Previous |  Up |  Next


linear multivariable system with delay; stability
The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given.
[1] Artstein Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Automat. Control AC-27 (1982), 4, 869–879 DOI 10.1109/TAC.1982.1103023 | MR 0680488 | Zbl 0486.93011
[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays. Math. Comput. Simulation 45 (1998), 339–348 DOI 10.1016/S0378-4754(97)00113-4 | MR 1622412 | Zbl 1017.93506
[3] Bellman R., Cooke K. L.: Differential Difference Equations. Academic Press, London 1963 MR 0147745 | Zbl 0163.10501
[4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems. IEEE Trans. Automat. Control AC-46 (2001), 2, 336–339 DOI 10.1109/9.905705 | MR 1814584 | Zbl 1056.93607
[5] Gantmacher F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, New York 1959 MR 0107649 | Zbl 0927.15002
[6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems. Internat. J. Control 43 (1986), 3, 837–857 DOI 10.1080/00207178608933506 | MR 0828360 | Zbl 0599.93047
[7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, New York 1986 MR 0860947
[8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control AC-24 (1979), 4, 541–553 DOI 10.1109/TAC.1979.1102124 | MR 0538808 | Zbl 0425.93029
[9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering. Prentice–Hall, Englewood Cliffs, N.J. 1992 Zbl 0753.65002
[10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués. In: Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201–206
[11] Morse A. S.: Ring models for delay-differential systems. Automatica 12 (1976), 529–531 DOI 10.1016/0005-1098(76)90013-3 | MR 0437162 | Zbl 0345.93023
[12] Palmor Z. J.: Modified predictors. In: The Control Handbook (W. Levine, ed.), CRC Press, Boca Raton 1996, Section 10.9
[13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation. In: American Control Conference, Chicago 2000, pp. 2479–2480
[14] Smith O. J. M.: Closer control of loops with dead time. Chem. Engrg. Prog. 53 (1959), 217–219
[15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[16] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 MR 0787045 | Zbl 0655.93001
[17] Watanabe K., Ito M.: A process model control for linear systems with delay. IEEE Trans. Automat. Control AC-26 (1981), 6, 1261–1268 DOI 10.1109/TAC.1981.1102802 | Zbl 0471.93035
Partner of
EuDML logo