Previous |  Up |  Next


LQ deterministic control; tracking problem
The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared to the classical LQ design.
[1] Dostál P., Mészáros, A., Mikleš J.: A modified LQ tracking problem. Journal Electrical Engrg. 45 (1994), 4, 129–133
[2] Hunt K. J., Šebek M.: Implied polynomial matrix equations in multivariable stochastic optimal control. Automatica 27 (1991), 2, 395–398 DOI 10.1016/0005-1098(91)90088-J | MR 1095430 | Zbl 0729.93083
[3] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 MR 0573447 | Zbl 0432.93001
[4] Kučera V.: New results in state estimation and regulation. Automatica 17 (1981), 745–748 DOI 10.1016/0005-1098(81)90021-2 | MR 0632848
[5] Kwakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley, New York 1972 MR 0406607 | Zbl 0276.93001
[6] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1985 MR 0787045 | Zbl 0655.93001
Partner of
EuDML logo