Previous |  Up |  Next


Birkhoff integral; convergence theorems; vector valued functions
We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$'s is involved and we assume $f_n\to f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.
[1] Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Amer. Math. Soc. 38 (1935), 357-378. MR 1501815 | Zbl 0013.00803
[2] Cascales, B., Rodríguez, J.: The Birkhoff integral and the property of Bourgain. Math. Ann. 331 (2005), 259-279. DOI 10.1007/s00208-004-0581-7 | MR 2115456
[3] J. Diestel, J. J. Uhl., Jr.: Vector measures. Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island (1977). MR 0453964 | Zbl 0369.46039
[4] Fremlin, D. H.: The McShane and Birkhoff integrals of vector-valued functions. University of Essex, Mathematics Department Reaearch, 1999, Report 92-10, available at
[5] Hille, E., Phillips, R.: Functional Analysis and Semi-Groups. Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island (1957). MR 0089373
[6] Kadets, V. M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K.: Some remarks on vector-valued integration. Mat. Fiz. Anal. Geom. 9 (2002), 48-65. MR 1911073 | Zbl 1084.28008
[7] Kadets, V. M., Tseytlin, L. M.: On `integration' of non-integrable vector-valued functions. Mat. Fiz. Anal. Geom. 7 (2000), 49-65. MR 1760946 | Zbl 0974.28007
[8] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Sequence Spaces. Springer-Verlag, Berlin, Heidelberg, New York (1977). MR 0500056 | Zbl 0362.46013
[9] Marraffa, V.: A characterization of absolutely summing operators by means of McShane integrable functions. J. Math. Anal. Appl. 293 (2004), 71-78. DOI 10.1016/j.jmaa.2003.12.029 | MR 2052532 | Zbl 1087.47023
[10] Potyrała, M.: Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions. Tatra Mt. Math. Publ. 35 (2007), 97-106. MR 2372438
[11] Potyrała, M.: The Birkhoff and variational McShane integrals of vector valued functions. Folia Mathematica, Acta Universitatis Lodziensis 13 (2006), 31-40. MR 2675441
[12] Rodríguez, J.: On the existence of Pettis integrable functions which are not Birkhoff integrable. Proc. Amer. Math. Soc. 133 (2005), 1157-1163. DOI 10.1090/S0002-9939-04-07665-8 | MR 2117218
[13] Rodríguez, J.: On integration of vector functions with respect to vector measures. Czech. Math. J. 56 (2006), 805-825. DOI 10.1007/s10587-006-0058-9 | MR 2261655
[14] Schwabik, Š., Guoju, Ye: Topics in Banach Space Integration. Series in Real Analysis, 10, World Scientific, Singapore (2005). MR 2167754
Partner of
EuDML logo