Previous |  Up |  Next


density theorems; finite element method
We present a detailed proof of the density of the set $C^\infty (\overline{\Omega })\cap V$ in the space of test functions $V\subset H^1(\Omega )$ that vanish on some part of the boundary $\partial \Omega $ of a bounded domain $\Omega $.
[1] R. A.  Adams: Sobolev Spaces. Academic Press, New York-San Francisco-London, 1975. MR 0450957 | Zbl 0314.46030
[2] O. V.  Besov: On some families of functional spaces. Imbedding and continuation theorems. Doklad. Akad. Nauk SSSR 126 (1959), 1163–1165. (Russian) MR 0107165 | Zbl 0097.09701
[3] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[4] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev space. Commentat. Math. Univ. Carol. 14 (1973), 609–622. MR 0336317 | Zbl 0268.46036
[5] A.  Kufner, O. John, and S. Fučík: Function Spaces. Academia, Praha, 1977. MR 0482102
[6] P. I. Lizorkin: Boundary properties of functions from “weight” classes. Sov. Math. Dokl. 1 (1960), 589–593. MR 0123103 | Zbl 0106.30802
[7] J.  Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967. MR 0227584
[8] V. I. Smirnov: A Course in Higher Mathematics  V. Gosudarstvennoje izdatelstvo fiziko-matematičeskoj literatury, Moskva, 1960. (Russian)
[9] S. V. Uspenskij: An imbedding theorem for S. L. Sobolev’s classes  $W_p^r$ of fractional order. Sov. Math. Dokl. 1 (1960), 132–133. MR 0124731
[10] A.  Ženíšek: Sobolev Spaces and Their Applications in the Finite Element Method. VUTIUM, Brno, 2005.
Partner of
EuDML logo