Previous |  Up |  Next


confluent; connected; continuum; joining; mapping; monotone; pseudo-confluent; quasi-component; semi-confluent; weakly confluent
Necessary and sufficient conditions are found in the paper for a mapping between continua to be monotone, confluent, semi-confluent, joining, weakly confluent and pseudo-confluent. Three lists of these conditions are presented. Two are formulated in terms of components and of quasi-components, respectively, of connected closed subsets of the range space, while the third one in terms of connectedness between subsets of the domain space. Some basic relations concerning these concepts are studied.
[E] Engelking, R.: General topology. Heldermann Verlag Berlin, 1989. MR 1039321 | Zbl 0684.54001
[G] Grispolakis, J.: Confluent and related mappings defined by means of quasi-components. Canad. J. Math. 30 (1978), 112-132. MR 0481172 | Zbl 0376.54004
[HY] Hocking, J. G., Young, G. S.: Topology. Addison-Wesley, 1961. MR 0125557
[K] Kuratowski, K.: Topology. vol. 2, Academic Press and PWN, 1968. Zbl 0849.01044
[L1] Lelek, A.: On confluent mappings. Colloq. Math. 15 (1966), 223-233. MR 0208574 | Zbl 0139.40602
[L2] Lelek, A.: A classification of mappings pertinent to curve theory. in: Proceedings Univ. Oklahoma Topology Conference 1972, Norman, Oklahoma 1972, 97-103. MR 0358667 | Zbl 0252.54019
[L3] Lelek, A.: Properties of mappings and continua theory. Rocky Mountain J. Math. 6 (1976), 47-59. MR 0390996 | Zbl 0326.54024
[LT] Lelek, A., Tymchatyn, E. D.: Pseudo-confluent mappings and a classification of continua. Canad. J. Math. 27 (1975), 1336-1348. MR 0418022
[M] Maćkowiak, T.: Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91. MR 0522934
[W] Whyburn, G. T.: Analytic topology. Amer. Math. Soc. Colloq. Publ. 28 (1942). Zbl 0061.39301
Partner of
EuDML logo