Previous |  Up |  Next


semi-holonomic 3-jet; natural transformation
Let $\bar{J}^3$ be the functor of semi-holonomic $3$-jets and $\bar{J}^{3,2}$ be the functor of those semi-holonomic $3$-jets, which are holonomic in the second order. We deduce that the only natural transformations $\bar{J}^3 \rightarrow \bar{J}^3$ are the identity and the contraction. Then we determine explicitely all natural transformations $\bar{J}^{3,2}\rightarrow \bar{J}^{3,2}$, which form two $5$-parameter families.
[1] Ehresmann, C.: Extension du calcul des jets aux jets non-holonomes. C.R.Acad. Sci. Paris, 239 (1954), 1762-1764. MR 0066734 | Zbl 0057.15603
[2] Kolř, I.: The contact of spaces with connection. J. Differential Geometry 7 (1972), 563-570. MR 0415660
[3] Kolř, I., Michor, P., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[4] Kolř, I., Vosmansk , G.: Natural operations with second order jets. Rendiconti del Circolo Matematico di Palermo, Serie II, n. 14 (1987), 179-186. MR 0920854
[5] Kolř, I., Vosmansk , G.: Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181-186. MR 1063764
[6] Virsik, G.: Total connections in Lie groupoids. Arch. Math. (Brno), 31 (1995), 183-200. MR 1368257 | Zbl 0841.53024
Partner of
EuDML logo