Previous |  Up |  Next


phase-field models; maximal monotone operators; transmission problems; parabolic PDEs
A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to 0 in one of the domains. It is also proved that the limit formulation admits a unique solution in a suitable weak sense.
[1] C. Baiocchi: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert. Ann. Mat. Pura Appl. IV, 76 (1967), 233–304. DOI 10.1007/BF02412236 | MR 0223697 | Zbl 0153.17202
[2] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976. MR 0390843 | Zbl 0328.47035
[3] H. Brézis: Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973. MR 0348562
[4] G. Caginalp: An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92 (1986), 205–245. MR 0816623 | Zbl 0608.35080
[5] P. Colli, G. Gilardi and M. Grasselli: Global smooth solution to the standard phase-field model with memory. Adv. Differential Eqations 2 (1997), 453–486. MR 1441852
[6] P. Colli, G. Gilardi and M. Grasselli: Well-posedness of the weak formulation for the phase-field model with memory. Adv. Differential Equations 2 (1997), 487–508. MR 1441853
[7] P. Colli, G. Gilardi and M. Grasselli: Asymptotic analysis of a phase-field model with memory for vanishing time relaxation. Hiroshima Math. J. 29 (1999), 117–143. MR 1679579
[8] A. Damlamian, N. Kenmochi and N. Sato: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation. Nonlinear Anal. 23 (1994), 115–142. DOI 10.1016/0362-546X(94)90255-0 | MR 1288502
[9] P. Fernandes, G. Gilardi: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997), 957–991. DOI 10.1142/S0218202597000487 | MR 1479578
[10] G. J. Fix: Phase field models for free boundary problems. In: Free boundary problems: theory and applications; vol II, A. Fasano and M. Primicerio (eds.), Pitman Res. Notes Math. Ser. 79, Longman, London, 1983, pp. 580–589. Zbl 0518.35086
[11] L. D.  Landau, E. M. Lifshitz: Statistical Physics. Addison-Wesley Publishing, Reading, Massachusetts, 1958. MR 0136378
[12] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars, Paris, 1969. MR 0259693 | Zbl 0189.40603
[13] O. Penrose, P. C. Fife: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990), 44–62. DOI 10.1016/0167-2789(90)90015-H | MR 1060043
[14] G. Savaré, A. Visintin: Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Natur. Rend. Lincei IX 8 (1997), 49–89. MR 1484545
[15] G. Schimperna: Weak solution to a phase-field transmission problem in a concentrated capacity. Math. Methods Appl. Sci 22 (1999), 1235–1254. DOI 10.1002/(SICI)1099-1476(19990925)22:14<1235::AID-MMA82>3.0.CO;2-W | MR 1710707 | Zbl 0933.35198
[16] J. Simon: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. IV 146 (1987), 65–96. MR 0916688
[17] A. Visintin: Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985), . MR 0804824 | Zbl 0585.35053
Partner of
EuDML logo