Previous |  Up |  Next


linear operator; rank; dominate; perimeter; $(U,V)$-operator
For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
[1] L. B. Beasley and N. J. Pullman: Boolean rank-preserving operators and Boolean rank-1 spaces. Linear Algebra Appl. 59 (1984), 55–77. DOI 10.1016/0024-3795(84)90158-7 | MR 0743045
[2] L. B. Beasley, S. Z. Song and S. G. Lee: Zero term rank preservers. Linear and Multilinear Algebra 48 (2001), 313–318. DOI 10.1080/03081080108818677 | MR 1928400
[3] S. Z. Song, S. R. Park: Maximal column rank preservers of fuzzy matrices. Discuss. Math. Gen. Algebra Appl. 21 (2001), 207–218. DOI 10.7151/dmgaa.1038 | MR 1894316
Partner of
EuDML logo