy a = 1 a z rovnice
(1) dostáváme

10) + b2 — 22 = 0. (I)

b2 + 9b — 22 = 0.

12. Zkouškou se přesvědčíme, že x= 12 vyhovuje.
Jediné přirozené číslo splňující podmínky úlohy je ledy x = 12.

2. řešení. Nechť

Odtud b = 2 a x

X — CO + lOci + 102t‘2 + ... + ÍO»"1^-!,

kde co, ci, ..., c?l_i jsou číslice čísla x, c,ř_i ^ 0. Pak pro součin P(x)
číslic čísla x platí

Д» = co ci ... Cn— i ^ cn-1 9»-1 ^ Crt-ilO»"1 ^ x



(138)59

Pro číslo X tedy platí
x2 — Юл — 22 ^ л%

neboli
x2 — 1 lx — 22 ^ 0.

Řešením této kvadratické nerovnice zjistíme, že x < 13. Protože P(x) ^ 0,
platí dále

x2 — Юл — 22 ^ 0

a odtud л > 11. Jediná možnost je tedy л = 12, a ta vyhovuje úloze.

59. Označme P(x) — ax3 -\- (b— 1)л + c. Potom danou soustavu mů-
žeme přepsat ve tvaru

P(jCi) = Л2 — Xl,
P(x2) = Л3 — Л2,

P(a«-i) = Xn — Xn-1,

P(xn) = Xl — Xn-
Sečtením dostáváme

P(x1) + P(x2) 4" • • • P(xn) — 0. (1)

a) Jestliže (h — l)2 — 4ac < 0, je buď P(x) > 0 pro všechna reálná л,
nebo P(x) < 0 pro všechna reálná x, a proto nemůže platit (1).

b) Jestliže (b— l)2 — 4ac — 0, potom je buď P(x) ^ 0 pro všechna
reálná л, nebo P(x) ‘5 0 pro všechna reálná л. Ze vztahu (1) potom
vyplývá P(xi) = P(x2) = ... = P(xn) — 0. Rovnice P(x) = 0 má však

1 —b
. Jediným řešením dané soustavy je tedyprávě jedno řešení x — ~~2a

1 —b
-—, jak se snadno přesvědčíme.2a

Xl = Л2 = ... = xn —c)Jestliže {b — l)2— 4ac > 0, pak rovnice P(x) — 0 má dvě různá reálná
řešení i, rj. Snadno se přesvědčíme, že Л1 = Л2 = ... = in = I a 11 =
= Л2 — ... = xn = f] jsou dvě různá reálná řešení dané soustavy.

Poznámka. V případě c) soustava může mít ještě další reálná řešení.
Například pro n — 2, a — 1, b — —2, c = 0 má soustava 4 reálná řešení

1 + 1/5 1 — ]/5\ /1 —14 1 + У5(xi, x2): (0, 0), (3, 3), 2 22 2
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60. Nechť ABCD je libovolný čtyřstěn, přičemž označení volíme tak, aby
hrana AB byla nejdelší (popř. jedna z nejdelších). Pro stěny ABC, ABD
čtyřstěnu platí trojúhelníkové nerovnosti

\AC\ + \BC\> \AB\,
\AD\ + \BD\ > \AB\.

Sečtením dostaneme nerovnost

\AC\ + \BC\ + \AD\ + \BD\ > 2\AB\,
kterou můžeme přepsat na tvar

(\AC\ + \AD\ — \AB\) + (\BC\ + \BD\ — \AB\) > 0.
Je tedy buď\AC\ + \AD\ > \AB\, nebo \BC\ + \BD\ > \AB\. Protože hra-
na А В je nejdelší, je možno buď z úseček AC, AD, AB, nebo z úseček BC,
BD, AB sestrojit trojúhelník.

61. a) Z dané podmínky plyne pro každé reálné v, že f(x + á) ^ —

1
a zároveň /(x) — (/(v))2 ^ 0, tedy —- ^ /(x) ^ 1 pro každé x. Navíc je

f(x -j- 2a) — '2 + 1/f(x + a) — (/(-v + a))2 —

/ 1
!

1
=

у + ! у + ]№) - (/(*))2 - -4 - У/W - (/(*))2—/(*)+(/(.v))2 -
1 1 /7 42
2 •• i/, v)- 2) =-Ax) + (Дх))* =

I I
= y+ Kx)—— = /(x),

I
neboť jak už víme, /(.v) k: Tedy f(x -f 2a) = /(.v) pro každé číslo x.

b) Definujme funkci/následujícím předpisem:
I

/(л) = у pro x e <2k, 2к + l),
/(x) = 1 pro x e <2/c -f- 1, 2k + 2)
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kde к je celé číslo. Snadno se přesvědčíme, že takto definovaná funkce /
vyhovuje podmínkám úlohy.

Poznámka. Obecně lze funkci / s požadovanými vlastnostmi definovat
takto:

pro x e <0, 1) definujeme /libovolně tak, aby —- ^ f(x) ^ 1,

pro x e <1, 2) položíme /(x) = — + j//(x — 1) — ( fKx — l))2,
pro ostatní reálná x definujeme /(x) tak, aby funkce / byla periodická

s periodou 2.

2. řešení. Zavedeme funkci g(x) = /(x)——. Protože — ^/(x) ^ 1, je

1
0 ^ g(x) ^ ~2 pro všechna x. Danou podmínku můžeme psát ve tvaru

V 1!
<?(x) + у — (g(x))2 — g(x) — — = / — — (g(*))2 .#(* + a) =

Pro hodnoty funkce g tedy platí
I

(č(x + a))2 = — — (g(x))2

a také

(g(x + 2a))2 = -- — (g(x + a))2.

Porovnáním těchto dvou vztahů dostaneme

(g(x -I- 2a))2 = (g(x))2,
a protože g(x) ^ 0, je

g(x + 2a) = g(x)

pro každé x. Funkce g má tedy periodu 2a, což zřejmě platí i pro funkci /.

3. řešení. Z dané podmínky vyjádříme /(x) pomocí /(x + a). Rovnici
přepíšeme

/(x + a) — — = j//(x) — (/(x))2
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a obě strany umocníme. Dostaneme tak pro f(x) kvadratickou rovnici
I \2

(/(*))2 —/(*) + \f(x + a) — —
= 0,

která má kořeny
! 1

2 + Vf(x + «) — (/O' + «))2> у — ]/Лх + a) — (/(x + a))2.
I

Druhý kořen je menší než —, takže

1
f(x) = — + \/f(x + Cl) — (/(.X + Cl))2

pro každé x. Je tedy také
I

f(x — (i) = у + уfix) ~ (/(.v))2 ,

tudíž f(x — a) /(.v + a) pro každé x.

62. Je-li к tak velké, aby 2k > n, je
n -j- 2k n + 2k

2*+i к< 1, takže2JC+1

Uvažovaný součet tedy obsahuje pro každé л jen konečný počet nenulových
sčítanců.

Srovnejme k-té sčítance součtů Sn a Sn+1- Zřejmě
n + 2k n+ 1 + 2k

2/c+i 2k+1

(odtud plyne, že Sn ^ SWi). Protože
n -4-1+2* n 2k 1

2*+i’2*-+i 2*+1

je

l [и + 2*1J L 2k+1 J
/7 —f— 1 —(— 2k

(1)^ 1.2*+1
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Rovnost zde nastane, právě když existuje přirozené číslo p tak, že
n -j~ 2k n + 1 + 2k

<P й2&+i 2/m-í

neboli

n + 2k < p.2k+1 й n + 2fc + 1.
Musí tedy platit

p.2k+1 — n + 2k -j- 1,

tj.
27j(2/? — 1) — w ~f 1.

Odtud vidíme, že к danému n existuje právě jedno к tak, aby platilo (2),
a tedy v (1) nastala rovnost, totiž počet dvojek v rozkladu čísla n + 1 na

prvočinitele. Je tedy Sn+i — Sn -j- 1. Snadno spočteme, že 5*1 = 1, takže
Sjí — л.

(2)

2. řešení. Přirozená čísla 1, 2, ..., n rozdělíme do dvou skupin: na čísla
n + 1

lichá, kterých je , a na čísla sudá. Sudá čísla dále rozdělíme opět do2

n + 2
dvou skupin: na čísla nedělitelná čtyřmi - těch je —.— - a na čísla dě-

litelná čtyřmi. Poslední skupinu dále dělíme na čísla nedělitelná osmi - těch je
n -f 4

- a zbytek. Tak postupujeme, dokud nevyčerpáme všechna přiro-

zená čísla 1,2, ...,«. Odtud vidíme, že Sn = n.

Podrobněji: Označme M*, к ^ 0 celé, množinu všech přirozených čísel
m ^ n dělitelných číslem 2k a nedělitelných číslem 2k+1. Žádné dvě z těchto
množin zřejmě nemají společný prvek a sjednocení všech těchto množin je
{1, 2, ..., /?}. Ukážeme, že počet prvků množiny M*- je právě |M*| =

n + 2k]
=

2'

8

Prvky množiny M* jsou totiž čísla tvaru m = 2k(2c—1), pro která
m ^ n. Je jich tedy právě tolik, pro kolik přirozených čísel c platí

2k{2c — 1) ^ n,
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neboli

_ n + 2k
c

— 2*+1 ’

n + 2k
Takových čísel c je právě • Tedy2*+1

00

00

= 2
j &=0

n + 2k 00

2 |M*| = | U M*| = |{1, 2, ..и}| = n.
к— O2*+1

A—O

Poznámka. Uvažujeme-li místo čísla 2 libovolné prvočíslo p, dostaneme
obecnější výsledek:

Гл+ll
. p J+L

in + 2p2
L p3

!« + />] i n + p2
+

p2 -i

n -1- (/7 — 1 )p
i +

P2

n + jpkn + (p— 1 )p2
+ = Л.

P3 /?*H1

3. řešení. Číslo n vyjádříme ve dvojkové soustavě:

n = г. c№ ('r = 1, cí e (O, 1}
i = O

) •

n + 2k
Potom = O pro к > r. Jestliže к ^ /*, platí2*+!

л + 2k Cr2r + Cr.i2ř-i + ... + (c* + 1)2* + ... + 2ci + co

2*+! 2*+!

= cr2r~k~1 + Cr-l2»-*-2 + •.. + Ck+1 +

| [(c* + 1)2-J + c*-i2-2 + ... + Ci2“* -f co2~*_1].
Protože

1
ca,-i2 2 ... -f* ci 2 *-f~ Cq2 *:,á2^-f2^'f'"'f2*'^<s
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je
n -f 2k £k “Ь 1

= cr2r~k~l + cr-}2r~k-2 + ... + Ck+\ +2k+l 2

= cr2r~k~1 + cr-i2r~k-2 + ... + Ck+i + ck.

Platí tedy
n + 1

= C0 + Cl + 2c2 + 22C3 + ... + Cr-i2r~* + cr2r~\2

/ n + 2
ci + c2 + 2c,3 + ... + í>-i2r-3 + cr2r~2,

4

m- + Cr,Cr-1

l~-| =L 2r+! i Cr-

Sečteme-li těchto r -f
co + 2ci + ... + 2rcr = n.

rovností, zjistíme, že hledaný součet je roven

4. řešení je založeno na rovnosti
1

= [2*] - [-v],x +
2

kterou snadno ověříme. Pro hledaný součet tak máme
00

2 P£ř] -
A—O

= f»+ll + fJL + ±1L 2 ^ 2 J 1 L 4 r 2 J
1 1í—[2k+1 + • • • + =+ ... + d~
2

L2*
nn

= [n] — + ... =- Tj +... +
= Ы = n,

neboť nenulových sčítanců je jen konečný počet.

+ 2*'+i
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Poznámka. 4. řešení zaručuje, že uvažovaný součet je pro libovolné reálné
číslo n roven [«]. To platí i pro obecnější součet, o němž jsme se zmínili
v předešlé poznámce.

63. Pro každé přirozené číslo n a přirozené číslo к > 1 je
nA + 4kA = nA + 4n2k2 + 4A;4 — 4n2k2 —

= (n2 -1- 2k2)2 — (2nk)2 =
= («2 + 2á'2 + 2wfc) («2 4- 2A:2 — 2«A:),

přičemž
n2 + 2k2 -j- 2nk > 1

a

«2 -f 2k2 — 2w& — (n — k)2 + k2 > 1.
Čísla tvaru a = 4kA, к e (2, 3, ...mají tedy požadovanou vlastnost, že
číslo nA + a je složené pro libovolné přirozené číslo n.

64. Užitím vzorce cos {щ + x) = cos ai cos x — sin ah sin x dostáváme

sin ai sin x1
/(a) — ^2^ =2

-vCOS at COS X
~

cos {ai + A*) 2*-1 2ť~i
*=1 i= 1 i= 1

= A cos x ■— В sin x,

sin ai=2 -2
cos ai

kde A jsou konstanty.а В
2*-1 2í-i

i=l i — 1

Obě ty.o konstanty nemohou být zároveň nulové. Kdyby tomu tak bylo,
měli bychom

^—c°s iai-at) ^0=|A cos «i + В sin яi| = 1 +
i=2

1 1

2^ i - 2«-i’2ť_1
i=2

Tedy alespoň jedno z čísel /4, /?je různé od nuly.
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Nechť xi, a 2 jsou reálná čísla, pro která platí f(pci) — f(x2) = 0, tj.
A cos xi — В sin л'1 = 0,
A COS A2 — В sin X2, = 0.

Je-li A = 0, В Ф 0, je pak sin ai = sin a2 = 0, tedy x\ — X2 = ku, kde A; je
celé číslo. Je-li А Ф 0, В = 0, je cos xi = cos a2 = 0 a ai — a2 = kiz, kde к
je celé číslo. Zbývá případ А Ф 0, В ф 0. Kdyby cos x\ = 0, ze vztahu (1)
by plynulo, že sin ai = 0, což není možné. Tedy cos xi Ф 0 a obdobně
cos X2 4 0. Z (1) tak dostáváme

0)

A
tg Ai = — = tg *2,В

tedy opět xi — A'2 = krt, kde к je celé číslo.

2. řešení. Nechť/(a1) = 0 a a je libovolné reálné číslo. Pak

cos {(ai + xi) + (x — A]))cos (щ + a) -7/w=2 2*-1 2i~1
i = 1 i= 1

cos (ai + ai) sin (Ui + Al)=2 ^2 sin (a — Al)COS (a — Al) 2i-i2<-i
i = l i~l

)/ 71

4 cos y— + щ + Al
= COS (a — Al) /(Al) + sin (a — Al)^

*i)/(y + *i)-
li-1

i—1

= sin (a —

(f+<■) - 0, bylo by /(a) = 0 pro všechna reálná a, avšakKdyby/

COS ifli—fli) 1
/(—ai) = cos 0 +2 2> 1 — > 0.

2i-i2í-i
i= 2 i=2

(i+») Ф 0. Jestliže /(a2) = 0, platíJe tedy /

7T

0 =f(x2) = SÍn(A2—Ai)/^y + Alj,
tedy sin (a 2 — ai) = 0a A2 — ai = kiz, kde к je celé číslo.
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3. řešení využívá diferenciálního počtu. Pro druhou derivaci uvažované
funkce/ platí

/"(•v) -fix).
Této diferenciální rovnici vyhovují právě všechny funkce tvaru

f(x) = A cos (x + cp),
kde A, cp jsou reálná čísla. Protože/(—-ai) Ф 0, je také А Ф 0. Jestliže tedy
fix i) =fix2) = 0, potom

cos (x 1 + rp) — cos (x2 + (p) = 0
a odtud xi — X2 = kiz, kde к je celé číslo.

65. Postupně vyšetříme jednotlivé případy.
а) к = 1. Označení zvolme tak, aby platilo \AB\ = a, |TC| = \AD\ —

= \BC\ = \BD\ = \CD\ = 1. Označme M střed hrany C/) (obr. 77). Potom

Уз
|ЛМ| - \BM\ = -у a Mi5| < ИМ| + |5М| = j/3,

tedy
а < уз. 0)

Obráceně ukážeme, že podmínka (1) je i postačující. Sestrojíme rovno-
stranně trojúhelníky A CD, BCD a otáčením trojúhelníku BCD kolem spo-
léčné hrany CD můžeme díky podmínce (1) dosáhnout, aby \AB\ = a.
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b) к = 2. Hrany o délce a mohou být buď přilehlé, nebo protilehlé.
Nejdříve zvolíme označení tak, aby \AB\ — \BC\ = a, \AC\ = \AD\ =
= \BD\ = \CD\ — 1. Označme M střed hrany AC (obr. 78). Potom

65

V3 1
/ Я2 —\MD\ = ya \MB\ = 4 ‘

V trojúhelníku MBD platí
\MB\ — \MD\ < \BD\ < \MB\ + \MD\,

neboli

уз уз!1 1
а2 —й2-Т-Т< *< 4 + 2

a odtud

2— р<а< /2 + 1/3. (2)
I

2-Уз>т
(2) tak umožňuje sestrojit trojúhelník ABC se stranami \AB\ — \BC\ — a,
\AC\ = 1, rovnostranný trojúhelník ACD a hledaný čtyřstěn dostaneme
jejich otáčením kolem společné hrany AC, až bude \BD\ = 1.

V případě protilehlých hran délky a zvolíme označení tak, aby \AB\ —
— \CD\ — a, \AC\ = \BC\ = \AD\ - \BD\ - 1. Je-li M střed hrany AB
(obr. 79), je

Obráceně, je-li splněna podmínka (2), platí a > . Podmínka

У л2
\MC\ = \MD\ - 4 ’
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takže

1 a2.
\CD\ < \MCI + \MD\ =2 / 1 —a =

4’

neboli

a < ]/2.
Podmínka (3) je zřejmě i postačující pro existenci čtyřstěnu ABCD v tomto
případě.

(3)

Z podmínek (2) a (3) plyne, že pro к = 2 existuje požadovaný čtyřstěn,

právě když a <

с) к — 3. Pro hledaný čtyřstěn máme tři možnosti. Nechť nejprve hrany
délky 1 vycházejí z jednoho vrcholu. Zvolme označení tak, aby \AB\ =
= \AC\ = \BC\ = a, \AD\ = |£Z>| = |CZ)| = 1 (obr. 80). Průmět D' bodu
D do roviny ABC pak splývá se středem kružnice opsané rovnostrannému

op
trojúhelníku ABC. Poloměr této kružnice je roven-y-. Požadovaný čtyřstěn

]/2 + ]/3 = i (|/2 + ]/6 ).
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ар
můžeme tedy sestrojit, právě když -j- < 1, tj. právě když

a < p.

Nechť nyní vycházejí z jednoho vrcholu hrany délky a Zvolme označení
tak, aby \AB\ = \AC\ = \BC\ = 1, |4£>| = |AD| - |CD| = a. Čtyřstěn
s těmito hranami existuje, právě když existuje čtyřstěn s hranami \AB\ =

1
= \AC\ = \BC\ — —, |Л/)| = |#/)| = |CD| = 1. Podle předcházejícího vý-

1 -

sledku takovýto čtyřstěn existuje, právě když — < ]/3, tj. právě když

(4)

1/3
(5)a > —

3 '

Protože pro každé a > 0 je splněna alespoň jedna z podmínek (4), (5),
hledaný čtyřstěn existuje v případě к — 3 pro libovolné a > 0. Nemusíme
už tedy vyšetřovat další případ (např. \AB\ — \BC\ — \CD\ = a, \AC\ —

= \AD\ = \BD\ = 1).

d) к — 4. Tento případ lehko převedeme na případ к = 2. Čtyřstěn se

čtyřmi hranami délky a a dvěma hranami délky 1 existuje, právě když
I

existuje čtyřstěn se čtyřmi hranami délky 1 a dvěma délky—. Užitím výsledku

pro к = 2 dostáváme nutnou a postačující podmínku

1 1 I
< |/ 2 + уз = — (1/6 + У2), tj. a > — ()/6 - ]/2).a

e) к = 5 převedeme na případ к — 1 stejným způsobem. Ze vztahu (1)
1

tak plyne nutná a postačující podmínka — < ]/3, tj.

Уз
a >

3 '
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Výsledky zapíšeme do tabulky:

Podmínkaк

0 < a < 1/3

0 < a < 1/2 + ]/3

1

2

0 < a3

1/2 - ]/34 < a

1/5
5 < a

5

Poznámka. Pro к — 3 již nebylo nutné vyšetřovat třetí případ, kdy ze tří
hran délky a jsou dvě protilehlé, např. \AB\ = |2?C| = |CD| = a, |zíC| =
= |AD| — |5Z?| = 1. V tomto případě čtyřstěn existuje, právě když

< a <

neboli

1/5 + 11/5—1
< a <

2 2

V případě к = 3 můžeme také postupovat následovně. Položme M =
= max(l, a), m = min(l, a). Sestrojíme rovnostranný trojúhelník
o straně m a v jeho středu sestrojíme kolmici к rovině ABC. Na ní pak najde-
me bod D tak, aby \AD\ — M. Pro každé a > 0 jsme tak sestrojili čtyřstěn
s předepsanými vlastnostmi.

66. Označme Oi, O2, O3 středy a r 1, Г2, /'3 poloměry kružnic ki, кг, кг-
Dále označme fíi, //2, Я3 jejich body dotyku s přeponou AB. Střed kruž-
nice к označme O a poloměr r. Porovnáme velikosti úseček omezených
body Hi, Нг, Из s poloměry r1, Г2, Г3 a dokážeme tak, že středy 01, 02, 03
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leží v přímce. Přímka souměrně sdružená s AB podle osy procházející body
Oi, O2, Oz je pak hledanou společnou tečnou kružnic k\, kz, kz.

Označme ještě \AB\ = c, \BC\ — a, \AC\ — b, \AD\=p, \BD\ — q,
a + b + c

= s. Body dotyku kružnice k\ rozdělí strany trojúhelníku ABC

na části o velikostech u, v, w (obr. 81), pro které zřejmě platí
a — s — a, v — s — b, w = s — c.

2

Odtud vidíme, že
\AHi\ = s — a, 1’i — s — c.

Z trojúhelníku O2H2O je podle Pythagorovy věty (obr. 82)

(~2 — = rl + (r2 + q —
c_y2) ’

čili

(r2 -f q)2 = qc

(to platí i v případě, kdy O — H2, tj. r% — q — —j.
Podle Euklidovy věty o odvěsně v trojúhelníku ABC je qc = a2, takže

i"2 — a — q.

A В '!<2u Hi v

Obr. 81

/I 1aH2 D 0 H3

Obr. 82

Analogicky dostaneme z trojúhelníku OzIhO, že
rz — b —p.
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Dále je
\AHz\ — p — Г2 — p + q — a — c — tf,

\AHs\ — P + >' 3 = b.

Předpokládáme-li, že a ^ b (čímž neztratíme na obecnosti), nastane situace
v obr. 83, kde

\AH2 i + \АНъ\ — b + c — a — 2(s — a) = 2\AHi\,
r2 + гз = a + b — p — q — a + b — c — 2(s — c) = 2r\.

Bod #i je tedy středem úsečky Н2Нз a bod O i středem úsečky 020z-

0*01o
i !гз

M i!r2 34 'O
«1 o«3H2

Obr. 83

67. Konvexním obalem množiny bodů M rozumíme nejmenší konvexní
množinu obsahující množinu M. Konvexním obalem konečné množiny
bodů M v rovině, které neleží v jedné přímce, je mnohoúhelník, jehož každý
vrchol je z množiny M.

Zvolme tři vrcholy А, В, C konvexního obalu daných n bodů. Další dva

body D,Zs můžeme vybrat ^ ^ ^ způsoby. Přitom vždy alespoň dva z bodů
A, В, C leží v téže polorovině určené přímkou DE - zvolme označení tak,
aby to byly body А, В (obr. 84). Potom A, B, D, E jsou vrcholy konvexního
čtyřúhelníku. Kdyby tomu tak nebylo, byl by konvexním obalem bodů A,
B, D, E trojúhelník a jeden z bodů А, В by ležel uvnitř něho. To však odpo-

C

!Pt "X
r O \

I//I 5 '

Obr. 84
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ruje tomu, že body А, В, C jsme zvolili ve vrcholech konvexního obalu

daných n bodů. Nalezli jsme tak 2 různých konvexních čtyřúhelníků.
2. řešení. Vyšetříme nejprve případ n — 5. Máme dokázat, že existuje

alespoň ^ ^ = 1 konvexních čtyřúhelníků s vrcholy v daných bodech.
Konvexní obal daných pěti bodů А, В, C, D, E může být trojúhelník, čtyř-
úhelník nebo pětiúhelník. Je-li to pětiúhelník, pak libovolná čtveřice jeho
vrcholů tvoří konvexní čtyřúhelník. Případ, že konvexním obalem je čtyř-
úhelník, je rovněž jasný.

Dejme tomu, že konvexním obalem bodů А, В, C, D, E je trojúhelník
ABC. Body D, E tedy leží uvnitř trojúhelníku ABC. Dva z bodů А, В, C
(např. A, B) musí ležet ve stejné polorovině určené přímkou DE (obr. 85).
Potom body A, B, D, E tvoří konvexní čtyřúhelník.

Uvažujme nyní obecný případ n ^ 5. V každé z pětic daných bodů

vybereme čtveřici tvořící konvexní čtyřúhelník (existenci takovéto čtveřice
jsme již dokázali). Každá čtveřice je obsažena v právě n — 4 pěticích,
tedy libovolná čtveřice bodů tvořících konvexní čtyřúhelník mohla být

vybrána nejvýše z n — 4 pětic. Máme tedy alespoň —

řic daných bodů, které tvoří konvexní čtyřúhelník. Stačí nám nyní ukázat,
že pro n^5

(n\
— j různých ctve

1

CMV)1

n — 4

Ekvivalentními úpravami dostáváme
n(n — 1) (n — 2) ^ 60(n — 4). O)
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Zřejmě pro я ^ 9 je я(я — 1)> 60 a n — 2 > я — 4, nerovnost (1) tedy
platí. Pro zbylé případy я = 5, 6, 7, 8 snadno ověříme pravdivost vztahu (1)
dosazením.

Poznámka. Odhad, který jsme dokázali v 2. řešení, je značně lepší než
odhad, který bylo třeba dokázat v úloze. Pro velká n je

n

и 45

120’n— 4

zatímco

(V)-?-
68. Jmenovatele zlomků označíme postupně L, Pi a Pz. Odhadneme L

pomocí Pí, Pz- Platí
L — P i + Pz + xiy2 4- x2yi — 2z\zz,

přičemž

X\ Xz
(Pz + zl) + — (Pi + zj) — 2Z1Z2 =xiyz + xzyi — 2ziz3 =

X2 Л'1

X\ / X 2•V 2
= /*2 + Pl + 1 ^1 i / 2-2

XlXz Xl

Xl Xz
Pi ^ 2jPiPz-^ — Pz 4-

Xz Xl

Zde jsme užili (a ještě několikrát užijeme) nerovnost a -f- b ^ 2^6, která
zřejmě platí pro všechna a, b > 0, a rovnost v ní nastane, právě když я
Je tedy

b.

L ^ Pi + Pz + 2]/PiPz = (\/Pi + ]/Pz)2 > 0
a rovnost nastane, právě když současně

/Xz Xl Xl Xz
(1)P2 — P1-= Z 2 /Zl / a

xi xz Xz Xl



69 (156)

Abychom dokázali danou nerovnost
8 1 1

~L ~ Pi + Fz
stačí dokázat nerovnost

8 1 1

2 - Pi + Pa*(pl + l/Pa)
což není obtížné:

2l/PiPa Pi-VPi
~

PiPz '

8 8

P iP2P1+P2+ 2yPiP2 4]/PiP2
Zde nastane rovnost, právě když P1 = P2. Připojíme-li ještě podmínky (1),
snadno zjistíme, že rovnost v zadané nerovnosti nastane, právě když
ai = a'2, Ji = >’2 a zi = z2.

69. Střed S' kružnice vepsané trojúhelníku ABC dostaneme jako průsečík
os úhlů BAC a ABC(jejich velikosti označme а а /?), průsečík os příslušných
úhlů vedlejších je středem R kružnice připsané (obr. 86). Z pravoúhlých
trojúhelníků ATS, BTS, AUR a BUR pak dostaneme jednak

+ tgT/
/ a

ltg 7r

ИР| = \AT\ + \TB\ = 4-
l> Pa a

tgy tg у tg у tg у
jednak

■

= e(‘gy + tgy).CC ft
2+ í? tg —OS| = Mt/| + \UB\ = gig

BZ-- UfR
/i12 /

/ / /

5 /^*4

C

Obr. 86
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takže porovnáním obou vztahů máme
r>r a

J = tg у tg у.
Je-li M vnitřní bod úsečky AB a označíme-li ó = |< AMC\, dostaneme

pro trojúhelníky AMC a MBC analogicky
<5 /1

= cot*TtgT’
d

~tg l 2 ~ 2/ íg’2
r i Г2a
—

= tg—tg—, —
Qi 2 2 Qo

takže

PПТ2 Гa
= tg-г- tg— - —2 2 qQlQ2

70. Je

A Вn-in- 1
<

zl/i

právě když
An-iBn — A ftB/i— i < 0.

Přitom
71 — 1

An-1 Bn — AnBn— 1 == 2 XfcClk 2 Xfcbk 2 XkClk 2 X]cbk ~
k~ 0

tt — 1

A = 0& = () Jfc=0
и — X

= ХИ6И 2 ***** — Xwflw 2 **й*

= x„ 2 Xkakbk(bn~k— e»-*),
*= 0

odkud je hned patrna platnost dokazovaného tvrzení.

2. řešení. Označme />(0 = xntn -j- x»-iín-1 + ... + xit + xo,

—. Pak je An = p(a), Bn = p(tí), = <7 (a),
Protože xo, xi, ..., Xn-2 ^ 0, Xn-i, xn > 0, pro t > 0 funkce p(t) roste,
funkce

71 — 1

xn 2 Xk(akbn — anbk) —

71 — 1

*=ok = 0

Bn— 1xnín
<7(0 = 1 = 4(b)-

Bn

p(0 i i i
~ Xn + Хя-i _ + Xn-2. .o H~ • • • + Xo _/2tn tnt
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xntn
klesá, funkce roste a funkce q{t) klesá. Je tedy

An-i
p(0

B/i -1
<

A n

právě když a > b.

&Jc— 1
71. a) Především je

pro к ^ 1

^ 1, takže bn ^ 0 pro každé n ^ 1. Dále máme

) к- ”(
1

)
«А-1 «А;— 1 Ok-1

l —1 "j- /
/ ]/«*«А «А;

(i
\ t Of; ) ]/«*-!

1 1
S 2Íl я* —1

77= ^ 2
|/«A-Ok

11
== 2

|/«*-i ]jak
Sečteme-li tyto nerovnosti pro к e {1, 2, ..«}, dostaneme

1
- 2(b “ к) “ 2( )1 —77= <2.

|/«Й
I

b) Za <7Я zvolme geometrickou posloupnost kde 0 < q < 1. Pak je

«0=1,
n 1 — qn

bn =2(1— q2)qk = (1 — q2)q
* 4

= #(1 + #)(! — > 2#2(1 —

Je-li q < 1 pevné, bude vždy pro dostatečně velká n (přesněji pro
n > logtfO — q))

1 —qn > q, tj. bn > 2qs.

. Pak budeJe-li dáno číslo c e <0, 2), položme q

bn > 2q3 = c

pro všechna dostatečně velká n.
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72. Předpokládejme, že požadovaný rozklad množiny M = {«,..., n + 5}
na dvě neprázdné podmnožiny Mi a Mo existuje. Mezi šesti čísly množiny M
existuje aspoň jedno dělitelné pěti, musí tedy být v každé množině Mi i М2
číslo dělitelné pěti a mohou to být jen čísla n a n + 5. Je tedy я ^ 5 a z ne-
rovnosti

n(n +1) — (n + 5) = n2 — 5 > 0

vidíme, že pro libovolná tři čísla a, b, с e M platí ab > c. Odtud plyne, že
každá z množin Mi, М2 je tříprvková. Protože čísla яая + 5 patří do růz-

6 možných rozkladů, přičemž je zřejměných podmnožin, máme jen

n(n + 1) (n + 2) < (n + 3) (n -f 4) (/? + 5),
n(n + 1) (n + 3) < (« -f 2) (n + 4) (n + 5),
n(n + 1) (w -f- 4) < (/n + 2) (n + 3) {n + 5),
n(n + 2) (n + 3) < (n + 1) (n -f- 4) (n + 5),
n(n + 2) (n -1- 4) < (n -f- 1) (n + 3) (n + 5)

a snadno se přesvědčíme, že také

n(n + 3) (n + 4) < (n + 1) (n + 2) (n + 5).
Rozklad uvedených vlastností tedy neexistuje pro žádné přirozené n.

2. řešení. Nechť p je prvočinitel některého čísla ae N = {n + 1, ..

n -f- 4}. Existuje-li uvažovaný rozklad M = Mi и М2,/?dělí ještě aspoň jed-
no číslo b e M, b Ф a, takže musí býtp — 2 nebo p — 3, neboť |a — b\ ^ 4.
Množina N obsahuje dvě za sebou jdoucí lichá čísla větší než 1, která by
tedy byla obě dělitelná třemi, což není možné.

• 5

3. řešení. Existuje-li uvažovaný rozklad M = Mi и М2, je součin

sn = n(n + 1) ... (n + 5)
čtvercem přirozeného čísla. Jak již víme, je n dělitelné pěti. Protože ze šesti
po sobě jdoucích čísel je nejvýše jedno dělitelné sedmi, nemůže být žádné
z čísel množiny M sedmi dělitelné a je proto n — Ik -f 1, kde к je celé
nezáporné číslo.

Nyní si uvědomme, že n dělí součin prvků té podmnožiny, která číslo n

neobsahuje, takže dělí také součin (w + 1) ...(«-}- 5) = An + 120, tedy n

je dělitelem čísla 120.



73 (160)

Vzhledem к uvedeným vlastnostem přicházejí v úvahu jen čísla n = 15
120, ani jedno z čísel sis, .V120 však není čtvercem přirozeného čísla.a n

4. řešení. Označme a-t součin prvků množiny Mř-, ie (1, 2}. Dokážeme,
že neexistuje ani takový rozklad M = Mi и М2, pro který by platilo

ai == ci2 (mod 7).
Víme, že existuje-li takový rozklad, žádné z čísel množiny M není dělitelné

sedmi. Součin všech šesti za sebou jdoucích čísel z M dává tedy stejný zbytek
modulo 7 jako

6! =5 —1 (mod 7).

Kdyby a 1 = «2 (mod 7), platilo by

a\ = rt]fl2 = 6! = —1 (mod 7).
Rovnice

v2 = —1 (mod 7)
však nemá řešení, jak se snadno přesvědčíme prozkoumáním všech zbytků
modulo 7, takže rozklad požadované vlastnosti neexistuje pro žádné při-
rozené n.

73. Řešení je založeno na tom, že všechny tři stěnové úhly při vrcholu D
jsou pravé, jak ukážeme (obr. 87). Především je zřejmé, že AB J_ CDE,
takže CD J_ AB. To ovšem platí, i když C — E. Protože je také CD J_ BD
podle předpokladu, je CD J_ ABD, tedy také CD _]_ AD. Záměnou bodů
В a C v předchozí úvaze dostaneme BD J_ AD.

Při označení hran jako v obr. 87 platí podle Pythagorovy věty
2(p2 T <72 -j- r2) = a2 -j- b2 T c2.

Je tedy
6(p2 + <72 + r2) — 3(я2 + b2 + c2) —

= (a + b + c)2 + (a — b)2 -f {b — c)2 + (a — c)2 ^ (a + b c)2,
přičemž rovnost nastane, právě když a~b = c. Vidíme tedy, že rovnost
v dokázané nerovnosti nastane pro jediný čtyřstěn (až na podobnost), jehož
základnu tvoří rovnostranný trojúhelník ABC a \AD\ ~ \BD\ — \CD\ =

У2
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2. řešení. Nad průměry ВС а А В sestrojme kulové plochy. Ty se protínají
v kružnici, která prochází body В a B\ a leží v rovině kolmé к ABC, tj.
v rovině BB\D = BED. Bod D leží na první kulové ploše i v rovině BED,
leží tedy i na druhé kulové ploše a úhel A DB je pravý. Provedeme-li stejnou
úvahu pro kulovou plochu nad průměrem AC, zjistíme, že úhel ADC je
pravý. Dále postupujeme jako v předcházejícím řešení.

3. řešení. Označme o, b, c, d vektory EA, EB, EC, ED. Bod E je průsečík
výšek trojúhelníku ABC, takže

a .(b — c) = b. (c — a) = c. (a — b) = 0,

tj-
a .b = b .с = c .a. O)

Protože DE_L ABC, je
a .d = b .d — c .d = 0. (2)

Z rovnosti

(b — d).(c — d) =■. 0,
která vyjadřuje předpoklad BD J_ CD, a z (2) plyne

b. c -f- d. d — 0.

Podle (1) a (2) dostáváme odtud kolmost zbývajících dvojic hran ve vrcho-
lu D

(b — d).(a — d) = 0, (a — d).(c — d) = 0.
Dále postupujeme jako v 1. řešení.
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74. Každých n nekolineárních bodů určuje Tn = trojúhelníků.

Označme On největší počet ostroúhlých trojúhelníků určených n nekoli-
neárními body.

Uvažujme nyní určitých n + 1 nekolineárních bodů Ai, ..., An+i. Vy-
necháním /с-tého z nich dostaneme n bodů, které určují onjc ostroúhlých
trojúhelníků. Pro celkový počet on+1 ostroúhlých trojúhelníků určených
těmito n -f 1 body pak platí

On 1 + ОпЧ + • • • + On,n+1
On+1 —

n — 2

neboť každý ostroúhlý trojúhelník jsme započetli (n — 2)-krát. Ze stejného
důvodu je

77 + 1
Tn+i = z Tn.

n — 2

Je tedy pro každých /7+1 nekolineárních bodů
л + 1

°n+1 Z On,
n — 2

O)

takže i
77 + 1

^

On+1 = ~ On,
77 2

což spolu s (1) dává
On+1 On

TnTn+1

O
r

Podíl ostroúhlých trojúhelníků — tvoří tedy nerostoucí posloupnost.
Tn

o4 3
Snadno zjistíme, že je T4 = 4, O4 — 3, takže — = —, dále je T5 = 10, tak-

74 4
3

že O5 ^ — T5 = 7,5, tj. O5 ^ 7. Pro 72 ^ 5 je tedy

Poznámka. Předcházející výsledek jsme mohli formulovat také takto:
Existuje-li konstanta c taková, že pro nějaké n je On ú cTn, pak je také
On+1 ^ cTn+i-

On O 5

'+ = +Г — 0,7.J- n 75
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2. řešení. Nejprve ukážeme, že každá množina pěti nekolineárních bodů
určuje aspoň tři neostroúhlé (tj. tupoúhlé nebo pravoúhlé) trojúhelníky.

a) Je-li konvexním obalem dané pětice bodů trojúhelník (obr. 88), pak
leží dva body v jeho vnitřku (např. A4, As)- Každý z nich je společným
vrcholem tří trojúhelníků s ostatními vrcholy v bodech A1, A2, A3, z nichž
aspoň dva a dva musí být tupoúhlé.

b) Je-li konvexním obalem dané pětice čtyřúhelník (obr. 89), pak aspoň
v jednom z vrcholů čtyřúhelníku není ostrý úhel. Bod A 5, který leží uvnitř,
musí ležet uvnitř jednoho z trojúhelníků, na které je čtyřúhelník rozdělen
např. úhlopříčkou A1A3. Ten je však vrcholem aspoň dvou tupoúhlých
trojúhelníků.c)Je-li konvexním obalem dané pětice pětiúhelník, jsou aspoň ve dvou
jeho vrcholech tupé úhly, protože součet vnitřních úhlů je З-тг. Jsou-li ve

zbývajících třech vrcholech úhly ostré, jsou aspoň dva z nich sousední,
řekněme A\, A3 (obr. 90). Pak je ovšem ve čtyřúhelníku ^i/Í2^3^5 aspoň
jeden z úhlů při vrcholech A3, As neostrý.
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Každých pět nekolineárních bodů určuje 10 trojúhelníků, z nichž jak
jsme ukázali, nejvýše 7 je ostroúhlých.

Množina 100 bodů obsahuje

nejvýš 7p^j ostroúhlých trojúhelníků, přitom ale každý takový trojúhelník
/974

započítáváme I ^ 1 -krát. Pro počet ostroúhlých trojúhelníků tak dostáváme

pětibodových podmnožin a ty určují

odhad

,(»)0100
= 0,7.

(?) 0Tioo

75. Označme An uvedenou funkci n proměnných ay, as, ..., an. Jak
snadno zjistíme, je An symetrická (její hodnota se nezmění libovolnou
permutací proměnných). Můžeme tedy při důkazu nerovnosti Аз ^ 0
předpokládat např. ni ^ аз ^ аз. Pak je

Аз — (ai — as) (aу — as) + (as — a\) (as — аз) + (аз — ni) (аз — as) =
= (ai — as)2 + (аз — ay) (аз — as) ^ 0.

Pro w = 5 předpokládejme vzhledem к symetrii ni ^ as ^ аз ^ «4 ^ n3.
Máme

Л5 = (ai — n2) [(ау — n3) (я i — a4) (ni — n5) —
— (as — n3) (as — n4) (яг — n5)] + (n3—ni)(n3— as) (аз — ay) («з — n5) +
f (a4 — n5) [(Я4 — ni) (n4 — as) (n4 — n3) — (n5 — ni) (n5 — as)(a$ — аз)].

Zde je

ay — as ^ 0,
(ni — n3) (ni — n4) (ni — n5) — (n2 — аз) (as — n4) (n2 — n5) ^ 0,

n4 — «5^0,
(n4 — ni) (a4 — П2) (я4 — n3) — (я5 — ni) (n5 — n2) (n5 — n3) =

= (tfi — n5) (as — a5) (n3 — n5) — (ni — n4) («2 — n4) («з — n4) ^ 0.

Zbývá ještě člen (n3 — ni) (n3 — n2) (n3 — Я4) (n3 — П5), který je součinem
dvou nekladných a dvou nezáporných činitelů. Je tedy A 5 ^ 0.
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Abychom ukázali, že pro ostatní n > 2 uvedené tvrzení neplatí, stačí
najít takovou я-tici čísel a\, í/2, ..., an, že An < 0.

Všimněme si, že volbou a% — í^ vypadne v /-tý ay-tý sčítanec. Zvolíme-li
ai = í72 = «з У «4 ф аъ = ... = an, bude v případě n > 5 Л» =
= (a4 — fli)3(«4 — fln)”-4- Pro fli = í/2 = йз > «4 > = ... = an tedy
bude An < 0. Uvedený příklad můžeme použít i pro n = 4: pro «4 < ai =
— a2 = аз je A\ — (o4 — í/1)3 < 0.

Poznámky. Pro n > 2 sudé si stačí uvědomit, že

Au(—Ol, —02, • • -j —On) — —Anipi, 02, ..., on).
Protože An není identicky rovna nule, nemůže být An ^ 0 pro každou л-tici
reálných čísel.

Pro /? = 3 jsme mohli také psát
As — (oi — r/2)2 + (í/3 — 01) {as — až) =

, = a\ + o\ + al — 01O2 — aios — azos =
1

= у[ipi — í/2)2 + (í/l — í/з)2 + (í/2 — í/3)2] ^ 0.

76. Označme P mnohostěn, který dostaneme z mnohostěnu Pi stejno-
lehlostí se středem A1 a koeficientem 2. Zřejmě PiciP. Je však také Pí cz P
pro ie {2, 3, ..., 9}, jak nyní ukážeme.

Nechť X je libovolný bod mnohostěnu Pí. Označme A^l jeho vzor při
posunutí o vektor A iAl (obr. 91). Protože JiePia P1 je konvexní mnoho-
stěn, leží také střed Y úsečky X\Aí v Pi. V rovnoběžníku AiAiXXi je však
\AiX\ = 2\AiY\, bod X)c tedy obrazem bodu Yv uvažované stejnolehlosti,
tj. XeP.

XX1

у

JAA,

Obr. 91
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Pro objemy uvažovaných mnohostěnů platí
V(Pt) = V(Pi), i e {1,2, ..9],

V(P) = 23V(Pi). '

Aspoň dva z devíti mnohostěnů Pi, /*2, ..., Pq musí mít společný vnitřní
bod, protože jinak by platilo

V(P) ^ V(Pí и Р2 и ... и P9) = 9F(Pi).

Poznámky. Analogické tvrzení platí pro libovolný konvexní mnohostěn
s alespoň devíti vrcholy. Neplatí však pro mnohostěn s osmi vrcholy (např.
pro krychli).

Obdobné tvrzení platí v rovině pro mnohoúhelníky s alespoň pěti vrcholy
a vyplývá snadno ze skutečnosti, že pro n ^ 5 je součet úhlů v «-úhelníku
(« — 2)ти > 2tt.

Ukážeme ještě souvislost s následující úlohou:
Jaký je největší počet nekolineárních bodů v rovině, resp. v prostoru,

aby ani jeden z trojúhelníků s vrcholy v těchto bodech nebyl tupoúhlý?
Jsou-li A(, Aj libovolné dva z н-tice bodů A\, A2, ..., An majících poža-

dovánou vlastnost, musí všechny body ležet v pásu Пц omezeném přímkami
(resp. rovinami) procházejícími body Ai, Aj a kolmými к jejich spojnici.
Odtud plyne, že body A\, ..., An jsou vrcholy konvexního obalu P\ bodů
A1, .. ., An-

Uvažujeme-li nyní mnohostěny Pí vzniklé z P\ posunutím o AiAj, ne-

mají žádné dva z nich společný vnitřní bod, protože při posunutí o A;A;
přejde pás ITij v pás, který s ním nemá společný vnitřní bod (obr. 92).

/

./ V- — "

Obr. 92
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Z řešení úlohy 76 plyne, že největší počet bodů s požadovanou vlastností je
v rovině 4 a v prostoru 8 (čtverec a krychle).

77. Předpokládejme, že jsme našli navzájem nesoudělná čísla
ai = 2№l — 3, fl2 = 2W2—3, ..., ak = 2Wfc- 3,

kde 2 ^ wi <...<«*, a označme s = ai«2 ... «*. Najdeme-li nyní ta-
kové číslo n > w*, aby bylo

2й — 3 = <7.y + 1,

pak zřejmě bude 2n — 3 nesoudělné s číslem s, tedy i s každým číslem щ
pro ie {1, 2, ..., k).

Chceme tedy najít n tak, aby x dělilo číslo
2n— 4 = 4(2n~2— 1).

Mezi s + 1 čísly 2°, 21, ..., 2S existují dvě čísla 2a < 2b taková, že dávají
při dělení číslem s stejný zbytek, tj.

j I 2b — 2a = 2a(2b~a— 1),

neboli

s | 2b~a— 1,

neboť ^ je liché. Vidíme, že stačí položit n = b — a + 2. Protože je 2b~a+2 >
> 5 ^ ajc, je b— a + 2 > л*. Opakováním tohoto postupu dostaneme
nekonečnou posloupnost navzájem nesoudělných čísel tvaru 2n — 3.

Poznámka. Tento postup je založen na stejné myšlence jako známý důkaz,
že množina všech prvočísel je nekonečná: Mějme к prvočísel pi, p2, ..., pic,

pak existuje další prvočíslo pjc+i, které je dělitelem čísla pip2-. .pic + 1.

2. řešení. V předcházejícím řešení jsme hledali takové n, aby 5 dělilo
číslo 2ra-2— 1. Takové n však existuje podle Eulerovy věty, která říká, že
pro nesoudělná čísla a a r platí

] (mod r),
kde cp(r) označuje počet přirozených čísel menších než ras číslem r ne-
soudělných (tzv. Eulerova funkce). Je-li r prvočíslo, pak (p(r) = r — 1
a tomuto speciálnímu případu Eulerovy věty se obvykle říká Fermatova
věta.

V našem případě je a = 2, r = s a vyjde n = <p(s) -f 2.
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78. Uvažujme libovolnou lomenou čáru XYZTX popsanou v úloze
(obr. 93). Sklopením trojúhelníku ABD do roviny ABC (obr. 94) zjistíme, že
pokud bude | Y T'XYj < тс, můžeme čáru TXY zkrátit změnou polohy
bodu X. (Protože stěny čtyřstěnu jsou ostroúhlé trojúhelníky, je čtyřúhelník
BCAD' konvexní a úsečka T'Y protíná stranu А В ve vnitřním bodč.)
Stejnou úvahu můžeme ovšem provést i pro ostatní body Y, Z, T lomené
čáry. Existuje-li tedy lomená čára minimální délky, musí pro ni platit

| Y AXT\ = ! Y BXY\ = I, I Y BYX\ = I Y CFZ| = rj,
| Y CZY| - | Y DZT\ = £, | * DTZ\ = | Y ATX\ = r.

c
/

У

ъ

Z trojúhelníků ATX, BXY, CYZ a Z)Z7’pak plyne (obr. 95)
I * DAB\ + | Y £CZ>| = 2tc — (1-1- r] + С + t) = | Y Z£C| + | * C£>/1|.
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Jinými slovy, je-li

I* DAB\ + I* £CD| ф |* ABC| + | 9: C/J/f|,

neexistuje mezi lomenými čarami XYZTX čára ncjkratší.
Obrácené předpokládejme, že

|9: + I* #CZJ| - |9: ABC\ + | X. CDA |.
Pro součty rovinných úhlů a, /?, y, (5 při vrcholech /1, 2?, C, /9 pak platí
a + у = I* DAB\ + I* ZMCj + |9: CAB\ + | X- BCD\ + |* £C/I| +

+ |9: ЛСД - |9: £>ЛД + 19: BCD\ + тг — 19: ABC\ + ti —

— | 9: CDA\ — 2tc,

tedy také /9 + <5 = 2rc.
Nechť je např. Sestrojíme-li plášť čtyřstěnu rozříznutím

podle hran ЛД ЛС, BD (obr. 96), dostaneme šestiúhelník P = ABDB'A'C,
který bude konvexní, neboť je у ^ те, <3 ^ 7i a všechny stěny jsou ostroúhlé
trojúhelníky. Vzhledem к (1) je AB\\ A'Br. Rovnoběžník ABB'A' zřejmě
leží celý v konvexním šestiúhelníku P a každé úsečce XX' rovnoběžné s BB'
odpovídá lomená čára XYZTX minimální délky. Z rovnoramenného troj-
úhelníku AA'C pak plyne, že její délka je

0)

у /

2\AC\ sin — = 2\ÁC\ sin —,

neboť a + y — 2rc.



(170)79

Poznámka. Sestrojíme-li rovnou plášť čtyřstěnu ABCD rozříznutím podle
hran AB, AC, BD, dostaneme (ne nutně konvexní) šestiúhelník ABDB'A'C,
v němž \AB\ — \A’B’\. Lomené čáře XYZTX odpovídá v rovině pláště
čára XYZTX' stejné délky, přičemž je \XB\ = \X'B'\. Podmínka (1) je
ekvivalentní s AB\\ A'B'. Neplatí-li (1), tj. AB%A'B', můžeme ke každé
lomené čáře XYZTX', kde body Y, Z, T jsou vnitřní body úseček DA, CD,
В С a 0 < \XB\ — \X'B'\ < \AB\, sestrojit kratší čáru s těmito vlastnostmi
(obr. 97a, b). Podrobný důkaz vyžaduje prozkoumat několik případů a po-
rovnávat délky lomených čar. Proto jsme v první části našeho řešení použili
jiného postupu.

■A'

79. Na obr. 98 vidíme příklady množin S požadované vlastnosti pro m — 1,
/71 = 2 a m = 3.

Předpokládejme nyní, že pro m — к existuje konečná množina bodů
splňující podmínku úlohy, a označme ji S*. Posunutím množiny S* o jednot-
kový vektor dostaneme množinu S'k se stejnou vlastností. Je-li SSk = 0,
existuje pro každý bod množiny S*uSfcv této množině aspoň к + 1 bodů
ve vzdálenosti 1. Najdeme-li navíc směr posunutí takový, aby pro každý
bod množiny existoval v množině S* právě jeden bod ve vzdálenosti l
(jeho vzor v uvedeném posunutí), pak zřejmě bude množina S*+i = S* и S'k
vyhovovat podmínce úlohy pro m — к + 1 as důkazem matematickou
indukcí budeme hotovi.
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Ukážeme, že takové posunutí můžeme vždy najít. Především pro každý
bod množiny S* existuje jen к jednotkových vektorů, že pro příslušné
posunutí je SкГЛ S'k Ф 0. Dále pro libovolné dva různé body X, Ye S*
existují nejvýše dva body, které mají od X i Y vzdálenost 1. Množina ne-

vhodných jednotkových vektorů, tj. takových, že je buď S* n Ф 0, nebo
pro nějaký bod množiny existuje více bodů množiny S* ve vzdálenosti 1,
je tedy jen konečná.

80. Utvořme součty všech čísel v jednotlivých řádcích a sloupcích a označ-
me p nejmenší z těchto součtů. Součet .9 všech čísel tabulky se nezmění vý-

.měnou libovolných dvou řádků nebo sloupců ani záměnou sloupců za řádky
a obráceně. Takové přerovnání rovněž neovlivní platnost dané podmínky.

Můžeme tedy předpokládat, že první řádek má součet p a že v něm na

posledních n — p místech jsou nuly. Součet čísel v každém z prvních p

sloupců bude alespoň p, zatímco součet čísel v každém *z n — p posledních
sloupců bude podle předpokladu úlohy alespoň n — p. Pro součet s všech
čísel tabulky tak máme

1 I
s ^ p2 + (// — p)2 = -уи2 + у (я2 — 4//p + Ар1) =

=

уя2 + у Сп—2р)2 ^ уя2.
2. řešení. Protože přerovnání sloupců a řádků neovlivní podmínku, kterou

daná tabulka splňuje, ani nezmění součet všech čísel tabulky, můžeme
předpokládat, že máme tabulku, která má na hlavní diagonále к nul (/c ^ 0),
a že tento počet nemůžeme již žádným přerovnáním řádků a sloupců zvětšit.

Pro au — 0 je podle předpokladu součet /-tého řádku a /-tého sloupec
aspoň n. Je-li au Ф0 a pro nějaké j je ац = 0, pak nemůže být ац = 0,
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protože bychom výměnou Mého a y-tého sloupce zvětšili počet nulových
členů na hlavní diagonále. Je tedy i v tomto případě součet í-tého řádku
a sloupce aspoň n a jsme hotovi, neboť pak je

2,v ^ n2.

Poznámka. Pro n — 2к a tabulku

к 0 0

О к О

О 0 &

О

О

О

кО О О

I
nastane rovnost s — -zrn2.

2

Pro tabulku, ve které jedničky a nuly odpovídají černým a bílým polím
1 1

na šachovnici n X n, je pro n sudé rovněž .y = --я2, pro я liché ^ = —(я2 + !)•

81. Desetiprvková množina má 210 — 1 = 1 023 neprázdných podmnožin?
Součet nejvýše deseti různých dvojciferných čísel je rozhodně menší než
10.99

množiny deseti čísel takové, že součty jejich prvk ů jsou stejné. Vynecháním
případných společných prvků dostaneme dvě disjunktní neprázdné pod-
množiny s požadovanou vlastností.

990 < 1 023. Existují tedy clvč různé neprázdné podmnožiny dané

82. Nejprve si připomeňme, že ABCD je tětivový čtyřúhelník, právě když
pro jeho vnitřní úhly a, /?, у, d platí а + у' = /? + <3=7г.

1. řešení. Je-li ABCD rovnoramenný lichoběžník (ten je tětivový), pak se
dá rozdělit pomocí n — 1 příček rovnoběžných se základnami na n rovno-

ramenných lichoběžníků.
V obecném případě označme vrcholy tak, aby úhel a byl nejmenší a bylo

(i ^ ^ ó (obr. 99). Vezměme nyní vnitřní bod P čtyřúhelníku ABCD

dostatečně blízký vrcholu A tak, aby rovnoběžky se stranami AB a AD
vedené bodem P protínaly strany BC, CD ve vnitřních bodech E a F a aby-
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chom mohli najít bod II uvnitř strany AD takový, že | £ PHD\ = (5. A pro-
tože a < /?, najdeme uvnitř strany AB bod G tak, že | £ Р(7/?| — /?. Roz-
dělili jsme tak čtyřúhelník ABCD na dva rovnorarnenné lichoběžníky
GBEP, PFDH, čtyřúhelník PECF, který má stejné úhly jako ABCD, a čtyř-
úhelník AGPII. Ten je však rovněž tětivový, protože je

| * AGP\ + | * AHP\ = гг — p + гг — <5
Rozdělili jsme tedy ABCD na čtyři tětivové čtyřúhelníky. Je-li n > 4,

rozdělíme ještě jeden z rovnoramenných lichoběžníků na n — 3 rovnora-

menných lichoběžníků.

2. řešení. Případ rovnoramenného lichoběžníku (sem počítáme i obdél-
nik) již nebudeme zvlášť uvažovat, tj. budeme předpokládat, že každé dva
sousední úhly jsou různé. Označme vrcholy čtyřúhelníku ABCD tak, aby

TC

bylo у > S ^ — (obr. 100). Přímka A'B' rovnoběžná se stranou CD a pro-

= TC.
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tínající strany AD a BC v bodech A', B’ rozděluje čtyřúhelník A BCD na

tětivový čtyřúhelník ABB'A' a lichoběžník A'B'CD.
Rozdělíme nyní lichoběžník A'B'CD na tři tětivové čtyřúhelníky

(obr. 101). Na přímce A'B' najdeme body E, Ftak, aby
| * DCE\ = у + д — тс, | * DCF\ = d

(zřejmě 0 < у + ú —тс < ú). Zvolme bod T uvnitř strany CD a sestrojme
úsečku TR || CF, kde R e A'B'. Je-li T dostatečně blízko vrcholu C, existuje
bod P uvnitř TR a bod S uvnitř B'C tak, že PS || ЕС. Potom je A'RTD
rovnoramenný lichoběžník a čtyřúhelníky RB'SP a PSCT jsou tětivové,
neboť

| * PRB' | + | * B'SP | = Ó + у — (у H- ó — tc) = 7t,

| * PSC| 4- I * CTP\ = (5 4- тс — & = тс.

D T C
s

\p 1
E R F

Obr. 101

Rozdělili jsme tak původní čtyřúhelník ABCD na čtyři tětivové čtyř-
úhelníky, z nichž jeden je rovnoramenný lichoběžník. Pro n > 4 stačí roz-
dělit rovnoramenný lichoběžník na n — 3 rovnoramenných lichoběžníků.

3. řešení. Dokážeme tvrzení úlohy pro n = 4, 5 a 6. Pro ostatní n > 6
odtud plyne uvedené tvrzení matematickou indukcí. Umíme-li totiž roz-
dělit čtyřúhelník ABCD na n tětivových čtyřúhelníků, dostaneme rozdělením
jednoho z nich na 4 tětivové čtyřúhelníky rozklad daného čtyřúhelníku na
«4-3 tětivových.

Všimněme si nejprve, že každý trojúhelník můžeme snadno rozdělit na
tři tětivové čtyřúhelníky. Stačí vzít střed kružnice vepsané a spojit ho s pří-
slušnými body dotyku (obr. 102). Vzniklé čtyřúhelníky mají vždy dva pro-

tější úhly pravé, jsou tedy tětivové.
Každý čtyřúhelník můžeme rozdělit úhlopříčkou na dva trojúhelníky,

a tedy na 6 tětivových čtyřúhelníků.
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ТС

Pro /2 = 5 předpokládejme opět, že je у > 6 ^ — (případy = <5 je tri-

viální). Příčka A'B' rovnoběžná se stranou CD rozdělí tětivový čtyřúhelník
ABCD (obr. 103) na tětivový čtyřúhelník ABB'A' a lichoběžník A'B'CD,
který rozdělíme na rovnoramenný lichoběžník A'FCD a trojúhelník FB'C.
Trojúhelník FB'C lze ještě rozdělit na tři tětivové čtyřúhelníky.

/

Т/ \

Obr. 102

Nakonec vyřešíme případ n = 4. Předpokládejme, že у ^ <3 > — (Případ
7C

<5 = — je triviální, stačí ze středu S kružnice opsané danému čtyřúhelníku

spustit kolmice na jednotlivé strany (obr. 104).) Sestrojme ve vrcholech C
a D kolmice ke stranám ВС a AD (obr. 105), jejich průsečík označme P.

C

A
—L

A £A в

Obr. 104
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Dále sestrojíme přímku EF rovnoběžnou se stranou AB tak, aby protínala
úsečky CP a DP ve vnitřních bodech a přitom úsečka EF ležela uvnitř
čtyřúhelníku A BCD. Konečně body (7 a// ležící na AB zvolíme tak, aby
EFGH byl obdélník. Čtyřúhelníky AGED a HBCE jsou zřejmě tětivové
stejně jako čtyřúhelník FECD, neboť

К7:

| £ DFE| + | £ DCE| = a + — + у — — = a + у = те.

Poznámka. Pokud leží střed S kružnice opsané uvnitř čtyřúhelníku A BCD,
lze čtyřúhelník rozdělit na čtyři tětivové čtyřúhelníky podle obr. 104.
Obecně však takový bod, který můžeme kolmo promítnout dovnitř všech
stran čtyřúhelníku, nemusí existovat (obr. 106).

D
■A

ВA i
X

p

Obr. 106

83. Nejprve zjistíme, s jakou mocninou a vystupuje prvočíslop v rozkladu
čísla n\ na prvočinitele.

n

Mezi čísly 1,2, ..., n je pro к ^ 1 právě — čísel dělitelnýchpk, takžeje

n \ NT' n

pk+1. / _pk
a —

ЛгХ 1 /"'I

přitom uvedený součet zřejmě obsahuje jen konečný počet nenulových členů.
Máme tedy pro libovolné prvočíslo p dokázat, že je

2 m 2n 1\ m -f- n \

~pk~ J/'
m n

++
pk pkP P

fcž 1

Pro libovolná reálná čísla a, ú však platí, jak snadno ověříme, nerovnost

[2a] + [2b] ž [a] + [b] + [a + b].

k^i
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n ш

Položíme-li zde a — b = — a sečteme pro všechna A'přirozená, dostane-
pK/>*’

me požadovanou nerovnost.
Vyřešili jsme tak úlohu v případě, kdy m, n jsou přirozená čísla. Je-li

některé z nich nula, dokazované tvrzení také zřejmě platí.

2. řešení. Označme

(2m)\ (2«)!
/(w, n) = m\ /7! (m + 7/)!’

Pro každé /7/, /7^0 platí
2(n + 1) (2n + 1) 2(2л+1)

f(m, /?)/(/??, n + 1) = /(/??, //) (/? + 1) (/77 + /7 + I) m + n + 1

a zároveň

2(2/;? + 1)
/(/77 + 1, /?) =/(/?, /7? -I- 1) = /(/77, /?).

/77 + /7 -f- 1

Sečtením dostaneme rekurentní vztah

f(m, n + 1) +f(m + 1, //) = 4/(/77, /?). (O

= je celé pro každé celé číslo/?? ^ 0, plyne dokazovaProtože /(/?7, 0)

né tvrzení z rekurentního vztahu (1) matematickou indukcí podle /7.

84. Předpokládejme, že kladná čísla xi, X2, ..., X5 vyhovují dané soustavě
nerovnic. Sečteme-li pět nerovností, které pro ně platí, dostaneme (indexy
počítáme modulo 5)

XiXj — 2 *?(*<+2*ť+4 + Xt+iXt+ 3) =
i<j

1 5

i = l

= "T" 2 42 Aj ~ 2 -V2(X7+2-V/+4+ Xí+Ш+з) =Z i=l jVi г = 1

~ 2 -т/л7 I 1 + X- + 2 + X- + 8 -f xf
z i= 1

1 -r>
= t2 ^/((Xi+l—Л'7+з)2 + (Xí+2— Xí+4)2).

z i= 1

2a*í4 2-V/+4— 2х?+1Хй-з) =-j- 4
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Poslední výraz je nezáporný, tedy nulový. Odtud plyne, že daná soustava
nerovnic nemá jiné řešení než xi — X2 = хз = X4 = *5 = я, a to původní
soustavě skutečně vyhovuje pro každé a > 0.

Poznámka. V oboru všech reálných čísel má soustava kromě řešení
*i = X2 — хз — *4 = *5 = a ještě řešení tvaru xi — а, X2 = X3 = *4 =
= X5 — 0, kde a je libovolné reálné číslo, a další, která dostaneme cyklickou
záměnou.

2. řešení. Snadno zjistíme, že daná soustava se nezmění, provedeme-li
cyklickou záměnu neznámých xi, X2, ..., X5.

Předpokládejme tedy, že soustavě vyhovují kladná čísla xi, X2, ..., X5,

přičemž xi ^ X2, хз, xa, X5 > 0. Z první a páté nerovnosti pak plyne
x\ ^ X3X5 a r52^ X2X4,

což znamená, že хз nebo x4 je největší z čísel X2, хз, ха, X5.
Protože soustava se nezmění, zaměníme-li současně *3 s X4 а X2 s X5,

můžeme předpokládat xi ^ хз ^ X2, X4, X5 > 0. Ze čtvrté nerovnosti tak
plyne

x\ = X1X3 nebo x? — X1X3,

což tedy znamená, že je
xi = хз = X4 nebo xi = Хз = X5.

Dosazením do třetí, resp. do páté nerovnosti dostaneme v obou případech
xi = хз = хз == X4 = X5. Toto řešení původní soustavě nerovnic vyhovuje.

85. Z daného vztahu plyne pro libovolná x, у nerovnost

2|/(x)| |g(j)| ^ |/(x + у)I + \f(x — y)\,
což znamená, že platí aspoň jedna z nerovností

\f(x)\ \g(y)\ й \f(x + y)I
nebo

!/(*)! Is0)l ^ \f(x — y)\.
Můžeme tedy (při pevném y) ke každému x najít x' tak, že

\f(x)\ |g(y)| й |/(x')|.



86(179)

Je-li dáno у takové, že g(y) Ф 0, zvolme xo, aby f{xо) ф 0, a sestroj-
me na základě předchozí úvahy posloupnost xo, xi, X2, ■ •. tak, že kla-
deme Xk = xk_v Pro všechna к přirozená tedy platí

№*-i)l IsOOl ^ \f(xk)\,
odkud plyne nerovnost

1/Ы1 1^0)1* ^ \f(xk)\ .

Protože podle předpokladu je |/(x)| ^ 1, je pro všechna к ^ 1
1

IčO)\k ^ l/Cvo)]'
To je však možné, jen když |g(y)| ^ 1.

2. řešení. Funkce/je omezená, označme
M = sup |/(x)| > 0.

Je-li у libovolné reálné číslo, pro které g(y) Ф 0, pak z daného vztahu dosta-
neme pro každé x

2\f(x)g(y)\ = |/(x + y) +f(x — y)| 2M,

M
takže l/(*)l s Isool ’

M
Z volby čísla M nyní plyne M ^ čili Ш\ й I-IsOOl ’

Poznámka. Místo nerovnosti |/(x)| 5Š 1 stačil předpoklad, že funkce / je
omezená.

86. Označme dané čtyři roviny a, /5, у, d tak, že roviny /?, у a (5 leží ve
stejném poloprostoru určeném rovinou a a pro jejich vzdálenosti x, y, z
od roviny a platí 0 < x < у < z.

Vezměme nyní libovolný pravidelný čtyřstěn A BCD a sestrojme čtyři
rovnoběžné roviny a, b, c, <7 tak, aby А e а, В eb, C e c, D e d (obr. 107),
aby čtyřstěn ABCD měl s rovinou a společný jen vrchol A a pro vzdálenosti
и, v, w rovin b, c, d od roviny a platilo

n : v : w = x : у : z.



87 (180)

Pak budeme hotovi, protože stačí provést stejnolehlost se středem A a koefi-
.v У z

= — a vzniklý čtyřstěn přemístit.

Při konstrukci rovin a, b, c, d využijeme následující vlastnosti tří rovno-

běžných rovin, která plyne z podobnosti: Protíná-li tři rovnoběžné rovi-
ny přímkap v bodech A, B, Ca přímkap' v bodech А', В', C, pak

cientem — =
и г’

\AB\ : |zíC| - \A'B'\ : \A'C|.

Nejprve určíme (obr. 107) na hraně AC bod E tak, aby \ AE\: |/ÍC|
Dále určíme na hraně AD dva body F, G tak, aby

\AF\ : \AG\ : \AD\ =x : у : z.

Pak bude GC || EF, rovinu EFB označíme jako b, roviny a, c, d sestrojíme
jako roviny procházející body A, C, D a rovnoběžné s EFB.

x : y.

87. Dokážeme tvrzení indukcí. Pro n = 1 je |0Pл | = 1, předpokládejme
tedy, že tvrzení platí pro n — к liché a mějme к + 2 jednotkových vektorů
OP i, OP 2, ... , OPjc+2, jejichž koncové body Pí leží na jednotkové polo-
kružnici se středem O v uvedeném pořadí (obr. 108). Označme

OS = OP2 + OP3 + ... + OPa,+ i,

OR = OP i + 0Pjt+2,
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PО

Obr. 108

takže je
ОТ = OP i + OP 2 4- ... + OP/c+2 = OS + OR,

kde podle indukčního předpokladu |OS | ^ 1.
Nyní je buď OR — 0, nebo je |<£ PiOPk+zl < n a PiRPk+zO je koso-

čtverec. Protože vektor OS leží v jednom z úhlů |<X PiOR\ — |<)C Pk+zOR|,
je úhel ROS ostrý. Vektor ОТ tvoří úhlopříčku rovnoběžníku ORTS, ve
kterém je úhel ROS ostrý, takže

|0T| > |0S| ^ 1

(to platí i v degenerovaném případě pro \ <T ROS\ = 0). Tím je důkaz hotov.

Poznámka. Pro n sudé tvrzení zřejmě neplatí (obr. 109).

2. řešení. Zvolme jednu polorovinu omezenou přímkou p a označme ji л.
V polorovině л sestrojme dva jednotkové polokruhy, které se dotýkají
v bodě O, a polokruh se středem O o poloměru 2 (obr. 110). Jsou-li /Т, P2
dva z uvažovaných bodů, pak koncový bod Q vektoru OQ = OP 1 + OP2
nebude ležet uvnitř tc části roviny, která je na obr. 110 vyšrafována.



88 (182)

P

Obr. 110

Označme nyní Ki (resp. K*>) sjednocení poloroviny opačné к л a všech
jednotkových kruhů, které mají středy v bodech 2к (resp. 2к + 1), kde к
probíhá všechna celá čísla (obr. 111). Posuneme-li libovolný bod O, který
neleží uvnitř jedné z množin Ki, К 2 o jednotkový vektor OP, kde P ел,
dostaneme bod Q', který neleží uvnitř druhé z množin Ki, K2. Vidíme tedy,
že koncový bod Q vektoru OQ = OP 1 + OP2 + ... + OPn neleží pro n
liché uvnitř Ki a pro n sudé uvnitř К2. Speciálně pro liché n je

IOP1 + OP2+ ... +OP„ 1 ž 1.

O

Obr. 111

Poznámka. Koncové body Q vektoru OQ = OPi + OP2 + ... +
+ OPn, kde OP 1, OP2, ..., OPn jsou jednotkové vektory splňující
podmínku úlohy, vyplní pro dané n množinu, kterou dostaneme odečtením
příslušné množiny Ki nebo K2 (podle toho, je-li n liché nebo sudé) od
kruhu se středem O a poloměrem n.

88. Množina s požadovanou vlastností .existuje, jak doložíme na několika
příkladech nejprve v rovině, a pak teprve v prostoru,

a) Vrcholy pravidelného pětiúhelníku.
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b) Vrcholy pravidelného šestiúhelníku.
c) Množina vrcholů několika pravidelných šestiúhelníků se společným

středem souměrnosti (obr. 112a, b).
d) Množina vrcholů krychle ABCDEFGH doplněná body K, L souměrně

sdruženými se středem krychle S podle stěn ABCD, EFGH (obr. 113).
e) Množina vrcholů krychle ABCDEFGHdoplněná body K, L, M, N, P, Q

souměrně sdruženými se středem krychle S podle všech jejích stěn (obr. 114).
f) Množina všech bodů s celočíselnými souřadnicemi (x, y, z), kde

0 ^ x ^ n, 0 ^ у й ri, 0 <L z n (obr. 115) pro n ^ 2.
O tom, že uvedené množiny mají požadovanou vlastnost, se snadno pře-

svědčíme.

GH
\

\

E
/
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\У

/

\
\

A В

iLObr. 113
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Poznámka. Má-li množina bodu uvedenou vlastnost, má stejnou vlastnost
každá množina, kterou z ní dostaneme afinním zobrazením. Tak např.
desetibodové množiny z obr. 112b a 113 jsou ekvivalentní.

V rovině má nejmenší množina s uvedenou vlastností pět bodů. V prostoru
jsme sestrojili desetiprvkovou množinu - vzniká otázka, existuje-li menší
množina s uvedenou vlastností.

89. Je-li v: kořen dané rovnice, je л: Ф 0 a můžeme ji přepsat na tvar

(,v + ±) +«(* + -) + 6 — 2 = 0,

neboli

0)y2 + ay + b — 2 = 0,
1

kde у — x + —.
.v

Tato rovnice má reálné kořeny

—«i j/«2 — 4[b — 2)
Tl,2 = 2
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právě když
a2 _ 4ф _ 2) ^ 0.

Původní rovnice pak bude mít reálné řešení právě pro ta y, pro něž je
|v| ^ 2. Rovnice (I) má takové řešení, právě když kromě (2) je

\a\ + }!a2 — 4(6 — 2) ^ 4.
V případě |«| ^ 4 je tato nerovnost ekvivalentní nerovnosti

2\a\ £ b + 2,

kterou dostaneme umocněním (3). V případě \b\ ^ 2 je zaručeno splnění
podmínky (2) při jakémkoliv a a nerovnost (4) je ekvivalentní s nerovností

4a2 ^ 62 + 4b -j- 4,

(2)

(3)

(4)

takže

-(»!)• 16
4{a2 + b2) ^ 563 + 46 4- 4 + y

V uvažovaném případě má ledy daná rovnice reálný kořen, právě když
4

a1 + 62 ^ y.
Pro \a\ > 4 nebo \b\ > 2 je zřejmě vždy a2 b2 > 4, takže nejmenší

4
hodnotou součtu a2 4 b2, kdy má daná rovnice reálný kořen, jsou

2. řešení. Splňuje-li trojice (a, b, x) danou rovnici, splňuje ji i trojice
(—a, b, —a), takže můžeme předpokládat, že pro kořen x platí .v > 0.
Pak je

a4 — |«[a3 — |6|a2 — \a\x 4- 1 ú 4- «a3 4- bx2 + ax 4-1=0,

neboli

|«|(a3 -f x) + \b\x2 ^ a4 4- 1 •

Použijeme-li nerovnosti
A4 — A3 — A 4- 1 = (a — l)3 (a2 4“ -V 4~ 1) = 0,

a4 — 2a3 4- 1 = (a2 — l)2 ^ 0,
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ve kterých nastane rovnost pro v — 1, dostaneme

(и + у).Л'4 + 1 ^ |a|(.x3 -f x) + \b\x2 ^ (x4 + 1)

tj-
\b\ ^ 2 — 2\a\.

Pokud \a\ ^ 1, plyne odtud umocněním

= 5(|e|-y)" 4 4
+ т- Ta2 + b2 ^ 5a2 — 8|a| -f 4

4
s rovností pro \a\ — —, zatímco pro |я| > 1 je a2 + b2 > 1.

Zjistili jsme tedy, že má-li daná rovnice reálný kořen, je nejmenší možnou
4

hodnotou součtu a2 + b2 číslo —

4 2
a — yx

3. řešení. Rovnici přepíšeme na tvar

y2 + ay + b — 2 — 0, (5)
1

kde у — v + —. Zvolme reálné číslo y,\y\ ^2 (jen pro taková у má rovnice

1
x + — = у reálný kořen). Množinou všech dvojic (a, b), pro které má

rovnice (5) kořen y, je v kartézské soustavě souřadnic přímka s rovnicí
ya j- b -f у2 — 2 — 0.

Přitom součet a2 + b2 má pro body této přímky minimální hodnotu rovnou
druhé mocnině vzdálenosti této přímky od počátku, tj.

0;2 2)2
= (Уг- 2) (l 3-\i + y2'

Odtud vidíme, že ze všech \y\ >. 2 má funkce d(y) nejmenší hodnotu pro

d(y) = 1 + У2

4
|y| = 2, a to у.

4. řešení. Uvažujme množinu S všech dvojic (a, b), pro něž má daná rov-
nice reálné řešení. Kořeny mnohočlenu jsou spojitou funkcí jeho koeíi-
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cientů, takže ncmá-li daná rovnice v bode {a, b) ф S žádný reálný kořen,
nemá reálné kořeny ani v jistém okolí bodu (o, b). Proto je množina S jakožto
doplněk otevřené množiny uzavřená.

Protože (0, 0) ф: S, obsahuje množina S na své hranici bod, který má od
počátku nejmenší vzdálenost, tj. součet a2 -f b2 má nejmenší hodnotu.

Ze spojitosti také plyne, že pokud má daná rovnice pro dvojici (a, b) jen
jednoduché reálné kořeny, pak je (a, b) vnitřním bodem množiny S. V dosta-
tečně malém okolí bodu (a. b) zůstane totiž každý jednoduchý kořen různým
od ostatních kořenů. V každém bode na hranici množiny S má tedy daná
rovnice násobný reálný kořen.

I
Označme násobný kořen r, pak je г Ф 0 a — je také kořenem dané rovnice.

1
a) Nechť \r\ Ф 1. Protože součin kořenů je 1, má rovnice kořeny r, r, —-,

i
—, a vyjádříme-li koeficienty pomocí kořenů, dostaneme

1 \2

T + t) ^ —4, b = I r f + 2^6,a — —

r

takže je a3 -f h2 ^ 52.
b) Nechť /• — I nebo r — —1, pak je

2a + b + 2 = 0 nebo —2a + b + 2 = 0

2
a vzdálenost obou těchto přímek od počátku je —=.

1/5

Nejmenší hodnotou součtu a2 + b'z jc tedy číslo—.

90. Najdeme nejkratší cestu, při které ženista prověří všechny tři vrcholy
trojúhelníku.

Nechť ženista vychází z vrcholu A rovnostranného trojúhelníku ABC.
Aby prověřil oba vrcholy В, C, musí se dostat na kružnice кв, kc se středy

h
В, C a poloměrem —, kde h je výška trojúhelníku ABC (obr. 116). Najdeme

proto takové body P e кв a Q e kc, aby spojnice APQ byla nejkratší. Body
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P, Q, C zřejmě leží na přímce, takže stačí najít ncjkratší spojnici ЛРС, kde
P e кв-

Požadovanou vlastnost má bod Po, který dostaneme jako průsečík kruž-
nice кв s osou strany AC (obr. 117). Bod Po má totiž ze všech bodů přímky
p || AC nejmcnší součet vzdáleností od vrcholů A a C, jak snadno plyne
z osové souměrnosti podle p a z trojúhelníkové nerovnosti (obr. 118).
Přitom ke každému jinému bodu Рекв, РфРо, najdeme bod P'ep,
pro který je (obr. 117)

\AP'\ + \P'C\ < \AP\ + \PC\.
Označíme-li Qo průsečík kružnice kc s úsečkou PoC, bude spojnice

APoQo (obr. 119) ncjkratší cesta, při které ženista prověří všechny tři
vrcholy trojúhelníku.

C

!Obr. 117
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Zbývá ještě ověřit, že libovolný bod trojúhelníku A BC má od čáry APqQq
li

vzdálenost nejvýše —.Množina, kterou ženista během svého pohybu po úseč-

ce prověří, je konvexní, a protože z bodu Po obsáhne jeho detektor celou
výšku BB\ (obr. 119), prověří při cestě po APo celý trojúhelník ABB\ a při
cestě po PoQo celý trojúhelník B\BC.

Je tedy APoQo hledanou nej kratší cestou (jiné řešení dostaneme souměr-
ností podle osy strany BC).

91. Nechť/e G, do množiny G zřejmě náleží funkce
(/"1 °/) (*) = X.

Z podmínky c) je zároveň zřejmé, že funkce tvaru .v -|- c pro с Ф 0 do G
nepatří.

Pro funkci /'(.v) = v má každý bod .y vlastnost c), zatímco pro funkci
/(v) = í7.y + b, а Ф 1, je bod x/ jednoznačně určen:

b
X/ =

— a

Předpokládejme, že G obsahuje aspoň dvě takové funkce f(x) = ax + b,
#(.y) = cx + d, kde а Ф 1, с Ф 1 (jinak je tvrzení úlohy triviální). Pak je

b \ \ dI + ad + h I — — —
a J ' c

ad b d
—

x — b -j- -j- — .

1
(g^1°f°g°f~1)(x) = — X

a

cc c

Protože £ G, je
ad b d

—b -j- -j-
c cc

čili

/>(1 — c) — d{ 1 — a).
Poslední rovnost však znamená, že Xf = xg. Protože/, g e G byly libovolné,
je tvrzení dokázáno.

2. řešení. Je-li f e G, f(x) — ax + b, nazveme číslo a směrnicí funkce /.
Z vlastnosti c) je zřejmé, že i(x) — x je jediná funkce v G se směrnicí 1.
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Nechť f g e G, z definice fog plyne, že směrnice této funkce je součinem
směrnic funkcí / a g. Označme m = fog, n — gof Směrnice funkcí m a n

jsou stejné a podle b) má funkce n~lom směrnici 1, takže
tr^om — i a m — non~lom — noi — n,

tedy

fog = gof

pro každé dvě funkcef g g G. Odtud plyne

Ag(Xf)) = (fog) (Xf) = (gof) (Xf) = g(f(Xf)) = g(Xf),

takže g(xf) je také pevným bodem funkce/. Pokud tedy množina G obsahuje
aspoň jednu funkci/Ф i, je pro každou funkci t?eG

g(Xf) = Xf,

protože pevný bod funkce fф i je určen jednoznačně.

Poznámka. Z vlastností a) a b) plyne, že množina G uvažovaných lineár-
nich funkcí je grupa (operace o je asociativní). Mimo jiné jsme dokázali,
že z podmínky c) plyne komutativita G. Obecně však grupa všech ne-
konstantních lineárních funkcí komutativní není.

92. Úlohu si nejdříve trochu zjednodušíme tím, že připustíme v podmiň-
kách a) a b) rovnost a nebudeme vylučovat nulová a*. Při jejím řešení
vyjdeme z následující skutečnosti: Je-li vektor (by, b%, ..., bn) řešením
iilohy pro vektor (ai, <72, ..., an) a (b\, b'2, ..., b'n) řešením pro vektor
(a[, (í2, ..., cín), je (bi + b\, b-2 + bf ..., bn + b'j řešením úlohy pro
vektor (ai + dx, í/2 + a2, ..., an -1- dn) a (cb\, cb2, ..., c‘ňn) řešením pro
vektor (raj, íí?2, ..., can), kde c je libovolné kladné číslo. Že je splněna
také podmínka b), je zřejmé, upravíme-li ji na Ivar

I
qbk < bk+1 < —bk.

q
(i)

Protože každý vektor (ai, 02, ..., a„) je lineární kombinací

(au r/2, •.ad) = aiii 1 + «2^2 + ... +
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n jednotkových vektorů
и i = (1, 0, 0, ..0),
и 2 = (0, 1, 0, ..0),

un = (0, 0, ..0, ]),
stačí řešit úlohu pro vektory u$, i e (1, 2, ...,«}. Obecné řešení pak bude
lineární kombinací takto získaných řešení.

Pro vektor u i můžeme vzít

b 1 = 1, b2 = <7, 6з = r/2, ...,bn = qn~l-
Podobně pro vektor uř-, íe (1, 2, ..n), najdeme řešení

b\ — 1, b/c = q(iк > i) a bk = q*~к (к < i).
Přitom je pro každé i e {1,2, ..., w}

+ ••• + q + 1 + q + ... + qn~* < 1 + 2(q -j- q* + ... -]- qn~1) <
2q 1 + q

1 — q 1 — q

takže podmínka c) je vždy splněna.
Pro libovolný vektor (ai, a2, ..., cin) nezáporných čísel jsme tak nalezli

řešení

(bi, b2, .. ., bn) = fli(l, q, qn~A) + a2(q, 1, q, qn~2) + ... +
+ On{qn~\ q, 1),

í-iq

(0 + 0-f- 1 -j- 0 + ...-f- 0),< 1 +

tj.
n

b/c = 2 ke {1,2, ..., и}. (2)

Jsou-li všechna čísla a i, a>, ..., an kladná, zřejmě je b/c > a/c pro všechna
к e (1, 2, ...,«} a snadno zjistíme, že je také splněna podmínka (1). Je
totiž

b/c+i— qb/c = 2 4Ž~*+1) = 2 — tf2) > o
i=A +1 i=A + l

a

1 JL- —1
— ů* — 6*+i = 2 atqk~*~41 — <72) > 0.
q i—1
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Vidíme tedy, že čísla (2), která jsou řešením zjednodušené úlohy, splňují
i původní podmínky úlohy.

93. Protože N(p + q -\- r) = 39 — 3.13 a součet tří různých přirozených
čísel p + q + r je aspoň 6, je

yV = 3 a p + q + r = 13.
Hráč В dostal ve třetím kole v kuliček a celkem jen 10 < p + q + r = 13,

získal tedy v prvním i druhém kole vždy p kuliček. Kdyby hráč C dostal
v prvním kole r kuliček, dostal by celkem aspoň r -f q + p — 13 kuliček,
ve skutečnosti jich však získal jen 9. V prvním kole tedy dostal q kuliček
hráč C.

Můžeme ještě určit přesný průběh hry. Pro čísla 1 ^ p < q < r máme
soustavu

P “h q H" r — 13 ,

2p -j- r — 10,
2q + P й 9-

Z prvních dvou rovnic plyne q — 3 -f- p a nerovnost pak dává p = 1,
q — 4, r — 8. Zisk kuliček v jednotlivých kolech ukazuje tabulka

3. Celkem1. 2.

8 4Л 8 20

В 1 8 10l

C 4 4 1 9

94. Opišme trojúhelníku ABC kružnici к a nechť D je libovolný vnitřní
bod strany AB. Přímka CD protne kružnici к v bodě E Ф C (obr. 120).
Z mocnosti bodu D ke kružnici к plyne

\CD\ . \DE\ = \AD\ . \BD\.
Odtud je vidět, že délka CD bude geometrickým průměrem délek AD a BD,
právě když bude bod E vzdálen od přímky AB stejně jako vrchol C. Bod D
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tedy najdeme právě tehdy, když pro obsahy trojúhelníků ABC a ABM,
kde M je střed oblouku А В ležícího v polorovině opačné к ABC, bude
platit

(1)PaBM ^ PABC-

Snadno však spočteme, že je (r je poloměr kružnice к)
1

Pabc — sin у = — 2r sin a 2r sin fi sin y,

7 \21 1
/Nbm = — \AMI2 sin (7Г — y) —— 12r sin —

takže z (1) dostáváme nutnou a postačující podmínku

sin y,

У
sin a sin [i 5Í sin2 —.

2. řešení. Nechť D je vnitřní bod strany А В trojúhelníku ABC a označme
Л' velikost úhlu ACD (obr. 121). Ze sinové věty plyne

sin (y — x)
sin /5

sin a BDCD |

|Л/)| sin .v’ |C/)|
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takže pro bod D platí ]CD|2 = \AD\. \BD\, právě když
sin a sin /3 — sin x sin (y — л).

Bod D s uvedenou vlastností bude tedy existovat, právě když rovnice (2)
má řešení x, kde 0 < x < y.

Protože

sin x sin (y — x) = sin x (sin у cos X — sin X cos y) =

1 — cos 2x

(2)

I
= — sin у sin 2x

1
= — — cos у + “у (cos 2x cos у + sin 2x sin y) —

cos у =2

l

1 1
= —

у COS у + у COS (2x — y),
je rovnice (2) ekvivalentní rovnici

cos (2x — y) — 2sin a sin + cos y.

Ta má řešení x, právě když
2 sin a sin /3 + cos у ^ 1,

tj. právě když
1 — cos у

sin a sin ft ^ 2

Přitom je vždy 0 < x < y, neboť
cos (2x — y) = 2 sin a sin /3 4- cos у > cos y.

Poznámka. Funkce/(x) = sin x sin (y — x) v rovnici (2) je spojitá a z ná-
sledujícího odhadu

sin x + sin (y — x)\ 2
1 =(sin x sin (y — x) ^ 2

у 2x — у у
= sin2 — COS2 — < sin2 —

2 2 “ 2

У
s rovností pro x = — plyne, že funkce /(x) nabývá v intervalu (0, y) libo-
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У
volné hodnoty mezi 0 a sin2 —. Je tedy nerovnost

У
sin a sin /? ^ sin2 —

nutnou a postačující podmínkou pro to, aby rovnice (2) měla v intervalu
(0, y) řešení.

95. Z binomické věty plyne rozklad

Ф + O2"1 = 2 \ 2k ') V /2я+ l\
\2k + 1/

23A:.23/2.23fc + Z,
fc = 0 *= o

Označíme-1 i

)2n -f 1 2/? -\~ 1
2к + 1

23fc,2™, bn (02к
к = 0 = 0

je pro n ^ 0

(1/8+ 1)2«+I = e„ + ]/8
(j/8 - l)2»+i = —я» + 1/8 6„.

Vynásobením obou rovností dostaneme pro n ^ 0 vztah
72M+I = 862-я2.

Kdyby bylo pro nějaké n ^ 0 číslo bn dělitelné pěti, bylo by
—a2 - 72m+1 = 7.49?l = 2.(—l)w (mod 5),

(2)

ale rovnice

x2 = ± 2 (mod 5)
nemá řešení, jak se snadno přesvědčíme prozkoumáním všech pěti zbytků
modulo 5. Číslo bn tedy není dělitelné pěti pro žádné celé číslo n ^ 0.

2. řešení. Podle binomické věty je

(1/8 + 1)2«
kde an, bn jsou určeny vztahem (1). Můžeme tedy pro n ^ 1 psát

on + 1/8 bn = <1/8 + l)2 (1/8 + l)2”-1 =

Qn “Ь У8 bn,u
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— (9 —2}/8) (j/8 bn~ i cin-i) —

= 9an-i + 16bn~1 + }/8(2an-\ 9bn-\),
odkud plynou pro n ^ 1 rekurentní vztahy

an = —an-i + bn-i (mod 5),
bn = 2йи-1 — /?я-1 (mod 5), (3)

přičemž ao = bo = 1.
Jejich sečtením dostaneme

я« + bn = í/m-i (mod 5)
a dosazením do prvního z nich

2яи = —bn + bn~i (mod 5),
takže máme jednodušší rekurentní vztah

bn = (—bn-i + bn— 2) — 6«-i = —2ba-\ + bn—2 (mod 5),
kde bo = b\ = 1 (mod 5). Podle tohoto rekurentního vzorce dostáváme
dále pro b2, Аз, • • • zbytky modulo 5

—1, -2, —2, 2, —1, —1, 1, 2, 2, -2, 1,1,...

a dále se zbytky periodicky opakují. Vidíme, že pro žádné n 0 není
bn = 0 (mod 5).

3. řešení. Vyjdeme z rekurentních vztahů, které jsme odvodili v předchá-
zejícím řešení. Z nich postupně dostáváme

(tfo, bo) = (1, 1), (au bi) == (0, 1), («2, ^2) = (1, —1),
(ЙЗ, 63) = (—2, 3) = (3, 3) = (Зяо, зад (mod 5).

Jak snadno dokážeme ze vztahu (3),
(an+ 3, bn+з) = (3an, 3brl) (mod 5).

Protože žádné z čísel bo, />1, Z>2 není dělitelné pěti, není bn dělitelné pěti
pro žádné přirozené n.

4. řešení. Sečtením rovností (2) dostaneme

(j/8~+ l)2»+i+ (j/8 — 1)2«+1
bn —

21/8
j/8 + 1 У8— I

(9 + 2У8)» + (9 —2 j/8)”.
2]/8 2j/8
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Protože čísla 9 -f 2]/'S, 9 — 2]/8 jsou kořeny kvadratické rovnice
Я2 — 18 A + 49 - 0,

platí pro posloupnost {bn} rekurentní vztah (srov. poznámku к řešení
úlohy 128)

bn — lbůn-i — 49bn- 2,

tj-
bn = —2bn-1 + bn—2 (mod 5).

Dále pokračujeme jako v 2. řešení, případně můžeme odvodit rovnost

bn+3 3bn (mod 5)
tak jako ve 3. řešení.

96. Označme au počet bílých polí v k-tém obdélníku, cn ^ a2 й . .. й av.
Protože šachovnice má 32 bílá pole, je

a 1 + + • • • + Up — 32.
Poněvadž ai ^ 1, fí2 ^ 2, . .., ap ^ p, je

1
32 ^ 1 + 2 -j- ... + p — 2 PÍP + 1)>

takže

p й 7.
Pro rozdělení šachovnice na sedm obdélníků uvedených vlastností uvažme

všechny rozklady čísla 32 na sedm různých přirozených sčítanců

a) 1+2 + 3 + 4 + 5 + 6+11,
b) 1+2 + 34-4 + 5 + 7+ 10,
c) 1+2 + 34-4 + 5 + 8 + 9,
d) 1+2 + 3 4-4 + 6 + 7 + 9,
c) 1+2 + 3 4-5 + 6 + 7 + 8.

První rozklad není možný, protože na šachovnici 8x8 nenajdeme obdél-
nik s 2 X 11= 22 poli. Pro ostatní případy b) až e) ukazuje příslušný*
rozklad obr. 122 (číslo v obdélníku udává počet bílých polí).
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Obr. 122

97. Zřejmě je pro libovolná čísla a, b, c, d > О
h da c

S > +-I 1-
a + b -j- c + d a + b + c + d a + b + c + d a -f- b -(- c \- d

a

dba c

S < = 2,+
a 4- b a + b c 4- d c + d

takže

1 < 6’ < 2.
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Je-li a — b Ф с — d, рак je
2а 2с

S = +
2d ф с d -j- 2c

Oje S-> 1.a pro c
Pro a — с Ф b = d zase dostaneme

2a 2b
S

a + 2b + 2d + b’
takže pro b -> 0 je S' -> 2. Protože S' je spojitou funkcí kladných čísel a, ů,
c, d, nabývá S' všech hodnot otevřeného intervalu (1, 2).

2. řešení. Protože výraz S se nezmění, vezmeme-li místo čísel d, b, c, d
čísla ta, tb, tc, tdpro libovolné kladné t, můžeme předpokládat, že a ф b +
+ c + í/= 1. Označíme-li x = а ф с, у = b ф d, bude x, у > 0, л; -f у =
— 1. Potom je

b da c

S = + +
\~d +

у — b2 — d2

1 — b1 — a1 — c

„v — a2 — c2
+

bd + 1 — у

2bd + у — у2

ас ф 1 — *

2ас ф х — х2
Ф

bd ф 1 — уас ф 1 — х

Jak známo, pro а ф с — х pevné probíhá součin ас všechny hodnoty
/ x\
^0, —takže výrazintervalu

(x — 1) (x — 2)
= 2 — ————

ас Ф 1 — x

2aс H- x — x2 —x2 -f 3x — 2
ac -|- 1 X ас ф 1 — x

2x
probíhá hodnoty intervalu ^x, ), podobně druhý výraz pro b ф d — у

l 2У \
pevné probíhá interval yy, -y. Součet S tedy probíhá všechny hodnoty

= / 4 — 4xy x
\ 2 ф xy /'

intervalu

2x 2y \
X + y’2 x + 2 — у/
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1 \
Protože x + у — 1, probíhá součin xy interval 10, a výraz

4-4^
= 4/

2 + xy \

3
-1 +

2 + xy.

žj. Odtud konečně plyne, že hodnoty S probíhají interval
/4interval \ 3 ’

(1,2).

98. Dokážeme-li, že jedna z rovnic P(x) = 1, P(x) = —1 má nejvýše dva
celočíselné kořeny, bude daná nerovnost dokázána, neboť každá z těchto
rovnic má nanejvýš deg(P) kořenů.

Dejme tomu, že každý z mnohočlenů P(x)— 1, P(x) + 1 má aspoň tři
různé celočíselné kořeny (žádný kořen jednoho mnohočlenu zřejmě není
kořenem druhého). Označme nejmenší z těchto čísel a. Nechť jc např.

p(x) + 1 - (x — a) Q(x),
kde Q je také mnohočlen s celočíselnými koeficienty. Pak pro tři kořeny
p, q, r druhého mnohočlenu P(x) — 1 = (.v — a) Q(x) — 2 platí

2 = (j> — a) Q(p) = (q — a) Q(q) = (r — a) Q{r),
což je ve sporu s tím, že číslo 2 má jen dva kladné dělitele.

2. řešení. Pokud má celočíselné kořeny jen jedna z rovnic P(x) = 1,
P(x) = —1, pak je zřejmě n(P) ^ deg(P) a daná nerovnost je splněna.

Nechť k, m jsou libovolná celá čísla, pro něž P{k) — 1, P(m) — —1.
Protože к — m dělí číslo P{k) — P(m) = 2, je \k — m\ ^ 2. To však zna-
mená, že vzdálenost libovolných dvou kořenů rovnice (P(.v))2 = 1 jc nej-
výše 4, tj. n(P) ^ 5. Dokazovaná nerovnost je tedy splněna pro každý
mnohočlen aspoň 3. stupně.

Pro mnohočleny nižšího stupně je dcg(P) fS 2,
n(P) й 2 deg(P) ^ dcg(P) + 2.

Tím je důkaz hotov.

Poznámka. Mají-li obě rovnice P(x) — 1, P(x) — —1 celočíselný kořen,
je dokonce n(P) ^ 4. Kdyby totiž bylo n{P) = 5, tak je z předcházejícího
řešení patrno, že rovnice

№))2 = i
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by měla celočíselné kořeny

к, к + 1, к 2, к + 3, к + 4,

přičemž jedna z rovnic P(x) = 1, P(x) = —1 by měla jediný celočíselný
kořen к + 2 a druhá ostatní čtyři. Bylo by tedy např.

P(x) — 1 = (.y — к) (x — к — I) (x — к — 3) (.v — k — 4) Q(x),
kde Q je mnohočlen s celočíselnými koeficienty, a

—2 = P(k + 2) — 1 = 2.1.(—!).(—2) 0(k + 2),

což není možné.

99. Protože

14=2уЬ
ť= 1 t = 1

je daná nerovnost ekvivalentní nerovnosti

2 xizi s 2 xo'i- 0)
i= 1ť = 1

Pro n — 1 je tvrzení triviální. Jsou-li 1 ^ r < s й n dva indexy takové,
že zr < zs, je

(.XV — Xs) (zr — Zs) ^ 0,

tj.
XyZy -f- XsZs ^ XrZs -j- XgZr,

takže výměnou zr a zs součet na levé straně (1) nezmenšíme.
Protože po konečném počtu takovýchto výměn dojdeme к pořadí

у i, у г, ..yn, jc nerovnost (1) dokázána.

2. řešení. Označme pro к e {1,2,
r- a

Pfc = 2 Уи -P* = 2
г - 1 г = 1

a položme Yo = Zo = 0. Pak jc pro každé к e {1,2, ..., nj
Ук — Yjc — Y/с— i, Z& — Z/c — Z/c—1,
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tedy
n n n n—1

2 xk}’k — 2 Xk{Yk — Yjc-l) — 2 XkYlc — 2 X/c+lYk =
k=l k=1

n — 1

= XnYn + 2 (Xk — Xk-n)Yk

k = 1

fc = l

a podobné
И 71 — 1

2 XfcZk — XnZn “f" 2 (Xk Xk+l)Z,k-
k=1 fc=l

Platnost nerovnosti (1) je nyní zřejmá, neboť Yn = Zn a pro každé
/се (1, 2, 1} je

А/ ~ Za;, Я'А; ЯА;+1 ^ 0»

100. Můžeme předpokládat, že ai > 1 (jinak první člen vynecháme).
Členy posloupnosti az, аз, ... rozdělíme do a i tříd podle zbytků při dělení
číslem a i. Y každé neprázdné třídě vezměme nejmenší číslo ap, všechny
ostatní členy posloupnosti patřící do stejné třídy jako av se od něho liší
o kladný násobek čísla a i, takže

o„i = Op + yai, у > 0.
Poněvadž všech zbytkových tříd je a i, vidíme, že nejen nekonečně mnoho
členů dané posloupnosti, ale dokonce všechny až na nejvýše o\ + 1 jich
lze vyjádřit v požadovaném tvaru, přičemž x = 1 a q = 1.

2. řešení. Nejprve ukážeme, že jsou-li a, b dvě čísla nesoudělná a c > ob
libovolné, existují přirozená čísla x, у taková, že

c — xa + yb.
Protože (a, tí) = 1, patří b čísel o, 2a, ..., ba do různých zbytkových tříd

modulo b, takže existuje x, pro něž
1 ^ x S b, b\c — xa.

Poněvadž c > xa, existuje kladné v, pro něž
c — xa = yb.

Pokud existují dva členy ap, aq, pro něž (ap, aq) — 1, jsme hotovi, neboť
každé am > ovaq má požadované vyjádření. V opačném případě označme d
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největší společný dělitel všech členů posloupnosti a najděme ap, oq tak, že
Op O q

— 1. Pak pro každé am > —— je
Op Oq

, d ’ d

Om Op Oq

J = x7í + yh
a důkaz je hotov.

101. Označme strany a úhly v trojúhelníku ABC obvyklým způsobem.
Použijeme-li na trojúhelníky ABR BCP, CAQ sinovou větu, dostaneme
(obr. 123)

sin 15°
M7íi = |M| = c

sin 30°
=

\BP\ = 2a sin 15°,
sin 45°

|C2' = * ^’

|CP\ = 2)2 я sin 15°.

= 2c sin 15°,

2b sin 15° cos 15°
= 2b sin 15°,

cos 15°

sin 30°
= 2 )/2 b sin 15°,cos 15°

Strany trojúhelníku PQR vyjádříme pomocí kosinové věty, takže po dosa-
zení z předchozích vztahů je

\QR\* = 4 sin" 15 (,b2 + c3 — 2bc cos (a + 60°)),
\PR\2 = 4 sin2 15° (c2 + o2 — 2ca cos (/? + 60°)),
\PQ\2 = 8 sin2 15° (b2 + o2 — 2ba cos (y + 60°)).
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Dokážeme nyní, že \PR\ — Pro libovolný trojúhelník ЛВС máme

\QR\2 — \PR\2
b2 — a2 + 2c(a cos (/? -|- 60°) — b cos (a + 60°)). (1)4 sin2 15°

Dosadíme-li do (1)
b2 — a2 = 2bc cos a — c2,

sin a

a = b -—
sin /)

dostaneme

|(TR|2 — |Pi?|2
— —c2 +

4 sin2 15°

Уз \ /1
cos [j — — sin fíj — cos a —

Уз . \1
— sin aj =

siná / 1

sin [i l 2
+ lbe COS 7 +

bc bc
(sin /? COS 7 + sin 7 COS /i) = —C2 += —C'2 + sin у = 0,sin |61 sin (i

neboť

sin у

sin fí Z>

Zbývá ukázat, že 1PRQ\ = 90°, tj. že

\PO\2 = |/JŽ?|2 + |(TZ?|2 - 2\PR\2.

c

Máme

2|Р7?Г2 — \PQ\2 = 8 sin215°[c2—Z?2 + 2í/(Z> cos (y + 60°)— c cos (/? + 60°))].
Výraz v hranaté závorce vznikne z (1) cyklickou záměnou a je proto roven
nule. Tím je důkaz hotov.

2. řešení. Sestrojme v trojúhelnících AQC a BPC (obr. 124) výšky QK
a PL, takže je \QK\ = \AK\, \PL\ = \BL\. Jsou-li M, N body na straně ЛВ
takové, že MK\\BC, LN \\ AC, dostaneme z podobnosti trojúhelníků
NBL ~ ЛВС a AQC ~ BPC rovnosti

\LN\ \BL\ \AK\
\AC\ = \BC\ = \AČ\'
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! /К

Je tedy\LN\ = \AK\ a podobně také \MK\ = \BL\ a trojúhelníky AMК a NBL
jsou shodné. Navíc je zřejmě \RM\ = \RN\. Protože je PL J_ MK, \PL\ =
= |MK\ a QK_L LN, \QK\ = \LN\, stačí ukázat, že je také RM_L RN.
Sečtením vektorů QK, KM, MR a PL, LN, NR pak dostaneme \QR\ = |P/i]
a zároveň QR JL PR.

Sestrojíme-li rovnoramenný pravoúhlý trojúhelník ABA' (obr. 124),
bude trojúhelník A'Rfí s výškou RK' podobný trojúhelníku AQC, takže ze
vztahu

\AM\ \AK\ \A'K' |
~\AB\ = \AC\ = \A'B\

máme MK' || A A', tj. MR || AA\ podobně NR || A'B, tj. RM ± RN.

3. řešení. Označme úhly v trojúhelníku ABC obvyklým způsobem.
Uvnitř úhlu ARB najděme bod B’ tak, aby trojúhelník ARB’ byl rovno-

stranný. Pak je B'R J_ BR (obr. 125) a |* B'AQ\ = a.
Jak jsme již zjistili v 1. řešení, je

\AR\ \AQ\
W\ = \AC |

a trojúhelníky AB'0, ABC jsou podobné. Je tedy |£ AB'Q\ = (i
a | £ RB'Q\ — p + 60° — ]■$: RBP\. Z této podobnosti a z podobnosti
trojúhelníků Л CO ~ BCP dále plyne

\AQ\

\AB'\ \AQ 1
\AB\ ~~ \AC\

, takže

\BP |
\B'Q\ \BC\ - \BC\ - \BP|.\AC | |5C|
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Trojúhelník RB'Q dostaneme ledy z trojúhelníku RBP otočením o 90°,
takže |P7?| = \QR\ a |* PRQ\ = 90°.

4. řešení. Uvažujme zobrazení m složené z otočení kolem bodu В o úhel
sin 105°

sin 30

m{P) — C. Dále uvažujme zobrazení я 2 složené z otočení kolem bodu
sin 30°

sin 105

takže тг2(С) = Q. Složením zobrazení л\ a m je otočení o 90°. Ukážeme,
že bod R je středem tohoto otočení.

Označme S vrchol rovnostranného trojúhelníku ABS ležícího v polo-
rovině ABR (obr. 126). Protože trojúhelníky BPC, BRS jsou podobné, je

\BC\
45° a ze stejnolehlosti se středem В a koeficientem takžeO 9

\BP\

\AQ\
A o úhel 45° a ze stejnolehlosti se středem A a koeficientem O 9\AC |
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л\(R) — S a podobně n%($) = R, bod R je tedy samodružným bodem
složeného zobrazení ttiojt2-

Protože bod Q je obrazem bodu P v otočení o 90° kolem středu R, je
I* PRO| = 90ů, \PR\ =

102. Nejprve ciferný součet čísla В odhadneme. Číslo 44444444 má nej-
výše 4.4444 číslic, takže

A < 9.20 000 - 180 000.

Pro ciferný součet čísla A tak máme odhad В ^ 5.9 — 45, takže ciferný
součet čísla В je nejvýše 12.

Každé číslo dává při dělení 9 stejný zbytek jako jeho ciferný součet.
Zjistíme, jaký zbytek dává číslo 44444444. Je

4444 = 4.11.101= 4.2.2 = 7 (mod 9),
a protože

73 ^ 343 = 1 (mod 9),
dostaneme

44444444 = 73-1481+1 = 7 (mod 9).
Odtud plyne, že hledaný součet číslic čísla В je 7.

103. Délka tětivy jednotkové kružnice, která odpovídá středovému úhlu a,

je
a

d=2 sin —.
2

Je-li d takový úhel, že cos ó i sin ó jsou čísla racionální, je podle Moivreovy
věty

cos k() + i sin kd — (cos <5 -f- i sin
takže sin kd je racionální pro každé к přirozené. Ze vztahu

sin2 d + cos2 d = 1

plyne, že sin d a cos <5 jsou racionální, právě když pro celá p, q, r je
p r

sin d = —, cos d — —
4
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Poslední rovnici vyhovují čísla
p — 2tu, r = /2 — и2, q — t2 + и2

pro každá dvě přirozená čísla /, //.
Položíme-li tedy

/2 — 12/
sin ó = , cos d =

i2 + г
kde / je dostatečně velké, aby 1974 д < тг, budou body Ar, A 2, ■ ■ ■, A1975
umístěné na jednotkové kružnici se středem S tak, aby pro к e {1,2, ..

1974} bylo |£ AjcSA/c;+i| = 2i5, vyhovovat požadavkům úlohy, protože
tětiva spojující dva body Aj, А к (j > k) bude mít racionální délku
2 sin (/— /í)d.

Zároveň je vidět, že na jednotkové kružnici můžeme rozmístit libovolný
konečný počet bodů tak, aby jejich spojnice měly racionální délku.

12 + 1

2. řešení. Dokážeme, že na jednotkové kružnici existuje nekonečně mnoho
bodů takových, že jejich spojnice mají racionální délku.

Sestrojme nad průměrem А В pravoúhlý trojúhelník ABC s racionálními
stranami. Takových trojúhelníků existuje nekonečně mnoho - jsou to
všechny trojúhelníky se stranami

2 (n /2 — n 2)4mn

\AB\ - 2, \BC\ - \AC\/172 _|_ ^2’ /77 2 -}- ft 2 ’

kde m > n jsou přirozená čísla.
Přitom jsou-li Ci, Ca vrcholy libovolných dvou takovýchto trojúhelníků

ABC1, ABC2 (obr. 127), má tětiva C1C2 racionální délku, protože pro

tětivový čtyřúhelník ABC2C\ platí podle Ptolemaiovy věty
\AB\.\CrC*\ + \ACr\.\BC2\ = \AC*\.\BCr\,

tj-
1

IC1C2I = ~(\АСг\ • \BCr\ — \ACr\. \BC2\).

Poznámka. Pro úplnost ještě uvedeme řešení neurčité rovnice
A'2 -f _y2 = 22

v přirozených číslech. Trojice přirozených čísel (.v, y, z), které jí vyhovují,
se nazývají pythagorejské trojúhelníky.

(1)
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Budeme hledat jen taková řešení, že (x, y, z) — 1, protože všechna
ostatní dostaneme vynásobením libovolným přirozeným číslem.' Navíc je
z rovnice (1) vidět, že čísla x, y, z jsou v tom případě po dvou nesoudělná.

Snadno zjistíme, že obě čísla x, у nemohou být současně lichá, pak by
totiž bylo z2 dělitelné dvěma a nutně tedy i čtyřmi, zatímco čtverec lichého
čísla dá při dělení čtyřmi vždy zbytek 1.

Předpokládejme tedy, že x je sudé, x = 21, pak dostaneme
4/2 — z2 — y2 — (z _|_ y>) (z — y).

Je tedy pro j > к
z — у = 2к,
У ~ j — к,

a odtud /2 = jk. Čísla j, к jsou nesoudělná, protože jinak by čísla y, z měla
společného dělitele. A protože jk = /2, musí být

j — m2, к — n2, 1 — mn,

z + у = 2j,
z — j + к,

kde m > n jsou nesoudělná přirozená čísla. Vyhovují-1 i tedy nesoudělná čísla
x, y, z rovnici (1), mají tvar

x = 2mn, у — m2 — n2, z — m2 + n2. (2)

Navíc je 2 | mn, protože jinak by byla obě čísla y, z rovněž sudá.
Obráceně, pro každou dvojici přirozených čísel m, n takových, že m > n,

(m, rí) = 1 a 2 | mn, dostaneme řešení rovnice (1).
Je zajímavé, že všechna řešení tvaru (2) jsou generována body (m + i//)2

v komplexní rovině pro m, n celá - je totiž (obr. 128)
(m -f in)2 = m2 — n2 + 2mn i,

| (m + irt)2l — m2 + n2.
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^ím+in}2
a

/%Sу

2тп
У

ГП2~ п2

Obr. 128

104. Vyřešme úlohu nejprve pro n— 1. Hledaný lineární homogenní
mnohočlen bude mít tvar

P(x, y) = Ax + By.
Z podmínek b), c) dostaneme pro a = 1, ú = c = 0

ДО, 1) = —2P(1, 0) = —2.
Je tedy A = P(l, 0) = 1, В = P(0, 1) = —2 a

P(x, y) — x — 2у

je jediný mnohočlen stupně 1, který vyhovuje daným podmínkám.
Nechť n > 1. Platí opět P(1, 0) = 1, P(0, 1) = —2 a pro a = 2, b = c =

= —1 dostaneme z podmínky b)
P(-2, 2) = —2P(1, -1).

přičemž podle a)
P(—2, 2) = (-2)»P(1, -1).

Pro n > 1 to znamená, že je P(l, —1) = 0a vzhledem к homogenitě mno-
hočlenu P

P{x, —x) = 0

pro všechna reálná x. Pro každé x má tedy mnohočlen jedné reálné pro-
měnné у

Px(y) = P(x, y)
kořen у = —x. Odtud plyne, že mnohočlen P má tvar

P(x, y) = (x + y) Q(x, y),
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kde Q je také mnohočlen. Ukážeme, že mnohočlen O stupně n — 1 rovněž
splňuje podmínky úlohy. Pro x + у Ф 0 je

P(tx, ty)
= tn~lQ(x, y),Q(tX, ty) = t(x + y)

pro a + b -j- с Ф 0

Q(a + b, c) + Q(a + c, b) + 0(b + c, a) =

1
(P(a + b, c) + P(a + c, b) + P(b + c, a)) = 0

a -j- b + c

a také 0(1, 0) = P(l, 0) = 1. Pro x + у = 0, resp. a + b -|- c — 0 plynou
uvedené vlastnosti ze spojitosti mnohočlenu Q.

Poněvadž řešení pro n = I už známe, vidíme, že pro n ^ 1 je jediným
řešením úlohy mnohočlen

P(x, y) = (x + y)'i_1 (x — 2y).

2. řešení. Nechť mnohočlen P splňuje dané podmínky. Z podmínky b)
pro libovolné a — b — с = у plyne

ЪР(2у, у) = 0.
Pro každé у má tedy mnohočlen jedné proměnné x

Pv(x) = P(x, y)
kořen x = 2v. To znamená, že

P(x, У) = (x —2y) Q(x, y),
kde O je homogenní mnohočlen stupně n — 1. Zřejmě Q(\, 0) = P(l, 0) = 1.
Pro b — c z podmínky b) plyne

2 P(a + b, h) + P(2b, á) = 0,
což pro mnohočlen Q dává

2(a — b) Q(a + b, b) + 2(b — a) Q(2b, a) = 0,
neboli pro а Ф b

Q(a + b, b) = Q(2b, a).
Odtud postupně dostaneme

Q(x,У) = Q(2y, x—y) = Q(2x — 2y, 3у — x) = Q(6y — 2x, 3x—5y) = .. • )
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tj.
Q(x, у) = Q(x + (2у — x),y — (2у — x)) = Q(x + (x —2y),y—(x — 2j>))=

= Q(x + 3(2у — x), у — 2{2y — x)) = ... .

Protože Q je mnohočlen a rovnost Q(x, y) = £)(x + d, у — d) je při x Ф 2у
splněna pro nekonečně mnoho různých d — 2у — x, x — 2y,3(2y—x),...,
je

Q(x, y) = Q(x + d, у — d)

pro libovolné reálné d, což platí díky spojitosti i pro všechna x = 2y.
Speciálně je Q(x, y) = Q(x + y, 0), a protože Q je homogenní mnohočlen
stupně n — 1, je

Q(x, у) = c(x + у)*-1,

přičemž Q(1, 0) = 1, takže c = 1. Jediným mnohočlenem, který splňuje
dané podmínky, je tedy

P(x, y) = (x — 2y) (x + y)n~l.

3. řešení. Nechť mnohočlen P splňuje uvedené podmínky. Z podmínky b)
plyne pro c — 1 — a — b

P{a + b, 1 — a — b) + P(1 — b, b) -f P(1 — a, a) = 0,
což pro b = 0 dává vztah

P(1 — a, a) — —P(a, 1 — a) — 1.

Dohromady je tedy

P(a + b, 1 — a — b) = P(a, 1 — a) + P(b, l—b) + 2.
Položme Q(x) — P(x, 1 — x) + 2, pak je pro libovolná reálná a, b

Q(a + b) = g(fl) + 0(ů).
Protože g(l) = P(l, 0) + 2 = 3, plyne odtud Q{a + 1) = Q(a) + 3, čili

Q(n) = Зя

pro všechna přirozená я. Poněvadž £) je mnohočlen, je Q(x) = 3x pro všech-
na reálná x. Je tedy P(x, 1 — x) = 3x — 2 a podle a) pro x + у ф 0

—) =X + у/(-——)=Vx + у x + у!

X

Р(х,у) = (х -ь у)п Р (х + у)п Р » 1 —

X + у
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2) - (x + j>)”-1(x—2y).
Зд:

= (x + y)n
X + у

Snadno zjistíme, že tento mnohočlen splňuje všechny dané podmínky.

Poznámka. Je-li Q spojitá reálná funkce, má funkcionální rovnice
Q(x + y) = Q(x) + Q(y)

jediné řešení Q(x) — kx, kde к je libovolná reálná konstanta. Z předchozího
řešení tedy vidíme, že bylo zbytečné předpokládat, že P je mnohočlen -

stačila např. spojitost funkce P. Z rovnosti Q( 1) = 3 pak rovnou plyne
Q(x) = 3.v.

105. Uvažujme čtyřúhelník ABCD, v němž \AB\ + \BD\ -f \CD\ — 16
a jehož obsah je 32. Je tedy

1
32 = —\AB\.\BD\ sin 1^ ABD| + —\BD\.\CD\ sin \^BDC\ й

1 1 1
š ~^\AB\.\BD\ + -j\BD\.\CD\ = —\BD\(\AB\ + \CD\) = (1)

1
= —\BD\{\6-\BD\).

Z (1) dostáváme
\BD\*—16\BD\ + 64 ^ 0,

neboli

(\BD\ — 8)2 ^ 0.
Z poslední nerovnosti plyne \BD\ = 8, tedy \AB\ + \CD\ = 16 — \BD\ = 8.
Dále v (1) platí rovnost, musí tedy být AB J_ BD, BD J_ CD.

Označme P patu kolmice spuštěné z bodu A na přímku CD (obr. 129).
Potom

\ACI2 - I/1PI2 + |PC|2 = \BD\* + {\AB\ + \CD\Y = 2.82,

tedy \AC\ = 8j/2.
Dokázali jsme, že v každém čtyřúhelníku splňujícím podmínky úlohy je

délka druhé úhlopříčky rovna 8]/2 cm.
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P D C
V j7
!

LA -Lfí

Obr. 129

106. Probíhá-li x interval <—2, 2), hodnoty funkce x2 proběhnou dvakrát
interval <0, 4) (nejprve klesají od 4 к 0 a pak rostou od 0 do 4) a hodnoty
funkce Pi(x) = x2— 2 proběhnou dvakrát interval <—2, 2). Hodnoty
funkce (Pi(x))2 proběhnou čtyřikrát interval <0, 4) a hodnoty funkce
P2(x) — (Pi(x))2 — 2 čtyřikrát interval <—2, 2) (obr. 130). Odtud plyne
indukcí: Proběhne-li x interval <—2, 2), proběhne funkce Pn(x) 2"-krát
interval <—2, 2).

Funkce Pn(x) je spojitá a protne tedy úsečku spojující body (—2, —2),
(2, 2) alespoň v 2n různých bodech, tj. rovnice

Pn(x) = x

má alespoň 2n různých reálných řešení. Protože funkce Pn(x) i funkce
Pn(x) — x jsou mnohočleny stupně 2n, jsou to všechna řešení rovnice (1).

(I)
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2. řešení. Budeme hledat kořeny rovnice Pn(x) = x v intervalu <—2,2).
Každé reálné číslo x z tohoto intervalu lze jednoznačně vyjádřit ve tvaru
x = 2 cos y, kde у e <0,7c>. To nám umožní jednoduše vyjádřit hodnoty
funkce Pn(x). Dokážeme indukcí, že pro každé reálné у platí

Pn(2 cos y) — 2 cos 2ny. (2)
Pro n — 1 je

Pi(2 cos >’) = 4 cos2.y — 2 — 2(2 cos2j — 1) = 2 cos 2y.

Předpokládejme, že vztah (2) platí pro přirozené číslo k, potom
Pjc+1(2 cos y) = P\{P]c{2 cos j)) = Pii! cos 2ky) = 2 cos 2k+1y .

Vztah (2) tedy platí pro každé přirozené číslo n.
Úlohu o rovnici Pn(x) = x jsme tak převedli na úlohu o rovnici

2 cos 2ny — 2 cos у

a ta má v intervalu <0, тс) 2n řešení
У = 0,

2kn
к e (1, 2, ..1),=

2« — 1

2kn
ke {1,2,J = 2№ + 1*

Přitom všechny tyto hodnoty jsou navzájem různé. Kdyby totiž bylo
2kn

2n—l~ 2n + ť

bylo by к + j = 2n(j—&), což pro к ^ 2n~x — 1 a jT 2n~l nemůže
nastat, neboť 0 < к + j < 2n. Protože stupeň mnohočlenu Pn je 2n, jsme
s důkazem hotovi.

2/TC

107. Označme a, b, c rozměry krabice, a ^ b S c. Podle podmínek úlohy
jsou a, b, c přirozená čísla. Krychle o objemu 2 má hrany délky 31/2, tedy
maximální počet krychlí tohoto objemu, které můžeme do krabice vložit,
je

ba c

3l/2 j3j/2 3j/2
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Tylo krychle zaplní 40 % objemu krabice, tedy

3^2 ] [ 3|/2 j [ 3|/2 | — 0,4 abc.

n

Zavedcme-li označení pn — ■, dostaneme vztah

Ш
PafbPc — 5. (1)

Hodnoty a pn pro n rg 8 sestavíme do tabulky:

1 2 3 4 5 6 7 8n

И 0 1 2 3 3 4 5 6

3 4 5 3 7 4

T T T ~2 T T
2Pn

Všimněme si, že pro každé přirozené číslo n je
n n

o —

£ = 3j/2.n ' (2)Pn —

i 3]/2 ] » У2
Pro « ^ 8 je naopak

и 3|/2 3|/2
= 3]/2 ( 1 +л = ~n 3l/2 3]/2« — n —

3l/2
3)//2 8 3 j/2 8,1,26

š 3y2 1 +
8 — 3 j/2 8—1,268 — 3|/2

10,08 3
< —

2 '6,74
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5
Odtud a z tabulky plyne, že pro n ^ 3 je pn й "Г"» takže pro a ^ 3 máme

3

< 5PaPbPc ú

a rovnice (1) není splněna. Nutně tedy « — 2a rovnice (1) dostává tvar

5
(3)PbPc — —,

3
takže musí být aspoň jedna z hodnot рь, pc větší než—. Z tabulky zjistíme, že

5
takové jsou jen hodnoty 2 a —. Zbývající číslo z dvojice po, pc je pak podle

5 3 5 -

(3) rovno — nebo —. První možnost vyloučíme podle (2), neboť — < j/2.
5 3

Dvojici —, — odpovídají řešení b — 3, c — 5 nebo b = 5, c — 6.

Rozměry krabice jsou tedy buď 2x3x5, nebo 2x5x6.

108. Jsou-li a i, «2, ..., an přirozená čísla, jejichž součet je l 976 a jejichž
součin je maximální, potom platí:
(1) Žádné z čísel щ není větší než 4. Číslo ot ^ 5 bychom mohli nahradit

čísly 2 a «í — 2. Součet by se nezměnil a součin by se zvětšil, protože
pro a% ^ 5 je 2(at — 2) > щ.

(2) Mezi čísly Qi jsou nejvýše dvě dvojky. Kdyby tři z čísel at byly dvojky,
nahradili bychom je dvěma trojkami, součet by se tím nezměnil, ale
součin by se zvětšil, neboť 3.3 > 2.2.2.

(3) Žádné z čísel ai není jednička. Kdyby ai — 1, nahradili bychom dvojici 1,
aj (pro nějaké j Ф i) číslem aj + 1, přičemž by se součet nezměnil, ale
součin zvětšil.

Čísla си tedy nabývají pouze hodnot 2, 3, 4. Je-li některé z čísel щ rovno

čtyřem, můžeme je nahradit dvěma dvojkami. Tím nezměníme součet ani
součin. Maximální hodnotu součinu čísel Oi můžeme tedy dosáhnout, vo-
líme-li za čísla щ pouze dvojky a trojky, přičemž dvojky smějí být nejvýše
dvě.



I os (218)

Protože 1976 — 3.658 }- 2, maximálního součinu dosáhneme, volíme-li
a i = «2 — ... = «658 = 3, «059 = 2. Příslušný maximální součin je pak
2.3658,

Poznámka. Číslo 1 976 můžeme nahradit libovolným přirozeným číslem
m > 1. Maximální hodnota součinu je

3k pro m — 3k,
2.3k pro m — 3к -f 2,

4.3fc_1 pro m — 3k + 1-

2. řešení. Jsou-li a i, «2, ... an přirozená čísla, jejichž součet je 1976
a jejichž součin je maximální, pak platí

|«ř — «y| ^ 1

pro libovolná dvě i, je (1, 2, ..., «}. Jinak bychom totiž čísla «г, «у, je-li
např. «г > «у -1- 1, nahradili čísly «г — 1, «у + 1, součet by se nezměnil
a součin by se zvětšil:

(O

(«г — 1) («у + 1) = (Httj + ai

Protože pro libovolné přirozené číslo m Ф 3 platí nerovnost

3m > m3,

nemůže se žádné číslo m Ф 3 vyskytovat mezi čísly «1, «2, ..., an více než
dvakrát. Libovolnou trojici čísel m bychom totiž nahradili m trojkami,
přičemž by součet zůstal stejný a součin by se^zvětšil podle (2).

Mezi čísly «1, «2, ..., an jsou tedy podle (1) nejvýše dvě různá, a je-li
n ^ 5, musí být všechna až nejvýše na dvě rovna třem. Zbylá nejvýše dvě
čísla musí být pak podle (I) rovna buď dvěma nebo čtyřem.

Z rozkladu 1976 — 3.658 ~f 2 — 3.656 -f 4.2 plyne, že hledaný maxi-
mální součin je 2.3658 > 42.3056. Možnost n ^ 4 snadno vyloučíme,
protože podle nerovnosti mezi aritmetickým a geometrickým průměrem

a pro n ^ 4 je

«у — 1 > «t«y.

(2)

p?rje uvažovaný součin shora omezen číslem

(™r < (37)4 < 2.3«58.
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109. Pro každé dvč <y-ticc
и ■— (l/l, 1/2, • • •, Uq) а v = (vi, V2, . . Yg)

takové, že
<7 ч

2 amu = 2 oim,
ť=i7=1

7 7

2 fl2íWi — 2 a2iYi, 0)
ť=l t=l

7 7

2 opuu = 2
»=i i=l

vyhovuje zřejmě í/-tice
и — V = (u 1 — vi, //2 — V2, . . Uq — Vq)

dané soustavě rovnic. Jestliže q-tice u, v jsou složeny z celých čísel, jsou
různé a je \in\ ^ p, |i’j| ^ p pro všechna / e {1,2, pak jsou splněny
i podmínky a), b), c). Stačí tedy ukázat, žc lakové dvě g-tiee u, v existují.

Označme T množinu všech q-tic t = (ti, /2, ..., tq) celých čísel takových,
že |/j| ^ p pro každé /e {1, 2, ..., q}. Množina T obsahuje (2p -j- \)(>
q-úc. Každé </-tici t e T přiřaďme /Mici

(louh, lank, ..., 2 Opiti).
i = 1 i — 1 i= l

Tyto p-tice vytvoří množinu K. Protože
77 7

I 2 ObitiI ^ 2 l«*il Ы й 2 \ti\ й pq,
i=l i= 1 j= 1

má množina К nanejvýš (2pq -1- I)*' prvků. Je však
|R| S (2pq + 1)!>=(V+ l)»<((2p + 1)2)í' = (2/) + I)27’ = (2/> + 1)«= |T|.
V množině T tedy existují dvě r/-tice u, v, pro které platí (1). Tím je důkaz
proveden.

110. Vypočteme několik členů posloupnosti {//„}. Je
5 5 65 1025

= 2, lil = y, U2 =г/ о "3 = ¥’ "4 = “322 ’
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2гк + 1
a všechny tyto členy jsou tvaru ——2K

= 2k + 2~k. To nás vede к do»

mněnce, že je
un = 2/<»)+ 2 -/<») (1)

přičemž pro /(w) > 0 bude

Matematickou indukcí dokážeme, že pro

1
An) = — (2n — (—l)n)

vyhovuje posloupnost {un} vztahu (1), a dostaneme tak tvrzení úlohy.
5

Pro n — 0 a n — 1 je i/o = 2o + 2° = 2, m — 21 + 2"1 = —.

Předpokládejme tedy, že pro n = к — 1, n — к vztah (l) platí. Potom je
ul_x —2 = 22/№-D+ 2-2/№-D,

5
= (2/№) + 2~/<fc>) (22/(fc-1> + 2~2f(k-V) — у=WA+l

5
= 2/(fc)+2/№-i)4-2/W-2/(*-1)_}_ 2-/<*>+8/(*-i)-f 2-/(*)-a/(»-i) _ —

přičemž
2 ’

1
/(£) + 2ДЛ - 1) = “(2* - (—1)* + 2* + 2(—1)*) -

1
= — (2fc+1 — (—l)fc+1) =f(k + 1),

takže je dále
x 5

_ 2/№+i)-f 2(_1)fc+1 -f- 2“(_1)í:n+ 2~f(k+1'> —== 2/<*+1> + 2~f<-k+l'>.

Tím je důkaz hotov.

wa+i

111. Označme P střed úsečky KL, Q střed úsečky DN a S střed čtverce
ABCD (obr. 131). Vzhledem к souměrnosti stačí dokázat, že \SP\ = \SQ\,
|4 PSQ\ = 30° a |* QSK\ - 15°.
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Nejprve si všimněme, že přímka AN]q osa úsečky BK, takže \KN\ = \BN\.
Je tedy také \MN\ — |2řiV| a trojúhelník MBN je rovnostranný (délku jeho
strany označme $) a | £ CBN\ = 15°. Úsečka SQ je střední příčka v trojúhel-

niku BDN, takže |£(21 = y, |£ QSK\ = 15°. Dále pak
I* PSQ\ = |* PSK| — l-jc QSK| = 45° — 15° = 30°,

\KN\ s

is/>l = -j 2 '

2. řešení. Ze souměrnosti je vidět (obr. 132), že čtyřúhelníky P1P4P7P10,
РгРьР&Ри, P3JWP12 jsou čtverce se společným středem, přičemž
přímka P1P4 je rovnoběžná se stranou А В a přímky P2P5 а РгРв s ní svírají
úhly 30° a 60°. Poslední dva čtverce jsou zřejmě shodné, stačí ukázat, že
i první je s nimi shodný.

Skutečně, je

уз уз — i
|/V>5| = \АРьI -\АРЪI = y\AB\ ~ У И^1 = “—2—l^5!’

1^Л| = у №1 - у (2IJV0I - Mi5|) -
уз — i

1
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3. řešení (obr. 132). Vzhledem к souměrnosti stačí dokázat, že \P-\P-2\ =
= \P2P3\ a \SPi\ = |*SjP2[• Zaveďme soustavu souřadnic, v níž bude

Л = (-1, -1), В = (1, -1), D = (-1, 1),
К = (0, уз-l), L = (1 — yí 0), M = (0, 1 - 1/3), N = (УЗ — 1, 0),

уз
= (ЦЕ.Ь_Е),„ = (Е 1

Pi
2 ’ 2/ ‘

Odtud dostaneme

|РпР2|2 = |Р2Рз|2 = 7—_4]/3,
\SPi\*= |№|2 = 2 —j/3.

1Í2. Uvažujme posloupnost ai, a*, ..., a označme
Sk = (h + a 2 + ... + tf/c.

Posloupnost splňuje dané podmínky, právě když
.V7 < 0, S11 > 0,

Sk+7 < pro všechna A <= {1, 2, ...,// — 7}
a

Ski-11 > Sk pro všechna A' e (1, 2, ..., n
Ukážeme, že n fS 16. Kdyby n ^ 17, platilo by

0 > .У7 > .914 > .93 > .9io > .917 > ,9o > ,9]3 > S% >
> -99 > .910 > .95 > .912 > S\ > ,9g > .9l5 > .94 > .9Ц > 0,

11).
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což není možné. Existuje však nekonečně mnoho šestnáctic si, 52, ..., .víc,

pro které platí

S6 > Sia > S2 > 59 > .Vio > Л'5 > .V] 2 > 5i > 5g >

> .V 15 > 54 > 511 > 0 > 57 > 514 > 53 > 5щ.

Položíme-li

«1 = 5l,

ní;-ii = 5x41—St pro každé к e {1, 2, ..., 15},

dostaneme šestnáctičlennou posloupnost, která vyhovuje podmínkám úlohy.
Např. pro

56 = 12, 513 = 1 1, 52 == 10, 59 = 9, 516 = 8, 55 = 7,
5,12 = 6, 51 = 5, 58 = 4, 515 = 3, 54 = 2, 5ц = 1,

57 = —1, 5j.4 = —2, 5з = —3, 5ю = —4

vyjde posloupnost

5, 5, —13, 5, 5, 5, —13, 5, 5, —13, 5, 5, 5, —13, 5, 5

vyhovující daným podmínkám.

2. řešení. Předpokládejme, že posloupnost má alespoň 17 členu. Zvolme
si libovolné 4 po sobě následující členy. Pak před nimi nebo za nimi je
ještě aspoň 7 členů, tj. existuje 11 po sobě následujících členů, které začínají
nebo končí zvolenou čtveřicí. Z podmínek úlohy plyne, že součet zvolených
čtyř členů je kladný. Je tedy součet libovolných čtyř po sobě jdoucích členů
kladný.

Zvolme si dále libovolné 3 po sobě následující členy a uvažujme 7 po
sobě následujících členů, které začínají nebo končí zvolenou trojicí. Součet
ostatních čtyř členů je, jak víme, kladný. Z podmínek úlohy plyne, že zvo-
lená trojice má záporný součet. Součet libovolných tří po sobě následujících
členů je tedy záporný.

Nakonec zvolme libovolný člen uvažované posloupnosti. Čtveřice, která
jím začíná nebo končí, má kladný součet a trojice ostatních členů má zápor-
ný součet, takže zvolený člen je kladný. Uvažovaná posloupnost má tedy
všechny členy kladné, což odporuje jedné z podmínek úlohy. Členů je tedy
nejvýše šestnáct.
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Poznámka. Všimněte si souvislosti metody 2. řešení s Euklidovým algo-
ritmem pro hledání největšího společného dělitele dvou přirozených čísel.
To vede к zobecnění:

Je-li v konečné posloupnosti reálných čísel součet každých m za sebou
jdoucích členů záporný a součet každých n za sebou jdoucích členů kladný,
je maximální počet členů posloupnosti m + n — d— 1, kde d je největší
společný dělitel čísel m a n.

3. řešení. Má-li posloupnost alespoň 17 členů, sestavme z nich tabulku
o 11 řádcích a 7 sloupcích:

« i a 2 a 3 «4 a5 «6 «7

«2 «3 «4 «5 «6 «7 «8

a 3 «1 a 5 gq «7 a$ gq

Cl 11 Cl 12 «13 «14 «15 «10 «17

Kdyby posloupnost splňovala podmínky úlohy, byly by všechny řádkové
součty záporné a sloupcové součty kladné, což není možné - součet všech
řádkových součtů je totiž roven součtu všech sloupcových součtů.

113. Ukážeme, že číslo
r - (n — l)2 (2n — l)2 = [(n — 1) (2n — l)]2

lze ve Vw rozložit dvěma různými způsoby na součin nerozložitelných čísel.
Především si všimněme, že každé z čísel

(I)

r, (n — l)2, (2n — l)3, (/? — 1) (2n — 1)
patří do množiny Vw. Prozkoumejme dále rozložitelnost těchto čísel.

Kdyby číslo (n— l)2 bylo rozložitelné, existovala by přirozená čísla c,
d tak, že

(>/ — l)2 — {cti + 1) (dn + 1).
To však není možné, protože pravá strana by byla větší než n2. Číslo
{n — l)2 je tedy nerozložitelné pro každé n > 2.

Je-li číslo (2// — l)2 rozložitelné, existují přirozená čísla c, d tak, že
(2/7 — l)2 — (cn -f 1) (dn + 1) = cdn2 + (c + d)n + 1,

neboli
4n — A — cdn -\~ с Л- d.
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Platí tedy cd < 4 a ze tří možností c — 1, d = 3; c = 1, d = 2; c — 1,
d = 1 vyhovuje jen první v případě /7 = 8. Pro и = 8 je tedy

(2/7 — l)2 = (2.8 — l)2 = (8 + 1) (3.8 + 1)
a pro n Ф 8 je číslo (2/7 — l)2 nerozložitelné.

Analogicky zjistíme, že pro n = 5 je

(n — 1) (2« — 1) = (5 — 1) (2.5 — 1) = (5 + l)2
a pro n Ф 5 je číslo (« — 1) (2/7 — 1) nerozložitelné.

Pro 5 Ф п Ф 8 dává tedy (1) dva různé rozklady čísla r na nerozložitelné
činitele

(« — l)2 а (2/г — l)2, resp. (/? — 1) (2/7 — 1) a (n — 1) (2/7 — 1).
Pro /7 = 5 máme dva rozklady

16.81 = 6.6.6.6

a pro /7 = 8 dva rozklady
9.25.49 = 105.105.

2. řešení. Stejně jako v předcházejícím řešení zjistíme, že číslo (n — l)2
je nerozložitelné. Toto číslo nedělí součin (n — 1) (2/7 — 1), protože číslo

(« — 1) (2/7 — 1) 2/7 — 1
(/7 — l)2

není pro žádné n > 2 přirozené. Rozložíme-li tedy obě strany (1) dále až
na nerozložitelné činitele, bude na levé straně činitel (n — l)2, a na pravé
straně nebude. Půjde tedy o dva různé rozklady.

1
= 2 +

/7— 1П — 1

3. řešení se opírá o hlubokou Dirichletovu větu: Jsou-li první člen a di-
ference aritmetické posloupnosti nesoudělná přirozená čísla, obsahuje
posloupnost nekonečně mnoho prvočísel. Podle této věty obsahuje posloup-
nost

/7 — 1, 2/7 — 1, 3/7 — 1, ...

nekonečně mnoho prvočísel. Vezmeme-li dvě z nich, //ar, jsou čísla//2, r2,
pr, p2r2 z množiny V„ a číslo /z2r2 má dva rozklady na nerozložitelné či-
nitele:

/z2./-2 a pr.pr.
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Můžeme také vzít čtyři prvočíselné členy p, q, r, s zmíněné posloupnosti.
Jejich součin má pak tři rozklady

pq.rs, pr.qs, ps.qr.

Poznámka. Předpoklad n > 2 je podstatný. V2 je množina všech lichých
čísel větších než 2 a nerozložitelná čísla ve V2 jsou právě lichá prvočísla.
Vi je množina všech přirozených čísel větších než I a nerozložitelná čísla
ve Vi jsou právě prvočísla. Z jednoznačnosti rozkladu na prvočinitele je
vidět, že pro n ^ 2 tvrzení lilohy neplatí.

114. Je-li alespoň jedno z čísel a, b nenulové, platí
b \ 2

}/a2 + bV
1

a existuje tedy reálné číslo у tak, že

j/a2 + b2 cos у = a, ]/a2 b2 sin у = b.
Tyto vztahy platí i v případě a = b = 0, dokonce pro každé y. Existuje
tedy číslo у tak, že

a cos x + b sin x = ]/a2 + b2 cos x cos у + ]/a2 + b2 sin x sin у —

— ]/a2 + b2 cos (x — j).
Analogicky najdeme číslo Y, pro které platí

A cos 2x + В sin 2x = ]jA2 + B2 cos 2(x — Y).
Pro každé reálné x je pak

f{x) =1 — ]/fl2 + b2 cos (x — y) — ]/A2 + B2 cos 2(x — 7).
Nyní snadno zjistíme, že

(>’+ 4)+f[y~ 4)“ 2 — 1/2 + 62,/

f(Y) +f(Y + я) = 2 - 2 ]/A* + B\
odkud plyne dokazované tvrzení.

Poznámka. Obrácené tvrzení neplatí. Např. pro a — j/2, b = 0, A = 0,
В = 0 je a2 + b2 й 2, A2 + В2 й l,/(0) =1 — j/2 < 0.
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115. Nechť dvojice přirozených čísel a, b splňuje podmínky úlohy. Pak je
q2 -f- r — 1977,

kde

0 ^ r < a + b,

takže

q2 <i 1977 < q2 + a + b. 0)
Protože

a2 + b2 = q(a + b) + r < (q 1) (a + b)
a pro každá dvě reálná čísla x, у platí

(a- + у)2 й 2(v2 + у2),
je

О? + b)2 < 2(q + 1) {a -f b)
a odtud

o b ^ 2q 1 •

Podle (i) dostáváme

q2 ^ 1 977 < q2 + 2q + 1 = (<7 + l)2-
Této podmínce vyhovuje jedině q — 44. Pak je r = 1 977 — 442 = 41 a platí

a2 + h2 = 44(й + b) -\- 41,
neboli

{a — 22)2 + (b — 22)2 = 1 009.

Zbývá rozložit číslo 1 009 na součet dvou čtverců
1009 = и2 + v2.

Probereme-li všechny možnosti pro koncové číslice čísel u, v, zjistíme, že
jedno z nich musí končit nulou nebo pětkou, a najdeme jediný rozklad

Ю09 = 152 + 282.

Odtud pak dostaneme čtyři dvojice (a, b) vyhovující podmínkám úlohy:
(7,50), (37, 50), (50, 7), (50, 37).

116. Pro libovolné к > 1 je
m > f(f(k—i®, (1)
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takže f(k) není nejmenší ze všech hodnot funkce/. Protože hodnoty funkce/
jsou přirozená čísla, nejmenší hodnota existuje a není jiná možnost, než
že je to /(1). Je tedy

/(1) </(«) a f(n) ^ 2
pro každé n ^ 2.

Pro libovolné к > 2 je pak /(&— 1) ^ 2 a z (1) vidíme, že f(k) není
nejmenší z hodnot /(2), /(3), .... Nejmenší z těchto hodnot je/(2), takže

/(1) </(2) </(«) a /(«) ^ 3

pro každé и ^ 3.
Tak pokračujeme dále indukcí a zjistíme, že /(/) </(;) pro každé dvě

hodnoty i <j a že /(«) ^ и pro každé n.

Kdyby pro některé n bylo
/(«) >77, tj. f(rí) ^77+1,

bylo by pak
/№)) š/(« +1),

a to odporuje dané podmínce.

2. řešení. Množinu všech funkcí/splňujících podmínky úlohy označme F.
Matematickou indukcí dokážeme, že množina F obsahuje jedinou funkci,
totiž identitu/(и) = 77.

Nejprve ukážeme, že pro každou funkci fe F je /(1)
к > 1 je

1. Pro každé

№ >f(f(k~ 1)) ž 1.
takže pokud pro některé к jef(k) = 1, je to jen pro к — 1. Kdyby pro každé
к bylo f(k) > 1, platilo by pro každé m > 1

f(n i) > f(f(ni — 1)) =/(«2) > /(/(«2 — 1)) =/(«з) > /(/(из — I))-.
tj. existovala by nekonečná klesající posloupnost přirozených čísel/(771) >
>/(«2) >/(тгз) > ..., kde

• í

7?2 =/(«!— 1) > 1, 77 3 =/(77 2 — !)>],.. • 9

což není možné. Je tedy /(1) = 1 pro každou/e F.
Buď nyní к přirozené číslo a předpokládejme, že pro každou funkci

fe F je f(k) = k. Uvažujme funkci g definovanou předpisem
g(n) =/(77 + 1) — 1
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pro každé n. Ukážeme, že pokud/е F, je i ge F. Jak už víme, je f(n -f- 1) > 1,
tedy g(n) je přirozené číslo pro každé n. Dále je

g(g(«)) = <?(/(« + 1) — 1) =f(f(n + 1)) — 1 <f(n + 2) — 1 = gin + 1).
Je tedy skutečně g e F a podle indukčního předpokladu je g(k) = k, jinými
slovy

fik+l)-] =k,

tj. f(k + 1) = к + 1 pro každou fe F. Tím je důkaz proveden.

117. Přirozená čísla m < n (zatím ne nutně s minimálním souětem)
vyhovují podmínce úlohy, právě když číslo

1 978— 1 978m = 1978^(1978

je dělitelné tisícem. To nastane, právě když m ^ 3 a číslo 1 978n_m— 1 je
dělitelné 125.

Snadno zjistíme, že 1978H~m — 1 je dělitelné pěti, jen když n — m je
dělitelné čtyřmi. Při dělení 125 dává 1 978 zbytek 103 а 1034 dává zbytek 6.
Číslo 1978,í_m — 1 je tedy dělitelné 125, právě když n — m — 4k a 6k— 1
je dělitelné 125. Podle binomické věty

-On-rn

k{k — 1)
6fc— 1 = (5 + \)k— 1 = 5k + 25 + 125 (...),2

takže 6fc— 1 je dělitelné 125, právě když
k(k— 1) 5k(5k — 3)

5к + 25
2 2

je dělitelné 125, tj. právě když к je dělitelné 25.
Čísla m, n tedy vyhovují podmínce, právě když je pro j ^ 1

n — m = 100 j a m ^ 3.

Nej menší součet
n + m = 100 j + 2m

dostaneme pro j = 1 a m = 3, tj. 106.

118. Označme S střed dané kulové plochy, r její poloměr a d = |£Р|.
Ukážeme, že hledanou množinou je kulová plocha se středem S a poloměrem
]/3r2 — 2d2.
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Buď Q libovolný bod popsaný v úloze a určeme vzdálenost SQ. Bude se
nám hodit, když si uvědomíme, že pro bod X a obdélník TUVW v prostoru
vždy platí

(1)\TX\2 + \VX\2 = \UX\2 + \IVX\2.
Tuto rovnost snadno dostaneme např. promítnutím bodu X na přímky
TU, VW. Můžeme ji ale ověřit také tak, že zavedeme soustavu souřadnic,
aby

T = (—p, —q, 0), U = (p, —q, 0), V = (p, q, 0), W = (—p, q, 0),
X = (x, y, z).

Pak bude

\TX\2 = (x + p)2 + (>’ + q)2 + z2,
I ux\2 = (x—p)2 + (y + q)2 + Z2,
I VX\2 = (x —p)2 + (y — q)2 + z2,
| WX\2 — (x+p)2 + {y-q)2 + z2

a rovnost (1) skutečně platí.
Použijeme-li ji na obdélník PÁQAi a bod S (obr. 133), dostaneme

|S(?|2 = \SA\2 + ISztil2 — \SP\2 - r2 4- |S4i|2 — cl2.

Pro obdélník PBAiC a bod S vyjde
ISTil2 = \SB\2 + \SC\2 — I^Pl2 - 2r2 — d2,

takže

1ЗД2 = 3r2 — 2cl2.
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Bod Q tedy leží na kulové ploše se středem S a poloměrem j/3r2—2d2.
Obráceně, zvolme libovolný bod Q na kulové ploše se středem S a polo-

měrem |£(?| = |/3r2 — 2d2. Je d — |£Р| < r, a tedy \SQ\ > r, takže bod P
leží uvnitř a bod Q vně dané kulové plochy. Kulová plocha x s průměrem
PQ proto protíná danou kulovou plochu v kružnici к (obr. 134). Zvolme
libovolný bod A na kružnici к a body A, P, Q doplňme na obdélník APAiQ.
Rovina vedená přímkou PA i kolmo к přímce PA protne kulovou plochu x
v kružnici k' s průměrem PA\. Podle (1) zjistíme, že

|&4i|2 = \SP\2 + \SQ\2 — |£zí|2 = d2 + (3r2 — 2d2) — r2 =
= 2r2 — d2 > r2,

takže bod A\ leží vně dané kulové plochy. Odtud plyne, že kružnice к, к'
se protnou ve dvou bodech В, C. Zřejmě AP J_ BP, AP J_ CP. Zbývá
ukázat, že SP J_ CP. Doplňme body P, B, A\ na obdélník PBA\Cq. Pak je
podle (1) a (2)

ISCol2 = I^PI2 + l^il2 — l-SPI2 = d2 + (2r2 — d2) — r2 = r2,
a tedy bod Co leží na dané kulové ploše, takže Co = CaPBAiC]q obdélník.

(2)

Ke každému bodu Q kulové plochy se středem S a poloměrem |/3r2—2d2
existují tedy na dané kulové ploše se středem S a poloměrem r body А, В, C
tak, že úsečka PQ je tělesovou úhlopříčkou kvádru určeného navzájem kol-
mými hranami PA, PB, PC.
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Poznámky. Rovinná analogie úlohy: Je dána kružnice к se středem S
a poloměrem r a bod P uvnitř ní. Množinou všech bodů Q roviny takových,
že PQ je úhlopříčkou obdélníku, jehož ostatní dva vrcholy leží na kružnici
A:, je kružnice se středem S a poloměrem |/2r2—{SPI2. Odtud plyne, že
vrcholy Ai, Bi, Ci kvádru APBCiBiCAiQ leží na kulové plose se

středem S a poloměrem ]/2r2 — ď2.

119. Budeme postupně probírat přirozená čísla a rozhodovat, do které
z podmnožin {/(1),/(2), ...}, (g(l), g(2), ...} patří. Zřejmě je pro každé
přirozené číslo n

s(«) =/<№)) + 1 > fill")) ž An),
takže g(n) je až za f(n) a bezprostředně za/(/(«)).
Dostáváme tedy

1 =/(D =/(/(1)),
2 = g( 1),
3 = /(2),
4 =/(3) = /(/(2)),
5=*(2),
6 =/(4) =AЛЗ)),
7 = 5(3),
8 =/(5),
9 =/(6) = /(/(4)),

10 = g(4),

atd. až

388 = /(240).

2. řešení. Uvažujme množinu prvních g{ri) přirozených čísel a rozložme ji
na dvě disjunktní podmnožiny

{1, 2, . ..,/№)), g(n)} = {/(l),/(2), .. ../(/(я))} и {g(l); g(2), ..g(«)}.
Odtud vidíme, že pro každé přirozené číslo n platí

g(.n) =/(«) + n. (O
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Postupně dostáváme
Я1) = 1,
g(1) = 1 + 1 = 2,
/(2) - 3,
g(2) = 3 + 2 = 5,
/(3) - 4,
4’(3) = 4 + 3 — 7,
/(4) = 6,
g(4) — 6 + 4—10,
/(5) - 8,
.v(5) =8-1-5=13,
f(6) - 9,

aid. až

/(240) - 388.

3. řešení. Vyjdeme opět ze vztahu (1), který tentokrát napíšeme ve tvaru

f(f('0) = f(n) + n — 1. (2)

Vyjdeme od hodnot/(1) — l,/(2) — 3 a dále pak dostáváme

/(3) — 3 + 2 — 1=4,
/(4) = 4 + 3 - 1 = 6,
/(6) - 6 + 4 — 1 = 9,
/(9) = 9 + 6 — 1 — 14,
/(14) = 14 + 9 — 1 — 22,
/(22) — 22 + 14 — 1 — 35,
/(35) = 35 + 22 — 1 = 56,
/(56) = 56 + 35 — 1 - 90,
/(90) - 90 + 56— 1 = 145,
/(145) - 145 + 90 — 1 - 234,
/(234) - 234 + 145 — 1 - 378.

Abychom doplnili zbývající členy, uvědomme si, že pro ne F —
= {/(l),/(2), ...} je

f(n + 1) =/(«) + 2
a pro ne G - (g(l), g(2), ...} je

/(« +1) —/(«) + 1.
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Je-li totiž n e F, n = /(/c), je
/(«) + 1 =/(/(£)) + ! =g(k)e G.

Následující číslo/(/7) -f- 2 pak nemůže být také v G, neboť každému číslu
z G bezprostředně předchází číslo z F, takže f(n) + 2 e F. Je-li n e G,
n = g(£), je

m +1 =/ш) +1 * g,
1j• /(«) + 1 e F.

Vraťme se к rovnosti

145 =/(90) =/(/(56)),
ze které plyne

145 e F, 146 e G, 147 e F.
Dále máme /(145) = 234, /(146) = 234 + 2 = 236, /(147) = 236 + 1 -
- 237,/(148) - 237 + 2 - 239, takže

234 e F, 235 e G, 236 e F, 237 e F, 238 e G, 239 e F.
Konečně

/(234) - 378,
/(235) - 378 + 2 - 380,
/(236) = 380 + 1 = 381,
/(237) - 381 + 2 = 383,
/(238) = 383 + 2 - 385,
/(239) = 385 + 1 = 386,
/(240) - 386 + 2 - 388.

4. řešení. Postupujeme stejně jako v předešlém řešení až к rovnosti
/(56) = 90. Protože 56 e F, je podle předchozí úvahy

/(57) =/(56) + 2 = 92
a podle (2) dále dostáváme

/(92) = 92 + 57—1
/(148) = 148 + 92 — 1 = 239,
/(239) - 239 + 148 — 1 = 386.

148,

Protože 239 e F, je
/(240) = /(239) + 2 - 388.
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5. řešení. Sledujeme-li hodnoty posloupností {/(«)} a {#(«)}, vidíme, že
rostou poměrně rovnoměrně, a to nás vede к domněnce, že pro každé při-
rozené n je

/(„) = [mpl g(n) = [ny],
kde cp, у jsou nějaká kladná reálná čísla, která nejsou celá.

Platí-li tato domněnka, je podle (1) pro každé přirozené n

[ny] = [n<p] + n,

neboli

[ny] [n<p]
(?)+ 1.

n n

Přitom pro každé reálné a a přirozené n je
na — 1 < [ny.] ^ A/a,

neboli

[ПУ.]
a — — < S a.

1

n n

Pro každé reálné a je tedy
[ny]

lim -—- = a.

oo

Přejdeme-li ve (3) к limitě, dostaneme pro koeficienty rp, у podmínku
у — rp + 1 •

Platí-li naše domněnka, je každé přirozené číslo obsaženo právě jednou
mezi členy dvou posloupností {[az</]}, {[//y]}. Oznaěíme-li tedy F* (resp. 6»
počet těch členů posloupnosti {[n(p]] (resp. {[ny]]), které jsou nejvýše
rovny číslu k, bude pro každé přirozené к platit

к)c ý- O/c = к •

(4)

(5)

(6)
Přitom

rl «■-[ к -h l
Fk

У

neboť nerovnost

[ncp] ^ к
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jc ekvivalentní nerovnosti
к + 1

nw < к + 1, ti. ii <
<P

(a analogicky pro y).
Rovnost (6) má tedy tvar

к -j- 1к + 1
к,i

(p У
neboli

к + 1 к + I
к<Р . У

-! ■
к + 1 к 4- 1

a limitním přechodem pro к —> оэ dostaneme podle (4) další podmínku

к + 1

1
(7)— 1.

Ч> У

Snadno zjistíme, že podmínkám (5) a (7) vyhovuje jediná dvojice kladných
čísel

<p = e, у = e + 1

1 + 1/5
kde e = —

-— je kladný kořen rovnice

e2 — s — 1 — 0.

Platí-li tedy naše domněnka, jc
f(n) = [ие], g{n) - [n(e 4- 1)]. (8)

Dokážeme, že tyto dvě posloupnosti skutečně vyhovují všem požadavkům
úlohy.

Především je zřejmé, že hodnoty posloupnosti {/(«)} jsou přirozená čísla
a že f(n + 1) > /(«) pro každé přirozené n, neboť e > 1, stejně pro g(n).

Pro žádná dvě přirozená m, n není f(m) = g(n). Kdyby totiž
Ne] = [n(s + 1)] = k,

bylo by
к ^ те < к + 1,

к ^ n(e -f 1) < к + lj
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a protože e je iracionální, dokonce
к < те < к + 1,

к <C w(£ -j~ 1) <C Ar -{- 1.
Odtud

)(* + 0(7 +) 1

*(т +
1

< m + n <
e 1 /£ + 1

Protože, jak víme,
11

= 1,+
£ + 1

platilo by pro nějaká tři přirozená čísla к, m, n

к < m + n < к + 1,

a to není možné.
Dále ukážeme, že každé přirozené číslo je členem některé z posloupností

{/(«)}, {#(«)}. Pro každé přirozené číslo к je totiž při stejném značení jako
v (6)

к 1 I к -f- 1к + 1
- 1 < Fk = <

£ ££

I —IL e + 1 J

к -j- 1к + 1
1 < Gk~ <

£ -|- 1

(vpravo je ostrá nerovnost opět díky iracionalitě čísla £), takže
к — 1 <. F/c -|- < к -j- 1,

£ + 1

tj-
Fk + Gt = k.

Zbývá dokázat, že

/(/(«)) + 1 = g(n)
pro každé přirozené n, tj.

[[wfi]£] + 1 = [«(e + 1)] •

Vyjdeme z nerovnosti

[пе] < ne < [/jí] + 1 .
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Po vynásobení číslem e dostaneme

[/?e]£ < 77£2 < ([/if] -|- l)e < [/?e]e + 2,

poněvadž e < 2. Přejdeme-li к celým částem, máme

ФФ] ^ [ив2] ^ [([ne] + m ^ [[«£]£] + 2,
což můžeme psát jako

/(/(70) ^ g(n) ^/(/(») + i) ^f(Rn)) + 2,
neboť e2 = s 4- 1. Jak už víme, posloupnosti {f(n)}, {g(n)} nemají žádný
společný člen, takže je /(/(ti)) < g(n) </(/(w)) + 2, a vidíme, že

g(n) =/(/(77)) + 1 .

Tím je důkaz hotov.

ř
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Obr. 135
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Vyjádření (8) umožňuje počítat pohodlně numerické hodnoty posloup-
ností {/(»)}, (g(w)}. Tak máme

/(240) - [240e] = [388,3...] = 388 .

Poznámka. Poslední řešení má názorný geometrický význam: Na čtve-
rečkovaném papíru zvolme dvě kolmé linky jako osy souřadnic a za jed-
notku délky vezměme stranu čtverečku. Počátkem veďme přímku se směrnicí

1 + ]/5
-—. Ta nebude vzhledem к iracionalitě e procházet žádným prů-

sečíkem linek kromě počátku. Začneme od počátku, postupujeme po přímce
a průběžně číslujeme čtverečky, kterými přímka prochází (obr. 135). Pak
bude/(и) rovno číslu levého krajního očíslovaného čtverečku v и-tém řád-
ku a g(n) rovno číslu spodního očíslovaného čtverečku v n-tém sloupci
(číslujeme od nuly).

e =

120. Střed úsečky PQ označme S a patu kolmice vedené z bodu S к ra-
mění AB označme К (obr. 136). Střed kružnice procházející body P, Q
a dotýkající se opsané kružnice v bodě T označme O. Střed strany BC
označme L. Zřejmě stačí dokázat, že |<S.Af| = \SL\.

Z podobných pravoúhlých trojúhelníků AKS ~ APO ~ АВТ~ ASP ~ ALB
máme

1 SK\ \op\
\AS\~\AO\’

ISZI \PB\ \OT\ \OP\
kŤŠj = ~\AP\ = jAO\ = \AO\'
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neboť \OT\ = \OP\. Je tedy \SK\ = |SL| a bod Sje středem kružnice vepsané
trojúhelníku ABC.

2. řešení. Označme L střed strany BC, S střed úsečky PQ a T bod,v němž
se kružnice procházející body P, Q dotýká kružnice opsané trojúhelníku

převede trojúhelník

AB'C (obr. 137) na trojúhelník ABC a střed O kružnice vepsané trojúhelníku
AB'C na střed kružnice vepsané trojúhelníku ABC. Z podobných právo-

úhlých trojúhelníků A PO а А ВТ s výškami PS, BL máme
I AS\ \AL\
\AO\ ~ \AT\-

Bod O tedy přejde v bod S a důkaz je hotov.

\AL |
ABC. Stejnolehlost se středem A a koeficientem

\AT\

3. řešení. Označme S střed úsečky PQ a L střed úsečky BC. Stačí ukázat,
že přímka BS je osou úhlu ABC (obr. 138). Ve čtyřúhelníku PSTB jsou
úhly při protilehlých vrcholech S, В pravé, takže mu lze opsat kružnici.
Odtud vidíme, že

I* PBSI - I* PTSI,
neboť jde o obvodové úhly příslušné témuž oblouku této kružnice. Dále je

1
l*P7s:| = y |*msj,

neboť jde o obvodový a středový úhel příslušný témuž oblouku kružnice
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procházející body P, Q, T. Konečně z podobných pravoúhlých trojúhelníků
APO a ALB máme

I* POS\ = I* ABC|.
Je tedy

1
\*PBS\=—\* ABC\.

121. Zvolme přirozené číslo n. Je-li
a\ < a2 < ... < G/i,

pak pro každé ke {1,2, je ajc ^ Ar, takže

V V A V _L
Z-,*:2 ~ Zl, &2 = 4 k'

jfc = l/í = l

Pokud pro některé dva indexy i < j, i, je {1,2, ..w), je ai > aj, pak

k = l

(1_±)\ i2 / /
/«* яЛ /«у йЛ
IT2" + T2/ “ ly2" + /2/ = («i — r/j) > 0.

П

S^G/c
Vyměníme-li tedy mezi sebou čísla au aj, součet ? — se zmenší. Koneč-

ným počtem takových výměn dojdeme od «-tice
^2» • • • 9 flfl

Ar=l

к /2-tici

al < a2 < • • • <Cln’

přičemž
ПП n

V ^ V > V _LZ k*> Z, &2 = Zj~k'
k=1 k=1 A = 1

122. Předpokládejme, že dokazované tvrzení neplatí, tj. že rozdíl čísel
dvou členů z jedné země není nikdy roven číslu jejich krajana.

Protože 6.329 < 1 978, je z některé země A zapsáno aspoň 330 členů
pod čísly

rti < a% < ... < «330-
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Uvažujme 329 rozdílů
«330— «1, «330— «2, •••, «330— «329-

Podle našeho předpokladu to jsou čísla členů z ostatních pěti zemí. Protože
5.65 < 329, je mezi nimi aspoň 66 z jedné země B. Jejich pořadová čísla
označme

bi<bz< • • • < ůce

a uvažujme 65 rozdílů
#66 — &1» ^66 — Ь2, . . ., b(|6 — bd5.

Tyto rozdíly nejsou čísla členů z В a nemohou to být ani čísla členů z A
neboť

Ů66 — bjc = («330 — Cli) — («330 — Clj) = Oj — щ.

Jsou to čísla členů z ostatních čtyř zemí. Protože 4.16 < 65, je mezi nimi
aspoň 17 z jedné země C a mají čísla

Cl < C2 < ... < C17.

Ze 16 čísel

Cl7 — Cl, C17 — C2, . . ., Cl7 — Cl6

nepatří žádné členům ze zemí А, В, C a aspoň 6 jich patří členům ze země
D s čísly

di < d% < ... < de.

Z 5 čísel

d% — di, d$ — d%, ..., ťTig — d5

patří aspoň tři
Cl < ť?2 < вз

členům z další země E. Oba rozdíly
fi = cz — ei, /2 = ез — C2

pak patří členu z poslední země F. Člen s číslem
/2-/1

není tedy občanem žádné z uvedených zemí, a to je spor.

Poznámka. Touto metodou by se nám podařilo dokázat tvrzení úlohy
i v případě, kdy má společnost jen 1957 členů. V obecném případě pak
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metoda funguje, má-li společnost alespoň
ll

k'\2 + 2! + 3! + + k\)~ [A'!e]
oo

členů (e je známá konstanta — = 2,718... ) zázemí.
k = 0

Tvrzení úlohy však platí i v dalších případech. Tak pro к — 3 platí pro
14 členů a pro 13 členů neplatí, pro к — 4 platí pro 45 členů a pro 44 členů
neplatí. Přitom je [3!e] = 16, [4!e] =■ 65.

123. Daný součet upravíme
1 1 1

T + T“T+" ■

1 1 1
= ^ 4~ ~2 "3” -l~ • • •

11
—

- 1 — +
1318 1 1319<7

1 1

1318 1 1319

11 l

-2vr+ 7 + - +
1

— 1 4~ + • • • +

1318

1 11
l +

2 •1319 659,

1 l 1
""

660 1 661 1 ’ ‘ ‘ + 1319

♦ «
11 1 11 1

-4- + ... + f
990

-I-
660 1319 661 ' 1318 989

1 979/c1979 1979 1979
+ + • • • +

989.990 660.661... 1319’660.1319 1 661.1318

kde к je nějaké přirozené číslo. Uvedeme-li ještě poslední zlomek na zá-
kladní tvar, zůstane v čitateli prvočinitel 1 979, který tedy dělí číslo p.

Poznámka. Stejným způsobem bychom dokázali obecnější výsledek: Je-li
,v = 3k -f 2 prvočíslo a

1 1

~2 + T “ '

1 1

2 к + 2к + Гя

pak je číslo p dělitelné číslem s.
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124. Nejprve ukážeme, že všechny hrany téže základny mají stejnou barvu.
Kdyby tomu tak nebylo, existovaly by dvě sousední hrany různých barev,
např. červená A1A2 a zelená ^2^3- Z pěti úseček A2B1, A2B2, ..., A2B5
mají aspoň tři stejnou barvu - aniž bychom ztratili na obecnosti, můžeme
předpokládat, že červenou. Ze tří vrcholů, do kterých tyto červené úsečky
vedou, jsou dva sousední Bi, Bj. Hrana BiBj je pak zelená (jinak by byl
trojúhelník A2BiBj jednobarevný). Zelené jsou i úsečky A\Bi a A\B) (jinak
by trojúhelníky A1A2B1, A1A2B) byly jednobarevné). Vidíme, že trojúhelník
AiBiBj by měl všechny strany zelené, a to není možné.

Kdyby byly hrany jedné základny červené a druhé zelené, pak by z pěti
úseček AíBj vycházejících z libovolného vrcholu červené základny byly
nanejvýš dvě zelené (jinak by aspoň dvě končily v sousedních vrcholech
zelené základny a dostali bychom zelený trojúhelník). Z 25 úseček AiBj
by jich tedy bylo zelených nanejvýš 10. Uvažujeme-li analogicky pro druhou
základnu, zjistíme, že nanejvýš 10 úseček AtBj by bylo červených, a to není
možné.

Poznámka. Tvrzení úlohy platí pro libovolný hranol s lichým počtem
vrcholů podstavy. Pro hranoly se sudým počtem vrcholů podstavy tvrzení
neplatí.

Ještě obecněji: Ve dvou různých rovnoběžných rovinách mějme dva mno-

hoúhelníky A1A2.. .A21C+1, B1B2.. -B2m+i- Všechny strany těchto mnoho-
úhelníků a všechny úsečky AtBj, ie {1, 2, ..., 2k + 1}, je (1, 2, ..

2m +1}, obarvíme dvěma barvami tak, aby nevznikl jednobarevný troj-
úhelník. Pak mají všechny strany obou mnohoúhelníků tutéž barvu.

• ?

125. Sestrojíme-li osy několika úseček omezených dvojicemi odpovídá-
jících si poloh bodů B\, В2, shledáme, že se protínají v bodě P, který je
souměrně sdružený s bodem A podle osy spojnice středů S1, S2 kružnic
ki, k2. Dokážeme, že tento bod má požadovanou vlastnost (obr. 139).

Pro každou polohu bodů Bi, B2 je
I* ASiB^ - I* AS2B21-

Z osové souměrnosti bodů A, P a S1, S2 plyne
I* A9iP| = I* ASZP\.

Je tedy
I* BíSiP\ = I* B2S2PI
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pro každou polohu bodů В i, B2. Trojúhelníky B1S1P, PS2B2 jsou shodné,
neboť

l^iSil = M.S'il = \PS2\, \B2S*\ = \AS21 = !№!,
takže \BiP\ — \B2P\ pro každou polohu bodů B\, В2- (Vše zůstává v plat-
nosti i v případě, kdy body <Si, B\, P a zároveň S2, B2, P leží v přímce.)

Poznámka. Pokud by se body pohybovaly v opačných smyslech, měl by
uvedenou vlastnost bod souměrně sdružený s bodem A podle středu úsečky
S1S2.

2. řešení. Sestrojíme-li několik poloh bodů B\, B2, shledáme, že body
В i, B2, A', kde A' je druhý průsečík kružnic ki, к2, leží vždy v přímce.
Tuto vlastnost bodů В i, B2 si nejprve dokážeme a pak ji využijeme к řešení
úlohy.

А/
5г

is:
K2

Г-. A2

Obr. 140
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Veďme bodem A' přímku, která neprochází bodem A, a její další společný
bod s kružnicí ki, resp. k2, označme Ai, resp. A2. Odděluje-li bod A' body
Ai, A 2 (obr. 140), platí pro obvodové úhly

I* AA'Ai| + |* АА'Ач| = 180°,
takže příslušné středové úhly mají součet 360°, odkud vyplývá

I* ASíAíI = I £ AS2A2|.

Neodděluje-li bod A' body A1, Я 2 (obr. 141), platí pro obvodové úhly
I* AA'Ai\ = |* AA'A21,

a tedy i pro středové úhly
I < ASiAi\ — 1 £ AS2A2V

V obou případech souhlasí i orientace a průsečíky A1, Я 2 jsou tedy jednou
z poloh bodů В i, В2.

Vezměme nyní přímku procházející bodem .4' a neprocházející bodem Я
a její další společné body s kružnicemi ki, k% označme i?i, B% (obr. 142).
Ukážeme, že osa úsečky B1B2 prochází bodem P souměrně sdruženým
s bodem A' podle středu úsečky S1S2. Promítněme body Si, S2, P kolmo
na přímku B1B2, dostaneme tak body S[, S2, P. Vzhledem ke středové
souměrnosti je |5\Я'| = |S'2P'\, \S'2Áj = \S[P'\. Odděluje-li bod A' bo-
dy Ви B-2 (obr. 142), máme

I

\B*P'\ = \B.zs:j + |S>'| = \BÁ\ + IS^'I = —ЦВиА'1 + \BiA\) =

1
=

у \BiB2\.
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I v případě, kdy bod A' neodděluje body В i, B%, dokážeme analogicky že
bod P' půlí úsečku B1B2, a tím je důkaz proveden.

126. Z trojúhelníkové nerovnosti plyne, že pro R = P uvažovaný podíl
největší není. Budeme předpokládat, že R Ф P, a vnitřní úhly v trojúhel-
niku PQR označíme a = |£ QPR\, (3 = |£ PQR\, у = \ -K PRQ\• Podle
sinové věty je

\PQ\ + \PR\ sin у + sin /? sin(a + /5) + sin
sin a sin a\QR\

(^+ 2) a

2 sin cos —
2

sin a

Ze všech trojúhelníků s týmž úhlem a má tedy uvažovaný podíl největší
a

hodnotu pro trojúhelník, v němž fí + — — 90°, tj. = у, a to

a a

2 cos — 2 cos —
1

sin a a 7 a

2 sin — cos — sin —
2 2 2

Odtud vidíme, že ze všech trojúhelníků PQR má uvažovaný podíl největší
hodnotu pro rovnoramenný trojúhelník s co nejmenším úhlem při hlavním
vrcholu P. Nejmenší možná hodnota tohoto úhlu je odchylka přímky PQ
od roviny 71.
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Je-li PQ J_ л, vyhovují právě ty body R roviny л, které leží na kružnici
se středem P a poloměrem \PQ\. Není-li PQ _[_ л, vyhovuje jediný bod R
roviny л, který leží na pravoúhlém průmětu polopřímky PQ do roviny л
ve vzdálenosti |P<2I od bodu P.

2. řešení. V trojúhelníku PQR označme \PQ\ — r, \PR\ — .v, | *): QPR\ —

— oc. Podle kosinové věty je

\PQ\ + \PR\ x -|- r
(1)

m\ ]/x2 + r2 — 2л;/'cos a

Při pevném л; bude tedy uvažovaný poměr největší při nejmenším
možném oc, tj. v případě, kdy a je odchylka přímky PQ od roviny л. Před-
pokládejme tedy nadále, že tomu tak je a že rovina PQR je kolmá к rovině л.

Pohodlněji než s výrazem (1) se nám bude pracovat s jeho čtvercem

(x + r)2
f(x) = (2)x2 + r2 — 2xr cos a’

Abychom našli jeho maximum, vypočteme derivaci

2r(l + cos a) (r2 — л:2)
(.v2 + /'2 — 2xr cos a)2 ’

Vidíme, že pro .v = /'jef'(x) = 0, pro x e (0, r)jef'(x) > 0 a pro v e (r, -j- 00)
je/'(A') < 0. Funkce f(x) tedy nabývá maxima pro x — r.

Je-li PQ _L л, vyhovují právě ty body roviny л, které leží na kružnici se
středem P a poloměrem \PQ\. Není-li PQ _L л, vyhovuje jediný bod R,
který leží na pravoúhlém průmětu polopřímky PQ do roviny л ve vzdále-
nosti \PQ\ od bodu P.

/'(*) -

127. Existují-li nezáporná čísla jti, X2, л'з, л*4, л*5 a reálné číslo b tak, že
5 5 5

2 kxt = b, 2 k»xt = b*. 2&xt = b\
k = 1 k = 1 * = 1

platí pro ně
5 5 5

b2 2 kxk — 2b 2 k*xk + 2 №xk = ú3 — 2ú3 + ú3 - 0.
k = lA=1 * = 1
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Upravíme-li levou stranu, dostaneme
55

^ kxk{b2 — 2bk2 + /Ф) = V kxk(b — Ify = 0.
k= 1/„•=1

V prostředním výrazu jsou všechny sčítance nezáporné a jsou tedy všechny
nulové. Jedna možnost je лч = лч = хз — лч = л-5 = 0, z první podmínky
pak máme b — 0.

Je-li xk Ф 0, je b = /с2 a pro у Ф к je pak b Ф j2, a tedy Xj = 0, takže
x/c = &. Pro číslo b máme tedy šest možností: 0, 1,4, 9, 16, 25 a tem odpo-
vídají následující pětice (лч, л*2, лч, лч, 45):

(0, 0, 0, 0, 0),
(0, 2, 0, 0, 0),
(0, О, О, 4, 0),

Snadno ověříme, že všechny možnosti vyhovují.

(1, o, 0, 0, 0),
(0, 0, 3, 0, 0),
(0, 0, 0, 0, 5).

2. řešení. Pro zjednodušení položme yk — kxk, pro nezáporná čísla yk
tak dostaneme soustavu

У1 + У2 -1' v,3 4- >’4 + Уъ = b,
У1 + 4j4 4- 9)>3 4- 16>’4 4- 25 r5 — b2,

y 1 4- I643 4- 81j’3 4- 256j4 4- 625js — b2.

Vyloučením neznámých >4, у2 z uvedených tří rovnic máme
40j’3 + 180)4 4- 504v5 = b{b — 1) (b — 4).

Protože hledáme nezáporná řešení yk, musí pro b platit
b(b— \)(b — 4) ^ 0.

Podobně dostaneme vyloučením dvojic neznámých у 2, уз; уз, ул', ул, Уз
а у5, у i ze soustavy (1) pro b další nerovnice

b(b — 4){b — 9) ^ 0,
/46 — 9) (/4 — 16) £ 0,

Ь{Ъ—Щ{Ь —25) ^ 0,
—6(Z> — 25) (6 — 1) ^ 0.

Soustava nerovnic (2), (3) má řešení b e {0, 1, 4, 9, 16, 25}.
Pro b — 0 jsou zřejmě řešením soustavy (1) čísla yi — 0 (1 й i й 5),

a je-li b — к2 (1 ^ к ^ 5), snadno zjistíme, že soustavě (1) vyhovují ne-

záporná čísla yk — k2, yi = 0 pro i Ф k.

(1)

(2)

(3)
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128. Očíslujme vrcholy А, В, ...,// čísly 0, 1, ..7. Při své cestě pro-
chází klokan střídavě vrcholy se sudým a lichým číslem. Počet skoků jeho
cesty má stejnou paritu jako vrchol, na kterém skončil. Do vrcholu E s číslem
4 se tedy může dostat jen sudým počtem skoků, takže аги-1 = 0 pro každé
přirozené k.

Označme bk počet všech cest z C do E složených z právě к skoků. Počet
všech k-skokových cest z G do E je zřejmě také bk- Pro každé přirozené n

platí

Я2и+2 — 2#2?í ~b b'in-

Prvními dvěma skoky se totiž klokan dostane buď zpět do A (dvě možnosti),
nebo do C, nebo do G. Dále je

(1)

bzn+2 — 2Ь 2n + Я2n-

Z bodu C (resp. G) je totiž možno dvěma skoky se buď vrátit do C (resp. G),
a to dvěma způsoby, nebo dospět do A (do E ještě klokan nemůže). Do-
sadíme-li do (2) za Ьгп+г a bzn podle (1), dostaneme rekurenci

Л2я+4 — 4fl2w+2— 2(l%n-

(2)

(3)
Snadno zjistíme, že a2
další členy posloupnosti {аы}-

Zkontrolujeme ještě, shodují-li se členy této posloupnosti s posloupností

0, i/4 = 2, a podle (3) můžeme postupně určit

!
A 2k =T= (**_1 —

1/2
kde x — 2 |/2, у — 2 — j/2. Máme

I 1
A 2 = —= (a° — >'°) — 77= (1 — 1) = 0,

n 1/2

I
A4 = -7= (x — y) = —=. 2j/2 = 2,1/2 1/2

I
4 A2n+ 2 — 2 A 2u = -7= (4л‘и — 4yn — 2л*и_1 4- 2yn~l) —

1/2
I

— —= (aw_1(4a — 2) —yn~l(4y — 2)) = —= (xn]1 — ynJ>l),
V2 1/2
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neboť

4x — 2 — x2, 4у — 2 = у2.
Je tedy

4 A 2,n+ 2 — 2 A 2n — A 2n+ 4

a důkaz je hotov.

Poznámka. Rekurentní rovnici

an+ 2— 4un+1 + 2iin — 0

vyhovují právě ty posloupnosti {w*}, pro které je
+ C‘ix\ 1,

kde Ci, C‘> jsou libovolná reálná čísla a xi, хг jsou kořeny kvadratické rov-
nice

k-1 (4)Uje = C\X{

x2 — 4x + 2 = 0.

Y naší iiloze jsme ještě měli předepsány první dva členy m — 0, иг = 2.
Po dosazení do (4) dostaneme dvě rovnice o dvou neznámých Cj, C>,

1 I
které mají řešení Ci = —=, C> — —. (Srov. 4. řešení úlohy 95).

1/2 1/2

129. Označme a, b, c strany trojúhelníku ABC a v, y, z délky úseček PD,
PE, PF {obr. 143). Zřejmě je

ax + by + cz = 2 S,
kde S je obsah trojúhelníku ABC.

Platí tedy
ba c

(ax + by + cz) =

ВF c

Obr. 143
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= a2 4- Ь2 -f- c2 -f- ab \— + 4 4 ca |— 4 —jp' У

^ a2 -j- b2 4 c2 4 2{ab 4 be + ca) — {a 4 b 4 c)2.
Použili jsme zde nerovnost

и v

^ 2,
v и

která platí pro libovolná kladná čísla u, v a v níž nastane rovnost, právě
když и = v. Je tedy

(a 4 b 4 c)2ba c
— 4 — 4 — ^

2SX У

s rovností, právě když x — у — z.
Odtud plyne, že daný součet je nejmenší, právě když bod P je středem

kružnice vepsané trojúhelníku ABC.

2. řešení. Jsou-li a, /?, у vnitřní úhly trojúhelníku ABC, označme od —

— |£ PAB\, />' — |£ PBC\, y' — |£ PCA\ (obr. 144). Pro vyšetřovaný
součet pak platí

\BC\ \CA\ \AB| \BD\ 4 |2JC| \CE\ 4 \EA\ \AF\ 4 \FB\
44 4 4

\PD\ \PE\ \PF\
— cotg (J' 4 cotg (y — y') 4 cotg y' 4 cotg (a — od) 4-

4 cotg od 4 cotg (P — /?')•

\PD\ \PE\ \PF\

Přitom je
sin a

cotg od 4 cotg (oc — a') = sin od sin (a — a')
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a podle nerovnosti 4uv ^ (и + v)2 je
sin a' + sin (a — a') \ 2

/ =(sin a' sin (a — a') ^ 2

2a' — a
= sin2 — cos2 — ^ sin2 —,

takže

sin a a

cotg a' + cotg (a — a') ^ —

= 2 cotg —
a 2

sin2 —

s rovností, pravě když a' — —.

Odtud vidíme, že daný součet je nejmenší, právě když bod P leží na osách
vnitřních úhlů trojúhelníku ABC, tj. právě když bod P je středem kružnice
vepsané trojúhelníku ABC.

w}je130. Počet všech /--prvkových podmnožin množiny (1, 2, ..

Pro ke 2, ..n — /’+1} počet těch r-prvkových podmnožin, jejichž
nejmenší prvek je číslo k, se rovná počtu (r — l)-prvkových podmnožin

množiny {k -f 1, к -f 2, tj.
Je tedy

(:=!)•
n — ř + l

(:) n — к
r — 1

= i

a

n—r+1

2
I

F(/z, /•) = ——

; *=i

Použijeme-li známého vztahu pro kombinační čísla

|7z — кj _ |// — к -1-1)-(,)•



130 (254)

dostaneme
n — r + 1

I *(:=!)-I*ir;+’H"7‘)
n — k\

__ /n + 1\
г )~V+\)'

+ n — /• -f 1 =

É = 1 k~l

k = 0

Je tedy

(n + I \l r +1; n + 1
F(n, /•) =

r + 1'0
2. řešení. Pro 1 ^ к ^ /« označme S(w, /с) součet nejmenších prvků všech

^-prvkových podmnožin množiny (1, 2, Protože všechny /c-prvko-
vé podmnožiny množiny (1,2, ..., m + 1} se rozpadají na dvě disjunktní
skupiny podle toho, zda obsahují, či neobsahují číslo m -j- b je pro
к e (2, 3, ..., w)

+ 1, к) — S(m, к — 1) -j- S(m, к). (0
Pro libovolné m přirozené zřejmě platí

\m + 1 /
m -j- 1

S(ni, 1) = 1 + 2+ ... + m = S(m, m) = 12

Čísla r) tvoří tedy část Pascalova trojúhelníku

a je

'•)=(”+!)•
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Odtud pak dostaneme

n -\- 1
F(n, r) =

n

r

3. řešení. Označme R množinu všech r-prvkových podmnožin množiny
(1, 2, ..., n}. Jsou-li prvky 7--tice {cn, ao, ..., ar} e R uspořádány podle
velikosti rti < Я2 < ... < ar, uvažme zobrazení /: R -> R, které takové
Mici přiřadí Mici [cio— a i, яз— Я|, •••, я,—a v, n + 1—a i} e R.
Zřejmě a2 — Я1 < яз — < ... < o,— a 1 < n + 1 — «ь

Označíme-li Д /с-násobně složené zobrazení/» platí
/2({tfi, «2, ...» ar}) =
= (я3 Я2, Я4 — Я2, . . Clr — Й2, w + 1 — Cl2, TI “b 1 ~b G\ — Я2},

fk({a 1, «2, Яг}) =
= (я&+1 ClJc, ClJc+2—Я#, . . ., Gr— Я&, П 4" 1 —Gk, ti -f- 1 + Я&-1—Я&},

fr({ai, a2, ...» ar}) =
= {/2 —f— 1 — (Ir, TI -j- 1 "b cti —■ Gr, . .

/r+l({«l, Я2, ...» ar}) = (tfl, «2, ...» Яг}.
Zobrazení /tedy rozdělí množinu R do několika disjunktních podmnožin:
je-li А = (я!, яз, ..., яг} 6 R, budou do stejné podmnožiny patřit Mice

n 1 -f- Gr-1—Яг},• )

A,f(A),f2(A), . . .,f,{A).
Přitom se jednotlivé Mice mohou opakovat, v tom případě se však opakují
všechny stejně často.

Aritmetický průměr nejmenších prvků Mic

A,f(A),MA), ...,f,(A)

je
Я1 ~b Я2 — Я1 -j- ... -f Яг — Gr-1 ~\~ П -\~ 1 — Gr П + 1

r + Г/•+ 1
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je tedy aritmetický průměr nejmenších prvků všech /--prvkových podmnožin
množiny (1, 2, také

n -\- 1
F(n, r) =

/- -f- i

Poznámka. Pro součet největších čísel /--prvkových podmnožin množiny
(1, 2, ...,//} platí

n—r+1

(:=!) -2 (« + 1-0
n — r +1 n—r +1

n — k\ sr^ In — k\
r-1 - Z ‘ r_.;-

= (w-h 1)
*=i *=i

= (« + l>(") — F(/I>r)(r)’
takže aritmetickým průměrem největších čísel uvedených podmnožin je

/i j- 1
/ -.

/• -|- 1

Obecně pro je {1,2, ...,/-} je aritmetický průměrý-tých prvků /--prvkových
podmnožin množiny (1, 2, uspořádaných podle velikosti roven

n 4- 1
./

/■ + 1

131. Pro každou dvojici přirozených čísel (//, m), která je řešením rovnice
(/?2 — mn — z//2)2 = 1 (O

je n ^ ///, neboť
—1 ^ и2 — mn — //z2 < «2 — ///2 = (// -|- //?) (// — //?).

Přitom (к, £) je řešením rovnice (1) jen pro к — 1.
Je-li («, ///) řešením rovnice (1) a n > m, pak

(///2 — (« — ni)m — (/2 — ///)2)2 = (m2 + ////2 — л2)2 — 1,
takže (m, n — m) je také řešením. Vyjdeme-li tedy od libovolného řešení
(no, mo), dostaneme posloupnost řešení (nk, mi), kde

ак — nik- i, nik = nic-1—nik-1,
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přičemž
По > ni О = n 1 > nil = П 2 > ... •

Je tedy každá taková posloupnost konečná, tj. existuje к, pro něž = nik = 1 •

Obráceně, z dvojice (1,1) dostaneme opakovaným užitím zobrazení
(n, ní) (n + m, n)

každé řešení rovnice (1).
V posloupnosti řešení uvedené rovnice

(1,1), (2,1), (3, 2), (5,3), (8, 5), (13, 8), ...

najdeme jako šestnáctý člen dvojici (n, m) = (1 597, 987), pro kterou je
n 5Š 1981, ale n + m > 1981, takže největší hodnotou součtu m2 + n2
za daných podmínek je číslo 15972 + 9872.

Poznámka. Posloupnost {tik}, která splňuje rekurentní vztah
llk+l = ик + Uk-l, no = mi = 1,

se nazývá Fibonacciova. Jak jsme zjistili, dvojice jejích členů (i/k+i, Uk)
jsou právě všechna přirozená řešení (n, m) rovnice

(n2 — nm — m2)2 — 1.

132. Pro « = 3 taková posloupnost neexistuje. Jsou-li m — 2, ni—1,
m tři za sebou jdoucí čísla, muselo by číslo m dělit součin (m — 1) (m — 2).
Čísla m, m — 1 jsou však nesoudělná a m nemůže dělit číslo m — 2 < m.

Jsou-li m — 3, m — 2, m — 1, m čtyři za sebou jdoucí čísla s danou vlast-
ností, je

m | (im — 2) (ni — 3),
neboť m a m — 1 jsou nesoudělná. Z rozkladu

(m — 2) (ni — 3) = m(m — 5) -|- 6

plyne, že m | 6, a protože m ^ 4, musí být m = 6. Pro n = 4 existuje tedy
právě jedna taková posloupnost. Ukážeme, že pro ^ 5 existují aspoň dvě
takové posloupnosti.

m

Je-li m = (n — 1) (n — 2), к — pak л-tice

m — n + 1, ..m — 1, m

к — n + 1, ..., к — 1, к
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vyhovují dané podmínce. Je m > k > n — 1 a mezi n — 1 za sebou jdoucí-
mi přirozenými čísly m — n + 1, ..., m — 1, resp. к — n + 1, ..., к — 1,
existuje číslo dělitelné n — 1 a číslo dělitelné n — 2. Protože čísla n— 1,
n — 2 jsou nesoudělná, je nejmenší společný násobek čísel m — n + 1,

m — 1, resp. čísel к — n + h •••> к — 1, dělitelný číslem

m — (n — 1) (n — 2) a tím spíš i číslem к — —2 '

2. řešení. Uvažujme n po sobě jdoucích čísel
a — я + 1, ..a — 1, a (1)

a nechť

a = pfpf ... pa;
je rozklad čísla a na prvočinitele (pi < p% < ... < p7).

Dělí-li číslo a nejmenší společný násobek předcházejících n — 1 čísel, pak
ke každému je (1, 2, ..., r} existuje me{l, 2, ..., n — 1} takové, že

PjJ\a~m.
Je tedy

P? I m,
a proto

pP S n — 1 pro každé je (1, 2, ..., r).
Obráceně, platí-li (2), je mezi každými n — 1 po sobě jdoucími přiroze-

nými čísly některé dělitelné číslem pf, takže číslo a pak dělí nejmenší spo-
léčný násobek libovolných n — 1 po sobě následujících čísel. Vidíme, že
podmínka (2) doplněná podmínkou a ^ n je ekvivalentní podmínce úlohy.

Nemůže být r — 1, poněvadž pak by bylo
n ^ a = pí1 ^ n — 1.

Je tedy r ^ 2 a n — 1 ^ pz ^ 3, tj. n ^ 4.
Pro n = 4 máme jedinou možnost р°£ = 2, p^ — 3, a = 6 a dostáváme

jedinou čtveřici 3, 4, 5, 6.
Pro n — 5 máme právě dvě možnosti: p*1 = 2, p^ = 3, a — 6 a p*1 = 4,

p\l* = 3, a = 12, dostáváme tak právě dvě pětice 2, 3, 4, 5, 6 a 8, 9, 10, 11, 12.
Pro n ^ 6 určeme přirozená čísla s, t, и tak, aby

2s ^ n — 1 < 2e+1,

(2)
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У йп — \ < У+\
5й й п — 1 < 5М+1.

Рак dostaneme alespoň šest «-tic pro a e (2S3*, 2S5U, 3l5u, 2s3l5u, 28~15u,
2s~13t5u}, ledy je zřejmě a^. n.

Úloha má řešení pro každé n ^ 4, jediné řešení jen pro n — 4.

133. Označme Sa, Sb, Sc středy tří shodných kružnic ležících uvnitř
trojúhelníku ABC, z nichž každá se dotýká jiné dvojice jeho stran (obr. 145).
Pak je SaSb\\AB, SbSc\\BC a ScSa\\CA. Přímky ASa, BSb, CSc pro-
cházejí středem V kružnice vepsané trojúhelníku ABC, bod V je tedy
zároveň středem stejnolehlosti, která převádí trojúhelník SaSbSc na

trojúhelník ABC.
Existuje-li navíc společný bod O uvažovaných tří kružnic, je zároveň

středem kružnice opsané trojúhelníku SaSbSc a popsaná stejnolehlost
ho zobrazí na střed kružnice opsané trojúhelníku ABC, který tudíž leží
na přímce VO.

134. Dosazením x = 0 do uvedených vztahů dostaneme pro libovolné
0

/(1, 0) =/(0, 1) = 2,
ЛI, У + 1) =/(0,/(1, y)) =f(hy) + 1,

takže

AUy) = У + 2.

Analogicky máme
f(2, 0) =/(1, 1) = 3,

/(2, у + 1) =/(l,/(2, ý)) =/(2, y) + 2,
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takže

/(2, y) = 2y + 3,
dále

ДЗ, 0) =/(2, 1) = 5,
ДЗ, >- + 1) =/(2,/(3, у)) = 2/(3, у) + 3,

takže

ДЗ, у) = 2V.5 + (22/-1 + 2^-2 + ... + 20).3 = 2у+3 — 3,
a konečně

Д4, 0) =/(3, 1) = 24 — 3,
/(4, У + 1) =/(3,/(4, J-)) = 2/(*.»>+» - 3.

Označíme-li

sGO =/(4, >>) + 3,
je zřejmě

ДО) = 2< = 22'
а

sO> + 1) = 2»Ч
takže

2

*00 = 22’ (у + 3 dvojek).
Máme tedy

2

Л4, 1981) = Д1981) —3 = 22' — 3 (1984 dvojek).

135. Podle poslední podmínky je pro každá dvě přirozená čísla m, n

(Of(m) +/(«) ^ f(m + n) й fijn) +/(«) + 1.
Protože

Д1)+Д1)£Д2) = 0,
je také/(l) = 0. Podobně

0 </(3) ^/(1) + Д2) +1 = 1
dává /(3) = 1. Ze vztahu (1) dále plyne, že pro libovolné přirozené n platí

ДЗи + з)£ЛЗй) + 1,
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odkud dostaneme nerovnost

f(3n) ^ n.

Přitom kdyby pro nějaké no platilo /(3wo) > no, bylo by již pro všechna
n ^ no

/(3«) > n.

Protože /(9 999) = 3 333, platí pro všechna n ^ 3 333 rovnost /(3«) = n.
Je tedy podle (1)

1982 -/(3.1982) ^/(2.1982) + /(1982) ^ 3/(1982)

a odtud

19801982
661 > -у- й /(1982) ž /(i 980) + /(2) = — = 660,

takže

/(1982) = 660.

2. řešení. Stejně jako v předešlém řešení zjistíme, že /(1) = 0. Polo-
žíme-li v (1) m — 1, dostaneme pro každé přirozené n

(2)/(n)á/(«+l)S/(«)+l.

Nerovnost (1) můžeme zobecnit:
Pro к 2 přirozených čísel m\, . . . , m* platí

/(mi) + ... +f(mk) + • • • + nik) úf(m) + • • • +f(pik) + к - 1

jak snadno dokážete matematickou indukcí.
Pro mi — ... — mjc = n odtud dostaneme

kf(n) ^ f(kn) й kf(n) + к - 1,
takže

kn) j/(«) = (3)
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Vyjdeme od známé hodnoty /(9 999) — 3 333 a vypočteme podle (3)
17(9 910)1

/(1982)

Podle (1) máme odhad
3 332 —/(89) ^ /(9 910) ^ 3 333 —/(89),

17(9 999)1
L 1111 J
[7(9 999)1
L 909 J

a použijeme-li rovností

№1- /(9) = 3,

-/(11) 3,

dostaneme podle (2)
29 S /(90)- 1 S /(89) S /(88) + 1 < 33,

takže

3 300 ^ /(9 910) ^ 3 304.
Proto

17(9 910)
“L 5/(1982) = 660.

136. Označme ot osu úhlu při vrcholu At trojúhelníku A1A2A3 (obr. 146).
Při osové souměrnosti podle osy o\ zřejmě úsečka S1T3 přejde v úsečku
T1T2, ta zas při osové souměrnosti podle osy o2 přejde v úsečku
Je tedy |Гз51| = IT^S^I, a proto S1S2WA2A1. Analogicky dostaneme také
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A
Ji

h.
М,м2

\

/
/

*2А ~Ц 53 'М3
Obr. 147

*5,25'з|Из^2, SeSilMi^s (obr. 147). Protože trojúhelníky S1S2S3 а M1M2M3
jsou podobné, existuje buď stejnolehlost nebo posunutí, které převádí
trojúhelník S1S2S3 na trojúhelník M1M2M3. Nemůže však jít o posunutí,
protože kružnice opsaná trojúhelníku S1S2S3 je zároveň vepsána troj-
úhelníku AiA 2A 3, takže je menší než kružnice opsaná trojúhelníku МхМгМз-
Každá jiná kružnice, která má společný bod s každou z stran troj úhelní-
ku, má totiž větší poloměr než kružnice vepsaná. (Vedeme-li rovnoběžky
se stranami trojúhelníku středem V kružnice vepsané (obr. 148), hned
vidíme, že každý bod P Ф V má alespoň od jedné ze stran vzdálenost
větší než poloměr vepsané kružnice.) Přímky AřiSi, M2S2, M3S3 pro-

cházejí tedy středem uvedené stejnolehlosti.

/: o1

Obr. 148

Poznámky. Kružnice opsaná trojúhelníku M1M2M3 se nazývá kružnicí
devíti bodů, protože kromě středů stran obsahuje ještě paty jednotlivých
výšek trojúhelníku A1A2A3 a středy spojnic jednotlivých vrcholů s orto-
centrem trojúhelníku A1A2A3. Podle Feuerbachovy věty se tato kružnice
dotýká kružnice vepsané. Tento bod dotyku je tedy středem uvedené
stejnolehlosti.
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Z řešení je zřejmé, že stačí předpokládat, že trojúhelník Л1А2А3 není
rovnostranný.

R
Kružnice opsaná trojúhelníku M1M2M3 má poloměr —, kde R je po-

loměr kružnice opsané trojúhelníku A1A2A3• Kružnice opsaná troj úhel-
niku S1S2S3 je vepsána trojúhelníku A1A2A3, označme její poloměr r.

R
Dokázali jsme, že — > r. To plyne také z poznámky v řešení úlohy 25.

137. Nechť posloupnost splňuje podmínky úlohy. Označme
n

2

v **-i
Sn — /

Xk -2j On Xk-

A=1 A —0

Podle Cauchyovy nerovnosti pro každé přirozené n ^ 1 platí
n n / n
V 4-i у . / XTZ Xk ZXk=\Z

2

(1)k— 1 I 9

A-l k—1 k — 1

čili

Sn{on — X0) ^ ol_v
a protože an — л* o — an — 1 > 0, je

aiП — 1
(2)Sn ží

On — 1

Je-li posloupnost {an} neomezená, je posloupnost {sn} také neomezená,
neboť

On — 1 = On — Xn — On-1,

tj.
Sn Z On-1•

Je-li naopak posloupnost {or7ř} omezená, pak protože je rostoucí, existuje
a — lim an.

00

Protože a > 1, z nerovnosti (2) tak dostaneme
o-2

lim sn 'Z г 4.(7—1
1l-> 00
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Odtud plyne tvrzení a) úlohy.
Protože v nerovnosti (1) nastane rovnost pro každé přirozené n, právě

když je pro každé přirozené к a nějaké nezáporné Я
k—

= kXk, tj. X/c— 1 = УЯЛ'Л,
xl

X/c

(73
— 4 jen pro a — 2, plyne odtud, že řešením části b)a protože

a —

může být jedině posloupnost xn — 2~n, která jak se snadno přesvědčíme,
vyhovuje.

1

2. řešení. Nechť posloupnost (ли) splňuje podmínky úlohy. Zřejmě pro
každé přirozené к platí

(x/c~ i — 2xk)2 ^ 0,
neboli

4-1
^ 4(ха- i — xic),

Xjc

takže pro každé přirozené n
X1v3

л0 Л-Г -1I

^ 4(.vo — Xn) = 4(1 — xn)4- 4" • • • 4"
Xl Л'2 Xn

s rovností, právě když л'о = 2xi — ... — 2nxn. Posloupnost {луг} je
omezená a nerostoucí, takže existuje

lim xn — a-
OO

Pokud a — 0, je
co

xl.

2 k-\
^ 4

-V*
Jc= 1

s rovností právě jen pro posloupnost xn — 2~n.
Je-li a > 0, jc

/lim Xn-iY
\n->co /■vL, Й2

lim —

= a,lim xu aXn11—> oo

n—> co

takže máme dokonce
oo

4-íУ£-1 Xfc
— -f- oo.

/fc=1
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V obou případech dostáváme tvrzení a) úlohy.
v“_i

Protože —-— > 0, musí pro posloupnost s vlastností b) platit

00
2

V 4-i
Z-t X/c
k = 1

Tato rovnost je splněna, jak již víme, pro jedinou posloupnost xn = 2~11.

Xn

= 4.

3. řešení. Nechť posloupnost (л*эт} splňuje podmínky úlohy. Položme pro
přirozené číslo к

X/c-1
a/c =

X/c

zřejmě a/c ^ 1. Protože xo — 1, je
o

K-iЛ'о x\
Sn — + + • • • +

JVl X2

«2 a 3 an
— a i -j- — + + • • • +

a i а\аг- • • an-iXn a\az

( ( - ■

1 1 1 an
— a i ~Ь 1^2 ~Ь 1йз -j- ... -j- an-1 +

a i Cl 2 an-2 a n-1

Použijeme-li nerovnosti
A

(a/c — УЛ)2 ^ 0 neboli a/c -f —
Cl/с

která platí pro každé A 0, dostaneme

š 21/A,

(
1 /

sn ^ 2 / a2+ \ )■■■)1 an
an-1 T"й3 -f • • • +

an-2 an-1

íf-iV ]/2 ]/ • ■ • 2У«„
an

^ ... ^ 2 ^ 2an-i ~r
a n—i

!11 ■ • i/2^ 2

/7—1

Posloupnost {bn} definovaná rekurentně vztahy bo = 2, bn+i = 2yúrt je
omezená a rostoucí, neboť 4 > bi — 2]/2 > 2 = bo, a je-li 4 > bn > úw_i,
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jc také 4 > 2]jbn > 2]jbn-i — bn, neboli 4 > bn+1 > bn- Pro její limitu b
platí

b = 2|/ú, tj. Z? = 4.
Odtud plyne tvrzení a) úlohy. Podmínce b) vyhovuje, jak již víme, posloup-
nost xn — 2~n.

4. řešení. Uvažujme všechny posloupnosti xo ^ xi ^ ... kladných čísel
a označme pro л'о > 0

00

4-iУ
Xjc

f(xo) = inf
Л = 1

infiraum přes všechny takové posloupnosti {хй} s prvním členem xo- Zřejmě
/(ао) ^ л'о > O a

/(«) = -j№
pro každá dvě čísla a, b > 0. Je tedy

(± + |А^Ц
\ fc = 2 /

/(1) = inf

(3)

(— +/(ai)I — inť
•Yl ' Xi <3 (O, 1>

Funkce <p(x) = — + xf (1) je v intervalu (O, 1) spojitá a pro x blízká
nule nabývá velkých hodnot. Infima tedy nabývá v nějakém bodě q e (O, 1),
pro který podle (3) platí

- inf
xi e (O, 1>

1

1 1
/(1) =- + ?/(!). Cíli /(1) (1 - ?) = -.

Vidíme, že q Ф 1 a
1

/(O = ^ 4.
q(l—q)

Odtud plyne tvrzení úlohy, přičemž rovnost nastane právě pro posloupnost
xn =*= 2~n.

138. Levou stranu rovnice můžeme přepsat takto:
x3 — Эху12 + >’3 — (У — a)3 — 30' — x)x2 — a3. 0)
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Je-li dvojice (x, y) řešením dané rovnice pro nějaké přirozené n, pak je
řešením i dvojice (y — x, —дг) a také dvojice (—x— {y— x), x — y) =
= (—y, x — y). Dvojice řešení (x, y), (y—x, —x), (—y, x — y) jsou všechny
různé, protože jinak by platilo x — у — 0, (0, 0) však není řešením pro
n Ф 0.

Abychom dokázali, že rovnice
л-з _ 2xy* + = 2 891 = 9.321 + 2

nemá celočíselná řešení, stačí ukázat, že levá strana nedá pro žádné x, у

při dělení devíti zbytek 2. Kdyby dávala levá strana při dělení devíti pro x, у

zbytek 2, dá stejný zbytek i při dělení třemi. Podle Fermatovy věty je a3 = a

(mod 3) pro každé celé a, takže
x3 — 3xy2 + y3 == x -}- у (mod 3),

mělo by tedy být
x + у = 2 (mod 3).

Nejprve vyšetříme případ x s= 0, у = 2 (mod 3). Pro .v — 3s, у — 3t — 1
máme

*3—3xy* + y* = 27л3— 95(3/ — l)2 4- 2113—27í2+ 9t— 1 - — 1 (mod 9).
Případ x = 2, у = 0 (mod 3) nemusíme uvažovat díky symetrii (pro xy = 0
(mod 3) je totiž —Ъху3 = 0 (mod 9)). Případ x = у = 1 (mod 3) se převede
na předcházející díky rovnosti (1).
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139. OznačmeL průsečík úhlopříček ACa BF(obr. 149). Protože BF || CE,
jsou trojúhelníky BML a NMC podobné, tj.

\BL\ \LM\
\ŇC\ = | CM \'

Šestiúhelník ABCDEF je pravidelný, takže |£ CAE\ — 60° a trojúhel-
nik ALK je rovnostranný, přičemž trojúhelník ALB je rovnoramen-

ný, tj. \KL\ — \AL\ — \BL\. Bez újmy na obecnosti budeme předpoklá-
1

dat, že \AC\ - |£F| - 1. Pak je \BL\ - \AL\ - —, \LM\

\CM\ = 1 — 2, |CjY| = X. Dosadíme-li do (1), dostaneme
1 32— 1

32 3(1 — 2)

(O

1

3 ’

rtr:

1
takže 322 = 1 a odtud 2 — —=.

p
2. řešení. Leží-li body M, N, В v přímce, označme | AMB| —

= NMC\ — (o (obr. 150). Zřejmě 30° < ro < 90°. Protože v pravidel-
1

ném šestiúhelníku ABCDEF je \AB\ — —= \AC\, dostaneme ze sinové věty
уз

pro trojúhelníky ABM a NMC
sin M Xsin (ú1

sin (150°— co) ýtj/з’ sin (120° — co) 1 — 2’
čili

уз1
2]/3 sin — COS (O — sin (O,O) —

IP
— X COS (Ú -\- — sin (O I.

Odečteme-li od druhé rovnice 2j/3-násobek první, dostaneme
(1 — 2 — 322) sin co — —2 sin co,

)1
(1 — 2) sin o)

čili

322 = 1.
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1
Protože 0 < X < 1, je X — —

уз

3. řešení. Ze zadání úlohy plyne, že jsou trojúhelníky BCM a DEN
shodné (obr. 151), tj. |£ NBC\ = |£ NDE\. Protože v pravidelném šesti-
úhelníku platí | £ BCE\ — 90° a | £ CED\ = 30°, je



(271) 139

I* BND\ = |* BNCI + |* CND| -
= (90° — I £ JVBCI) + (30° + |* NDE\) = 120°.

To znamená, že úsečku BD je z bodu N vidět pod stejným úhlem 120° jako
ze středu S kružnice opsané danému šestiúhelníku. Bod N tedy leží na
kružnici se středem C a poloměrem \CS\ = \CB\ = |CD|. Proto je také
[CTVj = \CB\ a pro dělicí poměr Я plyne z trojúhelníku ВСЕ

\CN\ \CB\
~

ICE\ ~ \CE\

1
= tg 30° = -=

уз
4. řešeni. Označme B' průsečík přímek AB a CE (obr. 152). Z vlastností

pravidelného šestiúhelníku ABCDEFplyne, že \BB'\ = 2\AB\. Protože body
В, M, N leží v přímce, dostáváme podle Menelaovy věty pro trojúhelník
AB'C

\AB\ \B'N\ \CM\ 1 1 + Я 1 — Я
jinšj ' Ш ' \AM\

čili

ЗЯ2 = 1

a

1
Я =

уз

D
—

N

Cr\
M\ 6

/

A
A В

Obr. 152

5. řešení. Zvolme v rovině šestiúhelníku soustavu souřadnic s počátkem
v bodě B. Mají-li body P, Q souřadnice (pi, рг), (<7ь ^2), rozumíme sym-
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bolem P + Q bod se souřadnicemi (pi -f <71, р% + qi) a symbolem sP,
kde s je reálné číslo, bod (spi, spi).

Pro body M, N tedy platí (0 < Я < 1)
M = (1 — X) A + 1C,

N = (1 — Я)С + XE - 2ЯЛ + (1 + X)C,
poněvadž v pravidelném šestiúhelníku se středem Sje E — 28 = 2(A + C).
Protože body В, M, N leží v přímce, musí platit

2Я 1 + Я
1 — Я = ”я" ’

1
čili ЗЯ2 = l а Я = —

P'

140. Konce lomené čáry L označme M a N. Postupujme po čáře L z bodu
l

M. První vrchol čtverce Q, ke kterému se přiblížíme na vzdálenost nejvýše —,

označme A. Postupujeme dále a ten z vrcholů sousedících s A, ke kterému
1

se přiblížíme dříve na vzdálenost —, označme D. Druhý vrchol sousedící

s A označme В (obr. 153).

O

A ВP

Obr. 153
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1
Bod D' lomené čáry L, pro nějž je \ DD'\ — —, rozdělí čáru L na dvě části

MD' a D'N. Odpovídajícím způsobem vyjádříme úsečku А Вjako sjednocení
množin U a V, kde U je množina těch bodů, jejichž vzdálenost od čáry MD'

1
je nejvýše —, a V množina těch bodů, jejichž vzdálenost od čáry D'Nje nej¬

1
výše —. Obě množiny U, V jsou neprázdné, A e U, Be V, a každá je sjedno-

cením konečného počtu uzavřených úseček a jednobodových množin. Proto
existuje bod P společný oběma množinám U a V. Jsou-li X, resp. Y, body

1 1
čáry MD', resp. D'N,takové,že \PX\ й у, |РУ| ^ у, pak je \XY\ g
^ \PX\ + |РУ| = 1, a přitom délka lomené čáry XD'Y]q aspoň

\XD'\ + \ YD'\ ^ 99 + 99 = 198.

141. Podle první podmínky je pro každé kladné x

/(*/(*)) = xf(x),
takže a = xf(x) je pevný bod funkce/, tj.f(a) = a.

Předpokládejme, že p je pevný bod funkce /. Podle první podmínky je

f(pf(p)) = rf(p),
neboli

f(p2) = P2’
bod p2 je tedy také pevný bod funkce /. Dokonce pn je pevný bod funkce/
pro každé přirozené n, neboť jsou-li p, /?и-] pevné body, je

f(Pn) =f(PPn~v) =f(pf(Pn~1)) = Pn~lf(p) = Pn-
Dále je

p =/(p) =/№)) =/(i Яр)) = pf( i),
takže /(1) = 1 a 1 je pevný bod funkce/. Je tedy

1 =/(!)=/ Pf
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a odtud

1
/ 9

P

1 1
— je pevný bod funkce /. Pak je i — pevný bod funkce /.

Kdyby bylo p > 1, pak by posloupnost pn konvergovala к +oo a tatáž
posloupnost pn = f(pn) by podle druhé podmínky konvergovala к 0. Stejně

1
vyloučíme možnost p < 1 pomocí posloupnosti pevných bodů —.

pn
Zjistili jsme, že funkce / má jediný pevný bod 1. Pro každé kladné x je

tedy xf(x) = 1, takže

takže i

1
/(*) = —

X

Tato funkce, jak snadno ověříme, vyhovuje oběma podmínkám.

142. Mají-li kružnice к i, кг stejné poloměry, je úloha triviální. Nadále
budeme předpokládat, že poloměry obou kružnic jsou různé.

Dokazovaná rovnost je ekvivalentní s rovností
|*^ 0\AM\\ — ОгАМг\

(obr. 154). Označme S průsečík tečen P1P2, Q1Q2• Tento bod je středem
stejnolehlosti, která převádí kružnici к i v кг- Obraz bodu A v této stejno-
lehlosti označme B. Zřejmě

I £ 0\AM\\ = 13c ОгВМг\-

Dokazujeme tedy rovnost

I ОгАМг\ = \ ОгВМг\-
Vzhledem к tomu, že body А, В leží ve stejné polorovině určené přímkou
ОгМг, platí uvedená rovnost, právě když body А, В, O2, M2 leží na jedné
kružnici, což nastane, právě když

|&4|.|S5| - \SM2\.\SO2\.
Je však |5'у4|.|5'5| = IST^I2 (mocnost bodu S ke kružnici кг) a \SM2\-
.\S02\ = l-SPžl2 (z podobných pravoúhlých trojúhelníků SO2P2, SP2M2).
Tím je důkaz hotov.
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Рг

СЦ

Obr. 154

2. řešení. Průsečík spojnice společných bodů А, В kružnic к i, kz s tečnou
P1P2 označme P a průsečík s přímkou О1О2 označme M (obr. 155). Protože
bod P je střed úsečky P1P2 (je \PPi\2 = \PA\.\PB\ — IPP2I2), je bod M
střed úsečky M1M2. Označíme-li 0\ bod souměrně sdružený s bodem 01
podle osy A B, bude

I* MiAOÚ = |* 0[АМъ|.
Stačí tedy dokázat, že přímka AM2 je osou úhlu 0\A02. To nastane, právě
když

IM2OJ
1М2О2Г
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jak plyne ze sinové věty pro trojúhelníky AO\M2, AO2M2. Protože \AO\\ =
= \AO[\, IМ2OÍI = \M\Oi\, dokazujeme rovnost

\AOi\
_ IM1O1I

\A02\ ~ IM2O2I'
Její platnost je patrna z toho, že vlevo je poměr poloměrů kružnic к i, к 2

a vpravo je poměr délek dvou úseček, které si odpovídají ve stejnolehlosti
převádějící kružnici k\ v к2.

143. Označme M, resp. M' množinu všech čísel, která se dají vyjádřit ve
tvaru

m — xbc -f~ yca + zab,
kde x, y, z jsou přirozená, resp. nezáporná celá čísla. Zřejmě je qe M,
právě když q — bc — ca — ab e M'. V úloze jde tedy o to dokázat, že 2abc
je největší přirozené číslo, které nepatří do M.

Kdyby 2abc e M, tj. pro nějaká x, y, z přirozená by bylo
2abc — xbc + yca + zab,

pak by a dělilo součin xbc a podle předpokladu o vzájemné nesoudělnosti
čísel a, b, c by a dělilo x, takže by bylo a ^ x. Analogicky zjistíme, že by
bylo b 5Š у, c ^ 2. Pak by však platilo

2abc — xbc + yca + zab ^ 3abc.

(0

Je tedy 2abc ф M.
Zvolme libovolné přirozené číslo к a zkoumejme číslo 2abc + k. Uva-

žujme množinu L všech čísel tvaru (1), kde
xe (1, 2, ..., а}, у e {1, 2, ..., b), ze {1, 2, ..., c).

Žádná dvě z těchto abc čísel nedávají při dělení číslem abc stejný zbytek.
(Rozdíl každých dvou čísel z L má totiž tvar (1), kde xe {—a + 1, ..

a— 1}, у e {—b +1, ..., b — 1), ze {—c +1, ..., c— 1). Kdyby byl
tento rozdíl dělitelný číslem abc, bylo by я|х, b\y, c\z, tj. x = у — z — 0
a čísla by nebyla různá.) Existuje tedy číslo (1) z L a celé číslo t tak, že

2abc + к = tabc + xbc + yca + zab.

(2)

• 9

(3)
Podle (2) je

xbc + yca + zab ^ ЪаЪс,
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takže

к ^ tabc — 2abc 4 3abc — (t 4 1 )abc.
Protože к > 0, je t ^ 0 a (3) můžeme přepsat

2abc 4 к = (ta 4 x)bc 4 yca 4 zab,
kde ta 4 x je přirozené číslo. Je tedy 2abc 4 к e M pro každé přirozené k.

Poznámka. Stejnou metodou bychom dokázali obecnější tvrzení: Je dáno
n ^ 2 po dvou nesoudělných přirozených čísel ai, «2, ..an- Označme
A = а\аг -. .an a M množinu všech čísel tvaru

AA A
xi 4 X2 4 . . . 4 Xn

a i a 2

kde ví, X2, ..., x11 jsou přirozená čísla. Pak největší přirozené číslo, které
nepatří do množiny M, jc (n — 1)4.

2, řešení. Než se pustíme do řešení úlohy, prozkoumáme obecnou otázku
vyjadřování celých čísel m ve tvaru

m — xbc + yca + zob (4)
s celočíselnými koeficienty .v, y, z. Především ukážeme, že každé celé číslo m
lze takto vyjádřit. Vyplývá to z toho, že množina zbytků všech abc čísel
tvaru (4), kde

x e (1, 2, . . ., a], ye (1, 2, . .., b], ze (1, 2, ..., c},
při dělení číslem abc je totožná s množinou (0, 1, ..., abc — 1), čehož jsme
si všimli v předešlém řešení. Je-li tedy m libovolné celé číslo a

m = tabc + a,

(5)

kde t je celé číslo a 0 ^ и ^ abc, existují čísla v, y, z splňující (5) a celé číslo v
tak, že

и = xbc 4- yca 4 zab + vabc.
Pro m tak máme vyjádření

m = (ta 4- va 4- x) bc 4 yca 4 zab.
Dále se budeme zabývat jednoznačností uvažovaného vyjádření. Dejme

tomu, že
x\bc 4 yica 4 ziab = x^bc 4 yzca 4 z^ab,
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a nechť

xi = Pia + p\, yi = qLb + q[, zi = ne + rv
A'2 = /?2« + pí, У2 = qib + qí, Z2 = Г2С + rá,

přičemž
o ^ /4, /4 < «, O ^ <7[, ^2 < b, O ^ 4, v2 < c*. (6)

Potom je
O = (xi — X2)Z>c + (ji —j2)ea -j- (zi — Z2)«ů =
= Oi —P^bc + (4 — &)«* + (4 — r'2)db +

+ (pi + qi + ri — P2 — #2 — Г2>^С.
Odtud je zřejmé, že

а I p[ — P2, b\q[ — q2, c\r1 — ň,
a vzhledem к (6) je tedy

Pl — Pi!’ #1 — #2’ rL — Г2’

takže musí být také
p i + qi + /'i = pz + q 2 + r2.

Docházíme к následujícímu závěru: Každé uspořádané trojici celých
čísel (x, y, z) přiřaďme uspořádanou čtveřici (//, q', r’, p + q + r), kde

v: — pa + p', у = qb + q', z — rc + r',
0 ^ p' < a, 0 ^ q' < b, 0 ^ r' < c.

Každé celé číslo m lze psát nekonečně mnoha způsoby ve tvaru (4) s celo-
číselnými koeficienty x, y, z, přičemž dvě trojice koeficientů dávají totéž
číslo (4), právě když příslušné čtveřice jsou stejné.

Pro řešení naší úlohy je významný bezprostřední důsledek právě vyslove-
né věty:

Celé číslo m lze psát ve tvaru (4) s nezápornými koeficienty, právě když se

pro každé vyjádření (4) s celočíselnými koeficienty příslušná čtveřice skládá
z nezáporných čísel. Vyjádření

2abc — bc — ca — ab = (a — 1 )bc -f (b — 1 )ca + (— с -j- c — 1 )ab

odpovídá čtveřice (a — 1 ,b — 1, c — 1, —1), která není složena jen z ne-
záporných čísel. Číslo (7) proto nelze vyjádřit ve tvaru (4) s nezápornými
koeficienty.

(7)
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Zvolme nyní přirozené číslo m > 2abc — bc — ca — ab. Je-li (4) jedno
jeho vyjádření s celočíselnými koeficienty x, y, z a (p\ q', r', s) příslušná
čtveřice, pak

0 < m — (2abc — bc — ca — ab) =
— (p' — (a — 1 ))bc + (q' — (b — 1 ))ca + (r' — (c — 1 ))ab + (s — (—1 ))abc.
První tři koeficienty jsou zřejmě nekladné, takže poslední koeficient musí
být kladný, tj. j ^ 0. Čtveřice (p\ q', r\ s) je tedy složena z nezáporných
čísel a číslo m lze proto vyjádřit ve tvaru (4) s nezápornými koeficienty,
což jsme měli dokázat.

144. Dejme tomu, že uvažované tvrzení neplatí, tj. existuje rozklad
množiny E na dvě podmnožiny Ei, E2 takový, že žádný pravoúhlý troj-
úhelník nemá všechny tři vrcholy v jedné z těchto podmnožin. Vepišme do
daného rovnostranného trojúhelníku pravidelný šestiúhelník PQRSTU
(obr. 156). Ze tří bodů P, R, T leží aspoň dva v téže podmnožině, např.
P e Ei, R e Ei. Pak je však U e E2, S e E2, Се E2, a to je spor.

2. řešení. Na obvodu daného rovnostranného trojúhelníku ABC (obr. 157)
sestrojme body А', В', C tak, aby

\AA'\ \BB'\ \CC'\
\a'¥\ = jiřc[= \ča\

= 2.

Zřejmě je AB _j_ A'B', BC _|_ B'C, CA J_ C'A'. Uvažujme libovolný roz-
klad množiny E na dvě podmnožiny Ei, E2. Neztratíme na obecnosti,
omezíme-li se na následující dva případy:
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a) Nechť A' e Ei, B' e Ei, C e Ei. Existuje-li ještě další bod D e Ei, pak
vždy tvoří se dvěma z bodů А', В', C pravoúhlý trojúhelník se všemi vrcho-
ly v Ei. Neexistuje-li čtvrtý bod D e E l, patří všechny ostatní body obvodu
do množiny E‘2 a snadno najdeme pravoúhlý trojúhelník s vrcholy v E2.

b) Nechť A' e Ei, B' e Ei, С e E2. Existuje-li bod D e AB, D=£A',
D e Ei, je trojúhelník A'B'D pravoúhlý s vrcholy v Ei. Jinak patří všechny
body strany AB až na bod A' do množiny E2 a trojúhelník ACC", kde C"
je pravoúhlý průmět bodu C 11a stranu AB, je pravoúhlý a má vrcholy
v E2.

Poznámka. Důkaz ze 2. řešení stačí jen trochu doplnit, abychom odvodili
silnější tvrzení:

Při každém rozkladu obvodu rovnostranného trojúhelníku na dvě pod-
množiny existuje nekonečně mnoho pravoúhlých trojúhelníků, které mají
všechny vrcholy v téže podmnožině.

V případě a) jsou dvě možnosti. Buď je na některé straně, např. AB, ne-
konečně mnoho bodů z Ei a ty pak spolu s A' a B' tvoří nekonečně mnoho
pravoúhlých trojúhelníků s vrcholy v Ei, nebo je na každé straně jen
konečný počet bodů z Ei a pak zřejmě existuje nekonečně mnoho právo-

úhlých trojúhelníků s vrcholy v E2.
V případě b) uvažujeme takto: Je-li na straně AB nekonečně mnoho bodů

množiny Ei, tvrzení platí. Je-li na straně AB jen konečný počet bodů
množiny Ei, sestrojme všechny trojúhelníky s pravým úhlem při vrcholu C
a ostatními vrcholy na straně AB. Těch je nekonečně mnoho a jen konečně
mnoho z nich má některý vrchol v Ei.
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145. Z posloupnosti všech přirozených čísel postupně vynechávejme čísla,
která jsou třetím členem nějaké aritmetické posloupnosti. Zůstanou čísla

1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, ....

To nás přivádí na myšlenku sestrojovat množiny neobsahující tři po sobě
jdoucí členy aritmetické posloupnosti takto: Vyjdeme od množiny Mi —

= (1, 2} a dále položme pro každé přirozené к
Mfc+i = M* и (a- -j- 3fc : x £ M*}.

Označíme-li mn největší prvek množiny MM, bude
mi = 2, m/c+i = nik + 3*,

tj-
3» + 1

nin =
2

pro každé přirozené //.

Dokážeme, že v žádné z množin M,t neleží tři po sobě následující členy
aritmetické posloupnosti, což je totéž, jako že tam s žádnými dvěma prvky
neleží jejich aritmetický průměr. Pro množinu Mi je to zřejmé. Předpo-
kládejme, že to platí pro množinu M^, kde к je nějaké přirozené číslo, a zvol-
me dva různé prvky x, у množiny M*+i. Leží-li oba v množině M*; nebo
oba v množině {x + 3k : agM*}, pak jejich aritmetický průměr není
v Mfc+i podle indukčního předpokladu. Je-li а e Mк, у e {a + 3/J: xe — M*},
pak

1 < a ^ nik, 1+3k й У й mk + 3fc,
takže

3fr + 1 3fc + 2
^ a + у 2nik + 3fc

2 ~ 2 “ 2 ’
= 3fc + — < 3* + 1.<nik =

2

A + у
Odtud vidíme, že —~— $ Ma-+i. Množina Mu má největší prvek

311 + 1
- 88 574 < 105///и =

2

a obsahuje 211 = 2 048 prvků. Uvažovaná posloupnost tedy existuje.
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2. řešení. Mějme dvě čísla, která se skládají jen z číslic O a 1. Aby se jejich
aritmetický průměr také skládal jen z číslic O a 1, musel by se jejich součet
skládat jen z číslic 0 a 2, ale to se stane, právě když jsou obě čísla stejná.
To platí v každé číselné soustavě se základem větším než 2.

Největší číslo složené z číslic 0 a 1 v trojkové soustavě nepřevyšující
105 = (12002011201)з je číslo (11111111111)з a všech takových nanejvýš
jedenácticiferných čísel je 211 — 1 = 2 047.

Poznámka. Označíme-li {an} posloupnost z 1. řešení a {bn} posloupnost
z 2. řešení, je pro každé přirozené n

Gn+l — bn -f- 1.

146. Abychom nemuseli stále respektovat předpoklad, že a, b, c jsou strany
trojúhelníku, označme

x = —a + úT-c, у = a — H f, z = a b — c.

Pak bude

x 4-z x + у
(1)a =

2

a všechny trojice (a, b, c) délek stran trojúhelníku tak budou vzájemně jedno-
značně odpovídat všem trojicím (x, y, z) kladných čísel, s nimiž se pracuje
pohodlněji.

Dosadíme-li do dokazované nerovnosti podle (1), dostaneme po úpravě
nerovnost

x2 У2 z2
{2— + — + — ž x + у + z.

у z x

К tomu, abychom ji dokázali pro všechna kladná x, y, z, využijeme Cau-
chyovy nerovnosti

Пит)2 й 2 Щ 2 vb
%=1 i=1

která platí pro všechny и-tice reálných čísel (u 1, ..., un), (vi, ..., vn)
a v níž nastane rovnost právě tehdy, je-li jedna z n-tic násobkem druhé.
Pro trojice

i= 1

í
у z

(']/y> )lz’ ]'x)
У.У ]n ’ ]/x/’
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Cauchyova nerovnost dá
J2 Z2 \

у) (y+
/ Y2

(.v + у 4- z)a ^ +
z

z + a),

což je nerovnost (2). Rovnost nastane, právě když
A' У

■ vУ =7г’-У2 = 77= : V* ’
Уу Ь Jx

tj. právě když x — у — z. V původní nerovnosti tedy bude rovnost právě
jen pro rovnostranný trojúhelník.2.řešení. Nerovnost (2) je ekvivalentní s nerovností

a3z + v3a -f z3y ^ x2yz 4- y2xz + z2xy
a ta plyne z rovnosti

A3Z 4- y3A + Z3y — A2yZ — >’2AZ — Z2xy —

— xz(X — y)2 + xy(y — z)2 4- уZ(a — z)2.3.řešení. Daná nerovnost vyplývá z rovnosti
2 [«2ů(a — ů) 4- ů2c(ů — c) + c2a(c — a)] =

— (a 4- c — b){ci 4- b — c)(a — c)2 + (b + a — c)(b 4- c — á)(b — a)2 4
4- (c 4- b — a)(c 4- a — b)(c — b)2.4.řešení. Daná nerovnost vyplývá z rovnosti

a2b(a — b) -j- b2c{b — c) 4- c2a(c — a) —

= a(b + c — á)(b — c)2 4- b(a + b — c){a — b)(a — c).
Daná nerovnost se totiž nezmění při cyklické záměně a->b, b с, c a
a můžeme tedy předpokládat bez ztráty na obecnosti, že a je nejdelší strana.

Poznámka. Předpoklad, že kladná čísla a, b, c splňují trojúhelníkové
nerovnosti, není pro platnost dané nerovnosti nutný (uvedený výraz je
kladný např. i pro a = 1, b — 3, c — 5).

147. К důkazu nezápornosti uvedeného výrazu si stačí uvědomit, že
0 й x, y, z g 1, takže

xy уz 4 zx — 2aj.’z = xy(l — z) 4- yz( l — a) + za ^ 0.
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I
Můžeme také díky symetrii předpokládat x ^ у ^ z, takže x ^ — a

xy 4 У2 4 2X — 2xyz = xy 4 yz{ 1 — 2.y) -j- ZA' ^ 0.
Podle nerovnosti mezi aritmetickým a harmonickým průměrem platí

dokonce

3 3xyzxy 4- у2 4 zx
= 3x>>z,3 1 1 1

— + — + —

X 4 у 4 z

xy У2 zx

tj.
xy 4 yz + zx ^ 9x>’z.

Nyní dokážeme druhou nerovnost. Položme x = — 4 а, у — — 4 6,

1
— 4 c, podle předpokladu úlohy pak je

a 4 6 4 c = 0,

1 J

z —

1 2
—

у ^ a, b, с й у
а

7 1
xy 4 уг 4 zx — 2xyz = — 4 у (ab 4 bc 4 ca) — 2abc —

7 1
=

у 4 у (ůc — a2 — 6abc).
Vzhledem к symetrii můžeme předpokládat a ^ b rg c, pak musí být
buď a ^ b ^ 0 ^ c, nebo a ^ 0 ^ b ^ c.

V prvním případě je 6c — a2 — 6abc ^ 0, v druhém případě můžeme
1

pro — у ^ « 4J psát
bc — a2 — 6abc — 6c — (6 4 c)2 — 6cr6c = —(6 — c)2 — 36c — бабе —

= —(6 — c)2 — 36c(l 4 2a) й 0
s rovností, právě když 6 = с = а = 0. V obou případech plyne z (1)
nerovnost

(1)

7
xy 4 У2 4 zx — 2xyz й у-
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1
2. řešení. Nechť např. .v ^ —, pak je

xy + Уz + zx — 2xyz — x(y + z) -f yz( 1 — 2x) =
1 7

= л(1 — л*) + yz( 1 — 2x) й *(1 — x) g — < —27'

I
Vzhledem к symetrii zbývá vyšetřit jen případ, kdy je O ^ .v, y, z < —.

Položme x' — 1 — 2x, ý = 1 — 2y, z' = 1 — 2z, pak je
x' + y' + z' = 1, x\ y\ z' > O

a

1
xy + yz + zx — 2xyz = — (1 -f x'y'z').

Podle nerovnosti mezi aritmetickým a geometrickým průměrem dostaneme
x' -f- y' + z'\3( 1

x'y'z' й 2T3

takže

7
xy + уz + zx — 2xyz ^ .

3. řešení. Uvažujme mnohočlen

P(t) — (f — x)(t — y)(t — z) = t3 — /2 + /(xy + yz + zx) — xyz.

Máme tedy dokázat, že pro x^y^z^O, x + у -j- z = 1 je
1

8 ~ P ~ 216'

I I 1
Je-li x ^ je у ^ —,z<L~,p

metickým a geometrickým průměrem

0 a podle nerovnosti mezi arit-

1 3

2x~-

p￼= (* - Ť) (Ť “ (Ť ~ z) á
1

8 ’3
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1
podobně pro л* ^ — je

3 з
—

—x — y — z1 1
0

- р\ 2 / - 216'3

4. řešení. Funkce

f(x, у, z) = xy + yz + zx — 2xyz

je spojitá a nabývá proto v uvažovaném definičním oboru 0 ^ x, y, z ^ 1,
1

a -f у + z = 1 svého maxima. Je-li а < — а у Ф z, platí

у + z у + z\ (y + z\2
J-) = Ф + Z) + f-y-) (1 — 2x) >лX,

2 ’

> x(y + z) + yz0 — 2a) =f(x, y, z).

Z důvodů symetrie můžeme předpokládat, že x š у ^ z. Není-li
1 /

—, je buď .v < у < z, nebo x = у < z Гv obou případech musíx—y—z=

být.YCyj , takže

y + z y + z\
>f(x,y, z),( y + z

1
nebo x < у = z a z < —, takže

V + у X + )’\
— j >f(z, X, y) =

( X 4A*’~2 fix, y, z),

4 '' 3 • 3’ з)-
Funkce / tedy nabývá v uvedeném definičním oboru svého maxima

1
v jediném bodě x = у — z = — a je

1 1 1 1
anebo x = 0,y =z= у, a pak je/l
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/1 1 П 7
f(X’ У> z) ^ f[ 3 > 3 > 3 / “ 2Г

5. řešení. Označme & = xy + _yz + zx — 2xyz = x(l — x) + yz(l — 2x).
1

Vzhledem к symetrii můžeme předpokládat, že x ^ . Protože

у + z = 1 — X,

к + x(x — 1)
=

1 — 2x

jsou čísla y, z reálné kořeny kvadratické rovnice
к + x(x — 1)

í2 + (x— l)f + = 0,1 — 2x

pro jejíž diskriminant platí
(x — 1)2(1 — 2x) — 4к — 4x(x — 1)^0,

neboli

1 1 I

*S-y*» + T*» + T.
1 1 1 / 1 \

Funkce/(x) = — ~x3 + — x2 + — má v intervalu {0, nezápornou
derivaci

3 1 1

yx(l — 3x) ^ 0,x =

takže

7
к Sf 2T

6. řešení. Najdeme extrémy funkce
/(x, y) = xy + j(l — x — у) + (1 — x— y)x — 2xy(l —x — y) =

= x + у — x2 — у2 — Зху -f- 2x2y + 2xy2
v trojúhelníku T s vrcholy (0, 0), (0, 1), (1, 0). Ty budou ležet buď na jeho
hranici, nebo v jeho vnitřních bodech, pro které zároveň
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df
—7 = 1 — 2л- — 3у + 4ху + 2у2 = (2.v + v — l)(2v — 1) =0,
ř Л

df
—

= 1 — 2y — 3.v + 4ху + 2.v2 — (2у + х — 1)(2.y — 1) = 0.

Snadno zjistíme, že těmto dvěma podmínkám vyhovuje jediný vnitřní

(44) (T’T) = í'Zbývápro-bod trojúhelníku T, totiž

zkoumat hranici trojúhelníku T, tj. vyšetřit průběh funkce

, v němž /

/(.v, 0) = ДО, x) =f(x, 1 — x) = *(1 — x)
1

v intervalu <0, 1>. Tam je ale 0 rg x(\ — x) ^ —.

(4-1)7
Funkce f(x, y) nabývá v trojúhelníku T maxima — v bodě

a minima 0 v bodech (0, 0), (0, 1), (1, 0), takže je
7

0 й xy + yz + zx — 2xyz й T427

s rovností vlevo pro trojice (1, 0, 0), (0, 1, 0), (0, 0, 1) a vpravo pro

(4. 1 43 ’

148. Podle binomické věty je

(a + by — d* — W = lab [(a5 + №) + 3ab(a2 + b2) + 5a2b2(a + b)\ =
= lab{ci -j- ř>)(o4 + 2a2b -f 3a2b2 + 2ab2 + bA) =
= lab(a + b){a2 + ab -f b2)2.

Vyhovují-li čísla a, b podmínkám úlohy, je číslo a2 + ab + b2 dělitelné
číslem 73 = 343. Zkusme např. a — 1 a hledejme b tak, aby b2 b + 1
bylo dělitelné 343. Vyhovuje h — 18.

2. řešení. Použijme rovnost (1). Položme a = 1 a hledejme b tak, aby
čísla b, b + 1 nebyla dělitelná sedmi a aby b2 + b + 1 bylo dělitelné 73.
Podle Eulerovy věty platí pro nesoudělná čísla r, s, že rrr(s) — 1 je dělitelné
číslem s, kde (p(s) je počet přirozených čísel menších než s a nesoudělných s s.

(1)
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Je-li tedy r číslo, které není dělitelné sedmi, je
_ 1 = r6-72 - 1 = (r2 72 - 1) (r4-72 + z-2-72 + 1)

dělitelné 73, a není-li ani r98 — 1 dělitelné sedmi, bude r2-98 + r98 + 1
dělitelné 73. Dvojice a = 1, b — r98 tedy vyhovuje podmínkám úlohy,
pokud žádné z čísel

r, r98 — 1, b -f 1 = r98 + 1

není dělitelné sedmi.

Není-li r dělitelné sedmi, dává rG podle Fennatovy věty při dělení sedmi
zbytek 1. Protože 98 = 6.16 + 2, dávají čísla r98 a r2 při dělení sedmi stejný
zbytek, takže stačí najít takové r, aby žádné z čísel r, r2 — 1, r2 -f 1 nebylo
dělitelné sedmi. Odtud plyne, že dvojice a = 1, b = r98 vyhovují úloze,
právě když r dává při dělení sedmi zbytek 2, 3, 4 nebo 5.

3. řešení. Řešením úlohy jsou právě ty dvojice (a, b), pro něž a # 0
(mod 7), b ф 0 (mod 7), a + b ф 0 (mod 7) a

a2 + ab + b2 = 0 (mod 73).

Vyhovuje-li dvojice (a, b) rovnici (2), vyhovuje jí zřejmě i dvojice (ka, kb)
pro libovolné přirozené číslo k. Vyhovuje-li tedy úloze dvojice (a, b), vy-
hovuje podle Eulerovy věty (viz 2. řešení) i dvojice (1, a293b). Chceme-li
tedy najít všechny dvojice (a, b) vyhovující úloze, stačí najít všechna řešení
tvaru (1, t), ostatní pak budou tvaru (к, kt), kde к щк 0 (mod 7).

Řešme tedy rovnici

(2)

t2 + t+ 1=0 (mod 73).

Vyhovuje-li t rovnici (3), vyhovuje jí i (mod 7) a snadno zjistíme, že t = 2
(mod 7) nebo t = 4 (mod 7).

Nechť t ss 2 (mod 7), tj. t — Im + 2. Pak má rovnice

(Jm + 2)2 + (7m + 2) + 1 == 0 (mod 72),

(3)

neboli

35,„ + 7 = 0 (mod 72),

neboli

5w 4-1=0 (mod 7)
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řešení m ^ 4 (mod 7). Proto vyhovuje-li t = 2 (mod 7) rovnici (3), je
ř h= 30 (mod 72), tj. ř = 72 w + 30. Platí tedy

(72л + 30)2 +(72л + 30) + 1 = o (mod 73),

neboli

61n + 19 = 0 (mod 7)

a odtud n = 6 (mod 7). V případě t == 2 (mod 7) jsme našli jediné řešení
rovnice (3) í = 324 (mod 73).

V případě t = 4 (mod 7) najdeme analogicky druhé řešení rovnice (3)
t = 18 (mod 73).

Řešením úlohy jsou všechny dvojice přirozených čísel

(a, b) = {k, 18A) nebo (k, 324k) (mod 73),

kde к # 0 (mod 7).

149. Uvažujme dvě kružnice R — (O, r) a 5' = (O, v), kde 0 < r < 5 < 1.
Na kružnici R existuje bod X takový, že S = C(X). Je to bod X, pro nějž
a(X) = r(s — /•) (zřejmě 0 < a(A') < 1). Nevyskytuje-li se barva bodu X
na kružnici S, znamená to, že množina všech barev na kružnici R se liší
od množiny všech barev na kružnici S.

Kdyby dokazované tvrzení neplatilo, znamenalo by to, že na každých
dvou různých kružnicích se středem O a poloměrem menším než 1 jsou
různé množiny barev. Množina všech barev, jimiž jsou obarveny body
roviny, by tedy měla nekonečně mnoho podmnožin a nebyla by konečná.

150. Označme M střed strany AR, M' pravoúhlý průmět bodu M na

přímku CD (obr. 158). Protože podle předpokladu leží bod M' na kružnici
s průměrem AB, je trojúhelník BM'M rovnoramenný, neboli

1
\^MBM'\ = \ *MM'B\ = у \ ^AMM'\.

Dále označme N střed strany CD a N' jeho průmět na přímku AB. Protože
| *MM'D\ = | £NN'A| = 90°, je

\*AMM'\ = \ *DNN'\
a body M, M', N, N' leží na kružnici s průměrem MN.
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D0

Obr. 158

D
N

C=M'

У

ВA=N' M

Obr. 160 Obr. 161

Kružnice nad průměrem CD se dotýká přímky AB, právě když troj-
úhelník CN'N je rovnoramenný, tj. právě když

1
|£/VČW'| - — \bDNN'\ - — \ ЬАММ'\ = \*MBM'\.

To nastane pro M' Ф C a N' Ф В právě tehdy, leží-li body M', N\ В, C
na kružnici (obr. 158, 159). Pokud je M' — C (obr. 160) nebo N' = В
(obr. 161), je zřejmě |%.NCN'\ = |právě když MN\\BC, tj.
AD\\BC, takže v tomto speciálním případě jsme s důkazem hotovi (do-
konce bude A — N\ resp. D = M').

Zbývá ukázat, že čtyři různé body M', N’, В, C leží na kružnici, právě
když

\*AMN\ = \ *ЛВСЪ

tj. jsou-li protější strany ВС a AD čtyřúhelníku ABCD rovnoběžné. To
ale plyne okamžitě z věty o obvodových úhlech - jen je třeba uvážit všech-
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ny možné polohy bodů M', N' vůči bodům M, N, В, C (podle toho je
buď \^N'MN\ = \ *N'M’N\ nebo \^N'MN\ = 180° — \*N'M'N\ a po-
dobně buď |*JV'J3C| = 180° — |*N'M'N\ nebo |*W'5Cj = \ *N'M'N\.
Ze všech 16 možností však stačí uvažovat jen případy uvedené na obr.
162 a)—e) (případ M' = N, N' = M je triviální). Tím je důkaz hotov.

7Г
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Poznámka. Poslední tvrzení zřejmě platí, i když MN je libovolná tětiva
kružnice к (obr. 162): Předpokládejme, že body M, N, M', N', leží na
kružnici, bod В leží na přímce MN' a bod C na přímce M'N, M' Ф С Ф
ф В Ф N'. Potom body M', N', В, C leží na kružnici, právě když MN\\BC.

2. řešení. Označme M střed strany AB, N střed strany CD a M', N'
jejich kolmé průměty na protější strany (obr. 163). Strany ВС a AD budou
rovnoběžné, právě když bude každá z nich rovnoběžná s příčkou MN,
tj. právě když bude pro obsahy příslušných trojúhelníků platit

S(MNB) = S(MNC) a S(MNA) = S(MND).
Protože

1
S(MNA) = S(MNB) = — \AB\ \NN'\

a

1 1 \AB |
S(MNC) - S(MND) - — \CD\ \MM’\ = — \CD\ —,

\CD\
jsou strany ВС a AD rovnoběžné, právě když liWV'l = —tj. právě když

se kružnice nad průměrem CD dotýká strany AB.

Л M N'

Obr. 163

3. řešení. Pokud AB\\CD, dotýká se zřejmě kružnice nad průměrem CD
přímky AB, právě když \CD\ = \AB\, tj. právě když ABCD je rovnoběžník.

Jsou-li přímky AB, CD různoběžné, označme V jejich průsečík, o osu
úhlu BVC, M a N středy stran AB a CD (obr. 164). Uvažujme zobrazení Z,
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které dostaneme složením osové souměrnosti podle osy o a stejnolehlosti
\VN\

se středem V a koeficientem ——. V tomto zobrazení bude Z{M) = N.

Protože kružnice к sestrojená nad průměrem AB má střed v bodě M a do-
týká se přímky CD, bude se kružnice nad průměrem CD se středem Z(M)
dotýkat přímky AB, právě když bude obrazem kružnice к v zobrazení Z,
tj. právě když bude Z(A) — D a Z{B) = C. Zřejmě však je AZ{A)\\BZ{B).

Cy
у

У

N

My
D,

^ \
к

\

ВMv A

Obr. 164

151. Uvažujme konvexní и-úhelník А\Аг-. .An- S indexy budeme po-
čítat modulo n.

Je-li AiAj úhlopříčka, je podle trojúhelníkové nerovnosti
\AiA)| + \Aí+iA]+i\ > \AíAí+i\ + \AjAj+ i|.

n(n — 3)
úhlopříček AiAj, dostanemeSečteme-li tyto nerovnosti pro všech

vlevo každou úhlopříčku dvakrát a vpravo každou stranu (и — 3)-krát,
tedy

2d > (h — 3)/;.
Pro délku úhlopříčky AiAj dále platí

\A{Aj\ < \AíAí+i\ + ... + \Aj~iAj\,
\AiAj\ < \AjAj+i\ + ... + \Aí-iAí\.

(0

Je-li и = 2k + 1, vezměme pro každou úhlopříčku AiAj tu z nerovností
n{n— 3)

(1), která má na pravé straně menší počet sčítanců, a těchto 2
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nerovností sečtěme. Dostaneme nerovnost, na jejíž levé straně je d a na

pravé straně je součet délek stran, v němž se každá strana vyskytuje to-
likrát, pro kolik úhlopříček leží v »menší« ze dvou částí, na které je obvod
úhlopříčkou rozdělen. Např. pro stranu A\An vychází z vrcholu Au jediná
taková úhlopříčka, z vrcholu Au-1 dvě, ..., z vrcholu A2 jich vychází
к— 1 a z vrcholu A\ také к— 1. Na pravé straně je tedy každá strana
započtena tolikrát, kolik je

1 + 2-)- ... -j- (k — 1) + (/c — 1),
takže

(k — m + 2)
d <

2

Je-li n — 2k, vezměme pro každý »průměr« AiAt+u nerovnost

p
\AiAi+u\ < —

a pro ostatní úhlopříčky opět tu z nerovností (1), která má na pravé straně
n{n — 3)

menší počet sčítanců. Sečteme-li těchto nerovností, dostaneme
2

(k — 2)(k + 1) № — 2p
d<k — + P = 2~p =2

■mi^H
Poznámka. Nerovnosti, které jsme dokázali, nelze zlepšit. Pro mnoho-

úhelník, jehož dvě sousední strany mají délku 1 a ostatní strany jsou velmi
malé, bude

2d
p == 2, d=n — 3 a — ~n — 3.

P

Pro mnohoúhelník, jehož »protilehlé« strany AuAu+i, AnA\, ledtk

mají délku 1 a ostatní strany jsou velmi malé, bude

p = 2, d k(n — k) — 2
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a

-№2d
k(n — к) — 2 — 2.

P

2. řešení. Zvolme přímku q a pravoúhlé průměty vrcholů A\, A2, ..., An
uvažovaného mnohoúhelníku na přímku q označme Av Á2, ..., Án.

Uvažujme nyní body В i, В 2, ..., Bn ležící v přímce v tomto pořadí
a odhadněme součet délek s všech úseček BtBj pomocí délky úsečky B\Bn
a čísla n. Zřejmě

í S (IJSiBal + I ВгВп\) + (№й3| + |ЯзЗД + ... + (l-BA-il +
+ \Bn-iBn\) -f- \B\Bn\ — (n — 1) \BiBn\-

Dále si všimněme, že každá úsečka BiBj se skládá z úseček B^Bk+i, při-
čemž každá úsečka BkB/c+i je částí právě k(n — k) úseček BiBj. Je tedy

n — 1

S = 2 k{n — k) \BkBk+i\-
k = 1

Přitom

4k(n — к) — /i3 — (n — 2Л)3

a součin k(n — k) nabývá tedy největší hodnoty pro к , takže

П — 1

2 Mr n n + 1
\B/cBfc+1| = ~ \BiBn\.S й 2

1

Odvodili jsme nerovnost

1МЖ(n — l) \BiBn\ й s й (2)\BiBn\.

Jsou-li mezi body В i, В2, ..., Bn aspoň čtyři různé, jsou přitom na obou
stranách ostré nerovnosti.

Průměty A[, A2, ..., Án nemusí sice ležet na přímce q v tomto
pořadí, vzhledem ke konvexitě mnohoúhelníku A\A 2... An je však součet

\A\A2\ + \A2A3\ + ... + \An_1An\ + IАлA11
roven dvojnásobku nejdelší z úseček Á{Aj. Je tedy podle (2)

(«- o aAA'a\ +1441 + • ■ • + l44l) á 2 21441 =
i < j
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МФ] + \А2А3\ + . . . + \АпАjl),

přičemž \ÁiÁj\ — \AtAj\ cos ац, označíme-li ац úhel sevřený přímkami

q (o <;
Otáčejme nyní zvolenou přímku q kolem nějakého bodu O. Pro 0 ^ .v < тг

tak dostaneme přímku q(x), která bude s přímkou AtAj svírat úhel ay(x)

, bude .tedy pro každé v: e <0, n) platit(o ^ aij(x) й у)
(n — 1) (]AiA2I cos aia(v) + \А2Аз\ cos ос2з(х) + ... +

4- \AnAi\ cos a»i(x)) ^ 22 \AíAj\ cos ay(x) ^
i<j

íFf] (\AiAo\ cos ai2(x) + \A2A3\ cos a23(x) + ... +й

+ \AnAi\ cos ani(v)).

Přitom je pro 1 rg i <j ^ n

f cos y.ij(x) d.v = J |cos x\ dx = 2.

Zintegrujeme-li tedy poslední nerovnost na intervalu <0, тс), dostaneme

2(n - I) (\AiA2\ + \АгА3\ + ... + \AnAil) S 4 2\A,A,\ £
Í<i

[t][~T~]^ 2 (\AiA2\ 4- |A2A31 4- ... 4- \AnAi|),

neboli

ыт{n — 1 )p й 2(4 4- p) й P•

Protože n > 3 a jen pro konečně mnoho x e <0, тс) se stane, že některé
průměty splynou, budou na obou stranách dokonce ostré nerovnosti, tj.

n 4- П
—\p,(n — 1 )p < 2(4 4- p) <
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čili

(т ii -1- 1
(n — 3)p < 2d <

3. řešení (dolní odhad). Pro A e jž, 3, ..
f n — 2
П 3’ • •2 ,

úhlopříček AíAj, kde j — i = k (s indexy počítáme modulo ri), tj. úhlo-
příček, které »obeházejí« právě к — 1 vrcholů, a součet jejich délek označme

n — 2
die. Pro к < —-— označme ještě o* součet délek »vnějších částí« úhlo-

příček z U/t, tj. těch částí, které nejsou od obvodu mnohoúhelníku odděleny
jinou úhlopříčkou z U* (v obr. 165 jsou znázorněny silně pro к = 3).
Zřejmě

21/7.2

n — 1
v případě lichého n* >

2

v případě sudého и označme U* množinu všecha A g

P < O/c й dk-
ii — 2

Je-li n sudé, A = —-—, je (obr. 166)

P

2 dk •

Sečteme-li tyto nerovnosti pro všechna uvažovaná k, dostaneme v případě
lichého n

n — 3
. -f- dn-i — d

2 p < d2 ds "k • •
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a v případě sudého //

ii — 4 p

~2~P + — C d> 4- d3 -j- .
, . 4 dn- 2 — d-,

2

což dává levou část dokazované nerovnosti.

4. řešení (dolní odhad). Budeme postupovat indukcí podle //. Snadno
zjistíme, že pro n — 4 dokazovaná nerovnost platí. Nechť к ^ 4, předpo-
kládejme, že levá nerovnost platí pro každý konvexní /с-úhelník A\A г... А к,
a mějme dán nějaký konvexní (k 4 l)-úhelník A\... AkAk+i- Součeť délek
jeho úhlopříček označme d a obvod p.

Pro každé i e (1, 2, ..., к 4 J) z něho sestrojme konvexní A>úhelník
tak, že dvojici stran vycházejících z vrcholu Ai nahradíme úhlopříčkou
Ai-iAi+i (s indexy počítáme modulo к 4- !)• Podle indukčního předpokladu
je

(k — 3) (p — \Aí~iAí\ — \AtAi+i\ 4- \Ai-iAi+i\) < 2(d—\Ai~iAt+i\ — dj),

kde di je součet délek úhlopříček vycházejících z vrcholu A i uvažovaného
(Je 4 l)-úhclníku. Sečteme-li tyto nerovnosti pro všechna dostaneme

k +1

(k — 3) ({к + 1 )p — 2p 4- 2 \Aí-iAí+i\) <
i=1

&+1

< 2((/c 4 \)d—2d—S, \Ai-iAi+i\),
i=i

neboli

7c+ 1

(k — 3)p 4 2 \Ai-iAi+i\ < 2d
i-1

Teď si stačí uvědomit (např. jako v 3. řešení), že
7c 1-1

2 \Aí-iAí+i\ > p,
i-i

a dostaneme nerovnost

(k — 2)p < 2d,

což je levá strana dokazované nerovnosti pro n = k 4 1.
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152. Nejprve dokážeme, že к > m, což plyne z nerovnosti
ad d

2k —2m=a-\-d — (b + c)=a — b + d — = {b-a) l--l)>0.b

Z rovnosti

a(2k — a) = &(2W — 6)
dostaneme

2m\ b2 — a2 = (6 + (b — a).
Čísla b + a, b — a nejsou obě dělitelná čtyřmi, protože jejich součet 2b
není čtyřmi dělitelný. Jedno z čísel b + a, b — a je tedy podle (1) dělitelné
číslem 2m~1. Je však

(1)

b + c
b — a < b < — 2m-l

2

a zároveň

Ъ-\-а<Ь-\-с = 2m,

takže

b + a — 2m~1. (2)
Podobně je

c — a = b + c - (b + a) = 2m — 2m-1 = 2m~1.
Protože a, b, c jsou lichá čísla, plyne z (2), že a, b jsou nesoudělná čís-

la, a z (3), že a, c jsou nesoudělná čísla. Z podmínky ad — bc vidíme, že
a | bc. Musí tedy být a — 1.

Navíc odtud plyne, že b — 2m~l— 1, c — 2m~1J\- 1 a d = 22(-т~1'>— 1,
kde m > 2 je přirozené číslo.

2. řešení. Nejprve ukážeme, že к > m:

22k = (d + a)2 = (d — a)2 + 4ad > (c — ft)2 + 4bc — (b + c)2 = 22m.
Uvažujme přirozená čísla x, y, pro která je

a — 2k~1— x, b = 2m_1—у, c = 2m~1 + y,
d — 2fc-1+ x.

(3)

(4)

Platí

22k~2—x2 = ad = bc = 22m_2—j2, (5)
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takže

y2 — 22A--2 22m~2,
neboli

(6)(x — y) (x + y) = 22m~2{22<k~m) — 1).
Čísla jc, у jsou lichá, čísla x + y, x —у sudá a přitom nemohou být obě
zároveň dělitelná čtyřmi, protože

(7)x -\- у + л* — у — 2x.
Je tedy {x -f y, x — y) = (2r, 22m~3s} pro nějaká lichá čísla r a s. Odtud
plyne podle (7) a (6)

x = 22í»"4j + r, rs 22<*-™)— 1,

takže podle (4)
a — 2k~l— x = 2k~l— 22 (m~%)s — r

a dále

1 ^ sa = 2*-hy— 22(m_2)j2 — 22(~k~m) + 1 =

= 1 — (2m~2s — 2k~m)2 й 1,

tedy
a — s = 1.

Navíc je m — 2 = к — m, tj. к — 2m — 2 a ze (4) dostaneme
* = 22m~3— 1, d = a + 2x = 22wí-2— 1 = = 22m_2—>>2,

takže

b = 2m~1— 1, c = 2й*-1 + 1.

Podmínkám úlohy tedy vyhovují právě všechny čtveřice
a = \, b — 2m~1— 1, c = 2я*-1 + 1, í/= 22wi~2— 1,

kde m > 2 je přirozené číslo.
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