Article
Keywords:
confluent; connected; continuum; joining; mapping; monotone; pseudo-confluent; quasi-component; semi-confluent; weakly confluent
Summary:
Necessary and sufficient conditions are found in the paper for a mapping between continua to be monotone, confluent, semi-confluent, joining, weakly confluent and pseudo-confluent. Three lists of these conditions are presented. Two are formulated in terms of components and of quasi-components, respectively, of connected closed subsets of the range space, while the third one in terms of connectedness between subsets of the domain space. Some basic relations concerning these concepts are studied.
References:
                        
[G] Grispolakis, J.: 
Confluent and related mappings defined by means of quasi-components. Canad. J. Math. 30 (1978), 112-132. 
MR 0481172 | 
Zbl 0376.54004[HY] Hocking, J. G., Young, G. S.: 
Topology. Addison-Wesley, 1961. 
MR 0125557[K] Kuratowski, K.: 
Topology. vol. 2, Academic Press and PWN, 1968. 
Zbl 0849.01044[L2] Lelek, A.: 
A classification of mappings pertinent to curve theory. in: Proceedings Univ. Oklahoma Topology Conference 1972, Norman, Oklahoma 1972, 97-103. 
MR 0358667 | 
Zbl 0252.54019[L3] Lelek, A.: 
Properties of mappings and continua theory. Rocky Mountain J. Math. 6 (1976), 47-59. 
MR 0390996 | 
Zbl 0326.54024[LT] Lelek, A., Tymchatyn, E. D.: 
Pseudo-confluent mappings and a classification of continua. Canad. J. Math. 27 (1975), 1336-1348. 
MR 0418022[M] Maćkowiak, T.: 
Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91. 
MR 0522934[W] Whyburn, G. T.: 
Analytic topology. Amer. Math. Soc. Colloq. Publ. 28 (1942). 
Zbl 0061.39301