Previous |  Up |  Next


inductive dimension; theorem on dimension-lowering maps; component.
It is shown that for every pair of natural numbers $m\geq n\geq 1$, there exists a compact Fréchet space $X_{m,n}$ such that \item {(a)} $\mathop{\rm dim}X_{m,n}=n$, $\mathop{\rm ind}X_{m,n}=\mathop{\rm Ind}X_{m,n}=m$, and \item {(b)} every component of $X_{m,n}$ is homeomorphic to the $n$-dimensional cube $I^n$. \endgraf \noindent This yields new counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions.
[1] Arkhangel'skiǐ, A. V.: The spectrum of frequencies of a topological space and the product operation. Tr. Mosk. Mat. Obshch. 40 (1979), 171-206 Russian. MR 0550259
[2] Charalambous, M. G.: Two new inductive dimension functions for topological spaces. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 18 (1975), 15-25. MR 0420576
[3] Charalambous, M. G., Chatyrko, V. A: Some estimates of the inductive dimensions of the union of two sets. Topology Appl. 146-147 (2005), 227-238. MR 2107148 | Zbl 1063.54025
[4] Chatyrko, V. A.: Compact spaces with noncoinciding dimensions. Tr. Mosk. Mat. Obshch. 53 (1990), 192-228, 261 Russian English transl.: Trans. Moscow Math. Soc. (1991), 199-236. MR 1097997
[5] Chatyrko, V. A.: On properties of subsets of $[0,\omega_\mathfrak{c}]\times I$. Quest. Answers Gen. Topology 26 (2008), 97-104. MR 2462305
[6] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On an approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$. Topology Appl. 107 (2000), 39-55. DOI 10.1016/S0166-8641(99)00092-9 | MR 1783832
[7] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On another approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$. Topology Proc. 25 (2000), 43-72. MR 1925677
[8] Engelking, R.: General Topology. Heldermann Verlag Berlin (1989). MR 1039321 | Zbl 0684.54001
[9] Engelking, R.: Theory of Dimensions, Finite and Infinite. Heldermann Lemgo (1995). MR 1363947 | Zbl 0872.54002
[10] Fedorchuk, V. V.: Fully closed maps and their applications. Fundam. Prikl. Mat. 9 (2003), 105-235 Russian English transl.: J. Math. Sci. (N. Y.) 136 (2006), 4201-4292. MR 2093414
[11] Filippov, V. V.: On the inductive dimension of the product of bicompacta. Dokl. Akad. Nauk SSSR 202 (1972), 1016-1019 Russian English transl.: Sov. Math., Dokl. 13 (1972), 250-254. MR 0292043 | Zbl 0243.54032
[12] Ivanov, A. V.: The dimension of not perfectly normal spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 31 no. 4 (1976), 21-27 Russian English transl.: Moscow Univ. Math. Bull. 31 (1976), 64-69. MR 0423319
[13] Krzempek, J.: Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua. Preprint in Math Arxiv. Available at (arXiv:0805.2087v3) (to appear) in Colloq. Math. MR 2672270
[14] Lokucievskiǐ, O. V.: On the dimension of bicompacta. Dokl. Akad. Nauk SSSR 67 (1949), 217-219 Russian. MR 0030750
[15] Lunc, A. L.: A bicompactum whose inductive dimension is larger than the covering dimension. Dokl. Akad. Nauk SSSR 66 (1949), 801-803 Russian. MR 0030749
[16] Vopěnka, P.: On the dimension of compact spaces. Czechoslovak Math. J. 8 (1958), 319-327 Russian. MR 0102068
Partner of
EuDML logo