Previous |  Up |  Next


semispray; connection; path; torsion; tension; spray; homogeneous dynamical connection
The homogeneity properties of two different families of geometric objects playing a crutial role in the non-autonomous first-order dynamics - semisprays and dynamical connections on $R\times TM$ - are studied. A natural correspondence between sprays and a special class of homogeneous connections is presented.
[1] Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings Publ. Comp., Reading, 1978. MR 0515141
[2] Crampin, M., Prince, G.E., Thompson, G.: A geometrical version of the Helmholtz conditions in time dependent Lagrangian dynamics. J. Phys. A: Math. Gen. 17 (1984), 1437-1447. MR 0748776
[3] de Andres, L.C., de León, M., Rodrigues, P.R.: Connections on tangent bundles of higher order. Demonstratio Mathematica 22 (3) (1989), 607-632. MR 1041903
[4] de Andres, L.C., de León, M., Rodrigues, P.R.: Connections on tangent bundles of higher order associated to regular Lagrangians. Geometriae Dedicata 39 (1991), 12-18. MR 1116206
[5] de León, M., Mello, M.H., Rodrigues, P.R.: A geometrical approach to the inverse problem of non-autonomous lagrangian dynamics. (preprint, 1990).
[6] de León, M., Rodrigues, P.R.: Dynamical connections and non-autonomous lagrangian systems. Ann. Fac. Sci. IX (1988), Tolouse, 171-181. MR 1425006
[7] de León, M., Rodrigues, P.R.: Generalized Classical Mechanics and Field Theory. Mathematical Studies 112 (1985), North - Holland, Amsterdam. MR 0808964
[8] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205-209. MR 1189217
[9] Klein, J.: Almost symplectic structures in dynamics. Proc. Conf. Diff. Geom. and Its Appl. (1986), Brno, 79-91. MR 0923345
[10] Klein, J.: Geometry of sprays. Lagrangian case. Principle of least curvature. Proc.IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, Volume I-Geometrical Dynamics (1982), 177-196. MR 0773487 | Zbl 0566.58012
[11] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. (to appear). MR 1244453
[12] Mangiarotti, L., Modugno, M.: Connections and differential calculus on fibred manifolds. Applications to field theory. Instituto di Matematica Applicata 11 “G. Sansone”, Firenze (to appear).
[13] Modugno, M.: Torsion and Ricci tensor for non-linear connections. (to appear).
[14] Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series 142 (1989), Cambridge University Press. MR 0989588 | Zbl 0665.58002
[15] Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, 1965. MR 0193578
[16] Thompson, G.: Second-order equation fields and the inverse problem of Lagrangian dynamics. J. Math. Phys. 28 (12) (1987), 2851-2857. MR 0917639 | Zbl 0638.70013
[17] Vondra, A.: On some connections related to the geometry of regular higher-order dynamics. (preprint, 1990).
[18] Vondra, A.: Semisprays, connections and regular equations in higher order mechanics. Proc. Conf. Diff. Geom. and Its Appl. (19891990), World Scientific, Brno Singapore, 276-287. MR 1062030
Partner of
EuDML logo