Article
Keywords:
difference; quantum difference; quantum derivative; power series
Summary:
We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on  $I$ then $f$ is analytic on  $I$.
References:
                        
[1] S. G. Bernstein: Leçons sur les propriété extrémales et la meilleure approximation des functions analytiques d’une variable réelle. Gautier-Villars, Paris, 1926. (French)
[2] S. G.  Bernstein: 
Sur les fonctions absolument monotones. Acta Math. 52 (1928), 1–66. 
DOI 10.1007/BF02592679[3] G.  Gasper, M.  Rahman: 
Basic hypergeometric series. Encyclopaedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. 
MR 1052153[5] V.  Kac, P.  Cheung: 
Quantum Calculus. Springer-Verlag, New York, 2002. 
MR 1865777[8] T.  Sjödin: On generalized differences and Bernstein’s analyticity theorem. Research report No  9, Department of Mathematics, University of Umeå, Umeå, 2003.