Previous |  Up |  Next


magnetic field; dipole; ellipsoid
The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field ${\mathbf B}$ due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics $\mathbb{E}_n^m$, which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math. Phys. 44 (2003), 220–241), where ${\mathbf B}$ was computed from an ellipsoidal harmonic expansion of order 2. The present derivations show how the field can be evaluated to arbitrary order using numerical procedures for evaluating the roots of Lamé polynomials of degree 5 or higher. This can be accomplished using an optimization technique for solving nonlinear systems of equations, which allows one to acquire an understanding of the truncation error associated with the harmonic series expansion used for the calculation.
[1] S. Baillet, J. C.  Mosher, R. M.  Leahy: Electromagnetic brain mapping. IEEE Signal Proc. Mag. 18 (2001), 14–30. DOI 10.1109/79.962275
[2] W. E. Byerly: An Elementary Treatise on Fourier Series and Spherical, Cylindrical and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Ginn, Boston, 1893.
[3] M. Camilleri, W. L. Hasler, H. P. Parkman, E. M. M. Quigley, E.  Soffer: Measurement of gastrointestinal motility in the GI laboratory. Gastroenterol 115 (1998), 747–762. DOI 10.1016/S0016-5085(98)70155-6
[4] D.  Cohen: Magnetoencephalography—evidence of magnetic fields produced by alpha-rhytmic currents. Science 161 (1968), 784–786. DOI 10.1126/science.161.3843.784
[5] D.  Cohen, E. A  Edelsack, J. E  Zimmerman: Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer. Appl. Phys. Lett. 16 (1970), 278–280. DOI 10.1063/1.1653195
[6] D.  Cohen: Magnetoencephalography—detection of brain’s electrical activity using a superconducting magnetometer. Science 175 (1972), 664–666. DOI 10.1126/science.175.4022.664
[7] A. Corrias, M. L. Buist: A quantitative model of gastric smooth muscle cellular activation. Physiol. Meas. 25 (2007), 849–861.
[8] G.  Dassios, F.  Kariotou: Magnetoencephalography in ellipsoidal geometry. J.  Math. Phys. 44 (2003), 220–241. DOI 10.1063/1.1522135 | MR 1946700
[9] B. O.  Familoni, T. L.  Abell, K. L.  Bowes: Model of gastric electrical activity in health and disease. IEEE Trans. Biomed. Eng. 42 (1995), 647–657. DOI 10.1109/10.391163
[10] W. E.  Featherstone, M. C.  Dentith: A geodetic approach to gravity data reduction for geophysics. Comput. Geosci. 23 (1997), 1063–1070. DOI 10.1016/S0098-3004(97)00092-7
[11] M. S.  Hämäläinen, J.  Sarvas: Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol. 32 (1987), 91–97. DOI 10.1088/0031-9155/32/1/014
[12] M. S.  Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, O. Lounasmaa: Magnetoencephalography—theory, instrumentation and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65 (1993), 413–497. DOI 10.1103/RevModPhys.65.413
[13] E. W. Hobson: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge, 1931. Zbl 0004.21001
[14] A. Irimia, L. A. Bradshaw: Theoretical ellipsoidal model of gastric electrical control activity propagation. Phys. Rev.  E 68 (2003), .
[15] A. Irimia: Electric field and potential calculation for a bioelectric current dipole in an ellipsoid. J.  Phys.  A, Math. Gen. 38 (2005), 8123–8138. DOI 10.1088/0305-4470/38/37/012 | MR 2169333 | Zbl 1073.92025
[16] A. Irimia: Ellipsiodal electrogastrographic forward modelling. Phys. Med. Biol. 50 (2005), 4429–4444. DOI 10.1088/0031-9155/50/18/012
[17] F.  Kariotou: Electroencephalography in ellipsoidal geometry. J.  Math. Anal. Appl. 290 (2004), 324–342. DOI 10.1016/j.jmaa.2003.09.066 | MR 2032245 | Zbl 1037.92021
[18] J.  Malmivuo, R. Plonsey: Bioelectromagnetism. Oxford University Press, New York, 1995.
[19] M. P.  Mintchev, K. L.  Bowes: Conoidal dipole model of electrical-field produced by the human stomach. Med. Biol. Eng. Comput. 33 (1995), 179–184. DOI 10.1007/BF02523038
[20] M. P.  Mintchev, S. J.  Otto, K. L. Bowes: Electrogastrography can recognize gastric electrical uncoupling in dogs. Gastroenterol 112 (1997), 2006–2011. DOI 10.1053/gast.1997.v112.pm9178693
[21] N.  Mirizzi, R.  Stella, U.  Scafoglieri: A model of extracellular waveshape of the gastric electrical activity. Med. Biol. Eng. Comput. 23 (1985), 33–37. DOI 10.1007/BF02444024
[22] N.  Mirizzi, R.  Stella, U.  Scafoglieri: Model to simulate the gastric electrical control and response activity on the stomach wall and on the abdominal surface. Med. Biol. Eng. Comput. 24 (1986), 157–163. DOI 10.1007/BF02443929
[23] Y. C. Okada, M.  Lauritzen, C.  Nicholson: MEG source models and physiology. Phys. Med. Biol. 32 (1987), 43–51. DOI 10.1088/0031-9155/32/1/007
[24] J W.  Phillips, R. M.  Leahy, J. C.  Mosher, B.  Timsari: Imaging neural activity using MEG and EEG. IEEE Eng. Med. Biol. Mag. 16 (1997), 34–42. DOI 10.1109/51.585515
[25] S. Ritter: The nullfield method for the ellipsoidal Stokes problem. J. Geod. 72 (1998), 101–106. Zbl 0999.86004
[26] G. Romain, J. P.  Barriot: Ellipsoidal harmonic expansions of the gravitational potential: theory and applications. Celest. Mech. Dyn. Astr. 79 (2001), 235–275. DOI 10.1023/A:1017555515763 | MR 1857572
[27] E. B.  Saff, A. D. Snider: Fundamentals of Complex Analysis with Applications to Engineering and Science, third edition. Prentice Hall, Upper Saddle River, 2003.
[28] J.  Sarvas: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32 (1987), 11–22. DOI 10.1088/0031-9155/32/1/004
[29] A.  Sommerfeld: Electrodynamics. Academic Press, New York, 1952. Zbl 0047.43904
Partner of
EuDML logo